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1 Introduction

Transport properties of one-dimensional Hamiltonian systems consisting of coupled
oscillators on a lattice have been the subject of many theoretical and numerical
studies, see the review papers [7, 8, 12]. Despite many efforts, our knowledge of
the fundamental mechanisms necessary and/or sufficient to have a normal diffusion
remains very limited.

Consider a 1-dimensional chain of oscillators indexed by x 2 Z, whose formal
Hamiltonian is given by

H D
X

x2Z

�
p2
x

2
C V.rx/

�
;

where rx D qxC1�qx is the “deformation” of the lattice, qx being the displacement
of the atom x from its equilibrium position and px its momentum. The interaction
potential V is a smooth positive function growing at infinity fast enough. The energy
ex of atom x 2 Z is defined by

ex D p2
x

2
C V.rx/:

Our goal is to understand the macroscopic energy diffusion properties for the
corresponding Hamiltonian dynamics
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drx

dt
D pxC1 � px;

dpx

dt
D V 0.rx/ � V 0.rx�1/; x 2 Z:

Under suitable conditions on V , the infinite dynamics is well defined for a large
class of initial conditions.

Apart from the total energy
P

x ex , observe that the total momentum
P

x px

and the total deformation
P

x rx of the lattice are formally conserved. This is a
consequence of the following microscopic continuity equations:

dex

dt
CrŒj e

x�1;x� D 0; j e
x;xC1 D �pxC1V

0.rx/; (1)

dpx

dt
CrŒ�V 0.rx�1/� D 0; (2)

drx

dt
CrŒ�px� D 0: (3)

The function j e
x;xC1 is the current of energy going from x to x C 1. The main

open problem [11, 17] concerning the foundation of statistical mechanics based on
classical mechanics is precisely to show that the three quantities above are the only
quantities which are conserved by the dynamics. In some sense, it means that the
dynamics, evolving on the manifold defined by fixing the total energy, the total
momentum and the total deformation, is ergodic. Of course, the last sentence does
not make sense since we are in infinite volume and

P
x ex;

P
x px and

P
x rx

are typically infinite. Nevertheless, an alternative meaningful definition will be
proposed and discussed in Sect. 2.

Numerical simulations provide a strong evidence of the fact that one dimensional
chains of anharmonic oscillators conserving momentum are1 superdiffusive. It shall
be noticed that there is no explanation of this, apart from heuristic considerations,
and that some models which do not conserve momentum can also display anomalous
diffusion of energy (see [10]).

An interesting area of current research consists in studying this problem for
hybrid models where a stochastic perturbation is superposed to the deterministic
evolution. Even if the problem is considerably simplified, several open challenging
questions can be addressed for these systems. The first benefit of the introduction
of stochasticity in the models is to guarantee the ergodicity that we are not able to
show for purely deterministic systems. The added noise must be carefully chosen
in order not to destroy the conservation laws we are interested in. In particular, the
noise shall conserve energy. But we will consider a noise conserving also some of
the other quantities conserved by the underlying Hamiltonian dynamics, e.g. the
momentum, the deformation or any linear combination of them.

1See however the coupled-rotor model which displays normal behavior (see [12], Sect. 6.4). This
is probably due to the fact that the position space is compact.
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The paper is organized as follows. In Sect. 2 we discuss the problem of the
ergodicity of the infinite dynamics mentioned above and the possible stochastic
perturbations we can add to the deterministic dynamics to obtain ergodic dynamics.
In Sect. 3 we review some results obtained in the context of harmonic chains
perturbed by a conservative noise and we discuss the case of anharmonic chains
in the last section.

2 Ergodicity

Let us first generalize the models introduced above [6]. Let U and V be smooth
positive potentials growing at infinity fast enough and let H WD HU;V be the
Hamiltonian

HU;V D
X

x2Z
ŒU.px/C V.rx/� :

The corresponding Hamiltonian dynamics satisfy

drx

dt
D U 0.pxC1/ � U 0.px/;

dpx

dt
D V 0.rx/ � V 0.rx�1/; x 2 Z: (4)

The energy of particle x is defined by ex D U.px/CV.rx/. The three formal quan-
tities

P
x ex ,

P
x rx and

P
x px are conserved by the dynamics. The fundamental

question we address in this section is: are they the only ones? In finite volume, i.e.
replacing the lattice Z by a finite box �, this would correspond to the usual notion
of ergodicity for Hamiltonian flows with a finite number of degrees of freedom. But
since we consider the dynamics in infinite volume the notion of conserved quantity
has to be properly defined. The way we follow to attack the problem is to detect the
existence of a non-trivial conserved quantity through the existence of a non-trivial
invariant state for the infinite dynamics.

Let ˝ D .R � R/Z be the phase space of the dynamics and let us denote a
typical configuration by ! D .r; p/ 2 ˝. For simplicity we assume that for any
.ˇ; �; �0/ 2 .0;C1/ � R � R, the partition function

Z.ˇ; �; �0/ D
Z

R�R
e�ˇŒU.a/CV.b/���b��0ada db

is finite. Let �ˇ;�;�0 be the product Gibbs measures on ˝ defined by

d�ˇ;�;�0.!/ D
Y

x2Z

1

Z.ˇ; �; �0/
exp

��ˇŒU.px/C V.rx/� � �rx � �0px

�
drxdpx:

We assume that (4) is well defined for a subset ˝ˇ;�;�0 of full measure with respect
to �ˇ;�;�0 , that the latter is invariant for (4), and that it is possible to define a strongly
continuous semigroup in L

2.�ˇ;�;�0/ with formal generator



132 C. Bernardin

AU;V D
X

x2Z

�
.U 0.pxC1/ � U 0.px//@rx C .V 0.rx/ � V 0.rx�1//@px

�
:

All that can be proved under suitable assumptions on U and V [5, 9].
In order to explain what is meant by ergodicity of the infinite volume dynamics

we need to introduce some notation. For any topological space X equipped with its
Borel � -algebra we denote by P.X/ the convex set of probability measures on X .
The relative entropy H.�j�/ of � 2 P.X/ with respect to � 2 P.X/ is defined as

H.�j�/ D sup
�

�Z
� d� � log

�Z
e� d�

�	
; (5)

where the supremum is carried over all bounded measurable functions � on X .
Let 	x; x 2 Z, be the shift by x: .	x!/z D !xCz. For any function g on ˝,

	xg is the function such that .	xg/.!/ D g.	x!/. For any probability measure
� 2 P.˝/, 	x� 2 P.˝/ is the probability measure such that, for any bounded
function g W ˝ ! R, it holds

R
˝
g d.	x�/ D R

˝
	xg d�. If 	x� D � for any x

then � is said to be translation invariant.
If � is a finite subset of Z the marginal of � 2 P.˝/ on R

� is denoted by
�j�. The relative entropy of � 2 P.˝/ with respect to � 2 P.˝/ in the box �

is defined by H.�j� j�j�/ and is denoted by H�.�j�/. We say that a translation
invariant probability measure � 2 P.˝/ has finite entropy density (with respect
to �) if there exists a finite positive constant C such that for any finite � � Z,
H�.�j�/ � C j�j. In fact, if this condition is satisfied, then the limit

H.�j�/ D lim
j�j!1

H�.�j�/
j�j

exists and is finite (see [9]). It is called the entropy density of � with respect to �.
We are now in position to define ergodicity.

Definition 1. We say that the infinite volume dynamics with infinitesimal generator
AU;V is ergodic if the following claim is true: If � 2 P.˝/ is a probability
measure invariant by translation, invariant by the dynamics generated by AU;V

and with finite entropy density with respect to �1;0;0, then � is a mixture of the
�ˇ;�;�0 ; ˇ > 0; �; �0 2 R.

In the harmonic case (U.z/ D V.z/ D z2=2) and for the Toda lattice (U.z/ D
z2=2, V.z/ D e�z C z � 1), the infinite system is completely integrable and an
infinite number of conserved quantities can be explicitly written. It follows that they
are not ergodic in the sense above. Nevertheless we expect that for a very large class
of potentials, the Hamiltonian dynamics are ergodic and that these two cases are
exceptional.

In order that the infinite dynamics enjoy good ergodic properties, we superpose
to the deterministic evolution a stochastic noise.

Given a sequence u D .uy/y2Z 2 R
Z and a site x 2 Z, we denote by ux (resp.

ux;xC1) the sequence defined by .ux/y D uy if y ¤ x and .ux/x D �ux (resp.
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.ux;xC1/y D uy if y ¤ x; x C 1, .ux;xC1/x D uxC1 and .ux;xC1/xC1 D ux). We
consider the following noises (jump processes) whose generators are defined by
their actions on functions f W ˝ ! R according to:

1. .S
p

flipf /.r; p/ D P
x Œf .r; p

x/ � f .r; p/�.
2. .S r

flipf /.r; p/ D P
x Œf .r

x; p/ � f .r; p/�.
3. .S

p
exf /.r; p/ D P

x

�
f .r; px;xC1/ � f .r; p/

�
.

4. .S r
exf /.r; p/ D P

x

�
f .rx;xC1; p/ � f .r; p/

�
.

If U is even then the noise S
p

flip conserves the energy, the deformation but not
the momentum; if U is odd the noise has little interest for us since the energy
conservation is destroyed. Similarly, if V is even the noise S r

flip conserves the energy
and the momentum but not the deformation. The noises S p

ex and S r
ex conserve the

energy, the deformation and the momentum.
Let now 
 > 0 and denote by L the generator of the infinite Hamiltonian

dynamics generated by AU;V perturbed by one of the previous noise S with
intensity 
 , i.e. L D AU;V C 
S .

Theorem 1 ([5, 6, 9]). The dynamics generated by L is ergodic in the sense that
if � 2 P.˝/ is a probability measure invariant by translation, invariant by the
dynamics generated by L and with finite entropy density with respect to �1;0;0, then
it holds:

1. If U even and S D S
p

flip then � is a mixture of the �ˇ;�;0;
2. If V is even and S D S r

flip then � is a mixture of the �ˇ;0;�0 .
3. If S D S

p
ex or S D S r

ex then � is a mixture of the �ˇ;�;�0 .

The main motivation to establish such a theorem is that by using Yau’s relative
entropy method [19] in the spirit of Olla-Varadhan-Yau [14], it is possible to
show that if the infinite volume dynamics is ergodic then the propagation of local
equilibrium holds in the hyperbolic time scale, before the appearance of the shocks.
As a consequence, the dynamics has a set of compressible Euler equations as
hydrodynamic limits [5, 6]. Observe that this is true also for the deterministic
dynamics so that the rigorous derivation of the Euler equations from the first
principles of the mechanics in the smooth regime is “reduced” to prove that the
dynamics generated by AU;V is ergodic.

3 Harmonic Chains

3.1 Role of the Conservation of Momentum and Deformation

We consider here the specific (harmonic) case V.z/ D U.z/ D z2=2. The dynamics
is then linear and can be solved analytically using Fourier transform. Let us
introduce a new macroscopic variable � 2 R

Z defined from .p; r/ 2 ˝ by setting
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�2x D rx; �2xC1 D pxC1; x 2 Z: (6)

Then, the Hamiltonian dynamics can be rewritten in the form

d�x

dt
D V 0.�xC1/ � V 0.�x�1/; x 2 Z: (7)

We introduce the kth mode O�.k; �/ for k 2 T D R=Z, the one-dimensional torus
of length 1:

O�.t; k/ D
X

x2Z
�x.t/ e

2i�kx:

Then, the equations of motion are equivalent in the sense of distributions to the
following decoupled system of first order differential equations:

d O�
dt

.t; k/ D i!.k/ O�.t; k/;

where the dispersion relation !.k/ reads

!.k/ D �2 sin.2�k/;

and the group velocity vg is

vg.k/ D !0.k/ D �4� cos.2�k/:

By inverting the Fourier transform, the solution can be written as

�x.t/ D
Z

T

O�.t; k/ e�2i�kx dk:

If the initial configuration �.0/ is in `2 the well defined energy of the kth mode

Ek.t/ D 1

4�
j O�.t; k/j2 D Ek.0/

is conserved by the time evolution, and the total energy current QJ e D P
x2Z j e

x;xC1

takes the simple form

QJ e D
Z

T

vg.k/Ek dk:

We interpret the waves O�.k; t/ as fictitious particles (phonons in solid state
physics). In the absence of nonlinearities, they travel the chain without scattering.
The diffusion of energy is then said to be ballistic. If the potential is non-quadratic,
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it may be expected that the nonlinearities produce a scattering responsible for the
diffusion of the energy. Nevertheless, the conservation of the deformation and of the
momentum implies that

P
x.rx C px/ is conserved

O�.t; 0/ D O�.0; 0/: (8)

The identity (8) is valid even if U ¤ V and U; V are not quadratic. It means that the
0th mode is not scattered at all and crosses the chain ballistically. In fact, the modes
with small wave number k do not experience a strong scattering and they therefore
contribute to the observed anomalous diffusion of energy.

It is usually explained that momentum conservation plays a major role in the
anomalous diffusion of energy but it is clear that the deformation conservation plays
exactly the same role as momentum and that it is the conservation of their sum which
is the real ingredient producing anomalous diffusion of energy (see Theorems 2
and 4).

3.2 Green-Kubo Formula

The signature of an anomalous diffusion of energy can be seen at the level of
the Green-Kubo formula. When transport of energy is normal, meaning that the
macroscopic equations such as the Fourier’s law or heat equation hold, the transport
coefficient appearing in these equations can be expressed by the famous Green-
Kubo formula. In order to define the latter we need to introduce some notations.
Since the discussion about the Green-Kubo formula is not restricted to the harmonic
case we go back to a generic anharmonic model in the rest of the Subsection.

Recall that the probability measures �ˇ;�;�0 form a family of invariant probability
measures for the infinite dynamics generated by AU;V . The following thermody-
namic relations (which are valid since we assumed that the partition function Z is
well defined on .0;C1/�R�R) relate the chemical potentials ˇ; �; �0 to the mean
energy e, the mean deformation u, the mean momentum � under �ˇ;�;�0 :

e.ˇ; �; �0/ D �ˇ;�;�0.U.px/C V.rx// D �@ˇ



logZ.ˇ; �; �0/
�
; (9)

u.ˇ; �; �0/ D �ˇ;�;�0.rx/ D �@�



logZ.ˇ; �; �0/
�
; (10)

�.ˇ; �; �0/ D �ˇ;�;�0.px/ D �@�0



logZ.ˇ; �; �0/
�
: (11)

These relations can be inverted by a Legendre transform to express ˇ, � and �0 as a
function of e, u and � . Define the thermodynamic entropy S W .0;C1/�R�R !
Œ0;C1� as
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S.e; u; �/ D inf
�;�02R2;ˇ>0

n
ˇe C �u C �0� C logZ.ˇ; �; �0/

o
:

Let U be the convex domain of .0;C1/ �R � R where S.e; u; �/ < C1 and VU
its interior. Then, for any .e; u; �/ WD .e.ˇ; �; �0/; u.ˇ; �; �0/; �.ˇ; �; �0// 2 VU ,
the parameters ˇ; �; �0 can be obtained as

ˇ D .@eS/.e; u; �/; � D .@uS/.e; u; �/; �0 D .@�S/.e; u; �/ (12)

These thermodynamic relations allow us to parameterize the Gibbs states by the
average values of the conserved quantities .e; u; �/ rather than by the chemical
potentials .ˇ; �; �0/. Thus, we denote by �e;u;� the Gibbs measure �ˇ;�;�0 where
.e; u; �/ are related to .ˇ; �; �0/ by (12). Let J e WD J e.e; u; �/ D �e;u;� .j

e
x;xC1/

be the average of the energy current j e
x;xC1 D �U 0.px/V

0.rx/ and define the

normalized energy current Oj e
x;xC1 by

Oj e
x;xC1 D j e

x;xC1 � J e � .@eJ
e/.ex � e/ � .@uJ

e/.rx � u/ � .@�J
e/.px � �/:

The normalized energy current is the part of the centered energy current which is
orthogonal in L

2.�e;u;� / to the space spanned by the conserved quantities.
Up to multiplicative thermodynamic parameters (see [15] for details) that we

neglect to simplify the notations, the Green-Kubo formula2 is nothing but


.e; u; �/ WD
Z 1

0

X

x2Z
E�e;u;�

h Oj e
x;xC1.!.t//

Oj e
0;1.!.0//

i
dt

where E�e;u;� denotes the expectation corresponding to the law of the infinite volume
dynamics .!.t//t�0 generated by AU;V with initial condition !.0/ distributed
according to the equilibrium Gibbs measure �e;u;� . The definition of 
.e; u; �/ is
formal but the way we adopt to give it a mathematically well posed definition is to
introduce a small parameter z > 0 and define 
.e; u; �/ as


.e; u; �/ D lim sup
z!0

� Oj e
0;1 ; .z �AU;V /

�1 Oj e
0;1 �e;u;� (13)

where the inner-product � �; � �e;u;� is defined for local square integrable functions
f; g W ˝ ! R by

2The transport coefficient is in fact a matrix whose size is the number of conserved quantities.
Since we are interested in the energy diffusion, we only consider the entry corresponding to the
energy-energy flux.
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� f ; g �e;u;� D
X

x2Z

��Z
f 	xg d�e;u;�

�
�
�Z

fd�e;u;�

��Z
gd�e;u;�

��
:

Since .z � AU;V /
�1 Oj e

0;1 is not a local function, the term on the RHS of (13) has to
be interpreted in the Hilbert space obtained by the completion of the space of local
bounded functions with respect to the inner product � �; � �e;u;� .

The superdiffusion (resp. normal diffusion) of energy corresponds to an infinite
(resp. finite) value for 
.e; u; �/. In order to study the superdiffusion, it is of interest
to estimate the time decay of the autocorrelation of the normalized current

C.t/ WD Ce;u;� .t/ D
X

x2Z
E�e;u;�

h Oj e
x;xC1.!.t//

Oj e
0;1.!.0//

i
:

It is in general easier to estimate the behavior of the Laplace transform L.z/ DR1
0

e�ztC.t/dt as z ! 0. Roughly, if L.z/ 	 z�ı for some ı 
 0 then C.t/ 	 t ı�1

as t ! C1. Observe also that

L.z/ D� Oj e
0;1 ; .z �AU;V /

�1 Oj0;1 �e;u;� :

3.3 Harmonic Chain Perturbed by a Conservative Stochastic
Noise

We consider now the particular case U.z/ D V.z/ D z2=2 and study the Green-
Kubo formula for the perturbed dynamics generated by L D AU;V C 
S where
S is one of the noises introduced in Sect. 2. Since, depending of the form of the
noise, the momentum conservation law (resp. deformation conservation law) can
be suppressed, the corresponding Green-Kubo formula shall be modified by setting
� D 0 and @�J

e D 0 (resp. u D 0 and @uJ
e D 0).

We have the following theorem which shows that if momentum conservation law
or deformation conservation law is destroyed by the noise then a normal behavior
occurs.

Theorem 2 ([4]). Let U and V be quadratic potentials.

1. Consider the system generated by L D AU;V C
S
p

flip, 
 > 0. Then the following
limit

lim
z!0

� Oj e
0;1 ; .z �L /�1 Oj e

0;1 �e;u;0

exists, is finite and strictly positive and can be explicitly computed.
2. Consider the system generated by L D AU;V C
S r

flip, 
 > 0. Then the following
limit
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lim
z!0

� Oj e
0;1 ; .z �L /�1 Oj e

0;1 �e;0;�

exists, is finite and strictly positive and can be explicitly computed.

It shall be noticed that the second statement is a direct consequence of the
first one since the process of the second item is equal to the first one by the
transformation

rx ! px; px ! rx�1:

However, the interest of the second statement is to show that even if momentum is
conserved, a normal diffusion of energy occurs. This is because the deformation is
no longer conserved.

The following theorem shows that if the noise added conserves momentum and
deformation then the situation is very different since an anomalous diffusion of
energy is observed.

Theorem 3 ([1, 2]). Let U and V be quadratic potentials.

1. Consider the system generated by L D AU;V C
S
p

ex , 
 > 0. Then the following
limit

lim
z!0

z1=2 � Oj e
0;1 ; .z �L /�1 Oj e

0;1 �e;u;�

exists, is finite and strictly positive and can be explicitly computed.
2. Consider the system generated by L D AU;V C
S r

ex, 
 > 0. Then the following
limit

lim
z!0

z1=2 � Oj e
0;1 ; .z �L /�1 Oj e

0;1 �e;u;�

exists, is finite and strictly positive and can be explicitly computed.

In particular, in each of the previous case the Green-Kubo formula yields an infinite
conductivity.

4 Anharmonic Chains

We consider now the anharmonic case. For deterministic chains generated by AU;V

we expect usually a superdiffusive behavior of the energy. If a noise S is superposed
to the dynamics, we expect that transport is normal for S D S

p
flip and S D S r

flip

and superdiffusive if S D S
p

ex or S D S r
ex.

The following theorem generalizes Theorem 2 to the anharmonic case showing
that a noise destroying momentum conservation law or deformation conservation
law produces normal transport. This shows that, also in the anharmonic case,
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momentum conservation alone is not responsible of anomalous diffusion of energy
but that deformation conservation law plays a similar role.

Theorem 4 ([4]). Let U and V be smooth potentials such that there exists a
constant c > 0 such that

c � U 00 � c�1; c � V 00 � c�1:

1. Assume U even and consider the system generated by L D AU;V C 
S
p

flip,

 > 0. Then the following limit

lim
z!0

� Oj e
0;1 ; .z �L /�1 Oj e

0;1 �e;u;0

exists and is finite.
2. Assume V even and consider the system generated by L D AU;V C 
S r

flip,

 > 0. Then the following limit

lim
z!0

� Oj e
0;1 ; .z �L /�1 Oj e

0;1 �e;0;�

exists and is finite.

Proof. The second statement is a direct consequence of the first one by the
symmetry argument evoked for Theorem 2. The upper bounds on U 00 and V 00 are
here to assure the existence of the infinite volume dynamics.

For simplicity assume that u D 0 and ˇ WD ˇ.e; u; 0/ D 1. The first statement has
been proved in [4] in the particular case U.z/ D z2=2. The generalization to a non
quadratic smooth even potential U is straightforward. In [4], since U.z/ D z2=2,
we used Hermite polynomials which are orthogonal w.r.t. the Gaussian measure
d�.z/ D .2�/�1=2 expf�z2=2gd z. In the present case, the only difference is that we
have to replace the Hermite basis by any orthogonal polynomial basis fPngn�0 with
respect to the probability measure N �1 exp.�U.z//d z (with N a normalization
constant) which satisfies Pn odd if n odd and even otherwise. Then the proof is
exactly the same.

It would be now of interest to show that if we perturb the dynamics generated
by AU;V by S

p
ex or by S r

ex then anomalous diffusion of energy occurs.3 This is an
open question and as far as we know the only result going in this direction has been
obtained in [3].

The model considered in [3] is the dynamics generated by AU;V with U D V

taking the particular form V.z/ D e�z C z � 1, perturbed by a noise S which
conserves energy and

P
x2Z.rx C px/. More exactly, let us rewrite the Hamiltonian

dynamics (4) by using the variable � WD .�x/x2Z 2 R
Z defined by (6). Then we get

3However, if U or V is bounded, like for the rotors model, we expect that diffusion is normal.
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the equations of motion given by (7). With these new variables, the total energy is
2
P

x V .�x/, the total deformation is
P

x �2x and the total momentum is
P

x �2xC1.
The noise S superposed to the dynamics acts on local functions f W R

Z ! R

according to

.S f /.�/ D
X

x2Z

�
f .�x;xC1/ � f .�/

�
:

Observe that the noise conserves the energy, destroys the momentum and the
deformation conservation laws but conserves

P
x �x D P

x.px C rx/, which as
explained above is the quantity (that we call the “volume” to follow the terminology
used in [3]) responsible of the anomalous diffusion of energy. Since we have now
only two conserved quantities (the energy and the volume), the Gibbs states of the
perturbed dynamics are given by f�ˇ;�;�gˇ>0;� or equivalently by f�e;�;� I e > 0; �g.
The normalized energy current is given by

Oj e
x;xC1.�/ D �2V 0.�x/V 0.�xC1/C 2�2 C 2@e.�

2/ .2V .�x/� e/C 2@�.�
2/ .�x ��/

with � WD �.e; �/ D R
V 0.�x/d�e;�;� .

Theorem 5 ([3]). Let .e; �/ 2 .0;C1/ � R such that �e;�;� is well defined.
Consider the dynamics with generator L D Aexp C 
S , 
 > 0, where

Aexp D
X

x

.V 0.�xC1/ � V 0.�x�1//@�x ; (14)

and V.z/ D e�z C z � 1. Then there exists a constant c > 0 such that for any z > 0

cz�1=4 � � Oj e
0;1; .z �L /�1 Oj e

0;1 �e;�;�� c�1z�1=2:

It follows that the Green-Kubo formula of the energy transport coefficient yields an
infinite value.

We expect that the system above belongs to the KPZ class so that � Oj e
0;1; .z �

L /�1 Oj e
0;1 �e;�;� should diverge like z�1=3. In the present state of the art no robust

technique is available to show such result apart from the non-rigorous (but powerful)
mode-coupling theory [13, 16, 18]. A second open problem is to generalize the
previous theorem to other interaction potentials V . Numerical simulations have been
reported in [6].
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