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Abstract. OpenACC is a new directive-based programming interface
for accelerators such as GPGPU. OpenACC allows the programmer to
express the offloading of data and computations to accelerators to
simplify the porting process for legacy CPU-based applications. In this
paper, we present the design and implementation of an open-source Ope-
nACC compiler that translates C code with OpenACC directives to C
code with the CUDA API, which is the most widely used GPU pro-
gramming environment provided for NVIDIA GPU. We adopt a source-
to-source approach using the Omni compiler infrastructure for source
code analysis and translations. Our approach leaves detailed machine-
specific code optimization to the mature NVIDIA CUDA compiler. An
experimental evaluation of the implementation shows that some parallel
benchmark codes compiled by our compiler achieve speeds up to 31 times
greater than those of CPUs, and that it is competitive with commercial
implementations. However, the results also indicate the optimization of
OpenACC programs has several problems, such as assigning iterations
to GPU threads.
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1 Introduction

An accelerator such as a GPU is a promising device for further increasing com-
puting performance in the field of high-performance computing. Several vendors
are providing programming models for accelerators. For example, NVIDIA pro-
vides CUDA, which is an extension of C and C++ and provides GPU data
and thread management functions, and OpenCL provides a portable program-
ming model for various accelerators. Although CUDA is the most mature and
extended approach to GPU programming, achieving a good performance rate
usually requires a noticeable coding and optimization effort. To offload a frag-
ment of code to an accelerator using OpenCL or CUDA, programmers need to
rewrite a parallel loop to a kernel function executed on each thread of the GPU
and to manage data transfers between host and device in an explicit way.

OpenACC [1] is a directive-based programming model that has been pro-
posed as a solution to the complicated programming for offloading codes on
accelerators. OpenACC provides a set of OpenMP-like loop directives for the
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programming of accelerators in an implicit and portable way. The OpenACC
compiler generates codes that transfer data between host and device, and GPU
code executed on the device.

In this paper, we present the design and implementation of an open-source
OpenACC compiler that translates C code with OpenACC directives to that
with CUDA API. This source-to-source approach means detailed machine-spe-
cific code optimization is left to the mature CUDA compiler by NVIDIA.

To implement our OpenACC compiler, we use the Omni compiler infrastruc-
ture [2] of C and Fortran95 for source code analysis and translations. The public
availability of Omni means the research community is able to conduct experi-
ments such as the study of new extensions of OpenACC and program analyses
for optimizations. Although CUDA supports only NVIDIA devices, it would be
easy to generate codes using the proposed OpenCL as a common programming
interface for the heterogeneous devices supported by many manufacturers.

The contributions of this paper are summarized as follows:

– We describe a compiler to translate OpenACC programs into CUDA. The
generated CUDA code is compiled by the NVIDIA CUDA compiler.

– Our approach enables the mature CUDA compiler to optimize the GPU code,
sometimes better than a commercial compiler that generates the parallel
thread execution (PTX) code.

– We present performance measurements to validate our approach by using
some parallel benchmark codes.

As related work, efforts have been made to generate CUDA from OpenMP and
the directive extension for GPUs. OMPCUDA [5] is the OpenMP compiler that
translates to CUDA by using the Omni compiler. OpenMPC [6] also translates
OpenMP to CUDA, but it has original directives that can tune performance.
Additionally, the block size and other parameters can be tuned by a parame-
ter search. hiCUDA [7] is a directive-based programming model for CUDA. In
hiCUDA, the user has to specify the number of blocks and threads explicitly. It is
more like CUDA, so it may obtain performance equal to that written by CUDA.
OpenHMPP [8] can specify the data transfer between host and GPU and launch
GPU kernels by original directives. OpenHMPP can use not only NVIDIA GPU
but also AMD GPU by using CUDA and OpenCL as the backend. In addition,
accULL [9] is an OpenACC compiler that uses CUDA and OpenCL as the back-
end. By using OpenCL, accULL can use accelerators supporting OpenCL. This
work is similar to ours.

The rest of this paper is organized as follows. In Section 2, we provide an
overview of the translation of OpenACC to CUDA with sample code. Section
3 describes the implementation of our OpenACC compiler and the details of
code translation. We report our performance evaluation using some benchmark
programs in Section 4 and conclude our work in Section 5.
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1 #define N 1024
2 int main(){
3 int i, a[N], b[N];
4 #pragma acc data copyin(a) copyout(b)
5 {
6 #pragma acc parallel loop
7 for(i = 0; i < N; i++){
8 b[i] = a[i] + 1;
9 }

10 }
11 }

Fig. 1. Sample code (sample.c)

2 Translation of OpenACC into CUDA

2.1 OpenACC

OpenACC defines constructs by directives to specify the offloaded region of codes
and data in standard C and Fortran programs. The offloaded regions are defined
with either parallel or kernel directives, and are executed on an accelerator.
Programs with OpenACC directives can be compiled into a hybrid code by
OpenACC-compliant compilers.

In the offloaded region, a parallel loop is specified by the loop directive. Ope-
nACC supports three-level parallelism: gang, worker, and vector. The parallel
loop is executed in parallel by multiple workers, each of which can also have sin-
gle instruction, multiple data (SIMD) operations. Similar to the thread blocks
in CUDA, a group of workers is managed as a gang in OpenACC.

In the OpenACC model, the host and device memory spaces are indepen-
dent. Therefore, data referenced in computations in the accelerator need to be
transferred between host and device memory. The data transfers are implicitly
executed by the compiler, but the programmer can specify them by data di-
rectives and reduce unnecessary transfers. The data directive specifies the data
environment so that the coherency of the specified data is taken at the region
boundary. In addition, the data directive defines data allocated on device mem-
ory. The data is copied from host to device at the beginning of the structured
block or copied from device to host at the end of the structured block.

Fig. 1 shows the OpenACC sample code. First, line 4 allocates device memory
by using the data construct. The values of array a are referenced but not updated
in the device, and the values are specified as a copyin to transfer them from host
memory to device memory at the beginning of the data region. The values of
array c are not referenced but updated in the device, so it is specified as a copyout
to transfer it from device memory to host memory at the end of the data region.
Then, line 6 specifies the loop on i as a parallel region with parallelization of the
loop by the parallel loop directive.

2.2 CUDA

CUDA is the programming environment for NVIDIA GPU, which is the most
widely used for GPGPU. In CUDA, a kernel function is written in C and C++.
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1 int main(void)
2 {
3 int i; int a[1024]; int b[1024];
4 {
5 void *_ACC_DEVICE_ADDR_a,*_ACC_HOST_DESC_a,*_ACC_DEVICE_ADDR_b,*_ACC_HOST_DESC_b;
6 _ACC_gpu_init_data(&(_ACC_HOST_DESC_a), &(_ACC_DEVICE_ADDR_a), a, ...);
7 _ACC_gpu_init_data(&(_ACC_HOST_DESC_b), &(_ACC_DEVICE_ADDR_b), b, ...);
8 _ACC_gpu_copy_data(_ACC_HOST_DESC_a, 400);
9 {

10 _ACC_GPU_FUNC_0(_ACC_DEVICE_ADDR_b, _ACC_DEVICE_ADDR_a);
11 }
12 _ACC_gpu_copy_data(_ACC_HOST_DESC_b, 401);
13 _ACC_gpu_finalize_data(_ACC_HOST_DESC_a);
14 _ACC_gpu_finalize_data(_ACC_HOST_DESC_b);
15 }
16 }

Fig. 2. Sample code (sample tmp.c)

A kernel is a function callable from the host and executed on the CUDA device
simultaneously by many threads in parallel. A thread is a minimum unit of
execution. The threads are organized as a two-level hierarchy: block and grid. A
block is a group of threads. A grid is a group of blocks that executes a kernel
function. Each thread can be identified by the index of the block to which it
belongs and the index of the thread in the block. By using these identifiers, a
parallel loop is executed as a kernel function that computes each data.

Device memory is independent of host memory. Device kernels essentially
can access only device memory, so device memory allocations and releases and
data transfers between host and device are needed for executing kernels. CUDA
provides a runtime library for managing device memory, and host programs call
them as needed.

2.3 Translation to CUDA

The translation of sample code shown in the previous section is shown in Figs.
2 and 3. The OpenACC code is compiled into two parts. In sample tmp.c, the
data directive is converted to the block to set up the data transfer. The runtime
call ACC gpu init data allocates device memory for arrays a and b, then the
runtime call ACC gpu copy data transfers a from host to device memory at the
beginning of the data region. The parallel region is compiled into the separate
function ACC GPU FUNC 0 generated by the compiler. ACC gpu copy data
transfers b from device to host memory at the end of the data region. Finally,
ACC gpu finalize data frees device memory for a and b.
The code sample.cu is a CUDA source code that includes a GPU kernel func-

tion and a function that launches it. Function ACC GPU FUNC 0 calculates
the number of thread blocks and threads from the number of loop iterations and
launches the GPU kernel. After that, ACC GPU M BARRIER KERNEL waits
until the end of GPU kernel execution. Function ACC GPU FUNC 0 DEVICE
is a GPU kernel, from which each thread gets an induction variable value i from
ACC gpu calc idx and calculates b[i]=a[i]+1.
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1 __global__ static
2 void _ACC_GPU_FUNC_0_DEVICE(int b[1024], int a[1024])
3 {
4 int i, idx, init, cond, step;
5 _ACC_gpu_init_block_thread_x_iter(&init,&cond,&step,0,1024,1);
6
7 for(idx=init;idx<cond;idx+=step){
8 _ACC_gpu_calc_idx(idx,&i,0,1024,1);
9 (b[i])=((a[i])+(1));

10 }
11 }
12 extern "C"
13 void _ACC_GPU_FUNC_0(int b[1024],int a[1024])
14 {
15 int _ACC_block_x=(((1023)/(256))+(1)), _ACC_block_y=(1), _ACC_block_z=(1);
16 int _ACC_thread_x=(256), _ACC_thread_y=(1), _ACC_thread_z=(1);
17 dim3 _ACC_DIM3_block(_ACC_block_x,_ACC_block_y,_ACC_block_z);
18 dim3 _ACC_DIM3_thread(_ACC_thread_x,_ACC_thread_y,_ACC_thread_z);
19
20 _ACC_GPU_FUNC_0_DEVICE<<<_ACC_DIM3_block,_ACC_DIM3_thread>>>(b,a);
21 _ACC_GPU_M_BARRIER_KERNEL();
22 }

Fig. 3. Sample code (sample.cu)

Fig. 4. Flow of compilation

3 Implementation of OpenACC Compiler

3.1 Omni Compiler Infrastructure

Our OpenACC compiler uses the Omni compiler infrastructure, which is a set of
programs for a source-to-source compiler with code analysis and transformation.
This compiler is also used to implement XcalableMP-dev [4], a GPU extension
of XcalableMP [3] that shares a part of code with our OpenACC compiler.

Fig. 4 shows the flow of the compilation. When source code sample.c written
in C and OpenACC is compiled, the Omni frontend translates it to an XcodeML
file, which is intermediate code written in XML, and the OpenACC translator
reads the XcodeML file and generates middle code sample tmp.c and sample.cu.

Here, sample tmp.c is host code compiled by the C compiler, and sample.cu is
GPU code compiled by the NVIDIA CUDA compiler (NVCC). The compiled ob-
ject files sample tmp.o and sample.gpu.o are linked with the OpenACC runtime
library. Then, the compiler generates an executable file.

3.2 Compilation of Parallel and Loop Constructs

For each region offloaded by parallel constructs, a function is generated to set
up the dimension of thread blocks and to launch the kernel function to a GPU.
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#pragma acc parallel num_gangs(4) vector_length(128)
{
/* codes in parallel region */

}

(a) ACC parallel

__global__ static
void _ACC_GPU_FUNC_0_DEVICE(...)
{
/* codes in parallel region */

}
extern "C"
void _ACC_GPU_FUNC_0(...)
{
int _ACC_block_x=(4), _ACC_block_y=(1), _ACC_block_z=(1);
int _ACC_thread_x=(128), _ACC_thread_y=(1), _ACC_thread_z=(1);
dim3 _ACC_DIM3_block(_ACC_block_x,_ACC_block_y,_ACC_block_z);
dim3 _ACC_DIM3_thread(_ACC_thread_x,_ACC_thread_y,_ACC_thread_z);

_ACC_GPU_FUNC_0_DEVICE<<<_ACC_DIM3_block,_ACC_DIM3_thread>>>(...);
_ACC_GPU_M_BARRIER_KERNEL();

}

(b) translated code

Fig. 5. Code translation of parallel construct

OpenACC supports three-level parallelism: gang, worker, and vector. How-
ever, only the block and thread models are provided in CUDA. In our compiler,
gang and vector correspond to block and thread, respectively. This means that
a gang has a worker, and a worker can use vector operations. The number of
blocks and threads can be specified by the num gangs and vector length clauses.
If the number of threads is not specified, the number of threads is 256, which is
often used for Fermi architecture GPUs, and the number of blocks is determined
by the number of loop iterations contained in the region.

When a loop is specified as parallelism by a loop construct, the kernel func-
tion executes that loop in parallel. The function executes a part of the loop
by ACC gpu init block thread x iter and calculates the loop index by the in-
line function ACC calc idx. Additionally, our compiler supports two- or three-
dimensional blocking for nested loops. If multiple gang or vector clauses are
specified for nested loops, these loops are executed by two- or three-dimensional
grids or blocks in CUDA, respectively. This execution may increase data locality
in a block and the performance of loop execution may improve. At the moment,
our compiler does not allow function calls inside the parallel region except for
mathematical functions supported in CUDA.

Fig. 5 shows an example of the parallel construct and the translated code.
This parallel construct specifies that the next structured block is executed by 4
gangs and 128 vector operations on the accelerator. In the translated code, the
number of blocks and threads are calculated, and the device kernel is launched
with the configuration. After that, the host waits for the finish of the device
kernel.

Fig. 6 shows an example of the loop construct and the translated code. This
loop construct specifies the following loop executed by vector operation. In the
translated code, the inline function ACC gpu init thread x iter calculates the
range of the loop for the thread. For our loop iteration, the inline function



184 A. Tabuchi, M. Nakao, and M. Sato

/* inside parallel region */
#pragma acc loop vector
for(i = 0; i < N; i++){
a[i]++;

}

(a) ACC loop

/* inside gpu kernel function */
int i, _ACC_idx, _ACC_init, _ACC_cond, _ACC_step;
_ACC_gpu_init_thread_x_iter(&_ACC_init, &_ACC_cond, &_ACC_step,0,N,1);

for(_ACC_idx=_ACC_init;_ACC_idx<_ACC_cond;_ACC_idx+=_ACC_step){
_ACC_gpu_calc_idx(_ACC_idx,&i,0,N,1);
a[i]++;

}

(b) translated code

Fig. 6. Code translation of loop construct

ACC gpu calc idx calculates the loop index and executes the increment of the
array a element.

3.3 Compilation of Data Construct

To translate a region with a data construct, codes for device memory allocations
and data transfers from host to device are inserted at the beginning, and codes
for device memory releases and data transfers from device to host are inserted at
the end. The runtime function ACC gpu init data allocates device memory for
a host variable or an array. The pointer ACC DEVICE ADDR name is the ad-
dress of device memory for the name, and the pointer ACC HOST DESC name
is the address of the structure that contains the host address, device address,
and size of that variable. Data is transferred between host and device memory
by the runtime function ACC gpu copy data. The direction of transfer is given
by the second argument. At the end of the region, device memory is freed by the
runtime function ACC gpu finalize data.

Fig. 7 shows an example of the data construct and the translated code. This
data construct specifies that arrays a and variable b are allocated on the device
at the beginning of the region and freed at the end of the region. Array a in the
copy clause is transferred at the beginning and end of the region, and variable b
in the copyout clause is transferred at the end of the region.

4 Performance Evaluation

For the performance evaluation, we used the following benchmark programs:
Matrix multiplication (MatMul), N-body problem, and CG benchmark in the
NAS Parallel Benchmarks (NPB). The Matrix multiplication and the N-body
problem are naive implementations. We measured the execution time of each
program compiled by our compiler. The execution time includes the time of
data movement between the host and GPU and excludes the GPU initialization
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int a[100], b;
#pragma acc data copy(a) copyout(b)
{
/* some codes using a and b */

}

(a) ACC data

int a[100], b;
{
void *_ACC_DEVICE_ADDR_a,*_ACC_HOST_DESC_a,*_ACC_DEVICE_ADDR_b,*_ACC_HOST_DESC_b;
_ACC_gpu_init_data(&(_ACC_HOST_DESC_a),&(_ACC_DEVICE_ADDR_a),a,(100)*sizeof(int));
_ACC_gpu_init_data(&(_ACC_HOST_DESC_b),&(_ACC_DEVICE_ADDR_b),&(b),sizeof(int));
_ACC_gpu_copy_data(_ACC_HOST_DESC_a, 400); /* 400 means host -> device */
{
/* some codes using a and b */

}
_ACC_gpu_copy_data(_ACC_HOST_DESC_a, 401); /* 401 means device -> host */
_ACC_gpu_copy_data(_ACC_HOST_DESC_b, 401);
_ACC_gpu_finalize_data(_ACC_HOST_DESC_a);
_ACC_gpu_finalize_data(_ACC_HOST_DESC_b);

}

(b) translated code

Fig. 7. Code translation of data construct

time. We ran the codes on one node of a CrayXK6m-200. The CPU of the Cray
is AMD Opteron Processor 6272 and its GPU is NVIDIA X2090 (for MatMul
and N-body) or NVIDIA K20 (for CG). We used the Cray compiler 8.1.0.143
(for MatMul and N-body) or 8.1.6 (for CG) with the flag -O3.

Fig. 8(a) and 8(b) shows the execution time of the Matrix multiplication
and the N-body program, respectively. Fig. 8(c) shows the performance of the
CG benchmark in Mops/s. In these results, “CPU” indicates the results of the
CPU (single core) for code compiled by the Cray compiler, and “GPU (Cray
compiler)”, “GPU (Our compiler)” and “GPU (Handwritten CUDA)” indicate
the results of the Cray OpenACC compiler, our compiler, and the handwritten
CUDA code, respectively. Note that handwritten code does not use the shared
memory of the GPU. For the Matrix multiplication, the result by 2D blocking
of our compiler is also shown.

For the Matrix multiplication, the code by our compiler is 4.6–5.5 times faster
than that of the CPU single core, and 1.4–1.5 times faster than that compiled
by the Cray compiler. The reason for this difference is the quality of PTX code
generated by the Cray compiler, since the Cray compiler generates the PTX code
directly, not via CUDA. We found that the PTX code generated by the Cray
compiler executes more operations in the innermost loop. Our compiler leaves
PTX code generation to NVCC so that we can make use of mature NVIDIA
compiler technology for their architecture.

The performance of our compiler using 2D blocking is slightly lower than that
of non-2D blocking code because the default 2D block size (16x16 in this case)
is not adequate for this program. The handwritten CUDA code also uses a 2D
block (16x16). We measured the performance in various 2D block sizes, and the
best result was 512x2. In general, it is difficult to know the optimal block size
without executing in various block sizes.
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(a) Matrix multiplication (b) N-body

(c) CG benchmark

Fig. 8. Performance comparison using benchmarks

For N-body, our compiler achieves a speedup of 5.4–31 times greater than
the CPU single core and 0.95–1.2 times greater than the Cray compiler. The
speedup became larger as the problem size increased and the intensity of calcu-
lations increased. At the small problem size, the performance of our compiler is
lower than that of the Cray compiler because our compiler used fewer Stream-
ing Multiprocessors (SMs). The GPU kernel is executed by the SMs per thread
block. If the number of blocks is smaller than that of the SMs, the performance
of the GPU kernel becomes low. The default block size of our compiler is 256
threads and that of the Cray compiler is 128 threads. When the problem size
is small, the number of launched blocks is too small and fewer SMs are used
in comparison with the Cray compiler. Our compiler needs to be improved to
determine the block size to avoid choosing too small a number of blocks.

For CG, our compiler achieves a speedup of 0.66–9.7 times over the CPU
single core and 0.74–2.1 times over the Cray compiler. For class S in the CG
benchmark, the performance of the GPU is lower than that of the CPU because
overheads, which include launching kernel functions, synchronization with the
device and data transfers, are large compared with the execution time of kernel
functions. Additionally, the overhead of reduction in our compiler is large because
a reduction kernel uses a temporal array allocated before and freed after the
kernel execution. However, the performance of our compiler is higher than that
of the Cray compiler in the larger classes, W–C, so the performance of the GPU
kernel is better than that of the Cray compiler.
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5 Conclusion

In this paper, we presented the design and implementation of a source-to-source
OpenACC compiler. The compiler translates C code with OpenACC directives
to that with CUDA API. Our compiler implementation uses the Omni compiler
infrastructure for analyzing and translating code.

We measured our compiler’s performance for Matrix multiplication, N-body,
and CG in the NAS parallel benchmarks, and compared the performance with
that of a commercial compiler and handwritten CUDA. In most cases, the per-
formance of the GPU program using our compiler is higher than that of the
CPU. We observed a speedup of up to 31 times over the CPU single core for
the N-body problem. Our compiler makes use of the CUDA backend successfully
by the source-to-source approach, and the performance of our compiler is often
better than that of the Cray compiler. On the other hand, we found that the grid
size and block size are unsuitable for some programs and overheads are larger
than that of the Cray compiler.

We are currently working on optimization of the tuning block size at compile
time and the reduction of overheads. Our compiler will support the full set of
directives for conforming to the OpenACC specification, and we will compare
the performance of our compiler against that of PGI and accULL.
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