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Abstract The aim of this chapter is to review different approaches that have been
proposed to compute fabric tensors with emphasis on trabecular bone research.
Fabric tensors aim at modeling through tensors both anisotropy and orientation of
a material with respect to another one. Fabric tensors are widely used in fields such
as trabecular bone research, mechanics of materials and geology. These tensors
can be seen as semi-global measurements since they are computed in relatively
large neighborhoods, which are assumed quasi-homogeneous. Many methods have
been proposed to compute fabric tensors. We propose to classify fabric tensors
into two categories: mechanics-based and morphology-based. The former computes
fabric tensors from mechanical simulations, while the latter computes them by
analyzing the morphology of the materials. In addition to pointing out advantages
and drawbacks for each method, current trends and challenges in this field are also
summarized.

1 Introduction

One of the ultimate goals of trabecular bone research in medicine is to determine
the effect of pathological conditions of trabecular bone, such as osteoporosis
and osteoarthritis, and their treatments on the quality of trabecular bone. One of
the parameters that can be used to evaluate the bone quality is its anisotropy.
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Fig. 1 Rendering of scans of trabecular bone from a radius and a vertebra respectively acquired
through micro computed tomography

For example, evidences supporting that changes in the anisotropy and orientation
of trabecular bone are associated with osteoporosis has been reported [11, 32, 47].
Figure 1 show renderings from two in vitro specimens.1

Trabecular bone is a tissue that is under continuous remodeling [57,67,68]. This
remodeling process, which is driven by both physiology and mechanical adaptation
processes, usually generates anisotropies in trabecular bone. Since mechanical
stimuli differs from site to site of the body, analyses of changes over time of
anisotropy generated by non-mechanical causes are performed site-dependent.
In this context, fabric tensors are a fundamental tool to perform such kind of
analyses.

Fabric tensors aim at modeling through tensors both anisotropy and orientation of
a material of interest (usually referred to as phase in mechanics of materials) with
respect to another one. In trabecular bone research, these two phases correspond
to trabecular bone and bone marrow respectively. In addition to trabecular bone,
fabric tensors have been used in other fields, such as mechanics of materials
[91] and geology [49]. Fabric tensors are semi-global measurements in the sense
that they are computed in relatively large neighborhoods, which are assumed
quasi-homogeneous. In mechanics, such neighborhoods are usually referred to as
representative volume elements (RVE) [72]. Furthermore, since it has been shown
that microstructural architecture of most materials, including trabecular bone, can be
accurately modeled by means of second-order tensors [48,94], higher-order tensors
are usually not computed.

In this context, the aim of this chapter is to review different approaches that
have been proposed for computing fabric tensors, pointing out their advantages
and disadvantages. We propose to classify these approaches into two categories:
mechanics-based and morphology-based. The former approach computes fabric

1We thank Prof. Osman Ratib from the Service of Nuclear Medicine at the Geneva University
Hospitals for providing the �CT scan of the vertebra; Andres Laib from SCANCO Medical AG and
Torkel Brismar from the Division of Radiology at the Karolinska University Hospital for providing
the �CT scan of the radius.
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tensors from mechanical simulations, while the latter computes them by analyzing
the morphology of trabecular bone. It is important to remark that, although some
authors do not consider tensors computed through mechanical simulations as a
specific type of fabric tensors, we argue they actually are fabric tensors, since they
can also be used to describe orientation and anisotropy of trabecular bone, which is
the main purpose of fabric tensors. Invariably, the input of all methods is an RVE
and the output is the fabric tensor associated to it.

The chapter is organized as follows. The next two sections review the most
important methods that follow the aforementioned approaches. Section 4 reviews
the research to relate fabric tensors computed through morphology analyses and
mechanical properties of the bone. Finally, Sect. 5 makes some concluding remarks,
focusing on the current topics in fabric tensors research. As a convention, scalars,
vectors and tensors are written in italic, bold and straight font respectively in the
paper, e.g. �, p and VO.

2 Mechanics-Based Methods

The most relevant property of trabecular bone is its mechanical competence,
that is, its capability to bear different types of mechanical loads in different
orientations. In this line, mechanics-based methods directly measure fabric tensors
from mechanical properties. Since it is difficult to conduct reliable mechanical
experiments, these methods compute the tensors through numerical simulations.
The next subsections summarize some approaches that follow this path.

2.1 Solid Mechanics Approach

This approach makes use of solid mechanics. A common simplification is to assume
that trabecular bone is an elastic material [73]. Thus, under linearity conditions,
the so-called stiffness (or elasticity) tensor can directly be used as a fabric tensor.
By using the Einstein summation convention, which means that repeated indices
imply a summation over them, the stiffness tensor c, can be written as:

� ij D cijk` �k`; (1)

where � and � are the stress and strain tensors respectively. Notice that � and �

are of second-order, while c is of fourth-order. This equation corresponds to the
generalization of the Hooke’s law. Thanks to the symmetries of � and �, c only has
21 out of 81 independent terms. Assuming orthotropic symmetry of trabecular bone
[100] the number of independent can be further reduced to nine. By using the Voigt
notation [29], c can be represented by the following 6 � 6 symmetric second-order
tensor:
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The entries of stiffness tensors computed at a local scale can be estimated by
running several finite element method (FEM) simulations, at least six [80], each
of them with a different boundary condition. Once the local stiffness tensors have
been computed, a homogenization procedure can be applied in order to obtain from
local estimations a single effective stiffness tensor representative for the whole
representative volume element. It has been shown that component-wise addition
is not a valid strategy to perform such a homogenization. Thus, more advanced
homogenization techniques are usually applied. For example, local structure tensors
computed from the relation between local and global strains can be used to steer the
homogenization process [9, 30, 31, 80]. Alternatively, Riemannian metrics and the
Kullback-Leibler divergence can be applied to aggregate the local tensors [61].

Computing the stiffness tensor through FEM simulations is still under active
research [34, 73, 78]. One of the most important problems faced by researchers is
that the results can have a large variation for the same sample by applying different
boundary conditions, homogenization schemes and methods to generate nodes for
the FEM simulations. In addition, another source of error is that the computations
are based on the aforementioned simplifications that can be inaccurate. For example,
it is well-known that trabecular bone is much better resisting compression than
tension [16], while the computed stiffness tensor will predict the same behavior
under both boundary conditions. Moreover, most methods are restricted to images
acquired from in vitro specimens, as images acquired in vivo have very low quality,
which difficults the segmentation required by FEM simulations [40].

2.2 Wave Propagation Approach

A more recent approach use FEM simulations of wave propagation on trabecular
bone to describe orientation and anisotropy of trabecular bone. Assuming a poroe-
lastic behavior, it has been shown that wave propagation on trabecular bone can
be characterized through the acoustic tensor, Q, the solid-fluid interaction tensor,
C, and the intrinsic permeability tensor, K, which describe the elastic and viscous
effects on the media [14, 15]. Q and C are second-order tensors that are related to
the Biot’s parameters that describe the stress-strain relation in porous media [12]
and the exciting waves. In turn, K, a second-order tensor derived from Darcy’s law,
takes into account dissipation due to viscous losses and it is closely related to the
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tortuosity tensor [76]. A close relation between these tensors and morphology-based
fabric tensors has been reported [14].

A shortcoming of this approach is that simulated acoustical properties of
trabecular bone have a non-linear dependence on the composition of bone marrow
and bone volume fraction, as well as on the resolution of the images [2]. As well
as solid mechanics approaches, wave propagation simulations are restricted to high
resolution images acquired from in vitro specimens, making it difficult its use in
clinical practice.

3 Morphology-Based Methods

Methods that follow this approach compute fabric tensors from the morphology
of trabecular bone. These methods have two advantages compared to the methods
described in Sect. 2. First, they are largely less computationally expensive than
those obtained from mechanical simulations. Second, unlike methods based on
mechanics, the resulting fabric tensors are not dependent on the boundary conditions
applied during the simulations, homogenization schemes and/or general design of
the simulations. However, as a counterpart, it is necessary to relate these fabric
tensors with mechanical properties of the material, especially, elasticity.

The vast majority of morphology-based methods use specific features to estimate
orientation distributions which are approximated through fabric tensors. If the
estimation is performed locally, a homogenization process is applied (usually
tensorial summation) in order to obtain global measurements of orientation and
anisotropy. The next subsections describe the most important families of methods
that follow this approach, which are summarized in Table 1.

3.1 Boundary-Based Methods

Boundary-based methods use the interface between phases to estimate fabric
tensors. The Mean Intercept Length tensor (MIL) [83, 94] and the global gradient
structure tensor (GST) [6, 88] belong to this category.

3.1.1 Mean Intercept Length Tensor

In trabecular bone research, the MIL tensor is considered as the gold standard
thanks to the large amount of evidence supporting its appropriateness to predict
mechanical properties of trabecular bone [16, 60, 70, 103]. The MIL tensor was
originally proposed as a sampling procedure taken from stereology [83, 94]. The
MIL with respect to a particular orientation is defined as the mean distance
between a change from one phase to the other in such an orientation. This value
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Table 1 Summary of morphology-based methods

Approach Method

Boundary-based Mean Intercept Length (MIL) tensor [64, 83, 94]
Generalized MIL tensor [64]
Global gradient structure tensor (GST)[6, 59, 88]

Volume-based Volume orientation tensor (VO) [70]
Star volume distribution (SVD) [70]
Star length distribution (SLD) [70]
Tensor scale [52, 82, 99]
Inertia tensor [35, 90]
Sampling sphere orientation distribution (SSOD) [89]

Texture-based Fractal dimension (FD) [5, 26, 55, 59, 102]
Hurst orientation transform [77]
Variance orientation transform [97, 98]
Line fraction deviation [20, 21]
Spatial autocorrelation [92]
Different statistics [27]

Alternative methods Minkowski tensors [84, 85]
Diffusion tensor imaging (DTI) [8, 81]
Texture tensor [23]
Skeleton-driven [41]
Assessment of the power spectrum [7]

Fig. 2 Computation of the
intercepts between a set of
parallel lines and the interface
between phases. In this
example, the number of
intercepts is 13

is inversely proportional to the number of intercepts between a set of parallel lines
and the interface between phases (see Fig. 2). The MIL tensor is obtained either by
applying ellipse/ellipsoid fitting algorithms to polar plots of the MIL computed in
different orientations, also known as rose diagrams, or by computing a covariance
matrix [38, 64, 87]. Although the orientation distribution of the MIL can also be
approximated through higher-order fabric tensors [38], microstructural architecture
of most materials can be accurately modeled by means of second-order tensors
[48, 94].

Recently, we have proposed a closed formulation for computing the MIL
tensor [64]. We have shown that the orientation distribution of intercepts, CMIL,
is proportional to the angular convolution between the mirrored extended Gaussian
image [33], G, of the sample and the half-cosine kernel, K, which is given by:
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K.�/ D
�

cos.�/ if � � �=2

0 otherwise:
(3)

Thus, CMIL can be computed through:

CMIL D ˛ G � K; (4)

where ˛ is a constant and “�” is the angular convolution. Finally, the MIL tensor
can be computed by computing a covariance matrix on 1=CMIL.

This formulation solves several problems of sampling procedures. First, since
sampling is avoided, the accuracy is not any longer dependent on the computational
cost of the implementation. Second, the new method is not exposed to discretization
artifacts generated by line-drawing algorithms. Third, the new formulation is
inexpensive since, thanks to the Funk-Hecke theorem [25], the angular convolution
can efficiently be computed in the spherical harmonics domain. Fourth, robust
implementations of the MIL tensor can straightforwardly be obtained from robust
estimations of the extended Gaussian image. Fifth, the new formulation makes
straightforward the extension of the MIL tensor to non-binarized images. Finally,
the MIL tensor can be generalized by changing different convolution kernels, e.g. to
powers of the half-cosine function or the von Mises-Fisher kernel [37].

3.1.2 Global Gradient Structure Tensor

Another boundary-based fabric tensor is the GST [6, 59, 88]. For an image I , the
GST is computed as:

GST D
Z

p2I

rIprIp
T dI: (5)

Notice that the GST is related to the traditional local structure tensor (ST) [19]
computed with a Gaussian of zero mean and standard deviation �, K�. If the size of
the image is much larger than �, the GST can be written as:

GST D
Z

p2I

ST dI D
Z

p2I

.K� � rIprIp
T / dI: (6)

This method has two interesting properties. First, implementations of the GST are
efficient, both in the spatial and frequency domains, and easy to code. Second, the
GST and the MIL share the same eigenvectors for binary images [64]. Basically, the
GST can be computed as the covariance matrix of CGST D G � ı, where ı is
the unit impulse function and G is the mirrored extended Gaussian image. Thus,
the difference between the MIL tensor and the GST is that they use a different
convolution kernel for computing functions CMIL and CGST and the former calculates
the covariance matrix on 1=CMIL while the latter on CGST . Hence, both tensors will
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Fig. 3 Example of a material
in which boundary-based
tensors are unable to estimate
anisotropy and orientation.
Both, the MIL and GST
tensors are isotropic in this
case

share the eigenvectors, since both the unit impulse function and the half-cosine
kernel are positive and symmetric and changing C by its inverse in the computations
does not introduce rotations in the eigenvectors [25].

As an alternative, global structure tensors can also be estimated from local
structure tensors computed through quadrature filters [24, 44, 45], by using higher-
order derivatives [18, 46] or by means of tensor voting [66].

A drawback of this technique is that the eigenvalues are different to those from
the MIL tensor, and the larger one is perpendicular to the main orientation of
trabecular bone [88,96]. Consequently, anisotropies computed through the GST are
expected to be in less agreement with the anisotropies yielded by the stiffness tensor
[65]. This means that, in practice, the resulting tensor has to be post-processed in
order to be used as a predictor of mechanical properties.

3.2 Volume-Based Methods

A problem of the boundary-based methods is that they are only appropriate where
the anisotropy and orientation are determined by the interface between phases. For
example, boundary-based methods are unable to estimate anisotropy in the case of
Fig. 3.

To solve this issue, volume-based methods compute anisotropy from measures
taken inside one of the phases. The next subsections describe the most important
families of methods that follow this approach.

3.2.1 Distributions of Intercepting Lines

There are many fabric tensors that are computed through the sampling procedure
shown in Fig. 4. First, a set of N sampling points are generated in the material of
interest (e.g., trabecular bone). Second, the intercept length of lines with different
orientations that cross every testing point is computed.

Several features can be extracted in order to compute fabric tensors. For example,
local volume orientation at a point is given by the orientation corresponding to
the largest intercept at that point. The volume orientation tensor VO, is computed
as [70]:
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Fig. 4 Distributions of intercepting lines. Left: lines with different orientations are traced from
some sampling points (marked with crosses). The lenght of those lines are used to generate the VO,
SVD and SLD tensors. Right: in order to compute the scale tensor, line segments are shortened
(half of the intercepts with the boundary are shifted to the positions marked with squares) in order
to make them symmetric with respect to the sampling point

VO D
NX

iD1

Lmaxi vmaxi vT
maxi

; (7)

where Lmaxi and vmaxi are the largest intercept at i and its corresponding orientation
respectively. On the other hand, the star volume (SVD) and length distributions
(SLD) consider all intercepts, not only the maximum for computing the fabric
tensor. They are computed as:

SVD D
Z

v2˝

 
NX

iD1

L3
i .v/ v vT

!
d˝; (8)

SLD D
Z

v2˝

 
NX

iD1

Li .v/ v vT

!
d˝; (9)

where ˝ is the unitary sphere, and Li .v/ is the intercept at i with respect to the
orientation v. Thus, the main difference between SVD and SLD is the power of L

used in the formulation.
A related fabric tensor is the tensor scale [82,99]. In this case, every intercepting

segment is symmetrized with respect to the reference point by replicating the closest
length to the edge in the opposite direction. A local tensor at the sampling positions
is computed with the length of the symmetrized lines and the final fabric tensor is
computed by adding all local tensors.

In [71] is reported that SVD and SLD are better predictors of mechanical
orientation. However, the same study also reports that the MIL is a better predictor
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of mechanical anisotropy. Regarding the tensor scale, an initial study reported good
correlations between this tensor and mechanical properties [52].

The most important drawback of the methods presented in this subsection is their
computational cost. Since these methods are based on a sampling procedure, the
accuracy of the computations is related to the complexity of the algorithms. Usually,
a huge amount of tests is required to obtain a reasonable accuracy.

3.2.2 Inertia-Based Methods

An straightforward way to compute a volume-based fabric tensor is to compute a
global inertia tensor [35] of the material of interest, which is given by:

IT D
Z

x2I

�.x/
�
.x � s/2 I � .x � s/.x � s/T

�
dI (10)

where I is the image, �.x/ is the gray-scale value at x, which is assumed to be
proportional to the mass at that point, and s is the center of mass. However, poor
correlations with the MIL tensor have been reported [96], and consequently, it is
expected to be a bad predictor of mechanical properties. A possible hypothesis for
this is that the path that joins every position to the center of mass usually includes
large regions of bone marrow and this fact can influence its appropriateness as fabric
tensor.

A possible way to tackle this problem is to compute local inertia tensors
computed in local spherical neighborhoods, as proposed in [90], and then to generate
a global inertia tensor by adding them up or using any other homogenization
scheme. A related strategy is the sampling sphere orientation distribution [89],
which adds the gray-scale values of spherical neighborhoods located at some
specific sampling locations into a spherical container, as shown in Fig. 5. These
neighborhoods are chosen in such a way that their centers are as close as possible
to the skeleton of the material of interest. The resulting container is approximated
through tensors following an adapted version of the technique proposed in [38].
Since these approximations are related to the computation of the inertia tensor in
the container, the method can be seen as a homogenization scheme for computing
a global inertia tensor from local inertia information. From the results presented
in [89], the use of local inertia tensors partially solves the problems of the global
inertia tensor, since the resulting tensors are more correlated with the MIL tensor.

3.3 Texture-Based Methods

The following subsections describe some methods that make use of texture analysis
tools to compute fabric tensors.
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Fig. 5 SSOD. Left: the image is sampled with some spheres. Right: the gray-scale values are
accumulated in a spherical container. Fabric tensors approximate the gray-scale values in the
container (Reprinted from [89] with permission from Elsevier)

3.3.1 Fractal-Based Methods

These methods assume a fractal nature of trabecular bone. The basic idea of this
approach is to perform directional measurements of fractal dimension (FD) to create
orientation distributions that, afterwards, are approximated through tensors. The FD
can be computed in many different ways [54]. A basic strategy is the so-called box-
counting algorithm where FD is estimated as:

FD D � lim
r!0

log N.r/

log.r/
(11)

where r is the size of a box and N.r/ is the number of boxes required to utterly
cover the material of interest. Similar to this method are the skyscrapers and blanket
fractal analyses [26].

Alternatively, by assuming a fractional Brownian motion model [5], FD can be
computed in the Fourier domain for a specific direction as a function of the slope of
the linear regression computed on a log-log plot of the power spectrum vs. frequency
[55, 59, 75, 102]. The process is shown in Fig. 6 for a specific orientation.

Since very often this log-log curve does not have a linear behavior for the whole
spectrum, it is common to use two fitting lines: for low and high frequencies
respectively [55] (see Fig. 6). Some other methods to compute the FD are the
augmented Hurst orientation transform [77] and the variance orientation transform
[97, 98].

Most of these methods perform the computations in the Fourier domain. Since
measurements are performed at specific directions, it is more convenient to sample
the Fourier domain by using polar or spherical coordinates instead of Cartesian.
However, computing fast Fourier transform in polar/spherical coordinates is not yet
a mature technique, although important advances have been done in the last few
years [3, 39, 93].
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Fig. 6 Estimation of the FD. Left: a 2D slice of the image of Fig. 1a. Right: log-log plot of the
power spectrum vs. frequency at a specific orientation and two linear regressions covering low and
high frequencies respectively

A drawback of fractal-based methods is that it is still not clear whether or not
trabecular bone follows a fractal pattern with authors in favor [74] and against
this hypothesis [10]. From our own experience, the required computation of linear
regressions usually involves large errors for images of trabecular bone. As a
consequence, since these errors have a direct impact in the computation of fabric
tensors, that makes it difficult to obtain reliable and accurate results. Despite this,
good correlations with mechanical properties have been reported [55]. Another
drawback is that, although the methods can be extended to 3D, they have usually
been tested in 2D images of trabecular bone.

3.3.2 Texture Features

Some authors have proposed directional texture features to compute fabric tensors.
For example, the line fraction deviation method [20] constructs an orientation
distribution from the variance of the gray-scale values along test lines at different
orientations, which is then approximated through tensors. Good correlations with
the stiffness tensor have been reported for this method [21]. The basic ideas of
this method are related to the variance orientation transform from fractal analysis
[97, 98].

Related to this strategy, in [92],spatial autocorrelation of the gray-scale values
instead of the variance is used to construct the orientation distribution. Their main
assumption is that trabecular bone has a quasi-regular structure. However, in [86]
is reported that the resulting fabric tensor does not correlate with mechanical
properties of trabecular bone. Alternatively, other statistical measurements can be
used instead of the variance or spatial autocorrelation to construct the orientation
distribution [27].
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3.4 Alternative Methods

Recently, the Minkowski tensors have been proposed as an elegant a way to
integrate boundary- and volume-based techniques [84,85]. Six linearly independent
Minkowski tensors are defined in 3D:

W2;0
0 D

Z
p2V

p pT dV; (12)

W2;0
1 D1

3

Z
p2S

p pT dS; (13)

W2;0
2 D1

3

Z
p2S

H.p/ p pT dS; (14)

W2;0
3 D1

3

Z
p2S

G.p/ p pT dS; (15)

W0;2
1 D1

3

Z
p2S

n nT dS; (16)

W0;2
2 D1

3

Z
p2S

H.p/ n nT dS; (17)

where p represents the position of points inside the trabecular bone, V , n is the
normal at p at the interface between phases, S , and H.p/ and G.p/ are the mean and
Gaussian curvatures at p respectively. These tensors are called the moment tensor
solid, moment tensor hollow, moment tensor wireframe, moment tensor vertices,
normal distribution and curvature distribution tensors respectively [85]. Notice that
the moment tensor solid and the normal distribution tensor are closely related to
the inertia tensor and the GST respectively. Afterwards, different measurement of
orientation and anisotropy can be obtained from these six tensors.

Since marrow contains large amounts of water, a promising alternative method
to estimate fabric tensors experimentally is through diffusion tensor imaging (DTI)
[8, 56, 81]. Although DTI has extensively been used in fiber tractography (see other
chapters of this book), its use in trabecular bone is relatively scarce. The following
reasons have impeded a faster development of this approach. First, this method
computes orientation and anisotropy of bone marrow instead of trabecular bone,
so the resulting tensor must conveniently be post-processed in order to obtain a
fabric tensor of trabecular bone, and, to our knowledge, such a post-processing has
not been proposed so far. Second, it necessary to develop new DTI pulse sequences,
since the ones used for white matter in the brain are not appropriate for bone marrow
as these two types of tissue have very different magnetic properties and morphology.

A technique used in research of foamy structures is the so-called texture tensor
[23]. Given a lattice or mesh, a local texture tensor is computed by aggregating
tensorized vectors (i.e. the outer product of these vectors with themselves) that
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connect the center of a cell with the centers of neighboring cells. A global texture
tensor is then computed by aggregating local texture tensors. A drawback of this
technique when it is applied to trabecular bone is that the resulting tensor will
depend on the technique used to generate the required input mesh.

An alternative way to construct orientation distributions from the skeleton of
trabecular bone was proposed in [41], where mass and thickness of every branch
in the skeleton is associated to its orientation. The main drawback of this approach
is that it assumes that trabecular bone is composed by rod-like trabeculae, which
largely limits its scope of use as it has been shown that this assumption is not always
complied [63].

Finally, in [7] anisotropy is directly extracted from a visual examination of the
power spectrum of X-ray images. Unlike all methods reviewed in this chapter, this
technique is biased by the human observer’s perception and, in practice, it can only
be used for very anisotropic structures.

4 Relations Between Morphology-Based Fabric Tensors
and Mechanics

Morphology-based methods are appealing since they do not have any dependency on
boundary conditions, and consequently they are more predictable. However, unlike
mechanics-based, morphology-based methods require an extra step of validation
with respect to mechanical properties of the tissue, since the quality of a fabric tensor
is given by its capacity of predicting mechanical properties in realistic scenarios.
Usually, this assessment is performed with respect to a model [103]. A complete
review of the models proposed in the literature is presented in [103]. For illustration,
two of such models are presented below.

Let ˝ and ˝ be the tensorial and double tensorial products of second-order
tensors respectively, which, using the Einstein summation notation, are given
by [104]:

A˝B D AikBjl; (18)

A˝B D 1

2
.AikBjl C AilBjk/: (19)

On the one hand, Cowin [13] proposed that the stiffness c and a fabric tensor M
should be related through the formula:

c.	; M/ D
3X

a;bD1

.�ab.	; ma; mb/Ma ˝ Mb/ C
3X

a;bD1;a¤b

2.�ab.	; ma; mb/Ma˝Mb/;

(20)
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where 	 is the volume fraction, ma and ma are the eigenvalues and eigenvectors of
the fabric tensor M respectively, Ma D mamT

a , �ab and �ab are unknown functions
of 	, ma and mb ,

Alternatively, the following stiffness-fabric relation was proposed by Zysset and
Curnier [104]:

c.	; M/ D
3X

a;bD1

..�0 C 2�0/	˛mˇ
a m

ˇ

b Ma ˝ Ma/ C
3X

a;bD1;a¤b

.2�0	˛mˇ
a m

ˇ

b Ma˝Mb/

(21)

where ˛ and ˇ are constants and �0 and �0 are the unknown functions.
Once a model is chosen, multilinear regressions are performed in order to

estimate the unknown functions (�ab and �ab for Cowin’s model, or �0 and �0 for
Zysset and Curnier’s model) that minimizes the error between the actual stiffness
tensor and the one estimated with the model. The reference stiffness tensor can
be estimated either through mechanical simulations as described in Sect. 2.1, or
through mechanical experiments [103]. Thus, a morphology-based fabric tensor
with a small error between the actual and estimated stiffness tensor is preferred,
since this indicates that it is more related to mechanical properties of the tissue.

The MIL tensor usually has the better performance in these assessments.
An interesting alternative to minimize the error between the reference and estimated
stiffness tensor is to include parameters in the computation of the fabric tensor, as
we proposed in [64]. This can give more flexibility to the fitting process, resulting
in better estimations of the reference stiffness tensor.

Assessing relations between fabric tensors and mechanical properties of trabec-
ular bone is far from easy. First, these comparisons are mainly restricted to in vitro
where the reference stiffness tensor can be obtained. On the one hand, it is difficult to
compute reliable stiffness tensors from mechanical simulations from low-resolution
images. However, the high-resolution images needed for mechanical simulations are
not attainable in vivo for practical and radiation protection issues. On the other hand,
invasive mechanical measurements in vivo are not reliable, since they are based on
many assumptions. Moreover, such measurements and not always possible for every
skeletal site [69, 101].

Reference stiffness tensors obtained through mechanical experiments are
preferred to those obtained from mechanical simulations as they are more closely
related to reality and do not have the aforementioned problems of mechanical
simulations. Unfortunately, it is also difficult to design reliable mechanical
experiments in vitro. On the one hand, these experiments are exposed to several
sources of error [70, 73]. On the other hand, measurements are usually available in
only a few directions (very often in a single one), so many experiments have to be
conducted for different directions in order to be combined afterwards, a procedure
that is prone to errors. Moreover, it is usually unknown the relationship between the
main orientation of trabecular bone and the tested orientations.
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For these difficulties, many authors validate their methods by making compar-
isons with the MIL tensor instead of with the stiffness tensor. However, a direct
relationship between a new method and the stiffness tensor is necessary when a
better performance than the MIL tensor is being reported.

5 Concluding Remarks

This chapter has presented a comprehensive review of techniques for computing
fabric tensors. In general, current methods tend to be less manual and more accurate
by addressing most of the disadvantages from previous approaches. Despite this,
research in fabric tensors is far from mature and many issues need to be tackled.

First, image acquisition of trabecular bone is challenging in vivo due to the size
of the trabecular structure. For example, trabecular thickness ranges between 100
and 300 
m depending on the skeletal site [62], while standard magentic resonance
imaging (MRI) and computed tomography (CT) scanners offer resolutions of about
500 and 100 
m respectively. That means that a complete trabecula is covered by at
most three voxels, making these images prone to partial volume effects. In addition,
blurring, artifacts and noise are not uncommon in these type of images. Hence,
it is difficult to perform accurate morphological analyses in vivo. For this reason,
methods for computing fabric tensors in gray-scale are appealing, since they are not
affected by the accuracy of the segmentation process, which is particularly difficult
for images acquired in vivo. Also, the quality of the images are expected to be
improved in the next few years, especially with high-resolution peripheral quan-
titative computed tomography (HR-pQCT) and cone beam computed tomography
(CBCT) scanners, which are able to obtain spatial resolutions in the order of 80 
m
in vivo [4,43] with very low radiation doses, which can range between 3 and 10 
Sv
for HR-pQCT [17] and between 11 and 77 
Sv for CBCT [53] compared to the
3 mSv usually required by high-resolution multi-detector CT (HR-MDCT) scanners.
It is important to remark that, in clinical practice, physicians use dual-energy
X-ray absorptiometry (DXA) for measuring the bone mineral density. However, this
technique is unable to measure differences in the trabecular structure, which has
been shown more related to the development of trabecular bone diseases [42]. Other
in vivo techniques such as quantitative ultrasound (QUS) [28, 79] and resonance
frequency analyzers (RFA) [1, 58] face the same problematic as DXA.

Second, it is important to remark that fabric tensors are not global measurements.
Thus, it is possible to obtain fields of fabric tensors where tensors are computed
locally with respect to a neighborhood. However, large neighborhoods are usually
used, since regions of interest are usually assumed homogeneous. The net result of
this is that the resulting tensor field varies slowly in the space. In consequence, a
single tensor is usually computed as a representative measurements for a complete
region of interest. However, homogeneity for trabecular bone analysis has been
questioned by some authors, e.g., [72]. This imposes the problem of determining
the appropriate size of neighborhoods. One strategy to tackle this issue is to propose
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measurements of homogeneity of neighborhoods. Regarding fabric tensors, an
alternative is to assess changes in orientation and anisotropy with respect to the
size of the neighborhood used in the computations. To our knowledge, these types
of analysis have not been proposed so far.

Third, some authors argue that it is not necessary to perform measurements
in 3D, since features extracted from 3D and 2D projections have been shown
correlated [36, 95]. However, this point requires more extensive validation with
different features and skeletal sites.

Finally, some authors have found that higher-order tensors are necessary at
some skeletal sites, e.g. the calcaneus [21, 22]. This should not be a big problem
for most methods, since they usually compute orientation distributions that are
approximated through tensors, which can be in theory of any kind. Moreover,
methods for performing such approximations are well-established [38, 50, 51].
Despite this, an extensive validation of this point is necessary. On the other hand,
it is necessary to bear in mind that, assuming linearity, fourth-order would be the
highest necessary order for any fabric tensor, since that is the order of the stiffness
tensor. Alternatively, other approximation methods can be used instead of tensors in
order to model orientation distributions, e.g., spherical harmonics [41].

To summarize, despite large amount of work in the field, and the advances
attained in last decades, there are still many unsolved issues in order to use fabric
tensors in clinical practice of trabecular bone diseases. We think proposals to tackle
these issues will steer the research in the field in the oncoming years.
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