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Abstract. Multi-agent models and simulations are used to describe
complex systems in domains such as biological, geographical or ecologi-
cal sciences. The increasing model complexity results in a growing need
for computing resources and motivates the use of new architectures such
as multi-cores and many-cores. Using them efficiently however remains
a challenge in many models as it requires adaptations tailored to each
program, using low-level code and libraries. In this paper we present
MCMAS a generic toolkit allowing an efficient use of many-core archi-
tectures through already defined data structures and kernels. This toolkit
promotes few famous algorithms (diffusion, path-finding, population dy-
namics) which are ready to be used in an Agent Based Model. For other
needs, MCMAS is based on a flexible architecture and can easily be en-
riched by new algorithms thanks to development features. The use of the
library is illustrated with two models and their performance analysis.
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1 Introduction

Multi-agent systems (MAS) are often used to describe large complex systems
as biological, geographical or ecological ones. Increasing the size or precision of
agent based simulations is a common way to obtain more accurate results, but it
also results in increased computation costs. Since the raise of CPU computation
power is not sufficient to absorb these expanding modeling needs, parallel archi-
tectures are now becoming a required mean to gain performance. However, their
use requires fundamental improvement in model runtimes provided by platforms
such as NetLogo [1] or GAMA [2]. Several projects as D-MASON [3] or Repast-
HPC [4] have introduced distributed computing techniques into MAS in order to
make use of parallel CPU architectures. The goal of these works is to accelerate
or enlarge the simulations.
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Last years have seen the emergence of GPU or many-core cards based on mas-
sively parallel SIMD (Single Instruction Multiple Data) architectures. GPGPU
computing is already used in various domains as linear solvers, video streaming
or image processing. Most of these applications are based on matrix data struc-
tures well-adapted to parallel processing. Since most of personal computers are
equipped with a GPU card, taking advantage of these GPU and many-core ar-
chitectures has become one way of speeding up Agent Based Simulations. MAS
are however often characterized by less-regular data accesses and unpredictable
behaviors due to algorithms offering multiple execution branches or random as-
pects. They thus do not fit the single instruction flow model and adaptations in
their execution workflow are thus required to allow agents to run concurrently.

Some works have already demonstrated the gain of using GPU to run MAS in
various domains as cellular automaton [5], mobile agent path finding [6], genetic
processes [7] or life science [8]. These works present specific adaptations of exist-
ing MAS to GPU. In these models individual behaviors driven by mathematical
laws (path finding) or equations (cellular automatons) can be considered as the
application of the same process on each individual (Single Program, Multiple
Data or SPMD execution). This approach does not however work for the ma-
jority of MAS, and algorithmic adaptations are often required. Note that the
full-GPU approach sometime limits the possible use in MAS and that an hybrid
approach, based on CPU plus GPU, may fit a larger number of MAS.

The FLAME-GPU [9] platform proposes an all-in-one solution to run MAS
on GPU. The framework relies on a detailed XML description of the agents and
on C-like code fragments to support several target architectures. This approach
implies that the MAS is developed for the framework and thus cannot (re)use
an existing model nor interface with other MAS runtimes.

The contribution of the paper is a toolkit, called MCMAS (Many Core MAS),
that provides functions to facilitate the implementation of MAS simulations on
many-cores architectures and better exploit their computing power. The library
can be interfaced with existing agent platforms to acts as a wrapper for GPU
code that allows integration of optimized model parts within other simulators.
We present in section 2 the MCMAS library. Its interface and extension facilities
are illustrated on two use cases: the collembola model and the mior model. The
model performance results are detailed in section 3. We then conclude on the
possibilities of the MCMAS platform and its possible application to other models
or use cases in section 4.

2 MCMAS

Porting a MAS on GPU requires a model adaptation to benefit from this archi-
tecture. We developed the MCMAS library to facilitate the implementation of
models on GPU and many-core architectures. To achieve this MCMAS proposes
a set of commonly used functions and data structures that simplify the imple-
mentation of new models and allows the integration of new functionalities in the
shape of plugins. Note that MSMAS has yet only be tested on GPU and on few
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CPU cores but it should also match many-core architectures as Intel Xeon Phi
as it is based on a SIMD execution model.

2.1 Basic MCMAS

Choosing a programming language is the first step to adapt an agent model to a
GPU platform. On the one hand the Java programming language is often used for
the implementation of MAS due to its large availability and its high-level object-
oriented programming. On the other hand GPU platforms only offer dedicated
languages, CUDA or OpenCL, so that a model implementation requires some
part of GPU-specific development or the use of GPU enabled libraries. MCMAS
offers a higher level Java interface linked with OpenCL GPU-code through the
JOCL library [10] (see figure 1). We decided to retain OpenCL for its portability
and the possibility to run programs on both CPU and non-GPU many-core
architectures such as the Xeon Phi.

OpenCL provides access to CPU or GPU threads using an asynchronous in-
terface. This library is based around three main concepts. The kernel repre-
sents a program to be executed on the GPU. The work-item is analogous to
the concept of thread on CPU. The work-group is a set of work-items that
share memory. An OpenCL execution consists in running the same kernel on
numerous work-items. Synchronization operations, as barriers, can only be used
across the same work-group. Data used by the work-items can be stored in
local (high speed) or global (low speed) GPU memory. Since the size of this
local memory is often limited to a few hundred of kilobytes, choosing this num-
ber often implies a compromise between the model synchronization or data
requirements and the available resources. In the case of agent based simula-
tions, each agent can thus naturally be mapped to a work-item. Work-groups
can then be used to represent groups of agents or simulations sharing common
data (as the environment) or algorithms (as the background evolution process).
This process is described in more details in the case of the MIOR model[11].

Similar data structures are used by
whole classes of MAS. One such ex-
ample is the grid, which can be ei- ‘ e ‘
Fher lntegrated m the algorlthm, as ‘Connact ‘ ‘Contract HContmct H Contract‘
in SugarScape [5] where each cell — /L J——J——
represents the fundamental unit of
modeling, or used to discretize a con-
tinuous environment as path-finding
simulations [12]. These grids can be
considered as 2d or 3d matrices rep-
resenting agents’ data or their envi- LS I
ronment. Another data representation
often encountered in MAS is the us-
age of coordinate systems to position <4
agents in the simulation space [13]. Fig. 1. MCMAS general architecture
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These common structures lead to the usage of similar algorithms in many
simulations, such as distance computation in 2d or 3d space, diffusion processes,
reduction operations, SIMD transformations applied to each cell of the model.
These kinds of processing can be parallelized and executed on the GPU, leading
to possible performance gains, without heavy modifications to the model scheme.

To facilitate the addition of new functions, MCMAS is based on a dynamic
architecture allowing the registration of new plugins at runtime. This allows
two usage approaches: (i) the adaptation of the whole MAS model on GPU by
writing a new implementation of the algorithm, a model parallelization, or
(ii) the usage of many-core optimized primitives in an existing MAS model, a
process parallelization. This dual extensible architecture allows the designer
to either use already developed plugins or to roll its own solutions, based on the
parallelized operations required by its model.

The MCMAS interface is based on the MCMASContext object. This context
contains all the data (for instance device context and execution queue) required
to run any MCMAS low-level operation and plugins. The context can be created
using a wide variety of constructors, to allow the customization of the envi-
ronment depending of the available execution resources and the functionalities
needed: profiling, debugging. .. This MCMAS context can then be either used to
initialize MCMAS plugins using the newInstance () method, or to directly call
low-level OpenCL operations, using the accessors provided for the underlying
OpenCL objects.

MCMAS provides a standard set of data structures (grids, vectors, structures)
as a mean to pass data to plugin methods. Methods are provided to facilitate the
translation of existing Java data structures to these formats. Each plugin is also
free to define its own data structures, either for its own usage or for general use.
A springy data architecture has been designed to expand the existing MCMAS
collection.

2.2 Process Parallelization Use Case

The Collembola model is an agent based model focusing on landscape biodiversity.
It reproduces the diffusion of arthropodes life forms (collembola) across plots of
an identified territory of the Morvan. This environment is constituted of forested,
cultivated and artificial areas. The model goal is to study the impact of modifica-
tions of this environment on biodiversity. The model subdivides each plot in surface
units and follows the evolution of the number of individuals in time. This evolu-
tion can be decomposed into four steps: (i) arrival of new individuals, (ii) repro-
duction of each parcel population, (iii) diffusion between cells, and (iv) selection
of surviving individuals. The algorithm contains two costly operations which can
be parallelized: diffusion, reduction of cell properties to obtain global data. The
reproduction process represents an update of each plot population to take into
account the new individuals. It consists of a walk-through on all the cells to update
their population and is implemented using the reduction plugin of MCMAS. The
diffusion process represents the collembola propagation on new plots. For each
cell the population is computed taking into account the immigration flow from its
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eight neighbors. The process is implemented using the diffusion plugin. The two
costly operations use already existing MCMAS plugins to speed up their compu-
tations, with few changes in the simulation and without advanced parallelization
expertise, as illustrated on figure 2.

public void run() {
MCMASContext context = new MCMASContext();
ReductionPlugin reduce = ReductionPlugin.newInstance(context);
DiffusionPlugin diffuse = DiffusionPlugin.newInstance(context);
doNewArrivals(); // Simulate new individuals’ arrival on CPU
reduce.taggedIntReduce(...); // Launch reproduction on GPU
diffuse.diffuse8(...); // Launch diffusion on GPU
doDeath(); // Kill individuals on a not favorable terrain on CPU
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Fig. 2. Usage of MCMAS in the Collembola model

In both cases the GPU is used as a specialized co-processor for the existing
simulation. This permits a progressive adaptation of the existing Java model to
benefit from many-core architectures.

2.3 Developing a New MCMAS Plugin

A MCMAS plugin is a Java class who implements the MCMASPlugin interface.
This interface allows plugins to be instantiated from a MCMAS context. This
context will then be used by the plugin to allocate new data structures, launch
operations or adapt its execution.

Beyond the basic methods required by the interface, each plugin can provide
its own free-form set of operations. New MCMAS plugins and structures are
packaged as Java libraries. By convention all classes belonging to the same plugin
lives in a mcmas.plugins.<plugin name> package to maintain code isolation
and facilitate the discovery of new plugins.

Most plugin-provided operations are organized around the standard GPU
execution workflow: (1) OpenCL source code retrieval and compilation, (2) copy
of Java data into input data structures, (3) execution of one or more kernel,
(4) retrieval of output data and translation into Java data structures, and (5)
resource cleanup and return from the primitive call. Memory allocations in each
plugin can be managed at two levels. At instance level the memory is used for
the lifetime of the plugin. At method level the memory is used for temporary
copies of input and output parameters and to manage the execution progress.

2.4 Model Parallelization Use Case

The MIOR (MIcro-ORganism) [14] model simulates local interactions in a soil
between microbial colonies and organic matters. The MIOR model can be used
in multi-scale MAS, such as Sworm [15]. Since the evolution takes place at a
microscopic scale each unit of soil corresponds to many such simulations that
justify the computing cost of this process.
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// Create a new MIOR model template

MiorWorld model = new MiorModel();

model .nb0OM = 310; model.nbMM = 38; model.size = 200;
MCMASContext context = new MCMASContext(MCMASContext.GPU);
MiorPlugin plugin = MiorPlugin.newInstance(context);

// Ezecute 100 instances simulating 1000 steps each time.
int [J[] CO2Values = new int[100][1000];
plugin.runNSimulations(model, 100, CO2Values, 1000);

00~ O Ut W =

Fig. 3. Usage of the MIOR plugin from Java code

The MIOR model is based on two types of agents: (i) the Meta-Mior (MM),
microbial colonies consuming carbon and (ii) the Organic Matter (OM), carbon
deposits occurring in soil. Each Meta-Mior agents exhibits two distinct behaviors.
By breathing it converts mineral carbon from the soil to carbon dioxide COa,
released in the soil. By Growing it fixes the carbon present in the environment
to reproduce itself (augments its size). This last action is only possible if the
colony breathing needs are covered, i.e. if enough mineral carbon is available.
The model is implemented as an MCMAS plugin as described on Figure 4, to
allow an easy use in a Java program (Figure 3).

public class MiorPlugin extends MCMASPlugin<MiorPlugin> {

// Static method implemented by all MCMAS plugins (factory)
public static MiorPlugin getInstance(MCMASContext context) {
new MiorPlugin(context.getContext(), context.getQueue ();

}

private MiorPlugin(Context context, CommandQueue queue) {
}

public void runNSimulations(...) {

}

O WU WN -

Fig. 4. Implementation of the MIOR plugin

2.5 Using MCMAS from Existing MAS Frameworks

The MCMAS library can also
be used to delegate computa- [MCMAS Library |

tions in existing MAS frame- %
works. An intermediary agent pach \ h
is required to translate the % N \

existing models requests into —, % I OMAS
calls to MCMAS plugins, and ~ cell GPU Agzk_/ API

to manage the interactions %

with the MCMAS platform as i

Cell difuse (cells)

shown on figure 5. This trans-
lation layer between MCMAS
and the MAS framework al- Fig. 5. MCMAS integration in MAS framework

lows a transparent use of the
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library without disturbing the existing model architecture. For instance, in the
case of GAMA, this integration can be realized by extending the agent descrip-
tion language with MCMAS related functions. For that, an eclipse plugin asso-
ciated with GAMA and XText should be developed. In the case of the Madkit
framework [16], a threaded agent should be implemented. The latter may ordered
by other simulation agents through a dedicated agent communication language.

3 Experiments

The performance of the use case models is presented in this section to show the
gain that can be obtained by delegating some functions or by implementing a
plugin that use the MCMAS library. Note that the GPU runs are compared to
the Java implementation of the model instead of their initial Netlogo implemen-
tation as it would not be fair to compare programs to interpreted code (Netlogo
implementations are much more slower).

3.1 Collembola Model Results

In this part we present the performance of the Collembola model with the MC-
MAS library on CPU and GPU execution platforms. Due to the cost of data
transfers between CPU and GPU, performance gains depend on the size of the
model. Therefore we have run the simulations with different scaling factors for
the agent population size. The reference execution is a sequential execution of the
simulation on a standard processor, an Intel Core i7 2600K running at 3.4GHz.
Since MCMAS also target multi-core platforms, using CPU-based OpenCL im-
plementations, we execute the simulations in parallel on the same processor to
point out the gain of what can be expected from CPU parallelism. Then to il-
lustrate the performance on GPU hardware we have run the simulations on two
mainstream GPU platforms: a Radeon HD 6870 and a GeForce 560Ti.

Figure 6 shows the results obtained when running the simulations. As expected
the use of the MCMAS library increases the performance of the simulation. The
best obtained speedup is factor of 4 between the sequential run and the GeForce
run. The Radeon curve is limited to a scaling factor of 20 due to buffer size
limitations imposed by the AMD-provided OpenCL runtime.

Note that the curves exhibit a odd-even pattern. Since this phenomenon is
visible on distinct hardware, drivers and OpenCL implementations, it is likely
due to the model decomposition process based on warp of fixed power-of-two
sizes. The results show that the gain closely depends on the hardware platform.

3.2 MIOR Results

Two platforms are used to assess the performance of the complete GPU imple-
mentation of the MIOR model as a MCMAS plugin. The first one is represen-
tative of hardware available in HPC clusters: a cluster node dedicated to GPU
computations with two quad-cores Intel X5550 processors running at 2.67GHz
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Fig. 6. Performance of the Collembola model

and a Tesla C1060 GPU device running at 1.3GHz and composed of 240 cores.
The second platform is a personal computer based on an Intel Q9300 CPU, run-
ning at 2.5GHz, and a Geforce 8800GT GPU card, composed of 112 cores and
running at 1.5GHz. The purpose of these two platforms is to assess the benefit
that could be obtained either when a MAS modeler has access to specialized
hardware as a cluster or tries to take benefit from its own personal computer.

The MIOR experiments illustrate the effect of increasing the level of adap-
tation of the algorithm to GPU hardware. The GPU (naive) implementation
is a direct implementation of the existing algorithm and its data structures.
The GPU (optimized) implementation uses compact representations of the
topology and the low level MCMAS interface.

We measure the execution duration for 50 simulations on the two hardware
platforms. A size factor is applied to the problem: at scale 1, the model contains
38 MM and 310 OM, while at the scale 6 these numbers are multiplied by six.
The size of the environment is modified accordingly to maintain the same average
agent density in the model. This scaling factor displays the impact of the size of
the simulation on performance.

Figures 7 and 8 gives the performance of the simulation runs on the two
platforms (the CPU curves give the performance of the local CPU). We can
note that for small problems execution time for all implementations are very
close. This is because the GPU implementation does not have enough threads
(representing agents) for an optimal usage of GPU resources. This trend changes
after scale 5 where the optimized GPU version begins to take advantage of the
naive GPU and CPU implementations. This advantage continues to grow with
the scaling factor and reaches a speedup of 10 at the scale 10 between the fastest
single-simulation GPU implementation and the naive one.

Multiple trends can be observed on both figures. First the optimizations for
the GPU hardware show a big, positive impact on performance, illustrating
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Fig. 7. MIOR performance on Tesla Fig.8. MIOR performance on main-
stream GPU

the strong requirements on the algorithm properties to ensure the execution
efficiency. These charts also show that despite the vast difference in number of
cores between the two GPU platforms the same trends can be observed in both
cases. We can therefore expect similar results on other GPU cards, without the
need for more adaptations.

4 Conclusion

In this article we present MCMAS, a solution to facilitate the use of many-core
architectures and allow the integration of optimized model parts within agent
based simulators. To achieve this, two possible approaches are supported by our
toolkit: (i) use MCMAS as an optimized algorithm library; or (ii) use MCMAS
as many-core runtime to develop specific algorithms or MAS. The usage can
be mixed by the model designer, depending on the its model needs and of the
amount of development required.

The first approach is to use the interfaces and plugins already provided by
MCMAS. These plugins cover classic problems in MAS simulations as path-
finding, diffusion or population dynamics. These predefined algorithms are ready
to be used to accelerate one or more aspects of an existing CPU simulation,
without huge changes in the existing implementation.

The second approach is to develop new plugins for MCMAS to enable the
implementation of more specialized or performance-critical algorithms directly
on the underlying many-cores platform. This approach implies the development
of OpenCL kernels, called from MCMAS, to execute portions of the computa-
tions. Once written, these kernels can be used both on CPU, GPU or any other
OpenCL supported platform: this allows the reuse of the same program on a wide
range of architectures, ranging from personal computers to computing clusters,
or dedicated GPU nodes, without modification or manual re-compilation.
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Our main goal is now to enrich the MCMAS platform to support more MAS

problems and to refine the support of new data structures to generalize the
possible applications of this platform.
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