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Abstract. We derive a closed formula for the generating functions of the
uniform B-splines. We begin by constructing a PDE for these generating
functions starting from the de Boor recurrence. By solving this PDE, we
find that we can express these generating functions explicitly as sums
of polynomials times exponentials. Using these generating functions, we
derive some known identities, including the Schoenberg identity, the two
term formula for the derivatives in terms of B-splines of lower degree, and
the partition of unity property. We also derive several new identities for
uniform B-splines not previously available from classical methods, includ-
ing formulas for sums and alternating sums, for moments and reciprocal
moments, and for Laplace transforms and convolutions with monomials.

1 Introduction

Generating functions are a powerful tool for investigating the properties of dis-
crete sequences. Explicit formulas and identities for elements of the sequence can
often be readily derived once we have an explicit formula for their generating
function [1].

The goal of this paper is to compute an explicit formula for the generat-
ing function of the uniform B-splines over arbitrary intervals. We shall then
use these generating functions to derive several well known identities—including
the Schoenberg identity, the two term formula for the derivatives in terms of
B-splines of lower degree, and the partition of unity property—for the uni-
form B-splines. We will also derive several new identities for uniform B-splines
not previously available from classical methods such as blossoming or the de
Boor recurrence, including formulas for sums and alternating sums, for mo-
ments and reciprocal moments, and for Laplace transforms and convolutions with
monomials.

This work is inspired by the papers of Y. Simsek [4–6], who computed explicit
formulas for a novel collection of generating functions for the classical Bernstein
bases

Bn
k (x) =

(
n
k

)
xk(1− x)n−k 0 ≤ k ≤ n, 0 ≤ n < ∞,

by summing over the degree n instead of over the index k. He then used these
generating functions to derive many known and some new identities for the
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Bernstein basis functions. We shall take a similar approach with the uniform
B-splines Nk,n(x), again summing over the degree n instead of the index k.

We proceed in the following fashion. In Section 2 we consider the simple special
case of B-splines of degree n with knots at the integers 0, . . . , n+ 1 but restricted
to the interval [0, 1]. Over this interval we find that the generating function has
an especially simple form as an exponential, so we are encouraged to study the
generating function over arbitrary intervals. In Section 3 we apply the de Boor
recurrence to derive a PDE for the generating function, and in Section 4 we solve
this PDE to find an explicit formula for the generating function over arbitrary
intervals. This solution reveals a novel connection between uniform B-splines
and exponentials. In Section 5 we show how to use this generating function to
derive some classical identities for the uniform B-splines, including Schoenberg’s
identity, the formula for the derivatives of the B-splines in terms of B-splines of
lower degree, and the fact that the B-splines form a the partition of unity. In
Section 6 we apply the generating function to derive several new identities for
the uniform B-splines not previously accessible from classical methods such as
blossoming or the de Boor recurrence. These new identities for uniform B-splines
include formulas for sums and alternating sums, for moments and reciprocal
moments, and for Laplace transforms and convolutions with monomials. We
close in Section 7 with a brief summary of our work along a short discussion
of the limitations of our approach to deriving identities for the B-splines using
generating functions. We also list a few natural problems involving generating
functions and B-splines for future research.

2 A Simple Example: The Generating Function over the
Interval [0, 1]

We shall begin by investigating the uniform B-splines with knots at the integers
when restricted to the interval [0, 1].

To fix our notation, let

Nk,n(x)= the uniform B-spline of degree n with support [k, k+n+1] and knots

at the integers {k, k + 1, . . . , k + n+ 1}.
We also introduce the generating functions

Gk(x, t) =

∞∑
n=0

Nk,n(x)t
n.

Recall that for uniform B-splines, the functions Nk,n(x) are just shifts of the
functions N0,n(x)—that is,

Nk,n(x) = N0,n(x − k),

so
Gk(x, t) = G0(x− k, t).



174 R. Goldman

Thus to investigate the B-splinesNk,n(x) and their generating functions Gk(x, t),
it is enough to study the B-splinesN0,n(x) and their generating functionsG0(x, t).

To investigate the B-splines N0,n(x), consider de Boor recurrence:

N0,n(x) =
x

n
N0,n−1(x) +

n+ 1− x

n
N1,n−1(x).

For x ≤ 1, we have N1,n(x) = 0. Therefore

N0,n(x) =
x

n
N0,n−1(x) 0 ≤ x ≤ 1.

Hence in the interval [0, 1]:

N0,0(x) = 1, N0,1(x) = x, N0,2(x) =
x2

2!
, . . . , N0,n(x) =

xn

n!
.

Thus over the interval [0, 1], we have a remarkably simple explicit formula for
the generating function G0(x, t) of the B-splines N0,n(x):

G0(x, t) =

∞∑
n=0

xntn

n!
= ext 0 ≤ x ≤ 1.

Our goal is to find explicit formulas for the generating function G0(x, t) over
arbitrary intervals.

3 A PDE for the Generating Functions Built from the de
Boor Recurrence

For a discrete sequence generated by a recurrence one classical way to derive
an explicit formula for the generating function is first to use the recurrence
to construct a functional equation for the generating function. One can then
often solve this functional equation to find an explicit formula for the generating
function. This technique works, for example, to derive an explicit formula for
the generating function of the fibonacci numbers [1]. Here we shall apply this
method to derive a PDE for the generating functions of the uniform B-splines.
In the next section we will solve this PDE to find an explicit formula for the
generating functions of the uniform B-splines over arbitrary intervals.

Theorem 1.

∂G0

∂t
(x, t) = xG0(x, t) + (2− x)G1(x, t) + t

∂G1

∂t
(x, t). (1)

Proof. We begin with the de Boor recurrence:

N0,n(x) =
x

n
N0,n−1(x) +

n+ 1− x

n
N1,n−1(x).
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Multiplying both sides by ntn−1 yields:

nN0,n(x)t
n−1 = xN0,n−1(x)t

n−1 + (n+ 1− x)N1,n−1(x)t
n−1.

Now summing over n, we find that:

∑
n

nN0,n(x)t
n−1 =x

∑
n

N0,n−1(x)t
n−1 + (2− x)

∑
n

N1,n−1(x)t
n−1

+ t
∑
n

(n− 1)N1,n−1(x)t
n−2.

Therefore

∂G0

∂t
(x, t) = xG0(x, t) + (2− x)G1(x, t) + t

∂G1

∂t
(x, t).

��

4 Solving the PDE for the Generating Functions

We shall now derive an explicit formula for the generating function G0(x, t) by
solving the PDE in Theorem 1. We begin with some special cases.

Over the interval [0, 1], we have N1,n(x) = 0. so G1(x, t) = 0. Hence the PDE
in Equation (1) reduces to

∂G0

∂t
(x, t) = xG0(x, t) 0 ≤ x ≤ 1. (2)

Therefore, as we observed in Section 2,

G0(x, t) = ext 0 ≤ x ≤ 1. (3)

Over the interval [1, 2] , we have

G1(x, t) = G0(x− 1, t) = e(x−1)t 1 ≤ x ≤ 2. (4)

Therefore the PDE in Equation (1) reduces to

∂G0

∂t
(x, t) = xG0(x, t) + (2− x)e(x−1)t + t(x− 1)e(x−1)t 1 ≤ x ≤ 2. (5)

One can now guess the solution must have terms with the exponentials ext and
e(x−1)t. By trial and error one soon finds that:

G0(x, t) = ext − (
(x− 1)t+ 1

)
e(x−1)t 1 ≤ x ≤ 2, (6)

which is easily verified by substituting Equation (6) into Equation (5) and seeing
that the PDE is indeed satisfied. Proceeding in this manner, we find that we have
the following general result.
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Theorem 2. For x ∈ [p, p+ 1], the function

G0(x, t) =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t (7)

satisfies the PDE in Equation (1).

Proof. We proceed by induction on p. The cases p = 0, 1 have already been
discussed. Suppose then that this result is true for p − 1; then we must verify
that this result is also valid for p. To simplify our notation, let

G0,p−1(x, t) =

p−1∑
j=0

(−1)j
(
(x − j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t,

g0,p(x, t) =

(
(x− p)ptp

p!
+

(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t.

Then for x ∈ [p, p+ 1]

G0(x, t) = G0,p−1(x, t) + (−1)pg0,p(x, t),

G1(x, t) = G0,p−1(x− 1, t) + (−1)p−1g0,p−1(x− 1, t).

Moreover, by the inductive hypothesis

∂G0,p−1

∂t
(x, t) = xG0,p−1(x, t) + (2− x)G1,p−1(x, t) + t

∂G1,p−1

∂t
(x, t).

Therefore it is enough to verify that

∂g0,p
∂t

(x, t) = xg0,p(x, t)− (2− x)g0,p−1(x− 1, t)− t
∂g0,p−1

∂t
(x − 1, t).

But by direct computation:

∂g0,p
∂t

(x, t) =(x− p)

(
(x − p)ptp

p!
+

(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t

+

(
(x− p)ptp−1

(p− 1)!
+

(x− p)p−1tp−2

(p− 2)!

)
e(x−p)t.

Thus

∂g0,p
∂t

(x, t) =xg0,p(x, p)−
(
(x − p)ptp

(p− 1)!
+

p(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t

+ (x − p)

(
(x− p)p−1tp−1

(p− 1)!
+

(x− p)p−2tp−2

(p− 2)!

)
e(x−p)t,

or equivalently

∂g0,p
∂t

(x, t) =xg0,p(x, p)−
(
(x− p)ptp

(p− 1)!
+

p(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t

+
(
(x − 2) + (2− p)

)( (x− p)p−1tp−1

(p− 1)!
+

(x− p)p−2tp−2

(p− 2)!

)
e(x−p)t.
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Hence

∂g0,p
∂t

(x, t) = xg0,p(x, t)− (2− x)g0,p−1(x− 1, t)

−
(
(x− p)ptp

(p− 1)!
+

p(x− p)p−1tp−1

(p− 1)!

)
e(x−p)t

+ (2− p)

(
(x− p)p−1tp−1

(p− 1)!
+

(x− p)p−2tp−2

(p− 2)!

)
e(x−p)t,

so

∂g0,p
∂t

= xg0,p(x, t) − (2− x)g0,p−1(x − 1, t)− (x− p)ptp

(p− 1)!
e(x−p)t

+ (2 − 2p)

(
(x − p)p−1tp−1

(p− 1)!

)
e(x−p)t − (x − p)p−2tp−2

(p− 3)!
e(x−p)t.

Therefore it is enough to verify that

t
∂g0,p−1(x− 1, t)

∂t
=

(
(x− p)ptp

(p− 1)!
+ 2

(x− p)p−1tp−1

(p− 2)!
+

(x− p)p−2tp−2

(p− 3)!

)
e(x−p)t.

But by definition

g0,p−1(x − 1, t) =

(
(x− p)p−1tp−1

(p− 1)!
+

(x − p)p−2tp−2

(p− 2)!

)
e(x−p)t.

Hence

t
∂g0,p−1(x − 1, t)

∂t
=

(
(x− p)p−1tp−1

(p− 2)!
+

(x− p)p−2tp−2

(p− 3)!

)
e(x−p)t

+ (x − p)t

(
(x− p)p−1tp−1

(p− 1)!
+

(x− p)p−2tp−2

(p− 2)!

)
e(x−p)t,

so indeed

t
∂g0,p−1(x− 1, t)

∂t
=

(
(x− p)ptp

(p− 1)!
+ 2

(x− p)p−1tp−1

(p− 2)!
+

(x− p)p−2tp−2

(p− 3)!

)
e(x−p)t.

��

5 Deriving Identities for the Uniform B-Splines from
their Generating Functions

With explicit formulas for the generating functions now in hand, we are finally
ready to derive some identities for the uniform B-splines.
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5.1 Schoenberg’s Identity

Theorem 3. (Schoenbergs Identity [3])

N0,n(x) =
1

n!

p∑
j=0

(−1)j
(
n+ 1
j

)
(x− j)n p ≤ x ≤ p+ 1. (8)

Proof. Schoenberg’s identity for the B-splines follows immediately from the ex-
plicit formula for the generating functions. We simply compare coefficients of tn

on both sides of the generating function:

G0(x, t) =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t p ≤ x ≤ p+ 1.

Expanding the exponential function on the right hand side, we find that

G0(x, t) =

p∑

j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)( ∞∑

k=0

(x− j)ktk

k!

)
p ≤ x ≤ p+1.

Now equating the terms with tn on both side of this equation yields

N0,n(x)t
n =

p∑
j=0

(
(−1)j

(x − j)jtj

j!

(x− j)n−jtn−j

(n− j)!
+

(−1)j
(x− j)j−1tj−1

(j − 1)!

(x− j)n−j+1tn−j+1

(n− j + 1)!

)
,

so

N0,n(x) =
1

n!

p∑

j=0

(−1)j
((

n
j

)
+

(
n

j − 1

))
(x− j)n =

1

n!

p∑

j=0

(−1)j
(
n+ 1
j

)
(x− j)n.

��

5.2 The Derivative Formula

To derive a formula for the derivative of the uniform B-splines, we begin by
deriving a functional equation for the derivative of their generating function.

Lemma 1.
∂G0

∂x
(x, t) = tG0(x, t)− tG1(x, t). (9)

Proof. By Theorem 2:

G0(x, t) =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t.
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Therefore

∂G0

∂x
(x, t) =

p∑
j=0

(−1)j
(
(x− j)j−1tj

(j − 1)!
+

(x − j)j−2tj−1

(j − 2)!

)
e(x−j)t

+ t

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t,

or equivalently

∂G0

∂x
(x, t) =− t

p∑
j=0

(−1)j−1

(
((x− 1)− (j − 1))j−1tj−1

(j − 1)!

+
((x − 1)− (j − 1))j−2tj−2

(j − 2)!

)
e((x−1)−(j−1))t

+ t

p∑
j=0

(−1)j
(x− j)jtj

j!
+

(x − j)j−1tj−1

(j − 1)!
e(x−j)t.

Hence

∂G0

∂x
(x, t) = tG0(x, t)− tG0(x− 1, t) = tG0(x, t)− tG1(x, t).

Theorem 4. (Derivative Formula)

∂N0,n(x)

∂x
= N0,n−1(x)−N1,n−1(x). (10)

Proof. From Lemma 1, we have the functional equation:

∂G0

∂x
(x, t) = tG0(x, t)− tG1(x, t).

Comparing the coefficients of tn on both sides, we find that:

∂N0,n(x)

∂x
tn = tN0,n−1(x)t

n−1 − tN1,n−1(x)t
n−1,

∂N0,n(x)

∂x
= N0,n−1(x)−N1,n−1(x).

��

5.3 The de Boor Recurrence

Starting from the de Boor recurrence, we derived a PDE for the partial derivative
of the generating function with respect to t. We can also go the other way:
starting from this functional equation for the partial derivative of the generating
function with respect to t, we can derive the de Boor recurrence. Thus this PDE
is actually equivalent to the de Boor recurrence.
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Theorem 5. (de Boor Recurrence)

N0,n(x) =
x

n
N0,n−1(x) +

n+ 1− x

n
N1,n−1(x).

Proof. By Theorem 2, the generating function G0(x, t) satisfies the functional
equation:

∂G0

∂t
(x, t) = xG0(x, t) + (2− x)G1(x, t) + t

∂G1

∂t
(x, t).

Therefore

∑
n

nN0,n(x)t
n−1 =x

∑
n

N0,n−1(x)t
n−1 + (2− x)

∑
n

N1,n−1(x)t
n−1

+ t
∑
n

(n− 1)N1,n−1(x)t
n−2.

Comparing the coefficients of tn−1 on both sides yields:

nN0,n(x) = xN0,n−1(x) + (n+ 1− x)N1,n−1(x).

Now dividing both sides by n, we conclude that:

N0,n(x) =
x

n
N0,n−1(x) +

n+ 1− x

n
N1,n−1(x).

��

5.4 Partition of Unity

Here we shall use the generating functions to show that the uniform B-splines
form a partition of unity. We begin with some technical results.

Lemma 2.

0∑
k=−d

Gk(x, t) =

0∑
k=−d

(−1)k+d

(
(x− k)k+dtk+d

(k + d)!

)
e(x−k)t 0 ≤ x ≤ 1. (11)

Proof. We proceed by induction on d. For d = 0, this formula reduces to

G0(x, t) = ext,

which is just Equation (3). Now by the inductive hypothesis:

0∑
k=−d

Gk(x, t) =

0∑
k=−d

(−1)k+d

(
(x− k)k+dtk+d

(k + d)!

)
e(x−k)t. (12)
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Moreover,

G−(d+1)(x, t) =
∑
n

N−(d+1),n(x)t
n

=

d+1∑
j=0

(−1)j
(
(x+ d+ 1− j)jtj

j!

+
(x+ d+ 1− j)j−1tj−1

(j − 1)!

)
e(x+d+1−j)t.

Reindexing by setting i = j − 1, we get

G−(d+1)(x, t) =e(x+d+1)t +

d∑
i=0

(−1)i+1

(
(x+ d− i)i+1ti+1

(i+ 1)!

+
(x+ d− i)iti

i!

)
e(x+d−i)t.

Now setting k = i− d, we arrive at

G−(d+1)(x, t) =e(x+d+1)t +

0∑
k=−d

(−1)k+d+1

(
(x− k)k+d+1tk+d+1

(k + d+ 1)!

+
(x− k)k+dtk+d

(k + d)!

)
e(x−k)t.

Adding this last equation to (12) yields our result. ��
Lemma 3.

∑
−n≤k≤0

Nk,n(x) =

n∑
k=0

(−1)n−k

(
(x+ k)n

k!(n− k)!

)
0 ≤ x ≤ 1. (13)

Proof. This result follows directly from Lemma 2 by setting d = n and comparing
the coefficients of tn of both sides of Equation (11). ��
Lemma 4.

n∑
k=0

(−1)n−k

(
(x+ k)n

k!(n− k)!

)
= 1.

Proof. To establish this result, we shall use a divided difference argument. The
following divided difference formula follows easily by induction on n:

f [0, 1, . . . , n] =
1

n!

n∑
k=0

(−1)n−k

(
n
k

)
f(k).
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Therefore

n∑
k=0

(−1)n−k

(
(x+ k)n

k!(n− k)!

)
=

1

n!

n∑
k=0

(−1)n−k

(
n
k

)
(x+ k)n = (x+ ·)n[0, 1, . . . , n].

But
f [0, 1, . . . , n] = highest order coefficient of the polynomial interpolant,

so
(x+ ·)n[0, 1, . . . , n] = 1.

��
Proposition 1. (Partition of Unity)

∑
−n≤k≤0

Nk,n(x) = 1.

Proof. By translation invariance, it is enough to prove this result for 0 ≤ x ≤ 1.
But for 0 ≤ x ≤ 1, this result follows immediately from Lemmas 3 and 4. ��

6 New Identities for Uniform B-Splines

So far we have used our generating function to derive some well known identities
for the uniform B-splines. In this section we shall derive some new identities for
uniform B-splines using their generating functions.

6.1 New Identities from Specializing the Generating Functions

Here we derive new identities for the sums and alternating sums as well as for
the moments and reciprocal moments of the uniform B-splines by considering
special values of t in the generating functions G0(x, t). The reader may easily
construct other identities for the B-splines by considering other specializations
of their generating functions.

Theorem 6. (Sums and Alternating Sums)

∞∑
n=0

N0,n(x) = ex +

p∑
j=1

(−1)j
x(x − j)j−1

j!
e(x−j) p ≤ x ≤ p+ 1. (14)

∞∑
n=0

(−1)nN0,n(x) = e−x +

p∑
j=1

(x − 2j)(x− j)j−1

j!
e−(x−j) p ≤ x ≤ p+ 1. (15)

Proof. These results follow immediately by substituting t = ±1 on both sides of
the generating function in Equation (7). ��
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Theorem 7. (Moments and Reciprocal Moments)

∞∑

n=0

xnN0,n(x) =

p∑

j=0

(−1)j
(
(x− j)jxj

j!
+

(x− j)j−1xj−1

(j − 1)!

)
e(x−j)x, p ≤ x ≤ p+ 1.

(16)

∞∑
n=0

x−nN0,n(x) =

p∑
j=0

(−1)j
(
(1 − j/x)j

j!
+
(1 − j/x)j−1

(j − 1)!

)
e(1−j/x), p ≤ x ≤ p+1.

(17)

Proof. These results follow immediately by substituting t = x±1 on both sides
of the generating function in Equation (7). ��

6.2 New Identities from Manipulating the Generating Functions

Here we derive new identities for the Laplace transform of the B-splines along
with new convolution formulas for the B-splines with the monomials by manipu-
lating the generating functions. Limited only by their imagination and ingenuity,
readers may seek other identities for the B-splines by manipulating their gener-
ating functions.

Our explicit formula for the generating functions over the interval [p, p+1] in
Equation (7) is

∑
n

N0,n(x)t
n =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t.

In this section we explore what happens when we move ext to the left hand side.

Theorem 8. (Convolution Formulas)

n∑
j=0

(−1)j

j!
xjN0,n−j(x) =

p∑
j=0

(−1)n
(
jn−j(x− j)j

j!(n− j)!
− jn−j+1(x− j)j−1

(j − 1)!(n− j + 1)!

)
(18)

for all n and p ≤ x ≤ p+ 1.

n∑
k=0

(−1)k

k!
(x+ α)kN0,n−k(x) =(−1)n

min(p,n)∑
j=0

(
(j + α)n−j

j!(n− j + 1)!
(x− j)j−1

(
(x− j)(n− j + 1)− (j + α)j

))
(19)

for all n, α and p ≤ x ≤ p+ 1.
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Proof. To prove the first identity, start with the generating function in Equation
(7):

∑
n

N0,n(x)t
n =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t.

Now multiply both sides by e−xt:

∑
n

N0,n(x)t
ne−xt =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x − j)j−1tj−1

(j − 1)!

)
e−jt.

Then expand the exponentials on both sides of this equation as power series and
compare the coefficients of tn. Thus

∑

n

n∑

j=0

(−1)j

j!
xjN0,n−j(x)t

n =
∑

n

p∑

j=0

(−1)n
(
jn−j(x− j)j

j!(n− j)!
− jn−j+1(x− j)j−1

(j − 1)!(n− j + 1)!

)
tn,

so comparing the coefficients of tn it follows that for all n and p ≤ x ≤ p+ 1

n∑
j=0

(−1)j

j!
xjN0,n−j(x) =

p∑
j=0

(−1)n
(
jn−j(x− j)j

j!(n− j)!
− jn−j+1(x− j)j−1

(j − 1)!(n− j + 1)!

)
.

The second identity can be proved in a similar fashion by initially multiplying
both sides of the generating function by e−(x+α)t and proceeding as in the proof
of the first identity. ��

Next we shall investigate identities generated by taking the Laplace transform
of the explicit formula for the generating functions. We begin by recalling a well-
known result.

Lemma 5. ∫ ∞

0

tke−atdt =
k!

a(k+1)
, when a > 0. (20)

Proof. Integrate by parts and apply induction on k. ��
Theorem 9. (Laplace Transforms)

∑
n

n!N0,n(x)

(x+ 1)n+1
= 1 + (x+ 1)

p∑
j=1

(−1)j

(j + 1)j+1
(x− j)j−1. (21)

∑
n

n!N0,n(x)

(x+ α)n+1
=

1

α
+ (x + α)

p∑
j=1

(−1)j

(j + α)j+1
(x− j)j−1 (22)

for all α > 0 and p ≤ x ≤ p+ 1.
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Proof. To prove the first result, again we begin with the explicit formula for the
generating function given in Equation (7):

∑
n

N0,n(x)t
n =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e(x−j)t p ≤ x ≤ p+ 1.

Now multiply both sides by e−(x+1)t:

∑
n

N0,n(x)t
ne−(x+1)t =

p∑
j=0

(−1)j
(
(x− j)jtj

j!
+

(x− j)j−1tj−1

(j − 1)!

)
e−(j+1)t

and integrate with respect to t:

∫ ∞

0

∑
n

N0,n(x)t
ne−(x+1)tdt =

∫ ∞

0

p∑
j=0

(−1)j
(
(x− j)jtj

j!

+
(x − j)j−1tj−1

(j − 1)!

)
e−(j+1)tdt.

Then

∑
n

N0,n(x)

∫ ∞

0

tne−(x+1)tdt =

p∑
j=0

(−1)j
(
(x − j)j

j!

∫ ∞

0

tje−(j+1)tdt

+
(x − j)j−1

(j − 1)!

∫ ∞

0

tj−1e−(j+1)tdt

)
,

so by Lemma 5:

∑
n

n!N0,n(x)

(x+ 1)n+1
= 1 + (x+ 1)

p∑
j=1

(−1)j

(j + 1)j+1
(x− j)j−1.

The second identity can be proved in a similar fashion by initially multiplying
both sides of the generating function by e−(x+α)t and proceeding as in the proof
of the first identity. ��

7 Summary, Conclusions, and Future Research

We derived a closed formula for the generating functions of the uniform B-
splines, revealing a novel connection between uniform B-splines and exponential
functions. Using this generating function, we established several classical iden-
tities for the uniform B-splines. These identities along with the corresponding
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functional equations for the generating functions are listed in Table 1. We also
derived some new identities for uniform B-splines that cannot be derived by
standard methods. These new identities are listed in Table 2.

Table 1. Some classical B-spline identities and the corresponding functional equations
for their generating functions

B-Splines Identities Generating Functions Functional Equations

N0,n(x) =
x
n
N0,n−1(x)

∂G0
∂t

(x, t) = xG0(x, t)

+n+1−x
n

N1,n−1(x) +(2− x)G1(x, t) + t ∂G1
∂t

(x, t)

∂N0,n(x)

∂x
= N0,n−1(x)−N1,n−1(x)

∂G0
∂x

(x, t) = tG0(x, t)− tG1(x, t)

∑
k Nk,n(x) ≡ 1

∑0
k=−n Gk(x, t) =

∑0
k=−n(−1)k+n

(
(x−k)k+ntk+n

(k+n)!

)
e(x−k)t

N0,n(x) = G0(x, t) =

1
n!

∑p
j=0(−1)j

(
n+ 1
j

)
(x− j)n

∑p
j=0(−1)j

(
(x−j)jtj

j!
+ (x−j)j−1tj−1

(j−1)!

)
e(x−j)t

p ≤ x ≤ p+ 1 p ≤ x ≤ p+ 1

Sums and Alternating Sums

∞∑
n=0

N0,n(x) = ex +

p∑
j=1

(−1)j
x(x − j)j−1

j!
e(x−j) p ≤ x ≤ p+ 1

∞∑
n=0

(−1)nN0,n(x) = e−x +

p∑
j=1

(x− 2j)(x− j)j−1

j!
e−(x−j) p ≤ x ≤ p+ 1

Moments and Reciprocal Moments

∞∑

n=0

xnN0,n(x) =

p∑

j=0

(−1)j
(
(x− j)jxj

j!
+

(x− j)j−1xj−1

(j − 1)!

)
e(x−j)x p ≤ x ≤ p+ 1

∞∑

n=0

x−nN0,n(x) =

p∑

j=0

(−1)j
(
(1− j/x)j

j!
+

(1− j/x)j−1

(j − 1)!

)
e(1−j/x) p ≤ x ≤ p+ 1
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Convolution Formulas

n∑
j=0

(−1)j

j!
xjN0,n−j(x) =

p∑
j=0

(−1)n
(
jn−j(x− j)j

j!(n− j)!
− jn−j+1(x− j)j−1

(j − 1)!(n− j + 1)!

)

for all n and p ≤ x ≤ p+ 1

n∑
k=0

(−1)k

k!
(x+ α)kN0,n−k(x) = (−1)n

min(p,n)∑
j=0

(
(j + α)n−j

j!(n− j + 1)!
(x − j)j−1

(
(x − j)(n− j + 1)− (j + α)j

))

for all n, α and p ≤ x ≤ p+ 1

Laplace Transforms

∑
n

n!N0,n(x)

(x+ 1)n+1
= 1 + (x+ 1)

p∑
j=1

(−1)j

(j + 1)j+1
(x− j)j−1

∑
n

n!N0,n(x)

(x+ α)n+1
=

1

α
+ (x+ α)

p∑
j=1

(−1)j

(j + α)j+1
(x− j)j−1

for all α > 0 and p ≤ x ≤ p+ 1

Table 2. Some new identities for the B-splines derived from their generating functions

Yet despite these successes, generating functions are not a panacea for deriving
identities for uniform B-splines. The following two well known identities—the
Marsden identity and the refinement equation—are not readily established using
generating functions:

(x − t)n =
∑
k

(k + 1− t) · · · (k + n− t)Nk,n(x) (Marsden Identity)

N0,n(x) =
∑
k

(
n+ 1
k

)

2n
N0,n(2x− k) (Refinement Equation)

We can, however, derive these identities directly or indirectly from the de Boor
recurrence, which we have seen is equivalent to the PDE for the generating
functions (see Table 1).
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Currently our generating functions are restricted to B-splines with uniformly
spaced knots— that is, knots in arithmetic progression

tk+1 = tk + h (arithmetic progression).

In the future we hope to extend our generating functions to B-splines with knots
in geometric or affine progression—that is, to B-splines with knot sequences
where

tk+1 = qtk (geometric progression)

tk+1 = qtk + h (affine progression).

B-splines with knots in affine progression would also include B-splines with knots
at the q-integers [2].

Finally we would also like to extend our generating functions to multivariate
splines such as box splines, where simple recurrences for the basis functions are
also available.
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