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Abstract We consider Riemann-Finsler geometry as a potentially powerful math-
ematical framework in the context of diffusion weighted magnetic resonance imag-
ing. We explain its basic features in heuristic terms, but also provide mathematical
details that are essential for practical applications, such as tractography and voxel-
based classification. We stipulate a connection between the (dual) Finsler function
and signal attenuation observed in the MRI scanner, which directly generalizes
Stejskal-Tanner’s solution of the Bloch-Torrey equations and the diffusion
tensor imaging (DTI) model inspired by this. The proposed model can therefore
be regarded as an extension of DTI. Technically, reconstruction of the (dual)
Finsler function from diffusion weighted measurements is a fairly straightforward
generalization of the DTI case. The extension of the Riemann differential geometric
paradigm for DTI analysis is, however, nontrivial.

1 Introduction

Diffusion weighted magnetic resonance imaging (dwMRI) has become a standard
MRI technique for in vivo imaging of apparent water diffusion processes in fibrous
tissue (for an introductory tutorial, cf. Hagmann et al. [1]). Clinical use of dwMRI
is hampered by the fact that radically new approaches and abstract representations
are required for its analysis. Examples are rank-2 symmetric positive-definite tensor
representations in diffusion tensor imaging (DTI), pioneered by Basser, Mattiello
and Le Bihan et al. [2–8] and explored by many others [9–20], higher order fully
symmetric tensor representations [21–27] and spherical harmonic representations in
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high angular resolution diffusion imaging (HARDI) [28–32], and SE.3/ Lie group
representations [33–35].

In this chapter we concentrate on an extension of the Riemannian paradigm
[16, 36], used in the context of DTI, in order to account explicitly for the
unconstrained number of local directional degrees of freedom of general dwMRI
representations. Riemann-Finsler geometry appears to be ideally suited for this
purpose, as has already been hinted upon in earlier work [22, 37–41]. However,
foregoing work is either driven by heuristics or merely scratches the surface
of Riemann-Finsler geometry. For instance, no rigorous connection between the
pivotal Finsler function and the physics of dwMRI acquisition has yet been
proposed.

More specifically, Melonakos et al. [41] have pioneered Finsler geometry in the
context of contours, only briefly touching upon application in dwMRI. Astola et
al. [37–40] have applied Finsler geometry, and in particular geodesic tractography,
to dwMRI using a fully symmetric fourth order tensor model. Florack et al. [22]
have proposed a tensor representation of arbitrary order, discussing operational
issues such as spatial and angular regularization. The Cartan geometric approach
developed by Duits et al. [33–35] likewise appears intimately related to the theory
outlined in this chapter. In all of the above cases the exact connection between
Riemann-Finsler geometry and dwMRI is deemphasized, while applications are
typically limited to contour detection or tractography.

Our primary goal is to provide a generic model for dwMRI, with potential
applications beyond tractography, which manifestly incorporates the Riemannian
paradigm for DTI as a limiting case. Secondly, we wish to convey the gist of
Riemann-Finsler geometry without dodging mathematical details that are necessary
for algorithmic implementation. This does not imply that our treatment of the
subject will be self-contained; for a thorough understanding one will find it
necessary to consult additional sources. The books by Bao et al. [42] and Rund
[43] are especially recommended. Shen and Mo provide additional insight [44, 45].
We hope that our overview will encourage researchers to further contribute to
a systematic study and practical application of Riemann-Finsler geometry in the
context of dwMRI (and elsewhere).

Riemann-Finsler geometry has its roots in Riemann’s “Habilitation” [46]. Rie-
mann focused on a special case, nowadays known as Riemannian geometry.
Important (pseudo-Riemannian) application areas, such as Maxwell’s theory and
Einstein’s theory of general relativity, greatly contributed to its popularity. The
general case was taken up by Finsler in his PhD thesis [47], and subsequently by
Cartan [48] (who was the first to refer to it as “Finsler geometry”), and others.

Although potentially much more powerful, Riemann-Finsler geometry has not
yet become nearly as popular as its Riemannian counterpart. To some extent this
may be explained by its rather mind-boggling technicalities and heavy computa-
tional demands. This should no longer withhold practitioners in our technological
era, for both symbolic as well as large-scale numerical manipulations can be readily
performed on state-of-the-art computers. Progress in enabling technologies, such as
compressed sensing for fast imaging [49], are also likely to contribute to practical
feasibility of dwMRI, yet we believe that the major hurdle is still methodological.
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2 Theory

2.1 Diffusion Weighted MRI

Recall the Stejskal-Tanner signal attenuation formula in the spin-echo experiment
on spin diffusion in an isotropic medium [50] (cf. also [51–55]):

ln
A.2�/

A.0/
D ��2Dı2.� � 1

3
ı/G2 ; (1)

in which � is the gyromagnetic ratio of hydrogen, ı the duration of a diffusion-
sensitizing gradient pulse (with ı < � ), � the time between a pair of balanced
gradient pulses, and G the gradient magnitude. The echo occurs at time 2� after the
onset of the first gradient pulse, and the formula represents the relative signal loss
due to diffusion of water molecules over a time interval � between the 90ı pulse and
the 180ı pulse, a process characterized by the diffusion coefficient D. The positive
factor by which D is multiplied on the right hand side of the above expression is
known in the trade as the “b-factor” (an allusion to Le Bihan): b � �2ı2.�� 1

3
ı/G2.

Brain white matter consists mostly of water (>70 %), but diffusion turns out to be
anisotropic as a result of its fibrous architecture, facilitating diffusion along axonal
fibers relative to transverse directions. The Stejskal-Tanner experiment inspired
Moseley, Basser, Le Bihan, and others, [2–8] to capture this anisotropy in terms
of a symmetric positive definite rank-2 diffusion tensor (with components Dij,
i; j D 1; 2; 3, relative to a coordinate basis) as opposed to the scalar D. This
technique is the basis of diffusion tensor imaging (DTI).

In order to connect to the mathematical notation in the remainder of this chapter
we will denote the signal as a function of position x and the applied normalized
diffusion-sensitizing gradient q D �ıG:

S.x; q; ��/ D S0.x/ exp
����H 2.x; q/

�
: (2)

Here �� denotes a time constant related to � and ı (in Stejskal-Tanner’s scheme
we have �� D � � ı=3, cf. Sinnaeve [55] for alternative schemes and associated
time constants). Furthermore, the so-called Hamiltonian1 H.x; q/ generalizes the
quadratic form encountered in the DTI case, in which it assumes the form2

H 2
DTI.x; q/ D Dij.x/qi qj : (3)

1We neglect, but do not a priori exclude, a mild dependence of H.x; q/ on ��.
2We use Einstein’s summation convention throughout, i.e. explicit summation symbols, such asP3

i;j D1 on the r.h.s. of Eq. (3), are suppressed for pairs of identical upper and lower indices.
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In general, H.x; q/ ¤ HDTI.x; q/, but a strong analogy with DTI remains in the
form of a homogeneity condition3 in q-space, viz. we shall require that

H 2.x; q/ D Dij.x; q/qi qj ; (4)

in which the coefficients are zero-homogeneous, i.e.

Dij.x; �q/ D Dij.x; q/ (5)

for all � ¤ 0. This expresses our hypothesis that ln.S.x; q; ��/=S0.x// scales
quadratically in the magnitude of the diffusion-sensitizing gradient, but, unlike DTI,
is not necessarily a quadratic form. This assumption is approximately correct for
certain ranges of .q; ��/, and encompasses the validity domain of DTI.

By virtue of homogeneity and mirror symmetry one may, in Eq. (5), think of q as
a point on the projective plane, or on the unit sphere with antipodal points identified.
Homogeneity also implies that the “highly anisotropic” diffusion tensor Dij.x; q/

does not in fact—within the domain of validity of our extended model—depend
on acquisition details, such as the magnitude of the applied gradients. That is, it
is intended to capture tissue intrinsic properties (probed along a certain direction),
just like the classical, “mildy anisotropic” diffusion tensor Dij.x/. (This does not
hold for H.x; q/ and some related functions that will be introduced below, which
do depend on the magnitude of q, and thus on the entire experimental setup.)

Note that the number of degrees of freedom contained in the DTI tensor
coefficients Dij.x/ at any given point x equals 6 (the number of independent
components of a symmetric 2-tensor in 3 dimensions), whereas there are, a priori, 1
degrees of freedom in Dij.x; q/, one for each position in space and each point on the
projective plane. Also note that Eq. (2) relies on a mono-exponential signal decay; in
this sense it “naturally” extends DTI. It complements alternative DTI refinements,
such as multi-compartment models [56]. Our homogeneity condition,

H.x; �q/ D j�jH.x; q/ for all � 2 R, (6)

also distinguishes our model from diffusional kurtosis imaging (DKI), cf. [57].
(A comparison of our model with these models as well as other, HARDI-like
schemes, in relation to their respective validity domains, remains to be made.)

2.2 The Riemannian Paradigm

The Riemannian paradigm was introduced by O’Donnell et al. [36] and by Lenglet
et al. [16] in the context of DTI. In its original formulation it identifies the diffusion

3A function f .z/ is called homogeneous of degree r if it satisfies f .�z/ D �r f .z/ for all � > 0.
According to Euler’s theorem such a function obeys the first order partial differential equation
zi @f .z/=@zi D rf .z/.
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tensor Dij.x/, recall Eqs. (2) and (3), up to a constant proportionality factor, with
the dual (or inverse) Riemann metric tensor gij.x/:

��Dij.x/ D gij.x/ : (7)

This defines a Riemannian manifold in which a relatively increased directional
diffusion observed along some curve is tantamount to a shortening of Riemannian
path length. In this way the problem of tractography can be restated as the problem
of finding certain4 shortest paths (via geodesic equations), or related to level set
methods for distance functions induced by geodesic congruences (via Hamilton-
Jacobi equations). The motivation for Eq. (7) is heuristic, cf. [58, 59] for conformal
adaptations of the metric, arguing for a nontrivial local scaling factor.

Due to its limited angular resolution DTI can only handle mild anisotropies that
are believed to be induced by “single fiber coherence”, i.e. a local alignment of
axonal fibers forcing anisotropy to be more or less axially symmetric, with one dom-
inant diffusion eigenaxis along the fibers (and two minor eigenaxes perpendicular to
the fibers). Due to complex fiber architecture in significant parts of the brain, such
as fiber crossings, observed diffusivity patterns are highly anisotropic, rendering
the DTI hypothesis invalid in such cases. On the positive side, the same limitation
(viz. of a priori limited angular resolution) contributes to robustness, especially if a
redundant set of diffusion weighted measurements is used for DTI reconstruction.

If we drop the quadratic restriction, Eq. (3), we can invoke the powerful
machinery of Riemann-Finsler geometry in a way that mimics the Riemannian
paradigm for DTI, viz. recall Eq. (4) and identify the coefficients in this equation
with the so-called dual Riemann-Finsler metric tensor:

��Dij.x; q/ D gij.x; q/ : (8)

Clearly this is at best an approximation of reality due to mono-exponential decay,
Eq. (2), and the homogeneity hypothesis on the physical scaling behavior of the
Hamiltonian, Eq. (6). The conditions under which this approximation is realistic are
deemphasized here, but will need to be made explicit in future work (cf. Basser
[6] for a discussion in the DTI case, to some extent applicable to the general case
as well). Suffice it to say that, by construction, the domain of validity certainly
reaches beyond that of DTI, which arises in the limiting scenario of mild anisotropy
Dij.x; q/ ! Dij.x/.

In the rest of this chapter we consider the basics of Riemann-Finsler geometry
and point out its theoretical relevance for tractography and voxel classification.

4Please note that the Riemannian paradigm does not stipulate that geodesics are biologically
meaningful tracts, cf. Astola et al. [10] for a connectivity criterion that could be used for a
deterministic or probabilistic labelling of biologically plausible neural tracts among all possible
geodesic tracts. Indeed, in a geodesically complete space any two points can be connected by at
least one geodesic.
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The Hamiltonian framework appears to be most directly related to the physics of
dwMRI. In DTI this is reflected by the fact that it is the inverse of the diffusion
tensor that defines the Riemann metric tensor. The Riemann metric tensor itself is
equivalently captured by a (limiting case of a) so-called Finsler function, which,
in its most general form, constitutes the pivot of Riemann-Finsler geometry. Let us
therefore start with the axiomatics of the Finsler function.

2.3 The Finsler Function

Recall that the geometric paradigm for DTI hinges on Riemannian geometry,
Eq. (7), stipulating that the diffusion tensor is proportional to the dual Riemann
metric tensor gij.x/, with 6 degrees of freedom per point in 3 spatial dimensions.
For state-of-the-art dwMRI, in which local signal attenuations are recorded under
a multitude of magnetic gradient directions, this limitation on angular resolution is
too restrictive. The Riemann-Finsler paradigm removes this limitation altogether.

The pivot of Riemann-Finsler geometry is a generalised notion of length of a
spatial curve C (Hilbert’s invariant integral [42]):

L .C / D
Z

C

F.x; dx/ : (9)

The Lagrangian F.x; dx/ is called the Finsler function. This function cannot be
chosen arbitrarily. In order to interpret Eq. (9) properly as an integral over a one-
form, one has to require F.x; dx/ D F.x; Px/dt for a parametrized curve x D x.t/,
with Px D dx.t/=dt, so that the functional L .C / is well-defined and parameter
invariant. More specifically, F.x; Px/ is required to be smooth for Px ¤ 0 and to
satisfy the following properties5:

F.x; � Px/ D j�jF.x; Px/ for all � 2 R, (10)

F.x; Px/ > 0 if Px ¤ 0, (11)

gij.x; Px/�i �j > 0 if � ¤ 0, (12)

in which the Riemann-Finsler metric tensor is defined as

gij.x; Px/ D 1

2

@2F 2.x; Px/

@ Pxi @ Pxj
: (13)

5Instead of the norm condition, Eq. (10), one sometimes requires F.x; � Px/ D �F.x; Px/. What
matters in diffusion processes without convection is orientation, not signed direction, so it is natural
to require mirror symmetry Px !�Px a priori.
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In these definitions and below, Px is an a priori independent vector argument, not a
tangent vector Px.t/ to some underlying parametrized curve x.t/, unless explicitly
stated otherwise. But it helps intuition to keep in mind the role of this vector
argument in an expression like Eq. (9). In particular, when considering a smooth
spatial curve x.t/, there is a “distinguished” vector Px / Px.t/ associated with any
position x.t/ along the curve. The extended base manifold with coordinates .x; Px/,
with Px ¤ 0, is referred to as the slit tangent bundle. The word “slit” refers to
the excluded strip Px D 0. In the context of zero-homogeneous functions, a vector
Px ¤ 0 represents an equivalence class of points on the line through the origin with
direction vector Px. In that case one also refers to the extended base manifold as the
projectivized tangent bundle, cf. the concept of an orientation score by Duits et al.
[33–35].

Using Eqs. (10)–(13), it is not difficult to show (with the help of Euler’s theorem
for homogeneous functions, recall footnote 3) that

F 2.x; Px/ D gij.x; Px/ Pxi Pxj : (14)

Riemann’s quadratic restriction pertains to the “mildly anisotropic” case,
gij.x; Px/ D gij.x/. In general, the Riemann-Finsler metric tensor, Eq. (13), is
homogeneous of degree 0: gij.x; � Px/Dgij.x; Px/ for all � 2 R. It may be viewed as
being defined on the 5-dimensional projectivized tangent bundle.

Since, in principle, only positions and orientations are of interest, all geometri-
cally relevant quantities will be zero-homogeneous. Although the Finsler function
itself does not qualify as such (its domain of definition is the 6-dimensional slit
tangent bundle of positions and nonzero vectors), it serves as the basic object from
which such quantities can be constructed.

The role played by the 3-dimensional (co)tangent spaces erected at each point
x of a 3-dimensional Riemannian manifold is replaced by likewise 3-dimensional
fibers that collectively constitute a so-called pulled-back (co)bundle or Finsler
(co)bundle in Riemann-Finsler geometry. The major difference is that a pulled-
back (co)bundle sits over the 5-dimensional projectivized tangent bundle or 6-
dimensional slit tangent bundle, rather than over the 3-dimensional spatial manifold.
Given x-coordinates on the spatial manifold the coordinate induced basis sections

@

@xi

ˇ̌
ˇ̌
.x; Px/

respectively dx i

ˇ̌
ˇ̌
ˇ
.x; Px/

(15)

for its tangent and cotangent bundles can be transplanted to the pulled-back
(co)bundle. That is, Px plays no role in the construction of a fiber at a fiducial
point .x; Px/.
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2.4 Riemann-Finsler Geometry and Its Riemannian Limit

The nontrivial nature of the Cartan tensor [42, 43, 48, 60],

Cijk.x; Px/ D 1

4

@3F 2.x; Px/

@ Pxi @ Pxj @ Pxk
; (16)

distinguishes Riemann-Finsler geometry from its Riemannian counterpart. One can
show that Cijk.x; Px/ D 0 if and only if space (the x-manifold) is Riemannian. In fact
it suffices to inspect the Cartan one-form

Ci .x; Px/ D gjk.x; Px/Cijk.x; Px/ ; (17)

in which the dual Riemann-Finsler metric tensor6 gij.x; Px/ is the inverse of
gij.x; Px/:

gik.x; Px/gkj.x; Px/ D ıi
j : (18)

Indeed, one can show that space is Riemannian if and only if the Cartan one-form,
Eq. (17), vanishes identically. In view of the significance of zero-homogeneous
functions one often encounters the alternative definitions

Aijk.x; Px/ D F.x; Px/Cijk.x; Px/ resp. Ai .x; Px/ D F.x; Px/Ci .x; Px/ : (19)

The dual Riemann-Finsler metric may be used for index raising and lowering, e.g.

C k
ij .x; Px/ D gk`.x; Px/Cij`.x; Px/ : (20)

(There is no ambiguity here by virtue of symmetry of the covariant Cartan tensor.)
Thus the Cartan tensor measures the degree in which the local structure of the

Riemann-Finsler manifold deviates from Riemannian. In view of Eqs. (3), (4) (7),
and (8) this boils down to a measure for the degree in which the recorded dwMRI
data—matched to the basic paradigm, Eq. (2)—violate the validity conditions for
DTI. In other words, it provides a (fuzzy) classification of voxels as “DTI-like” (i.e.
mildly anisotropic) versus otherwise (i.e. complex or highly anisotropic).

2.5 Connections in Riemann-Finsler Geometry

There is no “obvious” connection (mechanism for parallel transport) on a Riemann-
Finsler manifold. The so-called Berwald, Cartan, Chern-Rund and Hashiguchi

6It will be seen later, cf. Eqs. (45)–(47), that it is more natural to think of gij as a metric in q-space,
as opposed to the Px-space metric gij.
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connections may all be considered “natural” extensions of the Levi-Civita con-
nection in Riemannian geometry. For instance, the (torsion-free) Chern-Rund
connection is defined by7

� i
jk.x; Px/ D 1

2
gi`.x; Px/

�
ıg`k.x; Px/

ıxj
C ıgj`.x; Px/

ıxk
� ıgjk.x; Px/

ıx`

�
: (21)

This expression is obtained from the “classical” Christoffel symbols of Riemannian
geometry by formally replacing the Riemann metric gij.x/ by the Riemann-Finsler
metric gij.x; Px/, Eq. (13), and spatial derivatives by the horizontal vectors

ı

ıxi

defD @

@xi
� N

j
i .x; Px/

@

@ Pxj
: (22)

The coefficients N
j
i .x; Px/ define the so-called nonlinear connection [42]:

N
j
i .x; Px/ D �

j
ik.x; Px/ Pxk � C

j
ik .x; Px/�k

`m.x; Px/ Px` Pxm ; (23)

in which the formal Christoffel symbols of the second kind are introduced as

�i
jk.x; Px/ D 1

2
gi`.x; Px/

�
@g`k.x; Px/

@xj
C @gj`.x; Px/

@xk
� @gjk.x; Px/

@x`

�
: (24)

Note that in the Riemannian limit, both Eq. (21) as well as Eq. (24) simplify to

� i
jk.x; Px/ ; � i

jk.x; Px/ �! � i
jk.x/ D 1

2
gi`.x/

�
@g`k.x/

@xj
C @gj`.x/

@xk
� @gjk.x/

@x`

�
;

(25)

the standard Christoffel symbols of the second kind defining the torsion-free Levi-
Civita connection in Riemannian geometry. A computation reveals that8

�ijk.x; Px/ D (26)

�ijk.x; Px/ � Chjk.x; Px/Gh
Pxi .x; Px/ � Chji.x; Px/Gh

Pxk .x; Px/ C Chik.x; Px/Gh
Pxj .x; Px/ ;

in which indices have been lowered via the Riemann-Finsler metric tensor:

�ijk.x; Px/ D gj`.x; Px/� `
ik.x; Px/ resp. �ijk.x; Px/ D gj`.x; Px/�`

ik.x; Px/ ; (27)

7Caveat: In [43] Rund defines these symbols as � �i
jk .x; Px/.

8Caveat: In [43] Rund defines these symbols as � �

ijk.x; Px/.



198 L. Florack and A. Fuster

and in which the geodesic coefficients are defined as9

Gi
Pxj .x; Px/ D @Gi .x; Px/

@ Pxj
with Gi .x; Px/ D 1

2
�i

jk.x; Px/ Pxj Pxk : (28)

In fact we have

Gi
Pxj .x; Px/ D N i

j .x; Px/ (29)

recall Eq. (23).

2.6 Horizontal-Vertical Splitting

The coupling of position and orientation is formalized in terms of the so-called
horizontal and vertical basis vectors, recall Eq. (22),

ı

ıxi

defD @

@xi
� N `

i .x; Px/
@

@ Px`
and

@

@ Pxi
: (30)

These constitute a basis for the horizontal and the vertical tangent bundle over the
slit tangent bundle:

H.x; Px/TM D span

(
ı

ıxi

ˇ̌
ˇ̌
.x; Px/

)

and V.x; Px/TM D span

(
@

@ Pxi

ˇ̌
ˇ̌
.x; Px/

)

: (31)

Their direct sum yields the complete tangent bundle (pointwise):

TTMnf0g D HTM ˚ VTM : (32)

By the same token one considers the horizontal and vertical basis covectors,

dxi and ı Pxi defD d Pxi C N i
` .x; Px/dx` ; (33)

yielding the corresponding horizontal and vertical cotangent bundles:

H�.x; Px/TM D span
n

dxi
ˇ̌
.x; Px/

o
and V�.x; Px/TM D span

n
ı Pxi

ˇ̌
.x; Px/

o
; (34)

such that, pointwise,

9Caveat: In [42] Bao et al. write Gi .x; Px/ D �i
jk.x; Px/ Pxj Pxk .
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T�TMnf0g D H�TM ˚ V�TM : (35)

The above vectors and covectors satisfy the following duality relations:

dxi

�
ı

ıxj

�
D ı Pxi

�
@

@ Pxj

�
D ıi

j and dxi

�
@

@ Pxj

�
D ı Pxi

�
ı

ıxj

�
D 0 : (36)

Incorporating a natural scaling so as to ensure zero-homogeneity with respect to Px
(so that it indeed represents orientation rather than “velocity” or a “displacement”)
we conclude that

TTMnf0g D span

�
ı

ıxi
; F .x; Px/

@

@ Pxi

�
; (37)

and similarly

T�TMnf0g D span

�
dx i ;

ı Pxi

F.x; Px/

�
: (38)

The so-called Sasaki metric furnishes the slit tangent bundle with a Riemann metric:

g.x; Px/ D gij.x; Px/ dx i ˝ dxj C gij.x; Px/
ı Pxi

F.x; Px/
˝ ı Pxj

F.x; Px/
: (39)

The horizontal and vertical tangent bundles, Eq. (31), are orthogonal relative to this
metric.

Cf. the Appendix for the formal motivation of horizontal and vertical basis
vectors and covectors. The heuristics behind them is that they permit a coordinate
independent, geometrically meaningful splitting into “horizontal” (pertaining to
spatial position) and “vertical” (complementary) dimensions. As a counterexample,
Eq. (66) in the Appendix shows what happens if we would use the standard
coordinate bases in .x; Px/-space. A change of spatial coordinates, x D x.�/, causes
the new spatial coordinate vectors to be a linear superposition of all coordinate
basis vectors that we started out from, whence they do not induce a coordinate
independent splitting.

2.7 Horizontal Curves and Finsler Geodesics

Spatial trajectories x.t/ have a “natural” (sparse) manifestation in the “vertical”
(orientation) dimension, viz. through identification of the trajectory’s tangent vector
Px.t/ with the vector Px. In other words, interpreted as a curve along the Finsler
manifold a spatial curve, x D �.t/, say, has a natural parametrization .x; Px/ D
.�.t/; P�.t//. A tangent vector of this curve is given by (with P�.t/ � d�.t/=dt and
R�.t/ � d 2�.t/=dt2)
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T .t/ D P�i .t/
@

@xi
C R�i .t/

@

@ Pxi
: (40)

Note that the individual terms in this equation do not have an intrinsic meaning, to
the extent that a splitting of the six dimensional tangent space into span f@=@xi g and
span f@=@ Pxi g is not preserved after a spatial coordinate transformation, cf. Eq. (66)
in the Appendix. The aforementioned, geometrically meaningful splitting suggests
that we rather decompose the tangent vector as follows, recall Eq. (30):

T .t/ D P�i .t/
ı

ıxi
C

� R�i .t/ C N i
j .�.t/; P�.t// P�j .t/

	 @

@ Pxi
: (41)

The requirement of horizontality then entails that the vertical component vanishes:

ı Pxi .T .t// D 0 : (42)

Using the basic duality relations, Eqs. (36), this means that

R�i .t/ C N i
j .�.t/; P�.t// P�j .t/ D 0 : (43)

By virtue of Eqs. (23) and (24), using the fact that C
j
ik .�; P�/ P�k D 0 (a consequence

of the homogeneity property gij.x; � Px/ D gij.x; Px/ and Euler’s theorem for
homogeneous functions, recall footnote 3), this simplifies to

R�i .t/ C �i
jk.�.t/; P�.t// P�j .t/ P�k.t/ D 0 : (44)

This geodesic equation has the same form as in the Riemannian case, except for
the fact that Christoffel symbols have been replaced by their formal counterparts,
Eq. (24) (or, equivalently, Eq. (21)).

We conclude this section by noting that Eq. (44) provides us with the Finslerian
analogue of the geodesic tractography method previously proposed in the Rieman-
nian setting for DTI. We stress that it will likewise need to be complemented
with a way to sift geodesics into fibers and non-fibers, either deterministically or
probabilistically. The Finslerian analogues of the connectivity measures proposed
by Astola et al. [10] are quite straightforward.

2.8 Lagrangian Versus Hamiltonian Frameworks

The non-singular Riemann-Finsler metric enables the same kind of index gymnas-
tics in Riemann-Finsler geometry as the Riemann metric does in the Riemannian
case. In particular we have the “velocity”–“momentum” (or Px–q) duality expressed
by the equations
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qi D gij.x; Px/ Pxj and Pxi D gij.x; q/qj ; (45)

in which the dual Riemann-Finsler metric has now been prototyped such that

gik.x; q/gkj.x; Px/ D ıi
j ; (46)

assuming the aforementioned relationship between Px and q. Note that, unlike in
Eq. (18), the dual metric tensor has been expressed as a function of momentum, not
velocity.

The foregoing formulation of the theory, with geometric quantities expressed as
functions of position x and velocity Px, is known as the Lagrangian framework. The
alternative formulation, in which the velocity variable is replaced by momentum q,
is known as the Hamiltonian framework. The connection between the Lagrangian
and corresponding Hamiltonian frameworks is particularly elegant in Riemann-
Finsler geometry, in which the Hamiltonian function (or dual Finsler function) is
given by

H.x; q/ D F.x; Px/ ; (47)

again assuming Eq. (45) to hold. As a consequence, the dual Riemann-Finsler metric
tensor plays a similar role in the Hamiltonian framework as the Riemann-Finsler
metric tensor does in the Lagrangian framework.10

The physical interpretations of the dual formalisms differ and depend on context.
The Lagrangian formalism highlights the role of geodesic congruences, families of
geodesics viewed as “particle trajectories”, for which the vector variable Px expresses
“particle velocity”. In the Hamiltonian formalism one considers “wave phenomena”
induced by such geodesic congruences, in which case the covector variable q enters
as “wave momentum”, which, by definition, is the normal along which wave fronts
propagate. Recall that in anisotropic media wave fronts induced by the interference
of the disturbances caused by individual particles do not travel in the same direction
as the particles themselves (cf. Huygens’ principle, [61]). This is expressed by
Eq. (45), as the (dual) metric is not necessarily diagonal.

2.9 Indicatrix and Figuratrix

The indicatrix at a fixed point x is the level set, or “glyph”, of the Riemann-Finsler
unit sphere, F.x; Px/ D 1, or, by virtue of Eq. (14),

gij.x; Px/ Pxi Pxj D 1 : (48)

10One sometimes reserves the terms Lagrangian and Hamiltonian for the squared Finsler and dual
Finsler function. The associated “energy” functionals are not parametrization invariant.
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The figuratrix at a fixed point x is the Hamiltonian counterpart, i.e. the level set
given by H.x; q/ D 1, recall Eqs. (4) and (8):

gij.x; q/qi qj D 1 : (49)

One can show that, as a result of zero-homogeneity of the Riemann-Finsler (dual)
metric tensor, both indicatrix as well as figuratrix represent convex glyphs.

A convenient interpretation of these structures is obtained by “freezing” the
(co)vector argument of the Riemann-Finsler (dual) metric tensor in Eqs. (48) and
(49), so that one ends up with (parametrized) quadratic forms. These are known as
the osculating indicatrix and osculating figuratrix, respectively:

gij.x; Px0/ Pxi Pxj D 1 ; (50)

gij.x; q0/qi qj D 1 : (51)

One could think of these as gauge figures of a parametrized family of inner products
on the tangent, respectively cotangent space of the spatial domain, each direction
(specified by Px0 or q0) having its own unique instance. The Cartan tensor, Eq. (16),
plays the pivotal role in relating the individual members of such a family.

In the DTI/Riemannian case the coefficients in Eqs. (50) and (51) are independent
of the orientation parameters, so that each point in space has an unambiguously
defined ellipsoidal shape representing the entire family. Indicatrices have been
widely adopted in DTI visualization [62]. They might also be useful for our general
case, although by their convex nature they are not likely to reflect the rich amount
of information contained in a general Finsler function very clearly. A slick selection
of osculating indicatrices might in that case prove more insightful.

2.10 Covariant Derivatives

The horizontal and vertical one-forms given by Eq. (38) can be used as a basis for
decomposing the covariant differential of an arbitrary tensor field on the slit tangent
bundle. For simplicity consider

T .x; Px/ D T i
j .x; Px/

@

@xi
˝ dxj ; (52)

and

rT .x; Px/ D .rT /i
j .x; Px/

@

@xi
˝ dxj : (53)

Then each component on the r.h.s. is a one-form, and can thus be written as a sum
of horizontal and vertical one-forms. By definition,
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.rT /i
j .x; Px/ D T i

j jk.x; Px/ dxk C T i
j Ik.x; Px/

ı Pxk

F.x; Px/
: (54)

By evaluation on the corresponding dual basis, Eq. (37), one obtains

T i
j jk.x; Px/ D ıT i

j .x; Px/

ıxk
C T `

j .x; Px/� i
`k.x; Px/ � T i

` .x; Px/� `
jk.x; Px/ ; (55)

T i
j Ik.x; Px/ D F.x; Px/

@T i
j .x; Px/

@ Pxk
: (56)

Equations (55) and (56) are the components of the horizontal covariant derivative
and the vertical covariant derivative of the tensor field, respectively (relative to the
Chern-Rund connection, recall Eq. (21)). Higher order tensors are treated similarly.
Their horizontal covariant derivatives will contain as many “correction terms”
involving the Riemann-Finsler � -symbols of Eq. (21) as indicated by their order.
Note the elegant similarity with the Riemannian case.

Some cases are particularly important, e.g. those involving the Riemann-Finsler
metric tensor or its dual. We have

gijjk.x; Px/ D 0 ; (57)

gijIk.x; Px/ D 2F.x; Px/ Cijk.x; Px/ ; (58)

gijjk.x; Px/ D 0 ; (59)

gijIk.x; Px/ D �2F.x; Px/ C
ij
k .x; Px/ : (60)

The Kronecker tensor is covariantly constant both horizontally as well as vertically:

ıi
j jk D 0 ; (61)

ıi
j Ik D 0 : (62)

Thus, unlike in the Riemannian case, the Riemann-Finsler metric tensor is covari-
antly constant only along horizontal directions, whereas its behavior in vertical
directions is governed by the Cartan tensor (the covariant derivative is said to be
“almost metric compatible”).

3 Conclusion and Discussion

Riemann-Finsler geometry naturally extends the Riemannian rationale used in the
context of DTI to general dwMRI representations. It can be equivalently approached
from a Lagrangian or Hamiltonian perspective, although the latter appears to be
most closely related to the physics of dwMRI acquisition and its underlying model
in terms of a generalized mono-exponential Stejskal-Tanner equation.
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We have pointed out its potential application to voxel classification based on the
Cartan tensor and related quantities, and to dwMRI tractography by deriving the
corresponding Finsler geodesic equations, without the quadratic restriction inherent
to the DTI model, yet retaining quadratic scaling in the magnitude of the gradient
magnetic field. Although this does not cover the general (multi-exponential and/or
non-homogeneous) case, the conditions for and limitations of this conjecture, and in
particular the added value relative to DTI, diffusional kurtosis imaging (DKI), and
(other) HARDI schemes, are worthwhile investigating. Future work will concentrate
on this, on the reconstruction of the (dual) Finsler function and related quantities,
and on experimental validation of Finsler tractography and voxel classification as
advocated in this chapter.

Appendix: Horizontal and Vertical Splitting

We may consider the partial derivatives with respect to xi and Pxi as coordinate
vector fields on the tangent bundle TM, and consider the effect induced by a change
of coordinates of the base manifold M, x D x.�/ say. Since Px is a vector, this
induces the following vector transformation law for its components Pxi expressed in
terms of its new components, P�p , say:

Pxi D @xi

@�p
P�p ; (63)

or, equivalently,

@

@ P�p
D @xi

@�p

@

@ Pxi
; (64)

so that, by construction,

Pxi @

@xi
D P�p @

@�p
: (65)

As a result,

@

@�p
D @xi

@�p

@

@xi
C @2xi

@�p@�q
P�q @

@ Pxi
: (66)

Given the definition of the horizontal vectors, Eq. (22), and of the nonlinear
connection, Eq. (23), it is then a tedious but straightforward exercise to deduce that

ı

ı�p
D @xi

@�p

ı

ıxi
; (67)

similar to the vector transformation law for the vertical components, recall Eq. (64).
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Likewise one has the covector transformation law for the components of the
horizontal and vertical one-forms, recall Eq. (33):

dxi D @xi

@�p
d�p ; (68)

respectively

ı Pxi D @xi

@�p
ı P�i : (69)

The “natural” transformation behavior expressed by Eqs. (64) and (67)–(69) moti-
vates the definitions of horizontal and vertical vectors and covectors in Sect. 2.6.
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