
Direct Pixel-Accurate Rendering

of Smooth Surfaces

Jon Hjelmervik

Sintef ICT and University of Oslo
Jon.M.Hjelmervik@sintef.no

Abstract. High-quality rendering of B-spline surfaces is important for
a range of applications. Providing interactive rendering with guaranteed
quality gives the user not only visually pleasing images, but also trust-
worthy information about the model. In this paper we present a view-
dependent error estimate for parametric surfaces. This estimate forms
the basis of our surface rendering algorithm, which makes use of the
hardware tessellator functionality of GPUs.

We use the screen space distance between the tessellated surface and
the corresponding surface point as an error metric. This makes the algo-
rithm particularly useful when visualizing additional attributes attached
to the surface. An example of this is isogeometric analysis, in which
simulation results are visualized along with the surface.

1 Introduction

Smooth surfaces are used in settings ranging from the entertainment industry to
CAD applications. In the entertainment industry, the model’s sole purpose is to
create visually pleasing images. The CAD-related industry, on the other hand,
use visualization both to get an overview of models and to investigate their
geometric qualities, for example the smoothness of a car’s body. Most CAD
models are at some point also used in an analysis setting, e.g., stress analysis,
to investigate the model’s physical properties. It is therefore a great demand for
fast rendering methods that provide accurate, and visually pleasing results that
includes associated data such as textures and simulation results.

One way of computing a correct rendering of a surface is to find the first
intersection between the surface and rays originating from a virtual camera. This
is called ray-casting, which is computationally expensive. GPUs are designed to
rasterize triangles and rendering performance is often dominated by the number
of triangles in a scene. Therefore, the main challenge is to determine which
triangles to draw, and how to invoke their rendering the main challenge.

Single-pass rendering is the most common way to render triangles, because
each object is sent only once through the rendering pipeline.Multi-pass methods,
on the other hand, write partial results to a framebuffer (usually an off-screen
buffer) for use in a succeeding rendering pass. A GPU delivers its best performs
when it can render a large set of triangles in parallel. Multi-pass algorithms
therefore impose a performance penalty when a rendering pass must wait for the

M. Floater et al. (Eds.): MMCS 2012, LNCS 8177, pp. 238–247, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Direct Accurate Rendering 239

previous the completion of a previous pass. A CAD model can be composed of
a large set of parts, each represented by a number of boundary surfaces. In such
settings, with hundreds or thousands of surfaces it may be difficult to implement
multi-pass algorithms without adding a large overhead due to pipeline stalls.

We propose a single-pass rendering method driven by the guarantee of pixel
accurate rendering. Obviously, this indicates a view-dependent tessellation, i.e.,
the surface tessellation depends on the location and orientation of the scenes
virtual camera. Our focus is an algorithm suitable for isogeometric models.

1.1 Related Work

Traditionally, algorithms could either provide error guarantees or be interactive.
Filip et al. [1] proposed to use bounds on the second derivatives to create a semi-
uniform tessellation of a C2 continuous surface. The main idea is to split the
surface into a set of patches, and find the tessellation levels independently for
each patch. In order to create a watertight tessellation without cracks, each
patch boundary has a separate tessellation level matching abutting patch edges.
Their implementation is CPU based, but their approach fits very well with the
OpenGL tessellator, and will be the basis for our work.

Cook et al. [2] propose to recursively split a surface until each triangle is
less than a pixel. Their tessellations will for most surfaces be much denser than
required. A fast CPU based algorithm for generating these tessellations was
presented by Fisher et al. [3]. Since the triangles is recomputed based on the
view position, they must be transmitted through the PCI-express bus each frame,
limiting the rendering speed.

If we scarify guaranteed accuracy, there are numerous methods for view-
dependent tessellation of smooth surfaces. Guthe et al. [4] proposed to use the
CPU for deciding the required tessellation level of a semi-uniform tessellation,
and use first generation shader technology to evaluate the surface. Hjelmervik
and Hagen [5] proposed a two-pass algorithm using the GPU both for determin-
ing tessellation level and the evaluation itself. It is based on early GPUs, and is
therefore not optimized for graphics hardware of today.

Lutterkort [6] developed an algorithm for computing piecewise linear enclosure
of polygonal surfaces, called slefes. Yeo et al. [7] developed a interactive render-
ing algorithm with guaranteed pixel accuracy based on these slefes for DX11
compatible hardware. Their algorithm use separate rendering passes for genera-
tion of slefe boxes (estimate of the surface’s deviation from linear), determining
tessellation level, and the tessellation itself.

1.2 Hardware Tessellator

Hardware tessellators as exposed by OpenGL 4 and DirectX 11 are used to create
semi-uniform tessellations. It lets us concentrate on error estimates, tessellation
levels and surface evaluation, without concern for generating the triangles and
managing their connectivity.

240 J. Hjelmervik

Fig. 1. Example tessellation with interior and boundary tessellation levels. Note that
it generates triangulation with consistent connectivity.

The hardware tessellator allows for implementations in which the entire tessel-
lation is performed at the GPU, and the triangles are directly rasterized without
being transferred to off-chip memory. The tessellator acts on individual surface
patches, which in our case will be the same as the Bézier patches. Each patch is
tessellated individually, as illustrated in Figure 1.

The hardware tessellator adds two programmable shader stages to the exist-
ing OpenGL graphics pipeline that all triangles undergo. The first stage, the
tessellation control shader, controls the tessellation process by specifying the pa-
rameters for the sampling density for each patch. A set of triangles complying
with these criteria is then automatically created, and the tessellation evaluation
shader has the responsibility to compute the position of each new vertex, based
on its parameter value. To ensure that the triangles form a valid triangulation
without holes, the the control shader specifies the sampling density along each
boundary edge in addition to the parameter directions.

Note that all sampling parameters are set in the control shader, before any
triangle is created. Traditional algorithms based on iteratively refining the trian-
gles do therefore not fit with this setup. To fully take advantage of the hardware
tessellator, the triangles should never leave the chip, meaning the tessellation
will have to be redone each frame.

1.3 Contribution

Our research was performed independently of work by Yeo et al. [7] based on
slefes, but contains many of the same features. Both methods use the same error
metric to determine the required tessellation level, but estimate the error in dif-
ferent ways. Where Yeo et al. use slefes, where the theory is only fully developed
for polynomial surfaces, our algorithm can be used for any C2 continuous surface
with bounds on the second order derivatives. This also allows our approach to
be extended such that the lowest possible tessellation is less than one triangle
per Bézier patch.

Direct Accurate Rendering 241

CAD-models often consist of a large number of objects, each described by their
boundary surfaces. Special surfaces such as cylinders and swept surfaces, which
are of different polynomial order in the parameter directions, play important
roles in CAD. However, when used in a simulation it is common to use the
same polynomial order in both parameter directions. Our algorithm allows for
more dense sampling in the parameter direction with the highest second order
derivative. Furthermore, in contrast to slefe based tessellation, all computations
are performed after camera transformation, and thus, the tessellation is therefore
ignorant to which space the object is modeled in.

As a starting point, we took the algorithm for semi-uniform tessellation de-
scribed in Filip et al. [1], and analyzed how the error estimate is affected by
projecting the surface to the screen. Their implementation, guarantees that the
tessellation is within the error tolerance at the uniformly tessellated interior of
each patch, and at the boundary curves separating the patches. However, the ring
of triangles connecting the patch boundary with its interior may not. Some of
our test cases included patches where one boundary curve was linear, and hence
sampled only at its endpoints. This leads to visual artifacts, which is remedied
in our implementation.

2 Algorithm

To use the tessellator we need a predicate which defines the tessellation level
without the need of actually sampling the surface. One of the simplest predicates
is to measure the size of the surface’s bounding box when it is projected to
the screen. Such a predicate would lead to overtessellation of flat surfaces or
undertessellation of the more complex parts. We therefore need a view-dependent
predicate taking into account the shape and parametrization of the surface.

The rasterization solves the ray-casting problem of finding the intersection
between a ray through each pixel center and the triangle. The texture coordinates
(or parameter value) at a pixel is therefore associated to its center. Since we
can use this parameter value to evaluate the surface and any additional data
(textures of simulation data), it will be pixel accurate if the surface evaluated
at the given parameter value belongs within the same pixel. We will use this
property to define our error metric as follows:

e(u, v) = ‖proj(S(u, v)− T (u, v))‖∞. (1)

Here S is the original surface, T is the tessellated version and proj is the pro-
jection from eye space to the screen. In this section we will ignore the projection
and focus on the approximation error of a linear interpolation of a C2 continuous
surface.

A well known upper bound for linear interpolation of a C2 continuous curve
g is

|I2g − g|∞ ≤
(
Δ2

8

)
max |g′′|, (2)

242 J. Hjelmervik

(a) Original tessellation (b) Interior samples moved
closer to the left boundary

(c) Final tessellation

Fig. 2. Figure (a) shows a tessellation where the left boundary has only two sample
points. Figure (b) shows how to move the interior sample points closer to the left
boundary. Finally, in (c) an extra column of triangles is inserted.

in which I2g is a linear interpolation of g with sampling distance Δ. Thus, we
can choose the sampling distance to meet any given tolerance.

The interior of each patch is tessellated by triangles in which two of the edges
follow the parameter directions of the surface. Therefore, we we can estimate
the approximation error by

|I2f − f |∞ ≤ Δ2
u

8
max |fuu|+ ΔuΔv

4
max |fuv|+ Δ2

v

8
max |fvv|, (3)

where Δu and Δv are sampling distance in parameter direction u and v respec-
tively. Again, if we can find upper bounds of the second order derivatives we can
adjust the sampling distances to meet any given error tolerance. However, since
there are two unknowns and only one requirement, the solution is not unique.
The optimal solution is the one that has the lowest triangle count, whilst still
fulfilling the error tolerance. Filip et al. chose different sampling densities in each
parameter direction based on the estimates of the second order derivatives, while
You et al. decided to use the same sampling densities. We use a greedy iterative
process to determine the sampling distances.

In contrast to Filip et al., we experienced a breach of pixel accuracy for trian-
gles adjacent to the patch boundaries. Any adjustment to the sampling density
or position along the patch boundaries would create cracks in the tessellation,
because patch boundaries are shared by the neighboring patch. However, in the
interior of the patch, we may apply an transformation to the parameter values
of each sample point before evaluating the surface. We chose to define an affine
transformation that will narrow the boundary band as illustrated in Figure 2.
Each patch is sampled uniformly in the inner, resulting in a uniform tessellation.
The shapes of the boundary triangles are implementation specific, making it im-
possible to make a hard guarantee on the error in this area. We therefore assume
that each triangle has one edge along the boundary curve and one edge parallel
to the other parameter direction when computing the width of the boundary
band.

Moving the interior samples closer to an edge will increase the size of the
interior triangles, which may violate the pixel correctness. It may therefore be

Direct Accurate Rendering 243

necessary to increase the number of interior triangles. Remember that the tes-
sellation levels and the affine transformation is computed based on information
of the second derivative, without the need of actually generating the triangles
to check their feasibility. Therefore, all decisions are made in the control shader.
The control shader therefore performs the following steps:

1. compute the sampling distance for each edge
2. compute the height for each boundary band
3. compute the interior sampling distance
4. use the computed sampling distances to set the tessellation levels and affine

transformation if necessary.

The hardware tessellator will create the required triangles and call the evaluation
shader for each generated vertex, which applies the affine transformation to all
interior points before evaluating the surface. Evaluation of B-spline surfaces in
a shader is straight-forward and explained in Guthe et al. [4].

3 Pixel Accurate Tessellation

In Section 2, we described a tessellation algorithm that generates a tessellation
with a guaranteed maximal distance from the original C2 continuous surface.
However, the error metric did not take into account the viewing distance or
view direction, leading to a static tessellation. In this section, we will study the
same error metric evaluated in screen space instead of model space, i.e., the error
in terms of pixels on the screen.

3.1 Projected Error

As a first step, we study what a perturbation of a point in eye space leads
to as a perturbation in screen space. Vertices in a 3D scene are represented
by four dimensional homogeneous coordinates, and the x, y and z components
are divided by the w component as a part of the fixed function perspective
division in GPUs. The homogeneous coordinates allows perspective projection
to be formulated as a matrix-vector multiplication. Here, we use we use the
OpenGL projection matrix, which can be written as⎡

⎢⎢⎣
A 0 B 0
0 C D 0
0 0 E F
0 0 −1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
xes

yes
zes
wes

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
xcs

ycs
zcs
wcs

⎤
⎥⎥⎦ , (4)

where xes and xcs are vectors in eye space and clip space respectively, see
Shreiner et al. [8] for details. Let

x =

⎡
⎢⎢⎣
x
y
z
w

⎤
⎥⎥⎦ , and, x̂ =

⎡
⎢⎢⎣
x̂
ŷ
ẑ
ŷ

⎤
⎥⎥⎦ (5)

244 J. Hjelmervik

be a point in eye space and its projection to the screen respectively. Then

ŷ = −Cy +Dz

z
, and its inverse, y = − ŷz +Dz

C
(6)

describes the relationship between the y component in eye space and its pro-
jected counterpart. Let ε be the perturbation of x and ε̂ be the corresponding
perturbation of of x̂. Then their relation can be written

y + εy
z + εz

= − ŷ + ε̂y +D

C
, (7)

which leads to

ε̂y = C
εzy − εyz

z(εz + z)
, (8)

which describes the projected perturbation given by position and perturbation
before projection. Assuming εz is neglectable in the term z(εz + z) we arrive at

|ε̂y| � C
(∣∣∣εzy

z2

∣∣∣+ ∣∣∣ εy
z

∣∣∣) . (9)

What remains is to use the estimates from Section 2 to express the error pro-
jected error by the bounding box of the surface and its second order derivatives.

Inserting (2) into (9) and solving for Δ, we arrive at

Δ �

√
8εy

C

/(�g′′z ��y�
�z2� +

�g′′y �
�z�

)
(10)

as the expression for the maximal sample distance of a curve, given tolerances
εx and εy. Here, �·� and �·� denotes the minimal and maximal absolute value
respectively. To restrict the error to be less than one pixel, εy and εx are set to
0.5/window width and 0.5/window height respectively.

For the curve case, we were able to derive an explicit formula for the tessella-
tion levels. For the surface case we must first choose a strategy for balancing the
tessellation levels in the two parameter directions. Clearly, the tessellation level
in the interior of the Bézier patch must be at least as dense as the sampling of
the boundary curves. We propose to use the most dense boundary tessellation
in each parameter direction as an initial guess, and iteratively refine the pa-
rameter direction that reduces the approximation error the most. The maximal
error given the tessellation level for each parameter direction can be estimated
by inserting (9) into (3),

8εx

A
≥ Δ2

u

(�zuu��x�
�z2� +

�xuu�
�z�

)

+Δ2
v

(�zvv��x�
�z2� +

�xvv�
�z�

)

+2ΔuΔv

(�zuv��x�
�z2� +

�xuv�
�z�

)
.

For most cases the iteration terminates quickly and does not represent a bottle-
neck in the control shader.

Direct Accurate Rendering 245

Fig. 3. Surface color illustrates how close the approximation error is to the given toler-
ance. Gray is used when the error is less than 10% of the tolerance, and blue indicates
that the error larger. The error does not exceed the given tolerance.

4 Results

The tessellations generated by this algorithm are expected to be without any
visual artifacts, as it provides pixel accurate rendering. What remains to be seen
is whether the objects get excessively tessellated, meaning that more triangles
than necessary are generated. It is also interesting to see which areas will have
the highest triangle density.

In our experience, the tolerance is only violated when the calculated tessella-
tion level is higher than the hardware limit of the GPU. To measure the quality
of the tessellation we study the maximal error at each patch. If the maximal
error is much less than the tolerance it indicates that the model is excessively
tessellated. Figure 3 is colored based on the error relative to the given tolerance.
Note that the error is largest along the boundary band, which is expected since
these triangles may be larger than the interior triangles. Due to the shape of
the boundary triangles the error estimate does not apply there, but experiments
show good results here as well.

As expected, the result is pixel accurate and any tessellation algorithm with
this property will produce indistinguishable images. The main objective of our
work is to provide fast, high-quality, reliable rendering, which may also be
achieved by relaxed the error tolerance beyond one pixel. The increased tol-
erance will improve the rendering speed, while keeping the assurance that the
result will be within the given tolerance of the real model. Coarse tessellations
near silhouette edges are easily detected. Several algorithms, including Dyken
et al. [9] target this problem directly, and refines near silhouette triangles. As
shown in Figure 4 no such special treatment is required here, as Bézier patches
near silhouette edges generate smaller triangles compared to other areas. The
triangles are also concentrated in high-curvature areas. Using a GeForce GTX
580 we are able to tessellate 7 million cubic Bézier patches per second, which is
less than Yeo et al. [7]. This is both due to our algorithm being more compute
intensive and due to lack of optimization of our code.

246 J. Hjelmervik

Fig. 4. Color encoding of triangle sizes. Gray triangles have maximal edge length of
more than 5 pixels, yellow have 5-2.5, and green triangles less than 2.5 pixels.

5 Conclusion and Future Work

This work has been performed in parallel to the pixel accurate algorithm by Yeo
et al. [7] with an almost identical goal. Their work was published at the time
of writing this paper, making it natural to discuss the main differences which
come from different strategies for estimating the rendering error. We require a
one-pass algorithm to facilitate easy integration with large number of simple
surfaces, and our focus is on CAD models.

Single-pass algorithms such as ours avoid latency introduced by multi-pass
rendering, which is an advantage when rendering small surfaces. However, the
control shader must recompute the tessellation levels based on surface coeffi-
cients each frame making it potentially slower for large models due to repeated
computations. Also, patches sharing an edge will always choose compatible tes-
sellation levels, removing the need to store adjacency information for the model
to reach watertight tessellations.

The resulting tessellations from both approaches appear to be of similar qual-
ity and seems to have approximately the same triangle count for most examples,
but we have not yet performed a head-to-head comparison. CAD surfaces such
as swept surfaces and cylinder parts will take advantage of our approach where
the parameter directions does not use the same tessellation levels.

Bézier patches fully outside the view frustum are efficiently detected and the
tessellation level is set to zero in both algorithms. Small patches on the other
hand, will result in a minimum of two triangles, even if they are much smaller
than a pixel. For some applications it may therefore be better to treat more than
one Bézier patch in each tessellation patch. Our error estimate can be used in
this setting, since does not require a polynomial surface.

References

1. Filip, D., Magedson, R., Markot, R.: Surface algorithms using bounds on derivatives.
Comput. Aided Geom. Des. 3(4), 295–311 (1987)

2. Cook, R.L., Carpenter, L., Catmull, E.: The reyes image rendering architecture. In:
Proceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1987, pp. 95–102. ACM, New York (1987)

Direct Accurate Rendering 247

3. Fisher, M., Fatahalian, K., Boulos, S., Akeley, K., Mark, W.R., Hanrahan, P.: Di-
agsplit: parallel, crack-free, adaptive tessellation for micropolygon rendering. ACM
Trans. Graph. 28(5), 150:1–150:10 (2009)

4. Guthe, M., Balázs, A., Klein, R.: Gpu-based trimming and tessellation of nurbs and
t-spline surfaces. ACM Trans. Graph. 24(3), 1016–1023 (2005)

5. Hjelmervik, J., Hagen, T.: GPU-based screen space tessellation. In: Dæhlen, M.,
Mørken, K., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces:
Tromsø 2004, pp. 213–221. Nashboro Press (2005)

6. Lutterkort, D.C.: Envelopes of nonlinear geometry. PhD thesis, Purdue University,
West Lafayette, IN, USA (2000); AAI3017831

7. Yeo, Y.I., Bin, L., Peters, J.: Efficient pixel-accurate rendering of curved surfaces.
In: Garland, M., Wang, R., Spencer, S.N., Gopi, M., Yoon, S.E. (eds.) I3D, pp.
165–174. ACM (2012)

8. Shreiner, D., Woo, M., Neider, J., Davis, T.: OpenGL Programming Guide: The
Official Guide to Learning OpenGL, Version 2. Addison-Wesley Longman Publishing
Co., Inc., Boston (2005)

9. Dyken, C., Reimers, M., Seland, J.: Real-time GPU silhouette refinement using
adaptively blended bézier patches. Computer Graphics Forum 27(1), 1–12 (2008)

	Direct Pixel-Accurate Rendering
of Smooth Surfaces
	1 Introduction
	1.1 Related Work
	1.2 Hardware Tessellator
	1.3 Contribution

	2 Algorithm
	3 Pixel Accurate Tessellation
	3.1 Projected Error

	4 Results
	5 Conclusion and Future Work
	References

