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Abstract We describe a probabilistic technique for diagnostic prediction of
first-episode schizophrenia patients based on their brain diffusion MRI data. The
method begins by transforming each voxel from a high-dimensional diffusion
weighted signal to a low-dimensional diffusion tensor representation. Three
orthogonal diffusion measures (fractional anisotropy, norm, mode) that capture
different aspects of the local tissue properties are derived from this diffusion tensor
representation. Next, we compute a one-dimensional probability density function
of each of the diffusion measures with values obtained from the entire brain. This
representation is affine invariant, thus obviating the need for registration of the
images. We then use a Parzen window classifier to estimate the likelihood of a new
patient belonging to either group. To demonstrate the technique, we apply it to the
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analysis of 22 first-episode schizophrenic patients and 20 normal control subjects.
With leave-one-out cross validation, we find a detection rate of 90.91 % (10 % false
positives). We also provide several error bounds on the performance of the classifier.

1 Introduction

A recent World Health Organization (WHO) report estimates that nearly 11 % of the
population world-wide is affected by some form of brain disorder. These illnesses
can often be psychologically and financially devastating to patients, their families
and the larger community. Nearly 1 % of the population in the US is affected
by schizophrenia. A growing body of evidence suggests that the early stages of
schizophrenia (and many other brain disorders) are critical in forming and predicting
the course and outcome of the disorder. The classification tools proposed in this
work can serve as a first step towards early detection of schizophrenia, which may
result in a better prognosis and functional outcome.

Both, post-mortem and neuroimaging studies have contributed significantly to
what we know about the brain. Moreover, MRI studies of volumetric reduction
in several brain regions in schizophrenia have been particularly informative with
respect to confirming early speculations that the brain is disordered in schizophrenia.
This work is largely the result of advances in neuroimaging that allowed for more
careful measurement of regions of interest within the brain (see review in [15, 22]).
In particular, a shape based framework was recently developed by the authors in [8],
which utilized volumetric differences as discriminatory features for distinguishing
a population of schizophrenia from normal controls (NC). Another recent work in
this direction was proposed in [20], where the authors used the affine parameters
obtained during registration of each subject to a given atlas as a discriminant feature.
However, both works, used structural MRI data, as opposed to diffusion MRI being
used in this study.

The advent of diffusion magnetic resonance imaging (dMRI) has provided the
opportunity for non-invasive investigation of neural architecture of the brain. Using
this imaging technique, neuroscientists want to ask how neurons originating from
one region connect to other regions, or how well-defined those connections may
be. One of the models that is widely used to analyze dMRI images is the diffusion
tensor model. Diffusion tensors represent the diffusion of water molecules in three
orthogonal directions with the principal direction aligned with the fiber orientation.
Several scalar measures derived from this model are used to assess the strength of
connectivity in neural fiber bundles.

Experimental evidence suggests that the tissue component responsible for the
observed orientational anisotropy in white matter is principally the spatial organiza-
tion of cellular membranes, which is modulated by the degree of myelinization of
the individual axons and the density of cellular packing [6]. As a result, fractional
anisotropy (FA) is the most popular measure used to study abnormalities in white
matter [15].
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While there has been an explosion in the number of studies reporting statistical
differences in various regions of the brain (see [15] and the references therein), very
few works have addressed the problem of classifying schizophrenic patients from
healthy subjects. Apart from structural MRI data being used by Davatzikos et al. [8]
and Pohl and Sabuncu [20], there has been work done by Caan et al. [4], where
the authors use dimensionality reduction followed by linear discriminant analysis
for classification of patients with schizophrenia (chronic). They use the fractional
anisotropy and linear anisotropy images derived from single tensor estimation as
discriminant features.

In all of the approaches listed above [4,8], the authors first perform a registration
of all the subjects to a common atlas space and subsequent analysis is done on
this dataset. However, such an analysis is computationally expensive and requires
a very good registration algorithm to spatially normalize all the subjects in one
common co-ordinate system. In the proposed work, we compute the probability
distribution of several diffusion measures over the entire brain white matter, which
makes it un-necessary to register the diffusion images, thus reducing computational
complexity. Note that, the probability distribution (by its definition) is invariant to
affine-transformations (see Sect. 2.2 for more details).

2 Methods

The overall outline of the proposed algorithm for computing the probabilistic
representation of each subject is shown in Fig. 1. From the dMRI scan of a subject,
diffusion tensors are first estimated. Three orthogonal diffusion measures (fractional
anisotropy (FA), norm (N), mode (Md )) [14] that form the discriminatory features
of our classifier are then computed at each voxel in the white matter region.
A nonparametric density estimator is then used to convert each of these measures of
each subject into a probabilistic representation, which is affine invariant. Note that,
we compute a 1D probability distribution function (pdf) of each of the diffusion
measures (FA; N; Md ) from values obtained throughout the white matter. These
three one-dimensional pdf’s form the features for each subject. This representation
is subsequently used by a Parzen window classifier to compute the probability of a
previously unseen subject being FE or NC in a cross-validation scheme. Details on
each of these steps are given in the subsequent sections.

2.1 Preliminaries

In diffusion weighted imaging, image contrast is related to the strength of water
diffusion. At each image voxel, diffusion is measured along a set of distinct
gradients, u1; : : : ; un 2 S

2 (on the unit sphere), producing the corresponding signal,
s D Œ s1; : : : ; sn �T 2 R

n. The diffusion tensor is related to the signal using the
following relation [3, 16]:
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Fig. 1 Overall outline for computing a probabilistic representation for each subject

si D s0 exp .�buT
i Dui /;

where s0 is a baseline signal intensity, b is an acquisition-specific constant, and D

is a tensor describing the diffusion pattern. D can be estimated using a weighted
least-squares approach [1].

Several scalar measures derived from the single tensor model have been proposed
in the literature [14,18,24]. In particular, we use a set of three orthogonal invariants
studied in [14], namely the norm N , fractional anisotropy FA and mode Md . These
measures capture different (orthogonal) aspects of the shape of the tensor. Given, a
diffusion tensor D, these measures can be computed as follows:

N Dk D k; FA D
p

3 k D � 1
3
tr.D/I kp

2 k D k ;

Md D 3
p

6

ˇ
ˇ
ˇ
ˇ
ˇ

 QD
k QD k

!ˇ
ˇ
ˇ
ˇ
ˇ
; QD D D � 1

3
tr.D/I

(1)

where, j:j denotes the determinant, t r.:/ is the trace and k : k denotes the frobenius
norm of a matrix. Thus, FA measures how the shape of the tensor deviates from
that of a sphere (diameter of the sphere is given by the average length of the axes of
the ellipsoid (tensor)). Md indicates the mode of the tensor, i.e. Md D �1 indicates
planar anisotropy, Md D 0 indicates an orthotropic tensor and Md D 1 indicates
linear anisotropic tensor. Norm N measures the “size” of the diffusion tensor. Of
these measures, only FA has been widely used to study white matter abnormalities
in schizophrenia (see references in [15]). From the above discussion, at voxel r, we
compute the following 3-dimensional vector

f.r/ D Œ N.r/; FA.r/; Md .r/ �T : (2)

2.2 Probabilistic Representations

Probability density functions (PDF) are invariant to translation, rotation, scale and
shear of an image, i.e. PDF’s are invariant under linear transformation of the
coordinates of an image. A nonparametric estimate of the PDF can be computed



Diagnostic Prediction of Schizophrenia Using DTI 317

Fig. 2 Left: Coronal slice shows region of the brain included in the classifier. This corresponds to
FA � 0:4: The other two figures show different views of the volume rendering of the thresholded
FA image

using the following expression [19]:

p.z/ D 1

Mh

MX

iD1

G

�
z � I.x/

h

�

; z 2 fRange of I g (3)

where I.x/ is a scalar image at spatial location x, M is the number of data points,
G is a Gaussian kernel and h denotes the bandwidth of the kernel. An affinely
transformed image QI is related to the original image using the relation QI .Ax/ D
I.x/, where A is an affine transformation. Notice that only the co-ordinates of the
image I change without changing the image intensities (scalar values). By applying
a change of variable in Eq. (3), one can easily see that the PDF p.z/ is invariant
under affine (linear) transformations.

The proposed set of diffusion measures f.r/ lives in a 3-dimensional space.
Computing the joint PDF of the 3-dimensional space is computationally intensive.
Further, the measures N; FA; Md are mutually orthogonal. As such, we compute a
1D PDF for each measure separately using (3). Note that, each of these measures
captures different aspects of the variation in “shape” of the diffusion tensor and thus
are independent of the orientation.

Several schizophrenia studies [15] have shown abnormalities in the white matter
region of the brain. We thus choose this entire region (white matter) to compute the
PDF. Specifically, a diffusion tensor is estimated at each voxel and FA is computed
in the entire image volume. Regions of the brain that have FA � 0:4 are selected
for further analysis (see Fig. 2). This roughly corresponds to the single fiber white
matter region in the brain. Note that, we chose a threshold of 0.4 in order to exclude
regions that have crossing fiber bundles (which would result in lower FA). Such
crossing regions cannot be correctly represented using a single diffusion tensor. All
the other features (such as, Md ; N ) are computed in this region (with FA > 0:4).

We should note that since FA is a discriminatory feature between the two
populations (first-episode schizophrenics and healthy controls), thresholding the
image in itself amounts to a feature selection step. For example, if one group in
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general has lower FA than another, this would lead to a difference in the estimated
pdf which would be useful during classification.

Using (3), we compute the PDF for each of the three discriminatory measures and
combine them into a matrix representation denoted by p D Œpn pfa pmd �. Thus,
each patient scan i can now been transformed into a probabilistic representation
(matrix) pi of dimension nb � 3, where nb is the number of bins used in the pdf
computation. In our subsequent discussions, we will use this representation in our
classifier.

Figure 3a–c show the PDF’s for 22 first-episode (FE) schizophrenic patients (red)
along with 20 age-matched normal controls (NC) (blue). A visual inspection shows
differences between the two groups (blue and red) for each of these measures.
Figure 4 shows a cross-section of the two groups for a certain value of FA. This
figure confirms the existence of two distinct clusters in the data (albeit with overlap).

2.3 Parzen Window Classifier

The Parzen window classifier was first introduced by Jain and Ramaswami [11].
In this method, a Parzen window based density estimate [9] is used to compute the
likelihood that a new data point belongs to one of the groups in the training data set.

Let fpi
feg

Nfe

iD1 and fpi
ncgNnc

iD1 be the set of Nfe FE and Nnc NC subjects in the
training data set. Given a test data point Op, the likelihood (probability) that it belongs
to either group can be computed using the Parzen window density estimator as
follows:

Pfe. Op/ D 1

Nfe

Nfe
X

iD1

K. Op; pi
fe/; aligned

Pnc. Op/ D 1

Nnc

NncX

iD1

K. Op; pi
nc/;

(4)

where K.:; :/ is a Gaussian kernel given by

K.pi ; pj / D exp

 
3X

mD1

� k pi
m � p

j
m k2

�2
m

!

; (5)

with m D Œ N; FA; Md �T as described earlier, and i; j represent the indices
for i th and j th subject. Note that, we assume that the PDF’s of each of the
diffusion measures for a subject are independent, due to the fact that these measures
themselves are orthogonal.
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Fig. 3 Probability density functions of various anisotropy measures for 22 FE patients (red) and
20 NC (blue). (a) Norm. (b) Mode. (c) FA
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Fig. 4 Cross-sectional distribution of the PDF’s of FA (upper right) for FE (red) and NC (blue)
subjects

2.3.1 Design Choices

For each of the two groups, we choose �m using the following relation:

�m D cm

N

NX

iD1

min
i¤j

k pi
m � pj

m k; j D 1; 2; ::N; m D 1 to 3;

where N is Nfe for the group of FE patients and N D Nnc for NC subjects. Thus
a different set of f�mg3

mD1 is computed separately for each group in the training
data set. The constant cm is a scalar that is computed so that the training error is
minimized. Typical values for cm that give a good generalization of the sampled
data while reducing the risk of over fitting lie in the range cm 2 Œ1:5; 2�, as has
been noted in [7]. In numerical experiments, we discretize cm in the range Œ1:5; 2�

at an interval of 0.1. The value of cm that minimizes the training error is chosen for
a given training data set. We should note that this is the only parameter one needs to
choose in our entire classification system.

This data driven approach of choosing �m is quite common in the literature
and has been used in other works as well [7]. This choice of �m is guided by the
following considerations: (1) �m varies appropriately with the scaling of each of the
components of m, (2) It minimizes the training error of the classifier, (3) it respects
the distribution of points within the clusters (whether the points are spread out or
densely packed).

Thus, from the probabilities obtained in (4), we obtain the following simple
classification rule:
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Classification of Op D
(

Pfe. Op/ > Pnc. Op/; Op is FE patient

Pfe. Op/ � Pnc. Op/; Op is NC.

3 Results

3.1 Data Acquisition Protocol

Our dataset consisted of 22 FE patients with average age 20:89 ˙ 4:8 years and 20
NC with average age 22:3 ˙ 4:2 years (p D 0:21). All the subjects were scanned as
part of Dr. Martha Shenton’s NIH grant (R01 MH 50740) on a 3-T GE system using
an echo planar imaging (EPI) diffusion weighted image sequence. A double echo
option was used to reduce eddy-current related distortions. To reduce impact of EPI
spatial distortion, an eight channel coil was used to perform parallel imaging using
Array Spatial Sensitivity Encoding Techniques (GE) with a SENSE-factor (speed-
up) of 2. Acquisitions have 51 gradient directions with b-value = 900 and eight
baseline scans with b = 0. The original GE sequence was modified to increase spatial
resolution, and to further minimize image artifacts. The following scan parameters
were used: TR 17,000 ms, TE 78 ms, FOV 24 cm, 144�144 encoding steps, 1.7 mm
slice thickness. All scans had 85 axial slices parallel to the AC-PC line covering the
whole brain.

The raw diffusion weighted images were preprocessed using the Rician noise
removal algorithm of [2] followed by eddy current and head motion correction
algorithm [13] (part of the FSL package – http://www.fmrib.ox.ac.uk/fsl/flirt/).

4 Classification Results

4.1 Leave-One-Out Cross-Validation

Leave-one-out (LOO) is an unbiased technique for cross-validation of classification
results especially when the training data set is small [5, 23]. This is one of the
techniques we use to test our classifier. In this method, one subject is removed from
the dataset and the classifier is trained on the remaining samples. This procedure is
repeated for all available samples and classification results are computed.

In our case, the data samples are the matrices pi of dimension (nb � 3), with
each column representing a discretized pdf of the feature vectors. Here, nb is the
number of bins, which we fix to 300 in all experiments. Given the matrices pi

for all subjects, the probability of a previously unseen subject is computed using
Eq. (4). This procedure is repeated by removing one datum each time and using

http://www.fmrib.ox.ac.uk/fsl/flirt/
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Table 1 95 % confidence
intervals on the performance
of the classifier for LOO
experiment

Method Lower limit Upper limit Best estimate

Bayesian 0.788 0.968 0.901
Adjusted Wald 0.768 0.967 0.883
Exact Wald 0.811 0.993 0.892

Table 2 Classifier
performance for LOO
experiment with different
features

Detection rate False positives Features used

0.772 0.350 FA
0.909 0.250 FA, MD
0.909 0.100 FA, MD, N

the remaining samples as training data set. Thus, one sample is used as test while
the remaining samples are used to train the classifier. The correct detection rate
is then computed by counting the number of times the test sample was correctly
identified (FE or NC) while testing all the subjects (in our case it is 42). The
false positive rate is given by the number of subjects that were “predicted” by the
classifier as FE, whereas they were NC. The overall classification error is given by
the number incorrect classifications “predicted” by the classifier. In our experiments,
the detection rate (true positives) obtained for LOO cross-validation is 90:91 %,
while the false positive rate is 10:0 %. The overall classification error is 9:52 %.

As has been pointed out by the authors in [10], for small sample size, it is not
enough to validate the results using LOO experiment. Instead, one should compute
confidence intervals that give a lower and upper bound on the performance of the
classifier. Several methods have been proposed in the literature to compute these
bounds for small sample size, of which the Bayesian and Binomial bounds are most
popular.

Table 1 gives the 95 % Bayesian and Binomial (Exact Wald and Adjusted Wald)
[17, 21] confidence intervals (upper and lower limit) on the overall performance
of the classifier. Intuitively, a 95 % confidence interval indicates that in 95 out of
100 experiments, the overall performance of the classifier will fall within the stated
confidence interval. These confidence intervals are also a function of the number
of samples in the data set. Thus, as the number of samples tested increases, the
confidence interval becomes narrow and converges to the “true” estimate [10, 12].
The Exact method was designed to guarantee at least 95 % coverage, whereas the
approximate methods (adjusted Wald) provide an average coverage of 95 % only
when a large number of samples are available.

The above LOO experiment included all the three components of vector f as
features. Table 2 shows classification results for LOO experiment, but with different
number of features. As is clear, including all the three features does improve the
performance of the classifier. Adding more features such as radial diffusivity, linear
anisotropy, etc. did not improve the performance of the classifier.
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5 Discussion

In this paper, we proposed a novel probabilistic classification method for separat-
ing first-episode schizophrenic patients from age-matched normal controls using
anisotropic measures derived from diffusion tensor images. The output of the
classifier is a probabilistic score of a previously unseen subject being FE or NC.
We validate the proposed classifier using a leave-one-out experiment obtaining a
sensitivity of 90.91 % and specificity of 90 %. In this work, we chose the entire white
matter to perform classification. However, individual fiber tracts such as corpus
callosum, fornix, cingulum bundle, etc. may be able to provide more information
regarding the variation of these fiber bundles in either population. Our future work
entails examining these fiber tracts to detect abnormalities and subsequently use
them for probabilistic classification. We should note that the methodology presented
here is quite general and can be applied for classification of many other types of
brain disorders (bipolar disorder, schizotypal personality disorder, etc.).

This work is a first step towards early detection of schizophrenia, which can
result in better patient care. Further, the probabilistic methodology proposed in this
work could be used to study the effect of medication by analyzing changes in white
matter anisotropy.
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