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Abstract We introduce a geodesic based tractography method for High Angular
Resolution Diffusion Imaging (HARDI). The concepts used are similar to the ones
in geodesic based tractography for Diffusion Tensor Imaging (DTI). In DTI, the
inverse of the second-order diffusion tensor is used to define the manifold where
the geodesics are traced. HARDI models have been developed to resolve complex
fiber populations within a voxel, and higher order tensors (HOT) are possible rep-
resentations for HARDI data. In our framework, we apply Finsler geometry, which
extends Riemannian geometry to a directionally dependent metric. A Finsler metric
is defined in terms of HARDI higher order tensors. Furthermore, the Euler-Lagrange
geodesic equations are derived based on the Finsler geometry. In contrast to other
geodesic based tractography algorithms, the multi-valued numerical solution of
the geodesic equations can be obtained. This gives the possibility to capture all
geodesics arriving at a single voxel instead of only computing the shortest one.
Results are analyzed to show the potential and characteristics of our algorithm.
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1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging(DW-MRI) measures water diffu-
sion characteristics in tissue for a given direction. The diffusion profile in a specific
location can be obtained by combining the DW-MRI measurements in different
directions. The diffusion profile gives information about the underlying fibrous
structure, e.g., in human brain white matter, based on the assumption that water
molecules are moving less freely perpendicular to the fibrous structure than along
the fiber tracts. Techniques to reconstruct fiber tracts based on the diffusion profiles
are known as tractography or fiber tracking methods.

From DW-MRI measurements often a positive definite second-order tensor is
defined, referred to as diffusion tensor imaging (DTI) [4]. Despite the simplicity of
the model, this technique is shown to be promising to reveal the structure of brain
white matter. However, DTI assumes that each voxel contains fibers with only one
orientation, and it is known that in white matter often multiple fiber orientations
occur [2]. High Angular Resolution Diffusion Imaging (HARDI) and its modeling
techniques have been developed to overcome the limitations of the DTI model
[12, 19, 27, 29–31].

The models applied to HARDI data result in a function on the unit sphere that
gives information about the diffusion profile within the voxel. This function on
the unit sphere is obtained by different assumptions and models of the diffusion
and acquisition process. In general, the diffusion profiles are assumed to have
local maxima in the orientations of the underlying fiber tracts. One of the most
popular models is to use the Orientation Distribution Function (ODF) [12, 28, 30].
An extensive description of the different HARDI models is considered outside
the scope of this chapter. However, it should be noticed that any function on the
unit sphere, and therefore any HARDI model, can be represented by Higher Order
Tensors (HOT).

Numerous tractography algorithms have been introduced to reconstruct the
fibrous structure from DTI and HARDI data. In the most commonly used tractog-
raphy algorithms, i.e., streamline based methods, the fibers are estimated by using
a number of directions (i.e., the principal direction of the diffusion tensor [4] or
the local maxima in the HARDI models [15]). These methods are based on local
characteristics and therefore sensitive to noise. A possible solution to resolve these
limitations of classic tractography, is to apply global approaches such as geodesic
based algorithms [7, 14, 16]. These techniques are based on the assumption that
fibers follow the most efficient diffusion propagation paths. A Riemannian manifold
is defined using as metric the inverse of the diffusion tensor. Paths in this manifold
are shorter if the diffusion is stronger along that path. Therefore, geodesics (i.e.,
shortest paths) in this manifold follow the most efficient diffusion paths. The global
approaches are considerably more computationally expansive than the streamline
based methods.

Sepasian et al. [24] presented a ray-tracing algorithm for computing geodesics
in anisotropic domains. Common geodesic based methods obtain the viscosity
solution based on the Hamilton-Jacobi equation and by solving it numerically using
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different numerical schemes, e.g., fast-sweeping. These methods are robust and
mathematically elegant. However, the viscosity solution provides only one geodesic
between two given points in the domain. In contrast, the approach of Sepasian
et al. [24] can capture multi-valued geodesics connecting two given points by
considering the geodesics as function of position and direction. Moreover, it is based
on the Euler-Lagrange (EL) equations, and therefore local changes in the geodesic
can be taken into account. However, this method remains limited to Riemannian
manifolds and, therefore, to DTI models.

Campbell [8] proposed a front evolution approach based on HARDI. Pichon et al.
[22] introduced a variational cost function depending on all directions on the unit
sphere. This directional information is obtained using HARDI. Péchaud et al. [21]
presented an algorithm for the calculation of shortest paths on a manifold defined by
ODFs. The metric for each position is defined as the orientation distribution function
and the geodesics locally follow the paths going through areas of high diffusion.

The methods mentioned above belong to the class of deterministic tractography
methods, i.e., given the same input these methods will always give the same result.
In the generic case, geodesic-based methods will find a finite number of geodesic
paths given two points in the domain. Probabilistic tractography constitutes another
class of methods where the variation of the pathways due to model assumptions
and/or noise is considered. A probability distribution is built, and based on this
distribution, a random process generates many paths originating from one initial
position [10, 20]. HARDI tractography techniques are often probabilistic [5, 13].

In this chapter, we propose an extension to HARDI data of the method introduced
by Sepasian et al. [24]. Riemannian metric depends on the position in space, and
it has no directional dependency. A Riemannian framework is well suited for DTI
data, but not for HARDI data. Finsler geometry is the natural extension of the
Riemannian geometry to directional dependent metrics. In a Finsler metric, for each
position and direction we might have a different metric tensor. Therefore, to extend
the work of Sepasian et al. [24] to HARDI data, we need to extend it to Finsler
geometry. You can find further explanation on the Riemannian-Finsler geometry in
the chapter Riemann-Finsler Geometry for Diffusion Weighted Magnetic Resonance
Imaging. In comparison to previous work, e.g., Péchaud et al. [21], our technique
is based on minimizing the length using the geodesic equations in Finsler geometry
instead of a general cost function. Melonakos et al. [17] presented a tractography
method for Finsler geometry within their active contours segmentation framework.
Their method is based on DTI data and the Finsler metric is used to reduce signal
to noise ratio. Furthermore, we uniquely compute the multi-valued solution of the
geodesic equations between two points in the domain instead of the single-valued
viscosity solution.

The chapter is organized as follows. In Sect. 2 we introduce Finsler geometry
which extends Riemannian geometry to directionally dependent metrics. We intro-
duce the Euler-Lagrange form of the geodesic equations in the Finsler geometry
in Sect. 3. Next, in Sect. 4, we describe the numerical model necessary for the
implementation of the presented ray-tracing algorithm. Finally, preliminary results
are presented in Sect. 5.
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2 Finsler Metric

In this chapter, we consider the generalization to higher order tensors as an extension
of the second order tensors. Higher order tensors allow the representation of multiple
fiber orientations. For simplicity, we present the theory for fourth order tensors,
although, its extension to higher orders can be trivially deduced. P4.x; y/ is a
function on the unit sphere that represent the diffusion profile obtained by one of
the HARDI modeling techniques. At this point, the theory is presented in a general
form such that P4.x; y/ can be the diffusion profile resulting from diverse HARDI
modeling techniques, as long as the diffusion flux increases with increasing values
of P4.x; y/.

We fit the fourth order tensor coefficients D D D.x/ to the function P4.x; y/ by
using the sampled data on the unit sphere [12], i.e.,

P4.x; y/ D D˛1˛2˛3˛4.x/y˛1y˛2y˛3y˛4 ; (1)

with ˛i D 1; 2; 3, i D 1; 2; 3; 4, x contains the spatial coordinates and y D .y˛i / D
.sin � cos �; sin � sin �; cos �/ is the directional vector with � 2 Œ0; 2�/ and � 2
Œ0; ��. Here, the coefficients D˛1˛2˛3˛4.x/ are the elements of D. Note that in all
the formulas the Einstein summation convention is used, i.e., we sum over repeated
indices, one in a superscript and one in subscript position. The tensor D satisfies the
symmetry property,

D˛1˛2˛3˛4 D D�.˛1/�.˛2/�.˛3/�.˛4/; (2)

for any permutation � . Therefore we can reduce the number of components from 81

to 15.
Similar to the DTI Riemannian framework, we use the heuristic that a high

probability of finding a fiber in direction y corresponds to a larger diffusivity
represented in P4.x; y/, and a shorter travel time for the diffusing particle. Therefore,
the metric should give the shortest distance in the direction where diffusion
is largest. In DTI this is achieved by introducing the metric as the inverse of
the diffusion tensor. Consequently, the largest eigenvalue of the diffusion tensor
becomes the smallest one for the metric. In contrast, in HARDI we deal with
more complex diffusion profiles. We need to extend the framework to a Finsler
geometry where the metric is function of position and direction. Furthermore, we
need to find a suitable framework for inverting the HOT. A proper inversion should
preserve certain properties including the average value of the function and the angle
between two directions [6]. Astola et al. [3] suggest to use spherical inversion for
the HARDI diffusion profile. Figure 1 illustrates the spherical inversion of a point
on a surface M with coordinates xM . The inverse of a point M with respect to a
reference sphere centered at the origin O with radius r D a is the point M 0 such
that jxM j � jxM 0 j D a2 where x D rer is the position vector and er is the radial
unit vector in spherical coordinates. The points M and M 0 are on the same ray
through O . Figure 1 shows that the inversion maps points that were outside the
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Fig. 1 An illustration of
spherical inversion in two
dimensions. M 0 is the inverse
of M with respect to the
circle

sphere to points that are inside the sphere, and vice versa. For example, for the case
when M is outside the reference sphere, jxM j > a which gives

jxM 0 j D a2

jxM j < a:

In analogy with the spherical inversion, we define QP4.x; y/, which is the inverse
of P4.x; y/, as follows

QP4.x; y/ D P4.x/

P4.x; y/
D QD˛1˛2˛3˛4.x/y˛1y˛2y˛3y˛4 ; (3)

where QD is the HOT that fits QP4.x; y/ and P4.x/ is the average of the HOT over the
unit sphere, i.e.,

P4.x/ D
Z

jyjD1

P4.x; y/dy:

Astola et al. [3] propose the following Finsler norm for the fourth order tensors

F.x; y/ D . QP4.x; y//1=4: (4)

It can be shown that the Finsler metric is given by the bilinear form F D F.x; y/

as follows

g˛ˇ.x; y/ D 1

2

@2F 2

@y˛@yˇ
(5)

where ˛ and ˇ are used to index the components of the tensor g.
In the following, we illustrate that the Riemannian metric is a special case of the

Finsler metric. If F 2.x; y/ D g˛ˇ.x/y˛yˇ , i.e., g˛ˇ only depends on x, then
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Fig. 2 Illustration of the directional dependency of tensors g˛ˇ.x; y/. The QP4.x; y/ profile is shown
as a surface in all images. The arrows indicate specific directions y, and the ellipsoids represent
the tensors g˛ˇ.x; y/ calculated from QP4.x; y/ by fixing the direction y for each image

g˛ˇ.x; y/ D 1

2

@2

@y˛@yˇ

�
g˛ˇ.x/y˛yˇ

� D g˛ˇ.x/; (6)

known as the Riemannian metric. In contrast, Finsler metric does not only depend
on the location x but also on the direction y.

The necessary conditions of differentiability, homogeneity and strong convexity
for (4) have been studied in Astola et al. [3] and the strong convexity criterion only
holds if the second-order tensor D˛1˛2˛3˛4y

˛1y˛2 is positive definite for every y. In
practice this condition turns out to be satisfied.

Substituting (4) in the bilinear form (5), we can show that the Finsler metric
tensor reads

g˛ˇ.x; y/ D 1

2

@2

@y˛yˇ
F 2.x; y/

D �2 QP4.x; y/�3=2
� QD˛˛1˛2˛3y

˛1y˛2y˛3
� � QDˇˇ1ˇ2ˇ3y

ˇ1yˇ2yˇ3
�

C 3 QP4.x; y/�1=2 QD˛ˇ˛1˛2y
˛1y˛2 : (7)

This means that at each position x and for each choice of y, we can obtain the
corresponding local metric. Figure 2 illustrates the directional dependence of the
Finsler metric for a given QP4.x; y/ profile. Three different tensors g˛ˇ.x; y/ are
obtained for the same profile, i.e., position x, by changing y. The metric tensors
are necessary to be able to compute geodesics in the Finsler geometry framework.

3 Geodesic Equations for the Finsler Metric

Analogous to the Riemannian case, in Finsler metric geodesics are the curves that
minimize the length between fixed endpoints. We consider a bounded curve C with
parametrization x D �.t/, a � t � b, where t denotes the arc-length. The length of
C is given by,
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J Œ�� D
Z b

a

F.�.t/; P�.t//dt (8)

where P�.t/ D d�.t/

dt
. It can be shown that the necessary condition to minimize the

length functional (8) is the set of Euler-Lagrange equations [18, 23, 26],

d

dt

�
@F

@y˛

�
� @F

@x˛
D 0; (9)

where y˛ D Px˛ . We will derive the geodesic equations from Eq. (9). First, straight-
forward application of the chain rule gives

d

dt

�
@F 2

@y˛

�
� @F 2

@x˛
D 1

F

dF

dt

@F 2

@y˛
: (10)

Using that dF
dt

D 0 (arclength parametrization), the above equation simplifies to,

d

dt

�
@F 2

@y˛

�
� @F 2

@x˛
D 0: (11)

Once more applying the chain rule and substitution of (5) gives

2g˛ˇ Rxˇ C @2F 2

@y˛@xˇ
yˇ � @F 2

@x˛
D 0: (12)

Multiplying Eq. (12) with the inverse g�˛ gives

Rx˛ C 2G˛.x; Px/ D 0; (13)

where G˛ are the so-called geodesic coefficients defined by

G˛.x; y/ D 1

4
g˛ˇ.x; y/

�
@2F 2.x; y/

@yˇ@x�
y� � @F 2.x; y/

@xˇ

�
: (14)

It is often useful from a computational point of view to write the geodesic
Eq. (13) in an alternative form. To this purpose we introduce the Christoffel symbols
(of second kind) 	 ˛

ˇ� defined as

	 ˛
ˇ� .x; y/ D 1

2
g˛
.x; y/

�
@gˇ


@x�
C @g�


@xˇ
� @gˇ�

@x


�
: (15)

Note that compared to the Riemannian case, 	 ˛
ˇ� are functions of both space

and orientation. To reformulate the geodesic equations, we essentially rewrite G˛
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in terms of the formal Christoffel symbols [9]. Indeed, we have the following
proposition:

Proposition 1. The geodesic coefficients G˛ defined in (14), are related to the
Christoffel symbols 	 ˛

ˇ� defined in relation (15) as follows

2G˛ D 	 ˛
ˇ� yˇy� : (16)

Note that this proposition implies the derivatives of F 2 are replaced by derivatives
of g˛ˇ . Before we prove relation (16) we need two lemmas. The first one concerns
the Cartan tensor C˛ˇ� .x; y/ defined as:

C˛ˇ� .x; y/ D 1

4

@3F 2.x; y/

@y˛@yˇ@y�
:

Lemma 1. The Cartan tensor C˛ˇ� .x; y/ satisfies

C˛ˇ� .x; y/y� D 0: (17)

Proof. The Riemann-Finsler metric g˛ˇ.x; y/ inherits the following homogeneity
property from the defining property F.x; �y/ D �F.x; y/ for all � � 0:

g˛ˇ.x; �y/ D g˛ˇ.x; y/:

Differentiation with respect to � and setting � D 1 yields

@g˛ˇ.x; y/

@y�
y� D 0:

Consequently, the Cartan tensor satisfies

C˛ˇ� .x; y/y� D 1

2

@g˛ˇ.x; y/

@y�
y� D 0:

Lemma 2. The Riemann-Finsler metric tensor satisfies the relations

g˛ˇy˛yˇ D F 2; (18)

@

@y�

�
g˛ˇy˛yˇ

� D 2g�˛y˛: (19)

Proof. From the homogeneity of F , we can derive the following relations

@F

@y˛
y˛ D F;

@2F

@y˛@yˇ
yˇ D 0:
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First we prove relation (18). Using definition (5) we see that

g˛ˇy˛yˇ D 1

2

@

@y˛

�
@F 2

@yˇ

�
y˛yˇ

D @

@y˛

�
F

@F

@yˇ

�
y˛yˇ

D
�

@F

@y˛

@F

@yˇ
C F

@2F

@y˛@yˇ

�
y˛yˇ

D @F

@y˛

@F

@yˇ
y˛yˇ D F 2;

where we used the relations above. Next, to show (19), we have,

@

@y�

�
g˛ˇy˛yˇ

� D @g˛ˇ

@y�
y˛yˇ C g˛ˇı˛� yˇ C g˛ˇy˛ıˇ�

D 2C˛ˇ� y˛yˇ C 2g�ˇyˇ

using symmetry of g˛ˇ . Furthermore, using Lemma 1, the first term on the right
vanishes. ut
Proof of Proposition 1. Given the lemmas above, the following derivation allows
us to rewrite G˛ in terms of Christoffel symbols, viz.,

2G˛ D 1

2
g˛ˇ

�
@

@x�

@F 2

@yˇ
y� � @F 2

@xˇ

�

D 1

2
g˛ˇ

�
@

@x�

@

@yˇ

�
g��y�y�

�
y� � @g��

@xˇ
y�y�

�
;

where we substituted expression (18) for F 2. Next combining this relation with (19),
we obtain

2G˛.x; y/ D 1

2
g˛ˇ

�
@

@x�

�
2gˇ�y�

�
y� � @g��

@xˇ
y�y�

�

D 1

2
g˛ˇ

�
@g�ˇ

@x�
C @g�ˇ

@x�
� @g��

@xˇ

�
y�y�

D 	 ˛
��y�y�;

which completes the derivation of (16). ut
Finally, substituting (16) in (13) gives

Rx˛ C 	 ˛
ˇ� Pxˇ Px� D 0; (20)

which is the desired alternative form of the geodesic equations.
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4 Numerical Model

In order to develop a numerical model, we will focus on a specific HARDI
model. We have chosen the fourth-order tensor representation of the Orientation
Distribution Function (ODF) [1, 11, 12, 28]. From the DWI data, we compute the
ODF as was introduced by Tristán-Vega et al. [28]. In the original literature, the ODF
is represented by spherical harmonics. A change of basis allows us to transform the
spherical harmonics representation of the ODF to higher order tensor representation.
To compute the Finsler metric, we need to compute the spherical inversion of the
ODF at each voxel. To achieve this, we apply relation (3) for m > 15 different
orientations y on the unit sphere, giving rise to an over-determined system Y Qd D b,
where Qd contains the coefficients; see Table 1. To evenly sample the orientations y on
the sphere, we apply the icosahedron tessellation on the unit sphere. In this chapter,
we restrict ourselves to the normalized ODF, hence P 4.x; y/ D 1. To compute the
solution of this system, least-squares fitting is applied. We rewrite (3) in the form of
normal equation Y TY Qd D Y Tb where

Y D

0
BBB@

y1
1y1

1y1
1y1

1 : : : y3
1y3

1y3
1y3

1

y1
2y1

2y1
2y1

2 : : : : : :
:::

:::
:::

y1
my1

my1
my1

m : : : y3
my3

my3
my3

m

1
CCCA ; b D

0
BBB@

P4.x; y1/�1

:::

P4.x; ym/�1

1
CCCA : (21)

Note that the lower indices of y indicate the choice of direction and m is the
number of gradient directions to sample the ODF profile; in our computations we
use m D 72. The solution Qd is computed using Cholesky factorization. This gives 15

coefficients for the inverted ODF profile. We can fit the new profile over the sphere
using the new coefficients Qd; see Figs. 3 and 4.

Let us introduce u� .t/ WD Px� .t/ for � D 1; 2; 3, then we can rewrite system (20)
as follows

Px˛ D u˛;

Pu˛ D �	 ˛
ˇ� uˇu� ; (22)

with the 	 ˛
ˇ� defined in (15). To solve the system of equations (22) we follow

a similar algorithm proposed by Sepasian et al. [24] for the Riemannian metric.
Consider

�
x1.0/; x2.0/; x3.0/

�
a point as the given initial location in the domain and�

u1.0/; u2.0/; u3.0/
�

as the initial direction. We compute the solution to (22) for the
given initial position and multiple directions using sophisticated ODE solvers such
as the fourth order explicit Runge-Kutta method. This gives us a set of geodesics
connecting the given initial point to a set of points on the boundary.

The computational domain is discretized uniformly with grid size h and grid
points xijk D .x1

i ; x2
j ; x3

k/ D h.i; j; k/ for i D 0; 2; 3; : : : ; N � 1, where N

is number of grid points in each spatial direction. For simplicity we take the
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Table 1 Ordering of higher
order tensor coefficients

Tensor
element

Coeff.
of HOT

Tensor
element

Coeff.
of HOT

1 D1111 8 D1223

2 D1112 9 D1233

3 D1113 10 D1333

4 D1122 11 D2222

5 D1123 12 D2223

6 D1133 13 D2233

7 D1222 14 D2333

15 D3333

Fig. 3 ODF (Blue) and its
inverse (Yellow) using
least-squares fit (Left) and
analytic inversion (Right).
(a) ODF and its inverse for a
single fiber profile. (b) ODF
and its inverse for a crossing
fiber profile

number of grid points equal in all directions. For each grid point, we assign the
15 coefficients of inverted HOT QD (see Fig. 5 top).

We approximate the derivatives of g˛ˇ.x; y/ at each grid point by the standard
second order central difference scheme, for example,

@g˛ˇ

@x1
.x1

i ; x2
j ; x3

k; y/ � 1

2h

�
g˛ˇ.x1

iC1; x2
j ; x3

k; y/ � g˛ˇ.x1
i�1; x2

j ; x3
k; y/

�
: (23)

Second order one-sided differences are applied when the grid points are situated on
the boundary, e.g,
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Fig. 4 Fourth order ODF field (top image) and its inverted field (bottom image) from part of the
centrum semiovale

Legend

HARDI modeling
(ODF) P4(x,y)

Seed posi�ons x
and direc�on y

Compute tensor
gαβ

per neighboring
voxel

Interpolate
gαβ

∂gαβ/ ∂xi

for x and y

Compute

∂gαβ/ ∂x1

∂gαβ/ ∂x2

∂ gαβ/∂x3

Compute
Christofel
Symbols

Γα
βγ

Compute next
posi�on x and

direc�on y

Stop
tracking

No Yes
Fibers

Start/End data

Processes

DWI imaging
data

Decision

Calculate
P4(x,y)~

Fit HOT to
P4(x,y)~
Dα1α2α3α4~

Fig. 5 Flowchart for the ray tracing algorithm to reconstruct geodesics in a Finsler space
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@g˛ˇ

@x1
.x1

0; x2
j ; x3

k; y/ �
1

2h

�
�3g˛ˇ.x1

0 ; x2
j ; x3

k; y/ C 4g˛ˇ.x1
1; x2

j ; x3
k; y/ � g˛ˇ.x1

2; x2
j ; x3

k; y/
�

: (24)

Note that similar expressions hold for derivatives with respect to x2 and x3. Note
the dependence of these relations on the argument y. Solving the ODE system gives
the solution at points that are not necessarily located in the grid points. Therefore,
the value of the metric and its derivatives are not defined there, and we apply
trilinear interpolation at any point in the domain where the value of the metric is
not available. Initial vectors are uniformly distributed over the unit sphere using the
vertices of regular symmetrical polyhedra. The integration of geodesics continues
till they hit the boundary of the computational domain. Once all geodesics are
computed for the initial seed points and given initial directions, one can select
the fibers by selecting the regions of interests and filter all geodesics that pass
through both selected regions. Geodesics are computed until they meet one of the
boundaries, therefore to determine the fiber connecting two given regions we apply
the line-plane intersection. This allows us to cut off the geodesics once they enter
one of the selected regions. The flow chart in Fig. 5 summarizes the ray-tracing
tractography algorithm for HARDI. The algorithm has the following stages:

1. Compute the coefficients of the inverted ODFs using the least-squares fit as
described in this section (see Fig. 5 top).

2. Fetch an initial seed point and direction, which becomes the current position and
direction.

3. Find the eight neighboring voxels forming the cell of the current position and
compute for each neighboring voxel the metric tensor according to Eq. (7).

4. Compute the derivatives at the neighboring voxels.
5. Compute the metric tensor and its derivatives at the current position using

trilinear interpolation.
6. Compute the Christoffel symbols, as defined in Eq. (15).
7. Compute the next position and direction of the fiber, from (22)
8. Repeat step 3–6 until the stopping criterion (i.e., meeting the domain boundaries)

is fulfilled.

5 Results

In this section we present the first results we have obtained with the ray-tracing trac-
tography algorithm described in this chapter. We generated synthetic tensor fields
simulating two fiber bundles crossing at angles 90ı and 60ı. To generate the tensors
in the crossing area the Gaussian mixture model introduced by Tuch et al. [29] has
been used. The signal is obtained simulating a b-value of 1;000 s/mm2 and voxel
resolution 1 � 1 � 1 mm. Riccian noise with SNR D 15 is added to the images.
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Fig. 6 90ı crossing. From left to right: streamline tractography for DTI, geodesic ray tracing for
DTI, geodesic ray tracing for HARDI

Fig. 7 Rotated 90ı crossing. From left to right: streamline tractography for DTI, geodesic ray
tracing for DTI, HARDI multi-valued geodesic

Results for the 90ı crossing angle are shown in Fig. 6. The behavior of the
streamline (left), DTI ray-tracing [25] (middle) and HARDI ray-tracing (right)
tractography are illustrated. The results illustrate that streamlines have a preference
for curving instead of going straight. The HARDI ray-tracing tractography gives
less spreading of the reconstructed fiber bundles compared to the DTI ray-tracing
method. Figure 7 shows the behavior of these algorithms with respect to rotation.
The crossing angle here remains 90ı and the data is rotated 55ı. Figure 8 illustrate
fiber bundles for the 60ı crossing angle. We see that for a sharper angle the algorithm
is still capable of capturing crossing fibers.

In order to provide preliminary results of HARDI ray-tracing tractography for
real data, Fig. 9 shows the tractography result using a 10 � 10 � 30 cube cut from
the human data set obtained by a Philips scanner with resolution 2 � 2 � 2 mm,
b-value of 1;000 s/mm2 and 128 gradient directions. The fiber tracking stops in both
cases if the fibers meet one of the boundaries. These preliminary results show the
capability of the tractography algorithm for capturing realistic fiber tracts in the
area of corona radiata (CR), corpus callosum (CC) and cingulum (CG). However,
these are preliminary results and future research and experiments are needed to fully
explore the capabilities of the presented method.
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Fig. 8 Geodesic ray tracing for HARDI using 60ı crossing

Fig. 9 Tractography results in the crossing region of Fig. 4. The top image indicates the seed
regions in a fractional anisotropy map, the bottom image shows the ray-tracing tractography results
for CC, CR and CG

6 Conclusion

In this chapter, we presented a new tractography algorithm for HARDI data. Our
method is based on computing geodesics in the Finsler metric as an extension
of Riemannian metric. The Finsler metric is defined as function of position and
direction using HARDI data at each voxel. We made a heuristic choice concerning
the mapping of the HARDI data into a Finsler metric. For future work, it would be
interesting to study other possibilities. Compared to other existing geodesic based
HARDI tractography methods, we computed multi-valued solutions of geodesic
equations instead of single valued viscosity solutions. We presented the theory and
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showed the potential of our method for capturing crossing fibers. Results of syn-
thetic data and very preliminary human brain data results showed the applicability
of the method. These are encouraging results that need further experimentation to
explore its possibilities and compare it to other existing fiber tracking methods.
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