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Abstract. In a wait-free model any number of processes may crash. A process
runs solo when it computes its local output without receiving any information
from other processes, either because they crashed or they are too slow. While in
wait-free shared-memory models at most one process may run solo in an execu-
tion, any number of processes may have to run solo in an asynchronous wait-free
message-passing model.

This paper is on the computability power of models in which several processes
may concurrently run solo. It first introduces a family of round-based wait-free
models, called the d-solo models, 1 ≤ d ≤ n, where up to d processes may
run solo. The paper gives then a characterization of the colorless tasks that can be
solved in each d-solo model. It also introduces the (d, ε)-solo approximate agree-
ment task, which generalizes ε-approximate agreement, and proves that (d, ε)-
solo approximate agreement can be solved in the d-solo model, but cannot be
solved in the (d + 1)-solo model. The paper studies also the relation linking d-
set agreement and (d, ε)-solo approximate agreement in asynchronous wait-free
message-passing systems.

These results establish for the first time a hierarchy of wait-free models that,
while weaker than the basic read/write model, are nevertheless strong enough to
solve non-trivial tasks.

1 Introduction
Distributed computability. The computability power of a distributed model depends on
its communication, timing, and failure assumptions. A basic result is the impossibility
to solve consensus in an asynchronous read/write [16] or message-passing [8] system
even if only one process may crash. When looking at the communication medium and
assuming asynchronous processes prone to crash failures, a read/write system and a
message-passing system have the same computability power if and only if less than half
of the processes may crash [1]. If a majority of the processes may crash, the message
passing model is weaker than the shared memory model because partitions can occur.

The power of a distributed model has been studied in detail with respect to tasks,
which are the distributed equivalent of functions in sequential computing. Each process
gets only one part of the input, and after communicating with the others, decides on
an output value, such that collectively, the various local outputs produced by the pro-
cesses respect the task specification, which is defined from the local inputs of the pro-
cesses. This paper concentrates on the class of colorless tasks (e.g., [3,12]), where the
specification is in terms of possible inputs and outputs, but without referring to which

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 214–225, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Computing in the Presence of Concurrent Solo Executions 215

process gets which input or produces which output. Among the previously studied no-
table tasks, many are colorless, such as consensus [8], set agreement [5], approximate
agreement [6], loop agreement [13] while some are not, like renaming [2].

Wait-freedom and solo execution. This paper considers wait-free distributed crash-
prone asynchronous models. Wait-free has two (complementary) meanings. First, it
means that the model allows up to n − 1 processes to crash, where n is total num-
ber of processes. Its other meaning expresses a liveness condition, namely it requires
that every non-faulty process progresses and eventually decides (i.e., computes a result)
whatever the behavior of the other processes [11].

In a wait-free model where processes must satisfy the wait-freedom liveness condi-
tion, a process has to make progress even in the extreme cases where all other processes
have crashed, or are too slow, and consequently be forced to decide without knowing
their input values. Hence, for each process, there are executions where this process
perceives itself as being the only process participating in the computation.

More generally, we say that a process executes solo if it computes its local output
without knowing the input values of the other processes.

Two extreme wait-free models: shared memory and message passing. In a model where
processes communicate by reading and writing shared registers, at most one process can
run solo in any execution. This is because, when a process runs solo, it writes and reads
from the shared memory, and eventually writes its decision. Any other process that
starts running, will be able to read the history left by the solo process in the memory.

When considering message-passing communication, all processes may have to run
solo concurrently in the extreme case, where messages are arbitrarily delayed, and each
process perceives the other processes as having crashed. Only tasks that can be solved
without communication can be computed in this model.

Investigating the computability power of intermediary models. The aim of the paper is
to study the computability power of asynchronous models in which processes may run
solo in the same execution. More precisely, assuming that up to d processes may run
solo, the paper addresses the following questions:

– How to define a computation model in which up to d processes may run solo?
– Which tasks can be computed in such a model?

The aim is to study these questions in a clean theoretical framework, and (for the first
time) investigate models weaker than the basic wait-free read/write model. However,
we hope that our results are relevant to other intermediate models, such as distributed
models over fixed or wireless networks.

To simplify the technical development, following [4], the paper develops a theoret-
ical round-based framework, iterated model (IIS) that has been proved useful in many
other papers. Processes execute an infinite sequence of asynchronous rounds and com-
municate through specific objects called immediate snapshot objects. Such objects are
high-level read/write objects such that a new object instance is associated with each
round and, when it executes a round r, a process can access only the object associated
with round r. A main interest of the IIS model is that, from a task computability point
of view, it has the same power as the read/write wait-free model [4]. Also, the topology
of the IIS model is easier to analyze, establishing a good foundation to analyze task
solvability in various distributed computing models.
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Contributions. The following contributions answer previous questions:

– The definition of a family of d-solo models, each parametrized with an integer d,
1 ≤ d ≤ n. The 1-solo model corresponds to the IIS model (which is equivalent
to the read/write wait-free model [4]), while the n-solo model corresponds to the
round-based wait-free message-passing model.

– A characterization of the set of colorless tasks that can be solved in the d-solo
model, 1 ≤ d ≤ n. Via a new form of complex subdivisions, this characterization
connects topology with colorless algorithms.

– Any d-solo model with d ≥ 2, is weaker than the read/write wait-free model, yet
there are natural, non-trivial tasks that can be solved in the d-solo model. One of
these tasks, called (d, ε)-solo approximate agreement (in short (d, ε)-SAA) is such
that (d, ε)-SAA can be solved in the d-solo model, for any ε > 0, but not in the
(d + 1)-solo model. Hence, more tasks can be solved in the d-solo model than in
the (d + 1)-solo model, for 1 ≤ d < n, which establishes a hierarchy of solo
models.

– Finally, the d-solo model is related to d-set agreement. This relation shows that, for
d < n, d-set agreement is strong enough to solve (d, ε)-solo approximate agree-
ment but is too weak to solve (d−1, ε)-solo approximate agreement in the wait-free
message-passing model. This provides us with a better insight on a bound on the
“maximal partitioning” allowed to solve (d− 1, ε)-solo approximate agreement in
the wait-free message-passing model.

The (d, ε)-solo approximate agreement task is a generalization of approximate agree-
ment [6]. The input of each process consists of a point in the Euclidean space R

N

(N ≥ d). The validity property states that each process pi has to decide a point which
is in the convex hull of all the input points. The agreement property states that at most
d processes may decide any point in the convex hull of the input points (let CH be the
convex hull defined by these at most d points), while the other processes have to decide
values whose distance to CH is at most ε. Actually, the convex hull of solo processes is
an “attractor” for the set of decided values.

When d = 1, validity and agreement imply that the Euclidean distance between
any pair of points decided by the processes has to be upper bounded by a predefined
constant. Thus, (1, ε)-solo approximate agreement problem in R

m is essentially the
problem that has been recently considered in the context of t Byzantine failures and
asynchronous message-passing systems [17,20], where it is shown that it can be solved
iff n > t(m+ 2).

The colorless tasks that are solvable in the wait-free iterated immediate snapshot
(IIS) model have been characterized in [12]. Due to the simulations in [4,10], this char-
acterization holds for the usual read/write wait-free model. Section 4 extends the char-
acterization of [12] to the d-solo model, 1 ≤ d ≤ n. Our characterization in terms
of colorless algorithms permits the use of standard subdivisions, instead of chromatic
subdivisions used in previous papers. We believe colorless algorithms are interesting in
themselves, and indeed, for d = 1, if a colorless task is solvable, it is solvable by a
colorless algorithm. For d > 1 we defer the proof that colorless algorithms and general
algorithms can solve a very similar class of tasks.
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One of the central results of topology is the Simplicial Approximation Theorem [18],
which establishes what is a “discrete version” of a continuous map. This theorem is also
central for the wait-free characterization theorem of [15] and its t-resilient extension
(e.g., [12]). However, this theorem cannot be used in a d-solo model, d > 1, because it
is no longer the case that the diameter of the simplexes in a subdivision is reduced. Not
even the Relative Simplicial Approximation Theorem [21] can be directly used.

Finally, it is important to notice that our d-solo model addresses different issues
than the d-concurrency model of [9], where it is shown that with d-set agreement any
number of processes can emulate d state machines of which at least one remains highly
available. While d-concurrency is used to reduce the concurrency degree to at most d
processes that are always allowed to cooperate, d-solo allows up to d processes to run
independently (i.e., without any cooperation).

Roadmap. The paper is composed of 6 sections. Section 2 introduces base definitions,
the communication objects, and the d-solo model. Section 3 investigates colorless tasks
in the d-solo model, while Section 4 focuses on what can be computed in the pres-
ence of concurrent solo executions. Then, Section 5 defines the (d, ε)-solo approximate
agreement problem, shows that it can be solved in the d-solo model and cannot in the
(d+1)-solo model, thereby defining a strict hierarchy of distributed computing models.
Section 6 concludes the paper. Due to page limitation, topology notions, all proofs, ad-
ditional technical developments, and relations between d-set agreement and (d, ε)-solo
approximate agreement in wait-free message-passing systems are given in [14].

2 Tasks, Processes, Communication Object, and Iterated Model
Tasks. A task is a one-shot distributed computing problem specified in terms of an in-
put/output relation Δ. Each process starts with a private input value and must eventually
compute a private output value. The task specifies the possible initial configurations. An
initial configuration I specifies the input value of each process. Similarly, the output
values produced by the processes in an execution represents an output configuration O.

A task (I,O, Δ) is defined by a set of input configurations I, a set of possible output
configurations O, and a relation Δ which specifies which output configurations O ∈ O
are correct for each input I ∈ I. A more formal description appears in Section 3.1 and
in previous papers such as in [15].

Processes. The system model is made up of n asynchronous (deterministic) sequen-
tial processes, p1, . . . , pn, which proceed in asynchronous rounds [19]. The index i of
process pi is sometimes used to denote pi. Up to n − 1 processes may crash. Once a
process crashes, it never recovers. We say the model is wait-free.

Rounds and communication objects. A communication object CO[r] is associated with
each round r and this object is the only means for the processes to communicate during
round r. The rounds are communication-closed [7] which means that, when a process
executes a round, it can communicate with other processes only through the object
associated with this round.

More precisely, CO[r] is a one-shot object (i.e., each process accesses it only once)
which provides the processes with a single operation denoted communicate(i, v), where
v is the value that the invoking process pi wants to communicate to the other processes



218 M. Herlihy et al.

during round r. Such an invocation returns to pi a set of pairs (process identity, value)
deposited into CO[r] by other processes during round r.

Iterated model. Each process pi executes the algorithm skeleton described in Figure 1,
where the local computation parts are related to the particular task that is solved. The
local variable ri is the local round number, �si contains pi’s local state, while viewi

contains all the pairs (j, �sj) communicated to pi during the current round. The local
transition function δi() defines the new local state of pi according to its previous local
state and the pairs (j, �sj) it has obtained from COd[r] (the parameter d is explained
below in Section 2.1). To solve a task, it is necessary to instantiate accordingly δi(), the
predicate decision() and the function dec val(): decision() allows pi to decide, while
dec val() allows it to compute the decided value. As we are interested in computability
and not efficiency, we assume a full information algorithm, i.e., at the end of each round
ri, �si contains the value of viewi, and δi can be task independent. However, we will
see in Section 3 that in some cases, tasks can be solved without communicating all a
process knows.

(01) ri ← 0; �si ← initial local state;
(02) loop forever ri ← ri + 1; viewi ← COd [ri ].communicate(i, �si);
(03) �si ← δi(�si, viewi); if decision(�si) then dec val(�si) end if
(04) end loop.

Fig. 1. Generic iterated model

2.1 Communication Object

The communication objects COd[1], COd[2], etc., of an execution are parametrized by
a solo-dimension d, 1 ≤ d ≤ n. As previously indicated, an object COd[r] contains a
set of pairs, one per process. Each pair (i, v) is such that i is a process index and v the
value communicated by pi, and COd[r] contains at most one pair per process.

Definition. The behavior of every object COd is defined as follows. Considering an
execution during which each of the n processes {p1, . . . , pn} accesses the object (at
most once) using its local state �si as input, one can represent this execution by an or-
dered partition, i.e., a tuple of non-empty sets (P1, . . . , Pz) such that (1) for any distinct
i, j ∈ {1, . . . , z}: Pi ∩ Pj = ∅, and (2)

⋃z
i=1 Pi = {p1, . . . , pn}. From an operational

view, the ordered partition (P1, . . . , Pz) describes the sequence of concurrent accesses
to the object COd.

The behavior of COd is defined from a d-ordered partition, where a d-ordered parti-
tion is an ordered partition (π1, . . . , πz′) such that 0 ≤ |π1| ≤ d (the size of the first set
of the partition can be 0 and cannot exceed d). More precisely, the d-ordered partition
(π1, . . . , πz′) associated with COd is:

– If |P1| > d: (π1, . . . , πz′) = (∅, P1, . . . , Pz), and
– If |P1| ≤ d: (π1, . . . , πz′) ∈ {(∅, P1, . . . , Pz), (P1, . . . , Pz)}.

(π1, . . . , πz′) = (P1, . . . , Pz) captures the cases where, initially, d (or less) processes
execute solo. In the other cases we have (π1, . . . , πz′) = (∅, P1, . . . , Pz), because ini-
tially either too many processes execute concurrently (first item), or, while no more than
d processes execute concurrently, none of them executes solo.
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The values viewi, 1 ≤ i ≤ n, obtained by the processes when the behavior of COd

is represented by the d-ordered partition (π1, . . . , πz′) are defined as follows:
(i ∈ π1) ⇒ (viewi = {(i, �si)}), and

(x > 1 ∧ i ∈ πx) ⇒
(
viewi = {(j, �sj) : j ∈ πy ∧ y ≤ x}

)
.

This means that the view of each process pi belonging to π1 (where 0 ≤ |π1| ≤ d)
contains only its own contribution, namely the pair (i, lsi). Differently, the view of a
process pi in πx, where x > 1, contains all the pairs (j, �sj) deposited in COd by
the processes pj of the sets πy such that y ≤ x. Thus, each process of π1 appears
as executing solo, while each other process of a set px, x 	= 1, sees the contributions
provided (a) by all the processes pi belonging to the “previous” sets πy (y < x), and
(b) by all the processes from its “concurrency” set πx. (The immediate snapshot object
described in [3] implements COd for d = 1.) Examples of communication objects are
presented in [14].
Object properties. Given an object COd , the next properties follows from its definition
(See examples of COd objects in the Appendix).

– Solo execution upper bound. 0 ≤ |{i such that |viewi| = 1}| ≤ d.
– Self-inclusion. ∀ i : (i,−) ∈ viewi.
– Containment. ∀ i, j :

(
(|viewi| ≤ |viewj |) ∧ |viewj | > 1)

)
⇒ (viewi ⊆ viewj).

2.2 A Spectrum of Solo Models

It follows from their definition that COd is stronger (more constraining) than COd+1 in
the sense that the subdivided complex of COd is included the one of C d+1. Intuitively,
this means that COd includes “more synchrony” than COd+1.
The d-solo model. The generic framework described in Figure 1 instantiated with COd

objects is called the d-solo model. It is denoted ACSd
n,n−1(ASC stands for Asyn-

chronous Concurrent Solo) where the first subscript denotes the total number of pro-
cesses, while the second subscript denotes the upper bound on the number of processes
allowed to crash.
Hierarchy of d-solo models. Let A �T B mean that any task that can be solved in the

model B can be solved in the model A, and A T B
def
= (A �T B) ∧ (B �T A).

Let ARWn,n−1 denote the base wait-free (asynchronous) read/write model. It fol-
lows from the fact that (for task solvability) the IIS model and ARWn,n−1 have the
same computability power [4], and IIS is nothing more than ACS1

n,n−1, that we have
ARWn,n−1 T ACS1

n,n−1.
Let AMPn,n−1 denote the classical (non-iterated) message-passing system where

up to (n− 1) processes may crash. As all processes except one may crash and commu-
nication is asynchronous (hence messages can be arbitrarily delayed), the tasks that can
be solved in AMPn,n−1 are the tasks that can be wait-free solved without communi-
cation. But, this set of tasks is exactly the set of tasks that can be solved in ACSn

n,n−1.
Hence, ACSn

n,n−1 T AMPn,n−1.

It follows from the definition of the communication objects COd and COd+1 that
any task solvable in ACSd+1

n,n−1 is solvable in ACSd
n,n−1. We have consequently the fol-

lowing hierarchy of models: ARWn,n−1 T ACS1
n,n−1 �T . . . �T ACSd

n,n−1 �T

. . . �T ACSn
n,n−1 T AMPn,n−1. We will see in Section 5 that A �T B can be

replaced by A �T B (all the tasks solvable in B are solvable in A, and there is one task
solvable in A and not in B).
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3 Colorless Tasks and the d-Solo Model
This section focuses on colorless tasks that can be solved in the d-solo model. After
having defined colorless tasks it shows that, for these tasks, one can use a restricted
form of the algorithm in Figure 1. It then, introduces the notions of a (d,R)-subdivision
task and a (d,R)-agreement task. (More topology notions are given in [14].)

3.1 Colorless Tasks
A colorless task is a special kind of task where the processes cannot use their ids dur-
ing the computation. This implies that the task specification is not in terms of ids. A
colorless task specifies which sets of values are valid input configurations, and which
are valid output decisions, but not which value is assigned to which process. Thus, a
process may adopt the input value or the output value of another process.

Formally, a colorless task is a triple (I∗,O∗, Δ∗), where I∗ is a colorless input
complex, O∗ is a colorless output complex, and Δ∗ : I∗ → 2O

∗
is a carrier map. A

colorless complex is a family of sets, over some basic set of values, such that if a set
is in the complex, then all its subsets are also in the complex. A set in the complex is
called a simplex. Simplexes of size 1, are called vertices, and of size 2, edges. Indeed, a
graph is a 1-dimensional complex. In the case of a colorless complex, a vertex is just a
value, either an input or an output value, while in a colored complex, a vertex is a pair
of values, one is a process id, and the other is an input our output value. If σ is an input
simplex in I∗, the carrier map Δ∗(σ) is a subcomplex of O∗ satisfying monotonicity:

∀σ, σ′ ∈ I∗ : Δ∗(σ ∩ σ′) ⊆ Δ∗(σ) ∩Δ∗(σ′).
Operationally, the meaning of a colorless task is the following. If σ ∈ I∗, then

the processes can start an execution with input values from σ; different processes may
propose the same vertex or different vertices from σ. Processes eventually decide (not
necessarily distinct) vertices that belong to the same output simplex τ ∈ O∗, such that
τ ∈ Δ∗(σ). If the system consists of n processes, then the processes can start with
at most n different input values, and hence, processes will never start on a simplex
σ of I of dimension greater than n − 1 (the dimension of σ is |σ| − 1). Thus, for n
processes, only the simplexes of I of dimension ≤ n − 1 are relevant, i.e., the n − 1
skeleton of I, denoted Skeln−1I. For example, in a system of two processes, n = 2,
only the 1-skeleton of I is of interest, which is the graph consisting of the vertices and
1-simplices of I.

3.2 Colorless Algorithms
A colorless algorithm is an algorithm in the form of Figure 1, but where the local
computation made by δi in line (3) is very restricted. Although a colorless algorithm is
not as powerful as an algorithm with no restrictions, it simplifies that exposition, and in
the full version we show that they can solve a similar class of colorless tasks.

Informally, in a colorless algorithm processes behave in an anonymous way: pro-
cesses consider the shared memory as if it is a set. (A colorless complex is denoted
with a ∗ superscript, as in K∗). In each round, a process deposits its input in the set,
and gets back a view of the contents of the set. If two processes deposit the same value
in the set, only one copy is stored. When a process gets back a set of values, there is
no information of which process deposited which value. A process “forgets” which is
its own value in the set. The set of values that a process receives at the end of a round,
becomes its input to the next round.
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Formally, in an execution, the initial local state of a process pi is a vertex vi of I∗,
and is assigned in line 1 to �si. Furthermore, the set of all initial states vi (not necessarily
distinct) is a simplex σ of I∗. We may write, σ = {�s1[0], . . . , �sn[0]}, where �si[0]
denotes the initial value of �si. Notice that |σ| may be less than n because different
processes may start with the same input value.

The local transition δi eliminates process ids. Namely, during any round r and for any
process pi, if we denote by �si[r] the value of �si at the end of round r, in line 2 of the
algorithm, viewi is assigned the value returned by COd [r ].communicate(i, �si[r−1]),
and this value is a set of pairs {(i1, �si1 [r − 1]), . . . , (ik, �sik [r − 1])} that includes ids
i1, . . . , ik, but when the function δi is applied to this set it returns a set σr

i = {�si1 [r −
1], . . . , �sik [r − 1]}. We assume every process executes the same number of rounds,
R ≥ 0, and in the last round, produces an output value dec val(�si) (all processes use
the same function dec val).

For an R round colorless algorithm in the d-dimensional model, the algorithm com-
plex is defined as follows. For each input simplex σ ∈ I∗, the subcomplex P∗(σ)
represents the executions r where all processes start with inputs from σ (at least one
process starts with each of the vertices in σ). Moreover, in the algorithm complex for
the d-dimensional model we do not want to include the (d− 1)-dimensional model, so
we consider only runs where the processes that in a round see more than one process,
they see at least d + 1 processes. The complex P∗(σ) contains a top dimensional sim-
plex τ = {�si} for each such R round execution of the algorithm starting in σ, where
the vertices �si of τ are the values of �si[r] at the end of this execution, for each process
pi (without repetitions, as the simplex is a set). The complex P∗ is the union of P∗(σ)
over all σ ∈ I∗. It is easy to prove that P∗(·) is a strict carrier map from I∗ to the
algorithm complex P∗.

We will explain the significance of the next lemma later on, when we discuss subdi-
visions.

Lemma 1. Consider a 1-round colorless algorithm and an input simplex σ ∈ I∗. The
simplexes of P∗(σ) are of the form τ = {τ1, . . . , τz}, where each τi ⊆ σ, and there is
an l, 0 ≤ l ≤ d such that (1) for all i, 0 ≤ i ≤ l, |τi| = 1, so ∪0≤i≤lτi is a face σ′ of σ,
(2) for all j, l < j ≤ z, σ′

� τj , and (3) for all j, l < j ≤ z − 1, τj � τj+1.

If P∗(·) is a carrier map from I∗ to the algorithm complex P∗, and dec val is a simpli-
cial map from P∗ to O∗, we say that dec val is carried by Δ∗ if for each σ ∈ I∗ and
each τ ∈ P∗(σ), the simplex dec val(τ) belongs to Δ∗(σ).
Lemma 2. If the colorless task (I∗,O∗, Δ∗) is solvable by a colorless algorithm then
there exists an algorithm complex P∗, and a simplicial map dec val from P∗ to O∗ that
is carried by Δ∗.

3.3 (d,R)-Subdivision and (d,R)-Agreement Tasks
The (d,R)-subdivision task. Which is the simplest task a colorless algorithm can solve
in the d-dimensional model? It is the task solved when each process executes R rounds,
then stops, and its decision function is the identity! Namely, dec val(�si) = �si i.e.
a process decides the set of values �si[R] it retrieves from the communication object
during the Rth round. Given any input complex I∗ and any integer R ≥ 0, we call
this task the (d,R)-subdivision task over I∗. The output complex O∗ of this task is
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of course equal to the algorithm complex P∗, with the simplicial map dec val being
the identity. For the carrier map, Δ∗(σ) includes all simplexes τ that correspond to
executions starting in σ, i.e., Δ∗(σ) = P∗(σ). In particular, for R = 0, I∗ = O∗, and
Δ∗ is the identity carrier map, which sends a simplex σ to the complex consisting of σ
and all its faces (which we often denote by σ, abusing notation).

By definition, the (d,R)-subdivision task over I∗ is solvable in the d-dimensional
model, and moreover, by a colorless algorithm. In fact, it is the basic building block
to solve every other colorless task, as shown in Theorem 1. We will justify the name
“subdivision task” when we see how to specify the task without resorting to executions
of some model in Section 3.4.

The (d,R)-agreement task. When the vertices of I∗ are points in Euclidean space,
the (d,R)-subdivision task can be used directly to solve a task that we call (d,R)-
agreement task over I∗, which is defined combinatorially in Section 5. In the (d,R)-
subdivision task, processes propose sets of values in each round. We can encode such a
set of values as its barycenter b, and then the process can directly propose b. We shall
see in Section 5, that, although both tasks are essentially the same, when we work with
barycenters processes compute output values within ε of each other (except for at most
d processes that may run solo), and we can make ε as small as we want, by choosing a
large enough value of R.

Operationally, the (d,R)-agreement task over I∗ is defined as follows. Processes
execute R rounds of a colorless algorithm in the d-dimensional model. In each round
r, each process pi computes its value �si[r] that will be the input to the next round, in
line 3 of the algorithm, by taking the barycenter of the values that it gets back from the
object in line 2. The barycenter computed in round R is the output of of the process.

3.4 The Structure of Colorless Algorithms

The structure of a colorless complex is explained in terms of subdivisions (due to page
limitation, more developments can be found in [14]). Examples of subdivisions of a
simplex are illustrated on the figure that follows at the right of the page.

Perhaps the simplest subdivision
is the stellar subdivision. Given a
complex (abusively denoted σm)
consisting of an m-simplex σm =
{s0, . . . , sm} and all its faces, the
complex Stel(σm, b) is constructed
by taking a cone with apex b over
the boundary complex ∂σm.

The barycentric subdivision,
Bary σm, is perhaps the most
widely used in topology. A simplex

σ2
Stel σ2

Bary σ2

σ3 Stel σ3 Div2 σ3

τ is in Bary σm if and only if there exists a sequence σ0 ⊂ . . . ⊂ σz of faces of σm,
and the set of vertices of τ is the set of the barycenters of the these faces, denoted
σ̂i, 0 ≤ i ≤ z.

For the d-solo models, we need to define a family of subdivisions that goes from the
stellar to the barycentric subdivision. The d-dimensional subdivision of a complex K
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denoted Divd K, is the barycentric subdivision of K relative to Skeld−1K. Intuitively,
we do not subdivide Skeld−1K because we consider executions where up to d processes
run solo, they get their own view in an invocation of a COd object. See the construction
of Figure 2 and topology notions in Appendix. As usual, the R-iterated d-dimensional
subdivision, DivRd K, is obtained by repeating the subdivision process R times.

(01) Divd Skeld−1σm ← Skeld−1σm; % each vertex is labeled by its name
(02) for k from d to m do % Construct Divd Skelkσm %
(03) for each simplex σk in σm do
(04) insert a vertex b in the barycenter of σk;

% this barycenter is labeled with the set of vertices of σk

(05) construct the cone with apex at b over Divd ∂σk;
% over the already subdivided boundary of σk %

(06) add the cone to Divd Skelkσm

(07) end for loop
(08) end for loop.

Fig. 2. Constructing the subdivision Divd σm of a simplex σm for the d-solo model

The next lemma follows from the fact that the construction of Divd in Figure 2
corresponds exactly to the description given in Lemma 1, and the fact in the system
there are n processes, so they can start with at most n different input values (so only the
input simplexes in I∗ of dimension at most n− 1 are relevant).

Lemma 3. If P∗
R is the R-round algorithm complex of a colorless algorithm in the d-

solo model with input complex I∗, then P∗
R is an R-iterated, d-dimensional subdivision

of the n− 1 skeleton of I∗.

Returning to the (d,R)-subdivision task, we can now justify its name, simply by recall-
ing that its output complex is equal to the algorithm complex:

Lemma 4. The (d,R)-subdivision task over I∗ for n processes is a triple (I∗,O∗, Δ∗),
where O∗ is the R-iterated, d-dimensional subdivision of the n− 1 skeleton of I∗, and
Δ∗ is equal to the corresponding subdivision carrier map.

4 What Can Be Computed in the Presence of Solo Executions?
This section presents a characterization of the colorless tasks that can be solved in each
one of the d-solo models. Consider an r round colorless algorithm that solves the color-
less task (I∗,O∗, Δ∗). At the end of the r-th round, processes have to decide an output
value, by executing dec val(�si) in line 3. The result of dec val(�si) is a vertex in O∗,
and different processes may decide different vertices as long as they belong to the same
simplex of O∗. This means that dec val is a simplicial map from P∗

r to O∗. Moreover,
dec val is carried by Δ∗, in the sense that for σ ∈ I∗: dec val(P∗

r (σ)) ⊆ Δ∗(σ),
which means that for any input simplex σ, any r round execution ends in a simplex
τ of P∗

r , and the decision that the processes make in τ , form an output simplex
dec val(τ) of O∗. This output simplex dec val(τ) must be in Δ∗(σ), to satisfy the
task’s specification.



224 M. Herlihy et al.

Theorem 1. The colorless task T ∗ = (I∗,O∗, Δ∗) is solvable with n processes in the
d-solo model by a colorless algorithm if and only if there is an R ≥ 0 and a simplicial
map φ : DivRd Skeln−1I∗ → O∗ carried byΔ∗.

5 (d, ε)-Solo Approx. Agreement and Strict Hierarchy of Models

We now study the properties of the (d,R)-agreement task of Section 3.3 in terms of a
precision parameter ε, showing that this task can be solved in the d-solo model while it
cannot be solved in the (d+ 1)-solo model.

Let ε be a positive real. The (d, ε)-solo approximate agreement problem (in short
(d, ε)-SAA) is a generalization of the ε-approximate agreement problem [6]. The (1, ε)-
solo approximate agreement instance implies 2ε-approximate agreement. Assuming the
input of each process is a point of the d-dimensional Euclidean space R

d, (d, ε)-solo
approximate agreement is defined by the following properties. (This definition is dis-
cussed and compared to other definitions in [14].)

– Validity. Any output lies within the convex hull of the inputs.
– Agreement. There is a set of processes S, 1 ≤ |S| ≤ d, such that any process pi

that is not in S decides a value oi (point) such that the Euclidean distance between
oi and CH is at most ε, where CH is the convex hull of the points decided by the
processes in S.

– Termination. If a process pi does not crash, it decides a value.

It follows from this definition that up to d processes are allowed to decide any set
of points within the convex hull (as an example each of them may decide the point it
proposes). These processes define the set S, and intuitively, the values they decide are
collectively “represented” by their convex hull CH . Finally, the values decided by the
other processes are constrained by the values decided by the processes in S.

The next theorem shows that, from a task solvability point of view, the d-solo model
is stronger than the (d+ 1)-solo model.

Theorem 2. If the domain of the possible input values (a) is bounded and (b) contains

a regular simplex of dimension d whose edge length is strictly greater than 2εd
√

2d
d+1 ,

then the (d, ε)-solo approximate agreement problem is solvable in ACSd
n,n−1but not in

ACSd+1
n,n−1.

6 Conclusion
A process executes solo when its computes its local result without knowing the input
values of the other participating processes. This paper addressed round-based asyn-
chronous wait-free executions in which up to d processes may execute solo in each
round. Among several contributions, the paper presented a strict hierarchy of wait-free
iterated models, called d-solo models, and a topology-based characterization of the col-
orless tasks which can be solved in such d-solo models, 1 ≤ d ≤ n. The paper also in-
troduced a colorless task, denoted (d, ε)-solo approximate agreement (a generalization
of the classic approximate agreement task), which can be solved in the d-solo model
and cannot be solved in the (d+ 1)-solo model.
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