
Optimization of a Cloud Resource Management
Problem from a Consumer Perspective

Rafaelli de C. Coutinho, Lúcia M.A. Drummond, and Yuri Frota

Institute of Computing – Fluminense Federal University, RJ
{rcoutinho,lucia,yuri}@ic.uff.br

Abstract. Cloud Computing is a distributed computing paradigm in
which computing resources are available to users via Internet. Although
there are many works on resource management in related literature, few
of them tackle the problem from the perspective of commercial cloud
consumers. In this paper, the proposed resource management problem
selects cloud resources aiming to reduce the payment cost and the exe-
cution time of user applications. In order to solve this problem, an integer
programming formulation and a heuristic based on Greedy Randomized
Adaptive Search Procedure (GRASP) are also introduced. The model
and the algorithm were tested over a set of instances constructed from
requirements of real applications combined with sets of resources offered
by commercial clouds. The obtained results indicate that the presented
methods can be an important decision support tool for cloud consumers.

Keywords: Cloud Computing, Resource Management Problem,
Optimization.

1 Introduction

Cloud Computing is a distributed computing paradigm in which computing re-
sources are available to consumers via Internet [11]. It delivers infrastructure,
platform, and software as services by signing service-level agreements (SLAs)
with consumers. In terms of cloud economics, the provider should offer resource-
economic services. Novel, power-efficient schemes for caching, query processing,
and thermal management are mandatory due to the increasing amount of waste
heat that data centers dissipate for application services. Moreover, new pricing
models based on the pay-as-you-go policy are necessary to address the highly
variable demand for cloud resources. On the other hand, cloud service consumers
might have an SLA with a cloud service provider concerning how much band-
width, CPU, and memory the consumer can use at any given time throughout
the day. The cloud consumer has to decide how he or she wants to use cloud
services; like whether or not to add in more virtual machines and at what price
point that option becomes too expensive to justify the return. In this context,
application schedulers have different policies that vary according to the objec-
tive function: minimize total execution time, minimize payment cost to execute,
minimize the demand for power while maintaining a service-level guarantee for

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 218–227, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Optimization of a Cloud Resource Management Problem 219

the consumers, balance the load on resources used while meeting the deadline
constraints of the application and so forth. Independently of the objective func-
tion, resource allocation problems in clouds are NP-hard problems, so there are
no efficient methods to solve them.

As cloud computing becomes more widespread and consequently energy con-
sumption of the network and computing resources grow, more researches have
been conducted on energy cost optimization. In [3], the authors analyse the en-
ergy consumption in clouds. Some problems that aim to minimize the energy
costs can be seen in [7] [13] [14]. A survey about the energy cost for resource
allocation and scheduling algorithms based on energy consumption are found in
[4] [19]. Concerning the cloud consumer perspective, computing resources can
be acquired by reservation or on-demand plans. In [6], it is observed that an
interesting reservation plan can be difficult to achieve due to uncertainty of fu-
ture demands of consumers and resource prices of providers. In this context, the
paper proposes an optimal cloud resource provisioning algorithm by formulating
a stochastic programming model. Other researches tackle virtualization and the
scheduling of virtual resources to physical ones with the objective of minimizing
the network costs [20] [22] [2] and the computation costs [22] [18] [28] in clouds or
cooperative clouds [21]. In [9], main challenges inherent to the resource allocation
problem are highlighted and categorized. An architecture for market-oriented
clouds and resource management strategies, as well as an overview of represen-
tative clouds platforms, are presented in [5]. Finally, a study that demonstrates
the economic feasibility and efficiency of cloud computing for small and medium
enterprises is presented in [26]. Most of papers found in the related literature
consider the resource allocation problem from the cloud provider view whether
in optimization of energy cost or the cost of the services and resources provision.
Problems pertinent to cloud consumers, such as optimization of payment costs
and execution times to run their applications, are usually neglected in related
works.

In this paper, based on the actual way that popular cloud providers, such
as Amazon Elastic Compute Cloud (EC2) and Google Cloud Platform offer re-
sources and services for high performance computing users, a resource manage-
ment problem that aims to reduce the payment cost and the execution time
of the user application is defined. In order to solve it, an integer programming
formulation and a heuristic based on Greedy Randomized Adaptive Search Pro-
cedure (GRASP) [10] are also introduced. The model and the algorithms were
tested over a set of instances constructed from requirements of real applications
combined with sets of resources offered by commercial clouds. The obtained re-
sults indicate that the presented methods can be an important decision support
tool for cloud consumers.

2 Problem Definition and Mathematical Formulation

In literature there are many different definitions of Cloud Computing. Accord-
ing to [27], one reason for the existence of different perceptions is that Cloud

220 R. de C. Coutinho, L.M.A. Drummond, and Y. Frota

Computing is not a new technology, but a new operational model that brings
together a set of existing technologies in a different way. In this work, we consider
an Infrastructure-as-a-Service (Iaas) model, i.e., cloud consumers request com-
puting resources as processing power (defined by Gflop1), disk storage, memory
and architecture type, for a period of time and pays only what he/she uses. For
instance, the values charged by a IaaS provider as Amazon EC2 are mainly based
on computer resources allocated for virtual machines (denoted by packages) pur-
chased by the consumer. Cloud providers have a wide variety of package types
(e.g. micro, high performance CPU, computers clusters, GPU clusters, high op-
erations I/O, etc.), each one associated with a different cost and configuration,
designed to meet different requirements. In this context, consumers have to de-
cide which packages should purchase in order to minimize a specific objective as
execution time or payment cost.

To describe this scenario as a mathematical formulation, we set the grounds
for all the notation used from here on. Let P be the set of packages types offered
by a cloud provider during a set of time periods. We define the set of consumer
requirements as the maximum cost CM , maximum time TM , disk storage DS ,
memory capacity MC and a processing demand of Gf Gflop. Similarly, each
package type p ∈ P has an associated cost cp (i.e. the cost of purchasing the
package for one period of time) and computing resources as disk storage dp,
memory capacity mp and a processing power of gp Gflop per period of time
(Gflopt). Moreover, it is common that cloud providers have a maximum limit of
NM purchased packages for each consumer in each period of time. We now define
a binary variable xpit for each p ∈ P , i ∈ {1, . . . , NM} and t ∈ T = {1, . . . , TM},
such that xpit = 1 if and only if package i of type p is purchased at time t;
otherwise xpit = 0. Also, define variable tm as the last time period that a package
was purchased by the consumer. The described scenario can be formulated as
the following integer programming problem:

(CC-IP) min(α1

∑

p∈P

NM∑

i=1

∑

t∈T

cpxpit + α2tm) (1)

subject to
∑

p∈P

NM∑

i=1

∑

t∈T

cpxpit ≤ CM (2)

∑

p∈P

NM∑

i=1

dp xpit ≥ DS xp′i′t, ∀t ∈ T, ∀p′ ∈ P,

∀i′ ∈ {1, . . . , NM} (3)
∑

p∈P

NM∑

i=1

mp xpit ≥ MC xp′i′t, ∀t ∈ T, ∀p′ ∈ P,

∀i′ ∈ {1, . . . , NM} (4)

1 flop - floating-point operations.

Optimization of a Cloud Resource Management Problem 221

∑

p∈P

NM∑

i=1

∑

t∈T

gpxpit ≥ Gf (5)

∑

p∈P

NM∑

i=1

xpit ≤ NM , ∀t ∈ T (6)

tm ≥ t xpit, ∀t ∈ T, ∀p ∈ P,

∀i ∈ {1, . . . , NM} (7)
xpit+1 ≤ xpit, ∀t ∈ T, ∀p ∈ P,

∀i ∈ {1, . . . , NM} (8)
xpi+1t ≤ xpit, ∀t ∈ T, ∀p ∈ P,

∀i ∈ {1, . . . , NM − 1} (9)
xpit ∈ {0, 1}, ∀t ∈ T, ∀p ∈ P,

∀i ∈ {1, . . . , NM} (10)
tm ∈ Z (11)

where (α1 + α2) = 1.
In the above model, denoted as CC-IP, the objective function 1 seeks both the

minimization of costs and total purchased time. The weights α1 and α2 define the
relevance of each objective established by the consumer. Generally, since these
objectives are conflicting, both objectives cannot arrive at optimal levels simul-
taneously. For example, for values of α1 close to 1 the formulation prioritizes
low-budget solutions with long periods of execution time. Constraint (2) ensures
that the paid costs do not exceed the maximum recommended cost. Inequalities
(3) and (4) enforce that the storage and memory capacity are, respectively, suffi-
cient large to meet the requirements in each period of time. Similarly, constraint
(5) guarantee that the processing power is at least large enough to satisfy the
total demand. Inequalities (6) ensures that the number of selected packages does
not exceed the cloud providers limit while constraint (7) together with objective
function guarantee the correct interpretation of variable tm. Constraint (8) en-
forces that there will be no gaps of time in feasible solutions (i.e. if a package is
selected at time t+1, then it will also be selected at time t). Note that all pack-
age permutations yield feasible solutions in CC-IP, thus we add constraints (9)
to establish an order between the packages and eliminate symmetry. Constraints
(10) and (11) define the binary and integrality requirements on the variables.

3 GRASP for Resource Selection in Cloud Environments

Exact procedures have often proved incapable of finding solutions as they are ex-
tremely time-consuming, particularly for real-world problems. Conversely, heuris-
tics and metaheuristics provide sub-optimal solutions in a reasonable time. In
this context, we have designed and implemented a Greedy Randomized Adap-
tive Search Procedure (GRASP) which has been successfully applied in many
combinatorial optimization problems [24]. The proposed heuristic GraspCC is

222 R. de C. Coutinho, L.M.A. Drummond, and Y. Frota

composed of two phases: a construction phase coCC and a local search phase
lsCC. The construction phase finds an initial solution that may be later im-
proved by the local search phase.

In order to describe this method, we need some additional notation. We define
a solution {(p1, i1, t1), (p2, i2, t2), . . .} as a set of 3−tuples (p, i, t) representing
that package i of type p was purchased on period t. Let S be the set of all possible
solutions. A solution s ∈ S is said to be feasible if s respects the consumer
requirements. We also denote tm(s) = max(p,i,t)∈s t as the last period that a
package was selected. Moreover, we define below a cost function F : S → R,
which will measure the quality of the solution. Similar to the objective function
(1), the function F attempts to minimize costs and time (12) while penalizes the
infeasibility regarding maxima time and cost (13). The parameters λ1 and λ2 are
penalty coefficients associated with the violation of time and cost requirements,
respectively.

F (s) =(α1

∑

(p,i,t)∈s

cp + α2tm(s)) (12)

+ λ1(max{0, tm(s)− TM}) + λ2(max{0,
∑

(p,i,t)∈s

cp − CM}) (13)

Algorithm 1: GraspCC

1 Input: P,CM , TM , DS,MC , Gf , α1, α2, λ1, λ2

2 Output: solution s∗;
3 s∗ = ∅; F (s∗) = ∞; i := 0;
4 while i � iter
5 s = coCC(P, CM , TM , DS ,MC , Gf , α1, α2, λ1, λ2);
6 s = lsCC(s, P, CM , TM , DS ,MC , Gf , α1, α2, λ1, λ2);
7 if (F (s) < F (s∗)) and (s is feasible)
8 s∗ = s; i := 0;
9 end if

10 end for
11 return s∗;

We can now state the algorithm GraspCC which is shown in Algorithm 1,
where the parameter iter denotes the maximum number of iterations without
improvement in the best solution found. The first task in every iteration of the
GraspCC is to construct a solution starting from an empty set, in a greedy ran-
domized fashion. This task is performed by algorithm coCC which is described
in Algorithm 2. In this method, the ordered set LP is defined, in line 3, as the set
of packages p ∈ P such that its elements appears in descending order of cost and
processing power (α1cp+α2gp). At each iteration in lines 4-7 we choose a package
p among the first β packages to be added to the first period of time. Note that
the parameter β defines the degree of randomness the construction phase will
have. This process is repeated until the solution satisfies the disk and memory
requirements (for t = 1), however the maximum time and cost constraints are

Optimization of a Cloud Resource Management Problem 223

relaxed in order to achieve diversity in the initial solution. Moreover, in lines
(9)-(12) the chosen packages are replicated in future periods until the processing
demand is satisfied.

Algorithm 2: coCC

1 Input: P,CM , TM , DS,MC , Gf , α1, α2, λ1, λ2

2 Output: solution s;
3 s = ∅; LP = Order(P);
4 while (

∑
p|(p,i,1)∈s dp < DS) or (

∑
p|(p,i,1)∈s mp < MC)

5 Choose package p (index i) randomly among the first β elements of LP

6 s = s ∪ {(p, i, 1)};
7 end while
8 t = 2;
9 while (

∑
p|(p,i,t)∈s gp < Gf)

10 s =
⋃

(p,i,1)∈s(p, i, t) ∪ s;

11 t = t+ 1;
12 end while
13 return s

There is no guarantee that the construction method returns a feasible or
a locally optimal solution with respect to some neighborhood. Therefore, the
solution s may be improved by a local search procedure denominated lsCC
(Algorithm 3). The neighborhood Nr(s) is defined as the family of all solutions
obtained by exchanging r tuples in s with another r tuples not in s. The lsCC
method starts with the solution provided by the construction phase. It iteratively
replaces the current solution by that with minimum cost function F within
its neighborhood (lines (3)-(9), where “s improving” means that there is some
solution in the neighborhood of the current solution with cost function better
than the current s). The local search halts when no better solution is found in the
neighborhood of the current solution. In this work we employed a neighborhood
with r ≤ 2, since for values of r > 2 it is computationally intensive to perform
an exhaustive search.

Algorithm 3: lsCC

1 Input: s, P, CM , TM , DS ,MC , Gf , α1, α2, λ1, λ2

2 Output: solution s;
3 while (s improving)
4 for all s ∈ (N1(s) ∪N2(s))
5 if F (s) < F (s)
6 s = s
7 end if
8 end for
9 end while

224 R. de C. Coutinho, L.M.A. Drummond, and Y. Frota

4 Experimental Results and Conclusions

The algorithms described in the previous section were implemented in ANSI C
and the CPLEX 12.4 [16] was used to solve the mathematical formulation. All
simulated experiments were performed on a computer with processor Intel Core
i7 3.4Hz and 12Gb of RAM under Linux (Ubuntu 12.04) operating system. The
algorithms were tested over a set of instances constructed from the requirements
of RAM memory, disk storage, gflop number, execution time and payment cost of
real applications combined with the sets of virtual machine packages available in
commercial clouds.

These instances use requirements of five real applications and packages of two
commercial clouds. The instances are divided in two groups, one for each cloud.
The considered applications are a branch-and-bound algorithm for solving the
Quadratic Assignment Problem (QAP) [12], three algorithms that tackle the
manipulation of biologic sequence problem (RAXML [25], ModelGenerator [17]
and Segemehl [15]) and a typical analysis user job for the CMS experiment [1].
The two commercial clouds are Amazon EC2 [8] and Google Cloud Platform [23].
In Amazon EC2, package groups of high performance computing (HPC) clusters
were employed, while in Google Cloud Platform, it was utilized packages from
the Google Compute Engine. The instances are described in Table 1, where the
columns represent the instance name, the requirements of RAM memory, disk
storage, gflop number, the informed maximum time execution and maximum
payment cost, respectively.

In order to illustrate the use of the different goals in the proposed cost func-
tion, weighted by α1 and α2 values, we analyse an instance executed with dis-
tinct sets of alpha, representing two extreme cases: (i) the cloud consumer is
only concerned with payment cost (α1 = 1 and α2 = 0) and (ii) he/she only
prioritizes the execution time (α1 = 0 and α2 = 1). For instance, if for the ap-
plication nug24-cbb using packages of Amazon EC2 (nug24-cbb_am), the cloud
consumer only considers the payment cost, the mathematical formulation gives
the following solution: 3 time units for execution time and $46.20 for payment

Table 1. Instance Description

Instance RAM (GB) Disk Storage (GB) GFLOP Number Time (hours) Package Number Cost ($)
nug22-sbb 77 51 5067533 12 20 343
nug24-sbb 154 103 14741914 48 20 998
nug25-sbb 214 142 28792800 60 20 1950
nug28-sbb 528 352 67720666 72 20 4586
nug30-sbb 918 612 120929760 84 20 8190
nug22-cbb 77 51 20270131 12 20 343
nug24-cbb 154 154 88451482 72 20 1498
nug25-cbb 214 214 230342400 120 20 3900
nug28-cbb 528 528 541765325 144 20 9173
nug30-cbb 918 918 967438080 168 20 16380
mod-gen 4 2 3317760 24 20 100

raxml 3 2 3317760 24 20 100
segemehl 64 600 28748390 4 20 192
cms-1000 1500 20 216000000 24 30 1728
cms-1250 1875 25 270000000 24 40 2304
cms-1500 2250 30 324000000 24 45 2592

Optimization of a Cloud Resource Management Problem 225

Table 2. Results of GraspCC Metaheuristic and CC-IP Mathematical Formulation
using CPLEX with α1 = 0.5 and α1 = 0.5

Instances
GraspCC CC-IP

Function Solution Value Total Gap Function Solution Value Total
cost Time Payment time (%) cost Time Payment time

nug22-sbb_am 0.0456 1 4.50 0.01 0 0.0456 1 4.50 0.59
nug24-sbb_am 0.0130 1 12.10 0.02 0 0.0130 1 12.10 6.79
nug25-sbb_am 0.0113 1 17.10 0.05 0 0.0113 1 17.10 10.98
nug28-sbb_am 0.0128 1 40.80 0.07 0 0.0128 1 40.80 27.23
nug30-sbb_am 0.0344 3 133.50 0.08 0 0.0344 3 133.50 32.42
nug22-cbb_am 0.0519 1 11.80 0.03 0 0.0519 1 11.80 0.77
nug24-cbb_am 0.0309 2 46.20 0.17 0 0.0309 2 46.20 5.81
nug25-cbb_am 0.0458 3 119.70 0.91 0 0.0458 3 119.70 12.01
nug28-cbb_am 0.0123 1 36.90 0.07 0 0.0123 1 36.90 21.20
nug30-cbb_am 0.2652 23 1034.70 3.63 0 0.2652 23 1034.70 118.42
mod-gen_am 0.0217 1 2.10 0.00 0 0.0217 1 2.10 0.50

raxml_am 0.0217 1 2.10 0.00 0 0.0217 1 2.10 0.48
segemehl_am 0.1688 1 16.80 0.07 0 0.1688 1 16.80 0.26
cms-1000_am 0.1630 4 275.20 0.18 0 0.1630 4 275.20 31.82
cms-1250_am 0.1572 4 340.20 0.53 0 0.1572 4 340.20 39.50
cms-1500_am 0.1625 4 410.40 0.53 0 0.1625 4 410.40 32.83
nug22-sbb_go 0.0497 1 4.90 5.36 0.0066 0.0497 1 4.88 77.72
nug24-sbb_go 0.0270 1 14.95 20.74 0 0.0270 1 14.95 9194.37
nug25-sbb_go 0.0347 3 29.54 38.90 0 0.0347 3 29.54 28081.33
nug28-sbb_go 0.0655 6 87.44 133.66 0 0.0655 6 87.44 35278.98
nug30-sbb_go 0.1128 11 202.27 42.98 0 0.1128 11 202.27 73656.27
nug22-cbb_go 0.1137 2 18.56 17.97 0 0.1137 2 18.56 246.79
nug24-cbb_go 0.1173 8 82.91 177.53 0 0.1173 8 82.91 19695.32
nug25-cbb_go 0.2417 20 229.00 1186.05 0 0.2417 20 229.00 64758.31
nug28-cbb_go 0.0541 5 70.73 60.00 0.0859 * 0.0552 5 70.64 86400.00
nug30-cbb_go 0.8502 81 1573.22 2987.79 0 0.8502 81 1573.22 5085.60
mod-gen_go 0.0234 1 3.16 2.97 0 0.0234 1 3.16 32.71

raxml_go 0.0234 1 3.16 2.91 0 0.0234 1 3.16 29.34
segemehl_go 0.5038 3 26.21 52.40 0 0.5038 3 26.21 23.52
cms-1000_go 0.4809 13 384.70 27.56 0 0.4809 13 384.70 4458.83
cms-1250_go 0.4341 12 449.52 153.13 0 0.4341 12 449.52 34210.73
cms-1500_go 0.4796 13 573.46 53.27 0 * 0.4797 13 573.85 86400.00

cost. However, if the cloud consumer only prioritizes the execution time, the
mathematical formulation gives the solution: 2 time units for execution time
and $84 for payment cost. Thus, note that the proposed objective function that
integrates both objectives can guide the consumer’s decision. The specification
of proper weights (α1 and α2) to the objectives allows that the cloud consumers
take the correct decision in accordance with their needs.

Experiments, reported in Table 2, are a comparison of the GraspCC heuris-
tic with the CC-IP mathematical formulation, in terms of solution quality and
execution time. The used values were: α1 = 0.5 and α2 = 0.5, λ1 = 1000 and
λ2 = 1000, β equal to the maximum number of packages offered by each cloud
provider and iter = 50. In this work, both objectives of the cost function were
normalized due to their distinct range values. The normalization procedure up-
dates the objective values so that they share the same minimum and maximum
values, 0 and 1, respectively. Thus, the payment cost was divided by the most
expensive package cost times the maximum time informed by the cloud con-
sumer. Similarly, the execution time component of the objective function was
divided by the maximum time informed by the cloud consumer. Each instance
is identified by the label n_c, where n is the application name and c is the cloud

226 R. de C. Coutinho, L.M.A. Drummond, and Y. Frota

providers (am and go identify Amazon EC2 and Google Compute Engine, re-
spectively). The next three columns present the best function cost solution found
by GraspCC and the costs (not normalized) that compose it: execution time and
payment cost, respectively. The fifth column shows the execution time in sec-
onds for GraspCC to solve the problem. The next column is the corresponding
percentage difference from the optimal solution (named Gap in the table). Anal-
ogously, the last four columns present the best feasible solution found by CC-IP,
the costs that compose it, the execution time and payment costs, and the time
in seconds spent to solve the problem.

For some instances, the CC-IP mathematical formulation took a long time to
prove the optimality of the solution, therewith we consider in our experiments
an execution time limit of 24 hours. The exact method was not able to find the
optimal solution in instances marked with (*) in Table 2 within this time limit.
Note that GraspCC presented an outstanding improvement of the execution
time, in average 99.01% less than the execution time of CC-IP, giving optimal
or almost optimal solutions in all tests.

This work was supported of CAPES and FAPERJ (E-26/110.552/2010).

References

1. Adolphi, R., Spanier, S.: The CMS experiment at the CERN LHC, CMS collabo-
ration. Journal of Instrumentation 3(08), S08004 (2008)

2. Alicherry, M., Lakshman, T.: Network aware resource allocation in distributed
clouds. In: Proceedings IEEE INFOCOM, pp. 963–971. IEEE (2012)

3. Baliga, J., Ayre, R.W., Hinton, K., Tucker, R.S.: Green cloud computing: Balancing
energy in processing, storage, and transport. Proceedings IEEE 99(1), 149–167
(2011)

4. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics
for efficient management of data centers for cloud computing. Future Generation
Computer Systems 28(5), 755–768 (2012)

5. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)

6. Chaisiri, S., Lee, B., Niyato, D.: Optimization of resource provisioning cost in cloud
computing. IEEE Transactions on Services Computing 5(2), 164–177 (2012)

7. de Oliveira Jr., F.A., Ledoux, T.: Self-management of applications qos for energy
optimization in datacenters. In: Proceedings of the 2nd International Workshop
Green Computing Middleware, GCM 2011, pages 3:1–3:6. ACM (2011)

8. Amazon Elastic Compute Cloud (Amazon EC2) (March 16, 2013),
http://aws.amazon.com/pt/ec2/

9. Endo, P.T., de A. Palhares, A.V., Pereira, N.N., Goncalves, G.E., Sadok, D., Kel-
ner, J., Melander, B., Mangs, J.: Resource allocation for distributed cloud: concepts
and research challenges. IEEE Network 25(4), 42–46 (2011)

10. Feo, T.A., Resende, M.G.C.: Resende. Greedy randomized adaptive search proce-
dures. Journal of Global Optimization 6, 109–133 (1995)

11. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. In: Grid Computing Environments Workshop, pp. 1–10. IEEE
(2008)

http://aws.amazon.com/pt/ec2/

Optimization of a Cloud Resource Management Problem 227

12. Goncalves, A., Drummond, L., Pessoa, A., Hahn, P.: Improving lower bounds for
the quadratic assignment problem by applying a distributed dual ascent algorithm.
Cornell University Library, Technical Report (2013)

13. Goudarzi, H., Ghasemazar, M., Pedram, M.: Sla-based optimization of power and
migration cost in cloud computing. In: 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pp. 172–179. IEEE (2012)

14. Goudarzi, H., Pedram, M.: Energy-efficient virtual machine replication and place-
ment in a cloud computing system. In: IEEE 5th International Conference on Cloud
Computing, pp. 750–757. IEEE (2012)

15. Hoffmann, S., Otto, C., Kurtz, S., Sharma, C.M., Khaitovich, P., Vogel, J., Stadler,
P.F., Hackermüller, J.: Fast mapping of short sequences with mismatches, insertions
and deletions using index structures. PLoS Computational Biology 5 (2009)

16. S.A. ILOG. Cplex 11 user’s manual (2008)
17. Keane, T., Creevey, C., Pentony, M., Naughton, T., Mclnerney, J.: Assessment of

methods for amino acid matrix selection and their use on empirical data shows
that ad hoc assumptions for choice of matrix are not justified. BMC Evolutionary
Biology 6(1), 29 (2006)

18. Li, Q., Guo, Y.: Optimization of resource scheduling in cloud computing. In: 12th
International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, pp. 315–320. IEEE (2010)

19. Luo, L., Wu, W., Di, D., Zhang, F., Yan, Y., Mao, Y.: A resource scheduling
algorithm of cloud computing based on energy efficient optimization methods. In:
International Green Computing Conference, pp. 1–6. IEEE (2012)

20. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of data center networks
with traffic-aware virtual machine placement. In: Proceedings of IEEE INFOCOM,
pp. 1–9. IEEE (2010)

21. Niyato, D., Zhu, K., Wang, P.: Cooperative virtual machine management for multi-
organization cloud computing environment. In: Proceedings of the 5th International
ICST Conference on Performance Evaluation Methodologies and Tools, pp. 528–
537, ICST (2011)

22. Pandey, S., Wu, L., Guru, S.M., Buyya, R.: A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments.
In: 24th IEEE International Conference on Advanced Information Networking and
Applications, pp. 400–407. IEEE (2010)

23. Google Cloud Platform (March 16, 2013),
https://cloud.google.com/products/compute-engine

24. Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: Recent advances
and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics:
Progress as Real Problem Solvers, pp. 29–63. Springer (2005)

25. Stamatakis, A.: Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses
with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

26. Sultan, N.A.: Reaching for the cloud: How SMEs can manage. International Journal
of Information Management 31(3), 272–278 (2011)

27. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications 1(1), 7–18 (2010)

28. Zhao, J., Zeng, W., Liu, M., Li, G.: Multi-objective optimization model of virtual
resources scheduling under cloud computing and it’s solution. In: International
Conference on Cloud and Service Computing, pp. 185–190 (2011)

https://cloud.google.com/products/compute-engine

	Optimization of a Cloud Resource Management Problem from a Consumer Perspective
	1 Introduction
	2 Problem Definition and Mathematical Formulation
	3 GRASP for Resource Selection in Cloud Environments
	4 Experimental Results and Conclusions
	References

