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Abstract. Medical imaging processing algorithms can be computation-
ally very demanding. Currently, computers with multiple computing de-
vices, such as multi-core CPUs, GPUs, and FPGAs, have emerged as
powerful processing environments. These so called heterogeneous plat-
forms have potential to significantly accelerate medical imaging applica-
tions. In this study, we evaluate the potential of heterogeneous platforms
to improve the processing speed of medical imaging applications by using
a new framework named FlowCL. This framework facilitates the develop-
ment of parallel applications for heterogeneous platforms. We compared
an implementation of region growing based method to automated cere-
bral infarct volume measurement with a new implementation targeted for
heterogeneous platforms. The results of this new implementation agree
well with the original implementation and they are obtained with signif-
icant speed-up comparing to the sequential implementation.

Keywords: dataflow, framework, heterogeneous computing, heteroge-
neous platforms, medical imaging processing, OpenCL, parallel
programming.

1 Introduction

In medical imaging applications large amounts of data must be processed quickly
and accurately, which requires the usage of high performance computing sys-
tems. Commodity computer architectures are rapidly developing into systems
with multi-core CPUs and with additional accelerated hardware devices such as
graphics processing units (GPUs) and field programmable gate arrays (FPGAs).
These heterogeneous platforms provide a new alternative to design and imple-
ment computationally demanding applications. Consequently, the computation
power provided by these heterogeneous platforms should be explored for medical
image processing.
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Expertise of new programming constructs and concepts is however required
for application developers to effectively utilize these platforms. The OpenCL [5]
technology was developed with the aim of facilitating heterogeneous platforms
usage. OpenCL includes a language for writing functions, called kernels, that ex-
ecute on diverse computing devices. It also includes an application programming
interface (API) that is used to control the heterogeneous platforms. A benefit
of OpenCL is that the kernels that are coded according to this standard can
run on different devices without any modification. This makes it possible to take
advantage of computationally powerful devices that are well suited for different
tasks. Nevertheless, OpenCL still requires application developers to deal with
low level concerns such as the overhead of the code, memory management, and
synchronization. In order to evaluate the potential of heterogeneous platforms in
medical imaging processing, we needed an easier programming platform. A new
framework named FlowCL was developed to provide an intuitive way to cre-
ate applications utilizing heterogeneous platforms. This framework eliminates
the OpenCL API usage, but maintains the OpenCL programming language for
writing kernels. A brief description of this framework is presented in Section 2.

We used the FlowCL framework to implement a modified version of a previ-
ously developed method of automated measurement of cerebral infarct volume of
patients after acute ischemic stroke. This method, which was developed and vali-
dated by Boers et al. [3], was modified for heterogeneous platforms. In Section 3,
we explain the automated cerebral infarct volume measurement method and the
modification implemented in this study. We compared the execution times of
the original (sequential) implementation with the new parallel implementation
for heterogeneous platforms using FlowCL. We also evaluated the differences be-
tween the results of both implementations in Section 4. Finally, the conclusions
regarding this work and future improvements are presented in Section 5.

2 FlowCL Framework

During the development of OpenCL applications, programmers have to deal
with a low level C library, which requires specialized expertise for effective and
efficient code development. There are arious frameworks to mitigate this prob-
lem. For example, the Many GPUs Package (MGP) [2] was built on top of the
Virtual OpenCL Layer (VCL). VCL is a transparent layer that accesses and
manages OpenCL devices in clusters and presents these devices as a single node
. MGP is a layer that facilitates the programing using clusters by hiding low
level functions. A library named Maestro [10] also tries to reduce the complex-
ity of OpenCL applications development by providing functions for automatic
data transfer and task decomposition across OpenCL devices. However, MGP
and Maestro do not use extensive optimizations strategies. A more complete
framework i is StarPU [1], which is a runtime system capable of scheduling tasks
over heterogeneous devices using several optimizations strategies. However, the
framework APT uses the C programming language and this hampers the usage
of high level programming concepts.
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FlowCL is a new high level framework that supports rapid prototyping and
development with OpenCL, which makes it possible to closely control the exe-
cution across all OpenCL devices on one computer system. More details about
FlowCL are found in [4]. It hides all low level calls to the OpenCL library API
from the application developer. Only the OpenCL kernel code that is designed
to run on a selected device must be provided to the framework. Also, FlowCL
provides an object-oriented declarative API to easily build applications with the
concept of dataflow. The programmer simply declares a set of memory objects
and operations. Each operation runs each single kernel function on any available
device. This framework automatically applies optimization strategies such as
overlapping communication and computation, and asynchronous data transfers
and kernel executions.

To use the FlowCL framework, application developers just have to deal with
four classes of objects: memory, context, device, and operation. Figure 1 illus-
trates the relationships between these classes. By having only four classes with
limited relationships, FlowCL provides a simpler approach that is easier to un-
derstand than OpenCL.

Memory * Context 1 * Device

* 1 1
*

Operation |,

=

Fig.1. FlowCL cardinality diagram. A Context is instantiated with kernel codes;
these codes are usable on all available computing devices. Memory objects act as
arguments for operations; they are created by a context with a given size and be-
come available to all devices in this context. Device represents a computing device.
Operation runs a specified kernel function on a selected device.

In short, FlowCL framework addresses the following key aspects: it facilitates
application development with OpenCL; it provides an object oriented API to
build applications with the dataflow concept; it eliminates the OpenCL API,
except for kernel code; it automatically manages all devices on heterogeneous
platforms; it supports concurrent kernel execution and asynchronous data trans-
fers; and it supports multiple operating systems.

The framework is designed to run in the C++ language and only requires the
FlowCL header file inclusion. To illustrate FlowCL usage, the following source
code is shown:
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#include ”FlowCL.hpp”
using namespace FlowCL;

int main ()

{
Context con;
con.CompileFile(”source.cl”);
Memory memcpu = con.CreateMemory (1e8xsizeof(int));
Memory memgpu = con.CreateMemory (1e8xsizeof(int));
Operation genrand = con.CreateOperation(con.GetCPUDevice(), ”GenRand”);
genrand . SetArg (0, memcpu); // CPU already has access to memory
genrand . SetArg (1, memgpu);
genrand . SetWorkSize (1e8); // Set finest granularity
Operation sortcpu = con.CreateOperation(con.GetCPUDevice(), ”SortCPU”);
sortcpu.SetArgDependency(genrand, 0, memcpu); // Wait for genrand
sortcpu.SetWorkSize (1e8);
Operation sortgpu = con.CreateOperation(con.GetGPUDevice (), ”"SortGPU” );
sortgpu.SetArgDependency(genrand, 0, memgpu); // Wait for genrand
sortgpu.SetArgOutput(0, memgpu);
sortgpu.SetWorkSize (1e8);
con.Run(); // Blocking run

¥

This example is visualized in Figure 2. The first operation executes on the
CPU and generates random numbers that are sorted in the next two operations
that execute in parallel on the GPU and the CPU. There is no data transferred to
the sort operation that runs on the CPU because this data is readily available.
Once the GPU operation is completed, the data is transferred back and the
execution is finished.

“SortCPU”
MeMCcpU ~3“Canrand” " on CPU

memgpu —~» onCPU — “SortGPU”
on GPU

—> memcpu

—» memgpu

Fig. 2. Sample code visual representation

3 Case Study

In this section we present a case study using heterogeneous computing for mea-
surement of cerebral infarct volume (CIV) of patients with acute ischemic stroke.
The CIV has been suggested as an important measure for the effective treatment
of these patients [9]. This volume can be manually measured in early follow-up
non-contrast CT scans by the delineation of the whole infarct volume. An al-
ternative is to estimate this volume by using the ABC/2 formula, which was
originally designed for the estimation of hemorrhage volume [6]. The manual
delineation is a tedious and time-intensive task, and the CIV estimation based
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on the ABC/2 rule only approximates the total CIV. Aiming to address these
problems, Boers et al. [3] proposed a method to automatically calculate the CIV
in follow-up non-contrast CT scans. This method was validated by comparing it
with manual delineations performed by experienced radiologists.

The method proposed by Boers et al. was implemented using MATLAB [7] and
took a long time to run (in the order of 10 min). It uses an intensity-based region
growing (IRG) algorithm, which is responsible for more than 95% of the total
processing time. To evaluate the potential benefit of heterogeneous computing
for this application, we replaced this method with a new version of the IRG
algorithm developed with the FlowCL framework. The integration of the new
IRG algorithm with the previous MATLAB implementation was straightforward
because MATLAB allows external code calls.

In short, the objective of this case study is to understand how heterogeneous
platforms can be used and what is their potential value for medical imaging
applications. To achieve this objective, we run the method for automated CIV
calculation with two different implementations of the IRG algorithm, one based
on the original MATLAB code and the other using FlowCL. Below we provide
an overview of the complete method for automated CIV measurement used in
this case study, and then we describe both the sequential and the parallel IRG
implementations.

3.1 Automated Cerebral Infarct Volume Measurement

The automated CIV measurement proposed by Boers et al. was designed to
process non-contrast CT scans of the whole brain of the patients. The volume
measurements are performed for a part of the brain that is segmented from the
image using a region growing algorithm (IRG). In this algorithm, a voxel is added
to the segmented volume if the difference between its intensity and the average
intensity of the segmented volume so far is smaller than a specific threshold. To
compute the CIV, this algorithm was repeated for 7 different values of threshold,
going from 1.5 until 4.5 with steps of 0.5 Hounsfield units (HU). The algorithm
requires a position as starting point (called seed point) in the infarcted lesion.
The seed position is set by an experienced radiologist and this assures that the
correct infarcted area was selected.

The brain midline is used to prevent the segmented region from leaking to into
the contralateral hemisphere, i.e., the region cannot grow into the other side of
the brain. This midline is detected based on the geometric center and the most
extreme mid-sagittal bone or nasal cartilage structures present on the scan. Also,
to avoid leaking into the hypo-attenuated ventricles, the hypo-attenuated region
close to the geometric center is segmented and excluded from the segmentation
of the infarcted area. All the steps of the segmentation process are illustrated in
Figure 3. This process is repeated for 7 thresholds. In the end of this process,
the observer must select the best result that most agrees with the scans.
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Fig. 3. CIV segmentation steps. From the left to right: a CT scan showing an infarct
in the right hemisphere (left of the image); the seed position defined by a radiologist;
the determined midline and the ventricles segmentation; and the final segmentation
representing the CIV.

3.2 Intensity-Based Region Growing Algorithm

Region growing is a segmentation technique to select an image area that is
connected according to a specific condition [8]. In intensity-based region growing
(IRG), the intensity of the voxel is used as criterion to include or not a voxel to
the region. Starting from a given seed point, the IRG algorithm iteratively adds
voxels to the region such that the following condition is satisfied: |I — A| < T,
where [ is the intensity of the processed voxel and A is the average intensity of
the selected image area. The voxel I must be in the neighborhood of the selected
area and it is included in this area when its intensity is smaller than or equal to
the threshold T'.

Different neighborhood definitions can be applied (e.g., for 3D images it can
take 9 or 26 neighbors into account), and the order in which the voxels are
considered for inclusion may influence the final result. The IRG is also sensitive
to the chosen threshold T'; for this reason, 7 different thresholds are used in the
CIV method, and the user can pick the best result.

The sequential implementation of IRG in the original CIV measurement
method updates the average of the selected image area immediately after the
inclusion of each voxel, and the updated average is used in the test to include
the next neighboring voxel. In the parallel implementation of IRG, computing
devices in the heterogeneous platform simultaneously process the voxels based
on the same value of A. The average intensity A is only updated after all the
neighbors of a given voxel are considered for inclusion. Therefore the sequential
and the parallel algorithms perform inclusion tests based on potentially different
values of A, and can deliver different results.

4 Experimental Results and Comparisons

To evaluate the speed-up obtained with the heterogeneous platform, 53 CT scans
were processed in two different hardware configurations with the original and
the GPU implementations of the automated CIV measurement method. The
complete method was executed in both cases, however for timing purposes only
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Table 1. Hardware configurations

Hardware Detail Configuration 1 Configuration 2
CPU Name Intel Core i7-3930K Intel Xeon E5-2620
CPU Clock 3.20 GHz 2.00 GHz

GPU Name NVIDIA GeForce GTX 550 Ti NVIDIA Quadro K600
GPU Clock 900 MHz 876 MHz

GPU Memory Clock 4104 MHz 1782 MHz

GPU Driver Version 9.18.13.1106 9.18.13.2000

the IRG part was considered. Both hardware configurations have 12 CPU cores
and 192 GPU cores, however one is slower than the other — see Table 1.

The CT scans include the entire brain and were performed with thin-section
acquisition by using 8 different multi-section CT scanners with at least 16
sections, but mostly with 64 or more sections. The 32-bit MATLAB version
8.0.0.783 (R2012b) was used to run the MATLAB code. Microsoft Visual C++
2010 was used to compile the region growing algorithm for heterogeneous plat-
forms. These software were executed on 64-bit Microsoft Windows 7 Enterprise
operating system on both hardware configurations. Execution times were mea-
sure before and after calling the IRG function in the MATLAB code. Note that
this time includes overhead of internal function call for the sequential imple-
mentation, as well as for the external call of the program for the heterogeneous
platform implementation.

All the CT scans were analyzed using exactly the same parameters for 7
threshold values (1.5,2.0,2.5,3.0,3.5,4.0,4.5). Parameters that must be manu-
ally configured, such as the region growing seed position, were defined only once
and used in all runs of the method. Because different threshold values have a
great influence in the size of the segmented volume and, consequently, also in
the algorithm execution time, we compare the execution time separately for each
threshold value.

Figure 4 shows the speed-up factor for the parallel respectively to the origi-
nal IRG implementation. As we can see, speed-ups of 36 times were obtained.
In general, larger gains are obtained for higher threshold values. Higher thresh-
olds produce bigger segmented volumes, which require more computations and,
consequently, result in more expressive speed gains. For lower thresholds, the
execution time varies among different scans (larger standard deviation). Small
thresholds generate smaller segmented volumes, which are more sensitive to the
inclusion of neighboring voxels.

Also note that due to this sensitivity regarding the small volumes, the im-
plementation for heterogeneous platforms can be slower than the original imple-
mentation. Note however that only a minor performance reduction is noticed.
In most situations the performance of the new implementation is better as pre-
sented in figure 5. We must highlight that the automated CIV measurement
requires the region growing algorithm to run with 7 different threshold values
and, because of this, the performance gains obtained for higher thresholds values
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Fig.4. Speed-up on heterogeneous platforms (vertical axis) for each threshold value
(horizontal axis). Bars indicate standard deviation from the mean speed-up calculated
for 53 scans.
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Fig. 5. Differences in execution time between both implementations (new - old). Left:
Average difference in seconds (vertical axis) for each threshold value (horizontal axis)
calculated for 53 scans. Right: Histogram of differences in execution times in seconds for
all thresholds. The negative ranges indicate the runs where the original implementation
was faster than the new implementation.

compensate for the loss for smaller thresholds in the total processing time. In no
case the new implementation had a total processing time slower than the original
implementation when all 7 thresholds are considered. The new implementation
was faster in 82% of the scans using the hardware configuration 1 and in 75% of
the scans using the hardware configuration 2.

To evaluate the differences in the quality of results obtained with both im-
plementations we calculate the Dice coefficient for each threshold value individ-
ually - see Table 2. Similarly to what we found in the execution time analysis,
the greater differences are measured for smaller thresholds. However, this vari-
ation in the results does not have a great impact in the method, because the
final segmentation must be selected by a human observer which will filter out
the segmentations that are not consistent with the images. Moreover, usually
the selected segmentation is generated with one of the middle threshold values.
The extreme threshold values are used as a safe margin to assure that the most
adequate segmentation will be inside this interval.
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Table 2. Dice coefficients for each threshold

Threshold Value: 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Maximum: 0.99994 1.00000 1.00000 1.00000 0.99247 0.99141 0.97592
Average: 0.85936 0.89620 0.94856 0.93499 0.91252 0.91199 0.89875
Minimum: 0.34349 0.25384 0.68682 0.84418 0.82026 0.76991 0.75164
Standard Deviation: 0.18170 0.16985 0.07482 0.05082 0.05052 0.06906 0.07345

As shown in Table 2, the Dice coefficients for the threshold between 2.5 and
4 are higher than 0.9. These results indicate good agreement between segmen-
tations when compared to variations found in results obtained with manual seg-
mentation by experts. For example, during the validation of the original method,
[3] found that the Dice coefficient for segmentations manually defined by two ex-
perienced radiologists were 0.84 + 0.08 ranged from 0.63 to 0.94 [3].

5 Conclusions and Future Work

In this work we presented how the FlowCL framework, which was developed
for intuitive heterogeneous platform programing, was used in a medical imaging
application. Part of a previously developed and validated method for automated
cerebral infarct volume measurement was adapted for heterogeneous platforms
using the FlowCL framework. Only the code related with the intensity-based
region growing algorithm was modified. All other pieces of code and software
used in the method were not modified. We compared the two implementations
of the automated CIV measurement method in order to investigate the poten-
tial of heterogeneous platform in medical imaging applications. The results of
the implementation for heterogeneous platform were obtained faster and were
also consistent with the results of the original implementation. This study shows
that heterogeneous platforms can increase performance in medical imaging ap-
plications. This indicates that other computationally demanding medical imag-
ing algorithms could also be adapted to run on heterogeneous platforms in a
straightforward manner with the FlowCL framework.

In the present study, only GPUs and multicore CPUs were used as computing
devices. However, there are other different computing devices, such as FPGAs,
that were not included in this study and which can be also used in a more
comprehensive future study.
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