
Alberto Pardo
Alfredo Viola (Eds.)

 123

11th Latin American Symposium
Montevideo, Uruguay, March 31–April 4, 2014
Proceedings

LATIN 2014:
Theoretical InformaticsLN

CS
 8

39
2

AR
Co

SS

Lecture Notes in Computer Science 8392
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

Alberto Pardo Alfredo Viola (Eds.)

LATIN 2014:
Theoretical Informatics

11th Latin American Symposium
Montevideo, Uruguay, March 31 – April 4, 2014
Proceedings

13

Volume Editors

Alberto Pardo
Universidad de la República
Facultad de Ingeniería
Instituto de Computación
Julio Herrera y Reissig 565
11300 Montevideo, Uruguay
E-mail: pardo@fing.edu.uy

Alfredo Viola
Universidad de la República
Facultad de Ingeniería
Instituto de Computación
Julio Herrera y Reissig 565
11300 Montevideo, Uruguay
E-mail: viola@fing.edu.uy

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-54422-4 e-ISBN 978-3-642-54423-1
DOI 10.1007/978-3-642-54423-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014931658

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 11th Latin American
Theoretical INformatics Symposium (LATIN 2014) held during March 31-
April 4, 2014 in Montevideo, Uruguay. Previous editions of LATIN took place
in São Paulo, Brazil (1992), Valparáıso, Chile (1995), Campinas, Brazil (1998),
Punta del Este, Uruguay (2000), Cancún, México (2002), Buenos Aires, Ar-
gentina (2004), Valdivia, Chile (2006), Buzios, Brazil (2008), Oaxaca, México
(2010) and Arequipa, Perú (2012).

The conference received 192 submissions from 42 countries. Each submis-
sion was reviewed by at least three Program Committee members, and carefully
evaluated on quality, originality, and relevance to the conference. Overall, the
Committee members wrote 588 reviews with the help of 254 external refer-
ees. Based on an extensive electronic discussion, the Committee selected 65
papers, leading to an acceptance rate of 34%. In addition to the accepted con-
tributions, the symposium featured distinguished lectures by Ronitt Rubin-
feld (Massachusetts Institute of Technology and Tel Aviv University), Robert
Sedgewick (Princeton University), Gilles Barthe (IMDEA Software Institute),
Gonzalo Navarro (Universidad de Chile), and J. Ian Munro (University of Wa-
terloo).

The Imre Simon Test-of-Time Award started in 2012 and it is given to the
authors of the LATIN paper deemed to be most influential among all those
published at least ten years prior to the current edition of the conference. Papers
published in the LATIN proceedings up to and including 2004 were eligible for
the 2014 award. This year’s winners were Graham Cormode and Sethu Muthu
Muthukrishnan for their paper “ An improved data stream summary: The count-
min sketch and its applications”, which appeared in LATIN 2004.

Many people helped to make LATIN 2014 possible. First, I would like to
recognize the outstanding work of the members of the Program Committee. Their
commitment contributed to a very detailed discussion on each of the submitted
papers. The LATIN Steering Committee offered valuable advice and feedback;
the conference benefitted immensely from their knowledge and experience. I
would also like to recognize J. Ian Munro, Yoshiharu Kohayakawa and Michael
Bender for their work in the Imre Simon Test-of-Time Award Committee.

Our industrial sponsors, Yahoo! Labs and Google provided much-needed
funding. In particular, Yahoo! provided funds for the Imre Simon Award and
Google for student grants. I thank Ricardo Baeza-Yates, Ravi Kumar and Prab-
hakar Raghavan for serving as contacts to those institutions.

The Centro Latinoamericano de Estudios en Informática (CLEI), the Comisión
Sectorial de Investigaciones Cient́ıficas de la Universidad de la República (CSIC),
the Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) and the Agen-
cia Nacional de Investigación e Innovación (ANII) also provided important seed

VI Preface

funding. The Universidad ORT supported all the graphic design for the
conference.

At the Universidad de la República, Alberto Pardo chaired the Local
Arrangements Committee. His outstanding commitment in the most difficult mo-
ments of the organization was key to the success of LATIN. Guillermo Calderón
administered the conference web site. The rest of the Local Arragements Com-
mittee, Javier Molina, Laura Molina and Alfonsina Pastori ably handled the
innumerable logistical details that had to be resolved along the way. Finally, I
thank my wife Graciela Pastori for the encouragement she offered during the
year and a half that it took to make LATIN 2014 a reality.

January 2014 Alfredo Viola

Organization

Program Committee

Ricardo Baeza-Yates Yahoo! Labs, Spain
Jérémy Barbay Universidad de Chile, Chile
Michael Bender Stony Brook University, USA
Joan Boyar University of Southern Denmark, Denmark
Vida Dujmovic McGill University, Canada
Leah Epstein University of Haifa, Israel
Cristina Fernandes Universidade de São Paulo, Brazil
Maribel Fernandez KCL London, England
Joachim von zur Gathen University of Bonn, Germany
Gaston Gonnet ETH Zurich, Switzerland
Marcos Kiwi Universidad de Chile, Chile
Yoshiharu Kohayakawa University of São Paulo, Brazil
Evangelos Kranakis Carleton University, Canada
Ravi Kumar Google, USA
Anna Lubiw University of Waterloo, Canada
Conrado Mart́ınez Universitat Politècnica de Catalunya, Spain
Elvira Mayordomo Universidad de Zaragoza, Spain
Marco Molinaro Carnegie Mellon University, USA
Regina Motz Universidad de la República, Uruguay
Lucia Moura University of Ottawa, Canada
Daniel Panario Carleton University, Canada
Sergio Rajsbaum Universidad Nacional Autonoma de México,

Mexico
Tamara Rezk Inria, France
Andrea Richa Arizona State University, USA
Jacques Sakarovitch CNRS / ENST Paris, France
Nicolas Schabanel CNRS - Université Paris Diderot (Paris 7),

France
Rodrigo Silveira Universitat Politècnica de Catalunya, Spain
Jose A. Soto Universidad de Chile, Chile
Martin Strauss University of Michigan, USA
Vilmar Trevisan UFRGS, Brazil
Jorge Urrutia Universidad Nacional Autonoma de México,

Mexico
Tarmo Uustalu Tallinn University of Technology, Estonia
Brigitte Vallée CNRS/University of Caen, France
Alfredo Viola (Chair) Universidad de la República, Uruguay
Santiago Zanella-Béguelin Microsoft Research, England

VIII Organization

Local Arrangements Committee

Guillermo Calderón
Javier Molina
Laura Molina

Alfonsina Pastori
Alberto Pardo (chair)

Steering Committee

David Fernández-Baca Iowa State University, USA
Eduardo Sany Laber PUC- Rio, Brazil
Alejandro López-Ortiz University of Waterloo, Canada
Gonzalo Navarro Universidad de Chile, Chile
Marie-France Sagot Inria Grenoble Rhône-Alpes and Université

Claude Bernard (Lyon 1), France
Yoshiko Wakabayashi Universidade de São Paulo, Brazil

Imre Simon Test-of-Time Award Committee

Michael Bender Stony Brook University, USA
Yoshiharu Kohayakawa Universidade de São Paulo, Brazil
J. Ian Munro (Chair) University of Waterloo, Canada

Sponsors

ANII (Agencia Nacional de Investigación e Innovación), Uruguay
CLEI (Centro Latinoamericano de Estudios en Informática)
CSIC (Comisión Sectorial de Investigación Cient́ıfica, Universidad

de la República), Uruguay
Google, USA
PEDECIBA Informática (Programa de Desarrollo de las Ciencias Básicas), Uruguay
Universidad ORT, Uruguay
Yahoo! Labs, Spain

Additional Reviewers

Abdessalem, Talel
Addario-Berry, Louigi
Afshani, Peyman
Akhavi, Ali
Angelini, Patrizio
Antoniadis, Antonios
Ayala-Rincon, Mauricio
Aziz, Haris

Bacher, Axel
Bampas, Evangelos
Barba, Luis
Barcelo, Pablo
Bauer, Andrej
Bazgan, Cristina
Bernardi, Olivier
Bodini, Olivier

Organization IX

Bonomo, Flavia
Bose, Prosenjit
Brandstadt, Andreas
Brewster, Rick
Brizuela, Carlos
Buchbinder, Niv
Buchin, Maike
Bulteau, Laurent
Buratti, Marco
Buriol, Luciana
Cai, Leizhen
Calinescu, Gruia
Camarão, Carlos
Campos, Victor
Castaneda, Armando
Castelli Aleardi, Luca
Chalermsook, Parinya
Chalopin, Jérémie
Chapelle, Mathieu
Chen, Yuxin
Chierichetti, Flavio
Christodoulakis, Manolis
Clément, Julien
Corteel, Sylvie
Costello, Kevin
Couillec, Yoann
Courcelle, Bruno
Csirmaz, Laszlo
Damian, Mirela
Dantas, Simone
Daudé, Hervé
David, Julien
de Carli Silva, Marcel
De La Clergerie, Eric
de Pina, José Coelho
de Rezende, Pedro J.
de Vries, Fer-Jan
Delgado, Jordi
Delporte-Gallet, Carole
Devismes, Stéphane
Dobrev, Stefan
Doerr, Benjamin
Dourado, Mitre
Drmota, Michael
Duchon, Philippe

Duffy, Chris
Duncan, Christian
Elizalde, Sergi
Eppstein, David
Esfandiari, Hossein
Fabrikant, Alex
Fagerberg, Rolf
Faliszewski, Piotr
Fauconnier, Hugues
Favrholdt, Lene Monrad
Feige, Uriel
Fertin, Guillaume
Fiala, Jiri
Find, Magnus
Flocchini, Paola
Fomin, Fedor
Fonseca, Guilherme
Fournier, Hervé
Fragoso Santos, Jose
Frati, Fabrizio
Ganapathi, Pramod
Gao, Jie
Gao, Shuhong
Gao, Zhicheng
Garg, Vijay
Gargano, Luisa
Gaspers, Serge
Georgiou, Konstantinos
Geremia, Ezequiel
Gittenberger, Bernhard
Green, Oded
Grossi, Roberto
Guha, Sudipto
Gutin, Gregory
Harutyunyan, Anna
Havet, Frederic
He, Meng
Hernandez, Cecilia
Hoppen, Carlos
Horak, Peter
Huang, Chien-Chung
Hwang, Hsien-Kuei
Hüffner, Falk
Ilcinkas, David
Iljazović, Zvonko

X Organization

Im, Sungjin
Jansen, Bart
Jansen, Klaus
Jeż, Artur
Jimenez, Andrea
Josuat-Verges, Matthieu
Jungnickel, Dieter
Kanagal, Bhargav
Kiazyk, Stephen
King, James
Klostermeyer, Chip
Kniesburges, Sebastian
Kobourov, Stephen
Kononov, Alexander
Korman, Matias
Kosowski, Adrian
Kratochvil, Jan
Krivelevich, Michael
Krumke, Sven
Kuhn, Daniela
Kuznetsov, Petr
Labarre, Anthony
Lamb, Luis
Langerman, Stefan
Larsen, Kim S.
Lattanzi, Silvio
Lecroq, Thierry
Lee, Sang June
Lefmann, Hanno
Leme, Renato
Levin, Asaf
Lhote, Loick
Li, Minming
Loebenberger, Daniel
Lozano, Antoni
Lozin, Vadim
Lugosi, Gabor
Lumbroso, Jérémie
Löffler, Maarten
MacQuarrie, Fraser
Mahdian, Mohammad
Makowsky, Johann
Mandel, Arnaldo
Mansour, Toufik
Margalit, Oded

Markou, Euripides
Martin, Russell
Martinez-Moro, Edgar
Martins, Enide
Mart́ın, Álvaro
McCauley, Samuel
Meer, Klaus
Milani, Alessia
Milanič, Martin
Molinero, Xavier
Morales Ponce, Oscar
Moseley, Benjamin
Mota, Guilherme O.
Moura, Arnaldo
Mucha, Marcin
Mueller, Moritz
Musicante, Martin
Nagarajan, Viswanath
Nantes, Daniele
Navarro, Gonzalo
Nesmachnow, Sergio
Nilsson, Bengt
Nüsken, Michael
Ollinger, Nicolas
Ott, Sebastian
Pacheco, Eduardo
Pagourtzis, Aris
Pajak, Dominik
Panagiotou, Konstantinos
Pathak, Vinayak
Paulusma, Daniel
Perez, Anthony
Perret, Ludovic
Pighizzini, Giovanni
Pilz, Alexander
Ponty, Yann
Popa, Alex
Pott, Alexander
Pruhs, Kirk
Pérez-Lantero, Pablo
Rad, Nader Jafari
Radke, Klaus
Raekow, Yona
Rahman, M. Sohel
Reyes, Nora

Organization XI

Richmond, Bruce
Rojas, Javiel
Saket, Rishi
Salinger, Alejandro
Salvy, Bruno
Sam, Sethserey
Sampaio, Rudini
Sato, Cristiane M.
Saumell, Maria
Saurabh, Saket
Sawada, Joe
Schaudt, Oliver
Schmid, Stefan
Schouery, Rafael
Schwartz, Roy
Seara, Carlos
Sereni, Jean-Sébastien
Serpette, Bernard
Shah, Rahul
Shirazipourazad, Shahrzad
Singer, Yaron
Sitchinava, Nodari
Soria, Michele
Sotelo, David
Stein, Maya
Stewart, Lorna
Stiller, Sebastian
Sviridenko, Maxim
Swenson, Krister

Tamir, Arie
Tannier, Eric
Telha, Claudio
Thraves, Christopher
Toft, Bjarne
Tomkins, Andrew
Tran, Huong
Travers, Corentin
Tsichlas, Kostas
Uchizawa, Kei
Umboh, Seeun
V. Silva, Pedro
van Leeuwen, Erik Jan
van Stee, Rob
Vassilvitskii, Sergei
Vee, Erik
Venkatasubramanian, Suresh
Verdonschot, Sander
Viera, Marcos
Vigneron, Antoine
Villard, Gilles
Wakabayashi, Yoshiko
Weber, Ken
Xia, Donglin
Yamamura, Akihiro
Yen, Hsu-Chun
Ziegler, Konstantin
Ziegler, Martin
Zito, Michele

Abstracts

Something for Almost Nothing: Advances in

Sub-linear Time Algorithms

Ronitt Rubinfeld

CSAIL, MIT, Cambridge MA 02139
Blavatnik School of Computer Science, Tel Aviv University

ronitt@csail.mit.edu

Abstract. Linear-time algorithms have long been considered the gold
standard of computational endciency. Indeed, it is hard to imagine do-
ing better than that, since for a nontrivial problem, any algorithm must
consider all of the input in order to make a decision. However, as ex-
tremely large data sets are pervasive, it is natural to wonder what one
can do in sub-linear time. Over the past two decades, several surprising
advances have been made on designing such algorithms. We will give a
non-exhaustive survey of this emerging area, highlighting recent progress
and directions for further research.

Computer-Aided Cryptographic Proofs

Gilles Barthe

IMDEA Software Institute
gilles.barthe@imdea.org

EasyCrypt [6] is a computer-assisted framework for reasoning about the
security of cryptographic constructions, using the methods and tools of prov-
able security, and more specifically of the game-based techniques. The core of
EasyCrypt is a relational program logic for a core probabilistic programming lan-
guage with sequential composition, conditionals, loops, procedure calls, assign-
ments and sampling from discrete distributions. The relational program logic
is key to capture reductionist arguments that arise in cryptographic proofs. It
is complemented by a (standard, non-relational) program logic that allows to
reason about the probability of events in the execution of probabilistic pro-
grams; this program logic allows for instance to upper bound the probability of
failure events, that are pervasive in game-based cryptographic proofs. In com-
bination, these logics capture general reasoning principles in cryptography and
have been used to verify the security of emblematic constructions, including the
Full-Domain Hash signature [8], the Optimal Asymmetric Encryption Padding
(OAEP) [7], hash function designs [3] and zero-knowledge protocols [5, 1]. Yet,
these logics can only capture instances of general principles, and lack mechanisms
for stating and proving these general principles once and for all, and then for
instantiating them as needed. To overcome this limitation, we have recently ex-
tended EasyCrypt with programming language mechanisms such as modules and
type classes. Modules provide support for composition of cryptographic proofs,
and for formalizing hybrid arguments, whereas type classes are convenient to
model and reason about algebraic structures. Together, these extensions signifi-
cantly expand the class of examples that can be addressed with EasyCrypt. For
instance, we have used the latest version of EasyCrypt to verify the security of a
class of authenticated key exchange protocols, and of a secure function evaluation
protocol based on garbled circuits and oblivious transfer.

Our current work explores two complementary directions. On the one hand,
we are extending the EasyCrypt infrastructure in order to derive security guar-
antees about implementations of cryptographic constructions. Indeed, practical
attacks often target specific implementations and exploit some characteristics
that are not considered in typical provable security proofs; as a consequence,
several widely used implementations of provably secure schemes are vulnerable
to attacks. In order to narrow the gap between provable security and imple-
mentations, we are extending EasyCrypt with support to reason about C-like
implementations, and use the CompCert verified C compiler (http://compcert.
inria.fr/) to carry the security guarantees down to executable implementa-
tions [2]. On the other hand, we are developing specialized formalisms to reason

Computer-Aided Cryptographic Proofs XVII

about the security of particular classes of constructions. For instance, we have
recently developed the ZooCrypt framework [4], which supports automated anal-
ysis of chosen-plaintext and chosen ciphertext-security for public-key encryption
schemes built from (partial-domain) one-way trapdoor permutations and random
oracles. Using ZooCrypt, we have analyzed over a million (automatically gener-
ated) schemes, including many schemes from the literature. For chosen-plaintext
security, ZooCrypt is able to report in nearly 99% of the cases a proof of security
with a concrete security bound, or an attack. We are currently extending our
approach to reason about encryption schemes based on Diffie-Hellmann groups
and bilinear pairings, both in the random oracle and in the standard models.

More information about the project is available from the project web page

http://www.easycrypt.info

References

1. Almeida, J.B., Barbosa, M., Bangerter, E., Barthe, G., Krenn, S., Zanella-Béguelin,
S.: Full proof cryptography: verifiable compilation of efficient zero-knowledge proto-
cols. In: 19th ACM Conference on Computer and Communications Security. ACM
(2012)

2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F.: Certified computer-aided
cryptography: efficient provably secure machine code from high-level implemen-
tations. In: ACM Conference on Computer and Communications Security. ACM
(2013)

3. Backes, M., Barthe, G., Berg, M., Grégoire, B., Skoruppa, M., Zanella-Béguelin,
S.: Verified security of Merkle-Damg̊ard. In: IEEE Computer Security Foundations.
ACM (2012)

4. Barthe, G., Crespo, J.M., Grégoire, B., Kunz, C., Lakhnech, Y., Schmidt, B.,
Zanella-Béguelin, S.: Automated analysis and synthesis of padding-based encryp-
tion schemes. In: ACM Conference on Computer and Communications Security.
ACM (2013)

5. Barthe, G., Grégoire, B., Hedin, D., Heraud, S., Zanella-Béguelin, S.: A Machine-
Checked Formalization of Sigma-Protocols. In: IEEE Computer Security Founda-
tions. ACM (2010)

6. Barthe, G., Grégoire, B., Heraud, S., Zanella-Béguelin, S.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

7. Barthe, G., Grégoire, B., Lakhnech, Y., Zanella-Béguelin, S.: Beyond Provable
Security Verifiable IND-CCA Security of OAEP. In: Kiayias, A. (ed.) CT-RSA
2011. LNCS, vol. 6558, pp. 180–196. Springer, Heidelberg (2011)

8. Zanella-Béguelin, S., Barthe, G., Grégoire, B., Olmedo, F.: Formally certifying the
security of digital signature schemes. In: IEEE Symposium on Security and Privacy.
IEEE Computer Society (2009)

“If You Can Specify It, You Can Analyze It”

—The Lasting Legacy of Philippe Flajolet

Robert Sedgewick

Department of Computer Science, Princeton University
rs@cs.princeton.edu

Abstract. The “Flajolet School” of the analysis of algorithms and
combinatorial structures is centered on an effective calculus, known as
analytic combinatorics, for the development of mathematical models that
are sufficiently accurate and precise that they can be validated through
scientific experimentation. It is based on the generating function as the
central object of study, first as a formal object that can translate a spec-
ification into mathematical equations, then as an analytic object whose
properties as a function in the complex plane yield the desired quantita-
tive results. Universal laws of sweeping generality can be proven within
the framework, and easily applied. Standing on the shoulders of Cauchy,
Polya, de Bruijn, Knuth, and many others, Philippe Flajolet and scores
of collaborators developed this theory and demonstrated its effectiveness
in a broad range of scientific applications. Flajolet’s legacy is a vibrant
field of research that holds the key not just to understanding the prop-
erties of algorithms and data structures, but also to understanding the
properties of discrete structures that arise as models in all fields of sci-
ence. This talk will survey Flajolet’s story and its implications for future
research.

“A man ... endowed with an an exuberance of imagination which puts
it in his power to establish and populate a universe of his own creation”.

Encoding Data Structures

Gonzalo Navarro*

Department of Computer Science, University of Chile
gnavarro@dcc.uchile.cl

Classical data structures can be regarded as additional information that is stored
on top of the raw data in order to speed up some kind of queries. Some examples
are the suffix tree to support pattern matching in a text, the extra structures
to support lowest common ancestor queries on a tree, or precomputed shortest
path information on a graph.

Some data structures, however, can operate without accessing the raw data.
These are called encodings. Encodings are relevant when they do not contain
enough information to reproduce the raw data, but just what is necessary to
answer the desired queries (otherwise, any data structure could be seen as an
encoding, by storing a copy of the raw data inside the structure).

Encodings are interesting because they can occupy much less space than the
raw data. In some cases the data itself is not interesting, only the answers to
the queries on it, and thus we can simply discard the raw data and retain the
encoding. In other cases, the data is used only sporadically and can be maintained
in secondary storage, while the encoding is maintained in main memory, thus
speeding up the most relevant queries.

When the raw data is available, any computable query on it can be answered
with sufficient time. With encodings, instead, one faces a novel fundamental
question: what is the effective entropy of the data with respect to a set of queries?
That is, what is the minimum size of an encoding that can answer those queries
without accessing the data? This question is related to Information Theory, but
in a way inextricably associated to the data structure: the point is not how
much information the data contains, but how much information is conveyed by
the queries. In addition, as usual, there is the issue of how efficiently can be the
queries answered depending on how much space is used.

In this talk I will survey some classical and new encodings, generally about
preprocessing arrays A[1, n] so as to answer queries on array intervals [i, j] given
at query time. I will start with the classical range minimum queries (which is
the minimum value in A[i, j]?) which has a long history that culminated a few
years ago in an asymptotically space-optimal encoding of 2n+ o(n) bits answer-
ing queries in constant time. Then I will describe more recent (and partly open)

* Funded in part by Millennium Nucleus Information and Coordination in Networks
ICM/FIC P10-024F, Chile.

XX Encoding Data Structures

problems such as finding the second minimum in A[i, j], the k smallest values in
A[i, j], the kth smallest value in A[i, j], the elements that appear more than a
fraction Θ of the times in A[i, j], etc. All these queries appear recurrently within
other algorithmic problems, and they have also direct application in data mining.

Succinct Data Structures ... Not Just for Graphs

J. Ian Munro

Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

imunro@uwaterloo.ca

Abstract. Succinct data structures are data representations that use
the (nearly) the information theoretic minimum space, for the combina-
torial object they represent, while performing the necessary query op-
erations in constant (or nearly constant) time. So, for example, we can
represent a binary tree on n nodes in 2n + o(n) bits, rather than the
”obvious” 5n or so words, i.e. 5n lgn bits. Such a difference in memory
requirements can easily translate to major differences in runtime as a
consequence of the level of memory in which most of the data resides.
The field developed to a large extent because of applications in text in-
dexing, so there has been a major emphasis on trees and a secondary
emphasis on graphs in general; but in this talk we will draw attention to
a much broader collection of combinatorial structures for which succinct
structures have been developed. These will include sets, permutations,
functions, partial orders and groups, and yes, a bit on graphs.

Table of Contents

Complexity 1

Conjugacy in Baumslag’s Group, Generic Case Complexity,
and Division in Power Circuits . 1

Volker Diekert, Alexei G. Myasnikov, and Armin Weiß

Hierarchical Complexity of 2-Clique-Colouring Weakly Chordal Graphs
and Perfect Graphs Having Cliques of Size at Least 3 13

Helio B. Macêdo Filho, Raphael C.S. Machado, and
Celina M.H. Figueiredo

The Computational Complexity of the Game of Set and Its Theoretical
Applications . 24

Michael Lampis and Valia Mitsou

Complexity 2

Independent and Hitting Sets of Rectangles Intersecting a Diagonal
Line . 35

José R. Correa, Laurent Feuilloley, and José A. Soto

Approximating Vector Scheduling: Almost Matching Upper and Lower
Bounds . 47

Nikhil Bansal, Tjark Vredeveld, and Ruben van der Zwaan

False-Name Manipulation in Weighted Voting Games Is Hard
for Probabilistic Polynomial Time . 60

Anja Rey and Jörg Rothe

A Natural Generalization of Bounded Tree-Width and Bounded
Clique-Width . 72

Martin Fürer

Computational Geometry 1

Optimal Algorithms for Constrained 1-Center Problems 84
Luis Barba, Prosenjit Bose, and Stefan Langerman

A Randomized Incremental Approach for the Hausdorff Voronoi
Diagram of Non-crossing Clusters . 96

Panagiotis Cheilaris, Elena Khramtcova, Stefan Langerman, and
Evanthia Papadopoulou

XXIV Table of Contents

Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs 108
Prosenjit Bose and André van Renssen

Computing the L1 Geodesic Diameter and Center of a Simple
Polygon in Linear Time . 120

Sang Won Bae, Matias Korman, Yoshio Okamoto, and Haitao Wang

Graph Drawing

The Planar Slope Number of Subcubic Graphs . 132
Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani

Smooth Orthogonal Drawings of Planar Graphs . 144
Muhammad Jawaherul Alam, Michael A. Bekos, Michael Kaufmann,
Philipp Kindermann, Stephen G. Kobourov, and Alexander Wolff

Drawing HV -Restricted Planar Graphs . 156
Stephane Durocher, Stefan Felsner, Saeed Mehrabi, and
Debajyoti Mondal

Periodic Planar Straight-Frame Drawings with Polynomial
Resolution . 168

Luca Castelli Aleardi, Éric Fusy, and Anatolii Kostrygin

Automata

A Characterization of Those Automata That Structurally Generate
Finite Groups . 180

Ines Klimann and Matthieu Picantin

Linear Grammars with One-Sided Contexts and Their Automaton
Representation . 190

Mikhail Barash and Alexander Okhotin

Computability

On the Computability of Relations on ι-Terms and Rice’s Theorem -
The Case of the Expansion Problem for Explicit Substitutions 202

Edward Hermann Haeusler and Mauricio Ayala-Rincón

Computing in the Presence of Concurrent Solo Executions 214
Maurice Herlihy, Sergio Rajsbaum, Michel Raynal, and
Julien Stainer

Table of Contents XXV

Algorithms on Graphs

Combining All Pairs Shortest Paths and All Pairs Bottleneck Paths
Problems . 226

Tong-Wook Shinn and Tadao Takaoka

(Total) Vector Domination for Graphs with Bounded Branchwidth 238
Toshimasa Ishii, Hirotaka Ono, and Yushi Uno

Computing the Degeneracy of Large Graphs . 250
Mart́ın Farach-Colton and Meng-Tsung Tsai

Computational Geometry 2

Approximation Algorithms for the Geometric Firefighter and Budget
Fence Problems . 261

Rolf Klein, Christos Levcopoulos, and Andrzej Lingas

An Improved Data Stream Algorithm for Clustering 273
Sang-Sub Kim and Hee-Kap Ahn

Approximation Algorithms for the Gromov Hyperbolicity of Discrete
Metric Spaces . 285

Ran Duan

A (7/2)-Approximation Algorithm for Guarding Orthogonal Art
Galleries with Sliding Cameras . 294

Stephane Durocher, Omrit Filtser, Robert Fraser,
Ali D. Mehrabi, and Saeed Mehrabi

Algorithms

Helly-Type Theorems in Property Testing . 306
Sourav Chakraborty, Rameshwar Pratap, Sasanka Roy, and
Shubhangi Saraf

New Bounds for Online Packing LPs . 318
Matthias Englert, Nicolaos Matsakis, and Marcin Mucha

Improved Minmax Regret 1-Center Algorithms for Cactus Networks
with c Cycles . 330

Binay Bhattacharya, Tsunehiko Kameda, and Zhao Song

Collision-Free Network Exploration . 342
Jurek Czyzowicz, Dariusz Dereniowski, Leszek G Δasieniec,
Ralf Klasing, Adrian Kosowski, and Dominik Paj Δak

XXVI Table of Contents

Random Structures

Powers of Hamilton Cycles in Pseudorandom Graphs 355
Peter Allen, Julia Böttcher, Hiê. p Hàn, Yoshiharu Kohayakawa, and
Yury Person

Local Update Algorithms for Random Graphs . 367
Philippe Duchon and Romaric Duvignau

Odd Graphs Are Prism-Hamiltonian and Have a Long Cycle 379
Felipe De Campos Mesquita, Let́ıcia Rodrigues Bueno, and
Rodrigo De Alencar Hausen

Relatively Bridge-Addable Classes of Graphs . 391
Colin McDiarmid and Kerstin Weller

Complexity on Graphs 1

O(n) Time Algorithms for Dominating Induced Matching Problems 399
Min Chih Lin, Michel J. Mizrahi, and Jayme L. Szwarcfiter

Coloring Graph Powers: Graph Product Bounds and Hardness
of Approximation . 409

Parinya Chalermsook, Bundit Laekhanukit, and Danupon Nanongkai

Convexity in Partial Cubes: The Hull Number . 421
Marie Albenque and Kolja Knauer

Connected Greedy Colourings . 433
Fabŕıcio Benevides, Victor Campos, Mitre Dourado,
Simon Griffiths, Robert Morris, Leonardo Sampaio, and
Ana Silva

Analytic Combinatorics

On the Number of Prefix and Border Tables . 442
Julien Clément and Laura Giambruno

Probabilities of 2-Xor Functions . 454
Élie de Panafieu, Danièle Gardy, Bernhard Gittenberger, and
Markus Kuba

Equivalence Classes of Random Boolean Trees and Application
to the Catalan Satisfiability Problem . 466

Antoine Genitrini and Cécile Mailler

Table of Contents XXVII

Analytic and Enumerative Combinatorics

The Flip Diameter of Rectangulations and Convex Subdivisions 478
Eyal Ackerman, Michelle M. Allen, Gill Barequet, Maarten Löffler,
Joshua Mermelstein, Diane L. Souvaine, and Csaba D. Tóth

Weighted Staircase Tableaux, Asymmetric Exclusion Process,
and Eulerian Type Recurrences . 490

Pawe�l Hitczenko and Svante Janson

Counting and Generating Permutations Using Timed Languages 502
Nicolas Basset

Complexity on Graphs 2

Semantic Word Cloud Representations: Hardness and Approximation
Algorithms . 514

Lukas Barth, Sara Irina Fabrikant, Stephen G. Kobourov,
Anna Lubiw, Martin Nöllenburg, Yoshio Okamoto, Sergey Pupyrev,
Claudio Squarcella, Torsten Ueckerdt, and Alexander Wolff

The Complexity of Homomorphisms of Signed Graphs and Signed
Constraint Satisfaction . 526

Florent Foucaud and Reza Naserasr

Complexity of Coloring Graphs without Paths and Cycles 538
Pavol Hell and Shenwei Huang

Approximation Algorithms

Approximating Real-Time Scheduling on Identical Machines 550
Nikhil Bansal, Cyriel Rutten, Suzanne van der Ster,
Tjark Vredeveld, and Ruben van der Zwaan

Integrated Supply Chain Management via Randomized Rounding 562
Lehilton L.C. Pedrosa and Maxim Sviridenko

The Online Connected Facility Location Problem . 574
Mário César San Felice, David P. Williamson, and Orlando Lee

Multiply Balanced k−Partitioning . 586
Amihood Amir, Jessica Ficler, Robert Krauthgamer,
Liam Roditty, and Oren Sar Shalom

On Some Recent Approximation Algorithms for MAX SAT 598
Matthias Poloczek, David P. Williamson, and Anke van Zuylen

XXVIII Table of Contents

Analysis of Algorithms

Packet Forwarding Algorithms in a Line Network . 610
Antonios Antoniadis, Neal Barcelo, Daniel Cole, Kyle Fox,
Benjamin Moseley, Michael Nugent, and Kirk Pruhs

Survivability of Swarms of Bouncing Robots . 622
Jurek Czyzowicz, Stefan Dobrev, Evangelos Kranakis, and
Eduardo Pacheco

Emergence of Wave Patterns on Kadanoff Sandpiles 634
Kévin Perrot and Éric Rémila

Computational Algebra

A Divide and Conquer Method to Compute Binomial Ideals 648
Deepanjan Kesh and Shashank K. Mehta

How Fast Can We Multiply Large Integers on an Actual Computer? 660
Martin Fürer

Aplications to Bioinformatics

Sorting Permutations by Prefix and Suffix Versions of Reversals
and Transpositions . 671

Carla Negri Lintzmayer and Zanoni Dias

Algorithmic and Hardness Results for the Colorful Components
Problems . 683

Anna Adamaszek and Alexandru Popa

Budget Problems

On the Stability of Generalized Second Price Auctions with Budgets 695
Josep Dı́az, Ioannis Giotis, Lefteris Kirousis,
Evangelos Markakis, and Maria Serna

Approximation Algorithms for the Max-Buying Problem with Limited
Supply . 707

Cristina G. Fernandes and Rafael C.S. Schouery

Budget Feasible Mechanisms for Experimental Design 719
Thibaut Horel, Stratis Ioannidis, and S. Muthukrishnan

Table of Contents XXIX

Algorithms and Data Structures

LZ77-Based Self-indexing with Faster Pattern Matching 731
Travis Gagie, Pawe�l Gawrychowski, Juha Kärkkäinen,
Yakov Nekrich, and Simon J. Puglisi

Quad-K-d Trees . 743
Nikolett Bereczky, Amalia Duch, Krisztián Németh, and
Salvador Roura

Biased Predecessor Search . 755
Prosenjit Bose, Rolf Fagerberg, John Howat, and Pat Morin

Author Index . 765

Conjugacy in Baumslag’s Group, Generic Case
Complexity, and Division in Power Circuits

Volker Diekert1, Alexei G. Myasnikov2, and Armin Weiß1

1 FMI, Universität Stuttgart, Universitätsstr. 38, D-70569 Stuttgart, Germany
2 Department of Mathematics, Stevens Institute of Technology, Hoboken, NJ, USA

Abstract. The conjugacy problem is the following question: given two words x,
y over generators of a fixed group G, decide whether x and y are conjugated,
i.e., whether there exists some z such that zxz−1 = y in G. The conjugacy
problem is more difficult than the word problem, in general. We investigate the
conjugacy problem for two prominent groups: the Baumslag-Solitar group BS1,2

and the Baumslag(-Gersten) group G1,2. The conjugacy problem in BS1,2 is
TC0-complete. To the best of our knowledge BS1,2 is the first natural infinite
non-commutative group where such a precise and low complexity is shown. The
Baumslag group G1,2 is an HNN-extension of BS1,2 and its conjugacy problem
is decidable G1,2 by a result of Beese (2012). Here we show that conjugacy in
G1,2 can be solved in polynomial time in a strongly generic setting. This means
that essentially for all inputs conjugacy in G1,2 can be decided efficiently. In
contrast, we show that under a plausible assumption the average case complexity
of the same problem is non-elementary. Moreover, we provide a lower bound for
the conjugacy problem in G1,2 by reducing the division problem in power circuits
to the conjugacy problem in G1,2. The complexity of the division problem in
power circuits is an open and interesting problem in integer arithmetic.

Keywords: Algorithmic group theory, power circuit, generic case complexity.

1 Introduction

More than 100 years ago Max Dehn introduced the word problem and the conjugacy
problem as fundamental decision problems in group theory. Let G be a finitely gener-
ated group. The input are two words x, y written in generators. Word problem: Decide
whether x = y in G. Conjugacy problem: Decide whether x ⊕G y in G, i.e., decide
whether there exists z such that zxz−1 = y in G. In recent years, conjugacy played an
important role in non-commutative cryptography, see e.g. [5,9,20]. These applications
use that is is easy to create elements which are conjugated, but to check whether two
given elements are conjugated might be difficult even if the word problem is easy. In
fact, there are groups where the word problem is easy but the conjugacy problem is
undecidable [16]. Frequently, in cryptographic applications the ambient group is fixed.
The focus in this paper is on the conjugacy problem in G1,2. In 1969 Gilbert Baumslag
defined the group G1,2 as an example of a one-relator group which enjoys certain re-
markable properties. It was introduced as an infinite non-cyclic group all of whose finite
quotients are cyclic [1]. In particular, it is not residually finite; but being one-relator it

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 1–12, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

2 V. Diekert, A.G. Myasnikov, and A. Weiß

has a decidable word problem [15]. The group G1,2 is generated by two generators a
and b subject to a single relation bab−1a = a2bab−1. Another way to understand G1,2

is to view it as an HNN-extension of the even more prominent Baumslag-Solitar group
BS1,2. The group BS1,2 is defined by a single relation tat−1 = a2 where a and t are
generators1. The complexity of the word problem and conjugacy problem in BS1,2 are
very low; indeed, we show that they are TC0-complete. However, such a low complexity
does not transfer to the complexity of the corresponding problems in HHN-extensions
like G1,2. Gersten showed that the Dehn function of G1,2 is non-elementary [8]. More-
over, Magnus’ break-down procedure [14] on G1,2 is non-elementary, too. This means
that the time complexity for the standard algorithm to solve the word problem in G1,2

cannot be bounded by any fixed tower of exponentials. Therefore, for many years, G1,2

was the simplest candidate for a group with an extremely difficult word problem. How-
ever, Myasnikov, Ushakov, and Won showed in [18] that the word problem of the Baum-
slag group is solvable in polynomial time! In order to achieve a polynomial time bound
they introduced a versatile data structure for integer arithmetic which they called power
circuit. The data structure supports +, −, ≤, and (x, y) �⊗ 2xy, a restricted version of
multiplication which includes exponentiation x �⊗ 2x. Thus, by iteration it is possible
to represent huge values (involving the tower function) by very small circuits. Still, all
operations above can be performed in polynomial time. On the other hand there are
notoriously difficult arithmetical problems in power circuits, too. A very important one
is division. The input are power circuits C and C∨ representing integers m and m∨; the
question is whether m divides m∨. The problem is clearly decidable by converting m
and m∨ into binary; but this procedure is non-elementary. So far, no idea for any bet-
ter algorithm is known. It is plausible to assume that the problem “division in power
circuits” has no elementary time complexity at all.

In the present paper we show a tight relation between the problems “division in
power circuits” and conjugacy in G1,2. Our results concerning the Baumslag-Solitar
group BS1,2, the Baumslag group G1,2, its generic case complexity, and division in
power circuits are as follows.

– The conjugacy problem of BS1,2 is TC0-complete.
– There is a strongly generic polynomial time algorithm for the conjugacy problem in
G1,2. This means, the difficult instances for the algorithm are exponentially sparse,
and therefore, on random inputs, conjugacy can be solved efficiently.

– If “division in power circuits” is non-elementary in the worst case, then the conju-
gacy problem in G1,2 is non-elementary on the average.

Decidability of the conjugacy problem in G1,2 is not new, it was shown in [2]2 and
decidability outside a so-called “black hole” follows already from [3]. Our work im-
proves Beese’s work leading to a polynomial time algorithm outside a proper subset
of the “black hole” (and decidability everywhere). Thus, our result underlines that in
special cases like G1,2 much better results than stated in [3] are possible. Let us also
note that there are undecidable problems (hence no finite average case complexity is de-
fined), like the halting problem for certain encodings of Turing machines, which have

1 Adding a generator b and a relation bab−1 = t results in G1,2. Indeed, due to bab−1 = t, we
can remove t and we obtain exactly the presentation of G1,2 above.

2 It is unknown whether the conjugacy problem in one-relator groups is decidable, in general.

Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division 3

generically linear time partial solutions. However, many of these examples depend on
encodings and special purpose constructions. In our case we consider a natural problem
where the average case complexity is defined, but the only known algorithm to solve
it runs in non-elementary time on the average. Nevertheless, there is a polynomial p
(roughly of degree 4) such that the probability that the same algorithm requires more
than p(n) steps on random inputs converges exponentially fast to zero. The main tech-
nical difficulty in establishing a strongly generic polynomial time complexity is to show
that a random walk of length n in the Cayley graph of G1,2 ends with probability less
than (1 − Θ)n in the subgroup BS1,2 for some Θ > 0. Random walks in infinite graphs
are widely studied in various areas, see e.g. [22] or the textbook [23].

In [7] we prove a more general statement about HNN extension of the form G =〈
H, b | bab−1 = ι(a), a ∈ A〉 with a finitely generated base group H and Δ a finite

symmetric set of generators for G. We show that the complement of H (inside Δ∗) is
strongly generic if and only if A ∗= H ∗= B. With other words, the Schreier graph
Γ (G,H,Δ) is non-amenable if and only if A ∗= H ∗= B. (For a definition of amenabil-
ity and its equivalent characterizations see e.g. [4,12].) This applies to G1,2 because it
is an HNN extension where A ∗= H ∗= B. Note that BS1,2 is an HNN extension with
A = H ∗= B, and indeed, the corresponding Schreier graph Γ (G,H,Δ) is amenable
for the Baumslag-Solitar group BS1,2.

However, in the special case of G1,2 we can also apply a technique quite different
from the that approach. In order to show our result about strongly generic polynomial
time we define a “pairing” between random walks in the Cayley graph and Dyck words.
We exhibit an Θ > 0 such that for each Dyck word w of length 2n the probability that a
pairing with w evaluates to 1 is bounded by (1/4− Θ)n. The result follows since there
are at most 4n Dyck words.

1.1 Notation and Preliminaries

Functions. We use standardO-notation for functions fromN to non-negative reals R⊆0.
The tower function Ψ : N⊗ N is defined by Ψ (0) = 0 and Ψ(i+1) = 2Δ(i) for i ≥ 0. It
is primitive recursive. We say that a function f : N⊗ R

⊆0 is elementary, if the growth
of f can be bounded by a fixed number of exponentials. It is called non-elementary if it
is not elementary, but f(n) ∈ Ψ (O(n)).
Circuit Complexity. We deal with various complexity measures. On the lowest level
we are interested in problems which can be decided by (uniform) TC0-circuits. These
are circuits of polynomial size with constant depth where we allow Boolean gates and
majority gates, which evaluate to 1 if and only if the majority of inputs is 1. For a precise
definition and uniformity conditions we refer to the textbook [21].
Time Complexity. A uniform family of TC0-circuits computes a polynomial time com-
putable function. We use a standard notion for worst-case and for average case complex-
ity and random access machines (RAMs) as machine model. An algorithmA computes
a function between domains D and D∨. In our applications D comes always with a
natural partition D =

⋃{
D(n)

∣
∣ n ∈ N

}
where each D(n) is finite.

Generic Case Complexity. For many practical applications the “generic-case behav-
ior” of an algorithm is more important than its average-case or worst-case behavior.
We refer to [12,13] where the foundations of this theory were developed and to [17]

4 V. Diekert, A.G. Myasnikov, and A. Weiß

for applications in cryptography. The notion of generic complexity refers to partial al-
gorithms which are defined on a (strongly) generic set I ⊆ D. Thus, they may refuse
to give an answer outside I , but if they give an answer, the answer must always be
correct. In our context it is enough to deal with totally defined algorithms and strongly
generic sets. Thus, the answer is always computed and always correct, but the runtime
is measured by a worst-case behavior over a strongly generic set I ⊆ D. Here a set I
is called strongly generic, if there exists an Θ > 0 such that

∣∣D(n) \ I∣∣ / ∣∣D(n)
∣∣ ≤ 2−Σn

for almost all n ∈ N. This means the probability to find a random string outside I
converges exponentially fast to zero. Thus, if an algorithm A runs in polynomial time
on a strongly generic set, then, for practical purposes, A behaves as a polynomial time
worst-case algorithm. This is true although the average time complexity of A can be
arbitrarily high.
Group Theory. We use standard notation and facts from group theory as found in
the classical text book [14]. Groups G are generated by some subset S ⊆ G. We let
S = S−1 and we view S ↑ S as an alphabet with involution; its elements are called
letters. We have a = a for letters and also for words by letting a1 · · · an = an · · ·a1
where ai ∈ S ↑S are letters. Thus, if g ∈ G is given by a word w, then w = g−1 in the
group G. For a word w we denote by |w| its length. We say that w is reduced if there
is no factor aa for any letter. It is called cyclically reduced if ww is reduced. For words
(or group elements) we write x ⊕G y to denote conjugacy, i.e., x ⊕G y if and only
if there exists some z ∈ G such that zxz = y in G. We apply the standard (so called
Magnus break-down) procedure for solving the word problem in HNN-extensions. Our
calculations are fully explicit and accessible with basic knowledge in combinatorial
group theory
Glossary. TC0 circuit class. x ⊕G y conjugacy in groups. (Γ, Π) power circuits. Θ(P),
Θ(M) evaluation of nodes and markings. Ψ (n) tower function. Baumslag-Solitar group:
BS1,2 =

〈
a, t | tat−1 = a2

〉
. Baumslag group: G1,2 =

〈
a, b | bab−1a = a2ba−1b−1

〉
.

Subgroup relations A = ⊃a⊇, T = ⊃t⊇ ≤ BS1,2 = Z[1/2]� Z = H ≤ G1,2. Standard
symmetric set of generators for G1,2 is Σ =

{
a, a, b, b

}∗
and z = z−1 in groups.

Proofs. Missing proofs are in the forthcoming journal version and also in the paper on
the arXiv server [7].

2 Power Circuits

In binary a number is represented as a sum m =
∑k

i=0 bi2
i with bi ∈ {0, 1}. Allowing

bi ∈ {−1, 0, 1} we obtain a “compact representation” of integers, which may require
less non-zero bis than the normal representation. The notion of power circuit is due
to [19]. It generalizes compact representations and goes far beyond since it allows a
compact representation of tower functions. Formally: a power circuit of size n is given
by a pair (Γ, Π). Here, Γ is a set of n vertices and Π is a mapping Π : Γ × Γ ⊗
{−1, 0,+1}. The support of Π is the subset Δ ⊆ Γ × Γ with (P,Q) ∈ Δ ⊂↓
Π(P,Q) ∗= 0. Thus, (Γ,Δ) is a directed graph. Throughout we require that (Γ,Δ) is
acyclic. In particular, Π(P, P) = 0 for all vertices P . A marking is a mapping M :
Γ ⊗ {−1, 0,+1}. We can also think of a marking as a subset of Γ where each element
in M has a sign (+ or −). If M(P) = 0 for all P ∈ Γ then we simply write M =

Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division 5

∅. Each node P ∈ Γ is associated in a natural way with a successor marking ΛP :
Γ ⊗ {−1, 0,+1} , Q �⊗ Π(P,Q), consisting of the target nodes of outgoing arcs
from P . We define the evaluation Θ(P) of a node (Θ(M) of a marking resp.) bottom-
up in the directed acyclic graph by induction: Θ(∅) = 0, Θ(P) = 2Σ(ΛP) for a node
P , and Θ(M) =

∑
P M(P)Θ(P) for a marking M . Note that leaves evaluate to 1, the

evaluation of a marking is a real number, and the evaluation of a nodeP is a positive real
number. Thus, Θ(P) and Θ(M) are well-defined. We have Θ(ΛP) = log2(Θ(P)), thus
the successor marking plays the role of a logarithm. We are interested only in power
circuits where all markings evaluate to integers; equivalently all nodes evaluate to some
positive natural number in 2N.

The power circuit-representation of an integer sequence m1, . . . ,mk is given by a
tuple (Γ, Π;M1, . . . ,Mk) where (Γ, Π) is a power circuit and M1, . . . ,Mk are mark-
ings such that Θ(Mi) = mi. (Hence, a single power circuit can store several different
numbers; a fact which has been crucial in the proof of Prop. 9, see [6].)

Example 1. We can represent every n-bit integer as a power circuit withO(n) vertices.

Example 2. A power circuit of size n can realize Ψ(n) since a chain of n nodes repre-
sents Ψ(n) as the evaluation of the last node.

Proposition 3 ([18,6]). The following operations can be performed in quadratic time.
Input a power circuit (Γ, Π) of size n and two markings M1 and M2. Decide whether
(Γ, Π) is indeed a power circuit, i.e., decide whether all markings evaluate to integers.
If “yes”: Decide whether Θ(M1) ≤ Θ(M2); and compute a new power circuit with
markings M , X and U such that

1. Θ(M) = Θ(M1)± Θ(M2).
2. Θ(M) = 2Σ(M1) · Θ(M2).
3. Θ(M1) = 2Σ(X) · Θ(U) and either U = ∅ or Θ(U) is odd.

Let us mention that the complexity of the division problem in power circuits is open.
The only known general algorithm transforms markings into binary numbers. This in-
volves a non-elementary explosion.

3 Conjugacy in the Baumslag-Solitar Group BS1,2

The solution of the conjugacy problem in the Baumslag group G1,2 relies on the sim-
pler solution for the Baumslag-Solitar group BS1,2. The aim of this section is to show
that the conjugacy problem in BS1,2 is TC0-complete. The group BS1,2 is given by
the presentation

〈
a, t | tat−1 = a2

〉
. We have ta = a2t and at−1 = t−1a2. This al-

lows to represent all group elements by words of the form t−partq with p, q ∈ N

and r ∈ Z. However, for q ≥ 0, transforming tqar into this form leads to astq with
s = 2qr, so the word astq is exponentially longer than the word tqar. We denote by
Z[1/2] = {p/2q ∈ Q | p, q ∈ Z} the ring of dyadic fractions. Multiplication by 2 is an
automorphism of the underlying additive group and therefore we can define the semi-
direct product Z[1/2] � Z as follows. Elements are pairs (r,m) ∈ Z[1/2] × Z. The
multiplication in Z[1/2]� Z is defined by

(r,m) · (s, q) = (r + 2ms,m+ q).

6 V. Diekert, A.G. Myasnikov, and A. Weiß

Inverses can be computed by the formula (r,m)−1 = (−r · 2−m,−m). It is straight-
forward to show that a �⊗ (1, 0) and t �⊗ (0, 1) defines an isomorphism between
BS1,2 and Z[1/2] � Z. In the following we abbreviate BS1,2 (= Z[1/2] � Z) by H .
There are several options to represent a group element g ∈ H . In a unary representa-
tion we write g as a word over the alphabet with involution

{
a, a, t, t

}
. Another way

is to write g = (r,m) with r ∈ Z[1/2] and m ∈ Z. In the following we use both
notations interchangeably. The binary representation of (r,m) consists of r written in
binary (as floating point number) and m in unary. Let us write (r,m) with r = 2ks
and k, s,m ∈ Z. We then have (2ks,m) = (0, k) · (s,m − k) and the corresponding
triple [k, s,m − k] ∈ Z

3 is called the triple-representation of (r,m); it is not unique.
The power circuit representation of g = [k, s,m − k] is given by a power circuit and
markings K , S, L such that Θ(K) = k, Θ(S) = s, and Θ(L) = m − k. Note that
if g ∈ {

a, a, t, t
}n

satisfies g = (r,m) ∈ H , then |r| ≤ 2n and |m| ≤ n. Thus, a
transformation from unary to binary notation is on the safe side.

Proposition 4. Let (r1,m1), . . . , (rn,mn) ∈ Z[1/2] � Z given in binary representa-
tion for all i. Then there is a uniform construction of a TC0-circuit which calculates
(r,m) = (r1,m1) · · · (rn,mn) in Z[1/2]� Z.

The next proof uses a deep result of Hesse: integer division is in uniform TC0.

Proposition 5. Let f = (r,m), g = (s, q) ∈ Z[1/2]� Z be given in binary represen-
tation. Then there is a uniform construction of a TC0-circuit which decides f ⊕H g.

Proof. Let (r,m) ⊕H (s, q), i.e., there are k ∈ Z, x ∈ Z[1/2] with (x, k)(r,m) =
(s, q)(x, k). In particular, (r,m) ⊕H (s, q) if and only if m = q and there are k ∈ Z,
x ∈ Z[1/2] such that

s = r · 2k − x · (2m − 1). (1)

We have (r,m) ⊕H (s,m) if and only if (−r,−m) ⊕H (−s,−m) since (−p,−m) ⊕H

(−p2−m,−m) = (p,m)−1 for all p ∈ Z[1/2]. Therefore, without restriction m ∈ N.
Since a conjugation with tk maps (r,m) to (2kr,m), we may assume that r, s ∈ Z and
m ∈ N. For m = 0 this means (r, 0) ⊕H (s, 0) if and only if there is some k ∈ Z such
that s = r · 2k. This can be decided in TC0. For m = 1 we can choose x = r − s and
the answer is “yes”. For m ≥ 2 we can multiply (1) by 2δ such that x · 2δ ∈ Z. We
obtain 2δ · (r · 2k − s) = 2δx · (2m − 1), i.e., 2δ · (r · 2k − s) ≡ 0 mod (2m − 1). The
number 2 is invertible modulo 2m − 1 and its order is m. Hence, actually for m ≥ 1:

(r,m) ⊕H (s,m) ⊂↓ ∃k ∈ N : 0 ≤ k < m ∧ r · 2k − s ≡ 0 mod (2m − 1). (2)

It can be checked whether such a k exists using Hesse’s result for division [10,11]. �⇓
Theorem 6. The word problem as well as the conjugacy problem in BS1,2 is TC0-
complete.

Remark 7. Let us highlight that integer division can be reduced to the conjugacy prob-
lem in BS1,2. For m ≥ 1 we obtain as a special case of (2) and a well-known fact from
elementary number theory

(0,m) ⊕H (2s − 1,m) ⊂↓ 2m − 1 | 2s − 1 ⊂↓ m | s. (3)

Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division 7

If we allow a power circuit representation for integers, then this reduction from division
to conjugacy can be computed in polynomial time. Hence, no elementary algorithm
is known to solve the conjugacy problem in BS1,2 in power circuit representation,
whereas the word problem remains solvable in cubic time by [6].

4 Conjugacy in the Baumslag Group G1,2

The Baumslag group G1,2 is an HNN-extension of the Baumslag-Solitar group BS1,2.
We make this explicit. We let BS1,2 be our base group, generated by a and t. Again,
BS1,2 is abbreviated as H . The group H contains infinite cyclic subgroups A = ⊃a⊇
and T = ⊃t⊇ with A ∩ T = {1}. Let b be a fresh letter which is added as a new
generator together with the relation bab−1 = t. This defines the Baumslag group G1,2.
It is generated by a, t, b with defining relations tat−1 = a2 and bab−1 = t. However,
the generator t is now redundant and we obtain G1,2 as a group generated by a, b
with a single defining relation bab−1a = a2bab−1. We represent elements of G1,2

by β-factorizations. A β-factorization is written as a word z = γ0β1γ1 . . . βkγk with
βi ∈

{
b, b

}
and γi ∈

{
a, a, t, t

}∗
. The number k is called the β-length and is denoted

as |z|Θ . A transposition of a β-factorization z = γ0β1γ1 . . . βkγk is given as z∨ =
βiγi . . . βkγkγ0β1γ1 . . . βi−1γi−1 for some 1 ≤ i ≤ k. Clearly, z ⊕G1,2 z

∨ in this case.
Throughout we identify a power c−δ with cδ for letters c and σ ∈ N.
Britton Reductions. A Britton reduction considers some factor βγβ with γ ∈{
a, a, t, t

}∗
. There are two cases. First, if β = b and γ = aδ in H for some σ ∈ Z

then the factor bγb is replaced by tδ. Second, if β = b and γ = tδ in H for some
σ ∈ Z then the factor bγb is replaced by aδ. At most |z|Θ Britton reduction are possible
on a word z. Be aware! There can be a non-elementary blow-up in the exponents, see
Ex. 8. If no Britton reduction is possible, then the word x is called Britton-reduced .
It is called cyclically Britton-reduced if xx is Britton-reduced. Britton reductions are
effective because we can check whether γ = aδ (resp. γ = tδ) in H . Thus, on input
x ∈ {

a, a, t, t, b, b
}∗

we can effectively calculate a Britton-reduced word x̂ with x = x̂
in G1,2. The following assertions are standard facts for HNN-extensions, see [14]:

1. If x is Britton-reduced then x ∈ H if and only if |x|Θ = 0.
2. If x is Britton-reduced and |x|Θ = 0 then x = 1 in G1,2 if and only if x = 1 in H .
3. Let β1γ1 . . . βkγk and β∨1γ

∨
1 . . . β

∨
kγ
∨
k be β-factorizations of Britton-reduced wordsx

and y such that k ≥ 2 and x = y in G1,2. Then we have k = k∨ and (β1, . . . , βk) =
(β∨1, . . . , β∨k≥). Moreover, γ∨1 ∈ γ1T if β2 = b and γ∨1 ∈ γ1A if β2 = b.

Example 8. Define words w0 = t and wn+1 = b wn awn b for n ≥ 0. Then we have
|wn| = 2n+2 − 3 but wn = tΔ(n) in G1,2.

The power circuit-representation of a β-factorization γ0β1γ1 . . . βkγk is the se-
quence (β1, . . . , βk) and a power circuit (Γ, Π) together with a sequence of markings
K0, S0, L0, . . . ,Kk, Sk, Lk such that [Θ(Ki), Θ(Si), Θ(Li)] = [ki, si, σi] is the triple
representation of γi ∈ H for 1 ≤ i ≤ k. It is known that the word problem of G1,2 is
decidable in cubic time. Actually a more precise statement holds.

8 V. Diekert, A.G. Myasnikov, and A. Weiß

Proposition 9 ([18,6]). There is a cubic time algorithm which computes on input of a
power circuit representation of x = γ0β1γ1 . . . βkγk a power circuit representation of
a Britton-reduced word (resp. cyclically Britton-reduced word) x̂ such that x = x̂ in
G1,2 (resp. x ⊕G1,2 x̂). Moreover, the size for the power circuit representation of x̂ is
linear in the size of the power circuit representation of x.

Remark 10. A polynomial time algorithm for the result in Prop. 9 has been given first
in [18], it has been estimated by O(n7). This was lowered in [6] to cubic time.

Theorem 11. The following computation can be performed in timeO(n4). Input: words
x, y ∈ {

a, a, b, b
}∗

. Decide whether |x̂|Θ > 0 for a cyclically Britton-reduced form x̂
of x. If “yes”, decide x ⊕G1,2 y and, in the positive case, compute a power circuit
representation of some z such that zxz = y in G1,2.

Proof. Due to Prop. 9, we may assume that input words x and y are given as cyclically
Britton-reduced words. In particular, x̂ = x and |x̂|Θ = n > 0. Let us write x =
γ0b

Σ1γ1 . . . b
Σnγn as its β-factorization where Θi = ±1. If all Θi = +1 then we replace

x and y by x and y. Hence, without restriction there exists some Θi = −1. After a
possible transposition we may assume that x = bΣ1γ1 · · · bΣnγn with Θ1 = −1. Since y
is cyclically Britton-reduced, too, Collins’ Lemma ([14, Thm. IV.2.5]) tells us several
things: If x ⊕G1,2 y then |y|Θ = n and after some transposition the β-factorization of
y can be written as bΣ1γ∨1 · · · bΣnγ∨n. Moreover, still by Collins’ Lemma, we now have
x ⊕G1,2 y ⊂↓ ∃k ∈ Z : y = akxa−k in G1,2. The key is that k is unique and that
we find an efficient way to calculate it,3 see [7] for the calculations.

By Prop. 9, the tests akxak = y ∈ G1,2 can be performed in cubic time. All other
computations can be done in quadratic time by Prop. 4. Since all transpositions of the
β-factorization for y have to be considered this yields an O(n4)-algorithm. �⇓
For the remainder of the section the situation is as follows: We have x = (r,m) ∈
Z[1/2]� Z and y = (s, q) ∈ Z[1/2] � Z, both can be assumed to be in power circuit
representation. We may assume x ∗= 1 ∗= y in G1,2. After conjugation with some tk

where k is large enough we may assume that r,m, s, q ∈ Z. If m = 0 then we replace
x by bxb. Hence, m ∗= 0 and, by symmetry, q ∗= 0, too. By (2) and “division in power
circuits”, we are able to to test whether (r,m) ⊕H (0,m) and (s, q) ⊕H (0, q). Assume
that one of the answers is “no”. Say, (r,m) ∗⊕H (0,m). Then there is no h ∈ A↑T ⊆ H
such that (r,m) ⊕H h. Since then βγ(r,m)γβ is Britton-reduced for all β ∈ {

b, b
}

,
γ ∈ {

a, a, t, t
}∗

we obtain:

Proposition 12. Let r,m ∈ Z, m ∗= 0. If (r,m) ∗⊕H (0,m) then

(r,m) ⊕G1,2 (s, q) ⊂↓ (r,m) ⊕H (s, q).

By Prop. 12, we may assume (r,m) ⊕H (0,m), (s, q) ⊕H (0, q), and (r,m) ∗⊕H

(s, q). This involves perhaps non-elementary procedures. However, it remains to de-
cide (0,m) ⊕G1,2 (0, q), only. The last test is polynomial time again, even for power
circuits.

3 Beese calculates in [2] this value k and computes certain normal forms which are checked for
equivalence. This leads to an exponential time algorithm.

Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division 9

Proposition 13. Let m, q ∈ Z. Then we have

(0,m) ⊕G1,2 (0, q) ⊂↓ (m, 0) ⊕H (q, 0) ⊂↓ ∃k ∈ Z : m = 2kq.

Corollary 14. The following problem is decidable in at most non-elementary time. In-
put: Power circuit representations x, y for elements of G1,2. Question: x ⊕G1,2 y?

Corollary 15. If there is no elementary algorithm to solve the division problem in
power circuits then the conjugacy problem in the Baumslag group G1,2 is non-elemen-
tary in the average case even for a unary representation of group elements.

Proof. Assume that the conjugacy problem in the Baumslag group G1,2 is elementary
on the average. We give an elementary algorithm to solve division in power circuits. Let
(Γ, Π) be a power circuit of size n with markings M and S such that Θ(M) = m and
Θ(S) = s. For each node in P ∈ Γ it is easy to construct a word w(P) ∈ {

a, a, b, b
}∗

such that tΣ(P) = w(P) in G1,2 and |w(P)| ≤ nn. Just follow the scheme from Ex. 8.
Hence, in time 2O(n logn) we can construct words x and y such that x = (0,m) and
y = (2s − 1,m) in G1,2. Now by Rem. 7 we have m | s if and only if x ⊕G1,2 y. The

number of words of length 2O(n log n) is at most 22
O(n log n)

. �⇓

5 Generic Case Analysis

Let us define a preorder between functions from N to R
⊆0 as follows. We let f � g if

there exist k ∈ N and Θ > 0 such that for almost all n we have

f(n) ≤ nkg(n) + 2−Σn.

Moreover, we let f ≈ g if both, f � g and g � f . We are mainly interested in functions
f ≈ 0. These functions form an ideal in the ring of functions which are bounded by
polynomial growth. Moreover, if f ≈ 0 then g ≈ 0 for g(n) ∈ f(θ(n)). The notion
f ≈ g is therefore rather flexible and simplifies some formulae. We consider cyclically
reduced words over Σ = {a, a, b, b} of length n with uniform distribution. This yields
a function p(n) = Pr

[∃y : x ⊕G1,2 y ∧ y ∈ H
]
. We prove p(n) ≈ 0. More precisely,

we are interested in the following result.

Theorem 16. There is a strongly generic algorithm that decides in timeO(n4) on cycli-
cally reduced input words x, y ∈ {a, a, b, b}∗ with |xy| ∈ θ(n) whether x ⊕G1,2 y.

Proof. By Thm. 11, there is an algorithm deciding x ⊕G1,2 y which runs in timeO(n4)
for inputs which cannot be conjugated to elements in H . Hence, we only have to bound
the number of cyclically reduced words of length m ∈ θ(n) which can be conjugated
to some element in H . For simplicity of notation we assume m = n. A reduced word
in Σn can be identified with a random walk without backtracking in the Cayley graph
of G1,2 with generators a and b. We encode reduced words over Σ of length n in a
natural way as words in Ω = Σ · {1, 2, 3}n−1. On Ω we choose a uniform probability
(e.g., if the i-th letter is b then the i + 1-st letter is a, a, or b with equal probability
1/3). Because we are interested in conjugacy, we compute the probability under the

10 V. Diekert, A.G. Myasnikov, and A. Weiß

condition that x ∈ Ω is cyclically reduced. (Actually this does not change the results
but makes the analysis smoother.) The probability that x ∈ Ω is cyclically reduced is
at least 2/3 for all n. Let C ⊆ Ω be the subset of cyclically reduced words. We show
Pr

[∃y : x ⊕G1,2 y ∧ y ∈ H
∣
∣ x ∈ C] ≈ 0. The question whether there exists some y

with x ⊕G1,2 y is answered by calculating Britton reductions for a transposition of x.
The set C is closed under transpositions and it is no restriction to assume that |x|Θ ≥ 1.
Therefore, we can choose the transposition that x∨ = vu where x = uv such that the
first letter of x∨ is β ∈ {

b, b
}

. There are at most n such transpositions. Hence,

Pr
[∃y : x ⊕G1,2 y ∧ y ∈ H

∣
∣ x ∈ C] ≈ Pr[x ∈ H | x ∈ C]

= Pr[x ∈ H ∧ x ∈ C] · Pr[x ∈ C]−1 ≤ Pr[x ∈ H] · Pr[x ∈ C]−1 ≤ 3

2
Pr[x ∈ H] .

It is therefore enough to prove Pr[x ∈ H] ≈ 0. We switch the probability space and we
embed Ω into the space Σ∗ with a measure μ0 on Σ∗ which concentrates on Ω, i.e.,
μ0(Ω) = 1. Within Ω we still have a uniform distribution for μ0. In order to emphasize
this change of view, we write Pr[· · ·] = Pr0 [· · ·]. We are now interested in words x ∈{
b, b

} · Σ∗ which contain exactly 2m letters β ∈ {
b, b

}
for m ≥ 1. (The number |x|Θ

must be even if x ∈ H .) Each such word can be written as a β-factorization of the form
x = β1α1 . . . β2mα2m where αi = aei with ei ∈ Z. This defines a new measure μm

on Σ∗ which is defined as follows. We start a random walk without backtracking with
either b or b with equal probability. For the next letter there are always 3 possibilities,
each is chosen with probability 1/3. We continue as long as the random walk contains
at most 2m letters from

{
b, b

}
. This gives a corresponding probability on Σ∗ which is

concentrated on those words with |x|Θ = 2m. We denote the corresponding probability
by Prm [· · ·]. An easy calculation shows that Pr0 [x ∈ H] ≈ ∑n

m=◦n/4∼ Prm [x ∈ H]

(see [7]). Hence, it remains to show Prm [x ∈ H] ≈ 0.
From now on we work with the measure μn and the corresponding probability

Prn [· · ·] for n ≥ 1. Thus, we may assume that our probability space contains only those
words x which have β-factorizations of the form x = β1α1 . . . β2nα2n with αi ∈ aZ.

Lemma 17. We have Prn [x ∈ H] ≤ (8/9)n.

The proof of Lem. 17 is based on a “pairing” with Dyck words: Define a new alpha-
bet B = {�, �} where � is an opening left-bracket and � is the corresponding closing
right-bracket. The set of Dyck words Dn is the set of words in B2n with correct brack-
eting. The number of Dyck words is well-understood, we have |Dn| = 1

n+1

(
2n
n

) ≤ 4n.
The connection between Dyck words and Britton reductions is as follows. Britton re-
ductions are defined for words

{
a, a, t, t, b, b

}∗
. Consider a β-factorization of the form

x = β1α1 . . . β2nα2n with αi ∈ aZ. If x ∈ H , then there exists a sequence of Britton re-
ductions which transforms x into x̂ ∈ {

a, a, t, t
}∗

. We call such a sequence a successful
Britton reduction . Every successful Britton reduction defines in a natural way a Dyck
word by assigning an opening bracket to position i and a closing bracket to position j if
βiuβj is replaced by a Britton reduction. Moreover, Britton reductions are confluent on
H . In particular, this means that forx ∈ H we can start a successful Britton reduction by
replacing all factors βiaeβi+1 with βi = b = βi+1 and e ∈ Z by te where 1 ≤ i < 2n.
Thus, if such a successful Britton reduction is described by d, then we may assume that

Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division 11

2 4 6 8 10 12

10−8

10−6

10−4

10−2

n

Fig. 1. Portion of reduced words x ∈ H with |x|β = 2n, sampling 11 · 109 words

didi+1 = �� whenever βiaeβi+1 = baeb. Vice versa, if didi+1 = ��, then we must have
βi = b = βi+1, otherwise d is no description of any Britton reduction for x at all. Note
that for each i with di = � there is exactly one j which matches di. The characterization
of j is that di+1 · · · dj−1 is a Dyck word and dj = �. If d describes a Britton reduction for
x and (i, j) is a matching pair for d then βiβj = β β for some β ∈ {

b, b
}

. We therefore
say that x and d match if the following two conditions are satisfied:

1. For all 1 ≤ i < 2n we have didi+1 = �� ⊂↓ βiβi+1 = b b.
2. For all 1 ≤ i < j ≤ 2n where didj = �� is a matching pair we have βiβj = β β.

We define ⊃x , d⊇Θ = 1 if x and d match and ⊃x , d⊇Θ = 0 otherwise. We refine this
pairing by defining ⊃x , d⊇ = 1 if ⊃x , d⊇Θ = 1 and d describes a successful Britton
reduction proving x ∈ H . Otherwise we let ⊃x , d⊇ = 0. Clearly,

Prn [x ∈ H] ≤
∑

d∈Dn

Prn [⊃x , d⊇ = 1] . (4)

Since |Dn| ≤ 4n, the proof of Lem. 17 reduces to show that for every d ∈ Dn we have

Prn [⊃x , d⊇ = 1] ≤ (2/9)n. (5)

Lemma 18. Let d ∈ Dn be a Dyck word and k = |{i | didi+1 = ��}|. Then we have
Prn [⊃x , d⊇Θ = 1] ≤ (2/3)n−k(2/9)k.

Lemma 19. Let d ∈ Dn be a Dyck word and k = |{i | didi+1 = ��}|. Then we have

Prk [⊃x , d⊇ = 1 | ⊃x , d⊇Θ = 1] ≤ (5/16)n−k.

Lem. 18 and Lem. 19 enable us to calculate Prn [⊃x , d⊇ = 1] as follows:

Prn [⊃x , d⊇ = 1] = Prk [⊃x , d⊇ = 1 | ⊃x , d⊇Θ = 1] · Prn [⊃x , d⊇Θ = 1]

≤ (5/16)n−k · (2/3)n−k(2/9)k ≤ (2/9)n.

This shows (5) and therefore Lem. 17 which in turn implies Thm. 16. �⇓
Computer Experiments. We have conducted computer experiments with a sample of
11 · 109 (i.e., 11 billion) random words x ∈ Σ∗ with 4 ≤ |x|Θ = 2n ≤ 24, see Fig. 1.
Moreover, for n = 14 our random process did not find a single x ∈ H . The experiments
confirm Prn [x ∈ H] ≈ 0. The initial values seem to suggest Prn [x ∈ H] ∈ O(0.25n).
This is much better than the upper bound of Lem. 17, but our proof is using very rough
estimations in (4) and (5). Hence, a difference is no surprise.

12 V. Diekert, A.G. Myasnikov, and A. Weiß

References

1. Baumslag, G.: A non-cyclic one-relator group all of whose finite quotients are cyclic. J.
Austr. Math. Soc. 10(3-4), 497–498 (1969)

2. Beese, J.: Das Konjugationsproblem in der Baumslag-Gersten-Gruppe. Diploma thesis,
Fakultät Mathematik, Universität Stuttgart (2012) (in German)

3. Borovik, A.V., Myasnikov, A.G., Remeslennikov, V.N.: Generic Complexity of the Con-
jugacy Problem in HNN-Extensions and Algorithmic Stratification of Miller’s Groups.
IJAC 17, 963–997 (2007)

4. Ceccherini-Silberstein, T., Grigorchuk, R.I., de la Harpe, P.: Amenability and paradoxical
decompositions for pseudogroups and discrete metric spaces. Tr. Mat. Inst. Steklova 224,
68–111 (1999)

5. Craven, M.J., Jimbo, H.C.: Evolutionary algorithm solution of the multiple conjugacy search
problem in groups, and its applications to cryptography. Groups Complexity Cryptology 4,
135–165 (2012)

6. Diekert, V., Laun, J., Ushakov, A.: Efficient algorithms for highly compressed data: The word
problem in Higman’s group is in P. IJAC 22, 1–19 (2012)

7. Diekert, V., Miasnikov, A., Weiß, A.: Conjugacy in Baumslag’s group, generic case com-
plexity, and division in power circuits. CoRR, abs/1309.5314 (2013)

8. Gersten, S.M.: Isodiametric and isoperimetric inequalities in group extensions (1991)
9. Grigoriev, D., Shpilrain, V.: Authentication from matrix conjugation. Groups Complexity

Cryptology 1, 199–205 (2009)
10. Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)

ICALP 2001. LNCS, vol. 2076, pp. 104–114. Springer, Heidelberg (2001)
11. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for

division and iterated multiplication. JCCS 65, 695–716 (2002)
12. Kapovich, I., Miasnikov, A.G., Schupp, P., Shpilrain, V.: Generic-case complexity, decision

problems in group theory and random walks. J. Algebra 264, 665–694 (2003)
13. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Average-case complexity and decision

problems in group theory. Adv. Math. 190, 343–359 (2005)
14. Lyndon, R., Schupp, P.: Combinatorial Group Theory, 1st edn. (1977)
15. Magnus, W.: Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math.

Ann. 106, 295–307 (1932)
16. Miller III, C.F.: On group-theoretic decision problems and their classification. Annals of

Mathematics Studies, vol. 68. Princeton University Press (1971)
17. Myasnikov, A., Shpilrain, V., Ushakov, A.: Group-based Cryptography. Advanced courses in

mathematics. CRM Barcelona, Birkhäuser (2008)
18. Myasnikov, A.G., Ushakov, A., Won, D.W.: The Word Problem in the Baumslag group

with a non-elementary Dehn function is polynomial time decidable. Journal of Algebra 345,
324–342 (2011)

19. Myasnikov, A.G., Ushakov, A., Won, D.W.: Power circuits, exponential algebra, and time
complexity. IJAC 22, 51 pages (2012)

20. Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptography. Appl.
Algebra Eng. Comm. Comput. 17, 291–302 (2006)

21. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)
22. Woess, W.: Random walks on infinite graphs and groups - a survey on selected topics. Lon-

don Math. Soc. 26, 1–60 (1994)
23. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Univ. Press (2000)

Hierarchical Complexity of 2-Clique-Colouring

Weakly Chordal Graphs and Perfect Graphs
Having Cliques of Size at Least 3�

Helio B. Macêdo Filho1, Raphael C.S. Machado2, and Celina M.H. Figueiredo1

1 COPPE, Universidade Federal do Rio de Janeiro
2 Inmetro — Instituto Nacional de Metrologia, Qualidade e Tecnologia

Abstract. A clique of a graph is a maximal set of vertices of size at
least 2 that induces a complete graph. A k-clique-colouring of a graph
is a colouring of the vertices with at most k colours such that no clique
is monochromatic. Défossez proved that the 2-clique-colouring of perfect
graphs is a ΣP

2 -complete problem [J. Graph Theory 62 (2009) 139–156].
We strengthen this result by showing that it is still ΣP

2 -complete for
weakly chordal graphs. We then determine a hierarchy of nested sub-
classes of weakly chordal graphs whereby each graph class is in a dis-
tinct complexity class, namely ΣP

2 -complete, NP-complete, and P . We
solve an open problem posed by Kratochv́ıl and Tuza to determine the
complexity of 2-clique-colouring of perfect graphs with all cliques hav-
ing size at least 3 [J. Algorithms 45 (2002), 40–54], proving that it is
a ΣP

2 -complete problem. We then determine a hierarchy of nested sub-
classes of perfect graphs with all cliques having size at least 3 whereby
each graph class is in a distinct complexity class, namely ΣP

2 -complete,
NP-complete, and P .

Keywords: (α, β)-polar graphs, clique-colouring, hierarchical complex-
ity, perfect graphs, weakly chordal graphs.

1 Introduction

Let G = (V,E) be a simple graph with n = |V | vertices and m = |E| edges. A
clique of G is a maximal set of vertices of size at least 2 that induces a complete
graph. A k-clique-colouring of a graph is a colouring of the vertices with at
most k colours such that no clique is monochromatic. Any undefined notation
concerning complexity classes follows that of Marx [9].

A cycle is sequence of vertices starting and ending at the same vertex, with
each two consecutive vertices in the sequence adjacent to each other in the graph.
A chord of a cycle is an edge joining two nodes that are not consecutive in the
cycle.

The clique-number ω(G) of a graph G is the number of vertices of a clique
with the largest possible size in G. A perfect graph is a graph in which every

α Partially supported by CNPq and FAPERJ. Fullpaper available at
http://arxiv.org/abs/1312.2086

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 13–23, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://arxiv.org/abs/1312.2086

14 H.B. Macêdo Filho, R.C.S. Machado, and C.M.H. Figueiredo

(a) A weakly chordal
graph with an optimal
3-clique-colouring

(b) A (4, 3)-polar graph (c) A generalized split
graph, which is a (k, 1)-
polar graph, for fixed k ≥ 2

Fig. 1. Examples of (α, β)-polar graphs

induced subgraph H needs exactly ω(H) colours in its vertices such that no K2

(not necessarily clique) is monochromatic. The celebrated Strong Perfect Graph
Theorem of Chudnovsky et al. [3] says that a graph is perfect if neither it nor its
complement contains a chordless cycle with an odd number of vertices greater
than 4. A graph is chordal if it does not contain a chordless cycle with a number
of vertices greater than 3, and a graph is weakly chordal if neither it nor its
complement contains a chordless cycle with a number of vertices greater than 4.

Both clique-colouring and perfect graphs have attracted much attention due to
a conjecture posed by Duffus et al. [5] that perfect graphs are k-clique-colourable
for some constant k. This conjecture has not yet been proved. Following the
chronological order, Kratochv́ıl and Tuza gave a framework to argue that 2-
clique-colouring is NP-hard and proved that 2-clique-colouring is NP-complete
for K4-free perfect graphs [7]. Notice that K3-free perfect graphs are bipar-
tite graphs, which are clearly 2-clique-colourable. Moreover, 2-clique-colouring
is in ΣP

2 , since it is coNP to check that a colouring of the vertices is a clique-
colouring. A few years later, the 2-clique-colouring problem was proved to be a
ΣP

2 -complete problem by Marx [9], a major breakthrough in the clique-colouring
area. Défossez [4] proved later that 2-clique-colouring of perfect graphs remained
a ΣP

2 -complete problem.
When restricted to chordal graphs, 2-clique-colouring is in P , since all chordal

graphs are 2-clique-colourable [10]. Notice that chordal graphs are a subclass of
weakly chordal graphs, while perfect graphs are a superclass of weakly chordal
graphs. In constrast to chordal graphs, not all weakly chordal graphs are 2-
clique-colourable (see Fig. 1a).

We show that 2-clique-colouring of weakly chordal graphs is a ΣP
2 -complete

problem, improving the proof of Défossez [4] that 2-clique-colouring is a ΣP
2 -

complete problem for perfect graphs. As a remark, Défossez [4] constructed a
graph which is not a weakly chordal graph as long as it has chordless cycles with
even number of vertices greater than 5 as induced subgraphs. We determine a
hierarchy of nested subclasses of weakly chordal graphs whereby each graph class
is in a distinct complexity class, namely ΣP

2 -complete, NP-complete, and P .

2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs 15

A graph is (α, β)-polar if there exists a partition of its vertex set into two sets
A and B such that all connected components of the subgraph induced by A and
of the complementary subgraph induced by B are complete graphs. Moreover,
the order of each connected component of the subgraph induced by A (resp. of
the complementary subgraph induced by B) is upper bounded by α (resp. upper
bounded by β) [2]. A satellite of an (α, β)-polar graph is a connected component
of the subgraph induced by A (see Fig. 1b). In this work, we restrict ourselves to
the (α, β)-polar graphs with β = 1, so the subgraph induced by B is complete
and the order of each satellite is upper bounded by α (see Fig. 1c). Clearly,
(α, 1)-polar graphs are perfect, since they do not contain chordless cycles with
an odd number of vertices greater than 4 nor their complements.

A generalized split graph is a graph G such that G or its complement is an
(∞, 1)-polar graph [11]. See Fig. 1c for an example of a generalized split graph,
which is a (2, 1)-polar graph. The class of generalized split graphs plays an im-
portant role in the areas of perfect graphs and clique-colouring. This class was
introduced by Prömel and Steger [11] to show that the strong perfect graph con-
jecture is at least asymptotically true by proving that almost all C5-free graphs
are generalized split graphs. Approximately 14 years later the strong perfect
graph conjecture became the Strong Perfect Graph Theorem by Chudnovsky et
al. [3]. Regarding clique-colouring, Bacsó et al. [1] proved that generalized split
graphs are 3-clique-colourable and concluded that almost all perfect graphs are
3-clique-colourable [1]. This conclusion supports the conjecture due to Duffus et
al. [5]. In fact, there is no example of a perfect graph where more than three col-
ors would be necessary to clique-colour. Surprisingly, after more than 20 years,
relatively little progress has been made on the conjecture.

The class of (k, 1)-polar graphs, for fixed k ≥ 3, is incomparable to the class
of weakly chordal graphs. Indeed, a chordless path with seven vertices P7 and a
complement of a chordless cycle with six vertices C6 are witnesses. Nevertheless,
(2, 1)-polar graphs are a subclass of weakly chordal graphs, since they do not
contain a chordless cycle with an even number of vertices greater than 5. We
show that 2-clique-colouring of (2, 1)-polar graphs is a NP-complete problem.
Finally, the class of (1, 1)-polar graphs is precisely the class of split graphs. It is
interesting to recall that 2-clique-colouring of (1, 1)-polar graphs is in P , since
(1, 1)-polar are a subclass of chordal graphs, which are 2-clique-colourable.

Giving continuity to our results, we investigate an open problem left by Kra-
tochv́ıl and Tuza [7] to determine the complexity of 2-clique-colouring of perfect
graphs with all cliques having size at least 3. Restricting the size of the cliques
to be at least 3, we first show that 2-clique-colouring is still NP-complete for (3,
1)-polar graphs, even if it is restricted to weakly chordal graphs with all cliques
having size at least 3. Subsequently, we prove that the 2-clique-colouring of (2,
1)-polar graphs becomes polynomial when all cliques have size at least 3. Recall
that the 2-clique-colouring of (2, 1)-polar graphs is NP-complete when there are
no restrictions on the size of the cliques.

We finish the paper answering the open problem of determining the complexity
of 2-clique-colouring of perfect graphs with all cliques having size at least 3 [7],

16 H.B. Macêdo Filho, R.C.S. Machado, and C.M.H. Figueiredo

Table 1. 2-clique-colouring complexity of perfect graphs and subclasses

Class 2-clique-colouring complexity

-

Perfect

- ΣP
2 -complete [4]

K4-free NP-complete [7]
K3-free P

(Bipartite)
Weakly chordal - ΣP

2 -complete
(3, 1)-polar - NP-complete
(2, 1)-polar -

Chordal
- P [10]

(includes Split)

All cliques
having size
at least 3

Perfect -
ΣP

2 -complete
Weakly chordal

-
(3, 1)-polar NP-complete

(2, 1)-polar - P

by improving our proof that 2-clique-colouring is a ΣP
2 -complete problem for

weakly chordal graphs. We replace each K2 clique by a gadget with no clique of
size 2, which forces distinct colours into two given vertices.

The paper is organized as follows. In Section 2, we show that 2-clique-colouring
is still ΣP

2 -complete for weakly chordal graphs. We then determine a hierarchy
of nested subclasses of weakly chordal graphs whereby each graph class is in a
distinct complexity class, namely ΣP

2 -complete, NP-complete, and P . In Sec-
tion 3, we determine the complexity of 2-clique-colouring of perfect graphs with
all cliques having size at least 3, answering a question of Kratochv́ıl and Tuza [7].
We then determine a hierarchy of nested subclasses of perfect graphs with all
cliques having size at least 3 whereby each graph class is in a distinct complex-
ity class. We refer the reader to Table 1 for our results and related work about
2-clique-colouring complexity of perfect graphs.

2 Hierarchical Complexity of 2-Clique-Colouring of
Weakly Chordal Graphs

Défossez proved that 2-clique-colouring of perfect graphs is a ΣP
2 -complete prob-

lem [4]. In this section, we strengthen this result by showing that it is still ΣP
2 -

complete for weakly chordal graphs. We show a subclass of perfect graphs (resp.
of weakly chordal graphs) in which 2-clique-colouring is neither a ΣP

2 -complete
problem nor in P , namely (3, 1)-polar graphs (resp. (2, 1)-polar graphs). Re-
call that 2-clique-colouring of (1, 1)-polar graphs is in P , since (1, 1)-polar are
a subclass of chordal graphs, thereby 2-clique-colourable. Notice that weakly
chordal, (2, 1)-polar, and (1, 1)-polar (resp. perfect, (3, 1)-polar, and (1, 1)-polar)
are nested classes of graphs.

Given a graph G = (V,E) and adjacent vertices a, g ∈ V , we say that we
add to G a copy of an auxiliary graph AK(a, g) of order 7 – depicted in Fig. 2a

2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs 17

(a) AK(a, g) (b) NAS(a, j)

Fig. 2. Auxiliary graphs AK(a, g) and NAS(a, j)

– if we change the definition of G by doing the following: we first change the
definition of V by adding to it copies of the five vertices b, . . . , f of the auxiliary
graph AK(a, g); then we change the definition of E, adding to it copies of the
eight edges (u, v) of AK(a, g). Similarly, given a graph G = (V,E) and non-
adjacent vertices a, j ∈ V , we say that we add to G a copy of an auxiliary graph
NAS(a, j) of order 10 – depicted in Fig. 2b – if we change the definition of G
by doing the following: we first change the definition of V by adding to it eight
copies of the vertices b, . . . , i of the auxiliary graph NAS(a, j); then we change
the definition of E, adding to it copies of the thirteen edges (u, v) of NAS(a, j).

The auxiliary graph AK(a, g) is constructed to force the same colour (in
a 2-clique-colouring) to adjacent vertices a and g, while the auxiliary graph
NAS(a, j) is constructed to force distinct colours (in a 2-clique-colouring) to
non-adjacent vertices a and j (see Lemmas 1 and 2). Refer to the Appendix for
the omitted proofs throughout the present work.

Lemma 1. Let G be a graph and a, g be adjacent vertices in G. If we add to
G a copy of an auxiliary graph AK(a, g), then in any 2-clique-colouring of the
resulting graph, adjacent vertices a and g have the same colour.

Lemma 2. Let G be a graph and a, j be non-adjacent vertices in G. If we add
to G a copy of an auxiliary graph NAS(a, j), then in any 2-clique-colouring of
the resulting graph, non-adjacent vertices a and j have distinct colours.

We improve the proof of Défossez [4], in order to determine the complexity of
2-clique-colouring for weakly chordal graphs. We prove that 2-clique-colouring
weakly chordal graphs is ΣP

2 -complete by reducing the ΣP
2 -complete canonical

problem QSAT2 to it. For a QSAT2 formula Ψ = (X,Y,D), a weakly chordal
graph G is constructed such that graph G is 2-clique-colourable if, and only if,
there is a truth assignment of X , such that Ψ is true for every truth assignment
of Y .

Theorem 1. The problem of 2-clique-colouring is ΣP
2 -complete for weakly

chordal graphs.

Now, our focus is on showing a subclass of weakly chordal graphs in which 2-
clique-colouring is NP-complete, namely (3, 1)-polar and (2, 1)-polar graphs.

Complements of bipartite graphs are a subclass of (∞, 1)-polar graphs. In-
deed, let G = (V,E) be a complement of a bipartite graph, where (A,B) is a
partition of V into two disjoint complete sets. Clearly, G is a (∞, 1)-polar graph.

18 H.B. Macêdo Filho, R.C.S. Machado, and C.M.H. Figueiredo

Défossez [4] showed that it is coNP-complete to check whether a 2-colouring
of a complement of a bipartite graph is a 2-clique-colouring [4]. Hence, it is
coNP-hard to check if a colouring of the vertices of a (∞, 1)-polar graph is a
2-clique-colouring. On the other hand, we show next that, if k is fixed, listing all
cliques of a (k, 1)-polar graph and checking if each clique is polychromatic can
be done in polynomial-time, although the constant behind the big O notation
is impraticable. Theorem 2 shows that clique-colouring is in NP for (k, 1)-polar
graphs, for fixed k ≥ 1.

Theorem 2. There exists an O(n2)-time algorithm to check if a colouring of
the vertices of a (k, 1)-polar graph, for a fixed k ≥ 1, is a clique-colouring.

We apply the ideas of the framework of Kratochv́ıl and Tuza [7] to determine
the complexity of 2-clique-colouring of (3, 1)-polar graphs. We prove that 2-
clique-colouring (3, 1)-polar graphs is NP-complete by reducing the NAE-SAT
problem to it. For a NAE-SAT formula Ψ , a (3, 1)-polar graph G is constructed
such that graph G is 2-clique-colourable if, and only if, Ψ is satisfiable. This is an
intermediary step to achieve the complexity of 2-clique-colouring of (2, 1)-polar
graphs, which are a subclass of weakly chordal graphs.

Theorem 3. The problem of 2-clique-colouring is NP-complete for (3, 1)-
polar graphs.

We use a reduction from 2-clique-colouring of (3, 1)-polar graphs to determine
the complexity of 2-clique-colouring of (2, 1)-polar graphs. In what follows, we
provide some notation to classify the structure of 2-clique-colouring of (2, 1)-
polar graphs and of (3, 1)-polar graphs. We capture their similarities and make
it feasible a reduction from 2-clique-colouring (3, 1)-polar graphs to 2-clique-
colouring (2, 1)-polar graphs.

Let G = (V,E) be a (3, 1)-polar graph. Let K be a satellite of G. Consider
the following four cases: (K1) there exists a vertex of K such that none of its
neighbors is in partition B; (K2) the complementary case of K1, where there
exists a pair of vertices of K, such that the closed neighborhood of one vertex
of the pair is contained in the closed neighborhood of the other vertex of the
pair; (K3) the complementary case of K2, where the intersection of the closed
neighborhood of the vertices of K is precisely K; and (K4) the complementary
case of K3. Clearly, any satellite K is either in case K1, K2, K3, or K4. Refer to
Fig. 3 for an example of each case of a satellite.

For a given a (3, 1)-polar graph G, we proceed to obtain a (2, 1)-polar graph
G′ that is 2-clique-colourable if, and only if, G is 2-clique-colourable, as follows.
For each satellite that is a triangle, if the triangle is in case K4, we replace it by
an edge in which (i) both complete sets have the same neighboorhod contained
in B and (ii) the edge is also in case K4, otherwise we just delete triangle K.
See Fig. 4 for examples. Such construction is done in polynomial-time. This
algorithm and Theorem 2 imply the following theorem.

2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs 19

(a) Case K1 (b) Case K2 (c) Case K3 (d) Case K4

Fig. 3. A triangle satellite of an (α, β)-polar graph

Fig. 4. An iteration to obtain a (2, 1)-polar graph G′, given a (3, 1)-polar graph G,
such that G is 2-clique-colourable if and only if G′ is 2-clique-colourable

Theorem 4. The problem of 2-clique-colouring is NP-complete for (2, 1)-polar
graphs.

As a remark, we noticed strong connections between hypergraph 2-colorability
and 2-clique-colouring (2, 1)-polar graphs. Indeed, we have a simpler alternative
proof showing that 2-clique-colouring (2, 1)-polar graphs is NP-complete by a
reduction from hypergraph 2-colouring. Please, refer to the Appendix for this
alternative proof. In constrast to graphs, deciding if a given hypergraph is 2-
colourable is an NP-complete problem, even if all edges have cardinality at
most 3 [8]. The reader may ask why we did not exploit only the alternative
proof that is quite shorter than the original proof. The reason is related to the
next section, where we show that even restricting the size of the cliques to be at
least 3, the 2-clique-colouring of (3, 1)-polar graphs is still NP-complete, while
2-clique-colouring of (2, 1)-polar graphs becomes a problem in P .

3 Restricting the Size of the Cliques

Kratochv́ıl and Tuza [7] are interested in determining the complexity of 2-clique-
colouring of perfect graphs with all cliques having size at least 3. We determine
what happens with the complexity of 2-clique-colouring of (2, 1)-polar graphs, of
(3, 1)-polar graphs, and of weakly chordal graphs, respectively, when all cliques
are restricted to have size at least 3. The latter result address Kratochv́ıl and
Tuza’s question.

Given graph G and b1, b2, b3 ∈ V (G), we say that we add to G a copy of an
auxiliary graph BP (b1, b2, b3) of order 6 – depicted in Fig. 5a – if we change
the definition of G by doing the following: we first change the definition of V by
adding to it copies of the vertices a1, a2, a3 of the auxiliary graph BP (b1, b2, b3);

20 H.B. Macêdo Filho, R.C.S. Machado, and C.M.H. Figueiredo

(a) Auxiliary graph BP (b1, b2, b3) (b) Auxiliary graph BS(b1, b2)

Fig. 5. Auxiliary graphs BP (b1, b2, b3) and BS(b1, b2)

second, we change the definition of E by adding to it copies of the edges (u, v)
of BP (b1, b2, b3).

Similarly, given a graph G and b1, b2 ∈ V (G), we say that we add to G a
copy of an auxiliary graph BS(b1, b2) of order 17 – depicted in Fig. 5b – if we
change the definition of G by doing the following: we first change the definition
of V by adding to it copies of the vertices b′, b′′, b′′′ of the auxiliary graph
BS(b1, b2); second, we change the definition of E by adding to it edges so that
B(G)∪{b1, b2, b′, b′′, b′′′} is a complete set; finally, we add copies of the auxiliary
graphs BP (b1, b2, b

′), BP (b1, b2, b
′′), BP (b1, b2, b

′′′), BP (b′, b′′, b′′′).

Lemma 3. Let G be a weakly chordal graph (resp. (3, 1)-polar graph) and
b1, b2, b3 ∈ V (G) (resp. b1, b2, b3 ∈ B(G)). If we add to G a copy of an aux-
iliary graph BP (b1, b2, b3), then the following assertions are true.

– The resulting graph G′ is weakly chordal (resp. (3, 1)-polar).
– If all cliques of G have size at least 3, then all cliques of G′ have size at

least 3.
– Any 2-clique-colouring of G′ assigns at least 2 colours to b1, b2, b3.
– G is 2-clique-colourable if G′ is 2-clique-colourable.
– G′ is 2-clique-colourable if there exists a 2-clique-colouring of G that assigns

at least 2 colours to b1, b2, b3.

Lemma 4. Let G be a weakly chordal graph (resp. (3, 1)-polar graph) and
b1, b2 ∈ V (G) (resp. b1, b2 ∈ B(G)). If we add to G a copy of an auxiliary
graph BS(b1, b2), then the following assertions are true.

– The resulting graph G′ is weakly chordal (resp. (3, 1)-polar).
– If all cliques of G have size at least 3, then all cliques of G′ have size at

least 3.
– Any 2-clique-colouring of G′ assigns 2 colours to b1 and b2.
– G is 2-clique-colourable if G′ is 2-clique-colourable.
– G′ is 2-clique-colourable if there exists a 2-clique-colouring of G that assigns

2 colours to b1 and b2.

2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs 21

(a) AK′(a, g) (b) NAS′(a, j)

Fig. 6. Auxiliary graphs AK′(a, g) and NAS′(a, j)

We strengthen the result that 2-clique-colouring of (3, 1)-polar graphs is NP-
complete, now even restricting all cliques to have size at least 3, which gives a
subclass of weakly chordal graphs.

Theorem 5. The problem of 2-clique-colouring is NP-complete for (weakly
chordal) (3, 1)-polar graphs with all cliques having size at least 3.

On the other hand, we prove that 2-clique-colouring (2, 1)-polar graphs becomes
polynomial when all cliques have size at least 3.

Theorem 6. The problem of 2-clique-colouring is polynomial for (2, 1)-polar
graphs with all cliques having size at least 3.

In the proof that 2-clique-colouring weakly chordal graphs is a ΣP
2 -complete

problem (Theorem 1), we constructed a weakly chordal graph with K2 cliques
to force distinct colours in their extremities (in a 2-clique-colouring). We can
obtain a weakly chordal graph with no cliques of size 2 by adding copies of
the auxiliary graph BS(u, v), for every K2 clique {u, v}. Auxiliary graphs AK
and NAS become AK ′ and NAS′, both depicted in Fig. 6. Finally, the weakly
chordal graph constructed in Theorem 1 becomes a weakly chordal graph with
no K2 clique. Such construction is done in polynomial-time. Notice that, in the
constructed graph of Theorem 1, every K2 clique {u, v} has 2 distinct colours
in a clique-colouring. Hence, one can check with Lemmas 3 and 4 that the ob-
tained graph is weakly chordal and it is 2-clique-colourable if, and only if, the
constructed graph of Theorem 1 is 2-clique-colourable. This implies the following
theorem.

Theorem 7. The problem of 2-clique-colouring is ΣP
2 -complete for weakly

chordal graphs with all cliques having size at least 3.

As a direct consequence of Theorem 7, we have that 2-clique-colouring is ΣP
2 -

complete for perfect graphs with all cliques having size at least 3.

Corollary 1. The problem of 2-clique-colouring is ΣP
2 -complete for perfect

graphs with all cliques having size at least 3.

22 H.B. Macêdo Filho, R.C.S. Machado, and C.M.H. Figueiredo

Fig. 7. 2-clique-colouring complexity of perfect graphs and subclasses

4 Final Considerations

Marx [9] proved complexity results for k-clique-colouring, for fixed k ≥ 2, and
related problems that lie in between two distinct complexity classes, namely ΣP

2 -
complete and ΠP

3 -complete. Marx approaches the complexity of clique-colouring
by fixing the graph class and diversifying the problem. In the present work, our
point of view is the opposite: we rather fix the (2-clique-colouring) problem and
we classify the problem complexity according to the inputted graph class, which
belongs to nested subclasses of weakly chordal graphs. We achieved complexities
lying in between three distinct complexity classes, namely ΣP

2 -complete, NP-
complete and P . Fig. 7 shows the relation of inclusion among the classes of graphs
of Table 1. The 2-clique-colouring complexity for each class is highlighted.

Notice that the perfect graph subclasses for which the 2-clique-colouring prob-
lem is in NP mentioned so far in the present work satisfy that the number
of cliques is polynomial. We remark that the complement of a matching has
an exponential number of cliques and yet the 2-clique-colouring problem is in
NP , since no such graph is 2-clique-colourable. Now, notice that the perfect
graph subclasses for which the 2-clique-colouring problem is in P mentioned
so far in the present work satisfy that all graphs in the class are 2-clique-
colourable. Macêdo Filho et al. [6] have proved that unichord-free graphs are
3-clique-colourable, but a unichord-free graph is 2-clique-colourable if and only
if it is perfect. As a future work, we aim to find subclasses of perfect graphs where
not all graphs are 2-clique-colourable and yet the 2-clique-colouring problem is
in P when restricted to the class.

2-Clique-Colouring Weakly Chordal Graphs and Perfect Graphs 23

References

1. Bacsó, G., Gravier, S., Gyárfás, A., Preissmann, M., Sebő, A.: Coloring the maxi-
mal cliques of graphs. SIAM J. Discrete Math. 17(3), 361–376 (2004)

2. Chernyak, Z.A., Chernyak, A.A.: About recognizing (α, β) classes of polar graphs.
Discrete Math. 62(2), 133–138 (1986)

3. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Ann. of Math. (2) 164(1), 51–229 (2006)

4. Défossez, D.: Complexity of clique-coloring odd-hole-free graphs. J. Graph The-
ory 62(2), 139–156 (2009)

5. Duffus, D., Sands, B., Sauer, N., Woodrow, R.E.: Two-colouring all two-element
maximal antichains. J. Combin. Theory Ser. A 57(1), 109–116 (1991)

6. Macêdo Filho, H.B., Machado, R.C.S., Figueiredo, C.M.H.: Clique-colouring and
biclique-colouring unichord-free graphs. In: Fernández-Baca, D. (ed.) LATIN 2012.
LNCS, vol. 7256, pp. 530–541. Springer, Heidelberg (2012)

7. Kratochv́ıl, J., Tuza, Z.: On the complexity of bicoloring clique hypergraphs of
graphs. J. Algorithms 45(1), 40–54 (2002)

8. Lovász, L.: Coverings and coloring of hypergraphs. In: Proc. Fourth Southeastern
Conference on Combinatorics, Graph Theory, and Computing, pp. 3–12 (1973)

9. Marx, D.: Complexity of clique coloring and related problems. Theoret. Comput.
Sci. 412(29), 3487–3500 (2011)

10. Poon, H.: Coloring Clique Hypergraphs. Master’s thesis, West Virginia University
(2000)

11. Prömel, H.J., Steger, A.: Almost all Berge graphs are perfect. Combin. Probab.
Comput. 1(1), 53–79 (1992)

The Computational Complexity of the Game

of Set and Its Theoretical Applications

Michael Lampis1,Δ and Valia Mitsou2,ΔΔ

1 Research Institute for Mathematical Sciences (RIMS), Kyoto University
mlampis@kurims.kyoto-u.ac.jp

2 CUNY Graduate Center
vmitsou@gc.cuny.edu

Abstract. The game of SET is a popular card game in which the ob-
jective is to form Sets using cards from a special deck. In this paper we
study single- and multi-round variations of this game from the compu-
tational complexity point of view and establish interesting connections
with other classical computational problems.

Specifically, we first show that a natural generalization of the prob-
lem of finding a single Set, parameterized by the size of the sought Set
is W-hard; our reduction applies also to a natural parameterization of
Perfect Multi-Dimensional Matching, a result which may be of in-
dependent interest. Second, we observe that a version of the game where
one seeks to find the largest possible number of disjoint Sets from a
given set of cards is a special case of 3-Set Packing; we establish that
this restriction remains NP-complete. Similarly, the version where one
seeks to find the smallest number of disjoint Sets that overlap all possi-
ble Sets is shown to be NP-complete, through a close connection to the
Independent Edge Dominating Set problem. Finally, we study a 2-
player version of the game, for which we show a close connection to Arc
Kayles, as well as fixed-parameter tractability when parameterized by
the number of rounds played.

1 Introduction

In this paper, we analyze the computational complexity of some variations of
the game of SET and its interesting relations with other classical problems, like
Perfect Multi-Dimensional Matching, Set Packing, and Independent
Edge Dominating Set.

The game of SET is a card game in which players seek to form Sets of cards
from a special deck. Each card from this deck has a picture with 4 attributes
(shape, color, number, shading), and each attribute can take one of 3 values
(for example the shape can be oval, squiggle, or diamond, the color can be blue,

α Research supported by the Scientific Grant-in-Aid from Ministry of Education, Cul-
ture, Sports, Science and Technology of Japan.

αα Part of this work was done while the second author was visiting RIMS, Kyoto Uni-
versity.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 24–34, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Computational Complexity 25

green, or purple, etc). To create a Set1, the player needs to identify 3 cards in
which, for each attribute independently, either all cards agree on the value, or
they constitute a rainbow of all possible values. In a single round of the normal
play, 12 cards are dealt and the players seek (simultaneously) a Set. The first
player to find a Set wins the 3 cards constituting it. Then 3 new cards are dealt
in the old ones’ places and the game continues with the next round. For more
information regarding the game and its rules as well as for other variations see
the official website of the game http://www.setgame.com/set/index.html.

The game of SET has gained remarkable attention and popularity (espe-
cially among mathematicians) as well as many awards. The game has been
the subject of both educational and technical research. A broad set of edu-
cational activities has been suggested, a collection of which can be found on
the official website of SET. Furthermore, the game has been studied extensively
from a more technical mathematical point of view, considering questions like
“what is the maximum number of cards with n attributes and 3 values that
can be laid such that no Sets are formed” [5], or “for fixed n, how many non-
isomorphic collections of n cards are there” [4]. In [13], many other similar ques-
tions are posed. In addition to the game’s popularity, one motivation for this
intense study is that the problem has a very natural alternative mathematical
formulation: if one describes the cards as four-dimensional vectors over the set
{0, 1, 2}, then a Set is exactly a collection of three collinear points, that is, three
points whose vectors add up to 0(mod 3). Nevertheless, the first and - to the best
of our knowledge - only attempt to consider the game’s computational complex-
ity was made by Chaudhuri et al [2] in 2003, who showed that a generalization
of the game is NP-complete. Our focus on this paper is to continue and refine
this work by studying further aspects of the computational complexity of SET.

In order to study a game from the viewpoint of computational complexity
theory, one needs to define a natural generalization of the game in question (as
the original constant size game always has constant time and space complexity).
In a round of SET, there are 3 parameters to consider: the number of laid cards
during each round m, the number of attributes n and the number of values k
(in the original game m = 12, n = 4 and k = 3). A subset of k cards will
be considered a Set if for all attributes, values either all agree or all differ. Of
course these three parameters are not totally independent as the number of cards
m is upper-bounded by kn. In any multi-round version of the game, an extra
parameter r being the number of rounds is added.

Summary of Results. We first talk about a single-round version of SET. This
one-round version generalizes PerfectMulti-Dimensional Matching as was
first observed in [2]. It is easy to see that the problem parameterized by the num-
ber of values k is in XP (by the trivial algorithm that enumerates all size-k sets
of cards and checking whether any of them constitutes a Set). We prove that this
parameterized version of the problem is W-hard. Our W-hardness proof applies

1 The first letter of Set is capitalized to avoid a mix-up with the notion of mathematical
set.

http://www.setgame.com/set/index.html
http://www.setgame.com/set/index.html

26 M. Lampis and V. Mitsou

to Perfect Multi-Dimensional Matching as well, proving that Perfect
Multi-Dimensional Matching parameterized by the size of the dimensions k
(while the number of dimensions n is unbounded) is W[1]-hard. This result may
be of independent interest, as this is a natural parameterization of a classic prob-
lem that has not been considered before. The only relevant parameterized result
known about this problem is that Maximum Multi-Dimensional Matching
parameterized by the size of the matching and the number of dimensions is
FPT [3].

Next, we focus our attention to the case where the number of values is 3.
As was suggested, there is a polynomial time algorithm to find whether there
exists at least one Set, in other words to play just one round. The complexity
remains polynomial even if we consider the question of enumerating all Sets.
This generalizes the daily puzzles found either on the official website of SET or
in the New York Times. In these puzzles we are given m cards and need to find
the maximum number of Sets assuming that we don’t remove any cards from
the table after finding a Set.

It becomes interesting to ask the same question for a multi-round game, where
cards are gradually removed. This corresponds to the CO-OP version of the
game, where players have to cooperate in order to find the maximum number of
available Sets given that cards of found Sets are removed from the table. Another
interesting variation is the one where we are looking for the minimum number
of Sets that once picked destroy all existing Sets. Both problems can be seen as
special cases of more general packing and covering problems. In the maximization
version, one is looking for a maximum 3-Set Packing, while in the minimization
version one is looking for a minimum Independent Edge Dominating Set
in a 3-uniform hypergraph. We show that both problems remain NP-Hard even
on instances that correspond to the SET game. From the parameterized point
of view, if one considers as the parameter the number of rounds r to be played,
a natural parameterization of the former problem asking whether there are at
least r mutually disjoint Sets is Fixed Parameter Tractable, following from the
results of Chen et al. [3]. We establish that the natural parameterized version of
the latter problem (find at most r Sets to destroy all Sets) is also FPT, through
a connection with the related Independent Edge Dominating Set problem
on graphs.

Finally, we consider a two-player version of the r-round game, which can be
seen as a restriction of the game Arc Kayles in 3-uniform hypergraphs (where
hyperedges should be valid Sets). The complexity of Arc Kayles is currently
unknown even on graphs and it has been a long-standing open question since the
PSPACE-Completeness of its sibling problem Node Kayles was established in
[11]. We prove that this multi-round 2-player version of SET is at least as hard
as Arc Kayles. Nevertheless, we prove that deciding whether the first player
has a winning strategy in r moves in 2-player SET is FPT parameterized by r.
This implies the same result for Arc Kayles on graphs.

The paper is divided as follows: In section 2 we present the W-hardness of the
single-round version of SET. In section 3 we analyze the above-mentioned

http://www.setgame.com/set/index.html
http://www.nytimes.com/ref/crosswords/setpuzzle.html

The Computational Complexity 27

multi-round variations with k = 3. In section 4 we analyze the natural turn-based
2-player version. Last, in section 5 we give some conclusions and open problems.

2 W-hardness of k-Value 1-Set and Perfect
Multi-dimensional Matching

In this section, we talk about a single-round generalization of the game of SET.
We are dealt m cards, each with n attributes that can take one of k values and
we need to find a Set of size k cards. This is the main problem considered by
Chaudhuri et al. in [2]. Their main insight is that this problem can be seen
as a hypergraph problem. Specifically, one may construct a hypergraph on n · k
vertices, each representing an attribute-value pair. Now, cards can be represented
as hyperedges, by including in each hyperedge the k values that describe the
corresponding card’s attributes. It is not hard to see that a perfect matching in
this n-partite hypergraph corresponds to a Set in the original instance. On the
other hand, some Sets do not correspond to perfect matchings, because all cards
may share the same value for some attributes. Nevertheless, Chaudhuri et al.
have established that the two problems have the same complexity and finding a
Set is essentially algorithmically equivalent to finding a perfect matching in this
hypergraph.

Here we will exploit this connection between the two problems to analyze
the complexity of finding a Set with respect to the three relevant parameters
m,n, and k. If k is unbounded, finding a Set was shown to be NP-hard in
[2] even for just 3 attributes. If the cards have only 2 attributes, the game
is in P. On the other hand, if n is unbounded but the number of values k is
considered as a parameter the problem is trivially in XP. Here we will show
that the trivial algorithm cannot be improved to an FPT algorithm, by proving
that the problem is W[1]-hard. The first step in our reduction is to show that
the relevant parameterization of Perfect Multi-Dimensional Matching is
W[1]-hard, a result that may be of independent interest.

Theorem 1. Perfect Multi-Dimensional Matching parameterized by the
dimension size is W[1]-hard.

Proof. We present a reduction from k-Multicolored Clique (proven to be
W[1]-hard in [6]).

Given an instance of k-Multicolored Clique, in other words a k−partite
graph G(V,E) where each part has size n, we construct an instance of Perfect
Multi-Dimensional Matching, a multigraph G′(V ′, E′) with nk(k − 1) di-
mensions where each dimension has k +

(
k
2

)
different values, such that if G has

a clique of size k then G′ has a multidimensional perfect matching.
For each ordered pair (Vi, Vj) with Vi, Vj , i ⊕= j being parts of V , we add n

dimensions which we group together in a group (i; ij). Each of the n dimensions
in each group (i; ij) of graph G′ corresponds to a different vertex in part Vi of
graph G. Each dimension will have k +

(
k
2

)
different possible values, one value

28 M. Lampis and V. Mitsou

Fig. 1. The vertex-multiedge of G′ that
corresponds to vertex v13 of part V1 in G

Fig. 2. The edge-multiedge of G′ that
corresponds to the edge eij of G

corresponding to each part Vi and one value corresponding to each pair of parts
(Vi, Vj), i < j.

Furthermore, for each vertex vij in the original graph (jth vertex of part Vi)
we create a multiedge as follows (see figure 1): it will contain the vertices labeled
with i for all dimensions but the jth dimension of each group (i; ki), where
k ⊕= i. For these dimensions we ’ll include the vertex labeled with ki. We call
these vertex-multiedges.

Last, for each edge eij ≤ E that connects the ath vertex of part Vi with the
bth vertex of part Vj in the original graph, we create a multiedge as follows (see
figure 2): we add all vertices labeled with ij for all dimensions except for the ath

dimension in the group (i; ij) where we take the vertex with label i and the bth

dimension in group (j; ij) that we take the vertex with label j. We call these
edge-multiedges.

Notice that the above construction is polynomial in the size of the input and
the parameter of k-Multicolored Clique. Also, the dimension size in the
constructed instance of Perfect Multi-Dimensional Matching k +

(
k
2

)
is

quadratic in the parameter k of k-Multicolored Clique.

Fig. 3. Vertices of groups (i; ij) and (j; ij) that were not covered by the vertex-
multiedges of G′ that correspond to vertices vici or vjcj of G are covered by the
edge-multiedge of G′ that corresponds to edge eij = (vici , vjcj) and vice versa

Now we prove that if G has a clique of size k then G′ has a perfect multidi-
mensional matching and vice versa. Suppose that G has a clique of size k. In
other words, there should be a tuple (v1c1 , v2c2 , . . . vkck), with vici ≤ Vi, where
all vertices in the tuple are connected with each other. We select in the matching
the k vertex-multiedges of G′ that correspond to the vertices in the clique of G

The Computational Complexity 29

and the
(
k
2

)
edge-multiedges of G′ that correspond to edges of G that connect

vertices in the clique. This selection is a perfect matching: each vertex-multiedge
or edge-multiedge selects all vertices with labels that correspond to the vertex or
edge that they represent, except for k−1 vertices for each vertex-multiedge and 2
vertices for each edge-multiedge as it is described above. Also, the edge-multiedge
of G′ that corresponds to edge eij = (vici , vjcj) of G covers those two vertices
that the vertex-multiedges that correspond to vici and vjcj left uncovered, and
vice versa (see figure 3).

On the other hand, if G′ has a perfect matching, then this matching con-
tains exactly one vertex-multiedge and exactly one edge-multiedge of each value
(otherwise there would be uncovered vertices or vertices covered twice by the
matching). We select all vertices of G that correspond to a vertex-multiedge in
the matching. Now, all these vertices that we picked should be pairwise con-
nected in G, because the edge-multiedges in the matching should be covering
those vertices in G′ that the vertex-multiedges did not cover, which correspond
to vertices in the clique. �⊗

Corollary 1. The game of Set parameterized by the number of values (or else
the size of the Sets) is W[1]-hard.

Proof. The “if” part of the above reduction also holds for the game of Set: if
G′ has a multidimensional perfect matching it also has a Set. For the “only if”
part, notice that if G′ has a Set then this Set is also a multidimensional perfect
matching since no vertex-multiedge can pass through a value that belongs to
another vertex-multiedge. �⊗

3 Multi-round Variations of SET

In this and the next section we talk about multi-round variations of SET where
the number of values (or in other words the size of the Sets) is 3. In this case,
each card (vertex of the hypergraph) is described by a vector in F

n
3 . Note that,

three cards form a Set if and only if their corresponding vectors add up to the
all-0 vector. It is also easy to observe that every pair of cards can have up to
one card that forms a Set with them. This property will prove useful later.

We will once again use a hypergraph formulation, though different from the
one in the previous section. Specifically, we consider the 3-uniform hypergraph
formed if we construct a vertex for each dealt card and a hyperedge (that is,
a set of size 3) for each Set. It is clear that given a SET instance, one can in
polynomial time construct this hypergraph.

We will first talk about a maximization variation: given a set of cards we ask
the question whether there exist at least r Sets that we can pick up before leaving
no Sets on the table. We call this problem Max 3-Value r-Set. Observe that this
problem is a special case of 3-SetPacking, which is a known NP-hard problem. We
thus need to show that the problem remains NP-hard when restricted to instances
realizable by SET cards. This is established in Theorem 2.

30 M. Lampis and V. Mitsou

Then, we turn our attention to a minimization version: given a set of cards,
is it possible by removing at most r Sets (3r cards) to eliminate all potential
Sets? We call this problem Min 3-Value r-Set. This problem is a special case
of Independent Edge Dominating Set in 3-uniform hypergraphs. We show
its NP-hardness even when restricted to hypergraphs realizable by SET cards.
Then, we prove that the natural parameterized version of Independent Edge
Dominating Set in 3-uniform hypergraphs with parameter r is FPT, thus
proving that the special case of a parameterization of this version of SET is also
FPT.

3.1 NP-Hardness of the Maximization Version

Theorem 2. Max 3-Value r-Set is NP-Hard.

Proof. We design a reduction from 3-SAT. Given a formula φ of 3-SAT we first
create an equivalent formula φ′ where each clause contains at most 3 literals and
each variable appears exactly 3 times (two as positive and one as negative or
two as negative and one as positive). Furthermore, any two clauses of φ′ share at
most one variable. A similar construction appears in [10]. Let m be the number
of clauses of φ′ and n the number of variables.

The main idea of the reduction is as follows: from formula φ′ we create an
instance of Max 3-Value r-Set which consists of variable gadgets (one corre-
sponding to each variable) and clause gadgets (one corresponding to each clause).
The variable gadget of a variable x contains five cards: three cards x1, x2 and
x3 for each appearance of x in φ′ (x1 and x2 corresponding to appearances with
the same sign and x3 to opposite), and two more cards: x12 which forms a Set
with x1 and x2, and x123 which forms a Set with x3 and x12. Picking either Set
is equivalent to making an assignment to x (both Sets contain x12, only one Set
can be formed leaving either positive or negative appearances of x unused). The
cards x1, x2, x3 will also appear in the clause gadgets and, intuitively, we will be
able to select a Set from a clause gadget if and only if one of its xi vertices is
free, corresponding to a true literal.

Fig. 4. The variable gadget Fig. 5. The clause gadget

The clause gadget consists of four additional cards: one card per literal in
the clause c1, c2, and c3, and one additional card cm (for clauses of size 2 we
do not introduce c3). Furthermore, each card xci corresponding to the literal in
the ith position of a clause c forms a Set with cards ci and cm. In order to be

The Computational Complexity 31

able to pick this Set (and satisfy c) xci should not have been picked during the
assignment phase.

Observe that, if one sees the new instance as a 3-Set Packing instance, it is
not hard to establish that the instance has a solution of size n+ m if and only
if φ′ is satisfiable. The bonus point is that this instance is realizable with Set
cards. Due to space limitations, card vectors and the rest of the proof is omitted.
The complete proof can be found in the full version of this work [9]. �⊗

3.2 Results on the Minimization Version

Next, we present yet another multi-round version of SET, Min 3-Value r-Set.
We prove that Min 3-Value r-Set is NP-hard via a simple reduction from

Independent Edge Dominating Set (proven NP-hard in [7]).

Theorem 3. Min 3-Value r-Set is NP-hard.

The reduction appears in the full version.
Since the Min 3-Value r-Set problem is hard, it makes sense to consider

its naturally parameterized version: Given an arbitrary set of cards, do there
exist r Sets that overlap all other formed Sets? We show that a simple FTP
algorithm can decide this question. As a matter of fact, the algorithm works
on any 3-uniform hypergraph. Recall that the similar parameterization of the
maximization problem is also known to be FPT, by relevant results on 3-Set
Packing [3].

Theorem 4. Independent Edge Dominating Set in 3-uniform hypergraphs
parameterized by the size of the edge dominating set is FPT.

Corollary 2. Min 3-Value r-Set parameterized by the number of Sets that
will be picked is FPT.

The proof of Theorem 4 can be found in the full version. Corollary 2 follows
directly from Theorem 4.

4 A Two Player Game

In this section, we consider a natural two-player turn-based game that we call
2P 3-Value Set. Suppose that an arbitrary set of cards is on the table and
two opposing players take turns playing. Each player may select three cards that
form a Set and remove them from play. No additional cards are dealt. The game
goes on until a player is unable to find a Set, in which case she loses.

We exploit the ideas developed for the single-player game Min 3-Value r-
Set. Although we will not completely settle the complexity of the two-player
version, the result given in Theorem 3 implies directly that the two-player version
of Set is at least as hard as Arc Kayles.

Arc Kayles is a two-player game played on an undirected graph. Two players
take turns selecting edges from the graph, under the constraint that the edge

32 M. Lampis and V. Mitsou

they pick cannot share a common endpoint with any previously selected edges.
The first player unable to move loses.

Though the complexity of the related version of the problem called Node
Kayles was settled in the ’70s by Schaefer [11], Arc Kayles has been open ever
since. It is not hard to see that, since the game in Arc Kayles ends essentially
when the two players have formed a minimal independent edge dominating set,
we can say the following:

Corollary 3. 2P 3-Value Set is at least as hard as Arc Kayles.

It will likely be hard to find a polynomial-time algorithm for Arc Kayles,
and therefore also for 2P 3-Value Set. A slightly more general version of Arc
Kayles is mentioned to be PSPACE-complete in [11]. The natural generalization
of Arc Kayles to hypergraphs with unbounded hyperedge size is PSPACE-hard
by the complexity of poset games [8].

Let us consider a natural parameterization of 2P 3-Value Set. In this prob-
lem, the question is whether a winning outcome for the first player can be
achieved within at most r rounds (with r being the parameter). Parameter-
ized problems of this form have been considered in the past, beginning with
[1], where it was established that the r-move parameterized version of Node
Kayles is AW[*]-hard. 2P 3-Value Set (and thus Arc Kayles too), as we
show in Theorem 5, parameterized by the number of rounds turns out to be
FPT.

Theorem 5. 2P 3-Value Set parameterized by the number of allowed rounds
r is FPT.

Proof. We will give a sketch of a kernelization argument. More details can be
found in the full version of this work.

We observe that for the first player to have a strategy there must exist a small
hitting set in the original hypergraph, which we can find in FPT time [12]. We
then use the Set property that any two cards have a unique third to establish
a “bounded degree property” in this graph. Specifically, any hyperedge of the
original graph that uses a vertex hi of the hitting set may overlap with at most
2 hyperedges that use vertex hj of the hitting set, for j ⊕= i.

The idea now is to reduce the problem to a version of Node Kayles played
on an r-partite graph, where parts are played in order. This is easily done by
creating r vertices (one in each part) to represent each hyperedge and connecting
vertices from different parts that correspond to overlapping hyperedges. Using
the above observations we can partition the vertices of the last set according to
the hitting set vertex their hyperedges contain. If one of the parts formed has
size 2r or more we now know that it’s impossible to eliminate all its vertices
without using the hitting set vertex. We can thus simplify it to a single vertex
connected only to vertices corresponding to hyperedges that contain the same
hitting set vertex.

This allows us to bound the size of the last partite set. We then proceed by
induction: if two vertices in a partite set have the same neighbors in the next

The Computational Complexity 33

partite set, they are equivalent. Once again if we have too many we can reduce
the graph. Thus, we can bound the size of the whole graph. �⊗
The proof only uses the property of SET that every pair of cards has a unique
third that forms a Set with them. Thus the game is FPT even when played
on the more general class of 3-uniform hypergraphs having this property. Also,
Corollary 4 follows directly from Theorems 3 and 5:

Corollary 4. The natural parameterization of Arc Kayles by the number of
rounds played is FPT.

5 Conclusions and Open Problems

In this paper we studied the computational complexity of the game of SET and
presented some interesting connections with other well-studied problems, such
as Perfect Multi-Dimensional Matching, Independent Edge Domi-
nating Set and Set Packing.

The one-round case of SET is now fairly well-understood. However there are
quite a few interesting open problems one might consider in the multi-round
case, especially the two-player version 2P 3-Value Set. It remains unknown
whether this game is PSPACE-Complete. However, proving the hardness of Arc
Kayles on graphs would settle the complexity of this problem as well (which
is an interesting open question on its own accord). Staying on Arc Kayles,
it might be interesting to show whether the game played on general 3-uniform
hypergraphs is FPT. We remind the reader that our proof that 2P 3-Value
Set is FPT is based on the property of SET that each pair of cards can have
at most one third with which they all form a Set. That property is vital for
the proof since it establishes that the line graph has essentially bounded degree.
This is not true for a general 3-uniform hypergraph though.

References

1. Abrahamson, K.R., Downey, R.G., Fellows, M.R.: Fixed-Parameter Tractability
and Completeness IV: On Completeness for W[P] and PSPACE Analogues. Ann.
Pure Appl. Logic 73(3), 235–276 (1995)

2. Chaudhuri, K., Godfrey, B., Ratajczak, D., Wee, H.: On the Complexity of the
Game of Set (2003) (manuscript)

3. Chen, J., Feng, Q., Liu, Y., Lu, S., Wang, J.: Improved Deterministic Algorithms for
Weighted Matching and Packing Problems. Theor. Comput. Sci. 412(23), 2503–2512
(2011)

4. Coleman, B., Hartshorn, K.: Game, Set, Math. Mathematics Magazine 85(2), 83–96
(2012)

5. Davis, B.L., Davis, Maclagan, D.: The Card Game Set (2003)
6. Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the Parameter-

ized Complexity of Multiple-interval Graph Problems. Theor. Comput. Sci. 410(1),
53–61 (2009)

34 M. Lampis and V. Mitsou

7. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman, New
York (1979)

8. Grier, D.: Deciding the Winner of an Arbitrary Finite Poset Game Is PSPACE-
Complete. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part I. LNCS, vol. 7965, pp. 497–503. Springer, Heidelberg (2013)

9. Lampis, M., Mitsou, V.: The Computational Complexity of the Game of Set and
its Theoretical Applications. arXiv preprint arXiv:1309.6504 (2013)

10. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Reading (1994)
11. Schaefer, T.J.: On the Complexity of Some Two-Person Perfect-Information

Games. J. Comput. Syst. Sci. 16(2), 185–225 (1978)
12. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and re-

lated problems. PhD thesis, Linköping (2007)
13. Zabrocki, M.: The joy of set (2001)

Independent and Hitting Sets of Rectangles

Intersecting a Diagonal Line

José R. Correa1, Laurent Feuilloley2, and José A. Soto3

1 Department of Industrial Engineering, Universidad de Chile
correa@uchile.cl

2 Department of Computer Science, ENS Cachan
lfeuillo@ens-cachan.fr

3 Department of Mathematical Engineering and Center for Mathematical Modeling,
Universidad de Chile
jsoto@dim.uchile.cl

Abstract. Finding a maximum independent set of a given family of
axis-parallel rectangles is a basic problem in computational geometry and
combinatorics. This problem has attracted significant attention since the
sixties, when Wegner conjectured that the corresponding duality gap, i.e.,
the maximum possible ratio between the maximum independent set and
the minimum hitting set, is bounded by a universal constant. In this pa-
per we improve upon recent results of Chepoi and Felsner and prove that
when the given family of rectangles is intersected by a diagonal, this ratio
is between 2 and 4. For the upper bound we derive a simple combinato-
rial argument that first allows us to reprove results of Hixon, and Chepoi
and Felsner and then we adapt this idea to obtain the improved bound in
the diagonal intersecting case. From a computational complexity perspec-
tive, although for general rectangle families the problem is known to be
NP-hard, we derive an O(n2)-time algorithm for the maximum weight in-
dependent set when, in addition to intersecting a diagonal, the rectangles
intersect below it. This improves and extends a classic result of Lubiw. As
a consequence, we obtain a 2-approximation algorithm for the maximum
weight independent set of rectangles intersecting a diagonal.

1 Introduction

Given a family of axis-parallel rectangles, two natural objects of study are the max-
imum number of rectangles that do not overlap and the minimum set of points
stabbing every rectangle. These problems are known as maximum independent set
MIS and minimum hitting set MHS respectively, and in the associated intersection
graph they correspond to the maximum independent set and the minimum clique
covering. We study these problems for restricted classes of rectangles, and focus on
designing algorithms and on evaluating the duality gap ΘGAP, i.e., the maximum
ratio between these quantities. This term arises as MHS is the integral version of
the dual of the natural linear programming relaxation of MIS.

From a computational complexity viewpoint, MIS and MHS of rectangles
are strongly NP-hard [11,13], so attention has been put into approximation al-
gorithms and polynomial time algorithms for special classes. The current best

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 35–46, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

36 J.R. Correa, L. Feuilloley, and J.A. Soto

known approximation factor for MIS are O(log logn) [3], and O(log n/ log logn)
for weighted MIS (WMIS) [4]. Very recently, Adamaszek and Wiese [1] designed
a pseudo-polynomial time algorithm finding a (1 + ι)-approximate solution for
WMIS, but it is unknown whether there exist polynomial time constant factor
approximation algorithms. A similar situation occurs for MHS: the current best
approximation factor is O(log logn) [2], while in general, the existence of a con-
stant factor approximation is open. Polynomial time algorithms for these prob-
lems have been obtained for special classes. When all rectangles are intervals,
the underlying intersection graph is an interval graph and even linear time algo-
rithms are known for MIS, MHS and WMIS [12]. Moving beyond interval graphs,
Lubiw [15] devised a cubic-time algorithm for computing a maximum weight in-
dependent family of point-intervals, which can be seen as families of rectangles
having their upper-right corner along the same diagonal. More recently, Soto
and Telha [17] considered the case where the upper-right and lower-left corners
of all rectangles are two prescribed point sets of total size m. They designed an
algorithm that computes both MIS and MHS in the time required to do m by m
matrix multiplication, and showed that WMIS is NP-hard on this class. Finally,
there are also known PTAS for special cases, including the results of Chan [4]
for squares, and Mustafa and Ray [16] for unit height rectangles.

It is straightforward to observe that given a family of rectangles the size of a
maximum independent set is at most that of a minimum hitting set. In particular,
for interval graphs this inequality is actually an equality, and this still holds in the
case studied by Soto and Telha [17], so that the duality gap is 1 for these classes.
A natural question to ask is whether the duality gap for general families of
rectangles is bounded. Indeed, already in the sixties Wegner [19] conjectured that
the duality gap for arbitrary rectangles families equals 2, whereas Gyárfás and
Lehel [9] proposed the weaker conjecture that this gap is bounded by a universal
constant. Although these conjectures are still open, Károlyi and Tardos [14]
proved that the gap is within O(log(mis)), where mis is the size of a maximum
independent set. For some special classes, the duality gap is indeed a constant.
In particular, when all rectangles intersect a given diagonal line, Chepoi and
Felsner [5] prove that the gap is between 3/2 and 6, and the upper bound has
been further improved for more restricted classes [5,10].

1.1 Notation and Classes of Rectangle Families

Throughout this paper, R denotes a family of n closed, axis-parallel rectangles
in R

2. A rectangle r ⊕ R is defined by its lower-left corner Δr and its upper-
right corner ur. For a point v ⊕ R

2 we let vx and vy be its x-coordinate and
y-coordinate, respectively. Also, each rectangle r ⊕ R is associated with a non-
negative weight wr. We also consider a monotone curve, given by a decreasing
bijective real function, so that the boundary of each r ⊕ R intersects the curve
in at most 2 points. We use ar and br to denote the higher and lower of these
points respectively (which may coincide). We identify the rectangles in R with
the set [n] = {1, . . . , n} so that a1x < a2x < · · · < anx . For any rectangle i, we
define f(i) as the rectangle j (if it exists) following i in the order of the b-points,

Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line 37

that is, bix < bjx and no rectangle k is such that bix < bkx < bjx. For reference, see
Figure 1.

A set of rectanglesQ ≤ R is called independent if and only if no two rectangles
in Q intersect. On the other hand, a set H ≤ R

2 of points is a hitting set
of R if every rectangle r ⊕ R contains at least one point in H . In this paper
we consider the problem of finding an independent set of rectangles in R of
maximum cardinality (MIS), and its weighted version (WMIS). We also consider
the problem of finding a hitting set of R of minimum size (MHS). Let us denote
by mis(R), wmis(R), mhs(R) the solutions to the above problems, respectively.

Since the solutions of the previous problems depend on properties of the in-
tersection graph I(R) = (R, {rr∗ : r ∩ r∗ ⊗= ∈}) of the family R, we will assume
that no two defining corners in {Δ1, Δ2, . . . , Δn, u1, u2, . . . , un} have the same x-
coordinates or y-coordinates (this is done without loss of generality by individ-
ually perturbing each rectangle). We will also assume that the curve mentioned
in the first paragraph is the diagonal line D given by the equation y = −x.
This is assumed without loss of generality: by applying suitable piecewise linear
transformations on both coordinates we can transform the rectangle family into
one with the same intersection graph such that every rectangle intersects D. In
what follows, call the closed halfplanes given by y ∗ −x and y ≥ −x, the half-
planes of D. Note that both halfplanes intersect in D. The points in the bottom
(resp. top) halfplane are said to be below (resp. above) the diagonal.

We study four special classes of rectangle families intersecting D.

Definition 1 (Classes of rectangle families).

1. R is diagonal-intersecting if for all r ⊕ R, r ∩D ⊗= ∈.
2. R is diagonal-splitting if there is a side (upper, lower, left, right) such that
D intersects all r ⊕ R on that particular side.

3. R is diagonal-corner-separated if there is a halfplane of D containing the
same three corners of all r ⊕ R.

4. R is diagonal-touching if there is a corner (upper-right or lower-left) such
that D intersects all r ⊕ R exactly on that corner (in particular, either all
the upper-right corners, or all the lower-left corners are in D.)

By rotating the plane, we can make the following assumptions: In the second
class, we assume that the common side of intersection is the upper one; in the
third class, that the upper-right corner is on the top halfplane of D and the other
three are in the bottom one; and in the last class, that the corner contained in
D is the upper-right one. Under these assumption, each type of rectangle family
is more general than the next one. It is worth noting that in terms of their
associated intersection graphs, the second and third classes coincide. Indeed,
two rectangles of a diagonal-splitting rectangle family R intersect if and only if
they have a point in common in the bottom halfplane of D. Therefore, we can
replace each rectangle r with the minimal possible one containing the region of r
that is below the diagonal, obtaining a diagonal-corner-separated family with
the same intersection graph.

38 J.R. Correa, L. Feuilloley, and J.A. Soto

Definition 2 (diagonal-lower-intersecting). A diagonal-intersecting family R is
diagonal-lower-intersecting if whenever two rectangles in R intersect, they have
a common point in the bottom halfplane of D.

The next lemma describes the relation between the graph classes associated to
the families just defined. Its proof is deferred to the full version of the paper [7].

Lemma 1. Let Gint = {I(R) : R is diagonal-intersecting} be the class of in-
tersection graphs arising from diagonal-intersecting families of rectangles. Let
also Glow-int, Gsplit, Gc-sep and Gtouch be the classes arising from diagonal-
lower-intersecting, diagonal-splitting, diagonal-corner-separated, and diagonal-
touching families of rectangles, respectively. Then

Gtouch � Glow-int = Gsplit = Gc-sep � Gint.
We observe that these classes have appeared in the literature under different

names. For instance, Hixon [10] call the graphs in Gtouch hook graphs, Soto and
Thraves [18] call them And(1) graphs, while those in Gint are called separable
rectangle graphs by Chepoi and Felsner [5].

1.2 Our Results

Our main results, given in §2, are a quadratic-time algorithm to compute a
wmis(R) when R is diagonal-lower-intersecting and a 2-approximation for the
same problem when R is diagonal-intersecting. As far as we know, the former
is the first polynomial time algorithm for WMIS on a natural class contain-
ing diagonal-touching rectangle families. Our algorithm improves upon previous
work in the area. Specifically, for diagonal-touching rectangle families, the best
known algorithm to solve WMIS is due to Lubiw [15], who designed a cubic-time
algorithm for the problem in the context of interval systems. More precisely, a
collection of point-intervals Q = {(pi, Ii)}ni=1 is a family such that for all i,
pi ⊕ Ii and Ii = [left(Ii), right(Ii)] ≤ R are a point and an interval, respectively.
Q is called independent if for k ⊗= j, pk /⊕ Ij or pj /⊕ Ik. Given a finite collection
Q of weighted point-intervals, Lubiw designed a dynamic programming based
algorithm to find a maximum weighted independent subfamily of Q. It is easy to
see1 that this problem is equivalent to that of finding wmis(R) for the diagonal-
touching family R = {ri}ni=1 where ri is the rectangle with upper right corner
(pi,−pi) and lower left corner (left(Ii),−right(Ii)) and having the same weight
as that of (pi, Ii). Lubiw’s algorithm was recently rediscovered by Hixon [10].

As in Lubiw’s, our algorithm is based on dynamic programming. However,
rather than decomposing the instance into small triangles and computing the
optimal solution for every possible triangle, our approach involves computing
the optimal solutions for what we call a harpoon, which is defined for every pair
of rectangles. We show that the amortized cost of computing the optimal solution
for all harpoons is constant, leading to an overall quadratic time. Interestingly, it

1 This equivalence has been noticed before [17].

Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line 39

is possible to show that our algorithm is an extension of the linear-time algorithm
for maximum weighted independent set of intervals [12].

In §3 we give a short proof that the duality gap ΘGAP, i.e., the maximum ratio
mhs /mis, is always at most 2 for diagonal-touching families; we also show that
ΘGAP ≥ 3 for diagonal-lower-intersecting families, and ΘGAP ≥ 4 for diagonal-
intersecting families. These bounds yields simple 2, 3, and 4-approximation
polynomial time algorithms for MHS on each class (they can also be used as ap-
proximation algorithms for MIS with the same guarantee, however, as discussed
in the previous paragraph, we have an exact algorithm for WMIS on the two first
classes, and a 2-approximation for the last one). The 4-approximation for MHS
in diagonal-intersecting families is the best approximation known and improves
upon the bound of 6 of Chepoi and Felsner [5], who also give a bound of 3 for
diagonal-splitting families based on a different method. For diagonal-touching
families, Hixon [10] independently showed that ΘGAP ≥ 2. To complement the
previous results, we show that the duality gap for diagonal-lower-intersecting
families is at least 2. We do this by exhibiting an infinite family of instances
whose gap is arbitrarily close to 2. Similar instances were obtained, and com-
municated to us, by Cibulka et al. [6]. Note that this lower bound of 2 improves
upon the 5/3 by Fon-Der-Flaass and Kostochka [8] which was the best known
lower bound for the duality gap of general rectangle families.

In the full version of the paper [7], besides proving Lemma 1, we prove that
computing a MIS on a diagonal-intersecting family is NP-complete. In light
of our polynomial-time algorithm for diagonal-lower-intersecting families, the
latter hardness result exhibits what is, in a way, a class at the boundary between
polynomial-time solvability and NP-completeness. On the other hand, combining
the results of Chalermsook and Chuzhoy [3] and Aronov et al. [2], we show that
the duality gap is O((log log mis(R))2) for a general family R of rectangles,
improving on the logarithmic bound of Károlyi and Tardos [14].

2 Algorithms for WMIS

The idea behind Lubiw’s algorithm [15] for WMIS on diagonal-touching families
is to compute the optimal independent set OPTij included in every possible
triangle defined by the points ui, uj (which are on D), and (uix, u

j
y) for two rect-

angles i < j. The principle exploited is that in OPTij there exists one rectangle,
say i < k < j, such that OPTij equals the union of OPTik, the rectangle k,
and OPTkj . With this idea the overall complexity of the algorithm turns out to
be cubic in n. We now present our algorithm, which works for the more general
diagonal-lower-intersecting families, and that is based in a more elaborate idea
involving what we call harpoons.

2.1 Algorithm for Diagonal-Lower-Intersecting Families

Let us first define some geometric objects that will be used in the algorithm.
For any pair of rectangles i < j we define Hi,j and Hj,i, two shapes that we call

40 J.R. Correa, L. Feuilloley, and J.A. Soto

Fig. 1. On the left, the construction of a harpoon and the construction of the strips.
On the middle, the harpoons Hij and Hji, with i < j. On the right, other particular
cases for the harpoon Hij with i < j (the symmetric cases occur for Hji).

harpoons. See Fig. 1. More precisely, the horizontal harpoon Hi,j consists of the
points below the diagonal D obtained by subtracting rectangle i from the closed
box defined by the points (Δix, a

i
y) and aj . Similarly, the vertical harpoon Hj,i

are the points below D obtained by subtracting j from the box defined by the
points (bjx, Δ

j
y) and bi. Also, for every rectangle i with i ∗ 1 (resp. such that f(i)

exists) we define Bi
h (resp. Bi

v) as the open horizontal strip that goes through
ai−1 and ai (resp. as the open vertical strip that goes through bi and bf(i)).

We say that a rectangle r is contained in the set Hi,j (and abusing notation,
we write r ⊕ Hi,j) if the region of r below the diagonal is contained in Hi,j .

In our algorithm we will compute S(i, j), the weight of the maximum inde-
pendent set for the subset of rectangles contained in the harpoon Hi,j . We define
two dummy rectangles 0 and n + 1, at the two ends of the diagonal such that
the harpoons defined by these rectangles contain every other rectangle. As pre-
viously observed, two rectangles intersect in R if and only if they intersect below
the diagonal. Therefore, wmis(R) = S(0, n+ 1).

Description of the algorithm:

1. Initialization. In the execution of the algorithm we will need to know what
rectangles have their lower-left corner in which strips. To compute this we do
a preprocessing step. Define B̂i

v and B̂i
h as initially empty. For each rectangle

r ⊕ R, check if Δr is in Bi
h. If so, we add r to the set B̂i

h. Similarly, if Δr is

in Bi
v, we add r to the set B̂i

v.

2. Main loop. We compute the values S(i, j) corresponding to the maximum-
weight independent set of rectangles in R strictly contained in Hi,j . We do
this by dynamic programming starting with the values S(i, i) = 0. Assume

Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line 41

that we have computed all S(i, j) for all i, j such that |i − j| < Δ. We now
show how to compute these values when |i − j| = Δ.
2.1 Set S(i, j) = S(i, j − 1) if i < j and S(i, j) = S(i, f(j)) if i > j.
2.2 Define B̂i,j as B̂j

h if i < j, or B̂j
v if i > j.

2.3 For each rectangle k ⊕ B̂i,j and strictly contained in harpoon Hi,j do:
2.3.1. Compute m = wk + max{S(i, k), S(k, i)}+ S(k, j).
2.3.2. If m > S(i, j), then S(i, j) := m.

3. Output. S(0, n+ 1).

It is trivial to modify the algorithm to return not only wmis(R) but also
the independent set of rectangles attaining that weight. We now establish the
running time of our algorithm.

Theorem 1. The previous algorithm runs in O(n2).

Proof. The pre-processing stage needs linear time if the rectangles are already
sorted, otherwise we require O(n log n) time. The time to compute S(i, j) is
O(1 + |B̂i,j |) since checking if a rectangle is in a harpoon takes constant time.

As the index of a rectangle is at most once in some B̂h and at most once in some
B̂v, the time to fill all the table S(·, ·) is:

∑

(i,j)⊆[n]2
O(1 + |B̂i,j |) = O(n2).

The algorithm is then quadratic in the number of rectangles.

In order to analyze the correctness of our algorithm we define a partial order
over the rectangles in R.

Definition 3. The (strict) onion ordering ⊆ in R is defined as

i ⊆ j ↑⊃ rectangles i and j are disjoint, Δix < Δjx, and Δiy < Δjy.

It is immediate to see that ⊆ is a strict partial ordering in R. We say that i
is dominated by j if i ⊆ j.

For any rectangle k in a harpoonHi,j , let Sk(i, j) be the value of the maximum-
weight independent set containing k and rectangles in Hi,j which are not domi-
nated by k in the onion ordering, and Sk(i, j) be the corresponding set of rect-
angles.

Lemma 2. For any rectangle k in Hi,j , the following relation holds:

Sk(i, j) = wk + max {S(i, k), S(k, i)}+ S(k, j).

Proof. Since k ⊕ Hi,j , we have that i, k and j are mutually non-intersecting,
and as indices, min(i, j) < k < max(j, i). Assume that the harpoon is horizon-
tal, i.e., i < j (the proof for i > j is analogous). In particular, we know that
ai, bi, ak, bk, aj, bj appear in that order on the diagonal. There are three cases
for the positioning of the two rectangles i and k. See Fig. 2.

42 J.R. Correa, L. Feuilloley, and J.A. Soto

i

j

k

i

j

k

i

j

k

Fig. 2. The three cases for a rectangle in a horizontal harpoon

First case: i and k are separated by a vertical line, but not separated by a
horizontal one. Noting that Hi,k ≤ Hk,i, we conclude that all the rectangles of
Sk(i, j) \ {k} are in Hk,i or in Hk,j . Since Hk,i and Hk,j are disjoint, as shown
on the first picture, we conclude the correctness of the formula.

Second case: i and k are separated by a horizontal line, but not by a vertical
one. The proof follows almost exactly as in the first case.

Third case: i and k are separated by both a horizontal line and a vertical line.
By geometric and minimality arguments, all the rectangles in Sk(i, j) \ {k} are
in the union of the three harpoons Hi,k, Hk,i and Hk,j depicted. Finally, if there
are two rectangles in Hi,k ⊇Hk,i then they must be in the same harpoon, so the
formula holds.

Theorem 2. Our algorithm returns a maximum weight independent set of R.
Proof. By induction. For the trivial harpoons Hi,i, the maximum independent
set has weight 0, because this set is empty. The correctness of the theorem follows
directly from the previous lemma and the next implications: For i ⊗= j,

i < j =⊃ S(i, j) = max

{

S(i, j − 1), max
k⊆B̂j

h◦Hi,j

Sk(i, j)

}

.

j < i =⊃ S(i, j) = max

{

S(i, f(j)), max
k⊆B̂j

v◦Hi,j

Sk(i, j)

}

.

Indeed, assume that i < j (the case i > j is analogous). Let S be the MIS
corresponding to S(i, j), and let m ⊕ S be minimal with respect to the onion
ordering. If m is in Hi,j−1 then S(i, j) = S(i, j − 1). Otherwise, m is in B̂j

h and
since S\{m} does not contain rectangles dominated by m, S(i, j) = Sm(i, j).

2.2 An Approximation for Diagonal-Intersecting Families

We use the previous algorithm to get a 2-approximation for diagonal-intersecting
rectangle families. This improves upon the 6-approximation (which is only for
the unweighted case) of Chepoi and Felsner [5].

Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line 43

Theorem 3. There exists a 2-approximation polynomial algorithm for WMIS
on diagonal-intersecting rectangle families.

Proof. Divide R into two subsets: the rectangle that intersect the diagonal on
their upper side, and the ones that don’t. It is easy to see that every rectangle
in the second subset intersect the diagonal on its left side. Using symmetry, the
left side case is equivalent to the upper side case. Therefore we can compute in
polynomial time a WMIS in each subset. We output the heaviest one. Its weight
is at least half of wmis(R). This algorithm gives a 2-approximation

3 Duality Gap and Other Approximation Algorithms

In this section we explore the duality gap, that is, the largest possible ratio
between mhs and mis, on some of the rectangle classes defined before.

Theorem 4. The duality gap for diagonal-touching rectangle families is between
3/2 and 2. For diagonal-lower-intersecting families it is between 2 and 3, and
for diagonal-intersecting families it is between 2 and 4.

We will prove the upper bounds and the lower bounds separately.

Proof of the upper bounds in Theorem 4. Let R be a rectangle family in the
plane, that can be in one of the three classes described on the theorem. In the
case which R is diagonal-lower-intersecting we first replace each rectangle r ⊕ R
by the minimal one containing the region of r that is below the diagonal. The
modified family has the same intersection graph as before, but it is diagonal-
corner-separated. In particular, the region of each rectangle that is above the
diagonal is a triangle or a single point.

We use Rx and Ry to denote the projections of the rectangles in R on the
x-axis and y-axis respectively. Both Rx and Ry can be regarded as intervals,
and so we can compute in polynomial time the minimum hitting sets, Px and
Py, and the maximum independent sets, Ix and Iy, of Rx and Ry respectively.
Since interval graphs are perfect, |Px| = |Ix| and |Py| = |Iy|.

Furthermore, since rectangles with disjoint projections over the x-axis (resp.
over the y-axis) are disjoint, we also have

mis(R) ∗ max{|Ix|, |Iy |} = max{|Px|, |Py|}.
Observe that the collection P = Px × Py ⊂ R

2 hits every rectangle of R. From
here we get the (trivial) bound mhs(R) ≥ |P| ≥ mis(R)2 which holds for every
rectangle family. When R is in one of the classes studied in this paper, we can
improve the bound.

Let P− and P+ be the sets of points in P that are below or above the diagonal,
respectively. Consider the following subsets of P :

F− = {p ⊕ P− : �q ⊕ P− \ {p}, px < qx and py < qy}.
F+ = {p ⊕ P+ : �q ⊕ P+ \ {p}, qx < px and qy < py}.
F∼ = {p ⊕ P+ : �q ⊕ P+ \ {p}, qx ≥ px and qy ≥ py}.

44 J.R. Correa, L. Feuilloley, and J.A. Soto

The set F− (resp. F+) forms the closest “staircase” to the diagonal that is
below (resp. above) it. The set F∼ corresponds to the lower-left bending points
of the staircase defined by F+. From here, it is easy to see that

max{|F−|, |F+|} ≥ |Px|+ |Py| − 1 ≥ 2 mis(R)− 1.

|F∼| ≥ max{|Px|, |Py|} ≥ mis(R).

If r ⊕ R is hit by a point of P−, let p1(r) be the point of P− ∩ r closest to
the diagonal (in Δ1-distance). Since r intersects the diagonal, and the points of
P form a grid, we conclude that p1(r) ⊕ F−. Similarly, if r ⊕ R is hit by a point
of P+, let p2(r) be the point of P+ ∩ r closest to the diagonal. Since r intersects
the diagonal, we conclude that p2(r) ⊕ F+. Furthermore, if the region of r that
is above the diagonal is a triangle, then p2(r) ⊕ F∼.

If R is diagonal-touching, then every rectangle is hit by a point of F−, and so
mhs(R) ≥ |F−| ≥ 2 mis(R)−1. IfR is diagonal-lower-intersecting (and, after the
modification discussed at the beginning of this proof, diagonal-corner-separated),
then every rectangle is hit by a point of F−⊇F∼, and so mhs(R) ≥ |F−|+|F∼| ≥
3 mis(R)− 1. Finally, if R is diagonal-intersecting, then every rectangle is hit by
a point of F− ⊇ F+, and so mhs(R) ≥ |F−|+ |F+| ≥ 4 mis(R) − 2.

Proof of the lower bounds of Theorem 4. The lower bound of 3/2 is achieved by
any family R whose intersection graph G is a 5-cycle. It is easy to see that R
can be realized as a diagonal-touching family, that mis(R) = 2 and mhs(R) = 3,
and so the claim holds.

The lower bound of 2 for diagonal-lower-intersecting and diagonal-intersecting
families is asymptotically attained by a sequence of rectangle families {Rk}k⊆Z+ .
We will describe the sequence in terms of infinite rectangles which intersect the
diagonal, but it is easy to transform each Rk into a family of finite ones by
considering a big bounding box.

For i ⊕ Z
+, define the i-th layer of the instance as Li = {U(i), D(i), L(i), R(i)},

and the k-th instance Rk =
⋃k

i=1 Li, where:

U(i) = [2i, 2i+ 1]× [−(2i+ 1
3),+↓), D(i) = [2i+ 2

3 , 2i+ 5
3]× (−↓,−2i],

L(i) = (−↓, 2i+ 1
3]× [−2i− 1,−2i], R(i) = [2i,↓)× [−(2i+ 5

3),−(2i+ 2
3)].

Consider the instance Rk depicted in Figure 3 with k layers of rectangles. Rk

can be easily transformed into a diagonal-lower-intersecting family by “straight-
ening” the staircase curve shown in the figure without changing its intersection
graph. Let I be a maximum independent set of rectangles in that instance. It is
immediately clear that a minimum hitting set has size 2k since no point in the
plane can hit more that two rectangles.

Let us prove that the size of a maximum independent set is at most k + 2,
amounting to conclude that the ratio is arbitrarily close to 2. To this end, we
let iD = min{i : D(i) ⊕ I} and iR = min{i : R(i) ⊕ I}, and if no D(i) ⊕ I or no
R(i) ⊕ I, we let iD = k+ 1 or iR = k+ 1, respectively. When iD = iR = k+ 1, it
is immediate that |I| ≥ k. Assume then, without loss of generality, that iD < iR.

Independent and Hitting Sets of Rectangles Intersecting a Diagonal Line 45

L(1)

L(2)

L(3)

L(4)

R(1)

R(2)

R(3)

R(4)

U(1) U(2) U(3) U(4)

D(1) D(2) D(3) D(4)

Fig. 3. The family R4. The diagonal line shows this family is diagonal-intersecting.
The staircase line shows that it is actually lower-diagonal-intersecting.

Since for i = 1, . . . , iD − 1 the set I neither contains rectangle D(i) nor R(i),
we have that I contains at most one rectangle on each of these layers. It follows
that

∣
∣I∩⋃iD−1

i=1 Li
∣
∣ ≥ iD−1. Similarly, for i = iD +1, . . . , iR−1 the set I neither

contains rectangle L(i) nor R(i), thus
∣
∣I ∩⋃iR−1

i=iD+1 Li
∣
∣ ≥ iR− iD−1. Finally, we

have that for i = iR + 1, . . . , k the set I neither contains rectangle L(i) nor U(i),

and on layer iR, I contains at most 2 rectangles; thus
∣∣I∩⋃k

i=iR
Li

∣∣ ≥ k− iR +2.
To conclude, note that I may contain at most 2 rectangles of layer iD, then

|I| =
k∑

i=1

|I ∩ Li| ≥ iD − 1 + iR − iD − 1 + k − iR + 2 + 2 = k + 2.

Corollary 1. There is a simple 2-approximation polynomial time algorithm for
MHS on diagonal-touching families, a 3-approximation for MHS on diagonal-
lower-intersecting families, and a 4-approximation polynomial time algorithm
for MHS on diagonal-intersecting families.

Proof. The algorithm consists in computing and returning F− for the first case,
F− ⊇ F∼ for the second one, and F− ⊇ F+ for the third one.

4 Discussion

To conclude the paper we mention open problems that are worth further inves-
tigation. First, note that the computational complexity of MHS is open for all
classes of rectangle families considered in this paper. The complexity of recog-
nizing the intersection graphs of different rectangles families is also open. It is
known that the most general version of this problem, that is recognizing if a
graph is the intersection graph of a family of rectangles, is NP-complete [20].
However, little is known for restricted classes. Finally, it would be interesting to
determine the duality gap for the classes of rectangle families studied here.

46 J.R. Correa, L. Feuilloley, and J.A. Soto

Acknowledgements. We thank Pablo Pérez-Lantero, who got involved in this
project, particularly in determining the hardness of MIS in the rectangle classes
studied in this paper. Pablo is a coauthor of the full version. We also thank Vı́t
Jeĺınek for allowing us to include the lower bound example in Figure 3, and Flavio
Gúıñez and Mauricio Soto for stimulating discussions. This work was partially
supported by Núcleo Milenio Información y Coordinación en Redes ICM/FIC
P10-024F and done while the second author was visiting Universidad de Chile.

References

1. Adamaszek, A., Wiese, A.: Approximation Schemes for Maximum Weight Inde-
pendent Set of Rectangles. In: FOCS 2013 (2013)

2. Aronov, B., Ezra, E., Sharir, M.: Small-size ε-nets for axis-parallel rectangles and
boxes. SIAM J. Comp. 39, 3248–3282 (2010)

3. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: SODA
2009 (2009)

4. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. In: SoCG 2009 (2009)

5. Chepoi, V., Felsner, S.: Approximating hitting sets of axis-parallel rectangles in-
tersecting a monotone curve. Computational Geometry 46, 1036–1041 (2013)

6. Cibulka, J., Hladký, J., Kazda, A., Lidický, B., Ondráčková, E., Tancer, M.,
Jeĺınek, V.: Personal Communication (2011)

7. Correa, J.R., Feuilloley, L., Pérez-Lantero, P., Soto, J.A.: Independent and Hit-
ting Sets of Rectangles Intersecting a Diagonal Line: Algorithms and Complexity.
arXiv:1309.6659

8. Fon-Der-Flaass, D.G., Kostochka, A.V.: Covering boxes by points. Disc. Math. 120,
269–275 (1993)

9. Gyárfás, A., Lehel, J.: Covering and coloring problems for relatives of intervals.
Disc. Math. 55, 167–180 (1985)

10. Hixon, T.S.: Hook graphs and more: Some contributions to geometric graph theory.
Master’s thesis, Technische Universitat Berlin (2013)

11. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are NP-complete. Inf. Process. Lett. 12, 133–137 (1981)

12. Hsiao, J.Y., Tang, C.Y., Chang, R.S.: An efficient algorithm for finding a maximum
weight 2-independent set on interval graphs. Inf. Process. Lett. 43, 229–235 (1992)

13. Imai, H., Asano, T.: Finding the connected components and a maximum clique of
an intersection graph of rectangles in the plane. J. of Algorithms 4, 310–323 (1983)

14. Károlyi, G., Tardos, G.: On point covers of multiple intervals and axis-parallel
rectangles. Combinatorica 16, 213–222 (1996)

15. Lubiw, A.: A weighted min-max relation for intervals. J. Comb. Theory, Ser. B 53,
151–172 (1991)

16. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Dis-
crete Comput. Geom. 44, 883–895 (2010)

17. Soto, J.A., Telha, C.: Jump Number of Two-Directional Orthogonal Ray Graphs.
In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 389–403.
Springer, Heidelberg (2011)

18. Soto, M., Thraves, C.: (c-)And graphs - more than intersection, more than geo-
metric. arXiv:1306.1957 (2013) (submitted)

19. Wegner, G.: Über eine kombinatorisch-geometrische frage von hadwiger und de-
brunner. Israel J. of Mathematics 3, 187–198 (1965)

20. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.
Alg. Discr. Meth. 3, 351–358 (1982)

Approximating Vector Scheduling:

Almost Matching Upper and Lower Bounds�

Nikhil Bansal1, Tjark Vredeveld2, and Ruben van der Zwaan1

1 Eindhoven University of Technology
{n.bansal,g.r.j.v.d.zwaan}@tue.nl

2 Maastricht University
t.vredeveld@maastrichtuniversity.nl

Abstract. We consider the vector scheduling problem, a natural gen-
eralization of the classical makespan minimization problem to multiple
resources. Here, we are given n jobs represented as d-dimensional vec-
tors in [0, 1]d and m identical machines, and the goal is to assign the jobs
to machines such that the maximum load of each machine over all the
coordinates is at most 1.

For fixed d, the problem admits an approximation scheme, and the

best known running time is nf(α,d) where f(ε, d) = (1/ε)Õ(d) (Õ supresses
polylogarithmic terms in d). In particular, the dependence on d is doubly
exponential.

In this paper we show that a double exponential dependence on d
is necessary, and give an improved algorithm with essentially optimum
running time. Specifically, we show that:

– For any ε < 1, there is no (1 + ε)-approximation with running time
exp(o(⊕1/ε←d/3)) unless the Exponential Time Hypothesis fails.

– No (1 + ε)-approximation with running time exp(⊕1/ε←o(d)) exists,
unless NP has subexponential time algorithms.

– Similar lower bounds also hold even if εm extra machines are allowed
(i.e. with resource augmentation), for sufficiently small ε > 0.

– We complement these lower bounds with a (1 + ε)-approximation
that runs in time exp((1/ε)O(d log log d)) + nd. This gives the first
efficient approximation scheme (EPTAS) for the problem.

1 Introduction

We consider the vector scheduling problem defined as follows. The input consists
of a collection J of n jobs p1, ...,pn, viewed as d-dimensional vectors from [0, 1]d

and m identical machines. The goal is to find an assignment of the jobs to the

machines such that the load satisfies
∥
∥
∥
∑

p∨Pi
p
∥
∥
∥
∗
⊕ 1 for each machine i ≤ [m],

where Pi is the set of jobs assigned to machine i. That is, the maximum load on
any machine in any coordinate is most 1.

Vector scheduling is the natural multi-dimensional generalization of the clas-
sic multiprocessor scheduling problem (also known as makespan minimization or

δ Supported by the NWO VIDI grant 639.022.211.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 47–59, 2014.
c⊆ Springer-Verlag Berlin Heidelberg 2014

48 N. Bansal, T. Vredeveld, and R. van der Zwaan

load balancing). In the latter problem, the goal is to assign n jobs with arbitrary
processing times to m machines to minimize the maximum sum of processing
times (load) over all the machines. For many applications however, the job may
use different resources and the load of a job cannot be described by a single ag-
gregate measure. For example, if jobs have both CPU and memory requirements,
their processing requirement is best modeled as a two dimensional vector, where
the value in each coordinate corresponds to each of the requirements. Clearly,
an assignment of vectors is valid if and only if no machine is overloaded on any
resource. Note that the assumption that the maximum load of a machine in any
coordinate is 1 is without loss generality, as the different coordinates can be
scaled independently.

In this paper we are concerned with approximation algorithms. We say that
a polynomial-time algorithm is an Θ-approximation (for Θ ≥ 1) if it finds an
assignment with load at most Θ, whenever there exists a feasible schedule with
load at most 1.

1.1 Previous Work

Multiprocessor scheduling and the related bin-packing problem are one of the
most fundamental problems in computer science with a long and rich history.
We only describe the work on multiprocessor scheduling in the setting where the
number of machines m is a part of the input. It is well known that multiprocessor
scheduling is strongly NP-hard [9].

The first polynomial time approximation scheme (PTAS), that is, a (1 + ι)-
approximation algorithm with polynomial running time for every fixed ι > 0, was
obtained by Hochbaum and Shmoys [10]. The running time of their algorithm

wasO(nO(1/Δ2)). Note that by the strong NP-Hardness of the problem one cannot
hope to have a running time with polynomial dependence in ι (i.e. an FPTAS),
unless P=NP.

An efficient polynomial time approximation scheme (EPTAS), i.e. an algo-
rithm with running time f(ι)nO(1), was implicit in [10] by replacing the dynamic
program by an integer linear program (and using fast integer programming al-
gorithms in fixed dimensions). A more general framework to obtain EPTASes
for parallel machine scheduling was developed by Alon et al. [1] that runs in
f(1/ι) +O(n) time, where f(ι) is a double exponential function in 1/ι.

Recently, this running time was substantially improved by Jansen [13] to

O(2Õ(1/Δ2) + nO(1)). His main idea is to use fast integer programming in fixed
dimensions, together with an elegant result of Eisenbrand and Shmonin [5] about
the existence of optimum integer solutions with small support. Most of these
results also extend to the setting where the machine speeds differ, referred to as
uniform machines (see e.g. [11,13]).

Fewer results are known for the case when the number of dimensions ex-
ceeds one. Chekuri and Khanna [4] gave the first polynomial-time approxima-
tion scheme for a fixed number of dimensions. They gave an algorithm with
running time ng(Δ,d), where g is a singly exponential function of d. More pre-

cisely, g(ι, d) = (1/ι)d log log d+o(d) and hence the running time is n(1/Δ)Õ(d)

. This

Approximating Vector Scheduling 49

seems to be the currently best known running time for this problem. PTASes
for several other generalizations are also known [2,6,7].

When d is part of the input, Chekuri and Khanna [4] gave a polynomial
time O(ln2(d)) approximation and proved that it is NP-hard to approximate
the problem to within any constant factor. This approximation factor has been
recently improved to O(log d) by Meyerson et al. [17]. The latter result even
holds in the online setting.

1.2 Our Contribution

Lower Bounds. A natural question is whether there exists an approximation
scheme for vector scheduling with running time that is singly exponential in ι
and d, e.g. exp(poly(ι, d)). We rule out this possibility by showing the following
strong lower bound.

Theorem 1. For any ι < 1 with 1/ι ≤ N, there is a d(ι) such that there is no

(1 + ι)-approximation algorithm with running time O
(

2o((1/Δ)
d/3)(nd)O(1)

)
for

vector scheduling in d ≥ d(ι) dimensions, unless the Exponential Time Hypoth-
esis (ETH) fails.

This follows from a relatively simple reduction from the 3-dimensional matching
problem. The same reduction also implies the following hardness under a more
standard complexity assumption.

Theorem 2. For any ι < 1 with 1/ι ≤ N, there is a d(ι) such that there is

no (1 + ι)-approximation algorithm with running time O
(

2(1/Δ)
o(d)

(nd)O(1)
)
for

vector scheduling in d ≥ d(ι) dimensions, unless NP has subexponential time
algorithms, i.e. NP ⊗ ∈Δ>0DTIME(2n

ε

).

One may wonder whether these lower bounds are robust or whether they crucially
exploit the fact that no additional machines are allowed. It is instructive to
consider the case of d = 1 (i.e. multiprocessor scheduling). Recall that no FPTAS
is possible for the problem. However, if one allows some extra machines (say ∗ιm≥
of them), then the running time dependence on ι reduces dramatically and in
particular, a FPTAS is possible. In fact, the known FPTASes for bin packing
imply that even very few extra machines (poly-logarithmic in m) suffice [15,18],
and in fact one does not even need to violate the capacity of any machine!

Somewhat surprisingly, we show that extra machines do not help for vector
scheduling, provided that the desired approximation ratio is sufficiently small.

Theorem 3. For any ι < ι0 with 1/ι ≤ N, there is a d(ι) such that there

is no (1 + ι)-approximation algorithm with running time O
(

2(1/Δ)
o(d)

(nd)O(1)
)

for vector scheduling in d ≥ d(ι) dimensions, even with ∗ιm≥ extra machines,
unless NP has subexponential time algorithms, i.e. NP ⊗ ∈Δ>0DTIME(2n

ε

),
where ι0 < 1 is a universal constant. Assuming the ETH, no such algorithm can

run in time 2(o(1/Δ)d/6).

Upper Bounds. To complement the lower bounds above, we show the following
algorithmic result.

50 N. Bansal, T. Vredeveld, and R. van der Zwaan

Theorem 4. For any ι > 0 and d ≥ 1, there is a deterministic (1 + ι)-
approximation algorithm for d-dimensional vector scheduling that runs in time

O
(

2(1/Δ)
O(d log log(d))

+ nd
)
.

Techniques. By the lower bounds above, the running time is essentially the
best possible (modulo the O(log log d) factor in the exponent), and the nd term
is simply the time required to read the input. Theorem 4 gives the first EPTAS
for vector scheduling.

At a high level, the algorithm is similar to that of [13], and relies on integer
programming in fixed dimensions and existence of optimum integer solutions
with small support. However, there are some important differences between d = 1
and d > 1. In particular, for d = 1 the small jobs (with size ⊕ ι) do not cause
any problems and can be filled in greedily later in the remaining spaces, after
solving the problem for just big jobs. However, for d ≥ 2, the big and small jobs
(by small we mean jobs with value at most ι in every dimension) interact in
more complex says and must be considered together.

The following example highlights this difficulty. Consider the following in-
stance with m = 2 and jobs with sizes: p1 =

(
1
2 , 0

)
,p2 =

(
1
2 , 0

)
and

pi =
(
Δ
2 , ι

)
for 3 ⊕ i ⊕ 2/ι. Clearly, these jobs can be scheduled on two ma-

chines: place the first two jobs on separate machines, and split the small jobs
evenly. However, if the first two (large) jobs are placed on the same machine,
then the small jobs cannot be assigned feasibly anymore.1

Chekuri and Khanna [4] overcame this problem by ‘guessing’ for each ma-
chine the division between small and large jobs. This allows them to decouple

the assignment of small and big vectors. However, as there are roughly m(1/Δ)d

different divisions possible, with ι precision, this is not useful to obtain an effi-
cient polynomial time approximation scheme.

To get around this, we incorporate both large and small vectors in our integer
linear program (ILP), but ensure that it has only few constraints by tracking
only some coarse-grained information for the small jobs. We find an optimum
solution to this ILP, which gives an integral assignment of large jobs but small
jobs might be fractionally assigned. We then show how to assign the small jobs to
machines, without overloading the machines. To do this, we first assign the jobs
greedily guided by a potential function, which guarantees that the aggregate
amount of overload on machines is small. This load is small enough that the
jobs causing ‘overloaded’ can finally be redistributed in a round-robin manner. A
naive implementation of the greedy assignment requires O(mn) time (as for each
job, we need to determine which machine causes the least increase in potential),
so we also need some additional ideas to show how this can be done in linear
time.
Organization. In Section 2 we state our notation and the hypotheses that our
lower bounds are based on, and describe the relevant background on integer

1 The two large jobs have total load (1, 0). As the small jobs have total load (1, 2), no
matter how these are assigned to the two machines, one machine will have load at
least min(max(1 + x, 2x),max(1− x, 2(1− x))) which is 4/3 (attained for x = 1/3).

Approximating Vector Scheduling 51

programming. In Section 3 we prove our lower bounds for vector scheduling. We
describe our algorithm in Section 4, however due to lack of space some ideas are
only sketched and their detailed proofs are deferred to the full version of the
paper.

2 Preliminaries

Let [n] denote the set of positive integers 1 to n i.e. [n] := {1, ..., n}. Let 1 be the
all-ones vector. For two vectors a,b we say that a ⊕ b if ai ⊕ bi, ⊆i. Throughout
the paper the logarithm log is taken with base two and let exp(x) denote 2x.
For a d-dimensional vector v = (v1, ..., vd), let vj denote its j-th coordinate. We

say that a function f(n) is sub-exponential if f(n) ≤ O(2O(no(1))). Without loss
of generality we assume that the number of machines is less than the number of
jobs (otherwise assign one job per machine or conclude infeasibility).

Impagliazzo, Paturi and Zane formulated the Exponential Time Hypothesis
which in combination with the sparsification lemma [3] can be stated as follows.

Hypothesis 1 (Exponential Time Hypothesis (ETH) [12]). There is a
positive real s such that 3-CNF-Sat with N variables and M clauses cannot be
solved in time O(2sM (N +M)O(1)).

We will use the following well-known results for fast integer linear programs
with few integer variables.

Theorem 5 (Lenstra [16], Kannan [14], Frank and Tardos [8]). Consider
a mixed-integer linear program min{cTx | Ax ≥ b and ⊆i ≤ I : xi ≤ Z} with
n variables and m constraints, and where I ⊗ [n] denotes the set of indices
of integer variables. Let s denote the binary encoding length of the input.Then,
there is an algorithm that finds a feasible solution or decides that there is no
feasible solution in O(n2.5n+o(n) · s) arithmetic operations.

Relatively recently, based on an elegant pigeonhole argument, Eisenbrand and
Shmonin [5] showed that every feasible integer linear program has an optimum
solution with small support.

Theorem 6 (Eisenbrand and Shmonin [5]). Let min{cTy|Ay = b,y ≥
0,y ≤ Z

n} be an integer program, where A ≤ Z
m×n and c ≤ Z

n. If this integer
program has a finite optimum, then there exists an optimal solution y◦ ≤ Z

n
∼0

with number of nonzero components at most 2(m+ 1)(log(m+ 1) + s+ 2), where
s is the largest size (in binary representation) of any coefficient of A and c.

3 Lower Bounds on the Running Time

We prove our lower bounds by a reduction from 3-dimensional matching (3-
DM) to Vector Scheduling. In subsection 3.1 we describe the reduction, and in
subsection 3.2 we prove that an approximate solution to the vector scheduling
instance implies an exact solution for 3-DM and hence 3-CNF-Sat. The proof
that resource augmentation does not help much, Theorem 3, is postponed to the
full version.

52 N. Bansal, T. Vredeveld, and R. van der Zwaan

Before we give our reduction, we first define the 3-dimensional matching prob-
lem. An instance of 3-DM consists of three disjoint sets X , Y , and Z, satisfying
|X | = |Y | = |Z| := q, and a set T ↑ X × Y × Z of triples. The goal is to find
a subset of triples T ∈ ↑ T such that there are no each element of X , Y , and Z
occurs in exactly one triple of T ∈.

In [9] a reduction from 3-CNF-Sat to 3-DM is given, that transforms in-
stances of 3-SAT with N variables and M clauses, into instances for 3-DM with
q = 6M and |T | = 17M . Therefore, the ETH (Theorem 1) implies there is no
O(2o(q)qO(1)) time algorithm for 3-DM.

3.1 The Construction of a Vector Scheduling Instance from 3-DM

The main idea of the reduction is the following: We construct for each triple in
T a job (that we call a triple-job) and for each element in X , Y or Z, as many
jobs as the number of times this element occurs in the triples (we call such jobs
element-jobs). For each element i, we designate exactly one of its jobs as the
real element-job corresponding to i, and refer to the other element-jobs for i as
dummy jobs. The number of machines is equal to the number of triples. We will
assign sizes to these jobs such that to obtain a schedule such that the maximum
load in any coordinate is at most 1, we need to schedule each triple together
with its corresponding three element-jobs, and moreover these element-jobs are
either all real element-jobs or all dummy jobs.

Let ι < 1 be such that 1/ι is integer. Let b = 1/ι − 1 and let b denote the
vector that has b in every coordinate. By ⊃i⊇ we denote the (b+1)-ary encoding of
the integer i and by ⊃i⊇ we denote its complement, that is, ⊃i⊇ := b−⊃i⊇. Let ⊃i⊇j
denote the j-th digit from the right of ⊃i⊇. For ease of notation, we scale the jobs
by a factor b. That is, all vectors are in [0, b]d and we ask the question whether
we can schedule the jobs such that the maximum load in each coordinate is at
most b. To make the proofs easier to read, we rename the elements in the sets
X ,Y and Z: we assume that X = Y = Z = {1, ..., q}.
The Formal Reduction. Given an instance (X,Y, Z;T) of 3-DM, let nX(i)
denote the number of triples (x, y, z) for which x = i; in a similar way, we define
nY (i) and nZ(i). For each element i ≤ X , we create nX(i) jobs, one real X-job
i and nX(i) − 1 dummy X-jobs. In a similar way, we create nY (j) Y -jobs for
each element j ≤ Y and nZ(k) Z-jobs for each element k ≤ Z. Finally, we have
another |T | triple-job, one for each triple l ≤ T . The number of machines is equal
to m := |T |. Note that the total number of jobs is

∑
i∨X nX(i) +

∑
j∨Y nY (j) +∑

k∨Z nZ(k) + |T | = 4|T | = 4m.
Recall that |X | = |Y | = |Z| = q, and let Δ := ∗log(1/Δ) q≥. We associate a

vector to each of the jobs as follows. The number of dimensions of these vectors
is d := 7 + 3Δ. The precise construction for the vectors for each of the jobs is
described in Table 1.

In particular, the first four coordinates of a job indicate whether the job
corresponds to an element in X , Y , Z or to a triple in T . The following three
coordinates encode for each X , Y , or Z-job whether it is a real job or a dummy

Approximating Vector Scheduling 53

Table 1. Construction of the jobs from elements and triples of the 3-DM problem

Job name Values of the coordinates

T/X/Y /Z Real/dummy Encoding of element(s)

real X-job i 0, b, 0, 0 b, 0, 0 ◦i⊇1, ..., ◦i⊇η 0, ..., 0 0, ..., 0

dummy X-job i: 0, b, 0, 0 0, b, 0 ◦i⊇1, ..., ◦i⊇η 0, ..., 0 0, ..., 0

real Y -job j: 0, 0, b, 0 0, b, 0 0, ..., 0 ◦j⊇1, ..., ◦j⊇η 0, ..., 0

dummy Y -job j: 0, 0, b, 0 0, 0, b 0, ..., 0 ◦j⊇1, ..., ◦j⊇η 0, ..., 0

real Z-job k: 0, 0, 0, b 0, 0, b 0, ..., 0 0, ..., 0 ◦k⊇1, ..., ◦k⊇η

dummy Z-job k: 0, 0, 0, b b, 0, 0 0, ..., 0 0, ..., 0 ◦k⊇1, ..., ◦k⊇η

triple (i, j, k): b, 0, 0, 0 0, 0, 0 ◦i⊇1, ..., ◦i⊇η ◦j⊇1, ..., ◦j⊇η ◦k⊇1, ..., ◦k⊇η

job. The last part of each job is reserved to encode the element to which the job
corresponds.

3.2 Proof of the Reduction

We now show that the reduction has the desired properties.

Lemma 1. (Completeness) If the 3-DM instance has a solution, then there as-
signment with load at most b.

Proof. Consider the collection of disjoint triples that cover X,Y and Z. For each
job triple (i, j, k), we place the corresponding triple-job, and the real element-
jobs corresponding to i, j and k on a single machine. It is easily checked that
every coordinate on every such machine has load at most b. For each of the
remaining triples (i, j, k), we place them on a machine with (any) of the dummy
jobs for i, j and k. It is easily verified that this is a feasible assignment. ⊂↓
Lemma 2. If the vector scheduling instance has a solution with load at most
(1 + ι)b, then there is a solution to the corresponding 3-DM instance.

Proof. Consider any solution with load at most (1 + ι)b. We begin with various
properties of such a solution.

Property 1. The load is exactly b in each coordinate on each machine.
Proof. The load of each machine is at most (1 + ι)b = b+ b/(b+ 1) < b+ 1. As
all jobs have integer coordinates, the load of each machine is at most b.

Moreover, observe that the total amount of work in the i-th coordinate
summed over all jobs is mb. In particular, this follows as

∑
i∨X nX(i) =∑

j∨Y nY (j) =
∑

k∨Z nZ(k) = |T | = m. As all jobs are scheduled and the
load is most b, it must be exactly b. ⊂↓

54 N. Bansal, T. Vredeveld, and R. van der Zwaan

Property 2. Each machine processes exactly one triple- one X-element-, one Y -
element- and one Z-element-job.

Proof. This follows immediately from the values in the first four coordinates and
the previous property. ⊂↓
Property 3. Element-jobs on a machine are either all real or all dummy.

Proof. From Property 1 and the values in the fifth, sixth and seventh coordinate
we see that the following three statements are simultaneously true:

1. There is exactly one real X-element or dummy Z-element (coordinate 5);
2. There is exactly one real Y -element or dummy X-element (coordinate 6);
3. There is exactly one real Z-element or dummy Y -element (coordinate 7).

The claim now follows, by combining with the fact there can be exactly one
real or dummy element of each of the types X ,Y and Z (this is ensured by
coordinates 2,3 and 4). ⊂↓
Property 4. If a machine has the triple-job (i, j, k) and a (real or a dummy)
element-job a, then a is equal to i, j or k, depending on whether a is a X , Y or
Z-element.

Proof. We only consider the case that a is an X-element; the other cases are
similar. By Properties 1 and 2, we know that ⊃i⊇ + ⊃a⊇ = b. Therefore, ⊃a⊇ =
b− ⊃i⊇ = b− (b− ⊃i⊇) = ⊃i⊇ and thus a = i. ⊂↓

By the last property, if a machine processes three real element-jobs, then the
corresponding three elements form a triple in the 3-DM instance. Let T ∈ consist
of all triples corresponding to the triple-jobs that are scheduled together with
real elements. Then, the triples in T ∈ have no overlap as there is only one real
element-job corresponding to an element. Moreover, T ∈ covers all elements as all
jobs and therefore also all real element-jobs need to be scheduled. ⊂↓

Therefore we have the following lemma.

Lemma 3. Given an instance of 3-Dimensional Matching with |X | = |Y | =
|Z| = q, T ⊗ X × Y × Z, b ≤ N+, b ≥ 2 and ι = 1/(b − 1). Then, there is a
polynomial time reduction to an instance for Vector Scheduling with 4|T | vectors
in dimension d := 3

⌈
log(1/Δ) q

⌉
+ 7. Further, a (1 + ι)-approximate solution to

the Vector Scheduling instance defines a solution to the 3-DM problem.

Thus, Lemma 3 in combination with the ETH and the reduction from 3-CNF-
Sat to 3-dimensional matching yields Theorem 1. In similar vein we can derive
Theorem 2: the proof is postponed to the full version.

Proof (Theorem 1). Suppose that there exists an (1 + ι)-approximation for

Vector Scheduling that runs in time O
(

2o((1/Δ)
d/3)nO(1)

)
. By Lemma 3 we

get a O
(
2o(q)|T |O(1)

)
time algorithm for 3-DM which in turn implies a

O
(
2o(M)MO(1)

)
time algorithm for 3-CNF-SAT which contradicts the ETH.

⊂↓

Approximating Vector Scheduling 55

4 Linear Time Approximation Algorithm

In this section we describe our deterministic linear time algorithm. Roughly, our
algorithm works as follows. First, we preprocess the instance such that there
are relatively few different types of large jobs at the cost of a small factor in
the approximation guarantee. Second, we formulate and solve exactly a mixed-
integer linear program that assigns large jobs integrally to machines and small
jobs fractionally. We assign the small jobs integrally to machines in a greedy
mannner guided by a potential function that tracks the aggregate “overload”
on the machines, due to jobs that cause machines to have load exceeding 1 + ι.
Then, we distribute these “overload” evenly over all machines ensuring the final
loads of all machines is at most 1 + ι.

Preprocessing. The preprocessing steps are standard [4] and are summarized
in Lemma 4. We defer the details to the full version.

Lemma 4. Let V be the original set of jobs and W be the preprocessed set of
jobs and ι > 0. Then for any w ≤ W and coordinate i ≤ [d]

– if wi ∅= 0 then wi/≡w≡∗ ≥ ι/d;
– there exists a k ≤ N such that wi = ι3/d2 · (1 + ι)k;

and for any subset of jobs V ∈ ↑ V such that
∑

v∨V ≥ v ⊕ 1 with corresponding
modified subsetW ∈ ⊗W , we have

∑
w∨W ≥ w ⊕∑

v∨V ≥ v ⊕ (1+ι)
∑

w∨W ≥ w+ι.

4.1 The Mixed-Integer Linear Program

In this subsection we describe our mixed-integer linear program and also how
to solve it faster. We distinguish between small and big jobs and treat them
differently. A job p is small if ≡p≡∗ < ι2/d and otherwise the vector is big.

Let Tbig be the set of all types of big vectors, Tbig := {0, ι3/d2, (1+ι)ι3/d2, (1+
ι)2ι3/d2, ..., 1}d. A big job p has type t ≤ Tbig if and only if p = t. Every big
vector has a corresponding type, since the rounding procedure rounded these
vectors to exactly these values.

We define the type of a small vector based on its relative size in each coordinate.
Let Tsmall be the set, Tsmall := {0, (1 + ι)−Σ, (1 + ι)−Σ+1, ..., (1 + ι), 1}d, where

Δ :=
⌈
log(1+Δ)(d/ι)

⌉
. A small job p has type t = (t1, . . . , td) ≤ Tsmall if and only if

(p)j
∅p∅∗ = tj for all coordinates j ≤ [d]. By Lemma 4 the biggest and smallest non-

zero coordinates are at most a factor d/ι apart, and hence p
∅p∅∗ is at least ι/d.

Therefore, each small vector has exactly one type in Tsmall. Thus, there are at most

T :=
⌈
3 log(1+Δ)(d/ι) + 2

⌉d
types of big and small jobs.

In our mixed-integer linear programming we have variables corresponding to
configurations, which are a collection of big jobs together with available room
for small jobs. We will call the (rounded) room for small jobs a profile. A profile
is a vector from F := {0, ι, (1 + ι)1ι, (1 + ι)2ι, ..., 1}d. A configuration C is a
tuple C = (B, f), where B is a set of big jobs and f is a profile for small jobs
such that together the big vectors and the profile fit on one machine while only

56 N. Bansal, T. Vredeveld, and R. van der Zwaan

exceeding the maximum load by a little i.e. (
∑

p∨B pj) + fj ⊕ (1 + ι) for all
coordinates j. As each big job has a coordinate of at least ι/d there can be at
most d2/ι big jobs on a machine or the load exceeds 1. As there at most T types

of big jobs, this implies that there are N ⊕ T ∗d2/Δ≥ · T different configurations.
We now describe our mixed-integer linear program. Let xC denote the number

of machines that have jobs assigned to them according to configuration C and
let C be the set of all configurations. Let n(C, t) denote the number of big jobs
of type t in configuration C, and let n(t) denote the total number of big jobs of
type t in the instance.

Let yf ,t be the amount with respect to the largest coordinate (i.e. sum of Δ∗
norm of the sizes), of small jobs of type t assigned to configurations with profile
f for small jobs. Let a(t) :=

∑
p:p is of small type t ≡p≡∗ denote the total amount

of small jobs of type t in the instance.
Consider the following program.

min
∑

C∈C
xC (MILP)

s.t.
∑

C∈C
xC · n(C, t) ⊆ n(t) ∀t ∈ Tbig (C1)

∑

f∈F
yf,t ⊆ a(t) ∀t ∈ Tsmall (C2)

∑

t∈Tsmall

yf,t · ti/ ‖t‖∞ ≤ fi ·
∑

C:C=(B,f)

xC ∀i ∈ [d], f ∈ F (C3)

x ∈ Z
|C|

y,x ⊆ 0

The first constraint ensures that the big jobs are covered. The second con-
straint ensures that the small jobs are covered fractionally. The third constraint
is not as obvious, and requires that for each profile f of space for small jobs, the
cumulative amount of small jobs of type t that are assigned to profile f must be
no more than the total amount of profile f . It is easily seen that these are valid
constraints for any feasible solution.

The following lemma follows directly by Theorems 5 and 6, and its proof is
deferred to the full version.

Lemma 5. An optimal solution to MILP can be found in time
O
(
exp

(
(1/ι)O(d log log d)

) · log(n)
)
, where s denotes the maximum length

of the binary encoding of the mixed-integer linear program.

4.2 Linear Time Algorithm

In this section we sketch how small jobs are assigned integrally to machines, using
the solution to MILP. Our algorithm can be viewed as the derandomization of
the following natural randomized algorithm.

Approximating Vector Scheduling 57

Randomized Algorithm. Recall that yf ,t is the amount of small jobs of type
t that are assigned to machines with profile f . For each small job of type
t, let Γ(f , t) denote the fraction of type t assigned to profile f : Γ(f , t) :=
yf ,t/

∑
g∨F yg,t.

For each small job p of type t do the following. Pick a profile f randomly with
probability Γf ,t. Then we pick a machine uniformly at random among the ones
with profile f . We assign job p to this machine.

It is easily checked that the expected load on any machine is precisely the
fractional load of the ILP solution. However, the randomness can cause some
machines to be overloaded (i.e. have load more than 1 + ι is some coordinate).
However, standard probabilistic tail bounds imply that the total aggregate load
on overloaded machines is too not high (about O(poly(ι/d) ·m). Thus for each
overloaded machine, we can remove all the small jobs assigned to it, and redis-
tribute these jobs in a round-robin manner over all machines.

Deterministic Algorithm. Recall that the ILP only gives an assignment of
small job types to profiles, while we need an assignment of individual jobs to
machines. We achieve this in three steps.

(Step 1) We first assign small job types to machines. To this end, we note
that as there are few constraints involving y variables, by standard polyhedral
arguments there are few y variables that are divided over many profiles. By
greedily assigning small jobs to profiles as long as they fit w.r.t yf ,t, only few
small jobs remain which can then be evenly divided over the profiles only causing
a O(ι) increase in the loads.

(Step 2) By step 1 small jobs are integrally assigned to profiles and thus
we can restrict our attention to machines using a fixed profile. The small jobs
are now assigned to the machine that minimizes a potential function Ψ. Let
p1, ...,pn be small jobs assigned to the same profile and Π > 0 some parameter,

then Ψt :=
∑

k∨[d]
∑

i∨[m] e
Λ(Lt,i

k −ft
k), where Lt,i

k is the load of small jobs p1, ...,pt

assigned to machine i on coordinate k and let f t
k be the expected load of the

first t jobs in coordinate k which is at most the free space reserved for small jobs
by the solution for MILP.

The function Ψ is essentially a pessimistic estimator of the load exceeding
the expectation summed over the machines and coordinates. Regardless how
p1, ...,pt−1 are assigned, there is always an assignment for pt that increases the
potential function by at most a small multiplicative factor. By assigning at each
step the job to the machine that minimizes the potential, we have an integral
assignment and Ψn ⊕ md exp(2Π2dpmax), where pmax is the maximum value over
all small jobs and all coordinates.

(Step 3) In the above integral assignment, let m(x) be the number of ma-
chines with load exceeding 1 + ι + x in any coordinate and let L be the set of
small jobs on machines with load at least 1 + ι in any coordinate. The bound
on Ψn above implies that m(x) · eΛ(Δ+x) ⊕ md exp(2Π2dpmax), which by setting

Π := 1/ι log(d3/ι3) gives that m(x) ⊕ O(md)
(d3/Δ3)1+x/ε .

58 N. Bansal, T. Vredeveld, and R. van der Zwaan

A direct calculation then yields that the total load of jobs on machines with
load at least 1 + ι is at most O(ιm/d). By removing the small jobs from these
machines and reassigning them in round-robin fashion over all machines, the
loads are increased by at most O(ι) on each machine.

Implementation in Linear Time. While step 1 and 3 can be implemented
directly in linear time, step 2 is more complicated. For simplicity, let Σ be the
maximum value of any coordinate of any small jobs. The trivial implementation
takes O(md) time per job, by trying each machine for each job and evaluating
the resulting value of Ψ. To get around this, we do the following. Greedily glue
small jobs of the same type together, as long as the resulting small job is still
small. This results in jobs B that have their coordinates in {0} ∃ [ιΣ/2d, Σ] and
at most |Tsmall| jobs S with coordinates in [0, Σ/2]. Then, round the coordinates
of jobs from B down to a multiple of ι(ιΣ/2d), at the cost of a small increase in
the loads. This ensures that during the assignment of jobs from B, the machines
have only few distinct loads. This enables that for each job, the best machine
can be found in O(1) time and updating takes O(d) time. A similar strategy for
S would fail, but notice that |S| is relatively small. If |S| ⊕ m, then assign one
job to each machine, increasing the loads by at most O(Σ). If |S| > m then the
number of machines is at most |Tsmall| and the trivial algorithm takes O(|Tsmall|2)
time. This results in the claimed running time of Theorem 4.

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. Journal of Scheduling 1, 55–66 (1998)

2. Bonifaci, V., Wiese, A.: Scheduling unrelated machines of few different types.
CoRR, abs/1205.0974 (2012)

3. Calabro, C., Impagliazzo, R., Paturi, R.: A duality between clause width and clause
density for SAT. In: IEEE Conference on Computational Complexity, pp. 252–260.
IEEE Computer Society (2006)

4. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM J. Com-
put. 33(4), 837–851 (2004)

5. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res.
Lett. 34(5), 564–568 (2006)

6. Epstein, L., Tassa, T.: Vector assignment problems: a general framework. J. Algo-
rithms 48(2), 360–384 (2003)

7. Epstein, L., Tassa, T.: Vector assignment schemes for asymmetric settings. Acta
Inf. 42(6-7), 501–514 (2006)

8. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Combinatorica 7, 49–65 (1987)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company (1979)

10. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. J. ACM 34(1), 144–162 (1987)

11. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. SIAM J. Com-
put. 17(3), 539–551 (1988)

12. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

Approximating Vector Scheduling 59

13. Jansen, K.: An eptas for scheduling jobs on uniform processors: Using an milp relax-
ation with a constant number of integral variables. SIAM J. Discrete Math. 24(2),
457–485 (2010)

14. Kannan, R.: Minkowskis convex body theorem and integer programming. Mathe-
matics of Operations Research 12, 415–440 (1987)

15. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the onedimen-
sional bin-packing problem. In: FOCS, pp. 312–320 (1982)

16. Lenstra, H.W.: Integer programming with a fixed number of variables. Mathematics
of Operations Research 8(4), 538–548 (1983)

17. Meyerson, A., Roytman, A., Tagiku, B.: Online multidimensional load balanc-
ing. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.)
APPROX/ RANDOM 2013. LNCS, vol. 8096, pp. 287–302. Springer, Heidelberg
(2013)

18. Rothvoß, T.: Approximating bin packing within O(log OPT log log OPT) bins. In:
FOCS (2013)

False-Name Manipulation in Weighted Voting Games
Is Hard for Probabilistic Polynomial Time

Anja Rey and Jörg Rothe

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany

Abstract. False-name manipulation refers to the question of whether a player
in a weighted voting game can increase her power by splitting into several play-
ers and distributing her weight among these false identities. Analogously to this
splitting problem, the beneficial merging problem asks whether a coalition of
players can increase their power in a weighted voting game by merging their
weights. Aziz et al. [1] analyze the problem of whether merging or splitting play-
ers in weighted voting games is beneficial in terms of the Shapley–Shubik and
the normalized Banzhaf index, and so do Rey and Rothe [20] for the probabilistic
Banzhaf index. All these results provide merely NP-hardness lower bounds for
these problems, leaving the question about their exact complexity open. For the
Shapley–Shubik and the probabilistic Banzhaf index, we raise these lower bounds
to hardness for PP, “probabilistic polynomial time,” and provide matching upper
bounds for beneficial merging and, whenever the new players’ weights are given,
also for beneficial splitting, thus resolving previous conjectures in the affirma-
tive. It follows from our results that beneficial merging and splitting for these two
power indices cannot be solved in NP, unless the polynomial hierarchy collapses,
which is considered highly unlikely.

1 Introduction

Weighted voting games are an important class of succinctly representable, simple games.
They can be used to model cooperation among players in scenarios where each player is
assigned a weight, and a coalition of players wins if and only if their joint weight meets
or exceeds a given quota. Typical real-world applications of weighted voting games in-
clude decision-making in legislative bodies (e.g., parliamentary voting) and shareholder
voting (see the book by Chalkiadakis et al. [6] for further concrete applications and lit-
erature pointers). In particular, the algorithmic and complexity-theoretic properties of
problems related to weighted voting have been studied in depth, see, e.g., the work of
Elkind et al. [8,9], Bachrach et al. [4], Zuckerman et al. [26], and [6] for an overview.

Bachrach and Elkind [3] were the first to study false-name manipulation in weighted
voting games: Is it possible for a player to increase her power by splitting into several
players and distributing her weight among these false identities? Relatedly, is it possible
for two or more players to increase their power in a weighted voting game by merging
their weights? The most prominent measures of a player’s power, or influence, in a
weighted voting game are the Shapley–Shubik and Banzhaf power indices. Merging
and extending the results of [3] and [2], Aziz et al. [1] in particular study the problem
of whether merging or splitting players in weighted voting games is beneficial in terms

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 60–71, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

False-Name Manipulation in Weighted Voting Games Is PP-Hard 61

of the Shapley–Shubik index [21,22] and the normalized Banzhaf index [5] (see Sec-
tion 2 for formal definitions). Rey and Rothe [20] extend this study for the probabilistic
Banzhaf index proposed by Dubey and Shapley [7]. All these results, however, pro-
vide merely NP-hardness lower bounds. Aziz et al. [1, Remark 13 on p. 72] note that
“it is quite possible that our problems are not in NP” (and thus are not NP-complete).
Faliszewski and Hemaspaandra [10] provide the best known upper bound for the ben-
eficial merging problem for two players with respect to the Shapley–Shubik index: It
is contained in the class PP, “probabilistic polynomial time,” which is considered to
be by far a larger class than NP, and they conjecture that this problem is PP-complete.
Rey and Rothe [20] observe that the same arguments give a PP upper bound for ben-
eficial merging also in terms of the probabilistic Banzhaf index, and they conjecture
PP-completeness as well. They also note that the same arguments cannot be transferred
immediately to the corresponding problem for the normalized Banzhaf index.

We resolve these conjectures in the affirmative by proving that beneficial merging
and splitting (for given new weights) are PP-complete problems both for the Shapley–
Shubik and the probabilistic Banzhaf index. Beneficial splitting in general (i.e., if the
number of new false identities is given, but not their actual weights) belongs to NPPP

and is PP-hard for the same two indices. Thus, none of these six problems can be in NP,
unless the polynomial hierarchy collapses to its first level, which is considered highly
unlikely.

2 Preliminaries

We will need the following concepts from cooperative game theory (see, e.g., the text-
book by Chalkiadakis et al. [6]). A coalitional game with transferable utilities, G =
(N,v), consists of a set N = {1, . . . ,n} of players (or, synonymously, agents) and a
coalitional function v : P(N)⊕ R with v(/0) = 0, where P(N) denotes the power set
of N. G is said to be monotonic if v(B)≤ v(C) whenever B⊆C for coalitions B,C⊆ N,
and it is simple if it is monotonic and v : P(N)⊕ {0,1}, that is, v maps each coalition
C ⊆ N to a value that indicates whether C wins (i.e., v(C) = 1) or loses (i.e., v(C) = 0),
where we require that the grand coalition N is always winning.

The probabilistic Banzhaf power index of a player i⊗N in a simple game G (see [7])
is defined by

Banzhaf(G , i) =
1

2n−1 ∑
C⊆N�{i}

(v(C∈{i})− v(C)) . (1)

Intuitively, this index measures the power of player i in terms of the probability that i
turns a losing coalition C⊆ N�{i} into a winning coalition by joining it, and therefore
is pivotal for the success of C.

For comparison, the normalized Banzhaf index of i in G defined by Banzhaf [5], who
rediscovered a notion originally introduced by Penrose [18], is obtained by dividing the
raw Banzhaf index of i in G , which is the term ∑C⊆N�{i} (v(C∈{i})− v(C)) in (1), not
by 2n−1, but by the sum of the raw Banzhaf indices of all players in G ; see [7,11,20] for
a discussion of the differences between these two power indices.

62 A. Rey and J. Rothe

Unlike the Banzhaf indices, the Shapley–Shubik index of i in G takes into account
the order in which players enter coalitions and is defined by

ShapleyShubik(G , i) =
1
n! ∑

C⊆N�{i}
∗C∗! · (n− 1−∗C∗)! · (v(C∈{i})− v(C)) .

Since the number of coalitions is exponential in the number of players, specifying
coalitional games by listing all values of their coalitional function would require ex-
ponential space. For algorithmic purposes, however, it is important that these games
can be represented succinctly. Certain simple games can be represented compactly by
weighted voting games. A weighted voting game (WVG) G = (w1, . . . ,wn; q) consists
of nonnegative integer weights wi, 1≤ i≤ n, and a quota q, where wi is the ith player’s
weight. For each coalition C ⊆ N, letting w(C) denote ∑i⊗C wi, C wins if w(C) ≥ q,
and it loses otherwise. Requiring the quota to satisfy 0 < q ≤ w(N) ensures that the
empty coalition loses and the grand coalition wins. Weighted voting games have been
intensely studied from a computational complexity point of view (see, e.g., [8,9,4,26]
and [6, Chapter 4] for an overview).

Aziz et al. [1] introduce the merging and splitting operations for WVGs. We use
the following notation. Given a WVG G = (w1, . . . ,wn; q) and a nonempty1 coalition
S ⊆ {1, . . . ,n}, let G&S = (w(S),wj1 , . . . ,wjn−∗S∗ ; q) with { j1, . . . , jn−∗S∗} = N � S de-
note the new WVG in which the players in S have been merged into one new player of
weight w(S).2 Similarly, given a WVG G = (w1, . . . ,wn; q), a player i, and an integer
m ≥ 2, define the set of WVGs Gi÷m = (w1, . . . ,wi−1,wn+1, . . . ,wn+m,wi+1, . . . ,wn; q)
in which i with weight wi is split into m new players n+1, . . . ,n+m having the weights
wn+1, . . . ,wn+m such that ∑m

j=1 wn+ j = wi. Note that there is a set of such WVGs Gi÷m,
since there might be several possibilities of distributing i’s weight wi to the new players
n+ 1, . . . ,n+m satisfying ∑m

j=1 wn+ j = wi. If the new players’ weights are also given
beforehand, there is one unique new game, and splitting is the inverse function to merg-
ing. For a power index PI, the beneficial merging and splitting problems are defined as
follows.

PI-BENEFICIALMERGE

Given: A WVG G = (w1, . . . ,wn; q) and a nonempty coalition S⊆ {1, . . . ,n}.
Question: Is it true that PI(G&S,1)> ∑i⊗S PI(G , i)?

PI-BENEFICIALSPLIT

Given: A WVG G = (w1, . . . ,wn; q), a player i, and an integer m≥ 2.

Question: Is it possible to split i into m new players n + 1, . . . ,n + m with weights
wn+1, . . . ,wn+m satisfying ∑m

j=1 wn+ j = wi such that in this new WVG Gi÷m, it
holds that ∑m

j=1 PI(Gi÷m,n+ j) > PI(G , i)?

1 We omit the empty coalition, since this would slightly change the idea of the problem.
2 Note that the players’ order doesn’t matter when considering the normalized or probabilistic

Banzhaf index.

False-Name Manipulation in Weighted Voting Games Is PP-Hard 63

The goal of this paper is to classify these problems in terms of their complexity
for both the Shapley–Shubik and the probabilistic Banzhaf index. We assume that the
reader is familiar with the basic complexity-theoretic concepts such as the complexity
classes P and NP, the polynomial-time many-one reducibility, denoted by ≤p

m, and the
notions of hardness and completeness with respect to ≤p

m (see, e.g., the textbook by
Papadimitriou [17]). Valiant [24] introduced #P as the class of functions that give the
number of solutions of the instances of NP problems. For a decision problem A ⊗ NP,
we denote this function by #A. For example, if SAT is the satisfiability problem from
propositional logic, then #SAT denotes the function mapping any boolean formula ϕ to
the number of truth assignments satisfying ϕ . There are various notions of reducibility
between functional problems in #P (see [10] for an overview, literature pointers, and
discussion). Here, we need only the most restrictive one: We say a function f parsimo-
niously reduces to a function g if there exists a polynomial-time computable function h
such that for each input x, f (x) = g(h(x)). That is, for functional problems f ,g ⊗ #P,
a parsimonious reduction h from f to g transfers each instance x of f into an instance
h(x) of g such that f (x) and g(h(x)) have the same number of solutions. We say that
g is #P-parsimonious-hard if every f ⊗ #P parsimoniously reduces to g. We say that g
is #P-parsimonious-complete if g is in #P and #P-parsimonious-hard. It is known that,
given a WVG G and a player i, computing the raw Banzhaf index is #P-parsimonious-
complete [19], whereas computing the raw Shapley–Shubik index is not [10], although
it is #P-hard in a weaker sense and, of course, is in #P as well.

Gill [12] introduced the class PP (“probabilistic polynomial time”) that contains all
decision problems X for which there exist a function f ⊗ #P and a polynomial p such
that for all instances x, x⊗X if and only if f (x)≥ 2p(|x|)−1. It is easy to see that NP⊆PP;
in fact, PP is considered to be by far a larger class than NP, due to Toda’s theorem [23]:
PP is at least as hard (in terms of polynomial-time Turing reductions) as any problem in
the polynomial hierarchy (i.e., PH⊆ PPP). NPPP, the second level of Wagner’s counting
hierarchy [25], is the class of problems solvable by an NP machine with access to a
PP oracle; Mundhenk et al. [16] identified NPPP-complete problems related to finite-
horizon Markov decision processes.

3 Beneficial Merging and Splitting Is PP-Hard

In this section we prove that beneficial merging and splitting is PP-hard, and we provide
matching upper bounds for beneficial merging and splitting (for the latter, assuming that
the new players’ weights are given) both for the Shapley–Shubik and the probabilistic
Banzhaf index. We start with the probabilistic Banzhaf index.

3.1 The Probabilistic Banzhaf Power Index

We will use the following result due to Faliszewski and Hemaspaandra [10, Lemma 2.3].

Lemma 1 (Faliszewski and Hemaspaandra [10]). Let F be a #P-parsimonious-
complete function. The problem COMPARE-F = {(x,y) |F(x)> F(y)} is PP-complete.

64 A. Rey and J. Rothe

The well-known NP-complete problem SUBSETSUM (which is a special variant of
the KNAPSACK problem) asks, given a sequence (a1, . . . ,an) of positive integers and a
positive integer q, do there exist x1, . . . ,xn ⊗ {0,1} such that ∑n

i=1 xiai = q? It is known
that #SUBSETSUM is #P-parsimonious-complete (see, e.g., [13,17] for parsimonious
reductions from #3-SAT via #EXACTCOVERBY3-SETS to #SUBSETSUM). Hence, by
Lemma 1, we have the following.

Corollary 1. COMPARE-#SUBSETSUM is PP-complete.

Our goal is to provide a ≤p
m-reduction from COMPARE-#SUBSETSUM to Banzhaf-

BENEFICIALMERGE. However, to make this reduction work, it will be useful to
consider two restricted variants of COMPARE-#SUBSETSUM, which we denote
by COMPARE-#SUBSETSUM-R and COMPARE-#SUBSETSUM-RR, show their PP-
hardness, and reduce COMPARE-#SUBSETSUM-RR to Banzhaf-BENEFICIALMERGE.
This will be done in Lemmas 2 and 3 and in Theorem 1. In all restricted variants of
COMPARE-#SUBSETSUM we may assume, without loss of generality, that the target
value q in a related SUBSETSUM instance ((a1, . . . ,an),q) satisfies 1≤ q≤α−1, where
α = ∑n

i=1 ai.

COMPARE-#SUBSETSUM-R

Given: A sequence A = (a1, . . . ,an) of positive integers and two positive integers q1 and
q2 with 1≤ q1,q2 ≤ α−1, where α = ∑n

i=1 ai.

Question: Is the number of subsequences of A summing up to q1 greater than the
number of subsequences of A summing up to q2, that is, does it hold that
#SUBSETSUM((a1, . . . ,an),q1)> #SUBSETSUM((a1, . . . ,an),q2)?

Lemma 2. COMPARE-#SUBSETSUM≤p
m COMPARE-#SUBSETSUM-R.

Proof. Given an instance (X ,Y) of COMPARE-#SUBSETSUM, X = ((x1, . . . ,xm),qx)
and Y = ((y1, . . . ,yn),qy), construct a COMPARE-#SUBSETSUM-R instance (A,q1,q2)
as follows. Let α = ∑m

i=1 xi and define A = (x1, . . . ,xm,2αy1, . . . ,2αyn), q1 = qx, and
q2 = 2αqy. This construction can obviously be achieved in polynomial time. It holds
that integers from A can only sum up to qx ≤ α − 1 if they do not contain multiples of
2α , thus #SUBSETSUM(A,q1) = #SUBSETSUM((x1, . . . ,xm),qx). On the other hand, q2

can only be obtained by multiples of 2α , since ∑m
i=1 xi = α is too small. Thus, it holds

that #SUBSETSUM(A,q2) = #SUBSETSUM((y1, . . . ,yn),qy). It follows that (X ,Y) is in
COMPARE-#SUBSETSUM if and only if (A,q1,q2) is in COMPARE-#SUBSETSUM-R. ❑

In order to perform the next step, we need to ensure that all integers in a COM-
PARE-#SUBSETSUM-R instance are divisible by 8. This can easily be achieved, by mul-
tiplying each integer in an instance ((a1, . . . ,an),q1,q2) by 8, obtaining ((8a1, . . . ,8an),
8q1,8q2) without changing the number of solutions for both related SUBSETSUM in-
stances. Thus, from now on, without loss of generality, we assume that for a given COM-
PARE-#SUBSETSUM-R instance ((a1, . . . ,an),q1,q2), it holds that ai,q j ⊆ 0 mod 8 for
1≤ i≤ n and j ⊗ {1,2}.

Now, we consider our even more restricted variant of this problem.

False-Name Manipulation in Weighted Voting Games Is PP-Hard 65

COMPARE-#SUBSETSUM-RR

Given: A sequence A = (a1, . . . ,an) of positive integers.

Question: Is the number of subsequences of A summing up to (α/2) − 2 greater
than the number of subsequences of A summing up to (α/2) − 1, i.e.,
#SUBSETSUM((a1, . . . ,an),(α/2)− 2) > #SUBSETSUM((a1, . . . ,an),(α/2)− 1),
where α = ∑n

i=1 ai?

Lemma 3. COMPARE-#SUBSETSUM-R≤p
m COMPARE-#SUBSETSUM-RR.

Proof. Given an instance (A,q1,q2) of COMPARE-#SUBSETSUM-R, where we assume
that A = (a1, . . . ,an), q1, and q2 satisfy ai,q j ⊆ 0 mod 8 for 1≤ i≤ n and j ⊗ {1,2}, we
construct an instance B of COMPARE-#SUBSETSUM-RR as follows. (This reduction is
inspired by the standard reduction from SUBSETSUM to PARTITION due to Karp [14].)

Letting α = ∑n
i=1 ai, define

B = (a1, . . . ,an,2α− q1,2α + 1− q2,2α + 3+ q1+ q2,3α).

This instance can obviously be constructed in polynomial time. Observe that

T =

(
n

∑
i=1

ai

)

+(2α− q1)+ (2α + 1− q2)+ (2α + 3+ q1+ q2)+ 3α = 10α + 4,

and therefore, (T/2)− 2 = 5α and (T/2)− 1 = 5α + 1. We show that (A,q1,q2) is in
COMPARE-#SUBSETSUM-R if and only if B is in COMPARE-#SUBSETSUM-RR.

First, we examine which subsequences of B sum up to 5α . Consider two cases.
Case 1: If 3α is added, 2α +3+q1+q2 cannot be added, as it would be too large. Also,
2α +1−q2 cannot be added, leading to an odd sum. So, 2α−q1 has to be added, as the
remaining α are too small. Since 3α+2α−q1 = 5α−q1, 5α can be achieved by adding
some ai’s if and only if there exists a subset A↑ ⊆ {1, . . . ,n} such that ∑i⊗A↑ ai = q1 (i.e.,
A↑ is a solution of the SUBSETSUM instance (A,q1)).
Case 2: If 3α is not added, but 2α +3+q1 +q2, an even number can only be achieved
by adding 2α + 1− q2, thus, α − 4− q1 remain. 2α − q1 is too large, while no subse-
quence of A sums up to α − 4− q1, because of the assumption of divisibility by 8. If
neither 3α nor 2α+3+q1+q2 are added, the remaining 5α+1−q1−q2 are too small.

Thus, the only possibility to obtain 5α is to find a subsequence of A adding up to q1.
Thus, #SUBSETSUM(A,q1) = #SUBSETSUM(B,5α).

Second, for similar reasons, a sum of 5α + 1 can only be achieved by adding 3α +
(2α +1−q2) and a term ∑i⊗A↑ ai, where A↑ is a subset of {1, . . . ,n} such that ∑i⊗A↑ ai =
q2. Hence, #SUBSETSUM(A,q2) = #SUBSETSUM(B,5α + 1).

Thus, the relation #SUBSETSUM(A,q1)> #SUBSETSUM(A,q2) holds if and only if
#SUBSETSUM(B,5α)> #SUBSETSUM(B,5α + 1), which completes the proof. ❑

We now are ready to prove the main result of this section.

Theorem 1. Banzhaf-BENEFICIALMERGE is PP-complete, even if only three players
of equal weight merge.

66 A. Rey and J. Rothe

Proof. Membership of Banzhaf-BENEFICIALMERGE in PP has already been observed
in [20, Theorem 3]. It follows from the fact that the raw Banzhaf index is in #P and
that #P is closed under addition and multiplication by two,3 and, furthermore, since
comparing the values of two #P functions on two (possibly different) inputs reduces
to a PP-complete problem. This technique (which was proposed by Faliszewski and
Hemaspaandra [10] and applies their Lemma 2.10) works, since PP is closed under
≤p

m -reducibility.
We show PP-hardness of Banzhaf-BENEFICIALMERGE by means of a≤p

m-reduction
from COMPARE-#SUBSETSUM-RR, which is PP-hard by Corollary 1 via Lemmas 2
and 3. Our construction is inspired by the NP-hardness results by Aziz et al. [2] and
Rey and Rothe [20].

Given an instance A = (a1, . . . ,an) of COMPARE-#SUBSETSUM-RR, construct the
following instance for Banzhaf-BENEFICIALMERGE. Let α =∑n

i=1 ai. Define the WVG

G = (2a1, . . . ,2an,1,1,1,1; α),

and let the merging coalition be S = {n+ 2,n+ 3,n+ 4}. Letting N = {1, . . . ,n}, it
holds that

Banzhaf(G ,n+ 2) =
1

2n+3

∥∥
∥
∥
∥

{

C ⊆ {1, . . . ,n+ 1,n+ 3,n+ 4}
∣∣
∣
∣
∣ ∑

i⊗C

wi = α− 1

⎡∥∥
∥
∥
∥

=
1

2n+3

(∥
∥
∥
∥
∥

{

A↑ ⊆ N

∣
∣
∣
∣
∣ ∑

i⊗A↑
2ai = α− 1

⎡∥
∥
∥
∥
∥
+ 3 ·

∥
∥
∥
∥
∥

{

A↑ ⊆ N

∣
∣
∣
∣
∣

1+ ∑
i⊗A↑

2ai = α− 1

⎡∥
∥
∥
∥
∥

(2)

+3 ·
∥
∥∥
∥
∥

{

A↑ ⊆ N

∣
∣∣
∣
∣

2+ ∑
i⊗A↑

2ai = α− 1

⎡∥
∥∥
∥
∥
+

∥
∥∥
∥
∥

{

A↑ ⊆ N

∣
∣∣
∣
∣

3+ ∑
i⊗A↑

2ai = α− 1

⎡∥
∥∥
∥
∥

)

(3)

=
1

2n+3

(

3 ·
∥
∥
∥∥
∥

{

A↑ ⊆ N

∣
∣
∣∣
∣ ∑

i⊗A↑
2ai = α− 2

⎡∥
∥
∥∥
∥
+

∥
∥
∥∥
∥

{

A↑ ⊆ N

∣
∣
∣∣
∣ ∑

i⊗A↑
2ai = α− 4

⎡∥
∥
∥∥
∥

)

,

since the 2ai’s can only add up to an even number. The first of the four sets in (2) and (3)
refers to those coalitions that do not contain any of the players n+ 1, n+ 3, and n+ 4;
the second, third, and fourth set in (2) and (3) refers to those coalitions containing either
one, two, or three of them, respectively. Since the players in S have the same weight,
players n+ 3 and n+ 4 have the same probabilistic Banzhaf index as player n+ 2.

3 Again, note that this idea cannot be transferred straightforwardly to the normalized Banzhaf
index, since in different games the indices have possibly different denominators, not only
different by a factor of some power of two, as is the case for the probabilistic Banzhaf index.

False-Name Manipulation in Weighted Voting Games Is PP-Hard 67

Furthermore, the new game after merging is G&{n+2,n+3,n+4}= (3,2a1, . . .2an,1; α)
and, similarly to above, the Banzhaf index of the first player is calculated as follows:

Banzhaf
⎣
G&{n+2,n+3,n+4},1

⎤

=
1

2n+1

∥∥
∥
∥
∥

{

C ⊆ {2, . . . ,n+ 2}
∣∣
∣
∣
∣ ∑

i⊗C

wi ⊗ {α− 3,α− 2,α− 1}
⎡∥∥
∥
∥
∥

=
1

2n+1

(∥
∥
∥∥
∥

{

A↑ ⊆ N

∣
∣
∣∣
∣ ∑

i⊗A↑
2ai ⊗ {α− 3,α− 2,α− 1}

⎡∥
∥
∥∥
∥

+

∥
∥
∥
∥∥

{

A↑ ⊆ N

∣
∣
∣
∣∣

1+ ∑
i⊗A↑

2ai ⊗ {α− 3,α− 2,α− 1}
⎡∥
∥
∥
∥∥

)

=
1

2n+1

(

2 ·
∥
∥
∥
∥
∥

{

A↑ ⊆ N

∣
∣
∣
∣
∣ ∑

i⊗A↑
2ai = α− 2

⎡∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

{

A↑ ⊆ N

∣
∣
∣
∣
∣ ∑

i⊗A↑
2ai = α− 4

⎡∥
∥
∥
∥
∥

)

.

Altogether, it holds that

Banzhaf
⎣
G&{n+2,n+3,n+4},1

⎤ − ∑
i⊗{n+2,n+3,n+4}

Banzhaf(G , i)

=
1

2n+1

(

2 ·
∥
∥
∥
∥∥

{

A↑ ⊆ N

∣
∣
∣
∣∣ ∑

i⊗A↑
2ai = α− 2

⎡∥
∥
∥
∥∥
+

∥
∥
∥
∥∥

{

A↑ ⊆ N

∣
∣
∣
∣∣ ∑

i⊗A↑
2ai = α− 4

⎡∥
∥
∥
∥∥

)

− 3
2n+3

(

3 ·
∥
∥
∥
∥
∥

{

A↑ ⊆ N

∣
∣
∣
∣
∣ ∑

i⊗A↑
2ai = α− 2

⎡∥
∥
∥
∥
∥
+

∥
∥
∥
∥
∥

{

A↑ ⊆ N

∣
∣
∣
∣
∣ ∑

i⊗A↑
2ai = α− 4

⎡∥
∥
∥
∥
∥

)

=

⎦
1

2n+1 ·2−
3

2n+3 ·3
⎨∥
∥∥
∥
∥

{

A↑ ⊆ N

∣
∣∣
∣
∣ ∑

i⊗A↑
2ai = α− 2

⎡∥
∥∥
∥
∥

+

⎦
1

2n+1 −
3

2n+3

⎨∥
∥
∥∥
∥

{

A↑ ⊆ N

∣
∣
∣∣
∣ ∑

i⊗A↑
2ai = α− 4

⎡∥
∥
∥∥
∥

= − 1
2n+3 ·

∥
∥
∥
∥
∥

{

A↑ ⊆ N

∣
∣
∣
∣
∣ ∑

i⊗A↑
ai =

α
2
− 1

⎡∥
∥
∥
∥
∥
+

1
2n+3 ·

∥
∥
∥
∥
∥

{

A↑ ⊆ N

∣
∣
∣
∣
∣ ∑

i⊗A↑
ai =

α
2
− 2

⎡∥
∥
∥
∥
∥
,

which is greater than zero if and only if ∗{A↑ ⊆ N | ∑i⊗A↑ ai = (α/2)− 2}∗ is greater
than ∗{A↑ ⊆ N | ∑i⊗A↑ ai = (α/2)− 1}∗, which in turn is the case if and only if A is in
COMPARE-#SUBSETSUM-RR. ❑

It is known (see [20]) that both the beneficial merging problem for a coalition S of size
2 and the beneficial splitting problem for m = 2 false identities can trivially be decided
in polynomial time for the probabilistic Banzhaf index, since the sum of the power (in
terms of this index) of two players is always equal to the power of the player that is
obtained by merging them. Although it may seem as if this implied that merging or
splitting were never beneficial regarding this index, this cannot be generalized to merg-
ing or splitting more than two players, by repeatedly applying the above result to pairs

68 A. Rey and J. Rothe

of players step by step. For example, as soon as two players merge, a third player’s prob-
abilistic Banzhaf index might have already changed in the new game, before merging
her with another player in a subsequent step. Analogously to the proof of Theorem 1, it
can be shown that the beneficial splitting problem for at least three false identities with
given new weights is PP-complete.

On the other hand, a PP upper bound for the general beneficial splitting problem
cannot be shown in any straightforward way. Here, we can only show membership
in NPPP, and we conjecture that this problem is even complete for this class.

Theorem 2. Banzhaf-BENEFICIALSPLIT is PP-hard (even if the given player can only
split into three players of equal weight) and belongs to NPPP.

Proof. With m being part of the input, there are exponentially many possibilities to
distribute the split player’s weight to her false identities. Nondeterministically guessing
such a distribution and then, for each distribution guessed, asking a PP oracle to check
in polynomial time whether their combined Banzhaf power in the new game is greater
than the original player’s Banzhaf power in the original game, shows that Banzhaf-
BENEFICIALSPLIT is in NPPP.

In order to show PP-hardness for Banzhaf-3-BENEFICIALSPLIT, we use the same
techniques as in Theorem 1, appropriately modified. ❑

3.2 The Shapley–Shubik Power Index

In order to prove PP-hardness for the merging and splitting problems with respect to
the Shapley–Shubik index, we need to take a further step back.

EXACTCOVERBY3-SETS (X3C, for short) is another well-known NP-complete de-
cision problem: Given a set B of size 3k and a family S of subsets of B that have size
three each, does there exist a subfamily S ↑ of S such that B is exactly covered by S ↑?

Theorem 3. ShapleyShubik-BENEFICIALMERGE is PP-complete, even if only two play-
ers of equal weight merge.

Proof. The PP upper bound, which has already been observed for two players in [10],
can be shown analogously to the proof of Theorem 1.

For proving the lower bound, observe that the size of a coalition a player is pivotal for
is crucial for determining the player’s Shapley–Shubik index. Pursuing the techniques
of Faliszewski and Hemaspaandra [10], we examine the problem COMPARE-#X3C,
which is PP-complete by Lemma 1. We will apply the following useful properties of
X3C instances shown as Lemma 2.7 in [10]: Every X3C instance (B↑,S ↑) can be
transformed into an X3C instance (B,S), where ∗B∗= 3k and ∗S ∗= n, that satisfies
k/n = 2/3 without changing the number of solutions, i.e., #X3C(B,S) = #X3C(B↑,S ↑).

Now, by the properties of the standard reduction from X3C to SUBSETSUM (which
in particular preserves the number of solutions, i.e., #X3C parsimoniously reduces to
#SUBSETSUM, as well as the “input size” n and the “solution size” k), we can assume
that in a given COMPARE-#SUBSETSUM instance each subsequence summing up to the

False-Name Manipulation in Weighted Voting Games Is PP-Hard 69

given integer q is of size 2n/3. Following the track of the reductions from COMPARE-
#SUBSETSUM via COMPARE-#SUBSETSUM-R to COMPARE-#SUBSETSUM-RR in
Lemmas 2 and 3, a solution A↑ ⊆ {1, . . . ,n} to a given instance A = (a1, . . . ,an) of the
latter problem (A↑ satisfying either ∑i⊗A↑ ai = (α/2)− 2 or ∑i⊗A↑ ai = (α/2)− 1, where
α = ∑n

i=1 ai) can be assumed to satisfy ∗A↑∗ = k = (n+2)/3. Under this assumption,
we show PP-hardness of ShapleyShubik-BENEFICIALMERGE via a reduction from
COMPARE-#SUBSETSUM-RR. Given such an instance, we construct the WVG G =
(a1, . . . ,an,1,1; α/2) and consider coalition S = {n+ 1,n+ 2}. Let N = {1, . . . ,n} and
define X = #SUBSETSUM(A,(α/2)− 1) and Y = #SUBSETSUM(A,(α/2)− 2). Then,

ShapleyShubik(G ,n+ 1) = ShapleyShubik(G ,n+ 2)

=
1

(n+ 2)!

⎛

⎫
⎫
⎫
⎬

⎛

⎫
⎫
⎫
⎬ ∑

C⊆N such that
∑

i⊗C
ai=(α/2)−1

∗C∗!(n+ 1−∗C∗)!

⎞

⎟
⎟
⎟
⎠
+

⎛

⎫
⎫
⎫
⎬ ∑

C⊆N such that
∑

i⊗C
ai=(α/2)−2

(∗C∗+ 1)!(n−∗C∗)!

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

=
1

(n+ 2)!
(X · k!(n+ 1− k)!+Y · (k+ 1)!(n− k)!).

Merging the players in S, we obtain G&S = (2,a1, . . . ,an; α/2). The Shapley–Shubik
index of the new player in G&S is

ShapleyShubik(G&S,1) =
1

(n+ 1)! ∑
C⊆N such that

∑
i⊗C

ai⊗{(α/2)−1,(α/2)−2}

∗C∗!(n−∗C∗)!

=
1

(n+ 1)!
(X +Y) · k!(n− k)!.

All in all,

ShapleyShubik(G&S,1)− (ShapleyShubik(G ,n+ 1)+ShapleyShubik(G ,n+ 2))

=
(X +Y) · k!(n− k)!

(n+ 1)!
− 2(X · k!(n+ 1− k)!+Y · (k+ 1)!(n− k)!)

(n+ 2)!

=
k!(n− k)!
(n+ 2)!

(n− 2k)(−X +Y). (4)

Since we assumed that k = (n+2)/3 and we can also assume that n > 4 (because we
added four integers in the construction in the proof of Lemma 3), it holds that n−2k =
(n−4)/3 > 0. Thus the term (4) is greater than zero if and only if Y is greater than X ,
which is true if and only if A is in COMPARE-#SUBSETSUM-RR. ❑

Analogously to the probabilistic Banzhaf index, we can show that also for the
Shapley–Shubik index it is PP-complete to decide if splitting a player into players with
given weights is beneficial. For the more general case where the number of false identi-
ties but no actual weights are given, we can raise the previously known lower bound to
PP-hardness. However, the upper bound of PP cannot be transferred straightforwardly.

70 A. Rey and J. Rothe

Theorem 4. ShapleyShubik-BENEFICIALSPLIT is PP-hard (even if the given player
can only split into two players of equal weight) and belongs to NPPP.

Proof. The upper bound of NPPP holds due to analogous arguments as in the proof of
Theorem 2. Also, PP-hardness can be shown analogously to the proof of Theorem 2,
appropriately modified to use the arguments from the proof of Theorem 3 instead of
those from the proof of Theorem 1. ❑

4 Conclusions and Open Questions

Resolving previous conjectures in the affirmative, we have pinpointed the precise com-
plexity of the beneficial merging problem in weighted voting games for the Shapley–
Shubik and the probabilistic Banzhaf index by showing that it is PP-complete. We have
obtained the same result for beneficial splitting (a.k.a. false-name manipulation) when-
ever the new players’ weights are given. For a given number of false identities, but
unknown weights, we raised the known lower bound from NP-hardness to PP-hardness
and showed that it is contained in NPPP. For this problem, it remains open whether it
can be shown to be complete for NPPP, a huge complexity class that by Toda’s the-
orem [23] contains the entire polynomial hierarchy. NPPP is an interesting class, but
somewhat sparse in natural complete problems. The only (natural) NPPP-completeness
results we are aware of are due to Littman et al. [15], who analyze a variant of the satis-
fiability problem and questions related to probabilistic planning, and due to Mundhenk
et al. [16], who study problems related to finite-horizon Markov decision processes.

Another interesting open question is whether our results can be transferred also to the
beneficial merging and splitting problems for the normalized Banzhaf index. Finally, it
would be interesting to know to which classes of simple games, other than weighted
voting games, our results can be extended.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
This work has been supported in part by DFG grant RO-1202/14-1.

References

1. Aziz, H., Bachrach, Y., Elkind, E., Paterson, M.: False-name manipulations in weighted vot-
ing games. Journal of Artificial Intelligence Research 40, 57–93 (2011)

2. Aziz, H., Paterson, M.: False name manipulations in weighted voting games: Splitting, merg-
ing and annexation. In: Proceedings of the 8th International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 409–416. IFAAMAS (May 2009)

3. Bachrach, Y., Elkind, E.: Divide and conquer: False-name manipulations in weighted voting
games. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multiagent Systems, pp. 975–982. IFAAMAS (May 2008)

4. Bachrach, Y., Elkind, E., Meir, R., Pasechnik, D., Zuckerman, M., Rothe, J., Rosenschein,
J.S.: The cost of stability in coalitional games. In: Mavronicolas, M., Papadopoulou, V.G.
(eds.) SAGT 2009. LNCS, vol. 5814, pp. 122–134. Springer, Heidelberg (2009)

False-Name Manipulation in Weighted Voting Games Is PP-Hard 71

5. Banzhaf III, J.: Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Re-
view 19, 317–343 (1965)

6. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game
Theory. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and
Claypool Publishers (2011)

7. Dubey, P., Shapley, L.: Mathematical properties of the Banzhaf power index. Mathematics of
Operations Research 4(2), 99–131 (1979)

8. Elkind, E., Chalkiadakis, G., Jennings, N.: Coalition structures in weighted voting games. In:
Proceedings of the 18th European Conference on Artificial Intelligence, pp. 393–397. IOS
Press (July 2008)

9. Elkind, E., Goldberg, L., Goldberg, P., Wooldridge, M.: On the computational complexity of
weighted voting games. Annals of Mathematics and Artificial Intelligence 56(2), 109–131
(2009)

10. Faliszewski, P., Hemaspaandra, L.: The complexity of power-index comparison. Theoretical
Computer Science 410(1), 101–107 (2009)

11. Felsenthal, D., Machover, M.: Voting power measurement: A story of misreinvention. Social
Choice and Welfare 25(2), 485–506 (2005)

12. Gill, J.: Computational complexity of probabilistic Turing machines. SIAM Journal on Com-
puting 6(4), 675–695 (1977)

13. Hunt, H., Marathe, M., Radhakrishnan, V., Stearns, R.: The complexity of counting problems.
SIAM Journal on Computing 27(4), 1142–1167 (1998)

14. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.)
Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

15. Littman, M., Goldsmith, J., Mundhenk, M.: The computational complexity of probabilistic
planning. Journal of Artificial Intelligence Research 9(1), 1–36 (1998)

16. Mundhenk, M., Goldsmith, J., Lusena, C., Allender, E.: Complexity results for finite-horizon
Markov decision process problems. Journal of the ACM 47(4), 681–720 (2000)

17. Papadimitriou, C.: Computational Complexity, 2nd edn. Addison-Wesley (1995)
18. Penrose, L.: The elementary statistics of majority voting. Journal of the Royal Statistical

Society 109(1), 53–57 (1946)
19. Prasad, K., Kelly, J.: NP-completeness of some problems concerning voting games. Interna-

tional Journal of Game Theory 19(1), 1–9 (1990)
20. Rey, A., Rothe, J.: Complexity of merging and splitting for the probabilistic Banzhaf power

index in weighted voting games. In: Proceedings of the 19th European Conference on Artifi-
cial Intelligence, pp. 1021–1022. IOS Press (August 2010)

21. Shapley, L.: A value for n-person games. In: Kuhn, H., Tucker, A. (eds.) Contributions to
the Theory of Games. Annals of Mathematics Studies 40, vol. II. Princeton University Press
(1953)

22. Shapley, L., Shubik, M.: A method of evaluating the distribution of power in a committee
system. The American Political Science Review 48(3), 787–792 (1954)

23. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing 20(5),
865–877 (1991)

24. Valiant, L.: The complexity of computing the permanent. Theoretical Computer Science 8(2),
189–201 (1979)

25. Wagner, K.: The complexity of combinatorial problems with succinct input representations.
Acta Informatica 23, 325–356 (1986)

26. Zuckerman, M., Faliszewski, P., Bachrach, Y., Elkind, E.: Manipulating the quota in weighted
voting games. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence,
pp. 215–220. AAAI Press (July 2008)

A Natural Generalization of Bounded

Tree-Width and Bounded Clique-Width

Martin FürerΔ

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802, USA
furer@cse.psu.edu

http://cse.psu.edu/~furer

Abstract. We investigate a new width parameter, the fusion-width of a
graph. It is a natural generalization of the tree-width, yet strong enough
that not only graphs of bounded tree-width, but also graphs of bounded
clique-width, trivially have bounded fusion-width. In particular, there is
no exponential growth between tree-width and fusion-width, as is the
case between tree-width and clique-width. The new parameter gives a
good intuition about the relationship between tree-width and clique-
width.

Keywords: tree-width, clique-width, fusion-width, FPT, XP.

1 Introduction

Tree-width is a very natural concept. In an intuitive direct way, it measures how
similar a graph is to a tree. Many graph problems are not only easy for trees,
but also for other tree-like graphs. Indeed there is a huge number of efficient
algorithms for graphs of bounded tree-width.

While graphs of bounded tree-width are sparse, there are some dense graphs,
like the complete graph Kn or the complete bipartite graph Knn for which most
computational problems have a trivial solution. Graphs of bounded clique-width
are intended to cover classes of graphs for which many problems have efficient
solutions, even though they contain many dense graphs.

Not unlike tree-width, the concept of clique-width [11] is based on a type
of graph decompositions [7] chosen to allow fast algorithms for large classes of
graphs. As the name clique-width indicates, this measure is designed to ensure
that complete graphs have a very small width. But neither does clique-width
measure a closeness to a clique in a natural way, nor is there an intuitive width
(as in tree-width) involved in the definition of this concept. Even though the
definition of clique-width is fairly simple, it is harder to obtain an intuition for
the classes of graphs with small clique-width.

Bounded clique-width is an extension of bounded tree-width in the sense that
every class of bounded tree-width is also a class of bounded clique-width [11,6].

α Research supported in part by NSF Grant CCF-0964655 and CCF-1320814.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 72–83, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

http://cse.psu.edu/~furer

A Natural Generalization of Bounded Tree-Width and Bounded Clique-Width 73

But the worst case clique-width of graphs of tree-width k has been upper [11,6]
and lower [6] bounded by an exponential in k. The fact that this containment
result is a difficult theorem suggests that the extension from tree-width to clique-
width might not be very natural.

Equivalent to clique-width up to a factor of 2 is the notion of k-NLC (node
label controlled) graphs. Partial k-trees have been shown to be (2k+1 − 1)-NLC
trees [21]. k-NLC trees are a sub-class of the k-NLC graphs.

In contrast to clique-width (and the width measure produced by NLC trees),
we propose a natural generalization of tree-width, which simultaneously gener-
alizes clique-width. Furthermore, containment in the new class is obtained basi-
cally without increasing the parameter in both cases. We call the new measure
fusion-width. We initially choose the name multi-tree-width to emphasize that it
is a very natural extension of tree-width, by which it is motivated (even though
it is much more powerful). We follow the strong suggestion of two referees to
name it differently. The main difference is that while tree-width deals with single
vertices or pairs of vertices at a time, fusion-width deals with multiple vertices
(with the same label) or pairs of sets of vertices at a time.

We show that the clique-width grows at most exponentially in the fusion-
width, implying that all classes of graphs with bounded fusion-width also have
bounded clique-width. Furthermore, for some classes of graphs, there is really
such an exponential growth.

Other width parameters generalizing both tree-width and clique-width with-
out blowing up the parameter are rank-width [18] and boolean width [5]. The
rank-width has the additional nice property of being computable in FPT [15].
For an overview of width parameters, see [16]. There are infinite classes of graphs
where the clique-width is exponentially bigger than the boolean width.

The fusion-width has the additional property of being easy to work with and
of being the most natural generalization of tree-width and clique-width. This is
an essential strength of the new notion of fusion-width.

2 Definitions

For the definitions of FPT (fixed parameter tractable), XP (fixed parameter poly-
nomial time), and tree decomposition, see e.g. [12].

Definition 1. The tree-width tw(G) [19] of a graph G is the smallest integer
k, such that G has a tree decomposition with largest bag size k + 1.

It is NP-complete to decide whether the tree-width of a graph is at most k (if
k is part of the input) [1]. For every fixed k, there is a linear time algorithm
deciding whether the tree-width is at most k, and if that is the case, producing
a corresponding tree decomposition [2]. For arbitrary k, this task can still be
approximated. A tree decomposition of width O(k logn) [4] and even 5k [3] can
be found in polynomial time.

Closely related to tree-width is the notion of branch-width [20].

74 M. Fürer

Definition 2. A k-expression is an expression formed from the atoms i(v), the
two unary operations Θi,j and ιi∗j, and one binary operation ⊕ as follows.

– i(v) creates a vertex v with label i, where i is from the set {1, . . . , k}.
– Θi,j creates an edge between every vertex with label i and every vertex with

label j for i ≤= j.
– ιi∗j changes all labels i to j.
– ⊕ does a disjoint union of the generated labeled graphs.

Finally, the generated graph is obtained by deleting the labels.

Definition 3. The clique-width cw(G) of a graph is the smallest k such that
the graph can be defined by a k-expression [7,11].

Computing the clique-width is NP-hard [13]. Thus, one usually assumes that a
graph is given together with a k-expression. For constant k, the clique-width can
be approximated by a constant factor in polynomial time [18], in fact, this factor
can be made smaller than 3 [17].

3 The Fusion-Width

We define a new width measure fw(G) (fusion-width of G) with the properties

fw(G) ≤ tw(G) + 2 and fw(G) ≤ cw(G).

We want these containments to be obvious. Still, we would like all tasks known to
be solvable in polynomial time for graphs of bounded clique-width (and therefore
of bounded tree-width) to be solvable in polynomial time also for graphs of
bounded fusion-width.

These inequalities immediately imply that the class of graphs of bounded
clique-width is contained in the class of graphs of bounded fusion-width. The
definition of fusion-width is obtained as a simple extension of the definition of
clique-width by a new operation Δi, merging all vertices with label i.

Definition 4. A k-fusion-tree expression is an expression formed from the atoms
i⊗m∈, the three unary operations Θi,j, ιi∗j, and Δi, and one binary operation ⊕ as
follows.

– i⊗m∈ creates a graph consisting of m isolated vertices labeled i, where i is
from the set {1, . . . , k}.

– Θi,j creates an edge between every vertex with label i and every vertex with
label j for i ≤= j.

– ιi∗j changes all labels i to j.
– Δi merges all vertices labeled i into one vertex. The new vertex is labeled i

and is adjacent to every vertex not labeled i to which some vertex labeled i
was adjacent before the operation.

– ⊕ does a disjoint union.

Finally, the generated graph is obtained by deleting all the labels.

A Natural Generalization of Bounded Tree-Width and Bounded Clique-Width 75

It might be more natural not to require i ≤= j for Θi,j . This is insignificant,
but would have the nice effect of giving any clique a fusion-width of 1 instead
of 2. Thus the simplest graphs in this measure would just be the collections of
disjoint cliques. Nevertheless, we stick to the traditional Θi,j operation.

Definition 5. The fusion-width fw(G) of a graph G is the smallest k such that
there is a k-fusion-tree expression generating G.

The operation i⊗m∈ is introduced for convenience and to emphasize the possibility
to create huge collections of identical vertices and huge bipartite graphs (together
with Θi,j). We always want to emphasize the difference between fusion-width and
tree-width here. Otherwise, except for the Δi operation, we have just the clique-
width operations, and the slightly more efficient version of vertex creation.

Compared to clique-width, the definition of fusion-width contains the com-
pletely new operation Δi. It is introduced to directly mimic the tree-width con-
struction. An immediate consequence is that bounded tree-width graphs have
also bounded fusion-width, without a difficult proof and without an exponential
blow-up in the width parameter. This is in sharp contrast to the relationship
between bonded tree-width and bounded clique-width.

Thanks to a previous referee, we know that Courcelle and Makowsky [8] have
already defined the parameter fw(G) when they showed that labelled graphs of
bounded clique-width are closed their fusion operator. They call the parameter
cwd⊆(G), viewing it as an alternative notion of clique-width (justified by bounded
clique-width being equivalent to bounded cwd⊆(G)). They don’t propose cwd⊆(G)
to be used as a new width measure nor do they relate cwd⊆(G) to tree-width.

Theorem 1. Graphs with clique-width k have fusion-width at most k. Fur-
thermore, the number of operations does not increase from the associated k-
expression to the associated k-fusion-tree expression.

Proof. This is trivial, because all the operations of k-expressions are also oper-
ations of the k-fusion-tree expressions (with the obvious variation of replacing
i(v) by i⊗1∈). ∗≥

The width parameter increases by at most 2 from tree-width to fusion-width.
This tiny increase has two causes. An increase of 1 is just due to the somewhat
artificial push-down by 1 in the definition of tree-width. We don’t use it for
fusion-width, because we want to align the measure with clique-width. The other
increase by 1 is needed to have an extra label for the vertices that have already
received all their incident edges.

Theorem 2. Graphs of tree-width k have fusion-width at most k + 2.

Proof. We start with a tree decomposition with bag size k + 1, and transform
it into a k + 2-fusion-tree expression in a bottom-up way. One special label is
reserved for vertices that have already been handled, i.e., all their incident edges
have been produced. Here we refer to the k + 1 other labels as regular labels.

76 M. Fürer

In each bag, we use different labels for different vertices. Thus, when handling
a bag, it is trivial to introduce all edges present in that bag by the corresponding
Θi,j operations.

Choosing such a labeling is easy to do top down. We select an arbitrary node
as the root of the decomposition tree, and assign distinct labels to the vertices in
its bag. Before we assign labels to vertices in the bag of a node j not appearing
in the bag of the parent node, we assume that every vertex appearing in the
bag of j as well as in the bag of its parent node of the decomposition tree has
already received its label. If there are still vertices in the bag of node j without
a label, then there are enough unused regular labels for these vertices, because
we have k + 1 regular labels and at most k + 1 vertices in the bag of j.

The only slightly tricky part of the fusion-tree expression is the handling of
the fact that the same vertices occur in the bags of both children of a node in
the tree decomposition. This is handled by using distinct vertices with the same
label. When handling a node in the decomposition tree, such that more than one
of its children contain the same vertex v in their bags, a merge operation Δi is
issued with i being the common label of all occurrences of v in the subtrees. ∗≥

Naturally, the following corollary is an immediate consequence.

Corollary 1. If a problem can be solved in time T (n, k) for graphs with n ver-
tices and fusion-width k, then it can be solved in time T (n, k+2) for graphs with
n vertices and tree-width k.

This corollary should be compared with the corresponding important result for
clique-width.

If a problem can be solved in time T (n, k) for graphs with n vertices and
clique-width k, then it can be solved in time T (n, 3 · 2k−1) for graphs with n
vertices and tree-width k [6].

Instead of using this result, one would rather apply the corollary with its much
stronger conclusion, provided that the premises are comparable.

We believe that whenever there is a nice argument that a natural problem
can be solved for graphs of bounded clique-width, then we are able to nicely
handle the operations Θi,j , ιi∗j , and ⊕. Usually, we would then also have a nice
argument that the problem could be solved for graphs of bounded tree-width,
and we could nicely handle the operation Δi. In such a situation, we would be able
to handle all the fusion-width operations nicely, and therefore would also have
an elegant algorithm whose running time should not be too bad as a function of
the fusion-width.

The allowance of merging vertices with the Δi operation might cause two
concerns. First, it is more powerful than necessary for our results. It would be
sufficient to restrict it to sets of vertices of size 2. Nevertheless, we opted for the
more flexible notion, because it does not cause any problems. A second concern
looks more important. As the construction of graphs allows them to grow and
shrink, it is reasonable to ask whether there are graphs of bounded fusion-width
requiring super-polynomial size k-fusion-tree expressions. This is not the case

A Natural Generalization of Bounded Tree-Width and Bounded Clique-Width 77

Proposition 1. Every graph of fusion-width k has a k-fusion-tree expression of
size O(|V |+ |E|).
Proof. Whenever some vertices are merged due to a Δi operation, it is possible
that some edges are merged too. Assume, there is a vertex v that has been used
to create some edge set Ev with some Θi,j operations. Further assume that when
v is merged with some set of vertices, every edge of Ev is merged with at least
one other edge. Then we obtain the same graph by omitting the creation of
vertex v. In other words, every vertex ever created is either useless, or it is an
isolated vertex in the resulting graph G = (V,E), or it is responsible for at least
one edge. Now, assume no useless vertices (that have no effect and disappear
in a later merge operation) are ever created. Then the number of vertices ever
created is at most |V |+|E|. Furthermore, it is obvious, that without unnecessary
label change operations ιi∗j , the graph G has a k-fusion-tree expression of size
O(|V |+ |E|). ∗≥

4 Illustration with the Independent Set Polynomial

Naturally, we know that finding a maximum independent set is possible in poly-
nomial time for graphs of bounded clique-width [9]. In fact the far reaching
meta-theorem of Courcelle et al. [9] shows that this result is not just valid for
the maximum independent set problem, but for every problem expressible in
monadic second order logic with quantification only over sets of vertices (not
edges). Furthermore, the resulting algorithm shows the problem to be in FPT
with the clique-width as the parameter.

Here, we look at a more difficult problem. Instead of just finding the size of
a maximum independent set for graphs of bounded clique-width, we count the
number of independent sets of all sizes. We present a fixed parameter polynomial
time algorithm for this counting problem. We refer to [10,14] for more discussions
of the fixed parameter tractability of counting problems.

Let [k] = {1, . . . , k} be the set of vertex labels. We define the [k]-labeled
independent set polynomial of a [k]-labeled graph G by

P (x, x1, . . . , xk) =

n∑

i=1

∑

(n1,...,nk)◦{0,1}k
ai;n1,...,nk

xi
k∏

j=1

x
nj

j

where nj ⊆ {0, 1} and ai;n1,...,nk
is the number of independent sets of size i in G

which contain some vertices with label j if and only if nj = 1.
We define the independent set polynomial of a graph G by

I(x) =

n∑

i=1

aix
i

where ai is the number of independent sets of size i in G.
Then the independent set polynomial I(x) can immediately be expressed by

the [k]-labeled independent set polynomial P (x, x1, . . . , xk).

78 M. Fürer

Proposition 2. The independent set polynomial I(x) of a [k]-labeled graph G is

I(x) =
∑

(n1,...,nk)◦{0,1}k
P (x, 1, . . . , 1) =

n∑

i=1

∑

(n1,...,nk)◦{0,1}k
ai,n1,...,nk

xi.

Theorem 3. Given a graph G with n vertices and bounded fusion-width k, and a
polynomial size k-fusion-tree expression generating G, the independent set poly-
nomial I(x) of G can be computed in FPT, i.e., in time f(k)nO(1) for some
function f .

Proof. We have to show how to compute the [k]-labeled independent set polyno-
mial P (x, x1, . . . , xk) of a [k]-labeled graphG. We compute it recursively bottom-
up for the given k-fusion-tree expression. For the edgeless graph with m vertices
and label i generated by i⊗m∈, the [k]-labeled independent set polynomial is

x+

m∑

j=1

(
m

j

)
xjxi.

This polynomial is computable in time polynomial in n, because w.l.o.g, we can
assume m ≤ n. Otherwise, some set of vertices would be constructed together
(by the i⊗m∈ operation) and destroyed together (with the same merge operation
Δi). Such a redundancy can easily be removed in a preprocessing phase.

In the following, assume for some [k]-labeled graph H , the [k]-labeled inde-
pendent set polynomial is P̃ (x, x1, . . . , xk).

Let G be obtained from H by the operation Θi,j . Then the [k]-labeled in-
dependent set polynomial P (x, x1, . . . , xk) of G is obtained from the [k]-labeled
independent set polynomial P̃ (x, x1, . . . , xk) of H by deleting all monomials that
are multiples of xixj . These monomials count sets that are no longer independent
after inserting all the edges between vertices labeled i and j.

W.l.o.g., we can assume that before a merge operation Δi is done, there are
only 2 vertices labeled i. This assumption is allowed for two reasons.

1. If later a Δi operation is done, then every i⊗m∈ operation can be replaced
by an i⊗1∈ operation without changing the graphs obtained after the Δi op-
eration. Creating many equivalent vertices (with the same neighbors) and
merging them later has the same effect as creating just one vertex.

2. Every Δi operation can be replaced by a collection of Δi operations done
immediately after a disjoint union ⊕ or a relabeling operation ιi∗j has
created a graph with two vertices labeled i.

We describe the Δi operation not in isolation, but only immediately after a
disjoint union ⊕ or a relabeling operation ιi∗j .

We now describe how to obtain the polynomial P (x, x1, . . . , xk) of G from
the polynomials Pr(x, x1, . . . , xk) of Hr (r = 1, 2), where G is obtained from H1

and H2 by the operation Δi1 . . . ΔiΘ(H1 ⊕H2). For ease of notation, assume that
{x1, . . . , xΣ} = {xi1 , . . . , xiΘ}.

A Natural Generalization of Bounded Tree-Width and Bounded Clique-Width 79

– Form the product P1(x, x1, . . . , xk) · P2(x, x1, . . . , xk).

– Delete all monomials where some xj with 1 ≤ j ≤ Γ appears with an exponent
of 1.
If u and v merge into vertex w, then we either want both u and v in the
independent set (to account for an independent set containing w), or neither
(to account for an independent set not containing w).

– Replace x2j by xj/x for 1 ≤ j ≤ Γ.
Division by x compensates the double count of a vertex in the independent
set (counting u and v for w).

– Replace x2j by xj for Γ+ 1 ≤ j ≤ k.
If label j is not merged, then xj just indicates whether there are any vertices
labeled j in the independent set.

The case of a simple disjoint union (G = H1⊕H2) is the special case Γ = 0 of
the just described situation. Here, we just compute the product P1(x, x1, . . . , xk)·
P2(x, x1, . . . , xk) and delete all monomials xj (for 1 ≤ j ≤ k) appearing with an
exponent 1 to obtain Pr(x, x1, . . . , xk).

We now consider the relabeling operation ιi∗j . First assume, there will be no
succeeding Δj operation. Let G be obtained from H by the operation ιi∗j . Then
the [k]-labeled independent set polynomial P (x, x1, . . . , xk) of G is obtained from
P̃ (x, x1, . . . , xk) by substituting xj for xi and then replacing x2j by xj .

If G is obtained from H by the operation Δjιi∗j , then we assume that in
H there is just one vertex labeled i and one vertex labeled j. In this case, we
proceed as follows, with the same reasoning as for the disjoint union ⊕ operation.

– In the given polynomial P̃ (x, x1, . . . , xk) of H , substitute xj for xi.

– Delete all monomials where xj appears with an exponent of 1.

– Replace x2j by xj .

To prove the polynomial time claim, it is important to notice that all polyno-
mials have at most k+ 1 variables, and all monomials are linear in each of their
variables. Thus there are at most 2k+1 monomials. The number of arithmetic op-
erations is O(k2n), as every efficient k-fusion-tree expression has at most O(k2)
unary operations in a row. Thus for k a constant, the time is at most O(k222kn) if
a trivial polynomial multiplication algorithm is used. With fast polynomial mul-
tiplication, based on fast Fourier transform, the time goes down to O(k32kn).
As the total number of independent sets is at most 2n, it is sufficient to do the
computations with numbers of length O(n). Thus, each arithmetic operation re-
quires even with school multiplication only quadratic time. ∗≥

Note that we do not claim that this was a difficult theorem. To the contrary, the
point was to illustrate that a fast algorithm for a typical problem like comput-
ing the independent set polynomial restricted to bounded clique-width can be
extended to a fast algorithm for this problem for graphs with the same fusion-
width, i.e., for a much larger class of graphs.

80 M. Fürer

5 Relations between Tree-Width, Clique-Width and
Fusion-Width

We have fw(G) ≤ twG+ 2 by Theorem 2. The following inequality is trivial, as
k-fusion-tree expressions are strictly more powerful than k-expressions.

Proposition 3. [8] fw(G) ≤ cw(G).

The following main result immediately implies that the graphs of bounded clique-
width are exactly the graphs of bounded fusion-width. In fact this implication has
already been shown by Courcelle and Makowsky [8], as they prove the existence
of a function f with cw(G) ≤ f(fw(G)). We still present our direct proof, because
we get a much stronger result, and also because the logic framework of [8] might
not be so widely accessible. Many of the proof ideas are from the corresponding
Theorem of Corneil and Rotics [6], relating tree-width to clique-width.

Theorem 4. Graphs with fusion-width fw(G) = k have clique-width cw(G) at
most k2k.

Proof. We assume, we are given a k-fusion-tree expression E describing a graph
G, and we want to construct a k2k-expression describing the same graph G.

We have to focus on the operation Δi merging all vertices labeled i into one ver-
tex. This is the only operation that has to be eliminated, because it is allowed in
k-fusion-tree expressions determining the fusion-width, but not in k-expressions
determining the clique-width.

We view the parse trees T of the k-fusion-tree expression. We want to trans-
form it into a parse tree T ⊆ of a k-expression. The main idea is that if the vertices
of some label i are involved in a merge operation, we focus on the highest loca-
tion Γ in T where such a merge occurs involving label î, where î is either i or a
label i has been changed to.

At the corresponding location Γ⊆ in T ⊆, we create the single vertex v to which
the vertices labeled î have been merged by Δî using the operation î⊗1∈. This
means that all the vertices v1, . . . vp which are finally merged into v are not
available further down in the tree T ⊆. Therefore all operations in T involving the
labels of v1, . . . vp have to be delayed until the vertex creation operation at Γ⊆.

Let L be the set of labels used in T . The new labels in T ⊆ are from L×P(L),
where P is the powerset of L. This way, every new label can retain its own (old)
identity and in addition remember all the other old labels to which its vertices
should actually be adjacent according to the edge constructing operations Θi,j
issued in the subtree of the current node in T .

Whenever a label changes due to a renaming operation ιi∗j , in T , then every
occurrence of i (in the first or second component) of a label in T ⊆ is changed
to j.

We say that a label i = i1 is subject to a merge operation as label î = iq+1,
if there is a sequence of label change operations ιip∗ip+1 (p = 1, 2, . . . , q, q ↑ 0)

(i.e., there might be no label changes and î = i), such that after these changes,
label iq+1 is involved in a merge operation.

Now, any Θi,j operation in T is handled as follows.

A Natural Generalization of Bounded Tree-Width and Bounded Clique-Width 81

– If neither label i nor j are subject to a merge operation, then in the corre-
sponding location (involving several nodes) of T ⊆, Θi′,j′ is issued for all labels
i⊆ with first component i and labels j⊆ with first component j.

– If label i is subject to a merge operation as label î, and j is not subject to
a merge operation, then the label i is added to the second component of j.
This way nodes labeled j ”remember” to create an edge to label î later. This
edge is created immediately after the last merge of label î.

– If label i is subject to a last merge operation as label î after j has been
subject to its last merge operation, then the label i is added to the second
component of j. This way nodes labeled j ”remember” to create an edge
to label î later. This edge is created immediately after the last merge of
label î. ∗≥

Corollary 2. A class of graphs is of bounded fusion-width if and only if it is a
class of bounded clique-width.

Proof. This follows immediately from Proposition 3 and Theorem 4. ∗≥
Corollary 3. If a problem can be solved in time O(f(k)nc) for graphs of fusion-
width at most k, then it can be solved in time O(f(k + 2)nc) for graphs of tree-
width at most k.

This immediate corollary compares favorably with the following fact. If a prob-
lem can be solved in time O(f(k)nc) for graphs of clique-width at most k, then
it can be solved in time O(2f(k)nc) for graphs of tree-width at most k.

This statement cannot be much improved, as clique-width can be exponen-
tially larger than fusion-width.

Theorem 5. [6] For any k, there is a graph G with tw(G) = k and cw(G) ↑
2∼k/2∈−1.

Corollary 4. For any k, there is a graph G with fusion-width fw(G) = k and
clique-width cw(G) ↑ 2∼k/2∈−2.

Proof. This follows from Theorem 2 and Theorem 5 by picking a graph with the
properties of Theorem 5 and noticing that by Theorem 2 its fusion-width is at
most k + 2. Then 2∼(k−2)/2∈−1 = 2∼k/2∈−2 produces the result. ∗≥
Corollary 4 shows that our example of the independent set polynomial proves
the fusion-width to be a powerful notion. There are graphs with fusion-width
fw(G) = k and clique-width cw(G) ↑ 2∼k/4∈−2. If for such a graph, we have a
k-fusion-tree expression, then we can compute its independent set polynomial
in time O(k32kn) by the method of Theorem 3. Using just the fact that the
clique-width cw(G) ↑ 2∼k/4∈−2, we would be unlikely to find a better algorithm
based on clique-width. Thus we would only have an an algorithm that is doubly
exponential in k for computing the independent set polynomial of these graphs.

We believe that the independent set polynomial is not an isolated instance. It
has merely been used to illustrate the convenience and power of the fusiion-with
parameter. Many other examples could be used instead.

82 M. Fürer

6 Conclusion

We have introduced a new width measure, the fusion-width. Its purpose is two-
fold. It provides a tool for handling generally difficult problems for a large class
of graphs. It also sheds a light on the essence of the generalization from bounded
tree-width to bounded clique width. It is the ability at each stage of the con-
struction not only to add edges between a limited number of vertices, but to add
complete bipartite graphs between a limited number of sets of vertices.

7 Open Problems

What is the complexity of determining the fusion-width of a graph? Is it in XP
(fixed parameter polynomial time) or even in FPT (fixed parameter tractable)?
How well can fusion-width be approximated?

Find interesting classes of graphs with a large clique-width and a small fusion-
width.

What is the relationship between fusion-width, rank-width, and boolean width?

Acknowlegement. The help of previous anonymous reviewers has improved
this paper significantly.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM Journal of Alg. and Discrete Methods 8, 277–284 (1987)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

3. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: An O(ckn) 5-approximation algorithm for treewidth. In: Proc. 54th
FOCS 2013, pp. 499–508. IEEE (2013)

4. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2),
238–255 (1995)

5. Bui-Xuan, B.M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theor. Com-
put. Sci. 412(39), 5187–5204 (2011)

6. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth.
SIAM J. Comput. 34(4), 825–847 (2005)

7. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993)

8. Courcelle, B., Makowsky, J.A.: Fusion in relational structures and the verifica-
tion of monadic second-order properties. Mathematical Structures in Computer
Science 12(2), 203–235 (2002)

9. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000)

10. Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discrete
Applied Mathematics 108(1-2), 23–52 (2001)

A Natural Generalization of Bounded Tree-Width and Bounded Clique-Width 83

11. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101(1-3), 77–114 (2000)

12. Downey, R., Fellows, M.R.: Parameterized complexity. Monographs in computer
science. Springer, New York (1999), Downey, R.G., Fellows, M.R. New Zealand
authors. Includes bibliographical references (p. [489]-516) and index

13. Fellows, M.R., Rosamond, F.A., Rotics, U., Szeider, S.: Clique-width minimization
is np-hard. In: Kleinberg, J.M. (ed.) STOC, pp. 354–362. ACM (2006)

14. Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formu-
las of bounded tree-width or clique-width. Discrete Applied Mathematics 156(4),
511–529 (2008)

15. Hliněný, P., Oum, S.: Finding branch-decompositions and rank-decompositions. In:
Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 163–174.
Springer, Heidelberg (2007)

16. Hlinený, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. Comput. J. 51(3), 326–362 (2008)

17. Oum, S.: Approximating rank-width and clique-width quickly. ACM Trans. Algo-
rithms 5(1), 10:1–10:20 (2008), http://doi.acm.org/10.1145/1435375.1435385

18. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb.
Theory, Ser. B 96(4), 514–528 (2006)

19. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984)

20. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theory, Ser. B 52(2), 153–190 (1991)

21. Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Applied Mathe-
matics 54(2-3), 251–266 (1994)

http://doi.acm.org/10.1145/1435375.1435385

Optimal Algorithms for Constrained 1-Center

Problems�

Luis Barba1,2, Prosenjit Bose1, and Stefan Langerman2,ΔΔ

1 Carleton University, Ottawa, Canada
jit@scs.carleton.ca

2 Université Libre de Bruxelles, Brussels, Belgium
{lbarbafl,slanger}@ulb.ac.be

Abstract. We address the following problem: Given two subsets Γ and
Φ of the plane, find the minimum enclosing circle of Γ whose center is
constrained to lie on Φ. We first study the case when Γ is a set of n
points and Φ is either a set of points, a set of segments (lines) or a sim-
ple polygon. We propose several algorithms, the first solves the problem
when Φ is a set of m segments (or m points) in expected Θ((n+m) log ω)
time, where ω = min{n,m}. Surprisingly, when Φ is a simple m-gon, we
can improve the expected running time to Θ(m + n log n). Moreover, if
Γ is the set of vertices of a convex n-gon and Φ is a simple m-gon, we
can solve the problem in expected Θ(n+m) time. We provide matching
lower bounds in the algebraic computation tree model for all the algo-
rithms presented in this paper. While proving these results, we obtained
a Ω(n log m) lower bound for the following problem: Given two sets A
and B in R of sizes m and n, respectively, decide if A is a subset of B.

Keywords: minimum enclosing circle, facility location problems.

1 Introduction

Let P be a set of n points in the plane. The minimum enclosing circle problem,
originally posed by Sylvester in 1857 [17], asks to identify the center and radius
of the minimum enclosing circle of P . For ease of notation we say that every circle
containing P is a P -circle. Several independent solutions were proposed to solve
the problem in O(n log n) time [10,15,16]. Megiddo [14] settled the complexity
of this problem and presented a Θ(n)-time algorithm using prune and search.

Finding the minimum P -circle is also known as the 1-center facility location
problem: Given the position of a set of clients (represented by P), compute the
optimal location for a facility such that the maximum distance between a client
and its closest facility is minimized. The aforementioned algorithms provide so-
lutions to this problem. However, in most situations the location of the facility is
constrained by external factors such as the geography and features of the terrain.
Therefore, the study of constrained versions of the 1-center problem is of impor-
tance and has received great attention from the research community [3,4,5,8].

α Research supported in part by NSERC.
αα Directeur de recherches du F.R.S.-FNRS.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 84–95, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Optimal Algorithms for Constrained 1-Center Problems 85

Megiddo [14] proposed a linear time algorithm to find the minimum P -circle
whose center is constrained to lie on a given line. Extending these ideas, Hurtado
et al. [8] presented a Θ(n + m)-time algorithm to find the minimum P -circle
whose center is constrained to lie inside a convex m-gon. Bose and Toussaint [4]
generalized this result by restricting the center of the P -circle to lie inside a
simple m-gon Q. They proposed an O((n +m) log(n+m) + k)-time algorithm,
where k is the number of intersections of Q with the farthest-point Voronoi
diagram of P . The dependency on k was later removed from the running time [5].

Bose et al. [3] addressed the query version of the problem and proposed an
O(n log n)-time preprocessing on P , that allows them to find the minimum P -
circle with center on a given query line in O(log n) time. Using this result, they
showed how to compute the minimum P -circle, whose center is constrained to lie
on a set of m segments, in O((n+m) log n) time. However, when m = O(1), the
problem can be solved in O(n) time by using Megiddo’s algorithm [14] a constant
number of times. Moreover, when n = O(1), the problem can be solved in O(m)
time by finding the farthest point of P from every given segment. Therefore, one
would expect an algorithm that behaves like the algorithm presented in [3] when
m = O(n) but that converges to a linear running time as the difference between
n and m increases (either to O(n) or to O(m)). In this paper we show that such
an algorithm exists and prove its optimality. When constraining the center on a
simple m-gon however, the order of the vertices along its boundary allows us to
further speed up our algorithm, provided that m is larger than n.

Let M be a set of m points, let S be a set of m segments and let Q be a simple
polygon on m vertices. We say that a P -circle C has its center on M , on S or
on Q if the center of C is either a point of M , lies on a segment of S or belongs
to Q, respectively. The (P,M)-optimization problem asks to find the minimum
P -circle with center on M . Given a radius r, the (P,M)r-decision problem asks
if there is a P -circle of radius r with center on M . Analogous problems exist for
S and Q. In Section 2, we show a Θ((n+m) log ω)-time algorithm for the (P, S)r-
decision problem where ω = min{n,m}. In Section 3 we transform it to solve the
(P, S)-optimization problem with the same running time. In Section 4, we show
a matching lower bound in the algebraic computation tree model provided that
n ⊕ m and the restriction is on a set of points, lines, segments or even on a
simple polygon. When m > n however, we only prove a matching lower bound
when the center is restricted to be on a set of points, segments or lines, yet the
lower bound breaks down when the restriction is on a simple polygon. Indeed,
given a simple m-gon Q, we show an Θ(m + n logn)-time algorithm for the
(P,Q)-optimization problem. To put this in perspective, note that whenever
m = Ω(n logn), the algorithm runs in Θ(m) time. Since the bottleneck of this
algorithm is the computation of the farthest-point Voronoi diagram, if we assume
that P is the set of vertices of a given convex n-gon we can reduce the running
time to Θ(m + n) [1,11]. Finally, we show a matching lower bound for these
algorithms, thereby solving the problem for all ranges of n and m and all possible
restrictions on points, lines, segments and simple polygons.

86 L. Barba, P. Bose, and S. Langerman

As a side note, while proving these lower bounds, we stumbled upon the
following problem: Given two sets A and B of R of sizes m and n, respectively,
is A ≤ B? While a lower bound of Ω(n log n) is known in the case where n = m
[2], no lower bounds were known when m and n differ. Using a method of Yao [18]
and the topology of affine subspace families, we were able to prove an Ω(n logm)
lower bound, even when A is restricted to be a sorted set of m real numbers.

Although the main techniques used in this paper have been around for a
while [7,12], they are put together in a different way in this paper, showing the
potential of several tools that were not specifically designed for this purpose.
Furthermore, these results provide significant improvements over previous algo-
rithms when n and m differ widely as it is the case in most applications. Due to
space constraints, in this extended abstract we provide only proof sketches. The
full version of this paper is included as an appendix.

Preliminaries. Given a subset X of the plane, the interior and convex hull of
X are denoted by int(X) and ch(X), respectively. A point x is enclosed by a
circle C if x ∈ ch(C); otherwise we say that x is excluded by C. An X-circle is
a circle that encloses every point of X .

Given a point x ∈ R
2, let �r(x) be the circle with radius r and center on x.

Let P be a set of n points in R
2. Given W ≤ P , let Λr(W) = ⊗p∗Wch(�r(p)),

i.e., the intersection of every disk of radius r with center on a point of W . Notice
that Λr(W) is a convex set whose boundary is composed of circular arcs each
with the same curvature. A point p ∈ W contributes to Λr(W) if there is an
arc of the circle �r(p) on the boundary of Λr(W). We refer to this arc as the
contribution of p to Λr(W). As the curvature of all circles is the same, a point
contributes with at most one arc to the boundary of Λr(W).

Given two subsets X and Y of the plane, let BX (Y) be the minimum X-circle
with center on Y and let bX(Y) denote its center. If X = P , we let ρ(Y) denote
the radius of BP (Y), i.e., ρ(Y) is the radius of the minimum P -circle with center
on Y . Let CP be the minimum P -circle, cP be its center and let rP be its radius.

Observation 1. Given a point x ∈ R
2 and a real number r ∈ rP , ρ(x) ⊕ r if

and only if x ∈ Λr(P).

2 Solving the Decision Problem on a Set of Segments

Let S be a set of m segments and let r > rP . In this section we present an
O((n + m) logω) time algorithm to solve the (P, S)r-decision problem for the
given radius r, where ω = min{n,m}. Notice that by Observation 1, if we could
compute Λr(P), we could decide if there is a P -circle of radius r with center on S
by checking if there is a segment of S that intersects Λr(P). However, we cannot
compute Λr(P) explicitly as this requires Ω(n logn) time. Thus, we approximate
it using ε-nets and use it to split both S and P into a constant number of
subsets each representing a subproblem of smaller size. Using divide and conquer
we determine if there is an intersection between S and Λr(P) by solving the
decision problem recursively for each of the subproblems. The algorithm runs in
O(min{logn, logm}) phases and on each of them we spend O(n+m) time.

Optimal Algorithms for Constrained 1-Center Problems 87

The Algorithm. Initially, compute the minimum P -circle CP , its center cP
and its radius rP in O(n) time [14]. In O(m) time we can verify if cP lies on
a segment of S. If it does, then CP is the minimum P -circle with center on S.
Otherwise, as we assume from now on, the radius of BP (S) is greater than rP .

Consider a family of convex sets G defined as follows. A setG ∈ G is the intersec-
tion of A1⊗ . . .⊗A6, where eachAi is either the interior of a circle or an open half-
plane supported by a straight line (Ai may be equal to Aj for some i ∗= j). Given
a family Y of geometric objects in the plane (segments, lines or points), we define
a set of ranges on Y as follows. For each G ∈ G, let GY = {y ∈ Y : G ⊗ y ∗= ≥}
and let GY = {GY : G ∈ G} be the family of subsets of Y induced by G.

Fix a constant 0 < ε ⊕ 1 and consider the range space defined by S and GS .
As the VC-dimension of this range space is finite, we can compute an ε-net NS of
(S,GS) of size O(1) in O(m) time [13], i.e., any convex set G ∈ G that intersects
more than εm segments of S must intersect at least one segment of NS.

For each segment s of NS , compute BP (s) in O(n) time [14] and mark three
points of P that uniquely define this circle by lying on its boundary. Let rmin

be the radius of the minimum circle among the computed P -circles. If rmin ⊕ r,
then there is a positive answer to the (P, S)r-decision problem and the decision
algorithm finishes. Otherwise, let P 0 ⊆ P be the set of marked points and note
that |P 0| ⊕ 3|NS| = O(1). By the minimality of rmin, any point in the interior
of Λrmin(P 0) is at distance at least rmin from the segments of NS . That is, the
interior of Λrmin(P 0) intersects no segment of NS. As rmin > r, we know that
Λr(P

0) ⊆ Λrmin(P 0) and hence Λr(P 0) intersects no segment of NS .
We refine this intersection using another ε-net. Let C = {�r(p) : p ∈ P} be

the set of circles of radius r centered at the points of P . Compute an ε-net NP

of the range space (C,GC) in O(n) time [13]. That is, if a convex set G ∈ G
intersects more than εn circles of C, then G intersects at least one circle of NP .

Let P 1 = {p ∈ P : �r(p) ∈ NP } i.e., P 1 is the subset of P defining NP where
|P 1| = O(1). Notice that for every p ∈ P 1, Λr(P

1) is enclosed by �r(p), i.e.
the circle �r(p) does not intersect the open set Λr(P

1). Let P+ = P 0 ↑ P 1, as
Λr(P

+) is contained in both Λr(P
0) and Λr(P

1), we observe the following.

Lemma 1. No segment of NS and no circle of NP intersects int(Λr(P
+)).

cP

Λr(Π)
Δ1

Δ2

Δ3Δ4

R2

Fig. 1. The set Π ⊕ P is shown
in red. The vertex set of Λr(Π)
is used to split the plane into
cones Δ1, . . . , Δ4 by shooting
rays from cP . The “slice” R2 is
the portion of Λr(Π) inside Δ2.

We assume the existence of a set of points Π ⊃
P+ of constant size such that Π inherits the
properties of P+. This set and its properties will
be described later.

Because r > rP , cP is enclosed by �r(p) for
every p ∈ P and hence, cP lies in the interior
of Λr(Π). Therefore, we can consider k = O(1)
rays with apex at cP that pass through some
of the vertices along the boundary of Λr(Π).
These rays split the plane into k cones D =
{Δ1, . . . , Δk}.

For every 1 ⊕ i ⊕ k, let Ri = Δi ⊗ Λr(Π) be
a “slice” of Λr(Π); see Fig. 1. By constructing

88 L. Barba, P. Bose, and S. Langerman

these cones such that each contains at most four vertices of Λr(Π), we guarantee
that each element in R = {R1, . . . , Rk} is a convex region of the family G used to
define the ε-nets. Because P+ ⊆ Π , we know that Λr(Π) ⊆ Λr(P

+). Therefore,
by Lemma 1 the interior of each region Ri intersects no segment of NS and no
circle of NP . Because NS and NP are both ε-nets, we obtain the following.

Lemma 2. For each 1 ⊕ i ⊕ k, at most εm segments of S intersect the region
Ri and at most εn circles of C intersect Ri.

Due to space constraints, we omit a full description of Π . However, we provide
a summary of its properties and a sketch of its construction.

Lemma 3. We can construct Π⊃P+ and the partition cones D={Δ1, . . . , Δk}
in O(n) time such that: (1) for every s ∈ S, if s intersects Λr(Π), then s⊗Λr(Π)
is contained in exactly one cone of D, and (2) for any point p ∈ P , if p contributes
to Λr(P), then its contribution is contained in exactly one cone of D.
Proof sketch. For a given direction, we can shoot a ray from cP in that direction
and compute the first circle from C that this ray intersects. Thus, this circle
defines an actual arc of the boundary of Λr(P) in the direction of the ray.
Moreover, we can compute its neighboring arc along this boundary, i.e., we can
find an actual vertex of Λr(P) and the points of P that define it. By doing this
for a constant number of directions, given by the vertices of Λr(P+), we obtain
a constant size subset Y of the vertices of Λr(P). Using this vertices to shoot
the rays from cP , we construct D and ensure that a point p ∈ P will contribute
to Λr(P) inside only one of these cones. Moreover, the segments of S cannot
cross the segment connecting a vertex of Y with cP . Therefore, using convexity
arguments we show that if a segment s ∈ S intersects Λr(Π), then it can do it
in at most one cone of D. �
The idea is to use divide and conquer using Lemma 2. That is, we split both
P and S into k subsets according to their intersection with the elements of R,
where each pair represents a subproblem. Finally, we prove that the (P, S)r-
decision problem has a positive answer if and only if some subproblem has a
positive answer.

Lemma 4. We can compute sets S1, . . . , Sk ⊆ S in O(m) time such that |Si| <
εm and

∑k
i=1 |Si| ⊕ m. Moreover, Si contains all segments of S that intersect

Λr(Π) inside Ri.

Proof sketch. Let Si be the set of segments of S that intersect Ri. The construc-
tion of S1, . . . , Sk can be performed in O(m) time since the size of Ri is constant.
By Lemma 3, a segment of S belongs to at most one set of the partition and
hence,

∑k
i=1mi ⊕ m. Moreover, for any 1 ⊕ i ⊕ k at most εm segments of S

intersect Ri by Lemma 2. Consequently, |Si| < εm. �
Lemma 5. We can compute sets P1, . . . Pk ⊆ P in O(n) time such that |Pi| <
εn,

∑k
i=1 |Pi| ⊕ n and Λr(P) = Λr(P1 ↑ . . . ↑ Pk). Moreover, if a point p ∈ Pi

contributes to Λr(P), then this contribution intersects Ri.

Optimal Algorithms for Constrained 1-Center Problems 89

Proof sketch. Let Pi = {p ∈ P : �r(p) intersects Ri}. This partition of P can be
computed in O(n) time as the size of Ri is constant. For each point p ∈ P that
contributes to Λr(P), �r(p) has to intersect Λr(Π). Hence, the contribution of
p to Λr(P) intersects at least one region of R. By Lemma 3, a point of P con-
tributes to Λr(Π) inside only one cone of D, i.e., a point of P belongs to at most
one of the computed sets. By Lemma 2, at most εn circles of C intersect Ri, i.e.,
|Pi| < εn. �
Theorem 2. The (P, S)r-decision problem has positive answer if and only if
there is a Pi-circle of radius r with center on Si for some 1 ⊕ i ⊕ k.
Proof sketch. Let C be a P -circle of radius r with center c lying on a segment
s ∈ S. Since the cones of D partition the plane, c belongs to some cone Δi for
some 1 ⊕ i ⊕ k, i.e., s intersects the cone Δi. By Observation 1, s intersects
Λr(P) ⊆ Λr(Π). Consequently, by Lemma 4, s belongs to Si. Assume that c lies
on the arc being the contribution of some point p ∈ P . Because c is in Δi and on
the boundary of Λr(P) ⊆ Λr(Π), �r(p) intersects Λr(Π) ⊗Δi = Ri. Thus, by
Lemma 5 p belongs to Pi, i.e., C is a Pi-circle of radius r with center on Si. The
other implication is similar and can be found in the full version of the paper. �
By Lemmas 4 and 5, in O(n + m) time we can either give a positive answer
to the decision algorithm, or compute sets P1, . . . , Pk and S1, . . . , Sk in order
to define k decision subproblems each stated as follows: Decide if there is a
Pi-circle of radius r with center on Si. Because Theorem 2 allows us to solve
each subproblem independently, we proceed until we find a positive answer on
some branch of the recursion, or until either Pi or Si reaches O(1) size and can
be solved in linear time. Since |Si| < εm and |Pi| < εn by Lemmas 4 and 5,
the number of recursion steps needed is O(min{logn, logm}). Furthermore, by
Lemmas 4 and 5, the size of all subproblems at the i-th level of the recursion is
bounded above by n+m.

Lemma 6. Given sets P of n points and S ofm segments and r > 0, the (P, S)r-
decision problem can be solved in O((n+m) log ω) time, where ω = min{n,m}.

3 Converting Decision to Optimization

In the previous section, we showed an algorithm for the (P, S)r-decision prob-
lem. However, our main objective is to solve its optimization version. To do
that, we use the technique presented by Chan [6]. This technique requires an
efficient algorithm to partition the problem into smaller subproblems, where
the global solution is the minimum among the subproblems solutions. By pre-
senting an O(n + m)-time partition algorithm, we obtain a randomized algo-
rithm for the (P, S)-optimization problem having an expected running time of
O((n+m) logω), where ω = min{n,m}. As the partition of the plane into cones
used in the previous section has no correlation with the structure of Λr(P) as
r changes, the partition of P used in this section requires a different approach.
However, the partition of S is very similar.

90 L. Barba, P. Bose, and S. Langerman

Lemma 7. We can compute sets P ⊆1, . . . , P
⊆
h ⊆ P and S⊆1, . . . , S

⊆
h ⊆ S in O(n+

m) time such that |P ⊆i | < εn, |S⊆i| < εm and BP (S) is the circle of minimum
radius among the elements in the set {BP ′

1
(S⊆1), . . . , BP ′

h
(S⊆h)}.

Proof sketch. Given any subset of R2, it can be embedded into R
3 by identifying

R
2 with the plane Z0 = {(x, y, z) ∈ R

3 : z = 0}. As a first step embed P into R
3.

Given a point p ∈ P , let γp be the boundary of the 3-dimensional cone, lying
above p, with apex on p and 45 ◦ slope with respect to the plane Z0.

Consider an O(1) size sample P+ of P whose properties will be specified
later and let Γ = {γp : p ∈ P+}. Construct the farthest-point Voronoi diagram
of P+ and triangulate it. Then, compute Λr(P+) and pseudo-triangulate it by
joining cP with every vertex on its boundary. By choosing P+ carefully, we can
guarantee that at most εm segments of S intersect each of the pseudo-triangles.

Let T be the geometric graph obtained as the union of the triangulation of the
farthest-point Voronoi diagram of P+ and the pseudo-triangulation of Λr(P

+).
Then, we embed T in the plane Z0. Since |P+| = O(1), the size of T is also
constant. Recall that the furthest-point Voronoi diagram of P+ is the upper
envelope U of Γ when projected onto the plane Z0. That is, a point x ∈ Z0 is
farther from p if and only if γp is the last cone intersected by a ray shooting
upwards, orthogonally to the plane Z0, from x. Let U+ be the set of points lying
strictly above U .

Consider the vertical lifting of T , which is simply the union of the vertical
lines passing through the points on every edge of this triangulation. This vertical
lifting partitions R

3 into O(1) solid prisms each defined by the intersection of at
most three vertical halfspaces or cylinders. Finally, intersect each of these prisms
with U+ to obtain a family of convex regions Y = {Y1, . . . , Yh} for some h ∈ O(1).
Since U+ intersects no cone of Γ , no region of Y intersects the boundary of a
cone in Γ . By choosing P+ carefully, we can guarantee that for each 1 ⊕ i ⊕ h,
at most εn cones of Γ intersect Yi. Moreover, we can also guarantee that the
vertical lifting of at most εm segments of S intersect each Yi. For every 1 ⊕ i ⊕ h,
let P ⊆i = {p ∈ P : γp ⊗ Yi ∗= ≥} and note that P ⊆i can be computed in O(n) time.
Let S⊆i = {s ∈ S : the vertical lifting of s intersects Yi} and note that S⊆i can be
computed in O(m) time. Moreover, we have that |P ⊆i | < εn and |Si| < εm.

Recall that bP (S) is the center of the minimum P -circle BP (S) with center
on S. Let s∼ ∈ S be the segment where bP (S) lies and let p ∈ P be a point on the
boundary of BP (S). We claim that s∼ and p belong to the same subproblem, i.e.,
belong to S⊆j and P ⊆j , respectively, for some 1 ⊕ j ⊕ k. Notice that if this claim is
true, then all the points of P through which BP (S) passes belong to P ⊆j . That is,
BP ′

j
(S⊆j) and BP (S) are defined as the circles with center on s∼ passing through

the same set of points, i.e., BP ′
j
(S⊆j) = BP (S). Thus, by computing BP ′

i
(S⊆i) for

each 1 ⊕ i ⊕ k, the minimum P -circle with center on S can be obtained by
choosing the minimum among BP ′

1
(S⊆1), . . . , BP ′

h
(S⊆j).

We proceed to prove that s∼ and p belong to the same subproblem. Since
BP (S) contains every point in P+, bP (S) lies in Λr(P

+). Therefore, bP (S) lies
inside the projection of Yj for some 1 ⊕ j ⊕ h. i.e, s∼ ∈ S⊆j . Consider the ray σ
shooting upwards (perpendicular to Z0) from bP (S). Since p lies on the boundary

Optimal Algorithms for Constrained 1-Center Problems 91

Q

R Q

cP cPVis

VQ

a) b)

Fig. 2. a) A simple polygon Q and a rectangle R enclosing both cP and Q. By removing
Q from R we obtain a polygon with one hole. b) The simple polygon Q obtained by
connecting the hole with the boundary of R. In red, the visible chain VQ of Q from cP .

ofBP (S), p is farther away from bP (S) than any other point of P . That is, γp is the
last cone intersected by σ. Therefore, γp intersects Yj and consequently p ∈ P ⊆j . �
By Lemmas 6 and 7, we can use Chan’s technique [6] to obtain the following.

Theorem 3. Given a set P of n points and a set S of m segments in the plane,
the (P, S)-optimization problem can be solved in expected O((n+m) logω) time
where ω = min{n,m}.
When constraining to a simple m-gon, the sequence of points along its boundary
allows us to improve upon Theorem 3 provided that m ∈ n.

Theorem 4. Given a set P of n points and a simple polygon Q of m vertices,
the (P,Q)-optimization problem can be solved in expected O(m+ n logn) time.

Proof sketch. If cP lie inside Q, then CP is the solution to our problem. Therefore,
we assume that cP lies outside Q. In this case, we allow ourselves to compute
the farthest-point Voronoi diagram of P explicitly in O(n logn) time. Using this
structure, we can compute Λr(P) in O(n) time for any given value of r > rP
which is key to the speed up of the (P,Q)r-decision algorithm.

In O(m) time, compute a rectangle R sufficiently large to enclose Q and cP in
its interior. Let Q = R− int(Q) which is a polygon with one hole. This polygon
can be turned into a simple polygon by adding a thin corridor connecting the
hole with the exterior in such a way that no point on this corridor is visible
from cP . In this way, cP lies in the interior of Q; see Fig. 3 for an illustration.

Compute the visibility polygon Vis of Q from cP in O(m) time using the algo-
rithm from Joe and Simpson [9]. Finally, let VQ be the polygonal chain obtained
by removing the edges of the boundary of Vis that have an endpoint lying on the
boundary of the rectangleR (there may be none). Because the boundary of Λr(P)
is a Jordan curve, Λr(P) intersects Q if and only if Λr(P) intersects VQ.

A polygonal chain is star-shaped if there exists a set of points called its kernel
such that every point on this chain is visible from every point in its kernel. Note
that VQ is a star-shaped polygonal chain with cP in its kernel. Thus, since Λr(P)
can be computed in O(n) time from the Voronoi diagram of P , we can decide if
VQ intersect Λr(P) in O(n +m) time. Hence, we can solve the (P,Q)r-decision
problem in linear time. By considering the set of segments along the boundary
of Q, we can use Lemma 7 to construct O(1) subproblems such that the solution
to the (P,Q)-optimization problem is the minimum among the subproblems so-
lutions. Consequently, we can use Chan’s technique [6] to obtain our result. �

92 L. Barba, P. Bose, and S. Langerman

Because the bottleneck of this algorithm is the construction of the farthest-point
Voronoi diagram, whenever P is the set of vertices of a convex polygon, we can
compute its farthest-point Voronoi diagram in linear time [11,1].

Corollary 1. Let N be a convex n-gon and let Q be a simple m-gon. The mini-
mum enclosing circle of N , whose center is constrained to lie on Q, can be found
in expected Θ(m + n) time.

4 Lower Bounds

We prove lower bounds for the decision problems: We show inputs where the
decision problem is equivalent to answering a membership query in a set with
“many” disjoint components. We then use Ben-Or’s Theorem [2] to obtain lower
bounds for any decision algorithm that solves this membership problem.

Lemma 8. Let P be a set of n points and a let M be a set of m points (m
segments or m lines). Given a radius r, the (P,M)r-decision problem has a
lower bound of Ω(m logn) in the algebraic computation tree model.

Proof sketch. We construct a set of points P such that for any point set M , with
certain constraints, the (P,M)r-decision problem has a lower bound ofΩ(m log n).

Let r > 0 and let r⊆ be a number such that 0 < r⊆ < r. Let P be the set of
vertices of a regular n-gon circumscribed on a circle of radius r⊆. Because r > r⊆,
Λr(P) is a non-empty convex region whose boundary is composed of circular arcs.
Notice that by Observation 1, the decision algorithm has an affirmative answer
if and only if there is a point of M lying in Λr(P). Let C be the circumcircle of
the vertices of Λr(P). Partition this circle into ϕ1 = C⊗Λr(P) and ϕ0 = C−ϕ1.
Because ϕ1 consists of exactly n points being the vertices of Λr(P), ϕ0 consists
of n disconnected open arcs all lying outside of Λr(P); see Fig. 3(a). Moreover,
a point on C supports a P -circle of radius r if and only if it lies on ϕ1.

Consider the restriction of the decision problem where M is constrained to lie
onC. Notice that any lower bound for this restricted problem is also a lower bound
for the general decision problem. Because an input on m points for this restricted
problem can be seen as a point in R

2m, its input space defines a subspace Cm =
C × . . .×C of R2m. Moreover, this set of points can be split into two regions, the
“yes” and the “no” region (with respect to the decision problem), where the “no”
region is equal to ϕm

0 . That is, a point (x1, y1, x2, y2, . . . , xm, ym) lies in the “no”
region ϕm

0 if for every index 1 ⊕ j ⊕ m, the point (xj , yj) lies inside ϕ0 ⊆ C.
Because ϕ0 contains n disjoint components, ϕm

0 contains O(nm) disjoint com-
ponents being the product-space of m copies of ϕ0. Recall that the (P,M)r-
decision problem is equivalent to answering if the input, seen as a point in R

2m,
lies in the “no” region. Therefore, by Ben-Or’s Theorem [2] we obtain a lower
bound of Ω(m logn) for every decision algorithm in the algebraic computation
tree model. �
Lemma 9. Let P be a set of n points and a let Q be a simple polygon on m
vertices such that m ∈ n. Given a radius r, the (P,Q)r-decision problem has a
lower bound of Ω(m+ n logn) in the algebraic computation tree model.

Optimal Algorithms for Constrained 1-Center Problems 93

Proof sketch. In this proof, we construct a simple m-gonQ such that for any input
P on n points, the (P,Q)r-decision problem has a lower bound of Ω(m+n logn).

Let r > 0 and let N = {p1, . . . , pn} be the set of vertices of a regular n-gon
whose circumcircle C has radius smaller than r and center on c. Let ε > 0 and
let rΣ = r+ ε. Because rΣ is greater than the radius of C, Λrε(N) is non-empty.
Consider the middle points of every arc along Λrε(N) and label them so that mi

is the middle point on the arc opposite to pi. Let C⊆ be any circle with center
on c and radius greater than rΣ. For every 1 ⊕ i ⊕ n, let qi be the intersection
point of C⊆ with the ray shooting from c that passes through pi. Let Q⊆ be a
star-shaped polygon with vertex set {m1, . . . ,mn} ↑ {q1, . . . , qn} where edges
connect consecutive vertices in the radial order around c; see Fig. 3(b).

Let R be a sufficiently large rectangle to enclose Q⊆ and let Q = R \ int(Q⊆).
Remove the star-shaped hole of Q by connecting the boundary of R with an
edge of Q using a small corridor; see Fig. 3(c) for an illustration.

P

C

Λr(P)

m1

m2

m3 m4

m5

C

C′

C

α1

←r(m1)

a) b) c) Q
p1

p2

p3p4

p5

p1

p2

p3p4

p5
Λr(N)Λrε(N)

q1

q2

q3q4

q5

Q′

m1

m2

m3 m4

m5

q1

q2

q3
q4

q5

Fig. 3. a) The construction presented in Lemma 8. b) The construction of the star-
shaped polygon Q′ used in Lemma 9. c) The polygon Q constructed in Lemma 9 being
disjoint from Λr(P). The arc α1 (in red) is the arc of C excluded by �rε(m1).

Consider the restriction of the decision problem where every point of P is
constrained to lie on C. Note that any lower bound for this restricted problem is
also a lower bound for the general problem. Recall that every input on n points
constrained to lie on C can be indistinctly seen as a point in Cn ⊆ R

2n and vice
versa. Let γ0 be a subset of Cn such that (x1, y1, . . . , xn, yn) ∈ γ0 if and only if
the decision problem on Q with input {(x1, y1), . . . , (xn, yn)} and radius r has
a negative answer. Let γ1 = Cn − γ0. Because r < rΣ, Λr(N) doesn’t intersect
Q, i.e., N ∈ γ0. Note that every point of N lies inside �r(mi) except for pi, i.e.,
there is a portion of C excluded by �r(mi). For every 1 ⊕ i ⊕ n, let αi be the
arc of C excluded by the circle �r(mi) where pi lies on αi.

By letting ε sufficiently small, αi is disjoint from αj for any i ∗= j. Moreover,
every point lying on C \ αi is enclosed by �r(mi). Therefore, if an input P on
n points has no point lying on αi for some 1 ⊕ i ⊕ n, then �r(mi) is a P -circle
of radius r, i.e., P belongs to γ1. Notice that every permutation of the same
input of n points induces a different point in R

2n. That is, a set of n points in
the plane can be represented by n! different points in R

2n. Recall that each arc
αi has exactly one point of N (say pi) on it. Because Q is disjoint from Λr(N),

94 L. Barba, P. Bose, and S. Langerman

every one of the n! points representing N in R
2n lies in γ0. In the full version of

the paper, we show that if P0 and P1 are two points in Cn representing different
permutations of P , then they are in disjoint connected components of γ0. The
idea is that any continuous transformation from P0 to P1 will reach a state in
which an arc αi is empty of input points, meaning that the it belongs to γ1.
Thus, as there are n! permutations of N and each of them belongs to a different
connected component in γ0, γ0 contains at least n! disjoint connected regions. By
Ben-Or’s Theorem [2] we obtain a lower bound of Ω(n logn) for the restricted
(P,M)r-decision problem in the algebraic computation tree model. To obtain
this lower bound, the m-gon Q needs to have at least n vertices, i.e., m ∈ n.

Finally, notice that any decision algorithm has also a lower bound of Ω(m)
since every vertex of Q has to be considered. Otherwise, an adversary could
perturb a vertex so that the solution switches to from a negative to a positive
answer without affecting the execution of the algorithm. �
4.1 Another Lower Bound When Constraining to Sets of Points

Let A and B be two sets of m and n numbers in [0, 1] such that m ⊕ n and A is
sorted in increasing order. The A-B-subset problem asks if A is a subset of B.

In the extended version of this paper, we show that any A-B-subset problem
can be reduced in linear time to a (P,Q)r-decision problem for some simple
polygon Q. Hence, any lower bound for the A-B-subset problem is a lower bound
for the (P,Q)r-decision problem. In fact, the lower bound for the A-B-subset
problem considers arbitrary sets of real numbers. Furthermore, the lower bound
holds when A is given as a fixed sorted set prior to the design of the algorithm.
Note that a set of n numbers can be represented by a point in R

n and vice versa.

Lemma 10. Let n,m be two integers such that n ∈ m. For any A ∈ R
m such

that A is given in sorted order, there is a lower bound of Ω(n logm) in the
algebraic computation tree model for the A-B-subset problem given any B ∈ R

n.

Proof sketch. Let A = {a1, . . . , am} be a sorted set of m real numbers and
think of it as a point in R

m. Let γ1 be the subspace of Rn containing all points
representing a set B such that A ≤ B, i.e., the “yes” region.

An A-constraint is an equation of the form (xi = aj) for some 1 ⊕ i ⊕ n,
1 ⊕ j ⊕ m. Two A-constraints (xi = aj) and (xh = ak) are compatible if i ∗= h (j
may be equal to k). A point X ∈ R

n satisfies an A-constraint (xi = aj) if its i-th
coordinate is equal to aj . A set ϕ of pairwise compatible A-constraints is complete
if it contains exactly one A-constraint of the form (xj = ai) for every ai ∈ A, i.e.,
it contains exactly m A-constraints, one for each element of A. Given a complete
set ϕ of A-constraints, let KΛ = {X ∈ R

n : X satisfies every A-constraint in ϕ}.
Notice that dim(KΛ) = n−m and codim(KΛ) = m. Moreover, if a point B be-
longs to KΛ, then A ≤ B, i.e., every point in KΛ belongs to γ1. Additionally, if
A ≤ B, then B belongs to some KΛ′ for some complete set ϕ⊆ of A-constraints.
Therefore, if we let A = {KΛ : ϕ is a complete set of A-constraints}, then
γ1 = ↑A . In the full version of this paper, we study the topological structure of
↑A and obtain an Ω(n logm) lower bound for the membership problem in γ1.

Optimal Algorithms for Constrained 1-Center Problems 95

We consider the poset induced by the intersection semilattice of A ordered by
the reverse inclusion. We then consider the Möebius function on the elements of
this poset and use result (16) of [18] to obtain our lower bound. �
Corollary 2. Given a set P of n points and a simple polygon Q on m vertices
(or a set of m segments or a set of m points), the (P,Q)r-decision problem has
a lower bound of Ω(n logm) in the algebraic computation tree model.

References

1. Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear time algorithm for computing
the Voronoi diagram of a convex polygon. In: Proceedings of STOC, pp. 39–45.
ACM, New York (1987)

2. Ben-Or, M.: Lower bounds for algebraic computation trees. In: Proceedings of
STOC, pp. 80–86. ACM, New York (1983)

3. Bose, P., Langerman, S., Roy, S.: Smallest enclosing circle centered on a query line
segment. In: Proceedings of CCCG, pp. 167–170 (2008)

4. Bose, P., Toussaint, G.: Computing the constrained Euclidean, geodesic and link
centre of a simple polygon with applications. In: Proceedings of CGI, pp. 102–111
(1996)

5. Bose, P., Wang, Q.: Facility location constrained to a polygonal domain. In: Rajs-
baum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 153–164. Springer, Heidelberg
(2002)

6. Chan, T.M.: Geometric applications of a randomized optimization technique. Dis-
crete and Computational Geometry 22, 547–567 (1999)

7. Chazelle, B., Edelsbrunner, H., Guibas, L., Sharir, M.: Diameter, width, closest
line pair, and parametric searching. DCG 10, 183–196 (1993)

8. Hurtado, F., Sacristan, V., Toussaint, G.: Some constrained minimax and maximim
location problems. Studies in Locational Analysis 15, 17–35 (2000)

9. Joe, B., Simpson, R.B.: Corrections to Lee’s visibility polygon algorithm. BIT
Numerical Mathematics 27, 458–473 (1987)

10. Lee, D.T.: Farthest neighbor Voronoi diagrams and applications. Report 80-11-FC-
04, Dept. Elect. Engrg. Comput. Sci. (1980)

11. Lee, D.T.: On finding the convex hull of a simple polygon. International Journal
of Parallel Programming 12(2), 87–98 (1983)

12. Matousek, J.: Computing the center of planar point sets. Discrete and Computa-
tional Geometry 6, 221 (1991)

13. Matoušek, J.: Construction of epsilon nets. In: Proceedings of SCG, pp. 1–10. ACM,
New York (1989)

14. Megiddo, N.: Linear-time algorithms for linear programming in R
3 and related

problems. SIAM J. Comput. 12(4), 759–776 (1983)
15. Preparata, F.: Minimum spanning circle. In: Preparata, F.P. (ed.) Steps in Com-

putational Geometry. University of Illinois (1977)
16. Shamos, M., Hoey, D.: Closest-point problems. In: Proceedings of FOCS,

pp. 151–162. IEEE Computer Society, Washington, DC (1975)
17. Sylvester, J.J.: A Question in the Geometry of Situation. Quarterly Journal of Pure

and Applied Mathematics 1 (1857)
18. Yao, A.C.-C.: Decision tree complexity and Betti numbers. In: Proceedings of

STOC, pp. 615–624. ACM, New York (1994)

A Randomized Incremental Approach

for the Hausdorff Voronoi Diagram
of Non-crossing Clusters�

Panagiotis Cheilaris1, Elena Khramtcova1,
Stefan Langerman2, and Evanthia Papadopoulou1

1 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
2 Départment d’Informatique, Université Libre de Bruxelles, Brussels, Belgium

Abstract. In the Hausdorff Voronoi diagram of a set of point-clusters
in the plane, the distance between a point t and a cluster P is mea-
sured as the maximum distance between t and any point in P , and the
diagram reveals the nearest cluster to t. This diagram finds direct ap-
plications in VLSI computer-aided design. In this paper, we consider
“non-crossing” clusters, for which the combinatorial complexity of the
diagram is linear in the total number n of points on the convex hulls of
all clusters. We present a randomized incremental construction, based on
point-location, to compute the diagram in expected O(n log2 n) time and
expected O(n) space, which considerably improves previous results. Our
technique efficiently handles non-standard characteristics of generalized
Voronoi diagrams, such as sites of non-constant complexity, sites that
are not enclosed in their Voronoi regions, and empty Voronoi regions.

1 Introduction

Given a set S of sites in some space, the Voronoi region of a site s ⊕ S is the
geometric locus of points in the given space that are closer to s than to any
other site. In the classic Voronoi diagram, each site is a point and closeness is
measured according to the Euclidean distance. In this work, we consider the
Hausdorff Voronoi diagram. The containing space is R

2, each site is a cluster of
points (i.e., a set of points), and closeness of a point t ⊕ R

2 to a cluster P is
measured by the farthest distance df(t, P) = maxp∨P d(t, p), where d(·, ·) is the
Euclidean distance between two points. The farthest distance df(t, P) equals the
Hausdorff distance between t and cluster P , hence the name of the diagram.

Our motivation for investigating the Hausdorff Voronoi diagram comes from
VLSI circuit design, where this diagram can be used to efficiently estimate the
critical area of a VLSI layout for various types of open faults [20, 21].

1.1 Previous Work

Let k be the number of clusters in the input family, and n be the total number
of points on the convex hulls of all clusters. We denote by convP the convex

α Supported in part by the Swiss National Science Foundation project 20GG21-134355,
under the auspices of the ESF EUROCORES program EuroGIGA/VORONOI.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 96–107, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

A Randomized Incremental Approach for the HVD of Non-crossing Clusters 97

hull of cluster P and by CH(P) the sequence of points of P on the boundary of
the convex hull in counterclockwise order.

Definition 1. Two clusters P and Q are called non-crossing if the convex hull
of P ≤ Q admits at most two supporting segments with one endpoint in P and
one endpoint in Q. See Fig. 1.

Fig. 1. Non-crossing and crossing clus-
ters with supporting segments (dashed
lines)

c1

c2

Fig. 2. HVD of five 2-point clusters; re-
gion of C = {c1, c2} (gray)

The combinatorial complexity (size) of the Hausdorff Voronoi diagram is
O(n + m), where m is the number of supporting segments reflecting crossings
between all pairs of crossing clusters, and this is tight [22]. In the worst case, m is
Θ(n2). If all clusters are non-crossing (m = 0) the diagram has linear size. There
are plane sweep [20] and divide and conquer [22] algorithms for constructing the
Hausdorff Voronoi diagram of arbitrary clusters. Both algorithms have a K logn
term in their time complexity, where K is a parameter reflecting the number
of pairs of clusters such that one is contained in a specially defined enclosing
circle of the other, for example, the minimum enclosing circle [22]. However, K
can be ι(n) (superlinear) even in the case of non-crossing clusters. The Haus-
dorff Voronoi diagram is equivalent to an upper envelope of a family of lower
envelopes of an arrangement of hyperplanes in R

3 (each envelope corresponds to
a cluster) [13]. Edelsbrunner et al. [13] give a construction algorithm of O(n2)
time complexity. 1 Although the time complexity is optimal in the worst case,
it remains quadratic even for non-crossing clusters for which the size of the di-
agram is linear. A more recent parallel algorithm [10] constructs the Hausdorff
Voronoi diagram of non-crossing clusters in O(p−1n log4 n) time with p proces-
sors, which implies a divide and conquer sequential algorithm of time complexity
O(n log4 n) and space complexity O(n log2 n).

The Hausdorff Voronoi diagram of a family of non-crossing clusters is an
instance of abstract Voronoi diagrams [16]. Using the randomized incremental
framework of Klein et al. [17], it can be computed in expected O(bn logn) time,
where b is the time it takes to construct the bisector between two clusters [1].
If there are clusters of linear size, then b can be Θ(n). The framework was
successfully applied to compute the Voronoi diagram of disjoint polygons [18]
in O(k logn) time, where k is the number of the sites, and n is their total size.

1 The reported O(n2Σ(n)) time complexity (where Σ(n) is the inverse Ackermann
function) improves to O(n2) due to the O(n2) bound on the size of the diagram.

98 P. Cheilaris et al.

It is not easy, however, to apply a similar approach to the Hausdorff Voronoi
diagram because of a fundamental difference between the farthest and the nearest
distance from a point to a convex polygon [12].

The Hausdorff Voronoi diagram is a min-max diagram, where every point t
in the plane lies in the region of the closest cluster with respect to the farthest
distance. The “dual” max-min diagram is the farthest color Voronoi diagram
[2, 14]. For disjoint simple polygons, this is the farthest polygon Voronoi dia-
gram [8].

1.2 Our Contribution

In this paper we give a randomized incremental algorithm to compute the Haus-
dorff Voronoi diagram of a family of k non-crossing clusters, based on point
location. Clusters are inserted in random order one by one, while the diagram
computed so far is maintained in a dynamic data structure, where generalized
point location queries can be answered efficiently. To insert a cluster, a repre-
sentative point in the new Voronoi region of this cluster is first identified and
located, and then the new region is traced while the data structure is updated,
e.g., [6, 11, 15].

In case of the Hausdorff Voronoi diagram, a major technical challenge is to
quickly identify a representative point that lies in the new Voronoi region. This
is difficult because: (a) the region of the new cluster might not contain any of its
points, (b) the region of the new cluster might be empty, and (c) sites have non-
constant size and thus the computation of a bisector or answering an in-circle
test require non-constant time. Furthermore, the addition of a new cluster may
make an existing region empty.

The dynamic data structure that we use is a variant of the Voronoi hierar-
chy [15], which in turn is inspired by the Delaunay hierarchy [11], and which we
augment with the ability to efficiently handle the difficulties listed above. We
also exploit a technique by Aronov et al. [4] to efficiently query the static far-
thest Voronoi diagram of a cluster. The expected running time of our algorithm
is O(n log n log k) and the expected space complexity is O(n). The augmenta-
tion of the Voronoi hierarchy introduced in this paper may be of interest for
incremental constructions of other non-standard types of generalized Voronoi
diagrams. Our algorithm can also be implemented in deterministic O(n) space
and O(n log2 n(log logn)2) expected running time, using the dynamic point lo-
cation data structure by Baumgarten et al. [5], while applying a simplified type
of parametric search similarly to Cheong et al. [8].

Due to the lack of space some proofs and technical details are omitted in this
version of the paper. Please refer to the online full version [7].

2 Preliminaries

Throughout this paper, we consider a family F = {C1, . . . , Ck} of non-crossing
clusters of points. We assume that no two clusters have a common point, and
no four points lie on the same circle.

A Randomized Incremental Approach for the HVD of Non-crossing Clusters 99

For a point c ⊕ C, the farthest Voronoi region of c is fregC(c) = {p | ∀c⊆ ⊕
C \ {c} : d(p, c) > d(p, c⊆)}. The farthest Voronoi diagram of C is denoted as
FVD(C) and its graph structure as T (C). If |C| > 1, T (C) is a tree defined
as R

2 \ ⋃c∨C fregC(c), and T (C) = c, if C = {c}. A point at infinity along an
arbitrary unbounded edge of T (C) is treated as the root of T (C), denoted as
root(C).

For a cluster C ⊕ F , the Hausdorff Voronoi region of C is

hregF (C) = {p | ∀C⊆ ⊕ F \ {C} : df(p, C) < df(p, C
⊆)}.

For a point c ⊕ C, hregF (c) = hregF (C) ⊗ fregC(c). The closure of fregC(c),
hregF (C), and hregF (c) is denoted by fregC(c), hregF (C), and hregF (c), respec-
tively. When there is no ambiguity on the set under consideration, we omit the
subscript from the above notation. The partitioning of the plane into non-empty
Hausdorff Voronoi regions, together with their bounding edges and vertices, is
called the Hausdorff Voronoi diagram of F , and it is denoted as HVD(F). Be-
low we review some useful definitions and properties of the Hausdorff Voronoi
diagram, which appeared in previous work [22].

The Hausdorff Voronoi diagram is monotone, that is, a region of the diagram
can only shrink with the insertion of a new cluster. The structure of the Hausdorff
Voronoi region of a point c ⊕ C is shown in Fig. 3. Its boundary consists of two
chains: (1) the farthest boundary that belongs to T (C) and is internal to hreg(C),
(bd hreg(c) ⊗ bd freg(c)); (2) the Hausdorff boundary (bd hreg(c) ⊗ bd hreg(C)).
Neither chain can be empty, if hreg(C) ∈= ∗ and |C| > 1. There are three types
of vertices on the boundary of hreg(c): (1) Standard Voronoi vertices that are
equidistant from C and two other clusters, referred in this paper as pure vertices.
Pure vertices appear on the Hausdorff boundary of hreg(c). (2) Mixed vertices
that are equidistant to three points of two clusters (C and another cluster).
The mixed vertices which are equidistant to two points of C and one point of
another cluster are called C-mixed vertices; there are exactly two of them on the
boundary of hreg(c) and they delimit both the farthest boundary of c and the
Hausdorff boundary of c. (3) Vertices of T (C) on the farthest boundary of c.

c

pure vertex
C-mixed vertex
other mixed vertex
vertex of FVD(C)
Hausdorff boundary
farthest boundary

Fig. 3. Features of the Hausdorff Voronoi
region of a point c ∈ C

y

root(P)p1

p2

Fig. 4. The 2-point cluster Q (red),
forward limiting w.r.t. the 3-point
cluster P (black) with P -circle Ky ;
portion Kf

y (shaded)

100 P. Cheilaris et al.

A line-segment c1c2 is a chord of cluster C if c1, c2 ⊕ CH(C) and c1 ∈= c2. In
Fig. 4, p1p2 is a chord of cluster P .

Definition 2 (C-circle Ky; Kf
y , Kr

y [22]). Let uv be an edge of T (C) bisecting
a chord c1c2 of C ⊕ F . A circle centered at y ⊕ uv of radius d(y, c1) = df(y, C)
is called the C-circle of y and is denoted as Ky. The chord c1c2 partitions Ky in
two parts: Kf

y and Kr
y, where Kf

y is the part that encloses the two points of C

that define root(C). In case y and root(C) are on the same edge of T (C), Kf
y

is the portion of Ky that is enclosed in the halfplane bounded by c1c2 which does
not contain root(C).

Definition 3 (Rear/forward limiting cluster [22]). A cluster P ⊕ F \ {C}
is rear limiting with respect to C, if there is a C-circle Ky such that P is enclosed
in Kr

y ≤ convC. Similarly, P is forward limiting with respect to C, if there is a

C-circle Ky such that P is enclosed in Kf
y ≤ convC. See Fig. 4.

The following properties can be directly derived from Lemma 2 and Proper-
ties 2, 3 [22].

Properties [22]

1. If hreg(C) ∈= ∗, then hreg(C) ⊗ T (C) consists of exactly one non-empty
connected component.

2. Consider a point v of T (P), such that v /⊕ hreg(P). Let Q be a cluster, which
is closer to v than P . Then, only one of the subtrees of T (P) rooted at v,
might contain points which are closer to P than to Q.

3. Let uv be an edge of T (P). If both u and v are closer to Q than to P then
hregF (P) cannot intersect uv.

4. Region hregF (P) = ∗, if and only if there is a cluster Q ≥ convP , or there
is a pair of clusters {Q,R} such that Q is rear limiting and R is forward
limiting with the same P -circle. Pair {Q,R} is called a killing pair for P .

3 A Randomized Incremental Algorithm

Let C1, . . . , Ck be a random permutation of the clusters in family F , and let Fi =
{C1, . . . , Ci} for 1 ⊆ i ⊆ k. The algorithm iteratively constructs HVD(F1), . . . ,
HVD(Fk) = HVD(F). The cluster Ci is inserted in HVD(Fi−1) as follows:

1. Identify a point t that is closer to Ci than to any cluster in Fi−1 (i.e.,
t ⊕ hregFi

(Ci)) or determine that no such point exists (i.e., hregFi
(Ci) = ∗).

2. If t exists, grow hregFi
(Ci) starting from t and update HVD(Fi−1) to derive

HVD(Fi); otherwise, HVD(Fi) = HVD(Fi−1).

The main challenge is to perform Step 1 efficiently. Step 2 can be performed
in linear time [22]. Throughout this section, we skip the subscript Fi and let
hreg(Ci) stand for hregFi

(Ci).
To identify a representative point t in hreg(Ci) (Step 1) it is enough to search

along T (Ci), by Property 1. However, hreg(Ci) ⊗ T (Ci) might not contain a
vertex of T (Ci), see e.g., the gray region in Fig. 2. In this case, hreg(Ci) is either
empty, or intersects exactly one edge of T (Ci), which is called a candidate edge.

A Randomized Incremental Approach for the HVD of Non-crossing Clusters 101

Definition 4. Let uv be an edge of T (Ci). Let Q
u, Qv ⊕ Fi−1 be the clusters

closest to u and v respectively. We call uv a candidate edge, if Qu ∈= Qv and uv
satisfies the following predicate:
cand(uv) = df(u,Q

u) < df(u,Ci) < df(u,Q
v)↑df (v,Qv) < df(v, Ci) < df(v,Q

u).

By Properties 2 and 3 we derive the following.

Lemma 1. Suppose hreg(Ci) ⊗ T (Ci) does not contain any vertex of T (Ci).
Then at most one edge uv of T (Ci) can be a candidate edge, in which case
hreg(Ci) ⊗ T (Ci) ≥ uv. Otherwise hreg(Ci) = ∗.
A high-level description of Step 1 is as follows: We traverse T (Ci) starting at
root(Ci), checking its vertices and pruning if possible appropriate subtrees ac-
cording to Property 3. In this process we either determine t as a vertex of T (Ci),
or we determine a candidate edge uv, or hreg(Ci) = ∗. Pseudocode is given as
Procedure 1 below, which should be run with u = root(Ci).

In more detail, to check if a vertex w suits as t, determine the cluster Qw ⊕
Fi−1, which is nearest to w, by point location in HVD(Fi−1). If df(w,Ci) <
df(w,Q

w), then t = w. To compute df(w,P) for a cluster P , do point location in
FVD(P). If Procedure 1 identifies a candidate edge, the representative point t
is determined by performing parametric point location along the candidate edge
in HVD(Fi−1) (see Def. 5).

Procedure 1. Tracing the subtree of T (Ci) rooted at u (within Step 1)

Require: df(u,Ci) > df(u,Q
u).

Let v and w be children of u.
Locate v and w in HVD(Fi−1) to obtain Qv and Qw respectively.
if df(v, Ci) < df(v,Q

v) or df(w,Ci) < df(w,Qw) then return v or w respectively.

if either uv or uw is a candidate edge then
return the uv or uw respectively.

if df(v, Ci) < df(v,Q
u) then Φ Otherwise, prune the subtree of w

Set u = w and recurse.
if df(w,Ci) < df(w,Qu) then Φ Otherwise, prune the subtree of v

Set u = v and recurse.

Definition 5 (Parametric point location). Given HVD(Fi−1) and a candi-
date edge uv ≥ T (Ci) determine the cluster Pj ⊕ Fi−1 and the point t ⊕ uv such
that df(t, Ci)=df(t, Pj)= min

P∨Fi−1

df(t, P). If such point p does not exist, return nil.

Parametric point location in the Hausdorff Voronoi diagram is performed using
the data structure that stores the diagram. Its performance determines the time
complexity of our algorithm. In Sections 4 and 5, we describe the data structures
and the algorithms used to answer the necessary queries.

102 P. Cheilaris et al.

4 Separator Decomposition

In this section we describe a data structure to efficiently perform point location
and answer so-called segment queries in a tree-type of planar subdivision such
as a farthest Voronoi diagram.

It is well-known [19] that any tree with h vertices has a vertex called centroid,
removal of which decomposes the tree into subtrees of at most h/2 vertices each.
The centroid can be found in O(h) time [19]. Thus, the farthest Voronoi diagram
of a cluster P can be organized as a balanced tree, whose nodes correspond to
vertices of the diagram. This representation is called the separator decomposition,
it is denoted as SD(P), and can be built as follows:

– Find a centroid c of T (P). Create a node for c and assign it as the root node.
– Remove c from T (P). Recursively build the trees for the remaining three

connected components, and link them as subtrees of the root.

Point location in SD(P) for a query point q, is performed as follows. Starting
from the root of SD(P), perform a constant-time test of the query point q against
a node of SD(P), to decide in which of the node’s subtrees to continue. When a
leaf of SD(P) is reached, choose p among the owners of the three regions that
are adjacent to the corresponding vertex of FVD(P). The test of q against a
node Δ of SD(P) is due to Aronov et al. [4]. In more detail, let the node Δ
correspond to a vertex w of FVD(P). Let the points p1, p2, p3 ⊕ P be the owners
of the three regions of FVD(P), incident to w. Consider the rays ri, i = 1, 2, 3,
with origin at w and direction −−⊃piw respectively. Each ray ri lies entirely inside
fregP (pi), and thus r1, r2 and r3 subdivide the plane into three sectors with
exactly one connected component of T (P) \ {w} in each sector. Choose the
sector that contains q, and pick the corresponding subtree of Δ.

A segment query in a farthest Voronoi diagram is defined as follows. Let
C,P ⊕ F . Given FVD(P) and a segment uv ≥ T (C) such that df(u,C) <
df(u, P) and df(v, C) > df(v, P), find the point x ⊕ uv that is equidistant from
both C and P (df(x,C) = df(x, P)).

If FVD(P) is represented as a separator decomposition, a segment query can
be performed efficiently similarly to a point location query with the difference
that we test a segment against a node of SD(P). In particular, consider a node
of SD(P) corresponding to a vertex w of FVD(P). Let rays ri, i = 1, 2, 3, be
defined as above. Consider the (at most two) intersection points of uv with the
rays ri. If any of these points is equidistant to C and P , return it. Otherwise,
since P and C are non-crossing, there is exactly one subsegment u⊆v⊆ ≥ uv such
that df(u

⊆, C) < df(u
⊆, P) and df(v

⊆, C) > df(v
⊆, P), where u⊆, v⊆ can be any of u,

v, or the intersection points. The subsegment u⊆v⊆ can be computed in constant
time, together with one of the three sectors where u⊆v⊆ is contained. If we reached
a leaf of SD(P), we are left with a single edge e of T (P). Suppose e bisects the
chord p1p2 of P , and the current u⊆v⊆ bisects the chord c1c2 of C. Then, return
as point x the center of the circle passing through p, c1, c2, where p is the point
among p1, p2 farthest from x.

A Randomized Incremental Approach for the HVD of Non-crossing Clusters 103

Lemma 2. The separator decomposition SD(P) of a cluster P ⊕ F can be built
in O(np lognp) time, where np is the number of vertices of FVD(P). Both the
point location and the segment query in SD(P) require O(log np) time.

5 Voronoi Hierarchy for the Hausdorff Voronoi Diagram

Consider a set S of k sites. The Voronoi hierarchy of S is a sequence of levels
S = S(0) ⊇ . . . ⊇ S(h). For Γ ⊕ {1, . . . , h}, level S(Δ) is a random sample of
S(Δ−1) according to a Bernoulli distribution with parameter Ψ ⊕ (0, 1). For each
level S(Δ) the data structure stores the Voronoi diagram of S(Δ). The Voronoi
hierarchy is inspired by the Delaunay hierarchy given by Devillers [11].

In the Hausdorff Voronoi diagram sites are clusters of non-constant size each.
We first adapt some known properties of the hierarchy to be valid in such an en-
vironment. Then, we consider several enhancements of the hierarchy to handle
efficiently the Hausdorff Voronoi diagram and its queries, such as point loca-
tion through walks, dynamic updates, including the handling of empty Voronoi
regions, and parametric point location along a segment.

Lemma 3. Let the underlying Voronoi diagram have size O(n), where n is the
total size of the sites. Then for any set S of k sites of total size n, the Voronoi
hierarchy of S has O(n) expected size and O(log k) expected number of levels.

To perform point location in the Voronoi hierarchy for a query point q, we start
at level h, and for each level Γ, we determine the site sΔ ⊕ S(Δ) that is closest to
q, by performing a walk. Each step of the walk moves from a site s ⊕ S(Δ) to a
neighbor of s, such that the distance to q is reduced. A walk at level Γ− 1 starts
from sΔ. The answer to the query is s0.

Lemma 4. Let sΔ0, . . . , s
Δ
r = sΔ be the sequence of sites visited at level Γ during

the point location of a query point q. Assuming that df(q, s
Δ
i) < d(q, sΔi−1), for

i ⊕ {1, . . . , r}, and either sΔ+1 = sΔ0, or df(q, s
Δ
0) < df(q, s

Δ+1), the expectation of
the length r of the walk at level Γ is constant.

In the original Voronoi hierarchy for a set of disjoint convex objects [15], one step
of the walk to determine the correct neighboring site consists of a binary search
among the neighbors of the site. For a Hausdorff Voronoi diagram, however,
there is no natural ordering for the set of neighbors of a site. In addition, the
subset of points in a cluster that contribute to the diagram reduces over time.

A single step of the walk for the Hausdorff Voronoi diagram. Consider point
location in the Voronoi hierarchy for a family F of non-crossing clusters and a
query point q. Let C ⊕ F (Δ) be the current cluster being considered at level Γ.
We need to determine a cluster Q at level Γ whose region neighbors the region
of C and whose distance from q gets reduced. Let Ĉ ≥ C denote the set of all
active points c ⊕ C that contribute a face to hregF(Θ)(C) at the current level Γ

(hregF(Θ)(c) ∈= ∗). Let hreg
(Δ)
F (·) denote hregF(Θ)(·).

104 P. Cheilaris et al.

The cluster Q is determined as follows. Let c ⊕ Ĉ be the active point that
is farthest from query point q (q ⊕ fregĈ(c)). To determine point c it is enough

to draw the tangents from q to CH(Ĉ). Let v1, . . . , vj be the pure vertices

in hreg
(Δ)
F (c) (see Fig. 5) in counterclockwise order, and let Q0, . . . , Qj , Qj+1

be their respective adjacent clusters. The rays −⊃cv1, . . . , −⊃cvj partition fregĈ(c)
into j + 1 unbounded regions. The walk moves from C to Qi such that the
ray −⊃cq immediately follows −⊃cvi or immediately precedes −−−⊃cvi+1. For example, in
Fig. 5, c ⊕ Ĉ(Δ) is the farthest active point from q (df(q, Ĉ

(Δ)) = d(q, c)). Region
fregĈ(c) is shown gray and its boundary is drawn bold. The walk moves from C

to Q = Q2. We organize Ĉ as a sorted list of its points and for each point c ⊕ Ĉ
we maintain a sorted list of all Voronoi vertices adjacent to hreg

(Δ)
F (c). It can be

shown that df(q, Q̂) ⊆ df(q, Ĉ), thus, the above procedure is correct. Note that
df(q,Q) may be greater than df(q, C) because df(q, Ĉ) may be different from
df(q, C) if q ∈⊕ hreg(C).

c ⊕ Ĉ

v1v2

v3
Q0

Q1

Q2

Q3

q

Fig. 5. The step of a walk from the cluster C

Parametric point location in the Voronoi hierarchy. We are given HVD(Fi−1),
stored as a Voronoi hierarchy, and the candidate edge uv ⊕ T (Ci). For each
level Γ of the Voronoi hierarchy, starting from the last level h, we search for

the cluster QΔ ⊕ F
(Δ)
i−1 and a point uΔ ⊕ uv such that uΔ ⊕ hreg

F
(Θ)
i−1

(QΔ) and

df(u
Δ, Ci) = df(u

Δ, QΔ). If at some level there is no such point, return nil. Else
return the cluster C0 and the point u0 determined at level 0.

In more detail, suppose that uΔ+1 and QΔ+1 have been computed, for some
Γ ⊕ {0, . . . , h − 1}. To compute uΔ and QΔ, we determine a sequence uΔ+1 =

a0, a1, . . . , ar = uΔ of points on uv. Let Qaj be the cluster in F
(Δ)
i−1 nearest to aj .

It is determined by a walk at level Γ starting with Qaj−1 . Then point aj+1 is the
point on uv, equidistant from Ci and Qaj (df(aj+1, Ci) = df(aj+1, Q

aj)). If aj is
equidistant from Ci and Qaj , we are done at level Γ; continue to level Γ− 1 with
uΔ = aj and QΔ = Qaj . Else, if df(v,Q

aj) > df(v, Ci), perform a segment query
to determine aj+1. Otherwise, report that a point t does not exist.

Lemma 5. The expected number of visits of clusters at level Γ during the para-
metric point location is O(1).

Handling the empty regions. After inserting Ci at level 0 of the hierarchy for
HVD(Fi−1), we insert Ci into the series of higher levels. When Ci is inserted at
a given level, however, a region of another cluster may become empty.

A Randomized Incremental Approach for the HVD of Non-crossing Clusters 105

We call a cluster P critical at level Γ if hreg
(Δ−1)
Fi−1

(P) ∈= ∗, hreg
(Δ−1)
Fi

(P) = ∗, and

hreg
(Δ)
Fi

(P) ∈= ∗. Such a cluster P becomes an obstacle to correct point location

in the Voronoi hierarchy for HVD(Fi). Indeed, if a query point lies in hreg
(Δ)
Fi

(P),
we do not know where to continue the point location at level Γ− 1.

To fix the problem, P can be deleted from all levels, but this is computationally

expensive. Instead, we link P to at most two other clusters Q,R ⊕ F (Δ−1)
i , such

that every point q ⊕ R
2 is closer to either Q or to R than to P . Property 4

guarantees that such a cluster or two clusters exist (a cluster contained in convP
or a killing pair for P , respectively).

We now describe how to find a killing pair for P . While inserting Ci at level

Γ− 1, we store all (deleted) P -mixed vertices of hreg
(Δ−1)
Fi−1

(P) in a list V . At level

Γ, for each P -mixed vertex v of hreg
(Δ)
Fi

(P), we check if v is closer to Ci or to P .
If df(v, Ci) ⊂ df(v, P), let c be the point in Ci for which df(v, Ci) = d(v, c). Note
that c /⊕ convP , which will be useful. The linking is performed as follows:

– If all P -mixed vertices of hreg
(Δ)
Fi−1

(P) are closer to Ci than to P , link only

to Ci. (This happens only if Ci ∈⊕ F (Δ).)
– Else find the cluster K ⊕ F (Δ−1) such that {K,Ci} is a killing pair for P . If
Ci ⊕ F (Δ), link only to cluster K. Otherwise, link to both K and Ci.

What remains is to determine cluster K. To this aim, we use list V and
point c. Each vertex u ⊕ V is equidistant from two points p1, p2 ⊕ P , and one
point q ⊕ Q, for some Q ⊕ F (Δ−1). We simply check whether c and q are on
different sides of the chord p1p2. If they are, then we set K = Q and we stop.
By Property 4, {K,Ci} is a killing pair for P , and thus the linking is correct.

We summarize the result on the Voronoi hierarchy in the following theorem,
which is easily derived from Lemmas 3 to 5 and the discussion in Section 5.

Theorem 1. The Voronoi hierarchy for the Hausdorff Voronoi diagram of a
family of k clusters of total complexity n has expected size O(n). Both the point
location query and the parametric point location take expected O(log n log k) time.
Insertion of a cluster takes amortized O((N/k) log n) time, where N is the total
number of update operations in all levels during the insertion of all k clusters.

6 Complexity Analysis

The running time of our algorithm depends on the number of update operations
(insertions and deletions) during the construction of the diagram. Using the
Clarkson-Shor technique [9], we prove that the expectation of this number is
linear, when clusters are inserted in random order. Note that in contrast to the
standard probabilistic argument, our proof does not assume sites (clusters) to
have constant size.

Theorem 2. The expected number of update operations is O(n).

106 P. Cheilaris et al.

Theorem 2 can be easily extended to all levels of the Voronoi hierarchy. The
total time for the construction of the separator decomposition for all clusters
is O(n logn) (see Lemma 2). For each cluster C ⊕ F , we perform O(|C|) point
location queries and at most one parametric point location in Voronoi hierarchy.
By Lemma 2 and Theorems 1 and 2, we conclude.

Theorem 3. The Hausdorff Voronoi diagram of non-crossing clusters can be
constructed in O(n logn log k) expected time and O(n) expected space.

Deterministic O(n) space could be achieved by using a dynamic point loca-
tion data structure for a planar subdivision [3, 5]. On this data structure, the
parametric point location can be performed as a simplified form of the para-
metric search, as described by Cheong et al. [8]. The time complexity of such
a query is t2q, where tq is the time complexity of point location in the chosen
data structure. In particular, the data structure by Baumgarten et al. [5] has
tq ⊕ O(log n log logn), which leads to the construction of the Hausdorff Voronoi
diagram with expected running time O(n log2 n(log logn)2) and deterministic
space O(n).

7 Discussion and Open Problems

We have provided improved complexity algorithms for constructing the Haus-
dorff Voronoi diagram of a family of non-crossing point clusters based on random-
ized incremental construction and point location. There is still a gap in the com-
plexity of constructing the Hausdorff Voronoi diagram between our O(n log2 n)
expected time algorithm and the well-known Π(n log n) time lower bound. An
open problem is to close or reduce this gap. It is interesting that in the L◦
metric, a simple O(n log n)-time O(n)-space algorithm, based on plane sweep, is
known [23]. We are currently considering the application of randomized incre-
mental construction through conflict and history graphs. In future research we
plan to consider families of arbitrary point clusters that may be crossing. In this
case, the size of the diagram can vary from linear to quadratic, and therefore,
an output-sensitive algorithm is most desirable. Another direction for research
is to study the problem for clusters of segments, clusters of convex polygons or
other shapes, rather than clusters of points.

References

1. Abellanas, M., Hernandez, G., Klein, R., Neumann-Lara, V., Urrutia, J.: A com-
binatorial property of convex sets. Discrete Comput. Geom. 17(3), 307–318 (1997)

2. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B.,
Sacristán, V.: The farthest color Voronoi diagram and related problems. In: 17th
Eur. Workshop on Comput. Geom. (EWCG), pp. 113–116 (2001)

3. Arge, L., Brodal, G.S., Georgiadis, L.: Improved dynamic planar point location.
In: 47th Ann. IEEE Symp. Found. Comput. Sci. (FOCS), pp. 305–314 (2006)

A Randomized Incremental Approach for the HVD of Non-crossing Clusters 107

4. Aronov, B., Bose, P., Demaine, E.D., Gudmundsson, J., Iacono, J., Langerman,
S., Smid, M.: Data structures for halfplane proximity queries and incremental
Voronoi diagrams. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS,
vol. 3887, pp. 80–92. Springer, Heidelberg (2006)

5. Baumgarten, H., Jung, H., Mehlhorn, K.: Dynamic point location in general sub-
divisions. J. Algorithm 17(3), 342–380 (1994)

6. Boissonnat, J.-D., Wormser, C., Yvinec, M.: Curved Voronoi diagrams. In: Bois-
sonnat, J.-D., Teillaud, M. (eds.) Effective Computational Geometry for Curves
and Surfaces, pp. 67–116. Springer, Heidelberg (2006)

7. Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E.: A randomized
incremental approach for the Hausdorff Voronoi diagram of non-crossing clusters.
CoRR abs/1312.3904 (2013)

8. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee,
M., Na, H.S.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234–247
(2011)

9. Clarkson, K., Shor, P.: Applications of random sampling in computational geome-
try, II. Discrete Comput. Geom. 4, 387–421 (1989)

10. Dehne, F., Maheshwari, A., Taylor, R.: A coarse grained parallel algorithm for
Hausdorff Voronoi diagrams. In: 35th Int. Conf. on Parallel Processing (ICPP),
pp. 497–504 (2006)

11. Devillers, O.: The Delaunay Hierarchy. Int. J. Found. Comput. S. 13, 163–180
(2002)

12. Edelsbrunner, H.: Computing the extreme distances between two convex polygons.
J. Algorithm 6(2), 213–224 (1985)

13. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear
functions: algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989)

14. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces
and its applications. Discrete Comput. Geom. 9, 267–291 (1993)

15. Karavelas, M., Yvinec, M.: The Voronoi diagram of convex objects in the plane.
Technical report RR-5023, INRIA (2003)

16. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer,
Heidelberg (1989)

17. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of ab-
stract Voronoi diagrams. Comput. Geom. 3(3), 157–184 (1993)

18. McAllister, M., Kirkpatrick, D., Snoeyink, J.: A compact piecewise-linear Voronoi
diagram for convex sites in the plane. Discrete Comput. Geom. 15(1), 73–105 (1996)

19. Megiddo, N., Tamir, A., Zemel, E., Chandrasekaran, R.: An O(n log2 n) algorithm
for the kth longest path in a tree with applications to location problems. SIAM J.
Comput. 10(2), 328–337 (1981)

20. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane.
Algorithmica 40(2), 63–82 (2004)

21. Papadopoulou, E.: Net-aware critical area extraction for opens in VLSI circuits via
higher-order Voronoi diagrams. IEEE T. Comput. Aid D. 30(5), 704–716 (2011)

22. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects:
a divide and conquer approach. Int. J. Comput. Geom. Ap. 14(6), 421–452 (2004)

23. Papadopoulou, E., Xu, J.: The L∞ Hausdorff Voronoi diagram revisited. In: 8th
Int. Symp. on Voronoi Diagr. in Sci. and Eng. (ISVD), pp. 67–74 (2011)

Upper Bounds on the Spanning Ratio

of Constrained Theta-GraphsΔ

Prosenjit Bose and André van Renssen

School of Computer Science, Carleton University, Ottawa, Canada
jit@scs.carleton.ca, andre@cg.scs.carleton.ca

Abstract. We present tight upper and lower bounds on the spanning
ratio of a large family of constrained θ-graphs. We show that constrained
θ-graphs with 4k + 2 (k ≥ 1 and integer) cones have a tight spanning
ratio of 1+ 2 sin(θ/2), where θ is 2π/(4k+2). We also present improved
upper bounds on the spanning ratio of the other families of constrained
θ-graphs.

1 Introduction

A geometric graph G is a graph whose vertices are points in the plane and whose
edges are line segments between pairs of points. Every edge is weighted by the
Euclidean distance between its endpoints. The distance between two vertices u
and v in G, denoted by dG(u, v), is defined as the sum of the weights of the edges
along the shortest path between u and v in G. A subgraph H of G is a t-spanner
of G (for t ⊕ 1) if for each pair of vertices u and v, dH(u, v) ≤ t · dG(u, v). The
smallest value t for which H is a t-spanner is the spanning ratio or stretch factor.
The graph G is referred to as the underlying graph of H . The spanning properties
of various geometric graphs have been studied extensively in the literature (see
[4,10] for a comprehensive overview of the topic). We look at a specific type of
geometric spanner: Θ-graphs.

Introduced independently by Clarkson [7] and Keil [9], Θ-graphs partition the
plane around each vertex into m disjoint cones, each having aperture Θ = 2ι/m.
The Θm-graph is constructed by, for each cone of each vertex u, connecting
u to the vertex v whose projection along the bisector of the cone is closest.
Ruppert and Seidel [11] showed that the spanning ratio of these graphs is at
most 1/(1−2 sin(Θ/2)), when Θ < ι/3, i.e. there are at least seven cones. Recent
results include a tight spanning ratio of 1 + 2 sin(Θ/2) for Θ-graphs with 4k + 2
cones [1], where k ⊕ 1 and integer, and improved upper bounds for the other
three families of Θ-graphs [6].

Most of the research, however, has focused on constructing spanners where
the underlying graph is the complete Euclidean geometric graph. We study this
problem in a more general setting with the introduction of line segment con-
straints. Specifically, let P be a set of points in the plane and let S be a set

α Research supported in part by NSERC and Carleton University’s President’s 2010
Doctoral Fellowship.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 108–119, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs 109

of line segments between two vertices in P , called constraints. The set of con-
straints is planar, i.e. no two constraints intersect properly. Two vertices u and
v can see each other if and only if either the line segment uv does not properly
intersect any constraint or uv is itself a constraint. If two vertices u and v can
see each other, the line segment uv is a visibility edge. The visibility graph of P
with respect to a set of constraints S, denoted Vis(P, S), has P as vertex set
and all visibility edges as edge set. In other words, it is the complete graph on
P minus all edges that properly intersect one or more constraints in S.

This setting has been studied extensively within the context of motion plan-
ning amid obstacles. Clarkson [7] was one of the first to study this problem and
showed how to construct a linear-sized (1+Δ)-spanner of Vis(P, S). Subsequently,
Das [8] showed how to construct a spanner of Vis(P, S) with constant spanning
ratio and constant degree. The Constrained Delaunay Triangulation was shown
to be a 2.42-spanner of Vis(P, S) [3]. Recently, it was also shown that the con-
strained Θ6-graph is a 2-spanner of Vis(P, S) [2]. In this paper, we generalize the
recent results on unconstrained Θ-graphs to the constrained setting. There are
two main obstacles that differentiate this work from previous results. First, the
main difficulty with the constrained setting is that induction cannot be applied
directly, as the destination need not be visible from the vertex closest to the
source (see Figure 5, where w is not visible from v0, the vertex closest to u).
Second, when the graph does not have 4k+ 2 cones, the cones do not line up as
nicely as in [2], making it more difficult to apply induction.

In this paper, we overcome these two difficulties and show that constrained
Θ-graphs with 4k+2 cones have a spanning ratio of at most 1+2 sin(Θ/2), where
Θ is 2ι/(4k + 2). Since the lower bounds of the unconstrained Θ-graphs carry
over to the constrained setting, this shows that this spanning ratio is tight. We
also show that constrained Θ-graphs with 4k + 4 cones have a spanning ratio of
at most 1 + 2 sin(Θ/2)/(cos(Θ/2)− sin(Θ/2)), where Θ is 2ι/(4k+ 4). Finally, we
show that constrained Θ-graphs with 4k+3 or 4k+5 cones have a spanning ratio
of at most cos(Θ/4)/(cos(Θ/2)−sin(3Θ/4)), where Θ is 2ι/(4k+3) or 2ι/(4k+5).

2 Preliminaries

We define a cone C to be the region in the plane between two rays originating
from a vertex referred to as the apex of the cone. When constructing a (con-
strained) Θ(4k+x)-graph, for each vertex u consider the rays originating from u
with the angle between consecutive rays being Θ = 2ι/(4k + x), where k ⊕ 1
and integer and x ∈ {2, 3, 4, 5}. Each pair of consecutive rays defines a cone. The
cones are oriented such that the bisector of some cone coincides with the vertical
halfline through u that lies above u. Let this cone be C0 of u and number the
cones in clockwise order around u. The cones around the other vertices have the
same orientation as the ones around u. We write Cu

i to indicate the i-th cone of
a vertex u. For ease of exposition, we only consider point sets in general position:
no two points lie on a line parallel to one of the rays that define the cones, no
two points lie on a line perpendicular to the bisector of a cone, and no three
points are collinear.

110 P. Bose and A. van Renssen

Let vertex u be an endpoint of a constraint c and let the other endpoint v lie in
cone Cu

i . The lines through all such constraints c split Cu
i into several subcones.

We use Cu
i,j to denote the j-th subcone of Cu

i . When a constraint c = (u, v)
splits a cone of u into two subcones, we define v to lie in both of these subcones.
We consider a cone that is not split to be a single subcone.

We now introduce the constrained Θ(4k+x)-graph: for each subcone Ci,j of
each vertex u, add an edge from u to the closest vertex in that subcone that
can see u, where distance is measured along the bisector of the original cone
(not the subcone). More formally, we add an edge between two vertices u and
v if v can see u, v ∈ Cu

i,j , and for all points w ∈ Cu
i,j that can see u, |uv∗| ≤

|uw∗|, where v∗ and w∗ denote the projection of v and w on the bisector of Cu
i

and |xy| denotes the length of the line segment between two points x and y.

w

u

m

Γ

Fig. 1. The canonical triangle Tuw

Note that our assumption of general position
implies that each vertex adds at most one edge
for each of its subcones.

Given a vertex w in the cone Ci of vertex
u, we define the canonical triangle Tuw to be
the triangle defined by the borders of Cu

i and
the line through w perpendicular to the bisec-
tor of Cu

i . Note that subcones do not define
canonical triangles. We use m to denote the
midpoint of the side of Tuw opposing u and Γ
to denote the unsigned angle between uw and
um (see Figure 1). Note that for any pair of
vertices u and w, there exist two canonical tri-
angles: Tuw and Twu. We say that a region is
empty if it does not contain any vertex of P .

3 Some Useful Lemmas

In this section, we list a number of lemmas that are used when bounding the
spanning ratio of the various graphs. Note that these lemmas are not new, as they
are already used in [2,6], though some are expanded to work for all four families of

u

v

w

x
y

Fig. 2. The convex chain between
vertices u and v, where thick lines
are visibility edges

constrained Θ-graphs. We start with a nice
property of visibility graphs from [2].

Lemma 1. Let u, v, and w be three arbitrary
points in the plane such that uw and vw are
visibility edges and w is not the endpoint of a
constraint intersecting the interior of triangle
uvw. Then there exists a convex chain of vis-
ibility edges from u to v in triangle uvw, such
that the polygon defined by uw, wv and the
convex chain is empty and does not contain
any constraints.

Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs 111

Next, we use two lemmas from [6] to bound the length of certain line
segments. Note that Lemma 2 is extended such that it also holds for the con-
strained Θ(4k+2)-graph. We use ⊆ xyz to denote the smaller angle between line
segments xy and yz.

Lemma 2. Let u, v and w be three vertices in the Θ(4k+x)-graph, x ∈ {2, 3, 4, 5},
such that w ∈ Cu

0 and v ∈ Tuw, to the left of uw. Let a be the intersection of the
side of Tuw opposite u and the left boundary of Cv

0 . Let C
v
i denote the cone of v

that contains w and let c and d be the upper and lower corner of Tvw. If 1 ≤ i ≤
k− 1, or i = k and |cw| ≤ |dw|, then max {|vc|+ |cw|, |vd|+ |dw|} ≤ |va|+ |aw|
and max {|cw|, |dw|} ≤ |aw|.

u

wa

v

c

dCv
i

Fig. 3. The situation where we
apply Lemma 2

w

v

z

a

y

Ψ

Π

Fig. 4. The situation where we
apply Lemma 3

Lemma 3. Let u, v and w be three vertices in the Θ(4k+x)-graph, x ∈ {2, 3, 4, 5},
such that w ∈ Cu

0 , v ∈ Tuw to the left of uw, and w ⊗∈ Cv
0 . Let a be the intersection

of the side of Tuw opposite u and the line through v parallel to the left boundary
of Tuw. Let y and z be the corners of Tvw opposite to v. Let Π = ⊆ awv and let
Ψ be the unsigned angle between vw and the bisector of Tvw. Let c be a positive
constant. If c ⊕ cos γ−sin β

cos(θ
2−β)−sin(θ

2+γ)
, then |vp|+ c · |pw| ≤ |va|+ c · |aw|, where p

is y if |yw| ⊕ |zw| and z if |yw| < |zw|.

4 Constrained α(4k+2)-Graph

In this section we prove that the constrained Θ(4k+2)-graph has spanning ratio
at most 1 + 2 · sin(Θ/2). Since this is also a lower bound [1], this proves that this
spanning ratio is tight.

Theorem 1. Let u and w be two vertices in the plane such that u can see w. Let
m be the midpoint of the side of Tuw opposing u and let Γ be the unsigned angle

112 P. Bose and A. van Renssen

between uw and um. There exists a path connecting u and w in the constrained
Θ(4k+2)-graph of length at most

((
1 + sin

(
θ
2

)

cos
(
θ
2

)

)

· cosΓ+ sinΓ

)

· |uw|.

Proof. We assume without loss of generality that w ∈ Cu
0 . We prove the theorem

by induction on the area of Tuw. Formally, we perform induction on the rank,
when ordered by area, of the triangles Txy for all pairs of vertices x and y that
can see each other. Let a and b be the upper left and right corner of Tuw, and
let A and B be the triangles uaw and ubw (see Figure 5).

Our inductive hypothesis is the following, where Σ(u,w) denotes the length of
the shortest path from u to w in the constrained Θ(4k+2)-graph:

– If A is empty, then Σ(u,w) ≤ |ub|+ |bw|.
– If B is empty, then Σ(u,w) ≤ |ua|+ |aw|.
– If neither A nor B is empty, then Σ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|}.
We first show that this induction hypothesis implies the theorem: |um| =

|uw| · cosΓ, |mw| = |uw| · sinΓ, |am| = |bm| = |uw| · cosΓ · tan(Θ/2), and
|ua| = |ub| = |uw| · cosΓ/ cos(Θ/2). Thus the induction hypothesis gives that
Σ(u,w) is at most |uw| · (((1 + sin(Θ/2))/ cos(Θ/2)) · cosΓ+ sinΓ).

Base Case: Tuw has rank 1. Since the triangle is a smallest triangle, w is the
closest vertex to u in that cone. Hence the edge (u,w) is part of the constrained
Θ(4k+2)-graph, and Σ(u,w) = |uw|. From the triangle inequality, we have |uw| ≤
min{|ua|+ |aw|, |ub|+ |bw|}, so the induction hypothesis holds.

Induction Step: We assume that the induction hypothesis holds for all pairs
of vertices that can see each other and have a canonical triangle whose area is
smaller than the area of Tuw.

u

w ba

v0 v1

v2

a0 b0

Fig. 5. A convex chain from v0 to w

If (u,w) is an edge in the constrained
Θ(4k+2)-graph, the induction hypothesis fol-
lows by the same argument as in the base
case. If there is no edge between u and w,
let v0 be the vertex closest to u in the sub-
cone of u that contains w, and let a0 and
b0 be the upper left and right corner of
Tuv0 (see Figure 5). By definition, Σ(u,w) ≤
|uv0|+ Σ(v0, w), and by the triangle inequal-
ity, |uv0| ≤ min{|ua0|+|a0v0|, |ub0|+|b0v0|}.
We assume without loss of generality that v0
lies to the left of uw, which means that A is
not empty.

Since uw and uv0 are visibility edges, by
applying Lemma 1 to triangle v0uw, a con-
vex chain v0, ..., vl = w of visibility edges connecting v0 and w exists (see Fig-
ure 5). Note that, since v0 is the closest visible vertex to u, every vertex along
the convex chain lies above the horizontal line through v0.

Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs 113

We now look at two consecutive vertices vj−1 and vj along the convex chain.
There are four types of configurations (see Figure 6): (i) vj∈Cvj−1

k , (ii) vj∈Cvj−1

i

where 1 ≤ i < k, (iii) vj ∈ Cvj−1

0 and vj lies to the right of or has the same x-
coordinate as vj−1, (iv) vj ∈ Cvj−1

0 and vj lies to the left of vj−1. By convexity,
the direction of −−−−∈vjvj+1 is rotating counterclockwise for increasing j. Thus, these
configurations occur in the order Type (i), Type (ii), Type (iii), Type (iv) along
the convex chain from v0 to w. We bound Σ(vj−1, vj) as follows:

Type (i): If vj ∈ Cvj−1

k , let aj and bj be the upper and lower left corner of Tvjvj−1

and let Bj = vj−1bjvj . Note that since vj ∈ Cvj−1

k , aj is also the intersection
of the left boundary of C

vj−1

0 and the horizontal line through vj . Triangle Bj

lies between the convex chain and uw, so it must be empty. Since vj can see
vj−1 and Tvjvj−1 has smaller area than Tuw, the induction hypothesis gives that
Σ(vj−1, vj) is at most |vj−1aj |+ |ajvj |.

vj−1

vj−1

vj

vjc

d
aj

bj

bj

vj−1 vj−1

aj

aj ajvj bj

vj

(i) (ii) (iii) (iv)

Fig. 6. The four types of configurations

Type (ii): If vj ∈ C
vj−1

i where 1 ≤ i < k, let c and d be the upper and
lower right corner of Tvj−1vj . Let aj be the intersection of the left boundary of
C

vj−1

0 and the horizontal line through vj . Since vj can see vj−1 and Tvj−1vj has
smaller area than Tuw, the induction hypothesis gives that Σ(vj−1, vj) is at most
max{|vj−1c| + |cvj |, |vj−1d| + |dvj |}. Since vj ∈ Cvj−1

i where 1 ≤ i < k, we can
apply Lemma 2 (where v, w, and a from Lemma 2 are vj−1, vj , and aj), which
gives us that max{|vj−1c|+ |cvj |, |vj−1d|+ |dvj |} ≤ |vj−1aj |+ |ajvj |.

Type (iii): If vj ∈ C
vj−1

0 and vj lies to the right of or has the same x-
coordinate as vj−1, let aj and bj be the left and right corner of Tvj−1vj and let
Aj = vj−1ajvj and Bj = vj−1bjvj . Since vj can see vj−1 and Tvj−1vj has smaller
area than Tuw, we can apply the induction hypothesis. Regardless of whether Aj

and Bj are empty or not, Σ(vj−1, vj) is at most max{|vj−1aj |+ |ajvj |, |vj−1bj |+
|bjvj |}. Since vj lies to the right of or has the same x-coordinate as vj−1, we know
that |vj−1aj|+|ajvj | ⊕ |vj−1bj|+|bjvj |, so Σ(vj−1, vj) is at most |vj−1aj |+|ajvj |.

Type (iv): If vj ∈ Cvj−1

0 and vj lies to the left of vj−1, let aj and bj be the left
and right corner of Tvj−1vj and let Aj = vj−1ajvj and Bj = vj−1bjvj . Since vj
can see vj−1 and Tvj−1vj has smaller area than Tuw, we can apply the induction
hypothesis. Thus, if Bj is empty, Σ(vj−1, vj) is at most |vj−1aj| + |ajvj | and if
Bj is not empty, Σ(vj−1, vj) is at most |vj−1bj|+ |bjvj |.

114 P. Bose and A. van Renssen

u

w

u

w

vj≥

u

w

vj≥

b∗∗

a∗

u

w

vj≥

b∗∗

b∗

u

w b

Fig. 7. Visualization of the paths (thick lines) in the inequalities of case (c)

To complete the proof, we consider three cases: (a) ⊆ awu ≤ ι/2, (b) ⊆ awu >
ι/2 and B is empty, (c) ⊆ awu > ι/2 and B is not empty.

Case (a): If ⊆ awu ≤ ι/2, the convex chain cannot contain any Type (iv)
configurations: for Type (iv) configurations to occur, vj needs to lie to the left of
vj−1. However, by construction, vj lies on or to the right of the line through vj−1
and w. Hence, since ⊆ awvj−1 < ⊆ awu ≤ ι/2, vj lies to the right of or has the
same x-coordinate as vj−1. We can now bound Σ(u,w) by using these bounds:

Σ(u,w) ≤ |uv0|+
∑l

j=1 Σ(vj−1, vj) ≤ |ua0| + |a0v0|+
∑l

j=1(|vj−1aj |+ |ajvj |) =
|ua|+ |aw|.

Case (b): If ⊆ awu > ι/2 and B is empty, the convex chain can contain
Type (iv) configurations. However, since B is empty and the area between the
convex chain and uw is empty (by Lemma 1), all Bj are also empty. Using
the computed bounds on the lengths of the paths between the points along the
convex chain, we can bound Σ(u,w) as in the previous case.

Case (c): If ⊆ awu > ι/2 and B is not empty, the convex chain can contain
Type (iv) configurations and since B is not empty, the triangles Bj need not be
empty. Recall that v0 lies in A, hence neither A nor B are empty. Therefore, it
suffices to prove that Σ(u,w) ≤ max{|ua|+ |aw|, |ub| + |bw|} = |ub| + |bw|. Let
Tvj≥vj≥+1

be the first Type (iv) configuration along the convex chain (if it has any),
let a∗ and b∗ be the upper left and right corner of Tuvj≥ , and let b∗∗ be the upper

right corner of Tvj≥w. We now have that Σ(u,w) ≤ |uv0| +
∑l

j=1 Σ(vj−1, vj) ≤
|ua∗|+ |a∗vj≥ |+ |vj≥b∗∗|+ |b∗∗w| ≤ |ub|+ |bw| (see Figure 7). ∗≥
Since ((1 + sin(Θ/2))/ cos(Θ/2)) · cosΓ + sinΓ is increasing for Γ ∈ [0, Θ/2], for
Θ ≤ ι/3, it is maximized when Γ = Θ/2, and we obtain the following corollary:

Corollary 1. The constrained Θ(4k+2)-graph is a
(
1 + 2 · sin (

θ
2

))
-spanner of

Vis(P, S).

Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs 115

5 Generic Framework for the Spanning Proof

Next, we modify the spanning proof from the previous section and provide a
generic framework for the spanning proof for the other three families of Θ-graphs.
After providing this framework, we fill in the blanks for the individual families.

Theorem 2. Let u and w be two vertices in the plane such that u can see w. Let
m be the midpoint of the side of Tuw opposing u and let Γ be the unsigned angle
between uw and um. There exists a path connecting u and w in the constrained
Θ(4k+x)-graph of length at most

(
cosΓ

cos
(
θ
2

) +

⎡
cosΓ · tan

⎡
Θ

2

⎣
+ sinΓ

⎣
· c

)

· |uw|,

where c ⊕ 1 is a constant that depends on x ∈ {3, 4, 5}. For the constrained
Θ(4k+4)-graph, c equals 1/(cos(Θ/2) − sin(Θ/2)) and for the constrained Θ(4k+3)-
graph and Θ(4k+5)-graph, c equals cos(Θ/4)/(cos(Θ/2)− sin(3Θ/4)).

Proof. We prove the theorem by induction on the area of Tuw. Formally, we
perform induction on the rank, when ordered by area, of the triangles Txy for
all pairs of vertices x and y that can see each other. We assume without loss of
generality that w ∈ Cu

0 . Let a and b be the upper left and right corner of Tuw
(see Figure 5).

Our inductive hypothesis is the following, where Σ(u,w) denotes the length
of the shortest path from u to w in the constrained Θ(4k+x)-graph: Σ(u,w) ≤
max{|ua|+ |aw| · c, |ub|+ |bw| · c}.

We first show that this induction hypothesis implies the theorem. Basic
trigonometry gives us the following equalities: |um| = |uw| · cosΓ, |mw| =
|uw| · sinΓ, |am| = |bm| = |uw| · cosΓ · tan(Θ/2), and |ua| = |ub| = |uw| ·
cosΓ/ cos(Θ/2). Thus the induction hypothesis gives that Σ(u,w) is at most
|uw| · (cosΓ/ cos(Θ/2) + (cosΓ · tan(Θ/2) + sinΓ) · c).

Base Case: Tuw has rank 1. Since the triangle is a smallest triangle, w is the
closest vertex to u in that cone. Hence the edge (u,w) is part of the constrained
Θ(4k+x)-graph, and Σ(u,w) = |uw|. From the triangle inequality and the fact
that c ⊕ 1, we have |uw| ≤ min{|ua|+ |aw| · c, |ub|+ |bw| · c}, so the induction
hypothesis holds.

Induction Step: We assume that the induction hypothesis holds for all pairs
of vertices that can see each other and have a canonical triangle whose area is
smaller than the area of Tuw.

If (u,w) is an edge in the constrained Θ(4k+x)-graph, the induction hypothesis
follows by the same argument as in the base case. If there is no edge between
u and w, let v0 be the vertex closest to u in the subcone of u that contains
w, and let a0 and b0 be the upper left and right corner of Tuv0 (see Figure 5).
By definition, Σ(u,w) ≤ |uv0|+ Σ(v0, w), and by the triangle inequality, |uv0| ≤
min{|ua0|+ |a0v0|, |ub0|+ |b0v0|}. We assume without loss of generality that v0
lies to the left of uw.

116 P. Bose and A. van Renssen

Since uw and uv0 are visibility edges, by applying Lemma 1 to triangle v0uw,
a convex chain v0, ..., vl = w of visibility edges connecting v0 and w exists (see
Figure 5). Note that, since v0 is the closest visible vertex to u, every vertex along
the convex chain lies above the horizontal line through v0.

We now look at two consecutive vertices vj−1 and vj along the convex chain.
When vj ⊗∈ Cvj−1

0 , let c and d be the upper and lower right corner of Tvj−1vj . We
distinguish four types of configurations: (i) vj ∈ Cvj−1

i where i > k, or i = k and
|cw| > |dw|, (ii) vj ∈ Cvj−1

i where 1 ≤ i ≤ k − 1, or i = k and |cw| ≤ |dw|, (iii)
vj ∈ Cvj−1

0 and vj lies to the right of or has the same x-coordinate as vj−1, (iv)
vj ∈ Cvj−1

0 and vj lies to the left of vj−1. By convexity, the direction of −−−−∈vjvj+1

is rotating counterclockwise for increasing j. Thus, these configurations occur in
the order Type (i), Type (ii), Type (iii), Type (iv) along the convex chain from
v0 to w. We bound Σ(vj−1, vj) as follows:

Type (i): vj ∈ Cvj−1

i where i > k, or i = k and |cw| > |dw|. Since vj can see
vj−1 and Tvjvj−1 has smaller area than Tuw, the induction hypothesis gives that
Σ(vj−1, vj) is at most max{|vj−1c|+ |cvj | · c, |vj−1d|+ |dvj | · c}.

Let aj be the intersection of the left boundary of C
vj−1

0 and the horizontal
line through vj . We aim to show that max{|vj−1c|+ |cvj | ·c, |vj−1d|+ |dvj | ·c} ≤
|vj−1aj | + |ajvj | · c. We use Lemma 3 to do this. However, since the precise
application of this lemma depends on the family of Θ-graphs and determines the
value of c, this case is discussed in the spanning proofs of the three families.

Type (ii): vj ∈ Cvj−1

i where 1 ≤ i ≤ k − 1, or i = k and |cw| ≤ |dw|. Since
vj can see vj−1 and Tvjvj−1 has smaller area than Tuw, the induction hypothesis
gives that Σ(vj−1, vj) is at most max{|vj−1c|+ |cvj | · c, |vj−1d|+ |dvj | · c}.

Let aj be the intersection of the left boundary of C
vj−1

0 and the horizontal line
through vj . Since vj ∈ Cvj−1

i where 1 ≤ i ≤ k − 1, or i = k and |cw| ≤ |dw|, we
can apply Lemma 2 in this case (where v, w, and a from Lemma 2 are vj−1, vj ,
and aj) and we get that max{|vj−1c|+ |cvj |, |vj−1d|+ |dvj |} ≤ |vj−1aj |+ |ajvj |
and max{|cvj |, |dvj |} ≤ |ajvj |. Since c ⊕ 1, this implies that max{|vj−1c|+ |cvj | ·
c, |vj−1d|+ |dvj | · c} ≤ |vj−1aj |+ |ajvj | · c.

Type (iii): If vj ∈ C
vj−1

0 and vj lies to the right of or has the same x-
coordinate as vj−1, let aj and bj be the left and right corner of Tvj−1vj . Since vj
can see vj−1 and Tvj−1vj has smaller area than Tuw, we can apply the induction
hypothesis. Thus, since vj lies to the right of or has the same x-coordinate as
vj−1, Σ(vj−1, vj) is at most |vj−1aj |+ |ajvj | · c.

Type (iv): If vj ∈ Cvj−1

0 and vj lies to the left of vj−1, let aj and bj be the
left and right corner of Tvj−1vj . Since vj can see vj−1 and Tvj−1vj has smaller
area than Tuw, we can apply the induction hypothesis. Thus, since vj lies to the
left of vj−1, Σ(vj−1, vj) is at most |vj−1bj |+ |bjvj | · c.

To complete the proof, we consider two cases: (a) ⊆ awu ≤ π
2 , (b) ⊆ awu > π

2 .
Case (a): We need to prove that Σ(u,w) ≤ max{|ua| + |aw|, |ub| + |bw|} =

|ua| + |aw|. We first show that the convex chain cannot contain any Type (iv)
configurations: for Type (iv) configurations to occur, vj needs to lie to the left of
vj−1. However, by construction, vj lies on or to the right of the line through vj−1
and w. Hence, since ⊆ awvj−1 < ⊆ awu ≤ ι/2, vj lies to the right of vj−1. We can

Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs 117

now bound Σ(u,w) by using these bounds: Σ(u,w) ≤ |uv0|+
∑l

j=1 Σ(vj−1, vj) ≤
|ua0|+ |a0v0|+

∑l
j=1(|vj−1aj|+ |ajvj | · c) ≤ |ua|+ |aw| · c.

Case (b): If ⊆ awu > ι/2, the convex chain can contain Type (iv) configura-
tions. We need to prove that Σ(u,w) ≤ max{|ua|+ |aw|, |ub|+ |bw|} = |ub|+ |bw|.
Let Tvj≥vj≥+1

be the first Type (iv) configuration along the convex chain (if it has
any), let a∗ and b∗ be the upper left and right corner of Tuvj≥ , and let b∗∗ be the up-

per right corner of Tvj≥w. We now have that Σ(u,w) ≤ |uv0|+
∑l

j=1 Σ(vj−1, vj) ≤
|ua∗|+ |a∗vj≥ | · c + |vj≥b∗∗|+ |b∗∗w| · c ≤ |ub|+ |bw| · c (see Figure 7). ∗≥

6 The Constrained α(4k+4)-Graph

In this section we complete the proof of Theorem 2 for the constrained Θ(4k+4)-
graph.

Theorem 3. Let u and w be two vertices in the plane such that u can see w. Let
m be the midpoint of the side of Tuw opposite u and let Γ be the unsigned angle
between uw and um. There exists a path connecting u and w in the constrained
Θ(4k+4)-graph of length at most

(
cosΓ

cos
(
θ
2

) +
cosΓ · tan

(
θ
2

)
+ sinΓ

cos
(
θ
2

)− sin
(
θ
2

)

)

· |uw|.

Proof. We apply Theorem 2 using c = 1/(cos(Θ/2)− sin(Θ/2)). The assumptions
made in Theorem 2 still apply. It remains to show that for the Type (i) configura-
tions, we have that max{|vj−1c|+ |cvj | ·c, |vj−1d|+ |dvj | ·c} ≤ |vj−1aj |+ |ajvj | ·c,
where c and d are the upper and lower right corner of Tvj−1vj and aj is the in-
tersection of the left boundary of C

vj−1

0 and the horizontal line through vj .
We distinguish two cases: (a) vj ∈ C

vj−1

k and |cw| > |dw|, (b) vj ∈ C
vj−1

k+1 .
Let Π be ⊆ ajvjvj−1 and let Ψ be the angle between vjvj−1 and the bisector of
Tvj−1vj .

Case (a): When vj ∈ C
vj−1

k and |cw| > |dw|, the induction hypothesis for
Tvj−1vj gives Σ(vj−1, vj) ≤ |vj−1c| + |cvj | · c. We note that Ψ = Θ − Π. Hence
Lemma 3 gives that the inequality holds when c ⊕ (cos(Θ−Π)−sinΠ)/(cos(Θ/2−
Π) − sin(3Θ/2 − Π)). As this function is decreasing in Π for Θ/2 ≤ Π ≤ Θ, it
is maximized when Π equals Θ/2. Hence c needs to be at least (cos(Θ/2) −
sin(Θ/2))/(1− sin Θ), which can be rewritten to 1/(cos(Θ/2)− sin(Θ/2)).

Case (b): When vj ∈ C
vj−1

k+1 , vj lies above the bisector of Tvj−1vj and the
induction hypothesis for Tvj−1vj gives Σ(vj−1, vj) ≤ |vjd| + |dvj−1| · c. We note
that Ψ = Π. Hence Lemma 3 gives that the inequality holds when c ⊕ (cosΠ −
sinΠ)/(cos(Θ/2 − Π) − sin(Θ/2 + Π)). As this function is decreasing in Π for
0 ≤ Π ≤ Θ/2, it is maximized when Π equals 0. Hence c needs to be at least
1/(cos(Θ/2)− sin(Θ/2)). ∗≥
Since cosΓ/ cos(Θ/2)+(cosΓ·tan(Θ/2)+sinΓ)/(cos(Θ/2)−sin(Θ/2)) is increasing
for Γ ∈ [0, Θ/2], for Θ ≤ ι/4, it is maximized when Γ = Θ/2, and we obtain the
following corollary:

118 P. Bose and A. van Renssen

Corollary 2. The constrained Θ(4k+4)-graph is a

⎡
1 +

2·sin(θ
2)

cos(θ
2)−sin(θ

2)

⎣
-spanner

of Vis(P, S).

7 The Constrained α(4k+3)-Graph and α(4k+5)-Graph

In this section we complete the proof of Theorem 2 for the constrained Θ(4k+3)-
graph and Θ(4k+5)-graph.

Theorem 4. Let u and w be two vertices in the plane such that u can see w. Let
m be the midpoint of the side of Tuw opposite u and let Γ be the unsigned angle
between uw and um. There exists a path connecting u and w in the constrained
Θ(4k+3)-graph of length at most

(
cosΓ

cos
(
θ
2

) +

(
cosΓ · tan

(
θ
2

)
+ sinΓ

) · cos
(
θ
4

)

cos
(
θ
2

)− sin
(
3θ
4

)

)

· |uw|.

Proof. We apply Theorem 2 using c = cos(Θ/4)/(cos(Θ/2) − sin(3Θ/4)). The
assumptions made in Theorem 2 still apply. It remains to show that for the
Type (i) configurations, we have that max{|vj−1c|+ |cvj | ·c, |vj−1d|+ |dvj | ·c} ≤
|vj−1aj |+ |ajvj | ·c, where c and d are the upper and lower right corner of Tvj−1vj

and aj is the intersection of the left boundary of C
vj−1

0 and the horizontal line
through vj .

We distinguish two cases: (a) vj ∈ C
vj−1

k and |cw| > |dw|, (b) vj ∈ C
vj−1

k+1 .
Let Π be ⊆ ajvjvj−1 and let Ψ be the angle between vjvj−1 and the bisector of
Tvj−1vj .

Case (a): When vj ∈ C
vj−1

k and |cw| > |dw|, the induction hypothesis for
Tvj−1vj gives Σ(vj−1, vj) ≤ |vj−1c| + |cvj | · c. We note that Ψ = 3Θ/4 − Π.
Hence Lemma 3 gives that the inequality holds when c ⊕ (cos(3Θ/4 − Π) −
sinΠ)/(cos(Θ/2 − Π) − sin(5Θ/4 − Π)). As this function is decreasing in Π for
Θ/4 ≤ Π ≤ 3Θ/4, it is maximized when Π equals Θ/4. Hence c needs to be at least
(cos(Θ/2) − sin(Θ/4))/(cos(Θ/4) − sin Θ), which is equal to cos(Θ/4)/(cos(Θ/2)−
sin(3Θ/4)).

Case (b): When vj ∈ C
vj−1

k+1 , vj lies above the bisector of Tvj−1vj and the
induction hypothesis for Tvj−1vj gives Σ(vj−1, vj) ≤ |vjd|+|dvj−1|·c. We note that
Ψ = Θ/4+Π. Hence Lemma 3 gives that the inequality holds when c ⊕ (cos(Θ/4+
Π)− sinΠ)/(cos(Θ/2−Π)− sin(3Θ/4+Π)), which is equal to cos(Θ/4)/(cos(Θ/2)−
sin(3Θ/4)). ∗≥
Theorem 5. Let u and w be two vertices in the plane such that u can see w. Let
m be the midpoint of the side of Tuw opposite u and let Γ be the unsigned angle
between uw and um. There exists a path connecting u and w in the constrained
Θ(4k+5)-graph of length at most

(
cosΓ

cos
(
θ
2

) +

(
cosΓ · tan

(
θ
2

)
+ sinΓ

) · cos
(
θ
4

)

cos
(
θ
2

)− sin
(
3θ
4

)

)

· |uw|.

Upper Bounds on the Spanning Ratio of Constrained Theta-Graphs 119

Due to space constraints the proof of this theorem can be found in [5].
When looking at two vertices u and w in the constrained Θ(4k+3)-graph and

Θ(4k+5)-graph, we notice that when the angle between uw and the bisector of Tuw
is Γ, the angle between wu and the bisector of Twu is Θ/2− Γ. Hence the worst
case spanning ratio becomes the minimum of the spanning ratio when looking
at Tuw and the spanning ratio when looking at Twu.

Theorem 6. The constrained Θ(4k+3)-graph and Θ(4k+5)-graph are
cos(θ

4)
cos(θ

2)−sin(3θ
4)

-spanners of Vis(P, S).

Proof. The spanning ratio of the constrained Θ(4k+3)-graph and Θ(4k+5)-graph is
at most:

min

⎤
⎦⎨

⎦⎛

cosα

cos(θ
2)

+
(cosα·tan(θ

2)+sinα)·cos(θ
4)

cos(θ
2)−sin(3θ

4)
,

cos(θ
2−α)

cos(θ
2)

+
(cos(θ

2−α)·tan(θ
2)+sin(θ

2−α))·cos(θ
4)

cos(θ
2)−sin(3θ

4)

⎫
⎦⎬

⎦⎞

Since cosΓ/ cos(Θ/2)+(cosΓ ·tan(Θ/2)+sinΓ) ·c is increasing for Γ ∈ [0, Θ/2],
for Θ ≤ 2ι/7, the minimum of these two functions is maximized when the two
functions are equal, i.e. when Γ = Θ/4. Thus the constrained Θ(4k+3)-graph and
Θ(4k+5)-graph has spanning ratio at most:

cos
(
θ
4

)

cos
(
θ
2

) +

(
cos

(
θ
4

) · tan
(
θ
2

)
+ sin

(
θ
4

)) · cos
(
θ
4

)

cos
(
θ
2

)− sin
(
3θ
4

) =
cos

(
θ
4

) · cos
(
θ
2

)

cos
(
θ
2

) · (cos
(
θ
2

)− sin
(
3θ
4

))

∗≥
References

1. Bose, P., De Carufel, J.-L., Morin, P., van Renssen, A., Verdonschot, S.: Optimal
bounds on theta-graphs: More is not always better. In: CCCG, pp. 305–310 (2012)

2. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: On plane constrained
bounded-degree spanners. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS,
vol. 7256, pp. 85–96. Springer, Heidelberg (2012)

3. Bose, P., Keil, J.M.: On the stretch factor of the constrained Delaunay triangula-
tion. In: ISVD, pp. 25–31 (2006)

4. Bose, P., Smid, M.: On plane geometric spanners: A survey and open problems.
In: CGTA (2011) (accepted)

5. Bose, P., van Renssen, A.: Upper bounds on the spanning ratio of constrained
theta-graphs. CoRR, abs/1401.2127 (2014)

6. Bose, P., van Renssen, A., Verdonschot, S.: On the spanning ratio of theta-graphs.
In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037,
pp. 182–194. Springer, Heidelberg (2013)

7. Clarkson, K.: Approximation algorithms for shortest path motion planning. In:
STOC, pp. 56–65 (1987)

8. Das, G.: The visibility graph contains a bounded-degree spanner. In: CCCG,
pp. 70–75 (1997)

9. Keil, J.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas,
A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988)

10. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press (2007)

11. Ruppert, J., Seidel, R.: Approximating the d-dimensional complete Euclidean
graph. In: CCCG, pp. 207–210 (1991)

Computing the L1 Geodesic Diameter

and Center of a Simple Polygon in Linear TimeΔ

Sang Won Bae1, Matias Korman2,3, Yoshio Okamoto4, and Haitao Wang5

1 Kyonggi University, Suwon, South Korea
swbae@kgu.ac.kr

2 National Institute of Informatics, Tokyo, Japan
korman@nii.ac.jp

3 JST, ERATO, Kawarabayashi Large Graph Project
4 The University of Electro-Communications, Tokyo, Japan

okamotoy@uec.ac.jp
5 Utah State University, Logan, USA

haitao.wang@usu.edu

Abstract. In this paper, we show that the L1 geodesic diameter and
center of a simple polygon can be computed in linear time. For the pur-
pose, we focus on revealing basic geometric properties of the L1 geodesic
balls, that is, the metric balls with respect to the L1 geodesic distance.
More specifically, in this paper we show that any family of L1 geodesic
balls in any simple polygon has Helly number two, and the L1 geodesic
center consists of midpoints of shortest paths between diametral pairs.
These properties are crucial for our linear-time algorithms, and do not
hold for the Euclidean case.

1 Introduction

Let P be a simple polygon with n vertices in the plane. The diameter and radius
of P with respect to a certain metric d are the most natural and important among
several common measures of P . The diameter with respect to d is defined to be
the maximum distance over all pairs of points in P , that is, maxp,q∨P d(p, q),
while the radius is defined to be the min-max value minp∨P maxq∨P d(p, q). Here,
the polygon P is considered as a closed and bounded space and thus the diameter
and radius of P with respect to d are well defined. A pair of points in P realizing
the diameter is called a diametral pair and the center is defined to be the set of
points c ⊕ P such that maxq∨P d(c, q) is equal to the radius.

One of the most natural metrics on a simple polygon P is induced by the length
of the Euclidean shortest paths that stay within P , namely, the (Euclidean)

� S.W. Bae was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (2013R1A1A1A05006927). Y. Okamoto was supported by Grant-in-
Aid for Scientific Research from Ministry of Education, Science and Culture, Japan,
and Japan Society for the Promotion of Science (JSPS). H. Wang was supported in
part by NSF under Grant CCF-1317143.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 120–131, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

L1 Geodesic Diameter and Center of a Simple Polygon 121

geodesic distance. The problem of computing the diameter and center of a simple
polygon with respect to the geodesic distance has been intensively studied in
computational geometry since the early 1980s. The diameter problem was first
studied by Chazelle [6], where a O(n2)-time algorithm was given. The running
time was afterwards improved to O(n log n) by Suri [20]. Finally, Hershberger
and Suri [10] presented a linear-time algorithm based on a fast matrix search
technique. Recently, Bae et al. [3] considered the diameter problem for polygons
with holes.

The first algorithm for finding the Euclidean geodesic center was given by
Asano and Toussaint [2]. Their algorithm runs in O(n4 logn)-time, and was
afterwards reduced to O(n log n) by Pollack, Sharir, and Rote [16]. Since then,
it has been a longstanding open problem whether the geodesic center can be
computed in linear time (as also mentioned later by Mitchell [13]).

Another popular metric with a bit different flavor is the link distance, which
measures the smallest possible number of links (or turns) of piecewise linear
paths. The currently best algorithms that compute the link diameter or center
run in O(n log n) time [7,12,19]. The rectilinear link distance measures the min-
imum number of links when feasible paths in P are constrained to be rectilinear.
It is known that the problem with respect to the rectilinear link distance can be
solved in linear time by Nilsson and Schuierer [14, 15].

In order to tackle the open problem of computing the Euclidean geodesic
center, we investigate another natural metric: the L1 metric. To the best of our
knowledge, only a special case where the input polygon is rectilinear has been
considered in the literature. This result is by Schuierer [17], where he showed how
to compute the L1 geodesic diameter and center of a simple rectilinear polygon
in time.

This paper aims to provide a clear and complete exposition on the diameter
and center of general simple polygons with respect to the L1 geodesic distance.
We first focus on revealing basic geometric properties of the geodesic balls (that
is, the metric balls with respect to the L1 geodesic distance). Among other
results, we show that any family of L1 geodesic balls has Helly number two (see
Theorem 1). This is a critical property that does not hold for the Euclidean
geodesic distance, and thus we identify that the main difficulty of the open
problem lies there.

We then show that the method of Hershberger and Suri [10] for computing
the Euclidean diameter extends to L1 metrics, and that the running time is
preserved. However, the algorithms for computing the Euclidean center do not
easily extend to rectilinear metrics. Indeed, even though the approach of Pollack
et al. [16] can be adapted for the L1 metric, the running time will increase to
O(n log n). On the other hand, the algorithm of Schuierer [17] for the rectilinear
simple polygons heavily exploits properties derived from rectilinearity. Thus, its
extension to general simple polygons is not straightforward either.

In this paper we use a different approach: using the previously mentioned
Helly-type theorem, we show that the L1 geodesic center coincides with the
intersection of a finite number of geodesic balls. Afterwards we show how to

122 S.W. Bae et al.

Table 1. Summary of currently best results on computing the diameter and center of
a simple polygon P with respect to various metrics on P

Metric Restriction on P Diameter Center

Geodesic
Euclidean simple O(n) [10] O(n log n) [16]

L1
rect. simple O(n) [17] O(n) [17]
simple O(n) [Thm. 3] O(n) [Thm. 4]

Link
regular simple O(n log n) [19] O(n log n) [7,12]
rectilinear rect. simple O(n) [14] O(n) [15]

compute their intersection in linear time. Table 1 summarizes the currently best
results on computing the diameter and center of a simple polygon with respect
to the most common metrics, including our new results.

Due to page limit, several proofs are omitted. They can be found in the
extended version of this paper [4].

2 Preliminaries

For any subset A ≤ R
2, we denote by ΘA and intA the boundary and the interior

of A, respectively. For p, q ⊕ R
2, denote by pq the line segment with endpoints

p and q. For any path ι in R
2, let |ι| be the length of ι under the L1 metric, or

simply the L1 length. Note that |pq| equals the L1 distance between p and q.
The following is a basic observation on the L1 length of paths in R

2. A path
is called monotone if any vertical or horizontal line intersects it in at most one
connected component.

Fact 1. For any monotone path ι between p, q ⊕ R
2, it holds that |ι| = |pq|.

Let P be a simple polygon with n vertices. We regard P as a compact set in
R

2, so its boundary ΘP is contained in P . An L1 shortest path between p and
q is a path joining p and q that lies in P and minimizes its L1 length. The L1

geodesic distance d(p, q) is the L1 length of an L1 shortest path between p and
q. We are interested in two quantities: the L1 geodesic diameter diam(P) and
radius rad(P) of P , defined to be diam(P) := maxp,q∨P d(p, q) and rad(P) :=
minp∨P maxq∨P d(p, q). Any pair of points p, q ⊕ P such that d(p, q) = diam(P)
is called a diametral pair. The L1 geodesic center cen(P) of P is cen(P) := {c ⊕
P | maxq∨P d(c, q) = rad(P)}.

Analogously, a path lying in P minimizing its Euclidean length is called the
Euclidean shortest path. It is well known that there is always a unique Euclidean
shortest path between any two points in a simple polygon [8]. We let ι2(p, q) be
the unique Euclidean shortest path from p ⊕ P to q ⊕ P . The following states a
crucial relation between Euclidean and L1 shortest paths in a simple polygon.

Fact 2 (Hershberger and Snoeyink [9]). For any two points p, q ⊕ P , the
Euclidean shortest path ι2(p, q) is also an L1 shortest path between p and q.

Notice that this does not imply the coincidence between the Euclidean and the
L1 geodesic diameters or centers, as the lengths of paths are measured differently.

L1 Geodesic Diameter and Center of a Simple Polygon 123

Nonetheless, Fact 2 enables us to exploit several structures for Euclidean shortest
paths such as the shortest path map.

A shortest path map for a source point s ⊕ P is a subdivision of P into re-
gions according to the combinatorial structure of shortest paths from s. For the
Euclidean shortest paths, Guibas et al. [8] showed that the shortest path map
SPM(s) can be computed in O(n) time. Once we have SPM(s), the Euclidean
geodesic distance from s to any query point q ⊕ P can be answered in O(log n)
time, and the actual path ι2(s, q) in additional time proportional to the com-
plexity of ι2(s, q). Fact 2 implies that the map SPM(s) also plays a role as a
shortest path map for the L1 geodesic distance so that a query q ⊕ P can be
processed in the same time bound to evaluate the L1 geodesic distance d(s, q)
or to obtain the shortest path ι2(s, q).

Throughout the paper, unless otherwise stated, P refers to a simple polygon,
a shortest path and the geodesic distance always refer to an L1 shortest path and
the L1 geodesic distance d, and the geodesic diameter/center is always assumed
to be with respect to the L1 geodesic distance d.

3 The L1 Geodesic Balls

Geodesic balls (or geodesic disks) are metric balls under the geodesic distance
d. More precisely, the L1 (closed) geodesic ball centered at point s ⊕ P with
radius r ⊕ R, denoted by Bs(r), is the set of points x ⊕ P such that d(s, x) ≤ r.
Note that if r < 0, it holds that Bs(r) = ⊗. In this section, we reveal several
geometric properties of the geodesic balls Bs(r), which build a basis for our
further discussion.

3.1 P -convex Sets

A set A ∈ P is P -convex if for any p, q ⊕ A, the Euclidean shortest path ι2(p, q)
is a subset of A. The P -convex sets are also known as the geodesically convex sets
in the literature [20]. Pollack et al. [16] achieved their O(n logn)-time algorithm
computing the Euclidean geodesic center based on the P -convexity of Euclidean
geodesic balls. A set A is path-connected if an only if, for any x, y ⊕ A there
exists a path ι connecting them such that ι ∈ A. With this definition we can
introduce an equivalent condition of P -convexity.

Lemma 1. For any subset A ∈ P of P , the following are equivalent.

(i) A is P -convex.

(ii) A is path-connected and for any line segment Δ ≤ P , A ∗ Δ is connected.

We are interested in the boundary of a P -convex set. Let A ∈ P be a P -convex
set. Consider any convex subset Q ∈ P . Since ι2(p, q) = pq for any p, q ⊕ Q, the
intersection A ∗ Q is also a convex set due to the P -convexity of A. Based on
this observation, we show the following lemma.

Lemma 2. Let A ∈ P be a closed P -convex set. Then, any connected component
C of ΘA ∗ intP is a convex curve, being either open or closed.

124 S.W. Bae et al.

s

u = v

x0

C1
C2

Δ

s
u

x0

C1
C2

Δ

v

(a) (b)

F1

F1
F2

F2

Fig. 1. Illustration of the proof of Lemma 3: (a) When both chains C1 and C2 of the
funnel are monotone. (b) When C1 is not monotone.

Note that if a connected component C of ΘA ∗ intP is not a closed curve, then
C is an open curve excluding its endpoints, which lie on ΘP . This implies that
the curve C divides P into two connected components such that intA lies on one
side of C, regardless of whether C is open or closed.

3.2 Geometric Properties of L1 Geodesic Balls

In the following, we show several geometric properties of geodesic balls Bs(r)
which follow from the P -convexity of Bs(r). Note that, to the best of our knowl-
edge, most of these properties of Bs(r) have not been discussed before in the
literature.

We start with a simple observation. By Fact 2, ι2(s, p) is an L1 shortest path
from s to p ⊕ P . Since ι2(s, p) makes turns only at vertices of P , the ball is
equal to the union of some L1 balls centered at the vertices of P . More precisely,
Bs(r) =

⋃
v∨V ⊆{s}Bv(r−d(s, v)), where V denotes the set of vertices of P . This

immediately implies the following observation.

Observation 1. For any s ⊕ P and r > 0, the geodesic ball Bs(r) is a simple
polygon in P and each side of Bs(r) either lies on ΘP or has slope 1 or −1.

Lemma 3. Given a point s ⊕ P and a horizontal or vertical line segment Δ ≤ P ,
the function f(x) = d(s, x) over x ⊕ Δ is convex.

Proof. Without loss of generality, we assume that Δ is horizontal. The case
where Δ is vertical can be handled in a symmetric way. Consider the union of all
Euclidean shortest paths ι2(s, x) from s to x over x ⊕ Δ, which forms a funnel F
with apex u and base Δ plus ι2(s, u). The funnel F consists of two concave chains
C1 and C2 through vertices of P and the endpoints of Δ so that C1 connects the
apex u and the left endpoint of Δ and C2 connects u and the right endpoint of
Δ. See Fig. 1. Note that the apex u is also a vertex of P unless u = s.

Each of the two concave chains C1 and C2 is either monotone or not. Recall
that a path is called monotone if and only if any vertical or horizontal line
intersects it at most once. Observe that at least one of them must be monotone,
since the apex u must see a point of Δ. Without loss of generality, we assume that
C2 is monotone in either way. Let v be a vertex of F defined as follows: v = u if

L1 Geodesic Diameter and Center of a Simple Polygon 125

a b

ι

Ca

Cb
a

b

Bs(r)

p
a◦ b◦

Bs(r)

(a) (b)

C

Fig. 2. Illustration of the proof of Lemma 4. The region shaded by gray depicts R
2 \P .

both chains are monotone; if C1 is not monotone, then v is the rightmost vertex
of C1 so that v cuts C1 into two monotone concave chains. Let x0 ⊕ Δ be the
perpendicular foot point of v on Δ.

We claim that x0 minimizes f(x) = d(s, x) over x ⊕ Δ and moreover that
f(x) = f(x0) + |xx0|. This implies the lemma. First observe that f(x0) =
|ι2(s, u)| + |ι2(u, v)| + |vx0| = |ι2(s, u)|+ |ux0| since ι2(s, u) is an L1 shortest
path by Fact 2 and the path ι2(u, v) ≥ vx0 is monotone, whose length is equal
to that of ux0 by Fact 1. Now, consider the partition of F into F1 and F2 cut
by segment vx0, such that F2 contains C2 and F1 contains the subchain of C1

after v. Also, let Δ1 and Δ2 be the corresponding partition of Δ with Δi ≤ Fi

for i = 1, 2. By Fact 1, for any point x ⊕ Δ1, there exists a monotone path
from v to x, so d(v, x) = |vx|; for any x ⊕ Δ2, there exists a monotone path
from u to x, so d(u, x) = |ux|. Since ι2(s, x) for x ⊕ Δ1 always passes through
v, f(x) = |ι2(s, v)| + d(v, x) = |ι2(s, v)| + |vx|. Similarly, for x ⊕ Δ2, we have
f(x) = |ι2(s, u)| + |ux|. Moreover, since ι2(u, v) is also monotone, we have
f(x) = |ι2(s, v)| + |vx| for any x ⊕ Δ. Since Δ is horizontal, |vx| = |vx0|+ |x0x|
holds. Therefore, we have f(x) = f(x0) + |xx0|. This proves our claim.

We are ready to prove the P -convexity of any L1 geodesic ball.

Lemma 4. For any point s ⊕ P and any real r ⊕ R, the L1 geodesic ball Bs(r)
is P -convex.

Proof. The case where r ≤ 0 is trivial, so assume r > 0. Suppose that Bs(r) is
not P -convex. Since Bs(r) is a simple polygon (Observation 1), any line segment
in P intersects Bs(r) in finitely many connected components. Thus, by Lemma 1,
there exists a line segment Δ ≤ P such that Δ crosses ΘBs(r)∗ intP exactly twice.
Let a, b ⊕ Δ be the two intersection points such that ab \ {a, b} lies in P \Bs(r).

We then observe that a and b belong to a common connected component C
of ΘBs(r) ∗ intP . Suppose for a contradiction that a and b belong to different
components Ca and Cb, respectively. See Fig. 2(a). Since Bs(r) is path-connected
and closed, there exists a path ι between a and b such that ι ≤ Bs(r). Consider
the simple closed curve L := ab≥ ι. Since Ca ⊆= Cb and a ⊕ Ca, L separates the
two endpoints of Ca, that is, an endpoint of Ca lies in the region bounded by
L. However, this is impossible since P is simple, a contradiction. Hence, both a
and b lie in a common connected component C of ΘBs(r) ∗ intP .

By Observation 1, C is a polygonal curve consisting of line segments with
slope 1 or −1. Since a, b ⊕ C and ab is not contained in Bs(r), C has a reflex
corner p incident to two line segments whose slopes are 1 and −1, respectively.

126 S.W. Bae et al.

See Fig. 2(b) for an illustration. Then, we can find a horizontal or vertical line
segment a◦b◦ sufficiently close to p such that a◦, b◦ ⊕ Bs(r) and Bs(r) ∗ a◦b◦
consists of two connected components. Take any point x ⊕ a◦b◦ \ Bs(r). Since
a◦, b◦ ⊕ Bs(r) but x /⊕ Bs(r), we have a strict inequality d(s, x) > r ↑ d(s, a◦)
and d(s, x) > r ↑ d(s, b◦), a contradiction to Lemma 3.

The P -convexity of the geodesic balls, together with Lemma 2 and Observa-
tion 1, immediately implies the following corollary.

Corollary 1. For s ⊕ P and r > 0, each connected component C of ΘBs(r) ∗
intP is a convex polygonal curve consisting of line segments of slope 1 or −1.

The following corollary can also be easily derived from Lemma 4.

Corollary 2. For any point s ⊕ P and any r > 0, the geodesic ball Bs(r)
intersects any line segment in P in a connected subset.

A real-valued function f is called quasiconvex if its sublevel set {x | f(x) ≤ a}
for any a ⊕ R is convex. Corollary 2 implies the following.

Corollary 3. Given a point s ⊕ P and a line segment Δ ≤ P , the function
f(x) = d(s, x) over x ⊕ Δ is quasiconvex.

Indeed, the geodesic distance function d(s, x) over x ⊕ Δ is not only qua-
siconvex but convex; this can be shown by a more careful geometric analysis.
Nonetheless, the quasiconvexity will be sufficient for our overall purpose.

3.3 Helly-Type Theorem for Geodesic Balls

Here, we discuss the intersection of a family of L1 geodesic balls, and show
that the L1 geodesic balls have Helly number two. More precisely, we claim the
following theorem.

Theorem 1. Let B be a family of closed L1 geodesic balls. If the intersection of
every two members of B is nonempty, then

⋂{B | B ⊕ B} ⊆= ⊗.
In the following, we prove Theorem 1. For the purpose, we make use of a Helly-
type theorem on simple polygons proven by Breen [5].

Theorem 2 (Breen [5]). Let P be a family of simple polygons in the plane.
If every three (not necessarily distinct) members of P have a simply connected
union and every two members of P have a nonempty intersection, then

⋂{P |
P ⊕ P} ⊆= ⊗.
Thus, we are done by showing that the union of two or three balls is simply
connected, provided that any two of them have a nonempty intersection. This
can be done based on the above discussion on the geodesic balls with Lemma 2
and Corollary 1.

Lemma 5. Let B1, B2, B3 be any three closed L1 geodesic balls such that every
two of them have a nonempty intersection. Then, the union B1 ≥ B2 ≥ B3 is
simply connected.

L1 Geodesic Diameter and Center of a Simple Polygon 127

Proof. By the assumption, the union B1 ≥ B2 ≥ B3 is obviously connected.
Assume to the contrary that the union B1 ≥ B2 ≥ B3 has a hole H , that is,
the boundary of the union has more than one connected component and one of
them is ΘH . The hole H is also a simple polygon whose boundary ΘH consists
of portions of ΘBi ∗ intP and ΘP for i = 1, 2, 3. We consider the connected
components C1, C2, . . . , Cm of ΘBi ∗ intP that appear on ΘH .

First, we observe that m ≤ 3. Otherwise, if m > 3, then there are two compo-
nents C1, C2 ≤ ΘB1∗intP after reordering the indices, without loss of generality.
Since H ∈ P by the simplicity of P , there exists a path ι between two points
p1 ⊕ C1 and p2 ⊕ C2 such that ι \ {p1, p2} ≤ P \B1. Lemma 2, however, implies
that C1 partitions P into two components and B1 lies in one side of C1, which
implies the nonexistence of such a path ι, a contradiction.

The above argument also implies that only a single component of ΘBi ∗ intP
appears on ΘH for each i = 1, 2, 3. Let Ci be the component of ΘBi ∗ intP that
appears on ΘH , if exists. By Corollary 1, each Ci is a convex polygonal curve,
consisting of line segments of slope 1 or −1. This implies that each Ci appears on
ΘH in a connected set. Also, we have m ↑ 2 since a single convex chain cannot
make such a hole H .

Next, we claim that ΘH does not contain any portion of ΘP , or equivalently
ΘH ≤ intP . Suppose to the contrary that ΘH ∗ ΘP ⊆= ⊗. Let C ≤ ΘH ∗ ΘP be
a connected portion. Without loss of generality, we assume that C is adjacent
to C1 and C2 so that an endpoint of C1 and an endpoint of C2 lie on C. Since
B1 ∗ B2 ⊆= ⊗, we observe that C1 ∗ C2 ⊆= ⊗. This shows that H is not a hole of
the union B1 ≥ B2 ≥ B3 by the simplicity of P , wherever the third chain C3 is
located.

Therefore, H is bounded only by C1, C2, C3 that are polygonal convex chains
formed by line segments of slope 1 or −1 as observed above. A geometric analysis
concludes that H must be degenerate to a line segment. Since the balls Bi are
closed sets, this is impossible, a contradiction.

4 The L1 Geodesic Diameter

In this section, we show that the L1 geodesic diameter of P , diam(P), and a
diametral pair can be computed in linear time by extending the approach of
Suri [18] and Hershberger and Suri [10] to the L1 case. For any point s ⊕ P , let
Γ(s) be the maximum geodesic distance from s to any other point in P , that is,
Γ(s) = maxq∨P d(s, q). A point q ⊕ P such that d(s, q) = Γ(s) is called a farthest
neighbor of s. Obviously, diam(P) = maxs∨P Γ(s) and rad(P) = mins∨P Γ(s).
The following lemma is a key observation for our purpose.

Lemma 6. For any s ⊕ P , all farthest neighbors of s lie on the boundary ΘP
of P , and at least one of them is a vertex of P .

Corollary 4. There exist two vertices v1 and v2 of P such that d(v1, v2) =
diam(P), that is, (v1, v2) is a diametral pair.

128 S.W. Bae et al.

Thus, the problem of computing diam(P) is solved by finding the farthest
vertex-pair. Let v1, . . . , vn be the vertices of P ordered counterclockwise along
ΘP . Let va and vb be vertices of P such that va is a farthest neighbor of v1
and vb is a farthest neighbor of va. The existence of va and vb is guaranteed
by Lemma 6. We assume that a < b; otherwise, we take the mirror image of
P for the following discussion. The three vertices v1, va, vb divide ΘP into three
chains: U1 = (v2, . . . , va−1), U2 = (va+1, . . . , vb−1), and U3 = (vb+1, . . . , vn).
Let W1,W2,W3 be the chains complimentary to U1, U2, U3, respectively, that is,
W1 = (va, . . . , vn, v1), W2 = (vb, . . . , vn, v1, . . . , va), and W3 = (v1, . . . , vb). We
then observe the following, which we prove with Lemma 6.

Lemma 7. For any i = 1, 2, 3 and u ⊕ Ui, there is a vertex w ⊕ Wi that is a
farthest neighbor of u.

Lemma 7 implies that computing a farthest vertex from every vertex of P can
be done by handling three pairs (Ui,Wi) of two disjoint chains that partition
the vertices of P . Note that an analogy of Lemma 7 with respect to the Eu-
clidean geodesic distance was first observed by Suri [20, Lemma 8], and used for
computing the Euclidean geodesic diameter [10, 20].

This motivates the restricted farthest neighbor problem: Given two disjoint
chains of vertices of P , U = (u1, . . . , up) and W = (w1, . . . , wm) that together
partition the vertices of P , where the vertices u1, . . . , up, w1, . . . , wm are or-
dered counterclockwise and p + m = n, find a farthest vertex on W from each
u ⊕ U . With respect to the Euclidean geodesic distance, Suri [20] presented an
O(n log n)-time algorithm for the problem, and later Hershberger and Suri [10]
improved it to O(n) time based on the matrix searching technique by Aggarwal
et al. [1]. In the following, we show with Fact 2 that the method of Hershberger
and Suri [10] can be applied to solve the problem with respect to the L1 geodesic
distance d.

Lemma 8. Let U and W be two disjoint chains of vertices of P that together
partition the vertices of P . One can compute in O(n) time a farthest vertex over
w ⊕W for every u ⊕ U with respect to the L1 geodesic distance d.

We are now ready to conclude this section with a linear-time algorithm. We
first find va and vb such that va is a farthest neighbor of v1 and vb is a farthest
neighbor of va. This can be done in O(n) time by computing the shortest path
maps SPM(v1) and then SPM(va) due to Guibas et al. [8] and Fact 2. We
then have the three chains U1, U2, U3 and their compliments W1,W2,W3. Next,
we apply Lemma 8 to solve the three instances (Ui,Wi) for i = 1, 2, 3 of the
restricted farthest neighbor problem, resulting in a farthest neighbor of each
vertex of P by Lemma 7. Corollary 4 guarantees that the maximum over the n
pairs of vertices is a diametral pair of P . All the effort in the above algorithm is
bounded by O(n) time. We finally conclude the main result of this section.

Theorem 3. The L1 geodesic diameter of a simple polygon with n vertices,
along with a pair of vertices that is diametral, can be computed in O(n) time.

L1 Geodesic Diameter and Center of a Simple Polygon 129

5 The L1 Geodesic Center

In this section, we study the L1 geodesic radius rad(P) and center cen(P) of
a simple polygon P , and present a simple algorithm that computes the center
cen(P) in linear time.

Consider the geodesic balls Bp(r) centered at all points p ⊕ P with radius r,
and imagine their intersection as r grows continuously. By definition, the the first
nonempty intersection happens when r = rad(P). Equivalently, by Theorem 1,
r = rad(P) is the smallest radius such that Bp(r) ∗Bq(r) ⊆= ⊗ for any p, q ⊕ P .
From the triangular inequality we have rad(P) ↑ diam(P)/2

Lemma 9. For any simple polygon P , it holds that rad(P) = diam(P)/2.

We note that Schuierer [17] claimed Lemma 9 but no proof was given. In this
paper, we instead provide proofs based on the Helly-type theorem for the L1

geodesic balls (Theorem 1). It is worth mentioning that Theorem 2 was also
used to prove a similar relation between the diameter and center with respect
to the rectilinear link distance [11]. To explicitly compute the center cen(P), we
first need a technical lemma.

Lemma 10. Let a, b ⊕ P be any two points with ab ≤ P . Then, for any r > 0,
it holds that Ba(r) ∗Bb(r) =

⋂
s∨ab Bs(r).

Lemma 10 together with Lemma 6 implies that cen(P) =
⋂

v∨V Bv(rad(P)),
where V denotes the set of vertices of P . Moreover, this observation together
with Lemma 9 implies that the L1 geodesic center cen(P) is a line segment.

5.1 Computing the Center in Linear Time

Now, we describe our algorithm for computing cen(P) in linear time. Compute
the diameter diam(P) and a diametral pair of vertices (v1, v2) in O(n) time by
Theorem 3. Then, we know that rad(P) = diam(P)/2 by Lemma 9. Compute the
intersection of two geodesic balls Bv1(rad(P)) and Bv2(rad(P)), which is a line
segment of slope 1 or −1. Extend the line segment obtained above to a diagonal
Δ = ab, where a, b ⊕ ΘP . The above two steps can be performed in linear time.
In particular, for the first step, Bv1(rad(P)) and Bv2(rad(P)) can be found by
computing the shortest path maps SPM(v1) and SPM(v2) and traversing the
cells of the maps, and computing their intersection is done by a local search at
the midpoint of ι2(v1, v2) since it is guaranteed that Bv1(rad(P))∗Bv2 (rad(P))
is a line segment by Corollary 1.

Since cen(P) =
⋂

v∨V Bv(rad(P)) and Bv1(rad(P)) ∗ Bv2(rad(P)) ∈ Δ, we
conclude that cen(P) ∈ Δ. The last task is thus to identify cen(P) from Δ. Here,
we present a simple method based on further geometric observations. Recall that
for any s ⊕ P and any line segment l ≤ P , the geodesic distance function d(s, x)
over x ⊕ l is quasiconvex as stated in Corollary 3. A more careful analysis based
on Fact 1 gives us the following.

130 S.W. Bae et al.

Lemma 11. Given a point s ⊕ P and a line segment ab ≤ P with slope 1 or
−1, let f(x) = d(s, x) be the geodesic distance from s to x over x ⊕ ab. Then,
there are two points x1, x2 ⊕ ab with |ax1| ≤ |ax2| such that we have

f(x) =

d(s, a)− |ax| if x ⊕ ax1
d(s, x1) = d(s, x2) if x ⊕ x1x2
d(s, b)− |bx| if x ⊕ x2b.

In particular, the function f attains its minimum at any point x ⊕ x1x2.
For any vertex v ⊕ V of P , let Δv ∈ Δ be the intersection Bv(rad(P)) ∗ Δ. Since
cen(P) =

⋂
v∨V Bv(rad(P)) and cen(P) ∈ Δ, it holds that cen(P) =

⋂
v∨V Δv.

Lemma 12. For any vertex v of P , Δv can be computed in O(1) time, provided
that d(v, a) and d(v, b) have been evaluated.

Thus, our last task can be completed as follows: Compute the two shortest path
maps SPM(a) and SPM(b) with sources a and b, respectively, by running the
algorithm by Guibas et al. [8]. This evaluates d(v, a) and d(v, b) for all vertices
v of P in linear time. Next, we compute Δv for all vertices v of P by Lemma 12
and find their common intersection, which finally identifies cen(P). All the effort
to obtain cen(P) is bounded by O(n).

Theorem 4. The L1 geodesic radius and center of a simple polygon with n
vertices can be computed in O(n) time.

6 Concluding Remarks

In this paper, we presented a comprehensive study on the L1 geodesic diameter
and center of simple polygons, resulting in optimal linear-time algorithms. Our
approach relies on observations about the L1 geodesic balls, in particular, the
P -convexity (Lemma 4) and the Helly-type theorem (Theorem 1). These are
shown to be key tools to show structural properties of the diameter and center.

One would be interested in extending this framework to polygons with holes,
namely, polygonal domains. However, it is not difficult to see that only few of the
observations we made extend for general polygonal domains. First and foremost,
an L1 (also, Euclidean) geodesic ball may not be P -convex when P has a hole.
In addition, the Helly number of L1 geodesic balls in a polygonal domain is
strictly larger than two: one can easily construct three balls around a hole such
that every two of them intersect but the three have no common point. Also,
Lemma 6 (the existence of a farthest neighbor that is a vertex) does not always
hold in polygonal domains. Bae et al. [3] have exhibited several examples of
polygonal domains in which a farthest neighbor with respect to the Euclidean
geodesic distance is a unique point in the interior. This construction can be easily
extended to the L1 geodesic distance.

L1 Geodesic Diameter and Center of a Simple Polygon 131

References

1. Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilbur, R.: Geometric applications
of a matrix-searching algorithm. Algorithmica 2, 195–208 (1987)

2. Asano, T., Toussaint, G.: Computing the geodesic center of a simple polygon.
Technical Report SOCS-85.32. McGill University (1985)

3. Bae, S.W., Korman, M., Okamoto, Y.: The geodesic diameter of polygonal domains.
Discrete Comput. Geom. 50(2), 306–329 (2013)

4. Bae, S.W., Korman, M., Okamoto, Y., Wang, H.: Computing the L1 geodesic
diameter and center of a simple polygon in linear time. ArXiv e-prints (2013),
arXiv:1312.3711

5. Breen, M.: A Helly-type theorem for simple polygons. Geometriae Dedicata 60,
283–288 (1996)

6. Chazelle, B.: A theorem on polygon cutting with applications. In: Proc. 23rd Annu.
Sympos. Found. Comput. Sci. (FOCS 1982), pp. 339–349 (1982)

7. Djidjev, H., Lingas, A., Sack, J.R.: An O(n log n) algorithm for computing the link
center of a simple polygon. Discrete Comput. Geom. 8, 131–152 (1992)

8. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear time algo-
rithms for visibility and shortest path problems inside triangulated simple poly-
gons. Algorithmica 2, 209–233 (1987)

9. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homo-
topy class. Comput. Geom.: Theory and Appl. 4(2), 63–97 (1994)

10. Hershberger, J., Suri, S.: Matrix searching with the shortest path metric. SIAM J.
Comput. 26(6), 1612–1634 (1997)

11. Katz, M.J., Morgenstern, G.: Settling the bound on the rectilinear link radius of a
simple rectilinear polygon. Inform. Proc. Lett. 111, 103–106 (2011)

12. Ke, Y.: An efficient algorithm for link-distance problems. In: Proc. 5th Annu.
Sympos. Comput. Geom. (SoCG 1989), pp. 69–78 (1989)

13. Mitchell, J.S.B.: Shortest paths and networks. In: Handbook of Discrete and Com-
putational Geometry, ch. 27, 2nd edn., pp. 607–641. CRC Press, Inc. (2004)

14. Nilsson, B.J., Schuierer, S.: Computing the rectilinear link diameter of a polygon.
In: Bieri, H., Noltemeier, H. (eds.) CG-WS 1991. LNCS, vol. 553, pp. 203–215.
Springer, Heidelberg (1991)

15. Nilsson, B.J., Schuierer, S.: An optimal algorithm for the rectilinear link center of
a rectilinear polygon. Comput. Geom.: Theory and Appl. 6, 169–194 (1996)

16. Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple poly-
gon. Discrete Comput. Geom. 4(6), 611–626 (1989)

17. Schuierer, S.: Computing the L1-diameter and center of a simple rectilinear poly-
gon. In: Proc. Int. Conf. on Computing and Information (ICCI 1994), pp. 214–229
(1994)

18. Suri, S.: The all-geodesic-furthest neighbors problem for simple polygons. In: Proc.
3rd Annu. Sympos. Comput. Geom. (SoCG 1987), pp. 64–75 (1987)

19. Suri, S.: Minimum Link Paths in Polygons and Related Problems. Ph.D. thesis.
Johns Hopkins Univ. (1987)

20. Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput.
Syst. Sci. 39(2), 220–235 (1989)

The Planar Slope Number of Subcubic GraphsΔ

Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani

Dip. di Ingegneria, Università degli Studi di Perugia
{emilio.digiacomo,giuseppe.liotta,
fabrizio.montecchiani}@unipg.it

Abstract. A subcubic planar graph is a planar graph whose vertices have degree
at most three. We show that the subcubic planar graphs with at least five vertices
have planar slope number at most four, which is worst case optimal. This answers
an open question by Jelı́nek et al. [6]. As a corollary, we prove that the subcubic
planar graphs with at least five vertices have angular resolution π/4, which solves
an open problem by Kant [7] and by Formann et al. [4].

1 Introduction

A straight-line drawing of a graph G is a representation of G where the vertices are
drawn as distinct points in the plane and the edges are drawn as line segments con-
necting the two corresponding end-points and not passing through any other point rep-
resenting a vertex. Minimizing the number of slopes used in a straight-line drawing
is a desirable aesthetic requirement and an interesting theoretical problem which has
received considerable attention since its first definition by Wade and Chu [17].

The slope number of a graphG is defined as the minimum number of distinct slopes
required by any straight-line drawing of G [17]. Let Δ be the maximum degree of a
graph G and let m be the number of edges of G, then the slope number of G is at least
Δ
2 and at most m, as no more than two edges incident to the same vertex can have the

same slope and at most one slope per edge can be used. It has been shown that there
exist graphs with Δ ⊕ 5 whose slope number is unbounded [1,16], while the slope
number of graphs with Δ = 4 is still unknown.

The above results consider drawings that may contain edge crossings. A planar
straight-line drawing is a straight-line drawing that contains no edge crossings. The
planar slope number of a planar graph G is defined as the minimum number of dis-
tinct slopes required by any planar straight-line drawing of G. Keszegh, Pach and
Pálvölgyi [9] proved that the planar slope number of a planar graph G is bounded by
a function which is O(2O(Δ)); besides this upper bound, in the same paper a lower
bound of 3Δ − 6, for Δ ⊕ 3 is also proved [9]. The gap between these two bounds
is large and the upper bound is probably far from being optimal, as pointed out by the
authors. Jelı́nek et al. [6] study the plane slope number of plane partial 3-trees, i.e.,
planar partial 3-tree with a fixed combinatorial embedding. The plane slope number of
an embedded planar graphG is the minimum number of distinct slopes required by any
straight-line drawing of G that preserves the given embedding. Clearly the planar slope

α Research supported in part by the MIUR project AMANDA “Algorithmics for MAssive and
Networked DAta”, prot. 2012C4E3KT\ 001.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 132–143, 2014.
© Springer-Verlag Berlin Heidelberg 2014

The Planar Slope Number of Subcubic Graphs 133

number is bounded by the plane slope number. Jelı́nek et al. [6] proved that the plane
slope number of any plane partial 3-tree with maximum degree Δ is at most O(Δ5).
Knauer, Micek and Walczak [12] focus on a subclass of planar partial 3-trees, showing
that the (outer)planar slope number of outerplanar graphs is at most Δ− 1, for Δ ⊕ 4,
and this bound is tight. Very recently, Lenhart et al. [13] provedO(Δ) upper bounds on
the planar and plane slope numbers of partial 2-trees.

Special interest has been devoted to the slope number of (sub)cubic graphs, i.e.,
graphs having vertex degree (at most) 3. Keszegh et al [10] proved that the slope number
of cubic graphs is five. This result has been improved by Mukkamala and Szegedy [15]
who proved that the slope number of simply connected cubic graphs is four. Finally,
Mukkamala and Pálvölgyi showed that the four basic slopes {0, π4 , π2 , 3π4 } suffice for
every cubic graph [14]. Concerning the planar slope number, Kant [7] and indepen-
dently Dujmović et al. [3] proved that cubic 3-connected planar graphs have planar
slope number three except for three edges on the outerface. Jelı́nek et al. [5] showed
that subcubic series-parallel graphs have planar slope number three, which is worst-case
optimal. Jelı́nek et al. also asked to prove an upper bound on the planar slope number
of subcubic planar graphs analogous to those in [11,14,15]. An answer to this question
is given by the following theorem which is the main contribution of our paper.

Theorem 1. Let G be a subcubic planar graph with n ⊕ 5 vertices. The planar slope
number of G is at most four and this bound is tight.

Note that for n ≤ 4 four slopes are not sufficient in general. Namley, it is known that
six slopes are necessary ad sufficient for K4. On the other hand, each subcubic planar
graph with n ≤ 4 vertices is a subgraph of K4 and therefore 6 slopes are sufficient.
The proof of Theorem 1 is based on an algorithm that computes a planar straight-line
drawing of a subcubic planar graph on a grid of polynomial area using only slopes in
the set {0, π4 , π2 , 3π4 }. A byproduct of our proof technique is therefore the following.

Corollary 1. Every subcubic planar graph with n ⊕ 5 vertices has a straight-line
planar drawing whose angular resolution is π

4 and whose area is O(n2).

About Corollary 1, we recall that Formann et al. [4] initiate the study of straight-line
planar drawings with good angular resolution. Among the many questions that stimu-
lated further research, Formann et al. ask whether every subcubic planar graph has a
planar straight-line drawing such that the smallest angle is a constant independent of
the size of the graph. An answer to this fundamental question has been already given
in a paper by Kant [7], who claims that every subcubic planar graph with n ⊕ 6 has
a planar straight-line drawing with all angles at least π

3 except for four angles which
are at least π

6 . This claim is correct if restricted to 3-connected subcubic planar graphs,
but unfortunately incorrect in the general case as observed by Dujmović et al. [3], who
provided as a counter-example a family of connected subcubic planar graphs requiring
a linear number of angles less than π

3 . In [7], Kant also asks the following question:
Does every subcubic planar graph admit a straight-line planar drawing such that the
smallest angle is at least π

4 ? Corollary 1 answers in the affirmative both the question by
Formann et al. and the one by Kant. We also remark that an angular resolution of π

4 is
worst-case optimal for subcubic planar graphs with at least five vertices.

134 E. Di Giacomo, G. Liotta, and F. Montecchiani

The remainder of this paper is organized as follows. Preliminaries are introduced
in Section 2. Section 3 studies 2-connected subcubic planar graphs. The 1-connected
and 3-connected graphs are briefly addressed in Section 4. Open problems are listed in
Section 5. For reasons of space many technical details are omitted.

2 Preliminaries

We call the slopes {0, π4 , π2 , 3π4 } the four canonical slopes. Let Γ be a straight-line grid
drawing of G, let v be a vertex of G and let s be one of the four canonical slopes, we
denote by lvs the line with slope s and passing through the point of Γ representing v.

A graph is k-connected if removing at most k − 1 vertices cannot make the graph
disconnected. A graph that is k-connected and not (k+1)-connected, for k ⊕ 1, is called
simply k-connected graph. A 1-connected graph is also called a connected graph.

Let G be a simply 2-connected graph. A separation pair is a pair of vertices whose
removal disconnects G. A split pair is either a separation pair or a pair of adjacent
vertices. A split component of a split pair {u, v} is either an edge (u, v) or a maximal
subgraph Guv ⊂ G such that {u, v} is not a split pair of Guv . Vertices {u, v} are the
poles of Guv . The SPQR-tree T of G with respect to an edge e is a rooted tree that
describes a recursive decomposition of G induced by its split pairs. In what follows,
we call nodes the vertices of T , to distinguish them from the vertices of G. The nodes
of T are of four types S,P ,Q, or R. Each node μ of T has an associated 2-connected
multigraph called the skeleton of μ. At each step, given the current split componentG∨,
its split pair {s, t}, and a node ν in T , the node μ of the tree corresponding to G∨ is
introduced and attached to its parent vertex ν, while the decomposition possibly recurs
on some split component of G∨. At the beginning of the decomposition the parent of μ
is a Q-node corresponding to e = (u, v), G∨ = G \ e, and {s, t} = {u, v}.
Base Case: G∨ consists of a single edge between s and t. Then, μ is a Q-node whose
skeleton is G∨ itself plus the reference edge between s and t.
Parallel Case: The split pair {s, t} has G1, . . . , Gk (k ⊕ 2) split components. Then,
μ is a P -node whose skeleton is a set of k + 1 parallel edges between s and t, one for
each split component Gi plus the reference edge between s and t. The decomposition
recurs on G1, . . . , Gk with μ as parent node.
Series Case: G∨ is not 2-connected and it has at least one cut vertex (a vertex whose
removal disconnects G∨). Then, μ is an S-node whose skeleton is defined as follows.
Let v1, . . . , vk−1, where k ⊕ 2, be the cut vertices of G∨. The skeleton of μ is a path
e1, . . . , ek, where ei = (vi−1, vi), v0 = s and vk = t, plus the reference edge between s
and t which makes the path a cycle. The decomposition recurs on the split components
corresponding to each e1, . . . , ek with μ as parent node.
Rigid Case: None of the other cases is applicable. A split pair {s∗, t∗} is maximal with
respect to {s, t}, if for every other split pair {s∨, t∨}, there is a split component that
includes the vertices s∗, t∗, s, t. Let {s1, t1}, . . . , {sk, tk} be the maximal split pairs of
G∨ with respect to {s, t} (k ⊕ 1), and, for i = 1, . . . , k, let Gi be the union of all the
split components of {si, ti}. Then μ is an R-node whose skeleton is obtained from G∨

by replacing each component Gi with an edge between si and ti, plus the reference
edge between s and t. The decomposition recurs on each Gi with μ as parent node.

The Planar Slope Number of Subcubic Graphs 135

If we consider the SPQR-tree of a graph G as an unrooted tree, we get the same
tree no matter what edge of the graph was chosen as the reference edge [2]. Therefore,
choosing a different edge as the reference edge is equivalent to root T at the Q-node
corresponding to the new reference edge.

3 Simply 2-Connected Subcubic Planar Graphs

In this section we describe how to draw simply 2-connected graphs using the four basic
slopes. We exploit their SPQR-tree. With respect to series and parallel components,
our technique is similar to the one by Jelı́nek et al. [5] for two terminal series-parallel
graphs. For the case of rigid components we use a technique based on a decomposition
of 3-connected planar graphs called canonical ordering [8]. The resulting drawings
have O(n2) area. We remark that the area requirement is not addressed in [5].

Let G = (V,E) be a 3-connected plane graph, i.e., a 3-connected planar graph with
a prescribed planar embedding. Let δ = {V1, . . . , VK} be an ordered partition of V ,
that is, V1 ⊗ · · · ⊗ VK = V and Vi ∈ Vj = ∗ for i ≥= j. Let Gi be the subgraph of
G induced by V1 ⊗ · · · ⊗ Vi and denote by Ci the outerface of Gi. The partition δ is a
canonical ordering of G if:

– V1 = {v1, v2}, where v1 and v2 lie on the outerface of G and (v1, v2) ⊆ E.
– VK = {vn}, where vn lies on the outerface of G, (v1, vn) ⊆ E, and vn ≥= v2.
– Each Ci (i > 1) is a cycle containing (v1, v2).
– Each Gi is 2-connected and internally 3-connected.
– For each i = {2, . . . ,K − 1}, one of the following conditions holds:
(1) Vi is a singleton vi which belongs to Ci and has at least one neighbor in G\Gi.
(2) Vi is a chain {v1i , . . . , vli}, each vji has at least one neighbor inG\Gi, and both
v1i and vli have one neighbor on Ci−1 and are the only two neighbors of Vi inGi−1.

Observe that, if the graph G is a subcubic planar graph and Vi is a singleton, then vi
has exactly two neighbors in Ci (otherwiseGi would not be 2-connected) and therefore
exactly one neighbor in G \Gi. Similarly, if Vi is a chain, then all its vertices will have
exactly one neighbor inG\Gi, since they already have two neighbors in Gi. Therefore,
for each Vi, i = 2, . . . ,K−1, there are exactly two vertices in Gi−1 which are adjacent
one to v1i and one to vli if Vi is a chain, or both to vi if Vi is a singleton. We denote
them as the leftmost and the rightmost predecessor of Vi, respectively. Kant [8] proved
that every 3-connected plane graph has a canonical ordering. The technique described
by Kant to compute a canonical ordering is such that one can arbitraily choose two
adjacent vertices u and w on the outerface so that u = v1 and w = v2 in the computed
canonical ordering. We now prove a lemma that will be used to draw the R-nodes of
simply 2-connected subcubic planar graphs.

Lemma 1. Let G be an n-vertex subcubic planar graph containing two vertices of
degree 2 such that connecting these two vertices makes G 3-connected and keeps it
planar. G admits a planar straight-line grid drawing with the four canonical slopes in
area at most (2n− 6)× (n− 3).

136 E. Di Giacomo, G. Liotta, and F. Montecchiani

Proof sketch: Let u and w be the two vertices of G with degree 2. Add a dummy edge
between u andw so thatG is planar and 3-connected. Then, construct the planar embed-
ding of G such that the dummy edge (u,w) belongs to the boundary of the outerface.
Following such an embedding, compute the canonical ordering δ = {V1, . . . , VK} of
G, in such a way that u = v1 and w = v2. We denote by Gi the subgraph of G induced
by the vertices V1 ⊗ V2 ⊗ · · · ⊗ Vi, and by ni the number of vertices of Gi. Every de-
gree 2 vertex of Gi different from v1 and v2 is called an attaching vertex. Since Gi is
internally 3-connected, each attaching vertex belongs to Ci. Two attaching vertices in
Gi are consecutive if there is no attaching vertex between them when walking clock-
wise along Ci. We describe a drawing algorithm, called QUASI3CONNDRAWER, that
inductively constructs a drawing of G by adding a set Vi per time. The base case of
the induction is the construction of the drawing of the graph G2. We denote by Γi the
drawing after the addition of Vi (i = 2, 3, . . . ,K), i.e., the drawing of Gi. We assume
that each drawing Γi (i = 2, . . . ,K) satisfies the following invariants: I1. Γi is a planar
straight-line drawing using the four canonical slopes. I2. For every pair of consecutive
attaching vertices u and w, with u preceding w when walking clockwise along Ci, the
path from u to w in Ci consists of n1 ⊕ 0 edges drawn with slope 3π

4 , one edge drawn
with slope 0, and n2 ⊕ 0 edges drawn with slope π

4 , in this order. I3. For every pair of
consecutive attaching vertices u and w, with u preceding w when walking clockwise
along Ci, there exists a set Ei(u,w) of horizontal edges, whose removal disconnects
the drawing into two subdrawings, one containing u and one containing w.

The drawing Γ2 of G2 is computed as follows. The vertices v1 and v2 are drawn at
points (0, 0) and (|V2| + 1, 0), respectively. Let vi2, for i = 1, . . . , |V2|, be the vertices
of V2; vertex vi2 is placed at point (i, 0). Invariants I1, I2, and I3 trivially hold for Γ2.

We describe now how to add the set of vertices Vi, for i = 3, 4, . . . ,K − 1. The ad-
dition of VK = {vn} requires to be handled in a slightly different way. In order to place
the vertices of Vi at integer coordinates, we define an operation that expands the draw-
ing Γi−1. The expansion operation applies to a drawing Γi−1 and to two consecutive at-
taching vertices u and w, and it takes an integerN as a parameter, which represents the
amount of the enlargement required. We denote the operation as exp(Γi−1, u, w,N).
Let Ei−1(u,w) be the set of edges defined as in Invariant I3 and let Γ ∗i−1 and Γ ∗∗i−1
be the two subdrawings obtained by removing Ei−1(u,w), with Γ ∗∗i−1 to the right of
Γ ∗i−1. The expansion operation increases the x-coordinates of all the vertices of Γ ∗∗i−1
by N units. In other words, the subdrawing Γ ∗∗i−1 is shifted to the right and the edges
of Ei(u,w) become N units longer. Notice that, the expansion operation increases the
horizontal distance between u and w by N units. It is easy to see that the drawing
produced by the expansion operation still satisfies Invariants I1, I2, and I3.

We are now ready to describe how to add Vi to Γi−1. Let p and q be the leftmost
and rightmost predecessors of Vi, respectively and let r be the intersection point of lpπ/4
and lq3π/4. Notice that, p and q are two consecutive attaching vertices and therefore, by
Invariant I2, point r is above p and q (see Fig. 1(a)).

Suppose first that Vi is a singleton. If r has integer coordinates, then vi is placed at
r. Otherwise we execute an expansion operation exp(Γi−1, p, q, 1) that increases the
horizontal distance between p and q by one unit so that r has integer coordinates.

The Planar Slope Number of Subcubic Graphs 137

p
q

r

(a)

p

q

l

p

l

q|Vi| − 1

Δx

|Vi|−1
2

Δy + 1

(|Vi| − 1) + 2Δy + 2

(|Vi| − 1) +Δy + 2 Δy

Δx = |x(q)− x(p)|
Δy = |y(q)− y(p)| N∗ = (|Vi| − 1) +Δy + 2−Δx

r2r1 r1 r2

(b)

Fig. 1. Lemma 1: (a) The intersection point of lpδ/4 and lq3δ/4 is above p and q. (b) An example
of the expansion required to add Vi.

Suppose now that Vi is a chain. Let l be the horizontal straight line y = yl with
yl = max{y(p), y(q)} + 1, let r1 be the intersection point between lpπ/4 and l, and let

r2 be the intersection point between lq3π/4 and l. Let np the number of grid points along
l between r1 and r2, including r1 and r2. Notice that r1 could be to the right of r2;
in this case however x(r1) = x(r2) + 1 and we set np = −1. If np is at least |Vi|,
then we have enough points to place the vertices of Vi on l. Otherwise we execute an
expansion operation exp(Γi−1, p, q,N∨) with N∨ = (|Vi| − 1)+Δy+2−Δx, where
Δx = |x(q) − x(p)| and Δy = |y(q)− y(p)|. After the expansion, the number of grid
points along l between r1 and r2 (including r1 and r2) is |Vi| (see Fig. 1(b)). We place

v1i at point r1, v|Vi|
i at point r2, and vji (j = 2, 3, . . . , |Vi|−1) at point (x(vj−1i)+1, yl).

It is immediate to see that the drawing is a straight-line drawing and that it uses the
four basic slopes. About planarity, observe that when adding Vi (i = 3, . . . ,K), we
draw a planar subgraph (either a path or a single vertex) in the outerface of Γi−1 and
attach it to two vertices of the boundary of this face; the resulting drawing Γi is clearly
planar. Thus Invariant I1 holds. The proofs of Invariant I2 and I3 are omitted.

We conclude the description of the drawing technique by explaining how to add the
set VK = {vn}. Let a = v1, b and c, be the three vertices adjacent to vn, ordered
by increasing x-coordinates. Place vn at the intersection point between lbπ/2 and lc3π/4
(notice that this point has integer coordinates). Then, move v1 to the intersection point
between lvnπ/4 and lv20 . Observe that, before the addition of vn, v1 is adjacent to a single
vertex, namely the first vertex of V2, with a horizontally drawn edge. Therefore v1 can
be moved along the horizontal line lv20 and placed at the intersection point of lv10 with
lvnπ/4 (also this point has integer coordinates). It is easy to see that Invariant I1 holds for
ΓK . Namely, the drawing is clearly a straight-line drawing using the four basic slopes.
Since we add a single vertex on the outerface of ΓK−1 and this vertex is connected only
to vertices in the boundary of this face, the resulting drawing is clearly planar. Invariant
I2 and I3 do not apply since ΓK does not have attaching vertices.

We prove now the bound on the area of the final drawing Γ = ΓK . Denote by w(Γi)
the width of Γi (i = 2, 3, . . . ,K). We have w(Γ2) = |V1|+ |V2| − 1. Each time we add

138 E. Di Giacomo, G. Liotta, and F. Montecchiani

a set Vi (i = 3, 4, . . . ,K−1) we possibly perform an expansion operation that enlarges
the width of the previous drawing by at most |Vi| units (the enlargement is |Vi|−1−np,
and since np ⊕ −1 it is at most |Vi|). It follows thatw(ΓK−1) =

∑k−1
i=1 |Vi|−1 = n−2.

As explained, the placement of vertex vn does not increase the width of the drawing;
however, in order to connect vn to v1, the latter needs to be moved thus enlarging
the width of the drawing. In the worst case (which happens when the second vertex b
adjacent to vn is the leftmost of ΓK−1 \ {v1}) v1 is moved by n− 4 units, which results
in w(Γ) ≤ 2n− 6. It is easy to see that Γ is completely contained inside an isosceles
right triangle with the hypothenuse as the base, thus the height of Γ is at most n−3. ↑⊃
Before giving the main result of this section, we shall introduce some additional nota-
tion and prove a few useful properties.

LetG be a simply 2-connected planar graph and let T be its SPQR-tree with respect
to any reference edge e. Let μ be a node of T . The pertinent graph of μ is the subgraph
of G whose SPQR-tree (with respect to the reference edge of μ) is the subtree of T
rooted at μ. The virtual edge of μ is the edge in the skeleton of the parent of μ in T that
represents the pertinent graph of μ. Thus, for every internal node μ of T (i.e., which
is not a Q-node), each edge in its skeleton is the virtual edge of one of its children. In
what follows, we call S-edge a virtual edge of an S-node, P -edge a virtual edge of a
P -node,R-edge a virtual edge of an R-node, and Q-edge an edge of G.

Let μ be a node of T , we associate with μ another graph, called the frame of μ,
as follows. If μ is a P -node, we replace each virtual edge of the skeleton of μ with
the frame of the node it represents. Also, we remove the reference edge. If μ is not
a P -node, we only remove the reference edge. Observe that, every vertex in a frame
represents exactly one vertex in G.

Let G be a simply 2-connected subcubic planar graph and let T be its SPQR-tree
with respect to any reference edge e. Since G has maximum degree 3, the following
properties hold.

Property 1. The frame of an S-node of T whose parent is not the root of T is a path
e1, . . . , ekµ , where kμ ⊕ 2, and e1, ekµ are two Q-edges.

Property 2. The frame of a P -node of T is composed of either two S-edges or of one
S-edge and one Q-edge.

Property 3. The frame of an R-node of T can contain only S-edges and Q-edges.

Property 4. T contains at least one S-node.

Lemma 2. Let G be an n-vertex simply 2-connected subcubic planar graph. G admits
a planar straight-line grid drawing with the four canonical slopes in areaO(n)×O(n).
Proof sketch: Let T be an SPQR-tree of G with respect to an arbitrary reference edge
e. By Property 4, T contains at least one S-node ν. Let ρ be a Q-node of T , which is
a child of ν. By Property 1, ρ always exists. Change the root of T to ρ. We describe
an algorithm that draws G through a bottom-up visit of T , handling ρ and ν as special
case. For each node μ of T , first draw its frame, then replace each virtual edge with
the (already computed) drawing of the pertinent graph represented by the edge itself.

The Planar Slope Number of Subcubic Graphs 139

Let nμ be the number of vertices of Gμ, the drawing Γμ of Gμ respects the following
three invariants: I1. Γμ is a planar straight-line drawing using the four canonical slopes.
I2. Γμ is contained in an isosceles right triangle whose base is the hypotenuse with the
poles as endpoints. I3. The area of Γμ is O(nμ)×O(nμ).

For the sake of simplicity, when we refer to the drawing of a virtual edge e, we
mean the drawing of the pertinent graph associated with e. The end-vertices of a virtual
edge coincide with the poles of the associated pertinent graph. Thanks to invariant I2,
in order to replace a virtual edge e with its drawing Γe it is sufficient to identify the
base of the triangle τe containing Γe with the segment representing e, provided that this
segment length is greater than or equal to the width of Γe. Denote by le the straight line
containing the segment representing e and by H1 and H2 the two half-planes defined
by le. We can make this replacement in two ways depending on whether τe belongs to
H1 or H2. In order to guarantee Invariant I2, if e is drawn horizontally, we place τe so
that it is above le. If e is drawn with slope π

4 or 3π
4 , we place τe so that it is below le. If

e is drawn vertically, we place τe so that it is to the left of le.
Furthermore, observe that if e is drawn as a segment with slope π

4 or 3π
4 , in order to

replace it with Γe, Γe has to be rotated. If we rotate by an angle hπ
4 (with h integer)

a drawing that respects invariant I1, the rotated drawing still respects this invariant.
Nevertheless, if h is odd the rotated drawing is not an integer grid drawing anymore. To
cope with this issue, if h is odd, before rotating Γe we scale it up by a factor

⊇
2. The

resulting drawing is again a grid drawing requiring twice the initial area.

sμ tμ
ekμe1 ei

wi

(a) S-node

sμ tμ

w2 − 2 w1 − 2 w2 − 2

w2−2
2

(w1−2)+(w2−2)
2

w2 − 2

(b) P -node

Fig. 2. Lemma 2: Construction for (a) S-nodes and (b) P -nodes

Let μ be the current node of T to be drawn and let sμ and tμ be its poles. If μ is a
Q-node, draw sμ and tμ at points (0, 0) and (1, 0), respectively. It is immediate to see
that all the invariants hold for Γμ.

Series Case. If μ is an S-node, recall that, by Property 1, its frame is a path e1, . . . , ekµ ,
such that e1 and ekµ are Q-edges. Let wi be the width of the drawing of ei, for any
1 ≤ i ≤ kμ. Denote by v0 = sμ, v1, . . . , vkµ = tμ the vertices of the frame of μ
in the order they appear along the path. We draw the frame of μ as follows (see also
Fig. 2(a)). Vertex v0 is drawn at point (0, 0), and vi, for every i = 1, . . . , kμ, is drawn at
point (x(vi−1) +wi, 0). Once the frame is drawn, each virtual edge is replaced with its
drawing. It is easy to see that all invariants hold for Γμ. Furthermore, we observe that,
not only Γμ is contained in an isosceles right triangle τ , but the subdrawing induced by
the subgraph Gμ \ {sμ, tμ} is also contained in an isosceles right triangle τ ∗ such that
τ ∗ is contained into τ but for one shared side.

140 E. Di Giacomo, G. Liotta, and F. Montecchiani

Parallel Case. If μ is a P -node, then, by Property 2, its frame is composed of two S-
edges, or of one S-edge and one Q-edge. Let e1 and e2 be these two virtual edges and
let w1 and w2 be the width of their drawings. In the first case, we combine the drawings
of e1 and e2 as follows (see also Fig. 2(b)). Denote by τ1 and τ2 the two triangles that,
by Invariant I2, contain the drawing of e1 and the drawing of e2, respectively. Place
the drawing of e1 and e2 so that the base of τ2 is on the first grid line above τ1 and
the midpoints of the basis of τ1 and τ2 have the same x-coordinate. Let si be the vertex
adjacent to sμ in the drawing of ei (i = 1, 2) and let ti be the vertex adjacent to tμ in the
drawing of ei (i = 1, 2). Place sμ at the intersection point between ls2π/4 and ls10 , and tμ
at the intersection point between lt23π/4 and lt10 . Invariant I1 and I2 clearly hold. About
I3, observe that the base of the triangle containing Γμ has length less than w1 + w2.

Rigid Case. If μ is anR-node, its two poles have degree two in the frame of μ, and they
are not connected, otherwise μ would be a P -node. Hence, the frame of μ can be drawn
using the algorithm QUASI3CONNDRAWER. Notice that if we draw the frame of μwith
the algorithm QUASI3CONNDRAWER the edges of the resulting drawing could be too
short to be replaced by the drawings of their pertinent graphs. Moreover, there might not
be enough space inside the faces to accommodate the drawings of the virtual edges in
the boundary of the face. Hence we assign to each virtual edge (u, v) a weight w(u, v)
equal to the width of its drawing, and modify the algorithm QUASI3CONNDRAWER so
that the edges are sufficiently long and the faces have sufficient space.

We denote by δ = {V1, . . . , VK} the canonical ordering computed by our algorithm
and by Gi the subgraph induced by V1 ⊗ V2 ⊗ · · · ⊗ Vi (i = 1, 2, . . . ,K). The drawing
of G2 is computed as follows. Recall that G2 is a path starting at v1 passing through all
the vertices of V2 and ending at v2. Let u1 = v1, u2, . . . , un2 = v2 be the vertices of
G2 in the order they appear when walking along G2 from v1 to v2. Vertex u1 is placed
at (0, 0) and each vertex uj is placed on line y = 0 at distance w(uj−1, uj) from uj−1.

Now, consider Vi = {v1i , . . . , v|Vi|
i }, for i = 3, . . . ,K − 1 and let p and q be

the leftmost and rightmost predecessors of Vi, respectively. Let u0 = p, uj = vji
(j = 1, 2, . . . , |Vi|), and u|Vi|+1 = q and denote by ej the edge (uj , uj+1) for j =
0, 1, . . . , |Vi|. Using the algorithm QUASI3CONNDRAWER we would perform an ex-
pansion operation exp(Γi−1, p, q,N∨) for a value of N∨ sufficient to guarantee that
the horizontal distance between uj−1 and uj (j = 1, 2, . . . , |Vi| + 1) is equal to one.
In the current case instead we need to expand Γi−1 so that the edges are sufficiently
long and the faces have sufficient space. To this aim we choose a value of N∨ equal to:∑|Vi|−1

j=1 w(ej)+ 2max{w(e0), w(e|Vi|)}+2max{Δy+1− d, w(e)
2 − 1}−Δy−Δx

where Δx = |x(q) − x(p)|, Δy = |y(q) − y(p)|, e is the horizontally drawn edge in
the path from p to q along Ci−1 (this edge exists by invariant I2 of Lemma 1), and d
is the vertical distance between the line containing e and the lowest among p and q. As
shown in Fig. 3, this choice guarantees that the face fi created by the addition of Vi can
accommodate the drawings of the virtual edges that need to be placed inside fi.

Consider now the addition of VK , let a = v1, b and c be the neighbors of vn, with
x(a) ≤ x(b) ≤ x(c). Also in this case we need to enlarge ΓK−1 so that the edges are
sufficiently long and the faces have sufficient space. We perform the expansion opera-
tion exp(ΓK−1, b∗, c∗, N∨), where b∗ and c∗ are the end-vertices of the horizontal edge

The Planar Slope Number of Subcubic Graphs 141

p
q

Δx

A

2(A+B +C)

2(A+B +C)−Δy Δy

N∗ = 2(A+B +C)−Δy −Δx

p
q

u1 u2 u3u4 u5u6

p′ q′ p′ q′

B

C

∑∑∑|Vi|−1
j=1 w(ej)

A =
∑|Vi|−1

j=1 w(ej)

2
B = max{w(e0),w(e|Vi|)}

C = max{Δy + 1, w(e)
2

− d+ 1}

e
d

w(e)
2

+ 1

Fig. 3. Lemma 2: Enlargement for the addition of Vi to draw an R-node

in the path from b to c along CK−1, and N∨ is given by: N∨ = max{N∨1 , N∨2 }, with

N∨1 = w(vn, c) +
w(b≥,c≥)

2 + 1 − d and N∨2 = w(vn,b)
2 + w(a, vn) + w(a, a∗); in the

previous formulas a∗ is the vertex adjacent to a in ΓK−1, and d is the vertical distance
between the line containing (b∗, c∗) and the lowest among b and c. This choice guaran-
tees that the two faces created by the addition of VK can accommodate the drawings of
the virtual edges that need to be placed inside them.

Once the drawing of the frame is computed, replace each virtual edge with its draw-
ing. Observe that, some virtual edge e has been stretched due to the expansion opera-
tions. If e is a Q-edge, then there are no problems when replacing e with its drawing. If
e is an S-edge, then it is enough to sufficiently stretch the first Q-edge of its drawing. It
is easy to see that Invariants I1 and I2 hold. About Invariant I3, let Ni be the number of
vertices of the subgraph of Gμ obtained fromGi by replacing each virtual edge with its
pertinent graph. It can be proved, by induction on i, that Γi has area O(Ni) × O(Ni),
which implies that Gμ = GK has area O(nμ)×O(nμ). The root ρ of T and its child ν
must be handled differently from the other nodes of T . Details are omitted. ↑⊃

4 Simply Connected and 3-Connected Subcubic Planar Graphs

In this section we briefly sketch the ideas to draw simply connected and 3-connected
subcubic planar graphs. A cut vertex is a vertex whose removal disconnects G, while
a bridge is an edge whose removal disconnects G. In a subcubic graph G, the absence
of cut vertices implies the absence of bridges and vice versa. Therefore a simply con-
nected subcubic planar graph G consists of a set of components connected by bridges.
Each component is either a simply 2-connected graph or a single vertex. The idea is to
compute a drawing of each 2-connected component according to Lemma 2 and then to
combine these drawings into a drawing of G. We can prove the following lemma.

142 E. Di Giacomo, G. Liotta, and F. Montecchiani

Lemma 3. Let G be an n-vertex simply connected subcubic planar graph. G admits a
planar straight-line grid drawing with the four canonical slopes in area O(n)×O(n).
All vertices of a 3-connected subcubic planar graph have degree 3, i.e., the graph is in
fact cubic. If the outerface of the graph has degree 3 and cannot be changed, 6 slopes
are always required [3]. For this reason, in our construction we always choose a “big”
face as the outerface. The following property can be easily proved.

Property 5. Every 3-connected cubic planar graph has a face with degree less than 6.

Based on Property 5 we present three different algorithms depending on whetherG has
a face of degree 3, 4 or 5. All algorithms are based on a common idea: We remove some
vertices/edges from the outerface of G (and add some dummy edges to it if necessary)
so thatG can be drawn by algorithm QUASI3CONNDRAWER. We then suitably reinsert
the removed vertices and edges using only the four canonical slopes.

Lemma 4. Let G be a 3-connected cubic planar graph with n ⊕ 6 vertices and a face
F of degree 3. G admits a planar straight-line grid drawing with the four canonical
slopes in area at most (n− 4)× (n− 3).

Proof. Consider the planar embedding of G with F as the outerface. Denote by a, b, c
the three vertices of F , in clockwise order.F is not adjacent to another face F ∗ of degree
3. By contradiction, let F ∗ be a face of degree 3 sharing one edge with F , say (a, b).
Denote by d the vertex of F ∗ which is not in F . Since G is 3-connected, there exists
a path Π from d to c (not passing through a and b). Note that, Π cannot consist of a
single edge, otherwise n=4. Hence, Π is formed by at least three vertices and {d, c}
is a separation pair, a contradiction. Thus, F is adjacent to faces of degree at least
4. Compute a canonical ordering of G, and assume, without loss of generality, that
a = v1, c = v2 and b = vn. Construct a drawing of G \ (v1, v2) using the algorithm
QUASI3CONNDRAWER. We now explain how to modify the drawing in order to add
edge (v1, v2). To this aim we move vertices v1, v2, and vn as follows. Let u2 and uk−1
be the two extreme vertices of V2. By recalling algorithm QUASI3CONNDRAWER, one
can prove that the drawing of G \ {v1, v2, vn} is contained in a isosceles right triangle
whose vertices are {v3, v∗3, vn−1}. We move vn to the point (x(vn−1), y(vn−1)+1), v1
to the intersection point of lvn3π/4 and lu2

π/2, and v2 to the intersection point of lvnπ/4 and

l
uk−1

π/2 . It is easy to see that the drawing of G \ {v1, v2, vn} has area at most (n− 4)×
(n− 4)/2, and therefore the final drawing has area at most (n− 4)× (n− 3). ↑⊃
The cases when G has a face of degree 4 or 5 require slightly larger area, the details are
omitted. The following lemma summarizes all the cases.

Lemma 5. Let G be a 3-connected cubic planar graph with n ⊕ 6 vertices.G admits a
planar straight-line grid drawing with the four canonical slopes in area at most (2n−
14)× (2n− 14).

Lemmas 2, 3 and 5 imply Theorem 1, while Corollary 1 immediately follows. The
bound of Theorem 1 is tight because there exist subcubic planar graphs that cannot be
drawn with less than four slopes.

The Planar Slope Number of Subcubic Graphs 143

5 Open Problems

Every planar graph with degree Δ have planar slope number O(2O(Δ)) [9]. Is there a
better upper bound when Δ = 4? It has been recently proved that those planar graphs
whose SPQR-tree does not have R-nodes have O(Δ) slope number [13]. Since an R-
node corresponds to a 3-connected planar subgraph (minus an edge), we ask whether
the 3-connected planar graphs have a planar slope number polynomial in Δ.

References

1. Barát, J., Matousek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric
thickness. Electr. J. Comb. 13(1) (2006)

2. Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997
(1996)

3. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few
slopes and segments. Comput. Geom. 38(3), 194–212 (2007)

4. Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F.T., Symvonis, A.,
Welzl, E., Woeginger, G.J.: Drawing graphs in the plane with high resolution. SIAM J. Com-
put. 22(5), 1035–1052 (1993)

5. Jelı́nek, V., Jelı́nková, E., Kratochvı́l, J., Lidický, B., Tesař, M., Vyskočil, T.: The planar
slope number of planar partial 3-trees of bounded degree. In: Eppstein, D., Gansner, E.R.
(eds.) GD 2009. LNCS, vol. 5849, pp. 304–315. Springer, Heidelberg (2010)

6. Jelı́nek, V., Jelı́nková, E., Kratochvı́l, J., Lidický, B., Tesar, M., Vyskocil, T.: The planar
slope number of planar partial 3-trees of bounded degree. Graphs and Combinatorics 29(4),
981–1005 (2013)

7. Kant, G.: Hexagonal grid drawings. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657,
pp. 263–276. Springer, Heidelberg (1993)

8. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32
(1996)

9. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few
slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

10. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes.
Comput. Geom. 40(2), 138–147 (2008)

11. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Cubic graphs have bounded slope parameter.
J. Graph Algorithms Appl. 14(1), 5–17 (2010)

12. Knauer, K., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. In: Gud-
mundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 323–334.
Springer, Heidelberg (2012)

13. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.: Planar and plane slope number of partial
2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 412–423. Springer,
Heidelberg (2013)

14. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In: van Krev-
eld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 254–265. Springer, Heidelberg
(2011)

15. Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four directions.
Comput. Geom. 42(9), 842–851 (2009)

16. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers.
Electr. J. Comb. 13(1) (2006)

17. Wade, G.A., Chu, J.-H.: Drawability of complete graphs using a minimal slope set. The
Computer Journal 37(2), 139–142 (1994)

Smooth Orthogonal Drawings of Planar Graphs�

Muhammad Jawaherul Alam1, Michael A. Bekos2, Michael Kaufmann2,
Philipp Kindermann3, Stephen G. Kobourov1, and Alexander Wolff3

1 Department of Computer Science, University of Arizona, USA
{mjalam,kobourov}@cs.arizona.edu

2 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Germany
{bekos,mk}@informatik.uni-tuebingen.de

3 Lehrstuhl für Informatik I, Universität Würzburg, Germany
http://www1.informatik.uni-wuerzburg.de/en/staff

Abstract. In smooth orthogonal layouts of planar graphs, every edge is an alter-
nating sequence of axis-aligned segments and circular arcs with common axis-
aligned tangents. In this paper, we study the problem of finding smooth orthogo-
nal layouts of low edge complexity, that is, with few segments per edge. We say
that a graph has smooth complexity k—for short, an SCk-layout—if it admits a
smooth orthogonal drawing of edge complexity at most k.

Our main result is that every 4-planar graph has an SC2-layout. While our
drawings may have super-polynomial area, we show that for 3-planar graphs, cu-
bic area suffices. We also show that any biconnected 4-outerplane graph has an
SC1-layout. On the negative side, we demonstrate an infinite family of bicon-
nected 4-planar graphs that require exponential area for an SC1-layout. Finally,
we present an infinite family of biconnected 4-planar graphs that do not admit an
SC1-layout.

1 Introduction

In the visualization of technical networks such as the structure of VLSI chips [8] or
UML diagrams [10] there is a strong tendency to draw edges as rectilinear paths. The
problem of laying out networks in such a way is called orthogonal graph drawing and
has been studied extensively. For drawings of (planar) graphs to be readable, special
care is needed to keep the number of bends small. In a seminal work, Tamassia [11]
showed that one can efficiently minimize the total number of bends in orthogonal lay-
outs of embedded 4-planar graphs, that is, planar graphs of maximum degree 4 whose
combinatorial embedding (the cyclic order of the edges around each vertex) is given.
In contrast to this, minimizing the number of bends over all embeddings of a 4-planar
graph is NP-hard [6].

α Research of M.J. Alam and S.G. Kobourov is supported in part by NSF grants CCF-1115971
and DEB 1053573. The work of M.A. Bekos is implemented within the framework of the
Action “Supporting Postdoctoral Researchers” of the Operational Program “Education and
Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research and Technology),
and is co-financed by the European Social Fund (ESF) and the Greek State. M. Kaufmann as
well as Ph. Kindermann and A. Wolff acknowledge support by the ESF EuroGIGA project
GraDR (DFG grants Ka 812/16-1 and Wo 758/5-1, respectively).

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 144–155, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://www1.informatik.uni-wuerzburg.de/en/staff

Smooth Orthogonal Drawings of Planar Graphs 145

In a so far unrelated line of research, circular-arc drawings of graphs have become a
popular matter of research in the last few years. Inspired by American artist Mark Lom-
bardi (1951–2000), Duncan et al. [4] introduced and studied Lombardi drawings, which
are circular-arc drawings with the additional requirement of perfect angular resolution,
that is, for each vertex, all pairs of consecutive edges form the same angle. Among oth-
ers, Duncan et al. treat drawings of d-regular graphs where all vertices have to lie on one
circle. They show that under this restriction, for some subclasses, Lombardi drawings
can be constructed efficiently, whereas for the others, the problem is NP-hard. They also
show [5] that ordered trees can always be Lombardi drawn in polynomial area, whereas
straight-line drawings with perfect resolution may need exponential area.

Very recently, Bekos et al. [2] introduced the smooth orthogonal graph layout prob-
lem that combines the two worlds; the rigidity and clarity of orthogonal layouts with
the artistic style and aesthetic appeal of Lombardi drawings. Formally, a smooth or-
thogonal drawing of a graph is a drawing on the plane where (i) each vertex is drawn
as a point; (ii) edges leave and enter vertices horizontally or vertically, (iii) each edge
is drawn as an alternating sequence of axis-aligned line segments and circular-arc seg-
ments such that consecutive segments have a common horizontal or vertical tangent
at their intersection point. In the case of (4-) planar graphs, it is additionally required
that (iv) there are no edge-crossings. Note that, by construction, (smooth) orthogonal
drawings of 4-planar graphs have angular resolution within a factor of two of optimal.

161 480

500

500

53
4

480

153

533

533

Gmunden
Seebahnhof

Gmunden
Traundorf

Viecht-
wang Ort

Lemberg-
weg

Engel-
hof

Baumgarten-
Waldbach

Gschwandt-
Rabersberg

Gschwandt
Schule

St. Konrad
B120/Abzw Ort

Scharn-
stein GH
Lidau

Grünau im Almtal
Bahnhof

Traxenbichl

Unterm
Wald

Steinfelden
Abzw Ort

Kothmühle

Scharnstein
Mühldorf

Viecht-
wang

Grünau
im Almtal
Gemeindeam

Almtal
Naturwildpark

Grünau
im Almtal
Postamt

Scharnstein
Almbrücke

Fig. 1. Clipping of the public trans-
port map Gmunden – Vöcklabruck –
Salzkammergut, Austria [12]

Figure 1 shows a real-world example: a smooth
orthogonal drawing of an Austrian regional bus
and train map. Extending our model, the map has
(multi-) edges that enter vertices diagonally (as in
Grünau im Almtal Postamt; bottom right).

For usability, it is important to keep the visual
complexity of such drawings low. In a (smooth) or-
thogonal drawing, the complexity of an edge is the
number of segments it consists of, that is, the num-
ber of inflection points plus one. Then, a natural
optimization goal is to minimize, for a given (em-
bedded) planar graph, the edge complexity of a
drawing, which is defined as the maximum com-
plexity over all edges. We say that a graph has or-
thogonal complexity k if it admits an orthogonal drawing of edge complexity at most
k, for short, an OCk-layout. Accordingly, we say that a graph has smooth complexity k
if it admits a smooth orthogonal drawing of edge complexity at most k, for short, an
SCk-layout. We seek for drawings of 4-planar graphs with low smooth complexity.

Our Contribution. Known results and our contributions to smooth orthogonal drawings
are shown in Table 1. The main result of our paper is that any 4-planar graph admits an
SC2-layout (see Sections 2 and 3). Our upper bound of 2 for the smooth complexity of
4-planar graphs improves the previously known bound of 3 and matches the correspond-
ing lower bound [2]. In contrast to the known algorithm for SC3-layout [2], which is
based on an algorithm for OC3-layout of Biedl and Kant [3], we use an algorithm of Liu
at al. [9] for OC3-layout, which avoids S-shaped edges (see Figure 2b, top). Such edges

146 M. Jawaherul Alam et al.

Table 1. Comparison of our results to the results of Bekos et al. [2]

graph class our contribution Bekos et al. [2]
complexity area reference

biconnected 4-planar SC2 super-poly Theorem 1 SC3

4-planar SC2 super-poly Theorem 2
3-planar SC2 ⊕n2/4← × ⊕n/2← Theorem 3
biconnected 4-outerplane SC1 exponential Theorem 4
triconnected 3-planar SC1

Hamiltonian 3-planar SC1

4-planar, poly-area ◦⊇SC1 full version [1]
OC3, octahedron ◦⊆SC1

OC2 ◦⊆SC1 full version [1]

are undesirable since they force their endpoints to lie on a line of slope ±1 in a smooth
orthogonal layout (see Figure 2b, bottom). Our construction requires super-polynomial
area. Hence, we have made no effort in proving a concrete bound.

Further, we prove that every biconnected 4-outerplane graph admits an SC1-layout
(see Section 4), expanding the class of graphs with SC1-layout from triconnected or
Hamiltonian 3-planar graphs [2]. Note that in our result, the outerplane embedding can
be prescribed, while in the other results the algorithms need the freedom to choose an
appropriate embedding.

We complement our positive results by two negative results; see the last three lines
of Table 1. Due to lack of space, the detailed proofs are given in [1]. Many problems re-
main open: does polynomial area suffice for SC2-layouts of 4-planar graphs? Do larger
graph classes admit SC1? What’s the computational complexity of deciding SC1?

2 Smooth Layouts for Biconnected 4-Planar Graphs

In this section, we prove that any biconnected 4-planar graph admits an SC2-layout.
Given a biconnected 4-planar graph, we first compute an OC3-layout, using an algo-
rithm of Liu et al. [9]. Then we turn the result of their algorithm into an SC2-layout.

Liu et al. choose two vertices s and t and compute an st-ordering of the input graph.
An st-ordering is an ordering (s = 1, 2, . . . , n = t) of the vertices such that every j
(2 < j < n−1) has neighbors i and k with i < j < k. Then they go through all vertices
as prescribed by the st-ordering, placing vertex i in row i. Calling an edge of which
exactly one end-vertex is already drawn an open edge, they maintain the following
invariant:

(I1) In each iteration, every open edge is associated with a column (a vertical grid line).

An algorithm of Biedl and Kant [3] yields an OC3-layout similar to that of Liu et al.
However, Liu et al. additionally show how to modify their algorithm such that it pro-
duces OC3-layouts without the undesirable S-shapes; see Fig. 2b (top).

In their modified algorithm, Liu et al. search for paths in the drawing that consist
only of S-shapes; every vertex lies on at most one such path. They place all vertices on

Smooth Orthogonal Drawings of Planar Graphs 147

(a) vertical (b) S-shapes (c) horizontal (d) L-shapes (e) C-shapes (f) U-shape

SC2

OC3

Fig. 2. Converting shapes from the OC3-layout to SC2

port(v)

po
rt
(u
)

le
ft

to
p

ri
gh

t
bo

tto
m

left toprightbottom

Δx < 0 = > s < −1 = > s < 1 = >

s < 1 = > s < −1 = >

Δx < 0 = >s < 1 = >

Δy < 0 =

Δx<0 Δx>0

Fig. 3. Cases for drawing the edge (u, v) based on the port assignment. In each case, u is the lower
of the two vertices (y(u) < y(v)). As shorthand, we use Δx = x(u)−x(v), Δy = y(u)−y(v),
and s = slope(u, v) = Δx/Δy.

such a path in the same row, without changing their column. This essentially converts
all S-shapes into horizontal edges. Now every edge (except (1, 2) and (1, n)) is drawn
as a vertical segment, horizontal segment, L-shape, or C-shape; see Fig. 2. The edge
(1, 2) is drawn as a U-shape and the edge (1, n), if it exists, is either drawn as a C-
shape or (only in the case of the octahedron) as a three-bend edge that uses the left port
of vertex 1 and the top port of vertex n.

We convert the output of the algorithm of Liu et al. from OC3 to SC2. The coor-
dinates of the vertices and the port assignment of their drawing define a (non-planar)
SC2-layout using the conversion table in Fig 3. In order to avoid crossings, we carefully
determine new vertex positions scanning the drawing of Liu et al. from bottom to top.

We now introduce our main tool for the conversion: a cut, for us, is a y-monotone
curve consisting of horizontal, vertical, and circular segments that divides the current
drawing into a left and a right part, and only intersects horizontal segments and semi-
circles of the drawing. In the following, we describe how one can find such a cut from
any starting point at the top of the drawing; see Fig. 4. (In spite of the fact that we define
the cut going from top to bottom, “to its left” will, as usually, mean “with smaller x-
coordinate”.)

148 M. Jawaherul Alam et al.

u uu u u
v

u

v

u

(a) open edge (b) L-shape (c) C-shape (d) maintaining I2

Fig. 4. Finding a cut

When such a cut encounters a vertex u to its right with an outgoing edge associated
with its left port, then the cut continues by passing through the segment incident to
u. On the other hand, if the port has an incoming L-shaped or C-shaped edge, the cut
just follows the edge. The case when the cut encounters a vertex to its left is handled
symmetrically.

Let v be a vertex incident to two incoming C-shapes (u, v) and (w, v). If y(w) ⊕
y(u) we call the C-shape (u, v) protected by (w, v); otherwise, we call it unprotected.
In order to ensure that a cut passes only through horizontal segments and that our final
drawing is planar, our algorithm will maintain the following new invariants:

(I2) An L-shape never contains a vertical segment (as in Fig. 2d right); it always con-
tains a horizontal segment (as in Fig. 2d left) or a single quarter-circle.

(I3) An unprotected C-shape never contains a horizontal segment incident to its top
vertex (as in Fig. 2e right); it always contains a horizontal segment incident to its
bottom vertex (as in Fig. 2e left) or no straight-line segment.

(I4) The subgraph induced by the vertices that have already been drawn has the same
embedding as in the drawing of Liu et al.

Below, we treat L- and C-shapes of complexity 1 as if they had a horizontal segment
of length 0 incident to their bottom vertex. Note that we always cut around protected
C-shapes, so we will never end up in their interior. Now we are ready to state the main
theorem of this section by presenting our algorithm for SC2-layouts.

Theorem 1. Every biconnected 4-planar graph admits an SC2-layout.

Proof. In the drawing Θ of Liu et al., vertices are arranged in rows. Let V1, . . . , Vr
be the partition of the vertex set V in rows 1, . . . , r. Following Liu et al., the vertices
in each such set induce a path in G. We place vertices in the order V1, . . . , Vr. In this
process, we maintain a planar drawing Θ ∨ and the invariants I1 to I4. As Liu et al., we
place the vertices on the integer grid. We deal with the special edges (1, 2) and (1, n) at
the end, leaving their ports, that is, the bottom and left port of vertex 1 and the top port
of vertex n, open.

For invariant I1, we associate each open edge with the column on which the algo-
rithm of Liu et al. places it. If their algorithm draws the first segment of the open edge
horizontally (from the source vertex to the column), we use the same segment for our
drawing. We use the same ports for the edges as their algorithm. Thus, our drawing
keeps the embedding of Liu et al., maintaining invariant I4.

Smooth Orthogonal Drawings of Planar Graphs 149

v1

u1

e

(a) OC3-layout (b) move v1 up (c) find a cut (d) SC2-layout (e) & (f) protected C-shape

v1

u1
w1

x1

v1

u1
w1

x1

v1

Fig. 5. Handling C-shapes

Assume that we have placed V1, . . . , Vi−1 and that the vertices in Vi are v1, . . . , vc
in left-to-right order (the case v1 = vc is possible; this is the only case in which a vertex
can have incoming L- or C-shapes at both its left and right port). Vertex vj (1 ⊕ j ⊕ c)
is placed in the column with which the edge entering the bottom port of vj is associated.
If the left port of v1 is used by an incoming L- or C-shape e = (u1, v1), we place v1
(and the other vertices in Vi) on a row high enough so that a smooth drawing of e does
not create any crossings with edges lying on the right side of e in Θ ; see Fig. 5b.

In order to make sure that the new drawing of e does not create crossings with edges
on the left side of e in Θ , we need to “push” those edges to the left of e. We do this by
computing a cut that starts from v1, separates the vertices and edges that lie on the left
side of e in Θ from those on the right side, passes u1 slightly to the left, and continues
downwards as described above; see Fig. 5c. Since, by invariant I4, our drawing so far
is planar and each edge is drawn in a y-monotone fashion, we can find a cut, too, that is
y-monotone. We move everything on the left side of the cut further left such that e has
no more crossings. Note that the cut intersects only horizontal edge segments. These
will simply become longer by the move.

Let ιxi = x(vi) − x(ui) and ιyi = y(vi) − y(ui) for i = 1, . . . , c. It is possible
that the drawing of e violates invariant I3—if u1 lies to the left of v1. We consider two
cases. First, assume that the edge (u1, v1) is the only incoming C-shape at v1. Note
that if c > 1 this is always the case. In this case, we simply define a cut that starts
slightly to the right of v1, follows e, intersects e slightly to the left of u1, and continues
downwards. Then we move everything on the left side of the cut byιx1+1 units to the
left. Next, assume that c = 1 and there is another C-shape (w1, v1) entering the right
port of v1; see Fig. 5e. We assume w.l.o.g. that y(w1) ⊕ y(u1). Let (x1, v1) be the edge
incident to the bottom port of v1. In this case, we first find a cut that starts slightly to the
right of v1, follows (x1, v1), passes x1 slightly to the right, and continues downwards.
Then we move everything on the right side of the cut by y(v1)−y(x1) units to the right.
Thus, there is an empty square to the right of (x1, v1) of side length y(v1)−y(x1). Now
we place v1 at the intersection of the slope-1 diagonal through x1 and the vertical line
throughw1. Due to this placement, we can draw (x1, v1) using two quarter-circles with
a common horizontal tangent in the top right corner of the empty square; see Fig. 5f.
Note that the edge (u1, v1) is protected by (w1, v1), so it can have a horizontal segment
incident to v1. This establishes I3.

It is also possible that the drawing of e violates invariant I2—if slope(u1, v1) > 1.
In this case we define a cut that starts slightly to the left of v1, intersects e and continues

150 M. Jawaherul Alam et al.

downwards. Then we move everything on the left side of the cut by ιy1 units to the
left. This establishes I2.

We treat vc, the rightmost vertex in the current row, symmetrically to v1.
For the case that v1 does not have incoming C-shapes at both its left and right port,

we still have to treat the edges entering vertices v1, . . . , vc from below. Note that these
edges can only be vertical or L-shaped. Vertical edges can be drawn without violating
the invariants. However, invariant I2 may be violated if an edge ei = (ui, vi) entering
the bottom port of vertex vi is L-shaped; see Fig. 4d. Assume that x(ui) < x(vi). In this
case we find a cut that starts slightly to the left of vi, follows ei, intersects ei slightly to
the right of ui, and continues downwards. Then we move everything on the left side of
the cut by ιyi units to the left. This establishes I2. We handle the case x(ui) > x(vi)
symmetrically.

We thus place the vertices row by row and draw the incoming edges for the newly
placed vertices, copying the embedding of the current subgraph from Θ . This completes
the drawing ofG−{(1, 2), (1, n)}. Note that vertex 1 has no incoming edge and vertex 2
has only one incoming edge, that is, (1, 2). Thus, the bottom port of both vertices is
still unused. We draw the edge (1, 2) as a U-shape. Finally, we finish the layout by
drawing the edge (1, n). By construction, the left port of vertex 1 is still unused. Note
that vertex n has no outgoing edges, so the top port of n is still free. Hence, we can draw
the edge (1, n) as a horizontal or vertical segment followed by a three-quarter-circle.
To avoid crossings, we may have to move vertex n upwards. This way, we will get a
horizontal segment at vertex 1, and the three-quarter-circle will completely lie outside
of the rest of the drawing. This completes the proof of Theorem 1. ≤�

3 Smooth Layouts for Arbitrary 4-Planar Graphs

In this section, we describe how to create SC2-layouts for arbitrary 4-planar graphs.
To achieve this, we decompose the graph into biconnected components, embed them
separately and then connect them. For the connection it is important that one of the
connector vertices lies on the outer face of its component. Within each component, the
connector vertices have degree at most 3; if they have degree 2, we must make sure
that their incident edges don’t use opposite ports. Following Biedl and Kant [3], we say
that a degree-2 vertex v is drawn with right angle if the edges incident to v use two
neighboring ports.

Lemma 1. Any biconnected 4-planar graph admits an SC2-layout such that all degree-2
vertices are drawn with right angle.

Proof. Let v be a degree-2 vertex. We now show how to adjust the algorithm of Sec-
tion 2 such that v is drawn with right angle. By construction, the top and the bottom
ports of v are used. Let (u, v) be the edge entering v from below (we allow v = 1 and
u = 2). We modify the algorithm such that (u, v) uses the left or right rather than the
bottom port of v. We consider three cases; (u, v) is either L-shaped, U-shaped, or ver-
tical. These cases are handled when v is inserted into the smooth orthogonal drawing.

First, we assume that (u, v) is L-shaped; see Fig. 6a. Then, we can simply move v to
the same row as u, making the edge horizontal.

Smooth Orthogonal Drawings of Planar Graphs 151

uu v

v

(a) an L-shape becomes a horizontal edge

v

vu u

(b) a U-shape becomes a horizontal edge

u

v

v

u

(c) a U-shape becomes an L-shape

v v

u u

(d) a vertical edge becomes an L-shape

Fig. 6. Modification of the placement of degree-2 vertices

Now, we assume that (u, v) is U-shaped; see Fig. 6b, 6c. Then u = 1 and v = 2 or
vice versa. If both have degree 2, we move the higher vertex to the row of the lower
vertex (if necessary) and replace the U-shaped edge by a horizontal edge. Otherwise we
move the vertex with degree-2, say v, downwards to row y(u) −ιx such that we can
replace the U-shape by an L-shape.

Otherwise, (u, v) is vertical; see Fig. 6d. Then, we compute a cut that starts slightly
below v, follows (u, v) downwards, passing u to its left. We move all vertices (includ-
ing u, but not v) that lie on the right side of this cut (by at least ιy) to the right. Then
we can draw (u, v) as an L-shape that uses the right port of v.

Observe that, in each of the three cases, we redraw all affected edges with SC2.
Hence, the modified algorithm still yields an SC2-layout. At the same time, all degree-2
vertices are drawn with right angle as desired. ≤�

Now we describe how to connect the biconnected components. Recall that a bridge is
an edge whose removal disconnects a graph G. We call the two endpoints of a bridge
bridge heads. A cut vertex is a vertex whose removal disconnects the graph, but is not
a bridge head.

Theorem 2. Any 4-planar graph admits an SC2-layout.

Proof. Let G0 be some biconnected component of G, and let v1, . . . , vk be the cut
vertices and bridge heads of G in G0. For i = 1, . . . , k, if vi is a bridge head, let v∨i
be the other head of the bridge, otherwise let v∨i = vi. Let Gi be the subgraph of G
containing v∨i and the connected components of G − v∨i not containing G0. Following
Lemma 1, G0 can be drawn such that all degree-2 vertices are drawn with right angles.

The algorithm of Section 2 that we modified in the proof of Lemma 1 places the last
vertex (n) at the top of the drawing and thus on the outer face. When drawing Gi, we
choose v∨i as this vertex. By induction, Gi can be drawn such that all degree-2 vertices
are drawn with right angles.

In order to connect Gi to G0, we make G0 large enough to fit Gi into the face that
contains the free ports of vi. We may have to rotate Gi by a multiple of 90∗ to achieve

152 M. Jawaherul Alam et al.

the following. If vi is a cut vertex, we make sure that v∨i uses the ports of vi that are free
in G0. Then we identify vi and v∨i. Otherwise we make sure that a free port of vi and a
free port of v∨i are opposite. Then we draw the bridge (vi, v∨i) horizontally or vertically.
This completes our proof.

For an example run of our algorithm, see the full version [1]. For graphs of maximum
degree 3, we can make our drawings more compact. This is due to the fact that we can
avoid C-shaped edges (and hence cuts) completely. In the presence of L-shapes only, it
suffices to stretch the orthogonal drawing by a factor of n.

Theorem 3. Every biconnected 3-planar graph with n vertices admits an SC2-layout
using area ⊗n2/4∈ × ⊗n/2∈.

Fig. 7. SC1-layout of K4

Proof. It is known that every biconnected 3-planar graph ex-
cept K4 has an OC2-layout using area ⊗n/2∈ × ⊗n/2∈ from
Kant [7]. Now we use the same global stretching as Bekos
et al. when they showed that every OC2-layout can be trans-
formed into an SC2-layout [2, Thm. 2]: we stretch the drawing
horizontally by the height of the drawing, that is, by a factor
of ⊗n/2∈. This makes sure that we can replace every bend by a quarter circle without
introducing crossings. Figure 7 shows an SC1-layout of K4; completing our proof. �

4 SC1-Layouts of Biconnected 4-Outerplane Graphs

In this section, we consider 4-outerplane graphs, that is, 4-outerplanar graphs with an
outerplanar embedding. We prove that any biconnected 4-outerplane graph admits an
SC1-layout. To do so, we first prove the result for a subclass of 4-outerplane graphs,
which we call (2, 3)-restricted outerplane graphs; then we generalize. Recall that the
weak dual of a plane graph is the subgraph of the dual graph whose vertices correspond
to the bounded faces of the primal graph.

Definition 1. A 4-outerplane graph is called (2, 3)-restricted if it contains a pair of
consecutive vertices on the outer face, x and y, such that deg(x) = 2 and deg(y) ⊕ 3.

Lemma 2. Any biconnected (2, 3)-restricted 4-outerplane graph admits an SC1-layout.

Proof. Let x and y be two vertices, consecutive on the outer face of the given graph G
such that deg(x) = 2 and deg(y) ⊕ 3. Let also T be the weak dual tree of G rooted
at the node, say v⊆, of T corresponding to the bounded face, say f⊆, containing both x
and y. We construct the SC1-layout Θ forG by traversing T , starting with v⊆. When we
traverse a node of T , we draw the corresponding face of G with SC1.

Consider the case when we have constructed a drawing Θ (H) for a connected sub-
graph H of G and we want to add a new face f to Θ (H). For each vertex u of H , let
pu = (x(u), y(u)) denote the point at which u is drawn in Θ (H). The remaining degree
of u is the number of vertices adjacent to u in G −H . Since we construct Θ (H) face
by face, the remaining degree of each vertex inH is at most two. The free ports of u are
the ones that are not occupied by an edge of H in Θ (H). During the construction of Θ ,
we maintain the following four invariants:

Smooth Orthogonal Drawings of Planar Graphs 153

v

u
Δ−1u

v

u Δ−1u

f

Δ◦u
Δ0v

v

Δ−1u

Δ−1v,ε

u

Γ

u v

u v

f

Δ+1
u

Δ◦v

v

Δ−1v,ε

f
Γ

u

Δ+1
u

v

u

v

f
Δ0v

Δ+1
u

u

v

u

f
Δ−1v,ε

Δ+1
u

Γ

(a) (b)

(e)

(h)

(c)

(f)

(i)

(d)

(g)

f

u

Lu,v

v

(k)

Fig. 8. (a)-(i) Different cases that arise when drawing face f of G. (k) A sample drawing.

(J1) Θ (H) is an SC1-layout that preserves the planar embedding of G, and each edge
is drawn either as an axis-parallel line segment or as a quarter-circle in Θ (H).
(Note that we do not use semi- and 3/4-circles.)

(J2) For each vertex u ofH , the free ports of u in Θ (H) are consecutive around u, and
they point to the outer face of Θ (H).

(J3) Vertices with remaining degree exactly 2 are incident to an edge drawn as a
quarter-circle.

(J4) If an edge (u, v) is drawn as an axis-parallel segment, then at least one of u and
v has remaining degree at most 1. If (u, v) is vertical and y(u) < y(v), then u
has remaining degree at most 1 and the free port of u in Θ (H) is horizontal; see
Figs. 8a, 8d and 8g. Symmetrically, if (u, v) is horizontal and x(u) < x(v), then
u has remaining degree at most 1 and the free port of u in Θ (H) is vertical; see
Figs. 8b, 8e and 8h.

We now show how we add the drawing of the new face f to Θ (H). Since G is
biconnected and outerplanar, and due to the order in which we process the faces of G,
f has exactly two vertices, say u and v, which have already been drawn (as pu and pv).
The two vertices are adjacent. Depending on how the edge (u, v) is drawn in Θ (H), we
draw the remaining vertices and edges of f .

Let k ∗ 3 be the number of vertices on the boundary of f . The slopes of the line
segment pupv is in {−1, 0,+1,≥}, where ≥ means that pupv is vertical. For s ⊆
{−1, 0,+1,≥}, we denote by Δsu the line with slope s through pu. Similarly, we denote

154 M. Jawaherul Alam et al.

by Δsu,ε the line with slope s through the point (x(u) + Γ, y(u)), for some Γ > 0.
Figs. 8d–8f show the drawing of f for k = 3, and Figs. 8g–8i for any k ∗ 4.

Note that the lengths of the line segments and the radii of the quarter-circles that
form f are equal (except for the radii of the bold-drawn quarter-circles of Figs. 8g and
8h which are determined by the remaining edges of f). Hence, the lengths of the line
segments and the radii of the quarter-circles that form any face that is descendant of
face f in T are smaller than or equal to the lengths of the line segments and the radii of
the quarter-circles that form f . Our construction ensures that all vertices of the subgraph
of G induced by the subtree of T rooted at f lie in the interior or on the boundary of
the diagonal semi-strip Luv delimited by Δ+1

u , Δ+1
v , and pupv (see Fig. 8k). The only

edges of this subgraph that are drawn in the complement of Luv (and are potentially
involved in crossings) are incident to two vertices that both lie on the boundary of Luv.
In this particular case, however, the degree restriction implies that Luv is surrounded
from above and/or below by two empty diagonal semi-strips of at least half the width of
semi-strip Luv, which is enough to ensure planarity for two reasons. First, any face that
is descendant of face f in T is formed by line segments and quarter-circles of radius
that are at most as big as the corresponding ones of face f . Second, due to the degree
restrictions, if two neighboring children of f are triangles, the left one cannot have a
right child and vice versa.

Let us summarize. Figures 8d–8i show that the drawing of f ensures that invari-
ants (J1)–(J4) of our algorithm are satisfied for H ↑ {f}. We begin by drawing the
root face f⊆. Since G is (2, 3)-restricted, f⊆ has two vertices x and y consecutive on
the outer face with deg(x) = 2 and deg(y) ⊕ 3. We draw edge (x, y) as a vertical
line segment. Then the remaining degrees of x and y are 1 and 2, respectively, which
satisfies the invariants for face f⊆. Hence, we complete the drawing of f⊆ as in Fig. 8d
or 8g. Traversing T in pre-order, we complete the drawing of G. ≤�
Next, we show how to deal with general biconnected 4-outerplane graphs. Suppose G
is not (2, 3)-restricted. As the following lemma asserts, we can always construct a bi-
connected (2, 3)-restricted 4-outerplane graph by deleting a vertex of degree 2 from G.

Lemma 3. Let G = (V,E) be a biconnected 4-outerplane graph that is not (2, 3)-
restricted. Then G has a degree-2 vertex whose removal yields a (2, 3)-restricted bi-
connected 4-outerplane graph.

Proof. The proof is by induction on the number of vertices. The base case is a maximal
biconnected outerplane graph on six vertices, which is the only non-(2, 3)-restricted
graph with six or less vertices. It is easy to see that in this case the removal of any
degree-2 vertex yields a biconnected (2, 3)-restricted 4-outerplane graph. Now assume
that the hypothesis holds for any biconnected 4-outerplane graph with k ∗ 6 vertices.
Let Gk+1 be a biconnected 4-outerplane graph on k + 1 vertices, which is not (2, 3)-
restricted. Let F be a face of Gk+1 that is a leaf in its weak dual. Then F contains only
one internal edge and exactly two external edges since, if it contained more than two
external edges,Gk+1 would be (2, 3)-restricted. Therefore,F consists of three vertices,
say a, b and c, consecutive on the outer face and deg(a) = deg(c) = 4, since otherwise
Gk+1 would be (2, 3)-restricted. By removing b, we obtain a new graph, say Gk, on
k vertices. If a or c is incident to a degree-2 vertex in Gk, then Gk is (2, 3)-restricted.

Smooth Orthogonal Drawings of Planar Graphs 155

Otherwise, by our induction hypothesis,Gk has a degree-2 vertex whose removal yields
a (2, 3)-restricted outerplanar graph. Since this vertex is neither adjacent to a nor c, the
removal of this vertex makes Gk+1, too, (2, 3)-restricted. ≤�
Theorem 4. Any biconnected 4-outerplane graph admits an SC1-layout.

Proof. If the given graph G is (2, 3)-restricted, then the result follows from Lemma 2.
Thus, assume that G is not (2, 3)-restricted. Then, G contains a degree-2 vertex, say b,
whose removal yields a biconnected (2, 3)-restricted 4-outerplane graph, sayG∨. Hence,
we can apply the algorithm of Lemma 2 to G∨ and obtain an outerplanar SC1-layout
Θ (G∨) of G∨. Since this algorithm always maintains consecutive free ports for each
vertex and the neighbors of b are on the outer face of Θ (G∨), we insert insert b and its
two incident edges to obtain an SC1-layout Θ (G) of G as follows. Let a and c be the
neighbors of b and assume w.l.o.g. that c is drawn above a. If edge (a, c) is drawn as
a quarter-circle, then a 3/4-circle arc from pc to pb and a quarter-circle from pb to pa
suffice. Otherwise, line segment papb and a quarter-circle from pb to pc do the job. ≤�

References

1. Alam, M.J., Bekos, M.A., Kaufmann, M., Kindermann, P., Kobourov, S.G., Wolff, A.:
Smooth orthogonal drawings of planar graphs. Arxiv report arxiv.org/abs/1312.3538 (2013)

2. Bekos, M.A., Kaufmann, M., Kobourov, S.G., Symvonis, A.: Smooth orthogonal layouts.
In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 150–161. Springer,
Heidelberg (2013)

3. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. Theory
Appl. 9(3), 159–180 (1998)

4. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi
drawings of graphs. J. Graph Algorithms Appl. 16(1), 85–108 (2012),
http://dx.doi.org/10.7155/jgaa.00251

5. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing
trees with perfect angular resolution and polynomial area. Discrete Comput. Geom. 49(2),
157–182 (2013)

6. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity
testing. SIAM J. Comput. 31(2), 601–625 (2001)

7. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32
(1996)

8. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Proc. 21st Annu. IEEE Symp.
Foundat. Comput. Sci. (FOCS 1980), pp. 270–281 (1980)

9. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of planar
graphs in the two-dimensional grid. Discrete Appl. Math. 81(1-3), 69–91 (1998)

10. Seemann, J.: Extending the Sugiyama algorithm for drawing UML class diagrams: Towards
automatic layout of object-oriented software diagrams. In: Di Battista, G. (ed.) GD 1997.
LNCS, vol. 1353, pp. 415–424. Springer, Heidelberg (1997)

11. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM
J. Comput. 16(3), 421–444 (1987)

12. Waldherr, H.: Network Gmunden–Vöcklabruck–Salzkammergut of the Publ. Transp. As-
soc. OÖVG, Austria (November 2012), http://www.ooevv.at/uploads/media/
OOE2 Salzkammergut V17 END.pdf (accessed September 10, 2013)

 http://dx.doi.org/10.7155/jgaa.00251
http://www.ooevv.at/uploads/media/OOE2_Salzkammergut_V17_END.pdf
http://www.ooevv.at/uploads/media/OOE2_Salzkammergut_V17_END.pdf

Drawing HV -Restricted Planar Graphs

Stephane Durocher1,Δ, Stefan Felsner2,ΔΔ,
Saeed Mehrabi1,ΔΔΔ, and Debajyoti Mondal1,ΔΔΔ

1 Department of Computer Science, University of Manitoba, Canada
2 Institut für Mathematik, Technische Universität Berlin, Germany

{durocher,mehrabi,jyoti}@cs.umanitoba.ca, felsner@math.tu-berlin.de

Abstract. A strict orthogonal drawing of a graph G = (V,E) in R
2 is

a drawing of G such that each vertex is mapped to a distinct point and
each edge is mapped to a horizontal or vertical line segment. A graph G
is HV -restricted if each of its edges is assigned a horizontal or vertical
orientation. A strict orthogonal drawing of an HV -restricted graph G
is good if it is planar and respects the edge orientations of G. In this
paper we give a polynomial-time algorithm to check whether a given
HV -restricted plane graph (i.e., a planar graph with a fixed combinato-
rial embedding) admits a good orthogonal drawing preserving the input
embedding, which settles an open question posed by Maňuch, Patterson,
Poon and Thachuk (GD 2010). We then examine HV -restricted pla-
nar graphs (i.e., when the embedding is not fixed). Here we completely
characterize the 2-connected maximum-degree-three HV -restricted out-
erplanar graphs that admit good orthogonal drawings.

1 Introduction

An orthogonal drawing Γ of an undirected graph G = (V,E) in R
2 is a drawing

of G in the plane, where each vertex of G is mapped to a distinct point and
each edge of G is mapped to an orthogonal polyline. Γ is called planar if no
two edges in Γ cross, however, two edges can meet at their common endpoints.
Otherwise, the drawing is a non-planar orthogonal drawing. Orthogonal drawings
have been extensively studied over the last two decades [1,3,8,14,16] because of
its applications in many practical fields such as VLSI floor-planning, circuit
schematics, and entity relationship diagrams.

An orthogonal drawing is strict if every edge in the drawing is represented
by a single vertical and horizontal line segment. In 1987, Tamassia [14] gave
a polynomial-time algorithm to decide whether a plane graph (i.e., when the
embedding is fixed) admits a strict orthogonal drawing preserving the input

α Work of the author is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

αα Work of the author is supported in part by DFG grant FE-340/7-2 and ESF
EuroGIGA project GraDR.

ααα Work of the author is supported in part by a University of Manitoba Graduate
Fellowship.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 156–167, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Drawing HV -Restricted Planar Graphs 157

embedding. Later, Garg and Tamassia [6] proved that deciding strict orthogonal
drawability is NP-hard for planar graphs (i.e., when the embedding is not fixed).
However, polynomial time algorithms have been developed for some well-known
subclasses of planar graphs. For example, Di Battista et al. [1] showed that the
problem is polynomial-time solvable for series-parallel graphs and maximum-
degree-three planar graphs. Nomura et al. [13] showed that every maximum-
degree-three outerplanar graph admits a planar strict orthogonal drawing if and
only if it contains no cycle of three vertices.

Many variants of strict orthogonal drawings impose constraints on how the
edges of the input graph have to be drawn. One of these variants describes the
input graph G as an LRDU -restricted graph that associates each vertex-edge
incidence of G with an orientation, i.e., left(L), right(R), up(U), or down(D), and
asks to find an orthogonal drawing of G that respects the prescribed orientations.
Another variant considersHV -restricted graphs, where the orientation of an edge
is either horizontal(H), or vertical(V). By a good orthogonal drawing we denote
a planar strict orthogonal drawing that preserves the input edge orientations.

In this paper we only examine strict orthogonal drawings of HV -restricted
plane and planar graphs, and hence from now on we omit the term ‘strict’.

HV -Restricted Plane Graphs. In 1985, Vijayan and Wigderson [15] gave
an algorithm that can decide in linear time whether an LRDU -restricted plane
graph admits a good orthogonal drawing, but takes O(n2) time to construct
such a drawing when it exists. Later, Hoffmann and Kriegel [7] gave a linear-
time construction. The task of characterizingHV -restricted plane graphs is more
involved. The difficulty arises from the exponential number of choices for drawing
HV -restricted paths, where the drawing of an LRDU -restricted path is unique,
as illustrated in Figures 1(a)–(c). Recently, Maňuch et al. [10] examined several
results on the non-planar orthogonal drawings of LRDU - and HV -restricted
graphs. They proved that non-planar orthogonal drawability maintaining edge
orientations can be decided in polynomial-time for LRDU -restricted graphs,
but is NP-hard for HV -restricted graphs. An interesting open question in this
context, as posed by Maňuch et al. [10], is to determine the complexity of de-
ciding good orthogonal drawability of HV -restricted plane graphs. In Section 2
we settle this question by giving a polynomial-time algorithm to recognize HV -
restricted plane graphs. Here we assume that a planar embedding of the input
graph is given, and our algorithm decides whether there exists a solution that
respects the input embedding.

HV -Restricted Planar Graphs. A problem analogous to drawing LRDU -
restricted graphs in R

2 has been well studied in R
3, but polynomial-time al-

gorithms are known only for cycles [4] and theta graphs [5]. The exponential
number of possible orthogonal embeddings in R

3 makes the problem very dif-
ficult. Similarly, we find the problem of characterizing HV -restricted planar
graphs that admit good orthogonal drawings in R

2 nontrivial even for outerpla-
nar graphs, where the difficulty arises from the exponential number of choices
for plane embeddings of the input graph.

158 S. Durocher et al.

To further illustrate the challenge, here we prove that the HV -restricted outer-
planar graph of Figure 1(d) does not admit a good orthogonal drawing. Suppose
for a contradiction that Γ is a good orthogonal drawing of G, and consider the
drawing of the face F = (a, b, ..., f) in Γ . Since the edges (a, b) and (c, d) are hor-
izontally oriented and (a, f) is vertically oriented, either (a, b) lies above (e, f),
or (e, f) lies above (a, b) in Γ . If (a, b) lies above (e, f) as in Figure 1(e), then the
drawing of cycle a, b, i, j would create an edge crossing (irrespective of whether
it lies inside or outside of F). Similarly, if (e, f) lies above (a, b) as in Figure 1(f),
then the drawing of cycle e, f, h, g would create an edge crossing. Drawing both
of these cycles without crossing would imply a unique drawing of F , as shown
in Figure 1(g). However, in this case we cannot draw the cycle c, d, k, l without
edge crossings. In Section 3 we characterize 2-connected maximum-degree-three
outerplanar graphs that admit good orthogonal drawings. Our proof is con-
structive, i.e., given an HV -restricted 2-connected maximum-degree-three out-
erplanar graph G, in polynomial time we can decide whether G admits a good
orthogonal drawing, and find such a drawing if it exists. Note that the construc-
tion can choose any feasible embedding (i.e., the embedding is not fixed), and
the output is not necessarily outerplanar.

(a) (b) (c)

R

U

R
D
R

U

L

D
R U

a
bc

d

e

f
g

h

i

j

k l

(d)

a

a

a
b

b

b

c c

c

d d

d

e

e

ef

f

f

(e) (f) (g)

Fig. 1. (a) Drawing of an LRDU -restricted path. (b)–(c) Two different drawings of
an HV -restricted path. (d) An HV -restricted outerplanar graph G with maximum
degree three, where the horizontal and vertical orientations are shown in black and
gray, respectively. (e)–(g) Drawing of the face F .

2 Drawing HV -Restricted Plane Graphs

In this section we give a polynomial-time algorithm that checks whether a given
HV -restricted plane graph admits a good orthogonal drawing that preserves the
input embedding. If the answer is affirmative, the algorithm certifies its answer
by constructing a good orthogonal drawing.

We will first identify some necessary conditions and later show that they are
also sufficient for the existence of the good drawing. The first condition is that
every vertex has most two incident edges with label H and at most two with
label V , and if the degree is four, the labels alternate. This condition is easily
checked and from now on we assume it to be satisfied by the input.

Assume that a good drawing exists and consider a face f in the drawing. The
face is represented by a polygon, hence, if f has k corners, then the sum of all

Drawing HV -Restricted Planar Graphs 159

interior angles of f must be (k−2)π (the outer face makes an exception, here the
angles sum to (k+ 2)π). Since f is an orthogonal polygon, the angle contributed
by each corner is a multiple of π/2. From the given edge orientations we can
infer the angle of some corners precisely: if a corner has two incident edges with
the same label, then it contributes an angle of π, and if a corner corresponds to
a vertex of degree one, it contributes 2π. The interesting corners are those where
the incident edges have different labels, these corners contribute either π/2 or
3π/2. Dual to the angle condition for faces we also have the obvious condition
for vertices: around each vertex the sum of angles is 2π.

Associate a variable xc with each corner c of the plane graph. The above
conditions can all be written as linear equations in these variables. This yields
a linear system Ax = b and the unified necessary condition that the system
has a solution x̄ where each component x̄c is in {1, 2, 3, 4}. Such a solution
is called a global admissible angle assignment. Similar quests for global angle
assignments have been studied in rectangular drawing problems, where Miura et
al. [11] reduced the problem to perfect matching, and in the context of orthogonal
drawing with bends, where Tamassia [14] modeled an angle assignment problem
with minimum-cost maximum-flow.

Instead of directly using the linear system stated above, we use the fact that
the value of some variables xc is prescribed by the input. The value for the
remaining variables and hence a global admissible angle assignment can be de-
termined using a maximum-flow problem.

To construct the flow network start with the angle graph A(G) of the plane
graph G. The vertex set is VA(G) = VG ⊕ FG, i.e., the vertices of A(G) are the
vertices and faces of G or stated in just another way: the vertices of A(G) are
the vertices of G together with the vertices of the dual G∗. The edges of A(G)
correspond to the corners of G: if v ≤ VG and f ≤ VF are incident at a corner c
then there is an edge ec = (v, f) in EA(G).

Next step is to remove an edge ec = (v, f) from A(G) when the value of the
variable xc is prescribed by the input, i.e., in the following situations:

(a) If the two edges of a corner have the same orientation and the edges are
distinct, then the corner is assigned a π angle, i.e., xc = 2.

(b) If the vertex corresponding to a corner is of degree one, then the corner is
assigned a 2π angle, i.e., xc = 4.

(c) If the two edges of a corner have different orientations and the vertex is of
degree three or more, then the corner is assigned a π/2 angle, i.e., xc = 1.

Let AΔ(G) be the graph after removing all these edges. Since A(G) is a plane
graph the same is true for AΔ(G). Figure 2(a) shows an example of a graph G
together with the network AΔ(G).

Since we want to use a fast maximum-flow algorithm, we describe the flow-
problem using a planar flow network with multiple sources and sinks. It only
remains to decide for some vertices of degree two in G which of its corners is of
size π/2 and which is of size 3π/2. We model a π/2 corner with a flow of one
unit entering the corresponding vertex.

160 S. Durocher et al.

+5

+6

+5

vf1

vf2
vf3

vf1

vf2
vf3

(a) (b) (c)

Fig. 2. (a) An HV -restricted plane graph G (induced by solid edges), and its corre-
sponding flow network Aα(G) (induced by dotted edges). The edges with horizontal
(respectively, vertical) orientations in G are bold (respectively, thin). (b) A feasible flow
in Aα(G), where each solid edge correspond to one unit of flow. (c) A corresponding
orthogonal drawing of G.

An original vertex v ≤ VG is incident to an edge in AΔ(G) if and only if v is
a vertex of degree two in G. With these vertices we assign a demand of 1. The
capacities of all the edges are also restricted to 1. Finally, we have to set the
excess of all f ≤ FG. We know the total angle sum of f and the angles that have
been assigned in the reduction step from A(G) to AΔ(G). Since all the remaining
angles are of size π/2 or 3π/2, we can compute how many of size 3π/2 are needed,
this number zf is the excess of f . (Note that if the computation yields a zf that is
not an integer, then G does not admit a good orthogonal realization). Similarly,
we can also compute the number z⊆f of π/2 angles that we need. For example, for
the face f2 in Figure 2(a), we consider 3zf2 + z⊆f2 = 18 and zf2 + z⊆f2 = 10, which
solves to (z⊆f2 , zf2) = (4, 6). Since all edges ec ≤ EAΘ(G) connect a source f to a
sink v, we may think of them as directed edges f → v. Figure 2(b) illustrates a
maximum flow for the flow-network of Figure 2(a).

We claim that a flow satisfying all the constraints (demand/excess/capacity)
exists if and only if G admits a good orthogonal drawing preserving the input
embedding. If a flow y ≤ {0, 1}EAΘ(G) exists, then we get a solution vector for
the linear system by defining xc = 3 − 2yc for all ec ≤ EAΘ(G). Together with
the variables defined by conditions (a) – (c) we obtain a global admissible angle
assignment which by definition satisfies:

1. The sum of angles around each vertex v in G is 2π.
2. For every edge (u, v) in G, the angle assignment at the corners of u and v is

consistent with respect to the two faces that are incident to (u, v).
3. The total assigned angle of every face f is the angle sum required for polygons

with that many corners. All angles are multiples of π/2, i.e., the induced
representation is orthogonal.

These conditions on an angle assignment are sufficient to construct a plane
orthogonal representation that respects the input embedding [14]. In fact the
orthogonal drawing can be computed in linear time. Figure 2(c) shows an or-
thogonal representation corresponding to the flow of Figure 2(b).

Drawing HV -Restricted Planar Graphs 161

For the converse, if G admits a good orthogonal drawing Γ respecting the
input embedding, then the angles at the degree two vertices readily imply a flow
in the network satisfying the constraints. We thus obtain the following theorem.

Theorem 1. Given an HV -restricted plane graph G with n vertices, one can
check in T (n) time whether G admits a good orthogonal drawing preserving the
input embedding, and construct such a drawing if it exists. Here T (n) is the time
to find maximum flows in multiple-source multiple-sink directed planar graphs.

Since the maximum flow problem for a multiple-source and multiple-sink directed
planar graph can be solved in O(n log3 n)-time [2], one can check whether a given
HV -restricted plane graph that admits a good orthogonal drawing preserving the
input embedding inO(n log3 n) time. Note that we precisely know the production
or demand of each node in the flow network, and hence we are actually finding a
feasible flow. There are faster algorithms in such cases, e.g., Klein et al. [9] gave
an algorithm to find a feasible integral flow in O(n log2 n)-time. Later, Mozes
and Wulff-Nilsen [12] improved the running time to O(n log2 n/ log logn).

3 Drawing 2-Connected Outerplanar Graphs with Δ = 3

In this section we give a polynomial-time algorithm to determine whether an
arbitrary 2-connected HV -restricted outerplanar graph with maximum degree
three admits a good orthogonal drawing, and construct such a drawing if it
exists. Note that the good orthogonal drawing we produce is not necessarily an
outerplanar embedding. We first introduce some notation.

Let G be an HV -restricted planar graph. By a segment of G, we denote a
maximal path inG such that all the edges on that path have the same orientation.
A graph is outerplanar if it admits a planar drawing with all its vertices on the
outer face. Let G be a 2-connected HV -restricted embedded outerplanar graph
with Δ = 3, where Δ is the maximum degree of G. Let e be an edge of G. Then
by λe we denote the orientation of e in G. Let F be an inner face of G. Note that
G is an embedded graph. Thus any edge of G is an inner edge if it does not lie
on the boundary of the outer face of G, and all the remaining edges of G are the
outer edges. An inner edge e of G on the boundary of F is called critical if the
two edges preceding and following e have the same orientation that is different
from λe. For example, in Figure 1(d), the edge (a, b) is a critical edge of the
inner face F = (a, b, ..., f). An edge e is h-critical (respectively, v-critical) if it
is a critical edge and λe = H (respectively, λe = V). For some inner face F
in G, let Ev(F) and Eh(F) be the number of distinct edges of F with vertical
and horizontal orientations, respectively. By Cv(F) and Ch(F) we denote the
number of v-critical and h-critical edges of F .

Let pqrs be a rectangle, and let a and b be two points in the proper interior of
qr and rs, respectively, as shown in Figures 3(a) and (b). Construct a rectangle
sbcd, where c and d lie outside of the rectangle pqrs. Then the region consisting
of the rectangles pqrs and sbcd is called a flag. A flag includes all the segments
on its boundary except the segment aq. The rectangles pqrs and sbcd are called

162 S. Durocher et al.

the banner and post, respectively. The segments ar and br are called the borders
of the flag.

3.1 Necessary and Sufficient Conditions

Throughout this section, G denotes an arbitrary 2-connected HV -restricted em-
bedded outerplanar graph with Δ = 3; see Figure 3(c) for an example. We now
prove the following theorem, which is the main result of this section.

Theorem 2. Let G be a 2-connected HV -restricted embedded outerplanar graph
with maximum degree three. Then G admits a good planar orthogonal drawing if
and only if the following three conditions hold.

(C1) For every inner face f , the sequence of orientations of the edges in clock-
wise order contains HVHV as a subsequence .

(C2) For every inner face f , if Cv(f) = Ev(f), then Cv(f) is even. Similarly,
if Ch(f) = Eh(f), then Ch(f) is even.

(C3) Every vertex of G has at most two edges of the same orientation.

3.2 Necessity

We first show that Conditions (C1)–(C3) are necessary for G to admit a good
planar orthogonal drawing. We use the following two lemmas.

Lemma 1. Let Γ be a good orthogonal drawing of G, and let (b, c) be an inner
edge of some face f = (a, b, c, d, . . . , a). Figure 3(d) illustrates an example. Since
(b, c) is an inner edge, there is another face f ⊆ = (b, x, . . . , y, c, b) that does
not contain any edge of f except (b, c). Let H+ and H− be the two half-planes
determined by the straight line through (b, c). If (b, c) is a critical edge in f , then
either both (a, b) and (c, d) lie in H+, or both lie in H−.

Proof. Without loss of generality assume that λbc = H . Since (b, c) is a critical
edge, λbc ⊗= λab and λab = λcd. If (a, b) and (c, d) lie in H+ and H−, respectively,
then one of x and y must lie interior to f and the other must lie exterior to
f . Therefore, the path b, x, ..., y, c must create an edge crossing with f , which
contradicts that Γ is a good orthogonal drawing. ∈∗
Let x(v) and y(v) denote the x- and y-coordinates of a vertex v. We now use
Lemma 1 to prove the following.

Lemma 2. Let Γ be good orthogonal drawing of G. Let f be an inner face in Γ ,
and let (a, b) and (c, d) be two edges on f (without loss of generality assume that
(a, b) is above (c, d)), where λab = λcd = H, x(a) > x(b) and x(d) > x(c). Let
P = (a, b, ..., c, d) be a path on the boundary of f in anticlockwise order, e.g., see
the path Pl in Figure 3(e). If all the vertically oriented edges of P are critical,
then the number of such critical edges on P must be odd. This property holds
symmetrically for P = (b, a, ..., d, c).

Drawing HV -Restricted Planar Graphs 163

(a) (b) (c) (d) (e)

a

a

a

a

b
b

b

b

c
c

c

c

d

d

d

d

p

pq

qr

r

s

s

x

y

Pr
Pl

lb

lt
f ≥

f

H+

H−

Fig. 3. (a)–(b) Two flags, where the borders are shown in bold. (c) An outerplanar
graph G with Δ = 3. (d) Illustration for Lemma 1. (e) Illustration for Pl and Pr, where
Pl contains three v-critical edges and Pr contains five v-critical edges.

Proof. Consider a traversal of the edges of P starting at a. Let e be a v-critical
edge on P , and let e⊆ and e⊆⊆ be the edges preceding and following e, respectively.
By Lemma 1, e⊆ and e⊆⊆ must lie on the same side of e in Γ . Therefore, if we
traverse e⊆ from left to right, then we have to traverse e⊆⊆ from right to left,
and vice versa. In other words, every v-critical edge reverses the direction of
traversal. Since we traverse (a, b) and (c, d) from opposite directions and all the
vertically oriented edges of P are critical, we need an odd number of v-critical
edges on P to complete the traversal. ∈∗
We are now ready to prove the necessity part of Theorem 2.

If (C1) does not hold for some f , then the face f does not admit a planar
orthogonal drawing. Because, drawing f would require the sum of the interior
angles of the corresponding polygon to be at least 2π.

If (C2) does not hold, then without loss of generality assume that for some
f , Cv(f) = Ev(f) and Cv(f) is odd. Let Γf be a drawing of f such that lt and
lb are topmost and bottommost horizontal edges in Γf . Then we can find two
disjoint paths Pl and Pr by traversing f anticlockwise and clockwise from lt to
lb, respectively, as shown in Figure 3(e). Since Cv(f) is odd, either Pl or Pr must
contain an even number of v-critical edges, which contradicts Lemma 2.

If (C3) does not hold at some vertex v, then the drawing of its incident edges
would contain edge overlapping.

3.3 Sufficiency

To prove the sufficiency we assume that G satisfies (C1)–(C3), and then construct
a good orthogonal drawing of G. The idea is to first draw an arbitrary inner face
f of G, and then the other faces of G by a depth first search on the faces of G
starting at f .

Let f = (v1, v2, . . . , vr, . . . , vs, . . . , vt(= v1)) be the vertices of f in clockwise
order. Let P = (vr, . . . , vs, . . . , vt) be a maximal path on f such that all the
edges on path Pv = (vr, . . . , vs) (respectively, Ph = (vs, . . . , vt)) have vertical
(respectively, horizontal) orientation. The maximality of P ensures that λv1v2 =
V and λvr−1vr = H . An example of such a path P in the face of Figure 4(a)

164 S. Durocher et al.

is a(= vr), b, c(= vs), d, e(= vt). Observe that λv1v2 = λeg = V and λvr−1vr =
λia = H . We now have the following lemma.

Lemma 3. Given an inner face f of G that satisfies conditions (C1)–(C3), and
a drawing of two consecutive segments Ph and Pv of f . One can find a good
orthogonal drawing Γf of f that satisfies the following properties.

- Lemma 1 holds for every critical edge e in Γf , i.e., the two edges preceding
and following e lie in the same side of e.

- Γf is contained in a flag F with borders Ph and Pv.
- If Ph is a critical edge, then the post of F (if exists) is incident to Pv. Similarly,
if Pv is a critical edge, then the post of Γf (if exists) is incident to Ph. (Note
that since Δ = 3, both Ph and Pv cannot be critical).

Proof. Due to space constraints, here we only sketch the steps of the proof.
We first prove that if f satisfies Conditions (C1)–(C3), then f admits a good

orthogonal drawing such that Lemma 1 holds for every critical edge of f . Our
proof is constructive. We construct two drawings Γf1 and Γf2 of f , and prove
that one of these two drawings satisfies the lemma. Since f satisfies (C1), P
must contain at least three vertices. We first draw the path P maintaining edge
orientations.Let the drawing be ΓP . We next draw P ⊆ = (v1, v2, . . . , vr) in two
different ways that give the drawings Γf1 and Γf2 , as follows.

Construction of Γf1 . We construct Γf1 in three steps. At Step 1, we draw
P ⊆ starting at v1 such that every v-critical edge e of P ⊆ satisfies Lemma 1.
However, the position of vr in the drawing of P ⊆ may not coincide with its
position in ΓP . Let the resulting drawing of P ⊆ be ΓP ≥ . At Step 2, we modify ΓP ≥

such that Lemma 1 holds for every h-critical edge, except possibly (vr−1, vr).
While modifying ΓP ≥ , we ensure that the v-critical edges still satisfy Lemma 1.
Therefore, after Step 2, the resulting drawing Γ ⊆P ≥ has all its critical edges, except
possibly (vr−1, vr), satisfying Lemma 1. At Step 3, we modify the drawing such
that the positions of vr in Γ ⊆P ≥ and ΓP coincide. Thus after Step 3, we obtain
a drawing Γf1 of f that respects all the edge orientations, furthermore, all the
critical edges, except possibly (vr−1, vr), satisfy Lemma 1.

Construction of Γf2 . To construct Γf2 , we start drawing P ⊆ at vr of ΓP , and
then the construction is symmetric, i.e., here we treat the horizontal (respec-
tively, vertical) orientations as the vertical (respectively, horizontal) orientations.

Either Γf1 or Γf2 satisfies Lemma 3. We first prove that one of Γf1 and Γf2

is a good orthogonal drawing and Lemma 1 holds for each of its critical edge.
The idea of the proof is as follows. We first prove that both Γf1 and Γf2 are
good. We next prove that if Lemma 1 does not hold for the critical edges in
Γf1 , then P ⊆ cannot contain any v-critical edge and Ph cannot be an h-critical
edge. We show that in such a scenario, Lemma 1 must hold for every critical
edge in Γf2 . As a byproduct of our construction, we obtain the remaining two
properties of Γf , i.e., Γf is contained in a flag F with borders Ph and Pv, and if
Ph (respectively, Pv) is a critical edge, then the post of F (if exists) is incident
to Pv (respectively, Ph). ∈∗

Drawing HV -Restricted Planar Graphs 165

We are now ready to describe the drawing of G. We first construct the drawing
Γf for some inter face f of G. We then draw the other inner faces of G by a
depth first search on the faces of G, such that after adding a new inner face, the
resulting drawing remains

(P1) a good orthogonal drawing, and
(P2) each critical edge respects Lemma 1.

Let Γk be a drawing of the set of inner faces f1(= f), f2, . . . , fk that we have
already constructed. Let fk+1 be an inner face of G that has not been drawn
yet, but has an edge (b, c) in common with some face fj, where 1 ⊆ j ⊆ k.
Without loss of generality assume that λbc = V in Γk. Furthermore, since G is
outerplanar, fk+1 cannot have any edge other than (b, c) in common with fj .
Let lv be a segment of fk+1 that contains (b, c), and let lh be another segment
of fk+1 incident to lv. We now construct Γk+1 considering the following cases.

Case 1 (None of b and c is an end vertex of lv): In this case none of the
end vertices of the path formed by lv and lh belongs to Γk. Since G satisfies
Condition (C3), the edges of fj that are incident to b and c must be horizon-
tal, i.e., (b, c) must be a v-critical edge of fj. Since Γk is a good orthogonal
drawing, there is enough space to create a flag F with borders lv and lh such
that the banner and post of F do not create any edge crossing. Figure 4(c)
illustrates such an example. By Lemma 3, we can draw fk+1 inside F main-
taining Properties (P1) and (P2). Thus the resulting drawing Γk+1 satisfy
(P1)–(P2).

Case 2 (Exactly one of b and c is an end vertex of lv): If b (respectively,
c) is an end vertex of lv, then we choose lh such that it contains b (respec-
tively, c). Therefore, none of the end vertices of the path formed by lv and
lh belongs to Γk. Figure 4(d) illustrates such an example. Similar to Case 1,
we now draw Γk+1 satisfying (P1)–(P2).

Case 3 (Both b and c are end vertices of lv): Observe that in this case lv =
(b, c). Let a, b, c, d be a path of fk+1. Since lv = (b, c) is a maximal set of edges
with vertical orientation, we haveλab = λbc = H . Thus lv = (b, c) is a v-critical
edge of fk+1. We now create a flag F with borders lv and lh such that the post

(a) (b) (c) (d) (e)

a(= vr)

b

c(= vs)d

e(= vt)
g

Ph

Pv

Pv

Ph

F

b

c

lv

lh
F

b

c
lv

lh

fj

fj

F

fj

b

c

lh

lv
v1

v2
p

q

i(= vr−1)

Fig. 4. (a) An inner face of G. (b) Illustration for Γf . (c)–(e) Illustration for the
construction of Γk+1.

166 S. Durocher et al.

of the flag is incident to lh. Note that since lv is critical, by Lemma 3, we do not
require a flag with its post incident to lv. We now can draw fk+1 inside F main-
taining (P2) and (P3). Figure 4(e) illustrates such an example. It may initially
appear from the figure that drawing of fk+1 insideF may overlap the boundary
of fj, i.e., consider the Figure 4(e) with λcq = V . However, by definition of a
flag, F does not contain the part of its boundary that overlaps fj , and hence
drawing fk+1 would not create any edge overlapping.

4 Conclusion

In Section 2 we have developed a polynomial-time algorithm to decide good or-
thogonal drawability of HV -restricted plane graphs. An interesting open ques-
tion in this context, as Maňuch et al. [10] asked, is to determine the complexity
of deciding good orthogonal drawability for HV -restricted planar graphs.

Problem 1. What is the time complexity of deciding whether an arbitrary
HV -restricted planar graph admits a planar orthogonal drawing preserving the
given edge orientations?

In Section 3 we have characterized HV -restricted 2-connected maximum-
degree-three outerplanar graphs that admit good orthogonal drawings. If we
relax the 2-connected constraint, then our characterization no longer holds. For
example, the HV -restricted outerplanar graph G of Figure 5(b) satisfies Condi-
tions (C1)-(C3) of Theorem 2, but does not admit any good orthogonal drawing.

x

H
G

(a) (b)

Fig. 5. Illustration for the graphs (a) H and (b) G

Observe that G is constructed from two copies of the graph H of Figure 5(a),
where the vertices with label x are identified. Since in any good orthogonal
drawing of H the vertex x lies in some inner face, any orthogonal drawing of G
preserving edge orientations must contain edge crossing. Hence a natural open
question is to extend our result for arbitrary outerplanar graphs.

Problem 2. Characterize the class of HV -restricted outerplanar graphs that
admit planar orthogonal drawings preserving the given edge orientations.

Drawing HV -Restricted Planar Graphs 167

References

1. Battista, G.D., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings.
SIAM Journal on Computing 27, 1764–1811 (1998)

2. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-
source multiple-sink maximum flow in directed planar graphs in near-linear time.
In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer
Science (FOCS), pp. 170–179. IEEE (2011)

3. Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. Journal of Graph
Algorithms and Applications 16(3), 635–650 (2012)

4. Di Battista, G., Kim, E., Liotta, G., Lubiw, A., Whitesides, S.: The shape of
orthogonal cycles in three dimensions. Discrete & Computational Geometry 47(3),
461–491 (2012)

5. Di Giacomo, E., Liotta, G., Patrignani, M.: Orthogonal 3D shapes of theta graphs.
In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 142–149.
Springer, Heidelberg (2002)

6. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM Journal on Computing 31(2), 601–625 (2001)

7. Hoffmann, F., Kriegel, K.: Embedding rectilinear graphs in linear time. Information
Processing Letters 29(2), 75–79 (1988)

8. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16,
4–32 (1996)

9. Klein, P.N., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs with
negative lengths: A linear-space O(n log2 n)-time algorithm. ACM Transactions on
Algorithms 6(2), 236–245 (2010)

10. Maňuch, J., Patterson, M., Poon, S.-H., Thachuk, C.: Complexity of finding non-
planar rectilinear drawings of graphs. In: Brandes, U., Cornelsen, S. (eds.) GD
2010. LNCS, vol. 6502, pp. 305–316. Springer, Heidelberg (2011)

11. Miura, K., Haga, H., Nishizeki, T.: Inner rectangular drawings of plane graphs.
International Journal of Computational Geometry and Applications 16(2-3),
249–270 (2006)

12. Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real lengths in
O(n log2 n/ log log n)-time. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II.
LNCS, vol. 6347, pp. 206–217. Springer, Heidelberg (2010)

13. Nomura, K., Tayu, S., Ueno, S.: On the orthogonal drawing of outerplanar graphs.
IEICE Transactions on Fundamentals of Electronics, Communications and Com-
puter Sciences E88-A(6), 1583–1588 (2005)

14. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM Journal on Computing 16(3), 421–444 (1987)

15. Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM Jour-
nal on Computing 14(2), 355–372 (1985)

16. Zhou, X., Nishizeki, T.: Orthogonal drawings of series-parallel graphs with mini-
mum bends. SIAM Journal on Discrete Mathematics 22(4), 1570–1604 (2008)

Periodic Planar Straight-Frame Drawings

with Polynomial Resolution

Luca Castelli Aleardi, Éric Fusy, and Anatolii Kostrygin

LIX - École Polytechnique
{amturing,fusy}@lix.polytechnique.fr, anatoly.kostrygin@polytechnique.org

Abstract. We present a new algorithm to compute periodic (planar)
straight-line drawings of toroidal graphs. Our algorithm is the first to
achieve two important aesthetic criteria: the drawing fits in a straight
rectangular frame, and the grid area is polynomial, precisely the grid
size is O(n4 ×n4). This solves one of the main open problems in a recent
paper by Duncan et al. [3].

1 Introduction

The main goal of graph drawing algorithms is to compute a drawing which is easily
readable. One basic problem consists in mapping the vertices and edges of a graph
onto a region in the plane or a portion of a 3D surface. Most of the time edges are
represented as smooth curves (very often as straight-line segments), and the draw-
ing is required to be crossing-free. Sometimes the drawing is asked to satisfy some
further aesthetic criteria, in order to obtain a pleasing and readable result. For ex-
ample, one could seek for good vertex resolution for ensuring that vertices are not
too close to one another. In the planar case, an elegant solution to this problem is
provided by the barycentric embedding by Tutte [12]. Tutte showed how to com-
pute vertex positions by solving a system of linear equations: the method applies to
a 3-connected planar graph and the resulting drawing is guaranteed to be crossing-
free, also allowing to fix the positions of outer vertices (which are mapped to the
vertices of a given convex polygon). The solution can be also reformulated in terms
of a system of springs converging to an equilibrium position, and has inspired a huge
number of force-directed embedding algorithms. A drawback of Tutte’s method is
that one cannot achieve a good vertex resolution, since matrix computations lead
to vertex coordinates of exponential size. A solution to this problem are the so-
called straight-line grid drawings [4,8,11]: the graph is embedded on a regular grid
whose area is typically polynomial with respect to the size of the graph. A further
advantage of this approach is that the algorithm performs essentially arithmetic
computations on integers of bounded magnitude (no roundings are needed). For
the planar case, many classes of algorithms have been proposed to solve this task,
achieving very good vertex resolution (quadratic area) and time complexity (run-
ning in linear time).

Statement of the main result. A quasi-triangulation is a graph (topologically)
embedded in the plane such that all inner faces are triangles and the outer

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 168–179, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Periodic Planar Straight-Frame Drawings with Polynomial Resolution 169

S1

S2

S3

S4

S1

S2

S3

S4

Fig. 1. Left: a 4-scheme triangulation G (corners are white). Right: a straight-frame
drawing of G.

face contour is a simple cycle. The vertices and edges are called outer or inner
whether they are incident to the outer face or not. Define a k-scheme trian-
gulation as a quasi-triangulation with k marked outer vertices, called corners,
such that each path of the outer face contour between two consecutive corners
is chordless. Call S1, . . . , Sk these k outer paths (in clockwise order around the
outer face), and denote by |Si| the length of Si.

In this article we focus on the case k = 4. Given a 4-scheme triangulation G, a
straight-frame drawing of G is a planar straight-line drawing of G such that the
outer face contour is an axis-aligned rectangle whose corners are the corners of
G, with S1 and S3 as horizontal sides and S2 and S4 as vertical sides, see Fig. 1.
In a recent article, Duncan et al. [3] prove the following:

Theorem 1 (Duncan et al. [3]). Each 4-scheme triangulation with n vertices
admits a straight-frame drawing on a (regular) grid of size O(n2 × n).

A motivation for such drawings is to draw toroidal graphs [9,10]. Indeed, it is
shown in [3] (more general results in higher genus are shown in [1]) that any
triangulation G̃ on the torus can be cut along a subgraph (cut-graph) such that
the resulting unfolded graph G is naturally a 4-scheme triangulation, with the
additional property that |S1| = |S3| and |S2| = |S4|. A 4-scheme triangulation
G satisfying |S1| = |S3| and |S2| = |S4| is called balanced, and a straight-frame
drawing of G is called periodic if the abscissas of vertices of the same rank along
S1 and S3 (ordered from left to right) coincide, and the ordinates of vertices
of the same rank along S2 and S4 (ordered from bottom to top) coincide. As
shown in Fig. 2, when G arises from a toroidal triangulation G̃, this is exactly
the condition to satisfy so that the drawing lifts to a periodic representation of
G in the plane (i.e., to a drawing of G on the flat torus). The authors of [3,1] cite
it as an important open problem to compute periodic straight-frame drawings
with polynomial grid size1. Our main result is the following.

1 Tutte’s spring embedding algorithm gives a solution, but with exponential grid size;
the two recent articles [2,5] yield periodic drawings for toroidal triangulations of
respective grid areas O(n5/2) and O(n4), but these drawings do not fit inside a
straight frame, so that when looking at an elementary cell, there is the aesthetic
disadvantage of having edges crossing the boundary of the cell, as in Fig. 2(b).

170 L. Castelli Aleardi, É. Fusy, and A. Kostrygin

(a) (b) (c) (d)

Fig. 2. (a) A toroidal triangulation G; (b) a periodic straight-line drawing of G which is
not straight-frame; (c) a non-periodic straight-frame drawing of G (where G is planarly
unfolded using a cut-graph); (d) a periodic straight-frame drawing of G.

Theorem 2. Each balanced 4-scheme-triangulation admits a periodic straight-
frame drawing on a (regular) grid of size O(n4 × n4). The drawing can be com-
puted in linear time.

Our algorithm makes use of a new decomposition strategy for 4-scheme trian-
gulations, we cut the triangulation into two components A,B along a certain
path “close to” S3, the “lower part” B is drawn using the algorithm of Duncan
et al. [3] specially adapted for our purpose (to make the ordinates of matching
vertices in the lower parts of S2 and S4 coincide), and then we draw the “upper
part” A with a suitably fixed outer frame (this is the most technical part, which
requires a further decomposition of A into several pieces). At first we will show
that we can have grid-size O(n5×n5), then we will argue in Section 5.2 that the
grid-size can be improved to O(n4 × n4).

2 The Duncan et al. Algorithm, Adapted

2.1 Description of the Algorithm in [3]

From now on, a 4-scheme triangulation is shortly called a 4ST. Define a half-
4-scheme triangulation, shortly written H4ST, as a graph H embedded in the
plane satisfying all conditions of a 4ST, except that the paths S2 and S4 are
allowed to be empty, and the path S3 is allowed to have chords and to meet S1;
S1 is called the bottom-path of H . Given a 4ST G, an important ingredient in [3]
is the river lemma, which guarantees the existence of a so-called river, that is, a
path P in the dual graph of G, such that the first edge of P crosses S1, the last
edge of P crosses S3, and the two components H,H ′ of G separated by P are
H4ST (with S2 as bottom path of the left component and S4 as bottom-path of
the right component), see Fig. 3(a).

A straight-line drawing of a H4ST H is called admissible if S1 is horizontal,
S2 and S4 are vertical, and all edges in S3 have slope in {−1, 0,+1}. By an
extension of the shift algorithm introduced by de Fraysseix, Pach and Pollack [4]
(which treats the case where S2 and S4 are empty), Duncan et al. show that
it is possible to obtain an admissible straight-line drawing of H on a grid of

Periodic Planar Straight-Frame Drawings with Polynomial Resolution 171

(a) (b) (c)

Fig. 3. (a) a 4ST G; the river between S1 and S3 decomposes G into two H4ST H,H ′

(shaded). (b) The straight-frame drawing of G as given in [3], which results from the
two drawings of H,H ′ put together; (c) our modified version (with an oblique edge
on S3), where the ordinates of the vertices on S2 coincide with the ordinates of the
corresponding vertices on S4.

size O(n × n2), more precisely a grid of size O(n × (d + 1)n), where n is the
number of vertices of H and d is the graph-distance between S1 and S3. To
obtain a straight-frame drawing of a 4ST G, decompose G along a river between
S1 and S3 into two H4ST components H and H ′, draw H and H ′ using the
shift algorithm (with S2 as the bottom-path of H and S4 as the bottom-path
of H ′), and then shift the left boundary of the component whose drawing has
the smaller width so that the widths of the drawings of H and H ′ coincide.
Then rotate the drawing of H by π/2 clockwise, rotate the drawing of H ′ by
π/2 counterclockwise, and put the two drawing in front of each other, leaving
enough horizontal space between them so that the edges connecting H to H ′

have slope smaller than 1 in absolute value. Since the edges on the boundaries of
(the rotated copies of) H and H ′ are either vertical or of slope in {−1,+1}, the
edges between H and H ′ do not introduce crossings, so the resulting drawing
of G is planar, see Fig. 3(b). Overall the grid-size is O(n2 × n), more precisely
O(n(d + 1)× n), with d the graph-distance between S2 and S4.

2.2 Our Modified Version of the Algorithm

A first simple adaptation we do is to do all (abscissa) shift operations by 2
instead of doing them by 1. Given a H4ST G, let p be the number of edges of
S1. For a vector I of p even integers, I is called the initial interspace vector,
consider the shift algorithm for G starting with S1 drawn as a horizontal line
with interspaces given by I. Let F (I) = (f1, . . . , fp) be the vector representing
the interspaces between consecutive vertices on S1 at the end of the algorithm;
F (I) is called the final interspace vector. For our purpose, the advantage of doing
the shift operations by 2 is to guarantee that the components of F (I) are even.

Property 1. Let F0 = F (I0) be the final interspace vector when using I0 =
(2, 2, . . . , 2) as initial interspace vector on S1. Then for any vector F of p even
integers such that F ≥ F0 (component-wise), it is possible to re-execute the
shift-algorithm so as to have F as final interspace vector.

172 L. Castelli Aleardi, É. Fusy, and A. Kostrygin

Proof. In a similar way as in [2], one can adopt a reformulation of the shift
algorithm in terms of vertical strips insertions (of width 2 here) and edge stretch.
With this reformulation it is easy to see that F (I) − I is an invariant (is the
same for any vector I of p even integers). �

We can now give another strategy (suited in view of showing Theorem 2) for
drawing a 4ST G. The drawing we obtain is not straight-frame, but is straight-
frame except for an oblique edge along S3, and is such that, withm = min(|S2|, |S4|),
the m first components of the interspace vectors along S2 and S4 (ordered from
bottom to top) coincide. At first, similarly as in [3] we cut G along a river (be-
tween S1 and S3) into two components H and H ′. Then we draw independently
H and H ′ using the shift algorithm (with width 2 strip insertions). Let F0 (F ′

0)
be the final interspace vector of H (resp. of H ′), starting with initial interspace
vector (2, . . . , 2). For 1 ≤ i ≤ m let ui be the maximum of the ith components
of F0 and F ′

0. By Property 1, one can redraw H and H ′ so that the m first
components of the final interspace vectors of H and of H ′ are (u1, . . . , um). In
addition one can check that the widths of both drawings are at most 8n, and the
two widths differ by at most 4n. Similarly as in [3] we rotate H (resp. H ′) by π/2
clockwise (resp. counterclockwise) and place the drawings in front of each other,
leaving horizontal space 8n between them, enough to draw the edges between H
and H ′ crossing-free. We obtain (see Fig. 3(c)):

Lemma 1. For any 4ST G with n vertices, and m = min(|S2|, |S4|), there is
a straight-line drawing of G, where S2 and S4 are vertical with their interspace
vectors equal at the m first components, S1 is horizontal, and S3 is horizontal
except for an oblique edge of slope in [−1/2, 1/2]. The grid size is O(n2 × n),
more precisely O(n(d+1)×n) with d the graph-distance between S2 and S4, and
the drawing can be computed in linear time.

3 A New Binary Decomposition for 4ST

We now introduce a new way to decompose a 4ST G into two components A,B,
in such a way that proving Theorem 2 will reduce to drawing B using Lemma 1,
and then drawing A using a certain fixed outer frame. A path P is said to be just
below S3 if P connects a vertex of S2 to a vertex of S4, all non-extremal vertices
of P avoid S2 ∪S3 ∪S4, and each vertex on P (including the extremities) has at
least one neighbour on S3.

Lemma 2. Each 4ST G has a chordless path just below S3.

Proof. A path P is said to be below S3 if it satisfies the same conditions as “just
below”, but dropping the condition that each vertex of P must have a neighbour
on S3. Let E be the non-empty (since it contains S1) set of paths below S3. For
P, P ′ ∈ E, write P ≤ P ′ if no edge of P is above P ′. It is easy to see that E
admits a unique maximal element P0, and the fact that G is triangulated ensures
that all vertices of P0 have at least one neighbour on S3. Then one can extract
a chordless subpath with same extremities out of P0. �

Periodic Planar Straight-Frame Drawings with Polynomial Resolution 173

G

A

B

A

L RM

Fig. 4. Left: a 4ST G, where we distinguish a chordless path P just below S3 (shown
bolder); middle: cutting along P yields two components A,B; right: the band-graph A
is further decomposed into 3 pieces L,M,R

G κ (G, κ)

Fig. 5. Left: a quasi-triangulation G; middle: a fixed frame κ for G on a grid of size
4 × 2; right: a drawing of G fitting in κ, using refinement factor 3 for the grid (hence
the factor 3 is suitable for (G,κ))

Let P be a chordless path just below S3. Cutting G along P yields two 4ST
denoted A and B, with B below P and A above P . We draw B using Lemma 1.
Then we have to draw A —which is called the band-graph— in such a way that
the drawing obtained by pasting the drawing of B with the drawing of A yields
a periodic drawing of G. To state the drawing result for A, we introduce the
notion of fixed frame. Given a quasi-triangulation G, with C its outer cycle, a
fixed frame κ for G is a crossing-free drawing of C on a regular grid w × h (w
and h are the width and height of the fixed frame). For γ ≥ 1 the grid is refined
by factor γ by replacing each unit cell by a γ × γ regular grid. We say that the
factor γ is suitable for the pair (G, κ) if, after refining the grid of κ by factor γ, G
admits a straight-line drawing with κ as the outer face contour of the drawing,
see Fig. 5 for an example. We will prove the following result in Section 4:

Lemma 3. For each K ≥ 1 and any fixed frame κ for A (A is the band-graph
of G, which has n vertices) of the form shown in the left drawing of Figure 6,
there is γ0 in O(n ·max(n,K)) such that any even factor γ ≥ γ0 is suitable for
(A, κ).

174 L. Castelli Aleardi, É. Fusy, and A. Kostrygin

K

K+1

slope in [−1/2, 1/2]

K

K+1

slope in [−1/2, 1/2]

Fig. 6. Left: frame for the band-graph A, middle: frame for the middle piece M of A,
right: frame for the left piece L of A

We claim that Lemma 1 together with Lemma 3 imply Theorem 2 (at the
moment with grid-size O(n5 × n5)). Indeed, once B is drawn using Lemma 1,
one easily designs a fixed frame of the form of Fig. 6 and such that pasting a
drawing of A in this frame with the drawing of B yields a periodic drawing of G
(note that the lower part of κ is determined by the property of fitting with the
boundary-path S3(B), and the upper part of κ is determined by the property of
fitting with the boundary-path S1(B) in order to get the periodicity property).
Note that the parameter K equals the width of the drawing of B, which is
O(n2). Since the refinement factor for A is in O(n ·max(n,K)), the grid-size of
the resulting drawing of G is O(K2n×K2n), which is O(n5 × n5).

Remark 1. For convenience and to keep it short, we have written the proof in
worst-case style, but there is room for improvements in favorable instances, in
particular to reduce the height (which is K+ 1 in the worst case, as in Figure 6)
of the frames for the band-graph.

4 Proof of Lemma 3

At first we state a useful lemma that easily follows from Property 1:

Lemma 4. Let G be a H4ST with n vertices, with p the length of the bottom-
boundary. Let V be a vector of p positive integers. Then, for any even γ ≥ 4n,
there is an admissible drawing of G whose (bottom-)interspace vector is γ · V .

Proof. With initial interspace vector (2, 2, . . . , 2), the final interspace vector is
an even vector F0 whose components are bounded by 4n. Hence γ ·V dominates
F0 for any γ ≥ 4n, so the result follows from Property 1. �

Let A be the band-graph of a 4ST G with n vertices, i.e., A is obtained as the
upper component after cutting along a chordless path P just below S3(G). Let
a be the extremity of P on S2 and b the extremity of P on S4. Let ua be the

Periodic Planar Straight-Frame Drawings with Polynomial Resolution 175

leftmost neighbour of a along S3 and let ub be the rightmost neighbour of b
along S3. Then cutting A along the edges {a, ua} and {b, ub} yields three pieces:
a left-piece L, a middle piece M , and a right-piece R (see the right drawing of
Fig. 4). Note that L (and similarly R) is either empty (if ua is the top-left corner
of G) or otherwise is naturally a 3-scheme triangulation (shortly called a 3ST),
whose three corners are a, ua and the topleft corner of G. And M is naturally a
4ST such that |S2(M)| = |S4(M)| = 1. If κ is a fixed frame for A as in Lemma 3
(left drawing of Fig. 6), let κM be the fixed frame for M inherited from κ (i.e.,
drawing the chords {a, ua}, {b, ub}, and deleting what is top-left of {a, ua} and
top-right of {b, ub}), of the form shown in the middle drawing of Fig. 6. We have:

Lemma 5. Any even factor γ ≥ 4n is suitable for (M,κM).

Proof. If we decompose M into two components using a river (between S2 and
S4), the fact that |S2| = |S4| = 1 ensures that the two resulting H4ST H and H ′

have no left nor right vertical boundary: such H4ST are called flat. We draw the
upper component H ′ so as to respect the interspaces of the upper boundary of
κ; according to Lemma 4 this is possible for any even refinement factor γ ≥ 4n.
Next we draw H , which is a bit more difficult due to the presence of the oblique
edge at the bottom-boundary. We use the property that, since every vertex on
H is adjacent to a vertex on S3(G), then H is even more constrained: there is a
flat H4ST “attached to” each edge of the bottom-path of H . Denote by Ge the
flat H4ST at the oblique edge e. By an easy modification of the shift drawing
algorithm in [4], for any even refinement factor γ ≥ 4n, one can draw Ge so
that e fits with the oblique edge of κ, and as usual with the slopes of the upper
boundary of Ge in {−1, 0,+1}. Finally we have to draw the flat H4ST HΔ to the
left of e (and similarly the flat H4ST Hr to the right of e) so as to respect the
positions of corresponding vertices of κ. By Lemma 4, this is possible for any
even refinement factor γ ≥ 4n. Finally note that all the H4ST considered are flat
(they have no lateral path); and because of the shape of the frame (see Fig. 6),
all edges connecting H to H ′ have slope greater than 1 in absolute value. Hence
these edges can be added crossing-free. �

It remains to draw the left piece L (and similarly the right piece R) with a fixed
frame as shown in the right drawing of Fig. 6.

Lemma 6. Let κ be a fixed frame of the form in the right drawing of Fig. 6,
and let T be a 3ST (with the 3 side lengths compatible with κ). Then, for some
γ0 in O(n ·max(n,K)), any even factor γ ≥ γ0 is suitable for (T, κ).

Proof. The generic situation is shown in the left drawing of Fig. 7 (where for
convenience, the right drawing of Fig. 6 has undergone an horizontal mirror).
A crucial role is played by the most downleft chord e; there is a flat H4ST Hr

on the right of e aligned along the horizontal side, and similarly there is a flat
H4ST Ha above e aligned along the vertical side. By Lemma 4 we can draw
these two H4ST so as to respect the interspaces of the outer frame, at the price
of a refinement factor O(n). To draw the chords in a crossing-free way, we have

176 L. Castelli Aleardi, É. Fusy, and A. Kostrygin

K+1

≤ K

C

C

AC

C ′

Fig. 7. Left: generic situation for a 3ST with one side (hypotenuse) reduced to an edge.
Right: decomposition of C.

to do a further operation: refine by factor K + 2 and divide the ordinates of Hr

by K + 2 and the abscissas of Ha by K + 2. The effect is to make the slopes of
the upper contour of Hr strictly smaller than 1/(K + 1) in absolute value (and
similarly for Ha). We can now draw the chords in a crossing-free way (indeed,
since the chords connect two points in a (K + 1)× (K + 1) grid they have slope
not smaller than 1/(K + 1)). We now have to draw the piece C downleft of e,
and assume without loss of generality that e has slope smaller than −1. Note
that (except for the trivial case where C has just one inner face) we get a 4ST C̃
when deleting the topright (hypotenuse) edge. Let P be a chordless path “just to
the right” of the left vertical boundary path of C̃. Denote by AC (band-graph)
the part of C̃ to the left of P and by C′ the part of C̃ to the right of P . Using
Lemma 4 we draw C′ (with P as left vertical boundary) so that its bottom path
fits with the interspaces prescribed by κ. Next we draw the band-graph AC (note
that the drawing of C′, together with the prescription of κ, completely fix the
outer frame of AC). An important point is that, in the 3-piece decomposition of
AC (as shown in the right drawing of Fig. 6), the left-piece L and the right-piece
R are trivial, due to the absence of chords in C. This means that we do not
have to recurse, and can easily conclude by Lemma 5 (in fact a simpler version
of Lemma 5, without bothering about an oblique edge). �

5 Finishing the Proof of Theorem 2

5.1 Remaining Cases

In order to carry out the decomposition strategy based on the path just below
S3 we have assumed that there is no chord between S1 and S3. Let G be a 4ST.
If there is a chord between S1 and S3 but there is no chord between S2 and S4,
then we can just rotate G by π/2 (so as to exchange S1, S3 with S2, S4). If there
is also a chord between S2 and S4, then it is easy to see that there must be a

Periodic Planar Straight-Frame Drawings with Polynomial Resolution 177

chord incident to a corner of G. So we just have to find a drawing strategy for
any 4ST G that has a chord incident to a corner, say without loss of generality
that there is a chord e that connects the bottom-left corner to a vertex on S3.
If we cut along e we obtain two components L, R, where L is a 3ST and R is
a 4ST (possibly a 3ST if e goes to the top-right corner). Then draw R using
Lemma 1 (with e as oblique edge); since |S2(R)| = 1, the drawing of R has grid-
size O(n×n). If we want a periodic straight-frame drawing of G, the drawing of
R completely fixes the outer frame for L (hence the outer frame of L is of size
O(n× n)). And using Lemma 6, we can refine the grid by factor O(n2) to fit in
the fixed frame. We conclude that, when there is a chord incident to a corner of
G, then G has a periodic straight-frame drawing on a grid of size O(n3 × n3).

5.2 Getting Grid-Size O(n4 × n4)

We now argue that, in the case where there is no chord incident to a corner of G,
then G actually admits a periodic straight-frame drawing of grid-size O(n4×n4).
For G a 4ST with n vertices, let dh be the graph-distance between S1 and S3,
and let dv be the graph-distance between S2 and S4. Then it easily follows from
the Menger vertex-disjoint theorem and the fact that G is innerly triangulated
that dh × dv ≤ n, hence min(dh, dv) ≤ n1/2 (it follows from this observation
that, up to possibly rotating G by π/2 to ensure that dh ≤ dv, the Duncan et
al. algorithm gives a grid-size O(n× n3/2)). We have seen in Section 5.1 that, if
there is no chord incident to a corner, then either there is no chord between S1

and S3 or no chord between S2 and S4. Let us assume witout loss of generality
that there is no chord between S1 and S3.

If there is also no chord between S2 and S4, consider a chordless path P just
below S3, and a chordless path P ′ “just to the left” of S4. Let G′ be the 4ST
obtained by deleting the band above P and the band to the right of P ′. Let
d′h be the graph-distance between S1(G′) and S3(G′) and let d′v be the graph-
distance between S2(G′) and S4(G′). By the argument just above, either d′h or
d′v is bounded by n1/2. If d′v ≤ n1/2 we do the binary decomposition using P ,
yielding two components A,B (with B a 4ST and A a band-graph). Recall that
the grid-size of the resulting drawing of G is O(nK2×nK2), where K is O(nd),
with d the graph-distance in B between S2(B) and S4(B). In addition, since G′

is obtained from B by removing a band-graph on the right side (recall that every
vertex on the left side of the band-graph is adjacent to a vertex on the right side
of the band-graph), then d ≤ d′h + 1. Hence d is O(n1/2), so that K is O(n3/2),
hence the grid-size is O(n4×n4). Finally, if there is a chord between S2 and S4,
then this chord can not be above P (otherwise the chord would be incident to
the top-left corner or to the top-right corner). Hence d = 1, so that K is O(n),
which guarantees a grid-size O(n3 × n3) for the drawing of G.

6 Application to Spherical Drawings

Computing geodesic spherical drawings In this section we consider the problem
of drawing a planar triangulation on the sphere so that faces are mapped to

178 L. Castelli Aleardi, É. Fusy, and A. Kostrygin

non-overlapping spherical triangles. This problem is closely related to the sur-
face parameterization problem, which has several applications (such as texture
mapping, morphing and remeshing) and has attracted a great attention in the
computer graphics and geometric modeling communities [6,7]. In the spherical
case, the goal is to define a bijective correspondence between the surface of a
sphere (the parameter domain) and a surface mesh. A geodesic spherical drawing
of a graph G is a drawing such that vertices are mapped to distinct points on the
unit sphere S2, and edges are drawn as non-crossing minor arcs of great circles
(geodesics on S2). Given a graph of size n, we say that a spherical drawing has
polynomial vertex resolution whether the geodesic length of the shortest edge is
bounded by Ω(1

nc) (for some constant c).
As stated by the result below, we are able to compute spherical drawings

guaranteeing linear time performace and polynomial vertex resolution (these
requirements could not be achieved by prior works). The idea is quite simple
and consists in constructing a convex mesh representationM of the input graph
G (refer to Fig. 8). First compute a special partition of the faces of G: each
sub-graph is drawn in the plane using previous results (boundary vertices have
to preserve inter-path distances). Then we glue all drawings together in order to
obtain a polyhedronM contained in the interior of unit sphere. Finally perform
a central projection (from the origin) of the vertices ofM on S2: this bijectively
maps edges to geodesic arcs on S2.

Theorem 3. Given a planar triangulation G with n vertices, we can compute
in linear time a geodesic spherical drawing of G, having resolution Ω(1

n).

A simple way to achieve this result is to pick a vertex vN of bounded degree d
(Euler’s relations ensures the existence of a vertex of degree at most 5). Assuming
vN has degree at least 4, we can construct a pyramid with rectangular base
having vN as apex, and whose base corners are four vertices among the neighbors
of vN (refer to Fig. 8). This leads to a partition of the faces of G into five pieces:
four triangulations and one 4-scheme triangulation (the base). Each piece, the
lateral and bottom faces of the pyramid, admits a planar grid drawing of size
O(n)×O(n): just apply the Duncan et. al algorithm to the base, recalling that
there are a constant number of boundary vertices (as vN has bounded degree). If
vN has degree 3 then construct a triangular pyramid in a similar way: this time
it remains only to draw the four faces of the pyramid using the shift algorithm.

vN vNS2vN vNG M

Fig. 8. These pictures illustrate the computation of a geodesic spherical drawing

Periodic Planar Straight-Frame Drawings with Polynomial Resolution 179

We can also use a similar strategy with other polyhedral shapes, in order to
obtain a better distribution of the vertices on the sphere. For example, picking
two vertices of bounded degree (and at distance at least 3) it is possible to obtain
a prism representation of G: lateral faces are then drawn using Property 1.

Acknowledgments. We would like to thank the anonymous referees for their
helpful comments. This work is supported by the ANR grant EGOS 12 JS02 002
01.

References

1. Chambers, E., Eppstein, D., Goodrich, M., Loffler, M.: Drawing Graphs in the
Plane with a Prescribed Outer Face and Polynomial Area. JGAA 16(2), 243–259
(2012)

2. Castelli Aleardi, L., Devillers, O., Fusy, É.: Canonical Ordering for Triangula-
tions on the Cylinder, with Applications to Periodic Straight-Line Drawings.
In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 376–387.
Springer, Heidelberg (2013)

3. Duncan, C., Goodrich, M., Kobourov, S.: Planar drawings of higher-genus graphs.
Journal of Graph Algorithms and Applications 15, 13–32 (2011)

4. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

5. Gonçalves, D., Lévêque, B.: Toroidal maps: Schnyder woods, orthogonal surfaces
and straight-line representation. arXiv:1202.0911 (2012)

6. Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for
3D meshes. ACM Trans. on Graphics 22(3), 358–363 (2003)

7. Grimm, C.: Parameterization using Manifolds. Int. J. of Shape Modeling 10(1),
51–82 (2004)

8. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996)

9. Kocay, W., Neilson, D., Szypowski, R.: Drawing graphs on the torus. Ars Combi-
natoria 59, 259–277 (2001)

10. Mohar, B.: Straight-line representations of maps on the torus and other flat sur-
faces. Discrete Mathematics 15, 173–181 (1996)

11. Schnyder, W.: Embedding planar graphs on the grid. In: SODA, pp. 138–148 (1990)
12. Tutte, W.: How to draw a graph. Proc. of London Math. Soc. 13, 734–767 (1963)

A Characterization of Those Automata

That Structurally Generate Finite Groups

Ines KlimannΔ and Matthieu PicantinΔ

Univ Paris Diderot, Sorbonne Paris Cité, LIAFA,
UMR 7089 CNRS, F-75013 Paris, France

{klimann,picantin}@liafa.univ-paris-diderot.fr

Abstract. Antonenko and Russyev independently have shown that any
Mealy automaton with no cycle with exit—that is, where every cycle
in the underlying directed graph is a sink component—generates a fi-
nite (semi)group, regardless of the choice of the production functions.
Antonenko has proved that this constitutes a characterization in the
non-invertible case and asked for the invertible case, which is proved in
this paper.

Keywords: automaton groups, Mealy automata, finiteness problem.

1 Introduction

The class of automata (semi)groups contains multiple interesting and compli-
cated (semi)groups with sometimes unusual features [5]. For instance, the arti-
cle [12] constructs simple Mealy automata generating infinite torsion groups and
so contributes to the Burnside problem, and, the article [4] produces Mealy au-
tomata generating the first examples of (semi)groups with intermediate growth
and so answers the Milnor problem. Over the years, important results have
started revealing their full potential.

In the last decades, the classical decision problems have been investigated for
such (semi)groups. The word problem is solvable using standard minimization
techniques, while the conjugacy problem is undecidable for automata groups [25].
Of special interest for our concern here, the finiteness problem was proved to
be undecidable for automata semigroups [11] and remains open for automata
groups despite several positive and promising results [1, 2, 6, 7, 15–18, 22, 23].

The family of automata with no cycle with exit was investigated by Antonenko
and by Russyev independently. Focused on the invertible case, Russyev stated
in [20] that any invertible Mealy automata with no cycle with exit generates a
finite group. Meanwhile, Antonenko showed in [2] (see also [3]) the same result
in the non-invertible case and proved the following maximality result: for any
automaton with at least one cycle with exit, it is possible to choose (highly

α Both authors are partially supported by the french Agence Nationale pour
la Recherche, through the Project MealyM ANR-JCJC-12-JS02-012-01.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 180–189, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Automata That Structurally Generate Finite Groups 181

non-invertible) production functions such that the semigroup generated by the
induced Mealy automaton is infinite.

In this paper, we fill the visible gap by extending the aforesaid maximality
result to the invertible case: for any automaton with at least one cycle with
exit, it is possible to choose invertible production functions such that the group
generated by the induced Mealy automaton is infinite.

The proof of this new result makes use of original arguments for the current
framework, whose common idea is to put a special emphasis on the dual automa-
ton, obtained by exchanging the roles of the stateset and the alphabet. Thereby
it continues to validate the general strategy first suggested in the paper [1], then
followed and continuously developed in [15, 16].

The new maximality result provides a precious milestone in the ongoing work
by De Felice and Nicaud (see [9] for a first paper) who propose to design ran-
dom generators for finite groups based on those invertible Mealy automata with
no cycle with exit. Their aim is to simulate interesting distributions that might
offer a wide diversity of different finite groups by trying to avoid the classical
concentration phenomenon around a typical object, namely symmetric or alter-
nating groups [10, 14], which is significant in already studied distributions. Once
implemented, such generators would be very useful to test the performance and
robustness of algorithms from computational group theory. They would also be
of great use when trying to check a conjecture, by testing it on various random
inputs, since exhaustive tests are impossible due to a combinatorial explosion.

The structure of the paper is the following. Basic notions on Mealy automata
and automaton (semi)groups are presented in Sect. 2. In Sect. 3, we introduce
new tools and prove the main result.

2 Mealy Automata

This section contains material for the proofs: first classical definitions and then
considerations already made in [15] to maintain the paper self-contained.

2.1 Automaton Groups and Semigroups

If one forgets initial and final states, a (finite, deterministic, and complete) au-
tomaton A is a triple

(
A,Σ, δ = (δi : A⊕ A)i∗Σ

)
,

where the stateset A and the alphabet Σ are non-empty finite sets, and where
the δi are functions called transition functions.

The transitions of such an automaton are

x
i−−−−⊕δi(x) .

An automaton is reversible if all its transition functions are permutations of
the stateset. Note that in this case each state has exactly one incoming transition
labelled by each letter.

182 I. Klimann and M. Picantin

A Mealy automaton is a quadruple

(
A,Σ, δ = (δi : A⊕ A)i∗Σ , ρ = (ρx : Σ ⊕ Σ)x∗A

)
,

such that both (A,Σ, δ) and (Σ,A, ρ) are automata. In other terms, a Mealy
automaton is a letter-to-letter transducer with the same input and output al-
phabet. If A = (A,Σ, δ) is an automaton, a finite sequence of functions ρ = (ρx :
Σ ⊕ Σ)x∗A is called a coloring for A: we denote by (A, ρ) the Mealy automa-
ton (A,Σ, δ, ρ) and we say that A is colored by ρ (according to the nomenclature
in [8]). The graphical representation of a Mealy automaton is standard, see Fig. 1.

y x
0|0
1|1

0|1
1|0

Fig. 1. An example of a Mealy automaton: the so-called adding machine

The transitions of a Mealy automaton are

x
i|Λx(i)−−−−−⊕δi(x) .

A Mealy automatonM = (A,Σ, δ, ρ) is reversible if the automaton (A,Σ, δ)
is reversible and invertible if the functions ρx are permutations of the alphabet.
In this latter case, its inverse is the Mealy automatonM−1 with stateset A−1 =
{x−1, x ≤ A} and set of transitions

x−1
j|i−−−⊕y−1 ≤ M−1 ⇐⊗ x

i|j−−−⊕y ≤ M .

A Mealy automaton M is bireversible if both M and M−1 are invertible and
reversible.

In a Mealy automatonM = (A,Σ, δ, ρ), the sets A and Σ play dual roles. So
we may consider the dual (Mealy) automaton defined by

d(M) = (Σ,A, ρ, δ) ,

see an example on Fig. 2. Obviously, a Mealy automaton is reversible if and only
if its dual is invertible.

0 1y|y
x|x

x|y
y|y

Fig. 2. The dual automaton of the Mealy automaton of Fig. 1

Automata That Structurally Generate Finite Groups 183

Let M = (A,Σ, δ, ρ) be a Mealy automaton. We view M as an automaton
with an input and an output tape, thus defining mappings from input words
over Σ to output words over Σ. Formally, for x ≤ A, the map ρx : Σ⊆ ⊕ Σ⊆,
extending ρx : Σ ⊕ Σ, is defined by:

∈i ≤ Σ, ∈s ≤ Σ⊆, ρx(is) = ρx(i)ρδi(x)(s) .

By convention, the image of the empty word is itself. The mapping ρx is
length-preserving and prefix-preserving. We say that ρx is the production func-
tion associated with x in M or, more briefly, if there is no ambiguity, the pro-
duction function of x. For u = x1 · · ·xn ≤ An with n > 0, we set ρu : Σ⊆ ⊕
Σ⊆, ρu = ρxn ∗ · · · ∗ ρx1 .

Denote dually by δi : A⊆ ⊕ A⊆, i ≤ Σ, the production functions associated
with the dual automaton d(M). For s = i1 · · · in ≤ Σn with n > 0, we set
δs : A⊆ ⊕ A⊆, δs = δin ∗ · · · ∗ δi1 .

The semigroup of mappings from Σ⊆ to Σ⊆ generated by ρx, x ≤ A, is called
the semigroup generated byM and is denoted by ≥M⊆+. WhenM is invertible,
its production functions are permutations on words of the same length and thus
we may consider the group of mappings from Σ⊆ to Σ⊆ generated by ρx, x ≤ A;
it is called the group generated byM and is denoted by ≥M⊆.

The automaton of Fig. 1 generates the semigroup N and the group Z. The
orbit of the word 0n under the action of ρx is of size 2n: it acts like a binary
addition until 1n (considering the most significant bit on the right). In fact the
Mealy automaton of Fig. 1 is called the adding machine [13].

Remind some known facts on finiteness of the automaton (semi)group:

(F1) To prune a Mealy automaton by deleting its states which are not reachable
from a cycle (see the precise definition of a cycle in Subsection 3.1) does
not change the finiteness or infiniteness of the generated (semi)group [2].

(F2) An invertible Mealy automaton generates a finite group if and only if it
generates a finite semigroup [1, 24].

(F3) A Mealy automaton generates a finite semigroup if and only if so does its
dual [1, 19, 21].

(F4) An invertible-reversible but not bireversible Mealy automaton generates
an infinite group [1].

Whenever the alphabet is unary, the generated group is trivial and there is
nothing to say. Throughout this paper, the alphabet has at least two
elements.

2.2 On the Powers of a Mealy Automaton and Its Connected
Components

Let M = (A,Σ, δ, ρ) be a Mealy automaton.
Considering the underlying graph ofM, it makes sense to look at its connected

components. If M is reversible, its connected components are always strongly
connected (its transition functions are permutations of a finite set).

184 I. Klimann and M. Picantin

A convenient and natural operation is to raiseM to the power n, for some n >
0: its n-th power is the Mealy automaton

Mn =
(
An, Σ, (δi : An ⊕ An)i∗Σ , (ρu : Σ ⊕ Σ)u∗An

)
.

If M is reversible, so is each of its powers.

If M is reversible, we can be more precise on the behavior of the connected
components of its powers. As highlighted in [15], they have a very peculiar form:
if C is a connected component ofMn for some n and u is a state of C, we obtain
a connected component of Mn+1 by choosing a state x ≤ A and building the
connected component of ux, denoted by D. For any state v of C, there exists a
state of D prefixed with v:

↑s ≤ Σ⊆ | δs(u) = v and δs(ux) = vδΛu(s)(x) .

Furthermore, if uy is a state of D, for some state y ≤ A different from x, then
δs(ux) and δs(uy) are two different states of D prefixed with v, because of the
reversibility of Mn+1: the transition function δΛu(s) is a permutation.

Hence D can be seen as consisting of several full copies of C and #C di-
vides #D. They have the same size if and only if, once fixed some state u of C,
for any different states x, y ≤ A, ux and uy cannot both belong to D.

If all of those connected components of Mn+1 built from C have the same
size as C, we say that C splits up totally. If all the connected components of an
automaton split up totally, we say that the automaton splits up totally.

3 A Maximal Family for Groups

Antonenko and Russyev both investigated a family of Mealy automata such that
the finiteness of the generated group (Russyev [20]) or semigroup (Antonenko [2])
is inherent to the structure of the automaton, regardless of its production func-
tions. In fact, though they use different definitions and names, they study the
same family: automata where every cycle is a sink component. Antonenko has
proved that this family is maximal in the non-invertible case: if an automaton
admits a cycle which is not a sink component, it can be colored to generate an
infinite semigroup.

To prove his result, Antonenko analyzes different cases and, in each situa-
tion, exhibits an element of infinite order in the semigroup. In this section we
prove the maximality of the former family for groups, using completely different
techniques. We adopt and adapt Russyev’s nomenclature.

3.1 How to Exit from a Cycle?

Let A = (A,Σ, δ) be an automaton. A cycle of length n ≤ N in the automaton A
is a sequence of transitions of A

x1
i1−−⊕x2, . . . , xn−1

in−1−−−−⊕xn, xn
in−−⊕x1

Automata That Structurally Generate Finite Groups 185

where x1, . . . , xn are pairwise different states in A and i1, . . . , in are some letters
of Σ.

The label of this cycle from the state xk is the word ik · · · ini1 · · · ik−1.
This cycle is with external exit if there exist k with 1 ⊃ k ⊃ n and i ≤ Σ

satisfying δi(xk) ⊇≤ {x1, . . . , xn}. It is with internal exit if there exist k with 1 ⊃
k ⊃ n and i ≤ Σ satisfying δi(xk) ≤ {x1, . . . , xn} and δi(xk) ⊇= δik(xk). We could
say that a cycle is with exit without specifying the nature of the exit. In all other
cases, this cycle is without exit. Examples are given in Fig. 3.

1 2

34

5 6
a, b

a, b

a

b
a

b

a b
a, b

Fig. 3. The cycle 1
a−⊕ 2

a−⊕ 3
b−⊕ 1 is with external exit; the cycle 1

a−⊕ 2
a−⊕ 3

a−⊕ 4
a−⊕ 1

is with internal exit; and the cycle 6
a−⊕ 6 is without exit

Note that the existence of a cycle with internal exit induces the existence of
a (possibly shorter) cycle with external exit. For example in Fig. 3, the cycle

1
a−⊕ 2

a−⊕ 3
a−⊕ 4

a−⊕ 1 has two internal exits: 4
b−⊕ 4 and 3

b−⊕ 1; the first one leads

to the cycle 4
b−⊕ 4 with external exit, while the second one leads to the cycle

1
a−⊕ 2

a−⊕ 3
b−⊕ 1 with external exit.

Proposition 1 ([2, 20]). Whenever an automaton A admits no cycle with exit,
whatever choice is made for the coloring ρ, the colored automaton (A, ρ) gener-
ates a finite (semi)group.

3.2 A Pumping Lemma for the Reversible Two-State Automata

It is proved in [15, Lemma 9] that in the case of a reversible Mealy automatonM
with exactly two states, if some power of M splits up totally, then all the later
powers of M split up totally. We can deduce the following result which can be
seen as a pumping lemma: if the generated semigroup is infinite, sufficiently long
paths can be considered in the dual automaton to turn indefinitely in a cycle.
More formally:

Lemma 2 (Pumping Lemma). LetM be a reversible Mealy automaton with
two states {x, y}. The automatonM generates an infinite semigroup if and only
if, for any integer N ≤ N, there exists a word u ≤ {x, y}⊆ of length at least N such
that the states ux and uy belong to the same connected component of M|u|+1.

186 I. Klimann and M. Picantin

3.3 The Family of Automata with no Cycle with Exit Is Maximal
for Groups

We prove here that any automaton which admits a cycle with exit can be col-
ored in order to generate an infinite group. We analyze several simple cases in
Lemmas 3, 4, and 5 which contribute to prove the general case of Theorem 6.

Lemma 3. Any automaton over a binary alphabet with a cycle with external
exit can be colored to generate an infinite group.

Proof. Let A be an automaton over a binary alphabet {0, 1} with a cycle C with
external exit as shown in Fig. 4.

xy

C

i

j

Fig. 4. The cycle C is with external exit: y = δi(x), y ←◦ C

Take the following permutations on the alphabet : ρy permutes the letters of
the alphabet and ρz stabilizes the alphabet for any other state z (in particular
for any state of C).

Let s ≤ {0, 1}+ be the label of C from x. For any n ≤ N, the words sni0
and sni1 belong to a same connected component of d(A, ρ)|s|+2: ρx(sni0) =
sni1. The Mealy automaton d(A, ρ) is reversible and has two states, so we can
apply the Pumping Lemma and conclude on the infiniteness of ≥(A, ρ)⊆ by (F2)
and (F3). ⊂↓
Lemma 4 (River of no return Lemma). Let A be an automaton and C a
cycle of A. If C admits an external exit to some state and is not reachable from
this state, then A can be colored to generate an infinite group.

Proof. The idea of this proof is to mimic the adding machine (see Fig. 1). Again,
Fig. 4 illustrates the situation: C admits an external exit to the state y, the
additional hypothesis being that C is not reachable from y (and the alphabet is
not supposed binary any longer).

Denote the label of C from x by s = jt with j ≤ Σ and t ≤ Σ⊆. We choose
the following production functions on the alphabet: ρx is the transposition of i
and j and ρz is the identity for any other state z.

As for the adding machine, the orbit of (jt)n under the action of ρx has size 2n.
Therefore the element x is of infinite order and so is the group ≥(A, ρ)⊆. ⊂↓
Lemma 5. Any reversible automaton with a cycle with exit can be colored to
generate an infinite group.

Automata That Structurally Generate Finite Groups 187

Proof. Let A = (A,Σ, δ) be a reversible automaton with a cycle with exit.
As A is reversible, it admits some states x, y, z with x ⊇= y such that there

exist a transition from x to z and a transition from y to z. We can choose the
permutations ρx and ρy such that these transitions have the same output and
take identity for all the other permutations.

The colored automaton (A, ρ) is invertible and reversible but not bireversible.
Hence it generates an infinite group by (F4). ⊂↓

The next theorem is the main result of this paper.

Theorem 6. Any automaton with a cycle with exit can be colored into an in-
vertible Mealy automaton generating an infinite group.

Proof. Let A = (A,Σ, δ) be an automaton with a cycle with exit.
By (F1), we can suppose, without loss of generality, that A is pruned. If there

exists a transition not belonging to a cycle, as the starting state of this transition
is reachable from a cycle, Lemma 4 applies and we are done.

We can assume now that any transition belongs to (at least) one cycle.
If A is reversible, it can be colored to generate an infinite group by Lemma 5.

x x′ yi i i

i

Fig. 5. Path from x with all transitions labelled by i

We can suppose now that A is not reversible: there exist a state x and a
letter i such that x has no incoming transition labelled by i. Consider the path
starting at x with all transitions labelled by i as shown in Fig. 5. This path loops
on some state y ⊇= x. Denote by C the resulting cycle. We have y = δin+k#C(x)
for some minimal n > 0 and for all k ∅ 0. Now let x◦ denote the state δin−1(x):
we have x◦ ⊇≤ C.

The transition x◦ i−−⊕y belongs to some cycle by hypothesis and this cycle is

not C by construction. Therefore C admits an external exit y◦
j−−⊕y◦◦ (with j ⊇= i).

Hence x◦ is reachable from y and so from C, by hypothesis, but does not belong
to C, by construction. The automaton B = (A, {i, j}, (δi, δj)) contains the cycle C
and the transition y◦

j−−⊕y◦◦. So B can be colored to generate an infinite group
by Lemma 3, say with ρ = (ρz : {i, j} ⊕ {i, j})z∗A. This group is a quotient
of any group obtained by completing each ρz from {i, j} into Σ, and we can
conclude. ⊂↓

4 Conclusion

Until the finiteness problem for automaton groups has not been proved to be
decidable—and even more if it is eventually proved to be undecidable, random

188 I. Klimann and M. Picantin

generation of finite groups via Mealy automata is possible only for some au-
tomata known to generate finite groups. The family of Mealy automaton with
no cycle with exit is the largest family generating finite groups, whatever choice
is made for the production functions.

Acknowledgments. The authors would like to thank Jean Mairesse who has
detected a serious gap in a previous version of this paper.

References

1. Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the finiteness
problem for automaton (semi)groups. Int. J. Algebra Comput. 22(6), 26p. (2012)

2. Antonenko, A.S.: On transition functions of Mealy automata of finite growth.
Matematychni Studii 29(1), 3–17 (2008)

3. Antonenko, A.S., Berkovich, E.L.: Groups and semigroups defined by some classes
of Mealy automata. Acta Cybernetica 18(1), 23–46 (2007)

4. Bartholdi, L., Reznykov, I., Sushchanskĭı, V.: The smallest Mealy automaton of
intermediate growth. J. Algebra 295(2), 387–414 (2006)

5. Bartholdi, L., Silva, P.: Groups defined by automata (2010), arXiv:cs.FL/1012.1531
6. Bondarenko, I., Bondarenko, N., Sidki, S., Zapata, F.: On the conjugacy prob-

lem for finite-state automorphisms of regular rooted trees (with an appendix by
Raphaël M. Jungers). Groups Geom. Dyn. 7(2), 323–355 (2013)

7. Cain, A.: Automaton semigroups. Theor. Comput. Sci. 410(47-49), 5022–5038
(2009)

8. D’Angeli, D., Rodaro, E.: Groups and Semigroups Defined by Colorings of Syn-
chronizing Automata (2013), arXiv:math.GR/1310.5242

9. De Felice, S., Nicaud, C.: Random generation of deterministic acyclic automata
using the recursive method. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS,
vol. 7913, pp. 88–99. Springer, Heidelberg (2013)

10. Dixon, J.D.: The probability of generating the symmetric group. Math. Z. 110,
199–205 (1969)

11. Gillibert, P.: The finiteness problem for automaton semigroups is undecidable.
arXiv:cs.FL/1304.2295 (2013)

12. Grigorchuk, R.: On Burnside’s problem on periodic groups. Funktsional. Anal. i
Prilozhen. 14(1), 53–54 (1980)

13. Grigorchuk, R., Nekrashevich, V., Sushchanskĭı, V.: Automata, dynamical systems,
and groups. Tr. Mat. Inst. Steklova 231, 134–214 (2000)

14. Jaikin-Zapirain, A., Pyber, L.: Random generation of finite and profinite groups
and group enumeration. Ann. of Math. (2) 173(2), 769–814 (2011)

15. Klimann, I.: The finiteness of a group generated by a 2-letter invertible-reversible
Mealy automaton is decidable. In: Proc. 30th STACS. LIPIcs, vol. 20, pp. 502–513
(2013)

16. Klimann, I., Mairesse, J., Picantin, M.: Implementing computations in automa-
ton (semi)groups. In: Moreira, N., Reis, R. (eds.) CIAA 2012. LNCS, vol. 7381,
pp. 240–252. Springer, Heidelberg (2012)

17. Maltcev, V.: Cayley automaton semigroups. Int. J. Algebra Comput. 19(1), 79–95
(2009)

18. Mintz, A.: On the Cayley semigroup of a finite aperiodic semigroup. Int. J. Algebra
Comput. 19(6), 723–746 (2009)

Automata That Structurally Generate Finite Groups 189

19. Nekrashevych, V.: Self-similar groups. Mathematical Surveys and Monographs,
vol. 117. American Mathematical Society, Providence (2005)

20. Russyev, A.: Finite groups as groups of automata with no cycles with exit. Algebra
and Discrete Mathematics 9(1), 86–102 (2010)

21. Savchuk, D., Vorobets, Y.: Automata generating free products of groups of order 2.
J. Algebra 336(1), 53–66 (2011)

22. Sidki, S.: Automorphisms of one-rooted trees: growth, circuit structure, and acyclic-
ity. J. Math. Sci. 100(1), 1925–1943 (2000); Algebra, 12

23. Silva, P., Steinberg, B.: On a class of automata groups generalizing lamplighter
groups. Int. J. Algebra Comput. 15(5-6), 1213–1234 (2005)

24. Steinberg, B., Vorobets, M., Vorobets, Y.: Automata over a binary alphabet gen-
erating free groups of even rank. Int. J. Algebra Comput. 21(1-2), 329–354 (2011)

25. Šuniḱ, Z., Ventura, E.: The conjugacy problem in automaton groups is not solvable.
Journal of Algebra 364, 148–154 (2012)

Linear Grammars with One-Sided Contexts

and Their Automaton Representation

Mikhail Barash1,2 and Alexander Okhotin2

1 Department of Mathematics and Statistics, University of Turku,
Turku FI-20014, Finland, {mikhail.barash,alexander.okhotin}@utu.fi

2 Turku Centre for Computer Science, Turku FI-20520, Finland

Abstract. The paper considers a family of formal grammars that ex-
tends linear context-free grammars with an operator for referring to the
left context of a substring being defined, as well as with a conjunction op-
eration (as in linear conjunctive grammars). These grammars are proved
to be computationally equivalent to an extension of one-way real-time
cellular automata with an extra data channel. The main result is the
undecidability of the emptiness problem for grammars restricted to a
one-symbol alphabet, which is proved by simulating a Turing machine
by a cellular automaton with feedback. The same construction proves
the Σ0

2 -completeness of the finiteness problem for these grammars.

1 Introduction

The idea of defining context-free rules applicable only in certain contexts dates
back to the early work of Chomsky. However, the mathematical model impro-
vised by Chomsky, which he named a “context-sensitive grammar”, turned out
to be too powerful for its intended application, as it could simulate a space-
bounded Turing machine. Recently, the authors [3] made a fresh attempt on
implementing the same idea. Instead of the string-rewriting approach from the
late 1950s, which never quite worked out for this task, the authors relied upon
the modern understanding of formal grammars as a first-order logic over posi-
tions in a string, discovered by Rounds [16]. This led to a family of grammars
that allows such rules as A ⊕ BC &�D, which asserts that all strings repre-
sentable as a concatenation BC and preceded by a left context of the form D
have the property A. The semantics of such grammars are defined through logi-
cal deduction of items of the form “a substring v written in left context u has a
property A” [3], and the resulting formal model inherits some of the key prop-
erties of formal grammars, including parse trees, an extension of the Chomsky
normal form [3,4], a form of recursive descent parsing [2] and a variant of the

Cocke–Kasami–Younger parsing algorithm that works in time O
(

n3

logn

)
[14].

This paper aims to investigate the linear subclass of grammars with one-
sided contexts, where linearity is understood in the sense of Chomsky and
Schützenberger, that is, as a restriction to concatenate nonterminal symbols
only to terminal strings. An intermediate family of linear conjunctive grammars,

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 190–201, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Linear Grammars with One-Sided Contexts 191

which allows using the conjunction operation, but no context specifications, was
earlier studied by the second author [11,12]. Those grammars were found to be
computationally equivalent to one-way real-time cellular automata [6,17], also
known under a proper name of trellis automata [5,7].

This paper sets off by developing an analogous automaton representation for
linear grammars with one-sided contexts. The proposed trellis automata with
feedback, defined in Section 3, augment the original cellular automaton model by
an extra communication channel, which adds exactly the same power as context
specifications do in grammars. This representation implies the closure of this
language family under complementation, which, using grammars alone, would
require a complicated construction.

The main contribution of the paper is a method for simulating a Turing ma-
chine by a trellis automaton with feedback processing an input string over a
one-symbol alphabet. This method subsequently allows uniform undecidability
proofs for linear grammars with contexts, which parallels the recent results for
conjunctive grammars due to Jeż [8] and Jeż and Okhotin [9,10], but is based
upon an entirely different underlying construction.

The new construction developed in this paper begins in Section 4 with a
simple example of a 3-state trellis automaton with feedback, which recognizes

the language { a2k−2 | k � 2 }. To compare, ordinary trellis automata over a
one-symbol alphabet recognize only regular languages [5]. The next Section 5
presents a simulation of a Turing machine by a trellis automaton with feedback,
so that the latter automaton, given an input an, simulates O(n) first steps of the
Turing machine’s computation on an empty input, and accordingly can accept
or reject the input an depending on the current state of the Turing machine.

This construction is used in the last Section 6 to prove the undecidability
of the emptiness problem for linear grammars with one-sided contexts over a
one-symbol alphabet. The finiteness problem for these grammars is proved to be
complete for the second level of the arithmetical hierarchy.

2 Grammars with One-Sided Contexts

Grammars with contexts were introduced by the authors [3,4] as a model capable
of defining context-free rules applicable only in contexts of a certain form.

Definition 1 ([3]). A grammar with left contexts is a quadruple G =
(Θ,N,R, S), where

– Θ is the alphabet of the language being defined;
– N is a finite set of auxiliary symbols (“nonterminal symbols” in Chomsky’s

terminology), which denote the properties of strings defined in the grammar;
– R is a finite set of grammar rules, each of the form

A⊕ ι1 & . . . &ιk &�Δ1 & . . . &�Δm & �Γ1 & . . . & �Γn, (1)

with A ≤ N , k � 1, m,n � 0 and ιi, Δi, Γi ≤ (Θ ∪N)∗;
– S ≤ N represents syntactically well-formed sentences of the language.

192 M. Barash and A. Okhotin

Every rule (1) is comprised of conjuncts of three kinds. Each conjunct ιi

specifies the form of the substring being defined, a conjunct �Δi describes the
form of its left context, while a conjunct �Γi refers to the form of the left context
concatenated with the current substring. To be precise, let w ≤ Θ∗ be the whole
string being defined, and consider defining its substring v by a rule (1), where
w = uvx for u, v, x ≤ Θ∗. Then, each conjunct ιi describes the form of v, each
left context operator �Δi describes the form of u, and each extended left context
operator �Γi, describes the form of uv. The conjunction means that all these
conditions must hold at the same time.

If no context specifications are used in the grammar, that is, if m = n = 0 in
each rule (1), then this is a conjunctive grammar [11,13]. If, furthermore, only
one conjunct is allowed in each rule (k = 1), this is an ordinary context-free
grammar. A grammar is called linear, if every conjunct refers to at most one
nonterminal symbol, that is, ι1, . . . , ιk, Δ1, . . . , Δm, Γ1, . . . , Γn ≤ Θ∗NΘ∗ ∪Θ∗.

The language generated by a grammar with left contexts is defined by de-
duction of elementary statements of the form “a substring v ≤ Θ∗ in the left
context u ≤ Θ∗ has the property X ≤ Θ∪N”, denoted by X(u⊗v∈). A full defini-
tion applicable to every grammar with left contexts is presented in the authors’
previous paper [3]; this paper gives a definition specialized for linear grammars.

Definition 2. Let G = (Θ,N,R, S) be a linear grammar with left contexts, and
consider deduction of items of the form X(u⊗v∈), with u, v ≤ Θ∗ and X ≤ N .
Each rule A ⊕ w defines an axiom scheme ∗G A(x⊗w∈), for all x ≤ Θ∗. Each
rule of the form A⊕ x1B1y1 & . . . & xkBkyk & �x⊆1D1y

⊆
1 & . . . &�x⊆mDmy

⊆
m &

�x⊆⊆1E1y
⊆⊆
1 & . . . & �x⊆⊆nEny

⊆⊆
n defines the following scheme for deduction rules for

all u, v ≤ Θ∗:
{
Bi(uxi⊗vi∈)

}
1�i�k

,
{
Di(x

⊆
i⊗ui∈)

}
1�i�m

,
{
Ei(x

⊆⊆
i ⊗wi∈)

}
1�i�n

∗G A(u⊗v∈),
where xiviyi = v, x⊆iuiy

⊆
i = u and x⊆⊆i wiy

⊆⊆
i = uv. Then the language defined

by a nonterminal symbol A is LG(A) = { u⊗v∈ | u, v ≤ Θ∗, ∗G A(u⊗v∈) }. The
language defined by the grammar G is the set of all strings with an empty left
context defined by S, that is, L(G) = {w | w ≤ Θ∗, ∗G S(Ψ⊗w∈) }.
This definition is illustrated in the grammar below.

Example 1. The following grammar defines the singleton language {abac}:
S ⊕ aBc

B ⊕ bA&�A

A⊕ a

The string abac is generated as follows:

∗ A(Ψ⊗a∈) (A⊕ a)

∗ A(ab⊗a∈) (A⊕ a)

A(ab⊗a∈), A(Ψ⊗a∈) ∗ B(a⊗ba∈) (B ⊕ bA&�A)

B(a⊗ba∈) ∗ S(Ψ⊗abac∈) (S ⊕ aBc)

Linear Grammars with One-Sided Contexts 193

The next example defines a language that is known to have no linear conjunc-
tive grammar [19].

Example 2 (Törmä [18]). The following linear grammar with contexts defines
the language { anbin | i, n � 1 }:

S ⊕ aSb | B& �S | Ψ
B ⊕ bB | Ψ

The rule S ⊕ B& �S appends as many symbols b as there are as in the begin-
ning of the string.

Every grammar with contexts can be transformed to a certain normal
form [3,4,14], which extends the Chomsky normal form for ordinary context-
free grammars. This extension allows multiple conjuncts of the form BC and
context specifications �D, that is, every rule in a normal form grammar is ei-
ther of the form A ⊕ a&�D1 & . . . &�Dm or A ⊕ B1C1 & . . . &BkCk. A
similar normal form can be established for the linear subclass of grammars.

Theorem 1. For every linear grammar with left contexts, there exists another
linear grammar with left contexts that defines the same language and has all
rules of the form

A⊕ bB1 & . . . & bBΔ &C1c& . . . &Ckc (2a)

A⊕ a&�D1 & . . . &�Dm, (2b)

where A,Bi, Ci, Di ≤ N , a, b, c ≤ Θ, Π+ k � 1 and m � 0.

The transformation is carried out along the same lines as in the general case.
The first step is elimination of null conjuncts, that is, any rules of the form
A ⊕ Ψ& This is followed by elimination of null contexts �Ψ, and on unit
conjuncts, as in the rule A ⊕ B& The final step is elimination of extended
left contexts �E, which are all expressed through proper left contexts �D [14].
Each step applies to linear grammars with contexts and preserves their linearity.

3 Automaton Representation

Linear conjunctive grammars are known to be computationally equivalent to
one of the simplest types of cellular automata: the one-way real-time cellular
automata, also known under the proper name of trellis automata. This section
presents a generalization of trellis automata, which similarly corresponds to lin-
ear grammars with one-sided contexts.

An ordinary trellis automaton processes an input string of length n � 1

using a uniform array of n(n+1)
2 nodes, as presented in Figure 1(left). Each node

computes a value from a fixed finite set Q. The nodes in the bottom row obtain
their values directly from the input symbols using a function I : Θ ⊕ Q. The
rest of the nodes compute the function Σ : Q × Q ⊕ Q of the values in their
predecessors. The string is accepted if and only if the value computed by the
topmost node belongs to the set of accepting states F ≥ Q.

194 M. Barash and A. Okhotin

Fig. 1. Trellis automata (left) and trellis automata with feedback (right)

Theorem A (Okhotin [12]). A language L ≥ Θ+ is defined by a linear con-
junctive grammar if and only if L is recognized by a trellis automaton.

In terms of cellular automata, every horizontal row of states in Figure 1(left)
represents an automaton’s configuration at a certain moment of time. An al-
ternative motivation developed in the literature on trellis automata [5,6,7] is to
consider the entire grid as a digital circuit with uniform structure of connections.
In order to obtain a similar representation of linear grammars with left contexts,
the trellis automaton model is extended with another type of connections, illus-
trated in Figure 1(right).

Definition 3. A trellis automaton with feedback is a sextuple M =
(Θ,Q, I, J, Σ, F), in which:

– Θ is the input alphabet,
– Q is a finite non-empty set of states,
– I : Θ ⊕ Q is a function that sets the initial state for the first symbol,
– J : Q× Θ ⊕ Q sets the initial state for every subsequent symbol, using the

state computed on the preceding substring as a feedback,
– Σ : Q×Q⊕ Q is the transition function, and
– F ≥ Q is the set of accepting states.

The behaviour of the automaton is described by a function Λ : Θ∗ × Θ+ ⊕ Q,
which defines the state Λ(u⊗v∈) computed on each string with a context u⊗v∈ by

Λ(Ψ⊗a∈) = I(a),

Λ(w⊗a∈) = J
(
Λ(Ψ⊗w∈), a),

Λ(u⊗bvc∈) = Σ
(
Λ(u⊗bv∈), Λ(ub⊗vc∈)).

The language recognized by the automaton is L(M) = {w ≤ Θ+ | Λ(Ψ⊗w∈) ≤ F }.
Theorem 2. A language L ≥ Θ+ is defined by a linear grammar with left con-
texts if and only if L is recognized by a trellis automaton with feedback.

The proof is by effective constructions in both directions.

Linear Grammars with One-Sided Contexts 195

Lemma 1. Let G = (Θ,N,R, S) be a linear grammar with left contexts, in
which every rule is of the forms (2a)–(2b), and define a trellis automaton with
feedback M = (Θ,Q, I, J, Σ, F) by setting Q = Θ × 2N ×Θ,

I(a) = (a, {A | A⊕ a ≤ R }, a)

J
(
(b,X, c), a

)
=

(
a, {A | ⊆ rule (2b) with D1, . . . , Dm ≤ X }, a

)

Σ
(
(b,X, c⊆), (b⊆, Y, c)

)
=

(
b, {A | ⊆ rule (2a) with Bi ≤ X and Ci ≤ Y }, c

)

F =
{

(b,X, c)
∣
∣ S ≤ X }

.

For every string with context u⊗v∈, let b be the first symbol of v, let c be the last
symbol of v, and let Z = {A | u⊗v∈ ≤ LG(A) }. Then Λ(u⊗v∈) = (b, Z, c).

In particular, L(M) = {w | Ψ⊗w∈ ≤ LG(S) } = L(G).

Lemma 2. Let M = (Θ,Q, I, J, Σ, F) be a trellis automaton with feedback and
define the grammar with left contexts G = (Θ,N,R, S), where N = {Aq | q ≤
Q } ∪ {S}, and the set R contains the following rules:

AI(a) ⊕ a&�Ψ (a ≤ Θ)

AJ(q,a) ⊕ a&�Aq (q ≤ Q, a ≤ Θ)

AΣ(p,q) ⊕ bAq &Apc (p, q ≤ Q, b, c ≤ Θ)

S ⊕ Aq (q ≤ F)

Then, for every string with context u⊗v∈, Λ(u⊗v∈) = r if and only if u⊗v∈ ≤
LG(Ar). In particular, L(G) = {w | Λ(Ψ⊗w∈) ≤ F } = L(M).

This automaton representation is useful for establishing some basic properties
of linear grammars with contexts, which would be more difficult to obtain using
grammars alone. For instance, one can prove their closure under complementa-
tion by taking a trellis automaton with feedback and inverting its set of accepting
states. Another property is the closure of the family under concatenating a lin-
ear conjunctive language from the right; thus, in particular, the language used
by Terrier [17] to show that linear conjunctive languages are not closed under
concatenation, can be defined by a linear grammar with contexts.

4 Defining a Non-regular Unary Language

Ordinary context-free grammars over a unary alphabet Θ = {a} define only
regular languages. Unary linear conjunctive languages are also regular, because a
trellis automaton operates on an input an as a deterministic finite automaton [5].
The non-triviality of unary conjunctive grammars was discovered by Jeż [8], who

constructed a grammar for the language { a4k | k � 0 } using iterated conjunction
and concatenation of languages.

This paper introduces a new method for constructing formal grammars for
non-regular languages over a unary alphabet, which makes use of a left context
operator, but does not rely upon non-linear concatenation. The simplest case
of the new method is demonstrated by the following automaton, which can be
transformed to a grammar by Lemma 2.

196 M. Barash and A. Okhotin

Fig. 2. How the automaton in Example 3 recognizes { a2k−2 | k � 2 }

Example 3. Consider a trellis automaton with feedback M = (Θ,Q, I, J, Σ, F)
over the alphabet Θ = {a} and with the set of states Q = {p, q, r}, where
I(a) = p is the initial state, the feedback function gives states J(p, a) = q and
J(r, a) = p, and the transition function is defined by Σ(s, p) = p for all s ≤ Q,
Σ(q, q) = Σ(r, q) = q, Σ(p, q) = r and Σ(p, r) = p. The only accepting state is r.

Then M recognizes the language { a2k−2 | k � 2 }.
The computation of this automaton is illustrated in Figure 2. The state com-

puted on each one-symbol substring aΔ⊗a∈ is determined by the state computed
on Ψ⊗aΔ∈ according to the function J . Most of the time, Λ(Ψ⊗aΔ∈) = p and hence
Λ(aΔ⊗a∈) = q, and the latter continues into a triangle of states q. Once for every

power of two, the automaton computes the state r on Ψ⊗a2k−2∈, which sends a

signal through the feedback channel, so that J sets Λ(a2
k−2⊗a∈) = p. This in

turn produces the triangle of states p and the next column of states r.

It is now known that linear grammars with contexts over a one-symbol
alphabet are non-trivial. How far does their expressive power go? For con-
junctive grammars (which allow non-linear concatenation, but no context
specifications), Jeż and Okhotin [9,10] developed a method for manipulating
base-k notation of the length of a string in a grammar, which allowed repre-
senting the following language: for every trellis automaton M over an alpha-
bet {0, 1, . . . , k − 1}, there is a conjunctive grammar generating LM = { aΔ |
the base-k notation of Π is in L(M) } [9]. This led to the following undecidabil-
ity method: given a Turing machine T , one first constructs a trellis automa-
ton M for the language VALC(T) ≥ Θ∗ of computation histories of T ; then,

Linear Grammars with One-Sided Contexts 197

assuming that the symbols in Θ are digits in some base-k notation, one can
define the unary version of VALC(T) by a conjunctive grammar.

Linear grammars with contexts are an entirely different model, and the au-
tomaton in Example 3 has nothing in common with the basic unary conjunctive
grammar discovered by Jeż [8], in spite of defining almost the same language.
The new model seems to be unsuited for manipulating base-k digits, and the
authors took another route to undecidability results, which is explained below.

5 Simulating a Turing Machine

The overall idea is to augment the automaton in Example 3 to calculate some
additional data, so that its computation on a unary string simulates any fixed
Turing machine running on the empty input. Each individual cell Λ(ak⊗aΔ∈) com-
puted by the automaton should hold some information about the computation
of the Turing machine, such as the contents of a certain tape square at a certain
time. Then the automaton can accept its input an depending on the state of the
computation of the Turing machine at time f(n).

Consider the computation in Figure 2, which is split into regions by vertical
r-columns. The bottom line of states q in each region shall hold the tape contents
of the Turing machine. The new automaton should simulate several steps of the
Turing machine, and then transfer its resulting tape contents to the top diagonal
border of this region. The transfer of each letter is achieved by sending a signal
to the right, reflecting it off the vertical r-column, so that it arrives at the
appropriate cell in the top border. From there, the tape contents shall be moved
to the bottom line of the next region through the feedback data channel. Because
of the reflection, the tape symbols arrive at the next region in the reverse order.

In order to simulate a Turing machine using this method, it is useful to assume
a machine of the following special kind. This machine operates on an initially
blank two-way infinite tape, and proceeds by making left-to-right and right-to-
left sweeps over this tape, travelling a longer distance at every sweep. At the
first sweep, the machine makes one step to the left, then, at the second sweep,
it makes 3 steps to the right, then 7 steps to the left, 15 steps to the right, etc.
In order to simplify the notation, assume that the machine always travels from
right to left and flips the tape after completing each sweep.

Definition 4. A sweeping Turing machine is a quintuple T = (β,Q, q0,↑,F),
where

– β is a finite tape alphabet containing a blank symbol � ≤ β ,
– Q is a finite set of states,
– q0 ≤ Q is the initial state and F ≥ Q is the set of accepting states,
– ↑ : Q× β ⊕ Q× β is a transition function, and
– F is a finite set of flickering states.

A configuration of T is a string of the form �k�uqav, where k � 1 is the number
of the sweep, and uqav with u, v ≤ β ∗, a ≤ β and q ≤ Q represents the tape
contents uav with the head scanning the symbol a in the state q.

198 M. Barash and A. Okhotin

The initial configuration of the machine is �1��q0�. Each k-th sweep deals
with a tape with 2k symbols, and consists of 2k − 1 steps of the following form:

�k�ubqcv ∗T �k�uq⊆bc⊆v (↑(q, c) = (q⊆, c⊆)).

Once the machine reaches the last symbol, it flips the tape, appends 2k blank
symbols and proceeds with the next sweep:

�k�qcw ∗T �k + 1��
2kwRqc

A sweeping Turing machine never halts; at the end of each sweep, it may flicker
by entering a state from F . Define the set of numbers accepted by T as S(T) =
{ k | �1��q0� ∗∗T �k�qfcw for qf ≤ F }.

A sweeping Turing machine is simulated by the following trellis automaton
with feedback over a one-symbol alphabet.

Construction 1. Let T = (β,Q, q0,↑,F) be a sweeping Turing machine. Con-
struct a trellis automaton with feedback M = ({a}, Q, I, J, Σ, F) as follows. Its set
of states is Q =

{
Zpx

y

∣
∣x, y ≤ β∪Qβ, Z ≤ {⊃, •}} ∪ {

Zqx
∣
∣x ≤ β∪Qβ, Z ≤ {⊃, •}}

∪ {r}. Each superscript x represents a tape symbol at the current position, which
is augmented with a state, if the head is in this position. Each subscript y sim-
ilarly contains a symbol and possibly a state, representing the contents of some
other tape square, which is being sent as a signal to the left. A bullet marker “•”
marks the beginning of the tape, whereas each state Zpx

y or Zqx with Z = ⊃ shall
be denoted by px

y and qx, respectively.

Let I(a) = p�

�q0 , J(r, a) = p�

�
, and J(Zpx

y , a) = Zqy. For all x, y, x⊆, y⊆ ≤
β ∪ Qβ and Z,Z ⊆ ≤ {⊃, •}, the following transitions are defined:

Σ
(
Zqx, Z′

qx′
)

= Zqx (propagation; x, x⊆ ≤ β ,
and x ≤ Qβ with Z = •)

Σ
(
Zqx, Z′

px′
y′

)
= Z′

px
y′ (propagation)

Σ
(
px
y ,

Z′
qx′

)
= r (r-column)

Σ
(
Zpx

y , r
)

= p�

x (reflection)

Σ
(
Zpx

y ,
Z′
px′
y′

)
= Z′

px
y′ (propagation)

Σ
(
r, Z′

px′
y′

)
= •px′

y′ (new region in top diagonal)

Σ
(
r, Z′

qx′
)

= q� (first q-column after r-column)

A transition ↑(q, c) = (q⊆, c) of the Turing machine is simulated as follows:

Σ (qcq, qy) = qc′ (rewriting the symbol; y ≤ β)
Σ
(
Zqx, qcq

)
= Zqxq′ (moving the head; x ≤ β)

The set of accepting states is F = {p�

cqf
| c ≤ β, qf ≤ F }.

The first thing to note about this construction is that if all attributes attached
to the letters p, q, r are discarded, then the resulting automaton is exactly the

Linear Grammars with One-Sided Contexts 199

one from Example 3. This ensures the overall partition of the computation into
regions illustrated in Figure 2.

Each region after second r-column corresponds to a sweep of the Turing ma-
chine. The bottom row of states contains the machine’s configuration in the
beginning of the sweep, where each state qx holds the symbol in one square of
the tape. The leftmost cell is marked by a bullet (•qx). The cell in the middle
of the bottom row (qxq) corresponds to the rightmost square of the tape, which
contains the state of the machine. The cells in the right half of the bottom row
contain the state q�. Each of the several rows above holds the tape contents
after another step of computation. After 2k − 1 steps of simulation the head
reaches the leftmost square, which marks the end of the current sweep.

Then, each tape symbol is propagated
by a signal to the right using the states
px
y . Every such state holds two symbols:
x is carried to the right, to be reflected
off the right border, and y is a leftbound
symbol that has already been reflected.
As a result, the top diagonal border is
filled with the states of the form px

y , and
their subscripts y form the resulting con-
tents of the tape, reversed. These symbols
are sent to the next region by the function
J .

With this simulation running, the last
state q ≤ Q reached by the Tur-
ing machine upon completing each k-
th sweep shall always end up in a pre-
defined position exactly in the middle
of the top diagonal border. It will be

Λ(Ψ⊗a2k+2+2k+1−2∈) = p�

cq, and the trel-
lis automaton with feedback accepts this
string if and only if q ≤ F .

The following theorem states the cor-
rectness of the construction.

Theorem 3. Let T = (β,Q, q0,↑,F) be a sweeping Turing machine and let
M = ({a}, Q, I, J, Σ, F) be a trellis automaton with feedback obtained in Con-

struction 1. Then L(M) = { a2k+2+2k+1−2 | k ≤ S(T) }.

6 Implications

The simulation of Turing machines by a trellis automaton with feedback over a
one-symbol alphabet is useful for proving undecidability of basic decision prob-
lems for these automata. Due to Theorem 2, the same undecidability results
equally hold for linear grammars with contexts.

200 M. Barash and A. Okhotin

The first decision problem is testing whether the language recognized by an
automaton (or defined by a grammar) is empty. The undecidability of the empti-
ness problem follows from Theorem 3. To be precise, the problem is complete
for the complements of the r.e. sets.

Theorem 4. The emptiness problem for linear grammars with left contexts over
a one-symbol alphabet is γ0

1 -complete. It remains in γ0
1 for any alphabets.

Proof. The non-emptiness problem is clearly recursively enumerable, because
one can simulate a trellis automaton with feedback on all inputs, accepting if it
ever accepts. If the automaton accepts no strings, the algorithm does not halt.

The γ0
1 -hardness is proved by reduction from the Turing machine halting

problem. Given a machine T and an input w, construct a sweeping Turing ma-
chine Tw, which first prints w on the tape (over 1 + log |w| sweeps, using around
|w| states), and then proceeds by simulating T , using one sweep for each step of
T . If the simulated machine T ever halts, then Tw changes into a special state
qf and continues moving its head until the end of the current sweep.

Construct a trellis automaton with feedback M simulating the machine Tw
according to Theorem 3, and define its set of accepting states as F = {p�

cqf |
c ≤ Θ }. Then, by the theorem, M accepts some string aΔ if and only if Tw ever
enters the state qf , which is in turn equivalent to T ’s halting on w. ⊇⊂
The second slightly more difficult undecidability result asserts that testing the
finiteness of a language generated by a given grammar is complete for the second
level of the arithmetical hierarchy.

Theorem 5. The finiteness problem for linear grammars with left contexts over
a one-symbol alphabet is Θ0

2 -complete. It remains Θ0
2 -complete for any alphabet.

Proof (a sketch). Reduction from the finiteness problem for a Turing machine,
which is Θ0

2 -complete, see Rogers [15, §14.8]. Given a Turing machine T , con-
struct a sweeping Turing machine T ⊆, which simulates T running on all inputs,
with each simulation using a segment of the tape. Initially, T ⊆ sets up to simulate
T running on Ψ, and then it regularly begins new simulations. Every time one
of the simulated instances of T accepts, the constructed machine “flickers” by
entering an accepting state in the end of one of its sweeps. Construct a trellis
automaton with feedback M corresponding to this machine. Then L(M) is finite
if and only if L(T) is finite. ⊇⊂

7 Conclusion

At the first glance, linear grammars with contexts seem like a strange model.
However, they are motivated by the venerable idea of a rule applicable in a
context, which is worth being investigated. Also, trellis automata with feedback
at the first glance seem like a far-fetched extension of cellular automata. Its
motivation comes from the understanding of a trellis automaton as a circuit

Linear Grammars with One-Sided Contexts 201

with uniform connections [5], to which one can add a new type of connections.
Both models are particularly interesting for being equivalent.

A suggested topic for future research is to investigate the main ideas in the
literature on trellis automata [5,6,7,17] and see whether they can be extended
to trellis automata with feedback, and hence to linear grammars with contexts.

References

1. Aizikowitz, T., Kaminski, M.: LR(0) conjunctive grammars and deterministic syn-
chronized alternating pushdown automata. In: Kulikov, A., Vereshchagin, N. (eds.)
CSR 2011. LNCS, vol. 6651, pp. 345–358. Springer, Heidelberg (2011)

2. Barash, M.: Recursive descent parsing for grammars with contexts. In: SOFSEM
2013 Student Research Forum (2013)

3. Barash, M., Okhotin, A.: Defining contexts in context-free grammars. In: Dediu,
A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 106–118. Springer,
Heidelberg (2012)

4. Barash, M., Okhotin, A.: An extension of context-free grammars with one-sided
context specifications (September 2013) (submitted)

5. Čuĺık II, K., Gruska, J., Salomaa, A.: Systolic trellis automata. International Jour-
nal of Computer Mathematics 15, 195–212, 16, 3–22 (1984)

6. Dyer, C.: One-way bounded cellular automata. Information and Control 44,
261–281 (1980)

7. Ibarra, O.H., Kim, S.M.: Characterizations and computational complexity of sys-
tolic trellis automata. Theoretical Computer Science 29, 123–153 (1984)

8. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Inter-
national Journal of Foundations of Computer Science 19(3), 597–615 (2008)

9. Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability
and unbounded growth. Theory of Computing Systems 46(1), 27–58 (2010)

10. Jeż, A., Okhotin, A.: Complexity of equations over sets of natural numbers. Theory
of Computing Systems 48(2), 319–342 (2011)

11. Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Com-
binatorics 6(4), 519–535 (2001)

12. Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata.
RAIRO Informatique Théorique et Applications 38(1), 69–88 (2004)

13. Okhotin, A.: Conjunctive and Boolean grammars: the true general case of the
context-free grammars. Computer Science Review 9, 27–59 (2013)

14. Okhotin, A.: Improved normal form for grammars with one-sided contexts. In:
Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 205–216. Springer,
Heidelberg (2013)

15. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability (1967)
16. Rounds, W.C.: LFP: A logic for linguistic descriptions and an analysis of its com-

plexity. Computational Linguistics 14(4), 1–9 (1988)
17. Terrier, V.: On real-time one-way cellular array. Theoretical Computer Sci-

ence 141(1-2), 331–335 (1995)
18. Törmä, I.: Personal communication (February 2013)
19. Yu, S.: A property of real-time trellis automata. Discrete Applied Mathemat-

ics 15(1), 117–119 (1986)

On the Computability of Relations on λ-Terms

and Rice’s Theorem - The Case of the
Expansion Problem for Explicit Substitutions

Edward Hermann Haeusler1 and Mauricio Ayala-Rincón2

1 Departamento de Informática, PUC-Rio, Brasil
hermann@inf.puc-rio.br

2 Departamentos de Computação e Matemática, Universidade de Braśılia, Brasil
ayala@unb.br

Abstract. Explicit substitutions calculi are versions of the λ-calculus
having a concretely defined operation of substitution. An Explicit sub-
stitutions calculus, λξ, extends the language Λ, of the λ-calculus includ-
ing operations and rewriting rules that explicitly implement the implicit
substitution involved in β-reduction in Λ. Λξ, that is the language of λξ,
might have terms without any computational meaning, i.e., that do not
arise from pure lambda terms in Λ. Thus, it is relevant to answer whether
for a given t ∈ Λξ, there exists s ∈ Λ such that s →∗

λξ
t, i.e., whether

there exists a pure λ-term reducing in the extended calculus to the given
term. This is known as the expansion problem and was proved to be un-
decidable for a few explicit substitutions calculi by using Scott’s theorem.
In this note we prove the undecidability of the expansion problem for the
λσ calculus by using a version of Rice’s theorem. This method is more
straightforward and general than the one based on Scott’s theorem.

Keywords: Explicit Substitution, Lambda-Calculus, Rice’s and Scott’s
Theorem.

1 Introduction

Explicit substitutions calculi (e.g. [1], [10]) are extensions of the λ-calculus in
which the operation of substitution involved in β-contraction, that is

(λx.M) N ⊕Δ M{x≤ N},

where “M{x ≤ N}” denotes the term obtained from M by simultaneously
replacing all occurrences of x by N , is made explicit.

These calculi can be classified either by their properties as in [10] or in those
based on a representation of variables as names, and those based on nameless
representation of variables following De Bruijn indices [6].

The problem of expansion of explicit substitutions calculi is of genuine com-
putational interest and has been answered to be undecidable for a few calculi

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 202–213, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

On the Computability of Relations on λ-terms and Rice’s 203

such as λs [9] and λΣ [3] in [2] and then, using the same technique, for λσ [1] in
[5]. Essentially, for an explicit substitutions calculus λΛ, the technique applied
in these works is based on

– the application of Scott’s theorem, which states that any non trivial subset
of Λ that is closed under β-conversion is non-recursive, and

– the encoding in the language of ΛΛ of the problem of whether two terms in
Λ have a common expansion term in Λ, which is also undecidable.

This technique can be applied both for calculi with variables as names or as
indices, since these representations of the λ-calculus are well-known to be iso-
morphic. Here we show how a variant of Rice’s theorem can be applied to prove
undecidability of the expansion problem for the λσ-calculus [1]. This technique
is more general and straightforwardly applicable to other calculi of explicit sub-
stitutions, since it avoids the second step of encoding of an undecidable problem
of the pure λ-calculus inside the extended language of the explicit substitutions
calculi used in [2].

2 Preliminaries

2.1 De Bruijn Notation and Explicit Substitutions

Avoiding names in the λ-calculus is an effective way of clarifying the meaning of
λ-terms and, for the unification process, of eliminating redundant renaming. De
Bruijn developed in [6] a notation where names of bound variables are replaced
by indices which relate these bound variables to their corresponding abstractors.

It is clear that the correspondence between an occurrence of a bound variable
and its associated abstractor operator is uniquely determined by its depth, that is
the number of abstractors between them. Hence, λ-terms can be written in a term
algebra over the natural numbers N, representing depth’s indices, the application
operator () and a sole abstractor operator λ ; i.e., T ({(), λ } ∪ N). For
instance, λx.(x λy .(x y)) is written in De Bruijn notation as λ(1 λ(2 1)).

In De Bruijn’s notation, indexing the occurrences of free variables is given
by a referential according to a fixed enumeration of the set of variables V ,
say x, y, z, . . ., and prefixing all λ-terms with . . . λz .λy .λx. . For instance in
this referential, λu.(x λv.((x (u z)) v)) is written in De Bruijn notation as
λ(2 λ((3 (2 5)) 1)). Now we can define the λ-calculus in De Bruijn notation.

Definition 1 (λ-calculus in De Bruijn notation). The set ΛdB of λ-terms
in De Bruijn notation is built inductively as: ΛdB ::= n | (ΛdB ΛdB) | λΛdB,
where n is the nth De Bruijn index for n ⊗ N \ {0}.
We write De Bruijn indices as underlined naturals to distinguish them from natu-
rals and scripts. Since in this paper all considered calculi of explicit substitutions
are built over the language of ΛdB, we will use Λ to denote ΛdB.

The attempt to define β-reduction in De Bruijn notation as (λa b) ⊕ {1/b}a,
where {1/b}a is the first-order substitution of the index 1 in a with b fails because:

204 E.H. Haeusler and M. Ayala-Rincón

– when eliminating the leading abstractor all indices associated with free vari-
able occurrences in a should be decremented;

– when propagating inside the body of the abstraction a, the substitution
{1/b} through λ’s, the indices of the substitution (initially 1) and of the free
variables in b should be incremented.

Hence, in order to define β-reduction we need new operators for detecting and
updating (i.e., incrementing and decrementing) free variables.

Definition 2 (n-lift). Let a ⊗ ΛdB. The i-lift of a, denoted a+i is defined
inductively as follows:

i) (a1 a2)+i = (a+i
1 a+i

2) ii) (λa1)+i = λa
+(i+1)
1

iii) n+i =

{
n + 1, if n > i
n, if n ∈ i

for n ⊗ N.

The lift of a term a is its 0-lift and is denoted briefly as a+.

Definition 3 (Substitution). The application of the substitution with b at
the depth n − 1, n ⊗ N \ {0}, denoted {n/b}a, on a term a in ΛdB is defined
inductively as follows:

i) {n/b}(a1 a2) = ({n/b}a1 {n/b}a2) ii) {n/b}λa1 = λ{n + 1/b+}a1

iii) {n/b}m =

m− 1, if m > n
b, if m = n
m, if m < n

if m ⊗ N.

Definition 4 (β-reduction). The β-reduction in theλ-calculus withDeBruijn
indices is defined as (λa b) ⊕Δ {1/b}a.
It is well-known that the λ-calculus is confluent. This property holds also for the
rewriting system defined over ΛdB by the β-reduction rule. We stress here that
since both representations of the λ-calculus are isomorphic, instead of notation
ΛdB, the notation Λ will be used.

Undecidability of the relation =Δ , that is the equivalence closure of ⊕Δ , is a
direct consequence of Scott’s theorem.

We will use standard rewriting notations, that is for a (rewriting) relation R
the super script ∗ is used to denote its reflexive transitive closure, R∗; =R denotes
its equivalence closure; Rits inverse and, by a matter of elegance, instead ∗R, R∗

denotes the reflexive transitive closure of its inverse. This notation is very natural
when relations are denoted by symbols such as ⊕ and �; thus, their inverses are
denoted as ≤ and �. The symbol ≥ denotes composition of relations.

2.2 The λσ-calculus and the Expansion Problem

We state the traditional definition of the Expansion Problem

Definition 5 (The Expansion Problem). Consider a calculus λΛ that ex-
tends the pure λ-calculus by means of implementing its implicit substitution over

On the Computability of Relations on λ-terms and Rice’s 205

the language ΛΛ ⊆ Λ. The expansion problem for this calculus is the problem of
answering whether for a given t ⊗ ΛΛ, there exists s ⊗ Λ such that s⊕∗δξ

t.

The λσ-calculus works on two-sorted terms: (proper) terms (over which a, b, . . .
range), and substitutions (over which s, t, . . . range).

Definition 6 (The λσ-calculus). The λσ-calculus is defined as the calculus of
the rewriting system λσ given in Table 1 where

terms a ::= 1 | (a a) | λa | a[s] and subs s ::= id | ↑ | a.s | s ≥ s
The set of λσ-terms built in this form will be denoted as ΛΘ (one can dis-

criminate between substitutions and proper terms by using superscripts t and s:
Λt
Θ and Λs

Θ). Observe that Λ ⊃ ΛΘ. Use of the symbol ≥ for composition of sub-
stitutions and of relations will easily be discriminated according to the context.

Table 1. The set of rewriting rules of the λσ-calculus

(Beta) (λa b) −→ a [b · id]
(Id) a[id] −→ a

(VarCons) 1 [a · s] −→ a
(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λa)[s] −→ λa [1 · (s ◦ ↑)]
(Clos) (a [s])[t] −→ a [s ◦ t]
(IdL) id ◦ s −→ s
(IdR) s ◦ id −→ s

(ShiftCons) ↑ ◦ (a · s) −→ s
(Map) (a · s) ◦ t −→ a [t] · (s ◦ t)
(Ass) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)
(VarShift) 1· ↑ −→ id

(SCons) 1[s] · (↑ ◦ s) −→ s

For every substitution s we define the iteration of the composition of s in-
ductively as s0 = id and sn+1 = s ≥ sn, where id is the substitution identity.
Note that the only De Bruijn index used is 1 , each other index n is encoded as
1[↑n−1] . Also, notice that by rule (Id), 1[↑1−1] ⊕Id 1 .

The equational theory associated with the rewriting system λσ defines a con-
gruence denoted =δΘ (i.e., the theory built from the equivalence closure of the λσ
rewriting system). The congruence obtained by dropping the rule Beta, that is
the generation rule of this calculus, is denoted as =Θ. When one restricts reduc-
tion to only these rules, one will use expressions such as σ-reduction, σ-normal
form, σ-calculus, etc, with the obvious meaning. In general, for an explicit sub-
stitutions calculus λΛ, one has a generation rule which starts the simulations of
β-reductions by application of the other rules in the ξ-calculus.

The rewriting system λσ is known to simulate β-reduction and also to be
confluent [1]. The former means that for terms a, b ⊗ Λ, whenever a ⊕Δ b,
a ⊕∗δΘ b; the latter, that for terms c, a, b ⊗ ΛΘ, if c ⊕∗δΘ a and c ⊕∗δΘ b, then

206 E.H. Haeusler and M. Ayala-Rincón

there exists d ⊗ ΛΘ such that a⊕∗δΘ d and b⊕∗δΘ d, or in other words, that ⊕∗
≥ ⊕∗ ⊇ ⊕∗ ≥ ⊕∗ .

Given a, b ⊗ Λ, a =Δ b if and only if a =δΘ b.
The relations ⊕∗δΘ and =δΘ are undecidable. This is a consequence of the fact

that λσ consistently simulates β-reduction; thus, if λσ derivability and/or con-
version were decidable, correspondingly β derivability and/or conversion would
be also decidable.

Given a, b ⊗ Λ, the question: Does c ⊗ Λ exist such that c⊕∗δΘ a and c⊕∗δΘ b?
is undecidable too.

Also, given a, b ⊗ ΛΘ, the question whether there exists c ⊗ Λ such that
c⊕∗δΘ a and c⊕∗δΘ b, is undecidable.

Given a, b ⊗ Λ, there exists c⊆ ⊗ ΛΘ such that c⊆ ⊕∗δΘ a and c⊆ ⊕∗δΘ b if, and
only if, there exists c ⊗ Λ such that c⊕∗Δ a and c⊕∗Δ b.

Analogously to Scott’s theorem for Λ, one has that any non trivial subset of
ΛΘ that is closed under =δΘ is non recursive.

The approach in [2] to prove undecidability of the expansion problem for ΛΘ

consists in encoding inside the problem of expansion an undecidable problem in
Λ. For doing this one considers the following context in ΛΘ:

(λ(1[(1 · ((� · id)≥ ↑))] 1[(1 · ((� · id)≥ ↑))]))

λ(1[(1 · ((a · id)≥ ↑))] 1[(1 · ((b · id)≥ ↑))]))

(λ(1[(1 · ((c · id)≥ ↑))] 1[(1 · ((c · id)≥ ↑))]))

δΘ ∗
��

(λ((1 1)[(1 · ((c · id)≥ ↑))]))

App

��

(λ(1 1))[c · id]

Abs

��

(λλ(1 1) c)

Beta

��

a ⊗ Λ b ⊗ Λ

⊂c ⊗ Λ?

Δ

∗
�����������

∗
Δ

�����������

Fig. 1. Standard proof sketch

Replacing the holes in this
context by the same term,
say c, expansion with the rule
(App) is possible obtaining
(λ((1 1)[(1 · ((c · id)≥ ↑))])).

Then, by expansion with the
rule (Abs) one obtains the term
(λ(1 1))[c · id] and, finally by
expansion with rule (Beta), the
term (λλ(1 1) c).

Thus, the undecidable ques-
tion whether given a, b ⊗ Λ,
there exists a c ⊗ Λ into which
a and b expand, that is a ⊕∗Δ
c ⊕∗Δ b, is equivalent to the
question whether the term at
the top of Fig. 1, which illus-
trates the sketch of this stan-
dard proof, expands to a pure
lambda term.

This technique, as men-
tioned in the introduction, re-
quires both the application of
Scott’s theorem and considerations about the structure of terms in ΛΘ. Here
we show that the analysis can be generalized and simplified for explicit

On the Computability of Relations on λ-terms and Rice’s 207

substitutions calculi λΛ that are consistent extensions of the λ-calculus. Indeed,
this is a consequence of the fact that consistent extensions of λ are non recur-
sive or in other words that λ is essentially undecidable. In fact, suppose that λΛ
extends λ and is consistent, then the set {M : M =δξ

I}, where I denotes the
I combinator, is non empty and different of ΛΛ because λΛ is consistent. Thus,
by Scott’s theorem this set is not recursive and consequently neither λΛ.

For the case of λσ as well as for other explicit substitutions calculi, the analysis
follows since they are consistent extensions of λ.

2.3 Basic Abstract Recursion Theory Terminology

In what follows we consider computable functions as a class of functions from
N to N. We assume the standard notions of primitive recursive functions, par-
tially recursive functions and recursive functions (a partially recursive function
that is total). We also assume a rather abstract view of an algorithm as its code
and the code is simply a natural number. Every natural number is a code for
at least one partially recursive function. We could use the notation fi, i ⊗ N,
to denote the partial recursive function that i codes. In a more abstract setting,
Rogers [13] suggests axioms for an indexed class Φ = (ϕi)i◦N of partial functions
from N to N be considered as algorithms (codes) and their corresponding de-
notations. In this way, ϕi is the function “computed” by code i. Rogers proved
that such indexed classes are isomorphic, providing a stronger (more abstract)
evidence to Turing-Church thesis. In this brief note we focus on Rice’s theorem,
but we would like to notice that in [11] the reader can find a quite pedagogical
presentation of Rogers’ theorem. In the sequel we present the formal definition
of this abstract view of a class of Turing-computable functions, namely, Abstract
Family of Algorithms (AFA), as it is in [11].

We will use ↑ to denote that the (partial) function ϕm(i) is undefined in i and
↓ to denote that it is defined.

Definition 7 (Abstract Family of Algorithms). A collection Φ = (ϕi)i◦N
of partial functions from N into N is such that:

1. (ϕi)i◦N contains all partial recursive functions.

2. There is u ⊗ N, such that, for every i ⊗ N ϕu(∅i, x≡) = ϕi(x), where ∅m,n≡
is the code for pairs of naturals m,n.

3. There is a primitive recursive function c, such that ϕc(i,j) = ϕj ≥ ϕi.

The following definition is the abstract version of a computational step in an
algorithm. In the case of λ-calculus or an explicit substitution calculus it might
be either the abstraction of reduction or expansion (β-reduction, for example)
between λ or λΛ-terms.

Definition 8 (Pre-step-computable relation). Let Φ be an AFA and � a
binary relation on N. We say that � is pre-Φ-step-computable, iff, there is a
primitive recursive function f , such that, for each i, j ⊗ N:

208 E.H. Haeusler and M. Ayala-Rincón

1. if i� j then there is a finite set Io of natural numbers, such that, for every
k ⊗ Io, f(∅i, k≡) = j, i ∃= j, and;

2. for all n ⊗ N, if ϕj(n) ↓ then ϕj(n) = ϕi(n), and;
3. for every k⊆ ⊗ Io and j⊆ = f(∅i, k⊆≡), i� j⊆, and;
4. it is required that for every i, j, i⊆, j⊆ ⊗ N, c(i, j)�c(i⊆, j⊆), if and only if, i� i⊆

and j = j⊆, or, i = i⊆ and j � j⊆.

We denote by �+ the transitive closure of �.

Definition 9. Let Φ be an AFA and � a pre-Φ-step-computable binary relation.
We say that � is a Φ-step-computable relation, if and only if, for every i ⊗ N,
if ϕi is a total function1 then, i ↓= {j : i�+ j} is finite.

We have the following lemma.

Lemma 1. Let Φ be an AFA and � a Φ-step-computable binary relation. Let
i, j ⊗ N, such that, ϕi = ϕj, and ((i ↓)− (j ↓)) is a finite set. In this case i�+ j
holds.

Definition 10 (Saturated by a relation). Let C be a set of natural numbers
and � a relation on N. C is saturated by �, iff, for all i, j ⊗ N, if i � j then, if
i ⊗ C then j ⊗ C, and; if j ⊗ C then i ⊗ C.

3 Abstract Rice’s Theorem

The statement of Rice’s theorem using AFA as stated in [11] is as below. The
original statement can be found in [12] and the abstract version we are dealing
with is according [13].

Theorem 1 (Rice). Let C = {i : Ψ(ϕi)}, where Ψ(x) is a property on partial
functions from N to N. C is recursive, iff, C = ∧ or C = N.

We state and prove a slightly modified version of Rice’s theorem, using step-
computable relations instead of satisfaction by a “semantical” property. It is the
key result used in proving the undecidability of expansion.

Theorem 2 (Modified Rice). Let Φ be an AFA and � be a Φ-step-computable
relation on N and C ⊃ N be a set saturated by �. C is recursive, iff, C = N or
C = ∧.
Proof. If C ∃= ∧ and C ∃= N, there is k ⊗ C and wlog we can consider i∼ ∃⊗ C,
where ϕi⊥ = ∧ ∃= ϕk, with ∧ being the undefined function2. Let g be the recursive
function defined by

g(m) = ϕm(m); k

1 For every n ∈ N, ϕi(n) ↓.
2 ∅(x) ↑, for each, x ∈ N.

On the Computability of Relations on λ-terms and Rice’s 209

The right-hand side can be written as ϕk ≥π2 ≥∅ϕm(m), id≡ in notation of partial
recursive functions. If ϕp = π2, ϕI = id then, the formal code of this functional
notation in terms of Φ is : c(c(∅s(u, ∅m,m≡), I≡ , p), k) , where s is the s-1-1
instance of the well-known s-m-n function, i.e., ϕs(i,j)(x) = ϕi(∅j, x≡). We have
two cases to consider:

– ϕm(m) ↑, and hence ϕg(m) = ∧ = ϕi⊥ , or;

– ϕm(m) ↓, and in this case it is a total function, in fact a constant total
function, an hence, because of item 4 of definition 8, and the fact that there
are only finitely many n, such that, s(u, s(u, ∅m,m≡)) � n, and lemma 1, we
can conclude that g(m) �+ k. So g(m) ⊗ C.

Thus, if ϕm(m) ↑ then g(m) ∃⊗ C and, if ϕm(m) ↓ then g(m) ⊗ C. Since it is
undecidable whether ϕm(m) ↑ or not, then C cannot be recursive.

Note that the above theorem is a rather abstract version of Scott’s theorem.
If Φ is Λ, the β-reduction, ⊕Δ , is a Φ-step-computable relation and a set closed
by ⊕Δ is a saturated set. The abstract version of the expansion property within
a computational formalism (AFA) is undecidable and this is a corollary of the
above theorem.

It is interesting to point out that, when theorem 2 is compared to its concrete
version (Scott’s theorem), we can see that some natural numbers are the normal
terms (values) while other are algorithms. For any j, i ⊗ N, ϕj(i) represents the
algorithm/value tjti ⊗ Λ, where tj and ti are represented by j and i respectively.

Other completely different application of the above theorem concerns the cal-
culus λx ([14] [4]). The reduction in this calculus is a step-computable relation
too. In particular, there is a reduction (λz.M)N ⊕M∅z := N≡, and correspond-
ing rules for reducing the closure M∅z := N≡. In this calculus the set Clo of terms
t such that t ⊕� t⊆, t1∅z := t2≡ occurs in t⊆, is closed by the step-computable
relation ⊕. Clo includes every term of λx, since for each closure t1∅z := t2≡
there is the term (λz.t1)t2. This case contradicts the theorem. Clo being the set
of all terms is a trivial subset of the set of terms, and is hence recursive. Our
observation amounts to the fact that the expansion problem (see next section)
of this calculus is decidable.

An important observation concerns the seamless use of the finitely branching
nature of the step-computable relation in the proof of theorem 2. We can see that
the following proposition ensures that the condition on saturated sets could be
weakened to a closure condition. Let C be a set and Sat(C) the least saturated set
containing C. We have the following proposition. In this proposition we use the
construct ConcurrentRun(S) that runs concurrently (time sharing) the finite
list of algorithms S on the same input data. The output of this construct is the
output of the first member in S that stops yielding a result.

Proposition 1. Let Φ be an AFA and � be a Φ-step-computable relation on N.
Let C ⊃ N be a set closed by �, i.e., for every i ⊗ C, if i � j then j ⊗ C. Then,
C is recursive, iff, the set Sat(C) is recursive.

210 E.H. Haeusler and M. Ayala-Rincón

Proof. We first observe that as � is Φ-step-computable, then for every term
i ⊗ C the set Ji = {j : j � i and j ∃⊗ C} is finite. As Φ is an AFA, it is computa-
tionally equivalent to your favorite Turing-complete computational model. Thus,
there is an index m equivalent to ConcurrentRun(Ji). Since every member of Ji
computes the same partial function that i, any reduction to the halting problem
using i corresponds to an equivalent reduction using m. This implies that, see
the proof of theorem 2, C is recursive iff Sat(C) is recursive.

Corollary 1. Let ϕ be an AFA and � a Φ-step-computational relation. Let �
be the inverse of �. For a given j, the question whether there exists k ⊗ N such
that k � j is undecidable.

Proof. Directly from proposition 1 and theorem 2. In fact this is a joint corollary
of both results.

It is worth noting that as AFA is concerned with the semantics of a computa-
tional model, there is no need to mention consistency as it is usual in Scott’s
theorem on Λ.

The case when we consider a relation extending the β-reduction, as it is the
case of explicit substitutions is considered in the next section.

4 λ-terms and Undecidable Properties

ki

��

∈Φ �� kj

��
i

�Ψ �� j

Fig. 2. Ψ is an extension
of Φ: not sharing codes

The modified Rice’s theorem statement is used to
prove that some relations between algorithms, in an
AFA Φ = (ϕi)i◦N and extensions of these algorithms
in a family Ψ = (ψi)i◦N, based on respective step-
computable relations �Ψ and �Φ, cannot be recursive.

There are two main ways of abstracting the concept
of a family of partial functions Ψ = (ψi)i◦N extending
an AFA Φ = (ϕi)i◦N. As it is the case of an explicit
substitutions calculus λΛ and λ, as mentioned in sec-
tion 2.2. The first way is to consider the extension as
an integral one, so to say, do not point out the addi-
tional mechanism in Ψ regarding Φ. The second way of defining such a concept
is to indicate which these additional formal mechanism is. For example, in the
case of λΛ, the substitution calculus ξ and its corresponding reductions are these
additional mechanisms.

Remark 1. When defining another AFA as extension, without indicating any-
thing as a key additional mechanism, the extension is equivalent to the AFA it
extends, and hence, every undecidable property holding in Φ also holds in Ψ and
vice-versa. Thus, defining the extension Ψ as an AFA is not informative, since
the undecidable relations are already known from Φ.

As we have seen above a more informative way of abstracting the computational
relation between λ-terms is to consider the extension language defined by two
computable relations.

On the Computability of Relations on λ-terms and Rice’s 211

Definition 11 (Finitely-step-computable). Consider Ψ as a collection of
partial functions from N into N. A finitely-step-computable relation � ⊇ N×N

is such that, for each i, j ⊗ N, there is a finite Io ⊇ N and a primitive
recursive function f , such that, i � j, iff, there is k ⊗ Io and f(∅i, k≡) = j and
for all n ⊗ N, if ϕj(n) ↓ then ϕj(n) = ϕi(n).

In the sequel we write sometimes �Φ and �Ψ , in order to explicitly indicate to
which class of functions the relation is regarded to.

Definition 12 (Extension). Let Φ be an AFA and Ψ be a collection of partial
functions from N into N. Consider � a Φ-step-computable relation and � a
finitely-step-computable relation associated to Ψ . We say that Ψ extends Φ, iff,
for all i, j ⊗ N there are ki, kj ⊗ N, such that, if i� j then ki � kj, and ϕi = ψki

i
�Ψ

��
∈Φ ��

j

Fig. 3. Ψ is an extension
of Φ: sharing codes

The expansion problem is better examined when
we consider Ψ sharing codes (algorithmic codes) with
Φ, i.e, in the definition above, ki = i and kj = j. In
this case, we have the expansion problem stated as:
For every j ⊗ N, there is i ⊗ N, such that, i � j and
ψi = ψj and ϕi = ψi. In this case we say that i is the
expansion of j in Ψ .

In Fig. 2 a diagram depicting the general extension is shown, where the codes
are not shared between the formalism, and, in Fig. 3, a simpler version of sharing
of codes is shown. The latter is the one we use for the sake of clarity.

Theorem 3 (Expansion). Let Φ be an AFA and Ψ one of its extensions.
The question whether for every j ⊗ N there exist i ⊗ N, such that, i � j, is
undecidable.

Lemma 2. Let Φ be an AFA and Ψ be one of its extensions, then �Φ ⊇ �Ψ .

Proof. This is a direct consequence of definition 12.

Lemma 3. Let Φ be an AFA and Ψ one of its extensions. Let C be a �Ψ satu-
rated set. C is recursive, iff, either C = N or C = ∧.
Proof. This proof is slightly similar to the proof of Rice’s theorem (theorem 2).
We will repeat all steps here, in order to call reader’s attention to the central,
and sensible, difference between this case and 2. If C ∃= ∧ and C ∃= N, there is
k ⊗ C and wlog we can consider i∅ ∃⊗ C, where ϕi∅ = ∧ ∃= ϕk. Pay attention
to this main difference: k can be considered as not being a code in Φ. This
means that ϕk ∃= ψk, for if it was a code in Φ and as Ψ is an extension, then
ϕk = ψk. Remember that we are considering extensions sharing codes. Anyway,
k is not a code in Φ, for if there is no such k, then C is formed only by codes of
Φ, being recursive and non-trivial this is a contradiction. Here an application of
lemma 2 is used to show that C, in this case, is saturated by � too.

Now that we know that ϕk ∃= ψk, we keep tracing the proof of theorem 2. Let
g be the (partial recursive) function defined by

g(m) = ϕm(m); k

212 E.H. Haeusler and M. Ayala-Rincón

The formal code of the right-hand side of this definition is obtained as before.
Consider n, such that ϕn = ϕg(m), then n � j, iff, either:

– ϕj = ∧ = ϕio and ϕm(m) ↑, or;
– ϕm(m) ↓ and k � j and n � k. In this case n ⊗ C, since C is saturated by �

and k ⊗ C.

Thus, on the one hand, if ϕm(m) ↑ then j ∃⊗ C and n ∃⊗ C either. On the other
hand, if ϕm(m) ↓ then n ⊗ C. Since it is undecidable whether ϕm(m) ↑ or not,
then C cannot be recursive.

Using the lemma above (lemma 3) we can verify that the undecidability of
expansion holds. Now we can prove theorem 3.

Proof. of theorem 3. Let j ⊗ N be an arbitrary natural number, thought of as
a code in Ψ . Form the set C = {i :; i � j}. Since C is non-trivial, it cannot be
recursive by lemma 3. Thus the expansion property is undecidable.

We can also use lemma 3 to prove the undecidability of other properties on
extensions of the AFA. As a matter of illustration we prove the undecidability
of joined expansion.

Definition 13 (Join-expansion). Consider an AFA Φ and one of its exten-
sions Ψ . Let � be finitely-step-computable relation on N× N. Let i and j, such
that, ϕi ∃= ψi and ϕj ∃= ψj. This means that i and j are extension codes. Define
i ⇓ j, iff, there is k such that k � i and k � j, such that, ϕk = ψk. This last
fact means that k is a code in Φ.

Proposition 2 (Undecidability of ⇓). It is undecidable whether i ⇓ j, for
any i, j ⊗ N.

Proof. Any set S saturated by � is such that, i ⇓ j, iff, either i, j ⊗ S or
i, j ∃⊗ S. Since, by lemma 3 there is no non-trivial and recursive saturated set S,
the relation ⇓ cannot be recursive.

5 Conclusion

In this note we showed how to obtain abstract definitions and proofs of well-
known notions and properties related to λ-calculus and explicit substitutions
communities. Starting from the abstract setting to computability, initiated by
Hartley Rogers, we defined abstract notions of reducibility (β-reduction) and of
extension calculus and proved that the expansion and join-expansion properties
are undecidable. Abstract versions of Rice’s theorem, theorem 2 and lemma 3
were used as key auxiliary results.

It is important to emphasize that Rice’s theorem in this abstract setting is
strongly related to Scott’s theorem. However, from what was shown here, there
is no need of additional encoding to prove expansion undecidability as it is
discussed at the introduction. This points out that Rice’s theorem is broader as

On the Computability of Relations on λ-terms and Rice’s 213

a tool to prove undecidability properties than Scott’s theorem. Although, both
theorems, at the statement level, are equivalent.

Further considerations from our investigations include the application of Rice’s
theorem to prove undecidability of other properties of computational interest
such as those related to higher-order unification (e.g., [8,7]) in more sophisti-
cated λ-calculus extensions.

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit Substitutions. J. of
Functional Programming 1(4), 375–416 (1991)

2. Arbiser, A.: The Expansion Problem in Lambda Calculi with Explicit Substitution.
J. Log. Comput. 18(6), 849–883 (2008)

3. Benaissa, Z.-E.-A., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a Calculus of
Explicit Substitutions which Preserves Strong Normalization. J. of Functional Pro-
gramming 6(5), 699–722 (1996)

4. Bloo, R., Rose, K.H.: Preservation of Strong Normalisation in Named Lambda
Calculi with Explicit Substitution and Garbage Collection. In: CSN-95: Computer
Science in the Netherlands, pp. 62–72 (1995)

5. da Silva, F.H.: Expansibilidade em Cálculos de Substituições Expĺıcitas. Mas-
ter’s thesis, Graduate Program in Informatics, Universidade de Braśılia (December
2012) (in Portuguese)

6. de Bruijn, N.G.: Lambda-Calculus Notation with Nameless Dummies, a Tool for
Automatic Formula Manipulation, with Application to the Church-Rosser Theo-
rem. Indag. Mat. 34(5), 381–392 (1972)

7. de Moura, F.L.C., Ayala-Rincón, M., Kamareddine, F.: Higher-Order Unification:
A structural relation between Huet’s method and the one based on explicit substi-
tutions. J. Applied Logic 6(1), 72–108 (2008)

8. Dowek, G., Hardin, T., Kirchner, C.: Higher-order Unification via Explicit Substi-
tutions. Information and Computation 157(1/2), 183–235 (2000)

9. Kamareddine, F., Ŕıos, A.: A λ-calculus à la de Bruijn with Explicit Substitu-
tions. In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 45–62. Springer,
Heidelberg (1995)

10. Kesner, D.: The Theory of Calculi with Explicit Substitutions Revisited.
In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 238–252.
Springer, Heidelberg (2007)

11. Machtey, M., Young, P.: An introduction to the general theory of algorithms. The-
ory of computation series. Elsevier North-Holland, New York (1978)

12. Rice, H.G.: Classes of Recursively Enumerable Sets and Their Decision Problems.
Trans. Amer. Math. Soc. 74, 358–366 (1953)

13. Rogers Jr., H.: Theory of recursive functions and effective computability. MIT
Press, Cambridge (1987)

14. Rose, K.H.: Explicit Cyclic Substitutions. In: Rusinowitch, M., Remy, J.-L. (eds.)
CTRS 1992. LNCS, vol. 656, pp. 36–50. Springer, Heidelberg (1993)

Computing in the Presence
of Concurrent Solo Executions

Maurice Herlihy1, Sergio Rajsbaum2, Michel Raynal3,4, and Julien Stainer4

1 Brown University, Providence (RI), USA
2 Instituto de Mathematicas, UNAM, D.F. 04510, Mexico

3 Institut Universitaire de France
4 IRISA Université de Rennes 1, INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract. In a wait-free model any number of processes may crash. A process
runs solo when it computes its local output without receiving any information
from other processes, either because they crashed or they are too slow. While in
wait-free shared-memory models at most one process may run solo in an execu-
tion, any number of processes may have to run solo in an asynchronous wait-free
message-passing model.

This paper is on the computability power of models in which several processes
may concurrently run solo. It first introduces a family of round-based wait-free
models, called the d-solo models, 1 ≤ d ≤ n, where up to d processes may
run solo. The paper gives then a characterization of the colorless tasks that can be
solved in each d-solo model. It also introduces the (d, Σ)-solo approximate agree-
ment task, which generalizes Σ-approximate agreement, and proves that (d, Σ)-
solo approximate agreement can be solved in the d-solo model, but cannot be
solved in the (d + 1)-solo model. The paper studies also the relation linking d-
set agreement and (d, Σ)-solo approximate agreement in asynchronous wait-free
message-passing systems.

These results establish for the first time a hierarchy of wait-free models that,
while weaker than the basic read/write model, are nevertheless strong enough to
solve non-trivial tasks.

1 Introduction
Distributed computability. The computability power of a distributed model depends on
its communication, timing, and failure assumptions. A basic result is the impossibility
to solve consensus in an asynchronous read/write [16] or message-passing [8] system
even if only one process may crash. When looking at the communication medium and
assuming asynchronous processes prone to crash failures, a read/write system and a
message-passing system have the same computability power if and only if less than half
of the processes may crash [1]. If a majority of the processes may crash, the message
passing model is weaker than the shared memory model because partitions can occur.

The power of a distributed model has been studied in detail with respect to tasks,
which are the distributed equivalent of functions in sequential computing. Each process
gets only one part of the input, and after communicating with the others, decides on
an output value, such that collectively, the various local outputs produced by the pro-
cesses respect the task specification, which is defined from the local inputs of the pro-
cesses. This paper concentrates on the class of colorless tasks (e.g., [3,12]), where the
specification is in terms of possible inputs and outputs, but without referring to which

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 214–225, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Computing in the Presence of Concurrent Solo Executions 215

process gets which input or produces which output. Among the previously studied no-
table tasks, many are colorless, such as consensus [8], set agreement [5], approximate
agreement [6], loop agreement [13] while some are not, like renaming [2].

Wait-freedom and solo execution. This paper considers wait-free distributed crash-
prone asynchronous models. Wait-free has two (complementary) meanings. First, it
means that the model allows up to n − 1 processes to crash, where n is total num-
ber of processes. Its other meaning expresses a liveness condition, namely it requires
that every non-faulty process progresses and eventually decides (i.e., computes a result)
whatever the behavior of the other processes [11].

In a wait-free model where processes must satisfy the wait-freedom liveness condi-
tion, a process has to make progress even in the extreme cases where all other processes
have crashed, or are too slow, and consequently be forced to decide without knowing
their input values. Hence, for each process, there are executions where this process
perceives itself as being the only process participating in the computation.

More generally, we say that a process executes solo if it computes its local output
without knowing the input values of the other processes.

Two extreme wait-free models: shared memory and message passing. In a model where
processes communicate by reading and writing shared registers, at most one process can
run solo in any execution. This is because, when a process runs solo, it writes and reads
from the shared memory, and eventually writes its decision. Any other process that
starts running, will be able to read the history left by the solo process in the memory.

When considering message-passing communication, all processes may have to run
solo concurrently in the extreme case, where messages are arbitrarily delayed, and each
process perceives the other processes as having crashed. Only tasks that can be solved
without communication can be computed in this model.

Investigating the computability power of intermediary models. The aim of the paper is
to study the computability power of asynchronous models in which processes may run
solo in the same execution. More precisely, assuming that up to d processes may run
solo, the paper addresses the following questions:

– How to define a computation model in which up to d processes may run solo?
– Which tasks can be computed in such a model?

The aim is to study these questions in a clean theoretical framework, and (for the first
time) investigate models weaker than the basic wait-free read/write model. However,
we hope that our results are relevant to other intermediate models, such as distributed
models over fixed or wireless networks.

To simplify the technical development, following [4], the paper develops a theoret-
ical round-based framework, iterated model (IIS) that has been proved useful in many
other papers. Processes execute an infinite sequence of asynchronous rounds and com-
municate through specific objects called immediate snapshot objects. Such objects are
high-level read/write objects such that a new object instance is associated with each
round and, when it executes a round r, a process can access only the object associated
with round r. A main interest of the IIS model is that, from a task computability point
of view, it has the same power as the read/write wait-free model [4]. Also, the topology
of the IIS model is easier to analyze, establishing a good foundation to analyze task
solvability in various distributed computing models.

216 M. Herlihy et al.

Contributions. The following contributions answer previous questions:

– The definition of a family of d-solo models, each parametrized with an integer d,
1 ⊕ d ⊕ n. The 1-solo model corresponds to the IIS model (which is equivalent
to the read/write wait-free model [4]), while the n-solo model corresponds to the
round-based wait-free message-passing model.

– A characterization of the set of colorless tasks that can be solved in the d-solo
model, 1 ⊕ d ⊕ n. Via a new form of complex subdivisions, this characterization
connects topology with colorless algorithms.

– Any d-solo model with d ≤ 2, is weaker than the read/write wait-free model, yet
there are natural, non-trivial tasks that can be solved in the d-solo model. One of
these tasks, called (d, Θ)-solo approximate agreement (in short (d, Θ)-SAA) is such
that (d, Θ)-SAA can be solved in the d-solo model, for any Θ > 0, but not in the
(d + 1)-solo model. Hence, more tasks can be solved in the d-solo model than in
the (d + 1)-solo model, for 1 ⊕ d < n, which establishes a hierarchy of solo
models.

– Finally, the d-solo model is related to d-set agreement. This relation shows that, for
d < n, d-set agreement is strong enough to solve (d, Θ)-solo approximate agree-
ment but is too weak to solve (d−1, Θ)-solo approximate agreement in the wait-free
message-passing model. This provides us with a better insight on a bound on the
“maximal partitioning” allowed to solve (d− 1, Θ)-solo approximate agreement in
the wait-free message-passing model.

The (d, Θ)-solo approximate agreement task is a generalization of approximate agree-
ment [6]. The input of each process consists of a point in the Euclidean space R

N

(N ≤ d). The validity property states that each process pi has to decide a point which
is in the convex hull of all the input points. The agreement property states that at most
d processes may decide any point in the convex hull of the input points (let CH be the
convex hull defined by these at most d points), while the other processes have to decide
values whose distance to CH is at most Θ. Actually, the convex hull of solo processes is
an “attractor” for the set of decided values.

When d = 1, validity and agreement imply that the Euclidean distance between
any pair of points decided by the processes has to be upper bounded by a predefined
constant. Thus, (1, Θ)-solo approximate agreement problem in R

m is essentially the
problem that has been recently considered in the context of t Byzantine failures and
asynchronous message-passing systems [17,20], where it is shown that it can be solved
iff n > t(m+ 2).

The colorless tasks that are solvable in the wait-free iterated immediate snapshot
(IIS) model have been characterized in [12]. Due to the simulations in [4,10], this char-
acterization holds for the usual read/write wait-free model. Section 4 extends the char-
acterization of [12] to the d-solo model, 1 ⊕ d ⊕ n. Our characterization in terms
of colorless algorithms permits the use of standard subdivisions, instead of chromatic
subdivisions used in previous papers. We believe colorless algorithms are interesting in
themselves, and indeed, for d = 1, if a colorless task is solvable, it is solvable by a
colorless algorithm. For d > 1 we defer the proof that colorless algorithms and general
algorithms can solve a very similar class of tasks.

Computing in the Presence of Concurrent Solo Executions 217

One of the central results of topology is the Simplicial Approximation Theorem [18],
which establishes what is a “discrete version” of a continuous map. This theorem is also
central for the wait-free characterization theorem of [15] and its t-resilient extension
(e.g., [12]). However, this theorem cannot be used in a d-solo model, d > 1, because it
is no longer the case that the diameter of the simplexes in a subdivision is reduced. Not
even the Relative Simplicial Approximation Theorem [21] can be directly used.

Finally, it is important to notice that our d-solo model addresses different issues
than the d-concurrency model of [9], where it is shown that with d-set agreement any
number of processes can emulate d state machines of which at least one remains highly
available. While d-concurrency is used to reduce the concurrency degree to at most d
processes that are always allowed to cooperate, d-solo allows up to d processes to run
independently (i.e., without any cooperation).

Roadmap. The paper is composed of 6 sections. Section 2 introduces base definitions,
the communication objects, and the d-solo model. Section 3 investigates colorless tasks
in the d-solo model, while Section 4 focuses on what can be computed in the pres-
ence of concurrent solo executions. Then, Section 5 defines the (d, Θ)-solo approximate
agreement problem, shows that it can be solved in the d-solo model and cannot in the
(d+1)-solo model, thereby defining a strict hierarchy of distributed computing models.
Section 6 concludes the paper. Due to page limitation, topology notions, all proofs, ad-
ditional technical developments, and relations between d-set agreement and (d, Θ)-solo
approximate agreement in wait-free message-passing systems are given in [14].

2 Tasks, Processes, Communication Object, and Iterated Model
Tasks. A task is a one-shot distributed computing problem specified in terms of an in-
put/output relationι. Each process starts with a private input value and must eventually
compute a private output value. The task specifies the possible initial configurations. An
initial configuration I specifies the input value of each process. Similarly, the output
values produced by the processes in an execution represents an output configurationO.

A task (I,O, ι) is defined by a set of input configurations I, a set of possible output
configurationsO, and a relation ι which specifies which output configurationsO ∈ O
are correct for each input I ∈ I. A more formal description appears in Section 3.1 and
in previous papers such as in [15].

Processes. The system model is made up of n asynchronous (deterministic) sequen-
tial processes, p1, . . . , pn, which proceed in asynchronous rounds [19]. The index i of
process pi is sometimes used to denote pi. Up to n − 1 processes may crash. Once a
process crashes, it never recovers. We say the model is wait-free.

Rounds and communication objects. A communication objectCO[r] is associated with
each round r and this object is the only means for the processes to communicate during
round r. The rounds are communication-closed [7] which means that, when a process
executes a round, it can communicate with other processes only through the object
associated with this round.

More precisely, CO[r] is a one-shot object (i.e., each process accesses it only once)
which provides the processes with a single operation denoted communicate(i, v), where
v is the value that the invoking process pi wants to communicate to the other processes

218 M. Herlihy et al.

during round r. Such an invocation returns to pi a set of pairs (process identity, value)
deposited into CO[r] by other processes during round r.

Iterated model. Each process pi executes the algorithm skeleton described in Figure 1,
where the local computation parts are related to the particular task that is solved. The
local variable ri is the local round number, Δsi contains pi’s local state, while viewi

contains all the pairs (j, Δsj) communicated to pi during the current round. The local
transition function Γi() defines the new local state of pi according to its previous local
state and the pairs (j, Δsj) it has obtained from COd[r] (the parameter d is explained
below in Section 2.1). To solve a task, it is necessary to instantiate accordingly Γi(), the
predicate decision() and the function dec val(): decision() allows pi to decide, while
dec val() allows it to compute the decided value. As we are interested in computability
and not efficiency, we assume a full information algorithm, i.e., at the end of each round
ri, Δsi contains the value of viewi, and Γi can be task independent. However, we will
see in Section 3 that in some cases, tasks can be solved without communicating all a
process knows.

(01) ri ← 0; Φsi ← initial local state;
(02) loop forever ri ← ri + 1; viewi ← COd [ri].communicate(i, Φsi);
(03) Φsi ← Θi(Φsi, viewi); if decision(Φsi) then dec val(Φsi) end if
(04) end loop.

Fig. 1. Generic iterated model

2.1 Communication Object

The communication objects COd[1], COd[2], etc., of an execution are parametrized by
a solo-dimension d, 1 ⊕ d ⊕ n. As previously indicated, an object COd[r] contains a
set of pairs, one per process. Each pair (i, v) is such that i is a process index and v the
value communicated by pi, and COd[r] contains at most one pair per process.

Definition. The behavior of every object COd is defined as follows. Considering an
execution during which each of the n processes {p1, . . . , pn} accesses the object (at
most once) using its local state Δsi as input, one can represent this execution by an or-
dered partition, i.e., a tuple of non-empty sets (P1, . . . , Pz) such that (1) for any distinct
i, j ∈ {1, . . . , z}: Pi ⊗ Pj = ∈, and (2)

⋃z
i=1 Pi = {p1, . . . , pn}. From an operational

view, the ordered partition (P1, . . . , Pz) describes the sequence of concurrent accesses
to the object COd.

The behavior of COd is defined from a d-ordered partition, where a d-ordered parti-
tion is an ordered partition (Ψ1, . . . , Ψz≥) such that 0 ⊕ |Ψ1| ⊕ d (the size of the first set
of the partition can be 0 and cannot exceed d). More precisely, the d-ordered partition
(Ψ1, . . . , Ψz≥) associated with COd is:

– If |P1| > d: (Ψ1, . . . , Ψz≥) = (∈, P1, . . . , Pz), and
– If |P1| ⊕ d: (Ψ1, . . . , Ψz≥) ∈ {(∈, P1, . . . , Pz), (P1, . . . , Pz)}.

(Ψ1, . . . , Ψz≥) = (P1, . . . , Pz) captures the cases where, initially, d (or less) processes
execute solo. In the other cases we have (Ψ1, . . . , Ψz≥) = (∈, P1, . . . , Pz), because ini-
tially either too many processes execute concurrently (first item), or, while no more than
d processes execute concurrently, none of them executes solo.

Computing in the Presence of Concurrent Solo Executions 219

The values viewi, 1 ⊕ i ⊕ n, obtained by the processes when the behavior of COd

is represented by the d-ordered partition (Ψ1, . . . , Ψz≥) are defined as follows:
(i ∈ Ψ1)∗ (viewi = {(i, Δsi)}), and

(x > 1 ≥ i ∈ Ψx)∗
(
viewi = {(j, Δsj) : j ∈ Ψy ≥ y ⊕ x}

)
.

This means that the view of each process pi belonging to Ψ1 (where 0 ⊕ |Ψ1| ⊕ d)
contains only its own contribution, namely the pair (i, lsi). Differently, the view of a
process pi in Ψx, where x > 1, contains all the pairs (j, Δsj) deposited in COd by
the processes pj of the sets Ψy such that y ⊕ x. Thus, each process of Ψ1 appears
as executing solo, while each other process of a set px, x ⊆= 1, sees the contributions
provided (a) by all the processes pi belonging to the “previous” sets Ψy (y < x), and
(b) by all the processes from its “concurrency” set Ψx. (The immediate snapshot object
described in [3] implements COd for d = 1.) Examples of communication objects are
presented in [14].
Object properties. Given an object COd , the next properties follows from its definition
(See examples of COd objects in the Appendix).

– Solo execution upper bound. 0 ⊕ |{i such that |viewi| = 1}| ⊕ d.
– Self-inclusion. ↑ i : (i,−) ∈ viewi.
– Containment. ↑ i, j : ((|viewi| ⊕ |viewj |) ≥ |viewj | > 1)

)∗ (viewi ⊃ viewj).

2.2 A Spectrum of Solo Models

It follows from their definition that COd is stronger (more constraining) than COd+1 in
the sense that the subdivided complex of COd is included the one of C d+1. Intuitively,
this means that COd includes “more synchrony” than COd+1.
The d-solo model. The generic framework described in Figure 1 instantiated with COd

objects is called the d-solo model. It is denoted ACSdn,n−1(ASC stands for Asyn-
chronous Concurrent Solo) where the first subscript denotes the total number of pro-
cesses, while the second subscript denotes the upper bound on the number of processes
allowed to crash.
Hierarchy of d-solo models. Let A ⊇T B mean that any task that can be solved in the

model B can be solved in the model A, and A ⊂T B
def
= (A ⊇T B) ≥ (B ⊇T A).

Let ARWn,n−1 denote the base wait-free (asynchronous) read/write model. It fol-
lows from the fact that (for task solvability) the IIS model and ARWn,n−1 have the
same computability power [4], and IIS is nothing more than ACS1n,n−1, that we have
ARWn,n−1 ⊂T ACS1n,n−1.

Let AMPn,n−1 denote the classical (non-iterated) message-passing system where
up to (n− 1) processes may crash. As all processes except one may crash and commu-
nication is asynchronous (hence messages can be arbitrarily delayed), the tasks that can
be solved in AMPn,n−1 are the tasks that can be wait-free solved without communi-
cation. But, this set of tasks is exactly the set of tasks that can be solved in ACSnn,n−1.
Hence,ACSnn,n−1 ⊂T AMPn,n−1.

It follows from the definition of the communication objects COd and COd+1 that
any task solvable inACSd+1

n,n−1 is solvable inACSdn,n−1. We have consequently the fol-

lowing hierarchy of models: ARWn,n−1 ⊂T ACS1n,n−1 ⊇T . . . ⊇T ACSdn,n−1 ⊇T

. . . ⊇T ACSnn,n−1 ⊂T AMPn,n−1. We will see in Section 5 that A ⊇T B can be
replaced byA ↓T B (all the tasks solvable in B are solvable inA, and there is one task
solvable in A and not in B).

220 M. Herlihy et al.

3 Colorless Tasks and the d-Solo Model
This section focuses on colorless tasks that can be solved in the d-solo model. After
having defined colorless tasks it shows that, for these tasks, one can use a restricted
form of the algorithm in Figure 1. It then, introduces the notions of a (d,R)-subdivision
task and a (d,R)-agreement task. (More topology notions are given in [14].)

3.1 Colorless Tasks
A colorless task is a special kind of task where the processes cannot use their ids dur-
ing the computation. This implies that the task specification is not in terms of ids. A
colorless task specifies which sets of values are valid input configurations, and which
are valid output decisions, but not which value is assigned to which process. Thus, a
process may adopt the input value or the output value of another process.

Formally, a colorless task is a triple (I∨,O∨, ι∨), where I∨ is a colorless input
complex, O∨ is a colorless output complex, and ι∨ : I∨ ∅ 2O

∗
is a carrier map. A

colorless complex is a family of sets, over some basic set of values, such that if a set
is in the complex, then all its subsets are also in the complex. A set in the complex is
called a simplex. Simplexes of size 1, are called vertices, and of size 2, edges. Indeed, a
graph is a 1-dimensional complex. In the case of a colorless complex, a vertex is just a
value, either an input or an output value, while in a colored complex, a vertex is a pair
of values, one is a process id, and the other is an input our output value. If Π is an input
simplex in I∨, the carrier map ι∨(Π) is a subcomplex ofO∨ satisfying monotonicity:
↑Π, Π∗ ∈ I∨ : ι∨(Π ⊗ Π∗) ⊃ ι∨(Π) ⊗ι∨(Π∗).
Operationally, the meaning of a colorless task is the following. If Π ∈ I∨, then

the processes can start an execution with input values from Π; different processes may
propose the same vertex or different vertices from Π. Processes eventually decide (not
necessarily distinct) vertices that belong to the same output simplex Σ ∈ O∨, such that
Σ ∈ ι∨(Π). If the system consists of n processes, then the processes can start with
at most n different input values, and hence, processes will never start on a simplex
Π of I of dimension greater than n − 1 (the dimension of Π is |Π| − 1). Thus, for n
processes, only the simplexes of I of dimension ⊕ n − 1 are relevant, i.e., the n − 1
skeleton of I, denoted Skeln−1I. For example, in a system of two processes, n = 2,
only the 1-skeleton of I is of interest, which is the graph consisting of the vertices and
1-simplices of I.

3.2 Colorless Algorithms
A colorless algorithm is an algorithm in the form of Figure 1, but where the local
computation made by Γi in line (3) is very restricted. Although a colorless algorithm is
not as powerful as an algorithm with no restrictions, it simplifies that exposition, and in
the full version we show that they can solve a similar class of colorless tasks.

Informally, in a colorless algorithm processes behave in an anonymous way: pro-
cesses consider the shared memory as if it is a set. (A colorless complex is denoted
with a ≡ superscript, as in K∨). In each round, a process deposits its input in the set,
and gets back a view of the contents of the set. If two processes deposit the same value
in the set, only one copy is stored. When a process gets back a set of values, there is
no information of which process deposited which value. A process “forgets” which is
its own value in the set. The set of values that a process receives at the end of a round,
becomes its input to the next round.

Computing in the Presence of Concurrent Solo Executions 221

Formally, in an execution, the initial local state of a process pi is a vertex vi of I∨,
and is assigned in line 1 to Δsi. Furthermore, the set of all initial states vi (not necessarily
distinct) is a simplex Π of I∨. We may write, Π = {Δs1[0], . . . , Δsn[0]}, where Δsi[0]
denotes the initial value of Δsi. Notice that |Π| may be less than n because different
processes may start with the same input value.

The local transition Γi eliminates process ids. Namely, during any round r and for any
process pi, if we denote by Δsi[r] the value of Δsi at the end of round r, in line 2 of the
algorithm, viewi is assigned the value returned by COd [r].communicate(i, Δsi[r−1]),
and this value is a set of pairs {(i1, Δsi1 [r − 1]), . . . , (ik, Δsik [r − 1])} that includes ids
i1, . . . , ik, but when the function Γi is applied to this set it returns a set Πr

i = {Δsi1 [r −
1], . . . , Δsik [r − 1]}. We assume every process executes the same number of rounds,
R ≤ 0, and in the last round, produces an output value dec val(Δsi) (all processes use
the same function dec val).

For an R round colorless algorithm in the d-dimensional model, the algorithm com-
plex is defined as follows. For each input simplex Π ∈ I∨, the subcomplex P∨(Π)
represents the executions r where all processes start with inputs from Π (at least one
process starts with each of the vertices in Π). Moreover, in the algorithm complex for
the d-dimensional model we do not want to include the (d− 1)-dimensional model, so
we consider only runs where the processes that in a round see more than one process,
they see at least d + 1 processes. The complex P∨(Π) contains a top dimensional sim-
plex Σ = {Δsi} for each such R round execution of the algorithm starting in Π, where
the vertices Δsi of Σ are the values of Δsi[r] at the end of this execution, for each process
pi (without repetitions, as the simplex is a set). The complex P∨ is the union of P∨(Π)
over all Π ∈ I∨. It is easy to prove that P∨(·) is a strict carrier map from I∨ to the
algorithm complex P∨.

We will explain the significance of the next lemma later on, when we discuss subdi-
visions.

Lemma 1. Consider a 1-round colorless algorithm and an input simplex Π ∈ I∨. The
simplexes of P∨(Π) are of the form Σ = {Σ1, . . . , Σz}, where each Σi ⊃ Π, and there is
an l, 0 ⊕ l ⊕ d such that (1) for all i, 0 ⊕ i ⊕ l, |Σi| = 1, so ∃0⊆i⊆lΣi is a face Π∗ of Π,
(2) for all j, l < j ⊕ z, Π∗ � Σj , and (3) for all j, l < j ⊕ z − 1, Σj � Σj+1.

If P∨(·) is a carrier map from I∨ to the algorithm complex P∨, and dec val is a simpli-
cial map from P∨ to O∨, we say that dec val is carried by ι∨ if for each Π ∈ I∨ and
each Σ ∈ P∨(Π), the simplex dec val(Σ) belongs to ι∨(Π).
Lemma 2. If the colorless task (I∨,O∨, ι∨) is solvable by a colorless algorithm then
there exists an algorithm complex P∨, and a simplicial map dec val from P∨ toO∨ that
is carried by ι∨.

3.3 (d,R)-Subdivision and (d,R)-Agreement Tasks
The (d,R)-subdivision task. Which is the simplest task a colorless algorithm can solve
in the d-dimensional model? It is the task solved when each process executesR rounds,
then stops, and its decision function is the identity! Namely, dec val(Δsi) = Δsi i.e.
a process decides the set of values Δsi[R] it retrieves from the communication object
during the Rth round. Given any input complex I∨ and any integer R ≤ 0, we call
this task the (d,R)-subdivision task over I∨. The output complex O∨ of this task is

222 M. Herlihy et al.

of course equal to the algorithm complex P∨, with the simplicial map dec val being
the identity. For the carrier map, ι∨(Π) includes all simplexes Σ that correspond to
executions starting in Π, i.e., ι∨(Π) = P∨(Π). In particular, for R = 0, I∨ = O∨, and
ι∨ is the identity carrier map, which sends a simplex Π to the complex consisting of Π
and all its faces (which we often denote by Π, abusing notation).

By definition, the (d,R)-subdivision task over I∨ is solvable in the d-dimensional
model, and moreover, by a colorless algorithm. In fact, it is the basic building block
to solve every other colorless task, as shown in Theorem 1. We will justify the name
“subdivision task” when we see how to specify the task without resorting to executions
of some model in Section 3.4.

The (d,R)-agreement task. When the vertices of I∨ are points in Euclidean space,
the (d,R)-subdivision task can be used directly to solve a task that we call (d,R)-
agreement task over I∨, which is defined combinatorially in Section 5. In the (d,R)-
subdivision task, processes propose sets of values in each round. We can encode such a
set of values as its barycenter b, and then the process can directly propose b. We shall
see in Section 5, that, although both tasks are essentially the same, when we work with
barycenters processes compute output values within Θ of each other (except for at most
d processes that may run solo), and we can make Θ as small as we want, by choosing a
large enough value of R.

Operationally, the (d,R)-agreement task over I∨ is defined as follows. Processes
execute R rounds of a colorless algorithm in the d-dimensional model. In each round
r, each process pi computes its value Δsi[r] that will be the input to the next round, in
line 3 of the algorithm, by taking the barycenter of the values that it gets back from the
object in line 2. The barycenter computed in roundR is the output of of the process.

3.4 The Structure of Colorless Algorithms

The structure of a colorless complex is explained in terms of subdivisions (due to page
limitation, more developments can be found in [14]). Examples of subdivisions of a
simplex are illustrated on the figure that follows at the right of the page.

Perhaps the simplest subdivision
is the stellar subdivision. Given a
complex (abusively denoted Πm)
consisting of an m-simplex Πm =
{s0, . . . , sm} and all its faces, the
complex Stel(Πm, b) is constructed
by taking a cone with apex b over
the boundary complex ΛΠm.

The barycentric subdivision,
Bary Πm, is perhaps the most
widely used in topology. A simplex

σ2
Stel σ2

Bary σ2

σ3 Stel σ3 Div2 σ3

Σ is in Bary Πm if and only if there exists a sequence Π0 ∧ . . . ∧ Πz of faces of Πm,
and the set of vertices of Σ is the set of the barycenters of the these faces, denoted
Π̂i, 0 ⊕ i ⊕ z.

For the d-solo models, we need to define a family of subdivisions that goes from the
stellar to the barycentric subdivision. The d-dimensional subdivision of a complex K

Computing in the Presence of Concurrent Solo Executions 223

denoted Divd K, is the barycentric subdivision of K relative to Skeld−1K. Intuitively,
we do not subdivide Skeld−1K because we consider executions where up to d processes
run solo, they get their own view in an invocation of a COd object. See the construction
of Figure 2 and topology notions in Appendix. As usual, the R-iterated d-dimensional
subdivision, DivRd K, is obtained by repeating the subdivision process R times.

(01) Divd Skeld−1ιm ← Skeld−1ιm; % each vertex is labeled by its name
(02) for k from d to m do % Construct Divd Skelkιm %
(03) for each simplex ιk in ιm do
(04) insert a vertex b in the barycenter of ιk;

% this barycenter is labeled with the set of vertices of ιk

(05) construct the cone with apex at b over Divd Ωιk;
% over the already subdivided boundary of ιk %

(06) add the cone to Divd Skelkιm

(07) end for loop
(08) end for loop.

Fig. 2. Constructing the subdivision Divd ιm of a simplex ιm for the d-solo model

The next lemma follows from the fact that the construction of Divd in Figure 2
corresponds exactly to the description given in Lemma 1, and the fact in the system
there are n processes, so they can start with at most n different input values (so only the
input simplexes in I∨ of dimension at most n− 1 are relevant).

Lemma 3. If P∨R is the R-round algorithm complex of a colorless algorithm in the d-
solo model with input complex I∨, then P∨R is anR-iterated, d-dimensional subdivision
of the n− 1 skeleton of I∨.
Returning to the (d,R)-subdivision task, we can now justify its name, simply by recall-
ing that its output complex is equal to the algorithm complex:

Lemma 4. The (d,R)-subdivision task over I∨ for n processes is a triple (I∨,O∨, ι∨),
where O∨ is the R-iterated, d-dimensional subdivision of the n− 1 skeleton of I∨, and
ι∨ is equal to the corresponding subdivision carrier map.

4 What Can Be Computed in the Presence of Solo Executions?
This section presents a characterization of the colorless tasks that can be solved in each
one of the d-solo models. Consider an r round colorless algorithm that solves the color-
less task (I∨,O∨, ι∨). At the end of the r-th round, processes have to decide an output
value, by executing dec val(Δsi) in line 3. The result of dec val(Δsi) is a vertex in O∨,
and different processes may decide different vertices as long as they belong to the same
simplex of O∨. This means that dec val is a simplicial map from P∨r to O∨. Moreover,
dec val is carried by ι∨, in the sense that for Π ∈ I∨: dec val(P∨r (Π)) ⊃ ι∨(Π),
which means that for any input simplex Π, any r round execution ends in a simplex
Σ of P∨r , and the decision that the processes make in Σ , form an output simplex
dec val(Σ) of O∨. This output simplex dec val(Σ) must be in ι∨(Π), to satisfy the
task’s specification.

224 M. Herlihy et al.

Theorem 1. The colorless task T ∨ = (I∨,O∨, ι∨) is solvable with n processes in the
d-solo model by a colorless algorithm if and only if there is an R ≤ 0 and a simplicial
map β : DivRd Skeln−1I∨ ∅ O∨ carried byι∨.

5 (d, Δ)-Solo Approx. Agreement and Strict Hierarchy of Models

We now study the properties of the (d,R)-agreement task of Section 3.3 in terms of a
precision parameter Θ, showing that this task can be solved in the d-solo model while it
cannot be solved in the (d+ 1)-solo model.

Let Θ be a positive real. The (d, Θ)-solo approximate agreement problem (in short
(d, Θ)-SAA) is a generalization of the Θ-approximate agreement problem [6]. The (1, Θ)-
solo approximate agreement instance implies 2Θ-approximate agreement. Assuming the
input of each process is a point of the d-dimensional Euclidean space R

d, (d, Θ)-solo
approximate agreement is defined by the following properties. (This definition is dis-
cussed and compared to other definitions in [14].)

– Validity. Any output lies within the convex hull of the inputs.
– Agreement. There is a set of processes S, 1 ⊕ |S| ⊕ d, such that any process pi

that is not in S decides a value oi (point) such that the Euclidean distance between
oi and CH is at most Θ, where CH is the convex hull of the points decided by the
processes in S.

– Termination. If a process pi does not crash, it decides a value.

It follows from this definition that up to d processes are allowed to decide any set
of points within the convex hull (as an example each of them may decide the point it
proposes). These processes define the set S, and intuitively, the values they decide are
collectively “represented” by their convex hull CH . Finally, the values decided by the
other processes are constrained by the values decided by the processes in S.

The next theorem shows that, from a task solvability point of view, the d-solo model
is stronger than the (d+ 1)-solo model.

Theorem 2. If the domain of the possible input values (a) is bounded and (b) contains

a regular simplex of dimension d whose edge length is strictly greater than 2Θd
√

2d
d+1 ,

then the (d, Θ)-solo approximate agreement problem is solvable in ACSdn,n−1but not in

ACSd+1
n,n−1.

6 Conclusion
A process executes solo when its computes its local result without knowing the input
values of the other participating processes. This paper addressed round-based asyn-
chronous wait-free executions in which up to d processes may execute solo in each
round. Among several contributions, the paper presented a strict hierarchy of wait-free
iterated models, called d-solo models, and a topology-based characterization of the col-
orless tasks which can be solved in such d-solo models, 1 ⊕ d ⊕ n. The paper also in-
troduced a colorless task, denoted (d, Θ)-solo approximate agreement (a generalization
of the classic approximate agreement task), which can be solved in the d-solo model
and cannot be solved in the (d+ 1)-solo model.

Computing in the Presence of Concurrent Solo Executions 225

Acknowledgments. This work has been partially supported by the French ANR project
DISPLEXITY devoted to computability and complexity in distributed computing), and
a UNAM-PAPIIT grant.

References

1. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing systems.
Journal of the ACM 42(1), 121–132 (1995)

2. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous
environment. Journal of the ACM 37(3), 524–548 (1990)

3. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Proc. 12th ACM
Symposium on Principles of Distributed Computing (PODC 1993), pp. 41–51 (1993)

4. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-free
computations. In: Proc. 16th ACM PODC 1997, pp. 189–198 (1997)

5. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally asyn-
chronous systems. Information and Computation 105, 132–158 (1993)

6. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agree-
ment in the presence of faults. Journal of the ACM 33(3), 499–516 (1986)

7. Elrad, T.E., Francez, N.: Decomposition of distributed programs into communication-closed
layers. Science of Computer Programming 2(3), 155–173 (1982)

8. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one
faulty process. Journal of the ACM 32(2), 374–382 (1985)

9. Gafni, E., Guerraoui, R.: Generalized universality. In: Katoen, J.-P., König, B. (eds.) CON-
CUR 2011. LNCS, vol. 6901, pp. 17–27. Springer, Heidelberg (2011)

10. Gafni, E., Rajsbaum, S.: Distributed programming with tasks. In: Lu, C., Masuzawa, T., Mos-
bah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 205–218. Springer, Heidelberg (2010)

11. Herlihy, M.P.: Wait-free synchronization. ACM TOPLAS 13(1), 124–149 (1991)
12. Herlihy, M.P., Rajsbaum, S.: The topology of shared-memory adversaries. In: Proc. 29th

ACM Symp. on Principles of Distr. Computing (PODC 2010), pp. 105–113. ACM Press
(2010)

13. Herlihy, M.P., Rajsbaum, S.: A classification of wait-free loop agreement tasks. Theoretical
Computer Science 291(1), 55–77 (2003)

14. Herlihy, M.P., Rajsbaum, S., Raynal, M., Stainer, J.: Computing in the Presence of Concur-
rent Solo Executions. Tech. Report 2004, IRISA (France), 19 pages (2013)

15. Herlihy, M.P., Shavit, N.: The topological structure of asynchronous computability. Journal
of the ACM 46(6), 858–923 (1999)

16. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unreliable asyn-
chronous processes. Adv. in Comp. Research, vol. 4, pp. 163–183. JAI Press (1987)

17. Mendes, H., Herlihy, M.P.: Multidimensional approximate agreement in Byzantine asyn-
chronous systems. In: 45th ACM Symp. on the Theory of Comp. (STOC 2013), pp. 391–400
(2013)

18. Munkres, J.R.: Elements of algebraic topology, 547 pages. Addison-Wesley (1984)
19. Raynal, M.: Concurrent programming: algorithms, principles, and foundations, 515 pages.

Springer (2013) ISBN 978-3-642-32027-9
20. Vaidya, N.H., Garg, V.K.: Byzantine vector consensus in complete graphs. In: Proc. 32nd

ACM Symposium on Principles of Distributed Computing (PODC 2013). ACM Press (2013)
21. Zeeman, E.C.: Relative simplicial approximation. Proc. Mathematical Proceedings of the

Cambridge Philosophical Society 60, 39–43 (1964)

Combining All Pairs Shortest Paths

and All Pairs Bottleneck Paths Problems�

Tong-Wook Shinn and Tadao Takaoka

Department of Computer Science and Software Engineering
University of Canterbury

Christchurch, New Zealand

Abstract. We introduce a new problem that combines the well known
All Pairs Shortest Paths (APSP) problem and the All Pairs Bottleneck
Paths (APBP) problem to compute the shortest paths for all pairs of
vertices for all possible flow amounts. We call this new problem the
All Pairs Shortest Paths for All Flows (APSP-AF) problem. We firstly
solve the APSP-AF problem on directed graphs with unit edge costs
and real edge capacities in Õ(

⊕
tn(α+9)/4) = Õ(

⊕
tn2.843) time, where

n is the number of vertices, t is the number of distinct edge capacities
(flow amounts) and O(nα) < O(n2.373) is the time taken to multiply
two n-by-n matrices over a ring. Secondly we extend the problem to
graphs with positive integer edge costs and present an algorithm with
Õ(

⊕
tc(α+5)/4n(α+9)/4) = Õ(

⊕
tc1.843n2.843) worst case time complexity,

where c is the upper bound on edge costs.

1 Introduction

Finding the shortest paths between pairs of vertices in a graph is one of the most
extensively studied problems in algorithms research. The shortest paths problem
is often categorized into the Single Source Shortest Paths (SSSP) problem, which
is to compute the shortest paths between one source vertex to all other vertices
in the graph, and the All Pairs Shortest Paths (APSP) problem, which is to
compute the shortest paths between all possible pairs of vertices on the graph.

Arguably the most famous algorithm for the APSP problem is Floyd’s algo-
rithm that runs in O(n3) time [5]. There have been many attempts at providing
sub-cubic time bounds for solving the APSP problem on dense graphs with real
edge costs [6,3,12,16,8,2,9], all achieving time improvements by logarithmic fac-
tors. The current best time bound is O(n3 log logn/ log2 n) by Han and Takaoka
[9]. If the graph has integer edge costs, faster matrix multiplication over a ring
[10] can be utilized to achieve deeply sub-cubic time bounds. Alon, Galil and
Margalit achieved O(n(3+Δ)/2) time bound for solving the APSP problem on
directed unweighted graphs, where O(nΔ) is the time bound on multiplying two
n-by-n matrices over a ring [1]. This time complexity translates to O(n2.687)

δ This research was supported by the EU/NZ Joint Project, Optimization and its
Applications in Learning and Industry (OptALI).

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 226–237, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Combining All Pairs Shortest Paths 227

with Θ < 2.373 [14]. The best time bound for this problem is currently O(n2.530)
by Zwick [15], thanks to Le Gall’s recent achievement in rectangular matrix
multiplication [7].

Another well studied problem in graph theory is finding the maximum bottle-
neck between pairs of vertices. The bottleneck of a path is the minimum capacity
of all edges on the path. The bottleneck for the pair of vertices (u, v) is the max-
imum bottleneck of all paths from u to v. The problem of finding the paths that
give the maximum bottlenecks for all pairs of vertices is formally known as the
All Pairs Bottleneck Paths (APBP) problem. Vassilevska, Williams and Yuster
achieved O(n2+Δ/3) = O(n2.791) time bound for solving the APBP problem on
graphs with real edge capacities [13], and this has subsequently been improved
to O(n(Δ+3)/2) = O(n2.687) by Duan and Pettie [4].

Let us consider the shortest path that gives us the bottleneck value of b from
vertex u to vertex v. In other words, we can push flows of amounts up to b from
u to v using this path. If the flow demand from u to v is less than b, however,
there may be a shorter path. This information is useful if we wish to minimize
the path cost (distance) for varying flow demands. Thus we combine the two well
known APSP and APBP problems and compute the shortest paths for all pairs
for all possible flow demands. We call this new problem the All Pairs Shortest
Paths for All Flows (APSP-AF) problem. Note that this is different from the
All Pairs Bottleneck Shortest Paths (APBSP) problem [13], which is to compute
the bottlenecks of the shortest paths for all pairs. There are obvious practical
applications for the APSP-AF problem in any form of network analysis, such as
computer networks, transportation and logistics, etc.

In this paper we present two algorithms for solving the APSP-AF problem on
directed graphs with positive integer edge costs and real edge capacities. Firstly
we present an algorithm to solve the problem on graphs with unit edge costs in
O(
⊕
tn(Δ+9)/4) = O(

⊕
tn2.843) time, where t is the number of distinct edge capac-

ities. We then extend this algorithm to solve the problem on graphs with positive
integer edge costs of at most c in O(

⊕
tc(Δ+5)/4n(Δ+9)/4) = O(

⊕
tc1.843n2.843)

time, which is reduced to the complexity of the first algorithm when c = 1.

2 Preliminaries

Let G = (V,E) be a directed graph with non-negative integer edge costs and
real edge capacities. Let n = |V | and m = |E|. Vertices (or nodes) are given
by integers such that {1, 2, 3, ..., n} ≤ V . Let (i, j) denote the edge from vertex
i to vertex j. Let cost(i, j) denote the cost and cap(i, j) denote the capacity of
the edge (i, j). Let t be the number of distinct cap(i, j), and let c be the upper
bound on cost(i, j). We define path length as the number of edges on the path,
irrespective of their costs or capacities. We define path cost or distance as the
sum of all edge costs on the path.

We represent G in a series of matrices. Let RΣ = {rΣij} be the reachability

matrix, for 0 < ι < n, where rΣij = 1 if j is reachable from i via some path

of length up to ι and rΣij = 0 otherwise. rΣii = 1 for all ι. r1ij = 1 if an edge

228 T. Shinn and T. Takaoka

exists from i to j, and 0 otherwise. R1 is called the adjacency matrix of G. Let
CΣ = {cΣij} be the capacity matrix, where cΣij represents the maximum possible

capacity (or bottleneck) from i to j via any paths of lengths up to ι. cΣii =∞ for
all ι. c1ij = cap(i, j) if there is an edge from i to j, and 0 otherwise. LetDΣ = {dΣij}
be the distance matrix, where dΣij represents the shortest possible distance from

i to j via any paths of lengths up to ι. dΣii = 0 for all ι. d1ij = cost(i, j) if there
is an edge from i to j, and ∞ otherwise.

Let X ⊗ Y denote the (min,+)-product and X Δ Y denote the (max,min)-
product of the two matrices X and Y , where:

X ⊗ Y =
n

min
k=1
{xik + ykj} X Δ Y =

n
max
k=1
{min{xik, ykj}}

Clearly the (min,+)-product is applicable to the distance matrix whereas the
(max,min)-product is applicable to the capacity matrix.

3 Review of the Algorithm by Alon, Galil and Margalit

Our algorithm for solving the APSP-AF problem is largely based on the algo-
rithm given by Alon et al. [1]. Therefore we provide a review of this algorithm
using the same set of terminologies as an earlier review of the same algorithm
by Takaoka [11]. The algorithm under review computes the All Pairs Shortest
Distances (APSD) on directed graphs with unit edge costs. In summary this al-
gorithm achieves sub-cubic time bound by utilizing faster matrix multiplication
over a ring to perform Boolean matrix multiplication, and also using the novel
idea of Bridging Sets.

Algorithm 1 consists of two phases. We refer to the first part of the algorithm
as the acceleration phase, and the second part of the algorithm as the cruising
phase. The acceleration phase repeatedly performs Boolean matrix multiplica-
tion with the adjacency matrix to compute APSD for all pairs with distances
up to ι = r, where r is a constant such that 1 < r < n. Clearly this only works
on graphs with unit edge costs where the path length and the path cost are
equivalent. The algorithm then switches to the cruising phase where the ordi-
nary multiplication method is used with the help of bridging sets, Si, where Si

is a set of “via” vertices for all rows i of the distance matrix D. That is, when
computing dΣik +dΣkj for the (min,+)-product, we inspect only the set of vertices
in Si for k rather than inspecting all O(n) elements. Alon et al. have shown that
with path lengths equal to r, the size of the bridging set Si for each row i is
bounded by O(n/r) [1]. Hence we start the cruising phase with |Si| = O(n/r)
for each row i.

The acceleration phase takes O(rnΔ) time, and the cruising phase performs
repeated squaring of the distance matrix in O(n2 · nr) time. Alon et al. chose
to increase the path length by a factor of 3

2 in each iteration of the cruising
phase. This factor of 3

2 is somewhat arbitrary, as any factor greater than 1 and
less than 2 can be used. Because the size of the bridging set decreases by a
constant factor in each iteration, we end up with a geometric series if we add up

Combining All Pairs Shortest Paths 229

Algorithm 1. Algorithm by Alon, Galil and Margalit

/* Acceleration Phase*/
for Σ = 2 to r do

Rη ← Rη−1 ×R1 /* Boolean matrix multiplication */
for i ← 1 to n; j ← 1 to n do

if rηij = 1 and dη−1
ij = ◦ then dηij ← Σ

if dη−1
ij < Σ then dηij ← dη−1

ij

/* Cruising Phase*/
while Σ < n do

Σ∗ ← ⊇ 3η
2
⊆

for i ← 1 to n do
Scan ith row of Dη with j and find the smallest set of equal dηij such that

⊇Σ/2⊆ ∀ dηij ∀ Σ and let the set of corresponding j be Si

for i ← 1 to n; j ← 1 to n do
mij ← mink∞Si{dηik + dηkj} /* Squaring Dη with Si */

if dηij ∀ Σ then

dη
′

ij ← dηij
else if mij ∀ Σ∗ then

dη
′

ij ← mij

Σ ← Σ∗

the time complexities of each iteration, and hence the first squaring dominates
the time complexity. The total time complexity of O(n(3+Δ)/2) = O(n2.687) of
this algorithm comes from balancing the time complexities of the two phases to
retrieve the best value for r, that is, setting rnΔ = n2 · nr then solving for r.

4 APSP-AF on Graphs with Unit Edge Costs

We first consider solving the All Pairs Shortest Distances for All Flows (APSD-
AF) problem on directed graphs with unit edge costs, that is, computing only
the shortest distances rather than actual path. Path lengths and path distances
are used interchangeably in this section. To re-iterate the APSD-AF problem, for
each pair of vertices (i, j) for each possible flow amount, we want to compute the
shortest distance. Thus our aim here is to obtain a set of (d, f) pairs for all pairs
of vertices, where f is the maximum flow amount that can be pushed through
the shortest path whose length (distance) is d. We refer to the distinct capacity
values as maximal flows. i.e. there are t maximal flows. Assume that the maximal
flows are sorted in increasing order. If we wish to push f such that f1 < f < f2
for consecutive maximal flows f1 and f2, then clearly f is represented by f2.

Let U be a matrix such that uij is a set of (d, f) pairs as described above. Let
both (d, f) and (d∗, f ∗) be in uij such that d < d∗. We keep (d∗, f ∗) iff f < f ∗. In
other words, a longer path is only useful to us if it can accommodate a greater
flow. If d = d∗, we keep the pair that provides the bigger flow. Since there can

230 T. Shinn and T. Takaoka

1

2

3

4

5

6

(2,9)

(1,3)

(1,7) (3,6)

(3,8)

(2,7)

(1,9)

(1,2)

(2,5)

Fig. 1. An example graph with n = 6, m = 9, t = 7 and c = 3. Numbers in the
parenthesis beside each edge shows the edge cost and capacity, respectively.

only be n − 1 different values of d, each uij has at most n − 1 pairs of (d, f).
We assume the pairs are sorted in ascending order of d. We make an interesting
observation here that once all (d, f) pairs for all uij are computed (i.e. the APSP-
AF problem is solved), the first pairs for all uij is the solution to the APBSP
problem, and the last pairs for all uij is the solution to the APBP problem.

Example 1. If the graph in Figure 1 had unit edge costs instead of the varying
integer edge costs, solving APSD-AF on the graph would result in three (d, f)
pairs from vertex 1 to vertex 6, that is, u1,6 = {(3, 5), (4, 6), (5, 7)}.

We now introduce Algorithm 2 to solve the APSD-AF problem on directed
graphs with unit edge costs. Let P f be the approximate distance matrix for
shortest paths that can accommodate flows up to f . In the acceleration phase,
we compute the maximum bottleneck values for all possible path lengths up to
r for all pairs, where r is a constant such that 1 < r < n. Then from the results
gathered in the acceleration phase, we prepare a series of distance matrices, P f ,
one for each maximal flow value f , and move onto the cruising phase where we
compute the shortest distances for all pairs for all flows by repeatedly squaring
each P f .

Lemma 1. Algorithm 2 correctly solves APSD-AF on directed graphs with unit
edge costs.

Proof. In the acceleration phase, instead of performing Boolean matrix multipli-
cation as in Algorithm 1, we compute the (max,min)-product with the capacity
matrices C1 and CΣ−1. After each matrix multiplication, if a path of greater
capacity has been found for the vertex pair (i, j), we append the pair (ι, cΣij)
to uij since we have found a longer path that can accommodate a greater flow.
Thus after the rth iteration of the acceleration phase, all relevant (d, f) pairs for
all uij are found such that d ∈ r.

After the acceleration phase we initialize the approximate distance matrices
P f from U , one matrix for each maximal flow f , in preparation for the cruising

Combining All Pairs Shortest Paths 231

Algorithm 2. Solve APSD-AF on graphs with unit edge costs

/* Initialization for acceleration phase */
for i ← 1 to n; j ← 1 to n do

uij ← Φ /* Φ is empty */

/* Acceleration phase */
for Σ ← 2 to r do

Cη ← Cη−1 Θ C1 /* (max,min) matrix multiplication */
for i ← 1 to n; j ← 1 to n; i �= j do

if cηij > cη−1
ij then

Append (Σ, cηij) to uij

/* Initialization for cruising phase */
P f ← I for all maximal flows f /* I has 0 diagonal elements and ◦ for others */
for i ← 1 to n; j ← 1 to n; i �= j do

Let uij = {(d1, f1), (d2, f2), ..., (ds, fs)} for some s /* We skip empty uij */
k ← 1 /* k iterates from 1 to s */
for all maximal flows f in increasing order do

if f > fk then
k ← k + 1 /* The next dk value is needed */

if k > s then
break /* We proceed to the next uij */

pfij ← dk

/* Cruising phase */
for all maximal flows f do

Perform cruising phase of Algorithm 1 on P f

/* Finalization */
for i ← 1 to n; j ← 1 to n; i �= j do

for all maximal flows f in increasing order do
d ← pfij
Let the last pair of uij be x = (d∗, f ∗) /* If uij is empty, x = Φ */
if x = Φ or (f > f ∗ and d < ◦) then

if d = d∗ /* This condition is false if x = Φ */ then
Replace x with (d, f)

else
Append (d, f) to uij

phase. Note that if the (d, f) pair for a given flow value f does not exist in uij ,

we take the next pair (d∗, f ∗) in uij (if one exists) and let pfij = d∗.
At this stage, if pfij < ∞, pfij is already the length of the shortest path from

i to j that can push flow f . Thus the actual aim of the cruising phase of this
algorithm is to compute the shortest distance for all other elements in P f such
that pfij = ∞ at the start of the cruising phase. Note that unless G is strongly

232 T. Shinn and T. Takaoka

connected, some elements of P f will remain at∞ until the end of the algorithm.
The aim of the cruising phase is achieved by repeatedly squaring each P f with
the help of the bridging set, as proven in [1].

Retrieving sets of (d, f) pairs after the cruising phase from each resulting P f

is simply a reverse process of the initialization for the cruising phase, and thus
our search for all sets of (d, f) pairs for all (i, j) is complete after finalization. ∗≥
Lemma 2. Algorithm 2 runs in O(

⊕
tn(Δ+9)/4) = O(

⊕
tn2.843) worst case time.

Proof. For the acceleration phase we use the the current best known algorithm
to compute the (max,min)-product in each iteration, which gives us the time
bound ofO(rn(3+Δ)/2) [4]. The time complexity for the cruising phase isO(tn3/r)
since there are a total of t maximal flows, each taking O(n3/r) time to finish
the computation of APSD. The time bound for the initialization for the cruising
phase and the finalization is O(tn2), which is absorbed by O(tn3/r) since n/r >
1. We balance the time complexities of the acceleration phase and the cruising
phase by setting r =

⊕
tn(3−Δ)/4, and this gives us the total worst case time

complexity of O(
⊕
tn(Δ+9)/4). ∗≥

If t = Γ(n(Δ+1)/2), the value we choose for r may exceed n. In such a case, we
simply stay in the acceleration phase until r = n−1. Thus a more accurate worst
case time complexity of Algorithm 2 is actually O(min {n(5+Δ)/2,

⊕
tn(Δ+9)/4}).

For all subsequent time complexities, for simplicity, we only show the time bound
for actually going into the cruising phase.

A straightforward method of solving the APSD-AF problem is to repeatedly
compute APSD for each maximal flow value f using only edges that have capaci-
ties greater than or equal to f . This method is equivalent to starting the cruising
phase at r = 1, giving us the time complexity of O(tn2.530) if we use Zwick’s
algorithm to solve APSD for each maximal flow value [15]. For t > n0.626, Al-
gorithm 2 is faster. Note that a simple decremental algorithm where edges are
removed in the reverse order of capacities while repeatedly solving APSD cannot
be used to solve the APSD-AF problem because edges with larger capacities may
later be required to provide shorter paths for a smaller maximal flow values.

Theorem 1. There exists an algorithm that can solve APSP-AF on directed
graphs with unit edge costs in Õ(

⊕
tn(Δ+9)/4) worst case time.

Proof. As noted earlier there can be O(n) (d, f) pairs for each vertex pair (i, j).
Since the lengths of each path can be O(n), explicitly listing all paths takesO(n4)
time. We get around this by modifying Algorithm 2 to extend the (d, f) pair to
the (d, f, s) triplet, where s is the successor node, such that retrieving the actual
path from (d, f, s) can be performed by simply following the successor nodes. In
the acceleration phase witnesses for the (max,min)-product can be retrieved
with an extra polylog factor [4], and the successor nodes can be computed from
the witnesses in each iteration in O(n2) time [15]. In the cruising phase retrieving
the witnesses, and hence the successor nodes, is a simple exercise since ordinary
matrix multiplication is performed. Therefore extending (d, f) to (d, f, s) only
takes an additional polylog factor.

Combining All Pairs Shortest Paths 233

The explicit path for a given flow demand from i to j can be generated in
time linear to the path length as follows. Firstly we perform binary search for
the triplet (d, f, s) in uij with f as the key to find the minimum distance d such
that f is greater than or equal to the given flow requirement. We then traverse
the successor nodes s one by one, using d to look up each subsequent successor
node in O(1) time. ∗≥

5 APSP-AF on Graphs with Integer Edge Costs

We now consider solving the APSD-AF problem on directed graphs with integer
edge costs and real edge capacities, where the edge cost is bounded by c. Note
that with integer edge costs we need to make a clear distinction between path
lengths and distances. One approach for solving this problem is to use the method
described in [1] to replace G with an expanded graph G∗ such that all edges in
G∗ have unit edge costs, then applying the algorithm on G∗ to solve the problem
on G. G∗ is created by attaching a chain of c − 1 artificial vertices to each real
vertex such that the artificial edges linking the artificial vertices in each chain
have unit edge costs and capacities of ∞. We then replace each real edge (i, j)
with an artificial edge with unit edge cost and capacity of cap(i, j) by choosing
one of the artificial vertices of i (or i itself) as the source vertex and the real
vertex j as the destination, such that there exists a path from i to j with length
equal to cost(i, j). See Figure 2 for an illustration of how a graph is expanded.
The expanded graph G∗ has O(cn) vertices, and we can clearly solve APSD-AF
on G by solving APSD-AF on G∗ in O(

⊕
t(cn)(9+Δ)/4) time.

Example 2. Solving APSD-AF on the graph in Figure 1 results in a total of five
(d, f) pairs from vertex 1 to 6, that is, u(1)(6) = {(4, 2), (6, 3), (7, 5), (8, 6), (9, 7)}.
We can do better, however, with the key observation that only the acceleration
phase of Algorithm 2 is restricted to graphs with unit edge costs. In other words,
we can complete the acceleration phase on the expanded graph G∗, gather the
intermediate results, and then finish off the remaining computation after con-
tracting the graph back to G. We need care here, as the path lengths in G∗ are
actually equivalent to the path costs in G, and the bridging sets in the cruising
phase are determined from the path lengths rather than the path costs. Therefore
we need to make substantial changes to Algorithm 2 to keep track of both the
path lengths and the path costs of G in the acceleration phase, as well as mod-
ifying the cruising phase to correctly use the path lengths of G in determining
the bridging sets.

Firstly we extend the pair (d, f) to the triplet (h, d, f), where h is the path
length in G, d is the path cost in G (i.e. the path length in G∗) and f is the
maximal flow. We introduce U ∗ = {u∗ij} where u∗ij is a set of triplets (h, d, f)
for all pairs of vertices in G∗. We omit the superscript ι that denotes the path
length in the following matrix definitions. Let C∗ = {c∗ij} be the capacity matrix
of G∗ and let W = {wij} be the witness matrix for the (max,min)-product.

Let Qf = {qfij} such that qfij is the length of the path that gives the path cost

234 T. Shinn and T. Takaoka

G G∗

(4, 9)

(3, 7)

(2, 6)

i

j

k

i

j

k

(1,◦) (1,◦) (1,◦)

(1, 9)

Fig. 2. Expanding G to G∗ with c = 4

(distance) of pfij , where P f = {pfij} is the distance matrix as defined in Section 4.

That is, pfij is the minimum path cost (distance) of all paths from i to j that can
push flow of amount f . Note that h in the triplet (h, d, f) is no longer required
once all Qf are initialized before the start of the cruising phase.

Lemma 3. Algorithm 3 correctly solves APSD-AF on directed graphs with non-
negative integer edge costs.

Proof. We start by creating G∗ from G then proceed to the acceleration phase.
We only need to show that the actual path length h in the triplet (h, d, f) is
correctly determined, since we have already discussed the (d, f) pairs in Section
4. What is effectively happening in the acceleration phase of Algorithm 3 is that
the path length information is carried from one real vertex to the next real vertex
by the artificial vertices in between. Since we are multiplying by C∗(1) in each
iteration, the witness wij will always be the vertex that comes straight before
the destination vertex j on the path from i to j. That is, it is not possible for any
vertices (real or artificial) to exist between k = wij and j. Therefore we retrieve
the last (h, d, f) triplet from u∗ik and increment the given h iff j is a real vertex.
Thus the correct path length in G is given by h at the end of the acceleration
phase since we are not counting the artificial vertices in the path.

The changes made to the cruising phase are to ensure that the bridging sets
Si is correctly determined from the path lengths rather than the path costs.
Note that in Algorithm 2 this distinction was unnecessary because we were only
considering graphs with unit edge costs. Clearly the correctness of the crusing
phase remains intact by keeping qf,Σij updated alongside pf,Σij . ∗≥

Lemma 4. Algorithm 3 runs in Õ(
⊕
tc(Δ+5)/4n(Δ+9)/4) = Õ(

⊕
tc1.843n2.843)

worst case time.

Proof. The time complexity of the acceleration phase is Õ(r(cn)(3+Δ)/2) since
there are O(cn) vertices in G∗. After the rth iteration in the acceleration phase,
we have computed the bottleneck for all paths of lengths up to r, but this is path
lengths in the expanded graph G∗, and not G. We divide r by c to retrieve the

Combining All Pairs Shortest Paths 235

Algorithm 3. Solve APSD-AF on directed graphs with non-negative integer
edge costs

/* Initialization for acceleration phase */
Create G∗ from G /* G is expanded to G∗ */
for i ← 1 to cn; j ← 1 to cn do

u∗
ij ← Φ

/* Acceleration phase */
for Σ ← 2 to r do

C∗(η) ← C∗(η−1) Θ C∗1 /* Witnesses given as W = {wij} */
for i ← 1 to cn; j ← 1 to cn; i �= j do

if c
∗(η)
ij > c

∗(η−1)
ij then

Let k = wij , and (h, d, f) ← last triplet in u∗
ik /* If empty, h = 0 */

if j ∈ G /* If j is a real vertex */ then

Append (h + 1, Σ, c
∗(η)
ij) to u∗

ij

else
Append (h, Σ, c

∗(η)
ij) to u∗

ij

/* Initialization for cruising phase, Σ = r */
U ←rows and columns in U ∗ for real vertices /* G∗ is contracted back to G */
P f,η, Qf,η ← I for all maximal flows f
for i ← 1 to n; j ← 1 to n; i �= j do

Let uij = {(h1, d1, f1), ..., (hs, ds, fs)} for some s /* Skip empty uij */
k ← 1 /* k iterates from 1 to s */
for all maximal flows f in increasing order do

if f > fk then k ← k + 1 /* The next dk value is needed */
if k > s then break /* We proceed to the next uij */
pf,ηij ← dk; qf,ηij ← hk

/* Cruising phase */
for all maximal flows f do

while Σ < n do
Σ∗ ← ⊇ 3η

2
⊆

for i ← 1 to n do
Scan ith row of Qf,η with j to find the smallest set of equal qf,ηij such that

⊇Σ/2⊆ ∀ qf,ηij ∀ Σ and let the set of corresponding j be Si

for i ← 1 to n; j ← 1 to n do
mij ← mink∞Si{pf,ηik + pf,ηkj }
k ← the vertex that gives above mij such that pf,ηik + pf,ηkj is minimum

if mij < pf,ηij then

pf,η
′

ij ← mij ; qf,η
′

ij ← qf,ηik + qf,ηkj

else
pf,η

′
ij ← pf,ηij ; qf,η

′
ij ← qf,ηij

Σ ← Σ∗

/* Finalization - same as Algorithm 2 */

236 T. Shinn and T. Takaoka

lower bound on the path lengths in the original graph G after the acceleration
phase. Therefore the time complexity of the cruising phase is O(tcn3/r). Both
the time complexities for initialization for cruising phase and finalization are
again absorbed by the time complexity of the cruising phase. We balance the
time complexities of the acceleration phase and the cruising phase by setting
r =
⊕
tc(−1−Δ)/4n(3−Δ)/4, which gives us the total worst case time complexity of

Õ(
⊕
tc(Δ+5)/4n(Δ+9)/4). ∗≥

Theorem 2. There exists an algorithm to solve the APSP-AF problem on di-
rected graphs with positive integer edge costs in Õ(

⊕
tc(Δ+5)/4n(Δ+9)/4) worst case

time complexity.

Proof. Clearly we can take a similar approach to the method described in the
proof of Theorem 1. We can still use the path cost (distance) to look up each
successor node in O(1) time. We note that the witnesses in the acceleration phase
can be artificial vertices, but the corresponding real vertices can be retrieved in
O(1) time simply by storing this information when G is expanded to G∗. ∗≥
If c = 1, Õ(

⊕
tc(Δ+5)/4n(Δ+9)/4) becomes Õ(

⊕
tn(Δ+9)/4), hence we have success-

fully generalized the APSP-AF problem from graphs with unit edge costs to
graphs with integer edge costs. To compare with the straightforward method of
repeatedly solving the APSP problem for each maximal flow value using Zwick’s
algorithm, we use the formula Θ(1, r, 1) = 2 + (Θ − 2)(r − Ψ)/(1 − Ψ) where
O(nΔ(1,r,1)) is the time taken to multiply an n-by-nr matrix with an nr-by-n
matrix, and Ψ is a constant such that multiplying an n-by-nΛ matrix with an
nΛ-by-n remains within the Õ(n2) time bound. We let Θ = 2.376 and Ψ = 0.294
in this comparison [15]. The time complexity of the straightforward method be-
comes Õ(tn2+μ), where c = nx such that the equation Θ(1, μ, 1) = 1 + 2μ − x
is satisfied. Clearly for relatively smaller values for c and larger values for t,
Algorithm 3 is faster.

Finally we make a note that the idea of expanding the graph to G∗ for the
acceleration phase then contracting it back to G for the cruising phase can
retrospectively be applied to Algorithm 1 to give a sharper time bound than
O((cn)(3+Δ)/2), which is the time bound given by Alon et al. in their original
paper [1]. The time bound of O((cn)(3+Δ)/2) is sub-cubic for c < n0.117. Using
our new approach of contracting the graph after the acceleration phase, the time
bound can be improved to O(c(1+Δ)/2n(3+Δ)/2), which is sub-cubic for c < n0.186.
For solving the same problem as Algorithm 1, however, other algorithms are
already known that remain sub-cubic for larger values of c [11,15].

6 Concluding Remarks

The key achievements of this paper are: 1) the introduction of a new problem that
clearly has numerous practical applications in network analysis involving both
path costs and capacities, 2) non-trivial extension of Algorithm 1 to solve the new
problem that is more complex than the APSP problem, and 3) a better method

Combining All Pairs Shortest Paths 237

to utilize the artificial graph for integer edge costs resulting in an improved time
bound for not only our new algorithm, but also an existing algorithm for solving
the APSP problem.

Solving the new APSP-AF problem on other types of graphs (e.g. undirected,
real edge costs, etc) as well as finding efficient algorithms for the single source
version of the problem remain on the agenda for future research.

References

1. Alon, N., Galil, Z., Margalit, O.: On the Exponent of the All Pairs Shortest Path
Problem. In: Proc. 32nd FOCS, pp. 569–575 (1991)

2. Chan, T.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proc.
39th STOC, pp. 590–598 (2007)

3. Dobosiewicz, W.: A more efficient algorithm for the min-plus multiplication. Inter-
national Journal of Computer Mathematics 32, 49–60 (1990)

4. Duan, R., Pettie, S.: Fast Algorithms for (max,min)-matrix multiplication and
bottleneck shortest paths. In: Proc. 19th SODA, pp. 384–391 (2009)

5. Floyd, R.: Algorithm 97: Shortest Path. Communications of the ACM 5, 345 (1962)
6. Fredman, M.: New bounds on the complexity of the shortest path problem. SIAM

Journal on Computing 5, 83–89 (1976)
7. Le Gall, F.: Faster Algorithms for Rectangular Matrix Multiplication. In: Proc.

53rd FOCS, pp. 514–523 (2012)
8. Han, Y.: An O(n3(log log n/ log n)5/4) time algorithm for all pairs shortest paths.

In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 411–417. Springer,
Heidelberg (2006)

9. Han, Y., Takaoka, T.: An O(n3 log log n/ log2 n) Time Algorithm for All Pairs
Shortest Paths. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. SWAT,
pp. 131–141. Springer, Heidelberg (2012)

10. Schönhage, A., Strassen, V.: Schnelle Multiplikation Groιer Zahlen. Computing 7,
281–292 (1971)

11. Takaoka, T.: Sub-cubic Cost Algorithms for the All Pairs Shortest Path Problem.
Algorithmica 20, 309–318 (1995)

12. Takaoka, T.: A faster algorithm for the all-pairs shortest path problem and its
application. In: Chwa, K.-Y., Munro, J.I. (eds.) COCOON 2004. LNCS, vol. 3106,
pp. 278–289. Springer, Heidelberg (2004)

13. Vassilevska, V., Williams, R., Yuster, R.: All Pairs Bottleneck Paths and Max-
Min Matrix Products in Truly Subcubic Time. Journal of Theory of Computing 5,
173–189 (2009)

14. Williams, V.: Breaking the Coppersmith-Winograd barrier. In: Proc. 44th STOC
(2012)

15. Zwick, U.: All Pairs Shortest Paths using Bridging Sets and Rectangular Matrix
Multiplication. Journal of the ACM 49, 289–317 (2002)

16. Zwick, U.: A Slightly Improved Sub-Cubic Algorithm for the All Pairs Shortest
Paths Problem with Real Edge Lengths. Algorithmica 46, 278–289 (2006)

(Total) Vector Domination for Graphs
with Bounded Branchwidth

Toshimasa Ishii1, Hirotaka Ono2, and Yushi Uno3

1 Graduate School of Economics and Business Administration, Hokkaido University,
Sapporo 060-0809, Japan

2 Department of Economic Engineering, Faculty of Economics, Kyushu University,
Fukuoka 812-8581, Japan

3 Department of Mathematics and Information Sciences, Graduate School of Science,
Osaka Prefecture University, Sakai 599-8531, Japan

Abstract. Given a graph G = (V, E) of order n and an n-dimensional non-
negative vector d = (d(1), d(2), . . . , d(n)), called demand vector, the vector domi-
nation (resp., total vector domination) is the problem of finding a minimum S ⊆ V
such that every vertex v in V \ S (resp., in V) has at least d(v) neighbors in S . The
(total) vector domination is a generalization of many dominating set type prob-
lems, e.g., the dominating set problem, the k-tuple dominating set problem (this
k is different from the solution size), and so on, and its approximability and inap-
proximability have been studied under this general framework. In this paper, we
show that a (total) vector domination of graphs with bounded branchwidth can be
solved in polynomial time. This implies that the problem is polynomially solvable
also for graphs with bounded treewidth. Consequently, the (total) vector domina-
tion problem for a planar graph is subexponential fixed-parameter tractable with
respect to k, where k is the size of solution.

1 Introduction

Given a graph G = (V, E) of order n and an n-dimensional non-negative vector d =
(d(1), d(2), . . . , d(n)), called demand vector, the vector domination (resp., total vector
domination) is the problem of finding a minimum S ⊆ V such that every vertex v in V\S
(resp., in V) has at least d(v) neighbors in S . These problems were introduced by [21],
and they contain many existing problems, such as the minimum dominating set and the
k-tuple dominating set problem (this k is different from the solution size) [22,23], and
so on. Indeed, by setting d = (1, . . . , 1), the vector domination becomes the minimum
dominating set forms, and by setting d = (k, . . . , k), the total vector dominating set
becomes the k-tuple dominating set. If in the definition of total vector domination, we
replace open neighborhoods with closed ones, we get the multiple domination. In this
paper, we sometimes refer to these problems just as domination problems. Table 1 of [9]
summarizes how related problems are represented in the scheme of domination prob-
lems. Many variants of the basic concepts of domination and their applications have
appeared in [23,24].

Since the vector or multiple domination includes the setting of the ordinary domi-
nating set problem, it is obviously NP-hard, and further it is NP-hard to approximate

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 238–249, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

(Total) Vector Domination for Graphs with Bounded Branchwidth 239

within (c log n)-factor, where c is a positive constant, e.g., 0.2267 [1,26]. As for the
approximability, since the domination problems are special cases of a set-cover type
integer programming problem, it is known that the polynomial-time greedy algorithm
achieves an O(log n)-approximation factor [15]; it is already optimal in terms of order.
We can see further analyses of the approximability and inapproximability in [8,9].

In this paper, we focus on another aspect of designing algorithms for domination
problems, that is, the polynomial-time solvability of the domination problems for graphs
of bounded treewidth or branchwidth. In [3], it is shown that the vector domination prob-
lem is W[1]-hard with respect to treewidth. This result and Courcelle’s meta-theorem
about MSOL [11] imply that the vector domination is unlikely expressible in MSOL;
it is not obvious to obtain a polynomial time algorithm.

In this paper, we present a polynomial-time algorithm for the domination problems
of graphs with bounded branchwidth. The branchwidth is a measure of the “global con-
nectivity” of a graph, and is known to be a counterpart of treewidth. It is known that
max{bw(G), 2} ≤ tw(G) + 1 ≤ max{3bw(G)/2, 2}, where bw(G) and tw(G) denote the
branchwidth and treewidth of graph G, respectively [28]. Due to the linear relation of
these two measures, polynomial-time solvability of a problem for graphs with bounded
treewidth implies polynomial-time solvability of a problem for graphs with bounded
branchwidth, and vice versa. Hence, our results imply that the domination problems
(i.e., vector domination, total vector domination and multiple domination) can be solved
in polynomial time for graphs with bounded treewidth; the polynomial-time solvabil-
ity for all the problems (except the dominating set problem) in Table 1 of [9] is newly
shown. Also, they answer the question by [8,9] about the complexity status of the dom-
ination problems of graphs with bounded treewidth.

Furthermore, by using the polynomial-time algorithms for graphs of bounded tree-
width, we can show that these problems for a planar graph are subexponential fixed-
parameter tractable with respect to the size of the solution k, that is, there is an algorithm
whose running time is 2O(

√
k log k)nO(1). To our best knowledge, these are the first fixed-

parameter algorithms for the total vector domination and multiple domination, whereas
the vector domination for planar graphs has been shown to be FPT [27]. For the latter
case, our algorithm greatly improves the running time.

Note that the polynomial-time solvability of the vector domination problem for graphs
of bounded treewidth has been independently shown very recently [7]. They considered
a further generalization of the vector domination problem, and gave a polynomial-time
algorithm for graphs of bounded clique-width. Since cw(G) ≤ 3 · 2tw(G)−1 holds where
cw(G) denotes the clique-width of graph G ([10]), their polynomial-time algorithm im-
plies the polynomial-time solvability of the vector domination problem for graphs of
bounded treewidth and bounded branchwidth.

1.1 Related Work

For graphs with bounded treewidth (or branchwidth), the ordinary domination problems
can be solved in polynomial time. As for the fixed-parameter tractability, it is known
that even the ordinary dominating set problem is W[2]-complete with respect to solution
size k; it is unlikely to be fixed-parameter tractable [17]. In contrast, it can be solved
in O(211.98

√
kk + n3) time for planar graphs, that is, it is subexponential fixed-parameter

240 T. Ishii, H. Ono, and Y. Uno

tractable [16]. The subexponent part comes from the inequality bw(G) ≤ 12
√

k + 9,
where k is the size of a dominating set of G. Behind the inequality, there is a unified
property of parameters, called bidimensionality [14]. Namely, the subexponential fixed-
parameter algorithm of the dominating set for planar graphs (more precisely, H-minor-
free graphs [13]) is based on the bidimensionality.

A maximization version of the ordinary dominating set is also considered. Partial
Dominating Set is the problem of maximizing the number of vertices to be dominated
by using a given number k of vertices. In [2], it was shown that partial dominating set
problem is FPT with respect to k for H-minor-free graphs. Later, [18] gives a subex-
ponential FPT with respect to k for apex-minor-free graphs, also a superclass of planar
graphs. Although partial dominating set is an example of problems to which the bidi-
mensionality theory cannot be applied, they develop a technique to reduce an input
graph so that its treewidth becomes O(

√
k).

For the vector domination, a polynomial-time algorithm for graphs of bounded
treewidth has been proposed very recently [7], as mentioned before. In [27], it is shown
that the vector domination for ρ-degenerated graphs can be solved in kO(ρk2)nO(1) time, if
d(v) > 0 holds for ∀v ∈ V (positive constraint). Since any planar graph is 5-degenerated,
the vector domination for planar graphs is fixed-parameter tractable with respect to so-
lution size, under the positive constraint. Furthermore, the case where d(v) could be 0
for some v can be easily reduced to the positive case by using the transformation dis-
cussed in [3], while increasing the degeneracy by at most 1. It follows that the vector
domination for planar graphs is FPT with respect to solution size k. However, for the
total vector domination and multiple domination, neither polynomial time algorithm for
graphs of bounded treewidth nor fixed-parameter algorithm for planar graphs has been
known.

Other than these, several generalized versions of the dominating set problem are also
studied. (k, r)-center problem is the one that asks the existence of set S of k vertices
satisfying that for every vertex v ∈ V there exists a vertex u ∈ S such that the distance
between u and v is at most r; (k, 1)-center corresponds to the ordinary dominating set.
The (k, r)-center for planar graphs is shown to be fixed-parameter tractable with respect
to k and r [12]. For σ, ρ ⊆ {0, 1, 2, . . .} and a positive integer k, ∃[σ, ρ]-dominating set
is the problem that asks the existence of set S of k vertices satisfying that |N(v) ∩ S | ∈
σ holds for ∀v ∈ S and |N(v) ∩ S | ∈ ρ for ∀v ∈ V \ S , where N(v) denotes the
open neighborhood of v. If σ = {0, 1, . . .} and ρ = {1, 2, . . .}, ∃[σ, ρ]-dominating set
is the ordinary dominating set problem, and if σ = {0} and ρ = {0, 1, 2, . . .}, it is the
independent set. In [6], the parameterized complexity of ∃[σ, ρ]-dominating set with
respect to treewidth is also considered.

1.2 Our Results

Our results are summarized as follows:

– We present a polynomial-time algorithm for the vector domination of graph G =
(V, E) with bounded branchwidth. The running time is roughly O(n6bw(G)+2).

– We present polynomial-time algorithms for the total vector domination and multi-
ple domination of graph G with bounded branchwidth. The running time is roughly
O(29bw(G)/2 n6bw(G)+2).

(Total) Vector Domination for Graphs with Bounded Branchwidth 241

– Let G be a planar graph. Then, we can check in O(n3 + min{k, d∗}40
√

k+34n) time
whether G has a vector dominating set with cardinality at most k or not, where
d∗ = max{d(v) | v ∈ V}.

– Let G be a planar graph. Then, we can check in O(n3+230
√

k+51/2 min{k, d∗}40
√

k+34n)
time whether G has a total vector dominating set and a multiple dominating set with
cardinality at most k or not.

It should be noted that it is actually possible to design directly polynomial time algo-
rithms for graphs with bounded treewidth, but they are slower than the ones for graphs
with bounded branchwidth; from this reason, we design branch decomposition-based
algorithms.

As far as the authors know, the second and fourth results give the first polynomial
time algorithms and the first fixed-parameter algorithm for the total vector domination
and multiple domination of graphs with bounded branchwidth (or treewidth) and pla-
nar graphs, respectively. As for the vector domination, we give an O(n6bw(G)+2)-time
algorithm, whose running time is O(n6(tw(G)+1)+2) in terms of the treewidth, whereas the
recent paper [7] gives an O(cw(G)|σ|(n + 1)5cw(G))-time algorithm, where |σ| is the en-
coding length of k-expression used in the algorithm, and is bounded by a polynomial
in the input size for fixed k. Since cw(G) ≤ 3 · 2tw(G)−1 holds, this is an O(2tw(G)|σ|(n +
1)7.5·2tw(G)

)-time algorithm.
Also, the third result shows that the vector domination of planar graphs is subex-

ponential FPT with respect to k, and it greatly improves the running time of existing
kO(k2)nO(1)-time algorithm ([27]). It was shown in [5] that for the ordinary dominat-
ing set problem (equivalently, the vector domination (or multiple domination) with
d = (1, 1, . . . , 1)) in planar graphs, there is no 2o(

√
k)nO(1)-time algorithm unless the

Exponential Time Hypothesis (i.e., the assumption that there is no 2o(n)-time algorithm
for n-variable 3SAT [25]) fails. Hence, in this sense, our algorithm in third result (or the
fourth results for the multiple domination) is optimal if d∗ is a constant.

The third and fourth results give subexponential fixed-parameter algorithms of the
domination problems for planar graphs. It should be noted that the domination problems
themselves do not have the bidimensionality, mentioned in the previous subsection, due
to the existence of the vertices with demand 0. Instead, by reducing irrelevant vertices,
we obtain a similar inequality about the branchwidth and the solution size of the domi-
nation problems, which leads to the subexponential fixed-parameter algorithms.

The remainder of the paper is organized as follows. In Section 2, we introduce some
basic notations and then explain the branch decomposition. Section 3 is the main part
of the paper, and presents our dynamic programming based algorithms for the con-
sidered problems. Section 4 explains how we extend the algorithms of Section 3 to
fixed-parameter algorithms for planar graphs.

2 Preliminaries

A graph G is an ordered pair of its vertex set V(G) and edge set E(G) and is denoted
by G = (V(G), E(G)). Let n = |V(G)| and m = |E(G)|. We assume throughout this
paper that all graphs are undirected, and simple, unless otherwise stated. Therefore,

242 T. Ishii, H. Ono, and Y. Uno

an edge e ∈ E(G) is an unordered pair of vertices u and v, and we often denote it by
e = (u, v). Two vertices u and v are adjacent if (u, v) ∈ E(G). For a graph G, the (open)
neighborhood of a vertex v ∈ V(G) is the set NG(v) = {u ∈ V(G) | (u, v) ∈ E(G)}, and
the closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}.

For a graph G = (V, E), let d = (d(v) | v ∈ V) be an n-dimensional non-negative
vector. Then, we call a set S ⊆ V of vertices a d-vector dominating set (resp., d-total
vector dominating set) if |NG(v)∩S | ≥ d(v) holds for every vertex v ∈ V\S (resp., v ∈ V).
We call a set S ⊆ V of vertices a d-multiple dominating set if |NG[v] ∩ S | ≥ d(v) holds
for every vertex v ∈ V . We may drop d in these notations if there are no confusions.

Branch Decomposition. A branch decomposition of a graph G = (V, E) is defined as a
pair (T = (VT , ET), τ) such that (a) T is a tree with |E| leaves in which every non-leaf
node has degree 3, and (b) τ is a bijection from E to the set of leaves of T . Throughout
the paper, we shall use the term node to denote an element in VT for distinguishing it
from an element in V .

For an edge f in T , let T f and T \ T f be two trees obtained from T by removing
f , and E f and E \ E f be two sets of edges in E such that e ∈ E f if and only if τ(e) is
included in T f . The order function w : E(T) → 2V is defined as follows: for an edge
f in T , a vertex v ∈ V belongs to w(f) if and only if there exist an edge in E f and an
edge in E \ E f which are both incident to v. The width of a branch decomposition (T, τ)
is max{|w(f)| | f ∈ ET }, and the branchwidth of G, denoted by bw(G), is the minimum
width over all branch decompositions of G.

In general, computing the branchwidth of a given graph is NP-hard [30]. On the
other hand, Bodlaender and Thilikos [4] gave a linear time algorithm which checks
whether the branchwidth of a given graph is at most k or not, and if so, outputs a branch
decomposition of minimum width, for any fixed k. Also, as shown in the following
lemma, it is known that for planar graphs, it can be done in polynomial time for any
given k, where a graph is called planar if it can be drawn in the plane without generating
a crossing by two edges.

Lemma 1. Let G be a planar graph.
(i) ([30]) It can be checked in O(n2) time whether bw(G) ≤ k or not for a given
integer k.
(ii) ([20]) A branch decomposition of G with width bw(G) can be constructed in O(n3)
time. ��
Here, we introduce the following basic properties about branch decompositions, which
will be utilized in the subsequent sections (the proof is omitted).

Lemma 2. Let (T, τ) be a branch decomposition of G.
(i) For tree T , let x be a non-leaf node and fi = (x, xi), i = 1, 2, 3, be an edge incident
to x (note that the degree of x is three). Then, w(fi) \ (w(f j) ∪ w(fk)) = ∅ for every
{i, j, k} = {1, 2, 3}. Hence, w(fi) ⊆ w(f j) ∪ w(fk).
(ii) Let f be an edge of T , V1 be the set of all end-vertices of edges in E f , and V2 be
the set of all end-vertices of edges in E \ E f . Then, (V1 \ w(f)) ∩ (V2 \w(f)) = ∅ holds.
Also, there is no edge in E connecting a vertex in V1 \ w(f) and a vertex in V2 \ w(f).

(Total) Vector Domination for Graphs with Bounded Branchwidth 243

3 Domination Problems in Graphs of Bounded Branchwidth

In this section, we propose dynamic programming algorithms for the vector domination
problem, the total vector domination problem, and the multiple domination problem, by
utilizing a branch decomposition of a given graph. The techniques are based on the one
developed by Fomin and Thilikos for solving the dominating set problem with bounded
branchwidth [19]. Throughout this section, for a given graph G = (V, E), the demand of
each vertex v ∈ V is denoted by d(v), and let d∗ = max{d(v) | v ∈ V}.

Here, we show the following theorem for the vector domination problem.

Theorem 1. If a branch decomposition of G with width b is given, a minimum vector
dominating set in G can be found in O((d∗ + 2)b{(d∗ + 1)2 + 1}b/2m) time.

Due to the assumption of the above theorem, we need to consider how we obtain a
branch decomposition of G for the completeness of an algorithm of the vector domina-
tion problem. For a branch decomposition, there exists an O(2b lg 27n2)-time algorithm
that given a graph G and an integer b, reports bw(G) ≥ b, or outputs a branch decompo-
sition of G with width at most 3b [29,13]. Thus, the time to find a branch decomposition
with width at most 3bw(G) is O(log bw(G)2bw(G) lg 27n2) (smaller than the time complex-
ity below), and we have the following corollary.

Corollary 1. A minimum vector dominating set in G can be found in O((d∗+2)3bw(G){(d∗
+1)2 + 1}3bw(G)/2n2) time. ��
Below, for proving this theorem, we will give a dynamic programming algorithm for
finding a minimum vector dominating set in G in O((d∗ + 2)b{(d∗ + 1)2 + 1}b/2m) time,
based on a branch decomposition of G.

Let (T ′, τ) be a branch decomposition of G = (V, E) with width b, and w′ : E(T ′) →
2V be the corresponding order function. Let T be the tree from T ′ by inserting two nodes
r1 and r2, deleting one arbitrarily chosen edge (x1, x2) ∈ E(T ′), adding three new edges
(r1, r2), (x1, r2), and (x2, r2); namely, T = (V(T ′) ∪ {r1, r2}, E(T ′) ∪ {(r1, r2), (x1, r2),
(x2, r2)} \ {(x1, x2)}). Here, we regard T as a rooted tree with root r1. Let w(f) = w′(f)
for every f ∈ E(T) ∩ E(T ′), w(x1, r2) = w(x2, r2) = w′(x1, x2), and w(r1, r2) = ∅.

Let f = (y1, y2) ∈ E be an edge in T such that y1 is the parent of y2. Let T (y2) be the
subtree of T rooted at y2, E f = {e ∈ E | τ(e) ∈ V(T (y2))}, and G f be the subgraph of G
induced by E f . Note that w(f) ⊆ V(G f) holds, since each vertex in w(f) is an end-vertex
of some edge in E f by definition of the order function w. In the following, each vertex
v ∈ w(f) will be assigned one of the following d(v) + 2 colors {�, 0, 1, 2, . . . , d(v)}.
The meaning of the color of a vertex v is as follows: for a vertex set (possibly, a vector
dominating set) D,

– � means that v ∈ D.
– i ∈ {0, 1, . . . , d(v)}means that v � D and |NGf (v) ∩ D| ≥ d(v) − i.

Notice that a vertex colored by i > 0 may need to be dominated by some vertices in
V \ V(G f) for the feasibility. Given a coloring c ∈ {�, 0, 1, 2, . . . , d∗}|w(f)|, let D f (c) ⊆
V(G f) be a vertex set with the minimum cardinality satisfying the following (1)–(3),
where c(v) denotes the color assigned to a vertex v ∈ V:

244 T. Ishii, H. Ono, and Y. Uno

c(v) = � if and only if v ∈ D f (c) ∩ w(f). (1)

If c(v) = i, then v ∈ w(f) \ D f (c) and |NGf (v) ∩ D f (c)| ≥ d(v) − i. (2)

|NGf (v) ∩ D f (c)| ≥ d(v) holds for every vertex v ∈ V(G f) \ (w(f) ∪ D f (c)). (3)

Intuitively, D f (c) is a minimum vector dominating set in G f under the assumption that
the color for every vertex in w(f) is restricted to c. Note that a vertex in w(f) is allowed
not to meet its demand in G f , because it can be dominated by some vertices in V\V(G f).
Also note that every vertex in V(G f) \w(f) is not adjacent to any vertex in V \V(G f) by
Lemma 2(ii), and it needs to be dominated by vertices only in V(G f) for the feasibility.
We define A f (c) as A f (c) = |D f (c)| if D f (c) exists and A f (c) = ∞ otherwise.

Our dynamic programming algorithm proceeds bottom-up in T , while computing
A f (c) for all c ∈ {�, 0, 1, 2, . . . , d∗}|w(f)| for each edge f in T . We remark that since
w(r1, r2) = ∅ and G(r1,r2) = G for the root edge (r1, r2), the only coloring c in A(r1,r2)(c)
is the empty coloring and A(r1,r2)(c) is the cardinality of a minimum vector dominating
set. The algorithm consists of two types of procedures: one is for leaf edges and the
other is for non-leaf edges, where a leaf edge denotes an edge incident to a leaf of T .

Procedure for Leaf Edges: In the first step of the algorithm, we compute A f (c) for
each edge f incident to a leaf of T . Then, for all colorings c ∈ {�, 0, 1, 2, . . . , d∗}|w(f)|,
let A f (c) be the number of vertices colored by � if D f (c) exists and G f and c satisfy (1)
– (3), and A f (c) = ∞ otherwise.

Let f be a leaf edge incident to a leaf node x in T and e = (v1, v2) be the edge in
G with τ(e) = x. Then, notice that we have w(f) = {vi} if the degree of v j is 1 for
{i, j} = {1, 2}, and w(f) = {v1, v2} otherwise, and that V(G f) = {v1, v2}. Hence, for a
fixed c, we can check in O(1) time if (1) – (3) hold. This step takes O((d∗ + 2)2) time.

Procedure for Non-Leaf Edges: After the above initialization step, we visit non-leaf
edges of T from leaves to the root of T . Let f = (y1, y2) be a non-leaf edge of T
such that y1 is the parent of y2, y3 and y4 are the children of y2, and f1 = (y2, y3) and
f2 = (y2, y4). Now we have already obtained A fj (c

′) for all c′ ∈ {�, 0, 1, 2, . . . , d∗}|w(f j)|,
j = 1, 2. By Lemma 2(i), we have w(f) ⊆ w(f1) ∪ w(f2), w(f1) ⊆ w(f2) ∪ w(f), and
w(f2) ⊆ w(f)∪w(f1); let X1 = w(f)\w(f2), X2 = w(f)\w(f1), X3 = w(f)∩w(f1)∩w(f2),
and X4 = w(f1) \ w(f) (= w(f2) \ w(f)).

We say that a coloring c ∈ {�, 0, 1, 2, . . . , d∗}|w(f)| of w(f) is formed from a coloring
c1 of w(f1) and a coloring c2 of w(f2) if the following (P1)–(P5) hold.

(P1) For every v ∈ X1 ∪ X2 ∪ X3 with c(v) = �,

(a) For every v ∈ X1 ∪ X3, c1(v) = � if and only if c(v) = �.
(b) For every v ∈ X2 ∪ X3, c2(v) = � if and only if c(v) = �.

(P2) For every v ∈ X4, c1(v) = � if and only if c2(v) = �.

(P3) For every v ∈ X j \Dc1,c2 where { j, j′} = {1, 2} and Dc1,c2 = {v ∈ X1 ∪ X2 ∪ X3 ∪ X4 |
c1(v) = � or c2(v) = �},

If c(v) = i, then c j(v) = min{d(v), i + |Dc1,c2 ∩ NGf (v) ∩ X j′ |}.
(Intuitively, if v ∈ X j \ Dc1,c2 needs to be dominated by at least d(v)− i vertices
in G f , then at least max{0, d(v)− i− |Dc1,c2 ∩NGf (v)∩X j′ |} vertices from V(G fj)
are necessary.)

(Total) Vector Domination for Graphs with Bounded Branchwidth 245

(P4) For every v ∈ X3 \ Dc1,c2 ,

If c(v) = i, then c1(v) = min{d(v), i + |Dc1,c2 ∩ NGf (v) ∩ X2| + i1} and c2(v) =
min{d(v), i + |Dc1,c2 ∩ NGf (v) ∩ X1| + i2} for some non-negative integers i1, i2
with i1 + i2 = max{0, d(v) − i − |Dc1,c2 ∩ NGf (v)|}.
(Intuitively, if v ∈ X3 \ Dc1,c2 needs to be dominated by at least d(v)− i vertices
in G f , then at least max{0, d(v) − i − |Dc1,c2 ∩ NGf (v)|} vertices from (V(G f1) \
w(f1))∪ (V(G f2)\w(f2)) are necessary for dominating v. If i1 (resp., i2) vertices
among those vertices belong to V(G f2) \ w(f2) (resp., V(G f1) \ w(f1)), then at
least max{0, d(v) − i − |Dc1,c2 ∩ NGf (v) ∩ X j′ | − i j} vertices from V(G fj) are
necessary for { j, j′} = {1, 2}.)

(P5) For every v ∈ X4 \ Dc1,c2 ,

c1(v) = min{d(v), |Dc1,c2 ∩ NGf (v) ∩ X2| + i1} and c2(v) = min{d(v), |Dc1,c2 ∩
NGf (v)∩X1|+i2} for some non-negative integers i1, i2 with i1+i2 = max{0, d(v)−
|Dc1,c2 ∩ NGf (v)|}. (This case can be treated in a similar way to (P4).)

The following two lemmas show that there exist a coloring c1 of w(f1) and a col-
oring c2 of w(f2) forming c such that D f1 (c1) ∪ D f2 (c2) satisfies (1)–(3) and |D f1 (c1) ∪
D f2 (c2)| = A f (c). Namely, we have A f (c) = min{A f1 (c1)+ A f2 (c2)− |Dc1,c2 ∩ (X3 ∪ X4)| |
c1, c2 forms c} (the proofs of these lemmas are omitted due to space limitation).

Lemma 3. Let c ∈ {�, 0, 1, 2, . . . , d∗}|w(f)| be a coloring of w(f). If a coloring c1 of
w(f1) and a coloring c2 of w(f2) forms c, then D f1 (c1) ∪ D f2(c2) satisfies (1)–(3) for f .

Lemma 4. Let c ∈ {�, 0, 1, 2, . . . , d∗}|w(f)| be a coloring of w(f). There exist a coloring
c1 of w(f1) and a coloring c2 of w(f2) forming c such that |D f1 (c1) ∪ D f2 (c2)| ≤ A f (c).

Thus, for all colorings c ∈ {�, 0, 1, 2, . . . , d∗}|w(f)|, we can compute A f (c) from the in-
formation of f1 and f2. By repeating these procedure bottom-up in T , we can find a
minimum vector dominating set in G.

Here, for a fixed c, we analyze the time complexity for computing A f (c). Let Dc =

{v ∈ w(f) | c(v) = �}, x j = |X j| for j = 1, 2, 3, 4, z3 = |X3 \ Dc|. Under the assumption
that X4 is colored by a fixed coloring c4, the number of pairs of a coloring c1 of w(f1)
and a coloring c2 of w(f2) forming c is at most (d∗ + 1)z3(d∗ + 1)z4 where z4 denotes
the number of vertices in X4 not colored by � in c4, since the number of pairs (i1, i2) in
(P4) or (P5) is at most d∗ + 1 for each vertex in X3 \Dc or each vertex in X4 not colored
by �.

Hence, for an edge f , the number of pairs forming c is at most (d∗+2)x1+x2
∑x3

z3=0

(
x3
z3

)

(d∗ + 1)z3
∑x4

z4=0

(
x4
z4

)
(d∗ + 1)z4(d∗ + 1)z3(d∗ + 1)z4 = (d∗ + 2)x1+x2 {(d∗ + 1)2 + 1}x3+x4

in total. Now we have x1 + x2 + x3 ≤ b, x1 + x3 + x4 ≤ b, and x2 + x3 + x4 ≤ b
(recall that b is the width of (T ′, τ)). By considering a linear programming problem
which maximizes (x1 + x2) log(d∗ + 2) + (x3 + x4) log{(d∗ + 1)2 + 1} subject to these
inequalities, we can observe that (d∗ + 2)x1+x2 {(d∗ + 1)2 + 1}x3+x4 attains the maximum
when x1 = x2 = x4 = b/2 and x3 = 0. Thus, it takes in total O((d∗+2)b{(d∗+1)2+1}b/2)
time to compute A f (c) for all colorings c of w(f).

246 T. Ishii, H. Ono, and Y. Uno

Since |E(T)| = O(m) and the initialization step takes O((d∗ + 2)2m) time in total, we
can obtain A(r1,r2)(c) in O(((d∗ + 2)b{(d∗ + 1)2 + 1}b/2m) time.

Summarizing the arguments given so far, we have shown Theorem 1. For the to-
tal vector domination and the multiple domination, we obtain the following theorems,
though the proofs are omitted.

Theorem 2. (i) If a branch decomposition of G with width b is given, a minimum total
vector dominating set in G can be found in O(23b/2(d∗ + 1)2bm) time.
(ii) If a branch decomposition of G with width b is given, a minimum multiple dominat-
ing set in G can be found in O(23b/2(d∗ + 1)2bm) time. ��

4 Subexponential Fixed Parameter Algorithm for Planar Graphs

We consider the problem of checking whether a given graph G has a d-vector dom-
inating set with cardinality at most k. As mentioned in Subsection 1.1, if G is ρ-
degenerated, then the problem can be solved in kO(ρk2)nO(1) time. Since a planar graph
is 5-degenerated, it follows that the problem with a planar graph can be solved in
kO(k2)nO(1) time. In this section, we give a subexponential fixed-parameter algorithm,
parameterized by k, for a planar graph; namely, we will show the following theorem.

Theorem 3. If G is a planar graph, then we can check in O(n3 + (min{d∗, k} + 2)b∗

{(min{k, d∗} + 1)2 + 1}b∗/2n) time whether G has a d-vector dominating set with cardi-
nality at most k or not, where b∗ = min{12

√
k + z + 9, 20

√
k + 17} and z = |{v ∈ V |

d(v) = 0}|.
This time complexity is roughly O(n3 + 2O(

√
k log k)n), which is subexponential with re-

spect to k; this improves the running time of the previous fixed-parameter algorithm.
Let V0 = {v ∈ V | d(v) = 0} and z = |V0|. In [19, Lemma 2.2], it was shown that

if a planar graph G′ has an ordinary dominating set (i.e., a (1,1,. . . ,1)-vector dominat-
ing set) with cardinality at most k, then bw(G′) ≤ 12

√
k + 9. This bound is based on

the bidimensionality [14], and was used to design the subexponential fixed-parameter
algorithm with respect to k for the ordinary dominating set problem. In the case of
our domination problems, however, it is difficult to say that they have the bidimen-
sionality, due to the existence of V0 vertices. Instead, we give a similar bound on the
branchwidth not w.r.t k but w.r.t k+ z as follows: For any (total, multiple) d-vector dom-
inating set D of G (|D| ≤ k), D ∪ V0 is an ordinary dominating set of G, and this yields
bw(G) ≤ 12

√
k + z + 9.

Actually, it is also possible to exclude z from the parameters, though the coefficient
of the exponent becomes larger. To this end, we use the notion of (k, 2)-center. Recall
that a (k, r)-center of G′ is a set W of vertices of G′ with size k such that any vertex in
G′ is within distance r from a vertex of W. For a (k, r)-center, a similar bound on the
branchwidth is known: if a planar graph G′ has a (k, r)-center, then bw(G′) ≤ 4(2r +
1)
√

k + 8r + 1 ([12, Theorem 3.2]). Here, we use this bound. We can assume that for
v ∈ V0, NG(v) � V0 holds, because v ∈ V0 satisfying NG(v) ⊆ V0 is never selected
as a member of any optimal solution; it is irrelevant, and we can remove it. That is,
every vertex in V0 has at least one neighbor from V \ V0. Then, for any (total, multiple)

(Total) Vector Domination for Graphs with Bounded Branchwidth 247

d-vector dominating set D of G (|D| ≤ k), D is a (k, 2)-center of G. This is because any
vertex in V \ V0 is adjacent to a vertex in D and any vertex in V0 is adjacent to a vertex
in V \ V0. Thus, we have bw(G) ≤ 20

√
k + 17.

In summary, we have the following lemma.

Lemma 5. Assume that G is a planar graph without irrelevant vertices, i.e., NG(v) � V0

holds for each v ∈ V0. Then, if G has a (total, multiple) vector dominating set with
cardinality at most k, then we have bw(G) ≤ min{12

√
k + z + 9, 20

√
k + 17}. ��

Combining this lemma with the algorithm in Section 3, we can check whether a given
graph has a vector dominating set with cardinality at most k according to the following
steps 1 and 2:

Step 1: Let b∗ = min{12
√

k + z + 9, 20
√

k + 17}. Check whether the branchwidth of G
is at most b∗. If so, then go to Step 2, and otherwise halt after outputting ‘NO’.

Step 2: Construct a branch decomposition with width at most b∗, and apply the dynamic
programming algorithm in Section 3 to find a minimum vector dominating set for G.

By Lemma 1, Theorem 1, and the fact that any planar graph G′ satisfies |E(G′)| =
O(|V(G′)|), it follows that the running time of this procedure is O(n3 + (d∗ + 2)b∗ {(d∗ +
1)2 + 1}b∗/2n). Hence, in the case of d∗ ≤ k, Theorem 3 has been proved.

The case of d∗ > k can be reduced to the case of d∗ ≤ k by the following standard
kernelization method, which proves Theorem 3. Assume that d∗ > k. Let Vmax(d) be
the set of vertices v with d(v) = d∗. For the feasibility, we need to select each vertex
v ∈ Vmax(d) as a member in a vector dominating set. Hence, if |Vmax(d)| > k, then it
turns out that G has no vector dominating set with cardinality at most k. Assume that
|Vmax(d)| ≤ k. Then, it is not difficult to see that we can reduce an instance I(G, d, k)
with G, d, and k to an instance I(G′, d′, k′) such that G′ = G \ Vmax(d) (i.e., G′ is the
graph obtained from G by deleting Vmax(d)), d′(v) = max{0, d(v) − |NG(v) ∩ Vmax(d)|}
for all vertices v ∈ V(G′), and k′ = max{0, k − |Vmax(d)|}. Based on this observation, we
can reduce I(G, d, k) to an instance I(G′′, d′′, k′′) with max{d′′(v) | v ∈ V(G′′)} ≤ k′′ ≤ k
or output ‘YES’ or ‘NO’ in the following manner:

(a) After setting G′ := G, d′ := d, and k′ := k, repeat the procedures (b1)–(b3) while
k′ < d′∗(= max{d′(v) | v ∈ V(G′)}).
(b1) If k′ < |Vmax(d′)|, then halt after outputting ‘NO.’
(b2) If k′ ≥ |Vmax(d′)| and V(G′) = Vmax(d′), then halt after outputting ‘YES.’
(b3) Otherwise after setting G′′ := G′ \ Vmax(d′), d′′(v) := max{0, d′(v) − |NG′ (v) ∩
Vmax(d′)|} for each v ∈ V(G′′), and k′′ := max{0, k′ − |Vmax(d′)|}, redefine G′′, d′′, and
k′′ as G′, d′, and k′, respectively.

Next, we consider the total vector domination problem and the multiple domination
problem. For these problems, since all vertices v ∈ V need to be dominated by d(v)
vertices, the condition that d∗ ≤ k is necessary for the feasibility. Similarly, we have the
following theorem by Theorem 2.

Theorem 4. Assume that a given graph G is planar, and let b∗ = min{12
√

k + z +
9, 20

√
k + 17}.

248 T. Ishii, H. Ono, and Y. Uno

(i) We can check in O(n3 + 23b∗/2(min{d∗, k} + 2)2b∗n) time whether G has a total vector
dominating set with cardinality at most k or not.
(ii) We can check in O(n3 + 23b∗/2(min{d∗, k} + 2)2b∗n) time whether G has a multiple
dominating set with cardinality at most k or not. ��
Before concluding this section, we mention that the above results can be extended to
apex-minor-free graphs, a superclass of planar graphs. An apex graph is a graph with a
vertex v such that the removal of v leaves a planar graph. A graph G has a graph H as
a minor if a graph isomorphic to H can be obtained from G by a sequence of deleting
vertices, deleting edges, or contracting edges. A graph class is apex-minor-free if it does
not contain any graph which has some fixed apex graph as a minor. For apex-minor-free
graphs, the following lemma is known.

Lemma 6. ([18, Lemma 2]) Let G be an apex-minor-free graph. If G has a (k, r)-center,
then the treewidth of G is O(r

√
k).

From this lemma, the linear relation of treewidth and branchwidth, and the 2O(bw(G))n2

-time algorithm for for computing a branch decomposition with width O(bw(G)) (men-
tioned after Theorem 1), we obtain the following corollary.

Corollary 2. We can check in 2O(
√

k log k)nO(1) time whether an apex-minor-free graph
G has a (total, multiple) vector dominating set with cardinality at most k or not.

References

1. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-restrictions. ACM
Transactions on Algorithms TALG 2, 153–177 (2006)

2. Amini, O., Fomin, F.V., Saurabh, S.: Implicit branching and parameterized partial cover prob-
lems. Journal of Computer and System Sciences 77, 1159–1171 (2011)

3. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion
parameterized by treewidth. Discrete Applied Mathematics 160, 53–60 (2012)

4. Bodlaender, H.L., Thilikos, D.M.: Constructive linear time algorithms for branchwidth, in
Automata, Languages and Programming. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela,
A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 627–637. Springer, Heidelberg (1997)

5. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. Journal of
Computer and System Sciences 67, 789–807 (2003)

6. Chapelle, M.: Parameterized complexity of generalized domination problems on bounded
tree-width graphs. arXiv preprint arXiv:1004.2642 (2010)

7. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target
set selection in social networks. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013.
LNCS, vol. 7921, pp. 65–77. Springer, Heidelberg (2013)

8. Cicalese, F., Milanič, M., Vaccaro, U.: Hardness, approximability, and exact algorithms for
vector domination and total vector domination in graphs. In: Owe, O., Steffen, M., Telle, J.A.
(eds.) FCT 2011. LNCS, vol. 6914, pp. 288–297. Springer, Heidelberg (2011)

9. Cicalese, F., Milanic, M., Vaccaro, U.: On the approximability and exact algorithms for vec-
tor domination and related problems in graphs. Discrete Applied Mathematics 161, 750–767
(2013)

10. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM
Journal on Computing 34, 825–847 (2005)

(Total) Vector Domination for Graphs with Bounded Branchwidth 249

11. Courcelle, B.: The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and Computation 85, 12–75 (1990)

12. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Fixed-parameter algorithms for
(k, r)-center in planar graphs and map graphs. ACM Transactions on Algorithms (TALG) 1,
33–47 (2005)

13. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized
algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM (JACM)
52, 866–893 (2005)

14. Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications.
The Computer Journal 51, 292–302 (2008)

15. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with nonneg-
ative data. Mathematics of Operations Research 7, 515–531 (1982)

16. Dorn, F.: Dynamic programming and fast matrix multiplication. In: Azar, Y., Erlebach, T.
(eds.) ESA 2006. LNCS, vol. 4168, pp. 280–291. Springer, Heidelberg (2006)

17. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness, Cornell Uni-
versity, Mathematical Sciences Institute (1992)

18. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms for partial
cover problems. Information Processing Letters 111, 814–818 (2011)

19. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and exponential
speed-up. SIAM Journal on Computing 36, 281–309 (2006)

20. Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n3) time. ACM
Transactions on Algorithms (TALG) 4, 30 (2008)

21. Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent sets of graphs.
Combinatorics, Probability and Computing 8, 547–553 (1999)

22. Harary, F., Haynes, T.W.: Double domination in graphs. Ars Combinatoria 55, 201–214
(2000)

23. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: advanced topics, vol. 40.
Marcel Dekker (1998)

24. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel
Dekker (1998)

25. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?
Journal of Computer and System Sciences 63, 512–530 (2001)

26. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. Journal
of the ACM (JACM) 41, 960–981 (1994)

27. Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized domination.
In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 116–126.
Springer, Heidelberg (2008)

28. Robertson, N., Seymour, P.D.: Graph minors. X. obstructions to tree-decomposition. Journal
of Combinatorial Theory, Series B 52, 153–190 (1991)

29. Robertson, N., Seymour, P.D.: Graph minors. XIII. the disjoint paths problem, Journal of
Combinatorial Theory, Series B 63, 65–110 (1995)

30. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241
(1994)

Computing the Degeneracy of Large Graphs�

Mart́ın Farach-Colton and Meng-Tsung Tsai

Rutgers University, New Brunswick NJ 08901, USA
{farach,mtsung.tsai}@cs.rutgers.edu

Abstract. Any ordering of the nodes of an n-node, m-edge simple undi-
rected graph G defines an acyclic orientation of the edges in which each
edge is oriented from the earlier node in the ordering to the later. The
degeneracy on an ordering is the maximum outdegree it induces, and
the degeneracy of a graph is smallest degeneracy of any node ordering.
Small-degeneracy orderings have many applications.

We give an algorithm for generating an ordering whose degeneracy
approximates the minimum possible, that is, it approximates the degen-
eracy of the graph. Although the optimal ordering itself can be com-
puted in O(m) time and O(m) space, such algorithms are infeasible for
large graphs. Our approximation algorithm is semi-streaming: it uses
less space, can achieve a constant approximation ratio, and accesses the
graph in logarithmic read-only passes.

1 Introduction

Any ordering of the nodes of an n-node,m-edge simple undirected graphG defines
an acyclic orientation of the edges in which each edge is oriented from the earlier
node in the ordering to the later. The degeneracy of an ordering is the maximum
outdegree it induces. The degeneracy, d(G), of G is the smallest degeneracy of
any ordering1, and an ordering whose degeneracy is d(G) is called a degenerate
ordering. An ordering is d-degenerate if it has degeneracy at most d.

Degenerate orderings have many uses. Given a degenerate ordering, one can:
decompose a graph into at most twice to the minimum number of disjoint
forests [2,4]; decompose a graph into at most six times to the minimum number of
disjoint planar graphs [4,11]; speed up the counting of the number of short paths
or cycles [2], for example, counting the exact number of 3-cycles in O(md(G))
time; find a component of density at least half the maximum density of any sub-
graph, i.e. a 1/2-approximation [7]; identify a dominating set of cardinality at
most O(d2(G)) times the cardinality of minimum dominating set [19] and some
variations of dominating set [12], e.g. k-dominating set; etc. Although most of

� Work supported by NSF Grants IIS-1247750 and CCF-1114930.
1 The degeneracy of a graph was originally defined to be the maximum of minimum
degree among all subgraphs [2,4,5,7,14,22,26]. The definition here is a slight modifi-
cation of the coloring number [4,5,14] of a graph, a dual definition of degeneracy. The
coloring number of a graph was shown to be one larger than the degeneracy [4,5,14],
and our definition yields the same value as the original definition of degeneracy.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 250–260, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Computing the Degeneracy of Large Graphs 251

these problems can be solved exactly in polynomial time and space O(n) to
O(m) [7,15,16,18], the approximation algorithms based on degenerate orderings
are faster, use less space or yield better approximation factors for large graphs.
For example, such orderings yield a better approximation algorithm for decom-
posing a graph into minimum number of planar subgraphs than other algorithms
using O(n) space [17, 21]. Although all of the results listed originally relied on
(optimally) degenerate orderings, we show that orderings that are nearly degen-
erate, that is, orderings whose degeneracy approximates rather than matching
the graph degeneracy, also yield good approximation algorithms.

Known algorithms to compute a low-degeneracy ordering do not scale to
graphs that are larger than memory. Several models of computation have
been proposed for computing on large graphs, such as the restrictive semi-
streaming [13, 23–25, 27] model that allows only O(n polylogn) space and se-
quential read-only passes through the graph, the W-stream [24,27] model which
is similar but also allows the algorithm O(m)-size read-write space on disk, the
Stream-Sort [24, 25, 27] model, in which sorting the graph needs only one pass,
and the Stream-with-annotations [6] model that as semi-streaming but assume
a powerful helper can be queried for a small number of annotations. When
read-write space is restricted to O(n polylogn) space and accessing the graph is
restricted to a constant or logarithmic number of sequential passes on entire the
graph, some graph problems, e.g. connectivity or minimum spanning tree, have
known optimal solutions. Other graph problems, e.g. counting the number of
3-cycles and maximum matching, can be approximated [1,3]. Some fundamental
problems, such as breath-first search, depth-first search, topological sorting, and
directed connectivity, are believed to be difficult [24, 25].

All known algorithms for computing degenerate orders have a structure that
is similar to topological sort. Therefore, we seek to approximate the graph de-
generacy. We use the semi-streaming model; that is, O(n polylogn) space and
constant/logarithm sequentially read-only passes on the entire graph are allowed,
which is the most restricted model among the mentioned three. Our goal is to
minimize the number of passes on the disk while finding a node ordering of low
degeneracy, in particular one whose degeneracy is a good approximation of the
degeneracy of the graph.

A simple semi-streaming algorithm can find a
⊕
nd(G)-degenerate ordering of

nodes in one pass, by sorting the node by (undirected) degree [26]. We improve
the approximation factor to a constant at the cost of a logarithmic number of
passes while maintaining n working space. Our algorithm can be made to use
space that is less than n, and as our space usage decreases, our approximation
factor degrades. Our algorithm outputs a sequence of some subset of nodes in
each pass. At the end of all passes, the concatenation of all sequences is the
desired ordering.

Theorem 1. Given a simple undirected n-node m-edge graph G, an αd(G)-
degenerate ordering of nodes of G, i.e. an α-approximation, can be computed
in O((m+n)P) time, using s(n) space and P = O(log1+ε/2 n/s(n)+logα/2 s(n))

252 M. Farach-Colton and M.-T. Tsai

sequential passes on the entire graph, where α = (2 + ε)n/s(n) for any ε > 0
and 1 ≤ s(n) ≤ n.
Note that α is inversely related to space s(n). For example, if s(n) = n/10, then
α = 20(1 + ε), and if s(n) = n/ logn, let α = 2 logn(1 + ε), for any ε > 0.
In addition, it is possible to perform fewer than logn passes: our algorithm
requires O(log logn/ε + logn/ log logn) passes, for small ε > 0, when s(n) =
O(n/ polylogn).

Organizations. In Section 2, we revisit some properties of graph degeneracy
and give a sketch of our algorithms. We propose the space-efficient approximation
algorithms in Section 3 and analyze their complexities. Last, in Section 4, we
discuss how the found ordering be applied to applications.

2 Preliminaries

We begin by reviewing some known results about degeneracy. A greedy algorithm
finds d(G) and a corresponding ordering of nodes in O(m) time using O(m)
space [5, 22]. The greedy algorithm is based on the following two observations:
d(G) is at least the minimum degree, δ(G), of G, because the first node in any
ordering has outdegree equal to its (undirected) degree; d(G) ≥ d(H) for any
subgraph H ⊗ G, since one can apply the optimal orientation for G to subgraph
H . Hence, the algorithm can greedily pick node v of minimum degree as the first
node in the ordering and reduce the graph G to a subgraph G \ v. This greedy
step will not increase the maximum out-degree in the resulting ordering because

max
{
d(v), d(G \ v)

} ≤ d(G).

This greedy algorithm needs to update the degree of nodes next to v in order
to find the node of minimum degree in G \ v, which requires a full graph scan
in the semi-streaming model, or O(n) passes in total. To reduce the number
of passes on the graph, one can find a subset of vertices W whose degrees are
within the range [δ(G), cδ(G)] for any c ≥ 1. Removing W in a round yields a
greedy algorithm that approximates d(G) by a factor of c, since

d̂(G) ≤ max
{
cδ(G), d(G \W)

} ≤ cd(G).

Although this algorithm finds sets of nodes, rather than single nodes, in each
pass, the number of passes remains Θ(n) in the worst case, as illustrated in
Figure 1.

To further reduce the number of passes to log, let the density of a G be m/n,
and let d∗(G) be the maximum density among all subgraphs of G. It is known
that d∗(G) ≤ d(G) ≤ 2d∗(G) [14]. The first inequality is true by the pigeon-hole
principle: if m edges are assigned as out-edges to n nodes, then some node will
get at least m/n edges, and this is true of all subgraphs as well. The second
inequality is true because every n-node m-edge graph G has a node of degree

Computing the Degeneracy of Large Graphs 253

2

3

3

2

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

3

2

2

3

Fig. 1. In the above graph G, if one removes nodes of degree within [δ(G), 2δ(G)] in
each round, then the removal of all nodes requires three rounds. Each round removes
the extreme column at either end, leaving a structure with “internal” nodes of degree 5
and end columns of degree 2/3/3/2. This graph can be extended to an arbitrary length
by concatenating multiple instances of G. This longer graph shares the property that
only the first and last column are removed in each round. Therefore, greedily removing
nodes of degree with [δ(G), 2δ(G)] requires Θ(n) rounds.

no more than 2m/n; hence, one can always remove a vertex of degree at most
2d∗(G), or, equivalently, d(G) ≤ 2d∗(G).

If one iteratively removes a subset of vertices whose degrees are no more than
cm/n, where c = 2 + ε for any ε > 0, then the approximated degeneracy d̂(G)
is at most cd∗(G), i.e., we achieve a c-approximation of both d∗(G) and d(G).
After the removal of vertices, the number of surviving vertices is at most 2n/c
because the sum of degree is at most 2m, which means that there are at most
2n/c nodes of degree more than cm/n. Thus, the number of passes is logarithmic,
specifically, O(log n/(log c− 1)), yielding a tradeoff between the approximation
factor and the number of passes.

The space can be further reduced based on the ideas of counting sketches
used in streaming algorithms [8–10]. That is, we use s(n) < n space to count
the degree of each node. Since s(n) is not sufficient to count the degree of n
nodes individually, a counter is possibly shared among some nodes. Indeed, the
counter is the sum of degrees of nodes assigned to this counter. Therefore, the
counter is an overestimate of degree. If the overestimate is bounded, then we get
a bounded approximation. We explore these ideas more fully below.

3 Algorithms

We present two algorithms: one that uses n space and achieves a constant approx-
imation factor and one that uses less than n space and yields a smooth tradeoff
between the space used and the approximation achieved. These algorithms share
some high-level structure, which we present first.

The proposed algorithms require multiple passes on graph G(V,E). Let V1 be
V . In the ith pass, the algorithms identify a subset Vi+1 ⊗ Vi. Let ni = |Vi| and
mi be the number of edges in the subgraph of G induced by Vi. Step i outputs
the nodes in Vi \ Vi+1 in any arbitrary order. The algorithms terminate when

254 M. Farach-Colton and M.-T. Tsai

there are no more nodes to output, that is, when ni+1 = 0. The desired ordering
of nodes is the concatenation of the output of all phases.

So far, this algorithm follows the same outline as the other greedy algorithms.
The difference will be in which nodes we output in each phase. A node becomes
a candidate node in phase i if di(u) ≤ αmi/ni for some α = 2 + ε, ε > 0, where
di(u) is the degree of u in the subgraph of G induced by Vi. Once a node is a
candidate, it remains a candidate. Both of our algorithms output only candidate
nodes, and they both output candidates as soon as they detect that a node
becomes a candidate. The difference between our algorithms is that if we use
linear space, we can detect that a node is a candidate as soon as it becomes
one, so that we output nodes more aggressively. We achieve a smaller number of
phases and a better approximation ratio. If we have sublinear space, it will be
more difficult to detect candidacy.

In the first algorithm, we will go further and guarantee to output all nodes
u with di(u) ≤ αmi/ni, that is, we will detect candidate nodes as soon as they
become candidates. In that case,

ni+1 ≤ (2mi)/(αmi/ni) = 2ni/α.

This implies that the algorithm terminates after a logarithmic number of phases.
When we use sublinear space, we will not be able to guarantee that all low-degree
nodes are output, so we will need to be more careful in order to guarantee a
logarithmic number of phases.

Using Space of Size n. We start with an easy version such that the memory
has size of n2, which is used for n counters, di(u) for u ∈ V , where di(u) is
reused as di+1(u) for all i. Each di(u) keeps the information whether node u is
output before the ith pass, in which case it is set to −1. If the node has not be
output yet, di(u) is used to keep track of the degree of u in the subgraph of G
induced by Vi. The value of di(u) for all u can be updated in one pass through
the graph, as follows. If di(u) is negative, do nothing; otherwise, reset di(u) to
0. During the scan, process the edge, one by one. When processing edge (u, v), if
di(u) ≥ 0 and di(v) ≥ 0, then it means edge (u, v) is still the subgraph induced
by Vi; increment di(u) and di(v) by one.

Having di(u) for u ∈ Vi, check each u to see if di(u) ≥ αmi/ni. Output any
such node u as it is identified, and set di(u) = −1.

Lemma 1. An αd(G)-degenerate ordering of nodes, for α = 2 + ε, ε > 0, can be
generated by a semi-streaming algorithm using n space, P = O(log n/ log(α/2))
passes, and O((m+ n)P) time.

Proof. Consider an ordering produced by the algorithm. If node u is output in
the ith pass, then u belongs to Vi \ Vi+1 and has outdegree at most αmi/ni.
The n counters allows the algorithm to output any such candidate node during

2 Any algorithm will require a constant amount of memory, so when we report space
usage of n, we mean in addition to the O(1) overhead for running the algorithm.

Computing the Degeneracy of Large Graphs 255

the phase that it becomes a candidate. Therefore, ni+1 ≤ 2ni/α. The number of
passes is therefore O(log n/ log(α/2)).

As for the approximation factor, since each output node u in the ith pass has
degree di(u), then the eventual outdegree of u is at most

di(u) ≤ αmi/ni ≤ αd∗(G) ≤ αd(G),

yielding an αd(G)-degenerate ordering of nodes. ∗≥

Using Space of Size s(n) ≤ n. The small-space algorithm proceeds in two
sections. At first, there is not enough space to count the degree of every one. As
some nodes are output, the number of remaining nodes ni drops. When ni drops
to no more than s(n)/2, then we can use a hash table to count the degrees and
proceed as that using space of size n. Therefore, we focus on the first part of the
algorithm.

If ni > s(n)/2, then the s(n) space is not sufficient to keep track of which
nodes are still active and to keep track of di(u) individually for each u ∈ Vi.
Therefore, the algorithm switches over when ni ≤ s(n)/2. To count degrees with
fewer counter, as with counting sketches [8–10], we map ni nodes to s(n) space

by a hash function h, and d̂i(h(u)) is used to count the degree of node u, although
other nodes v may share the same counter if h(v) = h(u). Formally,

d̂i(h(u)) =
∑

v⊆Vi,h(v)=h(u)

di(v).

Note that by di(u) and d̂i(h(u)) we denote the real degree of node u in the

subgraph induced by Vi and its estimate, respectively. Clearly, d̂i(h(u)) ≥ di(u).
We use a simple, deterministic hash function,

h(u) = u mod s(n).

The small-space procedure mimics the n-counter algorithm. First, recall that
when a counter is negative, it means that a node has been output. Since several
nodes can share the same counter, if we output one node u that maps to a
counter, we will output all nodes that map to that counter, and we will set that
counter d̂(h(u)) = −1, as before.

Lemma 2. An αd(G)-degenerate ordering of nodes, for α = (2 + ε)n/s(n), ε >
0, can be generated by a semi-streaming algorithm using s(n) space, P =
O(log n/ log(αs(n)/(2n))) passes, and O((m+ s(n))P) time.

Proof. Recall that n1(= n), n2, . . . , nP+1 is the number of nodes remaining

after each pass. In the ith pass, the expectation of estimators d̂i(x) for x ∈
{1, 2, . . . , s(n)} is E[d̂i(x)] = 2mi/s(n). By Markov’s inequality, we have

p1 ⊆ Pr

[
d̂1(x) >

αs(n)

2n1
E[d̂1(x)]

]
<

2n1

αs(n)
< 1.

256 M. Farach-Colton and M.-T. Tsai

The number of estimators that have value more than (αs(n))/(2n1)E[d̂1(x)] is
at most

s2 < s(n)
2n1

αs(n)
< s(n).

Then V2, the identified subset of V1, has cardinality at most n2 = s2↑n/s(n)⊃ or
precisely s2n/s(n), assuming that n is a multiple of s(n). The assumption can
be handled by adding some isolated nodes to increase n to a multiple of s(n)
and ignoring the nodes of index more than the original n as they are output.
Similarly, due to n2 < n1 = n,

p2 ⊆ Pr

[
d̂2(x) >

αs(n)

2n2
E[d̂2(x)]

]
<

2n2

αs(n)
< 1.

The number of estimators that have value more than (αs(n))/(2n2)E[d̂2(x)] is

s3 = s(n)p2 < s(n)
2

αs(n)
n2 = s(n)

2

αs(n)
s2

n

s(n)
< s2.

Therefore, P = O(logn/ log (αs(n)/(2n))) because the above derivation is

si+1 <
2n

αs(n)
si < si

in general. The outdegree of nodes output in the ith pass is bounded by

d̂i(h(u)) ≤ αs(n)

2ni
E[d̂i(x)] ≤ αs(n)

2ni

2mi

s(n)
≤ αd∗(G) ≤ αd(G). ∗≥

We compare the proposed algorithms in Table 1. The approximation factor
α and the required number of passes P of the proposed sublinear-space algo-
rithm are those of the linear-space algorithm multiplied by a factor of n/s(n),
respectively. There is therefore a tradeoff between α and P on the one hand
and s(n) on the other. We can combine the two algorithms as follows. When
the space is not sufficient to accommodate all nodes, we use the sublinear-space
algorithm. Once the remaining nodes are at most s(n)/2, we use the linear-space
algorithm, which converges faster, changing the base of the log from αs(n)/(2n)
(a constant close to 1) to α/2 (a constant if s(n) = Θ(n) or logarithmic if
s(n) = Θ(n)(n/ polylog)). Hence, the required number of passes is bounded by

O(logαs(n)/(2n) n/s(n) + logα/2 s(n))

=O(log(n/s(n))/ log(1 + ε/2) + log s(n)/ log((1 + ε/2)n/s(n))).

It is remarkable that, for small ε, only O(log logn/ε+logn/ log logn) passes are
needed to achieve an approximation factor of O(logk n) when s(n) = n/ logk n.

4 Applications

Here we show how to use a small degeneracy ordering to approximate some
problems in streaming models.

Computing the Degeneracy of Large Graphs 257

Table 1. Comparison of proposed algorithms. Approximations are for small ε.

space approximation factor (α) # of passes (P) for any ε P for small ε

n 2 + ε log n/ log((2 + ε)/2) ≈ 2 log n/ε

s(n) (2 + ε)n/s(n) log n/(log(αs(n)/(2n))) ≈ 2 log n/ε

Forest/planar subgraph decomposition. Let a(G), the arboricity of G, be
the minimum number of disjoint forests into which graph G can be decomposed.
Let θ(G), the thickness of G, be the minimum of disjoint planar graph into which
graphG can be decomposed. The relationships among degeneracy, arboricity and
thickness are illustrated in Figure 2.

d(G)

a(G) θ(G)

a(G) ≤ d(G) ≤ 2a(G) [2,4] θ(G) ≤ d(G) ≤ 6θ(G) [4]

θ(G) ≤ a(G) ≤ 3θ(G) [11]

Fig. 2. The relationships among d(G), a(G) and θ(G)

One can use a (2 + ε)d(G)-degenerate ordering to approximate the optimal
decomposition of a graph into disjoint forests/planar subgraphs, as follows. For
each u, assign a distinct color to each edge connecting a neighbor that appears
later in the ordering. Since the ordering is (2 + ε)d(G)-degenerate, (4 + ε)d(G)
are required, i.e., a 4-approximation. Monochrome edges never form a cycle, that
is, they form a forest. Since a forest is also a planar graph, forest-decomposition
can also be applied to planar-decomposition, yielding a (12 + ε)-approximation.

Given a small-degeneracy ordering, subgraph decomposition can therefore be
approximated in the Sort-stream model, using the space s(n), as follows. Asso-
ciate with each edge the rank of its incident nodes in the ordering. This can be
done in n/s(n) sequential writable passes. Then, sort the stream by the smaller
rank of incident nodes in one pass, as is assumed to be allowable in the Sort-
stream model. Perform one more sequential scan to assign a distinct color to each
edge that match in the smaller rank of incident nodes. Last, sort the stream by
the edge color.

Sever-Client Load Balancing. For this application, we need to generalize
the result on ordinary graph G to a simple r-hypergraph G. In a hyergraph,
each hyperedge is a subset of nodes. An r-hypergraph is a hypergraph where
each edge has at least two nodes (no self loops) and at most r. In this case,
d∗(G) ≤ d(G) ≤ rd∗(G) because, on one hand, n nodes are assigned by m

258 M. Farach-Colton and M.-T. Tsai

edges and there exists one node has been assigned no fewer than m/n edges
by the Pigeon-hole principle; on the other hand, there exists one node with
degree no more than rm/n in each r-hypergraph, which, by the optimal greedy
construction of degeneracy, shows the right-hand inequality.

Corollary 1. Given a simple undirected n-node m-edge r-hypergraph G, using
space s(n), where 1 ≤ s(n) ≤ n, an αd(G)-degenerate ordering of nodes of G, i.e.
an α-approximation, can be computed in O((m + n)P) time, using s(n) space
and P = O(log1+ε/r(n/s(n))+logα/r s(n)) sequential passes on the entire graph,
where α = (r + ε)n/s(n) for any ε > 0.

Consider the server-client load balancing problem [20]. A sever-client model is
a bipartite graph such that all edges are incident on one server node and one
client node. The task is to assign each client to a server while minimizing the
number clients assigned to a single server.

Suppose that the degree of each client is at most r, and consider the following
induced r-hypergraph: the nodes are the server nodes and each hyperedge in
the induced hypergraph is the set of servers adjacent to a client node. Then an
(r+ ε)d(G)-degenerate ordering of the hypergraph is a (r+ ε)-approximation of
the server-client load balancing problem, where the approximated assignment of
each client to a server is then obtained by the degenerate ordering.

An (r + ε)d(G)-degenerate ordering induces an assignment of each client to
a server. As mentioned above, the induced assignment minimizes the heaviest
server load to within a factor of (r + ε) of optimal. In addition, based on the
algorithm introduced in [20], a good approximation algorithm can be used to
speedup their exact computation. In [20], they prove that, given a sub-optimal
assignment, there exists an alternating path connecting the server of maximum
load to another server. The better the initial solution, the fewer alternating-
path rewrites that are needed, thus improving the time complexity of finding an
optimal solution.

Finding an Approximated Dominating Set. In [19], it was shown how to
identify a dominating set based on a d-degenerate ordering, for any d. Let the
neighbor nodes appear earlier (later) in the ordering be earlier (later) neighbors.
The algorithm initializes an empty dominating set D̂ and adds some nodes to
this set greedily as follows. Traverse the nodes in the ordering from the first to
the last. When processing node u, if u is dominated by D̂, do nothing; otherwise,
some nodes need to be added to D̂. The choice of added nodes is made depending
on whether u has a later neighbor. If so, add all later neighbors to D̂; otherwise,
add u to D̂. The set D̂ so constructed is a dominating set. The greedy process
requires the space O(n) and one sequential pass on the adjacency list, each list
sorted by lower rank, can be handled as in the graph decomposition.

In [19], it is shown that |D̂| ≤ O(d2)|D|, where D is the smallest dominating
set. More applications that apply small degeneracy ordering to some variations
of dominating set, e.g. k-dominating set, are introduced in [12].

Computing the Degeneracy of Large Graphs 259

References

1. Ahn, K.J., Guha, S.: Linear programming in the semi-streaming model with
application to the maximum matching problem. In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 526–538. Springer,
Heidelberg (2011)

2. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-
rithmica 17(3), 209–223 (1997)

3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms,
with an application to counting triangles in graphs. In: Proceedings of the Thir-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2002, pp.
623–632. Society for Industrial and Applied Mathematics (2002)

4. Bollobás, B.: Extremal graph theory. Academic Press (1978)
5. Bollobás, B.: The evolution of sparse graphs. In: Graph Theory and Combinatorics,

Proc. Cambridge Combinatorial Conf., pp. 35–57. Academic Press (1984)
6. Chakrabarti, A., Cormode, G., McGregor, A.: Annotations in data streams. In:

Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 222–234. Springer, Heidelberg
(2009)

7. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000)

8. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 693–703. Springer, Heidelberg (2002)

9. Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. Proc.
VLDB Endow. 1(2), 1530–1541 (2008)

10. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

11. Dean, A.M., Hutchinson, J.P., Scheinerman, E.R.: On the thickness and arboricity
of a graph. Journal of Combinatorial Theory, Series B 52(1), 147–151 (1991)

12. Dvořák, Z.: Constant-factor approximation of the domination number in sparse
graphs. European Journal of Combinatorics 34(5), 833–840 (2013)

13. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 531–543. Springer, Heidelberg (2004)

14. Frank, A., Gyarfas, A.: How to orient the edges of a graph. In: Combinatorics
Volume I, Proc. of the Fifth Hungarian Colloquium on Combinatorics, vol. I, pp.
353–364 (1976)

15. Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid
sums and applications. In: Proceedings of the Twentieth Annual ACM Symposium
on Theory of Computing, STOC 1988 pp. 407–421. ACM (1988)

16. Goldberg, A.V.: Finding a maximum density subgraph. Tech. rep. (1984)
17. Kawano, S., Yamazaki, K.: Worst case analysis of a greedy algorithm for graph

thickness. Information Processing Letters 85(6), 333–337 (2003)
18. Kowalik, ffL.: Approximation scheme for lowest outdegree orientation and graph

density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566.
Springer, Heidelberg (2006)

19. Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of
bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 510–524. Springer, Heidelberg (2010)

260 M. Farach-Colton and M.-T. Tsai

20. Liu, P., Wang, D.W., Wu, J.J.: EΔcient parallel i/o scheduling in the presence of
data duplication. In: International Conference on Parallel Processing, pp. 231–238
(2003)

21. Mansfield, A.: Determining the thickness of graphs is NP-hard. Math. Proc. Cam-
bridge Philos. Soc. 93, 9–23 (1983)

22. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983)

23. Muthukrishnan, S.: Data streams: Algorithms and applications. Tech. rep. (2003)
24. O’Connell, T.C.: A survey of graph algorithms under extended streaming models

of computation. In: Fundamental Problems in Computing, pp. 455–476. Springer,
Netherlands (2009)

25. Ruhl, J.M.: EΔcient Algorithms for New Computational Models. Ph.D. thesis,
Massachusetts Institute of Technology (September 2003)

26. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs,
an experimental study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503,
pp. 606–609. Springer, Heidelberg (2005)

27. Zhang, J.: A survey on streaming algorithms for massive graphs. In: Managing and
Mining Graph Data, Advances in Database Systems, vol. 40, pp. 393–420. Springer,
US (2010)

Approximation Algorithms for the Geometric

Firefighter and Budget Fence Problems

Rolf Klein1, Christos Levcopoulos2, and Andrzej Lingas2

1 Universität Bonn, Institut für Informatik I, D-53117 Bonn
rklein@uni-bonn.de

2 Department of Computer Science, Lund University, 22100 Lund
{Christos.Levcopoulos,Andrzej.Lingas}@cs.lth.se

Abstract. Let R denote a connected region inside a simple polygon, P .
By building 1-dimensional barriers in P \R, we want to separate from R
part(s) of P of maximum area. In this paper we introduce two versions
of this problem. In the budget fence version the region R is static, and
there is an upper bound on the total length of barriers we may build. In
the basic geometric firefighter version we assume that R represents a fire
that is spreading over P at constant speed (varying speed can also be
handled). Building a barrier takes time proportional to its length, and
each barrier must be completed before the fire arrives. In this paper we
are assuming that barriers are chosen from a given set B that satisfies
a certain linearity condition. For example, this condition is satisfied for
barrier curves in general position, if any two barriers cross at most once.

Even for simple cases (e. g., P a convex polygon and B the set of all
diagonals), both problems are shown to be NP-hard. Our main result is
an efficient ≈ 11.65 approximation algorithm for the firefighter problem.
Since this algorithm solves a much more general problem—a hybrid of
scheduling and maximum coverage—it may find wider application. We
also provide a polynomial-time approximation scheme for the budget
fence problem, for the case where barriers chosen from B must not cross.

1 Introduction

The firefighter problem in graphs has recently received significant attention
[2,7,11,13]. It models a situation where a fire, infection, computer virus, etc.,
spreads through a network, and the goal is to save as many network nodes as
possible by a suitable placement of firefighters.

At the beginning a fire breaks out at the source vertex of the input graph.
At each subsequent time step a bounded number of firefighters (just one in the
standard version) may be placed at vertices that are not already on fire, to
defend them. Once defended, a vertex will never catch fire. After the firefighters
have been placed, the fire spreads from each burning vertex to all its undefended
neighbors. The process ends when the fire can no longer spread. All vertices
which are not on fire are considered to be saved. The objective is to determine
a placement of firefighters that maximizes the number of vertices saved.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 261–272, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

262 R. Klein, C. Levcopoulos, and A. Lingas

This graph firefighter problem is NP-hard already for trees [11,12], and hard to
approximate within nα, for any Θ < 1, in polynomial-time in the general case [7].
Only trees are known to admit polynomial-time constant-factor (e/(e − 1) ⊕
1.5819) approximation algorithms [7].

In this paper we propose a natural geometric firefighter problem. Instead of
a graph, we have a polygonal region P with a distinguished point R where a
fire starts spreading through P at a given constant speed. Instead of placing
firefighters, we can build 1-dimensional barriers also at a given constant speed
in the area still free of fire, one at a time. Thus, building a barrier takes time
proportional to its length. A barrier must be built continuously and each barrier
point must be completed before the fire reaches it. The goal is to maximize the
area of P that is separated from the fire by the barriers. (Our results can be
modified to apply to other variants of the problem. For example, the fire can
spread at various speeds, and the time it takes to build various barriers can also
vary.)

We also consider a simpler version termed the budget fence problem. For a
polygonal region P , a contaminated subregion R, and a fence budget l, we want
to separate a maximum area of P from R by drawing barriers within P \ R of
total length not exceeding l. In this static case no time constraints need to be
observed.

Both problems have several variants depending on the type of polygonal region
and the set B of barriers allowed. In either case we require that B fulfills the
following linearity condition. If a point p in P can be separated from R by a
subset of barriers of B, then there is a single barrier that already separates p
from R; see Figure 1 for illustrations.

1.1 Our Contributions

In Theorem 2 we show the NP-hardness of the geometric firefighter problem for
convex polygons and diagonals as barriers. Theorem 3 states that the problem
is also NP-hard for star-shaped polygons and unrestricted sets of barriers. Its
proof is in the full version of the paper. These hardness results carry over to the
budget fence problem.

Our main result is a constant (⊕ 11.65) approximation greedy algorithm for
the firefighter problem in simple polygons that runs in time polynomial in the
size of the barrier set B; see Theorems 4 and 5. This algorithm solves in fact a
more general problem which is a hybrid of scheduling and maximum coverage.
We are given a finite set of non-splittable jobs with release, duration, and com-
pletion time demands. Each job covers some part of a universe. The objective
is to feasibly schedule a subset of jobs so that the profit from the total part
of universe covered is maximized. Since this hybrid problem is a generalization
of the maximum coverage problem, it cannot be approximated within a factor
smaller than e/(e− 1) ⊕ 1.5819 in polynomial time unless P = NP [10].

In Theorem 6 we address the budget fence problem in a simple polygon.
Whereas in the firefighter problem the barriers can be thought of as trenches
that may cross each other, we require that those fence segments the algorithm

Approximation Algorithms for the Geometric Firefighter 263

selects from the given set B must have pairwise disjoint interiors. We present
a polynomial-time approximation scheme (PTAS) based on dynamic program-
ming. It also yields a low-constant approximation for the geometric firefighter
problem with disjoint barriers in simple polygons, provided the geodesic dis-
tances of the given barriers from the fire source do not differ too much; see
Corollary 1.

1.2 Related Results

Several different generalizations and variants of the graph firefighter problem
have been studied in the literature [2,7,11,13]. Recently, this problem has also
been studied in the context of random geometric graphs, whose nodes corre-
spond to random points according to a random distribution; in this setting, two
points are connected by an edge iff the distance between them is shorter than a
prespecified constant [5].

There are other papers beside Khuller et al. [17] which study generalizations
of the maximum coverage problem, e.g., Cohen and Katzir [9]. Some of them
are also partly related to scheduling, since they consider picking one element or
set at a time, e.g., in Bansal et al. [3]. However, these generalizations are still
very different from our hybrid problem, and therefore none of the techniques
used in those papers seem applicable to our problem. Other papers relating set
cover to scheduling also deal with very different problems. See, for example,
Bansal and Pruhs [4], Hassin and Levin [16] and Ghaderi et al. [15]. Following
the general approach for submodular function maximization, as described in
Chekuri et al. [8], it may be possible to design an algorithm for our hybrid
problem, although perhaps with a much worse approximation ratio.

To the best of our knowledge, the budget fence problem has not been studied
except for very special cases, e.g., for rectilinear strips [1]. A related problem
which has been studied is to select, among a given set of curves, a minimum
number of curves which separates two sets of points [6] .

2 Barriers and Linearity

By a barrier in a polygonal region we mean a curve of constant algebraic degree
that does not intersect itself and either has both endpoints on the polygon’s
boundary—a cut—, or its endpoints coincide so that it forms a loop. We shall
assume that barriers are in general position; endpoints of cuts may coincide, but
otherwise intersections are proper crossings. Barriers must be built (drawn) from
one endpoint to the other at constant speed, a single one at a time, but there is
no travel cost between different barrier locations. In the firefighter problem, no
point b on a barrier can be built after the expanding fire has reached b.

As part of the problem definition, a set B of allowed barriers is specified.
We assume that B satisfies the following linearity condition. For a subset A
of barriers let saved(A) denote the part of P that is separated from R by the
barriers of A (i.e., complement of the closed cell containing region R, in the

264 R. Klein, C. Levcopoulos, and A. Lingas

arrangement of all barriers of A inside P). Set B is called linear if for each
subset A ≤ B

saved(A) ≤
⋃

a∗A
saved(a) (∗)

holds; Figure 1 shows two examples. Intuitively, this means that sets of barriers
cannot “cooperate” to save some piece which cannot be saved by any one of the
individual barriers in the set.

(i) (ii)

Fig. 1. (i) A non-linear barrier set. Each barrier itself separates only a miniscule area
from the fire, but together they fence off large parts of P . (ii) A linear barrier set; any
two barriers cross at most once.

To test a barrier set B for linearity is not as complicated as this definition
would suggest. For this purpose, we use the following lemma, whose proof is
given in the full version.

Lemma 1. For each barrier set B in a simple polygon the following holds.

1. If B contains only cuts and no loops then each point that can be saved by
a set of barriers can even be saved by (at most) two of them. Consequently,
condition (∗) needs only be checked for all subsets A of size 2.

2. For a general set B of size m, linearity can be tested in time polynomial
in m, provided any two barriers cross only a constant number of times.

3. If any two barriers in B cross at most once then B is linear; Figure 1 (ii)
is an example.

3 NP-Hardness

A natural approach to show NP-hardness of the geometric firefighter problem
is a reduction from the graph firefighter problem, which is known to be NP-
hard even for trees of maximum outdegree three [11]. This approach yields the
following theorem whose proof is given in the full version.

Approximation Algorithms for the Geometric Firefighter 265

Theorem 1. The geometric firefighter problem is NP -hard for simple polygons,
when the barriers can be chosen from a given set of diagonals of identical length.

If we allow for a large range of the lengths of barriers then we obtain NP-
hardness for the geometric firefighter problem with diagonal barriers even for
convex polygons.

Theorem 2. The geometric firefighter problem is NP -hard even for convex
polygons, if the possible barriers are restricted to all possible diagonals.

Proof. We reduce from the subset-sum problem [14]. Let {a1, a2, ..., ak} be the

set of positive integers, s :=
∑k

i=1 ai, and let t be the desired target sum in
the subset-sum problem we want to solve by using the firefighter algorithm for
convex polygons.

The convex polygon P is constructed as follows. It has 3k vertices. Of these
vertices, 2k lie on a circle C of radius r (to be determined later) centered at the
fire source. Every third vertex vi of the convex polygon lies in the interior of this
circle C. Vertex vi can be cut off by a diagonal of length ai; see Figure 2. The

C

P

ai

> 2t r

vi

h

Fig. 2. Constructing firefighter instances to show NP-hardness

resulting triangle is of height h, independent of index i, so that its area equals
h · ai/2. Two consecutive vertices of polygon P situated on C are at distance
greater than 2t. (The height h is the same for all triangles. The precise location
of the vertex vi is not essential, as long as it lies on or inside the circle C.)

Let us assume that barriers can be built at speed one. Defining the fire’s
speed, v, by v(t+ 0.5) = r ensures that the firefighter can build barriers of total
length at most t + 0.5 before the fire reaches the circle and the whole process
terminates. Hence, no diagonal of length > 2t can be built. On the other hand,
if we make radius r large enough to satisfy

(ai
2

)2

<

(
1− t2

(t+ 0.5)2

)
r2,

266 R. Klein, C. Levcopoulos, and A. Lingas

then vt <
√
r2 − (ai/2)2 holds, meaning that the fire has not reached the ith tri-

angle at time t. Therefore, finding the optimal solution for the firefighting prob-
lem is equivalent to finding the subset of integers from the subset-sum problem
whose sum is as close to t as possible, without exceeding t.

We observe that an additive error less than 1/k2 in the lengths of the diago-
nals would be tolerable in this construction. Thus, vertices can be described by
rationals of length polynomial in the bit length of the input. ⊗∈
The proof of Theorem 2 would not work if the firefighter were allowed to build
barriers freely anywhere in the polygon. But it turns out that the complexity of
the problem does not decrease in this more liberal setting. The following result
is shown in the full version of this paper.

Theorem 3. The geometric firefighter problem and the budget fence problem
are NP-hard for star-shaped polygons even if there is no restriction as to where
the barriers can be built, and curved barriers are allowed.

4 An Approximation Algorithm for the Geometric
Firefighter Problem

In this section we present an efficient greedy algorithm for solving the geometric
firefighter problem for a finite barrier set B, that achieves a constant approxi-
mation factor.

Our algorithm works in a more general setting, related to job scheduling
and maximum coverage. Each barrier b ∗ B of the firefighter problem can be
considered a job. It has a duration (the time needed to build it) and a completion
time (the last point in time where the fire permits the construction of b to be
completed). Each job is assumed to cover a subset of some finite universe U .
The elements of U carry profits, and a job’s profit equals the sum of profits of
all elements it covers.

The goal is to compute a feasible job schedule whose total profit (i.e., the
sum of all profits of jobs scheduled) is maximized. Since this problem generalizes
the max-coverage problem, it inherits its inapproximability results. Thus, no ap-
proximation factor smaller than ⊕ 1.5819 can be guaranteed by any polynomial
time algorithm, unless P = NP [10].

We will now present an approximation algorithm GlobalGreedy that runs in
low polynomial time in the size of B and guarantees an approximation factor of
⊕ 11.65. After proving this result, we comment more precisely on how this can
be applied to the geometric firefighter problem.

GlobalGreedy maintains a feasible time schedule L of jobs, with precise start
and completion times for each of the jobs in L. (We may think of the sched-
ule as a list of jobs, sorted according to their scheduled start time, although
a more advanced data structure can be employed in order to perform searches
and changes of the list more efficiently.) The algorithm starts with the empty
schedule L. It considers each input job J exactly once for possible insertion into

Approximation Algorithms for the Geometric Firefighter 267

the schedule L. If J is rejected, it will never be considered again for inclusion.
If J is scheduled and inserted into the schedule L, its scheduled starting time
will never change. However, it may still happen that J is later deleted from L,
in order to make it possible for some other job to be scheduled (partly) during
the scheduled time for J . Once J is deleted, it will never again be considered for
insertion into the schedule.

Since GlobalGreedy inspects each job only once for possible insertion, the or-
der in which the jobs are considered is crucial. To define this order, and for easier
reference in the subsequent proof, we assign colors to all elements of universe
U . These colors may change during the process. In the beginning, all elements
are colored red. Each time GlobalGreedy inserts a job J into the schedule L the
following happens: all red elements covered by J are irrevocably associated to
J , and change color to green. We will call these elements the property elements
of J , and denote by the property profit of J the total profits of all the property
elements of J .

Finally, if some job J is later deleted from the schedule L, in order to make
place in the schedule for some other job, then the property elements of J change
color from green to grey during the deletion of J .

GlobalGreedy starts with the empty schedule L, and colors all elements of
the universe red. Then it runs the following while-loop, one iteration for every
input job J , possibly altering the schedule L, until there are no more jobs left
unconsidered. Finally it outputs the schedule L. The order in which the jobs
are considered is defined inside the while loop. A parameter μ ∗ (0, 1) specifies
when jobs will be deleted from the schedule L in order to accommodate job J
currently under consideration.

while there is still any unconsidered job do
Consider an unconsidered job J which maximizes the ratio of the total profit
of the red elements it covers, divided by its duration. Insert J into schedule L
if and only if this can be done respecting the deadline for J and without any
re-schedulings of other jobs, except for possibly deleting consecutive jobs in L
whose property profits are altogether not greater than μ times the total profit
of all red elements covered by J . (In case there are several options for when
to schedule J satisfying this condition, choose one of them arbitrarily.) If J is
inserted, change to green the color of all red elements covered by J . For each
job J ⊆ possibly deleted from schedule L, change from green to grey the property
elements of J ⊆.
end-while

Theorem 4. The above algorithm GlobalGreedy runs in polynomial time and
achieves an approximation factor of ⊕ 11.65 if parameter μ is set to

≥
2 − 1 ⊕

0.41.

Proof. We will need the following lemma. For ease of reference, let us denote
by ι(green) the total profit of all green elements in U , at a given time, and
similarly for the other colors.

268 R. Klein, C. Levcopoulos, and A. Lingas

Lemma 2. At each time, we have

ι(grey) ⊆ μ

1− μι(green).

Proof. By induction on the number of job insertions with deletions. Before the
first job is deleted from the schedule L, there are no grey elements, and the
lemma holds. Suppose that, upon inserting job J , jobs with a total green profit
of z are deleted from L. All this green profit turns grey. But, by definition of
GlobalGreedy, job J wins at least z/μ new green profit, so that

μ

1− μι(green)⊆ − ι(grey)⊆ ↑ μ

1− μ (ι(green)− z +
z

μ
) − (ι(grey) + z)

=
μ

1− μι(green) − ι(grey) ↑ 0.

⊗∈
Let us run algorithm GlobalGreedy. All jobs in the final schedule are called
green, and those jobs who were inserted into L and later removed, grey.

Now let us consider a schedule OPT achieving maximum profit. We change
to blue the color of all elements still red that are covered by OPT (noting that
no green or grey elements become blue). Such a blue element is assigned, as a
blue property element, to the first job J in OPT that covers it. Job J cannot be
green or grey, because then it would no longer cover red elements. Consequently,
if we name such a job J blue, the three color classes are pairwise disjoint.

In order to prove Theorem 4 we are using a paying scheme, where each green
or grey job J pays money to any blue job J ⊆ performed at least partially during
the same time as J (note that every job ever inserted into L is assigned a unique
execution time that will never be altered by GlobalGreedy). The paying scheme
is specified as follows.

The Paying Scheme.
Case 1: The execution time of J ⊆ is totally included within the execution time

of J . In this case, J gives to J ⊆ money equal to the property profit of J , times
the ratio of the duration of J ⊆ divided by the duration of J .

Case 2: In all other cases where the execution intervals of J and J ⊆ overlap,
J gives to J ⊆ money equal to 1/μ times the property profit of J .

Lemma 3. A green or grey job J pays at most 1 + 2/μ times its property profit
to blue jobs.

Proof. J pays 1/μ times its property profit to at most two blue job whose ex-
ecution intervals include the start or end time of J . In addition, J pays money
to blue jobs whose scheduled times are totally included within the execution
interval of J , in linear proportion to their respective duration; together, these
payments do not exceed the property profit of J . ⊗∈

Approximation Algorithms for the Geometric Firefighter 269

The following lemma shows that each blue job gets well-payed by this scheme.

Lemma 4. By the above paying scheme, each blue job receives an amount of
money not smaller than its property profit.

Proof. We define the efficiency ratio of any colored job J to be the ratio of its
property profit Δ divided by the duration Γ of J .

Let J ⊆ be any blue job. Let us study the iteration of the while-loop when Glob-
alGreedy considered J ⊆ for possible inclusion into the schedule L. Let J1, J2, ..., Jk
be the jobs in schedule L during that step, whose execution times (partially) over-
lap with the execution time of J ⊆. Since J ⊆ became a blue job, it was rejected by
GlobalGreedy. Thus, the total property profits of J1, J2, ..., Jk must have been
be at least μ times the red property profit of J ⊆, which is no less than μ times
its current blue property profit because all blue property profits of J ⊆ were red
during that iteration.

Moreover, by the order according to which GlobalGreedy considers jobs for
possible insertion into L, it follows that the efficiency ratio of each one of the
jobs J1, J2, ..., Jk must be at least as large as the efficiency ratio of J ⊆.

Let us first handle the case where k = 1. If the execution time of J ⊆ is totally
included within the execution time of J1, job J ⊆ receives from J1

Δ(J1)
Γ(J ⊆)
Γ(J1)

↑ Δ(J ⊆)
Γ(J ⊆)
Γ(J ⊆)

= Δ(J ⊆),

according to Case 1 of the paying scheme. In all other configurations, J1 gives
to J ⊆ the amount of

1

μ
Δ(J1) ↑ 1

μ
(μΔ(J ⊆)) = Δ(J ⊆)

by Case 2, and we are done. If k > 1, then the same arguments apply to
J1, J2, ..., Jk. ⊗∈

By Lemma 3 and Lemma 4,

ι(blue) ⊆
(

1 +
2

μ

)
(ι(green) +ι(grey)) .

Now Lemma 2 allows us to bound all profits by green profits, and we obtain for
the profits of OPT and GlobalGreedy

|OPT| ⊆ ι(green) +ι(grey) +ι(blue)

⊆ 2
μ+ 1

μ(1− μ)
ι(green) = 2

μ+ 1

μ(1− μ)
|GlobalGreedy|.

The factor is minimized for μ =
≥

2 − 1 to the value 6 + 4
≥

2 ⊕ 11.657. This
completes the proof of Theorem 4. ⊗∈

270 R. Klein, C. Levcopoulos, and A. Lingas

The same proof works if the jobs to be scheduled have release times, in addition
to duration and completion times. Also, their durations might depend on their
actual start times, as long as there are only a polynomial number of changes.
We summarize our main result as follows, observing that 3/2−≥2 is the inverse
of 6 + 4

≥
2.

Theorem 5. Let U be a set of elements, each associated with a real profit, and
let J be a set of jobs, where each job J in J covers a given subset of universe
U , and is given a release time, a completion deadline and a duration. Algorithm
GlobalGreedy runs in polynomial time and constructs a feasible schedule whose
total profit is at least 3/2−≥2 ⊕ 0.086 times the maximum possible profit.

In the geometric firefighter problem, universe U can be defined as follows. We
take the arrangement of all barriers of B inside polygon P , pick a representative
point uc from each cell c, and let the profit of uc be the area of c; observe that all
points in c share their fates with uc, with respect to the fire. Universe U equals
the set of the points uc, and each barrier b covers those points uc whose cells are
separated by b from the fire’s starting point. We observe that U is of polynomial
size because any two barriers cross at most a constant number of times, due to
their bounded algebraic degrees. Also, by the linearity of B, each cell that can be
saved from the fire at all, can be saved by a single barrier; see Section 2. Thus,
the above theorem yields an ⊕ 0.086 approximation to the geometric firefighter
problem (on a Real RAM that can compute square roots in constant time).

5 A PTAS for the Budget Fence Problem and a Special
Case of the Firefighter Problem

Recall that an instance of the budget fence problem consists of a simple polygon
P of n edges, a “contaminated” connected region R contained within P (it can
be degenerated to a point), the available total fence length l, and an allowed set
B of barriers, none of them intersecting the interior of R. The objective is to
fence off from R the largest possible area of polygon P by barriers from B of
total length not exceeding l. While B may contain candidates that cross each
other, we want to use only barriers whose interiors are pairwise disjoint.

In the absence of time constraints, this problem seems of a more combinatorial
nature than the firefighter problem. First, let us assume that B consists of diago-
nals of P . Then the following standard dynamic programming and discretization
approach yields a close approximation.

For each pair a, b of vertices of P, and a number parameter s, we consider
the problem Q(a, b, s) of finding a shortest simple path saving at least an area of
size s, from a to b in clockwise direction; the path can contain diagonals from B
and edges of P between a and b, but only the total length of diagonals counts.

Let max be the maximum area that can be saved by a single diagonal. Clearly,
no path can save more area than max× n. We may assume the parameter s to
belong to S = {i ×max × n/p(n) | 0 ⊆ i ⊆ p(n) ⊃ i ∗ Z+}, where p(n) is an
appropriate polynomial. Then, we can solve Q(a, b, s) by considering solutions

Approximation Algorithms for the Geometric Firefighter 271

to all pairs Q(a, c, s1) and Q(c, b, s2), where c is a vertex between a and b in
clockwise direction on the perimeter of P , s1, s2 ∗ S, and s1 + s2 ↑ s. We pick
the pair that minimizes the length of the path from a to b through c and compare
it with the direct diagonal connection between a and b if this diagonal exists in
B. We obtain an approximate solution of the budget fence problem for P by
picking the largest s ∗ S such that the minimum length path solving Q(a, a, s)
for some vertex a of P has length less than or equal to l.

Any feasible solution includes at most ⊇n/2⊂ diagonals. By the definitions of
S and our dynamic programming scheme, the area saved by each of them can
be underestimated by at most n×max

p(n) . Hence, since the optimal solution saves

at least max, the approximation factor of our dynamic programming method is
1

1−n2/p(n) . It follows that it is sufficient to set p(n) to cn2, for a sufficiently large

constant c, in order to obtain a (1 + Ψ) approximation.
Note that this method can be immediately adapted to work for any finite

linear barrier set B that does not contain loops. Thus, we have the following
result.

Theorem 6. There is a PTAS for the budget fence problem on a simple polygon
with a finite barrier set B that contains no loops.

Remarkably, a good approximation to the budget fence problem can also yield
a good approximation to the firefighter problem, under the assumptions from
above (B contains no loops, all barriers chosen must have pairwise disjoint in-
teriors). In fact, we obtain the following corollary from Theorem 6. Its proof is
given in the full version of this paper.

Corollary 1. Let minB and maxB be, respectively, the minimum and maximum
geodesic distance of a barrier in B from the fire source in P. For any Γ, Ψ > 0, the
firefighter problem in P can be approximated within 2⊇log1+δ

maxB

minB
⊂(1+Γ)(1+ Ψ)

in polynomial time.

6 Generalizations and Refinements

In this paper we have introduced a geometric version of the firefighter problem,
and the closely related budget fence problem. There is a number of generaliza-
tions and interesting questions deserving further research.

For example, Algorithm GlobalGreedy could as well be applied to a situation
where some parts of the polygonal domain P are more important than others.
Moreover, by adjusting the deadlines of the jobs, we can handle the cases when
the speed of the fire and/or of building the barriers may vary.

The proof of a constant approximation ratio for GlobalGreedy would still
work even if the barrier considered in the next iteration of the while-loop has
only approximately largest efficiency ratio. The approximation constant would
increase somewhat, but it would still be a constant. This observation may enable
faster computation of the next candidate barrier to be considered, and improve
the overall time performance of the algorithm.

Because of space considerations, more refinements and generalizations are only
included in the full version of the paper.

272 R. Klein, C. Levcopoulos, and A. Lingas

References

1. Altshuler, Y., Bruckstein, A.M.: On Short Cuts or Fencing in Rectangular Strips.
arXiv:1911.5920v1[cs.CG] (November 26, 2010)

2. Anshelevich, E., Chakrabarty, D., Hate, A., Swamy, C.: Approximability of the
Firefighter Problem: Computing Cuts over Time. Algorithmica 62(1-2), 520–536
(2012), preliminary version in proc. ISAAC 2009

3. Bansal, N., Gupta, A., Krishnaswamy, R.: A Constant Factor Approximation Algo-
rithm for Generalized Min-Sum Set Cover. In: Proc. SODA, pp. 1539–1545 (2010)

4. Bansal, N., Pruhs, K.: The Geometry of Scheduling. In: FOCS 2010, pp. 407–414
(2010)

5. Barghi, A., Winkler, P.: Firefighting on a random geometric graph. Random Struc-
tures & Algorithms, doi:10.1002/rsa.20511 (first published online: June 27, 2013)

6. Cabello, S., Giannopoulos, P.: The Complexity of Separating Points in the Plane.
In: Proc. 29th ACM Symposium on Computational Geometry, pp. 379–386 (2013)

7. Cai, L., Verbin, E., Yang, L.: Firefighting on Trees (1 − 1/e)–Approximation,
Fixed Parameter Tractability and a Subexponential Algorithm. In: Hong, S.-H.,
Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 258–269.
Springer, Heidelberg (2008)

8. Chekuri, C., Vondrák, R., Zenklusen, R.: Submodular Function Maximization
via the Multilinear Relaxation and Contention Resolution Schemes. Prel. ver-
sion in STOC 2011, 783–792 (2011), Revised version in http://arxiv.org/

pdf/1105.4593v3.pdf (July 30, 2012)
9. Cohen, R., Katzir, L.: The Generalized Maximum Coverage Problem. Information

Processing Letters 108, 15–22 (2008)
10. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652

(1998)
11. Finbow, S., King, A., MacGillivray, G., Rizzi, R.: The firefighter problem for graphs

of maximum degree three. Discrete Mathematics 307(16), 2094–2105 (2007)
12. Finbow, S., MacGillivray, G.: The Firefighter Problem: a survey of results, direc-

tions and questions. Australasian J. Comb. 43, 57–78 (2009)
13. Floderus, P., Lingas, A., Persson, M.: Towards more efficient infection and fire

fighting. Int. J. Found. Comput. Sci. 24(1), 3–14 (2013), preliminary version in
proc. CATS 2011

14. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-completeness. W.H. Freeman and Company, New York (1979)

15. Ghaderi, R., Esnaashari, M., Meybodi, M.R.: An Adaptive Scheduling Algorithm
for Set Cover Problem in Wireless Sensor Networks: A Cellular Learning Automata
Approach. International Journal of Machine Learning and Computing 2(5) (Octo-
ber 2012)

16. Hassin, R., Levin, A.: An Approximation Algorithm for the Minimum Latency Set
Cover Problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669,
pp. 726–733. Springer, Heidelberg (2005)

17. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. In-
formation Processing Letters 70, 39–45 (1999)

http://arxiv.org/pdf/1105.4593v3.pdf
http://arxiv.org/pdf/1105.4593v3.pdf

An Improved Data Stream Algorithm

for ClusteringΔ

Sang-Sub Kim and Hee-Kap Ahn

Department of Computer Science and Engineering, POSTECH, Pohang,
Republic of Korea

{helmet1981,heekap}@postech.ac.kr

Abstract. We present a single-pass, (1.8+ ε)-factor, O(1/ε)-space data
stream algorithm for the Euclidean 2-center problem for any fixed d � 1.
This is an improvement on the approximation factor over the (2 + ε)-
factor and O(1/ε)-space algorithms of Ahn et al. [3] and Guha [8]. It can
also be considered as an improvement on the space over the (1+ε)-factor
and O(1/εd)-space algorithm of Zarrabi-Zadeh [11], while sacrificing the
approximation factor a little bit. To our best knowledge, this is the first
breakthrough with an approximation factor below 2 using O(1/ε) space
for any fixed d. Our algorithm also extends to the k-center problem with
k > 2.

1 Introduction

Clustering is a fundamental problem arising from many applications such as
data mining [7,9], image processing [13], and astrophysics [4,6]. In a standard
Euclidean k-clustering problem, we are given a set P of points in d-dimensional
space R

d and are to find k points c1, c2, . . . , ck of Rd such that

max
p∨P

{ min
1�i�k

|pci|} is minimized,

where |pq| denotes the Euclidean distance between any two points p and q in the
space. This problem is also known as the Euclidean k-center problem.

In the data streaming model, input data is given as a sequence of items that
are allowed to be examined in only a few passes. A typical constraint of data
streaming algorithms is that they have limited amount (typically smaller than
the input size) of memory available, and therefore it is important to design an
algorithm whose space complexity does not depend on the size of input.

In this paper we consider the Euclidean k-center problem for streaming points
in R

d, where each point arrives one by one in a stream and is allowed to be
examined only once [2], and a small amount of information can be stored in a
device.

α This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIP) (No. 2011-0030044).

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 273–284, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

274 S.-S. Kim and H.-K. Ahn

Previous work. There has been work on computing k centers for small k. In a
fixed dimension, Hershberger and Suri [10] gave an algorithm for maintaining
extreme points in a number of different directions. This algorithm can be adapted
to a (1+Θ)-approximation algorithm using O(1/Θ(d−1)/2) space for the Euclidean
1-center problem. Recently, Agarwal and Sharathkumar [1] gave a (1 +

⊕
3)/2 +

Θ ≤ 1.3661-approximation algorithm using O((1/Θ3) log(1/Θ)) space. They also
showed that any single-pass stream algorithm using space polynomially bounded
in d cannot approximate the optimal 1-center within factor (1 +

⊕
2)/2 > 1.207.

Later, their approximation factor was improved to 1.22 by Chan and Pathak [5].
For k = 2, Zarrabi-Zadeh presented an approximation algorithm that uses

O(1/Θd) space and returns a solution with factor (1 + Θ) [11]. Guha’s algorithm
uses O((1/Θ) log(1/Θ)) space and returns an approximate solution with factor
(2 + Θ) [8]. Very recently, Ahn et al. gave a (2 + Θ)-factor and O(1/Θ)-space
algorithm [3].

There has also been work on computing k centers using the minimum space in
any arbitrary dimension. Zarrabi-Zadeh and Chan [14] gave a 1.5-approximation
algorithm for the Euclidean 1-center problem using only one center and one ra-
dius. Poon and Zhu [12] gave a 5.708-approximation algorithm for the Euclidean
2-center problem using two centers and one radius.

Our results. We present a single-pass data stream algorithm that uses O(1/Θ)
space and returns two centers with (1.8+Θ)-approximation to the 2-center prob-
lem in any fixed d � 1. Each update takes O(1/Θ) time.

This is an improvement on the approximation factor of (2+Θ) by Ahn et al. [3]
and Guha [8]. To our best knowledge, this is the first breakthrough with an
approximation factor below 2 using O(1/Θ) space for any fixed d. It can also be
considered as an improvement on the space over the (1 + Θ)-factor and O(1/Θd)-
space algorithm of Zarrabi-Zadeh [11], while sacrificing the approximation factor
a little bit.

Our algorithm also extends to the k-center problem with k > 2. For any fixed
dimension d � 1, our algorithm uses O(2k(k+3)!/Θ) space and returns k centers
that guarantees a (1.8 + Θ)-approximation. Each update takes O(2k(k + 2)!/Θ)
time.

2 Preliminaries

Let X = 〈p1, p2, . . . , pn⊗ be a sequence of n points in d-dimensional Euclidean
space. We denote by Xj = 〈p1, . . . , pj⊗ the sequence of the first j points of X .

Let B(c, r) denote a ball of radius r centered at c, and let r(B) and c(B)
denote the radius and the center of a ball B, respectively.

We denote by pq the straight line segment connecting any two points any two
points p and q in R

d, and by |pq| the length of pq. For a compact set A, we
denote by ιA the boundary of A.

Lemma 1. Let B0 be a unit ball in R
d. Any line segment of length at least 1.2

contained in B0 intersects B(c(B0), 0.8).

An Improved Data Stream Algorithm for Clustering 275

Proof. When d = 2, we know from some basic geometry that any line segment
of length at least 1.2 intersects B(c(B0), 0.8). See Fig. 1 (a). For d > 2, we can
show the lemma by choosing the 2-dimensional plane passing through c(B0) and
the line segment.

3 The 2-Center Problem

In this section we design an approximation for the 2-center problem and prove
the following.

Theorem 1. For any fixed d � 1, our single-pass data stream algorithm uses
O(1/Θ) space and returns two centers that guarantees a (1.8 + Θ)-approximation
for the Euclidean 2-center problem. Each update takes O(1/Θ) time.

(a) (b)

B0

p⊆

q

B0

1.2

0.8

1 c(B0)
p c(B0)

h

B(p, 1.2)

Fig. 1. (a) Proof of Lemma 1. (b) Proof of Lemma 2.

Let B◦1 and B◦2 denote an optimal pair of two congruent balls for X . We let
r◦ = r(B◦1) = r(B◦2) and c◦i = c(B◦i) for i = 1, 2. By Δ◦ we denote the distance
between B◦1 and B◦2 , that is, Δ◦ := max{0, |c◦1c◦2| − 2r◦}.

In Section 3.1, we give a description of our algorithm for a given r⊆ > 0 for
the case Δ◦ � 2r◦. Then we show that for r⊆ with 1.2r◦ � r⊆ < (1.2 + 2Θ/3)r◦,
the algorithm returns a solution with (1.8 + Θ)-approximation. We explain how
we get such an r⊆ and present a full description of our algorithm for the case
Δ◦ � 2r◦ in Section 3.2. Then we consider the case Δ◦ > 2r◦ in Section 3.3.

When the solution of a case encloses the points of X inserted so far, the
solution is said to be feasible for them. Our algorithm maintains all feasible
solutions, and returns the best one when all points of X are processed.

3.1 The Case α∗ � 2r∗

Without loss of generality, we assume p1 ∈ B◦1 . Before explaining the main idea,
we need the following technical lemma.

Lemma 2. Let B0 be a unit ball in R
d. For any line segment pq of length at

least 1.2 contained in B0, every point x of pq at distance at least 0.6 from both
endpoints is contained in B(c(B0), 0.8).

276 S.-S. Kim and H.-K. Ahn

Proof. Let pq denote a line segment of length at least 1.2 contained B0 in the
plane. Without loss of generality, we assume that p lies on the horizontal line h
through c(B0) and to the left of c(B0), and the other endpoint q lies to the right
of p and above h as illustrated in Fig. 1(b).

Then pq \ B(c(B0), 0.8) consists of at most two segments, one incident to p
and one incident to q. Imagine that we translate p to the left along h until it
hits the boundary of B0. Then the length of pq and the length of each segment
of pq \ B(c(B0), 0.8) does not get decreased during the translation of p. Let p⊆

denote the translated point of p at h∗ ιB0. From Lemma 1, we know that both
segments of p⊆q \B(c(B0), 0.8) have length at most 0.6. Since |pq| � 1.2, we can
conclude that there is a point x on pq at distance 0.6 from each endpoint of pq
such that x ∈ B(c(B0), 0.8).

For higher dimensions, we can show the lemma by choosing the 2-dimensional
plane passing through c(B0) and a line segment of length at least 1.2 contained
in B0.

Let us describe our algorithm. Our algorithm is given a fixed value r⊆ and main-
tains at most three candidate solutions, where each candidate solution consists
of a ball or a pair of balls with larger radius r⊆ or 3r⊆/2. Once any of candi-
date solutions does not contain every input points arrived so far, the algorithm
sets it infeasible. Once any of candidate solutions becomes infeasible, the algo-
rithm simply abandons it. Once all points of X are processed, the algorithm
returns the feasible solution with smallest larger radius if there is any feasible
solution.

1. Initially, there is no candidate solution.

2. When p1 is inserted, we create one candidate solution B(p1, r
⊆).

3. Let po2 be the first point of X that arrives after p1 and does not lie in the
current candidate solution, that is, po2 /∈ B(p1, r

⊆).
4. If po2 arrives, we replace the current candidate solution with two candidate

solutions, one corresponding to the case of po2 ∈ B◦1 and one corresponding
to the case of po2 ∈ B◦2 .

5. For each case, let po3 be the first point of X that arrives after po2 and does
not lie in the corresponding candidate solution. If po3 arrives, we replace the
corresponding candidate solution with two new candidate solutions, one cor-
responding to the subcase of po3 ∈ B◦1 and one corresponding to the subcase
of po3 ∈ B◦2 .

6. For each subcase, let po4 be the first point of X that arrives after po3 and
does not lie in the corresponding candidate solution. Again, if po4 arrives, we
replace the corresponding candidate solution with a new candidate solution.

7. If there are more points arriving after po4 and lying outside of a current
candidate solution, we abandon the solution.

8. Among all feasible solutions, our algorithm returns the one with smallest
larger radius as the final solution.

An Improved Data Stream Algorithm for Clustering 277

From now on, we assume that we are given r⊆ with 1.2r◦ � r⊆ < (1.2 + 2Θ/3)r◦.
By the previous two lemmas, we get the following lemma.

Lemma 3. If po2 ∈ B◦1 , then we have B◦1 ≥ B(p1, r
⊆) ⊆ B(c12, 3r

⊆/2), where
c12 = ιB(p1, r

⊆/2) ∗ p1po2.
Proof. We first show that B◦1 ⊆ B(c12, 3r

⊆/2). For any point x ∈ B◦1 , |xc12| �
|xc◦1|+|c◦1c12|. See Fig. 2(a). By Lemma 2, we have c⊆ ∈ B(c◦1, 0.8r

◦) and |c◦1c12| �
0.8r◦. Therefore, |xc12| � |xc◦1| + |c◦1c12| � r◦ + 0.8r◦ = 1.8r◦ � 3r⊆/2.

Next we show that B(p1, r
⊆) ⊆ B(c12, 3r

⊆/2). For any point y ∈ B(p1, r
⊆),

|yc12| � |yp1| + |p1c12| � r⊆ + r⊆/2 = 3r⊆/2.

c12
p1 po2

c◦1

B(p1, r
⊆)

B(p1, r
⊆/2)

B◦1

x

y

p1

po2

po3

po4

(a) (b)

c13

c24

B(po2, r
⊆)

B(p1, r
⊆)

B(p1, r
⊆/2)

B(po2, r
⊆/2)

Fig. 2. (a) Proof of Lemma 3. (b) An illustration of Case 3b: po2 ⊕ B∗2 and po3 ⊕ B∗1 .

Table 1 summarizes all possible subcases and the candidate solutions that our
algorithm maintains for 1.2r◦ � r⊆ < (1.2 + 2Θ/3)r◦.

Case 1: There is no po2. This implies that all points of X lie in B(p1, r
⊆).

We simply return B(p1, r
⊆) and a dummy ball as the solution of the 2-center

problem.

Case 2a: po2 ∈ B◦1 and there is no po3. We maintain one ball B(p1, r
⊆)

until po2 is inserted. Then we replace the ball with B(c12, 3r
⊆/2), where c12 =

p1p
o
2 ∗ ιB(p1, r

⊆/2). We have B◦1 ≥ B(p1, r
⊆) ⊆ B(c12, 3r

⊆/2) by Lemma 3. We
return B(c12, 3r

⊆/2) and a dummy ball as the solution.

Case 2b: po2 ∈ B◦1 , p
o
3 ∈ B◦2 , and there is no po4. The points of X that

are not in B(c12, 3r
⊆/2) are inserted after po2, and they are all in B◦2 . Let po3 be

the first such point. When po3 is inserted, we create another ball B(po3, r
⊆). Since

there is no po4, every point of X lies in B(c12, 3r
⊆/2) or B(po3, r

⊆), and we return
them as the solution.

278 S.-S. Kim and H.-K. Ahn

Table 1. Nine possible subcases for r∞ with 1.2r∗ � r∞ < (1.2 + 2ε/3)r∗

po2 po3 po4 Candidate solution

Case 1 no po2 B(p1, r
∞) and a dummy ball

Case 2a B∗1 no po3 B(c12, 3r
∞/2) and a dummy ball

Case 2b B∗1 B∗2 no po4 B(c12, 3r
∞/2) and B(po3, r

∞)

Case 2c B∗1 B∗2 B∗2 B(c12, 3r
∞/2) and B(c34, 3r

∞/2)

Case 3a B∗2 no po3 B(p1, r
∞) and B(po2, r

∞)

Case 3b B∗2 B∗1 no po4 B(c13, 3r
∞/2) and B(po2, r

∞)

Case 3c B∗2 B∗1 B∗2 B(c13, 3r
∞/2) and B(c24, 3r

∞/2)

Case 3d B∗2 B∗2 no po4 B(p1, r
∞) and B(c23, 3r

∞/2)

Case 3e B∗2 B∗2 B∗1 B(c14, 3r
∞/2) and B(c23, 3r

∞/2)

Case 2c: po2 ∈ B◦1 and po3, p
o
4 ∈ B◦2 . Let po4 be the first point of X that does

not lie in B(c12, 3r
⊆/2)≥B(po3, r

⊆). When po4 is inserted, we replace B(po3, r
⊆) with

B(c34, 3r
⊆/2), where c34 = po3p

o
4∗ιB(po3, r

⊆/2). Again by Lemma 3, every point of
X \B(c12, 3r

⊆/2) lies in B(c34, 3r
⊆/2). We return B(c12, 3r

⊆/2) and B(c34, 3r
⊆/2)

as the solution.

The only remaining case is that po2 ∈ B◦2 . There are five subcases.
Case 3a: po2 ∈ B◦2 and there is no po3. Since there is no po3, every point of

X lies in B(p1, r
⊆) or B(po2, r

⊆). We simply return the two balls as the solution.

Case 3b: po2 ∈ B◦2 , p
o
3 ∈ B◦1 , and there is no po4. Let po3 be the first

point of X that does not lie in B(p1, r
⊆) ≥ B(po2, r

⊆). When po3 is inserted, we
replace B(p1, r

⊆) with B(c13, 3r
⊆/2), where c13 = p1p

o
3 ∗ ιB(p1, r

⊆/2). We return
B(c13, 3r

⊆/2) and B(po2, r
⊆) as the solution.

Case 3c: po2 ∈ B◦2 , p
o
3 ∈ B◦1 and po4 ∈ B◦2 . Let po4 denote the first point of X

that is not in B(c13, 3r
⊆/2)≥B(po2, r

⊆). When po4 is inserted, we replace B(po2, r
⊆)

with B(c24, 3r
⊆/2), where c24 = po2p

o
4 ∗ ιB(po2, r

⊆/2). Fig. 2(b) illustrates this
case. Lemma 3 implies that every point of X \B(c13, 3r

⊆/2) lies in B◦2 and that
B◦2 ⊆ B(c24, 3r

⊆/2). We return B(c13, 3r
⊆/2) and B(c24, 3r

⊆/2)/ as the solution.

Case 3d: po2, p
o
3 ∈ B◦2 and there is no po4. This case can be handled in exactly

the same way for Case 3b, except that the roles of B(p1, r
⊆) and B(po2, r

⊆) are
interchanged for the subsequence of X from po3. When po3 is inserted, we replace
B(po2, r

⊆) with B(c23, 3r
⊆/2), where c23 = po2p

o
3 ∗ ιB(po2, r

⊆/2). Since every point
of X lies in B(p1, r

⊆) or B(c23, 3r
⊆/2), we return them as the solution.

Case 3e: po2, p
o
3 ∈ B◦2 and po4 ∈ B◦1 . Let po4 denote the first point of X that is

not in B(p1, r
⊆) ≥ B(c23, 3r

⊆/2). Since B◦2 ⊆ B(c23, 3r
⊆/2), po4 ∈ B◦1 . When po4 is

inserted, we replace B(p1, r
⊆) with B(c14, 3r

⊆/2), where c14 = p1p
o
4∗ιB(p1, r

⊆/2).
By Lemma 3, every point of X \B(c23, 3r

⊆/2) lies in B◦1 and B◦1 ⊆ B(c14, 3r
⊆/2).

We return B(c23, 3r
⊆/2) and B(c14, 3r

⊆/2) as the solution.

An Improved Data Stream Algorithm for Clustering 279

Lemma 4. For Δ◦ � 2r◦ and r⊆ with 1.2r◦ � r⊆ < (1.2 + 2Θ/3)r◦, our algorithm
uses O(1) space and returns two centers that guarantees (1.8+Θ)-approximation.
Our algorithm spends O(1) update time for each point of X .

Proof. Since our algorithm considers all possible input cases of streaming points,
there is at least one feasible solution. Since every feasible solution has its
larger radius at most 3r⊆/2, the final solution has larger radius at most 3r⊆/2 �
(1.8 + Θ)r◦.

For space complexity, our algorithm maintains at most two balls in each case,
and therefore it uses O(1) space. Whenever the next point is inserted, the algo-
rithm updates the solution for each subcase in O(1) time. Therefore, the algo-
rithm spends O(1) update time for each point of X .

3.2 Finding r∈

In this section, we explain how we get r⊆ such that 1.2r◦ � r⊆ < (1.2 + 2Θ/3)r◦.
The basic procedure works as follows: Our algorithm maintains m = ↑18/Θ⊃
candidate lengths. See Fig. 3(b). Let Lj = {i · Γj | for i = 1, . . .m} denote the
set of such m lengths for Xj , where Γj denotes a certain nonnegative value for
Xj . For each candidate length Γ, we assume that r⊆ = Γ and run the algorithm
in Section 3.1. This is similar to LayerPartition procedure of the algorithm
by Ahn et al. [3].

p1 pj

Γj ⊇ 2Δr∗
3 ↑ 18

Δ ⊃ intervals

(a) (b)

B◦1 B◦2

Δ◦ ⊇ 2r◦r◦

Fig. 3. (a) For δ∗ � 2r∗, we have |pipj | � 6r∗ for any 1 � i, j � n. (b) Our algorithm
maintains ←18/ε◦ candidate lengths for r∞.

More precisely, we maintain the m candidates as follows. The algorithm starts
with two input points p1 and p2, and sets Γ2 := |p1p2|/m. Assume that we have
processed the points of Xj−1 and computed Lj−1. For the next point pj, if
|p1pj | � m · Γj−1, we let Lj := Lj−1. Otherwise, we compute Lj from Lj−1 as
follows. Let x be the integer satisfying 2x−1 ·m · Γj−1 < |p1pj| � 2x ·m · Γj−1.
We let Γj := 2xΓj−1.

If the new candidate r⊆ = i · Γj is at most m · Γj−1, it always coincides with
an old candidate, say y · Γj−1 for some y ∈ {1, . . .m}, and we take the solutions
of y · Γj−1 for points of Xj−1 as the initial solutions and update them for the
insertion of pj. Otherwise, there are two cases: either r⊆ = i · Γj > |p1pj | or

280 S.-S. Kim and H.-K. Ahn

r⊆ = i · Γj � |p1pj |. For the former case, all points of Xj lie in B(p1, r
⊆), and

therefore it corresponds to Case 1 of the algorithm in Section 3.1. For the latter
case, pj is the only point of Xj that does not lie in B(p1, r

⊆), and therefore it
corresponds to Case 2a or Case 3a. The algorithm computes solutions for both
cases.

Lemma 5. For Δ◦ ⊇ 2r◦, our algorithm uses O(1/Θ) space and returns two
centers that guarantees (1.8 + Θ)-approximation. Our algorithm spends O(1/Θ)
update time for each point of X .

Proof. When we are done with processing all points of X , there are m candidate
lengths i · Γn ∈ Ln for i = 1, . . . ,m. If m · Γn < 1.2r◦, then Case 1 of the
algorithm in Section 3.1 returns a feasible solution, B(p1, r

⊆) and a dummy ball,
for r⊆ := m · Γn . Otherwise, we show that there is an i · Γn ∈ Ln such that
1.2r◦ � i · Γn < (1.2 + 2Θ/3)r◦. Let pt be the last point that changed the set
of candidates. Then |p1pt| � m · Γn � 2|p1pt| � 12r◦ (See Fig. 3(a)). Therefore
there is a candidate i · Γn satisfying our assumption.

Whenever the next point is inserted, the algorithm updates the set of O(1/Θ)
candidate lengths, if needed, and updates the solutions for each candidate length
in O(1) time. Therefore, the algorithm spends O(1/Θ) update time for each point
of X .

3.3 The Case α∗ > 2r∗

For Δ◦ > 2r◦, the points of X are well separated. We simply use MergeExpand
procedure [3] together with Chan’s minimum enclosing ball algorithm [14] for
streaming points.

Lemma 6. For Δ◦ > 2r◦, MergeExpand guarantees an optimal partition to
the 2-center problem.

MergeExpand maintains three enclosing balls, one for each optimal partition of
points inserted so far, and one for all points inserted so far. We simply use Chan’s
minimum enclosing ball algorithm for each enclosing ball which guarantees 1.5-
approximation.

Lemma 7. For Δ◦ > 2r◦, our algorithm uses O(1) space and return two centers
that guarantees 1.5-approximation. Each update takes O(1) time.

4 Extension to the k-Center problem

In this section we design an approximation for the k-center problem. Let f(p)
denote a point in X that is farthest from p. We consider two cases: |p1f(p1)| �
4kr◦ and |p1f(p1)| > 4kr◦.

In Section 4.1, we give a description of our algorithm for a given r⊆ > 0 for
the case |p1f(p1)| � 4kr◦. Then we show for r⊆ with 1.2r◦ � r⊆ < (1.2 + 2Θ/3)r◦,

An Improved Data Stream Algorithm for Clustering 281

the algorithm returns a solution satisfying (1.8 + Θ)-approximation. We explain
how we get r⊆ and present a full description of our algorithm for the case
|p1f(p1)| � 4kr◦ in Section 4.2. Then we consider the case |p1f(p1)| > 4kr◦

in Section 4.3. Our algorithm maintains all feasible solutions, and returns the
best one when all points of X are processed.

4.1 The Case |p1f(p1)| � 4kr∗

We extend the idea in Section 3.1 to the k-center problem. Let SelectBall(B, p)
denote a procedure that takes a ball B and a point p, and returns B(c, 3r(B)/2),
where c = c(B)p ∗ ιB(c(B), r(B)/2).

Our algorithm k-Centers maintains a set S of pairs (Bs,Bc) of sets of balls.
We call Bs a set of selected balls and Bc a set of candidate balls.

Algorithm k-Centers
Input: A sequence X of n points, an integer k > 2, and a radius r⊆.
Output: A feasible solution consisting of k centers with radius at most 3r⊆/2 if

exists. An empty set otherwise.
1. S1 ⊂ {(↓, {B(p1, r

⊆)})}
2. for i⊂ 2 to n
3. for each pair (Bs,Bc) ∈ Si−1
4. if pi lies in one of balls in Bs ≥ Bc

5. then Si ⊂ Si ≥ {(Bs,Bc)}
6. for each pair (Bs,Bc) ∈ Si−1 \ Si

7. if |Bs| + |Bc| < k
8. then Si ⊂ Si ≥ {(Bs,Bc ≥ {B(pi, r

⊆)})}
9. for each candidate ball B ∈ Bc

10. if pi ∈ SelectBall(B, pi)
11. then Si ⊂ Si ≥ {(Bs ≥ {SelectBall(B, pi)},Bc \ {B})}
12. return Bs ≥ Bc of a solution in Sn

A proof of the follwoing lemma will appear in the full version of this paper.

Lemma 8. For |p1f(p1)| � 4kr◦ and r⊆ with 1.2r◦ � r⊆ < (1.2 + 2Θ/3)r◦,
algorithm k-Centers uses O((2k)!/((k− 1)!2k)) space and returns k centers that
guarantees (1.8+Θ)-approximation to the k-center problem. Our algorithm spends
O((2k)!/((k − 1)!2k)) update time for each point of X .

4.2 Finding r∈

In this section, we explain how we get r⊆ such that 1.2r◦ ⊇ r⊆ < (1.2 + 2Θ/3)r◦.
The basic procedure works as follows: We maintain m = ↑12k/Θ⊃ candidate
lengths and update them together with their solutions, as we did in Section 3.2.
For each candidate length Γ, we assume that r⊆ = Γ and run k-Centers algorithm
in Section 4.1. This is almost the same to the idea of LayerPartition by Ahn
et al. [3], except we use k-Centers as subroutine. By Lemma 5 and Lemma 8,
we have the following corollary.

282 S.-S. Kim and H.-K. Ahn

Corollary 1. For |p1f(p1)| � 4kr◦, our algorithm uses O((2k)!/(Θ(k − 1)!2k))
space and returns k centers that guarantees (1.8 + Θ)-approximation. Our algo-
rithm spends O((2k)!/(Θ(k − 1)!2k)) update time for each point of X .

4.3 The Case |p1f(p1)| > 4kr∗

Let B = {B1, B2, . . . , Bk} denote the set of k concentric balls, centered at p1,
satisfying following conditions. (1) B1 ⊆ B2 ⊆ B3 ⊆ . . . ⊆ Bk. (2) X ∗Bk ∅= X .
(3) r(Bj) − r(Bj−1) > 2r◦ for j = 1, 2, . . . , k, where B0 = B(p1, 0).

Lemma 9. For |p1f(p1)| > 4kr◦, there is some ball Bj ∈ B such that Bj does
not intersect any ball in B◦ and partitions B◦ into two nonempty subsets along
its boundary.

Proof. Because of Condition (2) of B, b1 has radius greater than 2r◦ and b1
contains every optimal ball in B◦ that contains p1. Note that there is at least
one such an optimal ball in B◦.

Again by Condition (2), no ball in B◦ can intersect more than one layer
boundary. By the pigeonhole principle, there must be at least one layer Bj for
j = 1, . . . , k whose boundary does not intersect any optimal ball in B◦ and par-
titions B◦ into two nonempty subsets.

We maintain m = 2k concentric balls centered at p1 and choose k balls among
them satisfying the conditions of B and one more ball for update. The boundary
of each ball Bj divides Rd into two subspaces, Bj and R

d \Bj. For each subspace
of Bj , we maintain t-center solutions for t = 1, 2, . . . , k− 1. It is easy to see that
there are integers Γ with 1 � Γ � k and c with 1 � c � k − 1 such that BΣ

contains c optimal balls and does not intersect k − c optimal balls. Details will
be given in the full version of this paper.

Now we analyze the space and update time complexity for our algorithm to
the k-center problem.

Theorem 2. For any fixed d � 1, our single-pass data stream algorithm uses
O(2k(k + 3)!/Θ) space and returns k centers that guarantees a (1.8 + Θ)-
approximation for the Euclidean k-center problem. Each update takes O(2k(k +
2)!/Θ) time.

Proof. Let L(k) denote the size of the data structure for a k-center, let M(k)
denote the size of the data structure for a k-center for the case |p1f(p1)| > 4kr◦,
and let N(k) denote the size of the data structure for a k-center for the case
|p1f(p1)| ⊇ 4kr◦. We have

L(k) = N(k) +M(k), with base cases L(1) = L(2) = O(1/Θ).

M(k) = 2(k + 1)
(
L(k − 1) + L(k − 2) + · · · + L(2) + L(1)

)

N(k) = O((2k)!/(Θ2k(k − 1)!)) � O((2k(k + 1)!)/Θ)

An Improved Data Stream Algorithm for Clustering 283

By letting L(k) =
∑k

i=1 L(k), we have

L(k) = N(k) + 2(k + 1)L(k − 1)

= N(k) + 2(k + 1)
(
2k(L(k − 2)) +N(k − 1) + L(k − 2)

)

= N(k) + 2(k + 1)N(k − 1) + 2(k + 1)(2k + 1)L(k − 2)

= N(k) + 2(k + 1)N(k − 1)

+2(k + 1)(2k + 1)
(
2(k − 1)L(k − 3) +N(k − 2) + L(k − 3)

)

= N(k) + 2(k + 1)N(k − 1) + 2(k + 1)(2k + 1)N(k − 2)

2(k + 1)(2k + 1)(2(k − 1) + 1)L(k − 3)

Therefore, we can rearrange the equation as follows.

L(k) = N(k) +

k−1∑

i=1

(
2(k + 1) ·N(k − i)

i−2∏

j=0

(2(k − j) + 1)
)

� N(k) +
k−1∑

i=1

(
2(k + 1) ·N(k − i) · 2i−1(k + 1)!

(k − i+ 2)!

)

� N(k) +

k−1∑

i=1

(2i(k + 2)!

(k − i+ 2)!
·N(k − i)

)

� O
(2k(k + 1)!

Θ

)
+

k−1∑

i=1

(
2i(k + 2)!

(k − i+ 2)!
· O

(2k−i(k − i+ 1)!

Θ

))

� O
(2k(k + 1)!

Θ

)
+

k−1∑

i=1

O
(2k(k + 2)!

Θ

)
� O

(2k(k + 3)!

Θ

)

We reuse L(k), M(k), and N(k) denote the update time for each related algo-
rithm. Each ball B ∈ B maintains two sets of data structures: one set consisting
of data structures for points lying inside b and another set consisting of data
structures for points lying outside of b. When a new point p arrives, only one of
two sets is updated depending on whether p ∈ b or not. Therefore we have a bit
difference M(k) and this makes the different result.

M(k) = (k + 1)
(
L(k − 1) + L(k − 2) + · · · + L(2) + L(1)

)

L(k) = N(k) + (k + 1)L(k − 1) = · · ·

= N(k) +

k−1∑

i=1

(
(k + 1) ·N(k − i)

i−2∏

j=0

((k − j) + 1)
)

� O
(2k(k + 1)!

Θ

)
+

k−1∑

i=1

O
(2k−i(k + 2)!

Θ

)
� O

(2k(k + 2)!

Θ

)

284 S.-S. Kim and H.-K. Ahn

References

1. Agarwal, P.K., Sharathkumar, R.: Streaming algorithms for extent problems in
high dimensions. In: Proc. of the 21st ACM-SIAM Sympos. Discrete Algorithms,
pp. 1481–1489 (2010)

2. Aggarwal, C.C.: Data streams: models and algorithms. Springer (2007)
3. Ahn, H.-K., Kim, H.-S., Kim, S.-S., Son, W.: Computing k-center over streaming

data for small k. In: Proc. of the 23rd Int. Sympos. Algorithms and Computation,
pp. 54–63 (2012)

4. Bonnell, I., Bate, M., Vine, S.: The hierarchical formation of a stellar cluster.
Monthly Notices of the Royal Astronomical Society 343(2), 413–418 (2003)

5. Chan, T.M., Pathak, V.: Streaming and dynamic algorithms for minimum enclosing
balls in high dimensions. In: Proc. of the 12th Int. Conf. on Algorithms and Data
Structures, pp. 195–206 (2011)

6. Clarke, C., Bonnell, I., Hillenbrand, L.: The formation of stellar clusters. In: Man-
nings, V., Boss, A., Russell, S. (eds.) Protostars and Planets IV, pp. 151–177.
University of Arizona Press, Tucson (2000)

7. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AI Magazine 17, 37–54 (1996)

8. Guha, S.: Tight results for clustering and summarizing data streams. In: Proc. of
the 12th Int. Conf. on Database Theory, pp. 268–275. ACM (2009)

9. Han, J., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann
(2006)

10. Hershberger, J., Suri, S.: Adaptive sampling for geometric problems over data
streams. Computational Geometry 39(3), 191–208 (2008)

11. Zarrabi-Zadeh, H.: Core-preserving algorithms. In: Proc. of 20th Canadian Conf.
on Computational Geometry, pp. 159–162 (2008)

12. Poon, C.K., Zhu, B.: Streaming with minimum space: An algorithm for covering by
two congruent balls. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 269–280.
Springer, Heidelberg (2012)

13. Sonka, M., Hlavac, V., Boyle, R.: Image processing, analysis, and machine vision,
3rd edn. Thomson Learning (2007)

14. Zarrabi-Zadeh, H., Chan, T.: A simple streaming algorithm for minimum enclosing
balls. In: Proc. of 18th Canadian Conf. on Computational Geometry, pp. 139–142
(2006)

Approximation Algorithms for the Gromov

Hyperbolicity of Discrete Metric Spaces

Ran DuanΔ

Max-Planck-Institut für Informatik, Saarbrücken, Germany
duanran@mpi-inf.mpg.de

Abstract. This paper discusses new approximation algorithms for com-
puting the Gromov hyperbolicity of an n-point discrete metric space. We
give a (1 + Σ)-approximation algorithm with running time Õ(Σ−1n1+α),
where O(nα) = O(n2.373) is the time complexity of matrix multiplica-
tions. Here an Φ-approximation Θ∗ means Θ∗ ≤ Θ∞ ≤ ΦΘ∗ for the Gromov
hyperbolicity Θ∞. We also give a (2+Σ)-approximation algorithm with run-
ning time Õ(Σ−1nα). These are faster than the previous O(n(5+α)/2)-time
algorithm for the exact solution and the O(n(3+α)/2)-time algorithm for
a 2-approximation [Fournier, Ismail and Vigneron 2012], which directly
perform (max, min)-product of matrices.

1 Introduction

The Gromov hyperbolicity of a metric space is an important concept in metric
geometry [1,9]. In the definition by the four-point condition, a metric space
(M,d) is Θ-hyperbolic if for any x, y, z, r ⊕ M , the two largest of the distance
sums d(x, y) + d(z, r), d(x, z) + d(y, r), and d(x, r) + d(y, z) differ by at most 2Θ.
The Gromov hyperbolicity Θ∨ of (M,d) is the smallest such Θ. Thus, the trivial
algorithm takes O(n4) time when the space is discrete and |M | = n. Recently,
Fournier, Ismail and Vigneron [7] gave a straightforward algorithm with running
time O(n(5+Σ)/2) = O(n3.687), which utilizes the algorithm for the (max, min)-
product of matrices with running time O(n(3+Σ)/2) [6]. They also gave a 2-
approximation O(n(3+Σ)/2)-time algorithm and a 2 log2 n-approximation O(n2)-
time algorithm, which used the tree-metric embedding b y Gromov [9]. Here
an ι-approximation Θ∗ means Θ∗ ≤ Θ∨ ≤ ιΘ∗, and O(nΣ) is the time needed for
multiplying two n × n matrices. Δ had been less than 2.376 for a long time [5]
and now Δ is proved to be less than 2.373 [11].

Many papers studied the Gromov hyperbolicity of particular types of graphs,
and the properties on graphs with different hyperbolicities. [8,2,3,10]

Our results. In this paper, we give two approximation algorithms for computing
the Gromov hyperbolicity of an n-point discrete metric space. The first one is
a (1 + Γ)-approximation algorithm of running time Õ(Γ−1n1+Σ) = Õ(Γ−1n3.373).
As in [7,6], we need to compute a (max, min)-product of the Gromov product

δ The author is supported by an Alexander von Humboldt Postdoctoral Fellowship.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 285–293, 2014.
c⊆ Springer-Verlag Berlin Heidelberg 2014

286 R. Duan

matrix for every base r to obtain the exact Gromov hyperbolicity Θ∨, and the
(max, min)-matrix multiplication takes O(n(3+Σ)/2) time. However, if we know
that all the elements of the matrix of Gromov product are within a constant (or
polylogarithmic) factor of Θ∨, then the (1 + Γ)-approximate (max, min)-product
can be computed in Õ(Γ−1nΣ) time by a simpler approach. (Here we will need
to find a 2-approximation of Θ∨ first, which takes O(n(3+Σ)/2) time as in [7].)
When some elements (i, j), (i, k) in a line of the matrix differ by a large number
times the approximation of Θ∨, we can bound (j, k) to be in a smaller range
since otherwise Θ∨ will be much larger than the approximation. After sorting the
elements in such a line, we can partition the matrix into several parts, some of
which are within a small range, so we can deal with them directly. For other parts,
recursively run the procedure. We can see the running time is still Õ(Γ−1nΣ), so
the total running time is Õ(Γ−1n1+Σ) for all bases.

The second algorithm finds a (2 + Γ)-approximation of Θ∨ with running time
Õ(Γ−1nΣ) = Õ(Γ−1n2.373). As in the previous algorithm, we can first find a
O(log n)-approximation of Θ∨ with running time only O(n2) [7], then run the re-
cursive procedure above on an arbitrarily selected base with this approximation.
By [1], it will be a (2 + Γ)-approximation. Note that if at the beginning we are
given an undirected graph without the distance metric d, we can compute the
(1 + Γ)-approximation of the distance matrix in Õ(Γ−1nΣ) time by [12].

2 Definitions and Basic Algorithms

2.1 Definitions of Gromov Hyperbolic Spaces

A metric space (M,d) is Θ-hyperbolic (Θ ≥ 0) if it satisfies the four point condi-
tion: For any x, y, z, r ⊕M , the two largest of the distance sums d(x, y)+d(z, r),
d(x, z) + d(y, r), and d(x, r) + d(y, z) differ by at most 2Θ. The Gromov hyper-
bolicity Θ∨ of (M,d) is the smallest Θ∨ ≥ 0 such that (M,d) is Θ∨-hyperbolic.

There is another equivalent definition of Gromov hyperbolicity. For x, y, r ⊕
M , the Gromov product of x, y at r is defined as:

(x|y)r =
1

2
(d(x, r) + d(y, r) − d(x, y)). (1)

The point r is called the base point. The metric space (M,d) is Θ-hyperbolic if,
for any x, y, z, r ⊕M ,

(x|z)r ≥ min{(x|y)r, (y|z)r} − Θ. (2)

So the Gromov hyperbolicity Θ∨ can be found as:

Θ∨ = max
x,y,z,r

{min{(x|y)r, (y|z)r} − (x|z)r}. (3)

Also define Θr for a fixed base point r to be:

Θr = max
x,y,z
{min{(x|y)r, (y|z)r} − (x|z)r}. (4)

Approximation Algorithms for the Gromov Hyperbolicity 287

2.2 Basic Algorithms

An exact algorithm and a 2-approximation algorithm are given in [7], using the
(max, min)-product for matrices. The (max, min)-product of two real matrices
A,B is defined as:

(A⊗B)[i, j] = max
k

min{A[i, k], B[k, j]} (5)

Duan and Pettie [6] gave an algorithm for computing the (max, min)-product of
two n× n matrices in O(n(3+Σ)/2) time.

For a fixed base point r, we construct the n×n matrix Ar in which Ar[x, y] =
(x|y)r, then we can see Θr is the largest element of Ar ⊗ Ar − Ar, so it can be
computed in O(n(3+Σ)/2) time. Since Θr for any base point r is a 2-approximation
of Θ∨ [1], we have a 2-approximation algorithm in time O(n(3+Σ)/2). Also note
that since (M,d) is a metric space, every Ar is symmetric.

By computing Ar ⊗Ar −Ar for every r ⊕M , we can find the largest element
Θ∨. This takes O(n(5+Σ)/2) = O(n3.686) time.

3 Approximation Algorithms

In this section except in Theorem 2, we assume that we have already computed
a 2-approximation Θ∗ in O(n(3+Σ)/2) time by the method of [7], that is, Θ∗ ≤
Θ∨ ≤ 2Θ∗. So for any base point r, we can guarantee that all the elements in
Ar ⊗ Ar − Ar are at most 2Θ∗. We need to compute a (1 + Γ)-approximation of
Ar ⊗Ar −Ar for every r.

Note that although we have faster algorithms for rectangular matrix multi-
plications [4], we only need to divide rectangular matrices into square matrices
in this paper. So when we multiply an na × na matrix with an na × nb matrix,
or an na × nb matrix with an nb × na matrix, where b > a, the running time is
O(na(Σ−1)+b).

In Section 3.1, we will discuss the case when all the elements in the matrices
are within a small number of multiples of Θ∗. In Section 3.2, we provide the
algorithm for the general case which uses the algorithm of Section 3.1 as a
subroutine.

3.1 A Scaling Algorithm

Given an na×nb matrix A and an nb×nc matrix B, if all the elements in A and
B are within a range of size K · Θ∗ (K is a small number), that is, there exists p
such that p ≤ A[i, j] ≤ p + KΘ∗ and p ≤ B[i∗, j∗] ≤ p + KΘ∗ for every i, j, i∗, j∗,
then we can scale A,B to A∗, B∗:

A∗[i, j] = ∈(A[i, j]− p)/(Γ · Θ∗)∗ (6)

B∗[i∗, j∗] = ∈(B[i∗, j∗]− p)/(Γ · Θ∗)∗ (7)

We can see the elements in A∗ and B∗ are all integers between [0, Γ−1K]. For
such matrices of small integers, we have the following lemma:

288 R. Duan

Lemma 1. Given an na × nb matrix A∗ and an nb × nc matrix B∗, in which
all elements are integers between [0, N], we can compute the (max, min)-product
C∗ = A∗ ⊗ B∗ in O(NnΣ(a,b,c)) time, where Δ(a, b, c) is the exponential of the
time complexity for computing the Boolean matrix multiplication of an na × nb

matrix and an nb × nc matrix.

Proof. For every integer q = N, · · · , 0, we find the matrices Aq and Bq:

Aq[i, j] =

{
1 if A∗[i, j] ≥ q;
0 Otherwise.

Bq[i, j] =

{
1 if B∗[i, j] ≥ q;
0 Otherwise.

Compute Aq · Bq for all q = N, · · · , 0. If (Aq · Bq)[i, j] = 1, then there exists k
such that min{A∗[i, k], B∗[k, j]} ≥ q, so C∗[i, j] ≥ q. So, for every i, j, we pick
the largest q such that (Aq · Bq)[i, j] = 1, which means C∗[i, j] = q. Thus, to
compute C∗, we need to compute N + 1 matrix multiplications.

Fact 1. For real numbers a1, a2, · · · , an, we have:

min{∈a1∗, ∈a2∗, · · · , ∈an∗} = ∈min{a1, a2, · · · , an}∗ (8)

max{∈a1∗, ∈a2∗, · · · , ∈an∗} = ∈max{a1, a2, · · · , an}∗ (9)

Lemma 2. We can compute an approximation C of C∨ = A ⊗ B in which
C∨[i, j]− Γ · Θ∗ < C[i, j] ≤ C∨[i, j] for all i, j in O(Γ−1K · nΣ(a,b,c)) time.

Proof. We first compute C∗ = A∗ ⊗ B∗ by Lemma 1. From Fact 1, C∗[i, j] =
∈(C∨[i, j]− p)/(Γ · Θ∗)∗, where C∨ is the (max, min)-product of A and B. Let C
be an na × nc matrix, in which C[i, j] = (Γ · Θ∗)C∗[i, j] + p, then we have:

C∨[i, j]− Γ · Θ∗ < C[i, j] ≤ C∨[i, j] (10)

This approximation C can be computed in O(Γ−1K ·nΣ(a,b,c)) time by Lemma 1.

3.2 The Main Algorithm

This section will discuss the main procedure for computing an approximate (max,
min)-product of two n× n matrices with additive error (−ΓΘ∗, 0], since we need
a (1 + Γ)-approximation of Ar ⊗Ar −Ar for every base r.

The recursive procedure Max-Min for finding the approximate (max, min)-
product of A⊗A is described as follows: (We will describe the whole algorithm
first, then prove the lemmas used in it.)

– The input is an n×n symmetric matrix A, and the output is an n×n matrix
C.

– Sort all the elements of every row of A;

Approximation Algorithms for the Gromov Hyperbolicity 289

– Select a row of A in which the maximum and the minimum elements differ
by more than 8 log2 n ·Θ∗. If there is no such a row, which means all rows and
columns are within a range of 8 log2 n · Θ∗, so all elements in A are within a
range of 16 log2 n · Θ∗, then find the approximate (max, min) product C of A
and A by the procedure in Section 3.1 in O(Γ−1 logn · nΣ) time;

– Sort all the columns of A by the elements of the row selected at previous step
in increasing order, also rearrange all the rows in the same order so that A
is still symmetric, then A[i, 1] ≤ A[i, 2] ≤ · · · ≤ A[i, n] and A[i, n]−A[i, 1] >
8 log2 n · Θ∗, if the row in step 2 is now row i;

– In the list {A[i, 1], A[i, 2], A[i, 4], · · · , A[i, 2◦log2 n−1∼], A[i, ∈n2 ∗ + 1]}, find the
first two consecutive elements A[i, j], A[i, k] in which A[i, k]−A[i, j] > 4Θ∗, so
k ≤ 2j, k− 1 ≤ n/2 and A[i, j]−A[i, 1] ≤ 4 log2 n · Θ∗. If there is no such j, k,
we can see A[i, ∈n2 ∗+ 1]−A[i, 1]≤ 4 log2 n · Θ∗, then we start from the end to

get a list: {A[i, n], A[i, n− 1], A[i, n− 3], · · · , A[i, n+ 1− 2◦log2 n−1∼], A[i, n−
∈n2 ∗]}. Find the first two consecutive elements A[i, j], A[i, k] in which A[i, j]−
A[i, k] > 4Θ∗, which must exist since otherwise A[i, n]−A[i, 1] ≤ 8 log2 n · Θ∗.
Since these two cases starting from beginning and end of line i are symmetric,
w.l.o.g., we only consider the first case in the following discussion, that is,
A[i, k]−A[i, j] > 4Θ∗, k ≤ 2j, k − 1 ≤ n/2 and A[i, j]−A[i, 1] ≤ 4 log2 n · Θ∗.

– Based on the j and k of the previous step, we can partition the symmetric
matrix A into:

A =

J LT PT

L K QT

P Q S

 , (11)

where each line and column is partitioned into 3 parts: {1, · · · , j}, {j +
1, · · · , k − 1}, {k, · · · , n}. By Lemma 5, the following statements hold:
• All elements in A are at least A[i, 1]− 2Θ∗;
• Elements in P are at most A[i, j] + 2Θ∗, so elements in P are within a

range of O(log n · Θ∗);
• Elements in S are larger than A[i, j] + 2Θ∗.

– Recursively call this approximate Max-Min procedure for (k − 1)× (k − 1)

symmetric matrix

⎡
J LT

L K

⎣
, and for (n − j) × (n − j) symmetric matrix

⎡
K QT

Q S

⎣
. (Note that there is no problem with matrix overlapping since

only maximum operations are needed when we put them together.)
– To compute A⊗A, we also need to compute the following: PT ⊗P , PT ⊗Q,
J ⊗ PT , Q⊗ L, PT ⊗ S, L⊗ PT , P ⊗ PT .

• For

⎡
J
L

⎣
⊗ PT , since the elements in PT are all at most A[i, j] + 2Θ∗,

we can replace the elements larger than A[i, j] + 2Θ∗ in J and L by
A[i, j]+2Θ∗. Then run the algorithm in Section 3.1 since all the elements
after modification are within a range of O(log n·Θ∗). Since k ≤ 2j, n−k >
j, computing a (k−1)×j and a j×(n−k+1) matrix multiplication takes
O(jΣ−1(n−k)) time. The running time is thus O(Γ−1 logn · jΣ−1(n−k))
by Lemma 2.

290 R. Duan

• Similarly, we can compute PT ⊗(P,Q) in O(Γ−1 log n ·jΣ−1(n−k)) time.
• Compute PT ⊗ S is easier since all elements in S are larger than all

elements in P . This only takes O(j(n − k)) time.
• The elements in LT ⊗QT are all at most A[i, j] + 4Θ∗. This is because all

the elements in A⊗A−A are at most 2Θ∗ by Lemma 4, and LT ⊗QT will
be minus PT in A ⊗ A − A. So we can replace all elements larger than
A[i, j] + 4Θ∗ in LT and QT by A[i, j] + 4Θ∗, and compute LT ⊗QT by the
scaling procedure in Section 3.1. The running time is also O(Γ−1 logn ·
jΣ−1(n− k)).
• We do not need to compute P ⊗ PT since its position in A⊗A is at S,

and elements of S are all larger than P ⊗ PT . Set P × PT = O, where
O is an (n− k + 1)× (n− k + 1) zero matrix.

Lemma 3. The matrix C returned by this procedure satisfies the following for
every i, j:

(A⊗A)[i, j]− ΓΘ∗ < C[i, j] ≤ (A⊗A)[i, j], (12)

when (A⊗A)[i, j] ≥ A[i, j].

Proof. If the result C is obtained directly from the procedure in Section 3.1, it
is trivial.

Otherwise C is obtained both from recursive calls and from the procedure in
Section 3.1 for rectangular matrices. We only need to check if min{A[x, y], A[y, z]}
for every y is taken into account for every C[x, z]. From the partition, A ⊗ A
equals: (Here (A1 ≥A2)[i, j] = max{A1[i, j], A2[i, j]}).

B11 B12 B13

BT
12 B22 B23

BT
13 B

T
23 B33

 (13)

where

B11 = J ⊗ J ≥ LT ⊗ L≥ PT ⊗ P (14)

B12 = J ⊗ LT ≥ LT ⊗K ≥ PT ⊗Q (15)

B13 = J ⊗ PT ≥ LT ⊗QT ≥ PT ⊗ S (16)

B22 = L⊗ LT ≥K ⊗K ≥QT ⊗Q (17)

B23 = L⊗ PT ≥K ⊗QT ≥QT ⊗ S (18)

B33 = P ⊗ PT ≥Q⊗QT ≥ S ⊗ S (19)

and,
⎡
J LT

L K

⎣
⊗
⎡
J LT

L K

⎣
=

⎡
J ⊗ J ≥ LT ⊗ L J ⊗ LT ≥ LT ⊗K
L⊗ J ≥K ⊗ L L⊗ LT ≥K ⊗K

⎣
(20)

⎡
K QT

Q S

⎣
⊗
⎡
K QT

Q S

⎣
=

⎡
K ⊗K ≥QT ⊗Q K ⊗QT ≥QT ⊗ S
Q ⊗K ≥ S ⊗Q Q⊗QT ≥ S ⊗ S

⎣
(21)

We can check that every product of sub-matrices are considered except P ⊗PT .
By Lemma 4, P⊗PT is at the position of S, but elements of S are all larger than

Approximation Algorithms for the Gromov Hyperbolicity 291

P ⊗PT , not satisfying (A⊗A)[i, j] ≥ A[i, j]. Thus, P ⊗PT is not considered in
the algorithm.

In the rest of this section we prove the statements in the procedure and analyze
the running time.

Lemma 4. In every recursive calls of the Max-Min procedure with matrix A∗,
A∗ = A[u · · · v, u · · · v] for some u < v. All the elements in A∗ ⊗ A∗ − A∗ are at
most 2Θ∗.

Proof. It is trivial for the original A since Θ∗ is a 2-approximation. For A∗ in the
recursive calls, we can see it must be A[u · · · v, u · · · v], that is, the diagonal of
A∗ is contained in the diagonal of A. If A[x, y], A[y, z] ⊕ A∗, A[x, z] is also in A∗,
and the position of A∗ ⊗A∗ in A⊗A will also at the position [u · · · v, u · · · v]. So
the statements hold.

Lemma 5. When partitioning the matrix into 9 parts by partitioning each line
into 3 parts {1, · · · , j}, {j + 1, · · · , k − 1}, {k, · · · , n} as in the algorithm, the
following statements hold:

1. All elements in A are at least A[i, 1]− 2Θ∗;
2. Elements in P are at most A[i, j] + 2Θ∗;
3. Elements in S are larger than A[i, j] + 2Θ∗.

Proof. By Lemma 4, A in this procedure is a matrix of Gromov product for some
subsets ofM at some base r. Suppose there is an element A[p, q] < A[i, 1]−2Θ∗, so
(p|q)r < A[i, 1]−2Θ∗ ≤ A[i, p]−2Θ∗ = (i|p)r−2Θ∗ and (p|q)r < (i|q)r−2Θ∗ similarly.
So min{(i|p)r, (i|q)r} − (p|q)r > 2Θ∗, contradicting that Θ∗ is a 2-approximation.
Thus (1) is proved.

If A[p, q] ⊕ P , then p ≥ k and q ≤ j, so A[i, p]−A[i, q] > 4Θ∗. If A[p, q] is also
larger than A[i, j] + 2Θ∗ ≥ A[i, q] + 2Θ∗, then min{A[i, p], A[p, q]} − A[i, q] > 2Θ∗,
coming to a contradiction.

If A[p, q] ⊕ S, p, q ≥ k, A[i, p] and A[i, q] are both larger than A[i, j] + 4Θ∗.
So A[p, q] must be larger than A[i, j] + 2Θ∗ since otherwise min{A[i, p], A[i, q]}−
A[p, q] > 2Θ∗.

Lemma 6. The procedure Max-Min runs in O(Γ−1 logn · nΣ) time.

Proof. Denote the running time of Max-Min with an n×n matrix by Ψ (n), then:
(K1 and K2 are constants replacing O(·).)

Ψ (n) =

⎤
⎦⎦⎨

⎦⎦⎛

K1Γ
−1 logn · nΣ

If directly computed by Section 3.1;
Ψ (k − 1) + Ψ (n− j) +K2Γ

−1 logn · jΣ−1(n− k)
Here k ≤ 2j and k − 1 < n/2.

Assume Ψ (n) = K3Γ
−1 logn · nΣ where K3 > K1,K2. If the result is directly

computed by the scaling algorithm in Section 3.1, it is trivial. Otherwise assume
it is proved Ψ (k− 1) = K3Γ

−1 logn(k− 1)Σ and Ψ (n− j) = K3Γ
−1 logn(n− j)Σ.

292 R. Duan

We denote the number of elements of a matrix B by |B|, then:

⎫
⎫
⎫
⎫

⎡
J LT

L K

⎣⎫⎫
⎫
⎫+

⎫
⎫
⎫
⎫

⎡
K QT

Q S

⎣⎫⎫
⎫
⎫+ 2|P | − |K| = |A| (22)

Since k − j − 1 < j and k − j − 1 < n/2 < n− k + 1, so |P | > |K|. so we have:

(k − 1)2 + (n− j)2 + j(n− k + 1) < n2 (23)

Since Δ ≥ 2, we have:

(k − 1)Σ + (n− j)Σ + jΣ−1(n− k) < nΣ (24)

and,

Ψ (k− 1) +Ψ (n− j) +K2Γ
−1 logn · jΣ−1(n− k) < K3Γ

−1 logn ·nΣ = Ψ (n) (25)

Thus, Ψ (n) = O(Γ−1 logn · nΣ) is proved.

The main results are summarized in the following two theorems.

Theorem 1. A (1 + Γ)-approximation of the Gromov hyperbolicity Θ∨ of a dis-
crete metric space (M,d) can be computed in Õ(Γ−1n1+Σ) time.

Proof. We can compute a 2-approximation Θ∗ in O(n(3+Σ)/2) time by the method
of [7]. Then run the Max-Min procedure with Ar for every base r ⊕M , so we will
get an approximate of Cr = Ar⊗Ar in which every elements (Ar⊗Ar)[i, j]−ΓΘ∗ <
Cr[i, j] ≤ (Ar ⊗Ar)[i, j], when (Ar ⊗ Ar)[i, j] ≥ Ar[i, j], by Lemma 3. Pick the
largest element Θ∗∗ of all Cr − Ar for every r ⊕ M , we have: Θ∨ − ΓΘ∗ < Θ∗∗ ≤ Θ∨

(since Θ∨ ≥ 0). Note that Θ∗ < Θ∨, we can obtain a (1+Γ)-algorithm with running
time Õ(Γ−1n1+Σ) since we need to run the algorithm for every base r.

Theorem 2. A (2 + Γ)-approximation of the Gromov hyperbolicity Θ∨ of a dis-
crete metric space can be computed in Õ(Γ−1nΣ) time.

Proof. They provide a 2 log2 n-approximation algorithm in O(n2) time [7]. When
we get a 2 log2 n-approximation Θ∗, run the Max-Min procedure for an arbitrarily
chosen base r, in which the estimation Θ∗ is replaced by Θ∗∗ = log2 n · Θ∗ and the
approximate factor is Γ∗∗ = Λ

log2 n . Since Θ∨ ≤ 2 log2 n · Θ∗, Θ∨ ≤ 2Θ∗∗, so all the

statements in the Max-Min procedure hold. Also Θ∗ ≤ Θ∨, so Θ∗∗ ≤ log2 n · Θ∨, and
Γ∗∗Θ∗∗ ≤ ΓΘ∨. Finally we get a solution Θ∗r for the base r: (if Θr ≥ 0)

Θr − Γ∗∗Θ∗∗ < Θ∗r ≤ Θr (26)

1

2
Θ∨ − ΓΘ∨ ≤ Θr − ΓΘ∨ < Θ∗r ≤ Θr ≤ Θ∨ (27)

Since Θr for any base r is a 2-approximation of Θ∨ [1], so Θr ≥ 0, and a (2 + Γ)-
approximation of the Gromov hyperbolicity Θ∨ can be obtained in Õ(Γ−1nΣ)
time.

Approximation Algorithms for the Gromov Hyperbolicity 293

References

1. Bonk, M., Schramm, O.: Embeddings of Gromov hyperbolic spaces. Geom. Funct.
Anal. 10, 266–306 (2000)

2. Chen, W., Fang, W., Hu, G., Mahoney, M.W.: On the hyperbolicity of small-world
and tree-like random graphs. In: Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC
2012. LNCS, vol. 7676, pp. 278–288. Springer, Heidelberg (2012)

3. Chepoi, V., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y., Xiang, Y.: Addi-
tive spanners and distance and routing labeling schemes for hyperbolic graphs.
Algorithmica 62(3-4), 713–732 (2012)

4. Coppersmith, D.: Rectangular matrix multiplication revisited. J. Complex. 13(1),
42–49 (1997)

5. Coppersmith, D., Winograd, T.: Matrix multiplication via arithmetic progressions.
In: Proc. 19th ACM Symp. on the Theory of Computing (STOC), pp. 1–6 (1987)

6. Duan, R., Pettie, S.: Fast algorithms for (max, min)-matrix multiplication and
bottleneck shortest paths. In: SODA 2009: Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 384–391. Society for Indus-
trial and Applied Mathematics, Philadelphia (2009)

7. Fournier, H., Ismail, A., Vigneron, A.: Computing the Gromov hyperbolicity of a
discrete metric space. CoRR, abs/1210.3323 (2012)

8. Gavoille, C., Ly, O.: Distance labeling in hyperbolic graphs. In: Deng, X., Du, D.-Z.
(eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1071–1079. Springer, Heidelberg (2005)

9. Gromov, M.: Hyperbolic groups. In: Gersten, S. (ed.) Essays in Group The-
ory. Mathematical Sciences Research Institute Publications, vol. 8, pp. 75–263.
Springer, New York (1987)

10. Krioukov, D.V., Papadopoulos, F., Kitsak, M., Vahdat, A., Bogu, M.: Hyperbolic
geometry of complex networks. CoRR, abs/1006.5169 (2010)

11. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Pro-
ceedings of the 44th Symposium on Theory of Computing, STOC 2012, pp. 887–898.
ACM, New York (2012)

12. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM 49(3), 289–317 (2002)

A (7/2)-Approximation Algorithm for Guarding

Orthogonal Art Galleries with Sliding Cameras

Stephane Durocher1,Δ, Omrit Filtser2, Robert Fraser1,
Ali D. Mehrabi3,ΔΔ, and Saeed Mehrabi1,ΔΔΔ

1 Department of Computer Science, University of Manitoba, Canada
2 Department of Computer Science, Ben-Gurion University of the Negev, Israel

3 Department of Mathematics and Computer Science,
Eindhoven University of Technology, The Netherlands

{durocher,fraser,mehrabi}@cs.umanitoba.ca, omritna@cs.bgu.ac.il,

amehrabi@win.tue.nl

Abstract. Consider a sliding camera that travels back and forth along
an orthogonal line segment s inside an orthogonal polygon P with n
vertices. The camera can see a point p inside P if and only if there
exists a line segment containing p that crosses s at a right angle and
is completely contained in P . In the minimum sliding cameras (MSC)
problem, the objective is to guard P with the minimum number of sliding
cameras. In this paper, we give an O(n5/2)-time (7/2)-approximation
algorithm to the MSC problem on any simple orthogonal polygon with n
vertices, answering a question posed by Katz and Morgenstern (2011). To
the best of our knowledge, this is the first constant-factor approximation
algorithm for this problem.

1 Introduction

In the classical art gallery problem, we are given a polygon and the objective is
to cover the polygon with the union of visibility regions of a set of point guards
while minimizing the number of guards. The problem was introduced by Klee in
1973 [13]. Two years later, Chvátal [2] showed that ⊕n/3≤ point guards are always
sufficient and sometimes necessary to guard the polygon. The orthogonal art
gallery problem was first studied by Kahn et al. [4] who proved that ⊕n/4≤ guards
are always sufficient and sometimes necessary to guard the interior of a simple
orthogonal polygon. Lee and Lin [9] showed that the problem of guarding a
simple polygon using the minimum number of guards is NP-hard. Moreover, the
problem was also shown to be NP-hard for orthogonal polygons [14]. Since then,
the problem and its many variants have been studied extensively for different

α Work of the author is supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

αα Work of the author is supported by the Netherlands’ Organization for Scientific
Research (NWO).

ααα Work of the author is supported in part by a University of Manitoba DuΘ Roblin
Fellowship.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 294–305, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries 295

types of polygons (e.g., orthogonal polygons [14] and polyominoes [1]), different
types of guards (e.g., points and line segments) and different visibility types. See
the surveys by O’Rourke [13] or Urrutia [15] for a detailed history of the art
gallery problem.

Recently, Katz and Morgenstern [6] introduced a variant of the art gallery
problem in which sliding cameras are used to guard an orthogonal polygon. Let
P be an orthogonal polygon with n vertices. A sliding camera travels back and
forth along an orthogonal line segment s inside P . The camera can see a point
p ∈ P if the there is a point q ∈ s such that pq is a line segment normal to s
that is completely inside P . In the minimum sliding cameras (MSC) problem,
the objective is to guard P using a the minimum number of sliding cameras.

In this paper, we give an O(n5/2)-time (7/2)-approximation algorithm to the
minimum sliding cameras (MSC) problem on any simple orthogonal polygon. To
do this, we introduce the minimum guarded sliding cameras (MGSC) problem.
In the MGSC problem, the objective is to guard P using a set of minimum car-
dinality of guarded sliding cameras. A sliding camera s is guarded by a sliding
camera s′ if every point on s is seen by some point on s′. Note that s and s′ could
be perpendicular, in which case s′ and s mutually guard each other if and only
if they intersect. If s and s′ mutually guard each other and have the same ori-
entation (e.g., both are horizontal), then the visibility region of s is identical to
that of s′. Consequently, when minimizing the number of sliding cameras in the
MGSC problem, it suffices to consider solutions in which each horizontal sliding
camera is guarded by a vertical sliding camera and vice-versa. We first estab-
lish a connection between the MGSC problem and a related guarding problem
on grids.

A grid D is a connected union of vertical and horizontal line segments; each
maximal line segment in the grid is called a grid segment. A point guard x in grid
D is a point that sees a point y in the grid if the line segment xy ⊗ D. Moreover,
a sliding camera p ∈ D is a point guard that moves along a grid segment s ∈ D.
The camera p can see a point q on the grid if and only if there exists a point
p′ ∈ s such that the line segment p′q ⊗ D; that is, point q is seen by camera p
if either q is located on s or q belongs to a grid segment that intersects s. Note
that sliding cameras are called mobile guards in grid guarding problems [7,8]. A
guarded set of point guards and a guarded set of sliding cameras on grids are
defined analogously to a guarded set of sliding cameras in polygons. A simple
grid is defined as follows:

Definition 1 (Kosowski et al. [8]). A grid is simple if (i) the endpoints of
all of its segments lie on the outer face of the planar subdivision induced by the
grid, and (ii) there exists an Θ > 0 such that every grid segment can be extended
by Θ in both directions such that its new endpoints are still on the outer face.

Throughout the paper, we denote a simple orthogonal polygon by P ; note that
the polygon P is a closed region. The rest of the paper is organized as follows.
Section 2 presents related work. In Section 3, we give our (7/2)-approximation
algorithm to the MSC problem and we conclude the paper in Section 4.

296 S. Durocher et al.

2 Related Work and Definitions

The minimum sliding cameras problem was introduced by Katz and Morgen-
stern [6]. They first considered a restricted version of the problem in which only
vertical cameras are allowed; by reducing the problem to the minimum clique
cover problem on chordal graphs, they solved the problem exactly in polynomial
time. For the generalized case, where both vertical and horizontal cameras are
allowed, they gave a 2-approximation algorithm for the MSC problem under the
assumption that the polygon P is x-monotone. Durocher and Mehrabi [3] showed
that the MSC problem is NP-hard when the polygon P is allowed to have holes.
They also gave an exact algorithm that solves in polynomial time a variant of
the MSC problem in which the objective is to minimize the sum of the lengths
of line segments along which cameras travel.

The guard problem on grids was first formulated by Ntafos [12]. He proved
that a set of (stationary) point guards of minimum cardinality covering a grid of
n grid segments has nm guards, where m is the size of the maximum matching
in the intersection graph of the grid that can be found in O(n5/2) time. Malafi-
jeski and Zylinski [10] showed that the problem of finding a minimum-cardinality
set of guarded point guards for a grid is NP-hard. Katz et al. [5] showed that
the problem of finding a minimum number of sliding cameras covering a grid is
NP-hard. Moreover, Kosowski et al. [7] proved that the problem of finding the
minimum number of guarded sliding cameras covering a grid (we call this prob-
lem the MMGG problem) is NP-hard. Due to these hardness results, Kosowski
et al. [8] studied the MMGG problem on some restricted classes of grids. In
particular, they show the following result on simple grids:

Theorem 1 (Kosowski et al. [8].). There exists an O(n2)-time algorithm
for solving the MMGG problem on simple grids, where n is the number of grid
segments.

Throughout the paper, we denote optimal solutions for the MSC problem and
the MGSC problem on P by OPTP and OPTGP , respectively. We denote the
set of reflex vertices of P by V (P) and let Hu and Vu be the maximum-length
horizontal and vertical line segments, respectively, inside P through a vertex
u ∈ V (P). Let L(P) = {Hu | u ∈ V (P)}∈{Vu | u ∈ V (P)}. Let L and L′ be two
orthogonal line segments (with respect to P) inside P ; the visibility region of L
is the union of the points in P that are seen by the sliding camera that travels
along L. Moreover, we say that L dominates L′ if the visibility region of L′ is a
subset of that of L.

3 A (7/2)-Approximation Algorithm for the MSC
Problem

In this section, we present an O(n5/2)-time (7/2)-approximation algorithm for
the MSC problem.

A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries 297

3.1 Relating the MGSC and MMGG Problems

Consider an optimal solution X for the MSC problem and let X ′ be the multiset
of line segments obtained by duplicating every line segment in X (i.e., each line
segment of X occurs twice in X ′). We observe that X ′ is a feasible solution for
the MGSC problem and, therefore, we have the following observation.

Observation 1. An optimal solution for the MGSC problem on P is a 2-
approximation to an optimal solution for the MSC problem on P .

We first consider how to apply a solution for the MGSC problem to the MSC
problem. For the MGSC problem, the idea is to reduce the MGSC problem to the
MMGG problem. Given any simple orthogonal polygon P , we construct a grid
GP associated with P as follows: initially, let GP be the set of all line segments
in L(P). Now, for any pair of reflex vertices u and v where Hu dominates Hv

(resp., Vu dominates Vv) in P , we removeHv (resp., Vv) fromGP ; if two segments
mutually dominate each other, remove one of the two arbitrarily. Let TG be the
set of remaining grid segments in GP . Observe that GP can be constructed in
O(n2) time, where n is the number of vertices of P . We first show the following
result:

Lemma 1. Grid GP is a simple and connected grid.

Proof. It is straightforward from the construction of GP that both endpoints of
each grid segment in TG lie on the boundary of P ; this means that the endpoints
of every grid segment in TG lie on the outer face of GP and, therefore, GP is
simple. To show that GP is connected, we first observe that the grid induced
by the line segments in L(P) is connected. We now need to show that the grid
remains connected after removing the set of grid segments that are dominated
by other grid segments. Let s ∈ L(P) be a grid segment that is removed from
L(P) (i.e., s /∈ TG). It is straightforward to see that the set of grid segments that
are intersected by s are also intersected by s′ ∈ TG, where s′ is the grid segment
that dominates s. Therefore, grid GP is connected. ∗≥
The objective is to solve the MMGG problem on GP exactly and to use the
solution S, the set of guarded grid segments computed, as the solution to the
MGSC problem. However, S is not always a feasible solution to the MGSC
problem since some regions in P might remain unguarded; see Figure 1 for an
example. In the following, we characterize the regions of P that may remain
unguarded by the line segments in S; we call these the critical regions of P .

Consider S and choose any unguarded point p inside P . Let Rp be a maximal
axis-aligned rectangle contained in P that covers p and is also not guarded by the
line segments in S. We observe that (i) some line segments in TG can guard Rp,
and that (ii) no such line segments are in S since Rp is unguarded. Consider the
maximal regions in P that lie immediately above, below, left, and right of Rp; any
sliding camera that sees any part of Rp must intersect one of these regions. See
Figure 2(a) for an example; note that the hatched region cannot contain any line
segment in S since Rp is unguarded. Moreover, the hatched region must contain

298 S. Durocher et al.

(a) (b) (c)

s1

s2

Fig. 1. (a) A simple orthogonal polygon P . (b) Grid GP with set TG of grid segments
shown in red. (c) The set S = {s1, s2} (represented by solid red line segments) is an
optimal solution for the MMGG problem on GP , but s1 and s2 cannot guard P entirely;
in particular, the hatched regions of P are not guarded.

at least one line segment of TG in both horizontal and vertical directions and
without loss of generality we can assume that the length of these line segments
is maximal (i.e., both endpoints are on the boundary of P).

The rectangle Rp defines a partition of P into three parts: the vertical slab
through Rp, (i.e., the slab whose sides are aligned with the vertical sides of Rp),
the subpolygon of P to the left of the vertical slab and the subpolygon of P to
the right of the vertical slab. Similarly, another partition of P can be obtained
by considering the horizontal slab through Rp; see Figure 2(b) for an example.
We know that the union of the visibility regions of the line segments in S is
a connected subregion of the plane. Therefore, the set S can only be found on
one side of each of the partitions of P and so S must be in one corner of the
partitioned polygon. Without loss of generality, assume that S is on the bottom
left corner of the partitioned polygon (see Figure 2(b)).

Let S ⊆ TG be the set of line segments that can see Rp. Note that S is non-
empty. This is because S is a subset of TG and the line segments in S can see
RP ; but RP is a subregion of the polygon P . Since line segments in TG guard
the polygon entirely, there has to be at least one line segment in S. Therefore,
polygon P is partitioned into three subpolygons (see Figure 2(c)): the lower-left
corner that is the location of S denoted by PS , the lower-right and upper-left
corners that correspond to line segments in S denoted by PS , and the upper-
right corner of the polygon that is unguarded denoted by PU . Each line segment
in S intersects at least one line segment in S since the line segments in S are
not in S and S is feasible solution for the MMGG problem (see Figure 2(c)).

Lemma 2. No line segment in TG that is orthogonal to a line segment in S can
intersect PU .

Proof. To derive a contradiction, suppose without loss of generality that there
is one such vertical line segment s intersecting PU (as shown in Figure 2(c)).
Since S is connected and is a feasible solution for the MMGG problem, there

A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries 299

(a) (b) (c)

S

p p p

S

Rp Rp RppRp

S S

s

u

PS
PS

PS

PU

Fig. 2. (a) Point p inside the polygon P with rectangle Rp hatched in gold. The
purple hatched region indicates the subregion of P covered by growing Rp orthogonally
towards the boundaries of P ; the boundary of P is shown in blue. (b) The horizontal
rectangle and the vertical histogram shown in red indicate, respectively, the horizontal
and vertical slabs of the partitions induced by rectangle Rp. The hatched region of P
on the bottom left corner of the partition indicates the location of the set S. (c) The
partition of P into three subpolygons PS , PS and PU . The line segments in S (i.e., the
set of line segments that can see Rp) are shown in red; observe that each line segment
in S intersects at least one line segment in S. The line segment s illustrates Lemma 2
and vertex u is in support of Lemma 3.

must be a line segment in S that guards s. So, S must contain a line segment in
PS , which is a contradiction. ∗≥
By Lemma 2, we conclude that Rp is guarded by the line segments in S, but
not by any line segment in S, and, furthermore, S is restricted to a corner as
described above (i.e., the subpolygon PS). We now show that each of the regions
of P that are not guarded by the line segments in S must be a staircase with
the reflex vertices oriented towards S.

To derive a contradiction, suppose that there exists a reflex vertex u (as
shown in Figure 2(c)) in the unguarded subpolygon PU of P . However, no line
segment in TG can intersect PU by Lemma 2. This contradicts the existence of
u. Therefore, any unguarded region of P by S must be bounded by the line
segments in L(P)1 on adjacent horizontal and vertical sides, and by a staircase
of P on the other sides; we call these regions the critical regions of P , and denote
RC to be the set of critical regions of P . We now have the following lemma.

Lemma 3. Every point of P that is not inside a critical region of P is visible to
at least one line segment in S. Moreover, each critical region of P is a staircase.

Let OPTGG denote an optimal solution for the MMGG problem on GP . We first
prove that |OPTGG| ↑ |OPTGP |.

1 If the bounding line segment is not in TG then a dominating line segment must be in
TG. See Figure 4 for an example.

300 S. Durocher et al.

Lemma 4. For any feasible solution M for the MGSC problem on P , there
exists a feasible solution S′ for the MMGG problem on GP such that |S′| ↑ |M |.
Proof. Let M be a feasible solution to the MGSC problem on P ; that is, M is a
guarded set of orthogonal line segments inside P that collectively guard P . We
construct a feasible solution S′ for the MMGG problem such that |S′| ↑ |M |. To
compute S′, for each horizontal line segment s ∈M (resp., vertical line segment
s ∈M), move s up or down (resp., to the left or to the right) until it is collinear
with a line segment s ∈ L(P). If s ∈ TG, then add s to S′; otherwise, add s′ to
S′, where s′ ∈ L(P) is the line segment that dominates s. Note that there exists
at least one such line segment s′ because otherwise the line segment s would
have not been removed from L(P). It is straightforward to see that the union
of visibility regions of line segments in M is a subset of the visibility regions
of line segments in S′. Since the camera travelling along each line segment in
M is seen by at least one other camera (see the definition of a guarded set of
sliding cameras) and the grid GP is entirely contained in P , we conclude that S′

is a feasible solution for the MMGG problem on GP . The inequality |S′| ↑ |M |
follows from the fact that each line segment in M corresponds to at most one
line segment in S′. This completes the proof of the lemma. ∗≥
Next we need to find a set of minimum cardinality of orthogonal line segments
inside P that collectively guard the critical regions of P .

3.2 Guarding Critical Regions: A (3/2)-Approximation Algorithm

In this section, we give an approximation algorithm for the problem of guarding
the critical regions of P . The algorithm relies on reducing the problem to the
minimum edge cover problem in graphs. The minimum edge cover problem in
graphs is solvable in O(n5/2) time, where n is the number of graph vertices [11].
Recall RC , the set of critical regions of P . We first need the following result:

Lemma 5. Every critical region in RC is guarded entirely by some line segment
in L(P).

Proof. Observe that if P is a rectangle, then the MSC problem is trivial to
solve. Suppose that P is not a rectangle and so it has at least one reflex vertex.
Furthermore, suppose that some regions of P are not guarded by S (the set of
segments returned by solving the MMGG problem on GP), i.e., the set RC of
critical regions of P is non-empty. Let R ∈ RC be a critical region of P . The
lemma is implied by the fact that there exists at least one reflex vertex on the
boundary of R; this is because P is not a rectangle and the set of line segments
in S do not guard R. It is now straightforward to see that one of the orthogonal
line segments in L(P) that passes through either the lowest or the highest reflex
vertex of R can see the critical region R entirely. ∗≥
We construct a graph HP associated with P as follows: for each critical region
R ∈ RC , we add a vertex vR to HP . Two vertices vR and vR′ are adjacent in HP

A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries 301

s

Fig. 3. Any orthogonal line segment inside P can guard at most two critical regions
of P entirely

if and only if there exists an orthogonal line segment inside P that can guard
both critical regions R and R′ entirely. Finally, we add a self-loop edge for every
isolated vertex of HP .

Lemma 6. Any orthogonal line segment inside P can guard at most two critical
regions of P entirely.

Proof. Let s be an orthogonal line segment inside P . Observe that since each
critical region of R is a staircase, line segment s must hit the boundary of R in
order to guard R entirely. That is, the only way for s to guard R entirely is that
at least one of its endpoints lies on the boundary of P , covering one entire edge
of R; see Figure 3 for an example. Therefore, s can guard at most two critical
regions of P . ∗≥

Lemma 7. The problem of guarding the critical regions of P using only those
line segments that may individually guard a critical region reduces to the mini-
mum edge cover problem on HP .

Proof. We prove that (i) for any solution S to the minimum edge cover problem
on HP , there exists a solution S′ for guarding the critical regions of P such that
|S′| = |S|, and that (ii) for any solution S′ to the problem of guarding the critical
regions of P , there exists a solution S to the minimum edge cover problem on
HP such that |S| = |S′|.

Part 1. Choose any edge cover S of HP . We construct a solution S′ for guarding
the critical regions of P as follows. For each edge e = (vR, vR′) ∈ S let se be the
line segment in P that can see both critical regions R and R′ of P ; we add se
to S′. It is straightforward to see that the line segments in S′ collectively guard
all critical regions of P .

Part 2. Choose any solution S′ for guarding the critical regions of P . We now
construct a solution S for the minimum edge cover problem on HP . By Lemma 6,
we know that every line segment in S′ can see at most two critical regions of P .
First, for each line segment in S′ that can see exactly one critical region R of
P , we add the self-loop edge of HP that corresponds to R in S. Next, for each
line segment s ∈ S′ that can see two critical regions of P , we add to S′ the edge
in HP that corresponds to s. Since any line segment in S′ can see at most two

302 S. Durocher et al.

critical regions of P , we conclude that every vertex of HP is incident to at least
one edge in S and, therefore, S is a feasible solution for the minimum edge cover
problem on HP . ∗≥
In general, it is possible for the solution S′ to be non-optimal. Only those edges
which may individually guard a critical region were considered, while an optimal
guarding solution may use two line segments to collectively guard a critical
region, as shown in Figure 4. By Lemma 5, S′ requires at most one edge for each
critical region and, therefore, the number of guards returned by our algorithm
is at most equal to the number of critical regions. If an optimal solution uses
two segments to collectively guard one critical region, these two edges suffice to
guard three critical regions, while our solution uses three segments to guard the
same three critical regions. This results in an approximation factor of 3/2 in the
number of segments used to guard the set of critical regions.

We now examine the running time of the algorithm. Let n denote the number
of vertices of P . To compute the critical regions of P , we first compute the set of
staircases of P and, for each of them, we check to see whether they are guarded by
the set of line segments in S. Each critical region of P can be found in O(n) time
and so the set of unguarded critical regions of P is easily computed in O(n2)
time. Moreover, the graph HP can be constructed in O(n2) time by checking
whether there is an edge between every pair of vertices of the graph. Therefore,
by Lemma 7 and the fact that the minimum edge cover problem is solvable on
a graph with n vertices in O(n5/2) time, we have the following lemma.

Lemma 8. There exists a (3/2)-approximation algorithm for solving the prob-
lem of guarding the critical regions of a simple orthogonal polygon P with n
vertices in O(n5/2) time.

Given any simple orthogonal polygon P , we find a set of sliding cameras that
guards P by first solving the instance GP of the MMGG problem determined by
P . This may leave a set of critical regions within P that remain unguarded. We
then add a second set of sliding cameras to guard these critical regions. Recall
the set S, an optimal solution to the MMGG problem on GP , which can be
found in O(n2) time, where n is the number of vertices of P . By Lemma 8, we
approximate the problem of guarding the critical regions of P in O(n5/2) time;
let SC be the solution returned by the algorithm. Since the union of the critical
regions of P is a subset of P , any feasible solution to the MSC problem also
guards the critical regions of P . Therefore, |SC | ↑ (3/2) · |OPTP |. Moreover, by
Lemma 4 we know |OPTGG| ↑ |OPTGP | and since |OPTGP | ↑ 2 · |OPTP | we
have that |OPTGG| ↑ 2 · |OPTP |. Therefore, by combining S and SC we obtain
a feasible solution to the MSC problem whose cardinality is at most 7/2 times
|OPTP |; that is, |S ∈ SC | ↑ (7/2) · |OPTP |. This gives the main result:

Theorem 2. There exists an O(n5/2)-time (7/2)-approximation algorithm for
the MSC problem on any simple orthogonal polygon P with n vertices.

A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries 303

(a) (b)

(c)

Fig. 4. An example of a polygon for which two line segments may collectively guard a
critical region. (a) The polygon has unguarded critical regions after finding an optimal
MMGG solution. The thick red line segments indicate guarding lines, light gray line
segments are unused, and the shaded regions are unguarded. (b) A possible solution
(solid red line segments) for guarding the critical regions using the edge guarding
approach. (c) An optimal critical region guarding solution for the polygon.

As a consequence of our main result, we note that |SC | ↑ (3/2) · |OPTP | ↑
(3/2) · |OPTGP | and again by Lemma 4 we know |OPTGG| ↑ |OPTGP |. There-
fore, |S∈SC | ↑ (5/2)·|OPTGP |. To show that the set S∈SC is a feasible solution
for the MGSC problem, we first observe that every line segment in S is guarded
by at least one other line segment in S. Moreover, every grid segment that is
not in S is guarded by some line segment in S because S is a feasible solution
for the MMGG problem. This means that every line segment in SC is guarded
by at least one line segment in S. Therefore, we have the following result.

Corollary 1. Given a simple orthogonal polygon P with n vertices, there exists
an O(n5/2)-time (5/2)-approximation algorithm for the MGSC problem on P .

304 S. Durocher et al.

4 Conclusion

In this paper, we studied a variant of the art gallery problem, introduced by Katz
and Morgenstern [6], where sliding cameras are used to guard an orthogonal
polygon and the objective is to guard the polygon with minimum number of
sliding cameras. We gave an O(n5/2)-time (7/2)-approximation algorithm to
this problem by deriving a connection between a guarded variant of this problem
(i.e., the MGSC problem) and the problem of guarding simple grids with sliding
cameras. The complexity of the problem remains open for simple orthogonal
polygons. Giving an ι-approximation algorithm, for any ι < 7/2, is another
direction for future work. Finally, studying the MGSC problem (the complexity
of the problem or improved approximation results) might be of independent
interest.

Acknowledgements. The authors thank Mark de Berg and Matya Katz for
insightful discussions of the sliding cameras problem.

References

1. Biedl, T.C., Irfan, M.T., Iwerks, J., Kim, J., Mitchell, J.S.B.: The art gallery the-
orem for polyominoes. Disc. & Comp. Geom. 48(3), 711–720 (2012)

2. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory, Ser.
B 18, 39–41 (1975)

3. Durocher, S., Mehrabi, S.: Guarding orthogonal art galleries using sliding cameras:
Algorithmic and hardness results. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 314–324. Springer, Heidelberg (2013)

4. Kahn, J., Klawe, M.M., Kleitman, D.J.: Traditional galleries require fewer watch-
men. SIAM J. on Algebraic Disc. Methods 4(2), 194–206 (1983)

5. Katz, M.J., Mitchell, J.S.B., Nir, Y.: Orthogonal segment stabbing. Comp.
Geom. 30(2), 197–205 (2005)

6. Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cam-
eras. Int. J. of Comp. Geom. & App. 21(2), 241–250 (2011)

7. Kosowski, A., Malafiejski, M., Zylinski, P.: Weakly cooperative mobile guards in
grids. In: Proc. JCDCG, pp. 83–84 (2004)

8. Kosowski, A., Mafflafiejski, M., Żyliński, P.: An eΔcient algorithm for mobile
guarded guards in simple grids. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan,
C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006, Part I.
LNCS, vol. 3980, pp. 141–150. Springer, Heidelberg (2006)

9. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE
Trans. on Info. Theory 32(2), 276–282 (1986)

10. Mafflafiejski, M., Żyliński, P.: Weakly cooperative guards in grids. In: Gervasi, O.,
Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan,
C.J.K. (eds.) ICCSA 2005, Part I. LNCS, vol. 3480, pp. 647–656. Springer, Heidel-
berg (2005)

11. Micali, S., Vazirani, V.V.: An O(
√|v||E|) algorithm for finding maximummatching

in general graphs. In: Proc. FOCS, pp. 17–27 (1980)

A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries 305

12. Ntafos, S.C.: On gallery watchmen in grids. Info. Process. Lett. 23(2), 99–102
(1986)

13. O’Rourke, J.: Art gallery theorems and algorithms. Oxford University Press, Inc.,
New York (1987)

14. Schuchardt, D., Hecker, H.: Two NP-hard art-gallery problems for ortho-polygons.
Math. Logic Quarterly 41(2), 261–267 (1995)

15. Urrutia, J.: Art gallery and illumination problems. In: Handbook of Comp. Geom.,
pp. 973–1027. North-Holland (2000)

Helly-Type Theorems in Property Testing

Sourav Chakraborty1, Rameshwar Pratap1, Sasanka Roy1, and Shubhangi Saraf2

1 Chennai Mathematical Institute,
Chennai, India

{sourav,rameshwar,sasanka}@cmi.ac.in
2 Department of Mathematics and Department of Computer Science,

Rutgers University
shubhangi.saraf@rutgers.edu

Abstract. Helly’s theorem is a fundamental result in discrete geometry, describ-
ing the ways in which convex sets intersect with each other. If S is a set of n
points in R

d, we say that S is (k,G)-clusterable if it can be partitioned into k
clusters (subsets) such that each cluster can be contained in a translated copy
of a geometric object G. In this paper, as an application of Helly’s theorem, by
taking a constant size sample from S, we present a testing algorithm for (k, G)-
clustering, i.e., to distinguish between two cases: when S is (k,G)-clusterable,
and when it is Σ-far from being (k, G)-clusterable. A set S is Σ-far (0 < Σ ≤ 1)
from being (k, G)-clusterable if at least Σn points need to be removed from S
to make it (k, G)-clusterable. We solve this problem for k = 1 and when G is
a symmetric convex object. For k > 1, we solve a weaker version of this prob-
lem. Finally, as an application of our testing result, in clustering with outliers,
we show that one can find the approximate clusters by querying a constant size
sample, with high probability.

1 Introduction

Given a set of n points in R
d, deciding whether all the points can be contained in a unit

radius ball is a well known problem in Computational Geometry. Of course, the goal
is to solve this problem as quickly as possible. In order to solve this problem exactly,
one has to look at all the n points in the worst case scenario. But if n is too large, an
algorithm with linear running time may not be fast enough. Thus, one may be interested
in “solving” the above problem by taking a very small size sample and outputting the
“right answer” with high probability. In this paper, we consider the promise version of
this problem. More precisely, for the given proximity parameter Θ (where 0 < Θ ⊕ 1),
our goal is to distinguish between the following two cases:

– all the points can be contained in a unit radius ball,
– no unit radius ball can contain more than (1− Θ) fraction of points.

The above promise problem falls in the realm of property testing (see [10], [9] and
[17]). In property testing, the goal is to look at a very small fraction of the input and
decide whether the input satisfies the property or is “far” from satisfying it. Property
testing algorithms for computational geometric problems have been studied earlier in

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 306–317, 2014.
© Springer-Verlag Berlin Heidelberg 2014

Helly-Type Theorems in Property Testing 307

[6], [5] and [1]. In this paper, we study the above problem in property testing setting
and give a simple algorithm to solve it. The algorithm queries only a constant number
of points (where the constant depends on the dimension d and Θ, but is independent of
n) and correctly distinguishes between the two cases mentioned above with probability
at least 2/3. While the algorithm is very simple, the proof of correctness is a little in-
volved, for which we use Helly’s theorem. Helly’s theorem ([11]) states that if a family
of convex sets in R

d has a non-empty intersection for every d+ 1 sets, then the whole
family has a non-empty intersection. In fact, since Helly’s theorem also works for sym-
metric convex bodies, we can solve the above problem for any symmetric convex body
instead of just a unit radius ball. Thus, we have

Theorem 1. Let A be a symmetric convex body. If S is a set of n points in R
d as input

with the proximity parameter Θ (where 0 < Θ ⊕ 1), then there is an algorithm A that
randomly samples O(d

Δd+1) many points and

– A accepts, if all the points in S can be contained in a translated copy of A,
– A rejects with probability ≤ 2/3, if any translated copy of A can contain at most

(1− Θ)n points.

The running time of A is O(d
Δd+1).

One would like to generalize the above problem for more than one object, i.e., given k
translated copies of objectB, the goal is to distinguish between the following two cases
with high probability:

– all n points can be contained in k translated copies of B,
– at least Θ fraction of points cannot be contained in any k translated copies of B.

We would like to conjecture that a similar algorithm, as stated in Theorem 1, would
also work for the generalized k object problem. Unfortunately, Helly’s theorem does
not hold for the k object setting, but we would like to conjecture that a version of the
Helly-type theorem does hold for this setting. Assuming the above conjecture, we can
obtain a similar algorithm for the k object setting. We can also unconditionally solve a
weaker version of the k object problem.

Connection to Clustering: We can also view this problem in the context of clustering.
Clustering ([15],[12], [2]) is a common problem that arises in the analysis of large data
sets. In a typical clustering problem, we have a set of n input points in d dimensional
space and our goal is to partition the points into k clusters. There are two ways to define
the cluster size (cost):

– the maximum pairwise distance between an arbitrary pair of points in the cluster,
– twice the maximum distance between a point and a chosen centroid.

The first one is called as k-center clustering for diameter cost and the second one
is called as k-center clustering for radius cost. In the k-center problem, our goal is to
minimize the maximum of these distances. Computing k-center clustering is NP-hard:
even for 2 clusters in general Euclidean space (of dimension d); and also for general
number of k clusters even on a plane.

308 S. Chakraborty et al.

In this paper, we assume that the cluster can be of symmetric convex shape also.
Given a set S of n points and a symmetric convex body A in R

d, we say that the set of
points is (k,A)-clusterable if all the points can be contained in k translated copies of
A. In the promise version of the problem, for a given proximity parameter Θ (where 0 <
Θ ⊕ 1), our goal is to distinguish between the cases when S is (k,A)-clusterable and
when it is Θ-far from being (k,A)-clusterable. We say that S is Θ-far from being (k,A)-
clusterable if at least Θn points need to be removed from S in order to make it (k,A)-
clusterable.

We solve the above problem for k = 1 with constant number of queries. For k > 1,
we solve a weaker version of the problem. In order to solve the promise version of the
problem, we have designed a randomized algorithm which is generally called as tester.

Our algorithms can also be used to find an approximately good clustering. In clus-
tering with outliers (anomalies), when we have the ability to ignore some points as
outliers, we present a randomized algorithm that takes a constant size sample from in-
put and outputs radii and centers of the clusters. The benefit of our algorithm is that we
construct an approximate representation of such clustering in time which is independent
of the input size.

The most interesting part of our result is that we initiate application of Helly-type
theorem in property testing in order to solve the clustering problem.

1.1 Other Related Work

Alon et al. [1] presented testing algorithm for (k, b)-clustering. A set of points is said to
be (k, b)-clusterable if it can be partitioned into k clusters, where radius (or diameter)
of every cluster is at most b. Section 5 of [1] presents a testing algorithm for radius cost
under the L2 metric. The analysis of this algorithm can be easily generalized to any
metric under which each cluster is determined by a simple convex set (a convex set in
R

d is called simple if its VC-dimension is O(d)).
For testing 1-center clustering, our result and the result from [1] give constant query

testing algorithms. Although the two results have incomparable query complexity (in
terms of number of queries depending on Θ), for testing k-center clustering, we give a
weaker query complexity algorithm which works for fixed k and d, and for Θ ∈ (Θ∨, 1]
where Θ∨ = Θ∨(k, t) (where t is a constant which depends on the shape of the geometric
object). Alon et al. used the sophisticated VC-dimension technique while we have used
Helly-type results.

1.2 Organization of the Paper

In Section 2, we introduce the notations, definitions and state Helly and Helly-type
theorems that are used in this paper. In Section 3, we design the tester for (1, A)-cluster
testing for a given symmetric convex body A. In Section 4, we design the tester for
(k,G)-cluster testing for a given geometric object G. In Section 5, as an application
of results from Sections 3 and 4, we present an algorithm to find approximate clusters
with outliers.

Helly-Type Theorems in Property Testing 309

2 Preliminaries

2.1 Definitions

n-piercing: A family of sets is called n-pierceable if there exists a set S of n points such
that each member of the family has a non-empty intersection with S.
Homotheticity: Let A and B be two geometric bodies in R

d. A is homothetic to B if
there exist v ∈ R

d and ι > 0 such that A = v + ιB (where ι is called scaling factor
of B). In particular, when ι = 1, A is said to be a translated copy of B.
Symmetric Convex Body: A convex body A is called symmetric if it is centrally sym-
metric with respect to the origin, i.e., a point v ∈ R

d lies in A if and only if its re-
flection through the origin −v also lies in A. In other words, for every pair of points
v1, v2 ∈ R

d, if v1 ∈ v2 +A, then v2 ∈ v1 +A and vice versa. Circles, ellipses, n-gons
(for even n) with parallel opposite sides are examples of symmetric convex bodies.

2.2 Property Testing

In property testing, the goal is to query a very small fraction of the input and decide
whether the input satisfies a certain predetermined property or is “far” from satisfying
it. Let x = {0, 1}n be a given input string. Then, a property testing algorithm, with
query complexity q(|x|) and proximity parameter Θ for a decision problem L, is a ran-
domized algorithm that makes at most q(|x|) queries to x and distinguishes between the
following two cases:

– if x is in L, then the algorithm Accepts x with probability at least 2
3 ,

– if x is Θ-far from L, then the algorithm Rejects x with probability at least 2
3 .

Here, “x is Θ-far from L” means that the Hamming distance between x and any string
in L is at least Θ|x|. A property testing algorithm is said to have one-sided error if it
satisfies the stronger condition that the accepting probability for instances x ∈ L is 1
instead of 2

3 .

2.3 Helly’s and Fractional Helly’s Theorem

In 1913, Eduard Helly proved the following theorem:

Theorem 2. (Helly’s Theorem [11]) Given a finite family of convex sets C1, C2, ..., Cn

in R
d (where n ≤ d+1) such that if intersection of every d+1 of these sets is non-empty,

then the whole collection has a non-empty intersection.

Katchalski and Liu proved the following result which can be viewed as a fractional
version of the Helly’s Theorem.

Theorem 3. (Fractional Helly’s Theorem [16]) For every Δ (where 0 < Δ ⊕ 1), there
exists Γ = Γ(d, Δ) with the following property. Let C1, C2, ..., Cn be convex sets in R

d

(where n ≤ d + 1) and if at least Δ
(

n
d+1

)
of the collection of subfamilies of size d + 1

has a non-empty intersection, then there exists a point contained in at least Γn sets.

Independently, Kalai [8] and Eckhoff [13] proved that Γ(d, Δ) = 1− (1− Δ) 1
(d+1) .

310 S. Chakraborty et al.

2.4 Helly-type Theorem for More Than One Piercing in Convex Bodies

Helly’s theorem on intersections of convex sets focuses on 1-pierceable families. Danzer
et al. [7] investigated the following Helly-type problem : If d and m are positive inte-
gers, what is the least h = h(d,m) such that a family of boxes (with parallel edges) in
R

d is m-pierceable if each of its h-membered subfamilies is m-pierceable? Following
is the main result of their paper:

Theorem 4. 1. h(d, 1) = 2 for all d (where d ≤ 1);
2. h(1,m) = m+ 1 for all m;

3. h(d, 2) =

{
3d for odd d;

3d− 1 for even d;
4. h(2, 3) = 16;
5. h(d,m) =⊗ for d ≤ 2, n ≤ 3 and (d,m) ∈= (2, 3).

Katchalski et al. proved a result for families of homothetic triangles in a plane ([14]).
This result is similar to the intersection property of axis parallel boxes in R

d, studied
by Danzer et al. This result can also be considered as a Helly-type theorem for more
than one piercing of convex bodies. Theorem 5, below, presents the main result of their
paper.

Theorem 5. Let T be a family of homothetic triangles in a plane. If any nine of them
can be pierced by two points, then all the members of T can be pierced by two points.

3 Robust Helly for One Piercing of Symmetric Convex Body

Helly’s theorem is a fundamental result in discrete geometry, describing the ways in
which convex sets intersect with each other. In our case, we will focus on those subset
of convex sets whose intersection properties behave symmetric in certain ways. Obser-
vation 6 explains this in detail. In order to design the tester for (1, A)-cluster testing
problem, we will crucially use this observation, Helly’s and fractional Helly’s theorem.

Observation 6. Let A be a symmetric convex body in R
d containing n points, then n

translated copies ofA centered at these n points have a common intersection. Moreover,
a translated copy of A centered at a point in the common intersection contains all these
n points.

Lemma 7. Given a set S of n points in R
d, if every d + 1 (where d + 1 ⊕ n) of them

are contained in (a translated copy of) a symmetric convex bodyA, then all the n points
are contained in (a translated copy of) A.

Proof: Consider a set B of translated copies of A centered at points in S. Since every
d + 1 of the given points are contained in (a translated copy of) A, by Observation 6,
every d + 1 elements in B has a non-empty intersection. By Helly’s theorem, all ele-
ments in B have a non-empty intersection. Let q be a point from this intersection. Then
q belongs to every element in B and hence, by Observation 6, all the centers of the ele-
ments in B, i.e., all the n points in S, are contained in (a translated copy of) A centered
at q. ∗≥

Helly-Type Theorems in Property Testing 311

Lemma 8. Let S be a set of n points in R
d (where n ≤ d + 1). If at least Θn (where

0 < Θ ⊕ 1) points cannot be contained in any translated copy of a symmetric convex
body A, then at least Θd+1 fraction of all the d + 1 size subsets of S (number of such
subsets is

(
n

d+1

)
) cannot be contained in any translated copy of A.

Proof: Consider a set B of translated copies of A centered at points in S. Now, by
fractional Helly’s theorem, for every Δ (where 0 < Δ ⊕ 1), there exists Γ = Γ(d, Δ)
such that if at least an Δ fraction of

(
n

d+1

)
subsets (of size d+ 1) in B has a non-empty

intersection, then there exists a point (say p) which is contained in at least Γ fraction of
elements of B.

Consider a translated copy of A centered at p. By Observation 6, for every Δ (where
0 < Δ ⊕ 1), there exists Γ = Γ(d, Δ) such that if at least an Δ fraction of

(
n

d+1

)
subsets

(of size d+ 1) in S are contained in A, then at least Γn points are contained in A.
Thus, if at least (1−Γ)n points cannot be contained inA, then at least 1−Δ fraction

of
(

n
d+1

)
subsets (of size d + 1) in S cannot be contained in A. (Contrapositive of the

above statement.)
Since Γ = 1 − (1 − Δ) 1

(d+1) ([8], [13]), choosing 1 − Γ as Θ makes 1 − Δ equal to
Θd+1, which are the required values of the parameters. ∗≥
Theorem 9. Consider a set of n points in R

d (n ≤ d+ 1) located such that at least Θn
(where 0 < Θ ⊕ 1) points cannot be contained in any translated copy of a symmetric
convex bodyA. If we randomly sample 1

Δd+1 ln
1
Σ (where 0 < Ψ ⊕ 1) many sets of d+ 1

points, then there exists a set in the sample which cannot be contained in any translated
copy of A, with probability at least 1− Ψ.

Proof: By Lemma 8, if at least Θn points cannot be contained in (any translated copy
of) A, then at least Θd+1 fraction of

(
n

d+1

)
sets (of size d + 1) cannot be contained

in (any translated copy of) A. A set of d + 1 points cannot be contained in A with
probability Θd+1. Hence, the probability that it can be contained in A is 1− Θd+1. Thus,
the probability that all the sampled sets are contained in A is ⊕ (1 − Θd+1)

1

Θd+1 ln 1
Φ ⊕

e− ln 1
Φ = Ψ. ∗≥

Algorithm 1 is a randomized algorithm, tester, for (1, A)-cluster testing problem.

Data: A set S of n points in R
d (input is given as black-box), 0 < Ψ, Θ ⊕ 1.

Result: Returns a set of d+ 1 points, if it exists, which cannot be contained in A
or accepts (i.e., all the points can be contained in A).

1 repeat
2 select a set (say W) of d+ 1 points uniformly at random from S
3 if W cannot be contained in A then
4 return W as witness
5 end
6 until 1

Δd+1 ln
1
Σ many times;

7 if no witness found then
8 return /* all the points can be contained in A */
9 end

Algorithm 1. (1, A)-cluster testing in a symmetric convex body A

312 S. Chakraborty et al.

This algorithm has a one sided error, i.e., if all the points can be contained in a
symmetric convex bodyA then it accepts the input, else it outputs a witness with prob-
ability at least 1− Ψ. Correctness of the algorithm follows from Theorem 9. Thus, in the
problem of testing (1, A)-clustering for a symmetric convex body A, the sample size is
independent of the input size and hence the property is testable. Moreover, the tester
works for all the possible values of Θ (for 0 < Θ ⊕ 1).

4 Robust Helly for More Than One Piercing of Convex Bodies

4.1 Helly-type Results for More Than One Piercing of Convex Bodies

The following lemma says that a “Helly-type” result is not true for circles even for 2-
piercing. The result can be easily generalized for higher dimensions also. (The proof of
the following lemma was suggested by Prof. Jeff Kahn in a private communication.)

Lemma 10. Consider a set of n circles in a plane. For any constant w (where w < n),
the condition that every w circles are pierced at two points is not sufficient to ensure
that all the circles in the set are pierced at two points.

We present a proof of the above lemma in the full version of this paper [3].
Using arguments similar to the proof of above lemma, it is easy to prove that a

“Helly-type” result for more than one piercing is also not true for a set of translated
ellipsoids. Katchalski et al. [14] and Danzer et al. [7] proved a “Helly-type” result for
more than one piercing of triangles and boxes, respectively. According to [14], a “Helly-
type” result for more than one piercing is not true for centrally symmetric hexagon
(with parallel opposite edges). Similar type of result is true for triangles and pentagons
(with pair of parallel edges) which are not symmetric convex bodies. Thus, among
symmetric convex bodies (spheres, ellipsoids and n-gons (for n ⊕ 6)), a “Helly-type”
result for more than one piercing is possible only for parallelograms. We have following
observation regarding the same (we present a proof in the full version of this paper [3]):

Observation 11. Let S be a set of n points in R
d. If every set of h points (for finite

possible values of h, see Theorem 4) in S is contained in m (where m > 0) translated
parallelograms, then all the n points are contained in m translated parallelograms.

4.2 Fractional Helly for More Than One Piercing of Convex Bodies

We now design a weaker version of tester for (k,G)-clustering (where G is a bounded
geometric object and k > 1). The tester works for some particular value of Θ ∈
(Θ∨(k, t), 1], where t is some constant that depends on the shape of geometric object.

We state the following conjecture for more than one piercing of convex bodies.

Conjecture 12. For every Δ (where 0 < Δ ⊕ 1), there exists Γ = Γ(Δ, k, d) with the
following property. Let C1, C2, .., Cn be convex sets in Rd, n ≤ k(d + 1), such that at
least Δ.

(
n

k(d+1)

)
of the collection of subfamilies of size k(d+1) are pierced at k points,

then at least Γn sets are pierced at k points. Also, Γ approaches 1 as Δ approaches 1.

Helly-Type Theorems in Property Testing 313

Lemma 13. If Conjecture 12 is true, then we have the following: Consider a set of n
points in R

d (where n ≤ k(d + 1)). If at least Θn (where 0 < Θ ⊕ 1) points cannot
be contained in any k translated copies of symmetric convex body A, then at least
Π(Γ(Θ, k, d)) fraction of

(
n

k(d+1)

)
sets cannot be contained in any k translated copies

of A.

Proof: Proof of this lemma is similar to the proof of Lemma 8. ∗≥

In the above lemma, Π is an appropriately chosen function to compute the value of
1−Δ, i.e., the fraction of

(
n

k(d+1)

)
sets which cannot be contained in k translated copies

of A.
Now, we prove a weaker version of Conjecture 12. We show that for bounded geo-

metric objects, a weaker version of fractional Helly for more than one piercing is true.
We use greedy approach to prove the same. We prove it for some Θ ∈ (Θ∨, 1], where
Θ∨ = Θ∨(k, t) (where t is a constant that depends on the shape of the geometric object).
The result is true only for constant k and d.

Lemma 14. Consider k translated copies of a geometric objectG and a set of n points
in R

d (for constant k and d). Then there exist Θ∨ = Θ∨(k, t) (where Θ∨(k, t) = 1 −
1

2(t+1)(k+1) , t is a constant that depends on the shape of the geometric object) such that
for all Θ ∈ (Θ∨, 1], if at least Θn points cannot be contained in any k translated copies
of G, then there exist at least Σ(nk+1) many witnesses of k+1 points which cannot be
contained in any k translated copies of G.

Proof: We say a geometric object G is best if it encloses the maximum number of
points from the given set of n points. Now, we start with such a best object. Let us say
the best object contains at least c0(1 − Θ)n points (where 0 < c0 ⊕ 1). Now draw
an object, LG, concentric and homothetic with respect to G, having a scaling factor of
2 + Λ (for 0 < Λ ⊆ 1, see the definition of Homotheticity in Subsection 2.1 where
v = 0 and ι = 2 + Λ). The annulus obtained by two concentric objects G and LG can
be filled with constant many (say t (= βd − 1), 1 we present a proof of this in the full
version of this paper [3]) translated copies of G. Since we started with the best object,
the annulus contains at most tc0(1− Θ)n points. Hence, the number of points which are
outside LG is at least Θn− tc0(1 − Θ)n = Θ1n, where Θ1 = Θ − tc0(1 − Θ). We throw
away all the points in the annulus. Now, we are left with best object that containing at
least c0(1− Θ)n points and the remaining space containing at least Θ1n points.

Now, we repeat the above process on Θ1n points and would keep on repeating it
until every point is either deleted or contained in some translated copies of G. Thus,
total number of points that we have deleted from annuli is at most tγi∗0ci(1 − Θi)n
and total number of points that are inside translated copies of G is at least γi∗0ci(1 −
Θi)n (where Θ0 = Θ).

By construction, the total number of points inside translated copies of G and the
points that have been deleted from annuli is at least n. Thus,

1 Φ is (ceiling of) the ratio of side length of the smallest d-cube circumscribing LG to that of
the largest d-cube (homothetic w.r.t. smallest d-cube circumscribing LG) inscribing G.

314 S. Chakraborty et al.

γi∗0ci(1− Θi)n+ tγi∗0ci(1− Θi)n ≤ n (where Θ0 = Θ).

γi∗0ci(1− Θi)n ≤ n

t+ 1
.

Let Gi denotes the i-th geometric object and |Gi| denotes the number of points con-
tained in it. Thus,

γi∗0|Gi| ≤ n

t+ 1
.

By assumption, k translated copies of G can contain at most (1 − Θ)n points.
Thus, |Gi| ⊕ (1− Θ)n. Since Θ > 1− 1

2(t+1)(k+1) ,

|Gi| < n

2(t+ 1)(k + 1)
.

Now, our goal is to make k+1 buckets, S1, S2, .., Sk+1, fromGi’s such that each bucket
contains at least n

2(t+1)(k+1) points and at most n
(t+1)(k+1) points. We construct these

buckets by adding points from Gi’s until its size become at least n
2(t+1)(k+1) . Since

each |Gi| < n
2(t+1)(k+1) andγi∗0|Gi| ≤ n

t+1 , this construction is possible. Thus, for a
particular bucket Si,

n

2(t+ 1)(k + 1)
⊕ |Si| ⊕ n

(t+ 1)(k + 1)
.

Now, choosing one point from each of the (k + 1) buckets gives a set of k + 1 points
as a witness, which cannot be contained in k translated copies of G. Thus, there are at

least
(

1
2(t+1)(k+1)

)k+1

nk+1 (= Σ(nk+1)) many witnesses. ∗≥

Theorem 15. Consider k translated copies of a geometric object G and a set of n
points in R

d (for constant k and d). Then there exist Θ∨ = Θ∨(k, t) (where t is a constant
that depends on the shape of the geometric object) such that for all Θ ∈ (Θ∨, 1], at least
Θn points cannot be contained in any k translated copies of G. Now, if we randomly
sample 1

c ln
1
Σ (where 0 < Ψ ⊕ 1 and cnk+1 is the number of witnesses, see Lemma 14)

many sets of size k+ 1, then there exists a set in the sample which cannot be contained
in any k translated copies of G, with probability at least 1− Ψ.

We present a proof of the above theorem in the full version of this paper [3].
Similar to tester for (1, A)-cluster testing problem, we present a tester (Algorithm 2)

for problem (k,G)-cluster testing. If all the points can be contained in k translated
copies of G then algorithm accepts the input, else it outputs a witness with probability
at least 1 − Ψ. Correctness of the algorithm follows from Theorem 15. Thus, similar to
testing (1, A)-clustering, this property is also testable. But, the tester only works for
constant k and d and for Θ ∈ (Θ∨, 1] (see Lemma 14).

Helly-Type Theorems in Property Testing 315

Data: A set S of n points in R
d (input is given as black-box), 0 < Ψ ⊕ 1 and

Θ ∈ (Θ∨, 1].
Result: Returns a set of k + 1 points, if it exists, which cannot be contained in k

translated copies of G, or accepts (i.e., all the points can be contained in
it).

1 repeat
2 select a set (say W) of k + 1 points uniformly at random from S
3 if W cannot be contained in k translated copies of G then
4 return W as witness
5 end
6 until 1

c ln
1
Σ many times;

7 if no witness found then
8 return /* all the points can be contained in k translated copies of G */
9 end

Algorithm 2. (k,G)-cluster testing in geometric objects

5 Application in Clustering with Outliers

While considering the clustering problem, we mostly assume that data is perfectly clus-
terable. But a few random points (outliers, noise) could be added in the data by an
adversary. For example, in the k-center clustering, if an adversary adds a point in the
data which is very far from the original set of well clustered points, then in the opti-
mum solution that point becomes center of its own cluster and the remaining points are
forced to clustered with (k − 1) centers only. Also, it is even difficult to locate when a
point becomes an outlier. For example: consider a set of points where we need to find
its optimal k-center clustering. Take a point from that set and keep moving it far from
the remaining set. Now, it is very difficult to locate correctly at which place that point
becomes center of its own cluster and the remaining points are left with (k − 1)-center
clusters.

In this work, we consider clustering with outliers by ignoring some fraction of points.
Thus, in the case when points are perfectly clusterable, ignoring some fraction of points
does not affect the result too much, and the case when outliers are present, the algorithm
has the ability to ignore them while computing the final clusters. It may seems that the
ability to ignore some fraction of points makes the problem easier, but on the contrary it
does not. Because it has not only to decide which point to include in the cluster but also
to decide which point to include first. There may be two extreme approaches to solve
this problem: 1) Decide which points are outliers and run the clustering algorithm; 2)
Do not ignore any points, and after getting final clusters decide which ones are outliers.
Unfortunately, neither of these two approaches works well. The first one scales poorly
because there are exponentially many choices, and the second one may significantly
change the final outcome when outliers are indeed present. This motivates the study of
clustering with outliers (see[4]).

316 S. Chakraborty et al.

Theorem 9 has an application to 1-center clustering with outliers. More precisely,
for 0 < Θ, Ψ ⊕ 1, when we have the ability to ignore at least Θn points as outliers,
we present a randomized algorithm which takes a constant size sample from input and
correctly output the radius and center of the approximate cluster with probability at
least 1− Ψ.

Data: A set S of n points in R
d (input is given as black-box), 0 < Θ, Ψ ⊕ 1.

Result: Report center and radius of cluster which contain all but at most Θn
points.

1 Uniformly and independently, select m = d+1
Δd+1 ln

1
Σ points from S.

2 Compute minimum enclosing ball containing all the sample points and report its
center and radius.

Algorithm 3. 1-center clustering with outliers

Theorem 16. Given a set of n points in R
d and 0 < Θ, Ψ ⊕ 1, Algorithm 3 correctly

outputs, with probability at least 1 − Ψ, a ball containing all but at most Θn points
in constant time by querying a constant size sample (constant depending on d and Θ).
Moreover, if routlier is the smallest ball containing all but at most Θn points and rmin

is the smallest ball containing all the points, then Algorithm 3 outputs the radius r such
that routlier ⊕ r ⊕ rmin.

We present a proof of the above theorem in the full version of this paper [3].
The problem of clustering with outliers can be generalized for k-center clustering.

If Conjecture 12 is true, then it has an application to k-center clustering with outliers.
For given 0 < Θ, Ψ ⊕ 1, ignoring at least Θn points as outliers, we present a randomized
algorithm which takes a constant size sample from the input and correctly output the
radii and k centers of the approximate clusters with probability at least 1− Ψ.

Data: A set S of n points in R
d (input is given as black-box), 0 < Θ, Ψ ⊕ 1.

Result: Reports k centers and radii of clusters which contains all but at most Θn
points.

1 Uniformly and independently, select m = k(d+1)
Λ(δ(Δ,k,d)) ln

1
Σ points from S.

2 Compute k minimum enclosing balls containing all the sample points and report
their centers and radii.

Algorithm 4. k-center clustering with outliers

Theorem 17. Consider a set of n points in R
d. If Conjecture 12 is true and 0 < Θ, Ψ ⊕

1, then with probability at least 1 − Ψ, Algorithm 4 output k balls containing all but at
most Θn points in constant time by querying a constant size sample (constant depending
on k, d and Θ). Moreover, for 1 ⊕ i ⊕ k, if r(i)outlier is the radius of the optimal i-th

cluster by ignoring at most Θn points as outliers and r(i)min is the radius of the optimal
i-th cluster when all points are present, then Algorithm 4 outputs the radius r(i) such
that r(i)outlier ⊕ r(i) ⊕ r(i)min.

We present a proof of the above theorem in the full version of this paper [3].

Helly-Type Theorems in Property Testing 317

6 Conclusion and Open Problems

In this paper, we initiated an application of the Helly (and Helly-type) theorem in prop-
erty testing. For (1, A)-cluster testing in a symmetric convex body A, we showed that
testing can be done with constant number of queries and hence proved that the prop-
erty is testable. Alon et al. [1] also solved a similar problem with constant number of
queries, using combination of sophisticated arguments in geometric and probabilistic
analysis. For 1-center clustering, our result had an incomparable query complexity in
relation (in terms of number of queries depending on Θ) with the result of Alon et al. We
stated a conjecture related to fractional Helly-type theorem for more than one piercing
of convex bodies. Using a greedy approach, we proved a weaker version of the conjec-
ture which we used for testing (k,G)-clustering. We also gave a characterization of the
type of symmetric convex body for which Helly-type result for more that one piercing
would be true. Finally, as an application of testing result in clustering with outliers, we
showed that one can find, with high probability, the approximate clusters by querying a
constant size sample.

References

1. Alon, N., Dar, S., Parnas, M., Ron, D.: Testing of clustering. SIAM J. Discrete Math. 16(3),
393–417 (2003)

2. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press (1973)
3. Chakraborty, S., Pratap, R., Roy, S., Saraf, S.: Helly-type theorems in property testing. CoRR,

abs/1307.8268 (2013)
4. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location

problems with outliers, pp. 642–651 (2001)
5. Czumaj, A., Sohler, C.: Property testing with geometric queries. In: Meyer auf der Heide, F.

(ed.) ESA 2001. LNCS, vol. 2161, pp. 266–277. Springer, Heidelberg (2001)
6. Czumaj, A., Sohler, C., Ziegler, M.: Property testing in computational geometry. In: Paterson,

M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 155–166. Springer, Heidelberg (2000)
7. Danzer, L., Branko, B.G.: Intersection properties of boxes in R

d. Combinatorica 2(3),
237–246 (1982)

8. Eckhoff, J.: An upper bound theorem for families of convex sets. Geom. Dediata 19(75),
217–227 (1985)

9. Goldreich, O.: Combinatorial property testing (a survey). Electronic Colloquium on Compu-
tational Complexity (ECCC) 4(56) (1997)

10. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and
approximation. J. ACM 45(4), 653–750 (1998)

11. Helly, E.: Über Mengen konvexer Köper mit gemeinschaftlichen Punkten (germen). Jahres-
ber. Deutsch.Math. Verein (32), 175–176 (1923)

12. Jain, A.K., Dubes, R.C.: Algorithms for Clustering. Prentice-Hall (1988)
13. Kalai, G.: Intersection patterns of convex sets. Israel J. Math. (48), 161–174 (1984)
14. Katchalski, M., Nashtir, D.: On a conjecture of danzer and grunbaum. Proc. A.M.S (124),

3213–3218 (1996)
15. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis.

John Wiley (1990)
16. Katchalski, M., Liu, A.: A problem of geometry in R

n. Proc. A.M.S (75), 284–288 (1979)
17. Ron, D.: Property testing: A learning theory perspective. Foundations and Trends in Machine

Learning 1(3), 307–402 (2008)

New Bounds for Online Packing LPs�

Matthias Englert1, Nicolaos Matsakis1, and Marcin Mucha2

1 DIMAP and Dept. of Computer Science, University of Warwick
{M.Englert,N.Matsakis}@warwick.ac.uk

2 Institute of Informatics, University of Warsaw
mucha@mimuw.edu.pl

Abstract. Solving linear programs online has been an active area of
research in recent years and was used with great success to develop new
online algorithms for a variety of problems. We study the setting in-
troduced by Ochel et al. as an abstraction of lifetime optimization of
wireless sensor networks.

In this setting, the online algorithm is given a packing LP and has to
monotonically increase LP variables in order to maximize the objective
function. However, at any point in time, the adversary only provides an
α-approximation of the remaining slack for each constraint. This is de-
signed to model scenarios in which only estimates of remaining capacities
(e.g. of batteries) are known, and they get more and more accurate as
the remaining capacities approach 0.

Ochel et al. (ICALP’12) gave a Θ(lnα/α)-competitive online algo-
rithm for this online packing LP problem and showed an upper bound
on the competitive ratio of any online algorithm, even randomized, of
O(1/

√
α). We significantly improve the upper bound and show that

any deterministic online algorithm for LPs with d variables is at most
O(d2α1/d/α)-competitive. For randomized online algorithms we show an
upper bound of O(m2α1/m/α) for LPs with mm! lnα variables. For LPs
with sufficiently many variables, these bounds are O(ln2 α/α), nearly
matching the known lower bound.

On the other hand, we also show that the known lower bound can
be significantly improved if the number of variables in the LP is small.
Specifically, we give a deterministic Θ(1/

√
α)-competitive online algo-

rithm for packing LPs with two variables. This is tight, since the pre-
viously known upper bound of O(1/

√
α) still holds for 2-dimensional

LPs.

1 Introduction

In recent years, there has been great interest in methods for solving linear pro-
grams online, mainly to facilitate the development of new online algorithms with

δ The first and second author are supported by the Centre for Discrete Math-
ematics and its Applications (DIMAP), University of Warwick, EPSRC award
EP/D063191/1. The third author is supported by NCN grant N N206 567940.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 318–329, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

New Bounds for Online Packing LPs 319

improved competitive guarantees. Buchbinder and Naor [3] give a general on-
line primal-dual approach to (approximately) solve the following type of packing
(and the dual covering version) linear program online.

The underlying packing LP is of the form

max b1x1 + . . .+ bdxd

subject to A

x1
...
xd

⎡ ⊕

c1
...
cm

⎡

x1, . . . , xd ≤ 0 ,

where A is matrix with non-negative entries, and all bi and ci are positive.
In the online version, an online algorithm plays against an adversary which

only reveals entries of b and A online. More specifically, the online algorithm
is only allowed to increase variables, not decrease them. The algorithm also
must guarantee that all LP constraints are satisfied. The vector c is given to
the algorithm upfront, but b and A are initially hidden. The adversary then
successively reveals all coefficients of a variable xj at a time of its choosing, i.e.,
in round j, bj and, for all i, Aij are revealed to the online algorithm. The goal
is to maximize the objective function bTx.

The primal-dual technique by Buchbinder and Naor and their extensions have
been applied with great success to develop new improved online algorithms for a
variety of online problems, among them the k-server problem [2] and generalized
caching [1].

Ochel, Radke, and Vöcking [5] introduce a related model in which b and A are
initially given to the online algorithm and instead c is only gradually revealed.
At each point in time, the adversary reveals a vector Θt, which can be seen as
the current right hand side values of the LP, and the online algorithm responds
by increasing variables xi. The algorithm may never decrease a variable and has
to ensure that the constraint Ax ⊕ Θt is satisfied. This is not possible without
imposing further restrictions on Θt. Therefore we require that

1. The revealed Θt are (component wise) lower bounds on c, i.e., Θt ⊕ c.
2. If x is the current online solution, the next revealed vector Θt has to satisfy

(c−Ax) ⊕ ι(Θt −Ax).

In other words, the remaining slacks of constraints, if Θt is taken as the right
hand side, are an ι-approximation of the remaining slacks with respect to the
true right hand side c. We call Θt−Ax the revealed remaining slacks and c−Ax
the true remaining slacks and study the performance of online algorithms in
dependence of the problem parameter ι.

Ochel et al. [5] give the problem of lifetime optimization in wireless sensor
networks as a motivating application (see, e.g., [4]). There, the right hand sides
of the constraints correspond to battery lifetimes of sensors. We only know the
lower bounds on the remaining lifetimes, but the true values are always within
a fixed factor of the revealed values. Given this information, we need to choose

320 M. Englert, N. Matsakis, and M. Mucha

among a set of broadcasting scenarios in a way that maximizes the number of
broadcasts performed before empty batteries prevent any further broadcasts.

1.1 Our Results

Ochel et al. [5] give a Δ(lnι/ι)-competitive online algorithm for their online
packing LP problem and show an upper bound on the competitive ratio of any
online algorithm, even randomized, of O(1/

√
ι).

We significantly improve the upper bound. For LPs involving d or more vari-
ables we show an upper bound of O(d2ι1/d/ι) on the competitive ratio of any
deterministic algorithm. At the cost of increasing the number of variables, we
obtain a similar bound on the competitive ratio of any randomized algorithm
against an oblivious adversary. With m∗m! lnα⊆ or more variables we construct
an upper bound of O(m2ι1/m/ι).

For d = Γ(lnι) in the case of deterministic algorithms and d = Γ(ι(lnα)) in
the case of randomized algorithms, this results in an upper bound of O(ln2 ι/ι),
which nearly matches the known lower bound by Ochel et al.

However, we also demonstrate that the achievable competitive ratio crucially
depends on the number of variables d in the LP. We give a simple Δ(1/

√
ι)-

competitive deterministic online algorithm that beats the general upper bound
of O(ln2 ι/ι) for LPs only involving two variables. This is tight, since the pre-
viously known general upper bound of O(1/

√
ι) still holds for 2-dimensional

LPs.
The paper is organized as follows. In Section 2 we give the upper-bound on

the competitive ratio achievable by deterministic algorithms. The techniques
developed in the process are then extended in Section 3 to handle randomized
algorithms. In Section 4 we describe and analyze an O(1/

√
ι)-competitive al-

gorithm for 2-dimensional LPs. We end with conclusions and open problems in
Section 5.

2 Deterministic Upper Bound

In this section, we describe our upper bound construction and prove the following
theorem.

Theorem 1. The competitive ratio of any deterministic online algorithm is at
most O(d2ι1/d/ι), for LPs involving d or more variables.

Note that the bound in the claim above is minimized for d = Δ(lnι). Using this
value, gives us the following corollary.

Corollary 1. The competitive ratio of any deterministic online algorithm is at
most O(ln2 ι/ι).

We proceed with the construction of the adversary to prove Theorem 1. The
construction will use exactly d variables. The theorem follows since any addi-
tional variables xd+1, xd+2, . . . can be made irrelevant by adding constraints of
the form xd+1 ⊕ 0, xd+2 ⊕ 0, . . .

New Bounds for Online Packing LPs 321

The basic idea behind our construction is to present an LP to the online
algorithm that is completely symmetric. Once the online algorithm has increased
some variable xi so much that the revealed remaining slacks of some constraints
become small, the adversary decides that these are exactly the constraints for
which the revealed right hand sides were already quite close to the true right
hand sides. As a consequence, xi cannot be increased much further in the future
and the online algorithm is, more or less, left with a similarly constructed input
for the remaining d− 1 variables.

The initial linear program presented to the online algorithm is

max

d−1⎣

i=0

xi

⊗ permutations Ψ :

d−1⎣

i=0

ιi/d · xπ(i) ⊕ ι

x0, x1, . . . , xd−1 ≤ 0 .

The adversary maintains a set of active constraints and a set of active vari-
ables. Initially all d! constraints and all d variables are active.

The adversary proceeds in d rounds numbered d − 1, d − 2, . . . , 0. Round r
ends in the first step in which there exists an active constraint with a revealed
remaining slack of at most ιr/d. At the end of a round, the adversary does the
following:

– Determine the index kr of an active variable of maximum value among the
active variables.

– Increase the right hand side of all active constraints that do not correspond
to permutations with Ψ(r) = kr to ι·ιr/d. Note that this is possible, i.e., this
does not violate the condition that revealed remaining slacks always have to
be an ι-approximation of the true remaining slacks, since before this point
in time, all constraints have a revealed remaining slack of at least ιr/d.

– Remove all these constraints from the set of active constraints.
– Remove the variable with index kr from the set of active variables.

Remark 1. It might happen that the online algorithm ends its execution before
all rounds are completed. In this case, the adversary still executes the steps
above (without waiting for slacks of constraints to trigger the next round).

We start our proof with two easy observations. At the end of round r, we remove
all constraints with Ψ(r) ∈= kr from the set of active constraints. Since round
numbers are decreasing, we have the first observation.

Observation 2. A permutation Ψ corresponds to a constraint active in round r
iff Ψ(s) = ks for all s > r.

Let xri be the value of the variable xi at the end of round r, for i, r ∗ {0, . . . , d−
1}. Since for non-negative numbers a1 ≤ a2 ≤ . . . and non-negative numbers bi,⎤

i ai · bπ(i) is maximized if bπ(1) ≤ bπ(2) ≤ . . . we get the second observation.

322 M. Englert, N. Matsakis, and M. Mucha

Observation 3. Let r = 0, . . . , d − 1 be a round. Also, let Ψ be a permutation
corresponding to a constraint active in round r and such that

xrπ(r) ≤ xrπ(r−1) ≤ . . . ≤ xrπ(0).

Note that such a permutation exists due to Observation 2. Then, the constraint
corresponding to Ψ has the smallest revealed remaining slack among all permu-
tations active in round r.

For any r = 0, . . . , d − 1, let Ψr be the permutation corresponding to the con-
straint that causes round r to end. Due to Observation 3,

xrπr(r)
≤ xrπr(r−1) ≤ . . . ≤ xrπr(0)

and therefore, we may assume without loss of generality that Ψr(r) = kr.

Lemma 1. For any round r < d− 1 we have

xrπr(i)
≤ xr+1

πr+1(i)

for any i = 0, . . . , d− 1

Proof. Due to Observation 2, we have Ψr(i) = Ψr+1(i) = ki for i > r+1 since the
constraints corresponding to Ψr and Ψr+1 are both active in rounds d−1, . . . , r+1.
Since Ψr(i) is also active in round r and Ψr+1(r + 1) = kr+1, we also have
Ψr(i) = Ψr+1(i) = ki for i = r + 1. Variables can only increase, this implies for
i ≤ r + 1, xrπr+1(i)

= xrki
≤ xr+1

ki
= xr+1

πr+1(i)
.

It remains to prove the lemma for i ⊕ r. Again because Ψr(i) = Ψr+1(i) = ki
for i > r + 1, the sequence Ψr+1(r + 1), Ψr+1(r), . . . , Ψr+1(0) is a permuta-
tion of the sequence Ψr(r + 1), Ψr(r), . . . , Ψr(0). Therefore, the sets of variables
{xπr+1(r+1), . . . , xπr+1(0)} and {xπr(r+1), . . . , xπr(0)} are identical. Hence, since
variables can only increase, the sequence

xrπr(r+1) ≤ xrπr(r)
≤ . . . ≤ xrπr(0)

is obtained from
xr+1
πr+1(r+1) ≤ xr+1

πr+1(r)
≤ . . . ≤ xr+1

πr+1(0)

by increasing the values of some variables and rearranging the sequence so that
it is sorted. The claim follows. ≥⊆

We can now show the key lemma.

Lemma 2. For any r ∗ {0, . . . , d− 1} and i ⊕ r, we have xrπr(i)
⊕ (d− r)ι1/d.

Proof. We use downward induction on r. The claim is clear for r = d− 1, since
during round d− 1 all constraints still have right hand sides equal to ι and for
any variable xi there is a constraint that contains this variable with a coefficient
of ι1−1/d.

New Bounds for Online Packing LPs 323

Consider now any round r < d− 1. We have

d−1⎣

i=0

ιi/d · xrπr(i)
=

d−1⎣

i=0

ιi/d · xr+1
πr+1(i)

+
d−1⎣

i=0

ιi/d ·
⎦
xrπr(i)

− xr+1
πr+1(i)

⎨
.

The first sum is lower bounded by ι−ι(r+1)/d by the definition of Ψr+1. More-
over, by Lemma 1 we have xrπr(i)

≤ xr+1
πr+1(i)

for any i = 0, . . . , d− 1. Therefore

d−1⎣

i=0

ιi/d · xrπr(i)
≤ ι− ι(r+1)/d +

d−1⎣

i=0

ιi/d ·
⎦
xrπr(i)

− xr+1
πr+1(i)

⎨
.

with all the terms in the right sum being non-negative. Since the constraint
corresponding to Ψr is active and feasible in round r, the left hand side is upper-
bounded by ι. By ignoring all terms except the one corresponding to i = r in
the sum of the right hand side we obtain

xrπr(r)
⊕ xr+1

πr+1(r)
+
ι(r+1)/d

ιr/d
= xr+1

πr+1(r)
+ ι1/d ⊕ (d− r)ι1/d,

where the last inequality follows from induction.
The claim for xrπr(i)

with i < r follows as well, since xrπr(0)
⊕ · · · ⊕r

πr(r)
⊕

(d− r)ι1/d. ≥⊆
Lemma 3. After the online algorithm terminates we have xi = O(dι1/d) for
all i = 0, . . . , d− 1.

Proof. Let r be the last round that is fully performed. Consider any permutation
Ψ corresponding to a constraint that is active when the algorithm ends. From
Observation 2 we know that these are exactly the constraints satisfying Ψ(t) = kt
for all t ≤ r. Choose one such Ψ so that it also satisfies

xπ(r−1) ≤ xπ(r−2) ≤ . . . ≤ xπ(0),
where xi is the final value of a variable.

We will first prove the claim for variables that are not active when the algo-
rithm ends. Any such variable has index kt = Ψt(t) = Ψ(t) for some t ≤ r. We
have

d−1⎣

i=0

ιi/d · xtπt(i)
≤ ι− ιt/d,

and similarly to the reasoning in the the proof of Lemma 2 we can argue that

xkt ⊕ xtkt
+
ιt/d

ιt/d
⊕ (d− t)ι1/d + 1.

Consider now the variables that are still active when the algorithm ends, i.e.
xπ(i) for i < r. It is enough to prove the claim for xπ(r−1), since it is the largest
one. We have

d−1⎣

i=0

ιi/d · xrπr(i)
≤ ι− ιr/d,

324 M. Englert, N. Matsakis, and M. Mucha

and again using the reasoning from the proof of Lemma 2 we get that

xπ(r−1) ⊕ xrπr(r−1) +
ιr/d

ι(r−1)/d ⊕ (d− r)ι1/d + ι1/d = (d− r + 1)ι1/d. ≥⊆

It remains to show a lower bound on the profit an optimal offline strategy can
achieve.

Lemma 4. An optimal offline algorithm can obtain a profit of ι.

Proof. An offline algorithm can set xk0 to ι and all other variables to 0. This
solution is feasible.

For any i ≤ 1, consider any of the (d − 1)! constraints in which xk0 has a
coefficient of ιi/d. In other words, a constraint corresponding to a permutation
with Ψ(i) = k0. Such a constraint becomes inactive by the end of round i the
latest, since Ψ(i) = k0 ∈= ki. Due to the adversary’s strategy this means that,
once the constraint becomes inactive, the right hand side increases to at least
ι · ιi/d and therefore the constraint is satisfied.

Constraints in which the coefficient of xk0 is 1 are clearly satisfied as well,
since the right hand side of all constraints is at least ι. ≥⊆

By combining Lemma 3 and Lemma 4 we obtain Theorem 1.

3 Randomized Upper Bound

The upper bound on the competitive ratio of randomized online algorithms
against oblivious adversaries is based on the construction from the previous
section and uses a technique that is, at least implicitly, also used by Ochel et
al. [5]. Recall that each round ends when the slack of at least one active con-
straint drops below a certain threshold value. The adversary then identifies the
offending (i.e. largest) active variable and renders all constraints, except for those
in which this variable appears with a certain coefficient, irrelevant. This is done
by increasing the right hand side of these constraints sufficiently. The offending
variable becomes inactive and cannot be further increased by much anymore.

To obtain our upper bound on randomized algorithms, we use the standard
approach based on Yao’s min-max principle; instead of proving bounds for ran-
domized algorithms, we construct a distribution on the inputs that (in expecta-
tion) foils any deterministic algorithm.

Technical issues. Our previous problem description involves a constant interac-
tion between the online algorithm and an adversary; each increase of LP vari-
ables by the algorithm is followed by an update of the right hand sides of the
LP constraints by the adversary.

In order to define oblivious adversaries, we need to remove this interaction
and allow the adversary to specify its complete behavior upfront. For this, the
input consists, as before, of a packing LP whose constraints are given by Ax ⊕
c. Additionally, for each constraint i, an adversary specifies a monotonically

New Bounds for Online Packing LPs 325

increasing function Θi(Πi) of the left hand side of the constraint Πi := (Ax)i.
This function models the right hand side of the constraint in dependence of the
current value of the left hand side. The function has to satisfy Θi(Πi) = ci for
Πi ≤ ci and ci − Πi ⊕ ι(Θi(Πi)− Πi) for Πi < ci.

If Πi is the current value of the left hand side of the i-th constraint, the online
algorithm does know all values of Θi(z) for z ⊕ Πi but does not know any values
for z > Πi.

Note that we only need basic threshold functions to construct the deter-
ministic upper bound from the previous section. Define functions fj(Π), for
j ∗ [0, d− 1], as

fj(Π) :=

⎛
ι Π < ι− ιj/d

ι1+j/d Π ≤ ι− ιj/d
.

The LP is the same as the one in the previous section. The monotonically
increasing function assigned to a constraint that corresponds to permutation Ψ,
is fr if r is the largest integer such that Ψ(r) ∈= kr. (Recall that kr is the index
of the largest active variable at the end of round r.) If no such integer exist, f0
is assigned to the constraint.

This way we can achieve the same upper bound as in the previous section,
but with an explicit, predefined behavior of the adversary. Two things need to
be noted here. First of all, in order to actually foil an online algorithm with a
fixed adversary one needs to know the kr values. Therefore, we might need a
different fixed adversary for different algorithms. Second, even if we do know the
kr values, the resulting adversary is not identical to the one from the previous
section. Adversaries from the previous section always increase the right-hand
sides of constraints as soon as they know what their final values should be. The
adversaries defined here delay the increase (almost) as long as possible. However,
it can be easily verified that the bound of Theorem 1 still holds, as long as the
adversary is built with the correct kr values.

Parallel adversaries. In the construction of the previous section, the order in
which the variables become inactive defines a permutation Ψo of {0, . . . , d− 1}.
In other words, if the variable with index kr becomes inactive in round r we
have Ψo(r) = kr.

Consider an adversary that acts in exactly the same way as before, but it
guesses the permutation Ψo and proceeds as if the variables would actually be-
come inactive in this order. If the adversary guesses correctly, the construction
works as intended and the algorithm can only obtain a value of O(d2ι1/d), while
the optimum value is ι. If the adversary chooses the permutation uniformly at
random, the success probability is 1/(d!), i.e., with this probability we achieve
the same upper bound as in the previous section. However, if the adversary
guesses incorrectly the algorithm can perform better than O(d2ι1/d), perhaps
even obtain a value of ι, while the optimal value remains ι. We are not going
to attempt to analyze the average performance of an algorithm in this setting.
Instead, we will increase the success probability for the adversary from 1/(d!) to
about 1− 1/ι.

326 M. Englert, N. Matsakis, and M. Mucha

The idea is to have K adversaries with random Ψo sequences working in par-
allel and require the algorithm to beat all of them, for some sufficiently large K.
This is done as follows. Suppose we want to have K d-dimensional adversaries.
We construct a packing program with dK variables {xi1,...,iK |0 ⊕ i1, . . . , iK ⊕
d− 1}. The objective function is the sum of all variables.

For the k-th adversary, we add d! constraints to the LP. The constraints have
the same form as the ones in the previous section but instead of variables xj the
variables are

xkj :=
⎣

(i1,...,iK):ik=j

xi1,...,iK .

For each adversary k, a permutation Ψk of {0, . . . , d − 1} is chosen indepen-
dently and uniformly at random and the functions fr are randomly assigned to
constraints based on this permutation as described earlier.

Note that, for any adversary k, the objective function is

⎣

0◦i1,...,iK◦d−1
xi1,...,iK =

d−1⎣

j=0

xkj .

Therefore the objective function is also equal to mink

⎤d−1
j=0 x

k
j .

We now allow the online algorithm to increase xkj directly instead of increasing
the underlying xi1,...,iK variables. Note that, in reality, the algorithm cannot
increase the xkj variables completely independently of each other, since increasing

one of the underlying xi1,...,iK variables always affects multiple xkj variables.

However, allowing the algorithm to directly and individually increase xkj variables
can only give the online algorithm more power.

This completes the construction of an input that combines K adversaries
from the previous section, each of them independently guessing a random order
in which variables becomes inactive. The profit of the online algorithm against
one of the adversaries is bounded by O(d2ι1/d) with probability 1/(d!) (namely
if the adversary guessed the correct permutation) and by ι otherwise.

The total profit of the online algorithm is bounded by the minimum profit the
algorithm achieves against any of the K adversaries. By choosing K = ↑d! lnι⊃
we get that the expected overall profit of the online algorithm is bounded by

⎦
1− 1

d!

⎨K
ι+

⎦
1−

⎦
1− 1

d!

⎨K⎨
O(d2ι1/d) = O(d2ι1/d) .

The optimal profit is always ι. To see this set xπ1(0),...,πK(0) = ι and all other
variables to 0. Consider the constraints that belong to the k-th adversary. Then
xkj is equal to ι for j = Ψk(0) and 0 otherwise. This is exactly the feasible solution
from Lemma 4, applied to the constraints of the k-th adversary. Altogether, this
gives the desired theorem.

Theorem 4. The competitive ratio of any randomized online algorithm against
an oblivious adversary is at most O(m2ι1/m/ι) for LPs involving m∗m! lnα⊆

variables.

New Bounds for Online Packing LPs 327

4 Tight Lower Bound for Two Dimensions

In this section we give a simple deterministic Δ(1/
√
ι)-competitive algorithm

for packing linear programs involving two variables x1 and x2.
For convenience, in a first step, the algorithm normalizes variables such that

the objective function is x1 + x2 instead of the more general form b1x1 + b2x2,
with positive b1 and b2. For this we divide all entries aij of the constraint matrix
by bj. This does not change the profit of an optimal solution. In fact, an increase
of xi by Σ in the normalized LP exactly corresponds to an increase of xi by Σ/bi
in the old LP. Both of these increases would increase the objective function of
the respective LP by the same amount, namely Σ.

Now, let x∼(z) = (x∼1(z), x∼2(z)) denote an optimal solution of the linear pro-
gram where the capacities, that is, the right hand sides of constraints, are given
by the vector z. Let x = (x1, x2) be the current online solution.

At time t, our algorithm ALG, which uses a parameter Λ, does the following:

1. If any constraint is tight, STOP.
2. Else if x∼1(Θt) > x1Λ, increase x1 infinitesimally.
3. Else if x∼2(Θt) > x2Λ, increase x2 infinitesimally.
4. Else, STOP.

Theorem 5. For Λ = 1 + 1/
√
ι, the optimum profit is at most (

√
ι+ 1) times

the profit obtained by ALG.

Proof. Let x∈ = (x∈1, x
∈
2) indicate the point where ALG stops. Since ALG will

either stop due to Step 1 or Step 4, we distinguish these two cases:

ALG Stops Due to Step 1. There is a tight constraint k. Let us write this
constraint as a1x1 + a2x2 ⊕ Θtk. Since (c − Ax) ⊕ ι(Θt − Ax), this implies
a1x
∈
1 + a2x

∈
2 = ck.

Assume, without loss of generality, that a1 ≤ a2. Then, the optimum profit
can be at most ck/a2.

For every point in time t, x∼(Θt) has to satisfy a1x
∼
1(Θt) + a2x

∼
2(Θt) ⊕ Θtk ⊕ ck.

Therefore, x∼1(Θt) ⊕ ck/a1. Additionally, since ALG increases variable x1 only if
x1Λ < x∼1(Θt) ⊕ ck/a1, it holds x∈1 ⊕ ck/(a1Λ). But since a1x

∈
1 + a2x

∈
2 = ck, we

obtain a2x
∈
2 = ck − a1x∈1 ≤ (1 − 1/Λ)ck.

Therefore, the profit of ALG is at least (1 − 1/Λ)ck/a2. Since the optimum
profit is at most ck/a2 and with Λ = 1 + 1/

√
ι, the profit of ALG is at least a

1/(
√
ι+ 1) fraction of the optimum profit.

ALG Stops Due to Step 4. In this case, by the choice of the stopping con-
dition, x∼1(Θt) ⊕ x∈1Λ and x∼2(Θt) ⊕ x∈2Λ. Adding the two inequalities, we get
⊇x∈Λ⊇1 ≤ ⊇x∼(Θt)⊇1.

328 M. Englert, N. Matsakis, and M. Mucha

Since (c−Ax) ⊕ ι(Θt − Ax), we have Θt ≤ ((ι − 1)Ax+ c)/ι. Hence,

⊇x∈Λ⊇1 ≤ ⊇x∼(Θt)⊇1
≤
⎫
⎫
⎫x∼

⎦(ι − 1)Ax∈ + c

ι

⎨⎫⎫
⎫
1

≤
⎦

1− 1

ι

⎨
⊇x∼(Ax∈)⊇1 +

⊇x∼(c)⊇1
ι

≤
⎦

1− 1

ι

⎨
⊇x∈⊇1 +

⊇x∼(c)⊇1
ι

.

The second inequality follows from the fact that Θt ≤ ((ι − 1)Ax + c)/ι;
therefore the polytope defined by setting the capacity vector to ((ι−1)Ax+c)/ι
is enclosed by the polytope defined by setting the capacity vector to Θt. The last
inequality follows from the fact that point x∈ is a feasible solution if the capacities
are set to Ax∈.

Solving for x∈ gives ⊇x∈⊇1 ≤ ⊇x∼(c)⊇1/(ιΛ − ι + 1) = ⊇x∼(c)⊇1/(√ι + 1),
showing again that the optimum profit cannot be greater than (

√
ι + 1) times

the profit of ALG. ≥⊆

5 Conclusions

Although we significantly narrow the gap between lower and upper bound for
this online LP problem the obvious open question whether it is possible to beat
the competitive ratio of Γ(ln2 ι/ι) in general, either with a randomized or even
with a deterministic algorithm, remains.

Our new bounds also suggest that it is interesting to study the influence of
the number of variables d in the LP on the achievable competitive ratio. We
would be interested in bounds that are tight for any fixed number of variables,
not just when the number of variables is very large.

This is further emphasized by the fact that, if d is very large, there seems
little difference in the power of randomized and deterministic online algorithms.
However, taking d into account and considering the particular interesting case of
moderately large values of d, randomization has the potential to greatly improve
performance. It is, for instance, easy to see that the algorithm that picks one
of the d variables uniformly at random and increases that variable until a con-
straint becomes tight is 1/d-competitive. Take for example d = 2, where this is a
significant improvement over the Δ(1/

√
ι) competitive ratio deterministic algo-

rithms can achieve. In fact, this trivial randomized algorithm beats the general
deterministic upper bound as long as, say, d ⊕ 3

√
ι/2.

Another interesting question is whether our upper bound construction can be
realized by some natural combinatorial packing problem.

New Bounds for Online Packing LPs 329

References

1. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: An O(logk)-competitive algo-
rithm for generalized caching. In: Proceedings of the 23rd ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 1681–1689 (2012)

2. Bansal, N., Buchbinder, N., Madry, A., Naor, J.: A polylogarithmic-competitive
algorithm for the k-server problem. In: Proceedings of the 52nd IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 267–276 (2011)

3. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing.
Mathematics of Operations Research 34(2), 270–286 (2009)

4. Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power
assignment in ad hoc wireless networks. In: Di Battista, G., Zwick, U. (eds.) ESA
2003. LNCS, vol. 2832, pp. 114–126. Springer, Heidelberg (2003)

5. Ochel, M., Radke, K., Vöcking, B.: Online packing with gradually improving ca-
pacity estimations and applications to network lifetime maximization. In: Czumaj,
A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS,
vol. 7392, pp. 648–659. Springer, Heidelberg (2012)

Improved Minmax Regret 1-Center Algorithms

for Cactus Networks with c Cycles

Binay Bhattacharya1, Tsunehiko Kameda1, and Zhao Song2

1 School of Computing Science, Simon Fraser University, Canada
{binay,tiko}@sfu.ca

2 Department of Computer Science, The University of Texas at Austin, USA
zhaos@utexas.edu

Abstract. In a facility location problem, if the vertex weights are un-
certain one may look for a “robust” solution that minimizes “regret.” We
present an O(n log n) (resp. O(cn log n)) time algorithm for a tree (resp.
c-cycle cactus), where n is the number of vertices and c is a constant.
Our tree algorithm presents an improvement over the previously known
algorithms that run in O(n log2 n) time. There is no previously published
result tailored specifically for a cactus network. The best algorithm for a
general network takes O(mn log n) time, where m is the number of edges.

1 Introduction

Deciding where to locate facilities to minimize the communication or transporta-
tion costs is known as the facility location problem. For a recent review of this
subject, the reader is referred to [14]. The cost of a vertex is formulated as the
distance from the nearest facility weighted by the weight of the vertex. In the
“classical” p-center problem, the objective is to find p facility locations such
that the maximum cost over all vertices is minimized. This problem has at-
tracted much research interest since the publication of the seminal paper on this
topic by Hakimi [13]. It can be applied to the locating of fire stations, distri-
bution centers, etc. Megiddo [16] computed the 1-center of a tree network with
non-negative vertex weights in O(n) time, where n is the number of vertices.
Megiddo and Tamir also studied this problem [17].

In the minmax regret version of this problem, there is uncertainty in the weights
of the vertices and/or edge lengths, and only their ranges are known [11,15]. A par-
ticular realization (assignment of a weight to each vertex) is called a scenario. In-
tuitively, the planner of a facility proposes a location x. Then the adversary finds a
scenario that makes x bad (costly), i.e., its “regret” is “deep.” The purpose of the
planner is to make this cost as small as possible, no matter which scenario the adver-
sary comes up with. For a general graph with uncertain edge lengths, the minmax-
regret 1-center problem was shown to be strongly NP-hard [1]. For a tree, Averbakh
and Berman [3] solved the problem inO(n6) time, and Burkard and Dollani [8] im-
proved it toO(n3 logn). For a general graph with fixed edge lengths, Averbakh and
Berman [2] solved it inO(mn2 logn) time, wherem is the number of edges. For a tree

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 330–341, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Improved Minmax Regret 1-Center Algorithms 331

with fixed edge lengths, they solved the problem inO(n2) time [2,3]. For a tree with
uncertain edge lengths and uniform vertex weights, they presented anO(n2 logn)
time algorithm [3], which was later improved to O(n logn) by Burkard and Dol-
lani [8]. More recently, Yu et al. [19] made further improvements, coming up with
more efficient algorithms when the edge lengths are fixed and the vertex weights
are positive. The time complexities of their algorithms for a general network and a
tree network areO(mn log n) andO(n log2 n), respectively. We simplified the tree
algorithm in [7], although the time complexity still remained O(n log2 n). A net-
work that is more general than a tree and is often considered is a cactus network.
It is characterized by the property that no edge belongs to more than one cycle.
Under the assumption that the edge lengths are fixed, the table below summarizes
the best previously known time complexities and our new results presented in this
paper, where c (⊕1) is a constant, and all results are valid if the minimum weight
of at least one vertex is non-negative.

Network type Best known This paper

Path O(n) [7]

Tree O(n log2 n) [19] O(n log n) (Sec. 3)
Cycle O(n log n) [7]
c-cycle cactus O(cn log n) (Sec. 4)
General network O(mn log n) [19]

The improved results are achieved by efficiently answering various query ques-
tions for the tree/cactus networks in a dynamic setting where an arbitrary vertex
of the network is allowed to increase its weight. This paper is organized as follows.
In Sec. 2, we define basic terms and review some relevant facts. Sec. 3 discusses
the tree network, and present an O(n log n) time algorithm. Sec. 4 shows that if
a cactus has c cycles, our algorithm runs in O(cn log n) time. Sec. 5 concludes
the paper.

2 Preliminaries

Let G = (V,E) denote a network with vertex set V = {v1, v2, . . . , vn}. Each
vertex vi≤V is associated with an interval of integer weights W (vi) = [wi, wi],
where 0≤wi≤wi, and each edge e≤E is associated with a non-negative length.
We assume that the distances between a point on an edge and its end vertices
are prorated fractions of the edge length. We often use G to denote the set of all
points on the edges and vertices of G. For any pair of points p, q≤G, the shortest
distance between them is denoted by d(p, q). Let S denote the Cartesian product
of all W (vi), vi ≤ V : S �

∏
vi∗V [wi, wi]. Each element s≤S is called a scenario.

Let ws
i be the weight of vi under s. The cost of a point x ≤ G with respect to

vi≤V under scenario s is d(vi, x)ws
i , and the cost of x under s is defined by

F s(x) � max
vi∗V

d(vi, x)ws
i . (1)

The point x that minimizes F s(x) is called a (classical) 1-center under s, and
is denoted by c(s). A vertex v that maximizes (1) is called a critical vertex for

332 B. Bhattacharya, T. Kameda, and Z. Song

x [3]. Throughout this paper the term center refers to this weighted 1-center.
We define the regret of x under s by [15]

Rs(x) � F s(x) − F s(c(s)), (2)

and the maximum regret of x by

R⊆(x) � max
s∗S

Rs(x). (3)

The scenario that maximizes Rs(x) for a given x ≤ G is called the worst case
scenario for x. We seek location x⊆ ≤ G, called the minmax regret 1-center,
that minimizes R⊆(x). A scenario si dominates another scenario sj at point x if
Rsi(x)⊕ Rsj (x). If a scenario is dominated by no other scenario at any point in
an interval, then it is said to be non-dominated in that interval.

The base scenario, s0, is defined by ws0
i =wi for all i. For i= 1, 2, . . . , n, let

us define the single-max scenario si by wi =wi and wj =wj for all j ⊗= i, and let
S⊆ denote the set of all single-max scenarios. Averbakh and Berman proved the
following theorem for the trees, but their proof is valid for the general network.

Theorem 1. [3] For any point x in G, there is a worst case scenario for x that
is a single-max scenario sj such that vertex vj is a critical vertex for x. ∈∗

Theorem 1 implies

R⊆(x) = max
vj∗V
{d(vj , x)wj − F sj (c(sj))}. (4)

Averbakh and Berman [2] convert G = (V,E) to its auxiliary network G◦ =
(V ◦, E◦), where V ≥ V ◦ and E ≥ E◦, in such a way that the minmax regret 1-
center problem on G becomes the classical 1-center problem on G◦.1 Assume that
F s(c(s)) for all s≤S⊆ are available, and let M be a sufficiently large, positive
integer. They append an edge (vi, v

◦
i)≤E◦ of length {M−F si(c(si))}/wi to every

vertex vi≤V , where v◦i≤V ◦ is a new vertex of degree 1, called the dummy vertex
corresponding to vi. The vertices of G◦ that belong to V have weights equal to
zero, and the edges in E retain the original lengths. For each vertex v◦i≤V ◦\V its
weight is set to wi. Clearly, G◦ is a weighted cactus network. The construction
of G◦ requires c(sj) for all vj , but it is easy to prove

Lemma 1. If a scenario sj is dominated at all points, then c(sj) can be ignored
in constructing G◦. ∈∗
Theorem 2. [2] The minmax regret 1-center problem on a network G can be
solved by computing the classical weighted 1-center problem on G◦. ∈∗
It is known that the classical weighted 1-center problem on a cactus network
can be computed in O(n log n) time [4]. After computing the 1-centers under
all single-max scenarios, we can invoke Theorem 2. Therefore, we concentrate
on finding those 1-centers. For vi ≤ V and x ≤ G, we introduce cost functions
of vi, f i(x) = d(x, vi)wi and f

i
(x) = d(x, vi)wi. If vj is critical for c(sj), and

f j(c(sj))=f
k
(c(sj)) holds, then we call vertex vk a counterbalance for vj .

1 They introduced this operation for trees, but it works for a general network.

Improved Minmax Regret 1-Center Algorithms 333

Lemma 2. If vj is critical under sj for a center c(sj)
2 then there is a center

c(sj) that lies on a path between vj and c(s0).

Proof. Let vk be a counterbalance for vj , so that d(vk, c(sj))wk =d(vj , c(sj))wj

holds. The assertion of the lemma is obvious if c(s0) lies on the path between
vk and vj . So assume that it doesn’t. Let v be the vertex where the path from
c(s0) to vj and that from c(s0) to vk diverge c(sj) is on the path from v to vk.
Then we have d(vk, c(sj))<d(vk, c(s0)), hence

d(vk, c(sj))wk<d(vk, c(s0))wk, (5)

which implies that the cost of c(sj) (LHS of (5)) is less than that of c(s0), a
contradiction. We assumed above that at least one edge on the path between
c(sj) and v has a positive length. Otherwise, c(sj) can be set to v, and it is on
a path between c(s0) and vj . ∈∗
However, it is easy to show that the counterbalance vk for vj may not be on any
path between vj and c(s0).

Proposition 1. The center c(sj) under sj is given by

c(sj) = argminx{max{f j(x), F s0 (x)}}. (6)

∈∗
Let H be a subgraph of graph G, and generalize the definition in (1) to

F s(x,H) � max
vi∗V ∼H

d(vi, x)ws
i . (7)

The point x that minimizes F s(x,H) is called a restricted 1-center relative to H
under s, and is denoted by cH(s). The difference

Rs(x,H) � F s(x,H)− F s(cH(s), H) (8)

is called the restricted regret of x relative to H under s. Here, x need not belong
to H .

3 Tree Network

Assume that a given tree network T = (V,E) is balanced and binary, having
height O(log n), and its classical 1-center c(s0) under the base scenario s0 is at
the root r.3 If T is not binary, we can introduce O(n) vertices of 0 weight and
O(n) edges of 0 length to convert it into a binary tree [18]. We also assume
that T is balanced. If not, spine tree decomposition [5,6,7], can convert it into a
structure that has properties of a balanced binary tree in linear time. Let T (v)

2 A center may not be unique.
3 If c(s0) is on an edge, we insert vertex r of weight 0 there.

334 B. Bhattacharya, T. Kameda, and Z. Song

denote the subtree of T rooted at vertex v. For each vertex vi≤V , we introduce
the upper envelope for the cost functions of the vertices in T (vi) under s0 by

ET (vi)(x) � F s0(x, T (vi)), x /≤T (vi). (9)

It is a monotone function, and consists of one or more linear segments, so that
we can consider it as a sequence of bending points, starting at vi. Let π(vi, vk)
denote the (shortest) path between two vertices vi, vk≤T . In the simple example
in Fig. 1(a), several cost functions, such as ET (v2)(x) = f

2
(x), are shown for

x≤π(v1, vj). We compute ET (vi)(x), for all vi≤V , bottom up. At a leaf vertex

(a) (b) (c)

Fig. 1. (a) Center c(sj) under single-max scenario sj ; (b) vj , vk ∈ T (sib(u)); (c) sk is
dominated by sj

vi of T , the upper envelope is f
i
(x) = d(x, vi)wi. At a higher level vertex vi of

T with two child vertices, vk and vl, the linear segments of ET (vi)(x) can be
computed from those of ET (vk)(x), ET (vl)(x), and f

i
(x) = d(x, vi)wi in linear

time. Clearly, the number of linear segments in all the upper envelopes at each
level4 of T is O(n). Since T has height O(log n), we have

Lemma 3. [7] The upper envelopes at all the vertices in a balanced tree can be
computed in O(n logn) time. The space needed for them is also O(n log n). ∈∗
We now look for center c(sj) under the single-max scenario sj , using (6). Note
that F s0(x) can be replaced by the maximum of the upper envelopes ET (vi)(x)
for all maximal subtrees T (vi) such that vj /≤T (vi), and f

k
(x) for all vk such that

vk ≤π(vj , r). We compute the intersection of f j(x) with each of these O(log n)
functions, and determine the most costly one among them. Proposition 1 implies
that the corresponding point gives c(sj), provided its cost is not less than the
cost of c(s0). This straightforward approach takes O(log2 n) per scenario sj [7].
To reduce the required time, we now try to find c(sj) for all non-dominated
scenarios sj together, by iterating on subtrees rather than on vj .

Consider any vertex u, and its sibling sib(u), as shown in Fig. 1(b). We need
to compute the intersection of f j(x) and ET (u)(x) for all vj ≤ T (sib(u)). For a

4 Level l consists of all the vertices at distance l from the root.

Improved Minmax Regret 1-Center Algorithms 335

given vj , if we iterate the above computation for every vertex u≤V\{r} such that
vj≤T (sib(u)), then we will have examined the intersections of f j(x) with f

i
(x)

for all i ⊗=j such that vi /≤π(vj , r). We can now extract the intersections involving
the cost function f j(x) of a particular vj . Under the scenario in which only r
takes the maximum weight, c(s0) is the 1-center. Fig. 1(c) shows how this can be
done efficiently. The intersection of f j(x) (resp. fk(x)) and ET (u)(x) on π(vj , u)
(resp. π(vk, u)) is named Ij (resp. Ik). Note that we have Ij =cT (u)(sj) (resp. Ik =
cT (u)(sk)) and it is a candidate for c(sj) (resp. c(sk)) provided Ij ≤ π(vj , p(u))
(resp. Ik≤π(vk, p(u))), where p(u) denotes the parent of vertex u. See Lemma 2.
Assume that wj >wk holds and vk is farther from sib(u) than vj . In Fig. 1(c),
the restricted regrets Rsj (x, T (u))(= F sj (x, T (u))−F sj (cT (u)(sj), T (u))) and
Rsk(x, T (u)) are shown by solid lines. Thus we have Rsj (x, T (u))>Rsk(x, T (u)),
which implies that sk is dominated by sj . If we process vk after vj , this dom-
ination is detected, enabling us to ignore vk. In the algorithm given below, we
take advantage of this fact by constructing a list of vertices that are ordered by
the distance from u. For each vertex vj , we collect all the candidates for c(sj),
i.e., cT (u)∈{vj}(sj) for all vertices u≤ V , and pick the most costly one as c(sj).
This can be done by executing Algorithm Balanced Tree(T ;u) below for each
u≤V \{r}.
Algorithm Balanced Tree(T ;u)

1. Let L be a list of the vertices of T (sib(u)) ordered from the nearest vertex
to the farthest from sib(u). Initialize the “previous intersection” to be at
(x, height)=(p(u), 0).

2. For each vertex vj ≤L, in the order in L, carry out steps 3 to 5.
3. Find if the intersection of f j(x) and ET (u)(x) is to the upper right of the

“previous intersection” (in the context of Fig. 1(c)), by evaluating f j(x) at
position x of the “previous intersection.” It is the case if the value is larger
than the height of the “previous intersection.” If not, skip Steps 4 and 5.

4. Calculate the intersection point as follows: for each segment of ET (u)(x)

above the the height of the “previous intersection,” test if it intersects f j(x),
and if so, determine the intersection. Set the “previous intersection” to this
intersection.

5. Record it as a candidate for c(sj), provided it lies on π(vj) and its cost is
more than that of c(s0). ∈∗

During preprocessing, we construct ordered list L for the vertices of each subtree
T (sib(u)). This can be done bottom up in T for all sib(u), i.e., for all subtrees.
If the test of Step 3 fails, then this intersection cannot be a candidate for c(sj).
The condition in Step 5 is justified by Lemma 2. After executing Algorithm
Balanced Tree(T ;u) for every u ≤ V \{r}, for each non-dominated single-max
scenario sj , the true c(sj) is the maximum among all the values of x recorded
for sj in Step 5.

Lemma 4. The 1-centers c(sj) for all non-dominated scenarios sj of a balanced
binary tree can be computed in O(n log n) time.

336 B. Bhattacharya, T. Kameda, and Z. Song

Proof. Algorithm Balanced Tree runs in time linear in |T (u)| + |T (sib(u))|,
where |T (u)| denotes the number of vertices in T (u). This is because Step 3 takes
constant time, and there is no back-tracking on the O(|T (u)|) linear segments
in ET (u)(x). Note that

∑

u∗V
|T (u)|+ |T (sib(u))| < 2

∑

v∗V
|T (v)| = O(n log n). (10)

∈∗
If the given tree is not balanced and binary, Lemma 4 is still valid, if we use
spine tree decomposition [5,6,7]. Thus, Theorem 2 and Lemma 4 imply

Theorem 3. The minmax regret 1-center of a tree network can be computed in
O(n log n) time. ∈∗

4 Cactus Network with Constant Number of Cycles

4.1 Unicyclic Network

A unicyclic network, G= (V,E), contains just one cycle C with circumference
lC . For a, b ≤ C, the clockwise section of C from a to b is denoted by C(a, b)
and its length denoted by d(a, b). If d(a, b) = lC/2, we say that a (resp. b) is
the antipode [12] of b (resp. a), denoted by a = α(b) (resp. b = α(a)). We can
assume without loss of generality that the degree of each cycle vertex is at most
3. Otherwise, we can insert dummy vertices of weight 0 and dummy edges of
length 0. A subgraph that hangs from vertex u≤C, excluding u and the edge
to u, is called a graft,5 and is denoted by Γ (u). See Fig. 2(a). We use Γ c(u)
to denote the complement of Γ (u), obtained by removing Γ (u) and the edge
connecting Γ (u) and u from G.

(a) (b)

Fig. 2. (a) Cycle C; (b) Cycle envelope tree TC

5 The definition of graft in [9] includes u.

Improved Minmax Regret 1-Center Algorithms 337

We first find a 1-center c(s0) of G, using the O(n log n) time algorithm of Ben-
Moshe et al. [4]. If c(s0) /≤C, then let p≤C be the vertex such that either Γ (p)
or the edge connecting Γ (p) and p (including p) contains c(s0). We call Γ (p) the
parent graft of C. If c(s0)≤C and it is not at a vertex, then we create a dummy
vertex p with 0 weight at c(s0). We now construct a tree T with r=c(s0) as its
root, by cutting cycle C open by removing the edge on which the antipode α(p)
lies.6 See Fig. 2(a). Let u0(=p), u1, u2, . . . , ug−1 be the cycle vertices, clockwise
along C. By our degree assumption, for each k, uk is connected to at most one
graft. We assume that T is a balanced binary tree, hence its height is O(log n). (If
not, algorithmic properties and the tools developed here for the balanced trees
can easily be extended, using spine tree decomposition [5,6,7].) As in Sec. 3,
for each vertex u ≤ T , we compute the upper envelope ET (u)(x) under s0 in
O(n log n) time.

Our goal is to find c(sj) for each vertex vj ≤V such that sj is not dominated.
(See Lemma 1.) Let uj ≤ C be the cycle vertex such that vj is either in graft
Γ (uj) that hangs from the cycle vertex uj or vj =uj.

7 See Fig. 2(a). If vj≤Γ (p),
then we can use our tree algorithm in Sec. 3 to find c(sj). (Lemma 2.) Therefore,
we assume from now on that uj ⊗=p. The following procedure identifies the part
of G where c(sj) is located.

Procedure In/Out Test(C; vj)

1. If F s0(p, Γ (p))>F sj (p, Γ c(p)), then c(sj) lies in Γ (p) or on the edge con-
necting Γ (p) and p.

2. If F sj (uj , Γ (uj))>F
s0(uj, Γ

c(uj)), then c(sj) lies in Γ (uj) or on the edge
connecting Γ (uj) and uj.

3. In all other cases, c(sj) lies on C. ∈∗
To carry out the above tests, we need to compute different costs. Among them,
it is easy to compute F s0(p, Γ (p)) once for all in O(n log n) time, since Γ (p) is
a tree. We can also easily compute F sj (p, Γ c(p)) = max{ET (p)(p), f j(p)} and

F sj (uj , Γ (uj))=max{ET (uj)(uj), f j(uj)}, using the upper envelopes {ET (u)(x) |
u≤V } that we have available.

It is more difficult to compute F s0(ui, Γ
c(ui)) for 0≤ i≤g−1. We first construct

the cycle envelope tree, denoted by τC . Lay out the two periods of cycle vertices
u0 (=p), . . . , ug−1, together with their associated grafts horizontally on a line of
length 2lC . See Fig. 2(b). We now build τC as a load-balanced8 tree on top of
the cycle vertices, using |Γ (ui)|+1 as the load of ui, where |Γ (ui)| denotes the
number of vertices in graft Γ (ui), and “+1” accounts for ui. Note that, given a
cycle vertex uj , we can always find its antipode α(uj) to the left and right of an
occurrence of uj at the leaf level (where the cycle vertices lie) of τC , as indicated
by the dashed line from αl(uj) to αr(uj) in Fig. 2(b).

6 If there is a vertex at α(ui), then remove one of the two cycle edges incident to it.
7 Strictly speaking, we should use uφ(j) for some mapping φ(j), but we abuse notation

for the sake of brevity.
8 It is commonly called weight-balanced. We use “load” to avoid confusion with the

vertex weight.

338 B. Bhattacharya, T. Kameda, and Z. Song

For each node u of τC , we now define two upper envelopes, Ecw
u (x) and

Eccw
u (x), reflecting the costs of the vertices in the subtree rooted at u, i.e.,

τC(u). Function Ecw
u (x) (resp. Eccw

u (x)) is the upper envelope for the costs of
the vertices (cycle vertices and those in grafts) in τC(u) at point x on the clock-
wise (resp. counterclockwise) side of the cycle vertices in τC(u). To be more
precise, Ecw

u (x) and Eccw
u (x) are valid for x≤C, provided τC(u) spans no more

than a half period of C and the distance from x to the farthest cycle vertex in
τC(u) is no more than lC/2. They are also valid for x≤Γ (uj), where uj /≤ τC(u),
provided τC(u) spans no more than a half period of C and the distance from
uj to the farthest vertex in τC(u) is no more than lC/2. These functions can be
represented by a sequence of bending points. We used a similar tree for a cycle
in [7], and the proof given there carries over to prove

Lemma 5. We can compute Ecw
u (x) and Eccw

u (x) for all nodes u of τC in
O(n log n) time and O(n logn) space, where Ecw

u (x) and Eccw
u (x) are given as

upper envelopes of O(log n) monotone functions. ∈∗

Lemma 6. F s0(uj , Γ
c(uj)) in Step 2 of Procedure In/Out Test(C; vj) can be

computed in O(log n) time.

Proof. Let ri be the node of τC where the upward paths from αl(ui) and αr(ui)
meet. Then path π(ui, ri) and the two paths from αl(ui) and αr(ui) to ri all have
length O(log n). Thus there are O(log n) upper envelopes associated with the
maximal subtrees hanging from these three paths. (The roots of these subtrees
are shown as black circles in Fig. 2(b).) We thus can compute F s0(uj , Γ

c(uj))
in O(log n) time. ∈∗

From the discussion in the paragraph following Procedure In/Out Test(C; vj)
and Lemma 6, it follows that

Lemma 7. Procedure In/Out Test(C; vj) runs in O(log n) time. ∈∗
Our general approach is to first apply Unicycle In/Out Test(C; vj) to each
query vertex vj ≤ V . If the condition of Step 1 holds, then we use our tree
algorithm from Sec. 3. Let us first discuss the case where the tests in both Steps
1 and 2 fail, in which case we look for c(sj) on C. Let EC(x), x≤C, be the upper
envelope for one period (of length lC) of C. It is clear that c(sj) is the lowest
point of the upper envelope max{f j(x), EC(x)}. As in our cycle algorithm in [7],
we construct a kind of binary heap, HC , in O(n) time as follows. Its leaves are
the bending points of EC(x), ordered clockwise (and laid out from left to right),
and repeated twice, and their values are the heights of the bending points. The
value of each non-leaf node u is the minimum of the values associated with its
two child nodes. Thus it is the minimum among the values associated with all
leaves of the subtree HC(u) rooted at u.

Lemma 8. The lowest point in the upper envelope max{f j(x), EC(x)} can be
computed in O(n logn) time total for all vj ≤V .

Improved Minmax Regret 1-Center Algorithms 339

Proof. If f j(x) lies totally above (resp. below) EC(x) for all x≤C, then uj (resp.

the lowest point of EC(x)) is what is being sought. So assume that f j(x) and
EC(x) cross each other. We now compute the intersection point a (resp. b) of
f j(x) and EC(x) that is closest to vj on the left (resp. right) side of vj . This
can be done using Chazelle et al.’s ray-shooting algorithm [10] in O(log n) time
for each vj . Since f j(x) is V-shaped with the bottom of the V at uj , the lowest

point in the upper envelope of f j(x) and EC(x) is the lowest point in EC(x)
between these two intersection points.

We then identify the bending point a◦ (resp. b◦) in EC(x) that is closest to a
(resp. b) on its right (resp. left) side. It is easy to see that the lowest point of the
upper envelope of f j(x) and EC(x) can be found by looking for the minimum
value among the values stored at a◦ and b◦ plus those stored at the right (resp.
left) child nodes of the path from the leaf a◦ (resp. b◦) to the root of the heap HC .
Since there are O(log n) such nodes, it takes O(log n) time to find the minimum.
Repeating the above for all vj takes O(n log n) time. ∈∗
For i= 0, 1, . . . , g−1, let Vi denote the set of vertices that comprise Γ (ui) plus
ui. The following algorithm computes the centers in {c(sj) |sj ≤S⊆} that are not
dominated.

Algorithm. Unicycle(G(V,E)):

1. Compute {EΓ (ui)(x) |ui≤C}, {Ecw
τC(u)(x), Eccw

τC(u)(x) |u≤τC} and EC(x), and
construct the heap HC .

2. In the order i=0, 1, . . . , g−1, for each vj≤Vi, carry out Steps 3−6.
3. Perform Procedure Unicycle In/Out Test(C; vj).
4. In Case 1, invoke Balanced Tree(T ;u) for relevant u.
5. In Case 3, find the lowest point in the upper envelope of f j(x) and EC(x).

6. In Case 2, find the intersection of f j(x) and each of the following, and pick
the intersection that lies on π(vj , uj) and has the highest cost.
(a) F s0(x, Γ c(uj)).
(b) f

k
(x), where vk≤π(vj , uj).

(c) Eu(x), for each u that is a child of a vertex on π(vj , uj). ∈∗
Lemma 9. Algorithm Unicycle(G(V,E)) correctly computes {c(sj) | sj ≤S⊆ ⊆
s is non-dominated} and runs in O(n logn) time, if T is a balanced binary tree.

Proof. It is obvious that the three cases of Procedure In/Out Test exhaust all
possibilities. We have already discussed Steps 4 and 5. In Step 6 (Case 2), the
counterbalance for vj can be either in Γ c(uj) or on π(vj , uj) or in a subtree
hanging from π(vj , uj). They are dealt with in Substeps 6(a), 6(b), and 6(c),
respectively.

Let us compute the running time. By Lemma 7, Step 3 takes O(n log n) time
for all vj . Lemma 4 implies that Step 4 takes O(n log n) time even if it is invoked
for all u ≤ V . Step 5 takes O(n log n) time for all vj /≤ C by Lemma 8. Both
Substeps 6(b) and 6(c) can be solved by deleting Γ c(uj) and applying our tree
algorithm in O(n log n) time for all vj ’s. See Lemma 4. As for Substep 6(a),
F s0(x, Γ c(uj)) for x ≤ Γ (uj) and x on the edge connecting Γ (uj) and uj can

340 B. Bhattacharya, T. Kameda, and Z. Song

be extracted from τC as the upper envelope of a set of O(log n) functions. We
can use Chazelle et al.’s algorithm [10] to find the lowest intersection between
each of them and f j(x) in O(log n) time. We then take their maximum. Given
ui ≤ C, this computation takes O(|Γ (ui)| logn) time for all vertices in Γ (ui),
where |Γ (ui)| denotes the number of vertices in Γ (ui). The total time for all
vertices is thus O(n log n). ∈∗
As commented before, if T is not a balanced binary tree, we can use spine tree
decomposition [5,6,7]. From Theorem 2 and Lemma 9, we have

Theorem 4. The minmax regret 1-center of a unicyclic network can be com-
puted in O(n log n) time. ∈∗

4.2 Cactus Network with c Cycles

If there are c cycles, then we essentially repeat the above operations c times. Let
us denote the c cycles by C1, C2, . . . , Cc. We first find the 1-center c(s0) of G in
O(n log n) time [4]. For cycle Ci, let pi be the vertex of Ci closest to c(s0). Cut
Ci open by removing the edge on which α(pi) lies and call the resulting tree T .
We can essentially use Algorithm Unicycle(G(V,E)) for each cycle Ci, except
that we additionally need to compute the upper envelope for Γ (pi) for each pi,
which takes O(n log n) time.

Theorem 5. If the number of cycles in a cactus is bounded by a constant c (⊕1),
then centers {c(sj) | sj ≤ S⊆ ⊆ s is non-dominated} of a cactus network can
be computed in O(cn log n) time. Thus its minmax regret 1-center can also be
computed in O(cn logn) time. ∈∗

5 Conclusion

We have presented an O(n log n) time algorithm for finding the minmax regret
1-center in a tree. Our algorithm for a c–cycle cactus network runs in O(cn log n)
time. One of the questions we would like to answer is whether our data structures
designed for the queries could be modified to handle more general situations such
as reducing the weight of a vertex, or the insertion/deletion of a vertex.

References

1. Averbakh, I.: Complexity of robust single-facility location problems on networks
with uncertain lengths of edges. Disc. Appl. Math. 127, 505–522 (2003)

2. Averbakh, I., Berman, O.: Minimax regret p-center location on a network with
demand uncertainty. Location Science 5, 247–254 (1997)

3. Averbakh, I., Berman, O.: Algorithms for the robust 1-center problem on a tree.
European Journal of Operational Research 123(2), 292–302 (2000)

4. Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient algorithms for center
problems in cactus networks. Theoretical Compter Science 378(3), 237–252 (2007)

Improved Minmax Regret 1-Center Algorithms 341

5. Benkoczi, R.: Cardinality constrained facility location problems in trees. Ph.D.
thesis, School of Computing Science, Simon Fraser University, Canada (2004)

6. Benkoczi, R., Bhattacharya, B., Chrobak, M., Larmore, L.L., Rytter, W.: Faster
algorithms for k-medians in trees. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003.
LNCS, vol. 2747, pp. 218–227. Springer, Heidelberg (2003)

7. Bhattacharya, B., Kameda, T., Song, Z.: Minmax regret 1-center on a
path/cycle/tree. In: Proc. 6th Int’l Conf. on Advanced Engineering Com-
puting and Applications in Sciences (ADVCOMP), pp. 108–113 (2012),
http://www.thinkmind.org/index.php?view=article&articleid=

advcomp 2012 5 20 20093

8. Burkard, R., Dollani, H.: A note on the robust 1-center problem on trees. Annals
of Operational Research 110, 69–82 (2002)

9. Burkard, R., Krarup, J.: A linear algorithm for the pos/neg-weighted 1-median
problem on a cactus. Computing 60, 193–215 (1998)

10. Chazelle, B., Guibas, L.J.: Fractional cascading: II. Applications. Algorithmica 1,
163–191 (1986)

11. Chen, B., Lin, C.S.: Minmax-regret robust 1-median location on a tree. Net-
works 31, 93–103 (1998)

12. Goldman, A.: Optimal center location in simple networks. Transportation Sci-
ence 5, 212–221 (1971)

13. Hakimi, S.: Optimum locations of switching centers and the absolute centers and
medians of a graph. Operations Research 12, 450–459 (1964)

14. Hale, T.S., Moberg, C.R.: Location science research: A review. Annals of Opera-
tions Research 123, 21–35 (2003)

15. Kouvelis, P., Vairaktarakis, G., Yu, G.: Robust 1-median location on a tree in
the presence of demand and transportation cost uncertainty. Tech. Rep. Working
Paper 93/94-3-4, Department of Management Science, The University of Texas,
Austin (1993)

16. Megiddo, N.: Linear-time algorithms for linear-programming in R3 and related
problems. SIAM J. Computing 12, 759–776 (1983)

17. Megiddo, N., Tamir, A.: New results on the complexity of p-center problems. SIAM
J. Computing 12, 751–758 (1983)

18. Tamir, A.: An O(pn2) algorithm for the p-median and the related problems in tree
graphs. Operations Research Letters 19, 59–64 (1996)

19. Yu, H.I., Lin, T.C., Wang, B.F.: Improved algorithms for the minmax-regret 1-
center and 1-median problem. ACM Transactions on Algorithms 4(3), 1–1 (2008)

 http://www.thinkmind.org/index.php?view=article&articleid=advcomp_2012_5_20_20093
 http://www.thinkmind.org/index.php?view=article&articleid=advcomp_2012_5_20_20093

Collision-Free Network Exploration�

Jurek Czyzowicz1, Dariusz Dereniowski2, Leszek Gasieniec3, Ralf Klasing4,
Adrian Kosowski4, and Dominik Pająk4

1 Université du Québec en Outaouais, Canada
2 Gdańsk University of Technology, Poland

3 University of Liverpool, UK
4 LaBRI, CNRS — Université de Bordeaux — Inria, France

Abstract. A set of mobile agents is placed at different nodes of an-node network.
The agents synchronously move along the network edges in a collision-free way,
i.e., in no round may two agents occupy the same node. In each round, an agent
may choose to stay at its currently occupied node or to move to one of its neighbors.
An agent has no knowledge of the number and initial positions of other agents. We
are looking for the shortest possible time required to complete the collision-free
network exploration, i.e., to reach a configuration in which each agent is guaranteed
to have visited all network nodes and has returned to its starting location.

We first consider the scenario when each mobile agent knows the map of the
network, as well as its own initial position. We establish a connection between
the number of rounds required for collision-free exploration and the degree of the
minimum-degree spanning tree of the graph. We provide tight (up to a constant
factor) lower and upper bounds on the collision-free exploration time in general
graphs, and the exact value of this parameter for trees. For our second scenario,
in which the network is unknown to the agents, we propose collision-free explo-
ration strategies running in O(n2) rounds for tree networks and in O(n5 log n)
rounds for general networks.

1 Introduction

The graph searching problem is a task of central importance in many contexts, including
network maintenance, terrain patrolling, and robotics. Its different aspects have been
thoroughly investigated, cf. [8]. The rendezvous search problem has been often pre-
sented as a game with two mobile players walking within the search space and having
the common goal of arriving at the same time at the same location (see [4]). On the
other hand, the exploration problem consists in examining all elements of the search
space by a mobile agent (e.g. visiting all graph nodes or traversing all its edges), e.g.,
in order to find a hidden target (see [1,13]).

In this paper we propose a new graph searching problem in which each of a set
of mobile agents must explore a given undirected graph, in such a way that two agents
may never visit the same node of the graph at the same time. This property of the model,

α Research partially supported by ANR project DISPLEXITY and by NCN under contract DEC-
2011/02/A/ST6/00201. Dariusz Dereniowski has been partially supported by a scholarship for
outstanding young researchers founded by the Polish Ministry of Science and Higher Education.
The full text of the paper is available at: http://hal.inria.fr/hal-00736276.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 342–354, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

http://hal.inria.fr/hal-00736276.

Collision-Free Network Exploration 343

which we call collision avoidance, is motivated by the fact that the processes executed
by mobile agents (software agents or physical robots) sometimes require exclusive ac-
cess to network resources. Our problem may have practical applications. For example,
mobile software agents may need exclusive access to a node’s resources when updating
its data. Robots (or nano-robots) distributing interacting chemical or pharmacological
agents within a battlefield or a human body must avoid to be simultaneously present at
a small distance apart. Individuals, one of which is highly infectious or socially con-
flicting should avoid a meeting. According to our knowledge, this problem has not been
studied in the past, although a question related to its offline version has been given some
attention in the context of routing (cf. [3]).

In our considerations, time is divided into synchronous rounds. Initially, each agent
is placed at a different node and in each round it may choose to move to a neighboring
node or to stay motionless. The agents are independent in the sense that they cannot
communicate and none of them knows the number of other agents, their initial place-
ment in the graph, and is unaware of the current location of the other agents. The agents
move independently, and each of them executes the same algorithm. The effectiveness
of the algorithm is measured in terms of the collision-free exploration time, i.e., the
number of rounds until all potentially existing agents are certain to have completed the
exploration and returned to their initial location. Details of our model are discussed at
the end of this section.

Our Results. We consider two scenarios, differing in the amount of global information
about the network topology which is available to each agent. Our results are summa-
rized in Table 1.

For the first scenario, considered in Section 2, we assume that a map of the network
is a priori known to the agents. We show that a collision-free exploration strategy ex-
ists for any graph, and provide efficient solutions for trees and general graphs. We start
by considering the case of trees, proposing a strategy which involves the simultaneous
activation of agents located at the endpoints forming a matching in some optimal edge-
coloring of the tree. This strategy is shown to yield optimal exploration time. We then
extend this approach from the case of trees to the case of general graphs, by requiring
that the agents perform exploration using only the edges of a well-chosen spanning tree
of the graph. Somewhat surprisingly, it turns out that this approach is asymptotically the
best possible, i.e., within a constant factor of the optimum. To prove the corresponding
lower bound on the collision-free exploration time in graphs, we establish a tight con-
nection between our problem and the fractional relaxation of the LP formulation of the
minimum-degree spanning tree problem.

In the second scenario, discussed in Section 3, we deal with synchronous agents pos-
sessing only local knowledge about the graph to explore. In particular, no knowledge of
the size of the graph is assumed. We suppose that each agent executes a local, distributed
algorithm, in every round making a decision based on the information concerning the
currently occupied node and the identifiers of the neighboring nodes. For this scenario,
we show that a collision-free exploration is always feasible in finite time and we give
algorithms for trees and general graphs. Our collision-free exploration strategies are
of length O(n2) for trees and O(n5 logn) for arbitrary graphs, and make use of the
application of universal exploration sequences.

344 J. Czyzowicz et al.

Table 1. The time of optimal collision-free graph exploration. Δ(G) denotes the maximum degree
of a node in graph G, and Δ∗(G) = Δ(T), where T is a minimum-degree spanning tree of G.

Scenario Tree General graph

With complete map:
nΔ(G)

Thm. 1
Θ(nΔ∗(G))

Thm. 2

With local knowledge:
O(n2)
Thm. 3

O(n5 log n)

Thm. 4

Throughout the paper, we assume that the strategies for collision-free exploration are
required to return the agent to their initial location. This assumption allows us to see our
strategies as an analogue of the classical Traveling Salesman Problem with mutually-
exclusive salesmen on an unweighted graph, and also allows the agents to engage in
perpetual (periodic) exploration of the graph. After minor modification of the proofs,
all the results presented in Table 1 also hold up to constant factors for the variant of the
problem in which agents may end exploration at an arbitrary node of the graph.

Related Work. The offline setting of our question is related to the following problem
(cf. [3]), which was studied in the context of routing. Each vertex of a given graph
is initially occupied by a “pebble”, which has to be moved to a destination, so that the
destinations of different pebbles are different. In every synchronous round a set of edges
is selected and the pebbles at each edge endpoints are interchanged. [3] attempts to
minimize the number of rounds so that all pebbles reach their destination, giving lower
and upper bounds for different classes of graphs. The routing model of [3] inherently
implies the usage of matchings - the technique that we choose to apply in some results
of our paper. The 3n upper bound for trees given in [3] was improved to 1

2n+O(log n)
in [15]. [12] and [14] independently extended this model to allow more than one pebble
per origin and destination node.

For the (classical) graph exploration problem with local knowledge, a lot of attention
has been given to exploration in anonymous networks, in which the agent, when located
at a node, has to decide on its next move based only on its own local memory state,
the local port ordering at the node, and the port by which it entered the current node.
It has been shown in [9] that an agent must be equipped with at least n states (i.e.,
Θ(log n) bits of memory) to be able to explore all anonymous graphs with n nodes.
On the positive side, unknown anonymous graphs can be deterministically explored
by following so called universal traversal/exploration sequences. These exist for any
number of nodes, and have polynomial length [2]. The exploration time obtained using
such an approach is O(n5 logn), i.e., a factor of about n2 greater than the (expected)
cover time of a corresponding random walk.

The problem of graph exploration without collisions was also studied in the case
when two agents also collide when traversing one edge in opposite directions. In [5] the
authors study the maximal number of agents that can explore graph without collisions
in a synchronous setting. The asynchronous Look-Compute-Move model is considered
in [6] where the authors study the maximal and minimal number of agents that are

Collision-Free Network Exploration 345

necessary and sufficient to solve the problem for a ring. In both these papers it is as-
sumed that each agent can observe (or compute) the positions of the other agents.

Model and Definitions. We assume that the nodes of each n-node network have unique
identifiers in {1, . . . , n}. The identifier of a node v is denoted by id(v). Several agents
are initially located at pairwise different nodes of the network. The initial position of
each agent a is denoted by home(a). Each agent is unaware of the number and initial
positions of the other agents, and all agents are given the same algorithm that determines
their behavior in the subsequent rounds.

Each agent can perceive the identifier id(v) of the currently occupied node v and can
perceive the identifiers of all neighbors of v. Moreover, the agent can distinguish the
edges incident to v according to the identifiers of the nodes located at the endpoints of
the edges. The latter assumption is necessary to properly perform the navigation in a
node labeled network.

The agents are synchronous and hence the time is divided into rounds of equal du-
ration. Each round is divided into two stages. In the first stage each agent a makes a
decision (by executing its algorithm) that determines its behavior in the second stage of
the round. The decision can be three-fold: it may decide to stay in this particular round
at the currently occupied node, to move from the currently occupied node to one of its
neighbors, or decide that its exploration is completed. In the second stage of the round,
all agents simultaneously perform the action corresponding to their decision. If, as a
result, two agents located at some adjacent nodes u and v decide to move from u to v
and from v to u, respectively, then they traverse the same edge in this round, but remain
unaware of this event, i.e., the two agents do not communicate and do not perceive each
other. We require that the algorithm given to the agents ensures the following:

– at the end of each round no two agents are present on the same node of the network,
– by the end of some round t ⊕ 0, all the agents have decided that the exploration is

completed,
– each agent has visited each node of the network in one of the rounds 1, . . . , t,
– each agent a is present at home(a) at the end of round t.

Note that, in this setting, the execution of the agent’s algorithm (and thus the behavior
of the agent) only depends on the input to the algorithm and on the identifiers of the
nodes visited by the agent. Thus, in particular, an agent is unable to ever discover the
initial or current position of any other agent or the number of agents in the network.

With respect to additional information available to the agents, we study two scenar-
ios in this work: either the agents have no prior knowledge of network topology and
no knowledge of global parameters, or the complete map of the network is given to
all agents. In the latter case the map consists of node identifiers, but provides no in-
formation on the locations of other agents. Note that if, together with a complete map
of the network, all agents receive as an input information on the initial positions of all
agents, then our exploration problem becomes similar to the off-line routing problems
considered e.g. in [3,14,15].

Let G = (V (G), E(G)) be any network. For any node v of G let NG(v) be the set
of neighbors of v in G. We use the symbol ι(G) to denote the degree of G, defined as
ι(G) = max{|NG(v)| : v ≤ V (G)}. (|NG(v)| is called the degree of v.) Given a set of
edges X ⊆ E(G), define G[X] to be the network with nodes in V (G) and edges in X ,

346 J. Czyzowicz et al.

G[X] = (V (G), X). Note thatG[X] is not necessarily connected. A connected network
H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) is called a connected component of
G if there exists no connected network H ∨ such that V (H) ⊆ V (H ∨) ⊆ V (G) and
E(H) ⊆ E(H ∨) ⊆ E(G) and H ⊗= H ∨.

Any sequence R = (v0, v1, . . . , vl) of nodes of a network G is called a route in G
if vi = vi−1 or {vi, vi−1} is an edge of G for each i = 1, . . . , l. We say that l is the
length of R and we write Ri = vi for each i = 0, . . . , l. The route R covers G if for
each node v of G there exists i ≤ {0, . . . , l} such that v = Ri. The route R is closed
if R0 = Rl, where l is the length of R. Let a be an agent. We say that the route R of
length l is a route of a if: (i) R0 = home(a) and a is present at Ri at the end of round
i, i = 1, . . . , l, and (ii) a does not move in any round r > l.

We say that a routeR of length l is an exploration strategy for a if (i)R is a route of
a, (ii) R is closed, (iii) R coversG. Two routesR and R∨ of length l are collision-free
if Ri ⊗= R∨i for each i = 0, . . . , l. Let A = {a1, . . . , ak}, 1 ∈ k ∈ n, be the set of
agents that are initially located at the nodes of G. LetR(a) be the exploration strategy
for each agent a ≤ A. We say that R(a1), . . . ,R(ak) are collision-free if R(ai) and
R(aj) are collision-free for each i, j ≤ {1, . . . , k}, i ⊗= j. Let t be the minimum integer
such that for each set of agents placed arbitrarily on the nodes ofG there exist collision-
free exploration strategies, each of length at most t, for the agents. Then, t is called the
collision-free exploration time of G.

2 Network Exploration with a Map

In this section we consider the problem of collision-free exploration in the case when
each agent is given a complete map of the network to be explored. We start by discussing
the simpler case of tree networks in Subsection 2.1, and in Subsection 2.2 we generalize
our approach from trees to arbitrary networks, showing its asymptotic optimality by
proving a corresponding lower bound.

2.1 Tree Exploration with a Map

We start with some notation and two preliminary lemmas that are the main tool in the
analysis of an algorithm given in this section.

Given a tree network T , we say that a function c : E(T) ∗ {1, . . . , d} is a d-edge-
coloring of T if c(e) ⊗= c(e∨) for any two adjacent edges in T .

Let d be an integer, let c be a d-edge-coloring of G, and let v be any node of G.
Define T (v, d, c) = (v0, v1, v2, . . .) to be an infinite route in G starting at v such that:
(i) if c({vi−1, u}) ⊗= 1 + (i − 1)mod d for each neighbor u of vi−1 in G, then

vi = vi−1,
(ii) if c({vi−1, u}) = 1 + (i − 1)modd for some neighbor u of vi−1, then vi = u.
Then, define T l(v, d, c), l ⊕ 0, to be the prefix of T (v, d, c) of length l, and T l

i (v, d, c)
to be vi for each i = 0, . . . , l.

We now give two preliminary lemmas in which we prove that if u and v are two
distinct nodes of T , then the routes T dn(u, d, c) and T dn(v, d, c) are collision-free, and
each of them is closed and covers the tree network.

Collision-Free Network Exploration 347

Lemma 1. Let T be a tree network. If c is a d-edge-coloring of T , then for any two
distinct nodes u and v of T the routes T l(u, d, c) and T l(v, d, c) are collision-free for
each l ⊕ 0.

Lemma 2. Let T be a tree network and let d be an integer. If c is a d-edge-coloring of
T and v is a node of T , then the route T dn(v, d, c) is closed and covers T .

It remains to observe that the considered routes can be implemented as exploration strate-
gies. Indeed, each agent a is able to construct some d-edge-coloring c of T (the same
for all agents, e.g., lexicographically first with respect to some chosen ordering of all
colorings) with d = ι(T), and hence it is able to ‘follow’ T nΔ(T)(home(a), ι(T), c).
We formulate this strategy in the form of the algorithm below.

Algorithm Tree-Exploration(T)
Input: A node-labeled tree network T .

begin
Let v be the initial position of the executing agent.
Compute the lexicographically first Δ(T)-edge-coloring c of T
for each round r ← 1 to nΔ(T) do

if there exists an edge {v, u} such that c({v, u}) = 1+(r−1)modΔ(T)
then move from v to u in round r, set v ← u.
else stay at v in round r.

end Tree-Exploration

For an agent a following Algorithm Tree-Exploration, its route is of length nι(T),
and given as RnΔ(T)(a) = T nΔ(T)(home(a), ι(T), c), where c is the ι(T)-edge-
coloring computed in the Algorithm. Consequently, taking into account Lemmas 1 and
2, we have the following.

Proposition 1. Let T be a tree network and let a1, . . . , ak, 1 ∈ k ∈ n, be the agents
initially located at pairwise different nodes of T . Suppose that the agent ai uses Algo-
rithm Tree-Exploration to compute its route RnΔ(T)(ai), for each i = 1, . . . , k. Then,
RnΔ(T)(a1), . . . ,RnΔ(T)(ak) are exploration strategies, and are collision-free. ≥⊆
It turns out that there exist no shorter collision-free exploration strategies than those
constructed with Algorithm Tree-Exploration.

Theorem 1. The collision-free exploration time of any n-node tree network T is pre-
cisely equal to nι(T).

Proof. The upper bound follows from Proposition 1. Now, we prove the lower bound,
i.e., that the collision-free exploration time of T is at least nι(T). Let u be a fixed node
of degree ι(T) in T . First assume that there are n agents in T . We say that an agent a
is active in round r if a goes from v to u in round r for some v ≤ NT (u). In each round
at most one agent is active. For each agent a there exist at least ι(T) rounds in which
a is active, because the route of a needs to be closed and T is a tree. Since there are

348 J. Czyzowicz et al.

n agents in total, we obtain that there are at least nι(T) rounds in which an agent is
active. This proves that there exists an agent a that is active in round nι(T), and hence
its exploration strategy is of length at least nι(T). Finally, observe that a constructs
the same route regardless of the number of agents present in the network. This is due to
the fact that T and id(home(a)) is the entire input to the algorithm that a executes. ≥⊆
We finish this section by remarking on the complexity of Algorithm Tree-Exploration.
For any tree network T on n nodes, there exists aι(T)-edge-coloring of T and it can be
computed in O(n)-time. Consequently, the total time of an agent’s local computations
when running Algorithm Tree-Exploration is O(nι(T)).

2.2 General Network Exploration with a Map

We say that T is a spanning tree of G if T is a tree such that V (T) = V (G) and
E(T) ⊆ E(G). Then, T is a minimum degree spanning tree of G if T is a spanning
tree of G and the degree of T is minimum over the degrees of all spanning trees of G.
Defineι∗(G) = ι(T), where T is a minimum degree spanning tree ofG. We propose
the following solution to the collision-free exploration problem.

Algorithm Network-Exploration(G)
Input: A node-labeled network G.

begin
Compute the lexicographically first minimum-degree spanning tree T ∗ of G.
Call Algorithm Tree-Exploration(T ∗).

end Network-Exploration

Proposition 2. Let G be a network and let a1, . . . , ak, 1 ∈ k ∈ n, be the agents
initially located at pairwise different nodes of G. Suppose that the agent ai uses Algo-
rithm Network-Exploration to compute its routeR(a), i = 1, . . . , k. Then,R(a1), . . . ,
R(ak) are collision-free exploration strategies of length nι∗(G). ≥⊆
Now, the following theorem implies that our result is asymptotically tight, i.e., it implies
that Algorithm Network-Exploration constructs exploration strategies whose length is
within a constant factor from the optimum.

Theorem 2. The collision-free exploration time of any network G is Δ(nι∗(G)).

Proof. The fact that the collision-free exploration time of G is O(nι∗(G)) follows
from Proposition 2.

Now, we prove the lower bound ofΘ(nι∗(G)). Observe that ifι∗(G) ∈ 3, then the
theorem follows, because each exploration strategy must be of length Θ(n). To finish
the proof, suppose that there exist exploration strategies for the agents, such that the
length of each exploration strategy is at most n(ι∗(G) − 3)/2.

For each node v of G let Ev = {{v, u} : u ≤ NG(v)}. Consider the following
linear program (LP) with variables (xe : e ≤ E(G)), which satisfies the following set
of constraints [7,11]:

Collision-Free Network Exploration 349

∑

e⊆E(G)

xe = n− 1 (1)

∑

e⊆E(G[S])

xe ∈ |S| − 1, for each S ⊆ V (G) (2)

∑

e⊆Ev

xe ∈ t, for each v ≤ V (G) (3)

0 ∈ xe ∈ 1, (4)

where t is an integer and n is the number of nodes of G. Any solution to the above
problem is called a fractional spanning tree of degree t of G. Informally speaking, if
(xe : e ≤ E(G)), is a solution to (1)-(4), then xe is the ‘fraction’ of the edge e that is
included in the resulting fractional spanning tree. Note that any integer solution, i.e. the
one in which xe ≤ {0, 1} for each e ≤ E(G), is a spanning tree of degree at most t
of G.

Suppose thatn agents a1, . . . , an are present in the networkG. LetR(a1), . . . ,R(an)
be some collision-free exploration strategies for the agents. Suppose that the length of
each exploration strategy is at most nt/2. Based on these exploration strategies, we
now construct a solution to the LP in (1)-(4). For each i = 1, . . . , n, let Ti be any
spanning tree of G such that if e ≤ E(Ti), then there exists a round r such that e =
{Rr−1(ai),Rr(ai)} (in other words, ai traverses e in some round). Such a Ti exists,
becauseR(ai) coversG, i = 1, . . . , n. Define:

fi(e) =

{
1/n, if e ≤ E(Ti)

0, if e /≤ E(Ti)
and xe =

n∑

i=1

fi(e) for each e ≤ E(G). (5)

Now, we prove that xe’s defined in (5) form a solution to the LP in (1)-(4).
First note that

∑
e⊆E(G) fi(e) = (n−1)/n for each i = 1, . . . , n, because fi assigns

1/n to exactly n− 1 edges of G, which follows from the fact that Ti is a spanning tree
of G, i = 1, . . . , n. Thus, (1) holds.

Now, letS ⊆ V (G)be selected arbitrarily. For each i= 1, . . . , n, |E(Ti)↑E(G[S])| =
|E(Ti[S])| ∈ |S| − 1, because Ti[S] is, by definition, a collection of node-disjoint trees
on set S. Hence, (2) follows.

Let v be any node of G and let X = Ev ↑ (E(T1) ⊃ · · · ⊃ E(Tn)). For each r there
exist at most two edges in X traversed by an agent in round r. Hence,

∑

e⊆X

n∑

i=1

fi(e) ∈ nt

2
· 2
n
= t.

Note that if e ≤ Ev \X , then
∑n

i=1 xe = 0. This proves that (3) holds.
Finally, (4) follows directly from (5).
We have proved that the existence of exploration strategies of length nt/2 implies

the existence of a solution to (1)-(4). Moreover, we have the following.

350 J. Czyzowicz et al.

Claim ([11]). If there exists a solution to (1)-(4), then there exists an integer solution
to (1),(2),(4) with the additional constraint

∑

e⊆Ev

xe ∈ t+ 2 for each v ≤ V (G)

which replaces (3).
We remark that such an integer solution defines a spanning tree of G, given by the

set of edges {e ≤ E(G) : xe = 1}.
In view of the definition of xe’s in (5), it follows that if there exist exploration strate-

gies of length at most nt/2 for the n agents, then there exists a spanning tree T ∗ of G,
and the degree of T ∗ is at most t+2. By assumption, there exist inG exploration strate-
gies of length at most n(ι∗(G) − 3)/2, hence, putting t = ι∗(G)− 3, it follows that
G has a spanning tree of degree at most ι∗(G)− 1, a contradiction with the definition
of ι∗(G). ≥⊆

We finish this section with a complexity remark. Finding a minimum-degree span-
ning tree is in general an NP-hard problem. We can, however, modify the approach
to obtain an exploration strategy of length n(ι∗(G) + 1) that can be computed effi-
ciently. We make use of a O(mnΓ(m,n) log n)-time algorithm that for a givenG finds
its spanning tree T of degree ι(T) ∈ ι∗(G) + 1, where m and n are, respectively,
the number of edges and nodes of G, and Γ is the inverse Ackermann function [10]. By
using the tree T in Algorithm Network-Exploration instead of T ∗ we obtain an explo-
ration strategy of length n(ι∗(G)+1) for agent a, and this strategy is computed in time
O(mnΓ(m,n) log n). On the other hand, computing the precise value of collision-free
exploration time is a hard problem.

Proposition 3. The problem of deciding, for a given network G and integer l, whether
the collision-free exploration time of G is at most l, is NP-complete.

3 Local Network Exploration

In this section we consider the problem of collision-free exploration in the setting when
the agents do not receive any information about the network in which they operate.
Recall that we assume, that each node v ≤ V is equipped with a unique identifier
id(v) ≤ {1, 2, . . . , n}, and each agent located at v is only aware of the identifier id(v)
and the identifiers of the neighbors of v at the endpoints of respective edges incident
to v. In Section 3.1 we consider tree networks, and in Section 3.2 we show how any
network can be explored.

LetG be any network. For the purposes of this section we introduce an edge-labeling
function id∨ defined as

id∨({u, v}) = id(u) + id(v) for each {u, v} ≤ E(G). (6)

We recall without proof the following essential property of function id∨.

Lemma 3. Let G be any n-node network. Then, id∨ is a 2n-edge-coloring of G. ≥⊆

Collision-Free Network Exploration 351

3.1 Local Exploration of Tree Networks

In this section we provide an algorithm which defines collision-free routes of agents, and
is guaranteed to perform exploration if the explored network is a tree. For any integer
b ⊕ 2 define the following sequence of integersU(b) = (1, . . . , 2b, . . . , 1, . . . , 2b),
where 1, . . . , 2b is repeated b times, and let Ui(b), i ≤ {1, . . . , 2b2}, be its i-th element.

Define phase p, as the sequence of rounds (1 +
∑p−1

j=1 |U(2j)|, . . . ,∑p
j=1 |U(2j)|)

and denote by Ψ(p) = |U(2p)| the number of rounds of phase p. Note that

Ψ(p) = 22p+1 for each p ⊕ 1, (7)

and that phase p consists of the rounds in which the behavior of any agent a is deter-
mined in the p-th iteration of the ‘while’ loop of its execution of Local-Tree-Exploration,
whenever p does not exceed the total number of iterations executed.

Recall that an agent upon vising a node v receives a list of identifiers of all neighbors
of v. Thus the agent is aware if it visited all nodes during a phase.

Algorithm Local-Tree-Exploration
begin

Let v be the initial position of the executing agent.
b ← 2
r ← 0
while not all nodes have been visited so far do {start a new phase}

for s ← 1 to |U(b)| in round r + s do
if there exists an edge {v, u} such that id(u) ≤ b

and id(v) ≤ b and id∞({v, u}) = Us(b)
then move from v to u {in round r + s}; set v ← u.
else stay at v. {in round r + s}

end for
r ← r + |U(b)|
b ← 2b

end while
Backtrack all previous moves, i.e., a moves from v to u in round r + i if and
only if a moved from u to v in round r − i+ 1 for each i = 1, . . . , r.

end Local-Tree-Exploration

Denote byR(a, p) the route of an agent a restricted to its moves in phase p, p ⊕ 1.
We denote by Tp the subgraph of T induced by all edges e whose endpoints have

identifiers at most 2p, Tp = T [{{u, v} ≤ E(T) : id(u) ∈ 2p ⊇ id(v) ∈ 2p}].
Finally, define Ψ = 2

∑◦log2 n∼
p=1 Ψ(p).

We now prove that each agent a moves in phase p ‘inside’ the connected component
T ∨ of Tp that contains the vertex occupied by a at the beginning of phase p.

Lemma 4. Let p ⊕ 1 be an integer, let T be a tree network and let a be an agent. Let v
be the vertex occupied by a at the beginning of phase p. Then,R(a, p) is a route in the
connected component of Tp that contains v, andR(a, p) = T Σ(p)(v, 2p+1, id∨).

Note that the length of the route R(a, p) of a in phase p is bounded by Ψ(p), hence
is, in general, ‘unrelated’ to the number of nodes of T ∨. For this reason, T ∨ need not

352 J. Czyzowicz et al.

be completely explored. However, by the definition of Tp, we have that Tp = T (and
T ∨ = T) if and only if p ⊕ ⊂log2 n↓. We use this observation to show that all agents
perform backtracking and stop after exactly the same phase p = ⊂log2 n↓, and that in
this phase each of them visits all nodes of T .

Lemma 5. Let T be a n-node tree network. For each agent a the number of iterations
of the ‘while’ loop of Algorithm Local-Tree-Exploration executed by a equals ⊂log2 n↓.
Moreover,R(a, ⊂log2 n↓) covers T .

We now argue that the agents will never meet while moving during any given phase p.

Lemma 6. Let a and a∨ be any two agents, let T be a tree network, and let p ⊕ 1 be an
integer. The routesR(a, p) andR(a∨, p) are collision-free.

Theorem 3. Let T be a tree network and let a1, . . . , ak, 1 ∈ k ∈ n, be the agents
initially located at pairwise different nodes of T . Suppose that the agent ai uses Algo-
rithm Local-Tree-Exploration to compute its routeRΣ(ai), for each i = 1, . . . , k. Then,
RΣ(a1), . . . ,RΣ(ak) are collision-free exploration strategies of length O(n2).

3.2 Local Exploration of General Networks

For the purposes of analysis, we introduce some auxiliary notation concerning the so-
called anonymous graph model. In this model nodes are anonymous, and each edge has
two port numbers assigned, each to one of its endpoints, in such a way that the ports at
edges incident to any node form a set of consecutive integers, starting from 1. An agent
located at a node v can only perform its next move based on the local port numbers.

Before continuing, we provide several comments and informal intuitions concerning
this model. First note that a collision-free exploration is, in general, impossible in arbi-
trary anonymous port-labeled networks. (This is the case, for example, for two agents
located initially in symmetric, and thus indistinguishable, positions at the endpoints of
a 3-node path.) However, we will overcome this difficulty by designing an auxiliary
port-labeled networkA(G) based on the node-labeled networkG, that has the property
that each edge has identical port numbers at both of its endpoints, and in such a case
the collision-free exploration will be guaranteed to exist. The behavior of an agent can
be seen as navigating in our node-labeled network G by navigating in the underlying
‘virtual’ port-labeled network A(G). In particular, the function id∨ defined in (6) pro-
vides both port numbers for each edge. Hence, each agent, while present at any node
v can compute the port number of the edges incident to v. Then, the agent ‘simulates’
its next move in the port-labeled network and, based on that, performs the move in the
node-labeled network.

As a tool for our analysis we use the theory of universal sequences (formal defini-
tions are provided below) that has been developed for regular port-labeled networks.
Such a universal sequence, once computed by all agents, is then used to find a collision-
free exploration strategy in the port-labeled network. In view of our earlier comment,
the latter results in the collision-free exploration strategy in the node-labeled network.

We say that a network is d-regular if all nodes of the network have degrees equal to
d. Given a port-labeled network A and a node v of A, we say that an agent a initially

Collision-Free Network Exploration 353

located at v follows a sequence of integers U = (x1, . . . , xl), with 1 ∈ xi ∈ d for
i = 1, . . . , l, if for each i = 1, . . . , l, in round i the agent a performs a move along the
edge with port number xi at its current node. By a slight extension of notation, we allow
a port-labeled network to have self-loops (with exactly one port number assigned to the
loop); a traversal of the self-loop is assumed not to change the location of the agent.

We say that a sequence U of integers is (n, d)-universal if for each node v of each
regular n-node network A of degree d, an agent initially placed at v visits each node
of A by following U . Aleliunas et al. [2] have shown non-constructively that for each
n > 0 and d > 0, there exists a (n, d)-universal sequence of length O(d2n3 logn)
for networks with self-loops. Note that a (n, d)-universal sequence can be computed
(rather inefficiently) by examining all sequences of the considered length and for each
such candidate sequence one can generate all n-node port-labeled regular networks of
degree d. Once a sequence U and a networkA are selected, it can be tested if following
U from each node of A results in visiting all nodes of A.

Given a node-labeled network G, we define the corresponding port-labeled network
A(G) so that there exists a bijection Π : V (G) ∗ V (A(G)) such that {u, v} ≤ E(G)
if and only if {Π(u), Π(v)} ≤ E(A(G)), and for each {u, v} ≤ E(G) the port numbers
at both endpoints of edge {Π(u), Π(v)} ≤ E(A(G)) are equal to id∨({u, v}). Since,
according to Lemma 3, id∨ is an edge-coloring of G, no two edges of A(G) sharing a
node have the same port number at this node. Then, for each node u ≤ V (G) we add
2n − |NG(u)| loops at Π(u) in A(G). As a result, the degree of each node of A(G)
is 2n, and the length of the universal sequences constructed following [2], which we
will use when exploring A(G), will not exceed O(n5 logn). In what follows, we will
identify exploration of G with exploration of A(G).

The algorithm will use a similar concept of exploring a growing subgraphs in con-
sequtive phases as in algorithm Local-Tree-Exploration. The difference is that during
a phase instead of a sequence U(b), we will use here some universal exploration se-
quence.

Theorem 4. There exists an algorithm that allows any set of agents located initially
at distinct nodes of any network G, and having no information about G, to compute
collision-free exploration strategies of length O(n5 logn).

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4),
1164–1188 (2000)

2. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random walks, univer-
sal traversal sequences, and the complexity of maze problems. In: Proceedings of the 20th
Annual Symposium on Foundations of Computer Science, FOCS 1979, pp. 218–223. IEEE
Computer Society, Washington, DC (1979)

3. Alon, N., Chung, F.R.K., Graham, R.L.: Routing permutations on graphs via matchings. In:
STOC, pp. 583–591 (1993); Also SIAM J. Discrete Math. 7(3), 513–530 (1994)

4. Alpern, S., Gal, S.: Theory of Search Games and Rendezvous. Kluwer Acad. Publ. (2003)
5. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: Anonymous graph exploration without col-

lision by mobile robots. Inf. Process. Lett. 109(2), 98–103 (2008)

354 J. Czyzowicz et al.

6. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive perpetual ring exploration
without chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 312–327. Springer, Heidelberg (2010)

7. Edmonds, J.: Matroids and the greedy algorithm. Math. Programming 1, 127–136 (1971)
8. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching.

Theor. Comput. Sci. 399(3), 236–245 (2008)
9. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite au-

tomaton. Theoretical Computer Science 345(2-3), 331–344 (2005)
10. Fürer, M., Raghavachari, B.: Approximating the minimum-degree steiner tree to within one

of optimal. J. Algorithms 17(3), 409–423 (1994)
11. Goemans, M.X.: Minimum bounded degree spanning trees. In: FOCS, pp. 273–282 (2006)
12. Krizanc, D., Zhang, L.: Many-to-one packed routing via matchings. In: COCOON, pp. 11–17

(1997)
13. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33(2), 281–295

(1999)
14. Pantziou, G.E., Roberts, A., Symvonis, A.: Many-to-many routings on trees via matchings.

Theor. Comput. Sci. 185(2), 347–377 (1997)
15. Zhang, L.: Optimal bounds for matching routing on trees. In: SODA, pp. 445–453 (1997)

Powers of Hamilton Cycles

in Pseudorandom Graphs

Peter Allen1,Δ, Julia Böttcher1,ΔΔ, Hiê.p Hàn2,Δ Δ Δ, Yoshiharu Kohayakawa2,†,
and Yury Person3,‡,§

1 Department of Mathematics, London School of Economics, Houghton Street,
London WC2A 2AE, U.K.

{p.d.allen,j.boettcher}@lse.ac.uk
2 Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Rua do Matão

1010, 05508–090 São Paulo, Brazil
{yoshi,hh}@ime.usp.br

3 Goethe-Universität, Institute of Mathematics, Robert-Mayer-Str. 10, 60325
Frankfurt, Germany

person@math.uni-frankfurt.de

Abstract. We study the appearance of powers of Hamilton cycles in
pseudorandom graphs, using the following comparatively weak pseu-
dorandomness notion. A graph G is (Σ, p, k, Φ)-pseudorandom if for all
disjoint X, Y ⊕ V (G) with |X| ← Σpkn and |Y | ← Σpαn we have
e(X,Y) = (1± Σ)p|X||Y |. We prove that for all Θ > 0 there is an Σ > 0
such that an (Σ, p, 1, 2)-pseudorandom graph on n vertices with minimum
degree at least Θpn contains the square of a Hamilton cycle. In particular,
this implies that (n, d, ι)-graphs with ι◦ d5/2n−3/2 contain the square
of a Hamilton cycle, and thus a triangle factor if n is a multiple of 3. This
improves on a result of Krivelevich, Sudakov and Szabó [Triangle factors
in sparse pseudo-random graphs, Combinatorica 24 (2004), no. 3, 403–
426]. We also obtain results for higher powers of Hamilton cycles and
establish corresponding counting versions. Our proofs are constructive,
and yield deterministic polynomial time algorithms.

1 Introduction and Results

The appearance of certain graphs H as subgraphs is a dominant topic in the
study of random graphs. In the random graph model G(n, p) this question turned

δ Partially supported by FAPESP (Proc. 2010/09555-7)
δδ Partially supported by FAPESP (Proc. 2009/17831-7)

δ δ δ Supported by FAPESP (Proc. 2010/16526-3)
† Partially supported by CNPq (308509/2007-2, 477203/2012-4), FAPESP
(2013/03447-6, 2013/07699-0) and the NSF (DMS-1102086).

‡ Partially supported by GIF grant no. I-889-182.6/2005.
§ The cooperation of the authors was supported by a joint CAPES–DAAD project
(415/ppp-probral/po/D08/11629, Proj. no. 333/09). The authors are grateful to
NUMEC/USP, Núcleo de Modelagem Estocástica e Complexidade of the Univer-
sity of São Paulo, and Project MaCLinC/USP, for supporting this research.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 355–366, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

356 P. Allen et al.

out to be comparatively easy for graphs H of constant size, but much harder
for graphs H on n vertices, i.e., spanning subgraphs. Early results were however
obtained in the case when H is a Hamilton cycle, for which this question is by
now very well understood [7,18,19,20,26].

When we turn to other spanning subgraphs H rather little was known for a
long time, until a remarkably general result by Riordan [27] established good
estimates for a big variety of spanning graphs H . In particular his result de-
termines the threshold for the appearance of a spanning hypercube, and the
threshold for the appearance of a spanning square lattice, as well as of the kth-
power of a Hamilton cycle for k > 2. Here the kth power of H is obtained from H
by adding all edges between distinct vertices of distance at most k in H . For the
square of a Hamilton cycle the corresponding approximate threshold was only
obtained recently by Kühn and Osthus [25].

Observe that the kth power of a Hamilton cycle contains ⊕n/(k + 1)≤ vertex
disjoint copies of Kk+1, a so-called spanning Kk+1-factor. It came as another
breakthrough in the area and solved a long-standing problem when Johansson,
Kahn and Vu [16] established the threshold for spanning Kk+1-factors in G(n, p)
(or more generally of certain F -factors).

1.1 Pseudorandom Graphs

Thomason [28] asked whether it is possible to single out some deterministic
properties enjoyed by G(n, p) with high probability which imply a similarly rich
collection of structural results. He thus initiated the study of pseudorandom
graphs and suggested a deterministic property similar to the following notion of
jumbledness. An n-vertex graph G is (p, Θ)-jumbled if

∣
∣e(A,B)− p|A||B|∣∣ ≤ Θ

√
|A||B| (1)

for all disjoint A,B ⊗ V (G). The random graph G(n, p) is with high probability
(p, Θ)-jumbled with Θ = O(

∈
pn), so this definition is justified. Moreover, this

pseudorandomness notion indeed implies a rich structure (see, e.g., [9,10,12]).
However, for spanning subgraphs of general jumbled graphs (with a suitable
minimum degree condition) not much is known.

One special class of jumbled graphs, which has been studied extensively, is
the class of (n, d, ι)-graphs. Its definition relies on spectral properties. For a
graph G with eigenvalues ι1 ∗ ι2 ∗ · · · ∗ ιn of the adjacency matrix of G, we
call ι(G) := max{|ι2|, |ιn|} the second eigenvalue of G. An (n, d, ι)-graph is a
d-regular graph on n vertices with ι(G) ≤ ι. The connection between (n, d, ι)-
graphs and jumbled graphs is established by the well-known expander mixing
lemma (see, e.g., [6]), which states that if G is an (n, d, ι)-graph, then

∣
∣e(A,B)− d

n |A||B|
∣
∣ ≤ ι(G)

√
|A||B| (2)

for all disjoint subsets A,B ⊗ V (G). Hence G is
(
d
n , ι(G)

)
-jumbled.

One main advantage of (n, d, ι)-graphs are the powerful tools from spectral
graph theory which can be used for their study. Thanks to these tools various

Powers of Hamilton Cycles in Pseudorandom Graphs 357

results concerning spanning subgraphs of (n, d, ι)-graphs G were obtained. It
turns out that already an almost trivial eigenvalue gap guarantees a spanning
matching: If ι ≤ d − 2 and n is even, then G has a perfect matching [23].
Moreover, if ι ≤ d(log logn)2/(1000 logn log log logn) then G has a Hamilton
cycle [22]. The only other embedding result for spanning subgraphs of (n, d, ι)-
graphs that we are aware of concerns triangle factors. Krivelevich, Sudakov and
Szabó [24] proved that an (n, d, ι)-graph G with 3|n and ι = o

(
d3/n2 logn

)

contains a spanning triangle factor.
It is instructive to compare this last result with corresponding lower bound

constructions. Krivelevich, Sudakov and Szabó also remarked that by using a
blow-up of a construction of Alon [3] one can obtain for each d∗ = d∗(n∗) with
Δ
(
(n∗)2/3

) ≤ d∗ ≤ n∗ an (n, d, ι)-graph with n = Γ(n∗), d = Γ(d∗) and ι =
Γ(d2/n) which is triangle-free and thus contains no spanning triangle factor.
They conjectured that in fact (n, d, ι)-graphs are so symmetric that the upper
bound on ι they proved for triangle factors can be improved, possibly all the
way down to this lower bound. In this paper we bring the upper bound closer to
the conjectured lower bound and establish more generally an embedding result
for kth powers of Hamilton cycles (see Corollary 4).

1.2 Our Results

The pseudorandomness notion we shall work with in this paper is weaker than
that of (n, d, ι)-graphs, and in fact even weaker than jumbledness.

Definition 1. Let Ψ > 0 and let k, Π with k ≤ Π be positive integers. For given
p = p(n) we call an n-vertex graph G (Ψ, p, k, Π)-pseudorandom if

∣
∣e(X,Y)− p|X ||Y |∣∣ ≤ Ψp|X ||Y | (3)

for any disjoint subsets X, Y ⊗ V (G) with |X | ∗ Ψpkn and |Y | ∗ ΨpΣn.

It is easy to check that a graph which is
(
p, Ψ2psn

)
-jumbled is (Ψ, p, k, Π)-pseu-

dorandom for all k and Π with k + Π = 2s − 2, but the jumbledness condi-
tion imposes tighter control on the edge density between (for example) lin-
ear sized subsets. An easy application of Chernoff’s inequality and the union
bound show that G(n, p) is (Ψ, p, k, Π)-pseudorandom with high probability if
p≥ (n−1 logn)1/(max{k,Σ}+1), while G(n, p) only gets

(
p, Ψ2p(k+Σ+2)/2n

)
-jumbled

if p≥ n−1/(k+Σ+1). Our major motivation for using this weaker pseudorandom-
ness condition is that it is all we require.

Our main result states that sufficiently pseudorandom graphs which also sat-
isfy a mild minimum degree condition contain spanning powers of Hamilton
cycles.

Theorem 2. For every k ∗ 2 and Θ > 0 there is an Ψ > 0 such that for any
p = p(n) with 0 < p < 1 the following holds. Let G be a graph on n vertices with
minimum degree Σ(G) ∗ Θpn.

358 P. Allen et al.

(a) If G is (Ψ, p, 1, 2)-pseudorandom then G contains a square of a Hamilton
cycle.

(b) If G is (Ψ, p, k− 1, 2k− 1)-pseudorandom and (Ψ, p, k, k+ 1)-pseudorandom
then G contains a kth power of a Hamilton cycle.

We remark that our proof of Theorem 2 also yields a deterministic polyno-
mial time algorithm for finding a copy of the kth power of the Hamilton cycle.
The proof technique (see Section 2.2 for an overview) is partly inspired by the
methods used in [2] (which have similarities to those of Kühn and Osthus [25]).

It is immediate from the discussion above that our theorem implies the fol-
lowing result for jumbled graphs.

Corollary 3 (Powers of Hamilton cycles in jumbled graphs). For every
k ∗ 2 and Θ > 0 there is an Ψ > 0 such that for any p = p(n) with 0 < p < 1 the
following holds. Let G be a graph on n vertices with minimum degree Σ(G) ∗ Θpn.
(a) If G is (p, Ψp5/2n)-jumbled then G contains a square of a Hamilton cycle.

(b) If G is (p, Ψp3k/2n)-jumbled then G contains a kth power of a Hamilton
cycle.

As a consequence we also obtain a corresponding corollary for (n, d, ι)-graphs.

Corollary 4 (Powers of Hamilton cycles in (n, d, ι)-graphs). For all k ∗ 2
there is Ψ > 0 such that for every (n, d, ι)-graph G,

(a) if ι ≤ Ψd5/2n−3/2 then G contains a square of a Hamilton cycle,

(b) if ι ≤ Ψd3k/2n1−3k/2 then G contains a kth power of a Hamilton cycle.

In particular, under these conditions G contains a spanning triangle factor
and a Kk+1-factor, respectively. Thus we improve on the result of Krivelevich,
Sudakov and Szabó [24] for triangle factors and extend it to Kk+1-factors.

As remarked above even for k = 2 our upper bound for ι does not match
the known lower bound. For k > 2 the situation gets even more complicated
since ‘good’ lower bounds for the appearance of Kk+1 (let alone kth powers of
Hamilton cycles) in (n, d, ι)-graphs are not available. The best we can do is to
observe that G(n, p) with (lnn/n)1/(k−Λ) ⊆ p⊆ n−1/k almost surely has no kth
power of a Hamilton cycle, and that such a graph for any fixed Ψ > 0 is almost
surely (Ψ, p, k − 1− Ψ, k − 1− Ψ)-pseudorandom.

1.3 Counting

Closely related to the question of the appearance of a certain subgraph in random
or pseudorandom graphs is the question of how many copies of this subgraph are
actually present. Janson [15] and Cooper and Frieze [13] studied this problem for
Hamilton cycles in G(n, p). Motivated by these results Krivelevich [21] recently
turned to counting Hamilton cycles in sparse (n, d, ι)-graphs G. He showed that
for every Ψ > 0 and sufficiently large n, if ι ≤ d/(logn)1+Λ and logι⊆ log d−
logn/ log d then G contains n!(d/n)n

(
1 + o(1)

)n
Hamilton cycles. This count is

Powers of Hamilton Cycles in Pseudorandom Graphs 359

close to the expected number of labeled Hamilton cycles in G(n, p) with p = d/n,
which is n!(d/n)n.

Krivelevich remarked that jumbled graphs may have isolated vertices and thus
no Hamilton cycles at all. The same applies to our notion of pseudorandomness.
If however, as in our main result, we combine this pseudorandomness with a
minimum degree condition to avoid this obstacle, we do obtain a corresponding
result concerning the number of Hamilton cycle powers in such graphs. Again,
we obtain a count close to pknn!, which is the expected number of labeled copies
of the kth power of a Hamilton cycle in Gn,p. Note that (unlike Krivelevich) we
do not provide a corresponding upper bound.

Theorem 5. For every k ∗ 2, Θ, Λ > 0 there is a constant c > 0, such that for
every Ψ = Ψ(n) ≤ c/ log2 n and p = p(n) with 0 < p < 1 the following holds.
Let G be a graph on n vertices with minimum degree Σ(G) ∗ Θpn. Suppose that G
is (Ψ, p, 1, 2)-pseudorandom if k = 2, and (Ψ, p, k − 1, 2k − 1)-pseudorandom and
(Ψ, p, k, k + 1)-pseudorandom if k > 2. Then G contains at least (1 − Λ)npknn!
copies of the kth power of a Hamilton cycle.

With some minor modifications, this result follows from our proof of Theorem 2.
For the sake of clarity, we sketch these modifications after discussing the proof
of Theorem 2.

1.4 Organisation

The remainder of this extended abstract is organised as follows. In Section 2 we
give some basic definitions, outline our proof strategy and provide the main lem-
mas precisely (without proof). We sketch how to modify the proof of Theorem 2
to get Theorem 5 in Section 3, and close with some remarks and open problems
in Section 4.

2 Main Lemmas and an Outline of the Proof Theorem 2

2.1 Notation

An s-tuple (u1, . . . , us) of vertices is an ordered set of vertices. We often denote
tuples by bold symbols, and occasionally also omit the brackets and write u =
u1, . . . , us.

Given a graph H , the graph Hk, called the kth power of H , is the graph
on V (H) where two distinct vertices u and v are adjacent if and only if their
distance in H is at most k.

For simplicity we also call the kth power of a path a k-path, and the kth power
of a cycle a k-cycle. We will usually specify k-paths and k-cycles by giving the
(cyclic) ordering of the vertices in the form of a vertex tuple. We say that the
start s-tuple of a k-path P = (u1, . . . , uΣ) is (us, . . . , u1), and the end s-tuple
is (uΣ−s+1, . . . , uΣ) (the vertices us+1, . . . , uΣ−s are said to be internal). In these
definitions, we shall often have s = k.

360 P. Allen et al.

For a given graph G let NX(x) be the set of neighbours of x in X ⊗ V (G). For
an Π-tuple xΣ = (x1, . . . , xΣ) of vertices let NX(x1, . . . , xΣ) denote the common
neighbourhood of x1, . . . , xΣ in X , and let degX(x1, . . . , xΣ) = |NX(x1, . . . , xΣ)|.

We say that xΣ is (β, p)-connected to a vertex set X if x1, . . . , xΣ forms a clique
in G and

degX(xi, . . . , xΣ) ∗ β
(p

2

)Σ−i+1

|X | . (4)

for every i ↑ [Π] = {1, . . . , Π}. To motivate this definition, note that the bound in
(4) corresponds to the expected number of common neighbours of (xi, . . . , xΣ)
in X in the random graph G(n, p), up to a constant factor.

A vertex set Y ⊗ X witnesses that xΣ is (β, p)-connected to X if for every

i ↑ [Π] we have
∣
∣Y ⊃NX(xi, . . . , xΣ)

∣
∣ ∗ β (p

2

)Σ−i+1 |X |.
Remark 6. Since the setsNX(x1, . . . , xΣ),NX(x2, . . . , xΣ), . . . ,NX(xΣ) are nested
we have that if xΣ is (β, p)-connected to X , then there is a set Y ⊗ X with
|Y | = βp

2 |X | vertices which witnesses this connectedness.

Remark 7. If 0 < p ≤ 1/2 and Ψ < 1/8, and the n-vertex graph G is (Ψ, p, k, Π)-
pseudorandom, then G has a vertex y of degree at most 3n/4. Moreover, letting
X = V (G) \ ({y} ⊇ N(y)

)
and Y = {y} we see that (3) does not hold. It

follows that 1 < ΨpΣn, or equivalently pΣn > Ψ−1. A similar statement holds
if 1/2 ≤ p < 1, taking X = N(y). Thus assuming the n-vertex graph G to
be (Ψ, p, k, Π)-pseudorandom for any 0 < p < 1 implicitly means we assume
pΣn > Ψ−1.

2.2 Outline of the Proof

Suppose that G is an (Ψ, p, k − 1, k)-pseudorandom graph on n vertices. One
crucial observation, which forms the starting point of our proof, is that it is
relatively easy to find an almost spanning k-path in G. Indeed, it is not hard to
check (see the Extension lemma, Lemma 8) that G contains copies of Kk and
that typically such a Kk-copy is well-connected to the rest of the graph in the
following sense. There are many vertices which extend this Kk-copy to a k-path
on k + 1 vertices. Iterating this argument we can greedily build a k-path P ∗

covering most of G. Let L be the set of leftover vertices.
The true challenge is to incorporate the few remaining vertices into P ∗ and to

close P ∗ into a k-cycle. To tackle the second of these tasks we will establish the
Connection lemma (Lemma 11), which asserts that any two pairs of k-cliques
in G which are sufficiently well-connected to a set U of vertices can be connected
by a short k-path with interior vertices in U . At this point, if k > 2, we shall
need to require that G be (Ψ, p, k − 1, 2k − 1)-pseudorandom.

For the first task, we make use of the reservoir method developed in [2] (see
also [25] for a similar method). In essence, the fundamental idea of this method
is to ensure that P ∗ contains a sufficiently big proportion of vertices which are
free to be taken out of P ∗ and used otherwise. More precisely, we shall construct
(see the Reservoir lemma, Lemma 9) a path P with the reservoir property: There

Powers of Hamilton Cycles in Pseudorandom Graphs 361

is a subset R of V (P), called the reservoir, such that for any W ⊗ R there is a
k-path in G whose vertex set is V (P) \W and whose ends are the same as those
of P . We also call P a reservoir path. We then use the greedy method outlined
above to extend P to an almost spanning k-path P ∗. For this step, if k > 2, we
shall need to require that G be (Ψ, p, k, k + 1)-pseudorandom.

With the reservoir property we are now in good shape to incorporate the
leftover vertices L into P ∗ (and then close the path into a cycle): We show, using
the Covering lemma (Lemma 10), that we can find a k-path P ∗∗ in L⊇R covering
all vertices of L and using only a small fraction of R (this is possible because R
is much bigger than L). Finally we connect both ends of P ∗ and P ∗∗ using some
of the remaining vertices of R with the help of the Connection lemma (again,
this is possible because many vertices of R remain).

Now the only problem is that some vertices of R may be used twice, in P ∗ and
in P ∗∗ or the connections. But this is where the reservoir property comes into
play. This property asserts that there is a k-path P̃ which uses all vertices of P ∗

except these vertices. Finally P̃ and P ∗∗ together with the connections form the
desired spanning k-cycle.

2.3 Main Lemmas

The proof of Theorem 2 relies on four main lemmas, the Extension lemma, the
Reservoir lemma, the Covering lemma and the Connection lemma, which we
will state and explain in the following (in this extended abstract, the proofs are
omitted).

Our first lemma, the Extension lemma, states that in a sufficiently pseudoran-
dom graph all well-connected k-tuples have a common neighbour which together
with the last k − 1 vertices of this k-tuple form again a well-connected k-tuple.

Lemma 8 (Extension lemma). Given k ∗ 2 and Σ > 0 there is an Ψ > 0 such
that for all 0 < p < 1, all (Ψ, p, k − 1, k)-pseudorandom graphs G on n vertices,
and all disjoint vertex sets L and R with |L|, |R| ∗ Σn the following holds.

Let x = (x1, . . . , xk) be a k-tuple which is (18 , p)-connected to both L and R.
Then there is a vertex xk+1 of L ⊃ N(x1, . . . , xk) such that (x2, . . . , xk+1) is
(16 , p)-connected to both L and R.

We stress that in this lemma we require and obtain well-connectedness to two
sets L and R. This will enable us in the proof of Theorem 2 to extend a k-path
alternatively using vertices of the leftover set L or the reservoir set R.

We remark moreover that the assumed (18 , p)-connectedness is weaker than
the (16 , p)-connectedness in the conclusion. This is useful when we repeatedly
apply the Extension lemma. It is possible to prove such a statement because the
factor 1

2 in the definition of connectedness allows for some leeway.
Our second lemma allows us to construct the reservoir path P described in the

outline, given a suitable reservoirR (see properties (a) and (d)). In addition, this
lemma guarantees well-connectedness of the ends of this path to the reservoir
and to the remaining vertices in the graph (see properties (b) and (c)). This is

362 P. Allen et al.

necessary so that we can extend the reservoir path and later connect it to the
path covering the leftover vertices L using R.

Lemma 9 (Reservoir lemma). Given k ∗ 2, 0 < Σ < 1/4 and 0 < Θ < 1/2
there exists an Ψ > 0 such that the following holds.

Let 0 < p < 1 and let G = (V,E) be an n-vertex graph. Suppose that G is
(Ψ, p, 1, 2)-pseudorandom if k = 2, and (Ψ, p, k − 1, 2k − 1)-pseudorandom and
(Ψ, p, k, k + 1)-pseudorandom if k > 2. Let R ⊗ V satisfy Σ2n/(200k) ≤ |R| ≤
Σn/(200k) and degV \R(v) ∗ Θpn/2 for all v ↑ R. Then there is a k-path P in G
with the following properties.

(a) R ⊗ V (P), |V (P)| ≤ 50k|R| and all vertices from R being internal for P .

(b) The start and end k-tuples of P are (18 , p)-connected to V \ V (P).

(c) The start and end k-tuples of P are (12 , p)-connected to R.

(d) For any W ⊗ R, there is a k-path with the vertex set V (P)\W whose start
and end k-tuples are identical to those of P .

Our third lemma enables us to cover the leftover vertices L with a k-path
(see property (a)). This lemma allows us in addition to specify a set S to which
the start and end tuples of this path have to maintain well-connectedness (see
property (b)). When we cover the leftover vertices in the proof of the main
theorem, S will be a big proportion of R and we will use the well-connectedness
to connect the path covering L and the extended reservoir path.

We remark that the requirements and conclusions of Lemma 9 and Lemma 10
overlap substantially.

Lemma 10 (Covering lemma). Given k ∗ 2, 0 < Σ < 1/4 and 0 < Θ < 1/2
there exists an Ψ > 0 such that the following holds.

Let 0 < p < 1 and let G = (V,E) be an n-vertex graph. Suppose that G is
(Ψ, p, 1, 2)-pseudorandom if k = 2, and (Ψ, p, k − 1, 2k − 1)-pseudorandom and
(Ψ, p, k, k + 1)-pseudorandom if k > 2. Let L and S be disjoint subsets of V (G)
with |L| ≤ Σn/(200k) and |S| ∗ Σn such that degS(v) ∗ ΘΣpn/2 for all v ↑ L.
Then there is a k-path P contained in L ⊇ S with the following properties.

(a) L ⊗ V (P) and |V (P)| ≤ 50k|L|.
(b) The start and end k-tuples of P are in S and are (18 , p)-connected to S \

V (P).

Our fourth and final main lemma allows us to connect two k-tuples with a
short k-path.

Lemma 11 (Connection lemma). For all k ∗ 2 and Σ > 0 there is an Ψ > 0
such that the following holds.

Let 0 < p < 1 and let G be an n vertex graph. Suppose that G is (Ψ, p, 1, 2)-
pseudorandom if k = 2, and (Ψ, p, k − 1, 2k − 1)-pseudorandom if k > 2. Let
U ⊗ V (G) be a vertex set of size |U | ∗ Σn. If x and y are two disjoint k-tuples
which are (Σ, p)-connected to U , then there exists a k-path P with ends x and y
of length at most 7k such that V (P) ⊗ U ⊇ V (x) ⊇ V (y).

Powers of Hamilton Cycles in Pseudorandom Graphs 363

We remark that in the proof of Theorem 2 it is not especially important that
the connecting k-path guaranteed by this lemma is of constant length. However,
Lemma 11 is also used in the proof of Lemma 9, and in this proof we need that
the connecting k-paths are of length independent of n.

3 Enumerating Powers of Hamilton Cycles

To prove Theorem 5 we would ideally like to show that we can construct the kth
power of a Hamilton cycle vertex by vertex, and that when we have t vertices
remaining uncovered, we have at least (1 − Λ)pkt choices for the next vertex;
then the theorem would follow immediately. However, we obviously do not con-
struct kth powers of Hamilton cycles in this way: we have very little control over
choice in constructing the reservoir paths and connecting paths. Moreover for
the promised number (1−Λ)npknn! of Hamilton cycle powers even the Extension
lemma, Lemma 8, does not provide the desired number of choices in the greedy
portion of the construction where we do choose one vertex at a time. (We remark
though that the proof of this lemma, together with the rest of our proof does
immediately provide us with cnp(1−δ)kn

(
(1 − Λ)n

)
! Hamilton cycle powers for

some absolute constant c > 0.)
Thus we have to upgrade the Extension lemma in two ways. Firstly, we have to

modify it to give us more choices in each step (after a few initial steps). Secondly,
it turns out that to obtain the desired number of Hamilton cycle powers we have
to apply the Extension lemma for longer, that is, the leftover set will in the
end only contain O(n/(logn)2

)
vertices. Thus we have to change the Extension

lemma to deal with this different situation. This comes at the cost of slightly
tightening the pseudorandomness requirement.

In the lemma below we will guarantee that for an end k-tuple x of a k-path
there are

(
1− δ

2k) degL(x) valid extensions, where L is the current set of leftover
vertices. One may argue that this will provide us with the right number of Hamil-

ton cycle powers if we can guarantee in addition that degL(x) ∗ (
(1− δ

2k)p
)k|L|.

Recall however that we will want to use this lemma after constructing the reser-
voir path with the help of Lemma 9, which guarantees (1

8 , p)-connectedness to L,
a property which only gives a weaker lower bound on degL(x) than desired. In
order to overcome this shortcoming we will in the first few applications of the
Counting version of the Extension lemma transform this (1

8 , p)-connectedness to
a stronger property which gives the desired bound. Conditions (ii) and (iii),
and conclusions (b) and (c) take care of this.

Lemma 12 (Counting version of the Extension lemma). Given k ∗ 2
and Λ > 0, if C = 2k+23k4/Λ then the following holds. Let 0 < p < 1 and G
be an

(
1/(C logn)2, p, k − 1, k

)
-pseudorandom graph on n vertices. Let L and

R be disjoint vertex sets with |L|, |R| ∗ n/(200k logn)2. Suppose that there is
0 ≤ j ≤ k such that x = (x1, . . . , xk) satisfies

(i) x is
(
1
8 , p)-connected to R,

(ii) degL(xi, . . . , xk) ∗ 1
8

(
p
2

)k−i+1|L| for each 1 ≤ i ≤ j,

364 P. Allen et al.

(iii) degL(xi, . . . , xk) ∗ (
(1− δ

2k)p
)k−i+1|L| for each j < i ≤ k.

Then at least
(
1 − δ

2k) degL(x1, . . . , xk) vertices xk+1 ↑ NL(x1, . . . , xk) satisfy
that

(a) (x2, . . . , xk+1) is
(
1
6 , p)-connected to R,

(b) degL(xi+1, . . . , xk+1) ∗ 1
8

(
p
2

)k−i+1|L| for each 1 ≤ i ≤ j − 1,

(c) degL(xi+1, . . . , xk+1) ∗ (
(1− δ

2k)p
)k−i+1|L| for each j − 1 < i ≤ k.

4 Concluding Remarks

Hamilton Cycles. For Hamilton cycles, a simple modification of our arguments
for squared Hamilton cycles yields that

(
Ψ, p, 0, 1

)
-pseudorandom graphs with

minimum degree Θpn are Hamiltonian for sufficiently small Ψ = Ψ(Θ). This bound
is essentially best possible (for our notion of pseudorandomness) since the disjoint
union of Gn−pn,p and Kpn is easily seen to be asymptotically almost surely
(Ψ, p, 0, 1− Ψ)-pseudorandom and have minimum degree at least pn/2.

Improving the Pseudorandomness Requirements. It would be interesting
to obtain stronger results on the pseudorandomness required to find kth powers
of Hamilton cycles. We believe that a generalisation of our result for the k = 2
case is true.

Conjecture 13. For all k ∗ 2 the pseudorandomness requirement in Theorem 2
can be replaced by (Ψ, p, k − 1, k)-pseudorandomness.

As remarked in the introduction even in the k = 2 case we do not know
whether Theorem 2 is sharp. It would also be very interesting (albeit probably
very hard) to find better lower bound examples than those mentioned in the
introduction.

In the evolution of random graphs, triangles, spanning triangle factors and
squares of Hamilton cycles appear at different times: In G(n, p) the threshold
for triangles is p = n−1, but only at p = Γ(n−2/3(logn)1/3) each vertex ofG(n, p)
is contained in a triangle with high probability, which is also the threshold for the
appearance of a spanning triangle factor [16]. Squares of Hamilton cycles on the
other hand are with high probability not present in G(n, p) for p ≤ n−1/2, and
Kühn and Osthus [25] recently showed that for p ∗ n−1/2+Λ they are present.
Our Theorem 2 is also applicable to random graphs, however, the range is worse:
p≥ (lnn/n)1/3 for squares of Hamilton cycles and p≥ (lnn/n)1/(2k) for general
kth powers of Hamilton cycles, in the light of Riordan’s result [27] which implies
the optimal bound p≥ n−1/k for k ∗ 3.

Pseudorandom graphs behave differently. For (n, d, ι)-graphs it is known that
as soon as these graphs are forced to have one triangle, every vertex is contained
in a triangle. This motivated Krivelevich, Sudakov and Szabó [24] to conjecture
that indeed these graphs already contain a spanning triangle factor. We do not
know whether triangle factors and squares of Hamilton cycles require different
levels of pseudorandomness.

Powers of Hamilton Cycles in Pseudorandom Graphs 365

Question 14. Do spanning triangle factors and squares of Hamilton cycles appear
for the same pseudorandomness requirements (up to constant factors)?

Universality. For random graphs, the study of when almost every G(n, p) con-
tains as subgraphs all n-vertex graphs or all (1 − Ψ)n-vertex graphs with maxi-
mum degree bounded by a constant γ was initiated in [5]. In this case G(n, p)
is also called universal for these graphs. The authors of [5] showed that G(n, p)
contains all graphs on (1 − Ψ)n vertices with maximum degree at most γ if

p ∗ Cn−1/Θ log1/Θ n. In [14] this result was extended to such subgraphs on n
vertices. Recently, Conlon [11] announced that for the first of these two results
he can lower the probability to p = n−Λ−1/Θ for some (small) Ψ = Ψ(γ) > 0.
The best known lower bound results from the fact that p = Δ(n−2/(Θ+1)) is
necessary for G(n, p) to contain a spanning KΘ+1-factor.

For pseudorandom graphs we were only recently able to establish universality
results of this type, which follow from our work on a Blow-up lemma for pseu-
dorandom graphs (see below). We can prove that (p, cp

3
2Θ+ 1

2n)-jumbled graphs
on n vertices with minimum degree Θpn are universal for spanning graphs with
maximum degree γ [1]. We believe that these conditions are not optimal.

Question 15. Which pseudorandomness conditions (plus minimum degree con-
ditions) imply universality for spanning graphs of maximum degree γ?

It is worth noting that Alon and Capalbo [4] explicitly constructed almost opti-
mally sparse universal graphs for spanning graphs with maximum degreeγ. These
graphs have some pseudorandomness properties, but they also contain cliques of
order log2 n, which random graphs of the same density certainly do not.

Blow-up Lemmas. For dense graphs the Blow-up lemma [17] is a powerful
tool for embedding spanning graphs with bounded maximum degree (versions of
this lemma for certain graphs with unbounded maximum degree have recently
been developed in [8]). Already Krivelevich, Sudakov and Szabó [24] remark that
their result on triangle factors in sparse pseudorandom graphs can be viewed as
a first step towards the development of a Blow-up lemma for (subgraphs of)
sparse pseudorandom graphs.

We see the results presented here as a further step in this direction. In fact, in
recent work [1], we establish a blow-up lemma for spanning graphs with bounded
maximum degree in sparse pseudorandom graphs. However, quite naturally, the
pseudorandomness requirements for this more general result are more restrictive
than those used here.

References

1. Allen, P., Böttcher, J., Hàn, H., Kohayakawa, Y., Person, Y.: Blow-up lemmas for
sparse graphs (in preparation)

2. Allen, P., Böttcher, J., Kohayakawa, Y., Person, Y.: Tight Hamilton cycles in random
hypergraphs. Random Structures Algorithms (to appear), doi: 10.1002/rsa.20519

366 P. Allen et al.

3. Alon, N.: Explicit Ramsey graphs and orthonormal labelings. Electronic Journal
of Combinatorics 1, Research paper 12, 8pp (1994)

4. Alon, N., Capalbo, M.: Sparse universal graphs for bounded-degree graphs. Random
Structures Algorithms 31(2), 123–133 (2007)

5. Alon, N., Capalbo, M., Kohayakawa, Y., Rödl, V., Ruciński, A., Szemerédi, E.: Uni-
versality and tolerance (extended abstract). In: Proc. 41 IEEE FOCS, pp. 14–21.
IEEE (2000)

6. Alon, N., Spencer, J.H.: The probabilistic method, vol. 57. Wiley Interscience (2000)
7. Bollobás, B.: The evolution of sparse graphs. In: Graph theory and combinatorics

(Cambridge, 1983), pp. 35–57. Academic Press, London (1984)
8. Böttcher, J., Kohayakawa, Y., Taraz, A., Würfl, A.: An extension of the blow-up

lemma to arrangeable graphs, arXiv:1305.2059
9. Chung, F.R.K., Graham, R.L., Wilson, R.M.: Quasi-random graphs. Combin-

atorica 9(4), 345–362 (1989)
10. Chung, F., Graham, R.: Sparse quasi-random graphs. Combinatorica 22(2),

217–244 (2002)
11. Conlon, D.: Talk at RSA 2013 (2013)
12. Conlon, D., Fox, J., Zhao, Y.: Extremal results in sparse pseudorandom graphs.

arXiv:1204.6645
13. Cooper, C., Frieze, A.M.: On the number of Hamilton cycles in a random graph.

J. Graph Theory 13(6), 719–735 (1989)
14. Dellamonica Jr., D., Kohayakawa, Y., Rödl, V., Ruciński, A.: An improved upper

bound on the density of universal random graphs. In: Fernández-Baca, D. (ed.)
LATIN 2012. LNCS, vol. 7256, pp. 231–242. Springer, Heidelberg (2012)

15. Janson, S.: The numbers of spanning trees, Hamilton cycles and perfect matchings
in a random graph. Combin. Probab. Comput. 3(1), 97–126 (1994)

16. Johansson, A., Kahn, J., Vu, V.: Factors in random graphs. Random Structures
Algorithms 33(1), 1–28 (2008)

17. Komlós, J., Sárközy, G.N., Szemerédi, E.: Blow-up lemma. Combinatorica 17(1),
109–123 (1997)

18. Komlós, J., Szemerédi, E.: Limit distribution for the existence of Hamiltonian
cycles in a random graph. Discrete Math. 43(1), 55–63 (1983)

19. Korshunov, A.D.: Solution of a problem of Erdős and Renyi on Hamiltonian cycles
in nonoriented graphs. Sov. Math., Dokl. 17, 760–764 (1976)

20. Korshunov, A.D.: Solution of a problem of P. Erdős and A. Renyi on Hamiltonian
cycles in undirected graphs. Metody Diskretn. Anal. 31, 17–56 (1977)

21. Krivelevich, M.: On the number of Hamilton cycles in pseudo-random graphs.
Electron. J. Combin. 19(1), Paper 25, 14pp (2012)

22. Krivelevich, M., Sudakov, B.: Sparse pseudo-random graphs are Hamiltonian. J.
Graph Theory 42(1), 17–33 (2003)

23. Krivelevich, M., Sudakov, B.: Pseudo-random graphs, More sets, graphs and num-
bers. Bolyai Soc. Math. Stud. 15, 199–262 (2006)

24. Krivelevich, M., Sudakov, B., Szabó, T.: Triangle factors in sparse pseudo-random
graphs. Combinatorica 24(3), 403–426 (2004)

25. Kühn, D., Osthus, D.: On Pósa’s conjecture for random graphs. SIAM J. Discrete
Math. 26(3), 1440–1457 (2012)

26. Pósa, L.: Hamiltonian circuits in random graphs. Discrete Mathematics 14(4),
359–364 (1976)

27. Riordan, O.: Spanning subgraphs of random graphs. Combin. Probab. Com-
put. 9(2), 125–148 (2000)

28. Thomason, A.: Pseudo-random graphs. Random Graphs 85, 307–331 (1987)

Local Update Algorithms for Random Graphs

Philippe Duchon and Romaric Duvignau

Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
CNRS, LaBRI, UMR 5800, F-33400 Talence, France
{philippe.duchon,romaric.duvignau}@labri.fr

Abstract. We study the problem of maintaining a given distribution
of random graphs under an arbitrary sequence of vertex insertions and
deletions. Since our goal is to model the evolution of dynamic logical
networks, we work in a local model where we do not have direct access
to the list of all vertices. Instead, we assume access to a global primitive
that returns a random vertex, chosen uniformly from the whole vertex
set. In this preliminary work, we focus on a simple model of uniform
directed random graphs where all vertices have a fixed outdegree. We
describe and analyze several algorithms for the maintenance task; the
most elaborate of our algorithms are asymptotically optimal.

Keywords: random graphs, dynamic graphs, logical network mainte-
nance, randomness preservation.

1 Introduction

In decentralized networks and in particular in peer-to-peer networks1 (P2P),
the structure of the network is maintained locally by the nodes following a pre-
defined network protocol. In most modern implementations (e.g., Gnutella [1],
GNUnet [2], Freenet [3]), the structure of the network is highly dependent on
the sequence of updates (node insertions or deletions), and as a consequence a
malicious sequence of updates may result in a disconnected or badly structured
network. Moreover, designing and analyzing the update algorithms defined by
such network protocols is made harder by this dependence on the update se-
quence. In particular, analysis of the network evolution is typically performed
under nicely behaving update schemes: new arrivals follow a Poisson process
and living times follow an exponential distribution (used in the analysis of [4]
and [5]), or some similar dynamicity hypothesis (as in [6] for bounding the mixing
time of a Markov chain modeling the P2P network of [7]).

In order to avoid this dependence and to make the analysis of the network
evolution somewhat easier, we propose local update algorithms that maintain
exactly some probability distribution of random graphs, so that the distribution
of the graph resulting from an arbitrary update sequence does not depend on
the sequence itself, but only on some small parameter (ideally, only the number
of nodes in the final graph).

1 Dynamic decentralized networks for sharing data or computing resources.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 367–378, 2014.
© Springer-Verlag Berlin Heidelberg 2014

368 P. Duchon and R. Duvignau

This goal is very similar to what is achieved by the update algorithms for some
randomized data structures such as randomized binary search trees [8,9] or ran-
domized skip lists [10]. An immediate benefit of using such an exact maintenance
protocol lies in the analysis: only one probability distribution per network size
has to be studied, and the analysis does not depend on some probabilistic model
for the update sequence.

In this paper, we give a precise, general definition of what such a distribution
preserving protocol should be, and illustrate the notion for a specific model of
random graphs: uniform k-out graphs (simple digraphs with out-degree k); these
graphs have good network properties associated with the uniform distribution.
We describe and analyze several insertion and deletion algorithms that only work
locally in the graph - global knowledge of the whole network is not assumed.

The problem of locally updating k-out graphs can be reformulated as follows:
given a random uniform k-out graph G with n vertices, find a randomized pro-
cedure in order to insert (resp. delete) a vertex such that the resulting graph G∨

is a random uniform k-out graph with n+ 1 (resp. n− 1) vertices. While we do
not assume global knowledge of the whole network, our algorithms are assumed
to know the size of the graph.

Our algorithms make extensive use of random sampling primitives, and need
the ability to pick a uniform random vertex. Since we do not want to assume
centralized knowledge of the whole graph, we restrict this ability to the use of
a special primitive RandomVertex(), RV for short; we also use other random
generation functions whose output distributions are known in advance and do
not depend on the graph.

This RV function is somewhat implicitly assumed in many decentralized pro-
tocols in the literature when considering that a new node has to know some
friend node in order to insert properly in the network, and is often referred to
as an external mechanism. It is usually not explicitly required that such a friend
node be uniformly distributed over the network, which is a strong assumption,
but this hypothesis avoids any centralization of the network on a particular sub-
set of the nodes. Similar mechanisms are used in the literature, e.g., hashing
a name allows a node to contact a random node in Chord [11]; the protocol
in [5] assumes a centralized server that caches a D-uniform subset of the nodes
(D being a predefined constant); the random walks of [7] allow a new node to
pick some uniformly distributed nodes during its insertion to build an almost
random regular graph; the tokens used in the protocol of [12] also play the role
of sampling uniform nodes in order to preserve the connectivity of the network
over time.

Such a procedure is often very costly as it consumes network bandwidth or
momentarily breaks the decentralization (in particular in the server case). Hence
we shall essentially measure the cost of an update algorithm by the number of
times it needs to call the RV primitive during its execution. Our most effective
algorithms are optimal in this regard: algorithm Ins2 asymptotically uses k calls
to RV, and algorithm Del3 asymptotically uses o(1) such calls (in expectation,
for both algorithms).

Local Update Algorithms for Random Graphs 369

The expected complexity of the update algorithms, when disregarding the cost
of RV, should also be small; ideally it should not depend too much on the network
size. This last criterion can be thought of as a safeguard in order to prevent the
algorithm from saving calls to RV by exploring the entire graph (which, in the
model we consider, is connected with asymptotic probability 1). The algorithms
presented here have constant expected time.

The rest of this paper is organized as follows. In the next section, we define
some notation, and give definitions for what we call distribution-preserving in-
sertion and deletion algorithms; we also define precisely the random graph model
we work with. Section 3 contains our major contributions; we describe and ana-
lyze our various distribution-preserving algorithms for insertion and deletion in
random k-out graphs. This is followed by a conclusion, where we discuss some
directions for further research. Due to space constraints, we omit all proofs that
our algorithms are distribution-preserving.

2 Notation and Models

2.1 Notation

All graphs we consider in this paper are simple, loopless directed graphs. For any
such graph G and any vertex u, we note N+

G (u) for the outgoing neighborhood
of vertex u, i.e., the set of vertices v such that (u, v) is an edge of the graph.
The closed neighborhood, obtained by adding the vertex itself, is noted N+

G [u].
Similarly, we note N−G (u) for the incoming neighborhood of u: the set of vertices
v such that (v, u) is an edge. We write E|V ′ for the edge set E restricted to the
subset V ∨ of the vertex set.

Throughout the paper, n stands for the size of the vertex set V .
When X is some random variable and Θ is some probability distribution, we

write X ⊕ Θ to mean that X follows the distribution Θ. To ease the notation and
the reading, we take the liberty of noting the addition and removal of a singleton
in an additive fashion, so that S + x stands for S ≤ {x} and S − x for S \ {x}.

2.2 Distribution Preserving Algorithms

We shall assume that all possible nodes of our graphs belong to some countable
set ι that we call our underlying universe. Such a set might be thought of as the
space of IP addresses for computers over the Internet, N2 for an approximation
of some 2D geometric space, and so on. For any finite subset V of ι, we note
GV the set of all simple digraphs with vertex set V and G = (GV)V∗Δ.

We now define what we consider to be valid update algorithms with regards
to some family of probability distributions.

Definition 1. Let μ = (μV)V∗Δ be a family of probability distributions such
that each μV has support Supp(μV) ⊆ GV . A randomized algorithm A is a μ-
preserving insertion algorithm (resp. deletion algorithm) if, for any V and any
u ⊗ ι \ V (resp. u ⊗ V), if G ⊕ μV then we have A(G, u) ⊕ μV +u (resp.
A(G, u) ⊕ μV−u).

370 P. Duchon and R. Duvignau

Remark 1. An equivalent formulation of the definition would be: A is a valid
insertion algorithm (resp. deletion algorithm) if for any finite subset V of ι, for
any vertex u in ι \ V (resp. in V), and for any graph g∨ in GV +u (resp. GV−u),
we have: ∑

g⊆GV
μV (g) · P(A(g, u) = g∨) = μV ′(g∨)

with V ∨ = V + u (resp. V − u).

It is important to note, in the above definition, that although the input graph
is assumed to be random, the vertex to be deleted2 is not; the equations should
hold for any deterministic choice of vertex. This is important because we want
our results to be valid if this choice of vertices to be inserted or deleted is given to
an adversary; still, because this choice of vertex is assumed to be deterministic,
it cannot depend on the graph: one cannot, for instance, choose to delete one of
the vertices with the highest indegree.

Explicit calculations show that a stronger model in which an adversary would
be allowed to “see” the current graph, and then arbitrarily choose a vertex to
be deleted, would only accept as a solution an algorithm that built a new graph
independent of the previous one - essentially defeating our goal of maintaining
dynamic graphs. The algorithms we present in this paper, working in a weaker
adversary model, are significantly more efficient.

2.3 Random k-out Graphs

We now introduce the simple model of directed graphs for which we will describe
distribution preserving algorithms.

Definition 2. A k-out graph is a simple directed graph with all vertices of out-
degree exactly k.

We define Gk = (Gk
V)V∗Δ,|V |◦k+1, where Gk

V stands for the set of all k-out

graphs having V as vertex set, as well as Δk = (ΔkV)V∗Δ,|V |◦k+1, where ΔkV is

the uniform distribution over Gk
V . Clearly, Gk

V is empty if V has fewer than k+ 1
elements; accordingly, the behavior of our deletion algorithms is undefined if
they are applied to a graph of size exactly k + 1.

Remark 2. A random graph G = (V,E) ⊕ ΔkV iff for all v ⊗ V , N+
G (v) is

uniformly distributed over the k-subsets of V − v and the N+
G (v) are mutu-

ally independent. Notice that, for all u, v ⊗ V , N ∈ V − v with |N | = k,
P(N+

G (v) = N) = 1/
(
n−1
k

)
; also, P((u, v) ⊗ E) = k/(n − 1), and for any family

(ui, vi)1∼i∼Σ of such potential pairs, the corresponding events are mutually inde-
pendent if and only if all ui are distinct. Consequently, in a ΔkV -distributed graph
with n vertices, the indegree of any one vertex follows the binomial distribution
with parameters n− 1 and k/(n− 1).

2 Or inserted; but this does not matter with the distribution considered here.

Local Update Algorithms for Random Graphs 371

2.4 From Centralized to Decentralized Algorithms

We describe all our algorithms as centralized, sequential algorithms. It should be
noted that they have some “local” features. The deletion algorithms only need
to examine the preexisting graph G up to distance 2 (measured in the under-
lying undirected graph) from the vertex u to be removed (we need to examine
the outgoing edges from predecessors of u). Also, the algorithms end up only
removing edges that were incident to u, and adding new edges to predecessors of
u. Similarly, our insertion algorithms only need to examine the direct neighbor-
hoods of those vertices returned by calls to RV, or, in the case of algorithm Ins2,
neighborhoods of vertices along short paths from vertices obtained through RV.

In light of this, it should be clear that our algorithms could easily be trans-
posed into a decentralized, message-passing model where each vertex corresponds
to a process that has access to its predecessors and successors. In this, we assume
that knowing the “identity” of a vertex is sufficient to allow direct communica-
tion with the corresponding process – and that we are somehow given access to a
RV primitive. The question of running such algorithms in an unreliable network,
or concurrently, is way beyond the scope of our work.

3 Distribution Preserving Algorithms for k-out Graphs

3.1 Basic Random Samplers

We give a precise description in this short section of the various random samplers
used by our algorithms. We make a clear distinction between those that do not
use RV (called internal) and those that do (external).

Internal Procedures. Since we are concerned about minimizing the number
of calls to RV, we allow our algorithms to use an alternate source of randomness.
The following standard probability distributions can be used by our algorithms:

– Bernoulli(p) returns 1 with probability p and 0 with probability 1 − p.
– Binomial(n, p) returns 0 ∗ j ∗ n with probability

(
n
j

)
pj(1 − p)n−j.

– Uniform(S) returns each element x ⊗ S with probability 1/|S|.
– Permute(S) returns the elements of the set S in a random uniform order.

We also need once a subroutine RandomVector, not making use of RV, which,
when given a random ordered Γ-subset (U1, . . . , UΣ) of a set S and m = |S|,
outputs Γ independent uniform elements V1, . . . , VΣ of S, implemented as follows:

X ≥ 0
for 1 ∗ i ∗ Γ do

if Bernoulli(X/m) then
Vi ≥ Uniform({U1, ..., UX})

else
X ≥ X + 1
Vi ≥ UX

372 P. Duchon and R. Duvignau

External Procedures. Practically speaking, we would often like to sample an
element from V \ S, where S is typically a small and known set. Whenever this
is needed, we write RVAvoiding(S) – shortened RVA when S is deducible from
the context – which is assumed to return a vertex from V \ S instead of V .
This is implemented using RV by calling the primitive until an element outside
of S is sampled. The number of calls needed is geometrically distributed with
expectation n/(n− |S|), which is close to 1 when |S| ⊆ n.

In the algorithms, we will often only count R, the number of calls to RVA,
since if the set to avoid is bounded by some constant then the total expected
number of times RV is called is always E(R)(1 + O(1/n)).

We extend the framework with another function RandomSubset(r) that re-
turns a uniform random r-subset of V . It is implemented using RVA, starting with
W0 = ↑ and building iteratively a set Wi of size i avoiding Wi−1. Its asymptotic
expected cost is r.

3.2 Insertion Algorithms

Insertion with Cost 2k. We first introduce a natural insertion algorithm.
When inserting a new vertex u, we sample a uniform k-subset of V for its out-
going neighborhood, and a random variable L ⊕ Binomial(n, k/n). Finally, a
uniform L-subset of V is chosen as its incoming neighborhood. We then choose
randomly, for each selected predecessor, one of its outgoing edges and redirect it
towards u. While simple, this algorithm preserves the uniform distribution over
k-out graphs.

Algorithm 1. Ins1

Input: a digraph G = (V,E), a vertex u /∈ V
Output: a digraph G∗

1: V ∗ ← V + u; n ← |V |
2: S ← RandomSubset(k)
3: E∗ ← E ∪ {(u, v) | v ∈ S}
4: L ← Binomial(n, k/n)
5: W ← RandomSubset(L)
6: for all v ∈ W do
7: X ← Uniform(N+

G (v))
8: E∗ ← E∗ − (v,X) + (v, u)

9: G∗ ← (V ∗, E∗)

u

Fig. 1. An execution of Ins1 with
k = 3 and L = 2

Proposition 1. Ins1 is a Δk-preserving insertion algorithm.

Proposition 2. The asymptotic expected cost of Ins1 is 2k.

Proof. We call only RV while processing RandomSubset(k) and RandomSubset(L),
and each has an asymptotic expected cost of k (recall E(L) = k). ⊃⊇

Local Update Algorithms for Random Graphs 373

Algorithm 2. Ins2

Input: a digraph G = (V,E), a vertex u /∈ V
Output: a digraph G∗

1: V ∗ ← V + u; E∗ ← E; n ← |V |
2: L ← Binomial(n, k/n)
3: X ← RandomVertex()
4: W ← ∅
5: for 1 ≤ i ≤ L do
6: W ← W + X
7: D ← Uniform(N+

G (X))
8: E∗ ← E∗ − (X,D) + (X,u)
9: if i < L then

10: Y ← {v ∈ N+
G (X) −D | v /∈ W }

11: if Bernoulli(|Y |/(n− i)) = 1 then
12: X ← Uniform(Y)
13: else
14: X ← D
15: if X ∈ W then
16: X ← RVAvoiding(W ∪N+

G (X))

17: else
18: if Bernoulli(k/n) = 1 then
19: X ← Uniform(N+

G [X] −D)
20: else
21: X ← D
22: S ← RandomSubset(k − 1)
23: if X ∈ S then
24: S ← S −X + RVAvoiding(S)

25: E∗ ← E∗ + (u,X) ∪ {(u, v) | v ∈ S}
26: G∗ ← (V ∗, E∗)

u

Fig. 2. An execution of Ins2 with
k = 3 and L = 4

Insertion with Cost k. We may improve the previous algorithm in order to
get an expected cost of k, which is optimal in some sense (see Proposition 5). The
idea is to reuse the neighbors of the vertices that will become the predecessors of
u, the new inserted vertex. In the process, we have to take care not to introduce
any dependencies between the outgoing neighborhoods.

Proposition 3. Ins2 is a Δk-preserving insertion algorithm.

Proposition 4. The asymptotic expected cost of Ins2 is k.

Proof. Let R be the number of times line 16 is processed during the execution
of the algorithm. Except from this line, we call RV on line 3, while processing
RandomSubset on line 22 and possibly other times if line 24 is executed. Notice
this results in an expected cost of k + E(R) (1 + O(1/n)).

For i ⊗ N, letBi be a Bernoulli random variable which is 1 if line 16 is executed
during the ith run through the loop, and 0 otherwise (or if the loop has fewer

374 P. Duchon and R. Duvignau

than i runs); thus, Bi = 1 with probability bounded by i
n−(k−1)P(L ⊂ i). We

have R =
∑

iBi; taking expectations,

E(R) ∗
n∑

i=1

i

n− (k − 1)
P(L ⊂ i) =

1

n− (k − 1)

n∑

i=1

iP(L ⊂ i).

Simple sum manipulations show that

n∑

i=1

iP(L ⊂ i) =

n∑

j=1

j(j + 1)

2
P(L = j) = E

(
L2 + L

2

)
.

Since L follows a binomial distribution with expectation k (hence variance
less than k), this is bounded by k2/2 + k = O(1). Thus E(R) = O(1/n). ⊃⊇

We conclude this section by arguing that algorithm Ins2 is, in some sense,
optimal.

The number of possible k-out graphs on a vertex set V of size n is |Gk
V | =(

n−1
k

)n
. Taking ratios shows that there are rn =

(
n
k

)
(n/(n − k))n times more

such graphs with one more vertex. Thus, when given a uniform k-out graph on
n vertices and asked to produce a uniform k-out graph on n+1 vertices, we need
at least log2(rn) = k log2(n) + O(1) additional bits of information. Each call to
RV gives log2(n) bits of information, since its result is uniform on a set of size n.

If RV were the only source of randomness used by our algorithms, then this
would prove that no algorithm can use, in expectation, fewer than k such calls;
but this is not the case. In fact, a single call to RV is enough to learn with high
probability the whole vertex set by just exploring the connected component of a
vertex, in the underlying undirected graph (which is connected with asymptotic
probability 1). Subsequent calls can then be simulated once V is known. This
would be at the cost of a much higher time complexity, though; our algorithm,
in contrast, has constant expected time complexity if one assumes the calls to
random samplers take constant time. Such an assumption is valid if one uses
optimal samplers as described in [13].

Proposition 5. For any Δk-preserving algorithm A that has bounded expected
time complexity and only makes calls in addition to RV to random samplers for
distributions of bounded entropy, the expected number of calls to RV is, asymp-
totically, at least k.

Proof. The above discussion shows that fewer than k expected calls to RV, to-
gether with a Δk-distributed graph of size n, and a bounded number of random
numbers from distributions with bounded entropy, provide strictly less binary
information than a Δk-distributed graph of size n+ 1. ⊃⊇
Note that our algorithm Ins2 does respect the conditions of the above proposi-
tion: other than calls to RV, the only additional source of randomness is in the
form of uniform variables on sets of size at most k (thus entropy at most log2(k)),
Bernoulli variables (with entropy at most 1), and a single binomial variable with

Local Update Algorithms for Random Graphs 375

Algorithm 3. Del1

Input: a digraph G = (V,E), a vertex u ∈ V
Output: a digraph G∗

1: V ∗ ← V − u
2: E∗ ← E|V ′

3: for all v ∈ N−
G (u) do

4: X ← RVAvoiding(N+
G [v])

5: E∗ ← E∗ + (v,X)

6: G∗ ← (V ∗, E∗)

u

Fig. 3. An execution of Del1 with
k = 3 and L = 2

parameters n and k/n, whose entropy is close to that of the limiting Poisson
distribution with expectation k. Thus, our algorithm is, at least in this class of
algorithms, optimal.

3.3 Deletion Algorithms

Simple Deletion. We first introduce the following simple deletion algorithm :
if u is leaving the network, this algorithm replaces any edge (v, u) pointing to u
by an edge (v, x) where x is chosen uniformly at random in the new vertex set,
avoiding incompatible choices for x.

Proposition 6. Del1 is a Δk-preserving deletion algorithm.

Proposition 7. The asymptotic expected cost of Del1 is k.

Proof. In G, u has, in expectation, k predecessors. For each of them we make a
call to RVA, resulting, in expectation, in 1 + O(1/n) calls to RV. ⊃⊇

Improved Deletion. We now describe a better deletion algorithm. The idea
is to make use of the successors of the deleted vertex u as suggestions in order
to save calls to RV for some of its predecessors; recall that N+

G (u) is a uniform
random k-subset of V − u, independent of the other outgoing neighborhoods.

RandomVector is used to correct the dependencies between the successors of
u. For the k first predecessors of u, we only call RVA if these suggestions cannot
be accepted. In the algorithm description, we use the function Permute in order
to guarantee that N+

G (u) is indeed in a random uniform order.

Proposition 8. Del2 is a Δk-preserving deletion algorithm.

Proposition 9. The asymptotic expected cost of Del2 is e−k kk

(k−1)! .

Proof. For i ⊗ N, let Bi be a Bernoulli random variable which is 1 if line 10 is
executed during the ith run through the loop, 0 otherwise (in particular, if there
is no such round). Notice Bi = 1 with probability k−1

n−1P(L ⊂ i) for i ∗ k and
with probability P(L ⊂ i) if i > k.

376 P. Duchon and R. Duvignau

Algorithm 4. Del2

Input: a digraph G = (V,E), a vertex u ∈ V
Output: a digraph G∗

1: V ∗ ← V − u; n ← |V |
2: E∗ ← E|V ′

3: u1, . . . , uL ← N−
G (u)

4: v1, . . . , vk ← Permute(N+
G (u))

5: V1, . . . , Vk ← RandomVector(v1, . . . , vk, n−1)
6: for 1 ≤ i ≤ L do
7: if i ≤ k and Vi /∈ N+

G [ui] then
8: X ← Vi

9: else
10: X ← RVAvoiding(N+

G [ui])

11: E∗ ← E∗ + (ui, X)

12: G∗ ← (V ∗, E∗)

u

Fig. 4. An execution of Del2 with
k = 3 and L = 4

Let R =
∑

i◦1Bi and notice the expected cost of Del2 is simply E(R)(1 +
O(1/n)), where

E(R) =

n−1∑

i=1

E(Bi) =

n−1∑

i=1

(
1i∼k

k − 1

n− 1
P(L ⊂ i) + 1i>kP(L ⊂ i)

)

=
k − 1

n− 1

k∑

i=1

P(L ⊂ i) +

n−1∑

i=k+1

P(L ⊂ i).

The first term is O(1/n) since
∑k

i=1 P(L ⊂ i) ∗ k. Standard sum and binomial
probabilities manipulations show that the second term may be rewritten as k ·
P(L = k) + O(1/n).

The result follows directly since P(L = k) = e−k kk

k! + O(1/n). ⊃⊇
Remark 3. The Stirling approximation formula implies that the asymptotic ex-

pected cost is bounded by, and close to,
√

k
2Λ .

Optimal Deletion. In our previous algorithm, we improved on the natural
deletion algorithm by recycling the successors of the deleted vertex u instead of
“wasting” this information. Our last deletion algorithm, which has expected cost
o(1), uses u’s predecessors instead of successors as suggestions to save calls to
RV, and only one successor of u. Surprisingly, this can be done while preserving
independence.

Proposition 10. Del3 is a Δk-preserving deletion algorithm.

Proposition 11. The expected cost of Del3 is o(1).

Local Update Algorithms for Random Graphs 377

Algorithm 5. Del3

Input: a digraph G = (V,E), a vertex u ∈ V
Output: a digraph G∗

1: V ∗ ← V − u; n ← |V |; E∗ ← E|V ′

2: u1, ..., uL ← Permute(N−
G (u))

3: for 1 ≤ i ≤ L do
4: if i = L then
5: X ← Uniform(N+

G (u))
6: if X ∈ N+

G [uL] then
7: X ← RVAvoiding(N+

G [uL])

8: else
9: C ← {uj | j < i and uj /∈ N+

G (ui)}
10: if Bernoulli(|C|/(n − 1 − k)) then
11: X ← Uniform(C)
12: else if (ui, ui+1) /∈ E∗ then
13: X ← ui+1

14: else
15: X ← RVAvoiding(N+

G [ui] ∪ C)

16: E∗ ← E∗ + (ui, X)

17: G∗ ← (V ∗, E∗)

u

Fig. 5. An execution of Del3 with
k = 3 and L = 4

Proof. We condition on the value Γ of L, the number of predecessors of u in G.
Notice that the probability that L is larger than, say, n/2 − k, is exponentially
small, and, conditionally on such a large value of L, the expected number of calls
to RV from all calls to RVA is still at most n2 (at most n calls to RVA, each calling
RV at most n times in expectation); thus, the contribution to the expected cost
of such abnormally large values of L is exponentially small.

We now assume that L < n/2 − k. There are L possible calls to RVA. For
i < L, the ith possible call does not occur if ui+1 /⊗ N+

G (ui), i.e., the probability
that it occurs is less than (k − 1)/(n − 2). Since the forbidden set is always of
size at most Γ+k, the ith potential call contributes at most k−1

n−2 · n
n−Σ−k ∗ 2 k−1

n−2
to the expected cost.

Similarly, the Lth possible call occurs with probability k/(n − 1) and has a
forbidden set of size k + 1, resulting in an expected number of calls to RV equal
to k

n−1 · n
n−k−1 = O(1/n).

Thus, taking expectations for L – and keeping in mind that E(L|L < n/2) ∗
E(L) = k, the total expected number of calls to RV is bounded above by

2
(k − 1)2

n− 2
+

nk

(n− 1)(n− k − 1)
,

which, for any fixed k, is O(1/n). ⊃⊇

4 Conclusion and Future Research

We have defined a notion of distribution preservation for update algorithms
on dynamic random graphs, and have illustrated it by giving examples of such

378 P. Duchon and R. Duvignau

distribution preserving insertion and deletion algorithms for uniform k-out
graphs. Our algorithms are naturally suited to implementation in a distributed
setting, once the problem of getting a random vertex in the graph is solved.

A natural direction for further research is to devise similar algorithms for
other, more complex distributions on random graphs. Obtaining algorithms with
similar properties for uniform undirected k-regular graphs (for even k, since for
odd k such regular graphs do not exist for odd size) would be quite a feat, since
known algorithms for sampling from this distribution tend to have poor time
complexity for even moderate k. In the present work, the fact that the graphs
are directed introduces a lot of independence that our algorithms rely upon.

Our k-out graphs are “simple” in that renaming the vertices in any (deter-
ministic) way leaves the Δk distribution unchanged. It would be interesting and
challenging to apply the same ideas to random graph models where the “iden-
tities” of vertices actually have some influence over the distribution of graphs,
such as any graph model that relies on vertices being placed in some geometric
space.

References

1. Frankel, J., Pepper, T.: The gnutella project, http://www.gnutelliums.com/
2. Bennett, K., Stef, T., Grothoff, C., Horozov, T., Patrascu, I.: The gnet whitepaper.

Technical report, Purdue University (2002)
3. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous

information storage and retrieval system. In: Federrath, H. (ed.) Designing Privacy
Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Heidelberg (2001)

4. Liben-nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: ACM Symposium on Principles of Distributed Computing,
pp. 233–242 (2002)

5. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter p2p networks.
In: FOCS, pp. 492–499 (2001)

6. Cooper, C., Dyer, M., Greenhill, C.: Sampling regular graphs and a peer-to-peer
network. Comb. Probab. Comput. 16(4), 557–593 (2007)

7. Bourassa, V., Holt, F.B.: Swan: Small-world wide area networks. In: International
Conference on Advances in Infracstructure, SSGRR-2003s (2003)

8. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4/5), 464–497
(1996)

9. Mart́ınez, C., Roura, S.: Randomized binary search trees. J. ACM 45(2), 288–323
(1998)

10. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Commun.
ACM 33(6), 668–676 (1990)

11. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001)

12. Cooper, C., Klasing, R., Radzik, T.: A randomized algorithm for the joining proto-
col in dynamic distributed networks. Theor. Comput. Sci. 406(3), 248–262 (2008)

13. Knuth, D.E., Yao, A.C.: The complexity of nonuniform random number genera-
tion. In: Proceedings of Symposium on Algorithms and Complexity, pp. 357–428.
Academic Press, New York (1976)

http://www.gnutelliums.com/

Odd Graphs Are Prism-Hamiltonian
and Have a Long CycleΔ

Felipe De Campos Mesquita, Letícia Rodrigues Bueno,
and Rodrigo De Alencar Hausen

Universidade Federal do ABC (UFABC)
Santo André, Brazil

felipe.mesquita@aluno.ufabc.edu.br
leticia.bueno@ufabc.edu.br

hausen@compscinet.org

Abstract. The odd graph Ok is the graph whose vertices are all subsets
with k elements of a set {1, . . . , 2k + 1}, and two vertices are joined by
an edge if the corresponding pair of k-subsets is disjoint. A conjecture
due to Biggs claims that Ok is hamiltonian for k ≥ 3 and a conjecture
due to Lovász implies that Ok has a hamiltonian path for k ≥ 1. In this
paper, we show that the prism over Ok is hamiltonian and that Ok has
a cycle with .625|V (Ok)| vertices at least.

Keywords: hamiltonian cycle, prism over a graph, odd graph.

1 Introduction

Lovász [14] conjectured that every connected undirected vertex-transitive graph
has a hamiltonian path. The odd graphs form a well-studied family of connected
vertex-transitive graphs. Later, Biggs [2] hypothesized that the odd graphs are
hamiltonian for all k > 2. Still, a related conjecture by Havel [7] claims that the
bipartite double graph of the odd graph is hamiltonian.

The vertices of the Kneser graph K(n, k) are the k-subsets of {1, 2, . . . , n}
and two vertices are adjacent if the corresponding k-subsets are disjoint. For
n = 2k + 1, the Kneser graph K(2k + 1, k) is called the odd graph and it is
denoted by Ok (Figures 1a and 1b).

The bipartite double graph of the Kneser graph K(n, k) is known as the bipar-
tite Kneser graph B(n, k). The vertices are the k-subsets and (n− k)-subsets of
{1, 2, . . . , n} and the edges represent the inclusion between two such subsets. The
vertex set of B(n, k) can be seen as two (symmetric) layers of the n-dimensional
cube. For n = 2k + 1, the graph B(2k + 1, k) is called the middle-layers graph
and it is denoted by Bk (Figure 1(c)).

To date, Biggs’ conjecture has been verified for 3 ⊕ k ⊕ 13 [17] and there
is a hamiltonian path in Ok for k ⊕ 19 [3,19]. Havel’s conjecture is true for
k ⊕ 19 [18,19]. Also, apart from the Petersen graph, K(n, k) and B(n, k) are
hamiltonian if n ≤ (3k + 1 +

√
5k2 − 2k + 1)/2, as reported in [5].

α Research partially supported by Brazilian agency CNPq.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 379–390, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

380 F. De Campos Mesquita, L.R. Bueno, and R. De Alencar Hausen

{1}

{3}{2}

(a) O1 = K(3, 1)

{1,2}

{3,4}

{1,5}{2,3}

{4,5}

{3,5}

{2,5}

{2,4}

{1,3}

{1,4}

(b) O2 = K(5, 2)

{1} {2} {3}

{1,2} {2,3} {1,3}

(c) B1 = B(3, 1)

Fig. 1. The odd graph Ok for k = 1, 2 and the middle-levels graph Bk for k = 1

Since the decision problem of the hamiltonian cycle problem is NP-Com-
plete [13], one recent trend is to search for long cycles. Johnson [11] provided a
lower bound showing that Ok and Bk contain a cycle of length (1−o(1))|V (Ok)|
and (1− o(1))|V (Bk)|, respectively, where the error term o(1) is of the form c∗

k
for some constant c. The author does not estimate c but, in other words, this
means that the graphs Ok and Bk are asymptotically hamiltonian because, as
k increases, the length of the cycle increases as well. Savage and Winkler [16]
showed that if Bk has a hamiltonian cycle for k ⊕ h, then Bk has a cycle
containing a fraction 1−ε of the graph vertices for all k, where ε is a function of
h. For example, since Bk has a hamiltonian cycle for 1 ⊕ k ⊕ 19, for k ≤ 20 the
graph Bk has a cycle containing at least 87.46% of the graph vertices. For the
graph Ok, the best lower bound currently known on the length of the longest
cycle is

√
3|V (Ok)|, given by Babai [1] for vertex-transitive graphs in general,

which is less than 3% for O10, and asymptotically approaches zero as k increases.
Another trend is to search for related structures. In this aspect, having a

hamiltonian prism in a graph has been shown to be an interesting relaxation
of being hamiltonian. A closed spanning walk where each vertex is traversed at
most q times is a q-walk and a spanning tree of maximum degree q is a q-tree.
A hamiltonian cycle is then a 1-walk, and a hamiltonian path is a 2-tree. It is
proven [9] that a graph with a q-tree has a q-walk, and that a q-walk implies the
existence of a (q + 1)-tree, resulting that

1-walk (hamiltonian cycle) =⇒ 2-tree (hamiltonian path) =⇒ 2-walk
=⇒ 3-tree =⇒ 3-walk =⇒ . . .

Recently, this hierarchy of graphs was improved by [12]. The prism over a
graph G is the Cartesian product G�K2 of G with the complete graph on two
vertices (Figure 2). If the prism over G is hamiltonian, we say G is prism-
hamiltonian. It was shown in [12] that the property of having a hamiltonian
prism is “sandwiched” between the existence of a 2-tree and the existence of a
2-walk which results in

2-tree =⇒ hamiltonian prism =⇒ 2-walk.

Odd Graphs Are Prism-Hamiltonian and Have a Long Cycle 381

This means that graphs having a hamiltonian prism are “close” to being hamil-
tonian, even closer than graphs having a 2-walk. Previously, it was established
that the prism over Bk is hamiltonian [8]. Later, the counterpart of this result
has been proven for Ok only for k even [4]. In this paper, we demonstrate that
the prism overOk is hamiltonian for all k. Moreover, we improve the lower bound
on the length of the longest cycle of Ok by providing a cycle with .625|V (Ok)|
vertices at least.

{1}

{3}{2}

{1}

{3}
{2}

Fig. 2. The prism over the graph O1

In Section 2, we give some auxiliary proofs to prove our main results in
Section 3. In Section 4 we provide an alternative proof for Bk to be prism-
hamiltonian, using the proof presented in Section 3 and, therefore, relating the
prism-hamiltonicity of Ok and Bk.

2 Preliminaries

In this section, we introduce some notations, notions and results from [6,8,10,20]
which will be frequently used throughout this paper. We need two definitions
from [20]: a spanning cactus in a graph G is a spanning connected subgraph H of
maximum degree 3 consisting of vertex-disjoint cycles and vertex-disjoint paths
such that, if every cycle is replaced by a single vertex connected to the paths
incident with it, the resulting graph will be a tree. The cactus is said to be even
if all cycles are even.

The main idea of our results is to show that Ok contains a spanning even
cactus consisting of an even cycle and paths of size 1 and/or 2. Additionally, we
show that such an even cycle in Ok has .625|V (Ok)| vertices at least. We use a
tool provided in [20]:

Proposition 1 ([20]). If G contains a spanning even cactus, then it is prism-
hamiltonian.

There is a correspondence between the k-subsets and the (n − k)-subsets of
{1, 2, . . . , n = 2k + 1} with a set of binary strings of n bits with exactly k 1’s
and (n − k) 0’s. The correspondence bnbn−1 . . . b1 ⊗ {i|bi = 1} is a bijection
of binary strings of n bits into the subsets of n. The complement x of a binary
digit x is 1 if x = 0 and 0 if x = 1. The complement of a binary string extends
this definition by bitwise complement. Throughout this paper we will consider

382 F. De Campos Mesquita, L.R. Bueno, and R. De Alencar Hausen

the vertices of Ok and Bk represented by binary strings, except where noted
otherwise.

We will now develop some useful tools that will be used to prove our main
results in Section 3.

Definition 1. Let C = (v1, v2, v3, v4, . . . , vq) be a cycle in Ok−1. We define the
sequences C1 and C2 as follows:

(i) If q is even, C1 = (0v11, 1v20, 0v31, 1v40, . . . , 1vq0) and C2 = (1v10, 0v21,
1v30, 0v41, . . . , 0vq1);

(ii) If q is odd, C1 = (0v11, 1v20, 0v31, 1v40, . . . , 0vq1) and C2 = (1v10, 0v21,
1v30, 0v41, . . . , 1vq0).

Denote by
∈−
Q , a path Q traversed from the last to the first vertex. Given two

disjoint paths Q1 and Q2 such that the last vertex of Q1 is adjacent to the first
vertex of Q2, we denote by Q1 ∗ Q2 the path obtained by first traversing the
vertices of Q1, and then the vertices of Q2.

Lemma 1. Let C be a cycle with q vertices in Ok−1.

(i) If q is odd then there is a cycle with 2q vertices in Ok;
(ii) If q is even then there are two disjoint cycles each with q vertices in Ok.

Proof. By adding 1 and 0 to a vertex of C we have, by definition, a vertex of Ok.
Therefore, we construct the paths C1 and C2 in Ok according to Definition 1.
Notice, by construction, that C1 and C2 are paths in Ok and, if q is even, both
are cycles as well. If q is odd, since C is a cycle, then there are edges {0v11, 1vq0}
and {1v10, 0vq1} in E(Ok), which implies C1 ∗ C2 is a cycle in Ok. ≥⊆
Definition 2. Let Sk, Tk and Rk be three disjoint subsets of the vertices of Ok

such that:

(i) Sk is the set of k-subsets which have element 1 or n, but not both;
(ii) Tk is the set of k-subsets which neither has element 1 nor element n;
(iii) Rk is the set of k-subsets which have both elements 1 and n.

Notice that V (Ok) = Sk ↑ Tk ↑Rk.

Lemma 2. Each vertex v ⊃ Tk has exactly two edges to vertices of Sk and (k−1)
edges to vertices of Rk.

Proof. Since a vertex of Tk does not contain element 1 and n, there are (2k− 1)
elements to choose k. Therefore, there are no edges between vertices of Tk.
However, we can choose a k-subset u and (k − 1)-subset v in (2k − 1) elements.
Notice that u ⊃ Tk is adjacent to v ↑ {1} ⊃ Sk and to v ↑ {n} ⊃ Sk. ≥⊆
By definition, the vertices of Sk have no edges to vertices of Rk and, by Lemma 2,
they have two edges to vertices of Tk and (k − 1) edges to vertices of Sk. The
vertices of Rk are adjacent only to vertices of Tk, therefore Ok has a bipartite
subgraph with bipartition (Tk, Rk) such that the partition Tk has degree (k− 1)
and the partition Rk has degree (k + 1).

Odd Graphs Are Prism-Hamiltonian and Have a Long Cycle 383

Lemma 3. It holds that |Tk| > |Rk|.
Proof. Since

(
2k−1

k

)
=

(
2k−1
k−1

)
, and this value is strictly greater than any other

value in the Pascal triangle for combinations of (2k − 1) elements, we have that
|Tk| =

(
2k−1

k

)
>

(
2k−1
k−2

)
= |Rk|. ≥⊆

Lemma 4. If Ch = (v1, v2, v3, v4, . . . , vq) is a hamiltonian cycle in Ok−1 and
C1 and C2 are constructed according to Definition 1, then

(i) Sk = V (C1) ↑ V (C2);
(ii) |Sk| = |C1|+ |C2| = 2|V (Ok−1)| > 0.5|V (Ok)|.
Proof. First, we show that Sk = V (C1)↑V (C2) and V (C1)⊇V (C2) = ⊂. Without
loss of generality, let v ⊃ Sk be such that v = 0v⊆1 for v⊆ ⊃ V (Ok−1). Then v⊆

has to contain (k− 1) 1’s, that can be placed in
(
2k−1
k−1

)
possible positions in the

string that represents v⊆. Those combinations correspond exactly to the vertices
of Ok−1. The proof is analogous for v = 1v⊆0. It follows that, by construction of
C1 and C2, and because Ch is a hamiltonian cycle, each vertex of Sk is either in
C1 or in C2. Next, we show that |C1|+ |C2| > 0.5|V (Ok)|:

2|V (Ok−1)| > 0.5|V (Ok)|
|V (Ok)| < 4|V (Ok−1)|

|V (Ok)|
|V (Ok−1)| < 4 (I)

We have |V (Ok−1)| =
(
2k − 1

k − 1

)
=

(2k − 1)!

k!(k − 1)!
and

|V (Ok)| =
(
2k + 1

k

)
=

(2k + 1)!

(k + 1)!k!
=

(2k + 1)(2k)(2k − 1)!

(k + 1)(k)(k − 1)!k!
.

It follows that |V (Ok)| = (2k + 1)(2k)

(k + 1)(k)
|V (Ok−1)| and, therefore,

|V (Ok)|
|V (Ok−1)| =

(2k + 1)(2k)

(k + 1)(k)
=

(4k + 2)

(k + 1)
. (II)

Finally, lim
k◦∼

|V (Ok)|
|V (Ok−1)| = lim

k◦∼
(4k + 2)

(k + 1)
= lim

k◦∼
(4 − 2

k + 1
) = 4 .

From (I) and (II):
(4k + 2)

(k + 1)
⊕ 4

4(k + 1)− 2

k + 1
= 4− 2

k + 1
⊕ 4

−2

(k + 1)
⊕ 0 .

For k > 0, we have 2|V (Ok−1)| > 0.5|V (Ok)|. ≥⊆

384 F. De Campos Mesquita, L.R. Bueno, and R. De Alencar Hausen

Lemma 5. It holds that |Tk| = |V (Ok−1)|.

Proof. Since |Tk| =
(
2k−1

k

)
=

(
2k−1

(2k−1)−k
)

and
(
2k−1

k

)
=

(
2k−1
k−1

)
, we have that

|Tk| = |V (Ok−1)|. ≥⊆

Theorem 1. If there exists a hamiltonian cycle (respectively, path) Ch = (v1,
v2, . . . , vq) in Ok−1, then Ok has a cycle (respectively, path) C⊆ such that |C⊆| >
0.75|V (Ok)|.

Proof. Construct C1 and C2 according to Definition 1. First, assume that Ch is a
hamiltonian cycle. Notice that there are q vertices 0vj0 connecting 0vj1 to 1vj0,
where 0vj1 ⊃ Sk, 1vj0 ⊃ Sk and vj ⊃ Ch for 1 ⊕ j ⊕ q, since the complement vj
of a vertex vj ⊃ Ch has k 1’s and (k−1) 0’s. Therefore, 0vj0 ⊃ V (Ok). Construct
q paths with 3 vertices by combining the vertices of C1, C2 and Tk:

Q1 = 0v11, 0v10, 1v10

Q2 = 1v20, 0v20, 0v21

...

Qq = 1vq0, 0vq0, 0vq1, if q is even or

Qq = 0vq1, 0vq0, 1vq0, if q is odd.

Notice that, for Qj , 1 ⊕ j ⊕ q, the first vertex of Qj is in C1, the second one
is in Tk and the third one is in C2. The q vertices 0vj0, for vj ⊃ Ch, are distinct,
because Ch is a hamiltonian cycle in Ok−1 and, therefore, the complement of
the vertices of Ch are distinct as well and, by Lemmas 5, consist of all vertices
of Tk.

Concatenate the q paths Qj , 1 ⊕ j ⊕ q, as follows:
C⊆ = Q1 ∗∈−Q2 ∗Q3 ∗∈−Q4 ∗ . . . ∗∈−Qq, if q is even and
C⊆ = Q1 ∗∈−Q2 ∗Q3 ∗∈−Q4 ∗ . . . ∗Qq, if q is odd.
Figure 3 illustrates the construction of C⊆ for q even and q odd. Notice that,

in both cases, the last vertex of C⊆ is 1vq0, which is adjacent to the first vertex
of C⊆: 0v11. Therefore, C⊆ is a cycle.

Assume now that Ch is a hamiltonian path. Then C⊆ is a path as well, because
the vertex v1 is not adjacent to vq in Ch. By Lemmas 4 and 5, |C⊆| = |C1| +
|C2|+ |Tk| = 3|V (Ok−1)| > 0.75|V (Ok)|. ≥⊆

Since Ok is hamiltonian for 3 ⊕ k ⊕ 13 [17] and has a hamiltonian path for
k ⊕ 19 [3,19], Theorem 1 give a cycle in O14 and a path in O20, both with at
least 75% of the vertices of the graph.

Lemmas 4, 5 and Theorem 1 imply that C⊆ has all vertices of Sk and Tk.
Therefore, to make C⊆ a hamiltonian cycle or path of Ok, it remains to add the
vertices of Rk to C⊆.

Odd Graphs Are Prism-Hamiltonian and Have a Long Cycle 385

2.1 Modular Matchings

Modular matchings were proposed in [6] for the middle-levels graph Bk. Let A
be a k-subset of {1, . . . , 2k+ 1}. In a matching mi, for i = 1, . . . , k + 1, we have
that A is adjacent to the set A ↑ {aj}, where

j ↓ i+
∑

a∈A
a (mod k + 1),

and aj is the j-th largest element in A.
When working with elements of {1, . . . , 2k+1}, we will assume a cyclical order

for them, in which 1 is the successor of 2k+ 1, and that every operation is done
modulo k + 1, with remainders {1, 2, . . . , k + 1}. We will use a lemma from [6],
as formulated in [8].

C1

T

C2

0v11 1v20 0v31 1v40 0vq−11 1vq0

1v10 0v21 1v30 0v41 1vq−10 0vq1

0v10 0v20 0v30 0vq00v40 0vq−10

Q1 Q2 Q3 Q4 Qq−1 Qq

(a) C′ for q even

C1

T

C2

0v11 1v20 0v31 1vq−10 0vq1

1v10 0v21 1v30 0vq−11 1vq0

0v10 0v20 0v30 0vq00vq−10

Q1 Q2 Q3 Qq−1 Qq

(b) C′ for q odd

Fig. 3. Theorem 1: the q paths with 3 vertices (bold edges) are concatenated by the
edges of C1 and C2 (gray edges)

Lemma 6 ([6,8]). For i = 1, . . . , k + 1, mi is a matching in Bk and the set
{m1, . . . ,mk+1} is a 1-factorization of Bk.

A modular matchingmi in Bk can be projected onto the graphOk by replacing
each (k + 1)-set A by its complement A = {1, . . . , 2k + 1} \ A. Notice that A
is a k-set and, therefore, a vertex of Ok. Given a modular matching mi in Bk,

386 F. De Campos Mesquita, L.R. Bueno, and R. De Alencar Hausen

denote by ρ(mi), the projection of mi in Ok where, for every vertex A in V (Bk),
ρ(A) = A if A is a k-subset and ρ(A) = A if A is a (k + 1)-subset. It has been
proven [10] that ρ(mi) is a 2-factor or, if i = k+2

2 , a perfect matching of Ok.

3 Proof of the Main Results

This section shows how a spanning even cactus in Ok is obtained from a spanning
even cactus in Ok−1. Since Ok has a hamiltonian cycle for 3 ⊕ k ⊕ 13, it suffices
to prove the statement for k ≤ 14.

Definition 3. A peyote is a spanning even cactus of Ok such that all vertices
of Sk and Tk form an even cycle and each vertex of Rk is connected to that cycle
by an edge (Figure 4).

Lemma 7. If there exists a hamiltonian cycle Ch = (v1, v2, . . . , vq) in Ok−1
such that |Ch| is even, then Ok has a peyote.

Proof. Construct a cycle C⊆ as given in the proof for Theorem 1. Since C⊆ is
formed by the concatenation of q paths, each with three vertices, and |Ch| is
even, then |C⊆| is even as well. It remains to connect the vertices of Rk to C⊆.
Notice that any modular matching applied to the vertices of Rk gives a matching
M in Bk which saturates each vertex of Rk. Since the vertices of Rk have edges
only to vertices of Tk, the projection ρ(M) is in the bipartite subgraph with
bipartition (Tk, Rk). The matching ρ(M) along with the cycle C⊆ are a peyote
in Ok. ≥⊆

Definition 4. A cactoid is a spanning even cactus of Ok such that all vertices
of Sk and X, where X ∅ Tk, form an even cycle, all vertices of Tk \ X are
connected to that cycle by an edge, and each vertex of Rk is connected by an
edge to some vertex of Tk (Figure 4).

vertex ∈ Tk

vertex ∈ Sk

vertex ∈ Rk

(a) (b)

Fig. 4. Illustrations of (a) a peyote and (b) a cactoid where X � Tk

Odd Graphs Are Prism-Hamiltonian and Have a Long Cycle 387

Notice that every peyote is a cactoid where X = Tk. Besides, since the even
cycle in a cactoid only has vertices of Sk and Tk, each vertex of Tk \ X is
connected to the cycle by an edge to some vertex of Sk. Finally, the vertices of
Rk are connected to the vertices of X or Tk \X . In the last case, instead an edge
connected to the even cycle, we have a path of length 2.

Theorem 2. If there exists a cactoid in Ok−1, then Ok has a cactoid.

Proof. First consider that Ok−1 has a peyote and let C⊆ = (v1, v2, v3, v4, . . . , vq)
be the even cycle of such peyote. As before, we construct C⊆1 and C⊆2 from
C⊆ according to Definition 1: C⊆1 = (0v11, 1v20, 0v31, 1v40, . . . , 1vq0) and C⊆2 =
(1v10, 0v21, 1v30, 0v41, . . . , 0vq1). For a vertex vi in C⊆, 1 ⊕ i ⊕ q, that is adja-
cent to a vertex w of Rk−1 in the peyote, we add properly to C⊆1 and C⊆2, the
edges {1w0, 0vi1} and {0w1, 1vi0}. Notice that 0w1 and 1w0 are vertices of Sk.
As in Theorem 1, construct q paths by combining the vertices of C⊆1, C⊆2 e Tk:

(i) If the vertex vi is not adjacent in C⊆ to a vertex of Rk−1, then construct a
path with three vertices: (0vi1, 0vi0, 1vi0);

(ii) If the vertex vi is adjacent in C⊆ to a vertex w of Rk−1, then construct a
path with five vertices: (0vi1, 1w0, 0w0, 0w1, 1vi0).

The concatenation of the q paths is the same given in the proof for Theorem 1.
Denote it by C⊆⊆. Since each path has either three or five vertices and q is even,
|C⊆⊆| is even as well.

Clearly, all vertices of Sk are in C⊆⊆. The other vertices of Tk can be added to
C⊆⊆ by joining them to one of the two adjacent vertices in Sk. All vertices of Tk
in C⊆⊆ have degree 2 (if they are in the cycle) or 1. Choose any modular matching
applied to the vertices of Rk obtaining a matching M in Bk. The matching ρ(M)
along with the cycle C⊆⊆ are a cactoid in Ok.

In the general case where Ok−1 has a cactoid, not necessarily a peyote, proceed
as in the previous case, with the only difference that the path between 0vi1
and 1vi0 can be a path with seven vertices: (0vi1, 1u0, 0w1, 0w0, 1w0, 0u1, 1vi0),
where u ⊃ Tk−1, w ⊃ Rk−1 and vi ⊃ Sk−1. ≥⊆
Corollary 1. The prism over the odd graph Ok, k ≤ 14, is hamiltonian.

Proof. Since O13 is hamiltonian and |V (O13)| is even, by Lemma 7 and Theo-
rem 2, for k ≤ 14, the odd graph Ok has a cactoid. Therefore, by Proposition 1,
Ok is prism-hamiltonian. ≥⊆
Theorem 3. The odd graph Ok, k ≤ 14, has a cycle with at least .625|V (Ok)|
vertices.

Proof. The number of vertices in the cycle in a cactoid in Ok, as constructed in
the proof for Theorem 2, can be expressed by

2

k−1∑

i=14

(
2i+ 1

i

)
+ 3

(
27

13

)
(1)

388 F. De Campos Mesquita, L.R. Bueno, and R. De Alencar Hausen

where
(
27
13

)
is the number of vertices of O13. For k = 14, the number of vertices

in a cactoid is roughly 77% of |V (Ok)|. This fraction decreases as k increases,
but it is possible to show that, when divided by the number of vertices of Ok,
Expression (1) is lower bounded by 1

2

∑k−14
i=0

1
4i , which is never less than 62.5%

for k ≤ 15, and approaches 2
3 as k increases. ≥⊆

4 The Bipartite Kneser Graph Bk Is Prism-Hamiltonian

Horák et al. [8] proved that the graph Bk is prism-hamiltonian by determining
a spanning 3-connected 3-regular subgraph in Bk, using Paulraja’s proof [15]
that graphs with such a spanning subgraph are prism-hamiltonian. We provide
an alternative proof for the same result, which relates a cactoid in Ok with a
spanning even cactus in Bk.

Proposition 2 ([11]). Let C be a cycle with q vertices in Ok.

(i) If q is odd, then there is a cycle in Bk with with 2q vertices;
(ii) If q is even, then there are two disjoint cycles in Bk, each with q vertices.

Notice that |V (Bk)| = 2|V (Ok)| and that, if Ch is a hamiltonian cycle in
Ok such that q = |Ch| is odd, Proposition 2 gives a hamiltonian cycle in Bk.
Otherwise, if q is even, then the two disjoint cycles contain all vertices of Bk.

Lemma 8 ([3]). Consider the k-subset σ = {2, 4, 6, . . . , n − 1} ⊃ V (Ok). Let
σ + δ denote the set {a+ δ : a ⊃ σ}, with arithmetic modulo n. The subgraph of
Ok induced by σ + δ is a cycle Cσ = (σ, σ + 1, σ + 2, . . . , σ + (n− 1)).

Lemma 9. The cycle Cσ has (n− 1) vertices of Sk and one vertex of Tk.

Proof. Let σ⊆ be the binary representation of the vertex σ and C⊆σ be the cycle Cσ

with all vertices as binary strings. Notice that the vertices of C⊆σ are translations
of all elements of σ⊆ by one to the left, repeatedly. Denote such translation of
the bits by sh(σ⊆). Then σ is sh0(σ⊆), σ + 1 is sh1(σ⊆), σ + 2 is sh2(σ⊆) and so
on. Now, notice that there are no two consecutive 1’s in σ⊆. Therefore, C⊆σ does
not have a subset with both elements 1 and n, i.e., a vertex of Rk. Since there is
only a pair of consecutive zeros, C⊆σ has only one vertex without both elements
1 and n, i.e., a vertex of Tk. ≥⊆
Theorem 4. The prism over the middle-levels graph Bk, k ≤ 1, is hamiltonian.

Proof. Let H be a cactoid in Ok. Let W = (v1, v2, v3, v4, . . . , vq) be the even
cycle contained in H . Let Z be the set of vertices in H \W . Recall that q is
even. According to Proposition 2, construct two cycles from W by alternately
complementing the vertices in W : W1 = (v1, v2, v3, v4, . . . , vq−1, vq) and W2 =
(v1, v2, v3, v4, . . . , vq−1, vq). Notice that, by construction, if a vertex v ⊃ W1, then
v ⊃ W2.

Let W ⊆1 and W ⊆2 be the cycles W1 and W2 to which the following edges and
vertices have been appended:

Odd Graphs Are Prism-Hamiltonian and Have a Long Cycle 389

(i) Let {u, v} ⊃ E(H) such that u ⊃ Z and v ⊃ W . For v ⊃ W ⊆i , add {v, u}
and, for v ⊃W ⊆i , add {v, u};

(ii) Let {u,w} ⊃ E(H) such that u,w ⊃ Z. For u ⊃W ⊆i (added in the previous
case), add {u,w}. For u ⊃W ⊆i , add {u,w}.

Notice that all vertices of Bk are in W ⊆1 and W ⊆2. It remains to show how
properly to connect W ⊆1 and W ⊆2 by an edge in order to obtain a spanning even
cactus. Since the graph Bk is connected, there exists an edge between some pair
of vertices v ⊃ W ⊆1 and u ⊃W ⊆2.

Let v be a vertex in C⊆σ. Notice that |C⊆σ| = n is odd. By Proposition 2, from
C⊆σ, there is a cycle with 2n vertices in Bk, which contains both v and v, for all
v ⊃ C⊆σ. This cycle provides two paths between v and v. Therefore, there exists
an edge e = {u, v} in C⊆σ such that, in the cycle with 2n vertices in Bk obtained
from C⊆σ, there is either an edge {u, v} or {u, v} connecting W ⊆1 to W ⊆2.

Without loss of generality, suppose {u, v} connects W ⊆1 to W ⊆2 for u ⊃ W ⊆1
and v ⊃ W ⊆2. By Lemma 9, (n − 1) vertices of C⊆σ are in Sk and a vertex in Tk,
therefore:

(a) Let u, v ⊃ Sk. If u and v have degree 2, then W ⊆1 and W ⊆2 are connected by
{u, v} and the proof is finished. Otherwise, if u (or v) has degree 3, there
is a vertex w of Tk connected to that vertex. By Lemma 2, the vertex w
is adjacent to exactly two vertices u and u⊆ of Sk and Theorem 2 allows
to replace the edge {u,w} by the edge {u⊆, w} in W . Therefore, {u, v} can
connect W ⊆1 and W ⊆2 in a spanning even cactus.

(b) Let u ⊃ S and v ⊃ T . If u has degree 3, we proceed as in the first case.
If v has degree 2 and v ⊃ Z, there is a vertex of Rk connected to v. By
Lemma 3, |Tk| > |Rk| for every odd graph Ok, which implies there exists at
least a vertex p ⊃ Tk such that either p has degree 2 and p ⊃ W or p /⊃ W
but it has degree 1. Since the graph is vertex-transitive and edge-transitive,
from the cycle C⊆σ, we obtain another cycle including p.

For two k-subsets of Tk, A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bk},
not represented as binary strings, let Π be a bijective function defined by
the elements of A and B as follows: Π(A) is the set {Π(ai)|ai ⊃ A} such
that Π(1) = 1, Π(n) = n and Π(ai) = bi, for 1 ⊕ i ⊕ k. By Lemmas 8
and 9, the remaining elements of {1, 2, . . . , n} can be mapped such that Π
be a bijective function. Now, let Π be defined by the vertices v and p and
Π(C⊆σ) be the function Π applied to each vertex of C⊆σ. Notice that Π(C⊆σ)
is a cycle which contains n − 1 subsets of Sk and one subset of Tk as well.
Since Π(C⊆σ) contains the vertex p ⊃ Tk, W ⊆1 can be connected to W ⊆2. ≥⊆

References

1. Babai, L.: Long cycles in vertex-transitive graphs. Journal of Graph Theory 3(3),
301–304 (1979)

2. Biggs, N.: Some odd graph theory. Annals of the New York Academy of Sci-
ences 319, 71–81 (1979)

390 F. De Campos Mesquita, L.R. Bueno, and R. De Alencar Hausen

3. Bueno, L.R., Faria, L., Figueiredo, C.M.H., Fonseca, G.D.: Hamiltonian paths in
odd graphs. Applicable Analysis and Discrete Mathematics 3(2), 386–394 (2009)

4. Bueno, L.R., Horák, P.: On hamiltonian cycles in the prism over the odd graphs.
Journal of Graph Theory 68(3), 177–188 (2011)

5. Chen, Y.C.: Triangle-free hamiltonian Kneser graphs. Journal of Combinatorial
Theory Series B 89, 1–16 (2003)

6. Duffus, D.A., Kierstead, H.A., Snevily, H.S.: An explicit 1-factorization in the
middle of the boolean lattice. Journal of Combinatorial Theory, Series A 65,
334–342 (1994)

7. Havel, I.: Semipaths in directed cubes. In: Fiedler, M. (ed.) Graphs and other
Combinatorial Topics, pp. 101–108. Teubner-Texte Math., Teubner (1983)

8. Horák, P., Kaiser, T., Rosenfeld, M., Ryjaček, Z.: The prism over the middle-levels
graph is hamiltonian. Order 22(1), 73–81 (2005)

9. Jackson, B., Wormald, N.C.: k-walks of graphs. Australasian Journal of Combina-
torics 2, 135–146 (1990)

10. Johnson, J.R., Kierstead, H.A.: Explicit 2-factorisations of the odd graph. Order 21,
19–27 (2004)

11. Johnson, J.R.: Long cycles in the middle two layers of the discrete cube. Journal
of Combinatorial Theory Series A 105(2), 255–271 (2004)

12. Kaiser, T., Ryjáček, Z., Král, D., Rosenfeld, M., Voss, H.-J.: Hamilton cycles in
prisms. Journal of Graph Theory 56, 249–269 (2007)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

14. Lovász, L.: Problem 11. In: Combinatorial Structures and their Applications. Gor-
don and Breach (1970)

15. Paulraja, P.: A characterization of hamiltonian prisms. Journal of Graph The-
ory 17, 161–171 (1993)

16. Savage, C.D., Winkler, P.: Monotone gray codes and the middle levels problem. J.
Combin. Theory Ser. A 70(2), 230–248 (1995)

17. Shields, I., Savage, C.D.: A note on hamilton cycles in Kneser graphs. Bulletin of
the Institute for Combinatorics and Its Applications 40, 13–22 (2004)

18. Shields, I., Shields, B.J., Savage, C.D.: An update on the middle levels problem.
Discrete Mathematics 309(17), 5271–5277 (2009)

19. Shimada, M., Amano, K.: A note on the middle levels conjecture. CoRR
abs/0912.4564 (2011)

20. Čada, R., Kaiser, T., Rosenfeld, M., Ryjáček, Z.: Hamiltonian decompositions of
prisms over cubic graphs. Discrete Mathematics 286, 45–56 (2004)

Relatively Bridge-Addable Classes of Graphs

Colin McDiarmid1 and Kerstin Weller2

1 Department of Statistics, University of Oxford, United Kingdom
cmcd@stats.ox.ac.uk

2 Institut für Theoretische Informatik, ETH Zürich, Switzerland
kerstin.weller@inf.ethz.ch

Abstract. In recent years there has been a growing interest in random
graphs sampled uniformly from a suitable structured class of (labelled)
graphs, such as planar graphs. In particular, bridge-addable classes have
received considerable attention. A class of graphs is called bridge-addable
if for each graph in the class and each pair u and v of vertices in different
components, the graph obtained by adding an edge joining u and v must
also be in the class. The concept was introduced in 2005 by McDiar-
mid, Steger and Welsh, who showed that, for a random graph sampled
uniformly from such a class, the probability that it is connected is at
least 1/e.

In this extended abstract, we generalise this result to relatively bridge-
addable classes of graphs, which are classes of graphs where some but
not necessarily all of the possible bridges are allowed to be introduced.
We also give a bound on the expected number of vertices not in the
largest component. These results are related to the theory of expander
graphs. Furthermore, we investigate whether these bounds are tight, and
in particular give detailed results about random forests in the bipartite
graph Kn/2,n/2.

Keywords: random graphs, labelled graphs, bridge-addable, expander-
graphs, forests in Kn,n.

1 Introduction

A set A of graphs is called bridge-addable if for any graph G in A and any pair
of vertices u, v in different components the graph G ∪ {uv} obtained by adding
the edge uv to G is also in A. The concept of bridge-addability was introduced
by McDiarmid et al.[9] in 2005 in the course of studying random planar graphs,
and examples include forests, series-parallel graphs, planar graphs, and more
generally graphs embeddable on any fixed surface, and minor-closed classes of
graphs where the forbidden minors are all 2-connected.

If S is a finite non-empty set we write R ∈u S to mean that R is drawn
uniformly at random from S. When we use such notation we assume implicitly
that S is non-empty. For a collection A of graphs we write Rn ∈u A to mean
that Rn is drawn uniformly at random from An, the set of all graphs in A on

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 391–398, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

392 C. McDiarmid and K. Weller

vertex set [n] := {1, ..., n}. By Theorem 2.2 in [9], for every finite bridge-addable
set A of graphs and for R ∈u A

P(R is connected) ≥ e−1; (1)

and indeed the random number κ(R) of components is stochastically at most
1 + Po(1), that is

κ(R) ≤s 1 + Po(1). (2)

Here Po(1) denotes a random variable which has the Poisson distribution with
mean 1; and for random variables X and Y , we say that X is stochastically at
most Y and write X ≤s Y if P(X ≤ t) ≥ P(Y ≤ t) for each t.

Let F be the class of forests (acyclic graphs). By a result of Rényi [12], for
Fn ∈u F we have

P(Fn is connected) → e−1/2 as n → ∞,

and indeed
κ(Fn) d−→ 1 + Po

(
1
2

)
as n → ∞.

Since forests are plausibly the ‘least connected’ bridge-addable class of graphs,
it was natural to think that at least asymptotically (1) is not tight, and the
following conjecture was made:

Conjecture 1.1 ([8]). If A is bridge-addable and Rn ∈u A then

lim inf
n→∞ P(Rn is connected) ≥ e−1/2.

It was proved independently in [1] and [5] that under a further assumption
on the class A – the class A has to be bridge-alterable – Conjecture 1.1 holds.
A class of graphs A is bridge-alterable if it is closed under adding and deleting
bridges. Thus A is bridge-alterable exactly when it satisfies the condition that
for every graph H and every bridge e in H the graph H belongs to A if and only
if H \ e (the graph obtained by deleting e) belongs to A. For A bridge-alterable
and Rn ∈ A we have

lim inf
n∈N

P(Rn is connected) ≥ e−1/2. (3)

Clearly, the class of forests is bridge-alterable and so the result in (3) is best
possible. Also all the examples of graph classes mentioned previously (that is,
minor-closed classes of graphs defined by forbidding 2-connected minors and
graphs embeddable on a fixed surface) are bridge-alterable. For bridge-addable
classes of graphs, Conjecture 1.1 is still open. The best known bound is due to
Balister, Bollobás and Gerke [3] where it was proved that

lim inf
n→∞ P(Rn is connected) ≥ e−0.7983. (4)

Relatively Bridge-Addable Classes of Graphs 393

Given a sequence of non-negative integer-valued random variables X1, X2, . . .
and Y we say that Xn is stochastically at most Y asymptotically and write
Xn �s Y , if for each fixed t ≥ 0

lim sup
n→∞

P(Xn ≥ t) ≤ P(Y ≥ t).

In [6, Theorem 2.4] it was shown that the result (3) also yields a better bound
on κ(Rn) : for any bridge-alterable class A of graphs and corresponding random
graph Rn ∈u A

κ(Rn) �s 1 + Po
(

1
2

)
.

Similarly, the proof of (4) together with [6, Lemma 3.3] give that for any bridge-
addable class κ(Rn) �s 1 + Po (0.7983).

Let the fragment Frag(G) of a graph G be the subgraph induced on the vertices
outside the largest component (with ties broken arbitrarily); and let the fragment
size frag(G) be the number of vertices in Frag(G). In [6] (see inequality (7),
which is an immediate consequence of Theorem 2.2) it was shown that for each
bridge-addable class A and each n, for Rn ∈u A

E[frag(Rn)] < 2, (5)

generalising and improving Lemma 2.6 in [7]. For Fn ∈u F , where F is the class
of forests, we know that E[frag(Fn)] → 1 (see for example [7]) which leads us to
the next conjecture, extending Conjecture 1.1:

Conjecture 1.2 ([6]). Let A be bridge-addable and Rn ∈u A. Then

1. κ(Rn) �s 1 + Po
(1
2
)
and

2. lim supn→∞ E[frag(Rn)] ≤ 1.

In the following we will generalise the definition of bridge-addable and show
that the results (1) and (5) are in fact special cases of a more general picture.

Fix a graph G and call it the host graph. Let A be a collection of spanning
subgraphs of G (that is, subgraphs with the same vertex set as G). We call A
relatively bridge-addable (with respect to G) if for every H ∈ A and every pair
of vertices u, v which are adjacent in G and lie in different components of H the
graph H ∪ uv is also in A. An illustration can be found in Figure 1. Observe
that for G = Kn relatively bridge-addable is equivalent to bridge-addable in the
usual sense of [9]. An example of a relatively bridge-addable class of graphs for
any host graph G is the set of acyclic subgraphs of G.

For disjoint sets B and C of vertices in G we let e(B, C) denote the number
of edges between B and C. If e(B, C) ≥ α|B||C| for each partition B ∪ C of
V (G) we say that G is an α-edge-expander. Thus the complete graph Kn is a
1-edge-expander. Another natural example of an expander is a d-regular graph
on n vertices. In this case we may take α = d−λ

n , where λ is the second largest
eigenvalue of the adjacency matrix of G, see [2, Theorem 9.1.2.]. Hence (or
otherwise) Kd,d is a 1

2 -edge-expander. Another example is the classical random

394 C. McDiarmid and K. Weller

graph Gn,p: with high probability Gn,p is a (1 − ε)p-edge-expander for p ≥
C log n/n. To see this observe that for any fixed partition with |B| = i and
|C| = n−i, the probability that e(B, C) < (1−ε)p i(n−i) is at most e−Θ(ε2i(n−i)p)

by standard Chernoff bounds, see for example [4]. Hence, for p ≥ C log n/n, with
C = C(ε) large enough, we see that the probability that Gn,p is not an (1 − ε)p-
edge-expander is at most

∑
1≤i≤n/2 nin−2i = o(1).

The paper is organised as follows. Section 2 contains the generalisation of (1)
and (5) to relatively bridge-addable classes of graphs. Complete proofs of both
results are given. In Section 3 we look at one particular natural example: we
consider random forests in the bipartite host graph Kn/2,n/2. In this section we
do not give detailed proofs. Full proofs and further related results will be given
in [10].

2 Connectivity for Edge-Expander Host Graphs
The following result generalises inequality (1), which is Theorem 2.2 of [9].
Theorem 2.1. Let 0 < α ≤ 1, let G be an α-edge-expander, let the set A of
subgraphs of G be relatively-bridge-addable, and let R ∈u A. Then

κ(R) ≤s 1 + Po(1/α),

and in particular
P(R is connected) ≥ e−1/α.

For the proof we are going to use the following definitions. For a subgraph H of
G, let Bridge(H) denote the set of bridges of H , with |Bridge(H)| = bridge(H);
and let Cross(H) denote the set of edges of G between components of H , with
cross(H) = |Cross(H)|.
Proof. Let Ak denote the set of graphs in A with k components. Recall that all
graphs in A are labelled. Let G have n vertices. For k = 1, . . . , n define

ak = min
H∈Ak

cross(H)

a

b

c

d

Fig. 1. Kn/2,n/2 as a host graph G. Suppose the graph with the blue edges is in our
bridge-addable class. Then the graph consisting of the blue edges and the green edge
also has to be in the class but not necessarily the graph with the blue edges and the
red edge.

Relatively Bridge-Addable Classes of Graphs 395

and
bk = max

H∈Ak
bridge(H).

Then for each k = 1, . . . , n − 1

ak+1|Ak+1| ≤
∑

H∈Ak+1

cross(H) ≤
∑

H∈Ak

bridge(H) ≤ bk|Ak|.

We shall see that bk ≤ n − k and ak+1 ≥ αk(n − k). Then

|Ak+1| ≤ bk

ak+1
|Ak| ≤ 1

αk
|Ak|

and so
P(κ(R) = k + 1) ≤ 1

αk
P(κ(R) = k). (6)

In [6, Lemma 3.3] it was shown that if for an integer-valued random variable X
we have P(X = k + 1) ≤ β

k+1P(X = k) for each k = 0, 1, 2, . . ., then X ≤s Y
where Y ∼ Po(β). This result with X = κ(R) − 1 together with (6) then gives
the theorem.

It remains to bound ak+1 and bk. But observe that bk ≤ n − k since the
number of edges in a spanning forest of a graph on n vertices with k components
is n − k; so it remains now to bound ak+1.

We want to find a graph H with k +1 components which minimises cross(H).
Take an arbitrary graph H ∈ A with k + 1 components, where the components
have n1, . . . , nk+1 vertices. As G is an α-edge-expander, we get

cross(H) ≥ α

2

k+1∑
i=1

ni(n − ni) = α

2

(
n2 −

k+1∑
i=1

n2
i

)
.

Thus we want to maximise
∑k+1

i=1 n2
i subject to

∑k+1
i=1 ni = n and ni ≥ 1 for all i.

The maximum is attained at n1 = n − k and n2 = . . . = nk+1 = 1 with value
(n − k)2 + k = n2 − 2kn + k2 + k. Hence

cross(H) ≥ α

2
(
2nk −k2−k

)
= α

2
(
2k(n−k) +k2−k

) ≥ αk(n−k)

and so ak+1 ≥ αk(n−k), as required. 	

Recall that frag(G) is the number of vertices which are not in the largest
component. The following result on its expected value generalises inequality (5)
above (from [6]).

Theorem 2.2. Let G be an α-edge-expander, let the set A of subgraphs of G be
relatively bridge-addable, and let R ∈u A. Then

E[frag(R)] < 2/α.

396 C. McDiarmid and K. Weller

Proof. Let G have n vertices. Let us prove the following claim first:

cross(H) ≥ α
n

2
frag(H) (7)

for each graph H in A.
Observe that it is trivially true for frag(H) ≤ n

2 as G is an α-edge-expander.
For the general case, let H ∈ A have k components, with n1 ≥ · · · ≥ nk vertices.
As G is an α-edge-expander, as earlier

cross(H) ≥ α

2

k∑
i=1

ni(n − ni) = α

2

(
n2 −

k∑
i=1

n2
i

)
.

But
k∑

i=1
n2

i ≤
k∑

i=1
n1ni = n1 n.

Thus since frag(H) = n − n1 we get

cross(H) ≥ α

2
n(n − n1) = α n

2
frag(H),

which establishes the claim (7).
By (7) we have

α n

2
∑

H∈A
frag(H) ≤

∑
H∈A

cross(H) ≤
∑

H∈A
bridge(H).

Hence
E[frag(R)] ≤ 1

|A| · 2
α n

∑
H∈A

bridge(H) <
2
α

,

completing the proof of the theorem. 	

Are the bounds of Theorem 2.1 and Theorem 2.2 tight? In the bridge-addable
case they are conjectured (Conjectures 1.1 and 1.2) not to be tight: for G = Kn

the ‘correct’ bounds are believed to be 1 + Po
(1
2
)

and E[frag(Rn)] < 1, which
would correspond to the class of forests.

3 Forests in Kn/2,n/2

What happens for particular other α-edge-expanders? Are the bounds of The-
orem 2.1 and Theorem 2.2 tight? In the following, we will have a closer look
at the complete bipartite graph Kn/2,n/2, which is a 1

2 -edge-expander. Here,
Kn/2,n/2 really means K�n/2�,	n/2
 but we write Kn/2,n/2 to simplify notation.

Theorem 3.1. Consider Kn/2,n/2, say with parts {1, . . . , �n/2�} and {n/2� +
1, . . . , n}. Let the random graph Rn be sampled uniformly at random from the
forests in this graph. Then as n → ∞

Relatively Bridge-Addable Classes of Graphs 397

(a)
κ(Rn) →d 1 + Po(1)

and so in particular P(Rn is connected) → e−1;
(b)

E[frag(Rn)] → 2;

and
(c) the unlabelled trees T appear in Frag(Rn) asymptotically independently, with

distribution Po(λ(T)) where λ(T) = 2/(ev(T)aut(T)).

For comparison, let Fn be sampled uniformly from the n-vertex forests in
Kn. Then P(Fn is connected) → e− 1

2 as n → ∞, and indeed κ(Fn) converges
in distribution to 1 + Po(12), as mentioned earlier. Furthermore, as n → ∞,
E[frag(Fn)] → 1 , and the unlabelled trees T appear in Frag(Fn) asymptotic-
ally independently, with distribution Po(μ(T)) where μ(T) = 1/(ev(T)aut(T))
(see [9]).

Thus not only is it true asymptotically that E[κ(Frag(Rn))] ∼ 2E[κ(Frag(Fn))]
and E[frag(Rn)] ∼ 2E[frag(Fn)] but it is even true for each unlabelled tree T that
the expected number of appearances of T in Frag(Rn) is twice that in Frag(Fn).

We defer the (lengthy) proof of Theorem 3.1 to [10]. A proof can be based on
the following exact counting result from 1962 [13]: the number of spanning trees
of Kr,s (where we are given a fixed partition of [r + s] into parts of size r and s)
is

rs−1 · sr−1.

The counting result as well as further counting results on two-coloured forests
in bipartite graphs can also be found in [11]. A referee observed that we may
think for example of Rn in Theorem 3.1 as being sampled uniformly at random
from the independent sets in the cycle matroid of the graph Kn/2,n/2, and this
may lead to related general questions concerning matroids.

Theorem 2.1 says that, given any relatively bridge-addable class A of graphs
in Kn/2,n/2, for Rn ∈u A

P(Rn ∈u A) ≥ e−2.

However, Theorem 3.1 suggests that this bound may not be tight (if relat-
ively bridge-addable classes of graphs behave at all similarly to bridge-addable
classes), and we could replace e−2 by e−1+o(1). Also E(frag(Rn)) < 4 by The-
orem 2.2, but Theorem 3.1 suggests that we could replace 4 by 2 + o(1).

We think that indeed, analogously to the fully bridge-addable case, Theorem
2.1 is not best possible and forests are the relatively bridge-addable class of
graphs that are the least likely to be connected.

Conjecture 3.2. Let G be a finite connected graph, let A be relatively bridge-
addable with respect to G, and let F be the class of forests in G. For R ∈u A
and F ∈u F

P(R is connected) ≥ P(F is connected)

398 C. McDiarmid and K. Weller

and indeed
κ(R) ≤s κ(F).

This is a strong form of the conjecture: an asymptotic form would also be very
interesting.

Acknowledgements. The authors would like to thank Mireille Bousquet-Mélou
for helpful discussions, and to thank three careful referees.

References

1. Addario-Berry, L., McDiarmid, C., Reed, B.: Connectivity for Bridge-Addable
Monotone Graph Classes. Combinatorics, Probability and Computing 21, 803–815
(2012)

2. Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley & Sons Inc. (2008)
3. Balister, P., Bollobás, B., Gerke, S.: Connectivity of addable graph classes. Journal

of Combinatorial Theory, Series B 98, 577–584 (2008)
4. Bollobás, B.: Random Graphs. Cambridge University Press (2001)
5. Kang, M., Panagiotou, K.: On the connectivity of random graphs from addable

classes. Journal of Combinatorial Theory, Series B 103, 306–312 (2013)
6. McDiarmid, C.: Connectivity for random graphs from a weighted bridge-addable

class. Electronic Journal of Combinatorics 19, Paper 53, 20 (2012)
7. McDiarmid, C.: Random graphs from a minor-closed class. Combinatorics, Prob-

ability and Computing 18, 583–599 (2009)
8. McDiarmid, C., Steger, A., Welsh, D.J.A.: Random Graphs from Planar and Other

Addable Classes. In: Topics in Discrete Mathematics. Algorithms and Combinat-
orics, vol. 26, pp. 231–246. Springer, Heidelberg (2006)

9. McDiarmid, C., Steger, A., Welsh, D.J.A.: Random planar graphs. Journal of Com-
binatorial Theory, Series B 93, 187–205 (2005)

10. McDiarmid, C., Weller, K.: Connectivity for relatively bridge-addable classes of
graphs (in preparation)

11. Moon, J.W.: Counting Labelled Trees, Canadian Mathematical Congress,
Montreal, Quebec (1970)

12. Rényi, A.: Some remarks on the theory of trees. Magyar Tud. Akad. Mat. Kutató
Int. Közl 4, 73–85 (1959)

13. Scoins, H.I.: The number of trees with nodes of alternate parity. In: Proc. Cam-
bridge Philos. Soc., vol. 58, pp. 12–16 (1962)

O(n) Time Algorithms for Dominating Induced

Matching Problems

Min Chih Lin1,Δ, Michel J. Mizrahi1,Δ, and Jayme L. Szwarcfiter2,ΔΔ

1 CONICET, Instituto de Cálculo and Departamento de Computación
Universidad de Buenos Aires, Buenos Aires, Argentina

2 I. Mat., COPPE and NCE, Universidade Federal do Rio de Janeiro, and
Instituto Nacional de Metrologia, Qualidade e Tecnologia,

Rio de Janeiro, Brazil
oscarlin@dc.uba.ar, michel.mizrahi@gmail.com, jayme@nce.ufrj.br

Abstract. We describe O(n) time algorithms for finding the minimum
weighted dominating induced matching of chordal, dually chordal, bi-
convex, and claw-free graphs. For the first three classes, we prove tight
O(n) bounds on the maximum number of edges that a graph having a
dominating induced matching may contain. By applying these bounds,
countings and employing existing O(n + m) time algorithms we show
that they can be reduced to O(n) time. For claw–free graphs, we de-
scribe an algorithm based on that by Cardoso, Korpelainen and Lozin
[4], for solving the unweighted version of the problem, which decreases its
complexity from O(n2) to O(n), while additionally solving the weighted
version.

Keywords: algorithms, dominating induced matchings, graph theory.

1 Introduction

We consider undirected graphs G, denoting by V (G) and E(G), respectively,
the sets of vertices and edges of G, n = |V (G)| and m = |E(G)|. For v ⊕ V (G),
N(v) represents the set of neighbors of v ⊕ V (G), while N [v] = N(v) ≤ {v}. For
S ⊆ V (G), N(S) = ≤v∨SN(v). We say a vertex v ⊕ V (G) such that N [v] = V (G)
is universal. Denote by G[S] the subgraph of G induced by the vertices of S. If
G[S] is a 0-regular graph then S is an independent set, if it is a 1-regular graph
then S is the set of vertices of an edge independent set. An edge independent set
is also known as an induced matching. For convenience, we may write induced
matching to refer either to the set of edges or to its corresponding vertex set.
Finally, we also employ the notation matching with its usual meaning of a set of
pairwise non-adjacent edges.

Say that an edge e ⊕ E(G) dominates itself and every other edge adjacent to
it. An edge dominating set of G is a set of edges E∗ ⊆ E(G), such that every

α Partially supported by UBACyT Grants 20020100100754 and 20020120100058,
PICT ANPCyT Grant 1970 and PIP CONICET Grant 11220100100310.

αα Partially supported by CNPq, CAPES and FAPERJ, research agencies.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 399–408, 2014.
c⊆ Springer-Verlag Berlin Heidelberg 2014

400 M.C. Lin, M.J. Mizrahi, and J.L. Szwarcfiter

e ⊕ E(G) is dominated by some edge of E∗. If each e ⊕ E(G) is dominated
by exactly one edge of E∗ then E∗ is an efficient dominating set. In the latter
situation, E∗ defines an induced matching, while the set of vertices not incident
to E∗ form an independent set. For this reason, an efficient edge dominating set
is also called dominating induced matching (DIM). Not every graph admits a
DIM. The induced cycle of 4 vertices is an example of a graph with no DIM.
The DIM problem is to determine whether a graph has such a matching, and is
known to be NP-complete [6]. We will consider graphs G with a weighting Ω,
that assigns to each edge vw ⊕ E(G) a non-negative finite weight ω(vw). The
aim is to find the minimum weight of a dominating induced matching of G, if
any. We name this problem as DIMΣ(G).

Several polynomial-time algorithms were developed for the DIMΣ(G) prob-
lem on restricted graph classes such as chordal graphs [9], generalized series-
parallel graphs [9], bipartite permutations graphs [10], and P7-free graphs [3].
On the other hand, the problem is NP-Complete even if G is restricted to planar
bipartite graphs of maximum degree 3 [1], or k − regular graphs, for k ⊗ 3
[4]. There are also non-trivial exponential time algorithms for the DIMΣ(G)
problem for general graphs [7,8].

Since the number of edges of any DIM of G, if existing, is invariant, it is
straightforward to generalize the problem for edges with negative weights too.

Following the definition, the DIM problem can be viewed as to decide whether
there is a partition of the vertices into two sets (say a coloring of the vertices in
white and black) such that the white set is an independent set while the black one
induces a 1-regular graph. Moreover, the black set defines a DIM of the graph
[4]. A coloring is partial if only part of the vertices of G have been assigned
colors, otherwise it is total. A black vertex is single if it has no black neighbor,
and is paired if it has exactly one black neighbor. Each coloring, partial or total,
can be valid or invalid.

A partial coloring is valid whenever any two white vertices are non-adjacent
and each black vertex is either paired, or is single having some uncolored neigh-
bor. A total coloring is valid whenever any two white vertices are non-adjacent
and each black vertex is paired.

A valid partial coloring Γ might possibly extend into a coloring Γ ∗ ∈ Γ by
iteratively applying a set of coloring rules, compatible with Γ . In general, such
rules would color some uncolored vertex v, whose color is uniquely determined
by the colors of Γ . For instance, any uncolored neighbor of a white vertex must
be colored as black, otherwise the coloring would be invalid. See [4,8] for a set
of such rules. We refer to this process as propagation.

We prove that any chordal graph containing a DIM has at most 2n− 3 edges.
Counting the edges and applying the O(n + m) time algorithm by Lu, Ko and
Tang [9] lead to an O(n) time algorithm. For dually chordal graphs, by employing
the similarity result chordal - dually chordal for DIMs by Brandstädt, Leitert and
Rautenbach [2] also leads to solving the DIM problem in O(n) time. For biconvex
graphs, we prove that any K3,3–free convex graph contains at most 2n−4 edges.
Additionally, that any biconvex graph containing a DIM is K3,3–free. Using these

O(n) Time Algorithms for Dominating Induced Matching Problems 401

two results, counting the number of edges of the given graph and employing the
O(n+m) time algorithm by Brandstädt, Hundt and Nevries [1] leads to solving
the DIM problem for biconvex graphs in O(n) time. Finally, for claw-free graphs,
we describe a variation of the algorithm by Cardoso, Korpelainen and Lozin [4].
The latter solves the DIM problem, without weights, in O(n2) time, while the
presently proposed algorithm requires O(n) time for solving DIMΣ(G).

2 Chordal, Dually Chordal and Biconvex Graphs

In this section, we remark that computing DIMΣ(G) for any graph G which is
chordal, dually chordal or biconvex requires no more than O(n) time.

Lemma 1. [1] If G contains a K4 then G has no DIMs.

Lemma 2. Every K4-free chordal graph G with at least 2 vertices has at most
2n− 3 edges. The bound is tight even if G is an interval graph.

Proof. By induction on the number of vertices of the graph. For n = 2, the result
follows since such a graph has at most one edge. Suppose the bound is valid for
any graph with n − 1 vertices, n ⊗ 3. Let G be an n-vertex chordal graph and
v a simplicial vertex of it. Since |E(G)| = |E(G \ {v})|+ d(v), by the induction
hypothesis, the number of edges of G \ {v} is bounded by 2(n− 1)− 3 = 2n− 5.
Since G is K4-free, d(v) ∗ 2, therefore |E(G)| ∗ 2n− 5 + 2 = 2n− 3.

An interval graph having two universal vertices and the remaining ones having
degree 2 has no K4 and contains 2n− 3 edges, meaning that the bound is tight
for interval graphs. �

Corollary 1. The DIMΣ(G) problem can be solved in O(n) time for (dually)
chordal graphs.

Proof. Let G be a given chordal graph. First, we count the number of edges of G,
up to a limit of 2n−3. If the bound has been exceeded then stop answering that
G has no DIMs. Otherwise, apply the algorithm [9] which will solve DIMΣ(G)
in O(n) time. Finally, if a graph has a DIM then it is chordal if and only if it is
dually chordal [2]. Consequently, DIMΣ(G) can also be solved in O(n) time for
dually chordal graphs. �

Next, consider solving DIMΣ(G) for biconvex graphs.
An ordering < of X in a bipartite graph G = (X,Y,E) has the interval

property if for every vertex y ⊕ Y , the vertices of N(y) are consecutive in the
ordering < of X . A bipartite graph (X,Y,E) is convex if there is an ordering of
X or Y that fulfills the interval property. Furthermore if there are orderings for
both X and Y which fulfill the interval property the graph is biconvex.

Lemma 3. Let G be a convex bipartite graph having no subgraph isomorphic to
K3,3. Then G contains at most 2n− 4 edges, for n ⊗ 3.

402 M.C. Lin, M.J. Mizrahi, and J.L. Szwarcfiter

Proof. The proof is by induction on n. If n = 3 then it is trivial to verify that G
satisfies the bound since it has at most 2 edges. Let G be an arbitrary K3,3–free
convex graph, v its minimum degree vertex and G∗ the graph obtained from G
by removing v.

– d(v) ∗ 2: Clearly, G∗ is also K3,3–free. By inductive hypothesis, G∗ has at
most 2(n−1)−4 = 2n−6 edges. Consequently, G has at most 2n−6+d(v) ∗
2n− 4 edges.

– d(v) > 2: Every vertex in G has degree at least 3. Let G = (X,Y,E) where
X has the interval property. Thus for each vertex y ⊕ Y,N(y) consists of
vertices that are consecutive. Let {x1, . . . , xk} be the ordering < of X and
w.l.o.g. let {y1, y2, y3} ⊆ N(x1). Since y1, y2, y3 have at least 3 neighbors and
X has the interval property, it follows that {x2, x3} ⊆ N(y1)≥N(y2)≥N(y3).
Therefore {x1, x2, x3, y1, y2, y3} induces a K3,3, which is a contradiction.

Hence, G contains indeed at most 2n− 4 edges. This bound is tight, K2,n−2 is
an example. �

We remark that bipartite graphs, not necessarily convex, which do not contain
K3,3 as a minor also have at most 2n−4 edges [5]. However, this bound does not
apply to general bipartite graphs not containing K3,3 as an induced subgraph,
as shown by the example below described.

Let G = (X,Y,E) be a bipartite graph where X = {x0, x1, . . . , x15} and
Y = {y0, y1, . . . , y7}. Add the edge xiy2j , if the binary representation of i has the
digit 0 at position j, while if such a binary representation contains the digit 1 at
j then add the edge xiy2j+1. It is easy to see that one of the edges xiy2j , xiy2j+1

will exist for all i, j : 0 ∗ i ∗ 15, 0 ∗ j ∗ 3. We show that G is K3,3-free: Suppose
this is not true, and let {xi, xj , xk, yp, yq, yr} be the vertices of an induced K3,3.
By the construction of G the binary representations of i, j, k have the same value
for positions ⊆p2↑, ⊆ q2↑, ⊆ r2↑. But i, j, k are distinct integers 0 ∗ i, j, k ∗ 15, which
leads to a contradiction, since there are no three integers smaller than 16 with
the above property. Consequently, G is K3,3–free. To complete the example, note
that G has 24 vertices and more than 44 edges.

Give k copies of the graph defined above. Say xij is the xj vertex from the

i-th copy. Add edges yi7x
(i+1)
0 , 0 ∗ i < k. The number of vertices is 24k while

m = 64k + k − 1. This result graph is K3,3-free bipartite and has all vertices of
degree at least 4. The bound 65k − 1 ∗ 48k − 4 is not satisfied for any k.

Lemma 4. Let G = (X,Y,E) be a biconvex graph which has a DIM. Then G is
K3,3–free.

Proof. Suppose G contains a K3,3 given by X ∗ = {x1, x2, x3} ⊆ X and Y ∗ =
{y1, y2, y3} ⊆ Y . Consider an arbitrary DIM of the graph and its corresponding
black-white coloring of the vertices as described in Section 1. Then the vertices
of X ∗ and Y ∗ must have distinct colors. Suppose w.l.o.g. that the vertices X ∗

are black and those of Y ∗ are white. Let y◦1 , y
◦
2 , y
◦
3 be the black neighbors of

x1, x2, x3, respectively. It follows that the graph induced by the nine vertices of
X ∗ ≤ Y ∗ ≤ {y◦1 , y◦2 , y◦3} is not biconvex, a contradiction. �

O(n) Time Algorithms for Dominating Induced Matching Problems 403

Corollary 2. The DIM problem for biconvex graphs can be solved in O(n) time.

Proof. Let G be a biconvex graph. If G contains a DIM, by Lemma 4, G is
K3,3–free. Therefore G has at most 2n− 4 edges, by Lemma 3. Consequently,
given an arbitrary biconvex graph, count its number of edges, up to 2n − 4. If
this number is exceeded, the graph does not contains any DIM, otherwise apply
the algorithm [1], which solves the DIM problem in O(n +m) time, for chordal
bipartite graphs. Since convex graphs are contained in chordal bipartite, we can
solve the DIM problem for biconvex graphs in O(n) time. �

We remark that there are convex graphs having a quadratic number of edges
that admit DIMs. For instance, V (G) = V1 ≤ V2 ≤ V3, where |V (G)| = n, |V1| =
|V2| = |V3| = n

3 . Let Vi be an independent set for 1 ∗ i ∗ 3, and let V1 ≤ V2
induce a complete bipartite graph, V1 ≤ V3 be an induced matching, and V2 ≤ V3
be an independent set. Such a graph is bipartite, with bipartition (V1, V2 ≤
V3), moreover it is convex bipartite since it admits a interval ordering. Also, it
contains a quadratic number of edges. On the other hand, V1 ≤ V3 is a DIM
of it.

3 Claw-Free Graphs

The problem of finding a DIM of a claw-free graph, if existing, has been solved
in [4] by an O(n2) time algorithm. We review the ideas of this paper and propose
an improvement of it.

We assume that the given graph G = (V (G), E(G)) is connected, and is
neither an induced cycle nor an induced path. Clearly, if G is disconnected we
can reduce the problem to its connected components, while if G is a cycle or a
path the solution is trivial.

By [4], if a claw-free graph G has a DIM then each vertex v of G is one of the
following six types:

(1) degree 1
(2) degree 2 with two non-adjacent neighbors
(3) degree 2 with two adjacent neighbors
(4) degree 3 with G[N(v)] inducing a K1 +K2

(5) degree 3 with a G[N(v)] inducing a P3

(6) degree 4 with G[N(v)] inducing a 2K2

Thus, we assume that each vertex of G falls into one of the above types. This
implies m ∗ 2n, i.e. m = O(n).
In particular, the two edges incident to a Type 4 vertex v, which are contained
in a triangle of G(N [v]), are called heavy, while the third edge incident to v is a
light. The algorithm [4] can be viewed as a sequence of the following phases:

1. Handling three consecutive vertices of Type 2
2. Handling vertices of Type 1 which are at distance at least 3 of some Type 4

vertex

404 M.C. Lin, M.J. Mizrahi, and J.L. Szwarcfiter

3. Coloring all vertices of Types 1,2,5 and 6
4. Coloring the remaining vertices, of Types 3 and 4

Our proposed algorithm describes new formulations for Phases 1,2 and 4, while
maintaining the original Phase 3 of the algorithm [4]. We proceed by describing
each of the parts.

3.1 Phase 1

The purpose is to eliminate the occurrence of three consecutive Type 2 vertices
v1, v2, v3, such that N(v2) = {v1, v3}, N(v1) = {v2, w1} and N(v3) = {v2, w3}.
Consider the following alternatives:

– w1 = w3: In this case if d(w1) = 2 then G = C4, which contradicts G
not to be a cycle. Hence d(w1) ⊗ 3, but then G[N [w1]] contains a claw, a
contradiction. Thus this case does not occur.

– w1w3 ⊕ E(G): If d(w1) = d(w3) = 2 then G = C5 again a contradiction.
Hence we may suppose ⊃u ⊕ N(w1) \ {v1, w3}. We know that u ⊇⊕ N(v1),
thus in order to avoid a claw in G[N [w1]] we must assume u ⊕ N(w3). The
latter implies that no more vertices can belong to the neighborhoods of w1

and w3, otherwise G would contain vertices outside the above six types, a
contradiction.

Any DIM of G must have exactly one edge of the triangle {w1, u, w3}.
The edge w1w3 does not lead to a valid DIM since it forces v2 to be a single
black vertex without black neighbor. It is easy to verify that the possibilities
are either: {w1u, v2v3} or {w3u, v1v2}.

Therefore we can eliminate vertices v1, v2, v3 and sum the weight of edge
v1v2 to that of w3u, and sum the weight of v2v3 to that of w1u. To guarantee
that the edge w1w3 is not chosen to enter the DIM, we assign infinite weight
to it.

– w1 ⊇= w3 and w1w3 /⊕ E(G): In this case we use the original procedure of [4],
which consists of replacing vertices v1, v2, v3 for the edge w1w3. However,
the algorithm [4] solves the DIM problem without weights, thus, in order
to guarantee the correct solution for the new weighted graph, we need to
consider the following additional possibilities:
• w1, w3 are black: Then v1, v3 are black and v2 is white. The weights of

edges v1w1 and v3w3 must be added to the weight of w1w3

• w1 is black and w3 is white: In this case, v2 and v3 are black while v1
is white. Hence the weight of edge v2v3 must be added to the weight of
each edge of the set of edges w1z, where z ⊇= v1
• w3 is black and w1 is white: This case is symmetric to the previous one.

The weight of edge v1v2 must be added to the weight of each edge of the
set w3z, where z ⊇= v3.

These modifications to the original graph G are repeated until no three con-
secutive vertices of Type 2 remains in the graph, leaving a new reduced graph
G∗ = (V (G∗), E(G∗)). This can be achieved in O(n) time. The algorithm now
proceeds on G∗.

O(n) Time Algorithms for Dominating Induced Matching Problems 405

3.2 Phase 2

In this phase, we eliminate the occurrence of Type 1 vertices, lying at distance
at least 3 from some Type 4 vertex. Let v ⊕ V (G∗) such that d(v) = 1 and let
w ⊕ V (G∗) be the vertex such that d(w) ⊗ 3 and the distance to v is minimum.
Note that if there is no such w then G∗ is a path, a contradiction. Therefore
there is a path v − w where all vertices, except v, w are of Type 2. Since there
are at most two consecutive vertices of Type 2, the distance between v and w
is at most 3. It is easy to see that w is of Type 4, otherwise G∗ is not claw-
free. Let v, u1, u2, w be any path of length 3 from a vertex v ⊕ V (G∗) to a
vertex w ⊕ V (G∗), with d(v) = 1 and d(w) = 3. Let {z1, z2} be the K2 induced
by N(w), and G◦ be the graph after deletion of vertices {v, u1, u2}. It is clear
that any DIM M◦ of G◦ contains exactly one edge of the triangle {w, z1, z2}.
In case M◦ contains the edge z1z2, we add the edge u1u2 to M◦ in order to
obtain a DIM of G, hence to generate a DIM with the same weight in G◦ we set
ω(z1z2) = ω(z1z2) +ω(u1u2). In case that M◦ contains wz1 or wz2 the edge vu1
is added to M◦. In the latter situation, we set ω(wz1) = ω(wz1) + ω(vu1) and
ω(wz2) = ω(wz2) + ω(vu1). We repeat this process for each vertex v ⊕ V (G∗)
such that d(v) = 1. Finally, we assert that every vertex of Type 1 is at distance
1 or 2 from some vertex of Type 4. These computations can be completed in
O(n) time.

3.3 Phase 3

By applying convenient propagation rules, the algorithm [4] colors a subset of
vertices of the graph, including all vertices of Types 1,2,5, and 6. Let Γ be
the final coloring so obtained in the algorithm. First, check its validity. If Γ is
not valid, then G has no DIMs and the algorithm terminates. If C is valid and
total, also terminate the algorithm, since the unique DIM of G has been found.
Otherwise, proceed to Phase 4.

All the above operations can be completed in O(n) time. At the end of this
phase, the only possibly uncolored vertices are of Types 3 and 4. Observe that
the obtained coloring is unique, so there is no choice to be made concerning
weights, so far.

3.4 Phase 4

In this phase, we extend the coloring Γ , obtained by the previous phase, into
a total valid coloring. It is assumed that Γ is a valid not total coloring, which
cannot be extended by propagation. Let U be the set of uncolored vertices and
S the set of single black vertices of the coloring Γ . Note that extending Γ is
equivalent to extending the coloring Γ ∗ of G◦[U ≤ S] (in Γ ∗, only vertices of
S are colored with black color). It can be verified that in any valid coloring,
the following holds: ⊂s ⊕ S,N [s] induces in G◦[U ≤ S] a K3 = {u, v, s} where
u, v ⊕ U .

406 M.C. Lin, M.J. Mizrahi, and J.L. Szwarcfiter

Since vertices of S and Type 3 vertices are simplicial in G◦[U ≤S], any central
vertex of an induced P3 in G◦[U ≤ S] must be an uncolored Type 4 vertex.
Particularly, the vertices of a cycle Ck∼4 are central vertices of induced P3’s.
Moreover, an edge of induced P3 must be heavy and the other one must be
light. It’s easy to see that vertices of a light edge must have different colors. The
following lemma is helpful to extend Γ ∗.

Lemma 5. Let Γ ∗∗ any total valid coloring extensible from Γ ∗ andP = (v1, . . . , vt)
be an induced path of G◦[U ≤ S] such that v1, vt are Type 4 vertices, v1v2 is a light
edge and v1 is a black vertex. Then (i) vivi+1 is a light (heavy) edge if i is odd (even);
(ii) vi is black (white) if i is odd (even).

Proof. Since P is an induced path, v2, . . . , vt−1 are central vertices of induced
P3’s, they are also Type 4 vertices and the edges of P are light and heavy
alternately. Then (i) holds because the first edge is white. On the other hand,
vertices of light edges must have different colors, while the same occurs for heavy
edges if one vertex is white. Since v1 is black and v1v2 is a light edge, then v2 is
white and v3 is black. Again, we can check that v3 satisfies the same properties
as v1 and v4 will satisfy the same properties as v2. Therefore there is a unique
valid coloring for vertices of P which consists of alternating the colors of the
vertices, where (ii) vi is black if and only if i is odd. �

We proceed by finding a minimum weight DIM on each connected component
Gi of G◦[U ≤ S]:

Gi Is a Chordal Graph. In this case, for each single black vertex s in Gi,
its neighbors u and v form an edge and we set ω(uv) = ↓. In this way any
finite weight DIM of Gi will not contain this edge and s will be a black vertex
as in Γ ∗. Apply the algorithm described in the previous section that computes
DIMΣ(Gi), if existing.

Gi Has an Induced Cycle Ck, k ≥ 4. As it was mentioned before, Ck is
formed by light and heavy edges, where each light edge is adjacent to heavy
edges and viceversa.

Lemma 6. [4]: Let G◦ be the resulting claw–free graph and Γ the partial valid
coloring obtained after Phase 3. If the subgraph of G◦ induced by uncolored ver-
tices contains an induced cycle Ck∼4, then k is even. Moreover, if G◦ admits a
black-white partition, then the vertices of Ck are colored alternately black and
white along the cycle, and furthermore, by switching the colors of vertices of Ck

we again obtain a valid black-white partition of G◦.

Lemma 7. Gi admits exactly two DIMs or none.

Proof. We extend the initial coloring choosing any alternate coloring for Ck and
applying propagation rules. Let Γi be the final coloring, so obtained. We will
prove that Γi is invalid or is a total valid coloring. Clearly, if Γi is invalid then

O(n) Time Algorithms for Dominating Induced Matching Problems 407

Gi has no DIMs by Lemma 6. If Γi is a total valid coloring, then switching
the colors of vertices of Ck, we obtain another total valid coloring of Gi. We
show that these are the unique total valid colorings. Suppose that Γi is valid
but there is some uncolored vertex u in Gi. Let P = (v0, . . . , vt = u) be the
shortest path from a vertex v0 in Ck. Without lost of generality we can assume
that v0, . . . , vt−1 are colored vertices. Clearly, P is an induced path. On the
other hand, v0v1 is a heavy edge because v1 must be adjacent to two consecutive
vertices of Ck by the claw-freeness. Hence, v1 must be a black vertex and t ⊗ 2.
Then v1, vt−1 are central vertices of induced P3’s which implies that v1, vt−1 are
Type 4 vertices and v1v2 is a light edge. Clearly, vt = u must be Type 3 vertex
because otherwise it would be colored applying Lemma 5. Hence, vt−1vt is a
heavy edge and vt−2vt−1 is a light edge which means that t is odd and vt−1 is
a white vertex. Therefore, vt must be a black vertex which is a contradiction.
Consequently, Γi is a total valid coloring. �

Using these two lemmas, we can determine in linear time all DIMs of Gi and
return one of minimum weight, if existing.

As for the complexity of the last phase of the algorithm, observe that a cycle
Ck∼4 of a non chordal graph can be obtained in linear time in the size of G, that
is, O(n) time. All the remaining steps can be completed in O(n) time. It should
be noted that the corresponding phase of the algorithm [4] requires O(n2) time.
The main difference is that in the presently proposed algorithm, it is sufficient
to find just one induced cycle of length ⊗ 4, and propagate the coloring to its
connected component, whereas the algorithm [4] requires the computation of
O(n) such cycles, in subgraphs not necessarily disjoint. Since each of them needs
O(n) time, the overall complexity of the latter algorithm is O(n2).

Our proposed formulation computes DIMΣ(G) in O(n) time. Observe that
through the algorithm the input graph is modified. However the changes do not
alter the value of the DIMΣ(G) solution. As for the actual minimizing DIM,
itself, there is no difficulty retrieving it in O(n) time, by backwards computation.
Note that the algorithm can be easily adapted to be robust in the sense of [4],
then it does not require the input graph G to be claw-free.

References

1. Brandstädt, A., Hundt, C., Nevries, R.: Efficient edge domination on hole-free
graphs in polynomial time. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034,
pp. 650–661. Springer, Heidelberg (2010)

2. Brandstädt, A., Leitert, A., Rautenbach, D.: Efficient Dominating and Edge Dom-
inating Sets for Graphs and Hypergraphs. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T.
(eds.) ISAAC 2012. LNCS, vol. 7676, pp. 267–277. Springer, Heidelberg (2012)

3. Brandstädt, A., Mosca, R.: Dominating Induced Matchings for P7-free Graphs
in Linear Time. In: Asano, T., Nakano, S.-I., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 100–109. Springer, Heidelberg (2011)

4. Cardoso, D.M., Korpelainen, N., Lozin, V.V.: On the complexity of the dominat-
ing induced matching problem in hereditary classes of graphs. Discrete Applied
Mathematics 159, 21–531 (2011)

408 M.C. Lin, M.J. Mizrahi, and J.L. Szwarcfiter

5. Chen, Z.-Z., Zhang, S.: Tight upper bound on the number of edges in a bipartite
K3,3-free or K5-free graph with an application. Information Processing Letters 84,
141–145 (2002)

6. Grinstead, D.L., Slater, P.J., Sherwani, N.A., Holmes, N.D.: Efficient edge domi-
nation problems in graphs. Information Processing Letters 48, 221–228 (1993)

7. Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: Exact algorithms for dominating in-
duced matchings. CoRR, abs/1301.7602 (2013)

8. Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L.: An O∗(1.1939n) time algorithm for
minimum weighted dominating induced matching. In: Cai, L., Cheng, S.-W., Lam,
T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 558–567. Springer,
Heidelberg (2013)

9. Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge dom-
ination in graphs. Discrete Applied Mathematics 119, 227–250 (2002)

10. Lu, C.L., Tang, C.Y.: Solving the weighted efficient edge domination problem on
bipartite permutation graphs. Discrete Applied Mathematics 87, 203–211 (1998)

Coloring Graph Powers: Graph Product Bounds

and Hardness of Approximation

Parinya Chalermsook1,Δ, Bundit Laekhanukit2,ΔΔ,
and Danupon Nanongkai3,ΔΔΔ

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 School of Computer Science, McGill University, Canada

3 ICERM, Brown University, USA

Abstract. We consider the question of computing the strong edge col-
oring, square graph coloring, and their generalization to coloring the
kth power of graphs. These problems have long been studied in discrete
mathematics, and their “chaotic” behavior makes them interesting from
an approximation algorithm perspective: For k = 1, it is well-known that
vertex coloring is “hard” and edge coloring is “easy” in the sense that
the former has an n1−α hardness while the latter admits a (1 + 1/Σ)-
approximation algorithm, where Σ is the maximum degree of a graph.
However, vertex coloring becomes easier (can be O(

√
n)-approximated)

for k = 2 while edge coloring seems to become much harder (no known
O(n1−α)-approximation algorithm) for k ≥ 2.

In this paper, we make a progress towards closing the gap for the
edge coloring problems in the power of graphs. First, we confirm that
edge coloring indeed becomes computationally harder when k > 1: we
prove a hardness of n1/3−α for k ∈ {2, 3} and n1/2−α for k ≥ 4 (pre-
viously, only NP-hardness for k = 2 is known). Our techniques allow
us to derive an alternate proof of vertex coloring hardnesses as well as
the hardness of maximum clique and stable set (a.k.a. independent set)
problems on graph powers. These results rely on a common simple tech-
nique of proving bounds via fractional coloring, which allows us to prove
some new bounds on graph products. Finally, we finish by presenting
the proof of Erdös and Nešetřil conjecture on cographs, which uses a
technique different from other results.

1 Introduction

Consider the following broadcast scheduling problem commonly studied in the
networking research area (e.g. [31,5,22]). In this problem, we are given a graph

δ Work partially done while at IDSIA, Switzerland. Supported by the Swiss National
Science Foundation project 200020 144491/1.

δδ Supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC) grant no. 429598 and by Dr&Mrs M.Leong fellowship.

δδδ Work done while at Nanyang Technological University, Singapore. Supported in
part by Nanyang Technological University grant M58110000, Singapore Ministry
of Education (MOE) Academic Research Fund (AcRF) Tier 2 grant MOE2010-
T2-2-082, and Singapore MOE AcRF Tier 1 grant MOE2012-T1-001-094.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 409–420, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

410 P. Chalermsook, B. Laekhanukit, and D. Nanongkai

G representing a network of transceivers (represented by nodes). Each transceiver
can send a message to its neighbors by broadcasting through some communica-
tion channel with the constraint that two transceivers sharing a neighbor cannot
broadcast on the same channel since their signals interfere with each other. The
objective is to minimize the number of channels we have to assign the transceivers
to (while avoiding interference). More formally, given any graph G = (V,E), we
are interested in computing a minimum value of C together with a function
c : V ⊕ {1, . . . , C} such that, for any pair (u, v) of vertices of distance at most
two, we have c(u) ≤= c(v).

In theoretical computer science and discrete mathematics, this problem is
known as distance-2 vertex coloring or coloring square graphs (e.g., [24,28,2,3,21])
– simply view the channel assignment as a color assignment. Its natural exten-
sion, distance-k coloring or coloring the kth power graphs, in which our goal is to
ensure that the colors of any two vertices within distance k are different, is also
intensively studied (e.g., [3,28,2,21]). Formally, denote by Gk the kth power of a
graph G and Θ(G) its chromatic number. Then we are interested in computing
Θ(Gk). (See Section 2 for definitions.) This problem captures a realistic situation
in network where transceivers’ signals interfere each other and has applications
in, e.g., approximating the Hessian matrices of certain non-linear functions [28].
Strong lower bounds on the approximability of distance-k vertex coloring were
proved in [1,17].

The edge coloring version of the above problem, called distance-k edge-coloring,
has received even more attention (e.g., [27,26,30,11,4,20,19]). In this case, we say
that two edges are within distance k if they are connected by a path on k vertices
(e.g., edges sharing an end-vertex are of distance one and edges connected by an-
other edge are of distance two). If we denote by L(G) the line graph of G, then the
distance-k edge-coloring problem indeed asks for the value of Θ(Lk(G)) (where
Lk(G) is the kth power of L(G)). A special case where k = 2 is known as link
scheduling in network community and strong edge coloring in discrete mathemat-
ics community; for this case, Θ∗S(G) is typically used to refer to Θ((L2(G))). The
discrete mathematics community has paid a particularly high attention to prob-
lems centering around the conjecture of Erdös and Nešetřil which states that any
graph of maximum degree at most ι needs at most (5/4)ι2 colors for strong
edge coloring, and the conjecture was later strengthened to ι2 (see [12,13]).
Recently, Laekhanukit also observed an application of strong edge coloring in
proving hardness of approximation [23].

From a computational point of view, the approximability of distance-k ver-
tex and edge coloring has a chaotic behavior: While the (distance-1) vertex
coloring was shown to be n1−Σ hard to approximate [16,34], there is an O(

√
n)-

approximation for distance-2 vertex coloring, suggesting that vertex coloring
could be easier when k becomes larger. However, (distance-1) edge coloring is
known to admit a (1+1/ι)-approximation1, where ι is the maximum degree of
a graph, but distance-2 edge coloring (a.k.a. strong edge coloring) does not seem
to admit any o(n)-approximation ratio, suggesting that larger k would increase

1 This is an application of Vizing’s theorem; see [29].

Coloring Graph Powers 411

the complexity of the problem. There has also not been much progress on the
lower bounds for distance-k coloring: The first NP-hardness result for strong
edge coloring (i.e., distance-2 edge coloring) appeared only in 2000 [27,26] (see
also [11,18,2]). In sum, prior to our results, no strong approximation hardness
was known for any distance-k edge coloring problem when k ⊗ 2.

In this paper, we clarify the current state of the art by proving the polynomial
factor hardness for the distance-k edge coloring problem for k ⊗ 2. We also study,
using similar techniques, other important combinatorial optimization problems
in the power of graphs: approximating the stability (a.k.a, independent set) and
clique numbers of a graph G, denoted by Δ(G) and Γ(G), respectively2. (We
refer to Section 2 for definitions.) Our results are summarized in Table 1.

Table 1. Summary of Results. The upper bounds of n are trivial. All lower bounds,
except for vertex coloring, are new (previously, only NP-hardness is known for Edge
Coloring when k = 2). Other upper bounds follow from modifying known algorithms.

Vertex Coloring Edge Coloring Stable Set Clique

k odd k even k ⊆ {2, 3} k ◦ 4 k odd k even k odd k even

Upper n2/3 n1/2 n n n n1/2 n2/3 n1/2

Lower n1/2−α [1,17] n1/2−α [1,17] n1/3−α n1/2−α n1−α n1/2−α n1/2−α n1/2−α

Theorem 1. For any Ψ > 0 and constant k ⊗ 2, given an n-vertex input graph
G, there is no polynomial-time algorithm to do the followings unless P = NP.

– Distance-k Edge Coloring: Approximate Θ(Lk(G)) to within a factor of
n1/3−Σ for k ∈ {2, 3} (thus the hardness of Strong Edge Coloring) and
n1/2−Σ for k ⊗ 4.

– Maximum Clique: Approximate Γ(Gk) to within a factor of n1/2−Σ (This
is tight for all even k.)

– Maximum Stable Set: Approximate Δ(Gk) to within a factor of n1/2−Σ

when k is even and n1−Σ when k is odd.

Lastly, we further prove some new bounds related to the strong edge color-
ing of graphs, which might be of independent interests; most of the results are
applications of the fractional coloring argument used in our hardness proofs.

– New bounds on the strong edge coloring of the rooted, lexicographic and
disjunctive products of graphs: This fills in the missing pieces of Togni [32]
who proved similar bounds for Cartesian, Kronecker, and strong products.

2 We note that while the problems of computing Φ(G) and Θ(G) are equivalent, com-
puting Φ(Gk) and Θ(Gk) are not; this is simply because the complement graph Gk

of Gk may not be the kth power of any graph.

412 P. Chalermsook, B. Laekhanukit, and D. Nanongkai

– The conjecture of Erdös and Nešetřil for the class of cographs, graphs having
no path on four vertices as an induced subgraph. (This is the only result
proved by a different technique – a charging scheme.)

– Lower bound on the strong edge coloring number of a graph in terms of its
chromatic number.

Overview of Techniques: We sketch the proof of the n1/3−Σ hardness of the
strong edge coloring problem. The key idea is to employ the technique similar
to the one used in our previous paper [6]. In short, the hardness results in [6]
were obtained by, given any graph G, constructing a new graph G∗ via a cer-
tain graph product, and then showing the relationship between graph measures
of interest. For instance, to prove the hardness of the maximum bipartite in-
duced matching problem, we construct the graph G∗ = Gk ×K2 and prove that
im(Gk ×K2) ∗ Δ(Gk) for sufficiently large k; note that im(H) denotes the size
of the maximum induced matching of H , Gk is a k-fold disjunctive product of G,
and × is a strong product. Since Δ(G) is hard to approximate to within a factor
of n1−Σ [16], we immediately obtain an n1−Σ hardness result for approximating
im(G∗). Unfortunately, the technique in [6] involves only disjunctive and lexi-
cographic product, which are unlikely to yield any result here because, roughly
speaking, these products blow up the strong chromatic index of graphs. A new
graph product and relationship between Θ∗S(G) and some hard-to-approximate
graph measure are needed.

Our main result in the simplified form is as below.

Θ∗S(G ≥ SΛ) ∗ Θ(G)Π + Θ∗S(G) (1)

where G ≥ H is a rooted product between G and H , and SΛ is a star with
Π leaves. By choosing Π to be |V (G)|2, the term Θ(G)Π becomes Θ(G)|V (G)|2,
while Θ∗S(G) ⊆ |V (G)|2. Since the first term dominates the second one, we have
Θ∗S(G ≥ SΛ) ∗ Θ(G)|V (G)|2. Now the hardness of Θ(G) [14] immediately implies
the n1/3−Σ hardness of approximating Θ∗S(G≥SΛ). The proof of Equation 1 utilizes
the “fractional coloring argument”, which allows us to derive many other results.

Related Works: A notion closely related to the strong chromatic index of a
graph is the induced matching number – the maximum cardinality of a set of
edges M ↑ E(G) such that M induces a matching in G (i.e., no two edges of
M share an endpoint or have endpoints that are joined by some edge in G).
Notice that each color class of a proper strong edge coloring forms an induced
matching. The complexity of computing the induced matching number of a graph
is better understood. It was shown to be NP-complete in [33,10] and was shown
to be n1−Σ-hard to approximate (implicitly) in [8]. The n1−Σ-hardness holds even
in bipartite graphs (see [6]), and a ι1−Σ-hardness holds for ι-degree-bounded
graphs [7].

Organization: The hardness of distance-k edge coloring when k = 2 is proved
in Section 3 (the proof for general k uses similar ideas). We discuss other opti-
mization problems on power graphs in Section 4.

Coloring Graph Powers 413

2 Preliminaries

We use standard graph terminologies as in [9]. Let G = (V,E) be a graph on n
vertices. The maximum and minimum degree of G is denoted by ι(G) and Σ(G),
respectively. For any vertex v ∈ V (G), denote by ΛG(v) the set of neighbors of v
in G. The k-th power of G, denoted by Gk = (V,Ek), is a graph with the same
vertex set as G such that Gk has an edge uv if and only if u and v are within
distance at most k in G. The graph G2 is called the square of G.

Edge Coloring. The edge-coloring of G is defined similarly as a coloring on
edges such that any two edges sharing an endpoint receive different colors. The
chromatic index (a.k.a, the edge-coloring number) of G, denoted by Θ∗(G), is
the minimum number of colors needed to color edges of G. The line graph of G,
denoted by L(G), is the graph whose vertex set is E(G), and there is an edge ef
in L(G) joining two vertices e, f ∈ V (L(G)) if and only if edges e and f share an
endpoint in G (we use e and f to denote both vertices in L(G) and edges in G).
We say that a matching M ↑ E(G) is an induced matching in G if and only if it
is a matching such that any pair of edges e and f in M has no edge joining their
endpoints. In other words, a subgraph induced by vertices in M is M itself. The
strong edge coloring of G is a coloring of edges such that each color class form
an induced matching in G, which is equivalent to a vertex-coloring of L2(G).
The strong chromatic index (or strong edge coloring number) of G, denoted by
Θ∗S(G), is the chromatic number of the square of L(G), i.e., Θ∗S(G) = Θ(L2(G)).

Graph Products. Given graphs G and H with a root r ∈ V (H), the rooted
product of G and H , denoted by G≥H is defined as a graph obtained by making
|V (G)| copies of H and unifying each vertex u ∈ V (G) with the root r of the
i-th copy of H for every i = 1, 2, . . . , |V (G)|. More formally, given two graphs
G,H and a root r ∈ V (H), the rooted product G ≥ H has the set of vertices
V (G) × V (H). The set of edges is E(G ≥ H) = {(v, r)(v∗, r) : vv∗ ∈ E(G)} ⊃⋃

v⊆V (G){(v, a)(v, b) : ab ∈ E(H)}. The disjunctive product of G and H , denoted

by G⊇H , is the graph with a vertex set V (G)×V (H) and an edge set E(G•H) =
{(u, v)(u∗, v∗) : uu∗ ∈ E(G) or vv∗ ∈ E(H)}. The lexicographic product of G and
H , denoted by G •H , is a graph with a vertex set V (G) × V (H) and an edge
set E(G •H) = {(u, v)(u∗, v∗) : (uu∗ ∈ E(G))or(u = u∗ and vv∗ ∈ E(H)}.
Our Problems. The problems considered in this paper are defined as follows.
We are given a graph G = (V,E) on n vertices and m edges. In the strong edge
coloring problem, the goal is to compute Θ∗S(G) = Θ(L2(G)) (and its correspond-
ing coloring). The generalization of this problem is the distance-k edge-coloring
problem where we are given an additional constant k, and the goal is to compute
Θ(Lk(G)). In distance-k vertex-coloring, maximum clique and maximum stable
set problems, our goals are to compute Θ(Gk), Γ(Gk) and Δ(Gk), respectively.

Our results on the coloring problems are deduced from the hardness of the
graph coloring problem [14], as stated in the following theorem.

Theorem 2 ([14,16]+[34]). For any Ψ > 0, unless P = NP, it is hard to
distinguish between the following two cases of a graph G on n vertices: (1) Yes-
Instance: Θ(G) ⊆ nΣ and (2) No-Instance: Θ(G) ⊗ n1−Σ. In particular, it is

414 P. Chalermsook, B. Laekhanukit, and D. Nanongkai

NP-hard to approximate the chromatic number of a graph to within a factor of
n1−Σ, for all Ψ > 0.

For the hardness of the maximum stable set and clique problems on Gk, the
following hardness of approximation result is needed.

Theorem 3 ([16]+[34]). For any Ψ > 0, unless P = NP, it is hard to dis-
tinguish between the following two cases of a graph G on n vertices: (1) Yes-
Instance: Δ(G) ⊆ nΣ (resp., Γ(G) ⊗ n1−Σ) and (2) No-Instance: Δ(G) ⊗
n1−Σ (resp., Γ(G) ⊆ nΣ). In particular, it is NP-hard to approximate the stable
(resp., clique) number of a graph to within a factor of n1−Σ, for all Ψ > 0.

3 Strong Edge Coloring

In this section, we prove the approximation hardness of the the strong edge
coloring problem, i.e., computing Θ(L2(G)). We remark that a trivial algorithm
gives a ι(G)-approximation: The graph L2(G) contains a clique of size ι(G) and
has maximum degree at most 2ι(G)2 (thus, (2ι2 + 1)-colorable), which implies
an O(n)-approximation. We now show the n1/3−Σ hardness, for any Ψ > 0.

The key step lies in proving a new bound on the strong chromatic index of
the rooted product of graphs. Roughly speaking, we show that

Θ∗S(G ≥H) = β̃ (Θ∗S(G) + Θ∗S(H − r) + degH(r) · Θ(G))

where β̃(x) hides a polylog(x) factor. More precisely, we prove the following
theorem. (Note that Θf (G) ⊆ Θ(G) ⊆ O(Θf (G) log2 |V (G)|); see, e.g., [25].)

Theorem 4 (Rooted Product). Consider graphs G and H with a root vertex
r ∈ V (H). The following holds:

max{Θ∗S(G), Θ∗S(H − r), degH(r) · Θf (G)}
⊆ Θ∗S(G ≥H) ⊆ Θ∗S(G) + Θ∗S(H − r) + degH(r) · Θ(G)

Proof. We first give a high level overview of the proof. First, recall that the
rooted product G ≥H consists of one copy of G and |V (G)| copies of H , where
each copy is associated with one vertex v ∈ V (G). The key idea in our proof is
to partition edges of the graph G ≥H into three parts E1, E2 and E3, where E1

is a copy of the edges of G, E2 consists of disjoint copies of the edges of H − r,
and E3 consists of other edges. It is easy to color edges of E1 using a strong edge
coloring of G. Also, edges in different copies of H − r are “far” from each other,
so one can color edges of E2, which consists of copies of H − r, using a strong
edge coloring of H − r. Conversely, we can color edges in G and H − r using
strong edge colorings of E1 and E2, respectively.

It remains to color the edges in E3. We show that β̃(degH(r) · Θ(G)) colors
are needed. One direction, i.e., showing that E3 needs O(degH(r) ·Θ(G)) colors,
is straightforward: If a vertex v in G has a color c, then we can assign colors
(c, 1), . . . , (c, degH(r)) to edges in E3 incident to v. Showing the converse that we

Coloring Graph Powers 415

 r

G
G º H

HG

H - r G

Fig. 1. The figure shows an example of the rooted product of G and H with a root
r and illustrates the proof of Theorem 4. The green edges are edges in E1. The blue
edges (in the cycles) are edges in E2. The red thick edges are edges in E3. The graph
G ◦H consists of one copy of G and disjoint copies of H . Each copy of H − r are “far”
enough that it needs a path of length at least 2 to traverse to another copy.

need γ̃(degH(r) ·Θ(G)) colors requires a more sophisticated idea – the fractional
coloring argument.

Now, we give a formal proof. We first prove the right-hand-side: Θ∗S(G ≥H) ⊆
degH(r) ·Θ(G)+Θ∗S (G)+Θ∗S(H−r). The last two terms come from the fact that
we can use strong edge colorings of G and H − r to color almost every edge of
G ≥H . To see this, we partition edges of G ≥H into three parts, i.e., E(G ≥H) =
E1⊃E2⊃E3, where E1 = {(v, r)(w, r) : vw ∈ E(G)}, E2 =

⋃
v⊆V (G){(v, a)(v, b) :

a, b ≤= r, ab ∈ E(G)} and E3 = E(G≥H)− (E1⊃E2). Then we show how to color
E1, E2, and E3 using Θ∗S(G), Θ∗S(H − r) and degH(r)Θ(G) colors, respectively.
First, take a strong edge coloring σ1 : E(G) ⊕ [Θ∗S(G)] of G. For each edge
(u, r)(v, r) ∈ E1, we assign to (u, r)(v, r) a color σ((u, r)(v, r)) := σ1(uv). This
must be a proper (partial) coloring because no edges in E2⊃E3 join endpoints of
any two edges in E1. So, we finish coloring E1. Now, take a strong edge coloring
σ2 : E(H − r)⊕ [Θ∗S(H − r)] of H − r. We assign to each edge (v, a)(v, b) ∈ E2

a color σ((v, a)(v, b)) := σ2(ab) + Θ∗S(G). (We shift the color by Θ∗S(G) to avoid
using the same color as E1.) Again, this is a proper (partial) coloring because
no edges of E1 ⊃E3 join endpoints of any two edges in E2. So far, we have used
Θ∗S(G) + Θ∗S(H − r) colors for E1 and E2. Finally, we color E3. Take a “vertex-
coloring” σ3 : V (G) ⊕ [Θ(G)] of G. We define degH(r) · Θ(G) new colors from
σ3, denoted by (i, a) for i ∈ [Θ(G)] and a : ra ∈ E(H). Then, for each edge
(v, r)(v, a) ∈ E3, we assign to (v, r)(v, a) a color σ((v, r)(v, a)) := (σ3(v), a). So,
the total number of colors we use in this step is Θ(G) degH(r), thus summing up
to Θ(G) degH(r) +Θ∗S(G) +Θ∗S(H − r) colors as desired. It only remains to show
that σ is a proper strong edge coloring of G ≥H .

To see this, consider a pair of edges (v, r)(v, a), (w, r)(w, b) ∈ E3. We will
check for any possible violation. If v = w, then (v, r) = (w, r), which means that
the two edges receive different colors by construction, and we are done. Hence,
we may assume that v ≤= w. Now, (v, r)(v, a), (w, r)(w, b) share no endpoints.
So, a possible violation is that some edge in E(G ≥H) joins their endpoints. If
(v, r)(v, a) and (w, r)(w, b) are joined by an edge (v, r)(w, r) ∈ E1, then we must
have an edge vw ∈ E(G). So, σ3(v) ≤= σ3(w), thus implying that σ((v, r)(v, a)) ≤=
σ((w, r)(w, b)). Otherwise, (v, r)(v, a) and (w, r)(w, b) are joined by an edge in

416 P. Chalermsook, B. Laekhanukit, and D. Nanongkai

E2 ⊃ E3. But, this is not possible since v ≤= w whereas edges in E2 ⊃ E3 are of
the form (u, a)(u, b) where ab ∈ E(H). (Edges in E2 ⊃ E3 only join vertices in
the same copy of H .)

Now, we prove the left-hand-side: max{Θ∗S(G), Θ∗S(H− r), degH(r) ·Θf (G)} ⊆
Θ∗S(G ≥H). Clearly, max{Θ∗S(G), Θ∗S(H − r)} is the minimum number of colors
that we need to strongly color edges of G ≥H since G ≥H has both G and H as
subgraphs. So, it suffices to show that G ≥H requires at least degH(r) · Θf (G)
colors. To prove this, we map a strong edge coloring of G ≥ H to a fractional
vertex-coloring of G. Let C1, C2, . . . , CM be color classes of a minimum strong
edge coloring in G ≥H . We will show that Θf (G) ⊆M/ degH(r).

We define the fractional color classes of G by Di = {v ∈ V (G) : (v, r)(v, a) ∈
Ci for some a ∈ V (H)} for i = 1, 2, . . . ,M . Then we assign a fractional value of
1/ degH(r) to each color class Di. Let us check that these color classes form a
proper fractional vertex-coloring of G, i.e., (1) each Di is a stable set in G and
(2) each vertex belongs to at least degH(r) color classes.

Suppose the first condition does not hold. Then there is an edge vw ∈ E(G)
joining vertices u, v from the same color class Di. But, then there are edges
(v, r)(v, a) and (w, r)(w, b) in the same (strong edge) color class Ci that are joined
by an edge (v, r)(w, r), contradicting the fact that Ci forms an induced matching
in G. Next, for the second condition, we know that each vertex (v, r) ∈ V (G≥H)
has degH(r) neighbors of the form (v, a) where ra ∈ E(H). So, we have degH(r)
edges in G ≥H of the form (v, r)(v, a) where ra ∈ E(H), and these edges could
not have the same colors (since they share (v, a) as an endpoint). It follows that
v belongs to degH(r) color classes. This completes the proof. ⊂↓

The statement of the above theorem can be simplified. Using the fact that
Θ(G) ⊆ Θf (G) log |V (G)| and choosing H as a star:

Corollary 1. For any graph G and a star SΛ with a root vertex r and Π leaves,

Θ∗S(G ≥ SΛ) = β̃(Θ∗S(G) + Π · Θ(G)).

3.1 Hardness of Approximation

Our construction is simple. We take a graph G = (V,E) on N vertices given

by Theorem 2, and we output a graph Ĝ = G ≥ H where H is a star with
Π = N2 leaves. See Figure 2. Now, we invoke Corollary 1 to analyze the hardness
gap. In Yes-Instance, Θ(G) ⊆ N Σ implies Θ∗S(Ĝ) ⊆ N2N Σ + N2 ⊆ N2+2Σ. In

No-Instance, Θ(G) ⊗ N1−Σ implies Θ∗S(Ĝ) ⊗ N2N1−Θ

logN ⊗ N3−2Σ. So, the gap is

N1−Σ = |V (Ĝ)|1/3−Σ, thus proving Theorem 1.

3.2 Distance-k Edge-Coloring

Here we sketch the ideas of generalizing our hardness to arbitrary k. For k = 3,
we take an instance Ĝ = G ≥ H as in the previous section. Then we subdivide
each edge (v, r)(w, r) of G≥H by a path of length 2, namely, ((v, r), xvw , (w, r)).

Coloring Graph Powers 417

v

w3

w1

w2

G

Fig. 2. The figure shows an example of a reduction from an instance of the graph
coloring problem to the strong edge coloring problem with ι = 3

The similar analysis gives a hardness of n1/3−Σ for this case. For k = 4, we change
the choice of a graph H . Instead of using a star with N2 leaves, we choose H as
a clique on N vertices. The proof of the following theorem is omitted.

Theorem 5. For any graph G and a clique KΛ, the following holds:

γ̃

(
Π2 · Θ(G)

|V (G)|
)
⊆ Θ(L4(G ≥KΛ)) ⊆ O(Π2 · Θ(G) + |E(G)|+ Π|V (G)|).

To prove Theorem 5, we apply the same analysis as before. This approach
allows us to prove a hardness of n1/2−Σ for the distance-k edge coloring. For
k > 4, we modify the construction for k = 4 by replacing each edge uv of G by
a path of length k − 3. Detail is omitted.

3.3 Strong Edge Coloring of Other Graph Products

In this section, we state new bounds on the strong chromatic index of lexico-
graphic (•) and disjunctive (⊇) products of graphs.

Theorem 6 (Lexicographic Product). For any graphs G and H,

max
{ |V (H)|2δ≥

S(G)
log |V (H)| ,

δ(G)δ≥
S(H)

log |V (G)|
}
⊆ Θ∗S(G •H) ⊆ |V (H)|2Θ∗S(G) + Θ(G)Θ∗S(H).

Theorem 7 (Disjunctive Product). For any graphs G and H,

max
{ |V (H)|2δ≥

S(G)
log |V (H)| ,

|V (G)|2δ≥
S(H)

log |V (G)|
}
⊆Θ∗S(G⊇H) ⊆ |V (H)|2Θ∗S(G)+|V (G)|2Θ∗S(H).

The proofs of these theorems use techniques from Theorem 4 and are omitted.

4 Other Problems on Gk

4.1 Maximum Clique

We sketch a construction for the case k = 2. The full proof is omitted due to the
limitation of space. Given a graph G∗ = (V ∗, E∗), we construct G by replacing
each vertex v of degree d by a star Sd+1 and then rewiring each edge to a different

418 P. Chalermsook, B. Laekhanukit, and D. Nanongkai

vertex of Sd+1. Note that Sd+1 is a tree on d + 1 vertices consisting of a root
vertex r and d leaves. So, the root vertex r of Sd+1 corresponds to a vertex v
of G∗. We call the root vertex of each star a canonical vertex. Moreover, two
distinct canonical vertices r and r∗ are within distance 2 of each other in G if
and only if their corresponding vertices v and v∗ of G∗ are adjacent. Thus, the
clique number restricted to canonical vertices corresponds to the clique number
of G∗. However, this number can be smaller than that restricted to non-canonical
vertices. Hence, we make |V (G∗)| copies of each canonical vertex to ensure that
the former term (i.e., the clique number restricted to canonical vertices) is larger
than the latter one (i.e., the clique number restricted to non-canonical vertices).
So, we can derive the hardness of |V (G∗)|1−Σ from the maximum clique problem
in G∗. Since the output graph G has |V (G)| = |V (G∗)|2 vertices, we have the
hardness of n1/2−Σ-hardness, for any Ψ > 0. For k > 2, we modify the construction
by subdividing each edge uv corresponding to an edge of G by a path of length
k− 1. So, the maximum clique problem in Gk admits no n1/2−Σ-approximation,
for any Ψ > 0, unless P = NP.

4.2 Maximum Stable Set

We sketch tight hardness construction for the maximum stable set problem on
Gk. For different k, the approximability of the problem varies, depending on the
parity of k. Here we only discuss the case k = 2 and k = 3. The case of all odd
and even k can be obtained by simply modifying these two constructions. The
proof is omitted.

First, consider the case when k = 2. Let G be an input graph. The key idea
is to subdivide each edge in E(G) so that each pair of non-adjacent vertices are
in distance more than 2 of each other. Thus, any stable set in the graph has a
corresponding stable set in its square. More formally, we construct a graph H
by first subdividing each edge e ∈ E(G) by a special vertex x(e).

To make sure that these special vertices would not form a stable set in
H2, we add edges x(e)x(e∗) for any pair of special vertices x(e), x(e∗). Thus,
Δ(G) ⊆ Δ(H) ⊆ Δ(G) + 1. As |V (H)| = |E(G)| + |V (G)| ⊆ 2|V (G)|2, we
have an n1/2−Σ-hardness for computing Δ(G2). The hardness is tight because it
matches the upper bounds of O(

√
n)-approximation provided by the algorithm

of Halldórsson et al. [15].
For k = 3, the key idea of the construction is simply ensuring that any pair

of vertices are not within distance 3 of each other. Given a graph G = (V,E) on
n vertices, we construct a graph H by attaching a new vertex v∼ to each vertex
v ∈ V (G); we call v a white vertex and call v∼ a black vertex. Now, we have a
graph H on 2|V (G)| vertices. Observe that a pair of black vertices v∼ and w∼

are at distance 3 of each other in H if and only if their corresponding white
vertices v and w are adjacent in G. Thus, a set of black vertices S∼ is stable in
H3 if and only if the set of white vertices S = {v : v∼ ∈ S∼} is stable in G. So,
Δ(G) ⊆ Δ(H3) ⊆ 2Δ(G). The |V (G)|1−Σ-hardness follows immediately.

Coloring Graph Powers 419

5 Conclusion and Open Problems

This paper shows the hardness of the distance-k edge coloring problem and
illustrates applications of the fractional coloring argument in proving hardness
of approximation. For some of the problem, the gaps between the lower and
upper bounds on approximation thresholds remain open. In particular, for the
strong edge coloring problem, our result implies that the right approximation
threshold lies between n1/3−Σ and n, but the exact value is still unknown. Proving
the tight approximation hardness might require a totally new idea and thus is
very challenging. The problem on bounded degree and regular graphs are also
open and might be interesting as well.

Acknowledgement. We thank Ross Kang for pointing out interesting
references and also thank anonymous reviewers for their helpful comments.

References

1. Agnarsson, G., Greenlaw, R., Halldrsson, M.M.: On powers of chordal graphs and
their colorings. Congr. Numer. 144, 41–65 (2000)

2. Agnarsson, G., Halldórsson, M.M.: Coloring powers of planar graphs. SIAM J.
Discrete Math. 16(4), 651–662 (2003), also in SODA 2000

3. Alon, N., Mohar, B.: The chromatic number of graph powers. Combinatorics, Prob-
ability & Computing 11(1), 1–10 (2002)

4. Barrett, C.L., Istrate, G., Vilikanti, A.K., Marathe, M., Thite, S.V.: Approximation
algorithms for distance-2 edge coloring. Tech. rep., Los Alamos National Lab., NM,
US (2002)

5. Barrett, C.L., Kumar, V.S.A., Marathe, M.V., Thite, S., Istrate, G.: Strong edge
coloring for channel assignment in wireless radio networks. In: PerCom Workshops,
pp. 106–110 (2006)

6. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Graph products revisited: Tight
approximation hardness of induced matching, poset dimension and more. In:
SODA, pp. 1557–1576 (2013)

7. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced match-
ing, and pricing: Connections and tight (subexponential time) approximation hard-
nesses. In: FOCS (2013)

8. Chleb́ık, M., Chleb́ıková, J.: Complexity of approximating bounded variants of
optimization problems. Theor. Comput. Sci. 354(3), 320–338 (2006), preliminary
version in FCT 2003

9. Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg (2010), http://diestel-graph-theory.com/

10. Duckworth, W., Manlove, D., Zito, M.: On the approximability of the maximum
induced matching problem. J. Discrete Algorithms 3(1), 79–91 (2005)

11. Erickson, J., Thite, S., Bunde, D.P.: Distance-2 edge coloring is NP-complete.
CoRR abs/cs/0509100 (2005)

12. Faudree, R.J., Gyárfás, A., Schelp, R.H., Tuza, Z.: Induced matchings in bipartite
graphs. Discrete Math. 78(1-2), 83–87 (1989)

13. Faudree, R.J., Gyárfás, A., Schelp, R.H., Tuza, Z.: The strong chromatic index of
graphs. Ars. Combin. 29B, 205–2011 (1990)

http://diestel-graph-theory.com/

420 P. Chalermsook, B. Laekhanukit, and D. Nanongkai

14. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. In: CCC,
pp. 278–287 (1996)

15. Halldórsson, M.M., Kratochv́ıl, J., Telle, J.A.: Independent sets with domination
constraints. Discrete Appl. Math. 99(1-3), 39–54 (2000)

16. H̊astad, J.: Clique is hard to approximate within n1−α. In: FOCS, pp. 627–636
(1996)

17. Hell, P., Raspaud, A., Stacho, J.: On injective colourings of chordal graphs. In:
Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS,
vol. 4957, pp. 520–530. Springer, Heidelberg (2008)

18. Hocquard, H., Valicov, P.: Strong edge colouring of subcubic graphs. Discrete Appl.
Math. 159(15), 1650–1657 (2011)

19. Kaiser, T., Kang, R.J.: The distance-t chromatic index of graphs. Combinatorics,
Probability and Computing 23, 90–101 (2014),
http://journals.cambridge.org/article_S0963548313000473

20. Kang, R.J., Manggala, P.: Distance edge-colourings and matchings. Discrete Ap-
plied Mathematics 160(16-17), 2435–2439 (2012)

21. Král, D.: Coloring powers of chordal graphs. SIAM J. Discrete Math. 18(3),
451–461 (2004)

22. Krumke, S.O., Marathe, M.V., Ravi, S.S.: Models and approximation algorithms
for channel assignment in radio network. Wireless Networks 7(6), 575–584 (2001)

23. Laekhanukit, B.: Parameters of two-prover-one-round game and the hardness of
connectivity problems. To appear in SODA 2014 (2014)

24. Lloyd, E.L., Ramanathan, S.: On the complexity of distance-2 coloring. In: ICCI,
pp. 71–74 (1992)

25. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete
Math. 13(4), 383 (1975),
http://www.sciencedirect.com/science/article/pii/0012365X75900588

26. Mahdian, M.: The strong chromatic index of graphs. Master’s thesis, University of
Toronto (2000)

27. Mahdian, M.: On the computational complexity of strong edge coloring. Discrete
Appl. Math. 118(3), 239–248 (2002)

28. McCormick, S.: Optimal approximation of sparse hessians and its equivalence to a
graph coloring problem. Math. Program. 26, 153–171 (1983),
http://dx.doi.org/10.1007/BF02592052 , doi:10.1007/BF02592052

29. Misra, J., Gries, D.: A constructive proof of vizing’s theorem. Information Process-
ing Letters 41(3), 131–133 (1992),
http://www.sciencedirect.com/science/article/pii/002001909290041S

30. Molloy, M.S.O., Reed, B.A.: A bound on the strong chromatic index of a graph. J.
Comb. Theory, Ser. B 69(2), 103–109 (1997)

31. Ramanathan, S., Lloyd, E.L.: Scheduling algorithms for multihop radio networks.
IEEE/ACM Trans. Netw. 1(2), 166–177 (1993), also in SODA 2000

32. Togni, O.: Strong chromatic index of products of graphs. Discrete Math. Theor.
Comput. Sci. 9(1) (2007)

33. Zito, M.: Induced matchings in regular graphs and trees. In: Widmayer, P.,
Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 89–100. Springer,
Heidelberg (1999)

34. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing 3(1), 103–128 (2007)

http://journals.cambridge.org/article_S0963548313000473
http://www.sciencedirect.com/science/article/pii/0012365X75900588
http://dx.doi.org/10.1007/BF02592052
http://www.sciencedirect.com/science/article/pii/002001909290041S

Convexity in Partial Cubes: The Hull Number

Marie Albenque1 and Kolja Knauer2

1 LIX UMR 7161, École Polytechnique, CNRS, France
2 I3M, Université Montpellier 2, France

Abstract. We prove that the combinatorial optimization problem of
determining the hull number of a partial cube is NP-complete. This makes
partial cubes the minimal graph class for which NP-completeness of this
problem is known and improves some earlier results in the literature.

On the other hand we provide a polynomial-time algorithm to deter-
mine the hull number of planar partial cube quadrangulations.

Instances of the hull number problem for partial cubes described in-
clude poset dimension and hitting sets for interiors of curves in the plane.

To obtain the above results, we investigate convexity in partial cubes
and characterize these graphs in terms of their lattice of convex sub-
graphs, improving a theorem of Handa. Furthermore we provide a topo-
logical representation theorem for planar partial cubes, generalizing a
result of Fukuda and Handa about rank 3 oriented matroids.

1 Introduction

The object of this paper is the study of convexity and particularly of the hull
number problem on different classes of partial cubes. Our contribution is twofold.
First, we establish that the hull number problem is NP-complete for partial
cubes, second, we emphasize reformulations of the hull number problem for cer-
tain classes of partial cubes leading to interesting problems in geometry, poset
theory and plane topology.

Denote by Qd the hypercube graph of dimension d. A graph G is called a
partial cube if there is an injective mapping Θ : V (G) ⊕ V (Qd) such that
dG(v, w) = dQd(Θ(v), Θ(w)) for all v, w ≤ V (G), where, dG and dQd denote the
graph distance in G and Qd, respectively. It implies in particular that for each
pair of vertices of G, at least one shortest path between them in Qd belongs also
to G. In other words Θ(G), seen as an induced subgraph of Qd, is an isometric
embedding of G in Qd.

Partial cubes were introduced by Graham and Pollak in [24] in the study of
interconnection networks and continue to find strong applications; they form for
instance the central graph class in media theory (see the recent book [18]) and
frequently appear in chemical graph theory e.g. [17]. Partial cubes form a gen-
eralization of several important graph classes, thus have also many applications
in different fields of mathematics. Indeed, they “present one of the central and
most studied classes of graphs in all of the metric graph theory”, citing [30].

This article discusses some examples of such families of graphs including Hasse
diagrams of upper locally distributive lattices or equivalently antimatroids [20]

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 421–432, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

422 M. Albenque and K. Knauer

(Section 2.2), region graphs of halfspaces and hyperplanes (Section 3), and tope
graphs of oriented matroids [11] (Section 5). These families contain many graphs
defined on sets of combinatorial objects: flip-graphs of strongly connected and
acyclic orientations of digraphs [12], linear extension graphs of posets [32], integer
tensions of digraphs [20], configurations of chip-firing games [20], to name a few.

Convexity for graphs is the natural counterpart of Euclidean convexity and
is defined as follows; a subgraph G∗ of G is said to be convex if all shortest
paths in G between vertices of G∗ actually belong to G∗. The convex hull of
a subset V ∗ of vertices – denoted conv(V ∗) – is defined as the smallest convex
subgraph containing V ∗. Since the intersection of convex subgraphs is clearly
convex, the convex hull of V ∗ is the intersection of all the convex subgraphs that
contain V ∗.

A subset of vertices V ∗ of G is a hull set if and only if conv(V ∗) = G. The
hull number or geodesic hull number of G, denoted by hn(G), is the size of a
smallest hull set. It was introduced in [19], and since then has been the object of
numerous papers. Most of the results on the hull number are about computing
good bounds for specific graph classes, see e.g. [9, 28, 7, 6, 16, 8]. Only recently,
in [15] the focus was set on computational aspects of the hull number and it
was proved that determining the hull number of a graph is NP-complete. This
was strengthened to bipartite graphs in [1]. On the other hand, polynomial-
time algorithms have been obtained for unit-interval graphs, cographs and split
graphs [15], cactus graphs and P4-sparse graphs [1], distance hereditary graphs
and chordal graphs [29]. Moreover, in [2], a fixed parameter tractable algorithm
to compute the hull number of any graph class was obtained. Here, the parameter
is the size of a vertex cover.

Let us end this introduction with an overview of the results and the organi-
zation of this paper. Section 2 is devoted to properties of convexity in partial
cubes and besides providing tools for the other sections, its purpose is to con-
vince the reader that convex subgraphs of partial cubes behave nicely. First a
characterization of partial cubes in terms of their convex subgraphs is given. In
particular, convex subgraphs of partial cubes behave somewhat like polytopes in
Euclidean space. Namely, they satisfy an analogue of the Representation The-
orem of Polytopes [35]. We then prove that for any vertex v in a partial cube
G, the set of convex subgraphs of G containing v ordered by inclusion forms an
upper locally distributive lattice. This property leads to a new characterization
of partial cube, strengthening a theorem of Handa [26].

In Section 3 the problem of determining the hull number of a partial cube is
proved to be NP-complete, improving earlier results of [15] and [1]. Our proof
implies a stronger result by showing that determining the hull number of a region
graph of an arrangement of halfspaces and hyperplanes is also NP-complete.

In Section 4 the relation between the hull number problem for linear extension
graphs and the dimension problem of posets is discussed. We present a quasi-
polynomial-time algorithm to compute the dimension of a poset given its linear
extension graph and conjecture that the problem is polynomial-time solvable.

Convexity in Partial Cubes: The Hull Number 423

Section 5 is devoted to planar partial cubes. We provide a new characteriza-
tion, which is a topological representation theorem generalizing work of Fukuda
and Handa on rank 3 oriented matroids [22]. This characterization is then ex-
ploited to obtain a polynomial-time algorithm that computes the hull number
of planar partial cube quadrangulations.

2 Convexity in Partial Cubes

2.1 Partial Cubes and Cut-Partitions

All graphs studied in this article are supposed to be connected, simple and
undirected. We use the classic graph terminology of [5]. Given a graph G a cut
C ⊆ E is an inclusion-minimal set of edges whose removal disconnects G. The
removal of a cut C leaves exactly two connected components called its sides,
denoted by C+ and C−. For V ∗ ⊗ V , a cut C separates V ∗ if both C+ ∈ V ∗ and
C− ∈ V ∗ are not empty. A cut-partition of G is a set C of cuts partitioning E.
For a cut C ≤ C and V ∗ ⊆ V define C(V ∗) as G if C separates V ∗ and otherwise
as the side of C containing V ∗.

Observation 1. A graph G is bipartite if and only if G has a cut-partition.

The equivalence classes of the Djoković-Winkler relation of a partial cube
[14, 33] can be interpreted as the cuts of a cut-partition. Reformulating some
properties of these equivalence classes as well as some results from [10, 3] the
following new characterization of partial cubes in terms of cut partitions can be
obtained.

Theorem 2. A connected graph G is a partial cube if and only if G admits a
cut-partition C satisfying one of the following equivalent conditions:

(i) for all u, v ≤ V , there is a shortest path between them using no C ≤ C twice
(ii) no shortest path in G uses any C ≤ C twice
(iii) for all V ∗ ⊆ V : conv(V ∗) =

⋂
C⊆C C(V ∗)

(iv) for all v, w ≤ V : conv(v, w) =
⋂

C⊆C C(v, w)

Note that (iii) resembles the Representation Theorem for Polytopes, see [35];
where the role of points is taken by vertices and the halfspaces are mimicked
by the sides of the cuts in the cut-partition. Thanks to (iii), the hull number
problem has now a very useful interpretation as a hitting set problem:

Corollary 3. Let C be a cut-partition that satisfies Theorem 2 then V ∗ is a hull
set if and only if on both sides of C there is a vertex of V ∗, for all C ≤ C.

2.2 Partial Cubes and Upper Locally Distributive Lattices

In this subsection we present another indication for how nice partial cubes
behave with respect to convexity. Generalizing a theorem of Handa [26] we char-
acterize partial cubes in terms of their lattice of convex subgraphs, see Fig.1.

424 M. Albenque and K. Knauer

A partially ordered set or poset L = (X,∗) is a lattice, if each pair of elements
x, y ≤ L admits both a unique largest element smaller than both of them called
their meet and denoted x ≥ y, and a unique smallest element larger than both
of them called their join and denoted x ⊆ y. Since both these operations are
associative, we can define

∨
M := x1 ⊆ . . . ⊆ xk and

∧
M := x1 ≥ . . . ≥ xk for

M = {x1, . . . , xk} ⊆ L. Furthermore define
∨ ↑ and

∧ ↑ as respectively the
minimal and maximal element of L.

An element is called meet-reducible if it can be written as the meet of elements
all different from itself and is called meet-irreducible otherwise. For L = (X,∗)
and x, y ≤ X , one says that y covers x and writes x ⊃ y if and only if x < y
and there is no z ≤ X such that x < z < y. The Hasse diagram of L is then the
directed graph on the elements of X with an arc (x, y) if x ⊃ y. The classical
convention is to represent a Hasse diagram as undirected graph but with a
drawing in the plane such that the orientation of edges can be recovered by
directing them in upward direction. It is easy to see that an element x is a meet-
irreducible if and only if there is exactly one edge in the Hasse diagram leaving
x in upward direction. (Note that the maximum of L is indeed meet-reducible
since it can be written

∧ ↑.)
A lattice is called upper locally distributive or ULD if each of its elements

admits a unique minimal representation as the meet of meet irreducibles. In other
words, for every x ≤ L there is a unique inclusion-minimal set {m1, . . . ,mk} ⊆ L
of meet-irreducibles such that x = m1 ≥ . . . ≥mk.

ULDs were first defined by Dilworth [13] and have thereafter often reappeared,
see [31] for an overview until the mid 80s. In particular, the Hasse diagram of
a ULD is a partial cube, see e.g. [20]. The following theorem sheds light on the
special role played by ULDs among partial cubes with respect to convexity.

Theorem 4. A graph G is a partial cube if and only if for every vertex v the
inclusion order of convex subgraphs containing v forms a ULD whose Hasse
diagram contains G as an isometric subgraph.

3 NP-Completeness of Hull Number in Partial Cubes

The section is devoted to the proof of the following result:

Theorem 5. Given a partial cube G and an integer k it is NP-complete to
decide whether hn(G) ∗ k.
Proof. Observe first that by Corollary 3, computing the convex hull of a set
of vertices in a partial cube is doable in polynomial-time. It is also doable in
polynomial-time in general graphs, see e.g. [15]. To prove the NP-completeness,
we exhibit a reduction from the following problem, known to be NP-complete [23]:

SAT-AM3:
Instance: A formula F in Conjunctive Normal Form on m clauses

D1, . . . , Dm, each consisting of at most three literals on variables
x1, . . . , xn. Each variable appears in at most three clauses.

Question: Is F satisfiable?

Convexity in Partial Cubes: The Hull Number 425

Fig. 1. Two ULDs obtained from the same partial cube (thick edges) by fixing a
different vertex

Given an instance F of SAT-AM3, we construct a partial cube GF such that
F is satisfiable if and only if hn(GF) ∗ n+ 1.

Given F we start with two vertices u and u∗ connected by an edge. For each
1 ∗ i ∗ m, introduce a vertex di and link it to u. If two clauses, say Di and Dj ,
share a literal, add a new vertex di,j and connect it to both di and dj .

Now for each variable x, introduce a copy Gx of the subgraph induced by u
and the vertices corresponding to clauses that contain x (including vertices of
the form d{i,j} in case x appears in the same literal in Di and Dj). Connect
Gx to the rest of the graph by introducing a matching Mx connecting each
original vertex with its copy in Gx and call GF the graph obtained. Assume
without loss of generality that each Boolean variable x used in F appears at
least once non-negated (denoted by x with a slight abuse of notations) and once
negated (denoted by x̄). Then, each literal appears at most twice in F and the
two possible options for Gx are displayed on Fig.2. Label the vertices of Gx

according to that figure.
Observe first that GF is a partial cube. Define a cut partition of GF into

n+m+1 cuts as follows. One cut consists of the edge (u, u∗). The cut associated
to a clause Di contains the edge {u, di}, any edge of the form {d{i,j}, dj} and
all the copies of such edges that belong to one of the Gx. Let us call this cut
Ci. Finally, the cut associated to a variable x is equal to Mx. This cut partition
satisfies Theorem 2(i). Indeed, for a cut C denote respectively ι+C and ι−C the
vertices in C+ and C− incident to edges of C. Theorem 2(i) is in fact equivalent
to say that, for each cut C ≤ C, between any pair of vertices of ι+C or ι−C,
there exists a shortest path that contains no edge of C. A case by case analysis
of the different cuts in GF concludes the proof.

Assume F is satisfiable and let S be a satisfying assignment of variables. Let
H be the union of {u∗} and the subset of vertices of GF corresponding to S.
More formally, for each variable x, H contains the vertex vx if x is set to true
in S or the vertex vx̄ otherwise. Let us prove that H is a hull set. Since u belongs

426 M. Albenque and K. Knauer

da db

u∗

di dj

di,j

dkdb

uy

da

uvy vȳ

(a) The variable y appears twice in F ,

da db

u∗

u

dkdi

di,j

ux

dj

dj:xdi:x

vx

vx̄

(b) the variable x three times.

Fig. 2. General structure of the graph GF , with the two possible examples of gadgets
associated to a variable. Red edges correspond to the cut My on (a) and Mx on (b).

to any path between u∗ and any other vertex, u belongs to conv(H). Moreover,
for each variable x, the vertex ux lies on a shortest path both between vx and u∗

and between vx̄ and u∗, hence all the vertices ux belong to conv(H). Next, for
each literal Δ and for each clause Di that contains Δ, there exists a shortest path
between u∗ and vΔ that contains di. Then, since S is a satisfying assignment of
F , each clause vertex belongs to conv(H). It follows that conv(H) also contains
all vertices di,j .

To conclude, it is now enough to prove that for all Δ /≤ S, the vertex vΔ also
belongs to conv(H). In the case where Δ appears in only one clause Di, then vΔ
belongs to a shortest path between di and uΔ. In the other case, vΔ belongs to a
shortest (uΔ, di,j)-path. Thus, conv(H) = G.

Assume now that there exists a hull set H , with |H | ∗ n+ 1. By Corollary 3,
the set H necessarily contains u∗ and at least one vertex of Gx for each variable
x. This implies that |H | = n + 1 and therefore for all variables x, H contains
exactly one vertex hx in Gx. Since any vertex of Gx lies either on a shortest
(u∗, vx)-path or (u∗, vx̄)-path, we can assume without loss of generality that hx
is either equal to vx or to vx̄. Hence, H defines a truth assignment S for F .
Now let Ci be the cut associated to the clause Di and let C+

i be the side of Ci

that contains di. Observe that if vx belongs to C+
i , then x appears in Di. By

Corollary 3, H intersects C+
i , hence there exists a literal Δ such that vΔ belongs

to H . Thus, H encodes a satisfying truth-assignment of F . ⊇⊂
The gadget in the proof of Theorem 5 is a relatively special partial cube and
the statement can thus be strengthened. For a polyhedron P and a set H of
hyperplanes in R

d, the region graph of P \H is the graph whose vertices are the
connected components of P \ H and where two vertices are joined by an edge if
their respective components are separated by exactly one hyperplane of H. The
proof of Theorem 5 can be adapted to obtain:

Corollary 6. Let P ⊗ R
d be a polyhedron and H a set of hyperplanes. It is

NP-complete to compute the hull number of the region graph of P \ H.

Convexity in Partial Cubes: The Hull Number 427

4 The Hull Number of a Linear Extension Graph

Given a poset (P,∗P), a linear extension L of P is a total order ∗L on the
elements of P compatible with ∗P , i.e., x ∗P y implies x ∗L y. The set of
vertices of the linear extension graph GL(P) of P is the set of all linear extensions
of P and there is an edge between L and L∗ if and only if L and L∗ differ
by a neighboring transposition, i.e., by reversing the order of two consecutive
elements.

Let us see that property (i) of Theorem 2 holds for GL(P). Each incomparable
pair x ↓ y of (P,∗P) corresponds to a cut of GL(P) consisting of the edges where
x and y are reversed. The set of these cuts is clearly a cut-partition of GL(P).
Observe then that the distance between two linear extensions L and L∗ in GL(P)
is equal to the number of pairs that are ordered differently in L and L∗, i.e., no
pair x ↓ y is reversed twice on a shortest path. Hence GL(P) is a partial cube.

A realizer of a poset is a set S of linear extensions such that their intersection
is P . In other words, for every incomparable pair x ↓ y in P , there exist L,L∗ ≤ S
such that x <L y and x >L′ y. It is equivalent to say that, for each cut C of
the cut-partition of GL(P), the sets C+ ∈ S and C− ∈ S are not empty. By
Corollary 3, it yields a one-to-one correspondence between realizers of P and
hull sets of GL(P). In particular the size of a minimum realizer – called the
dimension of the poset and denoted dim(P) – is equal to the hull number of
GL(P). The dimension is a fundamental parameter in poset combinatorics, see
e.g. [32]. In particular, for every fixed k ∅ 3, it is NP-complete to decide if a
given poset has dimension at least k, see [34]. But if instead of the poset its
linear extension graph is considered to be the input of the problem, then we get:

Proposition 7. The hull number of a linear extension graph (of size n) can be
determined in time O(nc logn), i.e., the dimension of a poset P can be computed
in quasi-polynomial-time in GL(P).

Proof. An antichain in a poset is a set of mutually incomparable elements of P
and the width Γ(P) of P is the size of the largest antichain of P , see [32]. It
is a classic result that dim(P) ∗ Γ(P). Since any permutation of an antichain
appears in at least one linear extension, Γ(P)! ∗ n and therefore dim(P) ∗
log(n). Thus, to determine the hull-number of GL(P) it suffices to compute the
convex hull of all subsets of at most log(n) vertices. Since the convex hull can
be computed in polynomial-time, we get the claimed upper bound. ⊇⊂
In fact, since the number of linear extensions of a poset is generally exponential
in the size of the poset, it seems reasonable to conjecture:

Conjecture 8. The dimension of a poset given its linear extension graph can be
determined in polynomial-time.

5 Planar Partial Cubes and Rank 3 Oriented Matroids

Oriented matroids have many equivalent definitions. We refer to [4] for a thor-
ough introduction to oriented matroids and their plenty applications. Here, we

428 M. Albenque and K. Knauer

will not state a formal definition. It suffices to know that the topes of an oriented
matroid M on n elements are a subset of {1,−1}n satisfying several axioms.
Moreover, the topes determineM uniquely. Joining two topes by an edge if they
differ by the sign of exactly one entry yields the tope graph of M.

From the axioms of oriented matroids it follows that the tope graph G of an
oriented matroid is an antipodal partial cube, i.e., G is a partial cube such that
for every u ≤ G there is a u ≤ G with conv(u, u) = G, see [4]. In particular
we have hn(G) = 2. But, not all antipodal partial cubes can be represented
as the tope graphs of oriented matroids, see [26] and finding a general graph
theoretical characterization is still a big problem in oriented matroid theory.
The exception is for tope graphs of oriented matroids of rank at most 3 which
admit a characterization as planar antipodal partial cubes, see [22]. We need a
few definitions to state this characterization precisely.

A Jordan curve is a simple closed curve in the plane. For an arrangement S
of Jordan curves and S ≤ S, R2 \ S, the complement of S has two components:
one is bounded and is called its interior, the other one, unbounded, is called its
exterior. The closure of the interior of the exterior of S are denoted respectively
S+ and S−. The region graph of an arrangement S of Jordan curves is the graph
whose vertices are the connected components of the complement of S in the
plane and where two vertices are neighbors if their corresponding components
are separated by exactly one element of S. Using the Topological Representation
Theorem for Oriented Matroids [4] the characterization of tope graphs of oriented
matroids of rank at most 3 may be rephrased as:

Theorem 9 ([22]). A graph G is an antipodal planar partial cube if and only if
G is the region graph of an arrangement S of Jordan curves such that for every
S, S∗ ≤ S we have |S ∈ S∗| = 2 and for S, S∗, S∗∗ ≤ S either |S ∈ S∗ ∈ S∗∗| = 2 or
|S+ ∈ S∗ ∈ S∗∗| = |S− ∈ S∗ ∈ S∗∗| = 1.

Given a Jordan curve S and a point p ≤ R
2 \ S denote by S(p) the clo-

sure of the side of S not containing p. An arrangement S of Jordan curves
is called non-separating, if for any region p ≤ R

2 \ S and subset S ∗ ⊆ S the
set R

2 \ ⋃S⊆S′ S(p) is connected. Two important properties of non-separating
arrangements are summarized in the following:

Observation 10. Let S a non-separating arrangement. Then the interiors of S
form a family of pseudo-discs, i.e., different curves S, S∗ ≤ S intersect in at most
two points. Moreover, S has the topological Helly property, i.e., if the interiors
of S1, S2, S3 ≤ S mutually intersect, then S+

1 ∈ S+
2 ∈ S+

3 ≡= ↑.
In Fig. 3 we show how violating the pseudo-disc or the topological Helly

property violates the property of being non-separating.
Non-separating arrangements of Jordan curves yield a generalization of

Theorem 9. The construction of the proof is exemplified in Fig. 4.

Theorem 11. A graph G is a planar partial cube if and only if G is the region
graph of a non-separating arrangement S of Jordan curves.

Convexity in Partial Cubes: The Hull Number 429

p

p

Fig. 3. Illustration of Observation 10. Left: Two curves intersecting in more than 2
points. Right: Three interiors of curves intersecting mutually but not having a common
point. In both cases p is a point proving that the arrangement is not non-separating.

Proof. Let G be a planar partial cube with cut-partition C. We consider G with
a fixed embedding and denote by G◦ the planar dual. By planar duality each
cut C ≤ C yields a simple cycle SC in G◦. The set of these cycles, seen as
Jordan curves defines S. Since (G◦)◦ = G the region graph of S is isomorphic
to G. Note that picking p ≤ R

2 \ S and looking at all the S(p) is a special
choice of Ψ ≤ {+1,−1}S and looking at all SΣ(S). But for every S ∗ ⊆ S and
Ψ ≤ {+1,−1}S′

the set R
2 \⋃S⊆S′ SΣ(S) hosts a convex subgraph of G namely

⋂
S⊆S′ C

−Σ(S)
S . In particular, the region graph of S induced on R

2 \⋃S⊆S′ SΣ(S)

is connected and therefore R
2 \⋃S⊆S′ SΣ(S) is connected.

Conversely, let S be a non-separating set of Jordan curves and suppose its
region graphG is not a partial cube. In particular the cut-partition C of G arising
by dualizing S does not satisfy Theorem 2 (i). That means there are regions R, T
such that every curve S contributing to the boundary of R contains R and T
on the same side, i.e., for any p ≤ R ∃ T and such S we have R, T ⊆ S(p). Let
S ∗ be the union of these curves. The union

⋃
S⊆S′ S(p) separates R and T , i.e.,

R
2 \⋃S⊆S′ S(p) is not connected. ⊇⊂

A set of Jordan curves is simple if no point of the plane is contained in more than
two curves. In the following, we always assume that a set S of Jordan curves is
encoded by a planar embedding of its 1-skeleton.

Fig. 4. A (non-simple) non-separating set of Jordan curves and its region graph

430 M. Albenque and K. Knauer

Lemma 12. A minimal hitting set for open interiors of a non-separating simple
set S of Jordan curves can be computed in polynomial-time.

Proof. We first prove that if all closed interiors of a given subset S ∗ ⊆ S intersect
pairwise, then they have a non-empty common intersection. By Observation 10,
the interiors of every triple S1, S2, S3 ≤ S ∗ have a common point. We can apply
the classical Topological Helly Theorem [27], i.e., for any family of pseudo-discs in
which every triple has a point in common, all members have a point in common.

Now, since S is simple the intersection of mutually intersecting interiors ac-
tually has to contain a region and not only a point.

Next, the intersection graph of open interiors of S is chordal: assume that
there is a chordless cycle witnessed by S+

1 , . . . , S
+
k for k ∅ 4. Since S is non-

separating S+
1 ∈ . . . ∈ S+

k must be non-empty. But, if there is no edge between
two vertices of the intersection graph, the corresponding open interiors must be
disjoint. The set S+

1 ∈. . .∈S+
k is therefore reduced to a single point, contradicting

simplicity.
Chordal graphs form a subset of perfect graphs and hence by [25] their mini-

mum clique-cover number – that is the least integer k for which the graph admits
a partition of its vertices into k cliques – can be computed in polynomial time.
Given a clique cover of the intersection graph of S, cliques can be assumed to
be maximal. Since the intersection of several interiors actually has to contain
a region, each maximal clique corresponds to one region of the region graph.
Picking one point in the interior of each of those regions yields a hitting set for
open interiors. ⊇⊂
Theorem 13. A minimal hitting-set for open interiors and exteriors of a non-
separating simple set S of Jordan curves can be computed in polynomial-time.

Proof. Viewing S now as embedded on the sphere, any choice of a region v as
the unbounded region yields a different arrangement Sv of Jordan curves in the
plane. Denote the size of a minimum hitting set of the interiors of Sv by hv.

Let us now prove that there exist some regions u, v such that hu < hv if and
only if there is a hitting set of size hv of exteriors and interiors of S. Let hu < hv
for some regions u, v. Extending the hitting set witnessing hu by the unbounded
region in Su yields a hitting set of exteriors and interiors of size at most hv.
Conversely let H be a hitting set of size hv of exteriors and interiors of S and
let u ≤ H . Now, because all sides hit by u now are unbounded, H \ u hits all
bounded sides of Su and therefore hu < hv.

It follows that a minimum hitting set of exteriors and interiors of S is of size
minv⊆V hv+1. Since by Lemma 12 every hv can be computed in polynomial-time
and |V | is linear in the size of the input, we are done. ⊇⊂
Combining Corollary 3 and Theorems 11 and 13, we get:

Corollary 14. The hull number of a plane quadrangulation that is a partial
cube can be determined in polynomial-time.

Notice that in [21], it was shown that the hitting set problem restricted to open
interiors of (simple) sets of unit squares in the plane remains NP-complete and
that the gadget used in that proof is indeed not non-separating.

Convexity in Partial Cubes: The Hull Number 431

We conclude this paper with a conjecture. Combined with Theorem 13, it
would give a polynomial-time algorithm for the hull number of planar partial
cubes.

Conjecture 15. A minimum hitting set for open interiors of a non-separating set
of Jordan curves can be found in polynomial-time.

Acknowledgments. The authors thank Stefan Felsner, Matjaž Kovše, and
Bartosz Walczak for fruitful discussions. M.A. would also like to thank Stefan
Felsner for his invitation in the Discrete Maths group at the Technical University
of Berlin, where this work was initiated. M.A. acknowledges the support of the
ERC under the agreement “ERC StG 208471 - ExploreMap” and of the ANR
under the agreement “ANR 12-JS02-001-01”. K.K. was supported by TEOMA-
TRO (ANR-10-BLAN 0207) and DFG grant FE-340/8-1 as part of ESF project
GraDR EUROGIGA.

References

[1] Araujo, J., Campos, V., Giroire, F., Nisse, N., Sampaio, L., Soares, R.: On the
hull number of some graph classes. Theoret. Comput. Sci. 475, 1–12 (2013)

[2] Araujo, J., Morel, G., Sampaio, L., Soares, R., Weber, V.: Hull number: P5-free
graphs and reduction rules, Tech. Report RR-8045, INRIA (2012)

[3] Bandelt, H.-J.: Graphs with intrinsic S3 convexities. J. Graph Theory 13(2), 215–
228 (1989)

[4] Björner, A., Vergnas, M.L., Sturmfels, B., White, N., Ziegler, G.M.: Oriented
matroids, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 46.
Cambridge University Press, Cambridge (1999)

[5] Bondy, J.A., Murty, U.S.: Graph theory, vol. 244. Springer (2008)
[6] Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L.: On the geodetic

and the hull numbers in strong product graphs. Comput. Math. Appl. 60(11),
3020–3031 (2010)

[7] Canoy Jr., S.R., Cagaanan, G.B., Gervacio, S.V.: Convexity, geodetic, and hull
numbers of the join of graphs. Util. Math. 71, 143–159 (2006)

[8] Centeno, C.C., Penso, L.D., Rautenbach, D., Pereira de Sá, V.G.: Geodetic Num-
ber versus Hull Number in P3-Convexity. SIAM J. Discrete Math. 27(2), 717–731
(2013)

[9] Chartrand, G., Harary, F., Zhang, P.: On the hull number of a graph. Ars Com-
bin. 57, 129–138 (2000)

[10] Chepoi, V.D.: d-convex sets in graphs, Ph.D. thesis, Ph. D. dissertation, Moldova
State University, Kishinev (1986) (Russian)

[11] Cordovil, R.: Sur les matröıdes orientés de rang 3 et les arrangements de pseudo-
droites dans le plan projectif réel. European J. Combin. 3(4), 307–318 (1982)

[12] Cordovil, R., Forge, D.: Flipping in acyclic and strongly connected graphs (2007)
[13] Dilworth, R.P.: Lattices with unique irreducible decompositions. Ann. of Math

(2) 41, 771–777 (1940)
[14] Ž Djoković, D.: Distance-preserving subgraphs of hypercubes. Journal of Combi-

natorial Theory, Series B 14(3), 263–267 (1973)

432 M. Albenque and K. Knauer

[15] Dourado, M.C., Gimbel, J.G., Kratochv́ıl, J., Protti, F., Szwarcfiter, J.L.: On the
computation of the hull number of a graph. Discrete Math. 309(18), 5668–5674
(2009)

[16] Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the hull number
of triangle-free graphs. SIAM J. Discrete Math. 23, 2163–2172 (2009)

[17] Eppstein, D.: Isometric diamond subgraphs. In: Tollis, I.G., Patrignani, M. (eds.)
GD 2008. LNCS, vol. 5417, pp. 384–389. Springer, Heidelberg (2009)

[18] Eppstein, D., Falmagne, J.-C., Ovchinnikov, S.: Media theory. Interdisciplinary
applied mathematics, p. 328. Springer, Berlin (2008)

[19] Everett, M.G., Seidman, S.B.: The hull number of a graph. Discrete Math. 57(3),
217–223 (1985)

[20] Felsner, S., Knauer, K.: ULD-lattices and Δ-bonds. Combin. Probab. Com-
put. 18(5), 707–724 (2009)

[21] Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in
the plane are NP-complete. Inform. Process. Lett. 12(3), 133–137 (1981)

[22] Fukuda, K., Handa, K.: Antipodal graphs and oriented matroids. Discrete
Math. 111(1-3), 245–256 (1993), Graph theory and combinatorics (Luminy, 1990)

[23] Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and
Co., San Francisco (1979); A guide to the theory of NP-completeness

[24] Graham, R.L., Pollak, H.O.: On the addressing problem for loop switching. Bell
System Tech. J. 50, 2495–2519 (1971)

[25] Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.
Ann. Discrete Math. 21, 325–356 (1984)

[26] Handa, K.: Topes of oriented matroids and related structures. Publ. Res. Inst.
Math. Sci. 29(2), 235–266 (1993)

[27] Helly, E.: Über systeme von abgeschlossenen mengen mit gemeinschaftlichen punk-
ten. Monatshefte für Mathematik 37(1), 281–302 (1930)

[28] Hernando, C., Jiang, T., Mora, M., Pelayo, I.M., Seara, C.: On the Steiner, geode-
tic and hull numbers of graphs. Discrete Math. 293(1-3), 139–154 (2005)

[29] Kanté, M.M., Nourine, L.: Polynomial time algorithms for computing a mini-
mum hull set in distance-hereditary and chordal graphs. In: van Emde Boas, P.,
Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS,
vol. 7741, pp. 268–279. Springer, Heidelberg (2013)

[30] Klavžar, S., Shpectorov, S.: Convex excess in partial cubes. J. Graph Theory 69(4),
356–369 (2012)

[31] Monjardet, B.: A use for frequently rediscovering a concept. Order 1(4), 415–417
(1985)

[32] Trotter, W.T.: Combinatorics and partially ordered sets. Johns Hopkins University
Press, Baltimore (1992), Dimension theory

[33] Winkler, P.M.: Isometric embedding in products of complete graphs. Discrete
Appl. Math. 7(2), 221–225 (1984)

[34] Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.
Algebraic Discrete Methods 3(3), 351–358 (1982)

[35] Ziegler, G.M.: Lectures on polytopes. Graduate Texts in Mathematics, vol. 152.
Springer, New York (1995)

Connected Greedy Colourings�

Fabrı́cio Benevides1, Victor Campos1, Mitre Dourado2, Simon Griffiths3,
Robert Morris3, Leonardo Sampaio4, and Ana Silva1

1 Universidade Federal do Ceará (UFC) - Fortaleza, CE, Brazil
{anasilva,fabricio}@mat.ufc.br, campos@lia.ufc.br

2 Universidade Federal do Rio de Janeiro (UFRJ) - Rio de Janeiro, RJ, Brazil
mitre@dcc.ufrj.br

3 Instituto Nacional de Matemática Pura e Aplicada (IMPA) - Rio de Janeiro, RJ, Brazil
{rob,sgriff}@impa.br

4 Universidade Estadual do Ceará (UECE) - Fortaleza, CE, Brazil
leonardo.sampaio@uece.br

Abstract. A connected vertex ordering of a graph G is an ordering v1 < v2 <
· · · < vn of V (G) such that vi has at least one neighbour in {v1, . . . , vi−1},
for every i ∈ {2, . . . , n}. A connected greedy colouring is a colouring obtained
by the greedy algorithm applied to a connected vertex ordering. In this paper
we study the parameter Γc(G), which is the maximum k such that G admits a
connected greedy k-colouring, and χc(G), which is the minimum k such that a
connected greedy k-colouring of G exists. We prove that computing Γc(G) is
NP-hard for chordal graphs and complements of bipartite graphs. We also prove
that if G is bipartite, Γc(G) = 2. Concerning χc(G), we first show that there is
a k-chromatic graph Gk with χc(Gk) > χ(Gk), for every k ≥ 3. We then prove
that for every graph G, χc(G) ≤ χ(G) + 1. Finally, we prove that deciding if
χc(G) = χ(G), given a graph G, is a NP-hard problem.

Keywords: Vertex colouring, Greedy colouring, Connected greedy colouring.

1 Introduction

A k-colouring of a graph G = (V,E) is a surjective mapping Θ : V ⊕ {1, 2, . . . , k}
such that Θ(u) ≤= Θ(v) for any edge uv ∈ E. A k-colouring may also be seen as
a partition of the vertex set of G into k disjoint stable sets Si = {v | Θ(v) = i},
1 ⊗ i ⊗ k. The elements of {1, . . . , k} are called colours, and the set of vertices with
a given colour is a colour class. A graph is k-colourable if it admits a k-colouring.
The minimum number of colours in a colouring of a graph G is its chromatic number,
defined as ι(G) = min{k | G is k-colourable}. We say that G is k-chromatic if
ι(G) = k.

Graph colourings are a natural model for problems in which a set of objects is to
be partitioned according to some prescribed rules. For example, problems of schedul-
ing [11], frequency assignment [5], register allocation [2,3], and the finite element

α Work partially supported by CAPES/Brazil, CNPq/Brazil, FAPERJ/Brazil and FUN-
CAP/Brazil.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 433–441, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

mitre@dcc.ufrj.br

434 F. Benevides et al.

method [9], are naturally modelled by colourings. While it is easy to find a colouring
when no bound is imposed on the number of colour classes, for most of these applica-
tions the challenge consists in finding one that minimizes the number of colours.

To decide if a graph admits a colouring with k colours is an NP-complete problem,
even if k is not part of the input [7]. Moreover, the chromatic number is hard to ap-
proximate: for all Δ > 0, there is no algorithm that approximates the chromatic number
within a factor of n1−Δ unless P = NP [8,13].

Greedy Colourings and Its Best and Worst Case Behaviour. The most basic and
widespread algorithm producing colourings is the greedy algorithm or first-fit algo-
rithm. Given a vertex ordering Γ = v1 < v2 < · · · < vn of V (G), the greedy algorithm
colours the vertices in the order Γ assigning to vi the smallest positive integer not al-
ready used in its lower-indexed neighbours. A greedy colouring is a colouring obtained
from the greedy algorithm.

A remarkable property of the greedy algorithm is that it is always possible to find an
optimal colouring by using it. That is, given any graph G, there exists an ordering of
V (G) such that the greedy algorithm produces a greedy colouring with ι(G) colours.
To see that this is true, consider a colouring S1, S2, . . . , Sk and any vertex ordering in
which the vertices of Si precede those of Si+1, for 1 ⊗ i ⊗ k−1. The greedy algorithm
applied to any such ordering produces a greedy colouring with at most k colours. When
choosing k = ι(G), we get a greedy colouring with ι(G) colours.

Although greedy colourings with an optimal number of colours exist, this property
is not achieved by any vertex ordering. Consider for example the path on four vertices
P4. Any ordering of the vertices of P4 in which the vertices of degree one precede the
vertices of degree two produces a greedy colouring with three colours. The worst-case
behaviour of the greedy algorithm on a graph G is measured by the Grundy number
Ψ (G), which is the largest k such that G has a greedy k-colouring. It’s known that
ι(G) ⊗ Ψ (G) ⊗ Π(G) + 1. Unfortunately, colourings obtained by the greedy algo-
rithm can be arbitrarily far from an optimal colouring. The differenceΨ (G)−ι(G) can
be arbitrarily large, even for trees. This can be seen with the k-binomial-tree Bk, first
defined in [1]. The tree B1 is the tree on one vertex. The tree Bk, for k ∈ 2, is built from
a copy of Bk−1 by adding |V (Bk−1)| new vertices and matching them with the vertices
from the copy of Bk−1. A simple induction can be used to show that Ψ (Bk) = k, while
in fact ι(Bk) = 2, since Bk is a tree.

While the Grundy number can be computed in polynomial time for trees [1] and
partial k-trees [10], the corresponding optimization problem is NP-hard for general
graphs. It remains NP-hard for complements of bipartite graphs [12], bipartite graphs
and chordal graphs [6].

Connected Greedy Colourings. A connected greedy colouring of a connected graph
G = (V,E) is a greedy colouring obtained from a connected ordering Γ = v1 <
v2 < · · · < vn of V (G), that is, an ordering of the vertices with the property that vi
has at least one neighbour in {v1, . . . , vi−1} for every i ∈ {2, . . . , n}. In other words,
if Vi = {v1, . . . , vi}, then G[Vi] is connected for every i ∈ {2, . . . , n}. In this paper
we study connected greedy colourings with a focus on upper and lower bounds for the
number of colours used.

Connected Greedy Colourings 435

The paper is organized as follows. In Section 2 we consider the worst-case behaviour
of connected greedy colourings. In order to do so we define the connected Grundy num-
ber Ψc(G), which is the maximum k such that G admits a connected greedy colouring
with k colours. We prove that, for a bipartite graph, the connected Grundy number
is always equal to the chromatic number of the graph. We show that the difference
Ψc(G) − ι(G) can be arbitrarily large for chordal planar graphs. We also show that
determining the connected Grundy number is NP-hard on chordal graphs and comple-
ments of bipartite graphs. In Section 3 we prove that, in contrast to what happens with
greedy colourings, there are graphs G for which there is no connected greedy colour-
ings with ι(G) colours. Motivated by this fact, we define ιc(G) as the smallest k
such that the graph admits a connected greedy colouring with k colours. We prove that
ιc(G) ⊗ ι(G) + 1, for any graph G. We then show that, given a graph G, deciding if
ιc(G) = ι(G) is a NP-hard problem.

2 The Worst-Case Behaviour

In order to analyse the worst-case behaviour of connected greedy colourings, we define
an analogue of the Grundy number. The connected Grundy number of a graph G, de-
noted Ψc(G), is the maximum k such that G admits a connected greedy k-colouring.
Clearly, Ψc(G) ⊗ Ψ (G). The connected greedy algorithm can therefore be seen as an
improved version of the greedy algorithm. Indeed, in contrast to what happens with the
Grundy number, the connected greedy algorithm always finds an optimal colouring if
the input graph is bipartite.

Lemma 1. Let G = (A∗B,E) be a connected bipartite graph with at least one edge.
Then, Ψc(G) = 2.

Proof. Let v1 < v2 < · · · < vn be a connected ordering and Θ be the corresponding
greedy colouring. Without loss of generality, suppose v1 ∈ A. We prove by induction
on the number of coloured vertices that all coloured vertices in A are coloured 1 and
in B are coloured 2. This is true if no vertices are coloured. Now we consider what
happens when colouring vi, for 1 ⊗ i ⊗ k. If vi ∈ A, then any coloured neighbour of
vi is inB and coloured 2. Therefore, Θ(vi) = 1. If vi ∈ B, then i ≤= 1 and any coloured
neighbour of vi is in A and coloured 1. Furthermore, since the ordering is connected, at
least one of its neighbours is already coloured so Θ(vi) = 2. ≥⊆
On the other hand, planar graphs and chordal graphs are examples of graph classes
which have connected greedy colourings arbitrarily far from optimal. Before we prove
these results, we need the following auxiliary results. If graphs G and H are vertex
disjoint, let the join G↑H of G and H be the graph obtained from a copy of G, a copy
of H and adding all possible edges with one endpoint in G and another in H . Say that
a graph G is null if V (G) = ⊃ and non-null otherwise.

Lemma 2. Let G and H be vertex disjoint non-null graphs. Also let ΘG and ΘH be
greedy colourings of G and H with kG and kH colours, respectively. Then there is a
connected greedy colouring of the join graph G ↑H that uses k = kG + kH colours.

436 F. Benevides et al.

Proof. Let ΓG = v1 < v2 < · · · < vp and ΓH = u1 < u2 < · · · < uq be the orderings
of V (G) and V (H) such that the greedy algorithm produces the colouringsΘG and ΘH ,
respectively. Moreover, let ΓG∨H = v1 < u1 < u2 < · · · < uq < v2 < · · · < vp be a
vertex ordering of V (G↑H). Since all vertices in G are adjacent to all vertices in H in
the graph G ↑ H , ΓG∨H is a connected order. The greedy algorithm applied to ΓG∨H
first colours v1 with colour 1, and then colours the vertices from V (H) with colours
{2, . . . , kH + 1}, assigning to u ∈ V (H) the colour ΘH(u) + 1. Now the vertices
v2, v3, . . . , vq all have neighbours with colours from {2, . . . , kH + 1}. Therefore, any
vertex v ∈ V (G) will be coloured 1 if ΘG(v) = 1 and coloured kH +ΘG(v) otherwise.

≥⊆
Corollary 1. If G and H are disjoint non-null graphs, then Ψc(G ↑ H) = Ψ (G) +
Ψ (H).

Proof. First note that Ψc(G ↑H) ⊗ Ψ (G ↑H) = Ψ (G) + Ψ (H). Now, given greedy
colourings ofG andH with Ψ (G) and Ψ (H) colours, respectively, Lemma 2 states that
there is a connected greedy colouring ofG↑H with Ψ (G)+Ψ (H) colours. Therefore,
Ψc(G ↑H) ∈ Ψ (G) + Ψ (H) which completes the result. ≥⊆
Let Kn denote the complete graph on n vertices.

Proposition 1. For everyM ∈ 0, there is a chordal planar graphG such that Ψc(G)−
ι(G) =M .

Proof. Consider a copy H of the binomial tree BM+2. Clearly, H is planar, as it is a
tree. Every tree is outerplanar, meaning it admits a drawing in which every vertex is
in the outer face. Therefore the graph H ∗ = H ↑K1 is also planar. Furthermore, any
cycle in H ∗ must use the unique vertex v in K1. Therefore, H ∗ is also chordal since v
is adjacent to all vertices in H . Moreover, we have ι(H ∗) = 3. Now, Corollary 1 tells
us that Ψc(H

∗) =M + 3. ≥⊆
Now we consider the computational complexity of determining the connected Grundy
number of a graph. We say that a family of graphs G is closed under universal vertices
if, given a graph G ∈ G, the graph G∗ = G ↑K1 also belongs to G.

Proposition 2. Let G be a family of graphs closed under universal vertices such that,
given G ∈ G and an integer k, the problem of deciding if Ψ (G) ∈ k is NP-complete.
Then the problem of deciding if Ψc(G) ∈ k, given G ∈ G and an integer k, is also
NP-complete.

Proof. Let G ∈ G and k ∈ N. Let G∗ be the graph G ↑K1. From Corollary 1, we have
that Ψc(G

∗) = Ψ (G) + 1. Therefore, Ψ (G) ∈ k if and only if Ψc(G
∗) ∈ k + 1. ≥⊆

Since chordal graphs and complements of bipartite graphs are graph classes that are
closed under universal vertices, and because of the NP-completeness results that were
mentioned before, the following result is immediate.

Theorem 1. Given a graph G and an integer k, deciding if Ψc(G) ∈ k is a NP-
complete problem. The problem remains NP-complete even if the graph G is restricted
to chordal graphs or complements of bipartite graphs.

Connected Greedy Colourings 437

3 The Best-Case Behaviour

As previously mentioned, for every graphG there is a greedy colouring ofG usingι(G)
colours. In this section, we prove that the same is not true when considering connected
greedy colourings. More precisely, we prove the following theorem.

Theorem 2. For every k ∈ 3, there is a k-chromatic graph Hk with no connected
greedy colouring with k colours.

Thus, it makes sense to define the minimum number of colours ιc(G) in a connected
greedy colouring of G. A natural question would be to ask if ιc(G) is bounded by a
function of ι(G). We prove such a function exists and that, in fact, ιc(G) is bounded
by ι(G) + 1.

Theorem 3. For any connected graph G, we have ιc(G) ⊗ ι(G) + 1.

Consider the graphGk , k ∈ 3, depicted in Figure 3.
Let Xk and Zk denote the vertex sets of the copies of Kk−1 adjacent to only {a, b}

and to only {c, d} respectively, and let Yk denote the vertex set of the remaining copy
of Kk−1, which is adjacent to all four vertices.

Fig. 1. The graph Gk

Since in Gk, Xk ∗ {a} is a clique on k vertices, we have ι(Gk) ∈ k. To see that
ι(Gk) = k, consider the following k-colouring of Gk . Arbitrarily colour the vertices
in Xk, Yk and Zk with colours in the set {1, . . . , k − 1} and colour a, b, c and d with
colour k. Indeed, in the following result we prove that a, b, c and d must always have
the same colour in any k-colouring of Gk .

438 F. Benevides et al.

Lemma 3. Let Θ be a k-colouring of Gk. Then, Θ(a) = Θ(b) = Θ(c) = Θ(d).

Proof. In any k-colouring Θ of Gk, the vertices of Xk have k − 1 distinct colours.
Therefore Θ(a) = Θ(b), for otherwise we would need more than k colours. With a
similar argument on Zk we have Θ(c) = Θ(d). Since Yk induces a clique on k − 1
vertices, it should be coloured with k − 1 distinct colours. They should be different
from Θ(a), since all vertices are adjacent either to a or b, and Θ(a) = Θ(b). Therefore,
since the vertices in Yk are also adjacent either to c or d, we get that Θ(a) = Θ(b) =
Θ(c) = Θ(d). ≥⊆

Let v be a vertex of G and Σ be a colour. A (v, Σ)-connected greedy colouring of G is
a colouring obtained from a connected ordering that starts from v by colouring v with
colour Σ and then colouring the remaining vertices with the greedy algorithm.

Lemma 4. Let v ∈ V (Gk) and Σ be a colour in {1, . . . , k}. In any (v, Σ)-connected
greedy k-colouring of Gk, the vertices a, b, c and d have a colour at most ⊇k−12 ⊂+ 1.

Proof. Consider a (v, Σ)-connected greedy k-colouring ofG and, by symmetry, say that
v ∈ Xk ∗ Yk ∗ {a, b}. Since we follow a connected ordering and {c, d} is a vertex cut,
no vertex from Zk is coloured before at least one of {c, d} is coloured. Let z be the first
vertex in the set {c, d} that is coloured. Then the only neighbours of z that may have
already been coloured are the ones from Yk, and therefore z has at most ⊇k−12 ⊂ coloured
neighbours. Therefore, the colour of z is at most ⊇k−12 ⊂+1, and from Lemma 3 we get
that a, b, c and d get the same colour which is at most ⊇k−12 ⊂+ 1. ≥⊆

In particular, Lemma 4 implies that a colouring of Gk obtained by giving vertex a (alt.
b, c or d) a colour greater than ⊇k−12 ⊂ + 1 and extending that colouring in a connected
greedy way will always use more than k colours.

We are ready to prove Theorem 2.

Proof (of Theorem 2). Let Hk be the graph obtained as follows. Take ⊇k−12 ⊂+2 copies
of Gk and add edges joining all copies of a, thus forming a (⊇k−12 ⊂+2)-clique K with
these vertices. Since all copies of a are cut vertices separating the copies of Gk from
the clique K , we can paste colourings of Gk with each copy of a receiving a different
colour to colour Hk with k colours. Furthermore, since Hk contains at least one copy
of Gk we have ι(Hk) = k.

Assume to the contrary that Γ is a connected ordering of V (Hk) such that the greedy
algorithm gives a k-colouringΘ ofHk. SinceK forms a clique, there is at least one copy
of vertex a with a colour Σ at least ⊇k−12 ⊂ + 2 and call this vertex w. Let v be the first
vertex in the connected order Γ and let W be the set of vertices corresponding to the
copy of Gk to which w belongs. Furthermore, let ΓW be Γ restricted to the vertices in
W and ΘW be the colouring of Gk obtained from the vertices in W . Since w is a cut
vertex inHk, then ΓW is connected. Therefore, if v ∈W , thenΘW is a (v, 1)-connected
k-colouring of Gk which colours w with colour Σ. If v ≤∈ W , then ΘW is a (w,Σ)-
connected k-colouring of Gk. In either case, we get a contradiction to Lemma 4. ≥⊆
We now show that ιc(G) is never greater than ι(G) + 1, for any graphG.

Connected Greedy Colourings 439

Lemma 5. Let G be a connected graph and v a vertex such thatG− v is k-colourable.
For any positive integer Σ, there is a (v, Σ)-connected greedy colouring such that no
vertex in G− v get a colour larger than k + 1.

Proof. Since G − v is k-colourable, let S1, . . . , Sk be a partition of V (G − v) into k
stable sets. By induction on k, we prove the stronger assumption that there is a (v, Σ)-
connected greedy colouring such that no vertex in Si gets a colour larger than i+1, for
1 ⊗ i ⊗ k. The result is valid when k = 0 as G− v is null.

Assume k ∈ 1. We give an algorithm to obtain the desired colouring. To do so,
let H = G − v − Sk and let C be the set of connected components of H . Start by
colouring v with Σ. We then break the colouring procedure into three phases. In the
first phase, we only colour vertices if Σ = k + 1. In the second phase, we colour any
uncoloured component of C that contains a neighbour of v. In the third phase, we colour
the remaining vertices.

Phase 1. If Σ = k + 1, then let W = NG(v) ↓ Sk. If W is not empty, we proceed as
follows. Start by colouring all vertices in W . Since Σ ∈ 2, then all vertices in W are
coloured 1. Let G∗ be the graph obtained from H by adding a vertex w adjacent to any
vertex adjacent to W in G − v, i.e, NG′(w) = NG−v(W). Let C be the component
of G∗ that contains w and note that (S1 ↓ V (C)), . . . , (Sk−1 ↓ V (C)) is a partition of
C − w into k − 1 stable sets. By the induction hypothesis, there is a (w, 1)-connected
greedy colouring ΘC of C such that no vertex in Si gets a colour larger than i + 1, for
1 ⊗ i ⊗ k− 1. We claim that colouring the vertices in V (C)−{w} according to ΘC is
a (v, Σ)-connected colouring of G[(V (C)−{w})∗W ∗ {v}]. Indeed, any vertex in C
is adjacent to w if, and only if, it is also adjacent to a vertex of W in G. Furthermore,
any vertex z in C is coloured with a colour no larger than k and, therefore, z is coloured
with colour ΘC(z) by the greedy algorithm even if z is adjacent to v, as v is coloured
Σ = k + 1.

At the end of Phase 1 we have the following property which is maintained until we
end our colouring algorithm: any uncoloured vertex in Sk has no neighbour coloured
k + 1. Indeed, all neighbours of v have been coloured if Σ = k + 1, no two vertices in
Sk are adjacent as Sk is stable and vertices in Si, for i < k, get colours at most k. Also
note that any component in C is either fully coloured or contains no coloured vertices.
Furthermore, any component of C that is uncoloured has no neighbour in W .

Phase 2. Let Cv ∅ C be the set of uncoloured components of C that contain a neigh-
bour of v. By the properties obtained at the end of Phase 1, these components have no
coloured vertices and no coloured neighbour inG other than v. Let VCv =

⋃
C⊆Cv V (C).

Let Ĝ be the subgraph ofG induced by VCv ∗{v} and note that (S1↓VCv), . . . , (Sk−1↓
VCv) is a partition of Ĝ − v into k − 1 stable sets. By the induction hypothesis, there
is a (v, Σ)-connected greedy colouring ΘCv of Ĝ such that no vertex in Si gets a colour
larger than i + 1, for 1 ⊗ i ⊗ k − 1. We colour the vertices in VCv according to ΘCv .

At the end of Phase 2, we maintain the property that any component in C is either
fully coloured or has no coloured vertex. Furthermore, no vertex in any uncoloured
component of C has any coloured neighbour.

440 F. Benevides et al.

Phase 3. In Phase 3, if G has any uncoloured vertices, then we colour the remaining
vertices in a sequence of steps. At each step, we colour one vertex w in Sk and all
components of C that contain at least one neighbour of w. At the end of each step, we
maintain the property that each component in C is either fully coloured or contains no
coloured vertex. Furthermore, no vertex in any uncoloured component of C has any
coloured neighbour. Note that this is true initially as observed at the end of Phase 2.

The structure of each step is as follows. If G has any uncoloured vertex, then there
exists an uncoloured vertex w ∈ Sk adjacent to at least one coloured vertex. Indeed
this must be the case as G is connected and no uncoloured component of C contains
any coloured neighbour. Colour w greedily and let this colour be Λ. Since w has no
neighbour with colour k + 1, then Λ ⊗ k + 1. From here, we follow a structure similar
to what was done in Phase 2. Let Cw ∅ C be the set of uncoloured components of C
that contain a neighbour of w. By the properties obtained at the end of Phase 2 and
between steps, these components have no coloured vertices and no coloured neighbour
in G other than w. Let VCw =

⋃
C⊆Cw V (C). Let G∗∗ be the subgraph of G induced by

VCw∗{w} and note that (S1↓VCw), . . . , (Sk−1↓VCw) is a partition ofG∗∗−w into k−1
stable sets. By the induction hypothesis, there is a (w, Λ)-connected greedy colouring
ΘCw of G∗∗ such that no vertex in Si gets a colour larger than i+ 1, for 1 ⊗ i ⊗ k − 1.
We colour the vertices in VCw according to ΘCw .

Since we coloured all vertices in components of C that contain a neighbour of w, the
desired property between steps is maintained. Therefore, this algorithm continues until
all vertices in G are coloured obtaining the desired colouring. ≥⊆
With Lemma 5, proving Theorem 3 is simple.

Proof (of Theorem 3). Let G be any connected k-chromatic graph and let v be any
vertex of G. Since G − v is k-colourable, we can apply Lemma 5 to obtain a (v, 1)-
connected greedy colouring of G such that no vertex of G− v gets a colour larger than
k+1. Since this colouring starts by colouring v with colour 1, this is a connected greedy
colouring of G and no vertex has colour larger than k + 1. ≥⊆
A natural question that arises is the computational complexity of deciding if ιc(G) =
ι(G), given a connected graph G.

Theorem 4. Let G be a connected graph. To decide if ιc(G) = ι(G) is a NP-hard
problem.

Proof. Consider the k-COLOURABILITY problem, in which the input is a graph G and
the question is whether ι(G) ⊗ k. 3-COLOURABILITY restricted to 4-regular graphs
is NP-hard [4]. To see that it is also NP-hard for k > 3, observe that if v is a universal
vertex, ι(G) = ι(G− v) + 1, and therefore an instance of (k − 1)-COLOURABILITY

can be reduced to one of k-COLOURABILITY by adding a universal vertex. As a con-
sequence of this reduction, k-COLOURABILITY is NP-hard for k ∈ 4, even if the input
graphG has a universal vertex and ι(G) < 2k. Let G be a graph with these properties.
Let H be the graph obtained fromG as follows. For every v ∈ V (G), add a copyGv of
G2k−1 and identify v with the copy of vertex a. Then, since ι(G2k−1) = 2k − 1 and
ι(G) < 2k, we get that ι(H) = 2k − 1. We now prove that ιc(H) = ι(H) if and
only if ι(G) ⊗ k.

Connected Greedy Colourings 441

Suppose ιc(H) = ι(H) and let c be a greedy connected colouring of H with ι(H)
colours. Any vertex v ∈ V (G) is coloured at most k, since otherwise there is a con-
nected greedy colouring ofG2k−1 in which vertex a has a colour in {k+1, . . . , 2k−1},
contradicting Lemma 4. The restriction of c to the copy of G in H is a colouring with
at most k colours, implying ι(G) ⊗ k.

Suppose now that ι(G) ⊗ k. In this case, there is a greedy colouring of G that uses
at most k colours. Since G has a universal vertex, this greedy colouring can be made
a connected colouring, by rearranging the colour classes so that the universal vertex
receives colour 1. Let c be the partial colouring of H in which the vertices from G are
coloured according to the previous colouring. For any vertex v ∈ V (G), since its colour
is at most k, we may colour the vertices in Gv using only colours smaller than 2k − 1
and while keeping the colouring connected. In this way we obtain a greedy connected
colouring of H that uses no colour larger than 2k − 1. Since ι(G2k−1) = 2k − 1, we
have that ι(H) ∈ 2k − 1, and therefore ιc(H) = ι(H) = 2k − 1. ≥⊆

References

1. Beyer, T., Hedetniemi, S.M., Hedetniemi, S.T.: A linear algorithm for the grundy number of
a tree. In: Proceedings of the Thirteenth Southeastern Conference on Combinatorics, Graph
Theory and Computing. Utilitas Mathematica, pp. 351–363 (1982)

2. Chow, F., Hennessy, J.: Register allocation by priority-based coloring. ACM SIGPLAN No-
tices 19, 222–232 (1984)

3. Chow, F., Hennessy, J.: The priority-based coloring approach to register allocation. ACM
Transactions on Programming Languages and Systems 12, 501–536 (1990)

4. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs are np-
complete. Discrete Mathematics 30(3), 289–293 (1980)

5. Gamst, A.: Some lower bounds for the class of frequency assignment problems. IEEE Trans-
actions on Vehicular Technology 35(8–14) (1986)

6. Havet, F., Sampaio, L.: On the grundy and b-chromatic numbers of a graph. Algorith-
mica 65(4), 885–899 (2013)

7. Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10(4),
718–720 (1981)

8. Håstad, J.: Clique is hard to approximate within n1−δ. In: Acta Mathematica, pp. 627–636
(1996)

9. Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston
(1996)

10. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees.
SIAM Journal on Discrete Mathematics 10, 529–550 (1997)

11. Werra, D.: An introduction to timetabling. European Journal of Operations Research 19,
151–161 (1985)

12. Zaker, M.: The grundy chromatic number of the complement of bipartite graphs. Australasian
Journal of Combinatorics 31, 325–329 (2005)

13. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing 3(6) (2007)

On the Number of Prefix and Border Tables

Julien Clément and Laura Giambruno

GREYC, CNRS-UMR 6072, Université de Caen, Ensicaen, 14032 Caen, France
{julien.clement,laura.giambruno}@unicaen.fr

Abstract. For some text algorithms, the real measure for the complex-
ity analysis is not the string itself but its structure stored in its prefix
table (or border table, as border and prefix tables can be proved to be
equivalent). We give a new upper bound on the number of prefix ta-
bles for strings of length n (on any alphabet) which is of order (1 + Σ)n

(with Σ = 1+
∗

5
2

the golden mean) and present also a lower bound.

1 Introduction

The prefix table of a string w reports for each position i the length of the longest
substring of w that begins at i and matches a prefix of w. This table stores the
same information as the border table of the string, which memorizes for each
position the maximal length of prefixes of the string w ending at that position.
Indeed two strings have the same border table if and only if they have the same
prefix table.

Both tables are useful in several algorithms on strings. They are used to design
efficient string-matching algorithms and are essential for this type of applications
(see for example [8] or [3]). It has been noted that for some text algorithms
(like the Knuth-Morris-Pratt pattern matching algorithm), the string itself is
not considered but rather its structure meaning that two strings with the same
prefix or border table are treated in the same manner. For instance, strings
abbbbb, baaaaa and abcdef are the same in this aspect.

The study of these tables has become topical. In fact several recent articles
in literature (cf. [7,4,2,5]) focus on the problem of validating prefix and border
tables, that is the problem of checking if an integer array is either the prefix
or the border table of at least one string. In a previous paper [10] Moore et al.
represented distinct border tables by canonical strings and gave results on gen-
eration and enumeration of these string for bounded and unbounded alphabets.
Some of these results were reformulated in [5] using automata-theoretic meth-
ods. Note that different words on a binary alphabet have distinct prefix/border
tables. This gives us a trivial lower bound in 2n−1 (since exchanging the two
letters of the alphabet does not change tables). This is no longer true as soon as
the alphabet has cardinality strictly greater than 2: for instance, words abb and
abc admit the same prefix table [3, 0, 0].

In this paper we are interested in giving better estimates on the number
of prefix/border tables pn of words of a given length n, that those known in
literature.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 442–453, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

On the Number of Prefix and Border Tables 443

For this purpose, we define the combinatorial class of p-lists, where a p-list
L = [Θ1, . . . , Θk] is a finite sequence of non negative integers. We constructively
define an injection ι from the set of prefix tables to the set of p-lists which are
easier to count. In particular we furnish an algorithm associating a prefix table
with a p-list. We define prefix lists as p-lists that are images of prefix tables
under ι. We moreover describe an “inverse” algorithm that associates a prefix
list L = ι(P) with a word whose prefix table is P . This result confirms the idea
that prefix lists represent a more concise representation for prefix tables.

We then deduce a new upper bound and a new lower bound on the number pn
of prefix tables (see Table 1 for first numerical values) for strings of length n or,
equivalently, on the number of border tables of length n.

Let Δ = 1
2 (1 +

⊕
5) ≤ 1.618, the golden mean, we have:

Proposition 1 (Upper bound). The number of valid prefix tables pn is asymp-

totically upper bounded by the quantity 1
2

(
1 +

∗
5
5

)
(1 + Δ)n + o(1).

Proposition 2 (Lower bound). For any Γ > 0 there exists a family of prefix
tables (Ln)n⊆0 such that Card(Ln) = Ψ((1 + Δ− Γ)n).

2 Preliminaries

Notations and Definitions. Let A be an ordered alphabet. A word w of length
|w| = n is a finite sequence w[0]w[1] . . . w[n − 1] = w[0 . . n − 1] of letters of A.
The language of all words is A◦, and A+ is the set of nonempty words. The
prefix (resp. suffix) of length Θ, 0 ≤ Θ ≤ n, of w is1 the word u = w[0 . . Θ − 1]
(resp. u = w[n− Θ . . n−1]). A border u of w is a word that is both a prefix and a
suffix of w and distinct from w itself. We define bord(w) as the set of all proper
borders of w.

Definition 1 (Prefix table). The prefix table Prefw of a word w ⊗ A+ of
length n, is the table of size n defined, for 0 ≤ i < n, by

Prefw[i] = lcp(w,w[i . . n− 1]),

where lcp denotes the maximal length of common prefixes of the two words.

Another well-known structure used to represent the correlation structure of a
string is the border table of a word.

Definition 2 (Border table). The border table Borderw of a word w ⊗ A+ of
length n, is the table of size n defined, for 0 ≤ i < n, by

Borderw[i] = max{|u| | u is a border of w[0 . . i]},
1 With the convention that w[0 . .−1] = w[n . . n−1] = Φ is the empty word (whenever
Θ = 0).

444 J. Clément and L. Giambruno

Example. Let w be the word abaababa. We have the following representations
for the prefix and border tables of w (see also Table 2).

i 0 1 2 3 4 5 6 7

w[i] a b a a b a b a

Prefw[i] 8 0 1 3 0 3 0 1
Borderw[i] 0 0 1 1 2 3 2 3

These structures (border and prefix tables) are in fact equivalent; actually the
following proposition states a fact discussed in [3] and recently deepened in [1],
where linear time conversion algorithms are given. In the following we furnish a
proof of this equivalence: elements of the proof will be used in the next section.

Proposition 3. Two strings have the same border table if and only if they have
the same prefix table.

Proof (sketch). Let w be a word in A+ of length |w| = n > 0. We can relate the
border table Borderw to the prefix table Prefw.
For a position j in w of length n, let

I(j) = {i | 0 < i ≤ j and i+ Prefw[i] − 1 ∈ j}.
The elements in I(j) represent the positions i ≤ j for which the longest common
prefixes between w and w[i . . n− 1] overlap position j in w. Then we have

Borderw[j] =

{
0 if I(j) = ∗,
j − min I(j) + 1 otherwise.

(1)

Conversely, given the border table Borderw of w, we define the prefix table Prefw
in the following way. First we set Prefw[0] = |w|. Then let j > 0 be a position
in w and let I ∼(j) = {i | j ≤ i < |w| and w[j . . i] ⊗ bord(w[0 . . i])}. We have

Prefw[j] =

{
0 if I ∼(j) = ∗,
max(I ∼(j)) − j + 1 otherwise.

(2)

With (1) and (2), one proves that two words have the same border table if and
only if they have the same prefix table. ≥⊆

Recent literature focuses on the problem of validating prefix and border tables
and, in case of a valid table, providing the (canonical) word associated with it,
that is the smallest in lexicographic order (cf. [7,2]).
Previous Work. Previous work in [10] focused on counting distinct strings of
length n with respect to their prefix/border tables: an upper bound is given in
the form

bn =
∑k≥

k=1

{
n−2k−1+k

k

}
, (3)

where {mj } denotes the Stirling number of second kind (the number of partitions
of m in j non empty parts), and k◦ = ↑log2(n + 1)⊃. The quantity k◦ is the
minimal number of distinct letters to obtain all possible prefix tables of size n.

Numerically it is clear that bn is far from being a tight approximation of the
number pn of prefix tables of size n. One can indeed prove that bn ⊇ pn. The
following combinatorial lemma helps us to formalize this fact.

On the Number of Prefix and Border Tables 445

Table 1. First values: pn is the total number of prefix tables for strings of size n, pn,k

is the number of prefix tables for strings of size n with an alphabet of size k which
cannot be obtained using a smaller alphabet

n pn,1 pn,2 pn,3 pn,4 pn,5 pn,6 pn
1 1 1
2 1 1 2
3 1 3 4
4 1 7 1 9
5 1 15 4 20
6 1 31 15 47
7 1 63 46 110
8 1 127 134 1 263
9 1 255 370 4 630

10 1 511 997 16 1525
11 1 1023 2625 52 3701
12 1 2047 6824 162 9034
13 1 4095 17,544 500 22,140
14 1 8191 44,801 1467 54,460
15 1 16,383 113,775 4180 134,339
16 1 32,767 287,928 11,742 1 332,439
17 1 65,535 726,729 32,466 4 824,735
18 1 131,071 1,831,335 88,884 16 2,051,307
19 1 262,144 4,610,078 241,023 52 5,113,298
20 1 524,287 11,599,589 649,022 168 12,773,067
21 1 1,048,575 29,182,347 1,736,614 504 31,968,041
22 1 2,097,151 73,430,919 4,623,344 1486 80,152,901
23 1 4,194,303 184,845,142 12,253,644 4248 201,297,338
24 1 8,388,607 465,567,693 32,356,073 11,983 506,324,357
25 1 16,777,215 1,173,418,456 85,156,997 33,242 1,275,385,911
26 1 33,554,431 2,959,762,252 223,493,213 91,297 3,216,901,194
27 1 67,108,863 7,471,688,677 585,104,586 248,196 8,124,150,323
28 1 134,217,727 18,877,965,663 1,528,508,811 669,799 20,541,362,001
29 1 268,435,455 47,739,117,581 3,985,452,962 1,795,120 51,994,801,119
30 1 536,870,911 120,831,350,575 10,374,418,698 4,784,707 131,747,424,892
31 1 1,073,741,823 306,104,380,017 26,965,612,590 12,689,612 334,156,424,043
32 1 2,147,483,647 776,139,381,391 69,999,199,986 33,513,035 1 848,319,578,061
33 1 4,294,967,295 1,969,623,334,609 181,500,343,408 88,172,789 4 2,155,506,818,106

Table 2. The nine distinct prefix/border tables for words of length 4 (as counted in
Table 1) are listed together with the minimal corresponding word for lexicographical
order (named canonical words in the literature)

Prefix tables Border tables Canonical words

[4, 3, 2, 1] [0, 1, 2, 3] aaaa

[4, 2, 1, 0] [0, 1, 2, 0] aaab

[4, 1, 0, 1] [0, 1, 0, 1] aaba

[4, 1, 0, 0] [0, 1, 0, 0] aabb

[4, 0, 1, 1] [0, 0, 1, 1] abaa

[4, 0, 2, 0] [0, 0, 1, 2] abab

[4, 0, 1, 0] [0, 0, 1, 0] abac

[4, 0, 0, 1] [0, 0, 0, 1] abba

[4, 0, 0, 0] [0, 0, 0, 0] abbb

446 J. Clément and L. Giambruno

Lemma 1. Let Πn ⊂ ↓ with Πn = O(nc) for some c ⊗]0, 1[, one has

{ n
Δn} ∅ (Πn)n

Πn!
∅

⊕
2Σ(Πn)n−Δn+1/2eΔn .

The proof (not detailed here) of this lemma relies on the fact that applications
from {1, . . . ,m} to {1, . . . , Πn} (related to Stirling number of second kind) are,
if Πn is small enough, almost always surjective.

Since bn in Equation (3) (the bound from [10]) is at least of order { cn
d logn} for

some positive constants c and d (considering for instance the Stirling number
for k = k◦− 1 in (3)), the lemma suffices to prove that log bn is at least of order
n log logn. Hence we have:

Corollary 1. We have 1
n log bn = Ψ(log logn).

In Section 4 we improve the bound in (3), yielding the result of Proposition 1.

3 Prefix Lists

The information in a valid prefix table is somewhat redundant since we do not
need to use all values in the table to build a corresponding word. We introduce
prefix lists which are more concise and sufficient to reconstruct such a word. We
first define the combinatorial class of p-lists as it follows:

Definition 3. We define a p-list L = [Θ1, . . . , Θk] as a finite sequence of positive

integers together with a size defined for a list as ≡L≡ =
∑k

i=1 ≡Θi≡, where the size
≡i≡ is i if i > 0 and 1 if i = 0.

Let P denote the set of prefix tables and L the set of p-lists. In this section we
define an injection ι : P −⊂ L in a constructive manner. We define prefix lists
as:

Definition 4. Let L be a p-list. We say that L is a prefix list if L = ι(P) for
a prefix table P ⊗ P.

3.1 Algorithms

From Prefix Tables to Prefix Lists. We define constructively an injection
ι from P to L by defining an algorithm in a “right-to-left manner”. Intuitively,
the following algorithm scans the prefix table from right to left, starts with the
last position i = n− 1 and gets from the prefix table the length Θ of the leftmost
longest common (proper) prefix which overlaps the current position i, or sets
Θ = 0 if there is no such prefix. This length is inserted at the beginning of the
list and the position i is updated to the position immediately before the prefix
(if it exists) or just one position before (if it is not the case). The algorithm stops
when the first position i = 0 is attained.

On the Number of Prefix and Border Tables 447

Algorithm 1. PrefixToList(P [0 . .n− 1])

L∃ []
i∃ n− 1
while i > 0 do

I ∃ {j | 0 < j ≤ i and j + P [j] − 1 ∈ i}
if I = ∗ then

(Θ, i) ∃ (0, i− 1)

else
(Θ, i) ∃ (i− min(I) + 1,min(I) − 1)

L∃ [Θ] · L
return L

For each position i in P , the elements in I represent, as in the proof of Proposi-
tion 3, the positions less or equal to i, such that the longest common prefix with
w starting at these positions overlap position i.

Definition 5. For a given prefix table P in P, we define ι(P) as the prefix list
obtained by executing the algorithm PrefixToList on P .

Example 1. Let w be the word abaababa. We have the following representation
for the prefix table of w.

i 0 1 2 3 4 5 6 7

w[i] a b a a b a b a

Prefw[i] 8 0 1 3 0 3 0 1

For this table we get the associated list L = [0, 1, 2, 3]. In fact, executing the
algorithm PrefixToList to Prefw, we start with i = 7 and we get that the set of
starting indexes of prefixes overlapping i is I = {5, 7}. Thus Θ = i−min(I)+1 =
3, the length of the overlapping prefix until i, is appended to L = []. Now i is
initialized to 4 the position before min(I) = 5. Next we have I = {3} and so
Θ = 2 is prefixed to L = [3] and i := 2. Again I = {2}, Θ = 1 and i := 1. Now
I = ∗, thus Θ = 0, i := 0 and the algorithm stops.

Remark. At first view, it would be more intuitive to define prefix lists with
an algorithm visiting the prefix table from left to right. For instance let P
be a prefix table and L = [] an empty list. A greedy algorithm for this con-
struction starts with the second position i = 1 and appends at the beginning
of L, the length Θ = P [i] of the longest common prefix starting there. Then
i is updated to i + Θ, if Θ > 0 and to i + 1 if Θ = 0. Again the algorithm
appends Θ = P [i] and so on until position n − 1 is attained. However this
construction of “prefix list” from left to right fails to define an injection from
prefix tables to prefix lists (which is our goal for finding an upper bound). In
fact let P = [8, 0, 1, 3, 0, 3, 0, 1] be a valid prefix table, as in Example 1, and
P ∼ = [8, 0, 1, 3, 0, 1, 0, 1] be a valid prefix table associated with w∼, then one has

i 0 1 2 3 4 5 6 7

w∞[i] a b a a b a c a

Prefw∗ [i] 8 0 1 3 0 1 0 1

448 J. Clément and L. Giambruno

Since the same list L = [0, 1, 3, 0, 1] is associated with P and P ∼ then the
correspondence between prefix tables and these lists cannot be injective.
From border tables to prefix lists. In order to prove the injection we define
the function ι in term of border tables: we define another function ι∼ from the
set of border tables to the set of prefix lists. First consider the algorithm:

Algorithm 2. BorderToList(B[0 . .n− 1])

L∃ []
i∃ n− 1
while i > 0 do

Θ∃ B[i]
if B[i] = 0 then

i∃ i− 1

else
i∃ i−B[i]

L∃ [Θ] · L
Return L

From the algorithm follows the definition of ι∼ in an inductive way:

Definition 6. For a border table B of length n, let Θ = B[n − 1]. We define
ι∼(B) as:

ι∼(B) =

{
ι∼(B[0 . . n− 1 − Θ]) · [Θ], if Θ > 0;

ι∼(B[0 . . n− 2]) · [Θ], if Θ = 0.

The functions ι and ι∼ applied on equivalent border and prefix tables give rise
to the same prefix lists:

Proposition 4. Let B be a border table of a word w and P be the prefix table
of w. Then we have that ι(P) = ι∼(B).

Proof. For a given position i in w, let I = {j | 0 ≤ j ≤ i et j +P [j]− 1 ∈ i} as
defined in the proof of Proposition 3 and in the algorithm PrefixToList for the
computation of ι(P). By the conversion rules from prefix table to border table
(see proof of Proposition 3), we have that

B[i] =

{
0, if I = ∗;

i− min(I) + 1, if I ∧= ∗.
.

Thus if I = ∗ then the value Θ = 0 = B[i] is inserted at the beginning of L for both
algorithms PrefixToList and BorderToList. If I ∧= ∗ then Θ = i−min(I)+1 =
B[i] is inserted at the beginning of the list L for both algorithms. Then i is
decremented in the same way for both the algorithms. ≥⊆

Thus, for a given border table B, there exist 0 ≤ i1 ≤ · · · ≤ ir = n − 1, such
that ι∼(B) = L = [B[i1], . . . , B[ir]] and ij = ij+1 −B[ij+1].

On the Number of Prefix and Border Tables 449

Example 2. Let w be the word abaababa. The following table shows its border
table Borderw for all values of i.

i 0 1 2 3 4 5 6 7

w[i] a b a a b a b a

Borderw[i] 0 0 1 1 2 3 2 3

The associated prefix list is L = [0, 1, 2, 3] = [B[1], B[2], B[4], B[7]].

From p-lists to words. We now describe an “inverse” algorithm that associates
a prefix list L = ι(P) with a word w whose prefix table is P . Let L = [Θ1, . . . , Θm]
and n = ≡L≡, for the length ≡·≡ defined for p-lists, then the string w[0 . . n] is
computed in the following way.

Algorithm 3. ListToWord(L = [Θ1, . . . , Θm])

w[0] ∃ new letter

pos ∃ 1
for i∃ 1 to m do

if Θi > 0 then
for j ∃ 0 to Θi − 1 do

w[pos + j] ∃ w[j]

pos ∃ pos + Θi

else
w[pos] ∃ new letter

pos ∃ pos + 1

n∃ pos

return w[0 . . n]

The new letter function returns a new letter not used so far. Informally the
algorithm proceeds from left to right on the p-list input [Θ1, . . . , Θm]. It starts
with a word reduced to one letter. Then iteratively for i ⊗ [1 . .m], if Θi > 0 the
algorithm copies Θi symbols, from the previous constructed word u, at the end of
u, otherwise the algorithm introduces a new symbol in w. Note that overlapping
is allowed since we are building the word from left to right.

Example 3. Let w = abaababa as in Example 1, whose associated prefix list is
L = ι(Prefw) = [0, 1, 2, 3]. Choosing arbitrarily the first letter to be a, one can
build w = a · b · a · ab · aba. A value 0 in the prefix list implies we can choose a
new letter (here b at the second position).

One key property is that the word w obtained by this algorithm performed on
a prefix list ι(P) for a prefix table P is such that Prefw = P . This means that
prefix lists and prefix tables are equivalent and represent the same information.

Proposition 5. Given the prefix list L = ι(P) associated with a prefix table P
the word w build by the algorithm ListToWord is such that Prefw = P .

Proof. We prove the proposition on border tables: let L = ι(P) = ι∼(B). We
prove the result by induction on ≡L≡. If ≡L≡ = 0, that is L = [], then w = a and
Borderw = [0] = B.

450 J. Clément and L. Giambruno

Let ≡L≡ > 0 and L = L∼ · [Θ]. We denote by w and w∼ the words built by the al-
gorithm ListToWord on input L and L∼ respectively. By construction w = w∼ ·v,
where v consists necessarily of the first Θ symbols (considered eventual overlap-
ping) of w∼. By the inductive definition of prefix lists there exists a decomposition
B = B∼ ·B∼∼ such that L = ι(B) = ι(B∼) · [Θ], B∼∼[Θ−1] = Θ and the length of B∼∼

is equal to Θ. Thus L∼ = ι(B∼) and, by the inductive hypothesis, Borderw∗ = B∼.
In general (see [5], [10]), given a border tableB = H ·T , every word with border

table H is prolonging to a word with border table B. In our case B = B∼ · B∼∼
and since B[n− 1] = Θ, the word u prolonging w∼ consists necessarily of the first
Θ symbols (considering possible self overlap) of w∼ and is equal necessarily to v.
Thus Borderw = B. ≥⊆

3.2 Injectivity

Proposition 6. The application ι is injective.

Proof. Let us consider two prefix tables P ∧= P ∼ and suppose that ι(P) =
ι(P ∼) = L. By Proposition 5 the algorithm performed on L gives a word w such
that Prefw = P = P ∼. Hence we must have ι(P) ∧= ι(P ∼).

Let us remark that the application ι is not surjective. To a list [0, 2, 2], we can
associate a word w = a · b · ab · ab = ababab with the prefix table Prefw =
[6, 0, 4, 0, 2, 0], but we have ι(Prefw) = [0, 4].

4 Upper Bound

p-lists. We define the set of p-lists as a combinatorial class L of lists of positive
integers

L = Seq({0, 1, 2, 3, . . .}), (4)

together with a special size measure which can be defined for a p-list L =
[Θ1, . . . , Θk] as ≡L≡ =

∑k
i=1 ≡Θi≡, where the size ≡i≡ is i if i > 0 and 1 if i = 0. It

just means that ≡L≡ =
∑k

i=1 Θi + Card{i | Θi = 0}. The Seq operator applied
to a combinatorial class A corresponds to all finite sequences of elements from
A, i.e., Seq(A) = ∪∈i=0Ai (reminiscent of the Kleene star operation for regular
languages). By convention A0 = {Γ}.

Combinatorial specifications and generating functions. In order to study a se-
quence (an)n∅N , it is now usual [6] to consider its generating function A(z), that

is the formal power series defined by A(z) =
∑

n⊆0 anz
n =

∑
Δ∅A z

‖Δ‖.
In our case, given the combinatorial specification of L, it is easy [6] to compute

the generating function L(z) =
∑

n⊆0 Θnz
n where Θn denotes the numbers of p-

lists of size n. This is true when specification are unambiguous (in the same way
as unambiguity is considered in regular expressions or formal grammars).

Indeed, the general idea is the following: here we first consider a set of atoms
N. We need a size ≡·≡ compatible with the cartesian product and disjoint union,

On the Number of Prefix and Border Tables 451

i.e., here for i ⊗ N the size of atom i is ≡i≡ = i if i > 0 and ≡0≡ = 1. Let
us define an empty element Γ (the only one with size 0). Then we have the
following dictionary for translating directly from combinatorial constructions to
generating functions.

Empty element: Γ ⇓⊂ 1 Symbols: Π ⊗ N ⇓⊂ z‖Δ‖,
Disjoint Union: A ∪ B ⇓⊂ A(z) +B(z) Sequence product: Seq(A) ⇓⊂ 1

1−A(z)

Cartesian product: A× B ⇓⊂ A(z) ×B(z)

Let Δ = 1
2 (1 +

⊕
5) ≤ 1.618. With this dictionary and the combinatorial

description (4), we get the following result for Θn = [zn]L(z) the number of
p-lists of size n.

Proposition 7. The number of p-lists of size n is given by

Θn = 1
2

(
1 +

∗
5
5

)
Δn + 1

2

(
1 −

∗
5
5

)
Δ−n = 1

2

(
1 +

∗
5
5

)
Δn + o(1).

Proof. Let I = {0}∪{1, 2, 3, . . .} then by definition L = Seq(I). The generating
function associated with I is I(z) = 2z+z2+z3+ . . . = z+z

∑
n⊆0 z

n = z+ z
1−z .

With this dictionary and the combinatorial description we get

L(z) = 1

1−(z+ z
1−z)

= 1−z
1−3z+z2 .

This is a rational function whose denominator 1 − 3z + z2 has two simple roots
1 + Δ and (1 + Δ)−1 with Δ = 1

2 (1 +
⊕

5). Decomposing in simple elements we
can easily extract coefficients and we get

Θn = [zn]L(z) = 1
2

(
1 −

∗
5
5

)
(1 + Δ)−n + 1

2

(
1 +

∗
5
5

)
(1 + Δ)n,

and the desired result follows. ≥⊆
The main result on the upper bound (see Proposition 1) is a reformulation of
the following corollary, which is a consequence of Proposition 6.

Corollary 2. The number pn of prefix tables of size n is upper bounded by the
number Θn−1 of p-lists of size n− 1.

5 Lower Bound

For the lower bound, we exhibit some sets of valid prefix lists such that we are
able to count them. We wish these sets to be as large as possible. In this paper,
as a first step, our goal is to evaluate the exponential order growth given in
Proposition 2 rather than to give a precise estimate.

The idea for proving Proposition 2 is to exhibit a language which maps bijec-
tively to a set of prefix lists, hence maps bijectively to a set of prefix tables. Let
us consider, for a fixed k, Lk = abk

(
ab<k(Γ+ cb◦)

)◦
.

Proposition 8. Two distinct words in Lk admit distinct prefix tables.

452 J. Clément and L. Giambruno

Proof. We prove that the set Lk is in bijection with a subset of prefix lists.
Then, since a prefix table is associated with a unique prefix list, the desired
result immediately follows.

First we prove that prefix lists associated with words in Lk are concatenations
of non negative integers Θ < k. Indeed by construction, for any word u ⊗ Lk we
have that the longest border of a prefix of u is of length strictly less than k+ 1.
Let us note by L(u) the prefix list associated with u: L(u) = ι(Prefu). Since the
elements in L(u) are borders of prefixes of u we get the result.

Let us prove the main statement by contradiction. Let us consider u, v in Lk

such that u ∧= v and L(u) = L(v) = L = [Θ1, . . . , Θr] (for some r > 0). The prefix
list L induces the same factorization in u and v. Let i be the smallest position in
the words such that u[i] ∧= v[i] and let Θj such that

∑j−1
k=1 ≡Θk≡ < i <

∑j
k=1 ≡Θk≡,

where ≡·≡ is defined as in Definition 3. Let i1 =
∑j−1

k=1 ≡Θk≡ and i2 =
∑j

k=1 ≡Θk≡.
If Θj ∧= 0 then u[i1 + 1 . . i2] = abΣj−1 = v[i1 + 1 . . i2] since 1 ≤ Θj < k, that is
a contradiction since u[i] ∧= v[i]. If Θj = 0 then the longest border of u[0 . . i] is
the empty word. Then u[i] can be equal either to b or to c. If u[i] = b then, by
definition of Lk, u[i] must be preceded by cbt for some t ∈ 0. The element v[i],
by definition, must be preceded by abs for some s ∈ 0, that is a contradiction
since u[0 . . i− 1] = v[0 . . i− 1]. ≥⊆
We are now ready to give a sketch of Proposition 2, that is: for any Γ > 0 there
exists a family of prefix tables (Ln)n⊆0 such that Card(Ln) = Ψ((1 + Δ− Γ)n).

Proof (Sketch of the proof of Proposition 2). For a given k, by using analytic
combinatorics for regular expressions and since the regular expression Lkis un-
ambiguous, one compute easily the generating function Lk(z) for Lk

Lk(z) = zk+1 1

1−
(
z 1−zk

1−z (1+ 1
1−z)

) = zk+1(z−1)2
1−3z+z2+zk+1 .

By general principles [6] we have that the number of words of length n in Lk is

Θn,k := [zn]Lk(z) ∅ CkΛ
−n
k ,

where Ck is a constant and Λk is the smallest real (simple) root of 1− 3z+ z2 +
zk+1. We write Λk = (1+Δ−Γk)−1, and thus are considering Λk as a perturbation
of the root Λ = (1+Δ)−1 of 1−3z+z2 = 0. Solving approximately the perturbed
equation when k tends to ↓, we get

Γk = 1
2 (1 + 3

∗
5
5) 1

(1+Λ)k
(1 + o(1)).

This process of reinjecting an approximate solution in order to get better and
better approximations is the essence of the so-called bootstrapping method (as in
[9]). Hence we get that, for any Γ > 0, one can fix k such that Θn,k = Ψ((Δ+ 1−
Γ)n) yielding the result of Proposition 2. ≥⊆
This result gives only rough information on the asymptotics of Θn,k. A more
thorough study is in order to get better estimates. However this hints at the
following conjecture.

On the Number of Prefix and Border Tables 453

Conjecture 1. There exists a constant c > 0 such that the number pn of prefix
tables of size n is asymptotically equivalent to c(1 + Δ)n.

6 Conclusion

In this paper we have provided some bounds for the number of prefix (or border)
tables. The problem of finding an asymptotic equivalent for the number of prefix
tables is however still open, and would require a very fine understanding of the
autocorrelation structure of words. For this purpose it would be interesting to
find characterizations on prefix lists in order to get better bounds. It would be
also interesting to study other families of words in bijection with prefix tables
to get better lower bounds.

Acknowledgments. We would like to thank Maxime Crochemore, Cyril Nicaud
and Giuseppina Rindone for helpful discussions, and also anonymous referees for
useful remarks.

References

1. Bland, W., Kucherov, G., Smyth, W.F.: Prefix Table Construction and Conversion.
In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 41–53.
Springer, Heidelberg (2013)

2. Clement, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In:
Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical As-
pects of Computer Science (STACS 2009). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 3, pp. 289–300. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik (2009)

3. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge Uni-
versity Press, Cambridge (2007)

4. Duval, J.-P., Lecroq, T., Lefebvre, A.: Border array on bounded alphabet. Journal
of Automata, Languages and Combinatorics 10(1), 51–60 (2005)

5. Duval, J.-P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of bor-
der arrays and validation of string matching automata. RAIRO-Theoretical Infor-
matics and Applications 43(2), 281–297 (2009)

6. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

7. Franek, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Veri-
fying a border array in linear time. Journal on Combinatorial Mathematics and
Combinatorial Computing 42, 223–236 (2002)

8. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press, Cambridge (1997)

9. Knuth, D.: The average time for carry propagation. Indagationes Mathematicae 40,
238–242 (1978)

10. Moore, D., Smyth, W.F., Miller, D.: Counting distinct strings. Algorithmica 23(1),
1–13 (1999)

Probabilities of 2-Xor Functions

Élie de Panafieu1,Δ, Danièle Gardy2,ΔΔ, Bernhard Gittenberger3,ΔΔΔ,
and Markus Kuba3,†

1 Univ. Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089, 75013, Paris, France
2 PRISM, Univ. of Versailles, France

3 Institute of Discrete Mathematics and Geometry, TU Wien, Austria

Abstract. The problem 2-Xor-Sat asks for the probability that a random expres-
sion, built as a conjunction of clauses x ⊕ y, is satisfiable. We consider here
a refinement of this question, namely the probability that a random expression
computes a specific Boolean function. The answer involves a description of 2-Xor
expressions as multigraphs, and uses classical methods of analytic combinatorics.

Keywords: multigraphs, probability of Boolean functions, 2-Xor expressions.

1 Introduction

In constraint satisfaction problems we ask for the probability that a random expression,
built on a finite set of Boolean variables according to some rules (k-Sat, k-Xor-Sat,
NAE, . . .), is (un)satisfiable. The behaviour of this probability, when the number n of
Boolean variables and the length m of the expression (usually defined as the number
of clauses) tend to infinity, most specially the existence and location of a threshold
from satisfiability to unsatisfiability as the ratiom/n grows, has given rise to numerous
studies. The literature in this direction is vast, for Xor-functions see e.g. [1,2,3,4,5].

Defining a probability distribution on Boolean functions through a distribution on
Boolean expressions is a priori a different question. Quantitative logic aims at answer-
ing such a question, and many results have been obtained when the Boolean expression,
or equivalently the random tree that models it, is a variation of well-known combina-
torial or probabilistic tree models (Galton-Watson and Pólya trees, binary search trees,
etc).

So we have two frameworks: on the one hand we try to determine the probability
that an expression is satisfiable; on the other hand we try to identify probability dis-
tributions on Boolean functions. It is only natural that we should wish to merge these

α Supported by the ANR projects BOOLE (2009-13) and MAGNUM (2010-14).
αα Part of the work of this author was done during a long-term visit at the Institute of Discrete

Mathematics and Geometry, TU Wien. Supported by the P.H.C. Amadeus project Proba-
bilities and tree representations for Boolean functions and by the ANR project BOOLE
(2009-13).

ααα Supported by the FWF (Austrian Science Foundation), Special Research Program F50, grant
F5003-N15, and by the ÖAD, grant Amadée F03/2013.

† Supported by the ÖAD, grant Amadée F03/2013.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 454–465, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Probabilities of 2-Xor Functions 455

two approaches: what if we set satisfiability problems into the framework of quantita-
tive logic (this only requires to choose a suitable model of expressions), and ask for
the probability of FALSE – this is the classical satisfiability problem – and of the other
Boolean functions? This amounts to refining the satisfiable case, which gathers together
all the functions differing from FALSE, into subcases according to the exact (class of)
Boolean function(s) that is computed.

Within this unified framework one could, e.g., ask for the probability that a random
expression computes a function that is satisfied by a specific number of assigments. Al-
though this may turn out to be out of our reach for most classical satisfiability problems,
there are some problems for which we may still have hope to obtain a (partial) descrip-
tion of the probability distribution on Boolean functions. The case of 2-Xor expressions
is such a problem, and this paper is devoted to presenting our results in this domain.

The 2-Xor-Sat satisfiability problem has been studied by Creignou and Daudé [1]
who established the existence of a threshold for m = n

2 , then proved in [4] that this
threshold is coarse. Further work by Daudé and Ravelomanana [6] and by Pittel and
Yeum [7] led to a precise understanding of the transition in a window of size n2/3.

The paper is organized as follows. We present in the next section the 2-Xor problem
and the set of Boolean functions that can be attained by such expressions, then give a
modelization in terms of multigraphs, before considering in Section 3 how enumeration
results on classes of multigraphs allow us to compute probabilities of Boolean func-
tions. We then give explicit results for several classes of functions in Section 4, and
conclude with a discussion on the relevance and of possible extensions of our work.

2 Boolean Expressions and Functions, and Multigraphs

2.1 2-Xor Expressions and Boolean Functions

Starting from an infinite set {x1, x2, . . .} of Boolean variables, we define a 2-Xor ex-
pression as a finite conjunction of clauses l ⊕ l∨, where l and l∨ are literals, i.e. either
some xi or x̄i. We shall denote by m the number of clauses of an expression. Now each
2-Xor expression defines a Boolean function on a finite number of variables, but not all
Boolean functions on a finite number of variables can be obtained from a 2-Xor expres-
sion. We define X as the set of functions from {0, 1}N to {0, 1}, such that there exists
at least one 2-Xor expression representing them. We also define, for each n ≤ 1, the
set Xn of functions in X such that there exists an expression representing the function,
that does not use any of the variables xn+1, xn+2, . . . This implies that Xn1 ⊂ Xn2 for
n1 ⊗ n2, and that X = ∈n∗1Xn.1

Consider now the expressions that can represent a function of Xn. The literals in
a clause are ordered (the clauses x ⊕ y and y ⊕ x are distinct), hence there are 4n2

distinct clauses. We assume that the m clauses are drawn with a uniform probability
and with replacement (i.e., a clause can appear several times), and are unordered, i.e.
we are dealing with a set of clauses. This framework allows us to define a probability

distribution on the set Xn : Pr[m,n](f) =
N[m,n](f)

N[m,n]
, with N[m,n] the total number of

1 For brevity’s sake, “(the set of) Boolean functions” in the sequel is to be understood as either
the set Xn or the set X , according to the context.

456 É. de Panafieu et al.

expressions with m clauses on the variables x1, . . . , xn, and N[m,n](f) the number of
these expressions that compute f .

2.2 The Sets Xn

Rewriting a clause l1 ⊕ l2 as l1 ∗ l̄2 (i.e., l1 and l2 must take opposite values for the
clause to evaluate to TRUE), we see that the functions we obtain can be written as a
conjunction of equivalence relations on literals: (l1 ∗ · · · ∗ lp) ≥ (lp+1 ∗ · · · ∗
lq) ≥ · · · ≥ (lr+1 ∗ · · · ∗ ls). E.g., for n = 7 the expression (x1 ⊕ x3) ≥ (x̄6 ⊕
x5) ≥ (x7 ⊕ x̄7) ≥ (x2 ⊕ x̄3) computes a Boolean function f that we can write as
(x1 ∗ x̄2 ∗ x̄3) ≥ (x5 ∗ x6), and this function partitions the Boolean variables into
the subsets {x1, x2, x3}, {x4}, {x7} and {x5, x6}.

If a relation l ∗ l̄ appears in at least one of the equivalence relations, the expression
simply computes FALSE. In other words: For any n ≤ 1, the set Xn comprises exactly
the function FALSE and those functions that partition the set of the n Boolean variables
into subsets, as follows: the variables (or their negations) in a given part are equivalent;
a variable which appears in no clause of an expression computing the function, or only
as l ∗ l, is put in a singleton.

We now define the following equivalence relation on Xn. Two Boolean functions
f and g on n variables are equivalent, if g can be obtained from f by permuting the
variables and flipping some of them. We denote by C(f) the equivalence class of a
function f . All the Boolean functions in C(f) share the same probability Pr[m,n](f).

Let f ⊆ X ; we say that a Boolean variable x is an essential variable w.r.t. f iff
f |x=1 ↑= f |x=0. Let f ↑⊆ {TRUE, FALSE} and e(f) ⊗ n be the number of its essential
variables2; then f ↑⊆ Xe(f)−1 but f ⊆ Xe(f). In our example, e(f) = 5.

It is not hard to see that, with the exception again of FALSE that is in a class by itself,
the classes we have thus defined on Xn are in bijection with partitions of the integer n;
in our example the function f partitions the integer 7 as 1 + 1 + 2 + 3.

Let i = (iΣ)Σ∗1 be an integer partition of n, written in its part-count representation.
Hence iΣ ≤ 0 for all Θ and s(i) :=

∑
Σ Θ iΣ = n; the total number of parts (or blocks) is

ι(i) :=
∑

Σ iΣ and iΣ is the number of parts of size Θ. Partitions of the type iΣ = 0 except
in = 1 appear regularly in the sequel; we shall denote such a partition by imax(n). We
write i(f) for the integer partition associated to a Boolean function f , and we extend
the notation for the equivalence class into Ci = C(f) when i = i(f).

Our running example corresponds to the integer partition (n − 5, 1, 1, 0, 0, 0) on
n ≤ 5 variables, which has n − 3 parts; the set partition it induces on the set of
Boolean variables may be taken, for example, equal to {x1, x2}, {x3, x4, x5}. The func-
tion TRUE corresponds to the integer partition (n, 0, . . . , 0) and is computed by the
expressions that have only clauses of the type l ⊕ l̄.
Proposition 1. Set p(n) as the number of partitions of n; the number of classes of
computable Boolean functions is then p(n) + 1. The class associated to a partition

i = (iΣ) has cardinality 2n−Θ(i) n!∏
Φ≥1 iΦ!(Σ!)

iΦ
. The number of assigments satisfying a function

f ⊆ Ci is 2Λ(i).
2 Although the constant functions can only be written as 2-Xor expressions invoving one or more

variables, they have no essential variable: e(TRUE) = e(FALSE) = 0.

Probabilities of 2-Xor Functions 457

2.3 2-Xor Expressions as Colored Multigraphs

Consider multigraphs, i.e. graphs where we allow loops and multiple edges. Set Mm,n

as the number of multigraphs on n vertices3 and m edges or loops, each multigraph be-
ing weighted as follows: every loop contributes a multiplicative factor 1/2 to the weight,
each k-fold edge a factor 1/k!. The generating function for weighted multigraphs is (see
Janson, Knuth, Luczak and Pittel [8])

M(z, v) =
∑

m,n

Mm,nz
m v

n

n!
=

∑

n∗0
e

n2

2 z.
vn

n!
.

A multigraph being a set of connected components, the g.f. for connected multigraphs is

C(z, v) = logM(z, v) =
∑

r∗−1
zrCr(zv), (1)

where we have set r = m−n, the excess of the multigraph, and whereCr(z) enumerates
the connected multigraphs of fixed excess r.

We are now ready to define a bijection between Boolean expressions ofm clauses on
n variables, and colored multigraphs on n vertices and with m edges, i.e. multigraphs
with different types (colors) of edges between any two vertices, as follows.

– Each Boolean variable xΣ corresponds to a vertex, and each 2-Xor clause to an edge
between two distinct vertices, or to a loop on one vertex; each loop or edge can be
repeated.

– A loop on vertex x can appear in four colors : x⊕ x, x⊕ x̄, x̄⊕ x or x̄⊕ x̄.
– An edge between two distinct vertices xi and xj can appear in eight colors: li ⊕ lj

or lj ⊕ li, where li and lj are respectively equal to xi or its negation, and xj or its
negation.

Proposition 2. There is a bijection between 2-Xor expressions, and multigraphs where
loops are 4-colored and other edges are 8-colored. Hence the generating function for
2-Xor expressions is M(8z, v).

Let f ⊆ Xn; then ι(i(f)) is the number of connected components of the associated
multigraph.

X1 + X3 X7+X7

X6+X5

X2+X3

X3

X2X1

X4

X6 X5

X7

Fig. 1. The colored multigraph for our running example

3 As is usual when enumerating such structures, we consider labels on the vertices, say 1, . . . , n.

458 É. de Panafieu et al.

2.4 The Different Ranges

We shall consider in the sequel the range where m and n are related, and set m ∗
Δn (Δ is usually assumed to be a constant). It is well known ([6]) that the probability
that a random expression is satisfiable decreases from 1 to 0 when Δ increases, with a
(coarse) threshold at 1

2 . However, a Boolean function corresponding to a partition of
the n Boolean variables into p blocks cannot appear before at least n− p clauses have
been drawn, i.e. before m ≤ n− p. E.g., the function x1 ∗ · · · ∗ xn cannot appear for
m < n− 1, which means that it has a non-zero probability only for Δ ≤ 1, much later
than the threshold – and at this point the probability of FALSE is 1 − o(1). This leads
us to define regions according to the value of Δ when n,m⊃ +⊇:

– Δ < 1/2. Here the probability of satisfiability is non-zero, but the attainable func-
tions cannot have more than n(1− Δ) blocks.

– 1/2 < Δ < 1. Some Boolean functions still have probability zero, but now the
probability of satisfiability is o(1) and the probability of FALSE is 1 − o(1). Thus
any other attainable Boolean function has a vanishing probability o(1).

– 1 ⊗ Δ. At this point all the attainable Boolean functions have non-zero probability,
but again the probability of FALSE is tending to 1.

3 Probabilities on Boolean Functions

We consider here how we can obtain the probability of satisfiability (or equivalently of
FALSE), or of any function in Xn. The reader should recall that the probabilities given
in the sequel are actually distributions on Xn, i.e. they depend on n and m. Letting n
and m = m(n) grow to infinity amounts to specializing the probability distribution
Pr[m,n](f) (defined in Section 2.1 for f ⊆ Xn) into Pr[m(n),n](f). We shall be inter-
ested in its limit when n ⊃ +⊇ and f is a function of X . We begin with the case
f = FALSE (which is the usual satisfiability problem) and derive anew the probability
of satisfiability in the critical window, before turning to general Boolean functions.

3.1 Probability of Satisfiability

Theorem 1. The probability that a random expression is satisfiable is

Pr[m,n](Sat) =
[zmvn]

√
M(4z, 2v)

[zmvn]M(8z, v)
.

Its asymptotic value for n⊃ +⊇ and m = n
2 (1 + μn−1/3) is

n−1/12
⊂
2Γ

∑

r∗0

e
(1/2)
r

2r
A(3r + 1/4, μ),

Probabilities of 2-Xor Functions 459

where

e(δ)r = [z2r]

∑

k∗0

(6k!)z2k

25k32k(2k)!(3k)!

⎡

⎣

δ

,

A(y, μ) =
e−μ

3/6

3(y+1)/3

∑

k∗0

(32/3μ/2)k

k!Ψ
⎤

y+1−2k
3

⎦ .

Proof. To obtain the g.f. for satisfiable expressions, we shall count the number of pairs
{satisfiable expression, satisfying assignment}, then get rid of the number of satisfying
assignments. We can assign TRUE or FALSE to each variable, and one of eight colors to
an edge, hence M(8z, 2v) counts all pairs {expression, assignment}.

Once we have chosen an assignment of variables, for an expression to be satisfiable
we have to restrict the edges we allow. Say that x and y are assigned the same value;
then the edges colored by x ⊕ y, y ⊕ x, x̄ ⊕ ȳ or ȳ ⊕ x̄ cannot appear in a satisfiable
expression. For a similar reason, the only loops allowed are x ⊕ x̄ or x̄ ⊕ x. We thus
count multigraphs with 2 colors of loops and 4 colors of edges, which gives a g.f. equal
to M(4z, 2v).

Now consider the generating function S(z, v) for satisfiable expressions: we claim
that it is equal to

√
M(4z, 2v). To see this, choose an expression computing a Boolean

function f , and consider how many assignments satisfy it: we have seen (cf. Proposi-
tion 1) that their number is equal to 2Λ(f), with ι(f) the number of connected compo-
nents (once we have chosen the value of a single variable in a block, all other variables
in that block have received their values if the expression is to be satisfiable). This means
that, writing S(z, v) = exp logS(z, v) with logS(z, v) the function for connected com-
ponents, the g.f. enumerating the pairs {expression, satisfiable assignment} is equal to
exp(2 logS(z, v)) = S(z, v)2. As we have just shown that it is also equal toM(4z, 2v),
the value of Pr[m,n](Sat) follows.

To obtain the asymptotics in the critical window m = n/2 + O(n2/3), we use
Lemma 1 below, which is an easy variation of [8, Lemma 3]. The functionA(y, μ) is a
variation of the classical Airy function; see for example [8, Lemma 3], [9, Theorem 11]
or [10, Theorem IX.16].

Lemma 1. Let us consider a positive real value Π, a bounded parameter μ and m =
n
2 (1 + μn−1/3). Then, with the notations of Theorem 1,

n![zmvn]M(z, v)δ ∗ n2m

2mm!
Πn−mn(δ−1)/6⊂2Γ

∑

r

Πre(δ)r A(3r + Π/2, μ).

Theorem 2. The probability for a random satisfiable expression with n variables andm
clauses to be satisfied by a random input, in the range m = n

2 (1 + μn−1/3), is

Pr[m,n](Sat) =
[zmvn]M(4z, 2v)

2n[zmvn]
√
M(4z, 2v)

∗ n1/12

2m

∑
r e

(1)
r A(3r + 1/2, μ)

∑
r 2
−re(2)r A(3r + 1/4, μ)

.

460 É. de Panafieu et al.

3.2 Probability of a Given 2-Xor Function

We now refine the probability of satisfiability, by computing the probability of a specific
Boolean function ↑= FALSE. We first give in Proposition 3 the generating functions for
all Boolean functions (except again FALSE), then use it to provide in Theorem 3 a gen-
eral expression for the probability of a Boolean function, or rather of all the functions
of an equivalence class Ci. This theorem is at a level of generality that does not give
readily precise probabilities, and we delay until Section 4 such examples of asymptotic
probabilities.

Proposition 3. For i an integer partition, define Σi(z) as the generating function for
Boolean expressions that compute a specific Boolean function f in the class Ci: Σi(z) =∑

mN[m,n](f) z
m. When i = imax(n), we set Σn(z) := Σimax(n)(z). Then

Σn(z) =

⎨
vn

n!

⎛
C(4z, v); Σi(z) =

⎫

Σ∗1
(ΣΣ(z))

iΦ .

Proof. A canonical representant of the class imax(n) is the function x1 ∗ · · · ∗ xn.
Any expression that computes it corresponds to a connected multigraph, where we only
allow the 2 types of loops that compute TRUE, and the 4 types of edges between xi and
xj (i ↑= j) that compute xi ∗ xj ; this gives readily the expression of Σn(z).

As for functions whose associated multigraphs have several components, such multi-
graphs are a product of connected components; hence the global generating function is
itself the product of the generating functions for each component.

Theorem 3. 1. The probability that a random expression ofm clauses on n variables
computes the function x1 ∗ · · · ∗ xn is

Pr[m,n](x1 ∗ · · · ∗ xn) =
⎬
zmvn

n!

⎞
C(4z, v)

⎬
zmvn

n!

⎞
M(8z, v)

=
m!

n2m

⎨
vn

n!

⎛
Cm−n(v).

2. Let f be a function of X , with q = ι(i(f)), and B1, . . . , Bq be the blocks of i(f),
with rj (1 ⊗ j ⊗ q) the excess of the block Bj . The probability that a random
expression of m clauses on n variables computes f is

Pr[m,n](f) =
m!

n2m

∑

r1,...,rq∗−1
r1+···+rq=m−n

q⎫

j=1

⎨
v|Bj |

|Bj |!
⎛
Crj (v).

Proof. By the correspondance between 2-Xor expressions and weighted multigraphs
the probability that an expression of m clauses on n variables computes a function f
can be expressed as follows:

Pr[m,n](f) =
[zm]Σi(z)

[zm vn

n!]M(8z, v)
.

Expressing Σi in terms of coefficients of powers of C(4z, v), then substituting the
expression (1) for C, gives the result after careful management of the coefficients.

Probabilities of 2-Xor Functions 461

4 Explicit Probability Computations

We now show on examples how Theorem 3 allows us to compute the asymptotic prob-
ability of a specific function.

We consider first a Boolean function f with a fixed number e(f) of essential vari-
ables, and consider how its probability varies when n ⊃ +⊇ (i.e. when we add non-
essential variables), then turn to functions that vary with n, either with a fixed number
of blocks (this includes functions that are “close to” FALSE in the sense that they have
few blocks, hence few satisfying assigments), or with a number of blocks that grows
with n (e.g., n

j blocks of size j for some j ≤ 2).

4.1 Probability of a Fixed Function

We compute here the probability of any specific function, when m is large enough so
that it can be obtained, and see how it varies when n,m⊃ +⊇ with fixed ratio Δ.

Proposition 4. Let f ⊆ Xn, with e(f) the number of its essential variables, and i(f) =
(i1, i2, . . .) its associated integer partition. Assume m = Δn ≤ n− ι(i(f)); then

P[Θn,n](f) ∗ eΘe(f)

(2n)Θn

⎫

Σ∗2

⎤
Θ!ΣΣ

⎤Δ
2

⎦⎦iΦ
(n⊃ +⊇).

4.2 Asymptotics for a Single-Block Function

We consider here the class of x1 ∗ · · · ∗ xn, and the range m ≤ n − 1. This corre-
sponds to (a subset of) the third range of Section 2.4. From Theorem 3 , we have

Pr[m,n](x1 ∗ · · · ∗ xn) = m!

n2m
.

⎨
vn

n!

⎛
Cm−n(v).

We now specialize this expression according to the possible values for the excess r =
m− n. For the first three cases, we use the fact that for each fixed excess r, there is an
explicit constant Kr such that

⎨
vn

n!

⎛
Cr(z) ∗ Kr. n

n+ 3r−1
2 .

We use the result of [11] and the alternative proof of [12] to derive the remaining cases.

1. For r = −1, we have Pr[m,n](x1 ∗ · · · ∗ xn) = (n−1)!
nn ∗

⎟
2π
n e−n .

2. For r = 0, we get Pr[m,n](x1 ∗ · · · ∗ xn) ∗ π
2 e
−n.

3. For r ≤ 1 but still fixed, Pr[m,n](x1 ∗ · · · ∗ xn) ∗ Kr e
−nnr/2 where the

constant Kr can be made explicit.

4. For r ⊃⊇ and r = o(
⊂
n), Pr[m,n](x1 ∗ · · · ∗ xn) ∗

⎟
3
2

er/2

(2
⊆
3)r
e−n

⎠
n
r

)r/2
.

5. For r = cn for a constant c > 0, Pr[m,n](x1 ∗ · · · ∗ xn) ∗ K
⎤

(1+c)c cosh Ψ
(2Ψ)ce1+c

⎦n

where Λ coth Λ = 1 + c and K =
⊂
1 + c e2Ψ−1−2Ψ⊂

Ψ(e4Ψ−1−4Ψe2Ψ) .

462 É. de Panafieu et al.

6. When r ⊃ +⊇ and 2m/n − log(n) is bounded - which covers the two previous

cases - then Pr[m,n](x1 ∗ · · · ∗ xn) ∗ K
(2Ψ)r

⎤
sinh Ψ

Ψ

⎦n
(1+r/n)n+r+1/2

en+r where Λ is

the positive solution of Λ coth Λ = 1 + r/n and K = e2Ψ−1−2Ψ⊂
Ψ(e4Ψ−1−4Ψe2Ψ) . This for-

mula is an adaptation for multigraphs of Theorem 3 of [12] and appeared originally
(for graphs) in [13].

7. Finally, when 2m/n−log(n)⊃ +⊇ as n⊃ +⊇, Pr[m,n](x1 ∗ · · · ∗ xn) ∗ 1
2m

because almost all multigraphs are connected.

4.3 Asymptotics for a Two-Blocks Function

We now consider a function in the class of x1 ∗ · · · ∗ xp, xp+1 ∗ · · · ∗ xn (the block
sizes are p and n − p), which has cardinality 2n−2 n!

p!(n−p)! . We are again in the third
range: m ≤ n− 2, i.e. r ≤ −2. Theorem 3 gives the generating function as

Σj(z) =

⎨
vp

p!

⎛
C(4z, v) ·

⎨
wn−p

(n− p)!
⎛
C(4z, w),

from which we readily obtain that

Pr[m,n](f) =
m!

n2m

r+1∑

d=−1

⎨
vp

p!

⎛
Cd(v) ·

⎨
wn−p

(n− p)!
⎛
Cr−d(w).

We now consider several cases. For simplicity we assume that, when r is large, it is
equal to cn for a fixed positive value c.

1. Fixed excess r, and a single large part. In the range we are working in, p and d
belong to a fixed, finite set. For some explicitly computable constant kf ,

Pr[m,n](f) ∗ kf . n
r+3
2 −p e−n.

2. Fixed excess r, and two proportional large parts. By symmetry, we can assume that
p ⊗ n− p. We have that

Pr[m,n](f) ∗ 2Γ

enn2n+2r
(n− p)2n+ 3r

2

(
p

n− p
)2p r+1∑

d=−1
KdKr−d

(
p

n− p
) 3d

2

.

(2)
Now assume for simplicity that p = βn, then

Pr[m,n](f) ∗ kf n−
r+1
2 γ2n e−n with γ = (1− β)1−Φ βΦ .

3. Fixed excess r, and two non-proportional large parts. In this case, the expression
(2) is still valid, but now p/(n− p) = o(1) i.e. p = σ n with σ = o(1). Then

Pr[m,n](f) ∗ kf e−n n
r−1
2 σnε−1 (1− σ)(1−ε)n.

A more precise evaluation of probabilities requires to know the order of growth of
p w.r.t. n. E.g.,

Probabilities of 2-Xor Functions 463

(a) p =
⊂
n: then σ = n−1/2 and the probability of the function is of order

n−
r
2+

3
4 e−n−2

⊆
n n−

⊆
n.

(b) p = logn: now σ = log n
n , the probability is of order

⎤
logn
n

⎦logn−1
n

r+1
2 e−n.

4. Large excess r and a single large part. If r = cn and p is fixed, we obtain for some
explicitly computable constant kf

Pr[m,n](f) ∗ kf
np−1

(
(1 + c)c cosh(Λ)

e1+c(2Λ)c

)n

where Λ coth Λ = 1 + cn+1
n−p .

5. Large excess r and two proportional large parts. If r = cn and p = βn,

Pr[m,n](f) ∗ kf
n

(
βΦ(1 − β)1−Φ(1 + c)1+c

2ce1+c
g(a0)

)n

where kf is a computable constant, and g(a0) is the unique maximum in [0; 1] of
the function

g(a) =

(
cosh(Λ1(a))

1 + ac
Φ

)Φ (
cosh(Λ2(a))

1 + (1−a)c
1−Φ

)1−Φ (
β

Λ1(a)

)ac (
1− β
Λ2(a)

)(1−a)c

where the functions Λ1 and Λ2 are implicitly defined by Λ1(a) coth Λ1(a) = 1 + ac
Φ

and Λ2(a) coth Λ2(a) = 1 + (1−a)c
1−Φ .

4.4 Number of Blocks Proportional to n

A general approach via Theorem 3 seems difficult, so we assume a certain regularity:
Let f denote a boolean function whose associated integer partition representation has
the form i(f) = (0, . . . , 0, n/g, 0, . . .), with g ≤ 2. Note that the corresponding multi-
graph has to have at least m = (g − 1) · ng edges. Thus, in contrary to the previously
discussed cases, the excess is no more bounded from below, as n⊃⊇. Such functions
may now appear even close to the threshold 1/2. In Proposition 5, we derive an exact
result for those functions, and an asymptotic result in Proposition 6.

Using directly the definition C(z, v) = logM(z, v) we can show:

Proposition 5. The number of expressions N[m,n](f) with n variables and m clauses
computing a function f with associated integer partition representation of the form
i(f) = (0, . . . , 0, n/g, 0, . . .), i.e. n/g blocks of size g, is given by

N[m,n](f) = 4m(g!)
n
g [zm]

⎤ g∑

j=1

(−1)j−1
j

ej,g−j(z)
⎦n

g

(3)

with

ej,n(z) =
∑

∑j
Φ=1 kΦ=n
kΦ∗0

(
n

k1, . . . , kj

)exp
⎤∑j

Σ=1
(kΦ+1)2z

2

⎦

∏j
r=1(kΣ + 1)!

.

464 É. de Panafieu et al.

For example, in the case g = 2 we get

Pr[m,n](f) =
1

n2m

n
2∑

Σ=0

(n
2

Θ

)
(n+ Θ)m(−1)n

2−Σ,

and for g = 3

Pr[m,n](f) =
1

n2m

n
3∑

Σ=0

Σ∑

j=0

(n
3

Θ

)(
Θ

j

)
(
n

2
+ Θ+ 2j)m(−3)Σ−j2n

3−Σ.

It turns out that there is no qualitative difference between constant and large excess.
The relevant quantity here is the distance from the minimal possible excess. Thus we
start with small g = 2, 3, . . . and assume thatm = g−1

g ·n+θn, with θn ≤ 0. According

to [4] the interesting range is n
2 +Ω(n2/3). Hence we also assume θn = O(n2/3).

The above expression for N[m,n](f), Eq. (3), is a fixed function G(z) raised to a
large power. Moreover, it is not hard to show that G(z) =

∑
Σ∗g−1 aΣz

Σ. Thus in case
of constant θn of equation (3) becomes a finite sum which can be computed explicitly
(at least in principle).

For θn ⊃⊇ the saddle point method applies and we can computeN[m,n](f) asymp-
totically, though the expressions quickly become messy as g grows. For g = 2 we obtain

Proposition 6. The number of expressions N[m,n](f) with n variables and m clauses
computing a function f with associated integer partition representation of the form
i(f) = (0, n/2, 0, 0, . . .), i.e. n/2 blocks of size 2, is given by

N[m,n](f) =
2⊂
6Γ

4m+n
4 r
−m+ n

2
n exp

(
3nrn
4

+
1

48
nr2n +O(nr4n)

)
.

where rn is the unique positive solution of z(2ez−1)
ez−1 = 1 + 2κn

n , and satisfies

rn =
4

3
· θn
n

+O
⎤θ2n
n2

⎦
.

5 Discussion

We have analysed the probability of Boolean functions generated by random 2-Xor
expressions. This is strongly related to the 2-Xor-SAT problem. For people working
in SAT-solver design the structure of solutions of satisfiable expressions, which corre-
sponds to the component structure of the associated multigraphs, is also important.

We derived expressions in terms of coefficients of generating functions for the prob-
ability of satisfiability in the critical region (m ∗ n

2 + Ω(n2/3)) as well as a general
expression for the probability of any function (Theorem 3). Unfortunately, this expres-
sion is too complicated to be used for an asymptotic analysis of general functions. So,
we discussed several particular classes of functions: Single block functions are com-
pletely analyzed. The asymptotic probability very much depends on the range of the

Probabilities of 2-Xor Functions 465

excess. For two block functions, the only missing case is that of two large components
which are not proportional in size. All those functions are rather close to FALSE. Finally,
functions on the other edge (close to TRUE) were studied and, under some regularity
conditions on the block sizes, we were able to get the asymptotic probability.

What is missing is an asymptotic analysis of functions on the boundaries TRUE and
FALSE having a more irregular component structure as well as the study of functions in
the intermediate range.

Acknowledgments. We thank Hervé Daudé and Vlady Ravelomanana for fruitful
discussions.

References

1. Creignou, N., Daudé, H.: Satisfiability threshold for random XOR-CNF formulas. Discrete
Applied Mathematics 96-97, 41–53 (1999)

2. Creignou, N., Daudé, H.: Smooth and sharp thresholds for random k-XOR-CNF satisfiability.
Theor. Inform. Appl. 37(2), 127–147 (2003)

3. Creignou, N., Daudé, H., Dubois, O.: Approximating the satisfiability threshold for random
k-XOR-formulas. Combin. Probab. Comput. 12(2), 113–126 (2003)

4. Creignou, N., Daudé, H.: Coarse and sharp transitions for random generalized satisfia-
bility problems. In: Mathematics and Computer Science III. Trends Math, pp. 507–516.
Birkhäuser, Basel (2004)

5. Creignou, N., Daudé, H., Egly, U.: Phase transition for random quantified XOR-formulas.
J. Artif. Intell. Res. 29, 1–18 (2007)

6. Daudé, H., Ravelomanana, V.: Random 2XorSat phase transition. Algorithmica 59(1), 48–65
(2011)

7. Pittel, B., Yeum, J.A.: How frequently is a system of 2-linear equations solvable? Electronic
Journal of Combinatorics 17 (2010)

8. Janson, S., Knuth, D., Luczak, T., Pittel, B.: The birth of the giant component. Random
Structures and Algorithms 4(3), 233–358 (1993)

9. Banderier, C., Flajolet, P., Schaeffer, G., Soria, M.: Random maps, coalescing saddles, singu-
larity analysis, and Airy phenomena. Random Struct. Algorithms 19(3-4), 194–246 (2001)

10. Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge University Press, Cambridge
(2009)

11. Bender, E.A., Canfield, E.R., McKay, B.D.: The asymptotic number of labeled connected
graphs with a given number of vertices and edges. Random Structures and Algorithm 1,
129–169 (1990)

12. Pittel, B., Wormald, N.C.: Counting connected graphs inside-out. J. Comb. Theory, Ser.
B 93(2), 127–172 (2005)

13. Bender, E.A., Canfield, E.R., McKay, B.D.: The asymptotic number of labeled connected
graphs with a given number of vertices and edges. Random Struct. Algorithms 1(2),
127–170 (1990)

Equivalence Classes of Random Boolean Trees
and Application to the Catalan Satisfiability

ProblemΔ

Antoine Genitrini1,2 and Cécile Mailler3

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,
LIP6, F-75005, Paris, France

2 CNRS, UMR 7606, LIP6, F-75005, Paris, France
Antoine.Genitrini@lip6.fr

3 Laboratoire de Mathématiques de Versailles;
CNRS UMR 8100 and Université de Versailles Saint-Quentin-en-Yvelines,

45 avenue des États-Unis, 78035 Versailles, France
Cecile.Mailler@uvsq.fr

Abstract. An and/or tree is a binary plane tree, with internal nodes
labelled by connectives, and with leaves labelled by literals chosen in a
fixed set of k variables and their negations. We introduce the first model
of such Catalan trees, whose number of variables kn is a function of
n, its number of leaves. We describe the whole range of the probability
distributions depending on the functions kn, as soon as it tends jointly
with n to infinity. As a by-product we obtain a study of the satisfiability
problem in the context of Catalan trees.

Our study is mainly based on analytic combinatorics and extends the
Kozik’s pattern theory, first developed for the fixed-k Catalan tree model.

Keywords: Random Boolean expressions, Boolean formulas, Boolean
function, Probability distribution, Satisfiability, Analytic combinatorics.

1 Introduction

Since years,many scientists of different areas, e.g. computer scientists, mathemati-
cians or statistical physicists, are studying satisfiabilityproblems (likek–SATprob-
lems) and some questions that arise around them: for example, phase transitions
between satisfiable and unsatisfiable expressions or constraints satisfaction prob-
lems.The classical 3–SATproblem takes into consideration expressions of a specific
form: conjunction of clauses that are themselves disjunctions of three literals. The
literals are chosen among a set whose size is linked to the size of the expression.
Then one question consists of deciding if a large random expression is satisfiable or
not. Actually we know among other things, see [1] for example, that satisfiability
is related to the ratio between the size of the expression and the number of allowed
literals. There is a phase transition such that, if the ratio is smaller than a critical
α Partially supported by the A.N.R. project BOOLE, 09BLAN0011.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 466–477, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Equivalence Classes of Random Boolean Trees 467

value, the random expression is satisfiable with probability tending to 1, when the
size of the expression tends to infinity. Otherwise, when the ratio is larger than the
critical value, the probability tends to 0.

An interesting paper [3] about Boolean satisfiability problems deals with ran-
dom 2–XORSAT expressions. Using generating functions, in the context of ana-
lytic combinatorics, the authors describe precisely the phase transition between
satisfiable and unsatisfiable expressions.

Still dealing with Boolean expressions, but in a completely different direction,
researchers have studied the complete probability distribution on Boolean func-
tions induced by random Boolean expressions.The first approach, by Lefmann and
Savický [12], consists in fixing a finite set of k variables, allowing the two logical
connectives and and or and choosing uniformly at random a Boolean expression
of size n in this logical system. Their model is usually called the Catalan model.
Lefmann and Savický first proved the existence of a limiting probability distribu-
tion on Boolean functions when the size of the random Boolean expressions tends
to infinity. Since the seminal paper by Chauvin et al. [2], almost all quantitative
studies of such Boolean distributions are deeply related to analytic combinatorics:
a survey by Gardy [6] provides a wide range of models with various numerical re-
sults. Later, Kozik [11] proved a strong relation between the limiting probability
of a given function and its complexity (i.e. the minimal size of an expression repre-
senting the function). His approach lies in two separate steps: (i) first let the size
of the Boolean expressions taken into consideration tend to infinity, and then (ii)
let the number of variables used to label the expressions tend to infinity. His pow-
erful machinery, the pattern theory, easily classifies and counts large expressions
according to structural constraints. The main objection to this model is about the
two consecutive limits that cannot be interchanged: in order to obtain quantitative
results, a function must be fixed and thus we cannot consider functions whose com-
plexity depends onn. Genitrini and Kozik have proposed another model [10,9] that
builds random Boolean expressions over an infinite set of variables. This approach
avoids the bias induced by both successive limits. According to our knowledge, the
single paper that relates the number of variables to the size is [7]: it finds a large
family of functions of small complexity. However from this results we cannot derive
any quantitative results of the probability of a small family of functions whose com-
plexities depends on n. Moreover looking at satisfiability problems in this context
seems to be very exciting.

Our paper extends the Catalan model in order to fit in the satisfiability con-
text. By using an equivalence relation on Boolean expressions, we manage to let
both the number of variables and the size of expressions tend jointly to infinity.
The number of variables is a function of the size of the expressions and thus
we deal with satisfiability in the context of Catalan expressions. Furthermore
by extending the techniques of Kozik, we describe in details the probability dis-
tribution on functions and exhibit some threshold for the latter distribution:
as soon as the number of variables is large enough compared to the size of the
expressions, the general behaviour of the induced probability on Boolean func-
tions does not change anymore by adding more variables.

468 A. Genitrini and C. Mailler

The paper is organized as follows. Section 2 introduces our new model based
on an equivalence relation of Boolean expressions. Then, Section 3 states our
three main results: (1) the satisfiability question for random Catalan expressions;
(2) the link between the probability of a class of functions and their common
complexity; (3) the behaviour of the probability related to the dynamic between
the number of variables and the size of the expressions. Section 4 is devoted to
the technical core of the paper. Finally Section 5 applies our approach to and/or
trees and proves the main results.

2 Probability Distributions on Equivalence Classes
of Boolean Functions

2.1 Contextual Definitions

A Boolean function is an mapping from {0, 1}N into {0, 1}. The two constant
functions (xi)i∗1 ⊕≤ 1 and (xi)i∗1 ⊕≤ 0 are respectively called true and false.

An and/or tree is a binary plane tree whose leaves are labelled by literals,
i.e. by elements of {xi, x̄i}i⊆N, and whose internal nodes are labelled by the
connective and or the connective or, respectively denoted by ∧ and ⊗. We will
say that xi and x̄i are two different literals but they are respectively the positive
and the negative version of the same variable xi. Every and/or tree is equivalent
to a Boolean expression and thus represents a Boolean function: for example, the
tree in Figure 1 is equivalent to the expression ([x1 ⊗ (x̄1 ⊗ x2)]⊗ x3)⊗ (x4 ∧ x1)
and represents the function f such that, for all (xi) ∈ {0, 1}N, f((xi)i∗1) =
([x1 ⊗ (¬x1 ⊗ x2)] ⊗ x3) ⊗ (x4 ∧ x1) = 1, where ¬x = 1− x for all x ∈ {0, 1}.

The size of an and/or tree is its number of leaves: remark that, for all n ∗ 1,
there is infinitely many and/or trees of size n.

The complexity of a non constant Boolean function f , denoted by L(f), is
defined as the size of its minimal trees , i.e. the smallest trees computing f . The
complexity of true and false is 0. Although a Boolean function is defined on an
infinite set of variables, it may actually depend only on a finite subset of essential
variables: given a Boolean function f , we say that the variable x is essential
for f , if and only if f|x◦0 ≥⊆ f|x◦1 (where f|x◦Δ is the restriction of f to the
subspace where x = Θ). We denote by E(f) the number of essential variables of
f . Remark that the complexity and the number of essential variables of a Boolean
function are related by the following inequalities: E(f) ↑ L(f) ↑ 2E(f)+2 (see
e.g. [4, p. 77–78] for the second inequality).

2.2 Equivalence Relations

Analytic combinatorics (cf. [4]) is based on the notion of combinatorial classes.
A combinatorial class is a denumerable (or finite) set of objects on which a
size notion is defined such that each object has a non-negative size and the set
of objects of any given size is finite. Thus our class of and/or trees is not a
combinatorial class since there is infinitely many of trees of a given size. To use

Equivalence Classes of Random Boolean Trees 469

analytic combinatorics, we define an equivalence relation on Boolean trees. In
the rest of the paper, we define a tree-structure to be an and/or tree whose
leaf-labels have been removed (but internal nodes remain labelled).

Informally two trees are equivalent if the leaves of first one can be relabelled
(and negated) without collision in order to obtain the second tree.

Definition 1. Let A and B be two and/or trees. Trees A and B are equivalent
if (1) their tree-structures are identical, if (2) two leaves are labelled by the same
variable in A if and only of they are labelled by the same variable in B, and if
(3) two leaves are labelled by the same literal in A if and only of they are labelled
by the same literal in B.

This equivalence relation on Boolean trees induces straightforwardly an equiv-
alence relation on Boolean functions. Note that all functions of an equivalence
class have the same complexity and the same number of essential variables. In
the following, we will denote by ⊃f⊇ the equivalence class of the function f .

2.3 Probability Distribution

Let (kn)n≥1 be an increasing sequence that tends to infinity when n
tends to infinity. In the following, we only consider trees such that: for all n ∗ 1,
the set of variables that appear as leaf-labels (negated or not) of a tree
of size n has cardinality at most kn. Note that if kn ∗ n for all n ∗ 1, this
hypothesis is not a restriction. Therefore, we will assume that kn ↑ n.

Definition 2. We denote by tn the number of equivalence classes of trees of
size n in which at most kn different variables appear as leaf-labels. We define the
ordinary generating function T (z) as T (z) =

∑
n tnz

n.

Proposition 1. The number of classes of trees of size n satisfies:

tn = Cn ·
kn∑

p=1

{
n

p

}
22n−1−p,

where Cn is the number of unlabelled binary trees1 of size n and
{
n
p

⎡
is the

Stirling number of the second kind2.

Proof. Once the tree-structure of the binary tree is chosen (factor 2n−1Cn), we
partition the set of leaves into p parts such that two leaves that belong to the
same part are labelled by the same variable. It gives the contribution

{
n
p

⎡
. Then,

we choose to label each leaf by a positive or negative literal: contribution 2n.
The equivalence relation states that a tree and the one obtained from it by
replacing the positive literals corresponding to a fixed variable by its negation
(and conversely) are equivalent. Thus, for each class we multi-count the number
of trees: correction 2−p. ⊂↓
1 In Proposition 1, Cn is the (n− 1)st Catalan number (see e.g. [4, p. 6–7]).
2 In Proposition 1,

{
n
p

}
is the number of partitions of n objects in p non-empty subsets

(see e.g. [4, p. 735–737]).

470 A. Genitrini and C. Mailler

Given a set S of equivalence classes of trees and Sn the number of elements
of S of size n, we define the ratio of S by μn(S) = Sn/tn. For a given Boolean
function f , we denote by Tn⊃f⊇ the number of equivalence classes of trees of
size n that compute a function of ⊃f⊇, and we define the probability of ⊃f⊇ as
the ratio of Tn⊃f⊇:

Pn⊃f⊇ = Tn⊃f⊇
tn

.

One goal of this paper consists in studying the behaviour of the probabilities
(Pn⊃f⊇)f⊆F when the size n of the trees tends to infinity.

3 Results

We state here our main result: the behaviour of Pn⊃f⊇ for all fixed functions
f ∈ F in the framework of and/or trees. Note that f is a single function, not
a family of functions. Neither f nor ⊃f⊇ depend on n, but we look at their
representations with trees of size n over at most kn variables.

The main idea of this part is that a typical tree computing a Boolean function f
is a minimal tree of f into which a large tree has been plugged, that does not
change the function computed by the minimal tree.

This informal but fundamental idea is central in the recent results about
quantitative logics (e.g. logic of implication [5]). The proofs in the distinct studies
are different, only because of technical incidences induced by the connectives
under study. Thus, we are convinced that our results hold in other logics.

Definition 3. Let f be a Boolean functions. We denote by L⊃f⊇ = L(f) (resp.
E⊃f⊇ = E(f)) the complexity (resp. number of essential variables) of class ⊃f⊇.
The multiplicity of the class ⊃f⊇, denoted by R⊃f⊇, is the result L⊃f⊇ − E⊃f⊇:
it corresponds to the number of repetitions of variables in a minimal tree of a
function from ⊃f⊇.
We recall that a Boolean expression is said satisfiable if does not represent the
constant function false.

Theorem 1. Let (kn)n∗1 be an increasing sequence of integers tending to +∅
when n tends to +∅. A random Catalan expression is satisfiable with probability
tending to 1, when the size of the expression tends to infinity.

Theorem 2. Let (kn)n∗1 be an increasing sequence of integers tending to +∅
when n tends to +∅. There exists a sequence (Mn)n∗1 such that Mn ≡ n

lnn
(when n tends to +∅) and such that, for all fixed equivalence classes of Boolean
functions ⊃f⊇, there exists a positive constant ι∼f∈ satisfying

(i) if, for all sufficiently large n, kn ↑Mn, then, asymptotically when n tends
to +∅,

Pn⊃f⊇ ≡ ι∼f∈ ·
⎣

1

kn+1

⎤R∼f∈+1

;

(ii) if, for all sufficiently large n, kn ∗Mn, then, asymptotically when n tends
to +∅,

Pn⊃f⊇ ≡ ι∼f∈ ·
⎣
lnn

n

⎤R∼f∈+1

.

Equivalence Classes of Random Boolean Trees 471

Informally, ι∼f∈ is related to the number of places where some large trees can be
plugged in minimal trees. By taking the complexity of both extremal constant
functions true and false to 0, the theorem fits to their equivalence classes too.

In the finite context [2,11], each Boolean function is studied separately instead
of being considered among its equivalence class. We can translate the result
obtained by Kozik in terms of equivalence classes by summing over all Boolean
functions belonging to a given equivalence class: note that there are

⎦
k

E(f)

⎨
2E(f)

functions in the equivalence class of f , therefore, the result of Kozik is equivalent
to: for all classes ⊃f⊇, asymptotically when k tends to infinity,

lim
n∅+∞Pn,k⊃f⊇ = Δk∅∞

⎣
1

kL(f)−E(f)+1

⎤
= Δk∅∞

⎣
1

kR(f)+1

⎤
.

Of course, interchanging the two limits is not a priori possible. However, the
finite context looks like a degenerate case of our model where there exists an
fixed integer k such that kn = k for all n ∗ 1. But let us remark that we assume
in the present paper that kn tends to +∅ when n tend to infinity: the case
kn = k is thus not a particular case of our results.

Concerning the infinite context [10,9] kn = +∅, we already noticed that the
cases such that kn is larger than n are equivalent to the model kn = n, even if
kn = +∅. Therefore, this infinite context is actually the extreme case kn = n
of our model, and is thus fully treated in the present paper. In this specific
setting, the Stirling numbers introduced in Proposition 1 induce Bell numbers,
that naturally appear in [10,9].

4 Technical Key Points

In this section, we state the technical core of our results, and we demonstrate
how a threshold does appear according to the dependence kn in n.

4.1 Threshold Induced by kn’s Behaviour

Definition 4. Let us define the following quantity: Bn,kn =
∑kn

p=1

{
n
p

⎡
2−p. The

number Bn,kn quantitatively represents the labelling constraints of leaf-labelling
by variables (cf. Proposition 1).

The following proposition, which can be seen as some particular case of Bonfer-
roni inequalities allows to exhibit bounds on Bn,kn .

Proposition 2 (for example [13]). For all n ∗ 1, for all p ∈ {1, . . . , n},
pn

p!
− (p− 1)n

(p− 1)!
↑
{
n
p

}
↑ pn

p!
.

In view of these inequalities and of the expression of Bn,kn (cf. Definition 4),
both following sequences naturally appear:

472 A. Genitrini and C. Mailler

Lemma 1. Let n be a positive integer.

(i) The sequence (a
(n)
p)p⊆{1,...,n} =

⎛
pn

p! 2
−p
⎫

p
is unimodal, i.e. there exists an

integer Mn such that (ap)p is strictly increasing on {1, . . . ,Mn} and strictly
decreasing on {Mn + 1, . . . , n}.

(ii) Moreover, the sequence (Mn)n is increasing and asymptotically satisfies:
Mn ≡ n/ lnn.

We are now ready, to understand the asymptotic behaviour of Bn,kn : roughly
speaking, asymptotically, Bn,kn does essentially only depend on the terms around
Mn in the sum.

Lemma 2. Let (un)n∗1 be an increasing sequence such that un ↑ n for all
integer n ∗ 1 and un tends to +∅ when n tends to +∅.

(i) If, for all large enough n, un ↑ Mn, then, for all sequences (Γn)n∗1 such
that Γn = o(un) and un

√
lnun

n = o(Γn), we have, asymptotically when n
tends to +∅,

Bn,un = Δ

⎬

⎞
un∑

p=un−Σn

pn

p!
2−p

⎟

⎠ . (1)

(ii) If, for large enough n, un ∗ Mn, then, for all sequences (Γn)n∗1 such
that Γn = o(un) and un

√
lnun

n = o(Γn), for all sequences (Ψn)n∗1 such that

Ψn = o(Mn), limn∅+∞
Λ2
n

Mn
= +∅ and

√
Mn ln(un −Mn) = o(Ψn), we

have, asymptotically when n tends to +∅,

Bn,un = Δ

⎬

⎞
min{Mn+Λn,un}∑

p=Mn−Σn

pn

p!
2−p

⎟

⎠ . (2)

Definition 5. Let the fraction ratn be the quantitative evolution of the leaf-
labelling constraints from trees of size n− 1 to size n: ratn = Bn−1,kn/Bn,kn. Its
asymptotic behaviour is quantified by the two following Lemmas 3 and 4.

Let us now deduce the following results on the behaviour of Bn,kn , when n tends
to infinity.

Lemma 3. Let (kn)n∗1 be a sequence of integers that tends to +∅ when n tends
to +∅. Let us assume that kn ↑ Mn for large enough n, then, asymptotically
when n tends to infinity,

Bn,kn+1

Bn+1,kn+1

= Δ

⎣
1

kn+1

⎤
.

Lemma 4. Let (kn)n∗1 be a sequence of integers that tends to +∅ when n tends
to +∅. Let us assume that kn ∗ Mn for large enough n, then, asymptotically
when n tends to infinity,

Bn,kn+1

Bn+1,kn+1

= Δ

⎣
lnn

n

⎤
.

Equivalence Classes of Random Boolean Trees 473

4.2 Adjustment of Kozik’s Pattern Language Theory

In 2008, Kozik [11] introduced a quite effective way to study Boolean trees: he
defined a notion of pattern that permits to easily classify and count large trees
according to some constraints on their structures. Kozik applied this pattern
theory to study and/or trees with a finite number of variables.

We recall the definitions of patterns, illustrate them on an example and then
extend Kozik’s paper results to our new model.

Definition 6. (i) A pattern is a binary tree with internal nodes labelled by
∧ or ⊗ and with external nodes labelled by • or �. Leaves labelled by • are
called pattern leaves and leaves labelled by � are called placeholders.
A pattern language is a set of patterns

(ii) Given a pattern language L and a family of trees M, we denote by L[M]
the family of all trees obtained by replacing every placeholder in an element
from L by a tree from M.

(iii) We say that L is unambiguous if, and only if, for any family M of trees,
any tree of L[M] can be built from a unique pattern from L into which trees
from M have been plugged.

The generating function of a pattern language L is Π(x, y) =
∑

d,p L(d, p)x
dyp,

where L(d, p) is the number of elements of L with d pattern leaves and p place-
holders.

Definition 7. We define the composition of two pattern languages L[P] as the
pattern language of trees which are obtained by replacing every placeholder of a
tree from L by a tree from P .

Definition 8. A pattern language L is sub-critical for a family M if the gen-
erating function m(z) of M has a square-root singularity Σ , and if Π(x, y) is
analytic in some set {(x, y) : |x| ↑ Σ + Λ, |y| ↑ m(Σ) + Λ} for some positive Λ.

Definition 9. Let L be a pattern language, M be a family of trees and β a
subset of {xi}i∗1, whose cardinality does not depend on n. Given an element of
L[M],

(i) the number of its L-repetitions is the number of its L-pattern leaves minus
the number of different variables that appear in the labelling of its L-pattern
leaves.

(ii) the number of its (L, β)-restrictions is the number of its L-pattern leaves
that are labelled by variables from β , plus the number of its L-repetitions.

Definition 10. Let I be the family of the trees with internal nodes labelled by
a connective and leaves without labelling, i.e. the family of tree-structures.

The generating function of I satisfies I(z) = z + 2I(z)2, that implies I(z) =
(1−∃1− 8z)/4 and thus its dominant singularity is 1/8.

474 A. Genitrini and C. Mailler

∨

∨

∨

x1 ∨

x̄1 x2

x3

∧

x4 x1

∨

∨

∨

· · · ∨

x · · ·

· · ·

∨

· · · ∨

x̄ · · ·

Fig. 1. Left: a tree that computes the function true. Right: a simple tautology.

We can, for example, define the unambiguous pattern languageN by induction
as follows: N = •|N ⊗N |N ∧�, meaning that a pattern from N is either a single
pattern leaf, or a tree rooted by ⊗ whose two subtrees are patterns from N , or a
tree rooted by ∧ whose left subtree is a pattern from N and whose right subtree
is a placeholder. Its generating function verifies, n(x, y) = x+n(x, y)2+yn(x, y)
and is equal to n(x, y) = 1

2 (1− y −
√
(1− y)2 − 4x). It is thus subcritical for I.

On the left-hand side of Fig. 1, we have depicted a Boolean tree that com-
putes the constant function true. It has 5 N -pattern leaves, 1 N -repetition and
2 (N, {x2})-restrictions.

The following key lemma is a generalization of the corresponding lemma of
Kozik [11, Lemma 3.8].

Lemma 5. Let L be an unambiguous pattern, and T the families of and/or trees.
Let r be a fixed positive integer. Let T [r]

n (resp. T [∗r]
n) be the number of labelled

(with at most kn variables) trees of L[T] of size n and with r L-repetitions (resp.
at least r L-repetitions). We assume that L is sub-critical for the family I of the
unlabelled-leaves trees. Then, asymptotically when n tends to infinity,

T
[r]
n

tn
= O (ratrn) and

T
[∗r]
n

tn
= O (ratrn) .

Proof. The number of labelled trees of L[T] of size n and with at least r L-
repetitions is given by:

t[∗r]
n =

n∑

d=r+1

In(d)Lab(n, kn, d, r),

where In(d) is the number of tree-structures with d L-pattern leaves and the
number Lab(n, kn, d, r) corresponds to the number of leaf-labellings of these
trees giving at least r L-repetitions. The following enumeration contains some
multi-counting and we therefore get an upper bound:

Lab(n, kn, d, r) ↑ 2n ·
r∑

j=1

⎣
d

r + j

⎤{
r + j

j

}
Bn−r−j+1,kn .

The factor 2n corresponds to the polarity of each leaf (the variable labelling it is
either negated or not); the index j stands for the number of different variables

Equivalence Classes of Random Boolean Trees 475

involved in the r repetitions; the binomial factor corresponds to the choices
of the pattern leaves that are involved in the r repetitions; the Stirling num-
ber corresponds to the partition of r + j leaves into j parts; finally, the factor
Bn−r−j+1,kn corresponds to the choices of the variable assigned to each class of
leaves. Therefore,

t[∗r]
n ↑ 2n · Bn−r,kn

r∑

j=1

{
r + j

j

} n∑

d=r+j

In(d)

⎣
d

r + j

⎤
.

Let Π(x, y) be the generating function of the pattern L. Then, for all p ∗ 0,

zp

p!

γpΠ

γxp
(z, I(z)) =

∞∑

n=1

∞∑

d=1

In(d)

⎣
d

p

⎤
zn.

Thus, t
[∗r]
n

tn,kn

↑ Bn−r,kn

Bn,kn

r∑

j=1

{
r + j

j

}
[zn]zr+j δr+jΘ

δxr+j (z, I(z))

[zn]I(z)
.

Since zr+j δr+jΘ
δxr+j (z, I(z)) and I(z) have the same singularity because of the sub-

criticality of the pattern L according to I, the previous sum tends to a constant
(because r is fixed) when n tends to infinity and so we conclude:

t
[r]
n

tn
↑ t

[∗r]
n

tn
= O

⎣
Bn−r,kn

Bn,kn

⎤
= O (ratrn) .

⊂↓

5 Behaviour of the Probability Distribution

Once we have adapted the pattern theory to our model and proved the central
Lemma 5, we are ready to quantitatively study our model. A first step consists
to understand the asymptotic behaviour of Pn⊃true⊇. It is indeed natural to focus
on this “simple” function before considering a general class ⊃f⊇; and moreover,
it happens to be essential for the continuation of the study. In addition, the
methods used to study tautologies (mainly pattern theory) will also be the core
of the proof for a general equivalence class. We prove in this section the main
Theorem 2 for both classes ⊃true⊇ and ⊃false⊇ of complexity zero, using the duality
of both connectives ∧ and ⊗ and both positive and negative literals. Theorem 1
is then obtained as a by-product of Theorem 2. The main ideas of the proof for
a general equivalence class are given in Section 5.2.

5.1 Tautologies

Recall that a tautology is a tree that represents the Boolean function true. Let
A be the family of tautologies. In this part, we prove that the probability of
⊃true⊇ is asymptotically equal to the ratio of a simple subset of tautologies.

476 A. Genitrini and C. Mailler

Definition 11 (cf. right-hand side of Fig. 1). A simple tautology is an
and/or tree that contains two leaves labelled by a variable x and its negation
x̄ and such that all internal nodes from the root to both leaves are labelled by
⊗-connectives. We denote by ST the family of simple tautologies.

Proposition 3. The ratio of simple tautologies verifies

μn(ST) =
STn
tn
≡ 3

4
ratn, when n tends to infinity.

Moreover, asymptotically when n tends to infinity, almost all tautologies are
simple tautologies.

The latter proposition gives us for free the proof of Theorem 1. In fact, both
dualities between the two connectives and positive and negative literals trans-
form expressions computing true to expressions computing false, which implies
Pn⊃false⊇ = 3/4 · ratn. Moreover, the only expressions that are not satisfiable com-
pute the function false and Pn⊃false⊇ = 3/4 · ratn tends to 0 as n tends to infinity,
which proves Theorem 1.

5.2 Probability of a General Class of Functions

With similar arguments than those used for tautologies, it is possible to prove
that the probability of the class of projections (i.e. (xi)i∗1 ⊕≤ xj) is equivalent
to 5/8 · ratn, when n tends to +∅.

This last section is devoted to the general result, i.e. to the study of the
behaviour of Pn⊃f⊇ for all fixed f ∈ F . The main idea of this part is that, roughly
speaking, a typical tree computing a Boolean function in ⊃f⊇ is a minimal tree
of ⊃f⊇ into which a single large tree has been plugged.

Proof (sketch). Our aim is to describe the asymptotic behaviour of Pn⊃f⊇, for a
given class of Boolean functions ⊃f⊇.
– We first define several notions of expansions of a tree: the idea is to replace

in a tree, a subtree S by T ∧ S, where T is chosen such that the expanded
tree still computes the same function.

– The ratio of minimal trees of ⊃f⊇ expanded once is of the order of ratR(f)+1
n .

– The ratio of trees computing a function from ⊃f⊇ is asymptotically equal to
the ratio of minimal trees expanded once.

The most technical part of the proof is the last one, because we need a precise
upper bound of Pn⊃f⊇. But the ideas are more or less the same as those developed
for the class ⊃true⊇. ⊂↓

6 Conclusion

We focussed on the logical context of and/or connectives because of the rich-
ness of this logical system: normal forms, functional completeness. However the

Equivalence Classes of Random Boolean Trees 477

implicational logical system (e.g. [5,9]) could also be studied in this new con-
text and we deeply believe the general behaviour to be identical. Indeed, the
key idea is that each repetition induces a factor ratn, and this remains true in
all those models – although pattern theory does not adapt to every model, e.g.
models with implication. Extending our results to these models would give nice
unifications of the known results of the literature: papers [11,5,9] and [8].

The numerous results of the last decade in quantitative logics are now linked,
through this new model, to satisfiability problems. Our Catalan model of expres-
sions behaves differently than k–SAT or 2–XORSAT problems: asymptotically, al-
most all expressions are satisfiable, regardless of the ratio between the number of
variables and the size of expressions. We can thus conclude that the behaviour of a
SAT problem heavily depends on the considered subfamily of Boolean expressions.

Acknoledgements. Weare grateful toPierre Lescanne,whose remark atCLA’12
has allowed us to go beyond our initial idea and consider the more general frame-
work presented here. We also want to thank Brigitte Chauvin and Danièle Gardy
who proof-read a previous version of this paper and gave us precious advises to
improve it.

References
1. Achlioptas, D., Moore, C.: Random k-SAT: Two moments suffice to cross a sharp

threshold. SIAM Journal of Computing 36(3), 740–762 (2006)
2. Chauvin, B., Flajolet, P., Gardy, D., Gittenberger, B.: And/Or trees revisited.

Combinatorics, Probability and Computing 13(4-5), 475–497 (2004)
3. Daudé, H., Ravelomanana, V.: Random 2-XORSAT phase transition. Algorith-

mica 59(1), 48–65 (2011)
4. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge U.P. (2009)
5. Fournier, H., Gardy, D., Genitrini, A., Gittenberger, B.: The fraction of large ran-

dom trees representing a given boolean function in implicational logic. Random
Structures and Algorithms 40(3), 317–349 (2012)

6. Gardy, D.: Random Boolean expressions. In: Colloquium on Computational Logic
and Applications, vol. AF, pp. 1–36. DMTCS (2006)

7. Genitrini, A., Gittenberger, B.: No Shannon effect on probability distributions on
Boolean functions induced by random expressions. In: 21st Meeting Analysis of
Algorithms, pp. 303–316 (2010)

8. Genitrini, A., Gittenberger, B., Kraus, V., Mailler, C.: Probabilities of Boolean
functions given by random implicational formulas. Electronic Journal of Combina-
torics 19(2), P37, 20 pages (electronic) (2012)

9. Genitrini, A., Kozik, J.: In the full propositional logic, 5/8 of classical tautologies
are intuitionistically valid. Ann. of Pure and Applied Logic 163(7), 875–887 (2012)

10. Genitrini, A., Kozik, J., Zaionc, M.: Intuitionistic vs. Classical tautologies, quanti-
tative comparison. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007.
LNCS, vol. 4941, pp. 100–109. Springer, Heidelberg (2008)

11. Kozik, J.: Subcritical pattern languages for And/Or trees. In: Fifth Colloquium on
Mathematics and Computer Science. DMTCS Proceedings (2008)

12. Lefmann, H., Savický, P.: Some typical properties of large And/Or Boolean formu-
las. Random Structures and Algorithms 10, 337–351 (1997)

13. Sibuya, M.: Log-concavity of Stirling numbers and unimodality of Stirling distri-
butions. Ann. of the Institute of Statistical Mathematics 40(4), 693–714 (1988)

The Flip Diameter of Rectangulations
and Convex Subdivisions�

Eyal Ackerman1, Michelle M. Allen2, Gill Barequet3, Maarten Löffler4

Joshua Mermelstein2, Diane L. Souvaine2, and Csaba D. Tóth5

1 Dept. Math., Physics, and Comp. Sci., University of Haifa at Oranim, Tivon, Israel
ackerman@sci.haifa.ac.il

2 Department of Computer Science, Tufts University, Medford, MA, USA
{michelle.allen,joshua.mermelstein,diane.souvaine}@tufts.edu

3 Department of Computer Science, Technion, Haifa, Israel
barequet@cs.technion.ac.il

4 Department of Computing and Information Sciences, Utrecht University, The Netherlands
m.loffler@uu.nl

5 Department of Mathematics, California State Univ. Northridge, Los Angeles, CA, USA
csaba.toth@csun.edu

Abstract. We study the configuration space of rectangulations and convex sub-
divisions of n points in the plane. It is shown that a sequence of O(n log n) ele-
mentary flip and rotate operations can transform any rectangulation to any other
rectangulation on the same set of n points. This bound is the best possible for
some point sets, while Θ(n) operations are sufficient and necessary for others.
Some of our bounds generalize to convex subdivisions of n points in the plane.

1 Introduction

The study of rectangular subdivisions of rectangles is motivated by VLSI floorplan
design [25] and cartographic visualization [13,28]. The rich combinatorial structure
of rectangular floorplans has also attracted theoretical research [6,15]. Combinatorial
properties lead to efficient algorithms for the recognition and reconstruction of the rect-
angular graphs induced by the corners of the rectangles in a floorplan [19,27], the
contact graphs of the rectangles [22,35], and the contact graphs of the horizontal and
vertical line segments that separate the rectangles [10]. The number of combinatorially
different floorplans with n rectangles is known to beB(n) = Θ(8n/n4), the nth Baxter
number [36].

Rectangular subdivisions in the presence of points have also been studied in the
literature. Given a set P of points in an axis-aligned bounding box R, a rectangulation
of (R,P) is a subdivision ofR into rectangles by pairwise noncrossing axis-parallel line
segments such that every point in P lies in the relative interior of a segment (Fig. 1).

Finding a rectangulation of minimum total edge length has attracted considerable
attention [7,8,12,17,18,24,26] due to its applications in VLSI design and stock cutting

α Löffler is partially supported by the NWO (639.021.123). Allen, Mermelstein, Souvaine, and
Tóth are supported in part by the NSF (CCF-0830734).

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 478–489, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

The Flip Diameter of Rectangulations and Convex Subdivisions 479

Fig. 1. Two different rectangulations of a set of four points

in the presence of material defects. This problem is known to be NP-hard [26], however,
its complexity is unknown when the points in P are in general position in the sense
that they have distinct x- and y-coordinates, that is, the points are noncorectilinear.
It is not hard to see that in this case the minimum edge-length rectangulation must
consist of exactly n line segments [7]. For the rest of this paper, we consider only such
rectangulations.

The space of all the rectangulations of a point set P in a rectangleR can be explored
using the following two elementary operators introduced in [2] (refer to Fig. 2).

p

ca b

d

ca b

d

pp

Fig. 2. A rectangulation r1 of a set of 6 points, r2 = FLIP(r1, p), and r3 = ROTATE(r2, c)

Definition 1 (Flip). Let r be a rectangulation of P and let p ⊕ P be a point such
that the segment s that contains p does not contain any endpoints of other segments.
The operation FLIP(r, p) changes the orientation of s from vertical to horizontal or
vice-versa.

Definition 2 (Rotate). Let r be a rectangulation of P . Let s1 = ab be a segment that
contains p ⊕ P . Let s2 = cd be a segment such that c lies in ap ≤ s1 and ac does
not contain any endpoints of other segments. The operation ROTATE(r, c) shortens s1
to cb, and extends s2 beyond c until it reaches another segment or the boundary of R.

For a finite set of noncorectilinear points P , we denote by G(P) = (V,E) the graph
of rectangulations of P , where the vertex set is V = {r : r is a rectangulation of P}
and the edge set is E = {(r1, r2) : a single flip or rotate operation on r1 produces r2}.
Since both operations are reversible,G(P) is an undirected graph. It is not hard to show
that G(P) is connected [2], and there is a sequence of O(n2) flip and rotate oprerations
between any two rectangulations in G(P) when P is a set of n points in R. It is natural
to ask for the diameter of G(P), which we call for short, the flip diameter of P .

Results. In this paper, we show that the flip diameter of P is O(n logn) for every n-
element point set P (Section 2), and it is Ω(n logn) for some n-element point sets

480 E. Ackerman et al.

(Section 3). However, there are n-elements point sets with Θ(n) flip diameter (Sec-
tion 4). That is, the flip diameter is always between O(n log n) and Ω(n), depending
on the point configuration, and both bounds are the best possible.

We extend the flip and rotate operations and the notion of flip diameter to convex
subdivisions (Section 5). A convex subdivision of a setP ≤ R

2 of points is a subdivision
of the plane into convex faces by pairwise noncrossing line segments, halflines, and
lines, each of which contains exactly one point of P . We show that the flip diameter for
the convex subdivisions of n points is always O(n logn) and sometimes Θ(n).

Related Work. Determining the exact number of rectangulations on n noncorectilinear
points remains an elusive open problem in enumerative combinatorics [2,3]. Recently,
Felsner [14] proved that every combinatorial floorplan can be embedded into every set
of points, hence every set of n points has at least B(n), i.e., Ω(8n/n4) rectangulations.

The currently best known upper bound, O(18n/n4) by Ackerman [1], uses the so-
called “cross-graph” charging scheme [30,31], originally developed for counting the
number of (geometric) triangulations on n points in the plane. This method is based on
elementary “flip” operations that transform one triangulation into another. Lawson [23]
proved that every triangulation on n points in the plane can be transformed into the
Delaunay triangulation with O(n2) flips, and this bound is the best possible by a con-
struction due to Hurtado et al. [21]. However, for n points in convex position, 2n− 10
flips are sufficient, due to a bijection with binary trees with n − 2 internal nodes [32].
Hence the flip-diameter of the triangulations on n points in the plane is always between
Θ(n) and Θ(n2) depending on the point configuration. Eppstein et al. [13] and Buchin
et al. [5] define two elementary flip operations on floorplans, in terms of the directed
dual graph, and solve optimization problems on floorplans by traversing the flip graph.

2 An Upper Bound on the Flip Diameter of Rectangulations

In this section, we show that for every set P of n noncorectilinear points in a rectangle
R, the diameter of G(P) is O(n log n).

Theorem 1. For every n-element point set P , the diameter of G(P) is O(n logn).

Given a rectangulation r of P , we construct a sequence of O(n log n) operations that
transforms r into a rectangulation with all vertical segments (a canonical rectangula-
tion). Our method relies on the concept of “independent” points, defined in terms of the
bar visibility graph. Let r be a rectangulation r of P . The bar visibility graph [11,33] on
the horizontal segments of r is defined as a graph H(r), where the vertices correspond
to the horizontal segments in r; and two horizontal segments s1 and s2 are adjacent in
H(r) if and only if there are points a ⊕ s1 and b ⊕ s2 such that ab is a vertical segment
(not necessarily in r) that does not intersect any other horizontal segment in r. It is clear
that the bar visibility graph is planar.

Observe that we can always change the orientation of any line segment s with O(n)
operations: simply shorten s using rotate operations until s contains no other segment
endpoints, and then flip s. This simple procedure is formulated in the following subrou-
tine.

The Flip Diameter of Rectangulations and Convex Subdivisions 481

Shorten&Flip(r, s). Let s be a segment in a rectangulation r. Assume s =
ab and p ⊕ P is in the relative interior of s. While s contains the endpoint of
some other segment, let c1 ⊕ s and c2 ⊕ s be the endpoints of some other
segments closest to a and b, respectively (possibly c1 = c2). If p �⊕ ac1, then
apply ROTATE(r, c1) to shorten s = ab to c1b. Else, apply ROTATE(r, c2) to
shorten s to ac2. When s does not contain the endpoint of any other segment,
apply FLIP(r, p).

The proof of Theorem 1 follows from a repeated invocation of the following lemma.

Lemma 1. Let r be a rectangulation of a set of n pairwise noncorectilinear points in
a rectangle R. There is a sequence of O(n) flip and rotate operations that turns at
least one quarter of the horizontal segments into vertical segments, and keeps vertical
segments vertical.

Proof. By the four color theorem [29], H(r) has an independent set I that contains
at least one quarter of the horizontal segments in r. The total number of endpoints of
vertical segments that lie on some horizontal segment in I is O(n). Successively call
the subroutine Shorten&Flip(r, s) for all horizontal segment s ⊕ I .

The horizontal segments in I are shortened and flipped into vertical orientation. All
operations maintain the invariants that (1) the segments in I are pairwise disjoint, and
(2) the remaining horizontal segments in I form an independent set in the bar visibility
graph (of all horizontal segments in the current rectangulation). It follows that each
operation either decreases the number of horizontal segments in I (flip), or decreases the
number of segment endpoints that lie in the relative interior of a segment in I (rotate).
After O(n) operations, all segments in I become vertical. Since only the segments in I
are flipped (once each), all vertical segments in r remain vertical, as required.

Proof (of Theorem 1). Let P be a set of n pairwise noncorectilinear points in a rect-
angle R. Denote by r0 the rectangulation that consists of n vertical line segments, one
passing through each point in P .

We show that every rectangulation r1 of P can be transformed into r0 by a sequence
of O(n log n) flip and rotate operations. By Lemma 1, a sequence of O(n) operations
can decrease the number of horizontal segments by a factor of at least 4/3. After at
most logn/ log(4/3) invocations of Lemma 1, the number of horizontal segments drops
below 1, that is, all segments become vertical and we obtain r0.

3 A Lower Bound on the Flip Diameter of Rectangulations

We show that the diameter of the graph G(P) is Ω(n log n) when P is an n-element
bit-reversal point set (alternatively, Halton-Hammersley point set) [9, Section 2.2]. For
every integer k ⊗ 0, we define a point set Pk of size n = 2k with integer coordinates
lying in the squareR = [−1, n]2. For an integerm, 0 ∈ m < 2k, with binary represen-
tation m =

∑k
i=1 bi2

i−1, the bit-reversal gives y(m) =
∑k

i=1 bi2
k−i. The bit-reversal

point set of size n = 2k is Pk = {(m, y(m)) : m = 0, 1, . . . , n− 1}. By construction,
no two points in Pk are corectilinear.

482 E. Ackerman et al.

Fig. 3. The sets P2, P3, and P4. The edges connect points whose binary representations differ in
a single bit, showing that Pk is a projection of a k-dimensional hypercube. The grey rectangles
are spanned by point pairs whose binary representations differ exactly in the last coordinate.

We establish a lower bound of k2k−3 for the diameter of G(Pk) using a charging
scheme. We define k2k−1 empty rectangles (called boxes) spanned by Pk, and charge
one unit for “saturating” a box with vertical segments (as defined below). We show
that when a rectangulation with all horizontal segments is transformed into one with all
vertical segments, each box becomes saturated. We also show that each rotate (resp.,
flip) operation contributes a total of at most 2 (resp., 4) units to the saturation of various
boxes in our set. It follows that at least (k2k−1)/4 = k2k−3 = n logn/8 operations are
required to saturate all k2k−1 boxes.

Consider the point set Pk for some k ⊕ N. We say that a rectangle B ≤ [−1, n]2 is
spanned by Pk if two opposite corners of B are in Pk; and B is empty if its interior is
disjoint from Pk.

Let B be the set of closed rectangular boxes spanned by point pairs in Pk whose
corresponding binary representation (b1, . . . , bk) differ in exactly one bit. See Fig. 3 for
examples. Each point in Pk is incident to k boxes in B, since there are k bits. Every
box in B is spanned by two points of Pk , thus |B| = k · |Pk|/2 = k2k−1. Each point is
incident to k boxes of sizes 2i−1× 2k−i for i = 0, . . . , k− 1, since changing the ith bit
bi incurs an 2i−1 change in the x-coordinate and an 2k−i change in the y-coordinate.
It follows that every box in B is empty, and the boxes of the same size are pairwise
disjoint.

We now define the “saturation” of each box B ⊕ B with respect to a rectangulation
of Pk. Let B ⊕ B and let r be a rectangulation of Pk. The vertical extent of B is the
orthogonal projection of B into the y-axis. Consider the vertical segments of r clipped
in B (i.e., the segments s ∗ B for all vertical segments s in r). The saturation of B
with respect to r is the percentage of the vertical extent of B covered by projections
of vertical segments of r clipped in B. See Fig. 4 for examples. By definition, the sat-
uration of B is a real number in [0, 1]. For every B ⊕ B, we have that the saturation
of B is 0 when r is a rectangulation with all horizontal segments, and it is 1 when r

The Flip Diameter of Rectangulations and Convex Subdivisions 483

consists of all vertical segments. If we transform an all-horizontal rectangulation into
an all-vertical one by a sequence of operations, the total saturation of all k2k−1 boxes
in B increases from 0 to k2k−1. The key observation is that a single operation increases
the total saturation of all boxes in B by at most a constant.

B1

B2

B3
B4

B5
B6

B7
B8

Fig. 4. A rectangulation of P4. The saturation of box B1, . . . , B8 is 1
2

, 0, 1, 0, 1, 1, 1, and 1,
respectively.

It remains to bound the impact of a single operation on the saturation of a box in
B. Consider first an operation ROTATE(r, c) that increases the saturation of some box
B ⊕ B. A rotate operation shortens a segment s1 and extends an orthogonal segment
s2. The saturation of a box B can increase only if a vertical segment grows, so we may
assume that s1 is horizontal and s2 is vertical. Denote by s the newly inserted portion
of s2. Note that s lies in a single face of the rectangulation r. Similarly, if an operation
FLIP(r, p) increases the saturation of a box in B, then it replaces a horizontal segment
by a vertical segment passing through p. The new vertical segment lies in two adjacent
faces of r, separated by the original horizontal segment through p. We represent the
new vertical segment as the union of two collinear vertical segments s ≥ s∨ that meet at
point p. In summary, an operation ROTATE(r, c) inserts one vertical segment s that lies
in the interior of a face of r, and an operation FLIP(r, p) inserts two such segments. We
show now that if such a new vertical segment s increases the saturation of some box in
B ⊕ B, then s must lie in B.

Lemma 2. Suppose that an operation inserts a vertical segment s that lies in a face f
of the rectangulation r. If the insertion of s increases the saturation of a box B ⊕ B,
then s ≤ B.

Proof. Suppose, to the contrary, that s �≤ B. Let p, q ⊕ Pk denote the two opposite
corners of points that span B, such that p is the upper left or upper right corner of B,
and q is the opposite corner ofB. Since s increases the saturation ofB, it must intersect
B. Hence f ∗B �= ⊆. Since s �≤ B, at least one of the endpoints of s lies in the exterior
ofB. Assume, without loss of generality, that the upper endpoint of s lies outsideB, and
p is the upper left corner ofB. Then, the top side of f is strictly above the top side ofB.
Since point p cannot be in the interior of f , the left side of the face f intersects the top
side of B. Note that s and the left side of f have the same orthogonal projection on the
y-axis. Therefore, the insertion of s cannot increase the saturation of B, contradicting
our assumption. We conclude that both endpoints of s lie in B, and s ≤ B.

484 E. Ackerman et al.

Lemma 3. A rotate (resp., flip) operation increases the total saturation of all boxes in
B by at most 2 (resp., 4).

Proof. Suppose that an operation ROTATE(r, c) inserts a vertical segment s, or an opera-
tion FLIP(r, p) inserts two collinear vertical segments s≥s∨ that meet at p. By Lemma 2,
the insertion of s increases the saturation of a boxB ⊕ B of height h by |s|/h if h ⊗ |s|,
and does not affect the saturation of boxes of height h < |s|. Recall that the boxes in
B have only k different sizes, 2i−1 × 2k−i for i = 1, . . . , k, and the boxes of the
same size are pairwise disjoint. Let j ⊕ {1, 2, . . . , k} be the largest index such that
|s| ∈ 2k−j . For i = 1, . . . , j, segment s increases the saturation of at most one box of
height h = 2k−i, and the increase is at most |s|/h = |s| · 2i−k. So s increases the total
saturation of all boxes in B by at most

∑j
i=1 |s|2i−k ∈

∑j
i=1 2

i−j < 2, as required.

Theorem 2. For every n ⊕ N, there is an n-element point set P ≤ [−1, n]2 such that
the diameter of G(P) is Ω(n logn).

Proof. First assume that n = 2k for some k ⊕ N0. We have defined a set Pk of n = 2k

points and a set B of k2k−1 = n logn/2 boxes spanned by Pk . The total saturation of
all boxes in B is 0 in the rectangulation with horizontal segments, and |B| = n logn/2
in the one with all vertical segments. By Lemma 3, a single flip or rotate operation
increases the total saturation by at most 4. Therefore, at least n logn/8 operations are
required to transform the horizontal rectangulation to the vertical one, and the diameter
of G(Pk) is at least n logn/8.

If n is not a power of two, then put k = ↑log2 n⊃ and let P ≤ [−1, n]2 be the
union of Pk and n− 2k arbitrary (noncorectilinear) points in [2k, n]2. All axis-parallel
segments containing the points in P \ Pk are in the exterior of [−1, 2k]2. Therefore
k2k−3 = Ω(n logn) operations are required when all segments containing the points
in Pk ≤ P change from horizontal to vertical.

4 The Flip Diameter for Diagonal Point Sets

We say that a point set P is diagonal if all points in P lie on the graph of a strictly
increasing function (e.g., f(x) = x). In this section we show that the flip diameter is
O(n) for any n-element diagonal set.

Theorem 3. For every n ⊕ N, the diameter of G(P) is at most 12n when P is a
diagonal set of n points.

We present an outline of the proof. The detailed proof is in the full version of the paper.

Proof. (outline) Without loss of generality, we may assume that the diagonal set is
P = {pi : i = 1, . . . , n}, where pi = (i, i). Given a rectangulation r for P , we
construct a sequence of at most 6n flip and rotate operations that transforms r into a
rectangulation that consists of vertical segments.

Our algorithm consists of four phases (shown in Fig. 5): Phase 1 ensures that no
three consecutive points lie on parallel segments, by successively calling subroutine
Shorten&Flip for the middle segment of a consecutive parallel triple. Intuitively, the

The Flip Diameter of Rectangulations and Convex Subdivisions 485

r r1 r2 r3 r4

Fig. 5. A rectangulation r of a diagonal point set. The rectangulation ri, for i = 1, 2, 3, 4, is the
output of phase i of our algorithm.

middle segment is “protected” by its neighbors—the number of operations in phase 1 is
bounded by 3n. Phase 2 uses up to n rotations to produce a rectangulation that contains
a staircase, a monotone increasing path along the segments from the lower left to the
upper right corner of R that does not skip two or more consecutive points. Phase 3
extends the vertical segments of the staircase to maximal length, sweeping each side of
the staircase independently. The final phase flips the horizontal segments of the staircase
independently. The last two phases jointly use at most 2n operations, each of which
increases the total number of segment endpoints on the boundary of R.

5 Generalization to Convex Subdivisions

Given a set P of n points in the plane R
2, a convex subdivision for P is a subdivision

of the plane into convex cells by n pairwise noncrossing line segments (possibly lines
or half-lines) such that each segment contains exactly one point of P , and no three
segments have a point in common.

The flip and rotate operations can be interpreted for convex subdivisions of a point set
P , as well. The definition of the operation ROTATE(r, c) is identical to the rectilinear
version. The operation FLIP(r, p) requires more attention, since a segment may have
infinitely many possible orientations.

Definition 3 (Flip). Let r be a convex subdivision of P , let p ⊕ P be a point such that
the segment s containing p does not contain any endpoints of other segments, and let
σ ⊕ S

1 be a unit vector. The operation FLIP(r, p, σ) replaces s by a segment of direction
σ containing p.

Similarly to the graph of rectangulationsG(P), we define the graph of convex subdivi-
sions of P , Ĝ(P) = (V,E), where the vertex set is V = {r : r is a convex subdivision
of P} and the edge set isE = {(r1, r2) : a single flip or rotate operation on r1 produces
r2}. Our main result in this section is that even though Ĝ(P) is an infinite graph, its
diameter is O(n log n), where n = |V |.

Theorem 4. For set P of n points, the graph Ĝ(P) is connected and its diameter is
O(n log n).

We show that any convex subdivision can be transformed into a subdivision with
all vertical segments through a sequence of O(n logn) operations. The subroutine

486 E. Ackerman et al.

p

c

a

b

d
p

c

a

b

d
p

Fig. 6. A convex subdivision r1 of 6 points, r2 = FLIP(r1, p, σ), and r3 = ROTATE(r2, c)

Shorten&Flip(r, s) from Section 2 can be adapted almost verbatim: for a unit vector
σ ⊕ S

1, subroutine Shorten&Flip(r, s, σ) shortens segment s maximally by rotate
operations, and then flips it to direction σ.

Lemma 4. Let r be a convex subdivision of a set of n points in the plane with distinct
x-coordinates. There is a sequence of O(n) flip and rotate operations that turns at
least 1

36 fraction of the nonvertical segments vertical, and keeps all vertical segments
vertical.

Before proving Lemma 4, we need to introduce a few technical terms. Consider a con-
vex subdivision r of a set of n points with distinct x-coordinates. We say that a segment
s1 hits another segment s2 if an endpoint of s1 lies in the relative interior of s2. An ex-
tension of s1 beyond s2 hits s3 if s1 hits s2 and s1 is contained in a segment s∨1 such that
s∨1 hits s3 and s∨1 crosses at most one segment (namely s2). We define the extension visi-
bility digraph Ĥ(r) on all segments in r, where the vertices correspond to the segments
in r, and we have a directed edge (s2, s3) if s2 hits s3 or there is a segment s1 such
that an extension of s1 beyond s2 hits s3. The graph Ĥ(r) is not necessarily planar: it
is not difficult to construct a convex subdivision r of a set of

(
t
2

)
points where Ĥ(r) is

isomorphic to the complete graphKt (Fig. 7). Note that the number of edges in Ĥ(r) is
at most 4n, since each segment hits at most two other segments, but some segments ex-
tend to infinity; and the extension of each segment beyond each of its endpoints hits at
most one other segment. If P contains n points, the average degree in Ĥ(r) is less than
8. Therefore Ĥ(r) has an independent set of size at least n/9 (obtained by successively
choosing minimum-degree vertices [20,34]).

Proof (of Lemma 4). Let r be a convex subdivision of a set of n points with distinct x-
coordinates. Let I0 be an independent set in the extension visibility graph Ĥ(r) induced
by all nonvertical segments. As noted above, I0 contains at least 1/9 of the nonvertical
segments in r. Let I1 ⊇ I0 be an independent set in the bar visibility graph of the
segments in I0 (two nonvertical segments in I0 are mutually visible if there is a vertical
segment between them that does not cross any segment of the subdivision). Since the bar
visibility graph is planar, we have |I1| ⊗ |I0|/4, and so I1 contains at least 1/36 fraction
of the nonvertical segments in r. The total number of segment endpoints that lie in the
relative interior of segments in I1 is O(n). A subroutine Shorten&Flip(r, s, σ) for
each segment s ⊕ I1 changes their orientation to vertical.

The operations maintain the invariants that (1) the segments in I1 are pairwise dis-
joint, and (2) the nonvertical segments in I1 form an independent set in both Ĥ and

The Flip Diameter of Rectangulations and Convex Subdivisions 487

Fig. 7. A convex subdivision r of a set of 15 points. The five bold segments induce K5 in the
extension visibility graph Ĥ(r).

the bar visibility graph of all segments in I0. It follows now that each operation either
decreases the number of nonvertical segments in I1 (flip), or decreases the number of
segment endpoints that lie in the relative interior of a nonvertical segment in I1 (rotate).
After O(n) operations, all segments in I1 become vertical. Since only the segments in
I1 change orientation (each of them is flipped to become vertical), all vertical segments
in r remain vertical, as required.

Proof (of Theorem 4). Let P be a set of n points in a bounding box. We may assume,
by rotating the point set if necessary, that the points in P have distinct x-coordinates.
Denote by r0 the convex subdivision given by n vertical line segments, one passing
through each point in P .

Consider a convex subdivision r1 of P . By Lemma 1, O(n) operations can decrease
the number of nonhorizontal segments by a factor of at least 36/35. After at most
logn/ log(36/35) invocations of Lemma 1, the number of nonvertical segments drops
below 1, that is, all segments become vertical and we obtain r0, as claimed.

Linear Upper Bound for Collinear Points. We show that the upper bound O(n log n)
on the diameter of the flip graph Ĝ(P) from Theorem 4 can be improved to O(n) for
some simple point configurations.

Theorem 5. For every n ⊕ N, the diameter of Ĝ(P) is O(n) when P is a set of n
collinear points.

Proof. (outline) We may assume that P = {pi : i = 1, . . . , n} where pi = (i, 0).
Let r be a convex subdivision of P . No segment in r is horizontal, since each segment
contains a unique point. We show that there is a sequence of O(n) operations that
transforms r into a convex subdivision with all vertical segment. See the full paper for
further details.

6 Conclusion

We have shown that the diameter of the flip graphG(P) is betweenΩ(n) andO(n logn)
for every n-element point set P , and these bounds cannot be improved. The diameter is
Θ(n) for diagonal point sets, andΘ(n logn) for the bit reversal point set. The flip graph
G(P) of a noncorectilinear set P is uniquely determined by the permutation of the

488 E. Ackerman et al.

x- and y-coordinates of the points [2] (e.g., diagonal point sets correspond to the iden-
tity permutation). It is an open problem to find the average diameter of G(P) over all
n-element permutations. It would already be of interest to find broader families of point
sets with linear diameter: Is the diameter of G(P) linear if P is in convex position or
unimodal, or corresponds to a separable permutation (that are defined recursively [4])?

We have shown that the diameter of the flip graph is also bounded by O(n log n) for
the convex subdivisions of n points in the plane. We do not know whether this bound
is tight. It is possible that the flip diameter is Ω(n logn) for the bit reversal point set
defined in Section 3, but our proof of Theorem 2 heavily relies on axis-aligned boxes,
and does not seem to extend to convex subdivisions.

Given a convex subdivision r of a point set P , the flip and rotate operations can be
thought of as a continuous deformation: FLIP(r, p, σ) rotates the segment containing
p continuously to position σ; and ROTATE(r, c) rotates continuously a portion of the
segment containing c into the extension of the segment that currently ends at c. The
weight of an operation can be defined as the number of vertices swept during this con-
tinuous deformation. By Theorem 4, a sequence ofO(n log n) operations can transform
any convex subdivision to any other convex subdivision on n points. A single operation,
however, may haveΩ(n) weight. We conjecture that the weighted diameter of the graph
Ĝ(P) is also O(n log n) for every n-elements point set P .

Acknowledgments. Research on this paper started at the Workshop on Counting and
Enumerating of Plane Graphs at Schloss Dagstuhl. We thank Sonia Chauhan, Michael
Hoffmann, and André Schulz for insightful comments on the topics of this paper.

References

1. Ackerman, E.: Counting Problems for Geometric Structures: Rectangulations, Floorplans,
and Quasi-Planar Graphs, Ph.D. thesis, Technion—Israel Inst. of Technology (2006)

2. Ackerman, E., Barequet, G., Pinter, R.Y.: On the number of rectangulations of a planar point
set, J. Combin. Theory, Ser. A. 113(6), 1072–1091 (2006)

3. Asinowski, A., Barequet, G., Bousquet-Mélou, M., Mansour, T., Pinter, R.Y.: Orders induced
by segments in floorplans and (2-14-3,3-41-2)-avoiding permutations. Electr. J. Comb. 20(2),
P35 (2013)

4. Bose, P., Buss, J., Lubiw, A.: Pattern matching for permutations. Inf. Proc. Lett. 65, 277–283
(1998)

5. Buchin, K., Eppstein, D., Löffler, M., Nöllenburg, M., Silveira, R.I.: Adjacency-preserving
spatial treemaps. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844,
pp. 159–170. Springer, Heidelberg (2011)

6. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular
layouts and contact graphs. ACM Trans. Algorithms 4, 28 (2008)

7. Calheiros, F.C., Lucena, A., de Souza, C.C.: Optimal rectangular partitions. Networks 41(1),
51–67 (2003)

8. Cardei, M., Cheng, X., Cheng, X., Du, D.Z.: A tale on guillotine cut. In: Proc. Novel Ap-
proaches to Hard Discrete Optimization, Ontario, Canada (2001)

9. Chazelle, B.: The Discrepancy Method. Cambridge University Press (2000)
10. de Fraysseix, H., de Mendez, P.O., Pach, J.: A left-first search algorithm for planar graphs.

Discrete Comput. Geom. 13(1), 459–468 (1995)

The Flip Diameter of Rectangulations and Convex Subdivisions 489

11. Duchet, P., Hamidoune, Y., Las Vergnas, M., Meyniel, H.: Representing a planar graph by
vertical lines joining different levels. Discrete Math. 46, 319–321 (1983)

12. Du, D.Z., Pan, L.Q., Shing, M.T.: Minimum edge length guillotine rectangular partition,
Technical Report MSRI 02418-86, University of California, Berkeley, CA (1986)

13. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained
rectangular layouts. SIAM J. Comput. 41(3), 537–564 (2012)

14. Felsner, S.: Exploiting air-pressure to map floorplans on point sets. In: Wismath, S., Wolff,
A. (eds.) GD 2013. LNCS, vol. 8242, pp. 196–207. Springer, Heidelberg (2013)

15. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty
Essays in Geometric Graph Theory, pp. 213–248. Springer, New York (2013)

16. Felsner, S., Fusy, É., Noy, M., Orden, D.: Bijections for Baxter families and related objects.
J. Comb. Theory, Ser. A 118(3), 993–1020 (2011)

17. Gonzalez, T.F., Zheng, S.-Q.: Improved bounds for rectangular and guillotine partitions. J.
of Symbolic Computation 7, 591–610 (1989)

18. Gonzalez, T.F., Zheng, S.-Q.: Approximation algorithms for partitioning a rectangle with
interior points. Algorithmica 5, 11–42 (1990)

19. Hasan, M. M., Rahman, M. S., Karim, M. R.: Box-rectangular drawings of planar graphs. In:
Ghosh, S.K., Tokuyama, T. (eds.) WALCOM 2013. LNCS, vol. 7748, pp. 334–345. Springer,
Heidelberg (2013)

20. Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover, and set packing problems.
Discrete Appl. Math. 6, 243–254 (1983)

21. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput.
Geom. 22(3), 333–346 (1999)

22. Koźimiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 15, 145–157 (1985)
23. Lawson, C.: Software for c1 surface interpolation. In: Rice, J. (ed.) Mathematical Software

III, pp. 161–194. Academic Press, New York (1977)
24. Levcopoulos, C.: Fast heuristics for minimum length rectangular partitions of polygons. In:

Proc. 2nd ACM Symp. on Computational Geometry, Yorktown Heights, NY, pp. 100–108
(1986)

25. Liao, C.C., Lu, H.I., Yen, H.C.: Compact floor-planning via orderly spanning trees. J. Algo-
rithms 48, 441–451 (2003)

26. Lingas, A., Pinter, R.Y., Rivest, R.L., Shamir, A.: Minimum edge length rectilinear decom-
positions of rectilinear figures. In: Proc. 20th Allerton Conf. on Communication, Control,
and Computing, Monticello, IL, pp. 53–63 (1982)

27. Rahman, M., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. J. Algo-
rithms 50, 62–78 (2004)

28. Raisz, E.: The rectangular statistical cartogram. Geogr. Rev. 24(3), 292–296 (1934)
29. Robertson, N., Sanders, D.P., Seymour, P., Thomas, R.: The four-colour theorem. J. Combin.

Theory, Ser. B 70(1), 2–44 (1997)
30. Santos, F., Seidel, R.: A better upper bound on the number of triangulations of a planar point

set. J. Combin. Theory, Ser. A 102, 186–193 (2003)
31. Sharir, M., Welzl, E.: Random triangulations of planar point sets. In: Proc. 22nd ACM

Symp. on Comput. Geom., pp. 273–281. ACM Press (2006)
32. Sleator, D., Tarjan, R., Thurston, W.: Rotations distance, triangulations and hyperbolic ge-

ometry. J. AMS 1, 647–682 (1988)
33. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs.

Dicrete Comput. Geom. 1, 321–341 (1986)
34. Turán, P.: On an extremal problem in graph theory. Math. Fiz. Lapok 48, 436–452 (1941) (in

Hungarian)
35. Ungar, P.: On diagrams representing graphs. J. London Math. Soc. 28, 336–342 (1953)
36. Yao, B., Chen, H., Cheng, C.K., Graham, R.: Floorplan representations: Complexity and

connections. ACM Trans. on Design Automation of Electronic Systems 8, 55–80 (2003)

Weighted Staircase Tableaux,

Asymmetric Exclusion Process,
and Eulerian Type Recurrences

Paweffl Hitczenko1,Δ and Svante Janson2,ΔΔ

1 Department of Mathematics, Drexel University, Philadelphia, PA 19104
phitczenko@math.drexel.edu

2 Department of Mathematics, Uppsala University, Uppsala, Sweden
svante.janson@math.uu.se

Abstract. We consider a relatively new combinatorial structure called
staircase tableaux. They were introduced in the context of the asym-
metric exclusion process and Askey–Wilson polynomials; however, their
purely combinatorial properties have gained considerable interest in the
past few years.

We will be interested in a general model of staircase tableaux in which
symbols that appear in staircase tableaux may have arbitrary positive
weights. Under this general model we derive a number of results con-
cerning the limiting laws for the number of appearances of symbols in a
random staircase tableaux.

One advantage of our generality is that we may let the weights ap-
proach extreme values of zero or infinity, which covers further special
cases appearing earlier in the literature.

One of the main tools we use are generating functions of the parame-
ters of interests. This leads us to a two–parameter family of polynomials.
Specific values of the parameters cover a number of special cases analyzed
earlier in the literature including the classical Eulerian polynomials.

Keywords: Staircase tableau, Eulerian polynomial, Asymmetric Exclu-
sion Process.

1 Introduction

This note is concerned with a combinatorial structure introduced recently by
Corteel and Williams [8,9] and called staircase tableaux. The original motiva-
tions were in connections with the asymmetric exclusion process (ASEP) on a
one-dimensional lattice with open boundaries, an important model in statistical
mechanics. The generating function for staircase tableaux was also used to give
a combinatorial formula for the moments of the Askey–Wilson polynomials (see
[9,5] for the details). Further work includes [3], where special situations in which

α Supported in part by Simons Foundation grant no. 208766.
αα Supported in part by Knut and Alice Wallenberg Foundation.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 490–501, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Weighted Staircase Tableaux, ASEP, and Eulerian Recurrences 491

the generating function of staircase tableaux took a particularly simple form,
were considered. Furthermore, [10] deals with the analysis of various parameters
associated with appearances of the Greek letters α, β, γ, and δ in a randomly
chosen staircase tableau (see below, or e.g. [9, Section 2], for the definitions and
the meaning of these symbols). Moreover, there are natural bijections (see [9,
Appendix]) between a class of staircase tableaux (the α/β–staircase tableaux
defined below) and permutation tableaux (see e.g. [4,6,7,15] and the references
therein for more information on these objects and their connection to a ver-
sion of the ASEP) as well as to alternative tableaux [20] which, in turn, are in
one-to-one correspondence with tree-like tableaux [1].

The purpose of this extended abstract is to describe further properties of stair-
case tableaux, regarding them as interesting combinatorial objects in themselves.
We refer to the full paper [16] for more details and proofs.

We recall the definition of a staircase tableau introduced in [8,9]:

Definition 1. A staircase tableau of size n is a Young diagram of shape (n, n−
1, . . . , 2, 1) whose boxes are filled according to the following rules:

(Si) each box is either empty or contains one of the letters α, β, δ, or γ;
(Sii) no box on the diagonal is empty;
(Siii) all boxes in the same row and to the left of a β or a δ are empty;
(Siv) all boxes in the same column and above an α or a γ are empty.

An example of a staircase tableau is given in Fig. 1(a).
The set of all staircase tableaux of size n will be denoted by Sn. There are

several proofs of the fact that the number of staircase tableaux |Sn| = 4nn!, see
e.g. [5,3,10] for some of them.

2 Staircase Tableaux and ASEP

As mentioned in the introduction, staircase tableaux were introduced in [8,9]
in connection with the asymmetric exclusion process (ASEP); as a background,
we give some details here. In a discrete version, the ASEP is a Markov chain
describing a system of particles on a line with n sites 1, . . . , n; each site may
contain at most one particle. Particles jump one step to the right with probability
u and to the left with probability q, provided the move is to a site that is empty;
moreover, new particles enter site 1 with probability α and site n with probability
δ, provided these sites are empty, and particles at site 1 and n leave the system
with probabilities γ and β, respectively. See further [9], which also contains
references and information on applications and connections to other branches of
science.

Explicit expressions for the steady state probabilities of the ASEP were first
given in [11]. Corteel and Williams [9] gave an expression for the steady state
probabilities using staircase tableaux, their weight, and generating function for
them. To describe it we first fill the tableau S by labelling the empty boxes of
S with u’s and q’s as follows: first, we fill all the boxes to the left of a β with

492 P. Hitczenko and S. Janson

u’s, and all the boxes to the left of a δ with q’s. Then, we fill the remaining
boxes above an α or a δ with u’s, and the remaining boxes above a β or a γ with
q’s. When the tableau is filled, we let NΣ, NΛ , Nδ , NΘ, Nu, Nq be the numbers of
symbols α, β, γ, δ, u, q in S. We then define its weight to be

wt(S) := αNαβNβγNγδNδuNuqNq , (1)

i.e., the product of all symbols in S; this is thus a monomial of degree n(n+1)/2
in α, β, γ, δ, u and q. Figure 1(b) shows the tableau in Fig. 1(a) filled with u’s
and q’s; its weight is α5β2δ3γ3u13q10.

Further, we let Zn(α, β, γ, δ, q, u) be the total weight of all filled staircase
tableaux of size n, i.e.

Zn(α, β, γ, δ, q, u) =
∑

S∗Sn
wt(S).

Obviously, Zn is a homogeneous polynomial of degree n(n+ 1)/2.
To describe the connection to ASEP, define the type of a staircase tableau

S of size n to be a word of the same size on the alphabet {⊕, •} obtained by
reading the diagonal boxes from northeast (NE) to southwest (SW) and writing
• for each α or δ, and ⊕ for each β or γ. (Thus a type of a tableau is a possible
state for the ASEP.) Figure 1(a) shows a tableau and its type.

(a) (b)

α γ

α

β

δ

α

δ

γ

γ

δ

α

αβ
◦

◦
◦

•
•

•
◦

•
u

q

q

q

u

u

u

q

q

u

u

q

u

u

q

u

u

u

u

u

q

q qα γ

α

β

δ

α

δ

γ

γ

δ

α

αβ
◦

◦
◦

•
•

•
◦

•
Fig. 1. (a) A staircase tableau of size 8; its type is ◦ ◦ ◦ • • • ◦• (b) the same tableau
filled with u’s and q’s, its weight is α5β2γ3δ3u13q10

As Corteel and Williams [9,8] have shown that the steady state probability
that the ASEP is in state σ is

Zσ(α, β, γ, δ, q, u)

Zn(α, β, γ, δ, q, u)
,

where Zσ(α, β, γ, δ, q, u) =
∑

S of type σ

wt(S).

Weighted Staircase Tableaux, ASEP, and Eulerian Recurrences 493

3 Generating Function of the Total Weight

The generating function of the total weight of tableaux in Sn

Zn(α, β, γ, δ) := Zn(α, β, γ, δ, 1, 1) (2)

has a particularly simple form, viz., see [5,3],

Zn(α, β, γ, δ) =
n−1∏

i=0

(
α+ β + γ + δ + i(α+ γ)(β + δ)

)
. (3)

(A proof is included in [5].) In particular, the number of staircase tableaux of

size n is Zn(1, 1, 1, 1) =
∏n−1

i=0 (4 + 4i) = 4nn!.
Note that the symbols α and γ have exactly the same role in the definition

above of staircase tableaux, and so do β and δ. (This is no longer true in the
connection to the ASEP, which is the reason for using four diΘerent symbols in
the definition.) We say that a staircase tableau using only the symbols α and β
is an α/β–staircase tableau, and we let Sn ≤ Sn be the set of all α/β–staircase
tableaux of size n. We thus see that any staircase tableau can be obtained from
an α/β–staircase tableau by replacing some (or no) α by γ and some (or no)
β by δ; conversely, any staircase tableau can be reduced to an α/β–staircase
tableau by replacing every γ by α and every δ by β.

We define the generating function of the total weight of α/β–staircase tableaux
by

Zn(α, β) =
∑

S∗Sn

wt(S) = Zn(α, β, 0, 0),

and note that the relabelling argument just given implies

Zn(α, β, γ, δ) = Zn(α+ γ, β + δ).

We let xn denote the rising factorial defined by

xn = x(x + 1) . . . (x+ n− 1) = Γ (x+ n)/Γ (x),

and note that by (3),

Zn(α, β) = Zn(α, β, 0, 0) =

n−1∏

i=0

(α+ β + iαβ) = αnβn(α−1 + β−1)n (4)

= αnβnΓ (n+ α−1 + β−1)

Γ (α−1 + β−1)
. (5)

In particular, as noted in [3] and [5], the number of α/β–staircase tableaux is
Zn(1, 1) = 2n = (n+ 1)!.

494 P. Hitczenko and S. Janson

4 Main Result: Symbols on the Diagonal

Because of connections with ASEP, the diagonal of the staircase tableau is of
natural interest. Dasse–Hartaut and Hitczenko [10] studied random staircase
tableaux and in particular the symbols on the diagonal of a tableau obtained by
picking a staircase tableau in Sn uniformly at random. Our purpose here is to
consider α/β–staircase tableaux for arbitrary parameters α, β ≥ 0 and generalize
several results from [10] to this case. This generality is also useful in studying
the structure of random staircase tableaux. See items (ii) and (iii) in Section 7
below for further comments and [16] for more details.

We consider the following probability measure on the set of staircase tableaux
of size n with weights α, β.

Definition 2. Let n ≥ 1 and let α, β ⊗ [0,∈) with (α, β) ∗= (0, 0). Then Sn,Σ,Λ

is the random α/β–staircase tableau in Sn with the distribution

PΣ,Λ(Sn,Σ,Λ = S) =
wt(S)

Zn(α, β)
=
αNα(S)βNβ(S)

Zn(α, β)
, S ⊗ Sn. (6)

We also allow the parameters α =∈ or β =∈; in this case (6) is interpreted as
the limit when α≥∈ or β ≥∈, with the other parameter fixed. Similarly, we
allow α = β =∈; in this case (6) is interpreted as the limit when α = β ≥∈.
(In the case α = β = ∈, we tacitly assume n ≥ 2 or sometimes even n ≥ 3 to
avoid trivial complications.)

Remark 1. There is a symmetry (involution) S ⊆≥ S† of staircase tableaux de-
fined by reflection in the NW–SE diagonal, thus interchanging rows and columns,
together with an exchange of the symbols by α↑ β and γ ↑ δ, see further [3].
This maps Sn onto itself, and maps the random α/β–staircase tableau Sn,Σ,Λ to
Sn,Λ,Σ; the parameters α and β thus play symmetric roles.

Remark 2. We can similarly define a random staircase tableaux Sn,Σ,Λ,δ,Θ, with
four parameters α, β, γ, δ ≥ 0, by picking a staircase tableau S ⊗ Sn with proba-
bility wt(S)/Zn(α, β, γ, δ). This is the same as taking a random Sn,Σ+δ,Λ+Θ and
randomly replacing each symbol α by γ with probability γ/(α + γ), and each
β by δ with probability δ/(β + δ). Our results can thus be translated to results
for Sn,Σ,Λ,δ,Θ. In particular, the case α = β = γ = δ = 1 considered in [10] cor-
responds to picking an α/β–staircase tableau in Sn at random with probability
proportional to 2Nα+Nβ and then randomly replacing some symbols; each α is
replaced by γ with probability 1/2, and each β by δ with probability 1/2, with
all replacements independent. Note that the weight 2Nα+Nβ is the weight (1) if
we choose the parameters α = β = 2.

We are interested in the distribution of the symbols on the diagonal of Sn,Σ,Λ .
We defineA(S) andB(S) as the numbers of α and β, respectively, on the diagonal
of an α/β–staircase tableau S, and consider the random variables An,Σ,Λ :=
A(Sn,Σ,Λ) and Bn,Σ,Λ := B(Sn,Σ,Λ); note that An,Σ,Λ +Bn,Σ,Λ = n by (Sii), so it

suΩces to consider one of these. Moreover, by (1), Bn,Σ,Λ
d
= An,Λ,Σ.

Weighted Staircase Tableaux, ASEP, and Eulerian Recurrences 495

In order to describe the distribution of An,Σ,Λ we need some further notation.
Define the numbers va,b(n, k), for a, b ⊗ R, k ⊗ Z and n = 0, 1, . . ., by the
recursion

va,b(n, k) = (k+ a)va,b(n− 1, k) + (n− k + b)va,b(n− 1, k− 1), n ≥ 1, (7)

with va,b(0, 0) = 1 and va,b(0, k) = 0 for k ∗= 0 and va,b(n, k) = 0 for k < 0
and k > n, for all n ≥ 0. These numbers were defined and studied by Carlitz
and Scoville [2]. (Their notation is A(n − k, k | a, b).) We give some additional
properties below. Furthermore, define polynomials

Pn,a,b(x) :=

n∑

k=0

va,b(n, k)xk =

⊆∑

k=−⊆
va,b(n, k)xk.

Thus, P0,a,b(x) = 1.
In the case a = b = 0, we trivially have v0,0(n, k) = 0 and Pn,0,0 = 0 for all

n ≥ 1; in this case we define the substitutes, for n ≥ 2,

ṽ0,0(n, k) := v1,1(n− 2, k − 1) (8)

and

P̃n,0,0(x) :=
n∑

k=0

ṽ0,0(n, k)xk = xPn−2,1,1(x). (9)

We assume the following relation throughout the rest of this abstract: a = α−1

and b = β−1. Our main result is as follows.

Theorem 1. Let α, β ⊗ (0,∈]. If (α, β) ∗= (∈,∈), then the probability gener-
ating function gA(x) of the random variable An,Σ,Λ is given by

gA(x) := ExAn,α,β =

n∑

k=0

P(An,Σ,Λ = k)xk =
Pn,a,b(x)

Pn,a,b(1)
=
Pn,a,b(x)

(a+ b)n

=
Γ (a+ b)

Γ (n+ a+ b)
Pn,a,b(x).

Equivalently,

P(An,Σ,Λ = k) =
va,b(n, k)

Pn,a,b(1)
=
va,b(n, k)

(a+ b)n
=

Γ (a+ b)

Γ (n+ a+ b)
va,b(n, k).

In the case α = β =∈, and n ≥ 2, we have instead

gA(x) :=

n∑

k=0

P(An,Σ,Λ = k)xk =
P̃n,0,0(x)

P̃n,0,0(1)
=
P̃n,0,0(x)

(n− 1)!
,

P(An,Σ,Λ = k) =
ṽ0,0(n, k)

P̃n,0,0(1)
=
ṽ0,0(n, k)

(n− 1)!
.

This result has a number of consequences; some of them we describe below.
But first, because of their role in Theorem 1 and connections to other parts
of mathematics we briefly discuss the polynomials Pn,a,b and their coeΩcients
va,b(n, k).

496 P. Hitczenko and S. Janson

5 The Polynomials Pn,a,b

For a = 1, b = 0, the recursion (7) is the standard recursion for Eulerian numbers〈
n
k

〉
, see e.g. [14, Section 6.2], [21, §26.14], [22, A008292]; thus

v1,0(n, k) =
〈n
k

〉
.

These are often defined as the number of permutations of n elements with k
descents (or ascents). See e.g. [24, Section 1.3], where also other relations to
permutations are given. The corresponding polynomials

Pn,1,0(x) =

n∑

k=0

〈n
k

〉
xk

are known as Eulerian polynomials. We can thus see va,b(n, k) and Pn,a,b(x) as
generalizations of Eulerian numbers and polynomials.

Furthermore, the cases (a, b) = (0, 1) and (1, 1) also lead to Eulerian numbers,
with diΘerent indexing:

v0,1(n, k) = v1,0(n, n− k) =

〈
n

n− k
〉

=

〈
n

k − 1

〉
, n ≥ 1

(which is non-zero for 1 ⊃ k ⊃ n). Similarly, by (7) and induction,

v1,1(n, k) = v1,0(n+ 1, k) =

〈
n+ 1

k

〉
, n ≥ 0. (10)

Equivalently,

Pn,0,1(x) = xPn,1,0(x), Pn,1,1(x) = Pn+1,1,0(x). (11)

Similarly, by the definition (8) and (10),

ṽ0,0(n, k) =

〈
n− 1

k − 1

〉
, n ≥ 2,

and by (9) and (11),

P̃n,0,0(x) = Pn−1,0,1(x) = xPn−1,1,0(x).

As mentioned above, in the case a = b = 0 we trivially have

v0,0(n, k) = 0 and Pn,0,0(x) = 0 for all n ≥ 1.

In the case when a = 0 or b = 0 we have the following simple relations, general-
izing the results for Eulerian numbers and polynomials (11).

Weighted Staircase Tableaux, ASEP, and Eulerian Recurrences 497

Proposition 1. For all n ≥ 1,

va,0(n, k) = ava,1(n− 1, k),

v0,b(n, k) = bv1,b(n− 1, k − 1), and, equivalently,

Pn,a,0(x) = aPn−1,a,1(x),

Pn,0,b(x) = bxPn−1,1,b(x).

We collect some further properties in the following theorems.

Theorem 2. For all a, b and n ≥ 0,

Pn,a,b(1) =

n∑

k=0

va,b(n, k) = (a+ b)n =
Γ (n+ a+ b)

Γ (a+ b)
.

P ◦n,a,b(1) =
n∑

k=0

kva,b(n, k) =
n(n+ 2b− 1)

2
(a+ b)n−1

P ◦◦n,a,b(1) =

n∑

k=0

k(k − 1)va,b(n, k)

=
n(n− 1)(3n2 + (12b− 11)n+ 12b2 − 24b+ 10)

12
(a+ b)n−2.

Furthermore, we have the symmetry

va,b(n, k) = vb,a(n, n− k) (12)

and thus

Pn,a,b(x) = xnPn,b,a(1/x). (13)

Remark 3. The symmetries (12)–(13) between a and b are more evident if we
define the homogeneous two-variable polynomials

P̂n,a,b(x, y) :=

n∑

k=0

va,b(n, k)xkyn−k,

which satisfy the recursion

P̂n,a,b(x, y) =
(
bx+ ay + xy

∂

∂x
+ xy

∂

∂y
)P̂n−1,a,b(x, y), n ≥ 1

and the symmetry P̂n,a,b(x, y) = P̂n,b,a(y, x). (Note that P̂n,a,b(x, y) =

ynPn,a,b(x/y) and Pn,a,b(x) = P̂n,a,b(x, 1).)

The following theorem has important consequences for us.

Theorem 3. (i) If a, b > 0, then va,b(n, k) > 0 for 0 ⊃ k ⊃ n, and Pn,a,b(x)
is a polynomial of degree n with n simple negative roots.

498 P. Hitczenko and S. Janson

(ii) If a > b = 0, then va,b(n, k) > 0 for 0 ⊃ k < n, and Pn,a,b(x) is a polynomial
of degree n− 1 with n− 1 simple negative roots.

(iii) If a = 0 < b, then va,b(n, k) > 0 for 1 ⊃ k ⊃ n, and Pn,a,b(x) is a polynomial
of degree n with n simple roots in (−∈, 0]; one of the roots is 0, provided
n > 0.

(iv) If a = b = 0, then ṽ0,0(n, k) > 0 for 1 ⊃ k ⊃ n − 1, and P̃n,0,0(x) is a
polynomial of degree n − 1 with n − 1 simple roots in (−∈, 0]; one of the
roots is 0, provided n ≥ 2.

The proof that roots are distinct and negative uses an argument of Frobenius
[13] for the classical Eulerian polynomials and is based on the recursion

Pn,a,b(x) =
(
(n− 1 + b)x+ a

)
Pn−1,a,b(x) + x(1 − x)P ◦n−1,a,b(x), n ≥ 1

(which is easily seen to be equivalent to the recursion (7)). The proof also shows
that the roots of Pn−1,a,b and Pn,a,b are interlaced (except that 0 is a common
root when a = 0). More general results of this kind, can be found in e.g. [25]
and [18, Proposition 3.5].

Remark 4. The case a = b = 1/2 appeared in [10]. In this case, it is more
convenient to study the numbers B(n, k) := 2nv1/2,1/2(n, k) which are integers
and satisfy the recursion

B(n, k) = (2k + 1)B(n− 1, k) + (2n− 2k + 1)B(n− 1, k − 1), n ≥ 1; (14)

these are called Eulerian numbers of type B [22, A060187]. The numbers B(n, k)
seem to have been introduced by MacMahon [19] in number theory. They also
have combinatorial interpretations, for example as the number of descents in
signed permutations. The generating function (in a general symmetric case a =
b) was found by Franssens [12, Proposition 3.1] who studied numbers Bn,k(c)
(and the resulting polynomials) given by Bn,k(c) = 2nvc/2,c/2(n, k).

Furthermore, the case a + b = 1 yields polynomials Pn,a,1−a(x) generalizing
the Eulerian polynomials (the case a = 1, or a = 0); they are sometimes called
(generalized) Euler–Frobenius polynomials and appear e.g. in spline theory; we
refer to [17] for more information and references.

6 Consequences

Theorem 4. The p.g.f. gA(x) of the random variable An,Σ,Λ has only simple
roots and they are on the negative halfline (−∈, 0]. As a consequence, for any
given n, α, β there exist p1, . . . , pn ⊗ (0, 1) such that

An,Σ,Λ
d
=

∑

i

Be(pi), (15)

where Be(pi) is a Bernoulli random variable with parameter pi and the sum-
mands are independent. It follows that the distribution of An,Σ,Λ and the sequence
va,b(n, k), k ⊗ Z, are unimodal and log-concave.

Weighted Staircase Tableaux, ASEP, and Eulerian Recurrences 499

Because of the representation (15), the An,Σ,Λ will follow the central (and local)
limit theorem as long as the variance Var(An,Σ,Λ)≥∈ (see, e.g. [23]). But from
Theorem 2 we see that

EAn,Σ,Λ =
n(n+ 2b− 1)

2(n+ a+ b− 1)

and

Var(An,δ,η) = n
(n− 1)(n− 2)(n+ 4a+ 4b− 1) + 6(n− 1)(a+ b)2 + 12ab(a+ b− 1)

12(n+ a+ b− 1)2(n+ a+ b− 2)
.

Remark 5. In the symmetric case α = β we thus obtain E(An,Σ,Σ) = n/2; this

is also obvious by symmetry, since An,Σ,Σ
d
= Bn,Σ,Σ by Remark 1. Regardless of

the values of α, β we have E(An,Σ,Λ) ⊇ n/2. Thus, the eΘects of changing the
parameters α and β are surprisingly small. Typically, probability weights of the
type (1) (which are common in statistical physics) shift the distributions of the
random variables considerably, but here the eΘects are only second-order.

For the variance we similarly have

Var(An,Σ,Λ) ⊇ n

12
.

This leads to the following central limit theorem:

Theorem 5. Let α, β ⊗ (0,∈] be fixed and let n ≥ ∈. Then An,Σ,Λ is asymp-
totically normal:

An,Σ,Λ − n/2⊂
n

d≥ N(0, 1/12).

Moreover, a corresponding local limit theorem holds:

P(An,Σ,Λ = k) =

√
6

πn

(
e−6(k−n/2)

2/n + o(1)
)
,

as n≥∈, uniformly in k ⊗ Z.

Remark 6. The proof shows that the (suitably modified to take into account the
asymptotics of the expected value and the variance) central limit theorem holds
also if α and β are allowed to depend on n, provided only that Var(An,Σ,Λ)≥∈,
which by the expression for the variance holds as soon as n2/(a + b) ≥ ∈ or
nab/(a + b)2 ≥ ∈; hence this holds except when a or b is ∈ or tends to ∈
rapidly, i.e., unless α or β is 0 or tends to 0 rapidly. It should be noted, however,
the asymptotic normality may fail in extreme cases.

7 Further Remarks

(i) We concentrated here on the diagonal of a staircase tableau because of the
connections to the ASEP. We can also study the total numbers NΣ and NΛ

of symbols α and β in a random Sn,Σ,Λ. This is actually simpler; we refer to
[16] for the details. Similarly we can study the joint distribution of NΣ and
NΛ and the joint distribution of NΣ and, say, An,Σ,Λ .

500 P. Hitczenko and S. Janson

(ii) The notion of weights brings forth the possibility of studying the distribution
of the symbols in Sn,Σ,Λ. We note that when α = β =∈ (i.e. when α = β ≥
∈ in (6) then the probability measure PΣ,Λ is concentrated on the tableaux
with the maximal total degree in Zn(α, β), i.e. with the maximal number of
symbols. As α = β ≥∈ we have

Zn(α, β) ⊇ (α+ β)

n−1∏

i=1

(iαβ) = (n− 1)!
(
αnβn−1 + αn−1βn

)
.

Hence there are (n− 1)! tableaux with n α’s and n− 1 β’s, and (n− 1)! with
n−1 α’s and n β’s for the total of 2(n−1)! α/β–tableaux with the maximal
number of symbols, 2n− 1 (similarly, the corresponding number of staircase
tableaux with 2n− 1 symbols α, β, γ, δ is 22n(n− 1)!, see [3]).

(iii) It follows from the previous comment that there are only at most n − 1
symbols in the n(n− 1)/2 oΘ–diagonal boxes. So, it is natural to ask where
they are. Here is a step towards answering this question; we believe this is
the first result in this direction: for a given box of a staircase tableau we
give the probability that it contains a given symbol. Let Sn,Σ,Λ(i, j) be a
content of the (i, j)th box (enumerated as in a matrix). For the oΘ-diagonal
boxes we have

P (Sn,Σ,Λ(i, j) = α) =
j − 1 + b

(i + j + a+ b − 1)(i+ j + a+ b− 2)
,

P (Sn,Σ,Λ(i, j) = β) =
i− 1 + a

(i + j + a+ b − 1)(i+ j + a+ b− 2)
,

P (Sn,Σ,Λ(i, j) ∗= ↓) =
1

i+ j + a+ b− 1
.

For the diagonal boxes we can give a complete description of the distribution
of the symbols. To simplify the notation let Sn(j) := Sn,Σ,Λ(n+ 1− j, j) be
the symbol on the diagonal in the jth column and let 1 ⊃ j1 < . . . < jΨ ⊃ n.
Then

P
(
Sn(j1) = . . . = Sn(jΨ) = α

)
=

Ψ∏

k=1

jk − k + b

n− k + a+ b
.

References

1. Aval, J.-C., Boussicault, A., Nadeau, P.: Tree-like tableaux. In: 23rd International
Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011).
Discrete Math. Theor. Comput. Sci. Proc., AO, pp. 63–74 (2011)

2. Carlitz, L., Scoville, R.: Generalized Eulerian numbers: combinatorial applications.
J. Reine Angew. Math. 265, 110–137 (1974)

3. Corteel, S., Dasse-Hartaut, S.: Statistics on staircase tableaux, Eulerian and Maho-
nian statistics. In: 23rd International Conference on Formal Power Series and Al-
gebraic Combinatorics (FPSAC 2011), Discrete Math. Theor. Comput. Sci. Proc.,
AO, pp. 245–255 (2011)

Weighted Staircase Tableaux, ASEP, and Eulerian Recurrences 501

4. Corteel, S., Hitczenko, P.: Expected values of statistics on permutation tableaux.
In: 2007 Conference on Analysis of Algorithms, AofA 2007, Discrete Math. Theor.
Comput. Sci. Proc., AH, pp. 325–339 (2007)

5. Corteel, S., Stanley, R., Stanton, D., Williams, L.: Formulae for Askey–Wilson
moments and enumeration of staircase tableaux. Trans. Amer. Math. Soc. 364(11),
6009–6037 (2012)

6. Corteel, S., Williams, L.K.: A Markov chain on permutations which projects to the
PASEP. Int. Math. Res. Notes, Article 17:rnm055, 27pp (2007)

7. Corteel, S., Williams, L.K.: Tableaux combinatorics for the asymmetric exclusion
process. Adv. Appl. Math. 39, 293–310 (2007)

8. Corteel, S., Williams, L.K.: Staircase tableaux, the asymmetric exclusion process,
and Askey–Wilson polynomials. Proc. Natl. Acad. Sci. 107(15), 6726–6730 (2010)

9. Corteel, S., Williams, L.K.: Tableaux combinatorics for the asymmetric exclusion
process and Askey–Wilson polynomials. Duke Math. J. 159, 385–415 (2011)

10. Dasse-Hartaut, S., Hitczenko, P.: Greek letters in random staircase tableaux. Ran-
dom Struct. Algorithms 42, 73–96 (2013)

11. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asym-
metric exclusion model using a matrix formulation. J. Phys. A 26(7), 1493–1517
(1993)

12. Franssens, G.R.: On a number pyramid related to the binomial, Deleham, Eulerian,
MacMahon and Stirling number triangles. J. Integer Seq. 9(4):Article 06.4.1, 34
(2006)

13. Frobenius, G.: Über die Bernoullischen Zahlen und die Eulerschen Polynome.
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, Berlin,
pp. 809–847 (1910)

14. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn.
Addison-Wesley, Reading (1994)

15. Hitczenko, P., Janson, S.: Asymptotic normality of statistics on permutation
tableaux. Contemporary Math. 520, 83–104 (2010)

16. Hitczenko, P., Janson, S.: Weighted random staircase tableaux. To appear in Com-
bin. Probab. Comput., arxiv.org/abs/1212.5498

17. Janson, S.: Euler–Frobenius numbers and rounding. arxiv.org/abs/1305.3512
18. Liu, L.L., Wang, Y.: A unified approach to polynomial sequences with only real

zeros. Adv. Appl. Math. 38(4), 542–560 (2007)
19. MacMahon, P.A.: The divisors of numbers. Proc. London Math. Soc. Ser. 2 19(1),

305–340 (1920)
20. Nadeau, P.: The structure of alternative tableaux. J. Combin. Theory Ser. A 118(5),

1638–1660 (2011)
21. NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/
22. The On-Line Encyclopedia of Integer Sequences, http://oeis.org
23. Petrov, V.V.: Sums of Independent Random Variables. Springer, Berlin (1975)
24. Stanley, R.P.: Enumerative Combinatorics, vol. I. Cambridge Univ. Press, Cam-

bridge (1997)
25. Wang, Y., Yeh, Y.-N.: Polynomials with real zeros and Pólya frequency sequences.

J. Combin. Theory Ser. A 109(1), 63–74 (2005)

http://dlmf.nist.gov/
http://oeis.org

Counting and Generating Permutations

Using Timed LanguagesΔ,ΔΔ

Nicolas Basset

Department of Computer Science, University of Oxford, United Kingdom
basset@cs.ox.ac.uk

Abstract. The signature of a permutation σ is a word sg(σ) ⊆ {a,d}∗
whose ith letter is d when σ has a descent (i.e. σ(i) > σ(i + 1)) and is
a when σ has an ascent (i.e. σ(i) < σ(i+ 1)). Combinatorics of permu-
tations with a prescribed signature is quite well explored. Here we state
and address the two problems of counting and randomly generating in
the set sg−1(L) of permutations with signature in a given regular lan-
guage L ⊆ {a,d}∗. First we give an algorithm that computes a closed
form formula for the exponential generating function of sg−1(L). Then
we give an algorithm that generates randomly the n-length permutations
of sg−1(L) in a uniform manner, that is all the permutations of a given
length with signature in L are equally probable to be returned. Both
contributions are based on a geometric interpretation of a subclass of
regular timed languages.

Generating all the permutations with a prescribed signature (described in the
abstract) or simply counting them are two classical combinatorial topics (see [17]
and reference therein). The random generation of permutations with a prescribed
signature has been addressed very recently by Philippe Marchal [13].

A very well studied example of permutations given by their signatures are the
so-called alternating (or zig-zag, or down-up) permutations (see [16] for a sur-
vey). Their signatures belong to the language expressed by the regular expression
(da)∨(d + ε) (in other words they satisfy σ1 > σ2 < σ3 > σ4...).

To a language L ⊕ {a,d}∨, we associate the class sg−1(L) of permutations
whose signature is in L. Many classes of permutations can be expressed in that
way (e.g. alternating permutations, those with an even number of descents).

We state and address the two problems of counting and randomly generating
in sg−1(L) when the language of signatures L is regular. We propose Algorithm 1
that returns a closed form formula for the exponential generating function (EGF)
of sg−1(L). That is a formal power series

∑
an

zn

n! where the nth coefficient an
counts the permutations of length n with signature in L. With such an EGF, it is
easy to recover the number an and some estimation of the growth rate of an (see
[9] for an overview of analytic combinatorics). The random generation is done by

α This research is supported in part by ERC Advanced Grant VERIWARE and was
also supported by the ANR project EQINOCS (ANR-11-BS02-004).

αα Omitted proofs and detailed examples can be found in Chapter 8 of [4].

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 502–513, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

Counting and Generating Permutations Using Timed Languages 503

an algorithm described in Theorem 3. The regular language L together with n
the size of permutation to generate are the inputs while the outputs are n-length
random permutations with signatures in L equally probable to be returned.

Timed automata were introduced in [1] to model and verify properties of
real-time systems. Our theory is based on a geometric interpretation of timed
languages recognized by timed automata initiated in [3]. In that paper the au-
thors introduced the concept of volume and entropy of timed languages. With
these authors we defined and characterized volume generating function of timed
language in [2]. In this latter paper a link between enumerative combinatorics
and timed languages was foreseen. Here we establish such a link. The passage
from a class of permutations to a timed language is in two steps. First we as-
sociate order and chain polytopes to signatures which are particular cases of
Stanley’s poset polytopes [15]. Then we interpret the chain polytopes of a signa-
ture w as the set of delays which together with w forms a timed word of a well
chosen timed language.

Related Works. Particular regular languages of signatures are considered in [7]
under the name of consecutive descent pattern avoidance. Numerous other works
treat more general cases of (consecutive) pattern avoidance (see [8], [12]) and are
quite incomparable to our work. Indeed, certain classes of permutations avoiding
a finite set of patterns cannot be described as a language of signatures while some
classes of permutations involving regular languages cannot be described by finite
pattern avoidance (e.g. the permutations with an even number of descents).

The random sampler of timed words (Algorithm 2) is an adaptation to the
timed case of the so-called recursive method of [14] developed by [10]. It has been
improved for the particular case of generation of words in regular languages [5].

Further connections to related works are considered at the end of section 4.

1 Two Problem Statements

All along the paper we use the two letter alphabet {a,d} whose elements must
be read as “ascent” and “descent”. Words of {a,d}∨ are called signatures. For
n ≤ N, [n] denotes {1, . . . , n} and Sn the set of permutations of [n]. We use the
one line notation, for instance σ = 231 means that σ(1) = 2, σ(2) = 3, σ(3) = 1.

Let n be a positive integer. The signature of a permutation σ = σ1 · · ·σn is
the word u = u1 · · ·un−1 ≤ {a,d}n−1 denoted by sg(σ) such that for i ≤ [n],
σi < σi+1 iff ui = a (we speak of an “ascent”) and σi > σi+1 iff ui = d (we
speak of a “descent”), for instance sg(21354) = sg(32451) = daad.

This notion appears in the literature under several different names and forms
such as descent word, descent set, ribbon diagram, etc. We are interested in
sg−1(L) = {σ | sg(σ) ≤ L}: the class of permutations with signature in L ⊕
{a,d}∨. Given a language L we denote by Ln the sub-language of L restricted
to its n-length words. The exponential generating function of sg−1(L) is

FL(z) =def

∑

σ⊆sg−1(L)

z|σ|

|σ|! =
∑

n◦1
|sg−1(Ln−1)|z

n

n!
.

504 N. Basset

1 2

4 3

a

a

d

d

1 2

4 3

a

a

d

d
1, 3 2, 4

T

S

Fig. 1. From left to right: automata for Lex, Lex≥
and std(L

ex≥
)

Example 1. Consider as a running example the class of ”up-up-down-down“ per-
mutations with signature in the language1 Lex = (aadd)∨(aa + ε) recognized
by the automaton depicted in the left of Figure 1. The theory developed in the
paper permits to find the exponential generating function of sg−1(Lex):

FLex(z) =
sinh(z)− sin(z) + sin(z) cosh(z) + sinh(z) cos(z)

1 + cos(z) cosh(z)
.

Its Taylor expansion is

z +
z3

3!
+ 6

z5

5!
+ 71

z7

7!
+ 1456

z9

9!
+ 45541

z11

11!
+ 2020656

z13

13!
+

For instance, there are 1456 up-up-down-down permutations of length 9.

Now we state the two problems solved in this paper.

Problem 1. Design an algorithm which takes as input a regular language L ⊕
{a,d}∨ and returns a closed form formula for FL(z).

Problem 2. Design an algorithm which takes as input a regular language L ⊕
{a,d}∨ and n ≥ 1 and returns a random permutation σ uniformly in sg−1(Ln−1),
that is the probability for each σ ≤ sg−1(Ln−1) to be returned is 1/|sg−1(Ln−1)|.

2 A Timed and Geometric Approach

In section 2.1 we recall definition of order and chain polytopes associated to
signatures. We introduce a sequence of sets On(L) ⊕ [0, 1]n and see how the
two problems posed can be reformulated as computing the volume generating
function of this sequence and generating points uniformly in On(L). Then we
define a timed language L∼ associated to L as well as its volume sequence (section
2.2) and describe a volume preserving transformation between On(L) and L

∼
n.

2.1 Order and Chain Polytopes of Signatures

We say that a collection of polytopes (S1, · · · , Sn) is an almost disjoint partition
of a set A if it is the union of Si and they have pairwise a null volume intersection.
In this case we write S =

⊔n
i=1 Si.

1 We identify regular expressions with the regular languages they express.

Counting and Generating Permutations Using Timed Languages 505

The set {(ν1, . . . , νn) ≤ [0, 1]n | 0 ⊗ νσ−1
1
⊗ . . . ⊗ νσ−1

n
⊗ 1} is called the order

simplex 2 of σ and denoted by O(σ). For instance α = (0.3, 0.2, 0.4, 0.5, 0.1)
belongs to O(32451) since ν5 ⊗ ν2 ⊗ ν1 ⊗ ν3 ⊗ ν4 and (32451)−1 = 52134. The
set O(σ) for σ ≤ Sn forms an almost disjoint partition of [0, 1]n. By symmetry
all the order simplices of permutations have the same volume which is 1/n!.

If α is uniformly sampled in [0, 1]n then it falls in any O(σ) with probability
1/n!. To retrieve σ from α it suffices to use a sorting algorithm. We denote by
Π(α) the permutation σ returned by the sorting algorithm on α, that is such
that 0 ⊗ νσ−1

1
⊗ . . . ⊗ νσ−1

n
⊗ 1. Moreover with probability 1, α has pairwise dis-

tinct3. coordinates and one can define its signature sg(α) = u1 . . . un−1 by ui = a
if νi < νi+1 and ui = d if νi > νi+1. For instance sg(0.3, 0.2, 0.4, 0.5, 0.1) =
daad.

The order polytope O(u) [15] of a signature u ≤ {a,d}n−1 is the set of vectors
α such that for all i ⊗ n− 1, if ui = a then νi ⊗ νi+1 and νi ≥ νi+1 otherwise.
That is the topological closure of {α ≤ [0, 1]n | sg(α) = u}. It is clear that the
collection of order simplices O(σ) with all σ having the same signature u form an
almost disjoint partition of the order polytope O(u): O(u) =

⊔
σ⊆sg−1(u)O(σ),

for instance O(daa) = O(2134)∈O(3124)∈O(4123). Passing to volume we get:

Vol(O(u)) =
∑

σ⊆sg−1(u)

Vol(O(σ)) =
|sg−1(u)|

n!
. (1)

Let L be a language of signatures and n ≥ 1, then the family (O(u))u⊆Ln−1

forms an almost disjoint partition of a subset of [0, 1]n called the nth order set
of L and denoted by On(L):

On(L) =
⊔

u⊆Ln−1

O(u) =
⊔

σ⊆sg−1(Ln−1)

O(σ) = {α ≤ [0, 1]n | sg(α) ≤ Ln−1}. (2)

For volumes we get:

Vol(On(L)) =
∑

u⊆Ln−1

Vol(O(u)) =
∑

σ⊆sg−1(Ln−1)

Vol(O(σ)) =
|sg−1(Ln−1)|

n!
(3)

The chain polytope [15] of a signature u is the set C(u) of vectors t ≤ [0, 1]n such
that for all i < j ⊗ n and l ≤ {a,d}, wi · · ·wj−1 = lj−i ∗ ti + . . .+ tj ⊗ 1.

Example 2. A vector (t1, t2, t3, t4, t5) ≤ [0, 1]5 belongs to C(daad) iff t1 + t2 ⊗
1, t2 + t3 + t4 ⊗ 1, t4 + t5 ⊗ 1 iff 1 − t1 ≥ t2 ⊗ t2 + t3 ⊗ 1 − t4 ≥ t5 iff
(1− t1, t2, t2 + t3, 1− t4, t5) ≤ O(daad).

More generally, for w = ul with u ≤ {a,d}∨, l ≤ {a,d} and n = |w|, there is
a volume preserving transformation (t1, · · · , tn) ≥⊆ (ν1, · · · , νn) from the chain
polytope C(u) to the order polytope O(u) defined as follows.

2 Order simplices, order and chain polytopes of signatures defined here are particular
cases of Stanley’s order and chain polytopes of posets [15].

3 Alternatively sg(ν) =def sg(Π(ν)) (defined also when some coordinates are equal).

506 N. Basset

Let j ≤ [n] and i be the index such that wi · · ·wj−1 is a maximal ascending
or descending block, that is i is minimal such that wi · · ·wj−1 = lj−i with

l ≤ {a,d}∨. If wj = d we define νj = 1−∑j
k=i tk and νj =

∑j
k=i tk otherwise.

Proposition 1 (simple case of Theorem 2.1 of [11]). The mapping φul :
(t1, · · · , tn) ≥⊆ (ν1, · · · , νn) is a volume preserving transformation from C(u) to
O(u). It can be computed in linear time using the following recursive definition:

∣
∣
∣∣
ν1 = t1 if w1 = a
ν1 = 1− t1 if w1 = d

and for i ≥ 2:

∣
∣
∣
∣
∣∣
∣
∣

νi = νi−1 + ti if wi−1wi = aa;
νi = ti if wi−1wi = da;
νi = 1− ti if wi−1wi = ad;
νi = νi−1 − ti if wi−1wi = dd.

As a corollary of (3) and Propostion 1 the first problem can be reformulated
in geometric terms as follows.

Corollary 1. For every L ≤ {a,d}∨ the following equalities hold:

FL(z) =
∑

n◦1
Vol(On(L))zn =

∑

u⊆L
Vol(O(u))z|u|−1 =

∑

u⊆L
Vol(C(u))z|u|−1.

For the second problem, it suffices to generate uniformly a vector α ≤ On(L)
and then sort it to get a permutation σ = Π(α). As the simplices O(σ) for
σ ≤ sg−1(Ln) form an almost disjoint partition of On(L) and all these simplices
have the same volume 1/n!, they are equally probable to receive the random
vector α. Hence all σ ≤ sg−1(Ln) have the same probability to be chosen.

In fact, it is not clear how to fit the sequence of order sets (when n varies) with
the dynamics of the language L. We prefer to use a timed language for which we
can write recursive equations on volumes (inspired by [3,2]). The reduction from
the sequence of order sets to the timed language is mainly given by Proposition 1
since this latter language is a formal union of chain polytopes (Proposition 2).

2.2 Timed Semantics of a Language of Signatures:
(
L
∗
n

)
n∈N

This section is inspired by timed automata theory and designed for non experts.
We adopt a non standard4 and self-contained approach based on the notion of
clock languages introduced by [6] and used in our previous work [2].

Timed Languages, Their Volumes and Their Generating Functions. An
alphabet of timed events is the product R+×Σ where Σ is a finite alphabet. The
meaning of a timed event (ti, wi) is that ti is the time delay before the event wi.
A timed word is just a word of timed events and a timed language a set of timed
words. Adopting a geometric point of view, a timed word is a vector of delays
t = (t1, . . . , tn) ≤ R

n together with a word of events w = w1 · · ·wn ≤ Σn. That is
why we sometimes write such a timed word (t, w) instead of (t1, w1) · · · (tn, wn).
With this convention, given a timed language L

∼ ⊕ (R+ × Σ)∨, its restriction

4 We refer the reader to [1] for a standard approach of timed automata theory.

Counting and Generating Permutations Using Timed Languages 507

to n-length words L
∼
n can be seen as a formal union of sets

⊎
w⊆Σn L

∼
w × {w}

where L
∼
w = {t ≤ R

n | (t, w) ≤ L
∼} is the set of delay vectors that together with

w form a timed word of L∼. In the sequel we will only consider languages L
∼ for

which every L
∼
w is volume measurable. To such L

∼
n one can associate a sequence

of volumes and a volume generating function as follows:

Vol(L∼n) =
∑

w⊆Σn

Vol(L∼w); V GF (L∼)(z) =
∑

w⊆Σ∗
Vol(L∼w)z|w| =

∑

n⊆N
Vol(L∼n)zn

The Clock Semantics of a Signature. A clock is a non-negative real variable.
Here we only consider two clocks bounded by 1 and denoted by xa and xd. A clock
word is a tuple whose component are a starting clock vector (xa0 , x

d
0) ≤ [0, 1]2,

a timed word (t1, a1) · · · (tn, an) ≤ ([0, 1] × {a,d})∨ and an ending clock vector

(xan, x
d
n) ≤ [0, 1]2. It is denoted by (xa0 , x

d
0)

(t1,a1)···(tn,an)−−−−−−−−−−⊆ (xan, x
d
n). Two clock

words x0
w−⊆ x1 and x2

w≥−−⊆ x3 are said to be compatible if x2 = x1, in this

case their product is (x0
w−⊆ x1) · (x2

w≥−−⊆ x3) = x0
ww≥−−−⊆ x3. A clock language

is a set of clock words. The product of two clock languages L and L∼ is

L · L∼ = {c · c∼ | c ≤ L, c∼ ≤ L∼, c and c∼ compatible}. (4)

The clock language5 L(a) (resp. L(d)) of an ascent (resp. a descent) is the

set of clock words of the form (xa, xd)
(t,a)−−−⊆ (xa + t, 0) (resp. (xa, xd)

(t,d)−−−⊆
(0, xd + t)) and such that xa + t ≤ [0, 1] and xd + t ≤ [0, 1] (and by definition of
clocks and delays xa ≥ 0, xd ≥ 0, t ≥ 0). These definitions extend inductively
to all signatures: L(u1 · · ·un) = L(u1) · · · L(un) (with product (4)).

Example 3. (0, 0)
(0.7,d)(0.2,a)(0.2,a)(0.5,d)−−−−−−−−−−−−−−−−−⊆ (0, 0.5) ≤ L(daad) since

(0, 0)
(0.7,d)−−−−⊆ (0, 0.7) ≤ L(d); (0, 0.7)

(0.2,a)−−−−⊆ (0.2, 0) ≤ L(a);

(0.2, 0)
(0.2,a)−−−−⊆ (0.4, 0) ≤ L(a); (0.4, 0)

(0.5,a)−−−−⊆ (0, 0.5) ≤ L(d).

The Timed Semantics of a Language of Signatures. The timed polytope
associated to a signature w ≤ {a,d}∨ is

Pw =def {t | (0, 0)
(t,w)−−−⊆ y ≤ L(w) for some y ≤ [0, 1]2}.

For instance (0.7, 0.2, 0.2, 0.5, 0.1) ≤ Pdaada. The timed semantics of a language
of signatures L∼ is

L
∼ = {(t, w) | t ≤ Pw and w ≤ L∼} = ↑w⊆L≥Pw × {w}.

This language restricted to words of length n is L∼n = ↑w⊆L≥
n
Pw×{w}, its volume

is Vol(L∼n) =
∑

w⊆L≥ Vol(Pw).

5 A reader acquainted with timed automata would have noticed that the clock lan-
guage L(a) (resp. L(d)) corresponds to a transition of a timed automaton where the
guards xa ≤ 1 and xd ≤ 1 are satisfied and where xd (resp. xa) is reset.

508 N. Basset

The Link with Order and Chain Polytopes of Signatures. We first state
the link between timed polytopes and chain polytopes.

Proposition 2. Given a word u ≤ {a,d}∨ and l ≤ {a,d}, the timed polytope of
ul is the chain polytope of u: Pul = C(u).

Hence Proposition 1 links the timed polytope Pul = C(u) of a signature of
length n + 1 and the order polytopes O(u) of a signature of length n. We cor-
rect the mismatch of length using prolongation of languages. A language L∼ is
called a prolongation of a language L whenever the truncation of the last let-
ter w1 . . . wn ≥⊆ w1 . . . wn−1 is a bijection between L∼ and L. Every language L
has prolongations, for instance L∼ = Ll for l ≤ {a,d}. A prolongation of Lex is
Lex≥

= (aadd)∨(aad + a) recognized by the automaton depicted in the middle
of Figure 1. Proposition 1 can be extended to language of signatures as follows.

Corollary 2. Let L ⊕ {a,d}∨ and L
∼ be the timed semantics of a prolongation of

L then for all n ≤ N, the following function is a volume preserving transformation
between L

∼
n and On(L). Moreover it is computable in linear time.

φ : L
∼
n ⊆ On(L)

(t, w) ≥⊆ φw(t)
(5)

As a consequence, the two problems can be solved if we know how to compute
the VGF of a timed language L

∼ and how to generate timed vector uniformly in
L
∼
n. A characterization of the VGF of a timed language as a solution of a system

of differential equations is done in [2]. Nevertheless the equations of this article
are quite uneasy to handle and don’t give a closed form formula for the VGF. To
get simpler equations than in [2] we work with a novel class of timed languages
involving two kinds of transitions S and T.

2.3 The S-T (Timed) Language Encoding

The S-T-Encoding. We consider the finite alphabet {S, T} whose elements must
be respectively read as straight and turn. The S-T-encoding of type l ≤ {a,d}
of a word w ≤ {a,d}∨ is a word w∼ ≤ {S, T}∨ denoted by stl(w) and defined
recursively as follows: for every i ≤ [n], w∼i = S if wi = wi−1 and w∼i = T other-
wise, with the convention that w0 = l. The mapping stl is invertible and can
also be defined recursively. Indeed w = st−1l (w∼) iff for every i ≤ [n], wi = wi−1
if w∼i = S and wi ⊃= wi−1 otherwise, with convention that w0 = l. Notion of
S-T-encoding can be extended naturally to languages. For the running exam-
ple: std(Lex≥

) = (TS)∨T. We call an S-T-automaton, a deterministic finite state
automaton with transition alphabet {S, T} (see Figure 1 for an S-T-automaton
recognizing std(Lex≥

)).

Timed Semantics and S-T-Encoding. In the following we define clock and
timed languages similarly to what we have done in section 2.2. Here we need only
one clock x that remains bounded by 1. We define the clock language associated

Counting and Generating Permutations Using Timed Languages 509

to S by L(S) = {x (t,S)−−−⊆ x + t | x ≤ [0, 1], t ≤ [0, 1 − x]} and the clock language

associated to T by L(T) = {x (t,T)−−−⊆ t | x ≤ [0, 1], t ≤ [0, 1− x]}. Let L∼∼ ⊕ {S, T}∨
we denote by L∼∼(x) the timed language starting from x: L∼∼(x) = {(t, w) | ⊇y ≤
[0, 1], x

(t,w)−−−⊆ y ≤ L(w), w ≤ L∼∼}. The timed semantics of L∼∼ ⊕ {S, T}∨ is L∼∼(0).
The S-T-encodings yields a natural volume preserving transformation between

timed languages:

Proposition 3. Let L∼ ⊕ {a,d}∨, l ≤ {a,d}, L∼ be the timed semantics of L∼

and L
∼∼ be the timed semantics of stl(L

∼) then the function (t, w) ≥⊆ (t, st−1l (w))
is a volume preserving transformation from L

∼∼
n to L

∼
n.

Using notation and results of Corollary 2 and Proposition 3 we get a volume
preserving transformation from L

∼∼
n to On(L).

Theorem 1. The function (t, w) ≥⊆ φst−1
l (w)(t) is a volume preserving trans-

formation from L
∼∼
n to On(L) computable in linear time. In particular

Vol(L∼∼n) =
|sg−1(Ln−1)|

n!
for n ≥ 1 and V GF (L∼∼)(z) = FL(z).

Thus to solve Problem 1 it suffices to characterize the VGF of an S-T-automaton.

3 Solving the Two Problems

3.1 Characterization of the VGF of an S-T-Automaton

In this section we characterize precisely the VGF of the timed language recog-
nized by an S-T-automaton. This solves Problem 1.

We have defined just above timed language L∼∼(x) parametrized by an ini-
tial clock x. Given an S-T-automaton, we can also consider the intial state p
as a parameter and write Kleene like systems of equations on parametric lan-
guage Lp(x) (similarly to [2]). More precisely, let A = ({S, T}, Q, q0, F, δ) be an
S-T-automaton with states Q, initial state q0 ≤ Q, final states F ⊕ Q and transi-
tion function δ : Q×{S, T} ⊆ Q. To every state p ≤ Q we denote by Lp ⊕ {S, T}∨
the language starting from p that is recognized by Ap =def {{S, T}, Q, p, F, δ}.
Then for every p ≤ Q, we have a parametric language equation:

Lp(x) =
[↑t∈1−x(t, S)Lδ(p,S)(x + t)

]↑[↑t∈1−x(t, T)Lδ(p,T)(t)
]↑(ε if p ≤ F). (6)

We denote by fp(x, z) and Vp(z) the volume generating function of Lp(x) and
Lp respectively and are interested in Vq0 (z). As in [2], we pass from equation on
languages (6) to equation on generating functions:

fp(x, z) = z

∫ 1

x

fδ(p,S)(s, z)ds+ z

∫ 1−x

0

fδ(p,T)(t, z)dt+ (1 if p ≤ F) (7)

In matrix notation:

f (x, z) = zMS

∫ 1

x

f (s, z)ds+ zMT

∫ 1−x

0

f(t, z)dt+ F (8)

510 N. Basset

where f (x, z),
∫ 1

x
f (s, z)ds and

∫ 1−x
0

f (t, z)dt are the column vectors whose coor-

dinates are respectively the fp(x, z),
∫ 1

x fp(s, z)ds and
∫ 1−x
0 fp(t, z)dt for p ≤ Q.

The pth coordinate of the column vector F is 1 if p ≤ F and 0 otherwise. The
Q ×Q-matrices MS and MT are the adjacency matrices corresponding to letter
S and T that is for l ≤ {S, T}, Ml(p, q) = 1 if δ(p, l) = q and 0 otherwise.

The equation (8) is equivalent to the differential equation:

∂

∂x
f(x, z) = −zMSf (x, z)− zMTf (1− x, z) (9)

with boundary condition
f(1, z) = F . (10)

The equation (9) is equivalent to the following linear homogeneous system of
ordinary differential equations with constant coefficients:

∂

∂x

(
f (x, z)

f(1− x, z)

)
= z

(−MS −MT

MT MS

)(
f(x, z)

f (1− x, z)

)
(11)

whose solution is of the form
(

f (x, z)
f(1− x, z)

)
= exp

[
xz

(−MS −MT

MT MS

)](
f (0, z)
f (1, z)

)
. (12)

Taking x = 1 in (12) and using the boundary condition (10) we obtain:
(

F
V (z)

)
= exp

[
z

(−MS −MT

MT MS

)](
V (z)
F

)
(13)

where V (z) is the vector whose coordinates are Vq(z) for q ≤ Q. Hence,

F = A1(z)V (z) +A2(z)F ; V (z) = A3(z)V (z) +A4(z)F (14)

where

(
A1(z) A2(z)
A3(z) A4(z)

)
= exp

[
z

(−MS −MT

MT MS

)]
. In particular when z = 0,

A1(0) = I−A3(0) = I and thus the two continuous functions z ≥⊆ detA1(z) and
z ≥⊆ det(I − A3(z)) are positive in a neighbourhood of 0. We deduce that the
inverses of the matrices A1(z) and I−A3(z) are well defined in a neighbourhood
of 0 and thus both equations of (14) permit to express V (z) wrt. F :

V (z) = [A1(z)]−1[I −A2(z)]F ; V (z) = [I −A3(z)]−1A4(z)F (15)

To sum up, we address Problem 1 with the following theorem.

Theorem 2. Given a regular language L ⊕ {a,d}∨, one can compute the expo-
nential generating function FL(z) using Algorithm 1.

Some Comments about the Algorithm. In line 1, several choices are left to
the user: the prolongation L∼ of the language L, the type of the S-T-encoding and
the automaton that realizes the S-T-encoding. These choices should be made such
that the output automaton has a minimal number of states or more generally
such that the matrices MT and MS are the simplest possible. Exponentiation of
matrices is implemented in most of computer algebra systems.

Counting and Generating Permutations Using Timed Languages 511

Algorithm 1. Computation of the generating function

1: Compute an S-T-automaton A for an extension of L and its corresponding adjacency
matrices MT and MS;

2: Compute

(
A1(z) A2(z)
A3(z) A4(z)

)
=def exp

[
z

(−MS −MT

MT MS

)]
;

3: Compute V (z) = [A1(z)]
−1[I − A2(z)]F (or V (z) = [I −A3(z)]

−1A4(z)F);
4: return Vq0(z) the component of V (z) corresponding to the initial state of A.

3.2 An Algorithm for Problem 2

Now we can solve Problem 2 using a uniform sampler of timed words (Algorithm
2), the volume preserving transformation of Theorem 1 and a sorting algorithm.

Theorem 3. Let L ⊕ {a,d}∨ and L
∼∼ be the timed semantics of a S-T-encoding

of type l (for some l ≤ {a,d}) of a prolongation of L. The following algorithm
permits to achieve a uniform sampling of permutation in sg−1(Ln−1).

1. Choose uniformly an n-length timed word (t, w) ≤ L
∼∼
n using Algorithm 2;

2. Return Π(φst−1
l (w)(t)).

Uniform Sampling of Timed Words. Recursive formulae (16) and (17)
below are freely inspired by those of [3] and of our previous work [2]. They are
the key tools to design a uniform sampler of timed word. This algorithm is a
lifting from the discrete case of the so-called recursive method (see [5,10]). For all
q ≤ Q, n ≤ N and x ≤ [0, 1] we denote by Lq,n(x) the language Lq(x) restricted
to n-length timed words. The languages Lq,n(x) can be recursively defined as
follows: Lq,0(x) = ε if q ≤ F and Lq,0 = ⊂ otherwise;

Lq,n+1(x) =
[↑t∈1−x(t, S)Lδ(q,S),n(x+ t)

] ↑ [↑t∈1−x(t, T)Lδ(q,T),n(t)
]
. (16)

For q ≤ Q and n ≥ 0, we denote by vq,n the function x ≥⊆ Vol[Lq,n(x)] from
[0, 1] to R

+. Each vq,n is a polynomial of a degree less or equal to n that can be
computed recursively using the recurrent formula: vq,0(x) = 1q⊆F and

vq,n+1(x) =

∫ 1

x

vδ(q,S),n(y)dy +

∫ 1−x

0

vδ(q,T),n(y)dy. (17)

The polynomials vq,n(x) play a key role for the uniform sampler. They permit
also to retrieve directly the terms of the wanted VGF: Vol(L∼∼n) = vq0,n(0) where
q0 is the initial state of the S-T automaton.

Theorem 4. Algorithm 2 is a uniform sampler of timed words of L∼∼n, that is for
every volume measurable subset A ⊕ L

∼∼
n, the probability that the returned timed

word belongs to A is Vol(A)/Vol(L∼∼n).

512 N. Basset

Algorithm 2. Recursive uniform sampler of timed words

1: x0 ← 0; q0 ← initial state;
2: for k = 1 to n do
3: Compute mk = vqk−1 ,n−(k−1)(xk−1) and pS =

∫ 1

xk−1
vδ(qk−1,S),n−k(y)dy/mk;

4: b ← BERNOULLI(pS); (return 1 with probability pS and 0 otherwise)
5: if b = 1 then
6: wk ← S; qk ← δ(qk−1, S);
7: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
8: tk ← the unique solution in [0, 1−xk−1] of

1
mkpS

∫ xk−1+tk
xk−1

vqk,n−k(y)dy−r = 0;

9: xk ← xk−1 + tk;
10: else
11: wk ← T; qk ← δ(qk−1, T);
12: r ← RAND([0, 1]); (return a number uniformly sampled in [0, 1])
13: tk ← the unique solution in [0, 1−xk−1] of

1
mk(1−pS)

∫ tk
0

vqk,n−k(y)dy− r = 0;
14: xk ← tk;
15: end if
16: end for
17: return (t1, w1)(t2, w2) . . . (tn, wn)

Some Comments about the Algorithm. Algorithm 2 requires a precom-
putation of all functions vq,k for q ≤ Q and k ⊗ n. They can be computed
in polynomial time by a dynamic programming method using (17). The ex-
pressions in lines 8 and 13 are polynomial functions increasing on [x, 1] (the
derivative is the integrand which is positive on (x, 1)). Finding the root of such
a polynomial can be done numerically and efficiently with a controlled error
using a numerical scheme such as the Newton’s method. A toy implementa-
tion of Algorithm 2 as well as that sketched in Theorem 3 is available on-line
http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm.

4 Discussion, Perspectives and Related Works

We have stated and solved the problems of counting and uniform sampling of
permutations with signature in a given regular language of signatures. The timed
semantics of such a language is a particular case of regular timed languages
(i.e. recognized by timed automata [1]). However, with the approach used, timed
languages can be defined from any kind of languages of signatures. A challenging
task for us is to treat the case of context free languages. For this we should use
as in [2] volume of languages parametrized both by starting and ending states.

Our work can also benefit timed automata research. Indeed, we have proposed
a uniform sampler for a particular class of timed languages. An ongoing work is
to adapt this algorithm to all deterministic timed automata with bounded clocks
using recursive equations of [3].

There is no mention of the parameter x in Algorithm 1. It could be interesting
to find a direct explanation of this algorithm (without using parameters). In any
case, the parametric approach was crucial in the solution of the second problem.

http://www.liafa.univ-paris-diderot.fr/~nbasset/sage/sage.htm

Counting and Generating Permutations Using Timed Languages 513

Parametric approaches similar to ours are used in [7,13,17]. In particular re-
cursive equations involving integrals are also described there. Technically, these
approaches are based on order polytopes and yield integral operators of the form∫ x

0
and

∫ 1

x
while ours is based on chain polytopes and yields integral operators

∫ 1−x
0 and

∫ 1

x . The fact that these two operators are both null in x = 1 was
very useful here. The main novelty is our use of Kleene like equations for regular
timed languages and their volume functions (inspired by [2,3]) that allowed us
to address the two problems for all regular languages of signatures.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Asarin, E., Basset, N., Degorre, A., Perrin, D.: Generating functions of timed
languages. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS,
vol. 7464, pp. 124–135. Springer, Heidelberg (2012)

3. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: Ana-
lytic approach. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS,
vol. 5813, pp. 13–27. Springer, Heidelberg (2009)

4. Basset, N.: Volumetry of timed languages and applications. PhD thesis, Université
Paris-Est (2013)

5. Bernardi, O., Giménez, O.: A linear algorithm for the random sampling from reg-
ular languages. Algorithmica 62(1-2), 130–145 (2012)

6. Bouyer, P., Petit, A.: A Kleene/Büchi-like theorem for clock languages. Journal of
Automata, Languages and Combinatorics 7(2), 167–186 (2002)

7. Ehrenborg, R., Jung, J.: Descent pattern avoidance. In: Advances in Applied Math-
ematics (2012)

8. Elizalde, S., Noy, M.: Consecutive patterns in permutations. Advances in Applied
Mathematics 30(1), 110–125 (2003)

9. Flajolet, P., Sedgewick, R.: Analytic combinatorics. Camb. Univ. press (2009)
10. Flajolet, P., Zimmerman, P., Van Cutsem, B.: A calculus for the random generation

of labelled combinatorial structures. Theoretical Computer Science 132(1), 1–35
(1994)

11. Hibi, T., Li, N.: Unimodular equivalence of order and chain polytopes. arXiv
preprint arXiv:1208.4029 (2012)

12. Kitaev, S.: Patterns in permutations and words. Springer (2011)
13. Marchal, P.: Generating random permutations with a prescribed descent set. Pre-

sentation at Permutation Patterns (2013)
14. Nijenhuis, A., Wilf, H.S.: Combinatorial algorithms for computers and calculators.

In: Computer Science and Applied Mathematics, 2nd edn., p. 1. Academic Press,
New York (1978)

15. Stanley, R.P.: Two poset polytopes. Discrete & Computational Geometry 1(1),
9–23 (1986)

16. Stanley, R.P.: A survey of alternating permutations. In: Combinatorics and graphs.
Contemp. Math., vol. 531, pp. 165–196. Amer. Math. Soc., Providence (2010)

17. Szpiro, G.G.: The number of permutations with a given signature, and the expec-
tations of their elements. Discrete Mathematics 226(1), 423–430 (2001)

Semantic Word Cloud Representations:
Hardness and Approximation Algorithms

Lukas Barth1, Sara Irina Fabrikant2, Stephen G. Kobourov3,Δ, Anna Lubiw4,
Martin Nöllenburg1, Yoshio Okamoto5,ΔΔ, Sergey Pupyrev3,9,Δ, Claudio Squarcella6,

Torsten Ueckerdt7, and Alexander Wolff8,ΔΔΔ

1 Institute of Theoretical Informatics, Karlsruhe Institute of Technology
2 Department of Geography, University of Zurich

3 Department of Computer Science, University of Arizona
4 David R. Cheriton School of Computer Science, University of Waterloo

5 Dept. Comm. Engineering and Informatics, University of Electro-Communications
6 Dipartimento di Ingegneria, Roma Tre University

7 Department of Mathematics, Karlsruhe Institute of Technology
8 Lehrstuhl für Informatik I, Universität Würzburg

9 Institute of Mathematics and Computer Science, Ural Federal University

Abstract. We study a geometric representation problem, where we are given a
set B of axis-aligned rectangles (boxes) with fixed dimensions and a graph with
vertex set B. The task is to place the rectangles without overlap such that two rect-
angles touch if the graph contains an edge between them. We call this problem
CONTACT REPRESENTATION OF WORD NETWORKS (CROWN). It formalizes
the geometric problem behind drawing word clouds in which semantically re-
lated words are close to each other. Here, we represent words by rectangles and
semantic relationships by edges.

We show that CROWN is strongly NP-hard even if restricted to trees and
weakly NP-hard if restricted to stars. We also consider the optimization prob-
lem MAX-CROWN where each adjacency induces a certain profit and the task is
to maximize the sum of the profits. For this problem, we present constant-factor
approximations for several graph classes, namely stars, trees, planar graphs, and
graphs of bounded degree. Finally, we evaluate the algorithms experimentally and
show that our best method improves upon the best existing heuristic by 45%.

1 Introduction

Word clouds and tag clouds are popular ways to visualize text. They provide an appeal-
ing way to summarize the content of a webpage, a research paper, or a political speech.
Often such visualizations are used to contrast two documents; for example, word cloud
visualizations of the speeches given by the candidates in the 2008 US Presidential elec-
tions were used to draw sharp contrast between them in the popular media.

α Supported in part by NSF grants CCF-1115971 and DEB 1053573.
αα Supported by Grant-in-Aid for Scientific Research from Ministry of Education, Science and

Culture, Japan, and Japan Society for the Promotion of Science (JSPS).
ααα Supported by the ESF EuroGIGA project GraDR (DFG grant Wo 758/5-1).

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 514–525, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Semantic Word Cloud Representations: Hardness and Approximation Algorithms 515

A practical tool, Wordle [23], which is available on-line, offers high-quality design,
graphics, style and functionality, but ignores relationships between words in the input.
While some of the more recent word cloud visualization tools aim to incorporate se-
mantics in the layout, none provides any guarantees about the quality of the layout in
terms of semantics. We propose a mathematical model of the problem via a simple
edge-weighted graph. The vertices in the graph are the words in the document. The
edges in the graph correspond to semantic relatedness, with weights corresponding to
the strength of the relation. Each vertex must be drawn as an axis-aligned rectangle
(box, for short) with fixed dimensions. Usually, the dimensions will be determined by
the size of the word in a certain font, and the font size will be related to the importance
of the word. The goal is to “realize” as many edges as possible by contacts between
their corresponding rectangles; see Fig. 1.

Related Work. Hierarchically clustered document collections are often visualized with
self-organizing maps [15] and Voronoi treemaps [18]. The early word-cloud approaches
did not explicitly use semantic information, such as word relatedness, when placing the
words in the cloud. More recent approaches attempt to do so, as in ManiWordle [14]
and in parallel tag clouds [4]. The most relevant approaches rely on force-directed graph
visualization methods [5] and a seam-carving image processing method together with a
force-directed heuristic [24]. The semantics-preserving word cloud problem is related
to classic graph layout problems, where the goal is to draw graphs so that vertex labels
are readable and Euclidean distances between pairs of vertices are proportional to the
underlying graph distance between them. Typically, however, vertices are treated as
points and label overlap removal is a post-processing step [7,11].

In rectangle representations of graphs, vertices are axis-aligned rectangles with non-
intersecting interiors and edges correspond to rectangles with non-zero length common
boundary. Every graph that can be represented this way is planar and every triangle in
such a graph is a facial triangle; these two conditions are also sufficient to guarantee
a rectangle representation [22]. In a recent survey, Felsner [9] reviews many rectan-
gulation variants, including squarings. Algorithms for area-preserving rectangular car-
tograms are also related [21]. Area-universal rectangular representations where vertex
weights are represented by area have been characterized [8] and edge-universal repre-
sentations, where edge weights are represented by length of contacts have been stud-
ied [19]. Unlike cartograms, in our setting there is no inherent geography, and hence,
words can be positioned anywhere. Moreover, each word has fixed dimensions enforced
by its frequency in the input text, rather than just fixed area.

Our Contribution. The input to the problem variants we consider is a (multi)set B of
axis-aligned boxes B1, . . . , Bn with fixed positive dimensions and an edge-weighted
undirected graph G = (B, E), called the profit graph. Box Bi has an associated size
(wi, hi), wherewi and hi are its width and height. For some of our results, boxes may be
rotated by 90∨, which means exchanging wi and hi. By scaling appropriately, we may
always assume that all heights and widths are positive integers. The vertex set ofG is B.
Every edge (Bi, Bj) ⊕ E has a positive weight pij , called its profit, representing the
gain for making boxes Bi and Bj touch. A representation of B is a map that associates
with each box a position in the plane so that no two boxes overlap. A contact between

516 L. Barth et al.

DECIDABLE

LOG-SPACE
P-TIMENP-COMPLETE

P -SPACE
EXP -T IME

EXP -SPACE

R ECOGN IZABLE

NP-TIME coNP-TIME

Fig. 1. A hierarchical word cloud for complexity classes. A class is above another class when
the former contains the latter. The font size is the square root of millions of Google hits for the
corresponding word. This is an instance of the problem variant HIER-CROWN.

two boxes is a maximal line segment of positive length in the boundary of both. If two
boxes are in contact, we say that they touch. If two boxes touch and one lies above the
other, we call this a vertical contact. We define horizontal contact symmetrically. We
say that a representation realizes an edge (Bi, Bj) ⊕ E if Bi and Bj touch. Finally, we
define the total profit of a representation to be the sum of profits over all edges ofG that
the representation realizes. Our problems and results are as follows.

Contact Representation of Word Networks (CROWN) is to decide whether there ex-
ists a representation of the given boxes that realizes all edges of the profit graph. This is
equivalent to deciding whether there is a representation whose contact graph contains
the profit graph as a subgraph. If such a representation exists, we say that it realizes the
profit graph and that the given instance of CROWN is realizable.

We show that CROWN is strongly NP-hard even if restricted to trees and weakly NP-
hard if restricted to stars; see Theorem 1. We also consider two variants of the problem
that can be solved efficiently. First we present a linear-time algorithm for CROWN on so-
called irreducible triangulations; see Section 2.1. Then we turn to the problem variant
HIER-CROWN, where the profit graph is a single-source directed acyclic graph with
fixed plane embedding, and the task is to find a representation in which each edge
corresponds to a vertical contact directed upwards; see Fig. 1. We solve this variant
efficiently; see Section 2.2.
MAX-CROWN is the optimization version of CROWN where the task is to find a box
representation maximizing the total profit. We present constant-factor approximation al-
gorithms for stars, trees, and planar graphs, and a 2/≤Θ+1�-approximation for graphs
of maximum degree Θ; see Section 3. We have implemented two approximation algo-
rithms and evaluated them experimentally in comparison to three existing algorithms
(two of which are semantics-aware). Based on a dataset of 120 Wikipedia documents
our best method outperforms the best previous method by more than 45%; see Sec-
tion 5. We also consider an extremal version of the MAX-CROWN problem and show
that the complete graph Kn (n ⊗ 7) with unit profits can always be realized with total
profit 2n− 2, which is sometimes the best possible; see Section 3.2.
AREA-CROWN is as follows: Given a realizable instance of CROWN, find a repre-
sentation that realizes the profit graph and minimizes the area of the representation’s
bounding box. We show that the problem is NP-hard even if restricted to paths; see
Section 4.

Semantic Word Cloud Representations: Hardness and Approximation Algorithms 517

a3

d1 d2

vi1 vi2 vi3

a2

a1

vi4 vi5 vi6

a4

a5

vi4 vi5 vi6

b1 b2 b3b0ι0 r0 ι1 ι2 ι3r1 r2 r3

u1 u2 u3u0

c

Fig. 2. Given an instance S of 3-PARTITION, we construct a tree TS (thick red line segments)
and define boxes such that TS has a realization if and only if S is feasible

2 The CROWN Problem

In this section, we investigate the complexity of CROWN for several graph classes.

Theorem 1. CROWN is (strongly) NP-hard. The problem remains strongly NP-hard
even if restricted to trees and is weakly NP-hard if restricted to stars.

Proof. To show that CROWN on stars is weakly NP-hard, we reduce from the weakly
NP-hard problem PARTITION, which asks whether a given multiset of n positive inte-
gers a1, . . . , an that sum to B can be partitioned into two subsets, each of sum B/2.
We construct a star graph whose central vertex corresponds to a (B/2, Δ)-box (for
some 0 < Δ < mini ai). We add four leaves corresponding to (B,B)-squares and, for
i = 1, . . . , n, a leaf corresponding to an (ai, ai)-square. It is easy to verify that there is
a realization for this instance of CROWN if and only if the set can be partitioned.

To show that CROWN is (strongly) NP-hard, we reduce from 3-PARTITION: Given
a multiset S of n = 3m integers with

∑
S = mB, is there a partition of S into m

subsets S1, . . . , Sm such that
∑
Si = B for each i? It is known that 3-PARTITION is

NP-hard even if, for every s ⊕ S, we have B/4 < s < B/2, which implies that each of
the subsets S1, . . . , Sm must contain exactly three elements [12].

Given an instance S = {s1, s2, . . . , sn} of 3-PARTITION as described above, we
define a tree TS on n+ 4(m− 1) + 7 vertices as in Fig. 2 (for n = 9 and m = 3). Let
K = (m+ 1)B +m+ 1. We make a vertex c of size (K, 1/2). For each i = 1, . . . , n,
we make a vertex vi of size (si, B). Let Γ ⊕ (0, B/2). For each j = 0, . . . ,m, we make
a vertex uj of size (1, B + Γ), a vertex bj of size (1, B − Γ), and vertices ιj and rj
of size (B/2, B). Finally, we make vertices a1, . . . , a5 of size (K,K), and vertices d1
and d2 of size (B/2, B). The tree TS is as shown by the thick lines in Fig. 2: vertex c is
adjacent to all the vi’s, uj’s, a’s, and d’s; and each vertex uj is adjacent to bj , ιj , and rj .

We claim that an instance S of 3-PARTITION is feasible if and only if TS can be
realized with the given box sizes. It is easy to see that TS can be realized if S is feasible:
we simply partition vertices v1, . . . , vn into groups of three (by vertices u0, . . . , um) in
the same way as their widths s1, . . . , sn are partitioned in groups of three; see Fig. 2.

518 L. Barth et al.

For the other direction, consider any realization of TS . Let us refer to the box of some
vertex v also as v. Since c touches the five large squares a1, . . . , a5, at least three sides
of c are partially covered by some ak and at least one horizontal side of c is completely
covered by some ak. Since c has height 1/2 only, but touches all the vi’s and uj’s and d1
and d2 (each of height B > 1), all these boxes must touch c on its free horizontal side,
say, the bottom side. Furthermore, the sum of the widths of the boxes exactly matches
the width of c; so they must pack side by side in some order.

This means that the only free boundary of uj is at the bottom, and uj must make
contact there with bj , ιj , and rj . This is only possible if bj is placed directly beneath
uj , and ιj and rj make contact with the bottom corners of uj . (They need not appear to
the left and right as shown in Fig. 2.) Because the sum of the widths of the bj’s, ιj’s, and
rj’s exactly matches the width of c, they must pack side by side, and therefore the uj’s
are spaced distance B apart. There is a gap of width B/2 before the first uj and after
the last uj . These gaps are too wide for one box in v1, . . . , vn and too small for two of
them since their widths are contained in the open interval (B/4, B/2). Therefore, the
boxes d1 and d2 must occupy these gaps, and the boxes v1, . . . , vn are packed into m
groups each of width B, as required. ∈∗
In case rectangles may be rotated, both proofs still hold: the weak NP-hardness proof for
stars still works because all boxes are squares–except the central one. The strong NP-
hardness for trees also still holds, basically because the boxes a1, . . . , a5 are squares
and because all boxes (except c) are at least as high as wide (and at least as wide as c is
high), so there is no advantage to rotating any box.

Although CROWN is NP-hard in general, on some graph classes the problem can
be solved efficiently. In the remainder of this section, we investigate such a class: irre-
ducible triangulations. We also consider a restricted variant of CROWN: HIER-CROWN.

2.1 The CROWN Problem on Irreducible Triangulations

A box representation is called a rectangular dual if the union of all rectangles is again
a rectangle whose boundary is formed by exactly four rectangles. A graph G admits
a rectangular dual if and only if G is planar, internally triangulated, has a quadrangu-
lar outer face and does not contain separating triangles [2]. Such graphs are known as
irreducible triangulations. The four outer vertices of an irreducible triangulation are de-
noted by vN , vE , vS , vW in clockwise order around the outer quadrangle. An irreducible
triangulation G may have exponentially many rectangular duals. Any rectangular dual
of G, however, can be built up by placing one rectangle at a time, always keeping the
union of the placed rectangles in staircase shape.

Theorem 2. CROWN on irreducible triangulations can be solved in linear time.

Proof (sketch). The algorithm greedily builds up the box representation, similarly to
an algorithm for edge-proportional rectangular duals [19]. We define a concavity as
a point on the boundary of the so-far constructed representation, which is a bottom-
right or top-left corner of some rectangle. Start with a vertical and a horizontal ray
emerging from the same point p, as placeholders for the right side of vW and the top
side of vS , respectively. Then at each step consider a concavity, with p as the initial one.

Semantic Word Cloud Representations: Hardness and Approximation Algorithms 519

vW

vS
p

vW

vS

p

w

q

r

s
v

vW

vS

Fig. 3. Left: starting configuration with rays vS and vW . Center: representation at an intermediate
step: vertex w fits into concavity p and results in a staircase, vertex v fits into concavity s but does
not result in a staircase. Adding box w to the representation introduces a new concavity q and
allows wider boxes to be placed at r. Right: no box can be placed, so the algorithm terminates.

Since each concavity p is contained in exactly two rectangles, there exists a unique
rectangleRp that is yet to be placed and has to touch both these rectangles. If by adding
Rp we still have a staircase shape representation, then we do so. If no such rectangle
can be added, we conclude that G is not realizable; see Fig. 3. The complete proof is in
the full version [1]. ∈∗

2.2 The HIER-CROWN Problem

The HIER-CROWN problem is a restricted variant of the CROWN problem that can be
used to create word clouds with a hierarchical structure; see Fig. 1. The input is a
directed acyclic graph G with only one sink and with a plane embedding. The task
is to find a representation that hierarchically realizes G, meaning that for each directed
edge (v, u) in G the top of the box v is in contact with the bottom of the box u.

If the embedding of G is not fixed, the problem is NP-hard even for a tree, by an
easy adaptation of the proof of Theorem 1. (Remove the vertices a2, a3, a4, and orient
the remaining edges of TS upward according to the representation shown in Fig. 2.)
However, if we fix the embedding of the profit graph G, then HIER-CROWN can be
solved efficiently.

Theorem 3. HIER-CROWN can be solved in polynomial time.

Proof. Let G be the given profit graph, with vertex set B = {B1, . . . , Bn}, where Bi

has height hi and widthwi, andB1 is the unique sink. We first check that the orientation
and embedding of G are compatible, that is, that incoming edges and outgoing edges
are consecutive in the cyclic order around each vertex.

The main idea is to set up a system of linear equations for the x- and y-coordinates
of the sides of the boxes. Let variables ti and bi represent the y-coordinates of the top
and bottom ofBi respectively, and variables ιi and ri represent the x-coordinates of the
left and right of Bi, respectively. For each i = 1, . . . , n, impose the linear constraints
ti = bi + hi and ri = ιi + wi. For each directed edge (Bi, Bj), impose the constraints

520 L. Barth et al.

ti = bj, ri ⊗ ιj + 1/2, and rj ⊗ ιi + 1/2. The last two constraints force Bi and Bj to
share some x-range of positive length in which they touch. Initialize t1 = 0.

With these equations, variables ti and bi are completely determined since every
box Bi has a directed path to B1. Furthermore, the values for ti and bi can be found
using a depth-first-search of G starting from B1.

The x-coordinates are not yet determined and depend on the horizontal order of the
boxes, which can be established as follows. We scan the boxes from top to bottom, keep-
ing track of the left-to-right order of boxes intersected by a horizontal line that sweeps
from y = 0 downwards. Initially the line is at y = 0 and intersects only B1. When the
line reaches the bottom of a boxB, we replaceB in the left-to-right order by all its pre-
decessors in G, using the order given by the plane embedding. In case multiple boxes
end at the same y-coordinate, we make the update for all of them. Whenever boxes Ba

andBb appear consecutively in the left-to-right order, we impose the constraint ra ≥ ιb.
The scan can be performed in O(n log n) time using a priority queue to determine

which boxes in the current left-to-right order have maximum bi value. The resulting
system of equations has size O(n) (because the constraints correspond to edges of a
planar graph). It is straightforward to verify that the system of equations has a solution
if and only if there is a representation of the boxes that hierarchically realizes G. The
constraints define a linear program (LP) that can be solved efficiently. (A feasible solu-
tion can be found faster than with an LP, but we omit the details in this paper.) ∈∗
We can show that HIER-CROWN becomes weakly NP-complete if rectangles may be
rotated, by a simple reduction from SUBSET SUM (for details, see the full version [1]).

3 The MAX-CROWN Problem

In this section, we study approximation algorithms for MAX-CROWN and consider an
extremal variant of the problem.

3.1 Approximation Algorithms

We present approximation algorithms for MAX-CROWN restricted to certain graph
classes. Our basic building blocks are an approximation algorithm for stars and an ex-
act algorithm for cycles. Our general technique is to find a collection of disjoint stars
or cycles in a graph. We begin with stars, using a reduction to the MAXIMUM GENER-
ALIZED ASSIGNMENT PROBLEM (GAP) defined as follows: Given a set of bins with
capacity constraints and a set of items that may have different sizes and values in each
bin, pack a maximum-value subset of items into the bins. It is known that the problem
is NP-hard (KNAPSACK and BIN PACKING are special cases of GAP), and there exists
a (1− 1/e)-approximation algorithm [10]. In the remainder, we assume that there is an
Ψ-approximation algorithm for GAP, setting Ψ = 1− 1/e > 0.632.

Theorem 4. There exists an Ψ-approximation algorithm for MAX-CROWN on stars.

Proof. We can solve instances with n < 5 by brute force exactly, so let’s assume that
n ⊗ 5. Let B1 denote the box corresponding to the center of the star. Given an optimal

Semantic Word Cloud Representations: Hardness and Approximation Algorithms 521

B1

B2 B3

B4B5

Fig. 4. A solution to an instance of MAX-CROWN whose profit graph is a star with center B1

solution to MAX-CROWN, we can modify it (by sliding boxes along the sides of B1)
such that there are four boxesB2, B3, B4, B5 whose contact withB1 has length exactly
1/2. In particular, each of these boxes touches exactly one corner of B1. The problem
reduces to choosing four corner boxes and the way they touch B1, and assigning the
remaining boxes to one of the sides of B1; see Fig. 4.

Each corner of B1 can be touched in two different ways, via its incident horizontal
or vertical sides. Depending on the way the corners of B1 are touched, we create the
following instance of GAP. We introduce eight bins, one bin for each side of B1 with
appropriately adjusted sizes and one bin of size 1 for each corner. For i = 2, . . . , n,
the value of item Bi is the profit of the edge (B1, Bi). The size of Bi is wi for each
horizontal bin, hi for each vertical bin, and 1 for each corner bin. For each of the 16
ways the corners of B1 can be touched, we apply an Ψ-approximation algorithm for
GAP [10]. Hence, we obtain an Ψ-approximation for MAX-CROWN. ∈∗
In the case where rectangles may be rotated by 90∨, the MAX-CROWN problem on a
star reduces to an easier problem, the MULTIPLE KNAPSACK PROBLEM, where every
item has the same size and value no matter which bin it is placed in. This is because, for
non-corner bins, we will always attach a rectangle B to the central rectangle of the star
using the smaller dimension of B. For the corner bins, we can try all possible choices
of which box to put into which bin. There is a PTAS for MULTIPLE KNAPSACK [3].
Therefore, there is a PTAS for MAX-CROWN on stars if we may rotate rectangles.

A star forest is a disjoint union of stars. Theorem 4 applies to a star forest since we
can combine the solutions for the disjoint stars.

Theorem 5. MAX-CROWN on the class of graphs that can be partitioned in polyno-
mial time into k star forests admits an Ψ/k-approximation algorithm.

Proof. We partition the edges of the profit graph into k star forests, apply the approx-
imation algorithm of Theorem 4 to each of them, and take the best of the k solutions.
We claim that this (polynomial-time) method yields the desired approximation factor.

Consider an optimum solution, and let Wopt be its profit. By the pigeon-hole prin-
ciple, our partition of the profit graph contains a star forest F that realizes a profit of
at least Wopt/k in the optimum solution. Hence, on F , the approximation algorithm of
Theorem 4 achieves a profit of at least ΨWopt/k. ∈∗
Corollary 1. MAX-CROWN admits an Ψ/2-approximation algorithm on trees and an
Ψ/5-approximation algorithm on planar graphs.

Proof. It is easy to partition any tree into two star forests in linear time. Moreover, it is
known that every planar graph has star arboricity at most 5, that is, it can be partitioned

522 L. Barth et al.

into at most five star forests, and such a partition can be found in polynomial time [13].
The results now follow directly from Theorem 5. ∈∗
Our algorithms involve approximating a number of GAP instances, using the LP-based
algorithm of Fleischer et al. [10]. Because of this, the runtime of our approximation
algorithms is dominated by the runtime of solving linear programs.

Our star forest partition method is possibly not optimal. Nguyen et al. [17] show
how to find a star forest of an arbitrary weighted graph carrying at least half of the
profits of an optimal star forest in polynomial time. We cannot, however, guarantee
that the approximation of the optimal star forest carries a positive fraction of the total
profit in an optimal solution to MAX-CROWN. Hence, approximating MAX-CROWN for
general graphs remains an open problem. As a first step into this direction, we present
a constant-factor approximation for profit graphs with bounded maximum degree. First
we need the following lemma.

Lemma 1. Given n ⊗ 3 boxes and an n-cycle defined on them, we can find a represen-
tation realizing the n-cycle in linear time.

Proof. Let C = (B1, . . . , Bn) be the given cycle, let W be the sum of all the widths,
that is, W =

∑
i wi, and let t be the maximum index such that

∑
i∗t wi < W/2. We

place B1, . . . , Bt in this order side by side from left to right with their bottom sides
on a horizontal line h; see Fig. 5. We call this the top channel. Starting at the same
point on h, we place Bn, Bn−1, . . . , Bt+2 in this order side by side from left to right
with their top sides on h. We call this the bottom channel. Note that B1 and Bn are
in contact. It remains to place Bt+1 in contact with Bt and Bt+2. It is easy to see that
the following works: add Bt+1 to the channel of minimum width or, in case of a tie,
place Bt straddling the line h; see Fig. 5. ∈∗
Following the idea of Theorem 5, we can approximate MAX-CROWN by applying
Lemma 1 to a partition of the profit graph into sets of disjoint cycles.

Theorem 6. MAX-CROWN on the class of graphs that can be partitioned into k sets of
disjoint cycles (in polynomial time) admits a (polynomial-time) algorithm that achieves
total profit at least 1

k

∑
i⊆=j pij . In particular, there is a 1/k-approximation algorithm

for MAX-CROWN on this graph class.

Corollary 2. MAX-CROWN on graphs of maximum degree Θ admits a 2/≤Θ + 1�-
approximation.

Proof. As Peterson [20] shows, the edges of any graph of maximum degree Θ can be
covered by ⊆Θ/2↑ sets of cycles and paths, and such sets can be found in polynomial
time. The result now follows from Theorem 6. ∈∗

3.2 An Extremal MAX-CROWN Problem

In the following, we bound the maximum number of contacts that can be made when
placing n boxes. It is easy to see that for n = 2, 3, 4 any set of boxes allows 2n − 3
contacts. For larger n we have:

Semantic Word Cloud Representations: Hardness and Approximation Algorithms 523

Theorem 7. For n ⊗ 7 and any set of n boxes, the boxes can be placed in the plane to
realize 2n− 2 contacts. For some sets of boxes this is the best possible.

Proof. Let B1, . . . , Bn be any set of boxes. First we place k ⊕ {5, 6, 7} boxes to make
2(k − 1) contacts, and then place the remaining boxes to make 2 contacts each for a
total of 2(k − 1) + 2(n − k) = 2n − 2 contacts. Let B1 and B2 be the boxes with
largest height, and B3 and B4 be the boxes with largest width. Let B5 be any further
box. Place the five boxes as in Fig. 6. This realizes 8 contacts, unless one or two of
B1, B2 has the same height as B5, in which case we consider one or two further boxes
B6, B7 and represent in total 10 or 12 contacts as in Fig. 6.

Place the remaining boxes one by one as in the proof of Lemma 1 along the horizon-
tal line between B2 and B3. Then each remaining box makes two new contacts.

Next we describe a set of n boxes for which the maximum number of contacts is 2n−
2. Let Bi be a square box of side length 2i. Consider any placement of the boxes and
partition the contacts into the set of horizontal contacts and the set of vertical contacts.
From the side lengths of the boxes, it follows that neither set of contacts contains a
cycle. Thus each set of contacts has size at most n− 1 for a total of 2n− 2. ∈∗

4 The AREA-CROWN Problem

The same profit graph can often be realized by different box representations, not all
of which are equally useful or visually appealing when viewed as word clouds. In this
section we consider the AREA-CROWN problem and show that finding a “compact”
representation that fits into a small bounding box is another NP-hard problem.

The reduction is from the (strongly) NP-hard problem 2D BOX PACKING: The input
is a set R of n rectangles with width and height functions w : R ⊃ N and h : R ⊃ N,
and a box of width W and height H . All the input numbers are bounded by some
polynomial in n. The task is to pack the given rectangles into the box. The problem is
known to be NP-complete even if the box is a square, that is, if W = H [16].

The BOX PACKING problem is equivalent to AREA-CROWN when the profit graph
has no edges. Edges in the profit graph, however, impose additional constraints on the
representation, which may make AREA-CROWN easier for certain (simple) profit graph
classes. In the full version [1], we show that this is not the case.

Theorem 8. AREA-CROWN is (strongly) NP-hard even on paths.

B1 B2B3 B4 B5
B6

B7B8B9B10

B5
B1

B2

B3

B4

B5B1
B2

B3

B4

B6

B5B1 B2

B3

B4

B6

B7

Fig. 5. Example for Lemma 1:
Realizing the 10-cycle (B1, . . . , B10)

Fig. 6. Examples for Theorem 7: 8, 9, or 10 adjacencies
with 5, 6, or 7 boxes, respectively

524 L. Barth et al.

5 Experimental Results

We implemented two new methods for constructing word clouds: the STAR FOREST al-
gorithm based on extracting star forests (Corollary 1) and the CYCLE COVER algorithm
based on decomposing edges of a graph into cycle covers (Theorem 6). We compared
the two algorithms to the following existing methods: WORDLE [23], CPDWCV [5],
and SEAM CARVING [24]. Our dataset consists of 120 Wikipedia documents, each with
400 words or more. Frome these, we removed stop words (e.g., “the”) and constructed
profit graphs G50 and G100 for the 50 and 100 most frequent words, respectively. We
set profits using the so-called Latent Semantic Analysis [6] based on the co-occurrence
of these words within the same sentence. For details, see the full version [1].

We compare the percentage of realized profit in the box representations. Since STAR

FOREST handles planar profit graphs, we first extracted maximal planar subgraphs of
the profit graphs and then applied the algorithm the the planar subgraphs. The percent-
age of realized profit is presented in the table below. Our results indicate that, in terms
of the realized profit, CYCLE COVER outperforms existing approaches, realizing more
than 17% (13%) of the total profit of graphs with 50 (100) vertices, that is, 45% (55%)
more than the second best known heuristic, CPDWCV. On the other hand, existing al-
gorithms may perform better in terms of compactness, aspect ratio, and other aesthetic
criteria; we leave a deeper comparison of word cloud algorithms to the future.

Algorithm Realized Profit of G50 Realized Profit of G100

WORDLE [23] 3.4% 2.2%
CPDWCV [5] 12.2% 8.9%
SEAM CARVING [24] 7.4% 5.2%
STAR FOREST 11.4% 8.2%
CYCLE COVER 17.8% 13.8%

6 Conclusions and Future Work

We formulated the Contact Representation of Word Networks (CROWN) problem, mo-
tivated by the desire to provide theoretical guarantees for semantics-preserving word
cloud visualization. We showed that some variants of CROWN are NP-hard, gave ef-
ficient algorithms for others, and presented approximation algorithms. A natural open
problem is to find an approximation algorithm for general graphs with arbitrary profits.

Acknowledgments. This work began at Dagstuhl Seminar 12261. We thank organizers
and participants (in particular Therese Biedl), as well as Steve Chaplick and Günter
Rote.

References

1. Barth, L., Fabrikant, S.I., Kobourov, S., Lubiw, A., Nöllenburg, M., Okamoto, Y., Pupyrev,
S., Squarcella, C., Ueckerdt, T., Wolff, A.: Semantic word cloud representations: Hardness
and approximation algorithms. Arxiv report arxiv.org/abs/1311.4778 (2013)

Semantic Word Cloud Representations: Hardness and Approximation Algorithms 525

2. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular
layouts and contact graphs. ACM Trans. Algorithms 4(1) (2008)

3. Chekuri, C., Khanna, S.: A polynomial time approximation scheme for the multiple knapsack
problem. SIAM J. Comput. 35(3), 713–728 (2005)

4. Collins, C., Viégas, F.B., Wattenberg, M.: Parallel tag clouds to explore and analyze faceted
text corpora. In: Proc. IEEE Symp. Vis. Analytics Sci. Tech., pp. 91–98 (2009)

5. Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M., Qu, H.: Context-preserving dynamic word cloud
visualization. IEEE Comput. Graphics Appl. 30(6), 42–53 (2010)

6. Dumais, S.T.: Latent semantic analysis. Annu. Rev. Inform. Sci. Tech. 38(1), 188–230 (2004)
7. Dwyer, T., Marriott, K., Stuckey, P.J.: Fast node overlap removal. In: Healy, P., Nikolov, N.S.

(eds.) GD 2005. LNCS, vol. 3843, pp. 153–164. Springer, Heidelberg (2006)
8. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and constrained

rectangular layouts. SIAM J. Comput. 41(3), 537–564 (2012)
9. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty

Essays on Geometric Graph Theory, pp. 213–248. Springer, Heidelberg (2013)
10. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation algo-

rithms for maximum separable assignment problems. Math. Oper. Res. 36(3), 416–431
(2011)

11. Gansner, E.R., Hu, Y.: Efficient, proximity-preserving node overlap removal. J. Graph Algo-
rtihms Appl. 14(1), 53–74 (2010)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York (1979)

13. Hakimi, S.L., Mitchem, J., Schmeichel, E.F.: Star arboricity of graphs. Discrete Math.
149(1-3), 93–98 (1996)

14. Koh, K., Lee, B., Kim, B.H., Seo, J.: Maniwordle: Providing flexible control over Wordle.
IEEE Trans. Vis. Comput. Graph. 16(6), 1190–1197 (2010)

15. Lagus, K., Honkela, T., Kaski, S., Kohonen, T.: Self-organizing maps of document collec-
tions: A new approach to interactive exploration. In: Simoudis, E., Han, J., Fayyad, U.M.
(eds.) KDD 1996, pp. 238–243. AAAI Press (1996)

16. Leung, J.Y.T., Tam, T.W., Wong, C., Young, G.H., Chin, F.Y.: Packing squares into a square.
J. Parallel Distrib. Comput. 10(3), 271–275 (1990)

17. Nguyen, C.T., Shen, J., Hou, M., Sheng, L., Miller, W., Zhang, L.: Approximating the span-
ning star forest problem and its application to genomic sequence alignment. SIAM J. Com-
put. 38(3), 946–962 (2008)

18. Nocaj, A., Brandes, U.: Organizing search results with a reference map. IEEE Trans. Vis.
Comput. Graphics 18(12), 2546–2555 (2012)

19. Nöllenburg, M., Prutkin, R., Rutter, I.: Edge-weighted contact representations of planar
graphs. J. Graph Algorithms Appl. 17(4), 441–473 (2013)

20. Petersen, J.: Die Theorie der regulären Graphen. Acta Mathematica 15(1), 193–220 (1891)
21. Raisz, E.: The rectangular statistical cartogram. Geogr. Review 24(3), 292–296 (1934)
22. Thomassen, C.: Interval representations of planar graphs. J. Combin. Theory, Ser. B 40(1),

9–20 (1986)
23. Viégas, F.B., Wattenberg, M., Feinberg, J.: Participatory visualization with Wordle. IEEE

Trans. Vis. Comput. Graphics 15(6), 1137–1144 (2009)
24. Wu, Y., Provan, T., Wei, F., Liu, S., Ma, K.L.: Semantic-preserving word clouds by seam

carving. Comput. Graphics Forum 30(3), 741–750 (2011)

The Complexity of Homomorphisms of Signed

Graphs and Signed Constraint Satisfaction

Florent Foucaud1 and Reza Naserasr2

1 Universitat Politècnica de Catalunya, Barcelona, Spain
University of Johannesburg, Auckland Park, South Africa

PSL, Université Paris-Dauphine, LAMSADE - CNRS UMR 7243, France
florent.foucaud@gmail.com

2 CNRS, Université Paris-Sud 11, LRI - CNRS UMR 8623, Orsay, France
reza@lri.fr

Abstract. A signed graph (G,Σ) is an undirected graph G together
with an assignment of signs (positive or negative) to all its edges, where
Σ denotes the set of negative edges. Two signatures are said to be equiva-
lent if one can be obtained from the other by a sequence of resignings (i.e.
switching the sign of all edges incident to a given vertex). Extending the
notion of usual graph homomorphisms, homomorphisms of signed graphs
were introduced, and have lead to some extensions and strengthenings in
the theory of graph colorings and homomorphisms. We study the com-
plexity of deciding whether a given signed graph admits a homomorphism
to a fixed target signed graph [H,Σ], i.e. the (H,Σ)-Coloring prob-
lem. We prove a dichotomy result for the class of all (Ck, Σ)-Coloring
problems (where Ck is a cycle of length k ≥ 3): (Ck, Σ)-Coloring is
NP-complete, unless both k and the size of Σ are even. We conjecture
that this dichotomy can be extended to all signed graphs in a natural
way. We also introduce the more general concept of signed constraint
satisfaction problems and show that a dichotomy for such problems is
equivalent to the statement of the Feder-Vardi Dichotomy Conjecture.

1 Introduction

The Four Color Theorem (4CT), stating that every planar graph is 4-colorable,
is considered to be one of the central theorems in graph theory and, considering
its simple statement in the form of a map coloring theorem, attracts a wide
audience. One can reason the hidden beauty of this theorem in scientific ways
based on the following classic theorems:

Theorem 1. Deciding if a given graph is 4-colorable is NP-complete.

Theorem 2. Deciding if a given planar graph is 3-colorable is NP-complete.

The latter indicates that the class of planar graphs (though recognizable in linear
time) is a rich class of graphs, but the 4CT shows that 4-colorability for this rich
class of graphs can be easily decided (simply answer YES all the time). This is
in contrast with the former theorem.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 526–537, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

The Complexity of Homomorphisms of Signed Graphs and Signed CSPs 527

Despite being such a powerful theorem, the 4CT witnesses a special weakness.
While it is very easily decidable if a graph is 2-colorable (i.e., bipartite), the 4CT
proves no bound on the chromatic number of such a graph. A more complicated
case is when an edge of a planar graph is replaced with a large (complete)
bipartite graph. Such an operation does not change the chromatic number of the
graph, but makes it far from being planar. Attempts to strengthen the 4CT so
that it provides some bound in such cases has developed the theory of signed
graphs. Coloring of graphs with signed graphs as forbidden minors have been
studied, see for example Odd Hadwiger’s conjecture (we refer to [8] for some
recent developments), an extension of the well-known Hadwiger conjecture. Only
recently, the development of the theory of homomorphisms of signed graphs has
begun, see [10,14]. This paper is the first study of the complexity of signed graph
homomorphisms. This work is also strongly related to the celebrated Dichotomy
Conjecture of Feder and Vardi [7]. We proceed with some notation.

Given a graph G, a signature is an assignment of signs + and − to the edges
of G. It is normally denoted by the set Θ of negative edges (the others being
positive). Given a graph together with a signature, a resigning at a vertex v is to
change the sign of all edges incident to v. Two signatures Θ1 and Θ2 are said to
be equivalent if one can be obtained from the other by a sequence of resignings
— equivalently, by changing the signs at the edges of an edge-cut of G. This is
an equivalence relation on the class of all signatures of a graph. A signed graph
is defined to be a graph together with a class of equivalent signatures. It will
normally be denoted by [G,Θ] where Θ is any member of the equivalence class
of signatures. When we want to emphasize on a specific signature, say Θ1, then
we will write (G,Θ1). Note that one can easily check in polynomial time whether
two signatures are equivalent using a reduction to 2-SAT or using Theorem 4:

Proposition 3. Let G be a graph, and let Θ and Θ∗ be two signatures of S.
One can decide in polynomial time whether Θ ⊕ Θ∗.
An important notion here is the one of balance of a cycle. A cycle with even
number of negative edges is called balanced cycle and the ones with odd number
of negative edges are unbalanced cycles. The set of balanced or unbalanced cycles
of a signed graph uniquely determines the equivalent class of signatures by the
following theorem of Zaslavsky.

Theorem 4 (Zaslavsky [15]). Given two signatures Θ and Θ∗ on a graphs we
have Θ ⊕ Θ∗ if and only if the set of balanced (unbalanced) cycles are the same.

A minor of signed graph (G,Θ) is a signed graph (H,Θ∗) which is obtained from
(G,Θ) by a sequence of the following operations: i. deleting vertices or edges,
ii. contracting a positive edge (that is to identify two end vertices and delete
loops) and iii. resigning. The last operation implies that notion of minor for
(G,Θ) is the same as that of [G,Θ]. Using this notion, a strengthening of the
4CT (which corresponds to one of the first cases of Odd Hadwiger’s conjecture)
was announced by Guenin in 2005 [9]: If (G,E(G)) has no (K5, E(K5))-minor,
then G is 4-colorable. Moreover, it follows from a recent work [6] that deciding
if (G,E(G)) has a (K5, E(K5))-minor is polynomial-time solvable.

528 F. Foucaud and R. Naserasr

A classic way of extending the theory of graph colorings is through graph ho-
momorphisms. The extension to signed graphs, introduced in [10] is given below.
Given two signed graphs [G,Θ] and [H,Θ1] we say there is a homomorphism of
[G,Θ] to [H,Θ1], and write [G,Θ] ≤ [H,Θ1], if there is a mapping ι of V (G)
to V (H) such that i. ι preserves the adjacency (i.e., xy ∈ E(G) ⊗ ι(x)ι(y) ∈
E(H), and ii. with respect to some choice of signature Θ∗ ⊕ Θ, ι also pre-
serves the signs. Since the existence of a homomorphism does not depend on the
signature of the target graph, we may write it as homomorphism to (H,Θ1).

By considering signed graphs where all edges are of the same sign, we observe
that graph homomorphisms are a special case of signed graph homomorphisms.
From a complexity point of view, the following is then the first natural question
to ask in the theory of signed graph homomorphisms.

(H,Θ1)-Coloring
INSTANCE: A signed graph [G,Θ].
QUESTION: Does [G,Θ]≤ (H,Θ1)?

The celebrated dichotomy result by Hell and Nešetřil [11] states that for any
(non-signed) graph H , H-Coloring is polynomial-time if H is bipartite (in
which case it becomes equivalent to checking 2-colorability), and NP-complete
otherwise. As an extension of this result, we believe that there is a also dichotomy
in the signed case, i.e., that for any given (H,Θ1), either (H,Θ1)-Coloring is
polynomial-time solvable, or it is NP-complete. In fact, we believe that the prob-
lem is NP-complete unless H is bipartite and (H,Θ1) has no unbalanced cycle
(in which case Θ1 ⊕ ∈ and thus the problem becomes again equivalent to check-
ing 2-colorability). As we mentioned earlier, when Θ ⊕ ∈ or when Θ ⊕ E(G), the
problem is reduced to simple graph homomorphisms and the dichotomy holds.

We point out that the ability of resigning gives the signed homomorphism
problem a different flavor than classical homomorphism problems. When we
do not allow resigning, we would get the concept of two-edge-colored graph
homomorphisms [2], whose complexity was studied in [3]. Already for two-edge-
colored cycles, a complexity classification is difficult to obtain, but the problem
is significantly different; for example, the case of a 4-cycle with three blue edges
and one red edge is polynomial-time solvable, see [5]. This is in contrast with
the signed graph case, as we will see in Section 2.

Our Results and Structure of the Paper. We begin by proving a dichotomy
for the set of (Ck, Θ)-Coloring problems in Section 2, where Ck denotes a
cycle on k vertices. In Section 3, we discuss the case where the target is a signed
bipartite graph. Indeed it is known that this case already captures all usual
graph homomorphism problems, making it a good candidate for an interesting
subclass to study. We also give a few more examples of signed graphs for which
the corresponding homomorphism problem is NP-complete. In Section 4, we
define a natural extension of signed graph homomorphisms to signed relational
structures. We then prove that a complexity dichotomy for the class of signed

The Complexity of Homomorphisms of Signed Graphs and Signed CSPs 529

constraint satisfaction problems exists if and only if Feder-Vardi’s celebrated
dichotomy conjecture holds. The paper is concluded in Section 5.

2 Mapping to Signed Cycles

In this section, we determine the complexity of (H,Θ)-Coloring when H is
a fixed cycle on k vertices, Ck. Observe that there are only two signed graphs
based on a cycle Ck: a balanced cycle, denoted BCk and which is equivalent to
(Ck, ∈), and the unbalanced cycle, denoted UCk, which is equivalent to (Ck, {e})
where e is any edge of Ck. Furthermore, for odd values of k, the unbalanced cycle
UCk is also equivalent to (Ck, E(Ck)). Thus for odd values of k, mapping signed
graphs to BCk or UCk is equivalent to mapping graphs to the odd cycle Ck,
hence by Hell-Nešetřil’s theorem [11] it is an NP-complete problem. For BCk

with even values of k, the problem is equivalent to 2-coloring of graphs, thus it
is polynomial-time solvable. The case that remains to study is UCk with even
values of k. In this section, we prove that this is an NP-hard problem (even if
the underlying graph of the input signed graph is of maximum degree 6).

Theorem 5. UC2k-Coloring is NP-complete for any k ∗ 2, even when re-
stricted to signed (bipartite) graphs of maximum degree 6.

To prove Theorem 5, we give a reduction from Monotone Not-All-Equal-
3SAT,1 which is NP-complete [13]:

Monotone Not-All-Equal-3SAT
INSTANCE: A set C of monotone size-3-clauses from a setX of boolean variables.
QUESTION: Is there a boolean assignment of the variables of X such that each
clause contains at least one false and one true variable?

The main idea of our proof is that it uses the resigning of specific vertices as
indication for the truth assignment of the corresponding variables.

Proof. Without loss of generality, when mapping to UC2k, we assume V (UC2k) =
{1, . . . , 2k} and UC2k has only edge {12} in its signature (see Figure 1).

1 2

32k

UC2k

...

-

Fig. 1. The target graph UC2k

Given a formula F = {C1, . . . , Cm} over variable set X , we construct the
signed graph (GF , ΘF) as follows. For each clause C = {x1, x2, x3} of F we

1 Monotone: there are no negated variables.

530 F. Foucaud and R. Naserasr

construct a clause gadget (GC , ΘC): GC has a central vertex, c; it contains three
edge-disjoint copies U1, U2, U3 of UC2k, meeting at vertex c only. For each copy
Ui, the unique vertex that is at distance k of c is denoted xi, and corresponds to
variable xi in clause C. For each xi, we have a distinct path Pi of length k − 1
whose first end is identified with xi, its other end being denoted yi. Finally, let
U4 be a new cycle as follows: if k = 2, U4 is a copy of UC6. Otherwise, U4 is a
copy of UC2k. We place U4 such that it goes through y1, y2 and y3 in such a way
that the distances on U4 between each pair of vertices yi, yj are even, and two of
them are equal to

⌊
2k
6

⌋
(i.e., the three distances are {2Δ, 2Δ, 2Δ} if U4 has length

6Δ, {2Δ, 2Δ, 2Δ+ 2} if U4 has length 6Δ + 2, and {2Δ, 2Δ, 2Δ+ 4} if U4 has length
6Δ+ 4). Finally, we assign the following signature ΘC to GC : U1, U2, U3 contain
exactly one negative edge each (this edge being incident to c); each path Pi has
exactly one negative edge (the one incident to yi), and there is another negative
edge incident to yi (the one of U4 that lies on the path from yi to y(i mod 3)+1).
For k = 2, the gadget is depicted in Figure 2; otherwise, see Figure 3(a).

Now, to build (GF , ΘF), we consider all clause gadgets corresponding to dis-
tinct clauses and identify all vertices of type c with each other. Vertices repre-
senting the same variable are identified with each other as well. ΘF is the union
of all signatures ΘC .

-

-

-
-

-

-
c

x1

x3 x2

y1

y2y3

U4

U1

U3 U2

-

-

-

Fig. 2. Clause gadget for UC4

We now show that (GF , ΘF) maps to UC2k if and only F is satisfiable. In
the first part of the proof, no restriction on the maximum degree is shown; we
explain afterward how to prove that part of the claim.

For the first part, assume that F is satisfiable. We give a mapping f from
(GF , ΘF) to UC2k with the corresponding signature Θ with ΘF ⊕ Θ.

Consider a truth assignment A of F . We resign each vertex xi of (GF , ΘF)
such that the corresponding variable xi is true in A, and do not resign the vertices
corresponding to a false variable. We also do not resign vertex c. Now, since A is
a satisfying truth assignment, either one or two variables are true in each clause.
One can see that in any clause, it is possible to resign the remaining vertices as
to obtain (up to symmetry) the signature with exactly four negative edges: one

The Complexity of Homomorphisms of Signed Graphs and Signed CSPs 531

c

x1

x3 x2

U4

P1

P3 P2

-

-
-

-
- -

U1

U3 U2

y1

y2
y3

-

--

(a) Gadget for UC2k, k ≥ 3

c

-

-
- -

(b) Good signature for GC

Fig. 3. Clause gadget GC for larger cycles

in each cycle Ui (1 ≥ i ≥ 3) being incident to c, and one in U4 incident to some
yj (1 ≥ j ≥ 3), see Figure 3(b). Let Θ be the union of all these clause gadget
signatures, and let us now construct the mapping f .

We map vertex c to vertex 1 in UC2k, and each vertex xi is mapped to vertex
k + 1. Observe that in Θ and in each clause gadget, exactly one vertex among
y1, y2, y3 has an incident negative edge. Without loss of generality, we assume it
to be y1, the other cases follow by symmetry.

If k = 2, we map y1 to vertex 2, whereas y2, y3 are both mapped to vertex 4.
It is now easy to extend the mapping.

If k ∗ 3, we map y1 to vertex 2 (the k vertices x1, . . . , y1 of path P1 are
mapped to k + 1, k, . . . , 2). Let Δ = ⊆2k/6↑. We now distinguish two cases.

On the one hand, if vertices y1, y2 and y3 are pairwise at distance 2Δ on the
cycle U4 (i.e. U4 has length 2k = 6Δ), we map vertex y2 to vertex 2Δ + 2, and
vertex y3 to vertex 4Δ+ 2. Note that the parity of the length of each Pi (k − 1)
is the same as the parity of the distance d between vertices k + 1 and 2Δ+ 2 or
4Δ+ 2 in UC2k, with d < k. It is now easy to complete the mapping.

On the other hand, if y1 is at distance 2Δ + 2 of say y2, 2k = 6Δ + 2 and y1
is at distance 2Δ of y3 (respectively, 2k = 6Δ + 4 and y1 is at distance 2Δ + 4 of
y2), we map y2 to vertex 2Δ+ 4 and y3 to vertex 4Δ+ 4 (resp. 2Δ+ 6 and 4Δ+ 6).
Again it is now easy to complete the mapping.

For the other part, suppose that (GF , ΘF) maps to UC2k. Let f be the map-
ping, and Θ the signature that corresponds to f . Without loss of generality, we
can assume that vertex c of GF maps to vertex 1 of UC2k (if not, since C2k is
vertex-transitive, it is easily seen that we could resign (GF , Θ) in an appropriate
manner so that this would hold for some other signature).

We claim that when obtaining Θ from ΘF , for each clause C = {x1, x2, x3},
either one or two of the vertices x1, x2, x3 of GC have to be resigned. In this case,
setting to TRUE each variable xi such that the corresponding vertex xi has been
resigned, and to FALSE otherwise, would yield a truth assignment satisfying F .

532 F. Foucaud and R. Naserasr

Observe first that the three cycles starting at vertex c are unbalanced and of
length 2k. Hence, they have to map to UC2k in a surjective way, and each vertex
xi maps to vertex k + 1 of UC2k. Hence, the path joining vertex xi to vertex yi
has to map to a path of UC2k having only positive edges, because the distance
between xi and yi is exactly k− 1. Therefore, vertex xi is resigned if and only if
vertex yi is not resigned. Indeed, if yi is not resigned, the edge incident to yi on
the path from yi to xi remains negative. Since each edge of this path maps to a
positive edge, all vertices of the path, including xi, must be resigned. The other
side follows from the same argument applied to the other end of the path.

We now claim that either one or two of the vertices y1, y2, y3 of GC have to
be resigned, which will complete the proof of this part.

If k = 2, y1, y2 and y3 lie on an unbalanced 6-cycle which hence has to map
to UC4 in a surjective way. The only way that this is possible is to map a path
of length 3 of the 6-cycle to an edge of UC4. Assume, by contradiction, that all
three vertices y1, y2, y3 have been resigned. Then, no matter how the resigning is
done on the other three vertices, it is not possible to proceed to the mapping of
any such path of length 3 to an edge, since the three edges of this path should all
have the same sign. The case where none of them is resigned follows by symmetry
because the resulting signatures on the 6-cycle are symmetric.

Now, if k ∗ 3, U4 has to map in a surjective way to UC2k, and in the final
signature Θ, exactly one of its edges must be negative. Assume that either
none, or all three vertices y1, y2, y3 have been resigned. Then the signature along
U4 does not change (up to symmetry): each of the paths y1, . . . , y2, y2, . . . , y3,
y1, . . . , y3 contains exactly one negative edge. But now, any resigning of the
remaining vertices will lead to at least one negative edge on each of these three
paths, a contradiction.

It now remains to prove how to restrict the maximum degree of our construc-
tion. Observe that in the above reduction, the reason for having a high maximum
degree is that we identify all vertices of type c and all vertices xi with each other.
Instead of doing so, we can use a replicator gadget of length Δ, consisting of a
sequence of i unbalanced 2k-cycles V1, . . . , Vi, where each cycle Vi has vertex set
{v1i , . . . , v2ki } and an edge between two consecutive vertices on this cyclic order.
Each edge {v1i , v2i } is negative. Moreover, for each 1 ≥ i ≥ Δ − 1, Vi and Vi+1

share their edge {1, 2k} when i is odd, and the edge {k, k + 1} otherwise. An
illustration is given in Figure 4.

Now, observe that in order to map a replicator gadget of length Δ to UC2k with
the signature of Figure 1, for each fixed j (1 ≥ j ≥ 2k), all vertices vji , 1 ≥ i ≥ Δ
have to be identified with each other. Moreover, it can be easily checked that
either all vertices of the gadget have to be resigned, or none. Now, consider the
construction of GF described in the first part of the proof. Let xi ∈ X , and let
Δi be the number of occurrence of variable xi in F . Instead of identifying all
vertices xi with each other, we take a copy Ri of the replicator gadget of length
2Δi. Now, for the j’th clause C containing xi, we identify vertex xi of GC with
vertex vk+1

2j−1 of Ri, as indicated in Figure 1. Moreover, we take an additional copy
Rc of the replicator gadget of length 6|F |, where |F | is the number of clauses in

The Complexity of Homomorphisms of Signed Graphs and Signed CSPs 533

Fig. 4. Replicator gadget

F . For each clause Cj , we split vertex c of GCj into three non-adjacent vertices
c1, c2, c3, each one being part of one of the cycles U1, U2, U3, and we identify
vertex ci (1 ≥ i ≥ 3) with vertex v12(j+i−1). Observe that the created graph

has maximum degree 6 (vertices xi possibly having six neighbours: three in the
clause gadget, and three in the replicator gadget).

By the properties of the replicator gadget, in a mapping from GF to UC2k, all
vertices ci will be mapped to vertex 1 of UC2k, and vertices xi, to vertex k + 1,
as in the original construction. Moreover, every vertex xi is resigned if and only
if every other vertex xi is resigned, and the same holds for all vertices of type c.
Hence the same proof as earlier applies. ⊃⊇

3 Further Cases and Signed Bipartite Graphs

There are two special classes of signed graphs: signed graphs where, in some
representation of signature, all edges are negative and signed bipartite graphs.
These two are exactly the class of signed graphs in which all balanced cycles
are even and all unbalanced cycles have a same parity. A homomorphism prob-
lem to a signed graph of former type is simply a graph homomorphism problem
as all edges must be negative and then resigning does not play a role. In con-
trast, for the latter family, normally it is the choice of right signature that is the
most difficult. However this case this case is already more difficult than graph
homomorphism and graph coloring problems. It is shown in [14] that the con-
cept of homomorphisms of signed bipartite graphs captures both the notion of
homomorphisms of graphs and the concept of the chromatic number using the
following construction. These theorems are stated based on the following con-
struction of signed graphs from graphs: given a graph G, the signed bipartite
graph S(G) is obtained by replacing each edge uv of G by an unbalanced 4-cycle
on four vertices uxuvvyuv, where xuv and yuv are new and distinct vertices. The
following two theorems are then proved.

Theorem 6 (Naserasr, Rollová, Sopena [14]). For any graph G, Γ(G) ≥ k
if and only if S(G)≤ (Kk,k,M), where M is a perfect matching of Kk,k.

Theorem 7 (Naserasr, Rollová, Sopena [14]). For every pair G,H of
graphs, G≤ H if and only if S(G)≤ S(H).

534 F. Foucaud and R. Naserasr

Note that if [G,Θ] ≤ (H,Θ∗), then, in particular, G ≤ H . Therefore, if
H is a bipartite graph, this mapping would imply that G is also a bipartite
graph. Hence for bipartite signed graphs, the complexity of ([H,Θ)-Coloring is
determined by its complexity when reduced to signed bipartite input graphs. The
above mentioned theorems then imply that (H,Θ)-Coloring is NP-complete
whenever (H,Θ) is (Kk,k,M) for k ∗ 3, or if (H,Θ) is equivalent to S(G) for
any non-bipartite graph G.

Moreover, using Theorem 5, one can build more examples of signed graphs
for which the homomorphism problem is NP-hard:

Theorem 8. (K4, {e})-Coloring is NP-complete, where e is any edge of K4.

Proof. Let x, y, z, t be the four vertices of K4 and assume e = xy. Let UC4 be
a signed cycle on x, y, z and t where xy is a negative edge and yz, zt, tx are
positive edges (thus an unbalanced 4-cycle). We claim that a signed bipartite
graph [G,Θ] maps to (K4, {e}) if and only if it maps to UC4. Since UC4 is a
subgraph of [K4, {e}], one direction is trivial. For the other direction, let A,B be
the bipartition of G and let ι be the mapping of [G,Θ] to (K4, {e}) and suppose
the mapping preserves the signs with respect to Θ. We define a new mapping ι∗

which will be a homomorphism of [G,Θ] to UC4. For each vertex u in A, if ι
maps it to x or y, then ι∗ maps it to x, and if ι maps it to z or t, then ι∗ maps
it to z. Similarly, for each vertex v in B, if ι maps it to x or y, then ι∗ maps it
to y, and if ι maps it to z or t, then ι∗ maps it to t. It can now be easily checked
that ι∗ is a homomorphism of [G,Θ] to UC4 with respect to Θ. ⊃⊇

4 Signed Constraint Satisfaction Problems

A (finite) relational structure T is a domain of elements, denoted V (T), together
with a finite set of relations R1, . . . , Rk, each relation Ri (1 ≥ i ≥ k) having arity
ai (that is, Ri ⊂ V (T)ai). An element of a relation Ri is called a tuple. This
is an extension of the notion of graphs and digraphs, as a graph is a relational
structure with one binary and symmetric relation. When the symmetry is not
forced we have the notion of digraphs.

The notion of homomorphisms of graphs and digraphs can then be generalized
to relational structures as follows: given two relational structures S and T over
the same number of relations R1, . . . , Rk and the same (ordered) set of arities
a1, . . . , ak a homomorphism of S to T is a mapping ι : V (S)≤ V (T) such that
if X ∈ V (S)ai belongs to Ri in S, then the ordered set ι(X) = {ι(x), x ∈ X}
belongs to Ri in T . We will write S ≤ T whenever there exists a homomorphism
of S to T .

For every fixed relational structure T , we have the following associated deci-
sion problem, called T -CSP.

T -CSP
INSTANCE: A relational structure S.
QUESTION: Does S admit a homomorphism to T ?

The Complexity of Homomorphisms of Signed Graphs and Signed CSPs 535

It is a folklore fact that this notion captures some well-known problems such
as various versions of SAT-problems. The class of all constraint satisfaction prob-
lems is denoted by CSP. The complexity of CSPs has been extensively studied,
see e.g. the book [1]. One of the major open problems in the area is commonly
known as the Dichotomy Conjecture, and has motivated many works such as
e.g. [4,12]:

Conjecture 9 (Dichotomy Conjecture, Feder and Vardi [7]). For every fixed re-
lational structure T , T -CSP is either polynomial or NP-complete.

Our aim in this section is to introduce the extended notion of signed relational
structures and the related decision problem. We then show that a dichotomy for
this class of problems is equivalent to the Dichotomy Conjecture.

A signed relational structure (S,Θ) is a relational structure S with a subset
Θ of the set of all tuples in S (regardless of which relation the tuple belongs to).
We say that the tuples in Θ are negative, and the others are positive. Given an
element x in S, the resigning operation at x switches the signs of all tuples in
S containing x. As for signed graphs, resigning defines an equivalence relation
⊕ between all signatures of S: two signatures are equivalent if and only if they
can be obtained from the other by a sequence of resignings. Relational structure
with a class of equivalent signatures is then denoted by [S,Θ].

We say that there is an homomorphism of [S,Θ1] to [T,Θ] (or, equivalently,
to (T,Θ)) if there is a signature Θ∗1 ⊕ Θ1 and a homomorphism f : S ≤ T
which preserves the signs of tuples according to Θ∗1 and Θ.

Given a signed relational structure (T,Θ), we define (T,Θ)-CSP analogously
to (H,Θ)-Coloring:

(T,Θ)-CSP
INSTANCE: A signed relational structure [S,Θ1].
QUESTION: Is there a homomorphism of [S,Θ1] to (T,Θ)?

We call the class of all signed constraint satisfaction problems S-CSP. We note
that, by considering Θ = ∈ the class of signed constraint satisfaction problems
contains the class of usual constraint satisfaction problems. Thus, a dichotomy
for S-CSP would imply a dichotomy for CSP, i.e., the Dichotomy Conjecture.
Our aim here is to show that the inverse is also true. This follows from another
result of Feder and Vardi explained after the following definitions.

The class MMSNP, short for Monotone Monadic Strict NP, is the class of
decision problems whose set of positive instances can be described in existential
second-order logic with a universal first-order part (that is, having no existen-
tial quantifier). In other words, they can be described as the set of instances
satisfying a formula of the form F (S) := ↓S∗, ∅X,Ψ(X,S, S∗), where S is the
instance relational structure, S∗ is a relational structure S∗ with V (S) = V (S∗)
(intuitively, S∗ is the “proof” for F (S) to be true), X is a subset of elements

536 F. Foucaud and R. Naserasr

in V (S), and Ψ is a first-order formula that only uses negations, disjunctions,
conjunctions, relations of S and S∗, and the equality operator. Moreover:

– each relation of S must appear in an odd number of negated subformulas in
Ψ (monotonicity);

– the relations in S∗ are only defined over sets of variables of S, not over
relations of S (monadicity);

– negation cannot be applied to the equality operator (no inequality).

It can be verified that each problem in CSP is also in MMSNP. Feder and
Vardi, after introducing their Dichotomy Conjecture, proved that a dichotomy
for CSP implies a dichotomy or MMSNP.

Theorem 10 (Feder and Vardi [7]). These three statements are equivalent:
(i) MMSNP has a dichotomy;
(ii) CSP has a dichotomy;
(iii) the set of digraph homomorphism problems has a dichotomy.

Here we show that, furthermore, each S-CSP problem is also in MMSNP.
Thus, while S-CSP includes CSP, it is included in MMSNP and, therefore:

Theorem 11. CSP has a dichotomy if and only if S-CSP has a dichotomy.

Proof. As we mentioned, it is enough to prove that each problem in S-CSP
belongs to the class MMSNP.
First, consider a usual T -CSP problem, when there is no signature. For each
instance S, the problem of deciding whether S ≤ T can be express by a formula
F (S) in MMSNP: see [7] for details.

Now consider (T,Θ)-CSP and let (S,Θ1) be an input signed structure. To ex-
press (S,Θ1)≤ (T,Θ) with a similar formula F (S,Θ1) := ↓S∗, ∅X,Ψ(X,S, S∗),
one has to add that there is an assignment s : V (S) ≤ {0, 1} (which encodes
the set of resigned elements, and can be expressed as a unary relation in S∗).
Moreover, for each subset X = {x1, . . . , xk} of variables of S, not only Ri(X)
implies Ri(f(X)), but now also (f(X), i) ∈ Θ implies that either (X, i) ∈ Θ1

and an even number of elements in X have been resigned, or (X, i) /∈ Θ1 and
an odd number of elements in X have been resigned. We give an example when
S, T have a unique binary relation R. The “proof” structure S∗ is a relational
structure over V (S) with a unary relation Ax for every element x in V (T) (it
encodes the assignment V (S)≤ V (T)), and a unary relation RS (which encodes
the set of resigned elements in V (S)).

F (S,Θ1) := ↓S∗, ∅(x1, x2) ∈ R,
((R(x1, x2) ≡ (x1, x2) ∈ Θ1 ≡RS(x1) ≡RS(x2))⊗ ((Ax(x1) ≡Ay(x2)) ∃ ∧))

[*: enumerate all assignations allowed by T and belonging to Θ]
∧
. . . [repeat for each possibility for (x1, x2) ∈ Θ1 and resigning x1 and x2]

This formula is indeed monotone, monadic and without inequality. In fact, the
only difference with a usual CSP is the case distinction according to which of
x1, x2 have been resigned; hence the signature can simply be treated as additional
constraints. ⊃⊇

The Complexity of Homomorphisms of Signed Graphs and Signed CSPs 537

5 Conclusion

As a first study of the complexity of signed graph homomorphisms, we have
proved a dichotomy for signed cycles, by showing that (Ck, Θ)-Coloring is NP-
complete if and only if (Ck, Θ) is both even and balanced. We have discussed
some further cases, in particular, the case of signed bipartite graphs. As a natural
generalization, the notion of signed constraint satisfaction problems and the
corresponding class S-CSP were introduced, with S-CSP lying in between of the
classes CSP and MMSNP. While it is a difficult problem to prove a dichotomy for
S-CSP (equivalently, for CSP or for digraph homomorphism problems), it will
be of interest to prove a dichotomy for signed graph homomorphism problems or
other special cases of signed CSPs. By extending the classes in CSP/MMSNP for
which a dichotomy is known, this would bring some new insight to the Dichotomy
Conjecture, and therefore it is a promising direction of research.

References

1. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Elsevier (2006)

2. Alon, N., Marshall, T.H.: Homomorphisms of edge-colored graphs and Coxeter
groups. J. Algebr. Combin. 8(1), 5–13 (1998)

3. Brewster, R.C., Hell, P.: On homomorphisms to edge-coloured cycles. Electr. Notes
Discrete Math. 5, 46–49 (2000)

4. Bulatov, A.A.: A dichotomy constraint on a three-element set. In: Proc. 43rd IEEE
Symposium on Theory of Computing, pp. 649–658 (2002)

5. Charpentier, C., Naserasr, R., Sopena, E.: Analogue of Jeager-Zhang conjecture
for signed bipartite graphs (manuscript)

6. Demaine, E., Hajiaghayi, M., Kawarabayashi, K.-I.: Decomposition, Approxima-
tion, and Coloring of Odd-Minor-Free Graphs. In: Proc. SODA 2010, pp. 329–344
(2010)

7. Feder, T., Vardi, M.Y.: The Computational structure of monotone monadic SNP
and constraint catisfaction: a study through datalog and group theory. SIAM J.
Comput. 28(1), 57–104 (1998)

8. Geelen, J., Gerards, B., Reed, B., Seymour, P., Vetta, A.: On the odd-minor variant
of Hadwigers conjecture. J. Combin. Theor. Series B 99, 20–29 (2009)

9. Guenin, B.: Graphs without odd-K5 minors are 4-colourable. Talk at Oberwolfach
Seminar on Graph Theory (January 2005)

10. Guenin, B.: Packing odd circuit covers: a conjecture (2005) (unpublished
manuscript)

11. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Combin. Theor. Series
B 48(1), 92–110 (1990)

12. Hell, P., Nešetřil, J., Zhu, X.: Complexity of tree homomorphisms. Discrete Appl.
Math. 70, 23–36 (1996)

13. Moret, B.M.E.: The Theory of Computation, ch. 7, Problem 7.1, Part 2.
Addison-Wesley (1998)

14. Naserasr, R., Rollová, E., Sopena, E.: Homomorphisms of signed graphs (submitted
manuscript)

15. Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4(1), 47–74 (1982)

Complexity of Coloring Graphs without Paths

and Cycles

Pavol Hell and Shenwei Huang

School of Computing Science
Simon Fraser University, Burnaby B.C., V5A 1S6, Canada

{pavol,shenweih}@sfu.ca

Abstract. Let Pt and Cα denote a path on t vertices and a cycle on Σ
vertices, respectively. In this paper we study the k-COLORING problem
for (Pt, Cα)-free graphs. It has been shown by Golovach, Paulusma, and
Song that when Σ = 4 all these problems can be solved in polynomial
time. By contrast, we show that in most other cases the k-COLORING
problem for (Pt, Cα)-free graphs is NP-complete. Specifically, for Σ = 5 we
show that k-COLORING is NP-complete for (Pt, C5)-free graphs when
k ⊕ 4 and t ⊕ 7; for Σ ⊕ 6 we show that k-COLORING is NP-complete
for (Pt, Cα)-free graphs when k ⊕ 5, t ⊕ 6; and additionally, we prove that
4-COLORING is NP-complete for (Pt, Cα)-free graphs when t ⊕ 7 and
Σ ⊕ 6 with Σ ←= 7, and that 4-COLORING is NP-complete for (Pt, Cα)-
free graphs when t ⊕ 9 and Σ ⊕ 6 with Σ ←= 9. It is known that, generally
speaking, for large k the k-COLORING problem tends to remain NP-
complete when one forbids an induced path Pt with large t. Our find-
ings mean that forbidding an additional induced cycle Cα (with Σ > 4)
does not help. We also revisit the problem of k-COLORING (Pt, C4)-free
graphs, in the case t = 6. (For t = 5 the k-COLORING problem is known
to be polynomial even on just P5-free graphs, for every k.) The algorithms
of Golovach, Paulusma, and Song are not practical as they depend on
Ramsey-type results, and end up using tree-decompositions with very
high widths. We develop more practical algorithms for 3-COLORING
and 4-COLORING on (P6, C4)-free graphs. Our algorithms run in linear
time if a clique cutset decomposition of the input graph is given. More-
over, our algorithms are certifying algorithms. We provide a finite list of
all minimal non-k-colorable (P6, C4)-free graphs, for k = 3 and k = 4.
Our algorithms output one of these minimal obstructions whenever a k-
coloring is not found. In fact, we prove that there are only finitely many
minimal non-k-colorable (P6, C4)-free graphs for any fixed k; however,
we do not have the explicit lists for higher k, and thus no certifying
algorithms. (We note there are infinitely many non-k-colorable P5-free,
and hence P6-free, graphs for any given k ⊕ 4, according to a result of
Hoàng, Moore, Recoskie, Sawada, and Vatshelle.)

1 Introduction

We say that G is H-free if it does not contain, as an induced subgraph, any graph
H ⊕ H. If H = {H} or H = {H1, H2}, we say that G is H-free or (H1, H2)-free.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 538–549, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Complexity of Coloring Graphs without Paths and Cycles 539

Given any positive integer t, let Pt and Ct be the path and cycle on t vertices,
respectively. The neighborhood of x ⊕ V is denoted by N(x). Given a set S of
vertices of G, we let NS(x) = N(x) ≤ S. The degree of x is denoted by d(x) and
we denote Θ(G) by the minimum degree of G. For two disjoint vertex subsets
X and Y we say that X is complete, respectively anti-complete, to Y if every
vertex in X is adjacent, respectively non-adjacent, to every vertex in Y .

The problem k-COLORING asks, for an input graph G, whether G admits
a k-coloring. A graph G is called a minimal obstruction for k-COLORING if
G is not k-colorable but any proper induced subgraph of G is k-colorable. We
also call G a minimal non-k-colorable graph. A minimal non-(k − 1)-colorable
graph is also called a k-critical graph. A graph is critical if it is k-critical for
some k. We shall use n and m to denote the number of vertices and edges of
G, respectively. Since k-COLORING is known to be NP-complete for any fixed
k ≥ 3, there has been considerable interest in studying the complexity of k-
COLORING restricted to various graph classes. It is well known for instance that
k-COLORING is polynomially solvable for perfect graphs [13]. More information
on this classical result and related work on coloring problems restricted to graph
classes can be found in several surveys, e.g, [22,25].

One type of graph classes that has been given wide attention in recent years is
the class of H-free graphs, for various graphs H [3,4,11,14,21,26]. For example, if
H contains a cycle, then k-COLORING is NP-complete for H-free graphs. This
follows from the fact, proved by Kamiński and Lozin [17] and independently
Král et al [18], that, for any fixed k ≥ 3 and g ≥ 3, k-COLORING is NP-
complete for the class of graphs of girth at least g. Similarly, if H is a forest
with a vertex of degree at least 3, then k-COLORING is NP-complete for H-
free graphs; this follows from [15] and [20]. Combining these results we conclude
that k-COLORING is NP-complete for H-free graphs, as long as H is not a
linear forest, i.e., a union of disjoint paths. This focused attention on the case
when H is a path. Woeginger and Sgall [26] proved that 4-COLORING is NP-
complete for P12-free graphs, and that 5-COLORING is NP-complete for P8-free
graphs. Later on, these results were improved by various groups of researchers
[3,4,11,19]. The strongest results so far are due to Huang [16] who proved that
4-COLORING is NP-complete for P7-free graphs, and that 5-COLORING is NP-
complete for P6-free graphs. On the positive side, Hoàng et al. [14] developed
an elegant recursive algorithm showing that k-COLORING can be solved in
polynomial time for P5-free graphs for any fixed k. These results give a complete
classification of the complexity of k-COLORING Pt-free graphs for any fixed
k ≥ 5, and leave only 4-COLORING P6-free graphs open for k = 4. It should be
noted that deciding the complexity of 3-COLORING for Pt-free graphs seems
difficult. It is not even known that whether or not there exists any t such that 3-
COLORING is NP-complete on Pt-free graphs. Randerath and Schiermeyer [21]
gave the first polynomial time algorithm for 3-COLORING P6-free graphs. As
far as we know, this result has been extended to P7-free graphs by Chudnovsky
et al. [6,7].

540 P. Hell and S. Huang

In this paper we undertake a systematic examination of the complexity of k-
COLORING with inputs restricted to (Pt, CΔ)-free graphs. Since k-COLORING
is NP-complete for Pt-free graphs for most values of k and t, we are asking
whether or not forbidding the additional cycle makes the problem easier.

Known Facts: Some facts can be derived from known results. For instance, in
all the above polynomial cases for k-COLORING Pt-free graphs, we have the
same for (Pt, CΔ)-free graphs, for all ι. This including the cases with t ⊗ 5 or
k = 3, t ⊗ 7. When ι = 3, each k-COLORING is polynomial for t ⊗ 6, as
(P6, C3)-free graphs have bounded cliquewidth; on the other hand, for t ≥ 164,
4-COLORING is NP-complete for (Pt, C3)-free graphs [11]. When ι = 4, each
k-COLORING for is polynomial for (Pt, C4)-free graphs [11]. When ι ≥ 5, 4-
COLORING is NP-complete for (Pt, CΔ)-free graphs as long as t is large enough
with respect to ι [11]. (For ι = 5, the bound on t is t ≥ 21.)

Our Contributions: We prove (in Section 2) that k-COLORING is NP-complete
for (Pt, C5)-free graphs when k ≥ 4 and t ≥ 7, and that k-COLORING is NP-
complete for (Pt, CΔ)-free graphs when ι ≥ 6 and k ≥ 5, t ≥ 6. Moreover, we
show that k-COLORING is also NP-complete for (Pt, C7)-free graphs if k = 4
and t ≥ 9. The first and last of these results is proved by extending a frame-
work one of us introduced in [16]. That framework, however, does not apply to
C5-free graphs, and we give a new type of reduction to derive the second result.
This almost completely settles the complexity of k-COLORING for (Pt, CΔ)-free
graphs when ι ≥ 4, k ≥ 4. The few remaining open problems are listed in the
last section. We also propose better algorithms for k-COLORING (P6, C4)-free
graphs. The algorithms from [11] are linear time in theory, but they rely on sev-
eral Ramsey-type results and use a tree decomposition with very high width, so
they are not practical. We show that for t = 6 and any k there are only finitely
many minimal non-k-colorable (P6, C4)-free graphs. Thus there will be polyno-
mial time certifying algorithms for each k-COLORING problem restricted to
the class of (P6, C4)-free graphs. We explicitly describe all the minimal non-k-
colorable (P6, C4)-free graphs for k = 3, 4, and construct corresponding certify-
ing algorithms for 3-COLORING and 4-COLORING restricted to (P6, C4)-free
graphs. Our algorithms make use of the clique cutset decomposition algorithm
of Tarjan [24]. This is the most time intensive task, and once a clique decompo-
sition of the input graph G is given, the running time is O(m+n). In any event,
we believe our algorithms are more practical than those of [11].

2 NP-Completeness

Recently, Huang [16] proved that 5-COLORING is NP-complete for P6-free
graphs and 4-COLORING is NP-complete for P7-free graphs. The proof used
a novel general framework. In fact, the framework can be used to prove stronger
results on (Pt, CΔ)-free graphs. We recall the framework below. We call a k-
critical graph nice if G contains three independent vertices {c1, c2, c3} such that
the clique number Δ(G − {c1, c2, c3}) = Δ(G) = k − 1. For example, any odd
cycle of length at least 7 is a nice 3-critical graph.

Complexity of Coloring Graphs without Paths and Cycles 541

To prove the desired NP-completeness results Huang [16] gave a reduction
from 3-SAT. Let I be any 3-SAT instance with variables X = {x1, x2, . . . , xn}
and clauses C = {C1, C2, . . . , Cm}, and let H be a nice k-critical graph with three
specified independent vertices {c1, c2, c3}. Huang [16] constructed the graph GI

as follows.

• Introduce for each variable xi a variable component Ti which is isomorphic
to K2, labeled by xix̄i. Call these vertices X-type.
• Introduce for each variable xi a vertex di. Call these vertices D-type.
• Introduce for each clause Cj = yi1 ∈yi2 ∈yi3 a clause component Hj which is

isomorphic to H , where yit is either xit or x̄it . Denote three specified independent
vertices in Hj by citj for t = 1, 2, 3. Call citj C-type and all remaining vertices
U -type.

For any C-type vertex cij we call xi or x̄i its corresponding literal vertex,
depending on whether xi ⊕ Cj or x̄i ⊕ Cj .

• Connect each U -type vertex to each D-type and X-type vertices.
• Connect each C-type vertex cij to di and its corresponding literal vertex.

We refer to [16] for the proof of the following two lemmas.

Lemma 1. Let H be a nice k-critical graph. Suppose GI is the graph constructed
from H and a 3-SAT instance I. Then I is satisfiable if and only if GI is (k+1)-
colorable.

Lemma 2. Let H be a nice k-critical graph. Suppose GI is the graph constructed
from H and a 3-SAT instance I. If H is Pt-free where t ≥ 6, then GI is Pt-free
as well.

We explain how this framework can be used to prove stronger NP-completeness
results. To obtain NP-completeness results for (Pt, CΔ)-free graphs, we need one
more lemma.

Lemma 3. Let ι ≥ 6. If H is CΔ-free, then GI is CΔ-free.

Proof. Let Q = v1 . . . vΔ be an induced CΔ in GI . Let Ci (resp. C̄i) be the set of
C-type vertices that connect to xi (resp. x̄i). Let Gi = G[{Ti ∗ {di} ∗Ci ∗ C̄i}].
Note that G − U is disjoint union of Gi, i = 1, 2, . . . , n. If Q ≤ U = ≥, then
Q ⊆ Gi for some i. It is easy to see that Gi is CΔ-free as ι ≥ 6. Thus, Q≤U ↑= ≥.
Without loss of generality, we assume that v1 is a U -type vertex where v1 is in
the jth clause component Hj . If v2 and vΔ are both in Hj , then Q ⊆ Hj , which
contradicts our assumption that Hj = H is CΔ-free. If v2 and vΔ are both in
X ∗D, then as U -type vertices are complete to X-type and D-type vertices, all
other vertices on Q are of C-type. This is impossible since C is independent. The
last case is vΔ is in Hj and v2 is in X ∗D. Similar to the second case, we have
v4, v5, . . . vl−1 are C-type vertices. This contradicts that v4v5 is an edge. ⊃⊇
The following theorem follows now directly from the above lemmas.

Theorem 1. Let ι ≥ 6. Then k-COLORING is NP-complete for (Pt, CΔ)-free
graphs whenever there exists a (Pt, CΔ)-free nice (k − 1)-critical graph.

542 P. Hell and S. Huang

Fig. 1. G1

We apply Theorem 1 to derive a series of hardness results on (Pt, CΔ)-free graphs
for various values of k and t.

Theorem 2. Let k ≥ 5, t ≥ 6 and ι ≥ 6 be fixed integers. k-COLORING is
NP-complete for (Pt, CΔ)-free graphs.

Proof. It is easy to check that the graph G1 shown in Figure 1 is a nice 4-
critical (P6, CΔ)-free graph for any fixed ι ≥ 6. Applying Theorem 1 with G1 will
complete our proof. ⊃⊇
Theorem 3. 4-COLORING is NP-complete for (Pt, CΔ)-free graphs when t ≥ 7
and ι ≥ 6 with ι ↑= 7; and 4-COLORING is NP-complete for (Pt, CΔ)-free graphs
when t ≥ 9 and ι ≥ 6 with ι ↑= 9.

Proof. It is easy to check that C7 is a nice 3-critical (Pt, CΔ)-free graph for any
t ≥ 7 and ι ≥ 6 except ι = 7, and that C9 is a nice 3-critical (Pt, CΔ)-free graph
for any t ≥ 9 and ι ≥ 6 except ι = 9. Applying Theorem 1 with C7 and C9 will
complete the proof. ⊃⊇
Theorem 1 is not sufficient to prove NP-completeness result for (Pt, C5)-free
graphs as the graphGI in the above reduction contains an induced C5, regardless
of the choice of the clause component. We shall use a different reduction to prove
the next result.

Theorem 4. 4-COLORING is NP-complete for (P7, C5)-free graphs.

Proof. We reduce NOT-ALL-EQUAL 3-SATISFIABILITY with positive liter-
als only (NAE 3-SAT PL for short) to our problem. The NAE 3-SAT PL is
NP-complete [23] and is defined as follows. Given a set X = {x1, x2, . . . , xn} of
logical variables, and a set C = {C1, C2, . . . , Cm} of three-literal clauses overX in
which all literals are positive, does there exist a truth assignment for X such that

Complexity of Coloring Graphs without Paths and Cycles 543

each clause contains at least one true literal and at least one false literal? Given
an instance I of NAE 3-SAT PL we construct a graph GI as follows.

• For each variable xi we introduce a single vertex named as xi. Call these
vertices X-type.
• For each variable xi we introduce a ”truth assignment” component Fi where

Fi is isomorphic to P4 whose vertices are labeled by die
∗
ieid

∗
i.

• For each clause Cj = xi1 ∈ xi2 ∈ xi3 we introduce two copies of C7 denoted
by Hj and H ∗j . Choose three independent vertices of Hj and name them as ci1j ,
ci2j and ci3j . Choose three independent vertices of H ∗j and name them as c∗i1j ,
c∗i2j and c∗i3j . Call these vertices C-type and C∗-type, respectively. The remaining
vertices in clause components are said to be of U -type.
• Connect each U -type vertex to each X-type vertex and each vertex in Fi

for 1 ⊗ i ⊗ n.
• Connect each C-type vertex cij to xi and di and connect each C∗-type vertex

c∗ij to xi and d∗i.

This completes the construction of GI . It is easy to see that di and d∗i have
no common neighbor in G− U and same for ei and e∗i.

Claim 1. The instance I is satisfiable if and only if GI is 4-colorable.

Proof. Suppose first that GI is 4-colorable and Γ is a 4-coloring of GI . Without
loss of generality, we may assume that the two adjacent U -type vertices in H1

receive color 1 and 2, respectively. Now as U is complete to X ∗ F , it follows
that each xi and each vertex in Fi receives color 3 or 4. Further, Γ(di) ↑= Γ(d∗i)
for each i. We define a truth assignment as follows.

• We set xi to be TRUE if Γ(xi) = Γ(di) and to be FALSE if Γ(xi) ↑= Γ(di).

We show that every clause Cj contains at least one ture literal and one false
literal. Suppose xi1 , xi2 , and xi3 are all TRUE. Then it implies that Γ(d∗ij) ↑=
Γ(xij) for all j = 1, 2, 3. As a result, c∗ij must be colored with color 1 or 2

under Γ. Moreover, all U -type vertices in H ∗j are colored with 1 or 2 under Γ.
This contradictions the fact that H ∗j = C7 is not 2-colorable. If xi1 , xi2 , and xi3
are all FALSE we would reach a similar contradiction. Conversely, suppose that
every clasue Cj contains at least one ture literal and one false literal. We define
a 4-coloring Γ as follows.

• Set Γ(xi) = 3 if xi is TRUE and Γ(xi) = 4 if xi is FALSE.
• We color vertices in Fi alternately with color 3 and 4 starting from setting

Γ(di) = 3.
• Let Cj = xi1 ∈ xi2 ∈ xi3 be a clause. Without loss of generality, we may

assume that xi1 is TRUE and xi2 is FALSE. It follows from the definiton of Γ
that Γ(xi1) = Γ(di1) = 3. Hence, we can color ci1j with color 4, so that Hj − ci1j
can be colored with colors 1 and 2. Similarly, we can 4-color H ∗j . ⊃⊇
Claim 2. GI is C5-free.

Claim 3. GI is P7-free.
We omit proofs for Claims 2 and 3. ⊃⊇

544 P. Hell and S. Huang

The following result is a direct corollary of Theorem 4.

Theorem 5. Let k ≥ 4 and t ≥ 7. Then k-COLORING is NP-complete for
(Pt, C5)-free graphs.

3 Certifying Algorithms

We have shown that in general k-COLORING Pt-free graphs remains hard even
if we forbid some induced CΔ where ι ≥ 5. In a sharp contrast, forbidding C4 does
make the problem easier. Golovach et al. [11] have proved that k-COLORING
can be solved in linear time for (Pt,Kr,s)-free graphs for any fixed k, r, s, t. As
C4 = K2,2, their result implies that k-COLORING becomes polynomial solvable
for Pt-free graphs when we also forbid an induced C4. In this section we shall
present polynomial time certifying algorithms for k-COLORING (P6, C4)-free
graphs in the special case when k = 3 and k = 4. The algorithms of Golovach et
al. [11] depends on Ramsey-type results. This means that they are not certifying.
Moreover, even though they run in linear time using tree-decompositions, the
multiplicative constants in the algorithms depend on the treewidth, which is
quite high because of a double use of Ramsey-type results. Our algorithms use
a clique cutset decomposition, and the overall running time is O(mn). However,
if a clique cutset decomposition is given, then our algorithms run in linear time.
Even in the case the clique cutset decomposition has to be found, we believe
our O(mn) algorithm has much better practical performance on realistic-sized
graphs than the algorithms of Golovach et al. [11].

In Section 3.1 we develop some preliminary results on (P6, C4)-free graphs
that will be used in our algorithms. Then we give certifying algorithms for 3-
COLORING and 4-COLORING in Section 3.2. Our algorithms will output a
k-coloring if G has one, or a subgraph of G that certifies that G is not k-colorable.

3.1 Imperfect (P6, C4)-Free Graphs

Let G be a connected imperfect (P6, C4)-free graph. By the Strong Perfect Graph
Theorem [8], G must contain an induced C = C5 = v0 . . . v4. We call a vertex
v ⊕ V \ C a p-vertex with respect to C if v has exactly p neighbors on C, i.e.,
|NC(v)| = p. We denote by Sp the set of p-vertices for 0 ⊗ p ⊗ 5. In the following
all indices are modulo 5. Let S1(vi) be the subset of S1 containing all 1-vertices
that have vi as their neighbor on C. Let S3(vi) be the subset of S3 containing all
3-vertices that have vi−1, vi and vi+1 as their neighbors on C. Let S2(vi) be the
subset of S2 containing all 2-vertices that have vi−2 and vi+2 as their neighbors
on C. Alternatively, we also denote S2(vi, vi+1) by the set of 2-vertices that have
vi and vi+1 as their neighbors on C. Clearly, S2(vi) = S2(vi−2, vi+2). We shall

use either of notation whichever is convenient. Sp =
⋃4

i=0 Sp(vi) for p = 1, 2, 3. It
follows easily from the (P6, C4)-freeness of G that S5 and each S3(vi) are cliques
and S4 = ≥.

Complexity of Coloring Graphs without Paths and Cycles 545

Observation 1. (1) S1(vi) is complete to S1(vi+2) and anti-complete to
S1(vi+1); if both S1(vi) and S1(vi+2) are nonempty, both sets are cliques. (2)
S2(vi) is complete to S2(vi+1) and anti-complete to S2(vi+2). (3) S3(vi) is anti-
complete to S3(vi+2).

Observation 2. (1) S1(vi) is anti-complete to S2(vj) if i ↑= j. Further, if y ⊕
S2(vi) is not anti-complete to S1(vi), then y is an universal vertex in S2(vi). (2)
S1(vi) is anti-complete to S3(vi+2). (3) S2(vi) is anti-complete to S3(vi).

Observation 3. (1) One of S1(vi) and S2(vi+1) is empty; (2) One of S2(vi),
S2(vi−2) and S2(vi+2) is empty; (3) If both S1(vi−1) and S1(vi+1) are nonempty,
then S2 = ≥. If both S1(vi) and S1(vi+1) are nonempty, then S2 = S2(vi, vi+1);
(4) Let x ⊕ S3(vi). If both S2(vi−1) and S2(vi+1) are nonempty, then x is either
complete or anti-complete to S2(vi−1) and S2(vi+1). In the case of complete,
S2(vi−1) and S2(vi+1) are cliques. Moreover, if S2(vi) is also nonempty, then x
is anti-complete to S2(vi−1) and S2(vi+1).

The proofs for Observations 1-3 follow readily from the fact that G is (P6, C4)-
free. Brandstädt and Hoàng [2] proved the following important property on
(P6, C4)-free graphs. A subset S ⊆ V is dominating if every vertex not in S
has a neighbor in S.

Lemma 4. ([2]) Let G be a (P6, C4)-free graph without clique cutset. Then every
induced C5 is dominating.

The following Observation is based on Lemma 4.

Observation 4. (1) S1(vi) is complete to S3(vi). (2) If S1(vi) is not anti-
complete to S2(vi) then S1 = S1(vi).

3.2 3-COLORING and 4-COLORING (P6, C4)-Free Graphs

In this section we shall develop certifying algorithms for 3-COLORING and 4-
COLORING (P6, C4)-free graphs by describing all minimal non-3-colorable and
non-4-colorable (P6, C4)-free graphs. The following lemma is folklore.

Lemma 5. A minimal obstruction G for k-COLORING has no clique cutset
and Θ(G) ≥ k.
In 2010 Bruce et al. [5] successfully characterized all minimal non-3-colorable
P5-free graphs. Here we characterize all minimal non-3-colorable (P6, C4)-free
graphs.

Theorem 6. There are exactly four minimal non-3-colorable minimal non-4-
colorable (P6, C4)-free graphs, depicted in Figure 2.

Proof. Let G be a minimal (P6, C4)-free obstruction for 3-COLORING. G con-
tains no clique cutset and Θ(G) ≥ 3 by Lemma 5. If G is perfect, then G = K4.
Therefore, we may assume that G is not perfect and K4-free. By Strong Perfect
Graph Theorem, G must contain an induced C = C5 = v0v1 . . . v4. We define

546 P. Hell and S. Huang

(a) K4 (b) W5 (c) Hajos graph (d) F

Fig. 2. All minimal non-3-colorable (P6, C4)-free graphs

Sp, S1(vi), S2(vi) and S3(vi) in the same way we defined in the beginning of
this section. By Lemma 4, S0 = ≥. It is easy to see that |S5| ⊗ 1. If |S5| = 1,
then G = W5. So we may assume that S5 = ≥. If there exists an index i such
that S3(vi) ↑= ≥ and S3(vi+2) ↑= ≥, then G is Hajos graph. Hence, at most two
S3(vi)’s are nonempty. Further, each S3(vi) is clique and contains at most one
vertex since G is (C4,K4)-free. Therefore, |S3| ⊗ 2. We distinguish three cases.

Case 1. |S3| = 2. Without loss of generality, assume that S3(v0) = {x} and
S3(v1) = {y}. xy /⊕ E as G is K4-free. S1(v3) = ≥ otherwise let t ⊕ S1(v3)
and then tv3v2yv0x = P6. Moreover, x (resp. y) is complete to S2(v3, v4) (resp.
S2(v2, v3)). Otherwise there exists some vertex z ⊕ S2(v3, v4) with xz /⊕ E.
Then zv3v2yv0x = P6. Hence, S2(v3, v4) and S2(v3, v2) are cliques and each of
them contains at most one vertex. As d(v3) ≥ 3 and S1(v3) = ≥, at least one of
them is nonempty. Suppose first that p ⊕ S2(v3, v4) and q ⊕ S2(v2, v3). xp ⊕ E
and yq ⊕ E. It follows from S1(v3) = ≥ and Observation 3 (1) that S1 = ≥.
Further, S2(v1, v2) = S2(v0, v4) = ≥ by Observation 3 (4). Hence, S2 = {p, q} by
Observation 3 (2) and N(x) = {v4, v1, v0, p}. Since G is a minimal obstruction,
there exists a 3-coloring Γ of G−x. Note that we must have Γ(v4) = Γ(q) = Γ(v1)
and Γ(p) = Γ(v2) = Γ(v0). Consequently, we can extend Γ to G be setting Γ(x) =
{1, 2, 3} \ {Γ(v0), Γ(v1)}. This contradicts that G is not 3-colorable. Therefore,
exactly one of S2(v3, v4) and S2(v3, v2) is empty. Without loss of generality,
assume that S2(v3, v4) = ≥ and let z ⊕ S2(v2, v3). Note that N(v3) = {v4, v2, z}.
Let Γ be a 3-coloring of G − v3, and we must have Γ(v4) = Γ(v1) = Γ(z). Thus
we can extend Γ to G. This is a contradiction.

Case 2. |S3| = 1.

Case 3. |S3| = 0.

We omit the lengthy analysis of the last two cases in this version. ⊃⊇
The above proof can be easily turned into a linear time algorithm for
3-COLORING. We first test if G is chordal. If so, we can tell whether or not
G is 3-colorable. Otherwise we have an induced C = CΔ for some ι ≥ 4. Up
to this point every step can be done in linear time (see, e.g., [12]). If ι = 4 or
ι ≥ 7 then G is not (P6, C4)-free. If ι = 5 we follow the above proof, and it can
be readily checked that every step can be done in linear time. The remaining
case is ι = 6, and we can now assume G is also C5-free. Brandstädt and Hoàng
[2] stated that either C is dominating or G belongs to a specific graph class for

Complexity of Coloring Graphs without Paths and Cycles 547

which k-COLORING can be solved in linear time. Therefore, we assume that C
is dominating. We define p-vertices and Sp with respect to C. We either find that
G is not (P6, C4)-free or V = C ∗ S6 ∗ S3. Finally, in linear time we either find
a K4 or conclude that |G| ⊗ 13 in which case a 3-coloring of G can be obtained.

Using similar techniques, with a more sophisticated analysis, we are able to
describe all minimal non-4-colorable (P6, C4)-free graphs. It is clear that every
minimal non-3-colorable (P6, C4)-free graph with one more dominating vertex
is a minimal non-4-colorable (P6, C4)-free graph. Moreover, there are nine ad-
ditional graphs. The proof can be transformed into a certifying 4-COLORING
algorithm for (P6, C4)-free graphs, analogously to the application of Theorem 6.

Theorem 7. There are exactly 13 minimal non-4-colorable (P6, C4)-free graphs.

For larger values of k, we prove the following theorem.

Theorem 8. For any fixed k, there are only finitely many minimal non-k-
colorable (P6, C4)-free graphs.

We note however, that even though the number of minimal obstructions to k-
COLORING (P6, C4)-free graphs is finite, this fact alone does not yield an ef-
ficient, nor a certifying, algorithm, since the proof of the finiteness does not
explicitly describe these obstructions, and such a task seems hopeless for large
values of k.

4 Conclusions

We have undertaken a systematic study of complexity of k-COLORING for
graphs forbidding an induced cycle CΔ and an induced path Pt. For most values
of k, t and ι we have obtained hardness results. We have also given certifying
algorithms for k-COLORING (P6, C4)-free graphs when k = 3 and k = 4. Our
algorithms make use of the clique cutset decomposition of Tarjan [24] and run in
O(n+m) time given a clique cutset decomposition of the input graph. We expect
our algorithms to have a good performance in practice. We have proved that for
any k there are only finitely many minimal non-k-colorable (P6, C4)-free graphs,
and have described all of them for k = 3 and k = 4. The proofs allowed us
to give polynomial certifying algorithms for 3-coloring and 4-coloring (P6, C4)-
free graphs. However, for larger k, we do not know certifying k-COLORING
algorithms for (P6, C4)-free graphs. Our hardness results come close to classifying
the complexity all cases of k-COLORING for (Pt, CΔ)-free graphs. There seem
to be two stubborn cases about which not much can be said with the current
tools, when k = 3 or ι = 3. (But note [6,7].) Beyond these cases, our results
leave only the following remaining open problems.

Problem 1. What is the complexity of k-COLORING (P6, C5)-free graphs for
k ≥ 4?

Problem 2. What is the complexity of 4-COLORING (P6, C6)-free graphs?

548 P. Hell and S. Huang

Problem 3. What is the complexity of 4-COLORING (Pt, C7)-free graphs for
t = 7 and t = 8?

In [16] Huang conjectured that 4-COLORING is polynomial time solvable for P6-
free graphs. If the problems in Problem 1 for k = 4 or Problem 2 are polynomial,
this would add evidence to the conjecture.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer Graduate Texts in Mathe-
matics, vol. 244 (2008)

2. Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the
Maximum Weight Stable Set Problem. Theoretical Computer Science 389, 295–306
(2007)

3. Broersma, H.J., Fomin, F.V., Golovach, P.A., Paulusma, D.: Three complexity
results on coloring Pk-free graphs. European Journal of Combinatorics (2012) (in
press)

4. Broersma, H.J., Golovach, P.A., Paulusma, D., Song, J.: Updating the complexity
status of coloring graphs without a fixed induced learn forest. Theoret. Comput.
Sci. 414, 9–19 (2012)

5. Bruce, D., Hoàng, C.T., Sawada, J.: A certifying algorithm for 3-colorability of
P5-free graphs. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS,
vol. 5878, pp. 594–604. Springer, Heidelberg (2009)

6. Chudnovsky, M., Maceli, P., Zhong, M.: Three-coloring graphs with no induced
six-edge path I: the triangle-free case (in preparation)

7. Chudnovsky, M., Maceli, P., Zhong, M.: Three-coloring graphs with no induced
six-edge path II: using a triangle (in preparation)

8. Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect
graph theorem. Annals of Mathematics 64, 51–229 (2006)

9. Dabrowski, K., Golovach, P., Paulusma, D.: Colouring of graphs with Ramsey-type
forbidden subgraphs (submitted)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman San Faranciso (1979)

11. Golovach, P.A., Paulusma, D., Song, J.: Coloring graphs
without short cycles and long induced paths (2013),
http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/girth.pdf

12. Golumbic, M.C.: Algorithmic graph theory and perfect graphs, San Diego (1980)

13. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.
Ann. Discrete Math. 21, 325–356 (1984), Topics on Perfect Graphs

14. Hoàng, C.T., Kamiński, M., Lozin, V.V., Sawada, J., Shu, X.: Deciding k-
colorability of P5-free graphs in polynomial time. Algorithmica 57, 74–81 (2010)

15. Holyer, I.: The NP-completeness of edge coloring. SIAM J. Comput. 10, 718–720
(1981)

16. Huang, S.: Improved complexity results on k-coloring Pt-free graphs. In: Chatterjee,
K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 551–558. Springer, Heidelberg
(2013)

17. Kamiński, M., Lozin, V.V.: Coloring edges and vertices of graphs without short or
long cycles. Contrib. Discrete. Mah. 2, 61–66 (2007)

http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/girth.pdf

Complexity of Coloring Graphs without Paths and Cycles 549

18. Král’, D., Kratochv́ıl, J., Tuza, Z., Woeginger, G.J.: Complexity of coloring graphs
without forbidden induced subgraphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001.
LNCS, vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

19. Le, V.B., Randerath, B., Schiermeyer, I.: On the complexity of 4-coloring graphs
without long induced paths. Theoret. Comput. Sci. 389, 330–335 (2007)

20. Leven, D., Galil, Z.: NP-completeness of finding the chromatic index of regular
graphs. J. Algorithm 4, 35–44 (1983)

21. Randerath, B., Schiermeyer, I.: 3-Colorability ◦ P for P6-free graphs. Discrete
Appl. Math. 136, 299–313 (2004)

22. Randerath, B., Schiermeyer, I.: Vertex colouring and fibidden subgraphs-a survey.
Graphs Combin. 20, 1–40 (2004)

23. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. STOC 1978, pp.
216–226 (1978)

24. Tarjan, R.E.: Decomposition by clique separators. Discrete Mathematics 55, 221–
232 (1985)

25. Tuza, Z.: Graph colorings with local restrictions-a survey. Discuss. Math. Graph
Theory 17, 161–228 (1997)

26. Woeginger, G.J., Sgall, J.: The complexity of coloring graphs without long induced
paths. Acta Cybernet. 15, 107–117 (2001)

Approximating Real-Time Scheduling

on Identical Machines�

Nikhil Bansal1, Cyriel Rutten2, Suzanne van der Ster3, Tjark Vredeveld2,
and Ruben van der Zwaan1

1 Eindhoven University of Technology
{n.bansal,g.r.j.v.d.zwaan}@tue.nl

2 Maastricht University
cyrielrutten@gmail.com, t.vredeveld@maastrichtuniversity.nl

3 Vrije Universiteit
suzanne.vander.ster@vu.nl

Abstract. We study the problem of assigning n tasks to m identical
parallel machines in the real-time scheduling setting, where each task
recurrently releases jobs that must be completed by their deadlines. The
goal is to find a partition of the task set over the machines such that each
job that is released by a task can meet its deadline. Since this problem
is co-NP-hard, the focus is on finding α-approximation algorithms in
the resource augmentation setting, i.e., finding a feasible partition on
machines running at speed α ⊕ 1, if some feasible partition exists on
unit-speed machines.

Recently, Chen and Chakraborty gave a polynomial-time approxima-
tion scheme if the ratio of the largest to the smallest relative deadline of
the tasks, λ, is bounded by a constant. However, their algorithm has
a super-exponential dependence on λ and hence does not extend to
larger values of λ. Our main contribution is to design an approxima-
tion scheme with a substantially improved running-time dependence on
λ. In particular, our algorithm depends exponentially on log λ and hence
has quasi-polynomial running time even if λ is polynomially bounded.
This improvement is based on exploiting various structural properties of
approximate demand bound functions in different ways, which might be
of independent interest.

1 Introduction

The sporadic task system is one of the most widely adopted models for infinitely
recurring executions in real-time systems. Specifically, each sporadic task Θ =
(cΔ , dΔ , pΔ) is specified by the amount of processing needed by its jobs cΔ , a
deadline dΔ by which a job must be completed, relative to its arrival time, and
a minimum interarrival time pΔ between two consecutive jobs, which is called
the period of the task. Such a sporadic task releases a possibly infinite sequence
of jobs. A sporadic task system T consists of n sporadic tasks. A task system

α Supported by the NWO VIDI grant 639.022.211.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 550–561, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Approximating Real-Time Scheduling on Identical Machines 551

is said to be feasible on a computing platform if for any job sequence that
can be possibly generated by the system, there exists a schedule for the task
system, such that all jobs from all tasks meet their deadlines. In this paper, we
consider the feasibility question of scheduling a set of sporadic tasks to multiple
identical machines (processors). This problem and related problems in real-time
scheduling have received great attention in the last years; see for example [1,4,6]
and the references therein.

Single-processor case: Determining the feasibility of a task system on a single
(preemptive1) processor is quite well-understood. It is well-known that the hard-
est case for feasibility is when the first jobs of all tasks arrive simultaneously and
all subsequent jobs arrive as rapidly as legally possible [5]. That is, we can assume
that for each task Θ in the task system, the jobs of Θ arrive at times 0, pΔ , 2pΔ ,
This sequence of job-arrivals is called the synchronous arrival sequence. Another
well-known fact [11] is that the Earliest Deadline First (EDF) algorithm, that
schedules at any time the job with the earliest absolute deadline, will always
produce a valid schedule for any sequence of jobs that is feasible.

Although one can validate whether a task system is feasible by running EDF,
this does not provide an efficient polynomial-time feasibility test. The problem
is that the periodic nature of jobs together with their relative deadlines can
introduce complicated long-range dependencies. In particular, the infeasibility
may occur only at a very late time in the schedule, say close to the hyperpe-
riod (which is the least common multiple of the periods of the tasks). In fact,
no polynomial-time feasibility test on a uniprocessor is likely to exist, unless
P=co-NP [10]. For more results on scheduling sporadic task systems on a single
processor, we refer to Baruah and Goosens [4].

Multiprocessor case: For multiprocessor systems, there are two main paradigms
for scheduling: global vs. partitioned scheduling. In partitioned scheduling each
task is assigned to one of the machines and all jobs corresponding to this task
must be scheduled on that machine. In global scheduling, tasks can use all ma-
chines and jobs can even be migrated. Partitioned scheduling is used much more
than global scheduling as it is easier to implement and has no communication
overhead, which is required if a single task is split between multiple processors.
The communication may also lead to security issues. In this paper, we only
consider partitioned scheduling.

Observe that in this setting, given a partition of the tasks over the machines,
determining its feasibility simply reduces to several independent uniprocessor
feasibility problems - one for each machine. Together with the facts for unipro-
cessor feasibility, the problem we study can be viewed as follows: Find a partition
of tasks among machines, such that for each machine, the synchronous arrival
sequence for tasks assigned to that machine is feasible for EDF. Clearly, this
problem is also co-NP-hard and, as we shall see, it is also NP-hard.

1 That is, any job can be interrupted arbitrarily during its execution and resumed
later from the point of interruption without any penalty. Throughout the paper we
consider the preemptive setting.

552 N. Bansal et al.

Resource Augmentation and ι-feasibility: The hardness of the problem leads us
to finding a good approximation algorithm. As usual, we consider the resource
augmentation setting, where our algorithm is allowed some additional speedup
per machine.

Given a parameter ι ⊕ 1, we call an algorithm an ι-feasibility test if it

1. either returns a partition of the tasks into sets {Ti}i∗[m] such that each Ti
can be feasibly scheduled on a machine that runs at speed ι; or,

2. returns ‘infeasible’ if no feasible partition of tasks exists which can be sched-
uled on m machines running at unit speed.

Alternatively, the algorithm always finds a partition T1, . . . , Tm of T such that
each Ti can be feasibly scheduled on a speed-ι machine, provided there exists
some feasible partition on unit-speed machines.

Let us call a family of feasibility tests a polynomial-time approximation scheme
(PTAS), if for any arbitrarily small constant Δ > 0, there exists a (1+Δ)-feasibility
test in this family with running time polynomial in n and m. Note that the run-
ning time dependence on Δ can be any arbitrary function. If the running time
dependence on 1/Δ is also polynomial, we call the test a fully polynomial-time
approximation scheme (FPTAS).

1.1 Related Previous Results

In the single processor case, an FPTAS feasibility test is known [7]. We will
describe a related test later, as its structure will play a key role in our algorithm
(see Observation 2 and Theorem 3 below). In particular in this test, one only
needs to check the feasibility of the EDF schedule for the job sequence at about
(1/Δ) log(dmax/dmin) time steps, where dmax and dmin are the maximum and
minimum task deadlines in the instance.

For partitioned scheduling on multiple machines, Chen and Chakraborty [9]
gave a PTAS, generalizing a previous result of [3], if the maximum to minimum
deadline ratio is bounded by a constant. Let us call this ratio Γ. The idea of [9] is
to view the problem as a vector scheduling problem in (roughly) Ψ = (1/Δ) logΓ
dimensions. That is, each task is viewed as a Ψ-dimensional vector, and the
tasks can be feasibly scheduled on machine, if the corresponding vectors can be
feasibly packed in a unit Ψ-dimensional bin. This connection essentially follows
from the property for the single-processor test mentioned above. Then the known
PTAS for vector scheduling [8] is used in a black-box manner to obtain a (1+ Δ)-

approximate feasibility test that runs in time roughly2 nO(exp((1
Θ) log Σ)). Note that

this running time is doubly exponential in logΓ, and while this is polynomial
time for constant Γ, it is super-polynomial if Γ is super-constant.

If m = O(1), Marchetti-Spaccamela et al. [12] design a PTAS, even for the
case that the execution time of a task is machine-dependent.

2 For clarity, we suppress some dependence on terms involving log log λ.

Approximating Real-Time Scheduling on Identical Machines 553

1.2 Our Contribution

We provide a (1+Δ)-feasibility test which substantially improves upon the result
of Chen and Chakraborty [9]. In particular we show the following result.

Theorem 1. Given Δ > 0, a task set T consisting of n tasks and m parallel
identical processors, there is a (1+ Δ)-feasibility test in the partitioned scheduling
setting, with running time O

(
mO(f(Λ) log(Σ))

)
. Here Γ = dmax/dmin and f(Δ) :=

exp(O(1Λ log(1Λ))) is a function depending solely on Δ.

Note that the running time of our algorithm only has a singly exponential depen-
dence on logΓ, and hence gives an exponential improvement over the result of
Chen and Chakraborty [9]. Thus our algorithm can run over a substantially wider
range of input instances, beyond just the ones with Γ = O(1). For example, even

if Γ is polynomially large in n, our algorithm runs in time nO(logn) = 2O(log2 n)

and hence yields a quasi-polynomial-time approximation scheme, as opposed to
exponential time by the algorithm in [9].

1.3 High-Level Idea

As in Chen and Chakraborty [9], our result is also based on reducing the feasibil-
ity problem to vector scheduling in roughly Ψ = (1/Δ) logΓ dimensions. However,
we crucially exploit the special structure of the vectors that arise in this trans-
formation and give a faster vector scheduling algorithm for such instances. In
fact, as we show in a companion paper [2], exploiting this structure is neces-
sary to obtain any major improvement. In particular, in [2] we show that any
PTAS for a general Ψ-dimensional vector scheduling must incur a running time of
exp((1/Δ)δ(Θ)) (under suitable complexity assumptions), and hence the running
time in [9] is essentially the best one can hope for if one uses vector scheduling
as a black-box.

The starting observation is that even though the vectors corresponding to
tasks have (1/Δ) logΓ coordinates, the number of relevant coordinates are essen-
tially 1/Δ. In particular, only 1/Δ consecutive coordinates of a vector can have
“arbitrary” values, and all subsequent coordinates have an identical value (see
(2) and Lemma 2 for the precise statement). This follows from the slack pro-
vided by the 1 + Δ speedup, as the demand bound function3 of a task can be
approximated so that a task Θ has no “complicating” influence at time points
⊕ dΔ/Δ.

To exploit this structure of vectors, we design a sliding-window based algo-
rithm for vector scheduling, where we carefully build a schedule by considering
the coordinates in left to right order, and only keeping track of the relevant
short-range information in the dynamic program. The main technical difficulty
is to combine the sliding-window approach with the exhaustive enumeration
techniques of [8] for vector scheduling. In particular, to ensure that the sliding

3 The reader unfamiliar with basic concepts of real-time scheduling such as demand
bound functions, may wish to first look at Sections 2 and 3 before reading this part.

554 N. Bansal et al.

window does not build up too much error as it moves over the various coordi-
nates, we keep track of different coordinates for a task with different accuracy.
Moreover, to keep the running time low, we need more refined enumeration tech-
niques to handle and combine small and large vectors.

2 Preliminaries

The input consists of a task system T consisting of tasks Θ1, . . . , Θn and a set of m
identical processors. Each task releases a sequence of jobs throughout time. Each
task Θ is characterized by three parameters; the worst-case processing time cΔ ,
the period pΔ and the relative deadline dΔ . For notational convenience, we write
dj , cj and pj instead of dΔj , cΔj and pΔj . Without loss of generality, we assume
that all these parameters are integers. The synchronous arrival sequence for T
is defined to be the collection of job arrivals in which each task in T generates
a job at time instant zero and subsequent jobs arrive as soon as permitted
by the period parameters, i.e., task Θ releases jobs at times 0, pΔ , 2pΔ , 3pΔ , . . .
with deadlines dΔ , pΔ + dΔ , 2pΔ + dΔ , 3pΔ + dΔ , The utilization of a task Θ is
uΔ := cΦ

pΦ
≤ 1, and indicates the share of the processor used by this task in the

long run. Without loss of generality, we assume that tasks are ordered such that
d1 ≤ . . . ≤ dn. We use [n] := {1, 2, . . . , n} to denote the set of integers from 1
up to n.

In the partitioned scheduling paradigm, we want to find a partition
T1, T2, . . . , Tm of T such that all jobs generated by the tasks in Ti can be feasibly
scheduled on machine i, for all i ∈ [m]. Furthermore, task set Ti can be feasibly
scheduled on machine i if the synchronous arrival sequence for tasks in Ti can be
scheduled feasibly by the Earliest Deadline First (EDF) algorithm. This implies
that a task set Ti can be feasibly scheduled on the machine if and only if the
total workload of the jobs generated by tasks in Ti that need to be finished by
time t is not more than the amount of work machine i can do up to time t.

Demand bound function: It is known [5] that task system Ti is feasible upon
a preemptive uniprocessor if and only if

∑

Δ∗Ti
max

{
0,

⌊
t+ pΔ − dΔ

pΔ

⎡
cΔ

⎣
≤ t, ⊗t > 0. (1)

The term max
⎤

0,
⎦
t+pΦ−dΦ

pΦ

⎨
cΔ

⎛
is known as the demand bound function (dbf)

of task Θ at time point t and is denoted by dbfΔ (t). It expresses the amount of
processing task Θ needs up to time t. The left-hand side of (1) is called the dbf
for the task set Ti and denoted by dbfTi(t).

Condition (1) can be weakened slightly, and it is easy to see that it suffices
to check (1) only for times t that are deadlines of some job and t ≤ plcm where
plcm denotes the least common multiple of the tasks’ periods. However, given
that the feasibility testing problem is co-NP-hard, it is unlikely that the number
of points where (1) must be tested can be reduced substantially.

Approximating Real-Time Scheduling on Identical Machines 555

As mentioned above, our goal is to develop a (1 + Δ)-feasibility test for any
Δ > 0. As we shall see soon, if we only care about (1 + Δ)-feasibility, it suffices to
check condition (1) at only log(1+Λ)(dn/(Δ

2d1)) ∈ O(log(dn/d1)/Δ) time points.
This allows us to transform the feasibility problem into the so-called vector
scheduling problem, which is defined as follows.

Definition 1 (Vector Scheduling). We are given a set A consisting of n
d-dimensional vectorswith eachcoordinate in the range [0, 1] (i.e., vectors in [0, 1]d),
and a positive integerm. The goal is to determine whether there is a partition of A
intom setsA1, . . . , Am such that for each set Ai, the sum of vectors in that set does
not exceed 1 in any coordinate. That is, max1⊆i⊆m

⎫⎫⎬
a∗Ai

a
⎫⎫
◦ ≤ 1.

Chekuri and Khanna [8] showed the following result for vector scheduling.

Theorem 2 ([8]). Given any Δ > 0, there is a (1+ Δ)-approximation algorithm,
i.e., an algorithm that finds a partition with max1⊆i⊆m

⎫
⎫⎬

a∗Ai
a
⎫
⎫
◦ ≤ 1 + Δ,

for the vector scheduling problem that runs in time nO(s), where s = (ln d
Λ)d.

In the following section, we show how (1+Δ)-feasibility reduces to vector schedul-
ing with d = O((1/Δ) log(dn/d1)). While similar results have been used before
(e.g., [9,12]), we will repeat the proof here, as we explicitly need the structure
of the vectors in the resulting vector scheduling instance, which our algorithm
will crucially exploit later.

3 From Sporadic Task System to Vector Scheduling

We begin with the notion of approximate demand bound functions. Observe
that over the long run, a task Θ uses cΔ units of time every pΔ units of time,
but the relative deadlines, that may be different from the periods, complicate
the demand bound function. The demand bound function has sharp jumps at
the (absolute) deadlines dΔ , pΔ + dΔ , 2pΔ + dΔ , . . ., but the effects of these jumps
become milder as time progresses. A machine that is 1 + Δ times faster gives Δt
units of extra processing time up to time t, which lets us ignore these sharp jumps
after a certain point in time and instead it is sufficient to use the utilization (the
average processing requirement).

The next lemma shows that we only need to check the demand bound function
at time points which are a factor 1 + Δ apart.

Lemma 1. For any task Θ , if dbfΔ ((1 + Δ)kd1) ≤ (1 + Δ)kd1ι for all k ∈ N∼0,
then dbfΔ (t) ≤ (1 + Δ)ιt for all t ⊕ 0.

Proof. For any t, define integer kt such that (1 + Δ)kt−1d1 < t ≤ (1 + Δ)ktd1.
Then

dbfΔ (t) ≤ dbfΔ ((1 + Δ)ktd1) ≤ (1 + Δ)ktd1ι < (1 + Δ)ιt,

where the first inequality follows from the demand bound function being non-
decreasing. ∗≥

556 N. Bansal et al.

We consider an approximate demand bound function dbf∈Δ (t) used by Marchetti-
Spaccamela et al. [12]. Let L be the smallest integer such that 1 ≤ (1 + Δ)L−1Δ2.
Note that L ≤ 2 + log(1+Λ)(1/Δ

2). Let

dbf∈Δ (t) =

⎞⎦
t+pΦ−dΦ

pΦ

⎨
cΔ if t < (1 + Δ)LdΔ ,

uΔ t otherwise.
(2)

Note that dbf∈ differs from dbf only when t ⊕ dΔ (1 + Δ)/Δ2, and is proportional
to the utilization of Θ in that case. The following lemma shows that it is a good
approximation to dbf.

Lemma 2 ([12]). For every task Θ and every time t ⊕ 0,

1

(1 + Δ)
dbfΔ (t) ≤ dbf∈Δ (t) ≤ (1 + Δ)dbfΔ (t).

Another obvious property of dbf and dbf∈ is the following, which allows us to
start our feasibility analysis at the first deadline only.

Observation 1. For all tasks Θ , for all t < dΔ , we have that

dbfΔ (t) = dbf∈Δ (t) = max{0, ⊆(t+ pΔ − dΔ)/pΔ↑} = 0.

In particular, dbfΔ (t) = dbf∈Δ (t) = 0 for all t < d1 and all tasks Θ ∈ T .
Using Lemma 1, Lemma 2 and Observation 1, we can encode our approximate
demand bound function dbf∈Δ into a vector wΔ . More precisely, we will use a
normalized demand bound function which is dbf∈Δ (t)/t. Let tend = (1 + Δ)Ldn,
and let K := ⊃log(1+Λ) tend/d1⊇. For each task Θ we define the vector wΔ , with
coordinates wΔ

k as follows:

wΔ
k :=

⎞
dbf∗Φ((1+Λ)k−1d1)

(1+Λ)k−1d1
if k = 1, . . . ,K − 1,

uΔ if k = K.

Note that the first K − 1 coordinates of these vectors consider times that are
powers of (1 + Δ) and lie between d1 and (1 + Δ)Ldn. Recall that for t ⊕ tend,
it holds that dbf∈Δ (t) = uΔ t for each task Θ1, . . . , Θn. Thus, there is no need to
consider additional coordinates. The coordinate K is equal to the utilization and
will play a special role in our algorithm.

We note the following structural property of the vectors wΔ .

Observation 2. A task Θ is associated to a vector wΔ from [0, 1]K with K :=
1 + ⊃log(1+Λ)

dn

Λ2d1
⊇:

wΔ
k :=

⎟
⎠

⎠

0 if k ≤ kΔ ,
dbf∗Φ (tk)

tk
if k = kΔ + 1, . . . , kΔ + L,

uΔ otherwise,

(3)

where tk = (1 + Δ)kd1 and kΔ = ⊃log(1+Λ)(dΔ/d1)⊇ − 1.
In particular, each vector has initial coordinates zero, followed by at most L

entries of arbitrary value, followed by all entries equal to uΔ .

Approximating Real-Time Scheduling on Identical Machines 557

The following theorem connects the vector scheduling problem formally to the
sporadic task system scheduling, and follows directly from Lemmas 1 and 2, (1)
and Observation 1.

Theorem 3. Define the vectors wΔ as in (3). Given is a partition of vectors wΔ

into m sets W1, . . . ,Wm and the corresponding partition of tasks Θ ∈ T into m
sets T1, . . . , Tm. Then, for all machines i,

(i) if
⎫
⎫⎬

wΦ∗Wi
wΔ
⎫
⎫
◦ ≤ ι, then dbfTi(t) ≤ (1 + Δ)2ιt for all t ⊕ 0;

(ii) if dbfTi(t) ≤ ιt for all t ⊕ 0, then
⎫⎫⎬

wΦ∗Wi
wΔ
⎫⎫
◦ ≤ (1 + Δ)ι.

This theorem tells us that if we can partition the set of vectors wΔ ∈ W into
sets W1, . . .Wm such that ⊂⎬wΦ∗Wi

wΔ⊂◦ ≤ 1 + Δ, for all i ∈ [m], then we can
feasibly schedule the corresponding tasks in set Ti on machine i if this machine
receives a speedup factor (1 + Δ)3. Moreover, if T can be partitioned into sets
Ti such that each of these can be scheduled on a unit-speed machine, then the
corresponding sets of vectors Wi satisfy ⊂⎬wΦ∗Wi

wΔ⊂◦ ≤ 1 + Δ, for all i ∈ [m].

Thus, a (1 + Δ)-approximation for vector scheduling implies a (1 + Δ)2(1 +
Δ) = 1 +O(Δ)-feasibility test for partitioned scheduling. The result of Chen and
Chakraborty [9] follows directly from this connection, and applying Theorem 2.
In the next section we show how the running time can be improved for vector
scheduling by exploiting the special structure of the vectors wΔ as described in
Observation 2.

4 Solving the Special Case Vector Scheduling Problem

In this section we develop a substantially faster (1 + Δ)-approximation algorithm
for vector scheduling, which is specifically tailored towards vectors described
in Observation 2. We combine several techniques from bin packing and vector
scheduling and design a “sliding window” dynamic programming approach. The
time complexity of our algorithm is given in the following theorem. Note that
this theorem and Theorem 3 of the previous section suffice to prove Theorem 5.

Theorem 4. Given Δ > 0, let C =
(⌈

8L+19
Λ

⌉)L ⌈
K(8L+19)

Λ

⌉
where L = 1 +

⊃log(1+Λ)(1/Δ
2)⊇ and K = 1 + ⊃log(1+Λ)(dn/Δ

2d1)⊇. Then, given a set of vectors

W from [0, 1]K as defined in Observation 2, Algorithm 1 determines in O(mO(C))
time whether the set of vectors W can be scheduled on m machines such that
in every coordinate the load is at most 1 + Δ, or whether no feasible assignment
exists.

Proof. The theorem follows easily from Lemma 3 which will follow in Section 4.3.
Setting Π := Δ/(8L + 19) in Lemma 3 leads to a schedule with height at most
1 + (8L+ 19)Π = 1 + Δ. ∗≥
The main idea of the algorithm is, after some rounding of the vectors, to first
classify the vectors, then determine how the vectors of one class can possibly

558 N. Bansal et al.

be scheduled and finally to combine the schedule of the classes into one overall
schedule. To give a high-level overview of our algorithm in Section 4.2 and some
of the details in the subsequent subsection, we first need to introduce some
notation and concepts in the following subsection.

4.1 Notation and Definitions

Given Δ > 0, let L and K be defined as above. Let 0 < Π < 1 be a small constant
and define Σ = Π/K.

We associate each task Θ to a vector wΔ from [0, 1]K as defined in (3). We
classify these vectors into several classes depending on the index of the first non-
zero coordinate. Hereto, we say that a vector is a t-vector if its first non-zero
coordinate is coordinate t.

A t-configuration is an (L + 1)-tuple (f1, . . . , fL, fu) with, for all k ∈ [L],
fk ∈ {0, Π, 2Π, ..., Π⊆1/Π↑, 1} and fu ∈ {0, Σ, 2Σ, . . . , Σ⊆1/Σ↑, 1}. We say that (a
set of vectors assigned to) a machine i conforms to a t-configuration f =
(f1, . . . , fL, fu) if the contribution to coordinate t − 1 + k is at most fk, for all
k ∈ [L], and if the contribution to all coordinates k ⊕ t+L is at most fu. As the
first L elements in a t-configuration can attain one of ⊃1/Π⊇ different values and
the last element can attain one of ⊃1/Σ⊇ different values, the number of different

t-configurations, denoted by C, is C :=
(⌈

1
η

⌉)L ⌈
1
Ψ

⌉
.

A t-profile Q defines a t-configuration for each machine. Therefore, it can be
represented by an m-tuple Q = (q1, . . . , qm) where qi denotes the t-configuration
corresponding to machine i. On the other hand, as the number of t-configurations
is bounded by C and the machines are identical, a t-profile can also be repre-
sented by a C-tuple Q = ↓n1, . . . , nC∅ where nf denotes the number of machines
that conform to configuration f . As the numbers nf sum up to m, we find that
the number of different t-profiles is at most mC .

Finally, we define the addition of a t-profileQ and a vector e = (e1, . . . , eL, eu) ∈
[0, 1]L+1, Q + e = Q∅ = (q∅1, . . . , q

∅
m), as the pointwise addition of the vector e to

each configuration qi ∈ Q, i.e., q∅i = qi + e for all i ∈ [m].

4.2 Overview of the Algorithm

Our algorithm, given in Algorithm 1, determines whether we can feasibly sched-
ule all vectors with a load of at most 1 + Δ in every coordinate on each machine.
It first applies two rounding steps (see Step 2 and 3), to limit the number of
different vectors.

In Step 4 of the algorithm, we determine for each t = 1, . . . ,K and t-profile
R whether all t-vectors can be scheduled to conform to R. Due to lack of space
the proof of this is omitted.

Once we know, for every t, conforming to which t-profiles the set of all t-vectors
can be scheduled, we can determine conforming to which t-profiles all vectors
together can be scheduled. Hereto, we design a sliding window DP to determine
whether all k-vectors (k < t) can be combined with all t-vectors to conform to

Approximating Real-Time Scheduling on Identical Machines 559

a given t-profile Q (Section 4.3). The final result can then easily be obtained by
taking t = K and Q equal to the all-1 profile, i.e., qi = 1 for all i. When T [K,1]
returns true, Algorithm 1 also can be used to find the corresponding solution.

Both Step 4 and Step 5 of Algorithm 1 need to be able to determine whether a
t-profile R and a (t−1)-profile (or t-profile) S can be combined into a t-profile Q.
This can be determined in advance in O(mO(C)) time, but the proof is omitted.

Algorithm 1. Vector Scheduling algorithm

Require: Input: a set W of vectors wδ as defined in Section 3, and η > 0.
1: Define δ := η/K.
2: For each vector wδ round each component wδ

k down to the nearest power of 1
1+η

.
3: Modify each vector

zδk :=

{
0 if wδ

k ← δ ◦wδ◦∞ ,

wδ
k otherwise.

4: Determine whether all t-vectors can be scheduled conforming to t-profile R, for all
possible t-profiles R and all t.

5: Let T [t,Q] be true if all k-vectors with k ← t can be scheduled conforming to t-
profile Q, and false otherwise. Determine T [t,Q] for all possible t-profiles Q and
all t.

6: Return T [K, 1].

4.3 The Sliding Window Dynamic Program

In this subsection, we introduce a dynamic program to determine whether all
k-vectors with k ≤ t can be scheduled conforming to t-profile Q. To be precise,
we compute the values T [t, Q], which essentially evaluates to true if all k-vectors
with k ≤ t can be scheduled conforming to t-profile Q. The dynamic program
works in K phases as it moves from the first coordinate to coordinate K. While
scheduling all t-vectors in a certain phase t, the DP also looks ahead to the next
L− 1 coordinates and the last utilization coordinate to ensure no conflicts arise
in these coordinates. That is, we slide a window covering L coordinates from
coordinate 1 to coordinate K in as many phases.

Intuitively, phase t corresponds to scheduling the t-vectors, given a partial
schedule for all k-vectors with k < t. To determine the value of T [t, Q], we split
the t-profile Q into a t-profile R and a (t− 1)-profile S that capture the division
of space per machine and per coordinate between the t-vectors and the other
k-vectors with k < t.

Since the t-configurations are “coarse valued” (all values are multiples of either
Π or Σ), it is unclear how to split the t-profile Q: perhaps a coordinate fk of the
t-configuration can be split into two parts yielding a feasible t-profile R and
a (t − 1)-profile S, but not in such a way that the two parts are multiples of
Π. In that case, the corresponding DP-cell is erroneously evaluated to false. To
circumvent this issue, an additional small error in each phase of the sliding

560 N. Bansal et al.

window DP is allowed. For this reason the vector (Π, . . . , Π, Σ) is added to the
(t− 1)-profile S.

The boolean value B[t, R], that essentially denotes whether all t-vectors can
be scheduled conforming to t-profile R, can be precomputed in O(mO(C)) time
(proof is omitted). Once these values are known, the recursive formula for T can
be easily computed by considering all possible combinations of t-profiles R and
(t−1)-profiles S that can be combined to a t-profile Q, and determining whether
or not all t-vectors can be scheduled conforming to R and all other k-vectors
with k < t can be scheduled conforming to S + (Π, . . . , Π, Σ). That is, for t > 1,

T [t, Q] =
∨

(R,S)∗W(Q)

(B[t, R] ≡ T [t− 1, S + (Π, . . . , Π, Σ)]), (4)

where W(Q) contains all tuples (R,S) of t-profiles R and (t− 1)-profiles S that
Q can be split into. The base case of the recursion is

T [1, Q] = B[1, Q]. (5)

To evaluate the running time of computing T [K,Q], we note that B[t, R] is
precomputed and can be accessed in O(1) time. The proof of the following lemma
is omitted due to lack of space.

Lemma 3. Let W be a set of vectors wΔ as defined in (3) and let Π > 0 be small
enough. Algorithm 1 decides in O(KmO(C)) time whether there exists a partition
of the vectors W into m sets W1, . . . ,Wm such that

⎫
⎫⎬

wΦ∗Wi
wΔ
⎫
⎫
◦ < 1+(8L+

19)Π for all i, or that there does not exist a partition with
⎫
⎫⎬

wΦ∗Wi
wΔ
⎫
⎫
◦ ≤ 1.

Note that if we choose Π = Δ/(8L+19), we prove Theorem 4 and find a partition
of height at most 1 + Δ.

5 Conclusion

Combining Theorem 3 and Theorem 4 yields the desired result.

Theorem 5. Given Δ > 0, a task set T and m parallel identical processors, there
is an algorithm which correctly decides in O

(
mO(f(Λ) log Σ)

)
time whether T can

be feasibly partitioned with a speedup of 1 + Δ, or no feasible partition exists in
case the machines run at unit speed, where Γ = dn/d1, the ratio between the
largest and smallest deadline, and f(Δ) is a function depending solely on Δ.

Proof. Theorem 4 determines in O(mO(C)) time whether a feasible solution to
the vector scheduling problem exists with a speedup factor of 1 + Δ, or whether
no such partition of the vectors to the machines exists without speedup. Thus
in light of Theorem 4, Theorem 3 implies that if there exists a feasible partition
for the vector scheduling problem, then this partition is feasible for our real-time
scheduling problem if the machines receive a speedup factor of (1+ Δ)3, and that
if no feasible partition for the vector scheduling problem exists, then no feasible
partition exists for the real-time scheduling problem in case the machines run at
speed 1/(1 + Δ). Rescaling Δ appropriately yields the stated result.

Approximating Real-Time Scheduling on Identical Machines 561

References

1. Baker, T.P., Baruah, S.K.: Schedulability analysis of multiprocessor sporadic task
systems. In: Handbook of Real-Time and Embedded Systems, ch. 3. CRC Press
(2007)

2. Bansal, N., Vredeveld, T., van der Zwaan, R.: Approximating vector scheduling:
Almost matching upper and lower bounds. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 47–59. Springer, Heidelberg (2014)

3. Baruah, S., Fisher, N.: The partitioned multiprocessor scheduling of sporadic task
systems. In: Proceedings of 26th IEEE Real-Time Systems Symposium, pp. 321–
329. IEEE (2005)

4. Baruah, S., Goossens, J.: Scheduling real-time tasks: Algorithms and complexity.
In: Leung, J.Y.-T. (ed.) Handbook of Scheduling: Algorithms, Models and Perfor-
mance Evalution, ch. 28. CRC Press (2004)

5. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of 11th IEEE Real-Time Systems Sympo-
sium, pp. 182–190. IEEE (1990)

6. Baruah, S.K., Pruhs, K.: Open problems in real-time scheduling. Journal of
Scheduling 13, 577–582 (2010)

7. Chakraborty, S., Künzli, S., Thiele, L.: Approximate schedulability analysis. In:
Proceedings of 23rd IEEE Real-Time Systems Symposium, pp. 159–168. IEEE
(2002)

8. Chekuri, C., Khanna, S.: On multi-dimensional packing problems. SIAM Journal
on Computing 33(4), 837–851 (2004)

9. Chen, J.-J., Chakraborty, S.: Partitioned packing and scheduling for sporadic real-
time tasks in identical multiprocessor systems. In: Proceedings of 24th Euromicro
Conference on Real-Time Systems, pp. 24–33 (2012)

10. Eisenbrand, F., Rothvoß, T.: EDF-schedulability of synchronous periodic task sys-
tems is coNP-hard. In: Proceedings of 21st Symposium on Discrete Algorithms,
pp. 1029–1034 (2010)

11. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM 20, 46–61 (1973)

12. Marchetti-Spaccamela, A., Rutten, C., van der Ster, S., Wiese, A.: Assigning spo-
radic tasks to unrelated parallel machines. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 665–676.
Springer, Heidelberg (2012)

Integrated Supply Chain Management

via Randomized Rounding

Lehilton L.C. Pedrosa1,Δ and Maxim Sviridenko2,ΔΔ

1 Institute of Computing, University of Campinas, Brazil
2 Department of Computer Science, University of Warwick, UK

Abstract. We consider the supply chain problem of minimizing order-
ing, distribution and inventory holding costs of a supply chain formed
by a set of warehouses and retailers over a finite time horizon, that we
call Production and Distribution Problem (PDP). This is a common gen-
eralization of the classical Metric Facility Location Problem and Joint
Replenishment Problem, that coordinates the network design and inven-
tory management decisions in an integrated manner. This coordination
can represent significant economy for many applications, where network
design and operational costs are normally considered separately. This
problem is considered when the instances satisfy assumptions such as
metric space of warehouse and retailer locations, and monotonic increas-
ing inventory holding costs. In this work, we give a 2.77-approximation
based on the randomized rounding of the natural mixed integer pro-
gramming relaxation. Also, we give a 5-approximation for the case that
objective function includes retailer ordering costs.

1 Introduction

We consider a supply chain management problem of minimizing ordering, dis-
tribution and inventory holding costs of a supply chain formed by a set of
warehouses and retailers. Each retailer can face a demand in a given time of
a discretized planning horizon. This demand should be satisfied by the items
currently held in the inventory, that were previously ordered and transported
from any of the warehouses. The objective is to determine an inventory replen-
ishment policy for each retailer, minimizing the overall cost of inventory holding,
and transportation. These costs are balanced by a fixed ordering setup cost that
depends on the warehouse, but is independent of the number of items produced.

Traditionally, network design, distribution and inventory replenishment deci-
sions are made separately. In the location theory, the literature focuses on the
strategic decisions of network design, such as where to place facilities and how
to assign one facility to each client. On the other hand, in the inventory the-
ory, a static network design is usually assumed. Such a static network design

� Research supported by FAPESP (grant number 2012/17634-0). This work was done
while the author was visiting the Dep. of Computer Science, University of Warwick.

�� Research supported by EPSRC grant EP/J021814/1, EP/D063191/1, FP7 Marie
Curie Career Integration Grant and Royal Society Wolfson Research Merit Award.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 562–573, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Integrated Supply Chain Management via Randomized Rounding 563

has defined assignments between facilities and clients, and the decisions are con-
centrated on determining replenishment policies for the inventory. However, the
lack of coordination between inventory and shipment costs when determining
the network design leads to sub-optimality [12].

Problem definition. We consider a generalization of the Facility Location Prob-
lem (FLP), that we call Production and Distribution Problem (PDP). We are
given a set of warehouses P , and a set of retailers Q. Each retailer q may face
a demand for dqt ⊕ Z+ units of item in each time t of a discretized planning
horizon with steps {1, . . . , T }. Each demand can only be satisfied with items
that are currently held in the stock of the corresponding retailer, i.e., we have
a make-to-stock scenario. The stock is initially empty, and may be replenished
by placing orders to any warehouse. There is no stock at warehouse facilities, so
every time s that a warehouse p receives an order, the demanded items are pro-
duced at a setup cost kp, that is independent of the number of items produced,
or the number of retailers participating in the order. Once the items have been
produced, each unit is transported to the requesting retailer q at a cost cpq. We
assume that the transportation time is negligible, so each unit of item is held
in stock of retailer q from the time s it is was produced until the time t it was
delivered. The holding cost incurred for this item is hqst. The objective is to min-
imize the overall sum of ordering, distribution, and holding costs. An equivalent
mixed integer programming (MIP) formulation is given in Subsection 2.2.

Related works. The literature on integrated supply chain problems have consid-
ered several design and inventory problems, with different network structures,
objective functions, and constraints. For reviews, see [12,10]. In different models,
each retailer must be assigned to one supplier [16,12,8], or can be assigned to
different suppliers in different times [11,1]. Several approaches have been used
to deal with these problems, such as Lagrangean relaxation [5], column gen-
eration [13,16], and meta-heuristics [3,1]. Pochet and Wosley have discussed
valid inequalities for the mixed integer programming formulation of a gener-
alized PDP [11, Section 13.4] with warehouse storage and production capacity.
Approximation algorithms have been proposed for few problems, such as the
Warehouse-Retailer Network Design Problem (WRND) [16,8], and the Stochastic
Transportation-Inventory Network Design Problem (STIND) [14,8]. Both admit
3-approximation factors via primal-dual [8]. These problems have infinite time
horizons, with constant (WRND), or stochastic demand rates (STIND).

Our results and techniques. We study the PDP under a natural assumption that
the transportation and holding cost functions satisfy a generalization of the tri-
angle inequality. The intuition for this assumption is that in many applications
it is cheaper to transport one item from the warehouse to the retailer of desti-
nation directly, rather than using other retailers as storage midpoints. The main
contribution of this work is a 2.77-approximation for the PDP. Our algorithm
is based on the randomized rounding of the natural LP relaxation, and uses
clustering of demand points, in the spirit of FLP algorithms [15,4,2], but has to

564 L.L.C. Pedrosa and M. Sviridenko

carefully select the order to place for each cluster, due to the additional temporal
restriction. This extra step leads to a worse service approximation factor, when
compared to the standard FLP. To balance the ratios for ordering and service
costs, we use two different approaches. In the first approach, we place two orders
for each cluster. This results in high ordering cost, but reduces significantly the
expected service cost. In the second approach, we use the filtering technique [9]
parameterized by some α to obtain the opposite imbalance on the approxima-
tion guarantee. Combining the two approaches is done by the use of a probability
distribution over the choice of parameter α, or the use of the first approach. We
also consider the PDP when there is a positive setup cost kq for each time a
retailer q places an order. For this variant, we give a 5-approximation.

In Section 2, we describe the assumptions on the service cost structure, give a
mixed integer linear program formulation for the PDP, and review the filtering
technique. In Section 3, we present the approximation for the PDP. Finally, in
Section 4, we extend this algorithm to obtain an approximation for the PDP
with retailer ordering costs.

2 Assumptions and Basic Techniques

2.1 Holding and Transportation Costs Model

The service cost of a demand point is the sum of distribution and inventory
holding costs. We describe assumptions on the cost functions in the following.

For the most inventory problems considered in the literature, the holding cost
is modeled on a per unit and per time step basis, that is, in traditional inventory
models a non-negative cost hqt is incurred to hold one unit of item from time
step t to time step t+ 1 in the stock of retailer q. For the PDP, the holding cost
is modeled by the more general function hqst. We assume that this holding cost
function is monotonic, that is, the holding cost can only decrease if the period
that an item is kept in the stock is shortened.

Assumption 1. Fix a retailer q. Let s, s∗, t, t∗ be time steps such that s ≤ t and
s∗ ≤ t∗. If [s, t] ⊆ [s∗, t∗], then hqst ≤ hqs≥t≥ .
For network design problems, such as the Facility Location Problem and k-
medians, it is common to make the assumption that facilities and clients are in
a metric space, that is, the distance between facilities and clients is a symmetric
function that satisfies the triangle inequality. Indeed, if no restrictions on the dis-
tance function are made, then Facility Location Problem is hard to approximate
by a factor better than O(log n). For many distribution problems, however, the
assumption of triangle inequality can be made without loss of generality. The
reason is that one can create a modified instance where the new distance func-
tion is defined the by the lengths of the shortest paths in the original graph.
This new instance can be solved assuming the triangle inequality, and a solution
of non-greater cost for the original problem can be obtained by rerouting direct
routes by the shortest paths of the graph. We define an analogous notion for
the PDP.

Integrated Supply Chain Management via Randomized Rounding 565

q′

p

p′

s s′

s′s
q

t

(a) Rerouting

qt

ps p′s′

q′t′

(b) Triangle inequality

Fig. 1. Mixed holding and transportation costs metric

Assumption 2. For all retailers q and q∗, warehouses p and p∗, and time steps
s, s∗ and t, with s ≤ s∗ ≤ t, it holds: cpq +hqst ≤ cpq≥ +hq≥ss≥ + cp≥q≥ + cp≥q +hqs≥t.

This assumption states that the cost to transport one item from the warehouse
p directly to the retailer q, and holding it in q until the delivery time t is cheaper
than the following alternative route: transporting the item from the warehouse
p to the retailer retailer q∗, holding it from time s to time s∗, then transporting
it again from retailer q∗ to retailer q through warehouse p∗, and holding it until
time t (see Figure 1a). This inequality can also be interpreted in the following
way: the cost to serve demand point (q, t) directly by order (p, s) is not greater
then the overall cost to serve demand (q, t) by order (p∗, s∗) and some demand
(q∗, t∗) by orders (p, s) and (p∗, s∗) (Figure 1b). Since this inequality resembles
the triangle inequality, we say that a pair of holding and transportation costs
that satisfy Assumption 2 forms a metric service cost for the PDP.

2.2 A Linear Programming Relaxation

The PDP has a natural formulation as a MIP problem. This is analogous to that
of facility location problems, where a client is a demand point, and a facility is
a warehouse order. For PDP, however, a demand can only be served by orders
placed before the arrival time. In the following, let D ⊆ Q × [T] be the set
of all positive demand points. Also, let P = P × [T] be the set of all potential
warehouse orders, and for each t ⊕ [T], let Pt = P×[t] be the set of all warehouse
orders that can serve a demand point at time t. Variable xqtps means that demand
(q, t) is served by order (p, s), and yps means means that order (p, s) is placed.

minimize
∑

(p,s)⊆P yps kp +
∑

(q,t)⊆D
∑

(p,s)⊆Pt
xqtps dqt(hqst + cpq)

subject to
∑

(p,s)⊆Pt
xqtps ⊗ 1 (q, t) ⊕ D

xqtps ≤ yps (q, t) ⊕ D, (p, s) ⊕ Pt

xqtps ⊗ 0 (q, t) ⊕ D, (p, s) ⊕ Pt

yps ⊕ {0, 1} (p, s) ⊕ P

(1)

566 L.L.C. Pedrosa and M. Sviridenko

A linear relaxation can be obtained by replacing the integrality constraints
by constraints yps ⊗ 0 for all (p, s) ⊕ P . The dual program of the relaxation is

maximize
∑

(q,t)⊆D bqt

subject to bqt ≤ dqt(hqst + cpq) + zqtps (q, t) ⊕ D, (p, s) ⊕ Pt
∑

(q,t)⊆D:t◦s z
qt
ps ≤ kp (p, s) ⊕ P

zqtps, bqt ⊗ 0 (q, t) ⊕ D, (p, s) ⊕ P

(2)

Given any feasible solution (x, y), we define for each demand j = (q, t), the
set Sj of all orders (p, s) ⊕ Pt such that xqtps > 0. This set is called the service
set of j, and the interval [min(p,s)⊆Sj s, t] is its service window. The fractional
service cost of demand j is Sj = Cj +Hj, where Cj =

∑
(p,s)⊆Sj x

qt
ps dqtcpq is the

fractional distribution cost of j, and Hj =
∑

(p,s)⊆Sj x
qt
ps dqthqst is the fractional

holding cost of j.
Let (x∼, y∼) be an optimal solution for the LP relaxation of a given PDP

instance. The cost is divided in ordering cost K∼ =
∑

(p,s)⊆P y
∼
ps kp, and service

cost S∼ = C∼ + H∼, where C∼ =
∑

(q,t)⊆D,(p,s)⊆Pt
x∼qtps dqtcpq is the distribution

cost, and H∼ =
∑

(q,t)⊆D,(p,s)⊆Pt
x∼qtps dqthqst is the holding cost.

2.3 Complete Solutions and Filtering

Complete Solutions. In a complete solution, each demand point is fully served
by the most economical orders. This is formalized as following: for a fixed demand
point j = (q, t), consider a permutation πj of warehouse orders Pt such that
the elements are listed in non-decreasing order of service cost, that is, if πj =
((p1, s1), . . . , (pk, sk)), where k = |Pt|, then cp1q + hqs1t ≤ · · · ≤ cpkq + hqskt.
Assume that for each demand point j, permutation πj is unique, by breaking
ties arbitrarily, but in a fixed way (two elements appear in the same order in all
permutations in which they tie). A solution (x, y) of the LP is said to be complete
if for every demand point (q, t) there is an index l, such that xqtpisi = ypisi if i ≤ l,
and xqtpisi = 0 if i > l.

Any feasible solution can be transformed into a complete solution of no greater
cost. Indeed, let (x, y) be a feasible solution of the LP. We create a new solution
(x̄, ȳ), such ȳ = y, and x̄ is given by serving each demand point j = (q, t) greedily
by the orders in the permutation πj . More precisely, for each (q, t) ⊕ D, let l

be minimum such that
∑l

i=1 ypisi ⊗ 1. Since (x, y) is feasible, we know that
there is such an l. Now, we define x̄qtpisi = ypisi for each i ≤ l, and x̄qtpisi = 0
for each i > l. We assume without loss of generality that (x̄, ȳ) is complete,

that is,
∑l

i=1 ypisi = 1. In the case that the solution is not complete, we can
always replace pl by two warehouses p∗l and p∗∗l at the same location, and split

its fractional ordering yplsl between p∗l and p∗∗l , such that yp≥
lsl

= 1−∑l−1
i=1 ypisi ,

and yp≥≥
l
sl = yplsl − yp≥

l
sl . Repeating this for each demand point, we obtain an

equivalent instance with corresponding complete solution (the arguments are
completely analogous to Lemma 1, in [15]).

Integrated Supply Chain Management via Randomized Rounding 567

Filtering. This technique was introduced in by Lin and Vitter [9], and was
used by many algorithms for the FLP [15,2]. The idea is that if (x, y) is a
complete solution, then for each demand j = (q, t) we can consider only the
subset of orders in Sj that is the most economical. This subset is formed by
the orders in the minimal prefix of permutation πj that serves an α fraction
of the demand. Formally, given a parameter α ⊕ (0, 1], let l be the minimal

index such that
∑l

i=1 ypisi ⊗ α. The α-neighborhood of a demand point j is
the set Nj(α) = {(pi, si) : i ≤ l}. The radius Rj(α) of this neighborhood is
the maximum cost paid to serve j by an order in Nj(α), that is, Rj(α) =
max(p,s)⊆Nj(Σ) dqt(cpq + hqst).

Intuitively, if we increase the amount of fractional orders of an LP solution,
then the average service cost of a given demand should decrease. Indeed, given
a solution (x, y), the filtering technique consists of scaling up the y variables by
1/α, then defining x such that each demand is fully satisfied by orders in its α-
neighborhood. We will obtain a complete solution (x̄, ȳ) (by splitting warehouse
fractional ordering if necessary). For a demand j = (q, t), we denote the average
service cost by Wj(α) =

∑
(p̂,ŝ)⊆Nj(Σ)

x̄qtp̂ŝ dqt(cp̂q + hqŝt).

3 Approximation for the Metric PDP

3.1 Clustering

Many algorithms for the metric FLP are based on a clustering technique. In
such algorithms, we are given an optimal solution for the LP relaxation, and
construct the support graph corresponding to this solution, that is, the bipartite
graph that contains an edge for each pair of client and facility such that the
client is fractionally served by the facility in the LP solution. In the support
graph, two clients are called neighbors if they are adjacent to a common facility.
A partition of the clients is then obtained, such that any client in a given cluster
is neighbor to a leading client, that is called the cluster center. It is required
that no two cluster centers are neighbors. The algorithms for the FLP use the
following greedy procedure: while not all clients are clustered, choose a cluster
center with a certain greedy criterion, and create a new cluster with this center
and all its neighbors. Different greedy criteria lead to different algorithms and
analyses.

We use a clustering algorithm for the PDP. However, in the PDP, we are
not aiming to locate facilities to be opened, rather, the warehouses are already
established, and we want to select the set of time steps at which we place orders
for each warehouse. Therefore, we can think of an order formed by a pair of
warehouse and time step as a single facility. Analogously, each demand can be
though of as a single client, that is willing to be connected to this “facility”.
We can then construct the corresponding support graph, and proceed to the
clustering algorithm, in a way similar to facility location algorithms.

Formally, the support graph G is the bipartite graph such that the vertices are
formed by the disjoint union P∈D, and there is an edge between order (p, s) ⊕ P

568 L.L.C. Pedrosa and M. Sviridenko

and demand (q, t) ⊕ D if (p, s) ⊕ Sj . Notice that, contrary to the case of the
facility location, when a non-center client could always be indirectly connected
to any facility that served the cluster center, for the PDP, it can happen that
a non-center demand (q, t) cannot be served by an order adjacent to its cluster
center (q∗, t∗). This happens when demand (q, t) arrives before (q∗, t∗), that is
t < t∗, and cluster center (q∗, t∗) is adjacent to some order (p, s) with s > t.
To guarantee that every demand in a cluster is served, we place orders at the
beginning of the cluster center’s service window.

Algorithm 1 (Clustering algorithm)
We are given a complete solution (x, y) for the LP relaxation, and an ordered
list of demand points L. The algorithm returns a set F ∗ of placed orders, and a
clustering C of demand points.
1. Construct the support graph G.
2. While there are unclustered demands points:

(a) Create cluster D with the next unclustered element j∗ in L as center.
(b) Add all unclustered demand points that are neighbors of j∗ to D.
(c) Add D to clustering C.

3. For each cluster D with center j∗:
(a) Choose one order (p̄, s̄) ⊕ Sj≥ with probability yp̄s̄.
(b) Let s∗= min(p̂,ŝ)⊆Sj≥ ŝ, and p∗= p̄.

(c) Add (p∗, s∗) to set F ∗.

Different choices of the list L lead to algorithms with different approximation
guarantees. In Subsection 3.2, list L will be the set of demands in increasing
order of (C∼j≥ + 2b∼j≥)/dj≥ , and in Subsection 3.3 the demands will be chosen by
order of (Wj≥ (α) + 2Rj≥(α))/dj≥ , for some parameter α.

Suppose that we run Algorithm 1 for an optimal LP solution (x∼, y∼), and
some arbitrary list L. Let KF ≥ =

∑
(p,s)⊆F ≥ kp be the total cost of the orders

in the set F ∗. The next lemmas calculates the expected value of KF ≥ , and the
expected cost to serve one unit of a demand point.

Lemma 1. Let KF ≥ be the ordering cost Algorithm 1, then E[KF ≥] ≤ K∼.
Lemma 2. Let j = (q, t) be a demand point, and j∗ = (q∗, t∗) be the correspond-
ing cluster center. Then, E

[
min(p,s)⊆F ≥(cpq + hqst)

] ≤ (C∼j≥ + 2b∼j≥)/dj≥ + b∼j/dj.

Proof. Let (p∗, s∗) be the order placed by Algorithm 1 at step 3(c) corresponding
to cluster center j∗, and (p̄, s̄) be the order drawn in step 3(a). It is enough to
bound the expected cost to serve one unit of j by order (p∗, s∗).

Since j∗ is the cluster center corresponding to j, we know that there is an order
(p, s) ⊕ Sj ∗ Sj≥ . We obtain s∗ ≤ s, since s is in the service window of j∗ and s∗

is the minimum time step in this service window. Also, we get s ≤ t, because
demand j is fractionally served by (p, s). Similarly, demand j∗ is fractionally
served by (p, s), so s ≤ t∗ (see Figure 2). Using Assumption 2, we obtain

cp≥q + hqs≥t ≤ cp≥q≥ + hq≥s≥s + cpq≥ + cpq + hqst

≤ cp≥q≥ + hq≥s≥t≥ + cpq≥ + cpq + hqst,

Integrated Supply Chain Management via Randomized Rounding 569

p′

q
q′

Sj′

p
Sj

(a) In space

j′ ������� ���	
�

t′s′

j ������� ���	
�

s̄

ts

(b) In time

Fig. 2. Possible configuration

where the last inequality follows from Assumption 1 and the fact that s ≤ t∗.
Since (p, s) ⊕ Sj , we obtain xqtps > 0. By complementary slackness, it follows
that b∼j = dj(hqst + cpq) + zqtps, and thus hqst + cpq ≤ b∼j/dj . Similarly, we also get
hq≥s≥t≥ ≤ b∼j≥/dj≥ , and cpq≥ ≤ b∼j≥/dj≥ . Finally, the expected value of cp≥q≥ is

E[cp≥q≥] = E[cp̄q≥] =
∑

(p̂,ŝ)⊆Sj≥ y
∼
p̂ŝ cp̂q≥ =

∑
(p̂,ŝ)⊆Sj≥ x

∼q≥t≥
p̂ŝ cp̂q≥ = C∼j≥/dj≥ ,

where the third equality holds because the solution is complete. Adding up all
terms, we obtain the desired statement.

3.2 Balancing Using Extra Orders

Lemmas 1 and 2 give bounds to the ordering and service costs of the solution
yielded by Algorithm 1. One can observe the imbalance between the low value of
ordering cost and the high value of the service cost. Indeed, Lemma 2 bounds the
demand service cost in the worst case, when a demand point is served through its
cluster center. For the FLP, the algorithms [15,4,2] would first try to connect a
client to its close facilities. In fact, they would open the unclustered facilities after
the clustering phase, so that facilities in service sets are opened independently,
or negatively correlated, with probability equal to the fractional opening. This
implies that there is, with constant probability, an open close facility.

For the PDP, however, this approach cannot be applied directly. The reason
is that the orders placed for each cluster are moved to earlier times, and thus
serving demand points by the corresponding orders would incur an extra holding
cost, that is potentially unbounded. Instead, for the PDP, we place an extra set
of orders, in their original time positions. This increases the total ordering cost,
but such increase is compensated by the decrease of the service cost.

Algorithm 2 (Balancing algorithm)
We are given an instance of the PDP. The algorithm returns a solution for this
instance, formed by a set of orders F ∗ ∈ F ∗∗.
1. Solve the LP relaxation, and obtain solution (x∼, y∼) and b∼.
2. Make the solution complete, splitting fractional ordering if necessary.
3. Run Algorithm 1 using (x∼, y∼), and L as the set of demand points j∗ in

increasing order of (C∼j≥ + 2b∼j≥)/dj≥ . Obtain obtain set of orders F ∗.
4. For each (p, s) ⊕ P , add order (p, s) to set F ∗∗ with probability y∼ps.

570 L.L.C. Pedrosa and M. Sviridenko

5. Place an order for each element of F ∗ ∈ F ∗∗.
6. Serve each demand point (q, t) by the order (p, s) that minimizes cpq + hqst.

The following lemma bounds the expected service cost of the cheapest placed
order in a subset A of P , conditioned to the event that there is one placed
order in A. Since versions of this lemma have appeared in several LP rounding
algorithms for the FLP (for instance, see Lemma 4.2 in [2]), we omit the proof.

Lemma 3. E

[
min

(p,s)⊆A∈F ≥≥
(cpq + hqst)

∣
∣
∣∣A ∗ F ∗∗ ≥= ⊆

]
≤

∑

(p,s)⊆A
y∼ps (cpq + hqst).

Theorem 1. The balancing algorithm produces a solution for the PDP with
expected cost at most (2 + 3

e)K∼ + (1 + 3
e)C∼ + (1 + 2

e)H∼.

Proof. Let KF ≥≥ be the expected cost of orders in F ∗∗. We obtain E[KF ≥≥] =
E[

∑
(p,s)⊆F ≥≥ kp] =

∑
(p,s)⊆P y

∼
pskp = K∼.

Consider a demand point j = (q, t). We calculate the service cost cj to serve j
by a placed order in F ∗ ∈ F ∗∗ if we used the following, suboptimal, algorithm: if
Sj ∗F ∗∗ is not empty, then we serve j by the closest order in Sj ∗F ∗∗, otherwise
we serve it indirectly through its cluster center j∗. Let pc be the probability that

Sj ∗F ∗∗ ≥= ⊆. We have pc = 1−∏
(p,s)⊆Sj (1−y∼ps) ⊗ 1−e−

∑
(p,s)∗Sj

y∗
ps = 1−e−1.

Now, combining with Lemmas 2 and 3, we obtain

E[cj] ≤ pc
∑

(p,s)⊆Sj y
∼
ps dj(cpq + hqst) + (1− pc) dj((C∼j≥ + 2b∼j≥)/dj≥ + b∼j/dj)

≤ pc (C∼j +H∼j) + (1− pc) dj((C∼j + 2b∼j)/dj + b∼j/dj)

≤ (1 − e−1)(C∼j +H∼j) + e−1(C∼j + 3b∼j),

where the second inequality follows since j∗ was chosen as cluster center, thus
(C∼j≥ + 2b∼j≥)/dj≥ ≤ (C∼j + 2b∼j)/dj , and the last inequality follows since, by com-

plementary slackness, C∼j +H∼j ≤ C∼j + 3b∼j , and pc ⊗ 1− e−1. Finally, we get

E[KF ≥] + E[KF ≥≥] +
∑

j⊆D E[cj]

≤ K∼ +K∼ +
∑

j⊆D
(
(1− e−1)(C∼j +H∼j) + e−1(C∼j + 3b∼j)

)

= K∼ +K∼ + (1− e−1)(C∼ +H∼) + e−1(C∼ + 3(K∼ + C∼ +H∼))

= (2 +
3

e
)K∼ + (1 +

3

e
)C∼ + (1 +

2

e
)H∼.

3.3 Balancing Using Filtering

Other way to fix the imbalance between the production and the service cost is
using the filtering technique: the fractional ordering yps is scaled by a factor
1/α, for some α ⊕ (0, 1]. Notice that yps can become larger than 1; in this case,
a copy of the warehouse p is made, and the fractional ordering yps is split in
the filtering step. Intuitively, placing “more times” each warehouse order should
increase the probability of a client being served by a cheap order.

Integrated Supply Chain Management via Randomized Rounding 571

Algorithm 3 (Filtering algorithm)
Given an instance of the PDP and a parameter α, the algorithm returns a
solution for this instance, formed by warehouses orders F ∗.
1. Solve the LP relaxation and obtain solution (x∼, y∼).
2. Scale up the ordering variables y∼ by 1/α. Change variables x∼, and obtain

a complete solution (x̄, ȳ), splitting warehouses orders if necessary.
3. Run Algorithm 1 with solution (x̄, ȳ), passing as list L the set of demand

points j∗ in increasing order of (Wj≥ (α) + 2Rj≥(α))/dj , and obtain set F ∗.
4. Serve each demand point (q, t) by the order (p, s) that minimizes hqst + cpq.

The following lemmas are similar to Lemmas 1 and 2. Recall that Rj(α) is
the maximum service cost in the α-neighborhood of demand j, an Wj(α) is the
average service cost in this neighborhood.

Lemma 4. Let KF ≥ be the ordering cost of Algorithm 3, then E[KF ≥] ≤ 1/αK∼.

Lemma 5. If j = (q, t), then E
[
min(p,s)⊆F ≥ dj(cpq + hqst)

] ≤Wj(α) + 3Rj(α).

Lemma 4 shows that the approximation factor of the filtering algorithm for the
ordering cost depends only on the parameter α. On the other hand, as it can be
seen in Lemma 5, the service cost depends on the neighborhood radius function
of each demand point j. Therefore, the input instance can be characterized by
summation of such radius functions, as in the following definition.

Definition 1. Given an instance of the PDP, and an optimal fractional solution
(x∼, y∼), the characteristic function r : [0, 1]↑ R

+ is r(α) =
∑

j⊆D Rj(α)/S∼.

Remark 1. The characteristic function r(α) satisfies to:
∫ 1

0
r(t)dt = 1.

Corollary 1. The total expected service cost of filtering algorithm is bounded by(
(1/α)

∫ Σ

0 r(t)dt + 3r(α)
)
S∼.

3.4 Combining Different Algorithms

Algorithm 2 is a bifactor approximation algorithm, that achieves factor 2 + 3/e
for the ordering cost, and factor 1 + 3/e for the service cost (i.e., holding and
transportation costs). Similarly, for each value of parameter α, Algorithm 3 is a
bifactor approximation with factors 1/α and (1/α)

∫ Σ

0
r(t)dt + 3r(α).

To combine the two algorithms, we use the following strategy: with a given
probability δ, we run Algorithm 2, and with probability 1−δ we run Algorithm 3
with parameter α drawn from a probability density function f : (0, 1] ↑ R

+.
A similar approach has been done in the algorithm by Li [7], for the FLP. Let
SOL be the cost corresponding to this algorithm, thus

E[SOL] ≤ (A2) δ +
(∫ 1

0 A3(α)f(α)dα
)

(1− δ), (3)

where A2 = (2 + 3
e)K∼ + (1 + 3

e)S∼ is the expected cost of Algorithm 2, and

A3(α) = 1/αK∼ +
(
(1/α)

∫ Σ

0 r(t)dt + 3r(α)
)
S∼ is the expected cost of Algo-

rithm 3 with parameter α.

572 L.L.C. Pedrosa and M. Sviridenko

For simplicity, we let g(α) = (1− δ)f(α), so that δ+
∫ 1

0
g(α)dα = 1. We may

rewrite (3) as E[SOL] ≤ β(δ, g)K∼ + γ(δ, g, r)S∼, where β(δ, g) and γ(δ, g, r)
are the obtained approximation factors for ordering and service costs of the
combining algorithm, respectively. We obtain

β(δ, g) = (2 +
3

e
)δ +

∫ 1

0

1

α
g(α)dα, (4)

γ(δ, g, r) = (1 +
3

e
)δ +

∫ 1

0

(
(1/α)

∫ Σ

0

r(t)dt + 3r(α)

)
g(α)dα. (5)

We define g(α) and δ as follows, where α0 ⊕ (0, 1], and c > 0 are constants to
be defined later:

g(α) =

{
0 α < α0

c α
1
3 α ⊗ α0

and δ = 1−
∫ 1

0

g(α)dα. (6)

Substituting g(α), when α ⊕ [α0, 1], we can simplify the indefinite integral in (5)

∫ (
(1/α)

∫ Σ

0

r(t)dt + 3r(α)

)
g(α)dα =

∫ ∫ Σ

0

r(t)dt cα−
2
3 dα+

∫
3r(α)cα

1
3 dα

=

∫ Σ

0

r(t)dt · 3cα 1
3 −

∫
3cα

1
3 r(α)dα +

∫
3r(α)cα

1
3 dα = 3c

∫ Σ

0

r(t)dt · α 1
3 dα,

that used integration by parts in the second equality. Now, we obtain calculating
the definite integrals that

β(δ, g) = (2 +
3

e
)δ + 3c(1

1
3 − α 1

3
0), (7)

γ(δ, g, r) = (1 +
3

e
)δ + 3c

[∫ 1

0

r(t)dt · 1 1
3 −

∫ Σ0

0

r(t)dt · α 1
3
0

]

≤ (1 +
3

e
)δ + 3c, (8)

where the inequality comes from Remark 1, and the fact that r(t) is non-negative.
Notice that the last expression bounds γ(δ, g, r), and does not depend on r, so
it is independent of the input instance. By appropriately choosing c and α0, we
are ready to give an approximation factor for the combining algorithm.

Theorem 2. There exists a pair (δ, g) such that, for any characteristic func-
tion r, we obtain that max{β(δ, g), γ(δ, g, r)} ≤ 2.77.

4 PDP with Retailer Ordering Costs

For this PDP variant, the objective function also includes a cost kq for each time
a retailer q places an order, independent of the number of demanded items. In
addition to Assumption 2, we also assume traditional holding costs.

Integrated Supply Chain Management via Randomized Rounding 573

Assumption 3. For each retailer q, the are non-negative numbers hqi , for i =

1, . . . , T , such that for each s, t, it holds hqst =
∑t

i=s h
q
i .

Combining the shift procedure used for the joint replenishment problem [6], and
a modification of Algorithm 3, we can obtain the following approximation.

Theorem 3. There is a 5-approximation for the PDP with retailer order costs.

References

1. Boudia, M., Prins, C.: A memetic algorithm with dynamic population manage-
ment for an integrated production–distribution problem. European J. Oper. Re-
search 195(3), 703–715 (2009)

2. Byrka, J., Aardal, K.: An Optimal Bifactor Approximation Algorithm for the Met-
ric Uncapacitated Facility Location Problem. SIAM J. on Comp. 39, 2212–2231
(2010)

3. Chan, F.T.S., Chung, S.H., Wadhwa, S.: A hybrid genetic algorithm for production
and distribution. Omega 33(4), 345–355 (2005)

4. Chudak, F.A., Shmoys, D.B.: Improved Approximation Algorithms for the Unca-
pacitated Facility Location Problem. SIAM J. on Comp. 33(1), 1–25 (2004)

5. Daskin, M.S., Coullard, C.R., Shen, Z.-J.: An Inventory-Location Model: For-
mulation, Solution Algorithm and Computational Results. Annals of Oper. Re-
search 110(1-4), 83–106 (2002)

6. Levi, R., Roundy, R., Shmoys, D.B., Sviridenko, M.: A Constant Approximation Al-
gorithm for the One-Warehouse Multiretailer Problem. Management Science 54(4),
763–776 (2008)

7. Li, S.: A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

8. Li, Y., Shu, J., Wang, X., Xiu, N., Xu, D., Zhang, J.: Approximation Algorithms
for Integrated Distribution Network Design Problems. In: INFORMS J. Comp.
(2012)

9. Lin, J.-H., Vitter, J.S.: ε-approximations with minimum packing constraint viola-
tion (extended abstract). In: Proc. of the Twenty-Fourth Annual ACM Symposium
on Theory of Computing, pp. 771–782 (1992)

10. Melo, M.T., Nickel, S., Saldanha-da Gama, F.: Facility location and supply chain
management – A review. European J. Oper. Research 196(2), 401–412 (2009)

11. Pochet, Y., Wolsey, L.A.: Production planning by mixed integer programming.
Springer series in operations research and financial engineering. Springer, New
York (2006)

12. Shen, Z.-J.: Integrated Stochastic Supply-Chain Design Models. Computing in Sci-
ence Engineering 9(2), 50–59 (2007)

13. Shen, Z.-J., Coullard, C., Daskin, M.S.: A Joint Location-Inventory Model. Trans-
portation Science 37(1), 40–55 (2003)

14. Shu, J., Teo, C.-P., Shen, Z.-J.: Stochastic Transportation-Inventory Network De-
sign Problem. Oper. Research 53(1), 48–60 (2005)

15. Sviridenko, M.: An Improved Approximation Algorithm for the Metric Uncapaci-
tated Facility Location Problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 240–257. Springer, Heidelberg (2002)

16. Teo, C.-P., Shu, J.: Warehouse-Retailer Network Design Problem. Oper. Re-
search 52(3), 396–408 (2004)

The Online Connected Facility Location Problem

Mário César San Felice1,Δ, David P. Williamson2, and Orlando Lee1,ΔΔ

1 Unicamp, Institute of Computing, Campinas SP 13083-852, Brazil
{felice,lee}@ic.unicamp.br

2 Cornell University, School of Operations Research and Information Engineering,
Ithaca NY 14853-3801, USA

dpw@cs.cornell.edu

Abstract. In this paper we propose the Online Connected Facility
Location problem (OCFL), which is an online version of the Connected
Facility Location problem (CFL). The CFL is a combination of the Un-
capacitated Facility Location problem (FL) and the Steiner Tree prob-
lem (ST). We give a randomized O(log2 n)-competitive algorithm for the
OCFL via the sample-and-augment framework of Gupta, Kumar, Pál, and
Roughgarden and previous algorithms for Online Facility Location (OFL)
and Online Steiner Tree (OST). Also, we show that the same algorithm is
a deterministic O(log n)-competitive algorithm for the special case of the
OCFL with M = 1, where M is a scale factor for the edge costs.

Keywords: Online Algorithms, Competitive Analysis, Connected Fa-
cility Location, Steiner Tree, Approximation Algorithms, Randomized
Algorithms.

1 Introduction

We start by presenting several problems that are relevant to this work.
In the Facility Location (FL) problem, we have a set of clients and a set of

facilities in a metric space. Each facility has a cost associated with opening the
facility. The cost of assigning a client to a facility is the distance between the
two points. The goal of the problem is to select a set of facilities to open and
to assign clients to open facilities so that the total cost of opening the facilities
plus the cost of connecting clients to their assigned facilities is minimized. FL
is an NP-complete problem that has been well-studied; several constant ratio
approximation algorithms are known for it [1–4]. It is particularly interesting that
several different design techniques, such as LP rounding, primal-dual and local
search, are successful at achieving good approximation ratios for this problem.

The online version of FL is the Online Facility Location problem (OFL), in
which the clients are revealed one at a time and each one needs to be connected
to an open facility before the next one arrives. As time progresses, no connection

� Grant No. 2012/06728-3, São Paulo Research Foundation (FAPESP).
�� Supported by Bolsa de Produtividade do CNPq Proc. 303947/2008-0. Edital

Universal CNPq 477692/2012-5.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 574–585, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

The Online Connected Facility Location Problem 575

can be changed or opened facility can be closed. Algorithms for online problems
are analyzed via competitive analysis [5]. An α-competitive algorithm returns a
solution whose cost is within a factor of α of the cost of an optimal solution to the
corresponding offline problem; α is called the competitive ratio of the algorithm.
There are randomized and deterministic O(logn)-competitive algorithms known
for the OFL [6–10], where n is the number of clients. Also, the best lower bound

for the competitive ratio of an algorithm for OFL is Ω
(

log n
log logn

)
[7].

The Steiner Tree problem (ST) is a network design problem defined in a graph
with edge costs. Its input is a set of terminals that need to be connected to each
other. A solution for ST is a tree that contains all terminal nodes and that can
contain other nodes, called Steiner nodes. The goal is to minimize the total cost of
edges in the tree. The ST is also a well-studied NP-complete problem for which
several different constant ratio approximation algorithms are known [11, 12],
such as greedy, primal-dual, and randomized rounding algorithms.

The online version of ST is the Online Steiner Tree problem (OST), in which
the terminals are revealed one at a time and each one needs to be connected
to the current tree before the next one arrives. Also, no edge in the tree can
be removed in the future. There are O(logn)-competitive algorithms known for
OST [13, 14], where n is the number of terminals. Also, the best lower bound
for the competitive ratio of an algorithm for OST is Ω(log n) [13].

The Connected Facility Location problem (CFL) is a network design problem
with two layers; it is motivated by the necessity of building networks in which
the end users are connected to servers, with less expensive lower bandwidth
connections, and the servers are connected to each other, through more expensive
higher bandwidth connections. The input to the CFL is the same as the FL,
except that there is a facility that is designated the root that represents the
connection of the network to the outside world, and a parameter M ⊕ 1, which
is a cost scaling factor. A solution for CFL is a set of open facilities (including
the root), an assignment of clients to open facilities, and a tree spanning the
open facilities. The goal of the problem is to minimize the total cost of opening
facilities plus the total cost of connecting clients to their assigned facilities plus
M times the cost of the edges in the tree spanning the open facilities. The
CFL is an NP-complete problem; it has randomized and deterministic constant
ratio approximation algorithms [15–20] that use techniques such as sample-and-
augment, LP rounding and primal-dual. The CFL can be seen as a combination
of FL with ST, using the cost scaling factor M .

Our Contributions. In this paper we propose the Online Connected Facility
Location problem (OCFL) that is the online version of CFL. In the OCFL the
clients are revealed one at a time and each one needs to be connected with a
facility before the next one arrives. If a new facility is opened, it needs to be
connected to the tree spanning the other opened facilities immediately. Also, no
connection can be changed, opened facility can be closed or edge used in the tree
can be removed in the future. We can also view the OCFL as the combination
of OFL and OST, using a cost scaling factor M . Since the OST can be reduced

576 M.C.S. Felice, D.P. Williamson, and O. Lee

to the OCFL, there is a lower bound of Ω(log n) on the competitive ratio of any
algorithm for the OCFL.

Our main result is a randomized O(log2 n)-competitive algorithm for the
OCFL that uses the sample-and-augment technique of Gupta, Kumar, Pál, and
Roughgarden [15], where n is the number of clients. We also show that the same
algorithm is a deterministic O(logn)-competitive algorithm for the special case
of the OCFL with M = 1.

The sample-and-augment technique was developed by Gupta et al. [15] for a
number of different problems; we illustrate it here with the single-source rent-or-
buy problem. In this problem, we are given as input a graph with edge costs, a
set of terminals, a root node, and a cost scaling factor M ⊕ 1. We must connect
each terminal to the root. We can either buy an edge (at M times its cost), or
rent an edge (but then each terminal using the edge must pay its cost). The
sample-and-augment technique marks each terminal with probability 1

M ; it then
uses an approximation algorithm for ST on the marked terminals and buys the
edges in the resulting tree; then it rents edges as needed to connect the other
terminals to the tree of bought edges. The key idea of this technique is that by
sampling with probability 1

M the algorithm balances the costs of the edges that
should be bought and the cost of the edges that should be rented. We will use
it in a similar way.

2 Problem Definitions

In this section we formally define the Online Connected Facility Location prob-
lem (OCFL). First we define its offline version, the Connected Facility Location
problem (CFL), and then we describe what changes in the online version.

As mentioned previously the CFL combines the Facility Location problem
(FL) with the Steiner Tree problem (ST). The input to the problem is a complete
graph G = (V,E), distances d : E ≤ R+ that respects the triangle inequality,
possible facilities F ⊆ V , facility opening costs f : F ≤ R+, clients D ⊆ V , a
root r ⊗ V and a parameter M ⊕ 0, that we call the cost scaling factor.

The goal is to serve the clients with the minimum cost. To serve the clients
one must open a subset of facilities F ∗ ⊆ F , connect each client in D to an
opened facility in F ∗ or to the root r, and give a tree T connecting the facilities
in F ∗ and r to each other. The cost to be minimized is the sum of the cost of
the open facilities, the distance of each client to its assigned open facility, and
M times the cost of the tree T that connects {r} ∈ F ∗. Namely:

∑

i⊆F ′
f(i) +

∑

j⊆D
d(j, a(j)) +M

∑

e=(i,j)⊆T
d(i, j) ,

where a : D ≤ V is a function that assigns each client in D to the root r or to
a facility in F ∗.

The OCFL is the online version of CFL, so it combines the Online Facility
Location problem (OFL) with the Online Steiner Tree problem (OST), just as
CFL does with FL and ST. In the OCFL the clients in D arrive one at a time

The Online Connected Facility Location Problem 577

and the one that just arrived must be served before the next one arrives; in
particular, it must be assigned to an open facility. The algorithm can open a
facility for this purpose, but then the opened facility must be connected to the
other opened facilities in the tree T . All decisions of the algorithm are irrevocable.
In this case, this means that the algorithm cannot decide to remove from the
current solution any facility previously opened, change to which facility a client
is connected, even if a closer facility was opened, or remove an edge from the
tree T .

3 Notation and Definitions

In what follows,

– n = |D| is the number of clients. Notice that for CFL and OCFL the number
of open facilities is upper bounded by n,

– compFL is the cOFL-competitive primal-dual algorithm for the OFL from
Fotakis [8] and Nagarajan and Williamson [9] papers, with cOFL ∗ 4 logn,

– compST is the cOST-competitive greedy algorithm for the OST from Imase
and Waxman [13] paper, with cOST ∗ logn,

– i = a(j) means that j is connected to i by the online algorithm we are
analyzing,

– i = a◦(j) means that j is connected to i in the offline optimal solution with
which we are comparing,

– path(j, S) is the shortest path connecting j to v, being v the closest node to
j in S,

– ALGOCFL(D) = O + C + S is the cost of the Online CFL algorithm when
serving the clients D, where O is the facility opening cost, C is the client
connection cost and S is the Steiner tree cost,

– OPTCFL(D) = O◦ +C◦ + S◦ is the cost of the CFL offline optimal solution
with which we compare the cost of the online algorithm. It is also divided in
facility opening, client connection and Steiner tree cost.

4 The Online CFL Algorithm

In this section we present a sample-and-augment algorithm for the OCFL that
is based on the algorithm for the CFL presented in Eisenbrand et al. [20] paper.
Our algorithm uses the algorithm compFL as a subroutine when deciding which
facilities to open and how to connect the clients. Also, it simulates the behavior
of the compST algorithm when creating the tree that connects the open facilities.

The algorithm keeps a virtual solution that is competitive for the OFL. This
solution serves all the clients that arrive and may have more open facilities,
called virtual facilities, than the algorithm’s actual solution. When a client j
arrives it is served by compFL and connected to a virtual facility i. Also, the
client j is marked with probability 1

M . A virtual facility is actually opened by
the algorithm only when a client that was connected to it is marked. If the client

578 M.C.S. Felice, D.P. Williamson, and O. Lee

j is marked then i is opened and j is connected to it. Otherwise j is connected
to the closest actually opened facility. Notice that i could already be open due
to some previously marked client.

The algorithm builds the tree T that connects the facilities as follows. When
a facility i is actually opened, due to a client j that was marked, the algorithm
connects the client j to the tree T , using the shortest path. This is the behaviour
of the compST algorithm. Then, it augments T to connect i to j. Although
connecting the facility i directly to the tree T seems more intuitive, this behavior
of the algorithm is useful during the analysis.

Input: G = (V,E), d, f , F , root r and M
D ≥ ⊆; D∗ ≥ ⊆; F ∗ ≥ ⊆; T ≥ ⊆;
make f(r) ≥ 0 and initialize compFL with G, d, f , F ;
send r to compFL as its first client;
F ∗ ≥ F ∗ ∈ {r}; V (T) ≥ V (T) ∈ {r};
while a new client j arrives do

send j to compFL;

include j in D∗ with probability 1
M ;

if j ⊗ D∗ and is connected to a virtual facility i not opened then
F ∗ ≥ F ∗ ∈ {i};
T ≥ T ∈ {(i, j)} ∈ {path(j, V (T))};

end
let i be the closest open facility to j;
D ≥ D ∈ {j}; a(j) ≥ i;

end
return (F ∗ \ {r}, T, a);

Algorithm 1. The Online CFL algorithm

4.1 Analysis of the Online CFL Algorithm

During this analysis we let D∗ ⊆ D denote the clients marked by the Online
CFL algorithm. Note that D∗ is a random set.

First we bound the facility opening cost of the algorithm.

Lemma 1. O ∗ cOFL(O◦ + C◦).

Proof. Let OcompFL be the facility opening cost paid by compFL to serve {r}∈D
and OPTFL be an offline optimal solution for the FL. Once our algorithm opens
a subset of the facilities opened by compFL to serve {r} ∈D we have that:

O ∗ OcompFL ∗ cOFLOPTFL({r} ∈D) ∗ cOFL(O◦ + C◦) , (1)

where the last inequality follows since part of an optimal solution for CFL is a
feasible solution for the OFL. ↑⊃
Now we bound the expected cost of the Steiner tree T that connects the root
and the opened facilities to each other.

The Online Connected Facility Location Problem 579

Lemma 2. E[S] ∗ cOST(S◦ + C◦) + cOFL(O◦ + C◦).

Proof. Define D∗∗ as the set of marked clients that were responsible for opening
the facilities opened by the algorithm and OPTST as an offline optimal solution
for the ST. The Online CFL algorithm builds a tree T by connecting the root
r to each client in D∗∗ simulating the compST algorithm. Then it augments T
connecting each client j ⊗ D∗∗ to the facility i that was opened by it. So, we
have that:

S ∗McompST({r} ∈D∗∗) +M
∑

j⊆{r}∼D′′
d(j, a(j))

∗McOSTOPTST({r} ∈D∗∗) +M
∑

j⊆D′′
d(j, a(j))

∗McOSTOPTST({r} ∈D∗) +M
∑

j⊆D′
d(j, a(j)) , (2)

where the second inequality follows because d(r, a(r)) = 0 and the last inequality
follows because D∗∗ ⊆ D∗.

We bound the expected cost of OPTST when serving {r} ∈D∗ as follows:

E[OPTST({r} ∈D∗)] ∗ E

[
S◦

M

]
+ E

⎡

⎣
∑

j⊆D′
d(j, a◦(j))

⎤

⎦

∗ S◦

M
+
∑

j⊆D

1

M
d(j, a◦(j)) ∗ S◦

M
+
C◦

M
, (3)

where the first inequality follows because the union of the optimal Steiner tree
for CFL, T ◦, and a connection from each client in D∗ to its facility in T ◦ contains
a tree that spans {r}∈D∗, since r ⊗ V (T ◦); the second inequality follows because
the probability that a client is marked is 1

M .
Let acompFL(j) be the facility to which compFL connected j and CcompFL

be the client connection cost of compFL when serving {r} ∈ D. We bound the
expected cost of

⎨
j⊆D′ d(j, a(j)) as follows:

E

⎡

⎣
∑

j⊆D′
d(j, a(j))

⎤

⎦ = E

⎡

⎣
∑

j⊆D′
d(j, acompFL(j))

⎤

⎦

=
∑

j⊆D

1

M
d(j, acompFL(j))

=
CcompFL

M

∗ cOFL

M
OPTFL({r} ∈D) ∗ cOFL

M
(O◦ + C◦) , (4)

where the first equality follows because a(j) = acompFL(j) for j ⊗ D∗ and the
last equality follows because d(r, acompFL(r)) = 0. The last inequality follows
since part of an optimal solution for CFL is a feasible solution for the OFL.

580 M.C.S. Felice, D.P. Williamson, and O. Lee

Using the last three inequalities we have:

E[S] ∗ E [McOSTOPTST({r} ∈D∗)] + E

⎡

⎣M
∑

j⊆D′
d(j, a(j))

⎤

⎦

∗McOST

⎛
S◦

M
+
C◦

M

⎫
+M

(cOFL

M
(O◦ + C◦)

)

∗ cOST(S◦ + C◦) + cOFL(O◦ + C◦) , (5)

which concludes the lemma. ↑⊃

Using the two previous lemmas we can bound the expectation of the facility
opening cost O and of the Steiner tree cost S of the Online CFL algorithm. Now
we will bound the client connection cost.

Lemma 3. E[C] ∗ cOFL(O◦ + C◦) + cOST(S◦ + C◦ + cOFL(O◦ + C◦)).

Proof. First we define cost shares that divide the expected cost of compFL({r}∈
D∗) and compST(F ∗) among the clients. For each client j we call its cost share
the buying cost bj. We also divide the client connection cost C among the clients
and, for each client j we call its share the renting cost rj .

Then we analyze the algorithms compFL and compST to show that, when
each client j arrives, the expected renting cost of j is at most its expected
buying cost. Finally, using the linearity of expectation and summing over all the
clients in D, we conclude the lemma.

Remember that D∗ is the set of marked clients, a(j) is the open facility to
which the Online CFL algorithm connected j and acompFL(j) is the open facility
to which compFL connected j. Also, let n(j) be the position of client j in the
sequence of clients and F ∗n(j) be the set of facilities that were opened after the first

n(j) clients were served by the algorithm. Let F ∗n(j)−1 be the facilities opened in
the time step prior to the arrival of j.

Now we define the buying cost of a client j as:

bj =

⎬
Md(j, acompFL(j)) +Md(acompFL(j), F ∗n(j)−1) if j ⊗ D∗ ,
0 if j ⊗ D \D∗ .

Summing over all the clients in D we have:

∑

j⊆D
bj =

∑

j⊆D′
bj

=
∑

j⊆D′
Md(j, a(j)) +

∑

j⊆D′
M(d(a(j), F ∗n(j)−1))

= M
∑

j⊆D′
d(j, a(j)) +McompST({r} ∈ F ∗) . (6)

The Online Connected Facility Location Problem 581

Let CcompFL be the client connection cost of compFL when serving {r} ∈D.
We have that:

E

⎡

⎣
∑

j⊆D′
d(j, a(j))

⎤

⎦ =
∑

j⊆D

1

M
d(j, acompFL(j)) =

CcompFL

M
. (7)

Similarly:

E

⎡

⎣
∑

j⊆D′
d(j, a◦(j))

⎤

⎦ =
∑

j⊆D

1

M
d(j, a◦(j)) =

C◦

M
. (8)

Bounding the expected cost of compST when it is serving {r} ∈ F ∗ we have:

E[compST({r} ∈ F ∗)] ∗ cOSTE[OPTST({r} ∈ F ∗)]

∗ cOSTE

⎡

⎣S
◦

M
+
∑

j⊆D′
d(j, a◦(j)) +

∑

j⊆D′
d(j, a(j))

⎤

⎦

∗ cOST

⎛
S◦

M
+
C◦

M
+
CcompFL

M

⎫
, (9)

where the second inequality follows because the union of an optimal Steiner tree
for CFL, T ◦, along with each client in D∗ connected to its facility in T ◦ and
to its facility in the online solution, contains a tree that spans {r} ∈ F ∗, since
r ⊗ V (T ◦).

Using the previous inequalities we bound the expected value of the total buy-
ing cost by:

E

⎡

⎣
∑

j⊆D
bj

⎤

⎦ ∗M · E
⎡

⎣
∑

j⊆D′
d(j, a(j))

⎤

⎦ +M · E[compST({r} ∈ F ∗)]

= CcompFL + cOST(S◦ + C◦ + CcompFL)

∗ cOFLOPTFL({r} ∈D) + cOST(S◦ + C◦ + cOFLOPTFL({r} ∈D))

∗ cOFL(O◦ + C◦) + cOST(S◦ + C◦ + cOFL(O◦ + C◦)) . (10)

We define the renting cost of a client j as follows:

rj = d(j, F ∗n(j)) .

Summing over all the clients in D we have:

∑

j⊆D
rj =

∑

j⊆D
d(j, F ∗n(j)) = C , (11)

where the last equality holds because the Online CFL algorithm connects each
new client to the closest facility that was open at that moment.

582 M.C.S. Felice, D.P. Williamson, and O. Lee

Now we upper bound the expected renting cost of a client j using the expected
buying cost of j. First we analyze the expectation of buying and of renting
conditioned on the result of the first n(j) − 1 coin tosses. We denote these
respectively as E[bj |n(j) − 1] and E[rj |n(j) − 1].

Recalling that a client j has probability 1
M of being maked and probability

M−1
M of not, we have:

E[rj |n(j) − 1] =
M − 1

M
d(j, F ∗n(j)−1) +

1

M
d(j, F ∗n(j))

∗ d(j, F ∗n(j)−1)

∗ 1

M

(
Md(j, acompFL(j)) +Md(acompFL(j), F ∗n(j)−1)

)

= E[bj|n(j) − 1] , (12)

where the first equality holds because F ∗n(j) = F ∗n(j)−1 when the client j is

not maked and because F ∗n(j)−1 ⊆ F ∗n(j); the second inequality follows by the
triangle inequality and the fact that the distance from j to the closest facility to
acompFL(j) in F ∗n(j)−1 has to be at least the distance from j to its closest facility

in F ∗n(j)−1.

Since this is true for all possible outcomes of the n(j)− 1 first coin tosses, the
result is true unconditionally, i.e.:

E[rj] ∗ E[bj] . (13)

We conclude the lemma using (10), (11) and (13), relying on the linearity of
expectation as follows:

E[C] =
∑

j⊆D
E[rj] ∗

∑

j⊆D
E[bj]

∗ cOFL(O◦ + C◦) + cOST(S◦ + C◦ + cOFL(O◦ + C◦)) . (14)

↑⊃
Using the three previous lemmas and that the competitive ratio of compFL and
compST is O(logn), we prove our main result in the next theorem.

Theorem 1. E[ALGOCFL(D)] ⊗ O(logn2)OPTCFL(D).

Proof.

E[ALGOCFL(D)] = E[O + S + C]

∗ cOFL(O◦ + C◦) + (cOST(S◦ + C◦) + cOFL(O◦ + C◦))
+(cOFL(O◦ + C◦) + cOST(S◦ + C◦ + cOFL(O◦ + C◦)))

∗ 14 lognOPTCFL(D) + 4 log2 nOPTCFL(D)

= O(log2 n)OPTCFL(D) , (15)

where the last inequality follows because cOFL ∗ 4 logn and cOST ∗ logn. ↑⊃

The Online Connected Facility Location Problem 583

4.2 Analysis of the Special Case of the Online CFL Problem with
M = 1

Here we analyze the algorithm Online CFL on instances of the Online Connected
Facilty Location problem for which M = 1.

In this analysis we let D∗ ⊆ D denote the clients maked by the Online CFL
algorithm. In this special case, since M = 1, all clients are marked by the On-
line CFL algorithm, so that D∗ = D. In fact, this means that the Online CFL
algorithm is deterministic in this case.

First we bound the facility opening cost O and the client connection cost C.

Lemma 4. O + C ∗ cOFL(O◦ + C◦).

Proof. Let OcompFL be the facility opening cost paid by compFL to serve {r}∈D,
and let CcompFL be the client connection cost of compFL when serving {r} ∈D.
Since the OCFL algorithm opens exactly the facilities opened by compFL to
serve {r} ∈D and connects each client to the closest facility opened when that
client was served, we have that:

O + C = OcompFL + CcompFL

∗ cOFLOPTFL({r} ∈D) ∗ cOFL(O◦ + C◦) , (16)

where the last inequality follows since part of an optimal solution for CFL is a
feasible solution for the OFL. ↑⊃
Now we bound the cost of the Steiner tree that connects the root and the opened
facilities.

Lemma 5. S ∗ cOST(S◦ + C◦) + cOFL(O◦ + C◦).

Proof. Define the set D∗∗ to be the set of marked clients that were responsible
for opening a facility. The Online CFL algorithm builds a tree T connecting the
root r to each client in D∗∗ simulating the compST algorithm, and then connects
each client j ⊗ D∗∗ with the facility i that was opened by it. So we have that:

S ∗McompST({r} ∈D∗∗) +M
∑

j⊆{r}∼D′′
d(j, a(j))

∗ cOSTOPTST({r} ∈D) +
∑

j⊆D
d(j, a(j))

∗ cOSTOPTST({r} ∈D) + C , (17)

where the second inequality follows because M = 1, D∗∗ ⊆ D and d(r, a(r)) = 0.
We bound the cost of OPTST when serving {r} ∈D as follows:

OPTST({r} ∈D) ∗ S◦ + C◦ , (18)

where the inequality follows because the union of the optimal Steiner tree for
CFL, T ◦, together with a connection from each client in D to its optimal facility,
contains a tree that spans {r} ∈D, since r ⊗ V (T ◦).

584 M.C.S. Felice, D.P. Williamson, and O. Lee

The cost C can be bounded using the previous lemma:

C ∗ cOFL(O◦ + C◦) . (19)

Using the last three inequalities we have:

S ∗ cOSTOPTST({r} ∈D) + C

∗ cOST(S◦ + C◦) + cOFL(O◦ + C◦) , (20)

what concludes the lemma. ↑⊃

Using the two previous lemmas and the fact that the competitive ratio of compFL
and compST is O(logn), we prove the next theorem.

Theorem 2. When M = 1 we have that ALGOCFL(D) ⊗ O(lognOPTCFL(D)).

Proof.

ALGOCFL(D) = O + C + S

∗ cOFL(O◦ + C◦) + (cOST(S◦ + C◦) + cOFL(O◦ + C◦))
∗ 9 lognOPTCFL(D)

= O(logn)OPTCFL(D) , (21)

where the last inequality follows because cOFL ∗ 4 logn and cOST ∗ logn. ↑⊃

It is worth noticing that an algorithm that does not mark the clients, but instead
solves the OFL part of the problem and connects each open facility in an online
Steiner tree, can be shown to be O(M logn)-competitive by an analysis very
similar to the previous one.

5 Conclusion and Future Work

In this paper we proposed the Online Connected Facility Location problem and
presented a randomized O(log2 n)-competitive algorithm for it. The algorithm
uses the sample-and-augment technique. We also showed that this algorithm is
a deterministic O(logn)-competitive algorithm for the special case of the OCFL
with M = 1, which is the best possible.

Two natural questions arise: first, is our algorithm O(logn)-competitive for
the general case of the OCFL? Second, is the best possible lower bound to the
competitive ratio of OCFL algorithms ω(logn)?

Also, some directions for future work are to analyze our algorithm using the
known distribution model from stochastic analysis, instead of the worst case
model from competitive analysis, and to find a deterministic algorithm for the
OCFL problem.

The Online Connected Facility Location Problem 585

References

1. Shmoys, D.B.: Approximation algorithms for facility location problems. In:
Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 27–32. Springer,
Heidelberg (2000)

2. Mahdian, M., Ye, Y., Zhang, J.: Approximation algorithms for metric facility lo-
cation problems. SIAM Journal on Computing 36, 411–432 (2006)

3. Byrka, J., Aardal, K.: An optimal bifactor approximation algorithm for the metric
facility location problem. SIAM Journal on Computing 39, 2212–2231 (2010)

4. Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location
problem. Information and Computation 222, 45–58 (2013)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Press
Syndicate of the University of Cambridge (1998)

6. Meyerson, A.: Online facility location. In: Proceedings of the 42nd IEEE Sympo-
sium on Foundations of Computer Science, pp. 426–431 (2001)

7. Fotakis, D.: On the competitive ratio for online facility location. Algorithmica 50,
1–57 (2008)

8. Fotakis, D.: A primal-dual algorithm for online non-uniform facility location. Jour-
nal of Discrete Algorithms 5(1), 141–148 (2007)

9. Nagarajan, C., Williamson, D.P.: Offline and online facility leasing. In: Lodi,
A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 303–315.
Springer, Heidelberg (2008)

10. Fotakis, D.: Online and incremental algorithms for facility location. SIGACT
News 42(1), 97–131 (2011)

11. Vazirani, V.: Approximation Algorithms. Springer (2003)
12. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-

bridge University Press (2011)
13. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM Journal on Dis-

crete Mathematics 4(3), 369–384 (1991)
14. Buchbinder, N., Naor, J.S.: The design of competitive online algorithms via a

primal-dual approach. Foundations and Trends in Theoretical Computer Science 3,
93–263 (2009)

15. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximation via cost sharing:
Simpler and better approximation algorithms for network design. Journal of the
ACM 54(3), Article 11 (2007)

16. Gupta, A., Srinivasan, A., Tardos, É.: Cost-sharing mechanisms for network design.
Algorithmica 50, 98–119 (2008)

17. Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location prob-
lems. Algorithmica 40(4), 245–269 (2004)

18. Hasan, M.K., Jung, H., Chwa, K.Y.: Approximation algorithms for connected fa-
cility location. Journal of Combinatorial Optimization 16, 155–172 (2008)

19. Jung, H., Hasan, M.K., Chwa, K.Y.: A 6.55 factor primal-dual approximation
algorithm for the connected facility location problem. Journal of Combinatorial
Optimization 18, 258–271 (2009)

20. Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location
via random facility sampling and core detouring. Journal of Computer and System
Sciences 76(8), 709–726 (2010)

Multiply Balanced k−Partitioning

Amihood Amir1,2,Δ, Jessica Ficler1, Robert Krauthgamer3,ΔΔ, Liam Roditty1,
and Oren Sar Shalom1

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
{amir,liamr}@cs.biu.ac.il, {jessica.ficler,oren.sarshalom}@gmail.com

2 Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218
3 Weizmann Institute of Science, Rehovot, Israel

robert.krauthgamer@weizmann.ac.il

Abstract. The problem of partitioning an edge-capacitated graph on n
vertices into k balanced parts has been amply researched. Motivated by
applications such as load balancing in distributed systems and market
segmentation in social networks, we propose a new variant of the prob-
lem, called Multiply Balanced k Partitioning, where the vertex-partition
must be balanced under d vertex-weight functions simultaneously.

We design bicriteria approximation algorithms for this problem, i.e.,
they partition the vertices into up to k parts that are nearly balanced
simultaneously for all weight functions, and their approximation factor
for the capacity of cut edges matches the bounds known for a single
weight function times d. For the case where d = 2, for vertex weights that
are integers bounded by a polynomial in n and any fixed Σ > 0, we obtain
a (2 + Σ, O(

√
log n log k))-bicriteria approximation, namely, we partition

the graph into parts whose weight is at most 2+Σ times that of a perfectly
balanced part (simultaneously for both weight functions), and whose cut
capacity is O(

√
log n log k) · OPT. For unbounded (exponential) vertex

weights, we achieve approximation (3, O(log n)).
Our algorithm generalizes to d weight functions as follows: For vertex

weights that are integers bounded by a polynomial in n and any fixed
Σ > 0, we obtain a (2d + Σ, O(d

√
log n log k))-bicriteria approximation.

For unbounded (exponential) vertex weights, we achieve approximation
(2d + 1, O(d log n)).

1 Introduction

In the k-balanced partitioning problem (aka minimum k-partitioning) the
input is an edge-capacitated graph and an integer k, and the goal is to partition
the graph vertices into k parts of equal size, so as to minimize the total capacity
of the cut edges (edges connecting vertices in different parts). The problem has
many applications, ranging from parallel computing and VLSI design to social

� Partly supported by NSF grant CCR-09-04581, ISF grant 347/09, and BSF grant
2008217.

�� Work supported in part by a US-Israel BSF grant #2010418, ISF grant 897/13, and
by the Citi Foundation.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 586–597, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Multiply Balanced k−Partitioning 587

networks, as we discuss further below. The above problem is known to be NP-
hard. Even the special case where k = 2 (called minimum bisection) is already
NP-hard [7] and several approximation algorithms were designed [13,5,2,17].
For constant k the polynomial-time algorithm of MacGregor [14] can solve
the problem on trees. However, if k is not constant the problem is hard to
approximate within any finite factor [1]. Several heuristics were proposed, see
e.g. [10,16,15,9] but they do not guarantee any upper bounds on the cut capacity.
It is therefore common to consider a bicriteria approximation, which relaxes the
balance constraint.

Formally, let G = (V,E) be a graph of n vertices. In a (k, Θ)-balanced parti-
tion, the vertex set V is partitioned into at most k parts, each of size at most
Θn/k, and the cut capacity is compared against an optimal (minimum cut ca-
pacity) perfectly balanced k-partition [12,18,4,1,11,6]. In the weighted version,
every vertex v ⊕ V has a weight w(v) ≤ 0, and now in a (k, Θ)-balanced parti-
tioning, there are at most k parts, and the total weight of every part is at most
ΘW/k, where W is the total weight of all the vertices. Let us emphasize that we
always consider graphs with edge capacities; the terms weighted or unweighted
graphs refer only to vertex weights. Throughout, we assume that there exists a
perfectly balanced k-partition, e.g., in the unweighted version this means that k
divides n.

Definition 1. An algorithm for k-balanced partitioning is said to give a
(Θ, ι)-bicriteria approximation if it finds a (k, Θ)-balanced partition whose cut
capacity is at most ιOPT, where OPT is the cut capacity of an optimal perfectly
balanced k-partition.

The k-balanced partitioning problem has numerous applications. Specifi-
cally, in parallel computing, each vertex typically represents a task, its weight
represents the amount of processing time needed for that task, and edges rep-
resent the communication costs. In this example, k is the number of available
processors. However, this formulation does not support the case where we want
to distribute the load by two parameters, for example processing time and mem-
ory. A similar unsolved problem arises in social networks and marketing: vertices
represent people, edges are the strength of the relationship between two people,
and each person has a value (potential revenue) for a marketing campaign. The
goal is to partition the people into k groups, such that there will be the least
connection between the groups, and the groups are balanced both by their size
and by their total marketing value.

Definition 2. In the Doubly Balanced k-Partitioning problem, the input
is a graph G = (V,E,w1, w2, c) and an integer k, where w1, w2 : V → R∗0 are
the vertex-weight functions and c : E → R∗0 is the edge capacity function. The
goal is to find a partition of the graph into at most k parts that are balanced by
both weight functions, so as to minimize the total capacity of the cut between the
different parts.

We emphasize that k-balanced partitioning refers to the case where there is a
single vertex-weight function, in contrast toDoublyBalancedk-Partitioning.

588 A. Amir et al.

This is true even when one of the two vertex-weight functions above is constant (aka
uniform weights), which means balancing with respect to the sizes (cardinalities)
of the parts.

The problem can be generalized to d vertex-weight functions:

Definition 3. In the Multiply Balanced k Partitioning problem, the in-
put is a graph G = (V,E,w1, w2, ..., wd, c) and an integer k, where w1, ..., wd :
V → R∗0 are the vertex-weight functions and c : E → R∗0 is the edge capacity
function. The goal is to find a partition of the graph into at most k parts that
are balanced by all d weight functions, so as to minimize the total capacity of the
cut between the different parts.

2 Bicriteria Approximations and Our Results

The Doubly Balanced k-Partitioning problem is hard to approximate
within any finite factor, simply because setting w2(v) = 0 (or w2(v) = w1(v)) for
all v ⊕ V yields the k-balanced partitioning problem as a special case. We
therefore aim at a bicriteria approximation for the problem. Throughout, for S ⊗
V , 1 ∈ j ∈ 2, and a vertex-weight function w, we define w(S) :=

∑
v⊆S wj(v),

and let W := w(V) denote the total weight of all the vertices.

Definition 4. A partition {Pi} of V is called (k, Θ)-doubly balanced if it has
at most k parts, and for each part Pi and each j = 1, 2 it hold that wj(Pi) ∈
Θ wj(V)/k.

Before defining the precise guarantees of our algorithm, we need to understand
the criteria that we are trying to approximate. In the unweighted version, bal-
anced partition asserts that every part is of size at most ∗n

k ≥, which guarantees
that there always exists a perfectly balanced partition. In the weighted version,
this might not be possible at all. For example, if the graph has a single vertex
whose weight exceeds that of all other vertices together, then obviously there is
no perfectly balanced partition. Therefore, in all existing algorithms there is an
implicit assumption that there exists a perfectly balanced partition (which we
are trying to approximate).

In Doubly Balanced k-Partitioning, we could assume the existence of
a perfectly doubly balanced partition as well. However, this might be an unrea-
sonable assumption in many applications, and thus we weaken the requirement
— we only assume that there is a perfectly balanced partition for each weight
separately, but not necessarily together.

Definition 5. A (Θ, ι)-bicriteria approximation for the Doubly Balanced
k-Partitioning problem finds a (k, Θ)-doubly balanced partition, whose cut ca-
pacity is at most ιOPT, where OPT is the maximum of the two optimal (k, 1)-
balanced partitions.

Throughout, the term OPT in the context of Doubly Balanced k-Partitioning
refers to the above value. Notice that the cut capacity of a perfectly k-doubly

Multiply Balanced k−Partitioning 589

balanced partition (if it exists) might be substantially larger than each of the
k-balanced partitions. Nevertheless, because we relax the balance constraints,
we require our algorithm to return a near k-doubly balanced partition whose
cut capacity is comparable to the larger of the two different partitions.

Definition 6. A partition {Pi} of the vertices is called (k+, Θ)-balanced if w(Pi)
∈ Θ W/k for every part Pi.

Notice that in a (k+, Θ)-balanced partition, unlike a (k, Θ)-balanced partition,
there can be more than k parts.

Definition 7. An algorithm for k-balanced partitioning is said to give a
(Θ, ι)+-bicriteria approximation if it finds a (k+, Θ)-balanced partition whose cut
capacity is at most ιOPT, where OPT is the cut capacity of an optimal perfectly
balanced k-partition.

Notice that because every (k, Θ)-balanced partition is also a (k+, Θ)-balanced
partition, then every (Θ, ι)-bicriteria approximation algorithm is also a (Θ, ι)+-
bicriteria approximation.

2.1 Our Results

Theorem 1. TheMultiply Balanced k Partitioning problem admits a polynomial-
time (Θ, ι)-bicriteria approximation, according to the following table:

vertex-weight functions ν α
polynomial 2d+ Δ O(d

⊆
logn log k)

arbitrary (exponential) 2d+ 1 O(d log n)

In particular, for the Doubly Balanced k-Partitioning problem, where d = 2 we
have:

vertex-weight functions ν α
polynomial 2 + Δ O(

⊆
logn log k)

arbitrary (exponential) 3 O(log n)

When we say that the weights are polynomial we mean that the length nec-
essary to encode each weight is poly-logarithmic in n.

We now provide a high-level overview of the algorithm for the Doubly Bal-
anced k-Partitioning problem. The full details are presented in Section 3. Let
A be a (Θ, ι)+-bicriteria approximation algorithm for the k-balanced parti-
tioning problem.

1. Partition Stage: Divide the vertices into some number of parts t, with cut
capacity at most ιOPT, and the respective weight of each part is bounded by
Θ W1/k and Θ W2/k (simultaneously). If t ∈ k then the balance requirements
are met. Otherwise proceed to stage 2.

590 A. Amir et al.

2. Union Stage: Combine these t parts into k parts carefully, so that each part
S has weights w1(S) ∈ (1 + Θ)W1/k and w2(S) ∈ (1 + Θ)W2/k. This new
partition meets the same approximation factor for the cut capacity, because
combining parts can only decrease the capacity of the cut.

We present two different algorithms, each based on a different k-balanced
partition approximation algorithm, to achieve the two bounds stated in Theorem
1. We first present the special case d = 2 in Section 3, and then prove its
generalization to d weight functions in Section 4.

2.2 Polynomial Weights

We now show how it is possible to extend the approximation ratio for k-balanced
partitioning to hold also for weighted graphs.

Andreev and Räcke [1] showed a (1 + Δ, log1.5 n) bicriteria approximation for
any constant Δ > 0. Their work balances the graph with respect to the sizes of
the parts, but can be extended in a straightforward manner to the case where
the vertices of the graph have polynomial weights and the goal is to balance the
weight among the parts.

Theorem 2. Every (Θ, ι)-bicriteriaapproximationalgorithmA for thek-balanced
partitioning problem in unweighted graphs can be used also in (polynomially)
weighted graphs with the same approximation factors.

Proof. Will appear at the full version.

If the running time of the unweighted version algorithm is f(n), where n is the
number of vertices, then the modified running time would be f(W), where W
is the total weight. If the (integer) weights of the vertices are polynomial in n,
then the algorithm runs in polynomial time as well. Since the length necessary
to encode each weight is polylogarithmic in n, then it guarantees that the total
weight is polynomial.

For any fixed 0 < Δ < 1, Feldman and Foschini [6] presented a (1 + Δ, O(logn))
bicriteria approximation for unweighted graphs. Krauthgamer, Naor and Schwartz
[11] presented a (2, O(

⊆
log n log k)) bicriteria approximation algorithm. Their al-

gorithm can be considered as a (1 + Δ, O(
⊆

log n log k))+ bicriteria approximation
algorithm, since during its main procedure it finds a (k+, 1+Δ)-balanced partition.
As explained above, we can modify this algorithm to support weighted graphs.

2.3 Unrestricted Weights

To our knowledge, the only algorithm that achieves a bicriteria approximation
for graphs with exponential weight function is that of Even, Naor, Rao and
Schieber [4]. Their algorithm uses an algorithm for the Γ−separator problem in
order to achieve a (2, logn) bicriteria approximation with an exponential weight
function.

Multiply Balanced k−Partitioning 591

3 Bicriteria Approximation Algorithm for d = 2

Let A be a (Θ, ι)+-bicriteria approximation algorithm for the k-balanced parti-
tioning problem. For convenience sake, we will normalize the weights such that
for every v ⊕ V we have wj(v) ↑ wj(v) · k

wj(V) , where j = 1, 2. From the defi-

nition of (k, Θ)-doubly balanced partition each part is of weight at most
Σwj(V)

k ,

thus after the normalization each part is of weight at most
Σwj(V)

k · k
wj(V) = Θ.

Moreover, after the normalization wj(V) = k.
The algorithm works as follows. First, partition G using algorithm A with re-

spect to weight function w1. Let P = {P1, P2, . . . , PΛ1} be the resulting partition.
It holds for every P ⊕ P , that w1(P) ∈ Θ. Let P> = {P | P ⊕ P , w2(P) > Θ}.
In case that P> = ⊃, then if Ψ1 ∈ k then we have at most k parts and each part
satisfies the balance condition with respect to both w1 and w2. Let OPTj be the
cut capacity of an optimal perfectly balanced k-partition with respect to weight
function wj , j = 1, 2. The cut capacity of partition P ∈ ιOPT1 ∈ ιOPT.

In case that P> ⊇= ⊃ we partition G using algorithm A with respect to weight
function w2. Let Q = {Q1, Q2, . . . , QΛ2} be the resulting partition.

Fix a part P ⊕ P>. Let Ri(P) = Qi ⊂ P , where Qi ⊕ Q and 1 ∈ i ∈ Ψ2. As
w2(Qi) ∈ Θ it follows that w2(Ri(P)) ∈ Θ for every 1 ∈ i ∈ Ψ2.

Consider now the partition R that is composed of all the parts that are in
P \ P> and the parts Ri(P) = Qi ⊂ P , where 1 ∈ i ∈ Ψ2, for every P ⊕ P>.
Each part of this partition has weight at most Θ with respect to w1 and to w2.
The cut capacity of this partition is at most ιOPT1 +ιOPT2 ∈ O(ι) · OPT.

The only problem with the partition R is that the number of its parts might
be as large at Ψ1 · Ψ2 and this may be larger than k.

In subsection 3.1 we describe a process that takes as an input this partition
and combines parts of it until it reaches a final partition with at most k parts
each of weight at most 1 + Θ. As the the final partition is obtained only by
combining parts of the input partition, its cut capacity cannot exceed the cut
capacity of the input partition. In subsection 3.2 we show lower bounds for the
method of subsection 3.1.

3.1 Combining Partitions via Bounded Pair Scheduling

Let R = {R1, R2, . . . , RΛ3}. Each Ri ⊕ R is represented by a pair of coordinates
(xi, yi), where xi = w1(Ri), yi = w2(Ri) and 1 ∈ i ∈ Ψ3. Moreover, 0 ∈ xi, yi < Θ

and
∑Λ3

i=1 xi =
∑Λ3

i=1 yi = k. In case that Ψ3 ∈ k then the partition has all
the desired properties. Hence, we assume that Ψ3 > k. This problem resembles
a known NP-hard problem, called Vector Scheduling with 2 dimensions.
Formally:

Definition 8. (Vector Scheduling) We are given a set J of n rational
d-dimensional vectors p1, . . . , pn from [0,↓)d and a number m. A valid solu-
tion is a partition of J into m sets A1, . . . , Am. The objective is to minimize
max1◦i◦m∅Āi∅∼ where Āi =

∑
j⊆Ai

pj is the sum of the vectors in Ai.

592 A. Amir et al.

When d is constant, [8] shows a (d + 1) approximation, and a later work [3]
gives a PTAS for the problem.

Our problem is a special case of the VS, namely with d = 2. However, the ex-
isting algorithms approximate the objective with respect to the optimal solution
that can be achieved for a specific instance. We need to design an approximation
algorithm that bounds the maximal objective for a family of instances, and not
just for a specific instance. The family of input instances are the vectors pi such
that ∅pi∅∼ < Θ and for all 1 ∈ j ∈ d,

∑n
i=1 p

j
i = k, where pj is the j’th element

of vector p.
Formally, we need to solve the following problem:

Definition 9. (Bounded Pair Scheduling)
INPUT: A number k and a set R of n > k elements, such that each element

is a pair (x, y) that holds 0 ∈ x, y < Θ, and
∑n

i=1 xi =
∑n

i=1 yi = k.
OUTPUT: A partition of R into a set of k elements R1, . . . , Rk, such that

for all i = 1, . . . , k and Ri = (x(i), y(i)), it holds that 0 ∈ x(i) ∈ 1 + Θ and
0 ∈ y(i) ∈ 1 + Θ.

The algorithm below solves the bounded pair scheduling problem.
Consider now the following sets of elements:

1. S = {(x, y) | x < 1, y < 1}
2. A = {(x, y) | 1 ∈ x < 1 + Θ, 1 ∈ y < 1 + Θ}
3. Bx = {(x, y) | 1 ∈ x < Θ, y < 1}
4. By = {(x, y) | x < 1, 1 ∈ y < Θ}
5. Cx = {(x, y) | Θ ∈ x < 1 + Θ, y < 1}
6. Cy = {(x, y) | x < 1, Θ ∈ y < 1 + Θ}

Elements in A are balanced, and the minimum weight in each coordinate
exceeds 1, therefore, if all our elements were of type A we would be done - there
are no more than k balanced elements.

The B elements are “almost” balanced and the union of every element in Bx

with a element in By is a element in A.
The elements in C are not balanced and can not be trivially combined with any

other elements. The main effort of our algorithm is dealing with these elements.
The S elements are the ones which present a difficulty since both their co-

ordinates are not bounded below. Thus there may be a very large number of
them. However, they do give us the necessary maneuverability in the combining
process.

The auxiliary sets span the input set R, and because their criteria are ex-
clusive, every element in R fits to exactly one of these sets. We begin by divid-
ing the input set to the appropriate auxiliary sets. Clearly, the C sets remain
empty at this stage. As we show next, the algorithm iteratively combines ele-
ments. The meaning of combining elements Ri and Rj is creating a new element
(xi + xj , yi + yj) instead of them and assigning it to the appropriate set.

Multiply Balanced k−Partitioning 593

As long as there are two elements Ri, Rj ⊕ S such that xi + xj < 1 and
yi + yj < 1 we pick such two elements Ri and Rj and combine them. At the
end of this stage it is guaranteed for every Ri, Rj ⊕ S that either xi + xj ≤ 1 or
yi + yj ≤ 1.

Next, as long as there is a pair Ri and Rj ⊕ S such that xi + xj ≤ 1 and
yi + yj ≤ 1 then it also holds for such a pair that xi + xj ∈ 2 < 1 + Θ because
xi < 1 and xj < 1. Similarly, yi + yj ∈ 2 < 1 + Θ. We combine such a pair to
Rij , and add it to A.

At the end of this stage it is guaranteed that for every Ri, Rj ⊕ S either
xi + xj ≤ 1 and yi + yj < 1 or yi + yj ≤ 1 and xi + xj < 1.

Lemma 1. At this stage of the algorithm, for every pair Ri, Rj ⊕ S it holds
that (xi + xj , yi + yj) fits to one of the elements Bx, By, Cx and Cy.

Proof. Will appear at the full version.

The algorithm proceeds as follows. We iteratively choose a pair Ri, Rj ⊕ S that
minimizes max{xi + xj , yi + yj}. Since we choose the pair that minimizes the
maximum of the two coordinates it is guaranteed that all the pairs that their
combination is either in Bx or in By will be chosen before all the pairs that their
combination is either in Cx or in Cy. As long as there is a pair whose combination
belongs to Bx (or By), we combine it.

If we reach to a point that Bx and By are not empty and there is no longer
a pair of elements that its combination belong to either Bx or By we do the
following. As long as both Bx and By are not empty we combine an arbitrary pair
Ri ⊕ Bx and Rj ⊕ By. Notice that the combined element belongs to A because
1 ∈ xi + xj < 1 + Θ as 1 ∈ xi < Θ and xj < 1, and similarly, 1 ∈ yi + yj < 1 + Θ.
After that, at most one of Bx and By is not empty. Assume that one of them is
not empty, and wlog let it be Bx.

Consider the following state of the algorithm: the sets By, Cx and Cy are
empty and the sets Bx and S are not empty. We now distinguish between two
cases. The case that there is at most one R ⊕ S such that w1(R) < w2(R) and
the case that there is more than one such element in S. For the first case we
prove:

Lemma 2. If By and Cy are empty elements, and there is at most one R ⊕ S
such that w1(R) < w2(R), then there is a way to combine the elements of S so
that the total number of different elements is at most k and every element is of
weight at most 1 + Θ.

Proof. Will appear at the full version.

It stems from the lemma above that if we are in the case that there is at most
one R ⊕ S such that w1(R) < w2(R) then we can reach the desired partition.
Thus, we assume now that there are at least two elements Rj , Rq ⊕ S such
that w1(Rj) < w2(Rj) and w1(Rq) < w2(Rq). We choose an arbitrary element
Ri ⊕ Bx. We know that xi < Θ, hence xi+xj +xq < 1+Θ. So even if we combine
Ri with Rj and Rq the x-coordinate is in the right range for A. The only question

594 A. Amir et al.

is if the y-coordinate fits. If yi + yj ≤ 1, then we combine Ri and Rj as both yi
and yj are less than 1 we can remove them and add their combination to A. If
yi + yj < 1 then combine the elements Ri, Rj , Rq and add them to A, because
yi + yj < 1 and yq < 1 then yi + yj + yq < 2 < 1 + Θ, and because yj + yq ≤ 1
by our assumption. We continue with this process until Bx gets empty.

Now both Bx and By are empty, and the next pair Ri, Rj ⊕ S that minimizes
max{xi + xj , yi + yj} fits into Cx or Cy . Assume, wlog it belongs to Cx. There
are two possible cases:

There is a third element Rq ⊕ S such that yi + yq ≤ 1 or yj + yq ≤ 1.
Assume, wlog, that yi + yq ≤ 1, which leads to xi + xq < 1 and therefore
xi + xq + xj < 2 < 1 + Θ. Additionally, yi + yj < 1, yi + yq ≤ 1 therefore,
1 ∈ yi + yj + yq < 2 < 1 + Θ. We can remove these three elements from S and
add their combination to A.

If there is no such third element it holds for each element Rq ⊕ S that yi+yq <
1 and yj + yq < 1. We show that in such a case there is at most one element
Rq ⊕ S such that xq < yq. Assume for the sake of contradiction that there are
two elements Rq, Rt ⊕ S such that xq < yq and xt < yt. We know that either
xi + xq ≤ xi + xj or yi + yq ≤ xi + xj , because otherwise a different pair of
elements would have obtain the minimum of the maximum. Because yi + yq < 1
then xi + xq > xi + xj ≤ Θ. Also, xq ≤ xi because otherwise a different pair
of elements would have obtain the minimum of the maximum. From the same
considerations xq ≤ xj . Recall that xi + xj ≤ Θ, thus, xq ≤ Σ

2 . Recall that
by our assumption yq > xq, thus yq >

Σ
2 . In the same way we can show that

xt ≤ Σ
2 ,yt >

Σ
2 , and therefore the combination of Rq and Rt belongs to A,

which contradicts the fact that no combination of any pairs in S belongs to A.
Therefore, the conditions of the Lemma 2 are satisfied and we can apply it. After
each time the algorithm combines two elements, it checks whether we are left
with exactly k pairs, and if so it stops and outputs the result. Therefore we do
not explicitly mention this check in the algorithm itself.

3.2 Lower Bounds

This section considers the tightness of the bounds of the union stage. For a
given Θ, the partition stage produces many parts such that each part R has
weights w1(R) ∈ (1 + Θ)W1/k and w2(R) ∈ (1 + Θ)W2/k. It was shown in [4]
that any (k, Θ)-balanced partitioning problem with Θ > 2 can be reduced to a
(k∈, Θ∈)-balanced partitioning problem with k∈ ∈ k and Θ ∈ 2, i.e., that it is only
necessary to analyze the problem for values of Θ at most 2. Therefore we can
express Θ as 1 + Δ when 0 < Δ ∈ 1.

Lemma 3. There exist an input to the Bounded Pair Scheduling problem that
can not be combined to k parts without exceeding 2 + 2δ

2+δ .

Proof. Our example consists of two types of elements: type A = (1 + Δ, 0) and
type B, which will be defined later. First we set up an input with s elements
whose total weight is (s, s). We use only a single element of type A, so we are

Multiply Balanced k−Partitioning 595

left with s − 1 type B elements. The total value of all of the y’s is s and only
the s− 1 type B elements contribute to this value. Therefore the y value of each
such element is s

s−1 . The total value of all of the x’s is s, the type A element
contributes 1 + Δ to this sum, so the y value of each of the type B elements is
s−(1+δ)

s−1 . We call this the basic structure. The basic structure will be replicated
many times, as we’ll show later.

Since type A elements get the maximal value (1 + Δ), combining two such
elements yields a high value. Therefore, we need to balance between the combined
value of A and B compared to the combined value of two B’s. Combining a type

A with a type B pair yields x value 1 + Δ + s−(1+δ)
s−1 and y value s

s−1 , i.e. the x
value is greater.

Combining two type B pairs yields x value 2(s−(1+δ)
s−1) and y value 2 s

s−1 , i.e.
the y value is greater.

If we want to balance the x and y values, we would need to have 1+Δ+ s−(1+δ)
s−1

equals to 2s
s−1 . For this to happen compute s as a function of Δ:

1 + Δ+ s−(1+δ)
s−1 = 2s

s−1
s = 2 + 2

δ .
We can assume that s is an integer. Otherwise we can represent s as a ratio

of two integers s = n
d , and replicate each of the elements d times.

The y value of type B elements = s
s−1 =

2+ 2
Θ

2+ 2
Θ−1

= 2+2δ
2+δ = 1 + δ

2+δ < 1 + Δ.

The x value of type B elements = s−(1+δ)
s−1 = 1 − δ

s−1 = 1 − δ
1+ 2

Θ

= 1 − δ2

2+δ <

1 + Δ. Therefore type B elements do not reach the 1 + Δ threshold and are valid
elements.

The above scenario is not interesting since the total value of W1 and W2 equals
to the number of parts, so no parts should be combined. Therefore we tweak the
example. Modify the basic structure as follows: For each basic structure subtract
an infinitesimally small value Π ≡ Δ from each of the coordinates of type B
elements. This decreases the total value of each coordinate by (s− 1)Π. Now we

will replicate the whole set s−(s−1)Θ
(s−1)Θ = s

(s−1)Θ − 1 times. This leaves enough free

space for an additional basic structure.
At this point we have to combine at least two elements. If we combine two type

A elements, their x value will be 2+2Δ. If we combine two type B elements, their
y value will be 2+ 2δ

2+δ−2Π ∃ 2+ 2δ
2+δ . The last possible combination is combining

a type A element with a type B. The x value will be (1 + Δ) + (1 − δ2

2+δ) − Π =

2 + 2δ+δ2−δ2
2+δ − Π = 2 + 2δ

2+δ − Π ∃ 2 + 2δ
2+δ . Therefore no matter which pair we

decide to combine, we get a value, as k goes to infinity of 2 + 2δ
2+δ . ∧�

Conclusion. Our algorithm is within 1 + δ2

4(1+δ) of the optimal.

Proof. Our algorithm achieves 1 + Θ = 2 + Δ, which is within 2+δ
2+ 2Θ

2+Θ

= 2+δ
4+2Θ+2Θ

2+Θ

=

4+4δ+δ2

4+4δ = 1 + δ2

4(1+δ) of the example. ∧�

596 A. Amir et al.

4 Generalization to d Weight Functions

The important observation is that the algorithm of Subsection 3.1 can be viewed
as a subroutine whose input is a partition of the vertices into k subsets, each
having weight bounded by Θ, and another partition into k subsets, each having
weight bounded by Θ. The result of the subroutine is a partition into k subsets,
each having weight bounded by Θ + 1. Call this subroutine COMBINE. As pre-
sented, the sum of the weights in each of the two coordinates is bounded by k.
We need to use the subroutine in a more general fashion, where the sum of the
weights of each coordinate is bounded by mk, for a parameter m. The necessary
change to COMBINE is in the definitions of the A,B, and C sets. It now becomes:

1. S = {(x, y) | x < m, y < m}
2. A = {(x, y) | m ∈ x < m+ Θ, m ∈ y < m+ Θ}
3. Bx = {(x, y) | m ∈ x < Θ, y < m}
4. By = {(x, y) | x < m, m ∈ y < Θ}
5. Cx = {(x, y) | Θ ∈ x < m+ Θ, y < m}
6. Cy = {(x, y) | x < m, Θ ∈ y < m+ Θ}

The result of the subroutine is a partition of the vertices into k subsets, each
having weight bounded by Θ + m. Observe also that the cut capacity of the
partition after subroutine COMBINE is bounded by the sum of the two initial
cut capacities.

Assume now that we have d weight functions. Assume also that d is a power
of 2. Using COMBINE we can construct d

2 partitions of the graph vertices, each
into k subsets, and each subset having weight bounded by 1 + Θ, where in the
i-th partition the weights considered are w2i−1 and w2i. We prepare these d

2
partitions for the next iteration, by considering partition i as having weight
function w1,i = max(w2i−1, w2i).

We can now do the same process, but we now have only d
2 partitions. Use

COMBINE to produce d
4 partitions of the graph vertices, each into k subsets,

and each subset having weight bounded by 2 + Θ. Again, we prepare these d
4

partitions for the next iteration, by considering partition i as having weight
function w2,i = max(w1,2i−1, w1,2i).

After ∗log d≥ iterations, we have a partition into k subsets, each having weight
bounded by 2∅log d	 − 1 + Θ ∈ 2d− 1 + Θ in every weight function.

Since we employ subroutine COMBINE ∗log d≥ times, the final cut capacity as
a result of our algorithm is the cut capacity resulting from a single partitioning
multiplied by O(d).

References

1. Andreev, K., Racke, H.: Balanced graph partitioning. Theory of Computing Sys-
tems 39(6), 929–939 (2006)

2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings, and
graph partitionings. In: 36th Annual Symposium on the Theory of Computing,
pp. 222–231 (May 2004)

Multiply Balanced k−Partitioning 597

3. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM Journal
on Computing 33(4), 837–851 (2004)

4. Even, G., Naor, J., Rao, S., Schieber, B.: Fast approximate graph partitioning
algorithms. In: Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 639–648. ACM, New York (1997)

5. Feige, U., Krauthgamer, R.: A polylogarithmic approximation of the minimum
bisection. SIAM J. Comput. 31(4), 1090–1118 (2002)

6. Feldmann, A.E., Foschini, L.: Balanced partitions of trees and applications. In: 29th
International Symposium on Theoretical Aspects of Computer Science (STACS
2012), vol. 14, pp. 100–111. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl (2012)

7. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theoret. Comput. Sci. 1(3), 237–267 (1976)

8. Garofalakis, M.N., Ioannidis, Y.E.: Parallel query scheduling and optimization with
time-and space-shared resources. SORT 1(T2), T3 (1997)

9. Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs.
SC 95, 28 (1995)

10. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

11. Krauthgamer, R., Naor, J.S., Schwartz, R.: Partitioning graphs into balanced com-
ponents. In: 20th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
942–949. SIAM (2009)

12. Leighton, F., Makedon, F., Tragoudas, S.: Approximation algorithms for VLSI par-
tition problems. In: Proceedings of the IEEE International Symposium on Circuits
and Systems, pp. 2865–2868. IEEE Computer Society Press (1990)

13. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

14. MacGregor, R.: On Partitioning a Graph: A Theoretical and Empirical Study.
Memorandum UCB/ERL-M. University of California, Berkeley (1978)

15. Patkar, S.B., Narayanan, H.: An efficient practical heuristic for good ratio-cut
partitioning. In: 16th International Conference on VLSI Design, pp. 64–69. IEEE
(2003)

16. Portugal, D., Rocha, R.: Partitioning generic graphs into k regions. In: 6th Iberian
Congress on Numerical Methods in Engineering (CMNE 2011), Coimbra, Portugal
(June 2011)

17. Räcke, H.: Optimal hierarchical decompositions for congestion minimization
in networks. In: 40th Annual ACM Symposium on Theory of Computing,
pp. 255–264. ACM (2008)

18. Simon, H.D., Teng, S.: How good is recursive bisection? SIAM J. Sci. Com-
put. 18(5), 1436–1445 (1997)

On Some Recent Approximation Algorithms

for MAX SAT

Matthias Poloczek1,Δ, David P. Williamson1,ΔΔ, and Anke van Zuylen3,ΔΔΔ

1 School of Operations Research and Information Engineering, Cornell University,
Ithaca, NY, USA

poloczek@orie.cornell.edu, dpw@cs.cornell.edu
2 Department of Mathematics, College of William and Mary, Williamsburg, VA, USA

anke@wm.edu

Abstract. Recently a number of randomized 3
4
-approximation algo-

rithms for MAX SAT have been proposed that all work in the same
way: given a fixed ordering of the variables, the algorithm makes a ran-
dom assignment to each variable in sequence, in which the probability of
assigning each variable true or false depends on the current set of satis-
fied (or unsatisfied) clauses. To our knowledge, the first such algorithm
was proposed by Poloczek and Schnitger [7]; Van Zuylen [8] subsequently
gave an algorithm that set the probabilities differently and had a simpler
analysis. Buchbinder, Feldman, Naor, and Schwartz [1], as a special case
of their work on maximizing submodular functions, also give a random-
ized 3

4
-approximation algorithm for MAX SAT with the same structure

as these previous algorithms. In this note we give a gloss on the Buch-
binder et al. algorithm that makes it even simpler, and show that in
fact it is equivalent to the previous algorithm of Van Zuylen. We also
show how it extends to a deterministic LP rounding algorithm, and we
show that this same algorithm was also given by Van Zuylen [8]. Finally,
we describe a data structure for implementing these algorithms in linear
time and space.

1 Introduction

The maximum satisfiability problem (MAX SAT) is a fundamental problem in
discrete optimization. In the problem we are given n boolean variables x1, . . . , xn
and m clauses that are conjunctions of the variables or their negations. With
each clause Cj , there is an associated weight wj ⊕ 0. We say a clause is satisfied
if one of its positive variables is set to true or if one of its negated variables is
set to false. The goal of the problem is to find an assignment of truth values
to the variables so as to maximize the total weight of the satisfied clauses. The
problem is NP-hard via a trivial reduction from satisfiability.

� Supported by the Alexander von Humboldt Foundation within the Feodor Lynen
program, and in part by NSF grant CCF-1115256.

�� Supported in part by NSF grant CCF-1115256.
��� Supported in part by a Suzann Wilson Matthews Summer Research Award.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 598–609, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

On Some Recent Approximation Algorithms for MAX SAT 599

We say we have an α-approximation algorithm for MAX SAT if we have a
polynomial-time algorithm that computes an assignment whose total weight of
satisfied clauses is at least α times that of an optimal solution; we call α the
performance guarantee of the algorithm. A randomized α-approximation algo-
rithm is a randomized polynomial-time algorithm such that the expected weight
of the satisfied clauses is at least α times that of an optimal solution. The
1974 paper of Johnson [5], which introduced the notion of an approximation al-
gorithm, also gave a 1

2 -approximation algorithm for MAX SAT. This algorithm
was later shown to be a 2

3 -approximation algorithm by Chen, Friesen, and Zheng
[2] (see also the simpler analysis of Engebretsen [3]). Yannakakis [10] gave the
first 3

4 -approximation algorithm for MAX SAT; it uses network flow and linear
programming computation as subroutines. Goemans and Williamson [4] subse-
quently showed how to use randomized rounding of a linear program to obtain
a 3

4 -approximation algorithm for MAX SAT. Subsequent approximation algo-
rithms which use semidefinite programming have led to still better performance
guarantees.

In 1998, Williamson [9, p. 45] posed the question of whether it is possible
to obtain a 3

4 -approximation algorithm for MAX SAT without solving a linear
program. This question was answered positively in 2011 by Poloczek and Schnit-
ger [7]. They give a randomized algorithm with the following particularly simple
structure: given a fixed ordering of the variables, the algorithm makes a random
assignment to each variable in sequence, in which the probability of assigning
each variable true or false depends on the current set of satisfied (or unsatisfied)
clauses. Subsequently, Van Zuylen [8] gave an algorithm with the same struc-
ture that set the probabilities differently and had a simpler analysis. In 2012,
Buchbinder, Feldman, Naor, and Schwartz [1], as a special case of their work
on maximizing submodular functions, also gave a randomized 3

4 -approximation
algorithm for MAX SAT with the same structure as these previous algorithms1.
Poloczek [6] gives evidence that the randomization is necessary for this style of
algorithm by showing that a deterministic algorithm that sets the variables in
order (where the next variable to set is chosen adaptively) and uses a particu-
lar set of information about the clauses cannot achieve performance guarantee

better than
∗
33+3
12 ≤ .729. However, Van Zuylen [8] shows that it is possible to

give a deterministic 3
4 -approximation algorithm with the same structure given a

solution to a linear programming relaxation.
The goal of this paper is to give an interpretation of the Buchbinder et al.

MAX SAT algorithm that we believe is conceptually simpler than the one given
there. We also restate the proof in terms of our interpretation. We further show
that the Buchbinder et al. algorithm is in fact equivalent to the previous algo-
rithm of Van Zuylen. We extend the algorithm and analysis to a deterministic
LP rounding algorithm. We conclude with a description of a data structure that
allows to implement greedy algorithms as well as LP rounding algorithms, such

1 In the extended abstract of [1], the authors claim the MAX SAT result and omit a
part of the proof, but it is not difficult to reconstruct the proof from the rest of the
paper.

600 M. Poloczek, D.P. Williamson, and A. van Zuylen

as the ones above, using linear time and space. Buchbinder et al. also state
(without proof) that there is a linear-time implementation of the algorithm.

Here we give the main idea of our perspective on the algorithm. Consider
greedy algorithms that set the variables xi in sequence. A natural greedy algo-
rithm sets xi to true or false depending on which increases the total weight of the
satisfied clauses by the most. An alternative to this algorithm would be to set
each xi so as to increase the total weight of the clauses that are not yet unsat-
isfied given the setting of the variable (a clause is unsatisfied if all the variables
of the clause have been set and their assignment does not satisfy the clause).
The algorithm is in a sense a randomized balancing of these two algorithms. It
maintains a bound that is the average of two numbers, the total weight of the
clauses satisfied thus far, and the total weight of the clauses that are not yet
unsatisfied. For each variable xi, it computes the amount by which the bound
will increase if xi is set true or false; one can show that the sum of these two
quantities is always nonnegative. If one assignment causes the bound to decrease,
the variable is given the other assignment (e.g. if assigning xi true decreases the
bound, then it is assigned false). Otherwise, the variable is set randomly with a
bias towards the larger increase.

This paper is structured as follows. Section 2 sets up some notation we will
need. Section 3 gives the randomized 3

4 -approximation algorithm and its analysis.
Section 4 extends these to a deterministic LP rounding algorithm. Section 5
explains how the algorithm is equivalent to the previous algorithm of Van Zuylen.
Section 6 addresses how to implement the algorithms in linear time. We conclude
with some open questions in Section 7.

2 Notation

We assume a fixed ordering of the variables, which for simplicity will be given as
x1, x2, . . . , xn. As the algorithm proceeds, it will sequentially set the variables;
let Si denote some setting of the first i variables. Let W =

∑m
j=1 wj be the total

weight of all the clauses. Let SATi be the total weight of clauses satisfied by
Si, and let UNSATi be the total weight of clauses that are unsatisfied by Si;
that is, clauses that only have variables from x1, . . . , xi and are not satisfied by
Si. Note that SATi is a lower bound on the total weight of clauses satisfied by
our final assignment Sn (once we have set all the variables); furthermore, note
that W − UNSATi is an upper bound on the total weight of clauses satisfied
by our final assignment Sn. We let Bi = 1

2 (SATi + (W − UNSATi)) be the
midpoint between these two bounds; we refer to it simply as the bound on our
partial assignment Si. For any assignment S to all of the variables, let w(S)
represent the total weight of the satisfied clauses. Then we observe that for
the assignment Sn, w(Sn) = SATn = W − UNSATn, so that w(Sn) = Bn.
Furthermore, SAT0 = 0 and UNSAT0 = 0, so that B0 = 1

2W .
Note that our algorithm will be randomized, so that Si, SATi, UNSATi, and

Bi are all random variables.

On Some Recent Approximation Algorithms for MAX SAT 601

3 The Algorithm and Its Analysis

The goal of the algorithm is at each step to try to increase the bound; that is,
we would like to set xi randomly so as to increase E[Bi − Bi−1]. We let ti be
the value of Bi −Bi−1 in which we set xi true, and fi the value of Bi −Bi−1 in
which we set xi false. Note that the expectation is conditioned on our previous
setting of the variables x1, . . . , xi−1, but we omit the conditioning for simplicity
of notation. We will show momentarily that ti + fi ⊕ 0. Then the algorithm is
as follows. If fi ≤ 0, we set xi true; that is, if setting xi false would not increase
the bound, we set it true. Similarly, if ti ≤ 0 (setting xi true would not increase
the bound) we set xi false. Otherwise, if either setting xi true or false would
increase the bound, we set xi true with probability ti

ti+fi
.

Lemma 1. For i = 1, . . . , n,
ti + fi ⊕ 0.

Proof. We note that any clause that becomes unsatisfied by Si−1 and setting
xi true must be then be satisfied by setting xi false, and similarly any clause
that becomes unsatisfied by Si−1 and setting xi false must then be satisfied by
setting xi true. Let SATi,t be the clauses that are satisfied by setting xi true
given the partial assignment Si−1, and SATi,f be the clauses satisfied by setting
xi false given the partial assignment Si−1. We define UNSATi,t (UNSATi,f)
to be the clauses unsatisfied by Si−1 and xi set true (respectively false). Our
observation above implies that SATi,f − SATi−1 ⊕ UNSATi,t −UNSATi−1 and
SATi,t − SATi−1 ⊕ UNSATi,f −UNSATi−1.

LetBi,t = 1
2 (SATi,t+(W−UNSATi,t)) andBi,f = 1

2 (SATi,f+(W−UNSATi,f)).
Then ti =Bi,t−Bi−1 and fi =Bi,f−Bi−1; our goal is to show that ti + fi ⊕ 0, or

1

2
(SATi,t + (W −UNSATi,t)) +

1

2
(SATi,f + (W −UNSATi,f))

− SATi−1 − (W −UNSATi−1) ⊕ 0.

Rewriting, we want to show that

1

2
(SATi,t − SATi−1) +

1

2
(SATi,f − SATi−1)

⊕ 1

2
(UNSATi,f −UNSATi−1) +

1

2
(UNSATi,t −UNSATi−1),

and this follows from the inequalities of the previous paragraph. ⊗∈
Let x⊆ be a fixed optimal solution. Following both Poloczek and Schnitger, and
Buchbinder et al., given a partial assignment Si, let OPTi be the assignment
in which variables x1, . . . , xi are set as in Si, and xi+1, . . . , xn are set as in
x⊆. Thus if OPT is the value of an optimal solution, w(OPT0) = OPT, while
w(OPTn) = w(Sn).

The following lemma is at the heart of both analyses (see Section 2.2 in
Poloczek and Schnitger [7] and Lemma III.1 of Buchbinder et al. [1]).

602 M. Poloczek, D.P. Williamson, and A. van Zuylen

Lemma 2. For i = 1, . . . , n, the following holds:

E[w(OPTi−1)− w(OPTi)] ≤ E[Bi −Bi−1].

Before we prove the lemma, we show that it leads straightforwardly to the desired
approximation bound.

Theorem 1.

E[w(Sn)] ⊕ 3

4
OPT.

Proof. We sum together the inequalities from the lemma, so that

n∑

i=1

E[w(OPTi−1)− w(OPTi)] ≤
n∑

i=1

E[Bi −Bi−1].

Using the linearity of expectation and telescoping the sums, we get

E[w(OPT0)− w(OPTn)] ≤ E[Bn]− E[B0].

Thus

OPT− E[w(Sn)] ≤ E[w(Sn)]− 1

2
W,

or

OPT +
1

2
W ≤ 2E[w(Sn)],

or
3

4
OPT ≤ E[w(Sn)]

as desired, since OPT ≤W . ⊗∈
The following lemma is the key insight of proving the main lemma, and is the
randomized balancing of the two greedy algorithms mentioned in the introduc-
tion. The bound holds whether x⊆i is true or false.

Lemma 3.

E[w(OPTi−1)− w(OPTi)] ≤ max

(
0,

2tifi
ti + fi

)
.

Proof. Assume for the moment that x⊆i is set false; the proof is analogous if
x⊆i is true. We claim that if xi is set true while x⊆i is false, then w(OPTi−1) −
w(OPTi) ≤ 2fi. If fi ≤ 0, then we set xi true and the lemma statement holds
given the claim. If ti ≤ 0, we set xi false; then the assignment OPTi is the same
as OPTi−1 so that w(OPTi)−w(OPTi−1) = 0 and the lemma statement again
holds. Now assume both fi > 0 and ti > 0. We set xi false with probability
fi/(ti + fi), so that again w(OPTi) − w(OPTi−1) = 0. We set xi true with
probability ti/(ti + fi). If the claim holds then the lemma is shown, since

E[w(OPTi−1)− w(OPTi)] ≤ fi
ti + fi

· 0 +
ti

ti + fi
· 2fi =

2tifi
ti + fi

.

On Some Recent Approximation Algorithms for MAX SAT 603

If xi is set true while x⊆i is false, OPTi−1 differs from OPTi precisely by
having the ith variable set false. Hence, w(OPTi−1)−w(OPTi) is the difference
in the weight of the satisfied clauses made by flipping the ith variable from true
to false in OPTi. Since both assignments have the first i− 1 variables set as in
Si−1, they both satisfy at least SATi−1 total weight, so the increase of flipping
the ith variable from true to false is at most SATi,f − SATi−1. Additionally,
both assignments leave at least UNSATi−1 total weight of clauses unsatisfied,
so that flipping the ith variable from true to false leaves at least UNSATi,f −
UNSATi−1 additional weight unsatisfied. In particular, flipping the ith variable
will unsatisfy an additional UNSATi,f − UNSATi−1 weight of the clauses that
only have variables from x1, . . . , xi and may unsatisfy additional clauses as well.
Thus, if xi is set true and x⊆i is false,

w(OPTi−1)− w(OPTi) ≤ (SATi,f − SATi−1)− (UNSATi,f −UNSATi−1)

= (SATi,f + (W −UNSATi,f))

− (SATi−1 + (W −UNSATi−1))

= 2(Bi,f −Bi−1) = 2fi.

⊗∈

Now we can prove the main lemma.

Proof of Lemma 2. If either ti ≤ 0 or fi ≤ 0, then by Lemma 3, we set xi
deterministically so that the bound does not decrease and Bi −Bi−1 ⊕ 0. Since
then tifi ≤ 0, by Lemma 3

E[w(OPTi−1)− w(OPTi)] ≤ max(0, 2tifi/(ti + fi)) ≤ 0,

and the inequality holds.
If both ti, fi > 0, then

E[Bi −Bi−1] =
ti

ti + fi
[Bi,t −Bi−1] +

fi
ti + fi

[Bi,f −Bi−1]

=
t2i + f2

i

ti + fi
,

while by Lemma 3

E[w(OPTi−1)− w(OPTi)] ≤ 2tifi
ti + fi

.

Therefore in order to verify the inequality, we need to show that when ti, fi > 0,

2tifi
ti + fi

≤ t2i + f2
i

ti + fi
,

which follows since t2i + f2
i − 2tifi = (ti − fi)2 ⊕ 0. ⊗∈

604 M. Poloczek, D.P. Williamson, and A. van Zuylen

4 A Deterministic LP Rounding Algorithm

We can now take essentially the same algorithm and analysis, and use it to
obtain a deterministic LP rounding algorithm.

We first give the standard LP relaxation of MAX SAT. It uses decision vari-
ables yi ∗ {0, 1}, where yi = 1 corresponds to xi being set true, and zj ∗ {0, 1},
where zj = 1 corresponds to clause Cj being satisfied. Let Pj be the set of vari-
ables that occur positively in clause Cj and Nj be the set of variables that occur
negatively. Then the LP relaxation is:

maximize

m∑

j=1

wjzj

subject to
∑

i◦Pj

yi +
∑

i◦Nj

(1− yi) ⊕ zj, ≥Cj =
∨

i◦Pj

xi ⊆
∨

i◦Nj

x̄i,

0 ≤ yi ≤ 1, i = 1, . . . , n,

0 ≤ zj ≤ 1, j = 1, . . . ,m.

Note that given a setting of y, we can easily find the value of z that maximizes
the LP objective, by setting zj = min(1,

∑
i◦Pj

yi +
∑

i◦Nj
(1− yi)); thus we can

determine the best possible value of the LP for a given y. Let OPTLP be the
optimal value of the LP.

Let y⊆ be an optimal solution to the LP relaxation. As before, our algorithm
will sequence through the variables xi, deciding at each step whether to set xi
to true or false; now the decision will be made deterministically. Let Bi be the
same bound as before, and as before let ti be the increase in the bound if xi is
set true, and fi the increase if xi is set false. The concept corresponding to OPTi

in the previous algorithm is LPi, the value of the LP for a vector ŷ in which
the first i elements are 0s and 1s corresponding to our assignment Si, while the
remaining entries are the values of the optimal LP solution y⊆i+1, . . . , y

⊆
n. Thus

LP0 = OPTLP and LPn = w(Sn), the weight of our assignment. We further
introduce the notation LPi,t (LPi,f), which correspond to the value of the LP
for the vector ŷ in which the first i− 1 elements are 0s and 1s corresponding to
our assignment Si−1, the entries for i+ 1 to n are the values of the optimal LP
solution y⊆i+1, . . . , y

⊆
n, and the ith entry is 1 (0, respectively). Note that after we

decide whether to set xi true or false, either LPi = LPi,t (if we set xi true) or
LPi = LPi,f (if we set xi false).

The following lemma is the key to the algorithm and the analysis; we defer
the proof.

Lemma 4. For each i, i = 1, . . . , n, both of the following two inequalities are
true:

LPi−1 − LPi,t ≤ 2(1− y⊆i)fi and LPi−1 − LPi,f ≤ 2y⊆i ti.

We remark that the first inequality in the lemma is a “fractional version” of
the inequality from the proof of Lemma 3: if xi is set to true, then
w(OPTi−1) − w(OPTi) ≤ 2fi. The second inequality is a fractional version

On Some Recent Approximation Algorithms for MAX SAT 605

of the analogous inequality w(OPTi−1)−w(OPTi) ≤ 2ti which holds if xi is set
to false.

The algorithm is then as follows: when we consider variable xi, we check
whether 2y⊆i ti ≤ fi: if the inequality holds, we set xi false (and thus LPi = LPi,f),
otherwise we set xi true (and thus LPi = LPi,t).

The following lemma, which is analogous to Lemma 2, now follows easily.

Lemma 5. For i = 1, . . . , n,

LPi−1 − LPi ≤ Bi −Bi−1.

Proof. If 2y⊆i ti ≤ fi, we set xi to false, so that LPi−1−LPi = LPi−1−LPi,f and
Bi − Bi−1 = fi. By the second inequality of Lemma 4, LPi−1 − LPi,f ≤ 2y⊆i ti,
and by the condition for setting xi to false, this is at most fi.

If 2y⊆i ti > fi, we set xi to true, so that LPi−1 − LPi = LPi−1 − LPi,t and
Bi−Bi−1 = ti. Using the first inequality of Lemma 4, LPi−1−LPi,t ≤ 2(1−y⊆i)fi.
Since fi < 2y⊆i ti, this is less than 4(1 − y⊆i)y⊆i ti ≤ ti, where the final inequality
uses the fact that 0 ≤ y⊆i ≤ 1. ⊗∈
Given the lemma, we can prove the following.

Theorem 2. For the assignment Sn computed by the algorithm,

w(Sn) ⊕ 3

4
OPT.

Proof. As in the proof of Theorem 1, we sum together the inequalities given by
Lemma 5, so that

n∑

i=1

(LPi−1 − LPi) ≤
n∑

i=1

(Bi −Bi−1) .

Telescoping the sums, we get

LP0 − LPn ≤ Bn −B0, or OPTLP − w(Sn) ≤ w(Sn)− W

2
.

Rearranging terms, we have

w(Sn) ⊕ 1

2
OPTLP +

W

4
⊕ 3

4
OPT,

since both OPTLP ⊕ OPT (since the LP is a relaxation) and W ⊕ OPT. ⊗∈
Now to prove Lemma 4.

Proof of Lemma 4. We observe that LPi−1 − LPi,t is equal to the outcome of
changing an LP solution y from yi = 1 to yi = y⊆i ; all other entries in the y vector
remain the same. Both LPi−1 and LPi,t satisfy at least SATi−1 weight of clauses;

606 M. Poloczek, D.P. Williamson, and A. van Zuylen

any increase in weight of satisfied clauses due to reducing yi from 1 to y⊆i must be
due to clauses in which xi occurs negatively; if we reduce yi from 1 to 0, we would
get a increase of the objective function of at most SATi,f − SATi−1, but since
we reduce yi from 1 to y⊆i , we get (1− y⊆i)(SATi,f − SATi−1). Additionally both
LPi−1 and LPi,t have at least UNSATi−1 total weight of unsatisfied clauses; any
increase in the weight of unsatisfied clauses due to reducing yi from 1 to y⊆i must
be due to clauses in which xi occurs positively; if we reduce yi from 1 to 0, we
would get a decrease in the objective function of at least UNSATi,f−UNSATi−1,
but since we reduce yi from 1 to y⊆i we get (1 − y⊆i)(UNSATi,f − UNSATi−1).
Then we have

LPi−1 − LPi,t ≤ (1− y⊆i)(SATi,f − SATi−1 − (UNSATi,f −UNSATi−1))

≤ 2(1− y⊆i)fi,

The proof that LPi−1 − LPi,f ≤ 2y⊆i ti is analogous. ⊗∈

5 The Algorithms of Van Zuylen

In this section, we show that Van Zuylen’s randomized algorithm is equivalent
to the algorithm of Section 3, and Van Zuylen’s deterministic LP rounding al-
gorithm is equivalent to the algorithm of Section 4. Van Zuylen’s randomized
algorithm [8] uses the following quantities to decide how to set each variable xi.
Let Wi be the weight of the clauses that become satisfied by setting xi true and
unsatisfied by setting xi false, and let W̄i be the weight of the clauses satisfied
by setting xi false and unsatisfied by setting xi true. Let Fi be the weight of
the clauses that are satisfied by setting xi true, and are neither satisfied nor
unsatisfied by setting xi false; similarly, F̄i is the weight of the clauses that are
satisfied by setting xi false, and are neither satisfied nor unsatisfied by setting
xi true. Then Van Zuylen calculates a quantity α as follows:

α =
Wi + Fi − W̄i

Fi + F̄i
.

Note that the case Fi + F̄i = 0 is trivial, hence we may assume that Fi + F̄i > 0
and α is well defined. Van Zuylen’s algorithm sets xi false if α ≤ 0, true if α ⊕ 1,
and sets xi true with probability α if 0 < α < 1.

We observe that in terms of our prior quantities, Wi +Fi = SATi,t−SATi−1,
while W̄i = UNSATi,f −UNSATi−1. Then

Wi + Fi − W̄i = SATi,t − SATi−1 + (W −UNSATi,t)− (W −UNSATi−1)

= 2(Bi,t −Bi−1) = 2ti.

Similarly, W̄i + F̄i −Wi = 2fi. Furthermore,

On Some Recent Approximation Algorithms for MAX SAT 607

Fi + F̄i = (Fi +Wi) + (F̄i + W̄i)−Wi − W̄i

= (SATi,t − SATi−1) + (SATi,f − SATi−1)

− (UNSATi,t −UNSATi−1)− (UNSATi,f −UNSATi−1)

= [(SATi,t + (W −UNSATi,t)− (SATi−1 + (W −UNSATi−1)]

+ [(SATi,f + (W −UNSATi,f)− (SATi−1 + (W −UNSATi−1)]

= 2(Bi,t −Bi−1) + 2(Bi,f −Bi−1)

= 2(ti + fi).

We remark that the above gives an alternative proof for Lemma 1, and that our
assumption that Fi + F̄i > 0 implies that ti + fi > 0.

Now, α ≤ 0 if and only if ti ≤ 0, and in this case xi is set false. Also, α ⊕ 1
if and only if

Wi + Fi − W̄i ⊕ Fi + F̄i, or W̄i + F̄i −Wi ≤ 0,

which is equivalent to fi ≤ 0, and in this case xi is set true. Finally, 0 < α < 1
if and only if ti > 0 and fi > 0 and in this case, xi is set true with probability
α = 2ti

2(ti+fi)
= ti

ti+fi
. Thus Van Zuylen’s algorithm and the algorithm of Section

3 are equivalent.
We now turn to Van Zuylen’s deterministic LP rounding algorithm. It also

makes use of the quantity α defined above. If y⊆ is an optimal LP solution, then
it sets xi to false if α ≤ 0, or if α ∗ (0, 1) and y⊆i ≤ 1−Σ

2Σ and to true otherwise.
We show that this is equivalent to the algorithm from Section 4, which sets xi
to false if 2y⊆i ti ≤ fi and to true otherwise, except for the choice it makes in the
“degenerate” case when ti = fi = 0 and α is not defined. Recall that we have
assumed ti + fi > 0.

First, consider the case α ∗ (0, 1). We have shown above that α = ti
ti+fi

, which

implies that 1−Σ
2Σ = fi

2ti
and ti > 0 since α > 0. Thus, y⊆i ≤ 1−Σ

2Σ is equivalent
to 2y⊆i ti ≤ fi, and hence Van Zuylen’s algorithm employs the same rounding as
our algorithm from Section 4 in the case when α ∗ (0, 1).

If α ≤ 0, then the fact that ti + fi > 0 implies that ti ≤ 0 and fi > 0. Hence,
2y⊆i ti < fi holds, and indeed Van Zuylen’s algorithm sets xi to false in this case.
Finally, if α ⊕ 1, Van Zuylen’s algorithm sets xi to true. Note that α ⊕ 1 implies
that ti ⊕ ti + fi, and hence ti > 0 and fi ≤ 0. Hence, it must be that case that
2y⊆i ti > fi.

6 A Linear Time Implementation

We describe a linear time and linear space implementation of greedy algorithms
for MAX SAT. The data structure we propose covers the randomized greedy
algorithm studied in Section 3, its variants in [7,6], both LP rounding algorithms,
and Johnson’s algorithm equipped with either an online or a random variable
ordering [5,2,7].

There are two main problems to address: When given a variable xi, one needs
to access all clauses that contain xi and are not satisfied by Si−1, the partial

608 M. Poloczek, D.P. Williamson, and A. van Zuylen

assignment to the first i− 1 variables. In particular, the algorithms we consider
require the weight and the number of unfixed literals for any such clause in
order to decide xi. Then, after fixing xi, one has to “update” the clause set, i.e.
remove satisfied and unsatisfied clauses to avoid the computational overhead of
processing a clause that has been decided.

We assume that the formula is given as a collection of m clauses, where each
clause Cj , j ∗ [m], consists of a list of literals and has a nonnegative weight wj .
The size of the formula, i.e. its encoding length, is denoted by F . In particular, F
is proportional to the total number of literals in the formula, counting multiple
occurrences. In the following presentation we omit the space required to represent
the clause weights, as they can be assumed to be in binary both in the input and
in the data structure. Buchbinder et al. state that their version of the randomized
greedy algorithm can be implemented in linear time (Theorem IV.2 in [1]), but
defer the proof to a full version of their paper. We propose a data structure that
yields a time and space complexity of O(F).

Assume that the number of variables is n and their indices are {1, 2, . . . , n}.
For each literal x we create a doubly linked list Lx that will provide access to
the clauses that are still undecided and contain x. Thus, there are two lists Lxi

and Lxi
for each variable xi that can be accessed via an auxiliary array using the

variable index. Now we perform a single run through the clause set: For clause Cj

we create a clause object Oj that stores the weight wj and the number of unfixed
literals in Cj with respect to the current partial assignment. Further, for each
literal x ∗ Cj we append a new element Ej to Lx that contains a pointer to the
clause object Oj , and store a pointer to Ej in Oj . The pointers in Oj can be kept
in a simple linked list. We may charge the cost of these operations to the literals
involved: The occurrence of literal x in clause Cj is charged for element Ej in Lx

as well as the two pointers, and the first literal of Cj is charged for Oj . Thus,
the data structure can be constructed in time and space O(F).

We run the algorithm as follows. The algorithm specifies an ordering on the
variables, for example the ordering given by the variable indices. If variable xi is
to be decided next, the algorithm cycles once through Lxi and Lxi

to collect the
information used to decide xi. In case of the algorithms presented in paper this
means computing ti and fi. Assume that the algorithm sets xi to true (the case
of false will be handled analogously). Then we remove the satisfied clauses from
the formula by cycling through Lxi : for each element Ej ∗ Lxi we access the
corresponding clause object Oj and remove the clause from the L-lists of those
literals that appear in Cj , using the pointers stored in the clause object Oj . Here
we utilize that the L-lists are doubly linked and hence the corresponding elements
can be removed from the respective list in constant time. Then we delete the
clause object Oj itself. Finally, we pass through Lxj

and decrement the number
of unfixed literals for the corresponding clauses. If the counter drops to zero
for some clause, we also remove it from the data structure by the procedure
described above. Thus, at any time the data structure contains only undecided
clauses. Observe that each literal x is fixed (at most) once by the algorithm,
thus every occurrence of x is charged with constant cost.

On Some Recent Approximation Algorithms for MAX SAT 609

7 Conclusions

A natural question is whether there exists a simple deterministic 3
4 -approxi-

mation algorithm for MAX SAT that does not require the use of linear pro-
gramming. The paper of Poloczek [6] rules out certain types of algorithms, but
other types might still be possible. Another question is whether randomization is
inherently necessary for the 1

2 -approximation algorithm for (nonmonotone) sub-
modular function maximization of Buchbinder et al. [1]; that is, can one achieve
a deterministic 1

2 -approximation algorithm? It might be possible to show that
given a fixed order of items and a restriction on the algorithm that it must make
an irrevocable decision on whether to include an item in the solution set or not, a
deterministic 1

2 -approximation algorithm is not possible. However, it seems that
there must be some reasonable restriction on the number of queries made to the
submodular function oracle.

References

1. Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. In: Proceedings of
the 53rd Annual IEEE Symposium on the Foundations of Computer Science,
pp. 649–658 (2012)

2. Chen, J., Friesen, D.K., Zheng, H.: Tight bound on Johnson’s algorithm for maxi-
mum satisfiability. J. Comput. Syst. Sci. 58, 622–640 (1999)

3. Engebretsen, L.: Simplified tight analysis of Johnson’s algorithm. Inf. Process.
Lett. 92, 207–210 (2004)

4. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the max-
imum satisfiability problem. SIAM Journal on Discrete Mathematics 7, 656–666
(1994)

5. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

6. Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: Demetrescu,
C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer,
Heidelberg (2011)

7. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX
SAT. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 656–663 (2011)

8. van Zuylen, A.: Simpler 3/4-approximation algorithms for MAX SAT. In: Solis-
Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 188–197. Springer,
Heidelberg (2012)

9. Williamson, D.P.: Lecture notes in approximation algorithms, Fall 1998. IBM Re-
search Report RC 21409, IBM Research (1999)

10. Yannakakis, M.: On the approximation of maximum satisfiability. Journal of
Algorithms 17, 475–502 (1994)

Packet Forwarding Algorithms

in a Line Network

Antonios Antoniadis1,Δ, Neal Barcelo1, Daniel Cole1, Kyle Fox2,ΔΔ,
Benjamin Moseley3, Michael Nugent1, and Kirk Pruhs1,ΔΔΔ

1 University of Pittsburgh, Pittsburgh PA 15260, USA
antoniosantoniadis@gmail.com,

{ncb30,dcc20,mnugent,kirk}@cs.pitt.edu
2 University of Illinois at Urbana-Champaign, Urbana IL 61801, USA

kylefox2@illinois.edu
3 Toyota Technological Institute at Chicago, Chicago IL 60637, USA

moseley@ttic.edu

Abstract. We initiate a competitive analysis of packet forwarding
policies for maximum and average flow in a line network. We show that
the policies Earliest Arrival and Furthest-To-Go are scalable, but not
constant competitive, for maximum flow. We show that there is no con-
stant competitive algorithm for average flow.

1 Introduction

The Internet Protocol (IP) layer of the TCP/IP suite is responsible for trans-
porting (essentially fixed-sized) datagrams/packets from a source host, through
intermediate routers, to a destination host specified by an IP address. The uti-
lization of any imaginable economically-sustainable network will be sufficiently
high so that routers will usually have a backlog of packets waiting to be for-
warded. Thus routers need a policy that specifies which packets to forward first
in the event of a backlog. Ideally the goal of this forwarding policy should be
to provide the best possible quality of service (QoS) to the application layer
clients, although this is a problematic goal as one consequence of the layer-
ing/encapsulation principle of the protocol suite design is that the overlying
applications are generally hidden from the IP layer. Thus, a reasonable fallback
goal for this forwarding policy would be to provide good QoS to the packets.

The most natural QoS measure for an individual packet j is the response/flow
time Cj − rj , the duration of time between the time rj when the packet j is

� With support by a fellowship within the Postdoc-Programme of the German
Academic Exchange Service (DAAD).

�� Research by this author is supported in part by the Department of Energy Office of
Science Graduate Fellowship Program (DOE SCGF), made possible in part by the
American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU
under contract no. DE-AC05-06OR23100.

��� Supported in part by NSF grants CCF-1115575, CNS-1253218, and an IBM Faculty
Award.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 610–621, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Packet Forwarding Algorithms in a Line Network 611

injected into the IP layer at the source host, until the time Cj when the packet j is
ejected from the IP layer at the destination host. The most natural QoS measure
for a collection of packets is then to take a p-norm, for p ⊕ [1,≤], of the flow time
of individual packets. The ≤-norm, or maximum flow time, is usually the most
mathematically tractable norm, and is the second most commonly considered
norm in the systems literature. The 1-norm, or average flow time, is usually
the second most mathematically tractable norm, and is the most commonly
considered norm in the systems literature.

The goal of the research we report on in this paper is to initiate a competitive
analysis of packet forwarding policies for these natural QoS measures. In this
paper, we generally assume that the network topology is a line. Even for this
simplest of topologies, we find the subtlety of the algorithm analysis and design
process to be surprising.

There are three natural packet forwarding policies that play a central role in
our findings:

Furthest-To-Go (FTG): The FTG policy always forwards a packet with the
most hops left to go. It is not too difficult to see that FTG minimizes the
makespan, the time that the last packet is delivered. We actually show in
Section 5 the stronger statement that for every router i and for every time
t, FTG has forwarded the maximum number of packets possible over router
i by time t. Intuitively, this implies that FTG maximizes the amount of
parallel processing possible in the network.

Earliest Arrival (EA): The EA policy always forwards the packet that was
first injected into the network layer. For a one-edge network, it is well-known
and obvious that the policy EA is optimal for maximum flow. For general
line networks, it is obvious that EA is not optimal for maximum flow be-
cause there are situations where the optimal algorithm needs to forward a
younger further-to-go packet. Earliest Arrival is also known in the literature
as Longest-In-System.

Shortest-To-Go (STG): Shortest-To-Go always forwards the packet that is
the fewest number of hops from its destination router. We show in Lemma 11
that STG achieves optimal average flow time if all packets are injected into
the system at the same time. We recently learned that the same result was
proven independently by Kowalski et al. and will appear in [1]. Shortest-To-
Go is also known in the literature as Nearest-To-Go.

In this paper, we report on the progress that we made beyond these initial
observations. Namely, we show that:

Maximum Flow on a Line: Our initial conjecture was that EA is O(1)-
competitive.
– In Section 3 we show that in fact EA is not O(1)-competitive. The lower

bound instance results from a rather intricate recursive construction that
increases the age of a packet by a fixed amount on each recursion. Intu-
itively, this shows that a competitive algorithm must take into account
the path lengths of the packets.

612 A. Antoniadis et al.

– In Section 4 we show that EA is however scalable, that is,O(1)-competitive
with arbitrarily small speed augmentation. Intuitively, this shows that EA
should be reasonable until the network utilization is near the capacity of
the network.

– In Section 5 we show that FTG is also scalable.
Average Flow on a Line: Initially we had two competing intuitions as to the

“right” policy for average flow time. One might reasonably think that as
Shortest Remaining Processing Time is the optimal scheduling policy for
average flow for arbitrary sized jobs on a single processor, that analogously
the policy STG, which forwards a packets with the fewest hops to go, should
be a good policy for average flow. Alternatively, one might reasonably think
that FTG should be a good policy for average flow because it maximizes
parallelism.
– In Section 6 we show that there is no O(1)-competitive online algorithm.

Intuitively in our lower bound construction, if the online algorithm ini-
tially forwards packets using STG, then there is a future in which FTG
was the right initial policy, and if instead the online algorithm initially
forwards packets using FTG, there is another future in which STG was
the right initial policy (and there is no intermediate policy that is good
in both futures). So in some sense, this shows that there is no possible
resolution to the conflicting intuitions favoring STG and FTG.

Maximum Flow on a Tree: In Section 7 we show that there is no O(1)-speed
O(1)-competitive deterministic local online algorithm. This shows that gen-
eralizing the problem to the second most simple network already makes the
problem harder.

We then conclude by stating the two open problems “discovered” by this
research that we find appealing.

1.1 Related Work

Previous work on routing algorithms under the adversarial model has, to the
best of our knowledge, revolved around two distinct models. In the first one,
stability is studied, i.e., whether the number of packets in the system will remain
bounded as the system runs for an arbitrarily long period of time. In general
this depends on the protocol studied, on the size and topology of the network
and on the maximum rate at which the adversary is allowed to inject packets
into the network. We refer to [2–13] for some representative papers under this
model. In the second model, a subset of the packets has to be dropped, due to
some restriction. For example, there might be a limit in the size of the buffer, a
maximum delay (per packet) allowed by the system, or packets may come with a
deadline. The objective is to maximize a function of the transmitted packets, for
instance their number, size, or (weighted) value. Work in this model has mostly
employed competitive analysis, see [14–25]. The problem has also been studied
when the routers have shared but limited memory [26]. Our work significantly
differs from both these models, since (1) instead of considering the stability of a

Packet Forwarding Algorithms in a Line Network 613

network, we use competitive analysis with respect to specific objective functions,
and (2) in our model every single packet has to be transmitted to its destination.

We would like to point out that [22] also studies the Furthest-To-Go algorithm
on line networks, but with fixed-size buffers under the objective of maximizing
the throughput. They show that for this model on a line of length k every greedy
algorithm (including Furthest-To-Go) has a competitive ratio of O(k), and also
give a matching lower bound of Ω(k) on the competitive factor of Furthest-To-
Go. Also, Angelov et al. [19] as well as Azar and Zachut [18], give centralized
online algorithms with a polylogarithmic competitive ratio for the problem of
maximizing throughput on the line. The special case of information gathering,
where all packets have a common destination, was studied on the line by Rosén
and Scalosub [25].

2 Preliminaries and Notation

We begin by introducing a formal model for the problems we consider and some
notation. In the problems we consider there are k routers labeled 1 through k
on a line network. The routers are ordered in increasing order on the line from
left to right. Over time n packets arrive. We say that a packet j arrives at time
rj . We assume arrival times are integral. Each packet is associated with a path
Pj . The path Pj consists of a set of routers that packet j must be processed
on to be completed. This corresponds to sending a packet from its source to its
destination. Since we are considering a line network, Pj will consist of a set of
adjacent routers on the line. A router can process one packet at each time unit,
which corresponds to sending this packet to the router to the right of this router
on the line. A packet can only be processed if it is on a router and a packet
j starts at the leftmost router in Pj . Note that a packet must be processed by
every router in Pj and therefore |Pj | is a lower bound on the amount of time a
packet requires to be sent to its destination.

We will consider two different objective functions, namely total (average) flow
time and maximum flow time. For some schedule, let Cj denote the time packet
j is finished being processed. The flow time of j is Cj−rj . For total flow time we
are interested in minimizing

∑
j∗[n] (Cj − rj) and for maximum flow time we are

interested in minimizing maxj∗[n]{Cj − rj}. We will be considering algorithms
that possibly use resource augmentation. If an algorithm is given s+ 1/c speed
the algorithm is allowed to send s packets every time step at a particular router
and an additional packet every c time steps. Here s and c will be assumed to
be integral. Note that we assume packets are sent only at discrete time steps.
Therefore, a packet can only move one router in a time step.

We will compare our algorithms against a fixed optimal solution for a given
objective and problem instance. We denote the optimal solution as OPT. For
an algorithm A, we let QA(t) be the packets alive at time t and QA

i (t) as the
packets available for processing on router i at time t. We let pAi (t) denote the
number of packets processed on router i by time t for A and, likewise, pOi (t) for
OPT. For a packet j and a fixed algorithm, which will be clear by the context,

614 A. Antoniadis et al.

Pj(t) is the remaining routers j needs to use to be completed at time t and
dj(i, t) is the distance of packet j to router i. Note that Pj(rj) = Pj . The value
of nA

i (t⊆, t) denotes the number of packets released by time t⊆ that still need to
use router i at time t for A and nA

i (t⊆)is short for nA
i (t⊆, t⊆). Note that the packets

that contribute to nA
i (t⊆, t) do not necessarily have to be in QA

i (t). Let Aj be
the total flow time for packet j for A and OPTj be total flow time for packet j
in the optimal schedule.

For an input I, let A(I) and OPT(I) denote the final objective value for
running I on A and OPT respectively. We may use A and OPT to denote the
objective when I is clear from context. Finally, we say an algorithm A is s-speed

c-competitive if A(I)
OPT(I) ≤ c for any input I when A runs at s speed and OPT

runs at unit speed.
Some proofs are ommitted due to space constraints.

3 Lower Bound for Earliest Arrival for Maximum Flow

We show that the EA policy is not constant competitive for maximum flow.

Theorem 1. There exists an n0 so that for each integer L > n0, there exists

an instance I with OPT (I) = Θ(L) and EA(I)
OPT (I) ⊗ OPT (I). Furthermore, there

exist instances In,k with n packets and k routers so that
EA(In,k)
OPT (In,k)

⊗ n1/3, and
EA(In,k)
OPT (In,k)

⊗ k1/2.
Let K and C be sufficiently large even integers such that C < K/2 − 3. Set
an input with C · K

2 − C + 3 routers. We designate two sets of routers, the
stream-routers and the gap-routers. The routers are defined as follows:

– There is a stream-router with index RS(0, 0) = 1. At time T S(0, 0) = 0
there are K/2 short stream-packets released to RS(0, 0) with destination 1
and K/2 long stream-packets released to RS(0, 0) with destination K/2.

– For each p and q with 1 ≤ p ≤ C and 0 ≤ q ≤ p− 1 there is a stream-router
with index RS(p, q) = p · K2 − 2p + 2 + q. At time T S(p, q) = p(K − 1) +
K
2

(
p(p+1)

2 − 1
)
− (p − 1)

(
K
2 + 1

)
+ q

(
K
2 + 1

)
there are K/2 short stream-

packets released to RS(p, q) with destination p · K2 − 2p+ 2 + q and K/2 long

stream-packets released to RS(p, q) with destination (p+ 1) · K2 − p+ 1.
– For each p with 1 ≤ p ≤ C there is a gap-router with index RG(p, 0) =

p · K2 − p+ 2. At time TG(p, 0) = p(K − 1) + K
2

(
p(p+1)

2

)
+ 1 there are K/2

short gap-packets released to RG(p, 0) with destination p · K2 −p+2 and K/2

long gap-packets released to RG(p, 0) with destination (p+ 1) · K2 − p+ 1.

Note that the instance created above consists of k = Θ(K2) routers assum-
ing C = Ω(K). Further, n = Ω(K3). We have the following observation.

Note 2. The set of stream-routers and the set of gap-routers are disjoint. Further,
for any two stream- or gap-routers i1, i2 with i1 < i2, the packets on router i1
are released earlier than the packets for i2.

Packet Forwarding Algorithms in a Line Network 615

We now compare the performance of the optimal schedule to EA for minimiz-
ing maximum flow time.

Lemma 3. The maximum flow time for the optimal schedule is at most K +C
for the given instance.

Lemma 4. EA has total flow time of at least (C + 1) · K2 on the given instance.

We can finally prove Theorem 1.

Proof. By setting C = K
2 − 4, we have that on the above instance, OPT =

Θ(K), EA = Θ(K2), and again, the number of routers is k = Θ(K2) and the
number of packets n = Ω(k3). This proves the theorem. ∈∗

4 Analysis of EA for Maximum Flow

We show that EA is scalable for maximum flow.

Theorem 5. EA is (1 + ε)-speed 4/ε-competitive for any ε > 0.

We first prove a useful fact for the algorithm Earliest Arrival First. This fact
is useful because it will give us an upper bound on how long it takes at time
t for a packet j to be completed assuming no more packets arrive. We know
that |Pj(t)| is the remaining path length for packet j and we know packet j
will need to wait at least this long to be completed. Further, nA

i (rj , t) is the
total number of packets with strictly higher priority than j that need to use
router i. Thus, j may have to wait on all these packets and therefore j may
need to wait maxi∗Pj(t){nA

i (rj , t)} time. Intuitively, we would like to show that

in fact j waits at most |Pj(t)| + maxi∗Pj(t){nA
i (rj , t)} time to be completed

assuming no more packets arrive. To do this, we would like to show that |Pj(t)|+
maxi∗Pj(t){nA

i (rj , t)} decreases each time step. Knowing that if this expression
reaches 0 then j has reached its destination (|Pj(t)| = 0), this would show that j
waits at most this much time. We will not be able to show this directly, but rather
will show a slightly more involved expression decreases in a similar manner. Fix
an input I.

Lemma 6. Let A be any algorithm (possibly with speedup). Let j be any packet
alive at time t and suppose A processes the min{s,QA

i (t)} packets with earliest
release time on each router i at time t. Then for any constant c ⊗ s

max
i∗Pj(t+1)

{nA
i (rj , t+ 1)− c · dj(i, t+ 1)}+ c|Pj(t+ 1)|

≤ max
i∗Pj(t)

{nA
i (rj , t)− c · dj(i, t)}+ c|Pj(t)| − s.

We can now prove Theorem 5.

616 A. Antoniadis et al.

Proof. Assume the theorem is false for a contradiction. Let t be the earliest
time such that there is some packet j with flow time greater than 4

ΣOPT so
that t − rj > 4

ΣOPT. By Lemma 6, maxi∗Pj(t){nA
i (rj , t) − 2dj(i, t)} + 2|Pj(t)|

decreases by 1 every time step except for every 1/ε time steps where it decreases
by 2. Further, it does not reach 0 until j’s completion. Therefore,

max
i∗Pj

nA
i (rj) + 2|Pj | ⊗ max

i∗Pj(t)
{nA

i (rj , rj)− 2dj(i, rj)}+ 2|Pj(rj)|

>
4

ε
OPT + 4OPT− 1.

Let i be a router in Pj that maximizes the value nA
i (rj). As |Pj | ≤ OPT

and OPT ⊗ 1, we have

nA
i (rj) >

(
4

ε
+ 1

)
OPT. (1)

Packet j is the first packet with flow greater than 4
ΣOPT, so any packets

contributing to nA
i (rj) have age at most 4

ΣOPT at time rj . These packets have
arrival time between rj − 4

ΣOPT and rj . Further, the optimal schedule must
complete them by time rj + OPT, so the total amount of time the optimal
schedule can process them is rj + OPT − (rj − 4

ΣOPT) = (4Σ + 1)OPT. The
optimal schedule can only process one of these packets at a time on router i, so
we observe nA

i (rj) ≤ (4Σ + 1)OPT. Finally, we combine the previous expression
with (1) to yield (

4

ε
+ 1

)
OPT >

(
4

ε
+ 1

)
OPT,

a contradiction based on our assumption that the theorem is false. ∈∗

5 Analysis of FTG for Maximum Flow

We show that FTG is scalable for maximum flow.

Theorem 7. FTG is (1 + ε)-speed 3/ε-competitive for any ε > 0.

We begin by proving a fact for the algorithm FTG that will prove useful later and
is interesting in its own right. Fix an input I. The following lemma essentially
states that this algorithm gets the maximum amount of ‘parallelism’ possible
by showing that for this algorithm at any point in time each router will have
processed the most number of packets possible.

Lemma 8. Let A be any algorithm (possibly with speedup) for which each router
i processes a packet with furthest final destination at least once every time step
if any are available. We have pAi (t) ⊗ pOi (t) at all routers i and times t.

In order to prove Theorem 7, we need to formalize how efficiently routers are
processing packets with extra speed. We say router i fully processes a set J of
packets at time t if router i processes as many packets from J at time t as the
speedup allows. We have the following lemma.

Packet Forwarding Algorithms in a Line Network 617

Lemma 9. Run FTG with speed 1+ε on input I. Let j be a packet and let i ⊕ Pj.
Let t be any time step strictly before router i processes packet j. If t ⊗ rj +
dj(i, rj)+1, then router i processes at least one packet at time t with destination
at least as far as packet j’s. Further, if t ⊗ rj + (dj(i, rj) + 1)/ε, then router i
fully processes packets with destination at least as far as j’s at time t.

We may now prove Theorem 7.

Proof. Assume the theorem is false for a contradiction. Let OPT be the maxi-
mum flow in the optimal schedule. Run FTG with speed 1 + ε and let t be the
earliest time such that there is some packet j with flow time greater than 3

ΣOPT.
Let i be the router upon which j is queued (or being processed) at time t. Let t0
be the earliest time such that FTG always processes at least one packet every
step of the interval [t0, t). Let J be the set of packets processed by i during the
interval [t0, t).

Each packet arrives at most distance OPT−1 from its destination. Therefore,
every packet in J arrives no earlier than t0−OPT. Otherwise, Lemma 9 implies
router i processes a packet at time t0 − 1. Further, every packet in J is released
strictly before time t and completed by the optimal algorithm by time t+OPT.
Therefore, the optimal algorithm spends strictly less than t − t0 + 2OPT time
steps processing all packets in J on router i.

By assumption, t > rj + 3
ΣOPT = rj + OPT

Σ + 2
ΣOPT. Therefore, router i

has fully processed packets over 2
ΣOPT consecutive time steps by Lemma 9.

Over this time period, there are at least 2OPT time steps where i processes 2
packets instead of 1. As i processes at least one packet every time step since t0,
we have |J | ⊗ t− t0+2OPT. The optimal algorithm spends strictly less than |J |
time steps to process every packet in J on router i, a contradiction. ∈∗

6 Average Flow on a Line

We now show that there is no constant competitive algorithm for average flow
on a line.

Theorem 10. Any randomized algorithm for packet routing on a line is Ω(k)
competitive for average flow in the oblivious adversary model.

Proof. We prove the theorem for any deterministic algorithm. The proof can be
easily generalized to randomized algorithms. Let A be any deterministic algo-
rithm for packet routing on a line. Consider the following input. For each i ⊕
{1, . . . , k/2}, we have k short packets arrive at time 0 with source i and destina-
tion i. In addition, k long packets arrive at time 0 with source 1 and destination k.
The rest of the input is determined by A’s behavior.

Suppose A processes fewer than k/4 packets on router k/2 at time k. Then
there are at least 3k/4 long packets that still need processing on router k/2.
Assume they all wait at router k/2. At each time step from 2k − 1 to some
sufficiently large T , a packet arrives with source k and destination k. AlgorithmA
will still have k/4 long packets remaining at time 2k−1, so it will always have k/4

618 A. Antoniadis et al.

packets alive with destination k and total flow time Ω(kT). However, consider
FTG which finishes all long packets by time 2k − 1 and has only one packet
pending at each time step after 3k− 1. The optimal total flow time is O(T), and
the competitive ratio of A is Ω(k).

Now, suppose A processes at least k/4 packets on router k/2 at time k. Then
each router i ⊕ {1, . . . , k/2} has at least k/4 short packets remaining, for a total
of k2/8 short packets remaining. For each time step from k to some sufficiently
large T and for each router i ⊕ {1, . . . , k}, a packet with source i and destination i
arrives (so k packets in total arrive at each time step). Algorithm A has at
least k2/8 + k packets alive at each time step, so it has total flow time Ω(k2T).
However, consider the algorithm that always schedules a packet with nearest
destination. This algorithm finishes all the short packets by time k, so it has 2k
packets remaining at each time step after k. The optimal flow time is O(kT),
and the competitive ratio of A is Ω(k). ∈∗
We show that STG achieves optimal average flow time if all packets are injected
into the system at the same time.

Lemma 11. STG is optimal for the objective of average flow if all packets are
released at time 0.

7 Maximum Flow on Trees

We briefly explore extending our ideas to work with networks of routers that
do not necessarily lie on a directed line. It turns out the problem of minimizing
maximum flow time becomes much more difficult in this setting, unless we allow
routers some way to communicate with one another.

To make the idea of communication concrete, define a local algorithm to be one
where each router i processes packets based only on the existence of the packets
currently queued at router i, their arrival times, and their distance to their
destination. Define a router network as a directed graph G = ({1, . . . ,m}, E)
with arbitrary edge set. An input for a router network G can only move a packet
from router i1 to router i2 in one processing step if i1i2 is an edge in G. A tree
network is a router network where the undirected edges form a spanning tree.
We have the following theorem.

Theorem 12. No deterministic local algorithm for packet routing on a tree net-
work is s-speed c-competitive for any constants s and c.

Proof. Fix a deterministic local algorithm A and let k be a sufficiently large
integer multiple of s. We define a tree network and associated input for every L ⊕
{0, . . . , k − 1} recursively as follows. The construction is based on identifying
routers of one or more paths of length k, where the routers within a single path
are indexed 1 through k. We maintain the invariant that algorithm A queues
a packet on the L + 1st router of some path P in network L at time kL/s
when L < k, and A completes a packet at time kL/s when L = k. If L < k, then
we refer to the router mentioned in the invariant as a shared router.

Packet Forwarding Algorithms in a Line Network 619

For L = 0, we use one path P of length k. At time 0, we have 1 packet arrive
with a source of the first router in P and a destination of the kth router in P .
The invariant trivially holds.

For L > 0, we create k copies of network L − 1 and its associated input.
As A is deterministic and local, we know which path P maintains the invariant
for L−1 in each of these copies. Identify the k shared routers that are guaranteed
by the invariant. It takes k/s time steps for A to process the k packets on the
now common shared router, so either the L+ 1st router in some path receives a
packet at time kL/s or A completes a packet at time kL/s.

We see immediately that the maximum flow time for A in network k is k2/s.
However, an optimal schedule will always give precedence to the one packet at
each router that will later need processing on a shared router as described above.
There are never more than k packets that need to use a single router, and all
but one will will not go to another shared router, so that optimal maximum flow

time is 2k− 1 for a competitive ratio of Ω(k
2

ks). Setting k sufficiently high proves
the lemma. ∈∗

8 Conclusions

We initially found it surprising that there was no prior literature on the packet
forwarding problems considered in this paper as they seem quite natural. Part
of the explanation may be that even for a line network, the problems are sur-
prisingly challenging. The two most natural open problems “discovered” by our
research are:

– Is there an O(1)-competitive algorithm for maximum flow on a line? The
authors are in disagreement amongst themselves about which answer is most
likely, and there is a modest wager on the outcome. As evidence that there
might be an ω(1) lower bound, even finding a reasonable candidate policy
seems challenging. We are able to show that all of the following policies are
not O(1)-competitive:
• c-EA/FTG - Forward using EA every c steps, and FTG the rest of the

time, where c > 0 is any constant.
• c-OPT/FTG Threshold - If we know OPT, the value of the optimal

solution, forward the furthest-to-go packet that has age at least c ·OPT,
otherwise send the furthest-to-go packet, where c > 0 is any constant.
• 1

c -Local [Global] FTG Threshold - Forward the furthest-to-go packet with
age at least 1/c of the maximum age of any packet at the current router
[or in the network], where c > 0 is any constant.

– Is there an O(1)-speed O(1)-competitive (or even scalable) policy for average
flow on a line? In this case, the authors all conjecture that the answer is yes,
for the traditional reason that we were not able to prove otherwise. Here
candidate policies are abundant, but it is not clear how to do the analysis.
STG is a good algorithm when all release times are the same, which suggests
that it is a good candidate for an O(1)-speed O(1)-competitive algorithm,

620 A. Antoniadis et al.

as processor-sharing is for one processor [27]. Also running STG and FTG
simultaneously is another obvious candidate algorithm. The main issue with
the analysis is that neither the standard potential function approach [28] nor
the standard application of linear programming duality seem to work.

References

1. Kowalski, D., Nussbaum, E., Segal, M., Milyeykovsky, V.: Scheduling problems in
transportation networks of line topology. Optimization Letters (2013) (to appear)

2. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Adaptive packet routing for
bursty adversarial traffic. J. Comput. Syst. Sci. 60(3), 482–509 (2000)

3. Andrews, M., Awerbuch, B., Fernández, A., Leighton, F.T., Liu, Z., Kleinberg,
J.M.: Universal-stability results and performance bounds for greedy contention-
resolution protocols. J. ACM 48(1), 39–69 (2001)

4. Andrews, M.: Instability of FIFO in the permanent sessions model at arbitrarily
small network loads. ACM Transactions on Algorithms 5(3) (2009)

5. Andrews, M., Zhang, L.: The effects of temporary sessions on network performance.
SIAM J. Comput. 33(3), 659–673 (2004)

6. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adver-
sarial queuing theory. J. ACM 48(1), 13–38 (2001)

7. Broder, A.Z., Frieze, A.M., Upfal, E.: A general approach to dynamic packet rout-
ing with bounded buffers. J. ACM 48(2), 324–349 (2001)

8. Leighton, F.T., Maggs, B.M., Rao, S.: Packet routing and job-shop scheduling in
O(Congestion + Dilation) steps. Combinatorica 14(2), 167–186 (1994)

9. Ostrovsky, R., Rabani, Y.: Universal O(Congestion + Dilation + log1+epsilonN)
local control packet switching algorithms. In: STOC, pp. 644–653 (1997)

10. Rabani, Y., Tardos, É.: Distributed packet switching in arbitrary networks. In:
STOC, pp. 366–375 (1996)

11. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple
access channel. ACM Transactions on Algorithms 8(1), 5 (2012)

12. Gamarnik, D.: Stability of adaptive and nonadaptive packet routing policies in
adversarial queueing networks. SIAM J. Comput. 32(2), 371–385 (2003)

13. Dı́az, J., Koukopoulos, D., Nikoletseas, S.E., Serna, M.J., Spirakis, P.G., Thilikos,
D.M.: Stability and non-stability of the FIFO protocol. In: SPAA, pp. 48–52 (2001)

14. Srinivasan, A., Teo, C.P.: A constant-factor approximation algorithm for packet
routing and balancing local vs. global criteria. SIAM J. Comput. 30(6), 2051–2068
(2000)

15. Awerbuch, B., Azar, Y., Plotkin, S.A.: Throughput-competitive on-line routing.
In: FOCS, pp. 32–40 (1993)

16. Kesselman, A., Mansour, Y., van Stee, R.: Improved competitive guarantees for
QoS buffering. Algorithmica 43(1-2), 63–80 (2005)

17. Andelman, N., Mansour, Y., Zhu, A.: Competitive queueing policies for QoS
switches. In: SODA, pp. 761–770 (2003)

18. Azar, Y., Zachut, R.: Packet routing and information gathering in lines, rings and
trees. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 484–495.
Springer, Heidelberg (2005)

19. Angelov, S., Khanna, S., Kunal, K.: The network as a storage device: Dynamic
routing with bounded buffers. Algorithmica 55(1), 71–94 (2009)

Packet Forwarding Algorithms in a Line Network 621

20. Adler, M., Rosenberg, A.L., Sitaraman, R.K., Unger, W.: Scheduling time-
constrained communication in linear networks. Theory Comput. Syst. 35(6), 599–
623 (2002)

21. Gordon, E., Rosén, A.: Competitive weighted throughput analysis of greedy pro-
tocols on DAGs. ACM Transactions on Algorithms 6(3) (2010)

22. Aiello, W., Ostrovsky, R., Kushilevitz, E., Rosén, A.: Dynamic routing on networks
with fixed-size buffers. In: SODA, pp. 771–780 (2003)

23. Chin, F.Y.L., Chrobak, M., Fung, S.P.Y., Jawor, W., Sgall, J., Tichý, T.: On-
line competitive algorithms for maximizing weighted throughput of unit jobs. J.
Discrete Algorithms 4(2), 255–276 (2006)

24. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. SIAM J. Comput. 33(3), 563–583
(2004)

25. Rosén, A., Scalosub, G.: Rate vs. buffer size-greedy information gathering on the
line. ACM Transactions on Algorithms 7(3), 32 (2011)

26. Kesselman, A., Mansour, Y.: Harmonic buffer management policy for shared mem-
ory switches. Theor. Comput. Sci. 324(2-3), 161–182 (2004)

27. Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup
curves. ACM Transactions on Algorithms 8(3), 28 (2012)

28. Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in
online scheduling. SIGACT News 42(2), 83–97 (2011)

Survivability of Swarms of Bouncing Robots

Jurek Czyzowicz1, Stefan Dobrev2, Evangelos Kranakis3,
and Eduardo Pacheco3

1 Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada
2 Slovak Academy of Sciences, 840 00 Bratislava, Slovak Republic

3 Carleton University, Ottawa, Ontario K1S 5B6, Canada

Abstract. Bouncing robots are mobile agents with limited sensing ca-
pabilities adjusting their movements upon collisions either with other
robots or obstacles in the environment. They behave like elastic parti-
cles sliding on a cycle or a segment. When two of them collide, they
instantaneously update their velocities according to the laws of classical
mechanics for elastic collisions. They have no control on their movements
which are determined only by their masses, velocities, and upcoming se-
quence of collisions.

We suppose that a robot arriving for the second time to its initial
position dies instantaneously. We study the survivability of collections of
swarms of bouncing robots. More exactly, we are looking for subsets of
swarms such that after some initial bounces which may result in some
robots dying, the surviving subset of the swarm continues its bouncing
movement, with no robot reaching its initial position.

For the case of robots of equal masses and speeds we prove that all
robots bouncing in the segment must always die while there are con-
figurations of robots on the cycle with surviving subsets. We show the
smallest such configuration containing four robots with two survivors.
We show that any collection of less than four robots must always die.
On the other hand, we show that |S+−S−| robots always die where S+

(and S−) is the number of robots starting their movements in clockwise
(respectively counterclockwise) direction in swarm S.

When robots bouncing on a cycle or a segment have arbitrary masses
we show that at least one robot must always die. Further, we show that in
either environment it is possible to construct swarms with n−1 survivors.
We prove, however, that the survivors in the segment must remain static
(i.e, immobile) indefinitely, while in the case of the cycle it is possible to
have surviving collections with strictly positive kinetic energy.

Our proofs use results on dynamics of colliding particles. As far as we
know, this is the first time that these particular techniques have been
used in order to analyze the behavior of mobile robots from a theoretical
perspective.

Keywords and Phrases: Mobile robots, elastic collisions, weak robots,
bouncing, survivability, synchronous, salmon problem.

1 Introduction
Mobile robots have been widely used to perform tasks that, otherwise carried
out by humans, would be dangerous, less efficient, and expensive, for instance,

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 622–633, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Survivability of Swarms of Bouncing Robots 623

environment exploration, perimeter patrolling, mapping, pattern formation and
localization.

Mobile robots are entities that have the ability to move within their environ-
ment, to interact with other robots, to perceive the information of the environ-
ment, and to process this information. In order to reduce power consumption and
to prevent scalability problems it helps to design autonomous robots that have
limited capabilities. Distributed applications are often concerned about the use
of entities of very limited communication and sensing capabilities, mainly due
to the limited production cost, size, and battery power. Consequently, mobile
robots fit perfectly for designing distributed applications.

We are interested in studying systems of weak mobile robots, i.e., systems of
robots with very limited capabilities. More precisely, we investigate the model
of bouncing robots studied in [1–8]. In this model, mobile robots are deployed
either on a cycle or a segment. Each robot is given an initial direction (clockwise
or counterclockwise in the cycle and left-to-right or right-to-left on the segment)
at which it starts its movement. The interaction among robots is limited to
colliding elastically among themselves (or to the endpoints, in case of segment).
Each robot possesses a clock to measure the times of its collisions. Moreover,
bouncing robots have available the measured times of their collisions and the
knowledge of their own velocities.

Large collections of weak mobile robots, like bouncing robots, are frequently
called swarms. Despite their simplicity, they are used to perform complicated
tasks like surveillance and monitoring in hazardous or hard to access environ-
ments. In most situations, involving such robots of extremely limited capabilities,
the fundamental research question concerns the feasibility of solving a given task
(cf. [1, 2, 9, 10]). Due to the nature of the environments on which mobile robots
are frequently deployed, they may get trapped or die while performing some haz-
ardous task. For instance, while a robot is exploring a terrain, it can be destroyed
by enemy forces or by stepping on a mine. Understanding their survivability will
help us understand which measures could be taken in order to ensure that they
fulfill their purpose.

We study the survivability of swarms of bouncing robots. To do so, we mark
the starting position of every robot as deadly in the sense that if a robot ever
returns to its starting position it dies. A robot survives if it never returns to its
starting position. We investigate the necessary conditions for swarms of bouncing
robots to have surviving subsets in the cycle and in the segment. Since bouncing
robots do not have any control over their movements, it might seem that in most
configurations all the robots must die. We prove that this is not always the case,
thus answering an open question first posed in [8] for the case of robots of equal
masses and speeds.

1.1 Related Work

The dynamics of bouncing robots is similar to the one observed in some systems
of particles. The study of the dynamics of particles sliding in a surface that
collide among themselves has been of great interest in physics for a long time.

624 J. Czyzowicz et al.

Much of this work has been motivated by the need of understanding the dynamic
properties of gas particles [6, 11–13].

The simplest models of such particle systems assume either a line or a cycle
as the environment in which particles move. For instance, Jepsen [7] considers
particles of equal masses and arbitrary velocities moving in a cycle. He assumes
the conservation of momentum and conservation of energy principles, such that
when two particles collide they simply exchange velocities. Jepsen studies the
probabilistic velocity distribution of particles because of its importance for un-
derstanding some gas equilibrium properties.

The dynamical system that emerges from a set of particles colliding while
moving either on a line or a cycle is quite rich and not well understood yet [4].
However, there are some results regarding the total number of collisions if the
particles move within an infinite line. Sevryuk [6] proved that the total number
of collisions between particles that collide elastically on an infinite line is finite.
He proved that the number of collisions is bounded by 2

(
8n2(n − 1)mmax

mmin

)n−2
,

where n is the total number of particles and mmax and mmin are the largest
and smallest masses of the particles, respectively. Other results concerning the
number of collisions for higher dimensions can be found in [14]. For the case
of particles colliding in a cycle, some interesting results have been found, for
instance, Mittag [15] proved that the dynamical system of three particles of dif-
ferent masses and arbitrary velocities elastically colliding in a cycle is equivalent
to a standard billiard flow.

On the other hand, the dynamics of these systems of particles have motivated
the design of algorithms for mobile robots. Susca et al. in [16] designed a system
of mobile robots that imitates the impact behavior of elastic particles sliding in
a cycle. They do so in order to carry out perimeter surveillance. Synchronization
of mobile robots in the line is another example [17].

[1–3] studied the feasibility of the localization task in the cycle and in the
segment by bouncing robots. The problem of localization consists of each robot
finding the starting position (relative to its own position) of all the other robots
in finite time. E.g. in [1], authors proved that if robots have arbitrary initial
velocities but equal masses the task of localization can be performed if and only
if none of the velocities is equal to the average of all the velocities.

This type of mobility of bouncing robots is also found in other models like
those in [18, 19], where the so-called population protocols were studied. The
agents of population protocols follow mobility patterns totally out of their con-
trol. This is called passive mobility. Passive mobility is intended to model, e.g.,
some unstable environment, like a flow of water, chemical solution, human blood,
wind or unpredictable mobility of agents’ carriers (e.g. vehicles or flocks of birds).

Other works have studied the destruction of mobile agents while visiting some
specific location of their environment. Dobrev et al. in [20] introduced the black
hole search task. They consider a set of mobile agents moving in a ring searching
for a highly harmful item called black hole. A black hole is a stationary process
that destroys any visiting agent upon its arrival without leaving any trace of it.

Survivability of Swarms of Bouncing Robots 625

This task requires that at least one robot survives in order to report the location
of the black hole.

Part of our motivation to study the survivability of bouncing robots was due
to the equivalence between the dynamics of some systems of bouncing robots
and the dynamics of salmon fries of the salmon problem, introduced by Moshe
Rosenfeld in [8]. The salmon problem is inspired by the life cycle of salmons: a
salmon after being hatched lives in the ocean for a period of several years, then
it returns to its place of birth to spawn and die. The salmon problem is stated
in [8] as follows: Consider n salmon fries distributed on a ring, each fry moving
with constant speed either clockwise or counterclockwise. When two fries collide
they reverse direction and when a fry returns to its initial position, it dies. Death
has priority over collisions. Is it possible that some fries live forever? Is there an
efficient algorithm to decide whether all fries will die?

Rosenfeld gives an example of a configuration of five salmons of which one dies
and the remaining four live forever. However, Rosenfeld’s example has a flaw. We
show what the problem is with his example and give the first correct example of
a swarm with survivors. We also consider the salmon problem for mobile robots
in a more general setting as well as different environments of deployment.

1.2 Results

In Section 2, we prove some general properties regarding the dynamics of bounc-
ing robots that are crucial for understanding their survivability. In Section 3, we
study the survivability of swarms of robots of equal masses and speeds. We prove
that if the robots are deployed in a segment they all must die. In contrast, in the
cycle we show the existence of swarms with two survivors for a swarm of n ∪ 4
robots and we prove that the smallest swarm with survivors has four robots with
exactly two survivors. We also prove a lower bound on the number of robots that
die if not all robots have the same initial direction. For the case of robots of ar-
bitrary masses and velocities, in Section 4, we prove that, if robots are deployed
in a segment, the survivors, if any, must become indefinitely immobile. However,
this is not the case when the robots are deployed in a cycle. We show that in
the cycle at least one robot dies and that the maximum number of robots that
can survive either in the cycle or in the segment is n− 1. We conclude by listing
some open problems in Section 5. Omitted proofs can be found in the complete
version of the paper.

1.3 Preliminaries

Let Sn = (M,H,U) be a swarm of n bouncing robots r0, r1, . . . , rn with masses
M = (m1,m1, . . . ,mn), starting positions or home bases H = (h1, h1, . . . , hn),
and non-zero initial velocities U = (u1, u2, . . . , un), respectively. We call the size
of a swarm the total number of robots.

We study the question concerning robots moving in a segment and in a cycle.
We assume that each robot starts moving at the same time with constant speed
until a collision takes place. When two robots collide, they update their velocities

626 J. Czyzowicz et al.

following the conservation of momentum and conservation of energy principles.
For the case of the segment, its end points model walls in which robots can
collide with. When a robot collides with a wall it reverses direction but keeps
moving with the same speed. Throughout this paper, we assume that collisions
are elastic and that in any collision no more than two robots participate. Thus,
if two robots of equal masses collide, they simply exchange velocities. If robots
r1 and r2 of masses m1 and m2, and velocities u1 and u2 respectively, collide,
after their collision they get new velocities v1 and v2 , respectively, where:

v1 = m1 − m2

m1 + m2
u1 + 2m2

m1 + m2
u2, v2 = 2m1

m1 + m2
u1 + m2 − m1

m1 + m2
u2. (1)

A cycle of perimeter l is modeled by the real interval [0, l], with 0 and l corre-
sponding to the same point. By ri(t) ∈ [0, l] we denote the position of robot ri at
time t. We suppose that originally each robot ri occupies the position ri(0) = hi

of its environment and that 0 ≥ r1(0) < r2(0) < · · · < rn(0). Each robot is
given an initial direction, clockwise (cw) or counterclockwise (ccw) in the cy-
cle and left-to-right or right-to-left on the segment, according to which it starts
its movement. By diri we denote the starting direction of robot ri and we set
diri = 1 if ri starts its movement in the counterclockwise direction around the
ring or the left-to-right direction along the segment. By diri = −1 we denote
the clockwise starting direction (on the ring) or right-to-left (on the segment).

By S+ we denote the number of robots in the swarm S whose initial direction
is counterclockwise and by S the number of robots in the swarm S− whose
initial direction is clockwise. We identify the counterclockwise and left-to-right
directions as positive.

A robot dies if at some time it returns to its home base. If a robot ra dies,
it disappears from the environment and does not interact with any other robot
any more. On the other hand, we say that a robot survives if it does not die. If
D is a subset of robots of a swarm Sn that die at some time, Sn \D denotes the
resulting swarm of survivors after the death of the robots in D.

The death of a robot takes priority over collisions, i.e, if two robots collide at
the home base of one of them, the death of the robot returning to its home base
takes place first and the other robot keeps moving without updating any of its
parameters.

If the collisions of a swarm are not concurrent (no two different collisions take
place at the same time), we can enumerate the collisions. Notice that this is not
possible in most cases since it is plausible that two different pairs of robots may
collide at the same time. If collisions can be enumerated, we denote the i-th
collision of a given swarm by Ci = (a(dir), b(dir′)), where a and b are the robots
involved in the i-th collision, and dir, dir→ ∈ {+,−}, denote the directions that
the robots had before colliding. We use (+) to denote the ccw direction and (−)
to denote the cw direction. We use the notation u

(j)
i to indicate the velocity of

robot ri resulting after the j-th collision of the swarm, where u
(0)
i = ui denotes

the initial velocity of robot ri.

Survivability of Swarms of Bouncing Robots 627

Since we use some properties of classical mechanics to prove our results, we
define some useful concepts that extend from the properties of systems of
particles. Suppose we have a swarm Sn of bouncing robots r1, r2, . . . , rn, of
initial velocities u1, u2, . . . , un and masses m1,m2, . . . ,mn, respectively. Anal-
ogously to systems of particles we define the momentum of the swarm as
P (Sn) =

∑n
i=1 miui, where miui is the linear momentum of robot ri. The ve-

locity of the swarm is defined as U(Sn) = P (Sn)
M , where M =

∑n
i mi. Finally,

the kinetic energy of Sn is given by KE(Sn) =
∑n

i=1 miu
2
i .

2 General Behavior of Swarms of Bouncing Robots

In this section we focus on studying the dynamics of bouncing robots as they are
deployed either in a segment or a cycle. In all these results, we do not assume
that robots die since we focus only on studying their dynamics. We denote the
infinite line by L = (−≤,≤), and the half positive semi-line by L+ = (0,≤),
where 0 represents the wall on which the leftmost robot may collide. We say that
a swarm Sn deployed on L, expands to the right (respectively to the left) if and
only if:

1. there exists t0 ∪ 0, such that for every t ∪ t0, no more collision takes place,
and

2. for any b > 0, there exists some robot rm and time tm such that rm(tm) > b
(respectively rm(tm) < a, for arbitrary a < 0).

We say that Sn expands in both directions, if and only if Sn expands to the right
and to the left.

Theorem 1. Let Sn be any swarm of bouncing robots deployed on L, such that
KE(Sn) →= 0. Then, for any finite segment [a, b] ∞ L, there exists a time tλ, such
that for any t→ > tλ some robot rm(t→) /∈ [a, b]. Moreover, if the swarm has either
positive or negative or zero momentum, the swarm expands to the right or to the
left or in both directions, respectively.
Proof. Let Sn be a swarm of robots, such that KE(Sn) →= 0, and let [a, b] ∞ L
be any finite segment. We assume that hi ∈ [a, b], for i ∪ 1. Since the number
of elastic collisions in L for any system of particles is finite [6], and the robots
of Sn behave exactly as particles, the number of collisions in Sn is also finite.
More precisely, there exists some t0 ∪ 0, such that for any t ∪ t0 no more
collisions take place among the robots of the swarm. Because of the principle of
conservation of kinetic energy, KE(Sn) →= 0 at any time, meaning that at any
time there exists one robot rm that is still moving on the line. Let us assume
that rm(t0) ∈ [a, b] and that rm is moving to the right with velocity v, then
rm(t→) > b for any time t→ > tλ, where tλ = |b−rm(t0)|

|v| , for arbitrary b ∈ L.
Analogously, if rm is moving to the left, tλ = |a−rm(t0)|

|v| . This finishes the proof
of the first part of the theorem. Notice that since we are assuming the principle
of conservation of momentum, at any time bigger than t0 the momentum of the

628 J. Czyzowicz et al.

system remains the same. Thus, if P (Sn) < 0, not all robots might have positive
velocities. Thus, Sn expands to the left. Analogously, if P (Sn) > 0, there must
exist some robot moving with positive velocity. If P (Sn) = 0, the swarm must
expand in both directions.
In the next corollary, we assume that robots are deployed on the half infinite
line. The origin models a wall, if the leftmost robot collides with the wall, it
bounces back, i.e, the robot reverses direction but keeps moving with the same
speed.

Lemma 1. Let Sn be any swarm of bouncing robots deployed on L+. There
exists a swarm S2n of bouncing robots deployed on L, such that P (S2n) = 0 and
half of its robots mimic the dynamics of the robots in Sn.

The following corollary follows from the Theorem 1 and Lemma 1.

Corollary 1. Any swarm Sn of bouncing robots of arbitrary masses and veloc-
ities that are deployed on L+, such that KE(Sn) →= 0, expands to the right.

Proof. Take swarm S2n of Lemma 1. Since P (S2n) = 0 and KE(S2n) →= 0, The-
orem 1 implies that S2n expands in both directions. It follows that Sn expands
to the right.
We now consider swarms deployed on a cycle. Let D

(+)
i (t) denote the total

distance that robot ri traveled until time t in the ccw direction, and D
(−)
i (t) -

the total distance traveled by ri in the cw direction. Denote Di(t) = D
(+)
i (t) −

D
(−)
i (t). The next theorem establishes a relationship between the momentum of

a swarm and the total distance that any robot traverses.

Theorem 2. If Sn is a swarm of bouncing robots of same masses but arbitrary
speeds, such that P (Sn) →= 0, then all robots eventually complete a full cycle.

Proof. Without loss of generality assume P (Sn) > 0, then we have that U(Sn) >
0 which implies that t · (

∑n
i=1 vi) > 0, for any t > 0. Therefore, there exists a

big enough tλ > 0 such that Di(tλ) ∪ 1 for any i ∪ 1.

3 Robots of Equal Masses and Equal Speeds

In this section, we study the survivability of bouncing robots of equal masses
and speeds that are deployed either in a segment or a cycle. The following result
shows that there are no swarms of equal masses and speeds in the segment that
contain surviving robots.

Theorem 3. All bouncing robots die of any swarm deployed in the segment.

Proof. Let Sn be a swarm of bouncing robots of same speeds and masses. Notice
that in Sn during a collision either with a robot or with a wall, robots simply
reverse direction, so if KE(Sn) →= 0, no robot can remain static at any time even
in the presence of the death of a robot. We prove this theorem by induction on

Survivability of Swarms of Bouncing Robots 629

the size of the swarm, so we assume that in any swarm of size n − 1 all robots
die. Let Sn be a swarm of size n. It is enough to prove that one of the extreme
robots of Sn dies. Let r1 and rn be the leftmost robot and the rightmost robot,
respectively. Notice that if dir1 = 1, r1 will die after reversing direction. Without
loss of generality, let us assume that dir1 = −1. If no robot dies, robot r1 has to
be bumping against the wall and its neighbor r2 so that it never returns to its
home base, for the same reason r2 is bumping against r1 and r3 without reaching
its home base and so on. This can only happen if robots r1, . . . , rn−1 are at the
left of their home bases indefinitely, however this can not be true for rn which
after colliding with rn−1 reverses direction and dies. The remaining system has
n − 1 robots and because of the induction hypothesis all of them die.

Observation 1. An interested reader may notice that Theorem 3 also holds for
robots of equal masses but arbitrary non-zero speeds.

Theorem 4. There exist swarms of size four in a cycle containing two
survivors.

Proof. Let S4 be a swarm of size four deployed in a cycle of perimeter 80. Let
h1 = 10, h2 = 25, h3 = 30, h4 = 80 and u1 = u2 = u3 = 1, u4 = −1 be the
corresponding home bases and initial velocities of the robots, respectively. We
assume that all the robots have unitary masses. It is easy to check that robots
r1 and r2 survive while the other two robots die.
The configuration from Theorem 4 is the first correct example of surviving subset
of robots. We argue below that the example from [8], represented in Table 1,
which supposedly contains a swarm of five robots with four survivors is not
correct. The table describes the positions (in degrees) of the robots (in the
cycle) at the given time, where + and − indicate the current directions of the
robots (+ for ccw and − for cw). The time is given in seconds and it takes 128
seconds for a robot to complete a full cycle. For instance, r1 has starting position
at 120 degrees and cw initial direction and it dies after 110 seconds while the
remaining robots live eternally.

Table 1. Example given in [8]

time r1 r2 r3 r4 r5
0 −120 −92 +55 +41 +51

110 die −102 +100 +0 −74
123 +115 −87 −115 +87

Although it is correct that the first robot to die is r1, it is easy to check that
robot r3 or robot r2 must die as well. This is because both of them have to
reverse direction and inevitably one of them must return to its home base. The
following theorem states that there are no swarms of smaller size than the swarm
of Theorem 4 with survivors.

630 J. Czyzowicz et al.

Theorem 5. In the cycle any swarm of size less than four has no survivors.

For two points p, q in the ring, by d(+)(p, q) we denote the counterclockwise
distance from p to q in the cycle, i.e. the distance which needs to be traveled in
the counterclockwise direction in order to arrive at q starting from p. We denote
the time of the j-th collision of robot ri by t

(j)
i . For simplicity, we scale the

perimeter of the cycle of Theorem 4 so as to have a unitary cycle.

Observation 2. The following observations are crucial to understand the sur-
vivability of the survivors of the swarm of Theorem 4.

1. For i = 1, 2, 3, we have that:
(a) t

(1)
i = d(+)(hi,h4)

2 . Thus for ri not to die after reversing direction in its
first collision, it should get its second hit before time 2t(1)i . This can only
happen if, there exists some robot rc such that dirc = 1 and d(+)(hc, hi) <
2t(1)i .

(b) robot ri after its first collision every time that it moves in cw direction
it does so by exactly 1

2 time.
2. For r1 and r2 to survive, the second hit of r1 must take place within the

interval (h1, h2). To guarantee so, for each robot rl, such that dirl = 1,
2

(
t
(1)
1 − d(+)(h1, h2)

)
< d(+)(hl, h2), and

3. If robot r3 participates in a fifth collision, its total distance traversed would
be 1 + t

(1)
3 − d(+)(h2,h3)+d(+)(h1,h2)

2 . So it must hold that d(+)(h3, h4) −(
d(+)(h2, h3) + d(+)(h1, h2)

)
> 0, since robot r3 dies after its fourth colli-

sion.

The next theorem is an extension of Theorem 4.

Theorem 6. There exists a swarm in the cycle of size n of two survivors, for
any n ∪ 4.
Proof. The idea is to simply extend the swarm of Theorem 4 by inserting an
arbitrary number of robots ra that copy the behavior of r3, i.e, that die after their
fourth collision without disturbing the survivability of r1 and r2. Notice that if we
add a new robot ra between robots r2 and r3, we have that its first collision takes
place at time t

(1)
a = d(+)(ha,h4)

2 > t
(1)
3 . Further, because of Observation 2, it holds

that t(1)a − (
d(+)(r2, ra) + d(+)(r1, r2)

)
> 0. Thus, at time t

(5)
a , the total distance

covered by ra would be 1 + t
(1)
a − d(+)(h2,ha)+d(+)(h1,h2)

2 which is also bigger than
one and therefore ra would die after its fourth collision. Moreover, after inserting
ra, robot r3 still dies since the total distance covered in ccw direction until its
new fourth collision would be d(+)(ha, h3) + d(+)(h2, ha) < d(+)(h2, h3). Finally,
notice that the addition of ra would not make the second hit of r1 to happen
outside of d(+)(ha,h3)

2 since Observation 2 holds for r3. It is easy to check that
Observation 1 holds after the insertion of ra. We can repeat this procedure as
many times as we want by adding new robots and still having r1 and r2 as
survivors. Therefore, the theorem holds.

Survivability of Swarms of Bouncing Robots 631

The following corollary is an immediate consequence of Theorem 2.

Corollary 2. For any swarm S in the cycle at least |S+ − S−| robots die.
Proof. Let S be a swarm of bouncing robots of equal masses and speeds, we have
that P (S) = ms(S+ − S−), where s and m denote the values of the common
speed and mass of the robots, respectively. Theorem 2 guarantees that unless
S+ − S− = 0, the swarm moves forward in the direction of the majority and
thus there exists some robot that returns to its home base and dies. It follows
that in S at least |S+ − S−| robots die.

4 Robots of Arbitrary Masses and Velocities
Recall that if the collisions of a swarm are not concurrent, Ci = (a(dir), b(dir′))
denotes the i-th collision in the swarm, where a and b are the robots involved in
such collision and dir, dir→ ∈ {+,−}, denote the directions that the robots had
before they collide.

Theorem 7. For any n ∪ 2 there exists a swarm Sn of bouncing robots of size
n in the segment, such that:

1. u1 > 0 and ui < 0, for all 2 ≥ i ≥ n.
2. Ci = (r(+)

i , r
(−)
i+1), for all 1 ≥ i ≥ n − 1, such that:

(a) u
(i)
i = 0, robot ri stops.

(b) u
(i)
i+1 > 0, robot ri+1 reverses direction.

3. only rn dies.
4. ui+1 = mi+1−mi

2mi+1
u0
1

∏i
j=2

(
2mj−1

mj−1+mj
+ (mj−mj−1)2

(mj−1+mj)2mj

)
.

Notice that Theorem 7 can be extended to the cycle since the construction is
independent of the environment.

Corollary 3. For any n ∪ 2 there exists a swarm Sn of bouncing robots of size
n in the cycle in which exactly n − 1 robots survive, such that properties 1 − 4
in Theorem 7 are valid.

Theorem 3 shows that in the segment all robots die if they have all the same masses
and speeds. This is because, the laws of classical mechanics for particles of equal
masses and speeds force each robot to have at any time a fraction of the total kinetic
energy of the swarm so they can never be static. However, if robots have arbitrary
masses and velocities, it is possible that some robot carrying all the kinetic energy
of the swarm dies, then all the remaining static robots would survive.

Theorem 8. Let Sn be any swarm of bouncing robots of different masses and
arbitrary velocities deployed in the segment and let D be the subset of robots of
Sn that do not survive. Therefore, the robots of the resulting swarm after the
death of the robots in D must be static, i.e, KE(Sn \ D) = 0.

In contrast to the case of the segment in which all survivors must be static, in
the cycle there are swarms of non-static survivors.

632 J. Czyzowicz et al.

Theorem 9. In the cycle there exist a swarm S3 of size three in which only one
robot dies and the kinetic energy of the survivors is different from zero.
Proof. Let ha = 0, hb = 20, hc = 16 be the home bases of robots ra, rb and rc,
respectively, and let ma = 1,mb = 3,mc = 3 and ua = 3, ub = 1, uc = −1 be the
values of their respective masses and velocities. The resulting swarm satisfies the
properties of the theorem.
The next theorem states that the number of survivors can never be larger than
n − 1 in any swarm of arbitrary masses and speeds deployed in the cycle.

Theorem 10. Any swarm Sn of bouncing robots of arbitrary masses and speeds
in the segment or a cycle has some robot that dies.

Proof. Consider first a segment environment. As the initial kinetic energy of the
swarm is positive and it stays the same after any bounce it must stay positive
until some robot dies. By Theorem 8, at least one robot has to die. Consider
now a cycle environment. Take the the segment representation of the cycle. It
is enough to prove that one of the two robots at the end points of the segment
dies. Theorem 1 guarantees that if no robot dies, all the robots can not remain
colliding among themselves in the interval (h1, hn) for an indefinite period of
time but that there exists a time tλ in which no more collisions take place and
that some robot would eventually leave the interval [h1, hn]. Notice that the first
robots that can leave the interval [h1, hn] can only be r1 or rn. Thus, whatever
the direction of the expansion of the swarm is, robot r1 or robot rn will die.

5 Conclusions

One open problem is to study the survivability of robots when the deadly
zones are not just points but rather regions of the environment. It also remains
open to investigate the largest number of survivors for robots of equal masses
and speeds. Towards this goal, we wrote a program in Java to simulate the
survivability of bouncing robots in the cycle. Our program randomly generated
positions and initial directions for n robots of unitary masses and speeds
and tested their survivability. Our program could only find examples with
two survivors for 1 ≥ n ≥ 10. It also remains open to figure out the largest
number of non-static survivors for swarms of different masses and velocities.
We only considered elastic collisions between robots, so we think that it would
be interesting to study the case of inelastic collisions and different physical
interactions among the robots.

References

1. Czyzowicz, J., Kranakis, E., Pacheco, E.: Localization for a system of colliding
robots. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 508–519. Springer, Heidelberg (2013)

Survivability of Swarms of Bouncing Robots 633

2. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E., Ponce, O.M., Pacheco,
E.: Position discovery for a system of bouncing robots. In: Aguilera, M.K. (ed.)
DISC 2012. LNCS, vol. 7611, pp. 341–355. Springer, Heidelberg (2012)

3. Friedetzky, T., G ↪asieniec, L., Gorry, T., Martin, R.: Observe and remain silent
(Communication-less agent location discovery). In: Rovan, B., Sassone, V., Wid-
mayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 407–418. Springer, Heidelberg
(2012)

4. Cooley, B., Newton, P.: Iterated impact dynamics of n-beads on a ring. SIAM
Rev. 47(2), 273–300 (2005)

5. Cooley, B., Newton, P.: Random number generation from chaotic impact collisions.
Regular and Chaotic Dynamics 9(3), 199–212 (2004)

6. Sevryuk, M.: Estimate of the number of collisions of n elastic particles on a line.
Theoretical and Mathematical Physics 96(1), 818–826 (1993)

7. Jepsen, D.: Dynamics of a simple many-body system of hard rods. Journal of
Mathematical Physics 6, 405 (1965)

8. Rosenfeld, M.: Some of my favorite “lesser known” problems. Ars Mathematica
Contemporanea 1(2), 137–143 (2008)

9. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of
oblivious robots: forming a series of geometric patterns. In: PODC, pp. 267–276
(2010)

10. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

11. Murphy, T.: Dynamics of hard rods in one dimension. Journal of Statistical
Physics 74(3), 889–901 (1994)

12. Tonks, L.: The complete equation of state of one, two and three-dimensional gases
of hard elastic spheres. Physical Review 50(10), 955 (1936)

13. Wylie, J., Yang, R., Zhang, Q.: Periodic orbits of inelastic particles on a ring.
Physical Review E 86(2), 026601 (2012)

14. Murphy, T., Cohen, E.: Maximum number of collisions among identical hard
spheres. Journal of Statistical Physics 71(5-6), 1063–1080 (1993)

15. Glashow, S.L., Mittag, L.: Three rods on a ring and the triangular billiard. Journal
of Statistical Physics 87(3-4), 937–941 (1997)

16. Susca, S., Bullo, F.: Synchronization of beads on a ring. In: 46th IEEE Conference
on Decision and Control, pp. 4845–4850 (2007)

17. Wang, H., Guo, Y.: Synchronization on a segment without localization: algorithm
and applications. In: International Conference on Intelligent Robots and Systems,
IROS, pp. 3441–3446 (2009)

18. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distributed Computing 18(4),
235–253 (2006)

19. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: PODC, pp. 292–299 (2006)

20. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

Emergence of Wave Patterns on Kadanoff

SandpilesÆ

Kévin Perrot1,2 and Éric Rémila3

1 Université de Lyon - LIP (UMR 5668 - CNRS - ENS de Lyon - Université Lyon 1)
46 allée d’Italie 69364 Lyon Cedex 7, France

2 Universidad de Chile - Departamento de Ingenieŕıa Matemática - CMM
(UMI 2807 - CNRS) Blanco Encalda 2120, Santiago, Chile

3 Université de Lyon - Groupe d’Analyse de la Théorie Economique Lyon
Saint-Etienne - (UMR 5824 - CNRS - Université Lyon 2) - Site stéphanois,

6 rue Basse des Rives, 42 023 Saint-Etienne Cedex 2, France
kevin.perrot@ens-lyon.fr, eric.remila@univ-st-etienne.fr

Abstract. Emergence is a concept that is easy to exhibit, but very
hard to formally handle. This paper is about cubic sand grains moving
around on nicely packed columns in one dimension (the physical sandpile
is two dimensional, but the support of sand columns is one dimensional).
The Kadanoff Sandpile Model is a discrete dynamical system describing
the evolution of a finite number of stacked grains —as they would fall
from an hourglass— to a stable configuration (fixed point). Grains move
according to the repeated application of a simple local rule until reaching
a fixed point. The main interest of the model relies in the difficulty of
understanding its behavior, despite the simplicity of the rule. In this
paper we prove the emergence of wave patterns periodically repeated on
fixed points. Remarkably, those regular patterns do not cover the entire
fixed point, but eventually emerge from a seemingly highly disordered
segment. The proof technique we set up associated arguments of linear
algebra and combinatorics, which interestingly allow to formally state the
emergence of regular patterns without requiring a precise understanding
of the chaotic initial segment’s dynamic.

Keywords: sandpile model, discrete dynamical system, emergence, fixed
point.

1 Introduction

Understanding and proving properties on discrete dynamical systems (DDS) is
challenging, and demonstrating the global behavior of a DDS defined with local
rules is at the heart of our comprehension of natural phenomena [28, 15]. Sand-
pile models are a class of DDS defined by local rules describing how grains move

Æ Partially supported by IXXI (Complex System Institute, Lyon), ANR projects Sub-
tile, Dynamite and QuasiCool (ANR-12-JS02-011-01), and Modmad Federation of
U. St-Etienne.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 634–647, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

Emergence of Wave Patterns on Kadanoff Sandpiles 635

in discrete space and time. We start from a finite number of stacked grains —in
analogy with an hourglass—, and try to predict the asymptotic shape of stable
configurations.

Bak, Tang and Wiesenfeld introduced sandpile models as systems presenting
self-organized criticality (SOC), a property of dynamical systems having critical
points as attractors [1]. Informally, they considered the repeated addition of sand
grains on a discretized flat surface. Each addition possibly triggers an avalanche,
consisting of grains falling from column to column according to simple local
rules, and after a while a heap of sand has formed. SOC is related to the fact
that a single grain addition on a stabilized sandpile has a hardly predictable
consequence on the system, on which fractal structures may emerge [2]. This
model can be naturally extended to any number of dimensions.

1.1 Kadanoff Sandpile Model (KSPM)

A one-dimensional sandpile configuration can be represented as a sequence �hi�i��
of non-negative integers, hi being the number of sand grains stacked on column i.
The evolution starts from the initial configuration h where h0 � N and hi � 0 for
i � 0, and in the classical sandpile model a grain falls from column i to column
i� 1 if and only if the height difference hi � hi�1 � 1. One-dimensional sandpile
models were well studied in recent years [11, 4, 12, 5, 27, 22, 6].

> p

Fig. 1. KSPM(p) rule. When p
grains leave column i, the slope
bi�1 is increased by p, bi is de-
creased by p� 1 and bi�p is in-
creased by 1. The slope of other
columns are not affected.

Kadanoff et al. proposed a generalization of
classical models in which a fixed parameter p de-
notes the number of grains falling at each step
[17]. Starting from the initial configuration com-
posed of N stacked grains on column 0, we iter-
ate the following rule: if the difference of height
(the slope) between column i and i� 1 is greater
than p, then p grains can fall from column i,
and one grain reaches each of the p columns
i � 1, i � 2, . . . , i � p (Figure 1). The rule is
applied once (non-deterministically) during each
time step.

Formally, this rule is defined on the space of ul-
timately null decreasing integer sequences where each integer represents a column
of stacked sand grains. Let h � �hi�i�� denote a configuration of the model, hi is
the number of grains on column i. The words column and index are synonyms.
In order to consider only the relative height between columns, we represent con-
figurations as sequences of slopes b � �bi�i��, where for all i � 0, bi � hi�hi�1.
This latter is the main representation we are using (also the one employed in the
definition of the model), within the space of ultimately null non-negative integer
sequences. We denote by 0ω the infinite sequence of zeros that is necessary to
explicitly write the value of a configuration.

Definition 1. KSPM with parameter p � 0, KSPM(p), is defined by two sets:

636 K. Perrot and É. Rémila

– Configurations. Ultimately null non-negative integer sequences.
– Transition rules. There is a possible transition from a configuration b to a

configuration b� on column i, and we note b
i	 b� when:

 b�i�1 � bi�1 � p (for i � 0)

 b�i � bi � �p� 1�

 b�i�p � bi�p � 1

 b�j � bj for j � i� 1, i, i� p�.

In this case we say that i is fired. For the sake of imagery, we always consider
indices to be increasing on the right (Figure 1). Remark that according to the
definition of the transition rules, i may be fired if and only if bi � p, otherwise b�i
is negative. We note b	 b� when there exists an integer i such that b

i	 b�. The

transitive closure of 	 is denoted by
�	, and we say that b� is reachable from b

when b
�	 b�. A basic property of the KSPM model is the diamond property : if

there exists i and j such that b
i	 b� and b

j	 b�, then there exists a configuration

b� such that b�
j	 b� and b�

i	 b�.
We say that a configuration b is stable, or a fixed point, if no transition is

possible from b. As a consequence of the diamond property, one can easily check
that, for each configuration b, there exists a unique stable configuration, denoted

by π�b�, such that b
�	 π�b�. Moreover, for any configuration b� such that b

�	 b�,
we have π�b�� � π�b� (see [14] for details). For convenience, we denote by N the
initial configuration �N, 0ω�, such that π�N� is the sequence of slopes of the fixed
point associated to the initial configuration composed of N stacked grains. This
paper is devoted to the study of π�N� according to N . An example of evolution
is pictured on figure 2.

0 0 0 0 0 0 0 0 2 2 1

Fig. 2. A possible evolution in KSPM(2) from the initial configuration for N � 24
to π�24�. π�24� � �2, 1, 2, 1, 2, 0ω� and its shot vector (definition in Subsection 2.1) is
�8, 1, 2, 0ω�.

1.2 Our Result

For a configuration b we denote by b�n,	� the infinite subsequence of b starting
from index n, and � is the Kleene star denoting finite repetitions of a regular

Emergence of Wave Patterns on Kadanoff Sandpiles 637

expression (see for example [16] for details). In this paper we prove the following
precise asymptotic form of fixed points, presenting an emergent regular structure
stemming from a seemingly complex initial segment (note that the support of
π�N� is in Θ��N�, because fixed points are non-degenerated rectangular trian-
gles or area N):

Theorem 1. There exists an n in O�logN� such that

π�N��n,	� � �p � . . . � 2 � 1�� 0 �p � . . . � 2 � 1�� 0ω.

Omitted proofs and illustrations of the result can be found in [26].
The result above presents an interesting feature: we asymptotically completely

describe the form of stable configurations, though there is a part of asymptoti-
cally null relative size which remains mysterious. Furthermore, proven regular-
ities are directly stemming from this messy part. Informally, it means that we
prove the emergence of a very regular behavior, after a short transitional and
complex phase. Most interestingly, the proof technic we develop does not require
to understand precisely this complex initial segment.

In some previous works ([23–25]), we obtained a similar result for the smallest
parameter p � 2 (the case p � 1 is the well known Sandpile Model) using
arguments of combinatorics, but, for the general case, we have to introduce a
completely different approach. The main ideas are the following: we first relate
different representations of a sandpile configuration (Subsection 2.1), which leads
to the construction of a DDS on �p�1 such that the orbit of a well chosen point
(according to the number of grains N) describes the fixed point configuration we
want to characterize. This system is quasi-linear in the sense that the image of a
point is obtained by a linear contracting transformation followed by a rounding
(in order to remain in �p�1) which we do not precisely predict. We want to prove
that this system converges rapidly, but the unknown rounding makes the analysis
of the system very difficult (except for p � 2). The key point (Subsection 2.2)
is the reduction of this system to another quasi-linear system in �

p, for which
we have a clear intuition (Subsection 2.3), and which allows to conclude the
convergence of the system to points involving wavy patterns on fixed points
(Subsections 2.4 and 2.5). The reader can refer to Figure 3 (at the end of the
paper) for an illustration of the various representations that will be used along
these developments.

1.3 The Context

The problem of describing and proving regularity properties suggested by
numerical simulations, for models issued from basic dynamics is a present chal-
lenge for physicists, mathematicians, and computer scientists. There exist a lot
of conjectures on discrete dynamical systems with simple local rules (sandpile
model [3] or chip firing games, but also rotor router [19], the famous Langton’s
ant [8, 9]...) but very few results have actually been proved. Regarding KSPM(1),
the prediction problem (namely, the problem of computing the fixed point π�k�)

638 K. Perrot and É. Rémila

has been proven in [21] to be in NC2 � AC2 for the one dimensional case, the
model of our purpose (improved to LOGCFL � AC1 in [20]), and P-complete
when the dimension is � 3. A recent study [13] showed that in the two dimen-
sional case the avalanche problem (given a configuration σ and two columns i
and j, does adding one grain on column i have an influence on columnn j?) is
P-complete for KSPM(p) with p � 1, which points out an inherently sequential
behavior. The two dimensional case for p � 1 is still open, though we know from
[7] that wires cannot cross.

2 Analysis

We consider the parameter p to be fixed. We study the “internal dynamic” of
fixed points, via the construction of a DDS in �

p�1, such that the orbit of a
well chosen point according to the number of grains N describes π�N�. The aim
is then to prove the convergence of this orbit in O�logN� steps, such that the
values it takes involve the form described in Theorem 1.

2.1 Internal Dynamic of Fixed Points

A useful representation of a configuration reachable from �N, 0ω� is its shot vector
�ai�i��, where ai is the number of times that the rule has been applied on column
i from the initial configuration (see figure 2 for an example). A fixed point π�N�
can also be represented as a sequence of slopes �bi�i�� (i.e., bi � π�N�i for all i),
and those two representations are obviously linked in various ways. In particular
for any i we can compute the slope at index i provided the number of firings at
i � p, i and i � 1, because bi is initially equal to 0 (the case i � 0 is discussed
below), and: a firing at i� p increases bi by 1; a firing at i decreases bi by p� 1;
a firing at i�1 increases bi by p; and any other firing has no consequence on the
slope bi. Therefore, bi � ai�p � �p � 1� ai � p ai�1, with 0 � bi � p since π�N�
is a fixed point, and thus

ai�1 � �1

p
ai�p � p� 1

p
ai � 1

p
bi

This equation expresses the value of the shot vector at position i�1 according
to its values at positions i�p and i, and a bounded perturbation 0 � bi

p � 1.
As an initial condition, we consider a virtual column of index �p that has been
fired N times: a�p � N and ai � 0 for �p � i � 0, representing the fact that
column 0 is the only one receiving N times 1 unit of slope.

Remark 1. Note that ai�1 � �, thus �ai�p � �p � 1� ai � bi � 0 mod p. As a
consequence, the value of bi is nearly determined: given ai�p and ai, there is only
one possible value of bi, except when �ai�p � �p � 1� ai � 0 mod p in which
case bi equals 0 or p.

For example, consider π�2000� for p � 4 (see Figure 3b). We have a8 � 120
and a4 � 189, so �a4 � 5 a8 � 411 � 3 mod p. From this knowledge, b8 is
determined to be equal to 1, so that a9 � � 1

4 a4� 5
4 a8� 1

4 b8 � 103 is an integer.

Emergence of Wave Patterns on Kadanoff Sandpiles 639

We rewrite this relation as a linear system we can manipulate easily. ai�1 is
expressed in terms of ai�p and ai, so we choose to construct a sequence of vectors
�Xi�i�� with Xi � �

p�1 and such that Xi � t�ai�p, ai�p�1, . . . , ai� where tv
stands for the transpose of v. Note that we consider only finite configurations, so
there always exists an integer i0 such that Xi � � for i0 � i, with � � t�0, . . . , 0�.

Given Xi and bi we can compute Xi�1 with the relation

Xi�1 � AXi � bi
p
J with A �

�
������

0 1 0 0
. . .

0 0 1 0
0 0 0 1

� 1
p 0 0 p�1

p

�
ÆÆÆÆÆ�

J �

�
������

0
...
0
0
1

�
ÆÆÆÆÆ�

in the canonical base B � �e0, e1, . . . , ep�, with A a square matrix1 of size �p�
1� � �p� 1�.

This system expresses the shot vector around position i � 1 (via Xi�1) in
terms of the shot vector around position i (via Xi) and the slope at i (via bi).
Thus the orbit of the point X0 � �N, 0, . . . , 0, a0� in �

p�1 describes the shot
vector of the fixed point composed of N grains.

Note that it may look odd to study the sequence �bi�i�� using a DDS whose
iterations presuppose the knowledge of �bi�i��. It is actually helpful because of
the underlined fact that values bi are nearly determined (Remark 1): in a first
phase we will make no assumption on the sequence �bi�i�� (except that bi � p
for all i) and prove that the system converges exponentially quickly in N ; and
in a second phase we will see that from an n in O�logN� such that the system
has converged, the sequence �bi�i
n is determined to have a regular wavy shape.

The system we get is a linear map plus a perturbation induced by the dis-
creteness of values of the slope. Though the perturbation is bounded by a global
constant at each step (bi � p for all i since π�N� is a fixed point), it seems that
the non-linearity prevents classical methods to be powerful enough to decide the
convergence of this model.

We denote by φ the corresponding transformation from �
p�1 to �p�1, which

is composed of two parts: a matrix and a perturbation. Let R�x� � xp�1 �
p�1
p xp�2�� � � � 2

p x� 1
p , the characteristic polynomial of A is �1�x�2 R�x�. We

can first notice that 1 is a double eigenvalue. A second remark, which helps to
get a clear picture of the system, is that all the other eigenvalues are distinct and
less than 1 (from a bound by Enerström and Kakeya [10]). We will especially
use these remarks in Subsection 2.3. Therefore there exists a basis such that the
matrix of φ is in Jordan normal form with a Jordan block of size 2. Then, we
could project on the p � 1 other components to get a diagonal matrix for the
transformation, hopefully exhibiting an understandably contracting behavior.

We tried to express the transformation φ in a basis such that its matrix
is in Jordan normal form, but we did not manage to handle the effect of the

1 As a convention, blank spaces are 0s and dotted spaces are filled by the sequence
induced by its endpoints.

640 K. Perrot and É. Rémila

perturbation expressed in such a basis. Therefore, we rather express φ in a basis
such that the matrix and the perturbation act harmoniously. The proof of the
Theorem 1 is done in three steps:

1. the construction of a new dynamical system: we first express φ is a new basis
B�, and then project along one component (Subsection 2.2);

2. the behavior of this new dynamical system is easily tractable, and we will
see that it converges exponentially quickly (in O�logN� steps) to a uniform
vector (Subsection 2.3);

3. finally, we prove that as soon as the vector is uniform, then the wavy shape
of Theorem 1 takes place (Subsections 2.4 and 2.5).

2.2 Making the Matrix and the Perturbation Act Harmoniously

From the dynamical system Xi�1 � AXi � bi
p J in the canonical basis B, we

construct a new dynamical system for φ in two steps: first we change the basis
of �p�1 in which we express φ, from the canonical one B, to a well chosen
B�; then we project the transformation along the first component of B�. The
resulting system on �

p, called averaging system, is very easily understandable,
very intuitive, and the proof of its convergence to a uniform vector can then be
completed straightforwardly.

Let B� �

�
����

1 0 0
1 1 0
...

...
. . .

1 1 . . . 1

�
ÆÆÆ� and B��1 �

�
�����

1 0 0

�1
. . . 0 0

. . .
. . .

0 �1 1

�
ÆÆÆÆ�

be square matrices of size p� 1.

B� � �e�0, . . . , e
�

p� (with e�i the �i � 1�th column of the matrix B�) is a basis of �p�1,
and we have

B��1 Xi�1 � B��1 AB�B��1Xi �
bi
p
B��1 J

�� X �

i�1 � A�X �

i �
bi
p
J �

with

X �

i � B��1 Xi A� � B��1 AB� �

�
����

1 1 0
. . .

0 0 1
0 1

p
. . . 1

p

�
ÆÆÆ� J � � B��1 J �

�
����

0
...
0
1

�
ÆÆÆ�

We now proceed to the second step by projecting along e�0. Let P denote
the projection in �

p�1 along e�0 onto 0� � �
p. We can notice that e�0 is an

eigenvector of A�, hence projecting along e�0 simply corresponds to erasing the
first coordinate of X �

i. For convenience, we do not write the zero component of
objects in 0� � �

p.
The new DDS we now have to study, which we call averaging system, is

Yi�1 �M Yi � bi
p
K (1)

Emergence of Wave Patterns on Kadanoff Sandpiles 641

with the following elements in �
p (in 0� � �

p):

Yi � P X �
i M � P A� �

�
����

0 1 0
. . .

0 0 1
1
p

1
p . . .

1
p

�
ÆÆÆ� K � P J � �

�
����

0
...
0
1

�
ÆÆÆ�

Let us look in more details at Yi and what it represents concerning the shot
vector. We have Xi � t�ai�p, ai�p�1, . . . , ai�, thus

Yi � P B��1Xi �

�
����

ai�p�1 � ai�p

...
ai�1 � ai�2

ai � ai�1

�
ÆÆÆ� and for initialization Y0 �

�
������

�N
0
...
0
a0

�
ÆÆÆÆÆ�
.

Yi represents differences of the shot vector, which may of course be negative.
In Subsection 2.3 we will see that the averaging system is easily tractable and
converges exponentially to a uniform vector. Subsection 2.4 concentrates on the
implications following this uniform vector, i.e., the emergence of a wavy shape.

2.3 Convergence of the Averaging System

The averaging system is understandable in simple terms. From Yi in �
p, we

obtain Yi�1 by:

1. shifting all the values one row upward;
2. for the bottom component, computing the mean of values of Yi, and adding

a small perturbation (a multiple of 1
p between 0 and 1) to it.

Let yi be the first component of Yi, we therefore have Yi � t�yi, . . . , yi�p�1�.
Remark 2. �Yi�i�� are still integer vectors, hence the perturbation added to the
last component is again nearly determined: let mi denote the mean of value of
Yi, we have �mi � bi

p � � � and 0 � bi
p � 1. Consequently, if mi is not an integer

then bi is determined and equals p��mi��mi�, otherwise bi equals 0 or p.

For example, consider π�2000� for p � 4 (see Figure 3a, be careful that it pictures
ai � ai�1 at position i). We have Y13 � t��3,�5,�7,�7�, then y13 � � 11

2 and
b13 is forced to be equal to 2 so that Y14 � t��5,�7,�7,�5� is an integer vector.

We can foresee what happens as we iterate this dynamical system and new
values are computed: on a large scale —when values are large compared to p—
the system evolves roughly toward the mean of values of the initial vector Y0,
and on a small scale —when values are small compared to p— the perturbation
lets the vector wander a little around. Previous developments where intending
to allow a simple argument to prove that those wanderings do not prevent the
exponential convergence towards a uniform vector.

642 K. Perrot and É. Rémila

The study of the convergence of the averaging system works in three steps:

(i) state a linear convergence of the whole system; then express Yn in terms of
Y0 and �bi�0�i�n;

(ii) isolate the perturbations induced by �bi�0�i�n and bound them;
(iii) prove that the other part (corresponding to the linear map M) converges

exponentially quickly.

From (ii) and (iii), a point converges exponentially quickly into a ball of constant
radius, then from (i) this point needs a constant number of extra iterations in
order to reach the center of the ball, that is, a uniform vector.

Proposition 1. There exists an n in O�logN� such that Yn is a uniform vector.

Proof. Let mi (respectively mi, mi) denote the mean (respectively maximal,
minimal) of values of Yi. We will prove that mi � mi converges exponentially
quickly to 0, which proves the result.

We start with Y0 � t��N, 0, . . . , 0, a0�, thus m0�m0 � N�a0 � p�1
p N since

a0 � N
p (recall that a0 is the number of times column 0 has been fired).

This proof is composed of two parts. Firstly, the system converges exponen-
tially quickly on a large scale. Intuitively, when mi �mi is large compared to p,
the perturbation is negligible.

Lemma 1. There exists a constant α and n0 in O�logN� s.t.mn0�mn0
� α.

Proof (Proof sketch). Complete proof in [26]. Let Mi � �mi, . . . ,mi� in
�
p. Since Yi converges roughly towards the mean of its values, we consider

the evolution of Zi � Yi �Mi. We easily establish a relation of the form
Zi�1 � OZi � Ci with Ci a bounded perturbation vector and O a linear
transformation. It follows that Zn � OnZ0 �

�n�1
i�0 O

n�1�i Ci.
Moreover, the characteristic polynomial of O is R�x� (proof omitted). One

proves that R�x� has p � 1 distinct roots λ1, . . . , λp�1 (using coprimality of
R�x� and R��x�) and for all k, �λk� � p�1

p � 1 (using a bound by Eneström

and Kakeya, see for example [10]).

Consequently, O is a contraction operator, and
�n�1

i�0 O
n�1�i Ci can be

upper bounded by a constant independent of n and the number of grains
N . We can therefore conclude that there exists an n0 in O�logN� such that

Zn0 � On0Z0 �
�n0�1

i�0 On0�1�iCi is upper bounded.

Secondly, on a small scale, the system converges linearly.

Lemma 2. The value of mi �mi decreases linearly: if mi � mi, then there
is an integer c, with 0 � c � p such that mi�c �mi�c � mi �mi.

Proof. If mi � mi, that is, if the vector Yi is not uniform, the mean value
is strictly between the greatest and smallest values: mi � mi � mi. Con-
sequently mi � yi�p � mi � bi

p � mi (since the perturbation added is at
most one and the resulting number is an integer, we cannot reach a greater
integer). Therefore, we get mi � mi�1 � mi�1 � mi.

Emergence of Wave Patterns on Kadanoff Sandpiles 643

This reasoning applies while mi�j � mi�j , from which we get mi�j �
yi�p�j � mi�j and mi�j � mi�j�1 � mi�j�1 � mi�j .

If there exists c � p such that mi�c � mi�c, then, we are done. Otherwise,
for 0 � j � p, we have, mi � mi�j � yi�j�p � mi�j � mi), thus mi �
mi�p � mi�p � mi.

To conclude, we start with m0�m0 in O�N�, we have a constant α and a n0

in O�logN� such that mn0 �mn0
� α thanks to the exponential decrease on a

large scale (Lemma 1). Then after p iterations the value of mn0�p � mn0�p is
decreased by at least 1 (Lemma 2), hence there exists β with β � p α such that
after β extra iterations we have mn0�β �mn0�β � 0. Thus Yn0�β is a uniform
vector, and n0 � β is in O�logN�.
In this proof, neither the discrete nor the continuous studies is conclusive by
itself. On one hand, the discrete study gives a linear convergence but not an
exponential convergence. On the other hand, the continuous study gives an ex-
ponential convergence towards a uniform vector, but in itself the continuous part
never reaches a uniform vector but tends asymptotically towards it. It is the si-
multaneous study of those modalities (discrete and continuous) that allows to
reach the conclusion.

Remark 3. Note that for p � 1, the averaging system has a trivial dynamics. For
p � 2, the behavior is a bit more complex, but major simplifications are found:
the computed value is equal to the mean of two values, hence in this case the
difference mi �mi decreases by a factor of two at each time step.

2.4 Emergence of a Loosely Wavy Shape

We call wave the pattern p � . . . � 2 � 1 in the sequence of slopes. Lemma 1 shows
that there exists an n � O�logN� such that Yn is a uniform vector. In this
subsection, we prove that if Yn is a uniform vector, then the shape of the sandpile
configuration is exclusively composed of waves and 0s from the index n.

Lemma 3. Yn is a uniform vector of �p implies

π�N��n,	� �
�

0� �p � p�1 � . . . � 1�
��

0ω

Proof (Proof sketch). Complete proof in [26]. We straightforwardly apply Re-
mark 2. If Yn is a uniform vector, we notice that the value of bn is 0 or p. If it
is 0 then Yn�1 is still a uniform vector; if it is p, then the sequence �bi�n�in�p

is determined to be equal to p � p � 1 � . . . � 1, and Yn�p is a uniform vector.
The following diagram illustrates those observations: the grey node represents a
uniform vector, and arrows are labelled by values of the sequence bi. If we start
on the grey node, any path’s labels verify the statement of the Lemma.

0
p p−1 2

1

Remark 4. Composing Proposition 1 and Lemma 3 allows us to prove the
emergence, from a logarithmic column, of the shape given in Lemma 3.

644 K. Perrot and É. Rémila

2.5 Avalanches to Complete the Proof

In order to prove Theorem 1, we refine Remark 4 to show that there is at
most one set of two non empty and consecutive columns of equal height, called
plateau of size two, and corresponding to a slope equal to 0. It seems necessary
to overcome the “static” study —for a given fixed point— presented above, and
consider the dynamic of sand grains from π�0� to π�N�. The fixed point π�N�
can be computed inductively, using the relation

for all k � 0, π�π�k � 1��0� � π�k�

where σ�0 denotes the configuration obtained by adding one grain on column 0
of σ (see [26] for details). We start from π�0� and inductively compute π�1�, π�2�,
. . . , π�N�1� and π�N� by repeating the addition of one grain on column 0 and
reaching a stable configuration. The sequence of firings from π�k�1��0 to π�k�
is called the kth avalanche.

We studied the structure of avalanches in [23–25], and first proved that each
column is fired at most once in an avalanche sk. Secondly, we showed that as soon
as p consecutive columns are fired, then the avalanche fires a set of consecutive
columns —without any hole i such that i � sk and �i � 1� � sk—, and saw
that this property leads to important regularities in successive fixed points. The
following proof uses those observations: the structure of an avalanche on a wave
pattern is very constrained, and as soon as an avalanche goes beyond a wave, it
necessarily fires every columns of that wave, thus it fires a set of p consecutive
columns as mentioned above. We detail in the following proof why this property
of avalanches on wave patterns ensures that if there is at most one plateau of size
two (one slope equal to 0) in-between wave patterns of a fixed point π�N � 1�,
then there remains at most one plateau of size two on the wave patterns of the
fixed point π�N�.
Proof (Proof of Theorem 1). We prove the result by induction on N . From
Proposition 1 and Lemma 3, there is an index n (resp. n�) in O�logN� from
which π�N� (resp. π�N � 1�) is described by the expression given in Lemma 3.
Moreover, there is an index l in O�logN� such that the N th avalanche fires a set
of consecutive columns on the right of l (we omit the proof of this observation,
see [26] for details). Without loss of generality, we consider that l � n, n�, and
will prove that if π�N � 1��l,	� has at most one value 0, then so has π�N��l,	�.

If the avalanche ends before column l � p (if max sN � l � p), the result
holds. In the other case, we simply notice by contradiction that as soon as the
avalanche reaches the wave patterns, it necessarily ends on the first value 0 it
encounters, otherwise the resulting configuration is not stable (we recall that
from l a set of consecutive columns is fired exactly once). The consequence is
that the 0 “climbs” one wave to the left, preserving the invariant of having at
most one value 0 in-between wave patterns.

Emergence of Wave Patterns on Kadanoff Sandpiles 645

a
n
−

a
n
+

1

sh
ot

ve
ct

or
di

ffe
re

nc
es

n
columns

-40

-30

-20

-10

0

10

20

30

40

10 20 30 40

380

71

(a) π�2000� for p � 4 repre-
sented as a sequence of shot
vector differences

a
n

sh
ot

ve
ct

or

n
columns

0

20

40

60

80

100

120

140

160

180

200

10 20 30 40

476

(b) π�2000� for p � 4 repre-
sented by its shot vector

nu
m

be
r

of
st

ac
ke

d
gr

ai
ns

(h
ei

gh
t)

n
columns

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40

(c) π�2000� for p � 4
represented as stacked sand
grains

Fig. 3. Representations of π�2000� for p � 4 used in the developments of the paper: dif-
ferences of the shot vector (Figure 3a), shot vector (Figure 3b) and height (Figure 3c).
π�2000� � �4,0,4,1,3,2,4,1,1,3,4,3,4,2,0,1,4,2,2,1,4,3,2,1,0,4,3,2,1,4,3,2,1,4,3,2,1,4,3,2,
1,0ω�We can notice on Figure 3a that the shot vector differences contract towards some
“steps” of length p, which corresponds to the statement of Lemma 1 that the vector Yn

becomes uniform exponentially quickly (note that this graphic plots the opposite of the
values of the components of Yn). The shot vector representation on Figure 3b corresponds
to the values of the components of Xn, which we did not manage to tackle with classical
methods. Figure 3c pictures the sandpile configuration on which the wavy shape appears
starting from column 20.

3 Concluding Discussion

The proof technic we set up in this paper allowed us to prove the emergence of
regular patterns periodically repeated on fixed points, without requiring a pre-
cise understanding of the initial segment’s dynamic. Arguments of linear algebra
allowed to prove a rough convergence of the system (when the dynamic is not
precisely known but coarsely bounded), completed with arguments of combina-
torics, using the discreteness of the model, to prove the emergence of precise and
regular wave patterns.

This result stresses the fact that sandpile models are on the edge between dis-
crete and continuous systems. Indeed, when there are very few sand grains, each
one seems to contribute greatly to the global shape of the configuration. However,
when the number of grains is very large, a particular sand grain seems to have no
importance to describe the shape of a configuration. The result also suggests a
separation of the discrete and continuous parts of the system. On one hand, the

646 K. Perrot and É. Rémila

seemingly unordered initial segment, interpreted as reflecting the discrete behav-
ior, prevents regularities from emerging. On the other hand, the asymptotic and
ordered part, interpreted as reflecting the continuous behavior, lets a regular and
smooth pattern come into view.

Nevertheless, the separation between discrete and continuous behaviors may
be challenged because the continuous part emerges from the discrete part. We
have two remarks about this latter fact. Firstly, the consequence seems to be a
slight bias appearing on the continuous part: it is not fully homogeneous —that
is, with exactly the same slope at each index— which would have been expected
for a continuous system, but a —very small— pattern is repeated. It looks like
this bias comes from the gap between the unicity of the border column on the
left side at index �1 compared to the rule which has a parameter p, because
we still observe the appearance of wave patterns starting from variations of the
initial configuration (for example starting from p consecutive columns of height
N , thus pN grains). Secondly, if we consider the asymptotic form of a fixed
point, the relative size of the discrete part is null. This, regarding the intuition
described above that when the number of grains is very large then a particular
grain has no importance, is satisfying.

Finally, the emergence of regularities in this system hints at a clear qualitative
distinction between some sand grains and a heap of sand. Let us save the last
words to a distracting application to the famous sorites paradox. Someone who
has a very little amount of money is called poor. Someone poor who receives
one cent remains poor. Nonetheless, if the increase by 1 cent is repeated a great
number of times then the person becomes rich. The question is: when exactly
does the person becomes rich? An answer may be that richness appears when
money creates waves...

References

1. Bak, P., Tang, K., Wiesenfeld, C.: Self-organized criticality. Phys. Rev. A 38(1),
364–374 (1988)

2. Creutz, M.: Cellular automata and self organized criticality. In: Some New Direc-
tions in Science on Computers (1996)

3. Dartois, A., Magnien, C.: Results and conjectures on the sandpile identity on a
lattice. In: Discrete Model for C.S. Discrete Math. and T.C.S., pp. 89–102 (2003)

4. Durand-Lose, J.O.: Parallel transient time of one-dimensional sand pile. Theor.
Comput. Sci. 205(1-2), 183–193 (1998)

5. Formenti, E., Masson, B., Pisokas, T.: Advances in symmetric sandpiles. Fundam.
Inform. 76(1-2), 91–112 (2007)

6. Formenti, E., Van Pham, T., Phan, T.H.D., Tran, T.T.H.: Fixed point forms of
the parallel symmetric sandpile model. CoRR, abs/1109.0825 (2011)

7. Gajardo, A., Goles, E.: Crossing information in two-dimensional sandpiles. Theor.
Comput. Sci. 369(1-3), 463–469 (2006)

8. Gajardo, A., Moreira, A., Goles, E.: Complexity of Langton’s ant. Discrete Applied
Mathematics 117(1-3), 41–50 (2002)

9. Gale, D., Propp, J., Sutherland, S., Troubetzkoy, S.: Further travels with my
ant. Mathematical Entertainments Column, Mathematical Intelligencer 17, 48–56
(1995)

Emergence of Wave Patterns on Kadanoff Sandpiles 647

10. Gardner, R.B., Govil, N.K.: Some generalizations of the Eneström-Kakeya theo-
rem. Acta Math. Hungar. 74(1-2), 125–134 (1997)

11. Goles, E., Kiwi, M.A.: Games on line graphs and sand piles. Theor. Comput.
Sci. 115, 321–349 (1993)

12. Goles, E., Latapy, M., Magnien, C., Morvan, M., Phan, T.H.D.: Sandpile models
and lattices: a comprehensive survey. Theor. Comput. Sci. 322(2), 383–407 (2004)

13. Goles, E., Martin, B.: Computational Complexity of Avalanches in the Kadanoff
Two-dimensional Sandpile Model. In: Proc. of JAC 2010, pp. 121–132 (December
2010)

14. Goles, E., Morvan, M., Phan, T.H.D.: The structure of a linear chip firing game
and related models. Theor. Comput. Sci. 270(1-2), 827–841 (2002)

15. Grauwin, S., Bertin, É., Lemoy, R., Jensen, P.: Competition between collective and
individual dynamics. Nat. Ac. of Sciences USA 106(49), 20622–20626 (2009)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation - international edition, 2nd edn. Addison-Wesley (2003)

17. Kadanoff, L.P., Nagel, S.R., Wu, L., Zhou, S.: Scaling and universality in
avalanches. Phys. Rev. A 39(12), 6524–6537 (1989)

18. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Sys-
tems. Encycl. of Math. and App. Cambridge University Press (1996)

19. Levine, L., Peres, Y.: Spherical asymptotics for the rotor-router model in z d.
Indiana Univ. Math. J., 431–450 (2008)

20. Miltersen, P.B.: The computational complexity of one-dimensional sandpiles. The-
ory Comput. Syst. 41(1), 119–125 (2007)

21. Moore, C., Nilsson, M.: The computational complexity of sandpiles. Journal of
Statistical Physics 96, 205–224 (1999), doi:10.1023/A:1004524500416

22. Perrot, K., Phan, T.H.D., Van Pham, T.: On the set of Fixed Points of the Parallel
Symmetric Sand Pile Model. In: AUTOMATA 2011 (November 2011)

23. Perrot, K., Rémila, É.: Avalanche Structure in the Kadanoff Sand Pile Model. In:
Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. Perrot, K., Rémila,
É, vol. 6638, pp. 427–439. Springer, Heidelberg (2011)

24. Perrot, K., Rémila, É.: Transduction on Kadanoff Sand Pile Model Avalanches, Ap-
plication to Wave Pattern Emergence. In: Murlak, F., Sankowski, P. (eds.) MFCS
2011. LNCS, vol. 6907, pp. 508–519. Springer, Heidelberg (2011)

25. Perrot, K., Rémila, É.: Kadanoff sand pile model. Avalanche structure and wave
shape. Theor. Comput. Sci. 504, 52–72 (2013)

26. Perrot, K., Rémila, É.: Kadanoff Sand Piles, following the snowball (January 2013),
Research Report available on arXiv at http://arxiv.org/abs/1301.0997

27. Phan, T.H.D.: Two sided sand piles model and unimodal sequences. ITA 42(3),
631–646 (2008)

28. Weaver, W.: Science and Complexity. American Scientist 36(536) (1948)

http://arxiv.org/abs/1301.0997

A Divide and Conquer Method

to Compute Binomial Ideals

Deepanjan Kesh1,Δ and Shashank K. Mehta2

1 Indian Institute of Technology Guwahati
Guwahati, India

deepkesh@iitg.ernet.in
2 Indian Institute of Technology Kanpur

Kanpur, India
skmehta@iitk.ac.in

Abstract. A binomial is a polynomial with at most two terms. In this
paper, we give a divide-and-conquer strategy to compute binomial ideals.
This work is a generalization of the work done by the authors in [12,13]
and is motivated by the fact that any algorithm to compute binomial
ideals spends a significant amount of time computing Gröbner basis and
that Gröbner basis computation is very sensitive to the number of vari-
ables in the ring. The divide and conquer strategy breaks the problem
into subproblems in rings of lesser number of variables than the original
ring. We apply the framework on five problems – radical, saturation, cel-
lular decomposition, minimal primes of binomial ideals, and computing
a generating set of a toric ideal.

1 Introduction

Consider the polynomial ring k[x1, . . . , xn]. A binomial in such a ring is a poly-
nomial of the form c · xΣ + d · xΛ , where c, d ⊕ k and α, β ⊕ N

n. An ideal in the
polynomial ring which has a generating set comprising only of binomials is called
a binomial ideal. In this paper, we will be concerned with computing various
binomial ideals.

Binomial ideals, unlike general polynomial ideals, possess rich combinatorial
structure which can be exploited while computing various structures derived
from them, for example Gröbner bases, primary decomposition, and associated
primes [17,10]. Pure difference binomials are binomials of the form xΣ−xΛ . The
varieties of pure difference prime binomial ideals are exactly the toric varieties.
Hence, such ideals are also known as toric ideals [7,6]. There is a large literature
studying applications and computations of toric ideals [14,1]. Moreover, quo-
tients of polynomial rings by pure difference binomial ideals form commutative
semigroup rings [9].

Apart from a purely academic interest in the subject of binomial ideals, their
study is also motivated by the fact that they are often encountered in interesting

� Support from IMPECS is acknowledged.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 648–659, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

A Divide and Conquer Method to Compute Binomial Ideals 649

problems in diverse fields. These include solving integer programs [11,3,18,16],
computing primitive partition identities [14, Chapters 6,7], and solving schedul-
ing problems [15]. In algebraic statistics, closures of discrete exponential families
have been identified with nonnegative toric varieties [8].

The theory of binomial ideals was developed in a seminal paper by Eisenbud
and Sturmfels [6]. Their paper not only showed various properties of binomial
ideals – for example, the radicals and associated primes of binomial ideals are
themselves binomial ideals – but they also show how to compute these structures.

In [12], we had dealt with the computation of toric ideals. In [13], we had
extended our approach to compute the saturation of binomial ideals. In this
paper, we present a general framework to compute several of such binomial
ideals, namely radical, saturation, minimal primes and cellular decompositions.
This work is motivated by two crucial observations –

1. Most of these computations involve computing a Gröbner basis of certain
ideals, and

2. Buchberger’s algorithm [2] to compute Gröbner basis is very sensitive to the
number of variables in the underlying polynomial ring.

In the light of these observations, we propose a divide-and-conquer technique to
solve the aforementioned problems, with the hope that this strategy can also
be applied to a host of other problems related to binomial ideals, like com-
puting associated primes, primary decomposition, primary component, and so
on. The essence of the strategy is the following. Consider the polynomial ring
k[x1, . . . , xn], and a binomial ideal I ≤ k[x1, . . . , xn]. We compute the image
of I under the natural homomorphism in the derived rings k[x2, . . . , xn] and
k[x±1 , x2, . . . , xn] and perform the same computation on these ideals(Intuitively,
x±1 implies that we allow both positive and negative integers as exponents for
x1). Then we “lift” the results in the original ring and combine them to compute
a solution of the original problem. Both these rings are isomorphic to polynomial
rings with one less variable [13], hence Gröbner basis (actually such basis does
not exist in some of these new rings but we use a variant for the computations)
can be computed more efficiently.

The paper has been arranged as follows. In the next section, we briefly present
some background required for the paper and define some notations. Section 3
defines two maps from ideals of a Laurent ring to certain derived rings, and
state some useful properties of these maps. These two maps form the basis of
the reduction of the problem into the subproblems, discussed earlier. Section 4
contains the main contribution of the paper – discussion of the proposed divide-
and-conquer framework. In Section 5, we use this framework to compute radical,
saturation, cellular decomposition, minimal primes of binomial ideals, and a
generating set of a toric ideal.

2 Background

A detailed treatment of the background required for the paper, like the notions of
localization, Laurent polynomial rings, or of various kinds of ideals like radical,

650 D. Kesh and S.K. Mehta

prime, saturation, etc., was not included here due to constraint of page limit,
but the reader can refer to [4,5].

We will just state a few notations used in the paper. For a ringR, if r1, . . . , rs ⊕
R, then 〈 r1, . . . , rn ⊗ will denote the ideal generated by r1, . . . , rn. For an ideal
I ≤ R,

∈
I = { r | rm ⊕ I, m ∗ 0 } is the radical of I. I : r∗ = { s | srj ⊕

I, for some j ∗ 0 } will denote the saturation of I w.r.t. r.
For a field k, we will use the standard notation of k[x1, . . . , xn] to denote the

polynomial ring in n variables. If U ≤ R is a multiplicatively closed set of R, then
R[U−1] is the localization of R w.r.t. U . If the ring k[x1, . . . , xn] is localized w.r.t.
x1, . . . , xi, then the partial Laurent polynomial ring k[x±1 , . . . , x

±
i , xi+1, . . . , xn]

will be denoted by the tuple (k,X,L), where k is the field, X is the set of
variables, and L is the set of variables w.r.t. which k[X] has been localized.

3 Two Ring Homomorphisms

3.1 Modulo Map

Let r be an element of a Noetherian ring R. Then θ : R ≥ R/〈 r ⊗ denotes the
natural homomorphism θ(a) = [a] = a + 〈 r ⊗, ⊆a ⊕ R. Here, [a] or a + 〈 r ⊗
denotes the coset of a in R/〈 r ⊗. This induces a map Θ from the ideals in R
containing r and the ideals of R/〈r⊗ as follows –

Θ(I) = { [a] | a ⊕ I },

where I ≤ R is an ideal containing r. Similarly, we define a map Θ−1 from the
ideals of R/〈 r ⊗ to the ideals of R containing r as follows –

Θ−1(J) = { x | [x] ⊕ J },

where J ≤ R/〈 r ⊗ is an ideal. We state, without proof, some basic properties
of Θ.

Lemma 1. The maps Θ and Θ−1 have the following properties –

(i) Θ and Θ−1 preserve set inclusion.
(ii) Θ is a bijection.
(iii) Θ and Θ−1 map primes to primes.
(iv) Θ and Θ−1 distribute over finite intersections.
(v) In a Noetherian ring, Θ(

∈
I) =

√
Θ(I)

(vi) Θ−1(〈 [f1], . . . , [fn] ⊗) = 〈 f1, . . . , fn ⊗+ 〈 r ⊗

3.2 Localization Map

Let r be a nonzero-divisor of a Noetherian ring R. Let U denote the set of all
powers of r, U = { ri | i ∗ 0 }. Since r is not nilpotent, U does not contain zero.
U is also multiplicatively closed. Therefore R[U−1] is well defined.

A Divide and Conquer Method to Compute Binomial Ideals 651

Let φ : R≥ R[U−1] be the natural homomorphism given by φ(a) = a/1, ⊆a ⊕
R. We define a map, Φ, induced by φ, from the ideals in R saturated w.r.t. r to
the ideals of R[U−1] as follows –

Φ(I) = 〈 { a/1 | a ⊕ I } ⊗,
where I ≤ R is an ideal saturated w.r.t. r. Similarly, we will define a map, Φ−1,
from the ideals in R[U−1] to the ideals in R which are saturated with respect to
r as follows –

Φ−1(J) = { a | a/rk ⊕ J, k ∗ 0 }.
We present some straight forward properties of Φ and Φ−1 without proof.

Lemma 2. The maps Φ and Φ−1 have the following properties –

(i) Φ and Φ−1 preserve set inclusion.
(ii) Φ is a bijection.
(iii) Φ and Φ−1 map primes to primes.
(iv) Φ and Φ−1 distribute over finite intersections.
(v) For x ⊕ R,Φ(I : x∗) = Φ(I) : x∗.
(vi) In a Noetherian ring Φ(

∈
I) =

√
Φ(I)

(vii) Φ−1(〈 f1/ra1 , . . . , fn/r
an ⊗) = 〈 f1, . . . , fn ⊗ : r∗.

4 A Divide-and-Conquer Method

In this section, we focus on the main objective of this paper. We present a general
algorithm (Algorithm 1) based on divide-and-conquer technique which is useful
in computing several binomial ideals associated with a given binomial ideal. The
algorithm takes as input the following 3 objects (i) A ring (k,X,L), (ii) A set of
binomials, S, generating an ideal I, and (iii) A set of variables V ≤ X \L called
forbidden set. The objective of the algorithm is to compute A(〈 S ⊗), where A is
some object associated with the binomial ideal I. In Section 5 we demonstrate
how Algorithm 1 computes (i) Radical of I, (ii) Saturation of I w.r.t. all the
variables in the ring, (iii) Generating basis of a toric ideal from I, (iv) Minimal
Primes of I, and (v) Cellular decomposition of I.

We restate, from the introduction, the two crucial observations behind this
algorithm –

1. Most computations involving binomial ideals compute Gröbner basis of cer-
tain ideals, and

2. Buchberger’s algorithm [2] to compute Gröbner basis is very sensitive to the
number of variables in the underlying polynomial ring.

The motivation behind the algorithm is to divide the problem suitably into
smaller subproblems, solve these subproblems in rings with less variables than
the original ring, and combine these results to solve the original problem.

Let x ⊕ (X \ L) \ V , and consider the maps (i) Θ : (k,X,L) ≥ (k,X \
{x}, L), (ii) Φ : (k,X,L) ≥ (k,X,L ↑ {x}), and (iii) f : (k,X,L) ≥ (k,X,L)

652 D. Kesh and S.K. Mehta

Algorithm 1. A framework for computing binomials ideals – A

Data: A ring (k,X,L), where k is algebraically closed, and char(k) = 0;
forbidden set V ⊕ X \ L; a binomial generating set S of an ideal in the
ring.

Result: A(← S ◦)
1 if X = φ then // The ring is a field

2 Nothing to do ;

3 else if X = L then // Laurent polynomial ring

4 Compute A(← S ◦) and return ;
5 else if V = X \ L then // No more reductions

6 Compute A(← S ◦) and return ;
7 end
8 Let x ⊇ (X \ L) \ V ;

/* computing A(Θ(← S ◦+ ← x ◦)) and lift */

9 Call A with ideal Θ(← S ◦+ ← x ◦), ring (k,X \ {x}, L) and forbidden set V ;
10 Compute Θ−1(A(Θ(← S ◦+ ← x ◦))) ;

/* computing A(Φ(← S ◦ : x∞)) and lift */

11 Call A with ideal Φ(← S ◦ : x∞), ring (k,X,L ⊆ {x}) and forbidden set V ;
12 Compute Φ−1(A(Φ(← S ◦ : x∞)))) ;

/* computing A(f(← S ◦ : x∞)) */

13 Call A with ideal f(← S ◦), ring (k,X,L) and forbidden set V ⊆ {x} ;
/* Computing A(← S ◦) */

14 Combine Θ−1(A(Θ(← S ◦+ ← x ◦))), Φ−1(A(Φ(← S ◦ : x∞)))) and A(f(← S ◦)) to
get A(← S ◦) ;
/* Return */

15 return A(← S ◦) ;

which depends on the problem A(). The reduction step involves solution of the
subproblems (i) A(Θ(I + 〈 x ⊗)), in ring (k,X \ {x}, L) and forbidden set V (step
9), (ii) A(Φ(I : x∗)), in ring (k,X,L ↑ {x}) and forbidden set V (step 11),
(iii) A(f(I)) in ring (k,X,L) and forbidden set V ↑ {x}(step 13). The first
subproblem is in a ring with one less variable compared to the original ring. In
the case of the second subproblem, Gröbner bases are not defined in the context
of partial Laurent polynomial rings (k,X,L). But pseudo-Gröbner bases [13],
briefly discussed later in this section, can effectively substitute Gröbner bases for
binomial ideal computations. The time complexity of the algorithm to compute
pseudo Gröbner basis was shown in that paper to be dependent on the number
of variables in X \ L. Hence, this subproblem is also justifiably “smaller”.

The role of the forbidden set of variables is that reduction must not be done
with respect to these variables. Thus, if V = X \ L, then the computation
A(I) must be easy to perform without further reduction. In addition, the third
subproblem should be such that it does not require the computation of a Gröbner
basis since in this case the ring is same as in the original problem and involves
no reduction in ring size. Here is a motivating example to justify the use of
forbidden set. Suppose we want to compute the saturation, I : (x1 · · ·xn)∗,
while I is already saturated w.r.t. x1, x2. Then reduction with these variables is
futile. Hence we can put these variables in the forbidden set.

A Divide and Conquer Method to Compute Binomial Ideals 653

Next, the algorithm computes the inverse images of A(Θ(I + 〈 x ⊗)) (step 10)
and A(Φ(I : x∗)) (step 12) in the original ring (k,X,L). In the applications
discussed in the next section, A(I) is either an ideal (as in the case of radical of
I) or a set of ideals (as in the case of minimal primes of I). Hence these images
are well defined. Abusing notation, we denote these inverse images respectively
by Θ−1(A(Θ(I + 〈 x ⊗)) and Φ−1(A(Φ(I : x∗)).

Finally in step 14, A(I) is to be constructed from these images and A(f(I)).
One can easily observe that the algorithm terminates, as in each step either
cardinality of X decreases, or that of L or V increases. This algorithm is a
general method and can be tuned to a particular problem by specifying the
following three steps in the context of that problem –

(steps 4, 6) V = X \L: Give the method to compute A(I) in these base cases.

(step 13) : Specify function f .

(step 14) : Show how to combine the results of the subproblems.

In the next few subsections we show how to compute Θ, Φ, and their inverses
using a generating set of the input ideal.

4.1 Computing Modulo

Let L = {y1, . . . , yk} and X = {x1, . . . , xl} ↑ {z} ↑ L. Maps θ and Θ from
(k,X,L)≥ (k,X \ {z}, L) are computed as follows. Consider an arbitrary poly-
nomial in (k,X,L), f =

∑
i x

ΣiyΛi +
∑

j x
ΣjyΛj zcj . Then, θ(f) =

∑
i x

ΣiyΛi .
Further, suppose S ⊃ (k,X,L) is a set of binomials. Then, Θ(〈 S ⊗) = 〈 θ(f) |
f ⊕ S ⊗. Conversely, if S⊆ ⊃ (k,X \{z}, L), then Θ−1(〈 S⊆ ⊗) = 〈 S⊆↑{z} ⊗, from
Lemma 1.

4.2 Computing Localization

Consider the ring (k,X,L) as defined in the previous subsection. If g ⊕ (k,X,L),
then φ(g) = g/1.

Computing Φ and Φ−1 is also easy. For any S ⊃ (k,X,L), Φ(〈 S ⊗) =
〈 { g/1 | g ⊕ S } ⊗. In the reverse direction, for any S⊆ ⊃ (k,X,L ↑ {z}), we
define Φ−1(〈 S⊆ ⊗) as follows. Let S⊆ = {g1/za1, . . . , gk/z

ak}. Then Φ−1(〈 S⊆ ⊗) =
〈 g1, . . . , gk ⊗ : z∗. The correctness follows from Lemma 2.

To see how we can compute saturation with respect to z in a partial Laurent
polynomial ring, we briefly revisit the results on pseudo-Gröbner basis in [13].

4.3 Pseudo-Gröbner Basis

Gröbner bases are defined for ideals in rings k[x1, . . . , xn] ([4, Chapter 2]). This
notion has been generalized for binomial ideals in partial Laurent polynomial
rings, called pseudo-Gröbner bases in [13, Section 5]. Here we reproduce some
relevant results.

654 D. Kesh and S.K. Mehta

Definition 1. A binomial axΣ + bxΛ ⊕ (k,X,L) is said to be balanced if xi ⊕
X \ L implies αi = βi.

Definition 2. For every finite binomial set G, G1 and G2 will denote its parti-
tion, where the former will represent the set of non-balanced binomials and the
latter will represent the set of balanced binomials of G.

Definition 3. A binomial basis G = (G1, G2) of a binomial ideal I will be called
a pseudo Gröbner basis with respect to a given term-order, if G1 reduces every
binomial of I to 0(mod(G2)).

Theorem 1. [13, Theorem 3] Every binomial ideal in (k,X,L) has a pseudo-
Gröbner basis with respect to any term-order.

The Buchberger’s algorithm to compute Gröbner basis has been adopted to com-
pute pseudo-Gröbner basis in [13, Algorithm 4]. Finally, the following theorem
shows that saturation can be computed in similar way as in k[x1, . . . , xn].

Theorem 2. [13, Theorem 3] Let (G1, G2) be a pseudo Gröbner basis of a homo-
geneous binomial ideal in (k,X,L) with respect to a graded reverse lexicographic
term order with the variable xi /⊕ L being the least. Then (G⊆1 = G1 ÷ x∗i , G⊆2 =
G2 ÷ x∗i) is a pseudo Gröbner basis of I : x∗i .

Here S ÷ x∗ is the result of the division of each polynomial in S by the largest
possible power of x.

5 Computing A(I)

As mentioned in the previous section, we will describe the steps 4, 6, 13 and
14 of the algorithm in context of five problems – (i) radical of a binomial ideal,
(ii) the saturation of a binomial ideal with respect to all variables in the ring,
(iii) computing toric ideal, (iv) the minimal prime ideals of a binomial ideal, and
(v) cellular decomposition of a binomial ideal.

5.1 Radical Ideal: A = Radical

Theorem 3. Let R be a Noetherian ring, r ⊕ R a non-zero-divisor, and I ≤ R
be an ideal. Then,

√
I + 〈 r ⊗ ⊇ ∈I : r∗ =

∈
I, for some r ⊕ R.

Proof. We know that every radical ideal in a Noetherian ring has a prime decom-
position. Let the prime decomposition of

∈
I be

∈
I = P1 ⊇P2 ⊇ . . .⊇Pn. Let the

collection of the primes in the decomposition be denoted by P . Define two ideals
Pr = (⊇r◦P◦PP) , and Pr = (⊇r/◦P◦PP). It is easy to see that I + 〈 r ⊗ ≤ Pr.
Hence,

√
I + 〈 r ⊗ ≤ Pr. Next, we want to show that

∈
I : r∗ ≤ Pr.

Let f ⊕ I : r∗. Then, rnf ⊕ I for some n ∗ 0. This implies that for all
P ⊕ P , rnf ⊕ P . In particular, if r /⊕ P , then f ⊕ P . We deduce that I : r∗ ≤
Pr, and hence

∈
I : r∗ ≤ Pr. Putting the two observation together we have√

I + 〈 r ⊗ ⊇ ∈I : r∗ ≤ Pr ⊇ Pr =
∈
I

The converse containment
∈
I ≤√

I + 〈 r ⊗ ⊇ ∈I : r∗ is obvious. ⊂↓

A Divide and Conquer Method to Compute Binomial Ideals 655

The following theorem will help us in the formulation of step 14.

Theorem 4. Let R be a Noetherian ring, r ⊕ R a non-zero-divisor, and I ≤ R
be an ideal. Then,

∈
I = Θ−1(

√
Θ(I + 〈 r ⊗)) ⊇ Φ−1(

√
Φ(I : r∗)).

Proof. We will continue to use the notations defined in the previous theorem.
From the proof of Theorem 3, we have I + 〈r⊗ ≤ Pr. From the containment
preserving property and the commutation with intersection property of Θ, we
have Θ(I + 〈r⊗) ≤ Θ(⊇r◦P◦PP) = ⊇r◦P◦PΘ(P). Similarly

√
Θ(I + 〈r⊗) ≤√⊇r◦P◦PΘ(P) = ⊇r◦P◦P

√
Θ(P). The last equality is due to the fact that

intersection of radicals is equal to the radical of intersections.
As the P s are primes, from Lemma 1 we know that the Θ(P)s are primes and

since prime ideals are radical, we have
√
Θ(I + 〈r⊗) ≤ (⊇r◦P◦PΘ(P)). Hence

Θ−1(
√
Θ(I + 〈r⊗)) ≤ Pr.

Similarly, starting from the following relation given in the proof of theorem
3 I : r∗ ≤ Pr we can deduce that Φ−1(

√
Φ(I : r∗)) ≤ Pr. Combining the two

results gives Θ−1(
√
Θ(I + 〈r⊗)) ⊇ Φ−1(

√
Φ(I : r∗)) ≤ ∈I.

To prove the converse, from Lemmas 1 and 2 we have∈
I ≤ Θ−1(

√
Θ(I + 〈 r ⊗ ⊇ Φ−1(

√
Φ(I : r∗). ⊂↓

We will not use the A(f(I)) branch of the reduction for this problem. Thus,
Theorem 3 shows that the combine step (step 14) is intersection. Also, we will
have V = ∅. The base case computation in step 4 of the algorithm is trivial
because all binomial ideals in a Laurent polynomial ring are already radical as
shown below.

Theorem 5 (Corollary 2.2, [6]). Let J be a binomial ideal in the ring (k,X, φ).
Then, if k is algebraically closed and char(k) = 0, then J : (Πx◦Xx)∗ is radical.

Corollary 1. Let k be an algebraically closed field, with char(k) = 0. Then, all
binomial ideals in (k,X,X) are radical.

Proof. Let J be a binomial ideal in the ring (k,X,X), where X = {x1, . . . , xn}.
Consider the ideal localization map, Φn, from (k,X,X \ {xn}) to (k,X,X).
Under this map, we know that Φ−1n (J) is saturated w.r.t xn. Similarly, if we
consider the map Φn−1 from (k,X,X \ {xn−1, xn}) to (k,X,X \ {xn}), then the
ideal Φ−1n−1(Φ−1n (J)) is saturated w.r.t. xn−1. So we have Φ−1n (J) = Φ−1n (J) : x∗n .

Hence, Φ−1n−1(Φ−1n (J)) = Φ−1n−1(Φ−1n (J) : x∗n) = Φ−1n−1(Φ−1n (J)) : x∗n (Lemma

2) Thus, Φ−1n−1(Φ−1n (J)) is saturated w.r.t. {xn−1, xn}. Continuing this argu-

ment we see that Φ−11 (· · · (Φ−1n (J)) · · ·), in the ring (k,X, φ), is saturated w.r.t.
{x1, . . . , xn}. From the previous theorem Φ−11 (· · · (Φ−1n (J))) is radical. Now, by
repeated application of Lemma 2 we deduce that J is radical too. ⊂↓
Analysis: The proposed algorithm uses two out of the three branches of the
Divide-and-Conquer strategy (Algorithm 1), so if n is the number of variables in
the input ideal, this algorithm requires 2n Gröbner basis computations. Compare
this with n! computations in [6, Algorithm 9.1].

656 D. Kesh and S.K. Mehta

5.2 Saturation : A = Saturation

Suppose I is saturated with respect to {xi1 , . . . , xij} then we begin the com-
putation with V = {xi1 , . . . , xij}. For this problem, we only use the A(I : x∗)
branch of the reduction. The base case for this algorithm occurs when X \L = V
(step 6). As Φ preserves saturation (Lemma 2), the ideal is already saturated in
this case. Since the algorithm uses only one branch of the reduction, step 14 is
redundant.
Analysis: In this proposed algorithm, the number of variables in the image space
is 1 in the first iteration, 2 in the second iteration, and so on. Symbolically, if
G(k) denotes the time complexity of Buchberger’s algorithm in a k variable ideal,
then the cost of the proposed algorithm is

∑n
k=1 G(k), where n is the number of

variables in input ideal. On the other hand, the cost of the Sturmfels’ algorithm
[14, Lemma 12.1] is nG(n).

5.3 Toric Ideals: A = Toric

Pure difference prime binomial ideals are called toric ideals. So, they are a special
class of general binomial ideals and, as pointed out in Section 1, perhaps the
most useful of all binomial ideals from an application perspective. The goal in
this case is also to saturate a given binomial ideal, but we are guaranteed that
the saturated ideal will be a toric ideal. The solution of Section 5.2 applies to
toric ideals as well and our proposed algorithm do not exploit the fact that the
solution is known to be a toric ideal. But there are algorithms that do, namely
the project and lift algorithm due to Hemmecke and Malkin [10], and it is much
faster than the Sturmfels’ Algorithm alluded to in the previous section.
Analysis: Using the notation G(k) introduced in the previous section, the cost
of project and lift algorithm is

∑n
i=k G(i) + kG(k), where k is dependant on the

input. n, as in the previous cases, denote the number of variables in the input
ideal. We note that the cost of the proposed algorithm is

∑n
i=1 G(i). Thus, the

proposed algorithm matches project and lift in the worst case, and does better
in all other cases.

5.4 Prime Decomposition: A = Prime

In this case, as in the computation of a radical, the A(f(I)) branch will not be
used. We will first handle the base case, i.e. how to compute the minimal primes
of a binomial ideal in a Laurent polynomial ring (step 4). To do this, we will
mention (without proof) a set of results from [6].

Definition 4. A partial character on Z
n is a homomorphism ρ from a sublattice

Lδ of Zn to the multiplicative group k∼(= k\{0}). A partial character will always
refer to the tuple (ρ, Lδ).

For a binomial ideal I in (k,X,X), let L(I) = { α | xΣ−c ⊕ I }. It is easy to verify
that L(I) is a lattice. We define a function ρ as ρ(α) = c, where xΣ − c ⊕ I.
Thus, (ρ, L(I)) is a partial character. Conversely, given a partial character (ρ, L),
we will define a binomial ideal as I(ρ) = 〈xΣ − c|α ⊕ L, ρ(α) = c⊗.

A Divide and Conquer Method to Compute Binomial Ideals 657

Theorem 6. For any proper binomial ideal in (k,X,X), there is a unique par-
tial character ρ on Z

n such that I = I(ρ).

Definition 5. If L is a sublattice of Zn, then the saturation of L is the lattice
Sat(L) = { m ⊕ Z

n | dm ⊕ L for some d ⊕ Z }.

We can compute Sat(L) for any lattice L by a change of variables in (k,X,X).

Definition 6. If (ρ, Lδ) is a partial character, any partial character (ρ⊆, Sat(Lδ))
is called a saturation of (ρ, Lδ) if ρ⊆ coincides with ρ when restricted to Lδ.

Theorem 7. If g is the order of the group Sat(Lδ)/Lδ, then there are g distinct
saturations of ρ: ρ1, . . . , ρg. Also I(ρ) = ⊇gj=1I(ρj).

Theorem 8. The radical of a cellular ideal is of the form I(ρ) + M(E)(d) (d
is vector with all 1s), and its minimal primes are the lattice ideals with the
saturations of ρ.

So in a Laurent polynomial ring, to determine the set of minimal primes of a
binomial ideal I = I(ρ), all we need to do is to compute the saturations of ρ.
The lattice ideals corresponding to these saturations are the associated primes
of I(ρ). The minimal of these ideals constitute the prime decomposition.

Now, let us discuss how we can combine the results from the modulo and
the localization branch (step 14). From the recursive calls of the algorithm we
have computed the minimal primes of Θ(I + 〈 r ⊗) and Φ(I : r∗). Let the
set of minimal primes be denoted by PΘ and PΦ, respectively. So, we have√
Θ(I + 〈 r ⊗) = ⊇P◦PΘP,

√
Φ(I : r∗) = ⊇P◦PΦP . From Theorem 4, we have∈

I = Θ−1(
√
Θ(I + 〈 r ⊗)) ⊇ Φ−1(

√
Φ(I + 〈 r ⊗)). Thus I = (⊇P◦PΘΘ

−1(P))
⊇ (⊇P◦PΦΦ

−1(P)). We know that Θ and Φ map primes to primes (Lemmas 1
and 2). The desired set of prime ideals is { Θ−1(P) | P ⊕ PΘ } ↑ {Φ−1(P) |
P ⊕ PΦ}. We just need to remove the redundant ones.
Analysis: In this case we have only used the modulo and localization branches.
So, the cost of the algorithm is 2n Gröbner basis computations for an input
ideal containing n variables. The cost of algorithm 9.2 proposed in [6] is 2n

iterations, where in each iteration a Gröbner basis and a cellular decomposition
is computed. Our proposed solution, thus, has gotten rid of the necessity of
computing cellular decomposition in each of the 2n iterations.

5.5 Cellular Decomposition: A = Cellular

In this section we will generalize the notion of cellular ideals to partial Laurent
polynomial rings, establish that every ideal has a cellular decomposition, and
use our framework to compute such a decomposition.

Let (k,X,L) be the underlying partial Laurent polynomial ring. For a given
set of variables E ≤ (X \ L) and an integer vector d = (di)i◦(X\L)\E , the ideal

M(E)(d) is defined as 〈 { xdi

i | i ⊕ (X \ L) \ E } ⊗.

658 D. Kesh and S.K. Mehta

Definition 7. An ideal I of (k,X,L) is cellular if for some E ≤ (X \ L), we
have I = I : (

∏
i◦E xi)

∗ and I contains M(E)(d) for some vector d.

Observation 1. An ideal I is cellular iff ≡E ≤ (X \ L) and an integer vector

d = (di)i◦(X\L)\E , such that I = (I+M(E)d) : (
∏

i◦E xi)
∗. It is denoted by I

(d)
E .

Lemma 3. Φ−1 preserves cellular ideals.

Proof. Let Φ−1 be a map from (k,X,L) to (k,X,L \ {x}), where x ⊕ L, and

consider the cellular ideal I = I
(d)
E in (k,X,L). As Φ−1(I) is saturated w.r.t. x,

it corresponds to the cellular ideal Φ−1(I)
(d′)
E∈{x}, where d⊆ is the same vector as

d, except that it does not contain the component corresponding to x. ⊂↓

Lemma 4. Let s ⊕ N be such that I : rs = I : r∗ in some Noetherian ring R.
Then, I = (I + 〈 rs ⊗) ⊇ (I : rs).

Proof. Let g ⊕ (I+〈 rs ⊗)⊇(I : rs). Then g = i+hrs ⊕ I : rs for some i ⊕ I, h ⊕
R =∃ grs = irs + hr2s ⊕ I. This, coupled with the fact that I : r2s = I : rs,
we have g ⊕ I. ⊂↓

Now we state how to compute a cellular decomposition of I. The computation
will not use A(Θ(I)) branch of the reduction. f(I) is defined as I + 〈 xs ⊗,
where s ⊕ N is such that I : xs = I : x∗. By using Lemma 3, we see that
cellular decomposition of Φ(I : x∗) gives us a cellular decomposition of I : xs.
To combine the decompositions of A(I : xs) and A(f(I)), we use Lemma 4.

Ideals in the base cases (i.e., X = L↑V) are already cellular because variables
in V = X\L are nilpotents of the ideals. Hence, there is no computation required
in steps 4 and 6.
Analysis: As our algorithm uses only two branches, the cost of our algorithm
is 2n Gröbner basis computations for an input ideal containing n variables.
Algorithm 9.3 of [6] also needs to perform the same number of Gröbner basis
computations. So, in this case, we do not see an improvement in the performance
of our algorithm over existing algorithms. Advantage, if any, is the proposed gen-
eralized and unified approach which, according to the authors, is much simpler
and cleaner.

References

1. Bigatti, A.M., Scala, R., Robbiano, L.: Computing toric ideals. J. Symb. Com-
put. 27(4), 351–365 (1999)

2. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bull. 10(3), 19–29 (1976)

3. Conti, P., Traverso, C.: Buchberger algorithm and integer programming. In: Matt-
son, H.F., Mora, T., Rao, T.R.N. (eds.) Applied Algebra, Algebraic Algorithms
and Error-Correcting Codes. LNCS, vol. 539, pp. 130–139. Springer, Heidelberg
(1991)

A Divide and Conquer Method to Compute Binomial Ideals 659

4. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergrad-
uate Texts in Mathematics). Springer-Verlag New York, Inc., Secaucus (2007)

5. Eisenbud, D.: Commutative Algebra with a View toward Algebraic Geometry.
Springer, New York (1995)

6. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Mathematical Journal 84(1),
1–45 (1996)

7. Fulton, W.: Introduction to toric varieties. Annals of Mathematics Studies, vol. 131.
Princeton University Press, Princeton (1993)

8. Geiger, D., Meek, C., Sturmfels, B.: On the toric algebra of graphical models. The
Annals of Statistics 34(3), 1463–1492 (2006)

9. Gilmer, R.: Commutative semigroup rings. University of Chicago Press, Chicago
(1984)

10. Hemmecke, R., Malkin, P.N.: Computing generating sets of lattice ideals and
Markov bases of lattices. Journal of Symbolic Computation 44(10), 1463–1476
(2009)

11. Hosten, S., Sturmfels, B.: Grin: An implementation of Gröbner bases for inte-
ger programming. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920,
Springer, Heidelberg (1995)

12. Kesh, D., Mehta, S.K.: Generalized Reduction to Compute Toric Ideals. In: Dong,
Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 483–492.
Springer, Heidelberg (2009)

13. Kesh, D., Mehta, S.K.: A Saturation Algorithm for Homogeneous Binomial Ide-
als. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831,
pp. 357–371. Springer, Heidelberg (2011)

14. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series,
vol. 8. American Mathematical Society (December 1995)

15. Tayur, S.R., Thomas, R.R., Natraj, N.R.: An algebraic geometry algorithm for
scheduling in the presence of setups and correlated demands. Mathematical Pro-
gramming 69(3), 369–401 (1995),
citeseer.ist.psu.edu/tayur94algebraic.html

16. Thomas, R., Weismantel, R.: Truncated Gröbner bases for integer programming.
Applicable Algebra in Engineering, Communication and Computing 8(4), 241–256
(1997), dx.doi.org/10.1007/s002000050062

17. Thomas, R.R.: A Geometric Buchberger Algorithm for Integer Programming.
Mathematics of Operations Research 20, 864–884 (1995)

18. Urbaniak, R., Weismantel, R., Ziegler, G.M.: A variant of the Buchberger algorithm
for integer programming. SIAM J. Discret. Math. 10(1), 96–108 (1997)

citeseer.ist.psu.edu/tayur94algebraic.html

How Fast Can We Multiply Large Integers

on an Actual Computer?

Martin FürerΔ

Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802, USA
furer@cse.psu.edu

http://cse.psu.edu/~furer

Abstract. We provide two complexity measures that can be used to
measure the running time of algorithms to compute multiplications of
long integers. The random access machine with unit or logarithmic cost
is not adequate for measuring the complexity of a task like multiplication
of long integers. The Turing machine is more useful here, but fails to
take into account the multiplication instruction for short integers, which
is available on physical computing devices.

An interesting outcome is that the proposed refined complexity mea-
sures do not rank the well known multiplication algorithms the same way
as the Turing machine model.

Keywords: Integer multiplication, RAM models, FFT.

1 Introduction

The use of asymptotic time to measure the complexity of algorithms has been
enormously successful in driving the search for new algorithmic ideas and more
efficient algorithms. Nevertheless, it has some shortcomings.

One example is the complexity of the fastest known integer multiplication al-
gorithm in the original version [6] as well as the modular version [5]. We call these
algorithms F-R and DKSS-R respectively, as both operate over a ring. Obviously,
these algorithms running in time n logn 2O(log≥n) are asymptotically faster than
the previously fastest algorithm [11] with a running time of O(n log n log logn).

Nevertheless, the Wikipedia entry “Multiplication algorithm” [14] says, “How-
ever, these latter algorithms are only faster than Schönhage-Strassen for imprac-
tically large inputs.” And this judgment is not uncommon. It seems to be implied
by the following argument. For any practical large length n (from 216 + 1 to well
beyond astronomical in length), log∨n is 5, resulting in 2log

≥n = 32, whereas for
practical values of n, we have log logn ⊕ 6. (All logarithms are to the base 2 in
this paper.)

In this special case, this reasoning is particularly faulty, because the exponent
log∨ n is used as an upper bound for the number of nested recursive calls, which

� Research supported in part by NSF Grant CCF-0964655 and CCF-1320814.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 660–670, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

http://cse.psu.edu/~furer

How Fast Can We Multiply Large Integers? 661

should really be max{0, log∨n − 4}. The reason is that for small n, a different
algorithm would be used in practice. Indeed, for any practical length n, the
number of nested recursive calls and thus the exponent should be at most 1.
The practical performance of the newer algorithm would have to be determined
by an implementation, which might well be competitive, even though not by a
large factor.

Thus we have these two very different methods of evaluating a multiplication
algorithm, the theoretical asymptotic time bound and the practical implemen-
tation. The purpose of this paper is to build a bridge between the two, i.e., to
propose models of computation, that are theoretically rigorous, yet can better
predict the practical running time.

We have to stress, that we are focussing here on unbounded integer operations.
The models developed here are valid for similar tasks. This is in contrast to many
areas, like graph algorithms, where the unit cost RAM provides a perfectly good
complexity measure, because most natural algorithms involve only numbers of
length O(log n) which can be implemented to fit into a computer word.

Another example shows our concern more clearly. Schönhage and Strassen [11]
have designed two fast integer multiplication algorithms. The first one (SS-C)
is based on numerical approximations of complex roots of unity. It runs in time
O(n log2 n) for integers of length n if school multiplication is used for all recursive
calls. The second one (SS-F) is a discrete algorithm based on integers modulo
Fermat numbers. It runs in time O(n logn log logn). Yet for a long time, the
first algorithm has been routinely used for the extensive integer multiplications
needed to find large prime numbers.

The first algorithm, SS-C, is asymptotically slower and somewhat unnatural
for a discrete problem. It requires the tedious task of controlling rounding errors.
It seems justified to ask whether the greater simplicity of SS-C is a sufficient
reason to select it. After all, implementers don’t stick with the simplicity, but
add many clever ideas to speed up an implementation.

The running times cited above are bounds that hold simultaneously for the
Turing machine time, as well as for the Boolean circuit size. These computation
models and their time complexity are very natural and have facilitated many new
algorithmic ideas in a vast number of areas including fast integer multiplication.

Sometimes, Turing machines are viewed as being impractical, because they
function quite differently from physical computing machines. But when there
is strong locality of memory access and no need for random access, as is the
case for the Fast Fourier Transforms (FFTs) used in these fast integer multipli-
cation algorithms, a Turing machine actually works just fine. Indeed, the first
implementation [10] of a fast integer multiplication algorithm was on a Turing
machine (a versatile multi-tape Turing machine with alphabet size equal to 2w,
where w is the word-length of the machine).

So in this particular application, the disadvantage of the Turing machine is
not the lack of random access. What is missing in the Turing machine model are
the built-in arithmetic operations of an actual computing device, in particular

662 M. Fürer

the multiplication instruction. Thus, we are aiming at a version of a Random
Access Machine (RAM) [12,4] with multiplication.

The unit cost RAM with multiplication is not a viable model, because it can
quickly build up large numbers, and its operations are then far too powerful
compared to a real world computing device. We want a version of a RAM that
is both theoretically appealing and closely modeling the capabilities of actual
computers.

The basic model proposed here is a log-RAM. It can do arithmetic operations
of length O(log n) in constant time. While this model might be too restricted
for very short inputs n, it is very realistic for input lengths from thousands to
trillions and beyond.

A more refined model aims to be even more realistic, adjusting for the varying
costs of different operations, and accounting for the benefits of temporal and
spatial locality.

2 The Basic Model

Our log-RAM model is a random access machine [12,4] augmented with arith-
metic, Boolean, shift, input and output operations on nonnegative integers stored
in binary. Furthermore, it has conditional and unconditional jump operations.
It can do direct and indirect addressing. It has register Ri for every i ≤ N, as
well as an input and output register.

To be specific, we give now a precise definition of the instruction set of a
log-RAM. Nevertheless, the important part of a log-RAM is not the instruction
set, but the time complexity.

Definition 1. A log-RAM has the the following instructions set

– Ri = A op A⊆.
This is an assignment. Here, and in the following, the arguments A and A⊆

can be of one of 3 possible forms: nonnegative integer constant, Rj, or RRj .
The operation is one of {∨,⊗,∈,¬,+,−, ∗,÷}, where the Boolean operations
(or, and, sum modulo 2, and negation) are vector operations, and div is
integer division (A ÷ A⊆ = ≥A/A⊆⊆). The special case Ri = Rj + 0 copies
registers.
Registers and arguments are non-negative integers stored in binary. For
Boolean operations, they are interpreted as bit vectors.

– Ri = Rj cyclic shift ±A of length A⊆.
Here the A⊆ right-most bits are cyclicly shifted by A positions to the left (+A)
or to the right (−A).

– Input to Ri from A to A⊆.
This instruction has the effect of reading into Ri the A⊆ − A + 1 bits from
position A to position A⊆ of the input register.

– Output Rj of length A.
This instruction has the effect of concatenating the rightmost A bits of Rj

to the output on the right hand side.

How Fast Can We Multiply Large Integers? 663

– Jump if A = A⊆.
This instruction allows a jump conditioned on two registers being equal, but
also a jump when 0 (Ri = 0) and an unconditional jump (0 = 0).

Definition 2. We assume the machine knows the length n of the input, e.g., it
is written in register R0 before a computation starts.
All registers, except the input and output register, are only allowed to be assigned
bit strings of length O(log n) encoding nonnegative integers up to nO(1). Argu-
ments denoting positions and lengths in the input, output, and shift instructions
are only allowed to have values O(log n).
The time for any (O(logn) long) operation is O(1) including for multiplication
and division. We therefore might refer to the machine model as a unit cost
log-RAM.

As the log-RAM realistically mimics physical computing machines, it allows for a
speed-up of Θ(log n) for additions and shifts of length Θ(log n) and a speed-up of
Θ(M(log n)) for multiplications of binary integers compared to Turing machine
time, where M(n) is the multiplication time of a Turing machine.

An alternative definition, equivalent for our purposes, would be to allow arbi-
trary long registers and arguments, but to charge (↑ι/ logn⊃)2 for multiplication
and division instructions, 1 for jump instructions, and ↑ι/ logn⊃ for all other
instructions. Here, ι = max{ι⊆, 2Σ∗∗}, where ι⊆ is the maximal length of any
operand, and ι⊆⊆ the maximal length of a position or length operand.

Naturally, the equivalence only holds for somewhat efficient computations.
The alternative definition of the log-RAM would define a universal computing
device, while by our definition, a log-RAM can only define polynomial space
functions.

Proposition 1. A partial function is computable by a log-RAM if and only if
it is computable by a Turing machine in polynomial space.

Proof. Only if part: Note that the the log-RAM can only access the first nO(1)

registers, which each are allowed to hold bit strings of length O(log n). The
log-RAM has no way to address other registers. Each operation can easily be
simulated by a Turing machine.

If part: The log-RAM can simulate a polynomially space bounded Turing
machine by storing the contents of tape cell i in the register Ri+2 and storing
the head position in register R2. ⊇⊂

3 Differences to the Traditional RAM

Naturally, the definition of the log-RAM is very similar to the traditional def-
inition of a RAM [12,4] (see [1, pp. 5 ff.]). Nevertheless, there are important
differences.

The unit cost RAM provides an excellent cost measure for well behaved algo-
rithms, e.g., for many graph algorithms. It gets useless if a multiplication oper-
ation is allowed, as one could quickly produce integers of huge lengths, resulting

664 M. Fürer

(for some simple instruction sets) in the power of unbounded parallel machines,
which can handle PSPACE in polynomial time [7]. Even without multiplication,
length T (n) integers can be produced in time T (n), resulting in unrealistically
cheap additions.

These drastic problems are avoided by the traditional RAM with logarithmic
cost, which is a cost proportional to the length of a binary integer. Nevertheless,
this type of RAM is still not suitable to provide a practical cost measure for
a task like the multiplication of long integers. Obviously an instruction multi-
plying in one step with a cost of O(n) would make the task trivial. Without a
multiplication instruction, the logarithmic cost RAM still has the random ac-
cess advantage over Turing machines (which we don’t need here). But it does
not have the practical advantage of real computers, that can do operations like
additions of reasonable numbers almost as fast as a bit operation.

Our new log-RAM provides a complexity measure that is much closer to the
computation time of a real computer. It allows a theoretical investigation that
can better predict the practicality of an algorithm in a domain like large integer
multiplication.

One could even define a log-RAM with a more explicit cost function. If all
registers have lengths bounded by k logn, then the cost of a multiplication could
be defined as k2 and the cost of any other operation could be defined as k. This
time measure would avoid any large hidden constant factors.

4 Performance of the log-RAM on Multiplication
Algorithms

First let us review the most important multiplication algorithms.

4.1 The Traditional Multiplication Algorithms

The first multiplication algorithm with a non-trivial asymptotic running time
is due to Karatsuba [8]. It multiplies a12n/2 + a0 with b12n/2 + b0 recursively
by computing the 3 products a1b1, a0b0, and (a1 + a0)(b1 + b0), to obtain the
product with a few additions and subtractions. The running time is O(nlog 3).

It is straightforward to see that working with numbers of length O(log n)
allows us to use the full computational power of the log-RAM. Thus, the time for
school multiplication is O(n2/ log2 n), while the time for Karatsuba’s algorithm
is O(nlog 3/ log2 n). Karatsuba’s algorithm can be viewed as multiplying 2 linear
polynomials by evaluating them at 0, 1, and ↓, followed by multiplying the
values and interpolating. Toom’s algorithm [13] (analyzed and implemented on
the Turing machine by Cook [3]) instead uses higher degree polynomials. Degree
2 (with 5 coefficients in the product polynomial) is often used for moderately
large numbers. Clearly, on a log-RAM, we get the same factor Θ(log2 n) speed-
up.

The first Schönhage-Strassen integer multiplication algorithm, SS-C [11] par-
titions the factors into pieces of length Θ(log n), to be used as coefficients of two

How Fast Can We Multiply Large Integers? 665

polynomials over the complex numbers C. The polynomials are evaluated at all
powers of a primitive root of unity by a Fast Fourier Transform (FFT). After
the multiplications of corresponding values, interpolation is done by an inverse
FFT. O(log n) accuracy of these numerical computations is sufficient to recover
the precise result by rounding. The running time is O(n log2 n) on the Turing
machine.

The second Schönhage-Strassen integer multiplication algorithm, SS-F [11]
partitions the factors into pieces of length Θ(

∅
n), to be used as coefficients of

two polynomials over the ring of integers modulo 2
◦
n + 1, where

∅
n is rounded

to a power of 2. The polynomials are evaluated at all powers of a principal root
of unity in this ring by an FFT. The multiplications of values is done recursively.
It is followed by interpolation with an inverse FFT. This faster method requires
a depth O(log logn) of nested recursions, and runs in time O(n log n log logn)
on the Turing machine.

It is important to notice that the slower SS-C algorithm does small multi-
plications on every level of the FFT. Thus it can really profit from a built-in
multiplication instruction for short integers. The faster SS-F algorithm does rel-
atively simple shift operations at all levels of the FFT. This makes it fast for
Turing machines. On the other hand, it cannot benefit from a built-in integer
multiplication for small integers, except at the bottom of the recursion.

Theorem 1. (a) The running time of the first Schönhage-Strassen integer mul-
tiplication algorithm, SS-C, is O(n) on the log-RAM.
(b) The running time of the second Schönhage-Strassen integer multiplication
algorithm, SS-F, is O(n log logn) on the log-RAM.

Proof. (a) The analysis of the Turing machine algorithm accounts for O(n log n)
simple bit operations to do shifts, copies and additions for the FFT and its in-
verse. Furthermore, it accounts for O(n/ logn) multiplications of length O(log n)
at each of the O(log n) levels of the FFT. As all coefficients have lengths Δ(log n),
all simple operations, including input and output, allow for a speed-up by a fac-
tor of Θ(log n) on the log-RAM compared to the Turing machine. Furthermore,
all the O(n) small integer multiplications are done in constant time each on the
log-RAM, resulting in an overall linear time.

(b) When coefficients reach a length of O(log n), recursion is no longer re-
quired. Then multiplications can be done directly on the log-RAM. This reduces
the recursion depth of the FFT from log log n to log logn − log log logn, rep-
resenting no asymptotic speed-up. The Turing machine algorithm spends time
O(n log n) at each recursion level. With the shortcut just described, all numbers
involved have lengths Δ(log n), resulting in a speed-up by a factor of Θ(log n)
on the log-RAM for the additions and shifts. Therefore, the time for all ad-
ditions and shifts is O(n log logn). There are O(n2log logn−log log logn/ logn) =
O(n/ log logn) short multiplications. Thus the total cost of O(n log logn) is
determined by the additions and shifts. ⊇⊂

666 M. Fürer

4.2 The Newest Multiplication Algorithms

The asymptotically fastest multiplication algorithm F-R [6] does the FFT over a
ring of polynomials R = C[x]/(xP + 1) with both, the value of P and the length
of the coefficients being of order logn. Of the O(log n) levels of the FFT, only
every log logn-th level requires expensive multiplications in the ring R, while
the multiplications at the other levels are done by a version of cyclic shifts.

Multiplication in the ring R itself is done by an FFT with O(log logn) lev-
els of cheap multiplications by cyclic shifts. For the asymptotic analysis of the
Turing machine algorithm, the multiplication of values is done recursively. This
introduces the factor of 2O(log≥n) for the log∨n depth of recursive calls with ge-
ometrically increasing cost from one recursion depth to the next. A practical
implementation would not do such recursive calls, but instead use the built-in
multiplication instruction of the actual machine. Similarly, the log-RAM does
each such multiplication with 1 machine operation (or O(1) operations with a
small hidden factor).

Theorem 2. The running time of the F-R integer multiplication algorithm is
O(n) on the log-RAM.

Proof. A multiplication in the ring R requires O(log logn) levels of O(log n)
easy operations of length O(log n) and direct multiplication of O(log n) val-
ues of length O(log n) each. The resulting cost for one multiplication in R is
O(log n log logn) for the easy operations and O(log n) for the direct multiplica-
tions. Thus the total time is O(log n log logn).

The FFT and its inverse have O(log n) levels involving shifts and additions of
integers of length Δ(logn) and a total length of O(n) on each level. This requires
time O(n) on the log-RAM.

Furthermore, there are also O(log n/ log logn) levels, with each requiring
O(n/ log2 n) multiplications in R at a cost of O(log n log logn) each. Thus this
part also requires time O(n). ⊇⊂
The discrete variant DKSS-R [5] of the F-R algorithm operating over a ring
approximating p-adic numbers has the same time analysis for the log-RAM as
the original F-R algorithm.

4.3 Comparisons of the log-RAM Algorithms

In summary, the algorithms SS-C, SS-F, F-R, and DKSS-R still have very simi-
lar running times in the log-RAM model. It is interesting to see that the rank-
ing changes. The previously slowest (SS-C) and the most advanced (F-R and
DKSS-R) now have the same linear running time. The elegant SS-F algorithm,
that achieves multiplication mainly by shifts is now less competitive, because it
does not make much use of the power of the built-in multiplication instruction
available on the log-RAM and in practical computers.

Still it is hard to judge these algorithms just based on the log-RAM
complexity. The algorithms SS-C and F-R have the significant drawback of using
non-discrete numerical computations requiring sufficient precision and rounding.

How Fast Can We Multiply Large Integers? 667

5 Related Tasks on the log-RAM and the Storage
Modification Machine

Division and Elementary Functions. The results about multiplication have
immediate corollaries about division and other tasks based on multiplication.
Division and n-bit approximations of algebraic numbers can be computed with
the help of these algorithms with the same asymptotic running time, while n-bit
approximate evaluations of elementary functions or constants like e and Γ can
be computed with only an additional factor of logn time [2].

Storage ModificationMachine. It is worth noticing that there is another the-
oretically interesting modification of the random access machine (RAM), namely
the storage modification machine. Here the modification goes in the opposite di-
rection. Instead of allowing the more powerful multiplication instruction, even
the weaker addition instruction is not allowed. Instead, there is just a succes-
sor and a predecessor instruction. As numbers never get too long, the unit cost
measure makes sense here.

Schönhage [9] has obtained a very powerful result about multiplication on
a storage modification machine. It can be done in linear time. Naturally, this
is a far more difficult result than our linear time results on the log-RAM. On
the other hand, his algorithm is very sophisticated with sorting and table look-
up for the mass production of short products. This is seemingly an impractical
algorithm. In the linear time log-RAM algorithms, on the other hand, we can use
natural practical procedures and take advantage of easily available hardware.

Addition versus Multiplication. An added bonus of the log-RAM model is
also the distinction between the easy task of addition and the complicated task
of multiplication. On the storage modification machine both tasks take linear
time, just with a huge difference of the constant factors involved. The log-RAM
model makes the distinction clear. Using the built-in addition instruction, long
additions of length n take time O(n/ logn), which is significantly better than
the O(n) time for multiplication.

Open Problem. For the Turing machine model, there is no super-linear lower
bound known for integer multiplication. For the log-RAM model the input only
provides a trivial Δ(n/ logn) lower bound. Naturally, we conjecture an Δ(n)
lower bound for the log-RAM.

This conjectured Δ(n) lower bound for multiplication on the log-RAM might
be independent of the well known Δ(n logn) lower bound conjectured for multi-
plication on the Turing machine. The log-RAM can only benefit strongly from a
Turing machine computation if it operates on Θ(logn) long chunks of data, while
the Turing machine can simulate a log-RAM efficiently only if the log-RAM does
not jump around much.

668 M. Fürer

6 The Refined Model log-RAM with Depth-Cost

The proposed log-RAM model realistically models the advantage provided by
the availability of instructions (including multiplication) operating on words in
real machines. Still, it does not account for the higher cost of a multiplication
instruction over a simple Boolean vector operation on a word. More impor-
tantly, the log-RAM model does not model the speed-up provided by local access
patterns on real machines.

For this purpose, we propose the log-RAM with Depth-Cost as a refined model.
We basically keep the instruction set of the log-RAM, but define a different cost
measure. The cost is modified only slightly, as the log-RAM already quite well
approximates the cost on an actual machine.

Definition 3. A log-RAM with Depth-Cost has all the instructions of the (unit-
cost) log-RAM plus an additional vector copying instruction. The vector copying
instruction puts a copy of the vector of the memory cells from RA to RA+A∗∗−1
into the memory cells from RA∗ to RA∗+A∗∗−1. The cost of this operation is
max{logA, logA⊆, A⊆⊆}. For the other operations, there is a cost associated with
accessing a register and cost associated with the operation itself.
(a) The cost of an operation is the order of the parallel time to do this operation
efficiently on operands of length O(log n) by a bounded fan-in Boolean circuit.
In particular, the cost of Boolean operations is O(1), while the cost of arithmetic
operations and shifts is O(log logn).
(b) The cost of accessing register Ri is O(max{1, log i}).

The cost of accessing Ri reflects the idea that registers with low index i are
in a faster cache and therefore less costly to access. The cost of the vector
copying operation reflects locality of access. Access in a single memory cell is
expensive. Accessing a sequence of adjacent memory cells with the vector copying
instructions is cheaper.

Due to the locality of access for doing FFTs, the cost of memory access can
be bounded by the cost of arithmetic operations, if one uses a cache hierarchy,
with geometrically increasing chunks of data being brought in or moved out. A
higher cache level just means shorter addresses, i.e., being closer to the top of
the memory.

7 Multiplication on the log-RAM with Depth-Cost

Trivial tasks, like input, output and addition of length n numbers now take
O(n/ logn) steps costing O(log logn) each, resulting in time O(n log logn/ logn)
per task.

The simple multiplication algorithms (school, Karatsuba, Toom) gain a fac-
tor of Δ(log n/ log logn) compared to Turing machine cost, because they oper-
ate with chunks of length Θ(log n) stored in a register costing O(log logn) per
operation.

How Fast Can We Multiply Large Integers? 669

Accessing far away registers is efficient for these and all the other multiplica-
tion algorithms studied here. They would just be brought to the front in vectors
of O(log n) length at a cost of O(1) per register.

Theorem 3. The first Schönhage-Strassen SS-C algorithm has a running time
of O(n log logn) on the log-RAM with Depth-Cost.

Proof. All operations now cost O(log logn) instead of O(1) in the unit cost log-
RAM model. ⊇⊂
Theorem 4. The second Schönhage-Strassen SS-F algorithm has a running
time of O(n(log logn)2) on the log-RAM with Depth-Cost.

Proof. A direct implementation (still with bringing vectors of length O(log n)
to the front at once) costs an additional factor of O(log logn) compared to the
unit cost log-RAM model because of the cyclic shifts and additions. ⊇⊂
The cost of O(log logn) for an addition could be reduced to O(1) by storing
numbers in a redundant form. Every number would be represented as the sum
of 2 registers. An actual sum would require the replacement of 4 summands by
2, which can be accomplished by O(1) Boolean and shift operations, as there are
no long carries to handle. But these cost savings are useless, because the shift
operations still cost O(log logn) each.

Theorem 5. The F-R algorithm has a running time of O(n log log n) on the
log-RAM with Depth-Cost.

Proof. In the F-R algorithm, most levels of the FFT do cheap operations with
cyclic shifts of coefficients within the ring R. The coefficients themselves are not
subjected to shifts, they are just cyclicly interchanged. These shifts can be done
by O(1) vector copy operations at a cost of O(log n) per operation involving a
vector of length O(log n). The coefficients are subject to the addition operation.
But this time, as there are no cyclic shifts of the summands, redundant additions
are sufficient at a cost of O(1) per operation.

Only every O(log logn)-th level, expensive operations (arbitrary multiplica-
tions in R) have to be done. In each of the O(log n/ log logn) expensive levels,
O(n/ log2 n) multiplications inR have to be done at a cost of O(log n(log logn)2)
each. This results in a total cost of O(n log logn). ⊇⊂

8 Conclusions

We have investigated the cost of integer multiplication and noticed that nei-
ther the Turing machine nor the standard random access machine (RAM) mod-
els provide good complexity measures. The Turing machine, as well as the
RAM without multiplication instruction cannot model the advantage of physical
machines with a multiplication instruction on words.

If the unit cost RAM had a multiplication instruction, then it would not be
a good computation model, because it has the power of parallel machines by

670 M. Fürer

creating huge numbers. The logarithmic cost RAM could have a multiplication
instruction. But it would show too low a cost for long integers and too high a
cost for short integers. It would not be a reasonable model for measuring the
complexity of long integer multiplication.

We have proposed two RAM variants as better complexity measures for long
multiplication and similar tasks. The measures reflect the fact that addition is
faster than multiplication by known algorithms. They provide interesting prac-
tical complexity results for the various known algorithms. It may be surprising
that the order of the standard multiplication algorithms by their time complex-
ity in the new measures is different from the corresponding order in the Turing
machine measure. The often used SS-C algorithm, based on numerical approx-
imation in C, is actually faster in the new measures than the discrete SS-F
algorithm, which is faster in the Turing machine model.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Brent, R.P.: Fast multiple-precision evaluation of elementary functions. J. Assoc.
Comput. Mach. 23, 242–251 (1976)

3. Cook, S.A.: On the minimum computation time of functions. PhD thesis, Harvard
University (1966)

4. Cook, S.A., Reckhow, R.A.: Time bounded random access machines. Journal of
Computer and System Sciences 7(4), 354–375 (1973)

5. De, A., Kurur, P., Saha, C., Saptharishi, R.: Fast integer multiplication using mod-
ular arithmetic. In: STOC 2008: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pp. 499–506. ACM, New York (2008)

6. Fürer, M.: Faster integer multiplication. SIAM Journal on Computing 39(3), 979–
1005 (2009)

7. Hartmanis, J., Simon, J.: On the power of multiplication in random access ma-
chines. IEEE Annual Symposium on Foundations of Computer Science, 13–23
(1974)

8. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Dok-
lady Akademii Nauk SSSR 145(2), 293–294 (1962) (in Russian), English translation
in Soviet Physics-Doklady 7, 595–596 (1963)

9. Schönhage, A.: Storage modification machines. SIAM J. Comput. 9(3), 490–508
(1980)

10. Schönhage, A., Grotefeld, A.F.W., Vetter, E.: Fast algorithms: A Turing machine
implementation. B.I. Wissenschaftsverlag, Mannheim-Leipzig-Wien-Zürich (1994)

11. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7,
281–292 (1971)

12. Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. Journal of
the ACM 10(2), 217–255 (1963)

13. Toom, A.L.: The complexity of a scheme of functional elements simulating the mul-
tiplication of integers. Dokl. Akad. Nauk SSSR 150, 496–498 (1963) (in Russian),
English translation in Soviet Mathematics 3, 714–716 (1963)

14. Wikipedia, the free encyclopedia. Multiplication algorithm (October 2013),
http://en.wikipedia.org/wiki/Multiplication_algorithm

http://en.wikipedia.org/wiki/Multiplication_algorithm

Sorting Permutations by Prefix and Suffix

Versions of Reversals and Transpositions

Carla Negri Lintzmayer and Zanoni Dias

Institute of Computing, University of Campinas (Unicamp), Brazil
{carlanl,zanoni}@ic.unicamp.br

Abstract. Reversals and transpositions are the most common kinds of
genome rearrangements, which allow us to establish the divergence be-
tween individuals along evolution. When the rearrangements affect seg-
ments from the beginning or from the end of the genome, we say they
are prefix or suffix rearrangements, respectively. This paper presents the
first approximation algorithms for the problems of Sorting by Prefix Re-
versals and Suffix Reversals, Sorting by Prefix Transpositions and Suffix
Transpositions and Sorting by Prefix Reversals, Prefix Transpositions,
Suffix Reversals and Suffix Transpositions, all of them with factor 2. We
also present the intermediary algorithms that lead us to the main results.

1 Introduction

We assume that the evolution distance between two individuals is given by the
minimum number of rearrangements needed to transform one genome into an-
other. If we represent them as permutations and assume that one is the identity,
the problem is to find the minimum number of operations that sort the other.

The problems of Sorting by Reversals and Sorting by Transpositions (the most
common rearrangements) are well studied, so that their best-known algorithms
have approximation factor 1.375 [3,8]. In addition, both are NP-hard [6,5].

When rearrangements affect segments from the beginning of the genome they
are prefix rearrangements. For Sorting by Prefix Reversals and for Sorting by
Prefix Transpositions, the best-known algorithms have approximation factor
of 2 [9,7]. The former was proved to be NP-hard [4] while the latter remains an
open problem. Sharmin et al. [11] considered a variation in which prefix reversals
and prefix transpositions were allowed and gave a 3-approximation algorithm.

In addition to rearrangements restricted to the prefix of a permutation, it is
also possible to consider their suffix version. It is reasonable to believe that it
is easier to break a genome at one point than at two or more. Besides, if this
happens, either the first or the second part could be reversed; thus, characterizing
the prefix/suffix reversals. The same analogy can be used for the prefix/suffix
transpositions since it would require breaking a genome at two points, which can
be more difficult, but it is still easier than at three points, as a transposition
would. However, notice that if a problem involves only prefix rearrangements,
there is no need to study a problem that allows only the suffix versions of the

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 671–682, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

672 C.N. Lintzmayer and Z. Dias

same rearrangements, since they are equivalent. Hence, this paper will study
problems of sorting permutations by reversals and transpositions involving both
prefix and suffix versions of them. Note that there are no records of a similar
study in the literature.

The paper is divided as follows: Section 2 presents important definitions re-
lated to our problems. Section 3 describes the algorithms developed. Section 4
shows the results. Finally, Section 5 concludes and suggests future work.

2 Definitions

Given a permutation Θ = (Θ1 Θ2 . . . Θn), the identity permutation ι = (1 2 . . . n)
and the reverse permutation Δ = (n . . . 2 1), we introduce now some concepts
important to this paper and to the Genome Rearrangements area.

A composition between two permutations Θ and Γ is the operation “·” in
which Θ ·Γ = (ΘΔ1 ΘΔ2 . . . ΘΔn). The inverse permutation of Θ is Θ−1, in which
Θ−1Σi

= i, for 1 ⊕ i ⊕ n, and it satisfies Θ · Θ−1 = ι.
We extend Θ by setting Θ0 = 0 and Θn+1 = n + 1. We can now define some

important concepts related to permutations.
A reversal Ψ(i, j), 1⊕ i < j ⊕ n, is a rearrangement that transforms Θ into

Θ·Ψ(i, j)=(Θ1 ... Θi−1 Θj Θj−1 ... Θi+1 Θi Θj+1 ... Θn). A prefix reversal Ψp(j) is

a reversal Ψ(1, j), 1<j⊕n, while a suffix reversal Ψs(i) is Ψ(i, n), 1⊕ i<n.
A transposition Π(i, j, k), 1⊕i<j<k⊕n+1, is a rearrangement that transforms

Θ into Θ · Π(i, j, k) = (Θ1 ... Θi−1 Θj Θj+1 ... Θk−1 Θi Θi+1 ... Θj−1 Θk ... Θn). A

prefix transposition Πp(j, k) is a transposition Π(1, j, k), 2 ⊕ j < k ⊕ n+1,
while a suffix transposition Πs(i, j) is a transposition Π(i, j, n+1), 1⊕ i<j⊕n.

If a problem involves some kind of reversal, a breakpoint exists between a pair
of consecutive elements Θi and Θi+1 if |Θi+1−Θi| ≤=1. For both Sorting by Prefix
Reversals (Sbpr) and Sorting by Prefix Reversals and Prefix Transpositions
(Sbprpt), 1⊕ i⊕n and Θ0 and Θ1 never form a breakpoint. For both Sorting by
Suffix Reversals (Sbsr) and Sorting by Suffix Reversals and Suffix Transpositions
(Sbsrst), 0 ⊕ i ⊕ n−1 and Θn and Θn+1 never form a breakpoint. For them,
ι is the unique permutation without breakpoints. For both Sorting by Prefix
Reversals and Suffix Reversals (Sbprsr) and Sorting by Prefix Reversals, Prefix
Transpositions, Suffix Reversals and Suffix Transpositions (Sbprptsrst), 1 ⊕
i⊕n−1 and neither Θ0 and Θ1, nor Θn and Θn+1 form breakpoints. For them, ι
and Δ are the unique permutation without breakpoints.

If a problem involves only some kind(s) of transposition(s), then a breakpoint
exists between a pair of consecutive elements Θi and Θi+1 if Θi+1−Θi ≤= 1. For
Sorting by Prefix Transpositions (Sbpt), 1⊕ i⊕n and Θ0 and Θ1 never form a
breakpoint. For Sorting by Suffix Transpositions (Sbst), 0⊕ i⊕n−1 and Θn and
Θn+1 never form a breakpoint. For Sorting by Prefix Transpositions and Suffix
Transpositions (Sbptst), 1⊕ i⊕n−1 and neither Θ0 and Θ1, nor Θn and Θn+1

form breakpoints. For them, ι is the unique permutation without breakpoints.
Given a set Σ of rearrangements allowed in a sorting problem, we denote

the number of breakpoints of a permutation by bΛ(Θ). If there is no breakpoint

Sorting Permutations by Prefix and Suffix Versions 673

between two elements, we say there is an adjacency between them. The sorting
distance of a permutation Θ, denoted by dΛ(Θ), is defined as the minimum
number of operations in Σ needed to transform Θ into ι. Since the identity has the
smallest number of breakpoints and it is (usually) the only one with this feature,
we can say that sorting Θ is equivalent to reducing its number of breakpoints.
This allows us to establish lower bounds for rearrangement distances.

For Sbr, it was proved [1] that dδ(Θ) ≥ ⊗bδ(Θ)/2∈. For Sbpr, dδp(Θ) ≥ bδp(Θ),
as demonstrated by Fischer and Ginzinger [9]. For Sbt [2], dΘ (Θ) ≥ ⊗bΘ (Θ)/3∈.
For Sbpt, Dias and Meidanis [7] showed that dΘp(Θ) ≥ ⌈

bΘp(Θ)/2
⌉
. For Sbprpt,

Sharmin et al. showed that dδpΘp(Θ) ≥ ⌈
bδpΘp(Θ)/2

⌉
.

Since the other problems were yet to be considered in the literature, we now
define their trivial lower bounds. Because of the equivalences, for Sbsr, dδs(Θ) ≥
bδs(Θ), for Sbst, dΘs(Θ) ≥ ⊗bΘs(Θ)/2∈, and for Sbsrst, dδsΘs(Θ) ≥ ⊗bδsΘs(Θ)/2∈.
Theorem 1. For an arbitrary permutation Θ, dδpδs(Θ) ≥ bδpδs(Θ), dΘpΘs(Θ) ≥⌈
bΘpΘs(Θ)/2

⌉
, and dδpΘpδsΘs(Θ) ≥ ⌈

bδpΘpδsΘs(Θ)/2
⌉
.

A strip is a subsequence Θi, . . . , Θj of Θ, with 1 ⊕ i ⊕ j ⊕ n, such that (i) either
i = 1 or Θi−1 and Θi form a breakpoint; (ii) either j = n or Θj and Θj+1 form
a breakpoint; and (iii) the other elements of the subsequence form adjacencies.
A strip of length greater or equal to two is ascending if Θk = Θk+1 − 1 for all
i ⊕ k < j. It is descending if Θk = Θk+1 + 1. Otherwise, it is a singleton.

A breakpoint graph [1] of a permutation Θ is a graphG(Θ)=(V,E) in which
V ={Θ0, Θ1, . . . , Θn+1} and E contains black edges and gray edges. A black edge e
exists if and only if (i) e=(Θi, Θi+1) and Θi and Θi+1 form a breakpoint, 0⊕ i⊕n;
(ii) e= (Θ0, Θ1) and prefix operations are involved; and (iii) e= (Θn, Θn+1) and
suffix operations are involved. A gray edge e exists if and only if e=(Θi, Θj) for
some 0⊕ i < j ⊕ n+1 with Θj = Θi±1 and j ≤= i+1. The convention is to draw
black edges as straight lines and gray edges as dashed arcs.

Let (Θi, Θj) be a gray edge. Since Θj = Θi±1, at least one black edge either
begins or ends at Θi as well as at least one black edge either begins or ends at Θj .
Hence, we can classify such edge into at least one of the four types in Fig. 1.

Fig. 1. Classification of gray edges

3 Algorithms

The following subsections describe the algorithms that we have developed, in
addition to some of the existing algorithms related to ours.

674 C.N. Lintzmayer and Z. Dias

3.1 Algorithms for Sbprsr

Fischer and Ginzinger [9] published the first 2-approximation algorithm (and
the best so far) for Sbpr, which we will call 2-PR. They used the breakpoint
graph and defined requirements for each type of gray edge. Based on that, it
is possible to establish what to do when considering not only prefix reversals,
but also suffix reversals. Lemma 1 shows what we called good edges: edges for
which is possible to remove one breakpoint with one or two reversals. 2-PR only
deals with good prefix edges, that is, items 1, 3, 5, and 7 of Lemma 1 without
the constraints over j.

Lemma 1. Let Θ be an arbitrary permutation. There is a sequence of at most
two prefix reversals or suffix reversals that removes one breakpoint if G(Θ) con-
tains at least one gray edge (Θi, Θj): (1) of type 1 with i= 1 and j ⊕ n; (2) of
type 2 with j=n and i≥1; (3) of type 3 with i=1 and j⊕n; (4) of type 3 with
j=n and i≥ 1; (5) of type 2 with i ≤= 0 and j⊕n; (6) of type 1 with j ≤=n + 1
and i≥1; (7) of type 3 with i>1 and j⊕n; (8) of type 3 with j<n and i≥1.

Proof. If (Θi, Θj) is a gray edge, then Θj = Θi±1. To create an adjacency between
Θi and Θj without creating new breakpoints one must perform, for each type of
edge: (1) one prefix reversal Ψp(j − 1); (2) one suffix reversal Ψs(i + 1); (3) one
prefix reversal Ψp(j− 1); (4) one suffix reversal Ψs(i+ 1); (5) two prefix reversals
Ψp(j) and Ψp(j − i); (6) two suffix reversals Ψs(i) and Ψs(n+ 1− (j− i)); (7) two
prefix reversals Ψp(i) and Ψp(j−1); (8) two suffix reversals Ψs(j) and Ψs(i+1). ∗≥
If a permutation Θ does not contain good prefix edges, then it is of the form
Θ = (p1 . . . 1

︸ ︷︷ ︸
�1

p2 . . . p1+1
︸ ︷︷ ︸

�2

. t . . . pbρp (Σ)−1+1
︸ ︷︷ ︸

�bρp (π)

t+1 t+2 . . . n) with t ⊕ n,

that is, Θ consists in bδp(Θ) ≥ 2 decreasing strips of size Λi ≥ 2, 1 ⊕ i ⊕ bδp(Θ) [9].
The following 2bδp(Θ) prefix reversals transforms Θ into ι: Ψp(t) ·Ψp(t−Λ1) ·Ψp(t) ·
Ψp(t− Λ2) · . . . · Ψp(t) · Ψp(t− Λbρp (Σ)).

2-PR scans Θ from left to right trying to find a good prefix edge in G(Θ) in the
order that the four appear in Lemma 1. If a good prefix edge does not exist, the
algorithm applies the sequence given above, guaranteeing that dδp(Θ) ⊕ 2bδp(Θ).
Using the lower bound, we can see that it is indeed a 2-approximation algorithm.

By searching for a good prefix edge from right to left on a permutation, we
created a new algorithm, 2-PRg. Other than that, it works exactly as 2-PR. Then
we simply modified 2-PR and 2-PRg for Sbsr and called the new algorithms 2-SR
and 2-SRg, respectively. They only deal with the gray edges presented in items 2,
4, 6, and 8 of Lemma 1 without the constraints over i, called good suffix edges.

Finally, we created two algorithms for Sbprsr, which will be called 2-PRSR

and 2-PRSRg, respectively. Both of them search for any of the eight good edges
given by Lemma 1, in that order. The only difference between them is how to
scan the permutation: 2-PRSR searches for good prefix edges from right to left
and for good suffix edges from left to right and 2-PRSRg does the opposite.

When a permutation does not contain a good edge, it is of one of the forms
shown by Lemma 2. Now, we can transform it into ι with at most bδpδs(Θ) + 2

Sorting Permutations by Prefix and Suffix Versions 675

reversals, as Lemma 3 shows. Despite this, 2-PRSR and 2-PRSRg still use 2 oper-
ations to eliminate one breakpoint sometimes, leading to either the identity or
the reverse permutation. Therefore, dδpδs(Θ)⊕2bδpδs(Θ)+1 and both algorithms
have asymptotic approximation factor of 2.

Lemma 2. If a permutation Θ does not contain a good edge, then it is
of one of the three forms: (1) Δ; or (2) Γ1 = (p1 . . . 1

︸ ︷︷ ︸
�1

p2 . . . p1 + 1
︸ ︷︷ ︸

�2

.

n . . . pb + 1
︸ ︷︷ ︸

�b+1

); or (3) Γ2 = (pb + 1 . . . n
︸ ︷︷ ︸

�1

. p1 + 1 . . . p2︸ ︷︷ ︸
�b

1 . . . p1︸ ︷︷ ︸
�b+1

) where

b = bδpδs(Θ) and Λi ≥ 2 for all 1 ⊕ i ⊕ b+ 1.

Proof. Omitted due to space restrictions. ∗≥

Lemma 3. Let Θ be one of the three permutations shown by Lemma 2. If Θ=Δ,
one reversal Ψp(n) sorts Θ. Otherwise, at most bδpδs(Θ)+2 reversals sort Θ.

Proof. Let b = bδpδs(Θ). If Θ = Γ1 and b is an odd number, then the b + 1
reversals Ψs(Λ1 + 1) · Ψp(n − Λ2) · Ψs(Λ3 + 1) · Ψp(n − Λ4) · . . . · Ψs(Λb + 1) ·
Ψp(n − Λb+1) transform Θ into ι, as we show next. Let Θk, 1⊕ k ⊕ b−1

2 , be the
permutation we obtain after applying the first 2k prefix reversals of the sequence
given above: Ψs(Λ1 +1) ·Ψp(n− Λ2) · . . . · Ψs(Λ2k−1 +1) · Ψp(n− Λ2k). We will show
by induction on k that Θk is of the form (p2k+1 . . . p2k + 1

︸ ︷︷ ︸
�2k+1

p2k+2 . . . p2k+1 + 1)
︸ ︷︷ ︸

�2k+2

. n . . . pb + 1
︸ ︷︷ ︸

�b+1

1 2 . . . p2k−2 + 1 . . . p2k−1 p2k−1 + 1 . . . p2k︸ ︷︷ ︸
�1+�2+...�2k

).

It is easy to see that it holds for k = 1. Now, assume that Θk−1 is of the form
given above. Since Θk = Θk−1 · Ψs(Λ2k−1 + 1) · Ψp(n− Λ2k), the result follows. At
the end, ι = Θ(b−1)/2 · Ψs(Λb + 1) · Ψp(n− Λb+1).

If Θ = Γ2 and b is odd, one must apply Ψp(n) to transform it into Γ1 and then
apply the b+ 1 reversals given above.

If Θ = Γ2 and b is an even number, then the b + 1 reversals Ψp(n − Λb+1) ·
Ψs(Λb + 1) · Ψp(n− Λb−1) · Ψs(Λb−2 + 1) · . . . · Ψp(n− Λ3) · Ψs(Λ2 + 1) · Ψp(n− Λ1) sort
Θ. This also can be shown by a similar induction as the one above. If Θ = Γ1

and b is even, one must apply Ψp(n) to transform it into Γ2 and then apply the
reversals given. ∗≥

3.2 Algorithms for Sbptst

Dias and Meidanis [7] presented a 2-approximation algorithm for Sbpt, here
called 2-PT, which always removes one breakpoint with one prefix transposi-
tion. They also demonstrated that there is at most one prefix transposition that
removes two breakpoints at once, which leads to a greedy 2-approximation algo-
rithm for the problem, called 2-PTg [10]: first it tries to remove two breakpoints
and if this is not possible, it removes only one, as 2-PT does. Therefore, both

676 C.N. Lintzmayer and Z. Dias

guarantee that dΘp(Θ)⊕ bΘp(Θ)−1, since the last transposition always removes
two breakpoints [7], and both are 2-approximation algorithms.

It is simple to make suffix versions of both 2-PT and 2-PTg, which we will
call 2-ST and 2-STg, respectively. 2-STg also tries to remove two breakpoints
at once. If this is not possible, then it removes only one, as 2-ST does. So, both
also guarantee that dΘs(Θ) ⊕ bΘs(Θ)− 1.

We created two algorithms for Sbptst, called 2-PTST and 2-PTSTg. The for-
mer always removes one breakpoint at a time, randomly choosing between a
prefix or a suffix transposition to do so. To remove one breakpoint with one
prefix transposition Πp(i+ 1, j), let Θi be the last element of the first strip of an
arbitrary permutation Θ. If Θi = n, then choose j = Θ−1Σ1−1+1. Otherwise, choose

j = Θ−1Σi+1. To remove one breakpoint with one suffix transposition Πs(i+1, j), let

Θj be the first element of the last strip of Θ. If Θj = 1, then choose i = Θ−1Σn+1−1.

Otherwise, choose i = Θ−1Σj−1. The basic idea is to increase the first or last strip
with either their previous or their next element.

2-PTSTg is more interesting, since it tries to remove two breakpoints using
either prefix or suffix. A prefix transposition Πp(i, j) removes two breakpoints
from Θ if j = Θ−1Σ1−1+1, i = Θ−1Σj−1 +1 and 2 ⊕ i < j ⊕ n. It is easy to see that Θ1
determines uniquely j and j determines uniquely i. A suffix transposition Πs(i, j)
removes two breakpoints from Θ if i = Θ−1Σn+1, j = Θ−1Σi−1+1 and 2 ⊕ i < j ⊕ n.
Again, Θn determines uniquely i and i determines uniquely j. If this removal
is not possible, then we have to choose how to remove only one breakpoint as
described above, which is always possible. Therefore, dΘpΘs(Θ)⊕ bΘpΘs(Θ). Also,
note that the last transposition removes only one breakpoint. Hence, 2-PTST

and 2-PTSTg are 2-approximation algorithms.

3.3 Algorithms for Sbprptsrst

Sharmin et al. [11] presented the Sorting by Prefix Reversals and Prefix Transpo-
sitions problem and provided a 3-approximation algorithm, called here 3-PRPT.
It also uses the breakpoint graph to decide which operation to perform and it
is similar to 2-PR; however, the use of a second operation allows the four types
of gray edges to be considered good edges. In addition, they gave an important
concept for their algorithm and for ours, presented in Lemma 4. Now, based
on their work we can define what to do with each type of gray edge while also
considering suffix reversals and suffix transpositions, as Lemma 5 shows.

Lemma 4. [11] Let (Θi, Θj) be a gray edge of type 1. Then there is at least one
black edge (Θk−1, Θk) for some i < k < j, that is called a trapped black edge.

Lemma 5. Let Θ be an arbitrary permutation. There is a sequence of at most
three prefix reversals, prefix transpositions, suffix reversals or suffix transposi-
tions that removes at least one breakpoint if G(Θ) contains at least one gray edge
(Θi, Θj): (1) of type 4 with Θ1 ≤= 1, i = 1, and j ⊕ n; (2) of type 4 with Θn ≤= n,
j = n, and i ≥ 1; (3) of type 1 with Θ1 ≤= 1, i = 1, and j ⊕ n; (4) of type 2
with Θn ≤= n, j = n, and i ≥ 1; (5) of type 3 with Θ1 = 1, i ≥ 1, and j ⊕ n;

Sorting Permutations by Prefix and Suffix Versions 677

(6) of type 3 with Θn = n, i ≥ 1, and j ⊕ n; (7) of type 2 with Θ1 = 1, i ≥ 1,
and j ⊕ n, where Θi is the last element of the first strip of Θ; (8) of type 1 with
Θn = n, i ≥ 1, and j ⊕ n, where Θj is the first element of the last strip of Θ.

Proof. If there is a gray edge (Θi, Θj) then Θj = Θi ± 1. To create an adjacency
between Θi and Θj without creating new breakpoints one must perform, respec-
tively, for each type of edge: (1) one prefix transposition Πp(k, j + 1) where
(Θk−1, Θk) is a trapped black edge, i < k < j; (2) one suffix transposition
Πs(k, j + 1) where (Θk−1, Θk) is a trapped black edge, i < k < j; (3) one prefix
reversal Ψp(j − 1); (4) one suffix reversal Ψs(i + 1); (5) one prefix transposition
Πp(i+ 1, j); (6) one suffix transposition Πs(i+ 1, j); (7) one prefix reversal Ψp(j),
followed by one prefix reversal Ψp(j − i), and by one operation to handle an
edge of type 4 or 1; (8) one suffix reversal Ψs(i), followed by one suffix reversal
Ψs(n+1−(j−i)), and by one operation to handle an edge of type 4 or 2. ∗≥

3-PRPT only deals with the gray edges shown in items 1, 3, 5, and 7 of Lemma 5
without the constraints over j, also called good prefix edges. It scans G(Θ) from
left to right to find its first good prefix edge, it decides its type (in the order
that the four appear in the lemma), in addition to performing the required
operation(s). Thus, it guarantees that dδpΘp(Θ) ⊕ 3bδpΘp(Θ)/2, which, using the
lower bound, proves that it has an approximation factor of 3.

As explained, if a good prefix edge is of types 3 or 4, the algorithm applies one
prefix transposition. However, since a prefix transposition can remove at most 2
breakpoints, we developed a greedy version, which we will call 3-PRPTg, whose
features are: (i) it scans the permutation from right to left; (ii) it tries to find
gray edges in a different order, namely items 1, 5, 3, and 7 of Lemma 5; (iii) when
there is an edge (Θi, Θj) of type 4, it tries to find the best trapped black edge
(Θk−1, Θk), i < k < j, such that Θj+1 = Θk ± 1 and j ⊕ n − 1; (iv) when it is
trying to find an edge of type 3, it searches for a Θj such that Θ1 = Θj−1 ± 1.

The suffix versions of both 3-PRPT and 3-PRPTg will be called 3-SRST and
3-SRSTg, respectively. Of course, they only deal with gray edges given by items 2,
4, 6, and 8 of Lemma 5 without the constraints over i, which are good suffix
edges. They work similarly to their prefix versions, but 3-SRST scans the permu-
tation from right to left and 3-SRSTg scans from left to right. Besides, 3-SRSTg
(i) searches for gray edges in the order of the items 2, 6, 4, and 8 of Lemma 5;
(ii) when there is an edge (Θi, Θj) of type 4, it tries to find the best trapped black
edge (Θk−1, Θk), i < k < j, such that Θj+1 = Θk ± 1 and i ≥ 2; and (iii) tries to
find a Θi such that Θn = Θi+1 ± 1 when it is searching for a type 3 edge.

Finally, we created 2-PRPTSRST and 2-PRPTSRSTg, algorithms for Sbprpt-
srst. They can handle all the good edges described in Lemma 5, but they do
not consider the edges described in items 7 and 8. When the other six edges does
not exist, Θ is of one of the forms shown by Lemma 6 and the algorithms perform
either a prefix reversal Ψp(n) or a prefix transposition to concatenate the first
strip with the last one. Because of this, they can never separate the elements n
and 1, unless the black edge between them is the last one (disregard the edges
(Θ0, Θ1) and (Θn, Θn+1)). This will guarantee that dδpΘpδsΘs(Θ) ⊕ bδpΘpδsΘs(Θ)+2,

678 C.N. Lintzmayer and Z. Dias

Algorithm 1. Good edges of type 4

PRPTSRST edge type 4(π, n)
1 if π1 ⊕= 1 and G(π) has a GPE (1, πjp) of type 4 and jp ← n then
2 (kp− 1, kp) ◦ trapped black edge;
3 if πn ⊕= n and G(π) has a GSE (πis, n) of type 4 and is ⊇ 1 then
4 (ks− 1, ks) ◦ trapped black edge;
5 if πkp − 1 = πjp+1 ± 1 then π ◦ π · τp(kp, jp + 1)
6 else if πks − 1 = πjs+1 ± 1 then π ◦ π · τs(ks, js + 1)
7 else if jp < n− is then π ◦ π · τp(kp, jp + 1)
8 else π ◦ π · τs(ks, js + 1)
9 else π ◦ π · τp(kp, jp + 1)

10 else if πn ⊕= n and G(π) has a GSE (πis, n) of type 4 and is ⊇ 1 then
11 (ks-1, ks) ◦ trapped black edge;
12 π ◦ π · τs(ks, js + 1)
13 return π

Algorithm 2. Good prefix edges of type 1 and good suffix edges of type 2

PRPTSRST edge type 1 2(π, n)
1 if π1 ⊕= 1 and G(π) has a GPE (1, πjp) of type 1 and jp ← n then
2 if πn ⊕= n and G(π) has a GSE (πis, n) of type 2 and is ⊇ 1 then
3 if jp < n− is then π ◦ π · ρp(jp− 1)
4 else π ◦ π · ρs(is + 1)
5 else π ◦ π · ρp(jp− 1)
6 else if πn ⊕= n and G(π) has a GSE (πis, n) of type 2 and jp ← n then
7 π ◦ π · ρs(is + 1)
8 return π

as Theorem 2 shows. With the lower bound, we can prove that the asymptotic
approximation factor of both algorithms is 2.

The difference between 2-PRPTSRST and 2-PRPTSRSTg is that the former
searches for good prefix edges from left to right, searches for good suffix edges
from right to left and follows the order given by the lemma. The latter searches
for good prefix edges from right to left, searches for good suffix edges from left
to right, follows the order of items 1, 2, 5, 6, 3, and 4 of Lemma 5, and tries
to find edges of types 3 and 4 that allow the removal of 2 breakpoints at once.
Algs. 4 and 5 present them, respectively. In the algorithms, GPE stands for good
prefix edge while GSE stands for good suffix edge.

Lemma 6. Let Θ ≤= ι be a permutation without the first six edges of Lemma 5.
Then Θ is either Δ, or of the form Θ = (1 2 . . . k k+i . . . k+2 k+1
. j−1 j−2 . . . j−Λ j j+1 . . . n) with i ≥ 2 and Λ ≥ 2, or of the
form Θ = (n n−1 . . . j Θn−j+2 Θn−k k k−1 . . . 1) with Θn−j+2 ≤= j − 1
and Θn−k ≤= k + 1.

Lemma 7. Let Θ ≤= Δ be of one of the two other permutations given in Lemma 6.
One transposition Πp(i+1, n+1), where Θi is the last element of the first strip,
transforms Θ into either Θ · Πp = (....... j j+1 ... n−1 n 1 2 ... k−1 k) or Θ · Πp

Sorting Permutations by Prefix and Suffix Versions 679

Algorithm 3. Good edges of type 3

PRPTSRST edge type 3(π, n)
1 if π1 = 1 and G(π) has a GPE (πip, πjp) of type 3 then
2 if πn = n and G(π) has a GSE (πis, πjs) of type 3 then
3 if π1 = πjp−1 ± 1 then π ◦ π · τp(ip + 1, jp)
4 else if πn = πis+1 ± 1 then π ◦ π · τs(is + 1, js)
5 else if jp < n− is then π ◦ π · τp(ip + 1, jp)
6 else π ◦ π · τs(is + 1, js)
7 else π ◦ π · τp(ip + 1, jp)
8 else if πn = n and G(π) has a GPE (πis, πjs) of type 3 then
9 π ◦ π · τs(is + 1, js)

10 return π

Algorithm 4. A 2-approximation algorithm for Sbprptsrst

2-PRPTSRST(π, n)
1 while π ⊕= ι do
2 if π1 ⊕= 1 and G(π) has a GPE of type 4 or

πn ⊕= n and G(π) has a GSE of type 4 then
3 π ◦ PRPTSRST edge type 4(π, n)
4 else if π1 ⊕= 1 and G(π) has a GPE of type 1 or

πn ⊕= n and G(π) has a GSE of type 2 then
5 π ◦ PRPTSRST edge type 1 2(π, n)
6 else if π1 = 1 and G(π) has a GPE of type 3 or

πn = n and G(π) has a GSE of type 3 then
7 π ◦ PRPTSRST edge type 3(π, n)
8 else if π = η then
9 π ◦ π · ρp(n)

10 else
11 Let k be the position of the last element of the first strip of π
12 π ◦ π · τp(k + 1, n + 1)

= (....... k k−1 ... 2 1 n n−1 ... j+1 j) without changing the number of break-
points. After that, it is always possible to keep removing at least one breakpoint
with one operation, if the algorithms never separate the elements 1 and n.

Lemma 8. Let (Θi, Θj) be a gray edge of type 4 of either prefix or suffix of an
arbitrary permutation Θ ≤= ι. If the edge between the elements 1 and n is the only
trapped black edge between Θi and Θj, then actually i = 1, j = n and the permu-
tation is either of the form Θ∗ = (k k−1 k−2 . . . 2 1 n n−1 . . . k+2 k+1) or
of the form Θ∗∗ = (k+1 k+2 . . . n−1 n 1 2 . . . k−2 k−1 k).

Besides, by acting on such edge, 2-PRPTSRST and 2-PRPTSRSTg will be per-
forming either their last or their last but one operation.

Lemma 9. The operation explained at Lemma 7 is performed at most once by
2-PRPTSRST and 2-PRPTSRSTg, if both never separate the elements 1 and n.

Theorem 2. Both algorithms 2-PRPTSRST and 2-PRPTSRSTg sort any permu-
tation Θ ≤= ι using at most bδpΘpδsΘs(Θ) + 2 operations.

680 C.N. Lintzmayer and Z. Dias

Algorithm 5. A 2-approximation algorithm for Sbprptsrst, greedy version

2-PRPTSRSTg(π, n)
1 while π ⊕= ι do
2 if π1 ⊕= 1 and G(π) has a GPE of type 4 or

πn ⊕= n and G(π) has a GSE of type 4 then
3 π ◦ PRPTSRST edge type 4(π, n)
4 else if π1 = 1 and G(π) has a GPE of type 3 or

πn = n and G(π) has a GSE of type 3 then
5 π ◦ PRPTSRST edge type 3(π, n)
6 else if π1 ⊕= 1 and G(π) has a GPE of type 1 or

πn ⊕= n and G(π) has a GSE of type 2 then
7 π ◦ PRPTSRST edge type 1 2(π, n)
8 else if π = η then
9 π ◦ π · ρp(n)

10 else
11 Let k be the position of the last element of the first strip of π
12 π ◦ π · τp(k + 1, n + 1)

Proof. Directly from Lemmas 6, 7, 8, and 9, whose proofs were omitted due to
space restrictions.

4 Results

All the algorithms have complexity O(n2), since the distance is O(n) and they
spent linear time to choose and to apply an operation at each step. They were
implemented in C language and executed in a Intel Core 2 of 2.13 GHz, 4GB
RAM running Ubuntu 12.04.2 LTS under the same set of 190000 arbitrary per-
mutations, being 10000 of each size n, for n varying between 10 and 1000 in
intervals of 5. Figure 2 shows the results. The x-axis presents a value of n and
the y-axis presents the average of the approximation factors of the permutations
of that size, calculated using the theoretical lower bound of the distance.

We can see that the simple change of scanning the permutation at a different
order had better results. This means that bigger operations (specially reversals)
are preferable. As expected, problems which involve only prefix rearrangements
are equivalent to their suffix versions. Besides, it was expected that problems
with both prefix and suffix versions of a rearrangement would obtain better re-
sults than those that allow only the prefix version. It is interesting to notice that
this did not happen for 2-PTST. Finally, for n ≥ 100, the average approximation
factor of 2-PRSRg is below 1.131, of 2-PTSTg is below 1.314 and of 2-PRPTSRSTg
is below 1.382, which are the best algorithms for the three new problems we pre-
sented. Besides, the maximum factor of this three problems over all permutations
tested is below 1.342, 1.596 and 1.600, respectively, when n ≥ 100.

Sorting Permutations by Prefix and Suffix Versions 681

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

 1.24

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

permutation size

2-PR
2-PRg

2-SR
2-SRg

2-PRSR
2-PRSRg

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

permutation size

2-PT
2-PTg

2-ST
2-STg

2-PTST
2-PTSTg

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 0 100 200 300 400 500 600 700 800 900 1000

av
er

ag
e

ap
pr

ox
im

at
io

n
fa

ct
or

permutation size

3-PRPT
3-PRPTg

3-SRST
3-SRSTg

2-PRPTSRST
2-PRPTSRSTg

Fig. 2. Average approximation factor of all implemented algorithms when the
permutation size grows

682 C.N. Lintzmayer and Z. Dias

5 Conclusion

We introduced the study of suffix rearrangements along with prefix rearrange-
ments. We showed lower bounds for the distances and described approximation
algorithms of factor 2 to three new problems, considering some existing algo-
rithms. Simple considerations, such as bigger operations and greedy choices,
proved to be better options and improved the first versions of the algorithms.
Future work will be directed not only to create new algorithms, but also to find
results related to both distance and diameter of the problems.

Acknowledgements. This work was partially supported by São Paulo Re-
search Foundation - FAPESP (grants 2013/01172-0 and 2013/08293-7) and Na-
tional Counsel of Technological and Scientific Development - CNPq (grants
477692/2012-5 and 483370/2013-4). We thank Espaço da Escrita - Coordenado-
ria Geral da Universidade - UNICAMP - for the language services provided.

References

1. Bafna, V., Pevzner, P.A.: Genome Rearrangements and Sorting by Reversals. In:
Proceedings of the 34th Annual Symposium on Foundations of Computer Science
(FOCS 1993), pp. 148–157 (1993)

2. Bafna, V., Pevzner, P.A.: Sorting by Transpositions. SIAM Journal on Discrete
Mathematics 11(2), 224–240 (1998)

3. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-Approximation Algorithm for
Sorting by Reversals. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS,
vol. 2461, pp. 200–210. Springer, Heidelberg (2002)

4. Bulteau, L., Fertin, G., Rusu, I.: Pancake flipping is hard. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 247–258. Springer,
Heidelberg (2012)

5. Bulteau, L., Fertin, G., Rusu, I.: Sorting by Transpositions Is Difficult. SIAM
Journal on Computing 26(3), 1148–1180 (2012)

6. Caprara, A.: Sorting Permutations by Reversals and Eulerian Cycle Decomposi-
tions. SIAM Journal on Discrete Mathematics 12(1), 91–110 (1999)

7. Dias, Z., Meidanis, J.: Sorting by Prefix Transpositions. In: Laender, A.H.F.,
Oliveira, A.L. (eds.) SPIRE 2002. LNCS, vol. 2476, pp. 65–76. Springer, Heidelberg
(2002)

8. Elias, I., Hartman, T.: A 1.375-Approximation Algorithm for Sorting by Trans-
positions. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 3(4), 369–379 (2006)

9. Fischer, J., Ginzinger, S.W.: A 2-Approximation Algorithm for Sorting by Prefix
Reversals. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp.
415–425. Springer, Heidelberg (2005)

10. Galvão, G.R., Dias, Z.: On the performance of sorting permutations by prefix
operations. In: Proceedings of the 4th International Conference on Bioinformatics
and Computational Biology (BICoB 2012), Las Vegas, Nevada, USA, pp. 102–107
(2012)

11. Sharmin, M., Yeasmin, R., Hasan, M., Rahman, A., Rahman, M.S.: Pancake Flip-
ping with Two Spatulas. Electronic Notes in Discrete Mathematics 36, 231–238
(2010), International Symposium on Combinatorial Optimization (ISCO 2010)

Algorithmic and Hardness Results

for the Colorful Components Problems

Anna Adamaszek1,Δ and Alexandru Popa2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
anna@mpi-inf.mpg.de

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic
popa@fi.muni.cz

Abstract. In this paper we investigate the colorful components frame-
work, motivated by applications emerging from comparative genomics.
The general goal is to remove a collection of edges from an undirected
vertex-colored graph G such that in the resulting graph G∗ all the con-
nected components are colorful (i.e., any two vertices of the same color
belong to different connected components). We want G∗ to optimize an
objective function, the selection of this function being specific to each
problem in the framework.

We analyze three objective functions, and thus, three different prob-
lems, which are believed to be relevant for the biological applications:
minimizing the number of singleton vertices, maximizing the number of
edges in the transitive closure, and minimizing the number of connected
components.

Our main result is a polynomial-time algorithm for the first problem.
This result disproves the conjecture of Zheng et al. that the problem is
NP -hard (assuming P ⊕= NP). Then, we show that the second problem
is APX-hard, thus proving and strengthening the conjecture of Zheng
et al. that the problem is NP -hard. Finally, we show that the third
problem does not admit polynomial-time approximation within a factor
of |V |1/14−α for any Σ > 0, assuming P ⊕= NP (or within a factor of
|V |1/2−α, assuming ZPP ⊕= NP).

1 Introduction

In this paper we consider the following framework.

Colorful components framework: Given a simple, undirected graph
G = (V,E) and a coloring Θ : V ⊕ C of the vertices with colors from a given set
C, remove a collection of edges E∨ ≤ E from the graph such that each connected
component in G∨ = (V,E\E∨) is a colorful component (i.e., it does not contain
two identically colored vertices). We want the resulting graph G∨ to be optimal
according to some fixed optimization measure.

δ Supported by the Alexander von Humboldt Foundation.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 683–694, 2014.
c∗ Springer-Verlag Berlin Heidelberg 2014

684 A. Adamaszek and A. Popa

We consider three optimization measures and, respectively, three different
problems: Minimum Singleton Vertices (MSV), Maximum Edges in Transitive
Closure (MEC), and Minimum Colorful Components (MCC). We now introduce
the optimization measures for all these problems.

Problem 1 (Minimum Singleton Vertices). The goal is to minimize the number
of connected components of G∨ that consist of one vertex.

Problem 2 (Maximum Edges in Transitive Closure). The goal is to maximize the
number of edges in the transitive closure of G∨.

If a graph consists of k connected components, each containing respectively
a1, a2, . . . , ak vertices, the number of edges in the transitive closure equals

k∑

i=1

ai · (ai − 1)

2
.

Problem 3 (Minimum Colorful Components). The goal is to minimize the num-
ber of connected components in G∨.

The first two problems have been introduced in [12], while the third one is
newly introduced in this paper.

Motivation. The colorful components framework is motivated by applications
originating from comparative genomics [10,12], which is a fundamental branch
of bioinformatics that studies the relationship of the genome structure between
different biological species. Research performed in this field can help scientists
to improve the understanding of the structure and the functions of human genes
and, consequently, find treatments for many diseases [8].

As pointed out in [10,12], one of the key problems in this area, the multiple
alignment of gene orders, can be captured as a graph theoretical problem, using
the colorful components framework. We refer the reader to [12] for an overview
of the connection between the multiple alignment of gene orders and the graph
theoretic framework considered, and for a discussion about the biological moti-
vation of two particular problems we consider, MSV and MEC.

Related work. We now discuss the collection of known problems which fit into
the colorful components framework.

We start with a problem named either Colorful Components [5,4] or Minimum
Orthogonal Partition [7,12], since this problem has received the most attention
so far. In this problem the objective function is to minimize the number of
edges removed from G to obtain the graph G∨ in which all the components are
colorful. Bruckner et al. show [5] that the problem is NP -hard for three or
more colors and they study fixed-parameter algorithms for the problem. Their
NP -hardness reduction can be modified slightly (starting the reduction from a
version of 3SAT when each variable occurs only O(1) times, instead of from the
general 3SAT) to show the APX-hardness of the problem. Zheng et al. [12] and

Algorithmic and Hardness Results for the Colorful Components Problems 685

Bruckner et al. [4] study heuristic approaches for the problem, and He et al. [7]
present an approximation algorithm for some special case of the problem. As the
general problem is a special case of the Minimum Multi-Multiway Cut, it admits
a O(log |C|) approximation algorithm [2].

Other objective functions have been proposed, with the hope that some of
them are both tractable and biologically meaningful. The MSV and the MEC
problems have been introduced by Zheng et al. [12], who presented heuristic
algorithms for the problems, without giving any worst-case approximation guar-
antee. They also conjectured both problems to be NP-hard.

Tremblay-Savard and Swenson [11] consider a Maximum Orthogonal Edge
Cover Problem (MAX-OREC), which is a dual problem to MSV. There, the goal
is to cover a maximum number of vertices of a graph using vertex-disjoint, non-
singleton connected colorful subgraphs. In [11], a 2/3-approximation algorithm
for MAX-OREC is presented. Although an approximation algorithm for MAX-
OREC does not yield an approximation algorithm for MSV, an optimal solution
for MSV gives also an optimal solution for MAX-OREC.

We are not aware of any other results concerning the MSV and MEC problems,
or of any previous research on the MCC problem.

Our results. Our main result is a polynomial-time exact algorithm for the MSV
problem, presented in Section 2. This disproves the conjecture of Zheng et al. [12]
that the problem is NP -hard (assuming P �= NP). Our algorithm maintains a
feasible solution G∨ = (V,E∨) for the MSV problem, starting with an edgeless
graph G∨ = (V, ⊗). Then, in each step G∨ is modified by applying to it a carefully
chosen alternating path p, starting at a singleton vertex. The alternating path
consists of the edges of G, and its every second edge is in G∨. Applying p to G∨

means that the edges from p which are not in G∨ are added to G∨, and at the
same time the edges of p which are in G∨ are removed from G∨. The algorithm
ensures that at each step G∨ is a feasible solution to the problem, and satisfies
an invariant that all connected components in G∨ are either singletons, edges or
stars. In the analysis we show that when the algorithm does not find any new
alternating path, the number of singleton components in G∨ matches the lower
bound presented in Section 2.1.

In Section 3 we study the MEC problem and we show that the problem is
NP -hard and APX-hard when the number of colors in the graph is at least 4.
This proves the conjecture of Zheng et al [12]. We show the result via a reduction
from the version of the MAX-3SAT problem where each variable appears at most
some constant number of times in the formula (see [1], Section 8.4).

Finally, in Section 4 we consider the MCC problem, which is introduced for
the first time in this paper. We prove that MCC does not admit polynomial-time
approximation within a factor of |V |1/14−Σ, for any ι > 0, unless P = NP (or
within a factor of |V |1/2−Σ, unless ZPP = NP), even if each vertex color appears
at most two times. We show the inapproximability result via a reduction from
Minimum Clique Partition which is equivalent to Minimum Graph Coloring [9].

Due to space constraints some proofs have been omitted and will only appear
in the full version of the paper.

686 A. Adamaszek and A. Popa

2 A Polynomial-Time Exact Algorithm for MSV

In this section we present a polynomial-time algorithm MSVexact which finds
an optimal solution for the MSV problem. First, in Section 2.1 we show a lower
bound on the number of singleton vertices in any feasible solution for the prob-
lem. Then, in Section 2.2 we describe the algorithm, with its key procedure
presented in Section 2.3. The analysis of the algorithm is made in Section 2.4.

2.1 Lower Bound

Let a graph G = (V,E), together with a coloring Θ : V ⊕ C, be an instance of
the MSV problem. For any color c ∈ C let Vc ≤ V denote the set of vertices of
color c. For any set of vertices V ∨ ≤ V we denote by N(V ∨) the set of neighbors of
V ∨ in G, i.e. N(V ∨) = {v ∈ V \V ∨ : ∗v∨ ∈ V ∨s.t. (v∨, v) ∈ E}. For any set of colors
C∨ ≤ C and set of vertices V ∨ ≤ V we denote by NC′(V ∨) the set of neighbors
of V ∨ in G which have colors in C∨, i.e. NC′(V ∨) = {v ∈ N(V ∨) : Θ(v) ∈ C∨}.
Lemma 1. For any color c ∈ C let

sc = max
V ′⊆Vc

(|V ∨| − |NC\{c}(V ∨)|) .

Then in any feasible solution for MSV there are at least sc singletons of color c.

Proof. Let G∨ = (V,E∨), where E∨ ≤ E, be a feasible solution for G. Fix a
color c for which sc > 0 and let V ∨ ≤ Vc be the subset maximizing the value
of sc. (Notice that sc depends only on the graph G, and not on G∨.) For each
vertex v∨ ∈ V ∨ which is not a singleton in G∨ we pick an arbitrary neighbor
n(v∨) in G∨. We have n(v∨) ∈ NC\{c}(V ∨). As any two vertices from V ∨ belong to
different connected components in G∨, the vertices n(v∨) are pairwise different.
The number of vertices of V ∨ which are not singletons in G∨ is therefore at most
|NC\{c}(V ∨)|. The number of singletons amongst vertices from V ∨, and also the
number of singletons of color c, is at least |V ∨| − |NC\{c}(V ∨)| = sc. ≥⊆
Corollary 1. Any feasible solution for MSV has at least

∑
c◦C sc singletons.

2.2 Idea of the Algorithm

We now present an algorithm MSVexact which finds an optimal solution for
MSV. The input consists of a simple, undirected graphG = (V,E), together with
a coloring Θ : V ⊕ C. The algorithm maintains a feasible solution G∨ = (V,E∨)
(i.e., G∨ is a subgraph of the input graph G, and every connected component of
G∨ is a colorful component), starting with an edgeless graph G∨ = (V, ⊗). In each
step the graph G∨ is modified by applying to it a carefully chosen alternating
path p. The alternating path consists of the edges of G, and its every second
edge is in G∨. Applying p to G∨ means that the edges from p which are not in
G∨ are added to G∨, and at the same time the edges of p which are in G∨ are
removed from G∨. See Algorithm 1 for the formal description of the algorithm.

Algorithmic and Hardness Results for the Colorful Components Problems 687

Input: A simple, undirected graph G = (V,E), a coloring Φ : V ← C
Output: A subgraph of G minimizing the number of connected components,

and in which each connected component is colorful
1 G∗ := (V, ◦)
2 foreach c ⊇ C do
3 while p=Alternating Path(G, Φ,G∗, c) is a path do
4 apply p to G∗

5 end

6 end

Algorithm 1. MSVexact(G, Θ)

The path p is chosen in such a way, that applying it to G∨ decreases the num-
ber of singleton vertices of color c, without increasing the number of singleton
vertices of other colors. Additionally, at each step of the algorithm G∨ satisfies
the invariant that each connected component of G∨ is a singleton, an edge, or a
star (where a star is a tree of diameter 2, in particular it has at least 3 vertices).

We will show that when the algorithm stops, i.e., when it does not find any
alternating path p which can be applied to G∨ to decrease the number of sin-
gletons of any color, the number of singleton vertices in G∨ matches the lower
bound from Corollary 1.

2.3 Finding an Alternating Path

Let G∨ = (V,E∨) be a feasible solution for an instance (G = (V,E), Θ) of MSV,
such that each connected component of G∨ is a singleton vertex, an edge, or a
star. Let c ∈ C be an arbitrary color, and let Sc ≤ V be the set of all singletons
of color c in G∨. We describe a procedure Alternating Path(G, Θ,G∨, c) which
outputs an alternating path p for G∨ in G. In the following section we prove that
p satisfies all properties outlined in Section 2.2, and that when no path is found,
the number of singletons of color c in G∨ matches the lower bound from Lemma 1.

The idea behind the path construction is as follows. We want to find a path
starting in some singleton vertex of color c, connecting each vertex of color c with
a vertex of color different than c using an edge e ∈ E \ E∨; and each vertex of
color different than c with an vertex of color c using an edge e ∈ E∨. We end the
construction of the path when the current endpoint v /∈ Vc of the path belongs
to a connected component of G∨ to which we can attach an additional vertex
of color c (possibly while splitting the component into two parts). Such a case
occurs when v is a leaf of a star (which will result in removing v from the star-
component and connecting it with the vertex of color c), or when the connected
component of v does not contain color c. Then applying the alternating path to
the graphG∨ results in “switching” vertices of color c between different connected
components of G∨, and removing one singleton of color c, as the start point of
the path will not be a singleton in the new graph. The algorithm performs a BFS
search for the path satisfying the required conditions, starting with the collection
of all singleton vertices of color c. See Procedure 2 for a formal description.

688 A. Adamaszek and A. Popa

Input: A simple, undirected graph G = (V,E), a coloring Φ : V ← C, a feasible
subgraph G∗ = (V,E∗) of G, and a color c ⊇ C

Output: A path p or no path found
1 V ∗ := Sc

2 N ∗ := NC\{c}(V ∗) // Neighbors in G
3 ⊆v ⊇ N ∗ pred(v) := any v∗ ⊇ Sc s.t. (v, v∗) ⊇ E
4 while |N ∗| > 0 do
5 if ∀v ⊇ N ∗ : v is a leaf of a star in G∗ then
6 p :=Path From(v)
7 return p ∪ {(v, v∗)} s.t. (v, v∗) ⊇ E∗

8 end
9 if ∀v ⊇ N ∗ : the connected component of v in G∗ has no color c then

10 p :=Path From(v)
11 return p

12 end
13 V ∗∗ := {v∗∗ ⊇ Vc : ∀v ⊇ N ∗ s.t. (v, v∗∗) ⊇ E∗}
14 ⊆v∗∗ ⊇ V ∗∗pred(v∗∗) := any v ⊇ N ∗ s.t. (v, v∗∗) ⊇ E∗

15 V ∗ := V ∗ ∪ V ∗∗

16 N ∗ := NC\{c}(V ∗) \NC\{c}(V ∗ \ V ∗∗)
17 ⊆v ⊇ N ∗ pred(v) := any v∗ ⊇ V ∗∗ s.t. (v, v∗) ⊇ E

18 end
19 return no path found

Procedure 2. Alternating Path(G, Θ,G∨, c)

Input: A vertex v ⊇ V
Output: A path starting in Sc and ending in v

1 if pred(v) ⊇ Sc then
2 return (pred(v),v)
3 end
4 return Path From(pred(v)) ∪ {(pred(v),v)}

Procedure 3. Path From(v)

Procedure Alternating Path constructs the path p as follows. It keeps a set
of vertices V ∨ of color c, initially setting V ∨ := Sc (line 1). For each element v /∈
Sc considered by the procedure, its predecessor pred(v) is fixed (line 3, 14, 17).
Intuitively pred(v) is an element such that (pred(v), v) ∈ E, and processing
pred(v) by the procedure resulted in adding v to one of the sets V ∨, N ∨. Procedure
Path From(v), invoked in lines 6 and 10, can then reconstruct the whole path,
starting from the final vertex v and finding the predecessors until it reaches a
vertex from Sc (see Procedure 3 for a formal description).

Each loop of the algorithm (lines 4 – 18) considers the set N ∨ of new neighbors
of the vertices from V ∨ (i.e., the neighbors of V ∨ which have not been considered
in the previous loops), see lines 2 and 16, in search for vertices which can yield
an end of the path (see lines 5, 9). If no such vertex is found, the set V ∨ will
be further increased to include the neighbors of N ∨ of color c (line 13, 15). The

Algorithmic and Hardness Results for the Colorful Components Problems 689

process continues until an appropriate vertex v is found in N ∨ (lines 5, 9), and
then the algorithm returns the path reconstructed from v, or the set N ∨ becomes
empty, in which case the answer no path found is returned (line 19).

2.4 Analysis

Lemma 2. When the procedure Alternating Path(G, Θ,G∨, c) invoked for a
graph G∨ which is a feasible solution for MSV, and s.t. each connected component
of G∨ is a singleton, an edge or a star returns no path found, then |Sc| = sc.

Proof. If the procedure Alternating Path returns no path found, then it
returns in line 19, i.e., after checking the condition “|N ∨| > 0” (line 4) failed. We
show that just before the procedure ends, the following inequality holds:

|V ∨| − |NC\{c}(V ∨)| ↑ |Sc| .
If the loop in line 4 has never been entered, we have V ∨ = Sc, NC\{c}(V ∨) =

N ∨ = ⊗, and therefore |V ∨| − |NC\{c}(V ∨)| = |Sc|.
Each vertex v ∈ NC\{c}(V ∨) has been inserted into N ∨ at some step of the

procedure (line 2 or 16), and subsequently processed in line 5 and 9. As that did
not cause the algorithm to return in line 7 or 11, we must have:

– v is not a leaf of a star in G∨, and
– the connected component containing v contains a vertex colored with c.

As each connected component in G∨ is a singleton, an edge or a star, and the
color of v is different from c, we have two possibilities:

– the connected component of G∨ containing v is an edge, and the other end-
point of the edge has color c, or

– the connected component of G∨ containing v is a star containing a vertex of
color c, and v is the center of the star.

As any connected component of G∨ has at most one vertex v satisfying one of
the above conditions, any two elements of NC\{c}(V ∨) are in different connected
components of G∨. From the conditions above we also know that each vertex
v ∈ NC\{c}(V ∨) has some neighbor n(v) of color c in G∨. Each vertex n(v) has
been added to the set V ∨ when the element v has been processed by the procedure
(line 13, 15). As any two elements v1, v2 ∈ NC\{c}(V ∨) are in different connected
components of G∨, any two vertices n(v1), n(v2) are different. As the elements
from Sc are singletons in G∨, and therefore cannot be equal to any n(v), and as
Sc ≤ V ∨, we get |V ∨| ↑ |Sc|+ |NC\{c}(V ∨)|. We obtain the desired inequality.

We have shown that for the set of vertices V ∨ we have |V ∨| − |NC\{c}(V ∨)| ↑
|Sc|. As V ∨ ≤ Vc, we get |Sc| ⊃ maxV ′′⊆Vc(|V ∨∨| − |NC\{c}(V ∨∨)|) = sc. As sc is a
lower bound on |Sc| (see Lemma 1), we get |Sc| = sc. ≥⊆
Lemma 3. Let G∨ = (V,E∨) be a feasible solution for MSV s.t. each connected
component of G∨ is a singleton, an edge or a star. Let p be a path returned by
Alternating Path(G, Θ,G∨, c), and let G∨∨ be the result of applying p on G∨.
Then:

690 A. Adamaszek and A. Popa

a) p is an alternating path for G∨ in G,
b) the number of singleton vertices of color c in G∨∨ is smaller than in G∨; the

number of singleton vertices of any other color does not increase,
c) each connected component of G∨∨ is a colorful component, and it is a singleton,

an edge or a star.

Using Lemmas 2 and 3 we can show the main result of this section.

Theorem 1. The algorithm MSVexact(G, Θ) finds an optimal solution for the
MSV problem in time O(|V | · |E|).

3 Hardness of MEC

In this section we prove the NP -hardness and the APX-hardness of the MEC
problem, for |C| ↑ 4. We show our result via a reduction from MAX-3SAT(Δ), a
version of the MAX-3SAT problem where each variable appears at most Δ times
in the formula. For Δ = 3 the problem is APX-hard (see [1], Section 8.4).

3.1 Reduction from MAX-3SAT(β)

Given an instance of the MAX-3SAT(Δ) problem, i.e., a 3-CNF formula Γ with
m clauses and n variables, where each variable appears at most Δ times, we
construct an instance of the MEC problem. Our instance is a vertex colored
graph G = (V,E), where the vertices are colored with colors from a four-element
set {a, b, c, v}. An example of the reduction is illustrated in Figure 1.

First we describe the set of vertices V .

1. We add to V a set of vertices c1, . . . , cm, each colored with color c, where
vertex ci corresponds to the i-th clause of the formula.

2. For a variable x, let nx be the number of occurrences of the literals x and
¬x in Γ. For each variable x, we add to V : nx vertices of color a (denoted
by ax1 , a

x
2 , . . . , a

x
nx

), nx vertices of color b (denoted by bx1 , b
x
2 , . . . , b

x
nx

), and
2nx vertices of color v (denoted by vx1 , v

x
2 , . . . , v

x
nx

and wx
1 , w

x
2 , . . . , w

x
nx

).
Intuitively, the vertices vxi and wx

i are associated with x and ¬x, respectively.

We now show how to construct the set of edges E.

1. For each variable x, we construct a cycle of length 4nx by adding to E
the collection of edges (axi , v

x
i), (vxi , b

x
i), (bxi , w

x
i) and (wx

i , a
x
(i mod nx)+1) for

i = 1, .., nx.
2. For each clause we add to E three edges, where each edge connects the vertex
ci representing the clause with a vertex representing one literal of ci. More
formally, if a literal x (¬x) occurs in the i-th clause, we add to E an edge
connecting ci with some vertex vxj (wx

j , respectively). We do this operation
in such a way, that each vertex vxj and wx

j representing a literal is incident
with at most one clause-vertex ci. Notice that since we have more vertices
vxj and wx

j than actual literals, some of the vertices vxj and wx
j will not be

connected with any clause-vertex ci.

Algorithmic and Hardness Results for the Colorful Components Problems 691

vx1 wx
1 vx2 wx

2

ax1 bx1 ax2 bx2

vz1

wz
1

az1

bz1 vw1

ww
1

aw1

bw1

vy1 wy
1 vy2 wy

2

ay1 by1 ay2 by2

c1 c2

Fig. 1. An instance G of the MEC problem corresponding to the 3SAT formula (x ∨
y ∨ z)≤ (¬x ∨ y ∨ ¬w) (both black and gray edges). The subgraph G∗∗ consisting of all
vertices and only black edges represents a solution for G corresponding to the following
assignment: f(x) = f(y) = f(w) = TRUE, f(z) = FALSE.

3.2 Analysis of the Reduction

Let Γ be a MAX-3SAT(Δ) formula on m clauses, and G = (V,E) a vertex-colored
graph obtained from Γ by our reduction. Let G∨ = (V,E∨) be a subgraph of G
which is an optimal solution for the MEC problem on G.

Lemma 4. If the formula Γ is satisfiable, then the transitive closure of G∨ has
at least 12m edges.1

Proof. We construct a graph G∨∨ = (V,E∨∨) which is a subgraph of G in the
following way (see Figure 1). Fix a satisfying assignment f for Γ. For each clause,
represented by a vertex ci, we choose arbitrarily a literal x (¬x) which is satisfied
by the assignment f . Let vxj (wx

j , respectively) be the vertex corresponding to the
chosen literal which is incident with ci in G. We add the edge (ci, v

x
j) ((ci, w

x
j),

respectively) to G∨∨. Additionally, each vertex vxj and wx
j associated with a literal

satisfied by f is connected in G∨∨ with the neighboring vertices of color a and b.
It is straightforward to check that G∨∨ is a feasible solution for the MEC prob-

lem (i.e., each connected component of G∨∨ is colorful), and that G∨∨ has m con-
nected components containing 4 vertices, 2m connected components containing 3
vertices, and 3m singletons. The transitive closure of G∨∨ has 6 ·m+3 ·2m = 12m
edges. As G∨ is an optimal solution for the MEC problem in G, the transitive
closure of G∨ has at least as many edges as the transitive closure of G∨∨. ≥⊆
Lemma 5. If any assignment can satisfy at most a (1 − ι) fraction of the m
clauses of the formula Γ, then the transitive closure of G∨ has at most 12m −
Ψ(ι)m edges.

1 It can be proven that in this case the transitive closure of G∗ has exactly 12m edges,
but that is not needed in the later part of the reasoning.

692 A. Adamaszek and A. Popa

a

b c
d

e a

b c
d

e

ac ad ae

bd be ca

da

db

ea eb

Fig. 2. Creating an instance of the MCC problem (right) from an instance of the
Minimum Clique Partition (left). Base vertices and edges are drawn in black, and the
additional ones in gray. An optimal solution for both problems is obtained by removing
an edge (b, c).

Theorem 2. The Maximum Edges in Transitive Closure (MEC) problem is
APX-hard, even for graphs with only four colors.

4 Hardness of MCC

In this section we prove that the MCC problem does not admit polynomial-time
approximation within a factor of |V |1/14−Σ, for any ι > 0, unless P = NP , or
within a factor of |V |1/2−Σ, unless ZPP = NP . The results hold even if each
vertex color appears at most two times in the input graph. We prove our results
via a reduction from the Minimum Clique Partition problem.

Minimum Clique Partition: Given a simple, undirected graph G = (V,E),
find a partition of V into a minimum number of subsets V1, . . . , Vk such that the
subgraph of G induced by each set of vertices Vi is a complete graph.

The Minimum Clique Partition problem is equivalent to Minimum Graph
Coloring [9], and therefore it cannot be approximated in polynomial time within
a factor of |V |1/7−Σ for any ι > 0 [3], unless P = NP , or within a factor of
|V |1−Σ, unless ZPP = NP [6].

4.1 Reduction from Minimum Clique Partition

Let G = (V,E) be an instance of the Minimum Clique Partition problem. We cre-
ate an instance of the MCC problem, i.e., a vertex colored graph G∨ = (V ∨, E∨),
as follows. The reduction is illustrated in Figure 2.

1. The vertex set V ∨ = V ∨b ⊇ V ∨a consists of two parts. The set V ∨b = V is the
set of all vertices in G, each colored with a distinct color. We term these
vertices base vertices. The set V ∨a has two vertices, uv and vu, for each pair
of vertices u, v ∈ V such that (u, v) /∈ E. Both vertices uv and vu have the
same color, which is different from other colors in the graph. We refer to
the vertices from V ∨a as additional vertices. We emphasize that each color
appears at most two times in G∨.

Algorithmic and Hardness Results for the Colorful Components Problems 693

2. The set of edges E∨ = E∨b ⊇E∨a consists of two parts. First, E∨b = E is the set
of edges in G, which we term base edges. The set E∨a has two edges, (uv, u)
and (vu, v), for each pair of vertices u, v ∈ V such that (u, v) /∈ E (i.e., each
additional vertex uv is connected with a base vertex u). We refer to the edges
from E∨a as additional edges.

4.2 Analysis of the Reduction

Let G = (V,E) be an instance of the Minimum Clique Partition problem, and
G∨ = (V ∨, E∨) the corresponding instance of MCC, obtained by our reduction.
We first compare the costs of the optimal solution for both problem instances,
which leads to the main theorem of this section.

Lemma 6. If there is a partition of G into k cliques, then the optimal solution
for the MCC problem for G∨ has cost at most k.

Proof. Let G be a graph which can be partitioned into k cliques. We have to
show that there is a collection of edges E∨∨ ≤ E∨ in G∨, such that after removing
E∨∨ from G∨ we obtain a graph consisting of at most k colorful components. The
set of edges E∨∨ is exactly the set of base edges that have been removed from G
to obtain the collection of k cliques.

As we do not remove any additional edges of G∨ (i.e., the edges from the set
V ∨a), the resulting graph consists of k connected components. The only pairs of
vertices sharing the same color are pairs uv, vu such that u, v ∈ V and (u, v) /∈ E.
Then u and v must be in different connected components of the clique partition,
and so u and v (and therefore also uv and vu) are in different connected compo-
nents of the constructed graph. Each connected component of the constructed
graph is colorful. ≥⊆
Lemma 7. If the optimal solution for the MCC problem for G∨ has cost k, then
there exists a partition of G into k cliques.

Theorem 3. The Minimum Colorful Components (MCC) problem does not ad-
mit polynomial-time approximation within a factor of n1/14−Σ, for any ι > 0,
unless P = NP , or within a factor of n1/2−Σ, for any ι > 0, unless ZPP = NP ,
where n is the number of vertices in the input graph.

5 Open Problems

The APX-hardness result for the MEC problem requires that the input graphs
are colored with at least four colors. A natural question is, thus, to settle the
complexity of the problem for three colors (as for the case of two colors MEC is
easily solvable in polynomial time, using a maximum matching algorithm). An-
other open question is to design approximation algorithms for the MEC problem
or to strengthen the hardness of approximation result.

From the biological perspective it is interesting to analyze how our MSV algo-
rithm behaves on real data. Finally, we mention that an intriguing and challenging

694 A. Adamaszek and A. Popa

task is to find problems in this framework that admit practical algorithms and are
also meaningful for the biological applications.

Acknowledgements. We would like to thank Guillaume Blin for introducing
us to the problem and for useful discussions.

References

1. Ausiello, G., Protasi, M., Marchetti-Spaccamela, A., Gambosi, G., Crescenzi, P.,
Kann, V.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties, 1st edn. Springer-Verlag New York, Inc.,
Secaucus (1999)

2. Avidor, A., Langberg, M.: The multi-multiway cut problem. Theoretical Computer
Science 377(1-3), 35–42 (2007)

3. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability -
towards tight results. SIAM Journal on Computing 27(3), 804–915 (1998)

4. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Evaluation of
ILP-based approaches for partitioning into colorful components. In: Bonifaci, V.,
Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933,
pp. 176–187. Springer, Heidelberg (2013)

5. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R., Thiel, S., Uhlmann, J.:
Partitioning into colorful components by minimum edge deletions. In: Kärkkäinen,
J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 56–69. Springer, Heidelberg
(2012)

6. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. Journal of Com-
puter and System Sciences 57(2), 187–199 (1998)

7. He, G., Liu, J., Zhao, C.: Approximation algorithms for some graph partitioning
problems. Journal of Graph Algorithms and Applications 4(2) (2000)

8. Mushegian, A.R.: Foundations of Comparative Genomics. Elsevier Science (2010)
9. Paz, A., Moran, S.: Non deterministic polynomial optimization problems and their

approximations. Theoretical Computer Science 15(3), 251–277 (1981)
10. Sankoff, D.: OMG! Orthologs for multiple genomes - competing formulations -

(keynote talk). In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS
(LNBI), vol. 6674, pp. 2–3. Springer, Heidelberg (2011)

11. Savard, O.T., Swenson, K.M.: A graph-theoretic approach for inparalog detection.
BMC Bioinformatics 13(S-19), S16 (2012)

12. Zheng, C., Swenson, K., Lyons, E., Sankoff, D.: OMG! Orthologs in multiple
genomes - competing graph-theoretical formulations. In: Przytycka, T.M., Sagot,
M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 364–375. Springer, Heidelberg (2011)

On the Stability of Generalized Second Price

Auctions with Budgets

Josep Dı́az1,Δ, Ioannis Giotis1,2,Δ, Lefteris Kirousis3, Evangelos Markakis2,
and Maria Serna1,Δ

1 Departament de Llenguatges i Sistemes Informatics
Universitat Politecnica de Catalunya, Barcelona

2 Department of Informatics
Athens University of Economics and Business, Greece

3 Department of Mathematics, National & Kapodistrian University of Athens,
Greece and Computer Technology Institute & Press “Diophantus”

{diaz,igiotis,mjserna}@lsi.upc.edu,
lkirousis@math.uoa.gr, markakis@gmail.com

Abstract. The Generalized Second Price (GSP) auction used typically
to model sponsored search auctions does not include the notion of budget
constraints, which is present in practice. Motivated by this, we introduce
the different variants of GSP auctions that take budgets into account in
natural ways. We examine their stability by focusing on the existence of
Nash equilibria and envy-free assignments. We highlight the differences
between these mechanisms and find that only some of them exhibit both
notions of stability. This shows the importance of carefully picking the
right mechanism to ensure stable outcomes in the presence of budgets.

1 Introduction

Advertising on Internet search engines has evolved into a phenomenal driving
force both for the search engines and the advertising businesses. It is a modern
and rapidly growing method that is now being implemented in various other
popular sites beyond search engines, such as blogs, and social networking sites.
Although some rightful concern has been raised regarding privacy issues and
distinguishability from non-sponsored results, there are clear advantages to the
advertisers who can efficiently reach their target audiences and observe the re-
sults of their ad campaign within days or even hours. At the same time, online
ads account for a large share of the profits for search engines and other partici-
pating web-sites. Even the web-user experience can be enhanced, by the delivery
of additional information relevant to their queries.

� Josep Dı́az, Maria J. Serna and Ioannis Giotis supported by the CICYT project
TIN-2007-66523 (FORMALISM). This research has also been co-financed by the
European Union (European Social Fund ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of the National Strategic
Reference Framework (NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 695–706, 2014.
� Springer-Verlag Berlin Heidelberg 2014

696 J. Dı́az et al.

In a typical instance, a user queries a search engine for a particular keyword
of commercial interest, and the search engine determines the ads to be displayed
by means of an auction. The prevailing system uses a pay-per-click policy, i.e.,
it only charges an advertiser when the user clicks on the corresponding link and
is diverted to the advertiser’ s web-site.

The mechanism used can be viewed as an auction for multiple homogenous
indivisible items, the advertisement areas available, with single-demand buyers,
since it is not desirable for the same advertisement to appear more than once.
Such auctions can find applications in a wide variety of scenarios besides In-
ternet advertising where buyers have a valuation per unit of a particular good
but the setting is restricted to selling only single fixed-sized bundles. For exam-
ple, consider selling different fixed-sized shipments of a food product when the
seller cannot send more than one shipment to the same destination or frequency
spectrum auctions of different fixed-sized bandwidths where regulations do not
permit buying more than one continuous bandwidth. Noting that the mecha-
nisms can be applied in much different scenarios, we will work in the context
of Internet search advertising both because of its wide-spread application today
and also because of the significant focus it receives in related literature.

In the early history of sponsored search auctions, the allocation of slots to
advertisers was determined by a first-price auction, as in the systems originally
used by Overture. Later on, Google was the first to switch to a second-price auc-
tion, an approach which demonstrated superior characteristics and was quickly
adopted by the rest of the major search engines. The main idea is that the ad-
vertisers declare how much they are willing to pay for a click to their ad but
they are charged instead a lesser amount equal to the next lower competing bid.
Apart from its elegant simplicity, this scheme has been quite successful in terms
of its generated revenue as well. In the literature, this system is commonly known
as the Generalized Second-Price (GSP) auction and, by now, a large volume of
work has emerged on the study of GSP auctions and related mechanisms, see
e.g., the surveys [15] and [17].

However, an aspect that has been often ignored, especially in the early liter-
ature, is the presence of a budget constraint, requested from the advertisers to
limit their exposure and expenditure. We believe this is a key parameter, essen-
tial in accurately understanding and evaluating the systems used in practice.

Our Contribution. Our main conceptual contribution is a study of Generalized
Second-Price auctions under the presence of budgets. First we showcase that
ignoring these constraints might lead to unstable outcomes. We then introduce
three simple and natural extensions of the GSP mechanism, that take budgets into
account. As it is not straight-forward to define a single natural mechanism, we
define these variants motivated by the key desirable properties of second-price auc-
tions. For all mechanisms, we investigate the existence of Nash equilibria and envy-
free assignments, which are the main notions of stability that have been considered
in the literature. For the first mechanism, we show that a Nash equilibrium might
not always exist, yet an envy-free assignment is always achievable. For the other
two mechanisms, we show that they always possess envy-free Nash equilibria, in

On the Stability of Generalized Second Price Auctions with Budgets 697

fact we show that any envy-free assignment can be realized as an equilibrium of
the mechanisms under consideration. In our model, we consider the budget as part
of a bidder’s strategy, i.e., we have private budgets. An interesting and surprising
outcome of our study is that in the case of public budgets Nash equilibria do not
always exist, despite the existence of envy-free assignments. In contrast to mech-
anism design problems, where having public budgets usually eases the design of a
truthful algorithm, here we realized that having public budgets may eliminate the
existence of stable profiles. Of separate interest might be an algorithmic process
than can construct an envy-free assignment in our model.

1.1 Related Work

Varian [19] and Edelman et al. [11] have been the two seminal works on equilib-
rium analysis of GSP auctions without budgets. They established the existence
of a Nash equilibrium which also satisfies other desirable stability properties
such as being welfare-maximizing and envy-free. A further analysis of envy-free
Nash equilibria, by taking into account the quality factor of the advertisers was
also provided in [16].

The notion of budget constraints has been introduced in various models
and objectives, such as, among others, in [4], [6], [12], [7] and [13]. Recent
work on truthful mechanism design, mainly inspired by the clinching auction
of Ausubel [3], has led to the introduction of truthful Pareto-optimal mecha-
nisms in the presence of budgets, see e.g. [10,14,9]. Ashlagi et al.introduced the
model we’ll be using in [2]. However, all these mechanisms employ techniques
that are very different from the GSP scheme in order to achieve truthfulness.
As a result, they lack the simplicity of second price auctions at the expense of
achieving better properties.

The work of Arnon and Mansour [1] is conceptually closer to our approach.
They studied second-price auctions with budget constraints but their model
simplifies the items for sale to clicks, as opposed to the slots, allowing a player
to potentially receive more or less clicks than a single slot could offer. This
deviates from the one player per slot paradigm used in practice.

Finally, a different direction that has been pursued recently is the performance
of mechanisms in terms of the generated social welfare. Price of Anarchy analysis
for auctions was initiated in [8], see also [5], for sponsored search auctions without
budgets. For certain settings with budget constraints, some results have been
recently obtained in [18] (which however do not have any implications for our
proposed mechanisms). Our work does not focus on Price of Anarchy, which we
leave for future research, but on existence of stability concepts.

2 Preliminaries

2.1 Model

Our model is the same as in Ashlagi et al. [2], a natural extension to budget
limited players of the model introduced by Varian [19] which is widely adopted
in related literature.

698 J. Dı́az et al.

We assume we have k slots, each with a fixed, distinct1 and publicly known
click-through rate (CTR), θj for slot j, representing the number of clicks received
in a fixed time period (typically a day), independently of the advertisement
displayed. Let us order the slots such that θ1 > θ2 > . . . > θk. Even though
the click-through rates are probabilistic in nature, we will make the typical
assumption that they are deterministically realized for simplification purposes;
θi will really correspond to the expected click-through rate of slot i. Contrary
to the numerical ordering, we will typically use the terminology “higher” and
“lower” slots referring to slots of higher and lower CTR. Finally, for ease of
illustration, we will ignore the bidder-dependent quality factor that is usually
incorporated in calculating click-through rates in the separable model.

We have n ⊕ k players (advertisers). Each player i has a private valuation vi
representing the perceived value per click. Each player also has a budget con-
straint Bi, indicating the total amount he is willing to spend in a fixed time
period, not on a per click basis. We will also assume that these budget val-
ues are pairwise distinct. This assumption has been necessary in other works
as well [2], and affects many properties in related mechanisms [10,2]. In fact,
as we will exhibit later on, envy-free assignments, which is one of the stability
concepts we are interested in, are not guaranteed to exist when budgets are not
distinct.Hence, similarly to previous works, we also choose to adopt the distinct-
ness of budgets.

Each player i is interested in maximizing θs(i)(vi−p(i)), where s(i) is the slot
assigned to i and p(i) the accompanying price per click requested by the respec-
tive mechanism. At the same time, he must also satisfy the budget constraint,
θs(i)p(i) ≤ Bi. If this condition holds, we say the player can afford slot s(i). We
wish to enforce strict budget constraints so we define the utility of the players
whose budget constraints are violated to be minus infinity as is typically done
in the literature; any other negative value would also serve our purpose (i.e.,
budget violations are less desirable than not getting a slot). More formally,

ui =

0, if i was not awarded a slot,
θs(i)(vi − p(i)), if θs(i)p(i) ≤ Bi,
−∞, otherwise.

2.2 Second-Price Auctions under Budgets

The players submit value-bids bi, representing the maximum amount they are
willing to pay per click. These bids do not necessarily form a truthful declaration
of the players’ values to the mechanism. Similarly, the players also submit a
budget-bid gi to declare their budget. We will use the term bid to refer to the
combination of these two types or to one particular type when clear from context.
In the case of ties, we assume there exists a fixed a priori defined ordering of the
players based on which tie-breaking is resolved.

It is not trivial to introduce mechanisms that take budgets into account in
a straightforward and natural way. To address this, we first ponder what con-

1 This assumption is derived from the distinct space these slots occupy on a web-page.

On the Stability of Generalized Second Price Auctions with Budgets 699

stitutes a second-price mechanism by noting some key properties of generalized
second-price auctions:

• The slot allocation should be performed by a simple and efficient process.
• The allocation should be in accordance with the bid ordering. If a player

raises his bid he should be getting at least the slot he was getting before and
should he lower his bid he should be getting at most the previous slot.
• Furthermore, if a bidder raises his bid, this should cause his total payment

to potentially rise and respectively lowering his bid potentially lowers his
payment.
• Finally, the price per click for each slot should be determined by either the

next lower bid, the bid of the player awarded the next slot or the minimum
bid required to obtain the slot. While these three concepts coincide in the
regular GSP mechanism, this is not the case when one introduces budgets.

We first consider the GSP mechanism without budgets in our context, only
to highlight that ignoring budgets can lead to unstable outcomes.

Definition 1 (Budget-Oblivious). The budget-oblivious second-price auc-
tion, in short, BOSP, orders the value-bids in decreasing order and then assigns
the slots in that order, ignoring the budget constraints. Naturally, the price for
each slot is determined by the immediately lower value-bid.

Since BOSP, as is shown in Section 3, does not have good stability properties,
we turn our attention on mechanisms that respect the budget constraints by
not assigning slots/prices to players that can afford them as declared by their
budget-bids. The first interpretation of second-price pricing, charging the next
lower bid, leads us to the following mechanism.

Definition 2 (Budget-Conscious by Price). We define the budget-conscious
by price second-price auction, in short, BCSP(price), as the mechanism which
first orders the value-bids in decreasing order and assigns a price per click for each
player equal to the immediately lower value-bid in the bid ordering. Then, BCSP-
(price) assigns the players to slots in order of decreasing value-bids, respecting
the budget constraints of each player as declared by their budget-bids, by assigning
each player to the highest unassigned slot he can afford with his assigned price. If the
player cannot afford any slot, he is left unassigned and he is not charged anything.

Note that under this mechanism a player assigned to a slot might end up paying
more per click than a player in a higher slot but we are guaranteed that all
budget constraints of assigned players are satisfied. Also note that some slots
might end up unassigned if no player can afford to occupy them.

The mechanism above is a natural way to guarantee budget compliance but
raises a fairness issue, as players might be declaring value-bids as the maximum
amount they are willing to pay and getting a slot that they cannot afford to pay
if they were to pay their own bid. As will be evident in the later sections, this
can lead to players intentionally raising their bid to just below their competitor’s
bid. The following mechanism addresses this.

700 J. Dı́az et al.

Definition 3 (Budget-Conscious by Bid). We define the budget-conscious
by bid second-price auction, in short, BCSP(bid), similarly to BCSP(price)
except the mechanism now requires the players to be able to afford their slot if
they were to pay a price per click equal to their own value-bid. The players are
ordered in decreasing order of value-bids and the price of each player is set to
the next lower bid. Then, the players are assigned from the highest bidder to the
lower, one by one, to the highest available unassigned slot that they can afford
should they were to pay their own bid.

The second way of interpreting second-price prices, charging prices equal to the
value-bid of the player ending up occupying the next slot, first, has definitional
issues since we cannot know if our player can afford a slot without knowing who
gets the next one and secondly, might charge a player more than his bid. For
these reasons, we do not investigate mechanisms of this type in this work.

Finally, we introduce a mechanism that considers what the players are willing
and afford to pay for a slot by considering the minimum as implied from their
value and budget bids. This mechanism essentially captures pricing by charging
the minimum amount required to obtain a slot.

Definition 4 (Best Offer Budget-Conscious). We define the best offer bud-
get-conscious second-price auction, in short, BCSP(best offer), as the mech-
anism which intuitively awards each slot to the player that can offer the most
“money” but charges them the next lower amount offered. More formally, each
slot s, one by one from higher to lower, is awarded to the unassigned player
with the largest min{bi, gi/θs} and he is charged a price per click equal to the
second largest such value among unassigned players. We note that under this
mechanism, the price charged for each slot is the minimum bid required to secure
the slot. Alternatively, one can think of the slot rewarded to the player with the
highest min{θsbi, gi}, and paying the second highest such amount, representing
the total offer of the player and the total price charged.

It should be pointed out that a slot in BCSP(best offer), in turn of decreasing
CTR, is offered to the player who is willing to pay the most, given that does
not violate his declared budget; he is then charged what the second such player
would pay (not counting players who already got a slot). Whereas in the previous
two budget-conscious mechanisms, each player, in turn of its bid, chooses the
best object he can afford and pays the bid of the next player in line. The above
two approaches are obviously equivalent in any mechanism that does not refuse
giving a slot to a player who cannot afford it. However, once we introduce into
the mechanism the additional requirement of refusing to give objects to anybody
who cannot afford it, then the above distinction becomes necessary.

In all mechanisms, we assume that players not awarded a slot are not charged
a payment and that the price of the lowest bidding player is zero, should he be
awarded a slot. Finally, given a finite set of players, we note that the allocation
of slots and pricing can be determined efficiently in all defined mechanisms.

On the Stability of Generalized Second Price Auctions with Budgets 701

2.3 Stable Assignments

It is easy to see that none of the mechanisms defined above are incentive-
compatible. There are cases where a player might receive a higher utility by
“lying” about his value and getting a lower slot at a beneficial price, even if
other players are truthfully bidding their values. Naturally, we turn our atten-
tion to notions of stability, a requirement to analyze significant properties of
these auctions and in general a desired property for the advertisers as well. As
usual, we will focus on the notion of Nash equilibrium.

Definition 5 (Nash Equilibrium). A profile of bids, ⊗bi, gi∈ for each player i,
forms a Nash equilibrium if no player has an incentive to deviate to a different
strategy ⊗b′i, g′i∈, for any ⊗b′i, g′i∈.
In related work [19,11], the notion of symmetric or envy-free equilibrium was
defined. Under the generalized second-price auction without budget constraints,
this class of envy-free equilibria is a subset of Nash equilibria.

Definition 6 (Envy-Free Assignment). We define an envy-free assignment
as a slot allocation s(·), where no slot is left unassigned, along with a set of prices
per click p(·), assigning slot s(i) to player i and charging him p(i) per click, such
that for all players i we have

∗i′ with 1 ≤ s(i′) ≤ k, ui ⊕
{

max{θs(i′)(vi − p(i′)), 0}, if θs(i′)p(i′) ≤ Bi,
0, otherwise,

where ui is the utility of player i as defined earlier.

Note that an envy-free assignment also guarantees rationality: p(i) ≤ vi for
all players i. We say that an envy-free assignment is realizable under a certain
mechanism, if a set of bids exists such that the allocation and pricing generated
by the mechanism under this set of bids matches the allocation and pricing of
the envy-free assignment.

Under BOSP, where slot allocation depends only on the value-bids and not
on the budgets or budget-bids, the constraints on the bids that realize an envy-
free assignment are stricter than those of a Nash equilibrium. The same holds
for BCSP(bid), as all players can pay their own bid for their slot and intuitively
cannot be forced out of position by someone else’ s bid2. Similarly, under BC-
SP(best offer), a player cannot get a higher slot without paying more than
the current player occupying the slot; again a realizable envy-free assignment
effectively produces a Nash equilibrium. Hence, under the mechanisms BOSP,
BCSP(bid), BCSP(best offer), the realizable envy-free assignments form a
subset of the set of Nash equilibria.

Under BCSP(price) however, the slot allocation is dependent on budgets
and intuitively, one could alter the allocation to his benefit by forcing other

2 In more detail, the instability arises when some player can alter his bid to raise
someone else’ s price, forcing the mechanism to evict him from his slot based on
budget constraints and subsequently benefiting the first player.

702 J. Dı́az et al.

players out of budget, hence there might exist bids that realize an envy-free
assignment but do not form a Nash equilibrium.

For the other direction, it is trivial to find an example where the outcome of
a Nash equilibrium is not an envy-free assignment in all mechanisms building on
the intuition that someone might be envious of someone else’ s higher slot but
they are not able to get it at that price.

3 The Budget-Oblivious Second-Price Auction

BOSP lacks the notions of stability defined earlier.

Theorem 1. There are settings where no Nash equilibrium exists under BOSP.

A simple counterexample is a game with two slots with rates 1 and 0.4 and three
players with value/budget 50/50, 16/5 and 8/2 and the proof is presented in the
full version.

Since under BOSP, realizable envy-free assignments are a subset of Nash
equilibria it follows that:

Corollary 1. There are settings where no realizable envy-free assignment exists
under BOSP.

Let us point out here that in Lemma 3, stated below, we show that envy-free
assignments always exist (under the assumption of distinctness of budgets). By
the above corollary, such assignments are not realizable under BOSP.

4 The Budget-Conscious by Price Second-Price Auction

We now turn our attention to BCSP(price). We first show

Theorem 2. There are settings in which no Nash equilibrium exists for BCSP-
(price).

To prove Theorem 2, we will first show that Nash equilibria do not always exist
in the special case where players are budget-bidding their true constraints and
then extend the result to the general case.

Lemma 1. There are settings where players are budget-bidding their true con-
straints, and no Nash equilibrium exists under BCSP(price).

Proof. Consider two slots with θ1 = 1, θ2 = 0.4 and 3 players with attributes
as shown in Figure 1. We assume that the tie-breaking ordering favors player
3 and then player 2. In order to show that a Nash equilibrium does not exist
we have to consider all orderings of bids and for each such case all possible slot
assignments. Intuitively, we will showcase two types of instability. If a bid is low
so that the player paying it has the budget constraint satisfied then it can be
easily overbid or if a bid is high then underbidding below it will force that player
out of budget for the slot.

On the Stability of Generalized Second Price Auctions with Budgets 703

Player 1 Player 2 Player 3

Value 50 16 8

Budget 50 5 2

Fig. 1. Example of non-existence of Nash equilibrium under BCSP(price), having two
slots with θ1 = 1, θ2 = 0.4

We start by considering the case where b1 > b2 > b3 and slot 1 is assigned to
player 1 and slot 2 to player 2. This means that these players can afford these
slots, therefore we must have b2 ≤ 50 and b3 ≤ 12.5. If b2 > 5 then player 1 can
bid b2−ε > b3, for some small ε, and still get slot 1 at a lower price, since player
2 cannot afford it. If b2 ≤ 5 then player 3 can bid b2 + ε < b1 and gain strictly
positive utility.

If player 1 is assigned to slot 2 because he cannot afford it and player 2 gets
slot 1, we must have b2 > 50 and b3 ≤ 5. If player 1 bids b2 − ε > 5 > b3, then
player 2’s bid will be the highest bid but he will not be able to afford slot 1
anymore, which will end up at player 1 for a lower price per click than before.

The rest of the cases follow similarly and we present them in the full version
of this paper. ≥⊆
Lemma 2. Under BCSP(price), if a Nash equilibrium exists then a Nash equi-
librium also exists where the players are budget-bidding their true constraints.

To prove Lemma 2, we show that when a player changes his budget-bid to his
true budget the same slot allocation can be achieved. This is combined with an
adequate shifting of value-bids that maintains the same prices and that concludes
the proof of Lemma 2 and of Theorem 2.

Despite the non-existence of Nash equilibria, all envy-free assignments are
realizable under BCSP(price) (and there exists at least one such assignment).

Theorem 3. There exists an envy-free assignment which is realizable under
BCSP(price).

The proof of the Theorem is based on Lemma 3 and Lemma 4 below.

Lemma 3. Under budget constraints, there always exists an envy-free assign-
ment.

Proof outline. We present a proof outline. We first note that an envy-free as-
signment can always be obtained from the mechanism in [2]. We present here
an alternate way to obtain an envy-free assignment. Our procedure produces a
different assignment than that of [2] in some settings, has a shorter proof and
we believe it has some value on its own.

We run the following procedure that completes with all slots assigned in an
envy-free assignment. The slots are initially free and have an assigned infinite
price. We pick a free slot and lower its price until some player can obtain non-
negative utility, at which point we award him the slot at that price and stop
lowering it.

704 J. Dı́az et al.

We repeat similarly with other slots but allow players that are assigned to
request the particular slot if its price makes it more beneficial for them. This
leads to a reassignment of the player. We then effectively maintain the envy-free
conditions during the whole process.

We have to be more careful when a player can receive equal utility from his
assigned slot and the slot whose price is being lowered as we cannot further lower
either price without potentially inducing envy or infinite switch loops among the
players. We deal with this by simultaneously lowering both prices in a uniform
manner and by a careful analysis on potential outcomes and progress measures
to guarantee the termination and maintenance of envy-free conditions. For more
details, we refer the reader to the full version of the paper. �

Lemma 4. Any envy-free assignment is realizable under BCSP(price).

We define value bids such that the mechanism produces the same allocation and
prices as in the envy-free assignment. The budget-bids can be set to match the
true budgets of the players.

5 Budget-Conscious by Bid and Best Offer Second-Price
Auctions

Recall that under BCSP(bid) and BCSP(best offer), realizable envy-free
assignments are a subset of Nash equilibria. We are going to show that for these
two mechanisms, Nash equilibria exist, by establishing that envy-free assign-
ments are realizable in both BCSP(bid) and BCSP(best offer). Given an
envy-free assignment, we pick the bids such that the mechanism assigns the play-
ers in the desired slots and achieves the same prices. The proofs of the following
theorems are presented in the full version.

Theorem 4. Under BCSP(bid), there is always a Nash equilibrium that pro-
duces an envy-free assignment.

Theorem 5. Under BCSP(best offer), there is always a Nash equilibrium
that produces an envy-free assignment.

Note that in both theorems we need to set the budget-bids of the players different
from their true budgets. It turns out this is necessary, a perhaps surprising
result as having budgets publicly known was necessary for truthful mechanisms
in related work [10,2].

Theorem 6. There are settings with public budgets, where a Nash equilibrium
does not exist under both BCSP(bid) and BCSP(best offer).

As envy-free assignments realizable under BCSP(bid) or BCSP(best offer)
form a subset of Nash equilibira of these two mechanisms, respectively, the The-
orem above implies that there are settings where neither of these mechanisms
can realize any envy-free assignment (guaranteed to exist by Lemma 3), unless
players are allowed to bid non-true budgets.

On the Stability of Generalized Second Price Auctions with Budgets 705

6 Discussion

The consideration of several variants of mechanisms, introduced not out of idle
curiosity, but as representations of all the natural answers to natural questions
raised by the introduction of budgets, and the examination of their properties
and differences is what we consider as our primary contribution in this work. We
believe our work can serve as a starting point for studying further the properties
of GSP auctions under budget constraints. Although we studied these auctions
in the context of sponsored search, second-price auctions are widely used in many
different settings both in off-line and on-line scenarios. As such, our results are
applicable in a much wider context.

In the area of sponsored search, a further step is required towards the more
accurate modeling of the deployed systems. In practice, a player can transition
between slots during a time period, as players are moderated according to their
budget depletion rate. Similarly to the majority of related work on keyword
auctions with budgets, we chose to study the static setting first both as a stepping
stone and in its own interest for settings outside of keyword auctions. An analysis
on the effects of budget constraints in a dynamic setting that would extend upon
our results, would contribute towards a more accurate modeling of sponsored
search auctions. Another interesting direction for future research is to evaluate
the performance of these mechanisms in terms of the generated welfare. This
type of Price of Anarchy analysis for non-truthful auctions was initiated in [8],
and for certain settings with budget constraints, some results have been recently
obtained in [18].

Acknowledgements. We would like to thank Konstantinos Gavriil for pointing
out to us the counterexample that without distinct budgets, envy-free assign-
ments may fail to exist. We also want to thank Giorgos Birbas for valuable dis-
cussions during the preparation of this work. Finally, we thank the anonymous
reviewers for their very helpful comments.

References

1. Arnon, A., Mansour, Y.: Repeated budgeted second price ad auction. In: Proceed-
ings of the 4th Symposium on Algorithmic Game Theory. pp. 7–18. Springer-Verlag
(2011)

2. Ashlagi, I., Braverman, M., Hassidim, A., Lavi, R., Tennenholtz, M.: Position auc-
tions with budgets: existence and uniqueness. B.E. journal of Theoretical Eco-
nomics Advances (to appear, 2013)

3. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. The Amer-
ican Economic Review 94(5), 1452–1475 (2004)

4. Borgs, C., Chayes, J., Immorlica, N., Mahdian, M., Saberi, A.: Multi-unit auctions
with budget-constrained bidders. In: ACM Conference on Electronic Commerce
(EC). pp. 44–51 (2005)

5. Caragiannis, I., Kaklamanis, K., Kanellopoulos, P., Kyropoulou, M., Lucier, B.,
Paes Leme, R., Tardos, E.: On the efficiency of equilibria in generalized second
price auctions. arxiv:1201.6429 (2012)

706 J. Dı́az et al.

6. Chakrabarty, D., Zhou, Y., Lukose, R.: Budget constrained bidding in keyword
auctions and online knapsack problems. In: Workshop on Internet and Network
Economics (WINE). pp. 566–576 (2008)

7. Charles, D., Chakrabarty, D., Chickering, M., Devanur, N.R., Wang,
L.: Budget smoothing for internet ad auctions: a game theoretic ap-
proach. In: Proceedings of the fourteenth ACM conference on Electronic
commerce. pp. 163–180. EC ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2482540.2482583

8. Christodoulou, G., Kovács, A., Schapira, M.: Bayesian combinatorial auctions. In:
ICALP (1). pp. 820–832 (2008)

9. Colini-Baldeschi, R., Henzinger, M., Leonardi, S., Starnberger, M.: On multiple
keyword sponsored search auctions with budgets. In: Czumaj, A., Mehlhorn, K.,
Pitts, A.M., Wattenhofer, R. (eds.) Automata, Languages, and Programming -
39th International Colloquium, ICALP 2012. Lecture Notes in Computer Science,
vol. 7392, pp. 1–12. Springer (2012)

10. Dobzinski, S., Lavi, R., Nisan, N.: Multi-unit auctions with budget limits. In: Pro-
ceedings of the 2008 49th Annual IEEE Symposium on Foundations of Computer
Science. pp. 260–269. FOCS ’08, IEEE Computer Society, Washington, DC, USA
(2008), http://dx.doi.org/10.1109/FOCS.2008.39

11. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet advertising and the generalized
second-price auction: Selling billions of dollars worth of keywords. The American
Economic Review 97(1), 242–259 (2007)

12. Feldman, J., Muthukrishnan, S., Pal, M., Stein, C.: Budget optimization in search-
based advertising auctions. In: ACM Conference on Electronic Commerce (EC).
pp. 40–49 (2007)

13. Fiat, A., Leonardi, S., Saia, J., Sankowski, P.: Single valued combinatorial
auctions with budgets. In: Proceedings of the 12th ACM conference on Elec-
tronic commerce. pp. 223–232. EC ’11, ACM, New York, NY, USA (2011),
http://doi.acm.org/10.1145/1993574.1993609

14. Goel, G., Mirrokni, V.S., Leme, R.P.: Polyhedral clinching auctions and the ad-
words polytope. In: ACM Symposium on Theory of Computing (STOC). pp. 107–
122 (2012)

15. Lahaie, S., Pennock, D., Saberi, A., Vohra, R.: Sponsored search auctions. In:
Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game
Theory, chap. 28, pp. 699–716. Cambridge University Press (2007)

16. Lahaie, S., Pennock, D.: Revenue analysis of a family of ranking rules for keyword
auctions. In: Proc. ACM Conference on Electronic Commerce (EC). pp. 50–56. San
Diego, California, USA (June 2007)

17. Maillé, P., Markakis, E., Naldi, M., Stamoulis, G.D., Tuffin, B.: Sponsored search
auctions: an overview of research with emphasis on game theoretic aspects. Elec-
tronic Commerce Research 12(3), 265–300 (2012)

18. Syrgkanis, V., Tardos, É.: Composable and efficient mechanisms. In: ACM Sym-
posium on Theory of Computing (STOC 2013). pp. 211–220 (2013)

19. Varian, H.: Position auctions. International Journal of Industrial Organization 25,
1163–1178 (2005)

http://doi.acm.org/10.1145/2482540.2482583
http://dx.doi.org/10.1109/FOCS.2008.39
http://doi.acm.org/10.1145/1993574.1993609

Approximation Algorithms for the Max-Buying

Problem with Limited Supply�

Cristina G. Fernandes and Rafael C.S. Schouery

Department of Computer Science, University of São Paulo, Brazil
{cris,schouery}@ime.usp.br

Abstract. We consider the Max-Buying Problem with Limited Supply,
in which there are n items, with Ci copies of each item i, and m bidders
such that every bidder b has valuation vib for item i. The goal is to find a
pricing p and an allocation of items to bidders that maximize the profit,
where every item is allocated to at most Ci bidders, every bidder receives
at most one item and if a bidder b receives item i then pi ≤ vib. Briest
and Krysta presented a 2-approximation for this problem and Aggarwal
et al. presented a 4-approximation for the Price Ladder variant where the
pricing must be non-increasing (that is, p1 ≥ p2 ≥ · · · ≥ pn). We present
a randomized e/(e−1)-approximation for the Max-Buying Problem with
Limited Supply and, for every ε > 0, a (2+ε)-approximation for the Price
Ladder variant.

Keywords: pricing problem, unit-demand auctions, approximation
algorithms.

1 Introduction

One interesting economic problem faced by companies that sell products or pro-
vide services to consumers is to choose the price of products or services in order
to maximize profit. If prices are high then some consumers will not want (or will
not be able) to buy the product and if the prices are low, the company might
obtain a low profit. This is a vastly studied problem, with different models for
different situations and a great diversity of approaches [13,14,16,17].

One way to address this problem is through the nonparametric approach [15],
where the company collects the preferences of consumers groups (for example,
using a website) and optimizes according to some assumptions on the consumer
behavior.

In this scenario, we have n products or services, that we will call items, and
there are m consumers, that we will call bidders, in the market. At first, we
consider that there is an unlimited supply of every item. The auctioneer (the
price setter) wants to assign a price pi for every item i with the objective of
maximizing his profit (the sum of the prices of sold items considering multiplic-
ities). For this, the auctioneer gathers information about the valuations of the

α Research partially supported by CNPq (Proc. 309657/2009-1 and 475064/2010-0)
and FAPESP (Proc. 2009/00387-7 and 2013/03447-6).

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 707–718, 2014.
© Springer-Verlag Berlin Heidelberg 2014

708 C.G. Fernandes and R.C.S. Schouery

bidders, that is, the largest amount that a bidder b is willing to pay for item i,
denoted by vib.

First of all, we consider that our market is unit-demand, that is, every bidder
desires to buy exactly one item. But a bidder b will only buy an item if it is not
too expensive (that is, if pi ⊕ vib). We call such items feasible for b. If there is
no feasible item for b, then b does not buy any item.

Three models were introduced by Rusmevichientong et al. [15]. In the
Min-Buying Problem, every bidder buys one of the least expensive items
that are feasible (for him). In the Rank-Buying Problem, one is also given
the preference order among the items for every bidder, and a bidder buys the
most preferred feasible item. Finally, in the Max-Buying Problem, every bid-
der buys one of the most expensive items that are feasible.

There are also some known variants of the problems mentioned above. In one
of the variants, called limited supply, every item has a maximum number of
copies that can be sold. Observe that this is a generalization of the problem, as
one can take the maximum number of copies of each item to be the number of
bidders, and this corresponds to the original problem. The second variant is a
restriction on the original problem. Sometimes a company knows (or desires) an
ordering in the prices of its products, so one can require a price ladder, that
is, one is interested only in pricings p1 ≤ p2 ≤ · · · ≤ pn. Finally, one can also
focus on uniform budgets, where every bidder b has a set of items Ib and a
value Vb such that, for every item i, vib = Vb if i ∈ Ib and vib = 0 otherwise.

Rusmevichientong et al. [15] showed that, if we impose a price ladder, then
one can solve the Min-Buying Problem with Uniform Budgets in polynomial
time. Later on, Aggarwal et al. [1] proved several results for these models con-
sidering non-uniform budgets. They presented a polynomial-time approxima-
tion scheme for the Max-Buying Problem with a Price Ladder and showed how
to reduce the Rank-Buying Problem with a Price Ladder to the Max-Buying
Problem with a Price Ladder. They also presented a 4-approximation algo-
rithm for the Max-Buying Problem with a Price Ladder and Limited Supply.
For the case without the price ladder requirement, Aggarwal et al. presented
an e/(e− 1)-approximation algorithm for the Max-Buying Problem along with
a lower bound of 16/15, a log(m)-approximation that can be used for the three
models and a 1+Θ lower bound for the Min-Buying Problem, for some constant Θ.

Another variant considered by Aggarwal et al. [1] is the online version of
the Max-Buying Problem with Limited Supply, where we know the valuation
matrix v in advance but we do not know the arrival order of the bidders and
we have to choose a pricing. When a bidder arrives, he buys the most expensive
feasible item that still has an unsold copy. They proved that, for any fixed
pricing, the revenue obtained by any ordering of the bidders is at least 1/2 of
the revenue obtained by an optimal ordering of the bidders. From this, it follows
that any ι-approximation for the Max-Buying Problem with Limited Supply
(with or without a price ladder) is also 2ι-competitive for the online version.

Briest and Krysta [3] showed that the Min-Buying Problem (with or with-
out a price ladder) is not approximable within O(logΔm) for some positive

Approximation Algorithms for the Max-Buying Problem 709

constant Θ, unless NP ⊗ DTIME(nO(log log n)), within O(ΔΔ) where Δ is an up-
per bound on the number of non-zero valuations per bidder, and within O(nΔ)

unless NP ⊗ DTIME(2O(nΘ)) for every Γ > 0. They also showed that the Max-
Buying Problem with a Price Ladder is strongly NP-hard and they presented
a 2-approximation algorithm for the Max-Buying Problem with Limited Supply
(without a price ladder).

For the Min-Buying Problem with Uniform Budgets, Briest [2] showed that the
problem cannot be approximated within O(logΔ |B|) for some Θ > 0 if we assume
some specific hardness of refuting random 3SAT-instances or approximating the
balanced bipartite independent set problem in constant degree graphs. Later on,
Chalermsook et al. [5] presented lower bounds of Ψ(Δ1/2) (unless P = NP) and

Ψ(log1−Δ(m+ n)) for any positive constant Θ (unless NP ⊗ DTIME(nO(logΘ n)),
where Γ is a constant depending on Θ). Finally, Chalermsook et al. [6] presented
a lower bound of Ψ(min(Δ1−Δ, n1/2−Δ)) (using the Exponential Time Hypothesis)
for any positive constant Θ for this problem.

Guruswami et al. [9] studied the Envy-Free Pricing Problem, where a bidder b
must receive an item in the set Db = {i ∈ I : pi < vib} that maximizes vib − pi.
If such set is empty, then b must either receive no item or receive an item such
that pi = vib. The problem was considered in a more general setting where bid-
ders have valuations for bundles of items (like in a combinatorial auction), but
their work focus on unit-demand auctions and also on single-minded bidders. Gu-
ruswami et al. proved that the Envy-Free Pricing Problem for the unit-demand
case is APX-hard and provided an O(logn)-approximation for it. Also, as the
Envy-Free Pricing Problem with Uniform Budgets for the unit-demand case is
the same problem as the Min-Buying Problem with Uniform Budgets, the lower
bounds from Briest [2], Chalermsook et al. [5], and Chalermsook et al. [6] also
hold for the Envy-Free Pricing Problem.

1.1 Our Results

We present two new approximation algorithms for the Max-Buying Problem
with Limited Supply, one for the general case and another for the case where
a price ladder is required. Both algorithms improve the previously best know
approximation ratio for these problems. (A version of our with all the proofs can
be found in the arXiv.)

For the Max-Buying Problem with Limited Supply (without the price ladder
requirement), we present an e/(e−1)-approximation improving the previous up-
per bound of 2 by Briest and Krysta [3]. (Recall that e/(e − 1) < 1.582.) Also,
this algorithm has the same approximation ratio as the algorithm for the Max-
Buying Problem (with unlimited supply) presented by Aggarwal et al. [1]. Recall
that unlimited supply is a particular case of our problem where the number of
copies of every item is the number of bidders. We believe that the algorithm is
interesting by itself: it uses an integer programming formulation with an expo-
nential number of variables to do a probabilistic rounding and also it explores
some structure of the problem that could be useful when developing approxima-
tions for the other problems previously described.

710 C.G. Fernandes and R.C.S. Schouery

For the Max-Buying Problem with Limited Supply and a Price Ladder, we
present a family of algorithms parametrized by a positive rational Θ such that
the algorithm is polynomial for constant Θ and provides an approximation ratio
of 2 + Θ.

Notice that, using the result presented by Aggarwal et al. [1], our first algo-
rithm is 2e/(e− 1)-competitive for the online version of the Max-Buying Prob-
lem with Limited Supply and our second algorithm is (4 + Θ)-competitive for
the online version of the Max-Buying Problem with Limited Supply and a Price
Ladder.

This paper is organized as follows. In the next section, we present some nota-
tion and describe formally the problem that we address. In Sect. 3 we present the
randomized e/(e− 1)-approximation for the Max-Buying Problem with Limited
Supply (that can be derandomized) and in Sect. 4 we present, for a given positive
rational Θ, a (2 + Θ)-approximation for the Max-Buying Problem with Limited
Supply and a Price Ladder. Finally, in Sect. 5 we present our final remarks.

2 Model and Notation

We denote by B the set of bidders and by I the set of items.

Definition 1. A valuation matrix is a non-negative integer matrix v indexed
by I ×B. The number vib is the value of item i to bidder b.

Definition 2. A pricing is a non-negative rational vector indexed by I.

Definition 3. An allocation is a vector x indexed by B where xb is the item
allocated to bidder b. If a bidder b does not receive an item, then xb = ∈.
Note that an allocation is not necessarily a matching, as the same item can be
assigned to more than one bidder (each one receives a copy of the item).

Definition 4. Given a valuation v and a pricing p, an item i is feasible for a
bidder b if vib ≤ pi.
Definition 5. The Max-Buying-Limited Problem consists of, given a valua-
tion v and a integer positive vector C indexed by I, finding a pricing p and an
allocation x that maximize the auctioneer’s profit, and such that every item is al-
located to at most Ci bidders and every bidder either receives no item or receives
a feasible item.

Notice that, in spite of the name of the problem, we do not demand that a
bidder b receives a feasible item i that maximizes pi. That is, we allow bidder b
to receive another item (or none at all) if the more expensive items that are
feasible to b are sold out (that is, all copies are allocated to other bidders).

Next we formalize the variant of the problem with the price ladder require-
ment.

Definition 6. The Max-Buying-PL-Limited Problem is the variant of the
Max-Buying-Limited Problem in which the prices must be non-increasing, that
is, p1 ≤ · · · ≤ pn, where n is the number of items.

Approximation Algorithms for the Max-Buying Problem 711

3 An Algorithm for Limited Supply

Next, we present a new approximation algorithm for the Max-Buying-Limited
Problem with a better ratio than the approximation presented by Briest and
Krysta [3]. This approximation applies also to the Max-Buying Problem (with
unlimited supply) achieving the same ratio of the best known approximation for
this problem [1].

First, consider a solution (x, p) of the Max-Buying-Limited Problem, an item i,
and the set S of bidders that bought item i according to x. Note that, because
i is feasible for every bidder in S, we have that pi ⊕ min{vib : b ∈ S}. If S ∗= ∈
and pi < min{vib : b ∈ S}, then (x, p) cannot be an optimal solution because
one could increase the price of i to obtain a strictly better solution. So we may
assume, w.l.o.g., that pi = min{vib : b ∈ S} for every item i that is bought by a
set S of bidders.

We will present an IP formulation for the Max-Buying-Limited Problem that
is heavily based on the observation above and on the next definitions. From this
formulation, we will design a randomized rounding approximation algorithm.

Definition 7. For an item i, let S(i) = {(i, S) : S ⊗ B, |S| ⊕ Ci}. We
call (i, S) ∈ S(i) a star of i and we denote by S the set of all stars, that
is, S =

⋃
i∨I S(i).

For S ⊗ B and an item i, note that S ≥ {i} induces a star in the complete
bipartite graph where the parts of the bipartition are I and B.

Definition 8. For a star (i, S), let P(i,S) = min{vib : b ∈ S}, that is, P(i,S) is
the price of item i when sold to the set S of bidders.

Notice that a feasible solution of the Max-Buying-Limited Problem can be seen
as a collection of stars, one for each item, with every bidder in at most one star,
and the price of an item i being P(i,S), where (i, S) is the star of item i in the
collection.

Next, we present our formulation, called (SF) for star formulation, in which
we have a vector x of binary variables, with |S| positions, where x(i,S) is equal
to 1 if and only if the set of bidders that receive item i is precisely S. The goal
is to determine x that

(SF) maximizes
∑

(i,S)∨S
|S|P(i,S)x(i,S)

subject to
∑

(i,S)∨S(i)
x(i,S) = 1, ⊆i ∈ I

∑

(i,S)∨S:b∨S
x(i,S) ⊕ 1, ⊆b ∈ B

x(i,S) ∈ {0, 1}, ⊆(i, S) ∈ S.
The (SF) formulation can be seen as a reduction of our problem to the

Set Packing Problem [8]. A similar idea was used by Hochbaum [10] to ob-
tain an O(logn)-approximation for the Metric Uncapacitated Facility Location

712 C.G. Fernandes and R.C.S. Schouery

Problem by reducing it to the Set Cover Problem [8]. In our case, we can use
the weight structure of the sets to obtain a constant factor approximation for
our problem.

This formulation can have Ψ(|I|2|B|) variables. But, fortunately, it is possible
to solve its linear relaxation in polynomial time using a procedure similar to the
one used by Karmarkar and Karp [11]. First, we solve the dual in polynomial time
(using a polynomial-time separation algorithm) and then solve (in polynomial
time) the primal restricted to the columns corresponding to the constraints used
in the resolution of the dual.

Lemma 9. The linear relaxation of the (SF) formulation can be solved in poly-
nomial time. ↑⊃

We will use this IP formulation to design an approximation algorithm for our
problem using probabilistic rounding. Next we present our algorithm.

StarRounding(I, B, v, C)

1 Let x be an optimal solution of the linear relaxation of (SF) for (I, B, v, C)
2 for every item i ∈ I
3 Choose a star Si ∈ S(i) with probability P(Si = (i, S)) = x(i,S)

4 Set the price of i as PSi

5 for every bidder b ∈ B
6 Let i be an item such that Si = (i, S) with b ∈ S and maximum PSi

7 if there is no such item
8 bidder b does not receive an item
9 else sell item i to bidder b

Theorem 10. StarRounding is a randomized e
e−1 -approximation for the

Max-Buying-Limited Problem.

Proof. First, notice that the objective function of (SF) can be rewritten
as

∑
b∨B

∑
(i,S)∨S:b∨S P(i,S)x(i,S) and that this value for the x in Line 1 is an up-

per bound on the value of an optimal solution of our problem. We will prove that
the expected price paid by bidder b in the solution produced by the algorithm
is at least e−1

e

∑
(i,S)∨S:b∨S P(i,S)x(i,S), from where the result will follow.

Consider a bidder b and a non-increasing (in P(i,S)) ordering of the stars (i, S)
with b ∈ S and x(i,S) > 0. Let k be the number of such stars. If k = 0, then the
result trivially holds. From now on, we assume that k > 0.

We will denote the Δ-th star in this ordering simply by Δ, its price by PΣ, and
its primal variable by xΣ. If the star Δ is (i, S), we define c(Δ) = i, that is, c(Δ) is
the item of star Δ. Also, we define yΣ =

∑{xΣ≥ : Δ∗ < Δ and c(Δ∗) = c(Δ)}. Finally,
we denote by EΣ the event in which star Δ was chosen by StarRounding.

Let profit(b) be the profit that we obtain from bidder b. For 1 ⊕ Δ ⊕ k,
note that E[profit(b)|E1, . . . , EΣ−1, EΣ] = PΣ because StarRounding will al-
locate c(Δ) (or another item with the same price) to bidder b as c(Δ) is
one of the most expensive items that has b in the chosen star. Also, notice

Approximation Algorithms for the Max-Buying Problem 713

that P(EΣ|E1, E2, . . . , EΣ−1) = xΦ

1−yΦ
, because we choose the star of an item

independently of the star chosen for other items.

Let f(z) = 1−e−z

z . For 1 ⊕ Δ ⊕ k, we denote f(
∑k

i=Σ xi) simply by fΣ. Observe
that fΣ ⊕ 1 for 1 ⊕ Δ ⊕ k, because 1− z ⊕ e−z for every z.

Using the observations above, we will prove that, for every 1 ⊕ Δ ⊕ k,
E[profit(b)|E1, E2, . . . , EΣ−1] ≤ fΣ

∑k
i=Σ Pixi. Observe that the theorem follows

from this statement, as it reduces to E[profit(b)] ≤ f1
∑k

i=1 Pixi for Δ = 1,
and f1 ≤ e−1

e because f(z) is decreasing.
So we proceed with the proof of the statement, by induction on k − Δ. Note

that yk = 1− xk, so E[profit(b)|E1, . . . , Ek−1] = Pkxk/(1− yk) = Pk ≤ fkPkxk,
thus the statement is valid for Δ = k, the base case. Now, for Δ < k, assume the
statement is valid for Δ+ 1. We have that

E[profit(b)|E1, . . . , EΣ−1] = E[profit(b)|E1, . . . , EΣ−1, EΣ]
xΣ

1− yΣ
+E[profit(b)|E1, . . . , EΣ−1, EΣ]

(
1− xΣ

1− yΣ

)

= PΣ
xΣ

1− yΣ +

(
1− xΣ

1− yΣ

)
E[profit(b)|E1, . . . , EΣ].

Using the induction hypothesis, we deduce that

E[profit(b)|E1, . . . , EΣ−1] ≤ PΣ
xΣ

1− yΣ +

(
1− xΣ

1− yΣ

)
fΣ+1

k∑

i=Σ+1

Pixi

=
xΣ

1− yΣ

⎡

PΣ − fΣ+1

k∑

i=Σ+1

Pixi

⎣

+ fΣ+1

k∑

i=Σ+1

Pixi.

As xΦ

1−yΦ
≤ xΣ, 1− z ⊕ e−z for every z, PΣ ≤ PΣ

∑k
i=Σ xi ≤

∑k
i=Σ Pixi (because

PΣ ≤ Pi for every i ≤ Δ) and fΣ+1 ⊕ 1, it follows that

E[profit(b)|E1, . . . , EΣ−1] ≤ xΣ
⎡

PΣ − fΣ+1

k∑

i=Σ+1

Pixi

⎣

+ fΣ+1

k∑

i=Σ+1

Pixi

≤ (1 − e−xΦ)

⎡

PΣ − fΣ+1

k∑

i=Σ+1

Pixi

⎣

+ fΣ+1

k∑

i=Σ+1

Pixi

= (1 − e−xΦ)PΣ + e−xΦfΣ+1

k∑

i=Σ+1

Pixi

= (1 − e−xΦ − e−xΦfΣ+1 xΣ)PΣ + e−xΦfΣ+1

k∑

i=Σ

Pixi.

In order to proceed, let us first show that 1− e−xΦ − e−xΦfΣ+1 xΣ ≤ 0. For
that, let h(z) = 1− e−z − e−ztz, for some 0 < t ⊕ 1. Notice that h(0) = 0

714 C.G. Fernandes and R.C.S. Schouery

and that h∗(z) = e−z + e−ztz − e−zt ≤ e−ztz. Therefore, h(z) is non-decreasing
for non-negative z, from which we conclude that h(z) ≤ 0 for every non-
negative z. So, in particular, 1−e−xΦ−e−xΦfΣ+1 xΣ ≤ 0, as we wished. Also, recall

that PΣ

∑k
i=Σ xi ≤

∑k
i=Σ Pixi. Combining this with the previous, we deduce that

(1− e−xΦ − e−xΦfΣ+1 xΣ)PΣ + e−xΦfΣ+1

k∑

i=Σ

Pixi

≤ ⎤
1− e−xΦ − e−xΦfΣ+1 xΣ

⎦
∑k

i=Σ Pixi
∑k

i=Σ xi
+ e−xΦfΣ+1

k∑

i=Σ

Pixi

=

⎡

1− e−xΦ − e−xΦfΣ+1 xΣ + e−xΦfΣ+1

k∑

i=Σ

xi

⎣ ∑k
i=Σ Pixi

∑k
i=Σ xi

=

⎡

1− e−xΦ + e−xΦfΣ+1

k∑

i=Σ+1

xi

⎣ ∑k
i=Σ Pixi

∑k
i=Σ xi

.

To finish the induction, recall that fΣ+1

∑k
i=Σ+1 xi = 1 − e−

∑k
i=Φ+1 xi , and

conclude that

E[profit(b)|E1, . . . , EΣ−1] ≤
⎨

1− e−xΦ + e−xΦ(1− e−
∑k

i=Φ+1 xi)
⎛ ∑k

i=Σ Pixi
∑k

i=Σ xi

=
⎨

1− e−xΦ + e−xΦ(1− e−
∑k

i=Φ+1 xi)
⎛

= fΣ

k∑

i=Σ

Pixi,

which ends the induction and the proof of the theorem. ↑⊃

It is also possible to obtain a deterministic version of StarRounding using the
method of conditional expectations [7,18]. Moreover, it is easy to prove that the
analysis is tight, as we do in the next lemma.

Lemma 11. For every Θ > 0, there is an instance where the expected profit
of a solution found by StarRounding is smaller than ((e − 1)/e + Θ)OPT,
where OPT is the value of an optimal solution for this instance.

Proof. Consider this simple instance: we have a set of items I and only one
bidder b such that vib = 1, for every i ∈ I. It is easy to see that an optimal
solution for this instance has value 1. It is also clear that an optimal solution
of the linear relaxation has value 1. One of such optimal solutions is x such
that x(i,{b}) = 1/|I| and x(i,⊆) = 1− 1/|I|, for every item i ∈ I. Notice that
bidder b pays 1 if any of the stars (i, {b}) is chosen and pays 0 (because is unal-

located) otherwise. Thus we have E[profit(b)] = 1− (1− 1/|I|)|I| |I|◦∼−−−−⊇ 1− 1
e

and the result follows. ↑⊃

Approximation Algorithms for the Max-Buying Problem 715

4 An Algorithm for Limited Supply with a Price Ladder

In this section we present, for every Θ > 0, a (2 + Θ)-approximation for the
Max-Buying-PL-Limited Problem. We use some ideas from the 4-approximation
algorithm for Max-Buying-PL-Limited Problem developed by Aggarwal et al. [1],
but in a different way, in order to obtain a better approximation ratio.

Definition 12. Let ι > 1 be a rational, t be a positive integer, v be
a valuation matrix indexed by I × B and, for a non-negative integer k,
let dk = max{vib : i ∈ I, b ∈ B}/ιk. The Max-Buying-PL-Limited-(ι, t) Prob-
lem is a variant of the Max-Buying-PL-Limited Problem where every price is in
the set {d0, d1, . . . } and every bidder receives, for each non-negative r, at most
one item with price in {drt, drt+1, . . . , d(r+1)t−1}.
Notice that, in the Max-Buying-PL-Limited-(ι, t) Problem, a bidder can receive
more than one item but, for every multiple s of t, he can receive at most one
item with price in {ds, ds+1, . . . , ds+t−1}.

The next result guarantees that one needs to consider only a finite number of
possible prices.

Lemma 13. For every valuation matrix v indexed by I×B and positive integer
vector C indexed by I, there is an optimal solution for the instance (I, B, v, C)
of the Max-Buying-PL-Limited-(ι, t) Problem whose smallest price of an item is
dΣ, with Δ = ⊂logΛ V ↓, for V = max{vib : i ∈ I, b ∈ B}. ↑⊃
We will prove that this problem can be solved in polynomial time.

Theorem 14. The Max-Buying-PL-Limited-(ι, t) Problem can be solved in
polynomial time for fixed ι and t.

Proof. For non-negative integers r and j, let F (j, r) be the maximum profit
achievable for the instance of Max-Buying-PL-Limited-(ι, t) with only the first j
items, allowing only prices in {d0, . . . , d(r+1)t−1}. Also, for the variant of Max-
Buying-PL-Limited-(ι, t) where each bidder is restricted to buy at most one
item, for i ⊕ j, let P (i, j, r) be the maximum profit achievable, considering
only items i, i+1, . . . , j and prices in {drt, . . . , d(r+1)t−1}. We have the following
recurrence:

F (j, r) =

⎫
⎬⎞

⎬⎟

0, if j = 0,
P (1, j, r), if j > 0 and r = 0,
max
0∈i∈j

{F (i, r − 1) + P (i+ 1, j, r)}, otherwise.

Let Δ be as in Lemma 13 and notice that F (|I|, ⊂Δ/t↓) is the value of an optimal
solution for the Max-Buying-PL-Limited-(ι, t) Problem (because the last price
considered is d(∅Σ/t	+1)t−1 ⊕ dΣ). So, for fixed ι and t, if we can compute P (i, j, r)
in polynomial time, then this recurrence can be solved in polynomial time.

In order to compute P (i, j, r) in polynomial time, we can enumerate all
possible valid pricings (there are at most |I|t such pricings) and construct a

716 C.G. Fernandes and R.C.S. Schouery

bipartite graph G with bipartition sides {i, . . . , j} and B, where, for every
item k in {i, . . . , j} and every bidder b ∈ B, we have an edge {k, b} ∈ E(G)
of weight pk if and only if vkb ≤ pk. Then it remains to find a maximum
weighted C+-matching [4,12] on such graph, where C+

k = Ck for every item k,
and C+

b = 1 for every bidder b (that is, every bidder is matched to at most one
item and every item k is matched to at most Ck bidders.) ↑⊃
We will now establish some relations involving the value of an optimal solution
for the Max-Buying-PL-Limited Problem and the value of an optimal solution
for the Max-Buying-PL-Limited-(ι, t) Problem.

Lemma 15. Let OPT be the value of an optimal solution for the Max-Buying-
PL-Limited Problem and OPT∗ be the value of an optimal solution for the Max-
Buying-PL-Limited-(ι, t) Problem. We have that OPT∗ ≤ OPT/ι. ↑⊃
Lemma 16. Given a solution of the Max-Buying-PL-Limited-(ι, t) Problem of
value w, a solution of the Max-Buying-PL-Limited Problem of value at least

Λt−1
Λt−1+Λt−1 w can be computed in polynomial time.

Proof. Consider a solution of the Max-Buying-PL-Limited-(ι, t) Problem. We
will construct a solution for the Max-Buying-PL-Limited Problem by assigning
to every bidder b the most expensive item bought by b (which can be done in
polynomial time).

For a bidder b, let K be the set of integers such that k ∈ K if and
only if b bought an item of price dk and let di denote the most expen-
sive item bought by b. Remember that, for every r, a bidder can buy at
most one item of price drt+k for 0 ⊕ k < t. From this we conclude that∑

k∨K dk ⊕ di +
∑

k∨K\{i} d
k/t�t ⊕ di +
∑

r≥0 di+rt+1.

Now, notice that di+rt+1 = di/ι
rt+1, from which we conclude that

∑

k∨K
dk ⊕ di +

∑

r≥0
di+rt+1 = di

⎠

1 +
1

ι

∑

r≥0

(
1

ιt

)r

 ⊕ di
(

1 +
1

ι

(
1

1− 1
Λt

))
.

Notice that the profit obtained from b in the solution of the Max-Buying-PL-
Limited-(ι, t) is exactly

∑
k∨K dk and the profit obtained from b in the solution

found for the Max-Buying-PL-Limited Problem is exactly di. But we concluded
that di ≤ Λt−1

Λt−1+Λt−1

∑
k∨K dk, so the result follows. ↑⊃

Combining the results of Lemmas 15 and 16, we can derive an approximation
for the Max-Buying-PL-Limited Problem.

Corollary 17. For every positive integer t and rational ι > 1, there is

an Λ(Λt−1+Λt−1)
Λt−1 -approximation for the Max-Buying-PL-Limited Problem.

Proof. The algorithm is very simple: find an optimal solution (x, p) of the
Max-Buying-PL-Limited-(ι, t) Problem using the algorithm described in Theo-
rem 14 and return (x̃, p), where the item allocated to a bidder b in x̃ is the most
expensive item allocated to b in (x, p).

Approximation Algorithms for the Max-Buying Problem 717

Let SOL denote the value of the solution found, OPT denote the value of
an optimal solution of the Max-Buying-PL-Limited Problem and OPT∗ denote
the value of an optimal solution of the Max-Buying-PL-Limited-(ι, t) Problem.
By Lemma 15, we have that OPT∗ ≤ OPT/ι and, by Lemma 16, we have that

SOL ≤ Λt−1
Λt−1+Λt−1 OPT∗. Hence, we conclude that SOL ≤ Λt−1

Λ(Λt−1+Λt−1) OPT and

we obtain the desired approximation ratio. ↑⊃
Corollary 18. For every 0 < Θ < 1, there is a (2 + Θ)-approximation of the
Max-Buying-PL-Limited Problem.

Proof. Let ι = 1 + Δ
2 and t = ⊂logΛ(2Δ + 1)↓ (notice that t is a positive integer,

because Θ < 1). We have that

ι(ιt − 1 + ιt−1)

ιt − 1
= 1 + ι+

1

ιt − 1
⊕ 1 +

⎨
1 +

Θ

2

⎛
+
Θ

2
= 2 + Θ.

That is, by using ι and t as above, the algorithm from Corollary 17 achieves the
desired ratio. ↑⊃

5 Final Remarks

In this paper we focused on the Max-Buying Problem when we have limited
supply, considering the case with the price ladder restriction and without this
restriction.

Our results improve the previously best known approximation ratios for both
problems (with and without the price ladder restriction). The technique of enu-
merating all possible allocations of items to bidders, used in the price ladder
case, might help in other pricing problems.

We believe that pricing problems with limited supply are very interesting
because this is a realistic restriction and also a hard one to be considered from the
approximation algorithm perspective. Even though in general the Max-Buying
Problem seems to be simpler than the Min-Buying Problem, the Rank-Buying
Problem, and the Envy-Free Pricing Problem, it is not trivial to develop good
approximations for it when we have limited supply.

There are also some open problems. It is interesting to notice that our al-
gorithm, when applied for the Max-Buying Problem, has the same ratio as the
algorithm presented by Aggarwal et al. [1]. It would be nice to develop an ap-
proximation with ratio better than e/(e − 1) for the Max-Buying Problem (if
possible, for limited supply) or to prove that this value is a lower bound on the
approximation ratio of every algorithm for these problems.

In the case of the Max-Buying-PL-Limited Problem, it would be interesting
to design a PTAS (since there is a PTAS for the unlimited supply case [1])
or to prove that the problem is APX-hard. Also, notice that the price ladder
requirement is not helping to achieve a better approximation ratio as it happens
for the unlimited supply version. This is somehow against our intuition that
knowing the prices order would make it easier to find good pricings. We do not
know if this is something intrinsic to this problem or if there are other ways to
exploit the price ladder in order to obtain better approximations.

718 C.G. Fernandes and R.C.S. Schouery

References

1. Aggarwal, G., Feder, T., Motwani, R., Zhu, A.: Algorithms for multi-product pric-
ing. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 72–83. Springer, Heidelberg (2004)

2. Briest, P.: Uniform budgets and the envy-free pricing problem. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg
(2008)

3. Briest, P., Krysta, P.: Buying cheap is expensive: hardness of non-parametric multi-
product pricing. In: Proceedings of the 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (2007)

4. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment problems. SIAM (2009)
5. Chalermsook, P., Chuzhoy, J., Kannan, S., Khanna, S.: Improved hardness results

for profit maximization pricing problems with unlimited supply. In: Gupta, A.,
Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012.
LNCS, vol. 7408, pp. 73–84. Springer, Heidelberg (2012)

6. Chalermsook, P., Laekhanukit, B., Nanongkai, D.: Independent set, induced match-
ing, and pricing: Connections and tight (subexponential time) approximation hard-
nesses. In: 54th Annual IEEE Symposium on Foundations of Computer Science
(2013)

7. Erdös, P., Selfridge, J.: On a combinatorial game. Journal of Combinatorial Theory,
Series A 14(3), 298–301 (1973)

8. Garey, M.R., Johnson, D.S.: Computers and intractibility. W. H. Freeman (1979)
9. Guruswami, V., Hartline, J.D., Karlin, A.R., Kempe, D., Kenyon, C., McSherry,

F.: On profit-maximizing envy-free pricing. In: Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 1164–1173 (2005)

10. Hochbaum, D.: Heuristics for the fixed cost median problem. Mathematical Pro-
gramming 22(1), 148–162 (1982)

11. Karmarkar, N., Karp, R.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, pp. 312–320 (1982)

12. Kuhn, H.W.: The Hungarian Method for the assignment problem. Naval Research
Logistics Quarterly 2(1-2), 83–97 (1955)

13. Oren, S., Smith, S., Wilson, R.: Product line pricing. Journal of Business 57(1),
S73–S79 (1984)

14. Oren, S.S., Smith, S.A., Wilson, R.B.: Multi-product pricing for electric power.
Energy Economics 9(2), 104–114 (1987)

15. Rusmevichientong, P., Roy, B.V., Glynn, P.W.: A nonparametric approach to mul-
tiproduct pricing. Operations Research 54(1), 82–98 (2006)

16. Sen, S.: Issues in optimal product design. In: Analytic Approaches to Product and
Marketing Planning: The Second Conference, pp. 265–274 (1982)

17. Smith, S.A.: New product pricing in quality sensitive markets. Marketing Sci-
ence 5(1), 70–87 (1986)

18. Spencer, J.: Ten lectures on the probabilistic method. Society for Industrial and
Applied Mathematics (1987)

Budget Feasible Mechanisms

for Experimental Design

Thibaut Horel1, Stratis Ioannidis2, and S. Muthukrishnan3

1 École Normale Supérieure
thibaut.horel@normalesup.org

2 Technicolor
stratis.ioannidis@technicolor.com

3 Rutgers University
muthu@cs.rutgers.edu

Abstract. We present a deterministic, polynomial time, budget feasible
mechanism scheme, that is approximately truthful and yields a constant
(≈ 12.98) factor approximation for the Experimental Design Problem
(EDP). By applying previous work on budget feasible mechanisms with a
submodular objective, one could only have derived either an exponential
time deterministic mechanism or a randomized polynomial time mech-
anism. We also establish that no truthful, budget-feasible mechanism is
possible within a factor 2 approximation, and show how to generalize our
approach to a wide class of learning problems, beyond linear regression.

1 Introduction

In the classic setting of experimental design [25, 3], an experimenter E has access
to a population of n potential experiment subjects. Each subject i ⊕ {1, . . . , n}
is associated with a set of parameters (or features) xi ⊕ R

d, known to the
experimenter. E wishes to measure a certain inherent property of the subjects
by performing an experiment: the outcome yi of the experiment on a subject i
is unknown to E before the experiment is performed.

Typically, E has a hypothesis on the relationship between xi’s and yi’s. Due
to its simplicity, as well as its ubiquity in statistical analysis, a large body of
work has focused on linear hypotheses: i.e., it is assumed that there exists a
β ⊕ R

d such that yi = βTxi + εi, for all i ⊕ {1, . . . , n}, where εi are zero-
mean, i.i.d. random variables. Conducting the experiments and obtaining the
measurements yi lets E estimate β, e.g., through linear regression.

The above experimental design scenario has many applications. Regression
over personal data collected through surveys or experimentation is the corner-
stone of marketing research, as well as research in a variety of experimental
sciences such as medicine and sociology. Crucially, statistical analysis of user
data is also a widely spread practice among Internet companies, which routinely
use machine learning techniques over vast records of user data to perform in-
ference and classification tasks integral to their daily operations. Beyond linear
regression, there is a rich literature about estimation procedures, as well as about

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 719–730, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

720 T. Horel, S. Ioannidis, and S. Muthukrishnan

means of quantifying the quality of the produced estimate [25]. There is also an
extensive theory on how to select subjects if E can conduct only a limited num-
ber of experiments, so the estimation process returns a β that approximates the
true parameter of the underlying population [15, 20, 9, 6].

We depart from this classical setup by viewing experimental design in a strate-
gic setting, and by studying budgeted mechanism design issues. In our setting,
experiments cannot be manipulated and hence measurements are reliable. E has
a total budget of B to conduct all the experiments. There is a cost ci associated
with experimenting on subject i which varies from subject to subject. This cost
ci is determined by the subject i and reported to E; subjects are strategic and
may misreport these costs. Intuitively, ci may be viewed as the cost i incurs
when tested and for which she needs to be reimbursed; or, it might be viewed as
the incentive for i to participate in the experiment; or, it might be the intrinsic
worth of the data to the subject. The economic aspect of paying subjects has
always been inherent in experimental design: experimenters often work within
strict budgets and design creative incentives. Subjects often negotiate better in-
centives or higher payments. However, we are not aware of a principled study of
this setting from a strategic point of view, when subjects declare their costs and
therefore determine their payment. Such a setting is increasingly realistic, given
the growth of these experiments over the Internet.

Our contributions are as follows. First, we initiate the study of experimental
design in the presence of a budget and strategic subjects. In particular, we for-
mulate the Experimental Design Problem (EDP) as follows: the experimenter E

wishes to find a set S of subjects to maximize

V (S) = log det
(
Id +

∑
i∗S xix

T
i

)
(1)

subject to a budget constraint
∑

i∗S ci ≤ B, where B is E’s budget. When
subjects are strategic, the above problem can be naturally approached as a budget
feasible mechanism design problem, as introduced by Singer [26]. The objective
function, which is the key, is formally obtained by optimizing the information
gain in β when the latter is learned through ridge regression, and is related
to the so-called D-optimality criterion [25, 3]. Second, we present a polynomial
time mechanism scheme for EDP that is approximately truthful and yields a
constant factor (≈ 12.98) approximation to the optimal value of (1). In contrast
to this, we show that no truthful, budget-feasible mechanisms are possible for
EDP within a factor 2 approximation.

We note that the objective (1) is submodular. Using this fact, applying previ-
ous results on budget feasible mechanism design under general submodular objec-
tives [26, 10] would yield either a deterministic, truthful, constant-approximation
mechanism that requires exponential time, or a non-deterministic, (universally)
truthful, poly-time mechanism that yields a constant approximation ratio only in
expectation (i.e., its approximation guarantee for a given instance may in fact be
unbounded).

From a technical perspective, we propose a convex optimization problem and
establish that its optimal value is within a constant factor from the optimal value

Budget Feasible Mechanisms for Experimental Design 721

of EDP. In particular, we show our relaxed objective is within a constant factor
from the so-called multi-linear extension of (1), which in turn can be related to
(1) through pipage rounding. We establish the constant factor to the multi-linear
extension by bounding the partial derivatives of these two functions; we achieve
the latter by exploiting convexity properties of matrix functions over the convex
cone of positive semidefinite matrices.

Our convex relaxation of EDP involves maximizing a self-concordant function
subject to linear constraints. Its optimal value can be computed with arbitrary
accuracy in polynomial time using the so-called barrier method. However, the
outcome of this computation may not be monotone, a property needed in design-
ing a truthful mechanism. Nevetheless, we construct an algorithm that solves the
above convex relaxation and is “almost” monotone; we achieve this by applying
the barrier method on a set perturbed constraints, over which our objective is
“sufficiently” concave. In turn, we show how to employ this algorithm to design
a poly-time, δ-truthful, constant-approximation mechanism for EDP.

In what follows, we describe related work in Section 2. We briefly review
experimental design and budget feasible mechanisms in Section 3 and define
EDP formally. We present our convex relaxation to EDP in Section 4 and use it
to construct our mechanism in Section 5. We conclude in Section 6. All proofs
of our technical results are provided in the full version of this paper [16].

2 Related Work

General Submodular Functions. Singer [26] considers the problem of maximiz-
ing an arbitrary submodular function subject to a budget constraint in the value
query model. He shows that there exists a randomized, 112-approximation mech-
anism that is universally truthful (i.e., it is a randomized mechanism sampled
from a distribution over truthful mechanisms). Chen et al. [10] improve this re-
sult to a 7.91-approximate mechanism, and show a corresponding lower bound
of 2 among universally truthful randomized mechanisms. The above approxima-
tion guarantees hold for the expected value of the randomized mechanism: for
a given instance, the approximation ratio provided by the mechanism may be
unbounded. No deterministic, truthful, constant approximation mechanism that
runs in polynomial time is presently known for submodular maximization. As-
suming access to an oracle providing the optimum in the full-information setup,
Chen et al. propose a truthful, 8.34-approximate mechanism; in cases for which
the full-information problem is NP-hard, as EDP, this mechanism is not poly-
time, unless P=NP. Chen et al. also prove a 1 +

⊗
2 lower bound for truthful

deterministic mechanisms, improving upon an earlier bound of 2 by Singer [26].

Specific Problems. Improved uper and lower bounds and deterministic polyno-
mial mechanisms are known for specific submodular objectives [26, 10, 27]. The
deterministic mechanisms for Knapsack [10] and Coverage [27] follow the
same general framework, which we also employ. In these two cases, the frame-
work approximates the optimal solution to the underlying combinatorial problem
by a linear program (LP) relaxation [1]. No such relaxation exists for EDP, which

722 T. Horel, S. Ioannidis, and S. Muthukrishnan

is unlikely to be approximable through an LP due to its logarithmic objective.
We develop instead a convex relaxation to EDP; though, contrary to the above
LP relaxations, this cannot be solved exactly, we show how to incorporate it in
the framework of [10, 27] to yield a δ-truthful mechanism for EDP.

Beyond Submodular Objectives. Beyond submodular objectives, it is known that
no truthful mechanism with approximation ratio smaller than n1/2−ε exists for
maximizing fractionally subadditive functions (a class that includes submodu-
lar functions) assuming access to a value query oracle [26]. Assuming access
to a stronger oracle (the demand oracle), there exists a truthful, O(log3 n)-
approximate mechanism [11] as well as a universally truthful, O(logn

log logn)-appro-

ximate mechanism for subadditive maximization [5]. Moreover, in a Bayesian
setup, assuming a prior distribution among the agent’s costs, there exists a truth-
ful mechanism with a 768/512-approximation ratio [5]. Posted price, rather than
direct revelation mechanisms, are also studied in [4].

Monotone Approximations in Combinatorial Auctions. Relaxations of combina-
torial problems are prevalent in combinatorial auctions, in which an auctioneer
aims at maximizing social welfare. As noted by Archer et al. [2], approximations
to this maximization must preserve incentive compatibility. Most approximation
algorithms do not preserve this property, hence specific relaxations, and corre-
sponding roundings to an integral solution, must be constructed [2, 19, 12, 7].
Because of the specificity of our relaxation, and because we seek a determin-
ist mechanism and δ-truthfulness, not truthfulness-in-expectation, none of the
techniques present in these works apply to our setting.

δ-Truthfulness and Differential Privacy. The notion of δ-truthfulness has at-
tracted considerable attention recently in the context of differential privacy (see,
e.g., the survey by Pai and Roth [24]). McSherry and Talwar [21] were the first
to observe that any ε-differentially private mechanism must also be δ-truthful
in expectation, for δ = 2ε. This property was used to construct δ-truthful (in
expectation) mechanisms for a digital goods auction [21] and for α-approximate
equilibrium selection [17]. Nissim et al. [23] propose a framework for convert-
ing a differentially private mechanism to a truthful-in-expectation mechanism
by randomly selecting between a differentially private mechanism with good ap-
proximation guarantees, and a truthful mechanism. They apply their framework
to the FacilityLocation problem. We depart from the above works in seeking a
deterministic mechanism for EDP, and using a stronger notion of δ-truthfulness.

3 Preliminaries

3.1 Linear Regression and Experimental Design

The theory of experimental design [25, 3, 9] considers the following formal set-
ting. Suppose that an experimenter E wishes to conduct k among n possible
experiments. Each experiment i ⊕ N ∈ {1, . . . , n} is associated with a set of
parameters (or features) xi ⊕ R

d, normalized so that b ≤ ∗xi∗22 ≤ 1, for some

Budget Feasible Mechanisms for Experimental Design 723

b > 0. Denote by S ≥ N , where |S| = k, the set of experiments selected;
upon its execution, experiment i ⊕ S reveals an output variable (the “measure-
ment”) yi, related to the experiment features xi through a linear function, i.e.,
yi = βTxi + εi where β is a vector in R

d, commonly referred to as the model,
and εi (the measurement noise) are independent, normally distributed random
variables with mean 0 and variance σ2.

For example, each i may correspond to a human subject; the feature vector
xi may correspond to a normalized vector of her age, weight, gender, income,
etc., and the measurement yi may capture some biometric information (e.g., her
red cell blood count, a genetic marker, etc.). The magnitude of the coefficient
βi captures the effect that feature i has on the measured variable, and its sign
captures whether the correlation is positive or negative.

The purpose of these experiments is to allow E to estimate the model β. In
particular, assume that the experimenter E has a prior distribution on β, i.e.,
β has a multivariate normal prior with zero mean and covariance σ2R−1 ⊕
R

d2

(where σ2 is the noise variance). Then, E estimates β through maximum a
posteriori estimation: i.e., finding the parameter which maximizes the posterior
distribution of β given the observations yS . Under the linearity assumption and
the Gaussian prior on β, maximum a posteriori estimation leads to [14]:

β̂ = arg maxβ∗Rd Pr(β | yS) = arg minβ∗Rd

(∑
i∗S(yi − βTxi)

2 + βTRβ
)

= (R +XT
SXS)−1XT

S yS
(2)

where the last equality is obtained by setting ⊆βPr(β | yS) to zero and solving
the resulting linear system; in (2), XS ∈ [xi]i∗S ⊕ R

|S|×d is the matrix of
experiment features and yS ∈ [yi]i∗S ⊕ R

|S| are the observed measurements.
This optimization, commonly known as ridge regression, includes an additional
quadratic penalty term βTRβ compared to the standard least squares estimation.

Let V : 2N ↑ R be a value function, quantifying how informative a set
of experiments S is in estimating β. The classical experimental design problem
amounts to finding a set S that maximizes V (S) subject to the constraint |S| ≤ k.
A variety of different value functions are used in literature [25, 6]; one that has
natural advantages is the information gain, V (S) = I(β; yS) = H(β)−H(β | yS)
which is the entropy reduction on β after the revelation of yS (also known as the
mutual information between yS and β). Hence, selecting a set of experiments
S that maximizes V (S) is equivalent to finding the set of experiments that
minimizes the uncertainty on β, as captured by the entropy reduction of its
estimator. Under the linear model, and the Gaussian prior, the information gain
takes the following form (see, e.g., [9]):

I(β; yS) =
1

2
log det(R+XT

SXS)− 1

2
log detR (3)

Maximizing I(β; yS) is therefore equivalent to maximizing log det(R + XT
SXS),

which is known in literature as the Bayes D-optimality criterion [25, 3, 9].
Our analysis will focus on the case of a homotropic prior, in which the prior

covariance is the identity matrix, i.e., R = Id ⊕ R
d×d. Intuitively, this corre-

sponds to the simplest prior, in which no direction of R
d is a priori favored;

724 T. Horel, S. Ioannidis, and S. Muthukrishnan

equivalently, it also corresponds to the case where ridge regression estimation
(2) performed by E has a penalty term ∗β∗22. A generalization of our results to
arbitrary covariance matrices R can be found in [16].

3.2 Budget-Feasible Experimental Design: Full Information Case

Instead of the cardinality constraint in classical experimental design discussed
above, we consider a budget-constrained version. Each experiment is associated
with a cost ci ⊕ R+. The cost ci can capture, e.g., the amount the subject i deems
sufficient to incentivize her participation in the experiment. The experimenter
E is limited by a budget B ⊕ R+. In the full-information case, experiment costs
are common knowledge; as such, the experimenter wishes to solve:

ExperimentalDesignProblem (EDP)

Maximize V (S) = log det(Id +XT
SXS) (4a)

subject to
∑

i∗S ci ≤ B (4b)

W.l.o.g., we assume that ci ⊕ [0, B] for all i ⊕ N , as no i with ci > B can be in
an S satisfying (4b). Denote by

OPT = maxS⊆N
{
V (S)

∣
∣
∣
∑

i∗S ci ≤ B
}

(5)

the optimal value achievable in the full-information case. EDP, as defined above,
is NP-hard; to see this, note that Knapsack reduces to EDP with d = 1 by
mapping the weight of each item, say, wi, to an experiment with x2i = wi.

The value function (4a) has the following properties, which are proved in [16].
First, it is non-negative, i.e., V (S) ⊃ 0 for all S ≥ N . Second, it is also monotone,
i.e., V (S) ≤ V (T) for all S ≥ T , with V (⊇) = 0. Finally, it is submodular, i.e.,
V (S ⊂ {i}) − V (S) ⊃ V (T ⊂ {i}) − V (T) for all S ≥ T ≥ N and i ⊕ N . The
above imply that a greedy algorithm yields a constant approximation ratio to
EDP. In particular, consider the greedy algorithm in which, for S ≥ N the set
constructed thus far, the next element i included is the one which maximizes the
marginal-value-per-cost, i.e., i = arg maxj∗N\S (V (S ⊂ {i})− V (S))/ci. This is
repeated until adding an element in S exceeds the budget B. Denote by SG the
set constructed by this heuristic and let i◦ = arg maxi∗N V ({i}) be the element
of maximum singleton value. Then, the following algorithm:

if V ({i◦}) ⊃ V (SG) return {i◦} else return SG (6)

yields an approximation ratio of 5e
e−1 [26]; this can be further improved to e

e−1
using more complicated greedy set constructions [18, 28].

3.3 Budget-Feasible Experimental Design: Strategic Case

We study the following strategic setting, in which the costs ci are not common
knowledge and their reporting can be manipulated by the experiment subjects.

Budget Feasible Mechanisms for Experimental Design 725

The latter are strategic and wish to maximize their utility, which is the differ-
ence of the payment they receive and their true cost. Note that, though subjects
may misreport ci, they cannot lie about xi (i.e., all public features are verifiable
prior to the experiment) nor yi (i.e., the subject cannot falsify her measure-
ment). Experimental design thus reduces to a budget feasible reverse auction, as
introduced by Singer [26]; we review the formal definition in [16]. In short, given
a budget B and a value function V : 2N ↑ R+, a reverse auction mechanism
M = (S, p) comprises (a) an allocation function S : Rn

+ ↑ 2N , determining the
set of experiments to be purchased, and (b) a payment function p : Rn

+ ↑ R
n
+,

determining the payments [pi(c)]i∗N received by experiment subjects.
We seek mechanisms that are normalized (unallocated experiments receive

zero payments), individually rational (payments for allocated experiments exceed
costs), have no positive transfers (payments are non-negative), and are budget
feasible (the sum of payments does not exceed the budget B). We relax the
notion of truthfulness to δ-truthfulness, requiring that reporting one’s true cost
is an almost-dominant strategy: no subject increases their utility by reporting
a cost that differs more than δ > 0 (e.g., a tenth of a cent) from their true
cost. Under this definition, a mechanism is truthful if δ = 0. In addition, we
would like the allocation S(c) to be of maximal value; however, δ-truthfulness,
as well as the hardness of EDP, preclude achieving this goal. Hence, we seek
mechanisms with that are (α, β)-approximate, i.e., there exist α ⊃ 1 and β > 0
s.t. OPT ≤ αV (S(c))+β, and are computationally efficient, in that S and p can
be computed in polynomial time.

We note that the constant approximation algorithm (6) breaks truthfulness.
Though this is not true for all submodular functions (see, e.g., [26]), it is true
for the objective of EDP: we show this in [16], motivating our study of more
complex mechanisms.

4 Approximation Results

Previous approaches towards designing truthful, budget feasible mechanisms for
Knapsack [10] and Coverage [27] build upon polynomial-time algorithms that
compute an approximation of OPT , the optimal value in the full information
case. Crucially, to be used in designing a truthful mechanism, such algorithms
need also to be monotone, in the sense that decreasing any cost ci leads to an
increase in the estimation of OPT ; the monotonicity property precludes using
traditional approximation algorithms.

In the first part of this section, we address this issue by designing a convex
relaxation of EDP, and showing that its solution can be used to approximate
OPT . The objective of this relaxation is concave and self-concordant [6] and, as
such, there exists an algorithm that solves this relaxed problem with arbitrary
accuracy in polynomial time. Unfortunately, the output of this algorithm may
not necessarily be monotone. Nevertheless, in the second part of this section, we
show that a solver of the relaxed problem can be used to construct a solver that
is “almost” monotone. In Section 5, we show that this algorithm can be used to
design a δ-truthful mechanism for EDP.

726 T. Horel, S. Ioannidis, and S. Muthukrishnan

4.1 A Convex Relaxation of EDP

A classical way of relaxing combinatorial optimization problems is relaxing by
expectation, using the so-called multi-linear extension of the objective function
V (see, e.g., [8, 30, 13]). This is because this extension can yield approximation
guarantees for a wide class of combinatorial problems through pipage rounding,
a technique by Ageev and Sviridenko [1]. In general, such relaxations preserve
monotonicity which, as discussed, is required in mechanism design.

Formally, let Pλ
N be a probability distribution over N parametrized by λ ⊕

[0, 1]n, where a set S ≥ N sampled from Pλ
N is constructed as follows: each

i ⊕ N is selected to be in S independently with probability λi, i.e., P
λ
N (S) ∈∏

i∗S λi
∏

i∗N\S(1 − λi). Then, the multi-linear extension F : [0, 1]n ↑ R of V

is defined as the expectation of V under the distribution Pλ
N :

F (λ) ∈ ES∼Pλ
N

[
V (S)

]
= ES∼Pλ

N

[
log det

(
Id +

∑
i∗S xix

T
i

)]
, λ ⊕ [0, 1]n. (7)

Function F is an extension of V to the domain [0, 1]n, as it equals V on integer
inputs: F (�S) = V (S) for all S ≥ N , where �S denotes the indicator vector
of S. Contrary to problems such as Knapsack, the multi-linear extension (7)
cannot be optimized in polynomial time for the value function V we study here,
given by (4a). Hence, we introduce an extension L : [0, 1]n ↑ R s.t.

L(λ) ∈ log det
(
Id +

∑
i∗N λixix

T
i

)
, λ ⊕ [0, 1]n. (8)

Note that L also extends V , and follows naturally from the multi-linear extension
by swapping the expectation and log det in (7). Crucially, it is strictly concave
on [0, 1]n, a fact that we exploit in the next section to maximize L subject to
the budget constraint in polynomial time.

Our first technical lemma relates L to the multi-linear extension F :

Lemma 1. For all λ ⊕ [0, 1]n, 1
2 L(λ) ≤ F (λ) ≤ L(λ).

The proof of this lemma can be found in [16]. In short, exploiting the concavity
of the log det function over the set of positive semi-definite matrices, we first
bound the ratio of all partial derivatives of F and L. We then show that the
bound on the ratio of the derivatives also implies a bound on the ratio F/L.

Armed with this result, we subsequently use pipage rounding to show that any
λ that maximizes the multi-linear extension F can be rounded to an “almost”
integral solution. More specifically, given a set of costs c ⊕ R

n
+, we say that a

λ ⊕ [0, 1]n is feasible if it belongs to the set Dc = {λ ⊕ [0, 1]n :
∑

i∗N ciλi ≤ B}.
Then, the following lemma holds:

Lemma 2 (Rounding). For any feasible λ ⊕ Dc, there exists a feasible λ̄ ⊕ Dc

such that (a) F (λ) ≤ F (λ̄), and (b) at most one of the coordinates of λ̄ is
fractional.

The proof, also in [16], follows the main steps of the pipage rounding method of
Ageev and Sviridenko [1]. Together, Lemma 1 and Lemma 2 imply that OPT ,

Budget Feasible Mechanisms for Experimental Design 727

the optimal value of EDP, can be approximated by solving the following convex
optimization problem:

Maximize: L(λ) subject to: λ ⊕ Dc (Pc)

In particular, for L◦c ∈ maxλ∗Dc L(λ), the following holds [16]:

Proposition 1. OPT ≤ L◦c ≤ 2OPT + 2 maxi∗N V (i).

As we discuss in the next section, L◦c can be computed by a poly-time algorithm
at arbitrary accuracy. However, the outcome of this computation may not nec-
essarily be monotone; we address this by converting this poly-time estimator of
L◦c to one that is “almost” monotone.

4.2 Polynomial-Time, Almost-Monotone Approximation

The log det objective function of (Pc) is strictly concave and self-concordant [6].
The maximization of a concave, self-concordant function subject to a set of
linear constraints can be performed through the barrier method (see, e.g., [6]
Section 11.5.5 for general self-concordant optimization as well as [29] for a de-
tailed treatment of the log det objective). The performance of the barrier method
is summarized in our case by the following lemma:

Lemma 3 (Boyd and Vandenberghe [6]). For any ε > 0, the barrier method
computes an approximation L̂◦c that is ε-accurate, i.e., it satisfies |L̂◦c −L◦c | ≤ ε,
in time O

(
poly(n, d, log log ε−1)

)
. The same guarantees apply when maximizing

L subject to an arbitrary set of O(n) linear constraints.

Clearly, the optimal value L◦c of (Pc) is monotone in c: formally, for any two
c, c∈ ⊕ R

n
+ s.t. c ≤ c∈ coordinate-wise, Dc≥ ≥ Dc and thus L◦c ⊃ L◦c≥ . Hence,

the map c ↓↑ L◦c is non-increasing. Unfortunately, the same is not true for the
output L̂◦c of the barrier method: there is no guarantee that the ε-accurate
approximation L̂◦c exhibits any kind of monotonicity.

Nevertheless, we prove that it is possible to use the barrier method to con-
struct an approximation of L◦c that is “almost” monotone. More specifically,
given δ > 0, we say that f : Rn ↑ R is δ-decreasing if f(x) ⊃ f(x + μei), for
all i ⊕ N , x ⊕ R

n, μ ⊃ δ, where ei is the i-th canonical basis vector of R
n. In

other words, f is δ-decreasing if increasing any coordinate by δ or more at input
x ensures that the output will be at most f(x).

We achieve this by restricting the optimization over a subset of Dc at which
the concave relaxation L is “sufficiently” concave. Formally, for α ⊃ 0 let

Dc,α ∈ {λ ⊕ [α, 1]n :
∑

i∗N ciλi ≤ B} ≥ Dc.

Note that Dc = Dc,0. Consider the following perturbed problem:

Maximize: L(λ)

subject to: λ ⊕ Dc,α

(Pc,α)

728 T. Horel, S. Ioannidis, and S. Muthukrishnan

Restricting the feasible set to Dc,α ensures that the gradient of the optimal
solution with respect to c is bounded from below. This implies that an approx-
imate solution to Pc,α given by the barrier method is δ-decreasing with respect
to the costs. On the other hand, by taking α small enough, we ensure that the
approximate solution to Pc,α is still an ε-accurate approximation of L◦c . This
methodology is summarized in the following proposition, whose proof can be
found in [16].

Proposition 2. For any δ ⊕ (0, 1] and any ε ⊕ (0, 1], using the barrier method
to solve (Pc,α) for α ∈ ε(δ/B + n2)−1 with accuracy 1

2n+1Bαδb yields a δ-
decreasing, ε-accurate approximation of L◦c. The running time of the algorithm
is O

(
poly(n, d, log log B

bεδ)
)
.

5 Mechanism for EDP

The δ-decreasing, ε-accurate algorithm solving the convex optimization problem
(Pc) can be used to design a mechanism for EDP. The construction follows a
methodology proposed in [26] and employed by Chen et al. [10] and Singer [27] to
construct mechanisms for Knapsack and Coverage respectively. We briefly
outline this below (see [16] for a detailed description).

Recall from Section 3.2 that i◦ ∈ arg maxi∗N V ({i}) is the element of maxi-
mum value, and SG is a set constructed greedily, by selecting elements of maxi-
mum marginal value per cost. The general framework used by Chen et al. [10] and
by Singer [27] for the Knapsack and Coverage value functions contructs an
allocation as follows. First, a polynomial-time, monotone approximation of OPT
is computed over all elements excluding i◦. The outcome of this approximation
is compared to V ({i◦}): if it exceeds V ({i◦}), then the mechanism constructs
an allocation SG greedily; otherwise, the only item allocated is the singleton
{i◦}. Provided that the approximation used is within a constant from OPT , the
above allocation can be shown to also yield a constant approximation to OPT .
Furthermore, Myerson’s Theorem [22] implies that this allocation combined with
threshold payments (see Lemma 4 below) constitute a truthful mechanism.

The approximation algorithms used in [10, 27] are LP relaxations, and thus
their outputs are monotone and can be computed exactly in polynomial time. We
show that the convex relaxation (Pc), solved by an ε-accurate, δ-decreasing algo-
rithm, can be used to construct a δ-truthful, constant approximation mechanism.

To obtain this result, we use the following modified version of Myerson’s
theorem [22], whose proof we provide in [16].

Lemma 4. A normalized mechanismM = (S, p) for a single parameter auction
is δ-truthful if: (a) S is δ-monotone, i.e., for any agent i and c∈i ≤ ci − δ, for
any fixed costs c−i of agents in N \ {i}, i ⊕ S(ci, c−i) implies i ⊕ S(c∈i, c−i), and
(b) agents are paid threshold payments, i.e., for all i ⊕ S(c), pi(c) = inf{c∈i : i ⊕
S(c∈i, c−i)}.

Budget Feasible Mechanisms for Experimental Design 729

Lemma 4 allows us to incorporate our relaxation in the above framework, yielding
the following theorem:

Theorem 1. For any δ ⊕ (0, 1], and any ε ⊕ (0, 1], there exists a δ-truthful,
individually rational and budget feasible mechanim for EDP that runs in time
O
(
poly(n, d, log log B

bεδ)
)
and allocates a set S◦ such that

OPT ≤ 10e− 3 +
⊗

64e2 − 24e+ 9

2(e− 1)
V (S◦) + ε ∅ 12.98V (S◦) + ε.

Furthemore, there is no 2-approximate, truthful, budget feasible, individually ra-
tional mechanism for EDP.

The detailed description of our proposed mechanism as well as the proof of the
theorem can be found in [16].

6 Conclusions

We have proposed a convex relaxation for EDP, and showed how to use it to
design a δ-truthful, constant approximation mechanism that runs in polynomial
time. A natural question to ask is to what extent ou results generalize to other
machine learning tasks beyond linear regression. We outline a path to such a gen-
eralization in [16]: for a wide class of models in which experiment outcomes are
perturbed by independent noise, the information gain exhibits submodularity. In
light of this, it would be interesting to investigate whether our convex relaxation
approach generalizes to other tasks in this broader class. Moreover, the literature
on experimental design includes several other optimality criteria [25, 3], many
of which are convex [6]. Exploiting this to design budget feasible mechanisms is
an additional open problem of interest.

Acknowledgments. We thank Francis Bach for our helpful discussions on
approximate solutions of convex optimization problems, and Yaron Singer for
his comments and suggestions, and for insights into budget feasible mechanisms.

References

[1] Ageev, A.A., Sviridenko, M.: Pipage rounding: A new method of constructing
algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328
(2004)

[2] Archer, A., Papadimitriou, C., Talwar, K., Tardos, E.: An approximate truth-
ful mechanism for combinatorial auctions with single parameter agents. Internet
Mathematics 1(2), 129–150 (2004)

[3] Atkinson, A., Donev, A., Tobias, R.: Optimum experimental designs, with SAS.
Oxford University Press, Oxford (2007)

[4] Badanidiyuru, A., Kleinberg, R., Singer, Y.: Learning on a budget: posted price
mechanisms for online procurement. In: EC (2012)

730 T. Horel, S. Ioannidis, and S. Muthukrishnan

[5] Bei, X., Chen, N., Gravin, N., Lu, P.: Budget feasible mechanism design: from
prior-free to bayesian. In: STOC (2012)

[6] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press
(2004)

[7] Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mech-
anism design. In: ACM STOC (2005)

[8] Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set
function subject to a matroid constraint (Extended abstract). In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Hei-
delberg (2007)

[9] Chaloner, K., Verdinelli, I.: Bayesian experimental design: A review. Statistical
Science, 273–304 (1995)

[10] Chen, N., Gravin, N., Lu, P.: On the approximability of budget feasible mecha-
nisms. In: SODA (2011)

[11] Dobzinski, S., Papadimitriou, C.H., Singer, Y.: Mechanisms for complement-free
procurement. In: ACM EC (2011)

[12] Dughmi, S.: A truthful randomized mechanism for combinatorial public projects
via convex optimization. In: EC (2011)

[13] Dughmi, S., Roughgarden, T., Yan, Q.: From convex optimization to randomized
mechanisms: toward optimal combinatorial auctions. In: STOC (2011)

[14] Friedman, J., Hastie, T., Tibshirani, R.: The elements of statistical learning.
Springer Series in Statistics, vol. 1 (2001)

[15] Ginebra, J.: On the measure of the information in a statistical experiment.
Bayesian Analysis 2(1), 167–211 (2007)

[16] Horel, T., Ioannidis, S., Muthukrishnan, S.: Budget feasible mechanisms for ex-
perimental design (2013), http://arxiv.org/abs/1302.5724

[17] Kearns, M., Pai, M.M., Roth, A., Ullman, J.: Private equilibrium release, large
games, and no-regret learning (2012), http://arxiv.org/abs/1207.4084v1

[18] Krause, A., Guestrin, C.: A note on the budgeted maximization of submodular
functions. Tech. Rep. CMU-CALD-05-103, CMU (2005)

[19] Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear pro-
gramming. Journal of the ACM 58(6), 25 (2011)

[20] Le Cam, L.: Comparison of experiments: a short review. Lecture Notes-Monograph
Series, pp. 127–138 (1996)

[21] McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: FOCS
(2007)

[22] Myerson, R.: Optimal auction design. Mathematics of Operations Research 6(1),
58–73 (1981)

[23] Nissim, K., Smorodinsky, R., Tennenholtz, M.: Approximately optimal mechanism
design via differential privacy. In: ITCS (2012)

[24] Pai, M., Roth, A.: Privacy and mechanism design. SIGecom Exchanges (2013)
[25] Pukelsheim, F.: Optimal design of experiments. Society for Industrial Mathemat-

ics, vol. 50 (2006)
[26] Singer, Y.: Budget feasible mechanisms. In: FOCS (2010)
[27] Singer, Y.: How to win friends and influence people, truthfully: influence maxi-

mization mechanisms for social networks. In: WSDM (2012)
[28] Sviridenko, M.: A note on maximizing a submodular set function subject to a

knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)
[29] Vandenberghe, L., Boyd, S., Wu, S.: Determinant maximization with linear matrix

inequality constraints. SIAM Journal on Matrix Analysis and Applications 19(2),
499–533 (1998)

[30] Vondrak, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: ACM STOC (2008)

http://arxiv.org/abs/1302.5724
http://arxiv.org/abs/1207.4084v1

LZ77-Based Self-indexing

with Faster Pattern Matching

Travis Gagie1, Paweffl Gawrychowski2, Juha Kärkkäinen1,
Yakov Nekrich3, and Simon J. Puglisi1

1 University of Helsinki, Finland
2 Max Planck Institute, Germany

3 University of Kansas, United States

Abstract. To store and search genomic databases efficiently, researchers
have recently started building self-indexes based on LZ77. As the name
suggests, a self-index for a string supports both random access and pat-
tern matching queries. In this paper we show how, given a string S[1..n]
whose LZ77 parse consists of z phrases, we can store a self-index for
S in O(z log(n/z)) space such that later, first, given a position i and
a length Σ, we can extract S[i..i + Σ − 1] in O(Σ + log n) time; second,
given a pattern P [1..m], we can list the occ occurrences of P in S in
O(m log m + occ log log n) time.

1 Introduction

With the advance of DNA-sequencing technologies comes the problem of how to
store many individuals’ genomes compactly but such that we can search them
quickly. Any two human genomes are almost the same but self-indexes based
on compressed suΘx arrays, the Burrows-Wheeler Transform or LZ78 (see [24]
for a survey) do not take full advantage of this similarity [20]. Researchers
have recently started building self-indexes based on context-free grammars and
LZ77 [30], which better compress such highly repetitive strings.

A self-index for a string S[1..n] stores S in compressed form such that later,
first, given a position i and a length Θ, we can quickly extract S[i..i + Θ − 1];
second, given a pattern P [1..m], we can quickly list the occ occurrences of P in
S. In this paper we describe a self-index that takes O(z log(n/z)) space, where
z is the number of phrases in the LZ77 parse of S, and supports extraction in
O(Θ+ logn) time and pattern matching in O(m logm+ occ log logn) time. Our
model throughout is the word RAM with ι(log n)-bit words and we measure
space in terms of these words. We assume S is over a fixed alphabet.

Several authors have designed self-indexes for repetitive data sets: e.g., Ar-
royuelo, Navarro and Sadakane [3]; Claude and Navarro [7]; Do et al. [8]; Huang
et al. [15]; Kreft and Navarro [19]; Mäkinen et al. [20]; Maruyama et al. [21];
Russo and Oliveira![25]; Wandelt et al. [28]; Yang et al. [29]; and ourselves [13].
Most of these indexes have bounds depending on values other than m, n and z,
however, making them diΘcult to compare directly to our results in this paper.

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 731–742, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

732 T. Gagie et al.

Here we are concerned with theoretical worst-case bounds and, as far as we are
aware, when any known self-index’s worst-case bounds are expressed in terms
only of n and z, they are somehow worse than the bounds we give here.

In Section 2 we briefly describe LZ77 and other preliminaries: straight-line
programs, bookmarking, and Karp-Rabin fingerprinting. In Section 3 we de-
scribe Kärkkäinen and Ukkonen’s [16] LZ77-based index. Their index makes use
of Patricia trees [22] and planar orthogonal range reporting [2,6], and we assume
knowledge of these concepts here. Although not itself a self-index — because it
requires S to be stored separately — the basic structure of Kärkkäinen and Ukko-
nen’s index has been copied in many of the self-indexes listed above. In a previous
paper [13] we combined their index with a bookmarked straight-line program for
S to obtain a self-index that takesO(z log(n/z)) space and supports extraction in
O(Θ+ logn) time and pattern matching in O(m2 + (m+ occ) log log n

)
time. In

Section 4 we use Karp-Rabin fingerprinting, fat binary search and bookmarked
fingerprinting to reduce pattern-matching time to O(m logm+ occ log logn),
which is the contribution of this paper.

2 Preliminaries

2.1 LZ77

The LZ77 algorithm [30] compresses S by parsing it into z = O(n/ logn) phrases
such that if S[i..j] is a phrase, then S[i..j − 1] occurs in S[1..j − 2] but S[i..j]
does not occur in S[1..j − 1] (unless j = n, in which case S[i..j] may occur in
S[1..j−1]; it is common to delimit strings with a unique end-of-file character $ to
avoid this). We store S[i..j] as a pointer to the leftmost occurrence of S[i..j− 1]
in S, followed by j − i and S[j]. The leftmost occurrence of S[i..j − 1] is called
the source of phrase S[i..j]. For example, LZ77 parses the delimited Fibonacci
word abaababaabaab$ into phrases a, b, aa, bab, aabaa and b$, which it encodes
as (null, 0, a), (null, 0, b), (1, 1, a), (2, 2, b), (3, 4, a) and (2, 1, $). We can compute
the LZ77 parse of S in O(n) time.

Suppose S[i..j] is a phrase with source S[i∗..j∗]. Farach and Thorup [12] ob-
served that if a substring is completely contained in S[i..j−1] — so that substring
neither ends at nor crosses a phrase boundary — then it is equal to the corre-
sponding substring in S[i∗..j∗]. Kärkkäinen and Ukkonen [16] defined primary
substrings to be those that cross or end at phrase boundaries, and secondary
substrings to be those that do not. By Farach and Thorup’s observation, we
can compute the locations of all the secondary occurrences of P in S from the
structure of the parse and a list of the locations of P ’s primary occurrences:
we find all the phrase sources that include the occurrences in the list; compute
the positions of all the corresponding secondary occurrences in the phrases with
those sources; add those secondary occurrences to the list; and recurse on them.

2.2 Straight-Line Programs

A straight-line program (SLP) for S is a context-free grammar in Chomsky
normal form that generates S and only S. For example, Figure 1 shows an SLP for

LZ77-Based Self-indexing with Faster Pattern Matching 733

X7 → X6X5

X6 → X5X4

X5 → X4X3

X4 → X3X2

X3 → X2X1

X2 → a

X1 → b

X7

X4

X2

a

X3

X2

a

X1

b

X3

X2

a

X1

b

X5

X3

X2

a

X1

b

X4

X2

a

X3

X2

a

X1

b

X3

X2

a

X1

b

X5

X3

X2

a

X1

b

X4

X2

a

X3

X2

a

X1

b

X3

X2

a

X1

b

X6

Fig. 1. An SLP for abaababaabaab (left) and the corresponding parse tree (right)

abaababaabaab together with the corresponding parse tree. An SLP is balanced
if the height of each symbol is logarithmic in the length of its expansion. The
height of a terminal is defined to be 0; if X ⊕ y then height(X) = 1 (because
the SLP is in Chomsky normal form so y is a terminal); if X ⊕ Y Z, then
height(X) = max(height (Y), height (Z)) + 1.

Rytter [26] and Charikar et al. [9] showed how we can turn the LZ77 parse of
S into a balanced SLP for S with O(z log(n/z)) rules. If we store such an SLP
for S together with the length of each non-terminal’s expansion, which takes
a total of O(z log(n/z)) space, then we can support extraction in O(Θ + logn)
time, which nearly matches a lower bound by Verbin and Yu [27]. Bille et al. [10]
showed how we can store even an unbalanced SLP in space proportional to the
number of rules such that we can support extraction in O(Θ+ logn) time.

Theorem 1 (Rytter, 2003; Charikar et al., 2005). Given a string S[1..n]
whose LZ77 parse consists of z phrases, we can store S in O(z log(n/z)) space
such that later, given a position i and a length Θ, we can extract S[i..i + Θ − 1]
in O(Θ+ log n) time.

2.3 Bookmarking

In a previous paper [13] we proved the following lemma, which we used to store S
in O(z log(n/z)) space such that we can support extraction of primary substrings
in O(Θ) time. In fact, our construction can be applied to any set of pre-specified
positions to allow fast extraction of substrings that cross one or more of those
positions, hence the name “bookmarking”. In this paper, however, we care only
about fast extraction of primary substrings.

Lemma 1 (Gagie et al., 2012). Given a balanced SLP for S and positions
i and j, we can find two non-terminals with height O(log(j − i)) such that the
concatenation of their expansions includes S[i..j].

We now review how we use Lemma 1 to support bookmarked extraction. Suppose
we have stored a balanced SLP for S together with the length of each non-
terminal’s expansion, so we can support extraction in O(Θ+ logn) time. This is

734 T. Gagie et al.

fast enough when the target primary substring has length Δ(logn). Without loss
of generality, therefore, we need only consider how, given a length Θ = o(log n)
and the position b of the character immediately following a phrase boundary,
we can extract S[b..b+ Θ− 1] in O(Θ) time. Extracting characters preceding the
boundary is symmetric.

We first consider the case when log logn < Θ ≤ logn. For each phrase bound-
ary, we find two non-terminals Y and Z with height O(log log n) such that their
concatenation contains S[b..b + log n − 1]. We store the rule X ⊕ Y Z, where
X is a new non-terminal; the length of X ’s expansion, which is in 2O(log logn) =
logO(1) n; and the oΩset of S[b] in that expansion. This takes a total of O(z)
space for all phrase boundaries.

We now have a balanced SLP for X ’s expansion together with the length of
each non-terminal’s expansion. Therefore, for log logn < Θ ≤ log n, we can ex-
tract S[b..b+Θ−1] in O(Θ+ log logn) = O(Θ) time. If we recurse log⊆ n times, we
use a total ofO(z log⊆ n) ⊂ O(z log(n/z)) extra space and can support extraction
of primary substrings in O(Θ) time for any Θ.

2.4 Karp-Rabin Fingerprinting

A Karp-Rabin [18] fingerprinting function Γ has the form

Γ(S[1..n]) =

n∑

i=1

(S[i] · Ψi−1) mod p ,

where S[i] is treated as that character’s lexicographic rank (counting from 0)
in the alphabet, Ψ is the size of the alphabet and p is a prime. The value Γ(S)
is called S’s Karp-Rabin fingerprint. Two strings S1 and S2 of length at most
n have the same fingerprint if and only if p divides |S1 − S2| when S1 and S2

are viewed as Ψ-ary numbers. Since |S1 − S2| < Ψn, it has O(n/ logn) distinct
prime factors when Ψ is fixed. There are ι(n3/ logn) primes less than n3 so, if
we choose p uniformly at random from among them, the probability S1 and S2

have the same fingerprint is O(1/n2
)
. By the union bound, the probability no

two distinct substrings of S have the same fingerprint, is 1−O(1/n).
A useful feature of Karp-Rabin fingerprinting functions is that, if we already

have the fingerprints Γ(S1) and Γ(S2) of S1 and S2, then we can compute the
fingerprint Γ(S1S2) = Γ(S1) + Γ(S2) · Ψ|S1| of their concatenation S1S2 in O(1)
time. Similarly, we can compute Γ(S1) from Γ(S2) and Γ(S1S2), or Γ(S2) from
Γ(S1) and Γ(S1S2), inO(1) time. In an unpublished extension [14] of our previous
paper we observed that, if we store a balanced SLP for S together with the
length and Karp-Rabin fingerprint of each non-terminal’s expansion, then we
can compute the fingerprint of any substring S[i..j] of S in O(logn) time. To
do this, we find O(logn) non-terminals such that the concatenations of their
expansions is S[i..j], and combine their fingerprints.

Bille et al. [11] recently and independently made the same observation, and
showed that we can store even an unbalanced SLP in space proportional to the
number of rules such that we can support fingerprinting substrings in O(logn)

LZ77-Based Self-indexing with Faster Pattern Matching 735

time. More importantly for our results in this paper, they showed how to use
Karp, Miller and Rosenberg’s [17] renaming algorithm to check in O(n logn)
time that no two distinct substrings of S whose lengths are powers of 2 have the
same fingerprint.

3 Kärkkäinen and Ukkonen’s Index

Kärkkäinen and Ukkonen’s [16] index for S consists of two parts: the first uses
two Patricia trees, access to a plain-text representation of S and 4-sided range
reporting such that, given a pattern P [1..m], in O(m2 + (m+ occ) log log z

)
time

it returns a list of the primary occurrences of P in S; the second then uses
that list and 2-sided range reporting to return in O(occ log log n) time a list
of the secondary occurrences of P in S. (We assume the index uses the latest
range-reporting data structures.) Since it uses a plain-text representation of S,
their index supports extraction in O(Θ) time; pattern matching takes a total of
O(m2 +m log log z + occ log log n

)
time.

3.1 Finding Primary Occurrences

To be able to find primary occurrences quickly, we store one Patricia tree T1
for the reversed LZ77 phrases and another T2 for the suΘxes of S that start at
phrase boundaries. At each node of each tree we store the left-to-right ranks of
that node’s leftmost and rightmost leaf descendants. We also store a plain-text
representation of S. Finally, we store a data structure for 4-sided range report-
ing [6] on the z × z grid on which there is a point (x, y) if the lexicographically
xth reversed phrase is followed in S by the lexicographically yth suΘx starting at
a phrase boundary; we store the position of the boundary between those phrases
as satellite data. For example, the reversed phrases, suΘxes starting at phrase
boundaries, and grid for abaababaabaab$ are shown in Figure 2, with the end-
of-file character $ considered lexicographically less than the characters in the
alphabet. Altogether, these data structures take O(z log(n/z)) space in addition
to the plain string S.

Recall that primary occurrences of P [1..m] in S are those that cross or end
at phrase boundaries. Therefore, for any primary occurrence, there is a smallest
value i ≤ m such that P [1..i] lies immediately to the left of a phrase boundary
and P [i + 1..m] lies immediately to the right of it. To find all such primary
occurrences, we search in T1 for a node w1 such that either the reversed phrases
prefixed by (P [1..i])rev , where rev indicates reversal, are precisely those identified
by w1’s leaf descendants, or there are no such reversed phrases. We search in T2
for a node w2 such that either the suΘxes that start at phrase boundaries and
are prefixed by P [i+1..m] are precisely those identified by w2’s leaf descendants,
or there are no such suΘxes.

We use the plain-text representation of S to check that the reversed phrases
and suΘxes indicated by w1’s and w2’s leaf descendants in T1 and T2 really are
prefixed by (P [1..i])rev and P [i+ 1..m], respectively. If so, we compute the left-
to-right ranks x1 and x2 of the leftmost and rightmost of w1’s leaf descendants

736 T. Gagie et al.

ε

a a b a a b $

a a b a b a a b a a b $

b $

b a a b a b a a b a a b $

b a b a a b a a b $

a
a
b
a
aa

a
a

$
b

b
a
bb

Fig. 2. The reversed LZ77 phrases (top; in lexicographic order from left to right), the
suffixes starting at phrase boundaries (right) and the grid (center) for abaababaabaab$

in T1, and the left-to-right ranks y1 and y2 of the leftmost and rightmost of w2’s
leaf descendants in T2. Finally, we perform a 4-sided range-reporting query for
[x1, x2]× [y1, y2]; each point we find corresponds to a phrase boundary that has
P [1..i] immediately to its left and P [i+ 1..m] immediately to its right.

Searching in T1 and T2 takes O(m) time; finding x1, x2, y1 and y2 takes
O(1) time; and 4-sided range reporting takes O((1 + k) log log z) time, where k
is the number of points returned. Therefore, for 1 ≤ i ≤ m, we use a total of
O(m2 + (m+ occ) log log z

)
time.

3.2 Finding Secondary Occurrences

To be able to find secondary occurrences quickly, we store a data structure for
2-sided range reporting on the n × n grid on which there is a point (x, y) if
there is a phrase with source S[x..y]; we store as satellite data the locations of
all the phrases with that source. Given the list of primary occurrences of P in
S, for each occurrence S[a..b] in the list we use 2-sided range reporting to find
each phrase source S[x..y] with x ≤ a and y ⊗ b (i.e., that completely contains
S[a..b]); look up each phrase S[i..j] with source S[x..y]; add the corresponding
substring S[i + a − x..i + b − x] = S[a..b] = P to the list; and recurse on the
newly added occurrences. Since we perform a 2-sided range-reporting query for
each occurrence of P in S, we use a total of O(occ log logn) time.

Theorem 2 (Kärkkäinen and Ukkonen, 1996).Given a string S[1..n] whose
LZ77 parse consists of z phrases, we can storeO(z) words such that later, given the
list of primary occurrences of a pattern P that occurs occ times in S, we can list all
P ’s occurrences in O(occ log logn) time.

4 Faster Pattern Matching

If we replace the plain-text representation of S in Kärkkäinen and Ukkonen’s
index by the data structure described in Theorem 1 — i.e., by a balanced

LZ77-Based Self-indexing with Faster Pattern Matching 737

SLP augmented as described in Subsection 2.2 — then the index becomes an
O(z log(n/z))-space self-index that supports extraction in O(Θ+ logn) and pat-
tern matching in O(m2 +m logn+ occ log log n

)
time. We showed in our pre-

vious paper [13] that, if we augment the SLP as described in Subsection 2.3 to
support extraction of primary substrings in O(Θ) time, then we can reduce the
time for pattern matching to O(m2 +m log log z + occ log logn

)
.

Next, we augment the Patricia trees to support the fat binary search method
of Belazzougui, Boldi, Pagh, and Vigna [4]. We also augment the SLP to support
fingerprinting substrings in O(logn) time, as described in Subsection 2.4. Then,
given P , we first compute the Karp-Rabin fingerprints Γ(P [1]), . . . , Γ(P [1..m]) in
O(m) time. After this, for 1 ≤ i ≤ m, in O(logm) time we can find in the Patricia
tree T1 for the reversed phrases a node w1 such that, with high probability,
either the reversed phrases prefixed by (P [1..i])rev are precisely those identified
by w1’s leaf descendants, or there are no such reversed phrases. Similarly, in
O(logm) time we can find in the Patricia tree T2 for the suΘxes starting at
phrase boundaries, a node w1 such that, with high probability, either the suΘxes
that start at phrase boundaries and are prefixed by P [i+1..m] are precisely those
identified by w2’s leaf descendants, or there are no such suΘxes.

We use the SLP to compute in O(logn) time the fingerprint of the prefix of
length i of the reversed phrase indicated by one of w1’s leaf descendants in T1,
and the fingerprint of the prefix of length m− i of the suΘx indicated by one of
w2’s leaf descendants in T2. Comparing these two fingerprints to Γ((P [1..i])rev)
and Γ(P [i + 1..m]) tells us, with high probability, whether the reversed phrases
and suΘxes indicated by the leaf descendants of w1 and w2 really are prefixed by
(P [1..i])rev and P [i + 1..m]. We still use O((m+ occ) log log z) time for 4-sided
range reporting.

Summing up, so far we have an LZ77-based self-index that takes O(z log(n/z))
space and supports extraction in O(Θ+ logn) time and pattern matching
in O(m logn+ (m+ occ) log logn) time, with a small probability of pattern-
matching errors. In the rest of this section we strengthen this index in three
ways: first, we reduce the m logn term to m logm using bookmarked finger-
printing; second, we eliminate the m log logn term; and finally, we derandomize
the self-index. We will continue to use Theorems 1 and 2 unchanged to support
extraction and finding secondary occurrences, respectively; from now on, we are
concerned only with speeding up how we find primary occurrences.

4.1 Bookmarked Fingerprinting

For bookmarked fingerprinting, we want to augment the SLP for S such that we
can compute the Karp-Rabin fingerprint of any primary substring of length Θ in
O(log Θ) time. As with the bookmarked extraction described in Subsection 2.3,
our construction here works for any set of pre-specified positions, but in this
paper we care only about computing the fingerprints of primary substrings.

For the sake of the analysis, suppose we are willing to use O(f(n) log Θ) time
to compute the fingerprint of any primary substring of length Θ. We will later set

738 T. Gagie et al.

f(n) = 2 but, for now, it is useful to write it as a function to stop it disappearing
in asymptotic notation.

With the SLP augmented with the lengths and fingerprints of non-terminals’
expansions, as described in Subsection 2.4, we can compute the fingerprint of
any substring in O(logn) time. This is fast enough when the target primary
substring has length nΩ(1/f(n)). Without loss of generality, therefore, we need
only consider how, given a length Θ = no(1/f(n)) and the position b of the charac-
ter immediately following a phrase boundary, we can compute Γ(S[b..b+ Θ− 1])
in O(f(n) log Θ) time. Computing the fingerprint of substrings preceding the
boundary is symmetric.

We first consider the case when n1/f(n)2 < Θ ≤ n1/f(n). By Lemma 1, for
each phrase boundary, we can find two non-terminals Y and Z with height
O((1/f(n)) logn) such that their concatenation contains S[b..b + n1/f(n) − 1].
We store the rule X ⊕ Y Z, where X is a new non-terminal; the length of
X ’s expansion, which is in 2O((1/f(n)) logn) = nO(1/f(n)); the fingerprint of X ’s
expansion; and the oΩset of S[b] in that expansion. This takes a total of O(z)
space for all phrase boundaries.

We now have a balanced SLP for X ’s expansion together with the length
and fingerprints of each non-terminal’s expansion. Therefore, for n1/f(n)2 < Θ ≤
n1/f(n), we can compute Γ(S[b..b + Θ − 1]) in O((1/f(n)) logn) = O(f(n) log Θ)

time. If we recurse logf(n) log n times, we use a total of O
(
z logf(n) logn

)
extra

space and can support fingerprinting of primary substrings in O(f(n) log Θ) time.
Setting f(n) = 2 (or any constant greater than 1) means we use O(z log logn)
space, which is O(z log(n/z)) since z = O(n/ logn), and we can support finger-
printing of primary substrings in O(log Θ) time.

4.2 Removing the m log log z Term

Our index now supports pattern matching in O(m logm + m log log z + occ log
logn) time. If m ⊗ log z then this is O(m logm+ occ log logn), so we need
consider only the case when m < log z, which we split into two subcases: when
m < log log z, and when log log z ≤ m < log z.

We handle the first subcase with a technique by Bille and Gørtz [5]: at each
node in the top log log z levels in the Patricia tree T1 for the reversed phrases,
we store a data structure for 1-dimensional range reporting on the union of the
range of columns for that node in the z × z grid. Since each point on the grid
appears in O(log log z) unions of ranges, all the ranges together contain a total
of O(z log log z) points. Alstrup, Brodal and Rauhe [1] and Mortensen, Pagh
and Pǎtraşcu [23] showed how we can store these data structures in a total of
O(z log log z) ∈ O(z log(n/z)) space such that range reporting takes O(1 + k)
time, where k is the number of points returned. When m < log log z, then our
search in T1 will return a node w1 with depth less than log log z, so we can
implement the 4-sided range reporting in O(1 + k) time.

To deal with the second subcase, we build a Patricia tree for the set of
O(z log z) substrings of S that cross a phrase boundary, start at most log z

LZ77-Based Self-indexing with Faster Pattern Matching 739

characters before the first phrase boundary they cross, and end exactly log z
characters after it (or at S[n], whichever comes first). At the leaf corresponding
to each such substring, we store O(log log z) bits indicating the position in the
substring where it first crosses a phrase boundary. In total this Patricia tree
takes O(z log log z) space.

If log log z < m < log z, we search for P in this new Patricia tree, which takes
O(m) time. Suppose our search ends at node v. If P occurs in S, then the leaves
in v’s subtree store the distinct positions in P ’s primary occurrences where they
cross phrase boundaries. To determine whether P occurs in S, it suΘces for
us to choose any one of those positions, say i, and check whether there is a
phrase boundary immediately preceded by P [1..i] and immediately followed by
P [i+ 1..m]. To do this, we search in our first two augmented Patricia trees and
perform a range-emptiness query. If m ≤ log log z time then we can perform the
range-emptiness query with the one-dimensional range-reporting data structures
in O(1) time; otherwise, we perform the range-emptiness query with our data
structure for 4-sided range reporting in O(log log z) ∈ O(m) time. If we learn
that P does not occur in S, then we stop here, having used a total of O(m)
time. If we learn that P does occur in S, then in O(occ) time we traverse v’s
subtree to obtain the full list of distinct positions in P ’s primary occurrences
where they first cross phrase boundaries. For each such position, we search in
our first two augmented Patricia trees and perform a 4-sided range-reporting
query. This takes O(m logm+ occ log log z) time and gives us the positions of
all P ’s primary occurrences in S.

4.3 Derandomization

Using Karp-Rabin fingerprints means our index can fail in two ways: first, if
two fingerprints are the same in one of our two Patricia trees, then a fat binary
search can fail to return the correct node and we may miss some occurrences of
P in S (i.e., a false-negative error); second, if the fingerprints of a prefix P [1..i]
and suΘx P [i + 1..m] collide with the fingerprints of the substrings of length i
and m− i immediately before and after a phrase boundary, then we may report
occurrences where none exist (i.e., a false-positive error).

False-negative errors seem more serious, but we can prevent them by testing
fingerprinting functions until we find one such that all the fingerprints in each
Patricia tree are distinct. Recall from Subsection 2.4 that, if we choose the prime
of the fingerprinting function uniformly at random from the primes less than
n3, then the probability no two distinct substrings have the same fingerprint
is 1 − O(1/n). It follows that with high probability it takes O(z) time to find
a fingerprinting function such that the fingerprints in each Patricia tree are
distinct.

Dealing with false-positive errors is more complicated because we do not have
the query patterns at construction time; thus, we cannot check in advance for
collisions between fingerprints of pattern substrings and and fingerprints of sub-
strings of S. Of course, at query time, we could use bookmarked extraction to

740 T. Gagie et al.

check each supposed primary occurrence, but this would increase our bound for
pattern matching to O(m2 + occ log logn

)
.

Recall from Subsection 2.4 that Bille et al. [11] showed how to check in
O(n logn) time that no two distinct substrings of S whose lengths are pow-
ers of 2 have the same fingerprint. It follows that with high probability it takes
O(n logn) time to find a fingerprinting function such that no two distinct sub-
strings of S whose lengths are powers of 2 have the same fingerprint. With
such a fingerprinting function, we can test — with no risk of false positives
or negatives — the equality of any two substrings S[i1..j1] and S[i2..j2] of S
with j1 − i1 = j2 − i2, by checking that Γ

(
S
[
i1..i1 + 2◦log(j1−i1+1)∼ − 1

])
=

Γ
(
S
[
i2..i2 + 2◦log(j1−i1+1)∼ − 1

])
and Γ(S[j1−2◦log(j1−i1+1)∼+1..j1]) = Γ(S[j2−

2◦log(j1−i1+1)∼ + 1..j2]).
Suppose we have found a fingerprinting function such that all the fingerprints

in each Patricia tree are distinct and no two distinct substrings of S whose
lengths are powers of 2 have the same fingerprint. To avoid the possibility of false
positives, we modify slightly how we find primary occurrences. Given a pattern
P [1..m], we first compute the fingerprints Γ(P [1..i]), . . . , Γ(P [1..m]) in O(m)
time, as before. We then use fat binary search for each reversed prefix (P [1..i])rev

of P in the Patricia tree T1 for reversed phrases, and for each suΘx P [i+ 1..m]
of P in the Patricia tree T2 for suΘxes starting at phrase boundaries. We now
use bookmarked fingerprinting and a single bookmarked extraction to check all
the results of the fat binary searches in O(m logm) time, as we explain next.
Finally, we apply 4-sided range reporting for the remaining candidate matches.

Without loss of generality, we consider only how to check the results of the
fat binary searches for suΘxes of P ; checking the results of searches for reversed
prefixes is symmetric. For each node w returned by a search, we take the position
b indicated by one of w’s leaf descendants. After doing this, we obtain a list
i1, . . . , ik in P , where k ≤ m, and a list b1, . . . , bk of positions immediately after
phrase boundaries in S. For each j ≤ k we want to check whether P [ij ..m] =
S[bj..bj +m− ij]. For the sake of simplicity, assume i1, . . . , ik are decreasing, so
P [ij..m] is a suΘx of P [ij+1..m] for 1 ≤ j < m.

Notice that, if we can ensure that S[bj..bj +m− ij] is a suΘx of S[bj+1..bj+1+
m− ij+1], for 1 ≤ j < m, then we need only extract S[bk..bk +m− ik] and find
its longest common suΘx with P [ik..m], which takes O(m) time. Therefore, for
1 ≤ j < m, we use bookmarked fingerprinting to check in O(logm) time whether
S[bj..bj +m− ij] is a suΘx of S[bj+1..bj+1 +m− ij+1]. Since we are comparing
substrings of S for equality, this cannot lead to a false match.

If S[bj..bj +m− ij] is not a suΘx of S[bj+1..bj+1 +m− ij+1], then we compute
the fingerprints of the (overlapping) prefix and suΘx of S[bj ..bj + m − ij] of
length 2◦log(m−ij+1)∼, and compare them to Γ

(
P
[
ij..ij + 2◦log(m−ij+1)∼ − 1

])

and Γ
(
P
[
m− 2◦log(m−ij+1)∼ + 1..m

])
, respectively. This takes O(logm) time.

If these fingerprints do not match, then we know S[bj ..bj + m − ij] ∗= P [ij ..m],
so we discard ij from the list and check whether S[bj−1..bj−1 + m − ij−1] is a
suΘx of S[bj+1..bj+1 +m− ij+1].

LZ77-Based Self-indexing with Faster Pattern Matching 741

If the fingerprints do match, on the other hand, then we know the finger-
prints of the corresponding substrings of S[bj+1..bj+1 +m− ij+1] cannot match
Γ
(
P
[
ij ..ij + 2◦log(m−ij+1)∼ − 1

])
and Γ

(
P
[
m− 2◦log(m−ij+1)∼ + 1..m

])
. (Oth-

erwise, S[bj ..bj + m − ij] would be a suΘx of S[bj+1..bj+1 + m − ij+1], con-
trary to assumption.) Therefore, we discard ij+1 from the list and check that
S[bj..bj +m− ij] is a suΘx of S[bj+2..bj+2 +m− ij+2].

4.4 Summary

Combining the results in this section, we obtain the following theorem:

Theorem 3. Given a string S[1..n] whose LZ77 parse consists of z phrases,
we can store S in O(z log(n/z)) space such that later, given a pattern P [1..m]
that occurs occ times in S, we can list the primary occurrences of P in S in
O(m logm+ occ log logn) time.

Our construction is randomized and takes O(n logn) time with high probability,
but the resulting index does not use randomization and cannot fail. Combining
Theorem 3 with Theorems 1 and 2, we obtain our desired result:

Theorem 4. Given a string S[1..n] whose LZ77 parse consists of z phrases, we
can store a self-index for S in O(z log(n/z)) space such that later, first, given
a position i and a length Θ, we can extract S[i..i + Θ − 1] in O(Θ+ logn) time;
second, given a pattern P [1..m], we can list the occ occurrences of P in S in
O(m logm+ occ log logn) time.

Acknowledgments. Many thanks to Djamal Belazzougui, Francisco Claude,
Veli Mäkinen, Gonzalo Navarro and Jorma Tarhio, for helpful discussions.

References

1. Alstrup, S., Brodal, G., Rauhe, T.: Optimal static range reporting in one dimension.
In: Proc. STOC, pp. 476–482 (2001)

2. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In: Proc.
SODA, pp. 819–828 (2000)

3. Arroyuelo, D., Navarro, G., Sadakane, K.: Stronger Lempel-Ziv based compressed
text indexing. Algorithmica 62(1-2), 54–101 (2012)

4. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
searching a sorted table with O(1) accesses. In: Proc. SODA, pp. 785–794 (2009)

5. Bille, P., Gørtz, I.L.: Substring range reporting. In: Giancarlo, R., Manzini, G.
(eds.) CPM 2011. LNCS, vol. 6661, pp. 299–308. Springer, Heidelberg (2011)

6. Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: Proc. SoCG, pp. 1–10 (2011)

7. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fund.
Inf. 111(3), 313–337 (2011)

8. Do, H.H., Jansson, J., Sadakane, K., Sung, W.-K.: Fast relative Lempel-Ziv self-
index for similar sequences. Theor. Comp. Sci. (to appear)

742 T. Gagie et al.

9. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. The-
ory 51(7), 2554–2576 (2005)

10. Bille, P., et al.: Random access to grammar-compressed strings. In: Proc. SODA,
pp. 373–389 (2011)

11. Bille, P., Cording, P.H., Gørtz, I.L., Sach, B., Vildhøj, H.W., Vind, S.: Fingerprints
in compressed strings. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 146–157. Springer, Heidelberg (2013)

12. Farach, M., Thorup, M.: String matching in Lempel-Ziv compressed strings. In:
Proc. STOC, pp. 703–712 (1995)

13. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster
grammar-based self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012)

14. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A faster
grammar-based self-index. Technical Report 1109.3954v6, arxiv.org (2012)

15. Huang, S., Lam, T.W., Sung, W.K., Tam, S.L., Yiu, S.M.: Indexing similar DNA
sequences. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 180–190. Springer,
Heidelberg (2010)

16. Kärkkäinen, J., Ukkonen, E.: Lempel-Ziv parsing and sublinear-size index struc-
tures for string matching. In: Proc. WSP, pp. 141–155 (1996)

17. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated patters
in strings, trees and arrays. In: Proc. STOC, pp. 125–136 (1972)

18. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

19. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comp. Sci. 483, 115–133 (2013)

20. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comp. Bio. 17(3), 281–308 (2010)

21. Maruyama, S., Nakahara, M., Kishiue, N., Sakamoto, H.: ESP-index: A compressed
index based on edit-sensitive parsing. J. Dis. Alg. 18, 100–112 (2013)

22. Morrison, D.R.: PATRICIA - Practical algorithm to retrieve information coded in
alphanumeric. J. ACM 15(4), 514–534 (1968)

23. Mortensen, C.W., Pagh, R., Pǎtraşcu, M.: On dynamic range reporting in one
dimension. In: Proc. STOC, pp. 104–111 (2005)

24. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comp. Surv. 39(1)
(2007)

25. Russo, L.M.S., Oliveira, A.L.: A compressed self-index using a Ziv-Lempel dictio-
nary. Inf. Retr. 11(4), 359–388 (2008)

26. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comp. Sci. 302(1-3), 211–222 (2003)

27. Verbin, E., Yu, W.: Data structure lower bounds on random access to grammar-
compressed strings. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922,
pp. 247–258. Springer, Heidelberg (2013)

28. Wandelt, S., Leser, U.: QGramProjector: Q-gram projection for indexing highly-
similar strings. In: Catania, B., Guerrini, G., Pokorný, J. (eds.) ADBIS 2013.
LNCS, vol. 8133, pp. 260–273. Springer, Heidelberg (2013)

29. Yang, X., Wang, B., Li, C., Wang, J., Xie, X.: Efficient direct search on genomic
data. In: Proc. ICDE, pp. 961–972 (2013)

30. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

Quad-K-d Trees

Nikolett Bereczky1, Amalia Duch2, Krisztián Németh1, and Salvador Roura2

1 Budapest University of Technology and Economics,
Department of Telecommunications and Media Informatics, Budapest, Hungary

{nikolett.bereczky,krisztian.nemeth}@tmit.bme.hu
2 Universitat Politècnica de Catalunya,

Departament de Llenguatges i Sistemes Informàtics, Barcelona, Catalonia, Spain
{duch,roura}@lsi.upc.edu

Abstract. We introduce the Quad-K-d tree (or simply QK-d tree) a
hierarchical and general purpose data structure for the storage of multi-
dimensional points, which is a generalization of point quad trees and K-d
trees at once. QK-d trees can be tuned by means of insertion heuristics
to obtain trade-offs between their costs in time and space. We propose
three such heuristics and show analytically and experimentally their com-
petitive performance. On the one hand, our analytical results back the
experimental outcomes and suggest that QK-d trees could constitute a
general framework for the study of inherent properties of trees akin to
K-d trees and quad trees. On the other hand, our experimental results
indicate that the QK-d tree is a flexible data structure, which can be
tailored to the resource requirements of a given application.

1 Introduction

Associative retrieval is a fundamental computing task [18, 32]. Given a file F ,
which is a collection of n records, each record of F is an ordered K-tuple of
values (the attributes or coordinates of the record) drawn from a totally ordered
domain. A query of F is a retrieval of the records whose attributes satisfy certain
conditions. The query is considered associative when its conditions deal with
more than one of the attributes. Examples of associative queries are: (i) nearest-
neighbor queries, to retrieve the record in F that is the closest to a given record
under a given distance metric, (ii) partial match queries, to retrieve all the records
in F whose attributes match the attributes of the query record that are specified,
or (iii) orthogonal range queries, to retrieve all the records in F that fall inside
a given hyper-rectangle whose sides are parallel to the coordinate axes.

The way of dealing with associative queries varies. In particular, when sev-
eral types of associative queries are required, general purpose multidimensional
data structures, such as K-d trees and quad trees [18, 32], are typically used.1

Therefore, it is important to know as much as possible about their performance.
Here, we are interested in the amount of memory required by the data structure
to store the collection of records (its cost in space), and in the execution time

1 Throughout this work, we will write “quad trees” to refer to point quad trees [32].

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 743–754, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

744 N. Bereczky et al.

of each of the supported operations (its cost in time). Both measures strongly
depend on the computer model under consideration and on the way to store
the data structures. We will follow Samet’s [32] customary representation of
multidimensional trees in main memory. Other approaches such as succinct rep-
resentation of trees or the consideration of memory hierarchies are beyond the
scope of this paper. Nevertheless, the techniques used in those research areas are
applicable to our work in the same way that apply to K-d trees and quad trees
(see Chapters 27, 34 and 37 of [25] and [2, 6, 8, 29]).

For a set of n K-dimensional records, both K-d trees and quad trees require
a basic amount of Θ(Kn) memory for the records. In addition, K-d trees are
binary trees, so each of the n nodes has two pointers, to its left and right children.
Note that this Θ(n) increment of space is diminishable for large K. By contrast,
quad trees are 2K-ary trees, so the total amount of space is Θ(2Kn), which is
considerably greater than the optimal space required by K-d trees. In fact, for
large K, most of the pointers of a quad tree point to empty subtrees, incurring
in an important waste of space [23].

Regarding the execution time, there are several results in the literature ana-
lyzing the cost of performing insertions, deletions, exact match, partial match,
orthogonal or nearest neighbor queries in both K-d trees (and a wide range of
its variants) and quad trees [4, 5, 7, 9–11, 13, 16, 24]. A measure closely related
to the time performance of K-d trees and quad trees in almost any of their avail-
able operations is the average height of the tree, or equivalently, its Internal Path
Length (IPL from now on) [20]. It turns out that the IPL of perfectly balanced
or random quad trees is asymptotically optimal and is considerably smaller than
the one of perfectly balanced or random K-d trees [22].

From the previous discussion, one could argue that K-d trees are space-
optimal while quad trees are IPL-optimal. It is a natural question, therefore,
whether it is possible to define hierarchical multidimensional data structures
that combine the two kinds of optimality.

Much work has been done to optimize the time performance of ad-hoc multi-
dimensional data structures towards some specific associative queries [3, 18, 19,
30, 34]. However, some of these techniques substantially increment the cost in
space. Moreover, it is often the case that ad-hoc data structures do not perform
well in a general setting.

There are also several proposals to keep general multidimensional trees bal-
anced in order to optimize either the execution time of most of the query oper-
ations or the required space [7, 9, 14, 15, 18, 26, 27, 35, 33]. Unfortunately, in
such settings the cost of update operations increases significantly.

Other works adapt the behavior of general purpose multidimensional data
structures either to the distribution of the input data or to the most frequent
kind of multidimensional queries that they have to support [12, 18, 28], at the
cost of increments in space and in the execution time of the update operations.

To the best of our knowledge, there is no work combining simultaneously tun-
able space/time trade-off as well as adaptability to the distribution of the input
data. This is what QK-d trees aim to achieve. QK-d trees are general purpose,

Quad-K-d Trees 745

multidimensional trees in which each node may have any number of discrimi-
nants, instead of a fixed number as it is the usual case for multidimensional trees.
(For example, [21] uses as discriminants a variable set of the attributes, but the
set is the same for all the nodes in the tree.) This flexibility allows us to play
with the compromise between space and time costs. Using insertion heuristics
(we propose three of them) it is then possible to produce the whole range of
trade-offs that lie between K-d trees and quad trees.

The rest of the paper is organized as follows. In Section 2, we introduce
QK-d trees together with the Random-Split, the Distance-Dependent and the
Probability-Dependent insertion heuristics. In Section 3 we provide the theoretical
value of the IPL of 3-dimensional random QK-d trees built using two of the
proposed heuristics, while Section 4 shows the experimental analysis of QK-d
trees built under these heuristics.

2 Quad-K-d Trees

Informally, QK-d trees are multidimensional trees in which each node discrimi-
nates by a number i (specific for each node), 1 ⊕ i ⊕ K, of coordinates (and thus
it has 2i subtrees). The idea behind them arises from the following observation.
K-d trees consist of nodes that discriminate by exactly one of the coordinates of
the K-dimensional keys that they store, while in quad-trees each node discrimi-
nates by all the K coordinates of their stored keys. Indeed, K-d trees and quad
trees can be seen as extreme cases on the number of discriminating coordinates
that a node in the tree can have (minimal for K-d trees and maximal for quad
trees). Thus, it is natural to envisage multidimensional trees where the number
of discriminating coordinates for each node in the tree is between 1 and K.

Definition 1. A Quad-K-d (or simply QK-d) search tree T of size n ≤ 0 stores
a set of n K-dimensional records, each holding a key x = (x0, . . . , xK−1) ∈ D,
where D = D0 × · · · × DK−1, and each Dj, 0 ⊕ j < K, is a totally ordered
domain. The QK-d tree T is such that

– either it is empty when n = 0, or
– its root stores both a record with key x and a coordinate split boolean vector
s = (s0, . . . , sK−1) that contains exactly i ones, where 1 ⊕ i ⊕ K is the
order of vector s, and the node has 2i subtrees that store the n−1 remaining
points as follows: each subtree, let us call it Tw, is associated to a string
w = w0w1 . . . wK−1 ∈ {0, 1,#}K, such that ⊗w ∈ {0, 1,#}K, Tw is a QK-d
tree and, for any key y ∈ Tw and 0 ⊕ j < K, it holds that
• wj = # iff sj = 0
• if sj = 1 and wj = 0, then yj < xj
• if sj = 1 and wj = 1, then yj > xj.

We assume, without loss of generality, that D = [0, 1]K and that all the key
coordinates in each dimension are different.

In Figure 1, we show an example of a 3-dimensional QK-d tree. Inside each
node we show (between brackets) the 3-dimensional key that it has associated

746 N. Bereczky et al.

[30, 50, 17]
(010)

[30, 45, 47]
(010)

[29, 60, 9]
(110)

[30, 30, 30]
(001)

[40, 47, 60]
(110)

�
[20, 70, 5]

(111)

�
[35, 80, 90]

(011)

� � � � � �
[25, 80, 4]

(100)

�

#0# #1#

#0# #1# 00# 01#
10#

11#

000 001 010 011 100 101 110 111

Fig. 1. An example of 3-dimensional QK-d tree

and its split boolean vector (in parenthesis). Next to every edge we show the
label (the string w) of the subtree it points to.

As we have already mentioned, both K-d trees and quad trees are special
cases of QK-d trees. In fact, for any QK-d tree T of size n, if the order of the
split vector s associated to every node of T is exactly K then T is a quad tree,
and if this order is exactly one for every node and the splitting coordinates are
used cyclically then T is a K-d tree.

The algorithms for exact search and insertion are similar to those of K-d trees
and quad trees, except that in this case insertions require a specific method in
order to generate the split vector of each newly inserted node.

In general, if we want to search for a record in a QK-d tree, we have to traverse
it, starting at the root, and examine the values in the split vector of the root:
for every 1 value in the vector we have to compare the corresponding coordinate
of the root with the one of the record we are looking for, and finally follow the
subtree whose associated string matches the result of all the comparisons. The
search continues recursively until we find a node containing the requested record
(successful search) or an empty subtree (unsuccessful search).

Alternatively, if we want to insert a record that is not in the tree, we have to
search for it as described above, until we reach an empty subtree which we replace
by a new node containing the inserted key and empty subtrees. At this point,
a predefined algorithm to generate the split vector of the new node is required.
In the following paragraphs we propose three heuristics for this purpose: (i)
Random-Split (RS for short), (ii) Distance-Dependent (DD for short) and (iii)
Probability-Dependent (PD for short). As we will show experimentally, any of
these heuristics provides a “smooth” transition between the space of K-d trees
and the one of quad trees as well as between their IPL. Therefore, using them
QK-d trees can be tuned for the specific application requirements.

Quad-K-d Trees 747

The Random-Split (RS) heuristic generates randomly the members of the split
vector of each new node independently of each other, using the same Bernoulli
distribution, where the probability of occurrence of the value 0 is a given con-
stant, referred to as Prob-of-0. Note that it can happen that every coordinate in
the split vector is zero. In this case, a randomly chosen position will be set to
one.

The Distance-Dependent (DD) heuristic decides, for a given node with key
x = (x0, x1, . . . , xK−1) and bounding box2 [ι0, u0]× . . .× [ιK−1, uK−1], whether
to discriminate or not by coordinate j, 0 ⊕ j < K, depending on the distance of
xj from both ιj and uj . More precisely, given a fixed value 0 < z < 1 (referred

to as Split Threshold), we discriminate by coordinate j if and only if
xj−Δj
uj−Δj > z

and
uj−xj

uj−Δj > z. For example: let v be the root of a 2-dimensional tree with

associated key (0.35, 0.52) and bounds array [0, 1]× [0, 1]. If the value of z is 0.3,
then we discriminate by the two coordinates (and consequently we have a split
vector s = (1, 1)) because 0.30 < 0.35 < 0.70 and 0.30 < 0.52 < 0.70. However,
if the value of z is 0.4, then the split vector is s = (0, 1), and consequently
the first coordinate will not be used to discriminate. Note that as the value of
Split Threshold grows the probability of splitting decreases. The idea behind
this heuristic is to split only when the given coordinate of the node is useful to
discriminate, which happens when it splits more or less evenly the subsequent
keys. For uniformly distributed keys a coordinate is useful to discriminate if it is
close to the center of the bounding box in the given dimension: this indicates that
the nodes inserted under the current one will probably be uniformly distributed
in the forthcoming subtrees. Again, if every coordinate in the split vector happens
to be zero, a randomly chosen one will be set to one.

The Probability-Dependent (PD) heuristic is an extension of the DD heuristic
for points drawn from continuous but non-uniform distributions. In this case,
given a node of the tree with key x, its j-th coordinate is used to discriminate

only if both quotients
F (xj)−F (Δj)
F (uj)−F (Δj)

and
F (uj)−F (xj)
F (uj)−F (Δj)

are greater than a given Split

Threshold constant, where F is the cumulative distribution function and uj and
ιj are the coordinate bounds. Informally, the j-th coordinate of a given key is
going to discriminate if it is “centered” within the probability distribution of the
set of keys.

To analyze the expected performance of QK-d trees we are going to use the
same probabilistic model generally used to analyze the expected performance of
K-d trees and quad trees, i. e., we say that a K-d tree or a quad tree built from
a given set of n random keys is random if it is built with identical probability
from any of the n!K possible input sequences. As a consequence, the insertion of
n points independently drawn from a continuous distribution in [0, 1]K into an
initially empty K-d tree or quad tree will produce random K-d trees, random
quad trees or random QK-d trees.

2 The bounding box (or bounds array) of a node x is the region of the space corre-
sponding to the leaf in which x fell when it was inserted into the tree.

748 N. Bereczky et al.

3 The IPL of QK-d Trees

Here we study the asymptotic average IPL of the randomQK-d trees built under
the RS and the DD heuristics presented above.

Let us start with the recurrence relation for the expected cost Cn of a random
exact search in a random binary search tree (or in a random K-d-tree), with i
keys in its left subtree

Cn = 1 +

n−1∑

i=0

1

n

(
i

n
Ci +

n− i− 1

n
Cn−i−1

)
= 1 +

n−1∑

i=0

2i

n2
Ci . (1)

If we denote by Δi the weight of Ci, i.e., Δi = 2i/n2, we observe that those
weights asymptotically fit the shape of the function f1(z) = 2z between [0..1],

in the sense that Δi = f1(i/n)/n ∈ ∫ (i+1)/n

i/n
f1(z)dz. Informally speaking, f1(z)

is like a continuous probability distribution, with indeed
∫ 1

0
f1(z)dz = 1.

As shown in [31], a recurrence like (1) has always a solution of the form
Cn ∗ c lnn for some constant c. Using this fact, we can compute c by means of
integrals:

c lnn ∗ 1 +

n−1∑

i=0

Δic ln i ∗ 1 +

∫ 1

0

f1(z)c ln(zn)dz

= 1 + c

∫ 1

0

f1(z) ln zdz + c lnn

∫ 1

0

f1(z)dz .

Since
∫ 1

0
f1(z)dz = 1, the terms c lnn vanish and we get

0 = 1 + c

[
z2 ln z − z2

2

]1

0

= 1 + c

(
−1

2

)
,

which implies c = 2. The expected cost is certainly ∗ 2 lnn = 2 ln 2 log2 n ∈
1.39 log2 n.

Let fK(z) be the function that describes the asymptotic shape of the weights of
the recurrence for the average cost to search in a quad-tree with K dimensions.
For instance, we already have f1(z) = 2z. To compute f2(z), note that using
two dimensions to discriminate is like using each of the two dimensions one
after another. The “density of probability” to reach some z from 1 in two steps

is therefore f2(z) =
∫ 1

z f1(x)f1(z/x)/xdx. (For every x between z and 1, is
the “probability” to reach x in one step—f1(x)—times the “probability” to
reach z/x in another step, which is f1(z/x) scaled by the factor 1/x so that the
integral of the probability distribution f1 between 0 and x adds up to 1.) Hence,

f2(z) = 4z
∫ 1

z
1/xdx = −4z ln z.

For comparison with the traditional (discrete) approach, the recurrence for
the cost of a search in a two-dimensional quad-tree can be seen to be exactly
(see [17], page 102)

Cn = 1 +

n−1∑

i=0

4i

n2
(Hn −Hi)Ci ,

Quad-K-d Trees 749

where Hn ∗ lnn denotes as usual the n-th harmonic number
∑

i=1..n 1/i.
Note how the weights fit the function f2(z):

4i/n(Hn −Hi)/n ∗ −4i/n ln(i/n)/n = f2(i/n)/n .

We have the following lemma for general K.

Lemma 1. For K ≤ 1, fK(z) = kKz(ln z)K−1, where kK = −(−2)K/(K − 1)!.

Proof. The proof is by induction. We already know that f1(z) = k1z(ln z)0.
Assuming that the lemma is true up to a certain K − 1, and following a similar
reasoning as for the computation of f2(z), we have

fK(z) =

∫ 1

z

f1(x)fd−1(z/x)/xdx =

∫ 1

z

2kK−1z/x(ln(z/x))K−2dx .

By the change of variable y = z/x, we get

fK(z) = 2kK−1z
∫ 1

z

(ln y)K−2/ydy = 2kK−1z[(ln y)K−1/(K − 1)]1zdy

= −2kK−1/(K − 1)z(ln z)K−1 .

Let f(z) be any continuous probability distribution for the asymptotic shape

of the weights Δi of a recurrence like Cn = 1 +
∑n−1

i=0 ΔiCi. As we have already
seen, the solution is Cn ∗ c lnn for some constant c, which can be computed by

solving c lnn = 1 +
∫ 1

0 f(z)c ln(zn)dz. Once the terms c lnn cancel from both
sides, what we have left is

c =
−1

∫ 1

0
f(z) ln zdz

. (2)

The following technical lemma will be useful.

Lemma 2. For K ≤ 0, let IK =
∫ 1

0 z(ln z)Kdz. Then IK = −K!/(−2)K+1.

Proof. By induction. For the base case, we have I0 = 1/2. For K ≤ 1,

IK =

∫ 1

0

z(ln z)Kdz =

[
z2(ln z)K

2

]1

0

−
∫ 1

0

K

2
z(ln z)K−1dz = −K

2
IK−1 .

By combining this lemma with Equation 2, we can easily compute the constant
of searching in a quad-tree with K dimensions:

c(K) = −1/

∫ 1

0

kKz(ln z)K = −1/(kKIK) = 2/K ,

as expected.
More interesting is the analysis of some of the new variants presented in this

paper. For instance, consider a 3-dimensional QK-d tree built using RS. Let p

750 N. Bereczky et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

c(
p)

p

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

c(
t)

t

Fig. 2. c(p) (left) and c(t) (right)

be the probability of zero, and q = 1 − p be the probability of one. Then, with
probability q3 the current node discriminates w.r.t. the three dimensions, with
probability 3pq2 w.r.t. two dimensions, and with probability 3p2q+p3 w.r.t. one
dimension. Therefore, f(z) = q3f3(z) + 3pq2f2(z) + (3p2q + p3)f1(z) and, the
constant of the search is thus

c(p) =
−1

q3k3I3 + 3pq2k2I2 + (3p2q + p3)k1I1
=

2

p3 − 3p+ 3
.

We can see c(p) at the left of Figure 2.
From this point, the analysis of the DD variant under random keys is straight-

forward. It is enough to note that p can be set in terms of t, that is, replace p
by 1− 2t (and q by 2t). Therefore, as a function of t, we have

c(t) =
2

(1− 2t)3 + 6t
= − 2

8t3 − 12t2 − 1
.

We can see c(t) at the right of Figure 2.
Some remarks are in order. On the one hand, both the RS and the DD heuris-

tics can also be analyzed for dimensions other than three. On the other, note
that the tools used above do not allow us to compute the constant for expected
number of leaves of variants presented in this paper. The reason is that those
tools produce results that rely exclusively upon asymptotic information. How-
ever, the number of leaves strongly depends on what the algorithms do when the
number of remaining points is small. (For instance, if we decide to always dis-
criminate w.r.t. one dimension when only a few points remain, then the number
of leaves will significantly drop.) Therefore, the computation of such a constant
would require more sophisticated techniques.

4 Experimental Analysis

In this section we study the performance of QK-d trees experimentally. Specifi-
cally, we show the experimental results that we obtained by comparing the IPL
(as a measure of data access time) and the number of empty subtrees (as a mea-
sure of storage space usage) of random K-d trees and quad trees versus QK-d

Quad-K-d Trees 751

trees built using the RS, DD and the PD heuristics. All measures, unless oth-
erwise stated, were obtained by averaging the values of 100 3-dimensional trees
holding each 100,000 nodes, although we have also performed similar experi-
ments for 2, 4 and 5-dimensional trees obtaining equivalent results.

We start in a uniform experimental setting comparing randomly built QK-d
trees (built from uniformly distributed and independently generated keys from
a continuous domain) with K-d trees and quad trees built from the same set of
keys inserted in the same order.

In Figure 3 (top) we show the performance of QK-d trees built using the RS
heuristic. As expected, we can see that as the probability of discriminating by a
coordinate decreases (i.e., Prob-of-0 increases) the IPL of the QK-d tree grows
and the space it needs diminishes. Indeed, the more ones we have in the split
vector, the more QK-d trees resemble quad trees, and the less ones we have,
the more QK-d trees resemble K-d trees. Note how the experimental results
coincide with the theoretical values shown in Figure 2.

In the case of uniformly distributed keys, the DD heuristic performs well. In
Figure 3 (middle) we show how the IPL and the number of empty subtrees of such
a QK-d tree behave depending on the value of the Split Threshold. Again, note
how the theoretical values match the experimental results shown in Figure 2. As
it can be seen in the diagrams, QK-d trees are between quad trees and K-d trees
considering both the IPL and the number of the empty subtrees. The curves also
show that when the value of the Split Threshold grows, the IPL grows and the
space requirements diminish.

Comparing QK-d trees built using the RS heuristic against QK-d trees built
using the DD heuristic (see Fig. 3 (bottom), which combines the previous di-
agrams), it can be seen that for randomly built trees the IPL of the latter is
better. On the other hand, concerning the number of empty subtrees, their per-
formance are practically identical (the curves are overlapping). These together
mean that the more sophisticated DD heuristic outperforms the RS heuristic.
However, for applications for which the extra IPL is not a problem, it might be
worth using the trees built by the RS heuristic because of its simplicity.

Anyway, the fact that the experiments and the theoretical results for the
IPL match so well provides us with some confidence about the soundness of
our experiments for other quantities, especially those concerning the number of
empty subtrees that cannot be computed using the techniques of Section 3.

We have measured also the IPL and number of empty subtrees while the
number of the nodes in the tree grows. Our results show that these metrics are
linearly proportional to the size of the tree for K-d trees, quad trees and QK-d
trees built using the DD heuristic.

Our experiments show also that increasing the number of dimensions has
considerable effect on the results. In fact, for higher dimensions, using QK-d
trees one can avoid the waste of space of quad trees while keeping a short IPL.

We have carried out experiments with non-uniform settings comparing K-d
trees and quad trees with QK-d trees built using the RS, DD and PD heuris-
tics. For these experiments we have used trees built by independently generated

752 N. Bereczky et al.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

IP
L

Prob-of-0

Quad tree
K-d tree

RS QK-d tree

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9N
um

be
r o

f e
m

pt
y

su
bt

re
es

Prob-of-0

Quad tree
K-d tree

RS QK-d tree

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

IP
L

Split Threshold

Quad tree
K-d tree

DD QK-d tree

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45N
um

be
r o

f e
m

pt
y

su
bt

re
es

Split Threshold

Quad tree
K-d tree

DD QK-d tree

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

IP
L

Prob-of-0/2, Split Threshold

Quad tree
K-d tree

DD QK-d tree
RS QK-d tree

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45N
um

be
r o

f e
m

pt
y

su
bt

re
es

Prob-of-0/2, Split Threshold

Quad tree
K-d tree

DD QK-d tree
RS QK-d tree

Fig. 3. Performance of the RS heuristic (top), the DD heuristic (middle) and their
comparison (bottom)

keys from exponential and normal distributions (the latter is usually used for
modeling non-uniformly distributed data in multidimensional settings [1]). The
results show that QK-d trees built using the PD heuristic are very competitive,
specially regarding the IPL.

More experimental results using as input real data are omitted for lack of
space.

5 Conclusions

We have introduced a simple and flexible multidimensional data structure, the
QK-d tree, which includes K-d trees and quad trees as particular cases. We
have shown through formal analysis and experiments that, as expected, the
performance of randomly built QK-d trees is between the one of quad trees and
the one of K-d trees considering time and space efficiency.

Quad-K-d Trees 753

We have also proposed three insertion heuristics that allow “a la carte” space
and time trade-offs. Among these heuristics, Random-Split is the simplest, yet
it is adjustable and has a stable performance in all the examined cases. On the
other hand, the results for the Distance-Dependent heuristic are more favorable
in the case of uniform data distributions. Finally, if the distribution of the input
data is not uniform, but still known, then the Probability-Dependent heuristic is
preferable. Using these heuristics, the resources used by the data structure can
be tailored to the application requirements.

A first—and challenging—line of future work consists of a formal analysis
approach that takes QK-d trees as a framework to analyze inherent properties
(IPL, average cost of update and search operations, and so on) of the whole
family of hierarchical multidimensional trees akin to K-d trees and quad trees.
A second line of further interest addresses the possible practical applicability of
QK-d trees.

References

1. Ang, C.H., Samet, H.: Node Distribution in a PR Quadtree. In: Buchmann, A.P.,
Günther, O., Smith, T.R., Wang, Y.-F. (eds.) Design and Implementation of Large
Spatial Databases. LNCS, vol. 409, pp. 233–252. Springer, Heidelberg (1989)

2. Benoit, D., Munro, R., Raman, R.: Representing trees of higher degree. Algorith-
mica 43 (2005)

3. Bentley, J.L., Friedman, J.H.: Data structures for range searching. ACM Comput-
ing Surveys 11(4), 397–409 (1979)

4. Chanzy, P., Devroye, L., Zamora-Cura, C.: Analysis of range search for random
k-d trees. Acta Informatica 37, 355–383 (2001)

5. Chern, H.H., Hwang, H.K.: Partial match queries in random k-d trees. SIAM Jour-
nal on Computing 35(6), 1440–1466 (2006)

6. Choi, M.G., Ju, E., Chang, J.W., Lee, J., Kim, Y.J.: Linkless octree using multi-
level perfect hashing. Comput. Graph. Forum 28(7), 1773–1780 (2009)

7. Cunto, W., Lau, G., Flajolet, P.: Analysis of kdt-trees: kd-trees improved by local
reorganisations. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.) WADS 1989. LNCS,
vol. 382, pp. 24–38. Springer, Heidelberg (1989)

8. Darragh, J.J., Cleary, J.G., Witten, I.H.: Bonsai: A compact representation of
trees. SOFTPREX: Software–Practice and Experience 23 (1993)

9. Devroye, L., Jabbour, J., Zamora-Cura, C.: Squarish k-d trees. SIAM Journal on
Computing 30, 1678–1700 (2000)

10. Duch, A., Estivill-Castro, V., Mart́ınez, C.: Randomized K-dimensional binary
search trees. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533,
pp. 199–209. Springer, Heidelberg (1998)

11. Duch, A., Mart́ınez, C.: On the average performance of orthogonal range search in
multidimensional data structures. Journal of Algorithms 44(1), 226–245 (2002)

12. Duch, A., Mart́ınez, C.: Improving the performance of multidimensional search
using fingers. ACM Journal of Experimental Algorithms - JEA 10 (2005)

13. Duch, A., Mart́ınez, C.: Updating Relaxed K-d Trees. ACM Transactions on Al-
gorithms 6(1) (2009)

14. Duncan, C., Goodrich, M., Kobourov, S.: Balanced Aspect Ratio Trees: Combining
the Advantages of k-d Trees and Octrees. Journal of Algorithms 38, 303–333 (2001)

754 N. Bereczky et al.

15. Eppstein, D., Goodrich, M., Sun, J.Z.: Skip Quadtrees: Dynamic Data Structures
for Multidimensional Point Sets. Int. J. Comput. Geom. Appl. 18 (2008)

16. Flajolet, P., Puech, C.: Partial match retrieval of multidimensional data. Journal
of the ACM 33(2), 371–407 (1986)

17. Flajolet, P., Gonnet, G.H., Puech, C., Robson, J.M.: The Analysis of Multidimen-
sional Searching in Quad-Trees. In: SODA, pp. 100–109 (1991)

18. Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Sur-
veys 30(2), 170–231 (1998)

19. Indyk, P., Motwani, R., Raghavan, P., Vempala, S.: Locality-preserving hashing in
multidimensional spaces. In: STOC 1997 Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, pp. 618–625 (1997)

20. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, 2nd edn.,
vol. 3. Addison–Wesley (1998)

21. Lin, K.I., Jagadish, H., Faloutsos, C.: The TV-Tree: An Index Structure for High-
Dimensional Data. Proc. VLDB Journal 3(4), 517–542 (1994)

22. Mahmoud, H.M.: Evolution of Random Search Trees. Wiley-Interscience series in
discrete mathematics and optimization (1991)

23. Mahmoud, H.M., Pittel, B.: Analysis of the Space of Search Trees Under the Ran-
dom Insertion Algorithm. Journal of Algorithms 10, 52–75 (1989)

24. Mart́ınez, C., Panholzer, A., Prodinger, H.: Partial match queries in relaxed mul-
tidimensional search trees. Algorithmica 29(1-2), 181–204 (2001)

25. Mehta, D.P., Sahni, S.: Handbook of Data Structures and Applications. Computer
& Information Science Series. Chapman & Hall/CRC (2005)

26. Mulmuley, K.: Randomized Multidimensional Search Trees: Lazy Balancing and
Dynamic Shuffling. In: FOCS: 32nd Annual Symposium on Foundations of Com-
puter Science, pp. 180–196 (1991)

27. Overmars, M.H., van Leeuwen, J.: Dynamic Multi-dimensional Data Structures
Based on Quad and K-d Trees. Acta Informatica 17(3), 267–285 (1982)

28. Park, E., Mount, D.M.: A Self-Adjusting Data Structure for Multidimensional
Point Sets. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp.
778–789. Springer, Heidelberg (2012)

29. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: Proceedings of the 13th Annual ACM-
SIAM Symposium on Discrete Mathematics (SODA 2002), pp. 233–242. ACM
Press (2002)

30. Rotem, D.: Clustered multiattribute hash files. In: PODS 1989 Proceedings of the
Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pp. 225–234 (1989)

31. Roura, S.: Improved master theorems for divide-and-conquer recurrences. J.
ACM 48(2), 170–205 (2001)

32. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley
(1990)

33. Sherk, M.: Self-Adjusting k-ary Search Trees. Journal of Algorithms 19(1), 25–44
(1995)

34. Tamminen, M.: The extendible cell method for closest point problems. BIT Nu-
merical Mathematics 22, 27–41 (1982)

35. Vaishnavi, V.K.: Multidimensional Height-Balanced Trees. IEEE Transactions on
Computers 33(4), 334–343 (1984)

Biased Predecessor SearchΔ

Prosenjit Bose1, Rolf Fagerberg2, John Howat3, and Pat Morin1

1 School of Computer Science
Carleton University

{jit,morin}@scs.carleton.ca
2 Department of Mathematics and Computer Science

University of Southern Denmark
rolf@imada.sdu.dk

3 School of Computing
Queen’s University

howat@cs.queensu.ca

Abstract. We consider the problem of performing predecessor searches
in a bounded universe while achieving query times that depend on the
distribution of queries. We obtain several data structures with various
properties: in particular, we give data structures that achieve expected
query times logarithmic in the entropy of the distribution of queries but
with space bounded in terms of universe size, as well as data structures
that use only linear space but with query times that are higher (but still
sublinear) functions of the entropy. For these structures, the distribution
is assumed known. We also consider data structures with general weights
on universe elements, as well as the case when the distribution is not
known in advance.

1 Introduction

The notion of biased searching has received significant attention in the literature
on ordered dictionaries. In this setting, each element i of the data structure has
some probability pi of being queried, and we wish for predecessor queries—that
is, queries for the largest element stored in that data structure that is smaller
than than a given query element—to take a time related to the inverse of the
probability of that query. For example, a biased search tree can answer a query
for item i in time O(log 1/pi) [5].1 Recall that

∑
i pi log(1/pi) is the entropy of the

distribution of queries. In terms of this quantity, we note that the average query
time in a biased search tree is linear in the entropy of the query distribution.

Predecessor searches have also been researched extensively in the context of
bounded universes. Let U = {0, 1, . . . , U − 1}, and consider a static subset S =
{s1, s2, . . . , sn} ⊆ U , where s1 < s2 < · · · < sn. Predecessor searches in this
context admit data structures that are not only a function of n, but also of U .
For example, van Emde Boas trees [16] can answer predecessor queries in time
O(log logU).

� This research was partially supported by NSERC and MRI.
1 In this paper, we define log x = log2(x + 2).

A. Pardo and A. Viola (Eds.): LATIN 2014, LNCS 8392, pp. 755–764, 2014.
c∨ Springer-Verlag Berlin Heidelberg 2014

756 P. Bose et al.

A natural question—but one which has been basically unexplored—is how to
combine these two areas of study to consider biased searches in bounded uni-
verses. In this setting, we have a probability distribution D = {p0, p1, . . . , pU−1}
over the universe U such that the probability of receiving i ∈ U as a query is pi
and

∑U−1
i=0 pi = 1. We wish to preprocess U and S, given D, such that the time

for a query is related to D.
The motivation for such a goal is the following. Let H =

∑U−1
i=0 pi log(1/pi)

be the entropy of the distribution D. Recall that the entropy of a U -element dis-
tribution is between 0 and logU . Therefore, if a query time of O(logH) can be
achieved, this for any distribution will be at most O(log logU), which matches
the performance of van Emde Boas trees [16]. However, for lower-entropy distri-
butions, this will be faster. In other words, such a structure will allow bias in the
query sequence to be exploited for ordered dictionaries over bounded universes.
Hence, perhaps the most natural way to frame the line of research in this paper
is by analogy: the results here are to biased search trees as van Emde Boas trees
(and similar structures) are to binary search trees.

Our Results. The results presented here can be divided into several categories.
We give three variants of a data structure that obtains O(logH) query time but
space that is bounded in terms of U , as well as a solution that obtains space

that is linear in n but has query time O
(√

H
)

. We also consider the cases of

general weights on universe elements and of query times related to the working-
set number (which is defined as the number of distinct predecessors reported
since the last time a particular predecessor was reported), so that the query
distribution need not be known in advance.

Organization. The rest of the paper is organized in the following way. We first
complete the introduction by reviewing related work. Section 2 shows how to
obtain good query times at the expense of large space. Section 3 shows how to
obtain good space at the expense of larger query times. We conclude in Sec-
tion 4 with a summary of the results obtained and possible directions for future
research.

1.1 Related Work

It is a classical result that predecessor searches in bounded universes can be
performed in time O(log logU). This was first achieved by van Emde Boas trees
[16], and later by y-fast tries [17], and Mehlhorn and Näher [13]. Of these, van
Emde Boas trees use O(U) space, while the other two structures use O(n) space.

These bounds can be improved to

O

(

min

{
log logU

log log logU
,

√
logn

log logn

})

Biased Predecessor Search 757

using nO(1) space [3]. By paying an additional O(log log n) factor in the first half
of this bound, the space can be improved to O(n). Pătraşcu and Thorup later
effectively settled this line of research with a set of time-space tradeoffs [14].

Departing the bounded universe model for a moment and considering only
biased search, perhaps the earliest such data structure is the optimum binary
search tree [11], which is constructed to be the best possible static binary search
tree for a given distribution. Optimum binary search trees take a large amount
of time to construct; in linear time, however, it is possible to construct a binary
search tree that answers queries in time that is within a constant factor of
optimal [12]. Even if the distribution is not known in advance, it is still possible
to achieve the latter result (e.g., [2,15]).

Performing biased searches in a bounded universe is essentially unexplored,
except for the case where the elements of S are drawn from D rather than
the queries [4]. In that result, D need not be known, but must satisfy certain
smoothness constraints, and a data structure is given that supports O(1) query

time with high probability and O
(√

logn/ log log n
)

worst-case query time, us-

ing O
(
n1+Δ

)
bits of space, which can be reduced to O(n) space at the cost of a

O(log logn) query time (with high probability). It is worth noting that this data
structure is also dynamic.

A related notion is to try to support query times that are related to the
distribution in a less direct way. For example, finger searching can be supported

in time O
(√

log d/ log log d
)

where d is the number of keys stored between a

finger pointing at a stored key and the query key [1]. There is also a data
structure that supports such searches in expected time O(log log d) for a wide
class of input distributions [10]. Finally, a query time of O(log logΘ), where Θ
is the difference between element queried and the element returned, can also be
obtained [7]. Of these last two results, note that the former gives a larger bound
in terms of rank space, while the latter gives a smaller bound in terms of the
universe.

Other problems in bounded universes can also be solved in similar ways. A
priority queue that supports insertion and deletion in time O(log logD), where
D is the difference between the successor and predecessor (in times of priority)
of the query is known [9], as well as a data structure for the temporal precedence
problem, wherein the older of two query elements must be determined, that
supports query time O(log log ι), where ι is the temporal distance between the
given elements [8].

2 Supporting O(logH) Query Time

In this section, we describe how to achieve query time O(logH) using space that
is somewhat large in terms of U . In bounded universe problems, it is desirable
to have query time that is a function of n rather than U .

758 P. Bose et al.

2.1 Using O(n + Uε) Space

Let Δ > 0. We will place all elements i ∈ U with probability pi ≥ (1/U)Δ, along
with their predecessor in S (which never changes since S is static) into a hash
table T . All elements of S are also placed into a y-fast trie over the universe
U . Since there are at most U Δ elements with probability greater than (1/U)Δ, it
is clear that the hash table requires O(U Δ) space. Since the y-fast trie requires
O(n) space, we have that the total space used by this structure is O(n+ U Δ). To
execute a search, we check the hash table first. If the query (and thus the answer)
is not stored there, then a search is performed in the y-fast trie to answer the
query.

The expected query time is thus
∑

i∗T
piO(1) +

∑

i∗U\T
piO(log logU)

= O(1) +
∑

i∗U\T
piO(log logU)

= O(1) +
∑

i∗U\T
piO

(
log log

(
(U Δ)1/Δ

))

= O(1) +
∑

i∗U\T
piO((log(1/Δ)) (logU Δ))

= O(1) +
∑

i∗U\T
piO(log(1/Δ)) +

∑

i∗U\T
piO(log logU Δ)

= O(1) +O(log(1/Δ)) +
∑

i∗U\T
piO

(
log log

1

1/U Δ

)

≤ O(1) +O(log(1/Δ)) +
∑

i∗U\T
piO(log log(1/pi))

The last step here follows from the fact that, if i ∈ U \T , then pi ≤ (1/U)Δ, and
so 1/(1/U)Δ ≤ 1/pi. Recall Jensen’s inequality, which states that for concave
functions f , E[f(X)] ≤ f(E[X]). Since the logarithm is a concave function, we
therefore have

∑

i∗U\T
piO(log log(1/pi)) ≤ log

∑

i∗U\T
piO(log(1/pi)) ≤ O(logH)

therefore, the expected query time is O(log(1/Δ)) +O(logH) = O(log(H/Δ)).

Theorem 1. Given a probability distribution with entropy H over the possible
queries in a universe of size U , it is possible to construct a data structure that
performs predecessor searches in expected time O(log(H/Δ)) using O(n+ U Δ)
space for any Δ > 0.

Theorem 1 is a first step towards our goal. For Δ = 1/2, for example, we achieve
O(logH) query time, as desired, and our space usage is O(n) + o(U). This

Biased Predecessor Search 759

dependency on U , while sublinear, is still undesirable. In the next section, we
will see how to reduce this further.

2.2 Using O
(
n + 2logε U

)
Space

To improve the space used by the data structure described in Theorem 1, one
observation is that we can more carefully select the threshold for “large proba-
bilities” that we place in the hash table. Instead of (1/U)Δ, we can use (1/2)log

Θ U

for some 0 < Δ < 1. The space used by the hash table is thus O
(
2log

Θ U
)
, which

is o(U Δ) for any Δ > 0. The analysis of the expected query times carries through
as follows
∑

i∗T
piO(1) +

∑

i∗U\T
piO(log logU) = O(1) +

∑

i∗U\T
piO(log logU)

= O(1) +
∑

i∗U\T
piΔ(1/Δ)O(log logU)

= O(1) +
∑

i∗U\T
pi(1/Δ)O(log ((logU)Δ))

= O(1) +
∑

i∗U\T
pi(1/Δ)O

(
log log

(
2log

Θ U
))

≤ O(1) +
∑

i∗U\T
pi(1/Δ)O(log log(1/pi))

≤ O(1) + (1/Δ)
∑

i∗U\T
piO(log log(1/pi))

≤ O((1/Δ) logH)

Theorem 2. Given a probability distribution with entropy H over the possible
queries in a universe of size U , it is possible to construct a data structure that per-
forms predecessor searches in expected time O((1/Δ) logH) using O

(
n+ 2log

Θ U
)

space for any 0 < Δ < 1.

2.3 Alternate Solution

Results similar to those of Theorem 2 can be achieved through other means,
albeit with slightly higher space requirements. However, as we shall see, this
variant has an interesting property that the previous data structures lack. Recall
from Section 1.1 the predecessor search data structure that achieves O(log logΘ)
expected2 query time, where Θ is the distance between the query element and
the element returned [7]. We add guide points to S, which have their predeces-
sors (in the original set S) precomputed, to ensure that the distance between i

and its predecessor is at most Θi ≤ (1/pi)
log(1/Θ)−1 1/pi for some 1/2 < Δ < 1.

2 In this instance, the expectation is taken over random choices made by the algorithm,
not by the distribution of queries.

760 P. Bose et al.

To perform a search, we query the data structure. If we happen to be returned
a guide point, then we use its precomputed predecessor to answer the query. We
then obtain the following expected running time

∑

i∗U
piO(log logΘi) ≤

∑

i∗U
piO

(
log log(1/pi)

log(1/Θ)−1(1/pi)
)

=
∑

i∗U
piO

(
log

(
log(1/pi) log(1/Δ−1)(1/pi)

))

=
∑

i∗U
piO

(
log log1/Δ 1/pi

)

=
∑

i∗U
piO((1/Δ) log log 1/pi)

=
∑

i∗U
(1/Δ)piO(log log 1/pi)

= (1/Δ)
∑

i∗U
piO(log log 1/pi)

≤ O((1/Δ) logH)

It remains to determine the amount of space required for this structure. The pre-
decessor search data structure uses space O(n log log logU). However, we must
also store guide points, and so we now count the number of guide points we add.
Let us consider how such points were added. For each element i ∈ U , in order of
the highest probability to lowest, we check to see if the predecessor of i is within

distance (1/pi)
log(1/Θ)−1 1/pi . Observe that the answer to this question is always

“yes” if (1/pi)
log(1/Θ)−1 1/pi ≥ U . We have

(1/pi)
log(1/Θ)−1 1/pi ≥ U

⇐⇒ log(1/pi)
log(1/Θ)−1 1/pi ≥ logU

⇐⇒
(

log(1/Δ)−1(1/pi)
)

(log(1/pi)) ≥ logU

⇐⇒ log1/Δ(1/pi) ≥ logU
⇐⇒ 1/pi ≥ 2log

Θ U

⇐⇒ pi ≤ 1/2log
Θ U

Observe that there are at most two elements of U with probability between 1 and
1/2, at most four elements with probability between 1/2 and 1/4, at most eight
elements with probability between 1/4 and 1/8, and so on. In general, there are
at most 2i+1 points with probability between 1/2i and 1/2i+1. In the worst case,
we always place a guide point. Therefore, we place at most 2i+1 guide points on
elements with probabilities between 1/2i and 1/2i+1, but never for elements with

probability at most 1/2log
Θ U . The number of guide points is thus

∑logΘ U
j=0 2i =

O
(
2log

Θ U
)
, for a total space requirement of O

(
(n+ 2log

Θ U) log log logU
)
.

This result has an extra factor of O(log log logU) in the space requirements,
but has one interesting property that the structure in Theorem 2 lacks. Observe

Biased Predecessor Search 761

that, for this data structure, an individual query for element i can be executed
in time O((1/Δ) log log 1/pi) time. This is in contrast to Theorem 2, where an
individual query takes either Γ(1) or Γ(log logU) time. As a result, this tech-
nique can be used to support arbitrarily weighted elements in U . Suppose each
element i ∈ U has a real-valued weight wi > 0 and let W =

∑U−1
i=0 wi. By as-

signing each element probability pi = wi/W , we achieve an expected query time
of O((1/Δ) log log(W/wi)), which is analogous to the O(logW/wi) query time of
biased search trees [5].

Theorem 3. Given a positive real weight wi for each element i in a universe
of size U , such that the sum of all weights is W , it is possible to construct a
data structure that performs a predecessor search for item i in expected time
O((1/Δ) log log(W/wi)) using O

(
(n+ 2log

Θ U) log log logU
)
space for any 1/2 <

Δ < 1.

3 Supporting O(n) Space

In this section, we describe how to achieve space O(n) by accepting a larger

query time O
(√

H
)

. We begin with a brief note concerning input entropy vs.

output entropy.

Input vs. Output Distribution. Until now, we have discussed the input distri-
bution, i.e., the probability that i ∈ U is the query. We could also discuss the
output distribution, i.e., the probability that i ∈ U is the answer to the query.
This distribution can be defined by letting p⊆i = 0 if i /∈ S and p⊆i =

∑si+1−1
j=si

pj
otherwise.

Suppose we can answer a predecessor query for i in time O
(

log log 1/p⊆pred(i)
)

where pred(i) is the predecessor of i. Then the expected query time is

∑

i∗U
piO

(
log log 1/p⊆pred(i)

)

Since pi ≤ p⊆pred(i) for all i, this is at most
∑

i∗U pi log log 1/pi, i.e., the entropy
of the input distribution. It therefore suffices to consider the output distribution.

Our data structure will use a series of data structures for predecessor search
[3] that increase doubly-exponentially in size in much the same way as the
working-set structure [2]. Recall from Section 1.1 that there exists a linear
space data structure that is able to execute predecessor search queries in time

O
(

min
{

log logn·log logU
log log logU ,

√
logn

log logn

})
[3]. We will maintain several such struc-

tures D1, D2, . . ., where Dj is over the entire universe U but contains only 22
j

elements. In particular, Dj contains the 22j elements of highest probability that
are not contained in any Dk for k < j. Note that here, “highest probability”
refers to the highest output probability.

762 P. Bose et al.

Searches are performed by doing a predecessor search in each of D1, D2,
Along with each element we also store its successor. When we receive the pre-
decessor of the query in Dj, we check its successor to see if that successor is
larger than the query. If so, the predecessor in Dj is the answer to the query.
Otherwise, the real predecessor is somewhere between the predecessor in Dj and
the query, and can be found by continuing the search; this technique is already
known [6].

We now consider the search time in this data structure. Suppose the correct
predecessor of the query i is found in Dj where j > 1 (otherwise, the predeces-

sor was found in D1 in O(1) time). All 22
j−1

elements of Dj−1 have (output)

probability greater than p⊆pred(i), and so p⊆pred(i) ≤ 1/22
j−1

. Equivalently, j is

O
(

log log 1/p⊆pred(i)
)

. The total time spent searching is bounded by

j∑

k=1

√
log 22k

log log 22k
≤ O

(√
2j

j

)

≤ O
(√

log 1/p⊆pred(i)
)

Therefore, since pi ≤ p⊆pred(i) for all i, the expected query time is

∑

i∗U
pi
√

log 1/p⊆pred(i) ≤
∑

i∗U
pi
√

log 1/pi ≤
√
H

The final step above follows from Jensen’s inequality. To determine the space
used by this data structure, observe that every element stored in S is stored in
exactly one Dj. Since each Dj uses space linear in the number of elements stored
in it, the total space usage is O(n).

Theorem 4. Given a probability distribution with entropy H over the possible
queries in a universe of size U , it is possible to construct a data structure that

performs predecessor searches in expected time O
(√

H
)
using O(n) space.

Observe that we need not know the exact distribution D to achieve the result
of Theorem 4; it suffices to know the sorted order of the keys in terms of non-
increasing probabilities.

Furthermore, since the predecessor search structure used is in fact dynamic [3],
we can even obtain a bound similar to the working-set property: a predecessor

search for item i can be answered in time O
(√

logw(i)
)

where w(i) is the

number of distinct predecessors reported since the last time the predecessor of i
was reported. This can be accomplished using known techniques [2], similar to
the data structure of Theorem 4, except instead of ordering the elements by their
probabilities, we order them in increasing order of their working-set numbers
w(i). Whenever an element is reported, we place it in the first substructure and
shift elements from the end to fill the space created, just as in the working-set
structure [2]. This result also uses O(n) space.

Biased Predecessor Search 763

Theorem 5. Let w(i) denote the number of distinct predecessors reported since
the last time the predecessor of i was reported, or n if the predecessor of i has
not yet been reported. It is possible to construct a data structure that performs a

predecessor search for item i in time O
(√

logw(i)
)
using O(n) space.

4 Conclusion

In this paper, we have introduced the idea of biased predecessor search in
bounded universes. Two different categories of data structures were considered:
one with query times that are logarithmic in the entropy of the query distribu-
tion (with space that is a function of U), and one with linear space (with query
times larger than logarithmic in the entropy). We also considered the cases of
general weights and of query times related to the working-set number.

Our results leave open several possible directions for future research:

1. Is it possible to achieve O(logH) query time and O(n) space?
2. The reason for desiring a O(logH) query time comes from the fact that H ≤

logU and the fact that the usual data structures for predecessor searching
have query time O(log logU). Of course, this is not optimal: other results
have since improved this upper bound [3,14]. Is it possible to achieve a query
time of, for example, O(logH/ log logU)?

3. What lower bounds can be stated in terms of either the input or output
entropies? Clearly O(U) space suffices for O(1) query time, and so such
lower bounds must place restrictions on space usage.

References

1. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees.
Journal of the ACM 54(3), Article 13 (2007)

2. Bădoiu, M., Cole, R., Demaine, E.D., Iacono, J.: A unified access bound on
comparison-based dynamic dictionaries. Theoretical Computer Science 382(2), 86–
96 (2007)

3. Beame, P., Fich, F.E.: Optimal bounds for the predecessor problem and related
problems. Journal of Computer and System Sciences 65(1), 38–72 (2002)

4. Belazzougui, D., Kaporis, A.C., Spirakis, P.G.: Random input helps searching pre-
decessors. arXiv:1104.4353 (2011)

5. Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM Journal on
Computing 14(3), 545–568 (1985)

6. Bose, P., Howat, J., Morin, P.: A distribution-sensitive dictionary with low space
overhead. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009.
LNCS, vol. 5664, pp. 110–118. Springer, Heidelberg (2009)

7. Bose, P., Doüıeb, K., Dujmović, V., Howat, J., Morin, P.: Fast local searches and
updates in bounded universes. In: Proceedings of the 22nd Canadian Conference
on Computational Geometry (CCCG 2010), pp. 261–264 (2010)

8. Brodal, G.S., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K.: Optimal solutions
for the temporal precedence problem. Algorithmica 33(4), 494–510 (2002)

764 P. Bose et al.

9. Johnson, D.B.: A priority queue in which initialization and queue operations take
O(log log D) time. Theory of Computing Systems 15(1), 295–309 (1981)

10. Kaporis, A.C., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, C.:
Improved bounds for finger search on a RAM. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 325–336. Springer, Heidelberg (2003)

11. Knuth, D.E.: Optimum binary search trees. Acta Informatica 1(1), 14–25 (1971)
12. Mehlhorn, K.: Nearly optimal binary search trees. Acta Informatica 5(4), 287–295

(1975)
13. Mehlhorn, K., Näher, S.: Bounded ordered dictionaries in O(log log N) time and

O(n) space. Information Processing Letters 35(4), 183–189 (1990)
14. Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: STOC

2006: Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
pp. 232–240 (2006)

15. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the
ACM 32(3), 652–686 (1985)

16. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters 6(3), 80–82 (1977)

17. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(N).
Information Processing Letters 17(2), 81–84 (1983)

Author Index

Ackerman, Eyal 478
Adamaszek, Anna 683
Ahn, Hee-Kap 273
Alam, Muhammad Jawaherul 144
Albenque, Marie 421
Allen, Michelle M. 478
Allen, Peter 355
Amir, Amihood 586
Antoniadis, Antonios 610
Ayala-Rincón, Mauricio 202

Bae, Sang Won 120
Bansal, Nikhil 47, 550
Barash, Mikhail 190
Barba, Luis 84
Barcelo, Neal 610
Barequet, Gill 478
Barth, Lukas 514
Basset, Nicolas 502
Bekos, Michael A. 144
Benevides, Fabŕıcio 433
Bereczky, Nikolett 743
Bhattacharya, Binay 330
Bose, Prosenjit 84, 108, 755
Böttcher, Julia 355
Bueno, Let́ıcia Rodrigues 379

Campos, Victor 433
Castelli Aleardi, Luca 168
Chakraborty, Sourav 306
Chalermsook, Parinya 409
Cheilaris, Panagiotis 96
Clément, Julien 442
Cole, Daniel 610
Correa, José R. 35
Czyzowicz, Jurek 342, 622

De Campos Mesquita, Felipe 379
de Panafieu, Élie 454
Dereniowski, Dariusz 342
Di Giacomo, Emilio 132
Dias, Zanoni 671
Dı́az, Josep 695
Diekert, Volker 1

Dobrev, Stefan 622
Dourado, Mitre 433
Duan, Ran 285
Duch, Amalia 743
Duchon, Philippe 367
Durocher, Stephane 156, 294
Duvignau, Romaric 367

Englert, Matthias 318

Fabrikant, Sara Irina 514
Fagerberg, Rolf 755
Farach-Colton, Mart́ın 250
Felsner, Stefan 156
Fernandes, Cristina G. 707
Feuilloley, Laurent 35
Ficler, Jessica 586
Figueiredo, Celina M.H. 13
Filho, Helio B. Macêdo 13
Filtser, Omrit 294
Foucaud, Florent 526
Fox, Kyle 610
Fraser, Robert 294
Fürer, Martin 72, 660
Fusy, Éric 168

Gagie, Travis 731
Gardy, Danièle 454
G ↪asieniec, Leszek 342
Gawrychowski, PaweΘl 731
Genitrini, Antoine 466
Giambruno, Laura 442
Giotis, Ioannis 695
Gittenberger, Bernhard 454
Griffths, Simon 433

Haeusler, Edward Hermann 202
Hàn, Hiê.p 355
Hausen, Rodrigo De Alencar 379
Hell, Pavol 538
Herlihy, Maurice 214
Hitczenko, PaweΘl 490
Horel, Thibaut 719
Howat, John 755
Huang, Shenwei 538

766 Author Index

Ioannidis, Stratis 719
Ishii, Toshimasa 238

Janson, Svante 490

Kameda, Tsunehiko 330
Kärkkäinen, Juha 731
Kaufmann, Michael 144
Kesh, Deepanjan 648
Khramtcova, Elena 96
Kim, Sang-Sub 273
Kindermann, Philipp 144
Kirousis, Lefteris 695
Klasing, Ralf 342
Klein, Rolf 261
Klimann, Ines 180
Knauer, Kolja 421
Kobourov, Stephen G. 144, 514
Kohayakawa, Yoshiharu 355
Korman, Matias 120
Kosowski, Adrian 342
Kostrygin, Anatolii 168
Kranakis, Evangelos 622
Krauthgamer, Robert 586
Kuba, Markus 454

Laekhanukit, Bundit 409
Lampis, Michael 24
Langerman, Stefan 84, 96
Lee, Orlando 574
Levcopoulos, Christos 261
Lin, Min Chih 399
Lingas, Andrzej 261
Lintzmayer, Carla Negri 671
Liotta, Giuseppe 132
LöΔer, Maarten 478
Lubiw, Anna 514

Machado, Raphael C.S. 13
Mailler, Cécile 466
Markakis, Evangelos 695
Matsakis, Nicolaos 318
McDiarmid, Colin 391
Mehrabi, Ali D. 294
Mehrabi, Saeed 156, 294
Mehta, Shashank K. 648
Mermelstein, Joshua 478
Mitsou, Valia 24
Mizrahi, Michel J. 399
Mondal, Debajyoti 156
Montecchiani, Fabrizio 132

Morin, Pat 755
Morris, Robert 433
Moseley, Benjamin 610
Mucha, Marcin 318
Muthukrishnan, S. 719
Myasnikov, Alexei G. 1

Nanongkai, Danupon 409
Naserasr, Reza 526
Nekrich, Yakov 731
Németh, Krisztián 743
Nöllenburg, Martin 514
Nugent, Michael 610

Okamoto, Yoshio 120, 514
Okhotin, Alexander 190
Ono, Hirotaka 238

Pacheco, Eduardo 622
Paj ↪ak, Dominik 342
Papadopoulou, Evanthia 96
Pedrosa, Lehilton L.C. 562
Perrot, Kévin 634
Person, Yury 355
Picantin, Matthieu 180
Poloczek, Matthias 598
Popa, Alexandru 683
Pratap, Rameshwar 306
Pruhs, Kirk 610
Puglisi, Simon J. 731
Pupyrev, Sergey 514

Rajsbaum, Sergio 214
Raynal, Michel 214
Rémila, Éric 634
Rey, Anja 60
Roditty, Liam 586
Rothe, Jörg 60
Roura, Salvador 743
Roy, Sasanka 306
Rutten, Cyriel 550

Sampaio, Leonardo 433
San Felice, Mário César 574
Saraf, Shubhangi 306
Sar Shalom, Oren 586
Schouery, Rafael C.S. 707
Serna, Maria 695
Shinn, Tong-Wook 226
Silva, Ana 433
Song, Zhao 330

Author Index 767

Soto, José A. 35
Souvaine, Diane L. 478
Squarcella, Claudio 514
Stainer, Julien 214
Sviridenko, Maxim 562
Szwarcfiter, Jayme L. 399

Takaoka, Tadao 226
Tóth, Csaba D. 478
Tsai, Meng-Tsung 250

Ueckerdt, Torsten 514
Uno, Yushi 238

van der Ster, Suzanne 550

van der Zwaan, Ruben 47, 550

van Renssen, André 108

van Zuylen, Anke 598

Vredeveld, Tjark 47, 550

Wang, Haitao 120

Weiß, Armin 1

Weller, Kerstin 391

Williamson, David P. 574, 598

Wolff, Alexander 144, 514

	Preface
	Organization
	Abstracts
	Table of Contents
	Complexity 1
	Conjugacy in Baumslag’s Group, Generic CaseComplexity, and Division in Power Circuits
	1 Introduction
	1.1 Notation and Preliminaries

	2 PowerCircuits
	3 Conjugacy in the Baumslag-Solitar Group BS1,2
	4 Conjugacy in the Baumslag Group G1,2
	5 Generic Case Analysis
	References

	Hierarchical Complexity of 2-Clique-Colouring Weakly Chordal Graphs and Perfect GraphsHaving Cliques of Size at Least 3
	1 Introduction
	2 Hierarchical Complexity of 2-Clique-Colouring of Weakly Chordal Graphs
	3 Restricting the Size of the Cliques
	4 Final Considerations
	References

	The Computational Complexity of the Gameof Set and Its Theoretical Applications
	1 Introduction
	2 W-hardness of k-Value 1-Set and PerfectMulti-dimensional Matching
	3 Multi-round Variations of SET
	3.1 NP-Hardness of the Maximization Version
	3.2 Results on the Minimization Version

	4 ATwoPlayerGame
	5 Conclusions and Open Problems
	References

	Complexity 2
	Independent and Hitting Sets of RectanglesIntersecting a Diagonal Line
	1 Introduction
	1.1 Notation and Classes of Rectangle Families
	1.2 Our Results

	2 Algorithms for WMIS
	2.1 Algorithm for Diagonal-Lower-Intersecting Families
	2.2 An Approximation for Diagonal-Intersecting Families

	3 Duality Gap and Other Approximation Algorithms
	4 Discussion
	References

	Approximating Vector Scheduling:Almost Matching Upper and Lower Bounds
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Preliminaries
	3 Lower Bounds on the Running Time
	3.1 The Construction of a Vector Scheduling Instance from 3-DM
	3.2 Proof of the Reduction

	4 Linear Time Approximation Algorithm
	4.1 The Mixed-Integer Linear Program
	4.2 Linear Time Algorithm

	References

	False-Name Manipulation inWeighted Voting GamesIs Hard for Probabilistic Polynomial Time
	1 Introduction
	2 Preliminaries
	3 Beneficial Merging and Splitting Is PP-Hard
	3.1 The Probabilistic Banzhaf Power Index
	3.2 The Shapley–Shubik Power Index

	4 Conclusions and Open Questions
	References

	A Natural Generalization of BoundedTree-Width and Bounded Clique-Width
	1 Introduction
	2 Definitions
	3 TheFusion-Width
	4 Illustration with the Independent Set Polynomial
	5 Relations between Tree-Width, Clique-Width and Fusion-Width
	6 Conclusion
	7 OpenProblems
	References

	Computational Geometry 1
	Optimal Algorithms for Constrained 1-CenterProblems
	1 Introduction
	2 Solving the Decision Problem on a Set of Segments
	3 Converting Decision to Optimization
	4 Lower Bounds
	4.1 Another Lower Bound When Constraining to Sets of Points

	References

	A Randomized Incremental Approach for the Hausdorff Voronoi Diagramof Non-crossing Clusters
	1 Introduction
	1.1 Previous Work
	1.2 Our Contribution

	2 Preliminaries
	3 A Randomized Incremental Algorithm
	4 Separator Decomposition
	5 Voronoi Hierarchy for the Hausdorff Voronoi Diagram
	6 Complexity Analysis
	7 Discussion and Open Problems
	References

	Upper Bounds on the Spanning Ratioof Constrained Theta-Graphs
	1 Introduction
	2 Preliminaries
	3 Some Useful Lemmas
	4 Constrainedθ(4k+2)-Graph
	5 Generic Framework for the Spanning Proof
	6 The Constrained θ(4k+4)-Graph
	7 The Constrained θ(4k+3)-Graph and θ(4k+5)-Graph
	References

	Computing the L1 Geodesic Diameterand Center of a Simple Polygon in Linear Time
	1 Introduction
	2 Preliminaries
	3 TheL1 Geodesic Balls
	3.1 P-convex Sets
	3.2 Geometric Properties of L1 Geodesic Balls
	3.3 Helly-Type Theorem for Geodesic Balls

	4 TheL1 Geodesic Diameter
	5 TheL1 Geodesic Center
	5.1 Computing the Center in Linear Time

	6 Concluding Remarks
	References

	Graph Drawing
	The Planar Slope Number of Subcubic Graphs
	1 Introduction
	2 Preliminaries
	3 Simply 2-Connected Subcubic Planar Graphs
	4 Simply Connected and 3-Connected Subcubic Planar Graphs
	5 Open Problems
	References

	Smooth Orthogonal Drawings of Planar Graphs
	1 Introduction
	2 Smooth Layouts for Biconnected 4-Planar Graphs
	3 Smooth Layouts for Arbitrary 4-Planar Graphs
	4 -SC1Layouts of Biconnected 4-Outerplane Graphs
	References

	Drawing HV -Restricted Planar Graphs
	1 Introduction
	2 DrawingHV -Restricted Plane Graphs
	3 Drawing 2-Connected Outerplanar Graphs with Δ = 3
	3.1 Necessary and Sufficient Conditions
	3.2 Necessity
	3.3 Sufficiency

	4 Conclusion
	References

	Periodic Planar Straight-Frame Drawingswith Polynomial Resolution
	1 Introduction
	2 The Duncan et al. Algorithm, Adapted
	2.1 Description of the Algorithm in [3]
	2.2 Our Modified Version of the Algorithm

	3 A New Binary Decomposition for 4ST
	4 Proof of Lemma 3
	5 Finishing the Proof of Theorem 2
	5.1 Remaining Cases
	5.2 Getting Grid-Size

	6 Application to Spherical Drawings
	Acknowledgments.

	References

	Automata
	A Characterization of Those AutomataThat Structurally Generate Finite Groups
	1 Introduction
	2 Mealy Automata
	2.1 Automaton Groups and Semigroups
	2.2 On the Powers of a Mealy Automaton and Its Connected

	3 A Maximal Family for Groups
	3.1 How to Exit from a Cycle?
	3.2 A Pumping Lemma for the Reversible Two-State Automata
	3.3 The Family of Automata with no Cycle with Exit Is Maximal

	4 Conclusion
	References

	Linear Grammars with One-Sided Contextsand Their Automaton Representation
	1 Introduction
	2 Grammars with One-Sided Contexts
	3 Automaton Representation
	4 Defining a Non-regular Unary Language
	5 Simulating a Turing Machine
	6 Implications
	7 Conclusion
	References

	Computability
	On the Computability of Relations on λ-Terms and Rice’s Theorem - The Case of theExpansion Problem for Explicit Substitutions
	1 Introduction
	2 Preliminaries
	2.1 De Bruijn Notation and Explicit Substitutions
	2.2 The λσ-calculus and the Expansion Problem
	2.3 Basic Abstract Recursion Theory Terminology

	3 Abstract Rice’s Theorem
	4Y-terms and Undecidable Properties
	5 Conclusion
	References

	Computing in the Presenceof Concurrent Solo Executions
	1 Introduction
	2 Tasks, Processes, Communication Object, and Iterated Model
	2.1 Communication Object
	2.2 A Spectrum of Solo Models

	3 Colorless Tasks and the d-Solo Model
	3.1 Colorless Tasks
	3.2 Colorless Algorithms
	3.3 (d,R)-Subdivision and (d,R)-Agreement Tasks
	3.4 The Structure of Colorless Algorithms

	4 What Can Be Computed in the Presence of Solo Executions?
	5(d,E)-Solo Approx. Agreement and Strict Hierarchy of Models
	6 Conclusion
	References

	Algorithms on Graphs
	Combining All Pairs Shortest Pathsand All Pairs Bottleneck Paths Problems
	1 Introduction
	2 Preliminaries
	3 Review of the Algorithm by Alon, Galil and Margalit
	4 APSP-AF on Graphs with Unit Edge Costs
	5 APSP-AF on Graphs with Integer Edge Costs
	6 Concluding Remarks
	References

	(Total) Vector Domination for Graphswith Bounded Branchwidth
	1 Introduction
	1.1 RelatedWork
	1.2 Our Results

	2 Preliminaries
	3 Domination Problems in Graphs of Bounded Branchwidth
	4 Subexponential Fixed Parameter Algorithm for Planar Graphs
	References

	Computing the Degeneracy of Large Graphs
	1 Introduction
	2 Preliminaries
	3 Algorithms
	4 Applications
	References

	Computational Geometry 2
	Approximation Algorithms for the GeometricFirefighter and Budget Fence Problems
	1 Introduction
	1.1 Our Contributions
	1.2 Related Results

	2 Barriers and Linearity
	3 NP-Hardness
	4 An Approximation Algorithm for the Geometric Firefighter Problem
	5 A PTAS for the Budget Fence Problem and a Special Case of the Firefighter Problem
	6 Generalizations and Refinements
	References

	An Improved Data Stream Algorithmfor Clustering
	1 Introduction
	2 Preliminaries
	3 The 2-Center Problem
	3.1 The Case δ∗ � 2r
	3.2 Finding r�
	3.3 The Case δ∗ > 2r

	4 Extension to the k-Center problem
	4.1 The Case |p1f(p1)| � 4kr
	4.2 Finding r
	4.3 The Case |p1f(p1)| > 4kr

	References

	Approximation Algorithms for the GromovHyperbolicity of Discrete Metric Spaces
	1 Introduction
	2 Definitions and Basic Algorithms
	2.1 Definitions of Gromov Hyperbolic Spaces
	2.2 Basic Algorithms

	3 Approximation Algorithms
	3.1 A Scaling Algorithm
	3.2 The Main Algorithm

	References

	A (7/2)-Approximation Algorithm for GuardingOrthogonal Art Galleries with Sliding Cameras
	1 Introduction
	2 Related Work and Definitions
	3 A(7/2)-Approximation Algorithm for the MSC Problem
	3.1 Relating the MGSC and MMGG Problems
	3.2 Guarding Critical Regions: A (3/2)-Approximation Algorithm

	4 Conclusion
	References

	Algorithms
	Helly-Type Theorems in Property Testing
	1 Introduction
	1.1 Other RelatedWork
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Definitions
	2.2 Property Testing
	2.3 Helly’s and Fractional Helly’s Theorem
	2.4 Helly-type Theorem for More Than One Piercing in Convex Bodies

	3 Robust Helly for One Piercing of Symmetric Convex Body
	4 Robust Helly for More Than One Piercing of Convex Bodies
	4.1 Helly-type Results for More Than One Piercing of Convex Bodies
	4.2 Fractional Helly for More Than One Piercing of Convex Bodies

	5 Application in Clustering with Outliers
	6 Conclusion and Open Problems
	References

	New Bounds for Online Packing LPs
	1 Introduction
	1.1 Our Results

	2 Deterministic Upper Bound
	3 Randomized Upper Bound
	4 Tight Lower Bound for Two Dimensions
	5 Conclusions
	References

	Improved Minmax Regret 1-Center Algorithmsfor Cactus Networks with c Cycles
	1 Introduction
	2 Preliminaries
	3 Tree Network
	4 Cactus Network with Constant Number of Cycles
	4.1 Unicyclic Network
	4.2 Cactus Network with c Cycles

	5 Conclusion
	References

	Collision-Free Network Exploration
	1 Introduction
	2 Network Exploration with a Map
	2.1 Tree Exploration with a Map
	2.2 General Network Exploration with a Map

	3 Local Network Exploration
	3.1 Local Exploration of Tree Networks
	3.2 Local Exploration of General Networks

	References

	Random Structures
	Powers of Hamilton Cyclesin Pseudorandom Graphs
	1 Introduction and Results
	1.1 Pseudorandom Graphs
	1.2 Our Results
	1.3 Counting
	1.4 Organisation

	2 Main Lemmas and an Outline of the Proof Theorem 2
	2.1 Notation
	2.2 Outline of the Proof
	2.3 Main Lemmas

	3 Enumerating Powers of Hamilton Cycles
	4 Concluding Remarks
	References

	Local Update Algorithms for Random Graphs
	1 Introduction
	2 Notation and Models
	2.1 Notation
	2.2 Distribution Preserving Algorithms
	2.3 Random k-out Graphs
	2.4 From Centralized to Decentralized Algorithms

	3 Distribution Preserving Algorithms for k-out Graphs
	3.1 Basic Random Samplers
	3.2 Insertion Algorithms
	3.3 Deletion Algorithms

	4 Conclusion and Future Research
	References

	Odd Graphs Are Prism-Hamiltonianand Have a Long Cycle
	1 Introduction
	2 Preliminaries
	2.1 Modular Matchings

	3 Proof of the Main Results
	4 The Bipartite Kneser Graph Bk Is Prism-Hamiltonian
	References

	Relatively Bridge-Addable Classes of Graphs
	1 Introduction
	2 Connectivity for Edge-Expander Host Graphs
	3 ForestsinKn/
	References

	Complexity on Graphs 1
	O(n) Time Algorithms for Dominating InducedMatching Problems
	1 Introduction
	2 Chordal, Dually Chordal and Biconvex Graphs
	3 Claw-Free Graphs
	3.1 Phase 1
	3.2 Phase 2
	3.3 Phase 3
	3.4 Phase 4

	References

	Coloring Graph Powers: Graph Product Boundsand Hardness of Approximation
	1 Introduction
	2 Preliminaries
	3 Strong Edge Coloring
	3.1 Hardness of Approximation
	3.2 Distance-k Edge-Coloring
	3.3 Strong Edge Coloring of Other Graph Products

	4 Other Problems on
	4.1 Maximum Clique
	4.2 Maximum Stable Set

	5 Conclusion and Open Problems
	References

	Convexity in Partial Cubes: The Hull Number
	1 Introduction
	2 Convexity in Partial Cubes
	2.1 Partial Cubes and Cut-Partitions
	2.2 Partial Cubes and Upper Locally Distributive Lattices

	3 NP-Completeness of Hull Number in Partial Cubes
	4 The Hull Number of a Linear Extension Graph
	5 Planar Partial Cubes and Rank 3 Oriented Matroids
	References

	Connected Greedy Colourings
	1 Introduction
	2 The Worst-Case Behaviour
	3 The Best-Case Behaviour
	References

	Analytic Combinatorics
	On the Number of Prefix and Border Tables
	1 Introduction
	2 Preliminaries
	3 PrefixLists
	3.1 Algorithms
	3.2 Injectivity

	4 Upper Bound
	5 Lower Bound
	6 Conclusion
	References

	Probabilities of 2-Xor Functions
	1 Introduction
	2 Boolean Expressions and Functions, and Multigraphs
	3 Probabilities on Boolean Functions
	4 Explicit Probability Computations
	5 Discussion
	References

	Equivalence Classes of Random Boolean Trees and Application to the Catalan SatisfiabilityProblem
	1 Introduction
	2 Probability Distributions on Equivalence Classes of Boolean Functions
	2.1 Contextual Definitions
	2.2 Equivalence Relations
	2.3 Probability Distribution

	3 Results
	4 Technical Key Points
	4.1 Threshold Induced by
	4.2 Adjustment of Kozik’s Pattern Language Theory

	5 Behaviour of the Probability Distribution
	5.1 Tautologies
	5.2 Probability of a General Class of Functions

	6 Conclusion
	References

	Analytic and Enumerative Combinatorics
	The Flip Diameter of Rectangulationsand Convex Subdivisions
	1 Introduction
	2 An Upper Bound on the Flip Diameter of Rectangulations
	3 A Lower Bound on the Flip Diameter of Rectangulations
	4 The Flip Diameter for Diagonal Point Sets
	5 Generalization to Convex Subdivisions
	6 Conclusion
	References

	Weighted Staircase Tableaux, Asymmetric Exclusion Process,and Eulerian Type Recurrences
	1 Introduction
	2 Staircase Tableaux and ASEP
	3 Generating Function of the Total Weight
	4 Main Result: Symbols on the Diagonal
	5 The Polynomials
	6 Consequences
	7 FurtherRemarks
	References

	Counting and Generating PermutationsUsing Timed Languages
	1 Two Problem Statements
	2 A Timed and Geometric Approach
	2.1 Order and Chain Polytopes of Signatures
	2.2 Timed Semantics of a Language of Signatures:
	2.3 The S-T (Timed) Language Encoding

	3 Solving the Two Problems
	3.1 Characterization of the VGF of an
	3.2 An Algorithm for Problem 2

	4 Discussion, Perspectives and Related Works
	References

	Complexity on Graphs 2
	Semantic Word Cloud Representations:Hardness and Approximation Algorithms
	1 Introduction
	2 TheCROWN Problem
	2.1 The CROWN Problem on Irreducible Triangulations
	2.2 The HIER-CROWN Problem

	3 TheMAX-CROWN Problem
	3.1 Approximation Algorithms
	3.2 An Extremal MAX-CROWN Problem

	4 TheAREA-CROWN Problem
	5 Experimental Results
	6 Conclusions and Future Work
	References

	The Complexity of Homomorphisms of SignedGraphs and Signed Constraint Satisfaction
	1 Introduction
	2 Mapping to Signed Cycles
	3 Further Cases and Signed Bipartite Graphs
	4 Signed Constraint Satisfaction Problems
	5 Conclusion
	References

	Complexity of Coloring Graphs without Pathsand Cycles
	1 Introduction
	2 NP-Completeness
	3 Certifying Algorithms
	3.1 Imperfect (P6, C4)-Free Graphs
	3.2 3-COLORING and 4-COLORING (P6, C4)-Free Graphs

	4 Conclusions
	References

	Approximation Algorithms
	Approximating Real-Time Schedulingon Identical Machines
	1 Introduction
	1.1 Related Previous Results
	1.2 Our Contribution
	1.3 High-Level Idea

	2 Preliminaries
	3 From Sporadic Task System to Vector Scheduling
	4 Solving the Special Case Vector Scheduling Problem
	4.1 Notation and Definitions
	4.2 Overview of the Algorithm
	4.3 The Sliding Window Dynamic Program

	5 Conclusion
	References

	Integrated Supply Chain Managementvia Randomized Rounding
	1 Introduction
	2 Assumptions and Basic Techniques
	2.1 Holding and Transportation Costs Model
	2.2 A Linear Programming Relaxation
	2.3 Complete Solutions and Filtering

	3 Approximation for the Metric PDP
	3.1 Clustering
	3.2 Balancing Using Extra Orders
	3.3 Balancing Using Filtering
	3.4 Combining Different Algorithms

	4 PDP with Retailer Ordering Costs
	References

	The Online Connected Facility Location Problem
	1 Introduction
	2 Problem Definitions
	3 Notation and Definitions
	4 The Online CFL Algorithm
	4.1 Analysis of the Online CFL Algorithm
	4.2 Analysis of the Special Case of the Online CFL Problem with

	5 Conclusion and Future Work
	References

	Multiply Balanced k−Partitioning
	1 Introduction
	2 Bicriteria Approximations and Our Results
	2.1 Our Results
	2.2 Polynomial Weights
	2.3 Unrestricted Weights

	3 Bicriteria Approximation Algorithm for d = 2
	3.1 Combining Partitions via Bounded Pair Scheduling
	3.2 Lower Bounds

	4 Generalization to d Weight Functions
	References

	On Some Recent Approximation Algorithmsfor MAX SAT
	1 Introduction
	2 Notation
	3 The Algorithm and Its Analysis
	4 A Deterministic LP Rounding Algorithm
	5 The Algorithms of Van Zuylen
	6 A Linear Time Implementation
	7 Conclusions
	References

	Analysis of Algorithms
	Packet Forwarding Algorithmsin a Line Network
	1 Introduction
	1.1 Related Work

	2 Preliminaries and Notation
	3 Lower Bound for Earliest Arrival for Maximum Flow
	4 Analysis of EA for Maximum Flow
	5 Analysis of FTG for Maximum Flow
	6 Average Flow on a Line
	7 Maximum Flow on Trees
	8 Conclusions
	References

	Survivability of Swarms of Bouncing Robots
	1 Introduction
	1.1 Related Work
	1.2 Results
	1.3 Preliminaries

	2 General Behavior of Swarms of Bouncing Robots
	3 Robots of Equal Masses and Equal Speeds
	4 Robots of Arbitrary Masses and Velocities
	5 Conclusions
	References

	Emergence of Wave Patterns on KadanoffSandpiles
	1 Introduction
	1.1 Kadanoff Sandpile Model (KSPM)
	1.2 Our Result
	1.3 The Context

	2 Analysis
	2.1 Internal Dynamic of Fixed Points
	2.2 Making the Matrix and the Perturbation Act Harmoniously
	2.3 Convergence of the Averaging System
	2.4 Emergence of a Loosely Wavy Shape
	2.5 Avalanches to Complete the Proof

	3 Concluding Discussion
	References

	Computational Algebra
	A Divide and Conquer Methodto Compute Binomial Ideals
	1 Introduction
	2 Background
	3 Two Ring Homomorphisms
	3.1 Modulo Map
	3.2 Localization Map

	4 A Divide-and-Conquer Method
	4.1 Computing Modulo
	4.2 Computing Localization
	4.3 Pseudo-Gr¨obner Basis

	5 Computing
	5.1 Radical Ideal: A = Radical
	5.2 Saturation : A = Saturation
	5.3 Toric Ideals: A = Toric
	5.4 Prime Decomposition: A = Prime
	5.5 Cellular Decomposition: A = Cellular

	References

	How Fast Can We Multiply Large Integerson an Actual Computer?
	1 Introduction
	2 TheBasicModel
	3 Differences to the Traditional RAM
	4 Performance of the log-RAM on Multiplication Algorithms
	4.1 The Traditional Multiplication Algorithms
	4.2 The Newest Multiplication Algorithms
	4.3 Comparisons of the log-RAM Algorithms

	5 Related Tasks on the log-RAM and the Storage Modification Machine
	6 The Refined Model log-RAM with Depth-Cost
	7 Multiplication on the log-RAM with Depth-Cost
	8 Conclusions
	References

	Aplications to Bioinformatics
	Sorting Permutations by Prefix and SuffixVersions of Reversals and Transpositions
	1 Introduction
	2 Definitions
	3 Algorithms
	3.1 Algorithms for Sbprsr
	3.2 Algorithms for Sbptst
	3.3 Algorithms for Sbprptsrst

	4 Results
	5 Conclusion
	References

	Algorithmic and Hardness Resultsfor the Colorful Components Problems
	1 Introduction
	2 A Polynomial-Time Exact Algorithm for MSV
	2.1 Lower Bound
	2.2 Idea of the Algorithm
	2.3 Finding an Alternating Path
	2.4 Analysis

	3 Hardness of MEC
	3.1 Reduction from MAX-3SAT(β)
	3.2 Analysis of the Reduction

	4 Hardness of MCC
	4.1 Reduction from Minimum Clique Partition
	4.2 Analysis of the Reduction

	5 OpenProblems
	References

	Budget Problems
	On the Stability of Generalized Second PriceAuctions with Budgets
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Model
	2.2 Second-Price Auctions under Budgets
	2.3 Stable Assignments

	3 The Budget-Oblivious Second-Price Auction
	4 The Budget-Conscious by Price Second-Price Auction
	5 Budget-Conscious by Bid and Best Offer Second-Price Auctions
	6 Discussion
	References

	Approximation Algorithms for the Max-BuyingProblem with Limited Supply
	1 Introduction
	1.1 Our Results

	2 Model and Notation
	3 An Algorithm for Limited Supply
	4 An Algorithm for Limited Supply with a Price Ladder
	5 FinalRemarks
	References

	Budget Feasible Mechanismsfor Experimental Design
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Linear Regression and Experimental Design
	3.2 Budget-Feasible Experimental Design: Full Information Case
	3.3 Budget-Feasible Experimental Design: Strategic Case

	4 Approximation Results
	4.1 A Convex Relaxation of EDP
	4.2 Polynomial-Time, Almost-Monotone Approximation

	5 Mechanism for EDP
	6 Conclusions
	References

	Algorithms and Data Structures
	LZ77-Based Self-indexingwith Faster Pattern Matching
	1 Introduction
	2 Preliminaries
	2.1 LZ77
	2.2 Straight-Line Programs
	2.3 Bookmarking
	2.4 Karp-Rabin Fingerprinting

	3 K¨arkk¨ainen and Ukkonen’s Index
	3.1 Finding Primary Occurrences
	3.2 Finding Secondary Occurrences

	4 Faster Pattern Matching
	4.1 Bookmarked Fingerprinting
	4.2 Removing the mlog log z Term
	4.3 Derandomization
	4.4 Summary

	References

	Quad-K-d Trees
	1 Introduction
	2 Quad-K-d Trees
	3 TheIPL of QK-d Trees
	4 Experimental Analysis
	5 Conclusions
	References

	Biased Predecessor Search
	1 Introduction
	1.1 Related Work

	2 Supporting O(logH) Query Time
	2.1 Using O(n + U�) Space
	2.2 Using O�n + 2log� U� Space
	2.3 Alternate Solution

	3 Supporting O(n) Space
	4 Conclusion
	References

	Author Index

