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Abstract. The knowledge of left atrial (LA) anatomy is important for
atrial fibrillation ablation guidance. More recently, LA anatomical mod-
els have been used for cardiac biophysical modelling. Segmentation of the
LA from Magnetic Resonance Imaging (MRI) and Computed Tomogra-
phy (CT) images is a complex problem. We aimed at evaluating current
algorithms that address this problem by creating a unified benchmark-
ing framework through the mechanism of a challenge, the Left Atrial
Segmentation Challenge 2013 (LASC’13). Thirty MRI and thirty CT
datasets were provided to participants for segmentation. Ten data sets
for each modality were provided with expert manual segmentations for
algorithm training. The other 20 data sets per modality were used for
evaluation. The datasets were provided by King’s College London and
Philips Technologie GmbH. Each participant segmented the LA includ-
ing a short part of the LA appendage trunk plus the proximal parts of
the pulmonary veins. Details on the evaluation framework and the re-
sults obtained in this challenge are presented in this manuscript. The re-
sults showed that methodologies combining statistical models with region
growing approaches were the most appropriate to handle the proposed
task.

1 Introduction

Atrial fibrillation (AF) is the most common cardiac electrical disorder which
doubles the mortality rate of patients. It has been shown that ectopic beats
from within the pulmonary veins (PVs) commonly initiate AF [1]. Therefore,
catheter ablation strategies attempt to electrically isolate the PVs from the left
atrial (LA) body. Knowing the LA anatomy is crucial for the success of the
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Fig. 1. Example datasets as provided for the challenge. Colour overlay shows the man-
ual ground-truth, where green areas represent the LA body, and magenta areas repre-
sent the PVs (for details see Sec. 2).

intervention, since it enables accurate planning of ablation lines and guidance
during the procedure [2]. More recently, LA anatomical models have been em-
ployed for cardiac biophysical modelling [3]. These models aim at understanding
the mechanisms of AF and, eventually, at predicting optimal therapy.

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are
commonly used for imaging the heart. There are several topological variants
of the LA and this means that segmentation of the endocardial boundary and
PVs is a non-trivial task [4]. Therefore, we aimed at evaluating current algo-
rithms that address this problem by creating a unified benchmarking framework
through the mechanism of a challenge, the Left Atrial Segmentation Challenge
2013 (LASC’13). This challenge was held at the MICCAI 2013 Workshop on
Statistical Atlases and Computational Models of the Heart: Imaging and Mod-
elling Challenges (STACOM’13). Each participant segmented the LA including
a short part of the LA appendage trunk plus the proximal parts of the PVs, from
3D whole heart MRI and/or CT modalities. Details on the evaluation framework
and the results obtained in this challenge are presented in this manuscript.

2 The Challenge

Thirty MRI and thirty CT datasets were provided to participants for segmenta-
tion. Ten data sets for each modality were provided with expert manual segmen-
tations for algorithm training (see Fig. 1). The other 20 data sets per modality
were used for evaluation. Datasets were limited to the most common topological
variant showing four PVs. The datasets were provided by King’s College London
and Philips Technologie GmbH.

Participants were expected to segment the LA including a short part of the
LA appendage (i.e. trunk) plus the proximal parts of the PVs (i.e. up to the
first branching point or after 10 mm from the vein ostium). The LA body should
have extended at least up to the mitral valve (MV) (i.e. reach into the funnel
of the MV). Results were submitted as a single-valued binary mask covering all
these structures in NifTI format®.

! http://nifti.nimh.nih.gov/
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Heart detection (GHT) >> Similarity transform >> Piecewise affine >> Deformable >

Fig. 2. Automatic segmentation pipeline on a CT image for ground truth generation.
Different colours represent different parts of the deformable model. Green and magenta
regions correspond to the LA and the PVs, respectively (for details see Sec. 3).

MRI Datasets. MRI acquisition was performed on a 1.5 T Achieva scanner
(Philips Healthcare, The Netherlands). A 3D whole heart (3DWH) image was
acquired using a 3D balanced steady-state free precession acquisition [5]. The
sequence acquires a non-angulated volume covering the whole-heart with voxel
resolution of 1.25 x 1.25 x 2.7mm?>. Images were acquired during free breathing
with respiratory gating and at end-diastole with ECG gating. Main acquisition
parameters include: TR/TE=4.4/2.4ms, flip angle=90°, cardiac phases=1. Typ-
ical acquisition time for a complete volume is 10 min.

CT Datasets. Retrospectively ECG-gated cardiac multi-slice CT images were
acquired with Philips 16-, 40-, 64- and 256-slice scanners (Brilliance CT and Bril-
liance iCT, Philips Healthcare, Cleveland OH, USA) at different cardiac phases.
All images are reconstructed using a 512 x 512 matrix with an in-plane voxel
resolution ranging from 0.30 x 0.30 to 0.78 x 0.78 mm? and with slice thickness
ranging from 0.33 to 1.00 mm. All scans were acquired after injection of ca. 40—
100 ml contrast media (density 320-370mg iodine/ml), depending on the exact
purpose of the study (assessment of coronary arteries or cardiac valves). Con-
trast levels vary widely over the images provided for this challenge. Acquisition
times for a complete CT volume ranged from 3-5sec on modern iCT scanners
to 20 sec for the older 16-slice scanners.

3 Ground-Truth Generation

In order to obtain a set of ground-truth (GT) segmentations consistent across
modalities, we started by performing an automatic model-based segmentation with
amethod which is optimised for both CT and MRI modalities. After the automatic
segmentation, manual corrections were performed. Details are provided next.

Automatic Segmentation. The automatic segmentation used in this study was
described in [7-9]. The segmentation uses shape-constrained deformable models.
These are based on a mesh representation of surfaces of cardiac chambers and the
attached great vessels. These meshes have a complex topology with T-junctions
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where different structures meet. The automatic adaptation starts by a localisation
step using the Generalized Hough Transform [10] to place the mesh model close to
the targeted organ. Thereafter, several adaptation steps with increasing degrees of
freedom refine the model pose and shape. Each step uses trained boundary detec-
tors that enable a robust and accurate detection of the wanted organ boundaries
in the image. These detectors are trained individually per mesh triangle and can
capture the varying appearance of organ boundaries in the images. Using the de-
tected boundaries, a first step adjusts the global pose of the complete model by
performing a rigid adaptation with scaling that minimises the squared distances of
the model surface to the detected boundaries. Subsequent steps add more degrees
of freedom by subdividing the model into mesh regions (such as cardiac chambers
or short parts of the tubular vessels) and adapts these parts via individual affine
transformations. Finally, a deformable adaptation step leads to a locally accurate
segmentation where each mesh vertex is free to move under the image forces that
pull the mesh triangles to the detected boundaries while internal forces regularise
the adaptation and penalise strong deformations of the model shape. After adap-
tation of the model is complete, the regions enclosed by the surfaces are converted
into a label image with region-specific labels. Labels not covering the LA and the
PVs were discarded (see Fig. 2).

Manual Correction Criteria. Each automatic segmentation was manually
corrected by an experienced observer to obtain the final GT segmentation. Man-
ual corrections were performed using ITK-SNAP [11] for MRI datasets and
Philips in-house editing tools for CT datasets. PVs were followed distally to the
LA body ensuring at least 10 mm coverage. They were truncated at the branch-
ing point when there was no clear main PV to follow. This early truncation
mainly happened in MRI, either due to image artefacts or low signal-to-noise
ratio. Each obtained GT segmentation consists of five labels: one label for LA
body and LA appendage trunk, and, four labels for each of the PVs. These labels
were used for standardisation purposes (see Sec. 4).

4 Standardisation Framework

Even for a human observer, defining certain regions of the LA is difficult. One
of these regions is the boundary between atrium and ventricle. Since the MV
leaflets can be at different levels of opening/closure, the definition of a MV plane
can be arbitrary. Unless an exact segmentation of the mitral annulus is available
which, however, may be non-planar. Another one of these regions is the PVs. For
these structures both the start points (i. e. ostia) and end points can be arbitrary.
Finally, the LA appendage (LAA) varies greatly among the population which
makes it difficult to segment. Since for most applications the actual shape of the
LAA is not relevant, we opted for removing it from the LA body. We only retain
the region most proximal to the LA cavity (i.e. trunk).
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Fig. 3. Standardisation framework. Distal end points of the PVs and LAA were ex-
tracted by computing areas of maximum curvature. The centroids of the high-curvature
areas were used as seed points for centerline extraction. The surface mesh was branched
based on maximum inscribed sphere radius [6]. For PVs and LAA clipping: we com-
puted a plane that is normal to the centerline and located 10 mm away from the ostia
(for details see Sec. 4).
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To ensure that the calculated metrics are not negatively affected by these
regions, we standardised all submitted segmentations. The framework was im-
plemented using the Visualization Toolkit (VTK), the Vascular Modeling Toolkit
(VMTK), and MATLAB Toolbox Graph?.

Mitral Valve. Given the predefined labels of our GT, we could compute certain
anatomical landmarks in an automatic manner. For MV plane computation, we
extracted a surface mesh representing the LA body and the PVs separately. We
computed Principal Components Analysis on the LA body. The clip point was
set along the main axis (or the average of the two main axes for more spherical
bodies), at a distance of 35% X the maximum body length below the centroid.

Pulmonary Veins and LA Appendage. Along this clipped surface we com-
puted the Gauss curvature [12,13]. We then normalised the curvature values to
obtain a unified range of (—2,2). We thresholded the highest curvature values
(>0.5). These patches of high curvature were used as candidate positions for
PV and LAA end points (black contours in Fig. 3-HIGH CURVATURE). For each
PV we selected the patch furthest from the ostium. The patches belonging to
the body were discarded based on two criteria: (1) small surface area (< 0.5 x
largest patch area); or (2) vicinity to the MV or the PVs ostia. The remaining
body patches belonged to the LAA. From the selected patches we computed the
centroids and stored them as seed points for centerline extraction.

We calculated the centerlines that connected each seed point to all remaining
seed points plus the centroid of the MV edge, as displayed in Fig. 3-CENTERLINES.
Using the approach of Antiga et al. [6], we computed bifurcation regions in the
centerlines corresponding to each seed. From the most distal bifurcation point
we defined a new splitting point located 0.75 X the maximum inscribed sphere
radius, similarly to the approach used by Piccinelli et al. [14] to define the neck
of cerebral aneurysms (red section of centerlines in Fig. 3-REBRANCHING).

Next, we labeled the surface based on the branched centerlines. These auto-
matically computed labels proved to be more consistent among the GT popu-
lation than the arbitrarily defined manual labels. Therefore, we used them as a
final definition of each anatomical region of the LA. Using the labels, we isolated
each PV and clipped it with a plane perpendicular to its corresponding center-
line and located 10 mm from the PV ostium. The LAA was clipped at 80% x
the maximum length of the labelled LAA surface (see Fig. 3-CLIPPING).

Automatic Segmentations Standardisation. For all submitted segmenta-
tions (binary masks), we performed a close filling operation to ensure a single
connected region. From it we generated a surface mesh using marching cubes
followed by volume preserving smoothing. Next, we clipped the mesh with the
MYV plane generated from the GT mesh (Sec. 4), discarding unconnected regions.
Then, we transferred the automatic branch labels of the GT mesh to their clos-
est points in the automatically segmented mesh. For each label, we ensured a

2 www.vtk.org www.vmtk.org www.ceremade.dauphine.fr/~
peyre/matlab/graph/content.html
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single connected region to avoid transferring PV labels to neighbouring areas.
Finally, using the labels we isolated each PV and LAA and clipped them using
the planes computed automatically from the GT.
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Fig. 4. Results for each participant for the CT datasets. The original meshes are dis-
played with transparency. The standardised meshes are colour mapped with surface-
to-surface errors. Note that for visualisation purposes, only the automatic-to-GT errors
are displayed in this figure. The symmetric surface-to-surface errors are summarised in
Table 1 (for details see Sec. 5).
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Fig. 5. Results for each participant for the MRI datasets. The original meshes are
displayed with transparency. The standardised meshes are colour mapped with surface-
to-surface errors. Note that for visualisation purposes, only the automatic-to-GT errors
are displayed in this figure. The symmetric surface-to-surface errors are summarised in
Table 1 (for details see Sec. 5).
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Fig. 6. Box-plots of segmentation errors for each participant for each anatomical re-
gion. The corresponding region is represented in the vignette on the upper left corner.
Maximum whisker corresponds to approximately 99.3% coverage if the data were nor-
mally distributed. Pair of samples that yielded statistically non-significant differences
(p < 0.001) are marked on the plot (}).
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5 Discussion

Participants. We received submissions from 5 groups. University of Lubeck,
Germany, processed CT and MRI datasets with two methodological approaches:
one based on statistical shape models (LUBECK SSM), and, another one combining
statistical shape models and region growing (LUBECK SRG). University of Bechar,
Algeria, processed the CT datasets (19 out of 20) with a combination of region
growing and gradient vector flow snakes (BECHAR). INSERM Rennes, France,
processed the CT datasets with a multi-atlas, multi-voting and region growing
approach (INSERM). Inria, Sophia-Antipolis, France, processed the MRI datasets
using decision forests (INRIA). University of Tlemcen, Algeria, processed the
MRI datasets with a combination of threshold localisation and circularity shape
descriptors (TLEMCEN). For details on each methodology refer to the articles in
these proceedings. Examples of the submitted segmentations before and after
standardisation are shown in Fig. 4 and Fig. 5.

Results. To test segmentation accuracy, symmetric surface-to-surface error
(S2S) and Dice metric were computed for all the standardised segmentations.
The median and standard deviation of both metrics (i.e. LA body, left superior
PV, left inferior PV, right superior PV and right inferior PV) are summarised
in Table 1. Fig. 6 shows the box-plots of the S2S errors.

Results showed that statistical shape approaches combined with region grow-
ing obtained the best accuracy (LUBECK SRG and INSERM). It must be noted
that this type of methodology often leaks into the left ventricle, the aorta and
sometimes into the right atrium. Some of these segmentation errors were re-
moved by our standardisation process, hence they were not penalised in by the
evaluation metrics. However, to be implemented as a feasible clinical tool, the
region growing should be somewhat constrained. For instance, limiting the re-
gion growing process to the PVs areas and/or to the surroundings of the initial
surface. The statistical shape approach in itself (LUBECK SSM) although highly
robust (i.e. valid shape instances of the LA) obtained lower accuracy than its
corresponding extension with region growing. However, for certain applications
this level accuracy could be sufficient.

BECHAR’s approach shows potential since the slices that were processed
obtained good accuracy. Unfortunately, due to the large amount of missing slices
(specially on the lower part of the LA) the performance metrics were low in most
anatomical regions. A 3D extension of the approach able to handle the whole
span of the LA would increase the feasibility of the methodology. This was
suggested by the authors as part of their future work.

INRIA’s approach even though it makes few assumptions, often obtained good
results. However, when then segmentation failed the errors where rather large
resulting on poor average performance. A possible improvement of this approach
would be to split the segmentation in two tasks: one for the body only and one
for the PVs. Another improvement would be to impose shape constrains on the
raw output of the decision forrest.
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Table 1. Summary of error metrics: all structures measured after standardisation

PARTICIPANTS
LUBECK SRG LUBECK SSM BECHAR INSERM
s2s dice s2s dice s2s dice s2s dice
m std m std m std m std m std m std m std m std
BODY 0.584.25 0.940.09 1.532.34 0.880.08 1.27 8.53 0.550.17 0.673.18 0.890.10
LSPV 0.622.10 0.880.21 1.422.29 0.780.21 0.69 3.16 0.830.24 0.783.34 0.740.27
= LIPV 0.873.06 0.860.13 1.842.35 0.680.25 1.87 7.10 0.150.36 0.762.68 0.860.33
O RSPV 0.481.04 0.890.15 1.673.87 0.530.28 2.05 6.98 0.130.34 0.701.46 0.790.27
RIPV 0.571.08 0.890.14 1.903.05 0.530.33 0.84 2.64 0.710.29 1.051.99 0.760.33
LUBECK SRG LUBECK SSM INRIA TLECEM
s2s dice s2s dice s2s dice s2s dice
m std m std m std m std m std m std m std m std
BODY 1.543.39 0.910.09 2.862.99 0.830.08 1.87 9.17 0.880.30 1.073.79 0.900.07
— LSPV 1.693.33 0.720.28 3.312.48 0.390.24 3.6315.85 0.350.30 3.068.17 0.080.36
o LIPV 1.893.36 0.76 0.38 4.294.25 0.230.20 2.6414.37 0.420.36 2.065.63 0.500.41
=, RSPV 2.346.27 0.350.28 4.105.65 0.080.22 3.59 8.53 0.120.33 3.098.06 0.360.28
RIPV 2.496.35 0.460.29 5.605.59 0.040.20 3.07 7.01 0.340.31 9.597.63 0.000.18

s2s = surface-to-surface error (mm); dice = Dice metric; m = median; std = standard deviation; LSPV = left superior PV;

LIPV = left inferior PV; RSPV = right superior PV; RIPV = right inferior PV; BODY = LA body without LA appendage.

TLECEM’s approach is based on circular shape descriptors from the sagittal
plane. Thus it obtained good accuracy on the middle of the LA body (low-
est error). However, the PVs were often missing and the lower part of the LA
body (closer to the MV) was often over segmented. Similarly to the approach of
BECHAR, a 3D extension could improve its feasibility for a clinical application.

6 Conclusions

This manuscript presents a unified benchmarking framework for current algo-
rithms for segmentation of the left atrium from MRI and CT datasets. Strong
effort was dedicated to implement a standardisation framework for the ground-
truth and the automatic segmentations.

The results showed that methodologies combining statistical models with re-
gion growing approaches were the most appropriate to handle the proposed task.
Visual results showed that an approach with good performance according to the
error metrics (low surface-to-surface and high dice) does not always provide the
best overall 3D structural result. This has pointed us to believe that it is impor-
tant to explore other complementary metrics that better reflect the similarities
in shape between the desired ground-truth surface and the automatic segmented
surface.

As a follow-up work, we will submit a journal publication with the benchmark-
ing framework presented in this workshop. In other to include other methodolo-
gies, we will make a second call for participants. In this follow-up work, we
plan to evaluate the influence of image quality on each segmentation algorithm,
include a measure of inter-observer variability, and, extend the performance met-
rics. Examples of these metrics include: centerline-to-centerline distance of the
pulmonary veins, leakage metric to reflect the effect of a failed region growing,
and, more advanced statistical measures of the shape differences between the
surfaces.
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