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Abstract Voxel-based group-wise statistical analysis of diffusion tensor imaging
(DTI) is an integral component in most population-based neuroimaging studies such
as those studying brain development during infancy or aging, or those investigating
structural differences between healthy and diseased populations. The majority
of studies using DTI limit themselves by testing only certain properties of the
tensor that mainly include anisotropy and diffusivity. However, the pathology under
study may affect other aspects like the orientation information provided by the
tensors. Therefore, for detecting subtle pathological changes it is important to
perform group-wise testing on the whole tensor, which encompasses the changes in
anisotropy, diffusivity and orientation. This is rendered challenging by the fact that
conventional linear statistics cannot be applied to tensors. Moreover, the pathology
over the population is unknown and could be non-linear, further complicating the
group-based statistical analysis. This chapter gives a perspective on performing
voxel-wise morphometry of tensor data using kernel-based approach. The method
is referred as Kernel-based morphometry (KBM) as it models the tensor distribution
using kernel principal component analysis (kPCA), which linearizes the data in
high dimensional space. Subsequently a Hotelling T 2 test is performed on the high
dimensional kernelized data to determine statistical group differences. We apply
this method on simulated and real datasets and show that KBM can effectively
identify the underlying tensorial distribution. Thus it can potentially elucidate
pathology-induced population differences, thereby establishing a kernelized full
tensor framework for population studies.
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1 Introduction

Diffusion tensor imaging (DTI) is an important MRI modality for studying white
matter connectivity and organization non-invasively [6, 32]. There exists a wide
variety of applications of DTI that include investigating neurological and psychiatric
disorders [2,21,25], structure-function relationships [11,20,38], evaluation of brain
connections and creating the structural brain connectome [8, 19], and as a tool to
assist in computer guided surgery and treatment planning [13, 29].

Clinical investigation of pathology-induced changes requires a group-based
statistical analysis of DT images which can identify regional differences between
controls and patients. Voxel-based morphometry (VBM) [4] is a popular form of
statistical analysis and has been widely adopted by the neuroimaging community.
VBM has an advantage over region-of-interest (ROI) based analysis as it does not
require an a priori hypothesis regarding regions affected by disease. Conventionally,
VBM on DTI images is performed via analyzing the scalar maps of anisotropy
and/or diffusivity that are computed from the tensor and then spatially normalized
to a common template. A statistical voxel-wise p-value map is then computed
from these scalar maps with the application of standard tests (e.g. t-tests) for
statistical inference. Commonly used scalar images for such analyses include the
fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) [28,30,37].
The main disadvantage of these methods is that they do not use the complete
information available in the DTI dataset, but rather make an a priori assumption
that group differences will affect only a particular aspect of the tensors which is
usually quantified through scalar indices like FA. Moreover, the combined results
from different scalar maps may be difficult to interpret as they can potentially
contain spatially overlapping patterns. Tensors provide both shape information
(in the form of eigenvalues) that are captured in scalar maps of anisotropy and
diffusivity measures computed from the tensor data and underlying fiber orientation
information in the form of eigenvectors. However, voxel-wise statistical analysis
of the tensors is complicated as the tensor is a 3 � 3 positive definite symmetric
matrix located at each voxel and has an underlying non-linear manifold structure
[3, 14, 31]. Furthermore, disease-induced changes between the subjects may not be
linear adding to the complexity of the group-based statistical analysis.

Non-scalar features [34,35,42] such as the principal eigen-directions (PD) of the
tensors have also been used in some analyses. In [34] a Bipolar-Watson model was
introduced for analysis of PD’s. This model takes into account the symmetric nature
of the tensor while performing the statistical analysis and assumes the underlying
distribution to be a Wishart distribution. However, in the regions where white matter
fibers cross, the tensors are oblate in nature and therefore applying statistics to PD’s
may demonstrate ambiguous results.

A few methods have attempted on analyzing tensors in the VBM type setting.
For example, work by Li et al. performed tensor regression analysis [27] where
a linear regression model was assumed that imposed distributional assumptions
on the tensors under consideration. In some other works, [15, 26] tensors were
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characterized using Riemannian symmetric spaces. In [3] a simple and efficient
Riemannian framework based on Log-Euclidean (LE) transform was introduced.
Such methods rely upon the assumption that the tensors around a given voxel
from various subjects belong to a principal geodesic sub-manifold and that these
tensors obey a normal distribution on that sub-manifold. The basic principle of these
methods is sound, namely that statistical analysis of tensors must be restricted to the
appropriate manifold of positive definite symmetric tensors, which is known to be
a cone embedded in <6. However, there is no guarantee that the representations of
the tensors on this sub-manifold will have normal distributions since the pathology
imposes its own structure and the tensors measured at a given voxel, from n subjects,
typically lie on a much more restricted submanifold of the space of symmetric
positive definite matrices. A novel approach was suggested by Verma et al., where
a manifold learning method (Isomap) was employed for tensor analysis [40]. The
focus of this work was on learning embeddings (or features) parameterizing the
underlying manifold structure of the tensors. The learned features belonged to
a low-dimensional linear manifold parameterizing the higher-dimensional tensor
manifold and were subsequently used for group-wise statistical analysis. In general,
manifold learning approaches [10] may be used to estimate the embedding of the
manifold that represents the tensor measurements fairly well, however, depending
on the number of samples used to learn the underlying manifold structure, it may
not always be possible to determine the structure or validate its correctness or they
may fail to estimate the probability distribution (non-Gaussian) on the (flattened)
manifold itself.

This chapter is aimed towards providing a paradigm for voxel-wise tensor
statistics by determining the underlying statistical distribution of the data and using
this distribution for subsequent voxel-wise analysis. To achieve this, a novel method
named kernel-based morphometry (KBM) is developed which demonstrating that
it can accurately estimate the underlying distribution of the tensor data compared
to other existing methods. A standard statistical test is then performed on these
projections with appropriate testing for multiple comparisons.

2 Kernel Based Approach to Group-Wise Voxel Based DTI
Statistical Analysis

Group-wise voxel-based statistical analysis of DTI data involves spatially nor-
malizing all DT images to a common DTI template using a suitable technique
[12, 22, 43, 46] and then using an appropriate voxel-wise statistical test to infer
regional differences between groups based upon the tensors at (or around) a voxel.
In this kernel based approach, the underlying distribution of the data at each voxel
is determined and subsequently statistics are performed.
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Fig. 1 Kernel-based projections: The mapping � takes points (marked with crosses) from the
original non-linear space to the linearized RKHS. Hyperplanes having constant projections onto
a vector in the RKHS become curved lines in the original space. Such curved lines can give us
important insight into how the corresponding RKHS projection parameterizes the original points

Kernel Principal Component Analysis (kPCA) [33] is a suitable method for learn-
ing the underlying data distribution. The common idea in any of the kernel-based
techniques is to transform the samples into a higher-dimensional reproducible kernel
Hilbert space (RKHS). Samples can be expressed using an appropriate kernel in a
higher dimensional space using the well known “kernel trick” [33]. The non-linear
hypersurfaces in the original space are mapped into hyperplanes in RKHS. These
hyperplanes separate the given samples linearly in RKHS which is equivalent to
a non-linear separation in original space. Subsequently, statistical operations can
be performed in this “kernelized” space. Thus, in case of DTI, at each voxel, the
intensities are kernelized to hyperplanes in the RKHS. Figure 1 illustrates the idea
behind obtaining such components. Since these components are linear in the RKHS,
linear tests for statistical inference, such as the Hotelling T 2 test, can be reliably
applied to these projections in order to identify separation between groups.

Before presenting the kPCA technique in detail, here is a brief note on our
mathematical conventions: Vectors are denoted by bold-faced lower case letters,
e.g. x, and matrices by upper-case letters, e.g. S for tensor matrix with U as the
eigenvector matrix and D as the diagonal matrix containing the eigenvalues of the
tensor. Vector of all 1’s is denoted by e while the identity matrix is denoted by I .
Vector of all 1’s in m-dimensional space is represented by em. Matrix transpose and
the matrix inverse are denoted by superscripts T and �1 respectively. The sample
mean of a set of vectors fxi ; i D 1; � � � ; Kg is represented as Nx, while the inner
product of two vectors xi ; xj is denoted by < xi ; xj >. Group-wise study includes
a statistical analysis of the DT images of N subjects, with NC subjects in one class
(the positive class) and the remaining N� subjects in a second class (the negative
class).
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3 Kernel Principal Component Analysis (kPCA)

We now describe the kPCA technique [33] by which one can find a rich linear
representation of our voxel-based samples as well as provide an accurate estimate
of the probability density underlying these samples. In conventional PCA, principal
directions in the vector space of the samples that maximize the variance of the
components of the samples along those directions and which also minimize the
least-squares representation error for the samples are determined. In kPCA, similar
principal eigen-directions in higher-dimensional RKHS are found where can be
safely assumed to be normally distributed.

A DT image consists of a 3 � 3 positive-definite symmetric matrix or tensor S

at each voxel in the image. Earlier work presented by Khurd et al. [24] used the
diffusion tensor directly as a 6D vector that could potentially lead to inaccurate
results since the tensors lie on the geodesic sub-manifold which is known to be a
cone embedded in <6. Therefore, the log-Euclidean form of tensor was employed
that retained the key attributes of affine-invariant Riemannian metric, and allowed
standard Euclidean computations in the space of matrix logarithms, as was described
by Arsigny et al. [3]. A tensor S can be represented as S D UDU T where matrix U

is a matrix of its eigenvectors and D is a diagonal matrix that consists of the three
eigenvalues. The log-Euclidean form of the tensor is given by Eq. 1.

Sle D log.S/ D Ulog.D/U T (1)

x D .S le
xx; S le

yy; S le
zz ;

p
2S le

xy;
p

2S le
xz;

p
2S le

yz/
T (2)

A similarity invariant log-Euclidean form of the tensor is computed using Eq. 1 [3].
The 6-dimensional vectors are then obtained using Eq. 2 for all our N subjects
x1; � � � ; xN . Let us denote the nonlinear mapping of this vector x into the Hilbert
space by �.x/, and let us denote the underlying kernel by k.:; :/, where <

�.xi /; �.xj / >D k.xi ; xj /. Let N� denote the mean of �.x1/; � � � ; �.xN /. Since
a principal eigenvector v in the higher-dimensional Hilbert space lies in the span
of the vectors �.xi / � N�; i D 1; � � � ; N , it can be conveniently represented as
v D P

i ˛i .�.xi / � N�/, where ˛ is an N -dimensional vector. Components of any
sample along the eigenvector v can now be conveniently computed using this new
representation in the kernel basis.

The entire kPCA procedure is summarized below [10]:
Another alternative to using LE form of tensors and then computing the kernel

K.xi ; xj / is employing directly a kernel K.log.si/; log.sj// where s is the original
tensor (in a 6 dimensional vector form).

In addition to finding the orthogonal directions of maximal variance in the
higher-dimensional RKHS, kPCA also provides an estimate of the probability
density underlying the samples. It has been pointed out by Girolami et al. [18] that
kPCA with a Gaussian radial basis function kernel amounts to orthogonal series



234 M. Ingalhalikar et al.

−1 0 1

0

0.5

1

1.5

2
Density Estimate

−1 0 1

0

0.5

1

1.5

2

0.05

0.1

0.15

Component 1

−1 0 1

0

0.5

1

1.5

2

−0.5

0

0.5

cba

Component 2

−1 0 1

0

0.5

1

1.5

2

−0.6

−0.4

−0.2

0

0.2

Component 3

−1 0 1

0

0.5

1

1.5

2

−0.4

−0.2

0

0.2

0.4

Component 4

−1 0 1

0

0.5

1

1.5

2

−0.4

−0.2

0

0.2

fed

Component 5

−1 0 1

0

0.5

1

1.5

2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Component 6

−1 0 1

0

0.5

1

1.5

2

−0.3

−0.2

−0.1

0

0.1

0.2

Component 7

−1 0 1

0

0.5

1

1.5

2

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

ihg

Fig. 2 (a) Synthetic dataset, (b) Contour plot for kernel probability density estimate, (c) Contour
plot for 1st kPCA component, (d) Contour plot for 2nd kPCA component, (e) Contour plot
for 3rd kPCA component, (f) Contour plot for 4th kPCA component, (g) Contour plot for 5th
kPCA component, (h) Contour plot for 6th kPCA component, and (i) Contour plot for 7th kPCA
component (please see text for explanation in Sect. 3)

density estimation using Hermite polynomials. Gaussian kernels are frequently
employed in alternative kernel-based classifiers such as support vector machines
[33]. The advantages of using Gaussian kernel are multifold; it non-linearly maps
the samples into RKHS, involves less number of parameters than a polynomial
kernel and is known to be robust. The Gaussian � value was chosen to be based on
the average distance between nearest neighbors (NN) xi and xj for e.g.

�
�xi � xj

�
�

and our choice was motivated by the desire to obtain meaningful representations for
the different kPCA components.

In Sect. 5.1, simulated example is presented (see Fig. 2) where kPCA provides
an accurate parametrization of the underlying density of the dataset. We note
that the kPCA components constitute a linear representation of the tensors in the
RKHS, which considerably simplifies further statistical analysis that will need to
be performed on the dataset. An important issue is selecting the number of kPCA
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Algorithm 1 kPCA
1. Form the kernel matrix K, where Kij D k.xi ; xj /; i D 1; � � � ; N; j D 1; � � � ; N:

2. Center the kernel matrix to obtain Kc D .I � 1
N

eeT /K.I � 1
N

eeT /.
3. Eigen-decompose Kc to obtain its eigenvectors ˛.i/ and eigenvalues �i ,

i D 1; � � � ; N.�1 � �2 � � � � � �N /.
4. Normalize the eigenvectors ˛.i/ to have length 1p

�i
so that the eigenvectors v.i/ in the RKHS

have unit length.
5. The i th kPCA component for training sample xk is given by:

< �.xk/ � N�; v.i/ >D �i ˛
.i/

k

6. For a general test point x, the i th kPCA component is:

< �.x/ � N�; v.i/ >D X

m

˛.i/
m k.x; xm/ � 1

N

X

m;n

˛.i/
m k.x; xn/

components used for subsequent statistical analysis. This number can be chosen by
looking at the kPCA eigenvalue spectrum and selecting only those eigenvectors that
correspond to large eigenvalues. The notion of “large” eigenvalues is empirically
defined using a application-specific threshold in one of two ways. The threshold may

either specify the minimum energy
PL

iD1 �i
PN

iD1 �i
that should be present in the retained L

eigenvalues, or it may specify a minimum value for the ratio of the smallest retained
eigenvalue �L to the largest retained eigenvalue �1. For good discriminatory
performance between the groups, the number of kernel PCA components chosen
should not exceed the number of samples in either class. Statistical p-value maps
are then computed using Hotelling’s T 2 statistic on the retained kPCA projections.
This procedure is repeated at each voxel to obtain the kernelized version of the
tensors at that voxel. These are now vectors in a high-dimensional linear space.
Thus linear statistical tools for high dimensional data such as Hotelling’s T 2 can
then be applied to the retained kPCA components. The resulting p-value map can
then be thresholded to obtain regions of interest.

To overcome the multiple comparisons problem associated with voxel-wise
analysis, False Discovery Rate (FDR) is implemented. This method controls the
expected proportion of falsely rejected hypotheses [9]. The FDR threshold is
determined from the observed p-value distribution, and therefore is adaptive to the
amount of information in a given dataset [17].

The entire computational procedure for statistical analysis of tensors using kPCA
also referred as KBM is summarized below:

This method can also be applied directly to eigenvectors of the tensors for
studying the groupwise orientation changes. Performing KBM on a DTI population
encompasses changes in scalar maps like FA as well as the orientation.
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Algorithm 2 KBM of DTI data:
• Input: DTI datasets spatially normalized to a standard template. (NC subjects in one group and

N� subjects in the other group).
• Output: p-value maps indicating regional differences between the two groups (in general

patients and controls).
• Parametric p-value map:

– For each voxel v D 1; � � � ; V

� Compute the log-Euclidean form of tensors from N subjects.
� Apply kPCA (refer to algorithm 1 above).
� Select the number of kPCA components (using the energy threshold criterion).
� Compute Hotelling’s T 2 statistic T 2.v/ on the kPCA components and the parametric

p-value p.v/.

Regions of significance can be identified by controlling the FDR using a suitable p-value
threshold. Genovese et al. [17] have recommended the usage of threshold p-values of < 0:1.

4 kPCA Based kFDA

It has been showed that kernel Fisher Discriminant Analysis (kFDA) could be
an alternative tensor analysis method to kPCA [24]. kFDA focuses on finding
non-linear projections of the tensorial data which can optimally discriminate
between two groups. It computes a direction in higher order RKHS such that the
projection along this direction maximizes a separability measure known as Rayleigh
coefficient (or Fisher discriminant ratio). To quantify the group difference a T 2 test
was performed on the kFDA components [24].

It is important to note that kFDA solution uses the group labels in obtaining the
scalar projections and therefore permutation tests on the T 2 statistic computed from
these projections are essential in finding meaningful p-value maps. The permutation
tests on a million voxels can be computationally expensive. To circumvent the
permutation tests, we provide an alternative analytical kFDA solution, based upon
eigen-decomposition, as is shown by Baudat et al. [7]. This analytic solution
has been shown to be mathematically equivalent [45] to first performing kernel
PCA on the input data, followed by ordinary FDA. Therefore, we shall refer
to this alternative solution as kPCA-based kFDA. An advantage of the analytic
solution is that one can reduce the number of kernel PCA components used in the
subsequent ordinary FDA and obtain superior discriminatory performance. For good
discriminatory performance, the number of kernel PCA components used in the
subsequent ordinary FDA should not exceed the number of samples in either class.
In practice, this number is chosen based upon the kernel PCA eigenvalue spectrum
as discussed in Sect. 3. On account of the equivalence between the T 2 statistic and
FDA (Appendix), a second advantage is that it is possible to compute p-values using
the T 2 statistic on the retained kPCA components in a faster parametric manner,
with a small loss in accuracy, in comparison to performing permutation tests on
kFDA components. The p-value map computation procedure using kPCA-based
kFDA is identical to Algorithm 2 presented in Sect. 3.
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5 Application

The kPCA framework is applied on three types of datasets: (1) simulated 2D
datasets with the purpose of testing parameters of the kPCA analysis; (2) real
datasets in which changes in shape and orientation have been simulated to study
the practical applicability of KBM to group-wise population studies. Knowing
the ground truth, that is, the magnitude of changes introduced, makes it easier
to evaluate the differences captured by kPCA analysis and identify possible false
positives; and (3) A group analysis between children with Autism spectrum disorder
(ASD) and typically developing (TD) controls. We now describe the details of each
of the experiments.

5.1 Kernel Based Analysis of Simulated Datasets

In this experiment the aim is to establish that the kernel-based method is able to
identify the changes in shape and orientation in tensors when the changes occur in
combination as could be in the case of pathology-induced changes. A 2-dimensional
dataset with variation in the radial and angular directions was created that modeled
a tensorial dataset with changes in the principal eigenvalue and eigen-direction. The
purpose for using only two-dimensions was to make understanding and visualization
straightforward (Fig. 2).

The synthetic dataset consisted of points forming a semi-circular band (see
Fig. 2a) and was generated using 36 angles (in the 0–144ı range) and 6 radial
values (in the range 1.3–1.8) resulting in a total of 216 points. The aim was to
check whether kernel-based morphometry paradigm was able to capture both
these changes. The kernel-based procedure (Algorithm 1) was applied to this
dataset using a Gaussian radial basis function (RBF) with the kernel width �2

set to 0:1 (� D 0:316). The kernel width parameter was based on the average
distance between nearest neighbors xi and xj , i.e. jjxi � xj jj and the number of
samples.

Figure 2c–i shows the iso-contour plots for 7 principal kPCA components
representing the hyperplanes having constant projections onto the corresponding
7 RKHS eigenvectors, as was described earlier using Fig. 1. It was observed that
the first 6 components (Fig. 2c–h) represented the angular changes in the data using
varying scales, the third kPCA component (Fig. 2e) divided the angular variation
in the data into four regions and alternately assumed positive and negative values
as we move along the angular direction across these four regions. Only the seventh
kPCA component (Fig. 2i) individually captured the radial change in the data and it
smoothly increased from negative to positive values in the radial direction.
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5.2 Analysis of DTI Datasets with Simulated Changes

The simulation in the previous Sect. 3 was then extended to a more realistic scenario
as now the changes were simulated in real datasets. This was performed to determine
whether KBM is able to capture combined shape and orientation changes, that a
simple voxel-based morphometry of the scalar maps of anisotropy and diffusivity is
unable to obtain.

The DTI data consisted of scans of 36 healthy volunteers (17 male and 19

female). These DT images were acquired on a Siemens TrioTM 3.0 Tesla scanner,
using a single shot spin-echo, echo planar imaging (EPI), with 12 diffusion
directions with a b-value of 800 s/mm2 and TR/TE = 6,400/97 ms. Forty axial slices
with 128�128 matrix, were acquired with a voxel-size of 1:72�1:72�3:0 mm. The
diffusion tensor images were reconstructed from the DWI data using multivariate
linear fitting [32]. The FA images that were computed from the tensors, were
deformably registered elastically to a chosen healthy subject as template, by
hierarchically matching features that provide a rich morphological signature for
each voxel [36], The deformation was applied to the tensors while reorienting
them using the underlying rotation component of the transformation [44]. We then
identified an ROI on the template in the corpus callosum, as shown in Fig. 3a, and
introduced spatially smooth random changes in the principal eigenvalue and the
azimuthal angle for the principal eigenvector of each tensor into the appropriate
ROI for all unwarped subject DT images. The random changes were designed to
slightly increase the principal eigenvalue (average 4:6 % change) and the principal
azimuthal angle (�20ı), on average, but were subtle enough so that these changes
could not be visibly easily discerned on an FA map or a colormap for the principal
direction. These changes emulated changes in FA and orientation in the tracts. The
DT images with the introduced random changes were then warped back to the
template resulting in 35 DT images belonging to the class with induced pathology.
The tensors were then transformed to log-Euclidean space. KBM method was tested
using two different cases: (1) using LE tensors (without smoothing) (2) by applying
4 mm FWHM Gaussian blur to the LE tensors. All the tests were performed using
3 kPCA components, 8 kPCA components and 12 kPCA components. Following
kPCA, the statistical p-value maps were computed using Hotelling T 2 test. KBM
method uses a vector (LE tensor in this case) as an input and hence can be applied
for analyzing of one of the eigenvectors. To demonstrate this adaptability, we
applied our method to analyze the orientation of the simulated tensors. The principal
direction (PD) defined by a 3D vector was chosen for the analysis. The issue of
antipodal symmetry of eigenvectors was resolved by making sure that all the vectors
lay in the positive z-hemisphere. The kPCA framework described in Sect. 3 was
applied to the PDs.

The effect of applying kPCA to PDs, tensors and the effect of change of
parameters was quantitatively evaluated based on the percentage overlap of voxels
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Fig. 3 (a) ROI with changes (highlighted) overlaid on the template FA map. P-value map
computed from voxel-wise kPCA using 8 components is overlaid on the template FA when (b)
Smooth tensors are used (c) when original tensors are used, (d) voxel-wise t-test on FA and (e)
when principal eigen-directions are used. Low p-value regions in (b) better (�66 %) match the
true ROI in (a) than in (c) (�59 %) after thresholding at p-value of 0.1. For FA analysis in (d),
the sensitivity is lower than kPCA on tensors. Although most of the ROI is detected, the p-values
are higher. For PD analysis in (e) changes in anisotropic areas are better detected than in isotropic
regions. The ROI’s are zoomed in each case for better visualization

in the detected ROI (the voxels that showed to be significantly different based on a
threshold of p-value 0.1) with the voxels in the original ROI in which the changes
were introduced. We compared our method with voxel-wise t-test on FA and ADC
as well as the Isomap-based method introduced in [40]. The kPCA on PD’s was
compared with the Bipolar-Watson method on the PD’s introduced by Schwartzman
et al. in [34].

Results are shown in Fig. 3b–e. Figure 3b displays the p-value map after
performing group analysis on the kernelized data at each voxel. It can be observed
that the simulated ROI has a very low p-value range. Similarly, Fig. 3c shows the
p-value map after performing kPCA analysis on tensors. Figure 3d, e show the
ROI detected by t-test on FA and kPCA on PD’s respectively. Table 1 gives all
the percentage overlap values from kPCA compared to FA analysis, ADC analysis
and Isomaps. The FA and ADC analysis involved a voxel-wise t-test.
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Table 1 Percentage overlap of detected ROI (p-value map threshold at a cut-off of 0:1) with the
ground-truth ROI in which changes had been introduced (please refer to Sect. 5)

Analysis method Original DTI Smooth DTI

1. ADC 14.92 21.71
2. FA 39.14 42.39
3. ISOMAP – 3 components 36.19 45.50
4. kPCA on tensors – 3 components 57.39 65.56
5. kPCA on tensors – 8 components 59.43 66.34
6. kPCA on tensors- 12 components 64.38 87.42
7. kPCA on PD – 3 components 42.15 45.76
8. kPCA on PD – 8 components 42.87 47.55
9. Bipolar Watson on PD 39.84 42.92

5.3 kPCA Analysis on Autism Spectrum Disorder

Finally, the method of KBM was applied to a real population of subjects with ASD
pathology and typically developing (TD) controls. In this study 26 TD controls
(mean age = 10.7) and 44 subjects with ASD (mean age = 9.8) were used. The
images were taken using Siemens 3T VerioTM scanner using a 32 channel head
coil. DTI was performed using a single shot spin-echo, echo-planar sequence with
the following parameters: TR/TE = 16,900/70 ms, b-value of 1,000 s/mm2 and 30
gradient directions. Eighty axial slices of 128 � 128 matrix (FOV 256 mm) were
acquired yielding 2 mm isotropic data. The diffusion tensors were estimated using
the least squares fitting method and then spatially normalized to a standard template
described in Wakana et al. [41]. The deformable registration utilized the full tensor
information by integrating intensity and orientation into a hierarchical matching
framework [22]. KBM analysis was then carried out on the tensors using an energy
threshold of 80 % and with a sigma of 4.0. FA and mean diffusivity (MD) maps
were computed from the spatially normalized dataset. A comparative voxel-wise
FA and MD analysis was performed on the same dataset by employing a standard
t-test between the groups. In all the analyses, the p-values were thresholded at
a significance level of p < 0.05 and the results were overlaid on the template
FA image. The resulting images are displayed in Fig. 4 indicating the regions of
differences between subjects with ASD and the TD controls. The kernel based
method could capture multiple areas of significance that included left superior
longitudinal fasciculus (SLF), left inferior longitudinal fasciculus (ILF) and left
inferior fronto-occipital fasciculus (IFO) and parts of right and left internal (IC)
and external capsule (EC). The conventional FA and MD voxel-wise results are
shown in Fig. 4b, c respectively. From Fig. 4b it can be observed that FA captures
only the differences in the right external capsule (EC), while MD analysis shows
significance only in inferior regions that include the ILF and IFO as seen in Fig. 4c.
Multiple comparisons using FDR at 0.1 threshold (on tests for FA, MD and KBM
on tensors)could not survive any of the voxels.
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Fig. 4 Displays the differences between ASD and TD groups. (a) Result from k-PCA on tensors.
The areas include left SLF (includes arcuate fasciculus and acoustic radiation), ILF, IFO, IC and
EC while (b) show the result from voxel-wise FA analysis in which only the right EC is captured
and (c) significant areas captured by MD changes that include ILF and IFO

6 Summary

In this chapter we address the problem of tensor-based population statistics of
DTI data by employing a kernel based morphometric method that can capture the
underlying distribution of the data. Our sequence of experiments shows that the
mapping of data to a kernelized higher dimensional space enhances group separation
and also models the underlying changes in the data.

To validate the kernel-based procedure we first applied it Sect. 5.1 on simulated
data. This aided in determining whether it was able to capture combined changes
in shape and orientation and whether this depended on the number of compo-
nents. The experiment demonstrated that using different number of components
achieves different degrees of separability in the data, between the different kinds
of changes. Moreover, we found that it is important to utilize an adequate number
of features/components for better group separation. Therefore, an energy threshold
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criteria was defined as was described in Sect. 3. It was also noted that if a high value
of � was used (e.g. 10 times of NN distance) then the separability of the shape and
orientation could not be obtained even when maximum allowable components were
used. On the other hand, a low � value would have lead to overfitting of the data.
Thus selecting an optimum � value was critical.

In the next experiment (Sect. 5.2) pathological changes were simulated in the
genu of the corpus callosum and the surrounding CSF (in the form of spatially
smooth subtle random changes in the principal eigenvalue and the PD). The main
reason behind picking such an area was to evaluate KBM in areas with high
anisotropy (genu) as well as with low anisotropy (CSF). These simulations were
mainly created for better validation of the KBM method as there are no models or
ground truth for the variability that a disease may introduce in the data. From the
results shown in Table 1, rows 1 and 2 are the outcome of a conventional t-test on
ADC and FA and row 3 presents the results using the Isomap technique from [40].
The t-test on FA detected only regions of higher percentage change in eigenvalues
with a significance lower than 0.1. The Isomap technique (row 3) performed better
than the first two approaches (indicating the non-linear nature of data variation), but
perhaps it suffered as it does not utilize the knowledge of the underlying distribution
of data. Knowledge of the statistical distribution led to improved results using
the kPCA technique on the LE tensors (Table 1 rows 4–6). It was observed that
the resulting overlap from kPCA was better when the LE tensors were smoothed
and when larger number of features were used (87 % when 12 components were
used on smoothed datasets). The results also improved when richer number of
features were used (that is features had more components). In CSF, since the average
eigenvalues were slightly increased, we expected to see shape differences which
were significantly caught by kPCA method whereas FA picked it up subtly. Row 7
and 8 present results using kPCA on PD’s while row 9 shows the results of using
Bipolar-Watson model introduced in [34] to determine changes in PD. Although the
ROI overlap using kPCA on PD’s using 8 components, (�47 %) was much lower
than the tensor overlap (�66 %), it was better than using the Bipolar-Watson method
which showed only 42 % overlap after thresholding at a p-value of 0.1. Although the
changes were introduced in the principal eigenvalue and eigenvector, it seems that
methods that targeted each of these changes individually (FA-based and PD-based)
were unable to capture it fully as opposed to when the full tensor information was
used for statistical analysis. Thus suggests that changes in shape and orientation are
difficult to detect by conventional methods, however the KBM is able to capture
mixed changes. Since combination changes are expected in pathology, we have
established the importance of our method in performing large population studies
in which changes cannot be hypothesized a priori. It may be noted that if it were
known a priori that the changes were only in shape or orientation, we could examine
just that aspect, but in the absence of such knowledge, it is important to study the
full tensor.
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Finally, we performed KBM on a population of subjects with ASD (Sect. 5.3), to
demonstrate the applicability of our method on clinical datasets. DTI based research
in ASD has mainly involved studying WM changes using anisotropy and diffusivity
values [39]. Abnormalities have been reported in WM structures like the genu and
splenium of the corpus callosum [1], the internal capsule [23] and in the tempo-
parietal regions [5, 21].

The results from our analysis displayed in Fig. 4 indicate the regions of differ-
ences between subjects with ASD and the TD controls. The resulting differences
from the kernel-based method suggest WM abnormalities and hypo-connectivity
between brain regions which may be strong contributors to the social deficits that
are hallmarks of the ASD phenotype. For example, the changes observed in SLF
(which includes the arcuate fasciculus) can be linked to the language impairment
often observed in the ASD population [16] while the differences in the internal
capsule were comparable to the previous finding by Keller et al. [23]. The p-values
computed from the kernelized analysis as well from FA and MD analyses could not
survive the FDR correction (at 0.1 threshold), perhaps owing to the heterogeneity
in the population, small sample size and/or subtle differences between the groups.
However, the aim here was to demonstrate future clinical applicability of the method
as it was able to capture more changes than were observed using conventional
analysis of DTI.

It was shown in Sect. 5.2, that tensor analysis could capture interplay between
combined shape and orientation changes which individual (FA or PD) analysis could
not capture. Similarly in the ASD example, the significant regions using kPCA on
tensors in Fig. 4a–c included many areas like SLF and IC that are known to be
affected in ASD while FA failed to capture the pathological abnormalities in ASD.
This demonstrates that KBM of tensors is able to find combined FA and PD changes
that other methods are unable to, underlining the importance of full tensor statistics,
in comparison to statistics on the scalar maps alone.

In summary, DTI analysis has the advantage of being more sensitive than the
standard scalar or PD analyses, especially when the changes appear in combination
(that is shape and orientation as could be the case in real data). However more work
needs to be done for interpretation of results which will vary based on the dataset
on which KBM has been applied. However, this work establishes the need for full
tensor statistics in group-wise population studies. As the effect of pathology is not
known, tensor analysis can be thought of as an unbiased method rather than using
scalar indices computed from combination of tensor eigenvalues and eigenvectors.
The wide range of experiments demonstrate applicability of kernel-based tensor
morphometry for population statistics and provides a novel method of statistical
analysis, based on capturing the underlying distribution of the data, that is specific
to the disease that introduced the change.
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Appendix

Proof of the equivalence between Hotelling’s T 2 test and FDA [24].
Let x1i ; i D 1; � � � ; N1 be the p-dimensional data vectors belonging to class 1

and let x2i ; i D 1; � � � ; N2 be the p-dimensional data vectors belonging to class 2.

Let Nx1; Nx2 denote the means for classes 1 and 2. Let Sx D . 1
N1CN2�2

/
� PN1

iD1.x1i �
Nx1/.x1i � Nx1/T C PN2

iD1.x2i � Nx2/.x2i � Nx2/T
�

.

Hotelling’s T 2 test: Then the T 2 test statistic is:

T 2
x D N1N2

N1 C N2

.Nx1 � Nx2/T S�1
x .Nx1 � Nx2/ (3)

Assuming normal distributions for x1i ; i D 1; � � � ; N1 and x2i ; i D 1; � � � ; N2

implies that Fx D N1CN2�p�1

.N1CN2�2/p
T 2

x has the cdf F.p; N1 C N2 � p � 1/. Therefore, the

parametric form of Hotelling’s T 2 test is sometimes refered to as the F-test.

FDA: The FDA optimal linear discriminant direction is w D S�1
x .Nx1 � Nx2/ and the

corresponding scalar mapping is y D .Nx1 � Nx2/T S�1
x x.

Therefore, Ny1 � Ny2 D .Nx1 � Nx2/T S�1
x .Nx1 � Nx2/,

Sy D .
1

N1 C N2 � 2
/
� N1X

iD1

.y1i � Ny1/.y1i � Ny1/T C
N2X

iD1

.y2i � Ny2/.y2i � Ny2/T
�

D .
1

N1 C N2 � 2
/.Nx1 � Nx2/T S�1

x

� N1X

iD1

.x1i � Nx1/.x1i � Nx1/T (4)

C
N2X

iD1

.x2i � Nx2/.x2i � Nx2/T
�
S�1

x .Nx1 � Nx2/

D .Nx1 � Nx2/T S�1
x .Nx1 � Nx2/ (5)

and

T 2
y D N1N2

N1 C N2

. Ny1 � Ny2/T S�1
y . Ny1 � Ny2/

D N1N2

N1 C N2

.Nx1 � Nx2/T S�1
x .Nx1 � Nx2/

D T 2
x (6)

Thus, the T 2 statistic computed on vectorial input samples, i.e. T 2
x , is mathe-

matically equivalent to a one-dimensional T 2 statistic T 2
y computed on the scalar

samples obtained by performing Fisher discriminant analysis on the input vectorial
samples.
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