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Abstract. This paper presents a novel SAT-based approach for the computation
of extensions in abstract argumentation, with focus on preferred semantics, and
an empirical evaluation of its performances. The approach is based on the idea
of reducing the problem of computing complete extensions to a SAT problem
and then using a depth-first search method to derive preferred extensions. The
proposed approach has been tested using two distinct SAT solvers and compared
with three state-of-the-art systems for preferred extension computation. It turns
out that the proposed approach delivers significantly better performances in the
large majority of the considered cases.

1 Introduction

Dung’s theory of abstract argumentation frameworks [19] provides a general model,
which is widely recognized as a fundamental reference in computational argumentation
in virtue of its simplicity, generality, and ability to capture a variety of more specific
approaches as special cases. An abstract argumentation framework (AF ) consists of a
set of arguments and of an attack relation between them. The concept of extension plays
a key role in this simple setting, where an extension is intuitively a set of arguments
which can “survive the conflict together”. Different notions of extensions and of the
requirements they should satisfy correspond to alternative argumentation semantics,
whose definitions and properties are an active investigation subject since two decades
(see [5,6] for an introduction).

The main computational problems in abstract argumentation are naturally related to
extensions and can be partitioned into two classes: decision problems and construction
problems. Decision problems pose yes/no questions like “Does this argument belong
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to one (all) extensions?” or “Is this set an extension?”, while construction problems re-
quire to explicitly produce some of the extensions prescribed by a semantics. In partic-
ular, extension enumeration is the problem of constructing all the extensions prescribed
by a given semantics for a given AF . The complexity of extension-related decision
problems has been deeply investigated and, for most of the semantics proposed in the
literature, they have been proven to be intractable. Intractability extends directly to con-
struction/enumeration problems, given that their solutions provide direct answers to
decision problems.

Theoretical analysis of worst-case computational issues in abstract argumentation is
in a state of maturity with the available complexity results covering all Dung’s tradi-
tional semantics and several subsequent prominent approaches in the literature (for a
summary see [21]). On the practical side, however, the investigation on efficient algo-
rithms for abstract argumentation and on their empirical assessment is less developed,
with few results available in the literature. This paper contributes to fill this gap by
proposing a novel approach and implementation for enumeration of Dung’s preferred
extensions, corresponding to one of the most significant argumentation semantics, and
comparing its performances with other state-of-the-art implemented systems. We focus
on extension enumeration since it can be considered the most general problem, i.e. its
solution provides complete information concerning the justification status of arguments
(making it possible to determine, for instance, if two arguments cannot be accepted in
the same extension) and the proposed approach can be easily adapted to solve also the
decision problems mentioned above.

The paper is organized as follows. Section 2 recalls the necessary basic concepts and
state-of-the-art background. Section 3 introduces the proposed approach while Section
4 describes the test setting and comments the experimental results. Section 5 provides
a comparison with related works and then Section 6 concludes the paper.

2 Background

An argumentation framework [19] consists of a set of arguments1 and a binary attack
relation between them.

Definition 1. An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where A is a
set of arguments and R ⊆ A ×A. We say that b attacks a iff 〈b, a〉 ∈ R, also denoted
as b → a. The set of attackers of an argument a will be denoted as a− � {b : b → a}.

The basic properties of conflict–freeness, acceptability, and admissibility of a set of
arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:
– a set S ⊆ A is conflict–free if � a, b ∈ S s.t. a → b;
– an argument a ∈ A is acceptable with respect to a set S ⊆ A if ∀b ∈ A s.t. b → a,

∃ c ∈ S s.t. c → b;

1 In this paper we consider only finite sets of arguments.
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– a set S ⊆ A is admissible if S is conflict–free and every element of S is acceptable
with respect to S.

An argumentation semantics σ prescribes for any AF Γ a set of extensions, denoted
as Eσ(Γ ), namely a set of sets of arguments satisfying some conditions dictated by
σ. In [19] four “traditional” semantics were introduced, namely complete, grounded,
stable, and preferred semantics. Other literature proposals include semi-stable [13],
ideal [20], and CF2 [7] semantics. Here we need to recall the definitions of complete
(denoted as CO) and preferred (denoted as PR) semantics only, along with a well
known relationship between them.

Definition 3. Given an AF Γ = 〈A,R〉:
– a set S ⊆ A is a complete extension, i.e. S ∈ ECO(Γ ), iff S is admissible and

∀a ∈ A s.t. a is acceptable w.r.t. S, a ∈ S;
– a set S ⊆ A is a preferred extension, i.e. S ∈ EPR(Γ ), iff S is a maximal (w.r.t. set

inclusion) admissible set.

Proposition 1. For any AF Γ = 〈A,R〉, S is a preferred extension iff it is a maximal
(w.r.t. set inclusion) complete extension. As a consequence EPR(Γ ) ⊆ ECO(Γ ).

It can be noted that each extension S implicitly defines a three-valued labelling of
arguments, as follows: an argument a is labelled in iff a ∈ S, is labelled out iff ∃ b ∈ S
s.t. b → a, is labelled undec if neither of the above conditions holds. In the light of
this correspondence, argumentation semantics can equivalently be defined in terms of
labellings rather than of extensions (see [5,12]). In particular, the notion of complete
labelling [5,14] provides an equivalent characterization of complete semantics, in the
sense that each complete labelling corresponds to a complete extension and vice versa.
Complete labellings can be (redundantly) defined as follows.

Definition 4. Let 〈A,R〉 be an argumentation framework. A total function Lab : A 	→
{in, out, undec} is a complete labelling iff it satisfies the following conditions for any
a ∈ A:

– Lab(a) = in ⇔ ∀b ∈ a−Lab(b) = out;
– Lab(a) = out ⇔ ∃b ∈ a− : Lab(b) = in;
– Lab(a) = undec ⇔ ∀b ∈ a−Lab(b) �= in ∧ ∃c ∈ a− : Lab(c) = undec;

It is proved in [12] that preferred extensions are in one-to-one correspondence with
those complete labellings maximizing the set of arguments labelled in.

The introduction of preferred semantics is one of the main contribution of Dung’s
paper. Its name, in fact, reflects a sort of preference w.r.t. other traditional semantics,
as it allows multiple extensions (differently from grounded semantics), the existence of
extensions is always guaranteed (differently from stable semantics), and no extension
is a proper subset of another extension (differently from complete semantics). Also in
view of its relevance, computational complexity of preferred semantics has been ana-
lyzed early [16,17] in the literature, with standard decision problems in argumentation
semantics resulting to be intractable in the case of PR.
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As to algorithms for computing preferred extensions, two basic approaches have
been considered in the literature. On one hand, one may develop a dedicated algorithm
to obtain the problem solution, on the other hand, one may translate the problem in-
stance at hand into an equivalent instance of a different class of problems for which
solvers are already available. The results produced by the solver have then to be trans-
lated back to the original problem.

The three main dedicated algorithms for computing preferred extensions in the liter-
ature [18,27,28] share the same idea based on labellings: starting from an initial default
labelling, a sequence of transitions (namely changes of labels) is applied leading to
the labellings corresponding to preferred extensions. The three algorithms differ in the
initial labelling, the transitions adopted, and the use of additional intermediate labels
besides the three standard ones. The algorithm proposed in [28] has been shown to out-
perform the previous ones and will be therefore taken as the only term of comparison
for this family of approaches.

As to the translation approach, the main proposal we are aware of is the ASPAR-
TIX system [24], which provides an encoding of AF s and the relevant computational
problems in terms of Answer Set Programs which can be processed by a solver like
DLV [26]. Recently an alternative encoding of ASPARTIX using metaASP has been
proposed [22] and showed to outperform the previous version when used in conjunc-
tion with gringo/claspD solver. ASPARTIX is a very general system, whose capabilities
include the computation of preferred extensions, and both versions will be used as ref-
erence for this family of approaches.

3 The PrefSat Approach

The approach we propose, called PrefSat, can be described as a depth-first search in the
space of complete extensions to identify those that are maximal, namely the preferred
extensions. Each step of the search process requires the solution of a SAT problem
through invocation of a SAT solver. More precisely, the algorithm is based on the idea
of encoding the constraints corresponding to complete labellings of an AF as a SAT
problem and then iteratively producing and solving modified versions of the initial SAT
problem according to the needs of the search process. The first step for a detailed pre-
sentation of the algorithm concerns therefore the SAT encoding of complete labellings.

3.1 SAT Encodings of Complete Labellings

A propositional formula over a set of boolean variables is satisfiable iff there exists
a truth assignment of the variables such that the formula evaluates to True. Checking
whether such an assignment exists is the satisfiability (SAT) problem. Given an AF
Γ = 〈A,R〉 we are interested in identifying a boolean formula, called complete la-
belling formula and denoted as ΠΓ , such that each satisfying assignment of the formula
corresponds to a complete labelling. While this might seem a clear-cut task, several syn-
tactically different encodings can be devised which, while being logically equivalent,
can significantly affect the performance of the overall process of searching a satisfying
assignment. For instance, adding some “redundant” clauses to a formula may speed up
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the search process, thanks to the additional constraints. On the other hand, increasing
syntactic complexity might lead to worse performances, thus a careful selection of the
encoding is needed.

In order to explore alternative encodings, let us consider again the requirement of
Definition 4. They can be expressed as a conjunction of 6 terms, i.e. C→

in ∧C←
in ∧C→

out∧
C←

out ∧ C→
undec ∧C←

undec, where

– C→
in ≡ (Lab(a) = in ⇒ ∀b ∈ a−Lab(b) = out);

– C←
in ≡ (Lab(a) = in ⇐ ∀b ∈ a−Lab(b) = out);

– C→
out ≡ (Lab(a) = out ⇒ ∃b ∈ a− : Lab(b) = in);

– C←
out ≡ (Lab(a) = out ⇐ ∃b ∈ a− : Lab(b) = in);

– C→
undec ≡ (Lab(a) = undec ⇒ ∀b ∈ a−Lab(b) �= in ∧ ∃c ∈ a− : Lab(c) =

undec);
– C←

undec ≡ (Lab(a) = undec ⇐ ∀b ∈ a−Lab(b) �= in ∧ ∃c ∈ a− : Lab(c) =
undec).

Let us also define C↔
in ≡ C→

in ∧C←
in , C↔

out ≡ C→
out∧C←

out, C↔
undec ≡ C→

undec∧C←
undec.

The following proposition shows that Definition 4 is redundant, identifying 5 strict
subsets of the above six terms that equivalently characterize complete extensions2.

Proposition 2. Let 〈A,R〉 be an argumentation framework. A total function Lab :
A 	→ {in, out, undec} is a complete labelling iff it satisfies any of the following con-
junctive constraints for any a ∈ A: (i) C↔

in ∧C↔
out, (ii) C↔

out∧C↔
undec, (iii) C↔

in ∧C↔
undec,

(iv) C→
in ∧ C→

out ∧ C→
undec, (v) C←

in ∧ C←
out ∧ C←

undec.

Proof. We prove that any conjunctive constraint is equivalent to C↔
in ∧ C↔

out ∧ C↔
undec,

i.e. the constraint expressed in Definition 4. As to (i), (ii) and (iii), the equivalence is
immediate from the fact that Lab is a function.
As to (iv), the constraint does not include the terms C←

in , C←
out and C←

undec. Here we
prove that C←

in (and, similarly, C←
out and C←

undec) is indeed satisfied. Let us consider
an argument a such that ∀b ∈ a− Lab(b) = out, and let us reason by contradiction
by assuming that Lab(a) �= in. Since Lab is a function, if Lab(a) �= in then either
Lab(a) = out or Lab(a) = undec. If Lab(a) = out, from C→

out ∃b ∈ a− : Lab(b) =
in �= out. If Lab(a) = undec, from C→

undec ∃b ∈ a− : Lab(b) = undec �= out. The
proof for C←

out and C←
undec is similar.

As to (v), the proof follows the same line. We prove that C→
in (and, similarly, C→

out and
C→

undec) is indeed satisfied. Given an argument a such that Lab(a) = in, assume by
contradiction that ∃b ∈ a− : Lab(b) �= out. Since Lab is a function, either Lab(b) =
in or Lab(b) = undec. In the first case, C←

out entails that Lab(a) = out �= in.
In the second case, either C←

out or C←
undec applies, i.e. Lab(a) ∈ {out, undec} thus

Lab(a) �= in. Following the same reasoning line, we can prove that also C→
out and

C→
undec hold. ��
More generally, we aim at exploring all the constraints corresponding to the 64 pos-

sible subsets of the 6 terms above, characterized by a cardinality (i.e. the number of

2 C↔
in ∧ C↔

out and C→
in ∧ C→

out ∧ C→
undec correspond to the alternative definitions of complete

labellings in [14], where a proof of their equivalence is provided.
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Fig. 1. Identifying some weak constraints

terms) between 0 and 6 and partially ordered according to the ⊆-relation. Using ba-
sic combinatorics we get one constraint with cardinality 0 (i.e. the empty constraint),
6 constraints with cardinality 1, 15 constraints with cardinality 2, 20 constraints with
cardinality 3, 15 constraints with cardinality 4, 6 constraints with cardinality 5 and one
constraint with cardinality 6 (i.e. corresponding to Definition 4). The constraints can be
partitioned into three classes:

1. weak constraints, i.e. such that there is an argumentation framework and a labelling
satisfying all their terms which is not complete;

2. correct and non redundant constraints, i.e. able to correctly identify complete la-
bellings and such that any strict subset of their terms is weak;

3. redundant constraints, i.e. able to correctly identify complete labellings and such
that there is a strict subset of their terms which is correct.

The next proposition and corollary provide the complete characterization of the 64 con-
straints in this respect.

Proposition 3. The following 6 constraints are weak: (i) C↔
undec ∧ C→

in ∧ C←
out, (ii)

C↔
undec ∧ C←

in ∧ C→
out, (iii) C↔

out ∧ C→
in ∧ C←

undec, (iv) C↔
out ∧ C←

in ∧ C→
undec, (v) C↔

in ∧
C→

out ∧ C←
undec, (vi) C↔

in ∧C←
out ∧ C→

undec.

Proof. For each constraint, we identify an argumentation framework and a non com-
plete labelling which satisfies the constraint. In particular, referring to Figure 1: for (i),
see the labelling {(a, out)} of AF1; for (ii), see the labelling {(a, in)} of AF2; for (iii),
see the labelling {(a, undec)} of AF1; for (iv), see the labelling {(a, undec), (b, in),
(c, out)} of AF3; for (v), see the labelling {(a, in), (b, undec), (c, undec)} of AF4;
for (vi), see the labelling {(a, undec), (b, out), (c, in)} of AF3.

Note that, in each case of the above proof, the relevant argumentation framework
admits a unique complete labelling which drastically differs from the one satisfying the
weak constraint, i.e. there are arguments labelled in that should be labelled undec or
there are arguments labelled out or undec that should be labelled in.

Corollary 1. All the constraints of cardinality 0, 1, and 2 are weak. Among the con-
straints of cardinality 3, (C→

in ∧C→
out∧C→

undec) and (C←
in ∧C←

out∧C←
undec) are correct and

non redundant, the other 18 constraints are weak. Among the constraints of cardinality
4, (C↔

in ∧C↔
out), (C

↔
out ∧C↔

undec) and (C↔
in ∧C↔

undec) are correct and non redundant, 6
constraints are weak and 6 constraints are redundant. All the constraints of cardinality
5 and 6 are redundant.

Proof. As to the first claim, it is easy to see that any constraint having cardinality 0,
1 and 2 is a strict subset of at least one (weak) constraint introduced in Proposition 3,
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thus it is weak too. As to the constraints having cardinality 3, (C→
in ∧ C→

out ∧ C→
undec)

and (C←
in ∧ C←

out ∧ C←
undec) are correct by Proposition 2, and they are non redundant

since any strict subset has a cardinality strictly lower than 3 (thus it is weak as shown
above). The remaining 18 constraints of cardinality 3 can take one of the following two
forms: (i) 12 constraints include C↔

in , C↔
out or C↔

undec and another single term; (ii) 6
constraints include two “left” and a “right” terms, or vice versa. In both cases, it is easy
to check that any of these constraints is a strict subset of one of the weak constraints
of Proposition 3. As to the constraints of cardinality 4, (C↔

in ∧ C↔
out), (C

↔
out ∧ C↔

undec)
and (C↔

in ∧C↔
undec) are correct by Proposition 2, and they are non redundant since they

do not contain (C→
in ∧ C→

out ∧ C→
undec) nor (C←

in ∧ C←
out ∧ C←

undec), thus any subset is
weak according to the considerations above. Moreover, 6 constraints of cardinality 4
are supersets of (C→

in ∧C→
out ∧C→

undec) and (C←
in ∧C←

out ∧C←
undec) and thus redundant,

while the other 6 constraints are the weak ones identified in Proposition 3. Finally,
all constraints of cardinality 5 and 6 contain at least one of the correct constraints of
Proposition 2, thus they are redundant.

In this work, we consider six constraints, i.e. the 5 correct and non redundant con-
straints as well as C↔

in ∧ C↔
out ∧ C↔

undec as a “representative” of the 13 redundant ones,
leaving the empirical analysis of the other 12 redundant constraints for future work.

The next step is to encode such constraints in conjunctive normal form (CNF), as
required by the SAT solver. To this purpose, we have to introduce some notation. Letting
k = |A| we can identify each argument with an index in {1, . . . k} or, more precisely,
we can define a bijection φ : {1, . . . , k} 	→ A (the inverse map will be denoted as
φ−1). φ will be called an indexing of A and the argument φ(i) will be sometimes
referred to as argument i for brevity. For each argument i we define three boolean
variables, Ii, Oi, and Ui, with the intended meaning that Ii is true when argument i is
labelled in, false otherwise, and analogously Oi and Ui correspond to labels out and
undec. Formally, given Γ = 〈A,R〉 we define the corresponding set of variables as
V(Γ ) � ∪1≤i≤|A|{Ii, Oi, Ui}. Now we express the constraints of Definition 4 in terms
of the variables V(Γ ), with the additional condition that for each argument i exactly
one of the three variables has to be assigned the value True. For technical reasons we
restrict to “non-empty” extensions (in the sense that at least one of the arguments is
labelled in), thus we add the further condition that at least one variable Ii is assigned
the value True. The detail of the resulting CNF is given in Definition 5.

Definition 5. Given an AF Γ = 〈A,R〉, with |A| = k and φ : {1, . . . , k} 	→ A
an indexing of A, the C1 encoding defined on the variables in V(Γ ), is given by the
conjunction of the formulae listed below:

∧

i∈{1,...,k}

(
(Ii ∨Oi ∨ Ui) ∧ (¬Ii ∨ ¬Oi)∧(¬Ii ∨ ¬Ui) ∧ (¬Oi ∨ ¬Ui)

)
(1)

∧

{i|φ(i)−=∅}
(Ii ∧ ¬Oi ∧ ¬Ui) (2)
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∧

{i|φ(i)− �=∅}

⎛

⎝Ii ∨
⎛

⎝
∨

{j|φ(j)→φ(i)}
(¬Oj)

⎞

⎠

⎞

⎠ (3)

∧

{i|φ(i)− �=∅}

⎛

⎝
∧

{j|φ(j)→φ(i)}
¬Ii ∨Oj

⎞

⎠ (4)

∧

{i|φ(i)− �=∅}

⎛

⎝
∧

{j|φ(j)→φ(i)}
¬Ij ∨Oi

⎞

⎠ (5)

∧

{i|φ(i)− �=∅}

⎛

⎝¬Oi ∨
⎛

⎝
∨

{j|φ(j)→φ(i)}
Ij

⎞

⎠

⎞

⎠ (6)

∧

{i|φ(i)− �=∅}

⎛

⎝
∧

{k|φ(k)→φ(i)}

⎛

⎝Ui ∨ ¬Uk ∨
⎛

⎝
∨

{j|φ(j)→φ(i)}
Ij

⎞

⎠

⎞

⎠

⎞

⎠ (7)

∧

{i|φ(i)− �=∅}

⎛

⎝

⎛

⎝
∧

{j|φ(j)→φ(i)}
(¬Ui ∨ ¬Ij)

⎞

⎠ ∧
⎛

⎝¬Ui ∨
⎛

⎝
∨

{j|φ(j)→φ(i)}
Uj

⎞

⎠

⎞

⎠

⎞

⎠ (8)

∨

i∈{1,...k}
Ii (9)

C1 corresponds to the conditions of Definition 4 with the addition of the non-
emptyness requirement. In particular, Formula (1) states that for each argument i one
and only one label has to be assigned. Formula (2) settles the case of unattacked argu-
ments that must be labelled in. Formulas (3), (4), (5), (6), (7) and (8) are restricted to
arguments having at least an attacker, and correspond to C←

in , C→
in , C←

out, C→
out, C←

undec,
C→

undec, respectively. Finally, formula (9) ensures non-emptyness, i.e. that at least one
argument is labelled in.

The six encodings considered in this paper are provided in the following proposition,
whose proof is immediate from Prop. 2.

Proposition 4. Referring to the formulae listed in Definition 5, the following encodings
are equivalent:

C1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)
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Ca
1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (9)

Cb
1 : (1) ∧ (2) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)

Cc
1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (7) ∧ (8) ∧ (9)

C2 : (1) ∧ (2) ∧ (4) ∧ (6) ∧ (8) ∧ (9)
C3 : (1) ∧ (2) ∧ (3) ∧ (5) ∧ (7) ∧ (9)

In particular, C1 corresponds to C↔
in ∧ C↔

out ∧ C↔
undec, Ca

1 to C↔
in ∧ C↔

out, Cb
1 to

C↔
out∧C↔

undec, Cc
1 to C↔

in ∧C↔
undec, C2 to C→

in ∧C→
out∧C→

undec, C3 to C←
in ∧C←

out∧C←
undec.

In Section 4 we evaluate the performance of the overall approach for enumerating
the preferred extensions given the above six encodings. In the next section we describe
the core of our proposal.

Algorithm 1. Enumerating the preferred extensions of an AF

1: Input: Γ = 〈A,R〉
2: Output: Ep ⊆ 2A

3: Ep := ∅
4: cnf := ΠΓ

5: repeat
6: cnfdf := cnf
7: prefcand := ∅
8: repeat
9: lastcompfound := SS(cnfdf)

10: if lastcompfound ! = ε then
11: prefcand := lastcompfound
12: for a ∈ INARGS(lastcompfound) do
13: cnfdf := cnfdf ∧ Iφ−1(a)

14: end for
15: remaining := FALSE
16: for a ∈ A \ INARGS(lastcompfound) do
17: remaining := remaining ∨ Iφ−1(a)

18: end for
19: cnfdf := cnfdf ∧ remaining
20: end if
21: until (lastcompfound ! = ε ∧ INARGS(lastcompfound) ! = A)
22: if prefcand ! = ∅ then
23: Ep := Ep ∪ {INARGS(prefcand)}
24: oppsolution := FALSE
25: for a ∈ A \ INARGS(prefcand) do
26: oppsolution := oppsolution ∨ Iφ−1(a)

27: end for
28: cnf := cnf ∧ oppsolution
29: end if
30: until (prefcand ! = ∅)
31: if Ep = ∅ then
32: Ep = {∅}
33: end if
34: return Ep
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3.2 Enumerating Preferred Extensions

We are now in a position to illustrate the proposed procedure, called PrefSat and listed
in Algorithm 1, to enumerate the preferred extensions of an AF Γ = 〈A,R〉.

Algorithm 1 resorts to two external functions: SS , and INARGS . SS is a SAT solver
able to prove unsatisfiability too: it accepts as input a CNF formula and returns a vari-
able assignment satisfying the formula if it exists, ε otherwise. INARGS accepts as
input a variable assignment concerning V(Γ ) and returns the corresponding set of ar-
guments labelled as in. Moreover we take for granted the computation of ΠΓ from Γ
(using one of the equivalent encodings shown in Proposition 4), which is carried out in
the initialization phase (line 4).

Theorem 1 proves the correctness of Algorithm 1.

Theorem 1. Given an AF Γ = 〈A,R〉 Algorithm 1 returns Ep = EPR(Γ ).

The proof of the above Theorem is omitted due to space limitations, but can be found
in [15]. However we provide an explanation of the algorithm.

The algorithm mainly consists of two nested repeat-until loops. Roughly, the inner
loop (lines 8–21) corresponds to a depth-first search which, starting from a non-empty
complete extension, produces a sequence of complete extensions strictly ordered by set
inclusion. When the sequence can no more be extended, its last element corresponds to
a maximal complete extension, namely to a preferred extension. The outer loop (lines
5–30) is in charge of driving the search: it ensures, through proper settings of the vari-
ables, that the inner loop is entered with different initial conditions, so that the space of
complete extensions is explored and all preferred extensions are found.

Let us now illustrate the operation of Algorithm 1 in detail. Given the correspon-
dence between variable assignments, labellings, and extensions, we will resort to some
terminological liberty for the sake of conciseness and clarity (e.g. stating that the solver
returns an extension rather than that it returns an assignment which corresponds to a
labelling which in turn corresponds to an extension). In the first iteration of the outer
loop, the assignment of line 6 results in cnfdf = ΠΓ in virtue of the initialization
of line 4. Then the inner loop is entered and, at line 9, SS is invoked on ΠΓ . Due to
the non-emptyness condition in ΠΓ , SS returns ε if the only complete extension (and
hence the only preferred extension) of Γ is the empty set. In this case, lines 11–19 are
not executed and the loop is directly exited. As a consequence, prefcand is still empty
at line 22 and also the outer loop is directly exited. The condition of line 31 then holds,
the assignment of line 32 is executed and the algorithm terminates returning {∅}.

Let us now turn to the more interesting case where there is at least one non-empty
complete extension. Then, the first solver invocation returns (non deterministically)
one of the non-empty complete extensions of the framework which is assigned to
lastcompfound at line 9. Then the condition of line 10 is verified and lastcompfound
is set as the candidate preferred extension (line 11). In lines 12–19 the formula cnfdf is
updated in order to ensure that the next call to SS returns a complete extension which is
a strict superset of lastcompfound (if any exists). This is achieved by imposing that all
elements of lastcompfound are labelled in (lines 12–14) and that at least one further
argument is labelled in (lines 15–19). In the next iteration (if any), the modified cnfdf
is submitted to SS . If a solution is found, the inner loop is iterated in the same way: at
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each successful iteration a new, strictly larger, complete extension is found. According
to the conditions stated in line 21, iteration of the inner loop will then terminate when
the call to SS is not successful or when lastcompfound covers all arguments, since
in this case no larger complete extension can be found. If a new preferred extension
has been found, it is added to the output set Ep (line 23). Then, a formula is produced
which ensures that any further solution includes at least an argument not included in the
already found one (lines 25–27). This formula is then added to cnf (line 28). The outer
loop then restarts resetting variables at lines 6–7 in preparation for a new execution of
the inner loop. The inner loop is entered with cnfdf updated at line 6, this ensures that
the call to SS either does not find any solution (and then the algorithm terminates re-
turning Ep as already set) or finds a new complete extension which is not a subset of
any of the preferred extensions already found and is then extended to a new preferred
extension in the subsequent iterations of the loop.

4 The Empirical Analysis

The algorithm described in the previous section has been implemented in C++ and
integrated with two alternative SAT solvers, namely PrecoSAT and Glucose. PrecoSAT
[10] is the winner of the SAT Competition3 2009 on the Application track. Glucose
[3,4] is the winner of the SAT Competition in 2011 and of the SAT Challenge 2012 on
the Application track.

This choice gave rise to the following two systems:

– PrefSat with PrecoSAT (PS-PRE);
– PrefSat with Glucose (PS-GLU).

To assess empirically the performance of the proposed approach with respect to other
state-of-the-art systems and to compare the two SAT solvers on the SAT instances gen-
erated by our approach, we ran a set of tests on randomly generated AF s.

The experimental analysis has been conducted on 2816 AF s that were divided in
different classes, according to two dimensions: the number of arguments, |A| and the
criterion of random generation of the attack relation. As to |A| we considered 8 differ-
ent values, ranging from 25 to 200 with a step of 25. As to the generation of the attack
relation we used two alternative methods. The first method consists in fixing the prob-
ability patt that there is an attack for each ordered pair of arguments (self-attacks are
included): for each pair a pseudo-random number uniformly distributed between 0 and
1 is generated and if it is lesser or equal to patt the pair is added to the attack relation.
We considered three values for patt, namely 0.25, 0.5, and 0.75. Combining the 8 val-
ues of |A| with the 3 values of patt gives rise to 24 test classes, each of which has been
populated with 50 AF s.

The second method consists in generating randomly, for each AF , the number natt

of attacks it contains (extracted with uniform probability between 0 and |A|2). Then the
natt distinct pairs of arguments constituting the attack relation are selected randomly.
Applying the second method with the 8 values of |A| gives rise to 8 further test classes,

3 http://www.satcompetition.org/

http://www.satcompetition.org/
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each of which has been populated with 200 AF s. Since the experimental results show
minimal changes between the sets of AF s generated with the two methods, hereafter
we silently drop this detail.

Further, we also considered, for each value of |A|, the extreme cases of empty attack
relation (patt = natt = 0) and of fully connected attack relation (patt = 1, natt =
|A|2), thus adding 16 “singleton” test classes.

The tests have been run on the same hardware (a Quad-core Intel(R) Xeon(TM) CPU
2.80GHz with 4 GByte RAM and Linux operating system). As in the learning track of
the well-known international planning competition (IPC) [25], a limit of 15 minutes was
imposed to compute the preferred extensions for each AF . No limit was imposed on the
RAM usage, but a run fails at saturation of the available memory, including the swap
area. The systems under evaluation have been compared with respect to the ability to
produce solutions within the time limit and to the execution time (obtained as the real
value of the command time -p). As to the latter comparison, we adopted the IPC
speed score, also borrowed from the planning community, which is defined as follows:

– For each test case (in our case, each test AF ) let T ∗ be the best execution time
among the compared systems (if no system produces the solution within the time
limit, the test case is not considered valid and ignored).

– For each valid case, each system gets a score of 1/(1 + log10(T/T
∗)), where T is

its execution time, or a score of 0 if it fails in that case. Runtimes below 1 sec get
by default the maximal score of 1.

– The (non normalised) IPC score for a system is the sum of its scores over all the
valid test cases. The normalised IPC score ranges from 0 to 100 and is defined as
(IPC/# of valid cases) ∗ 100.

First of all, we ran an investigation on which of the alternative encodings introduced
in Proposition 4 performs best. While there are cases where PS-PRE performs better
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Table 1. Average time (in seconds) for computing the preferred extensions according to the dif-
ferent labellings encoding of Proposition 4 grouped by |A|. In bold the best one.

|A| C1 Ca
1 Cb

1 Cc
1 C2 C3

25 5.97E-03 5.91E-03 5.43E-03 5.31E-03 6.25E-04 3.92E-03

50 3.50E-02 3.39E-02 3.38E-02 3.38E-02 9.74E-03 3.10E-02

75 1.06E-01 1.02E-01 1.05E-01 1.06E-01 2.74E-02 1.02E-01

100 2.76E-01 2.65E-01 2.78E-01 2.91E-01 6.39E-02 2.89E-01

125 5.24E-01 5.03E-01 5.54E-01 5.95E-01 1.15E-01 6.23E-01

150 1.27E+00 1.22E+00 1.39E+00 1.43E+00 2.46E-01 1.60E+00

175 2.06E+00 1.98E+00 2.46E+00 2.82E+00 4.80E-01 3.51E+00

200 5.00E+00 4.89E+00 6.17E+00 7.90E+00 1.38E+00 1.00E+01

using Ca
1 and others where it performs better using C2 (with minimal differences on

average), it is always outperformed by PS-GLU using C2, thus we refer to PS-GLU
to illustrate the difference of performance induced by the alternative encodings. In Fig-
ure 2, we compare the empirical results obtained by executing PS-GLU, and Table 1
summarises the average times. It is worth to mention that PS-GLU always computed
the preferred extensions irrespective of the chosen encoding, therefore the differences
in the IPC scores are due to different execution times only. As we can see, the overall
performance is significantly dependent on the set of conditions used, where the greatest
performance (considering the generated AF s) is C2, and then in sequence, generally
Ca

1 , C1, Cb
1 , Cc

1 and C3, although we have empirical evidences [15] showing that on
dense graphs there are situations where C3 performs better than C1.

In order to evaluate the overall performance of Algorithm 1 (cf. Section 3), let us
compare PS-PRE and PS-GLU both using encoding C2 with the other three notable
systems at the state of the art:

– ASPARTIX with dlv as ASP solver (denoted as ASP);
– ASPARTIX-META with gringo as grounder and claspD as ASP solver (de-

noted as ASP-META) as presented in [22];
– the system presented in [28] (NOF).

None of five (considering also our PS-GLU and PS-PRE) systems uses parallel
execution.

Concerning the ability to produce solutions, Figure 3 summarizes the results con-
cerning all test cases grouped w.r.t. |A|. PS-GLU, PS-PRE (both exploiting C2 encod-
ing), and ASP-META were able to produce the solution in all cases. On the other hand,
the success rate of both ASP and NOF decreases significantly with the increase of |A|.
We observed that the failure reasons are quite different: ASP reached in all its failure
cases the 15 minutes time limit, while NOF ran out of memory before reaching the time
limit. In the light of this observation, NOF’s evaluation has certainly been negatively
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affected by the relatively scarce memory availability of the test platform, but, from an-
other perspective, the results obtained on this platform give a clear indication about the
different resource needs of the compared systems.

Table 2. Average time (in seconds) for computing the preferred extensions needed by the five
systems grouped by |A| on AF s for which all the systems computed correctly the preferred
extensions. In bold the best one.

|A| ASP ASP-META NOF PS-PRE PS-GLU

25 7.78E-02 2.70E-01 3.24E-01 3.87E-03 6.27E-04

50 3.32E-01 1.00E+00 5.43E-01 2.32E-02 1.04E-02

75 1.03E+00 2.30E+00 1.18E+00 5.98E-02 2.96E-02

100 3.75E+00 4.33E+00 3.81E+00 1.36E-01 6.84E-02

125 1.63E+01 6.95E+00 8.50E+00 2.46E-01 1.24E-01

150 3.16E+01 1.16E+01 1.47E+01 4.59E-01 2.24E-01

175 6.65E+01 1.61E+01 2.64E+01 6.65E-01 3.21E-01

200 1.24E+02 2.27E+01 5.02E+01 1.02E+00 4.79E-01

Turning to the comparison of execution times, Figure 4 presents the values of nor-
malised IPC considering all test cases grouped w.r.t. |A|, while Table 2 shows the av-
erage time needed by the five systems for computing the preferred extension. Both
PS-PRE and PS-GLU performed significantly better (note that the IPC score is log-
arithmic) than ASP and NOF for all values of |A| > 25, and the performance gap
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increases with increasing |A|. Moreover, PS-GLU is significantly faster than PS-PRE
for |A| > 175 (again the performance gap increases with increasing |A|). ASP and
NOF obtained quite similar IPC values with more evident differences at lower values
of |A|. Surprisingly, ASP-META performed worse that its older version ASP (and also
of NOF) on frameworks with number of arguments up to 100 (cf. Table 2). Although
this may seem in contrast with results provided in [22], it has to be remarked that the
IPC measure is logarithmic w.r.t. the best execution time, while [22, Fig. 1] uses a lin-
ear scale, and this turned to be a disadvantage when analysing the overall performance.
Indeed, the maximum difference of execution times between ASP and ASP-META ex-
ecuted on frameworks up to 100 arguments is around 1.2 seconds, while the axis of
ordinate of [22, Fig. 1] ranges between 0 and 300, thus making impossible to note this
difference.

5 Comparison with Related Works

The relationship between argumentation semantics and the satisfiability problem has
been already considered in the literature, but less effort has been devoted to the study
of a SAT-based algorithm and its empirical evaluation. For instance, in [9] three ap-
proaches determining semantics extensions are preliminary described, namely the equa-
tional checking, the model checking, and the satisfiability cheking of which three dif-
ferent formulations for, respectively, stable extension, admissible set, and complete ex-
tension are presented from a theoretical perspective, without providing any empirical
evaluation.

More recently, in [11], and similarly in [1], relationships between argumentation
semantics and constraint satisfaction problems are studied, with different formulation
for each semantics or decision problem. In particular, [1] proposes an extensive study of
CSP formulations for decision problems related to stable, preferred, complete, grounded
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and admissible semantics, while [11] shows an empirical evaluation of their approach
through their software ConArg, but for conflict-free, admissible, complete and stable
extensions only.

Probably the most relevant work is [23], where a method for computing credulous
and skeptical acceptance for preferred, semi-stable, and stage semantics has been stud-
ied, implemented, and empirically evaluated using an algorithm based upon a NP-
oracle, namely a SAT solver. Differently from our work, this approach is focused on
acceptance problems only and does not address the problem of how to enumerate the
extensions. As we do believe that the approach we showed in this paper can be eas-
ily adapted for dealing with both credulous acceptance (we have just to force the SAT
solver to consider a given argument as labelled in) and skeptical acceptance (we have
just to check whether a given argument is in all the extensions), we have already started
a theoretical and empirical investigation on this subject. Recently, a similar approach us-
ing SAT techniques in the context of semi-stable and eager semantics has been provided
in [30]. A detailed comparison with this approach is already planned and represents a
important future work.

Finally, as the computation of the preferred extension using [14]’s labelling approach
requires a maximisation process, at a first sight this seems to be quite close to a MaxSAT
problem [2], which is a generalisation of the satisfiability problem. The idea is that
sometimes some constraints of a problem can not be satisfied, and a solver should try to
satisfy the maximum number of them. Although there are approaches aimed at finding
the maximum w.r.t. set inclusion satisfiable constraints (i.e. nOPTSAT4), the MaxSAT
problem is conceptually different from the problem of finding the preferred extensions.
Indeed, for determining the preferred extensions we maximise the acceptability of a
subset of variables, while in the MaxSAT problem it is not possible to bound such a
maximisation to a subset of variables only. However, a deeper investigation that may
lead to the definition of argumentation semantics as MaxSAT problems is already en-
visaged as a future work.

6 Conclusions

We presented a novel SAT-based approach for preferred extension enumeration in ab-
stract argumentation and assessed its performances by an empirical comparison with
other state-of-the-art systems. The proposed approach turns out to be efficient and to
generally outperform the best known dedicated algorithm and the ASP-based approach
implemented in the ASPARTIX system. The proposed approach appears to be applica-
ble for extension enumeration of other semantics (in particular stable and semi-stable)
and this represents an immediate direction of future work. As to performance assess-
ment, we are not aware of other systematic comparisons concerning computation ef-
ficiency in Dung’s framework apart the results presented in [28], where different test
sets were used for each pairwise comparison, with a maximum argument cardinality
of 45. The comparison provided in [22] is aimed just at showing the differences be-
tween the two different encoding of ASPARTIX. Java-based tools mainly conceived for

4 www.star.dist.unige.it/˜emanuele/nOPTSAT/

www.star.dist.unige.it/~emanuele/nOPTSAT/
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interactive use, like ConArg [11] or Dungine [29], are not suitable for a systematic effi-
ciency comparison on large test sets and could not be considered in this work. It can be
remarked however that they adopt alternative solution strategies (translation to a CSP
problem in ConArg, argument games in Dungine) whose performance evaluation is an
important subject of future work.

In addition, we will consider other procedures for generating random argumentation
frameworks, as well as argumentation frameworks derived from knowledge bases. As
pointed out by one of the reviewer, these derived argumentation frameworks can be in-
finite: in these case, providing a suitable algorithm using the most recent approaches for
representing infinite argumentation frameworks [8] is an interesting avenue for future
research.

We are also currently working to integrate the proposed approach into the SCC-
recursive schema introduced in [7] to encompass several semantics (including grounded,
preferred and stable semantics). More specifically, the approach proposed in this paper
can be applied to the sub-frameworks involved in the base-case of the recursion: since
such local application decreases the number of variables involved, we expect a dramatic
performance increase.

Acknowledgement. The authors thank the anonymous reviewers for their helpful com-
ments. In addition, they thank Samir Nofal for kindly providing the source code of his
algorithm.
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