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Abstract. To efficiently animate and render large models consisting of bi-cubic
patches in real time, we split the rendering into pose-dependent, view-dependent
(Compute-Shader supported) and pure rendering passes. This split avoids recom-
putation of curved patches from control structures and minimizes overhead due
to data transfer – and it integrates nicely with a technique to determine a near-
minimal tessellation of the patches while guaranteeing sub-pixel accuracy. Our
DX11 implementation generates and accurately renders 141,000 animated bi-
cubic patches of a scene in the movie ‘Elephant’s Dream’ at more than 300 frames
per second on a 1440×900 screen using one GTX 580 card.

1 Introduction

Curved, smooth, piecewise polynomial surfaces have become standard in high end,
movie-quality animation. Subdivision surfaces [1,2], spline (NURBS) surfaces or Bézier
patch-based surfaces are chosen over polygonal, polyhedral, or faceted-based represen-
tations both for aesthetic reasons and for their ability to represent models more com-
pactly. In particular, curved surfaces yield more life-like transitions and silhouettes and,
in principle, support arbitrary levels of resolution without exhibiting polyhedral arti-
facts (see Fig. 1). But while curved surfaces are commonly used in cinematic production
and geometric design, they are not commonly used for interactive viewing. Animation
artists and designers typically work off faceted models at a given resolution and have to
call special off-line rendering routines to inspect the true outcome of their work. At the
other end of the spectrum, game designers opt for coarsely-faceted models, made more
acceptable by careful texturing, to achieve real-time rendering with limited resources
under competing computational demands, e.g. computing game physics. In an attempt
to narrow the gap, a number of mesh-to-surface conversion algorithms have been devel-
oped in the past years that run efficiently on the GPU (see Section 2). But so far their
rendering has depended on screen projection heuristics without guarantees of accuracy.

The present paper explains how to render, at interactive rates, and on high-resolution
screens, a substantial number of animated curved surfaces free of perceptible polyhedral
artifacts, parametric distortion and pixel dropout. The paper leverages and extends the
authors’ approach [3] for efficiently determining the near-minimal tessellation density
required for pixel-accurate rendering (see Section 2). Determining the near-minimal
tessellation density requires, depending on the model, between 1% and 5% extra work.
However, by avoiding overtessellation, pixel-accurate rendering is often faster than ren-
dering based on heuristics (see Fig. 2, middle and right). Specifically, the paper shows
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Fig. 1. Faceted versus smooth: Proog’s head

how to integrate the approach into animation the animation pipeline to make it inter-
active. Rather than repeatedly sending large control nets from the CPU to the GPU for
rendering, we load the base mesh(es) once and we apply morph-target and skeletal-
animation transformations to the characters’ mesh model on the GPU and convert it
into a curved surface. We then use the natural partition of animated sequences into
pose-dependent, view-dependent and pure rendering frames to compute both the an-
imation and the pixel-accurate patch-tessellation in a combination of two, one or no
Compute Shaders preceding each standard rendering pass on the GPU.

As proof of concept, we animated and rendered 141K patches of a scene of the
open-source movie Elephants Dream. In 2006, each frame of the movie required 10
minutes of CPU time at full-HD resolution [4]. We can now render the higher-order
surfaces and textures (leaving out post effects) on the GPU at more than 300 frames
per second Fig. 15 thanks to parallelism and new algorithms that take advantage of this
parallelism. To wit, doubling processor speed every year since 2006 would reduce the
time per frame only to ca 10 seconds per frame, three orders of magnitude slower.

Overview. In Section 2 we review the definition of pixel-accurate rendering of curved
surfaces, animation basics and the conversion of faceted to smooth curved surfaces.
Section 3 presents the idea and formulas for enforcing pixel-accurate rendering. Sec-
tion 4 presents the algorithm and an efficient implementation, including pseudo-code,
of pixel-accurate rendering of animated curved surfaces. In Section 5 we analyze the
implementation’s performance and discuss trade-offs and alternative choices. We also
compare to a similar widely-available DX11 sample program.

2 Background

To efficiently pixel-accurately render the surfaces of Elephants Dream on the GPU,
our proposed animation framework has to near-optimally set the tessellation factor for
Bézier patches after replicating linear skeletal animation, relative shape-key animation
(morph targets), and mesh-to-surface conversion on the GPU.
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Fig. 2. Balancing pixel-accuracy and rendering speed. No red or green colors should be visible
in the lower row if the tessellation is sufficiently fine for pixel-accuracy. The red and the green
spots indicate a parametric distortion of more than 1/2 pixel (cf. the color coding lower left).
Additional objects are analyzed in Fig. 12 of [3].

Tessellation and Pixel-accuracy. A key challenge when working with a curved sur-
face is to set the density of evaluation so that the surface triangulation is a good proxy
of the smooth surface. The density, or tessellation, has to be sufficiently high to prevent
polyhedral artifacts and parametric distortions, and sufficiently low to support fast ren-
dering. In modern graphics pipelines, the level of detail can be prescribed by setting the
tessellation factor(s) τ of each patch p : (u, v) ∈ U → R

3 of the curved surface. In 3D
movie animation, it is common practice to over-tessellate and shade a very high number
of fragments. Real-time animation cannot afford this since each fragment is evaluated,
rasterized and shaded. Since the camera is free to zoom in or out of the scene, fixed level
of tessellation results in faceted display or overtessellation. This disqualifies approaches
that require setting τ a priori. Popular screen-based heuristics based on measuring edge-
length or estimating flatness (see e.g. [5], [6, Sec 7]) do not come with guarantees or
require an a priori undetermined number of passes to recursively split patches and verify
that the measure falls below a desired tolerance.
Pixel-accurate rendering, Fig. 2, middle, determines the tessellation density (just) fine
enough to guarantee correct visibility, prevent parametric distortion or pixel-dropout.
Pixel-accuracy has two components: covering (depth) accuracy and parametric (distor-
tion) accuracy [3, Section 3]. Covering accuracy requires that each pixel’s output value
be controlled by one or more unoccluded pieces of patches whose projection overlaps
it sufficiently and parametric accuracy requires that for each pixel the following holds
(cf.Fig. 3). Let [ xy ] be the pixel’s center, p : R2 → R

3 a surface patch and (u, v) a
parameter pair. Then the surface point p(u, v) ∈ R

3 must project into the pixel:

‖P (p(u, v))− [ xy ]‖∞ < 0.5. (1)
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Fig. 3. Triangulation and projection distorting the image of a curved surface. Pixel-accurate
rendering guarantees that the distortion is at below pixel level.

Inequality (1) prevents parametric distortion: if P (p(u, v)) lies outside the pixel asso-
ciated with parameters (u, v) then the wrong texture, normal or displacement is com-
puted causing artifacts incompatible with accurate rendering. Parametric inaccuracy is
color-encoded in Fig. 2: lack of accuracy is shown in red and green. Predictably, too
coarse a tessellation yields a high frame rate and too fine a tessellation slows down ren-
dering. The largely grey coloring of the teapot in Fig. 3, row two, under pixel-accurate
rendering, indicating a distortion just below the pixel threshold, is therefore highly
desirable. Work similar to [3], but based on the bounds in [7] includes [8] and most
recently [9].

Skeletal animation. The most common technique for character animation, used by the
artists of Elephants Dream, is linear blend skinning, also known as linear vertex blend-
ing or skeletal subspace deformation [10]. Here a character is defined by a template,
a faceted model, called skin. The models animation or deformation is defined by a
time-varying set of rigid transformations, called bones, that are organized into a tree
structure, called skeleton. Any vertex position in a linear blend skin is expressed as a
linear combination of the vertex transformed by each bone’s coordinate system: at time
ti, a convex combination ωk of bone transformations Rk is applied to each skin vertex
initial position v(0):

v(t) =
(∑

k

ωkRk(t)
)
v(0),

∑

k

ωk = 1. (2)

The weights ωk are assigned by the artist. Section 4 provides pseudo-code.
Since this direct linear combination of rotation matrices generically does not yield

a valid rotation, a number of improvements have been suggested [11,12]. In particular
dual quaternions [12] are sufficiently simple to have been implemented in Blender. Our
framework is agnostic to the choice of animation since its implementation as a Compute
Shader allows alternative animation techniques to be substituted such as deformation
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(a) without shape keys (b) with shape keys

Fig. 4. Emo’s mouth opened with shape keys

of the mesh points with respect to control cages (see e.g. [13,14,15,16]). However,
since the artists of Elephants Dream used linear blend skinning, and compensated for
its shortcomings, our real-time rendering applies linear, skeletal animation.

Shape Keys. For more nuanced, say facial expressions, Elephants Dream, and hence
our implementation, additionally applies shape keys, also known as morph targets or
blend shapes. Shape keys average between morph targets representing standard poses
(see e.g. [17] for a detailed explanation.)

Mesh-to-Surface Conversion. In recent years, a number of algorithms have been de-
veloped to use polyhedral meshes as control nets of curved surfaces and efficiently
evaluate these curved surfaces on the GPU. Such algorithms include conversions to
piecewise polynomial and rational representation [18,19,20,21] as well as subdivision
[22,23,6,24]. Our framework is agnostic to the choice of conversion algorithm. To be
able to compare our GPU implementation to a widely accessible implementation, we
chose Approximate Catmull-Clark (ACC) [20]: optimized shader code of ACC ani-
mation, SubD11, is distributed with MicroSoft DX11 [25]. The output of ACC is one
bi-cubic patch patch for each face of the (refined) control mesh (plus a pair of tangent
patches to improve the impression of smoothness as in [26]). Note that parametric accu-
racy is not concerned with whether ACC provides a good approximation to subdivision
surfaces, an issue of independent interest (cf. [27,28]).

3 Computing Near-Minimal Accurate Tessellation Levels

The two main ingredients that make pixel-accurate rendering efficient are avoiding re-
cursion and triangulating as coarsely as possible while guaranteeing pixel-accuracy (see
Fig. 5). This section explains how to address both challenges by computing a near-
minimal tessellation factor τ in a single step according to the approach in [3]. The tes-
sellation factor is computed with the help of slefe-boxes [29]. Bilinear interpolants of
these slefe-boxes, called slefe-tiles, sandwich the curved surface and the triangulation
as illustrated in Fig. 6. Such slefe-boxes are not traditional bounding boxes enclosing a
patch. Rather the maximal width of slefe-boxes gives an upper bound on the variance
of the exact curved surface from triangulation. This reflects the goal: to partition the
domain sufficiently finely so that the variance and hence the ‘width’ of the all projected
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Fig. 5. Optimal tessellation of curved surfaces. Fewer, hence bigger triangles improve effi-
ciency. (Note the different use of color-coding from Fig. 2).

Fig. 6. The bi-linear interpolants to groups of four slefe-boxes define slefe-tiles that locally en-
close the surface. Note that the tiles, while useful of collision, are never explicitly computed for
the pixel-accurate rendering.

slefe-boxes and therefore of the slefe-tiles falls below a prescribed tolerance, e.g. half
the size of a pixel.

Since knot insertion stably converts NURBS patches of degree (d1, d2) to tensor-
product patches in Bézier-form (glMap2 in OpenGL) with coefficients cij ∈ R

3 and
basis functions bdj ,

p(u, v) :=

d1∑

i=0

d2∑

j=0

cijb
d2

j (v)bd1

i (u), (u, v) ∈ [0..1]2, (3)

and since subdivision surfaces can be treated as nested rings of such patches, we fo-
cus on tensor-product Bézier patches. (Knot insertion can be a pre-processing step or
done on the fly on the GPU. Rational patches are rarely used in animation; if needed,
for strictly positive weights, bounds in homogeneous space plus standard estimates of
interval arithmetic do the trick.) Moreover, slefe-boxes for patches in tensor-product
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form can be derived from bounds in one variable and the computations for building
slefe-boxes are separate in each x, y and z coordinate. We can therefore simplify the
discussion in the next subsection to one univariate polynomial piece p in Bézier-form
with coefficients cj ∈ R and parameter u ∈ [0 . . 1]:

p : R → R, u �→ p(u) :=

d∑

j=0

cjb
d
j (u), bdj :=

(
d

j

)
(1− u)d−juj .

Subdividable Linear Efficient Function Enclosures, abbreviated as slefes, tightly
sandwich non-linear functions p, such as polynomials, splines and subdivision surfaces,
between simpler, piecewise linear, lower and upper functions, p and p:

p ≤ p ≤ p,

[30,31,32,33,29,34,35]. Specifically, in one variable, [30] shows that (cf. Fig. 7, left)

p(t) ≤ p(t) := �(t) +

d−1∑

j=1

max{0,∇2
jp} adj

m
(t) (4)

+

d−1∑

j=1

min{0,∇2
jp} adj

m
(t).

with the matching lower bound p obtained by exchangingmin and max operators. Here

adj , j = 1, . . . , d− 1,

are polynomials that span the space of polynomials of degree d minus the linear func-

tions �(t); adj
m

is an m-piece upper and adj
m

an m-piece lower bound on adj ; and

∇2
jp := cj−1 − 2cj + cj+1 is a second difference of the control points. If p is a lin-

ear function, upper and lower bounds agree. The tightness of the bounds is important
since loose bounds result in over-tessellation. Fig. 7b shows an example from [3], where
the min-max or AABB bound is looser by an order of magnitude than the slefe-width
w := maxt∈[0..1] p(t)− p(t).

Being piecewise linear, the bounding functions adj
m

and adj
m

in (4) are defined by
their values at the uniformly-spaced break points. These values can be pre-computed.
Since, for d = 3, i.e. cubic functions, a32(1−t) = a31(t), Table 1 lists all numbers needed
to compute Fig. 7, e.g., for t = 1/3, the upper and lower breakpoint values −.370370..

Table 1. Values at breakpoints of a m = 3-piece slefe. This table and the tables for higher
degree can be downloaded [36]. Similar slefe-tables exist for splines with uniform knots [30].

t = 0 1/3 2/3 1

a31
3

0 -.370370.. -.296296.. 0
a313 -.069521.. -.439891.. -.315351.. -.008732..
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Fig. 7. The slefe-construction from [29]. (a) The function p(t) := −b31(t) + b32(t) and its upper
bound p. (b) The lower bound a13 and the upper bound a1

3 tightly sandwiching the function
a1 := − 2

3
b31(t) − 1

3
b32(t), using m = 3 segments. Table 1 shows w = max[0..1] p − p to be

< 0.07. The corresponding number for [7] (not illustrated) is 6
8
= 0.75 and for the min-max-

bound 2
3

.

and −.439891... Moreover, by tensoring, the 8 numbers suffice to compute all bounds
required for ACC patches: the tensor-product patch (3) can be bounded by computing
the upper values c̃ij , i = 0, . . . , d1 (for each j = 0, . . . ,m2) of the 1-variable slefe in
the v direction and then treat the values as control points when computing the upper
slefe in the u direction:

p(u, v) ≤
d1∑

i=0

m2∑

j=0

c̃ijb
1
j(v)b

d1

i (u) ≤
m2∑

j=0

m1∑

i=0

c̄ijb
1
i (u)b

1
j(v).

Ensuring Pixel-accuracy. The slefes just discussed are for functions, i.e. one coor-
dinate of the image. Since we want to control the variance of the surface patches
from their triangulation we now consider a patch p : R

2 → R
3 with three coordi-

nates bounded by bilinear interpolants to upper and lower values at the grid points
(ui, vj), i, j ∈ {0, 1, . . . ,m}. For each (ui, vj), abbreviating pij := p(ui, vj),
pij := p(ui, vj), a slefe-box is defined as

p(ui, vj) :=
pij + pij

2
+ [−1

2
..
1

2
]3(pij − pij), (5)

where [− 1
2 ..

1
2 ]

3 is the 0-centered unit cube. That is, the slefe-box is an axis-aligned box
in R

3 (see red boxes in Fig. 8) centered at the average of upper and lower values.
To measure parametric accuracy, we define the minimal screen-coordinate-aligned

rectangle that encloses the screen projection [ xy ] := P (p(ui, vj)) of to the slefe-box
with index i, j (see the blue dashed rectangles in Fig. 8):

qij := [xij ..xij ]× [y
ij
..yij ] � P (p(ui, vj)). (6)
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p(ui, vj)

P (p(ui−1, vj))

p(ui−1, vj) P (p(ui, vj))

x, y pixel size

wxy
xij , yij

xij , yij

Fig. 8. Projected slefe-boxes. The projected slefe-boxes (red) are enclosed by axis-aligned
rectangles (blue, dashed) whose linear interpolant (grey area) encloses the image (here of
p([ui−1..ui], vj)). The (square-root of the) maximal edge-length of the dashed rectangles, in
pixel size, determines the tessellation factor τp.

The maximal edge length over all qij is the parametric width wxy. This width is a close
upper bound on the variance from linearity in the parameterization since the width of
the projected boxes dominates the width of the slefe-tiles – that therefore need not be
computed. The width shrinks to zero when the parameterization becomes linear.

Fig. 9. Shrinkage of the width for a curve segment under subdivision. black: cubic curve, control
polygon, blue: piecewise linear interpolant, red: slefe

We want to determine the tessellation factor τxy ∈ R so that wxy < 1. Let wm(p)
be the width of the projection of patch p measured for a slefe with m pieces and km
a constant between 1.5 and 1, depending only on m. Since partitioning the u-domain
into 1/h segments, and re-representing the function over the smaller interval before re-
applying the bound, scales the maximal second difference down quadratically to h2 its
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original size (cf. Fig. 9), partitioning both the u- and the v-domain into

τxy(m,p) := km
√
wm(p) (7)

many pieces, confines the parameter distortion to below one unit (cf. Fig. 10) Analo-
gously, the width wz(m,p) of the depth component z of the projection measures depth
of the slefe-tiles and therefore trustworthiness of the z-buffer test for covering accuracy.

Fig. 10. Shrinkage of slefe under h-fold subdivision

To guarantee that any error due to linearization is below pixel size and the depth
threshold tolz, we compute the width for low m, say m = 2 or 3, and then apply (7) to
obtain a safe tessellation factor of

τp := max{τxy(m,p), km
√
wz(m,p)/tolz}. (8)

Fig. 5 shows that the resulting triangles are, as hoped for, typically much larger than
pixels and experiments confirm that (8) determines a near-minimal τp in the sense that,
for typical models, already a 10% decrease in τp leads to pixel inaccuracy.

4 Algorithm and Implementation

The main costs, that our algorithm for rendering animated curved surfaces seeks to min-
imize, are the conversion of the mesh to the surface patch coefficients and rendering the
patches with pixel accuracy. For details of the implementation of pixel accuracy as a
Compute Shader pre-pass, we refer to [3]. The key to minimizing the conversion cost
is to restrict conversion to pose changes of the animated character. The key to efficient
pixel-accurate rendering is to integrate the control of the variance of the curved patch
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skeletal animation, conversion

CS (or PS)

update τ

TE DS PS

grid generation evaluation shading

VS

look up τ

HS

GPU buffer: b, animation data, pt, �, τ , camera, materials, textures

new t

new s

else

CS (or PS)

Fig. 11. Mapping of animation and conversion to curved surfaces to the DX11 graphics
pipeline. CS=Compute Shader, VS=Vertex Shader, HS= Hull Shader, TE=Tessellation Engine,
DS= Domain Shader, PS=Pixel Shader.

geometry from its triangulation, as just explained in Section 3, with the conversion to
minimize overhead. Specifically, we split the work as follows.

– For every pose (geometry or mesh connectivity) change, re-compute the control
mesh, all affected patches and slefe-boxes.

– For every view change, measure the width wxy of the boxes’ screen projections and
their depth variance wz.

– Determine the tessellation factor τ according to (8), i.e. a low as possible while still
guaranteeing pixel-accuracy to make best use of the efficient rasterization stage on
the GPU.

Pose and View Change. To minimize conversion and τ computation cost, our imple-
mentation calls either two, one or no Compute Shader passes followed by a standard
DX11 rendering pass. This is illustrated in Fig. 12 and the details are as follows.

(a) If the scene does not change in view or pose then the stored animated curved
surface at time step t, pt, is rendered with the existing tessellation factors.

(b) For each view change at time step s that is not an animation step, the modelview
transformations are applied to the savedpt and the tessellation factors τ are updated
to guarantee pixel-accuracy for the new viewpoint. Then (a) is executed.

(c) For each pose change (animation step t), the coefficients of the animated curved
surface pt are computed by executing the animation and conversion steps. The co-
efficients of pt are stored in the GPU buffer. Then the slefe-boxes are re-computed
and stored and the same computations are executed as in (b).

Throughout, only modified patches are updated.

Mapping to GPU Shader Code. In modern graphics APIs the triangulation density is
set by up to six tessellation factors per surface patch. The two interior tessellation factors
are set to τ , while the other four tessellation factors, corresponding to the boundaries,
are set to the maximum of the interior factors of the patches sharing the boundary.
This coordination in the Compute Shader pass guarantees a consistent triangulation by
avoiding mismatch along boundaries between differently tessellated patches.
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animation t changed?

viewing s changed? update, share τ

No

No

Yes

Yes

evaluate, render pt

update �

animated curved surface pt

Fig. 12. Updating slefe-boxes � and the tessellation factors τ is only required when the input
mesh is animated or the view is changed

The pseudo-code of the Compute Shaders is given below. Detailed pseudo-code of
pixel-accurate slefe-estimates is presented in Section 6 of [3]. The rendering pass is
standard DX11 rendering.

The data flow outlined in Fig. 12 is made concrete by the following pseudocode. The
mapping of the pseudocode to the DX11 graphics pipeline is shown in Fig. 11. Recall
that each bi-cubic patch has 4× 4 = 16 coefficients.

function MAIN(t, s)
if new t then COMPUTE SHADER POSE CHANGE(t)
end if
if new s then COMPUTE SHADER VIEW CHANGE(s)
end if

end function

[shared mem cpts[16]]
[num threads 16]

function COMPUTE SHADER POSE CHANGE(t)
vtx id ← thread id+ (patch id ∗ 16)
SHAPE KEY(vtx id, t)
SKELETAL ANIMATION(vtx id, t)
CONVERT TO ACC(vtx id)

end function

[shared mem width[16]]
[num threads 16]

function COMPUTE SHADER VIEW CHANGE(s)
vtx id ← thread id+ (patch id ∗ 16)
width[thread id] ← project slefe(vtx id)
synchronize threads()
if thread id = 1 then
TF ← pick max width(width)
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save to gpu(TF buffer, patch id, TF )
end if

end function

function SHAPE KEY(vtx id, t)
base sk ← get base shape key(vtx id)
shaped vtx ← (0, 0, 0)
for sk in shape keys[vtx id] do
sk wt ← get shape key wt(vtx id, sk, t)
shaped vtx += sk wt ∗ (sk.v[vtx id]− base sk.v[vtx id])

end for
rest vtx[vtx id] ← shaped vtx+ base sk.v[vtx id]

end function

function SKELETAL ANIMATION(vtx id, t)
tot wt ← sum influence weights(vtx id)
final mat ← zero matrix(4, 4)
for bonei in influencing bones[vtx id] do
posed bone mat ← pose mat(bonei, t)
rest bone mat inv ← rest mat inv(bonei)
bone wt ← get bone wt(vtx id, bonei)/tot wt
final mat += (rest bone mat inv ∗ posed bone mat ∗ bone wt)

end for
posed vtx[vtx id] ← rest vtx[vtx id] ∗ final mat

end function

function CONVERT TO ACC(vtx id)
cpts[thread id] ← (0, 0, 0)
for i ← 0 to stencil size[vtx id] do
stencil vtx ← posed vtx[stencil lookup[vtx id, i]]
cpts[thread id]+=stencil wt[vtx id, i] ∗ stencil vtx

end for
normalize(cpts[thread id])
save to gpu(cpt buffer, vtx id, cpts[thread id])
synchronize threads()
slefe ← update slefe(thread id)
save to gpu(slefe buffer, vtx id, slefe)

end function

skeletal animation

GPU buffer: b, animation data,τglobal, camera, materials, textures

grid generationconversion

TE DS PSVS HS

evaluation shading
SubD11 [25]

Fig. 13. DX11 SubD11 implementation [25]. CS=Compute Shader, VS=Vertex Shader, HS=
Hull Shader, TE=Tessellation Engine, DS= Domain Shader, PS=Pixel Shader.
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Table 2. Distribution of work per frame among pose, view and rendering. Pose change dominates

GPU processing % of total
skeletal animation + conversion 58
slefe bounds 4

pose change total 62
view change 6
rendering pass 32

5 Discussion and Comparison

Performance. Table 2 shows the work distribution of a rendering cycle. The pose
change consists of mesh animation and conversion plus recomputation of slefe-box ver-
tices. The pose change dominates the work, but the recomputation of the slefe bounds
accounts for less than 4%. The slefe bounds and their projection make up ca 10% of
the overall work. According to measurements in Section 7 of [3], the bounds are within
12% of the optimal for widely-used, representative test examples in computer graphics
(the tessellation factor in the implementation of [3] was inadvertently scaled by

√
2).

Given that tight bounds reduce work when accurate rendering is required, it is not sur-
prising that 10% computational overhead buys a considerable speedup compared to the
overtessellation of conservatively-applied heuristics.

We used an NVidia GeForce GTX 580 graphics card with Intel Core 2 Quad CPU
Q9450 at 2.66GHz with 4GB memory to render the geometry of the movie Elephants
Dream. Elephants Dream is a 10-minute-long animated movie whose source is open.
In 2006 it was reported to have taken 125 days to render, consuming up to 2.8GB of
memory for each frame in Full-HD resolution (1920×1080) [4]. That is, each frame
took on the order of 10 minutes to render. Since the Elephants Dream character meshes
of Proog and Elmo contain triangles, but ACC requires a quadrilateral input mesh, we
applied the standard cure of one step of Catmull-Clark subdivision yielding 140,964
curved surface patches for Proog and Emo together. In our implementation, we repli-
cated Elephants Dream except that we did not apply post effects so as to isolate the
effect of improved patch rendering. The 141K textured bi-cubic ACC patches render
at over 300 frames per second (fps) with full pixel-accuracy. (We also used a variant
of ACC that avoids the increase in patches and rendered 32K quads and 350 triangles
at 380 fps when animating every frame and 1100 fps when animating at 33 frames per
second.) For comparison, the SubD11 demo scene in Fig. 14 has 4K quadrilaterals and
its frame rate varies with the user-set tessellation factor TF (see upper left of Fig. 14)
between 250 fps at the coarsest level TF = 1 and 23 fps at TF= 64. For a detailed
analysis of how model size, screen size, etc. affect pixel-accurate rendering see [3].

Memory Usage and Data Transfer. By placing the animation and the conversion from
the quad mesh to the Bézier patches onto the GPU, the approach is memory efficient
and minimizes data transfer cost. For example, one frame in the Proog and Emo scene
has up to 0.25 million bi-cubic Bézier patches requiring 206.5 MB of GPU memory.
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Traditional CPU-based animation would transfer this amount of data to the graphics
card at every frame. In our approach, for the same scene, just once at startup, the static
mesh of 4MB plus 9MB of shape key data are transferred; also the skeletal anima-
tion data per frame (45kB for 684 ‘bones’) and the 289 shape keys (1kB) are packed
into GPU buffers at startup. Moreover, the near-optimal ephemeral triangulation via
the tessellation engine saves space and transfer cost compared to massive, ‘pre-baked’
triangulations.

Relation to Micro-polygonization. An established alternative for high-quality render-
ing, used in 3D movie animation, is micro-polygonization. Micro-polygonization owes
its prominence to the Reyes rendering framework [37]. Since canonical implementa-
tions of micro-polygonization are recursive (cf. [5]), micro-polygonization is harder to
integrate with current graphics pipelines [38] and leads to multiple passes as refinement
and testing are interleaved. Even on multiple GPUs, there is a trade-off between real-
time performance and rendering quality [39] (RenderAnts). Micro-polygonization aims
to tessellate the domain U of a patch into (u, v) triangles so that the size of the screen
projection of their image triangles is less than half a pixel. By contrast, pixel-accurate
rendering aims at minimally partitioning the patches, just enough so that the difference,
under projection, between the triangulated surface and the true non-linear surface is less
than half a pixel: pixel-accurate rendering forces the variance, between the displayed
triangulated surface and the exact screen image, to below the visible pixel threshold.

Comparison with the DX11 ACC SubD11 distribution. Our implementation is sim-
ilar to that of SubD11 [25]: both implement skeletal animation and apply mesh con-
version by accessing a 1-ring neighborhood of each quadrilateral. However, our imple-
mentation uses a sequence of Compute Shaders to animate and convert while SubD11
uses the Vertex Shader and the Hull Shader. See Fig. 11 for the execution pipeline of
our algorithm and compare to that of SubD11, Fig. 13.

Since SubD11 executes in a single pass it appears to be more efficient. However,
the Vertex Shader (VS) animation and Hull Shader (HS) conversion that perform the
bulk of the work in SubD11need to be synchronized by the index buffer mechanism

Fig. 14. DX11 SubD11 model from [25] consisting of 3,749 ACC patches (plus 150,108 flat
triangles). The screen is captured at 1440x900 resolution. Setting TF = 1 results in polyhedral
artifacts, at the shoulder and neck, while setting it high to remove these artifacts, decreases the
frames per second by an order of magnitude.
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Table 3. Performance in frames per second when placing animation and computation of τ onto
the CS or PS or∗ just the animation onto the VS

Anim Updates/Sec CS PS VS∗

33 311 184 253
every frame 130 53 75

to prevent conversion before every vertex of a surface patch is animated; and SubD11
does not support interactive adaptive tessellation (without cracks) and must re-execute
animation and conversion steps even when no view or pose change occur.

In our approach the main work, apart from rendering, is executed in the Compute
Shader (CS). This automatically provides the necessary synchronization and allows co-
ordination for interactive GPU-based adaptive tessellation without cracks. Using the
Compute Shader also allows saving partial work in the GPU buffer (the animated sur-
face pt and the tessellation factors τ ) and thereby reduces data transfer and commu-
nicates edge tessellation factors for adaptive rendering without mismatch. Executing
only the appropriate type of the CS avoids re-computation, and guarantees sub-pixel
accuracy. The end of the next section compares timings. A further advantage of us-
ing the Compute Shader is that it allows an indexed list rather than a fixed-size array
when accessing neighbors. The Hull Shader limitation on primitives in SubD11 con-
strains the vertex valence, i.e. the number of points that can be accessed to construct the
ACC patches. This matters for Proog and Emo models which contain 256 vertices of
valence 32.

Compute Shader vs. Pixel Shader. We explored executing animation and
τ -computation in a Pixel Shader (PS) pass. For large data sets, our CS implementa-
tion was clearly more efficient (see Table 3; Note that the CS has less overhead than a
extra pass.). This can partly be attributed to higher parallelism: we can use 16 threads
per patch in the CS as opposed to one per patch on the PS. (We could use 16 pix-
els in the PS, but would then have to synchronize to be able to compute τ ). We also
tried to use the Hull Shader (HS). But not only is the HS computationally less efficient
on current hardware, but the HS also can not provide the necessary communication of
adaptive tessellation factors to neighbor patches. The rightmost column VS∗ of Table 3
shows that just executing the animation in the Vertex Shader is already slower than
executing animation and conversion in the CS. This explains why our code is consid-
erably faster than SubD11, even though our code guarantees sub-pixel accuracy while
SubD11does not.

6 Conclusion

To optimally leverage the approach to pixel-accurate rendering of [3] to skeleton-based
animation, we partitioned the work for pixel-accurate rendering into stages that match
animation-dependent transformations and view-time dependent camera motions. This
allocation is as natural as it is practically powerful: it allows us to combine interactive
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Fig. 15. Proog and Emo scene rendered in 7 seconds by Blender on a Intel Core 2 Duo CPU at
2.1GHz with 3GB memory; and in 3× 10−3 seconds by our GPU algorithm

animation with high-quality rendering of curved surfaces. For gaming and animation
it is crucial to spend minimal effort in redrawing static images since many other op-
erations, say physics simulations, compete for compute resources. Also, in the game
setting, the user often pauses to react to new information – so there is not continuous
animation. The result is accurate for the given bi-cubic patches – distortion is below half
a pixel, i.e. the error is not visible; it is efficient – there is no recursion and triangles are
of maximal size; the adaptation is automatic – there is no need for manually setting the
level of detail; and our implementation is fast, rendering 141k patches at more than 300
frames per second.

We tested the framework by rendering scenes of the movie Elephants Dream at 10×
real-time, leaving enough slack for larger data sets, complex pixel shaders and the
artists’ other work. Since the final pass is a generic DX11 rendering pass, it is fully
compatible with displacement mapping (not used in Elephants Dream) and post effects.
(We are not claiming pixel-accurate displacement, since this notion is not well-defined:
displacement maps prescribe discrete height textures that require interpretation.) The
rendering speed can provide high visual quality under interactive response. This may
be useful for interactive CAD/CAM design in that the user no longer has to guess a
suitable level of triangulation.
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