Sharpening Fibers in Diffusion Weighted MRI
via Erosion

Thomas C.J. Dela Haije, Remco Duits, and Chantal M.W. Tax

Abstract In this chapter erosion is generalized to the space of diffusion weighted
MRI data. This is done effectively by solving a Hamilton-Jacobi-Bellman (HJB)
system (erosion) on the coupled space of three dimensional positions and orienta-
tions, embedded as a quotient in the group of three dimensional rigid body motions.
The solution to the HIB equations is given by a well-posed morphological convo-
lution. We present two numerical approaches to solve the HIB equations: analytical
kernels, and finite differences. Proof of concept is given by showing improved
visibility of major fiber bundles in both artificial and human data. Furthermore, the
method is shown to significantly improve the output of a probabilistic tractography
algorithm used to extract the optic radiation.

Keywords Diffusion weighted MRI ¢ Erosion * Hamilton-Jacobi-Bellman equa-
tions ¢ Lie groups * Regularization ¢ Sharpening * Sub-Riemannian ¢ Geometry

1 Introduction

Diffusion Weighted MRI (DW-MRI) is a collection of magnetic resonance imaging
techniques used to infer structural information from fibrous tissue such as the brain
white matter. DW-MRI locally measures diffusion [46], the random motion of
molecules, in one or multiple directions. Because this motion is less constrained
along the fiber direction than across, these measurements effectively characterize
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tissue orientation. A prevalent means to analyze this data is tractography, which
tries to join locally registered fiber fragments based on their alignment, producing
fiber tracts that potentially represent nerve bundles. A simpler application of DW-
MRI is for instance the diagnosis and assessment of stroke, where swelling of the
cells appears to hinder diffusion significantly [51].

1.1 Diffusion Weighted MRI

Interpretation of the diffusion measurements is an area of active research. A variety
of models have been suggested to extract diffusion features, the most common
of which is Diffusion Tensor Imaging (DTI) [2, 4, 34, 36]. In DTI, the measured
diffusion in a number of directions n € S? after a time ¢ is assumed to satisfy
an anisotropic Gaussian distribution. The space S? is the ordinary sphere given
by the collection of x € R? that satisfy ||x|| = 1. A symmetric, second order,
three-dimension tensor D(x) is estimated at each spatial point x € R3, such that the
local amount of diffusion p(n|x) in the direction n is given by [1]
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More complicated models such as the diffusion orientation transform [39] use
more measurements to reconstruct this p(n|x), called the Orientation Distribution
Function (ODF), with fewer model assumptions [28].

From the measured ODF, which gives the diffusion likelihood in a certain
direction given a position, we find the likelihood at any combination (x, n) from

p(x,n) = p(n|x)p(x), ()

where p(x) is an a priori distribution on position space only, and (x,n) — p(x,n)
is a spatial distribution of diffusivity profiles. A typical function description of p(x)
would be the normalized indicator function p(x) = 1}‘3—;"), where 2 C R? is the
region of the brain that contains the white matter, and p is the measure.

Diffusivity profiles are typically visualized by morphed spheres called glyphs.
The diffusion likelihood p(x,n) determines the radius of the sphere at x in the
direction n.

1.2 Enhancement and Tractography

While DW-MRI is unique in its ability to measure the microstructure of the brain in
vivo, it has some notable drawbacks. The scanning time, primarily determined by
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the number of directions needed to reliably fit a certain model, can be in the order
of hours for the more complex scanning protocols [52]. Decreasing the number
of scanning directions generally decreases the reliability of a fit. Secondly, the
scanning time is usually minimized by utilizing very fast imaging sequences such as
the echo-planar imaging sequence. These invariably result in noisy data, resulting
in a less reliable signal.

The consequences of this are apparent. While the obtained glyphs will still gener-
ally point in the directions of the major fiber bundles at each point, simply looking
at the local maximum likelihoods is often not enough to reliably determine these
directions. Following the emergence of the tractography methods that are based
on these directions, the importance of enhancement techniques in neurological
applications pertaining to tractography grew [7-9,40,47—49].

1.3 Sharpening

Difficulties still remain though, as enhancement inadvertently lowers the level of
detail and contrast. To remedy this, one typically uses sharpening methods that
emphasize prominent features by attempting to increase contrast at interesting
points in the data, typically edges. Previous attempts to sharpen DW-MRI data
sets [16, 25, 26, 29, 38] have primarily focused on angular sharpening, i.e. the
sharpening of each glyph individually. Promising results have been obtained, but
by only considering angular sharpening one by definition ignores the available
spatio-angular information. Secondly, many of the proposed methods are based on
deconvolution, a process which is in principle ill-posed.

In this article we outline a well-posed alternative based on grayscale morphology,
extending well established works [6,50,53] on R? to the space of diffusion images.
By defining an erosion operator for DW-MRI we can slim fibrous structures in the
spatial and the angular domain simultaneously. To improve reliability, we take into
account the context: if a glyph and its neighbors are aligned, then the likelihood
that the direction of alignment is equal to the direction of the nervous fiber bundle
is increased. This is illustrated in Fig. 1. Contextual processes have previously been
shown to be useful in enhancements [13,18,20,41-43].

Our framework relates to the general framework of group morphology [44]
applied to the group of three dimensional rigid body motions SE(3). In addition
to Roerdink [44] we rely on scale-space PDE’s whose solutions are given by a
morphological convolution with the corresponding Green’s function. Furthermore,
we extend the morphological group convolutions on SE(3) to morphological
convolutions on the quotient SE(3)/({0} x SO(2)), see Sect.3.3.1.
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Fig. 1 If we take into account only the local diffusivity profiles, then both of the orientations
indicated by the red bars would be considered equally correct (a). If we take into account the
context however, here illustrated by the blue glyphs, we will see that in (b) the orientation given by
the green bar seems more likely to be correct than the red one. This information can be exploited
to improve the results of contextual operators

1.4 Outline of the Article

The article is structured as follows. Section 2 presents a summary of previously
published theory, which is used in Sect.3 to define the erosion operator used to
sharpen the DW-MRI data. This section also covers implementation issues. Some
practical uses of the erosion operator are lastly given in Sect. 4.

2 Interpreting the Data

We will consider the diffusion images as (twice differentiable) functions on the
space of positions and orientations R? x §2, i.e. U € C?*(R3 x §2,R™), where
U(x,n) = p(x,n) as defined in Eq. (2). To grasp the structure of this space, we must
realize that the spaces of positions and orientations are coupled. This can be argued
from the concept of alignment, which is impossible to define on the decoupled
space, as demonstrated in Fig. 2.

In this section we will show that by embedding the space R? x S? as a quotient
in the special Euclidean group, we can not only make this idea of a coupled space
concrete, but we can also impose in a straightforward way operator invariance
under rotations and translations. Once we have clarified the natural group structure
embodying R* x S2, we continue by defining the Euclidean-invariant moving frame
of reference and the accompanying legal metrics. These metrics will be used in the
next section as the basis for the erosion process. To keep the length of the article at
bay, many of the details and proofs are omitted. A more extensive overview of the
theory is available [20].
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R3 x §2 ———

Fig. 2 An illustration in the space R3 x S§2 of the coupled nature of alignment. The situation
sketched in (a) shows three glyphs and their main directions, with the blue and the green glyphs
visually more aligned than the blue and the red glyphs. The bars that indicate the main directions
are elements of the space of positions and orientations R* X S2. If we now consider projections
onto the subspaces R? and S? separately (b and ¢ respectively) as we do when we consider R® x S2
as a Cartesian space, we see that we lose the ability to distinguish between the green and the red
bars. This is essentially due to the fact that the spatial and angular distances between the blue and
the green bar are equal to the respective spatial and angular distances between the blue and the red
bar

2.1 The Group Structure and Euclidean-Invariance

As stated above, the manner in which to define this elusive coupling follows
naturally from the embedding of R x S? into the special Euclidean group SE(3)
of three-dimensional translations and rotations. Elements of SE(3) = R? x SO(3)
are of the form (x, Q), and the set is endowed with the group operation

x QK. 0) =(0xX +x0.0).

The group of 3D rigid body motion is commonly denoted by SE(3). Intuitively, the
group product represents the fact that a concatenation of two rigid body motions
((x, Q) and (x’, Q’)) is again a rigid body motion with translation vector Q.x’ + x
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and rotation matrix Q Q’. The Special Euclidean motion group is the semi-direct
product R* x SO(3) of the translation group R*® and rotation group SO(3). This
is not a direct product as the rotation part affects the product in the position part.
Therefore one writes SE(3) = R? x SO(3) instead of R?® x SO(3). As we will see
next, this semi-direct product structure is responsible for a coupling between spatial
and angular space, in the space R® x §? embedded in SE(3).

The embedding is realized by identifying the elements of R* x S? with the
elements of SE(3). We do this by defining the intermediary space

R® x S? := SE(3)/ ({0} x SO(2)),

where we identify SO(2) with rotations around the vector e,. As a result, elements
of R? x S? are equivalence classes of SE(3) under the equivalence relation

x0)~X,0) & (x = x' and Jpep2m Q = Q’.Qez,a) , 3)

with Qe o a rotation by angle o around e,. Each equivalence class [(x, Q)] =
{x', Q") € SE(3)|(X, Q") ~ (x,Q)} can be uniquely identified with an element
of R? x §2, using the relation

R?® % 82 3 [(x, Qn)] <= (x.n) € R® x §?, ()

where Qn.e. = n. The explicit relation between elements of SE(3) and R3 x S? is
then given by

SE(3) 3 (x, Q) < [(x, Q)] € R* x §2, 3)

where it should be noted that any two distinct elements (x, Qn), (X', Q1) € [(X, On)]
are both mapped to the same equivalence class [(x, Qy)], meaning this relation is
not one-to-one. An overview of this embedding is presented in Fig. 3, and details on
the parametrization of these spaces can be found in section “Parametrization of the
Special Euclidean Group”.

2.1.1 Relating Functions on the Group to Functions on the Quotient

To distinguish functions on SE(3) from functions on R? » §? and R? x §? (which
are homeomorphic), the former are denoted U instead of U:

U:SE(B)—>R": (x,0)~ U(x, Q).

Following Eqs. (4) and (5), we identify U with a function U : R?x §? — Rt
according to
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(x,n)

\ 4 \ 4
R? x 2 RS x §2 = SE(3)
SE(3)/({0} x S0(2))

Fig. 3 The quotient R® x S? consists of equivalence classes of SE(3) and is homeomorphic to the
original space of diffusion images R* x §?

U(x.n) = U(x, Qn).

- (6)

Ux, Q) =U(x, Q.e),
for all x € R? and all Q € SO(3). Recalling Eq. (3), we note that identification
is unique if and only if we restrict ourselves to functions on the group with the
following invariance property:

Ux,0) =U(x. 0.0c.0). 7)

for all @ € [0, 27). If this requirement is not met there is no logical way to choose
a function value out of {U(g) | g € [(x, On)]} to assign to U(x,n). The fact that
operators on functions on SE(3) have to preserve this property for the resulting
functions to be properly defined on the quotient limits the set of possible functions,
as will be discussed in the next section.

2.2 Operator Legality

If we want to define well-behaving operators on functions on R? x S, it is good
practice to impose Euclidean-invariance, i.e. invariance of the operator with respect
to translations and rotations. Since all operators will first be defined on SE(3),
operators are additionally required to be «-invariant, a necessary property that
follows from Eq. (3) and that ensures a unique relation between operators on SE(3)
and R? x 2. To define these invariances we define the left- and right group actions

Lg:hv— Lg(h) = gh,
Rg :h— Rg(h) = hg,
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and the corresponding operators on a function U by

(ZLyoU)h) = (U oL h)=U(g'h),
(Zy 0 U)(h) = (U o Ry)(h) = Ulhg).

for all g,h € SE(3) and with o function composition. .Z and &% are respectively
called the left- and right-regular representations, as they satisfy

Lo L = Lon and BTy = R

for all g, h € SE(3).

2.2.1 «a-Invariance

In order to ensure that operators @ acting on functions on the group respect
the quotient structure depicted in Fig.3, we must impose invariance under an
additional rotation Qe , from the right. Recall again Eq. (3). This a-invariance is
the operator-equivalent of Eq. (7), and requires essentially that any operator & must
satisfy

Ryod =@ (8)

forall g = (0, Qe.o) € ({0} x SO(2)).

2.2.2 Left-Invariance

Euclidean-invariance now can be achieved by imposing invariance with respect
to either left-regular representations (left-invariance), right-regular representations
(right-invariance), or both. It turns out that only .%, is ¢-invariant, which along with
arguments presented in the PhD thesis of Franken [27, Sect.7.4.3] shows that for
this case only left-invariance should be considered. Hence the invariance-imposed
restriction is that every operator @ acting on a function U must commute with Z
for all g € SE(3):

DoLy=Y0d. )

This requirement immediately guarantees Euclidean-invariance of the correspond-
ing operator @ defined on R* x S? by means of Eq. (5).
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2.2.3 Legal Operators

Operators on functions defined on SE(3) are called legal if they correspond uniquely
to well-defined operators on R? x S2, meaning they satisfy both Egs. (8) and (9).
Note that any concatenation and linear combination of legal operators is again legal.

2.3 The Moving Frame of Reference

We now define for each pair of a position and an orientation (x,n), a local frame
of vectors aligned both spatially and angularly with n. This enables us to define
derivatives in a coordinate frame relative to (x,n), which ultimately allows us to
define erosion at x towards fibers oriented along n. As we do this for all (x, n) in the
data set (x,n) — U(x, n), we can erode towards likely fibers present in the data.

As we have identified R? x §? with SE(3), this frame can be expressed conve-
niently on the group SE(3) first. From a geometrical point of view, this boils down
to the definition of a moving frame of reference on the manifold SE(3), which is
simply a collection of vector fields that span the tangent spaces at each point on
the manifold. The erosion operator that we will define in the next section will be
expressed in terms of these vector fields.

Remark 1. Vector fields can always be considered as differential operators on
locally defined smooth functions [3].

Because we plan to use the moving frame to define an erosion evolution, it is
convenient to already incorporate left-invariance. That way any linear combination
of these vector fields will be left-invariant as well, meaning we will only have to deal
with a-invariance in order to assure legality. The left-invariant vector fields can be
generated from any basis of the tangent space at the unity element (the Lie algebra).
Here we will adhere to the following basis vectors at the unity element e = (0, 1):

A= ax|27 Ay = 8y|e’ Az = 8z|ev Ay = a)7|e, As = ag|ev Ag = a&|e,

where 0. | gU = g%(g) = 0;| gU , and where the variables of differentiation come
from the second parameterization chart given in section “Parametrization of the
Special Euclidean Group”. Writing 7|, for the ith basis vector at g € SE(3),
we obtain the left-invariant vector fields through the push-forward of the left group

action [10] (Fig. 4),
F|U = (L)« (A4))U = A;(U o Ly).

The dependence of the tangent vectors (and their duals) on the group element g will
from hereon be omitted for readability where possible.
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Fig. 4 A schematic representation of the five primary local frame vectors. Movement in the
direction of % produces a simultaneous rotation of <7; and 2% around %, and of <7, and <7
around n = .o7;. Since all functions we consider satisfy Eq. (7), %l} = 0. Because of this o7 is
not illustrated, but it may be envisioned in the figure as the normal to the plane span{.<,, <%}

Remark 2. Note that since we have defined Q,.e, = n, the spatial generator
| x,0,) 1S always aligned with n, i.e. n'd, + n28y + 13, = 5| (xn) Where
(nlvnz»n?))T =nand (x, y,z)T = X.

Remark 3. Inboth charts, we have that the final angles & and & are in fact redundant,
cf. Eq. (7) and the appendix.

The stated definition of the left-invariant vector fields may also be obtained by
taking the derivative of the right-regular representation %, cf. [18] which gives the
alternative, more manageable expression

U(ge) —Ulg)

; (10)

10 = (@7(4)0)(g) = lim
Here the exponential map takes a vector in the tangent space at e to an open subset
£2, of the manifold around e, i.e. exp : T,(SE(3)) — $2., see Fig.5. As it can be
shown that this maps T,(SE(3)) bijectively onto SE(3), we may take 2, = SE(3).
Explicit expressions for the left-invariant vector fields, their duals, the exponential
map, and its inverse, can all be found in previous work [21].
The corresponding frames on R* x S? are given by Duits et al. [20]

AAU(X, ) = limy o Lo Cacs W=000)

HU(x,m) = limy, U(x+hQ"eZ'n)_U(X'n)

AU(x,n) = limy, —U(XHQ“ei;’n)_U(x’")
MU(X, l’l) — hmhiO U(stnQexhhez)_U(Xs“)

U(X,0n Qey hex)—U(x,n)
h

@sU(x,n) = limy o

This definition will be used for the implementation, but we will for now continue
with the vector fields {.<7 }¢_, defined on SE(3).

i=1
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T. (SE@3))

Fig. 5 A simplified diagram of the algebraic structure discussed in this chapter. The bent surface
represents SE(3), with the unity element e indicated by the red dot. The tangent surface 7, (SE(3))
is the set of the Lie algebra, with the basis {4; }$_,, of which for obvious reasons only the first two
are shown. The green arrow is a random tangent vector ¢’ (x, Q)A4; at the unity element, where

¢l (x, 0)4; =5 (x, Q)

Remark 4. Note that {7 }3_, are well-defined vector fields on R* x S? but not on
R3 % S?, since {7, }ief1.2.4,5y depend on the redundant angle o.

2.4 Legal Metrics

The left-invariant vector fields induce a set of metrics on SE(3). By definition, any
metric on SE(3) can be written in the form

6
Glxo) = Y_ £ (x.0Q) 0'|xo) ® 0’ |x0)- an

ij=1

Here '|x,0) denotes' the dual of the ith basis vector of the tangent space at

(x, Q) € SE(3), with the defining property

6
E cla; | =c'.
j=1

The coefficients {g;; }f. ;=1 represent the relative penalty associated with moving in
the corresponding direction <7}, and are subject to the constraint”

[g;j] = diag(D'', D', D, D*, D* D*)~!, D' e RT, (12)

n previous work we wrote d o7’ i for the dual vectors, but to avoid possible confusion with the
exterior derivative operator we use @' here.

2We take here D'’ to be constant. This is not strictly necessary, and taking D'/ (U) can in fact be
useful [20].
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Fig. 6 An example of the use of a sub-Riemannian metric. By prohibiting motion perpendicular
to the fiber fragment, we find a distance measure that allows us to distinguish between the aligned
and the misaligned glyph of Fig. 2. The dotted lines are projections of two (estimated) solutions to
Eq.(13) onto R3 x §?

so as to ensure legality [20]. Since any movement along 2% can be considered null
(see Remark 3), we neglect D.

As an example, assume that D3 = D* meaning the distance increases
equally with an equal movement in either .23, <7, or o7. Furthermore, we prohibit
movement in the directions .27 and .2 by taking D!! | 0. Note that this implies
infinite cost for movement in the plane span{.e7|, 2%}, perpendicular to the spatial
propagation direction .o/5. This last decision means we are now considering a
distance on a sub-Riemannian manifold [5] B := (SE(3).ker{w'} N ker{w?} N
ker{w®}, Y0_, (D“)_1 o' ® w'). The distance between two points g;, g, € SE(3),
and the corresponding distance in R x §2, is then given by the shortest smooth
connecting curve y : [0, L] — SE(3) defined on B (Fig. 6):

L 1 -3 1 -4 .5
d(gy, = inf /\/—_s2+—_s2+_s2ds.
(81, 82) et o ) VDR )+ 5 (7))

PO =g L) =g
76 =70 =76 =0

13)

While this illustrates the possibilities of the presented theory, it is an entirely
different optimal control problem [15] than the one needed for sharpening. Below
we will use another configuration of parameters, giving rise to a different sub-
Riemannian manifold and metric tensor that when used to generate an evolution
equation, results in the R® x S2-analogue of typical spatial erosion evolutions.

2.5 Overview

In summary, we have argued that DW-MRI data sets should be considered func-
tions on the coupled space R x S2, whose natural group structure follows from
embedding the space in the group of three dimensional rigid motions SE(3). By
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posing that operators on DW-MRI data should be invariant under rotations and
translation, and need to satisfy «-invariance, Eq.(8), we defined a requirement
for operators to be ‘legal’. We then proceeded to describe a left-invariant moving
frame of reference on SE(3), which allows us to look at the data as if attached to
a local fiber fragment. This moving frame is then used to describe the range of
possible legal metrics, which we can use in the next section to define the erosion
operator.

3 Erosion

At an elementary level, morphological operations on R” can be considered solutions
to a specific class of evolution equations [50]. Writing f : R" — R™ for the gray
value image and m : R” — R™ for the structuring element, the morphological
convolution i : R* — R that solves the erosion equation (which depends on the
structuring element m), is given by

h(x) = (f em) (x) := yilelﬂg [f(y) +m(=y +x)]. (14)

In case the structuring element satisfies the semi-group property [6, 53], the PDE
satisfied by £ dictates a morphological scale-space. If for example m is a quadratic
1
. . - 2\ Z=T
structuring element, i.e. of the form m,(x) = 22—,]1 (W) ", where n € (3,1]
and ¢ € R, then the size ¢ of the structuring element parameterizes a morphological
scale space [6,31,53] dictated by the evolution equation

Bih(x:1) = VA )2,
h(x:0) = f(x).

In generalizing these results to SE(3) we start from the premise that erosion is
described by one of the legal scale spaces that can be defined on that group. Similar
scale-spaces can be constructed [17] by employing the previously defined general
metric. This yields for g € SE(3) and t > 0

0 (g:1) = £ [GL (W (g:0).dW (g:0)] .
as)

W(g:0) =U(g).

where W (.; 1) is the function on the Lie group SE(3), initially given by the original
data U : SE(3) — R, dW(g:1) = 21_1 AW (g:t)w' is the gradient of W, and
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Fig. 7 A schematic showing the rationale behind the choice D3* = 0 when considering erosion.
Since <% is oriented along the fiber fragment, one prefers to erode only perpendicular to this
direction, as indicated by the blue circles. Note that the depicted fiber represents any potential fiber
passing through x with orientation n

G is the left-invariant metric tensor given in Eq. (11) with the coefficients D" € R*
as in Eq. (12). Different choices® for the coefficients result in different scale spaces.

3.1 Erosion Towards Fibers

Proper choices for D!', D3% and D* are easily ‘guessed’ from their relation to
the moving frame of reference. As illustrated in Fig. 7, erosion should transport data
surrounding a fiber (i.e. perpendicular to .27;) towards it, both spatially and angularly.
This means that we need to take D33 = 0 while D'! and D** are still free, and that
we should look at the minus case of Eq. (15). The resulting differential equation is
the Hamilton-Jacobi-Bellman equation

W (g:0) =~ [DM (AW (g:00)° + (W (g:0))°) +
DH (AW (8300 + (AW (2:0))]' (16)

W(g;0) = Ul(g),

with again n € (%, 1]. The proof showing that this evolution equation can be solved
by a morphological convolution,* and can thus be qualified as an erosion, is fairly
technical and will not be given here, but can be found online [20].

3The values allowed for the coefficients are subject to the Hormander requirement [30] which
guarantees smooth non-singular scale spaces. Proofs that the evolutions presented here satisfy this
condition are available [20].

4The morphological convolution is in fact the viscosity solution to the morphological scale space,
similar to the same problem on R” [11,24] and on the Heisenberg group H (n) [35].
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In complete analogy to the problem in R”, there exists a structuring element, or
kernel, IE[D”'DM : SE(3) — R™, such that

~ ~ ~nll 44
W(g:t) = (U esm kP 2 ) (g).

with Sgg3) denoting the SE(3)-counterpart to the erosion operator defined in
Eq. (14), given by

~ ~pll pa . ~ ~pll p# .
(0 Ssecy K" g) = ik [0 + PP 0t ] )

which fits in the framework of group morphology [44]. As shown in other work [6,
~nll 44
19], ktD D7 s the morphological Green’s function, which may be approximated by

N
P 2n—1
3)2 62 124 (c2)2 424 (c5)2
1 (Cz\/D(IL12)44 D(“L“L))“ <(( )DII(L ! i )D4§L ! ) )

2n tznli—l 7
(18)

~nll 44
kPP (g)

where we use short-hand notation {c’}*_, = {c'(g)}°_, coming from the logarithm
on SE(3), cf. Fig.5, of which explicit expression can be found in section “The
Logarithmic Map”. The constant C € (0,2] comes along with the Heisenberg
approximation technique [22, 37] used in deriving the expression, and can be
considered a simple reparameterization of 7. A direct consequence of the fact that
the erosion operator on SE(3) is a solution to Eq. (16), is that the morphological
convolution given satisfies the semi-group property, i.e.

~ ~ 1l s ~ 1l pad ~ ~nll 44
((U Ssea) k2 P7) Oseey kP )(g) = (U ©se3) kSDJr[D )(g)

A fairly basic example of erosion is shown in Fig.8b, where a column of
aligned glyphs is surrounded by glyphs with random orientations. The operation
significantly decreases the function value for misaligned fiber fragments.

3.2 Minimum Reduction

One property the DW-MRI erosions inherited from the regular R” morphological
operations, is that bounds on the function given by the extrema are retained.
Erosion decreases values that lie near a minimum, but as follows from the fact that
the solutions are given by a morphological convolution, they will always remain
between the global minimum and maximum. While this guarantees well-posedness
and stability with respect to the IL°°-norm (in contrast to for instance deconvolution
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Fig. 8 A basic example of erosion with manually selected parameters (A7 = 0.02, D'' = 0.5 and

D* = 0.02). (a) A slice of an artificial data set containing a number of aligned glyphs, surrounded
by randomly oriented glyphs. (b) The data from (a) after erosion, with t = 3 and n = 0.75. (¢)
The data from (a) after min-normalization and erosion, with # = 4 and n = 0.65

operators), the drawback of this is that we can not decrease minima even if they
seem to be misrepresentative of the local structure. We have previously attempted to
resolve this by min-normalizing the data before eroding [14,20]. min-normalization
vmin Of a data set U : SE(3) — R™ is defined as

Vmin(0)(x,m) = U (x,n) — min{U (x,n’)|n’ € S2}. (19)

The effect of this operation on subsequent erosions is depicted in Fig. 8c. The
normalization essentially increases the contrast per glyph, effectively sharpening
the data angularly.

A more prevalent approach to angular sharpening in the literature is the (/ —
aAp) operator, which subtracts the result of the Laplace-Beltrami operator Ajp
scaled by a € R from the original data:
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vig(U)(x.n) = U(x,n) — a(ApU)(x. n). (20)
In our framework, the Laplace-Beltrami operator is given by
Arp = (A4)? + (5)° + (),

where the last term can of course be neglected as we have ()20 = 0, recall
Remark 3.

Remark 5. The Laplace-Beltrami operator is a legal operator, as the o dependence
of 7, and @7 cancels out in Eq. (3.2).

3.3 Approximating Solutions

We have considered two different approaches to implement erosions for DW-MRI
data. The first one is based on the group-convolution with the approximation of the
Green’s function, Eq. (18), while the second one directly discretizes the Hamilton-
Jacobi-Bellman equation that governs erosion, Eq. (16). Both the implementations
are included in a Mathematica package available for academic purposes at www.
bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip. Details of the
implementation are briefly outlined below.

3.3.1 Convolutions

In order to approximate the solutions to the erosion equation, we can choose to
compute the morphological convolution of Eq. (17) using a discretized version of
the erosion kernel. Since we know that due to «-invariance the kernel will be
independent of any variation in the redundant angle & (or « in the first chart,

section “Parametrization of the Special Euclidean Group”), we can reduce the
convolution on SE(3) to

(kPP Sgas: UN(g) := int [0 + k27" 07 g) .
heR3xS2

11 44 ~nll 44
where we define the kernel ktD DT R3 x 2 5 RT in terms of ktD D by
D”,DM . ~D11,D44

k, (x,n) :=k; (X, On),

for any Q,, such that Q,.e; = n.


www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip
www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip
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3.3.2 Discretizing the Problem

Alternatively we can discretize the scale-space equation directly. The initial condi-
tion W(g;0) = U(g) of course remains, and the left-hand side of the differential
equation becomes

W(g:it +dit) = Wi(git) _ Wi(git + A1) — W(g:1)
dt - At

W(g:t) = li
W (g:1) 50
with At small, resulting in the incremental algorithm

n

~ ~ 1 -~ ~
Wigit+ A = W(gio) £ Aty [GL (W (g:0). W (5:10) |

In the specific case we are considering here (see Sect. 3.1), we thus get
W(gst + Aty = W(gs1) — At 5 [DM (AW (g50)* + (AW (g51))%) +
D (AW (g:0))* + (W (g30))]".
W(g;0) = Ul(g),

for g € SE(3), and where we still need to discretize the derivative .o7;. At this point
we return once more to the space R x S? by means of the identification in Eq. (6):

W(x,n;1 + Ar) = W(x,n;1) — Aty [D' (A W(x, ;1)) + (AW (X,n;1))?) +
DH (AW (x,m50))> + (AW (x,m;0)?)]",

W(x,n;0) = U(x,n),

We can follow the exact same procedure as before to get the stencils given in
section “Finite Difference Schemes”.

Remark 6. The spatial derivatives are in fact calculated using an upwind-biased
finite differences scheme, see the appendix.

3.3.3 Two Implementations

We distinguished between two implementations for morphological scale spaces:

1. Erosion via convolutions with the approximations of the morphological Green’s
functions given by Eq. (18).

2. Erosion via left-invariant finite-difference (upwind) schemes, of which the details
are provided in section “Finite Difference Schemes”.

As explained in detail in Sect. 2.1, the non-commutative nature of SE(3) leads to
a natural coupling in the space R? x S? of positions and orientations. As a result,
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neither implementation is separable in a spatial and angular part, excluding the
trivially separable cases where D* D!l = 0.
Generally speaking, the advantages of the kernel implementations are:

* They allow fast parallel algorithms via lookup tables and precomputed Green’s
functions, similar to implementations [43] of linear R? x S2-convolutions [18].

e They are unconditionally stable and directly related to viscosity solutions,
cf. [20].

* They involve less interpolation.

The advantages of the finite difference schemes are:

* They are much more flexible towards data adaptive extensions, cf. [14].
* They use efficient (short) stencils of interpolated finite differences, cf. [14].
* Do not involve analytic asymptotical approximations.

The implementations are complementary; the finite differences can be used
for accurate precomputation of the Green’s functions used in the convolution
schemes. Both implementations are included in the Mathematica package available
(for academic purposes only) at www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/
HARDIAIlgorithms.zip.

Remark 7. All of the erosions shown in this article have been obtained using the
finite differences approach. Note that apart from the scaling factor C of the time,
the two methods produce approximately the same results.

4 Preprocessing with Erosion

Qualitative improvement by erosion has been shown before [20], and is reiterated in
Fig. 9c. More interesting is the potential benefit of erosion for contextual operators.
Figure 9 also shows the use of erosion as a processing step preceding hypo-elliptic
diffusion [20].

As stated in the introduction, the most important contextual operators are trac-
tography operators. Probabilistic tractography algorithms cope with data uncertainty
by defining a distribution of fiber directions at each position [32,33], and generate
a large amount of pathways by sampling the directions around peaks of this
distribution. Sharp and accurate glyphs that are aligned with their context will result
in more reliable tractography. Alignment of glyphs is improved here by contour
enhancement processes [18]. Since these processes generally propagate oriented
particles in too many directions, an extra sharpening step is desired [20].

A challenging fiber bundle to extract is the optic radiation. This structure is part
of the visual system, and connects the Lateral Geniculate Nucleus (LGN) to the
primary visual cortex V1. The optic radiation has a curved anterior extent called
Meyer’s loop, which makes the fiber bundle difficult to reconstruct reliably. Other
fiber bundles in its vicinity further complicate delineation. Direct application of


www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip
www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip
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Fig. 9 A DW-MRI data set showing the corpus callosum and the corona radiata, before and after
enhancement. Note especially the significant improvement of the enhancement when preceded by
erosion. The enhancement was done using hypo-elliptic diffusion [20] with + = 3, At = 0.01,
D¥ =1, D¥ = 0.002 and K = 0.05. Erosion used t = 3, At = 0.1, n = 0.75, D!l =1
and D* = 0.002. All visualized data sets were min-normalized using Eq. (19). (a) A slice of
the min-normalized original data. (b) The data from (a) after diffusion. (¢) The data from (a) after
erosion. (d) The data from (a) after erosion and diffusion

the reconstruction of this bundle lies in the context of neurosurgical planning for
temporal lobe epilepsy. Meyer’s loop is often located close to the area that causes
epilepsy in these patients, and is disrupted during surgery. This can lead to visual
loss of up to a quarter of the visual field.
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To show the value of erosion as a preprocessing step for contextual enhancement
and tractography, we evaluated the reliability of pathways resulting from a proba-
bilistic tractography algorithm [45] both before and after erosion. The tractography
algorithm generates 10* tracts based on DTI data’ using a bootstrapping proce-
dure [23]. We score each pathway y : [0, L,] — R* according to how well they fit
the underlying data, obtained by evaluating U along the tangent vectors y = %y of
y [49]:

Ly .
Sur) = 7~ /0 log [M} ds. @1

v max U

where L, is the length of the pathway y, and s denotes arc length such that
y(s) € §2,i.e. |y(s)|| = 1. The data sets are divided by their global maximum for
the sake of comparison. The initial cost function U was obtained directly from the
diffusion tensors according to Egs. (1) and (2), where p(x) = 1(x) % is
proportional to the volume of the glyphs. The indicator function 1, is a white matter
mask obtained by a fractional anisotropy threshold. The entire scoring pipeline is
depicted in Fig. 10.

Figure 11 visualizes the 30, 3 and 0.3 % highest scoring fibers according to
Eq.(21) based on the unprocessed data U, the data U pre-processed using only
linear hypo-elliptic diffusion, and the data U after both erosion and diffusion. Before
any processing, the data is min-normalized.

The method is considered adequate when two conditions are satisfied: on the one
hand, the whole optic radiation should be visible (few false negatives), and on the
other hand all auxiliary fibers that are not clearly part of the optic radiation should
be removed (few false positives). Only when a critical percentage of highest scoring
fibers exists that satisfies both conditions, the method is able to give a reliable
reconstruction of the optic radiation. We see that only in the case that erosions are
included as a preprocessing step, such a critical percentage can be found. In Fig. 11c,
we satisfy the two conditions at 28.3 %. There a large portion of the additional
fibers falsely identified as part of the optic radiation (false positives) in Fig. 11a, b
are removed by the erosion step, which decreases the likelihood of the tracking
algorithm finding fibers that deviate strongly from the main fiber orientation.

If we replace the min-normalization with the more common (/ —a A g) operator,
we can again find a critical percentage at which the method can be considered
adequate, though this percentage lies a lot lower than before, at 0.4 %. See also
Fig. 12.

SKindly provided by the Kempenhaeghe Epilepsy Center in Heeze, the Netherlands.
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Fig. 10 The scoring pipeline. (a) In treating temporal lobe epilepsy, surgeons need to avoid the
optic radiation to preserve the patient’s vision. Tracking the optic radiation is challenging due to
nearby and crossing fibers. (b) The optic radiation connects the LGN (blue) and V1 (red). The
location of V1 is derived from functional MRI. Probabilistic tractography algorithms generate a
large number of tracts between the visual cortex V1 and the LGN. These tracts are scored to
filter out the optic radiation. (c¢) Enhancement: even with state of the art scoring, the tractography
produces a lot of anatomically implausible tracts. Preprocessing the DW-MRI data with erosion
and contextual enhancement greatly improves the segmentation of the optic radiation

5 Conclusion

In this paper we have demonstrated the benefits of erosion (well-posed sharpening)
as a pre-processing step of contextual processing of Diffusion Weighted MRI. To
this end, a Euclidean-invariant erosion evolution was defined on the space R3 x S2
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....
l.:'...
c...

Fig. 11 Tracts obtained from a DTI data set, scored according to differently processed data sets.
The hypo-elliptic diffusion has the following parameter settings: 1 = 3, At = 0.01, D3 =1
and D* = 0.01. Erosion has: t = 3, At = 0.1, n = 0.75, D' = 1 and D* = 0.02.
(a) Tracts based on the original data. (b) Tracts based on the data from (a), following min-
normalization and enhancement (hypo-elliptic diffusion). (¢) Tracts based on the data from (a),
after min-normalization, erosion, and enhancement

embedded as a quotient in SE(3). The final erosion operator is the mapping that
takes the initial condition of this evolution, generally the diffusion weighted image,
to the (viscosity) solution with fixed time ¢ > 0 of the evolution equation. These
erosions satisfy the semi-group property.
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Fig. 12 Tracts obtained in the same way as in Fig. 1 1c, though the min-normalization is replaced
by the minimum reduction technique of Eq. (20) witha = 0.3

We have presented two complementary numerical algorithms to compute the
erosion operator, an analytical kernel implementation and a finite differences
scheme, each with its own advantages.

We have shown the benefits of including erosions in contextual enhancement (via
hypo-elliptic diffusion [20]) of DW-MRI. The erosion operator has been shown to
visually sharpen the corpus callosum (the major fiber bundle connecting the two
hemispheres) and corona radiata which crosses this major fiber bundle radially. See
Fig. 9. Finally, we have shown that inclusion of erosions in pre-processing improves
subsequent tracking of the optic radiation fibers in the brain, which is relevant for
the planning of neurosurgery for epilepsy treatment [49], as shown in Fig. 11.

Parametrization of the Special Euclidean Group

Parametrization of the spatial part of SE(3) is usually done by Cartesian coordinates
and for the rotation part SO(3) of SE(3) = R? x SO(3) we use two charts. Firstly,
we use the standard Euler angle parametrization of the sphere given by

R = ReZsV Re,\hﬂ Rera ’
witha € [0,27), B € [0, 7], ¥ € [0, 27) and with R, 4 a counter-clockwise rotation
¢ around the vector v. The rotation axes are depicted in Fig. 13 obtained by applying

the rotation to the unit vector oriented along the z-axis. A point p € S? can be
identified with all rotations of e, such that

P = Rpe: =n(B.y). (22)

with R, any R that rotates e, to p and where n is the parametrization. The
parametrization is however ambiguous since
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a b

Fig. 13 The two different Euler parameterizations of SO(3) and S? = S0O(3)/SO(2). (a) ZYZ
parametrization. (b) ZYX parametrization

Rez,y Rey,ORez,a = Rez,y+8 Rey,ORez.a—S’
Rez,y Revv,n Rez,a = Re_m,y+8 Revv,n Rez,a—S s

for all § € [0,2x), and where R, Re, 0Re o and Re_y Re, 7 Re. o We consider a
second chart

with B € (-, 7], 7 € (=%.%), @ € [0,27), which has ambiguities atB = +£7,
cf. [18], see Fig. 13.

The first chart provides a diffeomorphism in an open environment around the
ambiguity points of the second chart, and vice versa the second chart provides a
diffeomorphism in an open environment of the first chart. A complete atlas of SE(3)
is thereby given by

(X, y,3q, :3» V) = (X, V.2, Rez,yRey.ﬂ Rez,a)y

(x.3,2,@.B.7) = (x, 5.2, Re, 7R, jRe.5)
and the corresponding complete atlas of R? x §? is given by

(x, 3.2, 8,7) = (x, 9,2, [Rp]) = (x,y,z,cos y sin B, siny sin B, cos f),
(x,y,z,,g, 7)) (x, 9,2, [ﬁp]) = (x,,z2, sin,é,—cos,gsin)?,cosﬁcos 7).
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The Logarithmic Map

Because SE(3) is a Lie group, the exponential map is linked to the matrix
exponentiation of a certain matrix representation for elements of 7,(SE(3)). Only
the resulting expressions are given here, while the derivations can be found in Duits
and Franken [18, Sect. 5.1]. The exponential map of a tangent vector ¢’ (x, Q)A4;,
using the short-hand notation ¢/ = ¢/ (x, Q), is given by

lle2[l? ez ]2

exp(ci A;) = ((1 4 1zcos lleall o + 1—TiHC|||02||_QZ) ¢y,

I + sinc (J|ea|) 2 + 1*00—5”02"92) ’

llez |12

where ¢; = ¢1(x,0) = (c',c2,cHT and & = & (x,0) = (¢* ¢, ¢%7, and
0 —cb ¢

with 2 = 2(x,0) = ¢® 0 —c* |. As the exponential map is invertible, the
-3¢t 0

logarithmic map (the inverse of the exponential map) can be derived

6
log(x. @) = ) _c'(x. Q)A;.

i=1

This equation can be solved to give expressions for ¢ in terms of the first chart,
resulting in

sin 8 (sino — siny)
sinf (cosa +cosy) |,

©@= 2 sinc (g)
1 2 cos? % sin(o + )

where we have § = ||¢;|| = arcsin \/cosz 0% sin? B + cos* g sin’(a + ), and

1 1 q g
co=|(1—=02+ = l—gcotg 22 -x.
2 G> 2 2

This last expression is retained when rewriting the logarithmic map in terms of
the second chart, but for g and ¢, we have

G = arcsin \/cos“ L sin® B + cos? g sin? 7,
S e
sin y cos

_ 1 .
€ = G | sin B cos

1
2

2

= T

sin y sin ,5
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Finite Difference Schemes

The finite difference stencils used in the Mathematica package are given here.
Writing Qv for a rotation by angle « around v expressed in the second coordinate
chart, we find the explicit formulas for the vector fields on R® x S given below.
hs and h, are respectively the spatial and angular step sizes. &, is typically 0.88,
see Creusen [12], while A, depends on the distribution of sample points on the
sphere. See Duits and Franken [18, Chap. 7] for the derivation of these formulas
from Eq. (10).

Remark 8. The use of single values for /; and &, relies on approximately equidis-
tantly sampled data.

The three different finite differences schemes considered are given below. Second
order derivatives are calculated by repeating the listed first order derivatives.

Central derivatives

A U(x,n) a L&+ Onern)—Ux—h; Oner.n)

2hy
%U(X, n) ~ U(x+hSQ“ey,n§;SU(x—hs Oney.n)
%U(X, n) ~ U(x+hy Qnez,n;;yU(x—l1S One;,n)
MU(X, n) ~ UX,0n Qe 1y €)—UX,On Qe —hy )

2hy,
U(x,0n Qey ha€)—U(X,0n Qey —hq€)
2h,

U(X,n) ~

Forward derivatives

folU(X n) ~ Ux+h QnE,\ n)—U(x,n)

%U(X n) - Ulx+hy Qne) n)—U(x,n)

%U(X n) ~ Ux+h Qne .n)—U(x,n)

hg

Backward derivatives

JZ%]U(X Il) . Ux.n)— U(x hs Oney,n)

JZfo(X Il) . Uxn)— U(x hs Oney.n)
.!%U(X Il) . Ux.n)— U(X hs One;,n)

s

For the spatial derivatives, a simplified version of the upwind biased scheme
is implemented in order to properly handle boundary effects. The scheme first
calculates the central derivative in every point. Then for every point, depending
on the sign of the central derivative, either the forward- or the backward derivative
is calculated. A positive value of the central derivative means a backward derivative
is calculated. The ensemble of forward- and backward derivatives in all points is
then the actual derivative. The angular derivatives are all calculated using central
derivatives.
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