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Abstract. Statistical descriptions of regional wall motion abnormali-
ties of the heart are key to understanding both sub-clinical and clinical
progression of dysfunction. In this paper we establish a temporal reg-
istration framework of the cardiac cycle to build a spatio-temporal at-
las of 300 asymptomatic volunteers and 300 symptomatic patients with
myocardial infarction. A finite-element model was customised to each
person’s magnetic resonance images with expert-guided semi-automatic
spatial and temporal registration of model parameters. A piece-wise lin-
ear temporal registration from user-defined key frames was followed by a
Fourier series temporal estimation, providing temporal continuity. All
spatial and temporal data were then statistically analysed by means
of principal component analysis. Results show differences in spheric-
ity, wall thickening and mitral valve dynamics between the two groups.
The modes are available from www.cardiacatlas.org. These atlases can
be readily applied to abnormality detection and quantification and can
also aid in anatomically constrained shape-based algorithms in automatic
planning or segmentation.

1 Introduction

Cardiac magnetic resonance imaging (CMRI) provides detailed spatial and func-
tional information of the human heart. Typically, clinical parameters of interest
include endocardial volume, left ventricular (LV) mass, wall thickening and ejec-
tion fraction. However, regional wall motion abnormalities are clinically impor-
tant in the diagnosis and evaluation of regional heart disease such as myocardial
infarction. These take the form of spatial variation of temporal characteristics
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which are at present qualitatively assessed by clinicians as being normal or ab-
normal, for example in determining regional wall motion scores.

Statistical atlases of the heart are, in this context, collections of patient
datasets, which can be the images themselves or derived measurements or mod-
els which have been registered to a common reference. In this paper we build the
latter, i.e. a distribution of regional wall motion in terms of shape and function
from two different populations. These atlases are becoming increasingly pop-
ular in both the bioengineering [5, 14] and clinical fields [11] since they offer
an unprecedented quantitative comparison between a patient and a population.
However, to date most atlases have typically focused on specific time points such
as end-diastole (ED) and end-systole (ES) and do not usually include all tem-
poral information [10, 12, 13]. In our previous work [14], a similar finite-element
model was used however the data and methodology were different. Examples of
fully spatio-temporal atlases include [3, 5, 8].

Full coverage of the time domain presents two main challenges, time registra-
tion and continuous interpolation. In this paper we address these two challenges
and present an asymptomatic and symptomatic spatio-temporal atlas through
their modes of variation. The main contributions of this paper are:

1. A compact representation of the spatio-temporal variation of regional wall
motion in terms of a parametric model with a relatively small number of
parameters

2. Application to a reasonably large number of asymptomatic and symptomatic
cases

3. Identification of clinically important shape indicators including sphericity
and wall thickening in the symptomatic vs. asymptomatic groups.

2 Data and Methods

Image data were obtained using the Cardiac Atlas Project [6] from two clini-
cal studies: the Multi-Ethnic Study of Atherosclerosis (MESA) study [1] for the
asymptomatic cohort and the Defibrillators To Reduce Risk By Magnetic Reso-
nance Imaging Evaluation (DETERMINE) clinical trial [9] for the symptomatic
sample. Three hundred cases were randomly selected from each study. A typical
dataset comprised 20-30 frames in 6-8 short-axis slices and 3-4 long-axis slices
(imaging parameters can be found in [1, 9]). All images were acquired using
prospective electrocardiogram gating and therefore cover the entire cycle.

At the time of recruitment, the MESA study protocol ensured that partici-
pants did not have clinical evidence of heart attack, angina, stroke, heart failure
or atrial fibrillation [1]. The DETERMINE study was designed as a prospective,
multi-centre, randomised, clinical trial in patients with coronary artery disease
and mild-to-moderate LV dysfunction [9].

Guide-point modelling [19] was used to adaptively optimise a time-varying
3D finite-element model of the LV to fit each subject’s images using custom
software (CIM version 6.0, Auckland, New Zealand). The model was interactively
fitted to “guide points” provided by the analyst, as well as computer-generated
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data points calculated from the image using an edge detection algorithm by
linear least-squares. The typical time of analysis for a trained expert varied
between 24-35 minutes. This finite-element representation enabled a succinct
parametrisation with anatomical correspondence across subjects. The spatial
representation comprised 215 Bézier parameters (i = 1 . . . 215) which governed
the shape of the endocardial and epicardial surfaces [16]. These parameters were
expressed in prolate spheroidal coordinates in terms of focal length f (overall
scaling) and radial λi, hyperboloidal μi and azimuthal θi coordinates for each
control point.

2.1 Temporal Analysis

Functional analysis of the time-varying data [18] comprised two main steps:

1. Temporal Registration. Since the number of frames varied with subject,
a temporal registration step was needed to ensure that all cases conformed
to a common normalised temporal reference (2.1.1).

2. Temporal Continuity. A continuous extension through time is desirable
for data smoothing, continuity and applying dimension reduction techniques
in the time domain. This enables sampling of the models at any time point
in the cardiac cycle (2.1.2).

Once these two challenges are overcome, the statistical analysis of linear modes
of variation can be written in terms of perturbations about the mean, either for
any arbitrary time-point t = ti in the cardiac cycle (thus becoming static), or
by coupling all time variability (discussed in 2.2).

2.1.1 Temporal Registration

To align all cases to a common temporal reference, a time warp from the discrete
frame space (f = 0, 1, 2, . . . , fi, . . . , F ) to a normalised cardiac cycle [0, 1] was
constructed such that t = 0 represented the ED frame and t = 0.35 represented
the ES frame (fES). The normalised time coordinate of 0.35 was chosen for ES
because this is the typical normal duration of systole in normal people [7]. This
defines a periodic time reference where the warped discrete points ti ∈ [0, 1] are
given by:

ti =

⎧
⎪⎪⎨

⎪⎪⎩

0.35
fi
fES

for ti ≤ fES

0.35 + 0.65
fi − fES

F − fES + 1
for ti > fES

(1)

2.1.2 Temporal Continuity

The Fourier series is a natural representation for our periodic data [2]. Not only
does it provide a continuous description of function but it also conveniently
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represents our function with a small number of coefficients (if we accept some
error due to loss of high frequencies).

The Fourier partial sums for any periodic function f(t) at least L1-integrable
in [−π, π] are

(SNf)(t) =
a0
2

+

N∑

n=1

(an cos(nt) + bn sin(nt)) N ≥ 0,

where an =
1

π

∫ π

−π

f(t) cos(nt) dt (n ≥ 0) and bn =
1

π

∫ π

−π

f(t) sin(nt) dt (n ≥ 1).

In our case, the cycle occurs in [0, 1] and we fix the number of harmonics
to N = 5 which yields 11 coefficients. This has been shown previously to give
acceptable error with respect to a high frame rate (60 fps) standard [20].

We therefore have:

(S5f)(t) =
a0
2

+

5∑

n=1

(an cos(2πnt) + bn sin(2πnt))

where an = 2

∫ 1

0

f(t) cos(2πt) dt (n ≥ 0) and bn = 2

∫ 1

0

f(t) sin(2πt) dt (n ≥ 1).

Given that f(t) must be integrable in [0, 1] and that the available data is
discrete with non-uniform spacing (due to the temporal registration), f(t) was
chosen to be a cubic B-spline [4] supporting all time-registered points from 2.1.1.
This enabled efficient integration by quadrature using QUADPACK [17].
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Fig. 1. Example of a λi(t) parameter. The blue dots represent the time-registered λi(tj)
points at each frame, the green line the cubic B-spline, and the red line the Fourier
partial sums with 5 harmonics (S5f).
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Figure 1 shows an example of this approximation which leads to two important
remarks:

1. By construction, the B-spline function (in green) goes through all available
time-points whereas the Fourier approximation S5f (in red) can only ap-
proximate them since the number of degrees of freedom is smaller than the
number of time-points (11 < 30 in this particular example)

2. S5f is continuously periodic at the boundaries of [0, 1].

Henceforth, for each one of the spatial shape parameters, we use the corre-
sponding (S5λi)(t) as the continuous and smooth temporal extension of our data
for statistical time analysis.

2.2 4D Modes of Variation

In order to analyse spatio-temporal variation, two scenarios were built. Let B be
the data matrix where the rows represent the different variables and the columns
different observations. In our case the variables are the model parameters and the
number of observations is N1 = 300 for DETERMINE and N2 = 300 for MESA.
Let Bc be a single observation column of B. The first scenario (these results
are available on-line1) is to simply treat time independently, thus resulting in
a variance analysis at a standard sampling of t ∈ [0, 1], e.g. for ED BT

c =
[λ1(tED)λ2(tED)λ3(tED) · · · ], and for ES BT

c = [λ1(tES)λ2(tES)λ3(tES) · · · ] .
The second scenario, and the one we focus on for the remainder of this paper,

is to investigate the spatio-temporal parametric variance. To this end, all 11
Fourier coefficients were coupled into a single vector or column of B. Following
the notation in 2.1.2, we then have

BT
c =

⎡

⎢
⎣a

λ1
0 aλ1

1 bλ1
1 aλ1

2 bλ1
2 . . . aλ1

5 bλ1
5︸ ︷︷ ︸

a0+5 harmonics

aλ2
0 aλ2

1 bλ2
1 aλ2

2 bλ2
2 . . . aλ2

5 bλ2
5 · · ·

⎤

⎥
⎦

where for each parameter of the LV model, we have 11 coefficients which carry
most of the temporal information. This can be interpreted as a multi-variate
analysis in shape and time (function) simultaneously, taking advantage of the
full physiological information of the finite-element model.

Typically one is only interested in the first few modes of variation, i.e. those
which portray most statistical variability. The number of modes that should be
kept is a broad topic of research [15] and is dependent on the application.

Figure 2 and Figure 3 show the first three PCA modes of variation for the
coupled temporal analysis when using all prolate spheroidal parameters except
the focal length (f) for the asymptomatic and symptomatic datasets. To capture
90% of total variation, 22 modes were required for the MESA dataset, whereas
the DETERMINE dataset required 27. Temporal animations of these modes and
lower-variance modes can be seen on-line1.

1 http://www.cardiacatlas.org/web/guest/modes

http://www.cardiacatlas.org/web/guest/modes
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t 0 (ED) 0.175 0.35 (ES) 0.525 0.7 0.875

Mode 1 (39.0%)

(−2σ)

(+2σ)

Mode 2 (11.4%)

(−2σ)

(+2σ)

Mode 3 (6.1%)

(−2σ)

(+2σ)

Fig. 2. Asymptomatic (MESA) Fourier temporal modes for all variable prolate sphe-
roidal parameters except focal length (56.5% of variability shown). Slightly elevated
anterior view (septum on the left).

3 Discussion

In the MESA or asymptomatic modes of variation in Figure 2, it could be rea-
soned that the first mode corresponds to the lengthening component of the ven-
tricle, and modes 2 and 3 correspond to features of the mitral valve geometry
and base plane tilt. However, from an overall geometric or clinical perspective,
there are no pure modes of variation, e.g. only sphericity.

In the DETERMINE or symptomatic (infarct) modes in Figure 3, mode 1
represents the sphericity (as was also found in a previous static analysis [13]),
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t 0 (ED) 0.175 0.35 (ES) 0.525 0.7 0.875
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Fig. 3. Symptomatic (DETERMINE) Fourier temporal modes for all variable prolate
spheroidal parameters except focal length (47.9% of variability shown). Slightly ele-
vated anterior view (septum on the left).

mode 2 the lower mid-ventricular thickness, mode 3 shows mitral valve geometry
features along with a rounding or bulging of the apical region. These features
correlate well with clinical indicators of heart failure, i.e. sphericity, wall thinning
and local dilation of the ventricle are features of infarcted models.

When comparing the modes of variation in Figures 2 and 3 with their static
counterparts (available on-line1), the first characteristic that becomes apparent is
the similarities of the temporal modes with the static counterparts. This implies
that the time variability is in itself lesser than the shape variability.
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The quantification of these shape and function differences —by projecting
onto the atlas modes— enable detection and classification of abnormality by us-
ing statistical distances such as Mahalanobis or Bhattacharyya (current ongoing
research in our team).

Acknowledgements. The work described was supported by Award Number
R01HL087773 from the National Heart, Lung, and Blood Institute (NHLBI). The
content is solely the responsibility of the authors and does not necessarily repre-
sent the official views of the NHLBI or the National Institutes of Health (NIH).
MESA was supported by contracts N01-HC-95159 through N01-HC-95169 from
the NHLBI and by grants UL1-RR-024156 and UL1-RR-025005 from the Na-
tional Center for Research Resources. The NIH (5R01HL091069) and St. Jude
Medical provided grant support for the DETERMINE trial.

References

[1] Bild, D., Bluemke, D., Burke, G., Detrano, R., Diez Roux, A., Folsom, A., Green-
land, P., et al.: Multi-ethnic study of atherosclerosis: objectives and design. Amer-
ican Journal of Epidemiology 156(9), 871 (2002)

[2] Brown, J., Churchill, R.: Fourier series and boundary value problems.
Recherche 67, 2 (1993)

[3] Chandrashekara, R., Rao, A., Sanchez-Ortiz, G.I., Mohiaddin, R.H., Rueckert,
D.: Construction of a statistical model for cardiac motion analysis using nonrigid
image registration. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732,
pp. 599–610. Springer, Heidelberg (2003)

[4] Dierckx, P.: Curve and surface fitting with splines. Oxford University Press, USA
(1995)

[5] Duchateau, N., De Craene, M., Piella, G., Silva, E., Doltra, A., Sitges, M., Bijnens,
B., Frangi, A.: A spatiotemporal statistical atlas of motion for the quantification
of abnormal myocardial tissue velocities. Medical Image Analysis 15(3), 316–328
(2011)

[6] Fonseca, C., Backhaus, M., Bluemke, D., Britten, R., Do Chung, J., Cowan, B.,
Dinov, I., Finn, J., Hunter, P., Kadish, A., et al.: The Cardiac Atlas Project – an
imaging database for computational modeling and statistical atlases of the heart.
Bioinformatics (2011)

[7] Guyton, A., Hall, J.: Medical Physiology. Saunders, Philadelphia (2000)
[8] Hoogendoorn, C., Duchateau, N., Sánchez-Quintana, D., Whitmarsh, T., Sukno,

F., De Craene, M., Lekadir, K., Frangi, A.: A high-resolution atlas and statistical
model of the human heart from multislice CT. IEEE Transactions on Medical
Imaging (2013)

[9] Kadish, A., Bello, D., Finn, J., Bonow, R., Schaechter, A., Subacius, H., Albert, C.,
Daubert, J., Fonseca, C., Goldberger, J.: Rationale and design for the defibrillators
to reduce risk by magnetic resonance imaging evaluation (DETERMINE) trial.
Journal of Cardiovascular Electrophysiology 20(9), 982–987 (2009)

[10] Kaus, M.R., von Berg, J., Niessen, W.J., Pekar, V.: Automated segmentation of
the left ventricle in cardiac MRI. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003.
LNCS, vol. 2878, pp. 432–439. Springer, Heidelberg (2003)



Continuous Spatio-temporal Atlases 151

[11] Lewandowski, A.J., Augustine, D., Lamata, P., Davis, E.F., Lazdam, M., Francis,
J., McCormick, K., Wilkinson, A., Singhal, A., Lucas, A., et al.: The preterm
heart in adult life: Cardiovascular magnetic resonance reveals distinct differences
in left ventricular mass, geometry and function. Circulation (2012)
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