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Preface

This volume presents the proceedings of the international conference “Particle
Systems and Partial Differential Equations I,” which took place at the Centre of
Mathematics of the University of Minho, Braga, Portugal, from December 5–7,
2012.

The purpose of the conference was to bring together researchers from different
areas of mathematics, namely, probability, partial differential equations, and kinetics
theory. All of the participants had the opportunity to present their recently obtained
results. The goal of the meeting was twofold:

1. To present to a varied public the subject of interacting particle systems, its
motivation from the viewpoint of physics, and its relation with partial differential
equations or kinetics theory

2. To stimulate discussions and possibly new collaborations among researchers with
different backgrounds

The book contains some lecture notes written by François Golse on the derivation
of hydrodynamic equations (compressible and incompressible Euler and Navier-
Stokes) from the Boltzmann equation and several short papers written by some
of the participants in the conference. Among the topics covered in these papers
are hydrodynamic limits, fluctuations, phase transitions, motions of shocks and
antishocks in exclusion processes, large number asymptotics for systems with self-
consistent coupling, quasivariational inequalities, unique continuation properties for
PDEs.

This volume will be valuable to probabilists, analysts, and also to mathematicians
in general who are interested in statistical physics, stochastic processes, partial
differential equations, and kinetics theory. We hope it would also prove useful to
physicists.

The editors would like to take this opportunity to express their thanks to all the
authors of this volume for their contributions. We would also like to thank FCT
for support through the project PTDC/MAT/109844/2009, to CMAT for support
by “FEDER” through the “Programa Operacional Factores de Competitividade
COMPETE” and by FCT through the project PEst-C/MAT/UI0013/2011. We

v



vi Preface

acknowledge the support of the French Ministry of Education through the grant
ANR-10-BLAN 0108 (SHEPI). We are grateful to Égide and FCT for the research
project FCT/1560/25/1/2012/S. We also thank all the referees for their painstaking
work, which has contributed much to the excellence of this volume.

We really hope you enjoy reading the book!

Nice, France Cédric Bernardin
Braga, Portugal Patricia Gonçalves
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Part I
Mini-course



Fluid Dynamic Limits of the Kinetic Theory
of Gases

François Golse

1 Introduction

The purpose of these lecture notes is to introduce the reader to a series of recent
mathematical results on the fluid dynamic limits of the Boltzmann equation.

The idea of looking for rigorous derivations of the partial differential equations
of fluid mechanics from the kinetic theory of gases goes back to D. Hilbert. In his
6th problem presented in his plenary address at the 1900 International Congress of
Mathematicians in Paris [60], he gave this as an example of “axiomatization” of
physics. In Hilbert’s own words

[: : :] Boltzmann’s work on the principles of mechanics suggests the problem of developing
mathematically the limiting processes [: : :] which lead from the atomistic view to the laws
of motion of continua.

Hilbert himself studied this problem; his contributions include an important
theorem (Theorem 16 below) on the linearization at uniform equilibrium states of
the Boltzmann collision integral, together with a systematic asymptotic expansion
method still widely used more than 100 years after his article [59] appeared (see
Sect. 2.2.1).

Of course, after Hilbert’s 1900 address [60], physics evolved in such a way
that, while the existence of atoms was no longer questioned as in the days of
L. Boltzmann and J.C. Maxwell, the classical kinetic theory of gases could no longer
be considered as a good example of an “axiom of physics”.

In fact, the Boltzmann equation of the kinetic theory of gases can be rigorously
derived as an asymptotic limit of Newton’s second law of motion written for each
molecule in a gas [65]. Certainly Newton’s laws of motion can be regarded as an

F. Golse (�)
Ecole Polytechnique, Centre de Mathématiques Laurent Schwartz (CMLS), 91128 Palaiseau
Cedex, France
e-mail: golse@math.polytechnique.fr

C. Bernardin and P. Gonçalves (eds.), From Particle Systems to Partial Differential
Equations, Springer Proceedings in Mathematics & Statistics 75,
DOI 10.1007/978-3-642-54271-8__1, © Springer-Verlag Berlin Heidelberg 2014
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4 F. Golse

axiom of classical mechanics. However, the idea that the Boltzmann equation could
be viewed as a consequence of Newton’s laws of motion appeared for the first time
in a remarkable paper by H. Grad [54], almost half a century after Hilbert formulated
his problems.

But while Hilbert’s original question lost some of its interest from the point
of view of theoretical physics, it has gained a lot of importance with the various
applications of kinetic modeling in modern technology (such as rarefied gas
dynamics in the context of space flight, plasma physics, neutron transport in fissile
material, semiconductor physics . . . ). Readers interested in applications of rarefied
gas dynamics will find a lot of information in [94].

These lectures are focused on fluid dynamic limits of the kinetic theory of gases
that can be formulated in terms of global solutions, and for any initial data within
a finite distance to some uniform equilibrium state, measured in terms of relative
entropy.

The first lecture describes how the most important partial differential equations
of fluid dynamic (such as the Euler, Stokes or Navier-Stokes equations) can be
derived as scaling limits of the Boltzmann equation. While this first lecture will
review the basic mathematical properties of the Boltzmann equation, it leaves aside
all the technicalities involved in either the proof of existence of global solutions of
the Boltzmann equation, or in the proof of the fluid dynamic limits. This first lecture
is concluded with an overview of some of the main mathematical tools and methods
used in the proof of these limits.

Lecture 2 gives a rather detailed account of the proof of the incompressible Euler
limit of (a model of) the Boltzmann equation, following [85]. Lecture 3 provides
a much less detailed account of the derivation of the incompressible Navier-Stokes
equation from the Boltzmann equation. This last lecture follows [50] rather closely.
Since the Navier-Stokes limit involves a much heavier technical apparatus than
the Euler limit, the presentation of the proof in Lecture 3 will be deliberately
impressionistic. However, these lecture notes will give precise references to the
main results in [50], and can therefore be used as a reader’s guide for this last
paper. Lectures 2 and 3 make a connection between three different notions of weak
solutions of either the Boltzmann, or the Euler, or the Navier-Stokes equations:
the Leray solutions of the Navier-Stokes equation, the DiPerna-Lions renormalized
solutions of the Boltzmann equation, and the more recent notion of “dissipative
solutions” of the Euler equation proposed by P.-L. Lions.

There are several other introductions to the material contained in these notes,
including C. Villani’s report at the Bourbaki seminar [97], which is less focused
on the Euler and Navier-Stokes limits, and gives the main ideas used in the proofs
of these limits with less many details as in the present notes. The lecture notes
by C.D. Levermore and the author [46] leave aside the material presented in
Lecture 2 (the incompressible Euler limit), and give a more detailed account of
the material presented in Lecture 1. The various sets of lecture notes or monographs
by L. Saint-Raymond and the author [39, 49, 88] are much more detailed and give
a more comprehensive picture of the Boltzmann equation and its various fluid
dynamic limits.
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2 Lecture 1: Formal Derivations

This first lecture is a slightly expanded version of the author’s Harold Grad Lecture
[42], with an emphasis on mathematical tools and methods used in the theory of the
Boltzmann equation and of its fluid dynamic limits.

For the sake of simplicity, the exposition is limited to the case of a (monatomic)
hard sphere gas. More general collision processes, involving radial, binary inter-
molecular potentials satisfying Grad’s angular cutoff assumption [56] can also be
considered. The interested reader is referred to the original articles for a more
complete account of these results.

2.1 The Boltzmann Equation

2.1.1 Formal Structure

In the kinetic theory of gases (proposed by J.C. Maxwell and L. Boltzmann),
the state at time t of a monatomic gas is defined by its distribution function
F � F.t; x; v/ � 0, which is the density (with respect to the Lebesgue measure
dx dv) of gas molecules with velocity v 2 R3 to be found at the position x 2 R3

at time t . The evolution of the distribution function is governed by the Boltzmann
equation.

If the effect of external forces (such as gravity) is negligible, the Boltzmann
equation for the distribution function F takes the form

@tF C v � rxF D C .F / ;

where the right-hand side is known as “the collision integral”.
Assuming that all gas molecules are identical and that collisions between gas

molecules are elastic, hard sphere binary collisions, the collision integral is defined
on functions of the velocity variable v that are rapidly decaying at infinity by the
formula

C .f /.v/ WD d2

2

“
R3�S2

.f .v0/f .v0�/ � f .v/f .v�//j.v � v�/ � !jdv�d! ;

where d=2 is the molecular radius, and where

�
v0 � v0.v; v�; !/ WD v � .v � v�/ � !! ;
v0� � v0�.v; v�; !/ WD v�C .v � v�/ � !! : (1)

(See Fig. 1 for the geometric interpretation of the unit vector !.) The notation d!
in the collision integral designates the uniform measure on the unit sphere S2.



6 F. Golse
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Fig. 1 The velocities
v; v�; v0; v0� in the center of
mass reference frame, and the
geometrical meaning of the
unit vector !. The relative
velocities v � v� and v0 � v0

�

are exchanged by the
reflection with respect to the
plane orthogonal to !

This collision integral is extended to distribution functions (depending also on
the time and position variables t and x) by the formula

C .F /.t; x; v/ WD C .F.t; x; �//.v/ :

The physical meaning of this definition is that, except for the molecular radius
appearing in front of the collision integral C .F /, gas molecules are considered as
point particles in kinetic theory, so that collisions are purely local and instantaneous.
Besides, the collision integral is quadratic in the distribution function, because the
Boltzmann equation is valid in a scaling regime where collisions other than binary
can be neglected.

With the definition above of v0 � v0.v; v�; !/ and v0� � v0�.v; v�; !/, for each
v; v� 2 R3 and ! 2 S2, one has the following conservation laws, whose physical
interpretation is obvious (since all the gas molecules are identical and therefore have
the same mass):

v0 C v0� D v C v� ; conservation of momentum,

jv0j2 C jv0�j2 D jvj2 C jv�j2 ; conservation of energy.

Definition 1. A collision invariant is a function � W R3 ! R satisfying

�.v0.v; v�; !//C �.v0�.v; v�; !// D �.v/C �.v�/ ; for all v; v� 2 R3; ! 2 S2 :

Obviously �.v/ � 1, �.v/ � vj for j D 1; 2; 3 and �.v/ D jvj2 are collision
invariants (because elastic hard sphere collisions preserve the number of particles,
together with the total momentum and energy of each colliding particle pair).
A remarkable feature of the Boltzmann equation is that the converse is true (under
some regularity assumption on �).
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Theorem 1. Let � 2 C.R3/; then � is a collision invariant if and only if there exist
a; c 2 R and b 2 R3 such that

�.v/ D aC b � v C cjvj2 :

The proof of this result is rather involved; it is an extension of the well known
proof that the only function  2 C.R/ such that

 .x C y/ D  .x/C  .y/ for all x; y 2 R ; and  .1/ D 1

is the identity, i.e.

 .x/ D x for each x 2 R3 :

See for instance [28], Chap. II.6, especially pp. 74–77.

Theorem 2. For each measurable f � f .v/ rapidly decaying as jvj ! 1 and
each collision invariant � 2 C.R3/ with at most polynomial growth as jvj ! 1,
one has

Z
R3

C .f /�.v/dv D 0 :

Proof. Denoting f D f .v/, f 0 D f .v0/, f� D f .v�/ and f 0� D f .v0�/, one has

Z
R3

C .f /�dv D d2

2

•
R3�R3�S2

�.f 0f 0� � ff�/j.v � v�/ � !jdvdv�d!

D d2

2

•
R3�R3�S2

1
2
.� C ��/.f 0f 0� � ff�/j.v � v�/ � !jdvdv�d! ;

since the collision integrand is symmetric in v; v�.
Since .v � v�/ � ! D �.v0 � v0�/ � ! and .v; v�/ 7! .v0; v0�/.v; v�; !/ is a linear

isometry of R6 for each ! 2 S2 (by the conservation of energy), the Lebesgue
measure is invariant under the change of variables .v; v�/ 7! .v0; v0�/.v; v�; !/,
which is an involution. Therefore

•
R3�R3�S2

1
2
.� C ��/.f 0f 0� � ff�/j.v � v�/ � !jdvdv�d!

D
•

R3�R3�S2

1
2
.�0 C �0�/.ff� � f 0f 0�/j.v � v�/ � !jdvdv�d! ;

which implies the following important formula.
Formula of collision observables
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For each � 2 C.R3/ with at most polynomial growth as jvj ! 1, and each
f 2 C.R3/ rapidly decaying as jvjto1,

Z
R3

C .f /�dv D d2

2

•
R3�R3�S2

1
4
.�C����0��0�/.f 0f 0��ff�/j.v�v�/�!jdv dv�d! :

The conclusion of Theorem 2 follows from the definition of collision invariants.

Specializing the identity in the theorem above to �.v/ � 1; vk for k D 1; 2; 3 or
�.v/ � jvj2, for each f � f .v/ rapidly decaying as jvj ! 1, one has

Z
R3

C .f /dv D
Z

R3
C .f /vkdv D

Z
R3

C .f /jvj2dv D 0 ; k D 1; 2; 3 :

Thus, solutions F of the Boltzmann equation that are rapidly decaying together
with their first order derivatives in t and x as jvj ! 1 satisfy the local
conservation laws

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

@t

Z
R3

Fdv C divx

Z
R3

vFdv D 0 ; (mass)

@t

Z
R3

vFdv C divx

Z
R3

v ˝ vFdv D 0 ; (momentum)

@t

Z
R3

1
2
jvj2Fdv C divx

Z
R3

v 1
2
jvj2Fdv D 0 : (energy)

The next most important property of the Boltzmann equation is Boltzmann’s
H Theorem. This is a rigorous mathematical result bearing on solutions of the
Boltzmann equation, which corresponds to the second principle of thermodynamics.
The second principle of thermodynamics states that the entropy of an isolated
system can only increase until the system reaches an equilibrium state. However
the second principle of thermodynamics does not provide any general formula for
the entropy production. In the context of the kinetic theory of gases, Boltzmann’s
H Theorem gives an explicit formula for the entropy production in terms of the
distribution function.

Theorem 3 (Boltzmann’s H Theorem). If f � f .v/ is a measurable function on
R3 such that 0 <f DO.jvj�m/ for all m> 0 and lnf DO.jvjn/ for some n> 0 as
jvj ! 1, then

Z
R3

C .f / ln fdv � 0 :

Moreover
Z

R3
C .f / ln fdv D 0, C .f / D 0, f is a Maxwellian,
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i.e. there exist �; � > 0 and u 2 R3 s.t.

f .v/ D M.�;u;�/.v/ WD �

.2��/3=2
exp

�
�jv � uj2

2�

�
:

Proof. Applying the formula of collision observables with � D lnf shows that

Z
R3

C .f / ln fdvD d2

2

•
R3�R3�S2

1
4
.f 0f 0��ff�/ ln

�
ff�
f 0f 0�

�
j.v�v�/�!jdv dv�d! :

Since z 7! ln z is increasing on R�C

.f 0f 0� � ff�/ ln

�
ff�
f 0f 0�

�
D .f 0f 0� � ff�/.ln.ff�/ � ln.f 0f 0�// � 0 ;

so that
Z

R3
C .f / ln fdv � 0 :

Now for the equality case:

Z
R3

C .f / ln fdv D 0, f 0f 0� D ff� , lnf is a collision invariant

, C .f / D 0 :

If lnf is a collision invariant and f ! 0 as jvj ! 1, then

lnf .v/ D aC b � v C cjvj2 with c < 0 ;

so that f .v/ D M.�;u;�/.v/ with

� D � 1
2c
; u D � b

2c
; and � D

�
�
jcj
�3=2

eaCjbj2=4c :

Thus
Z

R3
C .f / ln fdv D 0, f is a Maxwellian.

In particular, positive solutions F of the Boltzmann equation that are rapidly
decaying together with their first order derivatives in t and x as jvj ! 1, and such
that lnF has at most polynomial growth in jvj satisfy the local entropy inequality

@t

Z
R3
F lnFdv C divx

Z
R3

vF lnFdv D
Z

R3
C .F / lnFdv � 0 :
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2.1.2 Global Existence Theory for the Boltzmann Equation

All the hydrodynamic limits that we consider below bear on the Boltzmann equation
posed in the whole Euclidean space R3. Specifically, we are concerned with
solutions of the Boltzmann equation which converge to some uniform Maxwellian
equilibrium as jxj ! 1. Without loss of generality, by Galilean invariance of the
Boltzmann equation and with an appropriate choice of units of time and length, one
can assume that this Maxwellian equilibrium is M.1;0;1/.

For simplicity, we shall henceforth use the notation

M WD M.1;0;1/ :

There are various ways of imposing the condition on the solution of the
Boltzmann equation as jxj ! 1. In the sequel, we retain the weakest possible
notion of convergence to equilibrium at infinity. Perhaps the best reason for this
choice is that this notion of “convergence to equilibrium at infinity” is conveniently
expressed in terms of Boltzmann’s H Theorem.

Specifically, we use the notion of relative entropy (of the distribution function F
with respect to the Maxwellian equilibrium M ):

H.F jM/ WD
“

R3�R3

�
F ln

�
F

M

�
� F CM

�
dx dv :

Notice that the integrand is a nonnegative measurable function defined a.e. on
R3 � R3, so that H.F jM/ is a well defined element of Œ0;1� for each nonnegative
measurable function F defined a.e. on R3 � R3.

We are interested in the Cauchy problem

8̂
<̂
ˆ̂:

@tF C v � rxF D C .F / ; .t; x; v/ 2 R�C � R3 � R3 ;

F .t; x; v/!M as jxj ! C1 ;

F
ˇ̌
tD0 D F in :

The convergence of the distribution function F to the Maxwellian equilibrium M

as jxj ! 1 is replaced with the condition

H.F jM/.t/ < C1

for all t � 0. Because of Boltzmann’s H theorem and the local conservation laws
of mass momentum and energy, rapidly decaying solutions F of the Boltzmann
equation satisfy

H.F jM/.t/ � H.F jM/.0/ :
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In other words, our substitute for the convergence of the distribution function to the
uniform Maxwellian equilibrium M as jxj ! 1 is stable under the time evolution
of the Boltzmann equation.

R. DiPerna and P.-L. Lions [34, 70] made the following observation: for each
r > 0, one has

“
jxjCjvj�r

C .F /p
1C F

dv dx�C
“

jxj�r
.�C .F /lnFC.1Cjvj2/F /dx dv :

This is important for the following reason: the Boltzmann collision integral C .F /
acts as a nonlocal quadratic operator on the v variable in F , roughly equivalent to a
convolution product, and as a pointwise product in t and x. Now, the relative entropy
bound H.F jM/.t/ obviously control a nonlocal product such as F ?v F , where ?v

denotes the convolution in the v variable. But it cannot control a pointwise product
in the x variable, such as

F.t; x; v/
Z

R3
F .t; x;w/dw :

However, the observation of R. DiPerna and P.-L. Lions implies that C .F /=
p
1C F

is well defined as a L1loc function, while C .F / is only a measurable function, and in
general not an element of any Lebesgue space. That C .F /=

p
1C F defines a L1loc

function is of course fundamental in order to formulate the Boltzmann equation in
the sense of distributions.

More precisely, the observation above suggests considering the following (very
weak) notion of solution of the Boltzmann equation.

Definition 2 (Renormalized solutions of the Boltzmann equation). A renorma
lized solution relative to M of the Boltzmann equation is a nonnegative function
F 2 C.RC; L1loc.R

3 � R3// satisfying H.F.t/jM/ < C1 and

M.@t C v � rx/� .F=M/ D � 0.F=M/C .F /

in the sense of distributions on R�C � R3 � R3, for each � 2 C1.RC/ s.t.

� 0.Z/ � Cp
1CZ

:

The main advantage of this notion of solution is the following global existence
theorem, which holds for any initial distribution function with finite relative entropy
with respect to the Maxwellian equilibrium M . The following theorem summarizes
several results by R. DiPerna-P.-L. Lions [34], P.-L. Lions [70] and P.-L. Lions-N.
Masmoudi [73].
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Theorem 4 (R. DiPerna-P.-L. Lions-N. Masmoudi). For each measurable initial
data F in � 0 a.e. such thatH.F injM/ < C1, there exists a renormalized solution
relative to M of the Boltzmann equation with initial data F in. It satisfies

8̂
<̂
ˆ̂:
@t

Z
R3

Fdv C divx

Z
R3

vFdv D 0 ;

@t

Z
R3

vFdv C divx

Z
R3

v ˝ vFdv C divx m D 0 ;

wherem D mT � 0 is a matrix-valued Radon measure on RC�R3, and the entropy
inequality
DiPerna-Lions entropy inequality

H.F.t/jM/C
Z

R3
tracem.t/ �

Z t

0

“
R3�R3

C .F / lnF ds dx dv � H.F injM/ ;

for all t � 0.

Notice that, if F is a classical solution of the Boltzmann equation that is rapidly
decaying as jvj ! 1 while lnF has at most polynomial growth as jvj ! 1, the
Boltzmann H Theorem and the local conservation laws of mass, momentum and
energy imply that

@t

Z
R3
.F ln.F=M/ � F CM/dv C divx

Z
R3
.F ln.F=M/ � F CM/dv

D
Z

R3
C .F / ln Fdv � 0 :

Hence, assuming for instance that F=M ! 1 as jxj ! 1, and integrating with
respect to the x variable, one finds that

H.F.t/jM/ �
Z t

0

“
R3�R3

C .F / lnF ds dx dv D H.F injM/ ;

for all t � 0. In other words, the DiPerna-Lions entropy inequality is a weak form
of the Boltzmann H Theorem valid for the class of renormalized solutions of the
Boltzmann equations. Whether renormalized solutions of the Boltzmann equation
satisfy the equality in the DiPerna-Lions inequality remains an open problem at the
time of this writing.

Another shortcoming of the DiPerna-Lions theory is the uniqueness theory.
DiPerna-Lions solutions of the Boltzmann equation are not known to be uniquely
determined by their initial data. However, there is a weaker uniqueness property that
is satisfied by (a variant of) these solutions: assume that the Boltzmann equation



Fluid Dynamic Limits of the Kinetic Theory of Gases 13

has a classical solution defined on some time interval Œ0; T � with T > 0. Then all
DiPerna-Lions solutions of the Boltzmann equation with the same initial data as that
classical solution must coincide with it on Œ0; T � (see [71], Sect. V).

With this notion of solution of the Boltzmann equation, we shall establish the var-
ious hydrodynamic limits of the Boltzmann equation where the distribution function
is in a weakly nonlinear regime about some uniform Maxwellian equilibrium.

2.2 Hydrodynamic Limits of the Boltzmann Equation

2.2.1 The Compressible Euler Limit

We shall study solutions of the Boltzmann equation that are slowly varying in both
the time and space variables.

In other words, we want to study solutions F of the Boltzmann equation of the
form

F.t; x; v/ D F�.�t; �x; v/ ;

assuming

@OtF� ; r OxF� D O.1/ ; with .Ot ; Ox/ D .�t; �x/ :

Since F is a solution of the Boltzmann equation, one has

@OtF� C v � r OxF� D 1

�
C .F�/ :

Hilbert [59] proposed to seek F� as a formal power series in � with smooth
coefficients:

F�.Ot ; Ox; v/ D
X
n�0

�nFn.Ot ; Ox; v/ :

In the literature on kinetic theory, this expansion bears the name of Hilbert’s
expansion. It is the most systematic method used to investigate all fluid dynamic
limits of the Boltzmann equation (see [93, 94]). Other asymptotic expansions are
also used in the context of kinetic models, such as the Chapman-Enskog equation
(see below), and variants thereof proposed in [18].

The leading order term in Hilbert’s expansion is of the form

F0.Ot ; Ox; v/ D M.�;u;�/.Ot ; Ox/.v/ ;
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where .�; u; �/ is a solution of the compressible Euler system

8<
:

@Ot �C div Ox.�u/ D 0 ;

�.@Otu C u � r Oxu/Cr Ox.��/ D 0 ;

@Ot � C u � r Ox� C 2
3
� div Ox u D 0 :

(2)

The Hilbert series is a formal object—in particular, its radius of convergence in �
may be, and often is 0. A mathematical proof of the compressible Euler limit based
on a variant of Hilbert’s expansion truncated at some finite order in � was proposed
by R. Caflisch [24].

While fairly direct and natural, Caflisch’s approach to the compressible Euler
limit meets with the following difficulties:

(a) The truncated Hilbert expansion may be negative for some Ot ; Ox; v;
(b) The k-th term Fk in Hilbert’s expansion is of order O.jrk

OxF0j/;
(c) Generic solutions of Euler’s equations lose regularity in finite time (see [91]).

Statement (a) follows from a close inspection of Caflisch’s asymptotic solution at
time t D 0; statement (b) implies that the Hilbert expansion method can be used in
the case of smooth solutions of the compressible Euler system, while statements
(b–c) suggest that the Hilbert expansion breaks down in finite time for generic
smooth solutions of the compressible Euler system. (This is obviously related to
the onset of shock waves in compressible, inviscid fluid flows.)

There is another approach to the compressible Euler limit. T. Nishida studied the
Cauchy problem for the scaled Boltzmann equation in [81]:

8<
:
@OtF� C v � r OxF� D 1

�
C .F�/ ;

F�.0; Ox; Ov/ D M.�in;uin;� in/. Ox/.v/ ;
(3)

for analytic .�in; uin; � in/. Nishida’s key idea was to apply the Nirenberg-
Ovsyannikov [79, 80] abstract variant of the Cauchy-Kovalevska theorem.
He proved that the Cauchy problem (3) has a unique solution on a time interval
Œ0; T �� with T � > 0 independent of �, and that

F�.Ot ; Ox; v/! M.�;u;�/.Ot ; Ox/.v/

as � ! 0, where .�; u; �/ is the solution of the compressible Euler system with
initial data .�in; uin; � in/.

It is interesting to compare the Hilbert expansion method and the Caflisch proof
with Nishida’s.

Caflisch’s method leads to a family F� of solutions of the scaled Boltzmann
equation that converges to a Maxwellian whose parameters satisfy the compressible
Euler system on the same time interval as that on which the Euler solution remains
smooth.
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However, these solutions fail to be everywhere nonnegative; besides the choice
of the initial condition F�

ˇ̌
OtD0 is seriously constrained to “well prepared data”. This

difficulty was later alleviated by M. Lachowicz [64].
In Nishida’s method, we can choose F�

ˇ̌
OtD0 to be any local Maxwellian with

analytic parameters, and F� remains everywhere nonnegative.
However the uniform existence time T � can be a priori smaller than the time

during which the Euler solution remains smooth. Besides, analytic regularity is
physically unsatisfying.

The works of Caflisch and Nishida obviously raise the question of what happens
to the family of solutions of the Boltzmann equation in the vanishing � limit after
the onset of shock waves in the solution of the Euler system. For instance the
Cauchy problem for the Euler equations of gas dynamics is known to have global
solutions defined for all initial data with small enough total variation, in space
dimension 1. These solutions are constructed by Glimm’s method [38,75]. Whether
these solutions are somehow related to the Boltzmann equation after the onset of
shock waves is therefore a very natural question.

Of course, weak solutions of a hyperbolic system of conservation laws such as
the Euler equations of gas dynamics may fail to be uniquely determined by their
initial data. For instance, weak solutions can include unphysical shock waves. In the
case of gas dynamics, the notion of entropy provides precisely the criterion used
to eliminate the possibility of unphysical shock waves. The following elementary
observation shows that, under rather weak assumptions, weak solutions of the Euler
equations of gas dynamics originating from solutions of the Boltzmann equation
satisfy the entropy criterion.

Theorem 5 (C. Bardos-F. Golse [5]). Let �in � 0, � in > 0 (resp. uin) be
measurable functions (resp. a measurable vector field) defined a.e. on R3 such that

Z
R3
.1C juinj/.juinj2 C � in C j ln �inj C j ln � inj/dOx <1 :

For each � > 0, let F� be a solution of the Cauchy problem (3) satisfying the local
conservation laws of mass momentum and energy. Assume that

F� ! F a.e. on RC � R3 � R3 ;

and that

Z
R3

0
@ 1

v
jvj2

1
AF�.Ot ; Ox; v/dv !

Z
R3

0
@ 1

v
jvj2

1
AF.Ot ; Ox; v/dv

in the sense of distributions on R3, uniformly on Œ0; T � for each T > 0, while

Z
R3

�
v ˝ v
vjvj2

�
F�dv !

Z
R3

�
v ˝ v
vjvj2

�
Fdv
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and

Z
R3

�
1

v

�
F� lnF�dv !

Z
R3

�
1

v

�
F ln Fdv

in the sense of distributions on R�C � R3. Then

• The limit F is of the form

F D M.�;u;�/

where .�; u; �/ is a weak solution of the system of Euler equations of gas
dynamics (2) (with perfect gas equation of state), with initial data

.�; u; �/
ˇ̌
tD0 D .�in; uin; � in/ ;

• The solution .�; u; �/ of the system of Euler equations so obtained satisfies the
entropy condition

@Ot
�
� ln

� �

�3=2

��
C div Ox

�
�u ln

� �

�3=2

��
� 0 :

The key observation in this result is that

0 � @Ot
Z

R3
F� ln F�dv C div Ox

Z
R3

vF� lnF�dv

! @Ot
Z

R3
F ln Fdv C div Ox

Z
R3

vF ln Fdv

in the sense of distributions on R�C � R3 as � ! 0, while

Z
R3

M.�;u;�/ lnM.�;u;�/dv D � ln

�
�

.2��/3=2

�
� 3

2
� ;

Z
R3

vM.�;u;�/ lnM.�;u;�/dv D �u ln

�
�

.2��/3=2

�
� 3

2
�u :

(In other words, Boltzmann’s H function specialized to Maxwellian distribution
functions coincides with the entropy density for a perfect monatomic gas).

Of course, the assumption that F� ! F a.e. is an extremely strong one, and
verifying it remains a major open problem. However, the purpose of this theorem
is not the convergence itself to some solution of the Euler equations, but the fact
that all solutions of the Euler equations obtained in this way satisfy the entropy
condition.
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In addition to the system of Euler’s equations of gas dynamics, several other fluid
dynamic equations can be derived from the Boltzmann equation. We shall review the
most important such equations and their derivations from kinetic theory in the next
sections.

2.2.2 From Boltzmann to Compressible Navier-Stokes

First we seek to derive viscous corrections to the Euler system from the Boltzmann
equation. In order to do so, we use the Chapman-Enskog expansion—a variant of
Hilbert’s. (See [55] and especially Chap. V.3 in [28].) This asymptotic expansion in
powers of � takes the form

F�.Ot ; Ox; v/ '
NX
nD0

�n˚nŒPN� .Ot ; Ox/�.v/ DW FN
� .Ot ; Ox; v/ ;

where ˚nŒP.Ot ; Ox/� is a local functional of P evaluated at .Ot ; Ox/ with values in the set
of functions of v 2 R3. The coefficients ˚nŒP� are determined by the condition

Z
R3

0
@ 1

v
jvj2

1
A˚nŒP�.v/dv D

(
P if n D 0 ;

0 if n > 0 ;
(4)

and by the fact that the asymptotic expansion FN
� above satisfies

@OtF N
� C v � r OxF N

� D 1

�
C .F N

� /CO.�N / : (5)

At variance with Hilbert’s expansion, the coefficients of the successive powers of
� in the Chapman-Enskog expansion depend on � (except for the 0th order term,
which is the local Maxwellian with parameters governed by the compressible Euler
system, and therefore coincides with the 0th order term in the Hilbert expansion).
As explained above, these coefficients are completely determined by the moments of
order � 2 in the velocity variable (4) of the truncated Chapman-Enskog expansion
FN
� , and by the fact that FN

� is an asymptotic solution of the Boltzmann equation (5)
to within order O.�N / (in the formal sense).

In particular, for N D 2, one finds that

F�.Ot ; Ox; v/ ' M.�� ;u� ;��/ � �M.1;u� ;��/˛.jV�j; ��/A.V�/ W rxu�

� 2�M.1;u� ;��/ˇ.jV�j; ��/B.V�/ � rx
p
��

CO.�2/ ;
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where

V� WD v � u�p
��

; A.z/ D z˝2 � 1
3
jzj2 ; B.z/ D 1

2
.jzj2 � 5/z :

The functions ˛.�; r/ and ˇ.�; r/ are obtained by solving two integral equations
involving the Boltzmann collision integral linearized about the Maxwellian state
M.1;u;�/. We refer to Appendix 2 for more details on this matter. Thus

˚0ŒP�.v/ DM.�;u;�/ with P D .�; u; �/T ;

˚1ŒP�.v/ D�M.1;u;�/˛.j v�up
�
j; �/A. v�up

�
/ W rxu

� 2M.1;u;�/ˇ.j v�up
�
j; �/B. v�up

�
/ � rx

p
� :

The compressible Navier-Stokes equations take the form

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

@Ot �� C div Ox.��u�/ D 0 ;

@Ot .��u�/C div Ox.��u˝2� /Cr Ox.����/

D � div.	.��/D.u�// ;

@Ot .��. 12 ju�j2 C 3
2
��//C div Ox.��u�. 12 ju�j2 C 5

2
��//

D � div Ox.
.��/r Ox��/C � div Ox.	.��/D.u�/u�/ ;

where

D.u/ D r Oxu C .r Oxu/T � 2
3
.div Ox u/ I :

These equations are obtained from the local conservation laws of mass, momentum
and energy for the Chapman-Enskog expansion of F� truncated at order 2.

Notice that the viscosity and heat diffusion terms are of order O.�/ in this
scaling. In other words, compressible Navier-Stokes equations are not a limit of
the Boltzmann equation, but a correction of the compressible Euler equations at the
first order in �.

The formulas giving the viscosity and heat diffusion coefficients are worth a few
comments. They are

	.�/ D 2
15
�

Z 1

0

˛.�; r/r6e�r2=2 drp
2�
;


.�/ D 1
6
�

Z 1

0

ˇ.�; r/r4.r2 � 5/2e�r2=2 drp
2�
:

(6)
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In the hard sphere case (which is the only case considered in these lectures),
one finds

	.�/ D 	.1/
p
� ; 
.�/ D 
.1/

p
� : (7)

(See Appendix 2 for the details.)
Some comments on the Chapman-Enskog and the Hilbert expansion are in order.
First, it is interesting to compare both expansions, at least up to order 1 in �.

The first two terms of the Hilbert expansion are of the form

F0.t; x; v/ D M.�0;u0;�0/.t;x/.v/ ;

F1.t; x; v/ D M.�0;u0;�0/.t;x/.v/

�
�1.t; x/

�0.t; x/
C u1.t; x/ � .v � u0.t; x//

�0.t; x/

C �1.t; x/

2�0.t; x/

� jv � u0.t; x/j2
�0.t; x/

� 3
�

� 1

�0.t; x/
˛

 
jv � u0.t; x/jp

�0.t; x/
; �0.t; x/

!
A

 
v � u0.t; x/p
�0.t; x/

!
W rxu0.t; x/

� 2

�0.t; x/
ˇ

 
jv � u0.t; x/jp

�0.t; x/
; �0.t; x/

!
B

 
v � u0.t; x/p
�0.t; x/

!
� rx

p
�0.t; x/

!
:

This first order term is decomposed into a term, henceforth denoted F h
1 which is a

linear combination of collision invariants with coefficients that are functions of t; x,
and a term, henceforth denoted F 0

1 that satisfies the condition

Z
R3

0
@ 1

v
jvj2

1
AF 0

1 .t; x; v/dv D 0 ;

i.e.

F1 D F h
1 C F 0

h

where

F h
1 .t; x; v/DF1.t; x; v/DM.�0;u0;�0/.t;x/.v/

�
�1.t; x/

�0.t; x/
C u1.t; x/ � .v � u0.t; x//

�0.t; x/

C �1.t; x/

2�0.t; x/

� jv � u0.t; x/j2
�0.t; x/

� 3
��

;
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while

F 0
1 .t; x; v/ D

�M.1;u0;�0/.t;x/.v/

 
˛

 
jv � u0.t; x/jp

�0.t; x/
; �0.t; x/

!
A

 
v � u0.t; x/p
�0.t; x/

!
W rxu0.t; x/

C2ˇ
 
jv � u0.t; x/jp

�0.t; x/
; �0.t; x/

!
B

 
v � u0.t; x/p
�0.t; x/

!
� rx

p
�0.t; x/

!
:

Elementary computations show that

˚0Œ�0 C ��1; u0 C �u1; �0 C ��1� D M.�0C��1;u0C�u1;�0C��1/

D F0 C �F h
1 CO.�2/ ;

while

˚1Œ�0; u0; �0� D F 0
1 :

Therefore

˚0Œ�0 C ��1; u0 C �u1; �0 C ��1�C �˚1Œ�0 C ��1; u0 C �u1; �0 C ��1�

D F0 C �F1 CO.�2/

and the Hilbert and Chapman-Enskog agree up to order O.�2/. Notice however the
following subtle difference: the term F h

1 , which appears at order 1 in the Hilbert
expansion, is combined with F0 in the leading order term ˚0 of the Chapman-
Enskog expansion. The remaining part of the first order term in Hilbert’s expansion,
i.e. F 0

1 is the leading order part of the next order term ˚1 in the Chapman-
Enskog expansion. This re-ordering is a consequence of (4). One advantage of the
Chapman-Enskog expansion over Hilbert’s is that the condition (4) guarantees that
the equation defining the nC1-st order term˚nC1 in terms of˚k for all k D 0; : : : ; n

has exactly one solution. Indeed, this equation involves the linearization at ˚0 of
the Boltzmann collision integral. An important theorem due to Hilbert [59] in the
case of the hard sphere gas shows that the linearized collision operator satisfies the
Fredholm alternative. The condition (4) is precisely the unique solvability condition
for that operator. (See Theorem 16 below.)

We have deliberately limited our presentation of the Chapman-Enskog
method to the expansion at order 1 in the small parameter �. Of course,
the Chapman-Enskog expansion can be pushed to higher orders, and leads
to further corrections of the compressible Navier-Stokes equations, known
as the Burnett system (the correction of order 2 in � of the compressible
Navier-Stokes equations) and the super-Burnett system (the correction at order
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3 in � of the compressible Navier-Stokes equations). The Burnett system is known
to be ill-posed and is therefore of limited practical interest. However, these higher
order hydrodynamic theories à la Burnett have been recently revisited in a series
of remarkable contributions. In [62], the Boltzmann equation is replaced with an
approximate system of conservation laws with relaxation terms, and the analogue of
the classical Chapman-Enskog method for that relaxation system leads to a variant
of the Burnett system that is hyperbolic and therefore well posed. (Notice that the
Chapman-Enskog method applies not only to the Boltzmann equation, but also to
systems of conservation laws with relaxation terms: see for instance [29].)

The same issue is addressed by Bobylev [18, 19] in yet another manner, by
working directly on the original Boltzmann equation. Bobylev’s idea is that the
ill-posedness in the Burnett system is caused by the particular way in which the
Chapman-Enskog expansion is truncated at order 2. By analogy with the classical
theory of asymptotic expansions in the context of celestial mechanics, Bobylev
proposed another truncation method for the Hilbert-Chapman-Enskog expansion of
the solution of the Boltzmann equation which leads to a well posed analogue of the
Burnett system.

2.2.3 The Acoustic Limit

The first result on the acoustic limit of the Boltzmann equation in the regime
of renormalized solutions can be found in [12]. This early result, valid only in
the case of bounded collision kernels, was shortly thereafter extended to more
general collision kernels including all hard potentials satisfying Grad’s cutoff
assumption [56], and in particular the hard sphere case.

Theorem 6 (F. Golse-C.D. Levermore [45]). Let F� be a family of renormalized
solutions of the Cauchy problem for the Boltzmann equation with initial data

F�
ˇ̌
tD0 D M.1Cı��in.�x/;ı�uin.�x/;1Cı�� in.�x// ;

for �in; uin; � in 2 L2.R3/ and ı�j ln ı�j1=2 D o.
p
�/. As � ! 0,

1

ı�

Z
R3

�
F�

�
t

�
;
x

�
; v

�
�M

�
.1; v; 1

3
jvj2 � 1/dv ! .�; u; �/.t; x/

in L1loc.RC � R3/ for all t � 0, where �; u; � 2 C.RCIL2.R3// satisfy the acoustic
system

8<
:
@t�C divx u D 0 ; �

ˇ̌
tD0 D �in ;

@tu Crx.�C �/ D 0 ; u
ˇ̌
tD0 D uin ;

3
2
@t � C divx u D 0 ; �

ˇ̌
tD0 D � in :
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2.2.4 The Incompressible Euler Limit

Steady solutions .�; u; �/ of the acoustic system are obviously triples .�; u; �/ �
.�.x/; u.x/; �.x// satisfying the conditions

div u D 0 ; and r.�C �/ D 0 :

The second constraint implies that � C � DConst. In fact, with the additional
assumption that �; � 2 L2.R3/, one has

�C � D 0 :

This observation suggests that, if the fluctuations around the equilibrium .1; 0; 1/ of
density, velocity field and temperature satisfy the conditions above, the acoustic and
vortical modes in the moments of the distribution function should decouple in the
long time limit, and lead to some incompressible flow.

Of course, this does not mean that the gas is incompressible, but only that its
motion is the same as that of an incompressible fluid with constant density. This
observation is made rigorous by the following theorem.

Theorem 7 (L. Saint-Raymond [87]). Let uin 2 H3.R3/ s.t. div uin D 0 and let
u 2 C.Œ0;T �IH3.R3// satisfy

8<
:
@tu C u � rxu Crxp D 0 ; divx u D 0 ;

u
ˇ̌
tD0 D uin ;

for some p 2 D 0..0; T / � R3/. Let F� be a family of renormalized solutions of the
Cauchy problem for the Boltzmann equation with initial data

F�
ˇ̌
tD0 D M.1;ı�uin.�x/;1/

for ı� D �˛ with 0 < ˛ < 1. Then, in the limit as � ! 0, one has

1

ı�

Z
R3

vF�

�
t

�ı�
;
x

�
; v

�
dv ! u.t; x/ in L1.Œ0; T �IL1loc.R

3// :

2.2.5 The (Time-Dependent) Stokes Limit

The previous limit neglects viscous dissipation in the gas. Viscous dissipation and
heat diffusion are observed on a longer time scale. We first treat the case where the
nonlinearity is weak even after taking the fluid dynamic limit. This limit is described
by the following theorem. Observe that the time scale in this result is 1=�2, which
is large compared to the time scale 1=�ı� used in the incompressible Euler limit.
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On the other hand, the size ı� of the fluctuations is o.�/, i.e. much smaller than in
the case of the incompressible Euler limit, where it is ��. Thus the nonlinearity is
so weak in this case that it vanishes in the fluid dynamic limit.

Theorem 8 (F. Golse-C.D. Levermore [45]). Let F� be a family of renormalized
solutions of the Cauchy problem for the Boltzmann equation with initial data

F�
ˇ̌
tD0 D M.1�ı�� in.�x/;ı�uin.�x/;1Cı�� in.�x// ;

where ı�j ln ı�j D o.�/ and .uin; � in/ 2 L2 � L1.R3/ s.t. divx uin D 0. Then, in the
limit as � ! 0, one has

1

ı�

Z
R3

�
F�

�
t

�2
;
x

�
; v

�
�M

�
.v; 1

3
jvj2 � 1/dv ! .u; �/.t; x/ in L1loc.RC � R3/ ;

where

8<
:
@tu Crxp D 	�xu ; divx u D 0 ; u

ˇ̌
tD0 D uin ;

5
2
@t � D 
�x� ; �

ˇ̌
tD0 D � in ;

for some p 2 D 0.R�C � R3/.

The viscosity and heat conductivity are given by the formulas

	 D 1
5
D�.v ˝ v � 1

3
jvj2I / ; 
 D 2

3
D�. 1

2
.jvj2 � 5/v/ ; (8)

where D is the Dirichlet form of the linearized collision operator

D.˚/D 1
8

•
R3�R3�S2

j˚ C ˚� � ˚ 0 � ˚ 0�j2j.v � v�/ � !jMM�dv dv�d! ;

and D� is its Legendre dual. (If ˚ is vector valued, j � j designates the canonical
Euclidean norm in R3; if ˚ is matrix valued, j � j designates the Frobenius norm on
M3.R/, i.e. jAj WDp

trace.AT A/.)
It should be noticed that P.-L. Lions and N. Masmoudi [73] had independently

obtained a version of the above theorem with the motion equation only, i.e. without
deriving the heat equation for � .

2.2.6 Incompressible Navier-Stokes Limit

Finally, we discuss the case where viscous dissipation and heat diffusion are
observed in the fluid dynamic limit, together with the nonlinear convection term.
This follows from a scaling assumption where the length and time scale are respec-
tively 1=� and 1=�2 (corresponding to the invariance scaling for the heat equation),
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while the size of the fluctuation is precisely of order �. Thus the asymptotic
regime under consideration is weakly nonlinear at the level of the kinetic theory of
gases, but fully nonlinear at the level of fluid dynamics. These scaling assumptions
correspond exactly to the invariance scaling for the incompressible Navier-Stokes
motion equation.

Theorem 9 (F. Golse-L. Saint-Raymond [48,50]). LetF� be a family of renormal-
ized solutions of the Cauchy problem for the Boltzmann equation with initial data

F�
ˇ̌
tD0 D M.1��� in.�x/;�uin.�x/;1C�� in.�x// ;

where .uin; � in/ 2 L2 � L1.R3/ s.t. divx uin D 0. For some subsequence �n ! 0,
one has

1

�n

Z
R3

�
F�n

�
t

�2n
;
x

�n
; v

�
�M

�
.v; 1

3
jvj2�1/dv ! .u; �/.t; x/

weakly in L1loc.RC � R3/, where .u; �/ is a “Leray solution” with initial data
.uin; � in/ of

8<
:
@tu C divx.u ˝ u/Crxp D 	�xu ; divx u D 0 ;

5
2
.@t � C divx.u�// D 
�x� ;

for some p 2 D 0.R�C � R3/.

The viscosity 	 and the heat diffusion 
 in this theorem are given by the same
formulas (8) as in the case of the time dependent Stokes limit.

We recall the notion of “Leray solution” of the Navier-Stokes-Fourier system.
A Leray solution of the Navier-Stokes-Fourier system above is a couple .u; �/ of
elements of1 C.RCIw�L2.R3// \ L2.RCIH1.R3// that is a solution in the sense
of distributions and satisfies the Leray inequality below:
Leray inequality

1
2

Z
R3
.juj2 C 5

2
j� j2/.t; x/dx C

Z t

0

Z
R3
.	jrxuj2 C 
jrx� j2/dx ds

� 1
2

Z
R3
.juinj2 C 5

2
j�inj2/.t; x/dx :

1If X is a topological space and E is a Banach space, the notation C.X;w �E/ designates the set
of continuous maps from X to E equipped with its weak topology.
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This notion of “Leray solution” of the Navier-Stokes-Fourier system finds its
origin in the pioneering work of J. Leray [67] on the incompressible Navier-Stokes
equations. These solutions bear considerable resemblance with DiPerna-Lions
solutions of the Boltzmann equation. There is indeed an obvious analogy between
the Leray energy inequality which reduces to an equality for classical solutions of
the Navier-Stokes equations, and the DiPerna-Lions entropy inequality, which also
reduces to an equality for classical solutions of the Boltzmann with appropriate
decay as jxj; jvj ! 1. Moreover, Leray solutions of the Navier-Stokes equations
are not known to be uniquely determined by their initial data, exactly as DiPerna-
Lions solutions of the Boltzmann equation are not uniquely determined by their
initial data. However, if there exists a classical solution of the Navier-Stokes
equation defined on some time interval Œ0; T � with T > 0, each Leray solution
with the same initial data as that classical solution must coincide with it on Œ0; T �.
(See [67] for a detailed account of all these properties of Leray solutions of the
Navier-Stokes equations.)

The reader should be aware that the terminology of “incompressible Navier-
Stokes limit” is misleading from the physical viewpoint. It is true that the motion
equation satisfied by the velocity field u coincides with the Navier-Stokes equation
for an incompressible fluid with constant density. However, the diffusion coefficient
in the temperature equation is 3=5 of its value for an incompressible fluid with the
same heat capacity and heat conductivity. The difference comes from the work
of the pressure: see the detailed discussion of this subtle point in [42] on pp.
22–23, and especially in [93] (footnote 6 on p. 93) and [94] (footnote 43 on p. 107,
together with Sect. 3.7.2). However, the system obtained in the limit has the same
mathematical structure as the Navier-Stokes-Fourier system for incompressible
fluids, and we shall therefore abuse the terminology of incompressible limit in
that case—although it is improper on physical grounds. Of course, the Navier-
Stokes limit theorem above does not mean that the gas under consideration is an
incompressible fluid. Furthermore, the Navier-Stokes equation is a fundamental
equation of hydrodynamics. It applies to a wide variety of fluids (such as liquids,
for instance) and is therefore a much more universal model than the Boltzmann
equation.

The derivation of the acoustic, incompressible Euler, Stokes and Navier-Stokes
equations from global (renormalized) solutions of the Boltzmann equation is a
program started by Bardos-Golse-Levermore [11].

As for the incompressible Navier-Stokes limit, partial results were obtained
by Bardos-Golse-Levermore [9–11], P.-L. Lions-N. Masmoudi [73] before the
complete proof by F. Golse-L. Saint-Raymond appeared in [48, 50]. Subsequently,
the validity of this limit was extended to the case of weak cutoff potentials (hard and
soft), by C.D. Levermore-N. Masmoudi [68].

In the regime of smooth solutions, the incompressible Navier-Stokes limit for
small initial data (a case where Leray solutions are known to be smooth globally
in time) had been obtained by C. Bardos-S. Ukai [6]. In the same regime, short



26 F. Golse

time convergence was obtained by A. DeMasi-R. Esposito-J. Lebowitz [33] by
an argument similar to Caflisch’s for the compressible limit, i.e. by means of a
truncated Hilbert expansion.

The various scalings on the Boltzmann equation and the corresponding fluid
dynamic limits are summarized in the table below. In all the scaling limits presented
above, the small parameter � is the ratio of the molecular mean free path to some
characteristic, macroscopic length scale in the flow, known as the Knudsen number
and denoted Kn. The parameter ı� entering the initial condition, as in M.1;ı�uin;1/

measures the scale of fluctuations of the velocity field in terms of the velocity scale

defined by the background temperature 1, i.e. the speed of sound
q

5
3
. Therefore ı�

can be regarded as the Mach number (denoted Ma) associated to the initial state of
the gas. Finally, the fluid dynamic limits described above may involve a different
scaling of the time and space variables. Whenever one considers the distribution
function F scaled as F.t=���; x=�; v/, the additional scaling parameter �� acting on
the time variable can be thought of as the Strouhal number (denoted Sh), following
the terminology introduced by Y. Sone [94].

The ratio of viscous dissipation to the strength of nonlinear advection in a fluid
is measured by a dimensionless parameter called the Reynolds number, denoted Re.
Specifically, Re D UL=	, where U and L are respectively the typical velocity and
length scales in the fluid flow, while 	 is the kinematic viscosity of the fluid. The
Reynolds, Mach and Knudsen numbers are related by the following relation:
Von Karman relation

Kn D a
Ma

Re

where a is some “absolute number” (such as
p
� . . . ).

This important observation explains why the compressible Navier-Stokes equa-
tion cannot be obtained as a hydrodynamic limit of the Boltzmann equation, but just
as a first order correction of the compressible Euler limit. Indeed, the hydrodynamic
limit always assumes that Kn ! 0; if one seeks a regime where the viscosity
coefficient remains positive uniformly as Kn ! 0, then Re D O.1/. This implies
that Ma ! 0, so that the limiting velocity field is necessarily divergence-free. In
other words, one can only obtain in this way the incompressible Navier-Stokes
equations, and not the compressible Navier-Stokes system.

The fluid dynamic regimes presented above are summarized in the following
Table 1.

The presentation of hydrodynamic limits above does not exhaust all possible
limits of the Boltzmann equation leading to fluid dynamic equations. Other scalings
lead to Navier-Stokes equations involving viscous heating terms as in [14], or
fluid dynamic equations in thin layers [43]. An important class of hydrodynamic
equations, for which Y. Sone coined the term of “ghost effect” corresponds to the
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Table 1 The various incompressible fluid dynamic regimes of the Boltzmann equation in terms of
the dimensionless parameters Kn (Knudsen number), Ma (Mach number), Re (Reynolds number)
and Sh (Strouhal number)

Boltzmann equation Kn D � � 1

von Karman relation Ma=Kn D Re
Ma Sh Hydrodynamic limit

ı� � 1 1 Acoustic system
ı� � � � Stokes system
ı� � � ı� Incompressible Euler equations
� � Incompressible Navier-Stokes equations

persistence at macroscopic scale of effects caused by quantities of the order of Kn
(or smaller), which are therefore negligible in the hydrodynamic limit. There is an
important literature on ghost effects: see for instance [17, 63, 95], Y. Sone’s Harold
Grad lecture [92] or Chap. 3.3 in [94] for a more detailed presentation of this class
of problems.

In the next two lectures, we shall discuss in more detail the incompressible Euler
and the incompressible Navier-Stokes-Fourier limits.

2.3 Mathematical Tools: An Overview

We conclude this first lecture with a quick overview of the mathematical notions
and methods used in the proof of these limits.

2.3.1 Local Conservation Laws

At the formal level, an important step in deriving fluid dynamic models from the
Boltzmann equation is to start from the local conservation laws implied by the
Boltzmann equation, which are recalled below for the reader’s convenience:

@t

Z
R3
F�

0
@ 1

v
1
2
jvj2

1
A dv C divx

Z
R3
F�

0
@ v

v ˝ v
v 1
2
jvj2

1
A dv D 0 :

For instance, if one knows that

F� ! F a.e. pointwise
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as � ! 0C, Boltzmann’s H Theorem and Fatou’s lemma imply that

Z 1

0

“
C .F / lnF dx dv dt D 0 ;

and thus

F � M.�;u;�/.t;x/.v/ :

This implies the following “closure relations”: in other words, one expresses

Z
R3
F

�
v ˝ v
v 1
2
jvj2

�
dv in terms of

Z
R3
F

0
@ 1

v
1
2
jvj2

1
A dv :

Thus, passing to the limit in the local conservation laws (at the formal level) results
in a system of PDEs on �, u and � .

Because the renormalization procedure is a purely local change of unknown
function, it destroys the delicate, nonlocal symmetries in the Boltzmann collision
integral. For this reason, it is yet unknown at the time of this writing whether
renormalized solutions of the Boltzmann equation satisfy all the local conservation
laws above. They are only known to satisfy the local conservation of mass

@t

Z
R3
F C divx

Z
R3

vFdv D 0 :

Instead of the usual local conservation laws of momentum and energy, renormal-
ized solutions of the Boltzmann equation satisfy

@t

Z
R3
�

�
F�

M

��
v

1
2
jvj2

�
Mdv C divx

Z
R3
�

�
F�

M

��
v ˝ v
1
2
jvj2v

�
Mdv

D
Z

R3
� 0
�
F�

M

�
C .F�/

�
v

1
2
jvj2

�
dv :

An important step in the proof of all the hydrodynamic limits described above
will be (a) to prove that the r.h.s. of the equalities above vanishes as � ! 0 and
(b) that one recovers the usual conservation laws of momentum and energy in the
hydrodynamic limit, i.e. as � ! 0.

2.3.2 Strong Compactness Tools

Since the Navier-Stokes equations are nonlinear, strong compactness (in the
Lebesgue L1loc space) of number density fluctuations is needed in order to pass
to the limit in nonlinearities.
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infinitesimal Maxwellians

hydrodynamic fluctuations
compactness by velocity averaging

vanishing
entropy production

number density fluctuations

Fig. 2 The family of number density fluctuations approaching the linear manifold of infinitesimal
Maxwellian equilibria

The tool for obtaining this compactness is the method of velocity averaging
(V. Agoshkov [1], F. Golse-B. Perthame-R. Sentis [51], F. Golse-P.-L. Lions-B.
Perthame-R. Sentis [52]), adapted to the L1 setting. The main statement needed
for our purposes is essentially the theorem below.

Theorem 10 (F. Golse-L. Saint-Raymond [47]). Assume that fn � fn.x; v/ and
v � rxfn are bounded in L1.RN

x � RN
v /, while fn is bounded in L1.RN

x ILp.RN
v //

for some p > 1. Then

(a) fn is weakly relatively compact in L1loc.R
N
x � RN

v /; and
(b) For each � 2 Cc.RN /, the sequence of velocity averages

Z
RN
fn.x; v/�.v/dv

is strongly relatively compact in L1loc.R
N /.

Observe that the velocity averaging theorem above only gives the strong com-
pactness in L1loc of moments of the sequence of distribution functions fn, and not of
the distribution functions themselves.

However, the bound on the entropy production coming from Boltzmann’s H
Theorem shows that the fluctuations of number densities approach the manifold
of infinitesimal Maxwellians (i.e. the tangent linear space of the manifold of
Maxwellian equilibrium distribution functions at M WD M.1;0;1/). Infinitesimal
Maxwellians are—exactly like Maxwellian distribution functions—parametrized
by their moments of order �2 in the v variables, and this explains why strong
compactness of the moments of the fluctuations of number density about the uniform
Maxwellian equilibrium M is enough for the Navier-Stokes limit (Fig. 2).

This will be discussed in a more detailed manner in Lecture 3.
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2.3.3 The Relative Entropy Method: General Principle

In the regime of inviscid hydrodynamic limits, entropy production does not balance
streaming in the Boltzmann equation. Therefore, the velocity averaging method
cannot be applied in the case of inviscid limits, in general.2

For this reason, we choose another approach, namely to use the regularity of the
solution of the target equation together with the relaxation towards local equilibrium
in order to prove the compactness of fluctuations.

Our starting point is to pick u, a smooth solution of the target equations—say, in
the case of the incompressible Euler equations—and to study the evolution of the
quantity

Z�.t/ WD 1

ı2�
H.F�.t=�ı�; x=�; �/jM.1;ı�u.t;x/;1// :

Notice the subtle difference with the usual Boltzmann H Theorem used in the
DiPerna-Lions existence theorem of renormalized solutions described above. In the
present case, the relative entropy is computed with respect to the local Maxwellian
equilibrium whose parameters are defined in terms of the solution of the target
equation. In the work of DiPerna-Lions, the relative entropy is defined with respect
to the global Maxwellian equilibrium M .

The idea of studying the evolution of this quantity goes back to the work of H.T.
Yau (for Ginzburg-Landau lattice models [99]). It was later adapted to the case of
the Boltzmann equation (see Chap. 2 in [20] and [73]).

At the formal level, assuming the incompressible Euler scaling, one finds that

dZ�
dt
.t/ � � 1

ı2�

Z
R3

rxu.t; x/ W
Z

R3
.v � ı�u.t; x//˝2F�

�
t

�ı�
;
x

�
; v

�
dv dx

C 1

ı�

Z
T3

rxp.t; x/ �
Z

R3
.v � ı�u.t; x//F�

�
t

�ı�
;
x

�
; v

�
dv dx :

The second term on the right hand side vanishes with � since one expects that

1

ı�

Z
R3

vF�

�
t

ı��
;
x

�
; v

�
dv ! divergence free field.

The key step in the relative entropy method is to estimate the first term in the right
hand side by Z� plus o.1/, at least locally in time. In other words, for all T > 0,
there exists CT > 0 such that

2This is not completely true, however, since the velocity averaging method is at the heart of the
kinetic formulation of hyperbolic conservation laws. Unfortunately, while this approach is rather
successful in the case of scalar conservation laws, it seems so far limited to some very special kind
of hyperbolic systems: see P.-L. Lions-B. Perthame-E. Tadmor [74], P.-E. Jabin-B. Perthame [61],
B. Perthame [83].
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1

ı2�

“
R3�R3

ˇ̌
ˇ̌rxu.t; x/ W .v � ı�u.t; x//˝2F�

�
t

�ı�
;
x

�
; v

�ˇ̌
ˇ̌ dv dx � CTZ�.t/C o.1/

for each t 2 Œ0; T �.
Applying Gronwall’s lemma, we conclude that

Z�.t/ � eCT t .Z�.0/C o.1//

for all t 2 Œ0; T �.
By choosing appropriately the initial distribution function F�

ˇ̌
tD0, the right hand

side of this inequality vanishes as � ! 0, and this shows that Z�.t/ ! 0 as � ! 0

for all t > 0. Since the relative entropy H.F jG/ somehow measures the “distance”
between the distribution functions F and G, this last estimate is exactly what is
needed to conclude that the fluctuations of velocity field appropriately scaled, i.e.

1

ı�

Z
R3

vF�

�
t

ı��
;
x

�
; v

�
dv

converge strongly to the solution u of the incompressible Euler equations as � ! 0.
As we shall see, the constant CT is (essentially) given by the formula

CT D krxukL1.Œ0;T ��R3/

and this is precisely why the regularity of solution of the target equation—of the
incompressible Euler equation in the present case—is essential for this method.

More precisely, a distinctive feature of the relative entropy method is that
it is particularly well adapted to study hydrodynamic limits of weak (or even
renormalized) solutions of kinetic models when the target solution is smooth—or
at least satisfies some stability property.

3 Lecture 2: The Incompressible Euler Limit

This lecture is devoted to a simplified variant of L. Saint-Raymond’s theorem
(Theorem 7). In order to alleviate the technicalities in the proof, we have chosen
to discuss the incompressible Euler limit of the BGK, instead of the Boltzmann
equation. As we shall explain below, the BGK equation is a much simplified
analogue of the Boltzmann equation.

3.1 The Incompressible Euler Equations

Since the stability of the target solution of the incompressible Euler equation
is essential for applying the relative entropy method, we first briefly review the
existence, uniqueness and regularity theory for that equation.
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The incompressible Euler equation considered here describes the motion of an
incompressible fluid, with constant density 1, in space dimension N D 2 or N D 3.
The state of the fluid at time t is defined by the velocity field u � u.t; x/ 2 RN

and the pressure p � p.t; x/ 2 R. They satisfy the system of partial differential
equations (see for instance [72])

divx u D 0 ; (continuity equation)

@tu C .u � rx/u Crxp D 0 : (momentum equation)

In the case of an incompressible fluid without external force (such as gravity),
the kinetic energy is a locally conserved quantity. Taking the inner product of both
sides of the momentum equation above with u leads to the identity:

@t .
1
2
juj2/C divx

	
u. 1

2
juj2 C p/


 D 0 :

(Indeed, one has

.u � rxu Crxp/ � u D u � rx. 12 juj2/C u � rxp D divx
	
u. 1

2
juj2 C p/




because divx u D 0.)
Another quantity of paramount importance in the theory of inviscid incompress-

ible fluids with constant density is the vorticity field, denoted by˝, whose evolution
is described as follows:

• If N D 2, the vorticity field is defined as ˝ WD @1u2 � @2u1 2 R and one easily
checks that

@t˝ C u � rx˝ D 0 I

• If N D 3, the vorticity field is defined as ˝ WD curlx u 2 R3 and one has

@t˝ C .u � rx/˝ � .˝ � rx/u D 0 :

3.1.1 Existence and Uniqueness Theory for the Incompressible Euler
Equation

Consider the Cauchy problem for the incompressible Euler equations:

8̂
<̂
ˆ̂:

divx u D 0 ;

@tu C .u � rx/u Crxp D 0 ; x 2 RN ;

u
ˇ̌
tD0 D uin :
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Theorem 11 (V. Yudovich, T. Kato). Consider the Cauchy problem for the incom-
pressible Euler equations in space dimension N D 2 or 3. Then

• N D 2: if uin 2 L2 \ C1;˛.R2/ for ˛ 2 .0; 1/ and ˝ in 2 L1.R2/, then there
exists a unique solution u 2 C.R�CIL2\C1;˛.R2// of the Cauchy problem for the
incompressible Euler equation with initial velocity field uin, and ˝ 2 L1.RC �
R2/;

• N D 3: if uin 2 L2 \ C1;˛.R3/ for ˛ 2 .0; 1/, then there exist T � > 0 and a
unique maximal solution u 2 C.Œ0; T �/IL2 \ C1;˛.R3// of the Cauchy problem
for the incompressible Euler equation with initial velocity field uin.

See Theorem 4.1 in [72] for the caseN D 2, and Sect. 4.3 in the same references
for the case N D 3. Whether T � D C1 in the case where N D 3 remains an
outstanding open question at the time of this writing.

3.1.2 Dissipative Solutions of the Incompressible Euler Equation

Since little is known about the global existence of classical solutions of the
incompressible Euler equation in space dimension N D 3, there have been several
attempts at defining a convenient notion of weak solutions of this equation. Weak
solutions of the Euler equation in the sense of distributions are not expected to be
unique—in fact, these solutions have some rather paradoxical features. For instance,
there exist solutions of the incompressible Euler equations corresponding to a fluid
at rest, which starts to move in the absence of any external force, and stops moving
after some finite time (see [32, 89, 90]). On the other hand, a global existence result
for weak solutions of the Euler equation in the sense of distributions has been
recently obtained by E. Wiedemann [98]. Other notions of generalized solutions of
the Euler equation had been proposed earlier, such as the notion of measure-valued
solutions [35].

While not much can be said of these solutions, returning to the variational
formulation of the incompressible Euler equations viewed as defining a geodesic
flow in infinite dimension [3, 4] leads to well-posed problems for these equations
[22]—but unfortunately, these problems, although interesting in their own right, are
different from the Cauchy problem.

In view of all these difficulties, P.-L. Lions proposed a very weak notion
of solution of the incompressible Euler equation, which he called “dissipative
solutions”, and whose definition is recalled below (see Sect. 4.4 in [72]).

Set

XT WDfv2C.Œ0; T �IL2.R3// s.t. divx v D 0 ; ˙.v/2L1.Œ0; T �IL1.R3//

and E.v/2L1.Œ0; T �IL2.R3//g ;

where

˙.v/ WD 1
2
.rxv C .rxv/T / ; and E.v/ WD @tv C .v � rx/v :
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Definition 3 (P.-L. Lions). A vector field3 u 2 Cb.RCIw�L2.R3// is a dissipative
solution of the Cauchy problem for the incompressible Euler equation with initial
velocity field uin if divx u D 0 and, for each T > 0, each v 2 XT and each t 2
Œ0; T �, one has

1
2
ku � vk2

L2
.t/ � exp

�Z t

0

2k˙.v/kL1.s/ds

�
1
2
kuin � v

ˇ̌
tD0k2L2

C
Z t

0

exp

�Z t




2k˙.v/kL1.s/ds

�Z
E.v/ � .u � v/.
; x/dx d
 :

The nicest features of this notion of dissipative solution is that the Cauchy
problem for the incompressible Euler equation always has at least one dissipative
solution, and also the fact that classical solutions of the incompressible Euler
equation are uniquely determined by their initial data within the class of dissipative
solutions.

Theorem 12 (P.-L. Lions [72]). For each uin 2 L2.RN / s.t. divx uin D 0, there
exists a dissipative solution of the Cauchy problem for the incompressible Euler
equation defined for all t � 0. Besides

• If u 2 C1
b .Œ0; T ��RN / is a classical solution of the Cauchy problem for the Euler

equation with initial velocity field uin, then u is a dissipative solution.
• If the Cauchy problem for the incompressible Euler equation with initial velocity

field uin has a solution u 2 XT for some T > 0, any dissipative solution u of the
incompressible Euler equation with initial velocity field uin satisfies

u.t; x/ D u.t; x/ for a.e. x 2 RN ; for all t 2 Œ0; T �

Proof. Observe that limit points of Leray solutions of the incompressible Navier-
Stokes equation in the vanishing viscosity limit are dissipative solutions of the
incompressible Euler equations. This implies the global existence of dissipative
solutions of the Cauchy problem for the incompressible Euler equation for all initial
square integrable, divergence free velocity field uin.

Observe next that, if u is a C1 solution of the Euler equation

E.u/ �E.v/ D .@t C u � rx/.u � v/C .u � v/ � rxv ;

which implies that

.@t C u � rx/ 12 ju � vj2 C˙.v/ W .u � v/˝2 D .E.u/ �E.v// � .u � v/ :

3LetX be a topological space and E a topological vector space. The notation Cb.X;E/ designates
the set of bounded continuous maps from X to E.
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Since divx u D 0, integrating in x both sides of the identity above shows that

d

dt
1
2
ku � vk2

L2
� k˙.v/kL1ku � vk2

L2
C .E.v/ju � v/L2 ;

since
Z

R3
E.u/ � .u � v/dx D �

Z
R3

rxp � .u � v/dx D
Z

R3
p divx.u � v/dx D 0 :

Applying Gronwall’s lemma shows that u is a dissipative solution of Euler’s
equation.

Finally the last property, usually referred to as the “weak-strong uniqueness”
property of dissipative solutions of the incompressible Euler equation is obtained by
the observation below. If one choose v D u in the defining inequality for dissipative
solutions, one finds that

Z
R3
E.v/ � .u � v/.
; x/dx D �

Z
R3

rxp � .u � u/.
; x/dx D 0

because divx u D divx u D 0. Therefore

1
2
ku � uk2

L2
.t/ � exp

�Z t

0

2k˙.u/kL1.s/ds

�
1
2
kuin � u

ˇ̌
tD0k2L2 D 0

for all t 2 Œ0; T �.
Of course, it is unknown whether two dissipative solutions of the incompressible

Euler equation with the same initial condition coincide on the time interval on which
they are both defined.

Any dissipative solution of the Euler equation that is obtained as limits points
of Leray solutions of the Navier-Stokes equation in the vanishing viscosity limit
satisfies the following variant of the motion equation:

@tu C divx.u ˝ u C �/Crxp D 0 ;

where � � �.t; x/ 2M3.R/ is a matrix field satisfying

� D �T � 0 :

Whether � D 0—in other words, whether u is a solution of the Euler equation in
the sense of distributions—remains unknown at the time of this writing.

There are other notions of weak solutions of the incompressible Euler equation,
in particular the measure-valued solutions defined by R. DiPerna and A. Majda
[35]. An important observation on this class of solutions is that they satisfy the
weak-strong uniqueness property, exactly as dissipative solutions: see [23]. This is
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at variance with other classes of weak solutions of the Euler equation, such as the
general weak solutions in the sense of distributions. As mentioned above, nonzero
weak solutions in the sense of distributions of the Euler equation with compact
support have been constructed by V. Scheffer (see [32, 89, 90]). Therefore, weak
solutions of the Euler equation in the sense of distributions cannot satisfy the
weak-strong uniqueness property—otherwise, the only such solution with compact
support in the time variable would be u D 0.

3.2 The BGK Model with Constant Relaxation Time

In order to alleviate some technical steps in the proof of the incompressible
Euler limit of the Boltzmann equation, we shall consider as our starting point
the BGK model with constant relaxation time instead of the Boltzmann equation
itself. Some of the unpleasant features of the theory of renormalized solutions of
the Boltzmann equation, especially regarding the local conservation laws either
disappear or become significantly simpler with the BGK model.

The idea is therefore to replace the Boltzmann equation with the simplest
imaginable relaxation model with constant relaxation time 
 > 0

.@t C v � rx/F D 1



.MF � F / ; x 2 T3 ; v 2 R3 ;

where

MF �MF .t; x; v/ WD M.�F ;uF ;�F /.t;x/.v/ ;

with

Z
R3

0
@ 1

v
jvj2

1
AMF .t; x; v/dv D

Z
R3

0
@ 1

v
jvj2

1
AF.t; x; v/dv :

In other words, .�F ; uF ; �F / are defined as follows:

�F D
Z

R3
Fdv ; uF D 1

�F

Z
R3

vFdv ; �F D 1

�F

Z
R3

1
3
jv � uF j2Fdv :

This model Boltzmann equation is called the “BGK model”, after Bhatnagar, Gross
and Krook, who proposed (a more complicated variant of) this model for the first
time in 1954 [16].

We recall below the notation already adopted above for Maxwellians: in space
dimension 3, for � � 0, u 2 R3 and � > 0,

M.�;u;�/.v/ WD �

.2��/3=2
e�jv�uj2=2� :
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In the limit as � ! 0C, one has M.�;u;�/ ! M.�;u;0/, where

M.�;u;0/ WD �ı.v � u/ :

In the particular case � D � D 1 and u D 0, we denote as above

M.v/ WD M.1;0;1/.v/ D 1

.2�/3=2
e�jvj2=2 :

3.2.1 Formal Properties of the BGK Model

Classical solutions of the BGK model satisfy exactly the same local conservation
laws of mass, momentum and energy as classical solutions of the Boltzmann
equation, under appropriate decay assumptions as jvj ! 1.

Proposition 1. Let F 2 C.RC � R3 � R3/ such that rt;xF 2 C.RC � R3 � R3/

satisfy

F � 0 and sup
tCjxj�R

F.t; x; v/C jrt;xF .t; x; v/j � CR

.1C jvj/7

for each R > 0. Then, the following conservation laws are satisfied:

@t

Z
R3

Fdv C divx

Z
R3

vFdv D 0 ; (mass)

@t

Z
R3

vFdv C divx

Z
R3

v˝2Fdv D 0 ; (momentum)

@t

Z
R3

1
2
jvj2Fdv C divx

Z
R3

v 1
2
jvj2Fdv D 0 : (energy)

Proof. The assumptions on the decay of F and rt;xF as jvj ! 1 imply that

@t

Z
R3

0
@ 1

v
1
2
jvj2

1
AFdvC divx

Z
R3

0
@ v

v ˝ v
1
2
vjvj2

1
AFdv

D
Z

R3

0
@ 1

v
1
2
jvj2

1
A .@t C v � rx/Fdv

D
Z

R3

0
@ 1

v
1
2
jvj2

1
A .MF � F /dv D 0 ;

by definition of MF .
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They also satisfy the following local variant of Boltzmann’s H Theorem.

Proposition 2. Let F 2 C.RC � R3 � R3/ such that rt;xF 2 C.RC � R3 � R3/

satisfy

F � 0 and sup
tCjxj�R

.F lnF.t; x; v/C jrt;x.F lnF /.t; x; v/j/ � CR

.1C jvj/4

for each R > 0. Then

@t

Z
R3
F ln Fdv C divx

Z
R3

vF ln Fdv D 1




Z
R3
.MF � F / ln

F

MF

dv � 0 :

Proof. Indeed lnMF is a linear combination of 1; v1; v2; v3; jvj2 so that

Z
R3
.F �MF / lnMF dv D 0 ;

again by definition of MF .

3.2.2 The Cauchy Problem for the BGK Model with Constant
Relaxation Time

Consider the Cauchy problem

8̂
<
:̂
.@t C v � rx/F D 1



.MF � F / ; x 2 T3 ; v 2 R3 ;

F
ˇ̌
tD0 D F in :

(9)

Theorem 13 (B. Perthame-M. Pulvirenti). Assume that there exist �2 > �1 > 0

and �2 > �1 > 0 such that the initial distribution function F in satisfies the
inequalities

M.�1;0;�1/ � F in � M.�2;0;�2/ :

Then there exists a unique solution of the Cauchy problem (9), which satisfies

C1.t; 
/ � �F .t; x/; �F .t; x/ � C2.t; 
/ ; juF .t; x/j � C2.t; 
/ ;

and sup
x;v

jvjmF.t; x; v/ < C3.t; 
;m/ :

See [84] for a proof of this result.
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Since the relaxation time in the model above is a constant, the collision term
MF �F is homogeneous of degree 1 in the distribution function F . In other words,
one has M�F � �F D �.MF � F /. This is precisely the reason why there is
no need for the renormalization procedure used for the Boltzmann equation. Thus
the existence theory is significantly simpler for this model than for the Boltzmann
equation itself.

In fact, the genuine BGK model involves a relaxation time that is proportional to
the reciprocal local macroscopic density. In other words, this model is of the form

.@t C v � rx/F D 1


0
�F .MF � F / ;

with

�F .t; x/ WD
Z

R3
F .t; x; v/dv :

The collision term 1

0
�F .MF � F / is now homogeneous of degree 2, meaning that

��F .M�F � �F / D �2�F .MF � F / ;

just like the Boltzmann collision integral which is a quadratic operator. This model is
obviously more natural than the one with constant relaxation time, since the higher
the local density �F , the smaller the local particle mean free path, i.e. 
0=�F . This
BGK model is used as a toy model in rarefied gas dynamics. Unfortunately, even
though the numerical analysis of the BGK model is significantly simpler than that
of the Boltzmann equation, much less is known on the mathematical analysis of
this model than on the Boltzmann equation itself. For instance, the renormalization
procedure is rather uneffective on the BGK model, so that there is no analogue of
the DiPerna-Lions theory on that model.

3.2.3 The BGK Equation in the Incompressible Euler Scaling

Set the relaxation time 
 D �q with q > 1 for � > 0 small enough, and rescale the
time variable as Ot D t=�. The Cauchy problem for the BGK equation with constant
relaxation time takes the form

8̂
<
:̂
.�@Ot C v � rx/F� D 1

�q
.MF� � F�/ ; x 2 T3 ; v 2 R3 ;

F
ˇ̌
tD0 D M.1;�uin;1/ :

(10)

Henceforth, we assume that

uin 2 C.T3/ ; with div uin D 0 :
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The incompressible Euler limit of the BGK model with constant relaxation time
is described in the following theorem.

Theorem 14 (L. Saint-Raymond). Let uin 2 C1;˛.T3/ be s.t. div uin D 0 and let
u be the maximal solution of the incompressible Euler equation with initial data uin

defined on Œ0; T �/. Let F� be the solution of the scaled BGK equation with initial
data M.1;�uin;1/. Then

1

�

Z
R3

vF�.t; �; v/dv ! u.t; �/ in weak L1.T3/ ;

uniformly on Œ0; T � for each 0 � T < T � as � ! 0.

The proof of this theorem can be found in [85]. This result was later extended to
renormalized solutions of the Boltzmann equation [87]. Earlier partial results were
obtained by Golse [20], and by P.-L. Lions and N. Masmoudi [73].

This result is based on the relative entropy method, which is a very important
tool in the rigorous asymptotic analysis of partial differential equations. For that
reason, we have given a rather detailed account of the proof in the case of the
BGK model. Proving the same result for the Boltzmann equation involves additional
technicalities that are special to the theory of renormalized solutions.

3.3 Proof of the Incompressible Euler Limit

This section is devoted to L. Saint-Raymond’s proof of the incompressible Euler
limit of the BGK equation.

3.3.1 Step 1: Uniform Estimates

All the uniform estimates on this problem come from (the analogue of) Boltzmann’s
H theorem. Specifically, we compute the evolution of the relative entropyH.F�jM/;
one has

�@t

Z
R3

�
F� ln

�
F�

M

�
�F�CM

�
dvCdivx

Z
R3

v

�
F� ln

�
F�

M

�
�F�CM

�
dv

D 1

�q

Z
R3
.MF� � F�/ ln

�
F

MF�

�
dv � 0 ;

in view of the decay (in jvj) estimate in the Perthame-Pulvirenti theorem. Integrating
further in t and x, one finds that

H.F�jM/.t/C 1

�qC1

Z 1

0

D.F�/dt D H.M.1;�uin;1/jM/ D 1
2
�2kuink2

L2
;
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where

D.F / WD
Z

T3

Z
R3
.F �MF / ln

�
F

MF

�
dv dx :

Hence

H.F�jM/.t/ � C in�2 ; and
Z 1

0

D.F�/dt � C in�qC3

with C in D 1
2
kuink2

L2
.

Instead of the distribution function F� itself, it will be more convenient to work
with the relative fluctuation thereof, denoted

g� WD F� �M
�M

:

Consider the function h defined on .�1;1/ by the formula

h.z/ WD .1C z/ ln.1C z/ � z :

Its Legendre dual,4 henceforth denoted h�, is given by the formula

h�.y/ WD ey � y � 1 ; y � 0 :

The Young inequality for the convex function h implies that, for all ˛ > �,

1
4
.1C jvj2/jg�j D ˛

�2
� �
˛

1C jvj2
4

�jg�j

� ˛

�2
h.�jg�j/C ˛

�2
h�
�
�

˛

1C jvj2
4

�
:

Using the elementary inequalities

h.jzj/ � h.z/ ; and h�.�y/ D
X
k�2

�kzk

kŠ
� �2

X
k�2

zk

kŠ
D �2h�.y/

4The Legendre dual f � of a function f W I ! R, where I is an interval of R, is defined for all
p 2 R by the formula

f �.p/ D sup
x2I

.px � f .x// :
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for all z > �1 and all y � 0 whenever 0 � � � 1, we conclude that

1
4
.1C jvj2/jg�j D ˛

�2
1
4

�

˛
.1C jvj2/�jg�j

� ˛

�2
h.�g�/C 1

˛
h�
	
1
4
.1C jvj2/
 :

A first major consequence of the uniform bounds obtained above is the next
proposition.

Proposition 3. The family .1 C jvj2/g� is weakly relatively compact in the space
L1.Œ0; T �IL2.T3�R3;M dx dv// for all T > 0. If .1Cjvj2/g is a limit point of this
family (along a sequence �n ! 0), then

“
T3�R3

g2M dv dx � lim
1

�2n
H.F�n jM/ :

Another important observation is the following lemma, which follows from the
elementary inequality

.1C z/ ln.1C z/ � z � z ln.1C z/ ; z > �1 :

Lemma 1. For each � > 0 and all t � 0,

H.F�jMF�/.t/ � D.F�/.t/ :

3.3.2 Step 2: The Modulated Relative Entropy

First observe that, for each vector field u 2 L2.T3/, one has

H.F�jM1;u;1/ D H.F�jMF�/CH.MF� jM1;u;� / ;

since MF� and M have the same total mass.
Let w � w.t; x/ 2 R3 be a vector field of class C1 on Œ0; T � � T3 satisfying

divx w D 0, but not necessarily the Euler motion equation. Then

H.F�jM.1;�w;1// D H.F�jM/C
“

T3�R3
F� ln

�
M

M.1;�w;1/

�
dx dv

D H.F�jM/C
“

T3�R3

1
2
.jv � �wj2 � jvj2/F�dx dv

D H.F�jM/C
“

T3�R3
. 1
2
�2jwj2 � �v � w/F�dx dv

D H.F�jM/C
Z

T3
�F� .

1
2
�2jwj2 � �uF� � w/dx :
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Apply first the local conservation laws implied by the BGK equation

�@t�F� C divx.�F�uF� / D 0 ;

�@t .�F�uF� /C divx

Z
R3

v˝2F�dv D 0 :

Using the operator E entering the definition of dissipative solutions, one has

@tw D E.w/ � .w � rx/w ;

and therefore

d

dt

Z
T3
�F� .

1
2
�2jwj2 � �uF� � w/dx

D
“

T3�R3

	rxw W .v � �w/˝2 � �E.w/ � .v � �w/
F�dx dv

D
“

T3�R3

	
˙.w/ W .v � �w/˝2 � �E.w/ � .v � �w/
F�dx dv ;

where we recall that

˙.w/ D 1
2
.rxw C .rxw/T / :

The core of the proof is the inequality stated in the next proposition.

Proposition 4. Let uin 2 C.T3/ satisfy div uin D 0; then for each test vector field
w 2 C1.Œ0; T � � T3IR3/ such that divx w D 0, one has

1

�2
H.F�jM.1;�w;1//.t/C 1

�3Cq

Z t

0

D.F�/ds � 1
2
kuin � w

ˇ̌
tD0k2L2

� 1

�2

Z t

0

“
T3�R3

˙.w/ W .v � �w/˝2F�dx dv

�1
�

Z t

0

“
T3�R3

E.w/ � .v � �w/F�dx dv :

This inequality is the analogue for the BGK equation of the weak-strong
uniqueness inequality for the Euler equation, i.e.

1
2
ku � wk2

L2
.t/ � 1

2
kuin � w

ˇ̌
tD0k2L2

C
Z t

0

k˙.w/kL1ku � wk2
L2
.s/ds C

Z t

0

.E.v/ju � v/L2.s/ds ;

leading to the notion of dissipative solution (after applying Gronwall’s inequality).
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More precisely, one has the following correspondences

• Velocity field

1

�

Z
R3

vF�dv $ u ;

• Modulated energy

1

�2
H.F�jM.1;�w;1//.t/$ 1

2
ku � wk2

L2
.t/ ;

• Modulated inertial term

1

�2

Z t

0

“
T3�R3

˙.w/ W .v � �w/˝2F�dx dv

$
Z t

0

k˙.w/kL1ku � wk2
L2
.s/ds :

It remains to control both terms on the right hand side of the inequality in the
proposition above in terms of the relative entropy and to conclude by Gronwall’s
lemma.

The last such term is disposed of without difficulty. We already know that

.1C jvj2/g� ! .1C jvj2/g weakly in L1.Œ0; T �IL1.T3 � R3IM dx dv// ;

with

g 2 L1.Œ0; T �IL2.T3 � R3IM dx dv// :

Therefore, one has the following limit.

Lemma 2. Let U WD hvgi; then divx U D 0 and

1

�

Z t

0

“
T3�R3

E.w/ � .v � �w/F�dx dv !
Z

T3
E.w/ � .U � w/dx

weakly in L1.Œ0; T �/ for all T > 0.
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3.3.3 Step 3: Controling the Modulated Inertial Term

In the case of the Euler equation, the contribution of the inertial term to the energy
balance, i.e. ˙.v/ W .u � v/˝2, is obviously controlled as follows:

j˙.v/ W .u � v/˝2j � k˙.v/kL1ku � vk2
L2
:

Whether the analogue of the modulated inertial term in the context of the BGK
equation can be controlled by the modulated relative entropy is more subtle. A major
difficulty in obtaining this type of control is the fact that the relative entropy is
subquadratic, unless the fluctuations of distribution function are already known to
be small (of order �).

However, this difficulty can be solved by using the entropy production as well as
the relative entropy. This control is explained in the next lemma, which is the key
argument in the proof.

Lemma 3. Under the same assumptions as in Theorem 14,

1

�2

Z t

0

“
T3�R3

˙.w/ W .v � �w/˝2F�dx dv ds

� Ck˙.w/kL1

Z t

0

1

�2
H.F�jM.1;�w;1//ds

C �.q�1/=2k˙.w/kL1

1

�qC3

Z t

0

D.F�/ds

C C�.q�1/=2k˙.w/kL1 :

The idea is to split the distribution function F� as

F� DMF� C .F� �MF�/ ;

and use both the entropy and entropy production bounds.

Proof. By definition of MF� , one has

“
T3�R3

˙.w/ W .v � �w/˝2MF�dx dv

D
Z

T3
˙.w/ W 	.uF� � �w/˝2 C 3�F�I



�F�dx

D
Z

T3
˙.w/ W .uF� � �w/˝2�F�dx :
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Notice that the 2nd equality follows from divx w D 0 so that

trace.˙.w// D divx w D 0 :

This term is compared with

H.MF� jM.1;�w;1// W D
Z

T3
.�F� ln �F� � �F� C 1/dx

C 1
2

Z
T3
�F� juF� � �wj2dx

C 3
2

Z
T3
�F� .�F� � ln �F� � 1/dx

� H.F�jM.1;�w;1// ;

(11)

so that

“
T3�R3

˙.w/ W .v � �w/˝2MF�dx dv

� 2k˙.w/kL1H.F�jM.1;�w;1// :

At this point, we seek to decompose the space of positions according to whether
or not the local hydrodynamic moments are O.1/ fluctuations of equilibrium.
Specifically

“
T3�R3

˙.w/ W .v � �w/˝2.F� �MF�/dx dv

D
“

A�.t/�R3
˙.w/ W .v � �w/˝2.F� �MF�/dx dv

C
“

B�.t/�R3
˙.w/ W .v � �w/˝2.F� �MF�/dx dv ;

where A�.t/ 	 T3 is defined as the set of x such that

max.j�F� .t; x/ � 1j; juF� � �wj.t; x/; j�F� .t; x/ � 1j/ � 1
2
;

while B�.t/ WD T3 nA�.t/.
Using the elementary inequality h.jzj/ � h.z/ for all z > �1, we see that,

on A�.t/
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1

4�2
jv � �wj2

ˇ̌
ˇ̌ F�
MF�

� 1
ˇ̌
ˇ̌

� 1

�.qC7/=2
h

�
F�

MF�

� 1
�
C 1

�.qC7/=2
h�.�.qC3/=2 1

4
jv � �wj2/

� 1

�.qC7/=2

�
F�

MF�

� 1
�

ln

�
F�

MF�

�
C �.q�1/=2h�. 1

4
jv � �wj2/

� �.q�1/=2
�

1

�qC3

�
F�

MF�

� 1
�

ln

�
F�

MF�

�
C h�. 1

4
jv � �wj2/

�
;

and

MF�.t; x; v/ �
3

2�3=2
e�.jv��wj� 1

2 /
2=3 ;

so that

1

�2

“
A�.t/�R3

˙.w/ W .v � �w/˝2.F� �MF�/dx dv

� 4�.q�1/=2
�

1

�qC3
k˙.w/kL1D.F�/C C1k˙.wkL1

�
:

On B�.t/

Z
R3

jv � �wj2F�dv D
Z

R3
jv � �wj2MF�dv

D �F� .juF� � �wj2 C 3�F� /

� C2�F� .juF� � �wj2 C 3.�F� � ln �F� � 1// ;

so that

“
B�.t/�R3

˙.w/ W .v � �w/˝2.F� �MF�/dx dv

� C2H.MF� jM.1;�w;1// � C2H.F�jM.1;�w;1// ;

in view of (11).

3.3.4 Step 4: Applying Gronwall’s Inequality

We start from the identity
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1

�2
H.F�jM.1;�w;1//.t/ D 1

�2
H.F�jM/

C 1

�2

“
T3�R3

F� ln

�
M

M.1;�w;1/

�
dx dv

� C in C 1
2

Z
T3
�F� jwj2dx � 1

�

Z
T3
�F�uF� � w dx ;

and use the conservation of mass to check that

1
2

Z
T3
�F� jwj2dx � kwk2L1

Z
T3
�F�dx D kwk2L1 :

The entropy control and Proposition 3 imply that

1

�
�F�uF� D

1

�

Z
vF�dv is bounded in L1.RCIL1.T3// :

Hence there exists a positive constant C such that

1

�2
H.F�jM.1;�w;1// � C :

Therefore, up to extracting a subsequence if needed, one has

1

�2
H.F�jM.1;�w;1//! Hw in L1.Œ0; T �/ weak-* ;

for each T > 0.
Applying Proposition 4 together with Lemmas 2 and 3 above, one finds that

Hw.t/ � Hw.0/C Ck˙.w/kL1

Z t

0

Hwds �
Z t

0

Z
T3
E.w/ � .U � w/dx ds :

(Notice that the entropy production ��.qC3/D.F�/ disappears in this scaling. It
enters only in the contribution of the set A�.t/ in step 3, and is multiplied by
the vanishing scaling factor �.q�1/=2 as explained above.) Gronwall’s inequality
implies that

Hw.t/ � Hw.0/ exp

�
C

Z t

0

k˙.w/kL1.s/ds

�

�
Z t

0

exp

�
C

Z t

s

k˙.w/kL1.
/d


�Z
T3
E.w/ � .U � w/.s; x/dx ds :
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Set

h�Œw�.t/ W D 1

�2

Z
T3

1
2
�F� juF� � �wj2.t; x/dx

D sup
b2Cb.T3IR3/

Z
T3

�
1

�
.uF� � �w/ � b � 1

2
jbj2

�
�F�dx

D F

�
�F� .t; �/; �F�

1

�
.uF� � �w/.t; �/

�
:

Observe that F is a jointly weakly lower semicontinuous and convex functional
on the class of bounded, vector valued Radon measures on T3. Besides

h�Œw�.t/ W D 1

�2

Z
T3

1
2
�F� juF� � �wj2.t; x/dx

� 1

�2
H.MF� jM.1;�w;1//.t/ � 1

�2
H.F�jM.1;�w;1//.t/ � C in :

By the Banach-Alaoglu theorem, possibly after extracting subsequences, one has

�F� .t; �/*1 ; �F�
1

�
.uF� � �w/.t; �/*.U � w/.t; �/

in the weak topology of measures on T3, while

h�Œw�.t/*hw.t/ � Hw.t/

in L1.Œ0; T �/ weak-*. Therefore

F Œ1; .U � w/.t; �/� � hw.t/ � Hw.0/ exp

�
C

Z t

0

k˙.w/kL1.s/ds

�

�
Z t

0

exp

�
C

Z t

s

k˙.w/kL1.
/d


�Z
T3
E.w/ � .U � w/.s; x/dx ds :

Observing that

F Œ1; .U � w/.t; �/� D 1
2

Z
T3

jU � wj2.t; x/dx

while

1

�2
H.M.1;�uin;1/jM.1;�w.0;	/;1//

D 1
2

Z
T3

juin.x/ � w.0; x/j2dx D Hw.0/ ;
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we conclude that

1
2

Z
T3

jU � wj2.t; x/dx

� 1
2

Z
T3

juin.x/ � w.0; x/j2dx exp

�Z t

0

Ck˙.w/kL1.s/ds

�

C
Z t

0

exp

�Z t

s

Ck˙.w/kL1.
/d


�Z
T3
E.w/ � .U � w/.s; x/dx ds :

In other words, U satisfies an inequality analogous to the one defining the notion
of dissipative solution—up to replacing the constant C with 2.

By the same argument as the one proving the uniqueness of classical solutions of
Euler’s equation within the class of dissipative solutions, setting w D u (the solution
of the Cauchy problem for the Euler equation with initial data uin defined on Œ0; T �/
for each T < T �), one has

1
2

Z
T3

jU � uj2.t; x/dx

�
Z t

0

exp
Z t

s

Ck˙.w/kL1.
/d


Z
T3
E.u/ � .U � u/.s; x/dx ds D 0 ;

since
Z

T3
E.u/ � .U � u/.s; x/dx D

Z
T3

�rxp � .U � u/.s; x/dx

D
Z

T3
p divx.U � u/.s; x/dx D 0 :

This completes the proof of Theorem 14.

4 Lecture 3: The Incompressible Navier-Stokes Limit

The incompressible Navier-Stokes limit is the only nonlinear regime where the fluid
dynamic limit of the Boltzmann equation is known to hold without any restriction on
the time interval on which the limit is valid, or on the size and regularity of the initial
distribution function. It connects two analogous theories of global weak solutions,
the Leray existence theory of weak solutions of the incompressible Navier-Stokes
equation, and the DiPerna-Lions theory of renormalized solutions of the Boltzmann
equation. This last lecture will give an idea of the proof of the fluid dynamic limit
in this regime.
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For the sake of simplicity, we consider only the Navier-Stokes motion equation,
without the drift-diffusion equation for the temperature. In other words, this lecture
is focussed on the following theorem, that is a slightly simpler variant of the
incompressible Navier-Stokes limit theorem presented in Lecture 1.

Theorem 15 (F. Golse-L. Saint-Raymond [48, 50]). Let F� be a family of renor-
malized solutions of the Cauchy problem for the Boltzmann equation with initial
data

F�
ˇ̌
tD0 D M.1;�uin.�x/;1/ ;

where uin 2 L2.R3/ satisfies divx uin D 0. For some subsequence �n ! 0, one has

1

�n

Z
R3

vF�n

�
t

�2n
;
x

�n
; v

�
dv ! u.t; x/ weakly in L1loc.RC � R3/ ;

where u is a Leray solution with initial data uin of

@tu C divx.u ˝ u/Crxp D 	�xu ; divx u D 0 :

The viscosity 	 is given by the same formula as in (8), recalled below:

	 D 1
5
D�.v ˝ v � 1

3
jvj2I / ;

where D is the quadratic functional

D.˚/D 1
8

•
R3�R3�S2

j˚ C ˚� � ˚ 0 � ˚ 0�j2j.v � v�/ � !jMM�dv dv�d! ;

and D� its Legendre dual.

We also recall that a Leray solution of the incompressible Navier-Stokes equation
is a divergence free vector field

u 2 C.RCIw � L2.R3// \ L2.RCIH1.R3//

such that

d

dt

Z
R3

u.t; x/ � w.x/dx C 	

Z
R3

rxu.t; x/ W rw.x/dx D
Z

R3
rw.x/ W u.t; x/˝ u.t; x/dx

in the sense of distributions on R�C for each divergence free vector field w in the
Sobolev space H1.R3/, together with the energy inequality

1
2

Z
R3

ju.t; x/j2dx C 	

Z
R3

jrxuj2dx � 1
2

Z
R3

ju.0; x/j2dx
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for all t � 0. The reader is referred to the original work of J. Leray [67] for more
details on this notion, together with [30] or Chap. 3 in [72].

4.1 Formal Derivation of the Incompressible Navier-Stokes
Equations from the Boltzmann Equation

4.1.1 The Rescaled Boltzmann Equation

The incompressible Navier-Stokes scaling for the Boltzmann equation assumes that
the Knudsen, Mach and Strouhal numbers satisfy Kn D Ma D Sh D � (in the
terminology introduced at the end of the Lecture 1) so that Re D 1 (by the von
Karman relation).

In other words, the assumption Kn D Sh D � means that, if F is the
solution of the Boltzmann equation, the incompressible Navier-Stokes limit involves
the rescaled distribution function F�.t; x; v/ WD F.t=�2; x=�; v/. This rescaled
distribution function satisfies the rescaled Boltzmann equation

�@tF� C v � rxF� D 1

�
C .F�/ :

Henceforth we set d2=2 D 1 (where d=2 is the molecular radius) in the definition
of the collision integral—in other words, the molecular radius is absorlbed in the
scaling throughout the present section.

On the other hand, the assumption Ma D � indicates that F� is sought as anO.�/
perturbation of the uniform Maxwellian equilibriumM WD M.1;0;1/, i.e. that one has

F�.t; x; v/ DM.v/G�.t; x; v/ ; G�.t; x; v/ D 1C �g�.t; x; v/ ;

with g� D O.1/ as � ! 0.
The proof of the incompressible Navier-Stokes limit of the Boltzmann equation

that we discuss below is not based on Hilbert’s expansion. As explained in Lecture 1,
Hilbert’s expansion truncated as in [24, 33] may fail to guarantee the positivity of
the distribution function, and may break down if the solution of the Navier-Stokes
equations loses regularity in finite time—a problem still open in the 3-dimensional
case at the time of this writing.

For that reason, a more robust moment method was proposed by Bardos-Golse-
Levermore in [9]. This method leads to a formal argument for the incompressible
Navier-Stokes limit that is very close to the structure of the complete proof. For that
reason, we first present this formal argument before sketching the proof itself.

In terms of the relative number density fluctuation g� , the scaled Boltzmann
equation becomes

�@tg� C v � rxg� C 1

�
L g� D Q.g�; g�/ :
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This form of the rescaled Boltzmann equation involves the collision integral
linearized at M and intertwined with the multiplication by M , denoted

L g WD �M�1DC .M/ � .Mg/ ;

together with the Hessian of the collision integral (also intertwined with the
multiplication by M ), denoted

Q.g; g/ WD 1
2
M�1C .Mg/ :

4.1.2 The Linearized Collision Integral

The explicit form of L is as follows:

L g.v/ WD
“

R3�S2
.g.v/C g.v�/ � g.v0/ � g.v0�//j.v � v�/ � !jM.v�/dv�d! :

Theorem 16 (D. Hilbert [59]). The linearized collision integral operator L is
a self-adjoint, nonnegative, Fredholm, unbounded operator on L2.R3IM dv/ with
domain

DomL D L2.R3I .1C jvj/M dv/

and nullspace

KerL D spanf1; v1; v2; v3; jvj2g :

4.1.3 Asymptotic Fluctuations

Multiplying the Boltzmann equation by � and letting � ! 0 suggests that

g� ! g as � ! 0 ; with L g D 0 :

By Hilbert’s theorem, g is an infinitesimal Maxwellian, meaning that g.t; x; v/ is of
the form

g.t; x; v/ D �.t; x/C u.t; x/ � v C 1
2
�.t; x/.jvj2 � 3/ : (12)

Notice that, in this case, g is parametrized by its own moments in the v variable,
since

� D hgi ; u D hvgi ; and � D h. 1
3
jvj2 � 1/gi : (13)
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This observation is important in the rigorous derivation of the incompressible
Navier-Stokes equations from the Boltzmann equation.

Henceforth, we systematically use the following notation.

Notation: for all � 2 L1.R3IM dv/, one denotes

h�i WD
Z

R3
�.v/M.v/dv :

4.1.4 The Incompressibility and Boussinesq Relations

The continuity equation (local conservation of mass) reads

�@t hg�i C divxhvg�i D 0 ;

and passing to the limit in the sense of distributions, we expect that

hvg�i ! hvgi D u ; and thus divxhvgi D divx u D 0 :

This is incompressibility condition in the Navier-Stokes equations.
Likewise, the local conservation of momentum takes the form

�@t hvg�i C divxhv ˝ vg�i D 0 :

Passing to the limit in the sense of distributions on both sides of the equality above,
we expect that

hv ˝ vg�i ! hv ˝ vgi D .�C �/I ;

(where the last equality follows from straightforward computations based on
formulas (12) and (13)) so that

divx..�C �/I / D rx.�C �/ D 0 :

The following slight variant of this argument provides insight into the next step
of this proof, namely the derivation of the Navier-Stokes motion equation.

Recall that the incompressible Navier-Stokes motion equation is

@tu C u � rxu � 	�xu D �rxp ;

and that it involves the term rxp as the Lagrange multiplier associated to the
constraint divx u D 0. Accordingly, we split the tensor v ˝ v into its traceless and
scalar component:

v ˝ v D 	
v ˝ v � 1

3
jvj2I 
C 1

3
jvj2I ;
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so that the local conservation of momentum becomes

�@t hvg�i C divxhAg�i C rxh 13 jvj2g�i D 0 ;

where

A.v/ D v ˝ v � 1
3
jvj2I :

The key observation here is that

A?KerL in L2.M dv/ I

see Appendix 2 (and especially Lemma 13).
Passing to the limit in the local conservation of momentum above in the sense of

distributions, we expect that

hAg�i ! hAgi D 0 since g.t; x; �/ 2 KerL for a.e. .t; x/ 2 RC � R3 :

On the other hand, by (13),

h 1
3
jvj2g�i ! h 1

3
jvj2gi D �C � :

Thus

divxhAgi C rxh 13 jvj2gi D rx.�C �/ D 0 :

If g 2 L1.RCIL2.R3IM dv dx//, this implies the Boussinesq relation

�C � D 0 ; so that g.t; x; v/ D u.t; x/ � v C �.t; x/ 1
2
.jvj2 � 5/ :

4.1.5 The Motion Equation

It remains to derive the Navier-Stokes motion equation. Following the last argument
in the previous section, we start from the local conservation of momentum in
the form

@t hvg�i C divx
1

�
hAg�i C rx 1

�
h 1
3
jvj2g�i D 0 :

As mentioned above, Akl?KerL for all k; l D 1; 2; 3 (see Lemma 13).
Applying the Fredholm alternative to the linearized collision integral L shows the
existence of a unique tensor field OA 2 Dom.L / such that

Akl D L OAkl ; and OAkl?KerL for all k; l D 1; 2; 3 :
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Since L is self-adjoint, one has

1

�
hAg�i D

�
1

�
g�L OA

�
D
�
OA1
�
L g�

�
D h OAQ.g�; g�/i � h OA.�@t C v � rx/g�i

! h OAQ.g; g/i � h OAv � rxgi

as � ! 0.
Since g is an infinitesimal Maxwellian and �; � satisfy the Boussinesq relation,

one has

g D u � v C � 1
2
.jvj2 � 5/ ;

so that

h OAv � rxgi D 1
2
h OA˝ Ai W D.u/C h OA˝ 1

2
.jvj2 � 5/vi � rx�

D 1
2
h OA˝ Ai W D.u/ since OA is even,

where

D.u/ WD rxu C .rxu/T � 2
3

divx uI

is the traceless deformation tensor of u. Notice that h OAjvj2i D 0 since OAkl?KerL
for all k; l D 1; 2; 3, so that

h OA˝ .v ˝ v/i D h OA˝ Ai :

It remains to compute the term h OAQ.g; g/i. This is done with the next lemma.

Lemma 4 (C. Cercignani [27], C. Bardos-F. Golse-C.D. Levermore [10]). Each
infinitesimal Maxwellian g 2 KerL satisfies the relation

Q.g; g/ D 1
2
L .g2/ :

Proof. Differentiate twice the relation C .M.�;u;�// D 0 with respect to �; u; � , and
observe that the range of the differential dM.�;u;�/ is equal to KerL .

With this observation, one has

h OAQ.g; g/i D 1
2
h OAL .g2/i D h

g

2
L OAi D 1

2
hAg2i

D 1
2
hA˝ Ai W 	u ˝ u � 1

3
juj2I 
 ;

using again the fact that L is self-adjoint and that
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hA˝ v ˝ vi D hA˝ Ai :

(Indeed Aij?KerL and therefore hAjvj2i D 0.)
Therefore

1

�
hAg�i ! 1

2
hA˝ Ai W 	u ˝ u � 1

3
juj2I 
 � 1

2
h OA˝ Ai W D.u/ :

Lemma 5. For all i; j; k; l 2 f1; 2; 3g, one has

hAijAkli D ıikıjl C ıilıjk � 2
3
ıijıkl ;

h OAijAkli D 	
	
ıikıjl C ıilıjk � 2

3
ıijıkl



;

where

	 D 1
10
h OA W Ai > 0

is the viscosity.

The proof of this Lemma will be given in Appendix 2.
Thus

1

�
hAg�i !

	
u ˝ u � 1

3
juj2I 
 � 	D.u/ :

Substituting this expression in the momentum conservation laws shows that, for
each � 2 C1

c .R
3/ such that div � D 0

d

dt

Z
R3

u.t; x/ � �.x/dx C 	

Z
D.u/.t; x/ W rx�.x/dx D

Z
r�.x/ W u ˝ u.t; x/dx

The divergence free condition divx u D 0 implies that

divx D.u/ D �xu Crx.divx u/ � 2
3
rx.divx u/ D �xu :

Equivalently,

@tu C divx.u ˝ u/ � 	�xu D 0 modulo gradient fields.

We conclude this section with the formula for 	 in the statement of Theorem 15.
Let the Dirichlet form for the linearized collision integral L be defined as follows:

D.˚/ WD 1
2
h˚ W L˚i :
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As explained in Lecture 1, the formula for the viscosity can be put in the form

	 D 1
5
D�.A/ ;

where D� designates the Legendre dual of D . Indeed, since D is a quadratic
functional defined on DomL ˝M3.R/ ' .DomL /9, one has

D�.˚/ D 1
2
h˚ W L �1˚i

for all ˚ 2 .KerL /?. Applying this to ˚ D A gives back the formula in Lemma 5.

4.2 Sketch of the Proof of the Incompressible Navier-Stokes
Limit of the Boltzmann Equation

The complete proof of the incompressible Navier-Stokes limit of the Boltzmann
equation is quite involved (see [48,50]). Therefore we only sketch the main steps in
the argument.

4.2.1 The Strategy

First we choose a convenient normalizing nonlinearity for the Boltzmann equation.
Pick � 2 C1.RC/, a nonincreasing function such that

�
ˇ̌
Œ0;3=2�

� 1 ; �
ˇ̌
Œ2;C1/

� 0 I and set O�.z/ WD d

dz
..z � 1/�.z// :

The Boltzmann equation is renormalized relatively to M as follows:

@t .g���/C 1

�
v � rx.g���/ D 1

�3
O��Q.G�;G�/ ;

where

�� WD �.G�/ while O�� WD O�.G�/ :

We recall the notation Q.G;G/ DM�1C .MG/.
Renormalized solutions of the Boltzmann equation satisfy the local conservation

law of mass:

�@t hg�i C divxhvg�i D 0 :
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The entropy bound and Young’s inequality imply that

.1C jvj2/g� is relatively compact in w � L1loc.dt dxIL1.M dv// :

Therefore, modulo extraction of a subsequence,

g� ! g weakly in L1loc.dt dxIL1.M.1C jvj2/dv// :

Hence

hvg�i ! hvgi DW u weakly in L1loc.RC � R3/ :

Passing to the limit in the continuity equation leads to the incompressibility
condition:

divx u D 0 :

Since high velocities are a source of difficulties in the hydrodynamic limit, we
shall use a special truncation procedure, defined as follows. Pick K > 6 and set
K� D Kj ln �j; for each function � � �.v/, define

�K� .v/ WD �.v/1jvj2�K� :

We recall that our goal is to pass to the limit in the local conservation law of
momentum. Multiplying both sides of the scaled, renormalized Boltzmann equation
by each component of vK� , one finds that

@t hvK�g���i C divx F�.A/Crx 1
�
h 1
3
jvj2K�g���i D D�.v/ ;

where
8̂
<
:̂

F�.A/ WD 1
�
hAK�g���i ;

D�.v/ WD 1

�3

˝˝
vK� O��.G0

�G
0
�� �G�G��/

˛˛
:

We recall that

h�i D
Z

R3
�.v/M dv ;

and introduce a new element of notation

˝˝
 
˛˛ WD

•
R3�R3�S2

 .v; v�; !/dm.v; v�; !/ ;
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where

dm.v; v�; !/ WD j.v � v�/ � !jM dvM�dv�d! :

Our goal is to prove that, modulo extraction of a subsequence,

hvK�g���i ! hvgi DW u weakly in L1loc.RC � R3/ ;

D�.v/! 0 strongly in L1loc.RC � R3/ ; and

P .divx F�.A//! P divx.u
˝2/ � 	�xu weakly in L1loc.RC;W �s;1

loc .R3// ;

for s > 1 as � ! 0, where P denotes the Leray projection, i.e. the orthogonal
projection on divergence-free vector fields in L2.R3/.

See Sect. 2.4 in [50] for the missing details.

4.2.2 Uniform A Priori Estimates

The only uniform a priori estimate satisfied by renormalized solutions of the
Boltzmann equation comes from the DiPerna-Lions entropy inequality:

H.F�jM/.t/C 1

�2

Z t

0

Z
R3

•
R3�R3�S2

d.F�/j.v�v�/�!jdv dv�d! dx ds

� H.F in
� jM/ D 1

2
�2kuink2

L2
;

where the entropy production integrand is denoted

d.f / WD 1
4
.f 0f 0� � ff�/ ln

�
f 0f 0�
ff�

�
:

We also recall the following elementary, pointwise inequalities:

.
p
Z � 1/2 � Z lnZ �Z C 1 ; 4.

p
X �p

Y /2 � .X � Y / ln.X=Y / ;

for all X; Y;Z > 0.
With the DiPerna-Lions entropy inequality, and the pointwise inequalities above,

one gets the following bounds that are uniform in �:

Z
R3
h.
p
G� � 1/2idx � C�2 ;

Z C1

0

Z
R3

˝˝ �p
G0
�G

0
�� �

p
G�G��

�2 ˛˛
dx dt � C�4 :

(14)

This is precisely Proposition 2.3 in [50].
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4.2.3 Vanishing of Conservation Defects

Since renormalized solutions of the Boltzmann equation are not known to satisfy the
local conservation laws of momentum and energy, one has to consider instead the
local conservation laws of moments of renormalized distribution functions, trun-
cated at high velocities, modulo conservation defects. The idea is to prove that the
conservation defects vanish in the hydrodynamic limit. In other words, even if the
local conservation of momentum and energy are not known to be satisfied by
renormalized solutions of the Boltzmann equation, they are satisfied after passing
to the hydrodynamic limit.

This approach was proposed for the first time in [12]. The procedure for proving
the vanishing of conservation defects was formulated in essentially the most general
possible setting in [45], and applied to the acoustic and Stokes-Fourier limits. The
statement below is taken from [50], it is more general and slightly less technical
than the analogous result in [48].

Proposition 5. The conservation defect

D�.v/ WD 1

�3

˝˝
vK� O��.G0

�G
0
�� �G�G��/

˛˛

satisfies

D�.v/! 0

in L1loc.RC � R3/ as � ! 0.

This is Proposition 5.1 in [50].

Proof. Split the conservation defect as D�.v/ D D1
�.v/C D2

�.v/ with

D1
�.v/ WD

1

�3

˝˝
vK� O��

�p
G0
�G

0
�� �

p
G�G�

�2 ˛˛
;

D2
�.v/ WD

2

�3

˝˝
vK� O��

�p
G0
�G

0
�� �

p
G�G�

�p
G�G�

˛˛
:

That D1
�.v/! 0 follows from the entropy production estimate.

Setting

�� WD 1

�2

�p
G0
�G

0
�� �

p
G�G�

�p
G�G� ;

we further split D2
�.v/ as

D2
�.v/ D� 2

�

˝˝
v1jvj2>K� O����

˛˛C 2

�

˝˝
v O��.1 � O��� O� 0� O���/��

˛˛

C 1

�

˝˝
.v C v1/ O�� O��� O� 0� O�����

˛˛
:
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The first and third terms are mastered by the entropy production bound and classical
estimates on the tail of Gaussian distributions. See Lemma 5.2 in [50] and the
discussion on pp. 530–531.

Sending the second term to 0 requires knowing that

.1C jvj/
�p

G� � 1
�

�2
is uniformly integrable on Œ0; T � �K � R3

for the measure dt dxM dv, for each T >0 and each compact K	R3. See [50] on
pp. 531–532 for the (rather involved) missing details.

4.2.4 Asymptotic Behavior of the Momentum Flux

We recall that the momentum flux is defined by the formula

F�.A/ D 1
�
hAK�g���i :

Proposition 6. Denoting by˘ theL2.M dv/-orthogonal projection on KerL , one
has

F�.A/ D 2

�
A

�
˘

p
G� � 1
�

�2 �
� 2

�
OA 1
�2
Q.
p
G�;

p
G�/

�
C o.1/L1loc.dt dx/ :

This is Proposition 6.1 in [50].
The proof is based upon splitting F�.A/ as

F�.A/ D
�
AK���

�p
G� � 1
�

�2 �
C 2

�

�
AK���

p
G� � 1
�

�
;

and the uniform integrability of .1C jvj/
�p

G��1
�

�2
, which implies in turn that

lim
�!0






p
G� � 1
�

�˘
p
G� � 1
�






L2loc.dt dxIL2..1Cjvj/M dv//

D 0 :

By the entropy production bound, up to extraction of a subsequence

1

�2

�p
G0
�G

0
�� �

p
G�G�

�
! q weakly in L2.dt dx dm/ :

Passing to the limit in the scaled, renormalized Boltzmann equation:

“
R3�S2

qj.v � v�/ � !jM�dv�d! D 1
2
v � rxg D 1

2
A W rxu C odd function of v :
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Since
p
G��1
�

' 1
2
g��� , one eventually obtains

F�.A/ D A.hvK�g���i/ � 	.rxu C .rxu/T /C o.1/w�L1loc.dt dx/ :

At this point, we recall that A.u/ WD u ˝ u � 1
3
juj2I , while

hvK�g���i ! u weakly in L1loc.RC � R3/ :

4.3 Strong Compactness

Because the Navier-Stokes equation is nonlinear, weak compactness of truncated
variants of the relative fluctuations of the distribution functions is not enough to
prove the fluid dynamic limit. Proving that some appropriate quantities, such as
hvK�g���i, defined in terms of renormalized solutions of the Boltzmann equation
are relatively compact in the strong topology of L2 is an essential step in order to
pass to the limit in the quadratic term A.hvK�g���i/.

For that purpose, we appeal to “velocity averaging” theorems, a special class
of regularity/compactness results on velocity averages of solutions of kinetic
equations—see [1, 36, 51, 52].

Before discussing these results in detail, we recall the following elementary
observations.

It is well known that, if F � F.x/ and R � R.x/ satisfy both F;R 2 L2.RN /

and �F D R, then F belongs to the Sobolev space H2.RN /—in other words,
knowing that

F and
NX
iD1

@2xi F 2 L2.RN / implies that @xi @xj F 2 L2.RN / for i; j D 1; : : : ; N :

The analogous question with the advection operator in the place of the Laplacian
is as follows: given G and S 2 Lp.RN � RN / such that v � rxG D S , what is
the regularity of G in the x-variable? For instance, does this imply that the function
G 2 Lp.RN

v IW 1;p.RN
x //?

This question is answered in the negative.
For instance, in space dimension N D 2, take � D 1A with A measurable and

bounded, and setG.x; v/ D �.x1v2�x2v1/1jvj�1. Obviously the functionG satisfies
v �rxG D 0 andG 2 L1.R2�R2/ so thatG 2 Lploc.R

N �RN / for all 1 � p <1.
Yet G does not belong to W s;p.R2/ for a.e. v 2 R2.

Of course, the reason for the difference between both situations is explained by
the fact that the Laplacian is an elliptic operator, while the advection operator is
hyperbolic.
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4.3.1 Velocity Averaging

The counterexample above suggests that the regularity of G is not the interesting
issue to be discussed in the first place. Instead of considering the regularity of G
itself, one should study the regularity of velocity averages of G, i.e. of quantities of
the form

Z
R3
G.x; v/�.v/dv

with smooth and compactly supported test function �.
The first result in this direction is the following theorem (see also [1, 51]).

Theorem 17 (F. Golse-P.-L. Lions-B. Perthame-R. Sentis [52]). Assume that G
and S both belong to L2.RN

x � RN
v / and that v � rxG D S . Then, for each � 2

Cc.RN /, the velocity average

A�ŒG� W x 7!
Z

RN
G.x; v/�.v/dv

satisfies A�ŒG� 2 H1=2.RN /, with a bound of the form

kA�ŒG�k PH1=2.RNx /
� CkGk1=2

L2.RN�RN /kv � rxGk1=2
L2.RN�RN / :

In this statement, the notation k�k PHs designates the homogeneousHs seminorm:

kf k PHs.RN / WD
�“

RN�RN

jf .x/ � f .y/j2
jx � yjNC2s dx dy

�1=2
; 0 < s < 1 :

In the context of the incompressible Navier-Stokes limit of the Boltzmann
equation, the situation is slightly different from the one in the theorem above.
Specifically, one has the following controls:

�p
�˛ CG� � 1

�

�2
is locally uniformly integrable on RC � R3 � R3 ;

.�@t C v � rx/
p
�˛ CG� � 1

�
is bounded in L1loc.RC � R3 � R3/ :

Mimicking the proof of the velocity averaging theorem above, one deduces from
these assumptions that, for each T > 0 and each compact C 	 R3,
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Z T

0

Z
C

jhvK�g���i.t; x C y/ � hvK�g���i.t; x/j2dx dt ! 0

as jyj ! 0 ; uniformly in � > 0 :

(15)

See Sect. 4 in [50], especially Proposition 4.4.

4.3.2 Filtering Acoustic Waves

The velocity averaging method presented in the previous section provides compact-
ness of hvK�g���i in the x variable. It remains to prove compactness in the time
variable. Observe that

@tP hvK�g���i D P.D�.v/ � divx F�.A// is bounded in L1loc.RC;W �s;1
loc .R3//

(Indeed, we recall that D�.v/! 0 while F�.A/ is bounded in L1loc.RC � R3/.).
Together with the compactness in the x-variable that follows from velocity

averaging, this implies that

P hvK�g���i ! u in L2loc.RC � R3/ :

We also recall that

hvK�g���i ! u weakly in L2loc.RC � R3/ :

However, we do not seek to prove that

hvK�g���i ! u strongly in L2loc.RC � R3/ :

Instead, we prove that

P divx
	hvK�g���i˝2
! P divx

	
u˝2



in D 0.R�C � R3/ as � ! 0 :

This is discussed in detail in Sect. 7.2.3 of [50]. Observe that

�@t hvK�g���i C rxh 13 jvj2K�g���i ! 0 in L1loc.RCIW �1;1
loc .R3// ;

�@t h 13 jvj2K�g���i C divxh 53vK�g���i ! 0 in L1loc.RCIW �1;1
loc .R3// ;

as � ! 0. Setting rx�� D .I � P /hvK�g���i, the system above becomes

�@trx�� Crxh 13 jvj2K�g���i ! 0 in L1loc.RCIW �s;1
loc .R3// ; s > 1 ;

�@t h 13 jvj2K�g���i C 5
3
�x�� ! 0 in L1loc.RCIW �1;1

loc .R3// :
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At this point, we apply the following elegant observation.

Lemma 6 (P.-L. Lions-N. Masmoudi [73]). Let c 6D 0 and let �� and rx � be
bounded families in L1

loc.RCIL2loc.R
3// such that

8̂
<̂
ˆ̂:
@t�� C 1

�
�x � D 1

�
˚� ;

@trx � C c2

�
rx�� D 1

�
r�� ;

where

˚� and r�� ! 0 strongly in L1loc.RCIL2loc.R
3//

as � ! 0. Then

P divx..rx �/˝2/ and divx.��rx �/! 0

in the sense of distributions on R�C � R3 as � ! 0.

In view of the uniform in time modulus of L2 continuity (15), the Lions-
Masmoudi argument can be applied with �� in the place of  � after regularization
in the x variable. Eventually, one finds that

P divx..rx��/˝2/! 0 in D 0.R�C � R3/ :

On the other hand, the limiting velocity field is divergence-free and therefore

rx�� ! 0 weakly in L2loc.RC � R3/ as � ! 0 :

Splitting

P divx
�
hvK�g���i˝2

�
D P divx

�
.P hvK�g���i/˝2

�
C P divx .P hvK�g���i ˝ rx��/

C P .rx�� ˝ P hvK�g���i/C P divx
�
.rx��/˝2

�

The last three terms vanish with � while the first converges to P divx.u˝2/ since
P hvK�g���i ! u strongly in L2loc.dt dx/.

The interested reader is referred to Sect. 7.3.2 of [50] for the missing details.

4.4 The Key Uniform Integrability Estimates

Eventually, in view of the discussion above, everything is reduced to obtaining the
uniform integrability of the family
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�p
G� � 1
�

�2
.1C jvj/ on Œ0; T � �K � R3 ;

for each compactK 	 R3 and each T > 0. This is the main objective of the present
section, stated in the proposition below. This is a (slightly easier) variant of some
analogous control on the relative fluctuations of distribution function, identified but
left unverified in [11].

Proving this uniform integrability statement remained the main obstruction in
deriving Leray solutions of the Navier-Stokes equation from renormalized solutions
of the Boltzmann equation, after a sequence of important steps in the understanding
of the limit, such as [73] (which explained how to handle oscillations in the time
variable), and [12,45] which reduced the task of controlling conservation defects to
the uniform integrability result stated below.

Therefore, obtaining this uniform integrability property remained the only
missing step for a complete proof of the incompressible Navier-Stokes limit of the
Boltzmann equation. The arguments leading to this uniform integrability property
were eventually found in [48]. They involved a refinement of velocity averaging
techniques adapted to the L1 setting [47].

Proposition 7 (F. Golse-L. Saint-Raymond [48, 50]). For each T > 0 and each

compact K 	 R3, the family
�p

G��1
�

�2
.1C jvj/ is uniformly integrable on the set

Œ0; T � �K � R3.

This proposition is really the core of the proof of the incompressible Navier-
Stokes limit of the Boltzmann equation in [48, 50]. It involves two main ideas.

4.4.1 Idea No. 1: Uniform Integrability in the v Variable

First we must define this notion of “uniform integrability in one variable” for
functions of several variables.

Definition 4. A family of functions �� � ��.x; y/ 2 L1x;y.d	.x/d�.y// is
uniformly integrable in the y-variable for the measure 	˝ � if and only if

Z  
sup
�.A/<˛

Z
A

j��.x; y/jd�.y/
!
d	.x/! 0 as ˛ ! 0 uniformly in � :

The following observation is a first step in the proof of the proposition above.

Lemma 7. For each compact K 	 R3, each T > 0 and each p 2 Œ0; 2/, the family

�p
G� � 1
�

�2
.1C jvj/p
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is uniformly integrable in the v variable on Œ0; T � � K � R3 for the measure
dt dxM dv.

This is Proposition 3.2 in [50] (see also Lemma 3.1 in that same reference).

Proof. Instead of the hard sphere collision kernel j.v�v�/�!j, consider the truncated
kernel

j.v � v�/ � !j
1C jv � v�j :

Denote by QL and QQ the operators analogous to L and Q respectively with the
truncated kernel instead of the original hard sphere kernel.

Expanding the quadratic collision integral as follows

QQ
�p

G�;
p
G�

�
D QQ

�
1C �

p
G� � 1
�

; 1C �

p
G� � 1
�

�

D �� QL
�p

G� � 1
�

�
C �2 QQ

�p
G� � 1
�

;

p
G� � 1
�

�
;

we arrive at the formula

QL
�p

G� � 1
�

�
D � QQ

�p
G� � 1
�

;

p
G� � 1
�

�
� 1

�
QQ
�p

G�;
p
G�

�
:

One can prove that QL is a bounded Fredholm self-adjoint operator on L2.M dv/
with Ker QL D KerL D spanf1; v1; v2; v3; jvj2g essentially by the same argument
as Hilbert’s in Theorem 16. Therefore, QL satisfies the spectral gap estimate

kL �kL2.M dv/ � ck� �˘�k2
L2.M dv/

for some constant c > 0 and for all � 2 L2.R3IM dv/, where we recall that ˘
designates the L2.M dv/-orthogonal projection on Ker QL . On the other hand, the
first term on the right hand side of this equality is estimated by using the following
bound (see [53]):

k QQ.f; f /kL2.M dv/ � Ckf k2
L2.M dv/ :

Putting all these inequalities together, we find that

c






p
G� � 1
�

�˘
p
G� � 1
�






2

L2.M dv/

�




 QL

�p
G� � 1
�

�




L2.M dv/

� C�






p
G� � 1
�






2

L2.M dv/

C 1

�
k QQ

�p
G�;

p
G�

�
kL2.M dv/ :
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The second term on the right hand side is mastered by the entropy production bound,
i.e. the second inequality in (14). Eventually, one arrive at the estimate

c






p
G� � 1
�

�˘
p
G� � 1
�






2

L2.M dv/

� O.�/L2t;x C C�






p
G� � 1
�






2

L2.M dv/

This bound tells us that the quantity
p
G��1
�

stays close in L2.M dv/ norm to its

associated infinitesimal Maxwellian ˘
p
G��1
�

, which is both smooth and rapidly
decaying in the variable v.

Observe that the uniform integrability property stated in the lemma involves the
weight .1C jvj/p . The idea is to start from the decomposition

.1C jvj/p
�p

G� � 1
�

�2
D .1C jvj/p

p
G� � 1
�

˘

p
G� � 1
�

C .1C jvj/p
p
G� � 1
�

�p
G� � 1
�

�˘
p
G� � 1
�

�

The first term on the right hand side is easily controlled because˘˘
p
G��1
�

grows at
most quadratically as jvj ! 1. Estimating the second term requires more technical
arguments involving in particular the generalized Young inequality for the convex
entropy integrand h.z/ WD .1C z/ ln.1C z/� z already used in Lecture 2 (see Step 1
in the proof of the incompressible Euler limit of the BGK equation). The interested
reader is invited to read the complete proof of Proposition 3.2 in [50].

4.4.2 Idea No. 2: A L1 Variant of Velocity Averaging

The exact analogue of the velocity averaging theorem (Theorem 17) above would
be the following statement:

“Let Gn be a bounded sequence in L1.RN
x � RN

v / such that Sn WD v � rxGn is
bounded inL1.RN

x �RN
v /. Then the sequence A�ŒGn� is strongly relatively compact

in L1loc.R
N
x / for each � 2 Cb.RN /.”

Unfortunately, this statement is wrong, as shown by the following counterexam-
ple (see counterexample 1 in [52]).

Let N > 1 and let  2 C1
c .R

N / satisfy

 � 0 on RN ; and
Z

RN
 .z/d z D 1 :

Let v0 6D 0, and consider the sequence �n.x; v/ D n2N .nx/ .n.v � v0//.
Obviously

k�nkL1.RN�RN / D 1 ; and �n ! ı.0;v0/ in D 0.RN � RN /
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as n! 1. Let ˚n � ˚n.x; v/ be defined by the formula

˚n.x; v/ WD
Z 1

0

e�t�n.x � tv; v/dt ;

so that

˚n C v � rx˚n D �n :

In particular, one has

k˚nkL1.RN�RN / � 1 ; so that kv � rx˚nkL1.RN�RN / � 2 :

Yet the explicit formula above for ˚n shows that A1Œ˚n� ! � in D 0.RN � RN / as
n! 1, where � is the Radon measure defined by the formula

h�; �i WD
Z 1

0

e�t�.�tv0/dt :

In particular, � is a Borel probability measure concentrated on a half-line, which is
therefore not absolutely continuous with respect to the Lebesgue measure if N � 2.
This excludes the possibility that any subsequence of A1Œ˚n� might converge in
L1loc.R

N / for the strong topology.
The appropriate generalization to the L1 setting of the velocity averaging

theorem is as follows.

Theorem 18 (F. Golse-L. Saint-Raymond [47]). Let fn � fn.x; v/ be a bounded
sequence in L1loc.R

N � RN / such that v � rxfn is also bounded in L1loc.R
N � RN /.

Assume that 1jxjCjvj<Rfn is uniformly integrable in v for each R > 0. Then

• 1jxjCjvj<Rfn is uniformly integrable (in x; v) for each R > 0, and
• For each R > 0, and for each test function � 2 L1.RN

v / such that �.v/ D 0 for
a.e. v 2 RN satisfying jvj > R, the sequence of averages

A�Œfn� W x 7!
Z
fn.x; v/�.v/dv

is relatively compact in L1loc.R
N /.

Proof. Let us prove that the sequence of averages A�Œfn� is locally uniformly
integrable. Without loss of generality, one can assume that both fn � 0 and � � 0.

Let A be a measurable subset of RN of finite Lebesgue measure. Let � �
�.t; x; v/ be the solution of the Cauchy problem

@t�C v � rx� D 0 ; �.0; x; v/ D 1A.x/ :
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Clearly the solution � of this Cauchy problem is of the form �.t; x; v/ D 1Ax.t/.v/.
(Indeed, � takes the values 0 and 1 only.) On the other hand,

jAx.t/j D
Z

RN
�.t; x; v/dv D

Z
RN

1A.x � tv/dv D jAj
tN

:

(This is the basic dispersion estimate for the free transport equation.)
Set

(
gn.x; v/ WD fn.x; v/�.v/ ; and

hn.x; v/ WD v � rxgn.x; v/ D �.v/.v � rxfn.x; v// :

Both gn and hn are bounded in L1.RN �RN /, while gn is uniformly integrable in v.
Observe next that

Z
A

Z
gn dv dx D

Z
RN

Z
Ax.t/

gn dv dx �
Z t

0

“
RN�RN

hn.x; v/�.s; x; v/dx dv ds :

(To see this, integrate by parts in the second term on the right hand side.)
The second integral on the right hand side is O.t/ sup khnkL1.RN�RN / and can be

made less than � by choosing t > 0 small enough. With t > 0 chosen in this way,
observe that jAx.t/j ! 0 as jAj ! 0 by the dispersion estimate above. Hence the
first integral on the right hand side vanishes by uniform integrability in v.

A preliminary result in this direction was obtained in [86]—see also Proposi-
tion 6 in [52] in the case where the assumption of uniform integrability in the v
variable is replaced with the assumption of the type

fn C v � rxfn bounded in L1.RN
x I .Lp.RN

v // with p > 1/ :

5 Conclusion

There are several other problems on the fluid dynamic limits of the kinetic theory of
gases which have not been discussed in these lectures.

Boundary value problems are one such class of problems. The theory of
renormalized solutions of the boundary value problem for the Boltzmann equation
involves significant additional difficulties not present in the case of the Cauchy
problem in the whole Euclidean space or in the torus. These difficulties are due to
the nonlocal character (in the v variable) of most of the physically relevant boundary
conditions in the kinetic theory of gases. The interaction of the renormalization
procedure with the boundary condition was fully understood in a rather remarkable
paper by S. Mischler [78]. The fluid dynamic limits of boundary value problems for
the Boltzmann equation are reviewed in [88] (see also [77] for a thorough discussion
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of the Stokes limit of the Boltzmann equation in the presence of boundaries). See
also [15, 44] for a discussion of the incompressible Euler limit, also in the presence
of boundaries.

We also refer to [93] for a discussion of fluid dynamic limits of the Boltzmann
equation in the presence of boundaries in terms of a modified analogue of the Hilbert
expansion involving various kinds of boundary layer terms. These boundary layers
include in particular Knudsen layers, matching the first terms in Hilbert’s expansion
with the boundary data—which may fail to be compatible with the dependence in
the velocity variable of the various terms in Hilbert’s expansion. The mathematical
theory of Knudsen layers has been treated in a series of articles [8, 13, 31, 41, 96].

In these lectures, we have systematically considered the case of a hard sphere gas
for simplicity. Of course this choice is very legitimate in view of Lanford’s theorem
[65], showing how the Boltzmann equation for a hard sphere gas can be derived
rigorously from Newton’s second law applied to each gas molecule. However, more
realistic applications may involve polyatomic gases with several internal degrees
of freedom, mixture of gases, possibly with species having very different molecular
masses, reacting flows: : : Such problems obviously involve more scaling parameters
(mass ratio, reaction speeds: : :) than the simple situations considered in the present
notes. An interesting example is the case of the diffusion of a gas with very light
molecules in another gas with very heavy molecules assumed to be at rest—in
other words at zero temperature. This case, known as the Lorentz gas—see for
instance Chap. 1, § 11 in [69]—leads to completely different descriptions even at
the level of kinetic theory depending on whether the heavy particles are distributed
at random, or are located at the vertices of a lattice in the Euclidean space (see
[37] for the random case, and [21, 25, 26, 40, 76] for the periodic case). In the case
where the heavy particles are distributed at random, the kinetic equation obtained
in [37] is an example of a class of models known as the linear Boltzmann equation,
and its hydrodynamic limit is governed by a linear diffusion equation (i.e. the heat
equation): see [7, 66, 82].

There also remain several outstanding open problems in the context of fluid
dynamic limits of the kinetic theory of gases.

First, it would be important to have a proof of the compressible Euler limit of
the Boltzmann equation that would not be limited by the regularity of the solution
of the target system as in the work of Caflisch or Nishida described in Lecture 1.
Of course, this would require having an adequate existence theory of global weak
solutions of the compressible Euler system. This is of course a formidable problem
in itself, which may not necessarily be directly related to kinetic models. At the
time of this writing, global existence of weak solutions of the compressible Euler
system has been proved in space dimension 1, for all bounded initial data with small
total variation, by using Glimm’s scheme [38, 75]. Whether such solutions can be
obtained as limits of solutions of the Boltzmann equation is a difficult open problem.

We have mentioned the case of “ghost effects” in Lecture 1. While the formal
asymptotic methods leading to these fluid dynamic equations is well understood
by now (see for instance Chap. 3.3 of [94]), complete mathematical justifications
of these limits are still missing. Even the mathematical theory of the limiting PDE
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systems describing ghost effects, which involve strongly nonlinear terms, remains
to be done.

Finally, we should mention that fluid dynamic limits of the Boltzmann equation
should also be investigated in the regime of steady solutions. These are important
for applications, since steady solutions describe flows in a permanent regime.
Unfortunately the theory of steady solutions of the Boltzmann equation is much
less well understood than that of the evolution problem—see [2, 57, 58]. Formal
results on fluid dynamic limits of steady solutions of the Boltzmann equation are
discussed in [93].

Appendix 1: On Isotropic Tensor Fields

In this section, we have gathered several results bearing on isotropic tensor fields
that are used in Lectures 1 and 3.

On the Structure of Isotropic Tensor Fields

Let T W RN ! .RN /˝m be a tensor field on the N -dimensional Euclidean space
RN , endowed with the canonical inner product (i.e. the one for which the canonical
basis is orthonormal). The tensor field T is said to be isotropic if

T .Qv/ D Q � T .v/ ; for each v 2 RN and each Q 2 ON.R/ :

Here, the notationA �
 designates the action of the matrixA 2MN.R/ on the tensor

 2 .RN /m defined by

A � .v1 ˝ : : :˝ vm/ D .Av1/˝ : : :˝ .Avm/ :

Lemma 8. Let T W RN ! .RN /˝m be an isotropic tensor field on RN .

• If m D 0, then T is a radial real-valued function, i.e. T is of the form

T .�/ D 
.j�j/ ; � 2 RN ;

where 
 is a real-valued function defined on RC.
• If m D 1, then T is of the form

T .�/ D 
.j�j/� ; � 2 RN ;

where 
 is a real-valued function defined on RC.
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• If m D 2 and T .�/ is symmetric5 for each � 2 RN , then T is of the form

T .�/ D �1.j�j/I C �2.j�j/�˝2 ; � 2 RN :

Proof. We distinguish the cases corresponding to the different values of m.
Case m D 0. In that case T W RN ! R satisfies T .Q�/ D T .�/ for all Q 2

ON.R/. Let e1 be the first vector in the canonical basis of RN . For each � 2 RN ,
there exists Q 2 ON.R/ such that Q� D j�je1. Thus T .�/ D T .j�je1/ so that T is
a function of j�j only, i.e. there exists 
 W RC ! R such that T .�/ D 
.j�j/.

Case m D 1. In that case T W RN ! RN satisfies

T .Q�/ D QT.�/ for each Q 2 ON .R/ :

For � D 0, specializing the identity above toQ D �I , one has T .0/ D �T .0/ D 0.
For � 6D 0, let Q run through the group ON.R/� of orthogonal matrices leaving

� invariant. This group is isomorphic to the set of orthogonal linear transformations
on .R�/?. Thus, given �1 6D �2 2 .R�/? such that j�1j D j�2j, there exists Q 2
ON.R/� such that Q�1 D �2, i.e. the subgroup ON.R/� acts transitively on the
spheres of .R�/? centered at 0. Since

QT.�/ D T .�/ for each Q 2 ON.R/� ;

setting e� D �=j�j, one has

Q
	
T .�/ � .e� � T .�//e�


 D T .�/ � .e� � T .�//e� for each Q 2 ON.R/�
and since T .�/ � .e� � T .�//e�?� we conclude6 that

T .�/ � .e� � T .�//e� D 0 :

In other words, T .�/ D t .�/� for all � 6D 0, with t .Q�/ D t .Q�/ for all � 2 RN

and Q 2 ON.R/. One concludes with the result for the case m D 0.

5Consider the endomorphism of .RN /˝2 defined by

u ˝ v 7! .u ˝ v/� D v ˝ u :

An element T of .RN /˝2 is said to be symmetric if and only if T � D T .
6Let G be a subgroup of ON .R/ and V be a linear subspace of RN . Assume that G leaves V
invariant, i.e. gV 
 V for each g 2 G, and that G acts transitively on the spheres of V centered
at 0, i.e. if for each v1; v2 2 V such that jv1j D jv2j, there exists g 2 G satisfying gv1 D v2.
Then, the only vector v 2 V such that gv D v for each g 2 G is v D 0. Indeed, if v 6D 0, one has
jvj D j � vj and therefore there exists g 2 G such that gv D �v 6D v.
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Casem D 2. First we use the canonical identification .RN /˝2 'MN.R/ defined
by the formula .v ˝ w/� WD .w � �/v for each v;w; � 2 RN . In this way, the tensor
Q � .v ˝ w/ D .Qv/˝ .Qw/ is identified with Q.v ˝ w/QT .

With this identification T W RN ! .RN /˝2 satisfies

T .�/ D T .�/T and T .Q�/ D Q � T .�/ D QT.�/QT for each Q 2 ON.R/ :
The case � D 0 is obvious: the symmetric matrix with real entries T .0/ satisfies

T .0/ D QT.0/QT for all Q 2 ON.R/. Since T .0/ is diagonalizable and possesses
an orthonormal basis of eigenvectors, T .0/ must be diagonal (take Q to be the
matrix whose columns form an orthonormal basis of eigenvectors of T .0/). If T .0/
is not of the form �I , let u and v to be unitary eigenvectors of T .0/ associated
to different eigenvalues, taking Q to be the rotation of an angle ˙�

4
in the plane

Ru ˚ Rv leads to a contradiction, since QT.0/QT is not diagonal.
Let � 6D 0, and consider the vector field S defined by S.�/ WD T .�/ � � for each

� 2 RN . Since

S.Q�/ D QT.�/QTQ� D Q.T .�/ � �/ D QS.�/ ;

the result already established in the case m D 1 implies that S is of the form

S.�/ D ˛.j�j/� ; � 2 RN :

Since T .�/ is identified with a symmetric matrix with real entries and � is an
eigenvector of T .�/, the space .R�/? is stable under T .�/, and can be decomposed
as an orthogonal direct sum of eigenspaces of T .�/. On the other hand, since

QT.�/ D T .�/Q for each Q 2 ON.R/� ;
each eigenspace of T .�/ is stable under Q for each Q 2 ON.R/� . Since ON.R/�
acts transitively on spheres of .R�/? centered at 0, this 7 implies that .R�/? is itself
an eigenspace of T .�/. In other words, for each � 2 RN n f0g, the tensor T .�/ is of
the form

T .�/ D a.�/e� ˝ e� C b.�/.I � e� ˝ e�/ ;

with

a.�/ D a.Q�/ and b.�/ D b.Q�/ for all Q 2 ON.R/ :

7Let G be a subgroup of ON .R/ and let V be a linear subspace of RN . Assume that G acts
transitively on spheres of V centered at 0. Then the only linear subspacesW of V such that gW 

W for each g 2 G are f0g and V . Indeed, if W is a linear subspace of V different from either f0g
or V , let w 2 W and z 2 V nW satisfy jwj D jzj 6D 0. By the transitivity assumption above, there
exists g 2 G such that gw D z and therefore gW is not included in W .
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Therefore, appealing to the result already proved in the case m D 0, one finds that
T is of the form

T .�/ D ˛.j�j/e� ˝ e� C ˇ.j�j/.I � e� ˝ e�/ :

With �1 D ˇ and �2.r/ D .˛.r/ � ˇ.r//=r2, this concludes the proof.

Isotropic Tensors and Rotation Invariant Averages of Monomials

We first recall an almost trivial result.

Lemma 9. Let � � �.jvj/ be a measurable radial function defined a.e. on RN and
such that

Z
RN

j�.jvj/jjvj2dv <1 :

Then, for all i; j D 1; : : : ; N , one has

Z
RN
�.jvj/vivj dv D 1

N
ıij

Z
RN
�.jvj/jvj2dv :

Proof. Let � � �.jvj/ be a measurable radial function defined a.e. on RN and
such that

Z
RN

j�.jvj/jjvj2dv <1 :

Set

Ti;j WD
Z

RN
�.jvj/vivj dv ; i; j D 1; : : : ; N :

Consider the vector field T defined on RN by the formula

T .�/ WD
Z

RN
�.jvj/.v � �/v dv ;

or equivalently

T .�/i WD
NX
jD1

Tij�j :



Fluid Dynamic Limits of the Kinetic Theory of Gases 77

Obviously, for each R 2 ON.R/, one has

T .R�/ D
Z

RN
�.jvj/.v �R�/v dv D

Z
RN
�.jvj/.RT v � �/v dv

D
Z

RN
�.jwj/.w � �/Rw dw D RT.�/ ;

where the third equality follows from the substitution w D RT v in the integral. By
Lemma 8, T is of the form

T .�/ D 
.j�j/� ;

and since T is obviously linear in � , the function 
 is a constant, so that

T .�/ D 
� ;

or equivalently

Tij D 
ıij :

In particular

N
 D
NX
iD1

Tii D
Z

RN
�.jvj/jvj2dv ;

which gives the formula for 
 .

Of course, one could also have observed that the matrix with entries

Z
RN
�.jvj/vivj dv

for i; j D 1; : : : ; N is real and symmetric, and commutes with every orthogonal
matrix. As already explained in the proof of Lemma 8 (case m D 2 and � D 0),
such a matrix is proportional to the identity matrix.

Equivalently, one can also notice that

i 6D j )
Z

RN
�.jvj/vivj dv D 0

since the integrand is an odd function of vi . On the other hand

�.jvj/v2i dv D �.jvj/v2j dv D 1

N
�.jvj/jvj2dv ;
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where the first equality follows from the substitution

.v1; : : : ; vi ; : : : ; vj ; : : : ; vN / 7! .v1; : : : ; vj ; : : : ; vi ; : : : ; vN /

which obviously is a linear isometry of RN and therefore leaves �.jvj/ and the
Lebesgue measure invariant.

At variance with these elementary arguments, the (slightly) more complicated
proof given above is easily generalized to the case of rotation invariant averages of
quartic monomials discussed below.

Lemma 10. Let � � �.jvj/ be a measurable radial function defined a.e. on RN

and such that
Z

RN
j�.jvj/jjvj4dv <1 :

Set

Tijkl WD
Z

RN
�.jvj/vivj vkvldv ; i; j; k; l D 1; : : : ; N :

Then Tijkl is of the form

Tijkl WD t0.ıijıkl C ıikıjl C ıilıjk/ ;

where

t0 D 1
N.NC2/

Z
RN
�.jvj/jvj4dv :

Proof. Consider the map T defined by

T W RN 3 � 7!
Z

RN
�.jvj/.� � v/2v ˝ v dv 2 .RN /˝2 :

Obviously T .�/ is a symmetric tensor (as an integral linear combination of
symmetric tensors v ˝ v) and

T .�/ D
X
i;j;k;l

Tijkl�k�lei ˝ ej

where ei is the i th vector of the canonical basis of RN , or equivalently

T .�/ij D
X
k;l

Tijkl�k�l :
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Moreover, for each R 2 ON.R/, one has

T .R�/ D
Z

RN
�.jvj/.R� � v/2v ˝ v dv

D
Z

RN
�.jvj/.� �RT v/2v ˝ v dv

D
Z

RN
�.jwj/.� � w/2.Rw/˝ .Rw/dw D RT.�/RT D R � T .�/ ;

where the third equality follows from the substitution w D RT v in the integral.
In other words, T is an isotropic symmetric tensor field of order 2. By Lemma 8,

this tensor field is of the form

T .�/ D 
0.j�j/I C 
1.j�j/� ˝ � :

Besides, T is quadratic in � , which implies that 
0.j�j/ D t0j�j2 for some constant
t0 2 R, while 
1.j�j/ D t1 is a constant. Finally

T .�/ D t0j�j2I C t1� ˝ � :

In particular, T is of class C1 on RN , and one has

2Tijpq D @2

@�p@�q
T .�/ij D 2t0ıpqıij C t1.ıipıjq C ıiqıjp/ :

Since Tijpq D Tipjq, one has t1 D 2t0.
Finally

Z
RN
�.jvj/jvj4dv D

NX
i;kD1

Tikik D t0

NX
i;kD1

.ıikıik C ıiiıkk C ıikıik/ D t0N.N C 2/ ;

which concludes the proof.

Appendix 2: Invariance Properties of the Linearized Collision
Integral and Applications

For all �; � > 0 and u 2 R3, we designate by L�;u;� the linearization at M.�;u;�/ of
the Boltzmann collision integral, i.e.

L�;u;��.v/

WD
“

R3�S2
.�.v/C �.v�/ � �.v0/ � �.v0�//j.v � v�/ � !jM.�;u;�/.v�/dv�d! :
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First we examine the translation and scale invariance of the linearized collision
operator.

Lemma 11. For all u 2 R3 and � > 0 denote 
u and �� the translation and scaling
transformations defined by


uz WD z C u ; and ��z WD �z :

Then, for each � 2 Dom.L�;u;� /, the function � ı 
u ı �p� belongs to Dom.L1;0;1/

and one has

.L�;u;��/ ı 
u ı �p� D �
p
�L1;0;1.� ı 
u ı �p� / :

Proof. Since M.�;u;�/ D �M.1;u;�/, one has

L�;u;� D �L1;u;� :

Next, observe (by direct inspection on the formulas (1)) that
(

v0.v C u; v� C u; !/ D v0.v; v�; !/C u ;

v0�.v C u; v� C u; !/ D v0�.v; v�; !/C u :

Since the Lebesgue measure is invariant by translation

.L1;u;��/.v C u/

D
“

R3�S2
.�.v C u/C �.w�/ � �.v0.v C u;w�; !// � �.v0�.v C u;w�; !///

j.v C u � w�/ � !jM.1;u;�/.w�/dw�d!

D
“

R3�S2
.�.v C u/C �.w�/ � �.v0.v C u;w�; !// � �.v0�.v C u;w�; !///

j.v C u � w�/ � !jM.1;0;�/.w� � u/dw�d!

D
“

R3�S2
.�.v C u/C �.v� C u/ � �.v0.v C u; v� C u; !// � �.v0

�
.v C u; v� C u; !///

j.v � v�/ � !jM.1;0;�/.v�/dv�d!

D
“

R3�S2
.�.v C u/C �.v� C u/ � �.v0.v; v�; !/C u/ � �.v0

�
.v; v�; !/C u//

j.v � v�/ � !jM.1;0;�/.v�/dv�d!

D L1;0;� .� ı 
u/.v/

so that

.L1;u;��/ ı 
u D L1;0;� .� ı 
u/ :
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Finally, observing that the map .v; v�/ 7! .v0.v; v�; !/; v0�.v; v�; !// is homoge-
neous of degree 1 for each ! 2 S2 (see formulas (1)), one has

L1;0;��.
p
�v/

D
“

R3�S2
.�.

p
�v/C �.w�/ � �.v0.

p
�v;w�; !// � �.v0�.

p
�v;w�; !///

j.
p
�v � w�/ � !jM.1;0;�/.w�/dw�d!

D
“

R3�S2
.�.

p
�v/C �.w�/ � �.v0.

p
�v;w�; !// � �.v0�.

p
�v;w�; !///

j.
p
�v � w�/ � !jM.1;0;1/.w�=

p
�/��3=2dw�d!

D
“

R3�S2
.�.

p
�v/C �.

p
�v�/ � �.v0.

p
�v;

p
�v�; !// � �.v0�.

p
�v;

p
�v�; !///

j.
p
�v �

p
�v�/ � !jM.1;0;1/.v�/dv�d!

D
“

R3�S2
.�.

p
�v/C �.

p
�v�/ � �.

p
�v0.v; v�; !// � �.

p
�v0

�
.v; v�; !///

p
� j.v � v�/ � !jM.1;0;1/.v�/dv�d!

D
p
�L1;0;1.� ı �p

�
/.v/ ;

so that

.L1;0;��/ ı �p� D
p
�L1;0;1.� ı �p

�
/ :

The previous lemma shows that we can restrict our attention to L1;0;1, henceforth
denoted by L for simplicity, as in the main body of this text. Then we discuss the
invariance of L under orthogonal transformations.

Lemma 12. For each R 2 O3.R/ and each � 2 Dom.L /, the function � ıR also
belongs to Dom.L / and one has

.L �/ ıR D L .� ıR/ :

Proof. Let R 2 O3.R/ and � � �.v/ be an element of Dom.L /. Then, elementary
substitutions show that

L �.Rv/ D
“

R3�S2
.�.Rv/C �.w�/ � �.v0.Rv;w�; u// � �.v0�.Rv;w�; u///

j.Rv � w�/ � ujM.w�/dw�du
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D
“

R3�S2
.�.Rv/C �.Rv�/ � �.v0.Rv;Rv�; u// � �.v0�.Rv;Rv�; u///

j.Rv � Rv�/ � ujM.Rv�/dv�du

D
“

R3�S2
.�.Rv/C �.Rv�/ � �.v0.Rv;Rv�; R!// � �.v0�.Rv;Rv�; R!///

j.Rv � Rv�/ �R!jM.v�/dv�d!

D
“

R3�S2
.�.Rv/C �.Rv�/ � �.v0.Rv; Rv�; R!// � �.v0�.Rv;Rv�; R!///

j.v � v�/ � !jM.v�/dv�d! :

Formulas (1) show that

(
v0.Rv;Rv�; R!/ D Rv0.v; v�; !/ ;

v0�.Rv;Rv�; R!/ D Rv0�.v; v�; !/ :

Therefore, the computation above implies that

.L �/ ıR D L .� ıR/ :

Next we define the functions ˛ and ˇ used in the computation of the viscosity and
heat diffusion in the compressible Navier-Stokes system—see Lecture 1, especially
formulas (6).

Lemma 13. Let

A.v/ D v˝2 � 1
3
jvj2 ; B.v/ D 1

2
.jvj2 � 5/v ; v 2 R3 :

Then, for each i; j; k D 1; 2; 3, one has Aij and Bk 2 RanL .

Proof. First we check that

Aij?KerL ; and Bk?KerL :

for each i; j; k D 1; 2; 3.
The orthogonality relations

Aij?vk ; Bk?1 ; and Bk?jvj2 ; for all i; j; k D 1; 2; 3

are obvious, since the corresponding inner products are integrals of odd summable
functions on R3. That

Aij?1 and Aij?jvj2 ; for all i; j; k D 1; 2; 3
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follows from Lemma 9. Indeed, for each measurable radial function � � �.jvj/
such that Z

R3
j�.jvj/jjvj2M.v/dv <1 ;

one has Z
R3
�.jvj/Aij .v/M.v/dv D cıij

by Lemma 9, and

c D 1
3

Z
R3
�.jvj/ trace.A.v//M.v/dv D 0 :

Finally

Z
R3

viBj .v/M.v/dv D
Z

R3
vivj .jvj2 � 5/M.v/dv D c0ıij

again by Lemma 9 and a straightforward computation shows that

c0 D 1
3

Z
R3
.jvj4 � 5jvj2/M.v/dv D 0 :

Since L is a self-adjoint Fredholm operator on L2.R3;M dv/ with null space

KerL D span.f1; v1; v2; v3; jvj2g/

by Hilbert’s theorem (Theorem 16), the orthogonality properties above imply that

Aij and Bk 2 RanL :

Lemma 14. Let OA be the unique symmetric tensor field of order 2 on R3 such that
OAij 2 DomL \ .KerL /? for all 1 � i; j � 3 and

L OAij D Aij ; 1 � i; j � 3 :

Then, there exists a radial measurable function ˛ � ˛.jvj/ defined on R3 such that

OA.v/ D ˛.jvj/A.v/ ; for a.e. v 2 R3 :

Likewise, let OB be the unique vector field on R3 such that, for each i D 1; 2; 3,
one has OBi 2 DomL \ .KerL /? and

L OBi D Bi ; 1 � i � 3 :
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Then, there exists a radial measurable function ˇ � ˇ.jvj/ defined on R3 such that

OB.v/ D ˇ.jvj/B.v/ ; for a.e. v 2 R3 :

Proof. Applying the identity in Lemma 12 to each component of OA 2 DomL \
.KerL /? such that

L OA D A componentwise

shows that

L . OAıR/ D .L OA/ıR D AıR D R �A D R ART D R.L OA/RT D L .R OART / :

Since OA ı R and R OART are both orthogonal to KerL componentwise, we deduce
from Fredholm’s alternative that

OA ıR D R OART for all R 2 O3.R/ :

Likewise

OA D OAT I

indeed OA and OAT?KerL componentwise and L . OA� OAT / D A�AT D 0, so that
OA � OAT 2 KerL \ .KerL /T .

By Lemma 8, the tensor field OA is therefore of the form

OA.v/ D 
0.jvj/I C 
1.jvj/v ˝ v :

Besides

L .trace OA/ D trace.L OA/ D traceA D 0 and trace OA?KerL :

Therefore

trace OA D 3
0.jvj/C jvj2
1.jvj/ D 0 ;

which leads to the announced formula for OA.
The case of the integral equation involving the vector field B is treated in the

same way. One finds that OB ıR D RB for each R 2 O3.R/, so that OB is of the form
OB.v/ D 
.jvj/v; the radial function ˇ is defined for all r 6D p

5 by the formula

ˇ.r/ D 
.r/=.r2 � 5/ :

Finally we prove formulas and (7) and Lemma 5.
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Lemma 15. Let u 2 R3 and � > 0, and define

Au;� .v/ WD A

�
v � up
�

�
; Bu;� .v/ WD B

�
v � up
�

�
:

There exist a unique tensor field OAu;� and a unique vector field OBu;� , both belonging
to DomL1;u;� \ .KerL1;u;� /

? componentwise and such that

L1;u;� OAu;� D Au;� ; L1;u;� OBu;� D Bu;� :

Moreover
8̂
ˆ̂<
ˆ̂̂:

OAu;� .v/ D 1p
�
˛

� jv � ujp
�

�
A

�
v � up
�

�
;

OBu;� .v/ D 1p
�
ˇ

� jv � ujp
�

�
B

�
v � up
�

�
:

Proof. Define

OAu;� .v/ D 1p
�

OA
�

v � up
�

�
;

so that

OAu;� ı 
u ı �p� D
1p
�

OA :

Using Lemmas 14 and 11 shows that, if

A D L1;0;� . OA/ D
p
�L1;0;� . OAu;� ı 
u ı �p� / D .L1;u;� OAu;� / ı 
u ı �p� :

Equivalently

L1;u;� OAu;� D Au;� ;

since

Au;� ı 
u ı �p� D A :

That OAu;� DomL1;u;� \ .KerL1;u;� /
? componentwise is obvious since the tensor

field OA satisfies OA 2 DomL \ .KerL /? componentwise.
The case of the vector field Bu;� is treated in the same manner.
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In other words,

8̂
ˆ̂<
ˆ̂̂:

OAu;� .v/ D Q̨
�
�;

jv � ujp
�

�
A

�
v � up
�

�

OBu;� .v/ D Q̌
�
�;

jv � ujp
�

�
B

�
v � up
�

�
;

with

Q̨ .�; r/ D 1p
�
˛.r/ ; and Q̌ .�; r/ D 1p

�
ˇ.r/ :

These last formulas and formulas (6) obviously imply formulas (7).

Proof of Lemma 5. By Lemma 10, for each radial measurable function � � �.jvj/
such that

Z
R3

j�.jvj/jjvj4dv <1 ;

one has
Z

R3
�.jvj/Aij.v/Akl.v/dv D t0.ıijıkl C ıikıjl C ıilıjk/ � .2t1 � t2/ıijıkl ;

where

t1 D h�1
3
jvj2i ; and t2 D h�1

9
jvj4i :

In particular

3X
iD1

Z
R3
�.jvj/Aii.v/Akl.v/dv D

Z
R3
�.jvj/ trace.A.v//Akl.v/dv

D t0.3ıkl C ıkl C ıkl/ � 3.2t1 � t2/ıkl D 0 ;

so that

.2t1 � t2/ D 5
3
t0 :

Therefore
Z

R3
�.jvj/Aij.v/Akl.v/dv D t0.ıijıkl C ıikıjl � 2

3
ıijıkl/ :
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Thus

3X
i;kD1

Z
R3
�.jvj/Aik.v/

2dv D
3X

i;kD1
t0.ıikıik C ıiiıkk � 2

3
ıikıik/

D t0.3C 3 � 3 � 2
3
� 3/ D 10 t0 :

In particular, with �.jvj/ DM.v/, one has

hAijAkli D 1
15
hjvj4i.ıijıkl C ıikıjl � 2

3
ıijıkl/

D .ıijıkl C ıikıjl � 2
3
ıijıkl/ ;

since

3X
i;kD1

AikAik D 2
3
jvj4 ;

so that

3X
i;kD1

hAikAiki D h 2
3
jvj4i D 10 t0

and hence

t0 D 1
15
hjvj4i D 1 :

On the other hand, one has OA.v/ D ˛.jvj/A.v/ by Lemma 14. With �.jvj/ D
˛.jvj/M.v/, the same argument as before shows that

h OAijAkli D 1
15
h˛.jvj/jvj4i.ıijıkl C ıikıjl � 2

3
ıijıkl/ ;

which is the sought formula with

	 WD 1
15
h˛.jvj/jvj4i :

Finally

h OA W Ai D 10	 D h OA W L OAi > 0 ;

since L is a nonnegative operator and OA?KerL componentwise. This completes
the proof.
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Part II
Short Papers



Stationary Quasivariational Inequalities with
Gradient Constraint and Nonhomogeneous
Boundary Conditions

Assis Azevedo, Fernando Miranda, and Lisa Santos

1 Introduction and Main Results

If we want to solve the well known problem of finding u 2 H1
0 .˝/ such that

minf��u � f; u �  g D 0 a.e. in ˝;

for a given  , the easiest approach is to solve the variational inequality: to find
u 2 K D fv 2 H1

0 .˝/ W v �  a.e. in ˝g such that

Z
˝

ru � r.v � u/ �
Z
˝

f .v � u/; 8v 2 K : (1)

Existence of solution for stationary variational inequalities like the considered
above is immediate (see [6]). Quasivariational inequalities are similar, but implicit,
problems where the convex set depends on the solution. For instance, we consider
the problem (1), withK substituted byKF.u/, for a given function F 2 C .R/. The
proof of existence of solution is no more a trivial problem and different approaches
can be used, such as a fixed point argument or approximation of the quasivariational
inequality by a family of penalized equations, for which existence is known, using
a priori estimates to pass to the limit.

Here we are interested in variational and quasivariational inequalities with
gradient constraint, whose convex sets are of the following type:

K' D fv 2 W 1;p.˝/ W jrvj � '; a.e. in ˝g; (2)
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or

K' D fv 2 W 1;p.˝/ W jrvj � '; a.e. in ˝; vj@˝ D gg; (3)

for ' � 0 in the variational case and ' D F.u/, in the quasivariational case, where
F 2 C .R/ and g 2 C .@˝/.

The first model of this type was the elastoplastic torsion problem, a station-
ary variational inequality with gradient constraint 1 and homogeneous Dirichlet
boundary condition ([18], [3] or [4]). Sand piles and river networks ([13] or [15])
or electromagnetic problems ([14], [17], [2], [10] or [11]) can be modeled by
variational or quasivariational inequalities with gradient or curl constraint. As far
as the authors know, the first work in quasivariational inequalities with gradient
constraint and nonhomogeneous boundary condition is [1]. This work generalizes
the existence results for quasivariational inequalities presented in that paper,
improving the growth condition imposed on F (details will be given later). We also
present another situation where no growth condition is imposed on F , assuming
that the operator considered is a.x;u/ D a.x/jujp�2u and assuming a little more
on the regularity of the data. We notice that, assuming nonhomegeneous conditions
on the boundary introduces additional difficulties when seeking for solutions of
quasivariational inequalities. The proof of existence of solution may be done either
using a fixed point theorem or by approximating the quasivariational inequality
by a family of equations. In both cases, given a function in a certain convex
set (depending on the constraint of the gradient and on the boundary condition),
we need to find out a function in another convex set and estimate their distance.
This procedure, not easy even when null boundary conditions are considered in
both convex sets, becomes harder when the boundary conditions change, situation
scarcely considered in the literature.

In this paper, we consider˝ a bounded open subset of RN with smooth boundary.
Given 1 < p < 1, let a W ˝ � R

N �! R
N be a Carathéodory function satisfying

the structural conditions (4a), (4b) and (4c) or (4c’)

a.x;u/ � u � a�jujp; (4a)

ja.x;u/j � a�jujp�1; (4b)	
a.x;u/ � a.x; v/


 � .u � v


> 0; if u ¤ v; (4c)

	
a.x;u/ � a.x; v/


 � .u � v

 �

(
a�ju � vjp if p � 2;

a�
	juj C jvj
p�2ju � vj2 if p < 2;

(4c’)

for given constants 0 < a� < a�, for all u; v 2 R
N and a.e. x 2 ˝.

Let q be the critical Sobolev exponent of p, if p ¤ N , i.e.,

q D Np

N � p if 1 < p < N; q D 1 if p > N;
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and q > 1, if p D N . Observe that, given v 2 W 1;p.˝/, we have the following
inequality

kvkLq.˝/ � CqkvkW 1;p.˝/; (5)

being Cq > 0.
Let r be the critical Sobolev exponent of p for the trace embedding, if p ¤ N ,

i.e.,

r D .N � 1/p
N � p if 1 < p < N; r D 1 if p > N;

and r > 1, if p D N . Then, given v 2 W 1;p.˝/, there exists Cr > 0 such that

kvkLr .@˝/ � CrkvkW 1;p.˝/: (6)

Given

F 2 C .RIRC/; f 2 Lq0.˝/; g 2 Lr 0.@˝/; c 2 L1.˝/; c � c�; (7)

where c� is a nonnegative constant, consider the following quasivariational inequal-
ity with Neumann type boundary condition: to find u 2 KF.u/ such that

Z
˝

a.x;ru/ � r.v � u/C
Z
˝

c jujp�2u.v � u/

�
Z
˝

f .v � u/C
Z
@˝

g.v � u/; 8v 2 KF.u/; (8)

where KF.u/ is defined in (2).
The following two theorems give sufficient conditions for existence of solution

of the above quasivariational inequality.

Theorem 1. Assume (4a), (4b), (4c’) and (7), with c� > 0. If p � N suppose, in
addition, that there exist positive constants c0 and c1 such that

F.s/ � c0 C c1jsj˛; 8s 2 R;

being ˛ � 0 if p D N and 0 � ˛ < N
N�p if p < N .

Then the quasivariational inequality (8) has a solution.

Remark 1. We point out that the condition 0 � ˛ <
p

N�p when p < N assumed in

[1] is here improved to 0 � ˛ < N
N�p .

The following theorem states existence of solution for problem (8) with homo-
geneous Neumann boundary condition, imposing no growth condition on F but
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assuming the strict positivity of F , the boundedness of f and a restriction on the
operator a.

Theorem 2. Assume that a.x;u/ D a.x/jujp�2u with 0 < a� � a � a�. Assume,
in addition, that f 2 L1.˝/, g � 0, c 2 L1.˝/, with c � c�, and F 2
C .RIRC/, with F � F�, where c� and F� are positive constants.

Then the quasivariational inequality (8) has a solution.

Consider the quasivariational inequality with Dirichlet type boundary condition:
to find u 2 KF.u/ such that

Z
˝

a.x;ru/ �r.v�u/C
Z
˝

c jujp�2u.v�u/ �
Z
˝

f .v�u/; 8v 2 KF.u/;

(9)

where KF.u/ is defined in (3).
We present two theorems which give sufficient conditions for the existence of

solution of the above quasivariational inequality.

Theorem 3. Consider the assumptions of Theorem 1, with c� � 0 and F � F� >
0, where c� and F� are constants. Assume, in addition, that there exists k 2 Œ0; 1/
such that

jg.x/ � g.y/j � kF� Nd.x; y/ for x; y 2 @˝; (10)

where Nd is the geodesic distance in ˝.
Then the quasivariational inequality (9) has a solution.

We observe that the above theorem generalizes a result of [7], where Dirichlet
homogeneous boundary condition was considered as well as a more restrictive
growth assumption on F , for 1 < p � N .

Theorem 4. Assume that a.x;u/ D a.x/jujp�2u with 0 < a� � a � a�. Assume
in addition, that (10) is verified for some k < a�

a�
, f 2 L1.˝/, c 2 L1.˝/, with

c � c�, F 2 C .RIRC/, with F � F�, where c�; F� are constants, c� � 0 and
F� > 0.

Then the quasivariational inequality (9) has a solution.

2 The Case with Neumann Boundary Condition

In this section we consider the quasivariational inequality with Neumann boundary
condition. The proof of Theorem 1 uses a fixed point theorem and the proof of
Theorem 2 is done by approximating the quasivariational inequality by a family of
penalized and regularized equations.
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Given ' 2 L1.˝/, ' � 0, we consider the variational inequality: to find u 2 K'

such that

Z
˝

a.x;ru/ � r.v � u/C
Z
˝

c jujp�2u.v � u/

�
Z
˝

f .v � u/C
Z
@˝

g.v � u/; 8v 2 K'; (11)

where K' is defined in (2). In this section we assume (4a), (4b), (4c) and (7) with
c� > 0. Under these assumptions, this problem has a unique solution (see [8,
Theorem 8.2]).

Proposition 1. Let u be the solution of problem (11). Then

kukW 1;p.˝/ �M
	kf kLq0 .˝/ C kgkLr0 .@˝/


 1
p�1 :

where M D
�

maxfCq;Cr g
minfa�;c�g

� 1
p�1

, for Cq and Cr defined in (5) and in (6).

Proof. Considering v D 0 in the variational inequality (11) we obtain,

Z
˝

a.x;ru/ � ru C
Z
˝

c jujp �
Z
˝

f u C
Z
@˝

gu

� kf kLq0 .˝/kukLq.˝/ C kgkLr0 .@˝/kukLr .@˝/
� C

	kf kLq0 .˝/ C kgkLr0 .@˝/

kukW 1;p.˝/;

where C D maxfCq; Crg. But, as

minfa�; c�gkukp
W 1;p.˝/

� a�krukpLp.˝/ C c�kukpLp.˝/

�
Z
˝

a.x;ru/ � r.u/C
Z
˝

c jujp;

the conclusion follows. ut
We present now a continuous dependence result on the gradient constraints that

will be necessary to apply later a fixed point theorem. A more general result can be
found in [1], where the dependence on f and g is also considered.

Proposition 2. For '; 2 L1.˝/ with a positive lower bound � and a verify-
ing (4a), (4b) and (4c’), the solutions u' and u of problem (11) satisfy

ku' � u kmaxfp; 2g
W 1;p.˝/

� Ck' �  kL1.˝/;

where C D C.�/ is a positive constant.
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Proof. Letting A.u; v/ D
Z
˝

a.x;ru/ � rv C
Z
˝

c jujp�2uv, then, for � 2 R,

A.u; u � v/ � A.v; u � v/

D A.u; u � �v/C A.v; v � �u/C .� � 1/ ŒA.u; v/C A.v; u/� : (12)

Recall that � is a positive lower bound of ' and  and set � D �

�Ck'� k1 . Then,
as �u 2 K' and �u' 2 K , using �u' as test function in (11) with convex set K 

and �u as test function in (11) with convex set K' we have,

A.u'; u'��u /CA.u ; u ��u'/ � .1��/
� Z

˝

f .u'Cu /C
Z
@˝

g.u'Cu /
�

� .1 � �/C 	kf kLq0 .˝/ C kgkLr0 .@˝/

	ku'kW 1;p.˝/ C ku kW 1;p.˝/




� D

�
k' �  kL1.˝/;

where C D maxfCq; Crg andD D D.kf kLq0 .˝/; kgkLr0 .@˝// is a positive constant.
The last inequality is true by Proposition 1 and because

1 � � D k' �  kL1.˝/

�C k' �  kL1.˝/

� k' �  kL1.˝/

�
:

On the other hand, recalling the constant M defined in Proposition 1,

ˇ̌
A.u'; u /

ˇ̌ � a�
Z
˝

jru' jp�1jru j C kckL1.˝/

Z
˝

ju' jp�1ju j

� a�kru'kp�1Lp.˝/kru kLp.˝/ C kckL1.˝/ku'kp�1Lp.˝/ku kLp.˝/
� .a� C kckL1.˝// ku'kp�1W 1;p.˝/

ku kW 1;p.˝/

� .a� C kckL1.˝//M
p
	kf kLq0 .˝/ C kgkLr0 .@˝/


p0

and, analogously,

ˇ̌
A.u ; u'/

ˇ̌ � .a� C kckL1.˝//M
p
	kf kLq0 .˝/ C kgkLr0 .@˝/


p0
:

So, using (12), there exists C D C.kf kLq0 .˝/; kgkLr0 .@˝/; �/ > 0 such that

A.u'; u' � u / � A.u ; u' � u / � Ck' �  kL1.˝/:
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On the other hand, by (4c’)

A.u'; u' � u / � A.u ; u' � u / � minfa�; c�gku' � u kpW 1;p.˝/
if p � 2:

Using the reverse Hölder inequality in the case p < 2, we get

A.u'; u' � u / � A.u ; u' � u /

� a�kjru' j C jru jkp�2Lp.˝/kru' � ru k2Lp.˝/
C c�kju' j C ju jkp�2Lp.˝/ku' � u k2Lp.˝/

and then, by Proposition 1, the conclusion follows also in this case. ut
The following proposition will be used in the proof of Theorem 1.

Proposition 3. Let N 2 N, p > 1, s > N , N
N�1 < ˛ and ˛ < N

N�p if p < N .
Consider the sequence .sn/n defined by

s1 D s and snC1 D ˛Nsn

N C ˛sn
:

Then there exists n 2 N such that 1 < sn � p.

Proof. Using the inequality N
N�1 < ˛ it is easy to prove, by induction, that sn > 1

for all n 2 N. On the other hand .sn/n is a decreasing sequence, because s2 < s1
and, for n > 2,

snC1 < sn , ˛snN

N C ˛sn
<

˛sn�1N
N C ˛sn�1

, sn

N C ˛sn
<

sn�1
N C ˛sn�1

, sn < sn�1:

So .sn/n is convergent. Using the equality snC1 D ˛snN
NC˛sn , we see that the limit is

N.1 � 1
˛
/. To conclude we just need to observe that N.1 � 1

˛
/ < p. This is true

because if p < N , ˛ < N
N�p . ut

We are now able to prove our first result.

Proof of Theorem 1. Consider a sequence .pn/n such that p1 D p and, for i � 1,
pi is a critical Sobolev exponent of pi�1. Let s be the first element of this sequence
greater than N . Applying repeatedly the Sobolev type inequality (5) one has

9C > 0 8u 2 W 1;s.˝/ kukW 1;s.˝/ � C
	kukLp.˝/ C krukLs.˝/



: (13)

Observe that, if ' 2 C . N̋ / and u 2 KF.'/ then u 2 W 1;s.˝/, as ru 2 L1.˝/.
In particular, the operator T W C . N̋ / �! W 1;s.˝/ such that T .'/ D u' , where u'
is the solution of problem (11) with KF.'/ replacing K' , is well-defined.
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To prove that T is continuous, consider ' 2 C . N̋ / and let ı > 0 be such that
kF. /kC . N̋ / � kF.'/kC . N̋ / C 1 if k' �  kC . N̋ / � ı. For those  we have,

jru' � ru js D jru' � ru js�pjru' � ru jp

� 	jru' j C jru j

s�p jru' � ru jp � .F.'/C F. //s�p jru' � ru jp

� 	
2kF.'/kC . N̋ / C 1


s�pjru' � ru jp

and then, using (13),

ku' � u kW 1;s.˝/

� C
�
ku' � u kLp.˝/ C

	
2kF ı 'kC . N̋ / C 1


 s�p
s kr.u' � u /k

p
s

Lp.˝/

�
:

Noticing that F.'/ and F. / has a positive lower bound, as '; 2 C . N̋ / and
F 2 C .RIRC/, this last inequality together with the Proposition 2, proves that T is
continuous.

In order to apply a fixed point theorem we consider

S D i ı T W C . N̋ / �! C . N̋ /;

where i is the compact inclusion of W 1;s.˝/ in C . N̋ /. If p > N then s D p and
Proposition 1 shows that T is bounded and so, as s > N , the image of S is compact
and the conclusion follows from the Schauder fixed point theorem.

If p � N we use the Leray-Schauder fixed point theorem. As i is compact we
only need to prove the boundedness in W 1;s.˝/ of the set

A D ˚
' 2 C . N̋ / W ' D �S.'/ for some � 2 Œ0; 1��:

Notice that we can suppose that ˛ > N
N�1 . Consider the sequence defined in

Proposition 3 starting with s and let n be such that 1 < sn � p.
If ' 2 A we have

jru' j � F.'/ � c0 C c1j'j˛ D c0 C c1�
˛ju' j˛

and then, for i < n, there exist A;D > 0, such that

ku'kW 1;si�1 .˝/ � A
	ku'kL˛si�1 .˝/ C kru'kLsi�1 .˝/



; as ˛ > 1

� A
	ku'kL˛si�1 .˝/ C c0j˝j 1

si�1 C c1�
˛ku'k˛L˛si�1 .˝/




� A
	
Dku'kW 1;si .˝/ C c0j˝j 1

si�1 C c1�
˛Dku'k˛W 1;si .˝/




as ˛si�1 is the critical Sobolev exponent of si :
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By consequence, using Proposition 1 and since sn � p, we obtain the boundedness
of A in W 1;s.˝/. So T has a fixed point and this fixed point solves the
quasivariational inequality. ut

The proof of Theorem 2 will be done using a family of approximating problems,
obtained by regularizing and penalizing the quasivariational inequality.

Given 0 < " < 1, consider the family of quasilinear elliptic problems

� r �
�
k"
	jru"jp � F p

" .u
"/


a".x/

	jru"j2 C "

 p�2

2 ru" C "ru"
�

C c ju"jp�2u" D f " in ˝; (14a)

�
k"
	jru"jp�F p

" .u
"/


a".x/

	jru"j2C"
 p�22 ru"C"ru"
�
�n D 0 on @˝; (14b)

where a", f " and F" are approximations by convolution of a, f and F , and k" is a
smooth nondecreasing function such that

k".s/ D
(
1 if s � 0;

e
s
" if " � s:

(15)

This problem has a unique solution u" 2 C 2;˛.˝/ \ C . N̋ /, being the proof a
simple adaptation of [5, Theorem 5.19] for the case with Neumann homogeneous
boundary condition.

Before proving Theorem 2 we need the following auxiliary result.

Proposition 4. Let u" be a solution of problem (14). Then there exist positive
constants C1, C2 and Dq , independent of ", such that

ku"kL1.˝/ � C1; (16)

kk".jru"jp � F p.u"//kL1.˝/ � C2; (17)

8 1 < q <1 kru"kLq.˝/ � Dq: (18)

Proof. Denote, for simplicity, w D jru"jp � F
p
" .u"/. Consider � 2 R

C, to be
chosen later. Multiplying equation (14a) by .u" � �/C and integrating over ˝, we
get

Z
˝

k".w/ a".x/
	jru"j2 C "


 p�2
2 ru" � r.u" � �/C

C "

Z
˝

ru" � r.u" � �/C C
Z
˝

c ju"jp�2u".u" � �/C D
Z
˝

f ".u" � �/C
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and so

Z
˝

k".w/ a".x/
	jr.u" � �/Cj2 C "


 p�2
2 jr.u" � �/Cj2

C "

Z
˝

jr.u" � �/Cj2 C
Z
˝

c ju"jp�1.u" � �/C � kf "kL1.˝/

Z
˝

.u" � �/C:

Observing that the two first terms of the above inequality are nonegative and

choosing � >
� kf kL1.˝/

c�

� 1
p�1

, we get

.c��p�1 � kf "kL1.˝//

Z
˝

.u" � �/C � 0;

and so .u" � �/C � 0. Proceeding similarly, we obtain .u" C �/� � 0,
concluding (16).

Multiply now Eq. (14a) by u" and integrate in ˝. Then

Z
˝

k".w/ a".x/
	jru"j2C"
 p�22 jru"j2C"

Z
˝

jru"j2C
Z
˝

c ju"jp D
Z
˝

f "u": (19)

Observe that

Z
˝

k".w/ a".x/
	jru"j2 C "


 p�2
2 jru"j2 D

Z
˝

k".w/ a".x/
	jru"j2 C "


 p
2

� "
Z
˝

k".w/ a".x/
	jru"j2 C "


 p�2
2 (20)

and it can be easily seen that

"

Z
˝

k".w/ a".x/.jru"j2 C "/
p�2
2 � ˛"

Z
˝

k".w/jru"jp C ˇ"

Z
˝

k".w/; (21)

where ˛" �!
"!0

0 and ˇ" �!
"!0

0.

Noticing that k".w/F
p� � k".w/jru"jp C F

p
" .u"/ since k".w/ D 1 if w � 0 and,

when w > 0, we have jru"j � F".u"/ � F�, we obtain

Z
˝

k".w/ � 1

F
p�

� Z
˝

k".w/jru"jp C
Z
˝

F p
" .u

"/
�
: (22)

As F is continuous and .u"/" is uniformly bounded in L1.˝/,
	
F
p
" .u"/



"

is also
uniformly bounded in L1.˝/. Using (20) and (21) we obtain, from (19), that
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�
a� � a�

�
˛" � ˇ"

F
p�

��Z
˝

k".w/ jru"jp

� ˇ"

F
p�
kF p

" .u
"/kL1.˝/ C kf"kL1.˝/ku"kL1.˝/;

The right hand side of the above inequality is bounded by a positive constant C
independent of ". Choosing " sufficiently small such that ˛" � ˇ"

F
p
�

� a�
2a�

we get

Z
˝

k".w/jru"jp � 2

a�
C

and, using this inequality and (22), we immediately obtain (17).
Denote A" D fx 2 ˝ W jru".x/jp > F p

" .u".x//C "g. Observe that, for q > p,

Z
˝

jru"jq D
Z
˝nA"

jru"jq C
Z
A"

jru"jq

� j˝jkF p
" C "k

q
p

L1.�M;M/ C 2
q
p�1

� Z
A"

	jru"jp � F p
" .u

"/

 q
p C

Z
A"

F q
" .u

"/
�

and to conclude the boundedness of kru"kLq.˝/, we only need to control the second
term of the right hand side of the above inequality. As, for all j 2 N and s > 0 we
have es � sj =j Š, then, for q

p
2 N, we get, by the definition of k",

Z
A"

w
q
p � "

q
p
	
q

p



Š

Z
A"

k".w/

and, by (17), the conclusion follows, first for q such that q

p
2 N and after for any

1 < q <1. ut
Proof of Theorem 2. Let u" be the solution of problem (14). From (16) to (18), we
get that there exists u 2 W 1;q.˝/ such that, at least for a subsequence,

ru" �*
"!0

ru weakly in Lq.˝/; for any 1 < q <1;

u" �!
"!0

u in C . N̋ /:

Let us prove that u 2 KF.u/. Set

B" D
˚
x 2 ˝ W jru".x/jp � F p

" .u
".x// � p

"
�
:

Then, as k" is nondecreasing, and using (17)

jB"j D
Z
B"

1 �
Z
B"

k"
	jru".x/jp � F p

" .u".x//



k".
p
"/

� Ce
� 1

p

" : (23)
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Let ! be any measurable subset of ˝. As

jru"jp � F p
" .u

"/ �p
" �*
"!0

jrujp � F p.u/ weakly in L1.˝/,

then
Z
!

.jrujp � F p.u// D lim
"!0

Z
!

.jru"jp � F p
" .u

"/ �p
"/

� lim
"!0

Z
!\B"

jru"jp

D lim
"!0

j! \ B"j 12 kru"kp
L2p.˝/

D 0; using (23) and (18);

concluding that jruj � F.u/ a.e. in ˝.
Let us now see that u solves the quasivariational inequality (8). Given v 2 KF.u/

we define �" D kF.u/ � F".u"/kC . N̋ / and v" D F�
F�C�" v. Observe that v" 2 KF".u"/

and v" �!
"!0

v in W 1;p.˝/. Besides, denoting again w D jru"jp � F p
" .u"/,

.k".w/ � 1/a".x/
	jru"j2 C "


 p�2
2 ru" � r.v" � u"/

� .k".w/ � 1/a".x/
	jru"j2 C "


 p�2
2 jru"j 	jrv"j � jru"j
 � 0; (24)

as, when k".w/ > 1 then jru"j � F".u"/ � jrv"j.
So, multiplying equation (14a) by v" � u", and using (24), we obtain

Z
˝

a".x/
	jru"j2 C "


 p�2
2 ru" � r.v" � u"/C "

Z
˝

ru" � r.v" � u"/

C
Z
cju"jp�2u".v" � u"/ �

Z
˝

f ".v" � u"/:

Using the strict monotonicity of the p-laplacian operator, we get

Z
˝

a".x/
	jrv"j2 C "


 p�2
2 rv" � r.v" � u"/C "

Z
˝

ru" � r.v" � u"/

C
Z
cju"jp�2u".v" � u"/ �

Z
˝

f ".v" � u"/

and, letting "! 0 and, as the term
Z
˝

ru" � r.v" � u"/ is bounded, we have

Z
˝

a.x/jrvjp�2rv � r.v � u/C
Z
cjujp�2u.v � u/ �

Z
˝

f .v � u/;
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which implies, by applying a kind of Minty’s Lemma, that

Z
˝

a.x/jrujp�2ru � r.v � u/C
Z
cjujp�2u.v � u/ �

Z
˝

f .v � u/

which concludes the proof of the theorem. ut

3 The Case with Dirichlet Boundary Condition

In this section we consider the quasivariational case with nonhomogeneous Dirichlet
boundary condition, correspondent to the convex sets defined in (3), with '

substituted by F.u/. As it was already referred, one main concern is to avoid
the emptiness of these sets. So we introduce the assumption (10), based on a
compatibility condition between the boundary condition g, the minimum of the
gradient constraint function F and the geometry of the domain.

Consider the variational inequality: to find u 2 K' such that

Z
˝

a.x;ru/ � r.v � u/C
Z
˝

c jujp�2u.v � u/ �
Z
˝

f .v � u/; 8v 2 K';

(25)

where K' is defined in (3).

Proof of Theorem 3. The proof follows the steps of the proof of Theorem 1. The
main difference consists in proving the continuity of the operator T W C . N̋ / �!
W 1;p.˝/, where T .'/ is the solution of problem (25), with F.'/ in the place of
'. We will sketch the proof of the Mosco convergence of KF.'n/ to KF.'/, where
.'n/n converges to ' in C . N̋ /, from which we immediately deduce the continuity
of T (see [12] or [16, Theorem 4.1]). So, we only need to prove the following two
conditions:

8v 2 KF.'/ 8n 2 N 9 vn 2 KF.'n/ W vn �!
n

v in W 1;p.˝/; (26a)

if, for all n 2 N; vn 2 KF.'n/ and vn �*
n

v in W 1;p.˝/; then v 2 KF.'/: (26b)

Using the assumption (10) we may extend the function g to N̋ (still calling it by
g) satisfying the condition jrgj D k F� (see [9]).

To prove (26a) consider, for given v 2 KF.'/ and, for n 2 N,

Gn D minfF.'n/; F.'/g
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and vn D bnv C .1 � bn/g, where

bn D min
x2 N̋

Gn.x/ � kF�
F.'.x// � kF�

:

So, 0 < bn � 1 and
�
Gn�kF�
F.'/�kF�

�
n

converges to 1 in C . N̋ / and, as N̋ is compact,

bn �!
n
1. Note that vn 2 KF.'n/ as vnj@˝ D g and

jrvn.x/j � bnF.'.x//C .1 � bn/kF� � Gn.x/;

because bn � Gn.x/�kF�
F.'.x//�kF� . We have

Z
˝

jr.vn � v/jp D .1 � bn/p
Z
˝

jr.g � v/jp �!
n
0:

To prove (26b), let .vn/n be a sequence in KF.'n/, converging weakly inW 1;p.˝/

to v. As vnj@˝ D g then vj@˝ D g. Given any measurable set ! 	 ˝,

Z
!

jrvj � lim inf
n

Z
!

jrvnj � lim inf
n

Z
!

F.'n/ D
Z
!

F.'/;

so jrvj � F.'/ a.e. in ˝, which means v 2 KF.'/. This concludes the proof of the
continuity of T .

We present now an a priori estimate for the W 1;p.˝/ norm of u' D T .'/,
independent of '.

Choosing g as test function in (25) and recalling that f 2 Lq0.˝/ we have

Z
˝

a.x;ru'/ � ru' C
Z
˝

cju' jp

�
Z
˝

a.x;ru'/ � rg C
Z
˝

f u' �
Z
˝

fg C
Z
˝

cju' jp�2u'g

�
Z
˝

jru' jp�1a�kF� C
Z
˝

ju' jp�1kcgkL1.˝/

C kf kLq0 .˝/ku'kLq.˝/ C kf kLq0 .˝/kgkLq.˝/:

As ku'kLq.˝/ � Cqku'kW 1;p.˝/ we have, for ı > 0,

a�kru'kpLp.˝/ �
ıp

0

p0 ku'kpW 1;p.˝/
C j˝j
ıpp

�
.a�kF�/p C kcgkpL1.˝/

�

C ıp

p
ku'kpW 1;p.˝/

C C
p0

q

ıp
0

p0 kf k
p0

Lq
0

.˝/
C kf kLq0 .˝/kgkLq.˝/:
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Applying the Poincaré inequality to u' , we have

ku'kpW 1;p.˝/
� cp

	kru'kpLp.˝/ C kgkpLp.@˝/


:

Choosing ı such that
	
ıp

0

p0
C ıp

p



cp < a�, we conclude that there exists a positive

constant C D C.kf kLq0 .˝/; kgkL1.˝// such that kru'kpLp.˝/ � C: Applying
again the Poincaré inequality, there exists another positive constant C such that

ku'kpW 1;p.˝/
� C:

As we proved the continuity of the operator T and the above estimate, the
conclusion follows as in the proof of Theorem 1. ut

The proof of Theorem 4 will be done using, as in the proof of Theorem 2,
a family of approximating problems, obtained by regularizing and penalizing the
quasivariational inequality. For 0 < " < 1, consider the approximating family of
problems:

� r �
�
k"
	jru"jp � F p

" .u
"/


a".x/

	jru"j2 C "

 p�2

2 ru" C "ru"
�

C c ju"jp�2u" D f " in ˝; (27a)

u"j@˝ D g"; (27b)

where a", g", f " and F" are approximations by convolution of a, g, f and F , and
k" W R ! R is a smooth nondecreasing function as in (15).

This problem has a unique solution u" 2 C 2;˛.˝/ \ C . N̋ / (see [5, Theo-
rem 5.19]).

Consider an extension g" to N̋ , still denoted by g", such that jrg"j D kF� in˝.
Notice that such a function exists because (10) is verified and g" 2 W 1;1.˝/.

Proposition 5. Under the assumptions of Theorem 4 there exist positive constants
C and Dq , independent of ", such that

ku"kL1.˝/ � C; (28)

kk".jru"jp � F p
" .u

"//kL1.˝/ � C; (29)

8 1 < q <1 kru"kLq.˝/ � Dq: (30)

Proof. By the strong maximum principle for quasilinear elliptic equations, the
L1.˝/-norm of u" depends only on kf kL1.˝/ and kgkL1.@˝/.

Denote once again jru"jp � F p
" .u"/ by w. Multiplying by u" � g" the Eq. (27a)

and integrating over ˝ we obtain
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Z
˝

k".w/a".x/.jru"j2 C "/
p�2
2 jru"j2 C "

Z
˝

jru"j2 C
Z
˝

cju"jp

D
Z
˝

k".w/a".x/.jru"j2 C "/
p�2
2 ru" � rg" C "

Z
˝

ru" � rg"

C
Z
˝

cju"jp�2u" g" C
Z
˝

f ".u" � g"/:

We can rewrite the above equality as

Z
˝

k".w/a".x/.jru"j2 C "/
p
2 C "

Z
˝

jru"j2 C
Z
˝

cju"jp

D "

Z
˝

k".w/a".x/.jru"j2 C "/
p�2
2 C

Z
˝

k".w/a".x/.jru"j2 C "/
p�2
2 ru" � rg"

C "

Z
˝

ru" � rg" C
Z
˝

cju"jp�2u" g" C
Z
˝

f ".u" � g"/

and then, using (28) and (30), there exists a constant C1 > 0, independent of ", such
that

a�
Z
˝

k".w/.jru"j2 C "/
p
2 � a�"

Z
˝

k".w/.jru"j2 C "/
p�2
2

C a�kF�
Z
˝

k".w/.jru"j2 C "/
p�2
2 jru"j C C1: (31)

Observe that

a�kF�
Z
˝

k".w/.jru"j2 C "/
p�2
2 jru"j

� a�kF�
Z
˝

k".w/.jru"j2 C "/
p�1
2 � a�kF�

Z
˝

k".w/
� jru"j2 C "/

p
2

p0ıp0
C ıp

p

�
;

for any ı > 0. Choosing ı D F
1
p0� , we obtain

a�kF�
Z
˝

k".w/.jru"j2 C "/
p�2
2 jru"j

� a�k
p0

Z
˝

k".w/.jru"j2 C "/
p
2 C a�kF p�

p

Z
˝

k".w/: (32)

Inequalities (31) and (21) allow us to obtain
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�
a� � a�k

p0 � ˛"
� Z

˝

k".w/jru"jp �
�a�kF p�

p
C ˇ"

� Z
˝

k".w/C C1:

Recalling (22), we obtain

	
F
p� .a� � a�k/ � .F p� ˛" C ˇ"/


 Z
˝

k".w/ �
�
a� � a�k

p0 � ˛"
� Z

˝

F p
" .u

"/C C1:

Observing, as in the proof of Proposition 4, that
	
F
p
" .u"/



"

is uniformly bounded in
L1.˝/ and F p� ˛" C ˇ" �!

"!0
0, there exists D > 0 such that

F
p�
a� � a�k

2

Z
˝

k".w/ � D

and the conclusion (29) follows.
The proof of (30) is similar to the case of Neumann boundary condition. ut

Remark 2. If a� D a�, as in the p-laplacian case, the only restriction on k is 0 <
k < 1.

Proof of Theorem 4. After the previous proposition, the proof of this theorem is
similar to the proof of Theorem 2. Here the constant c� may be zero. However,
after obtaining the uniform control of kru"kLq.˝/, the Poincaré inequality implies
the uniform boundedness of ku"kW 1;q.˝/. The verification that uj@˝ D g is a
consequence of the equality u"j@˝ D g" and convergence of .u"/" to u in C . N̋ /. ut
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Shocks and Antishocks in the ASEP Conditioned
on a Low Current

Vladimir Belitsky and Gunter M. Schütz

1 Introduction

The Asymmetric Simple Exclusion Process (ASEP) [14, 20] on a one-dimensional
lattice of L sites can be informally defined as follows.

1. Each particle attempts to jump independently of the other particles after an expo-
nentially distributed random time with parameter 1=.cr C c`/ with probability
cr=.cr C c`/ to the next site on the right (clockwise) and c`=.cr C c`/ to the next
site on the left (counterclockwise)

2. The hopping attempt is rejected if the site to which the particle tries to move is
occupied

We introduce the hopping asymmetry q2 WD cr=c` and assume without loss of
generality a hopping bias to the right, i.e., q > 1. For convenience we take L D 2M

even. We consider two kinds of boundary conditions, the periodic system with
N particles on the torus TL WD Z=LZ (with sites k modulo L in the principal
domain �M C1;�M C2; : : : ;M ), and the open system where at the left boundary
site �M C 1 particles are injected with rate ˛ D cr�1 and extracted with rate
� D c`.1 � �1/ and at the right boundary site M particles are injected with rate
ı D c`�2 and extracted with rate ˇ D cr .1 � �2/. Injection attempts onto occupied
sites are rejected. The parameters �1;2 2 Œ0; 1� can be interpreted as particle reservoir
densities. Because of the hopping bias and the boundary conditions the dynamics is
not reversible and there is a non-zero stationary particle current j � that depends on

V. Belitsky (�)
Instituto de Matemática e Estátistica, Universidade de São Paulo, Rua do Matão, 1010,
CEP 05508-090, São Paulo – SP, Brazil
e-mail: belitsky@ime.usp.br

G.M. Schütz
Institute of Complex Systems II, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
e-mail: g.schuetz@fz-juelich.de

C. Bernardin and P. Gonçalves (eds.), From Particle Systems to Partial Differential
Equations, Springer Proceedings in Mathematics & Statistics 75,
DOI 10.1007/978-3-642-54271-8__3, © Springer-Verlag Berlin Heidelberg 2014

113

mailto:belitsky@ime.usp.br
mailto:g.schuetz@fz-juelich.de


114 V. Belitsky and G.M. Schütz

the conserved particle density � D N=L in the periodic case and on the boundary
densities �1;2 in the open case.

In the last decade, following the seminal papers [4, 9], the large deviation theory
for the ASEP has been developed in considerable detail. Here we focus on large
deviations of the time-integrated current J.t/ for finite t . This random number is
given by J.t/ D JC.t/ � J�.t/ where J˙.t/ 2 Z is the total number of jumps
of all particles to the right/left up to time t , starting from some initial distribution
of the particles. In a finite system one has asymptotically J.t/ 
 j �Lt as time
t tends to infinity, expressing the fact that J.t/ is extensive in system size L and
time t . Therefore, for studying large times, we define also the global space-time
average j.t/ D J.t/=.Lt/. The probability to observe for a long time interval t
an untypical mean j ¤ j � is exponentially small in L and t . This is expressed in
the large deviation property Prob Œ J.t/ D J � / exp .�f .j /Lt/ [8] where f .j /
is the rate function. It is then natural to introduce a generalized fugacity y D es

with generalized chemical potential s and to study the generating function Ys.t/ WDP
J2Z yJProb Œ J.t/ D J �. The cumulant function g.s/ D limt!1 lnYs.t/=.Lt/

is the Legendre transform of the rate function, i.e., g.s/ D maxj Œjs � f .j /�. The
intensive variable s is thus conjugate to the mean current density j .

The large deviation theory developed on the basis [4, 9] provides information
about the large scale spatio-temporal structure of the process conditioned on
realizing a prolonged untypical behaviour of the current. Bodineau and Derrida
have studied in some detail the weakly asymmetric exclusion process (WASEP)
where cr � c` D �=L is small [5, 6]. For periodic boundary conditions [5] the
optimal macroscopic density profile �.x; t/ that realizes a large deviation with
strictly positive s (i.e., for any current j conditioned on j > j �) is time-independent
and flat and hence equal to the typical profile �.x; t/ D N=L DW �. However, for a
current conditioned to be below the typical value (corresponding to s < 0) there is
a dynamical phase transition: The flat profile becomes unstable below some critical
value sc and a travelling wave of the form �.x � vt / develops. In the limit � ! 1
(expected to correspond to finite asymmetry in the ASEP) the optimal profile in this
regime is predicted to have the form of a step function with two constant values �1
and �2. This is a profile consisting of a shock discontinuity where the density jumps
from �1 to �2 > �1 at a position x1.t/ and an antishock where the density jumps
from �2 to �1 at position x2.t/.

Subsequently an antishock was found also for the WASEP with open boundaries
in the maximal current phase in the limit � ! 1 [6], and more recently for
conditioning on atypically low activities K.t/ D JC.t/C J�.t/ in the symmetric
simple exclusion process [13]. Notice that the macroscopic large deviation theory
provides only information about the density profile on Euler scale. Moreover,
it cannot predict the macroscopic position of the antishock. For unconditioned
dynamics antishocks are unstable and dissolve into a rarefaction wave [18]. The fact
that under conditioning on a sufficiently low current an antishock in the WASEP is
stable therefore raises a number of interesting questions.

Here we address the existence of an antishock in the ASEP, its position and its
microscopic structure. The techniques used are an adaptation of our earlier work
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[1] on the microscopic structure of shocks under unconditioned dynamics. This
approach, which is essentially algebraic, has a probabilistic interpretation as self-
duality [7, 10, 12, 19]. However, it constrains our approach to a specific family of
initial measures with densities �1;2 which are determined by the hopping asymmetry,
see conditions S, S0 below. As in [16, 17, 21] we construct the generator of the
conditioned dynamics for non-zero s. Fixing some s < 0 corresponds to studying
realizations of the process where the current fluctuates around some non-typical
mean j < j �. We shall refer to this approach as grandcanonical conditioning, as
opposed to a canonical condition where the current J.t/ would be conditioned to
have some fixed value J . Unlike [16, 17, 21] we focus on finite times, choosing
specific shock or antishock measures as initial distributions of the conditioned
dynamics.

2 Quantum Hamiltonian Formalism

Here we review some useful tools for treating the conditioned time evolution of the
ASEP. We refer the reader to [2] for more details.

2.1 Master Equation and Conditioned Dynamics

For interacting particle systems with state space V the Markov generatorL acting on
cylinder functions f .�/ of a particle configuration � 2 V is usually defined through
the relation

Lf .�/ D
X
�0

w�0;�Œf .�
0/ � f .�/� (1)

where w�0;� is the transition rate from a configuration � to �0. For a given probability
measure 	.t/ on then has

d

dt
hf i	 D hLf i	 (2)

where h � i	 denotes expectation w.r.t. 	.t/. By taking f to be the indicator function
1� on a fixed configuration � we can construct from this relation the forward
evolution equation, called master equation,

d

dt
	.�I t / D

X
�02V

�0¤�

�
w�;�0	.�

0I t / � w�0;�	.�I t /
�

(3)
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for the time evolution of the probability 	.�I t / of finding the configuration � at
time t . A stationary distribution, i.e., an invariant measure satisfying d	=dt D 0 is
denoted by 	� and a stationary probability of a configuration � is denoted 	�.�/.

For particle systems it is convenient to write the master equation (3) in a matrix
form often called quantum Hamiltonian formalism [15, 20]. One assigns to each
configuration � a column vector j � i which together with the transposed vectors h � j
form an orthogonal basis of a complex vector space with inner product h � j �0 i D
ı�;�0 . Here ı�;�0 is the Kronecker symbol which is equal to 1 if the two arguments
are equal and zero otherwise. With this convention a measure can be written as a
probability vector

j	.t/ i D
X
�2V

	.�I t / j � i: (4)

whose components are the probabilities 	.�I t / D h � j	.t/ i. The notation for
vectors is an elegant tool borrowed from quantum mechanics.

Next we define a matrix H whose off-diagonal matrix elements H�;�0 are the
(negative) transition rates w�;�0 and the diagonal entries H�;� are the sum of all
outgoing transition rates w�0;� from configuration �. The master equation (3) then
takes the form of a Schrödinger equation in imaginary time,

d

dt
j	.t/ i D �H j	.t/ i (5)

with the formal solution

j	.t/ i D e�Ht j	.0/ i (6)

reflecting the semi-group property.
For the ASEP � D .�.�M C 1/; �.�M C 2/; : : : ; �.M// and V D f0; 1gL and

we choose a tensor basis with basis vectors j � i D j �.�M C 1/ i ˝ � � � ˝ j �.M/ i
where j �.k/ i is a two-dimensional column vector whose upper component is 1
(0) and lower component is 0 (1) if �.k/ D 0 (�.k/ D 1). The generator of the
ASEP can then be constructed from the usual Pauli matrices �x;y;zk acting locally on
site k of the lattice by introducing the particle creation and annihilation operators
�k̇ D .�xk˙i�yk / and the projectors Onk D .1�� z

k/=2 on particles and Ovk D 1�nk on
vacancies on site k. With these definitions we find for periodic boundary conditions

Hper WD �
MX

kD�MC1
ek (7)

with hopping matrices (k modulo L)

ek D cr .�
C
k �

�
kC1 � Onk OvkC1/C c`.�

�
k �

C
kC1 � Ovk OnkC1/ (8)
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and for open boundary conditions

Hopen WD �
"
b�MC1 C

M�1X
kD�MC1

ek C b0M

#
(9)

with the boundary matrices

b�MC1 D ˛.���MC1 � Ov�MC1/C �.�C
�MC1 � On�MC1/;

b0M D ı.��
M � OvM/C ˇ.�C

M � OnM /: (10)

The generator H defined above describes the unconditioned hopping dynamics.
Following Refs. [8, 11] the grandcanonically conditioned dynamics is generated by
a matrix H.s/ which is obtained from H D H.0/ by multiplying the offdiagonal
matrices that correspond to jumps to the right (either in the bulk or from bulk to the
reservoirs) by a factor es and correspondingly for jumps to the left by e�s . For open
boundary conditions this yields

Hopen.s/ WD �
"
b�MC1.s/C

M�1X
kD�MC1

ek.s/C b0M.s/
#

(11)

with

ek.s/ D cr .e
s�C
k �

�
kC1 � Onk OvkC1/C c`.e

�s��
k �

C
kC1 � Ovk OnkC1/ (12)

and

b�MC1.s/ D cr�1.e
s���MC1 � Ov�MC1/C c`.1 � �1/.e�s�C

�MC1 � On�MC1/; (13)

b0M.s/ D c`�2.e
�s��

M � OvM/C cr .1 � �2/.es�C
M � OnM /: (14)

where we have used (10). For periodic boundary conditions one has

Hper.s/ WD �
MX

kD�MC1
ek.s/: (15)

Since periodic and open boundary conditions are presented below in different
subsections we shall drop the subscript on H .

With these conventions the (unnormalized) conditioned time evolution is
given by

j Q	s.t/ i WD e�H.s/t j	.0/ i: (16)
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and

Ys.t/ D h s je�H.s/t j	.0/ i (17)

for the normalization. Here h s j WD .1; 1; : : : ; 1/ D P
�2f0;1gLh � j is called the

summation vector. The normalized conditional probability vector

j	s.t/ i WD j Q	s.t/ i=Ys.t/ (18)

describes the approach to the long-time large deviation regime from a given initial
distribution and hence provides information about the microscopic space-time
structure of the long-time large deviation regime. In order to avoid heavy notation
we shall drop the subscript s.

2.2 Shock and Antishock Measures

We shall consider the evolution of two distinct types of measures which are
product measures with space-dependent densities �.k/ which we express in terms
of fugacities defined by

z WD �

1 � � : (19)

Type I shock/antishock measures for a finite system ofL sites are defined as follows:

Definition 1. A shock or antishock measure 	Im of type I and �M � m � M is a
Bernoulli product measure with fugacities

z.k/ D
�

z1 at the set of sites �M < k � m

z2 at the set of sites m < k �M
(20)

For cr > c` and z2 > z1 such a measure is called a shock measure and for cr > c`
and z1 > z2 it is called an antishock measure for the ASEP.

We call site m the microscopic position of the shock (or antishock) in the
shock/antishock measure of type I.

In vector representation we have

j	Im i D 1

Am

�
1

z1

�˝.mCM/

˝
�
1

z2

�˝.M�m/
(21)

with Am D .1C z1/MCm.1C z2/M�m. Tensor products with exponent 0 are defined
to be absent. For studying periodic boundary conditions we need the (unnormalized)
restriction of 	Im to the sector with N particles. This is the measure
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j	I;Nm i D PN j	Im i (22)

where the projector on configurations with N particles is defined by

PN j � i D
� j � i if

P
k2TL �.k/ D N

0 otherwise
: (23)

The density profile seen from the shock (antishock) position is the lattice
analogue of a step function with densities �1;2. For m D ˙M the step vanishes and
the step function measures reduce to the usual Bernoulli product measures which
we denote by

j	z i D 1

.1C z/L

�
1

z

�˝L
D
�
1 � �
�

�˝L
(24)

where z is the fugacity (19). In particular,

j	IM;M i � j	IM i D j	z1 i; j	I�M;M i � j	I�M i D j	z2 i: (25)

Notice that 	IM ¤ 	I�M .
We note the transformation property

Lemma 1. Let j	z i be the vector representation of the Bernoulli product measure
with fugacity z for L sites and ONm D PM

kDmC1 Onk be the partial number operator.
Then 8z1; z2 2 .0;1/ and �M � m �M

j	Im i D
�
1C z1
1C z2

�M�m � z2
z1

� ONm
j	z1 i; (26)

and for fixed particle number N

j	I;N�M i D
�
1C z1
1C z2

�L � z2
z1

�N
j	Nz1 i: (27)

Proof. With the matrix representation of the number operator On for a single site

y On D 1C .y � 1/ On D
�
1 0

0 y

�
;

the tensor property y ONm D 1˝MCm˝ .y On/˝M�m and the vector representation (21)
the proof of the first equality becomes elementary multilinear algebra. The second
equality follows from ON�M D ON and the fact that the projection on N sites can be
interchanged with the number operator and that the projected vector is an eigenstate
with eigenvalue N of the number operator ON . ut
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The densities �1;2 are, in principle, free parameters, both from the interval Œ0; 1�.
We shall consider two distinct submanifolds,
Condition S:

z2
z1

D q2 (28)

and
Condition S0:

z1
z2

D q2 (29)

Condition S implies �2 > �1, i.e., the corresponding measure is a shock measure,
while Condition S0 implies �2 < �1, i.e., the corresponding measure is an antishock
measure. Notice that when we work with condition S we can write Lemma 1 in the
form

j	Im i D
�
1C z1
1C q2z1

�M�m
q2

ONm j	z1 i (30)

and

j	I;N�M i D
�
1C z1
1C q2z1

�L
q2N j	Nz1 i: (31)

A second one-parameter family of shock measures is defined on the torus TL [2]
as follows.

Definition 2. A shock measure 	IIm of type II on TL with shock at position m 2
f�M C 1;�M C 2; : : : ;� M � 1g is a Bernoulli product measure with space-
dependent fugacities

z.k/ D
(

z1q2
m�M�k

L for �M < k � m

z1q2
mCM�k

L for m < k �M

)
: (32)

Furthermore, 	II�M � 	IIM is a Bernoulli product measure with space-dependent
fugacities

z.k/ D z1q
�2k
L for �M < k �M: (33)

The unnormalized restrictions of these measures on the sectors with N particles
are denoted 	II;Nm .

As the following lemma shows, there is a similarity transformation that relates
shock measures of type I and type II.
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Lemma 2. Assume condition S and let

U WD q�
2
L

P
k2TL

k Onk : (34)

Then for �M � m �M we have

j	IIm i D 1

Ym
q
2.m�M/

L
ONU j	Im i (35)

with

Ym D
mY

kD�MC1

 
1C z1q2

m�M�k
L

1C z1

!
MY

kDmC1

 
1C z1q2

mCM�k
L

1C q2z1

!
: (36)

Moreover, for fixed particle number N

j	II;Nm i D 1

Ym
q
2.m�M/

L NU j	I;Nm i: (37)

The proof is analogous to the proof of Lemma 1. The central fact is that PN , ON
and U are all diagonal and hence commute. The density profile seen from the shock
position is the lattice analogue of a hyperbolic tangent with a transition region of
width 
L=.ln q/. Notice that z1 parametrizes the total mass which is conserved in
the case of periodic boundary conditions.

3 Main Results

We are now in a position to state and prove our main results on the time evolution of
the ASEP under conditioned dynamics, viz. for type II shocks for periodic boundary
conditions [2] where we work with condition S and for type I antishocks in the case
of open boundary conditions [3] where we shall work with condition S0.

3.1 Periodic Boundary Conditions

Our objective is to characterize the time evolution of shocks of type II. To this end
we define modified jump rates

Qcr WD crq
� 2N

L ; Qc` WD c`q
2N
L : (38)

Theorem 1. Consider the ASEP on TL with N particles and hopping rates c` and
cr to the left and to the right respectively. Let the initial distribution at time t D 0
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be the type II shock measure 	II;Nm and let 	II;Nm .t/ denote the grandcanonically
conditioned measure of the ASEP at time t under global conditioning with weight
e�sL D q2. Then for m 2 TL and any t � 0

	II;Nm .t/ D
MX

lD�MC1
pt .l jm/	II;Nl (39)

where pt .l jm/ is the probability that a particle that performs a continuous-time
simple random walk on TL with hopping rates Qcr to the right and Qc` to the left,
respectively, is at site l at time t , starting from site m.

We remark that the random walk transition probability can be written in the form

pt .l jm/ D e�.QcrCQc`/t
1X

pD�1

� Qcr
Qc`
�.l�mCpL/=2

Im�lCpL.2
p

Qcr Qc` t/ (40)

with the modified Bessel function In.�/. The interpretation of (39) is that at any time
t � 0 the shock position performs a biased random walk and that the distribution of
this process seen from the position of the shock retains its product structure.

Proof. In this subsection we define QH D H.�2 ln q=L/. In order to prove (39) we
observe that with (30) and with Lemma 2 we can write the initial measure

j	II;Nm i D Vmj	Nz1 i (41)

with

Vm D 1

W
q
2
L .
Pm
kD�MC1.�MCm�k/ OnkCPM

kDmC1.MCm�k/ Onk/ (42)

where the normalization factor

W D .1C z1/
L

MY
kD�MC1

�
1C z1q

� 2k
L

�
(43)

is independent of m. Recalling (5) this leads to

d

dt
j Q	II;Nm .t/ i D �Vm QH.m/j Q	Nz1 .t/ i (44)

for the unnormalized measure with the transformed generator QH.m/ D V �1
m

QHVm.
Straightforward computation yields

e�ak Onk�l̇ eak Onk D
�
�l̇ k ¤ l

e˙al �l̇ k D l
: (45)
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and therefore, with Condition S,

QH.m/ D �
MX

iD�MC1
0 �cr .�C

i �
�
iC1 � Oni OviC1/C c`.�

�
i �

C
iC1 � Ovi OniC1/

�
(46)

� �c`�C
m �

�
mC1 � cr Onm OvmC1 C cr�

�
m�

C
mC1 � c` Ovm OnmC1

�
(47)

where the prime at the summation indicates the absence of the term with i D m. We
add �.cr � c`/. OniC1 � Oni / to each term in (46) and �.cr � c`/. OnmC1 � Onm/ to (47)
to compensate. Thus we arrive at

QH.m/ D �
MX

iD�MC1
0 �cr .�C

i �
�
iC1 � Ovi OniC1/C c`.�

�
i �

C
iC1 � Oni OviC1/

�
(48)

� �c`.�C
m �

�
mC1 � Onm OvmC1/C cr .�

�
m�

C
mC1 � Ovm OnmC1/

�
(49)

which we write in the form QH.m/ D QH.m/

b C B.m/ with bulk term QH.m/

b D P0
i
Qhbi

given by (48) transformation term B.m/ given by (49).
Using the properties of the particle creation and annihilation operators it follows

that hbi j	Nz1 i D 0. On the other hand, B.m/j	Nz1 i D �.cr � c`/. OnmC1 � Onm/j	Nz1 i
which implies VmB.m/j	Nz1 i D �.cr � c`/. OnmC1 � Onm/Vmj	Nz1 i since Vm and the
number operators Oni are both diagonal and hence commute. With the projector
property On2k D Onk resulting from the exclusion principle one has q�2N=LVmC1 D
.1 C .q�2 � 1/ OnmC1/Vm and q2N=LVm�1 D .1 C .q2 � 1/ Onm/Vm. Therefore
crq

�2N=LVmC1C c`q2N=LVm�1� .cr C c`/Vm D �.cr � c`/. OnmC1� Onm/Vm. Putting
these results together yields the evolution equation for the unnormalized conditioned
measure

d

dt
Q	II;Nm .t/ D crq

� 2N
L Q	II;NmC1.t/C clq

2N
L Q	II;Nm�1 .t/ � .cr C c`/ Q	II;Nm .t/ (50)

for any m 2 TL and any t � 0.
This relation brings us into a position to compute the normalization Rm.t/ D

h s je� QHt j	II;Nm i and from this the normalized measure 	II;Nk .t/ D Q	II;Nk .t/=R.t/.
Using (50) we get

d

dt
Rm.t/ D �h s je QHt QH j	II;Nm i

D crq
�2N=LRmC1.t/C c`q

2N=LRm�1.t/ � .cr C c`/Rm.t/ (51)

D �
crq

�2N=L C c`q
2N=L � .cr C c`/

�
Rm.t/

where the last line follows from translation invariance. Integrating yields

	
II;N
k .t/ D exp Œ.�crq�2N=L � c`q2N=L C cr C c`/t � Q	II;Nk .t/=R.0/ (52)
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which implies the system of linear ODE’s

d

dt
	
II;N
k .t/ D Qcr	II;NkC1 .t/C Qc`	II;Nk�1 .t/ � . Qcr C Qc`/ 	II;Nk .t/: (53)

In order to show that (39) satisfies this system of ODE’s with the initial condition
	IIm .0/ D 	IIm we note that the random walk transition probability of the theorem
satisfies the forward evolution equation

d

dt
pt .l jm/ D Qcrpt .l � 1 jm/C Qc`pt .l C 1 jm/ � . Qcr C Qc`/ pt .l jm/ (54)

with initial condition p0.l jm/ D ıl;m. The theorem thus follows from translation
invariance pt .l C r jmC r/ D pt .l jm/ 8r 2 Z and periodicity pt .l C pL jm/ D
pt .l jm/ 8p 2 Z of the transition probability. ut

3.2 Open Boundary Conditions

In contrast to the periodic case we consider for open boundary conditions antishocks
satisfying condition S0 (29) [3]. We define

ı1 D .cr � c`/�1.1 � �1/
�1 � �2 (55)

and

ı2 D .cr � c`/�2.1 � �2/
�1 � �2 (56)

which, as the following theorems shows, are the hopping rates of the antishock.

Theorem 2. Let the initial distribution of the ASEP with open boundary conditions
defined in (10) be given by the type I antishock measure 	Im satisfying condition
S0 and let 	Im.t/ denote the grandcanonically conditioned measure at time t under
conditioning e�s D q2. Then we have 8 t � 0

	Im.t/ D
MX

kD�MC1
pt .k jm/	Ik (57)

where pt .k jm/ is the transition probability of a simple continuous-time random
walk with hopping rates ı1 to the left and ı2 to the right and reflecting boundary
conditions at sites n D �M;M .

The interpretation of this result for the antishock is analogous to interpretation
of (1) for the shock. The antishock performs a random walk and the internal structure
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of the measure seen from the position of the antishock is invariant. It is remarkable
that the antishock hopping rates are similar to those of a shock satisfying condition
S under unconditioned dynamics [1].

Proof. In this subsection we define � QH D �H.�2 ln q/ D Qb�MC1 CPM�1
kD�MC1 Qek C Qb0M and QY .t/ D Y�2 ln q.t/. Using h s j��

k D h s jOvk and
h s j�C

k D h s j Onk one has h s j Qek D .cr � c`/. OnkC1 � Onk/ and, summing up all

terms, obtains d
dt

QY .t/ D �h s j QHe� QHt j	.0/ i D ��0 QY .t/ with

�0 D �.cr � c`/.�2 � �1/ (58)

for any initial distribution 	.0/. Since 	.0/ is normalized to one it follows that

QY .t/ D e��0t (59)

We conclude that the normalized grandcanonically conditioned time evolution is
generated by

OH D QH � �0 (60)

Next we consider the time derivative � QH j	In i, using arguments completely
analogous to those of [1]. One finds Qb�MC1j	In i D 0 for n ¤ �M , Qb0M j	�

n i D 0

for n ¤M and Qekj	�
n i D 0 for n ¤ k, and, for n ¤ ˙M ,

� QH j	�
n i D Qenj	�

n i D ı1j	�
n�1 i C ı2j	�

nC1 i � .cr C c`/j	�
n i (61)

with

ı1 D c`
�1

�2
; ı2 D cr

�2

�1
: (62)

Conditions S0 (29) then leads to the expressions (55), (56). Similarly one gets

� QH j	I�M i D Qb�MC1j	I�M i D ı2j	I�MC1 i � f1j	I�M i (63)

and

� QH j	IM i D Qb0M j	IM i D ı1j	IM�1 i � f2j	IM i (64)

with

f1 D cr�1Cc`.1��1/ D crCc`�ı1; f2 D cr .1��2/Cc`�2 D crCc`�ı2: (65)

On the other hand, condition S0 gives after some straightforward algebra

ı1 C ı2 � cr � c` D ��0: (66)
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Therefore, for �M � n � M , one has for the unnormalized time evolution
� QH j	In i D ı1.1 � ın;�M/

	j	In�1 i � j	In i

C ı2.1 � ın;M /

	j	InC1 i � j	In i

 �

�0j	In i. The last diagonal term is compensated by the normalization (60) and we
finally obtain for the normalized grandcanonically evolution of antishock measures
satisfying (29)

� OH j	In i D ı1.1 � ın;�M/
	j	In�1 i � j	In i


C ı2.1 � ın;M /
	j	InC1 i � j	In i



:

(67)

This is the forward evolution equation of a biased random walk with hopping rate
ı1 to the left and ı2 to the right and reflecting boundary conditions at sites n D
�M;M . Formal integration of this evolution equation leads to the statement (57) of
the theorem. ut

The stationary solution of the random walk problem is a geometric distribution
of antishock positions. This leads us to the corollary

Corollary 1. Let j	I� i D limt!1 Q	Im.t/ be the (unique) stationary distribution
of the conditioned dynamics. Then

j	I� i D 1

Z

MX
kD�M

ukj	Ik i (68)

with parameter u D ı2=ı1 and normalization Z D .1 � uLC1/=.1 � u/ for u ¤ 1

and Z D LC 1 for u D 1.

Notice that for u < 1 the position of the antishock is concentrated at the right
boundary, leaving the bulk at density �1. For u > 1 the position of the antishock is
concentrated at the left boundary, leaving the bulk at density �2. At u D 1, where
the random walk is unbiased, the position of the antishock is uniformly distributed.

4 Relation to Macroscopic Large Deviation Theory

With regard to the macroscopic large-deviation theory of [5, 6] we remark that our
results provide exact information for any finite t � 0 and for finite lattice distances.
Notice however, that our results require the large deviation parameter s to take a
special value for a given (but arbitrary) asymmetry q, while the phenomena observed
in [5, 6] are valid for any s, but require weak asymmetry.

A less technical difference between our work and that of [5, 6] is the setting
in which the conditioning is considered. We look at the final distribution of the
conditioned process after a finite time interval, not at the process in the middle of a
large interval. Nevertheless there is a striking similarity, viz., the biased random
walk of the shock position together with the invariance of the density profile
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seen from the shock position on the one hand, and the existence of macroscopic
travelling wave solutions on the other hand. It would be interesting to investigate
the precise relation between our hyperbolic tangent solution and the macroscopic
shock-antishock profiles obtained from the large-deviation theory of [5].

We have also shown that under dynamics where the time-integrated current
of the ASEP with open boundaries is conditioned to be atypically low one can
have stable antishocks. Taking as initial distribution an antishock which is a
Bernoulli product measure with segments of different densities �1;2, the position
of the antishock performs a biased random walk with rates similar to that of a
shock. The microscopic structure of this antishock seen from the position of the
antishock remains unchanged in time. Measures of type I satisfying condition
S0 are a microscopic realization of an antishock in a macroscopic step function
density profile with density �1 (�2) in the interval Œ�1=2; x/ (Œx; 1=2/) of rescaled
coordinates m ! x under suitable rescaling of space. On macroscopic scale the
position of the antishock is shown to move with a speed determined by mass
conservation and to fluctuate around its mean position diffusively with a diffusion
coefficient D D .ı1 C ı2/=2.

For zero speed this property sheds light on the fact that the large deviation
theory cannot predict the position of the antishock. For the long-time regime our
result provides a direct microscopic proof that each antishock position is equally
likely. For non-zero speed its macroscopic position at late times is either at the left
boundary (for negative speed) or at the right boundary (for positive speed). The
fluctuations of the microscopically sharp antishock near the boundary correspond
to a microscopic boundary layer of width ln .cr=c`/, and macroscopically to a jump
discontinuity from �1 to �2. On the other hand, macroscopic large deviation theory
generically predicts three discontinuities, one at each boundary and one for the
antishock. Our result suggests that there could be special curves in parameter space
where there is only one discontinuity, for all phases.

For general values of s our approach does not allow us to obtain microscopic
results. However, the arguments of [1] suggest that a similar approach should be
possible for a positive-integer family of values sp and a corresponding family of
microscopic shock measures	k1;:::;kp with p shocks that perform interacting random
walks. This might lead to a density profile different from the hyperbolic tangent con-
sidered here. This is an open problem which is beyond the scope of the present work.
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Superdiffusion of Energy in Hamiltonian
Systems Perturbed by a Conservative Noise

Cédric Bernardin

1 Introduction

Transport properties of one-dimensional Hamiltonian systems consisting of coupled
oscillators on a lattice have been the subject of many theoretical and numerical
studies, see the review papers [7, 8, 12]. Despite many efforts, our knowledge of
the fundamental mechanisms necessary and/or sufficient to have a normal diffusion
remains very limited.

Consider a 1-dimensional chain of oscillators indexed by x 2 Z, whose formal
Hamiltonian is given by

H D
X
x2Z

�
p2x
2

C V.rx/

�
;

where rx D qxC1�qx is the “deformation” of the lattice, qx being the displacement
of the atom x from its equilibrium position and px its momentum. The interaction
potential V is a smooth positive function growing at infinity fast enough. The energy
ex of atom x 2 Z is defined by

ex D p2x
2

C V.rx/:

Our goal is to understand the macroscopic energy diffusion properties for the
corresponding Hamiltonian dynamics
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drx

dt
D pxC1 � px;

dpx

dt
D V 0.rx/ � V 0.rx�1/; x 2 Z:

Under suitable conditions on V , the infinite dynamics is well defined for a large
class of initial conditions.

Apart from the total energy
P

x ex , observe that the total momentum
P

x px
and the total deformation

P
x rx of the lattice are formally conserved. This is a

consequence of the following microscopic continuity equations:

dex

dt
CrŒj ex�1;x� D 0; j ex;xC1 D �pxC1V 0.rx/; (1)

dpx

dt
CrŒ�V 0.rx�1/� D 0; (2)

drx

dt
CrŒ�px� D 0: (3)

The function j ex;xC1 is the current of energy going from x to x C 1. The main
open problem [11, 17] concerning the foundation of statistical mechanics based on
classical mechanics is precisely to show that the three quantities above are the only
quantities which are conserved by the dynamics. In some sense, it means that the
dynamics, evolving on the manifold defined by fixing the total energy, the total
momentum and the total deformation, is ergodic. Of course, the last sentence does
not make sense since we are in infinite volume and

P
x ex;

P
x px and

P
x rx

are typically infinite. Nevertheless, an alternative meaningful definition will be
proposed and discussed in Sect. 2.

Numerical simulations provide a strong evidence of the fact that one dimensional
chains of anharmonic oscillators conserving momentum are1 superdiffusive. It shall
be noticed that there is no explanation of this, apart from heuristic considerations,
and that some models which do not conserve momentum can also display anomalous
diffusion of energy (see [10]).

An interesting area of current research consists in studying this problem for
hybrid models where a stochastic perturbation is superposed to the deterministic
evolution. Even if the problem is considerably simplified, several open challenging
questions can be addressed for these systems. The first benefit of the introduction
of stochasticity in the models is to guarantee the ergodicity that we are not able to
show for purely deterministic systems. The added noise must be carefully chosen
in order not to destroy the conservation laws we are interested in. In particular, the
noise shall conserve energy. But we will consider a noise conserving also some of
the other quantities conserved by the underlying Hamiltonian dynamics, e.g. the
momentum, the deformation or any linear combination of them.

1See however the coupled-rotor model which displays normal behavior (see [12], Sect. 6.4). This
is probably due to the fact that the position space is compact.



Superdiffusion of Energy in Hamiltonian Systems Perturbed by a Conservative Noise 131

The paper is organized as follows. In Sect. 2 we discuss the problem of the
ergodicity of the infinite dynamics mentioned above and the possible stochastic
perturbations we can add to the deterministic dynamics to obtain ergodic dynamics.
In Sect. 3 we review some results obtained in the context of harmonic chains
perturbed by a conservative noise and we discuss the case of anharmonic chains
in the last section.

2 Ergodicity

Let us first generalize the models introduced above [6]. Let U and V be smooth
positive potentials growing at infinity fast enough and let H WD HU;V be the
Hamiltonian

HU;V D
X
x2Z

ŒU.px/C V.rx/� :

The corresponding Hamiltonian dynamics satisfy

drx

dt
D U 0.pxC1/ � U 0.px/;

dpx

dt
D V 0.rx/ � V 0.rx�1/; x 2 Z: (4)

The energy of particle x is defined by ex D U.px/CV.rx/. The three formal quan-
tities

P
x ex ,

P
x rx and

P
x px are conserved by the dynamics. The fundamental

question we address in this section is: are they the only ones? In finite volume, i.e.
replacing the lattice Z by a finite box �, this would correspond to the usual notion
of ergodicity for Hamiltonian flows with a finite number of degrees of freedom. But
since we consider the dynamics in infinite volume the notion of conserved quantity
has to be properly defined. The way we follow to attack the problem is to detect the
existence of a non-trivial conserved quantity through the existence of a non-trivial
invariant state for the infinite dynamics.

Let ˝ D .R � R/Z be the phase space of the dynamics and let us denote a
typical configuration by ! D .r; p/ 2 ˝. For simplicity we assume that for any
.ˇ; �; �0/ 2 .0;C1/ � R � R, the partition function

Z.ˇ; �; �0/ D
Z
R�R

e�ˇŒU.a/CV.b/���b��0ada db

is finite. Let 	ˇ;�;�0 be the product Gibbs measures on ˝ defined by

d	ˇ;�;�0.!/ D
Y
x2Z

1

Z.ˇ; �; �0/
exp

��ˇŒU.px/C V.rx/� � �rx � �0px
�
drxdpx:

We assume that (4) is well defined for a subset ˝ˇ;�;�0 of full measure with respect
to 	ˇ;�;�0 , that the latter is invariant for (4), and that it is possible to define a strongly
continuous semigroup in L

2.	ˇ;�;�0/ with formal generator
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AU;V D
X
x2Z

�
.U 0.pxC1/ � U 0.px//@rx C .V 0.rx/ � V 0.rx�1//@px

�
:

All that can be proved under suitable assumptions on U and V [5, 9].
In order to explain what is meant by ergodicity of the infinite volume dynamics

we need to introduce some notation. For any topological space X equipped with its
Borel � -algebra we denote by P.X/ the convex set of probability measures on X .
The relative entropy H.�j	/ of � 2 P.X/ with respect to 	 2 P.X/ is defined as

H.�j	/ D sup
�

�Z
� d� � log

�Z
e� d	

��
; (5)

where the supremum is carried over all bounded measurable functions � on X .
Let �x; x 2 Z, be the shift by x: .�x!/z D !xCz. For any function g on ˝,

�xg is the function such that .�xg/.!/ D g.�x!/. For any probability measure
	 2 P.˝/, �x	 2 P.˝/ is the probability measure such that, for any bounded
function g W ˝ ! R, it holds

R
˝
g d.�x	/ D

R
˝
�xg d	. If �x	 D 	 for any x

then 	 is said to be translation invariant.
If � is a finite subset of Z the marginal of 	 2 P.˝/ on R

� is denoted by
	j�. The relative entropy of � 2 P.˝/ with respect to 	 2 P.˝/ in the box �
is defined by H.�j� j	j�/ and is denoted by H�.�j	/. We say that a translation
invariant probability measure � 2 P.˝/ has finite entropy density (with respect
to 	) if there exists a finite positive constant C such that for any finite � 	 Z,
H�.�j	/ � C j�j. In fact, if this condition is satisfied, then the limit

H.�j	/ D lim
j�j!1

H�.�j	/
j�j

exists and is finite (see [9]). It is called the entropy density of � with respect to 	.
We are now in position to define ergodicity.

Definition 1. We say that the infinite volume dynamics with infinitesimal generator
AU;V is ergodic if the following claim is true: If � 2 P.˝/ is a probability
measure invariant by translation, invariant by the dynamics generated by AU;V

and with finite entropy density with respect to 	1;0;0, then � is a mixture of the
	ˇ;�;�0 ; ˇ > 0; �; �

0 2 R.

In the harmonic case (U.z/ D V.z/ D z2=2) and for the Toda lattice (U.z/ D
z2=2, V.z/ D e�z C z � 1), the infinite system is completely integrable and an
infinite number of conserved quantities can be explicitly written. It follows that they
are not ergodic in the sense above. Nevertheless we expect that for a very large class
of potentials, the Hamiltonian dynamics are ergodic and that these two cases are
exceptional.

In order that the infinite dynamics enjoy good ergodic properties, we superpose
to the deterministic evolution a stochastic noise.

Given a sequence u D .uy/y2Z 2 R
Z and a site x 2 Z, we denote by ux (resp.

ux;xC1) the sequence defined by .ux/y D uy if y ¤ x and .ux/x D �ux (resp.
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.ux;xC1/y D uy if y ¤ x; x C 1, .ux;xC1/x D uxC1 and .ux;xC1/xC1 D ux). We
consider the following noises (jump processes) whose generators are defined by
their actions on functions f W ˝ ! R according to:

1. .S p
flipf /.r; p/ D

P
x Œf .r; p

x/ � f .r; p/�.
2. .S r

flipf /.r; p/ D
P

x Œf .r
x; p/ � f .r; p/�.

3. .S p
exf /.r; p/ DP

x

�
f .r; px;xC1/ � f .r; p/�.

4. .S r
exf /.r; p/ D

P
x

�
f .rx;xC1; p/ � f .r; p/�.

If U is even then the noise S
p

flip conserves the energy, the deformation but not
the momentum; if U is odd the noise has little interest for us since the energy
conservation is destroyed. Similarly, if V is even the noise S r

flip conserves the energy
and the momentum but not the deformation. The noises S p

ex and S r
ex conserve the

energy, the deformation and the momentum.
Let now � > 0 and denote by L the generator of the infinite Hamiltonian

dynamics generated by AU;V perturbed by one of the previous noise S with
intensity � , i.e. L D AU;V C �S .

Theorem 1 ([5, 6, 9]). The dynamics generated by L is ergodic in the sense that
if � 2 P.˝/ is a probability measure invariant by translation, invariant by the
dynamics generated by L and with finite entropy density with respect to 	1;0;0, then
it holds:

1. If U even and S D S
p

flip then � is a mixture of the 	ˇ;�;0;
2. If V is even and S D S r

flip then � is a mixture of the 	ˇ;0;�0 .
3. If S D S

p
ex or S D S r

ex then � is a mixture of the 	ˇ;�;�0 .

The main motivation to establish such a theorem is that by using Yau’s relative
entropy method [19] in the spirit of Olla-Varadhan-Yau [14], it is possible to
show that if the infinite volume dynamics is ergodic then the propagation of local
equilibrium holds in the hyperbolic time scale, before the appearance of the shocks.
As a consequence, the dynamics has a set of compressible Euler equations as
hydrodynamic limits [5, 6]. Observe that this is true also for the deterministic
dynamics so that the rigorous derivation of the Euler equations from the first
principles of the mechanics in the smooth regime is “reduced” to prove that the
dynamics generated by AU;V is ergodic.

3 Harmonic Chains

3.1 Role of the Conservation of Momentum and Deformation

We consider here the specific (harmonic) case V.z/ D U.z/ D z2=2. The dynamics
is then linear and can be solved analytically using Fourier transform. Let us
introduce a new macroscopic variable � 2 R

Z defined from .p; r/ 2 ˝ by setting
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�2x D rx; �2xC1 D pxC1; x 2 Z: (6)

Then, the Hamiltonian dynamics can be rewritten in the form

d�x

dt
D V 0.�xC1/ � V 0.�x�1/; x 2 Z: (7)

We introduce the kth mode O�.k; �/ for k 2 T D R=Z, the one-dimensional torus
of length 1:

O�.t; k/ D
X
x2Z

�x.t/ e
2i�kx:

Then, the equations of motion are equivalent in the sense of distributions to the
following decoupled system of first order differential equations:

d O�
dt
.t; k/ D i!.k/ O�.t; k/;

where the dispersion relation !.k/ reads

!.k/ D �2 sin.2�k/;

and the group velocity vg is

vg.k/ D !0.k/ D �4� cos.2�k/:

By inverting the Fourier transform, the solution can be written as

�x.t/ D
Z
T

O�.t; k/ e�2i�kx dk:

If the initial configuration �.0/ is in `2 the well defined energy of the kth mode

Ek.t/ D 1

4�
j O�.t; k/j2 D Ek.0/

is conserved by the time evolution, and the total energy current QJ e D P
x2Z j ex;xC1

takes the simple form

QJ e D
Z
T

vg.k/Ek dk:

We interpret the waves O�.k; t/ as fictitious particles (phonons in solid state
physics). In the absence of nonlinearities, they travel the chain without scattering.
The diffusion of energy is then said to be ballistic. If the potential is non-quadratic,
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it may be expected that the nonlinearities produce a scattering responsible for the
diffusion of the energy. Nevertheless, the conservation of the deformation and of the
momentum implies that

P
x.rx C px/ is conserved

O�.t; 0/ D O�.0; 0/: (8)

The identity (8) is valid even if U ¤ V and U; V are not quadratic. It means that the
0th mode is not scattered at all and crosses the chain ballistically. In fact, the modes
with small wave number k do not experience a strong scattering and they therefore
contribute to the observed anomalous diffusion of energy.

It is usually explained that momentum conservation plays a major role in the
anomalous diffusion of energy but it is clear that the deformation conservation plays
exactly the same role as momentum and that it is the conservation of their sum which
is the real ingredient producing anomalous diffusion of energy (see Theorems 2
and 4).

3.2 Green-Kubo Formula

The signature of an anomalous diffusion of energy can be seen at the level of
the Green-Kubo formula. When transport of energy is normal, meaning that the
macroscopic equations such as the Fourier’s law or heat equation hold, the transport
coefficient appearing in these equations can be expressed by the famous Green-
Kubo formula. In order to define the latter we need to introduce some notations.
Since the discussion about the Green-Kubo formula is not restricted to the harmonic
case we go back to a generic anharmonic model in the rest of the Subsection.

Recall that the probability measures 	ˇ;�;�0 form a family of invariant probability
measures for the infinite dynamics generated by AU;V . The following thermody-
namic relations (which are valid since we assumed that the partition function Z is
well defined on .0;C1/�R�R) relate the chemical potentials ˇ; �; �0 to the mean
energy e, the mean deformation u, the mean momentum � under 	ˇ;�;�0 :

e.ˇ; �; �0/ D 	ˇ;�;�0.U.px/C V.rx// D �@ˇ
�

logZ.ˇ; �; �0/
�
; (9)

u.ˇ; �; �0/ D 	ˇ;�;�0.rx/ D �@�
�

logZ.ˇ; �; �0/
�
; (10)

�.ˇ; �; �0/ D 	ˇ;�;�0.px/ D �@�0
�

logZ.ˇ; �; �0/
�
: (11)

These relations can be inverted by a Legendre transform to express ˇ, � and �0 as a
function of e, u and � . Define the thermodynamic entropy S W .0;C1/�R�R !
Œ0;C1� as
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S.e; u; �/ D inf
�;�02R2;ˇ>0

n
ˇe C �u C �0� C logZ.ˇ; �; �0/

o
:

Let U be the convex domain of .0;C1/ �R � R where S.e; u; �/ < C1 and VU
its interior. Then, for any .e; u; �/ WD .e.ˇ; �; �0/; u.ˇ; �; �0/; �.ˇ; �; �0// 2 VU ,
the parameters ˇ; �; �0 can be obtained as

ˇ D .@eS/.e; u; �/; � D .@uS/.e; u; �/; �0 D .@�S/.e; u; �/ (12)

These thermodynamic relations allow us to parameterize the Gibbs states by the
average values of the conserved quantities .e; u; �/ rather than by the chemical
potentials .ˇ; �; �0/. Thus, we denote by �e;u;� the Gibbs measure 	ˇ;�;�0 where
.e; u; �/ are related to .ˇ; �; �0/ by (12). Let J e WD J e.e; u; �/ D �e;u;� .j

e
x;xC1/

be the average of the energy current j ex;xC1 D �U 0.px/V 0.rx/ and define the

normalized energy current Oj ex;xC1 by

Oj ex;xC1 D j ex;xC1 � J e � .@eJ e/.ex � e/ � .@uJ
e/.rx � u/ � .@�J e/.px � �/:

The normalized energy current is the part of the centered energy current which is
orthogonal in L

2.�e;u;� / to the space spanned by the conserved quantities.
Up to multiplicative thermodynamic parameters (see [15] for details) that we

neglect to simplify the notations, the Green-Kubo formula2 is nothing but


.e; u; �/ WD
Z 1

0

X
x2Z

E�e;u;�

h Oj ex;xC1.!.t// Oj e0;1.!.0//
i
dt

where E�e;u;� denotes the expectation corresponding to the law of the infinite volume
dynamics .!.t//t�0 generated by AU;V with initial condition !.0/ distributed
according to the equilibrium Gibbs measure �e;u;� . The definition of 
.e; u; �/ is
formal but the way we adopt to give it a mathematically well posed definition is to
introduce a small parameter z > 0 and define 
.e; u; �/ as


.e; u; �/ D lim sup
z!0

� Oj e0;1 ; .z �AU;V /
�1 Oj e0;1 �e;u;� (13)

where the inner-product � �; � �e;u;� is defined for local square integrable functions
f; g W ˝ ! R by

2The transport coefficient is in fact a matrix whose size is the number of conserved quantities.
Since we are interested in the energy diffusion, we only consider the entry corresponding to the
energy-energy flux.
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� f ; g �e;u;� D
X
x2Z

��Z
f �xg d�e;u;�

�
�
�Z

fd�e;u;�

��Z
gd�e;u;�

��
:

Since .z � AU;V /
�1 Oj e0;1 is not a local function, the term on the RHS of (13) has to

be interpreted in the Hilbert space obtained by the completion of the space of local
bounded functions with respect to the inner product � �; � �e;u;� .

The superdiffusion (resp. normal diffusion) of energy corresponds to an infinite
(resp. finite) value for 
.e; u; �/. In order to study the superdiffusion, it is of interest
to estimate the time decay of the autocorrelation of the normalized current

C.t/ WD Ce;u;� .t/ D
X
x2Z

E�e;u;�

h Oj ex;xC1.!.t// Oj e0;1.!.0//
i
:

It is in general easier to estimate the behavior of the Laplace transform L.z/ DR1
0
e�ztC.t/dt as z ! 0. Roughly, if L.z/ 
 z�ı for some ı � 0 then C.t/ 
 t ı�1

as t ! C1. Observe also that

L.z/ D� Oj e0;1 ; .z �AU;V /
�1 Oj0;1 �e;u;� :

3.3 Harmonic Chain Perturbed by a Conservative Stochastic
Noise

We consider now the particular case U.z/ D V.z/ D z2=2 and study the Green-
Kubo formula for the perturbed dynamics generated by L D AU;V C �S where
S is one of the noises introduced in Sect. 2. Since, depending of the form of the
noise, the momentum conservation law (resp. deformation conservation law) can
be suppressed, the corresponding Green-Kubo formula shall be modified by setting
� D 0 and @�J e D 0 (resp. u D 0 and @uJ

e D 0).
We have the following theorem which shows that if momentum conservation law

or deformation conservation law is destroyed by the noise then a normal behavior
occurs.

Theorem 2 ([4]). Let U and V be quadratic potentials.

1. Consider the system generated by L D AU;VC�S p
flip, � > 0. Then the following

limit

lim
z!0

� Oj e0;1 ; .z �L /�1 Oj e0;1 �e;u;0

exists, is finite and strictly positive and can be explicitly computed.
2. Consider the system generated by L D AU;VC�S r

flip, � > 0. Then the following
limit
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lim
z!0

� Oj e0;1 ; .z �L /�1 Oj e0;1 �e;0;�

exists, is finite and strictly positive and can be explicitly computed.

It shall be noticed that the second statement is a direct consequence of the
first one since the process of the second item is equal to the first one by the
transformation

rx ! px; px ! rx�1:

However, the interest of the second statement is to show that even if momentum is
conserved, a normal diffusion of energy occurs. This is because the deformation is
no longer conserved.

The following theorem shows that if the noise added conserves momentum and
deformation then the situation is very different since an anomalous diffusion of
energy is observed.

Theorem 3 ([1, 2]). Let U and V be quadratic potentials.

1. Consider the system generated by L D AU;V C�S p
ex , � > 0. Then the following

limit

lim
z!0

z1=2 � Oj e0;1 ; .z �L /�1 Oj e0;1 �e;u;�

exists, is finite and strictly positive and can be explicitly computed.
2. Consider the system generated by L D AU;V C�S r

ex, � > 0. Then the following
limit

lim
z!0

z1=2 � Oj e0;1 ; .z �L /�1 Oj e0;1 �e;u;�

exists, is finite and strictly positive and can be explicitly computed.

In particular, in each of the previous case the Green-Kubo formula yields an infinite
conductivity.

4 Anharmonic Chains

We consider now the anharmonic case. For deterministic chains generated by AU;V

we expect usually a superdiffusive behavior of the energy. If a noise S is superposed
to the dynamics, we expect that transport is normal for S D S

p
flip and S D S r

flip

and superdiffusive if S D S
p

ex or S D S r
ex.

The following theorem generalizes Theorem 2 to the anharmonic case showing
that a noise destroying momentum conservation law or deformation conservation
law produces normal transport. This shows that, also in the anharmonic case,
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momentum conservation alone is not responsible of anomalous diffusion of energy
but that deformation conservation law plays a similar role.

Theorem 4 ([4]). Let U and V be smooth potentials such that there exists a
constant c > 0 such that

c � U 00 � c�1; c � V 00 � c�1:

1. Assume U even and consider the system generated by L D AU;V C �S
p

flip,
� > 0. Then the following limit

lim
z!0

� Oj e0;1 ; .z �L /�1 Oj e0;1 �e;u;0

exists and is finite.
2. Assume V even and consider the system generated by L D AU;V C �S r

flip,
� > 0. Then the following limit

lim
z!0

� Oj e0;1 ; .z �L /�1 Oj e0;1 �e;0;�

exists and is finite.

Proof. The second statement is a direct consequence of the first one by the
symmetry argument evoked for Theorem 2. The upper bounds on U 00 and V 00 are
here to assure the existence of the infinite volume dynamics.

For simplicity assume that u D 0 and ˇ WD ˇ.e; u; 0/ D 1. The first statement has
been proved in [4] in the particular case U.z/ D z2=2. The generalization to a non
quadratic smooth even potential U is straightforward. In [4], since U.z/ D z2=2,
we used Hermite polynomials which are orthogonal w.r.t. the Gaussian measure
d	.z/ D .2�/�1=2 expf�z2=2gd z. In the present case, the only difference is that we
have to replace the Hermite basis by any orthogonal polynomial basis fPngn�0 with
respect to the probability measure N �1 exp.�U.z//d z (with N a normalization
constant) which satisfies Pn odd if n odd and even otherwise. Then the proof is
exactly the same.

It would be now of interest to show that if we perturb the dynamics generated
by AU;V by S

p
ex or by S r

ex then anomalous diffusion of energy occurs.3 This is an
open question and as far as we know the only result going in this direction has been
obtained in [3].

The model considered in [3] is the dynamics generated by AU;V with U D V

taking the particular form V.z/ D e�z C z � 1, perturbed by a noise S which
conserves energy and

P
x2Z.rx C px/. More exactly, let us rewrite the Hamiltonian

dynamics (4) by using the variable � WD .�x/x2Z 2 R
Z defined by (6). Then we get

3However, if U or V is bounded, like for the rotors model, we expect that diffusion is normal.
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the equations of motion given by (7). With these new variables, the total energy is
2
P

x V .�x/, the total deformation is
P

x �2x and the total momentum is
P

x �2xC1.
The noise S superposed to the dynamics acts on local functions f W R

Z ! R

according to

.S f /.�/ D
X
x2Z

�
f .�x;xC1/ � f .�/� :

Observe that the noise conserves the energy, destroys the momentum and the
deformation conservation laws but conserves

P
x �x D P

x.px C rx/, which as
explained above is the quantity (that we call the “volume” to follow the terminology
used in [3]) responsible of the anomalous diffusion of energy. Since we have now
only two conserved quantities (the energy and the volume), the Gibbs states of the
perturbed dynamics are given by f	ˇ;�;�gˇ>0;� or equivalently by f�e;�;� I e > 0; �g.
The normalized energy current is given by

Oj ex;xC1.�/ D �2V 0.�x/V 0.�xC1/C 2
2C 2@e.
2/ .2V .�x/� e/C 2@�.
2/ .�x ��/

with 
 WD 
.e; �/ D R
V 0.�x/d�e;�;� .

Theorem 5 ([3]). Let .e; �/ 2 .0;C1/ � R such that �e;�;� is well defined.
Consider the dynamics with generator L D Aexp C �S , � > 0, where

Aexp D
X
x

.V 0.�xC1/ � V 0.�x�1//@�x ; (14)

and V.z/ D e�z C z � 1. Then there exists a constant c > 0 such that for any z > 0

cz�1=4 � � Oj e0;1; .z �L /�1 Oj e0;1 �e;�;�� c�1z�1=2:

It follows that the Green-Kubo formula of the energy transport coefficient yields an
infinite value.

We expect that the system above belongs to the KPZ class so that � Oj e0;1; .z �
L /�1 Oj e0;1 �e;�;� should diverge like z�1=3. In the present state of the art no robust
technique is available to show such result apart from the non-rigorous (but powerful)
mode-coupling theory [13, 16, 18]. A second open problem is to generalize the
previous theorem to other interaction potentials V . Numerical simulations have been
reported in [6].
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Equilibrium Fluctuations of Additive
Functionals of Zero-Range Models

Cédric Bernardin, Patrícia Gonçalves, and Sunder Sethuraman

1 Introduction and Model Assumptions

We consider zero-range processes which follow a collection of random walks
interacting on Z

d in the following way: When there are k particles at a location x,
one of them displaces by y with rate Œg.k/=k�p.y/. Here, g W f0; 1; 2; : : :g ! RC
is a prescribed function such that g.0/ D 0 and g.k/ > 0 for k � 1, and p is a jump
probability on Z

d . Another way to think of the process is that each location x 2 Z
d

has a clock which rings at rate g.k/ where k is the particle number at x. Once the
clock rings at x, a particle selected at random displaces by y with probability p.y/.
This well-studied model has been used in the modeling of traffic, queues, granular
media, fluids, etc. [2], and also includes the case of independent random walks when
g.k/ � k.

In this note, we study the equilibrium fluctuations of additive functionals in a
class of zero-range processes, namely those which are ‘asymmetric’, ‘attractive’,
and for which a ‘spectral gap’ estimate holds. When the model is ‘symmetric’, the
fluctuation behaviors are found in [15] and [12]. Also, part of the motivation of this
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note is to complement the much detailed work on fluctuations in simple exclusion
processes (cf. Chap. 5 of [6]), as much less is known for zero-range systems. The
arguments make use of a combination of techniques in the literature. We now define
more carefully the model and related terms.

1.1 Jump Rates and Construction

We will assume that the function g allows motion: g.0/ D 0 and g.k/ > 0 for
k � 1 and the following two conditions.

(LIP) There is a constant K such that jg.k C 1/ � g.k/j < K for k � 0

(INC) g is increasing: g.k C 1/ � g.k/ for k � 0.

Condition (LIP) is usually assumed in order to construct the process on an infinite
lattice. However, although also often assumed, (INC) is a more technical condition
which makes available a certain ‘basic coupling’ that we will use later.

Assume also that p is such that the symmetrization s.x/ D .p.x/C p.�x//=2
is irreducible and

(FR) p is finite-range: There is an R such that p.z/ D 0 for jzj > R.

Here, jzj D maxfjzi j W i D 1; : : : ; dg. The assumption (FR) might presumably
be relaxed in favor of a p with rapidly diminishing tail behavior, although we do
not consider this case or when p might have heavy tails where certainly the results
would differ.

Under these conditions, more restrictive than necessary, the zero-range system
�t D f�t .x/ W x 2 Z

d g can be constructed as a Markov process on the state space
˝ WD N

Z
d

0 with generator L whose action on local functions is given by

Lf .�/ D
X

x;y2Zd
g.�.x//p.y/

�
f .�x;xCy/ � f .�/�:

Here, �t .x/ is the occupation number at x at time t , �x;xCy is the state obtained
from � by decreasing and increasing the occupation numbers at x and y by one
respectively, and a local function is one which depends only on a finite number of
coordinates f�.z/g. See [1] for the construction and weakening of the assumptions.

We will say that the system is symmetric, mean-zero asymmetric or asymmetric
with drift if p satisfies p.z/ D p.�z/,

P
z2Zd zp.z/ D 0 but p is not symmetric, andP

z2Zd zp.z/ ¤ 0 respectively.

1.2 Invariant Measures

Part of the appeal of zero-range processes is that they possess a family of invariant
measures which are fairly explicit product measures. For ˛ � 0, define
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Z.˛/ WD
X
k�0

˛k

g.k/Š

where g.k/Š D g.1/ � � �g.k/ for k � 1 and g.0/Š D 1. Let ˛� be the radius of
convergence of this power series and notice that Z increases on Œ0; ˛�/. Fix 0 �
˛ < ˛� and let N�˛ be the product measure on N

Z whose marginal at the site x is
given by

N�˛f� W �.x/ D kg D

8̂
<̂
ˆ̂:

1

Z.˛/

˛k

g.k/Š
when k � 1

1

Z.˛/
when k D 0:

We may reparametrize these measures in terms of the ‘density’. Let �.˛/ WD
EN�˛ Œ�.0/� D ˛Z0.˛/=Z.˛/. By computing the derivative, we obtain that �.˛/ is
strictly increasing on Œ0; ˛�/. Then, let ˛.�/ denote its inverse. Now, we define

��.�/ WD N�˛.�/.�/;

so that f�� W 0 � � < ��g is a family of invariant measures parameterized by the
density. Here, �� D lim˛"˛� �.˛/, which may be finite or infinite depending on
whether lim˛!˛� Z.˛/ converges or diverges. In this notation, ˛.�/ D E�� Œg.�.0/�

is a ‘fugacity’ parameter.
One may check that the measures f�� W 0 � � < ��g are invariant for the zero-

range process [1]. Moreover, we remark, by the construction in [14], which extends
the construction in [1] to an L2.��/ process, we have that L is a Markov L2.��/
generator whose core can be taken as the space of all local L2.��/ functions. Also,
one may compute that the adjointL� is the zero-range process with jump probability
p�.z/ D p.�z/ for z 2 Z

d . The operator

S D .LC L�/=2

may be seen as the generator for the symmetrized process with jump law s. In
particular, when p is symmetric, the process is reversible with respect to �� with
generator L D L� D S D .LC L�/=2.

It is also known that the family f�� W � < ��g are all extremal invariant measures,
and hence when the process is started from one of them, the system will be ergodic
with respect to time shifts. Let us now fix one of these invariant measures ��
throughout the article.
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1.3 Spectral Gap

To state results, we will need to detail the spectral gap properties of the system. For
` � 1, let �` D fx 2 Z

d W jxj � `g. Consider the ‘symmetrized’ process restricted
to �` with generator

S`f .�/ D
X

jxj�`;jyjD1
jxCyj�`

s.y/g.�.x//
�
f .�x;xCy/ � f .�/�:

Given the number particles in �`, say
P

jxj�` �.x/ D M , one can verify that
the process is a reversible finite-state Markov chain with unique invariant measure
��
	 � jPjxj�` �.x/ D M



(which does not depend on �). Hence, since the chain is

irreducible, there is a gap in the spectrum of S` between the eigenvalue 0 and the
next one which is strictly negative. Let W.M; `/ be the reciprocal of the absolute
value of this ‘spectral gap’. Also, W.M; `/ can be captured as the smallest constant
c such that the Poincaré inequality, E�� Œf

2� � cE�� Œf .�S`f /�, holds for all local
mean-zero function f , E�� Œf � D 0.

We will assume that the following estimate holds:

(G) There is a constant C D C.�/ such that for all ` � 1, we have

E��

h
W 2

� X
jxj�`

�.x/; `
�i

� C.�/`4:

Such an estimate is a further condition on g and p and holds in a number of
cases. Usually, one tries to bound the spectral gap for the corresponding nearest-
neighbor process. Given assumption (FR), by comparing the associated Poincaré
inequalities, the order of W.M; `/, asymptotically in `, with respect to S` and the
nearest-neighbor version will be the same.

• If g is not too different from the independent case, that is g.x/ � x, for which
the gap is of order O.`�2/ uniform in x, one expects similar behavior as for a
single particle. This has been proved for d � 1 in [7] under assumptions (LIP)
and

(U) There exists x0 � 1 and "0 > 0 such that g.x C x0/ � g.x/ � "0 for all
x � 0.

• If g is sublinear, that is g.x/ D x� for 0 < � < 1, then it has been shown that
the spectral gap depends on the number of particles k, namely the gap for d � 1

is O..1C ˇ/��`�2/ where ˇ D k=.2`C 1/d [10].
• If g.x/ D 1x�1, then it has been shown in d � 1 that the gap isO..1Cˇ/�2`�2/

where ˇ D k=.2` C 1/d [9]. In d D 1, this is true because of the connection
between the zero-range and simple exclusion processes for which the gap
estimate is well-known [11]: The number of spaces between consecutive particles
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in simple exclusion correspond to the number of particles in the zero-range
process.

In all these cases, (G) follows readily by straightforward moment calculations.

1.4 Attractivity

A main technical tool we will use is the ‘basic coupling’ for interacting particle
systems. Such a coupling is available for zero-range processes when g is an
increasing function.

Namely, consider two zero-range systems �0t and �1t started from initial config-
urations �00 D �0 and �10 D �1 such that �0.x/ � �1.x/ for all x 2 Z

d . Then, one
can couple the two systems so that whenever a ‘0’ particle moves, a corresponding
‘1’ particle makes the same jump. That is, a particle at x in the ‘0’ and ‘1’ systems
displaces by y with rate g.�0.x//p.y/, and also with rate Œg.�1.x//�g.�0.x//�p.y/
one of the particles at x in the ‘1’ system displaces by y. In particular, one can write
�1t D �0t C �t . Here, �t counts the ‘second-class’ or ‘discrepancy’ particles: �t .x/ is
the number of second-class particles at x at time t . See [8] for more details.

2 Results

By an additive functional, we mean the time integral of a local function f with
respect to the zero-range process:

Af .t/ D
Z t

0

f .�s/ds:

Since �� is extremal, as alluded to earlier, the ergodic theorem captures the law of
large numbers behavior

lim
t!1

1

t
Af .t/ D E�� Œf �:

In this context, the results of this note are on the second-order terms, the
fluctuations of Af .t/ about its mean. Let Nf D f �E�� Œf � and

�2t .�; f / D E��

h
A Nf .t/

2
i

be the variance at time t . One can compute �2t .�; f /, using stationarity, as follows:
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�2t .�; f / D 2

Z t

0

.t � s/E�� Œ Nf .�s/ Nf .�0/�ds

D 2

Z t

0

.t � s/E�� Œ Nf .�0/.Ps Nf /.�0/�ds

where Pt is the semigroup of the process.
One of the main questions is to understand the order of the variance �2t .�; f /

as t " 1. Perhaps, surprisingly, this order may or may not be diffusive, that is of
order t , depending on the function f . When the limit exists, we denote

�2.�; f / WD lim
t"1

1

t
�2t .�; f /:

To explore this point, consider the occupation function h.�/ D 1.�.0/ � 1/

which indicates when the origin is occupied. Then, A Nh.t/ is the centered occupation
time of the origin up to time t . When the jump probability p is symmetric, particles
tend to stay put more and in d � 2, when p is recurrent, Ah.t/ is quite volatile and
the variance �2t .�; h/ is super-diffusive. However, in the transient case, d � 3, the
behavior is more regular and Ah.t/ has a diffusive variance.

On the other hand, if a function b is somewhat ‘smooth’, say the difference
b.�/ D �.0/� �.1/ which casts A Nb.t/ as the difference of two additive functionals,
then one might suspect the variance to be less volatile than under h. This is indeed
the case, and in all dimensions d � 1, �2t .�; b/ is diffusive.

This phenomenon is summarized by the following result which is Theorem 1.2
of [15]. We say a local function f is admissible if

lim sup
t"1

1

t
�2t .�; f / < 1

and not admissible otherwise.

Proposition 1 (Theorem 1.2 [15]). Suppose assumptions (LIP), (FR), (G) hold,
and in addition suppose p is symmetric so that the zero-range process is reversible.
Let f 2 L4.��/ be a local function supported on coordinates in �`. Then, starting
from ��, f is admissible if and only if

E�� Œf �DE��
h
f .�/

X
x2�`

�.x/
i
DE��

h
f .�/

	 X
x2�`

�.x/

2iD 0 in dimension d D 1

E�� Œf �DE��
h
f .�/

X
x2�`

�.x/
i
D 0 in dimension d D 2

E�� Œf �D 0 in dimension d � 3:
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Motivated by the proposition, we will say a mean-zero function local f supported
on coordinates in �` has degree n � 0 if

E��
�
f .�/

	 X
x2�`

�.x/

n� ¤ 0

but

E��
�
f .�/

	 X
x2�`

�.x/

r� D 0 when r < n:

Let Qf .y/ D E�y Œf �. Since

E�y Œf � D 1

E�� Œe
�.y/�.0/�j�`j

E��

h
f .�/e�.y/

P
x2�`

�.x/
i

f is of degree n exactly when

dn=dyn Qf .�/ ¤ 0 but dr=dyr Qf .�/ D 0 when r < n:

We remark that when p is symmetric, the limiting variance can be computed
from monotone convergence since

E�� Œ
Nf Ps Nf � D E�� Œ.Ps=2

Nf /2� � 0

then

�2.�; f / D lim
t"1

2

Z t

0

.1 � s=t/E��
�	
Ps=2 Nf 
2�ds

D 2

Z 1

0

E�� Œ
Nf .�0/ Nf .�s/�ds WD �2.�; f /:

One can see from the formula that �2.�; f / > 0 in the symmetric case.
To relate the limiting variance to so-called H�1;�;L resolvent norms of f , define

kf k2�1;�;L WD E��
� Nf ; .� � L/�1 Nf �

D
Z 1

0

e��sE��
� Nf Ps Nf �ds:

Also, when the limit exists, define the H�1;L norm of f by

kf k�1;L WD lim
�#0

kf k�1;�;L:
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In the symmetric case, when L D S , we will call

kf k�1;� WD kf k�1;�;S
and

kf k�1 WD kf k�1;S :

Then, for the general process,

kf k2�1;�;L D �2
Z 1

0

e��t
Z t

0

Z s

0

E�� Œ
Nf Pu

Nf �du ds dt

D �2

2

Z 1

0

e��t�2t .�; f /dt: (1)

In the symmetric case, as

E��
� Nf Ps Nf � D E��

�	
Ps=2 Nf 
2� � 0;

we observe the limiting variance is well-defined (although possibly infinite):

�2.�; f / D 2

Z 1

0

E�� Œ
Nf .�0/ Nf .�s/�ds

D 2 lim
�#0

kf k2�1;� D 2kf k2�1:

We remark, in the H�1 notation, the admissibility conditions for a function f in
Proposition 1 are equivalent to kf k�1 < 1. Although we will not need it, but to
complete the discussion, we note kf k�1 is often represented (cf. Chaps. 2 and 5 of
[6]) as

kf k2�1 D sup
� local

n E�� Œ Nf ��
D��.�/

1=2

o

where the Dirichlet form

D��.�/ D E�� Œ�.�S�/� D
1

4

X
x2Zd

X
y2Zd

E��
�
g.�.x//

	
�.�x;xCy/ � �.�/
2�s.y/:

On the other hand, when p is asymmetric, the limiting variance �2.�; f / can be
shown to exist for certain functions. We say that f is coordinatewise increasing if
�.x/ � �.x/ for all x 2 Z

d then f .�/ � f .�/. For such a function,

Psf .�/ D EŒf .�.s//j�.0/ D ��
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is itself a coordinatewise increasing function: When � � � coordinatewise, let
ˇ.x/ D �.x/ � �.x/ for x 2 Z

d . Let �0t and �1t be processes starting in �

and � respectively. Then, by the basic coupling, �1t D �0t C ˇt where ˇt follows
second-class particles. In particular, as Nf is increasing, with respect to the coupling
measure OP ,

Ps Nf .�/ � Ps Nf .�/ D OEŒ Nf .�1s / � Nf .�0s C ˇs/� � 0:

Then, for nontrivial coordinatewise increasing functions, E�� Œ Nf Ps Nf � > 0 as ��,
being a product measure, is a FKG measure. Therefore, the limit

�2.�; f / D 2

Z t

0

E�� Œ
Nf Ps Nf �ds > 0

for such functions.
For the general process, when f is admissible, it is natural to ask if a functional

central limit theorem holds for the diffusively scaled additive functional. When p
is symmetric, by the Kipnis-Varadhan CLT for reversible Markov processes, this is
indeed the case [5, 15] and the limit in the uniform topology is a Brownian motion
with diffusion coefficient �2.�; f /. Moreover, for nearest-neighbor systems and a
class of functions f in d � 2 such that Qf 0.�/ ¤ 0, which are not admissible, the
super-diffusive orders of �2t .�; f / and the limit laws ofA Nf .t/ scaled by the standard
deviation have also been found [12]. To give an example, in dimension d D 1 when
E�� Œf � D 0 and E�� Œf

P
x2�` �.x/� ¤ 0, the limit law is a fractional Brownian

motion with Hurst parameter 3=4. See [12] for the full statements.
The purpose of this note is to understand the fluctuation behaviors under mean-

zero asymmetric and asymmetric with drift zero-range processes. When p is
mean-zero, we will show that the generator L satisfies a ‘sector inequality’. As a
consequence, by the method in [16], the variance behaviors in terms of orders are
the same as if the process were symmetric. When f is admissible, the limit

�2.�; f / D lim
t"1

1

t
E��

�
A Nf .t/

2
�

converges, and the diffusively scaled additive functional still tends to a Brownian
motion.

Theorem 1. Suppose g and p satisfy assumptions (LIP), (FR), (G), and in addition
suppose p is mean-zero. Let f be a local function supported on coordinates in �`.
Then, f is admissible if and only if the conditions in Proposition 1 are met.

In the case, f is admissible, the limiting variance �2.�; f / converges and we
have, in the uniform topology,

lim
�"1

1p
�
A Nf .�t/ ) �.�; f /Bt

where Bt is the standard Brownian motion on R.
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Remark 1. In the mean-zero case, for inadmissible f , it remains open to derive the
limit laws under the appropriate scalings.

When the system is asymmetric with drift, one might have the intuition that the
admissibility of a function should follow what happens in the ‘transient’ regime in
the symmetric case. With the additional assumption of attractivity, this is indeed the
case.

Theorem 2. Suppose assumptions (LIP), (INC) (FR), (G) hold, and in addition
suppose p is asymmetric with drift. Let f be a local function supported on
coordinates in �`. Then, f is admissible if and only if E�� Œf � D 0.

When, f is an increasing function, the limiting variance exists and is finite,
�2.�; f / <1 and in the uniform topology

lim
�"1

1p
�
A Nf .�t/ ) �.�; f /Bt :

Remark 2. When f is the difference of two increasing functions, �2.�; f / exists
and the last statement of the theorem holds (see [13]). However, for more general
f , in the asymmetric with drift case, this is an open question.

3 Proof of Theorem 1: Mean-Zero Dynamics

The main step is the following sector inequality, whose proof is deferred to the end
of the section. Recall the definition of the Dirichlet form D��.�/.

Proposition 2. Under the assumptions of Theorem 1, there is a constant C D
C.�; p; d/ such that for local functions �; W ˝ ! R we have

jE�� Œ�L �j � CD�� .�/
1=2D��. /

1=2:

When the process is symmetric, since S is a nonpositive operator, a sector inequality
trivially holds by Schwarz inequality and the constant C D 1.

Proof of Theorem 1. The main argument follows the argument in [13] for mean-
zero simple exclusion processes, which compares H�1 norms with respect to L and
the symmetrized generator S .

As in Lemma 4.4 of [13], we have for a constant C1 > 0 that

C�1
1 kf k�1;� � kf k�1;�;L � C1kf k�1;�:

Next, when the sector inequality in Proposition 2 holds, as computed in [16], the
limit exists,
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�2.�; f / D lim
t"1

t�1�2t .�; f / D 2 lim
�#0

kf k�1;�;L D 2kf k�1;L:

Moreover,

kf k�1;L D lim
�#0

kf k�1;�;L � C1 lim
�#0

kf k�1;� D C1kf k�1:

Then, given that f satisfies the admissibility conditions in Theorem 1, we have

kf k�1;L � C1kf k�1 <1:

Conversely, suppose f does not satisfy the admissibility conditions in Theo-
rem 1, and supt>0 t

�1�2t .�; f / � C2. Then, (1) is bounded by C2
R1
0
e�uu du

uniformly in �. Hence, kf k�1;� is uniformly bounded in �. But, a contradiction
arises as then

lim
�#0

kf k�1;� D kf k�1 <1;

which means f is admissible. Therefore,

lim sup
t"1

t�1�2t .�; f / D 1:

Finally, the functional CLT follows exactly the same proof given in [16] for
mean-zero simple exclusion processes. ut
Proof of Proposition 2. Since p is mean-zero and finite-range, it decomposes into a
finite number of ‘irreducible cycles’ by Lemma 5.3 of [16]. That is,

p D
rX
iD1

˛i�i

where �i places weight 1=k on k points a1; : : : ; ak such that a1C � � � C ak D 0 and
y0 D 0,

fy` D
X̀
jD1

aj W 1 � ` � kg

have no double points. We call the Bi D f0; y1; : : : ; ykg as the i th cycle. For
example a1 D �1, a2 D 2 and a3 D �1 corresponding to y0 D 0, y1 D �1,
y2 D 1 and y3 D 0 is an irreducible cycle.

Let AB be the zero-range process on the cycle f0; y1; : : : ; ykg with jump
probability �B where �B.ai / D 1=k for 1 � i � k. Then,
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LB D
X
x2Zd

ABCx

and

L D
rX
iD1

˛iLBi

(cf. [16], Lemma 5.4).
It is enough to show the sector inequality with respect to LB for a specific

cycle B . Indeed, if such a sector inequality holds, by a Schwarz inequality, we can
write

E��

h
�

rX
iD1

˛iLBi 
i
D

rX
iD1

˛iE��

h
�LBi 

i

�
rX
iD1

˛iCiD
i
��
.�/1=2Di

��
. /1=2

� C

rX
iD1

˛i

� �
2
Di
��
.�/C 1

2�
Di
��
. /

�

D C
��
2

rX
iD1

˛iD
i
��
.�/C 1

2�

rX
iD1

˛iD
i
��
. /

�

where Di
��

is the Dirichlet form with respect to SBi , the symmetrization of LBi ,
C D maxiD1;			 ;rfCig and � > 0. Taking the infimum over � > 0, allows to bound
the left-hand side by

CD�� .�/
1=2D��. /

1=2:

Moreover, it will be enough to show the sector inequality with respect to AB .
Indeed, if so, by the same Schwarz inequality as above, we can write

E��

h
�
X
x2Zd

ABCx 
i
� CB

� �
2

X
x2Zd

Dx
��
.�/C 1

2�

X
x2Zd

Dx
��
. /

�

where Dx
��

is the Dirichlet form with respect to symmetrization of ABCx . Since no
bond .z;w/ is double counted,

X
x2Zd

Dx
��
.�/ D DB

��
.�/

where DB
��

is the Dirichlet form with respect to LB .
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Following the scheme in [16], we now write, with ykC1 D 0, that

E��

h
�AB 

i
D 1

k

kX
iD0

E��

h
�.�/ � g.�.yi //

	
 .�yi ;yiC1 / �  .�/
i

D ˛.�/

kX
iD0

E��

h
�.�C ı.yi //

	
 .�C ı.yiC1// �  .�C ı.yi //


i
:

Here, ı.a/ is the configuration which puts exactly one particle at location a. We
have used the identity

E�� Œg.�.a//h.�/� D ˛.�/E�� Œh.�C ı.a//�

where ˛.�/ is the fugacity mentioned in the introduction.
Now, since the sum

kX
iD0

 .�C ı.yi // �  .�C ı.yiC1// D 0;

the right-hand side equals

˛.�/

kX
iD0

E��

h�
�.�C ı.yi // � �.�C ı.0//

��
 .�C ı.yiC1// �  .�C ı.yi //

�i
:

Note that

˛.�/E��

h�
�.�C ı.yi // � �.�C ı.0//

�2i

� k

kX
iD1

E��

h
g.�.yi //

�
�.�yi ;yiC1 / � �.�/

�2i
:

Then, the sector inequality for AB follows from Schwarz inequality with a constant
depending on the length of the cycle k. ut

4 Proof of Theorem 2: Asymmetric with Drift Dynamics

We will make use of the following results to prove Theorem 2.

Proposition 3. Suppose that assumption (LIP) holds and f is a local function
which is mean-zero, E�� Œf � D 0. Then,
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�2t .�; f / � 2tkf k2�1:

A proof of the proposition can be found in Appendix 1.6 of [4].

Proposition 4. Under the assumptions of Theorem 2, we have that

f1.�/ D g.�.x// � ˛.�/

and

f2.�/ D
�
g.�.x// � ˛.�/

��
g.�.y// � ˛.�/

�
for x ¤ y;

are admissible functions.

The proof of Proposition 4 is deferred to the end of the section.

Proof of Theorem 2. We consider cases depending on the degree of the function f
and dimension d . When f is admissible for the symmetrized dynamics, that is when
kf k�1 <1, by Proposition 3, �2t .�; f / D O.t/, and hence f is admissible for the
asymmetric model.

We now argue in the exceptional cases when kf k�1 D 1 that f is however
still admissible for the asymmetric with drift model. It will be helpful to note that
Qf 0
1 .�/ D ˛0.�/ and Qf 00

2 .�/ D 2˛0.�/.

Case 1. In d D 2, if f is a mean-zero degree n D 1 function, let

h D f �
Qf 0.�/
˛0.�/

f1:

Then, as Qh.�/ D Qh0.�/ D 0, h is a degree n � 2 function. Hence, khk�1 < 1 and
h is admissible by Proposition 3 for the asymmetric with drift model. But, since f1
is admissible by Proposition 4, we have

�2t .�; f / � 2�2t .�; h/C 2�2t .f1; �/ D O.t/

and therefore f is admissible also.

Case 2. In d D 1, if f is a mean-zero degree n D 2 function, consider

h D f �
Qf 00.�/

2.˛0.�//2
f2:

Since Qh.�/ D Qh0.�/ D Qh00.�/ D 0, h is at degree n � 3 function and hence
admissible. Since f2 is also admissible (Proposition 4), f is admissible by the
reasoning at the end of Case 1.
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On the other hand, if f is a mean-zero degree n D 1 function, consider

k D f �
Qf 0.�/
˛0.�/

f1:

Again, as Qk.�/ D Qk0.�/ D 0, k is a degree n � 2 function. By the conclusion just
above, if k is a degree n D 2 function, it is admissible. If k is a degree n � 3

function, it is already admissible. Since f1 is also admissible (Proposition 4), we
conclude then that f is admissible.

Finally, when f is an increasing coordinatewise function, the same argument as
given for Theorem 1.1 of [13], making use of a Newman-Wright CLT yields the
weak convergence in the theorem. ut
Proof of Proposition 4. We follow a technique given in [3]. We prove that f2 is
admissible. The argument for admissibility of f1 is simpler and omitted.

Recall that Nh D h � E�� Œh�. Since f2 is increasing, E�� Œf2Psf2� � 0 and the
variance of the additive functional is bounded

�2t .�; f2/ � 2t

Z t

0

E�� Œ Ng.�s.x/ Ng.�s.y/ � Ng.�0.x// Ng.�0.y//�ds:

The integrand, using stationarity and the basic coupling, can be written as

E�� Œ Ng.�s.x/ Ng.�s.y// � Ng.�0.x// Ng.�0.y//� (2)

D ˛2.�/
n
E�� ŒPsf2.�C ı.x/C ı.y//� �E�� ŒPsf2.�/�

o

D ˛2.�/ OE
h
g.�s.x/C �s.x/C �s.x//g.�s.y/C �s.y/C �s.y//

�g.�s.x//g.�s.y//
i

where �s and �s are the processes following second-class particles starting at x and
y respectively.

Note by (LIP) and explicit computation,

E�� Œg
2.�.x/C 2/� D 2E��

�	
g.�.x/C 2/ � g.�.x//
2�C 2E�� Œg

2.�.x//�

� 2K2 C 2˛.�/E�� Œg.�.x/C 1/�

� 2K2 C 2˛.�/ŒK C ˛.�/� < 1:

Then, by adding and subtracting terms and Schwarz inequality, one can bound the
integrand (2) by C

P
zDx;yŒ OP .�s.z/ D 1/C OP .�s.z/ D 1/�. For instance,

� OE Œg.�s.z/C �s.z/C �s.z// � g.�s.z/C �s.z//�
2
�1=2 � K OP .�s.z/ D 1/:
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To finish the proof, we now bound the integral

Z 1

0

OP .�s.x/ D 1/ds < 1

as the integrals of OP .�s.y/ D 1/ and OP .�s.z/ D 1/ for z D x; y are similar.
Construct, following Kipnis’s paper, the motion of the second-class particles. We

follow the two particles individually .�s; �s/. From the basic coupling, the rate of
the jumps from a site x is given by g.�s.x/C �s.x/C �s.x// � g.�s.x//. We will
suppose, if both particles are at x, then one of them is chosen at random to make the
jump.

Let X0 D y and fXi W i � 1g be the position of a random walk on Z
d according

to the transient jump probability p. Let also fTi W i � 1g be independent random
variables with exponential distribution with mean 1. Then, we define jump times
f
i W i � 1g and process values as follows:


1 D inf
n
u > 0 W

Z u

0

�s.X0/

�s.X0/C �s.X0/

�
�
g.�s.X0/C �s.X0/C �s.X0// � g.�s.X0/C �s.X0//

�
ds � T1

o
:

Set �s.x/ D 1X0.x/ for 0 � s < 
1. Also, for r � 1,


rC1 D inf
n
u > 
u

r�1 W
Z u


r�1

�s.Xr/

�s.Xr/C �s.Xr/

�
�
g.�s.Xr/C �s.Xr/C �s.Xr// � g.�s.Xr/C �s.Xr//

�
ds � TrC1

o

and �s.x/ D 1Xr .x/ for 
r � s < 
rC1.
The dynamics for �s is similarly defined. Note that with respect to ��, since g is

increasing,

Z 1

0

�s.Xr/

�s.Xr/C �s.Xr/
.g.�s.Xr/C �s.Xr/C �s.Xr// � g.�s.Xr/C �s.Xr/// ds

� 1

2

Z 1

0

min
n
g.�s.Xr/C 2/�g.�s.Xr/C 1/; g.�s.Xr/C 1/�g.�s.Xr//

o
ds

� 1

2
inf
x2Zd

Z 1

0

min
n
g.�s.x/C 2/�g.�s.x/C 1/; g.�s.x/C 1/�g.�s.x//

o
ds:

By the ergodic theorem, for each x 2 Z
d in the countable space Z

d ,

Z 1

0

min
˚
g.�s.x/C 2/ � g.�s.x/C 1/; g.�s.x/C 1/ � g.�s.x//

�
ds D 1 a:s:



Equilibrium Fluctuations of Additive Functionals of Zero-Range Models 159

Therefore, all the times 
r are finite a.s.
Then,

Z 1

0

�s.x/ds D
1X
jD0

Tj 1x.Xj /:

Take expectation on both sides to obtain

Z 1

0

OP .�s.x/ D 1/ds D
1X
jD0

P.Xj D x/ < 1

since fXj g is transient. ut
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A Survey on Bogoliubov Generating Functionals
for Interacting Particle Systems
in the Continuum

Dmitri L. Finkelshtein and Maria João Oliveira

1 Bogoliubov Generating Functionals

Let � WD �Rd be the configuration space over Rd , d 2 N,

� WD ˚
� 	 R

d W j� \�j <1 for every compact � 	 R
d
�
;

where j�j denotes the cardinality of a set. As usual we identify each � 2 � with
the non-negative Radon measure

P
x2� ıx on the Borel � -algebra B.Rd /, where ıx

is the Dirac measure with mass at x,
P

x2; ıx WD 0. This allows to endow � with
the vague topology, that is, the weakest topology on � with respect to which all
mappings

� 3 � 7�! hf; �i WD
Z
Rd

d�.x/ f .x/ D
X
x2�

f .x/

are continuous for all continuous functions f on R
d with compact support. In the

sequel we denote the corresponding Borel � -algebra on � by B.� /.

Definition 1. Let 	 be a probability measure on .�;B.� //. The Bogoliubov
generating functional (shortly GF) B	 corresponding to 	 is a functional defined
at each B.Rd /-measurable function � by
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B	.�/ WD
Z
�

d	.�/
Y
x2�
.1C �.x//; (1)

provided the right-hand side exists for j� j, i.e., B	.j� j/ <1.

Observe that for each � > �1 such that the right-hand side of (1) exists, one may
equivalently rewrite (1) as

B	.�/ WD
Z
�

d	.�/ ehln.1C�/;�i;

showing that B	 is a modified Laplace transform.
From Definition 1, it is clear that the existence of B	.�/ for � 6D 01 depends on

the underlying probability measure 	. However, it follows also from Definition 1
that if the GF B	 corresponding to a probability measure 	 exists, then the domain
of B	 depends on 	. Conversely, the domain of B	 reflects special properties over
the measure 	 [21]. For instance, if 	 has finite local exponential moments, i.e., for
all ˛ > 0 and all bounded Borel sets � � R

d ,

Z
�

d	.�/ e˛j�\�j <1;

then B	 is well-defined, for instance, on all bounded functions � with compact
support. The converse is also true and it follows from the fact that, for each ˛ > 0

and for each � described as before, the latter integral is equal to B	..e˛ � 1/1�/,
where 1� is the indicator function of �. In this situation, to a such measure 	 one
may associate the so-called correlation measure �	.

In order to introduce the notion of correlation measure, for any n 2 N0 WD
N [ f0g let

� .n/ WD f� 2 � W j� j D ng; n 2 N; � .0/ WD f;g:

Clearly, each � .n/, n 2 N, can be identified with the symmetrization of the
set f.x1; : : : ; xn/ 2 .Rd /n W xi 6D xj if i 6D j g under the permutation group
over f1; : : : ; ng, which induces a natural (metrizable) topology on � .n/ and the
corresponding Borel � -algebra B.� .n//. Moreover, for the Lebesgue product
measure .dx/˝n fixed on .Rd /n, this identification yields a measure m.n/ on
.� .n/;B.� .n///. This leads to the space of finite configurations

�0 WD
1G
nD0

� .n/

1Of course, for any probability measure 	 on .�;B.� // one has B	.0/ D 1.
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endowed with the topology of disjoint union of topological spaces and the corre-
sponding Borel � -algebra B.�0/, and to the so-called Lebesgue-Poisson measure
on .�0;B.�0//,

� WD �dx WD
1X
nD0

1

nŠ
m.n/; m.0/.f;g/ WD 1: (2)

Given a probability measure 	 on .�;B.� // with finite local exponential
moments, the correlation measure �	 corresponding to 	 is a measure on
.�0;B.�0// defined for all complex-valued exponentially bounded B.�0/-
measurable functions G with local support2 by

Z
�0

d�	.�/G.�/ D
Z
�

d	.�/
X
�
�

j�j<1

G.�/: (3)

As a consequence, for every bounded B.Rd /-measurable function � with compact
support and G D e�.�/,

e�.�; �/ WD
Y
x2�

� .x/ ; � 2 �0 n f;g; e�.�;;/ WD 1;

definition (3) leads to

B	.�/D
Z
�

d	.�/
Y
x2�
.1C �.x//D

Z
�

d	.�/
X
�
�

j�j<1

e�.�; �/D
Z
�0

d�	.�/ e�.�; �/;

yielding a description of the GF B	 in terms of either the correlation measure �	 or

the so-called correlation function k	 WD d�	
d�

corresponding to 	, if �	 is absolutely
continuous with respect to the Lebesgue-Poisson measure �:

B	.�/ D
Z
�0

d�.�/ e�.�; �/k	.�/: (4)

Throughout this work we will consider GF defined on the whole L1 WD
L1.Rd ; dx/ space of complex-valued functions. Furthermore, we will assume that
the GF are entire. For a comprehensive presentation of the general theory of
holomorphic functionals on Banach spaces see e.g. [1,5]. We recall that a functional
A W L1 ! C is entire on L1 whenever A is locally bounded and for all �0; � 2 L1

2That is, G ��0n��� 0, �� WD f� 2 � W � 
 �g, for some bounded Borel set � � R
d and there

are C1; C2 > 0 such that jG.�/j � C1e
C2j�j for all � 2 �0.
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the mapping C 3 z 7! A.�0C z�/ 2 C is entire. Thus, at each �0 2 L1, every entire
functional A on L1 has a representation in terms of its Taylor expansion,

A.�0 C z�/ D
1X
nD0

zn

nŠ
dnA.�0I �; : : : ; �/; z 2 C; � 2 L1:

Theorem 1. Let A be an entire functional on L1. Then each differential
dnA.�0I �/; n 2 N; �0 2 L1 is defined by a symmetric kernel

ınA.�0I �/ 2 L1.Rdn/ WD L1 	
.Rd /n; .dx/˝n




called the variational derivative of n-th order of A at the point �0. More precisely,

dnA.�0I �1; : : : ; �n/ WD @n

@z1 : : : @zn
A

 
�0 C

nX
iD1

zi �i

! ˇ̌
ˇ̌
ˇ
z1D:::DznD0

DW
Z
.Rd /n

dx1 : : : dxn ı
nA.�0I x1; : : : ; xn/

nY
iD1

�i .xi /

for all �1; : : : ; �n 2 L1. Moreover, the operator norm of the bounded n-linear
functional dnA.�0I �/ is equal to kınA.�0I �/kL1.Rdn/ and for all r > 0 one has

kıA.�0I �/kL1.Rd / �
1

r
sup

k� 0kL1�r
jA.�0 C � 0/j (5)

and, for n � 2,

kınA.�0I �/kL1.Rdn/ � nŠ
�e
r

�n
sup

k� 0kL1�r
jA.�0 C � 0/j: (6)

Remark 1. 1. According to Theorem 1, the Taylor expansion of an entire functional
A at a point �0 2 L1 may be written in the form

A.�0 C �/ D
1X
nD0

1

nŠ

Z
.Rd /n

dx1 : : : dxn ı
nA.�0I x1; : : : ; xn/

nY
iD1

�.xi /

D
Z
�0

d�.�/ ınA.�0I �/e�.�; �/;

where � is the Lebesgue-Poisson measure defined in (2).
2. Concerning Theorem 1, we observe that the analogous result does not hold

neither for other Lp-spaces, nor Banach spaces of continuous functions, or
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Sobolev spaces. For a detailed explanation see the proof of Theorem 1 and
Remark 7 in [21].

The first part of Theorem 1 stated for GF and their variational derivatives at
�0 D 0 yields the next result. In particular, it shows that the assumption of entireness
onL1 is a natural environment, namely, to recover the notion of correlation function.

Proposition 1. Let B	 be an entire GF on L1. Then the measure �	 is absolutely
continuous with respect to the Lebesgue-Poisson measure � and the Radon-Nykodim

derivative k	 D d�	

d�
is given by

k	.�/ D ıj�jB	.0I �/ for �-a.a. � 2 �0:

Remark 2. Proposition 1 shows that the correlation functions k.n/	 WD k	 �� .n/ are
the Taylor coefficients of the GF B	. In other words, B	 is the generating functional

for the correlation functions k.n/	 . This was also the reason why N. N. Bogoliubov
[4] introduced these functionals. Furthermore, GF are also related to the general
infinite dimensional analysis on configuration spaces, cf., e.g. [19]. Namely, through
the unitary isomorphism S� defined in [19] between the space L2.�0; �/ of
complex-valued functions and the Bargmann-Segal space one finds B	 D S�.k	/.

Concerning the second part of Theorem 1, namely, estimates (5) and (6), we note
that A being entire does not ensure that for every r > 0 the supremum appearing
on the right-hand side of (5), (6) is always finite. This will hold if, in addition, the
entire functional A is of bounded type, that is,

8 r > 0; sup
k�kL1�r

jA.�0 C �/j <1; 8 �0 2 L1:

Hence, as a consequence of Proposition 1, it follows from (5) and (6) that the
correlation function k	 of an entire GF of bounded type on L1 fulfills the so-called
generalized Ruelle bound, that is, for any 0 � " � 1 and any r > 0 there is some
constant C � 0 depending on r such that

k	.�/ � C .j�jŠ/1�"
�e
r

�j�j
; ��a:a: � 2 �0: (7)

In our case, " D 0. We observe that if (7) holds for " D 1 and for at least one r > 0,
then condition (7) is the classical Ruelle bound. In terms of GF, the latter means that

jB	.�/j � C exp
�e
r
k�kL1

�
, as it can be easily checked using representation (4)

and the following equality [20],

Z
�0

d�.�/ e�.f; �/ D exp

�Z
Rd

dx f .x/

�
; f 2 L1:
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This special case motivates the definition of the family of Banach spaces E˛ , ˛ > 0,
of all entire functionals B on L1 such that

kBk˛ WD sup
�2L1

�
jB.�/j e� 1

˛ k�kL1
�
<1; (8)

cf. [21, Proposition 23], which plays an essential role in the study of stochastic
dynamics of infinite particle systems (Sect. 2).

For more details and proofs and for further results concerning GF see [21] and
the references therein.

2 Stochastic Dynamic Equations

The stochastic evolution of an infinite particle system might be described by a
Markov process on � , which is determined heuristically by a Markov generator
L defined on a suitable space of functions on � . If such a Markov process exists,
then it provides a solution to the (backward) Kolmogorov equation

d

dt
Ft D LFt ; Ft jtD0 D F0: (9)

However, the construction of the Markov process seems to be often a difficult
question and at the moment it has been successfully accomplished only for very
restrictive classes of generators, see [16] and [24].

Besides this technical difficulty, in applications it turns out that one needs a
knowledge on certain characteristics of the stochastic evolution in terms of mean
values rather than pointwise, which do not follow neither from the construction
of the Markov process nor from the study of (9). These characteristics concern
e.g. observables, that is, functions defined on � , for which expected values are
given by

hF;	i D
Z
�

d	.�/ F.�/;

where 	 is a probability measure on � , that is, a state of the system. This leads to
the time evolution problem on states,

d

dt
hF;	t i D hLF;	t i; 	t jtD0 D 	0: (10)

Technically, to proceed further, first we shall exploit definition (3), namely,
the sum appearing therein, which concerns the so-called K-transform introduced
by A. Lenard [26]. That is a mapping which maps functions defined on �0 into
functions defined on the space � . More precisely, given a complex-valued bounded
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B.�0/-measurable function G with bounded support3 (shortly G 2 Bbs.�0/), the
K-transform of G is a mapping KG W � ! C defined at each � 2 � by

.KG/.�/ WD
X
�
�

j�j<1

G.�/: (11)

It has been shown in [18] that the K-transform is a linear and invertible mapping.
Thus, definition (3) shows, in particular, that for any probability measure 	 on
.�;B.� // with finite local exponential moments, one has Bbs.�0/ � L1.�0; �	/.
Moreover, on the dense set Bbs.�0/ in L1.�0; �	/ the inequality kKGkL1.	/ �
kGkL1.�	/ holds, which allows an extension of the K-transform to a bounded
operator K W L1.�0; �	/ ! L1.�; 	/ in such a way that equality (3) still holds
for any G 2 L1.�0; �	/. For the extended operator the explicit form (11) still holds,
now 	-a.e. This means, in particular,

.Ke�.f // .�/ D
Y
x2�
.1C f .x//; 	�a:a: � 2 �;

for all B.Rd /-measurable functions f such that e�.f / 2 L1.�0; �	/, cf. e.g. [18].
In terms of the time evolution description (10) on the states 	t of an infinite

particle system, these considerations imply that for F being of the type F D KG,
G 2 Bbs.�0/, (10) may be rewritten in terms of the correlation functions kt WD k	t
corresponding to the states 	t , provided these functions exist (or, more generally, in
terms of correlation measures �t WD �	t ), yielding

d

dt
hhG; kt ii D hh OLG; kt ii; kt jtD0 D k	0 ; (12)

where OL WD K�1LK and hh�; �ii is the usual pairing

hhG; kii WD
Z
�0

d�.�/G.�/k.�/: (13)

Of course, a stronger version of (12) is

d

dt
kt D OL�kt ; kt jtD0 D k	0 ; (14)

for OL� being the dual operator of OL in the sense defined in (13).

3That is, G �
�0n

�FN
nD0 �

.n/
�

�� 0, � .n/
� WD f� 2 � W � 
 �g \ � .n/, for some N 2 N0 and for

some bounded Borel set � � R
d .



168 D.L. Finkelshtein and M.J. Oliveira

Representation (4) combined with (12), (13) gives us a way to widen the
dynamical description towards the GF Bt WD B	t corresponding to 	t [13, 21],
provided these functionals exist. Informally,

@

@t
Bt .�/ D

Z
�0

d�.�/ e�.�; �/
@

@t
kt .�/ D

Z
�0

d�.�/ . OLe�.�//.�/kt .�/: (15)

In other words, given the operator QL defined at B.�/ WD R
�0
d�.�/ e�.�; �/k.�/,

k W �0 ! Œ0;C1/, by

. QLB/.�/ WD
Z
�0

d�.�/ . OLe�.�//.�/k.�/; (16)

heuristically (15) means that Bt , t � 0, is a solution to the Cauchy problem

@

@t
Bt D QLBt ; Bt jtD0 D B	0: (17)

According to the considerations above, there is a close connection between
the Markov evolution (10) and the Cauchy problems (12), (14), and (17). More
precisely, given a solution 	t , t � 0, to (10), if additionally the correlation function
k	t corresponding to each state 	t exists, then kt WD k	t is a solution to (12).
Similarly, the informal sequence of equalities (15) shows that if the GFB	t exists for
each time t � 0, then Bt WD B	t solves (17). Conversely, given a solution kt to (12),
or to (14), or a solution Bt , t � 0, to (17), for k	0 and B	0 being, respectively, the
correlation function and the GF corresponding to the initial state 	0 of the system,
an additional analysis is needed in order to check that each kt (resp., Bt ) is indeed
a correlation function (resp., a GF) corresponding to some measure 	t . If so, then,
by construction, 	t , t � 0, is a solution to (10) and kt D k	t (resp., Bt D B	t ).
For more details concerning the aforementioned analysis see e.g. [10] for the case
of correlation functions, and [21, 25] for the GF case.

Remark 3. Although correlation functions appear in this work as a side remark,
we note that the study of the properties of correlation functions of a dynamics is
a classical problem in mathematical physics. In order to analyze the existence of
solutions to (12), (14), and the properties of such solutions, some approaches have
been proposed. One of them is based on semigroup techniques, which for birth-and-
death dynamics has been accomplished in e.g. [7, 10, 12, 22, 23] and summarized
in a recent article [11]. Another approach is based on the so-called Ovsyannikov
technique and it has been successfully applied in the analysis of birth-and-death as
well as hopping particle systems (on a finite time interval), see e.g. [2, 3, 6].

In most concrete applications, to find a solution to (17) on a Banach space seems
to be often a difficult question. However, this problem may be simplified within the
framework of scales of Banach spaces. We recall that a scale of Banach spaces is
a one-parameter family of Banach spaces fBs W 0 < s � s0g such that Bs00 � Bs0 ,
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k � ks0 � k � ks00 for any pair s0, s00 such that 0 < s0 < s00 � s0, where k � ks denotes
the norm in Bs . As an example, it is clear from definition (8) that for each ˛0 > 0

the family fE˛ W 0 < ˛ � ˛0g is a scale of Banach spaces.
Within this framework, one has the following existence and uniqueness result

(see e.g. [27]). For concreteness, in subsections below we will analyze two examples
of applications.

Theorem 2. On a scale of Banach spaces fBs W 0 < s � s0g consider the initial
value problem

du.t/

dt
D Au.t/; u.0/ D u0 2 Bs0 (18)

where, for each s 2 .0; s0/ fixed and for each pair s0; s00 such that s � s0 < s00 � s0,
A W Bs00 ! Bs0 is a linear mapping so that there is an M > 0 such that for all
u 2 Bs00

kAuks0 � M

s00 � s0 kuks00 :

Here M is independent of s0; s00 and u, however it might depend continuously on
s; s0.

Then, for each s 2 .0; s0/, there is a constant ı > 0 (which depends on M )
such that there is a unique function u W Œ0; ı.s0 � s// ! Bs which is continuously
differentiable on .0; ı.s0 � s// in Bs , Au 2 Bs , and solves (18) in the time-interval
0 � t < ı.s0 � s/.

2.1 The Glauber Dynamics

The Glauber dynamics is an example of a birth-and-death model where, in this
special case, particles appear and disappear according to a death rate identically
equal to 1 and to a birth rate depending on the interaction between particles. More
precisely, let � W Rd ! R[fC1g be a pair potential, that is, a B.Rd /-measurable
function such that �.�x/ D �.x/ 2 R for all x 2 R

d n f0g, which we will assume
to be non-negative and integrable. Given a configuration � 2 � , the birth rate of a
new particle at a site x 2 R

d n � is given by exp.�E.x; �//, where E.x; �/ is a
relative energy of interaction between a particle located at x and the configuration
� defined by

E.x; �/ WD
X
y2�

�.x � y/ 2 Œ0;C1�: (19)
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Informally, in terms of Markov generators, this means that the behavior of such an
infinite particle system is described by

.LGF /.�/ WD
X
x2�

.F.� n fxg/ � F.�//C z
Z
Rd

dx e�E.x;�/ .F .� [ fxg/ � F.�// ;

(20)

where z > 0 is an activity parameter (for more details see e.g. [13, 23]). Thus,
according to Sect. 2, the operator QLG defined in (16) is given cf. [13] by

. QLGB/.�/ D �
Z
Rd

dx �.x/
�
ıB.� I x/ � zB

�
�e��.x�	/ C e��.x�	/ � 1

��
: (21)

The Glauber dynamics is an example where semigroups theory can be apply
to study the time evolution in terms of correlation functions, see e.g. [10, 12, 23].
However, within the context of GF, semigroup techniques seem do not work (see
e.g. [17]). This is partially due to the fact that given the natural class of Banach
spaces E˛ , the operator QLG maps elements of a Banach space E˛ , ˛ > 0, on elements
of larger Banach spaces E˛0 , 0 < ˛0 < ˛ [14]:

k QLGBk˛0 � ˛0

˛ � ˛0
�
1C z˛e

k�k
L1

˛ �1
�
kBk˛; B 2 E˛:

However, this estimate of norms and an application of Theorem 2 lead to the
following existence and uniqueness result.

Proposition 2 ([14, Theorem 3.1]). Given an ˛0 > 0, let B0 2 E˛0 . For each
˛ 2 .0; ˛0/ there is a T > 0 (which depends on ˛; ˛0) such that there is a unique

solutionBt , t 2 Œ0; T /, to the initial value problem
@Bt

@t
D QLGBt , (21),Bt jtD0 D B0

in the space E˛ .

Remark 4. 1. Concerning the initial conditions considered in Proposition 2,
observe that, in particular, B0 can be an entire GF B	0 on L1 such that, for

some constants ˛0; C > 0, jB	0.�/j � C exp.
k�kL1
˛0

/ for all � 2 L1. As we have
mentioned before, in such a situation an additional analysis is required in order
to guarantee that for each time t 2 Œ0; T / the solution Bt given by Proposition 2
is a GF. If so, then clearly each Bt is the GF corresponding to the state of the
particle system at the time t . For more details see [14, Remark 3.6].

2. If the initial condition B0 is an entire GF on L1 such that the corresponding
correlation function k0 (given by Proposition 1) fulfills the Ruelle bound k0.�/ �
zj�j, � 2 �0, where z is the activity parameter appearing in definition (20), then
the local solution given by Proposition 2 might be extend to a global one, that is,
to a solution defined on the whole time interval Œ0;C1/. For more details and
the proof see [14, Corollary 3.7].
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2.2 The Kawasaki Dynamics

The Kawasaki dynamics is an example of a hopping particle model where, in this
case, particles randomly hop over the space R

d according to a rate depending on
the interaction between particles. More precisely, let a W Rd ! Œ0;C1/ be an even
and integrable function and let � W Rd ! Œ0;C1� be a pair potential, which we
will assume to be integrable. A particle located at a site x in a given configuration
� 2 � hops to a site y according to a rate given by a.x � y/ exp.�E.y; �//, where
E.y; �/ is a relative energy of interaction between the site y and the configuration �
defined similarly to (19). Informally, the behavior of such an infinite particle system
is described by

.LKF /.�/ D
X
x2�

Z
Rd

dy a.x � y/e�E.y;�/ .F .� n fxg [ fyg/ � F.�// ; (22)

meaning in terms of the operator QLK defined in (16) that

. QLKB/.�/

D
Z
Rd

dx

Z
Rd

dy a.x � y/e��.x�y/.�.y/ � �.x//ıB.�e��.y�	/ C e��.y�	/ � 1I x/;
(23)

cf. [13]. In this case the following estimate of norms holds

k QLKBk˛0 � 2e
k�k

L1

˛
˛0

˛ � ˛0 kakL1kBk˛; B 2 E˛; ˛
0 < ˛;

which, by an application of Theorem 2, yields the following statement.

Proposition 3 ([15, Theorem 3.1]). Given an ˛0 > 0, let B0 2 E˛0 . For each ˛ 2
.0; ˛0/ there is a T > 0 (which depends on ˛; ˛0) such that there is a unique solution
Bt , t 2 Œ0; T /, to the initial value problem @

@t
Bt D QLKBt , (23), Bt jtD0 D B0 in the

space E˛ .

3 Vlasov Scaling

We proceed to investigate the Vlasov-type scaling proposed in [8] for generic
continuous particle systems and accomplished in [9] and [2] for the Glauber and
the Kawasaki dynamics, respectively, now in terms of GF. As explained in these
references, we start with a rescaling of an initial correlation function k0, denoted,
respectively, by k."/G;0, k

."/
K;0, " > 0, which has a singularity with respect to " of

the type k."/G;0.�/; k
."/
K;0.�/ 
 "�j�jr0.�/, � 2 �0, being r0 a function independent
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of ". The aim is to construct a scaling for the operator LG (resp., LK) defined in
(20) (resp., (22)), LG;" (resp., LK;"), " > 0, in such a way that the following two
conditions are fulfilled. The first one is that under the scaling L 7! L#;", # D G;K,
the solution k."/#;t , t � 0, to

@

@t
k
."/
#;t D OL�

#;"k
."/
#;t ; k

."/
#;t jtD0 D k

."/
#;0

preserves the order of the singularity with respect to ", that is, k."/#;t .�/ 
 "�j�jr#;t .�/,
� 2 �0. The second condition is that the dynamics r0 7! r#;t preserves the Lebesgue-
Poisson exponents, that is, if r0 is of the form r0 D e�.�0/, then each r#;t , t > 0, is of
the same type, i.e., r#;t D e�.�#;t /, where �#;t is a solution to a non-linear equation
(called a Vlasov-type equation). As shown in [8, Example 8], [9], in the case of the
Glauber dynamics this equation is given by

@

@t
�G;t .x/ D ��G;t .x/C ze�.�G;t��/.x/; x 2 R

d ; (24)

where 
 denotes the usual convolution of functions. Existence of classical solutions
0 � �G;t 2 L1 to (24) has been discussed in [6,9]. For the Kawasaki dynamics, the
corresponding Vlasov-type equation is given by

@

@t
�K;t .x/ D .�K;t 
 a/.x/e�.�K;t��/.x/ � �K;t .x/.a 
 e�.�K;t��//.x/; x 2 R

d ;

(25)

cf. [8, Example 12], [2]. In this case, existence of classical solutions 0 � �K;t 2 L1
to (25) has been discussed in [2].

Therefore, it is natural to consider the same scalings, but in terms of GF.

3.1 The Glauber Dynamics

The previous scheme was accomplished in [9] through the scale transformations
z 7! "�1z and � 7! "� of the operator LG , that is,

.LG;"F /.�/ WD
X
x2�

.F.� n fxg/�F.�//C z

"

Z
Rd

dx e�"E.x;�/ .F .� [ fxg/�F.�// :

To proceed towards GF, let us consider k."/G;t defined as before and k."/G;t;ren.�/ WD
"j�jk."/G;t .�/. In terms of GF, these yield
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B
."/
G;t .�/ WD

Z
�0

d�.�/ e�.�; �/k
."/
G;t .�/;

and

B
."/
G;t;ren.�/WD

Z
�0

d�.�/ e�.�; �/k
."/
G;t;ren.�/D

Z
�0

d�.�/ e�."�; �/k
."/
G;t .�/DB."/

G;t ."�/;

leading, as in (16) and (17), to the initial value problem

@

@t
B
."/
G;t;ren D QLG;";renB

."/
G;t;ren; B

."/
G;t;renjtD0 D B

."/
G;0;ren; (26)

where, for all � 2 L1,

. QLG;";renB/.�/ D �
Z
Rd

dx �.x/

�
ıB.�; x/ � zB

�
�e�"�.x�	/ C e�"�.x�	/ � 1

"

��
;

cf. [14]. Concerning this operator, it has been also shown in [14, Proposition 4.2]
that if B 2 E˛ for some ˛ > 0, then, for all � 2 L1, . QLG;";renB/.�/ converges as "
tends zero to

. QLG;V B/.�/ WD �
Z
Rd

dx �.x/ .ıB.� I x/ � zB .� � �.x � �/// :

Furthermore, fixed 0 < ˛ < ˛0, if B 2 E˛00 for some ˛00 2 .˛; ˛0�, then˚ QLG;";renB; QLG;V B
� 	 E˛0 for all ˛ � ˛0 < ˛00, and one has

k QL#Bk˛0 � ˛0

˛00 � ˛0
�
1C z˛0e

k�k
L1

˛ �1
�
kBk˛00 ;

where QL# D QLG;";ren or QL# D QLG;V . That is, the estimate of norms for QLG;";ren, " >
0, and the limiting mapping QLG;V are similar. Therefore, given anyBG;0;V ; B

."/
G;0;ren 2

E˛0 , " > 0, it follows from Theorem 2 that for each ˛ 2 .0; ˛0/, there is a constant
ı > 0 such that there is a unique solution B."/

G;t;ren W Œ0; ı.˛0 � ˛// ! E˛ , " > 0, to
each initial value problem (26) and a unique solution BG;t;V W Œ0; ı.˛0 � ˛// ! E˛
to the initial problem

@

@t
BG;t;V D QLG;V BG;t;V ; BG;t;V jtD0 D BG;0;V : (27)

In other words, independent of the initial value problem under consideration, the
solutions obtained are defined on the same time-interval and with values in the
same Banach space. Therefore, it is natural to analyze under which conditions the
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solutions to (26) converge to the solution to (27). This follows from the following
general result [14]:

Theorem 3. On a scale of Banach spaces fBs W 0 < s � s0g consider a family of
initial value problems

du".t/

dt
D A"u".t/; u".0/ D u" 2 Bs0 ; " � 0; (28)

where, for each s 2 .0; s0/ fixed and for each pair s0; s00 such that s � s0 < s00 � s0,
A" W Bs00 ! Bs0 is a linear mapping so that there is an M > 0 such that for all
u 2 Bs00

kA"uks0 � M

s00 � s0 kuks00 :

Here M is independent of "; s0; s00 and u, however it might depend continuously on
s; s0. Assume that there is a p 2 N and for each " > 0 there is an N" > 0 such that
for each pair s0; s00, s � s0 < s00 � s0, and all u 2 Bs00

kA"u � A0uks0 �
pX
kD1

N"

.s00 � s0/k kuks00 :

In addition, assume that lim"!0 N" D 0 and lim"!0 ku".0/ � u0.0/ks0 D 0.
Then, for each s 2 .0; s0/, there is a constant ı > 0 (which depends on M ) such

that there is a unique solution u" W Œ0; ı.s0 � s// ! Bs , " � 0, to each initial value
problem (28) and for all t 2 Œ0; ı.s0 � s// we have

lim
"!0

ku".t/ � u0.t/ks D 0:

We observe that if 0 � � 2 L1 \ L1, then, given ˛0 > ˛ > 0, for all B 2 E˛00 ,
˛00 2 .˛; ˛0�, one finds [14, Proposition 4.4]

k QLG;";renB � QLG;V Bk˛0 � "zk�kL1kBk˛00e
k�k

L1

˛

�k�kL1˛0
˛00 � ˛0 C 4˛30

.˛00 � ˛0/2e
�

for all ˛0 such that ˛ � ˛0 < ˛00 and all " > 0. Thus, given the local
solutions B."/

G;t;ren; BG;t;V , t 2 Œ0; ı.˛0 � ˛//, in E˛ to the initial value problems

(26) and (27), respectively, with B
."/
G;0;ren; BG;0;V 2 E˛0 , if lim"!0 kB."/

G;0;ren �
BG;0;V k˛0 D 0, then, by an application of Theorem 3, lim"!0 kB."/

G;t;ren �BG;t;V k˛ D
0, for each t 2 Œ0; ı.˛0 � ˛//. Moreover [14, Theorem 4.5], if BG;0;V .�/ D
exp

	R
Rd
dx �0.x/�.x/



, � 2 L1, for some function 0 � �0 2 L1 such that

k�0kL1 � 1
˛0

, and if max f 1
˛0
; zg < 1

˛
then, for each t 2 Œ0; ı.˛0 � ˛//,
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BG;t;V .�/ D exp

�Z
Rd

dx �t .x/�.x/

�
; � 2 L1;

where 0 � �t 2 L1 is a classical solution to Eq. (24) such that, for each t 2
Œ0; ı.˛0 � ˛//, k�tkL1 � 1

˛
. For more results and proofs see [14].

3.2 The Kawasaki Dynamics

In this example one shall consider the scale transformation � 7! "� of the operator
LK cf. [2], that is,

.LK;"F /.�/ WD
X
x2�

Z
Rd

dy a.x � y/e�"E.y;�/ .F .� n fxg [ fyg/ � F.�// :

To proceed towards GF we consider k."/K;t , k
."/
K;t;ren and B."/

K;t defined as before,
which lead to the Cauchy problem

@

@t
B
."/
K;t;ren D QLK;";renB

."/
K;t;ren; B

."/
K;t;renjtD0 D B

."/
K;0;ren; (29)

with

. QLK;";renB/.�/ D
Z
Rd

dx

Z
Rd

dy a.x � y/e�"�.x�y/.�.y/ � �.x//

� ıB
�
�e�"�.y�	/ C e�"�.y�	/ � 1

"
I x
�
;

for all " > 0 and all � 2 L1. Similar arguments show [15] that given a B 2 E˛ for
some ˛ > 0, then, for all � 2 L1, . QLK;";renB/.�/ converges as " tends to zero to

. QLK;V B/.�/ WD
Z
Rd

dx
Z
Rd

dy a.x � y/.�.y/ � �.x//ıB.� � �.y � �/I x/:

In addition, given 0 < ˛ < ˛0, if B 2 E˛00 for some ˛00 2 .˛; ˛0�, then˚ QLK;";renB; QLK;V B
� 	 E˛0 for all ˛ � ˛0 < ˛00, and the following inequality of

norms holds

k QL#Bk˛0 � 2kakL1
˛0

.˛00 � ˛0/e
k�k

L1

˛ kBk˛00 ;

where QL# D QLK;";ren or QL# D QLK;V . Now, let us assume that 0 � � 2 L1 \L1 and
let ˛0 > ˛ > 0 be given. Then, for all B 2 E˛00 , ˛00 2 .˛; ˛0�, the following estimate
holds [15, Proposition 4.3]
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k QLK;";renB � QLK;V Bk˛0

� 2"kakL1k�kL1

e˛0

˛
kBk˛00e

k�k
L1

˛

��
2ek�kL1 C

˛0

e

� 1

˛00 � ˛0 C
8˛20

.˛00 � ˛0/2
�

for all ˛0 such that ˛ � ˛0 < ˛00 and all " > 0, meaning that one may apply
Theorem 3.

Proposition 4 ([15, Theorem 4.4]). Given an 0 < ˛ < ˛0, let B."/
K;t;ren; BK;t;V ,

t 2 Œ0; T /, be the local solutions in E˛ to the initial value problems (29),

@

@t
BK;t;V D QLK;V BK;t;V ; BK;t;V jtD0 D BK;0;V ;

withB."/
K;0;ren; BK;0;V 2 E˛0 . If 0 � � 2 L1\L1 and lim"!0 kB."/

K;0;ren�BK;0;V k˛0 D
0, then, for each t 2 Œ0; T /, lim"!0 kB."/

K;t;ren � BK;t;V k˛ D 0. Moreover, if
BK;0;V .�/ D exp

	R
Rd
dx �0.x/�.x/



, � 2 L1, for some function 0 � �0 2 L1 such

that k�0kL1 � 1
˛0

, then for each t 2 Œ0; T /, BK;t;V .�/ D exp
	R

Rd
dx �t .x/�.x/



,

� 2 L1, where 0 � �t 2 L1 is a classical solution to Eq. (25).
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Interacting Particle Systems: Hydrodynamic
Limit Versus High Density Limit

Tertuliano Franco

1 Introduction

A central question in Statistical Mechanics is about the passage from discrete
systems to the continuum. And, consequently, how the intrinsic properties of a
discrete systems are inherited by the continuum. Aiming for rigorous results in this
scope, fruitful mathematical theories have been developed since the last century.

An important class of discrete systems are the so-called interacting particle
systems. Roughly speaking, an interacting particle system is a discrete system that
evolves in time according to random clocks under some interaction among particles.
To clarify ideas, two examples of interacting particle systems are presented in the
Sect. 2.

A quantity of interest associated to a particle system is the spatial density of
particles. Since the system evolves in time, its spatial density of particles evolves as
well. Is therefore natural to investigate the possible limits for the time trajectory of
the spatial density of particles.

The limiting object for the time trajectory of the spatial density of particles is
usually described as the solution of some partial differential equation. A standard
hypothesis is to suppose that, at initial time, the spatial density of particles converges
to a profile ' as the mesh of the lattice goes to zero. This profile ' will be, as
reasonable, the initial condition of the respective partial differential equation.

The nature of the convergence (topology, parameters to be rescaled) is the subject
of this paper. For sake of clarity, we take the liberty to divide the main types of
convergence in two classes: the hydrodynamic limit and the high density limit. The
expression hydrodynamic limit is widely used in the literature. On the hand, the high
density limit nomenclature is less known, being employed in the paper [12].
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The hydrodynamic limit consists of the limit for the time trajectory of the spatial
density of particles where the parameters to be rescaled are time and space. The
space among particles is lead to zero, while the time the system has to evolve is
lead to infinity. If the time is taken as the inverse of the space among particles,
this situation is called the ballistic scaling. If the time is as taken as square of the
inverse of the space among particles, it is called the diffusive scaling. The initial
configuration of particles is randomly chosen according to a distribution related to
the fixed profile '.

The high density limit consists of the limit for the time trajectory of the spatial
density of particles where the parameters to be rescaled are: time, space and
initial quantity of particles per site. While space among particles is lead to zero,
time and initial quantity of particles per site are lead to infinity. As suggested,
the fact the initial quantity of particles increases in a meaningful way originated
the nomenclature.

A vast literature has been produced about the hydrodynamic limit, which is
nowadays an exciting and active research area. For a reference in the subject, we
refer the reader to the classical book [10]. For very important techniques in the area,
we cite the Entropy Method, the Relative Entropy Method, non-gradient techniques,
attractiveness techniques, among many others. In its turn, the high density limit
approach had important papers about as [1, 3–5, 11, 12]. As a more recent paper on
the subject, we cite [6].

The hydrodynamic limit is far more studied and known. But the high density
limit has interesting characteristics and a plenty of open problems, some of them
discussed here. Our goal in this short survey is to compare main aspects of each
approach, exemplify them, and debate for whose models each one is more suitable
to (in some sense).

The outline of this paper is: in Sect. 2, two interacting particle systems are
presented. In Sect. 3, it is made a comparison of results in each approach for the
law of large numbers scenario. In Sect. 4, the same for the central limit theorem
scenario, and in Sect. 5, the same for the large deviations principle scenario.

2 Two Interacting Particle Systems

In this section we present two dynamics of interacting particle systems. For a
classical reference on particle systems, we cite the book [13]. The first example is
the symmetric simple exclusion process, the second one is a system of independent
random walks with birth-and-death dynamics. Denote by

TN D Z=.NZ/ D f0; 1; 2; : : : ; N � 1g

the discrete one-dimensional torus with N sites.
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Fig. 1 A configuration of particles � 2 f0; 1gTN . Observe that �.N�1/ D 1, �.0/ D 0, �.1/ D 1,
�.2/ D 1, etc. Notice that, since TN is the discrete torus, x D 0 and x D N represent the same
site

The symmetric simple exclusion process The symmetric simple exclusion pro-
cess, abbreviated by SSEP, is a quite standard, widely studied model in Probability
and Statistical Mechanics. In words, in the SSEP each particle performs an
independent continuous-time symmetric random walk except when some particle
tries to jump to an already occupied site. When this happens, this jumps is forbidden,
and nothing happens. This exclusion rule originates the name exclusion process. In
several models of physical phenomena, fermions dynamics are constrained by an
exclusion rule.

Of course, since a particle can not jump to an already occupied site, the state
space in this case is f0; 1gTN . For x 2 TN , we will write down �.x/ for the number
of particles at the site x in the configuration � of particles. See Fig. 1 above, where
black balls represent particles.

The dynamics is the following: to each edge .x; x C 1/ of the discrete torus TN ,
it is associated a Poisson point process1 of parameter N2, all of them independent.
At a time arrival of the Poisson process corresponding to the edge .x; x C 1/, the
occupations at �.x/ and �.x C 1/ are interchanged. In case that both sites x and
x C 1 are occupied, of course, nothing happens.2 Since the Poisson processes are
independent, the probability to observe two marks at same time is zero. Hence, there
is no chance to a particle be in “doubt” whether to jump, and the construction is well
defined. Figure 2 illustrates ideas.

Given an initial configuration of particles � 2 f0; 1gTN , this construction yields
the continuous time Markov chain f�t I t � 0g, which is the so-called SSEP.

Independent random walks with birth-and-death dynamics In this particle
system we have a superposition of two standard dynamics. One is given by
independent random walks, where each particle has its own random clock (a Poisson
process associated to him). When the clock rings, the particle chooses with equal
probability one of the neighbor sites and jumps to there. For independent random
walks, there is no interaction among particles. The other part of the dynamics is
given by birth and death of particles at each site. The birth and death rates at a site x
are given by functions b and d , respectively, of the number of particles at that site x.

1A Poisson process can be described as marks in time, being the time between marks i.i.d of
exponential distribution. The parameter N2 has to do with the scaling we are going to perform
later.
2Corroborating the exclusion rule.



182 T. Franco

Fig. 2 At right, an evolution of the initial configuration �0 according to the Poisson processes (the
marks represent the time arrivals). At time t1, a particle jumps to a neighbor site. Notice that at the
three marks in times previous to t1 nothing happened because both sites related to the mark were
empty or occupied

Fig. 3 A configuration of particles � 2 N
TN . Observe that �.N � 1/ D 2, �.0/ D 1, �.1/ D 3,

�.2/ D 2 and �.3/ D 0. Again, since TN is the discrete torus, x D 0 and x D N represent the
same site

In each site of TN we allow a nonnegative integer quantity of indistinguishable
particles. A configuration of particles will be denote by �, which is an element of
fN [ f0ggTN . As before, we will write down �.x/ for the number of particles at the
site x in the configuration � of particles, see Fig. 3 above.

Next, we construct the system of independent random walks with birth-and-death
dynamics. Fix two nonnegative smooth3 functions b; d W RC ! RC such that
d.0/ D 0 and fix ` D `N a positive parameter. In the next section we will see that
this parameter ` represents the number of particles per site at the initial time.

Consider the following transition rates:

• At rate N2�.x/, a particle jumps from x to x C 1;
• At rate N2�.x/, a particle jumps from x to x � 1;
• At rate `b.`�1�.x//, a new particle is created at x;
• At rate `d.`�1�.x//, a particle is destroyed at x.

3The smoothness is not necessary here. It will be required only in the later scaling.
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The transitions above are assumed for all x 2 TN . Each transition corresponds to an
arrival of an independent Poisson process of parameter given by the respective rate.
That is, an analogous graphical construction (as the aforementioned for the SSEP)
can be made in this case, see [6].

Since there are no assumptions about the growth of b, the waiting times of this
Markov chain can be summable.4 In this case we say that the process explodes or
blows up, and we define the state of the process as 1 for times greater or equal than
the sum of all the waiting times, that we call T Nmax. More precisely, define


Ny WD inf ft � 0W k�.t/k1 � yg and 
Nblow-up WD lim
y!1 


N
y :

Then, for t < 
Nblow-up, we define �.t/ by means of the rates stated before, and for
t � 
Nblow-up, we define �.t/ D 1. This characterizes a continuous time Markov
chain

f�t I t � 0g

with state space N
TN [ f1g.

3 Law of Large Numbers Scenario for Each Setting

In order to state the limit for the time trajectory of the spatial density of particles,
we need to define first what we mean by a spatial density of particles. We point
out that the definition of the spatial density of particles is different for each setting,
the hydrodynamic limit or the high density limit. In the first one, given the SSEP
f�t I t � 0g described in the Sect. 2, the spatial density of particles, usually called
the empirical measure, is defined as

�Nt WD 1

N

X
x2TN

�t .x/ ı x
N
: (1)

As can be easily seen, the empirical measure is:

• A positive measure (since it is a sum of deltas of Dirac);
• A random measure (since it is a function of �t , which is random);
• A measure with total mass bounded by one (by the normalization constant N );

4Meaning that the total quantity of particles has exploded. For more on explosions of Markov
chains see [15].
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• A measure that gives mass 1=N at the point x=N belonging at the continuous
one-dimensional torus

T D R=Z D Œ0; 1/

if there is a particle at the site x 2 TN (at that time t ), and gives measure 0
otherwise.

Denote by MC the space of positive measures on T with mass bounded by one
and by D.Œ0; T �;MC/ the set of càdlàg5 time trajectories taking values on MC.
We notice that the time trajectory of the empirical measure (1) is a random element
taking values in D.Œ0; T �;MC/.

The theorem stated next is what we call the hydrodynamic limit (for the
SSEP). For a proof, see [10, Chap. 4]. We notice that the topology assumed in the
convergence in distribution ahead is the Skorohod topology on D.Œ0; T �;MC/. For
an exposition on the Skohorod topology, see [2] or [10].

Theorem 1. Fix ' W T ! Œ0; 1� a smooth function and T > 0. Suppose that
the initial distribution of particles for the SSEP are chosen in such a way, as
N ! 1,

�N0 �! '.u/ du in probability:

Then, as N ! 1,

f�Nt I 0 � t � T g �! f�.t; u/ du I 0 � t � T g in distribution,

where �.t; u/ is the unique solution of the periodic heat equation with initial
condition ', or else,

�
@t�.t; u/ D @uu�.t; u/ ; t � 0; u 2 T ;

�.0; u/ D '.u/; u 2 T :
(2)

It is not our intention to resume a huge research area in few words. Nevertheless,
let us make some remarks. The hydrodynamic limit has been successfully applied
in interacting particles systems as: the zero range model; the symmetric simple
exclusion process, the asymmetric simple exclusion process, the Ginzburg-Landau
model, the generalized exclusion process, among others.

We point out here the power of the existing methods for proving the hydro-
dynamic limit of models whose microscopic interactions often lead to non-linear

5From the French, right continuous and with side left limits.
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partial differential equations. In the above case, it is obtained a linear heat equation.
For the zero range process, the partial differential equation would the a non-linear
one, with @uu˚.�/ replacing @uu� in (2), where the function ˚ is defined via the
microscopic interaction.

Despite the wide applicability, the available techniques for hydrodynamic limit
are not suitable for systems with huge birth’s rate of new particles. There are
some papers on the subject as [14], but in a scheme where the birth’s rate of
new particles is small in some sense. The reason is simple, in the situation where
the particle system explodes in finite time, the expectation of the number of
particles is infinity at any positive time. Hence, any method based on expectations
is doomed to fail. And most of hydrodynamic techniques are based on expectation
techniques.

For x 2 TN , let ux D x=N 2 T. We define nowXN W RC�T ! RC, the spatial
density of particles for the high density limit scenario, by

XN .t; ux/ D `�1�t .x/ :

For ux < u < uxC1, we define the spatial density via a linear interpolation, i.e.,

XN .t; u/ D .N u � x/ XN .t; uxC1/C .x C 1 �Nx/ XN .t; uk/ :

If �.t/ D 1, we say that XN .t; �/ D 1 as well.
Before stating a high density limit theorem, let us say some words about the

partial differential equation

�
@t�.t; u/ D @uu�.t; u/C f .�.t; u// ; t 2 Œ0; T /; u 2 T ;

�.0; u/ D '.u/ � 0 ; u 2 T :
(3)

Above, f D b � d , where d and b are the aforementioned smooth functions that
drive the birth and death of particles, and ' is smooth and nonnegative. Since there
is not restriction about the growth of f , the solution of (3) can exhibit a phenomena
called blow-up or explosion. In this case, there is a finite time Tblow-up for which

lim
t%Tblow-up

k�.t; �/k1 D 1 ; (4)

and such that k�.t; �/k1 is finite for times smaller than Tblow-up. In this case, the
solution � of (3) is defined only in the time interval Œ0; Tblow-up/. If there is no
explosion, we would say that Tblow-up D 1.

Remark: a well known condition on the nonlinear term f that assures the
existence of solutions with blow-up is being convex, strictly positive in some
interval Œa;C1/ and

R1
a

ds
f .s/

<1.
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Theorem 2 (F., Groisman ’12). Assume that

(A1) limN!1 kXN .0; �/ � '.�/k1 D 0 almost surely;
(A2) for any c > 0,

P
N�0 N 3e�c `.N / <1 .

Then, for any T 2 Œ0; Tblow-up/,

lim
N!1 sup

t2Œ0;T �
kXN .t; �/ � �.t; �/k1 D 0 almost surely,

where � is the solution of (3) and Tblow-up is given in (4).

The assumption (A1) allows to interpret ` as the quantity of particles per site
at initial time. Roughly speaking, since XN

0 is `�1�0, and XN
0 converges in the

supremum norm to the function ', the initial quantity of particles at a point u 2 T

is of order ` '.u/.
We remark that �Nt and XN .t; u/ are equivalent in some sense. With due care,

the hydrodynamic limit could be stated in terms of piecewise affine functions and,
vice versa, the high density limit could be stated in terms of a suitable empirical
measure.

The result above is proved in [6] making use of couplings. It is a challenging
problem to obtain some analogous results in the hydrodynamic limit setting. For
instance, the zero range process has no limit of particles per site. Superposing this
dynamics with birth of particles, explosions can occur under suitable choice of rates.
The hydrodynamic limit of this model could be studied.

The known techniques for the high density limit are strongly support on three
pillars: martingales, Duhamel’s Principle and smoothing properties of the heat
equation semi-group. Duhamel’s Principle is a general idea widely applied in
ordinary different equations, partial differential equations, numerical schemes,
etcetera. For a system whose dynamics has two parts, being one of them linear,
the solution (in time) can be expressed as the initial condition evolved by the linear
part plus an convolution of the nonlinear part with the semi-group of the linear part.

Keeping this in mind, we can realize why the literature on high density limit is
concentrated in dynamics involving independent random walks: in order to apply
Duhamel’s Principle, it is necessary to have a linear part in the dynamics, and the
independent random walks plays this role. It is an open problem to extend the high
density limit for others dynamics as the zero range process, for example.

In the paper [14], it was considered the exclusion process superposed with
birth dynamics, but with no explosions. It is a challenging problem to prove the
hydrodynamic limit for the zero range process with birth of new particles and
explosion in finite time.
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4 Central Limit Theorem Scenario for Each Setting

There are a lot of results on the central limit theorem for both settings, the
hydrodynamic limit and the high density limit. In the high density limit setting,
we cite [3, 5, 11, 12]. In the hydrodynamic limit setting, we cite [7, 9].

In both settings, the limit is usually described through generalized Ornstein-
Uhlenbeck processes, see [8] or [10] on this type of stochastic process.

We cite as an interesting open problem to prove the central limit theorem for the
spatial density of particles near the explosion for the model considered in [6].

5 Large Deviation Principle Scenario for Each Setting

Recall that MC denote the space of positive measures on T with mass bounded by
one and by D.Œ0; T �;MC/ the set of càdlàg time trajectories with values on MC.

By a large deviations principle in the hydrodynamic setting, we mean the
existence of a lower semicontinuous rate function

I W D.Œ0; T �;MC/! RC [ f1g

such that:

For each closed set C , and each open set O of D.Œ0; T �;MC/,

lim sup
N!1

1

N
logQN ŒC � � � inf

�2C I.�/ ;

lim inf
N!1

1

N
logQN ŒO� � � inf

�2O I.�/ ;

where QN is the probability induced the in the space D.Œ0; T �;MC/ by the
empirical measure. A proof of the large deviation principle for the SSEP can be
found in [10, Chap. 10].

For the high density limit, the statement of a LDP is analogous, mutatis mutandis
with respect to the topology. However, there is no LDP available yet for the high
density limit scenario and we list some difficulties for proving it.

An important step in order to obtain a LDP for a model is to obtain a law of large
numbers for a class of perturbed process. The Radon-Nykodim between the original
process and the perturbed one will further give the cost to observe the limit given
by the perturbed one from the point-of-view of the original process. In the proof of
a LDP, it is made a careful analysis and precise optimization over the perturbations.
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For the SSEP, the perturbations are given by weakly asymmetric exclusion
process, where the asymmetry is driven by a smooth function H , being the limit
for the hydrodynamic limit given by a solution of a heat equation with a non-linear
Burgers term added, see [10, page 273].

As commented in the Sect. 3, the known techniques for the high density limit are
strongly based on martingales, Duhamel’s Principle and smoothing properties of
the semi-group corresponding to the linear part of the dynamics. In order to obtain a
LDP for the high density limit (let us say, in the case of independent random walks
with birth-and-death dynamics) it would be necessary to prove the high density limit
for some non-linear situation not attained yet in the literature.

Other obstacle is the presence of two superposed dynamics. To observe a given
profile that differs from the expected limit, it would be possible to consider two
different perturbations at same time, one about the diffusion and another about the
birth-and-death of particles. Performing variational analysis over two competing
different perturbations is a complicated situation in LDP.

In resume, LDP is a challenging open problem in the high density limit scenario.
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Slowed Exclusion Process: Hydrodynamics,
Fluctuations and Phase Transitions

Tertuliano Franco, Patrícia Gonçalves, and Adriana Neumann

1 Introduction

A major question in Statistical Mechanics is how to perform the limit from the
discrete to the continuum in such a way that the discretization of the system really
gives the correct description of the continuum? This question gave rise to plenty
of famous models and results, both in Physics and Mathematics. In the particular
context of particle systems and hydrodynamic limits, the passage of the discrete
to the continuum is a consequence of rescaling both time and space. The discrete
system consists in a collection of particles with a stochastic dynamics. Depending
on the prescribed interaction we are lead to different limits. Therefore the random
interaction of the microscopic system is connected to the macroscopic phenomena
to be explored.

As the main reference on the subject, we cite the classical book [9], which treats
the limit of several particle systems, as the zero range process, the symmetric and
asymmetric exclusion process, the generalized K-exclusion process, independent
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random walks and some of their scaling limits. We point out some of the possible
natures of those scaling limits.

The scaling limit for the time-trajectory of the spatial density of particles is the
so-called hydrodynamic limit of the system, which is a Law of Large Numbers
(L.L.N.) type-theorem. The scaling limit for how the discrete system oscillates
around its hydrodynamic limit is usually referred as fluctuations, being a Central
Limit Theorem (C.L.T.). The study of the rate at which the probability of observing
the discrete deviates from the expected limit decreases (roughly, exponentially fast)
is the theme of the Large Deviations Principle.

Recently, the scientific community has given attention to particle systems in
random and non-homogeneous media, and several approaches have been developed
in order to study the problem. In the papers [2,8,10], the authors considered random
walks in a random environment, as for example the case where the environment
is driven by an ˛-subordinator. These works inspired a series of other papers in
the context of particle systems, as [1, 6, 7, 11]. The work in [6] was related to the
hydrodynamic limit of exclusion processes driven by a general increasing function
W , not necessarily a toss of an ˛-subordinator. This work, in its hand, inspired
the work [3], which dealt with the case W being the distribution function of the
Lebesgue measure plus a delta of Dirac measure, being the mass of the delta of Dirac
dependent on the scale parameter. The model of [3] can be described as follows. To
each site of the discrete torus with n sites, it is allowed to have at most one particle.
Each bond has a Poisson clock which is independent of the clocks on other sites.
When the Poisson clock of a bond rings, the occupation at the vertices of this bond
are interchanged. All the Poisson clocks have parameter one, except one special
clock, which has parameter given by ˛n�ˇ , with ˛ > 0 and ˇ 2 Œ0;1�. This
“slower” clock, makes the passage of particles across the corresponding bond more
difficult, and for that reason that bond coined the name slow bond.

In the scenario of [3], according to the value of ˇ, three different limits for the
time trajectory of the spatial density of particles were obtained. If ˇ 2 Œ0; 1/ the
limit is given by the weak solution of the periodic heat equation, meaning that
the slow bond is not slow enough to originate any change in the continuum. If
ˇ D 1, the limit is given by the weak solution of the heat equation with some
Robin’s boundary conditions representing the Fick’s Law of passage of particles.
And if ˇ 2 .1;1�, the limit is given by the weak solution of the heat equation with
Neumann’s boundary conditions, meaning that the slow bond in this regime of ˇ is
slow enough to divide the space in the continuum.

Such dynamical phase transition (based on the strength of a single slow bond)
is not limited to the hydrodynamic limit. In the ensuing papers [4, 5], some other
dynamical phase transitions were proved. In [4], it was shown that the solutions
of the three partial differential equations aforementioned are continuously related
to a given boundary’s parameter, indicating a dynamical phase transition also at
the macroscopic level. In [5], it was proved that the equilibrium fluctuations of
the exclusion process with a slow bond evolving on an infinite volume, is also
characterized by the same regimes of ˇ. As before, in each case, namely for
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ˇ 2 Œ0; 1/, ˇ D 1 or ˇ 2 .1;1�, the limit fluctuations of the system are driven by
three Ornstein-Uhlenbeck processes. As a consequence of the density fluctuations,
we have also obtained the corresponding phase transition for the current of particles
through a fixed bond and for a tagged particle.

In these notes we make a synthesis of last results, all of them related to dynamic
phase transitions that occur when the strength of a particular slow bond varies.
We notice that the theme is not finished at all. There are a lot of particle systems
to examine and different limits to prove. As an example, in the cited papers
[3–5], the underlying particle systems are only of exclusion constrain and with
symmetric dynamics. Therefore, one can exploit other dynamics and obtain other
partial differential equations of physical interest. Moreover, even for the symmetric
exclusion dynamics with a slow bond, the full scenario for the scaling limits is not
closed yet: a Large Deviations Principle is still open. This is subject for future work.

Here follows an outline of these notes. In Sect. 2 we present the exclusion
process with a slow bond. Section 3 is devoted to the scaling limits at the level of
hydrodynamics. We present the hydrodynamic equations, the hydrodynamic limit
and the phase transition for the corresponding partial differential equations. In
Sect. 4 we present the scaling limits at the level of fluctuations. We present the
Ornstein-Uhlenbeck processes and the fluctuations of the density of particles. We
finish in Sect. 5 with a description of the fluctuations of the current of particles and
of a tagged particle.

2 Exclusion Processes

We are concerned with the study of dynamical phase transitions in particle systems
with a single slow bond. Before discussing what we mean by a dynamical phase
transition we describe our particle systems. We consider the simple exclusion
process (SEP) with a single slow bond. Probabilistic speaking, the SEP is a Markov
process that we denote by f�t W t � 0g and we consider it evolving on the state
space ˝ WD f0; 1gTn , where Tn D Z=nZ is the one-dimensional discrete torus with
n points. A configuration of this Markov process is denoted by � and it consists
in a vector with n components, each one taking the value 0 or 1. The physical
interpretation is that whenever �.x/ D 1we say that the site x is occupied, otherwise
it is empty.

The microscopic dynamics of this process can be informally described as follows.
At each bond fx; x C 1g of Tn, there is an exponential clock of parameter anx;xC1.
When this clock rings, the value of � at the vertices of this bond are interchanged.
We choose the parameters of the clocks in all bonds equal to 1, except at the bond
f�1; 0g, in such a way that the passage of particles across this bond is more difficult
with respect to other bonds. For ˇ 2 Œ0;1� and ˛ > 0, we consider
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Fig. 1 SEP with a slow bond with vertices f�1; 0g, whose jump rates are given by ˛n�ˇ . Black
balls represent occupied sites

anx;xC1 D
�
˛n�ˇ; if x D �1 ;
1; otherwise .

This means that particles cross all the bonds at rate 1, except the bond f�1; 0g,
whose dynamics is slowed down as ˛n�ˇ , with ˛ > 0 and ˇ 2 Œ0;1�, see Fig. 1.

The dynamics described above can be characterized via the infinitesimal genera-
tor, which we denote by Ln and is given on functions f W ˝ ! R as

Lnf .�/ D
X
x2Tn

anx;xC1
�
f .�x;xC1/ � f .�/� ;

where �x;xC1 is the configuration obtained from � by exchanging the occupation
variables �.x/ and �.x C 1/, namely

�x;xC1.y/ D
8<
:
�.x C 1/; if y D x ;

�.x/; if y D x C 1 ;

�.y/; otherwise :

Let � 2 Œ0; 1� and denote the Bernoulli product measure, defined in ˝ and with
parameter �, by

�n� f� 2 ˝ W �.x/ D 1; for any x 2 Ag D �#A;

for all setA 	 Tn. Here #A denotes the cardinality of the setA. It is well known that
the measures �n� are invariant for the dynamics introduced above. Moreover, these
measures are also reversible.

The trajectories of the Markov process f�t W t � 0g live on the space D.RC; ˝/,
that is, the path space of càdlàg trajectories with values in ˝. For a measure 	n
on ˝, we denote by P	n the probability measure on D.RC; ˝/ induced by 	n and
f�t W t � 0g; and we denote by E	n expectation with respect to P	n .

We notice that we do not index the Markov process, the generator nor the
measures, in ˇ or ˛ for simplicity of notation.
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3 Hydrodynamical Phase Transition

The study of the hydrodynamical behavior consists in the analysis of the time
evolution of the density of particles. For that purpose we introduce the empirical
measure process as follows.

For t 2 Œ0; T �, let �nt .�; du/ WD �n.�t ; du/ 2 M be defined as

�n.�t ; du/ D 1
n

X
x2Tn

�t .x/ ıx=n.du/ ;

where ıy is the Dirac measure concentrated on y 2 T. Above, T denotes the one-
dimensional torus and M denotes the space of positive measures on T with total
mass bounded by one, endowed with the weak topology.

The hydrodynamic limit can be stated as follows. If we assume a L.L.N. for
f�n0 gn2N to a limit �0.u/du under the initial distribution of the system, then at any
time t > 0 the L.L.N. holds for f�nt gn2N to a limit �.t; u/du under the corresponding
distribution of the system at time t . Moreover, the density �.t; u/ evolves according
to a partial differential equation – the hydrodynamic equation. For this model,
depending on the range of the parameter ˇ, we obtain different hydrodynamic
equations for the underlying particle system.

In the next section we describe the hydrodynamic equations we obtained and we
precise in which sense �.t; u/ is a solution to those equations.

3.1 Hydrodynamic Equations

We start by describing the hydrodynamic equations that govern the evolution of the
density of particles for the models introduced above. Depending on the range of
the parameter ˇ we obtain hydrodynamic equations which have different behavior.
More precisely, we always obtain the heat equation but with different boundary
conditions. The first hydrodynamic equation is the heat equation with periodic
boundary conditions, namely:

�
@t�.t; u/ D ��.t; u/ ; t � 0; u 2 T ;

�.0; u/ D �0.u/; u 2 T :
(1)

In the hydrodynamic limit scenario, we obtain �.t; u/ as a weak solution of the
corresponding hydrodynamic equation. To make this notion precise, we introduce
the following definition:

Definition 1. Let �0 W T ! Œ0; 1� be a measurable function. We say that � W Œ0; T ��
T ! Œ0; 1� is a weak solution of the heat equation with periodic boundary conditions
given in (1) if � is measurable and, for any t 2 Œ0; T � and anyH 2 C1;2.Œ0; T ��T/,
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Z
T

�.t; u/H.t; u/du�
Z
T

�.0; u/H.0; u/du

�
Z t

0

Z
T

�.s; u/ .@sH.s; u/C�H.s; u// du ds D 0 :

(2)

Above and in the sequel the space C1;2.Œ0; T � � T/ is the space of real valued
functions defined on Œ0; T � � T of class C1 in time and C2 in space.

The second equation we consider is the heat equation with a type of Robin’s
boundary conditions, that is:

8<
:
@t�.t; u/ D ��.t; u/ ; t � 0; u 2 .0; 1/ ;
@u�.t; 0/ D @u�.t; 1/ D ˛.�.t; 0/ � �.t; 1// ; t � 0;

�.0; u/ D �0.u/; u 2 .0; 1/ :
(3)

To introduce the notion of weak solution of this equation we need to recall the
notion of Sobolev’s spaces.

Definition 2. Let H1 be the set of all locally summable functions � W .0; 1/ ! R

such that there exists a function @u� 2 L2.0; 1/ satisfying
Z
T

@uG.u/�.u/ du D �
Z
T

G.u/@u�.u/ du ;

for all G 2 C1.0; 1/ with compact support. Let L2.0; T IH1/ be the space of all
measurable functions � W Œ0; T �! H1 such that

k�k2
L2.0;T IH1/

WD
Z T

0

�
k�k2

L2Œ0;1�
C k@u�k2L2Œ0;1�

�
dt < 1 :

Above k � kL2Œ0;1� denotes the L2-norm in Œ0; 1�.

Definition 3. Let �0 W T ! Œ0; 1� be a measurable function. We say that � W Œ0; T ��
T ! Œ0; 1� is a weak solution of the heat equation with Robin’s boundary conditions
given in (3) if � 2 L2.0; T IH1/ and for all t 2 Œ0; T � and for all H 2 C1;2.Œ0; T � �
Œ0; 1�/,

Z
T

�.t; u/H.t; u/du �
Z
T

�.0; u/H.0; u/du

�
Z t

0

Z
T

�.s; u/ .@sH.s; u/C�H.s; u// du ds

�
Z t

0

.�s.0/@uHs.0/ � �s.1/@uHs.1// ds

C
Z t

0

˛.�s.0/ � �s.1//.Hs.0/ �Hs.1// ds D 0 :

(4)
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The last equation we consider is the heat equation with Neumann’s boundary
conditions given by:

8<
:
@t�.t; u/ D ��.t; u/ ; t � 0; u 2 .0; 1/ ;
@u�.t; 0/ D @u�.t; 1/ D 0 ; t � 0 ;

�.0; u/ D �0.u/; u 2 .0; 1/ :
(5)

Definition 4. Let �0 W T ! Œ0; 1� be a measurable function. We say that � W
Œ0; T � � T ! Œ0; 1� is a weak solution of the heat equation with Neumann’s
boundary conditions if � 2 L2.0; T IH1/ and for all t 2 Œ0; T � and for all
H 2 C1;2.Œ0; T � � Œ0; 1�/,

Z
T

�.t; u/H.t; u/du �
Z
T

�.0; u/H.0; u/du

�
Z t

0

Z
T

�.s; u/ .@sH.s; u/C�H.s; u// du ds

�
Z t

0

.�s.0/@uHs.0/ � �s.1/@uHs.1// ds D 0 :

(6)

Our argument to prove the hydrodynamic limit is standard in the theory of
stochastic processes and goes through a tightness argument for f�nt gn2N, which
means relatively compactness of f�nt gn2N. Therefore, there exists a limit point. To
have uniqueness of the limit point of f�nt gn2N it is sufficient to prove uniqueness of
the weak solution of the corresponding hydrodynamic equation. Then, it follows the
convergence of the whole sequence f�nt gn2N to the unique limit point. For tightness
issues we refer the reader to [3] and the uniqueness of the weak solution is stated
below.

Proposition 1. Let �0 W T ! Œ0; 1� be a measurable function. There exists a unique
weak solution of the heat equation with periodic boundary conditions given in
(1) and a unique weak solution of the heat equation with Neumann’s boundary
conditions given in (5). Moreover, for each ˛ > 0, there exists a unique weak
solution of the heat equation with Robin’s boundary conditions given in (3).

3.2 Hydrodynamic Limit

Returning to our discussion on the validity of the hydrodynamic limit, we introduce
the set of initial measures for which we deduce the result.

Definition 5. Let �0 W T ! Œ0; 1� be a measurable function. A sequence of
probability measures f	ngn2N on ˝ is said to be associated to a profile �0 W T !
Œ0; 1� if, for every ı > 0 and every continuous function H W T ! R, it holds that
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lim
n!1	n

n
� W

ˇ̌
ˇ 1n
X
x2Tn

H.x
n
/ �.x/ �

Z
T

H.u/ �0.u/du
ˇ̌
ˇ > ı

o
D 0 : (7)

One could ask about the existence of a measure associated to the profile �0 W
T ! Œ0; 1�. For instance, we can consider a Bernoulli product measure in ˝ with
marginal at �.x/ given by 	nf� 2 ˝ W �.x/ D 1g D �0.x=n/.

For these processes we obtained in [3, 4] that:

Theorem 1 (L.L.N. for the density of particles). Fix ˇ 2 Œ0;1� and �0 W T !
Œ0; 1� a measurable function. Let f	ngn2N be a sequence of probability measures
on ˝ associated to �0. Then, for any t 2 Œ0; T �, for every ı > 0 and every
continuous function H W T ! R:

lim
n!1P	n

n
�: W

ˇ̌
ˇ 1n
X
x2Tn

H
	
x
n



�t .x/ �

Z
T

H.u/�.t; u/du
ˇ̌
ˇ > ı

o
D 0 ;

where:

• For ˇ 2 Œ0; 1/, �.t; �/ is the unique weak solution of (1);
• For ˇ D 1, �.t; �/ is the unique weak solution of (3);
• For ˇ 2 .1;1�, �.t; �/ is the unique weak solution of (5).

All equations have the same initial condition �0 W T ! Œ0; 1�.

3.3 Phase Transition for the Hydrodynamic Equations

A puzzling question is whether there is a similar phase transition as described above,
but at the macroscopic level. More precisely, does the unique weak solution of the
heat equation with Robin’s boundary conditions, that we denote by �˛ , converge
in any sense to the weak solution of the heat equation with periodic boundary
conditions or to the weak solution of the heat equation with Neumann’s boundary
conditions? In [4] we gave an affirmative answer to this question. We proved
that �˛ converges to the unique weak solution of the heat equation with Neumann’s
boundary conditions, when ˛ goes to zero and to the unique weak solution of the
heat equation with periodic boundary conditions, when ˛ goes to infinity. This is
the content of the next theorem.

This result is concerned only with the partial differential equations, having at
principle nothing to do with the underlying particle systems. Nevertheless, our
approach of proof is based on energy estimates coming from these particle systems.

Theorem 2 (Phase transition for the heat equation with Robin’s boundary
conditions). For ˛ > 0, let �˛ W Œ0; T �� Œ0; 1�! Œ0; 1� be the unique weak solution
of the heat equation with Robin’s boundary conditions:
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8<
:
@t�

˛.t; u/ D ��˛.t; u/ ; t � 0; u 2 .0; 1/ ;
@u�

˛.t; 0/ D @u�
˛.t; 1/ D ˛.�˛.t; 0/ � �˛.t; 1// ; t � 0 ;

�˛.0; u/ D �0.u/; u 2 .0; 1/ :

Then, lim˛!0 �
˛ D �0; in L2.Œ0; T � � Œ0; 1�/, where �0 W Œ0; T � � Œ0; 1�! Œ0; 1� is

the unique weak solution of the heat equation with Neumann’s boundary conditions
8̂
<̂
ˆ̂:
@t�

0.t; u/ D ��0.t; u/ ; t � 0; u 2 .0; 1/ ;
@u�

0.t; 0/ D @u�
0.t; 1/ D 0 ; t � 0 ;

�0.0; u/ D �0.u/ ; u 2 .0; 1/

and lim˛!1 �˛ D �1; in L2.Œ0; T � � Œ0; 1�/, where �1 W Œ0; T � � Œ0; 1� ! Œ0; 1�

is the unique weak solution of the heat equation with periodic boundary conditions

(
@t�

1.t; u/ D ��1.t; u/ ; t � 0; u 2 T ;

�1.0; u/ D �0.u/ ; u 2 T :

4 Equilibrium Fluctuations

Above we obtained a L.L.N. for the empirical measure considering the process
starting from a measure which is associated to a profile �0 W T ! Œ0; 1�. The natural
question that follows is: what are the fluctuations around this “mean” profile? Do we
have a C.L.T. for the density of particles? Under what set of initial measures? In the
next lines we answer this question for a particular set of initial distributions, namely
for the invariant measures �n� . In case of non-invariant measures the problem is still
open.

In this case we consider the process evolving on Z, being its state space f0; 1gZ.
To define properly our results, we fix � 2 Œ0; 1�, and we introduce the density
fluctuation field as follows. For t 2 Œ0; T �, let

Yn
t .�; du/ D p

n�n
tn2
.�; du/ �E�n� Œ

p
n�ntn2 .�; du/�;

where x runs through Z in the definition of �nt .�; du/ and E�n� denotes expectation
with respect to �n� . Then, for any function H W R ! R we have that

Z
R

H.u/Yn
t .�; du/ D 1p

n

X
x2Z

H
�x
n

�
Œ�tn2 .x/ � ��:

By computing the characteristic function of Yn
0 , we obtain that fYn

0 gn2N con-
verges as n goes to 1 to a mean zero gaussian process Y0. More precisely, for any
H , Y0.H/ is a gaussian random variable with mean zero and variance given by
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�.1 � �/
Z
R

.H.x//2dx:

Next, we are going to characterize the stochastic partial differential equations
governing the evolution of the limit points of fYn

t gn2N.

4.1 Ornstein-Uhlenbeck Processes

In order to properly write down the stochastic partial differential equations that
we deal with, we need to introduce different sets of test functions and two type
of operators defined on these spaces.

Definition 6. Define S.Rnf0g/ as the space of functionsH 2 C1.Rnf0g/, that are
continuous from the right at x D 0, for which

kHkk;` WD sup
x2Rnf0g

j.1C jxj`/H .k/.x/j < 1 ;

for all integers k; ` � 0, and H.k/.0�/ D H.k/.0C/, for all k integer, k � 1.

• For ˇ 2 Œ0; 1/, let Sˇ.R/ be the subset of S.Rnf0g/ composed of functions H
satisfying H.0�/ D H.0C/ :

• For ˇ D 1, let Sˇ.R/ as the subset of S.Rnf0g/ composed of functions H
satisfying H.1/.0C/ D H.1/.0�/ D ˛.H.0C/ �H.0�// :

• For ˇ 2 .1;C1�, let Sˇ.R/ be the subset of S.Rnf0g/ composed of functions
H satisfying H.1/.0C/ D H.1/.0�/ D 0 :

Above and in the sequel,H.k/.�/ represents the k-th derivative of the functionH
and H.0C/ (resp. H.0�/) denotes the limit of H from the right (resp. left) of 0.

Definition 7. For ˇ 2 Œ0;1�; we define the operators �ˇ;rˇ W Sˇ.R/! S.R/ by

rˇH.u/ D
�
H.1/.u/; if u ¤ 0 ;

H.1/.0C/; if u D 0 ;

and

�ˇH.u/ D
�
H.2/.u/; if u ¤ 0 ;

H.2/.0C/; if u D 0 ;

which are essentially the usual derivative and the usual second derivative, but
defined in the domains Sˇ.R/. We have the following uniqueness result which is
a key point in our approach.

Denote by T
ˇ
t the semigroup corresponding to the partial differential equa-

tions (1), (3) or (5), if ˇ 2 Œ0; 1/, if ˇ D 1 or if ˇ 2 .1;1�, respectively.
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Proposition 2. For each ˇ 2 Œ0;1� and ˛ > 0, there exists an unique random
element Y	 taking values in the space C.Œ0; T �;S 0̌ .R// such that:

(i) For every function H 2 Sˇ.R/, Mt .H/ and Nt .H/ given by

Mt .H/ D Yt .H/ � Y0.H/ �
Z t

0

Ys.�ˇH/ds ;

Nt .H/ D .Mt .H//
2 � 2�.�/ t krˇHk22;ˇ

(8)

are Ft -martingales, where Ft WD �.Ys.H/I s � t;H 2 Sˇ.R//, for t 2 Œ0; T �.
(ii) Y0 is a mean zero gaussian field with covariance given on G;H 2 Sˇ.R/ as

E ŒY0.G/Y0.H/� D �.�/

Z
R

G.u/H.u/du : (9)

Moreover, for eachH 2 Sˇ.R/, the stochastic process fYt .H/ I t � 0g is gaussian,
being the distribution of Yt .H/ conditionally to Fs , for s < t , gaussian of mean
Ys.T ˇt�sH/ and variance

R t�s
0

krˇT ˇr Hk22;ˇ dr.

Above and in the sequel S 0̌ .R/ denotes the space of bounded linear functionals f W
Sˇ.R/ ! R and D.Œ0; T �;S 0̌ .R// (resp. C.Œ0; T �;S 0̌ .R//) is the space of càdlàg
(resp. continuous) S 0̌ .R/ valued functions endowed with the Skohorod topology.

Also kHk22;ˇ D kHk22C .H.0//21fˇD1g; where k � k2 denotes the L2-norm in R. We
call to Y	 the generalized Ornstein-Uhlenbeck process of characteristic operators�ˇ

and rˇ and it is the formal solution of the following equation

dYt D �ˇYtdt C
p
2�.�/rˇdWt ;

where Wt is a space-time white noise of unit variance.

4.2 Central Limit Theorem

We are in position to state the equilibrium fluctuations for the density of particles.
Notice that our initial distribution is �n� , an invariant measure.

Theorem 3 (C.L.T. for the density of particles). The sequence of processes
fYn

t gn2N converges in distribution, as n goes to 1, with respect to the Skorohod
topology of D.Œ0; T �;S 0̌ .R// to a gaussian process Yt in C.Œ0; T �;S 0̌ .R//, which is
the formal solution of the Ornstein-Uhlenbeck equation given by

dYt D �ˇYtdt C
p
2�.�/rˇdWt : (10)
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Fig. 2 Current at the bond f�1; 0g of the SEP with a slow bond. Every time a particle jumps from
�1 to 0 (0 to �1) the current increases (decreases) by one

5 Current and Tagged Particle Fluctuations

In this section we are still restricted to the invariant state �n� and for that purpose we
fix a density � from now on up to the rest of these notes.

5.1 The Current

Now, we introduce the notion of current of particles through a fixed bond fx; xC1g.
For a bond ex WD fx; x C 1g, denote by J nex .t/ the current of particles over the
bond ex , that is J nex .t/ counts the total number of jumps from the site x to the site
x C 1 minus the total number of jumps from the site x C 1 to the site x in the time
interval Œ0; tn2�, see the figure below. More generally, to each macroscopic point
u 2 R we can define the current through its associated microscopic bond of vertices
fbunc � 1; buncg, as J nu .t/ WD J ne

bunc�1
.t/ : Here bunc denotes the biggest integer

smaller or equal to un. As a consequence of the C.L.T. for the density of particles,
namely of Theorem 3, it is simple to derive the C.L.T. for the current of particles
which we enounce as follows (Fig. 2).

Theorem 4 (C.L.T. for the current of particles). Under P�n� , for every t � 0 and
every u 2 R,

J nu .t/p
n

����!
n!1 Ju.t/

in the sense of finite-dimensional distributions, where Ju.t/ is a gaussian process
with mean zero and variance given by

• For ˇ 2 Œ0; 1/, E�n� Œ.Ju.t//
2� D 2�.�/

q
t
�

, that is Ju.t/ is a fractional Brownian

Motion of Hurst exponent 1=4;

• For ˇ D 1, E�n� Œ.Ju.t//
2� D 2�.�/

�q
t
�
C ˚2t .2uC4˛t/ e4˛uC4˛2t�˚2t .2u/

2˛

�
;

• For ˇ 2 .1;C1�, E�n� Œ.Ju.t//
2� D 2�.�/

�q
t
�

h
1 � e�u2=t

i
C 2u˚2t .2u/

�
;
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where

˚2t .x/ WD
Z C1

x

e�u2=4t

p
4�t

du :

It worth to remark the variance at u D 0, corresponding to the current of particles
through the slow bond e�1. If ˇ 2 Œ0; 1/, the variance corresponds to the one
of a fractional Brownian Motion of Hurst exponent 1=4. If ˇ 2 .1;1�, the
variance equals to zero as expected. This is a consequence of having Neumann’s
boundary conditions at x D 0 which turns it into an isolated boundary. And for
ˇ D 1, we obtain a family of gaussian processes indexed in ˛ interpolating the two
aforementioned processes.

Corollary 1. For ˇ D 1, denote the limit, as n! 1, of J nu .t/=
p
n by J ˛u .t/:

Then for every t � 0 and every u 2 R,

J ˛u .t/ �����!
˛!C1 J1

u .t/;

where J1
u .t/ is the fractional Brownian Motion with Hurst exponent 1=4 and

J ˛u .t/ ���!
˛!0

J 0u .t/ ;

where J 0u .t/ is the mean zero gaussian process with variance given by

E�n� Œ.Ju.t//
2� D 2�.�/

�q
t
�

h
1 � e�u2=t

i
C 2u˚2t .2u/

�
:

The convergence is in the sense of finite dimensional distributions.

5.2 Tagged Particle Fluctuations

Our last goal is to present the asymptotic behavior of a tagged particle in the system.
The dynamic of this tagged particle is no longer Markovian, since its behavior
is influenced by the presence of other particles in the system. Nevertheless, we
can relate the position of the tagged particle with the current and the density of
particles, and from the previous results we obtain information about the behavior of
this particle.

Suppose to start the system from a configuration with a particle at the site bunc
and in all other sites suppose that the configuration is distributed according to �n� . In
other words, this means that we consider the Markov process f�t W t � 0g starting
from the measure �n� conditioned to have a particle at the site bunc, that we denote
by �n;u� . That is, �u;n

� .�/ WD �n� . � j�tn2.bunc/ D 1/ (Fig. 3).
We notice that the previous results were obtained considering the process starting

from �n� . In order to be able to use them, we couple the process starting from �n;u�
and starting from �n� , in such a way that both processes differ at most by one site at
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Fig. 3 The tagged particle of the SEP with a slow bond. At initial time, the tagged particle is at
the site 0

any given time. This allow us to derive the same statements of Theorems 3 and 4 for
the starting measure �n;u� .

Now, let Xn
u .t/ be the position at the time tn2 of a tagged particle initial at the

site bunc. Since our study is restricted to the one dimensional setting, particles do
preserve their order, and it is simple to check that

fXn
u .t/ � kg D

n
J nu .t/ �

buncCk�1X
xDbunc

�tn2 .x/
o
:

We explain briefly how to get the previous equality. Suppose for simplicity
that u D 0, so that we start the system with the tagged particle at the origin. If
this particle is, at time tn2, at the right hand side of n, then all the particles that
jumped from �1 to 0 and did not jump backwards, are somewhere at the sites
f0; 1; : : : ; Xn

u .t/g. It follows that the current through the bond f�1; 0g has to be
greater or equal than the density of particles in f0; : : : ; ng. Reasoning similarly, we
get the equality between those events.

Finally, last relation together with Theorem 4, implies the following result.

Theorem 5 (C.L.T. for a tagged particle). Under P�u
�
, for all ˇ 2 Œ0;1�, every

u 2 R and t � 0

Xn
u .t/p
n

�����!
n!C1 Xu.t/

in the sense of finite-dimensional distributions, where Xu.t/ D Ju.t/=� in law and
Ju.t/ is the same as in Theorem 4. In particular, the variance of the process Xu.t/

is given by

• For ˇ 2 Œ0; 1/, E�n� Œ.Xu.t//
2� D 2

�.�/

�2

q
t
�

, that isXu.t/ is a fractional Brownian

Motion of Hurst exponent 1=4;

• For ˇ D 1, E�n� Œ.Xu.t//
2� D 2

�.�/

�2

�q
t
�
C ˚2t .2uC4˛t/ e4˛uC4˛2t

2˛

�
;

• For ˇ 2 .1;C1�, E�n� Œ.Xu.t//
2� D 2

�.�/

�2

�q
t
�

h
1 � e�u2=t

i
C 2u˚2t .2u/

�
:



Slowed Exclusion Process: Hydrodynamics, Fluctuations and Phase Transitions 205

Acknowledgements The authors thank the great hospitality of CMAT (Portugal), IMPA and PUC
(Rio de Janeiro).

A.N. thanks Cnpq (Brazil) for support through the research project “Mecânica estatística fora
do equilíbrio para sistemas estocásticos” Universal n. 479514/2011-9.

P.G. thanks FCT (Portugal) for support through the research project “Non-Equilibrium
Statistical Physics” PTDC/MAT/109844/2009. P.G. thanks the Research Centre of Mathematics
of the University of Minho, for the financial support provided by “FEDER” through the “Programa
Operacional Factores de Competitividade COMPETE” and by FCT through the research project
PEst-C/MAT/UI0013/2011.

T.F. was supported through a grant “BOLSISTA DA CAPES - Brasília/Bra-sil” provided by
CAPES (Brazil).

References

1. Faggionato, A., Jara, M., Landim, C.: Hydrodynamic behavior of one dimensional subdiffusive
exclusion processes with random conductances. Probab. Theory Relat. Fields 144(3–4), 633–
667 (2008)

2. Fontes, L.R.G., Isopi, M., Newman, C.M.: Random walks with strongly inhomogeneous rates
and singular diffusions: convergence, localization and aging in one dimension. Ann. Probab.
30(2), 579–604 (2002)

3. Franco, T., Gonçalves, P., Neumann, A.: Hydrodynamical behavior of symmetric exclusion
with slow bonds, Ann. Inst. Henri Poincaré Probab. Stat. 49(2), 402–427 (2013)

4. Franco, T., Gonçalves, P., Neumann, A.: Phase transition of a heat equation with Robin’s
boundary conditions and exclusion process. arXiv:1210.3662 and accepted for publication in
the Transactions of the American Mathematical Society (2013)

5. Franco, T., Gonçalves, P., Neumann, A.: Phase transition in equilibrium fluctuations of
symmetric slowed exclusion. Stoch. Process. Appl 123(12), 4156–4185 (2013)

6. Franco, T., Landim, C.: Hydrodynamic limit of gradient exclusion processes with conduc-
tances. Arch. Ration. Mech. Anal. 195(2), 409–439 (2010)

7. Jara, M.: Hydrodynamic limit of particle systems in inhomogeneous media. Online. ArXiv
http://arxiv.org/abs/0908.4120 (2009)

8. Kawazu, K., Kesten, H.: On birth and death processes in symmetric random environment.
J. Stat. Phys. 37, 561–576 (1984)

9. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der
Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 320.
Springer, Berlin (1999)

10. Nagy, K.: Symmetric random walk in random environment. Period. Math. Ung. 45, 101–120
(2002)

11. Valentim, F.: Hydrodynamic limit of a d-dimensional exclusion process with conductances.
Ann. Inst. Henri Poincaré Probab. Stat. 48(1), 188–211 (2012)

http://arxiv.org/abs/0908.4120


Exclusion and Zero-Range
in the Rarefaction Fan

Patrícia Gonçalves

1 Introduction

In these notes we review some asymptotic results on two classical interacting
particle systems: the totally asymmetric simple exclusion process and the totally
asymmetric constant-rate zero-range process, in the presence of particles with
different priorities. These processes are taken on Z and at each site x 2 Z we
place a random clock Tx , which is distributed according to an exponential law with
parameter 1. The collection of clocks fTxgx2Z forms a sequence of independent and
identically distributed random variables. Initially we randomly distribute particles
along the lattice and each time a clock rings, if there is at least one particle at the
corresponding site, then one of them jumps to one of its nearest-neighbors. If there
is no particle at that site, then nothing happens and the clocks restart.

We consider two types of jumps in these notes. The first type of jump is realized
under an exclusion rule, therefore the particle system coined the name simple
exclusion process. In this process a jump from a site x to x C 1 occurs at rate 1,
but the jump is performed if and only if the destination site is empty. In the figure
below we represent particles by and holes by , therefore the jump on the left
hand side can occur but not the jump on the right hand side.

.

In the sequel we denote this Markov process by f�t W t � 0g and it has state
space ˝EP WD f0; 1gZ. For this model there is at most one particle per site, so its
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configurations, denoted by �, consist in vectors whose components are either 0 or 1.
Physically the interpretation �.x/ D 1 means that the site x is occupied.

The second type of jump that we consider is described as follows. There is no
restriction on the number of particles at each site and if the clock at the site x rings
and if there is at least one particle at that site, then one of them jumps to x C 1 at
rate 1. In this case, the jump occurs independently from the number of particles at
the departure and destination sites.

A possible jump is

In the sequel we denote this Markov process by f�t W t � 0g and it has state
space ˝ZR WD N

Z

0 . The configurations of this model are denoted by � and consist in
vectors whose components contain one number of N0. Physically, the interpretation
�.x/ D k, for k 2 N0 means that the site x is occupied with k particles.

We will add to these particle systems a “special” particle, which is seen by the
remaining particles as a hole and it is seen by the holes as a particle, therefore
this particle is called a second class particle. We will first present the Law of Large
Numbers (LLN) for this particle starting both processes from initial conditions in the
rarefaction fan. Then, we will consider both processes in the presence of a second
class particle and a third class particle at its right site. The first and second class
particles see the third class particle as a hole, but the third class particle does not
distinguish the second class particle from the first class particles. We will prove,
by a symmetry argument, that for the exclusion, the probability of the second
class particle swapping order with the third class particle is equal to 2=3. As a
consequence, by coupling the exclusion with the zero-range, the probability of the
second class particle being at the right hand side or at the same site of the third class
particle, in the zero-range, equals 2=3.

The outline of these notes is described as follows. In Sect. 2, we define the
processes, their invariant measures and a set of measures which are not invariant
but lead in the hydrodynamics to the rarefaction fan of the associated hydrodynamic
equation. In Sect. 3, we describe the hydrodynamics for these processes and in
Sect. 4, we state a LLN for a second class particle in a rarefaction setting. In Sect. 5
we present a coupling between both processes and in Sect. 6 we discuss crossing
probabilities for second and third class particles.

2 The Models

Let f�t I t � 0g be the one-dimensional totally asymmetric simple exclusion
process (TASEP), a continuous time Markov process with state space ˝EP whose
infinitesimal generator is defined on local functions f W ˝EP ! R as
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LEPf .�/ D
X
x2Z

�.x/.1 � �.x C 1//Œf .�
x;xC1
EP �/ � f .�/�:

Above

.�
x;xC1
EP �/.x/ D �.x C 1/; .�

x;xC1
EP �/.x C 1/ D �.x/

and on other sites �x;xC1EP � coincides with �. As an example see the figure below in
which the particle underlined is at the site x.

η σ x;x+1
EP η

Now, let f�t I t � 0g be the one-dimensional constant-rate totally asymmetric
zero-range process (TAZRP), a continuous time Markov process with state space
˝ZR whose infinitesimal generator is defined on local functions f W ˝ZR ! R as

LZRf .�/ D
X
x2Z

1f�.x/ � 1gŒf .�x;xC1ZR �/ � f .�/�;

where

.�
x;xC1
ZR �/.x/ D �.x/ � 1; .�

x;xC1
ZR �/.x C 1/ D �.x C 1/C 1

and on other sites �x;xC1ZR � coincides with � . As an example see the figure below in
which the particle underlined is at the site x.

ξ

↓

σ x;x+1
ZR ξ

Fore more details on the construction of these models we refer to [2, 10].
Now, we describe briefly the invariant measures for these processes. We start

with the TASEP. It is well known that the Bernoulli product measure of parameter
˛ 2 Œ0; 1�, that we denote by �˛ , is invariant for the TASEP. This measure is
defined on˝EP, is translation invariant and parameterized by the density ˛, namely:
E�˛ Œ�.x/� D ˛ for any x 2 Z. For x 2 Z, k 2 f0; 1g and ˛ 2 Œ0; 1�, its marginal is
given by

�˛.� W �.x/ D k/ D ˛k.1 � ˛/1�k:



210 P. Gonçalves

For the TAZRP, it is known that the Geometric product measure of parameter 1
1C�

with � 2 .0;C1/, that we denote by 	�, is invariant. That is, 	� is defined on ˝ZR

and for x 2 Z and k 2 N0, 	� has marginal given by

	�.� W �.x/ D k/ D
�

�

1C �

�k
1

1C �
:

In the sequel we will make use of the following measures. For ˛; ˇ 2 Œ0; 1� let �˛;ˇ
be the product measure, such that for x 2 Z and k 2 f0; 1g

�˛;ˇ.� W �.x/ D k/ D
�
˛k.1 � ˛/1�k; if x < 0
ˇk.1 � ˇ/1�k; if x � 0

: (1)

Analogously, for �; � 2 .0;C1/ let 	�;� be the product measure such that for
k 2 N0 and x 2 Z

	�;�.� W �.x/ D k/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

 
�

1C �

!k
1

1C� ; if x < 0

 
�

1C �

!k
1

1C� ; if x � 0

: (2)

Moreover, below we also consider the zero-range process starting from the measure
	1;�, with � � 0. This means that, if a configuration � 2 ˝ZR is distributed
according to 	1;�, then �.x/ D 1 for x < 0 and �.x/ is distributed according
to 	� for x � 0. When � D 0, 	1;0 gives weight one to the configuration Q�, such
that Q�.x/ D 1 for x < 0 and Q�.x/ D 0 for x � 0.

3 Hydrodynamics

The hydrodynamic limit consist in a LLN for the empirical measure associated to
a particle system [9]. For that purpose, given a process �t , let �n.�t ; du/ be the
empirical measure given by

�n.�t ; du/ D 1

n

X
x2Z

�t .x/ı x
n
.du/:

Here ıu denotes the Dirac measure at u. Let �nt .�; du/ D �n.�t ; du/. A measure 	n
is said to be associated to a profile �0 W R ! R, if the 	n-weak LLN holds for
�n0 .�; du/, for details we refer the reader to [9]. Here we fix

�0.u/ D �11fu < 0g C �21fu � 0g;
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with �1 > �2. Since the work of [12], it is known that starting the TASEP or the
TAZRP from such 	n, if �n0 .�; du/ converges to �0.u/du in probability (with respect
to	n), as n! 1, then �ntn.�; du/ converges to �.t; u/du in probability (with respect
to the distribution of the process at time t starting from 	n), as n ! 1, where
�.t; u/ is the unique entropy solution of the corresponding hydrodynamic equation.
For both processes the hydrodynamic equation is given by

@t�.t; u/C @uj.�.t; u// D 0

and with initial condition �.0; u/ WD �0.u/ for all u 2 R. In fact, the aforementioned
result is more general [12], but as it is stated it is sufficient for our purposes. The
function j.�/ above corresponds to the mean (with respect to the invariant measure
of the process, that we represent generically by mr , indexed in r) of what is called
the instantaneous current at the bond f0; 1g. Since jumps are totally asymmetric,
this current is simply the jump rate to the right neighboring site. For the TASEP, the
instantaneous current is �.0/.1 � �.1// and since mr D �˛ , we get

j.˛/ WD E�˛ Œ�.0/.1 � �.1//� D ˛.1 � ˛/

and the hydrodynamic equation becomes

@t�.t; u/C @u .�.t; u/.1 � �.t; u/// D 0; (3)

which is known as the inviscid Burgers equation. For the TAZRP, the instantaneous
current is 1f�.0/ � 1g and since mr D 	�, we get

j.�/ WD E	� Œ1f�.0/ � 1g� D �

1C �

and the hydrodynamic equation becomes

@t�.t; u/C @u

�
�.t; u/

1C �.t; u/

�
D 0: (4)

Now, we notice that the solution of (3) under the initial condition �.0; u/ D
˛1fu < 0g C ˇ1fu � 0g, with ˛ > ˇ, is given by

�.t; u/ D
8<
:

˛; if u < .1 � 2˛/t
ˇ; if u > .1 � 2ˇ/t

t�u
2t
; if .1 � 2˛/t � u � .1 � 2ˇ/t

(5)

and the solution of (4) under the initial condition �.0; u/ D �1fu < 0gC�1fu � 0g,
with � > �, is given by
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�.t; u/ D

8̂
<̂
ˆ̂:

�; if u < t
.1C�/2

�; if u > t
.1C�/2p

t�p
up

u
; if t

.1C�/2 � u � t
.1C�/2 :

(6)

We will see that these solutions, under a proper renormalization, are the probability
density functions of a “special” particle whose dynamics we define below.

4 Law of Large Numbers for a Second Class Particle

In this section we describe the LLN for a second class particle added to the TASEP
and to the TAZRP. Since the dynamics of this particle is completely different in these
processes, we start by describing its motion in the TASEP. In the TASEP, the first
class particles see the second class particle as a hole, therefore if a first class particle
jumps to a site occupied by a second class particle then they exchange positions.
A second class particle can jump only to empty sites. For example, suppose to start
the TASEP from a configuration � as

η

In this case ~ represents the second class particle and a particle underlined means
it stands at the origin. Suppose now, that the clock T�1 rings. In spite of the exclusion
rule and the fact that the origin being occupied with a second class particle, the jump
is performed and the particles exchange positions.

η η−1;0

Now, if on ��1;0 the second class particle attempts to jump to its right neighboring
site which is occupied by a first class particle, then nothing happens. On the other
hand, if on � the second class particle jumps to its right, then the jump is performed
and it exchanges positions with the hole to its right.

η η0;1

Concluding, in the TASEP, a second class particle can jump backwards and this
happens if and only if a first class particle at its left jumps to the right.

In the TAZRP the dynamics of a second class particle is substantially different
from the dynamics described above. In the TAZRP, if first and second class particles
share the same site, then if the clock rings for that site the second class particle only
leaves the site if there is no other first class particle there. For example, consider the
TAZRP starting from a configuration � as the one given below.
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ξ

Suppose now, that the clock at the origin rings. Then, the first class particle at the
origin jumps to the right and the second class particle remains at the origin.

ξ 0;1

Now, if the clock at the origin rings again, then the second class particle can jump
to the right.

Concluding, in the TAZRP, a second class particle can never jump backwards
and it only jumps from a site x to x C 1, if there is no other first class particle at x.
Moreover, the jump occurs independently of the number/type of particles at x C 1.

A second class particle in the TASEP or TAZRP can be obtained considering
the ‘basic coupling’ for those processes. The idea is the following. Consider two
TAZRP �0t and �1t starting from initial configurations �00 and �10 , respectively, such
that �00 .x/ � �10 .x/ for all x 2 Z. We couple the two processes so that whenever a
particle in the �0 configuration moves, a corresponding �1 particle makes the same
jump. That is, a particle at x in the �0 and �1 processes jumps to x C 1 with rate
1f�0.x/ � 1g and also one of the particles at x in the �1 process displaces by 1 with
rate 1f�1.x/ � 1g � 1f�0.x/ � 1g. Then, we can write �1t D �0t C Z.t/, where,
Z.t/.x/ counts the second-class particles. For the TASEP it is analogous. We notice
that under this coupling both processes are attractive. For details we refer the reader
to [2]. Now we describe the asymptotic limit for a second class particle in TASEP.

Theorem 1 ([3, 4, 7, 11]). Consider the TASEP starting from �˛;ˇ with 0 � ˇ <

˛ � 1. At time t D 0 put a second class particle at the origin regardless the value
of the configuration at this point and let XEP

2 .t/ denote its position at time t . Then

lim
t!1

XEP
2 .t/

t
D U ; almost surely;

where U is uniformly distributed on Œ1 � 2˛; 1 � 2ˇ�. That is

FU .u/ WD P.U � u/ D ˇ � �.1; u/
ˇ � ˛ ;

where �.t; u/ is given in (5).
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The proof of last result for convergence in distribution was given in [4] and it was
generalized to partial asymmetric jumps in [3]. The almost sure convergence was
derived in [7, 11]. The result for the TAZRP is given in the next theorem.

Theorem 2 ([8]). Consider the TAZRP starting from 	�;�, with 0 � � < � � 1.
At time t D 0 add a second class particle at the origin and let XZR

2 .t/ denote its
position at time t . Then

lim
t!1

XZR
2 .t/

t
D V D

�
1C U
2

�2
; almost surely;

where U is uniformly distributed on

"
1 � �
1C �

;
1 � �
1C �

#
. That is,

FV.u/ WD P.V � u/ D 1C �

� � � ..1C �/.1 � j.�.1; u/// � 1/ ;

where �.t; u/ is given in (6) and j.�/ is given above (4).

5 Coupling TASEP and TAZRP with a Second Class Particle

In this section we present a coupling between the TASEP and the TAZRP in
the presence of one second class particle. It uses the particle to particle coupling
introduced in [8] and it relates the TAZRP and TASEP in such a way that the
position of the second class particle in the TAZRP corresponds to the flux of holes
that crossover the second class particle in the TASEP. Now we explain the relation
between the configurations of the two processes. To make easier the exposition we
give an example of a initial configuration for the TASEP as below and we denote it
by �0.

Let XEP
2 .t/ denote the position at time t of the second class particle in TASEP

starting from �0. For �0 we have XEP
2 .0/ D 0. Initially we label the holes by

denoting the position of the i -th hole at time t D 0 by xi .0/. To simplify notation,
we label the leftmost (resp. rightmost) hole at the right (resp. left) hand side of the
second class particle at time t D 0 by 1 (resp. �1). Both processes are related in
such a way that basically on the TASEP the distance between two consecutive holes
minus one is the number of particles at a site in the TAZRP, but near the second
class particle one has to be more careful. At time t D 0, we define:

• For i D XEP
2 .0/�1: �0.i/ corresponds to the number of particles betweenXEP

2 .0/

and the first hole to its left, therefore, �0.i/ D jXEP
2 .0/ � x�1.0/j � 1;
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• For i D XEP
2 .0/: �0.i/ has a second class particle plus a number of first class

particles that coincides with the number of first class particles between XEP
2 .0/

and the first hole to its right, therefore, �0.i/ has jx1.0/ �XEP
2 .0/j � 1 first class

particles and a second class particle;
• For i 2 Z n fXEP

2 .0/ � 1;XEP
2 .0/g: �0.i/ corresponds to the number of particles

between consecutive holes, therefore, for 
 > 0 and for i D XEP
2 .0/C
, �0.i/ D

x
C1.0/ � x
.0/ � 1, similarly for 
 < 0;

We notice that under this mapping XEP
2 .0/ D XZR

2 .0/. Now, for �0 we have
x�3.0/ D �11, x�2.0/ D �7, x�1.0/ D �3, XEP

2 .0/ D 0, x1.0/ D 2, x2.0/ D 4,
x3.0/ D 5, x4.0/ D 6, x5.0/ D 8, x6.0/ D 9, which corresponds in TAZRP to the
configuration given below that we denote by �0.

With the established relations we notice that for a positive site (resp. negative
site) if in the TAZRP there are k particles at a given site, then for the TASEP there
are k particles plus a hole to their right (resp. left). For positive (resp. negative) sites
there are k particles at that site with probability ˛k.1�˛/ (resp. ˇk.1�ˇ/). For the
TAZRP at the site XZR

2 .t/ there are k particles, if in the TASEP there are k particles
plus a hole to the right of the second class particle. By the definition of the invariant
measures for the TAZRP we have that

˛ D �=.1C �/ and ˇ D �=.1C �/:

This is the reason why in the statement of Theorem 2 the Uniform random variable

is supported on
h
1��
1C� ;

1��
1C�

i
.

On the figure below, we put together �0 and its corresponding configuration in
TAZRP, namely �0, according to the rules stated above.

ξ0 η0

Now, in the presence of the particle to particle coupling, particles are labeled and
only the configuration in the TAZRP looks at the clocks. If the clock rings for the
i -th particle in the TAZRP configuration then the i -th particles in both processes
jump. For more details on this coupling we refer to [8].

Using this particle to particle coupling we present some possible jumps for the
configurations �0 and �0. For example, if the clock rings for the first class particle at
the origin in �0, we get



216 P. Gonçalves

ξ0 η0

Now, if the clock rings for the second class particle in �0, then we get

ξ0 η0

Now, in �0 the second class particle cannot jump since there are two first class
particles at its site, neither the second class particle in �0. Therefore, from the
mapping described above and for any initial configuration with one second class
particle, we have that

J EP
2 .t/ D J ZR

2 .t/ and H EP
2 .t/ D XZR

2 .t/;

where J EP
2 .t/ (resp. J ZR

2 .t/) is the process that counts the number of first class
particles that jump over the second class particle in the time interval Œ0; t � in the
TASEP (resp. TAZRP) and H EP

2 .t/ is the process that counts the number of holes
that the second class particle jumps over in the time interval Œ0; t � in the TASEP.

Since these processes have been very well studied in the TASEP, see for example
[6] and references therein, from there one can get information about a second class
particle in the TAZRP.

6 Second and Third Class Particles

In this section we add to the TASEP and to the TAZRP one second class particle
and one third class particle. The dynamics of the third class particle is defined as
follows. The first class particles and the second class particle see the third class
particle as a hole, therefore in the TASEP if a first or a second class particle jumps
to a site occupied by a third class particle then the particles exchange positions. In
the TAZRP if first, second and third class particles share the same site, then the third
class particle only leaves this site if there is no first class particles nor the second
class particle there.

In this section we present a simple proof of Theorem 3 and a similar statement
for the TAZRP, namely Corollary 1, which is a consequence of Theorem 3 and the
coupling described in the previous section.

Theorem 3 ([1, 3]). Consider the TASEP, starting from the configuration �, such
that all the sites x 2 Z� are occupied by first class particles, the origin is occupied
by a second class particle, while the site x D 1 is occupied by a third class particle
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and the remaining sites are empty. See the figure below, where the second class
particle is represented by ~ and the third class particle is represented by �.

η

Let XEP
2 .t/ and XEP

3 .t/ denote the position of the second class particle and the
position of the third class particle, respectively, at time t . Then

lim
t!C1P

	
XEP
2 .t/ > XEP

3 .t/

 D 2

3
:

Proof. Denote by Q�, the configuration that has a second class particle at the origin,
while the negative sites are occupied by first class particles and the rest is empty.

η̃

Let � denote the space of configurations of f0; 1gZ that have exactly one second
class particle. For a configuration � 2 � , let XEP

2 .t; �/ denote the position of the
second class particle at time t in the configuration �.

The process .�t ; XEP
2 .t; �// has generator given on local functions f W f0; 1gZ �

Z ! R by

L2f .�; z/ D
X

x;xC1¤z

�.x/.1 � �.x C 1//ff .�x;xC1; z/ � f .�; z/g

C �.z � 1/ff .�z�1;z; z � 1/ � f .�; z/g
C .1 � �.z C 1//ff .�z;zC1; z C 1/ � f .�; z/g:

(7)

This generator translates the dynamics of the second class particle in the TASEP
that we defined above: the second class particle has the same jump rate as the
first class particles, but whenever a first class particle jumps to a site occupied by
a second class particle they exchange positions and when a second class particle
attempts to jump to a site occupied by a first class particle, the jump is forbidden.

For a configuration � 2 � , denote by J 2t .�/ the process that counts the number
of first class particles that jump from XEP

2 .s; �/� 1 to XEP
2 .s; �/, for s 2 Œ0; t �. This

current can be formally defined by:

J 2t .�/ D
X
x�0

�t .x CXEP
2 .t; �// � �0.x/;

so that

J 2t . Q�/ D
X

x�XEP
2 .t;Q�/

Q�t .x/:
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Then, applying the Kolmogorov backwards equation, we have that

d

dt
E
	
J 2t . Q�/


 D E
	L2.J 2t . Q�//
 D E

	
J 2t . Q��1;0/


CE
	
J 2t . Q�0;1/


 � 2E 	J 2t . Q�/
 ;
(8)

where Q��1;0 corresponds to a jump of the rightmost first class particle in � from the
site �1 to 0 and Q�0;1 corresponds to a jump of the second class particle from the site
0 to the site 1 which is occupied by the leftmost hole.

η̃−1;0

η̃0;1

Analogously, for a configuration � in � , we denote by H2
t .�/ the process that

counts the number of holes that jump fromXEP
2 .s; �/C1 toXEP

2 .s; �/, for s 2 Œ0; t �,
formally defined by

H2
t .�/ D

X
x�0

n
.1 � �t .x �XEP

2 .t; �/// � .1 � �0.x//
o
:

Notice that,

H2
t . Q�/ D

X
x�XEP

2 .t;Q�/
.1 � Q�t .x// :

Now, the processes J 2t .�/ and H2
t .�/ behave symmetrically when starting them

from the configurations Q��1;0 and Q�0;1, respectively, see Lemma 1. Therefore, by
Lemma 1, we can write (8) as

d

dt
E.J 2t . Q�// D E.H2

t . Q�0;1//CE.J 2t . Q�0;1// � 2E.J 2t . Q�//: (9)

On the other hand we also have that H2
t . Q�/ D J 2t . Q�/ in distribution, see Lemma 2.

Now, we are in a good position to compute (9) by coupling the TASEP starting
from Q�0;1 and Q�. There are two discrepancies between the configurations Q�0;1 and Q�
which stand at the sites 0 and 1 as can be seen in the figure below.

η̃

η̃0;1

Let Y0.t/ and Y1.t/ denote the position at time t of the discrepancies initially at
site 0 and 1, respectively. These discrepancies behave as a second class particle and
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as a third class particle in the coupled process until the time they meet. The coupled
process starts from �. Then, until this meeting time, we have that

XEP
2 .t/ D Y0.t/;

XEP
3 .t/ D Y1.t/:

Now, let At D
n
Y0.t/ < Y1.t/

o
. If At happens, then

H2
t . Q�0;1/ D H2

t . Q�/C 1C
Y1.t/X

xDY0.t/C1
.1 � Q�t .x//

and

J 2t . Q�/ D J 2t . Q�0;1/C
Y1.t/X

xDY0.t/C1
Q�t .x/;

see the figure below.

Otherwise H2
t . Q�0;1/ D H2

t . Q�/ and J 2t . Q�/ D J 2t . Q�0;1/; since the configurations at
time t are equal.

We can partition the space to rewrite (9) as

d

dt
E.J 2t . Q�// DE

	
1At .H

2
t . Q�0;1/C J 2t . Q�0;1/ � 2J 2t . Q�//




CE 	1Act .H2
t . Q�0;1/C J 2t . Q�0;1/ � 2J 2t . Q�//



:

Using the relations established above, we have that:

d

dt
E.J 2t . Q�// D P.At /CE

�
1At

n Y1.t/X
xDY0.t/C1

�
1 � Q�t .x/

�
�

Y1.t/X
xDY0.t/C1

Q�t .x/
o�
:

Now, by symmetry it holds that

Y1.t/X
xDY0.t/C1

�
1 � Q�t .x/

�
Dlaw

Y1.t/X
xDY0.t/C1

Q�t .x/:
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Then, we obtain

d

dt
E.J 2t . Q�// D P.At / D P

�
XEP
2 .t/ < XEP

3 .t/
�
: (10)

It remains to compute the left hand side of last expression. For the configuration Q�
we can label the first class particles from the left to the right, in such a way that
Pi.0; Q�/ denotes the position of the i -th first class particle at time 0. Clearly one has
Pi.0; Q�/ D �i . Let Pi.t; Q�/ denote the position of this particle at time t .

Since first class particles preserve their order, it is easy to see that the current
through the second class particle, namely J 2t . Q�/, can be written as

J 2t . Q�/ D
P1.t;Q�/X

xDXEP
2 .t;Q�/

Q�t .x/; (11)

see the figure below where the rightmost particle is at P1.t; Q�/ D 6,XEP
2 .t; Q�/ D �1

and J 2t . Q�/ D 3.

By the LLN for XEP
2 .t; Q�/ and for P1.t; Q�/ together with the hydrodynamic limit

for the empirical measure for the TASEP (see [12]) and since J 2t . Q�/ can be written
as in (11), in [5, 6] it was shown that

J 2t . Q�/
t

�����!
t!C1

�1 � U
2

�2
; almost surely;

where U is the random variable with Uniform distribution on Œ�1; 1� given in
Theorem 1 with ˛ D 1 and ˇ D 0. In particular the convergence in distribution
also holds.

Using the martingale decomposition of the current it is easy to show, that for any
� > 0,

�
J 2t . Q�/
t

�2��

is uniformly integrable since itsL2-norm is finite. As a consequence, by a well know
result on weak convergence of random variables, it holds that

lim
t!C1E

�
J 2t . Q�/
t

�
D E

�
1 � U
2

�2
D 1

3
: (12)
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Moreover,

1

t

Z t

0

d

ds
E.J 2s . Q�//ds D E

�
J 2t . Q�/
t

�
; (13)

and by (10), the left hand side of last expression is equal to

1

t

Z t

0

P.As/ds:

Now, since As are decreasing sets, then P.As/ decreases and as a consequence the
limit, as s ! C1 exists. By the Césaro theorem

lim
t!C1

1

t

Z t

0

P.As/ds D lim
t!C1P.At /:

Putting together last result, (12) and (13), we obtain that limt!C1 P.At / D 1
3
;

which concludes the proof.

Lemma 1. The process J 2t . Q��1;0/ has the same distribution as the process
H2
t . Q�0;1/.

Proof. In other words, we have to show that if LJ and LH represent the generators
of the processes J 2t . Q��1;0/ and H2

t . Q�0;1/, respectively, then for every local function
f W f0; 1gZ � Z ! R,

LJf . Q��1;0; z/ D LHf . Q�0;1; z/:

The easiest way of showing this is to consider the process seen from the position of
the second class particle.

For a configuration � 2 � , let �0t D 
XEP
2 .t;�/�t be such that for a site x 2 Z,

�0t .x/ D �t .x C XEP
2 .t; �// be the process whose generator is given on local

functions f W f0; 1gZ ! R by

L0f .�0/ D
X

x;xC1¤0
�0.x/.1 � �0.x C 1//ff .�x;xC1EP �0/ � f .�0/g

C �0.�1/ff .
�1��1;0
EP �0/ � f .�0/g

C .1 � �0.1//ff .
1�0;1EP �
0/ � f .�0/g:

Above 
x� is the shift in � that places the second class particle at the origin. In this
process the position of XEP

2 .t; �/ corresponds to the number of shifts of the system,
of size �1, during the time interval Œ0; t � and as a consequence, in this process the
site 0 is always occupied by a second class particle.
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Denote by N1.t; �0/ the number of particles that jump from the site �1–0 during
the time interval Œ0; t �:

N1.t; �
0/ D

X
x�0

	
�0t .x/ � �00.x/



:

Note that N1.t; �0/ corresponds to the number of particles at the right hand side of
XEP
2 .t; �/ at time t , and as a consequence one has that J 2t .�/ D N1.t; �

0/.
Consider now the process .�0t ; N1.t; �0// with generator given on local functions

f W f0; 1gZ � Z ! R by

L1f .�
0; N / D

X
x;xC1¤0

�0.x/.1 � �0.x C 1//ff .�x;xC1EP �0; N / � f .�0; N /g

C �0.�1/ff .
�1��1;0
EP �0; N C 1/ � f .�0; N /g

C .1 � �0.1//ff .
1�0;1EP �
0; N / � f .�0; N /g:

(14)

Analogously, we can consider N�1.t; �0/ as the number of jumps, of size 1, of the
second class particle, that is, the number of shifts of the system of size 1. Whenever
the second class particle jumps one unit ahead, the hole placed before the jump at
site 1 jumps to the site �1, then we can write:

N�1.t; �0/ D
X
x�0

	
.1 � �0t .x// � .1 � �00.x//



:

In this case we also have that H2
t .�/ D N�1.t; �0/.

The process .�0t ; N�1.t; �0// has generator given on local functions f W f0; 1gZ �
Z ! R by

L�1f .�0; N / D
X

x;xC1¤0
�0.x/.1 � �0.x C 1//ff .�x;xC1EP �0; N / � f .�0; N /g

C �0.�1/ff .
�1��1;0
EP �0�1;0; N / � f .�0; N /g

C .1 � �0.1//ff .
1�0;1EP �
0; N C 1/ � f .�0; N /g:

To fix notation, let � D Q��1;0 and & D Q�0;1, as shown below.

ζ

ς

As before denote by & 0 and �0 the configurations & and � seen from the second
class particle, respectively. We couple the processes starting from � and & under
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the basic coupling, so that clocks are attached to sites. By the symmetry of the
configurations, it is easy to see that 8x ¤ 0, �.x/ D 1 � &.�x/ and both have a
second class particle at the origin. Now simple computations show that

LJf . Q��1;0; N / D L1f .&
0; z/ D L�1f .�0; N / D LH. Q�0;1; N /;

which concludes the proof.
We give a sketch of last equality. Let f W f0; 1gZ � Z ! R be a local function

and �0 and & 0 as defined above. Then:

L1f .&
0; N / D

X
x;xC1¤0

.1 � �0.�x//.1 � .1 � �0.�.x C 1///

� ff .��x�.xC1/
EP �0; N / � f .�0; N /g

C .1 � �0.1//ff .
1�0;1EP �
0; N C 1/ � f .�0; N /g

C �0.�1/ff .
�1��1;0
EP �0; N / � f .�0; N /g:

In the first equality we used the fact that 8x ¤ 0, �0.x/ D 1 � & 0.�x/ and notice
that last expression is precisely L�1f .�0; N /.

Lemma 2. The process J 2t . Q�/ has the same distribution as the process H2
t . Q�/.

Proof. The proof follows the same computations as the ones performed in the
proof of last lemma since what we have to show is that for every local function
f W f0; 1gZ � Z ! R,

LJf . Q�; z/ D LHf . Q�; z/:

This is a consequence of the particle-hole symmetry of the processes for the
configuration Q�.

As a consequence of Theorem 3 and a simple modification of the coupling
described in the previous section (see [8] for details) the following result holds.

Corollary 1. Consider the TAZRP starting from the configuration � , such that all
the sites x 2 Z� are occupied by infinitely many first class particles, the origin is
occupied by a second class particle, the site x D 1 is occupied by a third class
particle and the remaining sites are empty. See the figure below, where the second
class particle is represented by ~ and the third class particle is represented by �.
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Let XZR
2 .t/ and XZR

3 .t/ denote the position of the second class particle and the
position of the third class particle, respectively, at time t . Then

lim
t!C1P.X

ZR
2 .t/ � XZR

3 .t// D
2

3
:

To finish I would like to mention that it would be an interesting problem to derive
the previous result without going to the coupling argument. It would also be a very
interesting problem to extend the results presented here for more general zero-range
processes with a rate function given by a function g.�/ and with partially asymmetric
jumps. In each case the coupling with TASEP presented in Sect. 5 fails dramatically.
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Microscopic Derivation of an Isothermal
Thermodynamic Transformation

Stefano Olla

1 Introduction

Isothermal transformations are fundamental in thermodynamics, in particular they
are one of the components of the Carnot cycle. As often in thermodynamics, they
represent idealized transformations where the system is maintained at a constant
temperature by being in constant contact with a large heat reservoir (heat bath). An
isothermal thermodynamic transformations connects two equilibrium states A0 and
A1 at the same temperature T , by changing the exterior forces applied. According
to the first law of thermodynamics, the change in the internal energy is given by
U1 � U0 D W C Q, where W is the work made by the exterior forces and Q is
the heat (energy) exchanged with the thermal reservoir. The second law prescribes
that the change of the free energy F D U � TS (where S is the thermodynamic
entropy), satisfy the Clausius inequality F1 � F0 � W , with equality satisfied for
reversible quasistatic transformations. In the quasistatc transformation we can then
identify Q D T .S1 � S0/.

The purpose of this article is to prove mathematically that the thermodynamic
behavior of isothermal transformations, as described above, can be obtained by
proper space and time scaling of a microscopic dynamics. We consider a one
dimensional system, where the equilibrium thermodynamic intensive parameters
are given by the temperature T D ˇ�1 and the tension (or pressure) 
 , or by the
extensive observables: length (volume) L and energyU . This simplifies the problem
as only two parameters are needed to specify the equilibrium thermodynamic state
and no phase transitions will appear.

The microscopic model is given by a chain of N anharmonic oscillators, where
the first particle is attached to a fix point and on the last particle acts a force

S. Olla (�)
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(tension) Q
 , eventually changing in time. The action of the thermal bath is modeled
by independent Langevin processes at temperature T , acting on each particle. A
mathematically equivalent model for the heat bath is given by random collisions
with the environment: at exponentially distributed independent random times, each
particle has a new velocity distributed by a centered gaussian with variance T .

As a consequence of the action of the thermal bath, the time evolution of the
microscopic configuration of the positions and velocities of the particles is stochas-
tic. The distance between the first and the last particle defines the microscopic length
of the system, while the energy is given by the sum of the kinetic energies of each
particle and the potential energy of each spring.

For each value of the applied tension 
 , the system has an equilibrium probability
distribution explicitly given by a Gibbs measure, a product measure in this case.
The temperature parameter is fixed by the heat bath. Starting the system with an
equilibrium given by tension 
0, and changing the applied tension to 
1, the system
will go out of equilibrium before reaching the new equilibrium state. During this
transformation a certain amount of energy is exchanged with the thermostats and
mechanical work is done by the force applied. We prove that, under a proper
macroscopic rescaling of space and time, all these (random) quantities, converge
to deterministic values predicted by thermodynamics.

When the system is out of equilibrium, either for a change in the tension applied,
or by initial conditions, there is an evolution of the local length (or stretch) on a
diffusive macroscopic space-time scale. This is governed by a diffusion equation
that describe the inhomogeneity of the system during the isothermal transformation.
After an infinite time (in this scale) it reach the new equilibrium state given by
a constant value of the local length, corresponding to the value of the tension

1. We have obtained, in this diffusive time scale, an irreversible thermodynamic
transformation, that satisfies a strict Clausius inequality between work and change
of the free energy. Under a further rescaling of time, that correspond in a slower
change of the applied tension, we obtain a reversible quasi-static transformation that
satisfies Clausius inequality. In fact, for the irreversible transformation we obtain the
following relation between heat and changes of thermodynamic entropy S

Q D T�S �D

where D is a strictly positive dissipation term that has an explicit expression in
terms of the solution of the diffusive equation that govern macroscopically the
transformation (cf. (48)). In the quasi-static limit we prove that D ! 0. A similar
interpretation of quasi-static transformations, for thermodynamic systems with one
parameter (density), has been proposed in recent works by Bertini et al. [1, 2].

In the case of the harmonic chain, the thermodynamic entropy is a function of the
temperature, so it remains constant in isothermal transformation. Then heat is equal
to the dissipation term D. It means that in the quasistatic limit for the harmonic
chain, there is no heat produced, internal energy is changed by work in a perfectly
efficient way.
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Thermodynamics does not specify the time scale for the transformations, this
may depend on the nature of the transformation (isothermal, adiabatic, . . . ) and the
details of the microscopic system and of the exterior agent (heat bath etc.). In this
system of oscillators, in adiabatic setting, with also momentum conservation, the
relevant space–time scale is hyperbolic (cf. [3]).

The proof of the hydrodynamic limit follows the lines of [5,7], using the relative
entropy method (cf. [4, 8]). The method has to be properly adapted to deal with the
boundary conditions.

2 Isothermal Microscopic Dynamics

We consider a chain ofN coupled oscillators in one dimension. Each particle has the
same mass that we set equal to 1. The position of atom i is denoted by qi 2 R, while
its momentum is denoted by pi 2 R. Thus the configuration space is .R�R/N . We
assume that an extra particle 0 to be attached to a fixed point and does not move,
i.e. .q0; p0/ � .0; 0/, while on particle N we apply a force Q
.t/ depending on time.
Observe that only the particle 0 is constrained to not move, and that qi can assume
also negative values.

Denote by q WD .q1; : : : ; qN / and p WD .p1; : : : ; pN /. The interaction between
two particles i and i � 1 will be described by the potential energy V.qi � qi�1/ of
an anharmonic spring relying the particles. We assume V to be a positive smooth
function which for large r grows faster than linear but at most quadratic, that means
that there exists a constant C > 0 such that

lim
jr j!1

V.r/

jr j D 1: (1)

lim sup
jr j!1

V 00.r/ � C <1: (2)

Energy is defined by the following Hamiltonian:

HN .q;p/ W D
NX
iD1

�
p2i
2

C V.qi � qi�1/
�
:

Since we focus on a nearest neighbor interaction, we may define the distance
between particles by

ri D qi � qi�1; i D 1; : : : ; N:

The chain is immersed in a thermal bath at temperature ˇ�1 that we model by
the action of N independent Langevin processes. The dynamics is defined by the
solution of the system of stochastic differential equations
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dri D N2.pi � pi�1/ dt

dpi D N2.V 0.riC1/ � V 0.ri // dt �N2�pi dt �N
q
2�ˇ�1dwi ; i D 1; : : : ; N � 1;

dpN D N2. Q
.t/ � V 0.rN // dt �N2�pN dt �N
q
2�ˇ�1dwN

(3)

Here fwi .t /gi are N-independent standard Wiener processes, � > 0 is a parameter
of intensity of the interaction with the heat bath, p0 is set identically to 0. We have
also already rescaled time according to the diffusive space-time scaling. Notice that
Q
.t/ changes at this macroscopic time scale.

The generator of this diffusion is given by

L
Q
.t/
N WD N2A


.t/
N CN2�SN : (4)

Here the Liouville operator A
N is given by

A
N D
NX
iD1
.pi � pi�1/ @

@ri
C

N�1X
iD1

	
V 0.riC1/ � V 0.ri /


 @

@pi

C 	

 � V 0.rN /


 @

@pN
; (5)

while

S D
NX
iD1

�
ˇ�1@2pi � pi@pi

�
(6)

For Q
.t/ D 
 constant, the system has a unique stationary measure given by the
product

d	N
;ˇ D
NY
iD1

e�ˇ.Ei�
 ri /�G
;ˇ dri dpi D gN
 d	
N
0;ˇ (7)

where we denoted Ei D p2i =2C V.ri /, the energy we attribute to the particle i , and

G
;ˇ D log

�p
2�ˇ�1

Z
e�ˇ.V.r/�
 r/ dr

�
: (8)

Observe that the function r.
/ D ˇ�1@
G
;ˇ gives the average equilibrium length in
function of the tension 
 , and we denote the inverse by �.r/.

We will need also to consider local Gibbs measure (inhomogeneous product),
corresponding to profiles of tension f
.x/; x 2 Œ0; 1�g:
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d	N
;ˇ D
NY
iD1

e�ˇ.Ei�
.i=N /ri /�G
.i=N /;ˇ dri dpi D gN
.	/
NY
iD1

dri dpi (9)

Given an initial profile of tension 
.0; x/, we assume that initial probability
state is given by an absolutely continuous measure (with respect to the Lebesgue
measure), whose density is given by f N

0 , such that the relative entropy

HN.0/ D
Z
f N
0 log

 
f N
0

gN
.0;	/

!
NY
iD1

dri dpi (10)

satisfies

lim
N!1

HN.0/

N
D 0 (11)

This implies the following convergence in probability with respect to f N
0 :

1

N

NX
iD1

G.i=N /ri .0/ �!
Z 1

0

G.x/r.
.0; x// dx (12)

The macroscopic evolution for the stress will be given by

@t r.t; x/ D ��1@2x�.r.x; t//; x 2 Œ0; 1�
@xr.t; 0/ D 0; �.r.t; 1// D Q
.t/; t > 0

�.r.0; x// D 
.0; x/; x 2 Œ0; 1�
(13)

Observe that we do not require that 
.r.0; 1// D Q
.0/, so we can consider initial
profiles of equilibrium with tension different than the applied Q
 .

The main result is the following

Theorem 1.

lim
N!1

HN.t/

N
D 0 (14)

where

HN.t/ D
Z
f N
t log

 
f N
t

gN
.t;	/

!
NY
iD1

dri dpi (15)

with 
.t; x/ D �.r.t; x//, and f N
t the density of the configuration of the system at

time t .
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A sketch of the proof is postponed to Sect. 5.

Remark 1. The proof and the result are identical (up to some constant) if we use
a different modelling of the heat bath, where the particles undergo independent
random collisions such that after the collision they get a new value distributed by a
gaussian distribution with variance ˇ�1, i.e.

Sf .r;p/ D
NX
iD1

Z 	
f .r; p1; : : : ; p0

i ; : : : / � f .r;p/

 e�ˇ.p0i /2=2p

2�ˇ�1 dp
0
i (16)

3 Thermodynamic Consequences

Consider the case where we start our system with a constant tension 
.0; x/ D 
0
and we apply a tension Q
.t/ going smoothly from Q
.0/ D 
0 to Q
.t/ D 
1 for t � t1.
It follows from standard arguments that

lim
t!1 �.r.t; x// D 
1; 8x 2 Œ0; 1� (17)

so on an opportune time scale, this evolution represents an isothermal thermody-
namic transformation from the equilibrium state .
0; ˇ�1/ to .
1; ˇ�1/. Clearly this
is an irreversible transformation and will satisfy a strict Clausius inequality.

The length of the system at time t is given by

L.t/ D
Z 1

0

r.t; x/ dx (18)

and the work done by the force Q
 :

W.t/ D
Z t

0

Q
.s/dL.s/ D ��1
Z t

0

ds Q
.s/
Z 1

0

dx @2x�.r.s; x//

D ��1
Z t

0

Q
.s/@x�.r.s; 1//ds

(19)

The free energy of the equilibrium state .r; ˇ/ is given by the Legendre transform
of ˇ�1G
;ˇ:

F.r; ˇ/ D inf



˚

 r � ˇ�1G
;ˇ

�
(20)

Since ˇ is constant, we will drop the dependencies on it in the following. It follows
that �.r/ D @rF. Thanks to the local equilibrium, we can define the free energy at
time t as
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F.t/ D
Z 1

0

F.r.t; x/; ˇ/ dx: (21)

Its time derivative is (after integration by parts):

d

dt
F.t/ D ���1

Z 1

0

.@x�.r.t; x///
2 dx C ��1 Q
.t/@x�.r.t; x//

ˇ̌
ˇ
xD1

i.e.

F.t/ � F.0/ D W.t/ � ��1
Z t

0

ds
Z 1

0

.@x�.r.s; x///
2 dx

Because or initial condition, F.0/ D F.
0/, and because (17) we have F.t/ !
F.
1/, and we conclude that

F.
1/ � F.
0/ D W � ��1
Z C1

0

ds
Z 1

0

.@x�.r.s; x///
2 dx (22)

where W is the total work done by the force Q
 in the transformation up to reaching
the new equilibrium and is expressed by taking the limit in (19) for t ! 1:

W D
Z 1

0

Q
.s/dL.s/ D ��1
Z 1

0

Q
.s/@x�.r.s; 1//ds (23)

By the same argument we will use in the proof of Proposition 1 we have that the
second term of the righthand side of (22) is finite, that implies the existence of W .

Since the second term on right hand side is always strictly positive, we have
obtained a strict Clausius inequality. This is not surprizing since we are operating
an irreversible transformation.

If we want to obtain a reversible quasistatic isothermal transformation, we have
introduce another larger time scale, i.e. introduce a small parameter " > 0 and apply
a tension slowly varying in time Q
."t/. The diffusive equation becomes

@t r".t; x/ D ��1@2x�.r".t; x// (24)

with boundary conditions

@xr".t; 0/ D 0

�.r".t; 1// D Q
."t/ (25)



232 S. Olla

Then (22) became

F.r1/ � F.r0/ D W" � ��1
Z 1

0

ds
Z 1

0

.@x�.r".s; x///
2 dx (26)

Proposition 1.

lim
"!0

Z 1

0

ds
Z 1

0

.@x�.r".s; x///
2 dx D 0 (27)

Proof. To simplify notations, let set here � D 1. We look at the time scale t D "�1t ,
then Qr".t; x/ D r"."

�1t; x/ satisfy the equation

@t Qr".t; x/ D "�1@2x�. Qr".t; x// (28)

with boundary conditions

@xr".t; 0/ D 0

�.r".t; 1// D Q
.t/ (29)

1

2

Z 1

0

. Qr".t; x/ � rŒ Q
.t/�/2 d t

D
Z t

0

ds

Z 1

0

dx . Qr".s; x/ � r. Q
.s///
�
"�1@2x�Œ Qr".s; x/� �

d

ds
rŒ Q
.s/�

�

D� "�1
Z t

0

ds

Z 1

0

dx .@x Qr".s; x//2 d�
dr

Œ Qr".s; x/�

�
Z t

0

ds
d r

d

. Q
.s// Q
 0.s/

Z 1

0

dx . Qr".s; x/ � Qr".s; 1//

(30)

Rewriting

ˇ̌
ˇ̌Z 1

0

dx . Qr".s; x/ � Qr".s; 1//
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌Z 1

0

dx

Z 1

x

dy @y Qr".s; y/
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z 1

0

dy y@y Qr".s; y/
ˇ̌
ˇ̌ � ˛

2"

Z 1

0

dx .@x Qr".s; x//2 C "

4˛

By our assumption we have 0 < C� � dr
d


� CC < C1, and furthermore we have
chosen Q
 such that j Q
 0.t/j � 1t�t1 . Regrouping positive terms on the left hand side
we obtain the bound:
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1

2

Z 1

0
. Qr".t; x/ � rŒ Q
.t/�/2 dx C "�1

�
C� � CC˛t

2

�Z t

0
ds

Z 1

0
dx .@x Qr".s; x//2 � "CCt

4˛
(31)

By choosing ˛ D C�

CCt
, we obtain, for any t > t1:

1

C�

Z 1

0

. Qr".t; x/ � rŒ Q
.t1/�/2 dx C "�1
Z t

0

ds
Z 1

0

dx .@x Qr".s; x//2 � "

2
(32)

then we can take the limit as t ! 1, the first term on the right hand side of (32)
will disappear, and we obtain

"�1
Z C1

0

ds

Z 1

0

dx .@x Qr".s; x//2 � "

2
(33)

that implies (27).

Consequently we obtain the Clausius identity for the quasistatic reversible isother-
mal transformation.

Along the lines of the proof above it is also easy to prove that

lim
"!0

Z 1

0

.r".t; x/ � rŒ Q
."t/�/2 dx D 0 (34)

that gives a rigorous meaning to the quasistatic definition.
The internal energy of the thermodynamic equilibrium state .r; T / is defined

as U D F C TS, where S is the thermodynamic entropy. The first principle of
thermodynamics defines the heat Q transferred as �U D W CQ.

The change of internal energy in the isothermal transformation is given by

�U D �F C T�S D W � ��1
Z C1

0

ds
Z 1

0

dx .@x�.r.s; x///
2 C T�S (35)

Then for the irreversible transformation we have Q � T�S , while equality holds
in the quasistatic limit.

The linear case is special, it corresponds to the microscopic harmonic interaction.
In this case S is just a function of the temperature (S 
 logT ), so �S D 0 for any
isothermal transformation. Correspondingly the heat exchanged with the thermostat
is always negative and given by Q D ���1 R C1

0
ds
R 1
0

dx .@xr.s; x//
2, and null in

the quasistatic limit.
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4 Work and Microscopic Heat

The microscopic total length is defined by qN D P
i ri , the position of the last

particle. To connect it to the macroscopic space scale we have to divide it by N , so
we define

LN .t/ D qN .t/

N
D 1

N

NX
iD1

ri .t/: (36)

The time evolution in the scale considered is given by

LN .t/ � LN .0/ D
Z t

0

NpN .s/ ds: (37)

If we start with the equilibrium distribution with length r0, the law of large numbers
guarantees that

LN .0/ �!
N!1 r0; (38)

in probability.
By Theorem 1, we also have the convergence at time t:

LN .t/ �!
N!1L.t/ �!t!1 r1 D r.
1/; (39)

where L.t/ is defined by (18). Notice that in (37) while NpN .s/ fluctuates wildly
as N ! 1, its time integral is perfectly convergent and in fact converges to a
deterministic quantity.

The microscopic work done up to time t by the force Q
 is given by

WN .t/ D
Z t

0

Q
.s/dLN .s/ D
Z t

0

Q
.s/NpN .s/ds (40)

We adopt here the convention that positive work means energy increases in the
system. Notice that WN .t/ defines the actual microscopic work divided by N .

It is a standard exercise to show that, since Q
.t/ and L.t/ are smooth functions
of t , by (39) it follows that

WN .t/ �!
N!1W.t/ D

Z t

0

Q
.s/dL.s/ (41)

given by (19).
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Microscopically the energy of the system is defined by

EN D 1

N

X
i

Ei (42)

Energy evolves in time as

EN .t/ �EN .0/ D WN .t/C QN .t/

QN .t/ D ��
Z t

0

N

NX
iD1

	
p2i .s/ � T



ds C

p
2�ˇ�1

NX
iD1

Z t

0

pi .s/dwi .s/
(43)

where QN is the energy exchanged with the heat bath, what we call heat.
The law of large numbers for the initial distribution gives

EN .0/ �!
N!1 U.ˇ; 
0/

in probability. By the hydrodynamic limit, we expect that

EN .t/ �!
N!1

Z 1

0

U.ˇ;�.r.t; x/// dx �!
t!1 U.ˇ; 
1/: (44)

This is not a consequence of Theorem 1, because the relative entropy does not
control the convergence of the energy. In the harmonic case it can be proven by
using similar argument as in [6] (in fact in this case fN .t/ is a gaussian distribution
where we have control of any moments).

Assuming (44), we have that QN.t/ converges, as N ! 1, to the deterministic
value

Q.t/ D
Z 1

0

ŒU.ˇ;�.r.t; x/// � U.ˇ; 
0/� dx �W.t/ (45)

and as t ! 1:

Q D U.ˇ; 
1/ � U.ˇ; 
0/ �W; (first principle): (46)

Recalling that the free energy is equal to F D U � ˇ�1S , then we can compute
the variation of the entropy S as

ˇ�1.S1 � S0/ D �.F1 � F0/CW CQ (47)

or also that

Q D ˇ�1.S1 � S0/ � ��1
Z 1

0

dt
Z 1

0

dx .@x�.r.t; x///
2 (48)
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In the quasi static limit, we have seen that F1�F0 D W , and consequently ˇQ D
S1�S0, in accord to what thermodynamics prescribe for quasistatic transformations.

Remark 2. Assume that the distribution of pi .t/ is best approximated by

e
ˇ
N�

P
i @x
.t;i=N /pi gN
.t;	/

NY
iD1

dri dpi

properly normalized. Then the average of pi is 1
N�
@x
.t; i=N /, and (43) can be

rewritten as

N�

NX
iD1

 �
pi .t/ � 1

N�
@x
.t; i=N /

�2
� ˇ�1

!

� 1

N�

NX
iD1

@x
.t; i=N /
2 C 2

NX
iD1

@x
.t; i=N /pi .t/

Taking expectation, the first term is null (as well as the martingale not written here)
while the last two terms converge to ��1

R 1
0
.@x
.t; x//

2dx. This is correct only in
the harmonic case, i.e. the fluctuation inside the time integral are very important in
order to get the changes in entropy S .

5 Proof of the Hydrodynamic Limit

Define the modified local Gibbs density

QgN
.t;	/ D e
ˇ
�N

P
i @x
.t;i=N /pi gN
.t;	/Z�1

N;t (49)

whereZN;t is a normalization factor. Then define the corresponding relative entropy

QHN.t/ D
Z
f N
t log

 
f N
t

QgN
.t;	/

!
NY
iD1

dri dpi (50)

It is easy to see that limN!1N�1 	 QHN.t/ �HN.t/

 D 0.

Computing the time derivative

d

dt
QHN.t/ D

Z
f N
t

"
L

Q
.t/
N

 
log

f N
t

QgN
.t;	/

!
� @t log QgN
.t;	/

#
NY
iD1

dridpi (51)
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Using the inequality

f L
Q
.t/
N logf � L

Q
.t/
N f

and since d	N0;ˇ is stationary for L0N , we have

Z
f N
t L

Q
.t/
N logf N

t d	N0;ˇ � N2


Z
@pN f

N
t d	N0;ˇ D N2
ˇ

Z
pNf

N
t d	N0;ˇ

we obtain

d

dt
QHN.t/ �

Z
f N
t

h
.L

Q
.t/
N /� � @t

i
QgN
.t;	/

QgN
.t;	/

NY
iD1

dridpi

By explicit calculations and up to smaller order in N , taking into account the
cancellation of the boundary terms, we obtain:

d

dt
QHN.t/ � ˇ

Z X
i

h
��1@2x
.t; i=N /

	
V 0.ri / � 
.t; i=N /




C @t 
.t; i=N /.ri � r.t; i=N //
i
f N
t

NY
iD1

dridpi C o.N /

and the rest of the proof follows by the standard arguments of the relative entropy
method (cf. [3, 4, 7, 8]).
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Unique Continuation Property for the Benjamin
Equation

Mahendra Panthee

1 Introduction

In this work, our interest is in studying the following initial value problem (IVP):

�t � ˇ�xxx � ˛L�x C .�C �2/x D 0; �.x; 0/ D �0.x/; (1)

where x; t 2 R, � D �.x; t/ is a real valued function, ˛; ˇ are positive constants
with ˛ � ˇ. The linear symmetric operator L is defined by its symbol j�j so that
one can write L D H @x , with H the Hilbert transform given by

H f .x/ D p.v.
1

�

Z
R

f .y/

x � y dy; (2)

where p.v. stands for the Cauchy principal value.
This model was introduced by Benjamin [4] which governs approximately

the evolution of waves on the interface of a two-fluid system in which surface-
tension effects cannot be ignored. More precisely, this model is concerned with an
incompressible system that, at rest, consists of a layer of depth h1 of light fluid
of density �1 bounded above by a rigid plane and resting upon a layer of heavier
fluid of density �2 > �1 of depth h2, also resting on a rigid plane. Because of the
density difference, waves can propagate along the interface between the two fluids.
In Benjamin’s theory, diffusivity is ignored, but the parameters of the system are
such that capillarity cannot be discarded. While deriving (1) in [4], it is assumed
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that the constant ˇ satisfies 4ˇ � 1. For technical reason (see (27) below), in our
analysis we suppose ˇ is such that 3ˇ > 1.

After [4] and [5], several authors have studied this model in recent literature,
see for example [1–3, 5, 27, 28] and references there in. Existence and stability of
solitary waves is studied in [1,3], and that of periodic traveling wave is addressed in
[2]. For the well-posedness of the Cauchy problem associated with (3), we refer to
[28] for the global well-posedness in L2 and to [27] for the local well-posedness in
Hs , s > �3=4.

In this work we are concerned with the unique continuation property (UCP) for
the Benjamin equation (3). There are various forms of UCP in the literature, see
for example [6, 24–26, 33] and references there in. The following is the definition
of UCP given in [33], where the first result of the UCP for a dispersive model is
proved.

Definition ([33]). Let L be an evolution operator acting on functions defined on
some connected open set ˝ of R

n � Rt . The operator L is said to have unique
continuation property (UCP) if every solution u of Lu D 0 that vanishes on some
nonempty open set O 	 ˝ vanishes in the horizontal component of O in ˝.

As far as we know, the first result of the UCP is due to Carleman [8], who used
weighted estimates for the associated solution (now widely referred as Carleman-
type estimates) to obtain uniqueness theorem for the general linear equations. Later,
Hormander and Mizohata [17,29] extended Carleman’s method to address the UCP
for parabolic and hyperbolic operators. The result due to Saut-Scheurer [33] is the
first one to deal with the UCP for dispersive models. In recent literature much
effort has been used in studying the UCP for various models, see for example
[6–22,24–26,30–36] and references therein. In most cases Carleman type estimates
are employed to obtain the UCP results.

Recently, Bourgain in [6] introduced a new method based on complex analysis
to prove the UCP for dispersive models. Although, by using Paley-wiener theorem,
the UCP for linear dispersive models, with this method, is almost immediate, the
same is not so simple when one considers full nonlinear model. Some extra and
technical efforts are necessary to address the case of nonlinear model. The structure
on the model under consideration demands appropriate choice of the parameters.
This can clearly be seen in the proof of Theorem 1 below. This method has been
successfully adapted to address the UCP issue for the bi-dimensional models as
well, see [13, 30, 31]. In this work we use this method to prove that, if a sufficiently
smooth solution to the IVP (3) is supported compactly in a nontrivial time interval
then it vanishes identically.

Before stating the main result, we make a change of variables u.x; t/ D ��.x �
t;�t=c0/ to write the IVP (1) in the following form

ut C ˇuxxx C ˛H uxx C .u2/x D 0; u.x; 0/ D u0.x/; (3)

x; t 2 R. From here onwards, we consider the IVP (3). Note that, as pointed out in
the original paper of Benjamin [4], the following functionals



Unique Continuation Property for the Benjamin Equation 241

M.u/ WD 1

2

Z
R

ju.x; t/j2 dx; (4)

E.u/ WD
Z
R

ˇ

2
u2x �

˛

2
uH ux � 1

3
u3 dx; (5)

are the constants of motion for (3). This means that, if u is a smooth solution of the
IVP (3) that vanishes at x D ˙1, then M.u/ and E.u/ are independent of time.

Now, we state the main result of this work, that reads as follows.

Theorem 1. Let u 2 C.RIHs.R// be a solution to the IVP (3) with s > 0 large
enough. If there exists a non trivial time interval I D Œ�T; T � such that for some
B > 0,

supp u.t/ � Œ�B;B�; 8 t 2 I;

then u � 0.

In some sense the result in Theorem 1 is a weak version of the UCP for the
Benjamin equation given in the above definition. Although, looking at the structure
of the linear part, the UCP for the Benjamin equation seems to be quite natural, it is
not reported in the literature so far.

The stronger form of the UCP is concerned in considering the hypothesis of the
compact support at two different times as has been the case in the g-KdV equation
and the NLS equation [24–26], see also [9, 10] for the higher order NLS equation.
In recent times, even stronger versions of the UCP results, where one considers
appropriate decay conditions on the solution at two or three different times have
also been reported in the literature, see [7, 11, 12, 16, 20–22] and references therein.

At this point we would like to record the recent works on the UCP for the
Ostrovsky equation [20,21], KP-II equation [22] and Zakharov-Kuznetsov equation
[7], where the authors proved that the sufficiently smooth solutions that have
compact support at two different times must vanish identically. It is interesting to
note that, to conclude these stronger UCP results, the authors in [7, 20–22] used
the weak versions of the UCP results obtained via the complex analysis approach
in [30–32]. So, we believe, our result in this article may pave way to get much
stronger UCP results for the Benjamin equation like the ones in [7,11,12,16,20–22].
However, in order to apply these recent techniques developed in [7, 11, 12, 16, 20–
22], the solution of the model under consideration must satisfy the exponential decay
condition. But, in the case of Benjamin equation, due to the presence of the Hilbert
transform, we could not find such decay property of the solution. Therefore, we
believe, some extra modification is needed to get the stronger UCP results using
these techniques.

Quite recently, the UCP result for the Benjamin-Ono (BO) equation has been
reported in [14] showing that the solution that satisfies certain decay condition at
three different times mush vanish identically. The result in [14] improves the one
obtained in [18]. For the most recent work in this direction for the BO equation
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we refer to [15] where the authors proved that the uniqueness result proved in [14]
cannot be extended to any pair of non-vanishing solutions. Also, they showed that
the hypothesis used in [14] on the solution at three different times cannot be relaxed
to two different times. Since the Hilbert transform is involved in both the Benjamin
equation considered here and the BO equation, they exhibit similar behavior in
weighted Sobolev spaces. After completing this work we came to know that, using
the techniques developed in [14,15], Jiménez Urrea proved stronger UCP results for
the Benjamin equation in [23].

The plan of this article is as follows. We establish some preliminary estimates in
Sect. 2 and we supply the proof of the main result in Sect. 3.

Now, we introduce some notations that will be used throughout this article. The
Fourier transform of a function f denoted by Of is defined as,

Of .�/ D 1p
2�

Z
R

e�ix�f .x/ dx: (6)

Using the definition of the Fourier transform, the Hilbert transform defined
in (2) can be written as bH f .�/ D �i sgn.�/ Of .�/. We use Hs to denote
L2-based Sobolev space with index s. The various constants whose exact values
are immaterial will be denoted by c. We use supp f to denote support of a function
f and f 
 g to denote the usual convolution product of f and g. Also, we use the
notation A . B if there exists a constant c > 0 such that A � cB .

2 Preliminary Estimates

In this section we gather some estimates that play crucial role in the proof of our
main result. The details of the proof of these estimates can be found in [6] and the
author’s previous works [30,31]. For the sake of clearness we sketch the idea of the
proofs.

Let us start by recording the following result.

Lemma 1. Let u 2 C.Œ�T; T �IHs.R// be a sufficiently smooth solution to the IVP
(3). If for some B > 0, supp u.t/ � Œ�B;B�, then for all �; � 2 R, we have

jbu.t/.� C i�/j . ecj� jB: (7)

Proof. The proof follows using the Cauchy-Schwarz inequality and the conserva-
tion law (4). The argument is similar to the 2-dimensional case presented in [30]
and [31].

Now, we define

u�.�/ D sup
t2I

jbu.t/.�/j (8)
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and

m.�/ D sup
j�0j�j�j

ju�.� 0/j: (9)

Considering u.0/ sufficiently smooth and taking into account the well-posedness
theory for the IVP (3) (see for e.g., [28]), we have the following result.

Lemma 2. Let u 2 C.Œ�T; T �IHs.R// be a sufficiently smooth solution to the IVP
(3) with supp u.t/ � Œ�B;B�, 8 t 2 I , then for some constant B1, we have

m.�/ . B1

1C j�j4 : (10)

Proof. The proof follows by using Cauchy-Schwarz inequality, conservation law
(4) and the well-posedness theory with the similar argument in the author’s previous
works [30] and [31].

Proposition 1. Let u.t/ be compactly supported and suppose that there exists t 2 I
with u.t/ ¤ 0. Then there exists a number c > 0 such that for any large number
Q > 0 there are arbitrary large �-values such that

m.�/ > c.m 
m/.�/ (11)

and

m.�/ > e
� j�j
Q : (12)

Proof. The main ingredient in the proof of this proposition is the estimate (10) in
Lemma 2. The argument is similar to the one given in the proof of lemma in page
440 in [6], so we omit it.

Now, using the definition of m.�/ and Proposition 1 we choose � large enough
and t1 2 I such that

jbu.t1/.�/j D u�.�/ D m.�/ > c.m 
m/.�/C e
� j�j
Q : (13)

In what follows we prove some derivative estimates for an entire function. We
start with the following result whose proof is given in [6].

Lemma 3. Let � W C ! C be an entire function which is bounded and integrable
on the real axis and satisfies

j�.� C i�/j . ej� jB; �; � 2 R:
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Then, for �1 2 R
C we have

j�0.�1/j . B

 
sup
�0��1

j�.� 0/j
!"

1C
ˇ̌
ˇ̌
ˇlog

 
sup
�0��1

j�.� 0/j
!ˇ̌
ˇ̌
ˇ
#
: (14)

Corollary 1. Let � 2 R be such that

j� j � B�1
"
1C

ˇ̌
ˇ̌
ˇlog

 
sup

�0��1>0
j�.� 0/j

!ˇ̌
ˇ̌
ˇ
#�1

: (15)

Then

sup
�0��1

j�.� 0 C i�/j � 2 sup
�0��1

j�.� 0/j (16)

and

sup
�0��1

j�.� 0 C i�/j . B

 
sup
�0��1

j�.� 0/j
!"

1C
ˇ̌
ˇ̌
ˇlog

 
sup
�0��1

j�.� 0/j
!ˇ̌
ˇ̌
ˇ
#
: (17)

Proof. Detailed proof of this corollary can be found in Corollary 2.9 in [6]. So, we
omit it.

Now we state the last result of this section whose proof can be found in the
author’s previous works [30] and [31].

Corollary 2. Let t 2 I , �.z/ D bu.t/.z/, � be as in Corollary 1 and m.�/ be as in
(9). Then, for j� 0j � j� j fixed, we have

j�0.� � � 0 C i� 0/j . B
�
m.�/Cm.� � � 0/� Œ1C j logm.�/j� : (18)

3 Proof of the Main Results

Now we are in position to supply proofs of the main results of this work. The main
idea in the proof of Theorem 1 is similar to the one employed in [6, 30] and [31],
but the structure of the Fourier symbol associated with the linear part of the IVP (3)
demands special attention and some basic modifications.

Before supplying the details of the proof of Theorem 1, we write the IVP (3) in
the equivalent integral form

u.t/ D U.t/u0 �
Z t

0

U.t � t 0/.u2/x.t 0/ dt0; (19)
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where U.t/ is the unitary group describing the solution to the linear problem

ut C ˇuxxx C ˛H uxx D 0; u.x; 0/ D u0.x/; (20)

and is given by

U.t/f .x/ D 1p
2�

Z
R

eifx�C.ˇ�3�˛j�j�/tg Of .�/ d�: (21)

Proof (Proof of Theorem 1). If possible, suppose that there is some t 2 I such that
u.t/ ¤ 0. Our goal is to use the estimates derived in the previous section to arrive at
a contradiction.

Let t1; t2 2 I , with t1 as in (13). Now, using the equivalent integral equation (19),
we have

u.t2/ D U.t2 � t1/u.t1/ � c
Z t2

t1

U.t2 � t 0/.u2/x.t 0/ dt0: (22)

Taking Fourier transform in the space variable in (22), we get

bu.t2/.�/ D ei.t2�t1/.ˇ�3�˛j�j�/bu.t1/.�/ � ci�
Z t2

t1

ei.t2�t 0/.ˇ�3�˛j�j�/1u2.t 0/.�/ dt0:

(23)

Let t2 � t1 D �t and make a change of variables s D t 0 � t1, to obtain

bu.t2/.�/ D ei�t.ˇ�
3�˛j�j�/

bu.t1/.�/ � ci�
Z �t

0

e.i�t�s/.ˇ�3�˛j�j�/4u2.t1 C s/.�/ ds

D ei�t.ˇ�
3�˛j�j�/

�
bu.t1/.�/ � ci�

Z �t

0

e�is.ˇ�3�˛j�j�/4u2.t1 C s/.�/ ds

�
:

(24)

Since u.t/; t 2 I has compact support, by Paley-Wiener theorem, bu.t/.�/ has
analytic continuation in C, and we have

bu.t2/.� C i�/ D ei�t.ˇ.�Ci�/3�˛j�Ci� j.�Ci�//
h
bu.t1/.� C i�/�

�ci.� C i�/

Z �t

0

e�is.ˇ.�Ci�/3�˛j�Ci� j.�Ci�//4u2.s C t1/.� C i�/ ds

�
:

(25)

Since

ˇ.� C i�/3 � ˛j� C i� j.� C i�/ D 	
ˇ�3 � 3ˇ��2 � ˛�j� C i� j


C i
	
3ˇ�2� � ˇ�3 � ˛� j� C i� j
 ;
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using Lemma 1 we obtain from (25)

ce�t.3ˇ�
2��ˇ�3�˛� j�Ci� j/ �

jbu.t1/.� C i�/j � ci j� C i� j
Z �t

0

e�s.3ˇ�2��ˇ�3�˛� j�Ci� j/j4u2.s C t1/.� C i�/j ds:

(26)

Now, let us select � very large and � D �.�/ such that j� j 
 0, and the following
hold,

1

j�j � j� j and .3ˇ � 1/�2 > ˛j� C i� j: (27)

Also, let us choose � in such a way that

��t < 0: (28)

Now, using these choices we get from (26)

e�j�t jj� j.3ˇ�2�˛j�Ci� j/ &
ˇ̌
ˇbu.t1/.� C i�/

ˇ̌
ˇ �

ˇ̌
ˇ̌
ˇ�j
Z j�t j

0

e�sj�j.3ˇ�2�˛j�Ci� j/
ˇ̌
ˇ̌
ˇ4u2.t1 ˙ s/.� C i�/

ˇ̌
ˇ̌
ˇ ds;

(29)

where ‘C’ sign corresponds to �t > 0 and ‘�’ sign to �t < 0. From here onwards
we consider the case �t > 0, the other case follows similarly. We can write (29) as,

e�.3ˇ�2�˛j�Ci� j/j��t j &
ˇ̌
ˇbu.t1/.� C i�/

ˇ̌
ˇ � j�j

Z �t

0

e�s.3ˇ�2�˛j�Ci� j/j� j
ˇ̌
ˇ̌4u2.t1 C s/.� C i�/

ˇ̌
ˇ̌ ds:

(30)

Finally, we write the estimate (30) in the following way

e�.3ˇ�2�˛j�Ci� j/j��t j &
ˇ̌
ˇbu.t1/.�/

ˇ̌
ˇ � j�j

Z �t

0

e�s.3ˇ�2�˛j�Ci� j/j� j
ˇ̌
ˇ̌4u2.t1 C s/.�/

ˇ̌
ˇ̌ ds

�
ˇ̌
ˇbu.t1/.� C i�/ � bu.t1/.�/

ˇ̌
ˇ

� j�j
Z �t

0

e�s.3ˇ�2�˛j�Ci� j/j� j
ˇ̌
ˇ̌4u2.t1 C s/.� C i�/

�4u2.t1 C s/.�/

ˇ̌
ˇ̌ ds

WD I1 � I2 � I3:
(31)
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In sequel we use the preliminary estimates from the previous section to get
appropriate estimates for I1, I2 and I3 to arrive at a contradiction in (31).

Now, we use definition of u�.�/, the estimate (11) and the choice of � and � in
(27), to obtain

j�j
Z �t

0

e�s.3ˇ�2�˛j�Ci� j/j� j
ˇ̌
ˇ3u.t1 C s/

ˇ̌
ˇ 

ˇ̌
ˇ3u.t1 C s/

ˇ̌
ˇ .�/ ds

� j�j.u� 
 u�/.�/
Z �t

0

e�s.3ˇ�2�˛j�Ci� j/j� jds

� j�j.m 
m/.�/1 � e
��t.3ˇ�2�˛j�Ci� j/j� j

.3ˇ�2 � ˛j� C i� j/ j� j

� j�j.m 
m/.�/
�2j� j . m.�/

j�� j :

Therefore, we get

I1 & m.�/ � m.�/

j�� j � m.�/

2
: (32)

To obtain estimate for I2 we define �.z/ D bu.t1/.z/, for z 2 C. Using (13) we get

j�.z/j D jbu.t1/.�/j D sup
j�0j�j�j

j�.� 0/j D m.�/: (33)

Now, choose j� j such that

j� j . B�1 Œ1C j logm.�/j��1 : (34)

Using Corollary 1 we obtain

I2 . j� j sup
j�0j�j�j

j@bu.t1/.� 0 C i�/j

. j� jB m.�/ Œ1C j logm.�/j�

. m.�/ . 1

15
m.�/:

(35)

Finally, to get estimate for I3, we use Proposition 1, Corollary 2 and j� j as in
(34) to obtain

ˇ̌
ˇ̌4u2.t1 C s/ .� C i�/ �4u2.t1 C s/.�/

ˇ̌
ˇ̌

�
Z
R

ˇ̌
ˇ3u.t1 C s/.� � � 0 C i�/ �3u.t1 C s/.� � � 0/

ˇ̌
ˇ
ˇ̌
ˇ3u.t1 C s/.� 0/

ˇ̌
ˇ d� 0
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� j� j
Z
R

sup
j�0j�j�j

j@3u.t1 C s/.� � � 0 C i� 0/

ˇ̌
ˇ̌
ˇ m.� 0/ d� 0

�
Z
R

Œm.�/Cm.� � � 0/�m.� 0/ d� 0

� m.�/c2 C .m 
m/.�/
� m.�/.c2 C c�1/ . m.�/:

Therefore, as in I2, using (27), one gets

I3 . j�jm.�/
Z �t

0

e�s.3ˇ�2�˛j�Ci� j/j� jds

D j�jm.�/ 1 � e
��.3ˇ�2�˛j�Ci� j/j� j

.3ˇ�2 � ˛j� C i� j/ j� j

� j�jm.�/
3�2j� j . m.�/

j�� j . 1

15
m.�/:

(36)

Now, using (32), (35) and (36) in (31) and using the estimate (12) one gets,

e�f3�2�lj�Ci� jgj��t j & m.�/

2
� m.�/

15
� m.�/

15
D 11

30
m.�/ & e

� j�j
Q : (37)

On the other hand, with the choice of � and � in (27) we have, 3ˇ�2�˛j�Ci� j > �2
and consequently f3ˇ�2 � ˛j� C i� jgj� j > j�jj�jj� j > j�j.

Therefore,

e�f3ˇ�2�˛j�Ci� jgj� jj�t j � e�j�jj�t j: (38)

Now from (38) and (37), we obtain

e�j�jj�t j & e
� j�j
Q ; (39)

which is false for j�j large if we choose Q large enough such that 1
Q
< j�t j. This

contradiction completes the proof of the theorem.
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On the Kinetic Systems for Simple Reacting
Spheres: Modeling and Linearized Equations

Filipe Carvalho, Jacek Polewczak, and Ana Jacinta Soares

1 Introduction

The problem of polyatomic reactive mixtures, within kinetic theory, was first
investigated by Prigogine and Xhrouet [13] in 1949. They treated the reactive
contributions as perturbations of the elastic terms. This approach is only valid if
the reactive cross sections are much smaller than the elastic cross sections. In 1959,
Present gave another important contribution to this problem [12]. Although, in some
aspects different from the work by Prigogine and Xhrouet, the Present’s theory is
also based on the assumption that the reactive terms are small perturbations of the
elastic terms. Ross and Mazur, in 1961, as well as Shizgal and Karplus, in 1970,
see papers [14, 15] respectively, used the Chapman-Enskog method in the spatial
homogeneous case with the aim of investigating the non-equilibrium effects induced
by the chemical reactions and deducing, in particular, the explicit expression of the
reaction rate specifying the chemical production of each constituent of the mixture.
The works of Moreau [9], in 1975, and Xystris and Dahler [17], in 1978, used the
method of Grad in both spatial homogeneous and inhomogeneous cases with the
aim of deducing, again, explicit expressions for the reaction rate.

The kinetic theory of the simple reacting spheres was first proposed by Marron
in 1970, see [8], and then developed by Xystris and Dahler in 1978, see [18]. Within
this theory, both elastic and reactive collisions are of hard-sphere type. This feature
reduces the micro-reversibility principle to a simpler condition.
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In 2000, Polewczak proved, in his work [10], the existence of global in time,
spatially inhomogeneous, and L1-renormalized solution for the model of simple
reacting spheres, under the assumption of finite initial mass, momentum and energy.
The existence result refers to a four component mixture with a chemical bimolecular
reaction in which there was neither mass nor diameters exchange. In this paper
we consider a more general situation where the mass and the diameter exchange
is allowed. In the dilute-gas limit, this constitutes an interesting kinetic model of
chemical reactions that has not yet been studied in detail.

The paper is organized as follows. First, in Sect. 2, we present the mathematical
aspects of the kinetic modeling within the SRS theory. In Sects. 3 and 4 we introduce
the relevant properties of the collisional operators that are essential to assure the
mathematical and physical consistency of the model, and study the tendency of the
mixture to approach the equilibrium. In Sect. 5 we define the macroscopic variables
and derive the connection of the SRS model to the macroscopic framework in
terms of hydrodynamic equations. In Sects. 6 and 7 we introduce the linearized SRS
system, state its main properties and provide explicit representations for the kernels
of the linearized integral operators. Finally, in Sect. 8 we include a brief discussion
about our ongoing research in progress.

2 Kinetic Modeling

We consider a gas mixture with four constituents, say A1; : : : ; A4, with masses
m1; : : : ; m4 and formation energies E1; : : : ; E4, respectively. We restrict our
analysis to particles without internal degrees of freedom, which can interact
through binary elastic collisions and reactive collisions obeying to the reversible
chemical law

A1 C A2 • A3 C A4: (1)

The mass is conserved during the chemical reaction, so that m1 Cm2 D m3 Cm4.
The constituents’ indexes are chosen in such a way that the reaction heat, defined
by QR D E3 C E4 � E1 � E2, verifies the condition QR > 0. This means that the
reverse chemical reaction, A3 C A4 * A1 C A2, is exothermic.

Elastic collisions. An elastic collision between particles Ai and As with velocities
ci and cs , respectively, results in a change of velocities of both constituents,
.ci ; cs/! .c0i ; c0s/, with i; s D 1; : : : ; 4. The conservation laws of linear momentum
and kinetic energy of the colliding particles are specified by

mici Cmscs D mic
0
i Cmsc

0
s ; mic

2
i Cmsc

2
s D mic

02
i Cmsc

02
s : (2)

In our model we consider elastic cross sections of hard-spheres type, given by
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�2is D
1

4
.di C ds/

2; (3)

where di and ds denote the diameters of the particle constituents Ai and As ,
respectively. This model of cross sections is one of the most important and
frequently used model, mainly due to its simplicity. Conditions (2), together with
assumption (3), imply that the elastic post-collisional velocities corresponding to
the pre-collisional velocities ci and cs are given by

c0i D ci � 2	is

mi

�h�; ci � csi and c0s D cs C 2
	is

ms

�h�; ci � csi: (4)

Reactive collisions. A reactive collision between particles Ai and Aj with velo-
cities ci and cj , respectively, results in a transition of the reactants Ai and Aj
into products Ak and Al and a consequent change of velocities to c�k and c�l , with
.i; j; k; l/ 2 f.1; 2; 3; 4/; .2; 1; 4; 3/; .3; 4; 1; 2/; .4; 3; 2; 1/g. In addition, a reactive
collision results in a rearrangement of masses and a redistribution of formation
energies. Besides the mass conservation, also the linear momentum and total energy
of the colliding particles are preserved, so that the following conditions hold

mici Cmj cj D mkc
�
k Cmlc

�
l ; (5)

Ei C 1

2
mic

2
i CEj C 1

2
mj c

2
j D Ek C 1

2
mkc

�
k
2 CEl C 1

2
mlc

�
l
2
: (6)

In what follows, we use the following notation for the relative velocities of the
colliding particles participating in reactive collisions, �1 D �2 D � D c1 � c2,
�3 D �4 D � 0 D c3 � c4. In the SRS model, reactive collisions are treated as
hard-spheres like collisions, with the particularity that a reactive collision between
particles Ai and Aj occurs if the kinetic energy associated with the relative motion
along the line of centers exceeds the activation energy. Accordingly, reactive cross
sections are assumed in the form

��2
12 D

�
ˇ12�

2
12; h�; c1 � c2i � �12;

0; h�; c1 � c2i < �12; ��2
34 D

�
ˇ34�

2
34; h�; c3 � c4i � �34;

0; h�; c3 � c4i < �34; (7)

for the direct and reverse chemical reaction, respectively. Above, ˇij is the steric
factor for the collision between constituentsAi andAj , with 0 � ˇij � 1. Moreover,
�ij is a threshold velocity given by �ij D

p
2�i=	ij, where �i is the activation energy

for the constituent Ai , and 	ij D mimj
miCmj is a reduced mass. The notation h�; �i is used

for the inner product in R
3 and � is the unit vector along the line passing through

the centers of the spheres at the moment of impact,

� 2 ˚� 2 R
3 W j�j D 1 ^ h�; ci � cj i � 0

� � S
2C:
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Notice that, for the chemical reaction defined in Eq. (1), the activation energies
verify the conditions �2 D �1; �3 D �1 � QR; �4 D �3 and the steric factors
are such that ˇij D 0, for .i; j / 62 f.1; 2/; .2; 1/; .3; 4/; .4; 3/g. Furthermore, since
the reaction heat QR is positive, we must have �1 > QR.

In our SRS model, the post-collisional velocities for the direct chemical reaction
are given by

c�3 D 1

M

�
m1c1 Cm2c2 Cm4

r
	12

	34
f� � �h�; �i C �˛�g

�
; (8)

c�4 D 1

M

�
m1c1 Cm2c2 �m3

r
	12

	34
f� � �h�; �i C �˛�g

�
; (9)

whereas, the post-collisional velocities for the reverse chemical reaction are

c�1 D 1

M

�
m3c3 Cm4c4 Cm2

r
	34

	12

˚
� 0 � �h�; � 0i C �˛C

��
(10)

c�2 D 1

M

�
m3c3 Cm4c4 �m1

r
	34

	12

˚
� 0 � �h�; � 0i C �˛C

��
; (11)

where ˛� Dp
.h�; �i/2 � 2QR=	12 and ˛C Dp

.h�; � 0i/2 C 2QR=	34. Velocities
ci , cj , c�k , c�l , with .i; j; k; l/ 2 f.1; 2; 3; 4/; .2; 1; 4; 3/; .3; 4; 1; 2/; .4; 3; 2; 1/g and
c�k ; c�l given by expressions (8)–(11), verify the conservation laws expressed in
Eqs. (5) and (6).

Kinetic equations. In the absence of external forces, the kinetic equations, descri-
bing the time-space evolution of the one-particle distribution functions fi .x; ci ; t /,
i D 1; : : : ; 4, can be written in the form

@fi

@t
C

3X
lD1

cil
@fi

@xl
D QE

i CQR
i ; i D 1; : : : ; 4; (12)

where QE
i and QR

i represent the elastic and reactive collisional operators. Following
paper [11], the collisional operators have the form

QE
i D

4X
sD1

(
�2is

Z
R3

Z
S
2
C

�
f 0
i f

0
s � fifs

� h�; ci � csid�dcs
)

(13)

�ˇij�
2
ij

Z
R3

Z
S
2
C

h
f 0
i f

0
j � fifj

i
�.h�; �i i � �ij/h�; �i id�dcj ;

where � is the Heaviside step function and .i; j / 2 f.1; 2/; .2; 1/; .3; 4/; .4; 3/g,
and
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QR
i D ˇij�

2
ij

Z
R3

Z
S
2
C

"�
	ij

	kl

�2
f �
k f

�
l � fifj

#
�.h�; �i i��ij/h�; �i id�dcj ; (14)

where .i; j; k; l/ 2 f.1; 2; 3; 4/; .2; 1; 4; 3/; .3; 4; 1; 2/; .4; 3; 2; 1/g, and f �
k D

fk.x; c
�
k ; t/, f

�
l D fl.x; c

�
l ; t /. As explained in papers [11, 18], the second term

in the expression of QE
i is a correction term for the occurrence of reactive collisions

and prevent a double counting of the contributions in the collisional operators. In
fact, those encounters between Ai and Aj particles which are sufficiently energetic
in the sense that h�; �i i � �ij result in chemical reaction and should not be counted
as elastic encounters.

3 Properties of the Collisional Operators

The consistency of the model is assured when the collisional operators have some
important properties. We begin with the following fundamental results, concerning
the elastic and reactive operators.

Proposition 1. If we assume that ˇij D ˇji then, for  i measurable on R
3 and

fi 2 C0.R3/, i D 1; : : : ; 4, we have

Z
R3
 iQ

E
i dci D 1

4

4X
sD1

(
�2is

Z
R3

Z
R3

Z
S
2
C

�
 i C  s �  0

i �  0

s

� �
f 0

i f
0

s � fifs
� h�; ci � csid�dcsdci

)

� 1
4
ˇij�

2
ij

Z
R3

Z
R3

Z
S
2
C

h
 i C  j �  0

i �  0

j

i h
f 0

i f
0

j � fifj

i

��.h�; �i i � �ij/h�; �i i d�dcj dci :

Proposition 2. If ˇij D ˇji and ˇ12�212 D ˇ34�
2
34, then we have

4X
iD1

Z
R3

 iQ
R
i dci D ˇ12�

2
12

Z
R3

Z
R3

Z
S
2
C

�
 1 C  2 �  �

3 �  �
4

�

�
"�

	12

	34

�2
f �
3 f

�
4 � f1f2

#
�.h�; �i � �12/h�; �id�dc2dc1

D ˇ34�
2
34

Z
R3

Z
R3

Z
S
2
C

�
 3 C  4 �  �

1 �  �
2

�

�
"�
	34

	12

�2
f �
1 f

�
2 � f3f4

#
�.h�; � 0i � �34/h�; � 0id�dc4dc3:

Propositions 1 and 2 can be proven considering the symmetry properties of the
collisional operators, and constitute the basis of the proof of the following results.
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Proposition 3. The elastic collisional operators are such that

Z
R3

QE
i dci D 0; i D 1; : : : ; 4: (15)

Proposition 3 states that elastic encounters do not change the number of particles of
each constituent.

Proposition 4. The reactive collisional operators satisfy the following properties

Z
R3

QR
1 dc1 D

Z
R3

QR
2 dc2 D �

Z
R3

QR
3 dc3 D �

Z
R3

QR
4 dc4: (16)

Proposition 4 states that the variation of the number of particles of constituent A1 is
the same as that of constituent A2 and symmetric to the variation of constituents A3
and A4. It assures the correct chemical exchange rates of the constituents predicted
by the reaction mechanism.

Definition 1. A function  D . 1;  2;  3;  4/ is a collisional invariant in the
velocity space, for the SRS model, if

4X
iD1

Z
R3

 i
	
QE
i CQR

i



dci D 0: (17)

The following Proposition 5 presents the collisional invariants of model and
establishes the consistency of the model from the physical point of view.

Proposition 5. Functions  D .1; 0; 1; 0/,  D .1; 0; 0; 1/,  D .0; 1; 1; 0/, and
functions  D . 1;  2;  3;  4/ defined by  i D mic

i
1,  i D mic

i
2,  i D mic

i
3 and

 i D Ei C 1
2
c2i mi are collisional invariants.

The first three invariants assure the conservation of the partial number density
of a pair of constituents, one reactant and one product of the chemical reaction,
namely A1 and A3, A1 and A4, and A2 and A3, respectively. They also assure
the conservation of the total number density of the reactive mixture. The next
three invariants assure the conservation of the linear momentum components of the
mixture, whereas the last invariant assures the conservation of the total energy of
the reactive mixture.

4 Equilibrium Distributions and the Boltzmann H-Theorem

When the gas reaches the equilibrium the elastic and reactive collisions do not
stop, they become balanced. This means that, when the mixture is at equilibrium
conditions, the collisional process does not modify the one-particle distributions fi .
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In particular, the number of particles that enter a volume element in the phase space
per unit time is the same as the number of particles that leave the volume element
in the phase space per unit time.

Definition 2. The gas mixture is in thermodynamical equilibrium when the elastic
and reactive collisional operators are such that

QE
i CQR

i D 0; i D 1; : : : ; 4: (18)

In particular, in our model, condition (18) implies the vanishing of the elastic
collisional operators,

QE
i D 0; i D 1; : : : ; 4: (19)

Condition (19), in absence of reactive terms, is usually called a state of mechanical
equilibrium.

The following Proposition 6 is well known in the case on one-single component
gas and a formal proof can be found in many books, see for example [3].

Proposition 6. If all constituents are at the same temperature, the only distribution
function that assures the mechanical equilibrium is the Maxwellian distribution

f M
i .x; ci ; t / D ni

� mi

2�kT

� 3
2

exp

�
�mi.ci � v/2

2kT

�
; i D 1; : : : ; 4; (20)

where ni , T and v are the number density of constituent Ai , temperature and mean
velocity of the whole mixture, respectively, and k is the Boltzmann constant.

The above Maxwellian distributions (20) do not assure, in general, the vanishing
of the reactive collisional operators and thus do not define a state of thermodynam-
ical equilibrium for the reactive mixture.

Proposition 7. If all constituents are at the same temperature, the only distribution
function that assures the thermodynamical equilibrium is the thermodynamical
Maxwellian distribution given by

Mi.x; ci ; t/ D ni

� mi

2�kT

�3=2
exp

�
�mi.ci � v/2

2kT

�
; i D 1; : : : ; 4; (21)

with the number densities ni constrained to the condition

n1n2 D n3n4

r
	12

	34
exp

�
QR

kT

�
: (22)

Equation (22) represents the law of mass action for the SRS model.
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The important physical feature of trend to equilibrium is now presented in the
specific case of spatial domain ˝ D R

3, proving the existence of an H-function
(Liapunov functional) of the SRS system (12)–(14).

Proposition 8 (H -theorem). If the steric factors ˇij and cross sections �ij are such
that ˇij D ˇji and ˇ12�212 D ˇ34�

2
34, the convex function H.t/, defined by

H.t/ D
4X
iD1

Z
˝

Z
R3

fi log

�
fi

	ij

�
dcidx; (23)

where .i; j / 2 f.1; 2/; .2; 1/; .3; 4/; .4; 3/g and fi 2 L1.˝ � R
3/ for all i D

1; : : : ; 4, is an H -function (Liapunov functional) for the SRS system (12)–(14),
that is

dH
dt
.t/ � 0 for all t � 0; and

dH
dt
.t/ D 0 if and only if fi DMi for all i D 1; : : : ; 4:

In the case of a spatial homogeneous evolution, the domain ˝ is irrelevant for the

behavior of the corresponding H -function, H .t/ D P4
iD1

R
R3
fi log

�
fi
	ij

�
dci . In

the general case considered in Proposition 8, there exists a limited range of known
situations for which the result is still valid. Some of them correspond to consider
˝ as a box with boundary conditions of periodic type or boundary conditions of
specular reflection at the walls, see for instance Refs. [3, 16].

The result expressed in Proposition 8 states that the reactive mixture evolves to a
thermodynamical equilibrium state. In particular, in the proof of this proposition
one shows that both elastic and reactive collisions contribute, independently, to
this tendency to equilibrium. The spatial homogeneous version of an H -theorem,
similar to Proposition 8, is proven in paper [7], for a kinetic model for a quaternary
reactive mixture undergoing a reversible bimolecular reaction. In comparison to the
SRS model studied in our paper, the kinetic model considered in paper [7] has two
major differences. First, the reactive cross sections of paper [7] follow the line-of-
centers model, in contrast to those considered in our paper which are of hard-sphere
type. Second, contrarily to the SRS system, the model of paper [7] does not consider
any correction term in the collisional operators for preventing a double counting of
the contributions. See the explanations at the end of Sect. 2.

In paper [7], the authors use their H -theorem to prove the strong convergence
in L1-sense of the solution of their kinetic system to a Maxwellian distribution of
thermodynamical equilibrium, under the assumption of uniformly boundedness and
equicontinuity of the distribution functions for the spatial homogeneous case. Thus,
in our opinion, Proposition 8 should constitute a central result in the convergence
analysis of the solution of the kinetic equations (12) to a thermodynamical
Maxwellian distribution.
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5 Macroscopic Framework

It is well known that the Boltzmann equation constitutes a fundamental model in
the kinetic theory of gases, that describes the dynamics of the gas particles. At
the same time, in the hydrodynamic limit, it leads to a description in terms of
physically meaningful macroscopic quantities and related balance equations, see
for instance Refs. [3, 6]. The same happens with the SRS model studied in this
paper. The mathematical and physical properties of the collisional operators, stating
the consistency of the SRS system, are fundamental for the validity of the model
as well as for the passage to the hydrodynamic limit. From a formal point of view,
the connection between the microscopic variables and the macroscopic framework
is based on the idea that all measurable macroscopic quantities can be expressed
in terms of microscopic averages of the distribution functions. We now define the
macroscopic quantities of the SRS model and provide the evolution equations for
the most relevant macroscopic quantities.

Macroscopic variables. As usual, we define the macroscopic variables as suitable
moments of the distribution functions fi . We use the index i for those quantities
associated to the constituent Ai , i D 1; : : : ; 4, and denote with plain symbols the
macroscopic variables referred to the whole mixture. Moreover, indexes l and j are
used to represent spatial components of vectorial quantities in R

3.

Number density ni D
Z
R3

fidci and n D
4X
iD1

ni

Mass density %i D
Z
R3

mifidci and % D
4X
iD1

%i

Momentum density %ivi D
Z
R3

micifidci and %v D
4X
iD1

%ivi

Diffusion velocity ui D 1

%i

Z
R3

mi�ifidci

Pressure pi D 1

3

Z
R3

mi�
2
i fidci and p D

4X
iD1

pi

Pressure tensor components pilj D
Z
R3

mi�
i
l �
i
j fi dci and plj D

4X
iD1

pilj

Temperature Ti D pi

nik
and T D

4X
iD1

ni

n
Ti D p

nk

Heat flux components qil D
Z
R3

1

2
mi�

2
i �
i
l fi dci and ql D

4X
iD1

	
qil CniEiuil
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where �i D ci � v is the peculiar velocity, and �il or �ij represent its spatial
components. Moreover, the term niEiuil in the definition of ql refers to the formation
energy transfer of the constituent Ai due to diffusion.

Balance equations. By multiplying the SRS equations (12) by suitable functions
 i , and then integrating over ci 2 R

3, one can derive the balance equations for
each constituent Ai . Omitting here the details, the balance equations for the number
density, linear momentum components and total energy of each constituent Ai , i D
1; : : : ; 4, have the form

@ni

@t
C

3X
lD1

@

@xl

	
niu

i
l C nivl


 D
Z
R3

	
QE
i CQR

i



dci ; (24)

@

@t
.%iv

i
l /C

3X
rD1

@

@xr

	
pilr C %iu

i
lvr C %iu

i
rvl C %i


 D
Z
R3

mic
i
l

	
QE
i CQR

i



dci ;

(25)

@

@t

�
3

2
pi C niEi C %iu

i
lvl C

1

2
%iv

2

�
C

3X
lD1

@

@xl

�
qil C pilrvr C niEiu

i
l C

1

2
%iu

i
lv
2

C
�
3

2
pi C niEi C %iu

i
lvl C

1

2
%iv

2

�
vi

�
(26)

D
Z
R3

�
1

2
mic

2
i CEi

� 	
QE
i CQR

i



dci :

In particular, Eq. (24) constitutes the reaction rate equation of the SRS system and
specifies the production rate of each constituent of the gas mixture.

Conservation laws. The conservation equations for partial number densities are
obtained from the balance equations (24) by summing over one reactant (i D 1; 2)
and one product (i D 3; 4) of the chemical reaction. Moreover, the conservation
equations for mass density, linear momentum components and total energy of the
whole mixture are obtained from the balance equations (24)–(26) by summing over
all constituents. They can be written in the form

@

@t
.ni C nj /C

3X
lD1

@

@xl

h
niu

i
l C nj ujl C .ni C nj /v

i
l

i
D 0; i D 1; 2; j D 3; 4;

(27)

@%

@t
C

3X
lD1

@

@xl
.%vl / D 0; (28)
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@

@t
.%vl /C

3X
kD1

@

@xk
.plk C %vlvk/ D 0; l D 1; 2; 3; (29)

@

@t

 
3

2
nkT C

4X
iD1

niEi C 1

2
%v2

!
C

3X
lD1

@

@xl

"
ql C

3X
lD1

plkvk (30)

C
 
3

2
nkT C

4X
iD1

niEi C 1

2
%v2

!
vl

#
D 0:

6 Linearized SRS System

The linearized formulation of the SRS system around thermodynamical equilibrium
arises as a simplification of the full system, which is valid when the reactive
mixture is close to the thermodynamical equilibrium. In this section we construct
the linearized SRS kinetic system and state its fundamental properties.

Linearized SRS system. To obtain the linearized equations, first the distribution
function fi is expanded around the thermodynamical Maxwellian distribution Mi

with zero drifting velocity (v D 0), in the form

fi .x; ci ; t / DMi.x; ci ; t/ Œ1C hi .x; ci ; t /� ; i D 1; : : : ; 4; (31)

where hi represents the deviation of the distribution function from the equilibrium.
Then, expansions (31) are inserted into the SRS system (12)–(14) and the conserva-
tion laws (2), (5) and (6) associated to elastic and reactive collisions, respectively,
are used, together with the law of mass action (22). In the sequel we introduce the
notation w D .w1;w2;w3;w4/T .

Proposition 9. If we neglect quadratic and higher order terms in the deviations hi ,
the linearized SRS system takes the form

@hi

@t
C

3X
lD1

cil
@hi

@xl
D L E

i .h/CL R
i .h/ � Li .h/; i D 1; : : : ; 4; (32)

with

L E
i .h/ D

4X
sD1

�2is

Z
R3

Z
S
2
C

Ms

�
h0i C h0s � hi � hs

� h�; ci � csi d� dcs (33)

�ˇij�
2
ij

Z
R3

Z
S
2
C

Mj

h
h0i C h0j � hi � hj

i
�.h�; �i i � �ij/ h�; �i i d� dcj ;
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for .i; j / 2 f.1; 2/; .2; 1/; .3; 4/; .4; 3/g, and

L R
i .h/ D ˇij�

2
ij

Z
R3

Z
S
2
C

Mj

�
h�k C h�l � hi � hj

�
�.h�; �i i � �ij/h�; �i id�dcj ;

(34)

for .i; j; k; l/ 2 f.1; 2; 3; 4/; .2; 1; 4; 3/; .3; 4; 1; 2/; .4; 3; 2; 1/g.
Properties of the linearized SRS system. Some important mathematical proper-
ties of the linearized SRS system (32)–(34) will be presented in the sequel. In order
to easily compare our results with previous ones existing in literature for inert gases,
we consider the following weighted distribution function and weighted operator,

Ofi DM
1=2
i fi and OLi . Oh/ DM

1=2
i Li .h/; i D 1; : : : ; 4: (35)

We can easily verify that hi defines a solution of the linearized SRS system (32)–
(34) if and only if Ohi defines a solution of the following weighted linearized system

@ Ohi
@t

C
3X
lD1

cil
@ Ohi
@xl

D OLi . Oh/; i D 1; : : : ; 4; (36)

where the weighted linearized operator OLi . Oh/ can be split in its elastic and reactive
parts, given by

OL E
i .

Oh/ DM
1=2
i L E

i .h/ and OL R
i .

Oh/ DM
1=2
i L R

i .h/: (37)

Moreover, we introduce the space Y D L2.R3 � R
3/ and consider the Maxwellian

weighted velocity L2-space, Y 4, endowed with the inner product defined by

hF ;Gi D
4X
iD1

Z
R3

Fi .ci /Gi .ci /dci : (38)

The weighted linearized collisional operator satisfies the following property.

Proposition 10. If the steric factors ˇij and cross sections �ij are such that ˇij D ˇji

and ˇ12�212 D ˇ34�
2
34, the weighted linearized collisional operator OL is symmetric

and non-positive semi-definite, that is

(a) h Og; OL . Oh/i D hOh; OL . Og/i, for all g; h 2 Y 4;
(b) h Oh; OL . Oh/i � 0, for all h 2 Y 4, and h Oh; OL . Oh/i D 0 if and only if h is a

collisional invariant.



On the Kinetic Systems for Simple Reacting Spheres: Modeling and Linearized. . . 263

7 Kernels of the Linearized Integral Operators

For a one component inert gas, the explicit expression of the kernel of the linearized
collisional operator, as well as the techniques used to compute the kernel, are
detailed in many works, in particular in paper [4]. However, this is not the case
for a reactive gas mixture. In fact, the computations for the case of a reactive gas
mixture are long and very technical. Concerning, in particular, the SRS system,
we were able to obtain the explicit representation of the kernels of the linearized
elastic and reactive operators, in the general case of arbitrary molecular masses. The
computations have been done by the first author of the present work and are part of
his PhD thesis, see [1]. See also Ref. [2] for the details about the computations of
the kernels.

Kernels of the linearized elastic operators. The operator OL E
i .

Oh/ can be split
into several contributions as follows

OL E
i .

Oh/ D � �i Ohi �Q.1/
i .

Oh/CQ
.2/
i .

Oh/CQ
.3/
i .

Oh/; (39)

where

�i Ohi D Ohi
4X
sD1

�2is

Z
R3

Z
S
2
C

Msh�; ci � csi d� dcs; (40)

Q
.1/
i .

Oh/ D
4X
sD1

�2is

Z
R3

Z
S
2
C

M
1=2
i M1=2

s
Ohsh�; ci � csi d� dcs; (41)

Q
.2/
i .

Oh/ D
4X
sD1

�2is

Z
R3

Z
S
2
C

M
1=2
i MsM

0
i
�1=2 Ohi 0h�; ci � csi d� dcs; (42)

Q
.3/
i .

Oh/ D
4X
sD1

�2is

Z
R3

Z
S
2
C

M
1=2
i MsM

0
s
�1=2 Ohs 0h�; ci � csi d� dcs: (43)

The multiplication operator �i defined in (40) can be identified as a mean collision
frequency. Concerning the integral operators (41)–(43), the full representation of
the kernels, in the general case of arbitrary molecular masses, is omitted here due
to space limitations. In fact, some of the expressions are very long. We only include
the expressions of the kernels in the particular case of a reactive mixture with equal
molecular masses. They are given by the following expressions, for i D 1; 2; 3; 4,

N.Q
.1/
i /.u;w/ D ��2is ku � wkpnins

� m

2�kT

�3=2
exp

�
�m.u

2 C w2/

4kT

�
; (44)
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N.Q
.2/
i /.u;w/ D �2is ns

�
m

2�kT

�1=2
1

ku � wk (45)

� exp

�
� m

8kT

.u2 � w2/2

ku � wk2 � m

8kT
.u � w/2

�
;

N.Q
.3/
i /.u;w/ D �2is

p
nins

�
m

2�kT

�1=2
1

ku � wk (46)

� exp

�
� m

8kT

.u2 � w2/2

ku � wk2 � m

8kT
.u � w/2

�
:

Note that, in the case of one component gas, expressions (44)–(46) reduce to those
presented by Grad in paper [5], for the intermolecular potential of hard-sphere type.

Kernels of the linearized reactive operators. The procedure adopted to obtain the
representation of the kernels of the reactive operators is similar to the one used for
the elastic operators. The starting point is the decomposition of the operator OL R

i .
Oh/

into several contributions, in the form

OL R
i .

Oh/ D � �Ri .u/ Ohi .u/ �R
.1/
i .

Oh/CR
.2/
i .

Oh/CR
.3/
i .

Oh/;

where, for i D 1; 2; 3; 4,

�Ri .u/ Ohi .u/ D Ohiˇij�
2
ij

Z
R3

Z
S
2
C

Mj�.h�; �i i � �ij/ h�; �i i d� dcj ; (47)

R
.1/
i .

Oh/ D ˇij�
2
ij

Z
R3

Z
S
2
C

M
1=2
i Mj

Ohj�.h�; �i i � �ij/ h�; �i i d� dcj ; (48)

R
.2/
i .

Oh/ D ˇij�
2
ij

Z
R3

Z
S
2
C

M
1=2
j M �

l
1=2 Oh�k�.h�; �i i � �ij/ h�; �i i d� dcj ; (49)

R
.3/
i .

Oh/ D ˇij�
2
ij

Z
R3

Z
S
2
C

M
1=2
j M �

k
1=2 Oh�l �.h�; �i i � �ij/ h�; �i i d� dcj : (50)

Again, the multiplication operator �Ri defined in (47) can be identified as a mean
reactive collision frequency. Concerning the integral operators (48)–(50), the full
representation of their kernels, for the general case of arbitrary molecular masses,
is omitted here due to space limitations. The reader is addressed to Refs. [1, 2] for
the details. Here we present the particular case of equal molecular masses, and only
present the kernels of the operators R.1/

i .
Oh/, for i D 1; 2; 3; 4, and R

.2/
1 .

Oh/, R.3/
1 .

Oh/,
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N.R
.1/
i /.u;w/ D

1

2
ˇij�

2
ij
p
ninj

� m

2�kT

�3=2 ku � wk2 � � 2
ij

ku � wk (51)

� exp

�
�m.u

2 C w2/

4kT

�
; i D 1; 2; 3; 4;

N.R
.2/
1 /.u;w/ D

1

2
ˇ12 �

2
12

p
n2n4

� m

2�kT

�3=2
(52)

� jju � wjj2�
jju � wjj C QR

mjju�wjj
�3 �

�
jju � wjj C QR

mjju � wjj � �12
�

�
"

2QR

m
�
jju � wjj C QR

mjju�wjj
�2r

1 � 4QR

m
�
jju�wjjC QR

mjju�wjj

�2
� jju � wjj

jju � wjj C QR

mjju�wjj

#

�
Z
L?.w�u/

exp

8̂
<̂
ˆ̂:
� m

4kT

2
664

0
BB@u � LC 2.w � u/

1 �
r
1 � 4QR

m
�
jju�wjjC QR

mjju�wjj

�2

1
CCA
2

C

0
BB@2u � L � w C 2.w � u/

1 �
r
1 � 4QR

m
�
jju�wjjC QR

mjju�wjj

�2

1
CCA
2 3
775

9>>=
>>;
dL;

N.R
.3/
1 /.u;w/ D ˇ12 �

2
12

p
n2n3

� m

2�kT

�3=2 Z
DL

exp

(
� m

4kT

"
(53)

�
 

u C 1

2

 
�1C

r
1 � 4QR

mL2

!
L

!2
C
 

w C 1

2

 
�1C

r
1 � 4QR

mL2

!
L

!2 #)

� � . jjLjj � �12 / 1

jjw � u � 1
2

�
1C

q
1 � 4QR

mL2

�
Ljj

dL;
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where the integration domain DL is defined by

DL D
�
L 2 R

3 W hL; v � wi D 1

2

�
1C

r
1 � 4QR

mL2

�
L2
�

.

8 Final Remarks

The content of this paper is the first part of a work in progress on the SRS model
for a quaternary mixture with no restriction on the molecular masses of the cons-
tituents. The properties of the linearized SRS system presented here, and especially
the explicit representations of its kernels, are essential in obtaining detailed spectral
analysis of the system. This in turn provides the asymptotic behavior of its evolution
operator that is used in existence and stability of close to equilibrium solutions for
the SRS system and the rigorous treatment of the hydrodynamical limits at the Euler
and Navier-Stokes level.
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Hydrodynamic Limit for the Velocity-Flip Model

Marielle Simon

1 Introduction

We consider a Hamiltonian system ofN coupled oscillators with the same mass that
we set equal to 1. Since the ergodic properties of Hamiltonian dynamics are poorly
understood, especially when the size of the system goes to infinity, we perturb it by
an additional conservative mixing noise, as it has been proposed for the first time by
Olla, Varadhan and Yau [11] in the context of gas dynamics, and then in [6] in the
context of Hamiltonian lattice dynamics.

We are interested in the macroscopic behavior of this system as N goes to
infinity, after rescaling space and time. The system is considered under periodic
boundary conditions, more precisely we work on the one-dimensional discrete torus
TN WD f0; : : : ; N �1g. A typical configuration is given by ! D .px; rx/x2TN where
px stands for the velocity of the oscillator at site x, and rx represents the distance
between oscillator x and oscillator x C 1. The deterministic dynamics is described
by the harmonic Hamiltonian

HN D
N�1X
xD0

�
p2x C r2x
2

�
: (1)

The stochastic perturbation is added only to the velocities, in such a way that the
energy of particles is still conserved. Nevertheless, the momentum conservation is
no longer valid, so that we can hope for a normal diffusion of energy.1 The added

1If the momentum is conserved, abnormal behaviors can emerge, see for example [1], or [3].
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noise can be easily described: each particle independently waits an exponentially
distributed time interval and then flips the sign of velocity. The strength of the noise
is regulated by the parameter � > 0. The total deformation

P
rx and the total energyP	

p2x C r2x


=2 are the only two conserved quantities. Thus, the Gibbs states are

parametrized by two potentials, temperature and tension: for ˇ > 0 and � 2 R, the
equilibrium Gibbs measures 	Nˇ;� on the configuration space ˝N WD .R�R/TN are
products of Gaussians (see (10)).

The goal is to prove that the two empirical profiles associated to the conserved
quantities converge in the thermodynamic limit N ! 1 to the macroscopic
profiles r.t; �/ and e.t; �/, which satisfy an autonomous system of coupled parabolic
equations. More precisely, let r0 W T ! R and e0 W T ! R be respectively the
initial macroscopic deformation profile and the initial macroscopic energy profile
defined on the one-dimensional torus T D Œ0; 1� and denote by 	N0 the Gibbs local
equilibrium associated to r0 and e0 (see (14) for the explicit formula). If the initial
law of the process is 	N0 , then the law of the process in the diffusive scale, namely
at time tN2, is close in the large N limit, to the Gibbs local equilibrium associated
to the functions r.t; q/ and e.t; q/ (defined on RC � T), which are solutions of

8̂
ˆ̂<
ˆ̂̂:

@tr D 1

�
@2qr ;

@te D 1

2�
@2q

�
e C r2

2

�
;

q 2 T; t 2 RC ; (2)

with the initial conditions r.0; �/ D r0.�/ and e.0; �/ D e0.�/.
We approach this problem by using the relative entropy2 method introduced

for the first time by H. T. Yau [14] for a gradient3 diffusive Ginzburg-Landau
dynamics. Roughly speaking, we measure the distance between the Gibbs local
equilibrium4 	Ne.t;	/;r.t;	/ and the state 	Nt by their relative entropy HN.t/ (see (28)).
The strategy consists in proving that limN!1HN.t/=N D 0 and deducing that the
hydrodynamic limit holds. In the context of diffusive systems, the relative entropy
method works if the following conditions are satisfied.

• First, the dynamics has to be ergodic: the only time and space invariant measures
for the infinite system, with finite local entropy, are given by mixtures of the
Gibbs measures in infinite volume 	ˇ;� (see (16)). From [6], we know that the
velocity-flip model is ergodic in the sense above (see Theorem 3).

• Next, we need to establish the so-called fluctuation-dissipation equations in
the mathematics literature (for example, in [9]). Such equations express the

2The relative entropy of the probability measure 	 with respect to the probability measure � is
denoted by H.	j�/ and is defined in (15).
3A conservative system is called gradient if the currents corresponding to the conserved quantities
are gradients.
4For the sake or readability, in the following sections we will denote it by 	Nˇt .�/;�t .�/ (see (14)).
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microscopic current of energy (which here is not a discrete gradient) as the sum
of a discrete gradient and a fluctuating term. More precisely, the microscopic
current of energy, denoted by jx;xC1, is defined by the local energy conservation
law: L ex D rjx�1;x , where L is the generator of the infinite dynamics. The
standard approach consists in proving that there exist local functions fx and hx
such that the following decomposition holds:

jx;xC1 D rfx CL hx : (3)

Equation (3) is called a microscopic fluctuation-dissipation equation. The term
L hx , when integrated in time, is a martingale. Roughly speaking, L hx repre-
sents rapid fluctuation, whereas rfx represents dissipation. Gradient models are
systems for which hx D 0 with the previous notations.
In general, these equations are not explicit but we are able to compute them in
our model (see [12], Appendix A).

• Finally, since we observe the system on a diffusive scale and the system is non-
gradient, we need second order approximations. If we want to obtain the entropy
estimate of order o.N /, we can not work with the measure 	Ne.t;	/;r.t;	/: we have
to correct the Gibbs local equilibrium state with a small term. This idea was
first introduced in [7] and then used in [13] for interacting Ornstein-Uhlenbeck
processes, and in [10] for the asymmetric exclusion process. However, as far
as we know, it is the first time that this is applied for a system with several
conservation laws.

Up to present, the derivation of hydrodynamic equations for the harmonic
oscillators perturbed by the velocity-flip noise is not rigorously achieved (see e.g.
[5]), because the control of large energies has not been considered so far. Along the
proof, we need to control all the following moments,

Z 2
4 1

N

X
x2TN

jpxjk
3
5 d	Nt ; (4)

uniformly in time and with respect to N . In fact, the only first moments are
necessary to cut-off large energies and we need all the others to obtain the Taylor
expansion that appears in the relative entropy method (Proposition 1). Usually, the
following entropy inequality (true for any ˛ > 0 and any positive measurable
function f )

Z
f d	 6 1

˛

�
log

�Z
e f̨ d�

�
CH.	j�/

�
(5)

reduces the control of (4) to the estimate of the following equilibrium exponential
moments
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Z
exp.ıjpxjk/ d	N1;0 ; with ı > 0 small. (6)

Unfortunately, in our model, these integrals are infinite for all k > 3 and all ı > 0.
Bernardin [2] deals with a harmonic chain perturbed by a stochastic noise which

is different from ours but has the same motivation: energy is conserved, momentum
is not. He derives the hydrodynamic limit for a particular value of the intensity of the
noise. In this case the hydrodynamic equations are simply given by two decoupled
heat equations. The author highlights that good energy bounds are necessary to
extend his work to other values of the noise intensity. In fact, in [2], only the
following weak form is proved:

lim
N!C1

Z 2
4 1

N 2

X
x2TN

p4x

3
5 d	Nt D 0 : (7)

In [12], we get uniform control of (4) for our model (Theorem 2). Let us notice that
the harmonicity of the chain is crucial to get this result: roughly speaking, it ensures
that the set of mixtures of Gaussian probability measures is left invariant during the
time evolution. The article is divided into two parts: after the main results being
stated, we give the ideas of proof. All the results discussed here are in [12] to which
we refer for the details.

2 The Velocity-Flip Model

We consider the unpinned harmonic chain perturbed by the momentum-flip noise.
Each particle has the same mass that we set equal to 1. A typical configuration is
! D .r;p/ 2 ˝N WD .R � R/TN , where r D .rx/x2TN and p D .px/x2TN .

The generator of the dynamics is given by LN WD AN C �SN , where for any
continuously differentiable function f W ˝N ! R,

AN .f /.r;p/ WD
X
x2TN

Œ.pxC1 � px/ @rxf .r;p/C .rx � rx�1/ @pxf .r;p/� ; (8)

SN .f /.r;p/ WD 1

2

X
x2TN

Œf .r;px/ � f .r;p/� : (9)

Here px is the configuration obtained from p by the flip of px into �px . The
parameter � > 0 regulates the strength of the random flip of momenta.

The operator AN is the Liouville operator of a chain of harmonic oscillators,
and SN is the generator of the stochastic part of the dynamics that flips at random
time the velocity of one particle. The dynamics conserves two quantities: the total
deformation of the lattice R WD P

x2TN rx and the total energy E WD P
x2TN ex ,

where ex D
	
p2x C r2x



=2. Observe that the total momentum is no longer conserved.
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The deformation and the energy define a family of invariant measures depending on
two parameters. For ˇ > 0 and � 2 R, we denote by 	Nˇ;� the Gaussian product

measure on ˝N given by

	Nˇ;�.dr; dp/ WD
Y
x2TN

e�ˇex��rx
Z.ˇ; �/

drxdpx ; (10)

where Z.ˇ; �/ is the partition function.
In the following, we shall denote by 	Œ�� the expectation with respect to

the measure 	. The thermodynamic relations between the averaged conserved
quantities Nr 2 R and Ne 2 .0;C1/, and the potentials ˇ 2 .0;C1/ and � 2 R

are given by

8̂
ˆ̂<
ˆ̂̂:

Ne.ˇ; �/ WD 	Nˇ;�Œex� D
1

ˇ
C �2

2ˇ2
;

Nr.ˇ; �/ WD 	Nˇ;�Œrx� D ��
ˇ
:

(11)

Notice that

8 ˇ 2 .0;C1/;8 � 2 R; Ne.ˇ; �/ > Nr2.ˇ; �/
2

: (12)

Remark 1. There exists a bijection between the two sets
˚
.ˇ; �/ 2 R

2 I ˇ > 0�
and

˚
.e; r/ 2 R

2 I e > r2=2
�
. The equations above can be inverted according to the

functional

� W ˚.e; r/ 2 R
2 I e > r2=2

� ! ˚
.ˇ; �/ 2 R

2 I ˇ > 0�
.e; r/ 7!

�
1

e � r2=2
; � r

e � r2=2

�
:

We assume that the system is initially close to a local equilibrium.

Definition 1. A sequence .	N /N of probability measures on ˝N is a local
equilibrium associated to a deformation profile r0 W T ! R and an energy profile
e0 W T ! .0;C1/ if for every continuous functionG W T ! R and for every ı > 0,
we have

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

lim
N!1	

N

2
4
ˇ̌
ˇ̌
ˇ̌ 1N

X
x2TN

G
� x
N

�
rx �

Z
T

G.q/r0.q/dq

ˇ̌
ˇ̌
ˇ̌ > ı

3
5 D 0 ;

lim
N!1	

N

2
4
ˇ̌
ˇ̌
ˇ̌ 1N

X
x2TN

G
� x
N

�
ex �

Z
T

G.q/e0.q/dq

ˇ̌
ˇ̌
ˇ̌ > ı

3
5 D 0 :

(13)
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Example 1. For any integer N we define the probability measures

	Nˇ0.	/;�0.	/.dr; dp/ WD
Y
x2TN

exp.�ˇ0.x=N/ex � �0.x=N/rx/
Z.ˇ0.x=N /; �0.x=N //

drxdpx ; (14)

where the two profiles ˇ0 and �0 are related to e0 and r0 by (11). Then, this sequence
of probability measures is a local equilibrium, and it is called the Gibbs local
equilibrium state associated to the macroscopic profiles ˇ0, �0. Both profiles are
assumed to be continuous.

To establish the hydrodynamic limits, we look at the process with generator
N2LN , namely in the diffusive scale. The configuration at time tN2 is denoted by
!Nt , and the law of the process .!Nt /t>0 is denoted by 	Nt .

2.1 Hydrodynamic Equations

Let 	 and � be two probability measures on the same measurable space .X;F /. We
define the relative entropy H.	j�/ of the probability measure 	 with respect to the
probability measure � by

H.	j�/ WD sup
f

�Z
X

f d	 � log

�Z
X

ef d�

��
; (15)

where the supremum is carried over all bounded measurable functions f on X . The
Gibbs states in infinite volume are the probability measures 	ˇ;� on ˝ D .R�R/Z

given by

	ˇ;�.dr; dp/ WD
Y
x2Z

e�ˇex��rx
Z.ˇ; �/

drxdpx : (16)

We denote by 
x' the shift of ': .
x'/.!/ D '.
x!/ D '.!.x C � //. Hereafter,
all statements involving time t assume that t belongs to a compact set Œ0; T �. In [12]
the following theorem is proved.

Theorem 1. Let .	N0 /N be a sequence of probability measures on ˝N which is a
local equilibrium associated to a deformation profile r0 and an energy profile e0
such that e0 > r20=2. We denote by ˇ0 and �0 the potential profiles associated to r0
and e0: .ˇ0; �0/ WD �.e0; r0/.

We assume that the initial profiles are continuous, and that

H
�
	N0 j	Nˇ0.	/;�0.	/

�
D o.N /: (17)
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We also assume that the energy moments are bounded: let us suppose that there
exists a positive constant C which does not depend on N and t , such that

8 k > 1; 	Nt

2
4X
x2TN

ekx

3
5 6 .Ck/k �N : (18)

Let G be a continuous function on the torus T and ' be a local function which
satisfies the following property: there exists a finite subset � 	 Z and a constant
C > 0 such that, for all ! 2 ˝N , '.!/ 6 C

	
1CP

i2� ei .!/


. Then,

	Nt

"ˇ̌
ˇ̌
ˇ
1

N

X
x

G
� x
N

�

x' �

Z
T

G.q/ Q'.e.t; q/; r.t; q//dq

ˇ̌
ˇ̌
ˇ
#
����!
N!1 0 (19)

where Q' is the grand-canonical expectation of ': in other words, for any .e; r/ 2 R
2,

if .ˇ; �/ D �.e; r/ then

Q'.e; r/ D 	ˇ;�Œ'� D
Z
.R�R/Z

'.!/ d	ˇ;�.!/ : (20)

Besides, e and r are defined on RC � T and are solutions of

8̂
ˆ̂<
ˆ̂̂:

@tr D 1

�
@2qr;

@te D 1

2�
@2q

�
e C r2

2

�
;

q 2 T; t 2 RC ; (21)

with the initial conditions r.�; 0/ D r0.�/ and e.�; 0/ D e0.�/.
Remark 2. Let us notice that the functions e; r; ˇ and � are smooth when t > 0,
since the system of partial differential equations is parabolic.

In Sect. 4, we will see that the hypothesis on moments bounds (18) holds for a
large class of initial local equilibrium states. Before stating the theorem, we give
some definitions. We denote by SN .R/ the set of real symmetric matrices of size
N . The correlation matrix C 2 S2N .R/ of a probability measure � on ˝N is the
symmetric matrix C D .Ci;j /16i;j62N defined by

Ci;j WD

8̂
ˆ̂̂<
ˆ̂̂̂
:

�Œri rj � i; j 2 f1; : : : ; N g ;
�Œripj � i 2 f1; : : : ; N g; j 2 fN C 1; : : : ; 2N g ;
�Œpi rj � i 2 fN C 1; : : : ; 2N g; j 2 f1; : : : ; N g ;
�Œpipj � i; j 2 fN C 1; : : : ; 2N g :

(22)
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Let us denote by˙N the subset of R2N�S2N .R/ defined by the following condition:

.m;C / 2 ˙N ,

8̂
ˆ̂̂<
ˆ̂̂̂
:

mk D 0 for all k D N C 1 : : : 2N ;

Ci;j D 0 for all i ¤ j ;

Ci;i > 0 for all i D 1 : : : 2N ;

Ci;i �m2
i D CiCN;iCN for all i D 1 : : : N :

(23)

Precisely, it means that m is written as m D .m1; : : : ; mN ; 0; : : : ; 0/, and C is a
diagonal matrix whose components are .m2

1C˛1; : : : ; m2
NC˛N ; ˛1; : : : ; ˛N /;where

˛i > 0 for all i D 1 : : : N . For .m;C / 2 ˙N , we denote by Gm;C .�/ the Gaussian
measure with meanm and correlations given by the matrixC . The covariance matrix
of Gm;C .�/ is thus C �mtm. In [12] the following lemma is proved.

Lemma 1. Let � and ˇ be two functions of class C 1 defined on T, and 	Nˇ.	/;�.	/
be the Gibbs local equilibrium defined by (14). If we denote bymˇ.	/;�.	/ and Cˇ.	/;�.	/
respectively the mean vector and the correlation matrix of the probability measure
	Nˇ.	/;�.	/, then we have

.mˇ.	/;�.	/; Cˇ.	/;�.	// 2 ˙N and 	Nˇ.	/;�.	/ D Gmˇ.�/;�.�/;Cˇ.�/;�.�/ : (24)

Now we state our second main theorem.

Theorem 2. We assume that the initial probability measure 	N0 is a Gibbs local
equilibrium state, defined by (14).

Then, (18) holds, and the conclusions of Theorem 1 are valid.

In the following, we will denote by et .�/, rt .�/, �t .�/ and ˇt .�/ respectively the
functions q ! e.t; q/, q ! r.t; q/, q ! �.t; q/, and q ! ˇ.t; q/ defined on T.

2.2 Ergodicity of the Infinite Volume Velocity-Flip Model

We conclude this part by giving the ergodicity theorem, which is proved in [3],
Sects. 2.2 and 2.4.2, by following the ideas of [6]. We define, for all finite subsets
� 	 Z, and for two probability measures � and 	 on ˝ D .R � R/Z, the restricted
relative entropy H�.�j	/ WD H.��j	�/ where �� and 	� are the marginal
distributions of � and	 on˝: The Gibbs states in infinite volume are the probability
measures 	ˇ;� on ˝ given by (16). The formal generator of the infinite dynamics
is denoted by L (respectively A and S for the antisymmetric and the symmetric
part).

Theorem 3. Let � be a probability measure on the configuration space ˝ such
that
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1. � has finite density entropy: there exists C > 0 such that for all finite subsets
� of Z, H�.�j	�/ 6 C j�j; with 	� WD 	1;0 a reference Gibbs measure on
.R � R/Z;

2. � is translation invariant;
3. � is stationary: for any compactly supported and differentiable function F.r;p/,

Z
A .F / d� D 0 I (25)

4. The conditional probability distribution of p given the probability distribution
of r, denoted by �.pjr/, is invariant by any flip p ! px , with x 2 Z.

Then, � is a mixture of infinite Gibbs states.

Corollary 1. If � is a probability measure on˝ satisfying 1, 2 and if � is stationary
in the sense that: for any compactly supported and differentiable function F.r;p/,

Z
L .F / d� D 0 ; (26)

then � is a mixture of infinite Gibbs states.

3 The Relative Entropy Method

For the sake of simplification, we denote all couples of the form .ˇ.�/; �.�// by �.�/.
First, we introduce the corrected local Gibbs state �N�t .	/ defined by

d�N�t .�/
drdp

WD 1

Z.�t .�//
Y
x2TN

exp

�
�ˇt

� x
N

�
ex � �t

� x
N

�
rx C 1

N
F
�
t;
x

N

�
� 
xh.r;p/

�

(27)

where Z.�t .�// is the partition function. Functions F and h should be judiciously
chosen, and are explicitly defined in [12].

We are going to use the relative entropy method, with the corrected local Gibbs
state �N�t .	/ instead of the usual one 	N�t .	/. We define

HN.t/ WD H
�
	Nt j�N�t .	/

�
D
Z
˝N

f N
t .!/ log

f N
t .!/

�Nt .!/
d	N1;0.!/ ; (28)

where f N
t is the density of 	Nt with respect to the reference measure 	N1;0. In

the same way, �Nt is the density of �N�t .	/ with respect to 	N1;0 (which here is
easily computable). The objective is to prove a Gronwall estimate of the entropy
production of the form

@tHN .t/ 6 C HN .t/C o.N / ; (29)
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where C > 0 does not depend on N . In order to prove Theorem 1, we show in
[12] that HN.t/ D o.N / and this implies the existence of the hydrodynamic limit
in the sense given in the theorem, by using the relative entropy inequality (5). For
a proof of this last step, we refer the reader to [3], Proposition 3.3.2. and [8]. Thus,
our purpose now is to prove (29).

We begin with the following lemma, proved in [8], Chap. 6, Lemma 1.4 and [4],
Sect. 3.2. The operator L �

N D �AN C �SN is the adjoint of LN in L
2.	N1;0/.

Lemma 2.

@tHN .t/ 6
Z

1

�Nt

	
N2L �

N �
N
t � @t�Nt



f N
t d	1;0 D 	Nt

�
1

�Nt

	
N2L �

N �
N
t � @t�Nt


�
:

We define �x WD .ex; rx/ and �.t; q/ WD .e.t; q/; r.t; q//: If f is a vectorial function,
we denote its differential by Df . In [12], we prove that we can choose the correction
term to obtain the following technical result.

Proposition 1. The term .�Nt /
�1 	N2L �

N�
N
t � @t�Nt



is given by the sum of five

terms in which a microscopic expansion up to the first order appears.
In other words,

.�Nt /
�1 �N2L �

N�
N
t � @t�Nt

�

D
5X

kD1

X
x2TN

vk
�
t;
x

N

� h
J kx �Hk

�
�
�
t;
x

N

��
� .DHk/

�
�
�
t;
x

N

��
�
�
�x � �

�
t;
x

N

��i

C o.N / (30)

where

k J kx Hk.e; r/ vk.t; q/

1 p2x C rxrx�1 C 2�pxrx�1 e C r2=2 �.2�/�1@2qˇ.t; q/
2 rx C �px r ���1@2q�.t; q/
3 p2x .rx C rx�1/2 .2e � r2/

	
e C 3r2=2



.4�/�1Œ@qˇ.t; q/�2

4 p2x .rx C rx�1/ r .2e � r2/ ��1@qˇ.t; q/ @q�.t; q/
5 p2x e � r2=2 ��1Œ@q�.t; q/�2

(31)

Remark 3. Along the proof, the so-called fluctuation-dissipation equations will play
a crucial role, in particular for the choice of functions F; h.

A priori the first term on the right-hand side of (30) is of order N , but we want
to take advantage of these microscopic Taylor expansions. First, we need to cut-off
large energies in order to work with bounded variables only. Second, the strategy
consists in performing a one-block estimate: we replace the empirical truncated
current which is averaged over a microscopic box centered at x by its mean with
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respect to a Gibbs measure with the parameters corresponding to the microscopic
averaged profiles. This is achieved thanks to the ergodicity of the dynamics (see
Theorem 3). A one-block estimate is performed for each term of the form

X
x2TN

vk
�
t;
x

N

� h
J kx �Hk

�
�
�
t;
x

N

��
� .DHk/

�
�
�
t;
x

N

��
�
�
�x � �

�
t;
x

N

��i
:

(32)

We deal with error terms by taking advantage of the following equality

Hk

�
�
�
t;
x

N

��
D �N�t .x=N/.J

k
0 / (33)

and by using the large deviation properties of the probability measure �N�t .	/, that
locally is almost homogeneous. Along the proof, we will need to control, uniformly
in N , the quantity

Z X
x2TN

exp
�ex
N

�
d	Nt : (34)

In fact, to get the convenient estimate, it is not difficult to see that it is sufficient to
prove (18). For all the details, we refer the reader to [12], where the proof is written
following the lines of [3], Sect. 3.3 and inspired from [11].

4 Proof of Theorem 2: Moments Bounds

Now we review how to prove the two conditions on the moments bounds for a class
of local equilibrium states. Hereafter we assume that the initial law 	N0 is the Gibbs
local equilibrium state 	Nˇ0.	/;�0.	/.

We need to control the moments 	Nt
�P

x e
k
x

�
for all k > 1. The first two bounds

would be sufficient to justify the cut-off of the currents, but here we need more
bounds because of the Taylor expansion (Proposition 1). Precisely, the moments
bounds are necessary to get the term of order o.N / in the right hand-side of (32).
Since the chain is harmonic, Gibbs states are gaussian. Remarkably, all Gaussian
moments can be expressed in terms of variances and covariances. We start with an
other representation of the dynamics of the process, and then we prove the bounds
and describe their dependence on k. Let us highlight that, from now on, we consider
the process with generator LN : it is not accelerated any more. The law of this
new process . Q!t /t>0 is denoted by Q	Nt . Theorem 2 will be easily deduced since all
estimates will not depend on t , and the following equality still holds: 	Nt D Q	N

tN2
:

Remark 4. 1. In the following, we always respect the decomposition of the space
˝N D R

N � R
N . Let us recall that the first N components stand for r and the
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last N components stand for p. All vectors and matrices are written according
to this decomposition. Let � be a measure on ˝N . We denote by m 2 R

2N its
mean vector and by C 2 M2N .R/ its correlation matrix (see (22)). There exist
� WD �Œr� 2 R

N , � WD �Œp� 2 R
N and U; V;Z 2 MN .R/ such that

m D .�; �/ 2 R
2N and C D

�
U Z�
Z V

�
2 S2N .R/ : (35)

Hereafter, we denote by Z� the transpose of the matrix Z.
2. Thanks to the convexity inequality .a C b/k 6 2k�1 .ak C bk/ (a; b > 0, k a

positive integer), we have

ekx 6 1

2

	
p2kx C r2kx



: (36)

Thus, instead of proving (18) we can show

	Nt

2
4X
x2TN

p2kx

3
5 6 .Ck/k�N and 	Nt

2
4X
x2TN

r2kx

3
5 6 .Ck/k�N : (37)

4.1 Poisson Process and Gaussian Measures

We start by giving a graphical representation of the process . Q!t /t>0. Let us define

A WD

0
BBBBBBBBBBBBBBB@

0 � � � � � � 0 �1 1 .0/
:::

::: 0
: : :

: : :
:::

::: 0
: : : 1

0 � � � � � � 0 1 0 0 �1
1 0 0 �1 0 � � � � � � 0
�1 : : : 0

:::
:::

: : :
: : : 0

:::
:::

.0/ �1 1 0 � � � � � � 0

1
CCCCCCCCCCCCCCCA

2 M2N .R/ : (38)

We consider the Markov process .mt ; Ct /t>0 on R
2N � S2N .R/ defined by its

generator G , which can be written as follows.

Take m D .�; �/ 2 R
2N and C D

�
U Z�
Z V

�
2 S2N .R/, with two vectors

�; � 2 R
N and three matrices U; V 2 SN .R/, Z 2 MN .R/. The generator GN is

given by
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.GN v/.m;C / WD .KN v/.m;C /C � .HN v/.m;C / ; (39)

where

KN WD
X
i;j2TN

.�AC C CA/i;j @Ci;j C
X
i2TN

˚
.�iC1 � �i /@�i C .�i � �i�1/@�i

�
;

(40)

.HN v/.m;C / WD 1

2

X
k2TN

Œv.mk; C k/ � v.m;C /� : (41)

In these formulas, we definemk WD .�; �k/ and Ck WD ˙�
k �C �˙k D

�
U Zk�
Zk V k

�
;

where �k is the vector obtained from � by the flip of �k into ��k , and ˙k is

˙k WD
�
In 0n
0n In � 2Ek;k

�
: (42)

Here, Ei;j denotes the .n; n/-matrix which has only one non-zero entry, the
component .i; j /, equal to 1.

We denote by Pm0;C0 the law of the process .mt ; Ct /t>0 starting from .m0; C0/,
and by Em0;C0 Œ�� the expectation with respect to Pm0;C0 . For t > 0 fixed, let �tm0;C0.�; �/
be the law of the random variable .mt ; Ct / 2 R

2N � S2N .R/, knowing that the
process starts from .m0; C0/.

The following lemma, which is proved in [12], gives the link between the two
Markov processes defined in this paper. The proof is based on the Harris description.

Lemma 3. Let 	N0 WD 	Nˇ0.	/;�0.	/ be the Gibbs equilibrium state defined by (14),
where �0.�/ and ˇ0.�/ are two macroscopic potential profiles.

Then,

Q	Nt D
Z
Gm;C .�/ d�tm0;C0.m;C / ; (43)

where the components of .m0; C0/ 2 ˙N can be explicitly expressed (and depend
on �0 and ˇ0).

Remark 5. Observe that we have, from (43),

Q	Nt Œpx� D
Z
Gm;C .px/ d�

t
m0;C0

.m;C / D
Z
�x d�

t
m0;C0

.m;C / D Em0;C0 Œ�x.t/� ;

(44)

Q	Nt Œrx� D
Z
Gm;C .rx/ d�

t
m0;C0

.m;C / D
Z
�x d�

t
m0;C0

.m;C / D Em0;C0 Œ�x.t/� :

(45)
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Finally, thanks to the Harris description and Lemma 3, it is proved in [12] that we
can control the quantities �y.t/ and �y.t/ for all t > 0. More precisely,

Lemma 4. Let .mt ; Ct /t>0 be the Markov process defined above. As previously
done, we introduce �.t/; �.t/ 2 R

N and U.t/; V .t/; Z.t/ 2 MN .R/ such that

mt D .�.t/; �.t// and Ct D
�
U.t/ Z�.t/
Z.t/ V .t/

�
: (46)

Then,

Pm0;C0 - a. s. ; 8 t > 0;

(
�2y.t/ 6 Vy;y.t/ ;

�2y.t/ 6 Uy;y.t/ :
(47)

4.2 Evolution of the Process .mt; Ct/t>0

According to Lemma 4, the problem is reduced to estimate Uy;y.t/ and Vy;y.t/ for
t > 0. Thanks to the regularity of ˇ0 and �0, we know that there exists a constantK
which does not depend on N such that

1

N

X
i

�
.Ui;i /

k.0/C .Vi;i /
k.0/

�
6 Kk; for all k > 1 : (48)

It is easy to see that the above inequality is uniform in t > 0, in the sense that

1

N
Em0;C0

"X
i

�
.Ui;i /

k.t/C .Vi;i /
k.t/

�#
6 Kk; for all k > 1 : (49)

We are going to see how this last inequality can be used to show (18). We denote by
uk.t/ and vk.t/ the two quantities

uk.t/ WD Em0;C0

2
4X
i2TN

U k
i;i .t/

3
5 ; vk.t/ WD Em0;C0

2
4X
i2TN

V k
i;i .t/

3
5 : (50)

Let us make the link with (18). We are going to focus on uk.t/. The same ideas work
for vk.t/. In view of (43), we can write

Q	Nt
h
p2ky

i
D
Z
Gm;C

h
p2ky

i
d�tm0;C0.m;C / : (51)

We use the convexity inequality to get
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Q	Nt
h
p2ky

i
D
Z
Gm;C

�
.py � �y C �y/

2k
�

d�tm0;C0 .m;C /

6 22k�1
�Z

Gm;C
�
.py � �y/2k

�
d�tm0;C0 .m;C /C

Z
�2ky d�tm0;C0 .m;C /

�
:

We deal with the two terms of the sum separately. First, observe that Gaussian
centered moments are easily computable:

Gm;C
�
.py � �y/2k

� D �
Vy;y � �2y

�k .2k/Š
kŠ 2k

: (52)

Hence,

X
y2TN

Z �
Vy;y � �2y

�k .2k/Š
kŠ 2k

d�tm0;C0 .m;C / 6
.2k/Š

kŠ 2k

0
@vk.t/C Em0;C0

2
4 X
y2TN

�2ky .t/

3
5
1
A :

(53)

Lemma 4 shows that

Em0;C0

2
4X
y2TN

�2ky .t/

3
5 6 Em0;C0

2
4X
y2TN

V k
y;y.t/

3
5 D vk.t/ : (54)

As a result,

X
y

Q	Nt
h
p2ky

i
6 .2k/Š

kŠ
vk.t/ 
 2

�
4

e

�k
kk vk.t/ : (55)

As a result, in order to get (18) we need to estimate the two quantities uk.t/ and
vk.t/, which are related to Ct . In [12], the following final technical lemma is proved.

Lemma 5. For any integer k not equal to 0, there exists a positive constantK which
does not depend on N and t such that

(
vk.t/ 6 Kk N ;

uk.t/ 6 Kk N :
(56)
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Large Number Asymptotics for Two-Component
Systems with Self-Consistent Coupling

Valeria Ricci

1 Introduction

The large number limit of systems with particle components involving a self-
consistent structure is one of the most common problems met in applications when
dealing with approximations of equations by particle systems.

In this paper we shall shortly describe two models for two-component mixtures
where the self-consistent structure arises and we shall illustrate how different
techniques can be applied in order to derive macroscopic limits for the associated
particle systems. The models have been studied in [1, 7] and they are on purpose
chosen as simple as possible, although they are inspired by more complex ones,
used in a wide set of contexts (porous media, radiative transfer or, more in general,
various systems in the presence of chemical reactions).

The first model is a semi-deterministic system (with respect to the interaction
among particles) where at the microscopic scale both components are particle-like.

The second one is a system having only one particle-like component, while the
other component is in a fluid state (i.e. somehow the macroscopic limit for this
component has already been performed): this is a deterministic system, in the sense
that a unique stochastic element comes from the initial distributions of the particle-
like component.

The macroscopic limit will be obtained using different techniques, because of the
different nature of components; both techniques are nevertheless of some interest for
the asymptotics of the coupling term.
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2 The Semi-Deterministic Particle System

The first system we shall consider, in dimension d � 2, is a binary semi-
deterministic system consisting in n point like (light) particles, with initial position
xi 2 R

d and velocity vi 2 R
d , i D 1; : : : ; n, moving uniformly among fixed,

spherical obstacles of radius " whose centres ck 2 R
d , k D 1; 2; : : :, are Poisson

distributed with parameter 	". The particle system is linear, in the sense that
particles not belonging to the same species do not interact among themselves, and
particles of different species interact in the following way: a light particle is removed
from the system at the first time it meets an obstacle and an obstacle is removed from
the system in a stochastic interval of time whose size is connected, through a local
mean-field type interaction, to the number of light particles travelling within the
area of detection (range) of the obstacle.

As far as the absorption self-consistent coupling is concerned, the system
combines two type of interactions which have been analysed separately for one
species systems in reaction–diffusion equations (see [10] for the deterministic case,
[8] for the local mean-field type interaction), and which give here a system where
different species of particles interact in a non symmetric way.

More precisely, denoting by t 2 RC the time variable, by Br.p/ the ball
of radius r centred in p 2 R

d , and, for a given z D .x; v/ 2 R
d � R

d , by
T t .z/ D .T t1 .z/; T

t
2 .z// D .x C vt; v/; t 2 RC; the free flow associated to the

light particle with initial position in the phase space z, while x.t/ D T t1 .z/, t 2 RC,
is its trajectory, we may describe the evolution of the system through the following
(interdependent) functions (defined for n light particles with initial positions in the
phase space zi , i D 1; : : : ; n, moving among M obstacles).

The lifetime of an obstacle located in c is fixed through the risk function at a
given position c, which defines the local mean-field type interaction between light
particles and obstacles:

Vn;";M .t; c/ D 1

n

nX
iD1

Z t

0

dsqn.xi .s/ � c/�n;";M .s; zi /; (1)

where qn.x/ D adn q.anx/, is an (at least continuous) approximant, up to a
multiplicative constant, of the Dirac delta distribution (q � 0 is a radial function
s.t.

R
Rd
q.y/dy D � > 0 and limn!1 an D 1) and �n;";M is the stochastic function

associated to the light particles defined below.
The evolution of both particles components is described through their life func-

tions, resp. for a light particle with initial position and velocity .x; v/

�n;";M .t; z/ D Ifx.s/… S
h2f1;:::;MgW�n;";M .s;ch/D1

B".ch/ 8s2Œ0;t/g M � 1 (2)
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(in the absence of obstacles, �n;";0.t; z/ D 1) and for an obstacle centred in ck 2
fc1; : : : ; cM g,

�n;";M .t; ck/ D IfVn;";M .t;ck/<
kg; (3)

where 
1; 
2; : : : are independently distributed exponential variables.
We want to study this system in the large n limit, when the mean free path of

the light particles is kept finite (so that the interaction between light particles and
obstacles does not disappear in the limit), and in particular we want to analyse the
Markovian limit, i.e. the one where correlations are absent (cf. [9] for a short review
concerning linear particle systems).

As discussed in [1], the proper scaling in this case, when in addition the radius
" of the obstacles vanishes, is selected by choosing the Poisson parameter such that
	" D 	"1�d , 	 > 0, together with adnn

� 1
2 < C (here and in what follows, C will

denote constants whose value is not relevant to the estimates), so to keep the mean
free path finite; moreover, in order to avoid the presence of correlations, we have to
assume "� D o.a�dn / when n ! 1 for some � 2 .0; 1

2
� 1

2d
/, so connecting the

scalings of " and n, together with lim
n!1

adn
n


D 0 for some 
 2 .0; 1
2
/, as a technical

requirement due to the singularity in the limit of the risk function.
The quantities associated to the densities of the two species of particles are then

(ıx denotes the Dirac delta distribution)

	n.t; dx; dvI zn; cM/ D 1

n

nX
iD1

ıT t .zi /.dx; dv/�n;";M .t; zi / (4)

and

�n.t; dxI zn; cM/ D "d�1
MX
kD1

ıck .dx/�n;";M .t; ck/: (5)

The guessed limit system of partial differential equations for the two densities
f D f .t; x; v/ and � D �.t; x/, t 2 Œ0; T �, x 2 R

d , v 2 R
d , associated resp. to the

light particles and the obstacles, assuming the before mentioned requirements are
fulfilled, is given by the system:

8̂
<̂
ˆ̂:

@tf C v � rxf D �Cd jvj�f
@t� D ��.R dvf /�
f .0; x; v/ D f0.x; v/
�.0; x/ D 	;

(6)

where Cd D R
f!2Rd Wj!jD1g jN � !jd! is a constant (here N is a generic unit vector,

jN j D 1, and, as can be easily checked, Cd is independent of it). As discussed in [1],
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we choose f0 � 0 such that f0 2 L1.Rdv IW 1;1.Rdx //, vf0 2 L1.Rdv IW 1;1.Rdx //\
L1.Rdx � R

d
v /, v2f0 2 L1.Rdv IL1.Rdx //, so to have existence and uniqueness for

the solution to the system.
In spite of the extreme simplicity of the limit system, the rigorous proof of this

limit is quite complicate, because of the self-consistent structure of (1), (2), (3),
which does not allow to express in explicit form, or in a form easy to compare with
other functions, the functions describing the particle system.

Nevertheless, since one of the components interacts with the other through a
(stochastic) mean-field type interaction, although a sufficiently careful analysis of
the light particles trajectories in the style of [2, 4, 5] is still needed, we can apply a
strategy similar to the one used in [8].

The steps in the procedure are then the following:

2.1 Step 1: Elimination of the Self-Consistent Structure

In order to eliminate the self-consistent structure of (6) and (1), (2), (3), we define
two sequences of linear systems.

The first one, approximating (6), is defined as

f .0/.t; x; v/ D f0.x � vt; v/; �.0/.t; x/ D 	

8̂
<̂
ˆ̂:

@tf
.k/ C v � rxf .k/ D �Cd jvj�.k�1/f .k/

@t�
.k/ D �.� R

Rd
dvf .k�1//�.k/

f .0; x; v/ D f0.x; v/
�.0; x/ D 	

k D 1 : : : ; (7)

and we have lim
k!1 kf �f .k/kL1.Œ0;T ��Rd�Rd / D 0, lim

k!1 k���.k/kL1.Œ0;T ��Rd / D 0.

The second one, (formally) approximating the particle system (1), (2), (3), is
defined resp., for integers M;k � 1, j D 1; : : : ; n and ` D 1; : : : ;M , as:

V
.0/
n;";M .t; c`/ D 0; V

.k/
n;";M .t; c`/ D

1

n

nX
iD1

Z t

0

dsqn.xi .s/ � c`/�.k�1/n;";M .s; zi / (8)

�
.0/
n;";M .t; zj / D 1; �

.k/
n;";M .t; zj / D Ifxj .s/… S

h2f1;:::;MgW�
.k�1/
n;";M .s;ch/D1

B".ch/ 82Œ0;t/g (9)

and

�
.0/
n;";M .t; c`/ D 1; �

.k/
n;";M .t; c`/ D IfV .k/n;";M .t;c`/<
`g (10)
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(in the absence of obstacles �.0/n;";0.t; zj / D �
.k/
n;";0.t; zj / D 1), and is a linearization of

the particle system (1), (2), (3) in the same spirit of the linearization (7) of (6), i.e.
where, for each k, the two components evolve in the field associated to the functions
defined at the previous step in the sequence, k � 1, which is given.

The relevant property of the approximating system defined by (8), (9), (10) is the
so called sandwiching property ([8]), i.e., for k D 1; 2 : : :,

�
.2k�1/
n;";M � �

.2kC1/
n;";M � �n;";M � �

.2k/
n;";M � �

.2k�2/
n;";M

V
.2k�2/
n;";M � V

.2k/
n;";M � Vn;";M � V

.2kC1/
n;";M � V

.2k�1/
n;";M

�
.2k�1/
n;";M � �

.2kC1/
n;";M � �n;";M � �

.2k/
n;";M � �

.2k�2/
n;";M :

(11)

This property, once fixed a given asymptotics for n and ", has the following
implications for the expectation values with respect to the centres distribution
(restricted to a volume including all light particle trajectories up to time T ) and
the exponential variables 
1; 
2 : : : denoted as En:

E
njV .k/

n;";M � NV .k/j ! 0 H) E
njVn;";M � VLj ! 0

E
nj�.k/n;";M � N�.k/j ! 0 H) E

n
E
p j�n;";M � �Lj ! 0

E
n
E
 j�.k/n;";M � N�.k/j ! 0 H) E

n
E
 j�n;";M � �Lj ! 0

E
nj R d z	n�.�

.k/
n;";M � N�.k//j ! 0 H) E

n
E
p j

R
d z	n�.�n;";M � �L/j ! 0;

�� 2 Cb.Rd � R
d /

(12)

where the risk function VL.t; c/ D �
R t
0

ds
R
Rd

dvf .s; c; v/ and the life functions
�L.t; z/ D IfCd jT t2 .z/j

R t
0 ds�.s;T s1 .z//<
pg, �L.t; c/ D IfVL.t;c/<
g (for 
 and 
p exponen-

tially distributed variables) and, with analogous definitions, the risk function NV .k/

and the life functions N�.k/, N�.k/ are resp. the risk functions and the life functions
associated to the limit system (6) and to its approximating system (7). We recall
that the solution to the system (6) can be expressed as f .t; x; v/ D f0.x �
vt; v/E
p Œ�L.t; T

�t .x; v//�, �.t; x/ D 	E
 Œ�L.t; x/�, and analogous expressions
hold for the solution to (7).

These implications allow to bypass the direct evaluation of quantities related to
the particle system (1), (2), (3).
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2.2 Step 2: Reduction of Correlations

Once eliminated the self-consistent structure, still the system defined by (8), (9),
(10) keeps strong correlations for " finite between light particles and obstacles.

We can further reduce correlations by defining an intermediary system which can
be proved to be asymptotically equivalent to both (7) and (8), (9), (10).

For integersM;k � 1, j D 1; : : : ; n and ` D 1; : : : ;M , the intermediate system
is defined in the following way

OA.k/n;";M .t; c`/ D
1

n

nX
iD1

Z t

0

ds qn.xi .s/ � c`/ O�.k�1/n;";M .s; zi / (13)

O�.0/n;";M .t; zj / D 1; O�.k/n;";M .t; zj / D Ifxj .s/… S
h2f1;:::;MgWI

f NV .k�1/.s;ch/<
hg
D1

B".ch/ 8s2Œ0;t/g

(14)

O�.k/n;";M .t; c`/ D If OA.k/n;";M .t;c`/<
`g (15)

(and in the absence of obstacles O�.0/n;";0.t; zj / D O�.k/n;";0.t; zj / D 1) where 
k , 1 � k �
M , are independent exponentially distributed times.

Here, the life functions of light particles at level k are defined through fictitious
obstacle life functions corresponding to the life functions at level k�1 associated to
the system (7), while the life functions of the obstacles at level k is defined through
the life functions of particles for the same system but at the level k � 1

This system with reduced correlations can be proved to converge in quadratic
mean with respect to E

n to both (7) and (8), (9), (10): the first convergence can
be proved separately for the particle component and the obstacle component, while
the second convergence is more tricky, requiring estimates based on proving that
deleting or adding a finite number of particles or obstacles does not modify the
limit.

We resume schematically the relations among the five systems introduced thus
far in Fig. 1.

2.3 Step 3: Convergence of (8), (9), (10) to (7)

Once we obtain the convergence of the low-correlated system defined by (13), (14),
(15) on one side to (8), (9), (10) and on the other to (7), we can easily prove, by
triangular inequalities, the convergence of the quantities on the left-hand side of
(12). We can then write:

�n;";M D .�n;";M � �L/C .�L � N�.k//C N�.k/
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Fig. 1 Schematic connection between the original systems, (1), (2), (3) and (6), and their
asymptotic relation and the auxiliary systems defined in Step 1, (8), (9), (10) and (7), and Step 2,
(13), (14), (15)

and

�n;";M D .�n;";M � �L/C .�L � N�.k//C N�.k/

and of course f D .f �f .k//Cf .k/: and � D .� ��.k//C�.k/, and prove, thanks
to the previously obtained convergences, that for all � 2 Cb.Rd�Rd /, 2 CK.Rd /
and for all k � 1

lim
n!1E

n

"ˇ̌1
n

nX
iD1

�.T t .zi //�n;";M .t; zi / �
Z
Rd�Rd

dxdv�.x; v/f .t; x; v/
ˇ̌# D 0

and

lim
n!1E

n

"ˇ̌
"d�1

MX
iD1

 .ci /�n;";M .t; ci / �
Z
Rd

dx .x/�.t; x/
ˇ̌# D 0

so that, under some technical hypothesis and denoting L d the Lebesgue measure
in R

d , we can prove the following weak law of large numbers for (4) and (5)
(Theorem 2.1 in [1]):

Theorem 1. Consider the non-negative functions f0 and q and assume

• f0 2 S .Rd � R
d /
T
L1.Rdv IW 1;1.Rdx // is a probability density such

that
R
Rd

dvf0 2 S .Rd / with
R
Rd

dvf 0.0; v/ > 0, and vf0 2 L1.Rdv IW 1;1.Rdx //,
v2f0 2 L1.Rdv IL1.Rdx //;

• q is a radial function s.t. q 2 S .Rd / and
R
Rd

dxq.x/ D � > 0;
• fang1nD1 is such that an > 0, lim

n!1 an D 1 and there exists some 
 2 .0; 1
2
/ such

that

lim
n!1

adn
n


D 0I (16)
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• f"g1nD1 D f"ng1nD1 s.t. "n > 0 and

lim
n!1 a

d
n "

� D 0 (17)

for some � 2 .0; 1
2
� 1

2d
/.

Then, denoting as P the (infinite product) probability measure defined on
the space of infinite sequences .Rd � R

d /1 by f0, P-almost everywhere w.r.t.
sequences of initial data fzig1iD1 and in probability w.r.t. the Poisson distribution
of centres and to the probability distribution associated to 
1; 
2; : : :, when n! 1

	n.t; dx; dvI zn; cM/ * f .t; x; v/L 2d (18)

�n.t; dxI zn; cM/
�
* �.t; x/L d ; (19)

where .f; �/ is the unique solution to

8̂
<̂
ˆ̂:

@tf C v � rxf D �Cd jvj�f
@t� D ��.R dvf /�
f .0; x; v/ D f0.x; v/
�.0; x/ D 	:

(20)

Here S .Rn/ denotes the space ofC1.Rn/ functions of rapid decay at infinity,*
the weak convergence, or convergence in law, in the space of finite measures, while
�
* denotes the *-weak, or vague, convergence on the space of Radon measures.

We pass now to describe a two-component system in a different setting, and other
techniques needed to study its asymptotic behaviour.

3 The Fluid-Particle System

The second system we shall consider is rather different from the previous one.
In an open bounded domain ˝ 	 R

3 (but, with suitable modifications in the
arguments, proofs can be adapted to the case of unbounded domains), we consider a
two-phase system, where a background material (continuous component) surrounds
N very small spherical inclusions of radius � (discrete component) located at the
positions x1; : : : ; xN 2 R

3: the variable describing the system satisfies the heat
equation in the volume occupied by the continuous component, while each small
sphere has its own temperature, constant on the volume of the sphere but varying
with time. The interactions between the two components takes place through the
boundary conditions on the border of the inclusions.

Using the same notation as in the previous section, the system is defined by the
following problem
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8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

@tT�.t; x/ D ��xT�.t; x/ ; x 2 ˝ n
N[
iD1

B�.xi / ; t > 0 ;

@T�

@n
.t; x/ D 0 ; x 2 @˝ ; t > 0 ;

T�.t; x/ D Ti;�.t/ ; x 2 @B�.xi / ; t > 0 ; 1 � i � N ;

PTi;�.t/ D �
0

�

Z
@B�.xi /

@T�

@n
.t; x/dS.x/ ; t > 0 ; 1 � i � N ;

T�.0; x/ D T in� .x/ ; x 2 ˝ :
(21)

where � and � 0 are positive constants, dS is the surface element on @B and

T in� 2HN D
�

u 2 L2.˝/j

u.x/ D 1

jB�.xi /j
Z
B�.xi /

u.y/dy for a.e. x 2B�.xi / ; i D 1; : : : ; N

�
:

(This problem can be seen as the model governing the exchange of heat between
the spherical inclusions and the continuous component when the heat conductivity
of the small inclusions is so large to be considered infinite.)

The fourth equation in (21) says that the time derivative of the temperature Ti;�
in each ball is determined by the flux of rT� across the surface @B�.xi /.

We want to analyse the limit in which the volume fraction of the inclusions is
negligible while the heat capacity of each inclusion is very large, for a sufficiently
general distribution of inclusions. We shall assume then the distribution of centres
to be such that

1

N

NX
iD1

ıxi * �L 3

(weakly in the sense of measures), with � sufficiently regular and where L 3 denotes,
as before, the Lebesgue measure in R

3.
The guessed limit system, assuming that

Z
˝n

NS
iD1

B�.xi /

T in
� .x/

2dx C �

� 0 �
NX
iD1

jT in
i;�j2 � C for all � > 0 : (22)

and that

T in
� * T in in L2.˝/ weak as � ! 0
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1

N

NX
iD1

T in
i;�ıxi * #in in Mb.˝/ weak-* as � ! 0 ;

is the following system of partial differential equations (corresponding to models
proposed on the basis of macroscopic arguments)

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

.@t � ��x/T .t; x/C 4��.�.x/T .t; x/ � #.t; x// D 0 ; x 2 ˝ ; t > 0 ;

@t#.t; x/C 4�� 0.#.t; x/ � �.x/T .t; x// D 0 ; x 2 ˝ ; t > 0 ;

@T

@n
.t; x/ D 0 ; x 2 @˝ ; t > 0 ;

T .0; x/ D T in.x/ ; #.0; x/ D #in.x/ ; x 2 ˝ :
(23)

where T and #
�

are resp. the temperatures of the background material and of the
inclusions and � represents the limit density of the inclusions.

We shall consider for the convergence proof weak solutions to this system, and
in particular, assuming �; 1

�
2 Cb. N̋ /, we have T 2 L1.Œ0;C1/IL2.˝// \

L2.0; 
 IH1.˝// and # 2 L1.Œ0;C1/IL2.˝// for all 
 > 0, such that

d

dt

Z
˝

T�dx C �

Z
˝

rxT � r�dx C 4��

Z
˝

.�T � #/�dx D 0 (24)

d

dt

Z
˝

# dx C 4�� 0
Z
˝

.# � �T / dx D 0 (25)

in the sense of distributions on .0;C1/ for each � 2 H1.˝/ and  2 L2.˝/,
together with the initial conditions.

In order to obtain the limit, we choose the number of inclusions to scale as N D
1
�
, which can be heuristically justified by the fact that in this way the energy identity

associated to (21)

1
2

2
4
Z
˝n

NS
iD1

B�.xi /

T 2� dx C �

� 0 �
NX
iD1

T 2i;�

3
5C �

Z t

0

Z
˝n

NS
iD1

B�.xi /

jrxT�j2dxds

D 1
2

2
4
Z
˝n

NS
iD1

B�.xi /

jT in
� j2dx C �

� 0 �
NX
iD1

jT in
i;�j2

3
5

(26)

keeps in the limit a finite, non vanishing contributions of the inclusions. We shall
assume moreover that the inclusions are far apart one of each other, i.e. that jxi �
xj j > 2r� , with r� D �

1
3 , for all i; j D 1; : : : ; N:
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This system is on one hand, i.e. from the probability point of view, simpler than
the previous one, since one of the component is continuous; on the other hand, from
the point of view of the PDE analysis, it is defined by a mixed, time dependent
boundary condition problem on which it may be tricky to perform the limit in the
needed asymptotics.

Indeed, the procedure to be used in this case is quite different from the one used
in the previous case: we adopt to prove the limit homogenization techniques already
used in ([6]) and originating from [3], which are specific for the homogenization of
boundary value problems.

First, we start by giving the variational formulation of (21), which we shall use
to pass to the limit.

This is, for each ˚� 2 VN D HN \H1.˝/,

d

dt

0
@
Z
˝n

NS
iD1

B�.xi /

T�˚�dx C 3�
4�� 0

1

�2

Z
NS
iD1

B�.xi /

T�˚�dx

1
A

C �
Z
˝n

NS
iD1

B�.xi /

rxT� � r˚�dx D 0 (27)

for a.e. t 2 Œ0;C1/. As described in [7], the solution T� 2 C.Œ0;C1/IHN / \
L2.0; 
;VN / for all 
 > 0 to this problem (together with the initial condition) exists
and is unique.

We associate to T� the empirical measure 	�.t; dxd�/ WD 1
N

PN
iD1 ıxi ˝ ıTi;�.t/,

denoting by 	in� the same quantity with Ti;� D T ini;� . In particular, note that its first
moment

R
R
�	�.t; �; d�/ with resp. to � describes the temperature of the inclusions.

The variational formulation of the problem can be then rewritten as

d

dt

�Z
˝

T�˚�dx � 4�
3
�2
Z
˝�R

˚��	�.t; dxd�/C �

� 0

Z
˝�R

˚��	�.t; dxd�/

�

C �
Z
˝

rxT� � r˚�dx D 0:

(28)

As a consequence of the energy identity (26), the quantities kT�.t; �/k2L2.˝/,R t
0
krxT�k2

L2.˝n
NS
iD1

B�.xi //

ds and �
PN

iD1 Ti;�.t/2 D R
˝�R �

2	� are uniformly

bounded.
These bounds imply, (together with the hypothesis on the distribution of centres),

that the sequence T� is relatively compact in L1.Œ0;C1/IL2.˝// weak-* and
in L2.0; 
 IH1.˝// weak for all 
 > 0, and the sequence .1 C jxj2 C �2/	� is
relatively compact in L1.Œ0;C1/IMb.˝ � R//. The limit points T and 	 resp.
of T� and 	� are such that T 2 L1.Œ0;C1/IL2.˝// \ L2.0; 
 IH1.˝// and # DR
R
�	.t; �; d�/ 2 L1.Œ0;C1/IL2.˝//.
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On another side, j 4�
3
�2
R
˝�R˚��	�.t; dxd�/j � �2C , so that the second term in

(28) vanishes in the � ! 0 limit.
In order to pass to the limit in (27) we proceed in the following way: we consider

two classes of test functions, each capturing one part of the behaviour of the system
and covering in the � ! 0 limit C1

c .˝/ (and, by a density argument, the desired
class of test functions) and we shall then obtain two limit equations which are
equivalent to the system (23).

For each  2 C.B.0; �//, define �Œ � to be the solution to
8̂
<̂
ˆ̂:

��Œ �.z/ D 0 ; � < jzj < r� ;
�Œ �.z/ D  .z/ ; jzj � � ;

�Œ �.z/ D 0 ; jzj D r� :

(29)

and

Q�.x/ WD
NX
iD1

�Œ�.xi C �/ � �.xi /�.x � xi / (30)

P�.x/ WD
NX
iD1

�Œ�.xi C �/�.x � xi / (31)

We shall consider first the class of test functions of the form

˚�.x/ WD �.x/ �Q�.x/ ;

capturing the variation in time on the boundary of the solution to (21) (in general,
˚�jB.xi ;�/ D �.xi / ¤ 0). Since, by construction, Q� ! 0 strongly in H1.˝/ when
� ! 0, the same is true for the convergence ˚� ! �, so that, thanks to the a priori
estimates on the solution, we have

Z
˝

rxT� � r˚�dx !
Z
˝

rxT .t; x/ � r�.x/dx weakly in L2.Œ0;C1//;

Z
˝

T�˚�dx !
Z
˝

T�dx in L1.Œ0;C1//weak-*;

Z
˝�R

˚�.x/�	�.t; dxd�/!
Z
˝�R

��	.t; dxd�/ in L1.Œ0;C1// weak-*:

We obtain therefore as a limit of (27)

d

dt

�Z
˝

T�dx C �

� 0

Z
˝�R

��	.t; dxd�/

�
C �

Z
˝

rxT � r�dx D 0 (32)

in L2loc.Œ0;C1// for each � 2 C1
c .˝/.
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Then we shall choose

��.x/ WD �.x/ �P�.x/:

Now, �� 2 H1.˝/ is such that ��jB.xi ;�/ D 0 for all i D 1; : : : ; N , so that this class
of test functions “sees” (21) as if the boundary conditions would be constant with
respect to time, and the variational formulation of the problem simplifies as

d

dt

Z
˝

T���dx C �

Z
˝

rxT� � r��dx D 0: (33)

The asymptotic behaviour of the equation is now more complicate to evaluate:
due to the requirement that the test function vanishes on the boundary of the spheres,
we only have P� * 0 weakly in H1.˝/, so, while for the first term it is still valid
the convergence

Z
˝

T�.t; x/��.x/dx !
Z
˝

T .t; x/�.x/dx in L1.Œ0;C1// weak-*

as � ! 0 (since still P� ! 0 strongly in L2.˝/), the second term in the variational
formulation cannot be evaluated directly.

As well explained in [3], although for a different structure of the test functions,
the asymptotic behaviour of this term can be determined by taking advantage of the
strong convergence in H�1.˝/ of a part of

�
�� , being the bad part such that its

integral onH1 functions vanishing on the inclusions is zero (we recall that, although
we cannot discuss here this issue, this behaviour is related to the structure of the
inclusions and can be described on the basis of more general principles). On another
side, on the inclusions, where all involved functions are constant, the H�1.˝/
strong convergence will not be needed, so that thanks also to the assumption on the
distribution of centres, the convergence properties in the given scaling of all involved
functions will be good enough to get the limit. We have therefore to decompose the
solution into a term vanishing on the inclusions plus a residual term, in order to
perform the computation.

We write then

T�.t; x/ D ��.t; x/CS�.t; x/

where S�.t; x/ WD PN
iD1 �ŒTi;�.t/�.x � xi /, so that ��jB.xi ;�/ D 0 and S� * 0 in

L1.Œ0;C1/IH1.˝// weak-*.
We may then rewrite

Z
˝

rxT� � r��dx D
Z
˝

rxT� � r.� �Q�/dx (34)

�
Z
˝

rxS� � r.P� �Q�/dx �
Z
˝

rx�� � r.P� �Q�/dx;
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where Q� is defined in (30): doing so, we split P� into two components, vanishing
respectively strongly and weakly in H1:

Notice that the dependence on � of the function .P� � Q�/ is reduced to the
dependence on its values in the centres of the inclusions, �.xi /, i D 1; : : : ; N , so
that, writing this dependence as .P� � Q�/Œ�.xi /; i D 1; : : : ; N �, we have S� D
.P� �Q�/ŒTi;�.t/; i D 1; : : : ; N �.

Directly from the convergence properties of S� and rxT� we get
Z
˝

rxT� � r.� �Q�/dx !
Z
˝

rxT � r�

in L2.Œ0; 
�/ weak for all 
 > 0.
The last two terms on the second line of (34) have to be evaluated explicitly, and

their values are determined by the distribution of holes [3, 6, 7].
For the first term, we get (cf. Lemma 6.3 in [7])

Z
˝

rxS� � r.P� �Q�/dx ! 4�

Z
˝�R

�.x/�	.t; dxd�/

in L1.RC/ weak-*. This term, which is related to the analysis on the inclusions
and on their nearest neighbourhood, can be easily evaluated by observing that

Z
˝

rxS� � r.P� �Q�/dx D kr�Œ1�k2
L2.RN /

NX
iD1

Ti;�.t/�.xi /

D 4�r�

r� � �
Z
˝�R

�.x/�	�.t; dxd�/:

The second term is the one where the H�1.˝/ strong convergence of
�
�� is

needed, and we get (cf. Lemma 6.4 in [7])

Z
˝

rx�� � r.P� �Q�/dx ! �4�
Z
˝

�T�dx in L2.Œ0; 
�/ weak;

where the required H�1.˝/ convergence is proved by proving
PN

iD1 �.xi /r�
ı@B.xi ;r�/ ! 4��� strongly in H�1.R3/ as � ! 0 (cf. [3, 6]).

Collecting all the terms, we finally get in the limit � ! 0 the equation

d

dt

Z
˝

T�dx C �

Z
˝

rxT � r�dx C 4��

Z
˝

�T�dx

�4��
Z
˝�R

�.x/�	.t; dxd�/ D 0 (35)

in L2loc.Œ0;C1// for each � 2 C1
c .˝/.
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The convergence for the initial conditions can be obtained from the uniform
convergence in Œ0; 
� of the terms at the interior of the time derivative in (27) and
(33), resp. evaluated on the first and the second class of test functions.

The two equations (32), (35) can be recombined (and extended by a density
argument) to get the equivalent system (24), i.e. the weak formulation of (23), so
that we prove finally the convergence of the whole sequence .T�; #�/ to the unique
weak solution to (23).

The theorem we are able to prove is then the following one (Theorem 2.6 in [7]):

Theorem 2. Let N D 1
�
. Assume that, when � ! 0, the distribution of inclusion

centres satisfies 1
N

NP
iD1

ıxi * �L 3, with �; 1
�
2 Cb. N̋ /, and that the initial datum

T in
� satisfies the bound (22). Assume further that T in

� ! T in in L2.˝/ weak as
� ! 0, while 1

N

PN
iD1 T in

i;�ıxi ! # in in Mb.˝/ weak-* as � ! 0.
Let T� 2 C.Œ0;C1/IHN / \ L2.0; 
;VN / for all 
 > 0 be the weak solution to

the scaled infinite heat conductivity problem (21). Then, in the limit � ! 0,

T� ! T

in L2.0; 
 IH1.˝// weak for all 
 > 0 and in L1.Œ0;C1/IL2.˝// weak-*, and

#� WD 1

N

NX
iD1

Ti;�ıxi ! #

in L1.Œ0;C1/IMb.˝// weak-*, where Ti;� WD 3
4��3

R
B.xi ;�/

T�.t; x/dx.
Besides

T 2 Cb.Œ0;C1/IL2.˝// � L2.0; 
 IH1.˝// for each 
 > 0

while

# 2 Cb.Œ0;C1/IL2.˝// :

Finally, the pair .T; #/ is the unique weak solution to the homogenized system (23)
with initial condition

T jtD0 D T in ; #jtD0 D # in :

4 Conclusion

We have presented two examples of systems with at least one particle component
leading in the large number asymptotics to sets of partial differential equations
modelling two-component systems with self-consistent coupling. The two examples
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are different in nature, one of them having a prevalent stochastic nature, the other
being more on the analytical setting. We have sketched how to obtain the rigorous
proof of the convergence of the microscopic system to the macroscopic limit
equations in a mean-field type scaling in the two cases. The details of the proofs
are presented in [1] and [7].
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On a Stochastic Coupled System
of Reaction-Diffusion of Nonlocal Type

E.A. Coayla-Teran, J. Ferreira, P.M.D. de Magalhães, and H.B. de Oliveira

1 Introduction

In this paper, we study the following initial-boundary value problem involving a
stochastic nonlinear parabolic system of nonlocal type

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

ut � a
�Z

D

u dx

�
�u D g1.v/C f1.u; v/

@W1

@t
on D � �0;1Œ ;

vt � a
�Z

D

v dx

�
�v D g2.u/C f2.u; v/

@W2

@t
on D � �0;1Œ ;

.u.x; 0/; v.x; 0// D .u0.x/; v0.x// in D;

.u; v/ D .0; 0/ on @D � �0;1Œ ;
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where D is an open bounded subset of Rn, n � 1, with a smooth boundary @D. On
the nonlocal function a D a.s/, we assume that:

a is a Lipschitz-continuous function with Lipschitz constant denoted by LI (2)

0 < p � a.s/ � P ; where p and P are constants. (3)

.W1.t/;W2.t//t2Œ0;1Œ is a two-dimensional real Wiener process, the maps fi W
L2.D/ � L2.D/ ! L2.D/; gi W L2.D/ ! L2.D/; with i D 1; 2 satisfy the fol-
lowing conditions:

kfi .z1; x1/�fi .z2; x2/k2�J
	kz1� z2k2Ckx1� x2k2


8 z1; z2; x1; x2 2L2.D/I
(4)

fi .0; 0/ D 0I (5)

kgi .z1/ � gi .z2/k2 � K
	kz1 � z2k2


 8 z1; z2 2 L2.D/I (6)

gi .0/ D 0 ; where J and K are positive constants: (7)

Moreover, the multiplicative white noise, represented by the random forcing term
g.t; u/ @W

@t
in the model, describes a state dependent random noise.

Remark 1. For simplicity we are considering reaction terms g1 and g2 depending
only on one quantity: v or u, respectively. But we may as well consider their
dependence on both quantities u and v, as long as they satisfy to the corresponding
version of the assumption (4). The consideration of cross reactions g1.v/ and g2.u/
is only to emphasize the existence of coupling also on the reaction terms.

For the last several decades, various types of equations have been employed as
some mathematical model describing physical, chemical, biological and ecological
systems. Among them, the most successful and crucial one is the following model
of semilinear parabolic partial differential equation

@u

@t
� A�u � f .u/ D 0; (8)

where f W Rn ! Rn is a nonlinear function, and A is an n�n real matrix. In [15] it
was considered the reaction-diffusion equation (8), where A is an n � n real matrix
and f W Rn ! Rn is a C2 function. There, it was studied the exponential decay
for some cases. In the literature, most authors assume that the diffusion matrix
A is diagonal, so that the coupling between the equations is present only on the
nonlinearity of the reaction term f . However, cross-diffusion phenomena are not
uncommon (see e.g. [3, 13, 14] and the references cited therein) and can be treated
as equations in which A is not even diagonalizable. In [6] the authors studied the
existence and uniqueness of solutions for non local problems of the form
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8̂
ˆ̂̂<
ˆ̂̂̂
:

ut � a
�Z

D

u dx

�
�u D f .x; t/ in D � �0; T Œ ;

u.x; t/ D 0 on @D � �0; T Œ ;
u.x; 0/ D u0.x/ in D :

(9)

where @D is a smooth boundary, T is some arbitrary time, and a is some function
from R into .0;C1/. This problem arises in various situations. For instance, u
could describe the density of a population (for instance, of bacteria) subject to
spreading. The diffusion coefficient a is then supposed to depend on the entire
population in the domain rather than on the local density, i.e., moves are guided
by considering the global state of the medium.

It was given in [10] an extension of the result obtained in [6], considering a D
a.l.u// where l W L2.D/ ! R is a continuous linear form and f D f .x; u/ a
continuous functions. Indeed, in [10] the authors improved the results in [6–8] by
considering both stationary and evolution situations where the nonlinearity appears
not only in the operator u ! a

	R
˝

udx


�u but also in the right-hand side in which

one has the nonlinear function f:
The problem studied in [6, 10] is nonlocal in the sense that the diffusion

coefficient is determined by a global quantity. These kind of problems, besides its
mathematical motivation, arise from physical situations related to migration of a
population of bacteria in a container in which the velocity of migration V D aru
depends on the global population in a subdomain D0 	 D given by a D a

	R
D

udx



(see [4, 5] and reference therein). In [9] the authors studied the existence and
uniqueness of weak solutions for a random version of class of nonlinear parabolic
problems of nonlocal type and with additive noise

8̂
ˆ̂̂<
ˆ̂̂̂
:

ut � a
�Z

D

u dx

�
�u D �u C f C @g

@t
in D � �0; T Œ ;

u.x; t/ D 0 on @D � �0; T Œ ;
u.x; 0/ D u0.x/ in D :

(10)

As a motivation for our problem, let us consider an island with two types of
species: Rabbits and Foxes. Clearly one plays the role of predator while the other
the role of a prey. If we are interested to model the population growth of both
species, then we have to keep in mind that if, for example, the population of the
foxes increases, then the rabbit population will be affected. So, the rate of change of
the population of one type will depend on the actual population of the other type. For
example, in the absence of the rabbit population, the fox population will decrease
(and fast) to face a certain extinction. Something that most of us would like to avoid.
In this case, if the difference among the two populations tends to zero, then there is
one natural control for the species. In our case, u and v could describe the densities
of two population that interact in a common atmosphere. Does this system type have
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a solution? If affirmative, is the solution stabilized or not controllable? In case that
it is stabilized, at which rate? We intend to answer these questions.

In this paper, we study the existence and uniqueness of weak solutions for the
problem (1). Using some techniques explored in [2], we improve the results obtained
by the authors in [9] for coupled systems. In [6] the authors have proved some results
for the problem (1) including the analysis of the asymptotic behavior of its solution,
without the term g.t; u/ @W

@t
.

This paper is organized as follows. Before our main results, in Sect. 2 we briefly
outline the notation and terminology to be used subsequently. In Sect. 3, we prove
the existence and uniqueness of weak solutions. Section 4 is devoted to establish the
asymptotic behavior of the solutions. Finally, we present the Appendix with useful
properties that shall be used in the sequel.

2 Notation and Formulation of the Problem

Let .˝;F ;P/ be a complete probability space and let .F /
t2RC

0
be a right-

continuous filtration such that F0 contains all F�null sets. E.X/ denotes the
mathematical expectation of the random variable X . We abbreviate a.s. for almost
surely ! 2 ˝ and we write L for the Lebesgue measure on RC

0 WD Œ0;1Œ.
Let B be a Banach space with norm k � kB . Then B.B/ denotes the

Borel ��algebra of B . The space L2.˝ � RC
0 IB/ is the set of all F ˝

B.RC
0 /�measurable process u W ˝ � RC

0 ! B which are Ft� adapted and
E.
R1
0

kuk2Bdt/ < 1. Analogously, the space L1.˝ � RC
0 IR/ is the set of all

F ˝B.RC
0 /�measurable process u W ˝ � RC

0 ! R which are Ft� adapted and
for almost everywhere .!; t/ 2 ˝�RC

0 bounded. In this work, .W1.t/;W2.t//t2RC

0

is a Wiener process Ft�adapted.
Throughout this work D is an open bounded and connected subset of Rn with a

smooth boundary @D. We denote the Lebesgue measure ofD by jDj WD R
D

dx. Let
Hs.D/ denote the usual Sobolev space of order s with norm denoted by k � ks; and
inner product by .�; �/s . In particular, H0.D/ D L2.D/, k � k WD k � k0 and .�; �/ WD
.�; �/0. H1

0 .D/ denotes the Sobolev space of order 1 of functions with zero traces
on the boundary, and its dual space is denoted by H�1.D/. The duality product
betweenH�1.D/ andH1

0 .D/ is denoted by h�; �i. We assume that .ru;ru/ D kuk21
for u 2 H1

0 .D/.
We define the map A W H1

0 .D/! H�1.D/ by hA u; �i D a
	R
D

u dx


.ru;r�/

for � 2 H1
0 .D/.

Let u0; v0 be random variables L2.D/�valued, F0�measurable such that
E.ku0k2 C kv0k2/ <1:

In this work, we mean that the stochastic process .u; v/ is a weak solution of the
problem (1) in the following sense:
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Definition 1. The stochastic process .u.t/; v.t//
t2RC

0
2 L2.˝ � RC

0 IH1
0 .D// �

L2.˝ � RC
0 IH1

0 .D//, with a.s. sample paths continuous in L2.D/ � L2.D/, is a
weak solution of the problem (1) if satisfies to:

.u.t/; �/C
Z t

0

hA u; �i .s/ds D .u0; �/C
Z t

0

.f1.u.s/; v.s//; �/dW1.s/

C
Z t

0

.g1.v.s//; �/ds (11)

.v.t/; �/C
Z t

0

hA v; �i .s/ds D .v0; �/C
Z t

0

.f2.u.s/; v.s//; �/dW2.s/

C
Z t

0

.g2.u.s//; �/ds (12)

a.s. for all �; � 2 H1
0 .D/ and for all t 2 RC

0 , where the stochastic integral is
considered in the Itô sense.

We address the reader to the monographs [1,11,12,16] for an explanation on the
mathematical foundations of the stochastic equations, its applications and for more
details on the used tools.

3 Existence of Solution

Theorem 1. Assume that (2)–(7) are fulfilled and suppose that

p >
CP .2J CK C 1/

2
; (13)

where CP is the Poincaré inequality’s constant and J andK are the constants from
the assumptions (4) and (6). Then the problem (1) has a solution, which is unique
and has a.s. sample paths continuous in L2.D/ � L2.D/:
Note that, here, we mean uniqueness in the sense of indistinguishability.

Proof. We shall split the proof of Theorem 1 into several steps.

Part 1 – Approximate problem: If f˛j Iwj g1jD1 is the eigensystem of ��, with

domain H1
0 .D/ \ H2.D/, then 0 < ˛1 � ˛2 � : : :. We remark that

˚
wj
�1
jD1

is an orthonormal set in L2.D/ and is orthogonal in H1
0 .D/. For each n 2 ZC,

let u0n D Pn
iD1 .u0;wi /wi .x/ ! u0, v0n D Pn

iD1 .v0;wi /wi .x/ ! v0 be
in L2.˝IL2.D//, and let un WD Pn

iD1 �inwi ; vn WD Pn
iD1 ˇinwi , where

.�in; ˇin/
n
iD1 are solutions to the approximate problem given by the following

system of the stochastic differential equations
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.un.t/;wk/ D .u0n;wk/ �
Z t

0

hA un.s/;wki ds C
Z t

0

.g1.vn.s//;wk/ ds

C
Z t

0

.f1.un.s/; vn.s//;wk/ dW1.s/ ; (14)

.vn.t/;wk/ D .v0n;wk/ �
Z t

0

hA vn.s/;wki .s/ds C
Z t

0

.g2.un.s//;wk/ ds

C
Z t

0

.f2.un.s/; vn.s//;wk/ dW2.s/ (15)

a.s., for k D 1; 2; : : : ; n and for all t 2 RC
0 : Since (14)–(15) is a finite dimensional

Itô system of equations, we may apply a well-known result (see [12, Theorem 3,
p. 45] or [1, Corollary 6.3.1, p. 112]) to prove the existence of a unique solution
.un; vn/ such that .un; vn/ 2 L2.˝ �RC

0 IH1
0 .D//�L2.˝ �RC

0 IH1
0 .D// with a.s.

sample paths continuous in L2.D/ � L2.D/ and Ft�adapted.
Then, we apply Itô’s formula to the system (14)–(15) to obtain

kun.t/k2 D kun.0/k2 C
Z t

0

kf1 .un.s/; vn.s// k2ds C 2

Z t

0

.g1.vn.s//; un.s// ds

C2
Z t

0

.f1.un.s/; vn.s//; un.s// dW1.s/ � 2
Z t

0

hA un; uni .s/ds ;

kvn.t/k2 D kvn.0/k2 C
Z t

0

kf2 .un.s/; vn.s// k2ds C 2

Z t

0

.g2.un.s//; vn.s// ds

C2
Z t

0

.f2.un.s/; vn.s//; vn.s// dW2.s/ � 2
Z t

0

hA vn; vni .s/ds

a.s. and for all t 2 RC
0 . Now, adding up the above equations, using (3) together with

the assumptions (4)–(7) and finally using Poincaré’s inequality, we obtain

kun.t/k2 C kvn.t/k2 C 2p

Z t

0

	kun.s/k21 C kvn.s/k21



ds �

2JCP

Z t

0

	kun.s/k21 C kvn.s/k21



ds C .K C 1/CP

Z t

0

	kun.s/k21 C kvn.s/k21



ds

C 2

Z t

0

.f1.un.s/; vn.s//; un.s// dW1.s/C 2

Z t

0

.f2.un.s/; vn.s//; vn.s// dW2.s/

C kun.0/k2 C kvn.0/k2 ;

where CP is the Poincaré inequality’s constant and J andK are the constants from
the assumptions (4) and (6). Hence,
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E
	kun.t/k2 C kvn.t/k2




C Œ2p � .2J CK C 1/CP � E

�Z t

0

	kun.s/k21 C kvn.s/k21



ds

�

� kun.0/k2 C kvn.0/k2 � ku.0/k2 C kv.0/k2: (16)

Then, owe to the assumption (13), (16) and (3) yield that

E

�Z 1

0

kA un.t/k2�1dt

�
� P E

�Z 1

0

kun.t/k21dt

�
<1 ; (17)

E

�Z 1

0

kA vn.t/k2�1dt

�
� P E

�Z 1

0

kvn.t/k21dt

�
<1 ; (18)

where P is the constant upper bound from the assumption (3). Moreover, from the
assumptions (4)–(7), and by using Poincaré’s inequality, it can also be proved that

E

�Z 1

0

kfi .un.t/; vn.t//k2dt

�
� JCPE

�Z 1

0

	kun.t/k21 C kvn.t/k21



dt

�
<1 ;

for i D 1; 2, and

E

�Z 1

0

kg1.vn.t//k2dt

�
� KCPE

�Z 1

0

kvn.t/k21dt

�
<1 ; (19)

E

�Z 1

0

kg2.un.t//k2dt

�
� KCPE

�Z 1

0

kun.t/k21dt

�
<1 ; (20)

Thus, using (17)–(20) and by means of reflexivity, there exists a subsequence, still
denoted by fun; vng, and there exist Ou; Ov 2 L2.˝ �RC

0 IH1
0 .D//, a

�
1 ; a

�
2 2 L2.˝ �

RC
0 IH�1.D//; g�1 ; g�2 f �

1 ; f
�
2 2 L2.˝ �RC

0 IL2.D// such that, letting n! 1,
we have

un * Ou ; vn * Ov in L2.˝ �RC
0 IH1

0 .D// ;

A un * a�1 ; A vn * a�2 in L2.˝ �RC
0 IH�1.D// ;

g1.vn/ * g�1 ; g2.un/ * g�2 in L2.˝ �RC
0 IL2.D// ;

f1.un; vn/ * f �
1 ; f2.un; vn/ * f �

2 in L2.˝ �RC
0 IL2.D// :

(21)

Part 2 – Passing to the limit: Using the convergence results (21) together with
Proposition 2 (see Appendix), we can pass to the limit n ! 1 in (14)–(15) to
obtain

.Ou.t/; �/ D .u0; �/ �
Z t

0

ha�1 ; �i ds C
Z t

0

	
g�1 ; �


C
Z t

0

	
f �
1 ; �



dW1.s/ ; (22)
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.Ov.t/; �/ D .v0; �/ �
Z t

0

ha�2 ; �i ds C
Z t

0

	
g�2 ; �


C
Z t

0

	
f �
2 ; �



dW2.s/ (23)

for almost all .!; t/ 2 ˝ �RC
0 and for every �; � 2 H1

0 .D/:

Now, let .u.t/; v.t//
t2RC

0
denote the L2.D/ � L2.D/-valued process which is

Ft -adapted and equal to .Ou.t/; Ov.t// for P � L a.e. .!; t/ 2 ˝ � RC
0 which has

a.s. sample paths continuous in L2.D/�L2.D/ (see [16, Theorem 2, p. 73]). Thus,
from (22)–(23), it follows

.u.t/; �/ D .u0; �/ �
Z t

0

ha�1 ; �i ds C
Z t

0

.g�1 ; �/ds C
Z t

0

.f �
1 ; �/dW1.s/ (24)

.v.t/; �/ D .u0; �/ �
Z t

0

ha�2 ; �i ds C
Z t

0

.g�2 ; �/ds C
Z t

0

.f �
2 ; �/dW2.s/ (25)

a.s., for all �; � 2 H1
0 .D/, and for all t 2 RC

0 :

Then, we consider the stopping time TM WD T u;v
M (see Appendix). We claim that

.u.t/; v.t//
t2RC

0
satisfies to

lim
n!1E

Z TM

0

ku.s/ � un.s/k21ds D 0 and lim
n!1Eku.TM/ � un.TM/k2 D 0 ;

(26)

lim
n!1E

Z TM

0

kv.s/ � vn.s/k21ds D 0 and lim
n!1Ekv.TM/ � vn.TM/k2 D 0 :

(27)

In fact, from (24)–(25) and (14)–(15), we have

..u � un/.t/;wk/ D
Z t

0

h.A un � a�1 /.s/;wki ds

C
Z t

0

.f �
1 .s/ � f1.un.s/; vn.s//;wk/dW1.s/C

Z t

0

.g�1 � g1.vn.s//;wk/ds ;

..v � vn/.t/;wk/ D
Z t

0

h.A vn � a�2 /.s/;wki ds

C
Z t

0

.f �
2 .s/ � f2.un.s/; vn.s//;wk/dW2.s/C

Z t

0

.g�2 � g2.un.s//;wk/ds

a.s., for all t 2RC
0 and all kD 1; : : : ; n. For each n2N, let Qun.t/ WD Pn

iD1
.u.t/;wi /wi and Qvn.t/ WDPn

iD1.v.t/;wi /wi . Thanks to Itô’s formula, we obtain
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k.Qun � un/.t/k2 D
Z t

0

2 h.A un � a�1 /.s/; .Qun � un/.s/i ds

C 2

Z t

0

	
f �
1 .s/ � f1.un.s/; vn.s//; .Qun � un/.s/



dW1.s/

C
Z t

0

kf �
1 .s/ � f1.un.s/; vn.s//k2ds C

Z t

0

2.g�1 � g1.vn/; .Qun � un/.s//ds ;

k.Qvn � vn/.t/k2 D
Z t

0

2 h.A vn � a�2 /.s/; .Qvn � vn/.s/i ds

C 2

Z t

0

	
f �
2 .s/ � f2.un.s/; vn.s//; .Qvn � vn/.s/



dW2.s/

C
Z t

0

kf �
2 .s/ � f2.un.s/; vn.s//k2ds C

Z t

0

2.g�2 � g2.un/; .Qvn � vn/.s//ds

a.s. and for all t 2 RC
0 .

Now, let

e.t/ D e
R t
0 h.s/ ds�C t a.s. and for all t 2 RC

0 ;

where the function h.s/ and the constant C are to be specified later on in (35). Using
the Itô formula, we have

e.t/k.Qun � un/.t/k2 D 2

Z t

0

e.s/ h.A un � a�1 /.s/; .Qun � un/.s/i ds

C2
Z t

0

e.s/.f �
1 .s/ � f1.un.s/; vn.s//; .Qun � un/.s//dW1.s/

C
Z t

0

e.s/kf �
1 .s/ � f1.un.s/; vn.s//k2ds

C2
Z t

0

e.s/.g�1 � g1.vn/; .Qun � un/.s//ds

C
Z t

0

e.s/h.s/k.Qun � un/.s/k2ds � C
Z t

0

e.s/k.Qun � un/.s/k2ds ; (28)

e.t/k.Qvn � vn/.t/k2 D 2

Z t

0

e.s/ h.A vn � a�2 /.s/; .Qvn � vn/.s/i ds

C2
Z t

0

e.s/.f �
2 .s/ � f2.un.s/; vn.s//; .Qvn � vn/.s//dW2.s/

C
Z t

0

e.s/kf �
2 .s/ � f2.un.s/; vn.s//k2ds
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C2
Z t

0

e.s/.g�2 � g2.un/; .Qvn � vn/.s//ds

C
Z t

0

e.s/h.s/k.Qvn � vn/.s/k2ds � C
Z t

0

e.s/k.Qvn � vn/.s/k2ds: (29)

To proceed with, we observe that, for i D 1; 2, it holds

kf �
i .s/ � fi .un.s/; vn.s//k2 D kfi .u.s/; v.s// � fi .un.s/; vn.s//k2C

2
	
f �
i .s/ � fi .u.s/; v.s//; f �

i .s/ � fi .un.s/; vn.s//

 � kf �

i .s/ � fi .u.s/; v.s//k2
(30)

and, by using (6) together with the inequalities of Hölder, Cauchy and Minkowski,
it can be proved that

	
g�1 � g1.vn/; Qun � un


C 	
g�2 � g2.un/; Qvn � vn


 �	
g�1 � g1.v/; Qun � un


C 	
g�2 � g2.u/; Qvn � vn




C
�
K C 1

2

� 	kQun � unk2 C kQvn � vnk2

CK

	ku � Qunk2 C kv � Qvnk2


:

(31)

Then, adding up (28) and (29) and using (30)–(31) together with (3), we obtain

e.t/
	k.Qun � un/.t/k2 C k.Qvn � vn/.t/k2




C2p
Z t

0

e.s/
	k.Qun � un/.s/k21 C k.Qvn � vn/.s/k21



ds

C
2X
iD1

Z t

0

e.s/kf �
i .s/ � fi .u.s/; v.s//k2ds �

2

Z t

0

e.s/

�
a

�Z
D

undx

�
.rQun.s/;r.Qun � un/.s// � ha�1 .s/; .Qun � un/.s/i

�
ds

C2
Z t

0

e.s/

�
a

�Z
D

vndx

�
.rQvn.s/;r.Qvn � vn/.s// � ha�2 .s/; .Qvn � vn/.s/i

�
ds

C2
2X
iD1

Z t

0

e.s/
	
f �
i .s/ � fi .un.s/; vn.s//; .Qun � un/.s/



dW i .s/

C2
2X
iD1

Z t

0

e.s/
	
f �
i .s/ � fi .u.s/; v.s//; f �

i .s/ � fi .un.s/; vn.s//



ds

C
2X
iD1

Z t

0

e.s/kfi .u.s/; v.s// � fi .un.s/; vn.s//k2ds
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C2
Z t

0

e.s/
�
.g�1 � g1.v.s//; .Qun � un/.s//C .g�2 � g2.u.s//; .Qvn � vn/.s//

�
ds

C.2K C 1 � C/
Z t

0

e.s/
	k.Qun � un/.s/k2 C k.Qvn � vn/.s/k2



ds

C2K
Z t

0

e.s/
	k.u � Qun/.s/k2 C k.v � Qvn/.s/k2



ds

C
Z t

0

e.s/h.s/
	k.Qun � un/.s/k2 C k.Qvn � vn/.s/k2



ds : (32)

Now, we observe that by using, in this order, Hölder’s inequality, assumptions
(2)–(3) and Cauchy’s inequality with � D p

4
, we can prove that

a

�Z
D

un dx

�
.rQun;r.Qun � un// � ha�1 ; Qun � uni � hA .u/ � a�1 ; Qun � uni

C P 2

p
kQun � uk21 C

p

4
kQun � unk21 C

L2jDj
p

kun � uk2kQunk21 C
p

4
kQun � unk21 ;

(33)

a

�Z
D

vn dx

�
.rQvn;r.Qvn � vn// � ha�2 ; Qvn � vni � hA .v/ � a�2 ; Qvn � vni

C P 2

p
kQvn � vk21 C

p

4
kQvn � vnk21 C

L2jDj
p

kvn � vk2kQvnk21 C
p

4
kQvn � vnk21 :

(34)

Then we proceed by applying (33)–(34) to the first two terms on the right-hand
side of (32) and by using assumption (4) together with Minkowski’s and Cauchy’s
inequalities in the fifth term of the same right-hand side. Next, we use Minkowski’s
and Cauchy’s inequalities on the last term of the right-hand side. This procedure
leads us to

e.t/
	k.Qun � un/.t/k2 C k.Qvn � vn/.t/k2




C p

Z t

0

e.s/
	k.Qun � un/.s/k21 C k.Qvn � vn/.s/k21



ds

C
2X
iD1

Z t

0

e.s/kf �
i .s/ � fi .u.s/; v.s//k2ds �

2

Z t

0

e.s/
	hA .u.s// � a�1 .s/; .Qun � un/.s/i C hA .v.s// � a�2 .s/; .Qvn � vn/.s/i



ds
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C 2P 2

p

Z t

0

e.s/
	k.Qun � u/.s/k21 C k.Qvn � v/.s/k21



ds

C 2L2jDj
p

Z t

0

e.s/
	k.un � u/.s/k2 C k.vn � v/.s/k2
 	kQun.s/k21 C kQvn.s/k21



ds

C 2

2X
iD1

Z t

0

e.s/
	
f �
i .s/ � fi .un.s/; vn.s//; .Qun � un/.s/



dW i .s/

C 2

2X
iD1

Z t

0

e.s/
	
f �
i .s/ � fi .u.s/; v.s//; f �

i .s/ � fi .un.s/; vn.s//



ds

C .4J C 2K/

Z t

0

e.s/
	k.u � Qun/.s/k2 C k.v � Qvn/.s/k2



ds

C 2

Z t

0

e.s/
�
.g�1 � g1.v.s//; .Qun � un/.s//C .g�2 � g2.u.s//; .Qvn � vn/.s//

�
ds

C .4J C 2K C 1 � C/
Z t

0

e.s/
	k.Qun � un/.s/k2 C k.Qvn � vn/.s/k2



ds

C 2

Z t

0

e.s/h.s/
	k.Qun � u/.s/k2 C k.Qvn � v/.s/k2
 ds

C 2

Z t

0

e.s/h.s/
	k.un � u/.s/k2 C k.vn � v/.s/k2
 ds :

Then, choosing

h.s/ D �L
2jDj
p

	kQun.s/k21 C kQvn.s/k21



and C D 4J C 2K C 1 ; (35)

we can see that the third, eighth and the last two terms on the right-hand side of the
above inequality disappear. As a consequence, we obtain

lim
n!1E

	
e.TM/k.Qun � un/.TM/k2


 D 0 D lim
n!1E

	
e.TM/k.Qvn � vn/.TM/k2



;

lim
n!1E

Z TM

0

e.s/k.Qun � un/.s/k21ds D 0 D lim
n!1E

Z TM

0

e.s/k.Qvn � vn/.s/k21ds

(36)

and

E

Z TM

0

e.s/kf �
i .s/ � fi .u.s/; v.s//k2ds D 0 with i D 1; 2: (37)
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From (36) and due to the properties of TM over Œ0;TM � for fixed M 2 ZC, we
obtain

lim
n!1Ek.Qun � un/.TM/k2 D lim

n!1E
Z TM

0

k.Qun � un/.s/k21ds D 0 ;

lim
n!1Ek.Qvn � vn/.TM/k2 D lim

n!1E
Z TM

0

k.Qvn � vn/.s/k21ds D 0 :

Now, (26) and (27) is an immediate consequence.

Part 3 – Convergence of the non-linear term: From (37), we obtain that

IŒ0;TM �fi .u.s/; v.s// D IŒ0;TM �f
�
i .s/ a:e:.!; t/ 2 ˝�RC

0 for i D 1; 2. (38)

We claim that

lim
n!1E

 Z TM

0

.hA u.s/; �.s/i � hA un.s/; �.s/i/ds

!
D 0; (39)

for all � 2 L2.˝ �RC
0 IH1

0 .D//: Indeed,

�
a

�Z
D

u dx

�
ru � a

�Z
D

un dx

�
run;r�

�
D

��
a

�Z
D

u dx

�
� a

�Z
D

un dx

��
ru;r�

�
C
�
a

�Z
D

un dx

�
.ru � run/;r�

�

implies

E

 Z TM

0

.hA u.s/; �.s/i � hA un.s/; �.s/i/ ds

!
�

LjDj
 
E

 Z TM

0

k.u � un/.s/k2ds

!!1=2  
E

 Z TM

0

ku.s/k21kr�.s/k2ds

!!1=2
C

P

 
E

 Z TM

0

k.u � un/.s/k21ds

!!1=2  
E

 Z TM

0

k�.s/k21ds

!!1=2
:

Analogously, we obtain

lim
n!1E

 Z TM

0

.hA v.s/; �.s/i � hA vn.s/; �.s/i/ds

!
D 0 (40)

for all � 2 L2.˝ �RC
0 IH1

0 .D//
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From (39) and (40) and since A .un/ * a�1 ; A .vn/ * a�2 in L2.˝ � RC
0 I

H�1.D//, we have

IŒ0;TM �.s/a
�
1 .s/ D IŒ0;TM �.s/A .u.s// ; IŒ0;TM �.s/a

�
2 .s/ D IŒ0;TM �.s/A .v.s//

(41)

for almost everywhere .!; t/ 2 ˝ �RC
0 . Since

lim
n!1E

 Z TM

0

.g1.v.s//; �.s// � .g1.vn.s//; �.s//ds

!
D 0 ;

lim
n!1E

 Z TM

0

.g2.u.s//; �.s// � .g2.un.s//; �.s//ds

!
D 0

for all � 2 L2.˝ �RC
0 IH1

0 .D//, we have, for a.e. .!; t/ 2 ˝ �RC
0 ,

IŒ0;TM �g1.v.s// D IŒ0;TM �g
�
1 .s/ ; IŒ0;TM �g2.u.s// D IŒ0;TM �g

�
2 .s/ :

Owing to this, we obtain, by using (38), (41) in (24)–(25), that

.u.t ^TM/; �/ D .u0; �/ �
Z t^TM

0

hA u.s/; �i ds C
Z t^TM

0

.g1.v.s//; �/ds

C
Z t^TM

0

.f1.u.s/; v.s//; �/ dW1.s/ ; (42)

.v.t ^TM/; �/ D .u0; �/ �
Z t^TM

0

hA v.s/; �i ds C
Z t^TM

0

.g2.u.s//; �/ds

C
Z t^TM

0

.f2.u.s/; v.s//; �/ dW2.s/ ; (43)

a.s. 8�; � 2 H1
0 .D/, t 2 RC

0 .
Next, we observe that, by the properties of TM and due to Proposition 1,

P.
S1
MD1 fTM � T g/ D 1.

Now, let˝ 0 WD ˚
! 2˝ W! 2 S1

MD1 fTM �T g and u.!; t/ satisfies (42)–(43)
�
:

We have P.˝ 0/ D 1: For ! 2 ˝ 0, there exists M0 2 ZC such that TM.!/ � T for
all M �M0: From (42)–(43), one gets

.u.t/; �/ D .u0; �/ �
Z t

0

hA u.s/; �i ds C
Z t

0

.g1.v.s//; �/ds

C
Z t

0

.f1.u.s/; v.s//; �/ dW1.s/ ;
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.v.t/; �/ D .u0; �/ �
Z t

0

hA v.s/; �i ds C
Z t

0

.g2.u.s//; �/ds

C
Z t

0

.f2.u.s/; v.s//; �/ dW2.s/;

a.s. for all �; � 2 H1
0 .D/; t 2 RC

0 . Thus .u.t/; v.t// is a weak solution of (1).

Part 4 – Uniqueness: Let .u1; v1/; .u2; v2/ 2 L2.˝ � RC
0 IH1

0 .D// � L2.˝ �
RC
0 IH1

0 .D// be two weak solutions of the problem (1). We fix the notation

ı.t/ D e
R t
0 i.s/ ds a.s. and for all t 2 RC

0 ;

where the function i.s/ is to be defined later on in (44). Thanks to Itô’s formula, we
obtain

ı.t/k.u1 � u2/.t/k2 D �2
Z t

0

a

�Z
D

u1 dx

�
ı.s/.r.u1 � u2/.s/;r.u1 � u2/.s// ds

C2
Z t

0

�
a

�Z
D

u2 dx

�
� a

�Z
D

u1 dx

��
ı.s/ .ru2.s/;r.u1 � u2/.s// ds

C2
Z t

0

ı.s/.g1.v1.s// � g1.v2.s//; u1 � u2/ds

C
Z t

0

ı.s/kf1.u1.s/; v1.s// � f1.u2.s/; v2.s//k2ds

C2
Z t

0

ı.s/ .f1.u1.s/; v1.s// � f1.u2.s/; v2.s//; .u1 � u2/.s// dW1.s/

C
Z t

0

ı0.s/k.u1 � u2/.s/k2ds ;

ı.t/k.v1 � v2/.t/k2 D �2
Z t

0

a

�Z
D

v1 dx

�
ı.s/.r.v1 � v2/.s/;r.v1 � v2/.s// ds

C2
Z t

0

�
a

�Z
D

v2 dx

�
� a

�Z
D

v1 dx

��
ı.s/ .rv2.s/;r.v1 � v2/.s// ds

C2
Z t

0

ı.s/.g2.u1.s// � g2.u2.s//; .v1 � v2/.s//ds

C
Z t

0

ı.s/kf2.u1.s/; v1.s// � f2.u2.s/; v2.s//k2ds

C2
Z t

0

ı.s/ .f2.u1.s/; v1.s// � f2.u2.s/; v2.s//; .v1 � v2/.s// dW2.s/

C
Z t

0

ı0.s/k.v1 � v2/.s/k2ds :
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Then we add up the above two equations and we use assumption (3) in the first
two terms on the right-hand side of the resulting equation. In the second two terms,
we use assumption (2) and Hölder’s inequality. In the terms with fi we use the
assumption (4) and for the terms with gi we use (6) together with Hölder’s and
Cauchy’s inequalities. This procedure leads us to

ı.t/
	k.u1 � u2/.t/k2 C k.v1 � v2/.t/k2




C 2p

Z t

0

ı.s/
	k.u1 � u2/.s/k21 C k.v1 � v2/.s/k21



ds �

C 2

Z t

0

ı.s/LjDj 12 k.u2 � u1/.s/k kru2.s/k kr.u1 � u2/.s/k ds

C 2

Z t

0

ı.s/LjDj 12 k.v2 � v1/.s/k krv2.s/k kr.v1 � v2/.s/k ds

C .2J CK C 1/

Z t

0

ı.s/
	k.u1 � u2/.s/k2 C k.v1 � v2/.s/k2



ds

C 2

Z t

0

ı.s/ .f1.u1.s/; v1.s// � f1.u2.s/; v2.s//; .u1 � u2/.s// dW1.s/

C 2

Z t

0

e.s/ .f2.u1.s/; v1.s// � f2.u2.s/; v2.s//; .v1 � v2/.s// dW2.s/

C
Z t

0

ı0.s/
	k.u1 � u2/.s/k2 C k.v1 � v2/.s/k2



ds :

By assumption (13), we may consider the positive constant

q WD p � CP .2J CK C 1/

2
:

Next we use Hölder’s and Cauchy’s inequalities, the later with � D q

2
, in the second

two terms and Poincaré’s inequality in the third term, both on the right-hand side of
the previous inequality. We thus achieve to

ı.t/
	k.u1 � u2/.t/k2 C k.v1 � v2/.t/k2




Cq
Z t

0

ı.s/
	k.u1 � u2/.s/k21 C k.v1 � v2/.s/k21



ds �

CL
2jDj
q

Z t

0

ı.s/
	k.u1 � u2/.s/k2 C k.v1 � v2/.s/k2


 	ku2.s/k21 C kv2.s/k21



ds

C2
Z t

0

ı.s/ .f1.u1.s/; v1.s// � f1.u2.s/; v2.s//; .u1 � u2/.s// dW1.s/
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C2
Z t

0

ı.s/ .f2.u1.s/; v1.s// � f2.u2.s/; v2.s//; .v1 � v2/.s// dW2.s/

C
Z t

0

ı0.s/
	k.u1 � u2/.s/k2 C k.v1 � v2/.s/k2



ds :

Finally, choosing

i.s/ D �L2jDj
q

	ku2.s/k21 C kv2.s/k21


; (44)

we can see that the first and the last term, on the right-hand side of the above
inequality, cancel each other. Thus, from Gronwall’s Lemma, we obtain

ı.t/
	k.u1 � u2/.t/k2 C k.v1 � v2/.t/k2


 D 0 for all t 2 RC
0 :

Then P ..u1.t/; v1.t// D .u2.t/; v2.t/// D 1 for all t 2 RC
0 . Since u1, v1 and u2,

v2 are a.s. continuous in L2.D/, we prove that P
	
.u1.t/; v1.t// D .u2.t/; v2.t// ;

8t 2 RC
0


 D 1: ut

4 Asymptotic Behavior

We conclude this paper by proving a result on the asymptotic behavior of the weak
solution to the problem (1).

Theorem 2. Suppose that (13) holds and denote by � the largest constant such that

�
	ku.t/k2 C kv.t/k2
 � kr u.t/k2 C kr v.t/k2 a.s. and for all t 2 RC

0

for the solution .u.t/; v.t//
t2RC

0
obtained in Theorem 1. Then

E
	ku.t/k2 C kv.t/k2
 � E .ku0k C kv0k/ e�.2p��.KC1/�2J /t for all t 2 RC

0 .
(45)

Remark 2. Note that if the initial data .u0; v0/ is chosen such that the equality
(45) is realized in the Poincaré’s inequality constant, then the largest constant
� is obviously C�1

P . Consequently, under assumption (13), the argument of the
exponential e�.2p��.KC1/�2J /t is non-positive.

Proof. Let un.t/ WD Pn
jD1

	
u.t/;wj



wj and vn.t/ WD Pn

jD1
	
v.t/;wj



wj . From

(11)–(12) and Itô’s formula, we obtain
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kun.t/k2 D
nX

jD1
.u0;wj /

2 �
Z t

0

2 hA u.s/; un.s/i ds C
Z t

0

2 .g1.v.s//; un.s// ds

C
Z t

0

nX
jD1

.f1.u.s/; v.s//;wj /
2ds C

Z t

0

2 .f1.u.s/; v.s//; un.s// dW1.s/ ;

kvn.t/k2 D
nX

jD1
.v0;wj /

2 �
Z t

0

2 hA v.s/; vn.s/i ds C
Z t

0

2 .g2.u.s//; vn.s// ds

C
Z t

0

nX
jD1

.f2.u.s/; v.s//;wj /
2ds C

Z t

0

2 .f2.u.s/; v.s//; vn.s// dW2.s/ :

Hence,

E
	kun.t/k2


 D E

0
@ nX
jD1

.u0;wj /
2

1
A �E

�Z t

0

2 hA u.s/; un.s/i ds

�

CE
�Z t

0

2 .g1.v.s//; un.s// ds

�
CE

0
@
Z t

0

nX
jD1

	
f1.u.s/; v.s//;wj


2
ds

1
A ;

E
	kvn.t/k2


 D E

0
@ nX
jD1

.v0;wj /
2

1
A �E

�Z t

0

2 hA v.s/; vn.s/i ds

�

CE
�Z t

0

2 .g2.u.s//; vn.s// ds

�
CE

0
@
Z t

0

nX
jD1

	
f2.u.s/; v.s//;wj /

2



ds

1
A :

Letting n! 1, we get

E
	ku.t/k2
 D E

	ku0k2

 �E

�Z t

0

2 hA u.s/; u.s/i ds

�

CE
�Z t

0

2 .g1.v.s//; u.s// ds

�
CE

�Z t

0

kf1.u.s/; v.s//k2ds

�
;

E
	kv.t/k2
 D E

	kv0k2

 �E

�Z t

0

2 hA v.s/; v.s/i ds

�

CE
�Z t

0

2 .g2.u.s//; v.s// ds

�
CE

�Z t

0

kf2.u.s/; v.s//k2ds

�
:



On a Stochastic Coupled System of Reaction-Diffusion of Nonlocal Type 319

Using the properties of a and Hölder’s inequality, we obtain

d

dt

	
E
	ku.t/k2 C kv.t/k2

C 2p�

	
E
	ku.t/k2 C kv.t/k2



� E .2kg1.v.t//kku.t/k/
CE 	kf1.u.t/; v.t//k2
CE .2kg2.u.t//kkv.t/k/CE

	kf2.u.t/; v.t//k2
 :
Using (4)–(7), we have

d

dt

	
E
	ku.t/k2 C kv.t/k2

C .2p� � .K C 1/ � 2J /E 	ku.t/k2 C kv.t/k2
 � 0

and (45) follows. ut

Appendix

Let .Q.t/; R.t// be a H1
0 .D/ �H1

0 .D/�valued process with

Z C1

0

kQ.s/k21 C kR.s/k21ds <1 a.s.

For each M 2 N, we introduce the following stopping times

T
Q;R
M WD

8̂
ˆ̂<
ˆ̂̂:

inf

�
t � 0 W

Z t

0

kQ.s/k21 C kR.s/k21ds �M

�

C1; if
Z C1

0

kQ.s/k21 C kR.s/k21ds < M :

Proposition 1. P.T
Q;R
M < C1/! 0 and T

QIR
M ! C1 a.s. when M ! 1

Proof. The proof follows immediately from [2, Lemma 3.2-(i)]. ut
Proposition 2. Let fxng 2 L2.˝;RC

0 IB/ a sequence such that xn * x in L2.˝ �
RC
0 IB/. Then

Z t

0

xn.s/dW.s/ *
Z t

0

x.s/dW.s/ ;
Z t

0

xn.s/ds *
Z t

0

x.s/ds in L2.˝�RC
0 IB/:

Proof. See [2, Corollary 4.2]. ut
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