
Computing the Degeneracy of Large Graphs�

Mart́ın Farach-Colton and Meng-Tsung Tsai

Rutgers University, New Brunswick NJ 08901, USA
{farach,mtsung.tsai}@cs.rutgers.edu

Abstract. Any ordering of the nodes of an n-node, m-edge simple undi-
rected graph G defines an acyclic orientation of the edges in which each
edge is oriented from the earlier node in the ordering to the later. The
degeneracy on an ordering is the maximum outdegree it induces, and
the degeneracy of a graph is smallest degeneracy of any node ordering.
Small-degeneracy orderings have many applications.

We give an algorithm for generating an ordering whose degeneracy
approximates the minimum possible, that is, it approximates the degen-
eracy of the graph. Although the optimal ordering itself can be com-
puted in O(m) time and O(m) space, such algorithms are infeasible for
large graphs. Our approximation algorithm is semi-streaming: it uses
less space, can achieve a constant approximation ratio, and accesses the
graph in logarithmic read-only passes.

1 Introduction

Any ordering of the nodes of an n-node,m-edge simple undirected graphG defines
an acyclic orientation of the edges in which each edge is oriented from the earlier
node in the ordering to the later. The degeneracy of an ordering is the maximum
outdegree it induces. The degeneracy, d(G), of G is the smallest degeneracy of
any ordering1, and an ordering whose degeneracy is d(G) is called a degenerate
ordering. An ordering is d-degenerate if it has degeneracy at most d.

Degenerate orderings have many uses. Given a degenerate ordering, one can:
decompose a graph into at most twice to the minimum number of disjoint
forests [2,4]; decompose a graph into at most six times to the minimum number of
disjoint planar graphs [4,11]; speed up the counting of the number of short paths
or cycles [2], for example, counting the exact number of 3-cycles in O(md(G))
time; find a component of density at least half the maximum density of any sub-
graph, i.e. a 1/2-approximation [7]; identify a dominating set of cardinality at
most O(d2(G)) times the cardinality of minimum dominating set [19] and some
variations of dominating set [12], e.g. k-dominating set; etc. Although most of

� Work supported by NSF Grants IIS-1247750 and CCF-1114930.
1 The degeneracy of a graph was originally defined to be the maximum of minimum
degree among all subgraphs [2,4,5,7,14,22,26]. The definition here is a slight modifi-
cation of the coloring number [4,5,14] of a graph, a dual definition of degeneracy. The
coloring number of a graph was shown to be one larger than the degeneracy [4,5,14],
and our definition yields the same value as the original definition of degeneracy.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 250–260, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Computing the Degeneracy of Large Graphs 251

these problems can be solved exactly in polynomial time and space O(n) to
O(m) [7,15,16,18], the approximation algorithms based on degenerate orderings
are faster, use less space or yield better approximation factors for large graphs.
For example, such orderings yield a better approximation algorithm for decom-
posing a graph into minimum number of planar subgraphs than other algorithms
using O(n) space [17, 21]. Although all of the results listed originally relied on
(optimally) degenerate orderings, we show that orderings that are nearly degen-
erate, that is, orderings whose degeneracy approximates rather than matching
the graph degeneracy, also yield good approximation algorithms.

Known algorithms to compute a low-degeneracy ordering do not scale to
graphs that are larger than memory. Several models of computation have
been proposed for computing on large graphs, such as the restrictive semi-
streaming [13, 23–25, 27] model that allows only O(n polylogn) space and se-
quential read-only passes through the graph, the W-stream [24,27] model which
is similar but also allows the algorithm O(m)-size read-write space on disk, the
Stream-Sort [24, 25, 27] model, in which sorting the graph needs only one pass,
and the Stream-with-annotations [6] model that as semi-streaming but assume
a powerful helper can be queried for a small number of annotations. When
read-write space is restricted to O(n polylogn) space and accessing the graph is
restricted to a constant or logarithmic number of sequential passes on entire the
graph, some graph problems, e.g. connectivity or minimum spanning tree, have
known optimal solutions. Other graph problems, e.g. counting the number of
3-cycles and maximum matching, can be approximated [1,3]. Some fundamental
problems, such as breath-first search, depth-first search, topological sorting, and
directed connectivity, are believed to be difficult [24, 25].

All known algorithms for computing degenerate orders have a structure that
is similar to topological sort. Therefore, we seek to approximate the graph de-
generacy. We use the semi-streaming model; that is, O(n polylogn) space and
constant/logarithm sequentially read-only passes on the entire graph are allowed,
which is the most restricted model among the mentioned three. Our goal is to
minimize the number of passes on the disk while finding a node ordering of low
degeneracy, in particular one whose degeneracy is a good approximation of the
degeneracy of the graph.

A simple semi-streaming algorithm can find a
√
nd(G)-degenerate ordering of

nodes in one pass, by sorting the node by (undirected) degree [26]. We improve
the approximation factor to a constant at the cost of a logarithmic number of
passes while maintaining n working space. Our algorithm can be made to use
space that is less than n, and as our space usage decreases, our approximation
factor degrades. Our algorithm outputs a sequence of some subset of nodes in
each pass. At the end of all passes, the concatenation of all sequences is the
desired ordering.

Theorem 1. Given a simple undirected n-node m-edge graph G, an αd(G)-
degenerate ordering of nodes of G, i.e. an α-approximation, can be computed
in O((m+n)P) time, using s(n) space and P = O(log1+ε/2 n/s(n)+logα/2 s(n))

252 M. Farach-Colton and M.-T. Tsai

sequential passes on the entire graph, where α = (2 + ε)n/s(n) for any ε > 0
and 1 ≤ s(n) ≤ n.

Note that α is inversely related to space s(n). For example, if s(n) = n/10, then
α = 20(1 + ε), and if s(n) = n/ logn, let α = 2 logn(1 + ε), for any ε > 0.
In addition, it is possible to perform fewer than logn passes: our algorithm
requires O(log logn/ε + logn/ log logn) passes, for small ε > 0, when s(n) =
O(n/ polylogn).

Organizations. In Section 2, we revisit some properties of graph degeneracy
and give a sketch of our algorithms. We propose the space-efficient approximation
algorithms in Section 3 and analyze their complexities. Last, in Section 4, we
discuss how the found ordering be applied to applications.

2 Preliminaries

We begin by reviewing some known results about degeneracy. A greedy algorithm
finds d(G) and a corresponding ordering of nodes in O(m) time using O(m)
space [5, 22]. The greedy algorithm is based on the following two observations:
d(G) is at least the minimum degree, δ(G), of G, because the first node in any
ordering has outdegree equal to its (undirected) degree; d(G) ≥ d(H) for any
subgraph H ⊆ G, since one can apply the optimal orientation for G to subgraph
H . Hence, the algorithm can greedily pick node v of minimum degree as the first
node in the ordering and reduce the graph G to a subgraph G \ v. This greedy
step will not increase the maximum out-degree in the resulting ordering because

max
{
d(v), d(G \ v)} ≤ d(G).

This greedy algorithm needs to update the degree of nodes next to v in order
to find the node of minimum degree in G \ v, which requires a full graph scan
in the semi-streaming model, or O(n) passes in total. To reduce the number
of passes on the graph, one can find a subset of vertices W whose degrees are
within the range [δ(G), cδ(G)] for any c ≥ 1. Removing W in a round yields a
greedy algorithm that approximates d(G) by a factor of c, since

d̂(G) ≤ max
{
cδ(G), d(G \W)

} ≤ cd(G).

Although this algorithm finds sets of nodes, rather than single nodes, in each
pass, the number of passes remains Θ(n) in the worst case, as illustrated in
Figure 1.

To further reduce the number of passes to log, let the density of a G be m/n,
and let d∗(G) be the maximum density among all subgraphs of G. It is known
that d∗(G) ≤ d(G) ≤ 2d∗(G) [14]. The first inequality is true by the pigeon-hole
principle: if m edges are assigned as out-edges to n nodes, then some node will
get at least m/n edges, and this is true of all subgraphs as well. The second
inequality is true because every n-node m-edge graph G has a node of degree

Computing the Degeneracy of Large Graphs 253

2

3

3

2

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

3

2

2

3

Fig. 1. In the above graph G, if one removes nodes of degree within [δ(G), 2δ(G)] in
each round, then the removal of all nodes requires three rounds. Each round removes
the extreme column at either end, leaving a structure with “internal” nodes of degree 5
and end columns of degree 2/3/3/2. This graph can be extended to an arbitrary length
by concatenating multiple instances of G. This longer graph shares the property that
only the first and last column are removed in each round. Therefore, greedily removing
nodes of degree with [δ(G), 2δ(G)] requires Θ(n) rounds.

no more than 2m/n; hence, one can always remove a vertex of degree at most
2d∗(G), or, equivalently, d(G) ≤ 2d∗(G).

If one iteratively removes a subset of vertices whose degrees are no more than
cm/n, where c = 2 + ε for any ε > 0, then the approximated degeneracy d̂(G)
is at most cd∗(G), i.e., we achieve a c-approximation of both d∗(G) and d(G).
After the removal of vertices, the number of surviving vertices is at most 2n/c
because the sum of degree is at most 2m, which means that there are at most
2n/c nodes of degree more than cm/n. Thus, the number of passes is logarithmic,
specifically, O(log n/(log c− 1)), yielding a tradeoff between the approximation
factor and the number of passes.

The space can be further reduced based on the ideas of counting sketches
used in streaming algorithms [8–10]. That is, we use s(n) < n space to count
the degree of each node. Since s(n) is not sufficient to count the degree of n
nodes individually, a counter is possibly shared among some nodes. Indeed, the
counter is the sum of degrees of nodes assigned to this counter. Therefore, the
counter is an overestimate of degree. If the overestimate is bounded, then we get
a bounded approximation. We explore these ideas more fully below.

3 Algorithms

We present two algorithms: one that uses n space and achieves a constant approx-
imation factor and one that uses less than n space and yields a smooth tradeoff
between the space used and the approximation achieved. These algorithms share
some high-level structure, which we present first.

The proposed algorithms require multiple passes on graph G(V,E). Let V1 be
V . In the ith pass, the algorithms identify a subset Vi+1 ⊆ Vi. Let ni = |Vi| and
mi be the number of edges in the subgraph of G induced by Vi. Step i outputs
the nodes in Vi \ Vi+1 in any arbitrary order. The algorithms terminate when

254 M. Farach-Colton and M.-T. Tsai

there are no more nodes to output, that is, when ni+1 = 0. The desired ordering
of nodes is the concatenation of the output of all phases.

So far, this algorithm follows the same outline as the other greedy algorithms.
The difference will be in which nodes we output in each phase. A node becomes
a candidate node in phase i if di(u) ≤ αmi/ni for some α = 2+ ε, ε > 0, where
di(u) is the degree of u in the subgraph of G induced by Vi. Once a node is a
candidate, it remains a candidate. Both of our algorithms output only candidate
nodes, and they both output candidates as soon as they detect that a node
becomes a candidate. The difference between our algorithms is that if we use
linear space, we can detect that a node is a candidate as soon as it becomes
one, so that we output nodes more aggressively. We achieve a smaller number of
phases and a better approximation ratio. If we have sublinear space, it will be
more difficult to detect candidacy.

In the first algorithm, we will go further and guarantee to output all nodes
u with di(u) ≤ αmi/ni, that is, we will detect candidate nodes as soon as they
become candidates. In that case,

ni+1 ≤ (2mi)/(αmi/ni) = 2ni/α.

This implies that the algorithm terminates after a logarithmic number of phases.
When we use sublinear space, we will not be able to guarantee that all low-degree
nodes are output, so we will need to be more careful in order to guarantee a
logarithmic number of phases.

Using Space of Size n. We start with an easy version such that the memory
has size of n2, which is used for n counters, di(u) for u ∈ V , where di(u) is
reused as di+1(u) for all i. Each di(u) keeps the information whether node u is
output before the ith pass, in which case it is set to −1. If the node has not be
output yet, di(u) is used to keep track of the degree of u in the subgraph of G
induced by Vi. The value of di(u) for all u can be updated in one pass through
the graph, as follows. If di(u) is negative, do nothing; otherwise, reset di(u) to
0. During the scan, process the edge, one by one. When processing edge (u, v), if
di(u) ≥ 0 and di(v) ≥ 0, then it means edge (u, v) is still the subgraph induced
by Vi; increment di(u) and di(v) by one.

Having di(u) for u ∈ Vi, check each u to see if di(u) ≥ αmi/ni. Output any
such node u as it is identified, and set di(u) = −1.

Lemma 1. An αd(G)-degenerate ordering of nodes, for α = 2+ ε, ε > 0, can be
generated by a semi-streaming algorithm using n space, P = O(log n/ log(α/2))
passes, and O((m+ n)P) time.

Proof. Consider an ordering produced by the algorithm. If node u is output in
the ith pass, then u belongs to Vi \ Vi+1 and has outdegree at most αmi/ni.
The n counters allows the algorithm to output any such candidate node during

2 Any algorithm will require a constant amount of memory, so when we report space
usage of n, we mean in addition to the O(1) overhead for running the algorithm.

Computing the Degeneracy of Large Graphs 255

the phase that it becomes a candidate. Therefore, ni+1 ≤ 2ni/α. The number of
passes is therefore O(log n/ log(α/2)).

As for the approximation factor, since each output node u in the ith pass has
degree di(u), then the eventual outdegree of u is at most

di(u) ≤ αmi/ni ≤ αd∗(G) ≤ αd(G),

yielding an αd(G)-degenerate ordering of nodes. ��

Using Space of Size s(n) ≤ n. The small-space algorithm proceeds in two
sections. At first, there is not enough space to count the degree of every one. As
some nodes are output, the number of remaining nodes ni drops. When ni drops
to no more than s(n)/2, then we can use a hash table to count the degrees and
proceed as that using space of size n. Therefore, we focus on the first part of the
algorithm.

If ni > s(n)/2, then the s(n) space is not sufficient to keep track of which
nodes are still active and to keep track of di(u) individually for each u ∈ Vi.
Therefore, the algorithm switches over when ni ≤ s(n)/2. To count degrees with
fewer counter, as with counting sketches [8–10], we map ni nodes to s(n) space

by a hash function h, and d̂i(h(u)) is used to count the degree of node u, although
other nodes v may share the same counter if h(v) = h(u). Formally,

d̂i(h(u)) =
∑

v∈Vi,h(v)=h(u)

di(v).

Note that by di(u) and d̂i(h(u)) we denote the real degree of node u in the

subgraph induced by Vi and its estimate, respectively. Clearly, d̂i(h(u)) ≥ di(u).
We use a simple, deterministic hash function,

h(u) = u mod s(n).

The small-space procedure mimics the n-counter algorithm. First, recall that
when a counter is negative, it means that a node has been output. Since several
nodes can share the same counter, if we output one node u that maps to a
counter, we will output all nodes that map to that counter, and we will set that
counter d̂(h(u)) = −1, as before.

Lemma 2. An αd(G)-degenerate ordering of nodes, for α = (2 + ε)n/s(n), ε >
0, can be generated by a semi-streaming algorithm using s(n) space, P =
O(log n/ log(αs(n)/(2n))) passes, and O((m+ s(n))P) time.

Proof. Recall that n1(= n), n2, . . . , nP+1 is the number of nodes remaining

after each pass. In the ith pass, the expectation of estimators d̂i(x) for x ∈
{1, 2, . . . , s(n)} is E[d̂i(x)] = 2mi/s(n). By Markov’s inequality, we have

p1 ≡ Pr

[
d̂1(x) >

αs(n)

2n1
E[d̂1(x)]

]
<

2n1

αs(n)
< 1.

256 M. Farach-Colton and M.-T. Tsai

The number of estimators that have value more than (αs(n))/(2n1)E[d̂1(x)] is
at most

s2 < s(n)
2n1

αs(n)
< s(n).

Then V2, the identified subset of V1, has cardinality at most n2 = s2
n/s(n)� or
precisely s2n/s(n), assuming that n is a multiple of s(n). The assumption can
be handled by adding some isolated nodes to increase n to a multiple of s(n)
and ignoring the nodes of index more than the original n as they are output.
Similarly, due to n2 < n1 = n,

p2 ≡ Pr

[
d̂2(x) >

αs(n)

2n2
E[d̂2(x)]

]
<

2n2

αs(n)
< 1.

The number of estimators that have value more than (αs(n))/(2n2)E[d̂2(x)] is

s3 = s(n)p2 < s(n)
2

αs(n)
n2 = s(n)

2

αs(n)
s2

n

s(n)
< s2.

Therefore, P = O(logn/ log (αs(n)/(2n))) because the above derivation is

si+1 <
2n

αs(n)
si < si

in general. The outdegree of nodes output in the ith pass is bounded by

d̂i(h(u)) ≤ αs(n)

2ni
E[d̂i(x)] ≤ αs(n)

2ni

2mi

s(n)
≤ αd∗(G) ≤ αd(G). ��

We compare the proposed algorithms in Table 1. The approximation factor
α and the required number of passes P of the proposed sublinear-space algo-
rithm are those of the linear-space algorithm multiplied by a factor of n/s(n),
respectively. There is therefore a tradeoff between α and P on the one hand
and s(n) on the other. We can combine the two algorithms as follows. When
the space is not sufficient to accommodate all nodes, we use the sublinear-space
algorithm. Once the remaining nodes are at most s(n)/2, we use the linear-space
algorithm, which converges faster, changing the base of the log from αs(n)/(2n)
(a constant close to 1) to α/2 (a constant if s(n) = Θ(n) or logarithmic if
s(n) = Θ(n)(n/ polylog)). Hence, the required number of passes is bounded by

O(logαs(n)/(2n) n/s(n) + logα/2 s(n))

=O(log(n/s(n))/ log(1 + ε/2) + log s(n)/ log((1 + ε/2)n/s(n))).

It is remarkable that, for small ε, only O(log logn/ε+logn/ log logn) passes are
needed to achieve an approximation factor of O(logk n) when s(n) = n/ logk n.

4 Applications

Here we show how to use a small degeneracy ordering to approximate some
problems in streaming models.

Computing the Degeneracy of Large Graphs 257

Table 1. Comparison of proposed algorithms. Approximations are for small ε.

space approximation factor (α) # of passes (P) for any ε P for small ε

n 2 + ε log n/ log((2 + ε)/2) ≈ 2 log n/ε

s(n) (2 + ε)n/s(n) log n/(log(αs(n)/(2n))) ≈ 2 log n/ε

Forest/planar subgraph decomposition. Let a(G), the arboricity of G, be
the minimum number of disjoint forests into which graph G can be decomposed.
Let θ(G), the thickness of G, be the minimum of disjoint planar graph into which
graphG can be decomposed. The relationships among degeneracy, arboricity and
thickness are illustrated in Figure 2.

d(G)

a(G) θ(G)

a(G) ≤ d(G) ≤ 2a(G) [2,4] θ(G) ≤ d(G) ≤ 6θ(G) [4]

θ(G) ≤ a(G) ≤ 3θ(G) [11]

Fig. 2. The relationships among d(G), a(G) and θ(G)

One can use a (2 + ε)d(G)-degenerate ordering to approximate the optimal
decomposition of a graph into disjoint forests/planar subgraphs, as follows. For
each u, assign a distinct color to each edge connecting a neighbor that appears
later in the ordering. Since the ordering is (2 + ε)d(G)-degenerate, (4 + ε)d(G)
are required, i.e., a 4-approximation. Monochrome edges never form a cycle, that
is, they form a forest. Since a forest is also a planar graph, forest-decomposition
can also be applied to planar-decomposition, yielding a (12 + ε)-approximation.

Given a small-degeneracy ordering, subgraph decomposition can therefore be
approximated in the Sort-stream model, using the space s(n), as follows. Asso-
ciate with each edge the rank of its incident nodes in the ordering. This can be
done in n/s(n) sequential writable passes. Then, sort the stream by the smaller
rank of incident nodes in one pass, as is assumed to be allowable in the Sort-
stream model. Perform one more sequential scan to assign a distinct color to each
edge that match in the smaller rank of incident nodes. Last, sort the stream by
the edge color.

Sever-Client Load Balancing. For this application, we need to generalize
the result on ordinary graph G to a simple r-hypergraph G. In a hyergraph,
each hyperedge is a subset of nodes. An r-hypergraph is a hypergraph where
each edge has at least two nodes (no self loops) and at most r. In this case,
d∗(G) ≤ d(G) ≤ rd∗(G) because, on one hand, n nodes are assigned by m

258 M. Farach-Colton and M.-T. Tsai

edges and there exists one node has been assigned no fewer than m/n edges
by the Pigeon-hole principle; on the other hand, there exists one node with
degree no more than rm/n in each r-hypergraph, which, by the optimal greedy
construction of degeneracy, shows the right-hand inequality.

Corollary 1. Given a simple undirected n-node m-edge r-hypergraph G, using
space s(n), where 1 ≤ s(n) ≤ n, an αd(G)-degenerate ordering of nodes of G, i.e.
an α-approximation, can be computed in O((m + n)P) time, using s(n) space
and P = O(log1+ε/r(n/s(n))+logα/r s(n)) sequential passes on the entire graph,
where α = (r + ε)n/s(n) for any ε > 0.

Consider the server-client load balancing problem [20]. A sever-client model is
a bipartite graph such that all edges are incident on one server node and one
client node. The task is to assign each client to a server while minimizing the
number clients assigned to a single server.

Suppose that the degree of each client is at most r, and consider the following
induced r-hypergraph: the nodes are the server nodes and each hyperedge in
the induced hypergraph is the set of servers adjacent to a client node. Then an
(r+ ε)d(G)-degenerate ordering of the hypergraph is a (r+ ε)-approximation of
the server-client load balancing problem, where the approximated assignment of
each client to a server is then obtained by the degenerate ordering.

An (r + ε)d(G)-degenerate ordering induces an assignment of each client to
a server. As mentioned above, the induced assignment minimizes the heaviest
server load to within a factor of (r + ε) of optimal. In addition, based on the
algorithm introduced in [20], a good approximation algorithm can be used to
speedup their exact computation. In [20], they prove that, given a sub-optimal
assignment, there exists an alternating path connecting the server of maximum
load to another server. The better the initial solution, the fewer alternating-
path rewrites that are needed, thus improving the time complexity of finding an
optimal solution.

Finding an Approximated Dominating Set. In [19], it was shown how to
identify a dominating set based on a d-degenerate ordering, for any d. Let the
neighbor nodes appear earlier (later) in the ordering be earlier (later) neighbors.
The algorithm initializes an empty dominating set D̂ and adds some nodes to
this set greedily as follows. Traverse the nodes in the ordering from the first to
the last. When processing node u, if u is dominated by D̂, do nothing; otherwise,
some nodes need to be added to D̂. The choice of added nodes is made depending
on whether u has a later neighbor. If so, add all later neighbors to D̂; otherwise,
add u to D̂. The set D̂ so constructed is a dominating set. The greedy process
requires the space O(n) and one sequential pass on the adjacency list, each list
sorted by lower rank, can be handled as in the graph decomposition.

In [19], it is shown that |D̂| ≤ O(d2)|D|, where D is the smallest dominating
set. More applications that apply small degeneracy ordering to some variations
of dominating set, e.g. k-dominating set, are introduced in [12].

Computing the Degeneracy of Large Graphs 259

References

1. Ahn, K.J., Guha, S.: Linear programming in the semi-streaming model with
application to the maximum matching problem. In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 526–538. Springer,
Heidelberg (2011)

2. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: Proceedings of the Thir-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2002, pp.
623–632. Society for Industrial and Applied Mathematics (2002)

4. Bollobás, B.: Extremal graph theory. Academic Press (1978)
5. Bollobás, B.: The evolution of sparse graphs. In: Graph Theory and Combinatorics,

Proc. Cambridge Combinatorial Conf., pp. 35–57. Academic Press (1984)
6. Chakrabarti, A., Cormode, G., McGregor, A.: Annotations in data streams. In:

Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 222–234. Springer, Heidelberg
(2009)

7. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000)

8. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002)

9. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. Proc.
VLDB Endow. 1(2), 1530–1541 (2008)

10. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

11. Dean, A.M., Hutchinson, J.P., Scheinerman, E.R.: On the thickness and arboricity
of a graph. Journal of Combinatorial Theory, Series B 52(1), 147–151 (1991)

12. Dvořák, Z.: Constant-factor approximation of the domination number in sparse
graphs. European Journal of Combinatorics 34(5), 833–840 (2013)

13. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 531–543. Springer, Heidelberg (2004)

14. Frank, A., Gyarfas, A.: How to orient the edges of a graph. In: Combinatorics
Volume I, Proc. of the Fifth Hungarian Colloquium on Combinatorics, vol. I, pp.
353–364 (1976)

15. Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid
sums and applications. In: Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, STOC 1988 pp. 407–421. ACM (1988)

16. Goldberg, A.V.: Finding a maximum density subgraph. Tech. rep. (1984)
17. Kawano, S., Yamazaki, K.: Worst case analysis of a greedy algorithm for graph

thickness. Information Processing Letters 85(6), 333–337 (2003)
18. Kowalik, �L.: Approximation scheme for lowest outdegree orientation and graph

density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566.
Springer, Heidelberg (2006)

19. Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of
bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 510–524. Springer, Heidelberg (2010)

260 M. Farach-Colton and M.-T. Tsai

20. Liu, P., Wang, D.W., Wu, J.J.: Efficient parallel i/o scheduling in the presence of
data duplication. In: International Conference on Parallel Processing, pp. 231–238
(2003)

21. Mansfield, A.: Determining the thickness of graphs is NP-hard. Math. Proc. Cam-
bridge Philos. Soc. 93, 9–23 (1983)

22. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983)

23. Muthukrishnan, S.: Data streams: Algorithms and applications. Tech. rep. (2003)
24. O’Connell, T.C.: A survey of graph algorithms under extended streaming models

of computation. In: Fundamental Problems in Computing, pp. 455–476. Springer,
Netherlands (2009)

25. Ruhl, J.M.: Efficient Algorithms for New Computational Models. Ph.D. thesis,
Massachusetts Institute of Technology (September 2003)

26. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs,
an experimental study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503,
pp. 606–609. Springer, Heidelberg (2005)

27. Zhang, J.: A survey on streaming algorithms for massive graphs. In: Managing and
Mining Graph Data, Advances in Database Systems, vol. 40, pp. 393–420. Springer,
US (2010)

	Computing the Degeneracy of Large Graphs
	1 Introduction
	2 Preliminaries
	3 Algorithms
	4 Applications
	References

