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Abstract. Objective: To develop an accurate and mathematically un-
ambiguous method for interpolation of tensor orientation, specifically
for the interpolation of cardiac microstructural orientation. Methods:
A dyadic tensor-based (DY) orientation interpolation method, which
sidesteps the eigenvector sign ambiguity problem by interpolating be-
tween the dyadic tensors of eigenvectors, is proposed and evaluated. The
quaternion-based (QT) orientation interpolation method, which interpo-
lates along the minimum rotation path between tensor orientations, is
also revised and evaluated. DY and QT are compared to conventional
tensor-based interpolation methods using both synthetic and cardiac DT-
MRI data. Results: All methods (except QT) perform similarly well for
recovery of the primary eigenvector. DY has significantly less bias than
all other methods for recovery of the secondary and tertiary eigenvec-
tor, which is especially important for interpolating myolaminar sheet
orientation. Conclusion: DY is a fast, commutative, and mathematically
unambiguous tensor orientation interpolation method that accurately in-
terpolates cardiac microstructural orientation.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) [1] characterizes soft
tissue microstructural organization by measuring, for example, tissue anisotropy
and myofiber and myolaminae orientations. DT-MRI methods estimate the self-
diffusion tensor of water in each image voxel. The second-order symmetric posi-
tive definite diffusion tensor (D) can be decomposed into eigenvalues (λi, shape)
and eigenvectors (ei, orientation). Tensor shape can also be intuitively and
saliently represented by tensor invariants such as tensor trace (J1), fractional
anisotropy (FA, J2) and tensor mode (J3) [2–5].

The three eigenvectors correspond to the myofiber long-axis (e1), the cross-
fiber direction within the myolaminar sheet (e2) and the sheet-normal direction
(e3) in cardiac applications [6]. To build computational models of cardiac me-
chanics and electrophysiology (EP), both myofiber and myolaminae orientation
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information is required at millions of closely spaced nodes. DT-MRI measure-
ments, however, are on a lattice and typically number < 1e6 for ex vivo studies
< 1e4 for in vivo studies [7], so interpolation of tensor orientation is needed.
The orientation (SO(3)) interpolation problem has been widely studied in the
computer graphics literature, but the tensor orientation interpolation problem
in DT-MRI is more challenging because eigenvectors have an arbitrary sign
(physiologically and mathematically) so tensor orientation cannot be uniquely
described.

Most of the conventional approaches have been tensor-based and amongst the
simplest is the Euclidean (EU) method, but it suffers from the tensor shape
swelling effect [8, 9]. The affine-invariant Riemannian (AI) and log-Euclidean
(LE) tensor interpolation methods [8, 9] were proposed to solve the tensor shape
(tensor swelling) problem, but they underestimate other tensor invariants in-
cluding tensor trace and FA [5, 10]. The geodesic-loxodrome (GL) method [4]
guarantees monotonic interpolation of orthogonal tensor invariants [2], but is
computationally expensive. The linear invariant (LI) method [5] linearly inter-
polates tensor invariants (shape) at significantly reduced computational cost, but
no new method for tensor orientation interpolation was presented. The tensor-
based methods mostly focus on tensor shape interpolation, and no distinct ad-
vantage of the methods in tensor orientation has been reported [5]. Recently a
separate tensor interpolation method [10] was proposed that interpolates Euler
angles or quaternions along the minimum rotation path between tensor orienta-
tions, but it was not quantitatively validated using cardiac DT-MRI data.

We propose a new dyadic-tensor based (DY) tensor orientation interpolation
method that sidesteps the eigenvector sign ambiguity problem by interpolating
between the dyadic tensors of eigenvectors with subsequent reduction to rank-1
dyadics and orthogonal matrices. We also revise and simplify the quaternion-
based (QT) method [10], and evaluate it using cardiac DT-MRI data. The QT
and DY tensor-based methods are compared to the tensor-based interpolation
methods including EU, AI, LE and GL for accurate recovery of cardiac mi-
crostructural orientation using four experimentally measured DT-MRI datasets
from rabbit and pig hearts.

2 Theory

Quaternion-Based Interpolation. One approach to resolve the eigenvector
sign ambiguity problem is to directly tackle it by choosing the minimum rotation
path between tensor orientations. Tensor orientation is commonly represented by
a rotation matrix R = [ei] consisting of three eigenvectors, sorted in descending
order of their corresponding eigenvalues, but can also be represented by a unit
quaternion q = a+ bi+ cj + dk = [a, b, c, d] where a2 + b2 + c2 + d2 = 1. Tensor
orientation has four different descriptions intuitively represented by rotation
matrices RP where P = diag(pj) such that pj = ±1 and p1p2p3 = 1, which can
be converted into unit quaternions qk:

qk = [a, b, c, d], [b,−a, d,−c], [c,−d,−a, b], [d, c,−b,−a] . (1)
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Then the minimum rotation path between two tensor orientations RA and RB

can be determined by the maximum magnitude of inner products between fixed
qA and four different qB (or between fixed qB and four different qA). If the
maximum value has a negative sign, the corresponding quaternion qB (or qA)
should be negated. Once the unit quaternions are uniquely determined, normal-
ized linear interpolation (nlerp) is used:

qC = ((1− t)qA + tqB) /‖(1− t)qA + tqB‖ , (2)

which is computationally less expensive than spherical linear interpolation (slerp)
[11]. The interpolated quaternion qC is easily converted to a rotation matrixRC.

Dyadic Tensor-Based Interpolation. Our approach is to sidestep the sign
ambiguity problem by using dyadic tensors [12]. Dyadic tensors of eigenvectors
ei are defined by Ei = ei ⊗ ei = eie

T
i . Note, ei ⊗ ei = −ei ⊗ −ei. Dyadic

tensors are rank-1 with only one non-zero eigenvalue whose value is 1 and the
corresponding eigenvector is exactly ei or−ei. Interpolation betweenRA = [eAi]
and RB = [eBi] starts with linear interpolation between their dyadic tensors:

Fi = (1− t)EAi + tEBi . (3)

Since Fi are not generally rank-1, the nearest rank-1 dyadic tensor (x⊗ x) can
be obtained by minimizing:

J(x) = ‖Fi − x⊗ x‖2F = tr
{
(Fi − xxT )T (Fi − xxT )

}

= tr
{
F2

i − 2Fixx
T + (xxT )2

}
= ‖Fi‖2F − 2tr(xTFix) + ‖x‖4 , (4)

where ‖ · ‖F denotes the Frobenius norm, and the derivative is:

J ′(x) = −4Fix+ 4‖x‖2x . (5)

By setting the derivative equal to zero, the eigenvalue equation Fix = ‖x‖2x is
obtained. Therefore, the eigenvector mi corresponding to the largest eigenvalue
of Fi minimizes Eq. 4. However, since the interpolation between dyadic tensors
is separately performed on each pair of eigenvectors the matrix M = [mi] is not
generally orthogonal. The orthogonal matrix closest to M can be obtained by
minimizing:

w1‖x1 −m1‖2 + w2‖x2 −m2‖2 + w3‖x3 −m3‖2 , (6)

where [xi] is an orthogonal matrix, and wi are the eigenvalues computed by the
LI method [5], which assigns different weights to each eigenvector term according
to the interpolated tensor shape. Equation 6 can be rewritten in a matrix form:

‖(M−X)W‖2F = tr
{
(MW −XW)(MW −XW)T

}

= tr
{
(MW)(MW)T

}
+ tr

(
XWWTXT

)− 2tr
(
MW2XT

)

= ‖MW‖2F + ‖W‖2F − 2tr
(
MW2XT

)
, (7)
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where X ∈ O(3) and W2 = diag(wi). Minimizing Eq. 7 is achieved by
maximizing:

tr
(
MW2XT

)
= tr

(
UΣVTXT

)
= tr

(
VTXTUΣ

) ≤ tr (Σ) , (8)

where U, Σ and V are obtained from the singular value decomposition (SVD)
of MW2 = UΣVT , implying that Eq. 8 is maximized when VTXTU = I ⇔
X = UVT . Therefore, the interpolated tensor orientation RC = [eCi] can be
obtained by replacing the singular values with ones from the SVD of MW2. If
the determinant of RC is −1, then RC should be negated to be a right-handed
rotation matrix.

3 Methods

Synthetic Tensors. Using the EU, LE, GL, quaternion-based (QT) and dyadic
tensor-based (DY) methods, interpolation was performed between two tensors of
the same shape (Ji = {1, 0.5, 0.8}), and different orientations whose angles be-
tween each pair of eigenvectors are 82◦, 45◦ and 64◦. LI was used for tensor shape
interpolation and combined with QT and DY for complete tensor interpolation.

Real DT-MRI Data. The rabbit heart DT-MRI data was acquired using a
7T Bruker Biospin scanner, and a 3D fast spin echo sequence with the following
imaging parameters: TE/TR = 30/500 ms, b-value = 1000 s/mm2, 24 diffu-
sion gradient encoding directions, 6 nulls, and RARE factor two. The in-plane
imaging resolution was 0.5×0.5×0.80 mm obtained by using a 96×96 encoding
matrix, 72–96 slices and a 48×48×54–72 mm imaging volume. The pig heart
DT-MRI data was acquired using a Siemens 1.5T Avanto and a 3T Trio scan-
ner, and a 2D readout-segmented echo-planar pulse sequence with the following
imaging parameters: TE/TR = 80/6800 ms, b-value = 1000 s/mm2, 30 diffusion
gradient encoding directions, one null, 15 readout segments, and 8-10 averages.
The in-plane imaging resolution was 1×1×3 mm obtained by using an 150×150
encoding matrix, 43–44 slices and a 150×150×129–132mm imaging volume. Dif-
fusion tensors were estimated without zero padding and with linear regression.

Evaluation Procedure. The same tensor orientation evaluation procedure pro-
posed in [5] was applied to the two rabbit and two pig heart DT-MRI datasets.
The median autocorrelation (AC) length for every dimension was computed in
each tensor invariant (Ji) map of the segmented myocardium. The myocardial
DT-MRI volume was down-sampled in each dimension by a factor of the small-
est integer not less than the median AC length for each tensor invariant map,
and trilinear tensor orientation interpolation was performed with the EU, AI,
LE, GL, QT and DY methods at the removed voxels using the remaining data.
Then the interpolated tensor orientations by each method were compared to
the originally measured data by computing the angle difference between each
pair of eigenvectors. Subsequently the population of the angle difference data
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Fig. 1. Interpolation between two synthetic tensors of equal shape and different orienta-
tion. The angle between every pair of the primary, secondary and tertiary eigenvectors
is monotonically interpolated only in (d) and (e). All the tensor-based methods (a), (b),
and (c) fail to monotonically interpolate the angle between the secondary eigenvectors.

was spatially decorrelated by decimating the data in every dimension by the
smallest integer not less than the AC lengths, and the decorrelated data was
bootstrapped 1000 times by random sampling with replacement to compute the
95% confidence interval (CI) about the median.

4 Results

Synthetic Example. Figure 1 shows an example of interpolation between two
synthetic tensors with the same shape and different orientations using the EU,
LE, GL, LI+QT and LI+DY methods. Tensors are visualized as superquadric
glyphs [13], and plots of each eigenvector’s angle relative to the leftmost tensor’s
orientation are shown along the interpolation paths. EU and LE fail to preserve
the tensor shape during rotation, but GL, LI+QT and LI+DY maintain the
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Fig. 2. Bootstrap statistics for eigenvector orientation errors (angle differences) relative
to real DT-MRI data. Each dot represents the median angle difference, and each error
bar represents the bootstrapped 95% CI of the median. The (black, dark gray, and light
gray) dashed lines represent the upper limits of DY’s CIs associated with the (primary,
secondary, and tertiary) eigenvectors, which define whether or not DY’s CIs overlap
with the others’. DY introduces the least error to the secondary and tertiary eigenvector
orientations, and similar errors to the primary eigenvector orientation compared to the
tensor-based methods (EU, AI, LE and GL).

tensor shape. With respect to tensor orientation, QT and DY monotonically
interpolates the angle of every eigenvector. The tensor-based methods (EU, LE
and GL), however, fail to monotonically interpolate the angle of the secondary
eigenvector.

DY’s monotonic interpolation of each eigenvector needs to be more carefully
investigated. Each method has a distinct interpolation path between tensor ori-
entations, and QT’s path is explicitly the minimum rotation path. Monotonic
interpolation of eigenvectors and/or the minimum rotation path does not imply
interpolation of tensor orientation with the least error. Therefore, we experimen-
tally evaluated each method using real DT-MRI data.

Evaluation Statistics. The smallest integers not less than the median AC
lengths were 2, 2, and 3 for the rabbit heart data and 3, 3, and 2 for the pig heart
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data in the x–, y– and z–directions, respectively. Figure 2 shows the bootstrap
statistics of angle differences between each eigenvector pair from the original and
interpolated tensor orientations.

Comparison of the orientation errors between methods reveals that each
method performs consistently across the various data sets (e.g. errors for recov-
ering e1 significantly decrease from QT to DY). QT’s e1 median error, however,
is significantly higher than all other methods (i.e. 95% CI does not overlap) for
the rabbit data, but not for the pig data. DY performs similarly to conventional
tensor interpolation methods for recovering e1 in both rabbit and pig DT-MRI
data.

DY has the lowest median error for recovery of both e2 and e3 compared to
all other methods. Notably, DY has a significantly lower median recovery error
for e2 and e3 compared to either EU or GL for all four datasets.

5 Conclusion

Accurate interpolation of myofiber and myolaminar sheet orientations is essential
for computational modeling of cardiac mechanics and electrophysiology (EP).
Cardiac mechanics and EP modeling requires accurate tensor orientation infor-
mation at every computational node in order to assign correctly the axes of
anisotropic electrical activation.

The comparison results show that DY performs significantly better than the
tensor based methods, especially EU and GL, for recovery of each component of
cardiac microstructural orientation. In particular, the improvement in recovery of
the secondary and tertiary eigenvectors is important for recovery of myolaminar
sheet orientation. Note that QT’s minimum rotation path has significantly larger
median errors for recovery of the primary eigenvector than DY’s interpolation
path.

LI+DY is a commutative, computationally efficient (compared to GL’s numer-
ical solution), and mathematically unambiguous tensor interpolation method
that most accurately interpolates both cardiac microstructural shape [5] and
orientation. Further investigations using brain DT-MRI data and the same eval-
uation process may be needed to evaluate if the most accurate interpolation is
dependent on the underlying tissue characteristics. Furthermore, the required
tensor interpolation accuracy for cardiac mechanics and EP simulations remains
incompletely understood.
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