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Preface

Recent years have witnessed a rapid growth of interest in formal models of
argumentation and their application in diverse sub-fields and domains of appli-
cation of AI, including reasoning in the presence of inconsistency, non-monotonic
reasoning, decision making, inter-agent communication, the Semantic Web, grid
applications, ontologies, recommender systems, machine learning, neural net-
works, trust computing, normative systems, social choice theory, judgment ag-
gregation and game theory, and law and medicine. Argumentation thus shows
great promise as a theoretically grounded tool for a wide range of applications.

The Second International Workshop on the Theory and Applications of For-
mal Argumentation (TAFA 2013) aimed to promote further investigations into
the use of formal argumentation and links with other fields of AI. Co-located
with the International Joint Conference on Artificial Intelligence (IJCAI 2013)
in Beijing, China, TAFA 2013 built on the success of TAFA 2011 with a range of
strong papers submitted by authors from Europe, Japan, and China. The work-
shop received 22 submissions, of which 15 were accepted for presentation. The
workshop was attended by over 20 participants, and the presentations spawned
many lively and thought-provoking discussions.

Argumentation theory centers around the idea that arguments authored by
human users or constituted as premises entailing some conclusion in a given
logic can be organized into directed graphs such that the directed links between
arguments represent relations of attack and support etc. Such graphs can also
be annotated with additional information to capture, for example, argument
strength, preferences, or degrees of belief, and can be processed so as to evalu-
ate the winning arguments. The following proceedings include papers identifying
how properties of these graphs can impact on the computational complexity of
evaluating the winning arguments, as well as specific computational techniques
for evaluating graphs. A distinguishing feature of a number of the workshop
papers is the development of formal models based on empirical observations of
human dialogue and debate; for example, in social networks in which humans
exchange and vote on opinions and assess the extent to which any given opinion
is a valid counter to (attack on) another. New insights into how computational
models can inform and indeed enhance the rationality of discourse and debate
among humans are also presented. A key feature of argumentation is its wide
range of applicability in sub-areas of AI, and a number of papers report on ad-
vances in these areas. For example, preliminary work on correspondences between
argumentative and decision theoretic principles are introduced, and research on
the use of argumentation to resolve conflicts among conflicting norms is included.
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Other papers report on the use of arguments to augment and improve the per-
formance of learning algorithms, and on the evaluation and categorization of
arguments exchanged in dialogues observed between human experts.

The editors would like to thank the members of the Program Committee and
the additional reviewers for their efforts in reviewing submissions to TAFA 2013.

December 2013 Elizabeth Black
Sanjay Modgil

Nir Oren
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Revisiting Abstract Argumentation Frameworks

Sanjay Modgil

Department of Informatics, King’s College London
sanjay.modgil@kcl.ac.uk

Abstract. This paper argues that many extensions of Dung’s framework incor-
porating relations additional to binary attacks, are best viewed as abstractions
of human rather than computational models of reasoning and debate. The pa-
per then discusses how these additional relations may be reified into object level
knowledge, thus enabling reconstruction of the extended framework as a Dung
framework, and providing rational guidance for further reasoning and debate.

1 Introduction

In Dung’s seminal theory of abstract argumentation [9], Dung frameworks (DFs) are
directed graphs in which the arguments (nodes) are related to other arguments by binary
attack relations (arcs). A ‘calculus of opposition’ is then applied to a framework to
determine sets of justified arguments (extensions). Dung was explicit in considering
the arguments and conflict based attacks as being defined, or ‘instantiated’, by sets
of formulae (theories) in some formal logic, so that the claims of justified arguments
then identify the inferences that follow from the instantiating theories. In this way, the
inference relations of existing non-monotonic logics have been given argumentation
based characterisations [5,9].

Dung’s abstract theory was subsequently extended in a number of directions. For
example, some works formalise collective attacks from sets of arguments [13]. [11]
included arguments that attack attacks, while [2] then generalised this idea to recur-
sive attacks on attacks. Other works augmented DFs with support relations between
arguments (e.g.,[1,14]). While some of the aforementioned works explicitly considered
logical instantiations of their frameworks (e.g., [11]), many did not. This paper reviews
the aforementioned extended frameworks, and then: 1) argues that they should more
properly be studied as networks relating locutions as they are used in everyday reason-
ing and debate; 2) proposes a methodology for reconstructing these networks as Dung
frameworks so as to facilitate rational reasoning and debate, and; 3) suggests ways to
address the challenges that arise when obtaining these reconstructions.

The paper is organised as follows. Section 2 reviews Dung’s theory of argumenta-
tion and the ASPIC+model of arguments and attacks [12,16]. The latter is reviewed
as reference to the internal structure of arguments will prove crucial in developing the
above mentioned argument and methodology, and ASPIC+describes a general account
of the structure of arguments that has been shown to capture many existing approaches
to argumentation. Sections 3.1 and 3.2 then review the above mentioned extensions,
and argue that the additional abstract relations that many of these frameworks introduce

E. Black, S. Modgil, and N. Oren (Eds.): TAFA 2013, LNAI 8306, pp. 1–15, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 S. Modgil

are not warranted by logical instantiations. This is because they either fail to meaning-
fully abstract from underlying logical concepts, or because the interpretation of these
additional relations suggest that the logical information that gives rise to them can be
used to reconstruct Dung frameworks, without need for recourse to the additional rela-
tions. This critique then leads to the development of two lines of argument explored in
Sections 3.3 and 3.4:

1. Firstly, if the underlying logical instantiations of extended frameworks give rise
to Dung frameworks that preserve the intended meaning of the additional abstract
relations, then acceptability semantics defined for the extended frameworks should
yield justified arguments that correspond to the justified arguments yielded by the
reconstructed Dung frameworks. I show that in some cases these correspondences
fail.

2. Secondly, extended frameworks should more properly be motivated as networks
that relate locutions as they are used and related in everyday reasoning and debate.

These two lines of argument then lead to Section 4s proposal that these networks
be mapped to a computational model of structured arguments - the ASPIC+model -
and subsequently reconstructed as Dung frameworks in which the evaluated status of
arguments provides feedback to users. In generating these reconstructions, one needs
to ‘reifiy’ the abstract relations into the object level knowledge that these relations im-
plicitly encode. However, multiple such reifications, and thus multiple reconstructed
Dung frameworks, are possible. I therefore conclude by suggesting how reasoning and
dialogue can be guided in order to resolve uncertainties as to what are the intended
reifications. Users can be prompted to reveal the implicit knowledge encoded in the
relations they assert as holding, and in so doing both enable reconstruction of Dung
frameworks, and render such knowledge explicit and available for use in further rea-
soning and debate.

2 Background

2.1 Dung’s Theory of Argumentation

A Dung argumentation framework (DF ) is a pair (A,R), where R ⊆ A × A is an
attack relation on the argumentsA. Then:

Definition 1. S ⊆ A is conflict free iff no two arguments in S attack each other. For
any S ⊆ A, X is acceptable w.r.t. S iff for every Y that attacks X , there is a Z ∈ S
that attacks Y (in which case Z is said to defend or ‘reinstate’ X). Then for any conflict
free S ⊆ A, S is :

– an admissible extension if every argument in S is acceptable w.r.t. S;
– a complete extension if it is admissible and every argument acceptable w.r.t. S is in

S;
– a preferred extension if it is a maximal under set inclusion complete extension;
– the grounded extension if it is the minimal under set inclusion complete extension;
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– a stable extension if it is preferred. and every argument not in S is attacked by an
argument in S.

The justified arguments of (A,R) under semantics T ∈ {preferred, grounded, stable}
are those arguments in every T extension.

2.2 Arguments and Attacks in the ASPIC+Framework

The remainder of this paper assumes arguments are structured as in the ASPIC+ frame-
work [12,16]; i.e., as trees whose leaf nodes are premises in a given knowledge base,
and whose non-leaf nodes N are either defeasible or strict inference rules of the form
φ1, . . . , φn−1 ⇒ φn, respectively φ1, . . . , φn−1 → φn, where for i = 1 . . . n−1, N has
a child node Ni that is either a premise φi, or a strict or defeasible rule with conclusion
φi. Note that a premise (node) is itself an argument.

A′ is then a sub-argument of A if A′ is a sub-tree of A (including the case that A′

is a leaf node (premise)). Note that A is a sub-argument of itself, whereas proper sub-
arguments of A are sub-arguments of A excluding A itself. For simplicity I will in the
remainder of this section only consider arguments with defeasible rules. Figure 1 shows
four arguments B,C,D and E. Note the argument B with sub-arguments B,B1, B2,
and B3.

The claim of an argument A, denoted Claim(A), is φ if A’s root node is a rule with
consequent φ, or A is a single node (premise) φ. We also say that A forward-extends
B on φ, equivalently B backward extends A on φ, if B is a proper sub-argument of A,
and Claim(B) is φ. Finally, Concs(A) denotes the claims of all sub-arguments of A.
For example, in Figure 1, Concs(B) = {f, b, w, q}.
Definition 2. A attacks B on φ, if Claim(A) is the negation of some φ such that:

• φ ∈ Concs(B) (i.e., φ is a premise or consequent of a defeasible rule in B), or:

• φ is a name (a constant in the object level language) assigned to a defeasible inference
rule in B (A is then said to ‘undercut’ B ).

Figure 1 shows examples of attacks, from E, C and D, to B. Note that [12,16]
prohibits attacks an any φ that is the conclusion of a strict inference rule, since as first
shown in [7], this leads to violation of rationality postulates for argumentation.

The generality of ASPIC+accounts for this paper’s assumption that arguments and
attacks conform to the ASPIC+model. Note that one is free to choose the strict and de-
feasible inference rules, and the object level language in which wff φ are expressed. For
example defeasible rules may be domain specific inference rules such as bird(X) ⇒
fly(X) (akin to Reiter’s default rules) so that given the premise bird(tweety) an ar-
gument with root node bird(tweety) ⇒ fly(tweety) claims fly(tweety). On the
other hand, such rules may be domain independent. For example defeasible modus po-
nens: φ, φ � ψ ⇒ ψ (� being the defeasible implication connective in the object
level language). Then, given premises bird(tweety), bird(X) � fly(X), we have
an argument claiming fly(tweety), with root node: ‘bird(tweety), bird(tweety) �
fly(tweety)⇒ fly(tweety)’ .

Note that [12,16] also generalise the notion of negation allowing one to specify that
a wff is a contrary of another wff (¬ is then a special case, i.e., φ is a contrary of ψ
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r1 :  b   ⇒ f

r2 :  w, q     ⇒ b

w q 

B

B1

B2 B3

r3 :  p   ⇒     f¬
p

r4 :  p   ⇒¬
p

r1

w¬

CD

E

Fig. 1. Propositions b, f, w, q, p respectively denote that Tweety is a bird, f lies, has wings, quacks,
and is a penguin. ri, i = 1 . . . 4, are propositions naming rules

whenever ψ is of the form ¬φ or φ is of the form ¬ψ). It is this notion of contrary that
[12,16] refer to when defining attacks. [12,16] then show that many logical instantia-
tions of Dung frameworks and other general structured approaches to argumentation can
be formalised as instances of the ASPIC+framework, in the sense that the arguments
and attacks they define are special cases of ASPIC+arguments and attacks. For exam-
ple, classical logic instantiations of Dung frameworks, where premises may be taken
from a knowledge base of classical wff, and arguments are constructed using only strict
classical inference rules (e.g., modus ponens etc).

3 Abstract Argumentation Frameworks: Acceptability Semantics
and Instantiations

This section reviews examples of abstract argumentation frameworks (AAF s) that ex-
tend DF s with support and variants of binary attack relations. I will assume that, as
in the case of DF s, these AAF s are instantiated by underlying logical theories. I then
argue that in cases where abstract level relations are meaningful abstractions of under-
lying logical relations, one can reconstruct DF s from the underlying theories. I then
conclude that : 1) the reconstructions shed light on how evaluation of the justified ar-
guments in the AAF s may need to be modified; 2) AAF s should more properly be
viewed as modelling human reasoning and debate, rather than as abstractions of under-
lying theories in some formal logic.

3.1 Support Relations

I begin by considering frameworks with support relations. In particular, [1]’s bipolar ar-
gumentation framework (BAF) is of the form (A,Ratt,Rsupp), whereRsupp is a sup-
port relation andRatt an attack relation ([1] callRatt a ‘defeat relation’,). The question
arises as to what these support relations abstract from, in the sense that if A attacks B on
φ, then the attack abstracts from the object level logical relationship of negation relating
Claim(A) and φ ? [1] explicitly answer this question for specific kinds of arguments of
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the form (H,h) where H is a set of consistent classical wff (premises) that minimally
(under set inclusion) classically entail h. Then (H,h) supports (H ′, h′) if h ∈ H ′ or
h = h′. Generalising this notion to ASPIC+arguments:

A supports B on φ if Claim(A) = φ, φ ∈ Concs(B). S1

r1 :  b   ⇒ f

r2 :  w, q     ⇒ b

w q

B

B1

B2 B3

r1 :  b   ⇒ f

r2 :  w, q     ⇒ b

q

B1*

B1

B3

r1 :  b   ⇒ f

r2 :  w, q     ⇒ b

w q

B

B1

A

r1 :  b   ⇒ f

r3 :  n, k     ⇒ b

n k

B2*

A

r3 :  n, k     ⇒ b

n k

r2 :  w, q     ⇒ b

B1'

r2 :  w, q     ⇒ b

w 

B1'*

w

A

h      w

A

⇒
h

h      w

A

⇒
h

a)

b)

c)

Fig. 2. Support relations are represented as lines with swollen ends. Note that n, k, h respectively
denote that Tweety builds nests, has a beak, and is feathered.

Figures 2-a) and 2-b) show ASPIC+arguments A supporting B on w and b respec-
tively. That S1 is the intended interpretation of support is further testified to by the moti-
vating example dialogues in [1], e.g., in Example 6 in [1], F = ‘I concerns a problem of
public health, so I is important information’ supports A = ‘I is important information,



6 S. Modgil

so we must publish it’. However, this interpretation of support then implies that if X
supports Y on φ, then X backward extends Y on φ to define another argument Y ∗. This
is illustrated in Figures 2-a) and 2-b) : A backwards extends B on w and b respectively,
so that one can ‘reconstruct’ arguments B1∗ and B2∗. In other words, given the same
logical information, one can instantiate a DF consisting only of arguments and binary
attacks.

Consider another example of support relations in [15], in which the ‘argument’ X =
“The bridge should be built where slow water exists without mud (i.e.at x,y)” is said to
be supported by the argument B = “Our historic survey says that slow water exists at
coordinates x,y”. Firstly, note that X is a rule rather than an argument, with consequent
“The bridge should be built at x,y” and antecedent “slow water exists without mud at
x,y” holds. Then B supports X in the sense that X extended with the premise B, on its
antecedent, yields an argument. This suggest a second distinct notion of support :

A supports B on φ if Claim(A) = φ, φ is in the antecedent of a rule in B. S2

Figure 2 c) illustrates S2-support: A supports B1′ on w, so that one can reconstruct
B1′∗. The example shows that s2-support does not always licence the reconstruction of
arguments from the underlying logical information; B1′∗ is not an argument, rather it
is a rule in need of a supporting argument (for q). On the other hand, in [15]’s example
above, the rule is ‘fully supported’ on its premise; argument B’s support of X enables
reconstruction of an argument.

3.2 Attack Relations

[13] and [4] extend DFs with collective attacks. In particular, in [13], individual argu-
ments can be attacked by non-empty sets of arguments:

Definition 3. A Dung framework with collective attacks (AFc) is a tuple (A,Rc) where
A is a set of arguments, andRc ⊆ (2A \ ∅)×A . Then:

– S ⊆ A is conflict free iff ¬∃S′ ⊆ S,X ∈ S such that (S′, X) ∈ Rc.
– X is acceptable w.r.t. S ⊆ A iff ∀A′ ⊆ A such that (A′, X) ∈ Rc, ∃S′ ⊆ S such

that (S′, Y ) ∈ Rc for some Y ∈ A′.

The extensions of an AFc are then defined as in Definition 1. [13]’s motivating ex-
ample considers arguments A1 = Joe does not like Jack and A2 = There is a nail in
Jack’s antique coffee table collectively attacking B = Joe has no arms, so Joe cannot
use a hammer, so Joe did not strike a nail into Jack’s antique coffee table. Quoting from
[13], A1 and A2 “jointly provide a case for the conclusion that Joe has a struck a nail
into Jack’s antique coffee table”. This implies that the collective attack is an abstrac-
tion of a rule relating the claims of A1 and A2 to the negation of the claim of B. This
suggests we can reconstruct a DF , given that A1 and A2 can be extended with a rule
‘If Joe does not like Jack and there is a nail in Jack’s antique coffee table then Joe has
a struck a nail into Jack’s antique coffee table’ to define an argument A that directly
attacks B on its conclusion. In general:
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r1 :      ⇒A1 j

A2 n

¬h ¬ s

¬a 

r2 :      ⇒j n, s

j n

      j n, s

j n

→

r2 :      ⇒j n ,, s

j n j    n       s  v ~

j    n       s  v ~

B

A3

A4

A5

r3 :      ⇒¬a ¬ h

Joe does not like Jack (Lj)

There is a nail in Jack's 
antique coffee table (Ln)

Joe has no arms (La)

Joe cannot use a hammer (Lh)

Joe did not strike a nail into 
Jack's antique coffee table (Ls)

G  C 

P  

bob likes skiing

bob likes skiing         r   >  r
  

g c⇒r   :pN  

Pb)

a)

Fig. 3. a) Natural language representation of locutions Lj, Ln,La, Lh, Ls involved in a collec-
tive attack are shown, with the corresponding logical formulation of the collective attack from
{A1, A2} to B, and reconstructed arguments A3, A4 and A5 based on the collective attack. b)
shows a preference attack on an attack (P), and a recursive attack on an attack (N).

Definition 4. Let X1, . . . , Xn collectively attack Y on φ (φ ∈ Concs(Y ) or φ names
a defeasible inference rule in Y ). Then:

reconc({X1, . . . , Xn}, φ) is the argument X , whose root node is the defeasible rule
Claim(X1), . . . ,Claim(Xn) ⇒ ¬φ, backward extended by arguments X1, . . . , Xn,
such that X attacks Y on φ.

Figure 3-a) illustrates, showing how A3 = reconc({A1, A2},¬s) is backward ex-
tended by A1 and A2. A3 then attacks B on ¬s.

While [13] acknowledge that collectively attacking arguments can be extended to
single arguments which then attack their target, they maintain that collective attacks are
still warranted by logical instantiations, since, referring to the example in Figure 3-a),
it may be that A1 or A2 are attacked, but A3 is not attacked. But a structured account
of argumentation shows this cannot be the case. Recalling Definition 2, an argument is
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attacked if any of its sub-arguments are attacked, so that if A1 or A2 are attacked then
A3 is attacked (on its sub-arguments A1 or A2).

Now note that for frameworks with support relations, the logical information yielding
a BAF will yield exactly one reconstructed DF . However, the logical information
yielding an AFc may yield many DF s. This is because the same collective attack may
abstract from different underlying logical instantiations. For example, we have thus
far ignored arguments containing strict inference rules, but reconc({X1, . . . , Xn}, φ)
might be defined to yield arguments with top nodes Claim(X1), . . . ,Claim(Xn) →
¬φ (argument A4 in Figure 3-a)) or arguments with additional premises together with
domain independent inference rules (A5 in Figure 3-a)). I comment further on this issue
in Section 4.

A number of works extend DF s with attacks on attacks. In [11]’s Extended Argu-
mentation Frameworks (EAFs), an argument P claiming a preference for G over its
attacker C, attacks the attack from C to G, so that the success of C’s attack on G is
denied, and G is justified (Fig.3-b). For example, G =‘Bob want to go to Gstaad since
there is a last minute offer for Gstaad’ symmetrically attacks C = ‘Bob want to go to
Cuba since there is a last minute offer for Cuba’. Then P expresses Bob’s preference for
G over C given that Bob likes skiing and so prefers ski resorts.[11] explicitly studied
logical instantiations of EAFs, where arguments expressing preferences are instantiated
by premises and rules concluding priorities over rules in the arguments over which the
preferences are claimed. For example, P might be an argument with the premise ‘Bob
likes skiing’ and defeasible rule rp concluding that the rule rg in G has greater priority
than the rule rc in C.

[2] then generalised EAFs to recursive attacks on attacks. For the example in Figure
3-b), [2] suggest that N = ‘there have been no snowfalls in Gstaad for a month so it is
not possible to ski in Gstaad’ attacks the preference attack from P . However, what is
not apparent is what kind of logical instantiation would yield such a recursive attack,
since (unlike P ) N is supposedly claiming a preference for an attack C → G over the
argument P . Indeed, it might seem more intuitive to consider N as claiming ¬rp, so
undercutting P on its rule, since not being able to ski in Gstaad denies the defeasible
inference step from Bob likes skiing, to a preference for (the rule in) G over (the rule
in) C. Finally, note that while recursive attacks do not seem well motivated when con-
sidering logical instantiations, I will in Section 3.4 suggest an alternative motivation.

3.3 Acceptability Semantics for Abstract Argumentation Frameworks

The previous section’s discussion suggests that if AAF s such as bipolar frameworks
(BAF s) and frameworks with collective attacks (AFcs) can be reconstructed as Dung
frameworks, then one would expect a correspondence between the status of arguments
in the AAF s and their status in the reconstructed DF s.

Firstly, let us examine how arguments are evaluated in [1]’s BAFs. If A supports
B, and B symmetrically attacks C, then the preferred extensions defined in [1] are
{A,B} and {C}, since [1] suggest that since A supports B and B attacks C then there
is a supported attack from A to C, and so {A,C} is not conflict free. Suppose now
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we have the ASPIC+arguments1 A = [p; p ⇒ q], B = [q; q ⇒ t], C = [¬t], where
A supports B on the premise q. Then we can reconstruct the additional argument B∗

=[p; p⇒ q; q ⇒ t] which also symmetrically attacks C. The preferred extensions of the
reconstructed DF are {A,B,B∗} and {C,A} (ignoring arguments [p] and [q] which
make no difference to the analysis). Thus the expected correspondence does not hold,
since A is justified in in the reconstructed DF , but A is not justified in the original
BAF . The discrepancy arises because it seems that in the abstract BAF , A is assumed
to support B on its claim, in which case a correspondence would then hold, since in
the reconstructed DF , A would symmetrically attack C. This illustrates that further
consideration needs to be given to the evaluation of arguments in a BAF , and that
such evaluation needs to account for the structure of arguments and targets of support
relations (ie., the sub-arguments that are supported).

Consider now DF s reconstructed from AFcs. Once again there may be a discrep-
ancy between the justified arguments of the AFc and its reconstructed DF . Recall that
any given AFc may yield more than one reconstruction, as a collective attack may be
an abstraction of a number of different logical instantiations. In Fig.3, {A1, A2} asym-
metrically attacks B, and since no arguments attack A1 or A2 then B is not in an ad-
missible extension of the AFc. But if we reconstruct with the argument A3, then since
A3 and B have contradictory claims obtained by application of defeasible rules, they
symmetrically attack (by Definition 2), and so B can defend itself and is in an admis-
sible extension. Furthermore, since B attacks A3, then in the corresponding AFc, one
would expect that B attacks {A1, A2}, but attacks on sets of arguments are not allowed
in [13]. If instead we assume the reconstructed argument A4 then we would then have
that A4 asymmetrically attacks B (recall from Section 2.2 that attacks cannot target the
conclusions of strict rules), and so the desired correspondence would obtain.

To conclude, I have argued that acceptability semantics for AAF s need to account
for the structure of arguments, such that a correspondence obtains with the acceptability
semantics of the associated reconstructed DF s.

3.4 Abstract Locution Networks

In Sections 3.1 and 3.2, I argued that relations additional to binary attacks are not well
motivated under the assumption that AAF s are instantiated by logical theories, in the
sense that the same logical information gives rise to DF s. In what follows I argue that
they are more properly motivated under the assumption that they are required to model
the way humans reason and debate.

As stated in Section 1, non-monotonic inference relations can be characterised in
terms of the claims of justified arguments, whose evaluation is based on the fundamen-
tal principle of reinstatement (Definition 1). It is the simplicity and familiarity of these
principles in everyday reasoning and dialogue that partly accounts for the continuing
impact of Dung’s theory, and its envisaged role as a uniform bridging formalism for in-
tegrating computational and humans modes of reasoning and dialogue in the presence
of uncertainty and conflict [18]: computational reasoning processes can be informed by

1 Henceforth ASPIC+arguments may be represented as square brackets enclosing premises and
rules separated by semi-colons.
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argumentation-based characterisations of human reasoning and dialogue, and human
reasoning and dialogue can be informed by argumentation-based characterisations of
computational reasoning. To facilitate this bridging role requires development of ar-
gumentation models that account for human reasoning and dialogue as conducted in
practice. This suggests a more constructive reformulation of the critique that AAF s
do not adequately motivate abstract concepts and relations additional to binary attacks,
in terms of formal logical instantiations. Rather, AAF s should be studied under the as-
sumption that they are motivated by requirements for modelling relations between locu-
tions as used in every day reasoning and debate. This is of course implied by the works
reviewed in this paper, in which motivating and illustrative examples are primarily taken
from every-day dialogue and reasoning. [15]’s example in Section 3.1 illustrates the
use of support to account for locutions that do not always consist of fully formed ar-
guments, but may instead be rules, so that arguments are implicitly constructed piece-
meal by possibly different interlocutors supplying different elements of an argument.
More generally, humans often make statements in support of other statements, as wit-
nessed by numerous natural language examples in [1,14,15] and other works utilising
support. Furthermore, [13] explicitly motivate collective attacks for modelling human
dialogue, giving examples of locutions submitted by different interlocutors, that com-
bine to define collective attacks. However, I suggest that this motivation for AAF s is
under-appreciated by the research community, and will in what follows suggest further
implied research directions.

To begin with, I propose that AAF s should be viewed as special cases of Abstract
Locution Networks (ALNs), in which the nodes are locutions related by binary attacks,
support relations, collective attacks, attacks on attacks, recursive attacks e.t.c. Note that
abstract dialectical frameworks (ADFs) [6] might be considered as a candidate formal-
ism for such networks, but the technical machinery associated with ADFs suggests that
they are unsuitable candidates for modelling reasoning and dialogue as conducted in
practice2.

In order to now motivate future research directions, consider a software tool for sin-
gle users or users engaged in dialogue, that enables: 1) entry of locutions that can in
turn be linked to other locutions so as to structure rules and arguments; 2) linking of
individual locutions, rules and arguments to denote relationships of support and various
kinds of attack.

4 From Abstract Locution Networks to Computational Knowledge

The above described ‘ALN tool’ would contribute to the plethora of existing argument
visualisation and mapping tools [10]. A key research goal is to then map the arguments
diagrammed in these tools to computational models of argument, so that they can can be
evaluated under Dung’s various semantics [3], and thus inform reasoning and debate by:
ensuring that the assessment of arguments is formally and rationally grounded; enabling

2 Also note that Section 3.3’s argument that acceptability semantics for AAF s needs to account
for the structure of arguments, also applies to the acceptability semantics defined for ADF s
that consider relations between unstructured nodes.
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humans to track the status of arguments so that they can be guided in which arguments
to respond to.

Assume an ALN tool and a mapping of the contained linked locutions to ASPIC+

premises, rules and arguments3. The key point to note is that unlike the previous sec-
tion’s AAF s, that are assumed to be instantiated by formal logical theories, the dia-
grammedALNs are authored by humans, and the goal is to map these to computational
knowledge4 so that one can instantiate a Dung framework in order to provide dialecti-
cal feedback to users. The challenge is to then account for the fact that ALNs do not
consist exclusively of arguments related by binary attacks.

Section 3 suggests a methodology for addressing this challenge. To illustrate, con-
sider the natural language diagramming of the collective attack in Figure 3, mapped to
the ASPIC+arguments A1, A2, B and their constituent premises and rules. In order to
then reconstruct a DF based on this computational knowledge, a choice has to made as
to how to reify5 the collective attack so as to yield the additional computational knowl-
edge – either j, n→ s or j, n ⇒ s or j ∧ n � s - that would then be used to construct
either of the arguments A3, A4 and A5 respectively. As discussed in Section 3.3, the
choice of reification and thus additional constructed arguments, will affect the evaluated
status of arguments in the reconstructed DF . In other words, given the diagramming
of the collective attack, there remains some uncertainty as to how to reify this attack.
Indeed, such uncertainty is likely to be the norm, given that not all relevant information
is explicitly articulated in everyday reasoning and dialogue; much is left implicit. In this
example, not only is the additional rule needed to reconstruct the argument not rendered
explicit in the locutions related by the attack, but also the target of the attack is implicit.
How is one to disambiguate whether the locutions Lj and Ln collectively attack on La.
Lh or Ls ? (although it is assumed that the attack is on Ls; hence the assumed reifica-
tions of rules concluding s). How then is one to resolve such uncertainties, so that one
can deterministically reconstruct a DF in order to provide dialectical feedback ?

This issue also arises when considering binary support and attack relations, given
the commonplace use of enthymemes (arguments in which information is omitted) in
everyday discourse. For example, consider the following dialogue:

Paul argues that “Tony Blair is no longer a public figure, the information about
his affair is not in the public interest, and the information is private, so the
information should not be published” (X). Trevor counter-argues with “but
Blair is UN envoy for the Middle East” (Y ).

Y is just such an enthymeme. The very fact that Y is moved as an attack on X ,
but the attack is not explicitly targeted, is indicative of an incomplete rule of the form

3 Such mappings are described in [3], via intermediate translation to the Argumentation Inter-
change Format [8].

4 Recall that we are not committing to a particular computational model of argument, but any of
the broad range of models shown to be instances of ASPIC+.

5 Note that in the previous section we referred to abstract relations such as attack, collective
attacks and supports as ‘abstractions’ of underlying logical relations. However, given an ALN
with diagrammed abstract relations, the task is to now reify these to yield computational
knowledge.
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Blair is UN envoy for 
the Middle East

Tony Blair is no longer 
a public figure

Information about his affair is 
not in the public interest

The information should not be published

The information 
is private

Y

X

Z

``why is this an argument 
against prohibiting publication ?''

Z'
``The role of UN Middle East envoy has no bearing on 

matters of sexual morality, and so his appointment does 
not imply that the affair is in the public interest''

Fig. 4. An attack by an enthymeme Y on X

‘if someone is a UN envoy for the Middle East then (s)he is . . .’, where the missing
information is some claim negating an element in X . We thus need to reify a binary
attack to obtain a rule that can be used together with the premise Blair is UN envoy for
the Middle East to yield an argument Y ∗ that attacks X . But then should the reified
rule be mi ⇒ pf or mi ⇒ pi or mi ⇒ ¬pr or mi ⇒ ¬pub, or mi ⇒ ¬r1, where
mi = Blair is UN Middle East Envoy, pf , pi, pr and pub respectively denote Blair is a
public figure, the information is in the public interest, the information is private, and the
information should be published, and r1 names the defeasible rule in the computational
representation of X ?

Notice that the same issue arises with support relations. Suppose Paul supports his
argument X with B = “Blair holds no public office”. Once again, we see a requirement
for reifying the support relation, to obtain a rule that would then augment the premise
(enthymeme) B, so yielding an argument B∗ claiming ¬pf or ¬pi or pr or ¬pub that
would then s1-support X on one of its conclusions.

To summarise, in order to reconstruct a DF on the basis of locutions related in an
ALN , and thus provide dialectical feedback to users, one needs to resolve uncertainties
as to how the abstract relations relating locutions are reified. One way to resolve such
uncertainties is through the prompting of further dialogue moves, such that responses to
these moves furnish the required information to decide upon a reification. For example,
suppose the dialogue above now continues as follows:

Paul then counters by asking “why is this an argument against prohibiting pub-
lication ?” (Z). Trevor responds with “because his appointment as UN Middle
East envoy implies that the information about his affair is in the public interest”
(V )

Hence, the uncertainty is resolved in favour of the reification of the attack being
mi⇒ pi. Thus, we see a form of dialectical feedback whereby further dialogical moves
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are prompted, resulting in rendering explicit, knowledge (V ) implicitly encoded in the
attack, so that this knowledge is available for use in further reasoning and debate, and
can be used to reconstruct the DF to provide evaluative feedback.

I conclude by noting that attacks as conceived in Dung’s theory play two roles. That
Y attacks X is an abstraction of the declarative incompatibility of Y ’s claim and some
element in X , as well as an abstract characterisation of the dialectical, procedural use of
Y as a counter-argument to X . Definition 1’s notion of a conflict free set accounts for
the declarative denotation, whereas the notion of acceptability of arguments accounts
for the dialectical denotation. Preference attacks in EAFs invalidate the dialectical use
of attacks. However, one cannot question, in a formal logical context, the declarative
basis of an attack from Y to X on φ, since to do so would be to question the fundamental
logical principle that a formula (i.e., Claim(Y )) and its negation (i.e., φ) are in conflict.

However, since attacks and support relations in ALNs may implicitly encode object
level knowledge, this suggests one can attack the declarative rationale for an attack (and
indeed support) relation. This also suggests a motivation for [2]’s recursive attacks,
which in Section 3.2 were claimed to be not well motivated by logical instantiations.
Such ‘rationale attacks’ can shift the burden of proof to the proposer of the attack to
furnish the declarative rationale for the attack, e.g., Paul submits the rationale attack Z
on the attack from Y to X , and Trevor then fulfils his burden of proof by providing
the rationale V . Of course, Paul may (perhaps mistakenly) assume from the outset the
intended rationale for the attack from Y to X , and submit an alternative rationale attack
Z ′ on Y → X : Z ′ = “The role of UN Middle East envoy has no bearing on matters of
sexual morality, and so his appointment does not imply that the affair is in the public
interest”.

5 Conclusions

This paper has argued that various extensions of Dung’s abstract framework should be
studied under the assumption that they model human reasoning and debate, and should
therefore account for the fact that locutions do not consist of fully formed arguments
that can be related by binary attacks, but rather as statements, rules and incomplete argu-
ments organised into networks in which they are related to each other in more complex
ways. I then proposed reconstruction of these networks as Dung frameworks in order
that reasoning and debate can be informed by rational models of argument. Such recon-
struction requires reification of these relations to the object level knowledge they implic-
itly encode. Given that locutions often consist of incomplete arguments (enthymemes)
I illustrated requirements for reification of binary attacks in addition to other relations
that augment these attacks in extended frameworks. For any given relation, many such
reifications are possible, with the choice of reification impacting on the evaluation of
arguments in the reconstructed Dung framework that it defines. I then suggested that
resolution of these choices should prompt dialogical moves that elicit replies confirm-
ing the intended reification, thus resolving the choice of reconstructed framework, and
making available implicit knowledge for use in further reasoning and debate.

This paper lays foundations for a programme of research. The first task, currently
underway, is to formalise reconstruction of networks of locutions as Dung frameworks
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consisting of ASPIC+arguments and attacks, building on the methodology suggested
in this paper. This would involve broadening the range of networks considered in this
paper, to include (for example) networks in which arguments or statements are asserted
as being for, or against a claim. That the latter reconstructions are possible is attested
to by a recent translation of the Carneades model of argumentation to ASPIC+[19]
(Carneades models arguments for and against claims). In this paper I have also sug-
gested how recursive attacks on attacks, and indeed attacks on supports, can intuitively
be motivated in the context of everyday reasoning and debate. The second task is to
then augment existing models of dialogue so that the required reconstruction of under-
lying Dung frameworks prompts the submission of dialogue moves for eliciting implicit
knowledge. Note also, that the focus in this paper has been on ‘assertive’ [17] locutions
that commit speakers to the truth of expressed propositions. However, as illustrated by
Section 4’s dialogue in which Paul issues a ‘why’ locution, other types of locution will
need to be considered. In this case the relationship with Trevor’s locution can still be
interpreted as an attack, but other types of locution and dialogues in the Walton and
Krabbe typology [20], will warrant a broader range of relations considered in this pa-
per, with different interpretations that may or may not admit reification to object level
knowledge. Finally, these two tasks would contribute to the long term aim of linking
tools for mapping reasoning and debate to computational models of argument and dia-
logue, so that the latter can rationally guide the former.

Acknowledgements. I would like to thank the anonymous reviewers for their helpful
comments.
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1 CENTRIA and Departamento de Informática, FCT, Universidade Nova de Lisboa
s.egilmez@campus.fct.unl.pt, jleite@fct.unl.pt

2 Computer Science Department, Carnegie Mellon University, Pittsburgh PA
jmartins@cs.cmu.edu

Abstract. Social abstract argumentation laid theoretical foundations
for future online debating systems with formal backbones and seman-
tics. The advantage of these envisioned new systems is their capability
of formally justifying the social outcomes of their debates. Many re-
cent extensions proposed for argumentation in general have addressed
the issue that not all attacks between arguments are equal, especially in
the eyes of the crowd. This work generalises social abstract argumenta-
tion to incorporate voting on attacks, inducing a social notion of attack
strengths.

1 Introduction

The Web 2.0 proved extremely successful and its use has become second nature
to most of the Internet population. With social networks now widely adopted
and their users beating the one billion mark in 2013, the initial boom is over. As
social networks become established, the patterns of these new social interactions
slowly emerge. It is becoming apparent that many people are growing unsatisfied
with the depth (or lack thereof) of interactions on social websites. A growing
percentage of users are giving up on the Web 2.0 entirely for lack of intellectually
stimulating discussions to which it is possible to attribute some sort of outcome.

This has given rise to websites that revolve around more meaningful interac-
tions, and some of them purport to be a platform for serious debate.1 Typically,
these online debating systems (ODS) try to engage users with different degrees of
desired involvement. On the one hand, experts and strongly opinionated people
can propose their own debates, arguments, and go head to head against oppo-
nents. On the other hand, less involved users can simply share their opinion by
means of simple voting mechanisms.

Despite their merits, these websites have several characteristics that limit
their adoption in a wide Social Web scale, namely: 1) only two antagonistic
users can engage in a debate, others can only vote for the winning side, but not
on arguments themselves; 2) the debate structure is very rigid, with a pre-fixed
number of rounds and very strict debate rules not known by most; 3) there are

1 The websites debategraph.org, idebate.org, debate.org are a few examples.
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no facilities to reuse arguments and debates, although recent initiatives can help
overcome this [6]; and 4) they stop short of reasoning with the debate data and
votes/opinions, yielding very simplistic and näıve outcomes.

1.1 The Envisioned Online Debating System

Argumentation theory grounds debates in solid logical foundations and has in
fact been shown to be applicable in a multitude of real-life situations [18]. Social
Abstract Argumentation [16] in particular provided the theoretical foundations
on which to build an ODS that gives deeper meaning to online debates, in a more
robust, flexible, pervasive and interesting fashion than those currently available.
In fact, it has already been used and extended in a prototype business directory
allowing users to formally discuss and rank businesses [9], giving customers better
control over who they hire.

Social Abstract Argumentation addresses many issues important to ODSs. It
does away with the two-sides, one-winner approach typical of current systems.
Instead, any user can propose any argument at any time. This yields a much
more flexible debate structure, making it easier for users to get engaged and
participate. The system also reasons and provides outcomes at the argument level
at which users are now allowed to vote. The finer granularity makes outcomes
more interesting, detailed and insightful.

When engaging in a debate, users always propose arguments for specific pur-
poses, like making a claim central to the issue being discussed, or defeating
arguments supporting an opposing claim. Thus, the envisioned ODS can allow
users to formally describe an abstract argument, capable of attacking other ar-
guments, simultaneously with its natural language (or image, video, link, etc.)
representation. Therefore, the formal specification of arguments and attacks be-
comes a natural by-product of the users’ intent when proposing new arguments.
To make this process as painless and easy as possible, and enable more people
to participate, no particularly deep knowledge (such as logics) can be required.

It is natural that a new argument might attack a previously proposed ar-
gument - indeed, that was likely the object of its creation. However, it is also
possible that an older argument attacks the new argument as well. Therefore, the
ODS should allow users to add this new attack relation formally to the system.

Those users who do not wish to engage in proposing arguments or attacks,
for whatever reason, should also be accommodated in the system through a less
complex participation scheme. Thus, in the ODS, users may simply read the
arguments in natural language (or image, video, link, etc.) and formally state
whether they agree with them. This induces a voting mechanism similar to what
is found in current ODSs. There are alternatives, such as having argument’s so-
cial trustworthiness be based on people’s opinion’s of who proposed it. Voting
on arguments was chosen over these alternatives since it is the closest to current
ODSs, and thus offers the path of least resistance. It is the role of the ODS to
continuously provide an up to date view of the outcome of the debate e.g. by
assigning value to each argument that somehow represents its social strength,
taking the structure of the argumentation framework (arguments and attacks)
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and the votes into account. A nice GUI e.g. depicting arguments with a size
and/or color proportional to these values would make the debate easier to fol-
low, bringing forward relevant (socially) winning arguments, while downgrading
unsound, unfounded (even troll) arguments. So that users may understand and
follow a debate, small changes in the underlying argumentation framework and
its social feedback (i.e. votes) should result in small changes to the formal out-
come of the debate. If a single new vote entirely changes the outcome of a debate,
users cannot gauge its evolution and trends, and are likely to lose interest.

Any debating system as the one envisioned must also ensure that a few crucial
properties are satisfied. ODSs without the following properties are highly unlikely
to be seriously adopted by online communities.

– There should always be at least one solution to a debate. The users must
get some outcome for their effort. If the system is incapable of providing
solutions to every debate, then there is too much risk involved in using it.

– There should always be at most one solution to a debate. Logicians and
mathematicians find it perfectly natural for there to be multiple, or even
infinite, solutions to a given problem. However, in a social context as far-
reaching as the Internet, it is disingenuous to assume that the general user-
base, which likely covers a large portion of the educational spectrum, shares
these views with the same ease. It is very hard for someone who has invested
personal effort into a debate to accept that all arguments are in fact true (in
a multitude of models)!

– Argument outcomes should thus be represented very flexibly. In particular,
to accurately represent the opinions of thousands of voting users, arguments
should be valuated using degrees of acceptability, or gradual acceptability.
Two-valued or three-valued semantics risk grossly underrepresenting much
of the userbase.

– Formal arguments and attacks must be easy to specify. For example, as-
suming knowledge of first-order logic for specifying structured arguments
[13] would alienate many potential users when the present goal is to include
as many as possible. Moreover, simpler frameworks turn implementing and
deploying such a system in different contexts (web forums, blogs, social net-
works, etc) much easier.

The above properties have been studied in the context of Social Abstract
Argumentation, which uses abstract arguments in the sense of Dung [7], but
has argument outcomes take values in the [0, 1] ⊆ R interval. A “well-behaved”
family of semantics is known to guarantee the existence of outcomes, whereas
uniqueness of outcomes has been proven for specific semantics.

1.2 Contribution

Despite the interesting properties of social abstract argumentation, it is apparent
that not all attacks bear the same weight. Some attacks might have an obvious
logical foundation (e.g. undercuts or rebuts), thus gaining trust from the more
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perceptive users. Other attacks might be less obvious or downright senseless,
especially in open online contexts, making users doubt or wish to discard them.

Thus, extending the ability to vote to attacks, already suggested in [16,18],
becomes eminently desirable. Not only does voting on attacks more accurately
represent a crowd’s opinion in a variety of situations, but it also allows the ODS
to self-regulate by letting troll-attacks be “downvoted” to irrelevance. Following
this view, recent formalisms have incorporated the notion of attack weights [11,8].

In this work, social abstract argumentation is extended with votes on attacks,
and the properties that hold in social argumentation investigated.

This paper is organised as follows. Sect. 2 develops the extension to social ab-
stract argumentation and studies concrete semantics. Sect. 3 provides a concrete
example highlighting the role of votes on attacks. Sect. 4 covers related work,
and Sect. 5 concludes.

2 Extended Social Argumentation Frameworks

This section will present ESAFs as an extension of social argumentation frame-
works [16] by adding votes to attacks, besides arguments. We refer to these votes
as the social support of the respective argument or attack.

Extended social argumentation frameworks, which build on social argumenta-
tion frameworks from [16], have an added parameter for votes on attacks; votes
on arguments were already a feature of SAFs.

Definition 1 (Extended social argumentation frameworks). An extended
social argumentation framework is a 4-tuple F = 〈A,R, VA, VR〉, where
– A is the set of arguments,
– R ⊆ A×A is a binary attack relation between arguments,
– VA : A → N× N stores the crowd’s pro and con votes for each argument.
– VR : R→ N× N stores the crowd’s pro and con votes for each attack.

Notation 1 Let R- (a) � {ai ∈ A : (ai, a) ∈ R} be the set of direct attackers
of an argument a ∈ A. Let also V +

A (a) � x and V −
A (a) � y whenever VA(a) =

(x, y). Votes on attacks are handled similarly with VR.

Following the approach of [16], semantic frameworks are used to aggregate
operators representing the several parametrisable components of a semantics:

– An operation to obtain the combined strength of an argument’s attackers.
This value should be computed by aggregating together their individual
strengths into a single, stronger value.

– An operation to restrict an argument’s attack strength by the respective
attack’s social support. In an attack, the attacker can never be stronger
than its social support, nor stronger than the attack’s own social support.

– An operation to restrict an argument’s social support by the value of its
aggregated attackers. Notice that it would be socially unacceptable for an
argument’s final value to be above what was originally its social support.
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– An operation that computes a limiting factor from a given attack strength.
This limiting factor can then be used to restrict an argument’s original
strength with the above operator.

– Computing social support values from pro/con votes cast by the community.

All the parametrisable components of a semantics, matching the operations
mentioned above, are captured in the following definition.

Definition 2 (Semantic Framework). A semantic framework is a 6-tuple
〈L,�A,�R,�,¬, τ〉 where:
– L is a totally ordered set with top and bottom elements �, ⊥, containing all

possible valuations of an argument.
– �A,�R : L × L → L, are two binary algebraic operations used to restrict

strengths to given values.
– � : L×L→ L, is a binary algebraic operation on argument valuations used

to combine or aggregate valuations and strengths.
– ¬ : L → L is a unary algebraic operation for computing a restricting value

corresponding to a given valuation or strength.
– τ : N× N→ L is a function that aggregates positive and negative votes into

a social support value.

Notation 2 As a useful shortcut, let τ(a) � τ(V +
A (a) , V −

A (a)) and τ((a1, a2)) �
τ(V +

R ((a1, a2)) , V
−
R ((a1, a2))). Let R = {x1, x2, ..., xn} be a multiset of elements

of L. Then, with a small abuse of notation:
�

x∈R

x � (((x1 � x2)� ...)� xn)

Notice also that the valuation set L of arguments is parametrisable. L could be
[0, 1] ⊆ R, but it could also be any finite, countable or uncountable set of values
such as booleans, colours, textures, or any other set that is deemed appropriate
for users of the final application, so long as it is totally ordered.

The heart of the semantics is in the definition of a model, which combines the
operators of a semantic framework S into a system of equations, one for each
argument, that must be satisfied.

Definition 3 (Model). Let F = 〈A,R, VA, VR〉 be a social argumentation
framework, S = 〈L,�A,�R,�,¬, τ〉 be a semantic framework. A S-model of
F is a total mapping M : A → L such that for all a ∈ A,

M(a) = τ(a)�A ¬
�

ai∈R-(a)

(τ ((ai, a))�R M (ai))

The value assigned to an argument a by model M , or M(a) is called the
valuation of a under model M .

A model M is a solution to the equation system with one equation of the form
in Definition 3 for each argument. An alternative interpretation is that models
are fixpoints of the assignments induced by the equations.
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We now analyse the equation to facilitate its understanding.
If an argument a1 attacks another argument a2, then the strength of the attack

is the valuation of the attacking argument a1 reduced by the social support of
the attack: no argument’s attack is stronger than either its own valuation or the
social support of the attack itself. We use �R to restrict these values.

τ ((a1, a2))�R M (a1)

Since an argument may have multiple attackers, all of their attack strengths
must be aggregated to form a stronger combined attack value, using operator �.

�

ai∈R-(a)

(τ ((ai, a))�R M (ai))

The above equation results in a combined attack strength that must be turned
into a restricting value using the ¬ operator.

¬
�

ai∈R-(a)

(τ ((ai, a))�R M (ai))

In a social context where the crowd has given its opinion of an argument a, it
is clear that a’s valuation should never turn out higher than a’s social support
τ(a). Thus, an argument’s valuation is given by restricting τ(a) with the value
of the aggregated attack using the final operator �A.

τ(a) �A ¬
�

ai∈R-(a)

(τ ((ai, a))�R M (ai))

2.1 Specific Semantics

Fully specifying semantics means that any derivable properties are likely to apply
only to that particular case. For that reason, this section starts by restricting
a semantic framework in limited, sensible, even intuitively desirable ways, and
investigating what derives therefrom. The following definition formalises well-
behavedness in a social context.

Definition 4 (Well-behaved semantic frameworks). A semantic frame-
work S = 〈L,�A,�R,�,¬, τ〉 is well-behaved if

– ¬ is antimonotonic, continuous, ¬⊥ = �, ¬� = ⊥ and ¬¬a = a;
– �A,�R are continuous, commutative, associative, monotonic w.r.t. both ar-

guments and � is their identity element;
– � is continuous, commutative, associative, monotonic w.r.t. both arguments

and ⊥ is its identity element;

Some important notions guided Definition 4. Continuity of operators guaran-
tees small changes in the social inputs result in small changes in the models.
Were this not the case, outcomes of debates would be very unstable, hard to
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follow and more easily exploited by trolls. The remaining algebraic properties
simply state that the order in which arguments are attacked makes no differ-
ence; that an argument’s valuation is proportional to its crowd support; that
aggregated attacks are proportional to the attacking arguments; and so forth.

From these simple restrictions it is already possible to derive some important
results regarding existence of models under well-behaved semantics.

Theorem 3 (Existence of Models). Let F = 〈A,R, VA, VR〉 be an extended
social argumentation framework and S = 〈L,�A,�R,�,¬, τ〉 a well behaved
semantics. Then F has at least one S-model.

Consider now the following concrete semantics, suitable for studying specific
behaviours and for implementation. It is a generalisation of its social abstract
argumentation counterpart [16].

Definition 5 (Product semantics). Let S·
ε = 〈[0, 1],�·,�·,�·,¬, τε〉 be a se-

mantic framework, x, y ∈ [0, 1] and

– x�· y = x · y, i.e. the product T-norm.
– x�· y = 1− (1− x) · (1− y), i.e. the T-conorm dual to the product T-norm.
– ¬x = 1− x

– τε(a) =
V +(a)

V +(a)+V −(a)+ε , with ε > 0, and similarly for attacks

The τε function used to compute the social support deserves special mention.
It is a minor variation of a simple percentage. The reason for this modification
will become apparent after the following example.

Example 1. Imagine a symmetric situation where two mutually attacking argu-
ments, a and b have only received positive votes, as have their attacks. Figure 1
represents such a scenario, with the annotations indicating the social support of
arguments and attacks, using τ0.

a
1

b
1

1

1

Fig. 1. Symmetric situation with mutually attacking arguments

Considering semantics S·
0, it is easy to derive that the valuations of a and b

are given by M(a) = 1−M(b) and M(b) = 1−M(a). Therefore, the system of

equations that results from using τ0(a) =
V +(a)

V +(a)+V −(a) is linearly dependent and

results in infinitely many models with M(a) +M(b) = 1.
It turns out multiple models only arise in the extremely symmetrical situations

depicted in Figure 1, with only positive votes. Similar odd-length cycles have a
unique model. Furthermore, a single negative vote on any argument or attack is
enough to break linear dependence and making uniqueness hold again.
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Fig. 2. Social Argumentation Framework: a) arguments and attacks; b) votes

This led to the introduction of the arbitrarily small ε > 0 in Definition 5, mak-
ing scenarios such as those of Figure 1 have unique models. The resulting single
model has the property that M(a) = M(b), which preserves the argumentation
framework’s symmetry in the outcome as well.

The situation when ε = 0 can still be made sense of by taking the limit of ε as
it goes to 0. In fact, lim

ε→0
M(a) = lim

ε→0
M(b) = 0.5, which is the model that best

preserves the symmetry of the framework, as do the models when ε > 0.

The product semantics is a well-behaved semantics, which means that the ex-
istence of a model is guaranteed as per Theorem 3. The following result provides
some clarification in regards to the uniqueness of models.

Theorem 4 (Uniqueness of Models). Let F be an ESAF such that |R- (a)| ·
VA(a) < 1, for every a ∈ A. Then, F has one and only one model under S·

ε.

Additionally, we expect the result will hold for ε > 0, without the |R- (a)| ·
VA(a) < 1 condition, though this has not been proven yet.

3 Example

Consider a social interaction inspired by [21] where several participants, while
arguing about the role of the government in what banning smoking is concerned,
set forth the arguments and attack relations depicted in Fig. 2 a).

Despite the fact that these arguments are structurally different: a and b are
unsupported claims, c and d contain multiple premises and a conclusion, while e,
despite being rather consensual (who doesn’t like turtles?), seems to be totally
out of context and can hardly be seen as an attack on a (here, the attack by
e on a is meant to represent a troll attack). Our goal is to show that ESAFs’
level of abstraction allows meaningful arguments to be construed out of most
participations – in fact, with suitable GUIs, arguments could even be built from
videos, pictures, links, etc. – while the participation through voting will help deal
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Fig. 3. Model of the Social Abstract Argumentation Framework considering: a) social
support only; b) attacks but not their strength; c) attack strength; d) attack strength,
without the attack from e to a

with mitigating the disturbing effect of unsound arguments and poorly specified
(troll) attacks.

After a while, the arguments and attacks garner the pro/con votes depicted in
Fig. 2 b). Arguments a and b obtain the same direct social support as expressed
by the 70 pro and con votes. Meanwhile, a’s attack on b is deemed stronger
than its counterpart, judging from their votes. One might speculate that this is
a consequence of a delivering a more direct message. Whereas argument c does
not get much love from the crowd (a vote ratio of 54/66), its attack on a is
still supported by the community (44/11). Perhaps initially there was a better
sentiment towards c but the introduction of d, which amassed a decent amount
of support itself (130/61), turned the odds against c. Both of d’s attacks on b
and c materialise to be strong enough, the former being slightly weaker (72/8
versus 68/12). Lastly, argument e received just a mere number of votes, most
being positive (19/1). However, there seems to have been a significant effort from
the users on discrediting the attack on a by e (4/36). Note that e is a perfectly
legitimate argument. Indeed the crowd endorses the fondness for turtles – it’s
the attack, not the argument, that is not logically well-founded.

With the abstract argumentation framework and the votes on arguments and
attacks in hand, we can turn our attention to the valuation of the arguments.

If we consider the social support of each argument, i.e. its value considering
only the votes it obtained while ignoring attack relations, we obtain the following
values:2 τ0(a) = 0.50, τ0(b) = 0.50, τ0(c) = 0.45, τ0(d) = 0.68 and τ0(e) = 0.95,
as depicted in Fig. 3 a) (where the size of each node is proportional to its value).

The original Social Abstract Argumentation semantics [16], which considers
attacks between arguments but not the votes on attacks, assigns the following
values to arguments: M(a) = 0, 02, M(b) = 0, 16, M(c) = 0, 14, M(d) = 0, 68
and M(e) = 0, 95, as depicted in Fig. 3 b). As expected, d and e retain their
initial social support values, since they are not attacked, while the remaining

2 We will consider the Product Semantics as in Def.5, with ε = 0.
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b)a)

ab ab
0.7

0.9

Fig. 4. a) symmetric attacks without attack strength; b) symmetric attacks with attack
strength

arguments see a decrease in their social support value. Argument a decreases
the most while b and c maintain a reasonable fraction of their initial strength.
Since two of a’s attackers – b and c – are attacked by d, which is a non-attacked
argument with strong social support, their value is weakened, so their effect on
a is lessened. Thus, we can conclude that the main cause for the downfall in a’s
value is e’s attack.

We can now turn our attention to the model proposed in this paper, which
also takes votes on attacks into consideration, and assigns the following values to
arguments: M(a) = 0, 35, M(b) = 0, 14, M(c) = 0, 17, M(d) = 0, 68 and M(e) =
0, 95, as depicted in Fig. 3 c). The value assigned to a by the model increases from
0.02 to the more plausible level of 0.34, mostly due to e’s weakened capability
to attack a. Indeed, the crowd’s overwhelming con votes on the (troll) attack
of e on a essentially neutralised it. To confirm, we compare it with the model
obtained if the attack from e to a was simply removed, depicted in Fig. 3 d),
whose valuations of M(a) = 0, 39, M(b) = 0, 14, M(c) = 0, 17 and M(d) = 0, 68
are very similar to those obtained in the presence of the very weakened attack
from e to a, which allows us to conclude for the success of ESAF’s in discounting
attacks that are socially deemed unsound, such as troll attacks. Since the weights
of the remaining attacks are relatively high and also close to each other at the
same time, their impact is somewhat minimal.

For convenience, all values regarding the figures are listed in Table 1.
One last remark worth noting is that the inclusion of votes on attacks enables

the model to break stand-stills when attacks are not equally strong. Figure 4
a) and b) show how two arguments enjoying the same direct social support,
arguments a and b in our example, become distinguishable once the weights of
attacks are taken into account.

4 Related Work

4.1 Gabbay’s Equational Approach to Argumentation

Here we compare with [10,11], and how some of their proposed semantics can
be captured by ESAFs. Gabbay’s equational approach to argumentation [10] is
a very general formalism that deserves its differences to ESAFs highlighted.

It uses a fixed domain of [0, 1], unlike a generic L. For every argument a,
whose attackers are x1, ..., xn, the semantics and models are given by ha:

f (a) = ha (f (x1) , ..., f (xn))
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Table 1. Model of the Social Abstract Argumentation Framework considering: a) social
support only; b) attacks but not their strength; c) attack strength; d) attack strength,
without the attack from e to a

Argument Fig. a Fig. b Fig. c Fig. d

a 0.50 0.02 0.35 0.39
b 0,50 0,16 0,14 0.14
c 0,45 0,14 0,17 0.17
d 0,68 0,68 0,68 0.68
e 0,95 0,95 0,95 0.95

The intuition is that a’s model depends on the models of its attackers x1 . . .xn

according to formula ha, entirely like ESAFs, implying models are fixpoints.
Because different ha can be used for each argument, the equational approach

can be seen as more general than ESAFs (cf. Definition 3). It is nonetheless
interesting to note that all proposed semantics use the same formula for all
arguments, except for the suspect semantics whose desired meaning is unclear.

The complete generality of the equational approach is appealing because any
formula can be written, so presumably any other formalism is capturable by it.
Ultimately, however, this generality results in very few derivable properties. In
fact, [10] focuses mostly on studying specific semantics and possible extensions
to those semantics rather than on properties of the general system.

The comparison that follows will focus on subsequent work [11] which is of a
more social nature than [10]. It allows initial weights on attacks, which fill the
same role as social support in ESAFs.

The semantics proposed therein make use of V0(a) as the initial value for
arguments and of ξ(a1, a2) for attacks. They are called inverse semantics and
maximum semantics, defined below:

finv (a) = V0(a) ·
∏

ai∈R-(a)

(1− ξ (ai, a) finv (ai))

fmax (a) = V0(a)− max
ai∈R-(a)

{ξ (ai, a) fmax (ai)}

These semantics can be captured in ESAFs, as the following results show.

Proposition 1. Eqinv can be represented using ESAFs when initial values are
rational.

Proof. First, it will be necessary to show that the initial values V0(a), VR(a1, a2) ∈
Q can be represented as votes. The following lemma shows that they can.

Lemma 1. Let x ∈ Q such that 0 ≤ x ≤ 1. Then there is y, z ∈ N such that
x = y

y+z and y
y+z is irreducible.

Proof. From x ∈ Q it follows that there is an irreducible fraction x = a
b . From

0 ≤ x ≤ 1 it follows that a ≤ b. Then, let y = a and z = b − a ⇔ z + a = b ⇔
y + z = b.
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Back to the proposition. Consider the product semantics defined above as S·
ε =

〈[0, 1],�·,�·,�·,¬, τ〉. Then, since V0(a), VR(a1, a2) ∈ Q, by the lemma, there
are V +

A (a), V −
A (a), V +

R (a1, a2), V −
R (a1, a2) ∈ N such that τ(a) = V0(a) and

τ(a1, a2) = VR(a1, a2).
T-norms and their dual T-conorms are distributive, and the generalised de

Morgan laws apply. This justifies the first step in the following derivation.

M(a) = τ(a) �· ¬
�·

ai∈R-(a)

(τ (ai, a)�· M (ai))

= τ(a) �· �·

ai∈R-(a)

(¬ (τ (ai, a)�· M(ai)))

= V0(a) ·
∏

ai∈R-(a)

(1− ξ (ai, a) ·M(ai)) = finv (a)

While it was not necessary for Eqinv, two different � operators are needed to
subsume Eqmax, since it uses both subtraction and multiplication as restrictive
operations.

Proposition 2. Eqmax can be represented using ESAFs when initial values are
rational.

Proof. Let Smax = 〈L,�A,�R,�,¬, τ〉 such that: L = [0, 1]; VA(a) and
VR(a1, a2) are handled as in Proposition 1; l1�A l2 = l1− l2, arithmetic subtrac-
tion; l1�R l2 = l1 · l2, arithmetic multiplication; l1 � l2 = max{l1, l2}, maximum
aggregation operation; and ¬l1 = l1.

Notice that Smax is not a well-behaved framework since �A, or subtraction,
is not commutative. The de Morgan laws also do not apply.

M(a) = τ(a)�A ¬
�

ai∈R-(a)

(τ (ai, a)�R M (ai))

= V0(a)�A ¬
�

ai∈R-(a)

(ξ (ai, a)�R M (ai))

= V0(a)−
�

ai∈R-(a)

(ξ (ai, a) ·M (ai))

= V0(a)− max
ai∈R-(a)

{ξ (ai, a)M (ai)} = fmax (a)

These propositions serve as evidence that several semantics can be captured
using ESAFs. Some accommodate the notion of well-behaved semantics natu-
rally, but others do not. This could stem from how closely related with multi-
valuedness the semantics are. For example, fmax is very two-valued at its core.
It actually coincides with stable extensions [7] when V0(a) = 1 for all a ∈ A,
ξ (a1, a2) = 1 for all (a1, a2) ∈ R, and an argument is taken to be accepted when
fmax (a) = 1. In fact, it follows that fmax (a) ∈ {0, 1}! The product semantics is
more tightly connected with the valuations being [0, 1] ⊆ R, and that appears
to be part of the reason for its well-behavedness.
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4.2 Graduality in Argument Valuations

Other proposals have broached the subject of graduality, or multi-valuedness, in
argumentation, which is so important in large-scale online debates. Graduality
in argumentation was studied in [5], proposing R as the domain of argument
valuations, and aggregation and reduction operators applied in an explicit equa-
tional way, not unlike the present work. However, no social context is assumed,
and so all attacks and arguments are perfectly sound by default. Their initial
values, or social support, are 1, not a function of a crowd’s opinion.

As seen in Section 4.1, [10] uses a very flexible equational method with ar-
gument valuations over [0, 1]. In [11], that approach, extended with voting, is
applied to the context of merging several agents’ different perceptions of a single
debate into a unified framework with a social outcome. Each agent votes posi-
tively on arguments and attacks it agrees with locally, and votes negatively on
those that he doesn’t agree with. This can be seen as a restricted use of the
voting mechanism of ESAFs.

4.3 Social Contexts in Argumentation

Whereas ESAFs incorporate the social aspect of argumentation using voting,
alternative proposals explicitly model properties of the social context in which
debates are carried out.

In [20], arguments have values (e.g. free-market, human rights, family), and a
specific audience will order values according to personal preferences. By incor-
porating a probabilistic model of the audience’s preferences, [20] estimates the
probability that each argument will convince the audience of a certain proposi-
tion. The arguments more likely to convince the audience can be chosen first.

Along a similar line, arguments can be related to topics on which certain
people are experts [15]. This allows votes on attacks to have different weights
depending on the expertise of the voter in the related topics. Furthermore, if a
debate is controversial, i.e. with a fickle outcome balancing on a knife’s edge,
[15] draws some preliminary considerations on computing the best expert to call
forward to propose the next argument, hopefully settling the debate.

4.4 Applications of Argumentation to the Web 2.0

Some recent applications have focused on applying argumentation theory to
Twitter as a source of abundant social information in the form of concise com-
ments. These systems are very close to the intended application of SAFs [16]
and ESAFs. In fact, using the notion of arguments and attacks, it is possible
to automatically mine Twitter for arguments and attacks between them [14].
These result in argument trees such as those found in classical dialogue-based
argumentation.

A different approach, more reliant on users, is to allow them to annotate their
tweets with agreement or disagreement towards a particular subject [12]. The
new annotations are used to create arguments and attacks. Given a stream given
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by a hashtag, it is thus possible to induce an argumentation framework that rep-
resents the ongoing discussion, and obtain formal outcomes. This functionality
has been implemented and tested.

The above implementations are showing how argumentation theory can be
applied to the Web 2.0, although they currently do not feature crowd voting.

5 Conclusions

In closing, the work on Extended Social Argumentation Frameworks takes an-
other step towards capturing the essence of social debates. It builds on the
theoretical foundations laid by [16] that provided debates with formal and jus-
tifiable outcomes. In this work the social notion of attack strengths has been
introduced via incorporating votes on attacks. A new family of semantics is in-
troduced for the new framework and illustrated by the means of an example.
Certain semantics suggested in [10,11] are proven to be special cases of ESAF.

The originality of the proposed framework lies in its practicality and general-
ity. The semantics for ESAFs can be tailored in different ways to meet the needs
and expectations of varied applications and user groups. Whereas we focused
more on gradual valuations, in a scenario where a clear decision is to be taken, it
might make more sense to use a semantics with a family of operators that results
in a classical in/out approach as in Dung-like argumentation frameworks.

Furthermore the framework can be extended in multiple ways.
Some authors have advocated the addition of a support relation between ar-

guments (e.g. [1,3]). Whereas there has been a debate regarding the adequacy
of such relation – some argue that since arguments are accepted by default, any
support should take the form of an attack on its attackers – its incorporation
into ESAF’s might prove beneficial, and certainly worth future investigation.

Allowing votes on attacks resembles the abstract resolution semantics in [2].
Even though it’s not exactly how we envision our system, it might be an inter-
esting idea to explore a possible extension by admitting arguments with internal
structure, taking into careful consideration the observation that properties of
abstract resolution semantics are not always preserved by instantiations [19],
which could result in the loss the list of desired properties of our framework.

The work in [4] allows the automatic detection and generation of the abstract
arguments from natural language. Such a framework can be utilized hand in hand
with ESAFs to capture the semantics of unstructured social debate platforms.

Another possible extension is to consider attacks on the attack relations them-
selves. Prior work on this topic such as [17] builds on [7] by following the generic
accepted/defeated approach regarding the arguments. In this regard ESAFs can
improve the novelty of the work by the flexible evaluation mechanism.

Finally, it should be noted that the work on ESAFs will proceed in near
future via articulating the capabilities of the framework proposed in this paper
in capturing the semantics of other existing approaches in the field.
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LNCS, vol. 7497, pp. 209–212. Springer, Heidelberg (2012)

10. Gabbay, D.M.: Equational approach to argumentation networks. Argument &
Computation 3(2-3), 87–142 (2012)

11. Gabbay, D., Rodrigues, O.: A numerical approach to the merging of argumentation
networks. In: Fisher, M., van der Torre, L., Dastani, M., Governatori, G. (eds.)
CLIMA XIII 2012. LNCS (LNAI), vol. 7486, pp. 195–212. Springer, Heidelberg
(2012)

12. Gabbriellini, S., Torroni, P.: Large scale agreements via microdebates. In: Procs.
of AT 2012. CEUR Workshop Proceedings, vol. 918 (2012)
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Abstract. We study formal argumentation frameworks as introduced by Dung
(1995). We show that any such argumentation framework can be syntactically
augmented into a normal form (having a simplified attack relation), preserving
the semantic properties of original arguments.

An argumentation framework is in normal form if no argument attacks a con-
flicting pair of arguments. An augmentation of an argumentation framework is
obtained by adding new arguments and changing the attack relation such that the
acceptability status of original arguments is maintained in the new framework.
Furthermore, we define join-normal semantics leading to augmentations of the
joined argumentation frameworks. Also, a rewriting technique which transforms
in cubic time a given argumentation framework into a normal form is devised.

1 Introduction

Abstract argumentation frameworks, introduced by Dung [11], constitute a common
mechanism for studying reasoning in defeasible domains and for relating different non-
monotonic formalisms. General network reasoning models investigating the informal
logic structure of many social and economic problems instantiate Dung’s argumentation
frameworks, and therefore can be implemented based on an unifying principle.

This graph-theoretic model of argumentation frameworks focuses on the manner in
which a specified set A of abstract arguments interact via an attack (defeat) binary rela-
tion D on A. If (a,b)∈D (argument a attacks argument b) we have a conflict. A conflict-
free set of arguments is a set T ⊆ A such that there are no a,b ∈ T with (a,b) ∈ D. An
admissible set of arguments is a conflict-free set T ⊆ A such that the arguments in T
defend themselves “collectively” against any attack: for each (a,b) ∈ D with b ∈ T ,
there is c ∈ T such that (c,a) ∈ D.

In this model, the main aim of argumentation is deciding the status of arguments.
The acceptability of an argument a is defined based on its membership in an admissible
set of arguments satisfying certain properties (formalizing different intuitions about
which arguments to accept on the basis of the given framework) called semantics. The
attack graph is given in advance – abstracting on the underlying logic and structure of
arguments, as well on the reason and nature of the attacks – and provides a defeasible-
based conceptualization of commonsense reasoning.

It is well-known that the syntactical structure of argumentation frameworks directly
influences the output [11, 12, 1], and the complexity of algorithms for deciding ac-
ceptability questions [13]. In [21], a four-layers succession for any AI-argumentation
process was proposed. First we have the logical layer in which arguments are defined.

E. Black, S. Modgil, and N. Oren (Eds.): TAFA 2013, LNAI 8306, pp. 32–45, 2014.
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Second, in the dialectical layer, the attacks are defined. Next, in the procedural layer,
are defined rules that control the way arguments are introduced and challenged. Last
layer, the heuristics layer, contains the remaining parts of the process, including meth-
ods for deciding the justification status of arguments.

In this paper, keeping the abstract character of arguments and attacks, we are inter-
ested in understanding the syntactical properties of argumentation frameworks related
to the procedural layer. We prove in a formal way that a discipline policy can be adopted
in forming of an argumentation framework, without changing the semantic properties.
It follows from our result that if the output of a dispute is obtained using an extension
based reasoning engine, then it will be not influenced if we impose the following rule:
any new argument added by an agent attacks no existing pair of conflicting arguments
and, at the same time, at most one argument from any existing pair of conflicting argu-
ment can attack the new argument.

We formalize this by considering σ -extensions (for σ a classical semantics), and
introducing the notion of σ -augmentation of an argumentation framework AF . An ar-
gumentation framework AF ′ is a σ -augmentation of AF if it contains all arguments of
AF , and the attacks of AF ′ are such that, for any set S of arguments of AF , S is con-
tained in a σ -extension of AF if and only if S is contained in a σ -extension of AF ′. We
show that for suitable join-normal semantics the join of two argumentation frameworks
gives rise to a common σ -augmentation of the joined argumentation frameworks. In
the main result of this paper, we prove that for any argumentation framework AF there
is a σ -augmentation AF ′ in normal form, where σ is any Dung’s classical semantics.
An argumentation framework is in normal form if the set of arguments attacked by any
argument contains no two attacking arguments. We prove that an argumentation frame-
work is in normal form if and only if it can be constructed by adding its arguments one
after one (the order does not matter), such that each new argument cannot attack two
attacking arguments already added, and cannot be attacked by a pair of two attacking
arguments already added.

The remainder of this paper is organized as follows. In Section 2, we discuss basic
notions of Dung’s theory of argumentation. In Section 3, σ -augmentations of argumen-
tation frameworks are introduced and their basic properties are studied. In Section 4, we
show that each argumentation framework admits an admissible augmentation in normal
form (which can be constructed in cubic time). Finally, Section 5 concludes the paper
and discusses future work.

2 Dung’s Theory of Argumentation

In this section we present the basic concepts used for defining classical semantics in
abstract argumentation frameworks introduced by Dung in 1995, [11]. All notions and
results, if not otherwise cited, are from this paper (even some of them are not literally
the same). We consider U a fixed countable universe of arguments.

Definition 1. An Argumentation Framework is a digraph AF = (A,D), where A ⊂U
is finite and nonempty, the vertices in A are called arguments, and if (a,b) ∈ D is a
directed edge, then argument a defeats (attacks) argument b. A, the argument set of
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AF , is referred as Arg(AF) and its attack set D is referred as Def (AF). The set of all
argumentation frameworks (over U) is denoted by AF.

Two argumentation frameworks AF1 and AF2 are isomorphic (denoted AF1
∼= AF2) if

there is a bijection h : Arg(AF1)→ Arg(AF2) such that (a,b) ∈ De f (AF1) if and only if
(h(a),h(b)) ∈ De f (AF2). h is called an argumentation framework isomorphism, and it
is emphasized by the notation AF1

∼=h AF2. If S ⊆ Arg(AF1) and h is an isomorphism
between AF1 and AF2, then h(S)⊆ Arg(AF2) is h(S) = {h(a)|a∈ Arg(AF1)}. Similarly,
if M ⊆ 2Arg(AF1), then h(M)⊆ 2Arg(AF2) is h(M) = {h(S)|S ∈M}.

The extension-based acceptability semantics is a central notion in Dung’s argumen-
tation framework, which we define as follows (see also [2]).

Definition 2. An extension-based acceptability semantics is a function σ that assigns to
every argumentation framework AF ∈ AF a set σ(AF) ⊆ 2Arg(AF), such that for every
two argumentation frameworks AF1,AF2 ∈ AF, if h is an isomorphism between AF1

and AF2 (AF1
∼=h AF2) then σ(AF2) = h(σ(AF1)). A member E ∈ σ(AF) is called a

σ -extension in AF .

If a semantics σ satisfies the condition |σ(AF)|= 1 for any argumentation framework
AF , then σ is said to belong to the unique-status approach, otherwise to the multiple-
status approach [22].

The main conditions on the acceptability status of an argument with respect to a
given semantics are defined as follows.

Definition 3. Let AF = (A,D) be an argumentation framework, a ∈ A be an argument
and σ be a semantics.

a is σ -credulously accepted if and only if a ∈ ⋃S∈σ(AF) S.
a is σ -sceptically accepted if and only if a ∈ ⋂S∈σ(AF) S.

Let AF = (A,D) be an argumentation framework. For each a ∈ A we denote a+ =
{b ∈ A| (a,b) ∈ D} the set of all arguments attacked by a, and a− = {b ∈ A| (b,a) ∈
D} the set of all arguments attacking a. These notations can be extended to sets of
arguments. The set of all arguments attacked by (the arguments in) S ⊆ A is S+ =⋃

a∈S a+, and the set of all arguments attacking (the arguments in) S is S− =
⋃

a∈S a−.
We also have /0+ = /0− = /0. The set S of arguments defends an argument a ∈ A if
a− ⊆ S+ (i.e. any a’s attacker is attacked by an argument in S). The set of all arguments
defended by a set S of arguments is denoted by F(S).

If MAF is a non-empty set of sets of arguments in AF , then max(MAF) denotes the
set of maximal (w.r.t. inclusion) members of MAF and min(MAF) denotes the set of its
minimal (w.r.t. inclusion) members.

We now define the main admissibility extension-based acceptability semantics.

Definition 4. Let AF = (A,D) be an argumentation framework.

– A conflict-free set in AF is a set S ⊆ A with property S∩ S+ = /0 (i.e. there are no
attacking arguments in S). We will denote cf(AF) = {S⊆ A|S is conflict-free set }.

– An admissible set in AF is a set S ∈ cf(AF) with property S− ⊆ S+ (i.e. defends its
elements). We will denote adm(AF) = {S⊆ A|S is admissible set }.



A Normal Form for Argumentation Frameworks 35

– A complete extension in AF is a set S ∈ cf(AF) with property S = F(S). We will
denote comp(AF) = {S⊆ A|S is complete extension }.

– A preferred extension in AF is a set S∈max(comp(AF)). We will denote pref(AF) :=
max(comp(AF)).

– A grounded extension in AF is a set S ∈min(comp(AF)). We will denote gr(AF) :=
min(comp(AF)).

– A stable extension in AF is a set S ∈ cf(AF) with the property S+ = A− S. We will
denote stb(AF) = {S ⊆ A|S is stable extension }.
Note that /0 ∈ adm(AF) for any AF (hence adm(AF) �= /0) and if a ∈ A is a self-

attacking argument (i.e.(a,a) ∈ D), then a is not contained in an admissible set. It is
not difficult to see that any admissible set is contained in a preferred extension, which
exists in any AF ; the preferred extension is unique if AF has no directed cycle of even
length [4, 1].

The grounded extension exists and it is unique in any argumentation framework. It
can be constructed by considering all non-attacked arguments, deleting these arguments
and those attacked by them from the digraph, and repeating these two steps for the
digraph obtained until no node remains.

An equivalent way to express Dung’s extension-based semantics is using argument
labellings as proposed by Caminada [7] (originally introduced in [18]). The idea un-
derlying the labellings-based approach is to assign to each argument a label from the
set {I,O,U}. The label I (i.e. In) means the argument is accepted, the label O (i.e. Out)
means the argument is rejected, and the label U (i.e. Undecided) means one abstains
from an opinion on whether the argument is accepted or rejected.

Definition 5. [7] Let AF = (A,D) be an argumentation framework. A complete la-
belling of AF is a function Lab : A→ {I,O,U} such that ∀a ∈ A:
• Lab(a) = I if and only if a− ⊆ Lab−1(O),
• Lab(a) = O if and only if a−∩Lab−1(I) �= /0,
• Lab(a) =U if and only if a−∩Lab−1(I) = /0 and a−∩Lab−1(U) �= /0 .
A grounded labelling of AF is a complete labelling Lab such that there is no complete
labelling Lab1 with Lab−1

1 (I) ⊂ Lab−1(I). A preferred labelling of AF is a complete
labelling Lab such that there is no complete labelling Lab1 with Lab−1(I)⊂ Lab−1

1 (I).
A stable labelling of AF is a complete labelling Lab such that Lab−1(U) = /0.

In [7] it was proved that, for any argumentation framework AF = (A,D) and any
semantics σ ∈ {comp,gr,pref,stb}, a set S ⊆ A satisfies S ∈ σ(AF) if and only if
there is a σ -labelling Lab of AF such that S = Lab−1(I). We close this introductory
section by noting that the above construction of the grounded extension can be related
in a nice way to complete labellings, which explains their close relationship with the
so called P,N,D -partitions from combinatorial game theory ([16]). More precisely, it is
not difficult to prove the following observation, which gives an intrinsic characterization
of complete labellings which are grounded labellings.

Observation 6. Let AF =(A,D) be an argumentation framework. A complete labelling
Lab of AF is a grounded labelling if and only if there is a linear order < on Lab−1(I)
such that the following condition holds:

if a ∈ Lab−1(I) and b ∈ a− then there is a′ ∈ Lab−1(I)∩b− such that a′ < a.
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3 The σ -Augmentations

We introduce the following binary relation between argumentation frameworks.

Definition 7. Let AF,AF ′ ∈ AF and σ be a semantics.
We say that AF ′ is a σ -augmentation of AF , denoted AF �σ AF ′, if

– Arg(AF)⊆ Arg(AF ′),
– for any S ∈ σ(AF) there is S′ ∈ σ(AF ′) s.t. S⊆ S′, and
– for any S′ ∈ σ(AF ′) there is S ∈ σ(AF) s.t. S′ ∩Arg(AF)⊆ S.

The binary relation �σ between argumentation frameworks is a preorder : clearly
�σ is reflexive, and it is transitive as the following proposition shows.

Proposition 8. If AF �σ AF ′ and AF ′ �σ AF ′′, then AF �σ AF ′′.

Proof. Clearly, Arg(AF)⊆ Arg(AF ′′).
Let S ∈ σ(AF). Since AF �σ AF ′, there is S′ ∈ σ(AF ′) such that S ⊆ S′, and since
AF ′ �σ AF ′′, there is S′′ ∈ σ(AF ′′) such that S′ ⊆ S′′. Hence for any S ∈ σ(AF) there
exists S′′ ∈ σ(AF ′′) such that S⊆ S′′.

Let S′′ ∈σ(AF ′′). Since AF ′ �σ AF ′′, there is S′ ∈σ(AF ′) such that S′′ ∩Arg(AF ′)⊆
S′. Since AF �σ AF ′, there is S ∈ σ(AF) such that S′ ∩Arg(AF)⊆ S. Since Arg(AF)⊆
Arg(AF ′) it follows that S′′ ∩Arg(AF) ⊆ S′′ ∩Arg(AF ′) ⊆ S′, hence S′′ ∩Arg(AF) ⊆
S′ ∩Arg(AF)⊆ S. �

It follows that we define AF ≡σ AF ′ if and only if AF �σ AF ′ and AF ′ �σ AF then,
we obtain an equivalent relation on AF. Two ≡σ -equivalent argumentation frameworks
have the same set of arguments, but they are not isomorphic in general. For exam-
ple, AF = ({a,b},{(a,a),(a,b)}) and AF ′ = ({a,b},{(a,a),(b,b)}) are ≡adm (since
adm(AF) = { /0}= adm(AF′)), but, clearly, they are not isomorphic.

It is not necessary that the attack set of the σ -augmentation is a a superset of the
attack set of the initial argumentation framework, as the following example shows.

e a

c

d

b e

a

a′

c

d

b

AF AF ′

Fig. 1. AF ′ is an admissible augmentation of AF

Example 9. Let us consider the two argumentation frameworks in the Figure 1. We
have A′ = A∪ {a′} and D′ = (D−{(a,b)})∪ {(e,a′),(a′,e),(a′,b)}, hence D �⊆ D′.
However, AF �adm AF ′. Indeed, the admissible sets in AF are /0, {a}, and {a,d} (no
conflict-free set containing b defends the attack (d,b), no conflict-free set containing
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c defends the attack (b,c)), which remain admissible sets in AF ′. The admissible sets
in AF ′ are /0, {a}, {a′}, {a,a′}, {a,d}, {a′,d}, and {a,a′,d} (the “new” conflict-free
sets {a,b} and {a′,c} can not be extended to admissible sets in AF ′ due to the attacks
(a′,b), respectively (a,c)), and their intersections with A are contained in admissible
sets of AF .

The next proposition follows easily from the definition.

Proposition 10.

(i) If σ(AF) = /0, then we have AF �σ AF ′ if and only if Arg(AF) ⊆ Arg(AF ′) and
σ(AF ′) = /0.

(ii) If σ(AF) = { /0}, then we have AF �σ AF ′ if and only if Arg(AF) ⊆ Arg(AF ′),
σ(AF ′) �= /0, and S′ ∩Arg(AF) = /0 for all S′ ∈ σ(AF ′).

It is easy to prove that the σ -credulous acceptability of an argument in a given AF is
not changed in a σ -augmentation AF ′ of AF . More precisely, the following proposition
holds.

Proposition 11. If AF �σ AF ′ and a ∈ Arg(AF) then a is σ -credulously accepted in
AF if and only if a is σ -credulously accepted in AF ′.

Proof. If there is S ∈ σ(AF) such that a ∈ S, then since AF �σ AF ′ it follows that
there is S′ ∈ σ(AF ′) such that S⊆ S′, hence there is S′ ∈ σ(AF ′) such that a∈ S′, that is
a is σ -credulously accepted in AF ′. Conversely, if there is S′ ∈ σ(AF ′) such that a ∈ S′,
then since AF �σ AF ′ and a ∈ Arg(AF), it follows that there is S ∈ σ(AF) such that
S′ ∩Arg(AF)⊆ S, hence there is S ∈ σ(AF) such that a ∈ S, that is a is σ -credulously
accepted in AF . �

The converse of Proposition 11 does not hold. Indeed, if AF = ({a,b},{(a,b),(b,a)}),
AF ′ = ({a,b,a′,b′},{(a,a′),(a′,b),(b,b′),(b′,a)}), and σ = adm, then a and b are
adm-credulously accepted in AF and AF ′. However, AF ��adm AF ′, since the admissible
set {a,b} in AF ′ is not contained in an admissible set in AF .

If σ is an admissibility-based semantics, the σ -sceptical acceptance is not preserved in
general by the σ -augmentations. Indeed, let the argument a be σ -sceptically accepted in
the argumentation framework AF , for σ ∈ {comp, pref, gr, stb}. Let AF ′ be the argu-
mentation framework obtained from AF by adding a new copy a′ of a, each attack (a,x)
or (x,a) giving rise to a new attack (a′,x) or (x,a′), and adding the attacks (a,a′) and
(a′,a). It is not difficult to see that σ(AF ′) = σ(AF)∪{S−{a}∪{a′}|S ∈ σ(AF),a ∈
S}. It follows that AF �σ AF ′ but a is not σ -sceptically accepted in the argumentation
framework AF ′.

A simple way of constructing σ -augmentations is given by the join of two argumen-
tation frameworks.

Definition 12. Let AF1 and AF2 be disjoint argumentation frameworks, that is
Arg(AF1)∩Arg(AF2) = /0.
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– The disjoint union of AF1 and AF2 is the argumentation framework AF ′ = AF1 ∪̇ AF2,
where Arg(AF ′) = Arg(AF1)∪Arg(AF2) and Def (AF ′) = Def (AF1)∪Def (AF2).

– The sum of AF1 and AF2 is the argumentation framework AF ′′ = AF1 +AF2, where
Arg(AF ′′)=Arg(AF1)∪Arg(AF2) and Def (AF ′′)=Def (AF1)∪Def (AF2)∪{(a1,a2),
(a2,a1)|ai ∈ Arg(AFi), i = 1,2}.

– If σ is a semantics then it is join-normal if σ(AF1 ∪̇ AF2) = {S∪S′|S ∈ σ(AF1),S′ ∈
σ(AF2)} and σ(AF1 +AF2) = σ(AF1)∪σ(AF2).

If σ ∈ {adm, comp, pref, gr, stb} then σ is join-normal. Indeed, S is a conflict-free
set in AF1 ∪̇ AF2 if and only if Si = S∩Arg(AFi) is a conflict-free set in AFi (i ∈ {1,2}).
Also, S+ = S+1 ∪̇ S+2 . Similarly, S is a conflict-free set in AF1 +AF2 if and only if S ∈
cf(AF1) or S ∈ cf(AF2). If S ∈ cf(AF1) then S+ = Arg(AF2)∪ S+ ∩ Arg(AF1) and if
S ∈ cf(AF2) then S+ = Arg(AF1)∪S+∩Arg(AF2).
The next proposition follows easily from the definition above.

Proposition 13. Let AF1 and AF2 be disjoint argumentation frameworks, and σ a join-
normal semantics. Then AF1,AF2 �σ AF1 ∪̇ AF2, and AF1,AF2 �σ AF1 +AF2.

We close this section by noting that σ -augmentations can be defined equivalently,
for σ ∈ {adm, comp, pref, gr, stb}, using Caminada’s labellings. More precisely, the
following proposition is easy to prove from Caminada’s characterizations ([7]) of σ -
extensions, where the extension of a labelling from a subset to a larger set is the usual
function extension.

Proposition 14. Let σ ∈ {adm, comp, pref, gr, stb}. AF ′ is a σ -augmentation of the
argumentation framework AF if and only if i) Arg(AF)⊆ Arg(AF ′), ii) any σ -labelling
of AF can be extended to a σ -labelling of AF ′, and iii) the restriction of any σ -labelling
of AF ′ to Arg(AF) can be extended to a σ -labelling of AF.

4 Normal Forms

In this section we confine ourselves only to σ = adm and we refer to an adm-augmenta-
tion as an admissible augmentation. The results obtained for admissible augmentations
can be easily adapted for σ -augmentations, where σ ∈ {comp, pref, gr, stb}.

An admissible augmentation can be viewed as adding “auxiliary” arguments in order
to simplify the combinatorial structure of the given argumentation framework and, at
the same time, maintaining all the credulous acceptability conclusions (see Proposition
11). We consider this simplified structure a normal form as follows.

Definition 15. An argumentation framework AF = (A,D) is in normal form if for each
a∈ A there are no b,c∈ a+ such that b �= c and (b,c)∈D. A set S⊆ A with the property,
that (a,b) �∈ D for a,b ∈ S and a �= b, is referred as d-conflict-free.

Some properties of an argumentation framework in normal form are given in the
next proposition. Note that the part ii) of this proposition shows that an argumentation
framework is in normal form if and only if it can be constructed by adding its arguments
one after one (the order does not matter), such that each new argument cannot attack two
attacking arguments already added, and cannot be attacked by a pair of two attacking
arguments already added.
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a b

cd

Fig. 2. An induced K4 in AF

Algorithm 1. ELIM1(AF;a,b,c)

Input AF = (A,D) an argumentation framework, a,b,c ∈ A with (a,b),(a,c),(b,c) ∈ D;
Output AF ′ = (A′,D ′);

add to A two new arguments a1,a2 giving A′;
put in D ′ all attacks in D;
delete from D ′ the attack (a,b);
add to D ′ the attacks (a,a1),(a1,a2),(a2,b);

Return AF ′

Proposition 16.

(i) Let AF = (A,D) be an argumentation framework in normal form. Then for each
a ∈ A the set a− is d-conflict-free. Moreover, in any set of four arguments of AF
there are two non-attacking arguments.

(ii) An argumentation framework AF = (A,D) is in normal form if and only if for any
ordering A = {a1,a2, . . . ,an}, the sets �a−i = a−i ∩ {a1, . . . ,ai−1} and �a+

i = a+i ∩
{a1, . . . ,ai−1} are d-conflict-free, for all i ∈ {2, . . . ,n}.

Proof (i) Suppose that there is a0 ∈ A such that a−0 is not a d-conflict-free set, that is,
there are b,c ∈ a−0 such that b �= c and (b,c) ∈ D. But then, a0,c ∈ b+ and (c,a0) ∈ D,
that is the set b+ is not d-conflict free, a contradiction.
If there are four pairwise attacking arguments {a,b,c,d}⊆ A, then the underlying undi-
rected graph of AF contains a complete graph K4 as an induced subgraph, with nodes
a,b,c,d and the edge {a,b} generated by the attack (a,b) ∈ D (see Figure 2 below).
Since a+ in AF is d-conflict-free, we are forced to have (c,a) ∈ D and (d,a) ∈ D; but
then, a− contains c and d, and since (c,d) ∈D or (d,c) ∈D, a− is not d-conflict-free, a
contradiction.

(ii) Clearly, if AF is in normal form, then for any ordering A = {a1,a2, . . . ,an}, and
any i ∈ {2, . . . ,n}, a+i and a−i are d-conflict-free sets, therefore their subsets �a+

i and
�a−i are d-conflict-free. Conversely, let AF = (A,D) satisfying the property stated. If
AF is not in normal form, there are a,b,c ∈ A such that (a,b),(a,c),(b,c) ∈ A. Any
ordering of A with a1 := a,a2 := b,a3 := c has�a−3 = {a,b}which is not d-conflict-free,
a contradiction. �

The next algorithm eliminates an attack between arguments attacked by the same
argument in a given argumentation framework.
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The effect of ELIM1(AF;a,b,c) is depicted in the Figure 3. The squiggly arrows signify
sets of all attacks, between arguments a,b,c and the sets of arguments in the rectangular
boxes.

a−

a+−{b,c}

c− −{a,b} c+

b+−{c}

b− −{a}

a

c

b

a−

a+−{b,c}

c− −{a,b} c+

b+−{c}

b− −{a}

a

a1

a2

c

b

AF AF ′

Fig. 3. Elimination of a bad triangle

Proposition 17. The argumentation framework AF ′=(A′,D ′), returned by ELIM1(AF;
a,b,c), is an admissible augmentation of AF.

Proof. Let S ⊆ A be an admissible set in AF . We prove that S′ ⊆ A′ is an admissible
set in AF ′, where:

S′ =

⎧⎪⎨
⎪⎩

S∪{a2} if a ∈ S,

S∪{a1} if a �∈ S,b ∈ S,

S if a �∈ S,b �∈ S.

If S ⊆ A is an admissible set containing a in AF , then S′ = S∪{a2} is a conflict-free
set in AF ′. Indeed, no attack between the arguments in A is added by the algorithm
ELIM1, hence S is conflict free in AF ′. The only attacks containing a2 are (a1,a2)
and (a2,b). But a1 �∈ S (because a1 �∈ A), and b �∈ S (because a ∈ S, (a,b) ∈ D, and
S is conflict-free set in AF). It follows that S∪{a2} is a conflict-free set in AF ′. The
attack (a1,a2) against S∪{a2} is defeated by (a,a1), since a∈ S. Any attack (x,y) with
x ∈ A− S and y ∈ S is defeated by an attack (z,x) with z ∈ S, since S is admissible set
in AF . It follows that S∪{a2} is a conflict-free set in AF ′ which defends itself against
any attack in AF ′, that is, S∪{a2} is an admissible set in AF ′.

If S is an admissible set in AF such that a �∈ S but b ∈ S, then adding a1 to S we
obtain a conflict-free set in AF ′ (since a �∈ S and a2 �∈ S, the only attacks involving a1 –
(a,a1) and (a1,a2) – are not between arguments from S∪{a1}). The attack (a2,b) on
S∪{a1} is defeated by (a1,a2). The attack (a,a1) must be defeated by some argument
x ∈ a− ∩ S, because in AF the attack (a,b) must be defeated. Any attack (x,y) with
x ∈ A−S and y ∈ S is defeated by an attack (z,x) with z ∈ S, since S is admissible set in
AF . It follows that S∪{a1} is admissible set in AF ′.

If S is an admissible set in AF not containing a and b, then S remains conflict-free
since no attacks between arguments in A are added. Also all attacks from an arguments
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in S remain in AF ′, and no new attack against S is introduced. It follows that S continues
to defend itself against any attack in AF ′, hence S is admissible set in AF ′.

On the other hand, let S′ ⊆ A′ be an admissible set in AF ′. We prove that S = S′ ∩A
is an admissible set in AF .
If S′ is an admissible set containing a2 in AF ′, then a1,b �∈ S′ (since S′ is conflict-free
and (a1,a2),(a2,b) ∈ D′). Since (a1,a2) ∈ D′ and S′ is admissible, it follows that a1

must be attacked by S′ in AF ′. The only attack on a1 in AF ′ is (a,a1). Hence a ∈ S′.
S′−{a2} is conflict free in AF , because b �∈ S′. Any attack (x,y) with x∈ A−S and y∈ S
is defeated by an attack (z,x) with z ∈ S, since S′ is admissible set in AF ′. It follows that
S′ − {a2}= S′ ∩A is admissible set in AF .

If S′ is admissible set containing a1 in AF ′, a similar proof shows that S′ − {a1} =
S′ ∩A is an admissible set in AF .

If S′ is an admissible set in AF ′ such that a1,a2 �∈ S′, we can suppose that b �∈ S′.
Otherwise, if b ∈ S′ then the attack (a2,b) can not be defeated by S′, since the only
attack on a2 in AF ′ is (a1,a2). Since the only additional attack involving at least one
argument in S′ can be (a,b), it follows that S′ is a conflict-free set in AF and also defends
itself against any attack in AF (because it was an admissible set in AF ′). �

Proposition 18. The argumentation framework AF ′ = (A′,D ′) given by ELIM1(AF;a,
b,c) satisfies AF �σ AF ′ for σ ∈ {comp, pref, gr, stb}.

Proof. For σ ∈ {comp, pref} the proof follows from Proposition 17. Indeed, if S ∈
σ(AF) then S is an admissible set in AF and, by Proposition 17, can be extended to
an admissible set in AF ′. Since any admissible set can be extended to a complete or
preferred extension, it follows that there is S′ ∈ σ(AF ′) such that S ⊆ S′. Conversely,
if S′ ∈ σ(AF ′) then S′ is an admissible set in AF ′ and, by Proposition 17, S′ ∩A can
be extended to an admissible set in AF . Since any admissible set can be extended to a
complete or prefered extension, it follows that there is S ∈ σ(AF) such that S′ ∩A⊆ S.

For σ = stb it is not difficult to verify that if S ∈ stb(AF) then S′ ∈ stb(AF ′), where

S′ =

{
S∪{a2} if a ∈ S,

S∪{a1} if a �∈ S

and, if S′ ∈ stb(AF ′) then S ∈ stb(AF), where

S =

{
S′ − {a2} if a ∈ S′,
S′ − {a1} if a �∈ S′.

For σ = gr, we use Proposition 14 and Observation 6. Clearly, if each x ∈ Arg(AF)
satisfies x− �= /0, then the same property holds in AF ′ and gr(AF) = gr(AF ′) = { /0}.
Suppose that gr(AF) = {S}, S �= /0 and let Lab a gr-labelling of AF such that S =
Lab−1(I). If a∈ S, then we extend Lab to AF ′ by taking Lab(a1) = O, Lab(a2) = I, and
the linear ordering of Lab−1(I) in AF ′ is obtained by considering a2 the successor of a.
It is not difficult to see that we obtain a gr-labelling of AF ′. If a �∈ S, and Lab(a) = O
then a gr-labelling of AF ′ is obtained by taking Lab(a1) = I and the linear ordering of
Lab−1(I) in AF ′ is obtained by considering a1 the successor of an attacker of a labeled
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I. If a �∈ S, and Lab(a) =U then Lab remains a gr-labelling of AF ′. A similar analysis
can be used to show that the restriction to AF of a gr-labelling of AF ′ gives rise to a
gr-labelling of AF . �

By iterating the algorithm ELIM1, we obtain:

Algorithm 2. ELIMALL(AF)

AF ′ := AF ;
foreach a,b,c ∈ Arg(AF)s.t.(a,b),(a,c),(b,c) ∈ De f (AF) do

AF ′ := ELIM1(AF ′;a,b,c)
end
Return AF ′

Proposition 19. For any argumentation framework AF = (A,D) there is an admissible
augmentation AF ′ = (A′,D ′) in normal form. Furthermore, AF ′ can be constructed
from AF in O(|A|3) time.

Proof. Using Propositions 8 and 17, the above iteration of the algorithm ELIM1 re-
turns an admissible augmentation AF ′ of the given AF . The for condition assures that
AF ′, the returned argumentation framework, is in normal form. It remains to prove that
the algorithm finishes.
We call a triangle {a,b,c} ⊆ A′ with (a,b),(a,c),(b,c) ∈ D ′, a bad triangle. Clearly,
the algorithm finishes when there is no bad triangle in the current argumentation frame-
work.
In each for-iteration the total number of bad triangles of the current argumentation
framework AF ′ decreases by 1. Indeed, the algorithm ELIM1(AF ′;a,b,c) destroys a
bad triangle and creates no new bad triangle, since the two new arguments a1 and a2

are not contained in a triangle in the new argumentation framework. Since the number
of bad triangles in AF it at most

(|A|
3

)
, and the running time of ELIM1(AF ′;a,b,c) is

O(1), the final argumentation framework AF ′ is obtained in O(|A|3) time. �

Summarizing the results obtained in this section, using Propositions 16ii), 18 and 19,
we have the following theorem.

Theorem 20. Any argumentation framework AF = (A,D) has an admissible augmen-
tation AF ′ = (A′,D′) which can be formed by adding the arguments one after one such
that each argument attacks a d-conflict-free set of its predecessors and is attacked by
a d-conflict-free set of its predecessors. Furthermore AF ′ is also a σ -augmentation of
AF for any Dung’s classical semantics σ .

The Figure 4 below suggests the way in which the argumentation framework AF ′
from the above theorem is formed. Any new argument anew added by an agent in a
round cannot attack an existing pair of conflicting arguments, that is anew attacks only a
coherent set of existing arguments. The agent knows that, if she wants, in a later round
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can use a surrogate of anew to attack other arguments which in the actual round are in
conflict with those selected to be attacked. In the same time, from the set of existing
arguments only a coherent set can attack the new argument. The other attacks will be
simulated in future rounds by using again special surrogate arguments. In this way, a
more logical scene of dispute can be devised, which is however (polynomially) longer
as one in which our discipline policy is not followed.

�a−new �a+
new

anew

Fig. 4. Discipline policy in forming an AF

5 Discussion

In this paper we analyzed the syntactical structure of argumentation frameworks using
σ -augmentations of argumentation frameworks. The use of σ -augmentations of argu-
mentation frameworks for simplifying their syntactical structure is new with respect to
the existing literature. Instead of studying the problem of how an argumentation frame-
work may change if new arguments and/or attack relations are added (deleted) as usual
in dynamic argumentation field [10, 5, 3], we are interested in transformations of ar-
gumentation frameworks with the property that the basic outcome – Dung’s extensions
– is not essentially changed. However, the results obtained in Proposition 13 for the
particular case of join-normal semantics were already established in the above papers.
Our results complements those in [15, 14], where the goal is to transform a given argu-
mentation framework into a new one such that the σ -extensions of the original frame-
work are in a certain correspondence with the σ ′-extensions of the modified framework.
Also, our method of obtaining the normal form is similar to rewriting techniques studied
in other non-monotonic formalisms, as in [6].

Our discipline policy in the construction of argumentation framework can be useful
for designing models of on-line social debates or legal disputes. However, it cannot be
applied to argumentation formalisms that use defeasible argument schemes in combi-
nation with logic, i.e. deductive argumentation frameworks. In these frameworks the in-
ternal structure of the arguments generates and explains the nature of the attacks [8, 19].
If the existence of an attack (a,b) is solely determined by the information carried by the
arguments a and b, we cannot forbid it. Our result could be an explanation of the dif-
ficulties encountered in instantiating (structured) logical argumentation graphs, where
the attack relation depends solely on pairs of arguments and uses no other information
about the set of arguments this pair belongs in (see [9, 17, 20]).
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For future work, we intend to relate our result on the existence of the admissible
augmentation normal form for an arbitrary argumentation framework to argument game
based proof theories. An interesting research question(suggested by a referee) would be
to study a converse of our augmentation relation which can be called contraction. More
precisely, we intend to study the following problem: given an argumentation framework
AF = (A,D), a semantics σ , and A1 ⊂ A, find D1 ⊆ A1×A1 such that AF1 = (A1,D1)
satisfies AF1 �σ AF .

Also, we believe that our attempt to study and eventually simplify the structure of the
attacks in an argumentation framework will be fruitful for the future algorithmic devel-
opments. Since bipartite argumentation frameworks are particular instances of normal
forms, the algorithmic ideas used by Dunne in [13] for credulously acceptance of an
argument in a bipartite argumentation frameworks can be useful for the general case.
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Abstract. Arguments in structured argumentation are usually defined
as trees. This introduces both conceptual redundancy and inefficiency
in standard methods of implementation. We introduce rule-minimal ar-
guments and argument graphs to solve these problems, studying their
use in assumption-based argumentation (ABA), a well-known form of
structured argumentation. In particular, we define a new notion of graph-
based dispute derivations for determining acceptability of claims under
the grounded semantics in ABA, study formal properties and present an
experimental evaluation thereof.

1 Introduction

Assumption-Based Argumentation (ABA) [1,2,3,4,5] is a well-known framework
for structured argumentation where, in contrast to abstract argumentation [6],
arguments and attacks are not primitives but are derived from the rules of a given
deductive system, assumptions and contraries. ABA has been applied in several
settings (e.g. to support medical decision-making [7] and e-procurement [8]).
ABA’s applicability relies on the existence of computational mechanisms, based
on various kinds of dispute derivations [2,3,5] that are formally proven to be
correct procedures for conducting structured argumentation under various se-
mantics. For example, [3] proposes GB-dispute derivations (GB-DDs in short)
for determining whether sentences can be justified by grounded sets of arguments
and assumptions.

Dispute derivations rely upon the computation of arguments that can be un-
derstood as trees [4], in a way similar to other frameworks for structured argu-
mentation (e.g. [9,10,11,12]). This introduces both conceptual redundancy and
inefficiency in standard methods of implementation, in that within an argument
different rules for deriving the same conclusion may be used, potentially intro-
ducing unnecessarily points of attack and requiring additional defence efforts.

In this paper, we give a novel computational mechanism for ABA, in the form
of graph-Based GB-dispute Derivations (gGB-DDs in short), and prove that
they are correct under the grounded semantics for argumentation, in the same
way that GB-DDs are. However, gGB-DDs avoid the conceptual redundancy
and inefficiency of arguments as trees, by computing rule-minimal arguments,
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c© Springer-Verlag Berlin Heidelberg 2014
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corresponding to argument graphs, and making sure that only parsimonious sets
of arguments from the grounded set are generated in support of sentences whose
acceptability is being ascertained. In addition to using argument graphs, gGB-
DDs also incorporate a loop-checking mechanism, inspired by that proposed by
[13] for abstract argumentation [6].

In addition to studying theoretical properties of correctness of gGB-DDs, we
also perform an empirical evaluation thereof, by comparing it with an imple-
mentation of standard GB-DDs. We perform two groups of experiments. The
first uses randomly generated frameworks and randomly selected sentences from
them, and the second uses a real-life example of the formalization within ABA
of treatment recommendations for breast cancer. Both sets of experiments show
promise both in terms of completion time for (successful) derivations as well as
termination of (unsuccessful) derivations.

2 Background

ABA frameworks [4] are tuples (L,R,A, ):

– (L,R) is a deductive system, with L a set of sentences and R a set of
(inference) rules, in this paper of the form s0 ← s1, . . . , sn, for n � 0 and
s0, s1, . . . , sn ∈ L;

– A ⊆ L is a non-empty set, called the assumptions ;
– is a total mapping from A to L; ā is the contrary of a.

In the remainder of the paper, we take as given an ABA framework (L,R,A, ).
In ABA, arguments are proofs using rules and ultimately dependent on as-

sumptions [4]:

– a proof for s ∈ L supported by S ⊆ L is a (finite) tree with nodes labelled
by sentences in L or �, where the root is labelled by s and:
• for all non-leaf nodes N (labelled by s0), there is some rule s0 ←
s1, . . . , sn ∈ R s.t. either (i) n = 0 and the child of N is labelled by
� or (ii) n > 0 and N has n children, labelled by s1, . . . , sn respectively;
and

• S is the set of all sentences in L labelling the leaves;
– an argument for s ∈ L supported by a set of assumptions A ⊆ A is a proof

for s supported by A.

For an argument a for s supported by A, claim(a) = s (s is the claim of a) and
support(a) = A.

In ABA, an argument b attacks an argument a iff there is some a ∈ support(a)
s.t. ā = s, where s = claim(b); a set of arguments B attacks a set of arguments
A iff some b ∈ B attacks some a ∈ A.

There are parallel, equivalent notions for sets of assumptions rather than
arguments [3,14]. A set of assumptions B attacks a set of assumptions A iff
there is some an argument for ā supported by some B′ ⊆ B, for some a ∈ A.
Then a set of assumptions is deemed:
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– admissible iff it does not attack itself and attacks every set of assumptions
attacking it;

– complete iff it is admissible and contains all assumptions it can defend (by
attacking all attacks against them);

– grounded iff it is minimally (w.r.t. ⊆) complete.

A sentence s ∈ L is admissible/complete/grounded (optionally, w.r.t. A ⊆ A)
iff there are (i) (respectively) a set of assumptions A ⊆ A s.t. A is admissi-
ble or A ⊆ A′ ⊆ A for some complete/grounded A′ and (ii) an argument a
s.t. claim(a) = s and support(a) ⊆ A.

Several algorithms for determining acceptability of sentences in ABA have
been proposed (e.g. see [2,3]). Here, we focus on GB-dispute derivations [3] (GB-
DDs in short). Given a selection function (taking a multi-set and returning an
element occurring in it) a GB-DD of a defence set Δ ⊆ A for a sentence s ∈ L
is a finite sequence of tuples1

〈P0,O0, D0, C0

〉
, . . . ,

〈Pn,On, Dn, Cn

〉
where:

P0 = {s}, D0 = A ∩ {s}, O0 = C0 = {}
Pn = On = {}, Δ = Dn

and for every i s.t. 0 � i < n, only one σ in Pi or one S in Oi is selected, and:

1. If σ ∈ Pi is selected then

(i) if σ ∈ A, then
Pi+1 = Pi − {σ} Oi+1 = Oi ∪ {{σ}}

(ii) if σ �∈ A, then there exists some inference rule σ ← R ∈ R s.t. Ci∩R = {}
and

Pi+1 = (Pi − {σ}) ∪R Di+1 = Di ∪ (A ∩R)

2. If S is selected in Oi and σ is selected in S then

(i) if σ ∈ A, then
(a) either σ is ignored, i.e.

Oi+1 = (Oi − {S}) ∪ {S − {σ}}
(b) or σ �∈ Di and

Oi+1 = Oi − {S} Pi+1 = Pi ∪ {σ}
Di+1 = Di ∪ ({σ} ∩ A) Ci+1 = Ci ∪ {σ}

(ii) if σ �∈ A, then
Oi+1 = (Oi − {S}) ∪

{
(S−{σ}) ∪R

∣∣ σ ← R ∈ R}
Intuitively, GB-DDs can be seen as games between two (fictitious) players: a
proponent (Pi) and an opponent (Oi), the former accumulating its support-
ing/defending assumptions (Di), the latter being defeated on a number of culprit
assumptions (Ci). Theorem 4.2 in [3] proves that GB-DDs are sound: if there is
a GB-DD of Δ for s then s is grounded and Δ is admissible and contained in
the grounded set of assumptions.

1 This definition is adapted from [3] but adopting the convention, when defining
changes in tuples, that omitted elements are unchanged. We will do the same for
gGB-DDs in section 4.
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3 Rule-Minimal Arguments

The notion of argument in ABA enforces a form of relevance (of the support to
the claim), afforded by the notion of tree. However, this notion allows redundan-
cies in arguments, in the sense illustrated by the following example. (Note that
in depicting arguments as trees and (later) graphs, we follow the convention of
letting nodes labelled by the heads of rules appear above nodes labelled by the
sentences in the rules’ bodies; this allows us to omit direction arrows on arcs.)

Example 1. Consider the ABA framework with
R = {p ← b; p ← q, a; q ← p};A = {a, b};
ā = x, b̄ = y. Shown are arguments a1 (left) and
a2 (right) for p, supported by {a, b} and {b} re-
spectively. Argument a1 is (redundantly) using two
different rules to prove the two occurrences of p. �

p p

q
���

a

���
b

p

b

It is clear that such a situation is toxic, in that p has been proved in a certain
way, which depends on p itself (which is then proved in a different way). A less
toxic sort of case, but still involving redundancy, would be if some sentence s
were proved in two different ways in an argument, but without there being one
of those proofs depending on the other (so there would be no directed path
from the two nodes labelled by s). Formally, these toxic forms of argument are
characteried as follows.

Definition 1. An argument a is circular if it contains a directed path from a
node N labelled by some s ∈ L to another node N ′ labelled by s. An argument a
is flabby if there are different nodes N , N ′, with the same labels, such that the
children of N are labelled by different members of L ∪ {�} from those labelling
the children of N ′. �
It is easy to show that an argument may be flabby without being circular, but
that where an argument is circular, it is necessarily flabby (see below-left). Note,
though, not all nodes N , N ′ by which the argument counts as circular need
determine the argument as flabby (see the nodes labelled p, below-right).

p p

q
���

q

���
q

a b p

q

a

We take the view that both the ‘toxic’ case of circularity, and the ‘merely
redundant’ case of flabbiness, are undesirable. Accordingly, we define a restricted
notion of argument, enforcing that, for every sentence in an argument, the same
rules are used to justify the sentence at all its occurrences. Given that circularity
of a implies flabbiness, the definition just marks out the non-flabby arguments.
Formally:
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Definition 2. An argument a is rule-minimal iff for any two nodes N,N ′ in a
labelled by the same s ∈ L the children of N and N ′ are labelled by the same
elements of L ∪ {�}. �

Clearly, an argument a is rule-minimal iff it is neither circular nor flabby.
In example 1, a2 is rule-minimal whereas a1 is not. Note that there are in-

finitely many arguments for p in this example; a2 is the only rule-minimal one.
Rule-minimal arguments may still contain redundancies in their support, as

illustrated by the following example.

Example 2. Consider the ABA framework in ex-
ample 1 but with q ← p in R replaced by q ← b.
Shown are rule-minimal arguments a1 (left) and
a2 (right) for p, supported by {a, b} and {b}
respectively. Here, the support of a1 is non-
minimal, as support(a1) ⊂ support(a2). �

p p

q

����
a

����
b

b

Definition 3. An argument a is support-minimal iff there is no a′ such that
claim(a′)=claim(a) and support(a′)⊂support(a). �

Example 2 shows that rule-minimal arguments may not be support-minimal.
The following example shows that support-minimal arguments may not be rule-
minimal.

Example 3. Consider the ABA framework with R = {p←
p; p← a};A = {a}; ā = x. Shown are support-minimal argu-
ments a1 (left) and a2 (right) for p, both supported by {a}.
Here, only a2 is rule-minimal. (This is the smallest such ex-
ample; other, less ‘trivial’ ones could be provided.) �

p p

p a

a

Whereas the notion of support-minimal argument is ‘global’, in that to check
whether an argument is support-minimal this needs to be compared with all
other arguments, the notion of rule-minimal argument is ‘local’, in that to check
whether an argument is rule-minimal all that is required is a syntactic check of
the argument. Moreover, every argument can be transformed into a rule-minimal
argument, by means of algorithm 1.2

Note that at lines 6 and 9 the algorithm performs non-deterministic choices
(of a node/sentence and of a sub-tree, respectively). By making alternative such

2 Here: rank(N,T ) returns the length of the path from N to the root of tree T ;
rank(T ) returns the maximum rank of any node in tree T ; path(N,N ′, T ) returns
the set of nodes on the (unique) path from N to N ′ (not including N) in tree T ;
substitute(T,N, T ′) takes tree T and replaces the sub-tree rooted at N by tree T ′;
nodes(T ), root(T ) and subTrees(T ) return, respectively, the set of nodes, the root
and the set of sub-trees of tree T ; pickOne(S) chooses a member of S; label(N, a)
returns the label of node N in argument a (this is a member of L or �, see section 2).
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Algorithm 1. reduce(a: argument)

1: r := 0
2: seen := {}
3: while r � rank(a) do
4: nodes := {N ∈ nodes(a) | (rank(N, a) = r)∧ (label(N, a) ∈ L−A)∧ (N �∈ seen)}
5: while nodes �= {} do
6: N := pickOne(nodes)
7: s := label(N, a)
8: leafTrees := {b ∈ subTrees(a)|(label(root(b)) = s) ∧ ¬∃N ′[N ′ ∈ nodes(b)−

{root(b)} ∧ label(N ′, a)=s]}
9: b := pickOne(leafTrees)
10: for all N ′ ∈ nodes(a) s.t. label(N ′, a) = s ∧ ¬∃X[X ∈path(N ′, root(a), a)∧

label(X)=s] do
11: a := substitute(a, N ′, b)
12: end for
13: seen := seen ∪ {N ∈ nodes|label(N) = s}
14: nodes := nodes − seen
15: end while
16: r := r + 1
17: end while
18: return a

choices different arguments can be obtained, as illustrated next.

Example 4. Given argument a1 (left), de-
pending on the choice of sub-tree at line
9, the algorithm may return a2 (middle)
or a3 (right). �

p p p

q
���

r

���
b a

p p

b a

Definition 4. Given a set of arguments A, a reduction of A is a set of argu-
ments B s.t. (i) for each b ∈ B there is an argument a ∈ A s.t. b = reduce(a);
(ii) for each argument a ∈ A there exists an argument b ∈ B s.t. b = reduce(a).�

In example 4, {a2}, {a3}, {a2,a3} are reductions of {a1}.
In general, given an argument a, algorithm 1 ‘reduces’ it to a rule-minimal

argument a′ whose claim is identical to, and whose support is a subset of that
of a, as sanctioned by:

Proposition 1. Let a be an argument for c supported by S. Then a′ = reduce(a)
is a rule-minimal argument for c supported by S′ ⊆ S.

Proof. First, algorithm 1 terminates, since (i) a is finite and thus rank(a) is
finite; (ii) there are finitely many nodes at lines 10, 13; (iii) at every iteration
of the external while loop the set nodes is smaller. Secondly, a′ is a sub-tree of
a with the same root, and so the same claim and support as a. Thirdly, trivially
a′ is an argument in the ABA sense. Finally, by construction, each sentence in
a′ is proven by only one rule. �
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Then, directly from proposition 1:

Proposition 2. (i) For every rule-minimal argument for s supported by A there
exists an argument of s supported by A. (ii) For every argument for s supported
by A there exists a rule-minimal argument of s supported by A′ ⊆ A. �

Clearly, it is computationally advantageous, when determining whether a sen-
tence is acceptable under some semantics, to focus on rule-minimal arguments:
there are fewer of them, they are smaller, and they have smaller supports. We
define new notions of acceptability w.r.t. rule-minimal arguments, and prove
they are equivalent to the original notions.

To extend notions of acceptability for sets of assumptions when focusing on
rule-minimal arguments, we define a variant of the notion of attack between sets
of assumptions:

Definition 5. A set of assumptions B rule-minimally attacks a set of assump-
tions A iff there is some rule-minimal argument for ā supported by some B′ ⊆ B,
for some a ∈ A.

A set of assumptions is

– rule-minimally admissible iff it does not rule-minimally attack itself and it
rule-minimally attacks every set of assumptions rule-minimally attacking it;

– rule-minimally complete iff it is rule-minimally admissible and contains all
assumptions it can defend (by rule-minim. attacking all rule-min. attacks
against them);

– rule-minimally grounded iff it is minimally (w.r.t. ⊆) rule-minimally com-
plete. �

Directly from proposition 2:

Proposition 3. Let A ⊆ A be a set of assumptions. A is admissible/complete/
grounded iff A is rule-minimally admissible/complete/grounded (respectively). �

Thus, when deciding whether a set of assumptions is acceptable, one can restrict
attention to rule-minimal arguments.

As in the case of standard ABA, we can lift notions of acceptability at the
assumption level to the sentence level:

Definition 6. s ∈ L is rule-minimally admissible/complete/grounded (option-
ally, w.r.t. A ⊆ A) iff there are (i) (respectively) a set of assumptions A ⊆ A
s.t. A is rule-minimally admissible or A ⊆ A′ ⊆ A for some rule-minimally
complete/grounded A′ and (ii) a rule-minimal argument a s.t. claim(a) = s and
support(a) ⊆ A. �

Then, directly from proposition 3:

Proposition 4. s∈L is rule-minimally admissible/complete/grounded/iff s is
admissible/complete/grounded (respectively). �
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Rule-minimally acceptable sets of assumptions may still contain redundancies,
as illustrated by the following example.

Example 5. Consider the ABA framework with R = {(1) p ← s, r, a; (2) s ←
r, a; (3) r ← a; (4) p ← b; (5) q ← d; (6) q ← e}; A = {a, b, c, d, e}; ā = x, b̄ =
y, c̄ = q, d̄ = p, ē = p. (The rules are numbered for later use.) Then c is (rule-
minimally) admissible, complete and grounded, w.r.t. {c, a, b}, {c, a} and {c, b}.
{c, a} and {c, b} determine a more parsimonious set of arguments, in that p is
supported by {a} (in the case of {c, a}) or {b} (for {c, b}). �

Definition 7. A set of arguments A is parsimonious iff there exist no two dif-
ferent sub-trees a, b of any (possibly different) arguments in A such that the root
of a and b is labelled by the same sentence. �

Every argument in a parsimonious set is rule-minimal. In example 5, the set of
assumptions {c, a} and {c, b} support parsimonious arguments, whereas {c, a, b}
does not.

It is easy to see that in order to determine acceptability of sentences, it suffices
to focus on parsimonious arguments:

Proposition 5. A sentence s is rule-minimally admissible/complete/grounded
iff there are (i) a parsimonious set of arguments A and (ii) a ∈ A with claim(a) =
s s.t. (respectively) A is admissible or A ⊆ A′ for some complete/grounded A′. �

The relevance of this will be seen in the following section. When constructing
a set A of proponent arguments (according to the algorithm in Definition 9)
starting from some claim s, we can restrict attention to parsimonious A; this is
a further efficiency and removal of redundancy.

4 Graph-Based GB-Dispute Derivations

A graph-based GB dispute derivation gradually derives justifications for sen-
tences in a way guaranteed to produce rule-minimal arguments which are parsi-
monious and grounded. They rely upon arguments defined as graphs, as follows:

Definition 8. A graph-based argument is an acyclic directed graph (V,E) with
V ⊆(L ∪ {�}), and for any s∈V :

– if s∈(L−(A∪{�})), then for a unique rule s←s1,. . ., sm in R, (i) if n=0,
then {x|(s, x) ∈ E}={�}; or (ii) if n>0, then {x|(s, x) ∈ E}={s1, . . . ,sn};

– if s∈V −(L− (A ∪ {�})), then there are no outgoing edges from s in E;
– there is a unique c ∈ (V ∩L) (the claim) s.t. there is no edge (s, c) in E and

there is a path (c,. . ., s) for any s∈V . �

It is evident that argument graphs can be ‘unravelled’ into rule-minimal argu-
ments, as illustrated below for example 5:
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gGB-DDs work over tuples (Pi,Oi, Di, Ci, JsPi, JsOi,Atti, Gi), where Pi are
the sentences the proponent has yet to prove;Oi contains tuples (X, Js,C) repre-
senting partially-completed opponent arguments:C is the claim,X the sentences
supporting the argument yet to be proved, and Js a set of justifications–pairs
(s,R) where s is a sentence and R is either the body of a rule used to justify s in
the context of (X, Js,C), or ∗ if s ∈ A; Di and Ci are as in GB-dispute deriva-
tions (see section 2); JsPi contains justifications (pairs (s,R), as above) for the
proponent arguments, and JsO contains the justification triples for the opponent
arguments; Atti contains points of attack between proponent and opponent argu-
ments, and Gi records the dependency graph among sentences, grown gradually
during the derivation.

Definition 9. Given a selection function, a gGB-DD of defence set Δ and
dialectical structure (JsP, JsO,Att) for a sentence s ∈ L is a finite sequence
of tuples (P0,O0, D0, C0, JsP0, JsO0,Att0, G0), . . . , (Pn,On, Dn, Cn, JsPn, JsOn,
Attn, Gn), where

P0 = {s}, D0 = A ∩ {s},O0 = C0 = JsP0 = JsO0 = Att0 = G0 = {}
Pn = On = {}, Δ = Dn, JsP = JsPn, JsO = JsOn,Att = Attn

and for every i s.t. 0 � i < n, only one σ in Pi or one (X, Js,C) in Oi is
selected, and:

1. If σ ∈ Pi is selected then

(i) if σ ∈ A then

Pi+1 = Pi − {σ}
Oi+1 = Oi ∪ {({σ̄}, {}, σ̄) | ¬∃R((σ̄, R) ∈ JsOi}

JsPi+1 = JsPi ∪ {(σ, ∗)}
Atti+1 = Atti ∪ {(σ̄, σ)}
Gi+1 = Gi ∪ {(σ̄, σ)}, and Gi+1 is acyclic

(ii) if σ �∈ A, then (a) there is some (σ,R) ∈ JsPi, and Pnew is {}; or,
if not, (b) there exists some σ ← R ∈ R, Pnew is R—and (in both cases)
Ci ∩R = {} and

Pi+1 = (Pi − {σ}) ∪ Pnew

Di+1 = Di ∪ (R ∩ A)
JsPi+1 = JsPi+1 ∪ {(σ,R)}
Gi+1 = Gi ∪ {(x, σ) | x ∈ R}, and Gi+1 is acyclic
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2. If (X, Js,C) is selected in Oi and σ is selected in X then
(i) if σ ∈ A, then:

(a) σ is ignored, i.e. Oi+1 = (Oi − {(X, Js,C)}) ∪ {(X − {σ}, Js ∪
{(σ, ∗)},C)}.

(b) or σ �∈ Di and if ∃R((σ̄, R) ∈ JsPi) then Pnew = {}; otherwise,
Pnew = {σ̄} and

Pi+1 = Pi ∪ Pnew

Oi+1 = Oi − {(X, Js,C)})
Di+1 = Di ∪ ({σ̄} ∩ A)
Ci+1 = Ci ∪ {σ}

JsOi+1 = JsOi ∪ {(X − {σ}, Js ∪ {(σ, ∗)},C)}
Atti+1 = Atti ∪ {(σ̄, σ)}
Gi+1 = Gi ∪ {(σ̄, σ)}, and Gi+1 is acyclic

(ii) if σ �∈ A then
– if ∃R((σ,R) ∈ Js), let Onew = {((X − {σ}) ∪ R, Js,C)} and let

Gi∗ = Gi;
– otherwise let Onew = {((X −{σ})∪R, Js∪{(σ,R)},C) | (σ ← R) ∈
R} and let Gi∗ = Gi ∪ {(x, σ) | ∃(σ ← R) ∈ R, x ∈ R} and Gi∗ is
acyclic.

then: Oi+1 = Oi ∪ Onew and Gi+1 = Gi∗. �

As an illustration, consider table 1 (Atti and Gi are omitted for lack of space).
The opponent has two arguments attacking the claim c, introduced in step 2
when the incomplete argument for q was developed using rules (4) and (5) (in
example 5). The proponent attacks opponent argument ({d}, {(q, 4)}, q) using
rule (1) for p (step 4). Then, when the proponent must attack the second oppo-
nent argument ({e}, {(q, 5)}, q), at step 8, the algorithm notices that ē = p has
already been argued for by the proponent (at case 2(i)(b) in definition 9, the
condition which sets Pnew to {}), so an argument for p is not developed again
(avoiding the possibility that it would be developed using an alternative rule). It
is here that we ensure parsimoniousness. The acyclicity check on Gi ensures that
this avoidance of recomputation is sound; the final graph Gn is shown below.

c
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x

Definition 10. Let J be a set of pairs of the form (s,R); if s ∈ A then R is ∗;
otherwise there exists some rule s ← R ∈ R. The arguments determined by J
are those constructible from the ABA framework (L′,R′,A′, ′):
L′ = {s | ∃(s′, R) ∈ J [s = s′ ∨ (R �= ∗ ∧ s ∈ R)]};
R′ = {s← R | (s,R) ∈ J, R �= ∗};
A′ = {a | (a, ∗) ∈ J}; ā′ = a, for all a ∈ A. �
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It is apparent that where, for any s, there is at most one pair (s,R) in JsP, then
the set of arguments determined by JsP is parsimonious. Furthermore, the set
JsP can be more compactly visualized as a graph, whose nodes are the sentences
mentioned in JsP, and where there is an edge (s, r) iff there is a pair (s,R) ∈ JsP
s.t. r ∈ R. For the gGB-DD in table 1, this visualization is shown below, together
with the dialectical relationship with opponent arguments from JsO:

P

O1

O2
a

p
r s

c

d

e

q

q

In the diagram, the proponent’s justifications are shown in the large box on the
left; the opponent’s arguments are the two small boxes on the right; and attacks
are dashed lines.

Proposition 6. If there is a gGB-DD for s then there is a GB-DD for s with
the same defence set.

Proof. (Sketch: the details are omitted for reasons of space.) The structure of
gGB-DDs precisely mirrors that presented in section 2 for GB-DDs; the sets Pi

are the same, and the members (X, Js,C) of the sets Oi have components X
which precisely correspond to the members of Oi in GB-DDs. However, because
of the checks at steps 1(ii), 2(i)(b) and 2(ii) of gGB-DDs, some steps of a GB-
DD may be omitted in a gGB-DD. So, given a gGB-DD (P0,O0, D0, C0, JsP0,
JsO0,Att0, G0), . . . , (Pm,Om, Dm, Cm, JsPm, JsOm,Attm, Gm) there is a GB-
DD (P ′

0,O′
0, D

′
0, C

′
0), . . . , (P ′

n, O′
n, D

′
n, C

′
n) with (m � n), such that to each

step (Pi,Oi, Di, Ci, JsPi, JsOi,Atti, Gi) there corresponds a step of the GB-DD
(P ′

j ,O′
j , D

′
j, C

′
j) with P ′

j = P, O′
j = {X | ∃(X, Js,C) ∈ Oi}, D′

j = Di, C
′
j = Ci–

and s.t. the corresponding steps fall into the same order. �

The table below shows the GB-DD corresponding to the gGB-DD of table 1.
The numbers of corresponding steps from the gGB-DD are in brackets.

Proposition 6 also holds in the reverse, ‘completeness’ direction, with the
modification that the defence set may be a subset of that for the corresponding
GB-DD.

Proposition 7. If there is a gGB-DD for s with defence set Δ, then s is
grounded, Δ is admissible, and there is Δ′ ⊇ Δ s.t. Δ′ is grounded.

Proof. By proposition 6, there is a GB-DD for s with defence set Δ; then from
Theorem 4.2 of [3], the result is immediate. �

Proposition 8. If there is a gGB-DD for s with defence Δ, then the arguments
determined by JsP are parsimonious.

Proof. By construction, there are no two pairs (s,R1), (s,R2) in JsP with R1 �=
R2. Thus the arguments determined by JsP can only be parsimonious. �
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P O D C
0 [0] {c} {} {c} {}
1 [1] {} {{q}} {c} {}
2 [2] {} {{d}, {e}} {c} {}
3 [3] {p} {{e}} {c} {d}
4 [4] {s, a} {{e}} {a, c} {d}
5 [5] {a, r} {{e}} {a, c} {d}
6 [6] {a} {{e}} {a, c} {d}
7 [7] {} {{e}, {x}} {a, c} {d}
8 {p} {{x}} {a, c} {d, e}
9 {s, a} {{x}} {a, c} {d, e}
10 {a, r} {{x}} {a, c} {d, e}
11 {a} {{x}} {a, c} {d, e}

12 [8] {} {{x}} {a, c} {d, e}
13 [9] {} {} {a, c} {d, e}

5 Experiments

To compare the original GB-DDs to the gGB-DDs of section 4, we implemented
both in Prolog. The implementation of the original algorithm (proxdd) used its
(equivalent) variant presented in [5], which records the arguments as well as the
attack relationships between them as they are constructed. This is appropriate
for purposes of comparison, as our algorithm and its implementation (grapharg)
record the rule-minimal justification structure as it proceeds.3

In comparing the results of the two implementations, it is important to set
the same search strategy in each case. Each algorithm has various choice points
(indicated by words such as ‘selected’, or disjunctions), and to compare like with
like it is necessary that the selection be done using the same criteria.

Another fact we had to consider was that, for many strategies, the original
GB-DDs quickly used up all of Prolog’s memory resources. (For such strategies,
the gGB-DD implementation, grapharg, typically terminated or timed out.) We
therefore used strategies for which memory was typically not exceeded for both
implementations.

For the first set of experiments, we randomly generated ABA frameworks
(L,R,A, ) to use as experimental data. The random generation followed a very
simple procedure of choosing contraries to assumptions at random, and popu-
lating rule bodies with sentences randomly. The proportions of assumptions to
non-assumptions in the language; the minimum and maximum number of sen-
tences per rule body; the minimum and maximim number of rules per sentence
serving as rule head—these and similar parameters can all be supplied by the
user. In our experiments, the mean language size (|L|) was 126 sentences, and
the mean number of rules (|R|) was 178, with a mean of 3.6 sentences in the

3 Both implementations are freely available for download from
http://www.doc.ic.ac.uk/~rac101/proarg/.
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body of each rule. For each randomly-selected framework, we randomly selected
10 sentences from the language of the framework to use as queries. We tested
each query-framework pair for both implementations, on the same strategy, with
a time-out of two minutes. In all cases we asked the implementations to find all
possible solutions. The results, for 65 frameworks, are presented in tabular form
below (times in secs.):

grapharg proxdd

Av. time (both complete) 0.447 6.618
Av. time (overall) 54.716 87.413

percentage timeout 40.871 71.208

We recorded the mean time for query-framework pairs where both implementa-
tions completed (first row), as well as the mean time for query-framework pairs
that may have reached the chosen time-out of two minutes.

Our algorithm shows a marked improvement in the mean times taken to an-
swer queries, in the two cases where both implementations completed, and when
one of them reached time-out. The percentage of time-outs itself was much lower
for gGB-DDs. These results are encouraging and confirm our theoretical evalu-
ation.

We were surprised by the comparisons on number of solutions found: in the
cases where both implementations completed, the same number of solutions were
discovered. One might have expected that the guarantee of rule-minimality in
the case of the graph-based algorithm would have meant that fewer solutions
would have been produced by the graph-based algorithm, with the non-rule-
minimal ones being cut. The fact that the figures are the same in each case
is an indication that the ABA frameworks our random-generator produced did
not exhibit the scope for non-rule-minimal arguments—for the chosen queries, at
least. Finally, the very high number of total solutions found overall for the graph-
based algorithm (13,653 vs 217) is owed to one particular randomly-generated
query-framework pair, for which grapharg found 13,427 solutions (proxdd found
none before time-out). If that particular query-framework pair is left out of
account, then the comparison comes to 226 vs 217.

For the experiments based on the breast-cancer study, we used data originally
published in [15], and which we have used in the context of experiments on
parallel argumentation in [7]. The ABA frameworks represent an ontology of
drugs and treatments, and recommendations from 57 papers referred to in the
National Cancer Institute’s breast cancer guideline [16], as well as hypothetical
patient data. In half of the frameworks, we introduced random preferences over
the recommendations from the various clinical trials; this simulates the weights
which patients or doctors might give to the various clinical trials from which the
recommendations are drawn. Further, in half of the frameworks, we flattened the
ontology to a set of Prolog facts, rather than retaining the original combination
of Prolog facts and rules. The ABA resulting frameworks consist of an average
of 947 rules (|R|), and 11 queries were made per framework—each query asking
whether a particular regime of chemotherapy or drugs was recommended.
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We again made these experiments using our graph-based implementation,
grapharg, and compared it to the existing best implementation of the standard
algorithm, proxdd. The results are shown in tabular form below.

grapharg proxdd

Av. time (both complete) 0.575 3.827
Av. time (overall) 23.630 46.015

percentage timeout 18.182 36.364

The results are broadly consistent with those obtained for the randomly-
generated frameworks in the previous round of experiments, and indicate a
similar, increased performance and utility in the case of graph-based dispute
derivations.

6 Conclusion

We proposed an equivalent but ‘leaner’ form of ABA, based on rule-minimal,
graph-based arguments, and gave a variant of an existing mechanism for compu-
tation under the grounded semantics in ABA, namely GB-dispute derivations [3]
(GB-DDs in short), to restrict computation to graph-based arguments only. We
have proven theoretically that our graph-Based GB-dispute Derivations (gGB-
DDs in short) are sound, under the grounded semantics, and conducted a number
of experiments suggesting that our gGB-DDs are more efficient than standard
GB-DDs, both in terms of completion time and terminating computations.

Like others, we are concerned with ‘efficient’ arguments. [11] require argu-
ments to have a minimal support; the analagous notion for us (minimal sets of as-
sumptions as support) is neither implied by, nor implies, that of rule-minimality.
Support-minimality needs to be ascertained ‘globally’, by checking the entire
framework for alternative arguments—rule-minimality can be verified without
such a global check. Our notion of rule-minimality is close to condition 3 in the
definition of argument structure (Def. 3.1) in [10].

Our notion of gGB-DD borrows from the work of [13] the use of a graph whose
acyclicity is an essential prerequisite of success. However, whereas [13] provide
a computational machinery for abstract argumentation [6], we have focused on
structured argumentation in the form of ABA. Moreover, [13] consider several
argumentation semantics; we have focused on the grounded semantics.

There is an established completeness result for the derivation algorithm for
GB-DDs, from [3], which holds for p-acyclic ABA frameworks. This result is
inherited for the algorithms defined in the present paper; this can be shown
straightforwardly. We have omitted this for reasons of space in the current paper.

In future work, it would be interesting to see whether our notions of rule-
minimal and graph-based arguments could be applied in other frameworks for
structured argumentation, e.g. those of [9,10,11,12].

We conducted preliminary experimentation with an implementation of our
gGB-DDs and shown that it moderately, but consistently, improves upon an
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implementation of standard GB-DDs. We plan to further this experimentation
to a larger pool of frameworks and queries.

Like us, [7] also focus on obtaining more efficient computational support for
ABA in the context of a medical application, but by resorting to parallelisation,
where different strategies lead to different threads of execution. It would be
interesting to see how parallelisation could further quicken our implementation.

We have focused on the computation of argumentation under the grounded
semantics. We have already defined variants of our gGB-DDs to compute the ad-
missible semantics, and implemented that in grapharg. We plan also to define
and implement a variant for the ideal semantics; using the parametric method-
ology of [5] this should be straightforward.
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Abstract. This paper describes a framework for practical reasoning in
the presence of norms. We describe a formal normative model constructed
using Action-based Alternating Transition Systems. This model is able
to represent goals; obligations and prohibitions and their violation; and
permissions, which are used to derogate the former. Inspired by Atkin-
son’s scheme for practical reasoning, we utilise argument schemes and
critical questions to both show and reason about how goals and obliga-
tions lead to preferences over the possible executions of the system. The
model then allows us to determine if sufficient information has been pro-
vided in order to perform practical reasoning, identify the best courses of
action, and explain why specific sequences of actions should be executed
by agents within the system.

1 Introduction

The violation of a norm, as expressed through obligations, permissions and pro-
hibitions, can result in sanctions being imposed on an agent. Since such sanctions
are undesirable, the agent will typically attempt to comply with its norms while
pursuing goals. However, it may be the case that the violation of a norm can
yield greater rewards than the cost of sanctions to the agent (e.g. if the violation
results in the achievement of an important goal). Norms therefore impose soft
constraints upon an agent, and when performing practical reasoning, an agent
must weigh up the penalties (and rewards) involved in violating (or adhering to)
norms against the rewards provided by achieving its goals.

Now while practical reasoning frameworks taking norms into account have
been previously proposed (e.g. [4]), explaining the decision processes taken by
agents when acting in such a system, particularly to non-experts, is a difficult
task. In this paper, we build on the work of Atkinson et al.[1] to propose an ar-
gumentation based framework for practical reasoning in the presence of norms,
with the longer term aim of investigating how argumentation can be used to
contribute to the explanation of the agent’s decision processes. While decision
and game theory provide processes whereby a rational agent (i.e. one that at-
tempts to maximise some utility, or reach a most preferred state) can identify
an optimal sequence of actions, we argue that in the practical reasoning domain,
such processes (due to their intrinsically conflicting nature) can be more easily
understood through argument schemes. The instantiation of such schemes, and
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their associated critical questions, results in an argument framework which can
be evaluated to identify the appropriate action(s) to pursue. These arguments
can then be presented to explain why the specific course of action was selected.

In this paper we propose a semantics for norms and goals that can be used
to describe the possible executions of a system. The set of all these executions
then forms the core of the practical reasoning process. Building on this formal
system, we introduce a set of argument schemes together with the appropriate
critical questions, which can in turn be used to identify the most preferred system
execution path.

In the next section we describe our formal model in detail. Following this,
Section 3 introduces the argument scheme and maps it to our formal model. An
example of the approach is provided in Section 4, and we discuss related and
future work in Section 5, before concluding the paper in Section 6.

2 The Model

In this section we describe our formal model, which is based on action-based
alternating transition systems (AATSs) [10]. Such AATSs are intended to encode
all possible evolutions of a system due to the actions of all agents within it,
representing the various states through which the system can pass through by
means of a branching time tree structure. Since this can be described as a Kripke
system, we can reason about the possible trajectories of the system by means of
a branching time logic. After introducing the basic concepts of AATSs, we detail
how goals and norms, as well as more complex concepts such as violations and
the derogation of obligations can be specified using the logic.

2.1 Semantics

Definition 1. (AATS, [10]) An Action-based alternating transition system
(AATS) is a tuple of the form

S = 〈Q, q0, Ag,Ac1, . . . Acn, ρ, τ, Φ, π〉
Where

– Q is a finite non-empty set of states.
– q0 ∈ Q is the initial state.
– Ag = {1, . . . , n} is a finite non-empty set of agents.
– Aci, with 1 ≤ i ≤ n, is a finite and non-empty set of actions for each agent,

where actions for different agents do not overlap.
– ρ : Aci → 2Q is an action precondition function which identifies the set of

states from which some action α ∈ Aci can be executed
– τ : Q× JAg → Q where JAg =

∏
i∈Ag Aci, is the system transition function

identifying the state that results from executing a set of actions from within
JAg in some state.

– Φ is a finite and non-empty set of atomic propositions
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– π : Q→ 2Φ is the interpretation function which identifies the set of proposi-
tions satisfied in each state.

Following [10], we define a computation (also referred to as a path) to be an
infinite sequence of states λ = q0, q1, . . ., where qi ∈ τ(qi−1, α) for some α for
which qi ∈ ρ(α). We index a state within a path using array notation. Thus, the
first element of path λ can be referenced via λ[0], while a sub-path of the path
starting at the second element and consisting of the remainder of the path is
written λ[1,∞].

An AATS encodes the possible states of the world that result from executing
actions, and can be viewed as a Kripke structure with the transition function τ
acting as the accessibility relation. We can therefore represent the AATS using
CTL* operators [7], allowing us to refer to both single paths and groups of paths
in the structure. We define the semantics of CTL* in two stages, first defining
state formulae, following which we describe path formulae. The syntax of CTL*
emerges directly from the semantics and is not detailed due to space constraints.

Definition 2. (State Formulae) State formulae are evaluated with respect to
an AATS S and a state q ∈ Q:

S, q |= �
S, q �|= ⊥
S, q |= p iff p ∈ π(q)
S, q |= ¬ψ iff S, q �|= ψ
S, q |= ψ ∨ φ iff S, q |= ψ or S, q |= φ
S, q |= Aψ iff S, λ |= ψ for all paths where λ[0] = q
S, q |= Eψ iff S, λ |= ψ for some path where λ[0] = q

Definition 3. (Path Formulae) Path formulae are evaluated with respect to
an AATS S and a path λ.

S, λ||= ψ iff S, λ[0] |= ψ where ψ is a state formula.
S, λ||= ¬ψ iff S, λ � ψ
S, λ||= ψ ∨ φ iff S, λ||= ψ or S, λ||= φ
S, λ||=©ψ iff S, λ[1,∞]||= ψ
S, λ||= ♦ψ iff ∃u ∈ � such that S, λ[u,∞]||= ψ
S, λ||= 
ψ iff ∀u ∈ � it is the case that t S, λ[u,∞]||= ψ
S, λ||= φUψ iff ∃u ∈ � such that S, λ[u,∞]||= ψ and

∀v s.t. 0 ≤ v < u, S, λ[v,∞]||= φ

Note that state formulae refer only to a single possible world, or state, within
a path, even in the case when the state operator then refers to a path formula
(c.f. the A and E operators). Path formulae always refer to entire paths which
begin at some state (e.g. the next state in the case of the © operator).

These semantics capture the evolution of a system over time due to agent
actions. However, they say nothing about why one path might be followed by
agents rather than another in order to effect certain actions and therefore lead
to certain states. To capture this notion we define a relation over paths, written
�g to represent the preferences of some group of agents g with respect to one
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group of paths over another. This group of paths is specified by means of a path
formula. Thus, for example, ♦a �{α} ♦¬a captures the preference of agent α for
those paths in which a is eventually true over those paths where it is eventually
false. When dealing with a single agent, or referring to a group by a label, we
write �α instead of �{α}. Finally, we write λ �g λ′ to represent the case when
λ �g λ′ and λ′ ��g λ, and abbreviate the situation where both λ �g λ′ and
λ′ �g λ hold as λ ∼g λ′.

Now a question arises as to the origin and form of the preference relation, and
we propose that the agent’s goals, together with the norms found in the system
constrain (but do not fully specify) it. For example, if an agent has a goal, then
it should prefer those paths where the goal is achieved to those paths where it is
not. However, this goal does not impose any preference ordering between those
paths in which the goal is achieved (or indeed between those paths where it is
not). In other words, if a goal g is achieved in paths λ1 and λ2, but not in paths
λ3 . . . λ8, then λm �g λn where m ∈ {1, 2} and n ∈ {3 . . . 8}, but we cannot
identify a preference between λ1 and λ2 (and similarly, cannot specify whether,
for example λ3 is preferred to λ7).

We begin a more detailed exploration of the preference relationship by exam-
ining goals more closely.

2.2 Goals

Goals identify states of affairs in the world that an agent prefers (and should be
able to bring about in part due to their action, but we do not formally impose
this requirement). In other words, when undertaking practical reasoning, agents
prefer those actions forming paths wherein their goals are achieved to those where
they are not. We therefore represent goals through path formulae, identifying the
state of affairs that must exist for a goal to be considered as met or satisfied.

We consider both achievement and maintenance goals [9]. The former iden-
tifies a state of affairs that must hold at some point in time, while the latter
requires some state of affairs to be maintained until some deadline. Both of
these goals can be easily represented in our logic, though in this paper we ignore
conditional goals (i.e. goals of the form “ If X is the case then a goal Y exists”).

Definition 4. (Goals) A formula γ describes a path where an achievement goal
is met if it is of the form ¬dUx. It describes a maintenance goal path if it takes
the form (¬d ∧ x)Ud.1

x represents the state of affairs that the goal aims to satisfy, while d represents
the goal’s deadline.

The above definition therefore requires that the deadline d not be in force,
and x be in force until the deadline d occurs, matching the intuition behind a
maintenance goal.

1 The semantics of U require us to ensure that the deadline does not occur before it
actually does.
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Since achieving a goal γ is preferred by some agent or group over not achieving
the goal, we can identify a preference ordering over possible paths by the simple
rule

γ �g ¬γ

2.3 Norms

Norms within a system represent obligations, prohibitions and permissions im-
posed on, or provided to, entities within a society or group. Obligations and
prohibitions (respectively) identify the states of affairs that a target must ensure
do (or do not) occur. If these states of affairs do not (or do) occur, then the norm
is violated. Following [3,2,6], we treat permissions as exceptions to obligations
and prohibitions: in the case of an obligation, if a state of affairs is ordinarily
obliged, but a permission not to achieve the state exists, then even if the state of
affairs is not achieved, no violation occurs. Furthermore, we treat prohibitions
as obligations not to have some state of affairs hold.

Now we view norms primarily as social constructs. That is, an obligation (for
example) specifies who should behave in some way (i.e. it has a set of target
agents), and also identifies which agent — or set of agents — desires that this
behaviour occur. The latter form the norm’s creditors (c.f. the social commit-
ments of Singh [16]).

Following this perspective, we view a norm as expressing a preference over
a state of affairs for its creditors rather than its target. That is, a creditor
prefers those situations in which a norm is not violated to one where it is.
Now this implies that a norm, in isolation, has no direct effect on its target’s
behaviour. Instead, we believe that such behaviour regulation stems from two
sources. First, the violation of a norm could (via contrary-to-duties [5]) permit
a sanction to be imposed on the violator. Second, social ties could mean that a
norm’s target takes the norm creditor’s preferences into account (e.g. I may fulfil
my obligations to my friends because I care about their feelings rather than any
threat of sanctions). Note however that in our argument framework, we merge
all individual agent preferences into a global preference, limiting the effects of
this approach; investigating a more “local” view of preferences forms part of our
future work.

Next, we provide a high level overview of the different norm types, before
proceeding to formalise them.

Obligations and Prohibitions. As mentioned above, obligations identify
states of affairs that should be achieved by the target of the obligation. Obli-
gations are imposed by some group (the creditor) on the target2. Furthermore,
if an obligation is not fulfilled, then the creditor could potentially sanction the
obligation’s target. An obligation therefore encodes two concepts, namely the
preference by the creditor for paths wherein the obligation is fulfilled over those

2 Note that this creditor could be the entire society of agents.
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where it is not. Second, if an obligation is not fulfilled, then a record must be
kept that it has been violated in order to enable sanctions to be put into place.

In line with goals, we consider two distinct types of obligations (c.f. [8]),
namely achievement obligations, which require the target to see to it that some
state of affairs holds at some point before some deadline occurs, andmaintenance
obligations, which require the target to ensure that the state of affairs holds at
all points before the deadline. Before formally defining obligations, we must
examine the notion of a permission, which acts as an exception to an obligation.

Permissions. A permission acts as an exception to an obligation (or a pro-
hibition). In other words, given an obligation to achieve some state of affairs,
and a permission not to achieve it, not achieving this state of affairs will not
result in a violation. As discussed previously, we model prohibitions as negated
obligations, and therefore concentrate on the interactions between permissions
and obligations. Like other modalities, a permission is given by some creditor to
a target, and affects the creditor’s concept of a violation. Similarly, permissions
identify some (permitted) state of affairs, and a deadline.

Clearly, interpreting a permission in this way makes little sense without an
obligation or prohibition being present, and we therefore encode permissions
through the presence of a permission proposition, with one such unique proposi-
tion being defined for every combination of creditor, target and state of affairs.
Since our AATS has only a finite number of agents and propositions, there are
a finite number of such proposition symbols. More precisely, we use the proposi-
tion Pg

a,x to indicate that agent a has obtained permission from g to see that the
state of affairs x is not the case in the state where the proposition is true. We
can now define a permission through the use of a formula in our logic, writing
P g
a (x|d) as an abbreviation of the formula

APg
a,xUd

This formula ensures that a permission is in force over all possible paths in the
system until deadline d. Since we must ensure that the permission predicate does
not hold when no permission is in force, we require the following axiom in the
system:

A
(¬P g
a (x|d)→ ¬Pg

a,x)

Note that a permission can exist while an obligation is not present. However,
in such a situation, the permission will have no effect on the system.

Formalising Obligations. Obligations identify states of affairs that should
hold, and a failure to abide by the requirements of an obligation leads to a
violation. We encode such a violation through a violation proposition (as done
in, for example [17]), in a manner similar to the permission proposition. In
other words, the proposition Vg

a,x,d represents a violation by the target a of the
obligation, with respect to a creditor g, to see to it that state of affairs x was
the case with respect to a deadline d.
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An achievement obligation, abbreviated Og
a(x|d) requiring the target a to

ensure that some state of affairs x holds before a deadline d towards a creditor
g is represented as follows:

A(¬Vg
a,x,d ∧ ¬d ∧ ¬x)U (((¬x ∧ d ∧ ¬Pg

a,x ∧ Vg
a,x,d)∨

(¬x ∧ d ∧ Pg
a,x ∧ ¬Vg

a,x,d))∨
(x ∧ ¬Vg

a,x,d))

This obligation therefore requires the following conditions to be met on all pos-
sible paths:

1. Before either the deadline or x occurs, the obligation is not considered vio-
lated (the first line of the obligation following the U).

2. If the deadline occurs and x is not the case, then if there is no permission
allowing this to occur, a violation is recorded. Alternatively, if such a per-
mission exists, then no violation is recorded (this is encoded by the second
line of the proposition).

3. Finally, if x is achieved (before the deadline), then no violation is recorded
(this is captured by the final line of the proposition).

Therefore, our encoding of an obligation essentially states that if an obligation
is in force, it is only violated if the deadline is reached without the desired
state of affairs being achieved, assuming that no permission exists allowing the
obligation to be ignored. However, nothing in this definition prevents a violation
from existing in a state of affairs without an associated obligation. We therefore
require that the following axiom hold:

A
(¬Og
a(x|d)→ ¬Vg

a,x,d)

Maintenance obligations requires that a state of affairs be maintained until some
deadline3. We abbreviate a maintenance obligation on a from g requiring x be
the case until deadline d as Og

a(m : d). This stands for the following formula.

A ((¬x ∧ ¬d ∧ (¬Pg
a,x ∧ Vg

a,x,d)∨
(Pg

a,x ∧ ¬Vg
a,x,d)) ∨ (x ∧ ¬d))Ud

In other words, before the deadline, either x is maintained, or x is not maintained,
in which case the obligation is violated if an associated permission does not exist.

The requirement for the lack of a violation, as stated above, is repeated for
maintenance obligations:

A
(¬Og
a(x : d)→ ¬Vg

a,x,d)

In discussing obligations so far, we have identified the situations in which they
are violated. Detecting these situations allows for the modelling of contrary to

3 We assume that this maintenance requirement comes into force with the obligation,
ignoring obligations of the form “maintain x between 5pm and 8pm tomorrow”.
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duty obligations, which come into force when a violation occurs. Such contrary
to duties are a form of conditional obligation, which comes into force only when
some state of affairs holds in the environment, and generally, such conditionals
can be represented via an axiom utilising an implication relation, e.g.

A(Vg
a,x,d → Og

a(x
′|d′))

We now turn our attention to the second aspect of obligations, namely their
interactions with preferences over paths through the system. Informally, the
presence of an obligation or prohibition imposed by some creditor leads to that
creditor preferring those paths through the system where the obligation is com-
plied with (i.e. not violated) over those where it is violated. This leads to the
following rule within our system:


¬Vg
a,x,d �g ♦Vg

a,x,d

Note that we do not prefer fewer violations over more violations, as other pref-
erences, for example regarding the interval length of a violation, could affect the
preference ordering.

Having formalised permissions and obligations, we now consider prohibitions.
In this work we consider only achievement prohibitions, that is, prohibitions
on seeing to it that a state of affairs holds (until the prohibition’s deadline
occurs). Such a prohibition can in fact be modelled as a maintenance obligation
— a prohibition on achieving x until some deadline is a maintenance obligation
Og

a(¬x : d), requiring the target to ensure x holds until the deadline.
We conclude this section by making several observations regarding our nor-

mative system. Unlike models such as [8], violations in our model do not persist.
That is, a violation identifies a single, specific point in time at which an obliga-
tion was violated, and is associated with the violated obligation via x and d, the
creditor (g) and target (a). Violations are represented as unique propositions in
our language.

It should also be noted that our representation of obligations means that an
achievement obligation ceases to have force (in the sense of implying a violation)
at the moment of deadline; work such as [8] instead specifies that an obligation
must still be fulfilled even after it has been violated, and we will investigate this
interpretation in future work.

Also note that our preference relation over obligations implies that
agents/social groups are, in a sense, “honest”, that is, they prefer the outcome
implied by compliance with the obligation over one where the obligation is vio-
lated.

3 Practical Reasoning via Argumentation

Our formal model contains two distinct aspects. The first aspect consists of the
AATS, which identifies all possible evolutions of the system, while the second
aspect is associated with the preferences over paths (i.e. sequence of actions)
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that agents hold. Our aim is to identify whether a most preferred path through
the system exists, and explain why this is the case. In order to do so,we make use
of argument schemes [18], defeasible rules expressed in natural language which
can be used to justify some conclusion. An argument scheme is associated with
a set of critical questions, which are used to prevent the inferences of the rule
from being made.

The argument schemes we define in the next section are instantiated as ar-
guments within an extended argument framework (EAF) [12]. The evaluation
of such an EAF according to a specific argumentation semantics results in a set
of extensions, each containing a set of arguments. Each of these sets of argu-
ments is, in some sense, justified. We begin by describing our argument schemes
in more detail, following which we describe EAFs and the extension evaluation
procedure.

3.1 Argument Schemes

The first scheme we consider puts forth the argument that any sequence of
actions through the AATS can be justified. Each path through the AATS thus
results in a unique argument which is an instantiation of the following argument
scheme.

AS1: In situation S, the sequence of joint actions A1, . . . An should be exe-
cuted.
This argument scheme is associated with two critical questions:

CQ1-1. Does some other sequence of actions exist that can be executed?
CQ1-2. Is there a more preferred sequence of actions to this one?

The first critical question will result in symmetric attacks between all instanti-
ations of AS1 for all possible paths (which are instantiations of the sequence of
actions) through the system. The second critical question will lead to an asym-
metric attack from another AS identifying the more preferred sequence of actions
to the less preferred sequence of action. Now a reason for one sequence of ac-
tions to be preferred over another is that it achieves a goal, or complies with a
norm that is important to the agent. We therefore introduce several additional
argument schemes capturing these possible reasons.

AS2: The sequence of joint actions A1, . . . , An is preferred over A′
1, . . . A

′
n as

the former achieves a goal which the latter does not.
Critical questions here are as follows:

CQ2-1. Is there some other sequence of actions which achieves a more preferred
goal than the one achieved by this action sequence?

CQ2-2. Does the sequence of actions lead to the violation of a norm?

AS3 and AS4 are argument schemes that deal with obligations and permissions:
AS3: The sequence of actions A1, . . . An should be less preferred than se-

quence A′
1, . . . A

′
n as, in the absence of permissions, the former violates a norm

while the latter does not.
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CQ3-1. Is the goal resulting from the sequence of actions more preferred than
the violation?

CQ3-2. Does the violation resulting from this norm result in some other, more
important violation not occurring?

CQ3-3. Is there a permission that derogates the violation?

AS4: There is a permission that derogates the violation of an obligation.
Note that the separation between AS3 and AS4 is intended purely for explana-
tory purposes; conceptually, it would be possible to merge both of these schemes
into one by considering an argument scheme which deals with violation once
permissions are considered.

Finally, we can identify several simple argument schemes that allow an agent
to associate preferences between different goals and norms, thereby enabling the
instantiation of the critical questions for AS2 and AS3.

AS5: Agent α prefers goal g over goal g′

AS6: Agent α prefers achieving goal g to not violating n
AS7: Agent α prefers not achieving goal g to violating n
AS8: Agent α prefers violating n to violating n′

AS9: Agent α prefers situation A to B
This last argument scheme is intended to allow an agent to express individual
preferences with regards to outcomes.

3.2 Argument Scheme Semantics

We now provide a brief formalisation of the argument schemes and critical ques-
tions based on our AATS semantics. Above, our argument schemes referred to
sequences of actions, which are equivalent to paths through the AATS. As done
previously, we label this AATS S below. Our formalisation makes use of the
formulae obtained from goals and norms to express preferences over paths. That
is, given S, and preferences expressed using CTL* formula φ and ψ of the form
φ �a ψ, We specify a set of path preferences λ ≥a λ′ for any paths λ, λ′ where
S, λ |= φ and S, λ′ |= ψ.

Given a sequence of actions j1, . . . , jn, we can obtain a path λ as the path
beginning in the initial state q0 ∈ Q, and for which for all i = 1 . . . n, τ(qi−1, ji) =
qi.

Given an AATS, we can then identify valid instantiations of the argument
schemes and critical questions, resulting in an argument framework whose eval-
uation allows us to determine justified action sequences4.

AS1: There is a path λ obtained from the sequence of actions j1, . . . jn.
AS2: There is a goal γ and two paths λ, λ′ obtained from the sequence of

joint actions , j1, . . . jn and j′1, . . . j
′
m respectively, and it is the case that S, λ |= γ

and S, λ′ �|= γ.

4 Note that for AS2-4, the natural language version of the scheme refers to preferences.
These are left implicit in the formalisation, as such preferences emerge from our
definition of goals and obligations, as per Sections 2.2 and 2.3.
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AS3: There exist two paths λ, λ′ obtained from the sequence of joint actions
j1, . . . jn and j′1, . . . j

′
m respectively, and it is the case that S\Pg

a,x, λ |= Vg
a,x,d

and S\Pg
a,x, λ

′ �|= Vg
a,x,d

AS4: There is a path λ obtained from the sequence of joint actions j1, . . . jn,
and S\Pg

a,x, λ |= Vg
a,x,d but S, λ �|= Vg

a,x,d.
AS5-AS9 express individual agent preferences between goals, and violations.

For example, an agent may prefer to achieve one goal over another (AS5), or
avoid achieving a goal if it means violating a norm (AS7).

AS5: There are goals γ, γ′ where S, λ |= γ and S, λ′ |= γ′ and γ �α γ′

AS6: There is a goal γ and violation Vg
a,x,d such that γ �α ¬Vg

a,x,d

AS7: There is a goal γ and violation Vg
a,x,d such that ¬γ �α Vg

a,x,d

AS8: There are two violations Vg
a,x,d, Vh

b,y,e such that Vg
a,x,d �α Vh

b,y,e

AS9: A �α B where A,B are formulae in our language.
Now let us turn our attention to the critical questions, using the same definitions
as above.

CQ1-1: There is a sequence of joint actions j′1, . . . j
′
n such that for some

i ∈ 1 . . . n ji �= j′i.
CQ1-2: There is an instance of AS2 or AS3 whose path λ is created by the

sequence of joint actions of this AS1. Alternatively, there is an instance of AS9
whose path B is equivalent to λ created by the sequence of joint actions of this
AS1.

CQ2-1: There an instance of AS5 whose less preferred goal is the one iden-
tified by this instantiation of AS2.

CQ2-2: There is an instance of AS3 whose path λ is the λ path for AS2.
CQ3-1: There is an instance of AS6 for S, λ |= γ and S, λ |= Vg

a,x,d, where λ
is the first path of AS3.

CQ3-2: There is an instantiation of AS8 for which this instantiation of AS3
means that S\Pg

a,x, λ |= Vg
a,x,d and S\Pg

a,x, λ �|= Vh
b,y,e

CQ3-3: There is an instantiation of AS4 referring to a permission Pg
a,x which

refers to the same path λ as this instantiation of AS3.

3.3 Instantiating the Framework

We instantiate the framework described above using Modgil’s extended argument
frameworks (EAF) [12]. Formally, an EAF is defined as follows:

Definition 5. (Extended Argument Framework) An EAF is a tuple
(Args, R,D) such that Args is a set of arguments, R ⊆ Args × Args, and
D ⊆ Args × R subject to the constraint that if (C, (A,B)), (C′, (B,A)) ∈ D,
then (C,C′), (C′, C) ∈ R

Each instantiation of any of the argument schemes is associated with an argu-
ment within our EAF, and each critical question is associated with an attack on
the argument scheme instantiation to which this critical question belongs. The
constraint imposed on EAFs causes additional attacks to appear that are not
described by the critical questions. We describe the process of EAF instantiation
informally due to both space concerns and its simplicity.
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CQ1-1 arises since only one sequence of actions can ultimately be executed,
and results in symmetric attacks being inserted into R between every pair of
nodes instantiating AS1. CQ1-2 refers to preferences between actions and fol-
lowing [13], is captured via an attack from the node representing the argument
to the appropriate attacking edge.

CQ2-1, CQ2-2, CQ3-1 and CQ3-2 capture preferences over goals and norms.
That is, they are used to represent the fact that one goal (or norm) is preferred
over some other goal (or norm) by entities in the system. All of these link the
appropriate argument, as instantiated by AS5-8 via an attack, on the attack
from the argument instantiated by the appropriate AS2 or AS3.

Finally, CQ3-3 encompasses the possibility of a violation being derogated by
a permission, and in instantiated as an attack from AS8 to the appropriate AS3.

Given the above, CQ1-1 and CQ3-3 result in attacks added to R, while the
remaining critical questions result in attacks added to D. Together with the at-
tacks added by the constraint, these attacks between the arguments instantiated
from the application of the argument schemes fully specify our EAF.

Given an EAF instantiated as above, all the preferred extensions of the EAF
will contain a single argument from argument scheme AS1 for some specific
action sequence to be executed iff this action sequence is most preferred by all
agents in the system. This sequence of actions is the dominant strategy for all
agents in the system. Therefore, each preferred extension of the EAF identifies
a single most preferred sequence of action.

The presence of multiple preferred extensions indicates that there are multiple
most preferred sequences of action. In most multi-agent situations, this is an
undesirable situation, as additional coordination is then required between the
agents to ensure that a most desired sequence of joint actions is executed. This
would require more refined reasoning about plans (e.g. [11]) to take place.

Finally, an empty set of extensions indicates that there is a preference conflict
that must be resolved before a course of action can be agreed on.

Our system has several levels of argument schemes capturing arguments about
paths, norms and goals; the former are in effect the object language, while the
latter, together with argument schemes about preferences over norms and goals,
represent a meta-language and a meta-meta-language. The use of an EAF there-
fore allows us to separate out these different levels, in a manner similar to [13]).

4 Example

In this section, we provide a brief example of the framework in action. Due to
space constraints, we do not present all details of the system in our example, but
instead concentrate on the most important aspects of the system’s operation.

Consider two agents, α and β. α can undertake two actions, namely to visit
her ill mother in hospital (V ), or go to work (W ). β, who is α’s boss, has two
possible actions, namely to fire α (F ), or not fire her (N). α has two (conflicting)
goals: to visit her mother (vm), and to keep her job (kj), while β would like to
see some work done (wd), which can only occur if α goes to work. Finally, β has
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Fig. 1. The AATS (top left) and EAF (main figure) of the example

an obligation to not fire α, but has permission to do so if α does not come to
work.

The AATS for this example is shown in the top left of Figure 1, and instanti-
ating the EAF results in the main graph of Figure 1. Within this graph, paths
from the AATS are indicated through nodes containing the path number; pref-
erence information is encoded through the propositions true in the state (e.g.
1 > 3 kj indicate that path 1 is preferred to path 3 due to α’s preference to
keep her job; the permission to fire is indicated via the per node, and nvl iden-
tifies preference nodes instantiated through the prohibition on firing α. Dashed
lines indicate attacks due to actions being mutually exclusive, while solid lines
capture preference based attacks.

Evaluating the preferred extension of this EAF indicates that multiple actions
are possible; for example, paths 1 and 2 are present in two of the extensions.
This means that the system’s preferences are underspecified. Looking at the
situation more closely, this occurs for several reasons. First, α does not have any
preferences encoded between going to the hospital or keeping her job; prioritising
one of these (by adding attacks on edges between kj and vm via an instantiation
of AS9) reduces the number of extensions, for example, if vm is preferred over kj,



76 N. Oren

only path 2 remains in the extension indicating that α should visit her mother
and keep her job.

This odd result arises because while β has permission to fire α if she does not
turn up to work, no preferences are expressed over whether β would prefer this
situation to one where α keeps her job. Adding an additional preferences over
paths, through a new goal for β stating that either the work is done and α keeps
her job, or the work is not done and α is fired, will result in α losing her job
if she visits her mother in hospital (path 4). Note that due to the permission,
there is no need to then express another preference for β between this goal and
the norm on not firing α; without the permission, such an additional preference
would be necessary.

5 Discussion and Future Work

In practice, there are several ways of using the framework proposed here, each of
which poses an avenue for future research. First, as done in the example above,
a given AATS could be converted to an EAF and evaluated in order to identify
whether sufficient preference information has been provided in order to reach a
decision about a sequence of actions. The potential exponential growth in the
number of arguments with respect to AATS size makes this approach practical
for only small AATSs.

Second, a dialogue game could be formulated (and verified against an AATS)
based on arguments and attacks instantiated from the argument schemes and
critical questions. This would involve agents arguing for why some course of ac-
tion should be taken via utterances regarding their goals, norms and preferences.

Third, and perhaps most novel, an instantiated EAF could be used as the
basis of a process to explain why some sequence of actions was followed given
agents with some goals and norms. A user could, for example, understand that
an action was executed as while a norm was violated, the goal achieved was more
important to the agents in the system than the violation.

While norms can in general refer to both actions or states of the world (e.g. you
are obliged to open the door, or you are obliged to have the door open respec-
tively), in this paper we considered only norms that refer to environmental states.
This restriction can be worked around by introducing so called action predicates
which evaluate to true if some specific action executed in the previous state,
causing a transition to the state where the action predicate is true.

Our work borrows several ideas from Atkinson’s argument scheme for practical
reasoning based on values [1]. Atkinson’s approach puts both goals and values
at the centre of the argumentation scheme, stating that “in situation S, action
A should be pursued in order to achieve goal G while promoting values V ”.
This argument scheme is encoded through a VAF, which is used to represent the
preferences of different audiences over values. Each argument within the VAF
can be associated with several values, but an audience’s value ordering must
be fully specified and consistent (see [14] for work which attempts to relax this
assumption).
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In the current work, preferences (which have a similar role to Atkinson’s val-
ues) are associated with different sequences of action due to the goals that these
sequences achieve for the agents as well as the norms violated or complied with
by the sequence. Given this, our AS1 argument scheme is much simpler than
Atkinson’s, stating that (by default) some sequence of actions should be exe-
cuted, and requiring all possible sequences of actions to be mutually exclusive
with each other. Deciding how to act then requires identifying the most preferred
sequence of actions. While our approach bears many similarities to [1], our work
explicitly considers norms in practical reasoning, and considers all possible in-
teractions between norms and goals.

Our representation of preferences within an EAF is based on [13], which ap-
plied EAFs to VAFs. While there are many similarities between our instantiation
and the VAF instantiation, the requirement of VAFs to have a single consistent
preference ordering makes them unsuitable for our needs; as shown above, we
explicitly concern ourselves with detecting inconsistent preference orderings.

In one sense, the work presented here takes a global view of norms and actions.
We consider joint actions, and require that all agents agree on a path. Such an
approach ignores an important nuances of practical reasoning: agents may be
force to pursue sub-optimal goals due to the actions of other agents. Thus, while
our approach currently finds dominant strategies, it is unable to find other game
theoretic solution concepts (e.g. Nash equilibria); we believe that capturing these
additional solution concepts is critical, and are currently investigating how these
concepts can be captured using our approach ([15] begins this work, but ignores
the argumentation aspect of our approach). This will make more extensive use
of the notion of a norm’s creditor and target, and the preferences of each with
regards to specific outcomes.

Another interesting avenue of future work involves considering a more dy-
namic system where new obligations, permissions and prohibitions can be cre-
ated and removed as the system executes, and agents goals can change over
time.

Finally, integrating practical reasoning over norms with reasoning over values
would also be useful. This, in combination with the already present capability to
reason over goals, should provide an end-to-end practical reasoning formalism.

6 Conclusions

In this paper we proposed a representation for norms built on top of an AATS.
Using this representation we described how arguments over norms can be con-
structed, allowing for the detection of inconsistencies when performing practical
reasoning, the explanation of why some action was taken, and making a decision
about how to act in the presence of both goals and norms.

Acknowledgements. I would like to thank the anonymous reviewers for their
very detailed and insightful comments.
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Argumentation Accelerated Reinforcement

Learning for RoboCup Keepaway-Takeaway

Yang Gao and Francesca Toni
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Abstract. Multi-Agent Learning (MAL) is a complex problem, espe-
cially in real-time systems where both cooperative and competitive
learning are involved. We study this problem in the RoboCup Soc-
cer Keepaway-Takeaway game and propose Argumentation Accelerated
Reinforcement Learning (AARL) for this game. AARL incorporates
heuristics, represented by arguments in Value-Based Argumentation,
into Reinforcement Learning (RL) by using Heuristically Accelerated RL
techniques. We empirically study for a specific setting of the Keepaway-
Takeaway game the suitability of AARL, in comparison with standard
RL and hand-coded strategies, to meet the challenges of MAL.

1 Introduction

Multi-agent Learning (MAL) is widely recognised as a complex problem and
has attracted much attention. Research on MAL roughly fall into two cate-
gories: cooperative MAL, where multiple learning agents share the same goal
(e.g. [5,12,11,15]), and competitive MAL, where different learning agents have
different or even opposite goals (e.g. [16,13]). Argumentation [7], studying the
concept of ‘good’ arguments among conflicting arguments, is widely viewed as a
powerful tool in solving conflicts and reaching agreement (see, e.g., [8]), and has
been successfully incorporated within learning [18,10]. We investigate the use
of argumentation in MAL where both cooperative and competitive learning are
involved, focusing on the RoboCup Soccer Keepaway-Takeaway (KATA) game,
an integration of two popular testbeds for MAL [21,14] where there are two
competing teams of agents, keepers and takers, collaborating within the teams.

We focus on Reinforcement Learning (RL), because it allows agents to learn
by interacting with the environment and has been shown to be a generic and
robust learning algorithm for MAL [19]. However, when both competitive and
cooperative learning are involved in a MAL, the effectiveness of RL could be
seriously reduced due to the instability of the environment [22]. To solve this
problem, we propose, in the context of KATA games, Argumentation Acceler-
ated RL (AARL), which incorporates Value-Based Argumentation [1] into RL by
using Heuristically Accelerated RL (HARL) techniques [3], so that, when making
decisions, agents rely not only on their interacting experiences with the environ-
ment, but also domain knowledge in the form of arguments. Further, we test the
effectiveness of AARL in the specific setting of 3-keeper-2-taker KATA games.

E. Black, S. Modgil, and N. Oren (Eds.): TAFA 2013, LNAI 8306, pp. 79–94, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Concretely, we test AARL for keepers and takers against two different strategies
for each type of agent and perform a round-robin style experiment(where each
strategy meets all strategies in turn). Our experiments suggest that the AARL-
based strategies are competitive in terms of stability, average convergence time
and average optimal performance. This work is an extension of our previous work
on single-agent Argumentation-Based Reinforcement Learning (ABRL) [10].

The paper is organised as follows: Section 2 gives background. Section 3 de-
scribes how to apply AARL to TAKA games and Section 4 presents empirical
results. Section 5 describes related works and Section 6 concludes.

2 Background

First we give fundamentals of value-based argumentation. Then we describe
Markov Decision Process – a popular mathematical model of RL, focusing on
the SARSA(λ) algorithm that we use, followed by an introduction of HARL,
by means of which we integrate arguments into RL. Finally, we describe the
RoboCup Soccer Keepaway-Takeaway games.

2.1 Argumentation Frameworks

An abstract argumentation framework (AF) [7] is a pair (Arg,Att) where Arg is a
set of arguments and Att ⊆ Arg×Arg is a binary relation ((A,B) ∈ Att is read ‘A
attacks B’). S ⊆ Arg attacks B ∈ Arg iff some member of S attacks B. S ⊆ Arg
is conflict-free iff S attacks none of its members. If S ⊆ Arg attacks all arguments
attacking B ∈ Arg, then S defends B . Semantics of AFs are defined as sets of
“rationally acceptable” arguments (extensions), e.g. (given some F = (Arg,Att)
and S ⊆ Arg):

– S is a complete extension for F iff S is conflict-free and S = {a|S defends a};
– S is the grounded extension for F iff S is minimally (wrt ⊆) complete for F.

The grounded extension is guaranteed to be unique, consisting solely of un-
controversial arguments and being thus “sceptical”.

In some contexts, the attack relation is not enough to decide what is ratio-
nally acceptable, and the “values” promoted by arguments must be considered.
Value-based argumentation frameworks (VAFs) [1] incorporate values as well as
preferences over them into AFs. The key idea is to allow for attacks to succeed
or fail, depending on the relative worth of the values promoted by the compet-
ing arguments. Given a set V of values, an audience Valpref is a strict partial
order over V (corresponding to the preferences of an agent), and an audience-
specific VAF is a tuple (Arg,Att, V, val,Valpref), where (Arg,Att) is an AF and
val : Arg→ V gives the values promoted by arguments. Valpref, the audience, is
a strict partial order over V. We denote (X,Y ) ∈ Valpref by X >v Y .

In VAF, Valpref is taken into account in the definition of extensions. The
simplification of an audience-specific VAF is the AF (Arg,Def), where (A,B) ∈
Def iff (A,B) ∈ Att and val(B) �>v val(A). (A,B) ∈ Def is read ‘A defeats B’.
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Then, (acceptable) extensions of a VAF are defined as (acceptable) extensions of
its simplification (Arg,Def). We refer to (Arg,Def) as the simplified AF derived
from (Arg,Att, V, val,Valpref).

2.2 Markov Decision Process

The Markov Decision Process (MDP) is one of the most widely used model for
RL and has several variants [22]. An MDP is a tuple (S,A, T,R), where S is
the state space, A is the action space, T (s, a, s′) = Pr(s′|s, a) is the transition
probability of moving from state s to state s′ by executing action a, and R(s, a, s′)
gives the immediate reward received when action a is taken in state s, moving
to state s′. In many real problems, e.g. RoboCup Keepaway/Takeaway games
(see Section 2.4), actions may take variable amount of time. In these cases,
Semi-MDP [4] are used to model temporally-extended courses of actions. We
use the SMDP version of SARSA(λ) [22] learning algorithm extended, in order
to improve the learning speed, with replacing eligibility traces [20], outlined as
Algorithm 1 below.

Algorithm 1. SARSA(λ) with replacing eligibility traces (adjusted from [22])

Initialise Q(s, a) arbitrarily for all states s and actions a
Repeat (for each episode):

Initialise e(s, a) = 0 for all s and a
Initialise current state st
Choose action at from st using the ε-greedy policy
Repeat until st is the terminal state:

Execute action at, observe reward rt and new state st+1

Choose at+1 from st+1 using the ε-greedy policy
δ ← rt + γQ(st+1, at+1)−Q(st, at)
e(st, at) ← 1
For all s, a:

Q(s, a) ← Q(s, a) + αδe(s, a)
e(s, a) ← γλe(s, a)

st ← st+1; at ← at+1

In this algorithm, Q(s, a) ∈ R represents the value of performing action a
in state s. α is the learning rate, γ is the discount factor governing the weight
placed on the future rewards, e represents eligibility traces, which store the
credit that previous action choices should receive for current rewards, while λ
governs how much credit is delivered back to them. ε-greedy is a widely used
(action-selection) policy, which selects the action with highest Q(s, a) value for
a proportion 1−ε of the trials;for the other ε proportion, actions will be selected
randomly. Formally, this policy is defined as:

π(st) =

{
argmaxat Q(st, at) if q ≤ ε
arandom otherwise

(1)
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where q is a random value uniformly distributed over [0, 1]. arandom is an
action randomly chosen among all those available in state st.

2.3 Heuristically Accelerated RL

HARL [3] is a way to solve a MDP problem by explicitly incorporating heuristics
within RL. By using HARL, a learning agent’s choice of actions is influenced so
that more promising actions are more likely to be performed. HARL influences
a RL process by overriding the action-selection policy. For example, if we are
using the ε-greedy policy (see Equation 1) in the original RL, by using HARL,
the policy will be changed as:

πH(st) =

{
argmaxat [Q(st, at) +Ht(st, at)] if q ≤ ε
arandom otherwise

(2)

where Ht(st, at) is the heuristic function which is defined by the domain ex-
pert. For a state-action pair (st, at), the higher the value of Ht(st, at), the more
promising performing action at in state st. As for q and ε, they have the same
meaning as in Equation 1. Note that HARL only provides the more promising
state-action pairs with higher priority to be explored, but does not change the
convergence of the original RL algorithm [2]. The heuristic function Ht can be
defined a priori or at any moment during learning, and can be updated at any
time throughout learning. Later in Section 3.3, we will give the argumentation-
based definition of HARL.

2.4 RoboCup Soccer Games

RoboCup Soccer is an international project which aims at providing an exper-
imental framework in which various technologies can be integrated and evalu-
ated1. In order to facilitate RL research in this application, two simplified tasks
have been developed: the Keepaway game [21], and the Takeaway game [14].
The basic settings of these games are the same: N + 1 (N ∈ N, N ≥ 1) keep-
ers are competing with N takers on a fixed-size court. Keepers are trying to
keep possession of the ball within their team for longer time, whereas takers are
trying to win possession. The games consist of a series of episodes : at the start
of each episode, the keeper in the top-left corner holds the ball, while all other
keepers are on the right. All takers are initially in the bottom-left corner. An
episode ends when the ball goes off the court or any taker gets the ball, and a
new episode starts immediately with all the players reset.

In Keepaway, only the keeper holding the ball is learning. All the other keepers
and takers are playing in accordance with hand-coded strategies. In Takeaway,
however, all takers are learning independently while all keepers are playing in
accordance with hand-coded strategies. So Takeaway is a cooperative MAL prob-
lem whereas Keepaway is a single-agent learning problem which takes place in

1 See http://www.robocup.org/ for more information.

http://www.robocup.org/
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a multi-agent scenario. In this paper, we endow both keeper and takers with
learning ability, and we call a game with N +1 learning keepers and N learning
takers a N -Keepaway-Takeaway (N -KATA) game.

In the RoboCup simulation platform, only primitive actions and coordinate
positions are available. However, RL cannot effectively use this low-level infor-
mation in Keepaway [21] or Takeaway [14]. So macro actions were proposed
originally by [21] for Keepaway, and then adjusted by [14] for Takeaway. In
particular, there are 2 macro actions for Keepaway:

HoldBall(): stay still while keeping the ball;
PassBall(i): kick the ball towards keeper Ki;

and 2 macro actions for Takeaway:
TackleBall(): move towards the ball to tackle it
MarkKeeper(i): go to mark keeper Ki, i �= 1

where Ki represents the ith closest keeper to the ball - so that K1 is the
keeper in possession of the ball. Takers are indexed in the same way. When a
taker marks a keeper, the taker blocks the path between the ball and that keeper.
Thus, a taker is not allowed to mark the ball holder, and the action set in N -
Takeaway consists of N + 1 actions. In addition, state variables are proposed
by [21] to facilitate the state representation in Keepaway games. In particular,
a state is represented by a state vector which consists of elements, known as
state variables, that can be directly used in the agent’s decision making. The
state variables for the Keepaway games are shown in Table 1. For example, the
distances between takers and the ball holder are state variables, because the
holder could use this information to decide when to pass the ball and where to
pass the ball. As we can see, all state variables are collected in the perspective
of the ball holder, because the ball holder is the only learner in Keepaway. We
call these state variables holder-oriented.

Most existing research on Takeaway uses the holder-oriented state variables
(e.g. [14,17,6]). However, a taker’s self-oriented state variables would be more
helpful. Also, since multiple takers are learning independently in Takeaway, the
state variables should also facilitate coordination between takers. We combine
taker’s self-oriented and some holder-oriented state variables, and use the new
state variables in Table 2. Later in Section 5 we will show that compared with
the learning takers that use the holder-oriented state variables, the takers using
our new state variables have significantly better performance.

3 Argumentation for RoboCup Soccer

In Section 3.1 we give arguments and values for keepers and takers. Then, in
Section 3.2, we define the defeat relationship among arguments, by taking the
ranking of values into account. As a result, we instantiate VAFs (seen in Sec-
tion 2.1) for keepers and takers. Acceptable arguments (in the grounded exten-
stion) for these VAFs recommend actions. Finally, in Section 3.3, we integrate
this action recommendation into RL by using HARL techniques.
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Table 1. State variables for learning keeper K1 in a N-KATA game. (i, j∈N).

State Variable(s) Description

dist(Ki, C),
i ∈ [1, N + 1]

Distance between keepers and
the centre of the court.

dist(Tj, C),
j ∈ [1, N ]

Distance between takers and
the centre of the court.

dist(K1,Ki),
i ∈ [2, N + 1]

Distance between K1 and the
other keepers.

dist(K1, Tj),
j ∈ [1, N ]

Distance between K1 and the
takers.

min
j∈[1,N]

dist(Ki, Tj),

i ∈ [2, N + 1]

Distance between Ki and its
closest taker.

min
j∈[1,N]

ang(Ki, Tj),

i ∈ [2, N + 1]

The smallest angle between
Ki and the takers with vertex
at K1.

3.1 Arguments and Values

Arguments are of the form:

con(A) IF pre(A)

where con(A) (the conclusion of A) is the recommended action and pre(A) (the
premise of A) describes under which conditions argument A is applicable.

Arguments and values for keepers. For the learning keeper, we use the same
arguments as described in [10], which are designed based on a successful hand-
coded strategy for the keeper described in [21]:

– HD: HoldBall() IF min
1≤j≤N

dist(K1, Tj) ≥ 7

– F(i): PassBall(i) IF min
1≤j≤N

dist(Ki, Tj) ≥ 15

– O(i): PassBall(i) IF min
1≤j≤N

ang(Ki, Tj) ≥ 15

where i, j ∈ N. We say that these arguments belong to the keeper K1. Note
that the thresholds used above, i.e. 7 and 15, are proposed based on empirical
results or thresholds used in the hand-coded strategy. Overall, there are 2N +1
candidate arguments for K1

2. These arguments can be interpreted as:

– HD: hold the ball because all takers are “far”: the distance between each
taker and K1 is larger than 7;

– F(i): pass the ball to Ki because Ki is “far”: the distance between Ki and
the K1 is larger than 15;

– O(i): pass the ball to Ki because Ki is “open”: the angles between Ki and
all the takers, with vertex at K1, are over 15◦.

2 HD generates one argument. F(i) and O(i) generate N arguments each.
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Table 2. State variables for learning taker T1 in a N-KATA game. State variables of
other takers can be obtained similarly. (i, j∈N). The top 3 rows describe self-oriented
variables, and the others describe variables about the keepers relative layout.

State Variable(s) Description

dist(Ki,Me),
i ∈ [1, N + 1]

Distance between keepers
and myself.

dist(Tj,Me),
j ∈ [2, N ]

Distance between other tak-
ers and myself.

ang(Ki,Me),
i ∈ [2, N + 1]

The angle between the free
keepers and myself, with
vertex at K1.

dist(Ki,K1),
i ∈ [2, N + 1]

Distance between K1 and
the other keepers.

dist(Tj,K1),
j ∈ [2, N ]

Distance between K1 and
the other takers.

min
j∈[1,N]

ang(Ki, Tj),

i ∈ [2, N + 1]

The smallest angle between
Ki and the takers with ver-
tex at K1.

The arguments are promoting values:

– RM: reduce the risk of teammates being marked;
– RI: reduce the risk of the ball being intercepted;
– RT: reduce the risk of the ball being tackled;

where val(HD) = RM, val(F(i)) = RT and val(O(i)) = RI with RM >v

RI >v RT. Note that in standard Keepaway, takers are always trying to tackle
the ball. All arguments and values described above are designed based on this
assumption. However, in KATA games, takers can not only tackle the ball, but
also mark keepers. In other words, these arguments and values inevitably have
errors when applied to KATA games. In Section 4, we will make a deeper analysis
of the effects of this imperfect domain knowledge on the learning performance.

Arguments and Values for Takers. As for takers, the arguments should not only
instruct takers to compete with keepers, but also coordinate takers. We propose
the following categories of candidate arguments that belong to the taker Tj :

– TjTK: TackleBall() IF j = arg min
1≤t≤N

dist(K1, Tt)

– TjO(i): MarkKeeper(i) IF min
1≤t≤N

ang(Ki, Tt)≥15

– TjF(i): MarkKeeper(i) IF min
1≤t≤N

dist(Ki, Tt)≥15

– TjA(i): MarkKeeper(i) IF j = arg min
1≤t≤N

ang(Ki, Tt)

– TjC(i): MarkKeeper(i) IF j = arg min
1≤t≤N

dist(Ki, Tt)

where i, j, t ∈ N. For TjO(i), TjF(i), TjA(i), TjC(i), i ∈ {2, · · · , N + 1}, be-
cause K1 cannot be marked. The intuition behind these arguments is as follows:
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– TjTK: Tj should tackle the ball if Tj is the closest to the ball holder (K1)
among all the takers;

– TjO(i): Tj should mark keeper Ki if Ki is quite “open”: the angles between
Ki and all the takers, with vertex at K1, are over 15◦;

– TjF(i): Tj should mark keeper Ki if Ki is “far”: its distances to all takers
are larger than 15;

– TjA(i): Tj should mark keeper Ki if the angle between Tj and Ki, with
vertex at K1, is the smallest;

– TjC(i): Tj should mark keeper Ki if Tj is closest to Ki.

Overall, in a N -KATA game, there are 4N2+N arguments for takers3. These
arguments are promoting values:

– VT: The ball should be tackled as quickly as possible;

– VO: If the ball holder decides to pass, it is very likely to pass the ball to an
“open” keeper;

– VF: If the ball holder decides to pass, it is very likely to pass to a keeper
far from all takers;

– VA: The taker with the smallest angle to a keeper is most likely to intercept
the ball passed to that keeper;

– VC: The taker closest to a keeper can mark it most quickly.

We set val(TjTK)=VT, val(TjO(i))=VO, val(TjF(i))=VF, val(TjA(i)) =
VA, val(TjC(i))=VC. Further, we set VT>v VA= vVC>v VO>v VF4. Note
that, for simplicity, we assume the same ranking of values throughout the game,
but our technique can be applied with value rankings that change over time.

Applicable arguments. The arguments given so far are candidate arguments that
may not be applicable at all times. Indeed, in KATA games, the environment
is constantly changing and in each state, an agent has to select the applicable
arguments by checking all candidate arguments to see whether their premises
hold true in that state. Since takers need to coordinate, we assume that each
taker is aware of all other takers’ applicable arguments.5

For example, consider the scenario in Figure 1. With respect to the learning
keeper, since the distances between all takers and K1 are larger than 7, the
argument HD is applicable. Also, because the distance between K3 and K1 is
larger than 15, F(3) is applicable. The premises of other candidate arguments
are not satisfied in this scenario, so they are not applicable. Similarly, we get the
applicable arguments for takers: T1TK, T1A(2), T1A(3), T1C(2), T2C(3).
3 Indeed, for taker Tj , TjTK gives 1 argument and the other four categories of argu-
ments each give N arguments.

4 V1 =v V2 stands for (V1 >v V2) ∧ (V2 >v V1)
5 This is in line with all existing research on Keepaway/Takeaway games, building
upon the assumption that an agent is aware of all agents’ locations and the ball’s
location, i.e. each agent has a perfect world view.
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Fig. 1. A scenario of 2-KATA. The size of the court is 40× 40.

3.2 Defeat Relation and Simplified AFs

For any two arguments P and Q, val(P ) = V1 and val(Q) = V2, P defeats Q iff
V1 >v V2 and one of the following two conditions holds:

– P and Q belong to different agents but recommend the same action (i.e.
con(P ) = con(Q));

– P and Q belong to the same agent but recommend different actions (i.e.
con(P ) �= con(Q)).

Given the applicable arguments and the defeat relation, we obtain simplified
AFs (see Section 2.1) for keepers and takers. For example, consider again the
scenario in Figure 1. For the keeper, HD and F(3) belong to the same agent but
support different actions, and the value promoted byHD:RM, is more preferred
than the value promoted by F(3): RT, so HD defeats F(3). The simplified AF
for keeper and takers are shown in Figure 2(a) and Figure 2(b), respectively.

3.3 Argumentation Accelerated RL (AARL)

We use the grounded extension (see Section 2.1) to select the recommended
action for each agent, because this extension is always unique and, as a result,
will not recommend different actions to an agent. For example, consider again
the scenario in Figure 1. The grounded extension of the keeper’s argumentation
framework is {HD}, so the recommended action for K1 is HoldBall(). The
grounded extension of the takers’ argumentation framework is {T1TK}, so T1 is
recommended to TackleBall(). Note that the grounded extension of takers does
not include arguments belonging to T2. This means that given the current state
and our domain knowledge no action is recommended to T2. Note that in some
scenarios, the grounded extension can be empty, which means that based on the
current domain knowledge, there is no convincing enough recommendation can
be drawn in this scenario. So additional domain knowledge should be added;
otherwise, no actions are recommended and agents will choose actions solely
based on the values of each state-action pairs (Q-values, see Section 2.2)
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(a) (b)

Fig. 2. Simplified AFs for Figure 1: for keeper(2(a)) and takers (2(b))

AARL amounts to integrating these recommended actions into RL by using
HARL (see Section 2.3) to give these actions higher probabilities to be explored.
Because all the arguments and values are designed based on the domain knowl-
edge and are not updated during learning, we define the heuristic function a
priori and keep it fixed throughout the learning. In particular, we set the heuris-
tic function of agent Ai as:

H(s, a)=

{
η if a is recommended to Ai

0 otherwise

where an action a is recommended to Ai iff a is recommended by an argument in
the grounded extension of Ai’s simplified AF. Because all Q-values are initialised
as 0, the heuristic value for the recommended action is the value of η. If an agent
does not have any recommended actions, then it uses the standard ε-greedy
policy (see Section 2.2). Note that the heuristic function, states and actions
have no time index, because they can be applied to any state-action pair.

4 Empirical Results

Our learning algorithm is shown in Algorithm 1) We use the same setting as in
[21] for SARSA(λ) and we set η = 2. For the learning keeper, we use the same
rewarding scheme as in [21]:

r = CurrentTime− LastActionTime

where r is the reward, CurrentTime is the time when a keeper holds the ball
or an episode ends, and LastActionTime is the time when a keeper selected the
last action. As a result, if the last action was HoldBall(), the reward r must be
equal to the duration of an episode; if the last action was PassBall(), then the
farther the target keeper is, the larger the reward will be. So, roughly speaking,
this reward system is distance-oriented : passing the ball to farther keepers is
more encouraged. For takers, the reward is 10 for the last cycle6 of each episode
and −1 for all the other cycles. In order to prevent possible oscillations of the
strategy, a taker updates its policy and makes new decisions every 5 cycles (called
a trail). We conduct one experiment on each combination of strategies. All the

6 In the RoboCup Soccer Simulator, each second is divided into 20 equal-length time
slots, called cycles.
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(a) Keepers vs. SARSA(λ) learning takers
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(b) Keepers vs. AARL learning takers
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(c) Keepers vs. hand-coded takers

Fig. 3. Performances of different learning algorithms for 2-KATA games on a 40 × 40
court. Each curve represents the performance of a single test. Note that when both
keepers and takers are using the hand-coded strategies, the performance is stable and,
as a result, we present its average value here (the straight line in 3(c)).
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experiments are done in RoboCup Soccer Simulator v15.1.07. The hand-coded
strategies of keepers are described in [21] (see Section 3.1), and we design a
hand-coded strategy for the takers, s.t. takers who have a recommended action
would perform it; otherwise, they will tackle the ball.

The performances of different combinations of keeper’s and takers’ strategies
are shown in Figure 3. Both keepers and takers have 3 strategies, namely the
SARSA(λ)-based strategy, the AARL-based strategy and hand-coded strategy.
The SARSA(λ)-based strategy can be viewed as the most “random” strategy, be-
cause it uses the standard ε-greedy action selection policy and randomly searches
the action space in the early learning stage. Thus, its performance is most un-
predictable. On the other hand, the hand-coded strategy can be viewed as a fully
argumentation-instructed strategy, because all agents’ actions are strictly con-
strained by the results of the simplified AFs. Hence, the performance of the hand-
coded strategy is most predictable and stable. The AARL-based strategy can be
viewed as half-random-half-argumentation-instructed, with the arguments used
the same as for the hand-coded strategy. Hence, there are 9 combinations overall.
We evaluate the performance of each combination in 3 aspects:

initial performance (IP): episodes’ average duration in the first hour of learning;
convergence time (CT): how long time does a strategy need to converge;
optimal performance (OP): optimal performance of a strategy.

The performance of each combination, in terms of these 3 properties, is shown
in Table 3. Note that for a keeper’s strategy, the higher IP and OP, the more
successful the strategy. However, for takers, a successful strategy should have
lower IP and OP. For both keeper’s and takers’ strategy, the shorter CT, the
better the strategy. We suggest the following conjectures:

1.When a single learner is competing with a group of learning agents, it is better
for the single learner to use the random strategy, but for the learning group to
use the argumentation-instructed strategy. This is because the group of learners
are learning independently, so their emergent behaviours can be hardly predicted
and, as a result, any domain knowledge for the single learner would be helpless.
Instead, if the single learner is using heuristics, its behaviour is easier to predict.
On the other hand, the heuristics would help the group of learning agents to
predict the single learning opponent’s behaviour more quickly.

2. The AARL-based strategy has the best overall performance, in terms of the
stability, average convergence speed and average optimal performance. This is
because AARL can be viewed as a tradeoff between the SARSA-based strategy
and the hand-coded strategy, so it has the advantages of both.

3. The AARL-based strategy is robust to errors in arguments. We can see that
when both sides are using hand-coded strategies, the average episode duration is
very high, which means that the keeper’s hand-coded strategy is better than the
takers’. However, with respect to takers, the performance of the AARL-based
strategy is always better than the SARSA-based strategy.

7 http://sourceforge.net/projects/sserver/

http://sourceforge.net/projects/sserver/
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Table 3. Summary of performances. Each entry consists of three numbers (in seconds):
initial performance, convergence time and optimal performance.

Keeper
SARSA AARL Hand-coded

Takers
SARSA 9.2, 15, 12.7 9.2, 22, 12.7 13.9, > 60, unknown
AARL 7.9, 20, 12.3 8.1, 22, 12.0 12.3, 10, 10.2

Hand-coded 7.1, 30, 11.1 8.1, 21, 12.1 14.8, 0, 14.8

4. When a group of randomly learning agents are competing with a hand-coded
opponent, the convergence speed can be very slow, even slower than when the
opponent is using a learning strategy. The reason could be that when using the
AARL-based or the hand-coded strategy, the learning group have some coordi-
nation schemes so their group behaviours can converge faster; when both sides
are using learning strategies, they are pushing each other to achieve a Nash
Equilibrium[16] 8, so the convergence time can by quicker.

5 Related Works

There is research on improving machine learning by argumentation. Mozina et
al. [18] proposed argumentation based machine learning, which combines argu-
ments with the original examples of CN2 algorithm to form argumented ex-
amples. The use of arguments significantly improves the performance of CN2.
However, the relationships between different arguments are not taken into ac-
count in their technique, which restricts the effect argumentation should have.
Also, the machine learning technique they considered, CN2, is supervised and
fundamentally different from RL. Research has also been devoted to incorporat-
ing domain knowledge into RL to improve its performance in Keepaway games.
For example, [6] used potential-based reward shaping in Takeaway games and
showed that the convergence time can be reduced and group performance can be
altered. However, their work does not explicitly consider the domain knowledge
representation. Moreover, under the same game settings, their average episode
durations are almost twice as long as ours.

With respect to cooperative RL, [5] distinguished and compared two forms of
multi-agent RL: independent learners (ILs), who only consider its own Q-values
when choosing actions, and joint action learners, who search the exponential
joint action space to maximise the sum of all agents’ Q-values. However, the
performance of these two learners are almost the same. Our agents can be seen
as ILs. [12] used coordination graph to restrain the coordination relationships
between actions. Actions are selected to maximise the sum of Q-values of only

8 The KATA game can be viewed as a zero-sum game because the goal of the two
sides are opposite. However, since our application and algorithm is very different
from those in [16], we cannot guarantee a Nash Equilibrium can be achieved. The
difference between our research and [16] are discussed in Section 5.
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related agents. So in order to know the Q-values of all related teammates, each
agent has to compute all these Q-values or get them by communication. This
technique is not suitable for real-time applications where computational time is
strictly constrained and communication is forbidden, e.g. Takeaway. Some have
also explored using Hierarchical RL (HRL) to guide coordination. For example,
[11] proposed Cooperative HRL, in which coordination is only learnt in prede-
fined cooperative subtasks (CSs), defined by domain experts as subtasks where
coordination would significantly improve the performance of the whole team.
[15] modelled the coordination among agents as coordination constraints and
used these to limit the joint action space for exploration. In all these HRL ap-
proaches, domain knowledge is in the form of hard constraints and the action
exploration is strictly constrained by them. Hence, the learning process cannot
correct errors contained in the domain knowledge and the performances of these
techniques, as a result, are highly sensitive to the quality of the domain knowl-
edge. Note that there are also research about using argumentation to coordinate
cooperative agents [9,23]. However, their agents do not learn.

For competitive RL, [16] proposed the minimax-Q-Learning algorithm for
two-player zero-sum Markov game. Based on Littman’s work, [13] developed
a more general algorithm for n-player general-sum Markov games. Both these
approaches are guaranteed to converge to a Nash equilibrium under certain con-
ditions. However, in the Keepaway/Takeaway games, keepers and takers are
making decisions asynchronously, i.e. the keeper is making a decision at each
time slot whereas takers are making decisions every 5 time slots (see Section
4), and the actions of opponent(s) are difficult or even impossible to identify.
For these reasons, the payoff matrices, which are the bases of these approaches,
can hardly be built in Keepaway/Takeaway. Another fact worth mentioning is
that the application domains of all these cooperative/competitive RL techniques
above are simple problems, such as matrix games or ’grid world’ where there are
finite number of discrete states. However, KATA games are real-time large-scale
problems which take place in continuous space, and both cooperative learning
and competitive learning are involved. Thus, the application domain we are using
is more realistic and complex than most existing research.

6 Conclusions

We presented Argumentation-Accelerated RL (AARL) for the 2-KATA game.
This is a new approach to RL where domain knowledge is represented and organ-
ised as an argumentation framework. We implement AARL using the SARSA(λ)
algorithm and conduct experiments in 2-KATA games. The results of our exper-
iments suggest that AARL is competitive with respect to stability, average con-
vergence time and average optimal performance. Further experiments are needed
to consolidate our conclusions.

This work is preliminary research on using arguments to solve multi-agent
cooperative-competitive learning. Since the arguments we are using (see Sec-
tion 3) are independent of any specific learning algorithm, we believe that our
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approach can in principle be integrated within other learning algorithms (not
limited to RL) or within RL via other techniques (not limited to HARL). How-
ever, as we have mentioned in Section 3.1, the arguments we are using contain
obvious faults and have a huge space for improvement. So future work can be
done to try out our methodology with other learning methods and more sophis-
ticated arguments. In addition, since the conclusions are based on one specific
game and limited experiments, more experiments on more games should be per-
formed so as to test our conclusions more generally.
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Abstract. Software design is an important creative step in the engineering of
software systems, yet we know surprisingly little about how humans actually do
it. While it has been argued before that there is a need for formal frameworks to
help capture design dialogues in a format amenable to analysis, there is almost
no work that actually attempts to do so. In this paper, we take a first step in this
direction by exploring the application of concepts from agent dialogues to the
description of actual design dialogues between human software designers. We
have found that this can be done in principle and present a set of dialogue moves
that we have found useful in the coding of an example dialogue. Through this
formulation of the dialogue, we were able to identify some interesting patterns of
moves and dialogue structures. More importantly, we believe that such a repre-
sentation of design dialogues provides a good basis for a better understanding of
how designers interact.

1 Introduction

Collaborative software design is a process that is little understood. Although there are
good arguments (e.g., [1]) that there is a need for formal description frameworks that
allow design processes to be modelled and analysed, there is little work that addresses
this need.

Here, we take an agent dialogue approach to the problem. We have studied a record-
ing and transcript of a pair of designers working together to determine a software design
that meets a high-level requirements specification that they have been provided with.1

Based on this initial study, we have defined a set of moves for capturing software de-
sign dialogues; we have considered what the effects of making the different types of
move are and the conditions that we expect to see satisfied when each type of move is
made. Table 1 shows an excerpt of the original transcript to give an idea of the material
we have worked with. It also includes some examples of the kinds of moves we have
identified.

We have modelled the collaborative software design as an argumentative process,
where the participants exchange arguments in order to reach an agreement on the design
specification that should be implemented. Existing dialogue systems about how to act

1 Results described in this paper are based upon videos and transcripts initially distributed for the
2010 international workshop “Studying Professional Software Design”, as partially supported
by NSF grant CCF-0845840.

E. Black, S. Modgil, and N. Oren (Eds.): TAFA 2013, LNAI 8306, pp. 95–110, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Table 1. Interrupted move by Male 2

[0:05:29.7]
Male 1: Well, I want to start by hearing your (1, p1, question, Feature, G, your-summary, null)
summary of this
[0:05:36.4]
Male 2: Gotcha, well. Looks like basically (2, p2, propose, Feature, G, interaction, 1)
two pieces: the interaction and the code (3, p2, propose, Feature, G, map, 1)
for map that’s able to manipulate road
systems with a whole bunch of details.
What accounts for that to me is, be able (4, p2, justify, Feature, G, map-since-needed-to-
to accommodate at least six intersections, accommodate-intersections, 3)
be able to control lights at an individual
level, so timing, how to get set off
at each individual intersection.
Sounds like at each individual lane. (5, p2, propose, Feature, G, individual-lanes, null)

focus on deliberation, where agents want to agree on an action to achieve a shared
goal but each may aim to influence outcome of decision in their favour (e.g. [2, 3]),
negotiation, where there is some set of scarce resources that needs to be divided (e.g.
[4]), or they may be command dialogues, where there is some authority relationship
between participants (e.g. [5]). Software design discussions have a different focus. The
main aim is to reach agreement on what the requirements of the system really are and
what features should be implemented in order to meet these requirements.

Our limited analysis of a single software design discussion does not allow us to make
any claims about the completeness or correctness of the dialogue moves that we propose
for describing the software design process; nevertheless, we feel it is a valuable first step
in developing a formal model for capturing and analysing design dialogues and we are
encouraged by the variety of patterns and structures we have already identified with our
framework.

Our paper is structured as follows: Section 2 presents the argument model we are
using; in Section 3 we present the methodology that we followed in defining the dia-
logue moves; Section 4 presents our initial attempt at defining a dialogue framework
to capture software design dialogues; Section 5 gives a discussion of our experience
in annotating the transcript, highlighting some patterns and challenges that we found;
related work is discussed in Section 6; Section 7 gives some conclusions.

2 Practical Arguments

The high level goal of a software design dialogue is to reach an agreement on a design
specification that allows creation of an artefact that meets the system requirements. The
main focus is not on what should be believed (although this may play a part) but on
what states of the world should be brought about and how: what requirements should
be met and what features should be implemented to meet those requirements.

With this in mind, we use the practical reasoning argument scheme of Atkinson
et al. [6] to capture software design arguments.
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In current circumstances R, we should perform action α, which will result in
new circumstances S, which will achieve goal G, which will promote value V.

In software design terms:

– R represents the designers’ beliefs about the world, including beliefs about the
stakeholders’ preferences and any requirements specification they have been given;

– α refers to the actual code to be written and steps that need to be taken to produce
this code;

– S sets out the features that the code must implement, i.e. the design of the system;
– G captures the requirements of the system;
– V refers to values that may be held by the designers or the stakeholders.

By arguing about the different elements of the practical reasoning argument scheme,
the designers aim to reach an agreement on S.

3 Methodology

Our empirical work is based on videos originally recorded for the 2010 International
Workshop on “Studying Professional Software Design” and subsequently made avail-
able to the research community. These are videos (and transcripts) of pairs of design-
ers working out a software design based on a short design prompt giving a high-level
requirements specification. Three videos have been made available, but for the pur-
pose of this paper, we have focused on one of these only; specifically the video called
anonymous-video. This is intentional, as it gives us the opportunity to use the re-
maining two videos for further validation and refinement of our framework in a next
research stage.

Based on these videos, we have adopted a framework-based analysis methodology
as follows:

1. We started by watching the entire video, followed by a high-level discussion of
points of interest, this led to us identifying agreement on S (of the practical reason-
ing argument scheme) as the main goal of the dialogue;

2. We developed an initial framework of dialogue moves, this was based on a high-
level categorisation of the dialogue kind based on our previous experience defining
dialogue systems;

3. We annotated the transcript of the design dialogue up to timestamp 0:18:19.4 using
the moves identified, making note of any problematic or irregular cases;

4. We developed a simple semantics in terms of the effects of making a move and the
expectations we felt should be met when making a move;

5. Based on this initial semantics and the problematic or irregular cases identified, we
revised the set of dialogue moves;

6. We re-annotated the transcript up to timestamp 0:18:19.4 using the revised set of
dialogue moves, again noting any problematic or irregular cases;

7. We repeated steps 4-6.

In the next section, we present the resulting set of dialogue moves.
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4 Dialogue Moves for Design Dialogues

In this section, we present our current version of the dialogue moves for design dia-
logues, produced by following the methodology in the previous section. We assume
for simplicity exactly two participants in the dialogue (p1 and p2); we believe it would
be straightforward to extend it to more participants. These participants make moves
throughout the dialogue, which affect one of five different dialogue stores that we as-
sociate with a design dialogue.

In Section 4.1 we first present the format of dialogue moves. Section 4.2 describes the
different dialogue stores those moves may affect. In Section 4.3, we detail what effect
the different types of move have on those stores and whether there are any conditions
that we expect to be satisfied when a particular move is made; note, since we are aiming
for a descriptive model, we refer to these conditions that we expect to be satisfied as the
expectations of a move (rather than preconditions).

4.1 Dialogue Moves

Dialogue moves have the following format

(ID, Sender, T ype, Scope, Focus, Content, T arget)

where:

– ID ∈ N uniquely identifies the move in the dialogue;
– Sender ∈ {p1, p2} uniquely identifies the dialogue participant making the move;
– Type ∈ {propose, question, challenge, justify, withdraw, accept, reject,
commit, uncommit} is the type of the move;

– Scope ∈ {FEATURE, RATING, CRITERIA, TOPIC} indicates whether the move re-
lates to features of the system to be designed (FEATURE ), an assessment of those
features (RATING), the criteria that features should be assessed on (CRITERIA ), or
is suggesting topics for discussion (TOPIC ) and so part of a meta-dialogue;

– Focus ∈ {R, α, S,G,V} denotes which part of the practical reasoning argument
scheme the move refers to;

– Content is a string derived from the locution uttered by the participant;
– Target ∈ N ∪ {null} uniquely identifies an earlier move in the dialogue that this

move refers to, if there is such a move, or is null if there is no such move.

During the dialogue, the moves that the participants make cause things to be added
or removed from the different dialogue stores that we associate with a design dialogue.

4.2 Dialogue Stores

The format of the elements that make up each of the different types of dialogue store is
given in Table 2.

The proposal store, P , keeps track of the proposals being discussed in the dialogue.
If something is present in the proposal store, then the participants aim to decide whether
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it should be added to the commitment store or not. A single agent can add something
to the proposal store (with a propose move), but all participants must agree in order to
remove something from the proposal store (with a reject move made by one participant
targeted by an accept move made by the other participant).

The question store, Q. keeps track of questions that have been posed during the
dialogue. A single participant can add something to the question store (with a question
move). A single participant can remove something from the question store by answering
a question with a propose move or with a withdraw move if it was the participant that
posed the original question. Elements in the question store have to keep track of who
posed them (Sender), since only the same participant can withdraw that question.

The challenge store, CH, keeps track of proposals and commitments that have been
challenged during the dialogue. A single participant can add something to the challenge
store (with a challenge move). A single participant can remove something from the
challenge store by answering a challenge with a justify move, or with a withdraw move
but only if it was the participant that made the original challenge move. Elements in the
challenge store have to keep track of who posed them (Sender), since only the same
participant can withdraw that question.

The commitment store, CO, keeps track of the commitments the participants have
made during the dialogue. All participants must agree in order to add something to the
commitment store (with a commit move made by one participant targeted by an accept
move made by the other participant). Elements in the commitment store record the ID
of the move that first put forward the commitment, rather than of the move that accepted
it. All participants must agree in order to remove something from the commitment store
(with an uncommit move made by one participant targeted by an accept move made by
the other participant).

The argument store,A, keeps track of the arguments that the participants have made
during the dialogue. A single participant can add something to the argument store (with
a justify move). Things are not removed from the argument store, the idea being that
inconsistencies can be dealt with by applying an argumentation semantics (e.g. [7]) to
evaluate the dialectical acceptability of the arguments in the store.

4.3 Effects and Expectations of Moves

Each type of move has effects, i.e. what is added and removed from the different stores,
and also some expectations, i.e. what we expect to see when a particular type of move
is made in terms of the different elements of the move and contents of the different
stores. The effects and expectations of each of the different types of move are given in
Table 3. Note that we are using the notion of an expectation rather than a pre-condition
to highlight the fact that these operators are used to record observed human behaviour,
which invariably will invalidate some of these expectations. We hope, however, that in
future work we may be able to learn a set of reasonable expectations from examples of
good design dialogues and use these to help us identify good or less promising cases of
design dialogues.

Propose moves may have no target or may target a previous question. If a propose
move targets a previous question, it causes that question to be removed from the ques-
tion store. All propose moves cause an item to be added to the proposal store.
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Table 2. Format of elements in the dialogue stores; first column gives the type of dialogue store,
second column gives the format of an element in that type of dialogue store, third column gives
an explanation of the different parameters of the element

Dialogue Format of element Description
store

Proposal (ID, Scope, Focus, Content) ID is the identifier of the move that
store, P made the proposal; Scope, Focus and

Content give the details of the proposal.
Question (ID, Sender, Scope, Focus, Content) ID is the identifier of the move that
store, Q made the question; Sender is the

identifier of the participant who made
that move; Scope, Focus and Content
give the details of the question.

Challenge (ID, Sender, Target) ID is the identifier of the move that
store, CH made the challenge; Sender is the

identifier of the participant who made
that move; Target identifies the
previous move that is being challenged.

Commit- (ID, Scope, Focus, Content) ID is the identifier of the move that
ment store, first put forward the commitment;
CO Scope, Focus and Content give the

details of the commitment.
Argument (ID, Scope, Focus, Content, Target) ID is the identifier of the move that put
store, A forward the justification; Scope, Focus

and Content give the details of the
argument; Target identifies what (if
anything) is being justified.

Question moves do not target a previous move and have the effect of adding an item
to the question store.

We expect a challenge move to target either a previous proposal or a previous com-
mitment made; this is reflected by our annotation of the transcript. Making a challenge
move causes an item to be added to the challenge store.

In our first iteration of defining the move semantics, we felt that a justify move would
always target a previous propose move. In fact, we have identified justify moves that
target previous question moves, commit moves, reject moves and that have no target;
thus we have currently no expectations of a justify move. When a justify move is made it
causes an item to be added to the argument store. If a justify move is made that targets a
previous proposal that is also the target of a previous challenge, it causes that challenge
to be removed from the challenge store.

A commit move has no effect on its own, since it must be explicitly targeted by a
subsequent accept move made by the other participant to cause an item to be added
to the commitment store. We initially felt that a commit move would always target a
previous proposal. In fact, we identified very few commit moves: one that targeted a
previous proposal, one that targeted a previous question and two that had no target, thus
there are no expectations of commit moves.
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Table 4. Interrupted move by Male 2

And the left-hand, this kind of implies-
[0:10:28.6]
Male 2: Really, it’s just a-
[0:10:30.7]
Male 1: Two-two lanes? Is there a left-turn
lane, or is it a suicide left? (31, p1, question, Feature, G, left-turn-lane, null)

We expect that a reject move may target either a previous proposal or a previous
commitment. We have seen only one reject move in our annotation of the transcript,
which targets a proposal. Making a reject move on its own has no effect, since it must
be explicitly targeted by a subsequent accept move made by the other participant in
order to cause something to be removed from the proposal store.

Initially we felt that accept moves would target only reject, commit, or uncommit
moves made by the other participant; in these cases they act as an explicit confirmation
that an item is to be removed from the proposal store (when targeting a reject move),
added to the commitment store (when targeting a commit move), or removed from the
commitment store (when targeting an uncommit move). We found, however, that accept
moves are also made that targeted challenge moves, justify moves and commit moves;
in our current model, such accept moves have no effect, since the targeted moves do not
need explicit acceptance to affect their respective store. We expect that an accept move
targets some previous move.

We expect that a participant may withdraw something that they themselves have
posed as a challenge or a question from either the challenge or question store. We have
so far only identified one instance of a withdraw move, where the participant withdraws
a previous challenge they made.

5 Discussion

While we have used a relatively fine-grained approach to annotating the discussion tran-
script with our operators, such an annotation necessarily leads to a level of abstraction;
that is, some details of the dialogue are lost in the encoding. For example, we have cho-
sen not to annotate moves that seemed to be interrupted (e.g., the interrupted Male-2
move in Table 4). In the transcript we have looked at for this paper, the interrupted move
seems indeed inconsequential for the further dialogue; the other participant just contin-
ues his own train of thought. However, in other dialogues this may not be the case:
For example, the interruption may occur because the partial move has triggered an idea
in the other participant. In these cases it may become necessary to define additional
annotations to encode interrupted or partial moves.

More importantly perhaps, our annotations abstract completely from how each move
was implemented by the respective participant. It would perhaps also be of interest to
understand how particular kinds of moves are signalled by human designers; however
this is out of scope for our study. We take a more symbolic-interactionist approach
as we are primarily interested in understanding the ‘protocol’ of design dialogues. As
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Table 5. Male 2 challenging his own proposal

[0:13:15.9]
Male 2: I think we have-we can probably
numerate the rules we’re going to need too. (59, p2, propose, enumerate-rules, Topic, S, null)
Or do we care? (60, p2, challenge, enumerate-rules, Topic, S, 59)

a consequence, in some cases we have even annotated moves that are not explicitly
present in the transcript. These are derived from the definitions of our dialogue moves:
it appears that some moves happen implicitly. For example, a commit move may be
accepted implicitly by not challenging it.

Our analysis currently only looks at the spoken conversation as captured in the tran-
script. We did, in a number of instances, refer to the video-recorded design session to
disambiguate a particular move, but in general almost no information beyond the spo-
ken text was used. In particular, we have not encoded the designers’ interactions at and
with the white board and their use of this as a (temporary) store of knowledge. It seems
obvious, that this is an important dimension of the design dialogue that bears further
analysis. However, it is not entirely clear whether and how the use of the whiteboard
could be fit into our current model. Some initial work on whiteboard usage exists [8], but
this takes a more conversation-analytic approach focussed on the mechanics of interac-
tion. As a result Mangano et al. have developed a novel tool for intelligent whiteboards
to support some of the specific interaction styles observed.

Beyond these methodological issues, we have also identified a number of features in
the interaction between the designers. This seems to be a key benefit of the encoding that
we have defined, in that it lets us focus on such interaction features / patterns in order
to extract protocols of interesting forms of interaction. In particular, we have found the
following features:

– Self-challenge. Commonly in argumentation dialogues, we might expect that a pro-
posal can only be challenged by the other participant. However, interestingly, in the
dialogue we have analysed we have found situations in which one participant seems
to be challenging his own proposal (e.g., Table 5).

– Vagueness of commit. It is not always clear from the transcript or actual video
whether a particular move is a proposal or a commit move. For example, moves
45 and 49 shown in Table 6 are such ambiguous cases. It would be interesting to
see whether the designers themselves have a clear idea of what they have commit-
ted to. If yes, then we need further research to understand better how commits are
expressed. If they do not agree what they have committed to, there may be some
benefit in tooling that can assist in making commitments explicit without interrupt-
ing the flow of interaction too much.

– Non-strict protocol. We have defined previously that a propose move in response
to a question move removes that question from the question store. This assumes
that every question can be answered with a single proposal. However, we can find
cases where more than one proposal move occurs in response to a question move
(e.g., moves 2 and 3 both answer move 1, see Table 7). This seems to indicate
that a different protocol would be more appropriate, whereby questions are not
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Table 6. Ambiguous commits: Should Move 45 be a propose? Should Move 49 be a commit?

[0:11:56.3]
Male 1: Do we want to assume one
lane of traffic coming in, and? (45, p1, commit, roads-should-not-have-lanes,

Feature, G, 38)
. . .
[0:12:12.9]
Male 1: So we have a model of behavior
where we have these cars turning
left, these stopped, these cars going
straight, and then when this (49, p1, propose, details-intersection-protected-
stops these cars can then go left-turn, Feature, G, null)

Table 7. Non-strict protocol: Multiple proposals in response to a question

[0:05:29.7]
Male 1: Well, I want to start by hearing (1, p1, question, Feature, G,
your summary of this your-summary, null)
[0:05:36.4]
Male 2: Gotcha, well. Looks like basically
two pieces: the interaction and the code
for map that’s able to manipulate road systems (2, p2, propose, Feature, G, interaction, 1)
with a whole bunch of details. (3, p2, propose, Feature, G, map, 1)

removed from the question store by a propose move. Instead, a question can be
considered answered if the proposal store contains at least one proposal referencing
the question move.

– Missing move types. We have found some types of moves that did not fit well into
our framework. For example, the designers occasionally follow the consequences
of a proposal by talking through the logical implications (see for example minute
15:38.5). This has been called mental modelling before and it would be good to be
able to capture this kind of move as well. Similarly, in some cases the participants
make meta-moves to control the structure of the dialogue beyond simply proposing
or rejecting new topics. For example, in Table 8, the participants seem to agree on
delaying the discussion of a particular topic without actually removing it from the
topic list. Finally, there are some moves that we have classified as questions, but
which actually seem to be used as proposals. This could be the participant’s way of
expressing that some ideas are more tentative than others (see also [9]).

– Patterns of interaction. Some interesting patterns can already be established from
our initial work. A particularly interesting one occurs from move 78 to move 85,
where the same proposal is justified in a number of different ways by the two par-
ticipants although they already seem to have accepted the proposal very early on in
the interaction (see Table 9).

We have found a number of other interesting things, which we are not discussing
here as the space is limited. It seems clear that agent dialogue techniques can be used in
principle to capture design dialogues. At the same time, however, this can only be the
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Table 8. Delaying a topic

[0:15:30.1]
. . .
Concerned with too much detail before
we even-otherwise we’re going to cut
stuff out. – proposal of delay –
[0:15:38.5]
Male 1: Sure, yeah, yeah. Let’s look
for (error)erm. (74, p1, accept, ??, Topic, G, ??)

Table 9. Chains of justification

[0:16:32.6]
Male 2: It sounds like more and more (78, p2, accept, intersection-controls-signals,
like the intersection is kind of [inaudible] Feature, S, 75)
because basically it’s going to have given
S1 goes green, it’s going to have to delegate (79, p2, justify, intersection-controls-signals-
the actions of what S2 and S3 are; is it safe since-delegate-actions,
from stuff like that Feature, S, 75)
[0:16:41.1]
Male 1: Exactly, exactly. (80, p1, accept, intersection-controls-signals-

since-delegate-actions, Feature, S, 79)
Somebody is controlling the interactions. If you (81, p1, justify, intersection-controls-signals-
think of this as kind of an encapsulated entity since-somebody-controls-interactions,
then it’s not going to know about this. Feature, S, 75)
[0:16:51.0]
Male 2: Exactly, yeah exactly. (82, p2, accept, intersection-controls-signals-

since- somebody-controls-interactions,
Feature, S, 81)

So how do you share that information across all (83, p2, justify, intersection-controls-signals-
the signals. since-alllows-share-information-across-signals,

Feature, S, 75)
[0:16:55.6] Male 1: Exactly. (84, p1, accept, intersection-controls-signals-

since-alllows-share-information-across-signals,
Feature, S, 83)

[0:16:56.4]
Male 2: Because at that point the rules more (85, p2, justify, intersection-controls-signals-
apply to the intersection itself as opposed to any since-rules-apply-to-intersection-not-signal,
one individual signal. Feature, S, 75)
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foundation for more in-depth research into the different patterns of interaction used in
these dialogues.

6 Related Work

In his panel contribution [1], Finkelstein was the first, as far as we can identify, to pro-
pose that there is a need for formal representations of design dialogues (considering
this term in the widest sense to also include, for example, requirements-analysis dia-
logues). Together with Fuks, in [10] he provides a first proposal of such a formalisation
based on argumentation theory. However, while this is an interesting early proposal of
an agent-dialogue protocol, it is less clear how faithfully it represents actual human di-
alogues. In particular, it would appear that the operators and protocol rules are based
on generalisations drawn from the authors’ considerable experience with requirements
analysis rather than specific observations and annotations of transcripted dialogues. In
contrast, our work is based entirely on transcripts taken from video-taped design dia-
logues. Moreover, the model of Finkelstein and Fuks adopts the dialogue system DC of
James MacKenzie [11], a system developed by philosophers of argumentation for an-
alyzing fallacious or apparently fallacious arguments over beliefs; this purpose would
seem to be inappropriate for representing dialogues over design, dialogues which pre-
sumably have as their end-purpose some actions or some plans for actions.

Several works have considered the application of argumentation theory to the process
of requirements engineering. For example, both [12] and [13] propose argumentation
as a tool for identifying and analysing inconsistencies in requirements. An argumenta-
tion-based method for reasoning about the implications of security risks and the satis-
faction of security requirements is given in [14]. [15] uses the Argument Interchange
Format [16] to represent information from a discussion on the relative validity of a
requirements engineering artifact and provides a mechanism for determining the ac-
ceptability of the artifact based on this information. These works all propose the use of
argumentation as a tool for supporting the requirements engineering process but do not
aim to capture possible dialogues for requirements elicitation. We hope, in the future,
to complement the work we present here with the proposal of an agent-dialogue model
of the requirements elicitation process. It will be interesting to see whether any of these
existing works can be used as the underlying argumentation model.

As we have mentioned before, the videos that form the basis of our work, have been
captured as part of a workshop on “Studying Professional Software Design”. Other
researchers have also studied these videos from a variety of perspectives, leading to a
number of special issues of journals [17,18]. The work collected in these special issues
and in other venues has looked at the videos from a variety of perspectives—including,
for example, conversation analysis [9], decision-making in product design [19,20], topic
analysis [21], and others.

To the best of our knowledge, there is no work that attempts to provide a formalised
representation of design dialogues using, for example, dialogue systems. The works that
come, perhaps, closest to ours are [19, 20]. In [19], the authors attempt a description of
the strategies used by the designer in the three videos. However, their framework is
much more coarse-grained and is not based on an annotation of individual statements.
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Consequently, while it enables a high-level classification of design dialogues, it is less
useful for identifying recurring patterns in the interaction. The work in [20] is based
on a much more detailed coding of the design dialogues, much closer to our use of
dialogue moves. Their evaluation, however, again focuses on the macro level of design
strategies rather than the micro level of individual design interactions.

Within the academic community that studies artefact design, the closest work to our
paper is the book by the architect Andrew Dong [22]. Drawing on speech act theory
(e.g., [23]), Dong presents a theory of successful collaborative design dialogues which
involves a three-stage model of interaction (summarized in [22, Chapter 7]). In Stage
1, Aggregation, the participants gather materials to form a frame or a collection of con-
straints and objectives for the design concept. In the software engineering domain, such
constraints would include the system specification and requirements. In Stage 2, Ac-
cumulation, the participants jointly and incrementally reify and materialize the design
concept; i.e., they flesh out the design. In Stage 3, Appraisal, the participants assess,
from their potentially differing and subjective perspectives, the concept and its realiza-
tion. These stages are abstractions, of course, and in real design interactions participants
may move between them many times as the interaction progresses [20]. Although he
does consider the performative nature of utterances in materializing a design concept
(i.e., for Stage 2), his framework remains at a much higher level of abstraction than our
work here. Despite this, it is easy to see that the utterance annotation we have presented
here could be readily categorized by Dong’s three stages.

Within the field of agent communications and agent argumentation, considerable
recent work over the last decade has explored formal dialogues, and particularly dia-
logues over actions (see [24] for a review). McBurney et al. presented a formal frame-
work for agent deliberation dialogues—dialogues about what to do in some situation—
in [25]. Atkinson et al. [6] proposed an argumentation scheme and associated critical
questions for proposals over actions, which has been influential in later work. Atkin-
son and Bench-Capon, for example, gave this schema a novel semantics [26]; Black
and Atkinson [2] considered the strategic selection of utterances in dialogues over ac-
tion; Atkinson et al. [5] considered dialogues involving commands; and Medellin et
al. [27] considered dialogues between agents co-ordinating separate plans. Since [6],
these works all have in common a representational structure we have also drawn upon
in Section 2: actions are understood as taking us from some initial (or present) state to
some future, successor state, in which latter state certain propositions are true; being
true, these propositions promote or demote certain values. The true propositions are ob-
jectively true (i.e., agreed by all, at least in principle), while any subjective assessment
of the future state arising from the successful execution of the action is confined to the
values and their preference ordering. In all the works cited, the focus of attention in the
dialogues being modeled or presented is on the possible actions, and how participants
may or should compare and assess alternative actions.

In our current work, however, we notice that the participants to the software design
dialogue seem to take the actual actions they will select for granted. Being experi-
enced software developers they each know what specific actions are needed to produce
any desired software outputs (at least within the range of outputs covered by the de-
sign brief), and they know (or they assume) that each other participant knows this too.
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Consequently, the dialogue between them can ignore the specific actions, and focus on
the outcomes of the action; that is, on the successor state and the propositions which
will be true in that state, and (to a lesser extent) on the values promoted or demoted
by those outcomes. It may be that, having agreed the desired outcomes, they may turn
their attention to the specific actions required to achieve these outcomes. We believe
this different focus marks out such design dialogues as a specific sub-type of deliber-
ation dialogues: they are collaborative dialogues about what actions to take, where the
agreed intended purpose of the actions is the joint creation of an artefact.

7 Conclusions

We have presented an initial study exploring the use of ideas from agent dialogues to
formally describe dialogues between designers of software systems. The overall goal
of this research is to provide ways in which such design dialogues can be captured for
further analysis—for example, it may be possible to understand common problems and
provide tool support to alleviate them or we may be able to learn strategies of successful
designers and teach them to novice designers.

In this paper, we have studied one transcript from a design dialogue captured as part
of the “Studying Professional Software Design” workshop held in 2010. We have shown
that it is indeed feasible to capture key elements of design dialogues using the notion
of moves from agent dialogues and have proposed a specific schema of moves to do so.
We feel that this is a promising application of agent-dialogue ideas as it opens a range
of different research directions—for example:

– How do designers keep track of the various stores, and in particular of committed
decisions? Even from the relatively limited study reported here it seems that they
may loose track of some of the decisions made earlier. If this is indeed the case, can
we make use of the representation of design dialogues proposed to provide some
form of tool support to software designers?

– What are typical strategies of design dialogues? Are there some strategies which
are more often seen in successful design dialogues? One way of capturing good
design dialogues may be through a refinement of the notion of expectations that
we have introduced in Sect. 4.3: These may be able to model the way experienced
designers work. When we find that expectations are frequently not valid in a design
dialogue, this may then be a sign of a less experienced designer and there may be
ways in which support can be derived from this observation.

Similarly, we believe that design dialogues are a novel form of dialogue, not previ-
ously discussed in the literature on agent dialogues. The focus here is less on bringing
together knowledge distributed over a set of agents nor on deciding on a particular
course of action. Instead, design dialogues aim for a balance between agreeing on the
overall goals and values as well as actions towards a set of new circumstances (the
implementation), all of which are up for discussion. Interestingly, the specific actions
seem of least interest in the software-design dialogues as they are implied by the imple-
mentation details chosen.
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Abstract. We present an analytical and empirical study of the max-
imal and average numbers of stable extensions in abstract argumenta-
tion frameworks. As one of the analytical main results, we prove a tight
upper bound on the maximal number of stable extensions that depends
only on the number of arguments in the framework. More interestingly,
our empirical results indicate that the distribution of stable extensions
as a function of the number of attacks in the framework seems to follow
a universal pattern that is independent of the number of arguments.

1 Motivation

Stable extensions constitute one of the most important and well-researched se-
mantics for abstract argumentation frameworks (AFs). Dung used the stable
extension semantics in his original paper to relate AFs to Reiter’s default logic,
different forms of logic programming, and to solve the stable marriage problem,
among others [1]. Alas, there are some fundamental questions to be asked about
stable extension semantics which have yet remained unanswered.

Given an abstract argumentation framework for which the only thing we know
is that it has n arguments and x attacks, how many stable extensions does it
have at most? How many on average?

For x = 0, without attacks, the case is quite clear – there will be exactly
one stable extension, the set of all arguments. For x = n2, the AF contains
all possible attacks, in particular all self-attacks, and there will be no stable
extension. But what happens in between, when 0 < x < n2?

This paper takes a step towards analytical and empirical answers to these
questions. In particular, we develop predictions on the maximal and average
number of stable extensions when only the number of arguments and attacks
are known (and finite).

In the considerable zoo of semantics for abstract argumentation, stable exten-
sion semantics is the only one for which extension existence is not guaranteed
for finite AFs. While this is usually regarded as a weakness, there is an obvi-
ous benefit to it when AFs are used to model NP-complete problems, which do
not necessarily possess a solution. In this setting, the fact that an NP problem
instance encoded as an AF has no stable extension elegantly reflects the fact
that the problem instance has no solution. Using other semantics, unsolvability
would have to be represented by introducing new (meta-)language constructs.
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NP problems typically have elements that are generating (that is, generate
possible solution candidates) and elements that are constraining (that is, elim-
inate possible solution candidates). The classical example of an NP-complete
problem is of course deciding the satisfiability of a given propositional formula
in conjunctive normal form, the SAT problem. There, the propositional variables
are the generating elements (since solution candidates are among all interpreta-
tions for the variables) while the disjunctive clauses are the constraining elements
(they remove those interpretations not satisfying some clause).

Can the same be said about arguments and attacks? Surely, arguments are
generating, since extension candidates are sets of arguments. But are attacks
always constraining?

Consider the argumentation framework on the right where
a1 a2

a1 a2

a1 a2

a1 attacks a2, and two specific ways to add an attack to this
framework: (1) adding an attack from a2 to a1 (middle), and
(2) adding an attack from a1 to itself (below). AF (1) has
two stable extensions, while AF (2) has no stable extension.
So while adding a clause to a CNF may never increase the
number of models, adding attacks to an AF may in general
both increase or decrease the number of stable extensions.

Roughly, to be a stable extension, a set has to satisfy two properties. It has to
be conflict-free, and has to attack all arguments not in the set. Intuitively, the
number of attacks in an AF correlates negatively with the number of conflict-free
sets – the more attacks (that is, conflicts) there are, the less conflict-free sets are
found. At the same time, the number of attacks correlates positively with the
number of sets which attack all outsiders. So how will these two interleaved and
counteracting forces come to terms in general?

The paper is structured as follows. We next introduce the necessary back-
ground in graph theory and Dung’s abstract argumentation frameworks. Then
Section 3 presents our analytical results; Section 4 describes the results we ob-
tained empirically. We conclude with a discussion of the results and give some
perspectives on future work.

2 Background

Throughout the paper we assume some familiarity with standard analysis, com-
binatorics and statistics. For a set X , a (binary) relation over X is any set
R ⊆ X×X . Special among these relations is the identity idX = {(x, x) | x ∈ X}.
A relation R over X is irreflexive iff R ∩ idX = ∅, that is, for each x ∈ X we
have (x, x) /∈ R. It is symmetric iff for each (x, y) ∈ R we have (y, x) ∈ R. The
inverse of a relation R is given by R−1 = {(y, x) | (x, y) ∈ R}.

2.1 Graph Theory

A directed graph is a pair (V,E) where V is a finite set and E a binary relation
over V . The elements of V are called nodes and those of E are called edges.
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A directed graph is symmetric iff its edge relation E is symmetric. For a dir-
ected graph G = (V,E), we denote by sym(G) = (V,E ∪ E−1) its symmetric
version. Similarly, the irreflexive version of a graph G = (V,E) is defined as
irr(G) = (V,E \ idV ).

An undirected graph is a pair (V, F ) where V is as above and F ⊆ (V2)∪(V1) is a
set of 2- and 1-element subsets of V , which represent the undirected edges. For a
directed graph G = (V,E), we denote by und(G) = (V, {{u, v} | (u, v) ∈ E}) its
associated undirected graph. An undirected graph (V, F ) is simple iff F ⊆ (V2).
We denote by Gn the set of all simple graphs with n nodes.

For a simple graph G = (V, F ), a set M ⊆ V is independent iff for all u, v ∈M
we have {u, v} /∈ F . A set M ⊆ V is maximal independent iff it is independent
and there is no proper superset ofM which is independent. The set of all maximal
independent sets of a simple graph G is denoted by MIS (G).

2.2 Abstract Argumentation

An argumentation framework (AF) F = (A,R) is a directed graph; the elements
of A are also called arguments and the elements of R are also called attacks.
All other graph theoretic notions carry over to AFs. A full AF is of the form
(A,A×A) for some set A.

For the purposes of this paper, we denote by An the set of all AFs with n
arguments, and by An,x the set of all AFs with n arguments and x attacks.
There, not the precise arguments are of interest to us but only the number of
arguments; we will implicitly assume that the n arguments can be numbered by
1, . . . , n. Once the arguments are fixed, however, we consider two AFs the same
if and only if they have the same attack relation. So the AF with two arguments
1, 2 where 1 attacks 2 is different from the AF with two arguments 1, 2 where
2 attacks 1, although the two are isomorphic in a graph theoretic sense. This
guarantees that all possible scenarios, that is, any arrangement of attacks for
fixed numbers of arguments and attacks is considered.

The semantics of AFs is defined by determining those subsets S ⊆ A which are
acceptable according to specific criteria, so-called extensions. Among the various
semantics from the literature, we are only interested in the stable semantics: a
set S ⊆ A is a stable extension for (A,R) iff (1) there are no a, b ∈ S with
(a, b) ∈ R, and (2) for all a ∈ A \ S, there is a b ∈ S with (b, a) ∈ R. For an AF
F , the set of its stable extensions is denoted by Est (F).

Interpreting the attack relation as denoting some kind of directed conflict
between arguments, a stable extension can be seen as a set of arguments that is
without internal conflict and attacks all arguments not contained in it. We call
an argumentation framework a y-AF iff it has exactly y stable extensions. For
the purpose of illustration consider the following example AF F :

a1 a2 a3 a4 a5

F has two stable extensions – Est(F) = {{a1, a4}, {a2, a4}} – thus F is a 2-AF.
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3 Analytical Results

Baroni et al. [2] showed that counting the number of stable extensions of an
argumentation framework is a computationally hard problem. The analysis of
counting techniques may yield upper bounds for algorithms computing exten-
sions. Furthermore, a fast counting algorithm gives a first advice on how con-
troversial the information represented in an AF is. In this section, we contribute
some analytical results to this direction of research.

For a fixed number n of arguments there are |An| = 2n
2

different AFs, since
any attack relation whatsoever is possible and significant. Furthermore, if we
additionally know that the AF in question possesses x attacks, then the total

number of possibilities equals |An,x| =
(
n2

x

)
, the number of x-element subsets

of an n2-element set. This means that in principle, one may obtain numerically
precise results by brute force for classes of AFs possessing a certain number of
arguments and attacks. For example, specific classes of AFs could be enumerated
and each element analysed separately. But obviously, such an approach cannot
provide a solution which is parametric in the numbers of arguments and attacks.

3.1 Maximal Number of Stable Extensions

What is the maximal number of stable extensions given an AF F = (A,R) with
|A| = n arguments? Since argumentation semantics choose their extensions from
the set of subsets of A, we have Est (F) ⊆ 2A. This yields an immediate upper
bound on the number of extensions for any semantics, namely |Est (F)| ≤

∣∣2A∣∣ =
2n. Can this quite naive bound be improved? In case of semantics satisfying I-
maximality the answer is “yes.” For short, I-maximality is fulfilled if no extension
can be a proper subset of another [3]. In other words, the cardinality of one of the
largest ⊆-antichains S being a subset of an n-element set gives a further upper
bound on the number of extensions.1 The maximal cardinality of such antichains
is given by Sperner’s theorem [4], namely |S| = (

n!n
2 "
)
. By a straightforward

calculation one may show that
(

n!n
2 "
) ≤ 2n

n . Without any further knowledge

about the considered semantics it is impossible to find better bounds.
Let us turn to stable semantics. In any case, we can achieve a high number

of stable extensions by grouping. For instance, the maximal number of stable
extensions for an AF possessing an even number n = 2m of arguments is at least
2m = 2

n
2 . Such a framework is given by grouping the arguments in pairs that

mutually attack each other:

F = ({ai, bi | 1 ≤ i ≤ m} , {(ai, bi), (bi, ai) | 1 ≤ i ≤ m})

Is grouping in pairs the best we can do?
Assume we group not in pairs but in groups of arbitrary size k such that all

members of a single group attack each other. Then for n arguments the number

1 A ⊆-antichain is a set of sets of which any two are mutually ⊆-incomparable.
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of stable extensions is given by the following function:

f : N→ N where f(k) = k!n
k "

To approximate the maximum of f(k) we calculate the extrema of the associated
real-valued function

g : R→ R where g(k) = k
n
k = e

n
k ·ln(k)

For that, we have to solve the following equation:

k
n
k

(
− n

k2
· ln(k) + n

k2

)
= k

n
k · n

k2
· (1− ln(k)) = 0

The only solution for this equation is that k equals Euler’s number e. Of course,
it is very difficult to arrange in groups of e when dealing with arguments. Nev-
ertheless, the obtained result provides an upper bound for the initial problem –
namely the value g(e) = e

n
e – assuming that grouping is the best. We will see

that the exact value is not far away.
On the path to the main theorem we start with two simple observations which

hardly need a proof. Being aware of this fact, we still present them in the form
of a proposition to be able to refer to them later on. For one, whenever a set E
is a stable extension of F , then E is also a stable extension in the symmetric
and self-loop free version of F . Observe that the converse is not true in general.

Proposition 1. For any argumentation framework F = (A,R) and any
E ∈ Est (F) we have E ∈ Est (sym(irr (F)).

For another, the second proposition establishes a simple relationship between
stable extensions in symmetric AFs without self-loops and maximal independent
sets in undirected graphs.

Proposition 2. For any symmetric and irreflexive argumentation framework
F = (A,R) we have: E ∈ Est(F) iff E ∈ MIS (und(F)).

Now we turn to the main theorem which is mainly based on a graph theoretical
result by J.W. Moon and L. Moser from 1965 [5].2 The theorem establishes a tight
upper bound for the number of stable extensions of an AF with n arguments.
The upper bound is obtained as a function σmax of n.

Theorem 1. For any natural number n, it holds that

max
F∈An

|Est(F)| = σmax(n)

where the function σmax : N→ N is defined by

σmax(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if n = 0 or n = 1,

3s, if n ≥ 2 and n = 3s,

4 · 3s−1, if n ≥ 2 and n = 3s+ 1,

2 · 3s, if n ≥ 2 and n = 3s+ 2.

2 Note that the original work deals with maximal cliques. The result can be equival-
ently formalised in terms of maximal independent sets as done by Wood [6].
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Proof. The cases n = 0 and n = 1 are obvious; let n ≥ 2.

“≤”: We already observed that for any AF F we have Est(F) ⊆ Est (sym(irr (F)))
(Proposition 1). Consequently, |Est (F)| ≤ |Est (sym(irr(F))| follows and

max
G∈An

|Est (G)| ≤ max
G∈An

|Est (sym(irr (G))|

In the light of Proposition 2 we get

max
G∈An

|Est(sym(irr (G)))| = max
G∈An

|MIS (und(sym(irr(G))))|

Observe that the functions irr(·), sym(·) and und(·) do not change the num-
ber of nodes (respectively arguments). Consequently, we may estimate thus:

max
G∈An

|MIS (und(sym(irr (G))))| ≤ max
U∈Gn

|MIS (U)| .

This means, the value σmax(n) does not exceed the maximal number of max-
imal independent sets of simple undirected graphs of order n. Due to The-
orem 1 in [5] these values are exactly given by the last three lines of the
claimed value range of σmax(n).

“≥”: We define the following AFs.
• A2(i) = {ai, bi} and A3(i) = {ci, di, ei},
• F2(i) = irr(A2(i), A2(i)×A2(i)) and F3(i) = irr(A3(i), A3(i)× A3(i)).
• For n = 3s consider F3s =

⋃s
i=1 F3(i).

• For n = 3s+ 1 consider F3s+1 = (
⋃2

i=1 F2(i)) ∪ (
⋃s−1

i=1 F3(i)).
• Finally, in case of n = 3s+ 2 consider F3s+2 = F2(1) ∪ (

⋃s
i=1 F3(i)).

It is straightforward to verify that |Est (F3s)| = 3s, |Est (F3s+1)| = 4 · 3s−1 and
|Est (F3s+2)| = 2 · 3s. #$

For illustration we present here an instantiation of the presented prototypes,
namely F10 = F3·3+1 = (

⋃2
i=1 F2(i)) ∪ (

⋃2
i=1 F3(i)) which is graphically repres-

ented by the following figure:

a1 b1 a2 b2 c1 d1

e1

c2 d2

e2

Observe that |Est(F10)| = |Est(F3·3+1)| = 4 · 32. In general, the function σmax

looks more complicated than it is, because the numbers are slightly different
depending on the remainder of n on division by 3. Here is a much simpler version.

Corollary 1 (Upper bound short cut). For any natural number n, we find:

σmax(n) ≤ 3
n
3 ≤ 1, 4423n.

As a final note we want to mention that it does not make much sense to ask
for the minimal number of stable extensions, since for any n > 0 and 0 < x ≤ n2

there are always AFs without stable extensions.
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3.2 Average Number of Stable Extensions

What is the average number of stable extensions of argumentation frameworks
with n arguments and x attacks?

As in the case of the maximal number of stable extensions, the precise value
is computable in principle. This is immediate from its formal definition:

Definition 1. The function σ̄(n, x) returns the average number of stable exten-
sions of all AFs with n arguments and x attacks, and is defined thus:

σ̄ : N× N→ R where σ̄(n, x) =

∑
F∈An,x

|Est (F)|(
n2

x

)
While this definition makes it precise what we mean by “average number of stable
extensions,” it does not give any clue how to efficiently compute this number for
given n and x. (It only suggests the brute force method of enumerating all AFs
from An,x and counting their stable extensions.)

But we are looking for a way to heuristically predict the number of stable
extensions of a given single AF without actually inspecting the AF except for
determining the parameters n and x. This would be useful since the number n
of arguments and the number x of attacks can be determined in linear time,
and knowing σ̄(n, x) gives some guidance on how many extensions a given AF
F ∈ An,x will have.

The best-case scenario would be the specification of a closed-form function
that returns the exact values of σ̄(n, x). Unfortunately, the combinatorial blowup
even in case of small numbers of attacks turns this endeavour into a challenging
task. Nevertheless, we were able to specify certain values. The following propos-
ition presents some exact values of σ̄(n, x) given that the number of attacks x is
close to 0 or close to n2.

Proposition 3. For any n ∈ N, we have

σ̄(n, 0) = 1 σ̄(n, n2 − 3) =

⎧⎪⎨
⎪⎩

3·(n2−n−1)
(n+1)·(n2−2) , if n ≥ 3,

1− 1
n , if n = 2

0, otherwise

σ̄(n, 1) =

{
1− 1

n , if n ≥ 1,

0, otherwise
σ̄(n, n2 − 2) =

{
2

n+1 , if n ≥ 2,

0, otherwise

σ̄(n, 2) =

{
1− 2n−2

n2+n , if n ≥ 2,

0, otherwise
σ̄(n, n2 − 1) =

{
1
n , if n ≥ 1,

0, otherwise

σ̄(n, n2) =

{
1, if n = 0,

0, otherwise

Proof. The values of σ̄(n, 0) and σ̄(n, n2) are obvious. Consider σ̄(n, 1) = 1− 1
n .

This can be seen as follows: If the belonging attack is a self-loop, then we have
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no extensions. If it is not, then we have exactly one extension which is the

union of all unattacked arguments. Obviously, we have |An,1| =
(
n2

1

)
= n2 and

furthermore, there are n different AFs in An,1 possessing exactly one loop. Thus

σ̄(n, 1) = n2−n
n2 = 1− 1

n . Analogously one may prove σ̄(n, n2 − 1) = 1
n .

We want to emphasise that the other values are non-trivial. To get an idea
of the complexity of the remaining proofs we consider the value σ̄(n, n2 − 3).
W.l.o.g. we may assume n ≥ 2 since the number of attacks has to be non-
negative. Furthermore we may even assume that n ≥ 3 because if n = 2, then
σ̄(n, n2−3) = σ̄(n, 1) which is already solved. An AF F ∈ An,n2−3 can be seen as
the result of the following process: One starts with a full AF with n arguments.
We then stepwise delete 3 attacks which are either loops or non-loops. We list
now the probabilities to end up in an AF where k loops are deleted.

P (k = 3) = 1 · n

n2
· n− 1

n2 − 1
· n− 2

n2 − 2

P (k = 2) = 3 · n

n2
· n− 1

n2 − 1
· n

2 − n

n2 − 2

P (k = 1) = 3 · n

n2
· n

2 − n

n2 − 1
· n

2 − n− 1

n2 − 2

We omit the consideration of P (k = 0) since such kind of frameworks do not
possess an extension and thus does not contribute anything to σ̄(n, n2 − 3). We
list now the average number of extensions of AFs in An,n2−3 where k loops are
deleted.

av(k = 3) = 3

av(k = 2) = 1 · 2(n− 1)

n2 − n
+ 2 · (n

2 − n)− 2(n− 1)

n2 − n

= 2 ·
(
1− 1

n

)

av(k = 1) = 1−
(

n− 1

n2 − n
+

(n2 − n)− (n− 1)

n2 − n
· n− 1

n2 − n− 1

)

=
n2 − 3n+ 2

n2 − n− 1

The average numbers can be seen as follows. If we delete exactly three loops
we end up in an AF with 3 stable extensions, namely the singletons of the non-
looping arguments. Consequently, av(k = 3) = 3. If we delete 2 loops and 1
non-loop we either end up with 1 extension, namely if the deleted non-loop starts
by an self-loop free argument or 2 extensions otherwise. The probability of the

former is 2(n−1)
n2−n . Since both cases are mutual exclusive and exhaustive we derive

a probability of (n2−n)−2(n−1)
n2−n for the latter case proving the claimed value of

av(k = 2).
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Consider now av(k = 1). Observe that the maximal number of extensions
equals 1 because only 1 self-loop is deleted. In the following we call this argu-
ment arg. We specify now the probability that we end up in AF with zero stable
extension. This is the case if at least one deleted non-loop starts by arg. The
probability for the “first” non-loop is n−1

n2−n . Furthermore, the probability for the
“second” deleted non-loop to start by arg providing that the first one does not

started by arg is given by (n2−n)−(n−1)
n2−n · n−1

n2−n−1 . Thus, the claimed value for
av(k = 1) follows. Finally, we have to sum up, that is,

σ̄(n, n2 − 3) =

3∑
i=1

P (k = i) · av(k = i) = 3 · n2 − n− 1

(n+ 1)(n2 − 2)

We omit the consideration of σ̄(n, 2) and σ̄(n, n2 − 2) since their treatment is
similar in style to the above proof. #$

It can be seen that the values of σ̄(n, 1) and σ̄(n, 2) do not give any indica-
tion on how σ̄(n, 3) could look like, not even qualitatively. The same holds for
σ̄(n, n2− 2) and σ̄(n, n2− 3), and potential informed guesses about σ̄(n, n2− 4).

But having these exact values at hand we may consider the limit values for
AFs with an increasing number of arguments. We have

lim
n→∞ σ̄(n, 0) = lim

n→∞ σ̄(n, 1) = lim
n→∞ σ̄(n, 2) = 1

On the other hand, we obtain

lim
n→∞ σ̄(n, n2) = lim

n→∞ σ̄(n, n2 − 1) = lim
n→∞ σ̄(n, n2 − 2) = lim

n→∞ σ̄(n, n2 − 3) = 0

This means that for increasing numbers of arguments, the average number of
stable extensions in the case of very small numbers of attacks approaches from
below to 1. In the case of very large numbers of attacks we have a convergence to
0 from above. So far, so good; but it is still unclear how many extensions there
usually are in between. With an increasing number of attacks, does the average
number of stable extensions just decrease in a monotone fashion? It turns out
that this is a really hard problem.3

Of course, we can look at simple special cases. For example, for n = 2, Proposi-
tion 3 yields the precise values for all possible numbers of attacks 0 ≤ x ≤ n2 = 4:
an AF with 2 arguments and 0, 1, 2, 3, 4 attacks will have an average number of
1, 12 ,

2
3 ,

1
2 , 0 stable extensions, respectively. So while the number of attacks lin-

early increases, the average number of extensions first decreases, then increases
and then decreases again. Qualitatively speaking, this means that for a fixed
number of arguments, there are certain numbers of attacks where the average
number of extensions is locally maximal or minimal, respectively.

3 We therefore introduce the “average-number-stable-challenge” which is: present a
closed-form function for σ̄(n, x) or at least specific values like σ̄(n, n2−n) or σ̄(n, 2n).
The prize is a hot or cold drink with the authors.
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We have seen in the proofs of the results above that already the closed-form
solutions for values of σ̄(n, 2) and σ̄(n, n2 − 3) are quite hard to obtain. To
nevertheless get an inkling of the characteristic distribution of stable extensions,
we have set out to study the problem in an empirical way.

4 Empirical Results

As we have seen, combinatorial explosion stood in our way of mathematically
analysing the average number of stable extensions. While the same combinat-
orial explosions prevent us from an exhaustive empirical analysis of the average
number of stable extensions, we can still use methods from descriptive statistics
to draw some meaningful conclusions.

The basic idea is simple: instead of computing the average number of stable
extensions for all AFs in some class such as An,x, we only analyse a uniformly
drawn random sample S ⊆ An,x of a fixed size |S|. We thereby obtain a point
estimation of the actual (hidden) parameter σ̄(n, x).

4.1 Experimental Setup

We wrote a program that randomly samples AFs with specific parameters and
determines how many stable extensions they have. To create a random AF, we
first set A = {1, . . . , n}. To create attacks we then randomly select x elements
from the set A×A with equal probability for each pair. Thus we obtain an AF
F = (A,R) ∈ An,x. For a given n, this process is repeated for all 0 ≤ x ≤ n2.
Now for each AF thus created, we determine the number of stable extensions as
follows: We use the translation of Dung [1, Section 5] to transform the AF into
a logic program. By [1, Theorem 62], the stable models of this logic program
and the stable extensions of the AF are in one-to-one-correspondence. Using the
answer set solver clingo [7], we determine the number of stable models of the
program and thus the number of stable extensions of the AF. So for a given
n, we can empirically estimate the average number of stable extensions in each
sample set of AFs with n arguments and x attacks for all 0 ≤ x ≤ n2.

4.2 Average Number of Stable Extensions

To check the experimental setup, we first ran the experiment with n = 2 and
observed that the empirical results agreed with the predictions of Section 3.2.
The results for n = 20 are depicted in a scatter plot, in Figure 1 on page 121;
the results for n = 50 are plotted likewise in Figure 2, page 122.

The empirical data clearly vindicate our analytical predictions for very small
and very large numbers of attacks. In between, the data furthermore confirm
our predictions about the emergence of local minima and maxima. In addition
to the experiments that are graphically depicted, we present the positions of
these empirically obtained minima and maxima for several additional small n in
Table 1.
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Fig. 1. Average number of stable extensions of AFs with n = 20 arguments. The
values have been obtained from a random sample of size 2500 for each possible number
0 ≤ x ≤ 400 of attacks. (So the total sample size is 1 002 500.) We can see that there
is a significant local minimum at xmin ≈ 330 and a local maximum at xmax ≈ 380.

For the local minimum and for small n, an approximation of the position xmin

of the local minima from below is given by n2 − n · √n. More precisely – and
astonishingly –, the position of the local maximum always coincides with n2 − n.
On an intuitive level, this suggests that removing n attacks from a full AF with
n arguments quite probably leads to AFs for which both adding and removing
attacks leads to a decrease in the number of stable extensions. To investigate
this issue somewhat deeper, we next analysed how the average number of stable
extensions came about.

4.3 Number of AFs with at Most One Stable Extension

The point estimator sample mean we used for approximating σ̄(n, x) does not
per se tell us anything about the distribution of 0-AFs, 1-AFs, . . . , y-AFs among
the AFs sampled.4 In principle, an average number of 0.5 stable extensions could
be obtained by a 50/50-ratio of 0-AFs to 1-AFs, or likewise by a 75/25-ratio of 0-
AFs to 2-AFs. To find out what is the case, we extracted the absolute frequency

4 Recall that a y-AF is an AF with exactly y stable extensions.
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Fig. 2. Average number of stable extensions of AFs with n = 50 arguments and sample
size 400 for each 0 ≤ x ≤ 2500. Again, there are significant extrema: a local minimum
at xmin ≈ 2250 and a local maximum at xmax ≈ 2450. It even seems that there is
another local maximum at x′

max ≈ 2000 and another local minimum before that, but
the data are unreliable. (Recall that for x = 2000 the number of AFs to sample from

is |A50,2000 | =
(
2500
2000

) ≥ (
2500
2000

)2000 ≈ 6.6 · 10193.)

of 0-AFs and 1-AFs from our results for n = 50 and plotted them in the stacked
histogram (Figure 3) on page 124.

The stacked histogram for n = 20 looks alike, indeed as much as the scatter
plots in Figures 1 and 2 do. This suggests that there are certain recurring features
in this distribution that are independent of the number n of arguments.

It cannot be seen in the histogram, but we also observed that for any set of
sampled AFs from A50,x with 0 ≤ x ≤ 502, there are typically more 1-AFs than
2-AFs, more 2-AFs than 3-AFs, and so on. This gives some hints about the sizes
of the subclasses of 1-AFs, 2-AFs, . . . in a given class An,x.

We close the empirical section by presenting two conjectures supported by the
obtained results. The first one is concerned with the cardinality of y-AFs for a
fixed number n of arguments.

Conjecture 1. For any natural numbers n, k and l with 0 < k < l ≤ n we have:

|{F | F ∈ An, F is a k-AF}| ≥ |{G | G ∈ An, G is an l-AF}| .
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Table 1. Positions (at a specific number x of attacks) of empirically observed local
minima (denoted by xmin) and maxima (xmax) of the average number of stable ex-
tensions of AFs with n arguments. We additionally present the values of our analyt-
ical estimations. To approximate the position of the minima, we devised the function
n2 − n · √n; for the maxima we obtained n2 − n. The rows labelled by eabs and erel
show the absolute and relative error of these estimates.

d2p d3p d4p d5p d6p d7p d8p d9p d10p

1 4 9 15 23 32 45 57 73

1.17 3.80 8 13.82 21.30 30.48 41.37 54 68.38

0.17 0.2 1 1.18 1.7 1.52 3.63 3 4.62

0.17 0.04 0.11 0.08 0.07 0.05 0.08 0.05 0.06

2 6 12 20 30 42 56 72 90

2 6 12 20 30 42 56 72 90

0 0 0 0 0 0 0 0 0

n

xmin

n2 − n · √n

eabs

erel

xmax

n2 − n

eabs = erel

The second conjecture claims that the average number of stable extensions of
AFs is always located in between 0 and 1. Here is the precise formulation.

Conjecture 2. For any natural numbers n and x with 0 < x < n2 we have:

0 < σ̄(n, x) < 1

5 Discussion

We have conducted a detailed analytical and empirical study on the maximal
and average numbers of stable extensions in abstract argumentation frameworks.
First of all, we have proven a tight upper bound on the maximal number of stable
extensions. For specific numbers of attacks, we have also given the precise av-
erage number of stable extensions in terms of closed-form expressions. As the
calculation of these analytical values tends to be quite complex, we turned to
studying the problem empirically. There, we obtained data about the distribu-
tion of stable extensions in samples of AFs which were randomly drawn with
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Fig. 3. Absolute frequencies of 0-AFs (grey) and 1-AFs (black) among all AFs with
n = 50 arguments and x attacks for 0 ≤ x ≤ n2 = 2500 with a total sample size
of 1 000 400. It is obvious from the histogram that the majority (at least two thirds)
of all sampled AFs have no stable extension. Additionally, almost all AFs have at
most one stable extension. The white area at the top consequently depicts the y-
AFs for y ≥ 2. For x ≈ 100 = 2n, there is a meaningful number of such y-AFs,
which however decreases with increasing x. (Note that the extremal graphs defined
in Theorem 1 have n arguments and 2n attacks.) At x ≈ 2250, where the average
number of stable extensions has a local minimum, the absolute frequency of 0-AFs has
a local maximum; furthermore at this position there are almost no y-AFs for y ≥ 2.
Conversely, at x ≈ 2450 where the average number of stable extensions has a local
maximum, the absolute frequency of 0-AFs has a local minimum; furthermore there
are yet again y-AFs for y ≥ 2.

a uniform probability. Our empirical results offer new insights into the average
number and also the distribution of stable extensions for AFs, given only the
parameters n (number of arguments) and x (number of attacks).

We could not provide exhaustive theoretical explanations for the many em-
pirical observations we have made, and consider this as one of the major future
directions of this research. First and foremost we consider it important to work
on proving or disproving the conjectures we explicitly formulated at the end of
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the previous section. Also the conjectured local maximum of the average number
of stable extensions at n2 − n attacks deserves some attention. A possible way
to tackle these conjectures may be to look at subclasses of AFs with special
structural properties, such as having no self-loops, or more generally no cycles,
those being symmetric, or the ones with a specific average connectivity. Finally,
it is clear that many of the questions we asked about stable extension semantics
can be asked about the other standard semantics.

Note that our results are not only of interest to the argumentation community:
We have seen in the proof of Theorem 1 that there is a close relationship between
stable extensions of AFs and maximal independent sets of undirected graphs.5

In a sense, stable extensions represent a directed generalisation of maximal in-
dependent sets, where the ⊆-maximality condition has been replaced by the
condition that all nodes not in the set must be reached by a directed edge from
the set. So there is also a graph theoretical significance to our results.

For abstract argumentation, our results show that – in the context of stable se-
mantics – attacks cannot simply be thought of as constraining: adding an attack
may sometimes increase and sometimes decrease the number of stable exten-
sions. Although this might be obvious in general to argumentation researchers
(AFs are, after all, a nonmonotonic formalism), for the first time we were able
to present some precise numerical figures around this phenomenon.

The present paper is also related to recent work on realisability in abstract
argumentation [8]. Realisability addresses the following question: given a setX of
sets of arguments, is there an argumentation framework whose set of extensions
exactly coincides with X? From the results of this paper, we immediately know
that the answer is “no” if X involves n distinct arguments and the cardinality
of X is greater than 3

n
3 . I-maximality and Sperner’s theorem do not tell us that

much: with n = 6 arguments, for example, I-maximality only guarantees that
at least 2

6
2 = 8 extensions can be realised, while our construction shows that

3
n
3 = 9 is perfectly possible and more than that is impossible. Conversely, the

cardinality of the extension-set X gives an indication of the minimal number of
arguments needed to realise the extensions in X . For example, if there are 10
extensions to realise, we immediately know that we will need at least 7 arguments
to do so.

Our current results on the average number of stable extensions regard all
possible AFs to occur equally likely. In future research, we want to look at AFs
that occur “in practice,” that is, from instantiations of more concrete argu-
mentation languages. In Section 1.5 of [9], the authors acknowledge the need
for a benchmark library in abstract argumentation. In particular, they mention
that the library should contain benchmarks “that arise from real-world instan-
tiations of argumentation.” We consider the development of such a benchmark
collection an important prerequisite for analysing empirical properties of their
instances.

5 Indeed, maximal independent sets are sometimes called “stable sets” in the graph
theory literature.
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Abstract. In this paper, we present two different formal frameworks for
representing decision making. In both frameworks, decisions have mul-
tiple attributes and meet different goals. In the second framework, deci-
sions take into account preferences over goals. We also study a family of
decision functions representing making decisions with different criteria,
including decisions meeting all goals, most goals, goals no other decisions
meet, and most preferred achievable goals. For each decision function, we
define an argumentation-based computational mechanism for computing
and explaining the selected decisions. We make connections between de-
cision making and argumentation semantics, i.e., selected decisions in a
decision making framework are admissible arguments in the correspond-
ing argumentation framework. The main advantage of our approach is
that it not only selects decisions but also gives an argumentation-based
justification of selected decisions.

1 Introduction

Argumentation based decision making has attracted considerable research in-
terest in recent years [1,8,7,10]. In this paper, we give a formal treatment of
two forms of decision making with argumentation. We view decision making as
concerned with three related processes: (I) agents represent information that is
relevant to the decision making; (II) agents choose a decision criteria to repre-
sent “good” decisions; and (III) agents compute and explain the desired decision
based on the selected criteria. We realise these three components formally.

We give formal definitions for decision frameworks, used to model the agents’
knowledge bases to support I. We allow a decision framework to have multi-
ple decisions and a set of goals, such that each decision can have a number
of different attributes and each goal can be satisfied by some attributes. With
decision frameworks defined, we model different decision criteria with decision
functions. Given a decision framework, decision functions return a set of selected
decisions, representing decisions that meet the decision criteria underpinning the
decision function. To compute and explain the desired decisions, we map decision
frameworks and decision functions into assumption-based argumentation (ABA)
frameworks [3]. We prove that selected decisions w.r.t. a given decision function
are claims of admissible arguments in the corresponding ABA framework. The
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main advantage of our approach is that while finding the “good” decisions, it
gives an argumentation-based justification of selected decisions.

This paper is organised as follows. We briefly introduce ABA in Section 2. We
define decision frameworks and decision functions in Section 3. We present ABA
representation of decision frameworks and functions in Section 4. We introduce
decision making with preference over goals in Section 5. We review a few related
work in Section 6. We conclude in Section 7.

2 Background

An ABA framework [3,5] is a tuple 〈L,R,A, C〉 where
– 〈L,R〉 is a deductive system, with L the language and R a set of rules of

the form s0 ← s1, . . . , sm(m ≥ 0);
– A ⊆ L is a (non-empty) set, referred to as assumptions;
– C is a total mapping from A into 2L, where C(α) is the contrary of α ∈ A.
When presenting an ABA framework, we omit presenting L explicitly as

we assume L contains all sentences appearing in R, A and C. Given a rule
s0 ← s1, . . . , sm, we use the following notation: Head(s0 ← s1, . . . , sm) = s0
and Body(s0 ← s1, . . . , sm) = {s1, . . . , sm}. As in [3], we enforce that ABA
frameworks are flat, namely assumptions do not occur in the head of rules.

In ABA, arguments are deductions of claims using rules and supported by
assumptions, and attacks are directed at assumptions. Informally, following [3]:

– an argument for (the claim) c ∈ L supported by S ⊆ A (S ' c in short) is a
(finite) tree with nodes labelled by sentences in L or by the symbol τ1, such
that the root is labelled by c, leaves are either τ or assumptions in S, and
non-leaves s have as many children as elements in the body of a rule with
head s, in a one-to-one correspondence with the elements of this body.

– an argument S1 ' c1 attacks an argument S2 ' c2 iff c1 = C(α) for α ∈ S2.

Attacks between arguments correspond in ABA to attacks between sets of
assumptions, where a set of assumptions A attacks a set of assumptions B iff an
argument supported by A′ ⊆ A attacks an argument supported by B′ ⊆ B.

When there is no ambiguity, we also say a sentence b attacks a sentence a
when a is an assumption and b is a claim of an argument Arg′ such that a is in
the support of some argument Arg and Arg′ attacks Arg.

With argument and attack defined, standard argumentation semantics can be
applied in ABA [3]. We focus on the admissibility semantics: a set of assumptions
is admissible (in 〈L,R,A, C〉) iff it does not attack itself and it attacks all A ⊆ A
that attack it; an argument S ' c belongs to an admissible extension supported
by Δ ⊆ A (in 〈L,R,A, C〉) iff S ⊆ Δ and Δ is admissible. When there is
no ambiguity, we also say an argument Arg is admissible if Arg belongs to an
admissible extension supported by some Δ.

1 As in [3], τ /∈ L stands for “true” and is used to represent the empty body of rules.
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3 Decision Frameworks and Decision Functions

In this paper, we consider the following form of decision: there are a set of
possible decisions D, a set of attributes A, and a set of goals G, such that a
decision d ∈ D may have some attributes A ⊆ A, and each goal g ∈ G is satisfied
by some attributes A′ ⊆ A. Then decisions can be selected based on a certain
decision function. The relations between decisions and attributes and between
goals and attributes jointly form a decision framework, which can be represented
as two tables, as follows:

Definition 1. A decision framework is a tuple 〈D, A, G, TDA, TGA〉, consisting of:

– a set of decisions D = {d1, . . . , dn}, n > 0,
– a set of attributes A = {a1, . . . , am},m > 0,
– a set of goals G = {g1, . . . , gl}, l > 0, and
– two tables: TDA, of size (n×m), and TGA, of size (l ×m), such that

• for every TDA[i, j]
2, 1 ≤ i ≤ n, 1 ≤ j ≤ m, TDA[i, j] is either 1, represent-

ing that decision di has attributes aj, or 0, otherwise;
• for every TGA[i, j], 1 ≤ i ≤ l, 1 ≤ j ≤ m, TGA[i, j] is either 1, representing
that goal gi is satisfied by attribute aj, or 0, otherwise.

We assume that the column order in both TDA and TGA is the same, and the
indices of decisions, goals, and attributes in TDA and TGA are the row numbers
of the decision and goals and the column number of attributes in TDA and TGA,
respectively. We use DEC and DF to denote the set of all possible decisions and
the set of possible decision frameworks, respectively.

The notion of Decision frameworks is illustrated as follows, adopted from [9].

Example 1. An agent needs to decide an accommodation in London. The two
tables, TDA and TGA, are given in Table 1.

Table 1. TDA(left) and TGA(right)

£50 £70 £200 inSK inPic

jh 0 1 0 1 0
ic 1 0 0 1 0

ritz 0 0 1 0 1

£50 £70 £200 inSK inPic

cheap 1 0 0 0 0
near 0 0 0 1 0

Decision (D) are: hotel (jh), Imperial College Halls (ic), Ritz (ritz). Attributes
(A) are: £50, £70, £200, in South Kensington (inSK), and in Piccadilly (inPic).
Goals (G) are: cheap and near. The indices are: 1-jh; 2-ic; 3-ritz; 1-cheap; 2-
near; 1-£50; 2-£70; 3-£200; 4-inSK; 5-inPic. In this example, jh is £70 and is in
South Kensington; ic is £50 and is in South Kensington; ritz is £200 and is in
Piccadilly; £50 is cheap and accommodations in South Kensington are near.

We define a decision meeting a goal as the follows:

2 We use TX[i, j] to represent the cell in row i and column j in TX ∈ {TDA, TGA}.
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Definition 2. Given 〈D, A, G, TDA, TGA〉, a decision d ∈ D with row index i in TDA
meets a goal g ∈ G with row index j in TGA iff there exists an attribute a ∈ A with
column index k in both TDA and TGA, such that TDA[i, k] = 1 and TGA[j, k] = 1.

We use γ(d) = S, where d ∈ D, S ⊆ G, to denote the set of goals met by d.

In Example 1, jh meets near; ic meets cheap and near; ritz meets no goal.
Decision frameworks provide information for decision making. Given a deci-

sion framework, a decision function returns the set of “good” decisions. Formally,

Definition 3. A decision function is a mapping ψ : DF (→ 2DEC, such that,
given df = 〈D, A, G, TDA, TGA〉, ψ(df) ⊆ D. For any d, d′ ∈ D, if γ(d) = γ(d′) and
d ∈ ψ(df), then d′ ∈ ψ(df). We say that ψ(df) are selected in DF w.r.t. ψ.

We use Ψ to denote the set of all decision functions.

Definition 3 defines that if two decisions meet the same set of goals and a
decision function selects one of the decisions, then the decision function must
select the other decision as well.

We subsequently define three decision functions, each characterising a notion
of “good decision”. They all fulfil the requirement in Definition 3 but also char-
acterise additional requirements. We start with the notion of strongly dominant
decision functions that select the decisions meeting all goals. Formally,

Definition 4. A strongly dominant decision function ψ ∈ Ψ is such that given
df = 〈D, A, G, TDA, TGA〉, for all decisions d ∈ ψ(df), γ(d) = G. We say that any
such d is a strongly dominant decision.

We refer to a generic strongly dominant decision function as ψs.

In Example 1, ic is a strongly dominant decision as it meets both cheap and
near. There is no other strongly dominant decision.

Strongly dominant decisions can be relaxed to dominant decisions which meet
all goals that are ever met by any decision in the decision framework. Formally,

Definition 5. A dominant decision function ψ ∈ Ψ is such that given df =
〈D, A, G, TDA, TGA〉, for any d ∈ ψ(df), let S = γ(d), then there is no g′ ∈ G \ S and
g′ ∈ γ(d′), where d′ ∈ D \ {d}. We say such d is a dominant decision.

We refer to a generic dominant decision function as ψd.

In Example 1, ic is a dominant decision. There is no other dominant decision.
To illustrate the case when there is no strongly dominant decision, but only
dominant decisions, we introduce the following example.

Example 2. We again consider an agent deciding accommodation in London. TDA
and TGA are given in Table 2. Unlike Example 1, there is no decision ic that meets
both goals, cheap and near. Nevertheless, jh is a better decision than ritz as
it meets near whereas ritz meets no goal. Hence, in this example, there is no
strongly dominant decision, but there is a dominant decision, jh.

By Definition 5, all dominant decisions meet the same set of goals, formally:



Decision Making with ABA 131

Table 2. TDA(left) and TGA(right)

£50 £70 £200 inSK inPic

jh 0 1 0 1 0
ritz 0 0 1 0 1

£50 £70 £200 inSK inPic

cheap 1 0 0 0 0
near 0 0 0 1 0

Proposition 1. Given df ∈ DF , for any d, d′ ∈ ψd(df), γ(d) = γ(d′).

Moreover, if all decisions meet the same set of goals, then they are dominant.

Lemma 1. Given df = 〈D, A, G, TDA, TGA〉, if for all d, d′ ∈ D, γ(d) = γ(d′), then
ψd(df) = D.

Trivially, strongly dominant decisions are also dominant.

Proposition 2. Given df ∈ DF , ψs(df) ⊆ ψd(df).

Dominant decisions can be weakened to weakly dominant. Goals met by a
weakly dominant decision is not a subset of goals met by some other decision.

Definition 6. A weakly dominant decision function ψ ∈ Ψ is such that given
df=〈D, A, G, TDA, TGA〉, for all d∈ ψ(df), there is no d′ ∈ D \ {d} and γ(d) ⊂ γ(d′).

We refer to a generic weakly dominant decision function as ψw.

In Example 1, ic is weakly dominant; there is no other weakly dominant
decision. In Example 2, jh is weakly dominant; there is no other weakly dominant
decision. To illustrate the case when there is no dominant decision but only
weakly dominant decisions, we introduce the next example.

Example 3. (Continue Example 1). The new TDA and TGA shown in Table 3.

Table 3. TDA(left) and TGA(right)

£50 £70 £200 inSK inPic

jh 0 1 0 1 0
ic 1 0 0 0 0

ritz 0 0 1 0 1

£50 £70 £200 inSK inPic

cheap 1 0 0 0 0
near 0 0 0 1 0

Unlike Example 1, ic no longer meets near. Hence ic is not strongly dominant.
However, ic meets cheap, which is not met by jh, so jh is not dominant as in
Example 2. Since ic and jh both meet goals that are not met by the other, the
are both weakly dominant. ritz meets no goal and is not weakly dominant.

Trivially, a dominant decision is also weakly dominant.

Proposition 3. Given df ∈ DF , ψd(df) ⊆ ψw(df).

If a set of decisions S is strongly dominant, then S is also dominant and
weakly dominant; there is no other dominant or weakly dominant decision.

Proposition 4. Given df ∈ DF , let Ss = ψs(df), Sd = ψd(df), and Sw =
ψw(df), if Ss �= {}, then Ss = Sd = Sw.
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Proof. First we prove Ss = Sd. By Proposition 2, Ss ⊆ Sd. We show that there
is no d such that d ∈ Sd, d /∈ Ss. Assuming otherwise, (1) since d /∈ Ss, γ(d) �= G,
hence there is some g ∈ G and g /∈ γ(d); (2) since Ss �= {}, there is d′ ∈ Ss such
that γ(d′) = G, therefore g ∈ γ(d′). By (1) and (2), d /∈ Sd. Contradiction.

Then we prove Ss = Sw. Similarly, we assume Ss ⊂ Sw. Since Ss ⊂ Sw, there
exists d ∈ Sw, d /∈ Ss. Since Ss �= {}, there exists d′ ∈ Ss and γ(d′) = G. Since
d /∈ Ss, γ(d) ⊂ G. Hence γ(d) ⊂ γ(d′). By Definition 6, d /∈ Sw. Contradiction.

Similarly, if there exists a non-empty set of dominant decisions S, then there
is no weakly dominant decisions other than S. Formally:

Proposition 5. Given df ∈ DF , let Sd = ψd(df) and Sw = ψw(df). If Sd �= {},
then Sd = Sw.

Proof. By Proposition 3, we know Sd ⊆ Sw. We show Sw ⊆ Sd. Assume other-
wise, i.e., there exists d ∈ Sw and d /∈ Sd. Since Sd �= {}, there exists d′ ∈ Sd,
such that γ(d′) ⊇ γ(d′′), for all d′′ ∈ D. Hence γ(d) ⊆ γ(d′). Since d /∈ Sd,
γ(d) �= γ(d′). Therefore, γ(d) ⊂ γ(d′). By Definition 6, d /∈ Sw. Contradiction.

As illustrated by Example 3, given a decision framework df , if there is no
dominant decision in df , but only weakly dominant decisions S, then S contains
at least two decisions such that each meets a different set of goals.

Theorem 1. Given df = 〈D, A, G, TDA, TGA〉, let Sd = ψd(df) and Sw = ψw(df). If
Sd = {} and Sw �= {}, then there exists d, d′ ∈ Sw, d �= d′ and γ(d) �= γ(d′).

Proof. Since Sd = {}, by Lemma 1, |D| > 1. Assume that for all d, d′ ∈ Sw, d �=
d′, γ(d) = γ(d′). Then there are two cases, both of them leading to contradictions.

1. First case, if there is no d′′ ∈ D \ Sw, then Sw = D. Since γ(d) = γ(d′) for all
d, d′, by Lemma 1, for all d ∈ Sw, d ∈ ψd(df), but Sd = {}. Contradiction.

2. Second case, if there exists some d′′ ∈ D\Sw. Then there are five possibilities
between γ(d) and γ(d′′), and they all give contradictions, as follows:
(a) γ(d) ⊃ γ(d′′). Not possible, as if so there would exists d∗ ∈ D such that

d∗ is dominant (d could be a candidate for such d∗).
(b) γ(d) ⊂ γ(d′′). Not possible, as if so there would exists d∗ ∈ D \ Sw such

that d∗ is dominant (d′′ could be a candidate for such d∗).
(c) γ(d) = γ(d′′). Not possible, as if so d′′ would be in Sw.
(d) None of (a)(b)(c) but γ(d) ∩ γ(d′′) �= {}. Not possible, as if so there

would exist g ∈ γ(d′′), g /∈ γ(d), hence there would exist d∗ ∈ D \ Sw

and d∗ is weakly dominant (d′′ could be a candidate for such d∗), but
ψw(df) = Sw and d∗ /∈ Sw.

(e) None of (a)(b)(c), but γ(d) ∩ γ(d′′) = {}. Same as case 2(d).

Both case 1 and 2 give contradictions, this theorem holds.

Theorem 1 gives an important result. Comparing with Definition 4 (γ(d) = G

for all d ∈ ψs) and Proposition 1 (γ(d) = γ(d′) for all d, d′ ∈ ψd), showing that
(strongly) dominant decisions meet the same goals, Theorem 1 shows that weakly
dominant decisions meet different goals. Hence, selecting different decisions from
a (strongly) dominant set makes no difference w.r.t. the decision maker, whereas
selecting different decisions from a weakly dominant decision set would.
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4 Computing and Explaining Decisions with ABA

As seen in [9], ABA can be used to compute and explain decisions. Given a de-
cision framework and a decision function, we can construct an ABA framework,
AF , in a way such that admissible arguments in AF are selected decisions.

We introduce strongly dominant ABA frameworks to compute strongly dom-
inant decisions in a decision framework. Formally,

Definition 7. Given a decision framework df = 〈D, A, G, TDA, TGA〉, in which |D| =
n, |A| = m and |G| = l, the strongly dominant ABA framework corresponding to
〈D, A, G, TDA, TGA〉 is dfS = 〈L,R,A, C〉, where
– R is such that: for all k = 1, .., n; j = 1, ..,m and i = 1, .., l:

• if TDA[k, i] = 1 then dkai ←;
• if TGA[j, i] = 1 then gjai ←;
• dkgj ← dkai, gjai;

– A is such that: dk, for k = 1, .., n; Ndkgj, for k = 1, .., n and j = 1, ..,m;
– C is such that: C(dk) = {Ndkg1, . . . , Ndkgn}, for k = 1, .., n;
C(Ndkgj) = {dkgj}, for k = 1, .., n and j = 1, ..,m.

The intuition behind Definition 7 is as follows: given a decision dk, we let dk
be an assumption. We check if dk meets all goals by defining the contrary of dk
to be {Ndkg1, . . . , Ndkgm} (standing for dk does not meet g1, . . ., dk does not
meet gm). Each of these “negative” assumption is then attacked by a “proof”
that dk meets gj , i.e., a “proof” for dkgj . From Definition 2, we know that dk
meets gj iff there is an attribute ai such that dk has ai and gj is satisfied by ai.
Hence, we check in both TDA and TGA to see if such ai exists.

We illustrate the notion of strongly dominant ABA framework corresponding
to a decision framework in the following example.

Example 4. (Continue Example 1.) Given the decision framework df in Exam-
ple 1, dfS = 〈L,R,A, C〉 has
R (rules):

jh70← jhSK ← ic50← icSK ←
ritz200← ritzP ic← cheap50← nearSK ←

jhCheap← jh50, cheap50 jhNear← jh50, near50
jhCheap← jh70, cheap70 jhNear← jh70, near70
jhCheap← jh200, cheap200 jhNear← jh200, near200
jhCheap← jhSK, cheapSK jhNear← jhSK, nearSK
jhCheap← jhP ic, cheapP ic jhNear← jhP ic, nearP ic
icCheap← ic50, cheap50 icNear← ic50, near50
icCheap← ic70, cheap70 icNear← ic70, near70
icCheap← ic200, cheap200 icNear← ic200, near200
icCheap← icSK, cheapSK icNear← icSK, nearSK
icCheap← icP ic, cheapP ic icNear← icP ic, nearP ic

ritzCheap← ritz50, cheap50 ritzNear← ritz50, near50
ritzCheap← ritz70, cheap70 ritzNear← ritz70, near70
ritzCheap← ritz200, cheap200 ritzNear← ritz200, near200
ritzCheap← ritzSK, cheapSK ritzNear← ritzSK, nearSK
ritzCheap← ritzP ic, cheapP ic ritzNear← ritzP ic, nearP ic
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A (assumptions):
jh ic ritz
NjhCheap NicCheap NritzCheap
NjhNear NicNear NritzNear

C (contraries):
C(jh) = {NjhCheap,NjhNear}
C(ic) = {NicCheap,NicNear}
C(ritz) = {NritzCheap,NritzNear}

C(NjhCheap) = {jhCheap} C(NjhNear) = {jhNear}
C(NicCheap) = {icCheap} C(NicNear) = {icNear}
C(NritzCheap) = {ritzCheap} C(NritzNear) = {ritzNear}

Formally, we show the correspondence between strongly dominant decisions
and the ABA counterpart as follows.

Theorem 2. Given df = 〈D, A, G, TDA, TGA〉, let dfS be the strongly dominant ABA
framework corresponding to df . Then for all decisions d ∈ D, d ∈ ψs(df) iff
{d} ' d is admissible in dfS.

Proof. Let d be dk (k is the index of d in TDA). We first prove if dk is strongly
dominant, then {dk} ' dk is admissible. Since dk is strongly dominant, γ(dk) = G.
Hence, for every g ∈ G, dk meets g. Therefore, for every g ∈ G, there exists some
a ∈ A, such that dk has a and g is satisfied by a. Let the indices of g and a be
j and i, in both TDA and TGA, respectively, then TDA[k, i] = TGA[j, i] = 1. Hence,
dkai ← and gjai ← are in R for all j. Therefore {} ' dkgj exists for all j and
are not attacked. Hence, {Ndkgj} ' Ndkgj is attacked for all j; and since {dk}
is conflict-free, {dk} ' dk is admissible.

We then show if {dk} ' dk is admissible then dk is strongly dominant. Let
{Ndkgj} ' Ndkgj be attackers of {dk} ' dk. Since {dk} ' dk is admissible, it
withstands all of its attacks. Hence, {Ndkgj} ' Ndkgj must be attacked for all
j. Since C(Ndkgj) = {dkgj}, {} ' dkgj must exist for all j. Because the only
rule with head dkgj is dkgj ← dkai, gjai, for each j there exists some i such
that dkai ← and gjai ←. Then, for each j there must exist some i such that
TDA[k, i] = TGA[j, i] = 1 for all j. Therefore d meets all goals g in G and d is
strongly dominant.

The relation between strongly dominant decisions and admissible arguments
in strongly dominant ABA framework is shown in the following example.

Example 5. (Continue Example 4.) Given the decision framework df in Exam-
ple 1, and the strongly dominant ABA framework dfS = 〈L,R,A, C〉 in Ex-
ample 4, we see that {ic} ' ic is admissible, as its attackers {NicCheap} '
NicCheap and {NicNear} ' NicNear are both attacked by {} ' icCheap and
{} ' icNear, respectively. The argument {} ' icNear is admissible as icNear←
icSK, nearSK; icSK ← and nearSK ← are in R. Similarly, {} ' icCheap is ad-
missible as icCheap← ic50, cheap50; ic50← and cheap50← are in R and there
is no argument attacks {} ' icNear or {} ' icCheap. The graphical illustration
is shown in Figure 1.
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{ic} � ic

{NicNear} � NicNear

����������
{NicCheap} � NicCheap

����������

{} � icNear

��

{} � icCheap

��

Fig. 1. Graphical illustration of Example 5. Here, {ic} � ic is admissible as it is an
argument and its attackers {NicNear} � NicNear and {NicCheap} � NicCheap are
both counterattacked.

Given a decision framework, dominant decisions can also be computed with
ABA in its corresponding dominant ABA framework. Formally,

Definition 8. Given df = 〈D, A, G, TDA, TGA〉, |D| = n, and |A| = m, let the corre-
sponding strongly dominant ABA framework be dfS = 〈L,R,A, C〉, then the dom-
inant ABA framework corresponding to df is dfD = 〈L,RD, AD, CD〉, where:
– RD = R ∪ {Ngkj ← Nd1gj , . . . , Ndk−1gj , Ndk+1gj, . . . , NdNgj} for k =

1, .., n and j = 1, ..,m;
– AD = A;
– CD is C with C(Ndkgj) = {dkgj} replaced by C(Ndkgj) = {dkgj , Ngkj }, for

k = 1, .., n and j = 1, ..,m.

The intuition behind Definition 8 is as follows: a decision dk is selected either if
it meets all goals, or for goals that dk does not meet, there is no other d′ meeting
them. Hence the contrary of Ndkgj (reads dk does not meet gj) is either dkgj

(dk meets gj) or Ngkj (all decisions other than dk do not meet gj). The following
theorem holds.

Theorem 3. Given df = 〈D, A, G, TDA, TGA〉, let dfD be the dominant ABA frame-
work corresponding to df , then for all decisions d ∈ D, d ∈ ψd(df) iff {d} ' d is
admissible in dfD.

Proof. (Sketch.) We first prove dominance implies admissibility for dk ∈ D. Since
dk is dominant, dk meets all goals that is met by a decision in D. Hence, for each
goal gj, either (1) there is ai ∈ A, such that TDA[k, i] = TGA[j, i] = 1 and dkai ←
and gjai ← are in R, therefore {} ' dkgj exists and is not attacked; or (2) there
is no argument {} ' drgj for all dr ∈ D (gj is not met by any dr); therefore

{Nd1gj, . . . , Ndk−1gj , Ndk+1gj, NdNgj} ' Ngkj is admissible. Whichever the
case, {dk} ' dk withstands attacks from {Ndkgj} ' Ndkgj, i.e. Ndkgj is always
attacked. Moreover, since {Nd1gj , . . . , Ndk−1gj , Ndk+1gj , NdNgj}∪{dk} is also
conflict-free, {dk} ' dk is admissible.

We then show that admissibility implies dominance. Since {dk} ' dk is ad-
missible, all of its attackers must be counter attacked, i.e., {Ndkgj} ' Ndkgj are
attacked for all j. Each Ndkgj is attacked either because there is {dkgj} ' dkgj ,

or there is {Nd1gj , . . . , Ndk−1gj , Ndk+1gj , NdNgj} ' Ngkj , i.e., either gj is met
by dk or there is no d′ ∈ D meeting gj. Therefore dk is dominant.
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{jh} � jh

{NjhNear} � NjhNear

����������
{NjhCheap} � NjhCheap

��									

{} � jhNear

��

{NritzCheap} � Ncheapjh

��

Fig. 2. Graphical illustration of ABA computation for dominant decisions

We illustrate the ABA computation of dominant decisions in Figure 2. The
dominant ABA framework corresponding to the decision framework shown in
Example 2 is omitted due to the lack of space. It can be seen that {jh} ' jh is
admissible because (1) jh is near, hence {} ' jhNear exists and not attacked;
and (2) though jh is not cheap, hence there is no {} ' jhCheap to attack
{NjhCheap} ' NjhCheap, but and ritz is not cheap either, so {NritzCheap} '
Ncheapjh exists and attacks {NjhCheap} ' NjhCheap.

Similarly, we can define weakly dominant ABA framework to compute weakly
dominant decisions, as follows.

Definition 9. Given df = 〈D, A, G, TDA, TGA〉, |D| = n and |A| = m, the weakly
dominant ABA framework corresponding to df is dfW = 〈L,R,A, C〉, where
– R is such that: for all k = 1, .., n; j = 1, ..,m and i = 1, .., l:

• if TDA[k, i] = 1 then dkai ←;
• if TGA[j, i] = 1 then gjai ←;
• dkgj ← dkai, gjai;

for all r, k = 1, .., n, r �= k; and j = 1, ..,m:

• Sdrdk ← drgj , Ndkgj , NSdkdr;
• Sdkdr ← dkgj , Ndrgj;

– A is such that: dk, for k = 1, .., n;
NSdkdr, for r, k = 1, .., n, r �= k;
Ndkgj, for k = 1, .., n and j = 1, ..,m;

– C is such that: C(dk) = {Sd1dk, . . . , Sdk−1dk, Sdk+1dk, . . . , Sdndk}, for k =
1, .., n;
C(NSdkdr) = {Sdkdr}, for r, k = 1, .., n, r �= k;
C(Ndkgj) = {dkgj}, for k = 1, .., n and j = 1, ..,m.

The intuition behind Definition 9 is as follows: given a decision dk in a decision
framework, dk is selected w.r.t. ψw iff there is no d′ ∈ D \ ψw(df) such that
the goals d′ meets is a super-set of goals met by dk. We test this for all d′ �=
dk by letting the contrary of dk be {Sd1dk, . . . , Sdk−1dk, Sdk+1dk, . . . , Sdndk},
standing for γ(d1) ⊃ γ(dk), . . . , γ(dn) ⊃ γ(dk). To “prove” Sdrdk, one needs
to show two conditions: (1) there exists gj ∈ G, such that dr meets gj and dk
does not (hence “prove” drgj and Ndkgj); and (2) there does not exist g′j ∈ G,
such that dk meets g′j and dr does not (hence “prove” NSdkdr). Condition (1)
is represented by having the first two terms in the body of the rule Sdrdk ←
drgj, Ndkgj , NSdkdr; condition (2) is represented by the last term in the body
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{ic} � ic {jh} � jh

{NicNear, NSicjh} � Sjhic

��

{NjhCheap,NSjhic} � Sicjh

��

{NjhCheap} � Sicjh

��

{NicNear} � Sjhic

��

Fig. 3. Graphical illustration of ABA computation for weakly dominant decisions. The
figure on the left can be read as follows. (1) Claiming ic is weakly dominant (the root
argument). (2) jh is better, as ic is not near but jh is (the middle argument). (3) jh
is not always better than ic as jh is not cheap but ic is (the bottom argument).

of this rule. To check NSdkdr, we need to fail at proving Sdkdr, which can only
be proved by using the rule: Sdkdr ← dkgj, Ndrgj .

Similar to Theorem 2 and 3, the following theorem holds.

Theorem 4. Given df = 〈D, A, G, TDA, TGA〉, let dfW be the weakly dominant ABA
framework corresponds to df . Then for all decisions d ∈ D, d ∈ ψw(df) iff {d} ' d
is admissible in dfW .

Proof. (Sketch.) We first prove that weakly dominance implies admissibility for
dk ∈ D. Since dk is weakly dominant, then there is no dr ∈ D \ ψw(df) such that
γ(dk) ⊂ γ(dr). Hence, given any dr ∈ D \ {dk}, for each g ∈ γ(dr), either (1)
g ∈ γ(dk) or (2) g /∈ γ(dk), but there exists some g′ ∈ G such that g′ ∈ γ(dk) and
g′ /∈ γ(dr). If it is case (1), then Ndkgj does not hold as dk meets gj ; if it is case
(2), then NSdkdr does not hold as there is some g′ met by dk but not dr. Hence,
whichever the case, arguments for Sdrdk are either nonexistent (case 1) or are
counterattacked (case 2). Since the contrary of dk is {Sdrdk} for all r �= k, and
to build an argument for Sdrdk one needs to show both Ndkgj and NSdkdr,
failing at constructing arguments for Sdrdk and {dk, Ndrgt} being conflict-free
jointly make {dk} ' dk admissible.

Then we show that if {dk} ' dk is admissible, then dk is weakly dominant.
Since {dk} ' dk is admissible, all of its attackers are counterattacked or nonexis-
tent. Hence, arguments for Sdkdr are either counterattacked or nonexistent for
all dr �= dk. Since Sdrdk ← drgj , Ndkgj , NSdkdr, if an argument for Sdkdr does
not exist, it means there is no drgj , hence dr does not meet gj . If an argument
for Sdkdr exists but counterattacked, it means either (1) Ndkgj is attacked by
dkgj or (2) NSdkdr is attacked by Sdkdr. In case (1), either both dk and dr
meet gj or dr does not meet it. In case (2), there is some g′ such that g′ is met
by dk but not dr. Whichever the case, γ(dk) is not a subset of γ(dr). Therefore
dk is weakly dominant.

We illustrate the ABA computation of weakly dominant decisions in Figure 3.
The weakly dominant ABA framework corresponding to the decision framework
is omitted. It can be seen that both {ic} ' ic and {jh} ' jh are admissible
because jh is near but not cheap and ic is cheap but not near. Hence each
of the two meets some goal that is not met by the other. ritz is not weakly
dominant, as it is neither cheap nor near.
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5 Decisions with Preferences

Thus far, we present a decision framework characterised by two tables, TDA and
TGA, describing the relations between decisions, attributes and goals. However, in
cases where not all goals are considered equal, and there are multiple decisions
meeting different goals (i.e., a decision framework with only weakly dominant
decisions but no dominant or strongly dominant decision) it is useful to consider
preferences over goals upon selecting decisions. We extend our decision frame-
work to include preferences and define extended decision frameworks as follows.

Definition 10. An extended decision framework is a tuple 〈D, A, G, TDA, TGA, P〉,
in which 〈D, A, G, TDA, TGA〉 forms a decision framework and P is a partial order
over goals, representing the preference ranking of goals.

We use EDF to denote the set of possible extended decision frameworks.

We represent P as a set of constraints gi > gj for gi, gj ∈ G. Extended decision
frameworks are generalisation of decision frameworks as any decision framework
can be considered as an extended decision framework with a uniformly equal
preference order.

Example 6 illustrate the notion of extended decision framework as follows.

Example 6. We reuse Example 3 but remove ritz in this example. We let TDA be
the first two rows and TGA remain the same. We also add the preference ranking:
{near > cheap}.

We do not redefine Definition 2 for extended decision frameworks as this
definition remains the same in extended decision frameworks.

We need to redefine extended decision functions over extended decision frame-
works to select decisions. Formally,

Definition 11. An extended decision function is a mapping ψE : EDF (→ 2DEC,
such that, given edf = 〈D, A, G, TDA, TGA, P〉, ψE(edf) ⊆ D. For any d, d′ ∈ D, if
γ(d) = γ(d′) and d ∈ ψE(df), then d′ ∈ ψE(df). We say that ψE(edf) are
selected w.r.t. ψE.

We use ΨE to denote the set of all extended decision functions.

More specifically, we define best possible extended decision function to select
the decision that meets the most preferred goal that is ever met by any decision.

Definition 12. A best possible decision function ψE ∈ ΨE is that given edf =
〈D, A, G, TDA, TGA, P〉, for all d ∈ D, if d ∈ ψE(edf), then (1) there is some g ∈ γ(d),
and (2) there is no g′ ∈ γ(d′) for all d′ ∈ D \ {d}, such that g′ > g in P. We say
d is a best possible decision.

We refer to a generic best possible decision function as ψE
b .

Given the extended decision framework edf shown in Example 6, since jh
meets the top preference goal, near, jh is a best possible decision in edf . Neither
ic nor ritz meets near, so neither of the two is a best possible decision.

We can use ABA to compute best possible decisions in an extended decision
framework as well, as follows:



Decision Making with ABA 139

Definition 13. Given edf = 〈D, A, G, TDA, TGA, P〉, the best possible ABA frame-
work corresponding to edf is 〈L,R,A, C〉, where
– R is such that:

for all k = 1, .., n; j = 1, ..,m and i = 1, .., l:

• if TDA[k, i] = 1 then dkai ←;
• if TGA[j, i] = 1 then gjai ←;
• dkgj ← dkai, gjai;

for all g1, g2 in G, if g1 > g2 ∈ P, then Pg1g2 ←;
for all k = 1, .., n; j = 1, ..,m: dk ← dkgj, Nsmpkj ;

for all k, r = 1, .., n, k �= r; j, t = 1, ..,m, j �= t: smpkj ← drgt, P gtgj.

– A is such that: Nsmpkj , for all k = 1, .., n; j = 1, ..,m;

– C is such that: C(Nsmpkj ) = {smpkj }, for all k = 1, .., n; j = 1, ..,m.

The intuition behind Definition 13 is as follows: in order to let dk be the best
possible decision, dk needs to meet gj ∈ G, such that there is no other d′ ∈ D

meeting g′ ∈ G and g′ > g in P. Hence we have the rule dk ← dkgj , Nsmpkj ,
standing for dk meets gj (dkgj) and “there is no other decision meeting goals
more preferred than dk meeting gj” (Nsmpkj ).

We illustrate best possible ABA framework in the following example.

Example 7. The best possible ABA framework corresponds to the extended de-
cision framework shown in Example 6 is follows.
R:

jhCheap← jh50, cheap50 jhNear← jh50, near50
jhCheap← jh70, cheap70 jhNear← jh70, near70
jhCheap← jh200, cheap200 jhNear← jh200, near200
jhCheap← jhSK, cheapSK jhNear← jhSK, nearSK
jhCheap← jhP ic, cheapP ic jhNear← jhP ic, nearP ic
icCheap← ic50, cheap50 icNear← ic50, near50
icCheap← ic70, cheap70 icNear← ic70, near70
icCheap← ic200, cheap200 icNear← ic200, near200
icCheap← icSK, cheapSK icNear← icSK, nearSK
icCheap← icP ic, cheapP ic icNear← icP ic, nearP ic

jh← jhCheap,Nsmpjhcheap jh← jhNear,Nsmpjhnear
ic← icCheap,Nsmpiccheap ic← icNear,Nsmpicnear

smpjhcheap ← icNear, PNearCheap smpjhnear ← icCheap, PCheapNear

smpiccheap ← jhNear, PNearCheap smpicnear ← jhCheap, PCheapNear

PNearCheap← jh70← jhSK ← ic50← cheap50← nearSK ←
A:

Nsmpjhcheap Nsmpjhnear Nsmpiccheap Nsmpicnear
C:
C(Nsmpjhcheap) = {smpjhcheap} C(Nsmpjhnear) = {smpjhnear}
C(Nsmpiccheap) = {smpiccheap} C(Nsmpicnear) = {smpicnear}
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Theorem 5. Given an extended decision framework edf = 〈D, A, G, TDA, TGA, P〉,
let edfb be the best possible ABA framework corresponding to edf . Then, for all
d ∈ D, d ∈ ψE

b (edf) iff d is the claim of an admissible argument in edfb.

Proof. (Sketch.) We first show that if dk ∈ D is a best possible decision, then
there is an admissible argument {Nsmpkj } ' dk. Since dk is a best possible
decision, it meets gj ∈ G (we hence have dkgj), and there is no other gt ∈ G,
such that gt > gj ∈ P and gt ∈ γ(dr) for some dr ∈ D \ {dk}. Hence, there is
no argument for smpkj and since {Nsmpkj } is conflict-free, {Nsmpkj } ' dk is not
attacked hence is admissible.

To show that dk is a best possible decision given {Nsmpkj} ' dk being ad-
missible, we need to show there is no d′ ∈ D \ {dk} such that d′ meets a more
preferred goal than dk meeting gj ∈ G. Since {Nsmpkj } ' dk is admissible, it

withstands its attacks. Since C(Nsmpkj ) = {smpkj } and arguments for smpkj are

not supported by any assumptions (no assumptions in rules: smpkj ← drgt, P gtgj ;

dkgj ← dkai, gjai; dkai ←; gjai ← and Pg1g2 ←), {Nsmpkj } ' dk withstanding

its attacks means there is no argument for smpkj . Therefore it is not the case
that there exists g′ ∈ G and d′ ∈ D \ {d}, such that g′ > gj and g′ ∈ γ(d′). Hence
dk is a best possible decision.

In Example 7, we “prove” jh using the rule jh ← jhNear,Nsmpjhnear.
We “prove” jhNear with rules jhNear ← jhSK, nearSK; jhSK ← and
nearSK ←. Since Nsmpjhnear is an assumption, we need to show it withstands all
attacks. The contrary of Nsmpjhnear is {smpjhnear}, which can only be “proved”
using the rule smpjhnear ← icCheap, PCheapNear. However, since there is no
rule for PCheapNear, there is no argument for smpjhnear. Therefore Nsmpjhnear
is not attacked and {Nsmpjhnear} ' jh is admissible.

6 Related Work

Amgoud and Prade [1] present a formal model for making decisions using ab-
stract argumentation. Our work differs from theirs as: (1) they use abstract ar-
gumentation whereas we use ABA; (2) they use a pair-wise comparison between
decisions to select the “winning” decision whereas we use an unified process to
map decision frameworks into ABA and then compute admissible arguments.

Matt et.al. [9] present an ABA based decision making model. Our work differs
from theirs as: (1) we have studied three different notions of dominant decisions
whereas they have studied one; (2) we have studied decision making with pref-
erence whereas they have not.

Black and Atkinson [2] present a multi-agent dialogue model for agent to
decide actions jointly. Our work differs from theirs as: (1) we have focused on
ABA based decision making whereas they have studied a dialogue model; (2) we
have studied several different decision criteria where they have not.

Dung et.al. [4] present an argumentation-based approach to contract negoti-
ation. Part of that work can also be viewed as argumentation-based decision-
making taking preferences into account. The main differences between that work
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and ours are: (1) we give formal definition of decision making frameworks whereas
they do not; (3) we make explicit connections between “good” decisions and “ac-
ceptable” arguments whereas they do not.

Fan et.al. [6] present an ABA-based model for decision making. That work
is an extension of this work focused on modelling agent preferences over goals
whereas this work lays the foundations by formally defining the decision making
problem and identifying key components thereof, e.g., decision frameworks and
functions.

7 Conclusion

We present a formal model for decision making with ABA. In this model, we
represent agents’ knowledge in decision frameworks, which capture relations be-
tween decisions, goals, and attributes, e.g., decisions meeting goals, goals being
satisfied by attributes. We then define decision functions to model different deci-
sion criteria. We define decision functions that select decisions meeting all goals,
most goals, goals no others met, and most preferred achievable goals. We then
map both decision frameworks and decision functions into ABA frameworks.
In this way, computing selected decisions becomes computing admissible argu-
ments. We obtain sound and complete results such as selected decisions are
claims of admissible arguments and vice versa. The main advantage of our ap-
proach is that it gives an argumentation-based justification of selected decisions,
while finding them.

Future directions include (1) further studying of decision criteria / functions
for decision making with preference; (2) studying decision making with other
form of knowledge representation (not limited to tables), (3) linking to existed
decision theoretic work, and (4) studying decision making in the context of
multiple agents, in which agents sharing potentially conflicting knowledge and
preferences.
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Abstract. Not focusing on stakeholders’ original desires, but on their
underlying desires helps agents to reconcile practical conflicts. This pa-
per proposes a logical formalization of an argument-based reasoning for
justifying both underlying desires and means for realizing them. Based
on the idea that an underlying desire can be obtained by abstracting an
original desire, we give a problem setting for desire abstraction in terms
of sufficiency and consistency using practical syllogisms. We introduce
two kinds of defeasible inference rules, called positive and negative prac-
tical abductive syllogisms, as counterparts of the practical syllogisms and
show their correctness in terms of sufficiency and consistency. We give
three kinds of argumentation systems structured with practical abductive
syllogisms or/and practical syllogisms and show that the argumentation
systems can simply handle Kowalski and Toni’s reconciliatory scenario
for committee member selection and our reconciliatory scenario for busi-
ness transfer.

Keywords: Argument-based reasoning, Practical reasoning, Delibera-
tion, Reconciliation, Defeasible inference rules.

Introduction

Practical reasoning comprises two parts; deliberation and means-ends reasoning.
Deliberation decides what state of affairs we want to achieve, and the means-ends
reasoning decides how we want to achieve these states of affairs [1]. In actual
practical reasoning, stakeholders often confront with the situations in which the
means for realizing one’s desires prevent those of the other. One possible way
to resolve the conflict is to choose one of them by argument or preferences. On
the other hand, a more attractive way is to reconcile the conflict by not only
determining means for realizing either all or parts of the given desires but also
determining means for realizing their underlying desires behind the given ones.

However, little attention has been paid to how to find underlying desires be-
hind given desires, how to realize the underlying desires and how to handle both
in a unified way as argument-based reasoning. Much work has been done for
argument-based formalizations of persuasion, negotiation, practical reasoning,
and so on. From the viewpoint of reconciliation, in [2,3,4,5], the authors give
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mechanisms to select or combine a part of given goals or proposals using Dung’s
acceptability semantics [6] or dialogical status assignment [7] in order to address
their individual problems on negotiation. However, determining agent’s under-
lying desires behind the given goals or proposals, or revising them is outside the
scope of these literatures. In [8,9,10], the authors give mechanisms for generating
knowledge-dependent and context-dependent desires in practical reasoning. The
mechanisms use deductive reasoning or default reasoning for deriving desires
from given knowledge and desires. They, however, do not address the situations
in which there are no means for realizing the given desires nor desires derived
from the sum of the desires and knowledge using these reasoning. In [11], the
authors give defeasible inference rules transferring a modal operator represent-
ing desires from the given desires to the means for realizing those desires. The
argumentation framework structured with these inference rules determines the
best way to achieve the given desires. It, however, also do not focus on inferences
about underlying desires behind the given desires. In [12], the authors maintain
the importance of the mechanisms for generating some abstract goals for rec-
onciliation. Although they show guidelines for reconciliatory solutions to their
thoughtful story, however, they do not give a formal and general method for
finding underlying desires in accordance with well known scheme of practical
reasoning [15].

In this paper, we provide an argument-based formalization of justifying means
for underlying desires of given desires. Aiming to define underlying desires, we
give a problem setting for desire abstraction in terms of sufficiency and consis-
tency and introduce two defeasible inference rules, called positive and negative
practical abductive syllogisms, as counterparts of positive and negative practi-
cal syllogisms given in [11]. The sufficiency ensures that a hypothesis derived
by the rules is an explanation of why a given desire is desirable. The consis-
tency ensures that the hypothesis is not an explanation of why a given desire
is undesirable. These two rules intuitively states that it would be desirable to
an agent if it is caused by realizing what the agent wants, and it would be un-
desirable to the agent if it is caused by not realizing what the agent wants. We
give three kinds of argumentation systems, called practical abductive argumenta-
tion systems, practical argumentation systems and reconciliatory argumentation
systems. We show that practical abductive argumentation systems can justify
arguments whose conclusions satisfy sufficiency and consistency and the latter
two are useful for handling reconciliatory solutions shown in two realistic sce-
narios: one is of committee member selection shown by Kowalski and Toni [12]
and the other is of business transfer posed in this paper.

The paper is organized as follows. After showing logical preliminaries in Sec-
tion 1, we give sufficiency and consistency conditions as a problem setting of
desire abstraction and introduce two kinds of defeasible inference rules for prac-
tical reasoning. In Section 3, we give practical abductive argumentation systems
and show their correctness in terms of sufficiency and consistency. In Section 4,
we give practical argumentation systems and reconciliatory argumentation sys-
tems. In Section 5, we show the ability of our proposal by applying to committee
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member selection posed by Kowalski and Toni and business transfer posed by
this paper. Section 6 describes related work and discussions and Section 7 shows
conclusions and future work.

1 Logical Preliminaries

We assume a modal propositional language with a single desire operator D that
cannot be nesting. An assumed logic is type KD satisfying that if Dϕ is true
then ¬D¬ϕ is true. A knowledge representing language L is a union of the modal
propositional language, denoted by L0, and the set, denoted by L1, of defaults
constructed on L0. Defaults have the form “ϕ ⇒ ψ” where ϕ is a conjunction
of atomic propositions in L0 and ψ is an atomic proposition in L0. Informally,
“ϕ⇒ ψ” has the meaning that “If ϕ is the case then ψ is typically the case.” L0

is decided into two subsets; one is a set of controllable formulae and the other is
a set of uncontrollable formulae. Intuitively, a controllable formula represents a
state, including an action, agents can realize, e.g., ”The book is on the desk” or ”I
read the book,” while an uncontrollable formula represents a states agents cannot
change, e.g., ”He is thirty years old.” Note that strict distinction is beyond the
scope of this paper. We assume that D operates only on controllable formulae.
Agent’s knowledge is a default theory T = (F,D) where F ⊆ L0 is a consistent
set without modal operator D and D ⊆ L1 is a set of the defaults, and agent’s
desire is a set G ⊆ L0 where each element of G is an atomic propositions with
operator D.

An inference rule without an exception is called a strict inference rule, while
an inference rule with an exception is called a defeasible inference rule. We use
symbol “�” to represent any defeasible inference rules. Defeasible modus ponens
is a defeasible inference rule defined as follows.

– DMP : φ, φ⇒ ψ � ψ

In [11], the authors introduce two defeasible inference rules for practical reason-
ing called positive practical syllogism, PPS, and negative practical syllogism,
NPS. Let a and p be controllable formulae and r be uncontrollable formula.
The rules have the following forms.

– PPS : a ∧ r⇒ p,Dp, r � Da
– NPS : a ∧ r⇒ ¬p,Dp, r � ¬Da

Informally, if an agent who desires p and believes r also believes that realizing
a in a circumstance r realizes p, then this is a reason for desiring a, while if the
agent believes that realizing a in a circumstance r instead realizes ¬p, then this
is a reason not to desire a [11]. PPS transfers modal operator D from a certain
formula to its possible means, while NPS negatively transfers the operator to
its possible means. In this paper, we make a minor revision to NPS without
losing intuition and use the following defeasible inference rule NPS′ instead of
NPS.
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– NPS′ : a ∧ r ⇒ ¬p,Dp, r � D¬a
NPS′ is more aggressive than NPS in the sense that it derives more than ¬Da
because if D¬a is true then ¬Da is true. Moreover, we often use simplifications
“a⇒ p,Dp � Da” and “a⇒ ¬p,Dp � ¬Da” of PPS and NPS′, respectively.
We use the following notation for representing that proposition x is derived
from a set B of formulae using only PPS or NPS′ only once, where PS is an
abbreviation of “practical syllogisms.”

B 'PS x

Dung’s acceptability semantics is defined on an abstract argumentation frame-
work. An abstract argumentation framework is defined as a tuple of a set of
arguments without any internal structures and a binary relation, called attack
relation, on the set of arguments. The following is the summary of definitions of
Dung’s grounded semantics [6].

– An argumentation framework is a pair AF =< AR,Attacks >, where AR is
a set of arguments, and Attacks is a binary relation on AR, i.e., Attacks ⊆
AR×AR.

– A set S ⊆ AR of arguments is conflict-free if there are no argumentsA,B ∈ S
such that A attacks B, i.e. (A,B) ∈ Attacks.

– An argument A ∈ AR is acceptable with respect to a set S ⊆ AR of ar-
guments iff, for all arguments in B ∈ AR, if B attacks A then there is an
argument C ∈ S such that C attacks B.

– A characteristic function FAF : Pow(AR)→ Pow(AR) is defined as follows.

FAF (S) = {A | A is acceptable with respect to S}
– The grounded extension of an argumentation framework AF is the least fixed

point of FAF

An argument A is justified in abstract argumentation framework AF , denoted
by A ∈ Jargs(AF ), iff it is in the grounded extension of AF and is overruled in
AF , denoted by A ∈ Oargs(AF ), iff it is not in the grounded extension of AF .

2 Defeasible Inference Rules for Desires Abstraction

2.1 Problem Settings for Desire Abstraction

This subsection aims to give a formal problem setting of desire abstraction. Our
idea behind desire abstraction is that as is the case that rational actions or pro-
posals have their objects, original desires also have their objects, i.e., underlying
desires, and the underlying desires are within effects caused by realizing the orig-
inal desires. What we want is to hypothetically identify underlying desires from
possible effects of original desires.

Formally, what we want is a set H ⊆ L0 of atomic propositions with modal
operator D, called hypotheses, that explains why a given desire is desirable in
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terms of its effects, but does not explain why a given desire is undesirable in
terms of its effects. The prior conditions for desire abstraction consists of prior
insufficiency and prior consistency.

Prior insufficiency: ∀Dx ∈ G(F ∪ D �PS Dx)
Prior consistency: ∀Dx ∈ G(F ∪ D �PS D¬x)
Prior insufficiency states that no given desire can be explained by present knowl-
edge F ∪D using PPS nor NPS′. Prior consistency states that no given desire
can be negated by the present knowledge in terms of PPS nor NPS′.

The posterior conditions for desire abstraction consists of posterior sufficiency
and posterior consistency.

Posterior sufficiency: ∀Dx ∈ G(F ∪ D ∪H 'PS Dx)
Posterior consistency: ∀Dx ∈ G(F ∪ D ∪H �PS D¬x)
Posterior sufficiency states that once we assume H, every given desire can be
explained in terms of PPS or NPS′. In other words,H is an explanation of why
a given desire is desirable. This is similar to a hypothesis of abduction that gives
an explanation of why a fact is the case. Posterior consistency states that even
if we assume H, no given desire can be negated in terms of PPS nor NPS′. In
other words, H gives no explanation of why a give desire is undesirable. Now,
we can summarize the problem setting of desire abstraction as follows.

Given: A knowledge T = (F ,D) and a desire G ⊆ L0 satisfying prior insuffi-
ciency and prior consistency.

Find: Hypotheses H ⊆ L0 satisfying posterior sufficiency and posterior consis-
tency.

2.2 Practical Abductive Syllogisms

In this subsection, we introduce two defeasible inference rules for deriving ab-
stract desires that satisfy posterior sufficiency and posterior consistency. An in-
ference rule approach is motivated by our observation that introducing defeasible
inference rules allows us to instantiate Dung’s abstract argumentation frame-
works that provides fundamental principles for conflict resolution. As shown in
Section 4, we will extend desire abstraction from complete knowledge to incom-
plete knowledge defined by a default theory, where desire abstraction should go
hand-in-hand with conflict resolutions. Dung’s abstract argumentation frame-
works give us a unified way to handle desire abstraction within conflict resolu-
tions.

The two defeasible inference rules, called a positive practical abductive infer-
ence rule PPAS and a negative practical abductive inference rule NPAS, are
defined as follows.

Definition 1 (Practical abductive syllogisms). Let a, p ∈ L0 be controllable
formulae and r ∈ L0 be an uncontrollable formula. A positive practical abduc-
tive syllogism, denoted by PPAS, and a negative practical abductive syllogism,
denoted by NPAS, have the following forms, respectively.
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– PPAS : a ∧ r ⇒ p,Da, r � Dp
– NPAS : ¬a ∧ r ⇒ p,Da, r � D¬p

PPAS intuitively states that p would be desirable if a is desirable in circum-
stance r and if a is realized in circumstance r then generally p is realized. On the
other hand, NPAS intuitively states that p would be undesirable, or precisely
it is desirable that p is not realized, if a is desirable in circumstance r and if a
is not realized in circumstance r then generally p is realized. For simplicity, we
abbreviate PPAS and NPAS as PAS, practical abductive syllogism, when we
do not need to distinguish them. We say that p is an abstraction of a when an
application of PAS derives Dp using Da.

Proposition 1. Let T = (F ,D) be a knowledge and G be a desire that satisfy
prior insufficiency. A set H ⊆ L0 satisfies posterior sufficiency iff, for all Dg ∈
G, there is Dh ∈ H such that F ∪ D ∪ {Dg} 'PAS Dh.

Proof. H satisfies posterior sufficiency iff, for all Dg ∈ G, there is Dh ∈ H such
that F ∪ D ∪ {Dh} 'PS Dg. This is true iff, for all Dg ∈ G, there is Dh ∈ H
such that F ∪ D ∪ {Dg} 'PAS Dh. #$
Proposition 1 allows us to translate the problem of finding candidates satisfying
posterior sufficiency into the problem of abstracting g using PAS, for allDg ∈ G.

Proposition 2. Let T = (F ,D) be a knowledge and G be a desire that satisfy
prior insufficiency. A set H ⊆ L0 satisfies posterior consistency iff, for all Dg ∈
G and Dh ∈ H, F ∪ D ∪ {Dg} �PAS D¬h.
Proof. H satisfies posterior consistency iff, for all Dg ∈ G and Dh ∈ H, F ∪D∪
{Dh} �PS D¬g. This is true iff, for all Dg ∈ G and Dh ∈ H, F∪D∪{D¬h} �PS

Dg. This is true iff, for all Dg ∈ G and Dh ∈ H, F ∪ D ∪ {Dg} �PAS D¬h. #$
Proposition 2 allows us to translate the problem of finding candidates not satis-
fying posterior consistency into the problem of abstracting g using PAS, for all
Dg ∈ G.

3 Justifying Underlying Desire

3.1 Successful Desire Abstraction by an Argument Interaction

The previous section introduced two defeasible inference rules, PPAS and
NPAS. This section aims to give the mechanism to justify the hypotheses by
argument-based reasoning. The following examples show how arguments struc-
tured with PAS interact each other to justify hypotheses satisfying posterior
sufficiency and posterior consistency.

Example 1 (Posterior sufficiency of {Dβ1}). An officer A of a product manu-
facturer desires to employ a certain staff (Dα1). A believes that all members
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of the staff are capable (γ1) and also that if the employment is realized in the
situation where the members are capable, then A’s company promotes techno-
logical advancement (α1 ∧ γ1 ⇒ β1). PPAS defeasibly concludes that A desires
to promote technological advancement (Dβ1).

Example 2 (Posterior sufficiency of {Dβ2}). An officer A of a product manufac-
turer desires to employ a certain staff (Dα1). A believes that all members of the
staff are capable (γ1), and also that if the employment is realized in the situation
where the members are capable, then A’s company increases total expenditure
(α1 ∧ γ1 ⇒ β2). PPAS defeasibly concludes that A desires to increase total
expenditure (Dβ2).

The argument in Example 1 shows posterior sufficiency of {Dβ1} and the ar-
gument in Example 2 shows posterior sufficiency of {Dβ2}. Obviously, we can
notice that β1 is a desirable main effect and β2 is an undesirable side effect
caused by employing the staff. Namely, PPAS is defeasible in the sense that it
derives false conclusions even when the premises are true. NPAS, however, has
a role of preventing such unintentional side effects to be justified, in the following
way.

Example 3 (Posterior inconsistency of {Dβ2}). A desires to reduce the cost
(Dα2). A believes that a resource price is as-is (γ2) and also that if A fails to
reduce a cost in the situation that a resource price is as-is, then A’s company
increases total expenditure (¬α2 ∧ γ2 ⇒ β2). NPAS defeasibly concludes that
A desires not to increase total expenditure (D¬β2).

The argument in Example 3 shows posterior inconsistency of {Dβ2}. Although
no argument attacks the argument in Example 1, the argument in Example
3 attacks the argument in Example 2. In other words, arguments concluding
posterior inconsistency prevents arguments concluding posterior sufficiency from
justified.

3.2 Argumentation System for Desire Abstraction

These intuitive analysis in the previous subsection is formally handled in argu-
mentation systems defined in this subsection. Arguments are constructed from
knowledge T = (F ,D) and desire G. Each argument is assumed to have a tree
structures where each leaf is in F ∪ D ∪ G and a set of edges connecting some
node and its all children is an inference rule deriving the node from its all chil-
dren. A conclusion, denoted by conc(A) of an argument A is the root of A. An
argument A is defeasible if it has a defeasible inference rule and strict if it has
only strict inference rules. An argument A is a sub-argument of an argument B
iff it is a subtree of B. A notion of attacks is defined as a binary relation on a
set of arguments.

Definition 2 (Attacks). Let A and B be arguments. A attacks B iff there is
a sub-argument B′ of B such that B′ is defeasible and {conc(A), conc(B′)} ' ⊥.
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A practical abductive argument is defined as follows.

Definition 3 (Practical abductive arguments). Let A be an argument and
Dg ∈ L0. A is a practical abductive argument for Dg iff

– Every node, except the root and leaves, is derived from its all children by a
valid inference on first order logic.

– A’s root is derived from its all children using PAS.
– A child of the root is Dg.

A practical abductive argument is defeasible since PAS is defeasible.

Definition 4 (Practical abductive argumentation systems). A practical
abductive argumentation system is a tuple < AR,Attacks > where AR be a set
of practical abductive arguments and Attacks be a binary relation on AR such
that (A,B) ∈ Attacks iff A attacks B.

We show correctness of the argumentation systems in terms of sufficiency and
consistency.

Theorem 1. Let AS be a practical abductive argumentation system. A set of
conclusions of justified arguments in AS satisfies posterior sufficiency and pos-
terior consistency iff, for all Dg ∈ G, there is an argument a in AS such that a
is a practical abductive argument for Dg and a is justified in AS.

Proof. Both prior insufficiency and prior consistency are the cases because F
does not include modal operatorD. Obviously, posterior sufficiency is the case iff
there are practical abductive arguments for all Dg ∈ G and posterior consistency
is the case iff all of the arguments are justified, i.e., no argument can show
inconsistency. #$
Theorem 1 gives us the way to find hypotheses satisfying posterior sufficiency
and posterior consistency by instantiations of Dung’s abstract argumentation
frameworks evaluated by Dung’s semantics.

4 Justifying Means for Abstracted Desires

This section gives argumentation systems combining desire abstraction and
means-ends reasoning. Moreover, we extend the assumed language from first-
order theory to default theory, which allows us to desire abstraction and means-
ends reasoning in incomplete information.

Definition 5 (Practical arguments). Let A be an argument and Dg ∈ L0.
A is a practical argument for Dg iff it is Dg or it satisfies all the following
conditions.

– A’s root is derived from its all children using PS.
– The subtree with root Dϕ is a practical argument for Dg where Dϕ is a child

of A’s root.
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– The subtrees with roots ψ∧r ⇒ ϕ and r are both valid arguments with respect
to default logic where they are both children of A’s root.

Definition 6 (Reconciliatory arguments). Let A be an argument and Dg ∈
L0. A is a reconciliatory argument for Dg iff it is a practical abductive argument
for Dg or it satisfies all the following conditions.

– A’s root is derived from its all children using PS.
– The subtree with root Dϕ is a reconciliatory argument for Dg where Dϕ is

a child of A’s root.
– The subtrees with roots ψ∧r ⇒ ϕ and r are both valid arguments with respect

to default logic where they are both children of A’s root.

Example 4 (A reconciliatory argument). Figure 1 is a reconciliatory argument
for Da represented as a style of proof-tree. The argument is structured using
positive practical syllogism on top and positive practical abductive syllogism on
bottom. Db can be seen as a possible candidate for an abstracted desire of Da
and Dc can be seen as a possible solution for the abstracted desire.

A : c ∧ s ⇒ b
a ∧ r ⇒ b Da r

Db s
Dc

Fig. 1. A reconciliatory argument represented by a proof-tree

Definition 7 (Practical argumentation systems). A practical argumenta-
tion system is a tuple < AR,Attacks > where AR be a set of arguments except
reconciliatory arguments and Attacks ⊆ AR2 be a binary relation on AR such
that (A,B) ∈ Attacks iff A attacks B.

Definition 8 (Reconciliatory argumentation systems). A reconciliatory
argumentation system is a tuple < AR,Attacks > where AR be a set of argu-
ments except practical arguments and Attacks ⊆ AR2 be a binary relation on
AR such that (A,B) ∈ Attacks iff A attacks B.

5 Two Persuasive Applications

We show usefulness of our argumentation systems by showing their ability to
handle two realistic reconciliatory scenarios. Note that this section aims to show
the ability of our argumentation systems to reconcile conflict independently from
argumentation or dialogue protocols nor arguing agent’s strategies. This section
assumes that agents aim to reach an agreement even if they concede their original
desires. Moreover, they are assumed to prefer to solutions obtained by abstract-
ing desires rather than just choose compatible parts of their original ones.

We assume a default theory T = (F1 ∪ F2,D1 ∪D2) and desires G1,G2 where
(Fi,Di) represents i’s default theory, i.e., knowledge, and Gi represents i’s desire,
for i = 1, 2.
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5.1 A Solution for Committee Member Selection

Kowalski and Toni give a thoughtful scenario indicating the importance of desire
abstraction in reconciliation. Although a solution using argument-based reason-
ing is expected, a simple but sufficient formal solution has not yet been found.
This section gives a solution for the problem by showing how our argument-
based reasoning handles the problem. The following is the scenario described in
[12]:

In a recent head-of-sections committee meeting in our Department, we
discussed the composition of a new resources committee. Two conflicting
arguments were put forward. The Director of Administration argued
that, in the interests of efficiency, the members of the new committee
should consist of himself and the other principal administrative officers of
the Department. The Director of Research argued, in opposition to him,
that, in the interests of democracy, the committee should also contain
members elected by the Department. During the course of the discussion
it became clear that the two sides were focussing on different assumptions
about the purpose of the new committee: the Director of Administration
on its purely administrative function, and the Director of Research on
its presumed policy making nature. These two assumptions could be
viewed as conflicting solutions to the more general goals of deciding,
on the one hand, which group should make policy about resources. By
focussing on the more general goals, it was possible to identify a new
solution which was acceptable to both parties: the resources committee
will administer resources, whereas the head-of-sections committee will
make policy about resources. In the interests of efficiency, the members
of the resources committee will consist of administrative officers only. In
the interests of democracy, the head-of-sections committee will represent
the views and interests of the various Department sections on matters
concerning policy about the allocation of resources.

We assume the following default theory and desires where “R-cmte” denotes
the resource committee, “H-cmte” denotes the head-of-sections committee, “R”
denotes resources and “P” denotes policies.

F = {administers(R-cmte,R),makes(R-cmte,P), democratic(H -cmte)}
D = {election(X )⇒ ¬efficient(X )(= r1 ), election(X )⇒ democratic(X )(= r2 ),

administers(X ,Y ) ∧ efficient(X )⇒ lean(Y )(= r3 ),

makes(X ,Y ) ∧ democratic(X )⇒ fair(Y )(= r4 )}
G1 = {D(efficient(R-cmte))}
G2 = {D(democratic(R-cmte))}

Figure 2 represents practical arguments constructed from the above default the-
ory and desires where defaults are substantiated with appropriate constants.



Justifying Underlying Desires for Argument-Based Reconciliation 153

A1 :
D(efficient(R-cmte)) election(R-cmte) ⇒ ¬efficient(R-cmte)

D(¬election(R-cmte))

A2 :
D(democratic(R-cmte)) election(R-cmte) ⇒ democratic(R-cmte)

D(election(R-cmte))

Fig. 2. Practical arguments

We can see that no argument is justified in the following practical argumen-
tation system.

< {A1, A2}, {(A1, A2), (A2, A1)} >
Figure 3 represents practical abductive arguments constructed from the same
default theory and desires, where r∗1 , r

∗
3 , r

∗
4 and r+4 are defined as follows.

r∗1 = election(R-cmte)⇒ ¬efficient(R-cmte)

r∗3 = administers(R-cmte,R) ∧ efficient(R-cmte)⇒ lean(R)

r∗4 = makes(R-cmte,P) ∧ democratic(R-cmte)⇒ fair(P)

r+4 = makes(H -cmte,P) ∧ democratic(H -cmte)⇒ fair(P)

We can see that A3 and A4 can both be justified in the following reconciliatory
argumentation system.

< {A3, A4}, ∅ >

A3 :

D(efficient(R-cmte)) administers(R-cmte,R) r∗
3

D(lean(R)) administers(R-cmte,R) r∗
3

D(efficient(R-cmte)) r∗
1

D(¬election(R-cmte))

A4 :

D(democratic(R-cmte)) makes(R-cmte,P) r∗
4

D(fair(P)) democratic(H -cmte) r+
4

D(makes(H -cmte,P))

Fig. 3. Reconciliatory arguments

5.2 A Solution for Business Transfer

Consider the following scenario of a solution for a problem of business trans-
fer. An officer A of product manufacturer deliberates with an officer B of parts
manufacturer about the acquisition of some department X of the parts manufac-
turer. They argue about solutions realizing their original desires. A wants B to
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transfer all members of X as a means to realize her desire to employ the staff. By
contrast, B does not want to transfer all members because it prevents his desire
to reallocate the staff. There is no another means to realize both A’s and B’s de-
sires. So, B starts to look for reconciliatory solutions. After some consideration,
B conceives that A actually wants to promote technological advancement by the
transition. B seeks the possible means to promote technological advancement
and finds a solution that B devolves an intellectual property right to A. A does
not complain about his solution and the deliberation successfully arrives at the
contract signing stage.

We assume the following default theory and desires where uncontrollable for-
mulae of practical syllogisms and practical abductive syllogisms are abbreviated
for simplicity: T = (∅, {e ⇒ b, g ⇒ a, g ⇒ ¬d,¬b ⇒ h, a ⇒ h, a ⇒ j, k ⇒ j}),
G1 = {Da,Db} and G2 = {Dd}. Each formula has the following meaning: “A
employs the staff from B. (= a),” “A reduces the cost. (= b),” “B reallocates
the staff. (= d),” “B accepts the warranty against defects. (= e),” “B transfers
all members of the department to A. (= g),” “A’s company increases the total
expenditure. (= h),” “A’s company promotes the technological advancement.
(= j),” and “B devolves an intellectual property right to A. (= k).”

A1 :
Da g ⇒ a

Dg
A2 :

Db e ⇒ b
De

A3 :
Dd g ⇒ ¬d

D¬g
Fig. 4. Practical arguments

Only A2 is justified in the following practical argumentation system.

< {A1, A2, A3}, {(A1, A3), (A3, A1)} >
Figure 4 represents all practical arguments, i.e., A1, A2 and A3, constructed from
T , G1 and G2. On the other hand, only A6 and A8 are justified in the following
reconciliatory argumentation system.

< {Ai | 4 ≤ i ≤ 9}, {(A8, A4), (A7, A5), (A7, A9), (A9, A7)} >
where A9 is a sub-argument of A5 whose conclusion is Dh. Figure 5 represents
practical arguments, i.e., A1, A2 and A3, constructed from T , G1 and G2.

6 Related Work and Discussions

In [11], the authors addressed the question: what is the best way to achieve given
desires? They proposed a logical formalization of an argument-based justification
for actions. In contrast, we addressed the question: what is an abstract desire of
given desires and what is a way to achieve the abstract desire? We proposed a log-
ical formalization of an argument-based justification for desire abstraction. We
think that practical abductive syllogisms are counterparts of practical syllogisms



Justifying Underlying Desires for Argument-Based Reconciliation 155

A4 :

Da a ⇒ h
Dh a ⇒ h

Da g ⇒ a

Dg d ⇒ ¬g
D¬d

A5 :

Da a ⇒ h
Dh ¬b ⇒ h

D¬b e ⇒ b
D¬e

A6 :

Da a ⇒ j

Dj k ⇒ j

Dk

A7 :
Db ¬b ⇒ h

D¬h A8 : Dd

Fig. 5. Reconciliatory arguments and arguments attacking them

in practical reasoning as the relationships between abduction and deduction in
epistemic reasoning, and that they are essential in reconciliation by showing two
persuasive examples.

In [15], the authors organized various sorts of cogent reasoning in our daily life
as argumentation schemes where each scheme consists of premises, conclusions,
and critical questions written in natural language. Practical syllogisms are kinds
of practical inference according to Walton’s classification. On the other hand,
on classification is given for practical abductive syllogisms in Walton’s theory
although they are essential to find reconciliatory solutions.

From a standpoint of negotiation, Fisher and Ury urge that determining the
stakeholders’ interests helps to achieve reconciliatory solutions in negotiation
[17]. Negotiation theory shows that positions are what negotiators say they
want and interests are the needs of concerns that underlie positions [18]. Al-
though argument-based negotiation is outside of scope of this paper, we think
that our proposal is useful for identifying latent interests by effectively using
original positions. In fact, although many of argument-based negotiation handle
reasoning to identify desires or goals that depend on context [2,3,4,5,8,9,10,19],
no one attempt to seek latent desires behind original positions. In our opinion,
not only agent’s knowledge, but agent’s desire can be incomplete.

The technical contribution of this paper is to propose practical abductive
syllogisms, PPAA and NPAS as a counterpart of abduction and deduction in
epistemic reasoning, and argumentation systems structured with these inference
rules. Moreover, another contribution is to show usefulness of the argumentation
systems by showing two persuasive examples. The argumentation systems justify
means for abstracted desires of given desires as an interaction of arguments, i.e.,
argument-based reasoning.

7 Conclusions and Future Work

This paper proposed a logical formalization of an argument-based justification
for abstract desires of given desires. We gave a problem setting for desire ab-
straction in terms of sufficiency and consistency and introduced two defeasible
inference rules, called positive and negative practical abductive syllogisms. Prac-
tical abductive arguments hypothetically derive possible desirable effects caused
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by realizing the given desires and possible undesirable effects caused by not real-
izing the given desires. We showed that these two rules and practical abductive
argumentation systems structured with the rules are correct with respect to
sufficiency and consistency. We gave practical argumentation systems and rec-
onciliatory argumentation systems and showed that the argumentation systems
can simply handle reconciliatory scenarios of committee member selection posed
by Kowalski and Toni, and of business transfer posed in this paper.

It is arguable that propotional modal language is the best choice for this
formalization. For example, BDI logic might be more appropriate language to
distinguish various notions introduced in this paper and formalize our ideas in
more detail. We will apply the practical abductive syllogisms not only to prac-
tical reasoning or deliberation, but also negotiation because they are useful for
promoting goals of negotiation, i.e., finding reasonable settlement through, e.g.,
compromise. Moreover, we will address the problems of agent’s strategies show-
ing how to an agent strategically abstracts another agent’s desires, and argument
protocols showing when to an agent puts forward reconciliatory solutions.
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Abstract. We study the computational complexity of problems that arise in ab-
stract argumentation in the context of dynamic argumentation, minimal change,
and aggregation. In particular, we consider the following problems where always
an argumentation framework F and a small positive integer k are given.

– The REPAIR problem asks whether a given set of arguments can be modified
into an extension by at most k elementary changes (i.e., the extension is of
distance k from the given set).

– The ADJUST problem asks whether a given extension can be modified by
at most k elementary changes into an extension that contains a specified
argument.

– The CENTER problem asks whether, given two extensions of distance k,
whether there is a “center” extension that is of distance at most k − 1 from
both given extensions.

We study these problems in the framework of parameterized complexity, and take
the distance k as the parameter. Our results cover several different semantics,
including admissible, complete, preferred, semi-stable and stable semantics.

1 Introduction

Starting with the seminal work by Dung [11] the area of argumentation has evolved to
one of the most active research branches within Artificial Intelligence [4,28]. Dung’s
abstract argumentation frameworks, where arguments are seen as abstract entities which
are just investigated with respect to how they relate to each other, in terms of “attacks,”
are nowadays well understood and different semantics (i.e., the selection of sets of
arguments which are jointly acceptable) have been proposed. Such sets of arguments
are called extensions of the underlying argumentation framework.

Argumentation is an inherently dynamic process, and there has been increasingly in-
terest in the dynamic behavior of abstract argumentation. A first study in this direction
was carried out by Cayrol et al. [6] and was concerned with the impact of additional ar-
guments on extensions. Baumann and Brewka [3] investigated whether it is possible to
modify a given argumentation framework in such a way that a desired set of arguments
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becomes an extension or a subset of an extension. Baumann [2] further extended this
line of research by considering the minimal exchange necessary to enforce a desired set
of arguments. In this context, it is interesting to consider notions of distance between
extensions. Booth et al. [5] suggested a general framework for defining and studying
distance measures.

A natural question that arises in the context of abstract argumentation is how com-
putationally difficult it is to decide whether an argumentation framework admits an
extension at all, or whether a given argument belongs to at least one extension or to
all extensions of the framework. Indeed the complexity of these problems have been
investigated in a series of papers, and the exact worst-case complexities have been deter-
mined for all popular semantics [7,8,11,13,14,15,19]. Abstract argumentation has also
been studied in the framework of parameterized complexity [9] which admits a more
fine-grained complexity analysis that can take structural aspects of the argumentation
framework into account [12,16,24,20,17].

Surprisingly, very little is known on the computational complexity of problems in
abstract argumentation that arise in the context of dynamic behavior of argumentation,
such as finding an extension by minimal change. However, as the distance in these
problems is assumed to be small, it seems very natural to consider the distance as the
parameter for a parameterized analysis.

New Contribution. In this paper we provide a detailed complexity map of various prob-
lems that arise in in the context of dynamic behavior of argumentation. In particular,
we consider the following problems where always an argumentation framework F and
a small positive integer k (the parameter) are given, and σ denotes a semantics.

– The σ-REPAIR problem asks whether a given set of arguments can be modified into
a σ-extension by at most k elementary changes (i.e., the extension is of distance k
from the given set).
This problem is of relevance, for instance, when a σ-extension E of an argumen-
tation framework is given, and dynamically the argumentation framework changes
(i.e., attacks are added or removed, new arguments are added). Now the set E may
not any more be a σ-extension of the new framework, and we want to repair it with
minimal change to obtain a σ-extension.

– The σ-ADJUST problem asks whether a given σ-extension can be modified by at
most k elementary changes into a σ-extension that contains a specified argument.
This problem is a variant of the previous problem, however, the argumentation
framework does not change, but dynamically the necessity occurs to include a cer-
tain argument into the extension. This should be accomplished by a small change
of the given extension.

– The σ-CENTER problem asks whether, given two σ-extensions of distance k,
whether there is a “center” σ-extension that is a distance at most k − 1 from both
given extensions.
This problem arises in scenarios of judgment aggregations, when, for instance, two
extensions that reflect the opinion of two different agents are presented, and one
tries to find a compromise extension that minimizes the distance to both extensions.

We study these problems in the framework of parameterized complexity, and take the
distance k as the parameter. Our results cover several different semantics, including
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σ general bounded degree

adm W[1]-hard FPT
com W[1]-hard FPT
prf para-coNP-hard para-coNP-hard
sem para-coNP-hard para-coNP-hard
stb W[1]-hard FPT

Fig. 1. Parameterized Complexity of the problems σ-REPAIR, σ-ADJUST, and σ-CENTER for
general argumentation frameworks and argumentation frameworks of bounded degree, depending
on the considered semantics.

admissible, complete, preferred, semi-stable and stable semantics. The parameterized
complexity of the above problems are summarized in Figure 1.

2 Preliminaries

An abstract argumentation system or argumentation framework (AF, for short) is a
pair (X,A) where X is a (possible infinite) set of elements called arguments and A ⊆
X×X is a binary relation called attack relation. In this paper we will restrict ourselves
to finite AFs, i.e., to AFs for which X is a finite set. If (x, y) ∈ A we say that x attacks
y and that x is an attacker of y.

An AF F = (X,A) can be considered as a directed graph, and therefore it is conve-
nient to borrow notions and notation from graph theory. For a set of arguments Y ⊆ X
we denote by F [Y ] the AF (Y, { (x, y) ∈ A | x, y ∈ Y }) and by F − Y the AF
F [X \ Y ].

We define the degree of an argument x ∈ X to be the number of arguments y ∈
X\{x} such that (x, y) ∈ A or (y, x) ∈ A. The maximum degree of an AF F = (X,A)
is the maximum degree over all its arguments. We say that a class C of AFs has bounded
maximum degree, or bounded degree for short, if there exists a constant c such that for
every F ∈ C the maximum degree of F is at most c.

For sets E and E′ of arguments we write E * E′ to denote their symmetric differ-
ence, i.e., E *E′ := (E \ E′) ∪ (E′ \ E), and we define

dist(E,E′) := |E *E′|.

Let F = (X,A) be an AF, S ⊆ X and x ∈ X . We say that x is defended (in F ) by
S if for each x′ ∈ X such that (x′, x) ∈ A there is an x′′ ∈ S such that (x′′, x′) ∈ A.
We denote by S+

F the set of arguments x ∈ X such that either x ∈ S or there is an
x′ ∈ S with (x′, x) ∈ A, and we omit the subscript if F is clear from the context. Note
that in our setting the set S is contained in S+

F . We say S is conflict-free if there are no
arguments x, x′ ∈ S with (x, x′) ∈ A.

Next we define commonly used semantics of AFs, see the survey of Baroni and Gia-
comin [1]. We consider a semantics σ as a mapping that assigns to each AF F = (X,A)
a family σ(F ) ⊆ 2X of sets of arguments, called extensions. We denote by adm, com,
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prf, sem and stb the admissible, complete, preferred, semi-stable and stable semantics,
respectively. These five semantics are characterized by the following conditions which
hold for each AF F = (X,A) and each conflict-free set S ⊆ X .

– S ∈ adm(F ) if each s ∈ S is defended by S.
– S ∈ com(F ) if S ∈ adm(F ) and every argument that is defended by S is contained

in S.
– S ∈ prf(F ) if S ∈ adm(F ) and there is no T ∈ adm(F ) with S � T .
– S ∈ sem(F ) if S ∈ adm(F ) and there is no T ∈ adm(F ) with S+ � T+.
– S ∈ stb(F ) if S+ = X .

Parameterized Complexity. For our investigation we need to take two measurements
into account: the input size n of the given AF F and the parameter k given as the
input to σ-REPAIR, σ-ADJUST, and σ-CENTER. The theory of parameterized com-
plexity, introduced and pioneered by Downey and Fellows [9], provides the adequate
concepts and tools for such an investigation. We outline the basic notions of parame-
terized complexity that are relevant for this paper, for an in-depth treatment we refer to
other sources [21,26].

An instance of a parameterized (decision) problem is a pair (I, k) where I is the main
part and k is the parameter; the latter is usually a non-negative integer. A parameterized
problem is fixed-parameter tractable (FPT) if there exists a computable function f such
that instances (I, k) of size n can be solved in time f(k) · nO(1), or equivalently, in
fpt-time. Fixed-parameter tractable problems are also called uniform polynomial-time
tractable because if k is considered constant, then instances with parameter k can be
solved in polynomial time where the order of the polynomial is independent of k, in
contrast to non-uniform polynomial-time running times such as nO(k). Thus we have
three complexity categories for parameterized problems: (1) problems that are fixed-
parameter tractable (uniform polynomial-time tractable), (2) problems that are non-
uniform polynomial-time tractable, and (3) problems that are NP-hard or coNP-hard
even when the parameter is fixed to some constant (such as k-SAT which is NP-hard
for k = 3). The fundamental complexity assumption in parameterized complexity is
FPT � W[1]. Hence, W[1]-hard problems are not fixed-parameter tractable under
this assumption. Such problems can still be non-uniform polynomial-time tractable.
Problems that fall into category (3) are said to be para-NP-hard or para-coNP-hard.
The classes in parameterized complexity are defined as the closure of certain canonical
parameterized problems under fpt-reductions, which are many-one reductions that can
be computed in fpt-time, and where the parameter of the target instance is bounded by
a function of the parameter of the source instance.

We will establish our W[1]-hardness results by fpt-reductions form the following
W[1]-complete problem [27].

MULTICOLORED CLIQUE

Instance: A positive integer k, and a k-partite graph G = (V,E) with partition
{V1, . . . , Vk}.
Parameter: k.
Question: Does G contain a clique of size k?
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W.l.o.g. we may assume that the parameter k of MULTICOLORED CLIQUE is even.
To see this, we reduce from MULTICOLORED CLIQUE to itself as follows. Given an
instance (G, k) we construct an equivalent instance (G′, 2k) where G′ is obtained from
the vertex-disjoint union of two copies of G by adding all edges between the two copies.

3 Problems for Dynamic Argumentation

In this section we present the problems that we consider for dynamic argumentation.
Let σ ∈ {adm, com, prf, sem, stb}. Recall that for sets E and E′ of arguments, E*E′

denotes their symmetric difference and dist(E,E′) denotes the size of E *E′.

σ-SMALL

Instance: An AF F = (X,A), a nonnegative integer k.
Parameter: k.
Question: Is there a nonempty extension E ∈ σ(F ) of size at most k?

σ-REPAIR

Instance: An AF F = (X,A), a set of arguments S ⊆ X , a nonnegative
integer k.
Parameter: k.
Question: Is there a nonempty extension E ∈ σ(F ) s.t. dist(E, S) ≤ k?

σ-ADJUST

Instance: An AF F = (X,A), an extension E0 ∈ σ(F ), an argument t ∈ X , a
nonnegative integer k.
Parameter: k.
Question: Is there an extensionE ∈ σ(F ) s.t. dist(E,E0) ≤ k and t ∈ E0 * E?

σ-CENTER

Instance: An AF F = (X,A), two extensions E1, E2 ∈ σ(F ).
Parameter: dist(E1, E2).
Question: Is there an extension E ∈ σ(F ) s.t. dist(E,Ei) < dist(E1, E2) for
every i ∈ {1, 2}?

4 Hardness Results

This section is devoted to our hardness results. We start by showing that all the problems
that we consider are W[1]-hard on general unrestricted AFs and hence unlikely to be
fixed-parameter tractable.

Theorem 1. Let σ ∈ {adm, com, prf, sem, stb}. Then the problems σ-SMALL, σ-
REPAIR, σ-ADJUST, σ-CENTER are W[1]-hard.

Since the fpt-reductions used in the proof of Theorem 1 can be computed in polynomial
time, and since the unparameterized version of MULTICOLORED CLIQUE is NP-hard, it
follows that the unparameterized versions of the four problems mentioned in Theorem 1
are also NP-hard. We will have shown Theorem 1 after showing the following three
lemmas.



The Complexity of Repairing, Adjusting, and Aggregating of Extensions 163

Lemma 1. Let σ ∈ {adm, com, prf, sem, stb}. Then the problems σ-SMALL and σ-
REPAIR are W[1]-hard.

Proof. We start by showing the lemma for the problem σ-SMALL by giving an fpt-
reduction from the MULTICOLORED CLIQUE problem to the σ-SMALL problem, when
σ is one of the listed semantics. Let (G, k) be an instance of MULTICOLORED CLIQUE

with partition V1, . . . , Vk. We construct in fpt-time an AF F such that there is an E ∈
σ(F ) with |E| = k if and only if G has a k-clique. The AF F contains the following
arguments: (1) one argument yv for every v ∈ V (G) and (2) for every 1 ≤ i ≤ k, for
every v ∈ Vi, and for every 1 ≤ j ≤ k with j �= i, one argument zjv.

For every 1 ≤ i < j ≤ k, we denote by Y [i] the set of arguments { yv | v ∈ Vi } and
by Z[i, j] the set of arguments { zjv | v ∈ Vi }. Furthermore, we set Y :=

⋃
1≤i≤k Y [i]

and Z :=
⋃

1≤i<j≤k Z[i, j]. For every 1 ≤ i ≤ k, the AF F contains the following
attacks:

– one attack from yv to yu for every u, v ∈ Y [i] with u �= v;
– one self-attack for all arguments in Z;
– for every v ∈ Vi, one attack from zjv to yv for every 1 ≤ j ≤ k with j �= i;
– for every v ∈ Vi, one attack from yv to zju for every u ∈ Vi \ {v} and 1 ≤ j ≤ k

with j �= i.
– for every {u, v} ∈ E(G) with u ∈ Vi and v ∈ Vj , one attack from yu to ziv and one

attack from yv to zju.

This completes the construction of F . It remains to show that G has a k-clique if and
only if there is an E ∈ σ(F ) with |E| = k. If Q ⊆ V (G) we denote by YQ the set of
arguments { yq | q ∈ Q }. We need the following claim.

Claim 1. A set Q ⊆ V (G) is a k-clique in G if and only if YQ ∈ adm(F ) and YQ �= ∅.
Suppose that Q ⊆ V (G) is a k-clique in G. Then YQ contains exactly one argument
from Y [i] for every 1 ≤ i ≤ k. Because there are no attacks between arguments
in Y [i] and Y [j] for every 1 ≤ i < j ≤ k it follows that YQ is conflict-free. To
see that YQ is also admissible let yv ∈ YQ ∩ Vi and suppose that yv is attacked by
an argument x of F . It follows from the construction of F that either x ∈ Y [i] or
x ∈ { zjv | 1 ≤ j ≤ k and j �= i }. In the first case x is attacked by yv. In the second
case zjv is attacked by the argument in Y [j] ∩ YQ because Q is a k-clique of G. Hence,
YQ ∈ adm(F ) and YQ �= ∅, as required.

For the opposite direction, suppose that E ∈ adm(F ) and E �= ∅. Because E
conflict-free it follows that E ⊆ Y and E contains at most one argument from the set
Y [i] for every 1 ≤ i ≤ k. Because E �= ∅ there is an argument yv ∈ Y [i]∩E. Because
of the construction of F , yv is attacked by the arguments { zjv | 1 ≤ j ≤ k and j �= i }.
Hence, the arguments { zjv | 1 ≤ j ≤ k and j �= i } need to be attacked by arguments
in E. However, the only arguments of F that attack an argument zjv with j �= i are
the arguments yu ∈ Y [j] such that {u, v} ∈ E(G). Hence, for every argument yv ∈
E ∩ Y [i] and every 1 ≤ j ≤ k with j �= i there is an argument yu ∈ E ∩ Y [j] such that
{u, v} ∈ E(G). It follows that the set { v | yv ∈ E } is a k-clique in G. This shows the
claim.

The previous claim shows that every non-empty admissible extension of F corre-
sponds to a k-clique of G. It is now straightforward to check that every such extension
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is not only admissible but also complete, preferred, semi-stable, and stable. This shows
the lemma for σ-SMALL. To show the lemma for the σ-REPAIR problem we note that
(F, ∅, k) is a YES-instance for σ-REPAIR if and only if (F, k) is a YES-instance for
σ-SMALL. #$
Lemma 2. Let σ ∈ {adm, com, prf, sem, stb}. Then the problem σ-ADJUST is W[1]-
hard.

Proof. We give an fpt-reduction from the σ-SMALL problem. Let (F, k) be an instance
of the σ-SMALL problem where F = (X,A). We construct an equivalent instance
(F ′, E1, E2) of the σ-ADJUST problem as follows. F ′ = (X ′, A′) is obtained from
F by adding one argument t and two attacks (t, x) and (x, t) for every x ∈ X to F .
Because the argument t attacks is attacked by all arguments in X it follows that {t}
is a σ-extension of F ′. In is now straightforward to show that (F ′, {t}, t, k + 1) is a
YES-instance of σ-ADJUST if and only if (F, k) is a YES-instance of σ-SMALL. This
shows the lemma. #$
Lemma 3. Let σ ∈ {adm, com, prf, sem, stb}. Then the problem σ-Center is W[1]-
hard.

Proof. We give an fpt-reduction from the σ-SMALL problem. Let (F, k) be an instance
of the σ-SMALL problem where F = (X,A). W.l.o.g. we can assume that k is even,
this follows from the remark in Section 2 that MULTICOLORED CLIQUE is W[1]-hard
if k is even and the parameter preserving reduction from MULTICOLORED CLIQUE to
σ-SMALL given in Lemma 1. We will construct an equivalent instance (F ′, E1, E2) of
the σ-CENTER problem as follows. F ′ = (X ′, A′) is obtained from F by adding the
following arguments and attacks to F .

– two arguments t and t′;
– the arguments in W := {w1, . . . , wk} and W ′ := {w′

1, . . . , w
′
k};

– the arguments in Z := {z1, . . . , zk} and Z ′ := {z′1, . . . , z′k};
– attacks from t to all arguments in X ∪ {t′} ∪ Z ∪ Z ′ and attacks from t′ to all

arguments in X ∪ {t} ∪ Z ∪ Z ′;
– attacks from wi to {t, w′

i} and attacks from w′
i to {t′, wi} for every 1 ≤ i ≤ k;

– self-attacks for the arguments z1, . . . , zk and z′1, . . . , z
′
k;

– attacks from zi to {wi, w
′
i} and from X to zi for every 1 ≤ i ≤ k;

– attacks from {wi, w
′
i} to z′i and from z′i to X for every 1 ≤ i ≤ k;

We set E0 := {w1, . . . , wk/2, w
′
k/2+1, . . . , w

′
k}, E1 := {t}∪W ′, E2 := {t′}∪W , and

k′ := dist(E1, E2)−1 = 2(k+1)−1 = 2k+1. Then E1 and E2 are σ-extensions and
hence (F ′, E1, E2) is a valid instance of the σ-CENTER problem. It remains to show
that (F, k) is a YES instance of σ-SMALL if and only if (F ′, E1, E2) is a YES instance
of σ-CENTER.

Suppose that (F, k) is a YES instance of σ-SMALL and let E be a non-empty σ-
extension of cardinality at most k witnessing this. Then E′ := E ∪E0 is a σ-extension
of F ′ and dist(E′, Ei) = k + k + 1 = 2k + 1 ≤ k′ for i ∈ {1, 2}, as required.

For the reverse direction suppose that E′ is a σ-extension of F ′ with dist(E′, Ei) ≤
k′ for i ∈ {1, 2}. We need the following claim.
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Claim 2. E′ does not contain t or t′.

Suppose for a contradiction that E′ contains one of t and t′. Because t and t′ attack each
other, E′ cannot contain both t and t′. W.l.o.g. we can assume that t ∈ E′. Because E′

is a σ-extension E′ is also admissible. Since, the arguments w1, . . . , wk attack t, there
need to be arguments in E′ that attack these arguments. It follows that E′ contains the
arguments w′

1, . . . , w
′
k. But then dist(E′, E2) ≥ dist(E1, E2) a contradiction.

Claim 3. E′ ∩X is a non-empty σ-extension of F and E′ contains exactly one of the
arguments wi and w′

i for every 1 ≤ i ≤ k.

It follows from the previous claim that E′ does not contain t or t′. Furthermore, because
of the self-loops of the arguments in Z∪Z ′, E′ contains only arguments from X∪W ∪
W ′. Since the arguments in X do not attack or are attacked by arguments in W ∪W ′

it follows that E′ ∩ X is a σ-extension of F . To see that E′ ∩ X is also not empty,
suppose for a contradiction that this is not the case. Then because E′ is non-empty,
E′ has to contain at least one argument from W ∪ W ′. However, any argument in
W ∪W ′ is attacked by an argument in Z and the only arguments that attack arguments
in Z are the arguments in X ∪ {t, t′}. Again using the previous claim and the fact
that E′ is admissible, it follows that E′ has to contain at least one argument from X ,
as required. It remains to show that E′ contains exactly one of wi and w′

i for every
1 ≤ i ≤ k. Because E′ contains at least one argument from X and all arguments
in X are attacked by all arguments in Z ′, E′ needs to contain arguments that attack
all arguments in Z ′. However, the only arguments that attack arguments in Z ′ are the
arguments in {t, t′} ∪W ∪W ′. Using the previous claim it follows that the only way
for E′ to attack all arguments in Z ′ is to contain at least one of wi and w′

i for every
1 ≤ i ≤ k. The claim now follows by observing that because E′ is conflict-free, it
cannot contain both arguments wi and w′

i for any 1 ≤ i ≤ k. This proves the claim.
Since E′ contains exactly one of wi and w′

i for every 1 ≤ i ≤ k we obtain that either
|W \ E′| ≥ k/2 or |W ′ \ E′| ≥ k/2. W.l.o.g. we can assume that |W \ E′| ≥ k/2.
But then dist(E′, E2) = |E′ ∩X |+ 1 + 2|W \ E′| = |E′ ∩X |+ k + 1 and because
dist(E′, E2) ≤ k′ = 2k + 1 it follows that |E′ ∩X | ≤ k. This concludes the proof of
the lemma. #$
Lemmas 1, 2, and 3 together imply Theorem 1.

In the next section we will show that, when considering AFs of bounded maximum
degree, then fixed-parameter tractability can be obtained for the admissible, complete,
and stable semantics. Unfortunately, this positive result does not hold for the preferred
and semi-stable semantics as the following result shows.

Theorem 2. Let σ ∈ {prf, sem}. Then the problems σ-SMALL, σ-REPAIR, σ-ADJUST,
σ-CENTER are para-coNP-hard, even for AFs of maximum degree 5.

The remainder of this section is devoted to the proof of Theorem 2.

Lemma 4. Let σ ∈ {prf, sem}. Then the problems σ-SMALL and σ-REPAIR are
para-coNP-hard (for parameter equal to 1), even for AFs of maximum degree at most 5.

Proof. We will show the theorem by providing a polynomial reduction from the 3-
CNF-2-UNSATISFIABLILY problem which is well-known to be coNP-hard [22]. This
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problem asks whether a given 3-CNF-2 formula Φ, i.e., Φ is a CNF formula where
every clause contains at most 3 literals and every literal occurs in at most 2 clauses,
is not satisfiable. Let Φ be a such a 3-CNF-2 formula with clauses C1, . . . , Cm and
variables x1, . . . , xn. We will (in polynomial time) construct an AF F = (X,A) such
that (1) F has degree at most 5 and (2) Φ is not satisfiable if and only if there is an
E ∈ σ(F ) with |E| = 1. This implies the theorem.

F contains the following arguments: (1) two arguments Φ and Φ, (2) one argument
Cj for every 1 ≤ j ≤ m, (3) two arguments xi and xi for every 1 ≤ i ≤ n, and (4) one
argument e. Furthermore, F contains the following attacks: (1) one self-attack for the
arguments Φ and C1, . . . , Cm, (2) one attack from Φ to Φ, (3) one attack from Cj to Φ
for every 1 ≤ j ≤ m, (4) one attack from xi to Cj for every 1 ≤ i ≤ n and 1 ≤ j ≤ m
such that xi ∈ Cj , (5) one attack from xi to Cj for every 1 ≤ i ≤ n and 1 ≤ j ≤ m
such that xi ∈ Cj , (6) two attacks from xi to xi and from xi to xi for every 1 ≤ i ≤ n,
and (7) two attacks from Φ to xi and to xi for every 1 ≤ i ≤ n.

Note that the constructed AF F does not have bounded degree. Whereas all argu-
ments in X \ {Φ,Φ} have degree at most 5, the degree of the arguments Φ and Φ can
be unbounded. However, the following simple trick can be used to transform F into an
AF with bounded degree.

Let B(i) be an undirected rooted binary tree with root r and i leaves l1, . . . , li and let
B′(i) be obtained from B(i) after subdividing every edge of B(i) once, i.e., every edge
{u, v} is replaced with two edges {u, nuv} and {nuv, v} where nuv is a new vertex for
every such edge. We denote by B(Φ) the rooted directed tree obtained from B′(m)
after directing every edge of B′(m) towards the root r and introducing a self-attack
for every vertex in V (B′(m)) \ V (B(m)), i.e., all vertices introduced for subdividing
edges of B(m) are self-attacking in B(Φ). Then to ensure that the argument Φ has
bounded degree in F we first delete the attacks from the arguments C1, . . . , Cm to Φ in
F . We then add a copy of B(Φ) to F and identify Φ with the root r. Finally, we add one
attack from Cj to lj for every 1 ≤ j ≤ m. Observe that this construction maintains the
property of F that if a σ-extension of F contains Φ then it also has to contain at least
one attacker of every argument C1, . . . , Cm.

Let B(Φ) be the rooted directed tree obtained from B′(2n) after directing every
edge of B′(2n) away from the root r and introducing a self-attack for every vertex in
V (B(2n)). To ensure that also the argument Φ has bounded degree we first delete the
attacks from the argument Φ to x1, x1, . . . , xn, xn in F . We then add a copy of B(Φ)
to F and identify Φ with the root r. Finally, we add two attacks from li to xi and from
ln+i to xi for every 1 ≤ i ≤ n. Observe that this construction maintains the property
of F that if a σ-extension of F contains xi or xi for some 1 ≤ i ≤ n then Φ needs to
be attacked by the argument Φ in F and hence such a σ-extension has to contain the
argument Φ.

Clearly, after applying the above transformations to F the resulting AF has maximum
degree at most 5. However, to make the remaining part of the proof less technical we
will give the proof only for the AF F . We will need the following claim.

Claim 4. If there is an E ∈ adm(F ) that contains at least one argument in
{Φ, x1, x2, . . . , xn, xn} then Φ ∈ E.



The Complexity of Repairing, Adjusting, and Aggregating of Extensions 167

Let E ∈ adm(F ) with E∩{Φ, x1, x2, . . . , xn, xn} �= ∅. If Φ ∈ E then the claim holds.
So suppose that Φ /∈ E. Then there is an 1 ≤ i ≤ n such that either xi ∈ E or xi ∈ E.
Because both xi and xi are attacked by the argument Φ and the only argument (apart
from Φ) that attacks Φ in F is Φ it follows that Φ ∈ E. This shows the claim.

Claim 5. There is an E ∈ adm(F ) that contains at least one argument in
{Φ, x1, x2, . . . , xn, xn} if and only if the formula Φ is satisfiable.

Suppose there is an E ∈ adm(F ) with E ∩ {Φ, x1, x2, . . . , xn, xn} �= ∅. Because of
the previous claim we have that Φ ∈ E. Because Φ ∈ E and Φ is attacked by the
arguments C1, . . . , Cm it follows that the arguments C1, . . . , Cm must be attacked by
some argument in E. Let a(Cj) be an argument in E that attacks Cj . Then a(Cj) is
an argument that corresponds to a literal of the clause Cj . Furthermore, because E is
conflict-free the set L := { a(Cj) | 1 ≤ j ≤ m } does not contain arguments that
correspond to complementary literals. Hence, L corresponds to a satisfying assignment
of Φ.

For the reverse direction suppose Φ is satisfiable and let L be a set of literals wit-
nessing this, i.e., L is a set of literals that correspond to a satisfying assignment of Φ. It
is straightforward to check that E := {Φ} ∪ L is in adm(F ). This completes the proof
of the claim.

Claim 6. Let E ∈ σ(F ). Then e ∈ E.

This follows directly from our assumption that σ ∈ {prf, sem} and the fact that the
argument e is isolated in F .

We are now ready to show that Φ is not satisfiable if and only if there is an E ∈ σ(F )
with |E| = 1. So suppose that Φ is not satisfiable. It follows from the previous claim
that E ∩ {Φ, x1, x1, . . . , xn, xn} = ∅ for every E ∈ adm(F ) and hence also for every
E ∈ σ(F ). Because of the self-attacks of the arguments in {Φ,C1, . . . , Cm}, we obtain
that E ⊆ {e}. Using the previous claim, we have E = {e} as required.

For the reverse direction suppose that there is an E ∈ σ(F ) with |E| = 1. Because
of the previous claim it follows that E = {e}. Furthermore, because of the maximality
condition of the preferred and semi-stable semantics it follows that there is no E ∈
adm(F ) such that E ∩ {Φ, x1, x1, . . . , xn, xn} �= ∅ and hence (using Claim 5) the
formula Φ is not satisfiable. #$
Lemma 5. Let σ ∈ {prf, sem}. Then the problem σ-ADJUST is para-coNP-hard (for
parameter equal to 2) even if the maximum degree of the AF is bounded by 5.

Proof. We use a similar construction as in the proof of Theorem 4. Let F be the AF
constructed from the 3-CNF-2 formulas Φ as in the proof of Lemma 4. Furthermore,
let F ′ be the AF obtained from F after removing the argument e and adding 4 novel
arguments t1, t′1, t2, and t′2 and the attacks (t1, Φ), (Φ, t1), (t1, t2), (t2, t1), (t1, t′1),
(t2, t

′
2), (t

′
1, t

′
1), and (t′2, t

′
2) to F . Because F has degree bounded by 5 (and the degree

of the argument Φ in F is 3) it follows that the maximum degree of F ′ is 5 as required.
We claim that (F ′, {t1}, t1, 2) is a YES-instance of σ-ADJUST if and only if Φ is not
satisfiable.

It is straightforward to verify that the Claims 4 and 5 also hold for the AF F ′. We
need the following additional claims.
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Claim 7. {t1} ∈ σ(F ′).

Clearly, {t1} ∈ adm(F ′). We first show that for every E ∈ adm(F ′) with t1 ∈ E
it holds that E = {t1}. Let E ∈ adm(F ′) with t1 ∈ E. Because of the attacks
between t1 and t2 and between t1 and Φ it follows that Φ, t2 /∈ E. Using Claim 4
it follows that also none of the arguments in {x1, x1, . . . , xn, xn} are contained in E.
Furthermore, because of the self-attacks in F ′ it also holds that none of the arguments
in {Φ,C1, . . . , Cm, t′1, t

′
2} are contained in E. Hence, E = {t1}, as required. This

implies that {t1} ∈ prf(F ′). To show that {t1} ∈ sem(F ′) observe that t1 is the only
argument in F (apart from t′1 itself) that attacks t′1. Furthermore, because t′1 attacks
itself it cannot be in any semi-stable extension of F ′. Hence, {t1} ∈ sem(F ′). This
shows the claim.

Claim 8. {t2} ∈ σ(F ′) if and only if Φ is not satisfiable.

Suppose that {t2} ∈ σ(F ′). If {t2} ∈ prf(F ′) then there is no E ∈ adm(F ′) with
{t2} � E. It follows that there is noE′ ∈ adm(F ′) with E′∩{Φ, x1, x1, . . . , xn, xn} �=
∅, since such an E′ could be added to E. Using Claim 5 it follows that Φ is not sat-
isfiable. If on the other hand {t2} ∈ sem(F ′) then because t2 is the only argument
that attacks t′2 and because of the self-attack of t′2 it follows again that there is no
E ∈ adm(F ′) with {t2} � E. Hence, using the same arguments as for the case
{t2} ∈ prf(F ′) we again obtain that Φ is not satisfiable.

For the reverse direction suppose that Φ is not satisfiable. Because of Claim 5 we
obtain that everyE ∈ adm(F ′) (and hence also everyE ∈ σ(F ′)) contains no argument
in {Φ, x1, x1, . . . , xn, xn}. Because {t2} ∈ adm(F ′) and the argument t2 attacks the
only remaining argument t1 with no self-attack it follows that {t2} ∈ σ(F ′).

To show the lemma it remains to show that there is an E′ ∈ σ(F ′) with t1 /∈ E′

and dist(E,E′) ≤ 2 if and only if the formula Φ is not satisfiable. First observe that
because of Claim 7, ∅ /∈ σ(F ′) and hence E′ must contain exactly one argument other
than t1. Consequently, it remains to show that there is an argument x ∈ X \ {t1} such
that {x} ∈ σ(F ′) if and only if Φ is not satisfiable.

Suppose that there is an x ∈ X \ {t1} with {x} ∈ σ(F ′). If x ∈
{Φ, x1, x1, . . . , xn, xn} then because of Claim 4 it holds that x = Φ. However, as-
suming that Φ contains at least one clause it follows that {x} is not admissible, and
hence x �= Φ. Considering the self-attacks of F we obtain that x = t2. Hence, the
forward direction follows from Claim 8.

The reverse direction follows immediately from Claim 8. This concludes the proof
of the lemma. #$
Lemma 6. Let σ ∈ {prf, sem}. Then the problem σ-CENTER is para-coNP-hard (for
parameter equal to 6) even if the maximum degree of the AF is bounded by 5.

Proof. We use a similar construction as in the proof of Lemma 4. Let F be the AF
constructed from the 3-CNF-2 formulas Φ as in the proof of Lemma 4. Further-
more, let F ′ be the AF obtained from F after removing the argument e and adding
12 novel arguments t, t′, w1, w2, w′

1, w′
2, z, z′, z1, z′1, z2, z′2 and the attacks (t, z),

(z, z), (t′, z′), (z′, z′), (w1, z1), (z1, z1), (w′
1, z

′
1), (z

′
1, z

′
1), (w2, z2), (z2, z2), (w′

2, z
′
2),

(z′2, z
′
2), (t, Φ), (Φ, t), (t′, Φ), (Φ, t′), (t, t′), (t′, t), (w1, w

′
1), (w′

1, w1), (w2, w
′
2),
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(w′
2, w2), (w1, t), (w2, t), (w′

1, t
′), and (w′

2, t) to F . Because F has degree bounded by
5 (and the degree of the argument Φ of F is 3) it follows that the maximum degree of
F ′ is 5 as required. We claim that (F ′, {t, w′

1, w
′
2}, {t′, w1, w2}) is a YES-instance of

σ-CENTER if and only if Φ is not satisfiable.
It is straightforward to verify that the Claims 4 and 5 also hold for the AF F ′. We

need the following additional claims.

Claim 9. {t, w′
1, w

′
2} ∈ σ(F ′) and {t′, w1, w2} ∈ σ(F ′).

We show that {t, w′
1, w

′
2} ∈ σ(F ′). The case for {t′, w1, w2} ∈ σ(F ′) is analogous

due to the symmetry of F ′. Clearly, {t, w′
1, w

′
2} ∈ adm(F ′).

We first show that for every E ∈ adm(F ′) with t ∈ E it holds that E = {t, w′
1, w

′
2}.

Let E ∈ adm(F ′) with t ∈ E. Clearly, E does not contain Φ, t′, w1 or w2

(since these arguments are neighbors of t in F ′). Using Claim 4 it follows that
also none of the arguments in {x1, x1, . . . , xn, xn} are contained in E. Further-
more, because of the self-attacks in F ′ it also holds that none of the arguments in
{Φ,C1, . . . , Cm, z, z′, z1, z′1, z2, z′2} are contained in E. Hence, E ⊆ {t1, w′

1, w
′
2}.

However, because t is attacked by w1 and w2 in F and w′
1 and w′

2 are the only argu-
ments of F ′ that attack w1 and w2 it follows that E = {t, w′

1, w
′
2}. This implies that

{t, w′
1, w

′
2} ∈ prf(F ′). To show that {t, w′

1, w
′
2} ∈ sem(F ′) observe that t is the only

argument in F ′ (apart from z itself) that attacks z. Furthermore, because z attacks itself
it cannot be in any semi-stable extension of F ′. Hence, {t, w′

1, w
′
2} ∈ sem(F ′). This

shows the claim.
The proof of the previous claim actually showed the following slightly stronger state-

ment.

Claim 10. Let E ∈ σ(F ′) with t ∈ E. Then E = {t, w′
1, w

′
2}. Similarly, if E ∈ σ(F ′)

with t′ ∈ E. Then E = {t′, w1, w2}.
We are now ready to show that there is an E ∈ σ(F ′) with dist(E,Ei) <
dist(E1, E2) = 6 for every i ∈ {1, 2} if and only if the formula Φ is not satisfiable.

Suppose that there is an E ∈ σ(F ′) with dist(E,Ei) < dist(E1, E2) = 6 for every
i ∈ {1, 2}. Then because of Claim 10 E does not contain t or t′. If there is an E ∈
σ(F ′) with Φ ∈ E then we can assume (because of the maximality properties of the
two semantics) that E contains one of xi or xi for every 1 ≤ i ≤ n. Hence, if Φ ∈ E
and the formula Φ contains at least 5 variables (which we can assume w.l.o.g.) then
dist(E,E1) > 5. Consequently, Φ /∈ E and it follows from Claims 4 and 5 that Φ is not
satisfiable, as required.

For the reverse direction suppose that Φ is not satisfiable. Let E := {w1, w
′
2}.

Clearly, dist(E,Ei) = 3 < 5, as required. It remains to show that E ∈ σ(F ′). It is
easy to see that E ∈ adm(F ′). Furthermore, because Φ is not satisfiable, it follows from
Claim 5 that no E′ ∈ σ(F ′) can contain an argument in {Φ, x1, x1, . . . , xn, xn} and
hence E ∈ prf(F ′). The maximality of E with respect to the semi-stable extension now
follows from the fact that w1 and w′

2 are the only arguments that attack the arguments
z1 and z′2 and because of their self-attacks none of z1 and z2 can them-self be contained
in a semi-stable extension. This completes the proof of the lemma. #$
Lemmas 4, 5, and 6 together imply Theorem 2.
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5 Tractability Results

The results of the previous section draw a rather negative picture of the complexity of
problems important to dynamic argumentation. In particular, Theorem 2 strongly sug-
gests that at least for the preferred and semi-stable semantics these problems remain
hard even when the degree of arguments is bounded by a small constant. The hardness
of these problems under the preferred and semi-stable semantics seems to originate
from their maximality conditions. In this section we take a closer look at the com-
plexity of our problems for the three remaining semantics under consideration, i.e., the
admissible, complete, and stable semantics. We show that in contrast to the preferred
and semi-stable semantics all our problems become fixed-parameter tractable when the
arguments of the given AF have small degree. In particular, we will show the following
result.

Theorem 3. Let σ ∈ {adm, com, stb} and c a positive integer. Then the problems σ-
SMALL, σ-REPAIR, σ-ADJUST, and σ-CENTER are fixed-parameter tractable if the
maximum degree of the input AF is bounded by c.

To show the above theorem we will reduce it to a model checking problem for first-
order (FO) logic. For a class S of finite relational structures we consider the following
parameterized problem.

S-FO MODEL CHECKING

Instance: A structure S ∈ S and a first order formula ϕ.
Parameter: |ϕ| (i.e., the length of ϕ).
Question: Does S satisfy (or model) ϕ, i.e., does S |= ϕ hold?

For a formal definition of the syntax and semantics of FO logic and associated notions
we refer the reader to a standard text [21]. Central to our result is the following theorem.

Theorem 4 ([29]). Let S be a class of structures whose maximum degree is bounded
by some constant. Then the problem C-FO MODEL CHECKING is fixed-parameter
tractable.

We note here that we define the maximum degree of a structure S in terms of the max-
imum degree of its associated Gaifman graph, which is the undirected graph whose
vertex set is the universe of S, and where two vertices are joined by an edge if they
appear together in a tuple of a relation of S.

Several extensions of Theorem 4 to larger classes of structures are known, e.g., to
classes of structures with locally bounded treewidth. Due to the technicality of the
definition of these classes we refrain from stating these results in detail and refer the
interested reader to [25]. Results such as Theorem 4 are also commonly refereed to as
meta-theorems since they allow us to make statements about a wide variety of algorith-
mic problems. Similar meta-theorems have been used before in the context of Abstract
Argumentation (see, e.g., [12,24,18]).

We will now show how to reduce our problems to the S-FO MODEL CHECKING

problem. To do so we need (1) to represent the input of σ-SMALL, σ-REPAIR, σ-
ADJUST, σ-CENTER in terms of finite structures (whose maximum degree is bounded
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in terms of the maximum degree of the input AF), and (2) to give a FO sentence that
is satisfied by the structure obtained in step (1) if and only if the given instance of
σ-SMALL, σ-REPAIR, σ-ADJUST, σ-CENTER is a YES instance.

We start by defining the structures that correspond to the input of our problems. For
all of our problems, the structure has universe X and one binary relation A that is equal
to the attack relation of the AF F = (X,A), which is given in the input. Additionally,
the resulting structures will contain unary relations, which represent arguments or sets
of arguments, respectively, which are given in the input. For instance, the structure for
an instance (F,E0, t, k) of σ-ADJUST has universeX , one binary relation A that equals
the attack relation of F , one unary relation E0 that equals the set E0, and one unary
relation T with T := {t}. The structures for the problems σ-SMALL, σ-REPAIR, and
σ-CENTER are defined analogously. It is straightforward to verify that the maximum
degree of the structures obtained in this way is equal to the maximum degree of the
input AF.

Towards defining the FO formulas for step (2) we start by defining the following
auxiliary formulas. Due to the complicacy of the FO formulas that we need to define,
we will introduce some additional notation that will allow us to reuse formulas by sub-
stituting parts of other formulas. We will provide examples how to interpret the notation
when these formulas are introduced.

In the following let l be a natural number, and let ϕ(x), ϕ1(x), and ϕ2(x) be FO
formulas with free variable x.

The formula SET[l](x1, . . . , xl, y) is satisfied if and only if the argument y is equal
to at least one of the arguments x1, . . . , xl:

SET[l](x1, . . . , xl, y) := (y = x1 ∨ · · · ∨ y = xl).

We note here that the notation SET[l] means that the exact definition of the formula
SET[l] depends on the value of l, e.g., if l = 3 then SET[l] is the formula y = x1 ∨ y =
x2 ∨ y = x3.

The formula CF[ϕ(x)] is satisfied if and only if the set of arguments that satisfy the
formula ϕ(x) is conflict-free:

CF[ϕ(x)] := ∀x∀y(ϕ(x) ∧ ϕ(y))→ ¬Axy.

Again we note here that the notation CF[ϕ(x)] means that the exact definition of the
formula CF[ϕ(x)] depends on the formula ϕ(x), e.g., if ϕ(x) := SET[l](x1, . . . , xl, x)
then CF[ϕ(x)] is the formula ∀x∀y(SET[l](x1, . . . , xl, x) ∧ SET[l](x1, . . . , xl, y)) →
¬Axy which in turn evaluates to ∀x∀y(∨1≤i≤l x = xi ∧

∨
1≤i≤l y = xi)→ ¬Axy.

The formula SYM-DIFF[ϕ1(x), ϕ2(x)](y) is satisfied if and only if the argument y
is contained in the symmetric difference of the sets of arguments that satisfy the formula
ϕ1(x) and the set of arguments that satisfy the formula ϕ2(x):

SYM-DIFF[ϕ1(x), ϕ2(x)](y) := (ϕ1(y) ∧ ¬ϕ2(y)) ∨ (¬ϕ1(y) ∧ ϕ2(y)).

The formula ATMOST[ϕ(x), k] is satisfied if and only if the set of arguments that sat-
isfy the formula ϕ(x) contains at most k arguments:

ATMOST[ϕ(x), k] := ¬(∃x1, . . . , ∃xk+1(
∧

1≤i<j≤k+1 xi �= xj)∧
(
∧

1≤i≤k+1 ϕ(xi))).
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The following formulas represent the semantics adm, com, stb. These formulas are
therefore evaluated over a structure with universe X the binary relation A representing
an AF F := (X,A), plus possibly some unary relations.

The formula adm[ϕ(x)] is satisfied by the structure representing an AF F if and only
if the set of arguments that satisfy the formula ϕ(x) is an admissible extension of F :

adm[ϕ(x)] := CF[ϕ(x)]∧(∀x∀z(ϕ(x)∧(¬ϕ(z))∧Azx) → (∃yϕ(y)∧Ayz)).
The formula com[ϕ(x)] is satisfied by the structure representing an AF F if and only if
the set of arguments that satisfy the formula ϕ(x) is a complete extension of F :

com[ϕ(x)] := adm[ϕ(x)]∧
(∀z((∀aAaz → ∃xϕ(x) ∧Axa) ∧ (∀xϕ(x)→ ¬(Axz ∨ Azx)))→ ϕ(z).

The formula stb[ϕ(x)] is satisfied by the structure representing an AF F if and only if
the set of arguments that satisfy the formula ϕ(x) is a stable extension of F :

stb[ϕ(x)] := CF[ϕ(x)] ∧ (∀zϕ(z) ∨ (∃aϕ(a) ∧ Aaz)).

We are now ready to define the formulas that represent the problems σ-SMALL, σ-
REPAIR, σ-ADJUST, and σ-CENTER.

Let σ ∈ {adm, com, stb}. The formula σ-SMALL[σ, k] is satisfied by the structure
representing an instance (F, k) of σ-SMALL if and only if the AF F has a non-empty σ-
extension that contains at most k arguments, i.e., if and only if (F, k) is a YES instance
of σ-SMALL:

σ-SMALL[σ, k] := ∃x1, . . . , ∃xkσ[SET[k](x1, . . . , xk, x)].

The formula σ-REPAIR[σ, k] is satisfied by the structure representing an instance
(F, S, k) of σ-REPAIR if and only if F has an E ∈ σ(F ) with dist(E, S) ≤ k, i.e.,
if and only if (F, S, k) is a YES instance of σ-REPAIR:

σ-REPAIR[σ, k] := ∃x1, . . . , ∃xkσ[SYM-DIFF[Sx, SET[k](x1, . . . , xk, x)]].

The formula σ-ADJUST[σ, k] is satisfied by the structure representing an instance
(F,E0, t, k) of σ-ADJUST if and only if F has an E ∈ σ(F ) such that dist(E0, E) ≤ k
and t ∈ E * E0, i.e., if and only if (F,E0, t, k) is a YES instance of σ-ADJUST:

σ-ADJUST[σ, k] := ∃t∃x1, . . . , ∃xk−1T t∧
σ[SYM-DIFF[E0x, SET[k](t, x1, . . . , xk−1, x)]].

The formula σ-CENTER[σ, k] is satisfied by the structure representing an instance
(F,E1, E2) of σ-CENTER if and only if F has an E ∈ σ(F ) with dist(Ei, E) <
dist(E1, E2) for every i ∈ {1, 2}, i.e., if and only if (F,E1, E2) is a YES instance of
σ-CENTER:

σ-CENTER[σ, k] :=
∃x1, . . . , ∃xk−1σ[SYM-DIFF[E1x, SET[k − 1](x1, . . . , xk−1, x)]]∧
ATMOST[k − 1,

SYM-DIFF[SYM-DIFF[E1x, SET[k − 1](x1, . . . , xk−1, x)], E2x]].

Because the length of the above FO formulas is easily seen to be bounded in terms of
a function of the parameter k of the respective problem, these formulas together with
Theorem 4 immediately imply Theorem 3.



The Complexity of Repairing, Adjusting, and Aggregating of Extensions 173

6 Concluding Remarks

We studied the computational problems REPAIR, ADJUST, and CENTER which arise
in the context of dynamic changes of argumentation systems. All three problems ask
whether there exists an extension of small distance to some given set or sets of argu-
ments, and an upper bound to that distance is taken as the parameter. We considered
all three problems with respect to five popular semantics: the admissible, the complete,
the preferred, the semi-stable, and the stable semantics, with unrestricted argumentation
frameworks and for argumentation frameworks of bounded degree. We have determined
whether the problems remain coNP-hard, W[1]-hard, or are fixed-parameter tractable,
see Figure 1.

Parameterized complexity aspects of incremental computation have come into the
focus of recent research [10,23]. We would like to point out that some of our results,
in particular our results for the REPAIR problem, can be considered as contributions to
this line of research: The argumentation framework has changed, and the existing ex-
tension is not anymore an extension with respect to the semantics under consideration.
When considering the admissible, the complete, and the stable semantics, and when the
degree of the argumentation framework is small, then it is more efficient to repair the
existing extension than to compute a new extension from scratch. On the other hand,
when considering the preferred and the semi-stable semantics, repairing is not a good
option since this involves an intractable task, even when the degree of the argumentation
framework is small.

We close by suggesting an “opportunistic” version of the REPAIR problem. That
is, given a set of arguments together with an argumentation framework, is it possible
to change the framework so that the set becomes an extension? While the allowed
elementary changes in the framework can be defined in various ways, the number of
such changes would be required to be small. Such a problem is a natural candidate for
parameterized complexity analysis.

Acknowledgment. We would like to thank Stefan Woltran for stimulating discussions.
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20. Dvořák, W., Szeider, S., Woltran, S.: Reasoning in argumentation frameworks of bounded
clique-width. In: Baroni, P., Cerutti, F., Giacomin, M., Simari, G.R. (eds.) Proceedings of
COMMA 2010, Computational Models of Argumentation. Frontiers in Artificial Intelligence
and Applications, vol. 216, pp. 219–230. IOS (2010)

21. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series, vol. XIV. Springer, Berlin (2006)

22. Garey, M.R., Johnson, D.R.: Computers and Intractability. W. H. Freeman and Company,
New York (1979)



The Complexity of Repairing, Adjusting, and Aggregating of Extensions 175

23. Hartung, S., Niedermeier, R.: Incremental list coloring of graphs, parameterized by conser-
vation. Theoretical Computer Science 494, 86–98, 213

24. Kim, E.J., Ordyniak, S., Szeider, S.: Algorithms and complexity results for persuasive argu-
mentation. Artificial Intelligence 175, 1722–1736 (2011)

25. Kreutzer, S.: Algorithmic meta-theorems. Electronic Colloquium on Computational
Complexity (ECCC) 16, 147 (2009)

26. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Math-
ematics and its Applications. Oxford University Press, Oxford (2006)

27. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. J. of Computer and System Sci-
ences 67(4), 757–771 (2003)

28. Rahwan, I., Simari, G.R. (eds.): Argumentation in Artificial Intelligence. Springer (2009)
29. Seese, D.: Linear time computable problems and first-order descriptions. Mathematical

Structures in Computer Science 6(6), 505–526 (1996)



Computing Preferred Extensions in Abstract
Argumentation: A SAT-Based Approach

Federico Cerutti1, Paul E. Dunne2, Massimiliano Giacomin3, and Mauro Vallati4

1 School of Natural and Computing Science, King’s College, University of Aberdeen,
AB24 3UE, Aberdeen, United Kingdom

f.cerutti@abdn.ac.uk
2 Department of Computer Science, Ashton Building, University of Liverpool, Liverpool

L69 7ZF, United Kingdom
ped@csc.liv.ac.uk

3 Department of Information Engineering, University of Brescia, via Branze, 38, 25123,
Brescia, Italy

massimiliano.giacomin@ing.unibs.it
4 School of Computing and Engineering, University of Huddersfield, Huddersfield, HD1 3DH,

United Kingdom
m.vallati@hud.ac.uk

Abstract. This paper presents a novel SAT-based approach for the computation
of extensions in abstract argumentation, with focus on preferred semantics, and
an empirical evaluation of its performances. The approach is based on the idea
of reducing the problem of computing complete extensions to a SAT problem
and then using a depth-first search method to derive preferred extensions. The
proposed approach has been tested using two distinct SAT solvers and compared
with three state-of-the-art systems for preferred extension computation. It turns
out that the proposed approach delivers significantly better performances in the
large majority of the considered cases.

1 Introduction

Dung’s theory of abstract argumentation frameworks [19] provides a general model,
which is widely recognized as a fundamental reference in computational argumentation
in virtue of its simplicity, generality, and ability to capture a variety of more specific
approaches as special cases. An abstract argumentation framework (AF ) consists of a
set of arguments and of an attack relation between them. The concept of extension plays
a key role in this simple setting, where an extension is intuitively a set of arguments
which can “survive the conflict together”. Different notions of extensions and of the
requirements they should satisfy correspond to alternative argumentation semantics,
whose definitions and properties are an active investigation subject since two decades
(see [5,6] for an introduction).

The main computational problems in abstract argumentation are naturally related to
extensions and can be partitioned into two classes: decision problems and construction
problems. Decision problems pose yes/no questions like “Does this argument belong
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to one (all) extensions?” or “Is this set an extension?”, while construction problems re-
quire to explicitly produce some of the extensions prescribed by a semantics. In partic-
ular, extension enumeration is the problem of constructing all the extensions prescribed
by a given semantics for a given AF . The complexity of extension-related decision
problems has been deeply investigated and, for most of the semantics proposed in the
literature, they have been proven to be intractable. Intractability extends directly to con-
struction/enumeration problems, given that their solutions provide direct answers to
decision problems.

Theoretical analysis of worst-case computational issues in abstract argumentation is
in a state of maturity with the available complexity results covering all Dung’s tradi-
tional semantics and several subsequent prominent approaches in the literature (for a
summary see [21]). On the practical side, however, the investigation on efficient algo-
rithms for abstract argumentation and on their empirical assessment is less developed,
with few results available in the literature. This paper contributes to fill this gap by
proposing a novel approach and implementation for enumeration of Dung’s preferred
extensions, corresponding to one of the most significant argumentation semantics, and
comparing its performances with other state-of-the-art implemented systems. We focus
on extension enumeration since it can be considered the most general problem, i.e. its
solution provides complete information concerning the justification status of arguments
(making it possible to determine, for instance, if two arguments cannot be accepted in
the same extension) and the proposed approach can be easily adapted to solve also the
decision problems mentioned above.

The paper is organized as follows. Section 2 recalls the necessary basic concepts and
state-of-the-art background. Section 3 introduces the proposed approach while Section
4 describes the test setting and comments the experimental results. Section 5 provides
a comparison with related works and then Section 6 concludes the paper.

2 Background

An argumentation framework [19] consists of a set of arguments1 and a binary attack
relation between them.

Definition 1. An argumentation framework (AF ) is a pair Γ = 〈A,R〉 where A is a
set of arguments and R ⊆ A ×A. We say that b attacks a iff 〈b, a〉 ∈ R, also denoted
as b → a. The set of attackers of an argument a will be denoted as a− � {b : b → a}.

The basic properties of conflict–freeness, acceptability, and admissibility of a set of
arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:
– a set S ⊆ A is conflict–free if � a, b ∈ S s.t. a → b;
– an argument a ∈ A is acceptable with respect to a set S ⊆ A if ∀b ∈ A s.t. b → a,
∃ c ∈ S s.t. c → b;

1 In this paper we consider only finite sets of arguments.
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– a set S ⊆ A is admissible if S is conflict–free and every element of S is acceptable
with respect to S.

An argumentation semantics σ prescribes for any AF Γ a set of extensions, denoted
as Eσ(Γ ), namely a set of sets of arguments satisfying some conditions dictated by
σ. In [19] four “traditional” semantics were introduced, namely complete, grounded,
stable, and preferred semantics. Other literature proposals include semi-stable [13],
ideal [20], and CF2 [7] semantics. Here we need to recall the definitions of complete
(denoted as CO) and preferred (denoted as PR) semantics only, along with a well
known relationship between them.

Definition 3. Given an AF Γ = 〈A,R〉:
– a set S ⊆ A is a complete extension, i.e. S ∈ ECO(Γ ), iff S is admissible and
∀a ∈ A s.t. a is acceptable w.r.t. S, a ∈ S;

– a set S ⊆ A is a preferred extension, i.e. S ∈ EPR(Γ ), iff S is a maximal (w.r.t. set
inclusion) admissible set.

Proposition 1. For any AF Γ = 〈A,R〉, S is a preferred extension iff it is a maximal
(w.r.t. set inclusion) complete extension. As a consequence EPR(Γ ) ⊆ ECO(Γ ).

It can be noted that each extension S implicitly defines a three-valued labelling of
arguments, as follows: an argument a is labelled in iff a ∈ S, is labelled out iff ∃ b ∈ S
s.t. b → a, is labelled undec if neither of the above conditions holds. In the light of
this correspondence, argumentation semantics can equivalently be defined in terms of
labellings rather than of extensions (see [5,12]). In particular, the notion of complete
labelling [5,14] provides an equivalent characterization of complete semantics, in the
sense that each complete labelling corresponds to a complete extension and vice versa.
Complete labellings can be (redundantly) defined as follows.

Definition 4. Let 〈A,R〉 be an argumentation framework. A total function Lab : A (→
{in, out, undec} is a complete labelling iff it satisfies the following conditions for any
a ∈ A:

– Lab(a) = in⇔ ∀b ∈ a−Lab(b) = out;
– Lab(a) = out⇔ ∃b ∈ a− : Lab(b) = in;
– Lab(a) = undec⇔ ∀b ∈ a−Lab(b) �= in ∧ ∃c ∈ a− : Lab(c) = undec;

It is proved in [12] that preferred extensions are in one-to-one correspondence with
those complete labellings maximizing the set of arguments labelled in.

The introduction of preferred semantics is one of the main contribution of Dung’s
paper. Its name, in fact, reflects a sort of preference w.r.t. other traditional semantics,
as it allows multiple extensions (differently from grounded semantics), the existence of
extensions is always guaranteed (differently from stable semantics), and no extension
is a proper subset of another extension (differently from complete semantics). Also in
view of its relevance, computational complexity of preferred semantics has been ana-
lyzed early [16,17] in the literature, with standard decision problems in argumentation
semantics resulting to be intractable in the case of PR.
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As to algorithms for computing preferred extensions, two basic approaches have
been considered in the literature. On one hand, one may develop a dedicated algorithm
to obtain the problem solution, on the other hand, one may translate the problem in-
stance at hand into an equivalent instance of a different class of problems for which
solvers are already available. The results produced by the solver have then to be trans-
lated back to the original problem.

The three main dedicated algorithms for computing preferred extensions in the liter-
ature [18,27,28] share the same idea based on labellings: starting from an initial default
labelling, a sequence of transitions (namely changes of labels) is applied leading to
the labellings corresponding to preferred extensions. The three algorithms differ in the
initial labelling, the transitions adopted, and the use of additional intermediate labels
besides the three standard ones. The algorithm proposed in [28] has been shown to out-
perform the previous ones and will be therefore taken as the only term of comparison
for this family of approaches.

As to the translation approach, the main proposal we are aware of is the ASPAR-
TIX system [24], which provides an encoding of AF s and the relevant computational
problems in terms of Answer Set Programs which can be processed by a solver like
DLV [26]. Recently an alternative encoding of ASPARTIX using metaASP has been
proposed [22] and showed to outperform the previous version when used in conjunc-
tion with gringo/claspD solver. ASPARTIX is a very general system, whose capabilities
include the computation of preferred extensions, and both versions will be used as ref-
erence for this family of approaches.

3 The PrefSat Approach

The approach we propose, called PrefSat, can be described as a depth-first search in the
space of complete extensions to identify those that are maximal, namely the preferred
extensions. Each step of the search process requires the solution of a SAT problem
through invocation of a SAT solver. More precisely, the algorithm is based on the idea
of encoding the constraints corresponding to complete labellings of an AF as a SAT
problem and then iteratively producing and solving modified versions of the initial SAT
problem according to the needs of the search process. The first step for a detailed pre-
sentation of the algorithm concerns therefore the SAT encoding of complete labellings.

3.1 SAT Encodings of Complete Labellings

A propositional formula over a set of boolean variables is satisfiable iff there exists
a truth assignment of the variables such that the formula evaluates to True. Checking
whether such an assignment exists is the satisfiability (SAT) problem. Given an AF
Γ = 〈A,R〉 we are interested in identifying a boolean formula, called complete la-
belling formula and denoted as ΠΓ , such that each satisfying assignment of the formula
corresponds to a complete labelling. While this might seem a clear-cut task, several syn-
tactically different encodings can be devised which, while being logically equivalent,
can significantly affect the performance of the overall process of searching a satisfying
assignment. For instance, adding some “redundant” clauses to a formula may speed up
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the search process, thanks to the additional constraints. On the other hand, increasing
syntactic complexity might lead to worse performances, thus a careful selection of the
encoding is needed.

In order to explore alternative encodings, let us consider again the requirement of
Definition 4. They can be expressed as a conjunction of 6 terms, i.e. C→

in ∧C←
in ∧C→

out∧
C←

out ∧ C→
undec ∧C←

undec, where

– C→
in ≡ (Lab(a) = in⇒ ∀b ∈ a−Lab(b) = out);

– C←
in ≡ (Lab(a) = in⇐ ∀b ∈ a−Lab(b) = out);

– C→
out ≡ (Lab(a) = out⇒ ∃b ∈ a− : Lab(b) = in);

– C←
out ≡ (Lab(a) = out⇐ ∃b ∈ a− : Lab(b) = in);

– C→
undec ≡ (Lab(a) = undec ⇒ ∀b ∈ a−Lab(b) �= in ∧ ∃c ∈ a− : Lab(c) =

undec);
– C←

undec ≡ (Lab(a) = undec ⇐ ∀b ∈ a−Lab(b) �= in ∧ ∃c ∈ a− : Lab(c) =
undec).

Let us also define C↔
in ≡ C→

in ∧C←
in , C↔

out ≡ C→
out∧C←

out, C↔
undec ≡ C→

undec∧C←
undec.

The following proposition shows that Definition 4 is redundant, identifying 5 strict
subsets of the above six terms that equivalently characterize complete extensions2.

Proposition 2. Let 〈A,R〉 be an argumentation framework. A total function Lab :
A (→ {in, out, undec} is a complete labelling iff it satisfies any of the following con-
junctive constraints for any a ∈ A: (i) C↔

in ∧C↔
out, (ii) C↔

out∧C↔
undec, (iii) C↔

in ∧C↔
undec,

(iv) C→
in ∧ C→

out ∧ C→
undec, (v) C←

in ∧ C←
out ∧ C←

undec.

Proof. We prove that any conjunctive constraint is equivalent to C↔
in ∧ C↔

out ∧ C↔
undec,

i.e. the constraint expressed in Definition 4. As to (i), (ii) and (iii), the equivalence is
immediate from the fact that Lab is a function.
As to (iv), the constraint does not include the terms C←

in , C←
out and C←

undec. Here we
prove that C←

in (and, similarly, C←
out and C←

undec) is indeed satisfied. Let us consider
an argument a such that ∀b ∈ a− Lab(b) = out, and let us reason by contradiction
by assuming that Lab(a) �= in. Since Lab is a function, if Lab(a) �= in then either
Lab(a) = out or Lab(a) = undec. If Lab(a) = out, from C→

out ∃b ∈ a− : Lab(b) =
in �= out. If Lab(a) = undec, from C→

undec ∃b ∈ a− : Lab(b) = undec �= out. The
proof for C←

out and C←
undec is similar.

As to (v), the proof follows the same line. We prove that C→
in (and, similarly, C→

out and
C→

undec) is indeed satisfied. Given an argument a such that Lab(a) = in, assume by
contradiction that ∃b ∈ a− : Lab(b) �= out. Since Lab is a function, either Lab(b) =
in or Lab(b) = undec. In the first case, C←

out entails that Lab(a) = out �= in.
In the second case, either C←

out or C←
undec applies, i.e. Lab(a) ∈ {out, undec} thus

Lab(a) �= in. Following the same reasoning line, we can prove that also C→
out and

C→
undec hold. #$
More generally, we aim at exploring all the constraints corresponding to the 64 pos-

sible subsets of the 6 terms above, characterized by a cardinality (i.e. the number of

2 C↔
in ∧ C↔

out and C→
in ∧ C→

out ∧ C→
undec correspond to the alternative definitions of complete

labellings in [14], where a proof of their equivalence is provided.
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Fig. 1. Identifying some weak constraints

terms) between 0 and 6 and partially ordered according to the ⊆-relation. Using ba-
sic combinatorics we get one constraint with cardinality 0 (i.e. the empty constraint),
6 constraints with cardinality 1, 15 constraints with cardinality 2, 20 constraints with
cardinality 3, 15 constraints with cardinality 4, 6 constraints with cardinality 5 and one
constraint with cardinality 6 (i.e. corresponding to Definition 4). The constraints can be
partitioned into three classes:

1. weak constraints, i.e. such that there is an argumentation framework and a labelling
satisfying all their terms which is not complete;

2. correct and non redundant constraints, i.e. able to correctly identify complete la-
bellings and such that any strict subset of their terms is weak;

3. redundant constraints, i.e. able to correctly identify complete labellings and such
that there is a strict subset of their terms which is correct.

The next proposition and corollary provide the complete characterization of the 64 con-
straints in this respect.

Proposition 3. The following 6 constraints are weak: (i) C↔
undec ∧ C→

in ∧ C←
out, (ii)

C↔
undec ∧ C←

in ∧ C→
out, (iii) C↔

out ∧ C→
in ∧ C←

undec, (iv) C↔
out ∧ C←

in ∧ C→
undec, (v) C↔

in ∧
C→

out ∧ C←
undec, (vi) C↔

in ∧C←
out ∧ C→

undec.

Proof. For each constraint, we identify an argumentation framework and a non com-
plete labelling which satisfies the constraint. In particular, referring to Figure 1: for (i),
see the labelling {(a, out)} of AF1; for (ii), see the labelling {(a, in)} of AF2; for (iii),
see the labelling {(a, undec)} of AF1; for (iv), see the labelling {(a, undec), (b, in),
(c, out)} of AF3; for (v), see the labelling {(a, in), (b, undec), (c, undec)} of AF4;
for (vi), see the labelling {(a, undec), (b, out), (c, in)} of AF3.

Note that, in each case of the above proof, the relevant argumentation framework
admits a unique complete labelling which drastically differs from the one satisfying the
weak constraint, i.e. there are arguments labelled in that should be labelled undec or
there are arguments labelled out or undec that should be labelled in.

Corollary 1. All the constraints of cardinality 0, 1, and 2 are weak. Among the con-
straints of cardinality 3, (C→

in ∧C→
out∧C→

undec) and (C←
in ∧C←

out∧C←
undec) are correct and

non redundant, the other 18 constraints are weak. Among the constraints of cardinality
4, (C↔

in ∧C↔
out), (C

↔
out ∧C↔

undec) and (C↔
in ∧C↔

undec) are correct and non redundant, 6
constraints are weak and 6 constraints are redundant. All the constraints of cardinality
5 and 6 are redundant.

Proof. As to the first claim, it is easy to see that any constraint having cardinality 0,
1 and 2 is a strict subset of at least one (weak) constraint introduced in Proposition 3,
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thus it is weak too. As to the constraints having cardinality 3, (C→
in ∧ C→

out ∧ C→
undec)

and (C←
in ∧ C←

out ∧ C←
undec) are correct by Proposition 2, and they are non redundant

since any strict subset has a cardinality strictly lower than 3 (thus it is weak as shown
above). The remaining 18 constraints of cardinality 3 can take one of the following two
forms: (i) 12 constraints include C↔

in , C↔
out or C↔

undec and another single term; (ii) 6
constraints include two “left” and a “right” terms, or vice versa. In both cases, it is easy
to check that any of these constraints is a strict subset of one of the weak constraints
of Proposition 3. As to the constraints of cardinality 4, (C↔

in ∧ C↔
out), (C

↔
out ∧ C↔

undec)
and (C↔

in ∧C↔
undec) are correct by Proposition 2, and they are non redundant since they

do not contain (C→
in ∧ C→

out ∧ C→
undec) nor (C←

in ∧ C←
out ∧ C←

undec), thus any subset is
weak according to the considerations above. Moreover, 6 constraints of cardinality 4
are supersets of (C→

in ∧C→
out ∧C→

undec) and (C←
in ∧C←

out ∧C←
undec) and thus redundant,

while the other 6 constraints are the weak ones identified in Proposition 3. Finally,
all constraints of cardinality 5 and 6 contain at least one of the correct constraints of
Proposition 2, thus they are redundant.

In this work, we consider six constraints, i.e. the 5 correct and non redundant con-
straints as well as C↔

in ∧ C↔
out ∧ C↔

undec as a “representative” of the 13 redundant ones,
leaving the empirical analysis of the other 12 redundant constraints for future work.

The next step is to encode such constraints in conjunctive normal form (CNF), as
required by the SAT solver. To this purpose, we have to introduce some notation. Letting
k = |A| we can identify each argument with an index in {1, . . . k} or, more precisely,
we can define a bijection φ : {1, . . . , k} (→ A (the inverse map will be denoted as
φ−1). φ will be called an indexing of A and the argument φ(i) will be sometimes
referred to as argument i for brevity. For each argument i we define three boolean
variables, Ii, Oi, and Ui, with the intended meaning that Ii is true when argument i is
labelled in, false otherwise, and analogously Oi and Ui correspond to labels out and
undec. Formally, given Γ = 〈A,R〉 we define the corresponding set of variables as
V(Γ ) � ∪1≤i≤|A|{Ii, Oi, Ui}. Now we express the constraints of Definition 4 in terms
of the variables V(Γ ), with the additional condition that for each argument i exactly
one of the three variables has to be assigned the value True. For technical reasons we
restrict to “non-empty” extensions (in the sense that at least one of the arguments is
labelled in), thus we add the further condition that at least one variable Ii is assigned
the value True. The detail of the resulting CNF is given in Definition 5.

Definition 5. Given an AF Γ = 〈A,R〉, with |A| = k and φ : {1, . . . , k} (→ A
an indexing of A, the C1 encoding defined on the variables in V(Γ ), is given by the
conjunction of the formulae listed below:

∧
i∈{1,...,k}

(
(Ii ∨Oi ∨ Ui) ∧ (¬Ii ∨ ¬Oi)∧(¬Ii ∨ ¬Ui) ∧ (¬Oi ∨ ¬Ui)

)
(1)

∧
{i|φ(i)−=∅}

(Ii ∧ ¬Oi ∧ ¬Ui) (2)
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∧
{i|φ(i)− 
=∅}

⎛
⎝Ii ∨

⎛
⎝ ∨

{j|φ(j)→φ(i)}
(¬Oj)

⎞
⎠
⎞
⎠ (3)

∧
{i|φ(i)− 
=∅}

⎛
⎝ ∧

{j|φ(j)→φ(i)}
¬Ii ∨Oj

⎞
⎠ (4)

∧
{i|φ(i)− 
=∅}

⎛
⎝ ∧

{j|φ(j)→φ(i)}
¬Ij ∨Oi

⎞
⎠ (5)

∧
{i|φ(i)− 
=∅}

⎛
⎝¬Oi ∨

⎛
⎝ ∨

{j|φ(j)→φ(i)}
Ij

⎞
⎠
⎞
⎠ (6)

∧
{i|φ(i)− 
=∅}

⎛
⎝ ∧

{k|φ(k)→φ(i)}

⎛
⎝Ui ∨ ¬Uk ∨

⎛
⎝ ∨

{j|φ(j)→φ(i)}
Ij

⎞
⎠
⎞
⎠
⎞
⎠ (7)

∧
{i|φ(i)− 
=∅}

⎛
⎝
⎛
⎝ ∧

{j|φ(j)→φ(i)}
(¬Ui ∨ ¬Ij)

⎞
⎠ ∧

⎛
⎝¬Ui ∨

⎛
⎝ ∨

{j|φ(j)→φ(i)}
Uj

⎞
⎠
⎞
⎠
⎞
⎠ (8)

∨
i∈{1,...k}

Ii (9)

C1 corresponds to the conditions of Definition 4 with the addition of the non-
emptyness requirement. In particular, Formula (1) states that for each argument i one
and only one label has to be assigned. Formula (2) settles the case of unattacked argu-
ments that must be labelled in. Formulas (3), (4), (5), (6), (7) and (8) are restricted to
arguments having at least an attacker, and correspond to C←

in , C→
in , C←

out, C→
out, C←

undec,
C→

undec, respectively. Finally, formula (9) ensures non-emptyness, i.e. that at least one
argument is labelled in.

The six encodings considered in this paper are provided in the following proposition,
whose proof is immediate from Prop. 2.

Proposition 4. Referring to the formulae listed in Definition 5, the following encodings
are equivalent:

C1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)
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Ca
1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧ (6) ∧ (9)

Cb
1 : (1) ∧ (2) ∧ (5) ∧ (6) ∧ (7) ∧ (8) ∧ (9)

Cc
1 : (1) ∧ (2) ∧ (3) ∧ (4) ∧ (7) ∧ (8) ∧ (9)

C2 : (1) ∧ (2) ∧ (4) ∧ (6) ∧ (8) ∧ (9)
C3 : (1) ∧ (2) ∧ (3) ∧ (5) ∧ (7) ∧ (9)

In particular, C1 corresponds to C↔
in ∧ C↔

out ∧ C↔
undec, Ca

1 to C↔
in ∧ C↔

out, Cb
1 to

C↔
out∧C↔

undec, Cc
1 to C↔

in ∧C↔
undec, C2 to C→

in ∧C→
out∧C→

undec, C3 to C←
in ∧C←

out∧C←
undec.

In Section 4 we evaluate the performance of the overall approach for enumerating
the preferred extensions given the above six encodings. In the next section we describe
the core of our proposal.

Algorithm 1. Enumerating the preferred extensions of an AF

1: Input: Γ = 〈A,R〉
2: Output: Ep ⊆ 2A

3: Ep := ∅
4: cnf := ΠΓ

5: repeat
6: cnfdf := cnf
7: prefcand := ∅
8: repeat
9: lastcompfound := SS(cnfdf)

10: if lastcompfound ! = ε then
11: prefcand := lastcompfound
12: for a ∈ INARGS(lastcompfound) do
13: cnfdf := cnfdf ∧ Iφ−1(a)

14: end for
15: remaining := FALSE
16: for a ∈ A \ INARGS(lastcompfound) do
17: remaining := remaining ∨ Iφ−1(a)

18: end for
19: cnfdf := cnfdf ∧ remaining
20: end if
21: until (lastcompfound ! = ε ∧ INARGS(lastcompfound) ! = A)
22: if prefcand ! = ∅ then
23: Ep := Ep ∪ {INARGS(prefcand)}
24: oppsolution := FALSE
25: for a ∈ A \ INARGS(prefcand) do
26: oppsolution := oppsolution ∨ Iφ−1(a)

27: end for
28: cnf := cnf ∧ oppsolution
29: end if
30: until (prefcand ! = ∅)
31: if Ep = ∅ then
32: Ep = {∅}
33: end if
34: return Ep
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3.2 Enumerating Preferred Extensions

We are now in a position to illustrate the proposed procedure, called PrefSat and listed
in Algorithm 1, to enumerate the preferred extensions of an AF Γ = 〈A,R〉.

Algorithm 1 resorts to two external functions: SS , and INARGS . SS is a SAT solver
able to prove unsatisfiability too: it accepts as input a CNF formula and returns a vari-
able assignment satisfying the formula if it exists, ε otherwise. INARGS accepts as
input a variable assignment concerning V(Γ ) and returns the corresponding set of ar-
guments labelled as in. Moreover we take for granted the computation of ΠΓ from Γ
(using one of the equivalent encodings shown in Proposition 4), which is carried out in
the initialization phase (line 4).

Theorem 1 proves the correctness of Algorithm 1.

Theorem 1. Given an AF Γ = 〈A,R〉 Algorithm 1 returns Ep = EPR(Γ ).

The proof of the above Theorem is omitted due to space limitations, but can be found
in [15]. However we provide an explanation of the algorithm.

The algorithm mainly consists of two nested repeat-until loops. Roughly, the inner
loop (lines 8–21) corresponds to a depth-first search which, starting from a non-empty
complete extension, produces a sequence of complete extensions strictly ordered by set
inclusion. When the sequence can no more be extended, its last element corresponds to
a maximal complete extension, namely to a preferred extension. The outer loop (lines
5–30) is in charge of driving the search: it ensures, through proper settings of the vari-
ables, that the inner loop is entered with different initial conditions, so that the space of
complete extensions is explored and all preferred extensions are found.

Let us now illustrate the operation of Algorithm 1 in detail. Given the correspon-
dence between variable assignments, labellings, and extensions, we will resort to some
terminological liberty for the sake of conciseness and clarity (e.g. stating that the solver
returns an extension rather than that it returns an assignment which corresponds to a
labelling which in turn corresponds to an extension). In the first iteration of the outer
loop, the assignment of line 6 results in cnfdf = ΠΓ in virtue of the initialization
of line 4. Then the inner loop is entered and, at line 9, SS is invoked on ΠΓ . Due to
the non-emptyness condition in ΠΓ , SS returns ε if the only complete extension (and
hence the only preferred extension) of Γ is the empty set. In this case, lines 11–19 are
not executed and the loop is directly exited. As a consequence, prefcand is still empty
at line 22 and also the outer loop is directly exited. The condition of line 31 then holds,
the assignment of line 32 is executed and the algorithm terminates returning {∅}.

Let us now turn to the more interesting case where there is at least one non-empty
complete extension. Then, the first solver invocation returns (non deterministically)
one of the non-empty complete extensions of the framework which is assigned to
lastcompfound at line 9. Then the condition of line 10 is verified and lastcompfound
is set as the candidate preferred extension (line 11). In lines 12–19 the formula cnfdf is
updated in order to ensure that the next call to SS returns a complete extension which is
a strict superset of lastcompfound (if any exists). This is achieved by imposing that all
elements of lastcompfound are labelled in (lines 12–14) and that at least one further
argument is labelled in (lines 15–19). In the next iteration (if any), the modified cnfdf
is submitted to SS . If a solution is found, the inner loop is iterated in the same way: at
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each successful iteration a new, strictly larger, complete extension is found. According
to the conditions stated in line 21, iteration of the inner loop will then terminate when
the call to SS is not successful or when lastcompfound covers all arguments, since
in this case no larger complete extension can be found. If a new preferred extension
has been found, it is added to the output set Ep (line 23). Then, a formula is produced
which ensures that any further solution includes at least an argument not included in the
already found one (lines 25–27). This formula is then added to cnf (line 28). The outer
loop then restarts resetting variables at lines 6–7 in preparation for a new execution of
the inner loop. The inner loop is entered with cnfdf updated at line 6, this ensures that
the call to SS either does not find any solution (and then the algorithm terminates re-
turning Ep as already set) or finds a new complete extension which is not a subset of
any of the preferred extensions already found and is then extended to a new preferred
extension in the subsequent iterations of the loop.

4 The Empirical Analysis

The algorithm described in the previous section has been implemented in C++ and
integrated with two alternative SAT solvers, namely PrecoSAT and Glucose. PrecoSAT
[10] is the winner of the SAT Competition3 2009 on the Application track. Glucose
[3,4] is the winner of the SAT Competition in 2011 and of the SAT Challenge 2012 on
the Application track.

This choice gave rise to the following two systems:

– PrefSat with PrecoSAT (PS-PRE);
– PrefSat with Glucose (PS-GLU).

To assess empirically the performance of the proposed approach with respect to other
state-of-the-art systems and to compare the two SAT solvers on the SAT instances gen-
erated by our approach, we ran a set of tests on randomly generated AF s.

The experimental analysis has been conducted on 2816 AF s that were divided in
different classes, according to two dimensions: the number of arguments, |A| and the
criterion of random generation of the attack relation. As to |A| we considered 8 differ-
ent values, ranging from 25 to 200 with a step of 25. As to the generation of the attack
relation we used two alternative methods. The first method consists in fixing the prob-
ability patt that there is an attack for each ordered pair of arguments (self-attacks are
included): for each pair a pseudo-random number uniformly distributed between 0 and
1 is generated and if it is lesser or equal to patt the pair is added to the attack relation.
We considered three values for patt, namely 0.25, 0.5, and 0.75. Combining the 8 val-
ues of |A| with the 3 values of patt gives rise to 24 test classes, each of which has been
populated with 50 AF s.

The second method consists in generating randomly, for each AF , the number natt

of attacks it contains (extracted with uniform probability between 0 and |A|2). Then the
natt distinct pairs of arguments constituting the attack relation are selected randomly.
Applying the second method with the 8 values of |A| gives rise to 8 further test classes,

3 http://www.satcompetition.org/

http://www.satcompetition.org/
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each of which has been populated with 200 AF s. Since the experimental results show
minimal changes between the sets of AF s generated with the two methods, hereafter
we silently drop this detail.

Further, we also considered, for each value of |A|, the extreme cases of empty attack
relation (patt = natt = 0) and of fully connected attack relation (patt = 1, natt =
|A|2), thus adding 16 “singleton” test classes.

The tests have been run on the same hardware (a Quad-core Intel(R) Xeon(TM) CPU
2.80GHz with 4 GByte RAM and Linux operating system). As in the learning track of
the well-known international planning competition (IPC) [25], a limit of 15 minutes was
imposed to compute the preferred extensions for each AF . No limit was imposed on the
RAM usage, but a run fails at saturation of the available memory, including the swap
area. The systems under evaluation have been compared with respect to the ability to
produce solutions within the time limit and to the execution time (obtained as the real
value of the command time -p). As to the latter comparison, we adopted the IPC
speed score, also borrowed from the planning community, which is defined as follows:

– For each test case (in our case, each test AF ) let T ∗ be the best execution time
among the compared systems (if no system produces the solution within the time
limit, the test case is not considered valid and ignored).

– For each valid case, each system gets a score of 1/(1 + log10(T/T
∗)), where T is

its execution time, or a score of 0 if it fails in that case. Runtimes below 1 sec get
by default the maximal score of 1.

– The (non normalised) IPC score for a system is the sum of its scores over all the
valid test cases. The normalised IPC score ranges from 0 to 100 and is defined as
(IPC/# of valid cases) ∗ 100.

First of all, we ran an investigation on which of the alternative encodings introduced
in Proposition 4 performs best. While there are cases where PS-PRE performs better
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Table 1. Average time (in seconds) for computing the preferred extensions according to the dif-
ferent labellings encoding of Proposition 4 grouped by |A|. In bold the best one.

|A| C1 Ca
1 Cb

1 Cc
1 C2 C3

25 5.97E-03 5.91E-03 5.43E-03 5.31E-03 6.25E-04 3.92E-03

50 3.50E-02 3.39E-02 3.38E-02 3.38E-02 9.74E-03 3.10E-02

75 1.06E-01 1.02E-01 1.05E-01 1.06E-01 2.74E-02 1.02E-01

100 2.76E-01 2.65E-01 2.78E-01 2.91E-01 6.39E-02 2.89E-01

125 5.24E-01 5.03E-01 5.54E-01 5.95E-01 1.15E-01 6.23E-01

150 1.27E+00 1.22E+00 1.39E+00 1.43E+00 2.46E-01 1.60E+00

175 2.06E+00 1.98E+00 2.46E+00 2.82E+00 4.80E-01 3.51E+00

200 5.00E+00 4.89E+00 6.17E+00 7.90E+00 1.38E+00 1.00E+01

using Ca
1 and others where it performs better using C2 (with minimal differences on

average), it is always outperformed by PS-GLU using C2, thus we refer to PS-GLU
to illustrate the difference of performance induced by the alternative encodings. In Fig-
ure 2, we compare the empirical results obtained by executing PS-GLU, and Table 1
summarises the average times. It is worth to mention that PS-GLU always computed
the preferred extensions irrespective of the chosen encoding, therefore the differences
in the IPC scores are due to different execution times only. As we can see, the overall
performance is significantly dependent on the set of conditions used, where the greatest
performance (considering the generated AF s) is C2, and then in sequence, generally
Ca

1 , C1, Cb
1 , Cc

1 and C3, although we have empirical evidences [15] showing that on
dense graphs there are situations where C3 performs better than C1.

In order to evaluate the overall performance of Algorithm 1 (cf. Section 3), let us
compare PS-PRE and PS-GLU both using encoding C2 with the other three notable
systems at the state of the art:

– ASPARTIX with dlv as ASP solver (denoted as ASP);
– ASPARTIX-META with gringo as grounder and claspD as ASP solver (de-

noted as ASP-META) as presented in [22];
– the system presented in [28] (NOF).

None of five (considering also our PS-GLU and PS-PRE) systems uses parallel
execution.

Concerning the ability to produce solutions, Figure 3 summarizes the results con-
cerning all test cases grouped w.r.t. |A|. PS-GLU, PS-PRE (both exploiting C2 encod-
ing), and ASP-META were able to produce the solution in all cases. On the other hand,
the success rate of both ASP and NOF decreases significantly with the increase of |A|.
We observed that the failure reasons are quite different: ASP reached in all its failure
cases the 15 minutes time limit, while NOF ran out of memory before reaching the time
limit. In the light of this observation, NOF’s evaluation has certainly been negatively
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affected by the relatively scarce memory availability of the test platform, but, from an-
other perspective, the results obtained on this platform give a clear indication about the
different resource needs of the compared systems.

Table 2. Average time (in seconds) for computing the preferred extensions needed by the five
systems grouped by |A| on AF s for which all the systems computed correctly the preferred
extensions. In bold the best one.

|A| ASP ASP-META NOF PS-PRE PS-GLU

25 7.78E-02 2.70E-01 3.24E-01 3.87E-03 6.27E-04

50 3.32E-01 1.00E+00 5.43E-01 2.32E-02 1.04E-02

75 1.03E+00 2.30E+00 1.18E+00 5.98E-02 2.96E-02

100 3.75E+00 4.33E+00 3.81E+00 1.36E-01 6.84E-02

125 1.63E+01 6.95E+00 8.50E+00 2.46E-01 1.24E-01

150 3.16E+01 1.16E+01 1.47E+01 4.59E-01 2.24E-01

175 6.65E+01 1.61E+01 2.64E+01 6.65E-01 3.21E-01

200 1.24E+02 2.27E+01 5.02E+01 1.02E+00 4.79E-01

Turning to the comparison of execution times, Figure 4 presents the values of nor-
malised IPC considering all test cases grouped w.r.t. |A|, while Table 2 shows the av-
erage time needed by the five systems for computing the preferred extension. Both
PS-PRE and PS-GLU performed significantly better (note that the IPC score is log-
arithmic) than ASP and NOF for all values of |A| > 25, and the performance gap
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increases with increasing |A|. Moreover, PS-GLU is significantly faster than PS-PRE
for |A| > 175 (again the performance gap increases with increasing |A|). ASP and
NOF obtained quite similar IPC values with more evident differences at lower values
of |A|. Surprisingly, ASP-META performed worse that its older version ASP (and also
of NOF) on frameworks with number of arguments up to 100 (cf. Table 2). Although
this may seem in contrast with results provided in [22], it has to be remarked that the
IPC measure is logarithmic w.r.t. the best execution time, while [22, Fig. 1] uses a lin-
ear scale, and this turned to be a disadvantage when analysing the overall performance.
Indeed, the maximum difference of execution times between ASP and ASP-META ex-
ecuted on frameworks up to 100 arguments is around 1.2 seconds, while the axis of
ordinate of [22, Fig. 1] ranges between 0 and 300, thus making impossible to note this
difference.

5 Comparison with Related Works

The relationship between argumentation semantics and the satisfiability problem has
been already considered in the literature, but less effort has been devoted to the study
of a SAT-based algorithm and its empirical evaluation. For instance, in [9] three ap-
proaches determining semantics extensions are preliminary described, namely the equa-
tional checking, the model checking, and the satisfiability cheking of which three dif-
ferent formulations for, respectively, stable extension, admissible set, and complete ex-
tension are presented from a theoretical perspective, without providing any empirical
evaluation.

More recently, in [11], and similarly in [1], relationships between argumentation
semantics and constraint satisfaction problems are studied, with different formulation
for each semantics or decision problem. In particular, [1] proposes an extensive study of
CSP formulations for decision problems related to stable, preferred, complete, grounded
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and admissible semantics, while [11] shows an empirical evaluation of their approach
through their software ConArg, but for conflict-free, admissible, complete and stable
extensions only.

Probably the most relevant work is [23], where a method for computing credulous
and skeptical acceptance for preferred, semi-stable, and stage semantics has been stud-
ied, implemented, and empirically evaluated using an algorithm based upon a NP-
oracle, namely a SAT solver. Differently from our work, this approach is focused on
acceptance problems only and does not address the problem of how to enumerate the
extensions. As we do believe that the approach we showed in this paper can be eas-
ily adapted for dealing with both credulous acceptance (we have just to force the SAT
solver to consider a given argument as labelled in) and skeptical acceptance (we have
just to check whether a given argument is in all the extensions), we have already started
a theoretical and empirical investigation on this subject. Recently, a similar approach us-
ing SAT techniques in the context of semi-stable and eager semantics has been provided
in [30]. A detailed comparison with this approach is already planned and represents a
important future work.

Finally, as the computation of the preferred extension using [14]’s labelling approach
requires a maximisation process, at a first sight this seems to be quite close to a MaxSAT
problem [2], which is a generalisation of the satisfiability problem. The idea is that
sometimes some constraints of a problem can not be satisfied, and a solver should try to
satisfy the maximum number of them. Although there are approaches aimed at finding
the maximum w.r.t. set inclusion satisfiable constraints (i.e. nOPTSAT4), the MaxSAT
problem is conceptually different from the problem of finding the preferred extensions.
Indeed, for determining the preferred extensions we maximise the acceptability of a
subset of variables, while in the MaxSAT problem it is not possible to bound such a
maximisation to a subset of variables only. However, a deeper investigation that may
lead to the definition of argumentation semantics as MaxSAT problems is already en-
visaged as a future work.

6 Conclusions

We presented a novel SAT-based approach for preferred extension enumeration in ab-
stract argumentation and assessed its performances by an empirical comparison with
other state-of-the-art systems. The proposed approach turns out to be efficient and to
generally outperform the best known dedicated algorithm and the ASP-based approach
implemented in the ASPARTIX system. The proposed approach appears to be applica-
ble for extension enumeration of other semantics (in particular stable and semi-stable)
and this represents an immediate direction of future work. As to performance assess-
ment, we are not aware of other systematic comparisons concerning computation ef-
ficiency in Dung’s framework apart the results presented in [28], where different test
sets were used for each pairwise comparison, with a maximum argument cardinality
of 45. The comparison provided in [22] is aimed just at showing the differences be-
tween the two different encoding of ASPARTIX. Java-based tools mainly conceived for

4 www.star.dist.unige.it/˜emanuele/nOPTSAT/

www.star.dist.unige.it/~emanuele/nOPTSAT/


192 F. Cerutti et al.

interactive use, like ConArg [11] or Dungine [29], are not suitable for a systematic effi-
ciency comparison on large test sets and could not be considered in this work. It can be
remarked however that they adopt alternative solution strategies (translation to a CSP
problem in ConArg, argument games in Dungine) whose performance evaluation is an
important subject of future work.

In addition, we will consider other procedures for generating random argumentation
frameworks, as well as argumentation frameworks derived from knowledge bases. As
pointed out by one of the reviewer, these derived argumentation frameworks can be in-
finite: in these case, providing a suitable algorithm using the most recent approaches for
representing infinite argumentation frameworks [8] is an interesting avenue for future
research.

We are also currently working to integrate the proposed approach into the SCC-
recursive schema introduced in [7] to encompass several semantics (including grounded,
preferred and stable semantics). More specifically, the approach proposed in this paper
can be applied to the sub-frameworks involved in the base-case of the recursion: since
such local application decreases the number of variables involved, we expect a dramatic
performance increase.

Acknowledgement. The authors thank the anonymous reviewers for their helpful com-
ments. In addition, they thank Samir Nofal for kindly providing the source code of his
algorithm.
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Abstract. The computation of preferred labellings of an abstract argu-
mentation framework (or briefly, AF) is generally intractable. The ex-
isting decomposition-based approach by exploiting strongly connected
components (SCCs) of a general AF is promising to cope with this prob-
lem. However, the efficiency of this approach is highly limited by the
maximal SCC of an AF. This paper presents a further solution by ex-
ploiting the most sceptically rejected arguments of an AF. Given an AF,
its grounded labelling is first generated. Then, the attacks between the
undecided arguments and the rejected arguments are removed. It turns
out that the modified AF has the same preferred labellings as the original
AF, but the maximal SCC in it could be much smaller than that of the
original AF. Empirical results show that this new method dramatically
reduces the computation time for some sparse AFs (for instance, when
the ratio of the number of edges to the number of nodes of an AF is
between 1:1 and 1.8:1).

Keywords: Argumentation, Semantics, Labellings, Computational Com-
plexity.

1 Introduction

Argumentation is an increasingly active research area in AI. One of the most im-
portant problems of this area is that many natural problems are computationally
intractable [1]. While the worst-case computational complexity of argumentation
has been well formulated, how to efficiently compute the argumentation seman-
tics is still an open problem. To the best of our knowledge, the existing work
related to this problem mainly consists of the following three lines. The first line
of work is on identifying tractable classes of argumentation frameworks (AFs)
with special structures [1], and developing efficient algorithms for some classes of
AFs with fixed parameters, such as bounded tree-width [2] and bounded clique-
width [3], etc. And, in [4], Dvořák et al proposed a generic approach for solving
hard problems in the area of argumentation in a “complexity-sensitive” way.
The corresponding empirical results showed that their approach significantly
outperforms existing systems developed for hard argumentation problems (i.e.,
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problems under the preferred, semi-stable, or stage semantics). The second line of
work is on developing more efficient algorithms by means of some specific mech-
anisms. For instance, in [5], the authors proposed a more efficient algorithm for
enumerating all preferred extensions, by utilizing further labels to improve labels’
transitions. The third line of work is on decomposition-based computation. In
[6], the authors proposed an SCC-recursive scheme for argumentation semantics,
based on decomposition along the SCCs of an AF. In [7], the authors developed
splitting-based algorithms for the computation of extensions. Their experimental
results showed an average improvement by 50% and by 54% for preferred and
stable semantics respectively, compared to Modgil and Caminada’s algorithms
[8]. In [9] and [10], we proposed methods to efficiently compute, respectively,
the dynamic semantics and the partial semantics of argumentation, by means
of decomposition and semantics combination. In [11] and [12], we formulated an
approach to compute the extensions of an AF by exploiting its SCCs and acyclic
fragments.

While the existing approaches have made some progress on developing
tractable algorithms for some AFs with special topologies or more efficient algo-
rithms for a general AF, it is still a challening problem to further improve the
efficiency of computing the semantics of a general AF in which the ratio of the
number of attacks to the number of arguments is no less than 1:1. According to
the theory formulated in [11], one possible way to cope with this problem is to
decompose an AF into a set of SCCs, and compute the status of arguments in
each SCC separately. However, the efficiency of this approach is highly limited
by the size of the maximal SCC.

In this paper, we introduce a further solution by exploiting the most scepti-
cally rejected arguments (or briefly, MSR arguments) and SCCs of an AF. The
feasibility of this approach lies in a new discovery that after removing some at-
tacks related to MSR arguments from an AF, the status of arguments in the AF
are unaffected, while the maximal SCC of the modified AF is often much smaller
than that of the original AF. Since preferred semantics is a typical semantics
of argumentation, and its computation is one of the most difficult ones, in this
paper, for simplicity and without loss of generality, we only consider the compu-
tation under this semantics. Furthermore, since the labelling-based approach is
one of the two mainstream approaches for formulating argumentation semantics,
and it is closer to algorithms, we only study the computation of the preferred
semantics that is formulated by the labelling-based approach.

The remaining contents of this paper are organised as follows. In the next
section, we briefly introduce some basic notions of argumentation and some
typical algorithms for computing argumentation semantics. In Section 3, we
introduce an approach for computing preferred labellings by exploiting the SCCs
of an AF. In Sections 4 and 5, we first propose a further solution by exploiting
both the SCCs and MSR arguments of an AF, and then conduct an empirical
investigation. Finally, in Section 6, we conclude the paper.
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2 Preliminaries

2.1 Semantics of Argumentation Frameworks

In this paper, we only deal with (abstract) argumentation frameworks [13]. An
argumentation framework (or briefly, AF) is defined as a tuple (A,R), in which
A is a set of arguments and R ⊆ A × A is a set of attacks. For all α, β ∈ A,
we often use (α, β) ∈ R to denote that α attacks β. It is obvious that an AF is
in fact a directed graph (often called a defeat graph), where the nodes represent
arguments and edges represent attacks. Figure 1 illustrates an AF (A1, R1).

1
��
2�� �� 3

Fig. 1. (A1, R1)

Given an AF, a fundamental problem is to determine which arguments can
be regarded as (collectively) acceptable. There are two mainstream approaches
to resolve this problem: extension-based approach and labelling-based approach
[14]. The former defines various criteria (called argumentation semantics) under
which a set (sets) of arguments are regarded as acceptable, while the latter is to
assign a “reasonable” label to each argument, according to some criteria.

In the extension-based approach, a set of collectively acceptable arguments is
called an extension. A core notion of this approach is admissible sets. Specifically,
given an AF (A,R), a set of arguments is admissible, if and only if it is conflict-
free and it can defend each argument within the set. A set B ⊆ A is conflict-free
if and only if there exist no arguments α and β in B such that (α, β) ∈ R.
Argument α ∈ A is defended by a set B ⊆ A if and only if for all β ∈ A, if
(β, α) ∈ R, then there exists γ ∈ B such that (γ, β) ∈ R. An admissible set
is called a complete extension, if and only if it contains all arguments it can
defend. Given an AF, there might exist several complete extensions, in which
the maximal ones (w.r.t. set inclusion) are called preferred extensions, while the
minimal one (w.r.t. set inclusion) is called the grounded extension (the grounded
extension of an AF is unique).The AF (A1, R1) has three complete extensions
{}, {1, 3} and {2}, two preferred extensions {1, 3} and {2}, and one grounded
extension {}.

On the other hand, in the labelling-based approach, there are usually three
different labels: IN, OUT and UNDEC. An argument is IN if all its attackers
are OUT. An argument is OUT if it is attacked by an argument that is IN. An
argument is UNDEC, if it is neither IN nor OUT [15]. Given (A,R) and the
three labels, a labelling is a total function L : A (→ {IN, OUT, UNDEC}. The
definition of labelling-based semantics is based on the notion of legal labelling.
More specifically, an argument is legally IN if and only if it is labelled IN and
each attacker is labelled OUT; an argument is legally OUT if and only if it is
labelled OUT and there exists an attacker that is labelled IN; an argument is
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legally UNDEC if and only if it is not the case that (1) each attacker is labelled
OUT or (2) there exists an attacker that is labelled IN. Then, a labelling L is
called an admissible labelling, if and only if each IN-labelled argument is legally
IN, and each OUT-labelled argument is legally OUT; L is called a complete
labelling, if and only if it is an admissible labelling and each UNDEC-labelled
argument is legally UNDEC; L is called a preferred labelling, if and only if it
is an admissible labelling and the set of IN-labelled arguments is maximal; L is
called a grounded labelling, if and only if it is a complete labelling and the set of
IN-labelled arguments is minimal.

Let in(L) = {α : L(α) = IN}, out(L) = {α : L(α) = OUT} and undec(L) =
{α : L(α) = UNDEC}. A labelling L is often represented as a triple of the
form (in(L), out(L), undec(L)). Accordingly, the AF (A1, R1) in Figure 1 has
two preferred labellings: L1 = ({1, 3}, {2}, {}) and L2 = ({2}, {1, 3}, {}), as
illustrated in Figure 2.

1
��
2�� �� 3 1

��
2�� �� 3

IN OUT IN OUT IN OUT

Fig. 2. Preferred labellings of (A1, R1)

As summarised in [14], there exists a bijective correspondence between com-
plete (respectively, preferred and grounded) labelling(s) and complete (respec-
tively, preferred and grounded) extension(s).

2.2 Algorithms for Computing Argument Labellings

In existing literature, there are mainly two approaches for computing labellings
(extensions): labelling-based algorithms and answer-set programming. It has
been recognised that Modgil and Caminada’s labelling-based algorithms (briefly,
MC algorithms) [8] have received much attention and been compared with some
newly proposed algorithms ([7], [5], etc).

According to MC algorithms, generating the grounded labelling of an AF is
simple. It starts by assigning IN to all arguments that are not attacked, and then
iteratively: OUT is assigned to any argument that is attacked by an argument
that has just been made IN, and then IN to those arguments all of whose attack-
ers are OUT. The iteration continues until no more new arguments are made IN
or OUT. Any arguments that remain unlabelled are then assigned UNDEC.

By comparison, the MC algorithm for computing preferred labellings is more
complex. It computes admissible labellings that maximise the number of argu-
ments that are legally IN. Admissible labellings are generated by starting with
a labelling that labels all arguments IN and then iteratively, selects arguments
that are illegally IN (or super-illegally IN) and applies a transition step to obtain
a new labelling, until a lablling is reached in which no argument is illegally IN.
For the details of this algorithm, readers may refer to [8].



198 B. Liao, L. Lei, and J. Dai

3 An Approach by Exploiting SCCs

In this section, based on [11,12], we introduce an approach for the computation
of preferred labellings by exploiting the SCCs of an AF (called the SCC-based
approach). The basic idea of this approach is as follows. Given an AF, it is
first decomposed into a set of sub-frameworks according to the SCCs of the AF.
Then, along the order of SCCs, the preferred labellings of the sub-frameworks
are generated separately, and combined incrementally to form the labellings of
the original AF.

Decomposing a general AF according to its SCCs Since an AF can be viewed
as a directed graph and the set of SCCs of a directed graph can be obtained by
a polynomial time algorithm [16], it is intuitively feasible to decompose an AF
along its SCCs [6].

According to graph theory, an important property of SCCs is that every di-
rected graph is a directed acyclic graph of its SCCs. Consider an AF (A2, R2)
in Figure 3(a). The directed graph of its SCCs is shown in Figure 3(b).

1
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5		 1, 2, 3 �� 4, 5
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Fig. 3. (A2, R2) and the directed acyclic graph of its SCCs

Since there exists a partial order over all SCCs, it is possible to compute
separately the preferred labellings of each sub-framework induced by an SCC.
Now, let us define the notion of a sub-framework induced by an SCC.

Let {C1, . . . , Cn} be the set of SCCs of an AF (A,R). It holds that C1, . . ., and
Cn are a partition of A. Let RCi = R∩(Ci×Ci) be the set of attacks between the
arguments in Ci, C

−
i = {α ∈ A\Ci : ∃β ∈ Ci, such that (α, β) ∈ R} be the set of

arguments outside Ci that attack the arguments in Ci, and ICi = R∩ (C−
i ×Ci)

be the set of interactions from the arguments in C−
i to the arguments in Ci, in

which 1 ≤ i ≤ n. In terms of [9], C−
i is called the set of conditioning arguments.

A sub-framework of (A,R) induced by Ci is then defined as a tuple:

(Ci ∪ C−
i , RCi ∪ ICi) (1)

Computing the preferred labellings of each sub-framework In Formula (1) , when
C−

i = ∅ (and thus ICi = ∅), (Ci ∪ C−
i , RCi ∪ ICi) = (Ci, RCi). In this case,

the sub-framework is not related to any external arguments. Hence, its preferred
labellings can be computed independently. On the contrary, when C−

i �= ∅, the
labels of arguments in C−

i are not assigned within (Ci ∪ C−
i , RCi ∪ ICi), but

assigned in an external sub-framework.
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Consider the example in Figure 3. According to Formula (1), we get two
sub-frameworks as shown in Figures 4(a) and 4(b). The sub-framework in Fig-
ure 4(a) has two preferred labellings: L1 = ({1, 3}, {2}, {}) (Figure 4(c)) and
L2 = ({2}, {1, 3}, {}) (Figure 4(e)). With respect to Lk (k ∈ {1, 2}), we get
a partially labelled sub-framework of ({3, 4, 5}, {(3, 4), (4, 5), (5, 4)}), denoted as
({3, 4, 5}, {(3, 4), (4, 5), (5, 4)})Lk, in which the label of the conditioning argu-
ment 3 conforms to Lk. These two partially labelled sub-frameworks are respec-
tively illustrated in Figures 4(d) and 4(f).
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Fig. 4. Sub-frameworks and partially labelled sub-frameworks

Let (P ∪ P−, RP ∪ IP )
L be a partially labelled sub-framework of (A,R), in

which the labels of arguments in P− conform to L that is a preferred labelling
of an external sub-framework. Let L′ be a labelling of (P ∪P−, RP ∪ IP )

L, such
that the labels for arguments in P− conform to L, while each argument in P is
assigned with a new label. Then, L′ is called an admissible labelling, if and only if
each argument in P that is labeled IN is legally IN, and each argument in P that
is labeled OUT is legally OUT. L′ is called a preferred labelling, if and only if it
is an admissible labelling and the set of arguments in P that are labelled IN is
maximal. Let us return to the above example. It holds that L3 = ({3, 5}, {4}, {})
is a preferred labelling of ({3, 4, 5}, {(3, 4), (4, 5), (5, 4)})L1 (Figure 4(d)), in that
argument 5 is legally IN, argument 4 is legally OUT, and {5} is the maximal set
of arguments in {4, 5} that are legally IN. Similarly, L4 = ({4}, {3, 5}, {}) and
L5 = ({5}, {3, 4}, {}) are preferred labellings of ({3, 4, 5}, {(3, 4), (4, 5), (5, 4)})L2

(Figure 4(f)).

Labelling combination When an AF has only two SCCs, in which one is restricted
by another, the labelling combination is simple. Formally, let (A,R) be an AF,
and P and Q be a partition of A, such that P− ⊆ Q and Q− = {}. For every
preferred labelling L of (Q,RQ), (P ∪ P−, RP ∪ IP )

L is a partially labelled
sub-framework. Then, for every preferred labelling L′ of (P ∪ P−, RP ∪ IP )

L,
the combination of L and L′ is defined as L + L′ = (in(L) ∪ in(L′), out(L) ∪
out(L′), undec(L) ∪ undec(L′)), which is a combined labelling of (A,R).

For instance, the preferred labellings of (A2, R2) in Figure 3(a) can be ob-
tained by the following way. We combine L1 with L3, L2 with L4, and L2
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with L5, obtaining three combined labellings as follows: ({1, 3, 5}, {2, 4}, {}),
({2, 4}, {1, 3, 5}, {}) and ({2, 5}, {1, 3, 4}, {}). In [9], we have proved the sound-
ness and completeness of this kind of semantics combination under the context
of extension-based approach. Since there is a one-to-one correspondence between
sets of preferred labellings and sets of preferred extensions, the above labelling
combination is correct.

When an AF has more than two SCCs, its sub-frameworks are organised into
several layers conforming to the partial order of the SCCs of the AF. Then, the
labellings of the AF are computed and combined incrementally, from the lowest
layer in which each sub-framework is not restricted by other sub-frameworks,
to the highest layer in which each sub-framework is most restricted by the sub-
frameworks located in the lower layers.

The following example illustrates the process of incremental combination of
preferred labellings. Compared to (A2, R2), (A

′
2, R

′
2) in Figure 5(a) has two more

sub-frameworks ({1, 6}, {(1, 6)}) (in which 1 is a conditioning argument) and
({3, 4, 7}, {(3, 7), (4, 7)}) (in which 3 and 4 are conditioning arguments), located
in the second and the third layer, respectively.
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Fig. 5. (A′
2, R

′
2) and a layered decomposition of it

With respect to L1 and L2 mentioned above (Figures 4(c) and 4(e)), there are
two partially labelled sub-frameworks of ({1, 6}, {(1, 6)}), i.e., ({1, 6}, {(1, 6)})L1

and ({1, 6}, {(1, 6)})L2. The former has a preferred labelling L6 = ({1}, {6}, {}),
while the later has a preferred labelling L7 = ({6}, {1}, {}).

Before the labellings of the second layer are combined with those of the first
layer, the labellings of the sub-frameworks in the second layer are first combined.
After combination, L3+L6 is a preferred labelling of ({1, 3, 4, 5, 6}, {(3, 4), (4, 5),
(5, 4), (1, 6)})L1 , and L4+L7 and L5+L7 are preferred labellings of ({1, 3, 4, 5, 6},
{(3, 4), (4, 5), (5, 4), (1, 6)})L2 .

Then, the labellings of the first and the second layers are combined, resulting
L1+L3+L6 = ({1, 3, 5}, {2, 4, 6}, {}),L2+L4+L7 = ({2, 4, 6}, {1, 3, 5}, {}) and
L2 + L5 + L7 = ({2, 5, 6}, {1, 3, 4}, {}), which are prefered labellings of the sub-
framework ({1, 2, 3, 4, 5, 6}, {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 5), (5, 4), (1, 6)}).

And then, let L8 = L1 +L3+L6, L9 = L2 +L4+L7 and L10 = L2 +L5+L7.
With respect toL8,L9 andL10, in the third layer, there are three partially labelled
sub-frameworks of ({3, 4, 7}, {(3, 7), (4, 7)}), i.e., ({3, 4, 7}, {(3, 7), (4, 7)})L8,
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({3, 4, 7}, {(3, 7), (4, 7)})L9 and ({3, 4, 7}, {(3, 7), (4, 7)})L10. Sets of preferred la-
bellings of them are respectively {L11}, {L12} and {L13}, in which L11 = ({3},
{4, 7}, {}), L12 = ({4}, {3, 7}, {}) and L13 = ({7}, {3, 4}, {}).

Finally, the preferred labellings of the third layer and the labellings of the
previous two layers are combined, resulting L8+L11 = ({1, 3, 5}, {2, 4, 6, 7}, {}),
L9 + L12 = ({2, 4, 6}, {1, 3, 5, 7}, {}) and L10 + L13 = ({2, 5, 6, 7}, {1, 3, 4}, {}),
which are the preferred labellings of (A′

2, R
′
2).

4 A Further Solution by Exploiting Both SCCs and Most
Sceptically Rejected Arguments

As mentioned in Section 1, the efficiency of the above SCC-based approach is
highly limited by the size of the maximal SCC. Let us consider the AF (A3, R3)
as shown in Figure 6. It has only two SCCs: {1, . . . , 6} and {7}. The size of the
maximal SCC is six. Hence, in this case, little execution time could be saved by
using the SCC-based approach. In order to make the SCC-based approach more
efficient, a natural idea is to modify an AF such that the status of arguments in
the original AF remains unchanged, while the size of the maximal SCC of the
modified AF becomes smaller.
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Fig. 6. (A3, R3)

In order to realise this idea, we resort to the most sceptically rejected argu-
ments (briefly, MSR arguments) of an AF. We say an argument is most scepti-
cally rejected, if it is labelled OUT in the grounded labelling of an AF.

Proposition 1. Let Lg = (in(Lg), out(Lg), undec(Lg)) be the grounded la-
belling of an AF (A,R). The interactions between out(Lg) and undec(Lg) do
not influence the preferred labellings of (A,R).

Proof. Let Lp = (in(Lp), out(Lp), undec(Lp)) be a preferred labelling of (A,R).
Since the grounded extension is contained in every preferred extension [14], the
arguments labelled OUT in Lg are also labelled OUT in Lp. Let (α, β) be an
interaction from out(Lg) to undec(Lg). It follows that β is attacked by an argu-
ment α that is itself OUT in Lp. Hence, whether β belongs to in(Lp), out(Lp)
or undec(Lp), (α, β) does not influence Lp. On the other hand, let (α, β) be
an interaction from undec(Lg) to out(Lg). Since β ∈ out(Lg), it is attacked by
a third argument γ ∈ in(Lg) ⊆ in(Lp). Since attacking an argument that is
already OUT has no effect, (α, β) does not affect Lp.
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Fig. 7. (A3, R
′
3)

Let us consider (A3, R3) again. Since argument 6 is an MSR argument, after
we remove the attacks (5, 6) and (6, 3) from the framework, we get a modified
framework (A3, R

′
3) (Figure 7), which has the same preferred labellings as the

original one. Now, the size of the maximal SCC {1, 2, 3} is three.
Let (A,R′) be the remaining part of (A,R) after removing the interactions

between out(Lg) and undec(Lg). According to Proposition 1, (A,R′) and (A,R)
have the same preferred labellings.

Since the computation of the grounded labelling of (A,R) is polynomial time
tractable, (A,R′) can be obtained easily. The preferred labellings of (A,R′) are
then computed by the SCC-based approach described above.

5 Empirical Investigation

In previous sections, we have introduced three approaches for computing the
preferred labellings of a general AF, including the MC algorithm (i.e., Mod-
gil and Caminada’s labelling-based algorithm), the SCC-based approach and
the approach by exploiting both SCCs and MSR arguments (called SCC-MSR
approach). In the SCC-based approach, the algorithm for generating preferred
labellings of each sub-framework is based on MC algorithm with a slight modifi-
cation such that the preferred labellings of a partially labelled sub-framework can
be generated. Meanwhile, the SCC-MSR approach is in turn directly established
on top of the SCC-based approach.

The above approaches were implemented in Java, and tested on a machine
with an Intel CPU running at 1.86 GHz and 1.98 GB RAM.

First, we tested the average sizes of the maximal SCCs of AFs in the SCC-
based approach and the SCC-MSR approach, respectively. Given an assignment
of edge density (#edges/#nodes = 1, 1.2, ..., 4) and the size of AFs (#nodes
=50, 500, 5000), the programs (in which the components for generating preferred
labellings were disabled) of the two approaches were executed 100 times. In each
time, an AF with the given edge density and size is generated at random, and the
size of the maximal SCC produced by each approach was recorded. The average
results are illustrated in Figure 8, where S[n] (SM[n]) (n = 50, 500, or 5000)
denotes that the results were produced by the SCC-based approach (respectively,
the SCC-MSR approach) and the size of every AF is n. From this figure, we
may observe that when the edge density of AFs is sparse (#edges/#nodes ≤2),
for a given AF, the percentage of arguments in the maximal SCC (denoted
as “maxscc/#nodes” where “maxscc” represents the size of the maximal SCC)
produced by the SCC-MSR approach is much smaller than the one produced by
the SCC-based approach. For instance, when #edges/#nodes =1.8 and #nodes
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Fig. 8. Average results of the sizes of maximal SCCs generated by the SCC-based
approach and the SCC-MSR approach

=500, the average number of arguments in the maximal SCCs produced by the
SCC-based approach is 264, but only 2 by the SCC-MSR approach.

Second, we tested the performance of the SCC-MSR approach by comparing
it with other two approaches. Given an assignment of edge density (#edges/
#nodes = 1, 1.1, ..., 2) and the size of AFs (#nodes =200,1000), the programs of
the three approaches were executed 20 times. In each time, an AF with the given
edge density and size is generated at random, and then its preferred labellings
were generated by the three approaches respectively. The overall execution time
of each approach was recorded. In the SCC-based approach, the overall execution
time is mainly used for generating a set of SCCs, constructing a set of layered
sub-frameworks, and generating and combining the preferred labellings of all
sub-frameworks. In the SCC-SMR approach, the overall execution time is mainly
used for generating the grounded labelling of a given AF, and computing the
preferred labellings of the modified AF by using the SCC-based approach. Since
in many cases, the overall execution time may last very long, to make the test
easier, when the time for computing the preferred labellings of an AF is over
30 minutes, we stopped the execution by setting a break in the program. The
average results of this test are illustrated in Figure 9, where MC[n] (n = 200, or
1000) denotes that the results were produced by the MC algorithm and the size of
every AF is n, similar to the meanings of S[n] and SM[n] mentioned above. Each
number near a symbol in the graph indicates the number of timeouts among the
20 times of execution (the overall rate of timeout is indicated in the legend of the
plots). For instance, when #nodes = 200 and #edges/#nodes = 1.5 (in Figure
9(a)), there were 7 timeouts in the MC algorithm, 3 timeouts in the SCC-based
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(a)

(b)

Fig. 9. Average results of the overall execution time of the three approaches

approach and 0 timeout in the SCC-MSR approach. Table 1 shows the detailed
records of this case.

When an execution is timeout, we use 30 minutes (1800 seconds) in computing
the average execution time. From this table we found that the execution of
the SCC-MSR approach under this configuration is very low (less than 0.016
seconds in all cases), while the execution time of other two approaches fluctuates
from 0.015 seconds to more than 30 minutes. In addition, from Table 1, we also
observed that in the SCC-based approach and the SCC-MSR approach, the
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Table 1. The overall execution time of the three approaches when #nodes = 200 and
#edges/#nodes = 1.5

No. MC [200]<1.5> S [200]<1.5> SM [200]<1.5>
(seconds) (seconds) (seconds)

01 0.031 0.016 0.016
02 0.016 0.015 0.016
03 timeout 0.031 0.015
04 timeout 0.015 0
05 0.391 0.062 0.015
06 0.016 0.015 0.015
07 1613.016 2.141 0.015
08 timeout timeout 0
09 0.015 0.016 0.016
10 0.015 0.016 0.016
11 0.016 0.031 0.015
12 timeout timeout 0
13 0.046 0.016 0
14 timeout 1030.188 0
15 0.047 0.015 0.016
16 0.031 0.016 0.015
17 0.031 0.016 0
18 timeout 0.032 0
19 0.016 0.015 0.016
20 timeout timeout 0.015

Avg. 710.684 (7) 321.633 (3) 0.010

time for generating SCCs, constructing sub-frameworks, combining preferred
labellings and computing the grounded labelling is negligible when we compare
it to the time for generating preferred labellings.

According to the results shown in Figure 9, when the ratio of the number of
edges to the number of nodes of an AF is between 1:1 and 1.8:1, the execution
of the SCC-MSR approach is much more smaller than other two approaches. In
order to make this point more clear, we conducted a further test on the SCC-
MSR approach. In this test, given an edge density (#edges/#nodes = 1.3, 1.5,
1.7) and the size of AFs (#nodes =100, 200, . . ., 1000), the program of the
SCC-MSR approach was executed 200 times. Meanwhile, the timeout was set
to 2 seconds. The results in Figure 10 show that when #edges/#nodes = 1.3
(respectively, 1.5 and 1.7), there were only 6 (respectively, 15 and 56) timeouts
among the 2000 (= 200× 10) times of execution.

The above results show that after exploiting MSR arguments, the SCC-based
approach becomes much more efficient. Now, a natural question arise: Whether
the effect the MSR preprocessing is only suitable in connection with the SCC-
based approach? With respect to this question, we conduct an additional test, in
which we consider the following two approaches: the MC algorithm and the ap-
proach by combining the MC algorithm and the MSR preprocessing (called MC-
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Fig. 10. Average results of the overall execution time of the SCC-MSR approach

MSR approach, or briefly MM). Similar to the above test, given an assignment
of edge density (#edges/ #nodes = 1, 1.1, ..., 2) and the size of AFs (#nodes
=200,1000), the programs of the two approaches were executed 20 times. The
timeout was set to 600 seconds. The average results of this test are illustrated
in Figure 11. It is obvious that for the MC algorithm, the MSR preprocessing
has little effect.

6 Conclusions

In this paper, we have proposed an efficient method to compute the preferred la-
bellings of a general AF by exploiting both its SCCs and most sceptically rejected
arguments. The empirical results show that the computation time decreases dra-
matically when the defeat graphs are sparse. As illustrated in Figure 9, when the
ratio between the number of edges (attacks) to the number of nodes (arguments)
is less than 1.8:1, the SCC-MSR approach is obviously more efficient than other
two approaches. Meanwhile, when the edge density keeps the same, the average
computation time tends to decrease when the number of nodes becomes bigger.
As shown in Figure 9, when #edges/#nodes is equal to 1,6, 1.7 and 1.8, there is
1 timeout when #nodes = 200, while there is no timeout when #nodes = 1000;
when #edges/#nodes = 1.9, there are 3 timeouts when #nodes = 200, while
there is only one timeout when #nodes = 1000; when #edges/#nodes = 2.0,
there are 3 timeouts when #nodes = 200, while there is no timeout when #nodes
= 1000. The fundamental reason behind these phenomena is that after removing
the most sceptically rejected arguments, the maximal SCC of the modified AF
is smaller or much smaller than that of the original AF (as shown in Figure 8).
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(a)

(b)

Fig. 11. Average results of the overall execution time of the MC algorithm and the
MC-SMR approach

Although this paper only focused on the computation of preferred labellings,
the computational mechanism of the SCC-MSR approach is not restricted to the
preferred semantics. The application of this approach under other argumentation
semantics will be our future work.
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