
Linear Grammars with One-Sided Contexts

and Their Automaton Representation

Mikhail Barash1,2 and Alexander Okhotin2

1 Department of Mathematics and Statistics, University of Turku,
Turku FI-20014, Finland, {mikhail.barash,alexander.okhotin}@utu.fi

2 Turku Centre for Computer Science, Turku FI-20520, Finland

Abstract. The paper considers a family of formal grammars that ex-
tends linear context-free grammars with an operator for referring to the
left context of a substring being defined, as well as with a conjunction op-
eration (as in linear conjunctive grammars). These grammars are proved
to be computationally equivalent to an extension of one-way real-time
cellular automata with an extra data channel. The main result is the
undecidability of the emptiness problem for grammars restricted to a
one-symbol alphabet, which is proved by simulating a Turing machine
by a cellular automaton with feedback. The same construction proves
the Σ0

2 -completeness of the finiteness problem for these grammars.

1 Introduction

The idea of defining context-free rules applicable only in certain contexts dates
back to the early work of Chomsky. However, the mathematical model impro-
vised by Chomsky, which he named a “context-sensitive grammar”, turned out
to be too powerful for its intended application, as it could simulate a space-
bounded Turing machine. Recently, the authors [3] made a fresh attempt on
implementing the same idea. Instead of the string-rewriting approach from the
late 1950s, which never quite worked out for this task, the authors relied upon
the modern understanding of formal grammars as a first-order logic over posi-
tions in a string, discovered by Rounds [16]. This led to a family of grammars
that allows such rules as A → BC &�D, which asserts that all strings repre-
sentable as a concatenation BC and preceded by a left context of the form D
have the property A. The semantics of such grammars are defined through logi-
cal deduction of items of the form “a substring v written in left context u has a
property A” [3], and the resulting formal model inherits some of the key prop-
erties of formal grammars, including parse trees, an extension of the Chomsky
normal form [3,4], a form of recursive descent parsing [2] and a variant of the

Cocke–Kasami–Younger parsing algorithm that works in time O
(

n3

logn

)
[14].

This paper aims to investigate the linear subclass of grammars with one-
sided contexts, where linearity is understood in the sense of Chomsky and
Schützenberger, that is, as a restriction to concatenate nonterminal symbols
only to terminal strings. An intermediate family of linear conjunctive grammars,

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 190–201, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Linear Grammars with One-Sided Contexts 191

which allows using the conjunction operation, but no context specifications, was
earlier studied by the second author [11,12]. Those grammars were found to be
computationally equivalent to one-way real-time cellular automata [6,17], also
known under a proper name of trellis automata [5,7].

This paper sets off by developing an analogous automaton representation for
linear grammars with one-sided contexts. The proposed trellis automata with
feedback, defined in Section 3, augment the original cellular automaton model by
an extra communication channel, which adds exactly the same power as context
specifications do in grammars. This representation implies the closure of this
language family under complementation, which, using grammars alone, would
require a complicated construction.

The main contribution of the paper is a method for simulating a Turing ma-
chine by a trellis automaton with feedback processing an input string over a
one-symbol alphabet. This method subsequently allows uniform undecidability
proofs for linear grammars with contexts, which parallels the recent results for
conjunctive grammars due to Jeż [8] and Jeż and Okhotin [9,10], but is based
upon an entirely different underlying construction.

The new construction developed in this paper begins in Section 4 with a
simple example of a 3-state trellis automaton with feedback, which recognizes

the language { a2k−2 | k � 2 }. To compare, ordinary trellis automata over a
one-symbol alphabet recognize only regular languages [5]. The next Section 5
presents a simulation of a Turing machine by a trellis automaton with feedback,
so that the latter automaton, given an input an, simulates O(n) first steps of the
Turing machine’s computation on an empty input, and accordingly can accept
or reject the input an depending on the current state of the Turing machine.

This construction is used in the last Section 6 to prove the undecidability
of the emptiness problem for linear grammars with one-sided contexts over a
one-symbol alphabet. The finiteness problem for these grammars is proved to be
complete for the second level of the arithmetical hierarchy.

2 Grammars with One-Sided Contexts

Grammars with contexts were introduced by the authors [3,4] as a model capable
of defining context-free rules applicable only in contexts of a certain form.

Definition 1 ([3]). A grammar with left contexts is a quadruple G =
(Σ,N,R, S), where

– Σ is the alphabet of the language being defined;
– N is a finite set of auxiliary symbols (“nonterminal symbols” in Chomsky’s

terminology), which denote the properties of strings defined in the grammar;
– R is a finite set of grammar rules, each of the form

A → α1 & . . . &αk &�β1 & . . . &�βm &�γ1 & . . . &�γn, (1)

with A ∈ N , k � 1, m,n � 0 and αi, βi, γi ∈ (Σ ∪N)∗;
– S ∈ N represents syntactically well-formed sentences of the language.

192 M. Barash and A. Okhotin

Every rule (1) is comprised of conjuncts of three kinds. Each conjunct αi

specifies the form of the substring being defined, a conjunct �βi describes the
form of its left context, while a conjunct �γi refers to the form of the left context
concatenated with the current substring. To be precise, let w ∈ Σ∗ be the whole
string being defined, and consider defining its substring v by a rule (1), where
w = uvx for u, v, x ∈ Σ∗. Then, each conjunct αi describes the form of v, each
left context operator �βi describes the form of u, and each extended left context
operator �γi, describes the form of uv. The conjunction means that all these
conditions must hold at the same time.

If no context specifications are used in the grammar, that is, if m = n = 0 in
each rule (1), then this is a conjunctive grammar [11,13]. If, furthermore, only
one conjunct is allowed in each rule (k = 1), this is an ordinary context-free
grammar. A grammar is called linear, if every conjunct refers to at most one
nonterminal symbol, that is, α1, . . . , αk, β1, . . . , βm, γ1, . . . , γn ∈ Σ∗NΣ∗ ∪Σ∗.

The language generated by a grammar with left contexts is defined by de-
duction of elementary statements of the form “a substring v ∈ Σ∗ in the left
context u ∈ Σ∗ has the property X ∈ Σ∪N”, denoted by X(u〈v〉). A full defini-
tion applicable to every grammar with left contexts is presented in the authors’
previous paper [3]; this paper gives a definition specialized for linear grammars.

Definition 2. Let G = (Σ,N,R, S) be a linear grammar with left contexts, and
consider deduction of items of the form X(u〈v〉), with u, v ∈ Σ∗ and X ∈ N .
Each rule A → w defines an axiom scheme �G A(x〈w〉), for all x ∈ Σ∗. Each
rule of the form A → x1B1y1 & . . . & xkBkyk & �x′

1D1y
′
1 & . . . &�x′

mDmy′m&
�x′′

1E1y
′′
1 & . . . &�x′′

nEny
′′
n defines the following scheme for deduction rules for

all u, v ∈ Σ∗:
{
Bi(uxi〈vi〉)

}
1�i�k

,
{
Di(x

′
i〈ui〉)

}
1�i�m

,
{
Ei(x

′′
i 〈wi〉)

}
1�i�n

�G A(u〈v〉),
where xiviyi = v, x′

iuiy
′
i = u and x′′

i wiy
′′
i = uv. Then the language defined

by a nonterminal symbol A is LG(A) = { u〈v〉 | u, v ∈ Σ∗, �G A(u〈v〉) }. The
language defined by the grammar G is the set of all strings with an empty left
context defined by S, that is, L(G) = {w | w ∈ Σ∗, �G S(ε〈w〉) }.
This definition is illustrated in the grammar below.

Example 1. The following grammar defines the singleton language {abac}:
S → aBc

B → bA&�A

A → a

The string abac is generated as follows:

� A(ε〈a〉) (A → a)

� A(ab〈a〉) (A → a)

A(ab〈a〉), A(ε〈a〉) � B(a〈ba〉) (B → bA&�A)

B(a〈ba〉) � S(ε〈abac〉) (S → aBc)

Linear Grammars with One-Sided Contexts 193

The next example defines a language that is known to have no linear conjunc-
tive grammar [19].

Example 2 (Törmä [18]). The following linear grammar with contexts defines
the language { anbin | i, n � 1 }:

S → aSb | B&�S | ε
B → bB | ε

The rule S → B&�S appends as many symbols b as there are as in the begin-
ning of the string.

Every grammar with contexts can be transformed to a certain normal
form [3,4,14], which extends the Chomsky normal form for ordinary context-
free grammars. This extension allows multiple conjuncts of the form BC and
context specifications �D, that is, every rule in a normal form grammar is ei-
ther of the form A → a&�D1& . . . &�Dm or A → B1C1 & . . . &BkCk. A
similar normal form can be established for the linear subclass of grammars.

Theorem 1. For every linear grammar with left contexts, there exists another
linear grammar with left contexts that defines the same language and has all
rules of the form

A → bB1 & . . . & bB�&C1c& . . . &Ckc (2a)

A → a&�D1& . . . &�Dm, (2b)

where A,Bi, Ci, Di ∈ N , a, b, c ∈ Σ, �+ k � 1 and m � 0.

The transformation is carried out along the same lines as in the general case.
The first step is elimination of null conjuncts, that is, any rules of the form
A → ε& This is followed by elimination of null contexts �ε, and on unit
conjuncts, as in the rule A → B& The final step is elimination of extended
left contexts �E, which are all expressed through proper left contexts �D [14].
Each step applies to linear grammars with contexts and preserves their linearity.

3 Automaton Representation

Linear conjunctive grammars are known to be computationally equivalent to
one of the simplest types of cellular automata: the one-way real-time cellular
automata, also known under the proper name of trellis automata. This section
presents a generalization of trellis automata, which similarly corresponds to lin-
ear grammars with one-sided contexts.

An ordinary trellis automaton processes an input string of length n � 1

using a uniform array of n(n+1)
2 nodes, as presented in Figure 1(left). Each node

computes a value from a fixed finite set Q. The nodes in the bottom row obtain
their values directly from the input symbols using a function I : Σ → Q. The
rest of the nodes compute the function δ : Q × Q → Q of the values in their
predecessors. The string is accepted if and only if the value computed by the
topmost node belongs to the set of accepting states F ⊆ Q.

194 M. Barash and A. Okhotin

Fig. 1. Trellis automata (left) and trellis automata with feedback (right)

Theorem A (Okhotin [12]). A language L ⊆ Σ+ is defined by a linear con-
junctive grammar if and only if L is recognized by a trellis automaton.

In terms of cellular automata, every horizontal row of states in Figure 1(left)
represents an automaton’s configuration at a certain moment of time. An al-
ternative motivation developed in the literature on trellis automata [5,6,7] is to
consider the entire grid as a digital circuit with uniform structure of connections.
In order to obtain a similar representation of linear grammars with left contexts,
the trellis automaton model is extended with another type of connections, illus-
trated in Figure 1(right).

Definition 3. A trellis automaton with feedback is a sextuple M =
(Σ,Q, I, J, δ, F), in which:

– Σ is the input alphabet,
– Q is a finite non-empty set of states,
– I : Σ → Q is a function that sets the initial state for the first symbol,
– J : Q× Σ → Q sets the initial state for every subsequent symbol, using the

state computed on the preceding substring as a feedback,
– δ : Q×Q → Q is the transition function, and
– F ⊆ Q is the set of accepting states.

The behaviour of the automaton is described by a function Δ : Σ∗ × Σ+ → Q,
which defines the state Δ(u〈v〉) computed on each string with a context u〈v〉 by

Δ(ε〈a〉) = I(a),

Δ(w〈a〉) = J
(
Δ(ε〈w〉), a),

Δ(u〈bvc〉) = δ
(
Δ(u〈bv〉), Δ(ub〈vc〉)).

The language recognized by the automaton is L(M) = {w ∈ Σ+ | Δ(ε〈w〉) ∈ F }.
Theorem 2. A language L ⊆ Σ+ is defined by a linear grammar with left con-
texts if and only if L is recognized by a trellis automaton with feedback.

The proof is by effective constructions in both directions.

Linear Grammars with One-Sided Contexts 195

Lemma 1. Let G = (Σ,N,R, S) be a linear grammar with left contexts, in
which every rule is of the forms (2a)–(2b), and define a trellis automaton with
feedback M = (Σ,Q, I, J, δ, F) by setting Q = Σ × 2N ×Σ,

I(a) = (a, {A | A → a ∈ R }, a)
J
(
(b,X, c), a

)
=

(
a, {A | ∃ rule (2b) with D1, . . . , Dm ∈ X }, a)

δ
(
(b,X, c′), (b′, Y, c)

)
=

(
b, {A | ∃ rule (2a) with Bi ∈ X and Ci ∈ Y }, c)

F =
{
(b,X, c)

∣
∣ S ∈ X

}
.

For every string with context u〈v〉, let b be the first symbol of v, let c be the last
symbol of v, and let Z = {A | u〈v〉 ∈ LG(A) }. Then Δ(u〈v〉) = (b, Z, c).

In particular, L(M) = {w | ε〈w〉 ∈ LG(S) } = L(G).

Lemma 2. Let M = (Σ,Q, I, J, δ, F) be a trellis automaton with feedback and
define the grammar with left contexts G = (Σ,N,R, S), where N = {Aq | q ∈
Q } ∪ {S}, and the set R contains the following rules:

AI(a) → a&�ε (a ∈ Σ)

AJ(q,a) → a&�Aq (q ∈ Q, a ∈ Σ)

Aδ(p,q) → bAq &Apc (p, q ∈ Q, b, c ∈ Σ)

S → Aq (q ∈ F)

Then, for every string with context u〈v〉, Δ(u〈v〉) = r if and only if u〈v〉 ∈
LG(Ar). In particular, L(G) = {w | Δ(ε〈w〉) ∈ F } = L(M).

This automaton representation is useful for establishing some basic properties
of linear grammars with contexts, which would be more difficult to obtain using
grammars alone. For instance, one can prove their closure under complementa-
tion by taking a trellis automaton with feedback and inverting its set of accepting
states. Another property is the closure of the family under concatenating a lin-
ear conjunctive language from the right; thus, in particular, the language used
by Terrier [17] to show that linear conjunctive languages are not closed under
concatenation, can be defined by a linear grammar with contexts.

4 Defining a Non-regular Unary Language

Ordinary context-free grammars over a unary alphabet Σ = {a} define only
regular languages. Unary linear conjunctive languages are also regular, because a
trellis automaton operates on an input an as a deterministic finite automaton [5].
The non-triviality of unary conjunctive grammars was discovered by Jeż [8], who

constructed a grammar for the language { a4k | k � 0 } using iterated conjunction
and concatenation of languages.

This paper introduces a new method for constructing formal grammars for
non-regular languages over a unary alphabet, which makes use of a left context
operator, but does not rely upon non-linear concatenation. The simplest case
of the new method is demonstrated by the following automaton, which can be
transformed to a grammar by Lemma 2.

196 M. Barash and A. Okhotin

Fig. 2. How the automaton in Example 3 recognizes { a2k−2 | k � 2 }

Example 3. Consider a trellis automaton with feedback M = (Σ,Q, I, J, δ, F)
over the alphabet Σ = {a} and with the set of states Q = {p, q, r}, where
I(a) = p is the initial state, the feedback function gives states J(p, a) = q and
J(r, a) = p, and the transition function is defined by δ(s, p) = p for all s ∈ Q,
δ(q, q) = δ(r, q) = q, δ(p, q) = r and δ(p, r) = p. The only accepting state is r.

Then M recognizes the language { a2k−2 | k � 2 }.
The computation of this automaton is illustrated in Figure 2. The state com-

puted on each one-symbol substring a�〈a〉 is determined by the state computed
on ε〈a�〉 according to the function J . Most of the time, Δ(ε〈a�〉) = p and hence
Δ(a�〈a〉) = q, and the latter continues into a triangle of states q. Once for every

power of two, the automaton computes the state r on ε〈a2k−2〉, which sends a

signal through the feedback channel, so that J sets Δ(a2
k−2〈a〉) = p. This in

turn produces the triangle of states p and the next column of states r.

It is now known that linear grammars with contexts over a one-symbol
alphabet are non-trivial. How far does their expressive power go? For con-
junctive grammars (which allow non-linear concatenation, but no context
specifications), Jeż and Okhotin [9,10] developed a method for manipulating
base-k notation of the length of a string in a grammar, which allowed repre-
senting the following language: for every trellis automaton M over an alpha-
bet {0, 1, . . . , k − 1}, there is a conjunctive grammar generating LM = { a� |
the base-k notation of � is in L(M) } [9]. This led to the following undecidabil-
ity method: given a Turing machine T , one first constructs a trellis automa-
ton M for the language VALC(T) ⊆ Σ∗ of computation histories of T ; then,

Linear Grammars with One-Sided Contexts 197

assuming that the symbols in Σ are digits in some base-k notation, one can
define the unary version of VALC(T) by a conjunctive grammar.

Linear grammars with contexts are an entirely different model, and the au-
tomaton in Example 3 has nothing in common with the basic unary conjunctive
grammar discovered by Jeż [8], in spite of defining almost the same language.
The new model seems to be unsuited for manipulating base-k digits, and the
authors took another route to undecidability results, which is explained below.

5 Simulating a Turing Machine

The overall idea is to augment the automaton in Example 3 to calculate some
additional data, so that its computation on a unary string simulates any fixed
Turing machine running on the empty input. Each individual cellΔ(ak〈a�〉) com-
puted by the automaton should hold some information about the computation
of the Turing machine, such as the contents of a certain tape square at a certain
time. Then the automaton can accept its input an depending on the state of the
computation of the Turing machine at time f(n).

Consider the computation in Figure 2, which is split into regions by vertical
r-columns. The bottom line of states q in each region shall hold the tape contents
of the Turing machine. The new automaton should simulate several steps of the
Turing machine, and then transfer its resulting tape contents to the top diagonal
border of this region. The transfer of each letter is achieved by sending a signal
to the right, reflecting it off the vertical r-column, so that it arrives at the
appropriate cell in the top border. From there, the tape contents shall be moved
to the bottom line of the next region through the feedback data channel. Because
of the reflection, the tape symbols arrive at the next region in the reverse order.

In order to simulate a Turing machine using this method, it is useful to assume
a machine of the following special kind. This machine operates on an initially
blank two-way infinite tape, and proceeds by making left-to-right and right-to-
left sweeps over this tape, travelling a longer distance at every sweep. At the
first sweep, the machine makes one step to the left, then, at the second sweep,
it makes 3 steps to the right, then 7 steps to the left, 15 steps to the right, etc.
In order to simplify the notation, assume that the machine always travels from
right to left and flips the tape after completing each sweep.

Definition 4. A sweeping Turing machine is a quintuple T = (Γ,Q, q0,∇,F),
where

– Γ is a finite tape alphabet containing a blank symbol � ∈ Γ ,
– Q is a finite set of states,
– q0 ∈ Q is the initial state and F ⊆ Q is the set of accepting states,
– ∇ : Q× Γ → Q× Γ is a transition function, and
– F is a finite set of flickering states.

A configuration of T is a string of the form �k�uqav, where k � 1 is the number
of the sweep, and uqav with u, v ∈ Γ ∗, a ∈ Γ and q ∈ Q represents the tape
contents uav with the head scanning the symbol a in the state q.

198 M. Barash and A. Okhotin

The initial configuration of the machine is �1��q0�. Each k-th sweep deals
with a tape with 2k symbols, and consists of 2k − 1 steps of the following form:

�k�ubqcv �T �k�uq′bc′v (∇(q, c) = (q′, c′)).

Once the machine reaches the last symbol, it flips the tape, appends 2k blank
symbols and proceeds with the next sweep:

�k�qcw �T �k + 1��2kwRqc

A sweeping Turing machine never halts; at the end of each sweep, it may flicker
by entering a state from F . Define the set of numbers accepted by T as S(T) =
{ k | �1��q0� �∗

T �k�qfcw for qf ∈ F }.
A sweeping Turing machine is simulated by the following trellis automaton

with feedback over a one-symbol alphabet.

Construction 1. Let T = (Γ,Q, q0,∇,F) be a sweeping Turing machine. Con-
struct a trellis automaton with feedback M = ({a}, Q, I, J, δ, F) as follows. Its set
of states is Q =

{
Zpx

y

∣
∣x, y ∈ Γ∪QΓ, Z ∈ {◦, •}} ∪ {

Zqx
∣
∣x ∈ Γ∪QΓ, Z ∈ {◦, •}}

∪ {r}. Each superscript x represents a tape symbol at the current position, which
is augmented with a state, if the head is in this position. Each subscript y sim-
ilarly contains a symbol and possibly a state, representing the contents of some
other tape square, which is being sent as a signal to the left. A bullet marker “•”
marks the beginning of the tape, whereas each state Zpx

y or Zqx with Z = ◦ shall
be denoted by px

y and qx, respectively.

Let I(a) = p�

�q0 , J(r, a) = p�

�
, and J(Zpx

y , a) = Zqy. For all x, y, x′, y′ ∈
Γ ∪ QΓ and Z,Z ′ ∈ {◦, •}, the following transitions are defined:

δ
(
Zqx, Z′

qx′
)
= Zqx (propagation; x, x′ ∈ Γ ,

and x ∈ QΓ with Z = •)
δ
(
Zqx, Z′

px′
y′

)
= Z′

px
y′ (propagation)

δ
(
px
y ,

Z′
qx′

)
= r (r-column)

δ
(
Zpx

y , r
)
= p�

x (reflection)

δ
(
Zpx

y ,
Z′
px′
y′

)
= Z′

px
y′ (propagation)

δ
(
r, Z′

px′
y′

)
= •px′

y′ (new region in top diagonal)

δ
(
r, Z′

qx′
)
= q� (first q-column after r-column)

A transition ∇(q, c) = (q′, c) of the Turing machine is simulated as follows:

δ (qcq, qy) = qc′ (rewriting the symbol; y ∈ Γ)

δ
(
Zqx, qcq

)
= Zqxq′ (moving the head; x ∈ Γ)

The set of accepting states is F = {p�

cqf
| c ∈ Γ, qf ∈ F }.

The first thing to note about this construction is that if all attributes attached
to the letters p, q, r are discarded, then the resulting automaton is exactly the

Linear Grammars with One-Sided Contexts 199

one from Example 3. This ensures the overall partition of the computation into
regions illustrated in Figure 2.

Each region after second r-column corresponds to a sweep of the Turing ma-
chine. The bottom row of states contains the machine’s configuration in the
beginning of the sweep, where each state qx holds the symbol in one square of
the tape. The leftmost cell is marked by a bullet (•qx). The cell in the middle
of the bottom row (qxq) corresponds to the rightmost square of the tape, which
contains the state of the machine. The cells in the right half of the bottom row
contain the state q�. Each of the several rows above holds the tape contents
after another step of computation. After 2k − 1 steps of simulation the head
reaches the leftmost square, which marks the end of the current sweep.

Then, each tape symbol is propagated
by a signal to the right using the states
px
y . Every such state holds two symbols:

x is carried to the right, to be reflected
off the right border, and y is a leftbound
symbol that has already been reflected.
As a result, the top diagonal border is
filled with the states of the form px

y , and
their subscripts y form the resulting con-
tents of the tape, reversed. These symbols
are sent to the next region by the function
J .

With this simulation running, the last
state q ∈ Q reached by the Tur-
ing machine upon completing each k-
th sweep shall always end up in a pre-
defined position exactly in the middle
of the top diagonal border. It will be

Δ(ε〈a2k+2+2k+1−2〉) = p�

cq, and the trel-
lis automaton with feedback accepts this
string if and only if q ∈ F .

The following theorem states the cor-
rectness of the construction.

Theorem 3. Let T = (Γ,Q, q0,∇,F) be a sweeping Turing machine and let
M = ({a}, Q, I, J, δ, F) be a trellis automaton with feedback obtained in Con-

struction 1. Then L(M) = { a2k+2+2k+1−2 | k ∈ S(T) }.

6 Implications

The simulation of Turing machines by a trellis automaton with feedback over a
one-symbol alphabet is useful for proving undecidability of basic decision prob-
lems for these automata. Due to Theorem 2, the same undecidability results
equally hold for linear grammars with contexts.

200 M. Barash and A. Okhotin

The first decision problem is testing whether the language recognized by an
automaton (or defined by a grammar) is empty. The undecidability of the empti-
ness problem follows from Theorem 3. To be precise, the problem is complete
for the complements of the r.e. sets.

Theorem 4. The emptiness problem for linear grammars with left contexts over
a one-symbol alphabet is Π0

1 -complete. It remains in Π0
1 for any alphabets.

Proof. The non-emptiness problem is clearly recursively enumerable, because
one can simulate a trellis automaton with feedback on all inputs, accepting if it
ever accepts. If the automaton accepts no strings, the algorithm does not halt.

The Π0
1 -hardness is proved by reduction from the Turing machine halting

problem. Given a machine T and an input w, construct a sweeping Turing ma-
chine Tw, which first prints w on the tape (over 1+ log |w| sweeps, using around
|w| states), and then proceeds by simulating T , using one sweep for each step of
T . If the simulated machine T ever halts, then Tw changes into a special state
qf and continues moving its head until the end of the current sweep.

Construct a trellis automaton with feedback M simulating the machine Tw

according to Theorem 3, and define its set of accepting states as F = {p�

cqf |
c ∈ Σ }. Then, by the theorem, M accepts some string a� if and only if Tw ever
enters the state qf , which is in turn equivalent to T ’s halting on w. �
The second slightly more difficult undecidability result asserts that testing the
finiteness of a language generated by a given grammar is complete for the second
level of the arithmetical hierarchy.

Theorem 5. The finiteness problem for linear grammars with left contexts over
a one-symbol alphabet is Σ0

2 -complete. It remains Σ0
2 -complete for any alphabet.

Proof (a sketch). Reduction from the finiteness problem for a Turing machine,
which is Σ0

2 -complete, see Rogers [15, §14.8]. Given a Turing machine T , con-
struct a sweeping Turing machine T ′, which simulates T running on all inputs,
with each simulation using a segment of the tape. Initially, T ′ sets up to simulate
T running on ε, and then it regularly begins new simulations. Every time one
of the simulated instances of T accepts, the constructed machine “flickers” by
entering an accepting state in the end of one of its sweeps. Construct a trellis
automaton with feedback M corresponding to this machine. Then L(M) is finite
if and only if L(T) is finite. �

7 Conclusion

At the first glance, linear grammars with contexts seem like a strange model.
However, they are motivated by the venerable idea of a rule applicable in a
context, which is worth being investigated. Also, trellis automata with feedback
at the first glance seem like a far-fetched extension of cellular automata. Its
motivation comes from the understanding of a trellis automaton as a circuit

Linear Grammars with One-Sided Contexts 201

with uniform connections [5], to which one can add a new type of connections.
Both models are particularly interesting for being equivalent.

A suggested topic for future research is to investigate the main ideas in the
literature on trellis automata [5,6,7,17] and see whether they can be extended
to trellis automata with feedback, and hence to linear grammars with contexts.

References

1. Aizikowitz, T., Kaminski, M.: LR(0) conjunctive grammars and deterministic syn-
chronized alternating pushdown automata. In: Kulikov, A., Vereshchagin, N. (eds.)
CSR 2011. LNCS, vol. 6651, pp. 345–358. Springer, Heidelberg (2011)

2. Barash, M.: Recursive descent parsing for grammars with contexts. In: SOFSEM
2013 Student Research Forum (2013)

3. Barash, M., Okhotin, A.: Defining contexts in context-free grammars. In: Dediu,
A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 106–118. Springer,
Heidelberg (2012)

4. Barash, M., Okhotin, A.: An extension of context-free grammars with one-sided
context specifications (September 2013) (submitted)

5. Čuĺık II, K., Gruska, J., Salomaa, A.: Systolic trellis automata. International Jour-
nal of Computer Mathematics 15, 195–212, 16, 3–22 (1984)

6. Dyer, C.: One-way bounded cellular automata. Information and Control 44,
261–281 (1980)

7. Ibarra, O.H., Kim, S.M.: Characterizations and computational complexity of sys-
tolic trellis automata. Theoretical Computer Science 29, 123–153 (1984)

8. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Inter-
national Journal of Foundations of Computer Science 19(3), 597–615 (2008)

9. Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability
and unbounded growth. Theory of Computing Systems 46(1), 27–58 (2010)

10. Jeż, A., Okhotin, A.: Complexity of equations over sets of natural numbers. Theory
of Computing Systems 48(2), 319–342 (2011)

11. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

12. Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata.
RAIRO Informatique Théorique et Applications 38(1), 69–88 (2004)

13. Okhotin, A.: Conjunctive and Boolean grammars: the true general case of the
context-free grammars. Computer Science Review 9, 27–59 (2013)

14. Okhotin, A.: Improved normal form for grammars with one-sided contexts. In:
Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 205–216. Springer,
Heidelberg (2013)

15. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability (1967)
16. Rounds, W.C.: LFP: A logic for linguistic descriptions and an analysis of its com-

plexity. Computational Linguistics 14(4), 1–9 (1988)
17. Terrier, V.: On real-time one-way cellular array. Theoretical Computer Sci-

ence 141(1-2), 331–335 (1995)
18. Törmä, I.: Personal communication (February 2013)
19. Yu, S.: A property of real-time trellis automata. Discrete Applied Mathemat-

ics 15(1), 117–119 (1986)

	Linear Grammars with One-Sided Contextsand Their Automaton Representation
	1 Introduction
	2 Grammars with One-Sided Contexts
	3 Automaton Representation
	4 Defining a Non-regular Unary Language
	5 Simulating a Turing Machine
	6 Implications
	7 Conclusion
	References

