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Preface

This book presents a broad and illustrative sample of the state of the art of
the emerging field of visualization and processing of tensor fields and higher-
order descriptors. Topics range from applications of the analysis of tensor fields
to research into their mathematical and analytical properties. Tensors arise in
multiple areas of mathematics, science, and technology. For example, in physics
of continuous media, tensor quantities arise in constructive equations that describe
charge, mass, momentum, and energy transport (the diffusion tensor, the electrical
conductivity tensor, etc.). In fact, most nontrivial presentations of theories of physics
resort to tensor formulations. This is true for most of the theoretical branches, such
as quantum and relativistic mechanics, thermodynamics, and electromagnetism.
Hence, tensor analysis is a well-established branch of mathematics that is used
extensively in many areas of science and engineering. Nevertheless, tensor formu-
lations are typically not usual in image processing and related fields, even though,
for many scenarios, they should be of major interest.

The motivation is that by collecting chapters from a range of fields (e.g., includ-
ing medical imaging and scientific visualization), the field of tensor processing
can be more clearly presented to the interested scientific community. The field
itself may be cross-fertilized with innovations bridging the various research areas.
We believe that this book contributes toward this goal by combining theoretical
and experimental results, reflecting recent advances in tensor signal processing and
opening new avenues of research.

This book consists of the following five parts.
Part I “Tensor Data Visualization” consists of two chapters. The first chapter

gives an overview of techniques for visualization of tensors and tensor fields in
engineering and discusses the current state of the art and challenges. Creating
visualization tools for engineering tensors often involves solving multiple different
technical problems at the same time, including visual intuitiveness, interactivity,
and representation of uncertainty. The second chapter is about tensor invariants
and glyph design and gives an overview of common glyphs, mostly with origins in
mechanical engineering, and links their interpretation to specific tensor invariants.

v
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Part II “Representation and Processing of Higher-Order Descriptors”
consists of three chapters. The first chapter describes a matrix representation of local
phase, a powerful concept that has been successfully used in many image processing
applications. For multidimensional signals, the concept of phase is complex and
there is no consensus on the precise meaning of phase. A remedy is suggested using
a novel matrix representation of multidimensional phase. In the second chapter,
extension of mathematical morphological operations techniques for matrix-valued
images is used and extended to be used in vector images such as color images. In the
third chapter, erosion is generalized to the space of diffusion-weighted MRI data.
This is done effectively by solving a Hamilton-Jacobi-Bellman system (erosion) on
the coupled space of three-dimensional positions and orientations, embedded as a
quotient in the group of three-dimensional rigid body motions. The solution to the
HJB equations is given by a well-posed morphological convolution.

Part III “Higher-Order Tensors and Riemannian-Finsler Geometry”
includes four chapters that provide powerful mathematical language to model
and analyze large and complex diffusion data such as high angular resolution
diffusion imaging (HARDI) or diffusion kurtosis imaging (DKI). The first chapter
gives a careful introduction to the foundations of higher-order tensor algebra and
explains how some concepts from linear algebra generalize to the higher-order case.
The second chapter discusses fourth-order symmetric tensors and how to model
the positivity constraint present in diffusion. The third chapter describes the role of
Riemann-Finsler geometry as a potentially powerful mathematical framework in the
context of diffusion MRI and presents the basic theoretical foundation for Finsler-
based tractography. The fourth chapter expands on these concepts and presents
more details on a numerical Finsler tractography implementation.

Part IV “Tensor Signal Processing” presents new methods for processing of
tensor-valued data. The first chapter gives a novel perspective on performing voxel-
wise morphometry of diffusion tensor data using kernel-based approach. The second
chapter reviews the free-water diffusion model and uses it to derive diffusion tensors
following the elimination of the free-water component that is assumed to originate
from the extracellular space. The third chapter reviews approaches that have been
proposed to compute fabric tensors with emphasis on trabecular bone research.
Fabric tensors aim to model both anisotropy and orientation of a material with
respect to another one.

Part V “Applications of Tensor Processing” illustrates the use of tensors in
different application domains. The first chapter reviews various types of tensors used
in geometry processing and discusses the use of the metric and curvature tensors,
two of the most studied tensors in geometry processing. The final two chapters
demonstrate applications of diffusion-weighted imaging toward clinical use. One
chapter describes a probabilistic technique for diagnostic prediction of first-episode
schizophrenia patients based on their brain diffusion MRI data. The last chapter
presents an interactive system that integrates the visual analysis of diffusion MRI
tractography with data from electroencephalography (EEG).

We believe this collection of chapters captures the excitement and inspiration that
has been generated during a series of Dagstuhl seminars devoted to visualization and
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processing of tensor fields. This book includes contributions from attendees of the
fourth meeting, entitled “Visualization and Processing of Tensors and Higher Order
Descriptors for Multi-Valued Data,” held in December 2011. As in the three earlier
volumes, the authors report on recent research results and future directions for the
analysis and visualization of tensor fields. One of the goals of this seminar is to
bring together researchers from along the axis between pure and applied research,
identifying new multidisciplinary research challenges. This book, we hope, will
continue to further that goal in a broader context.

Boston, USA Carl-Fredrik Westin
Eindhoven, The Netherlands Anna Vilanova
Saarbrücken, Germany Bernhard Burgeth
October, 2013
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Tensor Data Visualization



Top Challenges in the Visualization
of Engineering Tensor Fields
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and Eugene Zhang

Abstract In this chapter we summarize the top research challenges in creating
successful visualization tools for tensor fields in engineering. The analysis is based
on our collective experiences and on discussions with both domain experts and
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visualization practitioners. We find that creating visualization tools for engineering
tensors often involves solving multiple different technical problems at the same
time—including visual intuitiveness, scalability, interactivity, providing both detail
and context, integration with modeling and simulation, representing uncertainty and
managing multi-fields; as well as overcoming terminology barriers and advancing
research in the mathematical aspects of tensor field processing. We further note the
need for tools and data repositories to encourage faster advances in the field. Our
interest in creating and proposing this list is to initiate a discussion about important
research issues within the visualization of engineering tensor fields.

1 Introduction

Many engineering disciplines make extensive use of tensors [2]. For example,
applications in solid mechanics, civil engineering, bioimaging and bio engineering,
computational fluid dynamics, geology and electrical engineering require the
processing of tensor fields as part of domain-specific modeling, simulation, and
analysis processes.

Given the complexities of engineering tensor data—including large-scale—,
visualization can be a powerful ally. In the last few years, this fact has fostered
research in the visualization and processing of engineering tensor fields within
the visualization community. The importance of these efforts relies on the
huge potential impact of using advanced techniques of visualization in helping
engineering professionals and scientists to have a better understanding of problems
that involve processing of tensor fields. In addition, including features such as
interactivity in the processing pipeline can be used to improve the results yielded
by numerical simulations.

Visualization of engineering tensor fields is, however, a relatively new research
topic [3, 5, 11]. Despite the potential advantages of tensor visualization in
engineering, significant challenges make advances in the field difficult. Asking
ourselves what the most important research challenges facing us are, and identifying
the stumbling blocks, as well as the required practices, has the potential to speed
up our progress. In this chapter, we attempt to start a discussion of these issues
by proposing a list of top research challenges and issues in the visualization of
engineering tensor fields.

We have been assembling this list of challenges over a series of discussions which
included both visualization researchers and domain practitioners. Our interest in
creating and proposing this list is not to impose our own ideas on the field, but
rather to jump-start a discussion about important research issues [6] within the
visualization of engineering tensor fields. We expect that this list will grow as the
field itself grows and as additional topics are identified.

Here follows our list of the top challenges in the Visualization and Processing of
Engineering Tensors. Please note that this list is not ranked.
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2 Mathematical Models

Tensors are perhaps one of the most commonly used concepts in physics, geometry,
engineering, and medical research. There has been much research in tensors and ten-
sor fields in terms of their mathematical and numerical analysis as well as geometric
and physical properties. In the visualization community much groundwork has been
carried out in the visualization of tensor fields. However, there are significant gaps
between what we already know about tensors and what we can do with them, both
in the visualization community and the application domains. This is due to a number
of challenges that we face today.

First, mathematical analysis and visualization of tensor fields is intrinsically
difficult, thanks to the large amount of information contained even in a single
second-order tensor (four numbers in 2D and nine in 3D). Existing analysis mainly
focuses on local (e.g., pointwise) tensor properties, and relatively little work exists in
global tensor field analysis, such as tensor field topology. Even in low-dimensional
cases, typical tensor data can consist of millions of nodes, each of which is
associated with a tensor. The sheer amount of data poses great challenges in robust
analysis and effective visualization of tensor fields.

Second, mathematical analysis of tensor fields is further complicated by the order
of tensors. The order of a tensor refers to the number of indices that is needed to
describe the entries in the tensor. Zeroth-, first-, and second-order tensors refer to
scalars, vectors, and matrices. While there is great need to handle tensors of order
higher than two, our ability to process such tensors are rather limited. For example,
spectral analysis for higher-order tensors is more difficult than that for second-order
tensors, and it has not been found how to extend the notion of eigenvalues and
eigenvectors to higher-order tensors that would satisfy all the properties that eigen-
values and eigenvectors of second-order tensor fields possess. Moreover, global
structures in higher-order tensors are not well understood, and it is not yet clear what
information is essential for understanding higher-order tensors. In addition, higher-
order tensors contain more entries, which makes the storage and effective processing
more challenging than their lower-order counterparts such as vectors and matrices.

3 Relevant Quantities and Terminology

In many application areas, e.g., solid mechanics, the use of tensor related quantities
has a long tradition. In these areas a very application specific terminology has
been developed. Thus often a multiple of identifiers or names exist for the same
mathematical entity. This is already the case for basic entities such as eigenvalues: in
the context of stress tensors in engineering eigenvalues are usually called principal
stresses. Even more confusing, there are terms used across disciplines which have
different definitions, e.g. anisotropy.

A good visualization is guided by the practical questions and relevant quantities
of the application. Even more than in other visualization areas, the questions related
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to tensor fields strongly vary across application fields. Similar to the terminology,
the relevant quantities cannot easily be transferred. The physical meaning of the
mathematical properties deviates strongly. For example, while in some applications
isotropic or degenerate points (points where the eigenvectors are not uniquely
defined) are of special importance, in other contexts they are just points of high
symmetry without particular meaning. We note that the terminology of tensor fields
in mathematics, the physical (or application-dependent) interpretation of tensor
fields in application areas, and the terminology from the application areas are all
correct, from a reasonable perspective. However, clear translations of the various
definitions across fields are needed.

In summary, it is difficult to transfer visualization methods from one application
to another without specific adaptation. Entering a new application area always
requires significant effort to get to know the domain-specific language, which can be
discouraging to visualization researchers. Finally, accessing the relevant information
is often not trivial since it is scattered in the literature and rarely do any concise
introductions [1, 8] exist.

4 Effective Visual Abstractions

Effective visual abstractions are a fundamental problem in the visualization of
engineering tensors. By effective we denote visual abstractions which capture the
physical or mathematical aspects of the tensors and which are intuitive to the
application-domain practitioners.

The visual abstraction issue is particularly difficult because the physical meaning
of engineering tensors is not necessarily intuitive. Symmetric second order tensors
are used routinely as abstract quantities in the mathematical modeling of turbulent
combustion and considered very useful for computation. Yet only abstractions of
the tensor, such as the trace of the tensor matrix, may bear physical meaning to the
domain practitioner. In this context, it is important to be able to select from the many
visual abstractions that have already been proposed, and to effectively combine them
into frameworks that solve specific engineering problems.

The physical meaning of tensors can further greatly impact how they should
be analyzed and visualized, even when the mathematical representations of these
tensors are the same. Examples of this include the stress tensor and strain tensor
from solid mechanics, the rate of deformation tensor from fluid dynamics, and the
diffusion tensor from medical imaging, all of which are second-order, symmetric
tensors. Yet, different mathematical analyses and visualizations are needed that
best suit the domain scientists’ needs. While certain tensor visual abstractions have
been established in other application domains, they do not necessarily transfer
well to engineering. For example, unlike diffusion tensors in medical imaging,
the eigenvectors and eigenvalues of engineering tensors may be meaningless in
turbulent combustion; while reduction of the tensor field to a scalar field—e.g.,
stress in mechanical engineering, or divergence in turbulent combustion—may bear
particularly intuitive meaning to the engineering practitioner. To create effective
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Fig. 1 Mohr diagram of a
two-force dataset (simulation
of a block on which a pushing
and a pulling force are
applied); top: unfiltered Mohr
diagram, bottom: filtered
Mohr diagram. The filtered
Mohr diagram depicts only
circles for cluster
representatives that have been
computed using mean-shift
clustering in shape space.
This representation reveals
that four characteristic
stresses occur: Compressive,
tensile and mixed stresses.
These characteristics are
found in many engineering
datasets

visual representations, visualization researchers need to spend significant time
understanding the underlying science and engineering.

Finally, the particular visual abstraction depends on which aspects of the model
are considered important. Finding effective, understandable visual abstractions for
engineering tensors is thus a fundamentally interdisciplinary, exploratory process.
Domain hypotheses and data change iteratively with the visual exploration process,
thus the data models and thus visual abstractions change iteratively as well.
Communication with the domain experts is needed to establish which aspects of
the model are important and need to be captured by the visual representations.

To identify the right or interesting quantities to visualize and to establish a
common visual language with the domain specialists, visualization researchers
have found it useful to cover the domain literature and seek traditional visual
representations (Fig. 1) [7]. Another approach is to tap into information visualization
abstractions such as icons or glyphs through a parallel prototyping [4] approach.
However, identifying the right invariants and visualization rule-of-thumbs for a
particular domain—and then across engineering fields—remains a major challenge.
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Fig. 2 Paraview rendering of the shock regions (points within 0.01 of the local speed/speed of
sound ratio of 1) in a rich and very large—21M-points—combustion dataset. Due to the supersonic
nature of this test case, the flow field exhibits shocklets during the simulation

5 Scalability: Very Large Datasets

Engineering tensor data tend to be generated from computational simulations. Major
advances in computing capabilities mean that recent datasets tend to have very large-
scale—petascale and exascale: even toy examples from turbulent combustion have
millions of grid points (Fig. 2).

Given the scale of these tensor fields, major scalability challenges include occlu-
sion and clutter. For example, information encoded using glyph-representations
becomes quickly unreadable. Furthermore, slow interaction with complex, though
expressive geometric representations means hardware-accelerated techniques are
needed to render and explore the data at interactive rates.

Possible solutions to scalability issues include abstraction (volume render-
ing [7, 9], Fig. 3), interactive filtering (also projection to planes), clustering (also
dimension reduction), or simply creating novel scalable visual representations. It
may also be useful to borrow scalable ideas from machine learning and information
visualization.

6 Scalability: Multi-field Datasets

In addition to large-scale, engineering data also typically feature multiple fields,
including non-tensor quantities such as pressure, temperature, or velocity. For
example, mechanical engineering problems may feature more than 60 tensor and
non- tensor field quantities in the same dataset [10]. Furthermore, numerical
simulations may run over many time steps, in which case comparison of tensor
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Fig. 3 Left: Volume rendering of a three tensor clustering for a 8M point mixing-layer combustion
dataset (clusters mapped to green, red, and blue). Right: Hybrid Rendering of the two-force dataset.
Volume rendering provides context (violet = tension, green = compression) and tensor lines are
seeded for the pushing and pulling force only (along major and minor eigenvector, respectively)

fields across time becomes particularly important. We should be able to effectively
visualize multiple fields simultaneously, and to visualize the interaction between
multiple fields.

However, abstractions which meet successfully the large data scalability
challenge—such as transfer-function based volume rendering or hybrid
representations—do not necessarily facilitate the visual comparison of multiple
fields at the same time. Established techniques for visual comparison—such as
juxtaposition, overlays or animation—may require novel visual abstractions to meet
the challenges of tensor multi-field data that stem from engineering fields.

7 Scalability: Details in Context

The shear spatial size combined with many small-scale phenomena provides
additional challenges: Whereas details-in-context techniques have a long history in
medical visualization and in information visualization, a transfer of those techniques
to engineering data is typically not a trivial task that is made even harder due to the
lack of dataset independent spatial reference other than the provided geometry.

The delivery of visualization systems that follow basic interaction paradigms
such as providing focus and context in tensor fields at the same time often rely
on the possibility to display data at different levels of detail, and pan and zoom
techniques require relatively smooth transitions between representations at different
scales. Besides modified seeding strategies for glyphs and topology simplification,
only few techniques currently used in tensor visualization fulfill these requirements
and, to the best of our knowledge, none of these has been studied in detail in this
context.
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Fig. 4 Construction element
dataset used for modeling and
simulation in mechanical
engineering. Visualization
should be integrated with the
modeling and simulation
process, and not a
post-processing step. Top:
Compressive areas are
highlighted. Bottom: Mohr
diagram. The dataset exhibits
the same basic characteristics
as the two-force dataset

8 Integration of Visualization with Simulation and Modeling

Most engineering problems do not require mere post-processing visualization,
but interactive visual computing (Fig. 4). For example, tensor visualization is
fundamentally interesting for the validation or debugging of numerical simulations
in the context of computational turbulent combustion modeling. In such situations,
the domain experts are often interested in visually exploring tensor datasets as they
are being generated by the numerical method used in the simulation. Detecting
anomalies in the tensor field may highlight bugs in the modeling stage or in the
numerical simulation stage. Early detection of such anomalies may help stopping
in such cases lengthy, computationally expensive simulations that would lead to
erroneous final results.

With simulation runtimes on the order of days or months even on supercomput-
ers, the integration of visual analysis with the simulation and modeling processes
could lead to significant benefits. Furthermore, the domain experts are interested in
steering calculations in real-time, being able to change parameters on the fly and see
the effects.

However, the scale of these simulations and the hardware on which they are run
pose stringent constraints. Massively parallel simulations are common: How do we
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combine the results from such parallel simulations in an interactive rendering of
the entire dataset? Furthermore, large-scale datasets often cannot be saved to disk:
How do we visualize tensor data when the domain expert cannot afford to stop
the simulation to save the data for visualization? In situ visualization and remote
visualization of tensor fields are, in this context, topics of high interest.

9 Interpolation and Smoothing

tensor field data can come from direct measurement or numerical simulation. In
both cases the data is only available at discrete locations (e.g., the vertices of a grid
or integration points of a cell). However, most tensor field analysis and visualization
approaches assume an everywhere continuous tensor field. Consequently, it is
necessary to reconstruct the tensor data from the vertices to the rest of the domain
(e.g., points on the edges, faces, and interiors of grid cells). This process, referred
to as interpolation or extrapolation, requires great care. While it seems simple and
is rather straightforward to perform numerically, factors such as the size of the grid
and its configuration as well as the used interpolation scheme are often ignored even
though they impact the amount of faithfulness of the interpolated data with respect
to the ground truth. However, without this being properly understood, errors may
be introduced in the data that compromise the quality of the subsequent physical
interpretation. We wish to point out that the difference between the ground truth
and the interpolated tensor fields is difficult to quantify. It is similar to object
reconstruction from photos, where the ground truth is generally not known, and
therefore the difference between it and the reconstructed object is not available.
Moreover, it is not clear how to reduce this difference. Consequently, the difference
can be viewed as a form of error, or, as we argue here, a form of uncertainty.

Another useful and often necessary data processing operation is tensor field
smoothing. This operation is designed to remove high-frequency signals from
the data, under the assumption that such signals are noise and therefore of little
relevance to the physical interpretation. However, such interpretation has not been
validated for tensor field smoothing by the visualization community. It is not clear
how the global structures (topological) in the tensor fields are impacted by the tensor
field smoothing. In addition, there has not been a principled way of deciding how
much smoothing is needed. Consequently, uncertainty is introduced into the data.

Another challenge is which mathematical representation for tensors should be
used during smoothing. A popular approach is to perform tensor field smoothing
on the entries of the tensors. While this seems to work well in practice in
many applications, it is nonetheless often unjustified. Other approaches, such as
smoothing on the norm, the eigenvalues and the eigenvectors of the tensor, can and
should be explored and compared with smoothing on the tensor entries.
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10 Uncertain Data

The fact that data is often given in a discrete form and the resulting need for
interpolation is only one source of error found in simulated and measured data. As
neither simulations nor measurements can be taken as ground truth, the introduced
error can be handled as one kind of uncertainty in the data. In addition, a
variety of errors accumulate in a data processing pipeline, most of which can be
described roughly at the place of occurrence: i.e., the distortion of the measurement,
measurement bias, discretization and quantification errors, calculation errors in pre-
processing or simulation due to the limited mathematical, and, last but not least, the
graphical precision of the screen.

Data processing pipelines, including visualization systems, would greatly profit
from propagating errors from the step where they occur to the visualization and
incorporating these errors in the visualization; whereas to date, the most-common
approach is to keep every single error small and then ignore them. Error bars are the
most common representation in all scientific journals but equivalent metaphors for
the visualization of tensor data are rare.

The uncertainty of input data has further implications to the processing when
combined with interpolation. Where interpolation in certain data leads to errors
(or uncertainties) between the sample points, interpolation (seen as averaging) of
uncertain data may actually reduce uncertainty. Whereas such models are being
explored for scalar data, an application to tensor-valued data remains an open
question and one of the most important challenges for the next years.

11 Data Repositories

Progress in many scientific disciplines benefits from the availability of free data or
benchmarks. This is especially true for visualization where data is the starting point
for all techniques. The impact of such data is threefold: The data can be used to
develop and test new techniques. It can help to show new research directions and
demonstrate shortcomings of existing methods. Finally, it can be used to evaluate the
applicability of new techniques, as well as their accuracy and efficiency compared
to existing ones.

Looking at visualization research, freely available data did accelerate the devel-
opments at least in volume visualization (http://www.volvis.org, and others) and
flow visualization (Vis-Contests 2004, 2006, 2011, and the International CFD
Database at http://cfd.cineca.it/). Although not in one repository like volvis.org, for
tensor visualization there exist a large number of freely available data sets from the
medical domain (e.g. Kindlmann’s data page, http://www.grand-challenge.org and
Vis-Contest 2010) and some datasets related to earthquakes. However, scanning
through the tensor visualization literature shows that there are only very few
and, maybe more importantly, very simple datasets from engineering applications

http://www.volvis.org
http://cfd.cineca.it/
http://volvis.org
http://www.grand-challenge.org
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Fig. 5 Screenshot of the tensorvis.org website that hosts the prospective data and tool repositories

available. As the notion and use of tensors is very different in different application
domains, this is a severe problem for the development of visualization techniques
for such data. As a first step to mitigate this problem, we set up a data repository
at http://www.tensorvis.org (Fig. 5) in Spring 2012 and work towards populating
it with various tensor datasets from engineering applications and meta information
about these datasets. Maintaining minimum meta information requirements we hope
to make the provided data even more useful.

12 Tool Repositories

In addition to the availability of data, research can also be supported and even
accelerated by the availability of software tools. Again, the impact is three-fold:
Tools can help to convert, load and process the data to be examined, tools providing
visualizations themselves can be used as benchmarks for new techniques, and,
finally, researchers can integrate some tools or libraries into their own software.

Domain practitioners new to the field of tensor visualization are often unaware
of the various existing tensor visualization tools and tensor processing libraries. A
repository providing descriptions and web-links for download or further information
would make their first steps in the field easier. Such repositories should be integrated
with data repositories to have all relevant information in one place.

13 Conclusion

Analyzing the collection of challenges we introduced in this chapter, we note that
creating visualization tools for engineering tensors often involves solving multiple
different technical problems at the same time—including visual intuitiveness, scal-
ability, interactivity, providing both detail and context, integration with modeling

http://tensorvis.org
http://www.tensorvis.org
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and simulation, representing uncertainty and managing multi-fields. This level
of complexity usually leads to trade-offs among different strategies that aim at
reasonably tackling all technical problems in the same framework. In addition,
many mathematical aspects of tensor field processing, which are also necessary for
visualization, are still under active research.

We further note that the gap between the availability of visualization tools and
their actual use by domain practitioners on a regular basis is still huge. Although
designing application-dependent visual abstractions is one of the strategies that can
help to reduce such a gap, this usually requires visualization researchers to have
a very good knowledge of the specific application, which is time consuming and
not always effective. Finally, as in many other research areas, the lack of tools for
sharing knowledge within the community has hitherto discouraged faster advances
in the field.

In this chapter, we aimed to summarize the challenges in creating successful
visualization tools for tensor fields in engineering. With this analysis and formal-
ization of our collective experiences in the visualization of engineering tensors,
we hope to motivate visualization researchers to think either about new tensor-
related problems or about persistent tensor problems across engineering fields with
a refreshed perspective.

Acknowledgements Grateful acknowledgments to H. Hagen (Kaiserslautern University), S.
Levent Yilmaz, Mehdi Nik, Tim Luciani, Adrian Maries and Md. Abedul Haque (Pitt) for
gracefully providing several of the images and captions in this chapter, as well as for inspiring
discussions. G.E. Marai’s work is partially supported through NSF IIS-0952720 and NSF CBET-
1250171.

References

1. Brannon, R.: Mohr’s circle and more circles (Online). Available: http://www.mech.utah.edu/
brannon/public/MohrsCircle.pdf (2003)

2. Delmarcelle, T., Hesselink, L.: The topology of symmetric, second-order tensor fields. In: IEEE
Visualization 1994, Washington, DC, pp. 140–147 (1994)

3. Dick, C., Georgii, J., Burgkart, R., Westermann, R.: Stress tensor field visualization for implant
planning in orthopedics. IEEE Trans. Vis. Comput. Graph. 15(6), 1399–1406 (2009)

4. Dow, S., Glassco, A., Kass, J., Schwarz, M., Schwarz, D.L., Klemmer, S.R.: Parallel prototyp-
ing leads to better design results, more divergence, and increased self-efficacy. Trans. Comput.
Hum. Interact 11(4), 18:1–18:24 (2010)

5. Hashash, Y.M.A., Yao, J.I.-C., Wotring, D.C.: Glyph and hyperstreamline representation
of stress and strain tensors and material constitutive response. Int J Numer Anal Methods
Geomech 27(7), 603–626 (2003)

6. Johnson, C.R.: Top scientific visualization research problems. IEEE Comput. Graph. Appl.
24(4), 13–17 (2004)

7. Kratz, A., Meyer, B., Hotz, I.: A visual approach to analysis of stress tensor fields. ZIB-report
technical report 10–26 (2010)

8. Kolecki, J.C.: An introduction to tensors for students of physics and engineer-
ing, NASA/TM–2002-211716 (Online). Available: http://www.grc.nasa.gov/WWW/k-12/
Numbers/Math/documents/Tensors_TM2002211716.pdf

http://www.mech.utah.edu/ brannon/public/Mohrs Circle.pdf
http://www.mech.utah.edu/ brannon/public/Mohrs Circle.pdf
http://www.grc.nasa.gov/WWW/k-12/Numbers/Math/documents/Tensors_TM2002211716.pdf
http://www.grc.nasa.gov/WWW/k-12/Numbers/Math/documents/Tensors_TM2002211716.pdf


Challenges: Visualization of Engineering Tensor Fields 15

9. Maries, A., Haque, Md.A., Yilmaz, S.L., Nik, M.B., Marai, G.E.: Interactive exploration of
stress tensors used in computational turbulent combustion. In: Laidlaw, D., Villanova, A. (eds.)
New Developments in the Visualization and Processing of Tensor Fields. Springer, Heidelberg
(2011)

10. N.N.: Abaqus Analysis User’s Manual, Version 6.7 EF. Dassault Systèmes, Simulia Corp.,
Providence

11. Slavin, V., Pelcovits, R., Loriot, G., Callan-Jones, A., Laidlaw, D.: Techniques for the
visualization of topological defect behavior in nematic liquid crystals. IEEE Trans. Vis.
Comput. Graph. 12(5), 1323–1328 (2006)



Tensor Invariants and Glyph Design

Andrea Kratz, Cornelia Auer, and Ingrid Hotz

Abstract Tensors provide a mathematical language for the description of many
physical phenomena. They appear everywhere where the dependence of multiple
vector fields is approximated as linear. Due to this generality they occur in various
application areas, either as result or intermediate product of simulations. As different
as these applications, is the physical meaning and relevance of particular mathe-
matical properties. In this context, domain specific tensor invariants that describe
the entities of interest play a crucial role. Due to their importance, we propose
to build any tensor visualization upon a set of carefully chosen tensor invariants.
In this chapter we focus on glyph-based representations, which still belong to the
most frequently used tensor visualization methods. For the effectiveness of such
visualizations the right choice of glyphs is essential. This chapter summarizes
some common glyphs, mostly with origin in mechanical engineering, and link their
interpretation to specific tensor invariants.

1 Introduction

As multilinear mappings, tensors are an important tool in many physical and
engineering disciplines. They appear everywhere, where a linear correspondence
between vectorial entities is assumed. Thus, they play a large role for many
simulations of physical phenomena either as the result or as an intermediate
product. For an introduction to and an overview over recent work concerning the
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Physics
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Fig. 1 Based on applications and their questions, meaningful invariant sets are extracted. Then
selected sets are mapped to geometric shapes, which depict the tensor. Mathematically, the most
efficient sets are complete and orthogonal. For the design of glyphs, however, other sets can be
preferable

visualization of tensor fields we refer to [20]. Concerning the analysis of tensors,
practical questions are, in general, related to a set of specific tensor invariants that
describe key aspects of the application. Visualizations that build on these sets of
invariants are close to the everyday language of engineers and thus capable of
supporting the data analysis in an intuitive way. Central to our work is the finding
that tensor visualization methods can be efficiently designed and parametrized by
an appropriate choice of invariants.

Due to its high information content, it is difficult to visualize the whole tensor
information in a continuous way. Therefore tensor field visualization is always
a compromise between a continuous, global representation of partial information
or a discrete, local representation of the entire information. Local methods depict
single tensors sampled at discrete positions across the field, where geometric
objects (glyphs) are used to encode tensor properties in terms of shape, color and
orientation. In this chapter we focus on such local glyph-based visualizations. In
order to provide easy-to-read glyphs, it is crucial to decide, what information to
choose, how to map the information onto glyph parameters [23] and where to
place the glyph (see also Fig. 1). The goal of this chapter is to give an overview
of commonly used glyphs in different mechanics applications and put them into
context with relevant tensor invariants whenever possible. We also include some
important sets of invariants, for which there are no appropriate glyphs encoding
them directly yet.

2 Basics and Notations

We restrict our considerations to second-order tensors given in three-dimensional
space. A second-order tensor T is defined as a bilinear function from two copies of
a vector space V into the space of real numbers, T W V ˝ V ! R. Another but
equivalent perspective defines a tensor T as linear operator that maps every vector
onto a vector, i.e. a map from vector space V onto itself, T W V ! V: Using a
specific basis .e1; e2; e3/ of the vector space V , T can be represented as matrix.
A tensor is uniquely determined by its 3 eigenvalues (principal values) �i and
corresponding eigenvectors (principal directions) ei . The eigenvalues are defined
as the roots of the characteristic polynomial det.T � �I/ D 0.
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Considering different application areas, tensors exhibit specific properties that
have an impact on the choice of an appropriate visualization method. In the
following, we summarize the most important tensor properties.

Symmetry A tensor is called symmetric if its matrix representation is symmetric,
this is mij D mji for all i; j . For symmetric tensors the eigenvalues are real and
the eigenvectors mutually orthogonal. With respect to the basis spanned by the
eigenvectors, the tensor matrix is diagonal. Physically, the eigenvectors describe
the directions of extremal variations of the quantity that is encoded by the tensor.
The sign of the eigenvalues often has a distinguished physical meaning.

Definiteness We distinguish between positive (semi-) definite, negative (semi-)
definite and indefinite tensors. A tensor is positive definite if the characteristic
invariants of T are all positive, i.e. all eigenvalues of T are positive. It is positive
semi-definite if all eigenvalues are larger than or equal to zero. The definition
for negative (semi-) definite tensors is analogue. If the tensor’s eigenvalues are
positive as well as negative, it is called indefinite.

Traceless Considering the tensor T, represented by a matrix M 2 R
3�3, the trace

is defined as the sum of its diagonal components tr.M/ D P3
iD1 mii. Tensors

with trace zero are called traceless.
Decompositions A decomposition into an isotropic and an anisotropic part is

useful for many applications. Thereby, one has to distinguish the different classes
of tensors: Positive-definite tensors with a character similar to deformation
separate multiplicatively. This decomposition is also called dilation-distortion
or volumetric-isochoric T D Tdil � Tdist. The dilatation part is related to volume
changes. It is given as Tdil D J 1=3I, where J D det.T/. The distortional or
isochoric part accounts for shape changes given by Tdist D J�1=3T. Indefinite
tensors as, e.g., natural strain or stress, with a deformation generating character,
separate additively T D TdevCTiso. Where TdevD T�1

3
tr.T/I is called anisotropic

part or deviator and TisoD 1
3
tr.T/ I isotropic part. From a physical point of view,

the isotropic part Tiso represents a direction-independent transformation (e.g., a
uniform scaling or uniform pressure) and the deviatoric part Tdev represents the
distortion. In context of stress, the deviatoric part is often analyzed to identify
material failure.

3 Tensors in Mechanical Engineering

Among the most commonly used tensors of second order in mechanical engineering
one can roughly distinguish three different classes. The first class are tensors that
describe a change of a state, e.g., related to deformations; the second class are
tensors generating a change of state, related to forces; the third class approximates
distributions, e.g. of orientations. In the following we introduce some of the most
relevant tensors in their physical context. A comprehensive introduction to this topic
can be found in [6].
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Fig. 2 Stress tensor. External forces f are applied to a deformable body (a). The reacting forces
are described by a three-dimensional stress tensor. The tensor is composed of three normal stresses
� and three shear stresses � . (b) Given a surface normal n of some cutting plane, the stress tensor
maps n to the traction vector t , which describes the forces that act on this plane (normal and shear
forces)

Deformation gradient tensor Continuum mechanics deals with the analysis of
deformable bodies. The deformation is described by the deformation gradient
tensor F. It is defined as the gradient of displacements of material points. Since no
cell inversions are allowed inside the material, the tensor is invertible and has a
positive determinant. It quantifies shape changes and material rotation and, thus,
is not symmetric. If .x1; x2; x3/ are the original coordinates and .X1;X2;X3/ the
corresponding coordinates after deformation it is defined as F D �@Xi=@xj

�
.

Strain tensor The strain tensor can be derived from the deformation gradient
tensor. Compared to the deformation gradient tensor it loses the information
about rotation. It expresses the relative length and orientation changes during
deformation. It is symmetric and indefinite. There are different ways to define
strain explicitly. A common definition with respect to the original reference frame
is given by E D 1

k
..F � FT /k � I/ with k 2 N . FT is the matrix transposed to

F and “�” the standard matrix multiplication. For k D 2 this is the Lagrangian
strain, for k ! 0 it becomes the natural strain. All of these strain definitions are
equivalent if the deformations are infinitesimal small.

Stress tensors The stress tensor describes internal forces or stresses that act on
a material within a deformable body as reaction to external forces (Fig. 2a). If
forces are balanced and there is no rotation (which is, in general, fulfilled for
infinitesimally small volume elements), the stress tensor is symmetric. The sign
of the eigenvalues differentiates compressive or tensile forces, whereby, there
is no unique sign convention. Stress has the dimension of pressure, its unit is
force per area. Considering cutting planes with normal n through the material,
the forces acting on these planes are given by the traction vector t (Fig. 2b).

t D T � n D
0

@
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

1

A � n D �n C �n: (1)
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The traction vector can be decomposed into a part normal to the cutting plane
�n D .nT � T � n/ � n representing normal forces (compressive or tensile), and a
tangential part �n representing shear forces. Cutting planes exhibiting maximum
shear stress (difference of the major and minor eigenvalue), are of special interest.
The directions as well as the magnitude of the maximum shear are important for
many failure models. Depending on the considered material, the magnitude of the
tensor’s deviator (Sect. 2) may be an additional indicator for the risk of failure.
Together, stress and strain specify the behavior of a continuous medium under
load, which allows to deduce information about a workpiece’s stability.

4 Tensor Invariants

Tensor invariants are defined as scalar quantities that do not change under orthogo-
nal coordinate transformation. In general, any scalar function of invariants will be an
invariant itself. The most obvious example is the set of eigenvalues. Other common
invariants are the determinant and trace or any other function that depends only on
the eigenvalues.

4.1 Shape Space

The six degrees of freedom of a symmetric tensor are represented by three
direction-related entities determining the principal directions and three eigenvalues.
Following [10], we use the term shape space for the vector space spanned by the
eigenvalues. A point in shape space is uniquely determined by the three eigenvalues.
Equivalently, three coordinates according to any other reference frame (RF) of
the shape-space can be used. We call these coordinates shape descriptors. Since
a permutation of the eigenvalues describes the same tensor, it is sufficient to restrict
the analysis to the ordered subspace where �1 � �2 � �3. See [1] for a closer
discussion on the ordered eigenvalue space. Sometimes it is appropriate to consider
further reductions of this space, e.g., if we deal with specific tensor properties, have
incomplete information, or only partial interest. Depending on the property this
either leads to a dimension reduction (e.g., subspace of traceless tensors) or to the
definition of a subspace having the dimension of the full shape space (e.g., subset of
positive-definite tensors).

An appropriate choice of RF is essential for the analysis and the understanding
of a tensor in a given context. Thereby each RF provides its own view of the tensor.
Characteristic tensor invariants can provide guidance for the RF specification.
Considering a set of invariants as basis for the analysis of strain tensors has been
proposed in the work of Criscione et al. [7]. For the analysis of diffusion tensor
data, this concept has been transferred to the visualization of positive definite
tensors [1, 10].
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a b

Fig. 3 (a) Each global invariant can be used to define 2-dimensional subspaces of the shape
space. A set of three independent invariants defines a local reference frame. (b) Example for
the parameterization of the (ordered) shape space using invariants, which are relevant for failure
analysis based on the Coulomb-Mohr failure criterion

4.2 Basis Defined by Tensor Invariants

An invariant I D f .�1; �2; �3/ defines a family of surfaces in shape space,
which are specified by a certain scalar value for I . Each set of three invariants
fI1; I2; I3g, which are independent, i.e., r�I1.r�I2 � r�I3/ ¤ 0 with r� D
.@=@�1; @=@�2; @=@�3/, defines a local basis of the shape space, see Fig. 3a. A set
of invariants qualifies as global basis if Ii is defined everywhere and r�Ii 6D 0 for
i D 1; 2; 3. From a mathematical point, of view a desirable property is orthogonality
of the tensor invariants r�Ii �r�Ij D 0, for all i; j 2 f1; 2; 3g. In practice, however,
the physical significance of tensor invariants can force us to use invariant sets that
are not orthogonal. By choosing a certain basis for shape space via a set of invariants,
we yield shape descriptors that provide a specific perspective onto the data.

Common reference frames for the shape space can be classified according to
type, scaling, and orientation. The most important (orthogonal) types are:

• Cartesian: Full shape space.
• Spherical: Full shape space excluding the origin, where �1 D �2 D �3 D 0.
• Cylindrical: Full shape space excluding the symmetry axis of the cylinder.

The fundamental difference of these types lies in the nature of their coordinate types,
meaning absolute (with units) respective relative (unit-free) coordinates. Relative
coordinates or normalized quantities correspond to angular coordinates. They are
not defined if the norm is equal to zero and, thus, are unstable for tensors with
small norm. As a consequence, spherical and cylindrical coordinate systems are not
optimal for indefinite tensors.
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(a) Reynold + HWY Glyph (b) Uniform distribution of simple glyphs

Fig. 4 If the focus is on a specific location within the dataset, we can use complex geometries that
encode as much information as possible (a). For a dense more continuous visualization, glyphs
with simpler geometry and better perceptional properties (here ellipses) are better suited (b)

5 Glyphs in Tensor Visualization

Glyphs are iconic figures that encode multivariate information in terms of shape,
size, color, transparency and texture. They are widely used to depict tensors. Schultz
et al. [27] recently formulated the following application areas for glyphs:

• Debugging: For example, during design of new visualization methods.
• Evaluation of data quality: For example, when tensors appear as intermediate

product during simulations.
• Visualization overview: For example, to get a first clue of the data and reveal

patterns in it.

We would like to add probing to this list.

• Probing: Complex glyph geometries can be used for the detailed analysis of
single tensors.

For these applications we can distinguish between dense and single-glyph visual-
izations (see Fig. 4). For dense glyph visualizations less complex geometries should
be used. Furthermore, normalization and perceptional issues have to be consid-
ered [17, 27]. Besides the choice of an intuitive glyph the design a good placement
is essential [11, 19, 21]. In the following, we concentrate on the visualization of
single tensors. In order to provide easy-to-read glyphs, it is crucial to decide, which
information to chose and how to map the information onto glyph parameters [23].

Which information to chose From a purely theoretical perspective, a three-
dimensional tensor is perfectly represented by an ellipsoid scaled by its
eigenvalues and oriented along its eigenvectors. But the ellipsoid is not capable
to meet the diverse requirements imposed by the various application fields.
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Many other glyph types have been presented, each with its strengths and
limitations, see e.g. [13, 22, 27]. To succeed in designing glyphs that will
be accepted by the domain scientist, it is important to link the question of
“which information to use”, to the choice of appropriate shape descriptors and
directions. Thereby, application-specific preferences should be placed before
purely theoretical considerations.

How to map the information onto geometry In general for this question there is
no unique answer. Schultz et al. [27] have proposed the following general design
guidelines for choosing geometries as glyphs:

• Symmetry preservation: Glyphs exhibit the symmetries as the underlying
tensor.

• Continuity and disambiguity: Glyph geometries look similar for similar
tensors; whereas different tensors should result in distinguishable glyphs.

• Scale invariance: Uniform scaling of the tensor by changing its norm results
in a uniform scaling of the glyph geometry.

• Invariance under eigenplane projection: Projection of a tensor to a plane
spanned by two eigenvectors results in a corresponding projection of the
glyph.

The first two rules are very general, whereas the third rule (scale invariance)
depends on the application. Especially if the tensor’s deviator is of interest,
glyphs that are translation invariant may be more appropriate. Therefore, we sug-
gest to replace this rule by “invariance according to relevant shape descriptors”.

6 Invariant Sets and Their Glyphs

Most common shape descriptors can be assigned to one of the coordinate-types and
reference frames presented above, which represent complete, orthogonal frames.
However, there are also invariant sets with high practical relevance, which are
neither orthogonal nor complete. This section represents a collection of frequently
used invariant sets and glyphs and their relation in different context.

6.1 Eigenvalues

Ellipsoid The most obvious invariant set are the three eigenvalues themselves.
Together with the three eigenvectors they are often represented using ellipsoids.
In context with stress tensors, they are also called Lame’s stress ellipsoids or
PNS-Glyph. In this context, the ellipsoid has an immediate physical meaning,
because it displays all possible traction vectors (Eq. 1). It can be obtained by
applying the tensor to the unit sphere fT � njn 2 R

3; knk D 1g. With respect to
the principal frame of reference it can also be defined as implicit surface by
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Fig. 5 Ellipse-glyphs for an indefinite 2D symmetric second-order tensor: (a) Applying a tensor
to a unit circle results in the standard ellipse-definition, which cannot distinguish the sign of the
eigenvalues. (b) Interpretation of the tensor as generator of a deformation of a unit sphere. The
resulting glyph is the deformation ellipsoid

(a) Haber Glyph (b) Westin Glyph (c) Beachball

Fig. 6 (a) The Haber glyph, designed for stress tensors, emphasizes direction and magnitude of
the major stress. (b) The major axes of the Westin glyph are aligned with the tensor’s eigenvectors,
emphasizing the major eigendirection. It displays the tensor invariants: linearity, planarity and
isotropy. (c) Beachballs are a common glyph used in for earthquake visualizations. It is an example
for a glyph that focuses on the representation of directions and neglects the eigenvalues

x21
�21
C x22
�22
C x23
�23
D 1: (2)

Even though the ellipsoid represents positive-definite tensors completely, it is
hard to derive any information besides the eigenvalues and eigendirections from
the glyph. In addition for indefinite tensors the information about the sign of
the eigenvalues is lost, see Fig. 5a. A further disadvantage of ellipsoids is visual
ambiguity. Although they are of different shape, they may result in the same
image after rendering, see discussion in [17].

Haber Glyph There are a variety of other glyphs focusing on the representation of
the eigenvalues and principal directions. One example is the Haber glyph [12]. It
clearly emphasizes a particular direction of interest, usually the one correspond-
ing to the major eigenvalue. The two remaining directions are mapped to the
shape of an elliptical disk with the size being controlled by the corresponding
eigenvalues (see Fig. 6a).

Deformation Glyph Another glyph with the shape of an ellipsoid is the defor-
mation ellipsoid. This glyph is capable to represent positive as well as negative
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eigenvalues. It results from a deformation of the unit sphere due to the tensor, see
Fig. 5b. This representation reflects the physical meaning of tensors belonging to
the first class tensors, generating a change of state (Sect. 3). It can be obtained by
applying the tensor to the unit sphere f.1CF.T // �njn 2 R

3; knk D 1g. Thereby,
F is an appropriate mapping technique, that is monotone in the eigenvalues and
preserves their sign [15].

6.2 Principal Invariants and Trace Invariants

The principal or characteristic invariants can be found in every textbook, since
they appear as coefficients of the characteristic polynomial (Sect. 2). However,
they neither exhibit strong physical relevance nor nice mathematical properties.
For second-order tensors, they are I1 D tr.T/, I2 D 1=2.tr.T/2 � tr0.T2//, and
I3 D det.T/. Another set of invariants, which is related and also often considered
in continuum mechanics, is the trace invariants defined as I D tr.T/, II D tr.T2/,
and III D tr.T3/. We are not aware of any common glyph that represents these
invariants.

6.3 Tensor-Norm and Shape

To define scale invariant glyphs, the tensor norm is an appropriate invariant. It
is often complemented by different anisotropy measures. Note, that one has to
be careful when using the norm as central invariant when dealing with indefinite
tensors. In general, the corresponding invariant set is not defined for the zero tensor
and is often not continuously extendable to the complete shape space.

A set of complementing invariants differentiate the tensor in terms of isotropic,
linear or planar anisotropic behavior [29].

Linear anisotropy cl D �1 � �2
�1 C �2 C �3 2 Œ0; 1�;

Planar anisotropy cp D 2.�2 � �3/
�1 C �2 C �3 2 Œ0; 1�;

Isotropy cs D 3�3

�1 C �2 C �3 2 Œ0; 1�:

(3)

These values are unit-free measures and scale invariant. They can take values from
0 to 1 and sum up to one. Thus, they are not independent and can be interpreted as
barycentric coordinates, see Fig. 7. This set is especially popular for the analysis
of diffusion tensors. For diffusion tensors these coordinates represent central
physiological properties, which help to find regions of interest. For negative-definite
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cl = 1  linear cp = 1  planar

cs = 1  isotropic

cl = 1  linear cp = 1  planar

cs = 1  isotropic

(a) Superquadrics (b) Tensor Splats

Fig. 7 Superquadrics (a) combine cylinders, cuboids and ellipsoids in a continuum that spans the
entire range normalized tensor shapes [17]. The three extremes of linear, planar and spherical shape
build the corners of a triangular barycentric space. Tensor splats (b) build on the same invariants
equipping the ellipsoids with a texturing to enhance linearity and assigning opacity values to
isotropy, assuming that isotropic tensor are of less interest (Image courtesy to Benger [3])

tensors they are not suitable, since positive and negative eigenvalues cannot be
distinguished. Different glyphs have been proposed on the basis of this set of
invariants. Often, they are normalized in size and, thus, do not represent the entire
tensor information.

Westin glyph This glyph directly displays these shape measures using a compos-
ite shape, whose linear, planar, and spherical components are scaled accord-
ingly [28]. Its major axes are aligned with the tensor’s eigenvectors.

Superquadrics Superquadrics [2] were introduced as an extension of quadrics
in order to produce a continuum of new forms by simple parameterization.
Kindlmann [17] uses these superquadrics to combine base geometries in the
barycentric space, spanned by the three anisotropy measures defined in Eq. 3. The
base geometries for perfectly planar (a flat disk), perfectly linear (a thin cylinder)
and isotropic tensors (a sphere). Recently, the superquadric shape space has been
extended for indefinite tensors [27].

Tensor Splats Tensor splats build on the same invariants. The basic shape is an
ellipsoid, which is equipped with a texture to enhance linearity. In addition
opacity is assigned to isotropy, assuming that isotropic tensors are of less interest.
The idea of tensor splats [3,4] is to splat the glyphs onto the image plane, where
they are composited in front-to-back order. For example, tensor splats can be
used for DTI: Isotropic tensors are mapped to low opacity values and anisotropic
tensors to high opacity values, resulting in reduced visual clutter and an emphasis
on interesting regions.

Anisotropy and mode Two sets of orthogonal reference frames have been pro-
posed and discussed in [10, 18]. The cylindrical system is an adoption of the
natural strain invariants [7] into the language of DTI. It also builds on the
decomposition of the tensor into its isotropic and anisotropic part. The spherical
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basis uses the tensor’s norm (magnitude of isotropy) as radial coordinate, mode
as azimuth angle and fractional anisotropy (FA, magnitude of anisotropy) as polar
angle.

Frobenius norm R1 D kTk 2 Œ0;1/

Fractional anisotropy R2 D
r
3

2

kTdevk
kTk 2 Œ0; 1�

Mode R3 D det.Tdev=kTdevk/ 2 Œ�1; 1�

(4)

Tdev is the deviator of T and k:k is the Frobenius norm. In this context, mode
is used to distinguish the three basis shapes of diffusion tensors (Eq. 3): linear
(mode.T/ D 1), planar (mode.T/ D �1) and spherical (mode.T/ D 0). These
sets have the nice property of providing an orthogonal basis of the positive
definite shape-space. To our knowledge, there is no common glyph directly
encoding theses measures.

Traceless tensors For symmetric traceless tensors a special variant of
superquadric glyphs have been introduced in [16] to visualize the orientation
of liquid crystals.

6.4 Invariant Sets for Stress Tensors

Stability and failure analysis are in the center of many questions related to stress
tensors. Depending on the respective materials, considering elastic or plastic
deformation, different failure models exist. For each failure model there is a
specific set of invariants corresponding to the material properties. Stress-glyphs
that are successfully used by domain-experts often encode exactly these sets. In
the following, we give an overview over the most frequently used glyphs in this
context.

Mohr’s circle Many failure models build on the analysis of the maximum shear
stress. It represents the maximum shear forces that occur on any cutting plane
(Eq. 1). Shear forces are especially important when analyzing the failure of
ductile materials. An example is the Coulomb-Mohr failure criterion. Its most
important invariants are [24]:

Maximum shear stress � D �1 � �3
2

2 Œ0;1/

Mohr center c D �1 C �3
2

2 .�1;1/

Shape factor R D �1 � �2
�1 � �3 2 Œ0; 1�

(5)
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Fig. 8 Representation of the deformation ellipsoid (first row) of the deviator in comparison with
Mohr’s circle (second row). The horizontal axis depicts the normal stress and the vertical axis the
shear stress. The blue shaded area represents all possible combinations of normal and shear forces
for a given cutting plane. Each point within this region then corresponds to one orientation of the
plane’s normal. Adding a uniform pressure changes the position of Mohr’s circle on the horizontal
axis. Its shape remains unchanged (translation-invariance)

This set does not define an orthogonal coordinate frame but it represents
important physical quantities. � is an anisotropy measure, which has the unit of
pressure. R is a relative entity and is not defined for isotropic tensors.

A typical glyph that encodes these invariants is Mohr’s circle, which can be found
in many textbooks of continuum mechanics. For visualization purposes, it has been
used for stress tensors [8] as well as for diffusion tensors [5]. Mohr’s circle is a
two-dimensional representation of a stress tensor, which consists of three circles,
see Fig. 8. It displays all possible .�n; �n/-combinations of normal �n and shear
stresses �n. The radius of the largest circle displays the maximum possible shear
stress. Circles that degenerate to single points represent isotropic pressure.

Mohr’s circle does not encode any directional information. The glyph is transla-
tion invariant: when adding a constant multiple of the unit tensor the shape does not
change. It just moves the Mohr’s center along the �n-axis.

Note that some failure models do not consider isotropic pressure, then it is
sufficient to display the Mohr’s circle without specifying its center. The remaining
two-dimensional shape space only considers the tensor’s deviator, see Fig. 9.

Beachball In contrast, beach balls focus on directional information, which have
an immediate physical interpretation, see Fig. 6c. They are used in geology to
visualize the moment tensor describing sources of earthquakes. This application
is an example where generally the entire tensor information is not available.
It is often not possible to extract the part related to volume changes from
the measurement data. For the definition of the beach ball it is assumed that
the intermediate eigenvalue equals zero and the major and minor eigenvalue
sum up to zero. The directions of interest are the tensional (positive) T- and
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Fig. 9 Different glyphs only representing the shape factor (Eq. 5). The columns use from left to
right: HWYCReynolds, Reynolds, HWY, deformation, Mohr Glyphs. The Reynolds glyphs show
directions of maximum normal forces, while the HWY glyphs highlight directions of maximum
shear. For the values of R D 0 and R D 1, these directions span a cone. For all other values of R
there are exactly two distinguished directions, which exhibit maximum shear

compressional (negative) P-axis, which are represented by the orientation of the
beach ball.

Reynolds glyph The Reynolds glyph highlights the distribution of normal stresses
�n depending on the normal of the cutting plane (Eq. 1). This distribution is not
given by one specific invariant. The basic shape of the glyph allows to distinguish
definite and indefinite tensors [22,25] (Fig. 10, second row). The glyph is defined
as the set of all normal directions scaled by the magnitude of the normal stresses
in that direction f�n � njn 2 R

3; knk D 1g. The principal directions can be
depicted as directions of maximum respective minimum extension of the glyph.

HWY glyph The HWY glyph focuses on the magnitude of shear stress and can be
interpreted as a counterpart to the Reynolds glyph [13]. Its displays all possible
shear forces �n. The glyph is defined as the set of all normal directions scaled
by the magnitude of the shear stresses acting in the plane perpendicular to the
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Fig. 10 Overview of basic stress glyph shapes. From top to bottom: ellipsoid (Lamé’s stress
ellipsoid), Reynold’s glyph displaying the normal forces, HWY glyph displaying the magnitude of
shear forces, and quadric surfaces. Whenever it is meaningful to distinguish compressive (red) and
tensile (green) force they are colored respectively. The right column illustrates the interpretation
of the various glyph types for the two-dimensional case

normal n f�n �njn 2 R
3; knk D 1g (Fig. 10, third row). The direction of the shear

stress in that plane is not represented by the HWY glyph.
Quadric surface A quadric surface represents the tensor completely. It is defined

as T.x; x/ D ˙1, which is in terms of the eigenvalues �1x2C�2y2C�3z2˙1 D
0; (Fig. 10, forth row). It constitutes a surface of constant distance to the center
and, thus, provides a natural visualization of the metric tensor. Quadric surfaces
can also be used to depict the force directions on a cutting plane and to distinguish
between positive and negative eigenvalues. However, they are more complex
and, hence, more difficult to comprehend. Note that the resulting surfaces are
not bounded for the case of indefinite tensors, which limits their applicability.
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In context with the curvature tensor of a surface there is a close correspondence
to the Dupin indicatrix characterizing the local shape of a surface. It is defined as
the intersection of the surface with a plane parallel to the tangent plane in a small
distance away, see e.g. [9].

6.5 Invariant Set of the Natural Strain

A physically expressive cylindrical orthogonal set of invariants of the natural
strain tensor was introduced by Criscione et al. [7]. The work aimed to simplify
the constitutive equations, which relate stress and strain. The invariant set that is
presented in their work relates to the decomposition of the tensor into its isotropic
and anisotropic part. The resulting invariants then are the norm of the tensor’s
isotropic part as Cartesian coordinate, the norm of the deviator (measure for the
degree of anisotropy) as cylindrical radius and the type of distortion, introduced as
mode, as azimuthal angle.

Magnitude/sign of dilation K1 D tr.T/ 2 .�1;1/
Magnitude of distortion K2 D kTdevk 2 Œ0;1/

Mode K3 D det.Tdev/

kTdevk 2 Œ�1; 1�
(6)

Ddev is the deviator of T and k:k is the Frobenius norm. Here, mode can be
interpreted as uniaxial extension for K3 D 1, uniaxial contraction for K3 D �1
and pure shear for K3 D 0. It is not defined for K2 D 0.

7 Summary

With this chapter we provide an overview of a collection of glyphs that are used
to display tensors to convey domain-specific information. In many cases, these
represent a distinguished set of tensor invariants. The relation between tensor
invariants and glyphs can be helpful in both directions. If there are glyphs commonly
used in an application, they can point to a set of invariants, which is of special
interest. In a next step, these can be used as basis for other visualization methods.
On the other hand, if one is given a set of invariants new glyphs could be designed
around this set.

While this chapter is restricted to symmetric second-order tensors, there are
also glyphs defined for higher-order tensors, see e.g. [14, 26]. A further interesting
question would be the investigation of glyphs for asymmetric tensor fields.
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Abstract Local phase is a powerful concept which has been successfully used in
many image processing applications. For multidimensional signals the concept of
phase is complex and there is no consensus on the precise meaning of phase. It is,
however, accepted by all that a measure of phase implicitly carries a directional
reference. We present a novel matrix representation of multidimensional phase that
has a number of advantages. In contrast to previously suggested phase representa-
tions it is shown to be globally isometric for the simple signal class. The proposed
phase estimation approach uses spherically separable monomial filter of orders 0, 1
and 2 which extends naturally to N dimensions. For 2-dimensional simple signals
the representation has the topology of a Klein bottle. For 1-dimensional signals
the new phase representation reduces to the original definition of amplitude and
phase for analytic signals. Traditional phase estimation using quadrature filter pairs
is based on the analytic signal concept and requires a pre-defined filter direction. The
new monomial local phase representation removes this requirement by implicitly
incorporating local orientation. We continue to define a phase matrix product which
retains the structure of the phase matrix representation. The conjugate product gives
a phase difference matrix in a manner similar to the complex conjugate product of
complex numbers. Two motion estimation examples are given to demonstrate the
advantages of this approach.
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Fig. 1 The word phase is
commonly used to describe
the cyclic appearance of the
moon. In general phase refers
to a particular or possible way
of viewing something, to a
stage or period of change or
development. In signal
processing phase traditionally
refers to a real number in a
bounded interval, a phase
angle, here denoted �
(Increasing � show moon
phases in the order they
appear seen from the southern
hemisphere)

1 Background

This chapter presents an overview of traditional phase concepts, and in particular
discusses extension of the phase concept to encompass multi-dimensional signals.

Tracing the origin of the word “phase” one finds that it is back-formed as a
singular form of modern Latin “phases”, plural of the Greek word “phasis” meaning
“appearance”. Latin singular “phasis” was used in English from 1660. Phase is still
commonly used to describe the cyclic appearance of the moon (Fig. 1). Non-lunar
application is first attested 1841, meaning a difficult period in life is attested from
1913. In general phase refers to a particular or possible way of viewing something,
to a stage or period of change or development.

The short introduction above is intended to underline the fact that the meaning of
a concept is determined by the way it is used and that concepts will naturally evolve
to best suit the communication needs of a given group of people. This is no doubt
true also in the evolution of science. We will review, investigate, and further develop
the concept of phase in the context of signal processing.

In signal processing the precise meaning of a concept is defined by it’s
mathematical representation. A meaningful application of most signal processing
concepts requires that the data to be processed represent some aspect of the real
world in an orderly way. More precisely, it is generally required that an increased
difference between real world events results in an increased distance between the
data points that represent these events. Working with representations where these
requirements are not met would make many signal processing concepts meaningless
and would also greatly reduce the possibility of gaining an intuitive understanding
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of how suitable processing can be carried out. For many real world aspects, however,
establishing well-behaved representations is a non-trivial task and in these cases a
first and crucial step of any analysis is to find such a representation. In this chapter
the required features of a suitable mathematical representation of local phase for
N-dimensional signals are discussed and a novel matrix representation is proposed.

1.1 Traditional 1-Dimensional Signal Processing Concepts

Description and estimation of local spatio-temporal structure has a long history
and numerous analysis tools have been developed. In addition to local phase,
local orientation, frequency, scale, motion, and locality of estimates are prominent
examples of features that have been considered central in the analysis. In the field
of signal processing phase was originally used as a descriptor for one-dimensional
signals. The concept of phase was later broadened to serve as a descriptor of multi-
dimensional structure.

Many of the popular image analysis tools related too local phase have roots that
can be traced to early work in signal processing and optics, e.g. Riesz transforms
[1], Zernike moments [2, 3], and Gabor signals [4]. Regardless of this development
the first stages in the analysis remain the same. In most cases the processing starts by
performing local linear combinations of image values, e.g. convolution operators.

Important signal descriptors were often first developed for temporal,
1-dimensional signals. Important well-known concepts are the Fourier phase and
the shift theorem, describing how the Fourier phase is affected by moving the signal.
However, since the sine wave basis functions in the Fourier transform are inherently
global, the Fourier phase concept is of limited practical utility. Real world signals
are often non-stationary (images, volumes, sequences) and thus local features in
time and space are often of more interest. The local phase concept is readily defined
via local basis functions and the Hilbert transform [5–7]. The first mention of phase
in a 2-dimensional image processing context appears to be found in [8]. Early work
on phase in more than one dimension is found in [9–13]. Work on extensions of
the Hilbert transform to higher dimensions can be found in [14]. Related work can
also be found in references [15–26]. An overview of phase representation in signal
processing is given in [27]. More recent relevant work on phase related topics is
presented in [28–31]. Specific relations of the cited publications to the present work
will be commented on in the proper context below.

1.1.1 The Hilbert Transform

At the heart of the 1-dimensional concepts of local phase, local frequency, and local
amplitude lies the Hilbert transform. Denoting the spatial variable by x the Hilbert
transform of a signal s.x/ is obtained through the following convolution operation.
Following the definition and notation of Bracewell [7], we write this as:
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sH .x/ D s.x/ � �1
�x

(1)

where � denotes the convolution operator.1 Let ! denote the frequency variable
and SH .!/ denote the Fourier transform corresponding to sH .x/. Then, since
convolution in the spatial domain corresponds to multiplication in the Fourier
domain, the Fourier transform of �1

�x
is i sign.!/, can be compactly expressed in

the Fourier domain:

SH .!/ D i S.!/ sign.!/ (2)

where sign.!/ equals one for ! > 0, zero for ! D 0 and minus one for ! < 0.
Hence, the Fourier transform of sH is obtained by multiplying S by the imaginary
unit i and then change sign of the result for negative frequencies. Another way
of understanding this transform is that the argument of the frequency components
are turned an angle �

2
in the positive direction for positive frequencies and in the

negative direction for negative frequencies.

1.1.2 The Analytic Signal

Having defined the Hilbert transform we can now define the analytic signal, sA ,
corresponding to a real signal s. The analytic signal is a complex signal and is
uniquely defined as:

sA.x/ D s.x/ � i sH .x/ (3)

As can be seen, the real part of the analytic signal is the original signal itself and the
imaginary part is it’s Hilbert transform times �i . This is illustrated in Figs. 2 and 5.
To summarize, the relations between a real signal and it’s corresponding analytic
signal is, in the spatial and frequency domains given by:

8
<

:

sA.x/ D Œ ı.x/ C i
�x

� � s.x/

SA.!/ D Œ 1C sign.!/ � S.!/ D 2H.!/F.!/
(4)

where H.�/ is the Heavyside step function: H.!/ D 1 for u > 0 and H.!/ D 0 for
! < 0. Hence, the analytic signal corresponding to s is obtained by suppressing all
it’s negative frequencies and multiplying by two. Two simple examples are:

1Some researchers may prefer to express Eq. (1) as: fH .x/ D .f � g/.x/I g.x/ D �1
�x

. We
will, however, continue to use the notation of Bracewell, i.e. fH .x/ D f .x/ � g.x/, no confusion
should arise from this.



Monomial Phase: A Matrix Representation of Local Phase 41

Fig. 2 Figure showing perhaps the simplest possible analytic signal. The real part is a cosine,
s.x/ D cos.x/, and the imaginary part is a sine, sH .x/ D � sin.x/. The corresponding analytic
signal is a complex exponential, sA.x/ D eix . Color code: white means ' D 0 (zero phase), dark
gray means ' D � , green means ' D �=2 and red means ' D ��=2. The gray ‘glass’ tube
represents the signal amplitude. The original signal is shown in black in the center

s.x/ D cos.!x/ $ sA.x/ D ei!x

s.x/ D sin.!x/ $ sA.x/ D �iei!x
(5)

These two sinusoidal examples have infinite support, the analytic signal has a
constant magnitude and the difference can be describes as a shift in phase angle,
see Fig. 2.

1.1.3 Analytic Signal Examples

An interesting family of analytic signals, sA.x/, and the corresponding Fourier
transforms, SA.!/, is given by the Poisson distribution related function:

8
<

:

sA.x/ D .1C ix/��

SA.!/ D H.!/

	 .�/
!��1 e�!

(6)
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Fig. 3 Fourier domain plots of four different analytic signals (or quadrature filters) from the family
of analytic functions given by Eq. (6). Regardless of the value of � there are no negative frequencies
present. From left to right the values of � are: 2, 4, 8 and 16. The plots have been normalized to
have a maximum value of one (Different colors simply indicate different curves)

Fig. 4 Traditional plot of an analytic signal from the family given in Eq. (6) with � D 4. The
figure shows the real part (blue), the imaginary part (red), the amplitude (green) and the phase
angle with wrap-around at˙� (black)

where 	 .�/ is the gamma function and � .> 0/ is a real number determining the
shape of the analytic signal. Figure 3 shows four examples from this family of
functions in the Fourier domain. Figures 4 and 5 show the corresponding signal in
the spatial (or temporal) domain for � D 4. Figure 4 shows a traditional plot where
the ‘wrap around’ discontinuity of the phase angle at ˙� can be seen. Figure 4
shows the analytic signal in a three-dimensional space where the phase can be
represented as a continuously varying vector in the complex plane, e'.x/.

1.1.4 Local Amplitude, Phase and Frequency

Three traditionally important and fundamental concepts in 1-dimensional signal
processing are:

The local amplitude W A.x/

The local phase angle W '.x/

The local frequency W @'.x/

@x

(7)
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Fig. 5 Figure showing a relatively broad-band analytic signal from the family given in Eq. (6).
Here � D 4 implying that the phase angle, ', will make two full 2� turns from start to end of
the signal. Color code: white means ' D 0 (zero phase), dark gray means ' D � , green means
' D �=2 and red means ' D ��=2. The gray ‘glass bulb’ represents the signal amplitude. The
original signal is shown in black in the center

An analytic signal can be directly expressed in terms of amplitude and phase:

sA.x/ D A.x/ ei '.x/ (8)

In general, and in particular for analytic signals constructed from a real signal
according to Eq. (3), the amplitude varies more slowly than the phase and the two
concepts provide a useful complementary local representation of a signal. This
way of expressing the analytic signal has found numerous applications in signal
processing, [7].

1.1.5 Quadrature Filters

A filter that has the properties of an analytic signal is known as a quadrature filter.
The real even part will pick up the even part of the signal and the imaginary odd
part will pick up the odd part of the signal. If the desired Fourier response is only
known for the even or the odd part the missing part can be generated directly in the
Fourier domain by using the sign function.



44 H. Knutsson and C.-F. Westin

8
<

:

Fo.!/ D sign.!/ Fe.!/

Fe.!/ D sign.!/ Fo.!/
(9)

In the spatial domain, the even filter is real and the odd filter is imaginary and it is
natural to combine them into a single complex filter, f .x/:

f .x/ D fe.x/C fo.x/
D m.x/ ei �.x/

(10)

Equation (10) shows that the filter can be expressed as a product of the filter
magnitude, m, and a unitary complex number, ei �.x/. The argument (modulo
2�) of the latter is traditionally referred to as the phase. It is, however, from a
representational point of view much preferable to use the unitary complex number,
 D ei �.x/, as the representation of phase since it is continuous and does not
suffer from the wrap-around discontinuity. This will also be consistent with the
representation for higher dimensional phase suggested below. When referring to
the real argument, � , we will use the term ‘phase angle’.

Since the Hilbert transform is defined in one dimension the analytic signal
is only well-defined for one-dimensional signals as well. The Hilbert transform
can, however, be used in higher dimensional spaces if a direction in this space is
specified. Local phase estimation based on such directed quadrature filter responses
[8, 17] has found extensive use in image processing. The quadrature filter response
to a signal, s, can be expressed as a convolution in the spatial domain or as a
multiplication in the Fourier domain, i.e.

q.x/ D f .x/ � s.x/

D F�1Œ F .!/ S.!/ �
(11)

where � denotes the convolution operator, S denotes the Fourier transform of s,
F�1 denotes the inverse Fourier transform. The quadrature filter response can also
be represented in terms of amplitude, A and phase angle � or phase  :

q.x/ D A.x/ ei �.x/

D A.x/ .x/
(12)

The magnitude of the filter response reflects the signal energy and the argument
reflects the relationship between the evenness and oddness of the signal (see Fig. 6).

1.1.6 Interpretation of Local Phase

The fundamental property of local phase represents the relation between even and
odd signal content at specific spatial location. The local phase has a number of
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Fig. 6 Plots of a quadrature filter response to a signal (top) containing four typical events: a
positive ‘bump’, a positive gradient edge, a a negative ‘bump’ and a negative gradient edge. The
real response is shown in blue, the imaginary in red and the amplitude in gray

Fig. 7 A simple display of the 1-dimensional phase concept. Bottom: an image with varying
intensity in the x-direction. Marked with circles are from left to right: a white line, a positive
gradient edge, a black line and a negative gradient edge. Middle: the corresponding intensity as a
1-dimensional signal. Top: the local signal shapes placed at the corresponding phase angle positions

interesting invariance and equivariance properties that makes it an important feature
in image processing. Local phase estimates are, for example, invariant to signal
energy, the phase varies in the same manner regardless if there are small or large
signal variations. Further, local phase and spatial position have a tight relationship
and local phase generally varies continuously with spatial position thus enabling
sub-pixel/voxel resolution. In high frequency areas the phase changes faster than
in low frequency areas. The phase angle derivative is called local or instantaneous
frequency [7, 16]. Phase also has interesting invariance properties with respect to
scaling [9–11]. Figure 7 shows the intensity profile over a number of lines and edges.

In this chapter we will show how the concept of phase can be generalized to
higher dimensional signal spaces.
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2 Phase Representation for Multi-dimensional Signals

For multidimensional signals the equivalent of the 1-dimensional quadrature filter
response amplitude is the structure tensor [15, 29]. Structure tensors are, just as
the response amplitude, phase invariant. However, the relationships between the
different filters used to produce the structure tensor holds important complementary
information about the neighborhood. These relations are the basis for the concept
known as local phase. Local phase is a powerful concept in it’s own right and has
been successfully used in many applications. As is the case with the structure tensor
there is no consensus on the precise meaning of phase. In this chapter we will make
an effort to define what the concept of phase should imply.

2.1 General Representational Considerations

At a high level of abstraction a representation of any concept can be viewed in
terms of equivariance and invariance. A good representation should vary in a way
that precisely reflects changes in the feature that is represented. At the same time the
representation should be invariant to changes in features that are considered to leave
that which is represented unchanged. The common understanding is that local phase
should be equivariant to a relation between oddness and evenness of the signal at a
given position. It is also accepted by all that a measure of phase necessarily carries
a directional reference, i.e. it should be equivariant with rotation of the signal. That
the phase of a signal should be invariant to the signal mean level and the signal
amplitude is also not debated. We will, in addition, consider the following properties
to apply to a good phase representation for multi-dimensional signals:

• Uniqueness
• Continuity
• A shift invariant manifold metric

The purpose of these requirements is to ensure that common signal processing
operations, such as averaging and differentiation, can be meaningfully applied to
a spatio-temporal phase field. Precisely what the requirements are taken to imply
will be made clear in a proper mathematical setting in Sect. 3.

2.2 Monomial Filters

All local phase estimation approaches are based on the use of a set of filters onto
which each local neighborhood is projected. The design of these filters directly
determines crucial aspects of the performance of the estimator. The filters should
provide an appropriate basis for representing the targeted features of the signal.



Monomial Phase: A Matrix Representation of Local Phase 47

A natural requirement is that the estimate directly reflects rotations of the
neighborhood, i.e. the estimate should be equivariant with rotation, but be invariant
to other transformations, e.g. change of scale. Another important aspect, not further
discussed here, is the locality of the estimates, see [23].

Here we present a class of filters designed to meet the above requirements,
monomial filters. The monomial filters are spherically separable, i.e. defined as a
product of one radial and one directional part:

F.!/ D R.
/D. O! / (13)

where ! is the Fourier domain coordinate, 
 D k!k and O! D !



.

2.2.1 Radial Part

The radial part is not important for the following discussions on phase and could in
principle be set to unity. In practice, however, there will always be a non-constant
radial part involved, typically it is a bandpass filter (R.0/ D 0), e.g. a lognormal
function, [8, 17], a logerf function, [23], or a function given by jSA.!/j in Eq. (6).

2.2.2 Directional Matrix

The directional part consists of monomials i.e. products of non-negative integer
powers of the components of O!. Performing n repeated outer products of O! will
contain all order n component products.

Dn. O!/ D O!˝n D O!˝ O! : : : ˝ O!
„ ƒ‚ …

n entities

(14)

For the following investigation of phase only orders 0, 1 and 2 will be needed. In the
2D case, using the notation O! D .�; �/T , we have:

D0. O!/ D 1 (15)

D1. O!/ D
�
�

�

�

(16)

D2. O!/ D
 
�2 ��

�� �2

!

(17)

It is worth noting here that D1. O!/ corresponds to the Riesz transform, [1] in the
general case and the Hilbert transform in the one-dimensional case since O! D !

j!j D
sign.!/.
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2.2.3 Monomial Filter Matrices

To construct matrices holding proper filters we simply multiply the matrix holding
the directional responses, Dn. O!/, with the radial function, R.
/. For each order
n � 0 a monomial filter matrix is defined as:

F n.!/ D R.
/ Dn. O!/ (18)

2.3 Monomial Filter Response Matrices

The next step is to apply a monomial filter matrix to a signal, thus obtaining a
monomial filter response matrix. This can be done by convolving the signal with
each of the filters in the filter matrix and storing the results in the corresponding
positions. Using an FFT approach the same result can also be obtained multiplying
the Fourier transform of the signal by each filter in the Fourier domain.

Let the spatial domain correspondence of the monomial filter matrix F n be
denoted Fn. Each element of Fn contains the convolution kernel of the correspond-
ing FD filter function in F n. If the multi-dimensional signal is denoted s.x/, where
x denotes the spatial coordinates, the monomial filter response matrix, Qn.x/, is
defined as:

Qn.x/ D Fn.x/ � s.x/ (19)

where � denotes the convolution operator.
Denoting the Fourier transform of s by S the same relation can be expressed

using multiplication in the Fourier domain:

Qn.x/ D F�1ŒF n.!/ S.!/ � (20)

Here F�1 denotes the inverse Fourier transform.
In this general description each element of Qn.x/ contains the monomial filter

responses for the entire signal. Since all filtering operations in this paper are shift
invariant we may, in the interest of clarity and without loss of generality, from now
on omit to denote the spatial coordinate vector x and only consider the filter matrix
response at x D 0.

2.4 Signal Classes

It will be useful for the following discussion to define two different classes of
signals. We will here define the sinusoidal and simple signal classes.
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2.4.1 Sinusoidal Signals

We first present the simplest possible case, a sinusoidal signal with amplitude A,
spatial frequency u, and zero phase.

s.x/ D A cos.uTx/ (21)

For this case the monomial filter response matrix dependence on the signal
frequency, u, is given by:

Qn.u/ D AR.
/ Dn. Ou/ for even n (22)

where 
 D kuk and Ou D u



. Note that in this special case of zero phase, i.e. a
symmetric signal, the response will be zero for odd n. For odd signals, i.e.

s.x/ D A sin.uTx/ (23)

even orders will be 0 and odd order responses are given by:

Qn.u/ D �i AR.
/ Dn. Ou/ for odd n (24)

For a general sinusoidal with phase � , i.e.

s.x/ D A cos.uTxC �/ (25)

both even and odd order filters will respond and we get:

Qn.�;u/; D
(

A cos.�/R.
/Dn. Ou / for even n

�i A sin.�/R.
/Dn. Ou / for odd n
(26)

2.4.2 Simple Signals

Following [17] we define simple signals to be signals that can be expressed as:

s.x/ D g. OuTx/ (27)

Here g.�/ is any real one variable function and Ou is a unit vector giving the orienta-
tion of the signal. For this case the monomial filter response matrix dependence on
the signal orientation, Ou, is given by:

Qn D An Dn. Ou/ (28)

Here An is the local amplitude of the filter response. By factoring out the directional
dependence, An depends only on the radial filter function, R.
/, and the signal
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generating function, g.x/. By he Fourier slice theorem, [7], we know that the
Fourier transform of a simple signal is non-zero only on a line through the origin.
This makes for a simple solution. Letting v be a 1-dimensional frequency variable
and denoting the Fourier transform of g.x/ by G.v/ we find the filter response
amplitude as:

8
<

:

An D Ae D
R
v
R.jvj/G.v/ dv for even n

An D Ao D
R
v
R.jvj/G.v/ sign.v/ dv for odd n

(29)

Unless explicitly mentioned all signals will in the following be regarded simple.

2.5 Vector Phase Representations

Next we turn to a somewhat more advanced phase representation approach.
Monomial quadrature filter sets support a simple yet general definition of phase.
We will show how a continuous and consistent N C 1 dimensional vector phase
representation can be constructed.

2.5.1 Monomial Quadrature Filter Matrices

The final step required for attaining filter matrices that can be used for local phase
estimation is to concatenate one even and one odd monomial filter matrix to form a
monomial quadrature filter matrix, F mn.!/.

F mn.!/ D fF m.!/; F n.!/g (30)

Where the “fg” brackets denotes a simple juxtaposition of the components, i.e.
there are no requirements on the types or sizes of the assembled components. The
monomial quadrature filter response matrix, Qnm, is, as before, obtained through
convolution in the spatial domain or multiplication in the Fourier domain and we
have:

Qmn D fQm; Qng (31)

2.5.2 Phase from Orders 0 and 1

The simplest case of phase estimation uses filters of orders 0 and 1, i.e.

F01.u/ D fF 0.u/ ; F 1.u/ g
D R.
/ f1 ; Ou g

(32)
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Fig. 8 Two views (from above and from below) of the color coded 3-dimensional vector phase
space for 2-dimensional signals. The color code is as follows: white means � D 0, increased
saturation means higher � and full saturation means � D �=2. Gray means � D � . The color
indicates the direction, '. Green/red indicates x-direction. Blue/yellow indicates y-direction. Black
iso-line are drawn for � D pi=4; �=2; 3�=2 and for ' D 0; pi=2. Right: the same color coded space
seen from below

The filter response using F01, the spatial counterpart of F01, can then be written:

Q01 D F01 � s

D fAe ; Ao Ou g
(33)

A phase representation, �01, is then obtained by simply normalizing the filter
response matrix, Q01, using the Frobenius norm.

� 01 � OQ 01 D
Q01

kQ01k

D fAe ; Ao Ou g
p

A2e C A2o

D fcos.�/ ; i sin.�/ Ou g

(34)

A color coded representation of the N C 1 dimensional phase for 2-dimensional
signals is shown in Fig. 8. The eight plots in Fig. 9 show the local phase when
moving in two different directions in a gray scale image using three different types
of visualizations.

2.6 Relations to Previous Work

Before moving on to discussing higher order phase representations we would like to
point out a number of interesting relations to classical concepts and previous work.
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Fig. 9 Plots of the N C 1 dimensional vector phase space for 2-dimensional signals. Left: 3D
coordinate system with direction angle, ', and complex phase angle, � . Middle: the same space
color coded seen from above. White means � D 0, increased saturation means higher � . Full
saturation means � D �=2, the color indicates the direction, '. A black iso-line is drawn at
� D �=4. Right: the same color coded space seen from below. Gray means � D � . A black
iso-line is drawn at � D 3�=4
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2.6.1 One-Dimensional Case

For one-dimensional signals the monomial response matrix, Q01, reduces to the
original definition of amplitude and phase for analytic signals, [7], i.e.

Q01 D jQ01j� 01 D Aei � (35)

2.6.2 Monomial Structure Tensors

Although it is not the focus of the present chapter it seems appropriate to here
mention that using the monomial filter response matrix the corresponding local
structure tensor is, as outlined in [29], found as:

T2nm D Qnm QT
nm (36)

2.6.3 Phase from Directed Quadrature Filters

The construction of classical quadrature filter pairs, [8,17], is a generalization of the
analytic signal concept to higher dimensions but require pre-defined filter directions.
A simple approach to local phase analysis of multidimensional signals is to measure
a number of 1-dimensional phases from a set of quadrature filters given a number
of fixed directions. The complex scalar response of a quadrature filter can, in the
traditional manner, be expressed in terms of local amplitude, A D jqkj, and local
phase,  k D Oqk or phase angle, �k D arg.qk/.

qk D A  k D A ei�k (37)

A problem is that  �k D  �k implying that the same information can end up being
represented in two ways, i.e. the representation is not one-to-one. For simple signals
the measured phase will be invariant to the filter direction (except for the conjugate
problem above) but for non-simple signals the directional dependence of the local
phase can be highly complex and difficult to interpret. Although a lot of information
about the local phase will be present in the joint outputs of a set of quadrature filters
in different directions we do not consider it a preferable starting point for producing
a good phase representation.

2.6.4 The N C 1 Dimensional Phase Vector

For 2-dimensional signals the monomial phase, � 01, is equivalent to the
3-dimensional vector phase definition for 2-dimensional signals due to Knutsson
presented in [10] (1989). For higher dimensional signal spaces it generalizes to the
NC 1 dimensional vector phase definition given in [17] (1995), i.e.
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NC1
D 01 D Q01

kQ01k D
fA0 ; A1 Ou g
q

A20 C A21

(38)

2.6.5 Monogenic Signal

The Felsberg monogenic signal, FM , defined for 2-dimensional signals, [18] (2001),
will in our notation be written:

FM D Q01 D fA0 ; A1 Ou g (39)

In other words it is identical to the monomial filter response matrix using orders 0
and 1. An extension to higher dimensional signals is straight forward and will also
be expressed by Eq. (39). This relates directly to theNC1 dimensional phase vector
above and to the conformal monogenic signal, [28, 30].

2.6.6 Monogenic Phase Vector

The monogenic phase, 'M , defined for 2-dimensional signals, [18] (2001), is found
by the following mapping of the monogenic signal:

'M D tan�1
�kA1 k

A0

�

Ou? (40)

where tan�1 2 Œ 0; � Œ and Ou? D .�uy;ux/T if Ou D .ux;uy/T . The definition
monogenic phase is formulated in the 3-dimensional monogenic signal space and
Ou? is obtained via the cross product .1; 0; 0/T � .A0; A1ux; A1uy/T . Note that,

since the definition is based on the cross product, it does not directly generalize to
higher dimensions.

2.6.7 Three-Dimensional Case

For three-dimensional signal spaces � 01 is equivalent to a unitary quaternion.

3 Higher Order Phase Representations

The N C 1 dimensional phase representation and the monogenic signal definitely
have important merits but, as we will show in this section, still leave some things to
be desired. The monomial phase approach, however, allows for a higher order phase
representation that will meet our requirements.
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As a starting point for the discussions regarding higher order phase
representations we state that all information except the magnitude should be
represented by the phase. For a collection of monomial filter response matrices,
fQni g, let a generalized phase be defined by:

� fni g D f OQ ni g �
fQni g
kfQni gkfro

(41)

where ‘fro’ indicates the Frobenius norm (also known as the Hilbert-Schmidt norm)
which is simply obtained as the square root of the sum of the absolute squares of all
individual scalar elements.

3.1 Local Phase from Orders 0, 1, and 2

We can attain a joint representation of signal orientation and phase using Monomial
filters of orders 0, 1 and 2. Consider the following set of filter responses:

Q012 D f˛Q0; ˇQ1; � Q2g (42)

Separate amplitude A and phase �

A D jj f˛Q0; ˇQ1; � Q2g jjfro (43)

� D f˛Q0; ˇQ1; � Q2g
A

(44)

The filter response set can now be written

Q012 D A� (45)

Note that in practise Q0 need not be computed using a separate monomial filter of
order 0 since an even/odd monomial filter of order n span all subspaces of lower
even/odd order. e.g. for the present case: Q0 D trace.Q2/.

3.1.1 Balance Between Order 0, 1 and 2 Components

Equation (44) gives us the general form of a phase representation, however, we have
yet to determine the relative weights, ˛; ˇ and � , of the individual components To
do this it suffices to study the sinusoidal signal case. For a sinusoidal signal with
orientation Ou and phase � we then get the following expression for the phase, � .

� .�; Ou / D
n
˛ cos.�/; i ˇ sin.�/ Ou T

; � cos.�/ Ou Ou T
o

(46)
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In order to find appropriate values for ˛; ˇ and � we need to add some constraints.
We want the behavior of the representation to be as simple as possible and it is
natural to require that the sensitivity of the phase representation to a change in local
phase angle, as well as a change in local orientation, should be invariant to the
local phase. In other words we will, as stated above, require that the metric is shift
invariant, i.e. the norm of the partial derivatives with respect to � and Ou should be
constants.

8
<

:

k @�
@�
kfro D c1 > 0

k @�
@ Ou kfro D c2 > 0

(47)

Calculating the squared norm of @�
@�

gives:

�
�
�
�
@�

@�

�
�
�
�

2

fro
D
�
�
�
n
�˛ sin.�/; i ˇ cos.�/ Ou T

; � � sin.�/ Ou Ou T
o�
�
�
2

fro

D .˛2 C �2/ sin2.�/ C ˇ2 cos2.�/

(48)

By inspection it is simple to see that if we set

ˇ2 D ˛2 C �2 (49)

we get:

�
�
�
�
@�

@�

�
�
�
�

2

fro
D ˇ2 (50)

and the first requirement is met.
Finding the solution to the second requirement is slightly more involved. We will

revert to the definition of partial derivatives by studying the change when adding an
infinitesimal perpendicular vector � Ov to Ou with k Ov k D 1. Omitting the �2 terms,
we get:

� .�; Ou C � Ov / D
D ˚˛ cos.�/; iˇ sin.�/. Ou C � Ov /T ; � cos.�/. Ou C � Ov /. Ou C � Ov /T �

D
n
˛ cos.�/; iˇ sin.�/. Ou C � Ov /T ; � cos.�/Œ Ou Ou TC�. Ov Ou TC Ou Ov T / �

o
(51)

Expressing the difference in � yields:

� .�; Ou C � Ov / � � .�; Ou / D
n
0; iˇ sin.�/� Ov T ; � cos.�/�. Ov Ou TC Ou Ov T /

o

(52)



Monomial Phase: A Matrix Representation of Local Phase 57

Dividing by � and finding the limit as � ! 0 we arrive at:

@�

@ Ou D lim�!0
� .�; Ou C � Ov / � � .�; Ou /

�

D
n
0; iˇ sin.�/ Ov T ; � cos.�/. Ov Ou TC Ou Ov T /

o (53)

Calculating the squared norm of @�
@ Ou gives:

�
�
�
�
@�

@ Ou
�
�
�
�

2

fro
D ˇ2 sin2.�/C �2 cos2 k Ov Ou TC Ou Ov T k2fro (54)

and, as we now that Ov T Ou D 0
�
�
�
�
@�

@ Ou
�
�
�
�

2

fro
D ˇ2 sin2.�/C 2 �2 cos2.�/ (55)

Setting

ˇ2 D 2�2 (56)

gives

�
�
�
�
@�

@ Ou
�
�
�
�

2

fro
D ˇ2 (57)

and the second requirement is also met showing that this phase representation is
shift invariant with respect to . Ou ; �/ for all . Ou ; �/. A shift invariant metric trivially
implies that the mapping is continuous. It is also not difficult to see that � is unique
with respect to . Ou ; �/ and the exercise is left to the devoted reader.

At this stage the only degree of freedom left relates directly to the norm of the
representation. The choice will not effect the general behavior of the representation
and choosing

˛2 C ˇ2 C �2 D 4 (58)

gives the following particularly simple and unique solution:

˛ D 1; ˇ D p2; � D 1 (59)

With this choice the phase representation is composed of the following components:

� .�; Ou / D
n
cos.�/; i

p
2 sin.�/ Ou T

; cos.�/ Ou Ou T
o

(60)
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3.1.2 A Comment on Some Alternative Phase Representations

The investigation above shows that all three orders are needed to construct a phase
representation that meets the shift invariance requirement. This disqualifies, for
example, the N C 1 dimensional Haglund-Knutsson-Granlund local phase (1989),
[10], and the Felsberg-Sommer monogenic signal (2001), [18], both of which only
use orders 0 and 1, and are in fact identical except for an amplitude normalisation.
The monogenic phase is a mapping of the monogenic signal and can be viewed
as an attempt to construct a concept that is more similar to the traditional phase
angle in one-dimensional signal analysis. A consequence of the similarity with the
traditional phase angle is that the ‘wrap around’ discontinuity is also inherited.
This will not be a problem if the monogenic phase estimate is considered the
final result of the analysis, However, if the estimates are used as input to further
processing this mapping of the monogenic signal will make it difficult to apply many
standard operations, e.g. averaging and differentiation, due to the discontinuous
representation.

3.2 A Matrix Representation of Phase

A matrix phase representation that meets all the above requirements is given by:

� . �; Ou / D
 

u i uT

i u U

!

D
0

@
cos.�/ i sin.�/ Ou T

i sin.�/ Ou cos.�/ Ou Ou T

1

A (61)

A number of interesting observations regarding this matrix representation can be
made. The representation has a Frobenius norm of

p
2 and two non-zero eigenvalues

with unity norm. The eigenvalues are a complex conjugate pair implying an order
2 sub-determinant of unity. The representation is pseudo-unitary, i.e. unitary in the
spanned 2-dimensional subspace, implying:

8
<

:

� . �; Ou /� D � . �; Ou /C

� . �; Ou /� � . �; Ou / D � . �; Ou / � . �; Ou /� D P2
(62)

where ‘�’ denotes the complex matrix transpose, ‘C’ denotes the Moore-Penrose
pseudo inverse and P2 is a projection matrix having two non-zero eigenvalues equal
to unity.

3.3 The Phase Space Manifold Is a Klein Bottle

By plotting image patches with different phase and orientation in a regular fashion
the intrinsic Klein bottle structure of the phase space manifold is revealed, [32],
see Fig. 10 and the caption. A Klein bottle, K, is a non-orientable surface in four
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Fig. 10 By plotting image patches with different phase and orientation in a regular fashion the
intrinsic Klein bottle structure of the phase space is revealed. Orientation changes from top to
bottom and phase changes from left to right. The first and last row and the first and last column
represent the same orientation/phase combinations. To match the first and last row one of them has
to be taken in reversed order. This shows that, for 2-dimensional signals, the phase manifold is a
Klein bottle

dimensions and for 2-dimensional simple signals the phase matrix,  , only needs
four degrees of freedom. In general, however, the phase matrix,  , has five degrees
of freedom. The fifth dimension is needed to represent the local phase of non-simple
signals. That is the general topology of the phase matrix for two-dimensional signals
is K � I , where I is an interval of real numbers.

3.3.1 Color Code

The five degrees of freedom of the phase matrix,  , are hard to directly visualize
in a simple way. To obtain images that holds as much as possible of the phase
information we will introduce a color coding scheme. This implies a mapping from
five dimensions to the three dimensions of the color space used in Fig. 8. The hue is
based on the direction of the imaginary vector part of the phase matrix product, i.e.
phase matrix elements .2; 1/ and .3; 1/. Zero-phase (ridge/white line) is coded
as white and 180 phase (valley/black line) as gray. See Figs. 11 and 12.

4 Monomial Phase Products and Phase Angle Differences

An important operation using the complex scalar phase is the complex conjugate
product giving a phase angle difference estimate. Let us see if we can use the new
high order phase in the same way.
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Fig. 11 Plot showing the colors corresponding to the phase at the center of the patches in Fig. 10.
The figure provides a link between Figs. 10 and 12. It also shows that the RGB color space is
inadequate to represent the Klein bottle topology since all the � D 0 and all the � D � patches
are white and gray respectively

Fig. 12 Figure showing four views of a three-dimensional sub-space of the phase matrix
representation. The Klein bottle structure shows itself like a modified torus (in a way similar to
a mobius-band), a tube bent in a circle but before ‘glued’ together inside and outside surfaces trade
places. The black lines indicate � D ˙�=4
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4.1 Direct Products of Phase Matrices

In order to do this we need to decide how an appropriate product of two phase
matrices can be defined. Starting with two phase matrices, � a and � b:

� a D
 

a i aT

i a A

!

D
0

@
cos.�/ i sin.�/ Oa T

i sin.�/ Oa cos.�/ Oa Oa T

1

A (63)

� b D
 

b i bT

i b B

!

D
0

@
cos.�/ i sin.�/ Ob

T

i sin.�/ Ob cos.�/ Ob Ob
T

1

A (64)

we will, in analogy with standard matrix multiplication, define the product of two
phase matrices to be:

� a � b D
 

ab � aT b i .abT C aT B /

i . abC Ab / �abT C AB

!

(65)

Note that the components multiplied here can be scalars, vectors or matrices. All
products are, however, standard matrix algebra products.

As mentioned above we wish to investigate the analog of the complex conjugate
product for complex numbers. For two phase matrices this translates to the complex
transpose product, i.e. terms holding b will change sign. Letting ‘ � ’ denote the
complex conjugate transpose we get:

� a �
�

b D
 

abC aT b i .�abT C aT B /

i . ab � Ab/ abT C AB

!

D
 

c11 i cT12

i c21 C22

! (66)

The last entry in Eq. (66) simply serves as a way to identify the individual
components of � a �

�

b . Carrying out the calculations for each component we obtain:

c11 D cos.�/ cos.�/ C sin.�/ sin.�/ Oa T Ob
cT12 D � cos.�/ sin.�/ Ob T C sin.�/ cos.�/ Oa T Ob Ob

T

c21 D sin.�/ cos.�/ Oa � cos.�/ sin.�/ Oa Oa T Ob
C22 D sin.�/ sin.�/ Oa Ob

T

C cos.�/ cos.�/ Oa Oa T Ob Ob
T

(67)

Thus the result in the general case is quite complex, however, setting the orientations
of the to phase matrices to be equal will allow us to significantly simplify the
expression.
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4.1.1 Equal Orientations

For the equal orientation case, i.e. Ob D Oa, we get:

c11 D cos.�/ cos.�/ C sin.�/ sin.�/

cT12 D Œ� cos.�/ sin.�/ C sin.�/ cos.�/ � Oa T
c21 D Œ sin.�/ cos.�/ � cos.�/ sin.�/ � Oa
C22 D Œ sin.�/ sin.�/ C cos.�/ cos.�/ � Oa Oa T

(68)

Simplifying further and restoring the matrix notation we arrive at the following
expression:

� a �
�

b D
0

@
cos.� � �/ i sin.� � �/ Oa T

i sin.���/ Oa cos.� � �/ Oa Oa T

1

A

D � . � � �; Oa /
D � .��; Oa /

(69)

where �� is the difference in phase angle. In other words, it works perfectly for the
“same orientation” case. We get a direct analogue to the multiplication of complex
numbers.

4.2 A Symmetric Complex Conjugate Phase Product

The simple matrix product analogue defined in Eq. (65) has a significant drawback.
The result will not have the same symmetry features as the multiplied phase matrices
unless the orientations are identical. For this reason we define a symmetric complex
conjugate phase matrix product that will retain the symmetry features also when the
orientations differ.

a
b

defD 1

2
.� a �

�

b C �
�

b � a/

D 1

2

 
abC aT b i .�abT C aT B /

i . ab � Ab / abT C AB

!

C 1

2

 
baC bT a i . baT � bT A /

i .�baC Ba / baT C BA

!

D
 

c11 i cT12

i c21 C22

!

(70)
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Carrying out the calculations for each component we get:

c11 D 1
2
. cos.�/ cos.�/ C sin.�/ sin.�/ Oa T Ob
C cos.�/ cos.�/ C sin.�/ sin.�/ Ob T Oa /

cT12 D 1
2
.� cos.�/ sin.�/ Ob T C sin.�/ cos.�/ Oa T Ob Ob T

C cos.�/ sin.�/ Oa T � sin.�/ cos.�/ Ob T Oa Oa T /
c21 D 1

2
. sin.�/ cos.�/ Oa � cos.�/ sin.�/ Oa Oa T Ob
� sin.�/ cos.�/ Ob C cos.�/ sin.�/ Ob Ob T Oa /

C22 D 1
2
. sin.�/ sin.�/ Oa Ob T C cos.�/ cos.�/ Oa Oa T Ob Ob T

C sin.�/ sin.�/ Ob Oa T C cos.�/ cos.�/ Ob Ob T Oa Oa T /

(71)

Setting � D Oa T Ob and simplifying gives:

c11 D cos.�/ cos.�/ C � sin.�/ sin.�/

c21 D 1
2
Œ .sin.�/ cos.�/ � � cos.�/ sin.�// Oa
C.� sin.�/ cos.�/ C � cos.�/ sin.�/ / Ob �

c12 D c21

C22 D 1
2
. sin.�/ sin.�/ C � cos.�/ cos.�/ /. Oa Ob TC Ob Oa T /

(72)

Expressing using factors 1˙ � we get:

c11 D 1
2
Œ .1C �/.cos.�/ cos.�/C sin.�/ sin.�//

C .1 � �/.cos.�/ cos.�/ � sin.�/ sin.�// �

c21 D 1
4
Œ Œ.1C �/.sin.�/ cos.�/ � cos.�/ sin.�//

C .1 � �/.sin.�/ cos.�/C cos.�/ sin.�// � Oa
� Œ.1C �/.sin.�/ cos.�/ � cos.�/ sin.�//

C .1 � �/.sin.�/ cos.�/C cos.�/ sin.�// � Ob �

c12 D c21

C22 D 1
4
Œ Œ .1C �/.sin.�/ sin.�/C cos.�/ cos.�//

C .1 � �/.sin.�/ sin.�/ � cos.�/ cos.�// �. Oa Ob TC Ob Oa T / �

(73)
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Using classical trigonometrics we arrive at:

c11 D 1

2
Œ .1C �/ cos.� � �/ C .1 � �/ cos.� C �/ �

c21 D 1

4
Œ .1C �/ sin.� � �/. Oa C Ob / C .1 � �/ sin.� C �/. Oa � Ob / �

c12 D c21

C22 D 1

4
Œ .1C �/ cos.� � �/ � .1 � �/ cos.� C �/ � . Oa Ob

T

C Ob Oa T

/

(74)

In a final desperate attempt to understand what’s going on we introduce the
variables:

� D the angle between the two signal directions Oa and Ob
s D 1

2
. Oa C Ob / the mean of the two signal direction vectors

d D 1
2
. Oa � Ob / half of the difference between the two signal direction vectors.

Substituting the new variables and using standard trigonometric identities we find:

c11 D cos2.
�

2
/ cos.� � �/ C sin2.

�

2
/ cos.� C �/

c21 D Œ cos2.
�

2
/ sin.� � �/ s C sin2.

�

2
/ sin.� C �/d �

c12 D c21

C22 D Œ cos2.
�

2
/ cos.� � �/ � sin2.

�

2
/ cos.� C �/ � .s s

T � dd
T

/

(75)

Noting that ksk D cos. �
2
/ and kdk D sin. �

2
/ gives:

8
<

:

s D cos. �
2
/ Os

d D sin. �
2
/ Od

(76)

We can now write:

c11 D cos2. �
2
/ cos.� � �/ C sin2. �

2
/ cos.� C �/

c21 D Œ cos3. �
2
/ sin.� � �/ Os C sin3. �

2
/ sin.� C �/ Od �

c12 D c21

C22 D Œ cos4. �
2
/ cos.� � �/ � 1

4
sin2.�/ cos.� C �/ � Os Os T

�Œ 1
4

sin2.�/ cos.� � �/ � sin4. �
2
/ cos.� C �/ � Od Od

T

(77)
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Rearranging terms we can finally express �a
b

in a way that will shed some light on

what happens when Oa and Ob differs:

�a
b
D cos2. �

2
/ � . � � �; Os /

� cos2. �
2
/

 
0 i Œ1 � cos. �

2
/� sin.� � �/ Os T

i Œ1 � cos. �
2
/� sin.� � �/ Os Œ1 � cos2. �

2
/� cos.� � �/ Os Os T

!

C sin2. �
2
/

0

@
cos.� C �/ i sin. �

2
/ sin.� C �/ Od

T

i sin. �
2
/ sin.� C �/ Od sin2. �

2
/ cos.� C �/ Od Od

T

1

A

� 1
4

sin2.�/

 
0 O0

T

O0 cos.� C �/ Os Os T

!

� 1
4

sin2.�/

0

@ 0 O0
T

O0 cos.� � �/ Od Od
T

1

A

(78)

We can see that the first term has the same form as the monomial phase matrix
representation, except for a scaling with cos2. �

2
/, and represents the difference in

phase in the mean direction of the two signals. The magnitude of the four additional
terms can be roughly described as follows. For the same orientation case, � D 0, the
additional terms are zero and otherwise no individual additional term has a larger
norm than sin2. �

2
/ and Eq. (78) can be written:

�a
b
D cos2.

�

2
/ � .��; Os / C sin2.

�

2
/�� (79)

where �� is the difference in phase angle, .� � �/, and �� is a matrix with terms
having a limited magnitude. In other words, as long as the angular difference
between the signals is not too large the result is very well-behaved. The experiments
in the next section will demonstrate this behavior.

Two comments are appropriate to make here: (1) As is also the case for complex
conjugate products of complex numbers, changing the order of the matrices (or
complex numbers) will result in a complex transpose of the result, i.e.

a
b
D �

b
a

(80)

This simply corresponds to the fact that the change of order implies that the
reference direction of the motion is reversed. (2) The symmetric complex conjugate
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phase product is not associative, i.e. if carrying out products of more than two
matrices changing the order in which the dyadic products are done may change
the result. However, as the estimation always only involves two matrices, this has
no consequence in the motion estimation case.

4.3 Monomial Phase and Motion Estimation

Local phase estimation is a key part of many displacement estimation algorithms.
In this section we will demonstrate the power of the new phase representation in
two different cases. We will refer to the computed phase based measure as the
displacement even though the actual displacement in image coordinates is related
by a factor dependent on the wavelength of the sine waves used. In all experiments
the color coding used for the phase matrix component images on the left hand side
is: Green – positive real, Red – negative real, Blue – positive imaginary, Yellow –
negative imaginary. The Klein bottle sub-space color coding used for the images on
the right hand side is described in Sect. 3.3. The displacement estimate used for the
arrows is computed as follows. Expressing the symmetric complex conjugate matrix
product, �a

b
, as:

�a
b
D

 
c i cT

i c C

!

(81)

the simplest way to compute a displacement vector, d is:

d D tan�1
�k c k

c

�

Oc D �� Oc (82)

where tan�1 2 Œ 0; � Œ . This means that the direction of the displacement is
given by Oc and the displacement distance is computed as the arc-tangent of the
ratio between the magnitude of c and the value of c. It is worth noting that the
form of Eq. (82) has obvious similarities to the definition of the monogenic phase
vector, Eq. (40). However, there are two important differences: Firstly, since the
entries here are components of a matrix phase product, the result represents a
phase relation rather than a single phase. Secondly, the formulation in Eq. (82)
is valid for any signal dimensionality. It is also appropriate to note that in three
dimensions Eq. (82) is equivalent to the logarithm of a unitary quaternion, .q; q/,

i.e. tan�1
� k q k

q

	
Oq D log.q; q/.
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4.3.1 Two Radial Sine Waves with Different Frequency

The simplest case, shown in Fig. 13 is a pair of radial sine wave patterns with slightly
different frequency. The local orientation for this pair is identical and the phase
difference grows linearly out from the center. The result in Fig. 13 is as predicted by
the theoretical analysis, Eqs. (69), (81) and (82).

4.3.2 Two Sine Waves with Different Orientations

Figure 14 shows an example with two linear sine wave patterns with 20ı difference
in orientation. The result is as predicted by the theoretical analysis, Eqs. (79)–(82).
This example clearly demonstrates the robustness of the approach.

4.3.3 A Comment on Optical Flow

Motion estimation and phase difference estimation are not identical problems but
are related through a distance/phase relation. However, a comparison with the well-
known optical flow motion estimation algorithm will highlight some important
aspects. Figure 15 shows the result of the classical optical flow algorithm applied
to the image pair in Fig. 14. As the gradient in optical flow is taken from a single
reference image there are two possible solutions, shown left and right. The two
fundamental assumptions made in optical flow are: (1) ‘the image is locally planar’
and (2) ‘the second image is a translated version of the first image’. These to
assumptions are in practice rarely a good approximation and are, in fact, severely
violated for a simple translated sine wave pattern. As can be expected, using the
gray images in Fig. 14 yield optical flow estimates that are quite useless. Although
the conjugate phase products results in Fig. 14 are not equivalent to displacement
estimates they demonstrate that the monomial phase based model is likely to provide
a much more powerful approach in non-trivial cases.

4.4 Averaging of Phase Matrix Products

In many applications the presence of noise can render individual local feature
estimates unreliable. A simple, powerful and extensively used method for noise
suppression and regularization is low pass filtering of the obtained local estimates.
However, and we stress this again, for the averaging operation to be meaningful
is required that the feature representation space has the fundamental properties
previously discussed in this chapter.

The appropriate spatio-temporal size of the low pass filter is determined by the
noise level and how much ‘smoothing’ of the feature field that is acceptable. Here
the importance of the symmetric complex conjugate phase product defined in Sect. 4
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Fig. 13 Figure showing a simple scaling example using two radial sine waves with slightly
different frequency. The gray scale images show the to different input images. The local orientation
is identical in both images but the phase difference grows linearly out from the center. The 3 � 3
groups of color images to the left show the individual components of the phase matricesa,b (top
two) and phase matrix product, a

b
(bottom). Here green means positive real, red means negative

real, blue means positive imaginary and yellow means negative imaginary. The corresponding
color coded phase images are shown to the right. The added arrows indicate the corresponding
displacement estimate, d , (bottom right). The arrows correctly show that the phase difference is
pointing towards the center with magnitudes increasing linearly from the center. The outer gray
circular area is where the difference in phase angle, � , reaches � and the phase angle difference is
interpreted as having the opposite sign
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Fig. 14 Example using two sine waves with the same frequency but with different orientations,
the orientation difference here is 20ı. The layout is the same as in Fig. 13. The result shows that the
estimated orientation of the motion corresponds to the average orientation present in the two input
images, Os . This is in accordance with Eq. (78) for small differences in orientation. Even though the
orientation is relatively large the influence of the additional terms in Eq. (78) is hardly noticeable.
The white linear structure going through the center of the result image (bottom right) indicates that
the difference in the phase angle, � is zero. The colors and the arrows correctly show that the phase
difference grows linearly perpendicular to the white ‘center-line’. The outer gray linear areas are
where the difference in phase angle, � , reaches � and the phase angle difference is interpreted as
having the opposite sign
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Fig. 15 Figure showing the result when applying the optical flow algorithm to the two gray images
in Fig. 14. As the gradient in optical flow is taken from a single reference image there are two
possible solutions, shown left and right. Even for these relatively simple cases the fundamental
optical flow assumptions are violated and the result is very far from the correct displacement in
most locations. The only situation that consistently gives the correct result is when the displacement
is zero!

is highlighted. In motion estimation the motion field will, as a rule, have a much
slower spatial variation then the local phase field. This situation is clearly shown in
Figs. 13 and 14. Hence, a large low pass filter, that would remove important details
of the phase field, can still be used without significant deterioration of the motion
field. This will allow robust motion estimates to be attained in difficult and noisy
situations.

The averaging operation can be expressed as a weighted summation where the
coefficients, wl sum to unity, i.e.

P
wl D 1. Using a bar to denote a weighted

average we can express the local average of the phase matrix product as:

�a
b
D
X

l

wl � al � T
bl

D
 P

l wl cos.��l / i
P

l wl sin.��l / Oa l T

i
P

l wl sin.��l / Oa l P
l wl cos.��l / Oa l Oa l T

!

D
 

c i cT

i c C

!

(83)

In the general case the weights, wl , of the averaging filter can be both spatially
variant and signal dependent.
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4.4.1 Equal Orientations

Letting all orientations be equal, i.e. Oa l D Oa I 8l and calculating the weighted
average, z, of the complex numbers, zl , corresponding to the difference phase angles
��l in Eq. (83), i.e.

z D
X

l

wl zl D
X

l

wl e
i��l (84)

we find the weighted average phase matrix product as:

�a
b
D
 

Re. z / i Im. z / Oa T

i Im. z / Oa Re. z / Oa Oa T

!

D r � .��; Oa /
(85)

where r � 1 is a scalar attaining unity only if all zl are equal. In fact the value of
r will be directly related to the width of the angular distribution of zl . Again we
have a direct analog to complex numbers and it should be noted that, in general,
the average phase angle (a bounded real number) will not be the same as the phase
angle of the average phase matrix, i.e.

�� ¤ ��l (86)

4.4.2 General Averages

Analyzing the behavior of monomial phase matrix averages in the general case
is beyond the scope of this chapter. Suffice to say that the averages will, due to
the well-behaved representation, be continuous with respect to all entries and that
the sub matrix C will hold information about the directional distribution of Oa l .
For example, neighborhoods with a high degree of curvature will result in a C having
more than one significantly non zero eigenvalue.

5 Conclusion

We have presented a novel matrix representation of multidimensional phase that has
a number of advantages. In contrast to previously suggested phase representations it
is shown to be globally isometric, i.e. the metric of the representation is invariant to
shifts along the phase matrix manifold. The proposed phase estimation approach
uses spherically separable monomial filter of orders 0, 1 and 2 which naturally
extends to N dimensions. For 2-dimensional simple signals the representation has
the topology of a Klein bottle. Further, we have defined a symmetric conjugate
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phase matrix product which retains the structure of the phase matrix representation.
This product gives a phase difference matrix in a manner similar to the complex
conjugate product of complex numbers. We have also shown that the phase matrix
representation allows meaningful averages to be calculated as simple weighted
summations. Some important advantages of the proposed representation has been
demonstrated in two motion estimation examples.

We have to some extent investigated the mathematical properties of our new
matrix phase representation. However, as pointed out by one of the reviewers, this
matrix representation no doubt merits further investigation in particular regarding
geometrical and group theoretical aspects.
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Order Based Morphology for Color Images via
Matrix Fields

Bernhard Burgeth and Andreas Kleefeld

Abstract Mathematical morphology is a successful branch of image processing
with a history of more than four decades. Its fundamental operations are dilation
and erosion, which are based on the notion of supremum and infimum with respect
to an order. From dilation and erosion one can build readily other useful elementary
morphological operators and filters, such as opening, closing, morphological top-
hats, derivatives, and shock filters. Such operators are available for grey value
images, and recently useful analogs of these processes for matrix-valued images
have been introduced by taking advantage of the so-called Loewner order. There
is a number of approaches to morphology for vector-valued images, that is, color
images based on various orders, however, each with its merits and shortcomings.
In this chapter we propose an approach to (elementary) morphology for color images
that relies on the existing order based morphology for matrix fields of symmetric
2 � 2-matrices. An RGB-image is embedded into a field of those 2 � 2-matrices by
exploiting the geometrical properties of the order cone associated with the Loewner
order. To this end a modification of the HSL-color model and a relativistic addition
of matrices is introduced. The experiments performed with various morphological
elementary operators on synthetic and real images provide results promising enough
to serve as a proof-of-concept.
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1 Introduction

Beginning with the path-breaking work of Matheron and Serra [21, 22] in the late
sixties mathematical morphology has provided us with an abundance of tools and
techniques to process real valued-images for applications ranging from medical
imaging to geological sciences [15,23–25]. Erosion and dilation are the fundamental
operations of grey scale morphology relying on the notion of minimum and
maximum of real numbers. Since minimum and maximum in turn depend on the
presence of an order, it is no surprise that morphology for vector valued i.e. color
images does not always provide satisfactory results.

There have been numerous approaches how to extend the mathematical mor-
phology framework to color or vector-valued images. The main ingredients for
such a framework are ranking schemes and the proper notion of extremal operators
such as supremum and infimum. Due to the lack of reasonable complete lattice for
vectorial data numerous suggestions for ranking schemes (based on various notions
of distances, projections, and real-valued transforms) have been made, for a well
structured, comprehensive, in-depth, and still up-to-date survey the reader is referred
to [2] and the extensive list of literature cited therein. In [9] and [13] a more historic
account is presented, while for a study of the background in order theory see [3] and
[10].

Depending on the choices made one obtains morphological transforms with
specific properties. However, none of these attempts seems to have been accepted
unanimously in the image processing community.

Somewhat surprising the situation for symmetric matrix valued images is not as
hopeless as it might seem at first glance.

Here we consider a (symmetric) matrix valued images or matrix field F as a
mapping

F W ˝ 	 Rd �! Sym.n/

from a image domain˝ in Rd into the set Sym.n/ of real symmetric n�n-matrices.
There have been successful attempts to extend the operations of mathematical

morphology to images with values in the set of positive definite real symmetric
2 � 2- or 3 � 3-matrices [5–7], since these types of data make a natural appearance
in medical imaging as the output of diffusion tensor weighted magnetic resonance
imaging (DT-MRI).

The advantage of the matrix valued setting over the vector valued one is the
presence of a prominent order for symmetric matrices, the so-called Loewner order,
and the richer algebraic structure of symmetric matrices.

Hence, the goal of this chapter is to present an approach to morphological
operators for color images by embedding a color image suitably into a matrix
field. Hence the morphology already developed for matrix fields will give rise to
morphology for color images.
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For the coding of a color image as a matrix field we will make use of a variant of
the HSL-color space and the Loewner order cone for real symmetric 2�2-matrices.
This novel concept can be applied to grey value images as well and indeed includes
scalar (flat) morphology.

The structure of the article is as follows: In order to keep the chapter as
self-contained as possible we devote the next section to a brief review of the grey
scale morphological operations we aim to extend to the matrix-valued setting, start-
ing from the basic erosion/dilation and reaching to the morphological equivalents
of gradient, and Laplacian, and its use for shock filtering. In Sect. 3 we present
the maximum and minimum operations for matrix-valued data and especially a
three-dimensional representation of the Loewner order cone for 2 � 2- matrices.
Section 4 contains the aforementioned embedding and an operation for symmetric
matrices gleaned from the relativistic addition of velocities. We report the results
of our experiments with various morphological operators applied to synthetic and
real color images in Sect. 5. Section 6 offers concluding remarks and a short hint at
future research.

2 A Glance at Scalar Morphology

In grey scale morphology a scalar function f represents an image: f .x; y/ with
.x; y/ 2 R2 . In this paper we restrict ourselves to flat grey scale morphology where
a binary type of the so-called structuring element is used. It is nothing but a set B
in R2 determining the neighborhood relation of pixels. Then grey scale dilation ˚,
resp., erosion 
 replaces the grey value of the image f .x; y/ by its supremum,
resp., infimum within the mask B:

.f ˚ B/ .x; y/ WD sup ff .x�x0; y�y0/ j .x0; y0/2Bg ;

.f 
 B/ .x; y/ WD inf ff .xCx0; yCy0/ j .x0; y0/2Bg :

By concatenation other operators are constructed such as opening and closing,

f ı B WD .f 
 B/˚ B ; f � B WD .f ˚ B/
 B ;

the white top-hat and its dual, the black top-hat

WTH.f / WD f � .f ı B/ ; BTH.f / WD .f � B/ � f ;

finally, the self-dual top-hat,

SDTH.f / WD .f � B/ � .f ı B/ :
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The boundaries or edges of objects in an image are the loci of high grey value
variations and those can be detected by gradient operators. Erosion and dilation are
also the elementary building blocks of the basic morphological gradients, namely:
The so-called Beucher gradient


B.f / WD .f ˚ B/ � .f 
 B/ :

It is an analog to the norm of the gradient krf k if an image is considered as a
differentiable function. Other useful approximations to krf k are the internal and
external gradient,


�B.f / WD f � .f 
 B/ ; 
CB .f / WD .f ˚ B/ � f :

A morphological Laplacian has been introduced in [26] as the morphological
equivalent for the Laplace operator �F D @xxF C @yyF in the matrix valued
setting. Following [8] we consider a variant given by the difference between external
and internal gradient

�mF WD 
CB .F / � 
�B.F / D .F ˚ B/ � 2 � F C .F 
 B/ ;

thus representing the second derivative @��f where � denotes the direction of the
steepest slope.

Since �mf is matrix-valued, trace.�mf / will provide us with useful informa-
tion: Regions where trace.�mF / � 0 can be viewed as the influence zones of
maxima while those areas with trace.�mF / � 0 are influence zones of minima.
Hence it allows us to distinguish between influence zones of minima and maxima
in the image F . This is decisive for the construction of so-called shock filters.

The basic idea underlying shock filtering is applying either a dilation or an
erosion to an image, depending on whether the pixel is located within the influence
zone of a minimum or a maximum [19]:

ıB.f / WD


f ˚ B if trace.�mf / � 0 ;
f 
 B else :

(1)

The shock filter expands local minima and maxima at the cost of regions with inter-
mediate grey values. When iterated, experimental results in grey scale morphology
suggest that a non-trivial steady state exists characterized by a piecewise constant
segmentation of the image.

In the scalar case the zero-crossings�f D 0 can be interpreted as edge locations
[14,17,20]. We will also use the trace of the morphological Laplacian in this manner
to derive an edge map.

However, if we consider a matrix field F , �mF is matrix-valued, but the scalar
value of trace.�mF / provides us with the information necessary for the switch
criterion in the matrix valued shock filter.
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3 Loewner Order: Maximal and Minimal Matrices

Morphology rests on the fundamental notions of supremum and infimum with
respect to an order. This is true for matrix fields as well.

The so-called Loewner order is a natural partial order on Sym.n/, defined via the
cone of positive semidefinite matrices SymC.n/ by

A;B 2 Sym.n/ W A � B W, A � B 2 SymC.n/;

i.e. if and only if A � B is positive semidefinite.
This partial order is not a lattice order, that is, there is no notion of a unique

supremum and infimum with respect to this order [4]. Nevertheless, given any finite
set of symmetric matrices A D fA1; : : : ; Ang, we will be able to identify suitable
maximal, resp., minimal matrices

A WD sup A resp., A WD inf A :

Since we will consider images with three color components we may restrict
ourselves from now on to the case of 2 � 2-matrices in Sym.2/ which offer already
three degrees of freedom. The procedure to find these extremal matrices for a set A
is as follows: The cone SymC.2/ can be represented in 3D using the bijection

A WD
�
˛ ˇ

ˇ �

�

 ! 1p
2

0

@
2ˇ

� � ˛
� C ˛

1

A ; resp.,
1p
2

�
z � y x

x zC y
�

 !
0

@
x

y

z

1

A : (2)

This mapping creates an isometrically isomorphic image of the cone SymC.2/ in
the Euclidean space R3 given by f.x; y; z/> 2 R3jpx2 C y2 � zg and is depicted
in Fig. 1a. For A 2 Sym.2/ the set P.A/ D fZ 2 Sym.2/jA � Zg denotes the
penumbral cone or penumbra for short of the matrix A. It corresponds to a cone
with vertex in A and a circular base in the x � y-plane:

P.A/ \ fz D 0g D circle with center .
p
2ˇ;

� � ˛p
2
/ and radius

trace.A/p
2

:

Considering the associated penumbras of the matrices in A the search for the
maximal matrix A amounts to determine the smallest penumbral cone covering all
the penumbras of A tightly, see Fig. 1b. One realises that the height of a penumbra
measured from the x � y-plane is equal to the radius of its base, namely trace.A/p

2
.

Hence a penumbra is already uniquely determined by the circle constituting its base.
This implies that the search for a maximal matrix comes down to finding the smallest
circle enclosing the base-circles of the matrices in A . This is a non-trivial problem
in computer graphics. A numerical solution for finding the smallest circle enclosing
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Fig. 1 (a) Image of the Loewner cone SymC.2/. (b) Cone covering four penumbras of other
matrices. The tip of each cone represents a symmetric 2 � 2 – matrix in R3. For each cone the
radius and the height are equal

the sampled basis circles has been implemented in C++ by Gärtner [11] and was
used in [7] and [6]. However, in our case we employ the implementation of an
efficient subgradient method detailed in [27] for the calculation of the smallest
circle enclosing them. This gives us the smallest covering cone and hence the
maximal matrix A. For technical reasons in our later application we will not apply
the above reasoning directly to the matrices A1; : : : ; An but to their shifted versions
A CI WD A1CI; : : : ; AnCI with the unit matrix I taking advantage of the relation

A D sup.A1; : : : ; An/ D sup.A1 C I; : : : ; An C I / � I D AC I � I :

A suitable minimal matrix A is obtained by means of the formula

A D I � .sup.I � A1; : : : ; I � An//

inspired by the relation min.a1; : : : ; an/ D 1 � .max.1 � a1; : : : ; 1 � an// valid for
real numbers a1; : : : ; an. For i D 1; : : : ; n we have A � Ai � A with respect to
the Loewner order. We emphasise that A and A depend continuously on A1; : : : ; An
by their construction. Also the rotational invariance is preserved, since the Loewner
order is already rotational invariant: A � B” UAU> � UBU> holds for any
orthogonal matrix U . Nevertheless, the definitions of the matrices A and A are still
meaningful for matrices that are not positive definite as long as they have a non-
negative trace (since it corresponds to a radius in the construction above). It also
becomes evident from their construction that in general neither A nor A coincide
with any of the Ai .

With these essential notions of suitable maximal and minimal matrices A and
A at our disposal the definitions of the higher morphological operators carry over
essentially verbatim, with one exception:
The morphological Laplacian�m as defined in Sect. 2 is a matrix. In Eq. (1) we used
the trace of the morphological Laplacian to steer the interwoven dilation-erosion
process, and to create an edge map.
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Fig. 2 HCQL-bicone: Bicone
for the HCQL color model

4 Color Images as Matrix Fields

One of the most common models is the RGB color space where each color appears
in its primary components red, green, and blue. After standard normalizations the
color space is represented by the unit cube in a Cartesian coordinate system, see
[12]. Deeper inside in the use of color in sciences is provided in [18]. Closer to the
human perception process is the HSL (or HSI) color model describing a color object
by its hue, saturation and brightness resp. luminance. It is a popular cylindrical-
coordinate representation of points in an RGB color model (see [1, Algorithm 8.6.3]
for the conversion). If one replaces in this model the coordinate saturation by the
so-called chroma one arrives at a modified version of the HSL-model which we call
HC QL color model. Its representation is given by a bicone, depicted in Fig. 2.

To be more specific:

QL D 2L � 1 ;

and the chroma is obtained via

C D maxfR;G;Bg �minfR;G;Bg :

Hence, any point .x; y; z/ of the bicone can be obtained via

x D C � cos.2� �H/ ;
y D C � sin.2� �H/ ;
z D QL :

Note that the ranges of all components lie in the unit interval. This provides us with
an one-to-one transformation of the HC QL color space to the RGB color space. It is
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now apparent, that this HC QL-bicone corresponds via (2) directly to the order interval

Œ�I; I �L WD fA 2 Sym.2/ j � I � A � I g :

Hence each matrix in Œ�I; I �L corresponds uniquely to a point in the bicone and
each point in the bicone represents uniquely a color. In total this establishes the
desired continuous one-to-one correspondence of the matrices in Œ�I; I �L with the
colors in the HC QL (and from there to the standard RGB space, if so desired),

 W HC QL 	 IR3 �! Œ�I; I �L 	 Sym.2/ :

Exploiting this correspondence one obtains, for example, the supremum of two
colors c1; c2 2 HC QL by transforming them into the matrices .c1/; .c2/ 2
Œ�I; I �L, then taking the supremum sup..c1/; .c2// of these two matrices which
is then transformed back to the new ‘supremum color‘

sup.c1; c2/ WD �1 .sup..c1/; .c2/// :

�1 combines the mapping (2), namely

�
˛ ˇ

ˇ �

�

! 1p
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with a transform into polar coordinates via

H D 1

2�
arg.y; x/ ;

C D
p
x2 C y2 ;

QL D z ;

with a principal value of an appropriate argument function. The luminance L is
obtained via L D . QL C 1/=2 while the saturation is given by S D 0 if C D 0,
otherwise S D C=.1 � j2L � 1j/.

Thus, having obtained those HSL-values, we now convert them to the normalized
RGB-values (see [1, Algorithm 8.6.4] for the conversion).

The infimum of two colors is treated analogously. Hence by applying the
same rationale not only the fundamental processes of dilation and erosion can
be transferred from matrix fields to color images but other basic morphological
operations as well.

However, two major difficulties arise:

1. Due to the non-polygonal nature of the Loewner order cone it can happen, that the
supremum (and likewise the infimum) of matrices is outside the interval Œ�I; I �L,
that is, the corresponding HCL- and RGB-value do not exist.
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2. The design of the morphological top-hat or derivative operators requires taking
the differences/sums of matrices in Œ�I; I �L. Taking this differences/sums in
the standard way of matrix algebra results in matrices outside Œ�I; I �L, again
entailing non-existing corresponding HCL- and RGB-values.

We overcome the first difficulty by a rescaling of the corresponding matrices:
Instead of the matrix .c/ associated to a color c 2 HCL we consider the matrixp
2
2
.c/ involving the scaling factor d D p2=2.
To resolve the second problem we extend Einstein‘s rule for the addition

velocities in the theory of Special Relativity to symmetric matrices:

ACCB WD .AC B/ ı
�

1C 1

2
A ı B

��1
(3)

where the symmetric matrix product ‘ı’ defined by

A ı B WD 1

2
.ABC BA/

is the Jordan product of A and B . This type of addition is inspired from the fact

that the interval of real numbers Œ�d; d � 	 R with d D
p
2
2

equipped with the
relativistic addition

aCCb WD aC b
1C a�b

d2

of numbers a; b 2 Œ�d; d � establishes a commutative group [16], hence allows
naturally for subtraction as well. This relativistic rule of addition/subtraction of
matrices will lead to matrices often located in the lower part of the bicone causing
the resulting color to tend towards grey/black. This effect is responsible for the very
dominant tone of grey in images processed with operators invoking a subtraction,
such as morphological top-hats and derivatives. Subsequent experimental results
confirm this reasoning.

5 Experimental Results

In this section, the morphological operators designed above will be applied to
synthetic as well as natural color images of various sizes.

In all the experiments we use a cross-shaped structuring element consisting of
five pixels centered at the middle pixel. Each of the images is extended by one layer
of mirrored boundary values.

In the first experiments we confirm that our color-morphological operators
applied to image in Fig. 3a in principle act as regular morphological operators on
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Fig. 3 Original 8� 8-image test images. (a) Image 1. (b) Image 2. (c) Image 3

Fig. 4 Dilation and erosion applied to bipartite black-and-white image. (a) Original 8� 8-image.
(b) Dilation. (c) Erosion

Fig. 5 Dilation and erosion applied to bipartite blue-and-green image. (a) Original 8 � 8-image.
(b) Dilation. (c) Erosion

black-and-white images. As expected dilation and erosion result in an accurate shift
of the inner object front, see Fig. 4a. However, the scaling causes a slight shift of
black and white towards grey: The black part which is represented by the RGB-
values Œ0; 0; 0� becomes dark grey Œ37; 37; 37�. The white part which is represented
by the RGB-values Œ255; 255; 255� turns into light grey Œ218; 218; 218�.

An image of the same size 8 � 8, but with a blue-colored (RGBD Œ0; 0; 255�)
left and a green-colored (RGBD Œ0; 255; 0�) right side undergoes both an dilation
and an erosion. Both colors are located in the x � y-plane relatively far apart on
the boundary of the HC QL bicone, hence the maximal and minimal matrices are
representing almost white and black respectively. This accounts for the light grey
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Fig. 6 Bipartite color image for which the rescaling of the bicone is necessary. (a) Original 8� 8-
image. (b) Dilation. (c) Erosion

Fig. 7 Original 50� 50- and 36� 24-test images. (a) Image 4. (b) Image 5

resp. dark grey center section in the dilated resp. eroded images in Figs. 5b, c. Note
that due to the scaling the colors are slightly faded. We repeat the experiment with
a bipartite image whose halves are colored with RGB-values Œ255; 0; 0� (HC QL D
Œ0; 1; 0�) and Œ128; 255; 0� (HC QL D Œ1=4; 1; 0�). Their representing HC QL-values are
located at the boundary of the base of the bicone in the x � y-plane at a 90ı angle.
This represents a worst-case-scenario in the sense that the maximum of the two
color-representing cones does not lie completely within the bicone, unless one uses
the above mentioned scaling prior to taking the maximum. The same is true for
taking the minimum. In total this results in a grey tone of the appearing colors, see
Figs. 6b, c.

Now, we apply dilation and erosion as well as their concatenations opening
and closing to a 50 � 50-image with random RGB-coloring of its pixels, see
Figs. 7a and 8a respectively. As expected from the color distribution within the
bicone erosion Fig. 8c entails a darkening of the image while dilation Fig. 8b
accounts for its overall brightening. Inspecting Fig. 8d, e it becomes apparent that
opening and closing lead to a coarsening of the image making the structuring
element a clearly discernible shape.

Let us consider an RGB-image of resolution 36 � 24 containing six circles with
the RGB colors Œ128; 255; 0�, Œ0; 128; 255�, Œ0; 0; 0�, Œ255; 255; 255�, Œ235; 249; 18�
and Œ249; 155; 18� above a red background (Œ255; 0; 0�). In Figs. 7b and 9a respec-
tively we show the constructed image, whereas in Fig. 9b, c we see the results for
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Fig. 8 Dilation, erosion, opening, and closing of an image with randomly colored pixels.
(a) Original image of resolution 50� 50. (b) Dilation. (c) Erosion. (d) Closing. (e) Opening

dilation and erosion. Comparing the results of opening and closing displayed in
Fig. 9d, e with the original image we note its almost perfect recovery. Only the
colors lost a bit of their brilliance, again an effect of the aforementioned scaling.

The outcome of the operations of dilation, erosion, opening, and closing when
applied to a natural image Figs. 10b and 11a respectively is depicted in Fig. 11b–e.
The closing operation behaves indeed as a filter eliminating the slight pepper-
noise in the original image. Both closing and opening operations preserve to some
extent the texture-like structure of the forest in the picture while simultaneously
diminishing the depicted clouds.

Another example of the effect of these for basic operations on natural images,
see Fig. 10, is displayed in Fig. 12. Dilation causes the white stripes in the flag to
widen and creates a slightly bright rim around the depicted building whereas erosion
induces a widening of the red stripes and a greyish rim around the building.

When polluted with 5% salt-noise, Fig. 12d, an opening removes it, Fig. 12f, as
expected. The same is true with 5% pepper-noise, Fig. 12e, eliminated by a closing
operation, see Fig. 12g.

In the next experiment we investigate the effect of repeated dilation and erosion
on both a synthetic and a natural image. In the synthetic image small structures
assume more and more the shape of the structuring element, as expected. However,
repeated dilations produce bright-colored rims at the cost of the objects itself, the
black structure in Fig. 13a even vanishes and blends into the red background. It is the
opposite with erosion: the eroded structures are first surrounded and then swallowed
in a thickening dark rim and white structures disappear into the red background.
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Fig. 9 Dilation, erosion, opening, and closing. (a) Original. (b) Dilation. (c) Erosion. (d) Closing.
(e) Opening

Fig. 10 Original 171� 228- and 228� 171-test images. (a) Image 6. (b) Image 7

In principle the same is true for natural images, prominent objects are getting
surrounded by a thickening rim of light grey resp. dark grey tone when the number
of dilations resp. erosions performed increases, as can be seen in Fig. 14. In the next
set of experiments we turn our attention to the morphological derivatives: internal,
external, and Beucher gradient, and the morphological Laplacian. They invoke a
difference operation which is realized by means of the relativistic addition (3). The
predominant tone in the derived image can be expected to be grey, the shade of
color in the center of the bicone. Indeed, the difference operation underlying all
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Fig. 11 Dilation, erosion, opening, and closing of a natural image. (a) Original 228� 171-image.
(b) Dilation. (c) Erosion. (d) Opening. (e) Closing

the derivatives leads to matrices close to the said center. Only where a considerable
change by erosion and/or dilation occurs the subtraction entails a matrix somewhat
outside the bicone center, that is a color close to the primary colors. The experiments
with the matrix-based derivative operations corroborate this reasoning.

Nevertheless, it becomes apparent that the morphological gradients may serve as
edge detectors, the Beucher gradient being slightly more dissipative than the other
two one-sided ones (Figs. 15 and 16).
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Fig. 12 Natural image. Top: Dilation, erosion. Middle: Image polluted with 5%-salt noise and
5%-pepper noise. Bottom: Removal of these noise types by opening and closing. (a) Original
171 � 228-image. (b) Dilation. (c) Erosion. (d) 5% Salt noise added. (e) 5% Pepper noise added.
(f) Opening. (g) Closing

An obvious approach to morphology to color images is the channel-wise
application of the morphological operations. That means, every RGB-image is
decomposed into three scalar images and the morphological operation is applied
to each of the three images separately. The resulting images are then re-combined
to a now transformed RGB-image.
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Fig. 13 Iterated dilations and iterated erosions. (a) Original. (b) Dilation 1�. (c) Dilation 2�.
(d) Dilation 4�. (e) Erosion 1�. (f) Erosion 2�. (g) Erosion 4�

Fig. 14 Iterated dilations and iterated erosions based on the matrix field approach. (a) Original.
(b) Dilation 2�. (c) Dilation 5�. (d) Dilation 10�. (e) Erosion 2�. (f) Erosion 5�. (g) Erosion 10�
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Fig. 15 Internal, external, and Beucher gradient applied to a natural image. (a) Internal. (b) Exter-
nal. (c) Beucher gradient

Fig. 16 The morphological Laplacian which provides the switch criterion for the shock filter
applied once and 10 times to a natural image. (a) Morph. Laplacian. (b) Shockfilter 1�.
(c) Shockfilter 10�

This works reasonably well as far as dilation, erosion, opening and closing with
a small structuring element are concerned. The rim that is expected to get thicker
with each iteration assumes a green color using the component-wise approach, see
Fig. 17 which is different compared to the new approach, see Fig. 14.

Furthermore, these color disturbances become even more severe if a differ-
ence operation is involved, as the next examples exhibit, see Fig. 18. Trying a
component-wise approach with the channels of the HC QL-model is as fruitless as
with the channels of the RGB-model. The other color phenomenon manifests itself
clearly in Fig. 19, where we depicted only the HC QL-channel-wise Beucher gradient
and Laplacian.

So far we have refrained from presenting results of the application of the matrix-
based morphological operations referred to as black top-hat, white top-hat and
self-dual top-hat to color images. In fact, it is difficult to say what one should expect



92 B. Burgeth and A. Kleefeld

Fig. 17 Component-wise approach: Iteration of the erosion operation applied separately to each of
the three channels of an RGB-image. The three resulting scalar images are then re-combined to the
RGB-image. (a) Component-wise erosion 1�. (b) Component-wise erosion 5�. (c) Component-
wise erosion 10�

Fig. 18 Component-wise approach: The morphological operations of internal, external, and
Beucher gradient applied to each of the three channels of an RGB-image separately followed by a
recombination to a single RGB-image. (a) Component-wise internal gradient. (b) Component-wise
external gradient. (c) Component-wise Beucher gradient

from a filter that is supposed to extract small black details from a (grey scale) image
if it is applied to a color image.

In the experiments the predominant tone in the transformed image is again grey,
the shade of color in the center of the bicone. The explanation for its appearance
is practically the same as for the derivative operations since the top-hats are based
on the difference operation as well: Only where a considerable change by opening
and/or closing occurs the subtraction leads to matrices out of the bicone center,
meaning, to colors close to primary colors. This is confirmed by the experiments
with the matrix-based top-hat operations, see Fig. 20. However, the results of the
component-wise RGB-based approach are not satisfactory either as can be seen in
Fig. 21.
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Fig. 19 HCQL-component-wise approach: The morphological operations Beucher gradient and
Laplacian applied to each of the three channels of an HCQL-image separately followed by a
recombination to a single HCQL-image. (a) HCQL-component-wise Beucher gradient. (b) HCQL-
component-wise Laplacian

Fig. 20 Matrix-based black, white, and self-dual top-hat applied to an natural image. (a) Black
top-hat. (b) White top-hat. (c) Self-dual top-hat

6 Summary and Future Work

The real symmetric 2 � 2-matrices of a matrix field offer three degrees of freedom,
enough to house the three components of many popular color models, such as
the RGB- or the HSI-model. The matrix-setting has indeed several advantages
over the vector-setting of color images: First the richer algebraic structure, second,
the existence of an almost canonical order, the Loewner order. And third, when
morphological operations are applied, the interaction of the color channels is
ensured, if these are coded in matrix form. This coding was inspired by the
close, almost obvious geometric relation between the HC QL bicone, a variant of
the HSI-bicone, and an order interval induced by the Loewner order cone. Once
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Fig. 21 Component-wise approach: The morphological operations of black, white and self-
dual top-hat applied RGB-channel-wise to an natural image. (a) Component-wise black top-hat.
(b) Component-wise white top-hat. (c) Component-wise self-dual top-hat

the color image has been rewritten in this manner, the morphological techniques
developed for matrix fields in [7] and [8] were applicable and the results of various
morphological operations ranging from the elementary dilation and erosion to
second order derivatives could be studied.

The experimental results are promising and suffice as a proof-of-concept for this
novel approach to color image morphology.

However, in the future we will investigate the usefulness of other color models
as well as their embedding into the matrix setting, and we will attempt to
develop meaningful notions of top-hats, and other more sophisticated morphological
operators for color images.
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Sharpening Fibers in Diffusion Weighted MRI
via Erosion

Thomas C.J. Dela Haije, Remco Duits, and Chantal M.W. Tax

Abstract In this chapter erosion is generalized to the space of diffusion weighted
MRI data. This is done effectively by solving a Hamilton-Jacobi-Bellman (HJB)
system (erosion) on the coupled space of three dimensional positions and orienta-
tions, embedded as a quotient in the group of three dimensional rigid body motions.
The solution to the HJB equations is given by a well-posed morphological convo-
lution. We present two numerical approaches to solve the HJB equations: analytical
kernels, and finite differences. Proof of concept is given by showing improved
visibility of major fiber bundles in both artificial and human data. Furthermore, the
method is shown to significantly improve the output of a probabilistic tractography
algorithm used to extract the optic radiation.

Keywords Diffusion weighted MRI • Erosion • Hamilton-Jacobi-Bellman equa-
tions • Lie groups • Regularization • Sharpening • Sub-Riemannian • Geometry

1 Introduction

Diffusion Weighted MRI (DW-MRI) is a collection of magnetic resonance imaging
techniques used to infer structural information from fibrous tissue such as the brain
white matter. DW-MRI locally measures diffusion [46], the random motion of
molecules, in one or multiple directions. Because this motion is less constrained
along the fiber direction than across, these measurements effectively characterize
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tissue orientation. A prevalent means to analyze this data is tractography, which
tries to join locally registered fiber fragments based on their alignment, producing
fiber tracts that potentially represent nerve bundles. A simpler application of DW-
MRI is for instance the diagnosis and assessment of stroke, where swelling of the
cells appears to hinder diffusion significantly [51].

1.1 Diffusion Weighted MRI

Interpretation of the diffusion measurements is an area of active research. A variety
of models have been suggested to extract diffusion features, the most common
of which is Diffusion Tensor Imaging (DTI) [2, 4, 34, 36]. In DTI, the measured
diffusion in a number of directions n 2 S2 after a time t is assumed to satisfy
an anisotropic Gaussian distribution. The space S2 is the ordinary sphere given
by the collection of x 2 R

3 that satisfy kxk D 1. A symmetric, second order,
three-dimension tensor D.x/ is estimated at each spatial point x 2 R

3, such that the
local amount of diffusion p.njx/ in the direction n is given by [1]

p.njx/ D 1

2�t
3
2

pj detD.x/j

�
nT .D.x//�1n

t

�� 32
: (1)

More complicated models such as the diffusion orientation transform [39] use
more measurements to reconstruct this p.njx/, called the Orientation Distribution
Function (ODF), with fewer model assumptions [28].

From the measured ODF, which gives the diffusion likelihood in a certain
direction given a position, we find the likelihood at any combination .x;n/ from

p.x;n/ D p.njx/p.x/; (2)

where p.x/ is an a priori distribution on position space only, and .x;n/ 7! p.x;n/
is a spatial distribution of diffusivity profiles. A typical function description of p.x/
would be the normalized indicator function p.x/ D 1˝.x/

�˝
, where ˝ 	 R

3 is the
region of the brain that contains the white matter, and � is the measure.

Diffusivity profiles are typically visualized by morphed spheres called glyphs.
The diffusion likelihood p.x;n/ determines the radius of the sphere at x in the
direction n.

1.2 Enhancement and Tractography

While DW-MRI is unique in its ability to measure the microstructure of the brain in
vivo, it has some notable drawbacks. The scanning time, primarily determined by
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the number of directions needed to reliably fit a certain model, can be in the order
of hours for the more complex scanning protocols [52]. Decreasing the number
of scanning directions generally decreases the reliability of a fit. Secondly, the
scanning time is usually minimized by utilizing very fast imaging sequences such as
the echo-planar imaging sequence. These invariably result in noisy data, resulting
in a less reliable signal.

The consequences of this are apparent. While the obtained glyphs will still gener-
ally point in the directions of the major fiber bundles at each point, simply looking
at the local maximum likelihoods is often not enough to reliably determine these
directions. Following the emergence of the tractography methods that are based
on these directions, the importance of enhancement techniques in neurological
applications pertaining to tractography grew [7–9, 40, 47–49].

1.3 Sharpening

Difficulties still remain though, as enhancement inadvertently lowers the level of
detail and contrast. To remedy this, one typically uses sharpening methods that
emphasize prominent features by attempting to increase contrast at interesting
points in the data, typically edges. Previous attempts to sharpen DW-MRI data
sets [16, 25, 26, 29, 38] have primarily focused on angular sharpening, i.e. the
sharpening of each glyph individually. Promising results have been obtained, but
by only considering angular sharpening one by definition ignores the available
spatio-angular information. Secondly, many of the proposed methods are based on
deconvolution, a process which is in principle ill-posed.

In this article we outline a well-posed alternative based on grayscale morphology,
extending well established works [6, 50, 53] on R

3 to the space of diffusion images.
By defining an erosion operator for DW-MRI we can slim fibrous structures in the
spatial and the angular domain simultaneously. To improve reliability, we take into
account the context: if a glyph and its neighbors are aligned, then the likelihood
that the direction of alignment is equal to the direction of the nervous fiber bundle
is increased. This is illustrated in Fig. 1. Contextual processes have previously been
shown to be useful in enhancements [13, 18, 20, 41–43].

Our framework relates to the general framework of group morphology [44]
applied to the group of three dimensional rigid body motions SE.3/. In addition
to Roerdink [44] we rely on scale-space PDE’s whose solutions are given by a
morphological convolution with the corresponding Green’s function. Furthermore,
we extend the morphological group convolutions on SE.3/ to morphological
convolutions on the quotient SE.3/=.f0g � SO.2//, see Sect. 3.3.1.
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Fig. 1 If we take into account only the local diffusivity profiles, then both of the orientations
indicated by the red bars would be considered equally correct (a). If we take into account the
context however, here illustrated by the blue glyphs, we will see that in (b) the orientation given by
the green bar seems more likely to be correct than the red one. This information can be exploited
to improve the results of contextual operators

1.4 Outline of the Article

The article is structured as follows. Section 2 presents a summary of previously
published theory, which is used in Sect. 3 to define the erosion operator used to
sharpen the DW-MRI data. This section also covers implementation issues. Some
practical uses of the erosion operator are lastly given in Sect. 4.

2 Interpreting the Data

We will consider the diffusion images as (twice differentiable) functions on the
space of positions and orientations R

3 � S2, i.e. U 2 C2.R3 � S2;RC/, where
U.x;n/ D p.x;n/ as defined in Eq. (2). To grasp the structure of this space, we must
realize that the spaces of positions and orientations are coupled. This can be argued
from the concept of alignment, which is impossible to define on the decoupled
space, as demonstrated in Fig. 2.

In this section we will show that by embedding the space R
3 � S2 as a quotient

in the special Euclidean group, we can not only make this idea of a coupled space
concrete, but we can also impose in a straightforward way operator invariance
under rotations and translations. Once we have clarified the natural group structure
embodying R

3 � S2, we continue by defining the Euclidean-invariant moving frame
of reference and the accompanying legal metrics. These metrics will be used in the
next section as the basis for the erosion process. To keep the length of the article at
bay, many of the details and proofs are omitted. A more extensive overview of the
theory is available [20].
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Fig. 2 An illustration in the space R
3 � S2 of the coupled nature of alignment. The situation

sketched in (a) shows three glyphs and their main directions, with the blue and the green glyphs
visually more aligned than the blue and the red glyphs. The bars that indicate the main directions
are elements of the space of positions and orientations R

3 � S2. If we now consider projections
onto the subspaces R3 and S2 separately (b and c respectively) as we do when we consider R3 � S2
as a Cartesian space, we see that we lose the ability to distinguish between the green and the red
bars. This is essentially due to the fact that the spatial and angular distances between the blue and
the green bar are equal to the respective spatial and angular distances between the blue and the red
bar

2.1 The Group Structure and Euclidean-Invariance

As stated above, the manner in which to define this elusive coupling follows
naturally from the embedding of R3 � S2 into the special Euclidean group SE.3/
of three-dimensional translations and rotations. Elements of SE.3/ D R

3 Ì SO.3/
are of the form .x;Q/, and the set is endowed with the group operation

.x;Q/.x0;Q0/ D .Q:x0 C x;Q:Q0/:

The group of 3D rigid body motion is commonly denoted by SE.3/. Intuitively, the
group product represents the fact that a concatenation of two rigid body motions
(.x;Q/ and .x0;Q0/) is again a rigid body motion with translation vector Q:x0 C x
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and rotation matrix QQ0. The Special Euclidean motion group is the semi-direct
product R3 Ì SO.3/ of the translation group R

3 and rotation group SO.3/. This
is not a direct product as the rotation part affects the product in the position part.
Therefore one writes SE.3/ D R

3 Ì SO.3/ instead of R3 � SO.3/. As we will see
next, this semi-direct product structure is responsible for a coupling between spatial
and angular space, in the space R

3 Ì S2 embedded in SE.3/.
The embedding is realized by identifying the elements of R

3 � S2 with the
elements of SE.3/. We do this by defining the intermediary space

R
3 Ì S2 WD SE.3/=.f0g � SO.2//;

where we identify SO.2/ with rotations around the vector ez. As a result, elements
of R3 Ì S2 are equivalence classes of SE.3/ under the equivalence relation

.x;Q/ � .x0;Q0/, �
x D x0 and 9˛2Œ0;2�/Q D Q0:Qez;˛

�
; (3)

with Qez;˛ a rotation by angle ˛ around ez. Each equivalence class Œ.x;Q/� D
f.x0;Q0/ 2 SE.3/j.x0;Q0/ � .x;Q/g can be uniquely identified with an element
of R3 � S2, using the relation

R
3 Ì S2 3 Œ.x;Qn/�” .x;n/ 2 R

3 � S2; (4)

where Qn:ez � n. The explicit relation between elements of SE.3/ and R
3 Ì S2 is

then given by

SE.3/ 3 .x;Q/ ! Œ.x;Q/� 2 R
3 Ì S2; (5)

where it should be noted that any two distinct elements .x;Qn/; .x0;Q0n/ 2 Œ.x;Qn/�

are both mapped to the same equivalence class Œ.x;Qn/�, meaning this relation is
not one-to-one. An overview of this embedding is presented in Fig. 3, and details on
the parametrization of these spaces can be found in section “Parametrization of the
Special Euclidean Group”.

2.1.1 Relating Functions on the Group to Functions on the Quotient

To distinguish functions on SE.3/ from functions on R
3 Ì S2 and R

3 � S2 (which
are homeomorphic), the former are denoted QU instead of U :

QU W SE.3/! R
C W .x;Q/ 7! QU .x;Q/:

Following Eqs. (4) and (5), we identify QU with a function U W R3 Ì S2 ! R
C

according to
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Fig. 3 The quotient R3 Ì S2 consists of equivalence classes of SE.3/ and is homeomorphic to the
original space of diffusion images R3 � S2

U.x;n/ D QU.x;Qn/;

QU.x;Q/ D U.x;Q:ez/;
(6)

for all x 2 R
3 and all Q 2 SO.3/. Recalling Eq. (3), we note that identification

is unique if and only if we restrict ourselves to functions on the group with the
following invariance property:

QU.x;Q/ D QU.x;Q:Qez;˛/; (7)

for all ˛ 2 Œ0; 2�/. If this requirement is not met there is no logical way to choose
a function value out of f QU .g/ j g 2 Œ.x;Qn/�g to assign to U.x;n/. The fact that
operators on functions on SE.3/ have to preserve this property for the resulting
functions to be properly defined on the quotient limits the set of possible functions,
as will be discussed in the next section.

2.2 Operator Legality

If we want to define well-behaving operators on functions on R
3 Ì S2, it is good

practice to impose Euclidean-invariance, i.e. invariance of the operator with respect
to translations and rotations. Since all operators will first be defined on SE.3/,
operators are additionally required to be ˛-invariant, a necessary property that
follows from Eq. (3) and that ensures a unique relation between operators on SE.3/
and R

3 Ì S2. To define these invariances we define the left- and right group actions

Lg W h 7! Lg.h/ D gh;

Rg W h 7! Rg.h/ D hg;
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and the corresponding operators on a function QU by

.Lg ı QU/.h/ D . QU ı L�1g /.h/ D QU .g�1h/;

.Rg ı QU/.h/ D . QU ıRg/.h/ D QU .hg/;

for all g; h 2 SE.3/ and with ı function composition. L and R are respectively
called the left- and right-regular representations, as they satisfy

LgLh D Lgh and RgRh D Rgh

for all g; h 2 SE.3/.

2.2.1 ˛-Invariance

In order to ensure that operators Q̊ acting on functions on the group respect
the quotient structure depicted in Fig. 3, we must impose invariance under an
additional rotation Qez;˛ from the right. Recall again Eq. (3). This ˛-invariance is
the operator-equivalent of Eq. (7), and requires essentially that any operator Q̊ must
satisfy

Rg ı Q̊ D Q̊ (8)

for all g D .0;Qez;˛/ 2 .f0g � SO.2//.

2.2.2 Left-Invariance

Euclidean-invariance now can be achieved by imposing invariance with respect
to either left-regular representations (left-invariance), right-regular representations
(right-invariance), or both. It turns out that only Lg is ˛-invariant, which along with
arguments presented in the PhD thesis of Franken [27, Sect. 7.4.3] shows that for
this case only left-invariance should be considered. Hence the invariance-imposed
restriction is that every operator Q̊ acting on a function QU must commute with Lg

for all g 2 SE.3/:

Q̊ ıLg D Lg ı Q̊ : (9)

This requirement immediately guarantees Euclidean-invariance of the correspond-
ing operator ˚ defined on R

3 Ì S2 by means of Eq. (5).
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2.2.3 Legal Operators

Operators on functions defined on SE.3/ are called legal if they correspond uniquely
to well-defined operators on R

3 Ì S2, meaning they satisfy both Eqs. (8) and (9).
Note that any concatenation and linear combination of legal operators is again legal.

2.3 The Moving Frame of Reference

We now define for each pair of a position and an orientation .x;n/, a local frame
of vectors aligned both spatially and angularly with n. This enables us to define
derivatives in a coordinate frame relative to .x;n/, which ultimately allows us to
define erosion at x towards fibers oriented along n. As we do this for all .x;n/ in the
data set .x;n/ 7! U.x;n/, we can erode towards likely fibers present in the data.

As we have identified R
3 � S2 with SE.3/, this frame can be expressed conve-

niently on the group SE.3/ first. From a geometrical point of view, this boils down
to the definition of a moving frame of reference on the manifold SE.3/, which is
simply a collection of vector fields that span the tangent spaces at each point on
the manifold. The erosion operator that we will define in the next section will be
expressed in terms of these vector fields.

Remark 1. Vector fields can always be considered as differential operators on
locally defined smooth functions [3].

Because we plan to use the moving frame to define an erosion evolution, it is
convenient to already incorporate left-invariance. That way any linear combination
of these vector fields will be left-invariant as well, meaning we will only have to deal
with ˛-invariance in order to assure legality. The left-invariant vector fields can be
generated from any basis of the tangent space at the unity element (the Lie algebra).
Here we will adhere to the following basis vectors at the unity element e D .0; I /:

A1 D @xje; A2 D @y je; A3 D @zje; A4 D @Q� je; A5 D @ Q̌je; A6 D @ Q̨ je;

where @xi jg QU D @ QU
@xi
.g/ � @i jg QU , and where the variables of differentiation come

from the second parameterization chart given in section “Parametrization of the
Special Euclidean Group”. Writing Ai jg for the i th basis vector at g 2 SE.3/,
we obtain the left-invariant vector fields through the push-forward of the left group
action [10] (Fig. 4),

Ai jg QU D .Lg/�.Ai / QU � Ai. QU ı Lg/:

The dependence of the tangent vectors (and their duals) on the group element g will
from hereon be omitted for readability where possible.
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Fig. 4 A schematic representation of the five primary local frame vectors. Movement in the
direction of A6 produces a simultaneous rotation of A1 and A2 around A3, and of A4 and A5

around n � A3. Since all functions we consider satisfy Eq. (7), A6
QU D 0. Because of this A6 is

not illustrated, but it may be envisioned in the figure as the normal to the plane spanfA4;A5g

Remark 2. Note that since we have defined Qn:ez D n, the spatial generator
A3j.x;Qn/ is always aligned with n, i.e. n1@x C n2@y C n3@z D A3j.x;n/ where
.n1; n2; n3/T D n and .x; y; z/T D x.

Remark 3. In both charts, we have that the final angles ˛ and Q̨ are in fact redundant,
cf. Eq. (7) and the appendix.

The stated definition of the left-invariant vector fields may also be obtained by
taking the derivative of the right-regular representation R, cf. [18] which gives the
alternative, more manageable expression

Ai jg QU D .dR.Ai / QU /.g/ D lim
t#0
QU .getAi / � QU .g/

t
: (10)

Here the exponential map takes a vector in the tangent space at e to an open subset
˝e of the manifold around e, i.e. exp W Te.SE.3// ! ˝e , see Fig. 5. As it can be
shown that this maps Te.SE.3// bijectively onto SE.3/, we may take ˝e D SE.3/.
Explicit expressions for the left-invariant vector fields, their duals, the exponential
map, and its inverse, can all be found in previous work [21].

The corresponding frames on R
3 � S2 are given by Duits et al. [20]

A1U.x;n/ D limh#0 U.xChQnex ;n/�U.x;n/
h

A2U.x;n/ D limh#0
U.xChQney ;n/�U.x;n/

h

A3U.x;n/ D limh#0 U.xChQnez;n/�U.x;n/
h

A4U.x;n/ D limh#0 U.x;QnQex ;hez/�U.x;n/
h

A5U.x;n/ D limh#0
U.x;QnQey ;hez/�U.x;n/

h

This definition will be used for the implementation, but we will for now continue
with the vector fields fAig6iD1 defined on SE.3/.
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Fig. 5 A simplified diagram of the algebraic structure discussed in this chapter. The bent surface
represents SE.3/, with the unity element e indicated by the red dot. The tangent surface Te.SE.3//
is the set of the Lie algebra, with the basis fAig6iD1, of which for obvious reasons only the first two
are shown. The green arrow is a random tangent vector ci .x;Q/Ai at the unity element, where

ci .x;Q/Ai
exp�! .x;Q/

Remark 4. Note that fAig5iD1 are well-defined vector fields on R
3 � S2 but not on

R
3 Ì S2, since fAigi2f1;2;4;5g depend on the redundant angle ˛.

2.4 Legal Metrics

The left-invariant vector fields induce a set of metrics on SE.3/. By definition, any
metric on SE.3/ can be written in the form

Gj.x;Q/ D
6X

i;jD1
gij .x;Q/ !i j.x;Q/ ˝ !j j.x;Q/: (11)

Here !i j.x;Q/ denotes1 the dual of the i th basis vector of the tangent space at
.x;Q/ 2 SE.3/, with the defining property

!i

0

@
6X

jD1
cjAj

1

A D ci :

The coefficients fgij g6i;jD1 represent the relative penalty associated with moving in
the corresponding direction Ai , and are subject to the constraint2

Œgij � D diag.D11;D11;D33;D44;D44;D66/�1; Dii 2 R
C; (12)

1In previous work we wrote dA i for the dual vectors, but to avoid possible confusion with the
exterior derivative operator we use !i here.
2We take here Dii to be constant. This is not strictly necessary, and taking Dii . QU/ can in fact be
useful [20].
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Fig. 6 An example of the use of a sub-Riemannian metric. By prohibiting motion perpendicular
to the fiber fragment, we find a distance measure that allows us to distinguish between the aligned
and the misaligned glyph of Fig. 2. The dotted lines are projections of two (estimated) solutions to
Eq. (13) onto R

3 � S2

so as to ensure legality [20]. Since any movement along A6 can be considered null
(see Remark 3), we neglect D66.

As an example, assume that D33 D D44, meaning the distance increases
equally with an equal movement in either A3, A4, or A5. Furthermore, we prohibit
movement in the directions A1 and A2 by taking D11 # 0. Note that this implies
infinite cost for movement in the plane spanfA1;A2g, perpendicular to the spatial
propagation direction A3. This last decision means we are now considering a
distance on a sub-Riemannian manifold [5] B WD .SE.3/; kerf!1g \ kerf!2g \
kerf!3g;P5

iD3
�
Dii

��1
!i ˝!i/. The distance between two points g1; g2 2 SE.3/,

and the corresponding distance in R
3 � S2, is then given by the shortest smooth

connecting curve N� W Œ0; L�! SE.3/ defined on B (Fig. 6):

d.g1; g2/ D inf
N� 2 C1.Œ0; L�; B/;

N�.0/ D g1; N�.L/ D g2;

PN�1.s/ D PN�2.s/ D PN�6.s/ D 0

Z L

0

r
1

D33
PN�3.s/2 C 1

D44
. PN�4.s/2 C PN�5.s/2/ ds:

(13)

While this illustrates the possibilities of the presented theory, it is an entirely
different optimal control problem [15] than the one needed for sharpening. Below
we will use another configuration of parameters, giving rise to a different sub-
Riemannian manifold and metric tensor that when used to generate an evolution
equation, results in the R

3 � S2-analogue of typical spatial erosion evolutions.

2.5 Overview

In summary, we have argued that DW-MRI data sets should be considered func-
tions on the coupled space R

3 Ì S2, whose natural group structure follows from
embedding the space in the group of three dimensional rigid motions SE.3/. By
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posing that operators on DW-MRI data should be invariant under rotations and
translation, and need to satisfy ˛-invariance, Eq. (8), we defined a requirement
for operators to be ‘legal’. We then proceeded to describe a left-invariant moving
frame of reference on SE.3/, which allows us to look at the data as if attached to
a local fiber fragment. This moving frame is then used to describe the range of
possible legal metrics, which we can use in the next section to define the erosion
operator.

3 Erosion

At an elementary level, morphological operations on R
n can be considered solutions

to a specific class of evolution equations [50]. Writing f W Rn ! R
C for the gray

value image and m W Rn ! R
C for the structuring element, the morphological

convolution h W Rn ! R
C that solves the erosion equation (which depends on the

structuring element m), is given by

h.x/ D .f 
m/ .x/ WD inf
y2R Œf .y/Cm.�yC x/� : (14)

In case the structuring element satisfies the semi-group property [6, 53], the PDE
satisfied by h dictates a morphological scale-space. If for example m is a quadratic

structuring element, i.e. of the form mt.x/ D 2��1
2�

� kxk2�
t

	 1
2��1

, where � 2 � 1
2
; 1
�

and t 2 R
C, then the size t of the structuring element parameterizes a morphological

scale space [6, 31, 53] dictated by the evolution equation

8
<

:

@th.xI t / D � 1
2�
krh.xI t /k2�;

h.xI 0/ D f .x/:

In generalizing these results to SE.3/ we start from the premise that erosion is
described by one of the legal scale spaces that can be defined on that group. Similar
scale-spaces can be constructed [17] by employing the previously defined general
metric. This yields for g 2 SE.3/ and t � 0

8
<̂

:̂

@t QW .gI t / D ˙ 1
2�

h
Gj�1g

�
d QW .gI t /; d QW .gI t /�

i�
;

QW .gI 0/ D QU .g/;
(15)

where QW .:I t / is the function on the Lie group SE.3/, initially given by the original
data QU W SE.3/! R

C, d QW .gI t / DP6
iD1 Ai

QW .gI t /!i is the gradient of QW , and
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Fig. 7 A schematic showing the rationale behind the choice D33 D 0 when considering erosion.
Since A3 is oriented along the fiber fragment, one prefers to erode only perpendicular to this
direction, as indicated by the blue circles. Note that the depicted fiber represents any potential fiber
passing through x with orientation n

G is the left-invariant metric tensor given in Eq. (11) with the coefficientsDii 2 R
C

as in Eq. (12). Different choices3 for the coefficients result in different scale spaces.

3.1 Erosion Towards Fibers

Proper choices for D11, D33 and D44 are easily ‘guessed’ from their relation to
the moving frame of reference. As illustrated in Fig. 7, erosion should transport data
surrounding a fiber (i.e. perpendicular to A3) towards it, both spatially and angularly.
This means that we need to take D33 D 0 while D11 and D44 are still free, and that
we should look at the minus case of Eq. (15). The resulting differential equation is
the Hamilton-Jacobi-Bellman equation

8
ˆ̂
<

ˆ̂
:

@t QW .gI t / D � 1
2�

�
D11

�
.A1
QW .gI t //2 C .A2

QW .gI t //2�C
D44

�
.A4
QW .gI t //2 C .A5

QW .gI t //2��� ;
QW .gI 0/ D QU .g/;

(16)

with again � 2 � 1
2
; 1
�
. The proof showing that this evolution equation can be solved

by a morphological convolution,4 and can thus be qualified as an erosion, is fairly
technical and will not be given here, but can be found online [20].

3The values allowed for the coefficients are subject to the Hörmander requirement [30] which
guarantees smooth non-singular scale spaces. Proofs that the evolutions presented here satisfy this
condition are available [20].
4The morphological convolution is in fact the viscosity solution to the morphological scale space,
similar to the same problem on R

n [11, 24] and on the Heisenberg group H.n/ [35].
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In complete analogy to the problem in R
n, there exists a structuring element, or

kernel, QkD11;D44

t W SE.3/! R
C, such that

QW .gI t / D . QU 
SE.3/
QkD11;D44

t /.g/;

with 
SE.3/ denoting the SE.3/-counterpart to the erosion operator defined in
Eq. (14), given by

. QU 
SE.3/
QkD11;D44

t /.g/ WD inf
h2SE.3/

h QU .h/C QkD11;D44

t .h�1g/
i
; (17)

which fits in the framework of group morphology [44]. As shown in other work [6,

19], QkD11;D44

t is the morphological Green’s function, which may be approximated by

QkD11;D44

t .g/  2� � 1
2�

 

C2

r
.c3/2

D11D44C .c6/2

D44D44C
�
.c1/2C.c2/2

D11 C .c4/2C.c5/2
D44

	2
! �

2��1

t
1

2��1

;

(18)

where we use short-hand notation fcig6iD1 D fci .g/g6iD1 coming from the logarithm
on SE.3/, cf. Fig. 5, of which explicit expression can be found in section “The
Logarithmic Map”. The constant C 2 .0; 2� comes along with the Heisenberg
approximation technique [22, 37] used in deriving the expression, and can be
considered a simple reparameterization of t . A direct consequence of the fact that
the erosion operator on SE.3/ is a solution to Eq. (16), is that the morphological
convolution given satisfies the semi-group property, i.e.

�
. QU 
SE.3/

QkD11;D44

s /
SE.3/
QkD11;D44

t

	
.g/ D . QU 
SE.3/

QkD11;D44

sCt /.g/

A fairly basic example of erosion is shown in Fig. 8b, where a column of
aligned glyphs is surrounded by glyphs with random orientations. The operation
significantly decreases the function value for misaligned fiber fragments.

3.2 Minimum Reduction

One property the DW-MRI erosions inherited from the regular Rn morphological
operations, is that bounds on the function given by the extrema are retained.
Erosion decreases values that lie near a minimum, but as follows from the fact that
the solutions are given by a morphological convolution, they will always remain
between the global minimum and maximum. While this guarantees well-posedness
and stability with respect to the L1-norm (in contrast to for instance deconvolution
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Fig. 8 A basic example of erosion with manually selected parameters (�t D 0:02,D11 D 0:5 and
D44 D 0:02). (a) A slice of an artificial data set containing a number of aligned glyphs, surrounded
by randomly oriented glyphs. (b) The data from (a) after erosion, with t D 3 and � D 0:75. (c)
The data from (a) after min-normalization and erosion, with t D 4 and � D 0:65

operators), the drawback of this is that we can not decrease minima even if they
seem to be misrepresentative of the local structure. We have previously attempted to
resolve this by min-normalizing the data before eroding [14,20]. min-normalization
�min of a data set QU W SE.3/! R

C is defined as

�min. QU/.x;n/ D QU.x;n/ �minf QU .x;n0/jn0 2 S2g: (19)

The effect of this operation on subsequent erosions is depicted in Fig. 8c. The
normalization essentially increases the contrast per glyph, effectively sharpening
the data angularly.

A more prevalent approach to angular sharpening in the literature is the .I �
a�LB/ operator, which subtracts the result of the Laplace-Beltrami operator �LB

scaled by a 2 R
C from the original data:
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�LB. QU/.x;n/ D QU .x;n/ � a.�LB QU /.x;n/: (20)

In our framework, the Laplace-Beltrami operator is given by

�LB D .A4/
2 C .A5/

2 C .A6/
2;

where the last term can of course be neglected as we have .A6/
2 QU D 0, recall

Remark 3.

Remark 5. The Laplace-Beltrami operator is a legal operator, as the ˛ dependence
of A4 and A5 cancels out in Eq. (3.2).

3.3 Approximating Solutions

We have considered two different approaches to implement erosions for DW-MRI
data. The first one is based on the group-convolution with the approximation of the
Green’s function, Eq. (18), while the second one directly discretizes the Hamilton-
Jacobi-Bellman equation that governs erosion, Eq. (16). Both the implementations
are included in a Mathematica package available for academic purposes at www.
bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip. Details of the
implementation are briefly outlined below.

3.3.1 Convolutions

In order to approximate the solutions to the erosion equation, we can choose to
compute the morphological convolution of Eq. (17) using a discretized version of
the erosion kernel. Since we know that due to ˛-invariance the kernel will be
independent of any variation in the redundant angle Q̨ (or ˛ in the first chart,
section “Parametrization of the Special Euclidean Group”), we can reduce the
convolution on SE.3/ to

.k
D11;D44

t 
R3�S2 U /.g/ WD inf
h2R3�S2

h
U.h/C kD11;D44

t .h�1g/
i
:

where we define the kernel kD
11;D44

t W R3 � S2 ! R
C in terms of QkD11;D44

t by

k
D11;D44

t .x;n/ WD QkD11;D44

t .x;Qn/;

for any Qn such that Qn:ez D n.

www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip
www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip
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3.3.2 Discretizing the Problem

Alternatively we can discretize the scale-space equation directly. The initial condi-
tion QW .gI 0/ D QU .g/ of course remains, and the left-hand side of the differential
equation becomes

@t QW .gI t / D lim
dt!0

QW .gI t C dt/ � QW .gI t /
dt


QW .gI t C�t/ � QW .gI t /

�t

with �t small, resulting in the incremental algorithm

QW .gI t C�t/ D QW .gI t /˙�t 1
2�

h
Gj�1g

�
d QW .gI t /; d QW .gI t /�

i�
:

In the specific case we are considering here (see Sect. 3.1), we thus get

8
<̂

:̂

QW .gI t C�t/ D QW .gI t /��t 1
2�

�
D11

�
.A1
QW .gI t //2 C .A2

QW .gI t //2�C
D44

�
.A4
QW .gI t //2 C .A5

QW .gI t //2��� ;
QW .gI 0/ D QU.g/;

for g 2 SE.3/, and where we still need to discretize the derivative Ai . At this point
we return once more to the space R

3 � S2 by means of the identification in Eq. (6):
8
<̂

:̂

W.x;nI t C�t/ D W.x;nI t /��t 1
2�

�
D11

�
.A1W.x;nI t //2 C .A2W.x;nI t //2�C

D44
�
.A4W.x;nI t //2 C .A5W.x;nI t //2��� ;

W.x;nI 0/ D U.x;n/;

We can follow the exact same procedure as before to get the stencils given in
section “Finite Difference Schemes”.

Remark 6. The spatial derivatives are in fact calculated using an upwind-biased
finite differences scheme, see the appendix.

3.3.3 Two Implementations

We distinguished between two implementations for morphological scale spaces:

1. Erosion via convolutions with the approximations of the morphological Green’s
functions given by Eq. (18).

2. Erosion via left-invariant finite-difference (upwind) schemes, of which the details
are provided in section “Finite Difference Schemes”.

As explained in detail in Sect. 2.1, the non-commutative nature of SE.3/ leads to
a natural coupling in the space R

3 Ì S2 of positions and orientations. As a result,
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neither implementation is separable in a spatial and angular part, excluding the
trivially separable cases where D44D11 D 0.

Generally speaking, the advantages of the kernel implementations are:

• They allow fast parallel algorithms via lookup tables and precomputed Green’s
functions, similar to implementations [43] of linear R3 Ì S2-convolutions [18].

• They are unconditionally stable and directly related to viscosity solutions,
cf. [20].

• They involve less interpolation.

The advantages of the finite difference schemes are:

• They are much more flexible towards data adaptive extensions, cf. [14].
• They use efficient (short) stencils of interpolated finite differences, cf. [14].
• Do not involve analytic asymptotical approximations.

The implementations are complementary; the finite differences can be used
for accurate precomputation of the Green’s functions used in the convolution
schemes. Both implementations are included in the Mathematica package available
(for academic purposes only) at www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/
HARDIAlgorithms.zip.

Remark 7. All of the erosions shown in this article have been obtained using the
finite differences approach. Note that apart from the scaling factor C of the time,
the two methods produce approximately the same results.

4 Preprocessing with Erosion

Qualitative improvement by erosion has been shown before [20], and is reiterated in
Fig. 9c. More interesting is the potential benefit of erosion for contextual operators.
Figure 9 also shows the use of erosion as a processing step preceding hypo-elliptic
diffusion [20].

As stated in the introduction, the most important contextual operators are trac-
tography operators. Probabilistic tractography algorithms cope with data uncertainty
by defining a distribution of fiber directions at each position [32, 33], and generate
a large amount of pathways by sampling the directions around peaks of this
distribution. Sharp and accurate glyphs that are aligned with their context will result
in more reliable tractography. Alignment of glyphs is improved here by contour
enhancement processes [18]. Since these processes generally propagate oriented
particles in too many directions, an extra sharpening step is desired [20].

A challenging fiber bundle to extract is the optic radiation. This structure is part
of the visual system, and connects the Lateral Geniculate Nucleus (LGN) to the
primary visual cortex V1. The optic radiation has a curved anterior extent called
Meyer’s loop, which makes the fiber bundle difficult to reconstruct reliably. Other
fiber bundles in its vicinity further complicate delineation. Direct application of

www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip
www.bmia.bmt.tue.nl/people/RDuits/DWIpackage/HARDIAlgorithms.zip
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Fig. 9 A DW-MRI data set showing the corpus callosum and the corona radiata, before and after
enhancement. Note especially the significant improvement of the enhancement when preceded by
erosion. The enhancement was done using hypo-elliptic diffusion [20] with t D 3, �t D 0:01,
D33 D 1, D44 D 0:002 and K D 0:05. Erosion used t D 3, �t D 0:1, � D 0:75, D11 D 1

and D44 D 0:002. All visualized data sets were min-normalized using Eq. (19). (a) A slice of
the min-normalized original data. (b) The data from (a) after diffusion. (c) The data from (a) after
erosion. (d) The data from (a) after erosion and diffusion

the reconstruction of this bundle lies in the context of neurosurgical planning for
temporal lobe epilepsy. Meyer’s loop is often located close to the area that causes
epilepsy in these patients, and is disrupted during surgery. This can lead to visual
loss of up to a quarter of the visual field.
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To show the value of erosion as a preprocessing step for contextual enhancement
and tractography, we evaluated the reliability of pathways resulting from a proba-
bilistic tractography algorithm [45] both before and after erosion. The tractography
algorithm generates 104 tracts based on DTI data5 using a bootstrapping proce-
dure [23]. We score each pathway � W Œ0; L� � ! R

3 according to how well they fit
the underlying data, obtained by evaluating U along the tangent vectors P� D d

ds
� of

� [49]:

EU .�/ D 1

L�

Z L�

0

log


U .�.s/; P�.s//

maxU

�

ds; (21)

where L� is the length of the pathway � , and s denotes arc length such that
P�.s/ 2 S2, i.e. k P�.s/k D 1. The data sets are divided by their global maximum for
the sake of comparison. The initial cost function U was obtained directly from the

diffusion tensors according to Eqs. (1) and (2), where p.x/ D 1˝.x/
p

det.D.x//R
˝

p
det.D.x// dx

is

proportional to the volume of the glyphs. The indicator function 1˝ is a white matter
mask obtained by a fractional anisotropy threshold. The entire scoring pipeline is
depicted in Fig. 10.

Figure 11 visualizes the 30, 3 and 0:3% highest scoring fibers according to
Eq. (21) based on the unprocessed data U , the data U pre-processed using only
linear hypo-elliptic diffusion, and the dataU after both erosion and diffusion. Before
any processing, the data is min-normalized.

The method is considered adequate when two conditions are satisfied: on the one
hand, the whole optic radiation should be visible (few false negatives), and on the
other hand all auxiliary fibers that are not clearly part of the optic radiation should
be removed (few false positives). Only when a critical percentage of highest scoring
fibers exists that satisfies both conditions, the method is able to give a reliable
reconstruction of the optic radiation. We see that only in the case that erosions are
included as a preprocessing step, such a critical percentage can be found. In Fig. 11c,
we satisfy the two conditions at 28:3%. There a large portion of the additional
fibers falsely identified as part of the optic radiation (false positives) in Fig. 11a, b
are removed by the erosion step, which decreases the likelihood of the tracking
algorithm finding fibers that deviate strongly from the main fiber orientation.

If we replace the min-normalization with the more common .I �a�LB/ operator,
we can again find a critical percentage at which the method can be considered
adequate, though this percentage lies a lot lower than before, at 0:4%. See also
Fig. 12.

5Kindly provided by the Kempenhaeghe Epilepsy Center in Heeze, the Netherlands.
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Fig. 10 The scoring pipeline. (a) In treating temporal lobe epilepsy, surgeons need to avoid the
optic radiation to preserve the patient’s vision. Tracking the optic radiation is challenging due to
nearby and crossing fibers. (b) The optic radiation connects the LGN (blue) and V1 (red). The
location of V1 is derived from functional MRI. Probabilistic tractography algorithms generate a
large number of tracts between the visual cortex V1 and the LGN. These tracts are scored to
filter out the optic radiation. (c) Enhancement: even with state of the art scoring, the tractography
produces a lot of anatomically implausible tracts. Preprocessing the DW-MRI data with erosion
and contextual enhancement greatly improves the segmentation of the optic radiation

5 Conclusion

In this paper we have demonstrated the benefits of erosion (well-posed sharpening)
as a pre-processing step of contextual processing of Diffusion Weighted MRI. To
this end, a Euclidean-invariant erosion evolution was defined on the space R

3 Ì S2
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Fig. 11 Tracts obtained from a DTI data set, scored according to differently processed data sets.
The hypo-elliptic diffusion has the following parameter settings: t D 3, �t D 0:01, D33 D 1

and D44 D 0:01. Erosion has: t D 3, �t D 0:1, � D 0:75, D11 D 1 and D44 D 0:02.
(a) Tracts based on the original data. (b) Tracts based on the data from (a), following min-
normalization and enhancement (hypo-elliptic diffusion). (c) Tracts based on the data from (a),
after min-normalization, erosion, and enhancement

embedded as a quotient in SE.3/. The final erosion operator is the mapping that
takes the initial condition of this evolution, generally the diffusion weighted image,
to the (viscosity) solution with fixed time t > 0 of the evolution equation. These
erosions satisfy the semi-group property.
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Fig. 12 Tracts obtained in the same way as in Fig. 11c, though the min-normalization is replaced
by the minimum reduction technique of Eq. (20) with a D 0:3

We have presented two complementary numerical algorithms to compute the
erosion operator, an analytical kernel implementation and a finite differences
scheme, each with its own advantages.

We have shown the benefits of including erosions in contextual enhancement (via
hypo-elliptic diffusion [20]) of DW-MRI. The erosion operator has been shown to
visually sharpen the corpus callosum (the major fiber bundle connecting the two
hemispheres) and corona radiata which crosses this major fiber bundle radially. See
Fig. 9. Finally, we have shown that inclusion of erosions in pre-processing improves
subsequent tracking of the optic radiation fibers in the brain, which is relevant for
the planning of neurosurgery for epilepsy treatment [49], as shown in Fig. 11.

Parametrization of the Special Euclidean Group

Parametrization of the spatial part of SE.3/ is usually done by Cartesian coordinates
and for the rotation part SO.3/ of SE.3/ D R

3 Ì SO.3/ we use two charts. Firstly,
we use the standard Euler angle parametrization of the sphere given by

R D Rez;�Rey ;ˇRez;˛;

with ˛ 2 Œ0; 2�/, ˇ 2 Œ0; ��, � 2 Œ0; 2�/ and withRv;� a counter-clockwise rotation
� around the vector v. The rotation axes are depicted in Fig. 13 obtained by applying
the rotation to the unit vector oriented along the z-axis. A point p 2 S2 can be
identified with all rotations of ez such that

p D Rpez � n.ˇ; �/; (22)

with Rp any R that rotates ez to p and where n is the parametrization. The
parametrization is however ambiguous since
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Fig. 13 The two different Euler parameterizations of SO.3/ and S2 � SO.3/=SO.2/. (a) ZYZ
parametrization. (b) ZYX parametrization

Rez;�Rey ;0Rez;˛ D Rez;�CıRey ;0Rez;˛�ı;

Rez;�Rey ;�Rez;˛ D Rez;�CıRey ;�Rez;˛�ı;

for all ı 2 Œ0; 2�/, and where Rez;�Rey ;0Rez;˛ and Rez;�Rey ;�Rez;˛ . We consider a
second chart

QR D Rex ;Q�Rey ; Q̌Rez; Q̨ ;

with Q̌ 2 .��; ��, Q� 2 .��
2
; �
2
/, Q̨ 2 Œ0; 2�/, which has ambiguities at Q̌ D ˙�

2
,

cf. [18], see Fig. 13.
The first chart provides a diffeomorphism in an open environment around the

ambiguity points of the second chart, and vice versa the second chart provides a
diffeomorphism in an open environment of the first chart. A complete atlas of SE.3/
is thereby given by

.x; y; z; ˛; ˇ; �/ 7! .x; y; z; Rez;�Rey ;ˇRez;˛/;

.x; y; z; Q̨ ; Q̌; Q�/ 7! .x; y; z; Rex ;Q�Rey ; Q̌Rez; Q̨/

and the corresponding complete atlas of R3 Ì S2 is given by

.x; y; z; ˇ; �/ 7! .x; y; z; ŒRp�/ � .x; y; z; cos � sinˇ; sin � sinˇ; cosˇ/;

.x; y; z; Q̌; Q�/ 7! .x; y; z; Œ QRp�/ � .x; y; z; sin Q̌;� cos Q̌ sin Q�; cos Q̌ cos Q�/:
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The Logarithmic Map

Because SE.3/ is a Lie group, the exponential map is linked to the matrix
exponentiation of a certain matrix representation for elements of Te.SE.3//. Only
the resulting expressions are given here, while the derivations can be found in Duits
and Franken [18, Sect. 5.1]. The exponential map of a tangent vector ci .x;Q/Ai ,
using the short-hand notation ci � ci .x;Q/, is given by

exp.ciAi / D
��
I C 1�cos kc2k

kc2k2 ˝ C 1�sinc kc2k
kc2k2 ˝2

	
� c1 ;

I C sinc .kc2k/˝ C 1�cos kc2k
kc2k2 ˝2

	
;

where c1 � c1.x;Q/ D .c1; c2; c3/T and c2 � c2.x;Q/ D .c4; c5; c6/T , and

with ˝ � ˝.x;Q/ D
0

@
0 �c6 c5
c6 0 �c4
�c5 c4 0

1

A. As the exponential map is invertible, the

logarithmic map (the inverse of the exponential map) can be derived

log.x;Q/ D
6X

iD1
ci .x;Q/Ai :

This equation can be solved to give expressions for ci in terms of the first chart,
resulting in

c2 D 1

2 sinc . Qq/

0

@
sinˇ .sin˛ � sin �/
sinˇ .cos˛ C cos �/
2 cos2 ˇ

2
sin.˛ C �/

1

A ;

where we have Qq D kc2k D arcsin
q

cos2 ˛C�
2

sin2 ˇ C cos4 ˇ
2

sin2.˛ C �/, and

c1 D
�

I � 1
2
˝ C 1

Qq2
�

1 � Qq
2

cot
Qq
2

�

˝2

�

� x:

This last expression is retained when rewriting the logarithmic map in terms of
the second chart, but for Qq and c2 we have

Qq D arcsin
q

cos4 Q�
2

sin2 Q̌ C cos2
Q̌
2

sin2 Q�;

c2 D 1
sinc.Qq/

0

B
B
@

sin Q� cos2
Q̌
2

sin Q̌ cos2 Q�
2

1
2

sin Q� sin Q̌

1

C
C
A :
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Finite Difference Schemes

The finite difference stencils used in the Mathematica package are given here.
Writing Qv;˛ for a rotation by angle ˛ around v expressed in the second coordinate
chart, we find the explicit formulas for the vector fields on R

3 Ì S2 given below.
hs and ha are respectively the spatial and angular step sizes. hs is typically 0:88,
see Creusen [12], while ha depends on the distribution of sample points on the
sphere. See Duits and Franken [18, Chap. 7] for the derivation of these formulas
from Eq. (10).

Remark 8. The use of single values for hs and ha relies on approximately equidis-
tantly sampled data.

The three different finite differences schemes considered are given below. Second
order derivatives are calculated by repeating the listed first order derivatives.

Central derivatives

A1U.x;n/  U.xChsQnex ;n/�U.x�hsQnex ;n/
2hs

A2U.x;n/  U.xChsQney ;n/�U.x�hsQney ;n/
2hs

A3U.x;n/  U.xChsQnez;n/�U.x�hsQnez;n/
2hs

A4U.x;n/  U.x;QnQex ;ha ez/�U.x;QnQex ;�ha ez/

2ha

A5U.x;n/  U.x;QnQey ;ha ez/�U.x;QnQey ;�ha ez/

2ha

Forward derivatives

A1U.x;n/  U.xChsQnex ;n/�U.x;n/
hs

A2U.x;n/  U.xChsQney ;n/�U.x;n/
hs

A3U.x;n/  U.xChsQnez;n/�U.x;n/
hs

Backward derivatives

A1U.x;n/  U.x;n/�U.x�hsQnex ;n/
hs

A2U.x;n/  U.x;n/�U.x�hsQney ;n/
hs

A3U.x;n/  U.x;n/�U.x�hsQnez;n/
hs

For the spatial derivatives, a simplified version of the upwind biased scheme
is implemented in order to properly handle boundary effects. The scheme first
calculates the central derivative in every point. Then for every point, depending
on the sign of the central derivative, either the forward- or the backward derivative
is calculated. A positive value of the central derivative means a backward derivative
is calculated. The ensemble of forward- and backward derivatives in all points is
then the actual derivative. The angular derivatives are all calculated using central
derivatives.
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1 Introduction

In biological tissues such as nerve fiber bundles and muscles, the spontaneous heat
motion of water molecules is restricted by obstacles in the fibrous microstructure.
Diffusion Imaging [70] uses the principles of Magnetic Resonance Imaging (MRI)
to non-invasively measure properties of this motion, which is also known as
self-diffusion. When applied to the human brain, this provides unique insights about
brain connectivity, which makes diffusion MRI one of the key technologies in
an ongoing large-scale scientific effort to map the human brain connectome [33].
Consequently, it is a timely and important topic of research to create mathematical
models that infer biologically meaningful parameters from such data.

Higher-order tensors have been used in applications ranging from psychometrics
[64] and chemometrics [103] to signal processing [102], computer vision [110], and
neuroscience [85]. They also provide adequate models for a number of quantities
that occur in the context of diffusion imaging. Many practitioners view higher-order
tensors as a generalization of matrices to multi-way arrays. However, tensors can
also be studied in an invariant, coordinate-free notation. Tensor decompositions are
an active and challenging topic in applied mathematics, since fundamental concepts
from linear algebra, such as the singular value decomposition, do not have unique
generalization to higher order, and most generalizations are hard to compute.

It is a goal of our survey to stimulate an active exchange between mathematicians,
who are studying tensor decompositions and the geometry of tensors, and computer
scientists and MR physicists, who are interested in using tensors as mathematical
tools in the context of diffusion MRI. Therefore, unlike previous surveys [39, 90],
Sect. 2 provides a broad overview of all physical quantities that have been modeled
with higher-order tensors in the context of diffusion MRI. On the other hand, our
introduction to the higher-order tensor formalism in Sect. 3 differs from existing
discussions [66, 73] by focusing on aspects relevant to this specific application.

Relevant literature is spread over journals in applied mathematics, MR physics,
neuroimaging, and computer science. Drawing on all these fields, Sect. 4 presents
the current state of the art on fitting higher-order tensor models to the measured
data, and Sect. 5 discusses operations performed on the tensors for further analysis.
Among others, this includes computation of scalar invariants (Sect. 5.1), maximum
detection (Sect. 5.3), and tensor decompositions (Sect. 5.4).

2 Overview of Higher-Order Tensor Models in dMRI

Different physical quantities that can be measured by or inferred from diffusion MRI
have been modeled with higher-order tensors. The resulting tensors not only differ
in their interpretation, but also in dimension, order, and symmetry.

Diffusion imaging inserts magnetic field gradients into the MR sequence which
sensitize the measurement to molecular motion along the gradient direction [70].
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Compared to an image without diffusion weighting, this leads to an attenuation
of signal strength. The standard diffusion tensor model [18] assumes that the
diffusion-weighted MR signal in direction u is given by a monoexponential
attenuation of the unweighted signal S0, depending on the diffusion weighting b
and a directionally dependent apparent diffusion coefficient, modeled by a diffusion
tensor D:

S.u/ D S0e�buTDu (1)

Estimating the six unique coefficients of D requires measurements in at least six
different gradient directions. Typical parameter values are b 2 Œ700; 1;000�mm2=s,
and a spatial resolution of around 2�2�2mm3. When studying the human brain, this
corresponds to a subdivision into around 105 volume elements (voxels); a separate
diffusion tensor D is computed for each of them.

Since nerve fibers are on the micrometer scale and therefore far below image
resolution, their complex organization often leads to apparent diffusivitiesD.u/ that
are poorly approximated by a quadratic function. For these cases, Eq. (1) has been
generalized to use higher-order polynomials. As it will be explained in Sect. 3.3, this
corresponds to a higher-order diffusion tensor D [86]:

S.u/ D S0e�b D.u/ with D.u/ D D �k u (2)

Such High Angular Resolution Diffusion Imaging (HARDI) models require a
larger number of 30–100 gradient directions, and larger b 2 Œ1;000; 3;000�mm2=s.

One goal in diffusion imaging is to estimate the dominant nerve fiber directions
within each voxel. When there is only one such direction, the principal eigenvector
of the diffusion tensor D is aligned with it. However, a mixture of multiple fiber
directions is not easily resolved with the higher-order diffusion tensor D . For this
purpose, it is easier to consider the diffusion propagator P.x/, the probability
density of a molecular displacement along vector x within the diffusion time. Under
certain assumptions, P.x/ can be computed from D ; this will be the topic of
Sect. 5.2.

Writing the diffusion propagator P.x/ in spherical coordinates and integrating
over the radius results in the diffusion orientation distribution function  .u/, whose
maxima approximate the main nerve fiber directions. The q-ball model has been
introduced as an approximative way of computing  .u/ [109]. Even though its
exact interpretation has been disputed [17], q-ball maxima indicate approximate
fiber directions, and q-balls are sometimes expressed in a tensor basis [7,55], making
it relevant to compute the maxima of homogeneous forms (cf. Sect. 5.3).

When measuring at different b values, it is common to observe that the true signal
attenuation is not monoexponential, as assumed by Eqs. (1) and (2). This indicates
that the diffusion propagator P.x/ is non-Gaussian. Accounting for all higher-order
moments of P leads to a different generalization of Eq. (1) [77, 78],

S.B/ D S0 e
P

1

kD2 j
khD .k/;B.k/i; (3)
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where j is the imaginary unit, D .k/ is a series of diffusion tensors with increasing
order k, and the diffusion-weighted signal S.B/ is a function of a series of tensors
B.k/, which combine information about the direction and strength of the diffusion
weighting. hD .k/;B.k/i denotes the scalar product of the two tensors.

In contrast to Eq. (2), which uses a single higher-order tensor D that contains all
the information that would be present in lower-order approximations, each element
in the series of tensors D .k/ in Eq. (3) contains non-redundant information that
is independent from all other orders k. This additional information needs to be
acquired by sampling multiple b values in several gradient directions [79].

The tensors in Eq. (3) are three-dimensional, and symmetric under all index
permutations. The odd orders k in Eq. (3) carry information about asymmetries in
the diffusion propagator, i.e., P.�x/ ¤ P.x/. However, that information resides in
the phase of the complex-valued MR signal. At the technical state of the art, signal
phase in diffusion MRI is so heavily corrupted by measurement noise and artifacts
that it is not informative. Therefore, practical implementations of this generalization
are limited to estimating even-order tensors from the signal magnitude [80].

Diffusional Kurtosis Imaging augments the second-order diffusion tensor D in
Eq. (1) with a fourth-order kurtosis tensor W [61],

S.u; b/ D S0e�buTDuC 1
6 b

2. 13 tr.D//
2
W �4u; (4)

where tr indicates matrix trace. Computing the parameters in Eq. (4) requires
measurements at multiple b values, but no signal phase. They capture the same
information present in the second and fourth moments ofP.x/, but allow for simpler
computation of the apparent diffusional kurtosis Kapp in direction u:

Kapp.u/ D
�
1
3
tr.D/

�2

.uTDu/2
W �4 u (5)

For Gaussian diffusion, Kapp D 0. Negative kurtosis is expected from diffusion
restricted by spherical pores, and positive kurtosis can indicate presence of hetero-
geneous diffusion compartments [61].

Fourth-order covariance tensors ˙ occur in statistical models of second-order
diffusion tensors [19]. Even though they are three-dimensional in each mode, they
only possess partial symmetries (˙ijkl D ˙klij; ˙ijkl D ˙jikl; ˙ijkl D ˙ijlk) [20].

If we assume that all nerve fiber bundles within a voxel have approximately
the same diffusion characteristics, the MR signal is given by the convolution of
a fiber orientation density function (fODF) with a kernel describing the single fiber
response [107]. Unlike the diffusion ODF, values of the fODF F.u/ are interpreted
as the fraction of fibers aligned with direction u. F.u/ can be obtained by spherical
deconvolution and a variant of that technique, which will be explained in Sect. 4.3,
allows for further analysis of the fODF via tensor decomposition [100].
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3 Mathematical Background

We include a basic introduction to tensors and tensor fields. In a nutshell, a tensor
of order p or p-tensor is a multilinear functional on p vector spaces T W V � V �
� � � �V! R, and can be represented in coordinates as a p-dimensional matrix A 2
R
n�n�����n, n D dim.V/, if one chooses a basis on V. A tensor field is a tensor-valued

function on a manifold. We refer readers who are interested in further properties
of tensors and hypermatrices to [73] for an elementary treatment. Mathematically
sophisticated readers may consult [66] for a much more in-depth treatment.

3.1 Basic Definitions

Let us first define our basic mathematical objects: (i) tensors, and (ii) tensor fields.
Let V be a vector space over R. An order-p tensor is a multilinear functional

f W V � V � � � � � V„ ƒ‚ …
p times

! R:

Multilinear means that if all arguments are kept constant but one, then f is linear
in that varying argument, i.e.,

f .u1; : : : ; ˛viCˇwi ; : : : ;up/ D f̨ .u1; : : : ; vi ; : : : ;up/C f̌ .u1; : : : ;wi ; : : : ;up/;
(6)

for every i D 1; : : : ; p, ˛; ˇ 2 R and ui ; vi ;wi 2 V. The set of all p-tensors is
called the p-fold tensor product of the vector space V and denoted

V
˝p D V˝ V˝ � � � ˝ V

„ ƒ‚ …
p times

:

We ignore the distinction between covariant, contravariant and mixed tensors,
since it is less relevant when working with coordinate representations in an
orthonormal basis, as will be the case in this survey. An abstract approach towards
tensors is now standard in any basic graduate courses in algebra [57, 68] or even
mathematical methods courses for physicists [38]. However, such courses focus
almost exclusively on properties of an entire space of tensors [116] as opposed to
properties of an individual tensor, i.e., a specific element from such a tensor space.
Properties of an individual tensor such as rank, norm, eigenvalues, decompositions,
are of great relevance to us and will be discussed after we introduce tensor fields.

We will be informal in our treatment of tensor fields to make it more easily
accessible. Readers who wish to see a rigorous definition would have no shortage
of standard Refs. [24, 67, 112] to consult. Let M be a topological manifold which
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we may later endow with additional structures (differential, Riemannian, Finsler,
etc.). A tensor field is, roughly speaking, a tensor-valued function F W M ! V

˝p
or alternatively, a function of the form

F WM � V � V � � � � � V„ ƒ‚ …
p times

! R (7)

with the property that for every point x 2M ,

F.xI �; �; : : : ; �/ W V � V � � � � � V! R

is a multilinear functional, i.e., F.xIu1; : : : ;up/ is multilinear in the last p
arguments for every fixed x 2 M . If we want F to have additional properties like
continuity or differentiability, this definition is only good locally, i.e., every x0 2M
has a neighborhood Ux0 �M such that

F W Ux0 � V � V � � � � � V! R

is multilinear for every x 2 Ux0 . By far the most common choice for V is Tx.M/,
the tangent space at x, i.e., the vector space Vi changes with each x and we really
have a multilinear function

F.xI �; �; : : : ; �/ W Tx.M/ � � � � � Tx.M/! R

at each x 2 Ux0 . So each F.xI �; �; : : : ; �/ has a different domain, and F is really a
family of multilinear functionals parameterized by x 2 M . The proper treatment
is to define F as a section (of a tensor product of vector bundles) as opposed
to a function (with values in a tensor product of vector spaces). In fact, tensor
fields are more than pointwise multilinear functionals, they satisfy the multilinearity
condition in Eq. (6) with coefficients ˛; ˇ being real-valued functions onM (usually
in C1.M/ if M is a smooth manifold) instead of merely being constants in R.

The above discussions use the coordinate-free language of modern treatments of
tensors and tensor fields in mathematics. In applications such as those considered in
this survey, computations require introducing coordinates by chosing a basis on V.
If we pick a basis b1; : : : ;bn, where n D dim.V/, then a multilinear functional f
may be represented as an n � n � � � � � n (p times) array of elements of R:

A D .ai1i2���ip /ni1;:::;ipD1 2 R
n�����n: (8)

We shall use the term hypermatrix of order p, or simply p-hypermatrix,
when referring to a p-dimensional matrix of the form in Eq. (8). The origin of
this terminology would appear to be [37]. These objects are natural multilinear
generalizations of matrices in the following way. Since we have fixed a basis, every
vector in V has a coordinate representation and we may assume that V D R

n.
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A bilinear functional f W Rn�Rn ! R can be encoded by a matrix A D Œaij�
n
i;jD1 2

R
n�n, in which the entry aij records the value of f .ei ; ej / 2 R where ei denotes

the i th standard basis vector in R
n. By linearity in each coordinate, specifying A

determines the values of f on all of Rn � R
n; in fact, we have f .u; v/ D uTAv for

any (column) vectors u; v 2 R
n. Thus, matrices encode all bilinear functionals. If

A D AT is symmetric, the corresponding bilinear map is invariant under exchanging
of coordinates:

f .u; v/ D uTAv D .uTAv/T D vTAT u D vTAu D f .v;u/:

To avoid sub-subscripts, we will restrict our discussion to 4-tensors. A 4-tensor
is a quadrilinear functional f W Rn � R

n � R
n � R

n ! R which has a coordinate
representation given by a 4-hypermatrix A D .aijkl/

n
i;j;k;lD1 2 R

n�n�n�n as in
Eq. (8) with p D 4. The subscripts and superscripts in Eq. (8) will be dropped
whenever the range of i; j; k; l is obvious or unimportant. A 4-hypermatrix is said
to be symmetric if the value of aijkl stays the same for all 24 permutations of the
indices:

aijkl D aijlk D ajilk D � � � D alkji:

Symmetric 4-tensors correspond to coordinate representations of quadrilinear maps
f W Rn � R

n � R
n � R

n ! R with

f .t;u; v;w/ D f .t;u;w; v/ D f .u; t; v;w/ D � � � D f .w; v;u; t/:

The set of symmetric 4-hypermatrices is often denoted S4.Rn/ and it forms a linear
subspace of the vector space Rn�n�n�n. More generally Sp.V/, the set of symmetric
p-tensors over an arbitrary vector space V, may be defined in a coordinate-free
manner [26] and forms a subspace of V˝p .

What about tensor fields? Since any manifoldM may be given local coordinates,
we may view tensor fields as hypermatrix-valued functions F W M ! R

n�����n,
x 7! Ax D .ai1i2���ip .x//ni1;:::;ipD1, that are locally defined (roughly speaking, they
are defined for local coordinates chosen for each neighborhood Ux � M ). The
coordinate-dependent view of tensor fields as (hyper)matrix-valued functions is the
classical approach. The subject, studied in this light, is often called tensor calculus,
tensor analysis, or Ricci calculus. Tullio Levi-Civita, Gregorio Ricci-Curbastro, and
Jan Schouten are usually credited for its invention [104].

3.2 Tensor Algebra and Homogeneous Polynomials

As we saw in the last section, a 4-hypermatrix A 2 R
n�n�n�n, is a coordinate

representation of a 4-tensor, i.e., a quadrilinear functional f W Rn�Rn�Rn�Rn !
R. The set of 4-hypermatrices is naturally equipped with algebraic operations
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inherited from the algebraic structure of the tensor product space R
n ˝ R

n ˝
R
n ˝ R

n:

• Addition and Scalar Multiplication: for .aijkl/; .bijkl/ 2 R
n�n�n�n and �;� 2 R,

�.aijkl/C �.bijkl/ D .�aijkl C �bijkl/ 2 R
n�n�n�n; (9)

• Outer Product Decomposition: every A D .aijkl/ 2 R
n�n�n�n may be

decomposed as

A D
Xr

qD1 �q wq ˝ xq ˝ yq ˝ zq; aijkl D
Xr

qD1 �qwiqxjqykqzlq; (10)

with �q 2 R, wq; xq; yq; zq 2 R
n for q D 1; : : : ; r . The symbol ˝ here denotes

the Segre outer product: for vectors w D Œw1; : : : ;wn�T ; : : : ; z D Œz1; : : : ; zn�T ,

w˝ x˝ y˝ z WD .wi xj ykzl /
n
i;j;k;lD1 2 R

n�n�n�n;

with obvious generalization to an arbitrary number of vectors. The `-fold outer
product of x with itself is written x`.

• Multilinear Matrix Multiplication: every A D .aijkl/ 2 R
n�n�n�n may be

multiplied on its ‘4 sides’ by matrices W D Œwi˛�, X D Œxjˇ�, Y D Œyk� �,
Z D Œzlı� 2 R

n�r as follows

A � .W;X;Y;Z/ D .c˛ˇ�ı/n˛;ˇ;�;ıD1 2 R
n�n�n�n; (11)

c˛ˇ�ı D
Xn

i;j;k;lD1 aijklwi˛xjˇyk� zlı:

A different choice of bases b01; : : : ;b0n on V would lead to a different hypermatrix
representation B 2 R

n�n�n�n of elements in V ˝ V ˝ V ˝ V – where the two
hypermatrix representations A and B would be related precisely by a multilinear
matrix multiplication of the form

A � .X;X;X;X/ D B

where X is the change-of-basis matrix, i.e., an invertible matrix with Xbq D b0q for
q D 1; : : : ; n. Therefore, a tensor and a hypermatrix are different in the same way a
linear operator and a matrix are different. Note that in the context of matrices,

x˝ y D xyT and A � .X;Y/ D YTAX:

When r D 1 in Eq. (11), i.e., the matrices W;X;Y;Z are vectors w; x; y; z, we omit
the � and write

A .w; x; y; z/ D
Xn

i;j;k;lD1 aijklwi xj ykzl (12)
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for the associated quadrilinear functional. Another special case occurs when one or
more of the matrices W;X;Y;Z in Eq. (11) is the identity I D In�n. For example,

A .I; x; y; z/ D
Xn

j;k;lD1 aijklxj ykzl 2 R
n: (13)

In particular, the (partial) gradient of the quadrilinear functional A .w; x; y; z/ may
be expressed as

rwA .w; x; y; z/ D A .I; x; y; z/; rxA .w; x; y; z/ D A .w; I; y; z/; etc.

For a symmetric 4-tensor S , we write S � x as a shorthand for S .x; I; I; I/; the
result is a 3-tensor. Repeating this operation ` times is written S �` x. With this
notation, the homogeneous quartic polynomial S .x/ that is uniquely associated
with S can be written as

S .x/ WD S .x; x; x; x/ D S �4 x D
X

d1C���CdnD4 �d1���dn�d1���dnx
d1
1 x

d2
2 � � � xdnn :

(14)

Similarly, the gradient of S .x/ can be conveniently expressed as rS .x/ D
4S �3 x. The right-hand side of Eq. (14) is the more typical way of writing a
homogeneous polynomial in terms of monomials, unique coefficients �d1;:::;dn , and
multiplicities �d1;:::;dn WD

�
n

d1;:::;dn

�
. This is the higher-order equivalent of writing,

for A D � a bb c
�

and x D Œ x1x2 �,

A.x/ D xTAx D ax21 C bx1x2 C bx2x1 C cx22 D ax21 C 2bx1x2 C cx22 :

The Frobenius norm or Hilbert-Schmidt norm of a tensor A is defined by

kA k2F D
Xn

i;j;k;lD1 a
2
ijkl: (15)

This is by far the most popular choice of norms used for a tensor since it is readily
computable and also because it is induced by an inner product

hA ;Bi D
Xn

i;j;k;lD1 aijklbijkl (16)

that generalizes the trace inner product. For symmetric p-tensors S ;T expressed
in monomial form as in Eq. (14), this inner product may be written in the form

hS ;T i WD
X

d1C���CdnDp �d1���dn�d1���dn�d1���dn
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and is often called the apolar inner product in invariant theory. For any v 2 R
n,

the apolar inner product of a symmetric tensor and the rank-1 symmetric tensor
v˝p WD v˝ � � � ˝ v (p times),

hS ; v˝pi D S .v/;

which makes the set of symmetric p-tensors into a reproducing kernel Hilbert space.

3.3 Homogeneous Polynomials and Spherical Harmonics

By restricting Eq. (14) to the 3D unit sphere S2, x D Œsin � cos�; sin � sin�; cos ��T ,
every symmetric tensor S defines a real-valued homogeneous polynomial function
on S2. Spherical harmonics (SH) are an alternate basis for describing functions
on the sphere. The SHs form a complex complete orthonormal basis for square
integrable functions on the unit sphere. Spherical functions can, therefore, be
naturally expanded in the infinite SH basis or approximated to any accuracy by a
truncated series. Again the diffusion signal being real and symmetric, a modified
real and symmetric SH basis is chosen in dMRI. Therefore, S can be written as

S.�; �/ D
XM 0

jD1 cj Yj .�; �/; (17)

where � 2 Œ0; ��, � 2 Œ0; 2�/ and cj are the coefficients describing S in the
modified SH basis [29]

Yj .�; �/ D

8
ˆ̂
<

ˆ̂
:

p
2Re.Y jmjl .�; �// if m < 0;

Y ml .�; �/ if m D 0;
.�1/mC1p2 Im.Y ml .�; �// if m > 0;

(18)

with Y ml .�; �/ the rank l and degree m regular complex spherical harmonic:

Y ml .�; �/ D
s
.2l C 1/.l �m/Š
4�.l Cm/Š Pm

l .cos �/eim�; m � jl j: (19)

In [28, 86] it was shown that the tensor basis and the SH basis are bijective via a
linear transformation when the rank l of the truncated SH basis equals the order k of
the symmetric tensor. This can be understood from the spherical harmonic transform
of the polynomial representation of S :

cj D
XM 0DM

iD1 �i�i

Z

S2

x
˛i
1 x

ˇi
2 x

l�˛i�ˇi
3 Yj .�; �/d˝: (20)
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where the new indexing of � and � assumes an arbitrary ordering of the �d1���dn and
�d1���dn from Eq. (14). Since the integral does not depend on the tensor coefficients
�j , Eq. (20) can be seen as a dot product between the vector of unique tensor
coefficients and the vector of spherical harmonic transforms of the M monomials
x
˛i
1 x

ˇi
2 x

l�˛i�ˇi
3 . In other words, computing the M SH coefficients can be written as

a matrix vector multiplication

c DMs; (21)

where c D Œc1; c2; : : : ; cM �T , s D Œ�1; �2; : : : ; �M �T , and:

M D

2

6
6
4

�1
R
S2
x
˛1
1 x

ˇ1
2 x

l�˛1�ˇ1
3 Y1d˝ : : : �M

R
S2
x
˛M
1 x

ˇM
2 x

l�˛M�ˇM
3 Y1d˝

:::
: : :

:::

�1
R
S2
x
˛1
1 x

ˇ1
2 x

l�˛1�ˇ1
3 YMd˝ : : : �M

R
S2
x
˛M
1 x

ˇM
2 x

l�˛M�ˇM
3 YMd˝

3

7
7
5 :

(22)

3.4 Tensor Decompositions and Approximations

A tensor that can be expressed as an outer product of vectors is called decomposable
and rank-1 if it is also nonzero. More generally, the rank of a tensor A D
.aijkl/

n
i;j;k;lD1 2 R

n�n�n�n, denoted rank.A /, is defined as the minimum r for which
A may be expressed as a sum of r rank-1 tensors [52, 53],

rank.A / WD min
n
r
ˇ
ˇ
ˇ A D

Xr

qD1 �q wq ˝ xq ˝ yq ˝ zq
o

(23)

where the minimum is taken over all decomposition with �p 2 R, wp; xp; yp; zp 2
R
n, p D 1; : : : ; r . If S is a symmetric tensor, then its symmetric rank [26] is

srank.S / WD min
n
r
ˇ
ˇ
ˇ S D

Xr

qD1 �q xq ˝ xq ˝ xq ˝ xq
o
: (24)

We remark that it is not known whether the rank of a symmetric tensor is equal to
its symmetric rank. The definition of rank in Eq. (23) agrees with matrix rank when
applied to an order-2 tensor. In certain other literature, for example [90], the term
‘rank’ is used synonymously with what we called ‘order’ in the first paragraph of
this section. For tensors of order greater than 2, rank becomes a more intricate notion
than matrix rank with properties that may seem surprising at first encounter. We refer
the readers to [31] (rank) and [26] (symmetric rank) for further information.

Best rank-r approximations

argmin�2Rr ; W;X;Y;Z2Rn�r

�
�
�A �

Xr

qD1 �q wq ˝ xq ˝ yq ˝ zq
�
�
� (25)
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and the corresponding best symmetric rank-r approximation problem (i.e., when
W D X D Y D Z) are used in practice (Sect. 5.4), but have no solution in
general when r > 1. The easiest way to explain this is that the infimum of the
objective function, taken over all � D .�1; : : : ; �r / 2 R

r and W D Œw1; : : : ;wr �,
X D Œx1; : : : ; xr �, Y D Œy1; : : : ; yr �, Z D Œz1; : : : ; zr � 2 R

n�r need not be attained.
This happens regardless of symmetry, the choice of norms in Eq. (25) and for any
order p � 3. In the unsymmetric case, it is known that the set of tensors of
rank s > r that do not have a best rank-r approximation could form a positive
volume set. A particularly egregious case is R

2�2�2, where no rank-3 tensor has a
best rank-2 approximation. Fortunately, there are special cases where the problem
can be alleviated, notably: (i) when all coordinates of A are nonnegative and
�; W;X;Y;Z � 0 [74]; (ii) when W;X;Y;Z satisfy a ‘coherence’ condition [75];
(iii) when p is even and � � 0 [76]. Unlike cases (i) and (ii), case (iii) only applies
to symmetric approximations.

3.5 Eigenvectors and Eigenvalues

The basic notions for eigenvalues of tensors were introduced independently by Lim
[72] and Qi [92]. The usual eigenvalues and eigenvectors of a matrix A 2 R

n�n are
the stationary values and stationary points of its Rayleigh quotient, and this point
of view generalizes naturally to tensors of higher order. This gives, for example, an
eigenvector of a tensor A D .aijkl/

n
i;j;k;lD1 2 R

n�n�n�n as a nonzero column vector

x D Œx1; : : : ; xn�T 2 R
n satisfying

Xn

i;j;kD1 aijklxixj xk D �xl ; l D 1; : : : ; n; (26)

for some � 2 R, which is called an eigenvalue of A . Notice that if .�; x/ is an
eigenpair, then so is .t2�; tx/ for any t ¤ 0; thus, eigenpairs are more naturally
defined projectively. As in the matrix case, generic tensors over R or C have a finite
number of eigenvalues and eigenvectors (up to this scaling equivalence), although
their count is exponential in n. Still, it is possible for a tensor to have an infinite
number of eigenvalues, but in that case they comprise a cofinite set of complex
numbers. For an even-ordered symmetric tensor S 2 S2p.Rn/, one has that S is
nonnegative definite, i.e., S .x/ � 0 for all x 2 R

n, if and only if all the eigenvalues
of S are nonnegative [92] – a generalization of a well-known fact for symmetric
tensors.

It is worth noting that unlike in the matrix case, most tensor problems are
NP-hard. This includes determining rank, best rank-1 approximation, spectral norm,
eigenvalues, and eigenvectors [51]. However, the notion of NP-hardness is an
asymptotic one that applies when n ! 1. Therefore, these hardness results do
not preclude the existence of efficient algorithms for a fixed n, and especially for
small values such as n D 3, the case of greatest interest to diffusion MRI.
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4 Fitting Higher-Order Tensor Models

4.1 Fitting Models of Apparent Diffusivity

One of the earliest models that attempted to overcome the limitations of second-
order diffusion tensors used HOTs to account for diffusion with generalized angular
profiles while preserving its radial monoexponential behavior [86]. Even order
Cartesian tensors were used to measure the apparent diffusivities (ADC) from the
generalized Stejskal-Tanner equation as described in Eq. (2).

The simplest method [86] for estimating such tensors, D , from the diffusion
signal is to linearize the Stejskal-Tanner equation by taking the logarithm of Eq. (2).
This leads to system of linear equations: Ax D y, where the rows of the design
matrix A contain the monomials of the homogeneous form D.u/ D D .k/ �k u,
the vector y contains the log-normalized diffusion signal scaled by the acquisition
parameter b, and the vector x contains the unknown coefficients of the tensor D .
This system is overdetermined when the number of data acquisitions is greater than
the number of unknown tensor coefficients and can be solved uniquely in the least
squares sense by taking the Moore-Penrose pseudo-inverse of A.

Since diffusivity is a non-negative physical quantity, the homogeneous form
D.u/ cannot be negative for any u 2 S2. This leads to a positivity constraint that
needs to be respected while estimating D . The least squares approach often violates
this constraint for D with high orders and when the acquisitions are noisy.

Descoteaux et al. [28] proposed a linear approach with angular regularization to
account for noisy acquisitions. Leveraging the bijection between HOTs and SHs, see
Eq. (21), they estimated the coefficients of D by first estimating the coefficients in an
SH basis of rank equal to the order of the tensor while applying Laplace-Beltrami
smoothing on the sphere and then converting back to the tensor basis. This again
leads to a linear system that is overdetermined when the number of acquisitions is
larger than the number of tensor coefficients,

x DM�1.BTBC �L/�1BT y; (27)

where x contains the unique tensor coefficients, y contains the log-normalized
signal, B is the design matrix in the SH basis and M represents the linear
transformation matrix between the HOT basis and the SH basis. The matrix L is
a diagonal matrix with entries li i D `2i .`i C 1/2, which represents the Laplace-
Beltrami regularization of the SH Y m` , and � is the regularization weight. This
becomes the least squares solution when � D 0, but with nonzero �, L tends to
smooth higher order terms more, therefore, dampening the effects of noise in higher
orders.

Florack et al. used the same Laplace-Beltrami regularization on the sphere, but
for tensors instead of SHs [34]. This was based on an infinite inhomogeneous tensor
basis representation, much like the SHs, with the diffusion function modified to
QD.u/ D P1

kD0 D .k/ �k u. It was shown that on the sphere, this representation was
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redundant, and when truncated to a finite order, it represented the same diffusion
function as in Eq. (2). The relation between the homogeneous and inhomogeneous
tensor representation has been addressed rigorously in [8]. The estimation process
was specifically crafted such that higher order tensors only captured the residual
information not available in lower order tensors. This resulted in a “canonical”
tensorial representation where the span of a tensor of fixed order k formed a
degenerate eigenspace for the Laplace-Beltrami operator with eigenvalue�k.kC1/,
exactly like the SHs.

The problem of estimating D with the positivity constraint was solved for order 4
tensors, in two different ways. The homogeneous forms of symmetric order 4 tensors
of dimension 3 are known as ternary quartics. Barmpoutis et al. [9, 10] and Ghosh
et al. [43] use Hilbert’s theorem on positive semi-definite (psd) ternary quartics:

Theorem 1. If P.x; y; z/ is homogeneous, of degree 4, with real coefficients and
P.x; y; z/ � 0 at every .x; y; z/ 2 R

3, then there are quadratic homogeneous
polynomials f; g; h with real coefficients, such that P D f 2 C g2 C h2.
Therefore, estimating P.x; y; z/ (or D .4/) by estimating f; g; h ensures D .4/ to
be psd. However, these quadratic polynomials can only be uniquely determined
up to a 3D rotation and up to a sign. In other words, if the 6 coefficients of
f; g; h each are written as column vectors wf ;wg;wh, respectively, and a 6 � 3
matrix W D Œwf ;wg;wh� is constructed, then P.x; y; z/ D vTWWT v, where
vT D Œx2; y2; z2; xy; xz; yz�. Thus W, �W and WR for any 3�3 orthogonal matrix
R result in the same P .

Initially, Barmpoutis et al. fixed R by choosing the rotation that renders A – the
top 3 � 3 block of W – to a lower triangular matrix [10]. This was achieved by
considering the QR-decomposition of A, but in practice A was taken to be lower
triangular. This resulted in a reduction of unknown coefficients from 18 D 3 � 6
to 15, which is exactly the number of unique coefficients of D .4/. In a later work
[9], an Iwasawa decomposition of WWT was taken, which implied the Cholesky
decomposition of A. This again resulted in A being rendered lower triangular –
defining uniqueness over 3D rotations and again reducing the number of unknowns
to 15. Furthermore, the Cholesky decomposition constrained the diagonal entries of
A to be positive – defining uniqueness over the sign.

Ghosh et al. [43] estimated all 18 unknowns of W and reconstructed the 15
coefficients of D .4/ from the Gram matrix WWT . Although W cannot be estimated
uniquely, the Gram matrix representing the homogeneous form P is unique and
the mapping from the coefficients of the Gram matrix to the coefficients of D .4/ is
unique. Therefore, the estimation of the tensor coefficients is unambiguous. While
Barmpoutis et al. [9, 10] used a Levenberg-Marquardt optimization scheme, Ghosh
et al. [43] prefer the Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme.

Barmpoutis et al. [9, 10] further introduced an L2 distance measure between the
homogeneous forms corresponding to the tensors evaluated on the unit sphere

dist.D .4/
1 ;D

.4/
2 /2 D 1

4�

Z

S2
ŒD1.u/ �D2.u/�2du; (28)
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which was computed analytically in terms of the difference of the coefficients of
D
.4/
1 and D

.4/
2 , and which was used for spatial regularization of the tensor field to

account for noise.
A second way of estimating D .4/ with the positivity constraint was proposed

by Ghosh et al. [44]. In this approach, the 6 � 6 isometrically equivalent matrix
representation [20] D of D .4/ was used. Since D is symmetric and its positive
definiteness ensures D .4/ to be positive, the affine invariant Riemannian metric
for the space of symmetric positive definite matrices [71] was used to estimate
D via a Riemannian gradient descent. However, the symmetry of the tensor D .4/

cannot be entirely captured by D, which has 21 unique coefficients. Therefore, a
final symmetrizing step was used to recover a positive and symmetric tensor D .4/.

The problem of estimating an arbitrary even order HOT, D .2k/, with the positivity
constraint was also solved in two different ways. Barmpoutis et al. [13] used a result
that states that for any even degree, 2k, a (homogeneous) polynomial positive on
the unit sphere can be written as a sum of squares of polynomials, p, of degree
k on the unit sphere, D.u/ D D .2k/ �.2k/ u D PR

jD1 �j p.k/.u; cj /2, where �j
are all positive and cj are the coefficient vectors of the polynomials pj with
jjcj jj D 1. However, since R, the number of polynomials in the sum, cannot
be determined, they reformulated the problem as a spherical convolution problem
D.u/ D R

S#c�1 �.c/p.k/.uI c/2dc, where the unit sphere S#c�1 is embedded in R
#c,

with #c being the number of elements in c. The convolution was solved numerically
by discretizing S#c�1 finely and D .2k/ was estimated by solving the least squares
problem for the unknowns �j

E D
XN

iD1
�
Si=S0 � e�b

Pr
jD1 �j p.gi Icj /2

	2
(29)

using a non-negative least squares (NNLS) to ensure that all �j � 0. Eq. (29)
essentially overestimates R by r by discretizing the convolution, while the NNLS
tends to compute a sparse solution ensuring that Eq. (29) does not overfit the signal.

A second method for estimating even order psd HOTs based on convex optimiza-
tion was proposed by Qi et al. [95]. It was shown that the set of order 2k psd HOTs,
D , form a closed convex cone C in R

n, where D has n unique coefficients and can
be represented by x 2 R

n. Furthermore, the psd constrained least squares estimation
was shown to be convex and quadratic with a unique minimizer x� 2 C such that
if the unconstrained solution x 2 R

n n C then x� 2 @C , the boundary of C . The
explicit psd constraint on D was formulated as �min.D/ � 0 where �min.D/, the
minimum Z-eigenvalue of D , was shown to be computationally tractable. The psd
HOT Dx� (corresponding to x�) was estimated by first checking the psd-ness of the
unconstrained HOT Dx. If �min.Dx/ � 0, then by uniqueness Dx� D Dx. However,
if x … C , then Dx� was estimated by solving the non-differentiable, non-convex
optimization problem L.x/ D minfjAx � yj2 W �min.Dx/ D 0g, with only an
equality constraint, by a subgradient descent approach. In theory, Dx� could also
be estimated by solving the psd constrained non-differentiable convex least squares
problem.
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Alternatively, Barmpoutis et al. [11] used even ordered HOTs to model the
logarithm of the diffusivities. This preserved the monoexponential radial diffusion
but considered the exponential of the tensor for the angular diffusion D.u/ D
exp.D .k/ �k u/ (in Eq. (2)). This automatically ensured positive diffusion without
having to impose any constraints. The approach was inspired by the Log-Euclidean
metric for DTI [3].

4.2 Fitting Models of Apparent Diffusional Kurtosis

Fitting the coefficients of the diffusion tensor D and kurtosis tensor W in Eq. (5)
is simplified by initially considering each gradient direction separately, and finding
parameters of the corresponding one-dimensional diffusion process,

S.b/ D S0e�bdC 1
6 .bd/

2K; (30)

where d and K are apparent diffusion and kurtosis coefficients, respectively.
Estimating these two variables requires measurements S.b/ with at least two
non-zero b-values, in addition to the baseline S0 measurement. After taking the
logarithm on both sides of Eq. (30), this leads to a system of equations that is
quadratic in d , and can thus no longer be solved with a linear least squares
estimator. Instead, gradient-based iterative Levenberg-Marquardt optimization has
been employed [61].

Assuming a Gaussian noise model results in a positive bias in the estimated
kurtosis values, which can be removed by finding the maximum likelihood fit under
a Rician noise model [111] or, more easily, by accounting for the noise-induced bias
in the measurements themselves [61, 82]. This is done by adding an estimate � of
the background noise to the signal model in Eq. (30),

S.b/ D
r

�2 C
�
S0e�bdC

1
6 .bd/

2K
	2
: (31)

After finding parameters di and Ki for each individual gradient direction i , a
second-order diffusion tensor D can be fit linearly to the di . Given this estimate of
D, the fourth-order kurtosis tensor W can then be fit linearly using Eq. (4) [69, 82].

Kurtosis is a dimensionless quantity and can, in theory, take on any value
K � �2. However, the kurtosis of a system that contains noninteracting Gaussian
compartments with different diffusivities is always non-negative, and empirical
results suggest non-negative kurtosis in human brain tissue [61]. Similarly, an upper
bound on kurtosis, Ki � 3=.bmaxdi /, where bmax is the largest b-value used in the
measurements, is implied by the empirical observation that in practice, the signal
S.b/ is a monotonically decreasing function of b. These two constraints have been
enforced as part of the fitting, using quadratic programming or heuristic thresholding
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[105]. Other authors have chosen to merely enforce the lower bound K � �3=7,
which correspond to the kurtosis of water confined to equally-sized spherical pores,
by a sum-of-squares parametrization of the homogeneous polynomial represented
by W [16]. Additional regularization has been employed to penalize extrema in the
homogeneous form that fall outside the range of the measured kurtosis values [65].

4.3 Fitting Deconvolution-Based Models

Spherical deconvolution models the diffusion-weighted signal S.u/ in different
gradient directions u as the convolution of a fiber orientation density function
(fODF) F with a response function R. It describes the signal attenuation caused
by a single nerve fiber bundle, and it is assumed to be cylindrically symmetric:

S.u/ D
“

kvkD1
F.v/ R.v � u/ dv (32)

Based on Eq. (32), deconvolution can be used to estimate the fiber ODF F

from the measurements S . Deconvolution is done most easily in the spherical
harmonics basis, where it amounts to simple scalar division. However, constructing
a spherical harmonics representation of the deconvolution kernel R requires two
choices: Beside estimating the response of a single fiber compartment from the data
[107] or deriving it from an analytical fiber model [30, 101], it involves deciding
how the single fiber compartment should be represented after deconvolution [106].

Even though the delta distribution may seem like an obvious choice, it requires
an infinite number of coefficients in the spherical harmonics basis. Therefore,
Tournier et al. [106] approximate the delta peak, resulting in non-trivial interactions
between peaks of non-orthogonal fiber compartments and leading to systematic
errors when taking ODF maxima as estimates of fiber directions, even when no
measurement noise is present. Schultz and Seidel [100] have removed this problem
by instead modeling single fiber peaks as rank-1 tensors, and performing a low-rank
approximation of the resulting order-p fODF tensor F ,

argmin
�i ;vi

�
�
�F �

Xr

iD1 �iv
˝p
i

�
�
�
F
; (33)

where vi describe the per-compartment principal directions, and �i are proportional
to their volume fractions. The approximation rank r corresponds to the number of
discrete fiber compartments; one way to estimate it is by learning from simulated
training data via support vector regression [97].

This tensor-based variant of spherical deconvolution uses the linear bijection
between spherical harmonics and polynomial bases (cf. Sect. 3.3) twice: First, to
map a rank-1 tensor of the same order as the desired fODF tensor F to the spherical
harmonics basis, which is required to find the correct kernel R for use with that



146 T. Schultz et al.

tensor order. Second, to transform the deconvolution result F , obtained in the
spherical harmonics basis, back into its tensor representation F .

Since compartments cannot have negative weights, valid fODF tensors should
permit a positive decomposition into rank-1 terms. For tensor order k > 2, this
is a stronger requirement than non-negativity of the homogeneous form, which is
a more natural constraint for models of apparent diffusivity (Sect. 4.1). It can be
enforced by computing an approximation with the generic number of rank-1 terms
and non-negative weights [98].

Similar to a previous approach of Barmpoutis et al. [13], Weldeselassie et al.
[113] enforce non-negativity of F by parametrizing the homogeneous polynomial
F (with even order k) as a sum of squares of polynomials of order k=2. Rather than
performing the deconvolution in spherical harmonics, they discretize the fODF, so
that it can be found as the non-negative least squares solution of a linear system.

4.4 Fitting Other Types of Models

When fitting the higher-order diffusion model described by Eq. (3) [77,78], we only
consider tensors of even order, as was argued in Sect. 2. By taking the logarithm and
truncating after order 2n, the equation can be rewritten in the form

ReŒlog.S.B/=S0/� D
Xn

kD1.�1/
k
˝
B.2k/;D .2k/

˛
;

where Re denotes the real part of the logarithmic signal and the inner products
between tensors B.2k/ and D .2k/ is defined in Eq. (16). Tensors D .2k/ can be esti-
mated by considering measurements with different gradient strengths and directions,
which lead to different B

.2k/
i , and truncating the tensor series at the desired order.

If we have m measurements, we obtain m equations of the above form, linear in the
coefficients of D . These can be combined in a matrix equation

y.log.jSi .Bi /j=jS0j// D B.B.2k/;i / x.D .2k//; (34)

where i D 1; : : : ; m. In practice, the modulus j � j rather than the real part of the
complex signal is used, since phase is unreliable. The vector x, which contains the
coefficients of D .2k/, can be estimated by solving Eq. (34) in the least squares sense.

Higher-order tensors representing q-ball ODFs (see Sect. 2) can also be fitted to
HARDI data. An analytical solution for the q-ball ODF is given by Anderson [2],
Hess et al. [50], and Descoteaux et al. [29]

 q-ball.u/ D
XN

iD1 2�Pli .0/ ci Yi .u/ (35)

where u is a unit norm vector, Pli is the Legendre polynomial of degree li , fYigNiD1
is a modified SH basis as in Eq. (18), and ci are the harmonic coefficients of the MR
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signal. A tensor representation of  q-ball can be obtained from the bijection between
SHs and tensors. Alternatively, it can be reconstructed directly in a tensor basis [34]

 q-ball.u/ D
Xn

kD0 2�Plk .0/Sk �k u (36)

where n is the maximum order of a series of tensors Sk fitted to the diffusion signal
such that higher orders only encode the fitting residuals from lower orders.

5 Processing Higher-Order Tensors in Diffusion MRI

5.1 Computing Rotationally Invariant Scalar Measures

It is desirable to extract meaningful scalars from the estimated higher-order tensors.
In particular, rotationally invariant quantities are preferable. These are independent
of the coordinate system and thus intrinsic features of the tensor.

5.1.1 Higher-Order Diffusion Tensors

Rotationally invariant measures of diffusivity and anisotropy based on higher-order
diffusion tensors have been proposed in [89]. The mean diffusivity is defined as:

hDi D 1

4�

“

S2
D.u/ du (37)

where u is a unit direction vector and D.u/ are the diffusivities as in Eq. (2). The
generalized anisotropy (GA) and scaled entropy (SE) are given by

GA D 1 � 1

1C .250V/".V /
and SE D 1 � 1

1C .60.ln 3 � �//".ln 3��/ ; (38)

where ".�/ D 1 C 1=.1 C 5;000 � �/ and V and � are the variance and entropy of
the normalized diffusivities, D.u/=3hDi. The definition of these measures does not
rely on any specific tensor order. In addition, GA and SE are scaled between 0 and
1. Note that these measures can also be calculated from other functions defined on
the unit sphere, such as orientation distribution functions.

GA and SE values for simulated data modelling two and three fibers show a clear
difference between those implied by tensors of order 2 and higher-order (4, 6 and
8) tensors, the latter being significantly higher [27,28,84,89]. GA and SE have also
been reported to be slightly higher in the case of sixth order tensors than for order 4
[27]. On the other hand, for data simulating one fiber, GA and SE are independent
of the tensor order. This is also the case for the mean diffusivity [89].
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Table 1 Mean kurtosis and kurtosis anisotropy. ˇ: D-eigenvalue of W , �: number of D-
eigenvalues, N : total number of diffusion measurement directions, Kapp: AKC in a particular
direction as in Eq. (5), ei (i D 1; 2; 3): eigenvector of diffusion tensor D , Kapp.ei/ D .MD2=�2i / �OWi i i i , OW : kurtosis tensor in the basis feig, NK D .1=3/.Kapp.e1/CKapp.e2/CKapp.e3//

Reference MK FAK

[94] .MD/2

�

P�
iD1 ˇi

p
�

��1

rP�
iD1.ˇi�MK=.MD/2/2

P�
iD1 ˇ

2
i

[56] 1
N

PN
iD1 Kapp.ui /

q
3
2

rP3
iD1.Kapp.ei/� NK/2
P3
iD1 K

2
app.ei/

[60, 93, 105] (MK) [91] 1
4�

’
S2 Kapp.u/ du

q
1
4�

’
S2 .Kapp.u/�MK/2 du

[81] Idem

r’
S2 .Kapp.u/�MK/2 du
’

S2 K
2
app.u/ du

Table 2 Axial and radial kurtoses. e� D .0; cos�; sin�/ in the basis feig
Reference K

k

K
?

[56] Kapp.e1/
Kapp.e2/CKapp.e3/

2

[91] (K
?

) [60, 105] Idem
R 2�
0 Kapp.e�/ d�

GA and SE for real HARDI data of healthy subjects have been studied in [27,
83, 84]. It has been shown that fourth- and sixth-order tensors result in increased
values for both measures, especially for SE, with respect to second-order tensors.
This effect is observed in areas with intra-voxel orientational heterogeneity but also
in some regions with coherent axonal orientation. On the other hand, GA and SE
become more sensitive to noise for increasing tensor order [27].

The variance of fourth-order covariance tensors has also been investigated for
DTI data of glioblastoma patients [32]. Results indicate a better variance contrast
between tumor subregions than for FA.

5.1.2 Diffusional Kurtosis Tensors

A number of rotationally invariant scalar measures based on fourth-order kurtosis
tensors have been proposed. Different definitions of mean kurtosis (also referred to
as average AKC), kurtosis anisotropy, radial and axial kurtoses can be found in the
literature. Some of them are related to certain eigenvalues of the kurtosis tensor,
which we discuss later in this section. These measures are summarized in Tables
1 and 2. It is clear that they are rotationally invariant, since both the AKC and
eigenvalues involved in their definition are rotationally invariant.

Note that the first two definitions of kurtosis anisotropy in Table 1 are completely
analogous to the DTI case but based on the kurtosis tensorD-eigenvalues and AKC
values along the diffusion tensor eigenvectors, respectively. As FA, FAK takes on
values 0 � FAK � 1, except for the definition in [91].

Some of these measures have been probed for in vivo and ex vivo rat brain
DKI, and compared to their DTI analogues [56]. Mean and radial kurtoses showed
strong contrast between GM and WM both in and ex vivo. In particular, radial



Higher-Order Tensors in Diffusion Imaging 149

kurtosis performs better than all other directional diffusivities and kurtoses. For
axial kurtosis, a stronger contrast was observed under ex vivo conditions. On the
other hand, kurtosis anisotropy was similar to FA both in and ex vivo.

Mean kurtosis and kurtosis anisotropy have also been computed by an adaptive
spherical integral, and compared to those based on D-eigenvalues for real diffusion
data of a healthy subject and a stroke patient [81]. The latter are seen to be more
sensitive to noise. Exact expressions for mean and radial kurtoses can be obtained
[105]. These have been shown, together with axial kurtosis, on DKI scans of healthy
subjects [60,105]. The optimization of the diffusion gradient settings for estimation
of mean and radial kurtosis, and kurtosis anisotropy has been studied as well. It has
been shown that this increases precision considerably [91].
D-eigenvalues of the fourth-order kurtosis tensor W are defined by Qi et al. [94]

W �3 x D ˇ DxI xTDx D 1; (39)

where x is the D-eigenvector associated to D-eigenvalue ˇ. D-eigenvalues have
been shown to be rotationally invariant [94]. The largest and smallestD-eigenvalues
can be used to compute the largest and smallest AKC values as .MD/2ˇmax and
.MD/2ˇmin. Other type of eigenvalues which have been studied in this context
are the Kelvin eigenvalues of the kurtosis tensor, which are also rotationally
invariant. A three-dimensional symmetric fourth-order tensor can be mapped to
a six-dimensional second-order tensor. The eigenvalues .�1; : : : ; �6/ of its matrix
representation, a symmetric 6 � 6 matrix, are the Kelvin eigenvalues of the
considered fourth-order tensor. It has been shown that the largest and smallest
Kelvin eigenvalues of (a scaled version of) the kurtosis tensor OW are, respectively,
an upper and lower bound of the largest and smallest AKC values [93]. The
interpretation of Kelvin eigenvalues in terms of AKC values is thus less clear than
for D-eigenvalues.

5.1.3 Orientation Distribution Functions

ODF maxima are characterized by their position and value (see Sect. 5.3), but also
by their geometric shape. A peak sharpness measure

PS D ��1
k F.u/

(40)

can be derived from the value F.u/, order k of F , and a Hessian eigenvalue �1 of
F (at maxima, �2 � �1 � 0). The homogeneous forms of second-order tensors F
have a single maximum, whose sharpness depends on the degree to which F has a
linear shape, as measured by the widely used invariant cl D .�1 � �2/=�1 [114]. In
fact, when applied to a second-order tensor, PS D cl [98].

Peak Fractional Anisotropy (PFA) is designed to coincide with traditional
Fractional Anisotropy (FA) [21] when the diffusion process is well-described by
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a second-order diffusion tensor, but generalizes it to a per-peak measure in case of
more than one ODF maximum [41]. It is defined by fitting a second-order tensor to
each ODF peak and computing its FA. Based on the function value F and principal
curvatures �1 > �2 at the maximum, the fitted tensor eigenvalues are given by:

ODF-T W �1 D F 2; �2 D F
�2
; �3 D F

�1
(41)

ODF-SA W �1 D 1; �2 D 3
2C�2F ; �3 D 3

2C�1F (42)

ODF-T refers to the q-ball defined by Tuch [109]; ODF-SA denotes a solid angle
ODF [1, 108]. The total PFA is defined by considering a weighted sum of the PFA
over all ODF maxima:

Total-PFA D
X]max.

iD1 Fi � PFAi (43)

Unlike Fractional Anisotropy, Total-PFA is able to distinguish between near-
isotropic regions with many weak ODF maxima and areas with complex fiber
structure, which exhibit multiple, high anisotropy maxima.

Other geometrical scalars have also been considered. The Ricci scalar is a well-
known invariant quantity in differential geometry representing intrinsic curvature,
and constructed from the metric and metric-derived tensors. It has been proposed
as a DTI scalar measure in the context of Riemannian geometry [35]. The Ricci
scalar can also be calculated from a (strongly) convexified ODF by relating it
to Finsler geometry (see Sect. 5.5 and chapter “Riemann-Finsler Geometry for
Diffusion Weighted Magnetic Resonance Imaging”) [6]. However, experimental
results on the latter have not yet been reported.

In addition, principal invariants of fully symmetric fourth-order tensors rep-
resenting an ODF have been studied [36]. Invariants of fourth-order covariance
tensors in DTI had been previously investigated [20]. More general invariants of
fourth-order tensors have been recently presented [42]. Principal invariants can be
computed from the tensor Kelvin eigenvalues .�1; : : : ; �6/ (see Sect. 5.1.2):

I1 D �1 C �2 C �3 C �4 C �5 C �6
I2 D �1�2 C �1�3 C : : :C �5�6
I3 D �1�2�3 C �1�2�4 C : : :C �4�5�6 (44)

I4 D �1�2�3�4 C �1�2�3�5 C : : :C �3�4�5�6
I5 D �1�2�3�4�5 C : : :C �2�3�4�5�6
I6 D �1�2�3�4�5�6

These quantities are, by definition, rotationally invariant and can therefore be used
as building blocks for invariant scalar HARDI measures. Experiments on HARDI
phantom and brain data have been presented but further work is required to asses the
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utility of principal invariants in this context. Finally, note that both the Ricci scalar
and principal invariants can also be calculated from higher-order diffusion tensors.

5.2 Reconstructing the Diffusion Propagator

The diffusion process is characterized by a probability density function P.r; t / that
specifies the probability of a spin displacement r within diffusion time t . P.r; t /
is known as the diffusion propagator or Ensemble Average Propagator (EAP). It
is related to the dMRI signal by a Fourier transform in the q-space formalism
S.q; t /=S0 D

R
R3
P.r; t /e2�iq�rdr [25]. Even though higher order tensor estimates

of ADC and kurtosis can discern regions with multiple fiber directions, they cannot
be used to resolve the directions themselves. To resolve fiber directions the EAP or
its characteristics such as the ODF need to be computed.

In DTI, the diffusivities are modeled by a quadratic function given by the
diffusion tensor, Eq. (1). The Fourier transform of the resulting signal yields the
corresponding EAP, an oriented Gaussian distribution with the tensor’s largest
eigen-pair indicating the single major fiber direction. However, when HOTs are used
to model more complex ADC profiles, computing the EAP turns out to be a trickier
problem.

Unlike in DTI, the analytical Fourier transform of the tensor model in Eq. (2)
is unknown. In [88], a fast Fourier transform was performed on interpolated (and
extrapolated) q-space data on a Cartesian grid generated from the tensor in Eq. (2)
to numerically estimate the EAP. In [87], an analytical EAP on a single R0-shell,
i.e., P.R0 r

jjrjj /, was proposed for this model. However, in this Diffusion Orientation
Transform (DOT), the SH basis representation of the tensor was used, see Eq. (21).

In [40], the authors considered a modified non-monoexponential model inspired
from Eq. (2) where the HOT was used to describe the signal in the entire q-space.
The modified model leads to an analytical series expansion of the EAP in Hermite
polynomials. In [15], the authors proposed to use tensors to describe a single R0-
shell of the EAP, P.R0 r

jjrjj /. They used Hermite polynomials to describe the dMRI
signal, since under certain constraints the Fourier transform of Hermite polynomials
are homogeneous forms or tensors. Note that [40] and [15] used the same dual
Fourier bases but in the opposite spaces to analytically resolve the Fourier transform.

The first attempt to estimate the EAP analytically was based on the tensor model
in Eq. (3), where the HOTs represented the cumulant tensors of the EAP since the
dMRI signal is also the characteristic function of the EAP. The authors in [77, 78],
proposed to use the Gram-Charlier series to compute a series estimate of the EAP
from the first four cumulant tensors, i.e., covariance (diffusion) and kurtosis. In
theory, the Gram-Charlier series could be improved by the Edgeworth series [45].

In [69], the authors computed the ODF directly from the first four cumulant
tensors – diffusion and kurtosis. In contrast to [77, 78], they do not estimate the
full EAP, but only its radial marginalization.
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5.3 Finding Maxima of the Homogeneous Form

The maxima of many orientation distribution functions in dMRI, which can be
represented in the HOT or SH bases, indicate underlying fiber directions. It is,
therefore, crucial to compute these maxima with high precision.

The simplest approach is to discretely sample the homogeneous form on a
spherical mesh and to compare its values on the finite vertices to approximately
identify the maxima [54]. However, even a 16th order tessellation of the icosahedron
or 1,281 vertices on the sphere can lead to an error of �4ı. Numerical optimization
techniques such as Newton-Raphson and Powell’s methods have been used in the
SH basis [58, 107] to overcome this limitation. In [55], numerical optimization was
combined with the Euler integration step of a tractography algorithm in the tensor
basis to trace fibers efficiently.

However, such local optimization techniques are highly dependent on initializa-
tion. In [23] and [47] two methods were shown for computing all the stationary
points of a homogeneous form. In [23], the Z-eigenvalue/eigenvector formulation
was used and a system of two polynomials in two variables – the homogeneous
form and the unit sphere constraint – was solved using resultants (detailed in
[95]). The stationary points were then classified by their principal curvatures into
maxima, minima and saddle-points. In [46], the gradient of the homogeneous form
constrained to the unit sphere – a system of four polynomials – was equated to zero.
The roots of the system were computed by the subdivision method which ensures
that all roots are analytically bracketed thus missing none. The stationary points
were then classified into maxima, minima and saddle points using the Bordered
Hessian.

5.4 Applications of Tensor Decompositions
and Approximations

There are four lines of work that have applied tensor decompositions in the context
of diffusion MRI. The first results from considering normal distributions of second-
order diffusion tensors, which involve a fourth-order covariance tensor˙ . When the
diffusion tensor is written as a vector,˙ is naturally represented by a 6�6 symmetric
positive definite matrix S, to which the spectral decomposition into eigenvalues
and eigentensors can be applied, in order to facilitate visualization and quantitative
analysis [20]. Alternatively, ˙ can be expressed in a local coordinate frame that is
derived from invariant gradients and rotation tangents [63]. The coordinates in this
frame isolate physically and biologically meaningful components such as variability
that can be attributed to changes in trace, anisotropy, or orientation.

Second, the distribution of fiber orientation estimates, either from the diffusion
tensor or from HARDI, has been modeled by mapping the corresponding probability
measure into a reproducing kernel Hilbert space. With a power-of-cosine kernel,
this results in a higher-order tensor representation, which can be decomposed into



Higher-Order Tensors in Diffusion Imaging 153

a rank-1 approximation and a non-negative residual to visually and quantitatively
investigate the uncertainty in fiber estimates from diffusion MRI [99].

Third, in the framework described in detail in Sect. 4.3, a low-rank approximation
of fODF tensors provides a less biased estimate of principal directions than fODF
maxima. It has been shown [101] that this model can be used to approximate and
to more efficiently and robustly fit the ball-and-multi-stick model [22]. Subsequent
work has imposed an additional non-negativity constraint during deconvolution, and
proposed an alternative optimization algorithm [62]. Low-rank approximations were
shown to produce useful estimates of crossing fibers even from a relatively small
number of gradient directions [49].

Finally, another line of work has attempted to decompose higher-order diffusion
tensors in order to obtain crossing fiber directions [59, 115]. However, these
techniques are yet to be validated on synthetic data with varying crossing angles,
and have not yet been shown to reconstruct known fiber crossings in real data.

5.5 Finslerian Tractography

DTI streamline tracking can be generalized to HARDI by means of Finsler
geometry. A second-order Finsler metric tensor can be defined at each point q from
an ODF in the following way [4, 5, 7, 34]

OF .q; x/ D
�X

ii :::ip
Fi1:::ip .q/x

i1 : : : xip
�1=p

; gij.q; x/ D 1

2

@ OF 2.q; x/
@xi@xj

(45)

where F is an ODF tensor of (even) order p, OF is the Finsler function and gij is
the Finsler metric, i; j D 1; : : : ; 3, which depends on both position and direction.
Note that this definition of the Finsler function OF is by no means unique. In fact, this
is still a subject of intensive research (see chapter “Riemann-Finsler Geometry for
Diffusion Weighted Magnetic Resonance Imaging”). Thus a local diffusion tensor
can be obtained per direction. Tracking can be performed by extracting the principal
eigenvector of the diffusion tensor corresponding to the arrival direction. As long as
this direction is sufficiently aligned to the eigenvector, and the diffusion tensor FA
is above a certain treshold, tracking continues. Experiments on Finsler streamline
tracking using fourth-order tensors have been presented on simulated fiber crossings
and real HARDI data. It has been shown that Finsler streamlines can, unlike DTI
streamlines, correctly cope with nerve fiber bundle crossings.

5.6 Registration and Atlas Construction

Registration transforms data sets from different times or subjects to a common
coordinate system, so that anatomical structures align. Atlas construction is based
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on registering a large number of subjects, in order to obtain a description of
average anatomy, and of the most common modes of variation. Modeling parameters
of the diffusion process with higher-order tensors makes registration of tensor
fields a relevant research problem. Registration requires selection of an appropriate
metric to measure the dissimilarity between individual tensors; for this purpose,
Barmpoutis et al. [12, 14] propose two alternative choices, which are both scale
and rotation invariant. Integrating the local dissimilarity over the domain of the
tensor field results in an overall measure of dissimilarity. Registration is achieved
by finding the coordinate transformation that minimizes this measure.

It is important to also transform the individual tensors according to the coordinate
transformation applied to the domain of the field. For example, when the domain
of the tensor field is rotated, a corresponding rotation of the tensors themselves
is required in order to preserve relevant structures, such as the trajectories of
nerve fiber bundles. When the transformation is (locally) affine, it has been
proposed to simply apply it to the tensors via Eq. (11) [14]. Alternative methods
for transformation have been proposed based on the spectral decomposition [96]
and different sum-of-squares parametrizations [9, 48, 96].

6 Conclusion

The wide range of models and computational methods that have been surveyed in
this chapter testify to the power and flexibility that higher-order tensors provide
for the analysis of data from diffusion MRI, and to the increasing momentum of
the research associated with this topic. Generalized eigenvalues, scalar invariants,
tensor decompositions, and low-rank approximations have all proven valuable in
the context of this application.

Looking ahead, several theoretical problems remain to be solved. While many
approaches have focused on the properties of individual tensors, less attention has
been paid to the global nature of the tensor fields that arise in diffusion MRI. The
recent use of Finsler geometry is a natural step in this direction.

Even though low-rank approximations have proven to work well in practice,
uniqueness of approximations over the reals is mostly open (for the complex case,
see [66]). Moreover, we are still lacking algorithms with provable convergence
properties, and formal results on the well-conditionedness of such approximations.

Many approaches have been proposed to ensure non-negativity of higher-order
tensors that model apparent diffusivities (cf. Sect. 4.1). Less attention has been paid
to the fitting of deconvolution models, which are constrained to the convex cone of
tensors that can be expressed as a positive sum of rank-1 tensors; in general, that is
a stricter constraint than non-negativity.

While many neuroscientific studies that use diffusion imaging are now published
each month, they still almost exclusively use either the second-order diffusion tensor
[21] or the ball-and-stick model [22]. A challenge in the next few years will be to
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take approaches based on higher-order tensors into the application domain. This
will require more work on several subproblems:

Statistical tests on scalar invariants such as Mean Diffusivity or Fractional
Anisotropy are a mainstay of DTI-based studies. Even though a considerable num-
ber of invariants have now been derived from higher-order tensors (cf. Sect. 5.1),
the practical utility of many of them is limited by their unclear biological or
neuroanatomical interpretation.

Given an ever-increasing palette of models, it becomes a more urgent problem to
pick one of them to test a given hypothesis, and to choose values for parameters
such as tensor order, approximation rank, or regularization weights. Improved
understanding of formal relationships between different models and mathematical
rules for model selection are required.

Spatial coherence and signal sparsity need to be exploited in order to reliably
estimate the large number of parameters in advanced models such as the ensemble
average propagator, without requiring excessively time consuming measurements.
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Fourth Order Symmetric Tensors and Positive
ADC Modeling

Aurobrata Ghosh and Rachid Deriche

Abstract High Order Cartesian Tensors (HOTs) were introduced in Generalized
DTI (GDTI) to overcome the limitations of DTI. HOTs can model the apparent
diffusion coefficient (ADC) with greater accuracy than DTI in regions with fiber
heterogeneity. Although GDTI HOTs were designed to model positive diffusion, the
straightforward least square (LS) estimation of HOTs doesn’t guarantee positivity.
In this chapter we address the problem of estimating 4th order tensors with positive
diffusion profiles.

Two known methods exist that broach this problem, namely a Riemannian
approach based on the algebra of 4th order tensors, and a polynomial approach
based on Hilbert’s theorem on non-negative ternary quartics. In this chapter, we
review the technicalities of these two approaches, compare them theoretically to
show their pros and cons, and compare them against the Euclidean LS estimation on
synthetic, phantom and real data to motivate the relevance of the positive diffusion
profile constraint.

1 Introduction

Diffusion Tensor Imaging (DTI) [1, 2] has become the de facto standard today in
diffusion MRI (dMRI) for investigating the complex microstructure of the cerebral
white matter in-vivo and non-invasively. Its tremendous popularity is due to its
simplicity in acquisition requisites and elegance in interpretation, which makes
it easy to implement the technique and infer the white matter microstructure, in
particular the underlying fiber orientations. Based on Fick’s phenomenological
anisotropic diffusion equation, the DTI signal for the diffusion gradient G, is
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described by the modified Stejskal-Tanner equation parameterized by the second
order diffusion tensor D [3]:

S D S0 exp
��bgTDg

�
; (1)

where b D �2ı2g2
�
� � ı

3

�
, g D jGj, and g D G=jGj. In DTI, the apparent

diffusion coefficient (ADC) is modeled by the spherical function D.g/ D gTDg.
However, in spite of its usefulness, it is well known that DTI is inherently limited
in regions with heterogeneous fiber distributions, such as in fiber-crossings. In such
regions DTI can neither accurately model the complex shape of the resulting ADC,
nor correctly infer the underlying fiber bundle layout.

Generalized DTI (GDTI) [4], was proposed to overcome this limitation by
modeling the complex shaped ADC with greater accuracy using Cartesian tensors of
order higher than two, the so called higher order (diffusion) tensors (HOTs). GDTI,
like DTI, is also based on Fick’s phenomenological laws of diffusion, where the
diffusion tensor is replaced by a spherical diffusion function parameterized by a
HOT, or as its projection on to the unit sphere. The GDTI signal for the diffusion
gradient G is similarly described by:

S D S0 exp .�bD.g// ; D.g/ D
3X

j1D1

3X

j2D1
: : :

3X

jkD1
Dj1;j2:::jk gj1gj2 : : : gjk ; (2)

where, Dj1;j2:::jk are the coefficients of the kth order, three dimensional, diffusion
HOT D .k/, and gji are the components of the unit gradient vector g. The complex
shaped ADC is described in GDTI by D.g/. Since g is a unit norm vector, it
can also be described by the two parameters � 2 Œ0; �� and � 2 Œ0; 2�/ as
g D Œsin � cos�; sin � sin�; cos ��T D Œgx; gy; gz�

T , which shows that the ADC
or the spherical diffusion function is the projection of D .k/ on to the unit sphere.

This form of the diffusion function helps derive certain properties of the diffusion
HOT which greatly simplifies the GDTI model [4]. First, when k is odd D.�g/ D
�D.g/. However, since negative diffusion is non-physical, this implies that k can
only be even, or only even ordered HOTs are of interest in modeling the ADC.
Second, although a kth order 3D HOT can have 3k independent coefficients, since
only its projection along a vector g is of interest – D .k/ has to be symmetric – or
its coefficients should be equal under any permutation � , of the coefficient indices
Dj1;j2:::jk D D�.j1;j2:::jk/. This reduces the number of independent coefficients of
the kth order HOT to a more tractable:

Nk D .k C 1/.k C 2/
2

: (3)

In other words, to describe the ADC more accurately using GDTI, it is required to
estimate from the diffusion signal the coefficients of a 3D symmetric HOT of even
rank, such that the diffusion function or the estimated ADC is positive.
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The independent coefficients of the kth order diffusion HOT are in practice
estimated using the least squares (LS) approach [4] in a fashion almost identical
to the approach for estimating the six coefficients of the diffusion tensor in DTI.
The LS approach, although, rapid, since it involves only linear operations, does not
guarantee that the estimated HOT will result in a positive diffusion function even
when k is considered even. In other words, the reason for considering k to be even,
i.e. the estimated ADC should be positive, is not satisfied by the LS estimation.

In this chapter we present two approaches for estimating, in particular 4th order,
diffusion HOTs from the diffusion signal that guarantee that the estimated ADC
or the diffusion function is positive. In the first method, we take recourse to the
fact that 3D symmetric 4th order tensors can be rewritten through a mapping as
6D symmetric 2nd order tensors. This makes it possible to reformulate the problem
of estimating a 4th order tensor with a positive diffusion profile, to a problem of
estimating a 2nd order tensor with a positive diffusion profile, albeit in 6D. We
solve this problem by applying the Riemannian framework developed for symmetric
positive definite (SPD) tensors of order 2, for estimating DTI diffusion tensors with
positive diffusion profiles.

In the second method, we base ourselves on the polynomial interpretation of
HOTs. Therefore, the diffusion function D.g/ is re-interpreted as a homogeneous
polynomial in the components of the unit norm gradient vector g. This allows for a
powerful parameterization of the diffusion signal, which ensures that the estimation
process guarantees a 4th order HOT with a positive diffusion profile. This param-
eterization comes from the properties of ternary quartics, which was first pointed
out in [5, 6]. Also it has been proposed in [7] that the affine invariant Riemannian
metric may not be well suited for diffusion data. The polynomial parameterization,
therefore, provides an alternative approach for estimating 4th order diffusion tensors
with positive diffusion profiles, which employs the Euclidean metric that is better
suited for handling diffusion data [7].

We note that solutions to the problem of estimating arbitrary even ordered HOTs
with the positivity constraint have also been proposed in [20] and [8]. These methods
and the contents of this chapter can be seen briefly resumed in chapter “Higher-
Order Tensors in Diffusion Imaging”. However, in this chapter we present in greater
detail the particular problem of estimating 4th order tensors with the positivity
constraint, since 4th order tensors commonly appear in many problems, such as
Diffusion Kurtosis Imaging (DKI: see again chapter “Higher-Order Tensors in
Diffusion Imaging”). The importance of the methods presented here is highlighted
by the fact that these methods have been recently used to estimate 4th order kurtosis
tensors with positivity constraint [9].

This chapter is structured as follows. Section 2 is devoted to the Riemannian
approach. Sections 2.1 and 2.2 present the algebra of 2nd and 4th order tensors
which allow us to formulate the Riemannian framework. The Riemannian estima-
tion scheme is put together in Sect. 2.3. Section 3 is devoted to the ternary quartic
approach, with first the theory and then the algorithm in Sect. 3.3. Experiments and
results are described and discussed in Sect. 4. We conclude in Sect. 5.
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2 A Riemannian Approach for Symmetric Positive Definite
Fourth Order Diffusion Tensors

The problem of estimating a diffusion tensor from the signal, which satisfies
the positive diffusion profile has been extensively considered in DTI. Negative
diffusion, which is non-physical, can also be a problem while estimating a 2nd order
diffusion tensor D, which happens when the DTI-ADC gTDg < 0, for some gradient
direction g. This can occur since the LS estimation process doesn’t guarantee that
the diffusion tensor will have a positive diffusion profile. This condition requires a
dedicated mathematical framework which constraints the estimation process to only
diffusion tensors D such that gTDg > 0; 8g 2 S2.

An adequate framework for such an estimation was proposed by identifying the
appropriate set of 2nd order tensors that satisfy the positive quadratic form, namely
S ymCn , the set of SPD matrices, which satisfy xT ˙x > 0; 8x 2 Rnnf0g, and
˙ 2 S ymCn . In other words, if the estimation process were to only operate in the
space of S ymC3 (in the case of DTI, n D 3), then the estimated diffusion tensor
would satisfy the positive diffusion profile. The mathematical framework that was
proposed, which allows to do this consists of an affine invariant metric of S ymCn ,
the Riemannian metric [10–13], and a similarity invariant metric of S ymCn , the
Log-Euclidean metric [14], which naturally confine operations on SPD matrices to
the space of S ymCn .

Deriving an equivalent Riemannian metric for the space of 4th order diffusion
tensors would, however, be far more involved due to the increase in order or
the multi-linear property of HOTs. Nonetheless, such a metric would be the right
framework to use in the estimation process of the 4th order diffusion tensor, since
it would ensure that the estimated HOT satisfies the positive diffusion profile.
However, given the symmetry condition of a diffusion HOT, this problem can
be simplified by reformulating the diffusion profile of a 4th order HOT (Eq. (2))
to a bilinear form dependent on a 2nd order tensor. Mathematically, this would
convert the problem to the case of estimating a 2nd order tensor in S ymCn , like
in DTI. However, the conversion from a symmetric 4th order 3D tensor, results in
a symmetric 2nd order tensor in 6D [15–17]. Therefore, we would have to consider
the space of S ymC6 instead of the space of S ymC3 .

In this section, we propose to use this approach of transforming a symmetric
3D 4th order Cartesian diffusion tensor to a symmetric 6D 2nd order tensor, and
of applying the Riemannian metric of the space S ymC6 , to estimate a 4th order
diffusion tensor from the signal with a positive diffusion profile in GDTI [18].

2.1 Algebra of Second Order Tensors

To understand the algebra of 4th order tensors, which is required to manipulate
these entities, and to transform them to isometrically equivalent 2nd order tensors,
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we start with 2nd order tensors, which are well studied and intuitively easy to
understand. Much of the following formulation of Cartesian 2nd and 4th order
tensors in an Euclidean space can be found in [15,16], where, essentially a tensor is
used interchangeably with the matrix of a linear transformation.

Given an n dimensional inner product space (vector space with an inner product)
V , an nD 2nd order tensor A D A .2/ is defined as the n � n matrix of the linear
transformation:

A W V ! V; st x! Ax; x 2 V: (4)

The transpose of the linear transformation, with matrix AT , can be defined from
the inner product of V as

˝
x;AT y

˛ D hAx; yi ; 8x; y 2 V: The space of linear
transformations from V to V , itself forms a vector space, which can be called
Lin.V / D fA W V ! V g. The transpose of A can be used to define a natural
inner product on Lin.V / (summation over repeated indices over their whole range):

hA;Bi WD tr.ATB/ D AijBij; A; B 2 Lin.V /: (5)

If V is Rn, then Lin.V / is Rn�n, and it is isomorphic to Rn2 . Therefore a tensor
A in Rn�n can be written as a vector a, in Rn2 . Furthermore, the isomorphism is an
isometry, since ha;bi D hA;Bi ; where the first inner product is the natural inner
product of the vector space Rn2 , and the second inner product is the newly defined
inner product of Lin.V /D Rn�n.

A symmetric linear transformation A from V to V , can be defined from the
transpose of its corresponding 2nd order tensor, as A D AT , which in terms of
its components can be described by Aij D Aji. It is then possible to decompose a
2nd order tensor (or linear transformation) into its symmetric and skew-symmetric
parts by As D .A C AT /=2 and Aa D .A � AT /=2 respectively, such that
A D As C Aa.

Finally the space of symmetric linear transformations Sym.V / D fA 2
Lin.V /jA D AT g, forms a subspace of Lin.V /. Since, an nD symmetric 2nd order
tensor has n.n C 1/=2 independent coefficients, if V is Rn, then Sym.V / is
isomorphic to Rn.nC1/=2, and this mapping can be established in such a fashion
that it is also an isometry, just like in the case of Lin.V /, or has;bsi D hAs;Bsi,
for as;bs 2 Rn.nC1/=2 and As; Bs 2 Sym.V /. An example for such an isometric
mapping when n D 3, can be established between a symmetric 3D 2nd order tensor
B, and b, a vector or a 6D 1st order tensor:

b D ŒB11; B22; B33;
p
2B12;

p
2B13;

p
2B23�

T ; (6)

where Bij are the coefficients of B.
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2.2 Algebra of Fourth Order Tensors

The background for understanding the algebra of 4th order tensors is formed by the
definition of the inner product, the isometric mapping to vectors (1st order tensors)
of higher dimensions, and the symmetry properties, in particular Sym.V /, of the
space of 2nd order tensors or Lin.V /. In an analogous way, we will define 4th order
tensors as linear transformations from a vector space onto itself, define an inner
product for the vector space of these linear transformations, study their symmetries,
and establish an isometric mapping from the linear transformations to a vector space
of lower order and higher dimension, which will allow us to manipulate 4th order
tensors as 2nd order tensors.

The algebra of 4th order tensors can be described by proceeding in exactly the
way as done above for 2nd order tensors, but with Lin.V / as the vector space in
place of V . Let an nD 4th order tensor OA D A .4/ be defined as the n � n � n � n
transformation array of the linear transformation (summation over repeated indices
over their whole range):

A W Lin.V /! Lin.V /; st C! OA C D AijklCkl; C 2 Lin.V /: (7)

Since an inner product for Lin.V / exists, it can be used to define the transpose of
the linear transformation, with the transformation array OA T , as:

D
D; OA TC

E
D
D OA D;C

E
; 8C;D 2 Lin.V /: (8)

Again the space of linear transformations from Lin.V / to Lin.V / forms a vector
space, which can be called L in.V / D fA W Lin.V / ! Lin.V /g, and again the
transpose of A can be used to define an inner product on L in.V / (summation over
repeated indices over their whole range):

D OA ; OB
E
WD tr. OA T OB/ D AijklBijkl; OA ; OB 2 L in.V /: (9)

If V is Rn, then Lin.V / is Rn�n, and L in.V / is Rn�n�n�n, which is isomorphic to
Rn4 . Therefore an nD 4th order tensor can be written as a vector in Rn4 . However, of
greater interest is that L in.V / is also isomorphic to Rn2�n2 , which implies that an
nD 4th order tensor A can be written as an n2D 2nd order tensor A. Furthermore,

this isomorphism is also an isometry hA;Bi D
D OA ; OB

E
:

Symmetries of 4th order tensors present a richer set of possibilities than the
symmetry of 2nd order tensors, since a number of symmetries can be defined by
applying different “symmetry rules” on the four coefficient indices. Indeed, we shall
present the major symmetry, the minor symmetry and the total symmetry. Total
symmetry is, however, the symmetry of interest to us, which in the mathematical
approach to tensors is the definition of symmetry of a HOT, where the coefficients of
the HOT remain unchanged under any permutation of the coefficient indices. This is
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also the symmetry condition required by the diffusion HOT in GDTI, as implied by
its properties. However, this symmetry is best called total symmetry (or complete
symmetry), to differentiate it from the other possible symmetries that are derived
from physics and that carry important physical interpretations.

We shall, however, not present such physical interpretations here, but content
ourselves with counting the number of independent coefficients of a 4th order tensor
under the various symmetries. To do this we will require the formula for counting
the number of ways of choosingm elements from n elements without order and with

repetition (combination) Sm;n D
�
nCm � 1

m

�

:

Major symmetry of an nD 4th order tensor A is defined by the index symmetry
rule Aij;kl D Akl;ij. To count the number of independent coefficients of A , which
satisfies major symmetry, we consider the isometrically equivalent n2D 2nd order
tensor A, which has only two indices I D ij and J D kl . Therefore, major
symmetry of A can be translated as the index symmetry rule of A as OAIJ D OAJI ,
where OAo1o2 are the coefficients of A, which implies that A D AT . Therefore, the
number of independent coefficients of A , which satisfies major symmetry, is (M is
used to indicate major symmetry):

NM D
n2.n2 C 1/

2
: (10)

Note that major symmetry for A , corresponds to the regular notion of symmetry for
the 2nd order tensor A. Therefore, symmetry properties of A, such as decomposition
into a symmetric part and a skew symmetric part and eigen-decomposition, can
be attributed to the 4th order tensor A by isomorphism. Major symmetry also
corresponds to the notion of symmetry induced by the definition of the transpose
of a 4th order tensor, or a linear transformation from Lin.V / to Lin.V /.
Minor symmetry of an nD 4th order tensor A is defined by the index symmetry
rule Aij;kl D Aji;kl D Aij;lk. To count the number of independent coefficients of A ,
which satisfies minor symmetry, the index rule can be seen as first choosing 2 index
values fijg from n index values without order and with repetition, and then again
choosing 2 index values flkg under the same condition. However, since fijg and flkg
don’t swap, their mutual order is important. Therefore, the number of independent
coefficients of A , which satisfies minor symmetry is (M is used to indicate minor
symmetry):

NM D
�
nC 2 � 1

2

�2

D n2.nC 1/2
4

: (11)

The number of independent coefficients of an nD 4th order tensor with combined
major and minor symmetries can be computed by combining the reasonings of
the individual counts. First choose 2 index values fijg D I or flkg D J from n

index values without order and with repetition, which gives
p
NM . Then choose 2
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index values fIJg from these
p
NM index values without order and with repetition.

Therefore, the number of independent coefficients of A , which satisfies both major
and minor symmetries is:

N.MCM/ D
�p

NM C 2 � 1
2

�

: (12)

Total symmetry or just symmetry, is defined for an nD 4th order tensor A by the
index symmetry rule Aijkl D A�.ijkl/, where �.ijkl/ is any permutation of the indices
fijklg. This is the symmetry satisfied by any HOT in the GDTI model, which implies
from Eq. (3), that the number of independent coefficients for a 3D kth order GDTI
HOT is Nk . However, the number of independent coefficients of an nD 4th order
tensor A , which satisfies total symmetry can also be counted as the number of ways
of choosing 4 index values from n possible index values, therefore:

NT D
�
nC 4 � 1

4

�

: (13)

If we consider k D 4, it implies Nk D 15, and if we consider n D 3, it implies
NT D 15. This establishes the consistency between Nk and NT .

Any 4th order tensor A satisfying major and minor symmetries can be decom-
posed in a unique manner into a totally symmetric 4th order tensor A s and its
asymmetric part A a such that A D A s C A a. The coefficients of the totally
symmetric part and the asymmetric part can be computed from [15]:

Asijkl D 1
3

�
Aijkl C Aikjl C Ailkj

�

Aaijkl D 1
3

�
2Aijkl � Aikjl � Ailkj

�
:

(14)

These, along with the definition of the inner product between two 4th order tensors
can be used to show that hA s;Bai D tr.A sBa/ D 0:

These symmetries greatly reduce the number of independent coefficients of an
nD 4th order tensor from the total number of possible independent coefficients,
which is n4. Of particular interest are the 4th order tensors which satisfy both major
and minor symmetries. These form a subspace of L in.V /, called:

S ym.MCM/.V / D fA W L in.V /! L in.V /jA satisfies major & minor symmetriesg;
(15)

which is isometrically isomorphic to RN.MCM/ .
When n D 3, NM D 36, and N.MCM/ D 21. Therefore, S ym.MCM/.V /

is isomorphic to R21, which is the space of symmetric 6D 2nd order tensors. An
example of an isometric isomorphism that can be established in this case between a
3D 4th order tensor A.MCM/ and a 6D 2nd order tensor A is [19]:
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A D

0

B
B
B
B
B
B
B
B
B
@

Axxxx Axxyy Axxzz

p
2Axxxy

p
2Axxxz

p
2Axxyz

Axxyy Ayyyy Ayyzz

p
2Ayyxy

p
2Ayyxz

p
2Ayyyz

Axxzz Ayyzz Azzzz

p
2Azzxy

p
2Azzxz

p
2Azzyzp

2Axxxy

p
2Ayyxy

p
2Azzxy 2Axyxy 2Axyxz 2Axyyzp

2Axxxz

p
2Ayyxz

p
2Azzxz 2Axyxz 2Axzxz 2Axzyzp

2Axxyz

p
2Ayyyz

p
2Azzyz 2Axyyz 2Axzyz 2Ayzyz

1

C
C
C
C
C
C
C
C
C
A

; (16)

where Aijkl are the independent coefficients of A.MCM/. This map, along with the
map in Eq. (6), which transforms a symmetric 2nd order tensor to a vector or a 1st
order tensor, allows us to isometrically rewrite the effects of a linear transformation
A.MCM/ in S ym.MCM/.V / on a symmetric linear transformation Bs in Sym.V /,
as a matrix vector product when n D 3:

A.MCM/B
s D A.MCM/b

s; (17)
D
D s;A.MCM/B

s
E
D ds

T

A.MCM/b
s: (18)

However, since diffusion HOTs from the GDTI model have to satisfy total
symmetry, we are interested in the space of 3D 4th order tensors, which satisfy
total symmetry. These also form a subspace of L in.V /, called:

S ymT .V / D fA W L in.V /! L in.V /jA satisfies total symmetryg; (19)

which is isometrically isomorphic to R15, since NT D 15 when n D 3. Although
R15 corresponds to the space of symmetric 5D 2nd order tensors, the isometry to
symmetric 6D 2nd order tensors (Eq. (16)) can be modified to represent S ymT .V /,
with the added equalities:

Axxyy D AxyxyI Axxzz D AxzxzI Ayyzz D Ayzyz

Axxyz D AxyxzI Ayyxz D AxyyzI Azzxy D Axzyz:
(20)

Applying these equalities to A in Eq. (16), is equivalent to decomposing the
3D 4th order tensor A.MCM/, with major and minor symmetries, into its totally
symmetric part A s

.MCM/
[15]. In other words, an isometry from S ymT .V / to the

space of symmetric 6D 2nd order tensors can be established by considering the
totally symmetric part of the equivalent 3D 4th order tensor with only major and
minor symmetries.

The final isometry between S ymT .V / and the space of symmetric 6D 2nd order
tensors is the transformation that converts a 3D 4th order diffusion tensor from the
GDTI model to an isometrically equivalent symmetric 6D 2nd order tensor. This
allows us to use the Riemannian metric on the space of S ymC6 , to estimate the
4th order diffusion tensor with a positive diffusion profile.
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2.3 Estimating a SPD Fourth Order Diffusion Tensor

First we re-write the diffusion function in Eq. (2), which is written in terms of the
coefficients of the kth order tensor D .k/ and of the unit gradient vector g, in the
tensor terminology when k D 4:

D.g/ D ˝D .4/;G
˛
; where G D g˝ g˝ g˝ g (21)

D ˝B;D .4/B
˛
; where B D g˝ g (22)

D
D
b; ODb

E
D bT ODb; (23)

where D .4/ is the 4th order diffusion HOT in GDTI, G is a totally symmetric
4th order tensor computed from the outer products “˝” of the gradient vector,
similarly B is a symmetric 2nd order tensor computed from the outer products of
g, b is the vector form of B using the isometric map from Eq. (6), and OD is the
symmetric 6D matrix form of D .4/ using the isometric map from Eq. (16). The first
two equalities can be derived from the coefficients’ equation in Eq. (2), and the third
equality can be derived from Eqs. (17) to (18). Therefore, the diffusion signal from
the GDTI model (Eq. (2)) when k D 4, can be written in tensor form as:

S D S0 exp
�
�bbT ODb

	
: (24)

In this form, the problem of estimating the 4th order diffusion tensor D .4/, from the
signal, with a positive diffusion profile can be solved by estimating the 2nd order
tensor OD, from the signal, in S ymC6 .

The objective function we minimize to estimate OD from N diffusion weighted
images (DWIs) is the linearized form of the modified GDTI Stejskal-Tanner
equation:

E. OD/ D 1

2

NX

iD1

�
1

b
ln

�
Si

S0

�

C bTi ODbi

�2
: (25)

To estimate OD in S ymC6 , we have to consider the Riemannian manifold of S ymC6 ,
and the appropriate gradient descent in that manifold. These can be derived from the
details of the Riemannian framework presented in [10–13]. It requires computing
the gradient of E. OD/ in that manifold, which at every point in S ymC6 is defined
from the directional derivatives in the corresponding tangent plane.

The Riemannian gradient of E. OD/ at OD in the manifold S ymC6 is [13]:

rE. OD/ D OD
"

NX

iD1

�
1

b
ln

�
Si

S0

�

C bTi ODbi

�

� .bibTi /
#

OD: (26)
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This allows us to design the appropriate gradient descent algorithm, with step length
�, in the Riemannian manifold S ymC6 :

ODtC1 D OD
1
2
t exp

 

�� � OD 1
2
t

"
NX

iD1

�
1

b
ln

�
Si

S0

�

C bTi ODbi

�

� .bibTi /
#

OD 1
2
t

!

OD 1
2
t :

(27)

Minimizing the objective function E. OD/ in this way, it is possible to estimate OD in
S ymC6 from the diffusion signal. Since OD is isometrically equivalent to a 4th order
tensor D .4/ with major and minor symmetries, D .4/ is guaranteed to have a positive
diffusion profile. Finally we extract the totally symmetric part of D .4/ to compute
the totally symmetric 4th order GDTI diffusion tensor D .4/s , which is then also
guaranteed to have a positive diffusion profile.

3 A Ternary Quartic Approach for Symmetric Positive
Semi-definite Fourth Order Diffusion Tensors

In this section, we revisit the problem of estimating a symmetric higher order
Cartesian tensor with a positive diffusion profile from the GDTI model, using a
polynomial approach. In this approach we consider the polynomial interpretation of
HOTs instead of considering the algebra of HOTs, and look at a polynomial solution
to the positivity problem. In particular, we consider 4th order GDTI diffusion
tensors, where the diffusion function of such tensors can be seen as trivariate
homogeneous polynomials of degree 4 in the coefficients of the gradient vector.
Such polynomials are known as ternary quartics.

Polynomials form an alternate way of expressing the multi-linear form of HOTs.
This expression was indicated in the original GDTI paper [4], but was used for
applying the positivity constraint in [5]. To make the relationship between the
coefficients of a HOT and the coefficients of a homogeneous polynomial more
evident, the diffusion function of GDTI (Eq. (2)) was rewritten in [5] as:

D.g/ D
X

mCnCpDk
Dm;n;p g

m
1 g

n
2g

p
3 ; (28)

where Dm;n;p are the coefficients of the kth order tensor D .k/ by a re-arrangement
of the indices.

In this form, it is clear that the diffusion function, which was considered as the
projection of the of a kth order HOT on to a unit sphere, is a trivariate homogeneous
polynomial of degree k in the three coefficients of the unit gradient vector g D
Œg1; g2; g3�

T , where the coefficients of the polynomial are the coefficients of the
HOT. Since D.g/ is a homogeneous polynomial of even degree, the problem of a
positive diffusion profile on the unit sphere, D.g/ > 0; 8g 2 R3 st. jjgjj D 1,
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is equivalent to the problem of finding a polynomial D.x/ > 0; 8x 2 R3=f0g.
This is exactly the same equivalence that was used in DTI, where the problem of
positive diffusion from a second order tensor, gTDg > 0; 8g 2 S2, was recast as
the problem of finding a positive definite second order tensor, xTDx > 0; 8x 2 R3=

f0g, which entailed the Riemannian framework for S ymC3 . Therefore, in this section
we consider a method of estimating the coefficients of a positive polynomial from
the diffusion signal, to estimate a GDTI HOT with a positive diffusion profile.

3.1 Riemannian vs. Ternary Quartics: A Comparison

It is interesting to note at this juncture, when k D 4, how the Riemannian approach
presented in the previous section compares to the polynomial formulation. When
k D 4, the goal of the polynomial formulation, as we have just seen, is to find
a trivariate homogeneous polynomial of degree 4, D4.x/, where the coefficients of
the polynomial are the coefficients of the 4th order GDTI diffusion tensor D .4/, such
that:

D4.x/ > 0; 8x 2 R3=f0g: (29)

In comparison, the Riemannian approach, using an isometric map, tries to find a
symmetric 6D 2nd order tensor OD in S ymC6 :

cT ODc > 0; 8c 2 R6=f0g; (30)

where the coefficients of the totally symmetric 4th order GDTI diffusion tensor
can be extracted from the coefficients of OD. However, although, this quadratic form
resembles the diffusion profile from a totally symmetric 4th order tensor, bT ODb
(Eq. (23)), estimating OD in S ymC6 isn’t equivalent to the problem of computing a
4th order GDTI diffusion tensor D .4/, with a positive diffusion profile. This can be
seen from the isometrically equivalent inner product of the quadratic form:

˝
C;D .4/C

˛
> 0; 8C 2 S ym3=f0g: (31)

The positive diffusion profile constraint on the other hand only implies the condi-
tion:

˝
B;D .4/B

˛
> 0; where B D g˝ g; (32)

which can be seen in Eq. (22). Since the 2nd order tensor B in the diffusion profile
is only of rank-1, it is rank deficient, whereas in general the 2nd order tensor C,
in the quadratic form would include both full rank, and rank deficient tensors.
In other words, the positive quadratic form condition is much stronger than the
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positive diffusion profile constraint. Therefore, although the positive quadratic form
constraint would entail the positive diffusion profile constraint, the solutions found
from this approach – the Riemannian approach, would only belong to a subset of all
the solutions possible from only the positive diffusion profile constraint.

This can also be seen through examples, shown in [5, 6], by inspecting the
isometric map in Eq. (16) which transforms a 4th order tensor into a 2nd order
tensor. When this 6 � 6 matrix is positive definite it cannot represent valid totally
symmetric 4th order tensors whose homogeneous polynomials are of the type
P.g/ D ag41 C bg42 C cg43, or P.g/ D .ag21 C bg22/

2 C cg43, etc., because these
require the matrix to be semi-definite [6]. Since, the Riemannian framework pushes
such matrices away to an infinite distance from the estimation tensor OD, the solutions
found by the Riemannian estimation only form a subset of all possible solutions.

3.2 Hilbert’s Theorem on Non-negative Ternary Quartics

We now return to the problem of estimating a non-negative trivariate homogeneous
polynomial of degree k from the signal. A particular aspect of this problem has been
addressed in [20], which describes a framework for estimating symmetric GDTI
HOTs of any even order k and with a positive diffusion profile on a unit sphere.
This paper proposes that any polynomial (the GDTI HOTs) that is non-negative on
a unit sphere can be written as sums of squares of polynomials of lower order:

P .k/.x/ D
MX

iD1
Q
.k=2/
i .x/; (33)

where k is even,P .k/.x/ denotes a multi-variate polynomial of degree k, fQ.k=2/
i .x/g

denote M multi-variate polynomials of degree k=2, and only an upper bound is
known for M . Therefore, in [20], the authors propose to estimate the coefficients of
the polynomials Q.k=2/

i .x/ from the signal to estimate a polynomial P .k/.x/ (or a
GDTI HOT) with a non-negative diffusion profile.

SinceM is not known exactly, the authors in [20] proceed by oversamplingM , or
rather densely sampling the space of possible polynomials of lower orderQ.k=2/

i .x/.
It is claimed that increasing the density of the sampling increases the accuracy of
the decomposition of P .k/.x/. However, it also increases the number of unknown
coefficients of the set fQ.k=2/

i .x/g, which need to be estimated from the signal. The
authors then propose heuristically measured approximationsM 0 forM , for different
values of k, from tests on synthetic data.

The problem of estimating non-negative trivariate polynomials when k D 4,
or of estimating non-negative ternary quartics, presents a very interesting problem
with a “complete” solution. In the case of ternary quartics, it can be shown that
the entire space of non-negative polynomials over entire R3 (and not only over the
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unit sphere), can be described by the sum of squares of quadratic polynomials.
Examples in [21] of non-negative polynomials of degree k > 4 that cannot be
written as sums of squares of lower order polynomials indicate that not all non-
negative polynomials of arbitrary degree k can be decomposed into sums of squares
of lower order polynomials. Hilbert’s theorem, which identifies all the classes of
non-negative multi-variate polynomials that can be always decomposed as sums of
squares of lower order polynomials is also presented in [21].

In fact, Hilbert’s theorem states that degree 4 trivariate polynomials that are non-
negative and homogeneous, can always be written as a sum of squares of quadratic
homogeneous polynomials, where the number of terms in the sum is also known
and is exactly three (M D 3) [21]:

Theorem (Hilbert): If P.x; y; z/ is homogeneous, of degree 4, with real
coefficients and P.x; y; z/ � 0 at every .x; y; z/ 2 R3, then there are quadratic
homogeneous polynomials f; g; h with real coefficients, such that:

P D f 2 C g2 C h2: (34)

All other classes of non-negative polynomials that can be decomposed into sums of
squares of lower order polynomials are all of degree less than four [21].

In this section, we, therefore, turn to Hilbert’s theorem on non-negative, or
positive semi-definite (PSD) ternary quartics, for a parameterization of the GDTI
HOT when it is of order 4, to estimate diffusion HOTs with a non-negative diffusion
profile. Since such tensors are symmetric and non-negative, these are known as
symmetric positive semi-definite (SPSD) tensors. Based on Hilbert’s theorem, [5]
and [6] have proposed two different parameterizations of the 4th order tensor.
A third parameterization was proposed in [22]. In this chapter, we review all three
parameterizations, but follow through mainly with the method in [22].

As a final remark, we note that by adopting the polynomial formulation for the
GDTI HOT, we have gained over the Riemannian framework proposed in the previ-
ous section from the fact that we address the exact problem of estimating a diffusion
HOT with a positive diffusion profile, whereas the Riemannian approach addressed
a more constrained problem. However, given the results on polynomials, namely
Hilbert’s theorem on ternary quartics, we concede to the Riemannian approach by
the fact that we can only address the problem of a non-negative diffusion profile
with the polynomial formulation, whereas the Riemannian approach addressed
the positive definite diffusion profile constraint. However, we shall consider this
a “negligible” loss, since in practice, due to numerical computations, we have never
come across a diffusion profile that is exactly zero even along a single direction.

3.3 Estimating a SPSD Fourth Order Diffusion Tensor

The basic approach behind all three “ternary quartic” methods, [5, 6, 22], is the
same. The idea is to consider the diffusion profile of a 4th order GDTI tensor as
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a homogeneous trivariate polynomial in the coefficients of the gradient vector g
(Eq. (28)), and to apply Hilbert’s theorem on non-negative ternary quartics to rewrite
it as a sum of squares of three quadratic homogeneous polynomials. Therefore, by
estimating the coefficients of these quadratic homogeneous polynomials from the
signal, it is possible to reconstruct the 4th order diffusion tensor by computing its
coefficients from the coefficients of the quadratic forms, a process also known as
the Gram-matrix approach [5, 23], such that the estimated 4th order tensor has a
PSD diffusion profile. The three methods differ from each other in the way they
parameterize the quadratic homogeneous polynomials to estimate their coefficients
from the diffusion signal.

In [5], the diffusion profile of a 4th order GDTI tensor is written as:

D.g/ D .vT c1/2 C .vT c2/2 C .vT c3/2; (35)

D vTCCT v; (36)

D vTGv; (37)

where v D Œg21; g
2
2; g

2
3; g1g2; g1g3; g2g3�

T contains the monomials formed by the
coefficients of the gradient vector g, vT ci are the three quadratic forms from
Hilbert’s theorem, and G is known as the Gram matrix. The column vectors ci
contain the coefficients of the quadratic forms, which have to be estimated from
the signal, C D Œc1jc2jc3� is a 6 � 3 matrix, which assembles these coefficients to
compute the rank deficient or PSD 6�6 Gram matrix, which is used to compute the
coefficients of the 4th order diffusion tensor from the coefficients of the quadratic
forms.

The authors in [5] use the Eq. (36) to parameterize the ternary quartic decomposi-
tion by Hilbert’s theorem, and estimate C from the DWIs, and compute the 4th order
tensor from G. However, this parameterization is problematic since it produces
an infinite solution space, which can be seen by decomposing C into two blocks
C D ŒA;B�T where A and B are 3� 3 matrices. Then CO, for any 3� 3 orthogonal
matrix O, also results in the same Gram matrix, since CO.CO/T D CCT D G. In
other words, in this parameterization, C is unique only up to the equivalence class
of orthogonal matrices O.3/.

In [5], the authors overcome this degenerate subspace issue by considering the
QR-decomposition (or RQ-decomposition) of the 3 � 3 submatrix A of C, where
Q is an orthogonal matrix and R is an upper triangular matrix. This implies that
C D ŒRQ;B�T D ŒR;BQT �TQ. Therefore, CCT D ŒR;BQT �TQ � QT ŒR;BQT � D
ŒR;BQT �T � ŒR;BQT �, which effectively quotients out the orthogonal group from
the computation of the Gram matrix G.

In [6], the authors overcome this same issue in Eq. (36) by applying certain
constraints on C from the properties of the Gram matrix, to remove the ambiguity of
the class of orthogonal matrices O.3/. Since the rank of the Gram matrix is known
a priori from Hilbert’s theorem to be three, they identify and isolate the positive
definite part of the PSD Gram matrix using a modified Iwasawa decomposition [24],
which is then parameterized uniquely by a Cholesky decomposition. In other words,
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they first collect the rank-3 positive definite part of G into a 3 � 3 matrix W, and
then decompose W using a Cholesky decomposition as W D LLT . This effectively
equates the 3 � 3 matrix A, from the paragraph above, where C D ŒA;B�T , to
the triangular matrix with positive diagonal elements L. In short, this procedure
determines a unique C in the infinite space of solutions fCOg from the previous
approach, and removes the ambiguity of the class of orthogonal matrices O.3/.
Therefore, the authors in [6] effectively estimate C D ŒL;B�T from the DWIs.
Furthermore, the Cholesky decomposition also distinguishes C from �C, although
both result in the same Gram matrix. The authors then use this uniqueness property
of C to design a spatial regularization of the field of estimated 4th order diffusion
tensors.

Finally, we follow up in greater detail the third parameterization [22] using
the ternary quartic decomposition. Essentially, using Eq. (35) to parameterize the
Hilbert decomposition, we estimate the ci directly from the DWIs and assemble
these afterward to reconstruct C. From there we follow the same procedure as the
two other methods, and reconstruct the Gram matrix and compute the coefficients
of the 4th order diffusion tensor.

From Hilbert’s theorem on non-negative ternary quartics we write the diffusion
function of a 4th order diffusion tensor as D.g/ D  2

1 .g/C 2
2 .g/C 2

3 .g/, where:

 i.g/ D aig21 C big22 C cig23 C 2˛ig1g2 C 2ˇig1g3 C 2�ig2g3; (38)

D Œai ; bi ; ci ;
p
2˛i ;
p
2ˇi ;
p
2�i � (39)

�Œg21; g22; g23;
p
2g1g2;

p
2g1g3;

p
2g2g3�

T ; (40)

D xTi v (41)

are the quadratic forms. Note that we have modified the form of the vector v by
multiplying certain terms by

p
2 , this is a minor difference in the notation

convention from [5,6]. Each quadratic form is known if its six unknown coefficients
in xi can be estimated from the DWIs. Therefore, the diffusion profile can be written
as a function of the unknowns to be estimated as:

D.x1; x2; x3/ D xT1 vvT x1 C xT2 vvT x2 C xT3 vvT x3; (42)

D ŒxT1 ; xT2 ; xT3 �
2

4
vvT 0 0

0 vvT 0
0 0 vvT

3

5

2

4
x1
x2
x3

3

5 (43)

D XTVX: (44)

To estimate the unknown coefficients xi of the homogeneous quadratic forms
from a set of DWIs, we minimize the objective function based on the modified and
linearized Stejskal-Tanner equation:
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E.X/ D 1

2

NX

iD1

�
1

b
log

�
Si

S0

�

C XTViX
�2
; (45)

whereN is the number of DWIs and Vi corresponds to the monomials from the gra-
dient direction gi . Although here we use the linearized form of the Stejskal-Tanner
equation, it is equally possible to use the non-linear form. The gradient of the
objective function with respect to the unknowns X is computed to be:

rE.X/ D
NX

iD1

�
1

b
log

�
Si

S0

�

C XTViX
�
�
Vi C VT

i

�
X: (46)

We use the well known Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [25], a
sophisticated quasi-Newton optimization algorithm for non-linear problems.

Finally we compute the 15 independent coefficients Aijkl of the 4th order tensor
A .4/ from the coefficients of the Gram matrix G, by using Eq. (37), which equates
D.g/, the multi-linear form of A .4/, to the quadratic form of the Gram matrix.
We use a mapping very similar to the one presented in [5, 23], where the inverse
mapping, i.e. G in terms of Aijkl is given by:
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(47)

where fa; b; c; d; e; f g are six free parameters that determine the rank of the matrix.
In this case, since the rank of G is known to be three, the free parameters are
determined from the construction of the Gram matrix, i.e. G D CCT . Therefore
these can be used to compute the coefficients Aijkl.

In comparison to the approach in [6], since we estimate all the coefficients
of the three quadratic forms without any constraints, in effect we estimate 18
unknowns from which we recover the 15 unknowns of the 4th order diffusion tensor.
This actually leaves us three degrees of freedom that can be applied as suitable
constraints. Also this approach doesn’t distinguish between C and �C. However,
since we only deal with the estimation problem of the 4th order diffusion tensor,
this isn’t important, since both C and �C give the same Gram matrix, and hence the
same 4th order tensor. But if such were desired, the three degrees of freedom could
be explored, to distinguish between C and �C.
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4 Experiments and Results

4.1 Synthetic Dataset

We conduct experiments on three datasets. First we consider a synthetic dataset
based on a multi-tensor model (to represent multi-fiber crossings). For a single
fiber profile we use the diagonal tensor D D diag.1;700; 300; 300/ � 10�6 mm2/s
and generate synthetic signals at a b-value of 3,000 s/mm2. We estimate 4th order
HOTs using the Riemannian and the “Ternary Quartic” (TQ) approaches and plot
their ADCs. Further, since the maxima of the ADCs don’t correspond to the fiber
directions, we also compute the diffusion ensemble average propagators (EAPs)
P.r/ D R

.Si .q/=S0/ exp
��2�iqT r

�
dq, from the estimated 4th order tensors

[26, 27].
We visually compare the Riemannian approach, which guarantees a positive

definite diffusion profile but solves a more constrained problem, to the Ternary
Quartic approach, which guarantees only a positive semi-definite diffusion profile
but solves the problem in the correct space. The diffusion profiles of the estimated
4th order GDTI tensors and the EAPs computed thereof are presented in Fig. 1. We
notice that the ADCs and the EAPs of the Ternary Quartic approach are somewhat
sharper than the Riemannian counterparts. We surmise that this is due to the fact
that the Riemannian approach cannot estimate certain types of 4th order tensors that
can have non-negative diffusion profiles, since these tensors require to have a semi-
definite representation in the symmetric 6D 2nd order tensor formulation used by
the Riemannian estimation. Such semi-definite 6D 2nd order tensors are, however,
pushed to an infinite distance from the estimation tensor by the Riemannian metric.
Nonetheless, the overall angular structure of the two methods remain comparable.

4.2 Biological Phantom Dataset

Next we conduct an experiment on a biological phantom data that was produced
from excised rat spinal cords. Only two cords were used to create a fiber crossing
configuration with known physical directions. The biological phantom [28] was
created at the McConnell Brain Imaging Center (BIC), McGill University, Montréal,
Canada. MR images were acquired on a 1.5T Sonata MR scanner using a knee coil.
It was created from two excised Sprague-Dawley rat spinal cords embedded in 2 %
agar. The acquisition was done with a single-shot spin-echo planar sequence with
twice-refocused balanced gradients, designed to reduce eddy current effects. The
dataset was acquired with 90 gradient directions, on a single q-shell with a b-value
of 3,000 s/mm2, q D 0:35 �m�1, TRD 6.4 s, TED 110 ms, FOV 360 � 360mm2,
128 � 128 matrix, 2.8 mm isotropic voxels and four signal averages per direction.
The SNR of the S0 image was estimated to be approximately 70 for the averaged
phantom, and around 10 for the cord at b-value of 3,000 s/mm2.
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Fig. 1 Synthetic dataset. Comparing the diffusion profiles and the EAPs from the Riemannian
approach and the Ternary Quartic approach. (a) ADC Riemannian. (b) ADC Ternary Quartic.
(c) EAP Riemannian. (d) EAP Ternary Quartic. The Riemannian approach guarantees positive
diffusion, but solves a more constrained problem. The Ternary Quartic approach guarantees only a
positive semi-definite diffusion, but solves the problem in the correct space

In this experiment we estimate 4th order GDTI diffusion tensors from the
phantom dataset using both the Riemannian approach and the TQ approach. We
then compute the EAPs from the tensors using the methods in [26,27] to validate the
coherence of their geometry with the known layout of the phantom and to see if it is
possible to infer the underlying fiber bundle directions. For the sake of comparison
we also present the result of the orientation distribution function (ODF) computed
from the analytical q-ball estimation technique in [29], which is an angular marginal
distribution of the true and unknown EAP under a mono-exponential decay model
that corresponds to the GDTI model. The ODFs were directly estimated from the
signal.

The results are presented in Fig. 2. The geometry of the EAPs computed from the
4th order tensors estimated using both the methods are coherent with the underlying
phantom model, and also agree with the geometry of the ODFs. It is interesting
to note that since the ODFs are angular marginal distributions of the true EAPs,
the radial information of the true EAPs has been marginalized out by a radial
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Fig. 2 Biological phantom dataset. (a) The layout of the phantom created using two excised rat
spinal cords. (b) ODFs estimated from the signal as reference geometry. (c) EAPs computed from
4th order tensors estimated using the Riemannian approach. (d) EAPs computed from 4th order
tensors estimated using the Ternary Quartic approach. The EAPs were evaluated at the constant
probability radius of jrj D 17 �m

integration. Therefore, although the ODFs’ angular structures resemble the angular
structures of the EAPs computed from the 4th order tensors, the ODFs do not reveal
anything about the magnitude of diffusion due to the heterogeneous structure of the
underlying tissue. This is visible in the EAPs computed from the tensors from the
size or volume of the displacement probability at a constant displacement radius.
Also, by comparing (c) and (d) in Fig. 2, again the EAPs from the TQ method look
sharper than the Riemannian counterparts.

4.3 In Vivo Human Dataset

Finally we conduct experiments on an in vivo human cerebral dataset. This dataset
was acquired on a 1.5T scanner using 41 gradient directions, with a b-value of
700 s/mm2 with TRD 1.9 s, TED 93.2 ms, 128 � 128 image matrix, 60 slices, with
voxel dimensions of 1:875 � 1:875 � 2mm. This dataset is from a public HARDI
database that can be found in [30].
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Table 1 Real dataset. The estimated diffusion functions from 249,352, 4th order GDTI tensors
checked for positive diffusion profile on a set of 81 pairs of directions distributed evenly on
a sphere. The Ternary Quartic and the Riemannian approaches are the only methods, which
guarantee positive diffusion

(81 dirs) LS SH RM TQ

Positive 181,757 249,263 249,352 249,352
Negative 67,595 89 0 0

We consider two regions of interest (ROIs) with 249,352 and 987 voxels
respectively. For the 249,352 voxels we compute the diffusion profiles of the tensors
and test for positive/non-negative diffusion along 81 directions distributed evenly on
a hemisphere. For the 987 voxels we compare the estimation time of the methods,
since the positivity constraint implies increased computational complexity.

For the positive/non-negative diffusion experiment, we test four approaches. First
we consider the standard Euclidean least squares approach (LS). Then we also test a
method based on spherical harmonics (SH). Since SHs of the same rank are bijective
to Cartesian tensors of the same order, we first estimate real and symmetric SHs of
rank 4 from the signal and then transform them to the tensor basis to obtain 4th order
HOTs. And finally we consider the two proposed methods of this chapter, namely
the Riemannian approach and the TQ approach. The LS approach and the SH to
HOT approach don’t consider any constraints, although the SH approach includes
Laplace-Beltrami regularization [31] to account for some signal noise.

The results of this experiment are displayed in Table 1. The Riemannian (RM)
approach and the TQ approach are the only two that estimate 4th order diffusion
tensors with positive diffusion profiles. The LS approach, as known, estimates
tensors with lots of negative diffusion directions. Although the SH to HOT method
includes regularization, clearly that is insufficient to guarantee positive diffusivity.
Positive diffusivity is only achieved when it is applied explicitly by either the
Riemannian approach or the TQ approach. In this experiment, we also tested for zero
diffusion and found that both the Riemannian method and the TQ method always
estimated tensors with strict positive diffusion profiles. Although the TQ method
only applies a non-negative constraint, clearly due to numerical computations it is
highly improbable to estimate tensors with exactly zero diffusion.

Although, the positivity constraint, applied using either the Riemannian approach
or the TQ approach, clearly performs well, it also implies an added computational
load. To get an idea of the additional computational complexity, we compare the
estimation time of the two – Riemannian & TQ – approaches with the standard
and linear LS approach on an ROI of the in vivo dataset with 987 voxels. The
estimation times are displayed in Table 2. The computations were conducted on
a Dell D630 Latitude laptop with Intel(R) Core(TM)2 Duo CPU @ 2.20 GHz and
2 GB RAM. The linearity and efficiency of the LS method is in fact one of its main
supporting factors. However, the increased estimation time due to the complexity of
the positivity constraint is still tractable.
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Table 2 Real dataset. Comparison of the time for estimating 987, 4th order diffusion tensors that
are visualized in Fig. 3.

(987 tensors) LS Rm TQ

Estimation 6s 35s 102s

Fig. 3 In-vivo human cerebral dataset. Effects of the non-negative and the positive definite
constraints that are guaranteed by the Ternary Quartic approach and the Riemannian approach
are evaluated on the EAPs computed from the estimated tensors. EAPs computed from tensors
estimated using the Euclidean LS approach, which doesn’t consider any constraints, are shown for
comparison. No spatial regularization was used. The improvement in the results is only due to the
non-negativity constraints

Finally, we conclude the experiments, by computing the EAPs from tensors
estimated using both the Riemannian method and the TQ method from the in vivo
human dataset (using [26,27]). For comparison we include the EAPs computed from
tensors estimated using the LS method (using [26, 27]). The results are presented
in Fig. 3, where a region of interest on an axial slice is shown. What stands out
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prominently from Fig. 3 is the increased spatial regularity in the results of the
Riemannian and the TQ methods when compared to the LS method. However,
no spatial regularization was used. Only the positivity constraint was employed,
using the two methods, for estimating the 4th order tensors. Clearly, the positivity
constraint renders the estimation of the tensors much more robust to signal noise
and improves the results. This indicates the importance of the positivity constraint.

5 Discussion and Conclusion

In this chapter we considered the problem of estimating 4th order diffusion tensors
with a positivity constraint from the GDTI model. In GDTI Cartesian tensors of
order higher than two were used to attain greater accuracy in the modeling of
complex shaped ADCs. GDTI HOTs of order k were assumed to be symmetric
since only their projections along vectors were used in the ADC modeling, and
were assumed to be of even order since negative diffusion is non-physical. However,
in spite of this design, the standard method for estimating GDTI HOTs from the
signal, namely the least squares approach doesn’t guarantee an estimated HOT with
a positive diffusion profile. Least squares estimation, although linear and efficient
can result in HOTs with negative diffusion profiles.

We reviewed two different approaches for estimating 4th order GDTI diffusion
tensors with positive diffusion profiles and non-negative diffusion profiles respec-
tively. In the first method, we considered the algebra of 4th order tensors to map
symmetric 3D 4th order tensors to symmetric 6D 2nd order tensors. We then applied
the Riemannian framework for the space of S ymC6 , to estimate 4th order diffusion
tensors with strictly positive or positive definite diffusion profiles. In the second
method, we considered the polynomial interpretation of the multi-linear form of
HOTs, to reformulate the problem of estimating a HOT as a problem of estimating a
polynomial. In the case of 4th order diffusion tensors, we were able to use Hilbert’s
theorem on non-negative ternary quartics to parameterize 4th order tensors as a sum
of squares of quadratic forms. By estimating the coefficients of the quadratic forms,
we were able to reconstruct 4th order diffusion tensors with non-negative diffusion
profiles from the signal.

The Riemannian method we proposed, ensures a positive definite diffusion
profile, but solves a problem more constrained than implied by the model. This can
be understood from the fact that the 3D 4th order tensors were estimated in S ymC6 ,
as 6D 2nd order tensors, which implies that the Riemannian method ensures that the
multi-linear form of the 4th order tensor is positive definite for all symmetric 3D
2nd order tensor. However, the GDTI model requires that the multi-linear form of
the 4th order tensor needs to be positive definite for only 3D 2nd order tensors of
maximal rank one. Therefore, the Riemannian method ensures a positive diffusion
profile, but the solution space is more constrained than the true solution space.

The second method we proposed – the Ternary Quartic method solves the
problem in the correct space due to the appropriate polynomial parameterization.
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However, since the known polynomial results, i.e. Hilbert’s theorem on ternary
quartics, only guarantee non-negativity, this method considers a theoretically
weaker problem of a positive semi-definite diffusion profile. But this method also
uses the Euclidean metric, which, as has been suggested in [7], is perhaps better
suited for computing with diffusion data than the affine invariant Riemannian metric.

From the implementation and the results, we found that the shape of the ADCs
and EAPs computed from tensors estimated using the Riemannian method to be
similar to the shape of the ADCs and EAPs computed from tensors estimated using
the Ternary Quartic method. We did, however, remark a swelling in the shapes
of the tensors estimated using Riemannian method, which we suspect was the
result of the over constraint. A more detailed analysis is, therefore, necessary to
identify the sub-space spanned by the Riemannian approach, and also to quantify
the impact of this sub-space on the estimated results. Finally, in the tests for negative
diffusion profiles, we never came across zero diffusion from tensors estimated using
the Ternary Quartic method, which is probably due to numerical computations.
Therefore, we concluded that the concession of the weaker non-negativity constraint
to be negligible in practice.

We conducted tests on a biological phantom with a known layout to evaluate
whether it was possible to infer the underlying fiber directions from the geometry of
the EAPs computed from the tensors estimated using the two approaches. Our exper-
iments indicated that this could be answered in the affirmative and that the geometry
of the EAPs computed from the tensors estimated using the Riemannian framework
and the Ternary Quartic approach could reveal the underlying fiber directions.
We also experimented on in-vivo human cerebral data using both the Riemannian
framework and the Ternary Quartic approach to motivate the need for a positive
or non-negative diffusion profile constraint. The experiments clearly indicated the
gains of applying such constraints. Finally, we also presented the computation time
to evaluate the increased complexity, and found this to be tractable.
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Riemann-Finsler Geometry for Diffusion
Weighted Magnetic Resonance Imaging

Luc Florack and Andrea Fuster

Abstract We consider Riemann-Finsler geometry as a potentially powerful math-
ematical framework in the context of diffusion weighted magnetic resonance imag-
ing. We explain its basic features in heuristic terms, but also provide mathematical
details that are essential for practical applications, such as tractography and voxel-
based classification. We stipulate a connection between the (dual) Finsler function
and signal attenuation observed in the MRI scanner, which directly generalizes
Stejskal-Tanner’s solution of the Bloch-Torrey equations and the diffusion
tensor imaging (DTI) model inspired by this. The proposed model can therefore
be regarded as an extension of DTI. Technically, reconstruction of the (dual)
Finsler function from diffusion weighted measurements is a fairly straightforward
generalization of the DTI case. The extension of the Riemann differential geometric
paradigm for DTI analysis is, however, nontrivial.

1 Introduction

Diffusion weighted magnetic resonance imaging (dwMRI) has become a standard
MRI technique for in vivo imaging of apparent water diffusion processes in fibrous
tissue (for an introductory tutorial, cf. Hagmann et al. [1]). Clinical use of dwMRI
is hampered by the fact that radically new approaches and abstract representations
are required for its analysis. Examples are rank-2 symmetric positive-definite tensor
representations in diffusion tensor imaging (DTI), pioneered by Basser, Mattiello
and Le Bihan et al. [2–8] and explored by many others [9–20], higher order fully
symmetric tensor representations [21–27] and spherical harmonic representations in
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high angular resolution diffusion imaging (HARDI) [28–32], and SE.3/ Lie group
representations [33–35].

In this chapter we concentrate on an extension of the Riemannian paradigm
[16, 36], used in the context of DTI, in order to account explicitly for the
unconstrained number of local directional degrees of freedom of general dwMRI
representations. Riemann-Finsler geometry appears to be ideally suited for this
purpose, as has already been hinted upon in earlier work [22, 37–41]. However,
foregoing work is either driven by heuristics or merely scratches the surface
of Riemann-Finsler geometry. For instance, no rigorous connection between the
pivotal Finsler function and the physics of dwMRI acquisition has yet been
proposed.

More specifically, Melonakos et al. [41] have pioneered Finsler geometry in the
context of contours, only briefly touching upon application in dwMRI. Astola et
al. [37–40] have applied Finsler geometry, and in particular geodesic tractography,
to dwMRI using a fully symmetric fourth order tensor model. Florack et al. [22]
have proposed a tensor representation of arbitrary order, discussing operational
issues such as spatial and angular regularization. The Cartan geometric approach
developed by Duits et al. [33–35] likewise appears intimately related to the theory
outlined in this chapter. In all of the above cases the exact connection between
Riemann-Finsler geometry and dwMRI is deemphasized, while applications are
typically limited to contour detection or tractography.

Our primary goal is to provide a generic model for dwMRI, with potential
applications beyond tractography, which manifestly incorporates the Riemannian
paradigm for DTI as a limiting case. Secondly, we wish to convey the gist of
Riemann-Finsler geometry without dodging mathematical details that are necessary
for algorithmic implementation. This does not imply that our treatment of the
subject will be self-contained; for a thorough understanding one will find it
necessary to consult additional sources. The books by Bao et al. [42] and Rund
[43] are especially recommended. Shen and Mo provide additional insight [44, 45].
We hope that our overview will encourage researchers to further contribute to
a systematic study and practical application of Riemann-Finsler geometry in the
context of dwMRI (and elsewhere).

Riemann-Finsler geometry has its roots in Riemann’s “Habilitation” [46]. Rie-
mann focused on a special case, nowadays known as Riemannian geometry.
Important (pseudo-Riemannian) application areas, such as Maxwell’s theory and
Einstein’s theory of general relativity, greatly contributed to its popularity. The
general case was taken up by Finsler in his PhD thesis [47], and subsequently by
Cartan [48] (who was the first to refer to it as “Finsler geometry”), and others.

Although potentially much more powerful, Riemann-Finsler geometry has not
yet become nearly as popular as its Riemannian counterpart. To some extent this
may be explained by its rather mind-boggling technicalities and heavy computa-
tional demands. This should no longer withhold practitioners in our technological
era, for both symbolic as well as large-scale numerical manipulations can be readily
performed on state-of-the-art computers. Progress in enabling technologies, such as
compressed sensing for fast imaging [49], are also likely to contribute to practical
feasibility of dwMRI, yet we believe that the major hurdle is still methodological.
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2 Theory

2.1 Diffusion Weighted MRI

Recall the Stejskal-Tanner signal attenuation formula in the spin-echo experiment
on spin diffusion in an isotropic medium [50] (cf. also [51–55]):

ln
A.2�/

A.0/
D ��2Dı2.� � 1

3
ı/G2 ; (1)

in which � is the gyromagnetic ratio of hydrogen, ı the duration of a diffusion-
sensitizing gradient pulse (with ı < � ), � the time between a pair of balanced
gradient pulses, and G the gradient magnitude. The echo occurs at time 2� after the
onset of the first gradient pulse, and the formula represents the relative signal loss
due to diffusion of water molecules over a time interval � between the 90ı pulse and
the 180ı pulse, a process characterized by the diffusion coefficient D. The positive
factor by which D is multiplied on the right hand side of the above expression is
known in the trade as the “b-factor” (an allusion to Le Bihan): b � �2ı2.�� 1

3
ı/G2.

Brain white matter consists mostly of water (>70%), but diffusion turns out to be
anisotropic as a result of its fibrous architecture, facilitating diffusion along axonal
fibers relative to transverse directions. The Stejskal-Tanner experiment inspired
Moseley, Basser, Le Bihan, and others, [2–8] to capture this anisotropy in terms
of a symmetric positive definite rank-2 diffusion tensor (with components Dij,
i; j D 1; 2; 3, relative to a coordinate basis) as opposed to the scalar D. This
technique is the basis of diffusion tensor imaging (DTI).

In order to connect to the mathematical notation in the remainder of this chapter
we will denote the signal as a function of position x and the applied normalized
diffusion-sensitizing gradient q D �ıG:

S.x; q; ��/ D S0.x/ exp
����H2.x; q/

�
: (2)

Here �� denotes a time constant related to � and ı (in Stejskal-Tanner’s scheme
we have �� D � � ı=3, cf. Sinnaeve [55] for alternative schemes and associated
time constants). Furthermore, the so-called Hamiltonian1 H.x; q/ generalizes the
quadratic form encountered in the DTI case, in which it assumes the form2

H2
DTI.x; q/ D Dij.x/qiqj : (3)

1We neglect, but do not a priori exclude, a mild dependence of H.x; q/ on ��.
2We use Einstein’s summation convention throughout, i.e. explicit summation symbols, such as
P3

i;jD1 on the r.h.s. of Eq. (3), are suppressed for pairs of identical upper and lower indices.
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In general, H.x; q/ ¤ HDTI.x; q/, but a strong analogy with DTI remains in the
form of a homogeneity condition3 in q-space, viz. we shall require that

H2.x; q/ D Dij.x; q/qiqj ; (4)

in which the coefficients are zero-homogeneous, i.e.

Dij.x; �q/ D Dij.x; q/ (5)

for all � ¤ 0. This expresses our hypothesis that ln.S.x; q; ��/=S0.x// scales
quadratically in the magnitude of the diffusion-sensitizing gradient, but, unlike DTI,
is not necessarily a quadratic form. This assumption is approximately correct for
certain ranges of .q; ��/, and encompasses the validity domain of DTI.

By virtue of homogeneity and mirror symmetry one may, in Eq. (5), think of q as
a point on the projective plane, or on the unit sphere with antipodal points identified.
Homogeneity also implies that the “highly anisotropic” diffusion tensor Dij.x; q/

does not in fact—within the domain of validity of our extended model—depend
on acquisition details, such as the magnitude of the applied gradients. That is, it
is intended to capture tissue intrinsic properties (probed along a certain direction),
just like the classical, “mildy anisotropic” diffusion tensor Dij.x/. (This does not
hold for H.x; q/ and some related functions that will be introduced below, which
do depend on the magnitude of q, and thus on the entire experimental setup.)

Note that the number of degrees of freedom contained in the DTI tensor
coefficients Dij.x/ at any given point x equals 6 (the number of independent
components of a symmetric 2-tensor in 3 dimensions), whereas there are, a priori,1
degrees of freedom inDij.x; q/, one for each position in space and each point on the
projective plane. Also note that Eq. (2) relies on a mono-exponential signal decay; in
this sense it “naturally” extends DTI. It complements alternative DTI refinements,
such as multi-compartment models [56]. Our homogeneity condition,

H.x; �q/ D j�jH.x; q/ for all � 2 R, (6)

also distinguishes our model from diffusional kurtosis imaging (DKI), cf. [57].
(A comparison of our model with these models as well as other, HARDI-like
schemes, in relation to their respective validity domains, remains to be made.)

2.2 The Riemannian Paradigm

The Riemannian paradigm was introduced by O’Donnell et al. [36] and by Lenglet
et al. [16] in the context of DTI. In its original formulation it identifies the diffusion

3A function f .z/ is called homogeneous of degree r if it satisfies f .�z/ D �rf .z/ for all � > 0.
According to Euler’s theorem such a function obeys the first order partial differential equation
zi @f .z/=@zi D rf .z/.
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tensor Dij.x/, recall Eqs. (2) and (3), up to a constant proportionality factor, with
the dual (or inverse) Riemann metric tensor gij.x/:

��Dij.x/ D gij.x/ : (7)

This defines a Riemannian manifold in which a relatively increased directional
diffusion observed along some curve is tantamount to a shortening of Riemannian
path length. In this way the problem of tractography can be restated as the problem
of finding certain4 shortest paths (via geodesic equations), or related to level set
methods for distance functions induced by geodesic congruences (via Hamilton-
Jacobi equations). The motivation for Eq. (7) is heuristic, cf. [58, 59] for conformal
adaptations of the metric, arguing for a nontrivial local scaling factor.

Due to its limited angular resolution DTI can only handle mild anisotropies that
are believed to be induced by “single fiber coherence”, i.e. a local alignment of
axonal fibers forcing anisotropy to be more or less axially symmetric, with one dom-
inant diffusion eigenaxis along the fibers (and two minor eigenaxes perpendicular to
the fibers). Due to complex fiber architecture in significant parts of the brain, such
as fiber crossings, observed diffusivity patterns are highly anisotropic, rendering
the DTI hypothesis invalid in such cases. On the positive side, the same limitation
(viz. of a priori limited angular resolution) contributes to robustness, especially if a
redundant set of diffusion weighted measurements is used for DTI reconstruction.

If we drop the quadratic restriction, Eq. (3), we can invoke the powerful
machinery of Riemann-Finsler geometry in a way that mimics the Riemannian
paradigm for DTI, viz. recall Eq. (4) and identify the coefficients in this equation
with the so-called dual Riemann-Finsler metric tensor:

��Dij.x; q/ D gij.x; q/ : (8)

Clearly this is at best an approximation of reality due to mono-exponential decay,
Eq. (2), and the homogeneity hypothesis on the physical scaling behavior of the
Hamiltonian, Eq. (6). The conditions under which this approximation is realistic are
deemphasized here, but will need to be made explicit in future work (cf. Basser
[6] for a discussion in the DTI case, to some extent applicable to the general case
as well). Suffice it to say that, by construction, the domain of validity certainly
reaches beyond that of DTI, which arises in the limiting scenario of mild anisotropy
Dij.x; q/! Dij.x/.

In the rest of this chapter we consider the basics of Riemann-Finsler geometry
and point out its theoretical relevance for tractography and voxel classification.

4Please note that the Riemannian paradigm does not stipulate that geodesics are biologically
meaningful tracts, cf. Astola et al. [10] for a connectivity criterion that could be used for a
deterministic or probabilistic labelling of biologically plausible neural tracts among all possible
geodesic tracts. Indeed, in a geodesically complete space any two points can be connected by at
least one geodesic.
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The Hamiltonian framework appears to be most directly related to the physics of
dwMRI. In DTI this is reflected by the fact that it is the inverse of the diffusion
tensor that defines the Riemann metric tensor. The Riemann metric tensor itself is
equivalently captured by a (limiting case of a) so-called Finsler function, which,
in its most general form, constitutes the pivot of Riemann-Finsler geometry. Let us
therefore start with the axiomatics of the Finsler function.

2.3 The Finsler Function

Recall that the geometric paradigm for DTI hinges on Riemannian geometry,
Eq. (7), stipulating that the diffusion tensor is proportional to the dual Riemann
metric tensor gij.x/, with 6 degrees of freedom per point in 3 spatial dimensions.
For state-of-the-art dwMRI, in which local signal attenuations are recorded under
a multitude of magnetic gradient directions, this limitation on angular resolution is
too restrictive. The Riemann-Finsler paradigm removes this limitation altogether.

The pivot of Riemann-Finsler geometry is a generalised notion of length of a
spatial curve C (Hilbert’s invariant integral [42]):

L .C / D
Z

C

F.x; dx/ : (9)

The Lagrangian F.x; dx/ is called the Finsler function. This function cannot be
chosen arbitrarily. In order to interpret Eq. (9) properly as an integral over a one-
form, one has to require F.x; dx/ D F.x; Px/dt for a parametrized curve x D x.t/,
with Px D dx.t/=dt, so that the functional L .C / is well-defined and parameter
invariant. More specifically, F.x; Px/ is required to be smooth for Px ¤ 0 and to
satisfy the following properties5:

F.x; � Px/ D j�jF.x; Px/ for all � 2 R, (10)

F.x; Px/ > 0 if Px ¤ 0, (11)

gij.x; Px/�i �j > 0 if � ¤ 0, (12)

in which the Riemann-Finsler metric tensor is defined as

gij.x; Px/ D 1

2

@2F 2.x; Px/
@ Pxi@ Pxj : (13)

5Instead of the norm condition, Eq. (10), one sometimes requires F.x; � Px/ D �F.x; Px/. What
matters in diffusion processes without convection is orientation, not signed direction, so it is natural
to require mirror symmetry Px !�Px a priori.
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In these definitions and below, Px is an a priori independent vector argument, not a
tangent vector Px.t/ to some underlying parametrized curve x.t/, unless explicitly
stated otherwise. But it helps intuition to keep in mind the role of this vector
argument in an expression like Eq. (9). In particular, when considering a smooth
spatial curve x.t/, there is a “distinguished” vector Px / Px.t/ associated with any
position x.t/ along the curve. The extended base manifold with coordinates .x; Px/,
with Px ¤ 0, is referred to as the slit tangent bundle. The word “slit” refers to
the excluded strip Px D 0. In the context of zero-homogeneous functions, a vector
Px¤ 0 represents an equivalence class of points on the line through the origin with
direction vector Px. In that case one also refers to the extended base manifold as the
projectivized tangent bundle, cf. the concept of an orientation score by Duits et al.
[33–35].

Using Eqs. (10)–(13), it is not difficult to show (with the help of Euler’s theorem
for homogeneous functions, recall footnote 3) that

F 2.x; Px/ D gij.x; Px/ Pxi Pxj : (14)

Riemann’s quadratic restriction pertains to the “mildly anisotropic” case,
gij.x; Px/ D gij.x/. In general, the Riemann-Finsler metric tensor, Eq. (13), is
homogeneous of degree 0: gij.x; � Px/Dgij.x; Px/ for all � 2 R. It may be viewed as
being defined on the 5-dimensional projectivized tangent bundle.

Since, in principle, only positions and orientations are of interest, all geometri-
cally relevant quantities will be zero-homogeneous. Although the Finsler function
itself does not qualify as such (its domain of definition is the 6-dimensional slit
tangent bundle of positions and nonzero vectors), it serves as the basic object from
which such quantities can be constructed.

The role played by the 3-dimensional (co)tangent spaces erected at each point
x of a 3-dimensional Riemannian manifold is replaced by likewise 3-dimensional
fibers that collectively constitute a so-called pulled-back (co)bundle or Finsler
(co)bundle in Riemann-Finsler geometry. The major difference is that a pulled-
back (co)bundle sits over the 5-dimensional projectivized tangent bundle or 6-
dimensional slit tangent bundle, rather than over the 3-dimensional spatial manifold.
Given x-coordinates on the spatial manifold the coordinate induced basis sections

@

@xi

ˇ
ˇ
ˇ
ˇ
.x; Px/

respectively dx i
ˇ
ˇ
ˇ
ˇ
ˇ
.x; Px/

(15)

for its tangent and cotangent bundles can be transplanted to the pulled-back
(co)bundle. That is, Px plays no role in the construction of a fiber at a fiducial
point .x; Px/.
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2.4 Riemann-Finsler Geometry and Its Riemannian Limit

The nontrivial nature of the Cartan tensor [42, 43, 48, 60],

Cijk.x; Px/ D 1

4

@3F 2.x; Px/
@ Pxi@ Pxj @ Pxk ; (16)

distinguishes Riemann-Finsler geometry from its Riemannian counterpart. One can
show that Cijk.x; Px/ D 0 if and only if space (the x-manifold) is Riemannian. In fact
it suffices to inspect the Cartan one-form

Ci.x; Px/ D gjk.x; Px/Cijk.x; Px/ ; (17)

in which the dual Riemann-Finsler metric tensor6 gij.x; Px/ is the inverse of
gij.x; Px/:

gik.x; Px/gkj.x; Px/ D ıij : (18)

Indeed, one can show that space is Riemannian if and only if the Cartan one-form,
Eq. (17), vanishes identically. In view of the significance of zero-homogeneous
functions one often encounters the alternative definitions

Aijk.x; Px/ D F.x; Px/Cijk.x; Px/ resp. Ai.x; Px/ D F.x; Px/Ci .x; Px/ : (19)

The dual Riemann-Finsler metric may be used for index raising and lowering, e.g.

Ck
ij .x; Px/ D gk`.x; Px/Cij`.x; Px/ : (20)

(There is no ambiguity here by virtue of symmetry of the covariant Cartan tensor.)
Thus the Cartan tensor measures the degree in which the local structure of the

Riemann-Finsler manifold deviates from Riemannian. In view of Eqs. (3), (4) (7),
and (8) this boils down to a measure for the degree in which the recorded dwMRI
data—matched to the basic paradigm, Eq. (2)—violate the validity conditions for
DTI. In other words, it provides a (fuzzy) classification of voxels as “DTI-like” (i.e.
mildly anisotropic) versus otherwise (i.e. complex or highly anisotropic).

2.5 Connections in Riemann-Finsler Geometry

There is no “obvious” connection (mechanism for parallel transport) on a Riemann-
Finsler manifold. The so-called Berwald, Cartan, Chern-Rund and Hashiguchi

6It will be seen later, cf. Eqs. (45)–(47), that it is more natural to think of gij as a metric in q-space,
as opposed to the Px-space metric gij.
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connections may all be considered “natural” extensions of the Levi-Civita con-
nection in Riemannian geometry. For instance, the (torsion-free) Chern-Rund
connection is defined by7

	 i
jk.x; Px/ D

1

2
gi`.x; Px/

�
ıg`k.x; Px/
ıxj

C ıgj`.x; Px/
ıxk

� ıgjk.x; Px/
ıx`

�

: (21)

This expression is obtained from the “classical” Christoffel symbols of Riemannian
geometry by formally replacing the Riemann metric gij.x/ by the Riemann-Finsler
metric gij.x; Px/, Eq. (13), and spatial derivatives by the horizontal vectors

ı

ıxi
defD @

@xi
�Nj

i .x; Px/
@

@ Pxj : (22)

The coefficients Nj
i .x; Px/ define the so-called nonlinear connection [42]:

N
j
i .x; Px/ D �jik.x; Px/ Pxk � Cj

ik .x; Px/�k`m.x; Px/ Px` Pxm ; (23)

in which the formal Christoffel symbols of the second kind are introduced as

�ijk.x; Px/ D
1

2
gi`.x; Px/

�
@g`k.x; Px/
@xj

C @gj`.x; Px/
@xk

� @gjk.x; Px/
@x`

�

: (24)

Note that in the Riemannian limit, both Eq. (21) as well as Eq. (24) simplify to

	 i
jk.x; Px/ ; � ijk.x; Px/ �! 	 i

jk.x/ D
1

2
gi`.x/

�
@g`k.x/

@xj
C @gj`.x/

@xk
� @gjk.x/

@x`

�

;

(25)

the standard Christoffel symbols of the second kind defining the torsion-free Levi-
Civita connection in Riemannian geometry. A computation reveals that8

	ijk.x; Px/ D (26)

�ijk.x; Px/ � Chjk.x; Px/Gh
Pxi .x; Px/ � Chji.x; Px/Gh

Pxk .x; Px/C Chik.x; Px/Gh
Pxj .x; Px/ ;

in which indices have been lowered via the Riemann-Finsler metric tensor:

	ijk.x; Px/ D gj`.x; Px/	 `
ik.x; Px/ resp. �ijk.x; Px/ D gj`.x; Px/�`ik.x; Px/ ; (27)

7Caveat: In [43] Rund defines these symbols as 	 �i
jk .x; Px/.

8Caveat: In [43] Rund defines these symbols as 	 �

ijk.x; Px/.
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and in which the geodesic coefficients are defined as9

Gi
Pxj .x; Px/ D

@Gi .x; Px/
@ Pxj with Gi.x; Px/ D 1

2
�ijk.x; Px/ Pxj Pxk : (28)

In fact we have

Gi
Pxj .x; Px/ D N i

j .x; Px/ (29)

recall Eq. (23).

2.6 Horizontal-Vertical Splitting

The coupling of position and orientation is formalized in terms of the so-called
horizontal and vertical basis vectors, recall Eq. (22),

ı

ıxi
defD @

@xi
�N`

i .x; Px/
@

@ Px` and
@

@ Pxi : (30)

These constitute a basis for the horizontal and the vertical tangent bundle over the
slit tangent bundle:

H.x; Px/TM D span

(
ı

ıxi

ˇ
ˇ
ˇ
ˇ
.x; Px/

)

and V.x; Px/TM D span

(
@

@ Pxi
ˇ
ˇ
ˇ
ˇ
.x; Px/

)

: (31)

Their direct sum yields the complete tangent bundle (pointwise):

TTMnf0g D HTM˚ VTM : (32)

By the same token one considers the horizontal and vertical basis covectors,

dxi and ı Pxi defD d Pxi CN i
` .x; Px/dx` ; (33)

yielding the corresponding horizontal and vertical cotangent bundles:

H�.x; Px/TM D span
n

dxi
ˇ
ˇ
.x; Px/

o
and V�.x; Px/TM D span

n
ı Pxi ˇˇ

.x; Px/
o
; (34)

such that, pointwise,

9Caveat: In [42] Bao et al. write Gi.x; Px/ D �ijk.x; Px/ Pxj Pxk .
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T�TMnf0g D H�TM˚ V�TM : (35)

The above vectors and covectors satisfy the following duality relations:

dxi
�
ı

ıxj

�

D ı Pxi
�
@

@ Pxj
�

D ıij and dxi
�
@

@ Pxj
�

D ı Pxi
�
ı

ıxj

�

D 0 : (36)

Incorporating a natural scaling so as to ensure zero-homogeneity with respect to Px
(so that it indeed represents orientation rather than “velocity” or a “displacement”)
we conclude that

TTMnf0g D span



ı

ıxi
; F .x; Px/ @

@ Pxi
�

; (37)

and similarly

T�TMnf0g D span




dx i ;
ı Pxi

F.x; Px/
�

: (38)

The so-called Sasaki metric furnishes the slit tangent bundle with a Riemann metric:

g.x; Px/ D gij.x; Px/ dx i ˝ dxj C gij.x; Px/ ı Pxi
F.x; Px/ ˝

ı Pxj
F.x; Px/ : (39)

The horizontal and vertical tangent bundles, Eq. (31), are orthogonal relative to this
metric.

Cf. the Appendix for the formal motivation of horizontal and vertical basis
vectors and covectors. The heuristics behind them is that they permit a coordinate
independent, geometrically meaningful splitting into “horizontal” (pertaining to
spatial position) and “vertical” (complementary) dimensions. As a counterexample,
Eq. (66) in the Appendix shows what happens if we would use the standard
coordinate bases in .x; Px/-space. A change of spatial coordinates, x D x.�/, causes
the new spatial coordinate vectors to be a linear superposition of all coordinate
basis vectors that we started out from, whence they do not induce a coordinate
independent splitting.

2.7 Horizontal Curves and Finsler Geodesics

Spatial trajectories x.t/ have a “natural” (sparse) manifestation in the “vertical”
(orientation) dimension, viz. through identification of the trajectory’s tangent vector
Px.t/ with the vector Px. In other words, interpreted as a curve along the Finsler
manifold a spatial curve, x D �.t/, say, has a natural parametrization .x; Px/ D
.�.t/; P�.t//. A tangent vector of this curve is given by (with P�.t/ � d�.t/=dt and
R�.t/ � d2�.t/=dt2)
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T .t/ D P�i .t/ @
@xi
C R�i .t/ @

@ Pxi : (40)

Note that the individual terms in this equation do not have an intrinsic meaning, to
the extent that a splitting of the six dimensional tangent space into span f@=@xig and
span f@=@ Pxig is not preserved after a spatial coordinate transformation, cf. Eq. (66)
in the Appendix. The aforementioned, geometrically meaningful splitting suggests
that we rather decompose the tangent vector as follows, recall Eq. (30):

T .t/ D P�i .t/ ı
ıxi
C
� R�i .t/CN i

j .�.t/;
P�.t// P�j .t/

	 @

@ Pxi : (41)

The requirement of horizontality then entails that the vertical component vanishes:

ı Pxi .T .t// D 0 : (42)

Using the basic duality relations, Eqs. (36), this means that

R�i .t/CN i
j .�.t/;

P�.t// P�j .t/ D 0 : (43)

By virtue of Eqs. (23) and (24), using the fact that Cj
ik .�;
P�/ P�k D 0 (a consequence

of the homogeneity property gij.x; � Px/ D gij.x; Px/ and Euler’s theorem for
homogeneous functions, recall footnote 3), this simplifies to

R�i .t/C �ijk.�.t/; P�.t// P�j .t/ P�k.t/ D 0 : (44)

This geodesic equation has the same form as in the Riemannian case, except for
the fact that Christoffel symbols have been replaced by their formal counterparts,
Eq. (24) (or, equivalently, Eq. (21)).

We conclude this section by noting that Eq. (44) provides us with the Finslerian
analogue of the geodesic tractography method previously proposed in the Rieman-
nian setting for DTI. We stress that it will likewise need to be complemented
with a way to sift geodesics into fibers and non-fibers, either deterministically or
probabilistically. The Finslerian analogues of the connectivity measures proposed
by Astola et al. [10] are quite straightforward.

2.8 Lagrangian Versus Hamiltonian Frameworks

The non-singular Riemann-Finsler metric enables the same kind of index gymnas-
tics in Riemann-Finsler geometry as the Riemann metric does in the Riemannian
case. In particular we have the “velocity”–“momentum” (or Px–q) duality expressed
by the equations
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qi D gij.x; Px/ Pxj and Pxi D gij.x; q/qj ; (45)

in which the dual Riemann-Finsler metric has now been prototyped such that

gik.x; q/gkj.x; Px/ D ıij ; (46)

assuming the aforementioned relationship between Px and q. Note that, unlike in
Eq. (18), the dual metric tensor has been expressed as a function of momentum, not
velocity.

The foregoing formulation of the theory, with geometric quantities expressed as
functions of position x and velocity Px, is known as the Lagrangian framework. The
alternative formulation, in which the velocity variable is replaced by momentum q,
is known as the Hamiltonian framework. The connection between the Lagrangian
and corresponding Hamiltonian frameworks is particularly elegant in Riemann-
Finsler geometry, in which the Hamiltonian function (or dual Finsler function) is
given by

H.x; q/ D F.x; Px/ ; (47)

again assuming Eq. (45) to hold. As a consequence, the dual Riemann-Finsler metric
tensor plays a similar role in the Hamiltonian framework as the Riemann-Finsler
metric tensor does in the Lagrangian framework.10

The physical interpretations of the dual formalisms differ and depend on context.
The Lagrangian formalism highlights the role of geodesic congruences, families of
geodesics viewed as “particle trajectories”, for which the vector variable Px expresses
“particle velocity”. In the Hamiltonian formalism one considers “wave phenomena”
induced by such geodesic congruences, in which case the covector variable q enters
as “wave momentum”, which, by definition, is the normal along which wave fronts
propagate. Recall that in anisotropic media wave fronts induced by the interference
of the disturbances caused by individual particles do not travel in the same direction
as the particles themselves (cf. Huygens’ principle, [61]). This is expressed by
Eq. (45), as the (dual) metric is not necessarily diagonal.

2.9 Indicatrix and Figuratrix

The indicatrix at a fixed point x is the level set, or “glyph”, of the Riemann-Finsler
unit sphere, F.x; Px/ D 1, or, by virtue of Eq. (14),

gij.x; Px/ Pxi Pxj D 1 : (48)

10One sometimes reserves the terms Lagrangian and Hamiltonian for the squared Finsler and dual
Finsler function. The associated “energy” functionals are not parametrization invariant.
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The figuratrix at a fixed point x is the Hamiltonian counterpart, i.e. the level set
given by H.x; q/ D 1, recall Eqs. (4) and (8):

gij.x; q/qiqj D 1 : (49)

One can show that, as a result of zero-homogeneity of the Riemann-Finsler (dual)
metric tensor, both indicatrix as well as figuratrix represent convex glyphs.

A convenient interpretation of these structures is obtained by “freezing” the
(co)vector argument of the Riemann-Finsler (dual) metric tensor in Eqs. (48) and
(49), so that one ends up with (parametrized) quadratic forms. These are known as
the osculating indicatrix and osculating figuratrix, respectively:

gij.x; Px0/ Pxi Pxj D 1 ; (50)

gij.x; q0/qiqj D 1 : (51)

One could think of these as gauge figures of a parametrized family of inner products
on the tangent, respectively cotangent space of the spatial domain, each direction
(specified by Px0 or q0) having its own unique instance. The Cartan tensor, Eq. (16),
plays the pivotal role in relating the individual members of such a family.

In the DTI/Riemannian case the coefficients in Eqs. (50) and (51) are independent
of the orientation parameters, so that each point in space has an unambiguously
defined ellipsoidal shape representing the entire family. Indicatrices have been
widely adopted in DTI visualization [62]. They might also be useful for our general
case, although by their convex nature they are not likely to reflect the rich amount
of information contained in a general Finsler function very clearly. A slick selection
of osculating indicatrices might in that case prove more insightful.

2.10 Covariant Derivatives

The horizontal and vertical one-forms given by Eq. (38) can be used as a basis for
decomposing the covariant differential of an arbitrary tensor field on the slit tangent
bundle. For simplicity consider

T .x; Px/ D T ij .x; Px/
@

@xi
˝ dxj ; (52)

and

rT .x; Px/ D .rT /ij .x; Px/
@

@xi
˝ dxj : (53)

Then each component on the r.h.s. is a one-form, and can thus be written as a sum
of horizontal and vertical one-forms. By definition,
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.rT /ij .x; Px/ D T ij jk.x; Px/ dxk C T ij Ik.x; Px/
ı Pxk

F.x; Px/ : (54)

By evaluation on the corresponding dual basis, Eq. (37), one obtains

T ij jk.x; Px/ D
ıT ij .x; Px/
ıxk

C T `j .x; Px/	 i
`k.x; Px/ � T i` .x; Px/	 `

jk.x; Px/ ; (55)

T ij Ik.x; Px/ D F.x; Px/
@T ij .x; Px/
@ Pxk : (56)

Equations (55) and (56) are the components of the horizontal covariant derivative
and the vertical covariant derivative of the tensor field, respectively (relative to the
Chern-Rund connection, recall Eq. (21)). Higher order tensors are treated similarly.
Their horizontal covariant derivatives will contain as many “correction terms”
involving the Riemann-Finsler 	 -symbols of Eq. (21) as indicated by their order.
Note the elegant similarity with the Riemannian case.

Some cases are particularly important, e.g. those involving the Riemann-Finsler
metric tensor or its dual. We have

gijjk.x; Px/ D 0 ; (57)

gijIk.x; Px/ D 2F.x; Px/Cijk.x; Px/ ; (58)

gijjk.x; Px/ D 0 ; (59)

gijIk.x; Px/ D �2F.x; Px/C ij
k .x; Px/ : (60)

The Kronecker tensor is covariantly constant both horizontally as well as vertically:

ıij jk D 0 ; (61)

ıij Ik D 0 : (62)

Thus, unlike in the Riemannian case, the Riemann-Finsler metric tensor is covari-
antly constant only along horizontal directions, whereas its behavior in vertical
directions is governed by the Cartan tensor (the covariant derivative is said to be
“almost metric compatible”).

3 Conclusion and Discussion

Riemann-Finsler geometry naturally extends the Riemannian rationale used in the
context of DTI to general dwMRI representations. It can be equivalently approached
from a Lagrangian or Hamiltonian perspective, although the latter appears to be
most closely related to the physics of dwMRI acquisition and its underlying model
in terms of a generalized mono-exponential Stejskal-Tanner equation.
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We have pointed out its potential application to voxel classification based on the
Cartan tensor and related quantities, and to dwMRI tractography by deriving the
corresponding Finsler geodesic equations, without the quadratic restriction inherent
to the DTI model, yet retaining quadratic scaling in the magnitude of the gradient
magnetic field. Although this does not cover the general (multi-exponential and/or
non-homogeneous) case, the conditions for and limitations of this conjecture, and in
particular the added value relative to DTI, diffusional kurtosis imaging (DKI), and
(other) HARDI schemes, are worthwhile investigating. Future work will concentrate
on this, on the reconstruction of the (dual) Finsler function and related quantities,
and on experimental validation of Finsler tractography and voxel classification as
advocated in this chapter.

Appendix: Horizontal and Vertical Splitting

We may consider the partial derivatives with respect to xi and Pxi as coordinate
vector fields on the tangent bundle TM, and consider the effect induced by a change
of coordinates of the base manifold M, x D x.�/ say. Since Px is a vector, this
induces the following vector transformation law for its components Pxi expressed in
terms of its new components, P�p , say:

Pxi D @xi

@�p
P�p ; (63)

or, equivalently,

@

@ P�p D
@xi

@�p
@

@ Pxi ; (64)

so that, by construction,

Pxi @
@xi
D P�p @

@�p
: (65)

As a result,

@

@�p
D @xi

@�p
@

@xi
C @2xi

@�p@�q
P�q @

@ Pxi : (66)

Given the definition of the horizontal vectors, Eq. (22), and of the nonlinear
connection, Eq. (23), it is then a tedious but straightforward exercise to deduce that

ı

ı�p
D @xi

@�p
ı

ıxi
; (67)

similar to the vector transformation law for the vertical components, recall Eq. (64).
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Likewise one has the covector transformation law for the components of the
horizontal and vertical one-forms, recall Eq. (33):

dxi D @xi

@�p
d�p ; (68)

respectively

ı Pxi D @xi

@�p
ı P�i : (69)

The “natural” transformation behavior expressed by Eqs. (64) and (67)–(69) moti-
vates the definitions of horizontal and vertical vectors and covectors in Sect. 2.6.
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Abstract We introduce a geodesic based tractography method for High Angular
Resolution Diffusion Imaging (HARDI). The concepts used are similar to the ones
in geodesic based tractography for Diffusion Tensor Imaging (DTI). In DTI, the
inverse of the second-order diffusion tensor is used to define the manifold where
the geodesics are traced. HARDI models have been developed to resolve complex
fiber populations within a voxel, and higher order tensors (HOT) are possible rep-
resentations for HARDI data. In our framework, we apply Finsler geometry, which
extends Riemannian geometry to a directionally dependent metric. A Finsler metric
is defined in terms of HARDI higher order tensors. Furthermore, the Euler-Lagrange
geodesic equations are derived based on the Finsler geometry. In contrast to other
geodesic based tractography algorithms, the multi-valued numerical solution of
the geodesic equations can be obtained. This gives the possibility to capture all
geodesics arriving at a single voxel instead of only computing the shortest one.
Results are analyzed to show the potential and characteristics of our algorithm.
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1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging(DW-MRI) measures water diffu-
sion characteristics in tissue for a given direction. The diffusion profile in a specific
location can be obtained by combining the DW-MRI measurements in different
directions. The diffusion profile gives information about the underlying fibrous
structure, e.g., in human brain white matter, based on the assumption that water
molecules are moving less freely perpendicular to the fibrous structure than along
the fiber tracts. Techniques to reconstruct fiber tracts based on the diffusion profiles
are known as tractography or fiber tracking methods.

From DW-MRI measurements often a positive definite second-order tensor is
defined, referred to as diffusion tensor imaging (DTI) [4]. Despite the simplicity of
the model, this technique is shown to be promising to reveal the structure of brain
white matter. However, DTI assumes that each voxel contains fibers with only one
orientation, and it is known that in white matter often multiple fiber orientations
occur [2]. High Angular Resolution Diffusion Imaging (HARDI) and its modeling
techniques have been developed to overcome the limitations of the DTI model
[12, 19, 27, 29–31].

The models applied to HARDI data result in a function on the unit sphere that
gives information about the diffusion profile within the voxel. This function on
the unit sphere is obtained by different assumptions and models of the diffusion
and acquisition process. In general, the diffusion profiles are assumed to have
local maxima in the orientations of the underlying fiber tracts. One of the most
popular models is to use the Orientation Distribution Function (ODF) [12, 28, 30].
An extensive description of the different HARDI models is considered outside
the scope of this chapter. However, it should be noticed that any function on the
unit sphere, and therefore any HARDI model, can be represented by Higher Order
Tensors (HOT).

Numerous tractography algorithms have been introduced to reconstruct the
fibrous structure from DTI and HARDI data. In the most commonly used tractog-
raphy algorithms, i.e., streamline based methods, the fibers are estimated by using
a number of directions (i.e., the principal direction of the diffusion tensor [4] or
the local maxima in the HARDI models [15]). These methods are based on local
characteristics and therefore sensitive to noise. A possible solution to resolve these
limitations of classic tractography, is to apply global approaches such as geodesic
based algorithms [7, 14, 16]. These techniques are based on the assumption that
fibers follow the most efficient diffusion propagation paths. A Riemannian manifold
is defined using as metric the inverse of the diffusion tensor. Paths in this manifold
are shorter if the diffusion is stronger along that path. Therefore, geodesics (i.e.,
shortest paths) in this manifold follow the most efficient diffusion paths. The global
approaches are considerably more computationally expansive than the streamline
based methods.

Sepasian et al. [24] presented a ray-tracing algorithm for computing geodesics
in anisotropic domains. Common geodesic based methods obtain the viscosity
solution based on the Hamilton-Jacobi equation and by solving it numerically using
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different numerical schemes, e.g., fast-sweeping. These methods are robust and
mathematically elegant. However, the viscosity solution provides only one geodesic
between two given points in the domain. In contrast, the approach of Sepasian
et al. [24] can capture multi-valued geodesics connecting two given points by
considering the geodesics as function of position and direction. Moreover, it is based
on the Euler-Lagrange (EL) equations, and therefore local changes in the geodesic
can be taken into account. However, this method remains limited to Riemannian
manifolds and, therefore, to DTI models.

Campbell [8] proposed a front evolution approach based on HARDI. Pichon et al.
[22] introduced a variational cost function depending on all directions on the unit
sphere. This directional information is obtained using HARDI. Péchaud et al. [21]
presented an algorithm for the calculation of shortest paths on a manifold defined by
ODFs. The metric for each position is defined as the orientation distribution function
and the geodesics locally follow the paths going through areas of high diffusion.

The methods mentioned above belong to the class of deterministic tractography
methods, i.e., given the same input these methods will always give the same result.
In the generic case, geodesic-based methods will find a finite number of geodesic
paths given two points in the domain. Probabilistic tractography constitutes another
class of methods where the variation of the pathways due to model assumptions
and/or noise is considered. A probability distribution is built, and based on this
distribution, a random process generates many paths originating from one initial
position [10, 20]. HARDI tractography techniques are often probabilistic [5, 13].

In this chapter, we propose an extension to HARDI data of the method introduced
by Sepasian et al. [24]. Riemannian metric depends on the position in space, and
it has no directional dependency. A Riemannian framework is well suited for DTI
data, but not for HARDI data. Finsler geometry is the natural extension of the
Riemannian geometry to directional dependent metrics. In a Finsler metric, for each
position and direction we might have a different metric tensor. Therefore, to extend
the work of Sepasian et al. [24] to HARDI data, we need to extend it to Finsler
geometry. You can find further explanation on the Riemannian-Finsler geometry in
the chapter Riemann-Finsler Geometry for Diffusion Weighted Magnetic Resonance
Imaging. In comparison to previous work, e.g., Péchaud et al. [21], our technique
is based on minimizing the length using the geodesic equations in Finsler geometry
instead of a general cost function. Melonakos et al. [17] presented a tractography
method for Finsler geometry within their active contours segmentation framework.
Their method is based on DTI data and the Finsler metric is used to reduce signal
to noise ratio. Furthermore, we uniquely compute the multi-valued solution of the
geodesic equations between two points in the domain instead of the single-valued
viscosity solution.

The chapter is organized as follows. In Sect. 2 we introduce Finsler geometry
which extends Riemannian geometry to directionally dependent metrics. We intro-
duce the Euler-Lagrange form of the geodesic equations in the Finsler geometry
in Sect. 3. Next, in Sect. 4, we describe the numerical model necessary for the
implementation of the presented ray-tracing algorithm. Finally, preliminary results
are presented in Sect. 5.
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2 Finsler Metric

In this chapter, we consider the generalization to higher order tensors as an extension
of the second order tensors. Higher order tensors allow the representation of multiple
fiber orientations. For simplicity, we present the theory for fourth order tensors,
although, its extension to higher orders can be trivially deduced. P4.x; y/ is a
function on the unit sphere that represent the diffusion profile obtained by one of
the HARDI modeling techniques. At this point, the theory is presented in a general
form such that P4.x; y/ can be the diffusion profile resulting from diverse HARDI
modeling techniques, as long as the diffusion flux increases with increasing values
of P4.x; y/.

We fit the fourth order tensor coefficients D D D.x/ to the function P4.x; y/ by
using the sampled data on the unit sphere [12], i.e.,

P4.x; y/ D D˛1˛2˛3˛4.x/y
˛1y˛2y˛3y˛4 ; (1)

with ˛i D 1; 2; 3, i D 1; 2; 3; 4, x contains the spatial coordinates and y D .y˛i / D
.sin � cos�; sin � sin�; cos �/ is the directional vector with � 2 Œ0; 2�/ and � 2
Œ0; ��. Here, the coefficients D˛1˛2˛3˛4.x/ are the elements of D. Note that in all
the formulas the Einstein summation convention is used, i.e., we sum over repeated
indices, one in a superscript and one in subscript position. The tensor D satisfies the
symmetry property,

D˛1˛2˛3˛4 D D�.˛1/�.˛2/�.˛3/�.˛4/; (2)

for any permutation � . Therefore we can reduce the number of components from 81

to 15.
Similar to the DTI Riemannian framework, we use the heuristic that a high

probability of finding a fiber in direction y corresponds to a larger diffusivity
represented inP4.x; y/, and a shorter travel time for the diffusing particle. Therefore,
the metric should give the shortest distance in the direction where diffusion
is largest. In DTI this is achieved by introducing the metric as the inverse of
the diffusion tensor. Consequently, the largest eigenvalue of the diffusion tensor
becomes the smallest one for the metric. In contrast, in HARDI we deal with
more complex diffusion profiles. We need to extend the framework to a Finsler
geometry where the metric is function of position and direction. Furthermore, we
need to find a suitable framework for inverting the HOT. A proper inversion should
preserve certain properties including the average value of the function and the angle
between two directions [6]. Astola et al. [3] suggest to use spherical inversion for
the HARDI diffusion profile. Figure 1 illustrates the spherical inversion of a point
on a surface M with coordinates xM . The inverse of a point M with respect to a
reference sphere centered at the origin O with radius r D a is the point M 0 such
that jxM j � jxM 0 j D a2 where x D rer is the position vector and er is the radial
unit vector in spherical coordinates. The points M and M 0 are on the same ray
through O . Figure 1 shows that the inversion maps points that were outside the
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Fig. 1 An illustration of
spherical inversion in two
dimensions. M 0 is the inverse
of M with respect to the
circle

sphere to points that are inside the sphere, and vice versa. For example, for the case
when M is outside the reference sphere, jxM j > a which gives

jxM 0 j D a2

jxM j < a:

In analogy with the spherical inversion, we define QP4.x; y/, which is the inverse
of P4.x; y/, as follows

QP4.x; y/ D P4.x/
P4.x; y/

D QD˛1˛2˛3˛4.x/y
˛1y˛2y˛3y˛4 ; (3)

where QD is the HOT that fits QP4.x; y/ and P4.x/ is the average of the HOT over the
unit sphere, i.e.,

P4.x/ D
Z

jyjD1
P4.x; y/dy:

Astola et al. [3] propose the following Finsler norm for the fourth order tensors

F.x; y/ D . QP4.x; y//1=4: (4)

It can be shown that the Finsler metric is given by the bilinear form F D F.x; y/
as follows

g˛ˇ.x; y/ D 1

2

@2F 2

@y˛@yˇ
(5)

where ˛ and ˇ are used to index the components of the tensor g.
In the following, we illustrate that the Riemannian metric is a special case of the

Finsler metric. If F 2.x; y/ D g˛ˇ.x/y˛yˇ , i.e., g˛ˇ only depends on x, then
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Fig. 2 Illustration of the directional dependency of tensors g˛ˇ.x; y/. The QP4.x; y/ profile is shown
as a surface in all images. The arrows indicate specific directions y, and the ellipsoids represent
the tensors g˛ˇ.x; y/ calculated from QP4.x; y/ by fixing the direction y for each image

g˛ˇ.x; y/ D 1

2

@2

@y˛@yˇ

�
g˛ˇ.x/y˛yˇ

� D g˛ˇ.x/; (6)

known as the Riemannian metric. In contrast, Finsler metric does not only depend
on the location x but also on the direction y.

The necessary conditions of differentiability, homogeneity and strong convexity
for (4) have been studied in Astola et al. [3] and the strong convexity criterion only
holds if the second-order tensor D˛1˛2˛3˛4y

˛1y˛2 is positive definite for every y. In
practice this condition turns out to be satisfied.

Substituting (4) in the bilinear form (5), we can show that the Finsler metric
tensor reads

g˛ˇ.x; y/ D 1

2

@2

@y˛yˇ
F 2.x; y/

D �2 QP4.x; y/�3=2
� QD˛˛1˛2˛3y

˛1y˛2y˛3
� � QDˇˇ1ˇ2ˇ3y

ˇ1yˇ2yˇ3
�

C 3 QP4.x; y/�1=2 QD˛ˇ˛1˛2y
˛1y˛2 : (7)

This means that at each position x and for each choice of y, we can obtain the
corresponding local metric. Figure 2 illustrates the directional dependence of the
Finsler metric for a given QP4.x; y/ profile. Three different tensors g˛ˇ.x; y/ are
obtained for the same profile, i.e., position x, by changing y. The metric tensors
are necessary to be able to compute geodesics in the Finsler geometry framework.

3 Geodesic Equations for the Finsler Metric

Analogous to the Riemannian case, in Finsler metric geodesics are the curves that
minimize the length between fixed endpoints. We consider a bounded curve C with
parametrization x D �.t/, a � t � b, where t denotes the arc-length. The length of
C is given by,
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J Œ�� D
Z b

a

F.�.t/; P�.t//dt (8)

where P�.t/ D d�.t/
dt . It can be shown that the necessary condition to minimize the

length functional (8) is the set of Euler-Lagrange equations [18, 23, 26],

d

dt

�
@F

@y˛

�

� @F

@x˛
D 0; (9)

where y˛D Px˛ . We will derive the geodesic equations from Eq. (9). First, straight-
forward application of the chain rule gives

d

dt

�
@F 2

@y˛

�

� @F
2

@x˛
D 1

F

dF

dt

@F 2

@y˛
: (10)

Using that dF
dt D 0 (arclength parametrization), the above equation simplifies to,

d

dt

�
@F 2

@y˛

�

� @F
2

@x˛
D 0: (11)

Once more applying the chain rule and substitution of (5) gives

2g˛ˇ Rxˇ C @2F 2

@y˛@xˇ
yˇ � @F

2

@x˛
D 0: (12)

Multiplying Eq. (12) with the inverse g�˛ gives

Rx˛ C 2G˛.x; Px/ D 0; (13)

where G˛ are the so-called geodesic coefficients defined by

G˛.x; y/ D 1

4
g˛ˇ.x; y/

�
@2F 2.x; y/
@yˇ@x�

y� � @F
2.x; y/
@xˇ

�

: (14)

It is often useful from a computational point of view to write the geodesic
Eq. (13) in an alternative form. To this purpose we introduce the Christoffel symbols
(of second kind) 	 ˛

ˇ� defined as

	 ˛
ˇ� .x; y/ D

1

2
g˛�.x; y/

�
@gˇ�

@x�
C @g��

@xˇ
� @gˇ�
@x�

�

: (15)

Note that compared to the Riemannian case, 	 ˛
ˇ� are functions of both space

and orientation. To reformulate the geodesic equations, we essentially rewrite G˛
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in terms of the formal Christoffel symbols [9]. Indeed, we have the following
proposition:

Proposition 1. The geodesic coefficients G˛ defined in (14), are related to the
Christoffel symbols 	 ˛

ˇ� defined in relation (15) as follows

2G˛ D 	 ˛
ˇ�y

ˇy� : (16)

Note that this proposition implies the derivatives of F 2 are replaced by derivatives
of g˛ˇ . Before we prove relation (16) we need two lemmas. The first one concerns
the Cartan tensor C˛ˇ� .x; y/ defined as:

C˛ˇ� .x; y/ D 1

4

@3F 2.x; y/
@y˛@yˇ@y�

:

Lemma 1. The Cartan tensor C˛ˇ� .x; y/ satisfies

C˛ˇ� .x; y/y� D 0: (17)

Proof. The Riemann-Finsler metric g˛ˇ.x; y/ inherits the following homogeneity
property from the defining property F.x; �y/ D �F.x; y/ for all � � 0:

g˛ˇ.x; �y/ D g˛ˇ.x; y/:

Differentiation with respect to � and setting � D 1 yields

@g˛ˇ.x; y/
@y�

y� D 0:

Consequently, the Cartan tensor satisfies

C˛ˇ� .x; y/y� D 1

2

@g˛ˇ.x; y/
@y�

y� D 0:

Lemma 2. The Riemann-Finsler metric tensor satisfies the relations

g˛ˇy
˛yˇ D F 2; (18)

@

@y�

�
g˛ˇy

˛yˇ
� D 2g�˛y˛: (19)

Proof. From the homogeneity of F , we can derive the following relations

@F

@y˛
y˛ D F; @2F

@y˛@yˇ
yˇ D 0:
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First we prove relation (18). Using definition (5) we see that

g˛ˇy
˛yˇ D 1

2

@

@y˛

�
@F 2

@yˇ

�

y˛yˇ

D @

@y˛

�

F
@F

@yˇ

�

y˛yˇ

D
�
@F

@y˛
@F

@yˇ
C F @2F

@y˛@yˇ

�

y˛yˇ

D @F

@y˛
@F

@yˇ
y˛yˇ D F 2;

where we used the relations above. Next, to show (19), we have,

@

@y�

�
g˛ˇy

˛yˇ
� D @g˛ˇ

@y�
y˛yˇ C g˛ˇı˛�yˇ C g˛ˇy˛ıˇ�

D 2C˛ˇ�y˛yˇ C 2g�ˇyˇ

using symmetry of g˛ˇ . Furthermore, using Lemma 1, the first term on the right
vanishes. ut
Proof of Proposition 1. Given the lemmas above, the following derivation allows
us to rewrite G˛ in terms of Christoffel symbols, viz.,

2G˛ D 1

2
g˛ˇ

�
@

@x�
@F 2

@yˇ
y� � @F

2

@xˇ

�

D 1

2
g˛ˇ

�
@

@x�
@

@yˇ

�
g��y

�y�
�
y� � @g��

@xˇ
y�y�

�

;

where we substituted expression (18) for F 2. Next combining this relation with (19),
we obtain

2G˛.x; y/ D 1

2
g˛ˇ

�
@

@x�

�
2gˇ�y

�
�
y� � @g��

@xˇ
y�y�

�

D 1

2
g˛ˇ

�
@g�ˇ

@x�
C @g�ˇ

@x�
� @g��
@xˇ

�

y�y�

D 	 ˛
��y

�y�;

which completes the derivation of (16). ut
Finally, substituting (16) in (13) gives

Rx˛ C 	 ˛
ˇ� Pxˇ Px� D 0; (20)

which is the desired alternative form of the geodesic equations.
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4 Numerical Model

In order to develop a numerical model, we will focus on a specific HARDI
model. We have chosen the fourth-order tensor representation of the Orientation
Distribution Function (ODF) [1, 11, 12, 28]. From the DWI data, we compute the
ODF as was introduced by Tristán-Vega et al. [28]. In the original literature, the ODF
is represented by spherical harmonics. A change of basis allows us to transform the
spherical harmonics representation of the ODF to higher order tensor representation.
To compute the Finsler metric, we need to compute the spherical inversion of the
ODF at each voxel. To achieve this, we apply relation (3) for m>15 different
orientations y on the unit sphere, giving rise to an over-determined system Y Qd D b,
where Qd contains the coefficients; see Table 1. To evenly sample the orientations y on
the sphere, we apply the icosahedron tessellation on the unit sphere. In this chapter,
we restrict ourselves to the normalized ODF, hence P 4.x; y/ D 1. To compute the
solution of this system, least-squares fitting is applied. We rewrite (3) in the form of
normal equation Y TY Qd D Y Tb where

Y D

0

B
B
B
@

y11y
1
1y

1
1y

1
1 : : : y31y

3
1y

3
1y

3
1

y12y
1
2y

1
2y

1
2 : : : : : :

:::
:::

:::

y1my
1
my

1
my

1
m : : : y

3
my

3
my

3
my

3
m

1

C
C
C
A
; b D

0

B
B
B
@

P4.x; y1/�1
:::

P4.x; ym/�1

1

C
C
C
A
: (21)

Note that the lower indices of y indicate the choice of direction and m is the
number of gradient directions to sample the ODF profile; in our computations we
usem D 72. The solution Qd is computed using Cholesky factorization. This gives 15
coefficients for the inverted ODF profile. We can fit the new profile over the sphere
using the new coefficients Qd; see Figs. 3 and 4.

Let us introduce u� .t/ WD Px�.t/ for � D 1; 2; 3, then we can rewrite system (20)
as follows

Px˛ D u˛;

Pu˛ D �	 ˛
ˇ�uˇu� ; (22)

with the 	 ˛
ˇ� defined in (15). To solve the system of equations (22) we follow

a similar algorithm proposed by Sepasian et al. [24] for the Riemannian metric.
Consider

�
x1.0/; x2.0/; x3.0/

�
a point as the given initial location in the domain and�

u1.0/; u2.0/; u3.0/
�

as the initial direction. We compute the solution to (22) for the
given initial position and multiple directions using sophisticated ODE solvers such
as the fourth order explicit Runge-Kutta method. This gives us a set of geodesics
connecting the given initial point to a set of points on the boundary.

The computational domain is discretized uniformly with grid size h and grid
points xijk D .x1i ; x

2
j ; x

3
k/ D h.i; j; k/ for i D 0; 2; 3; : : : ; N � 1, where N

is number of grid points in each spatial direction. For simplicity we take the
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Table 1 Ordering of higher
order tensor coefficients

Tensor
element

Coeff.
of HOT

Tensor
element

Coeff.
of HOT

1 D1111 8 D1223

2 D1112 9 D1233

3 D1113 10 D1333

4 D1122 11 D2222

5 D1123 12 D2223

6 D1133 13 D2233

7 D1222 14 D2333

15 D3333

Fig. 3 ODF (Blue) and its
inverse (Yellow) using
least-squares fit (Left) and
analytic inversion (Right).
(a) ODF and its inverse for a
single fiber profile. (b) ODF
and its inverse for a crossing
fiber profile

number of grid points equal in all directions. For each grid point, we assign the
15 coefficients of inverted HOT QD (see Fig. 5 top).

We approximate the derivatives of g˛ˇ.x; y/ at each grid point by the standard
second order central difference scheme, for example,

@g˛ˇ

@x1
.x1i ; x

2
j ; x

3
k; y/ 

1

2h

�
g˛ˇ.x

1
iC1; x2j ; x3k; y/ � g˛ˇ.x1i�1; x2j ; x3k; y/

	
: (23)

Second order one-sided differences are applied when the grid points are situated on
the boundary, e.g,
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Fig. 4 Fourth order ODF field (top image) and its inverted field (bottom image) from part of the
centrum semiovale

Legend

HARDI modeling
(ODF) P4(x,y)

Seed posi�ons x
and direc�on y

Compute tensor
gαβ

per neighboring
voxel

Interpolate
gαβ

∂gαβ/ ∂xi

for x and y

Compute

∂gαβ/ ∂x1

∂gαβ/ ∂x2

∂ gαβ/∂x3

Compute
Christofel
Symbols

Γα
βγ

Compute next
posi�on x and

direc�on y

Stop
tracking

No Yes
Fibers

Start/End data

Processes

DWI imaging
data

Decision

Calculate
P4(x,y)~

Fit HOT to
P4(x,y)~
Dα1α2α3α4~

Fig. 5 Flowchart for the ray tracing algorithm to reconstruct geodesics in a Finsler space
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@g˛ˇ

@x1
.x10; x

2
j ; x

3
k; y/ 

1

2h

�
�3g˛ˇ.x10 ; x2j ; x3k; y/C 4g˛ˇ.x11; x2j ; x3k; y/ � g˛ˇ.x12; x2j ; x3k; y/

	
: (24)

Note that similar expressions hold for derivatives with respect to x2 and x3. Note
the dependence of these relations on the argument y. Solving the ODE system gives
the solution at points that are not necessarily located in the grid points. Therefore,
the value of the metric and its derivatives are not defined there, and we apply
trilinear interpolation at any point in the domain where the value of the metric is
not available. Initial vectors are uniformly distributed over the unit sphere using the
vertices of regular symmetrical polyhedra. The integration of geodesics continues
till they hit the boundary of the computational domain. Once all geodesics are
computed for the initial seed points and given initial directions, one can select
the fibers by selecting the regions of interests and filter all geodesics that pass
through both selected regions. Geodesics are computed until they meet one of the
boundaries, therefore to determine the fiber connecting two given regions we apply
the line-plane intersection. This allows us to cut off the geodesics once they enter
one of the selected regions. The flow chart in Fig. 5 summarizes the ray-tracing
tractography algorithm for HARDI. The algorithm has the following stages:

1. Compute the coefficients of the inverted ODFs using the least-squares fit as
described in this section (see Fig. 5 top).

2. Fetch an initial seed point and direction, which becomes the current position and
direction.

3. Find the eight neighboring voxels forming the cell of the current position and
compute for each neighboring voxel the metric tensor according to Eq. (7).

4. Compute the derivatives at the neighboring voxels.
5. Compute the metric tensor and its derivatives at the current position using

trilinear interpolation.
6. Compute the Christoffel symbols, as defined in Eq. (15).
7. Compute the next position and direction of the fiber, from (22)
8. Repeat step 3–6 until the stopping criterion (i.e., meeting the domain boundaries)

is fulfilled.

5 Results

In this section we present the first results we have obtained with the ray-tracing trac-
tography algorithm described in this chapter. We generated synthetic tensor fields
simulating two fiber bundles crossing at angles 90ı and 60ı. To generate the tensors
in the crossing area the Gaussian mixture model introduced by Tuch et al. [29] has
been used. The signal is obtained simulating a b-value of 1;000 s/mm2 and voxel
resolution 1 � 1 � 1mm. Riccian noise with SNR D 15 is added to the images.
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Fig. 6 90ı crossing. From left to right: streamline tractography for DTI, geodesic ray tracing for
DTI, geodesic ray tracing for HARDI

Fig. 7 Rotated 90ı crossing. From left to right: streamline tractography for DTI, geodesic ray
tracing for DTI, HARDI multi-valued geodesic

Results for the 90ı crossing angle are shown in Fig. 6. The behavior of the
streamline (left), DTI ray-tracing [25] (middle) and HARDI ray-tracing (right)
tractography are illustrated. The results illustrate that streamlines have a preference
for curving instead of going straight. The HARDI ray-tracing tractography gives
less spreading of the reconstructed fiber bundles compared to the DTI ray-tracing
method. Figure 7 shows the behavior of these algorithms with respect to rotation.
The crossing angle here remains 90ı and the data is rotated 55ı. Figure 8 illustrate
fiber bundles for the 60ı crossing angle. We see that for a sharper angle the algorithm
is still capable of capturing crossing fibers.

In order to provide preliminary results of HARDI ray-tracing tractography for
real data, Fig. 9 shows the tractography result using a 10 � 10 � 30 cube cut from
the human data set obtained by a Philips scanner with resolution 2 � 2 � 2mm,
b-value of 1;000 s/mm2 and 128 gradient directions. The fiber tracking stops in both
cases if the fibers meet one of the boundaries. These preliminary results show the
capability of the tractography algorithm for capturing realistic fiber tracts in the
area of corona radiata (CR), corpus callosum (CC) and cingulum (CG). However,
these are preliminary results and future research and experiments are needed to fully
explore the capabilities of the presented method.
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Fig. 8 Geodesic ray tracing for HARDI using 60ı crossing

Fig. 9 Tractography results in the crossing region of Fig. 4. The top image indicates the seed
regions in a fractional anisotropy map, the bottom image shows the ray-tracing tractography results
for CC, CR and CG

6 Conclusion

In this chapter, we presented a new tractography algorithm for HARDI data. Our
method is based on computing geodesics in the Finsler metric as an extension
of Riemannian metric. The Finsler metric is defined as function of position and
direction using HARDI data at each voxel. We made a heuristic choice concerning
the mapping of the HARDI data into a Finsler metric. For future work, it would be
interesting to study other possibilities. Compared to other existing geodesic based
HARDI tractography methods, we computed multi-valued solutions of geodesic
equations instead of single valued viscosity solutions. We presented the theory and
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showed the potential of our method for capturing crossing fibers. Results of syn-
thetic data and very preliminary human brain data results showed the applicability
of the method. These are encouraging results that need further experimentation to
explore its possibilities and compare it to other existing fiber tracking methods.
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Kernel-Based Morphometry of Diffusion Tensor
Images

Madhura Ingalhalikar, Parmeshwar Khurd, and Ragini Verma

Abstract Voxel-based group-wise statistical analysis of diffusion tensor imaging
(DTI) is an integral component in most population-based neuroimaging studies such
as those studying brain development during infancy or aging, or those investigating
structural differences between healthy and diseased populations. The majority
of studies using DTI limit themselves by testing only certain properties of the
tensor that mainly include anisotropy and diffusivity. However, the pathology under
study may affect other aspects like the orientation information provided by the
tensors. Therefore, for detecting subtle pathological changes it is important to
perform group-wise testing on the whole tensor, which encompasses the changes in
anisotropy, diffusivity and orientation. This is rendered challenging by the fact that
conventional linear statistics cannot be applied to tensors. Moreover, the pathology
over the population is unknown and could be non-linear, further complicating the
group-based statistical analysis. This chapter gives a perspective on performing
voxel-wise morphometry of tensor data using kernel-based approach. The method
is referred as Kernel-based morphometry (KBM) as it models the tensor distribution
using kernel principal component analysis (kPCA), which linearizes the data in
high dimensional space. Subsequently a Hotelling T 2 test is performed on the high
dimensional kernelized data to determine statistical group differences. We apply
this method on simulated and real datasets and show that KBM can effectively
identify the underlying tensorial distribution. Thus it can potentially elucidate
pathology-induced population differences, thereby establishing a kernelized full
tensor framework for population studies.
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1 Introduction

Diffusion tensor imaging (DTI) is an important MRI modality for studying white
matter connectivity and organization non-invasively [6, 32]. There exists a wide
variety of applications of DTI that include investigating neurological and psychiatric
disorders [2,21,25], structure-function relationships [11,20,38], evaluation of brain
connections and creating the structural brain connectome [8, 19], and as a tool to
assist in computer guided surgery and treatment planning [13, 29].

Clinical investigation of pathology-induced changes requires a group-based
statistical analysis of DT images which can identify regional differences between
controls and patients. Voxel-based morphometry (VBM) [4] is a popular form of
statistical analysis and has been widely adopted by the neuroimaging community.
VBM has an advantage over region-of-interest (ROI) based analysis as it does not
require an a priori hypothesis regarding regions affected by disease. Conventionally,
VBM on DTI images is performed via analyzing the scalar maps of anisotropy
and/or diffusivity that are computed from the tensor and then spatially normalized
to a common template. A statistical voxel-wise p-value map is then computed
from these scalar maps with the application of standard tests (e.g. t-tests) for
statistical inference. Commonly used scalar images for such analyses include the
fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) [28,30,37].
The main disadvantage of these methods is that they do not use the complete
information available in the DTI dataset, but rather make an a priori assumption
that group differences will affect only a particular aspect of the tensors which is
usually quantified through scalar indices like FA. Moreover, the combined results
from different scalar maps may be difficult to interpret as they can potentially
contain spatially overlapping patterns. Tensors provide both shape information
(in the form of eigenvalues) that are captured in scalar maps of anisotropy and
diffusivity measures computed from the tensor data and underlying fiber orientation
information in the form of eigenvectors. However, voxel-wise statistical analysis
of the tensors is complicated as the tensor is a 3 � 3 positive definite symmetric
matrix located at each voxel and has an underlying non-linear manifold structure
[3, 14, 31]. Furthermore, disease-induced changes between the subjects may not be
linear adding to the complexity of the group-based statistical analysis.

Non-scalar features [34,35,42] such as the principal eigen-directions (PD) of the
tensors have also been used in some analyses. In [34] a Bipolar-Watson model was
introduced for analysis of PD’s. This model takes into account the symmetric nature
of the tensor while performing the statistical analysis and assumes the underlying
distribution to be a Wishart distribution. However, in the regions where white matter
fibers cross, the tensors are oblate in nature and therefore applying statistics to PD’s
may demonstrate ambiguous results.

A few methods have attempted on analyzing tensors in the VBM type setting.
For example, work by Li et al. performed tensor regression analysis [27] where
a linear regression model was assumed that imposed distributional assumptions
on the tensors under consideration. In some other works, [15, 26] tensors were
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characterized using Riemannian symmetric spaces. In [3] a simple and efficient
Riemannian framework based on Log-Euclidean (LE) transform was introduced.
Such methods rely upon the assumption that the tensors around a given voxel
from various subjects belong to a principal geodesic sub-manifold and that these
tensors obey a normal distribution on that sub-manifold. The basic principle of these
methods is sound, namely that statistical analysis of tensors must be restricted to the
appropriate manifold of positive definite symmetric tensors, which is known to be
a cone embedded in <6. However, there is no guarantee that the representations of
the tensors on this sub-manifold will have normal distributions since the pathology
imposes its own structure and the tensors measured at a given voxel, from n subjects,
typically lie on a much more restricted submanifold of the space of symmetric
positive definite matrices. A novel approach was suggested by Verma et al., where
a manifold learning method (Isomap) was employed for tensor analysis [40]. The
focus of this work was on learning embeddings (or features) parameterizing the
underlying manifold structure of the tensors. The learned features belonged to
a low-dimensional linear manifold parameterizing the higher-dimensional tensor
manifold and were subsequently used for group-wise statistical analysis. In general,
manifold learning approaches [10] may be used to estimate the embedding of the
manifold that represents the tensor measurements fairly well, however, depending
on the number of samples used to learn the underlying manifold structure, it may
not always be possible to determine the structure or validate its correctness or they
may fail to estimate the probability distribution (non-Gaussian) on the (flattened)
manifold itself.

This chapter is aimed towards providing a paradigm for voxel-wise tensor
statistics by determining the underlying statistical distribution of the data and using
this distribution for subsequent voxel-wise analysis. To achieve this, a novel method
named kernel-based morphometry (KBM) is developed which demonstrating that
it can accurately estimate the underlying distribution of the tensor data compared
to other existing methods. A standard statistical test is then performed on these
projections with appropriate testing for multiple comparisons.

2 Kernel Based Approach to Group-Wise Voxel Based DTI
Statistical Analysis

Group-wise voxel-based statistical analysis of DTI data involves spatially nor-
malizing all DT images to a common DTI template using a suitable technique
[12, 22, 43, 46] and then using an appropriate voxel-wise statistical test to infer
regional differences between groups based upon the tensors at (or around) a voxel.
In this kernel based approach, the underlying distribution of the data at each voxel
is determined and subsequently statistics are performed.
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Φ

Original Space RKHS

Fig. 1 Kernel-based projections: The mapping � takes points (marked with crosses) from the
original non-linear space to the linearized RKHS. Hyperplanes having constant projections onto
a vector in the RKHS become curved lines in the original space. Such curved lines can give us
important insight into how the corresponding RKHS projection parameterizes the original points

Kernel Principal Component Analysis (kPCA) [33] is a suitable method for learn-
ing the underlying data distribution. The common idea in any of the kernel-based
techniques is to transform the samples into a higher-dimensional reproducible kernel
Hilbert space (RKHS). Samples can be expressed using an appropriate kernel in a
higher dimensional space using the well known “kernel trick” [33]. The non-linear
hypersurfaces in the original space are mapped into hyperplanes in RKHS. These
hyperplanes separate the given samples linearly in RKHS which is equivalent to
a non-linear separation in original space. Subsequently, statistical operations can
be performed in this “kernelized” space. Thus, in case of DTI, at each voxel, the
intensities are kernelized to hyperplanes in the RKHS. Figure 1 illustrates the idea
behind obtaining such components. Since these components are linear in the RKHS,
linear tests for statistical inference, such as the Hotelling T 2 test, can be reliably
applied to these projections in order to identify separation between groups.

Before presenting the kPCA technique in detail, here is a brief note on our
mathematical conventions: Vectors are denoted by bold-faced lower case letters,
e.g. x, and matrices by upper-case letters, e.g. S for tensor matrix with U as the
eigenvector matrix and D as the diagonal matrix containing the eigenvalues of the
tensor. Vector of all 1’s is denoted by e while the identity matrix is denoted by I .
Vector of all 1’s in m-dimensional space is represented by em. Matrix transpose and
the matrix inverse are denoted by superscripts T and �1 respectively. The sample
mean of a set of vectors fxi ; i D 1; � � � ; Kg is represented as Nx, while the inner
product of two vectors xi ; xj is denoted by < xi ; xj >. Group-wise study includes
a statistical analysis of the DT images of N subjects, with NC subjects in one class
(the positive class) and the remaining N� subjects in a second class (the negative
class).
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3 Kernel Principal Component Analysis (kPCA)

We now describe the kPCA technique [33] by which one can find a rich linear
representation of our voxel-based samples as well as provide an accurate estimate
of the probability density underlying these samples. In conventional PCA, principal
directions in the vector space of the samples that maximize the variance of the
components of the samples along those directions and which also minimize the
least-squares representation error for the samples are determined. In kPCA, similar
principal eigen-directions in higher-dimensional RKHS are found where can be
safely assumed to be normally distributed.

A DT image consists of a 3 � 3 positive-definite symmetric matrix or tensor S
at each voxel in the image. Earlier work presented by Khurd et al. [24] used the
diffusion tensor directly as a 6D vector that could potentially lead to inaccurate
results since the tensors lie on the geodesic sub-manifold which is known to be a
cone embedded in <6. Therefore, the log-Euclidean form of tensor was employed
that retained the key attributes of affine-invariant Riemannian metric, and allowed
standard Euclidean computations in the space of matrix logarithms, as was described
by Arsigny et al. [3]. A tensor S can be represented as S D UDUT where matrix U
is a matrix of its eigenvectors and D is a diagonal matrix that consists of the three
eigenvalues. The log-Euclidean form of the tensor is given by Eq. 1.

Sle D log.S/ D Ulog.D/U T (1)

x D .S le
xx; S

le
yy; S

le
zz ;
p
2S le

xy;
p
2S le

xz;
p
2S le

yz/
T (2)

A similarity invariant log-Euclidean form of the tensor is computed using Eq. 1 [3].
The 6-dimensional vectors are then obtained using Eq. 2 for all our N subjects
x1; � � � ; xN . Let us denote the nonlinear mapping of this vector x into the Hilbert
space by �.x/, and let us denote the underlying kernel by k.:; :/, where <

�.xi /;�.xj / >D k.xi ; xj /. Let N� denote the mean of �.x1/; � � � ;�.xN /. Since
a principal eigenvector v in the higher-dimensional Hilbert space lies in the span
of the vectors �.xi / � N�; i D 1; � � � ; N , it can be conveniently represented as
v D P

i ˛i .�.xi / � N�/, where ˛ is an N -dimensional vector. Components of any
sample along the eigenvector v can now be conveniently computed using this new
representation in the kernel basis.

The entire kPCA procedure is summarized below [10]:
Another alternative to using LE form of tensors and then computing the kernel

K.xi ; xj / is employing directly a kernel K.log.si/; log.sj// where s is the original
tensor (in a 6 dimensional vector form).

In addition to finding the orthogonal directions of maximal variance in the
higher-dimensional RKHS, kPCA also provides an estimate of the probability
density underlying the samples. It has been pointed out by Girolami et al. [18] that
kPCA with a Gaussian radial basis function kernel amounts to orthogonal series
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Fig. 2 (a) Synthetic dataset, (b) Contour plot for kernel probability density estimate, (c) Contour
plot for 1st kPCA component, (d) Contour plot for 2nd kPCA component, (e) Contour plot
for 3rd kPCA component, (f) Contour plot for 4th kPCA component, (g) Contour plot for 5th
kPCA component, (h) Contour plot for 6th kPCA component, and (i) Contour plot for 7th kPCA
component (please see text for explanation in Sect. 3)

density estimation using Hermite polynomials. Gaussian kernels are frequently
employed in alternative kernel-based classifiers such as support vector machines
[33]. The advantages of using Gaussian kernel are multifold; it non-linearly maps
the samples into RKHS, involves less number of parameters than a polynomial
kernel and is known to be robust. The Gaussian � value was chosen to be based on
the average distance between nearest neighbors (NN) xi and xj for e.g.

�
�xi � xj

�
�

and our choice was motivated by the desire to obtain meaningful representations for
the different kPCA components.

In Sect. 5.1, simulated example is presented (see Fig. 2) where kPCA provides
an accurate parametrization of the underlying density of the dataset. We note
that the kPCA components constitute a linear representation of the tensors in the
RKHS, which considerably simplifies further statistical analysis that will need to
be performed on the dataset. An important issue is selecting the number of kPCA
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Algorithm 1 kPCA
1. Form the kernel matrix K, where Kij D k.xi ; xj /; i D 1; � � � ; N; j D 1; � � � ; N:
2. Center the kernel matrix to obtain Kc D .I � 1

N
eeT /K.I � 1

N
eeT /.

3. Eigen-decompose Kc to obtain its eigenvectors ˛.i/ and eigenvalues �i ,
i D 1; � � � ; N.�1 � �2 � � � � � �N /.

4. Normalize the eigenvectors ˛.i/ to have length 1
p

�i
so that the eigenvectors v.i/ in the RKHS

have unit length.
5. The i th kPCA component for training sample xk is given by:

< �.xk/� N�; v.i/ >D �i˛
.i/

k

6. For a general test point x, the i th kPCA component is:

< �.x/� N�; v.i/ >DX

m

˛.i/m k.x; xm/� 1

N

X

m;n

˛.i/m k.x; xn/

components used for subsequent statistical analysis. This number can be chosen by
looking at the kPCA eigenvalue spectrum and selecting only those eigenvectors that
correspond to large eigenvalues. The notion of “large” eigenvalues is empirically
defined using a application-specific threshold in one of two ways. The threshold may

either specify the minimum energy
PL
iD1 �iPN
iD1 �i

that should be present in the retained L

eigenvalues, or it may specify a minimum value for the ratio of the smallest retained
eigenvalue �L to the largest retained eigenvalue �1. For good discriminatory
performance between the groups, the number of kernel PCA components chosen
should not exceed the number of samples in either class. Statistical p-value maps
are then computed using Hotelling’s T 2 statistic on the retained kPCA projections.
This procedure is repeated at each voxel to obtain the kernelized version of the
tensors at that voxel. These are now vectors in a high-dimensional linear space.
Thus linear statistical tools for high dimensional data such as Hotelling’s T 2 can
then be applied to the retained kPCA components. The resulting p-value map can
then be thresholded to obtain regions of interest.

To overcome the multiple comparisons problem associated with voxel-wise
analysis, False Discovery Rate (FDR) is implemented. This method controls the
expected proportion of falsely rejected hypotheses [9]. The FDR threshold is
determined from the observed p-value distribution, and therefore is adaptive to the
amount of information in a given dataset [17].

The entire computational procedure for statistical analysis of tensors using kPCA
also referred as KBM is summarized below:

This method can also be applied directly to eigenvectors of the tensors for
studying the groupwise orientation changes. Performing KBM on a DTI population
encompasses changes in scalar maps like FA as well as the orientation.
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Algorithm 2 KBM of DTI data:
• Input: DTI datasets spatially normalized to a standard template. (N

C

subjects in one group and
N

�

subjects in the other group).
• Output: p-value maps indicating regional differences between the two groups (in general

patients and controls).
• Parametric p-value map:

– For each voxel v D 1; � � � ; V
� Compute the log-Euclidean form of tensors from N subjects.
� Apply kPCA (refer to algorithm 1 above).
� Select the number of kPCA components (using the energy threshold criterion).
� Compute Hotelling’s T 2 statistic T 2.v/ on the kPCA components and the parametric

p-value p.v/.

Regions of significance can be identified by controlling the FDR using a suitable p-value
threshold. Genovese et al. [17] have recommended the usage of threshold p-values of < 0:1.

4 kPCA Based kFDA

It has been showed that kernel Fisher Discriminant Analysis (kFDA) could be
an alternative tensor analysis method to kPCA [24]. kFDA focuses on finding
non-linear projections of the tensorial data which can optimally discriminate
between two groups. It computes a direction in higher order RKHS such that the
projection along this direction maximizes a separability measure known as Rayleigh
coefficient (or Fisher discriminant ratio). To quantify the group difference a T 2 test
was performed on the kFDA components [24].

It is important to note that kFDA solution uses the group labels in obtaining the
scalar projections and therefore permutation tests on the T 2 statistic computed from
these projections are essential in finding meaningful p-value maps. The permutation
tests on a million voxels can be computationally expensive. To circumvent the
permutation tests, we provide an alternative analytical kFDA solution, based upon
eigen-decomposition, as is shown by Baudat et al. [7]. This analytic solution
has been shown to be mathematically equivalent [45] to first performing kernel
PCA on the input data, followed by ordinary FDA. Therefore, we shall refer
to this alternative solution as kPCA-based kFDA. An advantage of the analytic
solution is that one can reduce the number of kernel PCA components used in the
subsequent ordinary FDA and obtain superior discriminatory performance. For good
discriminatory performance, the number of kernel PCA components used in the
subsequent ordinary FDA should not exceed the number of samples in either class.
In practice, this number is chosen based upon the kernel PCA eigenvalue spectrum
as discussed in Sect. 3. On account of the equivalence between the T 2 statistic and
FDA (Appendix), a second advantage is that it is possible to compute p-values using
the T 2 statistic on the retained kPCA components in a faster parametric manner,
with a small loss in accuracy, in comparison to performing permutation tests on
kFDA components. The p-value map computation procedure using kPCA-based
kFDA is identical to Algorithm 2 presented in Sect. 3.
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5 Application

The kPCA framework is applied on three types of datasets: (1) simulated 2D
datasets with the purpose of testing parameters of the kPCA analysis; (2) real
datasets in which changes in shape and orientation have been simulated to study
the practical applicability of KBM to group-wise population studies. Knowing
the ground truth, that is, the magnitude of changes introduced, makes it easier
to evaluate the differences captured by kPCA analysis and identify possible false
positives; and (3) A group analysis between children with Autism spectrum disorder
(ASD) and typically developing (TD) controls. We now describe the details of each
of the experiments.

5.1 Kernel Based Analysis of Simulated Datasets

In this experiment the aim is to establish that the kernel-based method is able to
identify the changes in shape and orientation in tensors when the changes occur in
combination as could be in the case of pathology-induced changes. A 2-dimensional
dataset with variation in the radial and angular directions was created that modeled
a tensorial dataset with changes in the principal eigenvalue and eigen-direction. The
purpose for using only two-dimensions was to make understanding and visualization
straightforward (Fig. 2).

The synthetic dataset consisted of points forming a semi-circular band (see
Fig. 2a) and was generated using 36 angles (in the 0–144ı range) and 6 radial
values (in the range 1.3–1.8) resulting in a total of 216 points. The aim was to
check whether kernel-based morphometry paradigm was able to capture both
these changes. The kernel-based procedure (Algorithm 1) was applied to this
dataset using a Gaussian radial basis function (RBF) with the kernel width �2

set to 0:1 (� D 0:316). The kernel width parameter was based on the average
distance between nearest neighbors xi and xj , i.e. jjxi � xj jj and the number of
samples.

Figure 2c–i shows the iso-contour plots for 7 principal kPCA components
representing the hyperplanes having constant projections onto the corresponding
7 RKHS eigenvectors, as was described earlier using Fig. 1. It was observed that
the first 6 components (Fig. 2c–h) represented the angular changes in the data using
varying scales, the third kPCA component (Fig. 2e) divided the angular variation
in the data into four regions and alternately assumed positive and negative values
as we move along the angular direction across these four regions. Only the seventh
kPCA component (Fig. 2i) individually captured the radial change in the data and it
smoothly increased from negative to positive values in the radial direction.
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5.2 Analysis of DTI Datasets with Simulated Changes

The simulation in the previous Sect. 3 was then extended to a more realistic scenario
as now the changes were simulated in real datasets. This was performed to determine
whether KBM is able to capture combined shape and orientation changes, that a
simple voxel-based morphometry of the scalar maps of anisotropy and diffusivity is
unable to obtain.

The DTI data consisted of scans of 36 healthy volunteers (17 male and 19

female). These DT images were acquired on a Siemens TrioTM 3.0 Tesla scanner,
using a single shot spin-echo, echo planar imaging (EPI), with 12 diffusion
directions with a b-value of 800 s/mm2 and TR/TE = 6,400/97 ms. Forty axial slices
with 128�128matrix, were acquired with a voxel-size of 1:72�1:72�3:0mm. The
diffusion tensor images were reconstructed from the DWI data using multivariate
linear fitting [32]. The FA images that were computed from the tensors, were
deformably registered elastically to a chosen healthy subject as template, by
hierarchically matching features that provide a rich morphological signature for
each voxel [36], The deformation was applied to the tensors while reorienting
them using the underlying rotation component of the transformation [44]. We then
identified an ROI on the template in the corpus callosum, as shown in Fig. 3a, and
introduced spatially smooth random changes in the principal eigenvalue and the
azimuthal angle for the principal eigenvector of each tensor into the appropriate
ROI for all unwarped subject DT images. The random changes were designed to
slightly increase the principal eigenvalue (average 4:6% change) and the principal
azimuthal angle (�20ı), on average, but were subtle enough so that these changes
could not be visibly easily discerned on an FA map or a colormap for the principal
direction. These changes emulated changes in FA and orientation in the tracts. The
DT images with the introduced random changes were then warped back to the
template resulting in 35 DT images belonging to the class with induced pathology.
The tensors were then transformed to log-Euclidean space. KBM method was tested
using two different cases: (1) using LE tensors (without smoothing) (2) by applying
4 mm FWHM Gaussian blur to the LE tensors. All the tests were performed using
3 kPCA components, 8 kPCA components and 12 kPCA components. Following
kPCA, the statistical p-value maps were computed using Hotelling T 2 test. KBM
method uses a vector (LE tensor in this case) as an input and hence can be applied
for analyzing of one of the eigenvectors. To demonstrate this adaptability, we
applied our method to analyze the orientation of the simulated tensors. The principal
direction (PD) defined by a 3D vector was chosen for the analysis. The issue of
antipodal symmetry of eigenvectors was resolved by making sure that all the vectors
lay in the positive z-hemisphere. The kPCA framework described in Sect. 3 was
applied to the PDs.

The effect of applying kPCA to PDs, tensors and the effect of change of
parameters was quantitatively evaluated based on the percentage overlap of voxels
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Fig. 3 (a) ROI with changes (highlighted) overlaid on the template FA map. P-value map
computed from voxel-wise kPCA using 8 components is overlaid on the template FA when (b)
Smooth tensors are used (c) when original tensors are used, (d) voxel-wise t-test on FA and (e)
when principal eigen-directions are used. Low p-value regions in (b) better (�66 %) match the
true ROI in (a) than in (c) (�59 %) after thresholding at p-value of 0.1. For FA analysis in (d),
the sensitivity is lower than kPCA on tensors. Although most of the ROI is detected, the p-values
are higher. For PD analysis in (e) changes in anisotropic areas are better detected than in isotropic
regions. The ROI’s are zoomed in each case for better visualization

in the detected ROI (the voxels that showed to be significantly different based on a
threshold of p-value 0.1) with the voxels in the original ROI in which the changes
were introduced. We compared our method with voxel-wise t-test on FA and ADC
as well as the Isomap-based method introduced in [40]. The kPCA on PD’s was
compared with the Bipolar-Watson method on the PD’s introduced by Schwartzman
et al. in [34].

Results are shown in Fig. 3b–e. Figure 3b displays the p-value map after
performing group analysis on the kernelized data at each voxel. It can be observed
that the simulated ROI has a very low p-value range. Similarly, Fig. 3c shows the
p-value map after performing kPCA analysis on tensors. Figure 3d, e show the
ROI detected by t-test on FA and kPCA on PD’s respectively. Table 1 gives all
the percentage overlap values from kPCA compared to FA analysis, ADC analysis
and Isomaps. The FA and ADC analysis involved a voxel-wise t-test.
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Table 1 Percentage overlap of detected ROI (p-value map threshold at a cut-off of 0:1) with the
ground-truth ROI in which changes had been introduced (please refer to Sect. 5)

Analysis method Original DTI Smooth DTI

1. ADC 14.92 21.71
2. FA 39.14 42.39
3. ISOMAP – 3 components 36.19 45.50
4. kPCA on tensors – 3 components 57.39 65.56
5. kPCA on tensors – 8 components 59.43 66.34
6. kPCA on tensors- 12 components 64.38 87.42
7. kPCA on PD – 3 components 42.15 45.76
8. kPCA on PD – 8 components 42.87 47.55
9. Bipolar Watson on PD 39.84 42.92

5.3 kPCA Analysis on Autism Spectrum Disorder

Finally, the method of KBM was applied to a real population of subjects with ASD
pathology and typically developing (TD) controls. In this study 26 TD controls
(mean age = 10.7) and 44 subjects with ASD (mean age = 9.8) were used. The
images were taken using Siemens 3T VerioTM scanner using a 32 channel head
coil. DTI was performed using a single shot spin-echo, echo-planar sequence with
the following parameters: TR/TE = 16,900/70 ms, b-value of 1,000 s/mm2 and 30
gradient directions. Eighty axial slices of 128 � 128 matrix (FOV 256 mm) were
acquired yielding 2 mm isotropic data. The diffusion tensors were estimated using
the least squares fitting method and then spatially normalized to a standard template
described in Wakana et al. [41]. The deformable registration utilized the full tensor
information by integrating intensity and orientation into a hierarchical matching
framework [22]. KBM analysis was then carried out on the tensors using an energy
threshold of 80% and with a sigma of 4.0. FA and mean diffusivity (MD) maps
were computed from the spatially normalized dataset. A comparative voxel-wise
FA and MD analysis was performed on the same dataset by employing a standard
t-test between the groups. In all the analyses, the p-values were thresholded at
a significance level of p< 0.05 and the results were overlaid on the template
FA image. The resulting images are displayed in Fig. 4 indicating the regions of
differences between subjects with ASD and the TD controls. The kernel based
method could capture multiple areas of significance that included left superior
longitudinal fasciculus (SLF), left inferior longitudinal fasciculus (ILF) and left
inferior fronto-occipital fasciculus (IFO) and parts of right and left internal (IC)
and external capsule (EC). The conventional FA and MD voxel-wise results are
shown in Fig. 4b, c respectively. From Fig. 4b it can be observed that FA captures
only the differences in the right external capsule (EC), while MD analysis shows
significance only in inferior regions that include the ILF and IFO as seen in Fig. 4c.
Multiple comparisons using FDR at 0.1 threshold (on tests for FA, MD and KBM
on tensors)could not survive any of the voxels.
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Fig. 4 Displays the differences between ASD and TD groups. (a) Result from k-PCA on tensors.
The areas include left SLF (includes arcuate fasciculus and acoustic radiation), ILF, IFO, IC and
EC while (b) show the result from voxel-wise FA analysis in which only the right EC is captured
and (c) significant areas captured by MD changes that include ILF and IFO

6 Summary

In this chapter we address the problem of tensor-based population statistics of
DTI data by employing a kernel based morphometric method that can capture the
underlying distribution of the data. Our sequence of experiments shows that the
mapping of data to a kernelized higher dimensional space enhances group separation
and also models the underlying changes in the data.

To validate the kernel-based procedure we first applied it Sect. 5.1 on simulated
data. This aided in determining whether it was able to capture combined changes
in shape and orientation and whether this depended on the number of compo-
nents. The experiment demonstrated that using different number of components
achieves different degrees of separability in the data, between the different kinds
of changes. Moreover, we found that it is important to utilize an adequate number
of features/components for better group separation. Therefore, an energy threshold
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criteria was defined as was described in Sect. 3. It was also noted that if a high value
of � was used (e.g. 10 times of NN distance) then the separability of the shape and
orientation could not be obtained even when maximum allowable components were
used. On the other hand, a low � value would have lead to overfitting of the data.
Thus selecting an optimum � value was critical.

In the next experiment (Sect. 5.2) pathological changes were simulated in the
genu of the corpus callosum and the surrounding CSF (in the form of spatially
smooth subtle random changes in the principal eigenvalue and the PD). The main
reason behind picking such an area was to evaluate KBM in areas with high
anisotropy (genu) as well as with low anisotropy (CSF). These simulations were
mainly created for better validation of the KBM method as there are no models or
ground truth for the variability that a disease may introduce in the data. From the
results shown in Table 1, rows 1 and 2 are the outcome of a conventional t-test on
ADC and FA and row 3 presents the results using the Isomap technique from [40].
The t-test on FA detected only regions of higher percentage change in eigenvalues
with a significance lower than 0.1. The Isomap technique (row 3) performed better
than the first two approaches (indicating the non-linear nature of data variation), but
perhaps it suffered as it does not utilize the knowledge of the underlying distribution
of data. Knowledge of the statistical distribution led to improved results using
the kPCA technique on the LE tensors (Table 1 rows 4–6). It was observed that
the resulting overlap from kPCA was better when the LE tensors were smoothed
and when larger number of features were used (87 % when 12 components were
used on smoothed datasets). The results also improved when richer number of
features were used (that is features had more components). In CSF, since the average
eigenvalues were slightly increased, we expected to see shape differences which
were significantly caught by kPCA method whereas FA picked it up subtly. Row 7
and 8 present results using kPCA on PD’s while row 9 shows the results of using
Bipolar-Watson model introduced in [34] to determine changes in PD. Although the
ROI overlap using kPCA on PD’s using 8 components, (47 %) was much lower
than the tensor overlap (66 %), it was better than using the Bipolar-Watson method
which showed only 42 % overlap after thresholding at a p-value of 0.1. Although the
changes were introduced in the principal eigenvalue and eigenvector, it seems that
methods that targeted each of these changes individually (FA-based and PD-based)
were unable to capture it fully as opposed to when the full tensor information was
used for statistical analysis. Thus suggests that changes in shape and orientation are
difficult to detect by conventional methods, however the KBM is able to capture
mixed changes. Since combination changes are expected in pathology, we have
established the importance of our method in performing large population studies
in which changes cannot be hypothesized a priori. It may be noted that if it were
known a priori that the changes were only in shape or orientation, we could examine
just that aspect, but in the absence of such knowledge, it is important to study the
full tensor.
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Finally, we performed KBM on a population of subjects with ASD (Sect. 5.3), to
demonstrate the applicability of our method on clinical datasets. DTI based research
in ASD has mainly involved studying WM changes using anisotropy and diffusivity
values [39]. Abnormalities have been reported in WM structures like the genu and
splenium of the corpus callosum [1], the internal capsule [23] and in the tempo-
parietal regions [5, 21].

The results from our analysis displayed in Fig. 4 indicate the regions of differ-
ences between subjects with ASD and the TD controls. The resulting differences
from the kernel-based method suggest WM abnormalities and hypo-connectivity
between brain regions which may be strong contributors to the social deficits that
are hallmarks of the ASD phenotype. For example, the changes observed in SLF
(which includes the arcuate fasciculus) can be linked to the language impairment
often observed in the ASD population [16] while the differences in the internal
capsule were comparable to the previous finding by Keller et al. [23]. The p-values
computed from the kernelized analysis as well from FA and MD analyses could not
survive the FDR correction (at 0.1 threshold), perhaps owing to the heterogeneity
in the population, small sample size and/or subtle differences between the groups.
However, the aim here was to demonstrate future clinical applicability of the method
as it was able to capture more changes than were observed using conventional
analysis of DTI.

It was shown in Sect. 5.2, that tensor analysis could capture interplay between
combined shape and orientation changes which individual (FA or PD) analysis could
not capture. Similarly in the ASD example, the significant regions using kPCA on
tensors in Fig. 4a–c included many areas like SLF and IC that are known to be
affected in ASD while FA failed to capture the pathological abnormalities in ASD.
This demonstrates that KBM of tensors is able to find combined FA and PD changes
that other methods are unable to, underlining the importance of full tensor statistics,
in comparison to statistics on the scalar maps alone.

In summary, DTI analysis has the advantage of being more sensitive than the
standard scalar or PD analyses, especially when the changes appear in combination
(that is shape and orientation as could be the case in real data). However more work
needs to be done for interpretation of results which will vary based on the dataset
on which KBM has been applied. However, this work establishes the need for full
tensor statistics in group-wise population studies. As the effect of pathology is not
known, tensor analysis can be thought of as an unbiased method rather than using
scalar indices computed from combination of tensor eigenvalues and eigenvectors.
The wide range of experiments demonstrate applicability of kernel-based tensor
morphometry for population statistics and provides a novel method of statistical
analysis, based on capturing the underlying distribution of the data, that is specific
to the disease that introduced the change.
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Appendix

Proof of the equivalence between Hotelling’s T 2 test and FDA [24].
Let x1i ; i D 1; � � � ; N1 be the p-dimensional data vectors belonging to class 1

and let x2i ; i D 1; � � � ; N2 be the p-dimensional data vectors belonging to class 2.

Let Nx1; Nx2 denote the means for classes 1 and 2. Let Sx D . 1
N1CN2�2 /

�PN1
iD1.x1i �

Nx1/.x1i � Nx1/T CPN2
iD1.x2i � Nx2/.x2i � Nx2/T

	
.

Hotelling’s T 2 test: Then the T 2 test statistic is:

T 2x D
N1N2

N1 CN2 .Nx1 � Nx2/
T S�1x .Nx1 � Nx2/ (3)

Assuming normal distributions for x1i ; i D 1; � � � ; N1 and x2i ; i D 1; � � � ; N2
implies that Fx D N1CN2�p�1

.N1CN2�2/p T
2
x has the cdf F.p;N1CN2�p� 1/. Therefore, the

parametric form of Hotelling’s T 2 test is sometimes refered to as the F-test.

FDA: The FDA optimal linear discriminant direction is w D S�1x .Nx1 � Nx2/ and the
corresponding scalar mapping is y D .Nx1 � Nx2/T S�1x x.

Therefore, Ny1 � Ny2 D .Nx1 � Nx2/T S�1x .Nx1 � Nx2/,

Sy D . 1

N1 CN2 � 2/
� N1X

iD1
.y1i � Ny1/.y1i � Ny1/T C

N2X

iD1
.y2i � Ny2/.y2i � Ny2/T

	

D . 1

N1 CN2 � 2/.Nx1 � Nx2/
T S�1x

� N1X

iD1
.x1i � Nx1/.x1i � Nx1/T (4)

C
N2X

iD1
.x2i � Nx2/.x2i � Nx2/T

	
S�1x .Nx1 � Nx2/

D .Nx1 � Nx2/T S�1x .Nx1 � Nx2/ (5)

and

T 2y D
N1N2

N1 CN2 . Ny1 � Ny2/
T S�1y . Ny1 � Ny2/

D N1N2

N1 CN2 .Nx1 � Nx2/
T S�1x .Nx1 � Nx2/

D T 2x (6)

Thus, the T 2 statistic computed on vectorial input samples, i.e. T 2x , is mathe-
matically equivalent to a one-dimensional T 2 statistic T 2y computed on the scalar
samples obtained by performing Fisher discriminant analysis on the input vectorial
samples.
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The Estimation of Free-Water Corrected
Diffusion Tensors

Ofer Pasternak, Klaus Maier-Hein, Christian Baumgartner, Martha E.
Shenton, Yogesh Rathi, and Carl-Fredrik Westin

Abstract Diffusion tensor imaging (DTI) is sensitive to micron scale displace-
ment of water molecules, providing unique insight into microstructural tissue
architecture. The tensors provide a compact way to describe the average of these
displacements that occur within a voxel. However, current practical image resolution
is in the millimeter scale, and thus diffusivities from many tissue compartments
are averaged in each voxel, reducing the specificity of the measurement to subtle
pathologies. In this chapter we review the free-water model, and use it to derive
diffusion tensors following the elimination of the free-water component, that is
assumed to originate from the extracellular space. Doing so, the resulting diffusion
tensors and their derived indices measure the tissue itself, and are more sensitive to
the geometry of the tissue, increasing the specificity to pathologies that affect brain
tissue.

1 Introduction

Diffusion tensor imaging (DTI) along with other diffusion imaging analysis meth-
ods have became the leading MRI methodology to investigate the microstructure of
brain tissue. In almost two decades of research since its inception [1], DTI studies
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were able to detect abnormalities that occur due to various brain disorders that
include stroke, traumatic brain injuries, Multiple Sclerosis, Alzheimer’s disease,
Parkinson, Schizophrenia and many more disorders [2]. It appears that DTI indices
are very sensitive to even subtle changes, either in the neuronal tissue or its sur-
rounding, implicating a variety of pathologies, including demyelination, vasogenic
and cytotoxic edema, inflammation, cell swelling, gliosis and other changes in the
shape or sizes of neuron and glia cells [3]. Since DTI is very sensitive to many
different pathologies, the challenge is to find methods that increase the specificity
of the DTI indices, in such a way that allows better differentiation and diagnosis of
the underlying processes that lead to the disorder, symptoms or pathology.

Diffusion MRI (dMRI) measures the displacement of water molecules, which in
a typical brain imaging experiment displace a few tens of microns. This makes dMRI
sensitive to normal and pathological architecture in the cellular scale. Nevertheless,
current image resolution is in the millimeter scale, introducing partial volume of
different tissue types – white matter, gray matter, glia cells, cerebrospinal fluid
(CSF) – which reduces the sensitivity and specificity of most indices derived
from dMRI and DTI [4]. Controlling for partial volume, and models that account
for multiple compartments can therefore help in increasing the specificity, by
determining in which of the compartments the abnormality occurs.

To date, most partial volume elimination methods concentrate on the case
where two or more white matter fibers share a voxel (e.g., [5–7]). This chapter
concentrates on the partial volume that occurs between the intra- and extra-cellular
compartments. Correcting for extracellular water is required to eliminate CSF
contamination, thus improving DTI’s sensitivity in the vicinity of the ventricles [8]
and important for the delineation of fibers that pass next to the CSF, such as the
fornix [9,10]. Moreover, the fractional volume of the extracellular water, relative to
the remaining hindered or restricted water molecules, appears to provide important
information with regard to pathological processes that modify the interstitial
extracellular space, such as edema [9], neuroinflammation [11] and atrophy [12].
Indeed, the extracellular volume was shown to be sensitive to pathologies that
appear in aging [12], schizophrenia [13], multiple-sclerosis [11], and Alzheimer’s
disease [14].

In this chapter we describe methods to estimate diffusion tensors that represent
the signal following the elimination of free-water in the extracellular space. We
start in Sect. 2 by describing the free-water model. We then show in Sect. 3 how to
estimate the model parameters from a conventional, single-shell DTI acquisition,
and from a more sophisticated multi-shell dMRI acquisition. In Sect. 4 we describe
an alternative approach that estimates the model parameters in white matter while
performing tractography. We conclude in Sect. 5 by demonstrating the effect of
using free-water along with a clustering method to perform a group comparison
between Alzheimer’s disease patients and age matched controls.
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2 The Free-Water Model

Free-water is defined as self-diffusing water molecules that do not experience
restriction or hindrance from their surrounding. This definition depends on the
amount of time in which the diffusion process is measured, as for infinitely long
diffusion times, all water molecules will eventually hit an obstacle, whereas for
infinitely short diffusion time, all water molecules are free to diffuse. In typical
experimental setups the diffusion time is in the order of 30–50 ms which yields that
in order for water molecules to diffuse freely they have to be a few tens of microns
away from membranes and other cellular restrictions. The typical size of brain cells
is usually lower than 10�m, and therefore in the brain, free-water can be found
in the extra-cellular space. The diffusion coefficient of free-water is known, and
depends on the temperature. For example, the diffusion coefficient of water in body
temperature is dwater D 3 � 10�3 mm2=s [15].

The free water model was first proposed by Pierpaoli and Jones [16]. The model
estimates and corrects for the contribution of free-water [9]. The model assumes
that the diffusion signal originates from two molecular compartments, co-existing
within a voxel, with slow exchange between the compartments [9]:

OAi.D; f / D f exp.�bigTi Dgi /C .1 � f / exp.�bid/ : (1)

Here, OAi is the estimated signal (normalized by the b0) of the i’th applied diffusion
gradient with orientation gi , and b-value bi . The first term reflects the tissue
compartment, where D is the diffusion tensor of this compartment and f is the
relative contribution of the compartment. The second term reflects an isotropic
compartment, with a fixed diffusion coefficient, d , set to the diffusion coefficient of
water in body temperature, 3�10�3 mm2=s. Thus, the isotropic compartment models
free-water, and is expected to measure molecules that are in the extra-cellular
space, we call this compartment the free-water compartment. If the free-water
compartment is eliminated, then the remaining compartment measures molecules
that are close to tissue membranes, these are expected to include all the intracellular
molecules, and some of the extracellular molecules that are not far enough from
hindering obstacles such as cellular membranes.

When the free-water model was introduced it was different than other bi-
compartmental models by the fact that the diffusion coefficient of the isotropic
compartment was fixed. Prior to the free-water, other bi-compartment models either
did not restrict the diffusivities of the compartments, resulting with “fast and slow”
components (see for example [17]), or extremely restricted tissue compartment,
with models such as the “ball-and-stick” [18] that separated all of the isotropic
contribution (ball) from any remaining anisotropic contribution (stick). However, it
was not clear how to relate the resulting compartments to biological compartments:
In the fast-and-slow model, the fitting did not seem to match known values of intra-
and extra-cellular volumes, leading to a debate on what are the sources of these
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compartments [17]. With the “ball-and-stick” model, the orientation of the stick
is generally aligned with that of white matter bundles, however the model does
not allow assessment of other diffusion properties of the white matter, limiting the
usability of this model to tractography studies. The fixed diffusivity of the free-water
compartment, provides more of a biological compartmentalization to extra-cellular
versus tissue compartments.

2.1 Free-Water Derived Maps

To acquire free-water maps, the free-water model in Eq. (1) has to be fitted with the
measured dMRI signal. The outcome of this model-fit is a map of the tissue fraction
(f ) or a free-water map (1 � f ). The free-water map, for example, has a range of
[0–1] where values close to 0 are expected to be found in densely packed tissue,
such as major fiber bundles, and values close to 1 are expected to be found in areas
filled with CSF, such as the ventricles. In addition, the free-water eliminated tensor
D can be further decomposed into scalar indices that can also be visualized as maps.
These quantities include Fractional Anisotropy (FA), Mean diffusivity (MD), Axial
and Radial diffusivity [19]. These tensor quantities describe properties of the tissue
compartment, as such, the FA derived from the tissue compartment is called tissue-
FA or FAt. This notation differentiates the value from the FA that is derived from
DTI, reflecting the anisotropy in the entire voxel (i.e., both the tissue and free-water
compartments).

3 Fitting the Free-Water Model

The free-water model adds only one more parameter, f , to the DTI model. However,
unlike DTI, the fitting of this bi-exponential model is highly unstable [17]. In order
to stabilize the fit, we need to incorporate additional information that reduces the
number of possible solutions.

3.1 Single Shell (DTI) Data

One way to stabilize a fit is by regularizing the fitted function. This is since
requiring from a solution to be piece-wise smooth restricts considerably the solution
space. Regularization is performed by including neighborhood information in the
fitting of each voxel. This information requires that the solution not only fit the
measurement, but will also be similar enough to the solution of the neighboring
voxels. To stabilize the fitting process we use a regularization framework that adds
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neighborhood constraints as additional information. We use a regularization method
based on the Beltrami operator [20] by minimizing the following functional:

L.D; f / D
Z

˝

X

i2G
jj OAi � Ai jj C ˛

p
j�.D/j : (2)

Here,˝ includes all voxels of interest, G are the indexes of all applied gradients and
Ai are their signal normalized by the b0. The parameter ˛ scales the contribution of
the Polyakov action regularization term (typically ˛ D 1 [9]), with j�.D/j as the
determinant of the induced metric. Using the Einstein summation convention this
metric has the form ���.p/ D @�xm@�xnhmn.x/, for each coordinate in the space:
p D fx; y; zg.

In order to define the spatial-feature metric H D fhmng, one has to define the
spatial, and the feature metrics. Selecting a Euclidean metric with the canonical
tensor representation for the feature metric (distances between tensors), simplifies
the analysis considerably, and is also preferred over other types of global tensor
metrics [21]. As a result the vector x has the elements

x D ŒDxx;Dyy;Dzz;
p
2Dxy;

p
2Dyz;

p
2Dxz; x; y; z� :

The metric H for a Euclidean tensor space is simply a 9� 9 diagonal matrix, with 1
for the last 3 diagonal entries (the spatial domain) and a constant for the remaining
6 diagonal entries. This leads to the motion equations for the six tensor elements, xj

with j 2 f1; 2; : : : ; 6g:

�xj D
X

i2G
bi . OAi�Ai/ exp.�bigTi Dgi /

�

gTi
@D
@xj

gi

�

C ˛
pj � j@�

p
j � j.���@�xj / ;

(3)

and for the fractional volume parameter:

�f D
X

i2G
�bi . OAi � Ai/

�
exp.�bigTi Dtgi / � exp.�bid/

�
: (4)

The parameter f is maintained in the range f 2 Œ0; 1� by projecting values that
exceed this range back within the range; see [9] for further constraints that can
be enforced on this parameter. Importantly, due to the use of the Euclidean
metric, and unlike the motion equations derived in [9], Eq. (3) does not have any
Christoffel numbers, and therefore its calculation is simpler and faster. The second
term in Eq. (3) is the Laplace-Beltrami operator, which is a piece-wise smooth,
edge preserving tensor regularization operator [9, 20]. The final result is thus the
parameters f and D that best fit the data while maintaining continuous tissue
representation.
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Fig. 1 Multi-shell acquisition. Diffusion signal for increasing b-values of (left to right) 0, 200,
900 and 1;400mm2=s in a mid-sagittal plane. The signal from free-water, such as in the ventricles
(red arrow), decays into the noise floor faster than the signal of brain tissue

3.2 Multi-shell Free-Water Estimation

Regular DTI data is acquired using a single b-value, usually in the order of
1;000 s=mm2, along with a non-diffusion-weighted image (bD 0 or b0). The dif-
fusion images are acquired using different gradient orientations, constituting a
shell [22]. More elaborate acquisition schemes are available in which a number
of different b-values are acquired, and a shell is acquired for each b-value, hence
forming a multi-shell acquisition. Estimating the free-water fraction, f and the
free-water eliminated tensor D using multi-shell data can be done using the same
minimization defined in Eq. 2. However, when having multi-shell data, special
properties of the multi-shell information can help initializing the estimation much
closer to the minima [23]. When the initialization is good enough, the model fit may
not require any further minimization.

The diffusivities of white and gray matter are considerably lower than those of
free-water or CSF. Typically, in single shell DTI, healthy brain tissue has a quite
homogeneous mean diffusivity of around 0:8mm2=s, 3–4 times slower than free-
water. Therefore, the free-water signal is expected to decay faster than tissue, e.g.,
with a b-value of 900 s=mm2 the tissue decays to 49 % of the signal while free-water
decays to 7 % of the signal. Figure 1 shows an example of a multi-shell acquisition
for a range of b-values. This range is achieved by modifying the diffusion gradient
amplitude for fixed diffusion times. As expected, the free-water signal (mainly seen
in the ventricles and around the parenchyma) attenuates faster than other brain
tissue. The free-water signal diminishes completely into the noise floor for the
higher b-values.

We calculate DH , the apparent diffusion tensor for the high b-valued shells, as an
estimator for D by minimizing:

X

i2GH
jj Ob0 exp.�bigTi DHgi / �Ei jj ; (5)

where GH are the indexes of all the applied gradients within the high b-valued
shells, and Ei is the signal of the i’th acquired diffusion image, not normalized by
the acquired b0 (as opposed to its attenuationAi D Ei=E0). The acquired b0 reflects
the contribution of all spins within the voxel, including from free-water. Therefore,
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the estimation of DH requires the estimation of Ob0, which is the baseline image that
would have been acquired in the case that the tensor DH was the only component
in the voxel. We minimize Eq. (5) using a linear least square (LLS) approach with
ln. Ob0/ as one of the free parameters [8].

We estimate f , which reflects the extracellular relative volume in a voxel, using
the low b-valued shells, which are in the range that still has signal from free-water.
Given DH as an estimate for D, we can calculate fL as an estimate for f using LLS
by defining:

fL D .aT a/�1aT c ; (6)

where ci D Ai � exp.�bid/ and ai D exp.�bigTi DHgi /� exp.�bid/, and i 2 GL
being the indexes of the applied gradients in the low b-valued shells. Unlike our
approach here, the single-shell free-water map estimation is initialized by the b0
image alone, normalized by baseline values that assumed knowledge of voxels that
have no tissue, and voxels that have no free-water [9]. This implicitly assumes that
the T2 weighted images behave similarly across the entire brain, and that there are
such baseline voxels. These assumptions are no longer required if using fL and DH

as initialization.

3.3 Single- and Multi-shell Comparison

We test the multi-shell estimation on an acquisition optimized for the free-water esti-
mation, having a single bD 0, 3� bD 50, 6� bD 200, 10� bD 500, 30� bD 900
and 16� bD 1,400, with gradient orientations designed as nested platonic solids,
which means that each shell is rotationally invariant, and the shells complement
each other to a rotationally invariant scheme [24]. Data was acquired on a 1.5 T
scanner with 2.5 mm isotropic voxels and takes 9:20 min. We use the bD 1,400 and
bD 900 shells to estimate DH , and the remaining shells to estimate fL.

All data was motion and eddy-current corrected. We used 3D-Slicer’s tensor
estimation to calculate DH by first omitting all images in GL, including the b0. We
used Matlab (Natick, MA) to calculate fL. The complete analysis for a whole brain
takes less than 15 min on a 64-bit Linux machine with Xeon-E5530 processors,
without taking advantage of multiple cores.

Both the multi-shell (Fig. 2a) and single-shell (using the bD 900 shell; Fig. 2b)
estimations provide similar free-water maps, showing high values in the ventricles,
and low values in the brain tissue, nicely depicting the extracellular volume. The
color by orientation maps are similar as well. To better evaluate the differences
between the maps, we plot free-water maps using a color-scale that increases
the visibility of the lower values. We can then see that the multi-shell maps are
not as smoothed as the single-shell maps, although both estimations used the
same Laplace-Beltrami regularization operator. As a result the multi-shell map is
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a

b

Fig. 2 Optimized
multi-shell. Multi-shell
regularized fitting
(a) provides a more detailed
extracellular volume (left)
and color by orientation
tissue tensor maps (right),
comparing with the
regularized single-shell fitting
(b). Small details are
preserved and there are less
artifacts (white arrows)

more detailed, allowing to better distinguish cortical structures. For this acquisition
scheme, the initialization, fL is very similar to the final multi-shell free-water map.

4 Estimation via Filtered Tractography

An alternative to the gradient descent scheme proposed in the previous sections
is to perform filtered tractography [6] to estimate the free-water volume along
fiber tracts. The filtered tractography views tractography as a causal process and
incorporates information from neighboring voxels to aid in the model fit [25].
We arrive at each new position along the fiber based upon the model parameters
found at the previous position. As we examine the signal at each new position,
a Kalman filter recursively updates the underlying local model parameters based
on the last state, provides the variance of that estimate, and indicates the direction
in which to propagate tractography, where the estimation begins again. Recursive
estimation in this manner improves accuracy resolving individual orientations and
yields inherently smooth tracts despite the presence of noise and uncertainty.
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4.1 State-Space Representation

To begin estimating within a finite dimensional state-space filter we need the
method-specific definition of four filter components:

1. The system state x: the model parameters
2. The state transition F Œ��: how the model changes as we trace the fiber
3. The observation vŒ��: how the signal appears given a particular state
4. The measurement y: the signal we are trying to fit the model to

Similar to the fitting of Eq. (2), the model parameters consist of the tensor of the
tissue compartment, D, and the fractional volume of the compartments, f . However,
since the filtered tractography approach is restricted to following white matter, we
can further simplify the model with the assumption that D is a cylindrical symmetric
tensor, i.e., replace it with two eigenvalues, �1 and �2, and the principal direction
m. The system state is therefore:

x D Œm; �1; �2; f �T ;

Typically, the local fiber configuration does not undergo drastic change from one
position to the next. For this reason we assume identity dynamics for the state
transition function. The observation function is the reconstruction of the attenuated
signal, given by the free-water model in Eq. (1), i.e.,

vŒx� D OA1; : : : ; OAk ;

for k applied gradients. The measurement is the actual attenuated signal:

y D A1; : : : ; Ak
interpolated directly from the diffusion weighted images at the current position.

4.2 Unscented Kalman Filter

Since the relation between the signal and the free-water model parameters are non-
linear, we employ an unscented Kalman filter to perform the estimation [6]. Similar
to a classical linear Kalman filtering, the unscented version seeks to reconcile the
predicted state of the system with the measured signal. The filter process consists
of two stages: first the system transition model is used to predict the next state and
observation, then the new measurement is used to correct the state estimate.

The Kalman filter is a particle filter that for a solution space with a dimension n
requires 2nC 1 noisy realizations, in our case, n D 6. The Prediction begins with
the formation of a set Xt D f�ig 	 R

n of 2nC 1 sigma point states (or particles)
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with associated convex weights, wi 2 R. The sigma points are spread around the
current state using a Gaussian distribution, with mean, xt 2 R

n, and covariance,
Pt 2 R

n�n. The sigma points and their weights are defined as follows:

�0 D xt

w0 D �

.nC �/ wi D wiCn D 1

2.nC �/
�i D xt C

hp
.nC �/Pt

i

i
�iCn D xt �

hp
.nC �/Pt

i

i

(7)

where Œ��i denotes the i -th column of a matrix and � is an adjustable scaling
parameter. We used � D 0:01 in all our experiments. Next, this set of sigma points
is propagated through the state transition function, O� D F Œ�� 2 R

n, to obtain a
new predicted sigma point set: XtC1jt D fF Œ�i �g D f O�ig. As mentioned above,
we assume identity dynamics, i.e., XtC1jt D Xt . The predicted system state is then
calculated as the weighted average of the set,

NxtC1jt D
X

i

wi O�i ; (8)

The variability of the sigma points is calculated as:

Pxx D
X

i

wi . O�i � NxtC1jt /. O�i � NxtC1jt /T CQ; (9)

where Q is the injected process noise bias used to ensure a non-null spread of sigma
points and a positive-definite covariance. This procedure comprises the unscented
transform used to estimate the behavior of a nonlinear function.

To obtain the predicted observation, we again apply the unscented transform, this
time using the predicted states, XtC1jt , to estimate what we expect to observe from
the hypothetical measurement of each state: ' D vŒ�� 2 R

k . This way we obtain
the predicted set of observations, YtC1j1 D fvŒ O�i �g D f O'ig, and may calculate its
weighted mean and covariance,

NytC1jt D
X

i

wi O'i ;

Pyy D
X

i

wi . O'i � NytC1jt /. O'i � NytC1jt /T C R;
(10)

where R is the injected measurement noise bias again used to ensure a positive-
definite covariance. The cross correlation between the estimated state and estimated
measurement may also be calculated:

Pxy D
X

i

wi . O�i � NxtC1jt /. O'i � NytC1jt /T : (11)
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Algorithm 1 Main loop repeated for each fiber
repeat

Form the sigma points Xt around xt
Predict the new sigma points XtC1jt and observations YtC1jt

Compute weighted means, NxtC1jt , and NytC1jt

Compute covariances, Pxx, Pxy, Pyy

Update estimate .xtC1;PtC1/ using scanner measurement ytC1

Proceed in the estimated direction mtC1

until estimated model appears isotropic

As is done in the classic linear Kalman filter, the final step is to use the Kalman gain,

K D PxxP�1yy ; (12)

to correct our prediction and provide us with the final estimated system state, and
with a covariance estimate to be used in the next steps:

xtC1 D NxtC1jt CK.ytC1 � NytC1jt / (13)

PtC1 D Pxx �KPyyKT : (14)

To initialize this process we use P0 D In�n, and x0 is initialized by a single tensor
estimation out of the acquired signal, y0.

We continue in this manner until the model appears isotropic. Algorithm 1
outlines these steps.

4.3 Free-Water and Tensor Corrected Maps Following Filtered
Tractography

The previous section outlines the estimation of the free-water model using filtered
tractography, however, any model could be estimated using this approach (see in
[26] for a number of different models that were included in the filtered tractography
approach). We generated FA and FAt maps based on a full brain tractography of
a healthy volunteer. The maps were generated by recording the estimated model
parameters for each voxel while performing the filtered tractography. Running
the free-water model yielded free-water maps and FAt maps. Running the filtered
tractography on a model that does not include the fractional volume parameter
yielded the DTI model and hence FA maps. Unlike the maps produced by the single-
and multi-shell fit, these maps have values only in places where the tractography
method identified fiber tracts. Therefore, the filtered tractography is limited to
provide maps of white-matter alone.

Figure 3 compares axial slices of the FA and FAt along with a difference map.
Adding the free water term only adds small qualitative changes to the FA map.
Looking at the difference maps (third from left) it can be seen that FAt is overall
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FA FAt Difference (FAt Free-Water

Fig. 3 Filtered tractography free-water maps. Maps of FA and FAt were generated while
tracking white matter tracts in the entire brain. These maps are comparable to the single- and multi-
shell maps, however, they have values only in white matter. The contrast of FA ranges between [0,1]
and FAt is in general higher than FA especially in areas with significant partial volume, that have
higher free-water values, as can be seen in the difference map and the free-water map

higher than FA. The biggest differences are observed around areas with partial
volumes of CSF, around the ventricles and close the cortical areas. These areas
match the ones with high free-water contents as can be seen from the free water
map in the Fig. 3 (right). We observed, that including the free water term always
increases the FA, decreases the Trace, and better fits the signal. The average free
water content of all fibers was 19.09 %.

Next we compared the diffusion models on brain scans of 10 healthy human
subjects. To generate the fiber tracts we began by seeding each voxel once, and
traced the fibers for each of the diffusion models until the anisotropy threshold
was reached, to arrive at a full brain tractography. From there we extracted the
fibers that pass through the anterior limb of the internal capsule to filter out the
respective tract under investigation. Fibers crossing the brain stem were excluded.
We chose to perform full-brain tractography first in order to obtain more complete
tract reconstructions. The fibers were expected to connect to the frontal gyri (green
in Fig. 4). Furthermore, the fibers are expected not to be connected to the adjoining
areas of precentral gyrus, and the caudal-middle-frontal gyrus (red in Fig. 4).
The resulting tracts for all methods are shown in Fig. 4. Including free-water in
the estimation produces a more complete fiber than without including free-water.
However, the tracts did not reach all of the frontal gyri. When modifying the model
to include three compartments, two with fiber tensors, and one with free-water, a
much more complete delineation is achieved. This is suggesting that these fibers are
affected by both partial volume with extra-cellular space, and crossing-fibers. The
addition of the free-water to the two-tensor model produced slightly more complete
fiber than without the free-water component, however, it also introduced a false-
positive fiber that connected the cortico-spinal tracts with the caudal-middle-frontal
gyrus.
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Fig. 4 Comparison of filtered tractography models. Fiber bundles passing through the anterior
limb of the internal capsule (purple) to the target region (green), and the non-target region (red), as
generated for four different filtered tractography models. Accounting for crossing-fibers by adding
a second tensor component produces a much more complete fiber. Nevertheless, adding free-water
provides an ever more complete representation of the fibers. (a) DTI. (b) Free-water. (c) 2-tensor.
(d) 2-tensorC free-water

5 Free Water and Group Comparisons

Controlling for partial volume is especially important when comparing groups
of subjects where changes in the volume might be part of the pathology. When
performing group comparisons, it is usually advised to add the volume as a
covariate, or to find analysis methods that obviate the volume changes all together
[27]. One example for such an approach is tract based spatial statistics (TBSS)
[28], which projects all the diffusivities onto a skeleton of the white-matter, thus
representing the center of the fiber, which is supposed to be free of partial volume
effects with the surrounding tissue. While this technique avoids regions of the fiber
that are more prone to include partial volume effects and thus improves the accuracy
of the statistics, at the same time many of the voxels are ignored, thus limiting the
precision and statistical power of the analysis and potentially missing important
information that might be in the data.

Alternatively, region-of-interest (ROI) analysis can manually achieve robust
and accurate measurements that include as many voxels in the target region as
possible. However, the ROI approach is prone to cause high inter- and intra-observer
variability. In addition, in order to ensure accuracy and avoid the discussed biases
due to partial volume, the regions have to be drawn in a very conservative fashion
without the inclusion of surrounding structures or CSF. This again can lead to
decreased precision and statistical power of the overall analysis.

In this section we demonstrate how free-water elimination can assist in con-
trolling for partial volume in the delineation of ROIs. We apply a partial volume
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clustering approach that combines a histogram based clustering analysis with an
atlas-based placement of ROIs to avoid manual ROI placement and to circumvent
the decreased sensitivity occurred when limiting the analysis to the white matter
skeleton. The application of free-water enhances the partial volume clustering and
provides the ability to differentiate macroscopic shrinking effects (i.e., atrophy)
from microscopic alterations (such as cellular density changes). As a result we are
able to compare microstructural changes that occur not only at the center but also at
the periphery of fibers.

5.1 Partial Volume Clustering

Partial volume clustering is a technique for the robust extraction of diffusion indices
from fiber bundles. It employs a probabilistic mixture model for differentiating fiber
voxels from isotropic background, similarly to the procedure described in [29]. If
a region includes both fiber and non fiber components, then using a probabilistic
mixture model and histogram analysis, the ROI can be segmented into a fiber, a non
fiber and a partial volume class on basis of a scalar anisotropy value that is derived
on a voxel basis.

The classification algorithm assumes that the signal in a voxel is composed of
signal from a fiber class (F ), an isotropic background class (B), and a mixture class
(M ) [29]. The partial volume that the three classes occupy in the ROI is denoted
by �F , �B and �M respectively such that �F C �B C �M D 1. The signal of the
mixture class is given by

SM D .1 � 
/SF C 
SB;

where 
 is the mixture parameter. The anisotropy index a D 1 � .�2 C �3/=.2�1/
[29, 30] is used as measure for the anisotropy, with �1, �2, and �3 being the
sorted eigenvalues of the diffusion tensor. Let P.ajF /, P.ajB/ and P.ajM/ be
the conditional probabilities that a is measured in fiber, background and mixture
class. Then, the probability to measure a is

P.a/ D �FP.ajF /C �BP.ajB/C �MP.ajM/ :

Here, P.ajF / and P.ajB/ are modeled by Gaussian distributions with mean values
mF and mB and variances �F and �B . By further assuming that 
 is uniformly
distributed, P.ajM/ can be modelled [31] by

P.ajM/ D 1p
2�

Z 1

0

d

q

2�2B C .1 � 
/2�2F

� exp

�

� ..1 � 
/mF C 
mB � a/2
2..1 � 
/2�2F C 
2�2B/

�
(15)
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For the evaluation of a ROI, the free parametersmF ,mB , �F , �B , �F , �B and �M
must be determined. Thereto, the a-values of all voxels within the ROI are arranged
in a histogram. Then, the free parameters are determined using a generalization
of the EM algorithm [32] that was introduced by Laidlaw et al. [33]. Now, the
conditional probabilities P.ajF /, P.ajB/ and P.ajM/ are known. Using Bayes’
rule, we can find the class probabilities, for example for the fiber class,

P.F ja/ D �FP.ajF /=P.a/ :

Then we can also calculate the expectation value for any arbitrary value V (e.g. for
FA values) for a given class across a ROI, ˝. For example, the expectation value
within the fiber class in a ROI of size n voxels is:

hV i D 1

n�F

X

i2�
P.F jai /Vi

6 Partial Volume and Free-Water in the Corpus Callosum
of Alzheimer’s Disease

As a demonstration of the partial-volume clustering, we consider a problem of group
comparison between a clinical population of Alzheimer’s disease (AD) patients
and normal controls. The disease manifests as a severe form of dementia and its
signature pathologies are plaques and tangles. However, this neurodegenerative
disease is also causing global alteration to the white-matter integrity via processes of
inflammation and demyelination [34]. The Corpus-Callosum is known to be one of
the prime white matter fibers to be affected in Alzheimer’s [35]. To test the partial
volume clustering we check if it is sensitive enough to identify the abnormalities
on the Corpus-Callosum, and compare the results with the sensitivity of the TBSS
approach.

6.1 Data Acquisition

A single shell (twice refocused) DTI data was collected on a 1.5 T (Symphony,
Siemens) from 15 AD patients and 15 matched healthy controls. The data was
collected using the following parameters: TR/TE 4,700/78 ms, FOV 240 mm, data
matrix of 96 � 96 yielding an in-plane resolution of 2.5 mm, 50 axial slices with
a thickness of 2.5 mm and no gap, with 6 gradient directions .b D 1;000 s=mm2/

and a b0 image. This scheme was repeated 10 times. All images were corrected
for motion and eddy currents (FSL, FLIRT), while compensating the gradient
directions. Images were masked (FSL, BET) and the tensor toolkit was used for
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Fig. 5 Partial Volume Clustering. The Corpus Callosum was segmented into 35 ROIs along
the mid-sagittal space. Partial volume clustering was run in each ROI, revealing that there was
partial volume of the Corpus Callosum with its surrounding tissue. The “fiber” class is colored
in red, “non-fiber” or background is green and “partial-volume” in black. Following clustering
we use all of the “fiber” class to compare between subjects. Other methods, such as tract based
spatial statistics (TBSS) use a subset of the “fiber” class (example, the skeleton) to conduct group
comparisons. Including the entire “fiber” class in the analysis increases the number of samples and
the statistical power (compare Fig. 6 for TBSS with Fig. 8 for the clustering approach)

tensor estimation (https://gforge.inria.fr/projects/ttk). Free-water corrected tensors
and free-water maps were calculated using the single-shell estimation approach.
From the tensors maps we extracted the radial diffusivity, .�2 C �3/=2, resulting
with radial diffusivity maps and free-water corrected radial diffusivity maps that we
used in order to compare between the groups.

6.2 Partial Volume Clustering Versus TBSS

Radial diffusivity is expected to be sensitive to pathological processes such as
demyelination, that are common in AD, and we therefore compared the sensitivity
of our partial-volume clustering approach to radial diffusivity abnormalities with
the sensitivity of a TBSS approach.

For the clustering analysis, registration was performed in three steps directly on
the tensor datasets using DTITK (http://www.nitrc.org/projects/dtitk):

1. A template was bootstrapped using the IXI aging template.
2. A population specific template space was created using affine and diffeomorphic

registration.
3. Diffusion indices were extracted from the subjects by employing the probabilistic

mixture model that was described in Sect. 5.1.

Thirty five fairly large ROIs were manually defined in template space using the
open-source MITK Diffusion 2011 (www.mitk.org), and then placed along the
Corpus Callosum using atlas based positioning, as illustrated in Fig. 5. The ROIs

https://gforge.inria.fr/projects/ttk
http://www.nitrc.org/projects/dtitk
www.mitk.org


The Estimation of Free-Water Corrected Diffusion Tensors 265

Fig. 6 Non-corrected radial diffusivities. Group differences of radial diffusivities (DR) between
AD patients and normal controls based on TBSS analysis, show a single ROI that is significantly
(p < 0:05) abnormal in AD (indicated with a black circle)

were defined in such a way that they parcellate the Corpus Callosum to even sections
along the Corpus Callosum contour as it is found in the mid-sagittal slice. These
ROIs included the Mid-Sagittal portion of the Corpus Callosum along with the tissue
that surrounds it, thus each ROI included a partial volume of fiber, and non-fiber
classes.

In addition to the partial volume clustering, the full TBSS pipeline was applied
using the parameters suggested in [28]. The projection of the TBSS skeleton was
applied to obtain radial diffusivities and free-water eliminated radial diffusivities
skeletons. The Corpus-Callosum was identified in the mid-sagittal slice, and was
linearly divided into 35 equal segments, to match the ROIs defined for the clustering
approach.

We compared the two groups (AD and controls) separately for each ROI, using
a two-sample unpaired t-test controlled for age with pD 0.05 as the threshold for
significance.

6.3 Sensitivity to Abnormalities in Alzheimer’s Disease

We first investigate abnormalities between the AD patients and the normal controls
as they appear on the skeleton of the Corpus Callosum (using the TBSS analysis).
We compare the sensitivity of the regular DTI radial diffusivity measure (Fig. 6),
and compare it with the free-water corrected radial diffusivity (Fig. 7). We find that
in general the radial diffusivity (either corrected or not corrected for free-water) in
AD is higher than in controls. However, this difference was significant (indicated
by black circles) in only one location when using non-corrected values, and in
four locations when using corrected values. This is suggesting that in general the
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Fig. 7 Free-Water corrected radial diffusivities. Group differences of radial diffusivities
corrected for free-water (DR-FWE) based on TBSS analysis reveal four ROIs with significant
abnormalities. All the ROIs are in the posterior part of the Corpus-Callosum

Fig. 8 Partial volume clustering of non-corrected radial diffusivity. Looking at the “fiber”
class reveals many significant abnormalities (p<0:05) forming two continuous clusters in
the posterior part of the Corpus-Callosum. Looking on the “fiber” class reveals many more
abnormalities than looking at the skeleton (see Fig. 6)

TBSS analysis is not extremely sensitive to the underlying pathology of AD, yet the
sensitivity is increased when correcting for free-water. This is probably due to the
fact that the corrected values are smoother than the non-corrected values.

We next compare the differences between AD patients and normal controls over
the entire fiber cluster (as found by the partial volume clustering technique). We
compare the non-corrected radial diffusivity values (Fig. 8) with the free-water
corrected radial diffusivity values (Fig. 9). We find that the general trend of higher
radial diffusivity in AD is preserved, however now there are many more ROIs in the
Corpus-Callosum of AD that have a statistically significant increase. These ROIs are
all located in the posterior region of the Corpus-Callosum (ROIs 18-25), suggesting
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Fig. 9 Partial volume clustering of free-water corrected radial diffusivity. Consistent with
the non-corrected findings (Fig. 6), many abnormalities form a cluster in the posterior part of
the Corpus-Callosum, suggesting a demyelination related abnormality. The second cluster does
not appear in the free-water analysis, suggesting that the underlying pathology there could be
neuroinflammation or atrophy

that this part of the fiber has the most pathology. The increased sensitivity comparing
to TBSS suggests that the pathology is mainly in the perimeters of the fiber, and not
at its center, which is expected in cases of atrophy. Finally, the abnormal region can
be divided to two parts, one that consistently shows abnormalities in both corrected
and non-corrected values, and a second that is abnormal only in the non-corrected
radial diffusivity values. This suggests the possibility of two different underlying
pathology, demyelination, that increases radial diffusivity in both corrected and
non-corrected values, versus inflammation, which is expected to increase radial
diffusivity, but not corrected radial diffusivity.

7 Summary

Fitting the free-water model instead of the DTI model adds the extracellular volume
as a new estimated biological parameter and provides tensor images that are more
tissue specific [8–11]. This comes with a computational price, as the model is harder
to estimate. The three approaches (single-shell, multi-shell, filtered tractography)
discussed here provide means for estimation of the model parameters. This chapter
covers the technical details involved in the estimation of the free-water maps and
free-water corrected tensors, however, a systematic comparison is still in need, in
order to better define when each method should be preferred.

It seems that the decision of which method to use should be driven by the type of
data available, and the research question in mind. Specifically, if the research design
can afford extra scan time, or if a multi-shell data is available, using the multi-shell
estimation will be more stable and potentially more accurate then the single-shell
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approach. With a multi-shell data we can relax assumptions and dependency on
regularization that is required when fitting the model from a single-shell data. If
the research question is specific to a certain white-matter bundle, then using the
filtered tractography is a better selection. Of note, even though we presented filtered-
tractography results on single-shell data, the method is straightforward to generalize
for the multi-shell data.

Future work should also test the accuracy of the estimated parameters, through
specially designed phantoms, or animal model scans. For example, the free-water
estimation is biased by differences in T1 and T2 [9], it could be affected by
temperature changes, and it would be interesting to see how it is affected by the
types of noise that is expected in the dMRI acquisition. Another important task is
to demonstrate pathological correlates of the free-water parameters. For example, it
is clear that neuroinflammation and demyelination affects changes in the free-water
and FAt respectively, yet the specificity of these measures to the pathologies is not
yet clear.

Since the introduction of the free-water model there were a number of higher
order models that included a compartment of free-water with fixed diffusivities,
along with various other compartments. For example, the The composite hindered
and restricted water diffusion (CHARMED) model [36], the Axcaliber model
[37], and more recently the neurite orientation dispersion and density imaging
(NODDI) model [38]. Since it is easier to relate the free-water compartment to a
biological compartment, the inclusion of this compartment in these models increase
the specificity of the remaining compartments to the underlying tissue. These
higher order methods typically require specialized acquisition, and it is yet to
be determined whether the free-water compartment estimated in these measures
matches the estimation of the free-water model as described here, although some
preliminary results suggest that the values agree [39].

It is nevertheless clear that similar to the higher order models, the inclusion of the
free-water parameter in the diffusion tensor model adds valuable new information to
the study of the nervous system. We have demonstrated here the extra information
that can be obtained in tractography, and in studying abnormalities related to AD,
which is similarly applicable to many other brain disorders as well as for the study
of normal development and aging.
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Techniques for Computing Fabric Tensors:
A Review

Rodrigo Moreno, Magnus Borga, and Örjan Smedby

Abstract The aim of this chapter is to review different approaches that have been
proposed to compute fabric tensors with emphasis on trabecular bone research.
Fabric tensors aim at modeling through tensors both anisotropy and orientation of
a material with respect to another one. Fabric tensors are widely used in fields such
as trabecular bone research, mechanics of materials and geology. These tensors
can be seen as semi-global measurements since they are computed in relatively
large neighborhoods, which are assumed quasi-homogeneous. Many methods have
been proposed to compute fabric tensors. We propose to classify fabric tensors
into two categories: mechanics-based and morphology-based. The former computes
fabric tensors from mechanical simulations, while the latter computes them by
analyzing the morphology of the materials. In addition to pointing out advantages
and drawbacks for each method, current trends and challenges in this field are also
summarized.

1 Introduction

One of the ultimate goals of trabecular bone research in medicine is to determine
the effect of pathological conditions of trabecular bone, such as osteoporosis
and osteoarthritis, and their treatments on the quality of trabecular bone. One of
the parameters that can be used to evaluate the bone quality is its anisotropy.
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Fig. 1 Rendering of scans of trabecular bone from a radius and a vertebra respectively acquired
through micro computed tomography

For example, evidences supporting that changes in the anisotropy and orientation
of trabecular bone are associated with osteoporosis has been reported [11, 32, 47].
Figure 1 show renderings from two in vitro specimens.1

Trabecular bone is a tissue that is under continuous remodeling [57,67,68]. This
remodeling process, which is driven by both physiology and mechanical adaptation
processes, usually generates anisotropies in trabecular bone. Since mechanical
stimuli differs from site to site of the body, analyses of changes over time of
anisotropy generated by non-mechanical causes are performed site-dependent.
In this context, fabric tensors are a fundamental tool to perform such kind of
analyses.

Fabric tensors aim at modeling through tensors both anisotropy and orientation of
a material of interest (usually referred to as phase in mechanics of materials) with
respect to another one. In trabecular bone research, these two phases correspond
to trabecular bone and bone marrow respectively. In addition to trabecular bone,
fabric tensors have been used in other fields, such as mechanics of materials
[91] and geology [49]. Fabric tensors are semi-global measurements in the sense
that they are computed in relatively large neighborhoods, which are assumed
quasi-homogeneous. In mechanics, such neighborhoods are usually referred to as
representative volume elements (RVE) [72]. Furthermore, since it has been shown
that microstructural architecture of most materials, including trabecular bone, can be
accurately modeled by means of second-order tensors [48,94], higher-order tensors
are usually not computed.

In this context, the aim of this chapter is to review different approaches that
have been proposed for computing fabric tensors, pointing out their advantages
and disadvantages. We propose to classify these approaches into two categories:
mechanics-based and morphology-based. The former approach computes fabric

1We thank Prof. Osman Ratib from the Service of Nuclear Medicine at the Geneva University
Hospitals for providing the�CT scan of the vertebra; Andres Laib from SCANCO Medical AG and
Torkel Brismar from the Division of Radiology at the Karolinska University Hospital for providing
the �CT scan of the radius.
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tensors from mechanical simulations, while the latter computes them by analyzing
the morphology of trabecular bone. It is important to remark that, although some
authors do not consider tensors computed through mechanical simulations as a
specific type of fabric tensors, we argue they actually are fabric tensors, since they
can also be used to describe orientation and anisotropy of trabecular bone, which is
the main purpose of fabric tensors. Invariably, the input of all methods is an RVE
and the output is the fabric tensor associated to it.

The chapter is organized as follows. The next two sections review the most
important methods that follow the aforementioned approaches. Section 4 reviews
the research to relate fabric tensors computed through morphology analyses and
mechanical properties of the bone. Finally, Sect. 5 makes some concluding remarks,
focusing on the current topics in fabric tensors research. As a convention, scalars,
vectors and tensors are written in italic, bold and straight font respectively in the
paper, e.g. �, p and VO.

2 Mechanics-Based Methods

The most relevant property of trabecular bone is its mechanical competence,
that is, its capability to bear different types of mechanical loads in different
orientations. In this line, mechanics-based methods directly measure fabric tensors
from mechanical properties. Since it is difficult to conduct reliable mechanical
experiments, these methods compute the tensors through numerical simulations.
The next subsections summarize some approaches that follow this path.

2.1 Solid Mechanics Approach

This approach makes use of solid mechanics. A common simplification is to assume
that trabecular bone is an elastic material [73]. Thus, under linearity conditions,
the so-called stiffness (or elasticity) tensor can directly be used as a fabric tensor.
By using the Einstein summation convention, which means that repeated indices
imply a summation over them, the stiffness tensor c, can be written as:

� ij D cijk` �k`; (1)

where � and � are the stress and strain tensors respectively. Notice that � and �

are of second-order, while c is of fourth-order. This equation corresponds to the
generalization of the Hooke’s law. Thanks to the symmetries of � and �, c only has
21 out of 81 independent terms. Assuming orthotropic symmetry of trabecular bone
[100] the number of independent can be further reduced to nine. By using the Voigt
notation [29], c can be represented by the following 6 � 6 symmetric second-order
tensor:
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The entries of stiffness tensors computed at a local scale can be estimated by
running several finite element method (FEM) simulations, at least six [80], each
of them with a different boundary condition. Once the local stiffness tensors have
been computed, a homogenization procedure can be applied in order to obtain from
local estimations a single effective stiffness tensor representative for the whole
representative volume element. It has been shown that component-wise addition
is not a valid strategy to perform such a homogenization. Thus, more advanced
homogenization techniques are usually applied. For example, local structure tensors
computed from the relation between local and global strains can be used to steer the
homogenization process [9, 30, 31, 80]. Alternatively, Riemannian metrics and the
Kullback-Leibler divergence can be applied to aggregate the local tensors [61].

Computing the stiffness tensor through FEM simulations is still under active
research [34, 73, 78]. One of the most important problems faced by researchers is
that the results can have a large variation for the same sample by applying different
boundary conditions, homogenization schemes and methods to generate nodes for
the FEM simulations. In addition, another source of error is that the computations
are based on the aforementioned simplifications that can be inaccurate. For example,
it is well-known that trabecular bone is much better resisting compression than
tension [16], while the computed stiffness tensor will predict the same behavior
under both boundary conditions. Moreover, most methods are restricted to images
acquired from in vitro specimens, as images acquired in vivo have very low quality,
which difficults the segmentation required by FEM simulations [40].

2.2 Wave Propagation Approach

A more recent approach use FEM simulations of wave propagation on trabecular
bone to describe orientation and anisotropy of trabecular bone. Assuming a poroe-
lastic behavior, it has been shown that wave propagation on trabecular bone can
be characterized through the acoustic tensor, Q, the solid-fluid interaction tensor,
C, and the intrinsic permeability tensor, K, which describe the elastic and viscous
effects on the media [14, 15]. Q and C are second-order tensors that are related to
the Biot’s parameters that describe the stress-strain relation in porous media [12]
and the exciting waves. In turn, K, a second-order tensor derived from Darcy’s law,
takes into account dissipation due to viscous losses and it is closely related to the
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tortuosity tensor [76]. A close relation between these tensors and morphology-based
fabric tensors has been reported [14].

A shortcoming of this approach is that simulated acoustical properties of
trabecular bone have a non-linear dependence on the composition of bone marrow
and bone volume fraction, as well as on the resolution of the images [2]. As well
as solid mechanics approaches, wave propagation simulations are restricted to high
resolution images acquired from in vitro specimens, making it difficult its use in
clinical practice.

3 Morphology-Based Methods

Methods that follow this approach compute fabric tensors from the morphology
of trabecular bone. These methods have two advantages compared to the methods
described in Sect. 2. First, they are largely less computationally expensive than
those obtained from mechanical simulations. Second, unlike methods based on
mechanics, the resulting fabric tensors are not dependent on the boundary conditions
applied during the simulations, homogenization schemes and/or general design of
the simulations. However, as a counterpart, it is necessary to relate these fabric
tensors with mechanical properties of the material, especially, elasticity.

The vast majority of morphology-based methods use specific features to estimate
orientation distributions which are approximated through fabric tensors. If the
estimation is performed locally, a homogenization process is applied (usually
tensorial summation) in order to obtain global measurements of orientation and
anisotropy. The next subsections describe the most important families of methods
that follow this approach, which are summarized in Table 1.

3.1 Boundary-Based Methods

Boundary-based methods use the interface between phases to estimate fabric
tensors. The Mean Intercept Length tensor (MIL) [83, 94] and the global gradient
structure tensor (GST) [6, 88] belong to this category.

3.1.1 Mean Intercept Length Tensor

In trabecular bone research, the MIL tensor is considered as the gold standard
thanks to the large amount of evidence supporting its appropriateness to predict
mechanical properties of trabecular bone [16, 60, 70, 103]. The MIL tensor was
originally proposed as a sampling procedure taken from stereology [83, 94]. The
MIL with respect to a particular orientation is defined as the mean distance
between a change from one phase to the other in such an orientation. This value
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Table 1 Summary of morphology-based methods

Approach Method

Boundary-based Mean Intercept Length (MIL) tensor [64, 83, 94]
Generalized MIL tensor [64]
Global gradient structure tensor (GST)[6, 59, 88]

Volume-based Volume orientation tensor (VO) [70]
Star volume distribution (SVD) [70]
Star length distribution (SLD) [70]
Tensor scale [52, 82, 99]
Inertia tensor [35, 90]
Sampling sphere orientation distribution (SSOD) [89]

Texture-based Fractal dimension (FD) [5, 26, 55, 59, 102]
Hurst orientation transform [77]
Variance orientation transform [97, 98]
Line fraction deviation [20, 21]
Spatial autocorrelation [92]
Different statistics [27]

Alternative methods Minkowski tensors [84, 85]
Diffusion tensor imaging (DTI) [8, 81]
Texture tensor [23]
Skeleton-driven [41]
Assessment of the power spectrum [7]

Fig. 2 Computation of the
intercepts between a set of
parallel lines and the interface
between phases. In this
example, the number of
intercepts is 13

is inversely proportional to the number of intercepts between a set of parallel lines
and the interface between phases (see Fig. 2). The MIL tensor is obtained either by
applying ellipse/ellipsoid fitting algorithms to polar plots of the MIL computed in
different orientations, also known as rose diagrams, or by computing a covariance
matrix [38, 64, 87]. Although the orientation distribution of the MIL can also be
approximated through higher-order fabric tensors [38], microstructural architecture
of most materials can be accurately modeled by means of second-order tensors
[48, 94].

Recently, we have proposed a closed formulation for computing the MIL
tensor [64]. We have shown that the orientation distribution of intercepts, CMIL,
is proportional to the angular convolution between the mirrored extended Gaussian
image [33], G, of the sample and the half-cosine kernel, K, which is given by:
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K.�/ D



cos.�/ if � � �=2
0 otherwise:

(3)

Thus, CMIL can be computed through:

CMIL D ˛ G �K; (4)

where ˛ is a constant and “�” is the angular convolution. Finally, the MIL tensor
can be computed by computing a covariance matrix on 1=CMIL.

This formulation solves several problems of sampling procedures. First, since
sampling is avoided, the accuracy is not any longer dependent on the computational
cost of the implementation. Second, the new method is not exposed to discretization
artifacts generated by line-drawing algorithms. Third, the new formulation is
inexpensive since, thanks to the Funk-Hecke theorem [25], the angular convolution
can efficiently be computed in the spherical harmonics domain. Fourth, robust
implementations of the MIL tensor can straightforwardly be obtained from robust
estimations of the extended Gaussian image. Fifth, the new formulation makes
straightforward the extension of the MIL tensor to non-binarized images. Finally,
the MIL tensor can be generalized by changing different convolution kernels, e.g. to
powers of the half-cosine function or the von Mises-Fisher kernel [37].

3.1.2 Global Gradient Structure Tensor

Another boundary-based fabric tensor is the GST [6, 59, 88]. For an image I , the
GST is computed as:

GST D
Z

p2I
rIprIp

T dI: (5)

Notice that the GST is related to the traditional local structure tensor (ST) [19]
computed with a Gaussian of zero mean and standard deviation 
, K
. If the size of
the image is much larger than 
, the GST can be written as:

GST D
Z

p2I
ST dI D

Z

p2I
.K
 � rIprIp

T / dI: (6)

This method has two interesting properties. First, implementations of the GST are
efficient, both in the spatial and frequency domains, and easy to code. Second, the
GST and the MIL share the same eigenvectors for binary images [64]. Basically, the
GST can be computed as the covariance matrix of CGST D G � ı, where ı is
the unit impulse function and G is the mirrored extended Gaussian image. Thus,
the difference between the MIL tensor and the GST is that they use a different
convolution kernel for computing functionsCMIL andCGST and the former calculates
the covariance matrix on 1=CMIL while the latter on CGST . Hence, both tensors will
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Fig. 3 Example of a material
in which boundary-based
tensors are unable to estimate
anisotropy and orientation.
Both, the MIL and GST
tensors are isotropic in this
case

share the eigenvectors, since both the unit impulse function and the half-cosine
kernel are positive and symmetric and changing C by its inverse in the computations
does not introduce rotations in the eigenvectors [25].

As an alternative, global structure tensors can also be estimated from local
structure tensors computed through quadrature filters [24, 44, 45], by using higher-
order derivatives [18, 46] or by means of tensor voting [66].

A drawback of this technique is that the eigenvalues are different to those from
the MIL tensor, and the larger one is perpendicular to the main orientation of
trabecular bone [88,96]. Consequently, anisotropies computed through the GST are
expected to be in less agreement with the anisotropies yielded by the stiffness tensor
[65]. This means that, in practice, the resulting tensor has to be post-processed in
order to be used as a predictor of mechanical properties.

3.2 Volume-Based Methods

A problem of the boundary-based methods is that they are only appropriate where
the anisotropy and orientation are determined by the interface between phases. For
example, boundary-based methods are unable to estimate anisotropy in the case of
Fig. 3.

To solve this issue, volume-based methods compute anisotropy from measures
taken inside one of the phases. The next subsections describe the most important
families of methods that follow this approach.

3.2.1 Distributions of Intercepting Lines

There are many fabric tensors that are computed through the sampling procedure
shown in Fig. 4. First, a set of N sampling points are generated in the material of
interest (e.g., trabecular bone). Second, the intercept length of lines with different
orientations that cross every testing point is computed.

Several features can be extracted in order to compute fabric tensors. For example,
local volume orientation at a point is given by the orientation corresponding to
the largest intercept at that point. The volume orientation tensor VO, is computed
as [70]:
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Fig. 4 Distributions of intercepting lines. Left: lines with different orientations are traced from
some sampling points (marked with crosses). The lenght of those lines are used to generate the VO,
SVD and SLD tensors. Right: in order to compute the scale tensor, line segments are shortened
(half of the intercepts with the boundary are shifted to the positions marked with squares) in order
to make them symmetric with respect to the sampling point

VO D
NX

iD1
Lmaxi vmaxi vTmaxi ; (7)

where Lmaxi and vmaxi are the largest intercept at i and its corresponding orientation
respectively. On the other hand, the star volume (SVD) and length distributions
(SLD) consider all intercepts, not only the maximum for computing the fabric
tensor. They are computed as:

SVD D
Z

v2˝

 
NX

iD1
L3i .v/ v vT

!

d˝; (8)

SLD D
Z

v2˝

 
NX

iD1
Li .v/ v vT

!

d˝; (9)

where ˝ is the unitary sphere, and Li.v/ is the intercept at i with respect to the
orientation v. Thus, the main difference between SVD and SLD is the power of L
used in the formulation.

A related fabric tensor is the tensor scale [82,99]. In this case, every intercepting
segment is symmetrized with respect to the reference point by replicating the closest
length to the edge in the opposite direction. A local tensor at the sampling positions
is computed with the length of the symmetrized lines and the final fabric tensor is
computed by adding all local tensors.

In [71] is reported that SVD and SLD are better predictors of mechanical
orientation. However, the same study also reports that the MIL is a better predictor
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of mechanical anisotropy. Regarding the tensor scale, an initial study reported good
correlations between this tensor and mechanical properties [52].

The most important drawback of the methods presented in this subsection is their
computational cost. Since these methods are based on a sampling procedure, the
accuracy of the computations is related to the complexity of the algorithms. Usually,
a huge amount of tests is required to obtain a reasonable accuracy.

3.2.2 Inertia-Based Methods

An straightforward way to compute a volume-based fabric tensor is to compute a
global inertia tensor [35] of the material of interest, which is given by:

IT D
Z

x2I

.x/

�
.x � s/2 I � .x � s/.x � s/T

�
dI (10)

where I is the image, 
.x/ is the gray-scale value at x, which is assumed to be
proportional to the mass at that point, and s is the center of mass. However, poor
correlations with the MIL tensor have been reported [96], and consequently, it is
expected to be a bad predictor of mechanical properties. A possible hypothesis for
this is that the path that joins every position to the center of mass usually includes
large regions of bone marrow and this fact can influence its appropriateness as fabric
tensor.

A possible way to tackle this problem is to compute local inertia tensors
computed in local spherical neighborhoods, as proposed in [90], and then to generate
a global inertia tensor by adding them up or using any other homogenization
scheme. A related strategy is the sampling sphere orientation distribution [89],
which adds the gray-scale values of spherical neighborhoods located at some
specific sampling locations into a spherical container, as shown in Fig. 5. These
neighborhoods are chosen in such a way that their centers are as close as possible
to the skeleton of the material of interest. The resulting container is approximated
through tensors following an adapted version of the technique proposed in [38].
Since these approximations are related to the computation of the inertia tensor in
the container, the method can be seen as a homogenization scheme for computing
a global inertia tensor from local inertia information. From the results presented
in [89], the use of local inertia tensors partially solves the problems of the global
inertia tensor, since the resulting tensors are more correlated with the MIL tensor.

3.3 Texture-Based Methods

The following subsections describe some methods that make use of texture analysis
tools to compute fabric tensors.
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Fig. 5 SSOD. Left: the image is sampled with some spheres. Right: the gray-scale values are
accumulated in a spherical container. Fabric tensors approximate the gray-scale values in the
container (Reprinted from [89] with permission from Elsevier)

3.3.1 Fractal-Based Methods

These methods assume a fractal nature of trabecular bone. The basic idea of this
approach is to perform directional measurements of fractal dimension (FD) to create
orientation distributions that, afterwards, are approximated through tensors. The FD
can be computed in many different ways [54]. A basic strategy is the so-called box-
counting algorithm where FD is estimated as:

FD D � lim
r!0

logN.r/

log.r/
(11)

where r is the size of a box and N.r/ is the number of boxes required to utterly
cover the material of interest. Similar to this method are the skyscrapers and blanket
fractal analyses [26].

Alternatively, by assuming a fractional Brownian motion model [5], FD can be
computed in the Fourier domain for a specific direction as a function of the slope of
the linear regression computed on a log-log plot of the power spectrum vs. frequency
[55, 59, 75, 102]. The process is shown in Fig. 6 for a specific orientation.

Since very often this log-log curve does not have a linear behavior for the whole
spectrum, it is common to use two fitting lines: for low and high frequencies
respectively [55] (see Fig. 6). Some other methods to compute the FD are the
augmented Hurst orientation transform [77] and the variance orientation transform
[97, 98].

Most of these methods perform the computations in the Fourier domain. Since
measurements are performed at specific directions, it is more convenient to sample
the Fourier domain by using polar or spherical coordinates instead of Cartesian.
However, computing fast Fourier transform in polar/spherical coordinates is not yet
a mature technique, although important advances have been done in the last few
years [3, 39, 93].
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Fig. 6 Estimation of the FD. Left: a 2D slice of the image of Fig. 1a. Right: log-log plot of the
power spectrum vs. frequency at a specific orientation and two linear regressions covering low and
high frequencies respectively

A drawback of fractal-based methods is that it is still not clear whether or not
trabecular bone follows a fractal pattern with authors in favor [74] and against
this hypothesis [10]. From our own experience, the required computation of linear
regressions usually involves large errors for images of trabecular bone. As a
consequence, since these errors have a direct impact in the computation of fabric
tensors, that makes it difficult to obtain reliable and accurate results. Despite this,
good correlations with mechanical properties have been reported [55]. Another
drawback is that, although the methods can be extended to 3D, they have usually
been tested in 2D images of trabecular bone.

3.3.2 Texture Features

Some authors have proposed directional texture features to compute fabric tensors.
For example, the line fraction deviation method [20] constructs an orientation
distribution from the variance of the gray-scale values along test lines at different
orientations, which is then approximated through tensors. Good correlations with
the stiffness tensor have been reported for this method [21]. The basic ideas of
this method are related to the variance orientation transform from fractal analysis
[97, 98].

Related to this strategy, in [92],spatial autocorrelation of the gray-scale values
instead of the variance is used to construct the orientation distribution. Their main
assumption is that trabecular bone has a quasi-regular structure. However, in [86]
is reported that the resulting fabric tensor does not correlate with mechanical
properties of trabecular bone. Alternatively, other statistical measurements can be
used instead of the variance or spatial autocorrelation to construct the orientation
distribution [27].
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3.4 Alternative Methods

Recently, the Minkowski tensors have been proposed as an elegant a way to
integrate boundary- and volume-based techniques [84,85]. Six linearly independent
Minkowski tensors are defined in 3D:

W2;0
0 D

Z

p2V
p pT dV; (12)

W2;0
1 D

1

3

Z

p2S
p pT dS; (13)

W2;0
2 D

1

3

Z

p2S
H.p/p pT dS; (14)

W2;0
3 D

1

3

Z

p2S
G.p/p pT dS; (15)

W0;2
1 D

1

3

Z

p2S
n nT dS; (16)

W0;2
2 D

1

3

Z

p2S
H.p/n nT dS; (17)

where p represents the position of points inside the trabecular bone, V , n is the
normal at p at the interface between phases, S , andH.p/ andG.p/ are the mean and
Gaussian curvatures at p respectively. These tensors are called the moment tensor
solid, moment tensor hollow, moment tensor wireframe, moment tensor vertices,
normal distribution and curvature distribution tensors respectively [85]. Notice that
the moment tensor solid and the normal distribution tensor are closely related to
the inertia tensor and the GST respectively. Afterwards, different measurement of
orientation and anisotropy can be obtained from these six tensors.

Since marrow contains large amounts of water, a promising alternative method
to estimate fabric tensors experimentally is through diffusion tensor imaging (DTI)
[8, 56, 81]. Although DTI has extensively been used in fiber tractography (see other
chapters of this book), its use in trabecular bone is relatively scarce. The following
reasons have impeded a faster development of this approach. First, this method
computes orientation and anisotropy of bone marrow instead of trabecular bone,
so the resulting tensor must conveniently be post-processed in order to obtain a
fabric tensor of trabecular bone, and, to our knowledge, such a post-processing has
not been proposed so far. Second, it necessary to develop new DTI pulse sequences,
since the ones used for white matter in the brain are not appropriate for bone marrow
as these two types of tissue have very different magnetic properties and morphology.

A technique used in research of foamy structures is the so-called texture tensor
[23]. Given a lattice or mesh, a local texture tensor is computed by aggregating
tensorized vectors (i.e. the outer product of these vectors with themselves) that
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connect the center of a cell with the centers of neighboring cells. A global texture
tensor is then computed by aggregating local texture tensors. A drawback of this
technique when it is applied to trabecular bone is that the resulting tensor will
depend on the technique used to generate the required input mesh.

An alternative way to construct orientation distributions from the skeleton of
trabecular bone was proposed in [41], where mass and thickness of every branch
in the skeleton is associated to its orientation. The main drawback of this approach
is that it assumes that trabecular bone is composed by rod-like trabeculae, which
largely limits its scope of use as it has been shown that this assumption is not always
complied [63].

Finally, in [7] anisotropy is directly extracted from a visual examination of the
power spectrum of X-ray images. Unlike all methods reviewed in this chapter, this
technique is biased by the human observer’s perception and, in practice, it can only
be used for very anisotropic structures.

4 Relations Between Morphology-Based Fabric Tensors
and Mechanics

Morphology-based methods are appealing since they do not have any dependency on
boundary conditions, and consequently they are more predictable. However, unlike
mechanics-based, morphology-based methods require an extra step of validation
with respect to mechanical properties of the tissue, since the quality of a fabric tensor
is given by its capacity of predicting mechanical properties in realistic scenarios.
Usually, this assessment is performed with respect to a model [103]. A complete
review of the models proposed in the literature is presented in [103]. For illustration,
two of such models are presented below.

Let ˝ and ˝ be the tensorial and double tensorial products of second-order
tensors respectively, which, using the Einstein summation notation, are given
by [104]:

A˝B D AikBjl; (18)

A˝B D 1

2
.AikBjl C AilBjk/: (19)

On the one hand, Cowin [13] proposed that the stiffness c and a fabric tensor M
should be related through the formula:

c.�;M/ D
3X

a;bD1
.�ab.�;ma;mb/Ma ˝Mb/C

3X

a;bD1;a¤b
2.�ab.�;ma;mb/Ma˝Mb/;

(20)
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where � is the volume fraction, ma and ma are the eigenvalues and eigenvectors of
the fabric tensor M respectively, Ma D mamT

a , �ab and �ab are unknown functions
of �, ma and mb ,

Alternatively, the following stiffness-fabric relation was proposed by Zysset and
Curnier [104]:

c.�;M/ D
3X

a;bD1
..�0 C 2�0/�˛mˇ

am
ˇ

bMa ˝Ma/C
3X

a;bD1;a¤b
.2�0�

˛mˇ
am

ˇ

bMa˝Mb/

(21)

where ˛ and ˇ are constants and �0 and �0 are the unknown functions.
Once a model is chosen, multilinear regressions are performed in order to

estimate the unknown functions (�ab and �ab for Cowin’s model, or �0 and �0 for
Zysset and Curnier’s model) that minimizes the error between the actual stiffness
tensor and the one estimated with the model. The reference stiffness tensor can
be estimated either through mechanical simulations as described in Sect. 2.1, or
through mechanical experiments [103]. Thus, a morphology-based fabric tensor
with a small error between the actual and estimated stiffness tensor is preferred,
since this indicates that it is more related to mechanical properties of the tissue.

The MIL tensor usually has the better performance in these assessments.
An interesting alternative to minimize the error between the reference and estimated
stiffness tensor is to include parameters in the computation of the fabric tensor, as
we proposed in [64]. This can give more flexibility to the fitting process, resulting
in better estimations of the reference stiffness tensor.

Assessing relations between fabric tensors and mechanical properties of trabec-
ular bone is far from easy. First, these comparisons are mainly restricted to in vitro
where the reference stiffness tensor can be obtained. On the one hand, it is difficult to
compute reliable stiffness tensors from mechanical simulations from low-resolution
images. However, the high-resolution images needed for mechanical simulations are
not attainable in vivo for practical and radiation protection issues. On the other hand,
invasive mechanical measurements in vivo are not reliable, since they are based on
many assumptions. Moreover, such measurements and not always possible for every
skeletal site [69, 101].

Reference stiffness tensors obtained through mechanical experiments are
preferred to those obtained from mechanical simulations as they are more closely
related to reality and do not have the aforementioned problems of mechanical
simulations. Unfortunately, it is also difficult to design reliable mechanical
experiments in vitro. On the one hand, these experiments are exposed to several
sources of error [70, 73]. On the other hand, measurements are usually available in
only a few directions (very often in a single one), so many experiments have to be
conducted for different directions in order to be combined afterwards, a procedure
that is prone to errors. Moreover, it is usually unknown the relationship between the
main orientation of trabecular bone and the tested orientations.
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For these difficulties, many authors validate their methods by making compar-
isons with the MIL tensor instead of with the stiffness tensor. However, a direct
relationship between a new method and the stiffness tensor is necessary when a
better performance than the MIL tensor is being reported.

5 Concluding Remarks

This chapter has presented a comprehensive review of techniques for computing
fabric tensors. In general, current methods tend to be less manual and more accurate
by addressing most of the disadvantages from previous approaches. Despite this,
research in fabric tensors is far from mature and many issues need to be tackled.

First, image acquisition of trabecular bone is challenging in vivo due to the size
of the trabecular structure. For example, trabecular thickness ranges between 100
and 300�m depending on the skeletal site [62], while standard magentic resonance
imaging (MRI) and computed tomography (CT) scanners offer resolutions of about
500 and 100�m respectively. That means that a complete trabecula is covered by at
most three voxels, making these images prone to partial volume effects. In addition,
blurring, artifacts and noise are not uncommon in these type of images. Hence,
it is difficult to perform accurate morphological analyses in vivo. For this reason,
methods for computing fabric tensors in gray-scale are appealing, since they are not
affected by the accuracy of the segmentation process, which is particularly difficult
for images acquired in vivo. Also, the quality of the images are expected to be
improved in the next few years, especially with high-resolution peripheral quan-
titative computed tomography (HR-pQCT) and cone beam computed tomography
(CBCT) scanners, which are able to obtain spatial resolutions in the order of 80�m
in vivo [4,43] with very low radiation doses, which can range between 3 and 10�Sv
for HR-pQCT [17] and between 11 and 77�Sv for CBCT [53] compared to the
3 mSv usually required by high-resolution multi-detector CT (HR-MDCT) scanners.
It is important to remark that, in clinical practice, physicians use dual-energy
X-ray absorptiometry (DXA) for measuring the bone mineral density. However, this
technique is unable to measure differences in the trabecular structure, which has
been shown more related to the development of trabecular bone diseases [42]. Other
in vivo techniques such as quantitative ultrasound (QUS) [28, 79] and resonance
frequency analyzers (RFA) [1, 58] face the same problematic as DXA.

Second, it is important to remark that fabric tensors are not global measurements.
Thus, it is possible to obtain fields of fabric tensors where tensors are computed
locally with respect to a neighborhood. However, large neighborhoods are usually
used, since regions of interest are usually assumed homogeneous. The net result of
this is that the resulting tensor field varies slowly in the space. In consequence, a
single tensor is usually computed as a representative measurements for a complete
region of interest. However, homogeneity for trabecular bone analysis has been
questioned by some authors, e.g., [72]. This imposes the problem of determining
the appropriate size of neighborhoods. One strategy to tackle this issue is to propose
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measurements of homogeneity of neighborhoods. Regarding fabric tensors, an
alternative is to assess changes in orientation and anisotropy with respect to the
size of the neighborhood used in the computations. To our knowledge, these types
of analysis have not been proposed so far.

Third, some authors argue that it is not necessary to perform measurements
in 3D, since features extracted from 3D and 2D projections have been shown
correlated [36, 95]. However, this point requires more extensive validation with
different features and skeletal sites.

Finally, some authors have found that higher-order tensors are necessary at
some skeletal sites, e.g. the calcaneus [21, 22]. This should not be a big problem
for most methods, since they usually compute orientation distributions that are
approximated through tensors, which can be in theory of any kind. Moreover,
methods for performing such approximations are well-established [38, 50, 51].
Despite this, an extensive validation of this point is necessary. On the other hand,
it is necessary to bear in mind that, assuming linearity, fourth-order would be the
highest necessary order for any fabric tensor, since that is the order of the stiffness
tensor. Alternatively, other approximation methods can be used instead of tensors in
order to model orientation distributions, e.g., spherical harmonics [41].

To summarize, despite large amount of work in the field, and the advances
attained in last decades, there are still many unsolved issues in order to use fabric
tensors in clinical practice of trabecular bone diseases. We think proposals to tackle
these issues will steer the research in the field in the oncoming years.
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Applications of Tensor Processing



Tensors in Geometry Processing

Eugene Zhang

Abstract Tensor fields have a wide range of applications outside scientific visu-
alization. In this chapter, we review various types of tensors used in geometry
processing, including their properties, application requirements, as well as theo-
retical and practical results. We will focus on the metric tensor and the curvature
tensor, two of the most studied tensors in geometry processing.

1 Introduction

Tensor fields have been a major research topic in scientific visualization and
medical imaging, due to their wide applicability in physics, chemistry, and biology.
Examples of tensor fields in these domains include stress and strain tensors in solid
mechanics, velocity gradient tensors in fluid dynamics, and diffusion tensors in
medical imaging. In contrast, considerably less research effort has been given to
tensors in geometry processing.

Fortunately, increasing attention has been given to tensor fields by the geometry
processing community in recent years. Results in tensor field analysis and visual-
ization have been borrowed from communities that traditionally deal with tensors
(scientific visualization, medical imaging) and applied to geometry processing
applications such as non-photorealistic rendering, surface parameterization, and
geometry remeshing.

In differential geometry, there are three tensor fields describing the geometry of
the surface. They are termed the first, second, and third fundamental forms, and are
usually denoted by I , II, and III, respectively. However, these three forms are not
independent as they are related by an Eq. [8]. Consequently, one often focuses on
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the first two fundamental forms, which can be expressed in the language of metric
tensor and curvature tensor, respectively. In the next sections, we will describe these
tensors and their applications in geometry processing.

2 Metric Tensor

In this section we describe applications in geometry processing related to the metric
tensor.

In the early days of computer graphics when processing speed and memory of
computers are much lower than their counterparts today, modeling 3D geometry
with complex details was often considered computationally prohibitive. Yet, the
ability to render such details is essential to the realism of the synthesized images.
To deal with this challenge, the idea of texture maps was employed. Basically,
the geometry of a surface is modeled with two complementary components. The
first component is a surface that approximates the target surface but has much
lower geometric details. The second component is a texture map which is an
image that contains fine geometry details. When wrapping the texture onto the
surface appropriately, the resulting rendering has perceptually similar visual quality
to images generated by directly modeling the surface with high geometry detail.
Thanks to the hardware setup, the texture map approach is much faster than the
geometry-only approach. The idea of using texture maps in representing high
geometry details has inspired much research in image-based rendering [17].

To connect the two components in this approach, i.e., the surface S and the
texture map I (represented as an 2D image), a correspondence between the two
must be established. This correspondence, i.e., a map � from S to I is referred to
as the surface parameterization for S . One example of this is the world map for the
Earth.

Generating a high-quality parameterization given an arbitrary surface is both
important and challenging. For example, due to topological constraints, the surface
must be cut open in order to be flattened [7]. The curves along which the surface
is cut open are referred to as seams. Seams require special care as they lead to
texture discontinuity when wrapping the texture back to the surface. However, an
even more challenging problem is distortion. Distances can be distorted, so can
angles and areas. In cartography, such problems can lead to false notions such as
that Greenland is larger than Australia and that the South Pole (a point) is a line. In
computer graphics, such distortions lead to uneven sampling rates over the surface,
since regions of the same area in the surface may be given drastically different areas
in the texture map. Consequently, geometry details in regions receiving less-than-
average portion of the texture map typically go through more aggressive low-pass
filters when the surface signal is stored in the texture map than regions receiving
more-than-average portions of the map. This results in greater loss in the details of
the surface signal for regions receiving less-than-average areas in the texture map.
To ensure the visual realism for regions receiving the smallest share in the texture
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Fig. 1 Distortion in the parameterization (bottom) leads to uneven sampling rates on the surface
and blurring for regions in the surface that have received less-than-average areas in the texture
domain (e.g., Buddha’s face and torso). This in turns leads to the loss of details in the texture
patterns (top: right). Compare it with the true signal (left). Notice that the base on which the
Buddha stands has a larger-than-average share of the texture map and therefore has preserved finer
details in the texture map

domain, one has to use a texture map with a rather large size, which leads to slower
performance during rendering. Given that regions in the surface receiving more than
a fair share of the parameterization space can already achieve sufficiently high visual
quality even with smaller-sized texture maps, increasing the size of the texture map
is essentially a waste for such regions. See Fig. 1 for one such example. Next, we
will review the cause of distortion and means to reduce distortion.

Consider a surface S represented as a triangular mesh and a parameterization �
that maps every triangle ti in S to some triangle �.ti / in the plane. Note that
sometimes the inverse map of � , denoted by ı D ��1, is referred to as the
parameterization for S . We will stay consistent with literature in computer graphics
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in which � is considered the parameterization (also known as texture coordinates).
However, our discussion on measuring distortion will be based on ı.

In graphics hardware, a triangle is often the unit of processing. For texture
mapping, the signals inside a triangle in the texture domain will be lifted to the
corresponding triangle on the surface S through ı as follows:

ı.fa�.va/C fb�.vb/C fc�.vc// D fa.va/C fb.vb/C fc.vc/ (1)

in which va, vb , and vc are the vertices of the triangle t in S , and fa, fb , and fc
are the barycentric coordinates of points inside t . Notice that ı is piecewise linear
which means the distortion is constant over each triangle. To measure distortion, let
us assume the total area of the surface is equal to the total area in the texture map.
Under this assumption, it is easy to see that a triangle t 2 S has a zero stretch only
when t is isomorphic to �.t/. However, when the two triangles are not identical,
it is not immediately clear how to measure their difference, i.e., the distortion. For
example, the two triangles may be similar (same angle distributions and different
areas), or have the same area but different angle distribution, or both. Should we
penalize angle distortions more than area distortions, or the other way around? How
much of area distortion would be considered equivalent to angle distortion? When
mapping t to a similar triangle �.t/, how to measure distortion when �.t/ is larger
than t and vice versa? All of these questions trace back to a fundamental problem:
the distortion is not a scalar, but a tensor.

Let us examine Eq. 1 more closely. Given a triangle t 2 S , ıt , the restriction of ı
on t , is a bijective linear map. Consider two mutually perpendicular, unit vectors w1
and w2 in �.t/ 	 R

2. The squared length of wi is given by jwi j2 D wi � wi D 1 for
i D 1; 2. The angle between the vectors is related to the dot product w1 � w2 D 0.
Finally, the squared area of the parallelogram spanned by w1 and w2 is given by
jw1 � w2j2 D .w1 � w1/.w2 � w2/ � .w1 � w2/2 D 1.

We are interested in similar quantities for ıt .wi / because the difference in these
quantities can give us the distortion in distance, angle, and areas, respectively. Note
that ıt can be represented as a 3 � 2 matrix Mt that maps a vector w in the plane to
a vector Mtw in R

3. The squared length of ı.wi / is

jıt .wi /j2 D .Mtwi �Mtwi / D w0i .M 0t Mt /wi (2)

Notice that the difference between the lengths of wi and ıt .wi / can only be
attributed to the symmetric matrix Gt D M 0t Mt . It is straightforward to verify
that Gt is also responsible for the angular and areal distortions. G, the tensor field
whose restriction to a triangle t is Gt , is referred to as the metric tensor. In the
ideal setting, i.e., when a triangle t 2 S and �.t/ are isometric, Gt is the identity
matrix Id. A parameterization that satisfies this for every triangle is referred to as
isometric parameterization. However, when distortion is present, how to measure
distortion from the metric tensor is a challenging topic. Various measures have
been proposed, with respect to which the parameterization algorithms have been
optimized. A popular approach is to strive for conformal parameterizations which
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preserve angles between any pair of vectors. Another possible criterion is equiareal
parameterizations which preserve areas of the parallelograms spanned by any vector
pair. The metric tensor G corresponding to the conformal parameterization and
equiareal parameterization satisfies Gt D kt Id and det.Gt / D 1, respectively, for
every triangle t . Note that G is isometric if and only if G is both conformal and
equiareal. The eigenvalues of Gt correspond to the largest and smallest squared
lengths of any unit planar vector under the map ıt , while the eigenvectors of Gt
correspond to directions in which these lengths are achieved. Usually only the
eigenvalues are considered important for texture mapping purposes. In terms of the
eigenvalues �t;1 � 0 and �t;2 � 0, Gt is isometric, conformal, and equiareal if
�t;1 D �t;2 D 1, �t;1 D �t;2, and �t;1�t;2 D 1, respectively.

Various measures have been proposed based on �t;1 and �t;2, essentially pro-
viding a tradeoff between conformal and equiareal parameterizations. Example
measures include

1.
p
.�t;1 C �t;2/.1=�t;1 C 1=�t;2/ [11]

2. 1
2
.
p
�t;1 �p�t;2/2 [6, 20]

3.
p
�t;1 C �t;2 [26]

4. .�t;1 � 1/2 C .�t;2 � 1/2 [32]

Note that the first two energy formulations from the above consider conformal
parameterization as the ideal case, thus ignoring areal distortion. The third energy
strikes a balance between conformal and equiareal parameterization. However, in
some cases when there are distortions, this energy evaluates to the same as the
isometry, such as when �t;1 D 1 C u and �t;2 D 1 � u for 0 < u < 1. The fourth
energy is minimized if and only if the map is isometric. There are other energy terms
not defined directly in terms of the metric tensors, such as the angle-based flattening
measure [27] which strive for conformal parameterization.

More recently, there has been work on parameterizing a genus zero triangular
mesh surface over a sphere, with applications in remeshing. The general approach
is to construct a compatible partition of the mesh surface and the sphere, such
as an octahedral partitioning. This allows the sphere and the mesh surface to be
mapped onto a common planar domain D. The spherical parameterization is then
the composite of the parameterization of the sphere over D and the inverse map
of the parameterization of the mesh surface. In this case the metric tensor from the
sphere to the mesh surface is also the composition of the metric tensors of the sphere
and the mesh surface with respect to D, and the distortions between the sphere and
the mesh can again be measured using distortions in the planar parameterizations.

While the original and still primary use of the surface parameterization (and
the metric tensor) is in texture mapping, additional applications have been iden-
tified, such as fluid simulation on surfaces [28], texture synthesis [24], surface
compression [9], and triangular remeshing [2]. With surface parameterization, the
computation on mesh surfaces can be transferred into similar (but typically simpler)
computations in the plane. The ability to measure distortion in the parameterization
is key to achieving desired results as it needs to be reversed when performing the
computation in the plane.
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Surface parameterization has received much attention from the geometry pro-
cessing community. However, the focus has been on some derived scalar quantity
from the eigenvalues of the metric tensor per triangle. Eigenvectors are typically not
considered, and the use of the tensors are isolated, i.e., per triangle. In this sense it is
hardly treated as a tensor field, which has structures unique to it. In the next section,
we will examine another popular tensor in the geometry processing community, the
curvature tensor.

3 Curvature Tensor

The curvature tensor describes the bending of the surface. It has been used in various
graphics applications such as non-photorealistic rendering and geometry remeshing.

First, let us consider the curvature of a planar curve � . Suppose a person is
travelling along � at a constant speed, e.g., the speed limit. Due to the bending of
the curve, the person constantly changes his forward direction. However, since he is
travelling at a constant speed, the change in his travel direction at any given moment
must be perpendicular to the forward direction at the moment. The curvedness of the
road can be measured by how sharply the traveler turns. More formally, let �.s/ be
parameterized by arc length s (equivalent to the milemarkers along the road), the
forward travel direction is the tangent to the curve, i.e., T .s/. Since the traveler
travels at a constant speed C > 0, we have jT .s/j2 � C2. Differentiating both sides
with respect to s results in

T .s/ �N.s/ D 0 (3)

whereN.s/ D T 0.s/ is the normal to the curve. The signed curvature at a point �.s/
is given by �.s/ D T .s/ �N.s/.

Let us now consider surfaces. Given a smooth surface S 	 R
3, there are infinitely

many curves passing through any point p 2 S . Moreover, they may have different
curvatures at p. Fortunately results from classical differential geometry state that the
curvatures are not a function of individual curves, but of the tangent space at p [8].
More formally, two curves �1 and �2 in S have the same curvature at p if they have
the same tangent vectors at p. In addition, given a tangent vector v at p, the curvature
corresponding to v is a quadratic function �.v/ D v0Kv where K is a symmetric
matrix known as the curvature tensor. The eigenvalues of K are referred to as
principal curvatures, and eigenvectors as principal directions. The larger eigenvalue
�1 is referred to as the major eigenvalue, and the smaller eigenvalue �2 as the minor
eigenvalue. Their corresponding eigenvectors are referred to as the major and minor
principal directions, respectively.

Unlike the metric tensor which is positive definite, the curvature tensor can have
negative eigenvalues. Applying the well-known isotropic-deviatoric decomposition
to the diagonalized curvature tensor results in
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Fig. 2 Surface classification scheme based on the shape index � 2 Œ�=2; �=2� is color mapped to
the (blue, red) arc in HSV color space: Left top: continuous mapping. Bottom: binned classification.
The legend (right) shows surfaces patches which are locally similar to points with given values
(This figure is a courtesy of [22], c	2012 IEEE)
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Let us consider the vector

�
�1��2
2

�1C�2
2

�

and write it in the polar form:


 D
r

.
�1 � �2
2

/2 C .�1 C �2
2

/2 D
q
�21 C �22p
2

(5)

� D tan�1.
�1 C �2
�1 � �2 / (6)


 is the tensor magnitude of the curvature tensor and is zero only when the
surface is locally planar. It is referred to as the curvedness. Recall that �1 � �2.
Consequently, � is well defined and satisfies ��=2 � � � �=2. It is referred
to as the shape index [18]. Figure 2 illustrates the power of this decomposition
with the classification over the bunny surface. H D �1C�2

2
is referred to as the

mean curvature, which is not only the average between the principal curvatures, but
the average of the curvatures corresponding to the set of all unit tangent vectors.
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The quantity �1��2
2

shows the anisotropy in the curvature. It achieves minimal
value only in spherical regions in the surface. Note that in the discussion of the
shape index we do not consider planar regions since it is where the curvedness
is zero and can therefore be considered as having any shape index. The quantity
G D . �1C�2

2
/2�. �1��2

2
/2 D �1�2 measures the relative strength between the isotropic

and anisotropic parts of the curvature tensor. It is referred as the Gaussian curvature.
If positive, the point of interest is more isotropic than it is anisotropic, i.e., elliptical.
If negative, the point is more anisotropic, i.e., hyperbolic. When zero, the point is
cylindrical. Results from classical differential geometry states that the total Gaussian
curvature over a closed two-dimensional manifold S with g handles is 2��.S/,
where �.S/ D 2 � 2g is the Euler characteristic of S [8].

We now return to the discussion of the eigenvectors of the curvature tensor.
Recall that the eigenvectors of the metric tensor do not play a prominent role in
surface parameterization. This is not the case for the curvature tensor in graphics,
as the principal curvature directions are important geometric characterization of the
surface. In pen-and-ink sketching, Interrante [12] has shown that curves following
the principal curvature directions can better illustrate a shape in visualization.
Moreover, artists typically draw hatches along principal curvature directions despite
not having necessary mathematical background in differential geometry.

We define a major hyperstreamline as a curve whose tangent coincides with
the major principal curvature directions everywhere along its path. A minor hyper-
streamline can be defined in a similar fashion. Major and minor hyperstreamlines
must intersect perpendicularly, since the major and minor principal directions at a
point in the surface are mutually perpendicular. However, eigenvectors are not well-
defined at points where �1 D �2, i.e., spherical points. Such points are referred to
as the umbilical points, which are the equivalent of singularities in vector fields. An
umbilical point can be measured in terms of the local tensor field behavior around it.
More specifically, consider an isolated umbilical point p0 which has a neighborhood
inside which no other umbilical points exist. Assume this neighborhood N is a
topological disk. When travelling along the boundary of the neighborhood @N , the
normalized eigenvectors along the curve are also travelling on the Gauss circle
S1. Due to tensor field continuity, when one finishes travelling @N once, the
eigenvectors must have also travelled the Gauss circle a number of times. However,
due to sign ambiguity in the eigenvectors, it is possible that the eigenvectors have
travelled only half of the circle instead of the full circle. It can be shown that
in general the eigenvectors must have travelled L

2
times around the Gauss circle

where L is an integer. Moreover, L is independent of the size and shape of the
neighborhood N as long as N does not contain additional umbilical points beyond
p0 in its interior or on its boundary. Consequently, L

2
is considered as the index of

p0 and is denoted by I.p0/. Note that the index is zero if and only if p0 is not an
umbilical point.

The two most fundamental types of umbilical points are wedges (index 1=2) and
trisectors (index �1=2). Interestingly, they correspond to the two simplest ways of
reversing travel directions when driving a car: U-turn (wedge) and three-point-turn
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Fig. 3 Two most
fundamental umbilical points
in the curvature tensor:
(top-left) wedge, and
(top-right) trisector.
Umbilical points appear in
natural locations in shapes
(middle and bottom): wedges
in yellow and trisectors in
blue. Shown in the bottom are
also the major
hyperstreamlines (middle)
and minor hyperstreamlines
(bottom)

(trisector). See Fig. 3 (top). In addition, umbilical points appear in natural locations
in the surface (Fig. 3 (bottom)).

Given a closed, two-dimensional manifold S whose umbilical points are all
isolated, Delmarcelle and Hesselink [5] show that
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2�
X

J

I.pi / D �.S/ (7)

where J is the set of the umbilical points in S . It is interesting to note that the
distribution of two seemingly unrelated quantities from the curvature tensor, i.e., the
Gaussian curvature and the index of the umbilical points, are both constrained by
the topology of the underlying surface. The curvature tensor can be computed using
a number of methods [3, 21, 23, 25]. We refer interested readers to these papers for
details.

Next we consider some graphics and geometry applications in which the
curvature tensor plays a prominent role.

3.1 Non-photorealistic Rendering

Pen-and-ink sketching is a well-researched topic in Non-Photorealistic Rendering
(NPR). In a typical setting, a set of lines (hatches), usually monochromatic (e.g.,
black) are placed against a background (typically white). The locations and densities
of the lines are used to outline the shapes, present the main features in the objects,
and convey the shading. An NPR system must determine the location, orientation,
and density of hatches. Most existing automatic hatching algorithms differ in how
they extract some or all of this information.

3.1.1 Feature Line Drawing

The first class of algorithms extract line features from the shapes and highlight
these lines. These classes of algorithms have direct application in engineering
illustration and CAD and medical data visualization. Consequently, the lines are
typically chosen to reflect the underlying geometry without the effect of shading.
The difference among this class of algorithms lies in how line features are defined
and extracted. We will review some of line definitions that are most relevant to the
curvature tensor.

The most commonly used lines in line drawing are perhaps visible contours.
Line drawing based only on visible contours is sometimes referred to as silhouette
drawing. Notice that contours are view-dependent. When the viewpoint is changed,
the set of contour points is also changed. However, intrinsic features in a mesh,
like sharp edges, are not guaranteed to be part of the contour for any appropriate
viewpoint. This has led to view-independent line features, such as ridges and valleys
which can be defined in terms of the curvature tensor.

A point p 2 S is a ridge point if the following conditions are met:

1. �1 > j�2j, i.e., the absolutely maximal bending occurs in the major principal
curvature direction.



Tensors in Geometry Processing 305

Fig. 4 A comparison of a number of feature-based drawing techniques (This figure is a courtesy
of [14], c	2007 ACM)

2. p is a local maxima of �1 on the unique major hyperstreamline containing p

Similarly, a point p 2 S is a valley point if

1. ��2 > j�1j, i.e., the absolutely maximal bending occurs in the minor principal
curvature direction, and

2. p is a local minima of �2 on the unique minor hyperstreamline containing p

We will omit the details for computing ridges and valleys here and instead refer
interested readers to [23, 25] (Fig. 4).

It has been noted that visible contours often do not produce sufficient lines that
reveal the underlying geometry. On the other hand, ridges and valleys are not view-
independent. To address these difficulties, the concepts of suggestive contours [4],
apparent ridges [14], and demarcating curves [19] are introduced. Both suggestive
contours and apparent ridges are view-dependent, while demarcating curves are
view-independent.

Roughly speaking, points on suggestive contours given a viewpoint V are not
part of the contours with respect to V , but contours with respect to some nearby
viewpoint. More formally, a point p 2 S is on the suggestive contour with respect
to viewpoint V if

Dw�r > 0 (8)

where w is the projection of V � p onto the tangent plane at p, �r is the curvature
at p in the direction w, and Dw�r is the derivative of �r in the direction of w.
Equivalently, a point is on the suggestive contour if it is a local minima ofN �.V �p/.
The computation of suggestive contours can be performed in both object-space
and image-space, leading to different tradeoffs between accuracy and numerical
stability.

Another view-dependent feature measure is apparent ridges. Apparent ridges
differ from ridges as the latter is derived from the curvature tensor, while the former
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from the projected curvature tensor onto the image space. Due to the distortion in
orthographic and perspective projections, the projected curvature tensor differs from
the curvature tensor. Apparent ridges are therefore the ridges extracted from the
projected curvature tensor. One of the main motivations behind apparent ridges is to
capture places where luminance would change rapidly should the model be shaded.
This notion is in a way related to the idea of suggestive contours as the latter also
tries to capture lines that are not features in the current but nearby viewpoints.

Finally, demarcating curves are considered in addition to ridges and valleys.
Demarcating curves are transition points between ridges and valleys, much in the
same sense as that inflection points of a function f (f 00 D 0) are the transition
between local maxima (f 0 D 0 and f 00 < 0) and local minima (f 0 D 0 and
f 00 > 0). More formally, the gradient of the curvature tensor, Cijk, is a third-order
tensor. Given v D vi , a unit tangent vector, Cijkv

ivj vk gives the rate of curvature
change in v. The direction in which this change is the largest is defined as the
direction for maximal normal curvature variation. A point p is on the demarcating
curve if vTp Kvp D 0 where vp is the direction for maximal normal curvature
variation at p.

While feature lines have been a powerful tool in illustrating shapes, they
are not often well-suited for surfaces that lack lines features, such as smooth
surfaces like a cylinder. In addition, feature-based line drawing primarily aims to
revealing geometric features rather than shading effects. Hatching is a more suitable
alternative in these cases, which we review next.

3.1.2 Illustration of Smooth Surfaces

Drawing as a form of art often captures our attention in terms of the shading effect
and varying geometric details, even when there are few geometric features (such
as ridges and valleys) present in the shape. For example, consider a cylinder of
an infinite height. Line features as described in Sect. 3.1.1 can only capture the
silhouette of the cylinder, i.e., two straight lines. It would be difficult, without
drawing the caps of the cylinder, to realize that it is a cylinder.

Hatching provides a nice alternative way of illustrating the shapes in this case.
Hatches are used to present the shading effect as well as the internal bending in
the geometry, thus making it possible to understand the geometry of an otherwise
featureless surface. The key issues for hatching are:

1. How to use hatches to present geometric details?
2. How to use hatches to provide shading effects?

Interrante [12] shows that when hatches follow the principal curvature directions,
the shape is best illustrated. Moreover, the lighting effect can be simulated with
the density of hatches. Denser hatches indicates lower luminance, while lower or
no hatches indicates bright spots or highlight under the viewing condition. Cross-
hatching, i.e., drawing two families of mutually perpendicular lines can increase the
darkness of a region without increasing the density of the hatches. Consequently,



Tensors in Geometry Processing 307

Fig. 5 The process of generating a hatch-based drawing from an input model

cross-hatched regions are often reserved for deep shadows, while single-hatched
regions (only one family of hatches) are used for regions that are neither in deep
shadows nor in the highlight (Fig. 5).

As mentioned earlier, the principal curvature directions can be computed using
a number of methods [3, 21, 23, 25]. Once the curvature tensor field has been
computed, a family of evenly spaced hyperstreamlines can be generated for the
major principal curvature field and the minor principal curvature field, respectively.
Generating evenly spaced hyperstreamlines can be achieved by adapting techniques
generating evenly spaced streamlines in vector fields [13]. These two families of
hyperstreamlines will be used to generate two images, one for the major and the
other for the minor hyperstreamlines. We refer to these two images as I1 and I2,
respectively. In addition, an image I3 based on visible contours are also generated.
Furthermore, a pixel with a value of 1 is white and a value of 0 is black. These three
images will then be composed into a single image as follows:

I.p/ D

8
ˆ̂
<

ˆ̂
:

0 if I3.p/=0
1 if in highlight

min.I1.p/; I2.p// if in shadow
I2.p/ otherwise

(9)

Note that in the above one can also choose to always use I1.p/ for single-
hatched regions. Another means of generating I1 and I2 is to first project the
principal directions onto the image plane and trace hyperstreamlines in the image
plane. This alternative is view-dependent but typically is fast enough for interac-
tive applications. In contrast, the object-based approach requires much time for
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pre-processing but is then ready for interactive display, except when the resolution
is changed.

3.2 Quadrangular and Triangular Remeshing

The curvature tensor has also been used in geometry remeshing, which refers to
generating a new mesh from an input mesh (typically triangular) subject to some
optimization criteria. If the output mesh is also triangular, the process is referred to
as triangular remeshing. On the other hand, if the output is a quad mesh, the process
is referred to as quadrangular remeshing.

Classical triangular remeshing approaches place a set of points on the input mesh
surface according to some density constraints [2,10,29,30]. These points will be the
vertices of the output mesh. The density of the points is usually required to reflect
the geometry in the input. Consequently, some forms of curvature (mean curvature,
Gaussian curvature, etc.) are considered as part of the density function. Delauney
triangulation or centroidal Voronoi tessellation can then be performed on the point
set to generate the triangulation.

Alliez et al. [1] revitalize the topic of quadrangular remeshing. In their pio-
neering work, a quad-dominant mesh is generated by intersecting one family of
evenly spaced major hyperstreamlines with one family of evenly spaced minor
hyperstreamlines. Since the two families intersect at the right angle, the resulting
quad-dominant mesh consists of mostly nice rectangles. Moreover, the edges in the
mesh follow the principal curvature directions and therefore have low approximation
error.

Due to numerical issues, there are usually an excessive number of umbilical
points in the output mesh, leading to a large number of irregular vertices, i.e.,
the valency is not four. Irregular vertices, especially when misplaced, can lead to
difficulties in subsequent mesh processing. Zhang et al. [31] introduce operations to
control the number and location of umbilical points by cancelling a pair of umbilical
points with opposite tensor indexes, or by moving an umbilical point to a more
appropriate location. We refer to [31] for details.

To remove T-junctions, which occur when the tracing of a hyperstreamline
stops without reaching an umbilical point, Kälberer et al. [15, 16] make use of the
mathematical concept of covering space and convert the tensor field to a vector field
in the covering space. The vector field is then made curl-free through the Hodge
decomposition, and the quadrangulation is performed in the covering space which
nicely maps to a pure quad mesh (no T-junctions) in the original input mesh.

Nieser et al. [22] use a similar idea (covering space) for triangulation. Unlike
quadrangular remeshing, in which both the major and minor principal directions
can be used as edges in the remeshed quad mesh, in triangular remeshing at most
one can be used. To deal with this they make use of the shape index and ensure that
the edges in the triangles will be aligned with the minor eigenvector directions in
ridge-like regions and the major eigenvector directions in valley-like regions.
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4 Conclusion

Tensor fields are important to not only scientific visualization and medical imaging,
but also computer graphics and geometry processing. In this chapter we review
two of the most popular tensors, the metric tensor and the curvature tensor, with
applications in surface parameterization, non-photorealistic rendering, and remesh-
ing. We expect that more graphics and geometry applications will be identified for
tensor fields, and we believe that research in tensor fields can continue to benefit the
visualization, image processing, and graphics communities.
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Preliminary Findings in Diagnostic Prediction
of Schizophrenia Using Diffusion Tensor
Imaging

Yogesh Rathi, Martha E. Shenton, and Carl-Fredrik Westin

Abstract We describe a probabilistic technique for diagnostic prediction of
first-episode schizophrenia patients based on their brain diffusion MRI data. The
method begins by transforming each voxel from a high-dimensional diffusion
weighted signal to a low-dimensional diffusion tensor representation. Three
orthogonal diffusion measures (fractional anisotropy, norm, mode) that capture
different aspects of the local tissue properties are derived from this diffusion tensor
representation. Next, we compute a one-dimensional probability density function
of each of the diffusion measures with values obtained from the entire brain. This
representation is affine invariant, thus obviating the need for registration of the
images. We then use a Parzen window classifier to estimate the likelihood of a new
patient belonging to either group. To demonstrate the technique, we apply it to the
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analysis of 22 first-episode schizophrenic patients and 20 normal control subjects.
With leave-one-out cross validation, we find a detection rate of 90.91 % (10 % false
positives). We also provide several error bounds on the performance of the classifier.

1 Introduction

A recent World Health Organization (WHO) report estimates that nearly 11 % of the
population world-wide is affected by some form of brain disorder. These illnesses
can often be psychologically and financially devastating to patients, their families
and the larger community. Nearly 1 % of the population in the US is affected
by schizophrenia. A growing body of evidence suggests that the early stages of
schizophrenia (and many other brain disorders) are critical in forming and predicting
the course and outcome of the disorder. The classification tools proposed in this
work can serve as a first step towards early detection of schizophrenia, which may
result in a better prognosis and functional outcome.

Both, post-mortem and neuroimaging studies have contributed significantly to
what we know about the brain. Moreover, MRI studies of volumetric reduction
in several brain regions in schizophrenia have been particularly informative with
respect to confirming early speculations that the brain is disordered in schizophrenia.
This work is largely the result of advances in neuroimaging that allowed for more
careful measurement of regions of interest within the brain (see review in [15, 22]).
In particular, a shape based framework was recently developed by the authors in [8],
which utilized volumetric differences as discriminatory features for distinguishing
a population of schizophrenia from normal controls (NC). Another recent work in
this direction was proposed in [20], where the authors used the affine parameters
obtained during registration of each subject to a given atlas as a discriminant feature.
However, both works, used structural MRI data, as opposed to diffusion MRI being
used in this study.

The advent of diffusion magnetic resonance imaging (dMRI) has provided the
opportunity for non-invasive investigation of neural architecture of the brain. Using
this imaging technique, neuroscientists want to ask how neurons originating from
one region connect to other regions, or how well-defined those connections may
be. One of the models that is widely used to analyze dMRI images is the diffusion
tensor model. Diffusion tensors represent the diffusion of water molecules in three
orthogonal directions with the principal direction aligned with the fiber orientation.
Several scalar measures derived from this model are used to assess the strength of
connectivity in neural fiber bundles.

Experimental evidence suggests that the tissue component responsible for the
observed orientational anisotropy in white matter is principally the spatial organiza-
tion of cellular membranes, which is modulated by the degree of myelinization of
the individual axons and the density of cellular packing [6]. As a result, fractional
anisotropy (FA) is the most popular measure used to study abnormalities in white
matter [15].
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While there has been an explosion in the number of studies reporting statistical
differences in various regions of the brain (see [15] and the references therein), very
few works have addressed the problem of classifying schizophrenic patients from
healthy subjects. Apart from structural MRI data being used by Davatzikos et al. [8]
and Pohl and Sabuncu [20], there has been work done by Caan et al. [4], where
the authors use dimensionality reduction followed by linear discriminant analysis
for classification of patients with schizophrenia (chronic). They use the fractional
anisotropy and linear anisotropy images derived from single tensor estimation as
discriminant features.

In all of the approaches listed above [4,8], the authors first perform a registration
of all the subjects to a common atlas space and subsequent analysis is done on
this dataset. However, such an analysis is computationally expensive and requires
a very good registration algorithm to spatially normalize all the subjects in one
common co-ordinate system. In the proposed work, we compute the probability
distribution of several diffusion measures over the entire brain white matter, which
makes it un-necessary to register the diffusion images, thus reducing computational
complexity. Note that, the probability distribution (by its definition) is invariant to
affine-transformations (see Sect. 2.2 for more details).

2 Methods

The overall outline of the proposed algorithm for computing the probabilistic
representation of each subject is shown in Fig. 1. From the dMRI scan of a subject,
diffusion tensors are first estimated. Three orthogonal diffusion measures (fractional
anisotropy (FA), norm (N), mode (Md )) [14] that form the discriminatory features
of our classifier are then computed at each voxel in the white matter region.
A nonparametric density estimator is then used to convert each of these measures of
each subject into a probabilistic representation, which is affine invariant. Note that,
we compute a 1D probability distribution function (pdf) of each of the diffusion
measures (FA;N;Md ) from values obtained throughout the white matter. These
three one-dimensional pdf’s form the features for each subject. This representation
is subsequently used by a Parzen window classifier to compute the probability of a
previously unseen subject being FE or NC in a cross-validation scheme. Details on
each of these steps are given in the subsequent sections.

2.1 Preliminaries

In diffusion weighted imaging, image contrast is related to the strength of water
diffusion. At each image voxel, diffusion is measured along a set of distinct
gradients, u1; : : : ;un 2 S

2 (on the unit sphere), producing the corresponding signal,
s D Œ s1; : : : ; sn �

T 2 R
n. The diffusion tensor is related to the signal using the

following relation [3, 16]:
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Fig. 1 Overall outline for computing a probabilistic representation for each subject

si D s0 exp .�buTi Dui /;

where s0 is a baseline signal intensity, b is an acquisition-specific constant, and D
is a tensor describing the diffusion pattern. D can be estimated using a weighted
least-squares approach [1].

Several scalar measures derived from the single tensor model have been proposed
in the literature [14,18,24]. In particular, we use a set of three orthogonal invariants
studied in [14], namely the norm N , fractional anisotropy FA and modeMd . These
measures capture different (orthogonal) aspects of the shape of the tensor. Given, a
diffusion tensor D, these measures can be computed as follows:

N Dk D k; FA D
p
3 k D � 1

3
tr.D/I kp

2 k D k ;

Md D 3
p
6

ˇ
ˇ
ˇ
ˇ
ˇ

 QD
k QD k

!ˇ
ˇ
ˇ
ˇ
ˇ
; QD D D � 1

3
tr.D/I

(1)

where, j:j denotes the determinant, t r.:/ is the trace and k : k denotes the frobenius
norm of a matrix. Thus, FA measures how the shape of the tensor deviates from
that of a sphere (diameter of the sphere is given by the average length of the axes of
the ellipsoid (tensor)). Md indicates the mode of the tensor, i.e. Md D �1 indicates
planar anisotropy, Md D 0 indicates an orthotropic tensor and Md D 1 indicates
linear anisotropic tensor. Norm N measures the “size” of the diffusion tensor. Of
these measures, only FA has been widely used to study white matter abnormalities
in schizophrenia (see references in [15]). From the above discussion, at voxel r, we
compute the following 3-dimensional vector

f.r/ D Œ N.r/; FA.r/;Md .r/ �T : (2)

2.2 Probabilistic Representations

Probability density functions (PDF) are invariant to translation, rotation, scale and
shear of an image, i.e. PDF’s are invariant under linear transformation of the
coordinates of an image. A nonparametric estimate of the PDF can be computed
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Fig. 2 Left: Coronal slice shows region of the brain included in the classifier. This corresponds to
FA � 0:4: The other two figures show different views of the volume rendering of the thresholded
FA image

using the following expression [19]:

p.z/ D 1

Mh

MX

iD1
G

�
z � I.x/

h

�

; z 2 fRange of I g (3)

where I.x/ is a scalar image at spatial location x, M is the number of data points,
G is a Gaussian kernel and h denotes the bandwidth of the kernel. An affinely
transformed image QI is related to the original image using the relation QI .Ax/ D
I.x/, where A is an affine transformation. Notice that only the co-ordinates of the
image I change without changing the image intensities (scalar values). By applying
a change of variable in Eq. (3), one can easily see that the PDF p.z/ is invariant
under affine (linear) transformations.

The proposed set of diffusion measures f.r/ lives in a 3-dimensional space.
Computing the joint PDF of the 3-dimensional space is computationally intensive.
Further, the measures N;FA;Md are mutually orthogonal. As such, we compute a
1D PDF for each measure separately using (3). Note that, each of these measures
captures different aspects of the variation in “shape” of the diffusion tensor and thus
are independent of the orientation.

Several schizophrenia studies [15] have shown abnormalities in the white matter
region of the brain. We thus choose this entire region (white matter) to compute the
PDF. Specifically, a diffusion tensor is estimated at each voxel and FA is computed
in the entire image volume. Regions of the brain that have FA � 0:4 are selected
for further analysis (see Fig. 2). This roughly corresponds to the single fiber white
matter region in the brain. Note that, we chose a threshold of 0.4 in order to exclude
regions that have crossing fiber bundles (which would result in lower FA). Such
crossing regions cannot be correctly represented using a single diffusion tensor. All
the other features (such as, Md;N ) are computed in this region (with FA > 0:4).

We should note that since FA is a discriminatory feature between the two
populations (first-episode schizophrenics and healthy controls), thresholding the
image in itself amounts to a feature selection step. For example, if one group in
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general has lower FA than another, this would lead to a difference in the estimated
pdf which would be useful during classification.

Using (3), we compute the PDF for each of the three discriminatory measures and
combine them into a matrix representation denoted by p D Œpn pfa pmd �. Thus,
each patient scan i can now been transformed into a probabilistic representation
(matrix) pi of dimension nb � 3, where nb is the number of bins used in the pdf
computation. In our subsequent discussions, we will use this representation in our
classifier.

Figure 3a–c show the PDF’s for 22 first-episode (FE) schizophrenic patients (red)
along with 20 age-matched normal controls (NC) (blue). A visual inspection shows
differences between the two groups (blue and red) for each of these measures.
Figure 4 shows a cross-section of the two groups for a certain value of FA. This
figure confirms the existence of two distinct clusters in the data (albeit with overlap).

2.3 Parzen Window Classifier

The Parzen window classifier was first introduced by Jain and Ramaswami [11].
In this method, a Parzen window based density estimate [9] is used to compute the
likelihood that a new data point belongs to one of the groups in the training data set.

Let fpifeg
Nfe
iD1 and fpincgNnciD1 be the set of Nfe FE and Nnc NC subjects in the

training data set. Given a test data point Op, the likelihood (probability) that it belongs
to either group can be computed using the Parzen window density estimator as
follows:

Pfe. Op/ D 1

Nfe

NfeX

iD1
K. Op;pife/; aligned

Pnc. Op/ D 1

Nnc

NncX

iD1
K. Op;pinc/;

(4)

where K.:; :/ is a Gaussian kernel given by

K.pi ;pj / D exp

 
3X

mD1

� k pim � pjm k2
�2m

!

; (5)

with m D Œ N; FA;Md �
T as described earlier, and i; j represent the indices

for i th and j th subject. Note that, we assume that the PDF’s of each of the
diffusion measures for a subject are independent, due to the fact that these measures
themselves are orthogonal.
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Fig. 3 Probability density functions of various anisotropy measures for 22 FE patients (red) and
20 NC (blue). (a) Norm. (b) Mode. (c) FA
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Fig. 4 Cross-sectional distribution of the PDF’s of FA (upper right) for FE (red) and NC (blue)
subjects

2.3.1 Design Choices

For each of the two groups, we choose �m using the following relation:

�m D cm

N

NX

iD1
min
i¤j
k pim � pjm k; j D 1; 2; ::N; m D 1 to 3;

where N is Nfe for the group of FE patients and N D Nnc for NC subjects. Thus
a different set of f�mg3mD1 is computed separately for each group in the training
data set. The constant cm is a scalar that is computed so that the training error is
minimized. Typical values for cm that give a good generalization of the sampled
data while reducing the risk of over fitting lie in the range cm 2 Œ1:5; 2�, as has
been noted in [7]. In numerical experiments, we discretize cm in the range Œ1:5; 2�
at an interval of 0.1. The value of cm that minimizes the training error is chosen for
a given training data set. We should note that this is the only parameter one needs to
choose in our entire classification system.

This data driven approach of choosing �m is quite common in the literature
and has been used in other works as well [7]. This choice of �m is guided by the
following considerations: (1) �m varies appropriately with the scaling of each of the
components of m, (2) It minimizes the training error of the classifier, (3) it respects
the distribution of points within the clusters (whether the points are spread out or
densely packed).

Thus, from the probabilities obtained in (4), we obtain the following simple
classification rule:



Diagnostic Prediction of Schizophrenia Using DTI 321

Classification of Op D
(

Pfe. Op/ > Pnc. Op/; Op is FE patient

Pfe. Op/ �Pnc. Op/; Op is NC.

3 Results

3.1 Data Acquisition Protocol

Our dataset consisted of 22 FE patients with average age 20:89˙ 4:8 years and 20
NC with average age 22:3˙ 4:2 years (p D 0:21). All the subjects were scanned as
part of Dr. Martha Shenton’s NIH grant (R01 MH 50740) on a 3-T GE system using
an echo planar imaging (EPI) diffusion weighted image sequence. A double echo
option was used to reduce eddy-current related distortions. To reduce impact of EPI
spatial distortion, an eight channel coil was used to perform parallel imaging using
Array Spatial Sensitivity Encoding Techniques (GE) with a SENSE-factor (speed-
up) of 2. Acquisitions have 51 gradient directions with b-value = 900 and eight
baseline scans with b = 0. The original GE sequence was modified to increase spatial
resolution, and to further minimize image artifacts. The following scan parameters
were used: TR 17,000 ms, TE 78 ms, FOV 24 cm, 144�144 encoding steps, 1.7 mm
slice thickness. All scans had 85 axial slices parallel to the AC-PC line covering the
whole brain.

The raw diffusion weighted images were preprocessed using the Rician noise
removal algorithm of [2] followed by eddy current and head motion correction
algorithm [13] (part of the FSL package – http://www.fmrib.ox.ac.uk/fsl/flirt/).

4 Classification Results

4.1 Leave-One-Out Cross-Validation

Leave-one-out (LOO) is an unbiased technique for cross-validation of classification
results especially when the training data set is small [5, 23]. This is one of the
techniques we use to test our classifier. In this method, one subject is removed from
the dataset and the classifier is trained on the remaining samples. This procedure is
repeated for all available samples and classification results are computed.

In our case, the data samples are the matrices pi of dimension (nb � 3), with
each column representing a discretized pdf of the feature vectors. Here, nb is the
number of bins, which we fix to 300 in all experiments. Given the matrices pi

for all subjects, the probability of a previously unseen subject is computed using
Eq. (4). This procedure is repeated by removing one datum each time and using

http://www.fmrib.ox.ac.uk/fsl/flirt/
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Table 1 95% confidence
intervals on the performance
of the classifier for LOO
experiment

Method Lower limit Upper limit Best estimate

Bayesian 0.788 0.968 0.901
Adjusted Wald 0.768 0.967 0.883
Exact Wald 0.811 0.993 0.892

Table 2 Classifier
performance for LOO
experiment with different
features

Detection rate False positives Features used

0.772 0.350 FA
0.909 0.250 FA, MD
0.909 0.100 FA, MD, N

the remaining samples as training data set. Thus, one sample is used as test while
the remaining samples are used to train the classifier. The correct detection rate
is then computed by counting the number of times the test sample was correctly
identified (FE or NC) while testing all the subjects (in our case it is 42). The
false positive rate is given by the number of subjects that were “predicted” by the
classifier as FE, whereas they were NC. The overall classification error is given by
the number incorrect classifications “predicted” by the classifier. In our experiments,
the detection rate (true positives) obtained for LOO cross-validation is 90:91%,
while the false positive rate is 10:0%. The overall classification error is 9:52%.

As has been pointed out by the authors in [10], for small sample size, it is not
enough to validate the results using LOO experiment. Instead, one should compute
confidence intervals that give a lower and upper bound on the performance of the
classifier. Several methods have been proposed in the literature to compute these
bounds for small sample size, of which the Bayesian and Binomial bounds are most
popular.

Table 1 gives the 95% Bayesian and Binomial (Exact Wald and Adjusted Wald)
[17, 21] confidence intervals (upper and lower limit) on the overall performance
of the classifier. Intuitively, a 95% confidence interval indicates that in 95 out of
100 experiments, the overall performance of the classifier will fall within the stated
confidence interval. These confidence intervals are also a function of the number
of samples in the data set. Thus, as the number of samples tested increases, the
confidence interval becomes narrow and converges to the “true” estimate [10, 12].
The Exact method was designed to guarantee at least 95% coverage, whereas the
approximate methods (adjusted Wald) provide an average coverage of 95% only
when a large number of samples are available.

The above LOO experiment included all the three components of vector f as
features. Table 2 shows classification results for LOO experiment, but with different
number of features. As is clear, including all the three features does improve the
performance of the classifier. Adding more features such as radial diffusivity, linear
anisotropy, etc. did not improve the performance of the classifier.
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5 Discussion

In this paper, we proposed a novel probabilistic classification method for separat-
ing first-episode schizophrenic patients from age-matched normal controls using
anisotropic measures derived from diffusion tensor images. The output of the
classifier is a probabilistic score of a previously unseen subject being FE or NC.
We validate the proposed classifier using a leave-one-out experiment obtaining a
sensitivity of 90.91 % and specificity of 90 %. In this work, we chose the entire white
matter to perform classification. However, individual fiber tracts such as corpus
callosum, fornix, cingulum bundle, etc. may be able to provide more information
regarding the variation of these fiber bundles in either population. Our future work
entails examining these fiber tracts to detect abnormalities and subsequently use
them for probabilistic classification. We should note that the methodology presented
here is quite general and can be applied for classification of many other types of
brain disorders (bipolar disorder, schizotypal personality disorder, etc.).

This work is a first step towards early detection of schizophrenia, which can
result in better patient care. Further, the probabilistic methodology proposed in this
work could be used to study the effect of medication by analyzing changes in white
matter anisotropy.
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Abstract In this paper we present an interactive system that integrates the visual
analysis of nerve fiber pathway approximations from diffusion tensor imaging (DTI)
with electroencephalography (EEG) data. The technique uses source reconstructions
from EEG data to define certain regions of interest in the brain. These regions, in
turn, are used to selectively display subsets of the approximated fiber pathways in
the brain. The selected pathways highlight potential connections from activated
areas to other parts of the brain and can thus help to understand networks on
which most higher brain function relies. Users can explore the neuronal network
and activity by navigating in an EEG curve view. The navigation is supported by
optional mechanisms like snapping to time points with present reconstructed dipoles
and visual cues highlighting such points. To the best of our knowledge, the presented
combination of time navigation in EEG curves together with DTI pathway selection
at the corresponding dipole positions is new and has not been described before. The
presented methods are freely available in an open source system for visualization
and analysis in neuroscience.
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1 Introduction

Neuroscience and neurology employ a large variety of measurement techniques to
examine anatomy, function and pathologies of the human brain in vivo. Among
them are electroencephalography (EEG), diffusion weighted magnetic resonance
imaging (dwMRI), magnetoencephalography (MEG), and computed tomography
(CT). Given the very complex structure of the brain, combining these techniques is
crucial for gaining deeper insight into brain functions or diseases. In other words,
multi-modal visualization and analysis tools are needed to provide neuroscientists
and physicians the support they need for advanced research or diagnosis.

The work described in this paper is motivated by findings [28] that show
correlations between epileptical networks measured using MEG or EEG, and
connectivity of white matter fiber tracts. We present a system that enables the
simultaneous inspection of EEG measurements and diffusion tensor imaging (DTI)
data obtained from dwMRI measurements. In particular, a combination of dipole
locations reconstructed from EEG (see e.g. [13]) and fiber pathways (see e.g. [2,10,
16,18], Fig. 1) obtained from the DTI data is used for visualization, and an intuitive
navigation for exploring the time dimension of the data is provided on the basis of
simple curve plots of the measured EEG data. A user navigating in time triggers a
search for the dipoles active at the current time. The positions of the found dipoles
are then used to select fibers that run through activated brain areas represented by
the dipoles (Fig. 2).

This way not only the brain activation related to a particular experimental or
clinical condition can be visualized, but also the potential connections from the
activated areas to other parts of the brain, i.e. the potentially activated networks.
This is important as most higher brain function is thought to rely on widespread
networks. Similar results can be achieved by a combination of fMRI and DTI [8,15,
21]. However, in contrast to fMRI, EEG can achieve a very high resolution in time
and thus is able to capture very fast current changes in the brain, which can occur
within the order of milliseconds.

An illustration providing an overview of the overall pipeline of our approach
is given in Fig. 3. It consists of the measurement, a preprocessing step and an
interactive visualization and analysis loop. Throughout the paper we first describe
how our approach is related to previous work (Sect. 1.1), then we provide a brief
introduction to the preprocessing (Sect. 2) and finally introduce the new technique
(Sect. 3) as well as implementation details (Sect. 4). The actually novel technique is
integrated in the interactive visualization and analysis loop.

1.1 Related Work

The literature dealing with advanced EEG visualization is relatively sparse.
Advanced in this context means showing more than the measured voltage curves
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Fig. 1 DTI fibers tracts rendered in context of electrode positions in upper part of window and
butterfly plot (details in Sect. 3.2) of EEG recording in lower part

Fig. 2 DTI fibers tracts selected by the position of the reconstructed dipole (10 � 10 � 10mm
ROI box) are rendered in context of head surface with voltage at the different electrodes mapped
to color in the upper part of window. The lower part shows a common curve display of the EEG
recording (“EEG View”). The “EEG View” widget is used for navigation in time (notice the vertical
line marker, t D 118:113). The color coding in the background indicates the presence of a loaded
dipole. The color represents the magnitude of the dipole
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Fig. 3 Pipeline illustrating the overall approach. The central part of the system is integrated in the
interactive visualization and analysis loop

(Fig. 2), a butterfly plot (Fig. 1) or frequency plots of the data. Exceptions are work
on visualizing EEG recordings in 3D by Sourina et al. [23] and an information
visualization approach by ten Caat which he summarized in his doctoral thesis [25].
One of ten Caat’s results is a method to visualize the coherence in EEG data as a
network of interconnected functional units.

Some work regarding the analysis and visualization of sources reconstructed
from EEG and MEG data (see Johnson et al. [11] and Wolters et al. [30]) has
been performed. Wolters et al. [30] analyze result of source reconstructions from
EEG data and their connection to data obtained from dwMRI. However, they do not
employ the diffusion weighted data for approximating white matter fiber pathways
for visualization, but to obtain conductivity tensors. The tensors are used to analyze
the influence of the white matter conductivity on EEG/MEG field computation.

Discussions concerning the relation between functional MRI (fMRI) and EEG
source reconstructions are quite common in the literature (see e.g. [27]). Also, the
combination of fMRI and DTI-based fiber tracking to define and analyze white
matter pathways is well established [8, 15, 21]. Such a combined analysis can
be performed in many widely used software packages [9, 26]. In contrast, the
only work we found, that visualizes EEG data and fiber tracts, is the description
of the NUTMEG system by Dalal et al. [4]. Their system, in conjunction with
Xipy (also mentioned in the paper), shows white matter fiber tracts in conjunction
with visualizations of functional maps obtained from source reconstruction. The
system does not seem to provide an interactive navigation mechanism for inspecting
reconstructions at different points in time and the original EEG recording curves are
not visible to the user. It is furthermore unclear how the fiber tracts are selected.

In summary, there has been much work combining MRI and EEG (see also Tadel
et al. [24]), few work dealing with DTI-based pathways together with EEG and no
work allowing time navigation based on the display of voltage curves. This paper
and the system presented in it aim at filling the gap left in the latter two areas.
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2 Preprocessing

Acquiring the data during EEG and MRI measurements is only the very first step
in a pipeline leading to the successful analysis of the subject’s condition. The data
needed for the effective utilization of the technique presented in this paper, have
to be registered, tractography has to be applied to the DTI and dipoles have to be
reconstructed from the EEG. As illustrated in Fig. 3, we consider these three parts
of the pipeline as preprocessing steps and will detail two of them (tractography
and reconstruction) in the following because the combination of their results lies in
the heart of the presented technique. Naturally, the registration has to be as good
as possible, but this is the case for most multi-modal visualization and analysis
approaches and will thus not be discussed in the current context.

2.1 DTI Tractography

Approximated fiber pathways are one basis for the visualization and analysis of
our approach. The data used for the fiber approximation in our example comes
from a DTI measurement acquired with a 3-T scanner Siemens 3T Trio at the Max
Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. The
DTI image is given as second order tensors at a resolution of 1:72mm. We used
the tensorlines method introduced by Weinstein et al. [12, 29] as implemented in
MedINRIA [6] for generating all tracts used in this paper. To obtain a full brain
tractogram, the tensorlines were seeded at voxels where the fractional anisotropy
exceeds a certain threshold. However, other seeding strategies are possible as the
used strategy does not imply any constraints on the design and implementation of
the parts of the interactive visualization and analysis loop. The reconstructed tracts
are stored into a file from which they can be loaded for the following steps as needed.
The complete tractogram in our example consists of 74;313 polylines represented
by 5;397;993 vertices.

2.2 EEG Source Reconstruction

Electroencephalography (EEG) is a technique measuring the accumulated electrical
activity inside the brain by recording voltage changes at the head surface. Compared
to other brain measurement techniques EEG is recorded at relatively few (21–256)
locations [19]. Although EEG is recorded from electrodes placed around the head
surface and although the properties (amplitudes, frequencies, etc.) of the recorded
voltage curves are expressive and meaningful themselves, one is interested in local
currents inside the head because they are indicative for neuronal activity at the
different locations in the brain. The methodology applied to obtain these currents
is called source reconstruction. Considering, that the density of the source current
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at a certain location is a vector with three components, the problem of source
reconstruction for more than 42 locations from, e.g., 128 electrodes, is under-
determined. This fact is a first hint at the comparatively low spatial accuracy
of reconstructed sources. To get a higher accuracy, further constraints obtained
from prior knowledge of the brain structure have to be imposed [19]. Still, the
achievable spatial resolution is much worse than that of MRI or CT. Despite these
disadvantages, EEG is an important tool for examining brain activity and function
because of its high resolution in time. Together with the often simultaneously
discussed magnetoencephalography (MEG), EEG is the only common measurement
technique that is able to capture the fast current changes in the brain, which can
occur within milliseconds.

In this paper, we use the ASA software package [31] for source reconstruction
and dipole localization. ASA (Advanced Source Analysis) is a highly flexible
package for analysis of continuous and event-related EEG/MEG signals. Regarding
our task, it provides a variety of useful source reconstruction and signal analysis
features. For single dipoles a spatio-temporal dipole fit as described by Scherg [19]
is used. A tutorial for using ASA for source reconstruction can be found here: [1].

Like the tracts, the EEG and the reconstruction results are stored into files from
which they can be loaded for the following steps as needed.

3 Technique

After preprocessing has been performed, the data are ready for exploration using the
technique proposed in this paper (see Fig. 3). Our specific approach is a combination
of visualization and interaction techniques. In the following subsection, we first
describe the visualization of the fibers and of the EEG on the head surface.
Afterwards, we describe how we present the original EEG signal and how this
presentation is used for interactively navigating through the time-dependent data.

3.1 Visualization

The fibers are visualized using the techniques available in OpenWalnut [5]. These
include simple lines (Fig. 2), illuminated lines (Fig. 1), and fake tubes (Fig. 4). Each
of these line types can be rendered with a user-defined constant color as well as with
either local or global directional color coding.

Rendering only a subset of a set of fibers, e.g. of a whole brain tractogram, can
be achieved by defining regions of interest (ROIs). As a result only those fibers
which run through the defined ROIs will be shown. This selection mechanism is
an implementation of the approach reported by Blaas et al. [3]. As the selection
mechanism allows the combination of different ROIs for selecting a single fiber
bundle, it is also possible to select those fibers that run through the locations of
several simultaneously active dipoles. Furthermore, multiple bundles each running
through one of the ROIs can be selected. An example of the latter is shown in Fig. 4.
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Fig. 4 Two ROI boxes (20 mm) selecting fibers are the result of two simultaneously active dipoles
(tD 128.433)

The presentation of the original EEG signal is described in Sect. 3.2 because this
presentation is also used for navigation in time.

In order to give a quick overview of the magnitude distribution at the currently
selected point in time, we color-code the magnitudes of the different channels on
the head surface (see Fig. 2). In our case the “head surface” is a simple interpolation
of the electrode positions (Delaunay triangulation). We use a 2D implementation
of the triangulation algorithm. Therefore we have to project the positions to two
dimensional space first. A projection along the axial direction yields satisfactory
results most of the time. In some cases, however, where the electrode positions
cover more than the upper hemisphere, i.e. where parts of the projection overlap,
we have to spread the lower positions somewhat before performing the projection.
This prevents overlapping triangles in the projection and thus guarantees a valid
triangulation. To color the triangles connecting the electrode positions, we map
values, that where linearly interpolated from the values at the electrodes, to color.

3.2 Navigation

The user interface for navigating through the EEG data along the time dimension
is visible in the lower left widget in Fig. 2. It is realized as a kind of timeline
widget [20]. As in most EEG software, the standard presentation shows the signals
of the different electrodes (channels) as curves in row-oriented layout. The name
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of the electrode belonging to a certain row is always visible on the left. A vertical
red line indicates the currently selected point in time. The position of this line and
thus the selected time value can be adjusted by left-clicking in the widget. This
very simple type of interaction makes data exploration in time feasible and intuitive
for all (also new) users. As exploring the correspondence of the instantaneous
EEG signal and the fibers selected for dipoles at the same instant of time are
the main goal of this work, the simple time point selection is central to the
interaction and navigation. Dragging with the middle mouse button allows to bring
additional channels (moving up/down) or other time intervals (moving left/right) of
the recording into view. This is important for exploring the signal captured at all
electrodes and thus to get an impression of the complete momentary state of the
EEG. Dragging (left/right) with the right mouse button zooms (out/in) the currently
visible time interval. The mouse wheel adjusts the scaling of the curves, i.e. the
mapping from the measured voltage to the height of the curve. The different zoom
and scaling levels are useful for getting an overview or inspecting details of the EEG
curves. All mentioned adjustable values (position, scaling, etc.) can also be adapted
in the control panel (right in Fig. 2). This allows to select specific numeric values by
typing the exact numbers and can be useful for quantitative studies where the exact
values are needed.

An alternative EEG representation, called butterfly plot, which superimposes the
signals of all channels, is visible in Fig. 1. This representation highlights certain
particularly interesting instants of time, while, due to visual clutter, the single curves
are not discernible anymore. All interaction types described for the conventional
representation are also available for the butterfly plot. As a result, navigation in time
is possible in both representations by simply clicking at the position of the desired
instant of time.

If immediate source reconstruction in the background was possible, we could
simply determine active locations and thus ROIs (see Sect. 3.3) for any selected
instant of time. However, as source reconstruction is a time consuming process and
as we have to rely on externally performed dipole localization, we only have dipoles
for a number of time intervals. These time intervals are highlighted in the EEG plot
window as shown in Fig. 2. A white background means no dipole; color indicates
the presence and magnitude (by color saturation) of a loaded dipole.

When the user selects a certain point in time, the system checks if there are
active dipoles at this time or in other words, if the selected instant of time lies in
a time interval of one of the dipoles. The positions of the respective dipoles (one
or multiple) are then used for fiber selection. The selection will be described in the
Sect. 3.3 in more detail.

Scrolling through the whole EEG plot, searching for dipoles can be a tedious task
for plots representing a long recording session. Therefore, we introduced another
navigation mode, which we callsnap to dipole (see Fig. 2, “Settings” tab). This mode
is tailored to support fast selection of times for which dipoles have been loaded. If
this mode is active and the user clicks, i.e. selects a certain point in time, the time
marker snaps to the next position in time where a dipole can be found. One can
think of this as a nearest neighbor search. The position located by the snapping will
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Fig. 5 Fiber selection resulting from ROI box with 3 mm edge length located at reconstructed
dipole position (tD 117.889)

be the border of an interval containing an active dipole. The dipole magnitude will
thus be relatively low at this point. With the color coding, however, it is now easy to
navigate to positions at which the magnitude is higher. The snapping is especially
important because the active dipoles often cover only a small portion of the whole
time of the loaded EEG data.

3.3 Combination

As alluded to before, the combined visualization or combined exploration of fiber
and EEG data is achieved by generating regions of interest (ROIs), in our case boxes,
representing the dipoles active at the currently selected point in time.

The generated ROI box is centered at the given dipole position. As a first
approximation we use a box with 30�30�30mm extent. A selection exemplifying
the result of such a ROI is shown in Fig. 5. The initial box size is a conservative
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choice in the sense that it selects relatively many fibers instead of showing too few
and thus missing the important ones. See Scherg [19] for typical localization errors
that led to our choice of the box size. The user can decrease the size of the ROI
to explore fibers that would be of interest if the activation was smaller or more
accurately localizable than the initial region. When changing its size, the ROI will
grow or shrink equally in all directions and will thus stay centered at the dipole
position.

As described in Sect. 3.1, the fiber selection mechanism is very flexible in
combining the effects of different ROIs. We employ this for dealing with the case
of multiple simultaneously active dipoles. The usual use case is to show all fibers
that are related to any of the dipoles. This is demonstrated in Fig. 4 for two dipoles.
A second option is to select only those fibers that run through all ROIs at the same
time. However, one should be aware that this can results in showing no or only very
few fibers for some dipole configurations. Even in the examples shown in Fig. 4,
there is no fiber that runs through both ROIs. Actually, only one fiber of the corpus
callosum is selected by the right ROI and this fiber does not pass through the ROI in
the left part of the image. Figure 5 shows that even increasing the ROI size results
in the selection of only two fibers of the corpus callosum.

4 Implementation Details

Most data stemming from measuring, e.g. imaging, the brain is small enough to
easily fit into the main memory of current commodity hardware. EEG data, in
contrast, can become very large due to the number of electrodes used and the time
recorded. In principal, increasing recording time can make the data arbitrarily large.

Handling such data makes it necessary to keep the treated file open and read
only the data that are currently needed into main memory. The direct access to
the file is realized by a pager (WPagerEEG, Fig. 6) which can be implemented
for different file formats. The currently supported format is CNT (continuous EEG
data file). For accessing such files we use the open source library Libeep [22]. As
the metadata contained in the CNT file, like information about the measurement
channels, is comparatively small, we load all metadata in the beginning. Only the
voltage data, i.e. the data measured for each channel, is loaded on demand by the
pager. Modules that need access to the voltage data ask the EEG dataset (WEEG2)
for it by providing a time interval. The dataset class in turn requests the data from the
pager. The pager then loads the requested data from the file if it is not yet present in
memory. It presents the data to the dataset and removes unused data from memory.

More details of the implementation (Fig. 6) are described in a master’s thesis [17]
and the source code of our implementation is available in the online repository of
OpenWalnut [5].
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Fig. 6 Data handling scheme

5 Conclusion

The presented system and techniques allow for a new type of visualization and
exploration of DTI fiber pathways in conjunction with EEG and MEG source
reconstruction data. The combination of the two modalities provides a platform
for deeper investigations of the relation between anatomical structures, especially
connections, in the brain and certain cognitive functions that these structures
are involved in. An intuitive interaction mechanism, specially tailored to the
characteristics of the combination of EEG and fiber pathways, has been introduced.
This mechanism is the heart of the presented system as it enables the user driven
exploratory process.

All presented techniques are freely available in the open source visualization
system OpenWalnut (http://www.openwalnut.org). The data can be loaded using
the general data import mechanism in combination with the Read Dipoles module.
The visualization as well as the interaction techniques presented in this paper are
integrated in the EEG View module.

One of our future research directions will be the relatively straightforward
extension of the framework to MEG instead of EEG data. Further possible directions
are the combination of the presented fiber bundle selection mechanism with bundle
visualization techniques already available in OpenWalnut, e.g. bundle parameter and
bundle surface visualization [7], and employing advanced ROI definitions, e.g. on
the basis of distributed sources [14], deviating from cubes.
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Corpus-Callosum, 263
Cortico-spinal tracts, 260
Covariance tensor

fourth-order, 148, 152
Covariant differential, 202
CSF contamination, 250

Deformation glyph, 25
Diffusional kurtosis, 132, 144
Diffusion coefficient, 191
Diffusion kurtosis imaging, 165
Diffusion MRI, Fractional Anisotropy, Mode,

Trace, 315
Diffusion orientation transform, 151
Diffusion propagator, 88, 89, 93, 131, 151
Diffusion tensor, 131

higher-order, 131, 141, 147
Diffusion tensor imaging (DTI), 98, 163, 166,

191, 210
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Diffusion weighted magnetic resonance
imaging (DW-MRI), 97, 189, 210

Diffusivity profile, 98
Dilation, 77
Dipole, 326
Double tensorial product, 284
DTI. See diffusion tensor imaging, 230, 326,

329
Dual-energy X-ray absorptiometry, 286
Dual Finsler function, 201
Duality, 199, 200
Dual Riemann metric tensor, 193, 194
Dual Riemann-Finsler metric tensor, 193, 196,

201

EAP. See ensemble average propagator
EEG. 326, 329, 331
Eigenvalue

D-, 148
higher-order tensor, 140
Kelvin, 149

Eigenvector analysis, 230
Engineering, 3
Ensemble average propagator. See diffusion

propagator
Erosion, 77, 99
Erosion equation, 109
Erosion operator, 111
Euclidean invariance, 103
Euler angle, 120
Euler-Lagrange equations, 211
Evolution equation, 109
Exponential map, 106
Extended Gaussian image, 276
Extracellular, 250

Fabric tensor, 271, 272, 284
boundary-based methods, 275
mechanics-based methods, 273
morphology-based methods, 275
volume-based methods, 278

False discovery rate, 235
FAt, 252
Fiber orientation density function, 132, 145
Fiber tracking, 193, 210

streamline-based, 153
Figuratrix, 202
Filtered tractography, 256
Filtering, 8
Finite element method, 274, 285
Finsler (co)bundle, 195
Finsler function, 190, 194

Finsler geometry, 153, 211
Finsler metric, 212
fODF. See fiber orientation density function
Formal Christoffel symbols, 197
Fractal dimension, 281
Fractional Brownian motion, 281
Free-water, 250
Frobenius norm, 137

GDTI. See Generalized DTI
Generalized DTI, 164, 172
Geodesic coefficients, 198
Geodesic congruence, 193, 201
Geodesic equation, 193
Geodesic equation (Finsler case), 200
Global gradient structure tensor, 277
Glyph, 98
Glyph design, 17
Gradient, 78

Beucher, 78
external, 78
internal, 78

Gram matrix, 177
map to 4th order tensor, 179

Group action, 103
Group comparison, 261
Group morphology, 111

Haber glyph, 25
Half-cosine kernel, 276
Hamiltonian (Finsler case), 191, 201
Hamilton-Jacobi-Bellman equation (HJB

equation), 110
Hamilton-Jacobi equation, 193
HARDI. See high angular resolution diffusion

imaging, 210
Hashiguchi connection, 197
High angular resolution diffusion imaging,

131, 210
Higher-order mechanics, 5
Higher order phase representations, 54
Hilbert-Schmidt norm. See Frobenius norm
Hilbert’s invariant integral, 194
Hilbert transform, 39
Hooke’s law, 273
Horizontal and vertical splitting, 204
Horizontal cotangent bundle over the slit

tangent bundle, 198
Horizontal covariant derivative, 203
Horizontal covector, 198
Horizontality, 200
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Horizontal tangent bundle over the slit tangent
bundle, 198

Horizontal vector, 197, 198
HOT. See tensor, higher order
Hue. 81
Hurst orientation transform, 281
Huygens’ principle, 201
HWY glyph, 30
Hypermatrix, 134
Hypo-elliptic diffusion, 115

Indicatrix, 201
Induced metric, 253
Inertia tensor, 280
Infimum, 76
Intrinsic permeability tensor, 274
˛-Invariance, 103

Kalman filter, 256
Kernel based morphometry, 231
Kernel based morphometry on simulated data,

238, 240
Kernel PCA based kernel FDA, 236
Kernel Principal Component Analysis, 233
Kronecker tensor, 203
Kurtosis tensor, 132, 144, 148

Lagrangian (Finsler case), 201
Laplace-Beltrami smoothing, 141
Lateral Geniculate Nucleus (LGN), 115
Least squares approach, 165

in vivo human data, 183
Left-invariance, 104
Legal metric, 108
Legal operators, 105
Levi-Civita connection, 197
Lie algebra, 105
Lie group, 109
Line fraction deviation method, 282
Local amplitude, 42
Local frequency, 42
Local phase, 42, 44
Loewner order, 79
Low-rank tensor approximation, 139, 145
LS. See least squares approach
Luminance, 81

Magnetic resonance imaging, 286
diffusion tensor imaging, 283

Mathematical morphology, 75

Matrix, 76
field, 76
maximal, 79
minimal, 80
orthogonal, 80
symmetric, 76

Mean diffusivity, 147
Mean Intercept Length tensor, 275
Mean kurtosis, 148
Mechanical homogenization, 274
MEG, 326, 330, 335
Meyer’s loop, 115
Minkowski tensors, 283

curvature distribution tensor, 283
moment tensor hollow, 283
moment tensor solid, 283
moment tensor vertices, 283
moment tensor wireframe, 283
normal distribution tensor, 283

min-Normalization, 112
Mohr’ circle, 28
Monogenic signal, monogenic phase,

51
Monomial filters, 46
Monomial motion estimation, 66
Monomial phase estimation, 66
Monomial structure tensor, 53
Morphological convolution, 109
Morphological Green’s function, 111
Morphological Laplacian, 78
Morphological operation, 109
Morphological scale-space, 109
Moving frame of reference, 105
Multidimensional phase, 46
Multiple compartments, 250
Multi-shell acquisition, 254

Noise
Rician, 144

Nonlinear connection, 197

ODF. See orientation distribution function
Opening, 77
OpenWalnut, 334, 335
Optic radiation, 115
Order interval, 82
Orientation distribution function (ODF), 98,

181
Orientation score, 195
Osculating figuratrix, 202
Osculating indicatrix, 202
Osteoporosis, 271
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Partial volume, 250
Partial volume clustering, 262
Parzen Window, 318
Penumbra, 79
Phase Klein bottle, 58
Phase matrix representation, 38, 58
Phase product, 62
Polyakov action, 253
Polynomial, 165, 173, 176

homogeneous, 137, 138
maxima of, 152

Post-processing, 10
Power spectrum, 284
Probabilistic tractography, 115
Probability density function, 316
Projectivized tangent bundle, 195
Pulled-back (co)bundle, 195

Q-ball, 131, 146
q-space variable, 191
Quadrature filters, 43, 278
Quadric surface, 31
Quantitative ultrasound, 286

Ray-tracing algorithm, 210, 218
Ray-tracing tractography, 210
Regularization, 252
Regular representation, 104
Relativistic addition, 83
Representational considerations, 46
Representative volume element, 272
Resonance frequency analyzers, 286
Reynolds glyph, 30
Ricci scalar, 150
Riemann-Finsler geometry, 190
Riemann-Finsler metric tensor, 194–197
Riemannian framework, 165, 166, 172, 174

biological phantom data, 181
in vivo human data, 183
synthetic data, 180

Riemannian geometry, 210
Riemannian metric, 210
Riemann’s quadratic restriction, 195
Rod- and plate-like trabeculae assumption, 284
ROI, 330, 333

Sampling sphere orientation distribution, 280
Sasaki metric, 199
Saturation, 81
Second-order tensors, 272
Semi-direct product, 102

Semi-group property, 111
Shock filter, 78
Skyscrapers fractal analysis, 281
Slit tangent bundle, 195, 199
Snapping, 332
Solid-fluid interaction tensor, 274
Solid mechanics, 4
Source reconstruction, 329
Spatial autocorrelation, 282
Special relativity, 83
Spherical deconvolution, 132, 145
Spherical harmonics, 138, 277
Spin diffusion, 191
Star length distribution, 279
Star volume distribution, 279
Stejskal-Tanner formula, 191, 203
Stiffness-fabric relation, 285
Stiffness tensor, 273, 284
Strain tensor, 20, 273
Stress tensor, 20, 273
Structure tensor, 274
Structuring element, 77
Subgradient method, 80
Sub-Riemannian manifold, 108
Superquadrics, 27
Supremum, 76

Tangent bundle over the slit tangent bundle,
198

TBSS, 261
Tensor, 5, 230, 326

2nd order, algebra of, 166
4th order, algebra of, 168
4th order, symmetries of, 168
higher (4th) order, 164
higher-order, 130
kurtosis, 165
map, 3D 4th to 6D 2nd , 170
rank-1, 139
symmetric, 135
symmetric positive definite, 165, 166, 172
symmetric positive semi-definite, 173, 175,

176, 176
total symmetry (4th), 170, 173

Tensor analysis, 230
Tensor field, 3, 133
Tensorial product, 284
Tensor invariant, 17
Tensor product, 133
Tensor rank, 139
Tensor scale, 279
Tensor splats, 27
Tensor voting, 278
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Ternary quartic, 142, 165, 173, 174
biological phantom data, 181
Hilbert’s Theorem, 175, 176
in vivo human data, 183
synthetic data, 180

Texture tensor, 283
Timeline, 331
Tissue-FA. See FAt
Top-hat, 77

black, 77
self-dual, 77
white, 77

Topology/topological structure, 11
Tortuosity tensor, 275
Trabecular bone, 271, 286

anisotropy, 272
mechanical competence, 273
morphology, 275
orientation, 272
remodeling, 272
thickness, 286

Trace, 80
Tracking, 329
Tract based spatial statistics. See TBSS

Tractogram, 329
Tractography. See fiber tracking

Uncertain data, 12

Variance orientation transform, 281
Vertical cotangent bundle over the slit tangent

bundle, 198
Vertical covariant derivative, 203
Vertical covector, 198
Vertical tangent bundle over the slit tangent

bundle, 198
Vertical vector, 198
Visual computing, 10
Volume orientation tensor, 278
von Mises-Fisher kernel, 277
Voxel based morphometry, 230
Voxel classification, 193

Wave propagation, 274
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