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1 Bogoliubov Generating Functionals

Let � WD �Rd be the configuration space over Rd , d 2 N,

� WD ˚
� � R

d W j� \�j < 1 for every compact � � R
d
�
;

where j�j denotes the cardinality of a set. As usual we identify each � 2 � with
the non-negative Radon measure

P
x2� ıx on the Borel � -algebra B.Rd /, where ıx

is the Dirac measure with mass at x,
P

x2; ıx WD 0. This allows to endow � with
the vague topology, that is, the weakest topology on � with respect to which all
mappings

� 3 � 7�! hf; �i WD
Z

Rd

d�.x/ f .x/ D
X

x2�
f .x/

are continuous for all continuous functions f on R
d with compact support. In the

sequel we denote the corresponding Borel � -algebra on � by B.� /.

Definition 1. Let � be a probability measure on .�;B.� //. The Bogoliubov
generating functional (shortly GF) B� corresponding to � is a functional defined
at each B.Rd /-measurable function � by
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B�.�/ WD
Z

�

d�.�/
Y

x2�
.1C �.x//; (1)

provided the right-hand side exists for j� j, i.e., B�.j� j/ < 1.

Observe that for each � > �1 such that the right-hand side of (1) exists, one may
equivalently rewrite (1) as

B�.�/ WD
Z

�

d�.�/ ehln.1C�/;�i;

showing that B� is a modified Laplace transform.
From Definition 1, it is clear that the existence of B�.�/ for � 6D 01 depends on

the underlying probability measure �. However, it follows also from Definition 1
that if the GF B� corresponding to a probability measure � exists, then the domain
of B� depends on �. Conversely, the domain of B� reflects special properties over
the measure � [21]. For instance, if � has finite local exponential moments, i.e., for
all ˛ > 0 and all bounded Borel sets � � R

d ,

Z

�

d�.�/ e˛j�\�j < 1;

then B� is well-defined, for instance, on all bounded functions � with compact
support. The converse is also true and it follows from the fact that, for each ˛ > 0

and for each � described as before, the latter integral is equal to B�..e
˛ � 1/1�/,

where 1� is the indicator function of �. In this situation, to a such measure � one
may associate the so-called correlation measure ��.

In order to introduce the notion of correlation measure, for any n 2 N0 WD
N [ f0g let

� .n/ WD f� 2 � W j� j D ng; n 2 N; � .0/ WD f;g:

Clearly, each � .n/, n 2 N, can be identified with the symmetrization of the
set f.x1; : : : ; xn/ 2 .Rd /n W xi 6D xj if i 6D j g under the permutation group
over f1; : : : ; ng, which induces a natural (metrizable) topology on � .n/ and the
corresponding Borel � -algebra B.� .n//. Moreover, for the Lebesgue product
measure .dx/˝n fixed on .Rd /n, this identification yields a measure m.n/ on
.� .n/;B.� .n///. This leads to the space of finite configurations

�0 WD
1G

nD0

� .n/

1Of course, for any probability measure � on .�;B.� // one has B�.0/ D 1.
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endowed with the topology of disjoint union of topological spaces and the corre-
sponding Borel � -algebra B.�0/, and to the so-called Lebesgue-Poisson measure
on .�0;B.�0//,

	 WD 	dx WD
1X

nD0

1

nŠ
m.n/; m.0/.f;g/ WD 1: (2)

Given a probability measure � on .�;B.� // with finite local exponential
moments, the correlation measure �� corresponding to � is a measure on
.�0;B.�0// defined for all complex-valued exponentially bounded B.�0/-
measurable functions G with local support2 by

Z

�0

d��.
/G.
/ D
Z

�

d�.�/
X


��
j
j<1

G.
/: (3)

As a consequence, for every bounded B.Rd /-measurable function � with compact
support and G D e	.�/,

e	.�; 
/ WD
Y

x2

� .x/ ; 
 2 �0 n f;g; e	.�;;/ WD 1;

definition (3) leads to

B�.�/D
Z

�

d�.�/
Y

x2�
.1C �.x//D

Z

�

d�.�/
X


��
j
j<1

e	.�; 
/D
Z

�0

d��.
/ e	.�; 
/;

yielding a description of the GF B� in terms of either the correlation measure �� or

the so-called correlation function k� WD d��
d	

corresponding to �, if �� is absolutely
continuous with respect to the Lebesgue-Poisson measure 	:

B�.�/ D
Z

�0

d	.
/ e	.�; 
/k�.
/: (4)

Throughout this work we will consider GF defined on the whole L1 WD
L1.Rd ; dx/ space of complex-valued functions. Furthermore, we will assume that
the GF are entire. For a comprehensive presentation of the general theory of
holomorphic functionals on Banach spaces see e.g. [1,5]. We recall that a functional
A W L1 ! C is entire on L1 whenever A is locally bounded and for all �0; � 2 L1

2That is, G ��0n��� 0, �� WD f
 2 � W 
 � �g, for some bounded Borel set � � R
d and there

are C1; C2 > 0 such that jG.
/j � C1e
C2j
j for all 
 2 �0.



164 D.L. Finkelshtein and M.J. Oliveira

the mapping C 3 z 7! A.�0 C z�/ 2 C is entire. Thus, at each �0 2 L1, every entire
functional A on L1 has a representation in terms of its Taylor expansion,

A.�0 C z�/ D
1X

nD0

zn

nŠ
dnA.�0I �; : : : ; �/; z 2 C; � 2 L1:

Theorem 1. Let A be an entire functional on L1. Then each differential
dnA.�0I �/; n 2 N; �0 2 L1 is defined by a symmetric kernel

ınA.�0I �/ 2 L1.Rdn/ WD L1 �
.Rd /n; .dx/˝n

�

called the variational derivative of n-th order of A at the point �0. More precisely,

dnA.�0I �1; : : : ; �n/ WD @n

@z1 : : : @zn
A

 

�0 C
nX

iD1

zi �i

! ˇˇ̌
ˇ̌
z1D:::DznD0

DW
Z

.Rd /n
dx1 : : : dxn ı

nA.�0I x1; : : : ; xn/
nY

iD1

�i .xi /

for all �1; : : : ; �n 2 L1. Moreover, the operator norm of the bounded n-linear
functional dnA.�0I �/ is equal to kınA.�0I �/kL1.Rdn/ and for all r > 0 one has

kıA.�0I �/kL1.Rd / �
1

r
sup

k� 0kL1�r

jA.�0 C � 0/j (5)

and, for n � 2,

kınA.�0I �/kL1.Rdn/ � nŠ
�e
r

�n
sup

k� 0kL1�r

jA.�0 C � 0/j: (6)

Remark 1. 1. According to Theorem 1, the Taylor expansion of an entire functional
A at a point �0 2 L1 may be written in the form

A.�0 C �/ D
1X

nD0

1

nŠ

Z

.Rd /n
dx1 : : : dxn ı

nA.�0I x1; : : : ; xn/
nY

iD1

�.xi /

D
Z

�0

d	.
/ ınA.�0I 
/e	.�; 
/;

where 	 is the Lebesgue-Poisson measure defined in (2).
2. Concerning Theorem 1, we observe that the analogous result does not hold

neither for other Lp-spaces, nor Banach spaces of continuous functions, or
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Sobolev spaces. For a detailed explanation see the proof of Theorem 1 and
Remark 7 in [21].

The first part of Theorem 1 stated for GF and their variational derivatives at
�0 D 0 yields the next result. In particular, it shows that the assumption of entireness
on L1 is a natural environment, namely, to recover the notion of correlation function.

Proposition 1. Let B� be an entire GF on L1. Then the measure �� is absolutely
continuous with respect to the Lebesgue-Poisson measure 	 and the Radon-Nykodim

derivative k� D d��

d	
is given by

k�.
/ D ıj
jB�.0I 
/ for 	-a.a. 
 2 �0:

Remark 2. Proposition 1 shows that the correlation functions k.n/
� WD k� �� .n/ are

the Taylor coefficients of the GF B�. In other words, B� is the generating functional

for the correlation functions k
.n/
� . This was also the reason why N. N. Bogoliubov

[4] introduced these functionals. Furthermore, GF are also related to the general
infinite dimensional analysis on configuration spaces, cf., e.g. [19]. Namely, through
the unitary isomorphism S	 defined in [19] between the space L2.�0; 	/ of
complex-valued functions and the Bargmann-Segal space one finds B� D S	.k�/.

Concerning the second part of Theorem 1, namely, estimates (5) and (6), we note
that A being entire does not ensure that for every r > 0 the supremum appearing
on the right-hand side of (5), (6) is always finite. This will hold if, in addition, the
entire functional A is of bounded type, that is,

8 r > 0; sup
k�kL1�r

jA.�0 C �/j < 1; 8 �0 2 L1:

Hence, as a consequence of Proposition 1, it follows from (5) and (6) that the
correlation function k� of an entire GF of bounded type on L1 fulfills the so-called
generalized Ruelle bound, that is, for any 0 � " � 1 and any r > 0 there is some
constant C � 0 depending on r such that

k�.
/ � C .j
jŠ/1�"
�e
r

�j
j
; 	�a:a: 
 2 �0: (7)

In our case, " D 0. We observe that if (7) holds for " D 1 and for at least one r > 0,
then condition (7) is the classical Ruelle bound. In terms of GF, the latter means that

jB�.�/j � C exp
�e
r
k�kL1

�
, as it can be easily checked using representation (4)

and the following equality [20],

Z

�0

d	.
/ e	.f; 
/ D exp

�Z

Rd

dx f .x/

�
; f 2 L1:
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This special case motivates the definition of the family of Banach spaces E˛ , ˛ > 0,
of all entire functionals B on L1 such that

kBk˛ WD sup
�2L1

�
jB.�/j e� 1

˛ k�kL1
�
< 1; (8)

cf. [21, Proposition 23], which plays an essential role in the study of stochastic
dynamics of infinite particle systems (Sect. 2).

For more details and proofs and for further results concerning GF see [21] and
the references therein.

2 Stochastic Dynamic Equations

The stochastic evolution of an infinite particle system might be described by a
Markov process on � , which is determined heuristically by a Markov generator
L defined on a suitable space of functions on � . If such a Markov process exists,
then it provides a solution to the (backward) Kolmogorov equation

d

dt
Ft D LFt ; Ft jtD0 D F0: (9)

However, the construction of the Markov process seems to be often a difficult
question and at the moment it has been successfully accomplished only for very
restrictive classes of generators, see [16] and [24].

Besides this technical difficulty, in applications it turns out that one needs a
knowledge on certain characteristics of the stochastic evolution in terms of mean
values rather than pointwise, which do not follow neither from the construction
of the Markov process nor from the study of (9). These characteristics concern
e.g. observables, that is, functions defined on � , for which expected values are
given by

hF;�i D
Z

�

d�.�/ F.�/;

where � is a probability measure on � , that is, a state of the system. This leads to
the time evolution problem on states,

d

dt
hF;�t i D hLF;�t i; �t jtD0 D �0: (10)

Technically, to proceed further, first we shall exploit definition (3), namely,
the sum appearing therein, which concerns the so-called K-transform introduced
by A. Lenard [26]. That is a mapping which maps functions defined on �0 into
functions defined on the space � . More precisely, given a complex-valued bounded



A Survey on Bogoliubov Generating Functionals 167

B.�0/-measurable function G with bounded support3 (shortly G 2 Bbs.�0/), the
K-transform of G is a mapping KG W � ! C defined at each � 2 � by

.KG/.�/ WD
X


��
j
j<1

G.
/: (11)

It has been shown in [18] that the K-transform is a linear and invertible mapping.
Thus, definition (3) shows, in particular, that for any probability measure � on
.�;B.� // with finite local exponential moments, one has Bbs.�0/ � L1.�0; ��/.
Moreover, on the dense set Bbs.�0/ in L1.�0; ��/ the inequality kKGkL1.�/ �
kGkL1.��/ holds, which allows an extension of the K-transform to a bounded
operator K W L1.�0; ��/ ! L1.�; �/ in such a way that equality (3) still holds
for any G 2 L1.�0; ��/. For the extended operator the explicit form (11) still holds,
now �-a.e. This means, in particular,

.Ke	.f // .�/ D
Y

x2�
.1C f .x//; ��a:a: � 2 �;

for all B.Rd /-measurable functions f such that e	.f / 2 L1.�0; ��/, cf. e.g. [18].
In terms of the time evolution description (10) on the states �t of an infinite

particle system, these considerations imply that for F being of the type F D KG,
G 2 Bbs.�0/, (10) may be rewritten in terms of the correlation functions kt WD k�t

corresponding to the states �t , provided these functions exist (or, more generally, in
terms of correlation measures �t WD ��t ), yielding

d

dt
hhG; kt ii D hh OLG; kt ii; kt jtD0 D k�0 ; (12)

where OL WD K�1LK and hh�; �ii is the usual pairing

hhG; kii WD
Z

�0

d	.
/G.
/k.
/: (13)

Of course, a stronger version of (12) is

d

dt
kt D OL�kt ; kt jtD0 D k�0 ; (14)

for OL� being the dual operator of OL in the sense defined in (13).

3That is, G �
�0n

�FN
nD0 �

.n/
�

�� 0, � .n/
� WD f
 2 � W 
 � �g \ � .n/, for some N 2 N0 and for

some bounded Borel set � � R
d .
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Representation (4) combined with (12), (13) gives us a way to widen the
dynamical description towards the GF Bt WD B�t corresponding to �t [13, 21],
provided these functionals exist. Informally,

@

@t
Bt .�/ D

Z

�0

d	.
/ e	.�; 
/
@

@t
kt .
/ D

Z

�0

d	.
/ . OLe	.�//.
/kt .
/: (15)

In other words, given the operator QL defined at B.�/ WD R
�0
d	.
/ e	.�; 
/k.
/,

k W �0 ! Œ0;C1/, by

. QLB/.�/ WD
Z

�0

d	.
/ . OLe	.�//.
/k.
/; (16)

heuristically (15) means that Bt , t � 0, is a solution to the Cauchy problem

@

@t
Bt D QLBt ; Bt jtD0 D B�0: (17)

According to the considerations above, there is a close connection between
the Markov evolution (10) and the Cauchy problems (12), (14), and (17). More
precisely, given a solution �t , t � 0, to (10), if additionally the correlation function
k�t corresponding to each state �t exists, then kt WD k�t is a solution to (12).
Similarly, the informal sequence of equalities (15) shows that if the GF B�t exists for
each time t � 0, then Bt WD B�t solves (17). Conversely, given a solution kt to (12),
or to (14), or a solution Bt , t � 0, to (17), for k�0 and B�0 being, respectively, the
correlation function and the GF corresponding to the initial state �0 of the system,
an additional analysis is needed in order to check that each kt (resp., Bt ) is indeed
a correlation function (resp., a GF) corresponding to some measure �t . If so, then,
by construction, �t , t � 0, is a solution to (10) and kt D k�t (resp., Bt D B�t ).
For more details concerning the aforementioned analysis see e.g. [10] for the case
of correlation functions, and [21, 25] for the GF case.

Remark 3. Although correlation functions appear in this work as a side remark,
we note that the study of the properties of correlation functions of a dynamics is
a classical problem in mathematical physics. In order to analyze the existence of
solutions to (12), (14), and the properties of such solutions, some approaches have
been proposed. One of them is based on semigroup techniques, which for birth-and-
death dynamics has been accomplished in e.g. [7, 10, 12, 22, 23] and summarized
in a recent article [11]. Another approach is based on the so-called Ovsyannikov
technique and it has been successfully applied in the analysis of birth-and-death as
well as hopping particle systems (on a finite time interval), see e.g. [2, 3, 6].

In most concrete applications, to find a solution to (17) on a Banach space seems
to be often a difficult question. However, this problem may be simplified within the
framework of scales of Banach spaces. We recall that a scale of Banach spaces is
a one-parameter family of Banach spaces fBs W 0 < s � s0g such that Bs00 � Bs0 ,
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k � ks0 � k � ks00 for any pair s0, s00 such that 0 < s0 < s00 � s0, where k � ks denotes
the norm in Bs . As an example, it is clear from definition (8) that for each ˛0 > 0

the family fE˛ W 0 < ˛ � ˛0g is a scale of Banach spaces.
Within this framework, one has the following existence and uniqueness result

(see e.g. [27]). For concreteness, in subsections below we will analyze two examples
of applications.

Theorem 2. On a scale of Banach spaces fBs W 0 < s � s0g consider the initial
value problem

du.t/

dt
D Au.t/; u.0/ D u0 2 Bs0 (18)

where, for each s 2 .0; s0/ fixed and for each pair s0; s00 such that s � s0 < s00 � s0,
A W Bs00 ! Bs0 is a linear mapping so that there is an M > 0 such that for all
u 2 Bs00

kAuks0 � M

s00 � s0
kuks00 :

Here M is independent of s0; s00 and u, however it might depend continuously on
s; s0.

Then, for each s 2 .0; s0/, there is a constant ı > 0 (which depends on M )
such that there is a unique function u W Œ0; ı.s0 � s// ! Bs which is continuously
differentiable on .0; ı.s0 � s// in Bs , Au 2 Bs , and solves (18) in the time-interval
0 � t < ı.s0 � s/.

2.1 The Glauber Dynamics

The Glauber dynamics is an example of a birth-and-death model where, in this
special case, particles appear and disappear according to a death rate identically
equal to 1 and to a birth rate depending on the interaction between particles. More
precisely, let � W Rd ! R[fC1g be a pair potential, that is, a B.Rd /-measurable
function such that �.�x/ D �.x/ 2 R for all x 2 R

d n f0g, which we will assume
to be non-negative and integrable. Given a configuration � 2 � , the birth rate of a
new particle at a site x 2 R

d n � is given by exp.�E.x; �//, where E.x; �/ is a
relative energy of interaction between a particle located at x and the configuration
� defined by

E.x; �/ WD
X

y2�
�.x � y/ 2 Œ0;C1�: (19)
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Informally, in terms of Markov generators, this means that the behavior of such an
infinite particle system is described by

.LGF /.�/ WD
X

x2�
.F.� n fxg/ � F.�//C z

Z

Rd

dx e�E.x;�/ .F .� [ fxg/ � F.�// ;

(20)

where z > 0 is an activity parameter (for more details see e.g. [13, 23]). Thus,
according to Sect. 2, the operator QLG defined in (16) is given cf. [13] by

. QLGB/.�/ D �
Z

Rd

dx �.x/
�
ıB.� I x/ � zB

�
�e��.x��/ C e��.x��/ � 1

��
: (21)

The Glauber dynamics is an example where semigroups theory can be apply
to study the time evolution in terms of correlation functions, see e.g. [10, 12, 23].
However, within the context of GF, semigroup techniques seem do not work (see
e.g. [17]). This is partially due to the fact that given the natural class of Banach
spaces E˛ , the operator QLG maps elements of a Banach space E˛ , ˛ > 0, on elements
of larger Banach spaces E˛0 , 0 < ˛0 < ˛ [14]:

k QLGBk˛0 � ˛0

˛ � ˛0

�
1C z˛e

k�k
L1

˛ �1

�
kBk˛; B 2 E˛:

However, this estimate of norms and an application of Theorem 2 lead to the
following existence and uniqueness result.

Proposition 2 ([14, Theorem 3.1]). Given an ˛0 > 0, let B0 2 E˛0 . For each
˛ 2 .0; ˛0/ there is a T > 0 (which depends on ˛; ˛0) such that there is a unique

solution Bt , t 2 Œ0; T /, to the initial value problem
@Bt

@t
D QLGBt , (21), Bt jtD0 D B0

in the space E˛ .

Remark 4. 1. Concerning the initial conditions considered in Proposition 2,
observe that, in particular, B0 can be an entire GF B�0 on L1 such that, for

some constants ˛0; C > 0, jB�0.�/j � C exp.
k�kL1
˛0

/ for all � 2 L1. As we have
mentioned before, in such a situation an additional analysis is required in order
to guarantee that for each time t 2 Œ0; T / the solution Bt given by Proposition 2
is a GF. If so, then clearly each Bt is the GF corresponding to the state of the
particle system at the time t . For more details see [14, Remark 3.6].

2. If the initial condition B0 is an entire GF on L1 such that the corresponding
correlation function k0 (given by Proposition 1) fulfills the Ruelle bound k0.
/ �
zj
j, 
 2 �0, where z is the activity parameter appearing in definition (20), then
the local solution given by Proposition 2 might be extend to a global one, that is,
to a solution defined on the whole time interval Œ0;C1/. For more details and
the proof see [14, Corollary 3.7].
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2.2 The Kawasaki Dynamics

The Kawasaki dynamics is an example of a hopping particle model where, in this
case, particles randomly hop over the space R

d according to a rate depending on
the interaction between particles. More precisely, let a W Rd ! Œ0;C1/ be an even
and integrable function and let � W Rd ! Œ0;C1� be a pair potential, which we
will assume to be integrable. A particle located at a site x in a given configuration
� 2 � hops to a site y according to a rate given by a.x � y/ exp.�E.y; �//, where
E.y; �/ is a relative energy of interaction between the site y and the configuration �

defined similarly to (19). Informally, the behavior of such an infinite particle system
is described by

.LKF /.�/ D
X

x2�

Z

Rd

dy a.x � y/e�E.y;�/ .F .� n fxg [ fyg/ � F.�// ; (22)

meaning in terms of the operator QLK defined in (16) that

. QLKB/.�/

D
Z

Rd

dx

Z

Rd

dy a.x � y/e��.x�y/.�.y/ � �.x//ıB.�e��.y��/ C e��.y��/ � 1I x/;
(23)

cf. [13]. In this case the following estimate of norms holds

k QLKBk˛0 � 2e
k�k

L1

˛
˛0

˛ � ˛0 kakL1kBk˛; B 2 E˛; ˛
0 < ˛;

which, by an application of Theorem 2, yields the following statement.

Proposition 3 ([15, Theorem 3.1]). Given an ˛0 > 0, let B0 2 E˛0 . For each ˛ 2
.0; ˛0/ there is a T > 0 (which depends on ˛; ˛0) such that there is a unique solution
Bt , t 2 Œ0; T /, to the initial value problem @

@t
Bt D QLKBt , (23), Bt jtD0 D B0 in the

space E˛ .

3 Vlasov Scaling

We proceed to investigate the Vlasov-type scaling proposed in [8] for generic
continuous particle systems and accomplished in [9] and [2] for the Glauber and
the Kawasaki dynamics, respectively, now in terms of GF. As explained in these
references, we start with a rescaling of an initial correlation function k0, denoted,
respectively, by k

."/
G;0, k

."/
K;0, " > 0, which has a singularity with respect to " of

the type k
."/
G;0.
/; k

."/
K;0.
/ � "�j
jr0.
/, 
 2 �0, being r0 a function independent
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of ". The aim is to construct a scaling for the operator LG (resp., LK) defined in
(20) (resp., (22)), LG;" (resp., LK;"), " > 0, in such a way that the following two
conditions are fulfilled. The first one is that under the scaling L 7! L#;", # D G;K,
the solution k

."/
#;t , t � 0, to

@

@t
k
."/
#;t D OL�

#;"k
."/
#;t ; k

."/
#;t jtD0

D k
."/
#;0

preserves the order of the singularity with respect to ", that is, k."/
#;t .
/ � "�j
jr#;t .
/,


 2 �0. The second condition is that the dynamics r0 7! r#;t preserves the Lebesgue-
Poisson exponents, that is, if r0 is of the form r0 D e	.�0/, then each r#;t , t > 0, is of
the same type, i.e., r#;t D e	.�#;t /, where �#;t is a solution to a non-linear equation
(called a Vlasov-type equation). As shown in [8, Example 8], [9], in the case of the
Glauber dynamics this equation is given by

@

@t
�G;t .x/ D ��G;t .x/C ze�.�G;t��/.x/; x 2 R

d ; (24)

where 	 denotes the usual convolution of functions. Existence of classical solutions
0 � �G;t 2 L1 to (24) has been discussed in [6,9]. For the Kawasaki dynamics, the
corresponding Vlasov-type equation is given by

@

@t
�K;t .x/ D .�K;t 	 a/.x/e�.�K;t��/.x/ � �K;t .x/.a 	 e�.�K;t��//.x/; x 2 R

d ;

(25)

cf. [8, Example 12], [2]. In this case, existence of classical solutions 0 � �K;t 2 L1
to (25) has been discussed in [2].

Therefore, it is natural to consider the same scalings, but in terms of GF.

3.1 The Glauber Dynamics

The previous scheme was accomplished in [9] through the scale transformations
z 7! "�1z and � 7! "� of the operator LG , that is,

.LG;"F /.�/ WD
X

x2�
.F.� n fxg/�F.�//C z

"

Z

Rd

dx e�"E.x;�/ .F .� [ fxg/�F.�// :

To proceed towards GF, let us consider k."/
G;t defined as before and k

."/
G;t;ren.
/ WD

"j
jk."/
G;t .
/. In terms of GF, these yield
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B
."/
G;t .�/ WD

Z

�0

d	.
/ e	.�; 
/k
."/
G;t .
/;

and

B
."/
G;t;ren.�/WD

Z

�0

d	.
/ e	.�; 
/k
."/
G;t;ren.
/D

Z

�0

d	.
/ e	."�; 
/k
."/
G;t .
/DB

."/
G;t ."�/;

leading, as in (16) and (17), to the initial value problem

@

@t
B

."/
G;t;ren D QLG;";renB

."/
G;t;ren; B

."/
G;t;renjtD0

D B
."/
G;0;ren; (26)

where, for all � 2 L1,

. QLG;";renB/.�/ D �
Z

Rd

dx �.x/

�
ıB.�; x/ � zB

�
�e�"�.x��/ C e�"�.x��/ � 1

"

��
;

cf. [14]. Concerning this operator, it has been also shown in [14, Proposition 4.2]
that if B 2 E˛ for some ˛ > 0, then, for all � 2 L1, . QLG;";renB/.�/ converges as "
tends zero to

. QLG;V B/.�/ WD �
Z

Rd

dx �.x/ .ıB.� I x/ � zB .� � �.x � �/// :

Furthermore, fixed 0 < ˛ < ˛0, if B 2 E˛00 for some ˛00 2 .˛; ˛0�, then˚ QLG;";renB; QLG;V B
� � E˛0 for all ˛ � ˛0 < ˛00, and one has

k QL#Bk˛0 � ˛0

˛00 � ˛0

�
1C z˛0e

k�k
L1

˛ �1

�
kBk˛00 ;

where QL# D QLG;";ren or QL# D QLG;V . That is, the estimate of norms for QLG;";ren, " >

0, and the limiting mapping QLG;V are similar. Therefore, given any BG;0;V ; B
."/
G;0;ren 2

E˛0 , " > 0, it follows from Theorem 2 that for each ˛ 2 .0; ˛0/, there is a constant
ı > 0 such that there is a unique solution B

."/
G;t;ren W Œ0; ı.˛0 � ˛// ! E˛ , " > 0, to

each initial value problem (26) and a unique solution BG;t;V W Œ0; ı.˛0 � ˛// ! E˛
to the initial problem

@

@t
BG;t;V D QLG;V BG;t;V ; BG;t;V jtD0 D BG;0;V : (27)

In other words, independent of the initial value problem under consideration, the
solutions obtained are defined on the same time-interval and with values in the
same Banach space. Therefore, it is natural to analyze under which conditions the
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solutions to (26) converge to the solution to (27). This follows from the following
general result [14]:

Theorem 3. On a scale of Banach spaces fBs W 0 < s � s0g consider a family of
initial value problems

du".t/

dt
D A"u".t/; u".0/ D u" 2 Bs0 ; " � 0; (28)

where, for each s 2 .0; s0/ fixed and for each pair s0; s00 such that s � s0 < s00 � s0,
A" W Bs00 ! Bs0 is a linear mapping so that there is an M > 0 such that for all
u 2 Bs00

kA"uks0 � M

s00 � s0
kuks00 :

Here M is independent of "; s0; s00 and u, however it might depend continuously on
s; s0. Assume that there is a p 2 N and for each " > 0 there is an N" > 0 such that
for each pair s0; s00, s � s0 < s00 � s0, and all u 2 Bs00

kA"u � A0uks0 �
pX

kD1

N"

.s00 � s0/k
kuks00 :

In addition, assume that lim"!0 N" D 0 and lim"!0 ku".0/ � u0.0/ks0 D 0.
Then, for each s 2 .0; s0/, there is a constant ı > 0 (which depends on M ) such

that there is a unique solution u" W Œ0; ı.s0 � s// ! Bs , " � 0, to each initial value
problem (28) and for all t 2 Œ0; ı.s0 � s// we have

lim
"!0

ku".t/ � u0.t/ks D 0:

We observe that if 0 � � 2 L1 \ L1, then, given ˛0 > ˛ > 0, for all B 2 E˛00 ,
˛00 2 .˛; ˛0�, one finds [14, Proposition 4.4]

k QLG;";renB � QLG;V Bk˛0 � "zk�kL1kBk˛00e
k�k

L1

˛

�k�kL1˛0

˛00 � ˛0 C 4˛3
0

.˛00 � ˛0/2e

�

for all ˛0 such that ˛ � ˛0 < ˛00 and all " > 0. Thus, given the local
solutions B

."/
G;t;ren; BG;t;V , t 2 Œ0; ı.˛0 � ˛//, in E˛ to the initial value problems

(26) and (27), respectively, with B
."/
G;0;ren; BG;0;V 2 E˛0 , if lim"!0 kB."/

G;0;ren �
BG;0;V k˛0 D 0, then, by an application of Theorem 3, lim"!0 kB."/

G;t;ren �BG;t;V k˛ D
0, for each t 2 Œ0; ı.˛0 � ˛//. Moreover [14, Theorem 4.5], if BG;0;V .�/ D
exp

�R
Rd dx �0.x/�.x/

�
, � 2 L1, for some function 0 � �0 2 L1 such that

k�0kL1 � 1
˛0

, and if max f 1
˛0
; zg < 1

˛
then, for each t 2 Œ0; ı.˛0 � ˛//,
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BG;t;V .�/ D exp

�Z

Rd

dx �t .x/�.x/

�
; � 2 L1;

where 0 � �t 2 L1 is a classical solution to Eq. (24) such that, for each t 2
Œ0; ı.˛0 � ˛//, k�tkL1 � 1

˛
. For more results and proofs see [14].

3.2 The Kawasaki Dynamics

In this example one shall consider the scale transformation � 7! "� of the operator
LK cf. [2], that is,

.LK;"F /.�/ WD
X

x2�

Z

Rd

dy a.x � y/e�"E.y;�/ .F .� n fxg [ fyg/ � F.�// :

To proceed towards GF we consider k
."/
K;t , k

."/
K;t;ren and B

."/
K;t defined as before,

which lead to the Cauchy problem

@

@t
B

."/
K;t;ren D QLK;";renB

."/
K;t;ren; B

."/
K;t;renjtD0

D B
."/
K;0;ren; (29)

with

. QLK;";renB/.�/ D
Z

Rd

dx

Z

Rd

dy a.x � y/e�"�.x�y/.�.y/ � �.x//


 ıB

�
�e�"�.y��/ C e�"�.y��/ � 1

"
I x
�
;

for all " > 0 and all � 2 L1. Similar arguments show [15] that given a B 2 E˛ for
some ˛ > 0, then, for all � 2 L1, . QLK;";renB/.�/ converges as " tends to zero to

. QLK;V B/.�/ WD
Z

Rd

dx
Z

Rd

dy a.x � y/.�.y/ � �.x//ıB.� � �.y � �/I x/:

In addition, given 0 < ˛ < ˛0, if B 2 E˛00 for some ˛00 2 .˛; ˛0�, then˚ QLK;";renB; QLK;V B
� � E˛0 for all ˛ � ˛0 < ˛00, and the following inequality of

norms holds

k QL#Bk˛0 � 2kakL1

˛0

.˛00 � ˛0/
e

k�k
L1

˛ kBk˛00 ;

where QL# D QLK;";ren or QL# D QLK;V . Now, let us assume that 0 � � 2 L1 \L1 and
let ˛0 > ˛ > 0 be given. Then, for all B 2 E˛00 , ˛00 2 .˛; ˛0�, the following estimate
holds [15, Proposition 4.3]
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k QLK;";renB � QLK;V Bk˛0

� 2"kakL1k�kL1

e˛0

˛
kBk˛00e

k�k
L1

˛

��
2ek�kL1 C ˛0

e

� 1

˛00 � ˛0 C
8˛2

0

.˛00 � ˛0/2

�

for all ˛0 such that ˛ � ˛0 < ˛00 and all " > 0, meaning that one may apply
Theorem 3.

Proposition 4 ([15, Theorem 4.4]). Given an 0 < ˛ < ˛0, let B."/
K;t;ren; BK;t;V ,

t 2 Œ0; T /, be the local solutions in E˛ to the initial value problems (29),

@

@t
BK;t;V D QLK;V BK;t;V ; BK;t;V jtD0 D BK;0;V ;

with B
."/
K;0;ren; BK;0;V 2 E˛0 . If 0 � � 2 L1\L1 and lim"!0 kB."/

K;0;ren�BK;0;V k˛0 D
0, then, for each t 2 Œ0; T /, lim"!0 kB."/

K;t;ren � BK;t;V k˛ D 0. Moreover, if
BK;0;V .�/ D exp

�R
Rd dx �0.x/�.x/

�
, � 2 L1, for some function 0 � �0 2 L1 such

that k�0kL1 � 1
˛0

, then for each t 2 Œ0; T /, BK;t;V .�/ D exp
�R

Rd dx �t .x/�.x/
�
,

� 2 L1, where 0 � �t 2 L1 is a classical solution to Eq. (25).
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