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Preface

Recently, there has been considerable progress in cardiac image analysis tech-
niques, cardiac atlases, and computational models, which can integrate data
from large-scale databases of heart shape, function, and physiology. Integrative
models of cardiac function are important for understanding disease, evaluating
treatment, and planning intervention. However, significant clinical translation
of these tools is constrained by the lack of complete and rigorous technical and
clinical validation, as well as benchmarking of the developed tools. For doing
so, common and available ground-truth data capturing generic knowledge of the
healthy and pathological heart are required. This knowledge can be acquired
through the building of statistical models of the heart. Several efforts are now
devoted to providing Web-accessible structural and functional atlases of the nor-
mal and pathological heart for clinical, research, and educational purposes. We
believe all these approaches will only be effectively developed through collabo-
ration across the full research scope of the imaging and modelling communities.

STACOM 2013 was held in conjunction with the MICCAI 2013 conference
(Nagoya, Japan), and followed the last three editions: STACOM 2012 (Nice,
France), STACOM 2011 (Toronto, Canada), and STACOM 2010 (2010, Beijing,
China). STACOM 2013 provided a forum for the discussion of the latest de-
velopments in the areas of statistical atlases and computational imaging and
modelling of the heart. The topics of the workshop included: cardiac image
processing, atlas construction, statistical modelling of cardiac function across
different patient populations, cardiac mapping, cardiac computational physiol-
ogy, model customization, atlas-based functional analysis, ontological schemata
for data and results, integrated functional and structural analyses, as well as the
preclinical and clinical applicability of these methods. STACOM 2013 drew more
than 40 submissions from around the world, with 31 papers finally accepted in
the workshop and invited to be published in this Lecture Notes in Computer Sci-
ence volume (Springer). Besides regular contributions on state-of-the-art cardiac
image analysis techniques, atlases, and computational models that integrate data
from large-scale databases of heart shape, function, and physiology, additional
efforts of this year’s workshop focused on two imaging and modelling challenges,
described below.

CFD Challenge – The objective of the STACOM 2013 CFD challenge was
to investigate the predictive power of CFD tools in terms of pressure gradi-
ent through an aortic coarctation at stress. Challengers were given preoperative
data of one patient at rest and stress, with pregenerated geometrical model, MR-
derived flow splits and invasive pressure measurements. They were then asked
to predict the pressure drop through the coarctation at rest and stress using the
computational tool of their choice. The papers gathered in these proceedings re-
ported the methodology and the results obtained by each participant. During the



VI Preface

workshop, variations in methodology and parameter sensitivity were discussed.
Results were compared with “ground-truth” invasive measurements acquired via
pressure wires. This year, the challenge attracted 11 groups worldwide, among
them eight submitted final results. A journal paper summarizing the outcomes
of the STACOM 2012 and STACOM 2013 CFD challenges is in preparation.

Left Atrium Segmentation Challenge – The left atrium is clinically important
for the management of atrial fibrillation in patients. MRI and CT are commonly
used for imaging this structure. Segmentation can be used to generate anatomical
models that can be employed in guided treatment and also more recently for car-
diac biophysical modelling. A total of 30 MRI and 30 CT datasets were provided
to participants for segmentation of the endocardial boundary and the pulmonary
veins up to the first branch point. Initially, ten datasets for each modality were
provided with expert manual segmentations for algorithm training. The other
20 datasets per modality were used for evaluation. The datasets were provided
by King’s College London and Philips Research Hamburg. The challenge raised
interest from 12 research groups worldwide. From them, five groups submitted
final results and papers that were accepted to be presented at the workshop.
Additionally, a collaborative article describing the unified benchmarking frame-
work implemented for the challenge was also included by the LASC organizers
and was presented during the workshop.

We hope that the results obtained by these two challenges, together with
all regular paper contributions, will act to accelerate progress in the important
areas of heart function and structure analysis.

September 2013 Oscar Camara
Tommaso Mansi

Mihaela Pop
Kawal Rhode

Maxime Sermesant
Alistair Young
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Sanjay Pant, Benoit Fabrèges, Jean-Frédéric Gerbeau, and
Irene E. Vignon-Clementel

A Finite Element CFD Simulation for Predicting Patient-Specific
Hemodynamics of an Aortic Coarctation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Idit Avrahami

Traditional CFD Boundary Conditions Applied to Blood Analog Flow
through a Patient-Specific Aortic Coarctation . . . . . . . . . . . . . . . . . . . . . . . 118

Xiao Wang, D. Keith Walters, Greg W. Burgreen, and
David S. Thompson

Regular Papers

Extraction of Cardiac and Respiratory Motion Information
from Cardiac X-Ray Fluoroscopy Images Using Hierarchical Manifold
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Maria Panayiotou, Andrew P. King, Kanwal K. Bhatia,
R. James Housden, YingLiang Ma, C. Aldo Rinaldi, Jas Gill,
Michael Cooklin, Mark O’Neill, and Kawal S. Rhode

Dyadic Tensor-Based Interpolation of Tensor Orientation: Application
to Cardiac DT-MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Jin Kyu Gahm and Daniel B. Ennis

Continuous Spatio-temporal Atlases of the Asymptomatic and Infarcted
Hearts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Pau Medrano-Gracia, Brett R. Cowan, David A. Bluemke,
J. Paul Finn, Alan H. Kadish, Daniel C. Lee, João A.C. Lima,
Avan Suinesiaputra, and Alistair A. Young

Progress on Customization of Predictive MRI-Based Macroscopic
Models from Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Mihaela Pop, Maxime Sermesant, Samuel Oduneye, Sudip Ghate,
Labonny Biswas, Roey Flor, Susan Newbigging, Eugene Crystal,
Nicholas Ayache, and Graham A. Wright



Table of Contents XI

Automatic Personalization of the Mitral Valve Biomechanical Model
Based on 4D Transesophageal Echocardiography . . . . . . . . . . . . . . . . . . . . . 162

Jingjing Kanik, Tommaso Mansi, Ingmar Voigt, Puneet Sharma,
Razvan Ioan Ionasec, Dorin Comaniciu, and James Duncan

Fast Catheter Tracking in Echocardiographic Sequences for Cardiac
Catheterization Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Xianliang Wu, R. James Housden, Niharika Varma, YingLiang Ma,
Kawal S. Rhode, and Daniel Rueckert

A Unified Statistical/Deterministic Deformable Model for LV
Segmentation in Cardiac MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Sharath Gopal and Demetri Terzopoulos

Multi-modal Pipeline for Comprehensive Validation of Mitral Valve
Geometry and Functional Computational Models . . . . . . . . . . . . . . . . . . . . 188

Dominik Neumann, Sasa Grbic, Tommaso Mansi, Ingmar Voigt,
Jean-Pierre Rabbah, Andrew W. Siefert, Neelakantan Saikrishnan,
Ajit P. Yoganathan, David D. Yuh, and Razvan Ioan Ionasec

Personalized Modeling of Cardiac Electrophysiology Using Shape-Based
Prediction of Fiber Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

Karim Lekadir, Ali Pashaei, Corné Hoogendoorn, Marco Pereanez,
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Left Atrial Segmentation Challenge:

A Unified Benchmarking Framework

Catalina Tobon-Gomez1, Jochen Peters2, Juergen Weese2, Karen Pinto1,
Rashed Karim1, Tobias Schaeffter1, Reza Razavi1,3, and Kawal S. Rhode1

1 Division of Imaging Sciences & Biomedical Engineering, King’s College London,
London, UK�

2 Philips Technologie GmbH, Innovative Technologies, Forschungslaboratorien,
Hamburg, DE

3 Department of Cardiology, Guys and St. Thomas NHS Foundation Trust,
London, UK�

Abstract. The knowledge of left atrial (LA) anatomy is important for
atrial fibrillation ablation guidance. More recently, LA anatomical mod-
els have been used for cardiac biophysical modelling. Segmentation of the
LA from Magnetic Resonance Imaging (MRI) and Computed Tomogra-
phy (CT) images is a complex problem. We aimed at evaluating current
algorithms that address this problem by creating a unified benchmark-
ing framework through the mechanism of a challenge, the Left Atrial
Segmentation Challenge 2013 (LASC’13). Thirty MRI and thirty CT
datasets were provided to participants for segmentation. Ten data sets
for each modality were provided with expert manual segmentations for
algorithm training. The other 20 data sets per modality were used for
evaluation. The datasets were provided by King’s College London and
Philips Technologie GmbH. Each participant segmented the LA includ-
ing a short part of the LA appendage trunk plus the proximal parts of
the pulmonary veins. Details on the evaluation framework and the re-
sults obtained in this challenge are presented in this manuscript. The re-
sults showed that methodologies combining statistical models with region
growing approaches were the most appropriate to handle the proposed
task.

1 Introduction

Atrial fibrillation (AF) is the most common cardiac electrical disorder which
doubles the mortality rate of patients. It has been shown that ectopic beats
from within the pulmonary veins (PVs) commonly initiate AF [1]. Therefore,
catheter ablation strategies attempt to electrically isolate the PVs from the left
atrial (LA) body. Knowing the LA anatomy is crucial for the success of the

� This research was supported by the National Institute for Health Research (NIHR)
Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and
King’s College London. The views expressed are those of the author(s) and not
necessarily those of the NHS, the NIHR or the Department of Health.

O. Camara et al. (Eds.): STACOM 2013, LNCS 8330, pp. 1–13, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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CT DATASETS MRI DATASETS

Fig. 1. Example datasets as provided for the challenge. Colour overlay shows the man-
ual ground-truth, where green areas represent the LA body, and magenta areas repre-
sent the PVs (for details see Sec. 2).

intervention, since it enables accurate planning of ablation lines and guidance
during the procedure [2]. More recently, LA anatomical models have been em-
ployed for cardiac biophysical modelling [3]. These models aim at understanding
the mechanisms of AF and, eventually, at predicting optimal therapy.

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are
commonly used for imaging the heart. There are several topological variants
of the LA and this means that segmentation of the endocardial boundary and
PVs is a non-trivial task [4]. Therefore, we aimed at evaluating current algo-
rithms that address this problem by creating a unified benchmarking framework
through the mechanism of a challenge, the Left Atrial Segmentation Challenge
2013 (LASC’13). This challenge was held at the MICCAI 2013 Workshop on
Statistical Atlases and Computational Models of the Heart: Imaging and Mod-
elling Challenges (STACOM’13). Each participant segmented the LA including
a short part of the LA appendage trunk plus the proximal parts of the PVs, from
3D whole heart MRI and/or CT modalities. Details on the evaluation framework
and the results obtained in this challenge are presented in this manuscript.

2 The Challenge

Thirty MRI and thirty CT datasets were provided to participants for segmenta-
tion. Ten data sets for each modality were provided with expert manual segmen-
tations for algorithm training (see Fig. 1). The other 20 data sets per modality
were used for evaluation. Datasets were limited to the most common topological
variant showing four PVs. The datasets were provided by King’s College London
and Philips Technologie GmbH.

Participants were expected to segment the LA including a short part of the
LA appendage (i. e. trunk) plus the proximal parts of the PVs (i. e. up to the
first branching point or after 10mm from the vein ostium). The LA body should
have extended at least up to the mitral valve (MV) (i. e. reach into the funnel
of the MV). Results were submitted as a single-valued binary mask covering all
these structures in NifTI format1.
1 http://nifti.nimh.nih.gov/

http://nifti.nimh.nih.gov/
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Heart detection (GHT) Similarity transform Piecewise affine Deformable 

Fig. 2. Automatic segmentation pipeline on a CT image for ground truth generation.
Different colours represent different parts of the deformable model. Green and magenta
regions correspond to the LA and the PVs, respectively (for details see Sec. 3).

MRI Datasets. MRI acquisition was performed on a 1.5 T Achieva scanner
(Philips Healthcare, The Netherlands). A 3D whole heart (3DWH) image was
acquired using a 3D balanced steady-state free precession acquisition [5]. The
sequence acquires a non-angulated volume covering the whole-heart with voxel
resolution of 1.25× 1.25× 2.7mm3. Images were acquired during free breathing
with respiratory gating and at end-diastole with ECG gating. Main acquisition
parameters include: TR/TE=4.4/2.4ms, flip angle=90◦, cardiac phases=1. Typ-
ical acquisition time for a complete volume is 10 min.

CT Datasets. Retrospectively ECG-gated cardiac multi-slice CT images were
acquired with Philips 16-, 40-, 64- and 256-slice scanners (Brilliance CT and Bril-
liance iCT, Philips Healthcare, Cleveland OH, USA) at different cardiac phases.
All images are reconstructed using a 512 × 512 matrix with an in-plane voxel
resolution ranging from 0.30× 0.30 to 0.78× 0.78mm2 and with slice thickness
ranging from 0.33 to 1.00mm. All scans were acquired after injection of ca. 40–
100ml contrast media (density 320–370mg iodine/ml), depending on the exact
purpose of the study (assessment of coronary arteries or cardiac valves). Con-
trast levels vary widely over the images provided for this challenge. Acquisition
times for a complete CT volume ranged from 3-5 sec on modern iCT scanners
to 20 sec for the older 16-slice scanners.

3 Ground-Truth Generation

In order to obtain a set of ground-truth (GT) segmentations consistent across
modalities, we started by performing an automaticmodel-based segmentationwith
amethodwhich is optimised for bothCT andMRImodalities. After the automatic
segmentation, manual corrections were performed. Details are provided next.

Automatic Segmentation. The automatic segmentation used in this study was
described in [7–9]. The segmentation uses shape-constrained deformable models.
These are based on a mesh representation of surfaces of cardiac chambers and the
attached great vessels. These meshes have a complex topology with T-junctions
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where different structures meet. The automatic adaptation starts by a localisation
step using the Generalized Hough Transform [10] to place the mesh model close to
the targeted organ. Thereafter, several adaptation steps with increasing degrees of
freedom refine the model pose and shape. Each step uses trained boundary detec-
tors that enable a robust and accurate detection of the wanted organ boundaries
in the image. These detectors are trained individually per mesh triangle and can
capture the varying appearance of organ boundaries in the images. Using the de-
tected boundaries, a first step adjusts the global pose of the complete model by
performing a rigid adaptationwith scaling that minimises the squared distances of
the model surface to the detected boundaries. Subsequent steps add more degrees
of freedom by subdividing the model into mesh regions (such as cardiac chambers
or short parts of the tubular vessels) and adapts these parts via individual affine
transformations. Finally, a deformable adaptation step leads to a locally accurate
segmentation where each mesh vertex is free to move under the image forces that
pull the mesh triangles to the detected boundaries while internal forces regularise
the adaptation and penalise strong deformations of the model shape. After adap-
tation of the model is complete, the regions enclosed by the surfaces are converted
into a label image with region-specific labels. Labels not covering the LA and the
PVs were discarded (see Fig. 2).

Manual Correction Criteria. Each automatic segmentation was manually
corrected by an experienced observer to obtain the final GT segmentation. Man-
ual corrections were performed using ITK-SNAP [11] for MRI datasets and
Philips in-house editing tools for CT datasets. PVs were followed distally to the
LA body ensuring at least 10mm coverage. They were truncated at the branch-
ing point when there was no clear main PV to follow. This early truncation
mainly happened in MRI, either due to image artefacts or low signal-to-noise
ratio. Each obtained GT segmentation consists of five labels: one label for LA
body and LA appendage trunk, and, four labels for each of the PVs. These labels
were used for standardisation purposes (see Sec. 4).

4 Standardisation Framework

Even for a human observer, defining certain regions of the LA is difficult. One
of these regions is the boundary between atrium and ventricle. Since the MV
leaflets can be at different levels of opening/closure, the definition of a MV plane
can be arbitrary. Unless an exact segmentation of the mitral annulus is available
which, however, may be non-planar. Another one of these regions is the PVs. For
these structures both the start points (i. e. ostia) and end points can be arbitrary.
Finally, the LA appendage (LAA) varies greatly among the population which
makes it difficult to segment. Since for most applications the actual shape of the
LAA is not relevant, we opted for removing it from the LA body. We only retain
the region most proximal to the LA cavity (i. e. trunk).
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Fig. 3. Standardisation framework. Distal end points of the PVs and LAA were ex-
tracted by computing areas of maximum curvature. The centroids of the high-curvature
areas were used as seed points for centerline extraction. The surface mesh was branched
based on maximum inscribed sphere radius [6]. For PVs and LAA clipping: we com-
puted a plane that is normal to the centerline and located 10mm away from the ostia
(for details see Sec. 4).
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To ensure that the calculated metrics are not negatively affected by these
regions, we standardised all submitted segmentations. The framework was im-
plemented using the Visualization Toolkit (VTK), the Vascular Modeling Toolkit
(VMTK), and MATLAB Toolbox Graph2.

Mitral Valve. Given the predefined labels of our GT, we could compute certain
anatomical landmarks in an automatic manner. For MV plane computation, we
extracted a surface mesh representing the LA body and the PVs separately. We
computed Principal Components Analysis on the LA body. The clip point was
set along the main axis (or the average of the two main axes for more spherical
bodies), at a distance of 35% × the maximum body length below the centroid.

Pulmonary Veins and LA Appendage. Along this clipped surface we com-
puted the Gauss curvature [12, 13]. We then normalised the curvature values to
obtain a unified range of (−2, 2). We thresholded the highest curvature values
(>0.5). These patches of high curvature were used as candidate positions for
PV and LAA end points (black contours in Fig. 3-HIGH CURVATURE). For each
PV we selected the patch furthest from the ostium. The patches belonging to
the body were discarded based on two criteria: (1) small surface area (< 0.5 ×
largest patch area); or (2) vicinity to the MV or the PVs ostia. The remaining
body patches belonged to the LAA. From the selected patches we computed the
centroids and stored them as seed points for centerline extraction.

We calculated the centerlines that connected each seed point to all remaining
seed points plus the centroid of the MV edge, as displayed in Fig. 3-CENTERLINES.
Using the approach of Antiga et al. [6], we computed bifurcation regions in the
centerlines corresponding to each seed. From the most distal bifurcation point
we defined a new splitting point located 0.75 × the maximum inscribed sphere
radius, similarly to the approach used by Piccinelli et al. [14] to define the neck
of cerebral aneurysms (red section of centerlines in Fig. 3-REBRANCHING).

Next, we labeled the surface based on the branched centerlines. These auto-
matically computed labels proved to be more consistent among the GT popu-
lation than the arbitrarily defined manual labels. Therefore, we used them as a
final definition of each anatomical region of the LA. Using the labels, we isolated
each PV and clipped it with a plane perpendicular to its corresponding center-
line and located 10mm from the PV ostium. The LAA was clipped at 80% ×
the maximum length of the labelled LAA surface (see Fig. 3-CLIPPING).

Automatic Segmentations Standardisation. For all submitted segmenta-
tions (binary masks), we performed a close filling operation to ensure a single
connected region. From it we generated a surface mesh using marching cubes
followed by volume preserving smoothing. Next, we clipped the mesh with the
MV plane generated from the GT mesh (Sec. 4), discarding unconnected regions.
Then, we transferred the automatic branch labels of the GT mesh to their clos-
est points in the automatically segmented mesh. For each label, we ensured a

2 www.vtk.org www.vmtk.org www.ceremade.dauphine.fr/~

peyre/matlab/graph/content.html

www.vtk.org www.vmtk.org www.ceremade.dauphine.fr/~peyre/matlab/graph/content.html
www.vtk.org www.vmtk.org www.ceremade.dauphine.fr/~peyre/matlab/graph/content.html
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single connected region to avoid transferring PV labels to neighbouring areas.
Finally, using the labels we isolated each PV and LAA and clipped them using
the planes computed automatically from the GT.

Fig. 4. Results for each participant for the CT datasets. The original meshes are dis-
played with transparency. The standardised meshes are colour mapped with surface-
to-surface errors. Note that for visualisation purposes, only the automatic-to-GT errors
are displayed in this figure. The symmetric surface-to-surface errors are summarised in
Table 1 (for details see Sec. 5).
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Fig. 5. Results for each participant for the MRI datasets. The original meshes are
displayed with transparency. The standardised meshes are colour mapped with surface-
to-surface errors. Note that for visualisation purposes, only the automatic-to-GT errors
are displayed in this figure. The symmetric surface-to-surface errors are summarised in
Table 1 (for details see Sec. 5).
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Fig. 6. Box-plots of segmentation errors for each participant for each anatomical re-
gion. The corresponding region is represented in the vignette on the upper left corner.
Maximum whisker corresponds to approximately 99.3% coverage if the data were nor-
mally distributed. Pair of samples that yielded statistically non-significant differences
(p < 0.001) are marked on the plot (†).
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5 Discussion

Participants. We received submissions from 5 groups. University of Lubeck,
Germany, processed CT and MRI datasets with two methodological approaches:
one based on statistical shape models (LUBECK SSM), and, another one combining
statistical shape models and region growing (LUBECK SRG). University of Bechar,
Algeria, processed the CT datasets (19 out of 20) with a combination of region
growing and gradient vector flow snakes (BECHAR). INSERM Rennes, France,
processed the CT datasets with a multi-atlas, multi-voting and region growing
approach (INSERM). Inria, Sophia-Antipolis, France, processed the MRI datasets
using decision forests (INRIA). University of Tlemcen, Algeria, processed the
MRI datasets with a combination of threshold localisation and circularity shape
descriptors (TLEMCEN). For details on each methodology refer to the articles in
these proceedings. Examples of the submitted segmentations before and after
standardisation are shown in Fig. 4 and Fig. 5.

Results. To test segmentation accuracy, symmetric surface-to-surface error
(S2S) and Dice metric were computed for all the standardised segmentations.
The median and standard deviation of both metrics (i. e. LA body, left superior
PV, left inferior PV, right superior PV and right inferior PV) are summarised
in Table 1. Fig. 6 shows the box-plots of the S2S errors.

Results showed that statistical shape approaches combined with region grow-
ing obtained the best accuracy (LUBECK SRG and INSERM). It must be noted
that this type of methodology often leaks into the left ventricle, the aorta and
sometimes into the right atrium. Some of these segmentation errors were re-
moved by our standardisation process, hence they were not penalised in by the
evaluation metrics. However, to be implemented as a feasible clinical tool, the
region growing should be somewhat constrained. For instance, limiting the re-
gion growing process to the PVs areas and/or to the surroundings of the initial
surface. The statistical shape approach in itself (LUBECK SSM) although highly
robust (i. e. valid shape instances of the LA) obtained lower accuracy than its
corresponding extension with region growing. However, for certain applications
this level accuracy could be sufficient.

BECHAR’s approach shows potential since the slices that were processed
obtained good accuracy. Unfortunately, due to the large amount of missing slices
(specially on the lower part of the LA) the performance metrics were low in most
anatomical regions. A 3D extension of the approach able to handle the whole
span of the LA would increase the feasibility of the methodology. This was
suggested by the authors as part of their future work.

INRIA’s approach even though it makes few assumptions, often obtained good
results. However, when then segmentation failed the errors where rather large
resulting on poor average performance. A possible improvement of this approach
would be to split the segmentation in two tasks: one for the body only and one
for the PVs. Another improvement would be to impose shape constrains on the
raw output of the decision forrest.
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Table 1. Summary of error metrics: all structures measured after standardisation

PARTICIPANTS
LUBECK SRG LUBECK SSM BECHAR INSERM
s2s dice s2s dice s2s dice s2s dice

m std m std m std m std m std m std m std m std

C
T

BODY 0.58 4.25 0.94 0.09 1.53 2.34 0.88 0.08 1.27 8.53 0.55 0.17 0.67 3.18 0.89 0.10
LSPV 0.62 2.10 0.88 0.21 1.42 2.29 0.78 0.21 0.69 3.16 0.83 0.24 0.78 3.34 0.74 0.27
LIPV 0.87 3.06 0.86 0.13 1.84 2.35 0.68 0.25 1.87 7.10 0.15 0.36 0.76 2.68 0.86 0.33
RSPV 0.48 1.04 0.89 0.15 1.67 3.87 0.53 0.28 2.05 6.98 0.13 0.34 0.70 1.46 0.79 0.27
RIPV 0.57 1.08 0.89 0.14 1.90 3.05 0.53 0.33 0.84 2.64 0.71 0.29 1.05 1.99 0.76 0.33

LUBECK SRG LUBECK SSM INRIA TLECEM
s2s dice s2s dice s2s dice s2s dice

m std m std m std m std m std m std m std m std

M
R
I

BODY 1.54 3.39 0.91 0.09 2.86 2.99 0.83 0.08 1.87 9.17 0.88 0.30 1.07 3.79 0.90 0.07
LSPV 1.69 3.33 0.72 0.28 3.31 2.48 0.39 0.24 3.63 15.85 0.35 0.30 3.06 8.17 0.08 0.36
LIPV 1.89 3.36 0.76 0.38 4.29 4.25 0.23 0.20 2.64 14.37 0.42 0.36 2.06 5.63 0.50 0.41
RSPV 2.34 6.27 0.35 0.28 4.10 5.65 0.08 0.22 3.59 8.53 0.12 0.33 3.09 8.06 0.36 0.28
RIPV 2.49 6.35 0.46 0.29 5.60 5.59 0.04 0.20 3.07 7.01 0.34 0.31 9.59 7.63 0.00 0.18

s2s = surface-to-surface error (mm); dice = Dice metric; m = median; std = standard deviation; LSPV = left superior PV;

LIPV = left inferior PV; RSPV = right superior PV; RIPV = right inferior PV; BODY = LA body without LA appendage.

TLECEM’s approach is based on circular shape descriptors from the sagittal
plane. Thus it obtained good accuracy on the middle of the LA body (low-
est error). However, the PVs were often missing and the lower part of the LA
body (closer to the MV) was often over segmented. Similarly to the approach of
BECHAR, a 3D extension could improve its feasibility for a clinical application.

6 Conclusions

This manuscript presents a unified benchmarking framework for current algo-
rithms for segmentation of the left atrium from MRI and CT datasets. Strong
effort was dedicated to implement a standardisation framework for the ground-
truth and the automatic segmentations.

The results showed that methodologies combining statistical models with re-
gion growing approaches were the most appropriate to handle the proposed task.
Visual results showed that an approach with good performance according to the
error metrics (low surface-to-surface and high dice) does not always provide the
best overall 3D structural result. This has pointed us to believe that it is impor-
tant to explore other complementary metrics that better reflect the similarities
in shape between the desired ground-truth surface and the automatic segmented
surface.

As a follow-up work, we will submit a journal publication with the benchmark-
ing framework presented in this workshop. In other to include other methodolo-
gies, we will make a second call for participants. In this follow-up work, we
plan to evaluate the influence of image quality on each segmentation algorithm,
include a measure of inter-observer variability, and, extend the performance met-
rics. Examples of these metrics include: centerline-to-centerline distance of the
pulmonary veins, leakage metric to reflect the effect of a failed region growing,
and, more advanced statistical measures of the shape differences between the
surfaces.



12 C. Tobon-Gomez et al.

Acknowledgements. The authors would like to thank C. Butakoff, O. Camara
and A.J. Geers for their very useful suggestions for the automatisation of the
evaluation framework.

References
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Abstract. In this work, we present an automatic segmentation of the left atrium 
on computed tomography imaging (CT). The left atrium has an important role in 
patients with ventricular dysfunction as a booster pump to augment ventricular 
volume. A method based on active contours models with gradient vector flow is 
proposed in this paper and applied for left atrium segmentation. At first, a con-
trast enhancement is applied to improve the image quality. The automated initia-
lization method is followed by a region-growing technique for a preliminary 
segmentation. The result of this technique is used as initialization for a segmen-
tation method using a Gradient Vector Flow (GVF) snake based approach. The 
initial model can hence be attracted to the borders of the left atrium following 
various internal and external forces including the gradient vector flow (GVF). 

Keywords: Left atrium, Adaptive histogram equalization, Region-growing, 
Snake, GVF, CT Cardiac images. 

1 Introduction 

Medical images segmentation consists of a set of methods used for extracting the 
relevant information in an automatic manner. This process improves the diagnoses 
made by several imaging techniques (CT, MRI, X-ray, etc.). The computed tomogra-
phy imaging (CT) is one of the most popular imaging modality used to visualize the 
internal structures of the human heart. The left atrium is one of four chambers in 
the heart; it has an important role for patients with ventricular dysfunction as a boost-
er pump to augment ventricular volume [1]. Recently, several studies have demon-
strated how the left atrium plays a primary role not only in modulating ventricular 
filling and function through the atrioventricular interaction mechanism but also in 
providing important prognostic clues for the risk stratification of patients with diastol-
ic dysfunction [2]. In the literature, many segmentation methods are used to detect the 
left atrium. In [3], the authors present a semi-automatic approach for segmenting the 
left atrium and the pulmonary veins from MR angiography (MRA). They use a region 
growing approach for locating the surrounding structures of the left atrium, and these 
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regions are subdivided into disjoint regions based on their Euclidean distance trans-
form, followed by a merge function which produces the segmented atrium. Some 
other methods in the literature are devoted to detect all of the pulmonary veins at-
tached to the left atrium. For example, in [4] Depa et al. proposed to use a weighted 
voting label fusion to localize pulmonary veins. This work allows tracking center 
lines of the pulmonary veins entering the atrium. In [5], the authors used shape learn-
ing and shape-based image segmentation to identify the endocardial wall of the left 
atrium in the delayed-enhancement magnetic resonance images. An active contours 
approach was used to detect the endocardial and epicardial atrial wall segmentation 
on CT image in [6]. In [7], Koch et al. used the concept of Coherent Point Drift 
(CPD) registration for left atrium shape modeling, where a principle component anal-
ysis was applied in order to establish a deformable shape model. 

In this paper, we propose a new segmentation method applied to the left atrium locali-
zation and delineation by using the Gradient Vector Flow (GVF) snake approach. In our 
proposal, we segment the left atrium with four pulmonary veins from Computed Tomo-
graphy Imaging (CT) volume data sets. At first, an adaptive histogram equalization  
method was applied to improve the image quality. Then, a region-growing technique  
was used to initialize the GVF snake model. Finally, an automatic deformation of the 
GVF-snake model until the convergence was applied, allowing the final segmentation. 

2 Proposed Method 

The processing information frame work related to the proposed method is illustrated in 
figure (1). Our segmentation method is based on the GVF-snake model and allows an 
automatic detection of the left atrium outlines in CT image, figure (2). This detection me-
thod requires a good and accurate initialization of the model contour, ideally close to the 
area of the objects to be detected. After that, by using GVF internal and external forces, 
successively deformations are applied to the initial model curve by minimizing its related 
energy, so that it becomes closer to the real contour. In this method the initialization is 
done in an automatic way. The initialization is a result of the automatically localization of 
the left atrium in the image, followed by a region-growing segmentation technique. The 
dataset provided by STACOM 2013 workshop shows that the left atrium is in the middle 
of CT images, and it has a largest area. We will point in the following section that this 
characteristic is very important for the localization process. 

 

Fig. 1. The general framework of the proposed method 
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Fig. 2. Examples of CT images       

2.1 Left Atrium Localization 

Automatic initialization is a key to the automatic segmentation progress. So, in this 
section, we present a method based on an area metric to automatically select a point 
inside the left atrium. This method consists of the following steps: 

• In the most cases, the left atrium is located in the middle of the CT image. The first 
of the localization method proposed is to reduce the image size to 260x260, (fig 4 
a). 

• After that, we apply at hresholding method to convert the initial image to a binary 
image. This thresholding permit to remove all objects that are smaller than a prede-
fined threshold (fig 4 b). In this work, the thresholding is based on the gray level 
histogram analysis. The desired threshold should be the value that separates the left 
atrium from the background. The histogram image will determine a threshold or 
several thresholds depending on the nature of the image. In fact, if it is a bimodal 
image, the histogram allows to find a single threshold. If it is a multimodal image, 
we can find several levels; in this case we determine successively the best thre-
shold. The threshold values correspond to the lowest part of the valley (fig 3). In 
this case the chosen threshold T is the one corresponding to the higher gray level 
value. 

• At the final step, we compute the area of each object (fig 4c). The object with the 
largest area is recognized as the left atrium, and its centroid coordinate is used to 
initialize the region-growing technique (fig 4d). 
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Fig. 3. Optimal threshold selection in gray-level histogram: (a) Bimodal, (b) Unimodal, (c) 
Multimodal 

  
 

  

2.2 Region-Growing Method 

The region-growing segmentation method was one of the first tools used for image 
segmentation, being a fast and intuitive technique. It is a simple approach for image 
segmentation and its principle is to gradually grow the region around its starting point 
(seed) [8]. It remains effective when its parameters are well chosen, as follow: 

Pixel Count                                                           Pixel Count                                                     

                             

                                                      Gray-Level                                                             Gray-Level 
(a)                              T                                              (b)            T                                                     

                                         Pixel Count

                         (c)                 T1      T2       T3                   Gray-Level 

Fig. 4. LA location 

   (a)  Image reduced (260x260). 
   (b)  Binary image result. 
   (c)-(d)  LA centroid is labeled  
    as a green symbol. 

Once this seed point selected, 
the region growing process is 
started until it covers the entire 
region. 

 

 dc

ba
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─  The choice of seed. 
─  Fix a homogeneity criterium of the searched area, such as the difference between 

the gray level of the pixel and the average gray level of the region. 
─  Accumulation of neighboring pixels satisfying the homogeneity criterium. 

Indeed, this method is very sensitive to the variation of these parameters and the final 
result is highly depending of them. Therefore, we need a rule describing a growth 
mechanism and a rule checking the homogeneity of the regions after each growth 
step. 

In our work, in order to test the region homogeneity, the pixel intensity has to be 
close to the region mean value M (i), equation (1): 

|I(x,y) – M(i)| <= T                              (1) 

Where, T is the threshold predefined in the previous section. 
On the other hand, the threshold T varies depending on the region and the intensity 

of the pixel I(x, y). The region growth until the distance between the region and poss-
ible new pixels become higher than the threshold T. The region growing algorithm 
that we used is presented as follows: 

1. Start with a seed pixel. 
2. Check the 8-neighbors of the pixel and analyze the homogeneity criterion. 
3. Growth in the region until no pixel satisfies the criterion. 

The goal of the region-growing technique is to find the initial contour that 
represents the meaningful model of left atrium. Therefore, the region-growing result 
was used as initial contour for the GVF snake model; since it provides an initial con-
tour near to the left atrium borders. Figure (5) shows the original image on which was 
applied the region growing segmentation method. 

 
Fig. 5. Region-growing result 

2.3 Left Atrium Segmentation 

The major problems of CT images segmentation are resulting from the similarity 
between neighboring pixels of the organs in image. Therefore, it is necessary to go 
through a preprocessing to correct defects and improving the quality of the image 
before performing the segmentation. Adaptive histogram equalization (AHE) is one of 
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the well-known contrast enhancement techniques because it is simple and effective 
[9]. The AHE can adjust the histogram so as to broaden the areas (edges) having a bad 
distribution. Before the AHE, we subtract the threshold value of image; this differ-
ence is between the image background (background) and the interesting objects in the 
image (foreground). The Adaptive histogram equalization is used to ameliorate the 
image contrast, especially the boundaries of left atrium (fig 6). 
 

 
Fig. 6. Adaptive histogram equalization (AHE) result 

Gradient Vector Flow 
This section will describe in details the GVF-snake segmentation. Historically, tradi-
tional active contours were introduced by Kass, Witkin and Terzopoulos in 1988 [10]. 
They represent a method that minimizes the energy function consisting of an external 
force (Eext) and an internal force (Eint), equation (2): 

E=  Eint (X (s)) +Eext (X (s))                         (2) 

Where s is the curvilinear abscissa along the contour s ϵ [0, 1], and X denotes the 

active contour. The internal energy (Eint) is defined by the following equation: 

Eint =  (α |Xʹ(s) |2+ β|X˝(s) |2)                     (3) 

Where α and β are the weighting parameters which control the snake’s tension and 
rigidity, and respectively, X’(s) and X’(s) denote the first and second derivatives of 
X(s) with respect to s. The external energy function (Eext) is defined to be the negative 
of image gradient magnitudes. The external energy Eext is derived from the image so 
that it takes on its smaller values at the features of interest, such as boundaries: 

Eext = - |▽I(x,y) |2   or    Eext(s) = - |▽Gσ* I(x,y) |2                (4) 

Where I(x, y) represents the image, ▽  is the gradient operator, and Gσ is the 

Gaussian filter with standard deviation σ. The total energy (E) should be: 

E =  [α|Xʹ(s)|2 + β|X˝(s)|2] + Eext (X(s))ds.                (5) 
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Xu and Prince [11] have proposed a new deformable model called Gradient Vector 
Flow snake. It was developed because of the known limitations of traditional snakes 
such as their poor convergence in concave regions. This method uses the GVF as a 
new external force by introducing a vector diffusion equation in order to diffuse the 
gradient of the edge map extracted from the image. This process starts by calculating 
the edge map of the given image. In our case, we have used a Sobel operator to this 
aim. The edge map characterizes the areas of interest in the image.  

The GVF field is defined as a vector field V(x, y) = (u(x, y), v(x, y) that minimizes 
the following energy function, equation (6). 

ε =  μ (ux2 + uy2 + vx2 + vy2) + |▽f |2|V - ▽f |2dxdy.           (6) 

Where f is the image edge map, µ is the smoothness degree, u and v represent the 
direction and strength of the field and ▽ f is the gradient of the edge map. The gra-
dient ▽ f has vectors pointing towards the edge, which is a desirable property for 
snake. 

Using the calculus of variations, the GVF field can be obtained by solving the Eu-

ler-Lagrange equations (7) and (8), and through the iteration of these, u, v will be 

obtained: 

 μ▽2u - (u - fx) (f x2 + f y2) = 0                       (7) 

 μ▽2v - (v - fy) (f x2 + f y2) = 0                       (8) 

Where, ▽2 is the Laplacian operator. The efficiency of snakes depends on a set of 
parameters such as μ (regularization parameter), alpha (elasticity parameter), beta 
(rigidity parameter), gamma (viscosity parameter), Kappa (external force weigh) and 
iteration number. And their values are shown in the experimental result, see Fig (9). 
The regularization parameter should be set according to the amount of noise present 
in the image (more noise, increase) (μ=0.1~0.2). The deformation of the GVF-snake 
is an iterative process. The iterations are stopped when a maximum number of itera-
tions are reached. 

3 Experimental Results 

A set of 20 cardiac CT images provided by STACOM 2013 workshop have been 
tested by the proposed method in order to evaluate its performance. We implemented 
an algorithm of GVF snake in order to segment the left atrium of the heart in a CT 
image. Figure (7) shows how to locate the left atrium in the image. Two kinds of CT 
images are shows in fig (7a). Each image is represented by four images that are the 
original image reduced, the histogram image, the result of thresholding and the result  
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of the localization. The histograms of the images are given in Fig (7b). The gray-level 
values corresponding to the valley of the histogram at (45.0, 78.0) and (76.0, 129.0, 
152.0) are marked with the red points and we choose the best threshold of them. The 
binarization of the original image using the obtained threshold is given in fig (7c). 
The object with the largest area is recognized as the LA, and its centroid coordinate 
(x, y) is used as the seed pixel for following technique Fig (7d). 

 

    
 

         
 

 
 

   
 
 
 

T1 

T2
T3T2 T1 

Fig. 7. LA location procedure 

(a)  Original image.  
(b) Histogram and threshold values, (T2, 
T3 are the best thresholds in red color). 
(c)  Binary image. 
(d)  LA centroid is labeled as a green 
point. 

The initialization of the GVF 
snake is done by using of the region-
growing technique, and the initiali-
zation is done closer to the left 
atrium boundary as shown in figure 
(8). Fig (8b) shows the region grow-
ing results. Fig (8c) shows the initial 
GVF snake in red color. From these 
experiments we can see that the in-
itialization of the GVF snake by 
region growing algorithm plays a 
very important role in the segmenta-
tion process. 
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4 Conclusion 

In this paper, we have presented a technique for segmenting the left atrium from CT 
images by a GVF snake model. The Region Growing technique (RG) is proposed for 

Fig. 8. GVF snake initialization 

(a) Seed pixel in green color. 
(b) Region growing results. 

   (c) Initial contour for the GVF snake 
     model. 

Fig. 9. Segmentation results 

(a) AHE result. 
(b) Edge map. 
(c) Final contour snake in 

blue color. 

Figure (9), (a) shows the adap-
tive histogram equalization (AHE) 
result, the edge map is shown in (b) 
and the final snake in blue color 
after five iterations is shown in (c). 

The value of alpha, beta, gamma 
and Kappa are respectively 1, 0.5, 
1.4 and 1.2 for the GVF-snake algo-
rithm. 

a

b c

a

b

c



 Automatic Segmentation of the Left Atrium on CT Images 23 

extracting only the initial contour of the GVF snake. The threshold of RG is selected 
as a function of the histogram image. The proposed method is simple and fast.  In 
some slices, the obtained results show that the results of segmentation include the 
detection of the pulmonary veins.  We note that the segmentation result by GVF 
snake is better than the region growing technique taken as initialization model. The 
number of iterations required is greatly reduced through the use of the preliminary 
segmentation results where the average running time was 8 ±72 s. And the algorithm 
was implemented and executed in a 2.4 GHz Intel Core i3 PC with 4 GB RAM. In our 
future work, the proposed method will be extended to segment the left atrium in 3D 
image volume. 
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Université de Rennes 1, LTSI, Rennes, F-35000, France

Abstract. This paper presents a multi-atlas segmentation approach
concerning the left atrium and pulmonary veins in pre-operative CT im-
ages in order to plan ablation therapy in patients with atrial fibrillation.
The segmentation procedure is composed of an atlas-based segmentation
followed by a region-growing method. The atlas-based segmentation step
exploits the a priori knowledge of existing structures to extract the inner
region of the left atrium. The output of the atlas-based segmentation
is then eroded to be used as seed volume in the region-growing proce-
dure. This step adds new voxels according to a criterion which uses the
intensity information of the input image.

Keywords: Multi-atlas segmentation, affine registration, elastic regis-
tration, region-growing.

1 Introduction

Atrial fibrillation is a cardiac arrhythmia caused by abnormal electrical dis-
charges in the atrium. Ablation procedures have proved to be some of the most
effective methods in treating of atrial fibrillation [1]. They aim to destroy mech-
anisms that trigger abnormal electrical charges or to modify the substrate that
allows arrhythmia to be induced or maintained. Segmentation of the left atrium
and pulmonary veins in pre-operative 3D-CT images is essential in planning
correct ablation therapy.

Research interest in left atrium and pulmonary veins (LAPVs) segmentation
has recently increased due to pulmonary veins appearing to play a key role in
the initiation and maintenance of atrial fibrillation [2]. However, it is a challeng-
ing task due to the large anatomical variations, especially in the number, form
and location of pulmonary veins. Some methods have been proposed for LAPVs
segmentation. Some of them use prior knowledge of the anatomical shape such
as model-based [3, 4] and atlas-based [5] approaches. Other approaches such as
thresholding, region-growing and active contours use only the intensity informa-
tion of the image [6, 7].

We propose an approach that combines prior knowledge of the anatomical
shape to obtain the inner region of interest, with an intensity-based region-
growing algorithm to extract particular anatomical details.

O. Camara et al. (Eds.): STACOM 2013, LNCS 8330, pp. 24–30, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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2 Methods

The proposed method computes a detailed segmentation of the LAPVs from
a coarse estimation of the atrium. This coarse segmentation uses a multi-atlas
approach to obtain the inner region of the LAPVs. A region-growing based
approach then performs a fine delineation from the inner region. Flowchart of
the multi-atlas approach used is shown in (Fig. 1). This approach has already
been used in the segmentation of the brain [8], prostate [9], whole heart and
great vessels [5].

Similarity
value

ranking

Affine
registration

Elastic
registration

Transformation
propagation

Fusion

similarity value

transformation

transformation

modified

Top-ranked

Top-ranked

Fig. 1. Multi-Atlas based segmentation process. The affine registration allows to evalu-
ate the similarity between the input image and the atlas data set. The elastic transfor-
mation modifies the ground truth of the selected atlas images. The fusion rule defines
the coarse segmentation of the left atrium and pulmonary veins.
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2.1 Multi-atlas Based Segmentation

Let I be an input CT image to be segmented and A1, A2, ..., AN , a set of N atlases
composed of intensity image Ii and the corresponding ground truth GTi, as
Ai = (Ii, GTi), i = 1, 2, ..., N . The coarse segmentation of the LAPVs is obtained
with a multi-atlas approach composed of three steps: (i) atlas selection, (ii) elastic
registration and (iii) fusion. The atlas selection step first performs an affine
registration between I and each of the images composing the atlas dataset Ii. The
images Ai are then ranked according to the value of the final similarity measure.
Then, an elastic registration is performed between I and top-ranked Ii. The
results of elastic registration propagated on the corresponding top-ranked GT s
are fused to obtain the segmentation of I. The affine registration is automatically
initialized. The translation needed to align the geometrical center of the fixed
and moving images is used as an initial transformation.

Similarity Measures. Three similarity measures were considered for the reg-
istration process: sum of squared differences (SSD), normalized correlation coef-
ficient (NCC) and mutual information (MI).

Fusion. A simple majority-voting fusion rule is used to merge the propagation
of the labelled images of the selected atlas. This rule establishes that a voxel
in I is labelled as a left atrium or pulmonary vein if at least half of the output
elastic transformation of top-ranked labelled volumes are part of the structure
at the voxel’s location.

2.2 Region-Growing

The output of the multi-atlas segmentation is eroded to lie inside the region
of interest. This output is used to initialize a region-growing approach. The
seed region is shown in Fig. 2. This approach adds new voxels according to a
criterion using the intensity information. In such a way, the seed region adapts to
the particularities of each patient. An sphere structuring element with a radius
of 2 mm was used to erode. Also, the growing procedure was constrained to a
region corresponding to the dilated atlas-based segmentation output using the
same structuring element. The intensity values of seed region are used to set
automatically the criterion of growing. The interval is defined by two standard
deviation around the mean value.

3 Experiments and Results

3.1 Data

The image dataset is composed of 30 CT images. Ten of them have a correspond-
ing delineation of the left atrium and pulmonary veins (Ground Truth) and were
used to train the atlas. The remaining 20 were used to evaluate performance.



Multi-atlas-Based Segmentation of the Left Atrium and Pulmonary Veins 27

Fig. 2. The axial (a), sagittal (b) and coronal (c) views of the intensity input image
(gray level), the corresponding ground truth (green) and the contour of the seed region
(yellow). The model (d) of the seed region.

These images were provided by King’s College London and Philips ResearchHam-
burg to the participants of the Left Atrium Segmentation Challenge (LASC).

3.2 Evaluation Using the Training Images

To evaluate the performance, we used a leave-one-out approach to tune the atlas.
The accuracy of both affine registration and elastic registration were assessed.
Three similarity measures were tested: SSD, NCC and MI. The incidence of using
a region-of-interest (ROI) containing the LAPVs was also evaluated. Then, two
tests resulted: (i) using the ROI in both the input image and the atlas images
(ii) without using ROI.

The accuracy of the registration was measured using the Dice similarity index.
This index depicts the overlap of two volumes V 1 and V 2 and is defined as:

Dice =
2|V1 ∩ V2|
|V1|+ |V2| (1)
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Affine Registration. Table 1 presents the results of the ranking process when
A1 is taken from the training group as input image and the remaining nine are
used as atlas. It can be observed the incidence of using ROI. Indeed, the change
in the ranking is more evident when MI is used.

Table 1. Images ranked according to the final value of the similarity measure in affine
registration to A1 (chosen as input image). Results for SSD, NCC and MI with/without
ROI are shown.

ROI
Similarity
measure

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

with
SSD 2 3 7 6 5 4 8 9 10
NCC 2 7 6 4 5 8 3 9 10
MI 4 3 6 5 7 8 9 10 2

without
SSD 5 2 6 3 8 9 7 10 4
NCC 5 3 2 6 9 7 8 4 10
MI 5 10 9 6 3 8 7 4 2

Dice values between A1 and the corresponding ranked images are presented
in Table 2. In general, affine registration reaches an average Dice score between
33% and 82%. A low Dice index would lead to a weak initialization of next stage
(elastic registration). This is the case of using MI and no ROI which obtained
the worst Dice. It can be observed that using a ROI improves the performance.

Fusion. Table 3 contains the Dice indexes when two to seven images are used
in the fusion. In general, Dice indexes are above 90% and are improved when
using a ROI. The best performance was obtained for SSD. Despite the low affine
Dice index for MI without ROI, the fusion rule increased the index for this case
to a value comparable to the other metrics.

Table 2. Dice index between the ground truth of A1 and the propagated atlas ground-
truth using output affine transformations, for ranking images. Results for SSD, NCC
and MI with/without ROI are shown.

ROI
Similarity
measure

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

with

SSD 82.0 80.3 64.1 79.5 72.6 74.7 67.1 77.5 66.2
NCC 81.9 65.3 79.2 74.5 72.9 68.1 9.8 77.2 71.2
MI 81.6 83.3 82.4 75.2 66.7 77.8 81.5 69.1 1.2
Mean 81.8 76.3 75.2 76.4 70.7 73.5 52.8 74.6 46.2

without

SSD 72.0 67.1 75.4 26.3 63.4 57.7 68.0 37.9 59.6
NCC 70.6 68.1 66.3 75.0 58.4 65.3 63.5 58.9 37.6
MI 54.7 35.5 41.3 67.3 21.6 51.2 67.3 0.8 10.7
Mean 65.8 56.9 61 56.2 47.8 58.1 66.3 32.5 36
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Table 3. Dice index between the ground truth of A1 and fused atlas ground truth
after elastic registration. Results for SSD, NCC and MI with/without ROI are shown.

ROI
Similarity
measure

Number of images used in fusion

2 3 4 5 6 7

with
SSD 93.9 88.2 91.6 90.9 94.4 91.9
NCC 92.7 92.5 94.2 93.5 93.4 92.0
MI 93.2 92.1 93.3 91.5 93.0 92.3

without
SSD 85.6 93.8 92.1 94.2 93.6 92.9
NCC 89.1 92.7 93.8 88.6 89.1 88.0
MI 91.4 84.8 88.6 86.7 89.4 86.9

Region-Growing. Table 4 contains the Dice indexes when the region growing
is initialized with the eroded atlas-based segmentation. Region-growing approach
improved the Dice score for the tests without ROI especially when less of five
images are used in the fusion. Best Dice (95%) was obtained for SSD without
ROI and using five images in fusion. Dice values are high no matter the number
of images used in the fusion.

Table 4. Dice index between the ground truth of A1 and region-growing output.
Results for SSD, NCC and MI with/without ROI are shown.

ROI
Similarity
measure

Number of images used in fusion

2 3 4 5 6 7

with
SSD 93.6 87.7 91.2 90.5 93.6 91.3
NCC 92.7 92.0 93.4 92.9 92.7 91.3
MI 92.8 91.2 92.3 90.6 92.0 91.4

without
SSD 87.0 94.2 94.8 95.0 94.6 93.3
NCC 90.7 93.9 94.6 88.9 89.6 88.7
MI 93.1 84.9 89.5 87.0 90.1 87.4

4 Conclusion

The segmentation of LAPVs was presented first using an atlas-based segmen-
tation to compute an approximation of the structures and then a region grow-
ing procedure to obtain the anatomical details. Three similarity measures were
tested with/without using a ROI in the registration procedure. The atlas-based
segmentation reached a Dice score of 94% using the SSD metric with or with-
out ROI. The region growing approach slightly improved the Dice when no ROI
was used. This approach also allowed to obtain a high Dice index no matter the
number of images used in the fusion.
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Abstract. Ablation is a minimal invasive interventional method used in car-
diac electrophysiology. It is one option for the treatment of patients suffering
from paroxysmal or persistent atrial fibrillation through pulmonary vein isolation.
During the intervention endocardial surface potentials from a tracked mapping
catheter are recorded with respect to a static patient specific surface geometry.
The purpose of the presented work is to compare two different automatic seg-
mentation methods working on both CT and MRI volumes. Segmentation of the
left atrium is challenging because the shape variability is high. The use of statis-
tical shape models initialized by means of affine image registration was explored
as first method. The second method was non-parametric and based on atlas reg-
istration and statistical region growing. Segmentation results were validated and
compared using a leave-one-out cross validation on the volumes provided with
segmentation results achieved manually by experts. The Dice’s coefficient was
used as error measure. The method based on statistical region growing performed
better than statistical shape models. A Dice’s coefficient of 0.87 was achieved on
both imaging modalities.

1 Introduction

At present the most frequently performed electrophysiological cardiac intervention is
ablation therapy for the treatment of atrial fibrillation (AFib). AFib seems to be often
caused by abnormal sources of electrical excitation around one or several of the four
pulmonary veins leading into the left atrium (LA) [5]. The resulting impairment of an
organized atrial contraction is leading to an increased risk of thrombus formation in
the left atrium and the left atrial appendage (LAA). In cases of paroxysmal or persis-
tent atrial fibrillation one treatment option is isolation of the ectopic foci achieved by
drawing circumferential ablation lines around the pulmonary veins (pulmonary vein
isolation, PVI). The catheters approaching the atrial wall to be ablated are displayed in
Fig. 1a). During PVIs Electroanatomical Mapping (EAM) systems like CartoTM (Bio-
sense Webster, Diamond Bar, CA, USA) or EnSite NavXTM (St. Jude Medical, St. Paul,

O. Camara et al. (Eds.): STACOM 2013, LNCS 8330, pp. 31–41, 2014.
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a) b)

Fig. 1. a) Target region at the ostia of the pulmonary veins. Ablation and mapping catheter are
entering the left atrium penetrating the atrial septum at the fossa ovale. b) Anatomical structures
at risk illustrated by segmentation of the blood pool within CT dataset A001.

MN, USA) allow to navigate and record endocardial surface potentials with respect to a
static patient specific surface geometry of the blood pool. Because EAM systems allow
to navigate the tracked catheters almost in real time the X-ray exposure time caused by
fluoroscopic guidance could be reduced for the time period after surface registration.

The accuracy requirements for segmentations of the left endocardial contour are
challenging, first, because anatomic structures at risk are located close to the target
region and second, because the ablation lines need to be drawn with high precision. As
illustrated in Fig. 1b) anatomical structures at risk are the left atrial appendage (LAA)
and the aorta. The esophagus not visible in Fig. 1b) is potentially also located close to
the left atrial wall.

Improvement in left atrial segmentation could be achieved by addressing the follow-
ing two sub-problems:

1. Fully automatic segmentation of the atrial endocardial contour in contrast-enhanced
CT could reduce the preparation time and increase the reproducibility of this first
step within the clinical workflow.

2. The substitution of CT with MRI as preoperative imaging modality would be de-
sirable to further reduce the X-ray exposure of the patients. Currently the quality of
the segmentation results is not as good as the one achieved in CT volumes. A further
improvement of segmentation algorithms working in MRI and a detailed investiga-
tion of the results in direct comparison with CT data would allow an evidence-based
decision making between the two imaging modalities.

Among the most recently published papers on left atrial segmentation the majority was
focusing on MRI. Several authors pointed out that the contour of the left atrium is highly
variable [4,12,8]. A relatively simple approach presented was based on segmentation
of the blood pool and subsequent determination of cutting planes at narrowings [7].
Due to the inhomogeneous and patient-specific distribution of imaging gray values
within the blood pool user-interaction was required. A segmentation algorithm based
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on registration of an atlas and labelmap fusion was already presented at the STACOM
conference in 2010 by Depa et al. [4]. A very recently presented approach is based on
splitting the complex structure of the contour into simpler substructures. The parts are
then segmented using multi-model statistical shape knowledge [12,8].

We will present two different approaches. The first one is based on statistical shape
models (SSM), the second one uses region growing. Both approaches utilize atlas in-
formation for initialization and work fully automatically.

2 Material and Methods

2.1 Material

The two segmentation approaches were tested with the 30 CT and 30 MRI volume-
tric scans of the Left Atrial Segmentation Challenge 2013 database. The imaging data
was recorded using cardiac gating and contrast enhancement. Ground truth is provided
through segmentations performed by clinical experts. The training datasets A for CT
and MRI include 10 volumetric scans and ground truth labelmaps for each modality.
The remaining 20 volumetric scans each given without ground truth will be referred
in the following as CT dataset B and MRI dataset B. The mean spatial resolution is
0.45 mm for the CT and 1.25 mm for the MRI volumetric scans. Further information
on the patients’ anamnesis and the imaging protocols used was not provided.

2.2 Modality Specific Atlases of the Left Atrium

The quality of segmentation results achieved with SSM in general strongly depends on
accurate initialization [6]. Usually the initial pose (position and orientation) of the mean
shape is selected interactively which can be time-consuming and is potentially leading
to user-dependent segmentation results. To overcome these known drawbacks we au-
tomatically determined the pose for the initial contour by means of atlas registration.
This technique was used as well to initialize the statistical region growing approach.
For this second approach seed points and assumptions on the range of gray values were
automatically generated.

Two modality specific atlases were determined from CT dataset A and MRI dataset A.
The volumes were cropped around the LA annotations within the corresponding la-
belmap. One of the LA volumes was selected as reference. It will be annotated as ref in
the following. Pairwise affine registration was performed to map all LA volumes i �= ref
in dataset A onto LA volume ref .

An affine registration algorithm is optimizing 12 parameters describing position, ori-
entation, scaling and shearing by minimizing the mutual information similarity mea-
sure between two volumes. The result is a 4 x 4 transformation matrix refHi which
describes the transformation of voxels from image volume i to image volume ref . We
used the Fast Affine Registration and ResampleVolume2 modules released as part of 3D
Slicer 3.6.3 for affine registration throughout the whole work [9]. Slicer modules were
called via shell scripts. Histogram equalization and averaging of the transformed image
volumes resulted in a mean volume used as template. These steps were performed in
Matlab.
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In Fig. 2 the result for CT is shown. The left (right) column images are all displayed
with respect to the same coronal (transverse) cutting plane. The reference volume is
displayed in Fig. 2 a) and b), the mean volume used as template in c) and d) and the
probability density distribution in e) and f).

Fig. 2. a) and b): CT volume A003 used as reference dataset ref . c) and d): Atlas template volume
created from the CT training dataset A. e) and f): Propability density distribution of the volume
to belong to the blood pool of the left atrium.
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Fig. 3. Workflow for left atrial ROI detection in a CT or MRI input volume to be segmented

2.3 Identifying the Left Atrial Region of Interest

The workflow for detection of the LA ROI is displayed Fig. 3. In a first step the whole
torso reference volume ref and the input torso volume i to be segmented were downsam-
pled isotropically to a resolution of 2 mm. Within the downsampled reference volume
an ROI including a large region of the heart is cropped without parts of the rib cage. The
rib cage is excluded because the dimensions of the skeletal bones and the dimensions
of the heart are not correlated in deseased patients.

Affine registration of the heart region to the input dataset resulted in the transforma-
tion matrix iHref,coarse. This transformation matrix describes the position, orientation,
scaling and shearing of the reference image volume ref with respect to the input image
volume i. Because the modality specific atlas was determined with respect to the ref-
erence volume the margins of the atlas volume were also defined with respect to this
image volume. The rectangular LA atlas ROI was transformed with the affine transfor-
mation matrix iHref,coarse to determine the LA ROI with respect to the volume i. Within
the input volume in its original resolution the LA ROI was then cropped as starting
point for the initialization of the two segmentation algorithms.

2.4 Statistical Shape Models

SSM are a set of methods which has already been successfully applied to various
medical image segmentation tasks. While active shape models (ASM) include prior
knowledge of the mean shape and its variations, active appearance models (AAM) are
additionally augmented with statistical knowledge of imaging features associated with
the contour [3,2,6].
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Fig. 4. Initialization workflow for both segmentation algorithms. By means of atlas registration
the initial contour for the segmentation approach using a statistical shape model was determined
as well as the initial volume and margins for segmenation based on statistical region growing.

Initialization Based on Image Registration. The segmentation algorithm started with
an affine registration of the atlas image onto the input volume as shown in Fig. 4. The
mean contour was afterwards mapped using the same affine transformation matrix. This
initial contour guess is constrained by the permitted variations of the SSM.

The Point Distribution Model. For representation of the mean shape and shape
variability a point distribution model (PDM) was used. Such a PDM is built up in
the following steps: The groundtruth annotations within all N image volumes are
described by a certain number k of landmark points on the contour. The 3k land-
mark point coordinates for each contour i are listed in the column vector xi =
(x1, . . . , xk, y1, . . . , yk, z1, . . . , zk). Assuming known point-to-point correspondences
among the landmark points the mean shape is then determined by simply averaging over
the 3k point coordinates:

x̄ =
1

N

N∑
i=1

xi (1)

By means of an eigendecomposition on the sample covariance matrix

S =
1

N − 1

N∑
i=1

(xi − x̄) (xi − x̄)
T
, (2)

the eigenvectors φm and the corresponding eigenvalues λm are determined. Permiss-
able shape variations are modeled as linear combination of the eigenvectors with the
largest eigenvalues.
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Fig. 5. Surface transformation based on image registration

Point-to-Point Correspondences. Setting up the PDM presupposes known point-to-
point correspondences between the different surface meshes. The shapes further need
to be aligned which is usually done with Procrustes or generalized Procrustes analysis
(GPA) based on the vertex points. We used instead the affine transformation matrices
determined during atlas construction as illustrated in Fig. 5. From the ground truth la-
belmap of the reference dataset (A003 for CT, A002 for MRI) a simplified surface
mesh was created (2000 vertexes for CT, 500 vertexes for MRI). Within Fig. 5 this
mesh is represented by the one on the left hand side with red vertexes. From the other
groundtruth labelmaps complexer surface meshes (10,000 vertexes for CT, 2500 ver-
texes for MRI) were computed. One of these meshes is the one with green vertexes
in Fig. 5. The same affine registration algorithm and settings as used for building the
atlases were applied to register the reference volume onto each of the nine other vol-
umes included in dataset A. Subsequently non-rigid transformation fields were com-
puted with the same demons registration algorithm and settings as used for registering
the atlases onto a previously unseen volume. The resulting affine transformation matrix
and nonrigid transformation field were used for warping the vertexes of the simplified
reference mesh. The operation is displayed in Fig. 5 as transformation from the red
mesh to the blue one. For reasons of clarity the blue mesh is not displayed superim-
posed with the green mesh. For each vertex included in the blue mesh the closest vertex
within the green mesh was identified (green vertexes with red borders). The vertex co-
ordinates of each blue vertex were than replaced with the ones of the closest vertex. The
connectivity remained unchanged.

Shape Adaptation. After initialization the contour is propagated in each adaptation
step along the surface normals of the vertexes. The step size is determined based on gra-
dient features. After adaptation the shape is tested for successful representation within
the shape space confidence intervals.

2.5 Stastical Region Growing

Statistical region growing is a segmentation algorithm based on a search algorithm.
For all voxels within an intermediate segmentation result the mean intensity value is
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determined. The voxels within a certain neighborhood of the intermediate segmentation
result are listed in a queue. A voxel from the queue is inserted into the intermediate
segmentation result if its intensity value difference from the mean is within certain
limits. Its voxel neighborhood is then added to the queue. The algorithm terminates if
the queue is empty. Instead of using a single voxel as seed point we started with all
voxels having a high probability to be part of the LA.

The probability distribution was determined by atlas registration using affine and
susequent non-rigid registration as illustrated in Fig. 4. The Fast Symmetric Forces vari-
ant of Thirion’s demons algorithm was used as non-rigid registration algorithm [10,11].
The basic algorithm uses the following modified version of the optical flow equation
for the pixel shift u

u =
(m− f)∇f

|∇f |2 + (m− f)2
, (3)

where m and f denote the intensity values of the fixed and moving image. The term
(m− f)

2 has a stabilizing effect. For the affine and subsequent non-rigid registration
we called the Fast Affine Registration and BRAINSDemonWarp module released as
part of 3D Slicer 3.6.3 via shell scripts [9].

Instead of updating the limits within the statistical region growing algorithm at each
iteration the mean and standard deviation of the image gray values were determined
from the set of seed voxels. A 26-voxel neighborhood was used. The threshold around
the mean image gray value was set to ±1.5σ for CT and ±3σ for MRI. We implemented
the algorithm in C++ and called it as Matlab mex-file. Afterwards the filter module
Voting Binary Hole Filling Filter within 3D Slicer 3.6.3 was applied [9]. The parameters
selected were: majority threshold 1, maximum radius 6 for CT and 3 for MRI.

3 Results

3.1 Cross Validation

For quantitative comparison of the segmentation results we used the Dice’s coefficient
dc (SR,GT) as similarity measure between the set of segmented voxels SR and the
set of ground truth voxels GT. To explore the capability of initialization based on im-
age registration we first validated results from affine and non-rigid registration without
any further segmentation steps. Each ground truth labelmap was therefore transformed
to the grid of the remaining images within training dataset A. The transformations ap-
plied resulted from registration of the underlying images. The Dice’s coefficients from
registration are listed in line (a) and (b) of Tab. 1. The mean for affine registration was
0.64 for CT ad 0.74 for MRI. These values were increased by 8.8% for MRI and by
22.1% for CT trough additionally applied non-rigid registration. The standard deviation
was also raised from 0.10 (CT) and 0.06 (MRI) to 0.11 for both imaging modalities.

Using statistical region growing with atlas based initialization in a leave-on-out cross
validation scheme the mean Dice’s coefficient could further be increased to 0.87 for
both imaging modalities in comparison to affine and subsequent non-rigid registration
only. For further details please refer to Tab. 1 line (c). The standard deviation of the
dice coefficient was reduced to a third. The segmentation results achieved with SSM
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a) b)

Fig. 6. Segmentation result achieved with statistical region growing on MRI volume A001 (dice
coefficient 0.88) displayed for an axial cutting plane (a) and a coronal cutting plane (b). Red
contour: Seed voxels as given by the registered probability density distribution of the atlas with
value equal to 1. White contour: Segmentation result. Green contour: Ground truth provided.

(Tab. 1 line (d)) were again similar for both imaging modalities and a did not outper-
form the results from statistical region growing (0.83 mean Dice’s coefficient for MRI
and CT).

3.2 Computational Complexity

The computing times required are listed in Tab. 2. All computations were performed on
a Windows XP Professional x64 operating system. The CPU was an Intel Xeon CPU
5160 running at 3.00 GHz. 15.9 GB of RAM was installed. For statistical region grow-
ing initialization by means of atlas registration (Step: Determination of seed voxels)
accounted for 82.2% (CT) and 96.8% (MRI) of the computational effort.

Table 1. Dice’s coefficients for the left atrium in CT and MRI using only registration (affine (a),
affine and subsequent non-rigid (b)) in comparison to results achieved with the two segmentation
approaches ((c) and (d))

mean std min max

(a) Affine registration
CT 0.6383 0.0965 0.1846 0.8266

MRI 0.7414 0.0639 0.5598 0.8447

(b) Non-rigid registration
CT 0.7794 0.1053 0.4619 0.9373

MRI 0.8070 0.1062 0.0412 0.9121

(c) Statistical region growing
CT 0.8674 0.0289 0.8123 0.9038

MRI 0.8706 0.0333 0.8084 0.9001

(d) Statistical shape model
CT 0.8271 0.0528 0.7307 0.8808

MRI 0.8303 0.0559 0.7003 0.9024
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Table 2. Computing time for the different steps of the segmentation algorithms given in sec.

CT MRI

Statistical region growing

Determination of seed voxels 383.96 15.06
Region growing 0.98 0.03

Hole Filling Filter 82.00 0.47
Sum 466.94 15.56

Statistical shape models

Affine transformation 16.39 6.57
Model adaptation 215.52 13.55

Affine Backtransformation 16.39 6.57
Sum 248.30 26.69

This was mainly caused by non-rigid image registration of the atlas volume using the
original imaging resolution (up to 0.3 mm for CT, up to 0.75 mm for MRI). For SSM the
largest share of the computational costs was caused by the iterative shape model adaption
step (86.8% for CT, 50.8% for MRI). In total the computational time for SSM was 46.8%
lower for CT and 71.5% higher for MRI in comparison to statistical region growing.

4 Discussion and Conclusion

We demonstrated two methods for automatic segmentation of the endocardial contour
of the left atrium. The approaches are applicable to CT and MRI. The first method
is based on image registration and statistical region growing. A seed voxel volume
and a mask for the image volume containing the left atrium were generated based on
atlas registration. This approach is non-parametric because it is not based on a certain
parameterization of the contour.

The second approach is using SSM. The shape and its variations are explicitly rep-
resented by means of a point distribution model. The property of being non-parametric
is an advantage in case of high variability of the anatomical shape. As already pointed
out at the STACOM 2010 by Depa et al. this is especially the case for the anatomy of
the pulmonary veins leading into the left atrium [4]. Because two veins can built a com-
mon trunk not even the number must necessarily be constant. In addition comparison
of ground truth contours achieved within MRI and CT images revealed that in CT the
contours typically propagated further into the pulmonary veins but to different extents
within the volumes included in dataset A.

The number of volumes given with corresponding ground truth is quite limited and
therefore most likely not a sufficient representation of the whole space of shape vari-
ations. This is reflected by the fact that statistical region growing outperformed the
approach based on SSM with respect the Dice’s coefficient. However, there are also
limitations of statistical region growing, as indicated by leaking within the left ventricle
or the aortic root in some image volumes. Furthermore a higher computing time was
required for initialization in CT images.

Within the clinical workflow the computational complexity of the algorithms is not
the most important feature. Typically CT or MRI images are recorded on the day be-
fore. In addition preparation of the patients in the catheter lab takes several minutes.
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The computing time of the non-rigid registration included might be reduced by down-
sampling the CT volumes in this step without substantially affecting the quality of the
segmentation results afterwards. The results also indicate, that it may be interesting
to study a hybrid approach including statistical region growing around the pulmonary
veins after convergence of the shape adaptation of the SSM. This would allow to seg-
ment a larger range of anatomical variations among pulmonary vein anatomy while still
preventing leaking into the aortic root and left ventricle by the restrictions modeled
within the shape space.
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Abstract. The left atrium is one of the four chambers of the heart. It receives 
oxygenated blood from the lungs and pumps it into the left ventricle. This blood 
is then circulated to the rest of the body. In a healthy adult the left atrium pumps 
blood into the ventricle in a regular rhythm. In atrial fibrillation (AF), the left 
atrium quivers in an abnormal rhythm and is no longer able to pump blood into 
the left ventricle efficiently. On the other hand MRI and CT are commonly used 
for imaging this structure. Segmentation can be used to generate anatomical 
models that can be employed in guided treatment and also more recently for 
cardiac biophysical modelling. For this reason, segmentation of the left atrium 
is a task with important diagnostic power. In this paper, we propose an 
automatic localization method in order to detect the left atrium in MRI images. 
Our method is based on shape descriptor and prior knowledge. For this purpose 
some descriptors are selected: circularity, area, the center of mass of each 
region, elongation  factor, type factor. We propose also to use some prior 
knowledge as pulmonary artery position, and the left atrium position. 

Keywords: Left atrium, shape descriptors, prior knowledge, localization. 

1 Introduction 

Cardiovascular diseases are the most common causes of deaths in the word. Heart 
strokes and attacks are two pathologies that affect the left atrium. The American Heart 
Association reports that 15% of all heart strokes are caused by a life threatening 
condition called atrial fibrillation (AF) [1].  

Recently, a number of segmentation algorithms have been developed to detect LA 
in MRI or CT images.  

For example in[2]the authors present a semi-automatic approach for left atrium 
segmentation and the pulmonary veins from MR angiography (MRA) data sets. They 
also propose an automatic approach for further subdividing the segmented atrium into 
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the atrium body and the pulmonary veins. The idea of this segmentation algorithm is 
that in MRA images the atrium becomes connected to surrounding structures via 
partial volume affected voxels and narrow vessels, thus the atrium can be separated if 
these regions are characterized and identified. The blood pool, obtained by subtracting 
the pre- and post-contrast scans, is segmented using a region growing approach and 
subdivided into disjoint subdivisions on the basis of the of the Euclidean distance 
transform. These subdivisions are then merged automatically starting from a seed 
point and stopping at the points where the atrium leaks into a neighbouring structure. 
The resulting merged subdivisions produce the segmented atrium. As second 
technique they propose an automatic approach used to identify the atrium body from 
segmented left atrium images. The separating surface between the atrium body and 
the pulmonary veins gives the ostia locations and can play an important role in 
measuring their diameters. 

Another automatic approach for LA segmentation on cardiac magnetic resonance 
images was presented in [3]. This method used a weighted voting label fusion and a 
variant of the demons registration algorithm adapted to handle images with different 
intensity distributions to segment LA. In another paper[4], Yefeng et al. have 
proposed a segmentation approach applied toun-gated C-arm CT, where thin 
boundaries between the LA blood pool and surrounding tissues are often blurred due 
to the cardiac motion artifacts. The segmentation of this kind of images presents a big 
challenge compared to the highly contrasted gated CT/MRI. To avoid segmentation 
leakage, the shape prior was exploited in a model based approach to segment LA 
parts. However, independent detection of each part was not optimal and its robustness 
needs further improvement (especially for the appendage and PVs). So, they proposed 
to enforce a statistical shape constraint during the estimation of pose parameters 
(position, orientation, and size) of different parts. In[5]the authors present a method 
used to extract heart structures from CT and MRA data sets, in particular the left 
atrium. First, the segmented blood pool was subdivided at narrowings in small 
components. Second, these basic components were merged automatically so that they 
represent the different heart structures. The resulting cutting surfaces have a relatively 
small diameter compared to the diameter of the neighboring heart chambers. Both 
steps are controlled by only one fixed parameter. The method was presented as being 
fast and allowing interactive post-processing by the user.  

Other authors in [6] proposed to use shape learning and shape-based image 
segmentation to identify the endocardial wall of the left atrium in the delayed-
enhancement magnetic resonance images. 

Some other works in the literature exploit a prior shape of the LA (either in the 
form of an atlas [7,8] or a mean shape mesh [9]) to guide the segmentation process. 
For example, Manzkeet al. [9] built a mean shape of the combined structure of the LA 
chamber and PVs from a training set. With a prior shape constraint, they could avoid 
the leakage around weak or missing boundaries, which plagues the non-model based 
approaches. 

In this paper, we present a new approach to detect left atrium in MRI images. Our 
method is based on shape descriptors and prior knowledge. 
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2 Methodology 

2.1 Left Atrium Localization 

This section focuses on left atrium localization. To achieve this goal we propose the 
following algorithm: 

- Threshold the original image: we start with a preliminary thresholding 
operation. The threshold value for each case is set empirically. 

- Choose a slice where left atrium and aorta have circular shape. 
- Process the binary image obtained: remove small regions, fill holes, separate 

objects. 
- Characterization with shape descriptors: circularity, elongation, area, center  

of masse X, center  of masse Y. 

3 Characterization of the Left Atrium 

A characterization step is essential to identify the regions of interest in cardiac MRI 
images. In the field of pattern recognition, we can find a large number of descriptors. 
The choice of an appropriate one depends on the object to be characterized.  For some 
slices, the left atrium and the pulmonary artery have a generally circular shape and the 
left atrium is under the pulmonary artery, for this reason we chose the following 
attributes: 

Perimeter of the Region P (R): This descriptor is calculated as the sum of the 
distances between successive contour pixels.  
A (R): Area of the region. 

Heywood Circularity Factor:      / 2 .                                       (1)                                             

Rectangularity:  Is defined by the value R calculated by the following formula,  
   R= Object area/ area of the minimum rectangle supervision (RME),  

Elongation Factor: Is defined by the following formula,= EF= RME length / width 
of RME 

Type Factor:=  Is a complex factor that relates the area to the moment of inertia.                                                                                (2) 

 
-             Center  of masse X                                    ∑  

-             Center of masse Y                               ∑  

- Moment of inertia:                    ∑  

- Moment of inertia:                     ∑  
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4 Results and Discussions 

To evaluate the influence of these parameters, we selected 20 images (10 from 
training data and 10 from test data). For each image, we applied morphological 
operators like border rejection and elimination of smalls regions. 

On the other hand, we can see clearly that the left atrium is great than the 
pulmonary artery, and it is always at the bottom. So the center of the left atrium is at 
the bottom of the center of the Pulmonary artery. After the binarization, we estimate 
the center of masse X, center of masse Y, the factor type, Heywood  Circularity 
factor, elongation factor and area. Above 

Table 1 and 2 show the min, max values and the standard deviation for the  
parameters defined above for 20 images selected  (10 from training and 10 from test) 

Table 1. The min, max value and standard deviation for the  LA 

 Center  
of 
masse 
X 

Center  
of 
masse 
Y 

Area Elongation 
factor 

  

Heywood  
Circularity 

Type 
factor 

 

       
min 161.25 140.17 378 1.70 1.04 0.93 
max 213.29 197.83     3054 2.72 1.33 0.98 

STD 15.27 16.64 623.27 0.28 0.07 0.02 

Table 2. The min, max value and standard deviation for the PA 

          Center  
of 
masse 
X 

Center  
of 
masse 
Y 

Area Elongation 
factor 

  

Heywood  
Circularity 

Type 
factor 

 

       
min 149.39 111.71 183 1.55 1.00 0.88 
max 214.38 155.47 865 2.33 1.17 0.99 

STD 15.67 11.34 149.84 0.22 0.07 0.03 

We notice from table 1 and 2 that the left atrium has an area greater than the PA. 
On the other hand, the PA has a circular shape. Indeed, the Heywood Circularity 
factor values are between the values 1 and 1.28, and the factor type value are 
generally greater than 0.93. On the basis of these results and using the position of the 
LA and PA we have proposed our algorithm presented in section 2 described above. 
We illustrate in figure 1 some results for patients:  A002 slice 87, patient A001 slice 
51 and patient A004 slice 83. 
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Fig. 1. Examples of segmentation and localization of LA using the proposed method: first line 
3 MRI images. Second line : binarization. Third line: processing of the binary images in order 
to keep only LA and PA based on circularity index.  Fourth line : LA detected. Fifth line: 
Ground truth segmentations. 
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We present also in figure 2 an example from test data: B002 slice 93 

 
Fig. 2. Example of segmentation and localization of LA using the proposed method 

For the 3D segmentation we use the center of mass of the LA detected to define a 
ROI around this center in order to localize the LA atrium in the next and previous 
slices. 

5 Conclusion 

We have presented in this paper a simple method used to localize the left atrium. The 
proposed algorithm was based on a preliminary threshloding and some morphological 
operations. In order to detect the left atrium we used some shape descriptors as 
position, area and circularity. 

Our method was applied on the slices where the pulmonary artery has a circular 
shape. Once the PA artery is detected we localize the left atrium using the center of 
mass of X and Y. 

For the others slices, we propose to use the center of gravity detected on the 
selected slice to search for the LA atrium region  in previous and next slices. 

At the moment the propose algorithms are not fully automatic because the threshold 
method provides sometimes bad results. That is why; we propose to combine in a future 
work the proposed detection method with a segmentation approach more efficient. 
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Abstract. In this paper we present a method for fully automatic left
atrium segmentation from 3D cardiac magnetic resonance datasets. We
propose a machine learning approach using decision forests that requires
very few assumptions on the segmentation problem. First, we extract
the blood pool using a simple thresholding technique. Then, we learn
to separate the left atrium from other structures in the image by using
context-rich features applied on images enhanced with a multi-scale ves-
selness filter and transformed to measure distance to blood pool surface.
We present our results on the STACOM LA Segmentation Challenge
2013 validation datasets.

1 Introduction

The left atrium plays an important role in facilitating uninterrupted circulation
of oxygenated blood from the pulmonary veins to the left ventricle and in cardiac
electro-physiology. To quantify its function, simulate electrical wave propagation
and determine the best location for ablation therapy, it is important to be able
to first accurately segment the atrial contours. A common approach to segment
the left atrium from 3D images is to use statistical shape models [1][2]. A levelset
based method with an heuristic region split and merge strategy was proposed
by Karim et al. [3]. Finally, label fusion techniques [4] seem to yield accurate
segmentations but require nonrigidly registering the image to be segmented to
every training image. All these methods are specifically handcrafted for atrial
segmentation and thus require treating the training set in a particular way or
need a set of nonrigid registrations which can be computationally expensive.

The problem can be also formulated as a binary classification between atrial
and background voxels. Similar to our previous work [5] and the work of Lempit-
sky et al. [6] for segmentation of left ventricles from dynamic magnetic resonance
(MR) sequences and 3D ultrasound respectively, or segmentation of multiple scle-
rosis lesions [7] from multichannel MR, we propose a fully automated voxel-wise
left atrium segmentation method based on classification forests [8]. The advan-
tage of these approaches is that very few assumptions are necessary and it is
possible to learn to segment directly from the image - label map pairs. The seg-
mentation then consists of just a set of simple binary decisions independent of
voxel position that can therefore be run rapidly in parallel for each voxel.

O. Camara et al. (Eds.): STACOM 2013, LNCS 8330, pp. 49–56, 2014.
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For this method we do not have the need for a robust registration method,
to build a statistical model, nor explicitly define the classification problem and
enforce the modality. We only require several training images with the atrium
carefully delineated and good blood pool contrast in the images.

2 Dataset

The STACOM 2013 LA segmentation challenge dataset [9] contains 30 CT and
30 MR images. Each of these sets was divided into a training set (10 3D volumes
with left atrial segmentation maps) and a validation set ( 20 3D volumes with
no delineation provided). In this paper we used only the MR data. Compared
to our previous work [5] there is no need for pose standardisation. The only
preprocessing step was to linearly rescale the intensities between 0 and 98.5
percentiles. This was chosen to cut off noisy high intensity variation similarly to
[10].

3 Decision Forests for Left Atria Segmentation

Decision forests are an ensemble supervised learning method consisting of a set
of binary decision trees each composed from a set of simple binary decision
functions. Our method consists of two phases. First, we train the structure of
the decision forests using all available training images. This forest is then used
to segment previously unseen datasets.

3.1 Training

In the offline training phase the structure of each tree is greedily optimised such
that atrial voxels are split from the background voxels. This means in practice
that at each node of the tree a randomly chosen subset of features is extracted
for each voxel belonging to the node. Then for each feature θ a threshold τ
maximising the information gain is selected among a regularly sampled range of
meaningful thresholds. The best feature - threshold pair is then stored together
as a binary splitting criterion (τ < θ) for the node and the voxels are split into the
left and right disjoint partitions accordingly. This random feature sampling leads
to increased inter-tree variability and better generalization [8]. The data division
recursively continues until the chosen maximum depth is reached, the number
of voxels reaching the node is too small or when a significant part of the voxels
at the node already belongs to a single class and no significant information gain
can be obtained by further splitting. These terminal nodes then become leaves
of the tree. For each leaf, class distributions of voxels reaching the leaf can be
easily obtained.

Training of random forests is relatively fast as each tree can be learnt indi-
vidually in parallel. To further reduce the training time, to better balance the
background/atrium voxel proportion and to improve discrimination of voxels on
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the boundaries, we train only on some of the voxels from the annotated set. As
positive atrial voxel examples, all voxels in the training set annotated as atrium
are taken. However, we sample the negative examples only on a sparse regular
grid and add all voxels in the immediate atrial neighbourhood (approximately
15 pixels thick obtained by morphologically dilating the mask).

3.2 Segmentation Phase

During the segmentation phase each voxel is passed through the forest to reach
a leaf in each tree. The average class distributions of all reached leaves then
represents the posterior probabilities of the voxel belonging to either the atrium
or the background given its appearance in the feature space. This means we
obtain an atrium probability map for the whole volume. To obtain binary masks
required for evaluation in the challenge, we simply need to threshold the atrial
probability maps. Afterwards, we perform simple morphological hole filling on
these thresholded images and extract the largest connected component to serve
as the final binary segmentation.

3.3 Feature Families

To describe the appearance of each voxel and discriminate between the atrium
and background we generate a random feature pool operating on the 3D images
from two feature families as in Geremia et al. [7], applied on three different image
channels (see section 3.4). The two feature families differ in how much local or
remote information they capture around the tested voxel.

Local Features. Measure average channel intensity in the vicinity of the tested
voxel (a 3× 3× 3 cube centred on the voxel).

Context Rich Features. Defined as the difference between the tested voxel’s
channel intensity I(x) and two remote region box channel intensity averages:

θI(x) = I(x)− 0.5

(
1

V ol(R1)

∑
x’∈R1

I(x’) +
1

V ol(R2)

∑
x’∈R2

I(x’)

)
(1)

The 3D regions R1 and R2 are randomly sampled in a relatively large neighbour-
hood around the tested voxel x. These features capture strong contrast changes
but also long-range intensity relationships.

3.4 Image Channels

MR Image Intensity. Voxel intensity in combination with context rich fea-
tures can give a wealth of information about its position. For example regions of
the bright atrium are located close to the darker spine or lungs, and next to other
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a) im age +  gt b) blood pool c) distance d) tubularity

Fig. 1. Image channels extracted from two example images. a) Source image overlaid
with the groundtruth segmentation. b) Blood segmented with sequentially applied
Otsu thresholding. c) Distance to the blood contours. d) Tubularity enhancing vascular
structures (note e.g. the strong signal in the aorta).

bright cavities. It is however much more difficult to discriminate between voxels
on the border between the atrium and the ventricle as there is no clear intensity
change (apart from occasional faint signal from the mitral valve). Therefore we
extract the local and context rich features not only on image intensity (Fig. 1a),
but also add two other channels (see Fig. 1c and Fig. 1d).

Distance to Blood Pool Contours. The atrium is always contained within
the bright blood pool in the image. Thanks to the high contrast between the
blood and the rest of the image, all blood can be extracted rather simply by
sequentially applying Otsu’s thresholding [11]. The first round splits the image
between the air and the brighter part of the thorax. The second round then splits
the brighter part of the thorax into the very bright blood and the rest (Fig. 1b).

We can observe that the atrium is mostly separated at blood pool narrowings
(such as at the mitral plane or atrial septum). These can be located by mea-
suring the distance to blood pool contours as distance minima (Fig. 1c). Local
maxima are on the other hand located near centres of blobs in the image such as
the atrium. Therefore, similarly to Karim et al. [3], we exploit these properties
and compute the euclidean distance to the blood pool surface for each voxel in
the image (voxels out of the blood pool are assigned zero distance). Instead of
manually defining region splitting and merging criteria we let the forest pick the
most discriminative decisions from the above mentioned feature families.

Tubularity Features. To further help in distinguishing the atrium from the
other bright structures such as the aorta we calculate vesselness information for
each voxel. This adds context based on enhanced arteries present (e.g. the atrium
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is near the aorta). We use a multiscale vesselness filter[12] enhancing all tubular
objects ranging from 5 to 15 millimetres in diameter (see Fig. 1d).

4 Results

We trained a classification forest with previously described features. We chose
the best parameters by running cross-validation on the training set. As the size of
the training set is quite limited we used a leave-one-out approach i.e. we trained
on 9 images and tested on the remaining one (Fig. 2). The best found settings
were then applied to the validation data (Fig 3):

Fig. 2. Coronal, sagital and axial views of the segmentation results on one of the test
cases during the leave one out cross validation. Top row: source image with ground
truth, middle row: atrial probability map with contour of the probability map at 0.6
(brighter values means more confidence in the segmentation), bottom: source image
with overlaid groundtruth (green) and final segmentation after hole filling (red).

Number of trees: 5 More trees result in increased accuracy and smoother seg-
mentations but also increase training and classification time.

Number of features tested at each node: 200 Too few tested features results in
more randomness in the forest but also less efficient splits, on the other hand
higher numbers decrease generalization strength as the trees look more alike.

Number of thresholds tested for each feature value: 20 Similar to previous.
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Maximal depth of the tree: 20 Deeper splits can better capture the structure,
but can lead to overfitting.

Minimal number of points: 8 Too few of this parameter would result in noisy
segmentations as even a single training voxel can significantly influence the re-
sult.

Neighbourhood in which context rich features are sampled: 70x70x70 Larger
neighborhoods can capture more context, but result in frequently clipped context
rich features as they get evaluated out of image bounds.

Binarizing threshold: 0.9 This parameter is used to keep only the more confident
voxels and reduce the effect of oversegmentation.

Fig. 3. Qualitative display of segmentation results on a subset of the validation dataset
shown on mid-atrial slices. Top row: source images, middle: corresponding atrial prob-
ability maps, bottom: overlaid final segmentations.

After the selection of parameters via cross-validation we obtained a dice coef-
ficient 0.632±0.137. This small forest of 5 trees took on average 2 hours to train
and just around a minute to fully automatically segment a single atrial image
on a 12 core Intel Xeon 3.3GHz CPU.

This algorithm performs reasonably well to extract the main part of the atrial
volume. The main drawbacks of our method are that the segmentation does not
necessarily adapt to the cavity contours (see Fig. 3) and pulmonary veins are
often missed or misclassified (see Fig. 4).
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Fig. 4. Qualitative display of segmented atrial meshes from the validation dataset

5 Conclusions

We used a generic machine learning based image segmentation method and ex-
tended it with a set of image features to better distinguish vascular structures
from the rest. We then learnt to directly predict voxel labels (atrium / back-
ground) from the images without hand-tuning the segmentation pipeline. The
current solution is reasonably fast. Our current preliminary results could serve
as an excellent atrium detector and initialization for a refinement step prior to
the use in an accurate segmentation for electro-physiological studies.

Although in this paper we apply this method only to MR it is straightforward
to apply to other modalities such as images from the computed tomography. We
only assume strong blood pool contrast.

Due to the fact that the training set consists of only 10 images it does not
cover many of the atrial shape variations present in the validation images. To
capture some of this variability and avoid image registration to an atlas in the
classification phase we aim to enrich the training dataset by deforming the images
with a set of smooth deformations.
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Abstract. In this challenge, we intended to mimic the patient’s cardiovascular 
system by using 0D-3D connected multiscale model. The purpose of the multis-
cale analysis is to find out the appropriate boundary conditions of the innomi-
nate artery (IA), left common carotid artery (LCA) and left subclavian artery 
(LSA) in the local 3D computational fluid dynamics simulation. Firstly, a 
lumped parameter model(LPM) of the patient’s circulatory system was estab-
lished which could mimic both the rest and stress conditions by adjusting para-
meters like elastance function of the heart and the peripheral resistance, since 
that administering is oprenaline leads to the patient’s heart beat rate and peri-
pheral resistance changes. Secondly, the values of parameters in the LPM were 
slightly revised to match the following conditions: 1. provided pressure and 
flow rate curves, 2. provided blood distribution ratio of the AcsAo, IA, LCA 
and LSA. Finally, we got the outlet conditions of the IA, LCA and LSA, and 
then connecting the 0D model and the 3D model at each time step. As the re-
sults, we got the streamlines, pressure drop through the coarctation, pressure 
gradient, and some other parameters by coupled multiscale simuation. 

Keywords: Thoracic aortic coarctation, Hemodynamics, Computational fluid 
dynamics, Multiscale simulation, Pressure gradient. 

1 Introduction 

Coarctation of the aorta (CoA) usually occurs in the thoracic segments of the aorta 
which often leads to hypertension. A lot of researches have been performed to study 
the hemodynamic parameters such as the flow velocity and wall pressure of the mor-
bid aorta which have shown that those parameters are closely related to vascular geo-
metry. Therefore, hemodynamic simulation can be performed and then applied to 
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predict the fluid field through a thoracic aorta in presence of the coarctation. In this 
paper, a lumped parameter model (LPM)[1] of circulatory system was firstly estab-
lished in order to evaluate the hemodynamic behaviors inside a thoracic aortic coarc-
tation model which is in lack of enough boundary conditions. In accordance with the 
provided information, the values of parameters in the LPM were properly adjusted to 
fit both the rest and stress conditions.  

Two schemes were planned to get the pressure gradient through the coarctation. 
One option is to carry out the stand-alone 3D simulation by setting the LPM results as 
boundary conditions. The other option is to perform multiscale simulation by coupl-
ing the LPM and the local 3D model at each time step[2], which is regarded to be able 
to better reproduce the boundary conditions and represent the interactions between the 
local geometry and the global circulatory system. As the first results, we performed 
the stand-alone 3D simulation by setting the 0D simulation results (the volume flow 
rate curves at the outlets of IA, LCA and LSA) as the boundary conditions which are 
not given. Then, we performed multiscale simulation to obtain the coupled solutions. 

2 Method 

(a) Construction of the lumped parameter model 
The LPM of the circulatory system was constructed as shown in Fig. 1. In accordance 
with the given waveforms and flow distribution ratio of the IA, LCA, LSA and De-
sAo, the values of parameters in the model were properly adjusted to fit both the rest 
and stress conditions, so that the waveforms of the ascending aortic flow rate, pres-
sure and blood distribution ratio are similar to the curves and values measured from 
the clinical practice. The comparisons between the original waveforms and LPM 
waveforms are depicted in Fig. 2, and Table 1 gives the values of parameters in the 
LPM for both the rest and the stress conditions. 

 
Fig. 1. The LPM of circulatory system (AO: aorta, DAO: descending aorta, IVC: inferior vena 
cava, SVC: superior vena cava, LA: left atrium, RA: right atrium, LV: left ventricle, RV: right 
ventricle) 
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Table 1. The values of Parameters in the LPM for the rest and stress conditions 

R(mmHg·s·ml-1) C(ml-1mmHg) L(mmHg·s2·ml-1) 
 Rest Stress   Rest Stress   Rest Stress  
R1 0.01 0.0091 C1 0.2 1.6    
R2 0.01 0.0091       
R3 0.01 0.004 C3 4.8 4.74    
R4 0.001 0.004 C4 4.2 4.78    
R5 0.0001 0.1172 C5 0.82 0.028 L5 3.0E-3 2.0E-5 
R6 0.06 0.0352 C6 0.014 0.58 L6 1.75E-3 1.5E-5 
R7 0.45 0.0105 C7 1.71 0.081    
R8 0.8 0.008 C8 0.505 0.0105 L8 5.0E-4 5.0E-5 
R9 1.799 0.192 C9 0.1 0.01 L9 5.0E-4 5.0E-4 
R10 0.385 0.0185 C10 0.01 0.001    
R11 2.439 0.514 C11 0.1 0.01 L11 5.0E-4 5.0E-4 
R12 0.385 0.0185 C12 0.01 0.001    
R13 0.87 0.027 C13 0.1 0.01 L13 5.0E-4 5.0E-4 
R14 0.485 0.0185 C14 0.01 0.001    
R15 1.735 0.001735 C15 0.505 0.105 L15 5.0E-4 5.0E-4 
R16 0.0105 0.02 C16 0.2 3.08 L16 5.0E-4 5.0E-4 
R17 0.02 0.08       
R18 0.018 0.08       
R19 0.019 0.08       

 

Fig. 2. The comparisons between the original waveforms and the LPM results 

The purpose of setting up the LPM is to obtain the unknown boundary conditions 
at the outlets of IA, LCA and LSA. Once the total flow and flow distribution ratio of 
each outlet under both rest and stress conditions could match the given values, at the 
same time the waveforms of ascending aortic flow rate and pressure could be similar 
to the provided curves, then we assume that the LPM could mimic the patient’s cardi-
ovascular system to some extent.  

Therefore, the LPM could be coupled with the 3D model. The provided inflow 
waveform was added as inlet boundary condition. The flow rate waveforms of IA, 
LCA, LSA and the pressure of descending aorta were calculated from the multiscale 
simulation. 

The structure of the coupled multiscale model is shown in Fig. 3. The flow rate of 
IA, LCA, LSA and the pressure of descending aorta generated by the LPM are set as 
boundary conditions, and the pressure of IA, LCA, LSA and the flow rate of the des-
cending aorta calculated by the 3D model are passed to the LPM for the calculation at 
next time step. The data exchange is executed in every time step. 
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Fig. 3. The structure of the coupled model and the inlet boundary condition 

(b) Construction of the finite element model 
The provided STL file of arterial model was imported into ANSYS ICEMCFD13.0. 
Volume meshes were generated by using mesh types of structural hexahedral. The 
boundary layer was not treated specially. The total numbers of the element and node 
are 617786 and 480032 respectively. The mesh of a cross-section is shown in Fig. 4. 

 

Fig. 4. The mesh in a cross-section 

(c) Numerical simulation 
Volume mesh file was imported into ANSYS CFX 13.0 to perform the numerical 
simulation. The following assumptions were employed in this numerical study: non-
permeability, rigid wall; incompressible Newtonian fluid; pulsatile and laminar flow. 
Viscosity and density of blood are 0.004Pa•s and 1000kg/m3 respectively. 

The discrete form of differential equations governing the blood flow was upwind 
scheme. Residual convergence criteria of mass and momentum were set to 10-5. The 
time step in calculation was 0.005s. Run mode in CFX is "PVM Local Parallel". Con-
vergent solutions were obtained after 3 cycles. 



 Multiscale Study on Hemodynamics in Patient-Specific Thoracic Aortic Coarctation 61 

 

3 Result 

(a) The flow rates and pressure of IA, LCA and LSA 
The flow rates of IA, LCA and LSA are set as the boundary conditions in the 3D 
model, and the pressures of them are the input of the LPM. Both of them can only be 
determined after the multiscale simulation. All of them are shown in Fig. 5. 

 

Fig. 5. The flow rates and pressure of IA, LCA and LSA 

(b) Pressure drop and pressure gradient 
As shown in Table 2, both the peak and time-averaged pressure drop and volume-
average pressure gradient through the coarctation at both rest and stress conditions 
(the planes for calculating the pressure drop and the pressure gradient are depicted in 
Fig. 6) were obtained. 

Table 2. Both the peak and time-averaged pressure drop and volume-averaged pressure 
gradient 

 Pressure Drop(mmHg) 
Volume-averaged Pressure  

Gradient(Pa/m) 

 Peak Time-averaged Peak Time-averaged 

Rest conditions 5.69 0.1094 135799 22869.5 

Stress conditions 26.034 -0.53663 275898 91339.49 

 
Fig. 6. The pressure drop and volume-averaged pressure gradient through the coarctation and 
the location of the coarctation 
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(c)  The flow distribution ratio and the pressure proximal to the coarctation 
The values of parameters in the LPM were properly adjusted in order to match both 
the total flow and percentage of ascending aortic flow through the various branches 
under both rest and stress conditions. As a reference for comparison, table 3 gives the 
specific distribution values of each opening. 

Table 3. The flow distribution ratio and total flow of the various branched in the aortic model 
under both rest and stress conditions 

 AscAo 
Inno-
minate 

LCC LS 
Dia-
phAo 

Rest 
Condi-
tions 

calcul
ated 

Total 
Flow(L/min) 

3.71 0.607 0.287 0.397 2.419 

% AscAo 100 16 8 11 65 

pro-
vided 

Total 
Flow(L/min) 

3.71 0.624 0.312 0.364 2.41 

% AscAo 100 17 8 10 65 

Stress 
Condi-
tions 

calcul
ated 

Total 
Flow(L/min) 

13.53 3.277 0.6785 1.4901 8.084 

% AscAo 100 24 5 11 60 

pro-
vided 

Total 
Flow(L/min) 

13.53 3.355 0.6875 1.4575 8.03 

% AscAo 100 25 5 11 59 
 
The systolic, diastolic, and mean pressures of the ascending aorta were measured 

from the CFD results. Table 4 gives those values which are very close to the value 
measured clinically. 

Table 4. The systolic, diastolic, and mean pressure proximal to the coarctation 

Pressure(mmHg) Systolic Diastolic Mean 
Rest Conditions calculated 83.98 49.80 63.36 

provided 83.92 49.68 63.35 

Stress Conditions 
calculated 118.44  36.38 61.75 
provided 123.35 36.77 64.30 

(d) Streamlines, Pressure and Pressure Gradient 
The typical moments of 0.255s, 0.83s (under rest condition) and 0.095s, 0.42s (under 
stress condition) which were the highest and lowest velocity peak point respectively 
were selected to demonstrate the 3D simulation results. 

(i) Streamlines 
Figure 7 shows the streamlines at the time of maximum velocity under both the rest 
and the stress conditions. Results show that the maximum velocity region appears 
through the coarctation in both conditions. 
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Fig. 7. The streamline at the time of maximum velocity in rest and stress condition 

(ii) Pressure and Pressure Gradient 

The contours of pressure and pressure gradient are showed in Fig. 8 and Fig. 9. 

Fig. 8. The pressure at two typical moments under both rest and stress conditions 

It can be seen from the pressure contour that, at the time of highest peak velocity, 
the pressure difference between the coarctation area and the regions before or after the 
area is dramatic. However in the case of lowest peak velocity, the pressure difference 
is not that much. 
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Fig. 9. The pressure gradient at two typical moments under both rest and stress conditions 

According to the contour of pressure gradient distribution, it can be found that the 
pressure gradient through the coarctation is relatively high. However, the highest 
pressure gradient is located at the bottom of the aortic arch, and the pressure gradient 
at the time of minimum velocity is much lower than that at the time of maximum 
velocity. 

4 Conclusion 

In this paper, the multiscale simulation was presented by coupling the LPM and the 
3D model, which is able to better reproduce the boundary conditions and represent the 
interactions between the local geometry and the global circulatory system. 

The results showed that the flow distribution through the various branches and the 
proximal systolic, diastolic, and mean pressure match the provided data very well.  
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Abstract. Image-based CFD can support diagnosis, treatment decision
and planning. The ability of CFD to calculate pressure drop across the
aortic coarctation is the focus of the 2013 STACOM Challenge. The
focus of our study was inflow conditions. We compared a MRI-based
inlet velocity profile with a swirl and an often used plug velocity profile
without swirl. The unsteady flow simulations were performed using the
solver FLUENT with consideration of the challenge specifications. For
outflows, the constant outflow ratios of the supra-aortic vessels were set.
The consideration of a secondary flow (swirl) at the inlet of the ascending
aorta significantly affect (reduce) the calculated pressure drop across
the aortic coarctation and hence the treatment decision. Furthermore,
using MRI-measured flow rates at the ascending and the descending aorta
without a proof of data consistency could result in an overestimated
pressure drop due to overestimated flow into the supra-aortic vessels.

Keywords: CFD, aortic coarctations, pressure drop, MRI-based inflow.

1 Introduction

Aortic-coarctation is a congenital disease of the aorta causing a raised blood
pressure in the upper and a decreased pressure in the lower body. Guidelines
recommend a surgical or catheter-based (stent placement or balloon angioplasty)
treatment when the systolic pressure gradient exceeds 20 mmHg at rest [1]. In
clinical practice, the pressure drop is measured with a catheterization proce-
dure, which is an invasive, uncomfortable for the patients, and associated with a
radiation. Other methods, such as, Doppler echocardiography, two-dimensional
velocity encoded magnetic resonance imaging (VENC-MRI), solving of Pressure-
Poisson or Navier-Stokes equations using 4D VENC-MRI velocity data or image-
based computational fluid dynamics (CFD) to estimate the pressure drop from
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imaging data were proposed. However, they did not replace the catheterization
procedure until now due to a lack of methodological and clinical validation.
Imaging data in combination with CFD have the potential to replace this inva-
sive pressure measurement. Furthermore, hemodynamic simulations in treatment
planning can improve outcome. A proof of the CFD methodology is part of the
2013 STACOM CFD challenge. A major part of the image-based CFD method-
ology is the selection of inlet boundary conditions. Morbuddici et al. showed
[3], that the choice of the inlet velocity profile has a significant impact on the
wall shear stress distribution and bulk flow effects. An increase of high WSS
areas was found in simulations using MRI-based (4D-VENC-MRI) inlet veloc-
ity profile if compared with simulations using simplified profiles. Goubergrits et
al. found similar results comparing a plug and 4D-VENC-MRI-based velocity
profile for peak systolic steady flow simulations [2]. Additionally, the calculated
pressure drop could be significantly decreased when a MRI-based inlet profile
is used [2]. In the framework of the 2013 STACOM CFD challenge, the cycle-
averaged pressure drop has to be estimated for rest and stress conditions by the
proper choice of inflow and outflow conditions. For the inlet at the ascending
aorta only the unsteady flow rate measured by 4D-VENC-MRI was provided. In
our approach, we used a 3D velocity profile from our data base (4D-VENC-MRI
measurements of aortic coarctations) including a secondary flow feature (swirl)
at the inlet of the ascending aorta. The profile was adapted to meet the size of
the inlet, the anatomical orientation, and the unsteady flow rates of the stressed
and rest conditions specified by the challenge.

2 Materials and Methods

2.1 Anatomy Data

The Challenge provided an anatomical model of a mild thoracic aortic coarcta-
tion (45% degree of stenosis with a minimal diameter of 10 mm) of a 17-year old
male (see Fig. 1). This model includes the ascending aorta (AAo) with an inlet
diameter of 21 mm, the arch, supra-aortic-vessels, and descending aorta (DAo)
with an outlet diameter of 11.5 mm. The provided surface mesh was smoothed
slightly with the Laplace smoothing algorithm using ZIBamira (Zuse-Institute-
Berlin, Germany). This surface was imported into the mesh generator Gam-
bit 2.4.6 (Ansys Inc, USA). In a first step all supra-aortic outlets were extended
by 10 mm. The surface mesh of these extensions was meshed with 2,300 quadri-
laterals and the original part was remeshed with 107,935 triangles. The volume
mesh consisted out of two boundary layers at the wall with 211,270 wedge and
4,600 hexahedral elements and the remaining volume was filled with 1,226,734
tetrahedral elements. Cell skewness (9 cells were > 0.75; worst cell: 0.81) and
aspect ratio (all cells below 4) meet the flow solver requirements. According our
earlier mesh independence study with another aortic coarctation case, the used
mesh allows a calculation of velocity and pressure fields within 1% error [2].
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Fig. 1. Boundary conditions. Left: Used flow rates and boundary conditions for the
rest and stress (LCC - left common carotid artery, LS - left subclavian artery).
Right: MRI-based adapted inflow velocity profile (in-plane and normal velocity
components).

2.2 Simulations

With the flow solver Fluent 6.3.26 (Ansys Inc., USA), three-dimensional un-
steady laminar flow simulations of the two conditions (rest/stress:3.7/13.5 L/min)
were performed. The fluid properties were set to a density of 1000 kg/m3 and
a constant viscosity of 4.0 mPas. Peak systole Reynolds numbers at the inlet
were 5,000 (rest) and 12,000 (stress). The peak systole Reynolds numbers at the
stenosis were 5,980 and 9,350 respectively. Womersley numbers were 23 (rest)
and 40 (stress). The wall was rigid and no-slip condition was set.

To meet the provided unsteady flow rates for the inlet and outlets, user de-
fined functions (UDFs) were written using MATLAB (Mathworks Inc., USA)
and applied as velocity inlets in the flow solver (see Fig. 1).The inlet profile was
either a plug profile or the adapted 4D-VENC-MRI-based profile described be-
low. When using the plug profile, a constant normal velocity at the inlet was set.
At the outlets, which have a sufficient distance to the coarctation, also plug pro-
files without secondary flow were imposed except the outlet of the Innominate
(see Fig. 1). For this outlet the Fluent-implemented outlet boundary condition
outflow was used. The flow rate curves of the supra-aortic-vessels were the same
for all three branches calculated as a difference between provided flow rate curves
for the ascending and descending aortas but with respective scaling fulfilling the
Challenge requirements. This implies a fixed flow split ratio between the supra-
aortic-vessels. Using this boundary condition setup, only relative pressure fields
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were calculated. The absolute physiologic pressures can be calculated using the
pressure curve at the proximal plane in the AAo as a reference. The flow was
solved with double precision, pressure-based solver using 2nd order discretization
in space, 2nd order implicit in time, and a SIMPLEC-pressure-velocity-coupling.
1,000 time steps per cycle for the stress and 1,500 time steps per cycle for the
rest condition were calculated, to obtain equal numbers of calculated time steps
in the systolic phase. The time steps were simulated with up to 120 iteration
per time step or up to a residual level of below 5-e5 for x-, y-, z-velocity and
continuity.

2.3 3D-Phase Contrast MRI Profile

For the inflow at the AAo, a 3D velocity profile with a moderate secondary flow
(swirl) available in our data base was used. The secondary flow in the aorta inlet
was characterized as the ratio of the in-plane mean velocity to the through-plane
mean velocity (degree of secondary flow - DSF). Here the DSF was equal to 1.08
that is a moderate secondary flow in comparison to the maximal DSF in our data
base of 2.5 (zero means no secondary flow). Data were obtained from a 23 years
old woman (88 bpm heart rate) with aortic coarctation and a 47% stenosis at
the Department of Congenital Heart Disease and Peadiatric Cardiology at the
German Heart Institute in Berlin, Germany using a 1.5 Tesla MR scanner. The
velocity was resolved with a spatial resolution of 1.7 mm x 1.7 mm x 2.5 mm.
The temporal resolution was 27 ms. The peak systolic velocity profile (see Fig. 1)
was extracted from the 4D-VENC-MRI data with MEVISFlow 8 (Fraunhofer
MEVIS, Bremen, Germany) and used in this study as a constant inlet velocity
profile scaled for each time step according the inlet flow rate curve. We paid
attention to extract the velocity profile from a similar anatomical position and
orientation: Both aorta surfaces were aligned manually to achieve a good match
of the AAo’s centerlines. The velocity profile was extracted from cross-section
that was normal to the vessel centerline.

3 Results

Fig. 2 shows pressure drops at cross section defined by the STACOM Challenge
for the rest and stress conditions simulated with plug and MRI-based inlet ve-
locity profiles. By using the same flow rate, the secondary flow in the inlet of
the AAo described by MRI-based inlet velocity profile results in a lower max-
imal pressure drop for both flow conditions (rest and stress): 18.3 mmHg vs.
22.0 mmHg during the rest and 65.6 mmHg vs. 91.3 mmHg at stress. Cycle
averaged pressure drops were also significantly (p<0.05) reduced in MRI-based
simulations: rest 2.1±5.29 mmHg vs. 2.9±6.65 mmHg; stress 4.7±16.86 mmHg
vs. 10.9±23.03 mmHg (paired Wilcoxon test). Differences of the flow fields be-
tween plug and MRI-based conditions causing lower pressure drop in MRI-based
simulations are shown in Fig. 5. A strong secondary flow structure (swirl) is
formed in the AAo of the MRI-based simulations. Note that peaks of pressure
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Fig. 2. Time courses of the pressure drop calculated for the rest (left) and stress
(right) conditions with plug and MRI-based inlet velocity profiles

Fig. 3. Time courses of the space-averaged static pressure at STACOM-specified cross
sections in AAo and DAo calculated for the rest (left) and stress (right) conditions
with plug and MRI-based inlet velocity profiles

drops are calculated at time points (0.17 s – rest; 0.038 s – stress, see Fig. 2),
which do not correlate with peak flow through the aortic coarctation (0.25 s –
rest; 0.08 s – stress, see Fig. 1).

Using the calculated pressure drops and the provided pressure curve at the
AAo, the pressure at the DAo is calculated (see Fig. 3). The curves of MRI and
plug inlet show common course. However, in the stress condition the curves show
clearly an unphysiological negative pressure at the beginning of systole.

Fig. 4 shows pressure decrease downstream from the inlet at peak systolic phase.
In both pressure curves, three common local minima and maxima were found at
sites A, B and C. From a certain site D downstream a monotonic decrease is seen.
Between C and D there is an increase of static pressure that is associated with
filling of the flow at the aortic cross-section beyond the coarctation.

The visualization of a pressure field cut reveals the origin of the progression: A
low pressure region occurs at the inner aortic arch even before the branch of the
Innominate artery (see Fig.5). The pressure field of the rest condition shows a
more continuously pressure decrease in comparison to the stress condition. In the
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Fig. 4. Left - Relative static pressure local minus inlet static pressure difference
along the aorta for plug simulations at peak systole. The markers A-B-C-D were set
36/55/90/146 mm away from beginning of the centerline.

stress case, a large drop is seen in the aortic arch (up to 100 mm from the inlet)
but further downstream the pressure recovers of about 25 mmHg and reduces
the overall pressure drop. This low pressure region correlates with a recirculation
zone that can be clearly seen in Fig. 5. The site A coincides with the beginning
of the recirculation zone. At site B, the recirculation zone has its largest spatial
extend inside the lumen. The streamlines of the rest case are aligned earlier than
in the stress case.

4 Discussion

We investigated two different in–flow conditions: use of the plug inlet velocity
profile with the MRI-measured flow rate provided by the STACOM Challenge
and use of an MRI-based inlet velocity profile taken from our own data base. At
the outlets we used simple boundary conditions without the often used approach
of a 1D three-element Windkessel modeling. This is motivated by the fact that
Windkessel modeling requires a choice of 9 unknown and patient/nonspecific
parameters for the three supra-aortic-vessels, when the flow rates at the AAo
and DAo are described by the MRI-provided flow rate curves. On the other
hand the aortic coarctation of the Challenge patient is located downstream of
the aortic arch and flow rate division among side branches does not affect the
flow rate through the aortic coarctation that is equal to the flow rate of the de-
scending aorta provided by the STACOM Challenge. Taking into account stud-
ies [4], which found that comprehensive 1D personalized pressure-drop models
are able to predict pressure drop due to aortic coarctation, we do not expect
that a complex variability of flow rate divisions affect aortic coarctation pres-
sure drop in our case. The calculated pressure drop between AAo and DAo of
about 20 mmHg at rest condition assign the coarctation as a borderline case of
a treatment decision. Our results comparing simulations with plug and MRI-
based velocity profile illustrate the huge meaning of inlet boundary conditions.
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Fig. 5. Flow and pressure fields at rest. From left to right: Centerline with landmarks
A-D. Cut plane with relative static pressure at AAo peak flow and plug inlet profile.
Respective streamlines with color-coded velocity magnitude. Streamlines with color-
coded velocity magnitude at AAo peak flow and MRI-based inlet profile.

Based on plug-simulation at the rest condition the patient should be treated
(maximal dP=22 mmHg), whereas MRI-based simulation could recommend no
treatment (maximal dP=18.3 mmHg). Lower pressure drops in simulations of
aortic coarctations using MRI/based inlet velocity profile correlate well with our
recent study with 3 other aortic coarctation cases and with a statement of Kil-
ner et al. that helical flow in the aorta is a part of the natural flow optimization
process [5].

The calculated absolute pressure value range especially in the stressed condi-
tion has unrealistic low pressure values. Using the provided time series of flow
rates at the AAo and DAo neglect the fact that the values were averaged, and
are not simultaneously acquired data. The problem is emphasized in Fig. 6 for
both the rest and the stress condition. The difference between the two flow rate
curves is the flow rate into the supra-aortic-vessels (green solid lines). Especially
at the rest condition the resulting curve with about 250 ml/s maximal flow in
upper body and about 120 ml/s maximal reversed flow shows non-physiologic
flow conditions in the upper body for rest conditions. Using a relatively low time
shift of the DAo flow curve by 0.06 s results in a physiological upper body flow
curve with the maximal flow rate of about 140 ml/s and a low reversed flow
(see Fig. 6). Similarly, for the stress condition the shift of the flow curve by
0.01 s reduces maximal flow rate to the upper body from 600ml/s to 500 ml/s.
The simulated high maximal flow rates into the supra-aortic-vessels correlate
temporally with the maximal pressure drop between AAo and DAo. This is the
consequence of the high flow into to the supra-aortic-vessels, which needs a high
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Fig. 6. Left: Flow rates measured by 2D-VENC-MRI for the ascending (total flow) and
descending (flow into the lower body) aortas and their difference (solid lines) , which is
the flow into the supra-aortic-vessels, for rest condition. Dotted lines show descending
aorta flow shifted in time by dt = 0.06 s and corresponding flow into the supra-aortic-
vessels. Right: Flow rates for stress condition. The flow rate of the descending aorta
was shifted by dt = 0.01 s.

pressure difference between the AAo and the supra-aortic-vessels. This defines
the pressure level in the aortic arch upstream of the coarctation. An additional
pressure drop result from the coarctation, which is defined by the flow rate
through it. Both pressure drops together results in the pressure drop between
AAo and DAo. Note that a total cross-section area of the three side branches
with 96 mm2 is of the same order as the cross-section area of the descending
aorta outlet with 112 mm2 and of the aortic coarctation (100 mm2) and there-
fore both pressure drops are from the same order. As the clinical main concern
is the part of the pressure drop caused by the coarctation, it must be separated
from the total pressure drop.

The provided flow rate curves neglect, however, the unknown storage capacity
of blood due to Windkessel effect of the aorta during systole. This can also play
a role to compensate the disadvantageous effects.

5 Conclusion

Aortic coarctation pressure drop assessment using image-based CFD is very sen-
sitive to the inlet velocity profile. The modeling of the secondary flow feature
(swirl) generated by the left ventricle together with the aortic valve at the as-
cending aorta affect pressure drop calculation that could influence treatment
decision. This is especially important for borderline patients. Furthermore, at-
tention should be paid to the MRI-measured flow rate curves at the ascending
and descending aortas, which are used as boundary conditions of CFD simula-
tions. These data are not simultaneously acquired data meaning that a difference
of flow rate curves could result in a non-physiologic flow rate in the supra-aortic-
vessels. Consequently a use of 1D circulation models validating MRI-measured
data including secondary swirl could be recommended.
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Abstract. Aortic coarctation is a congenital condition in which the
aorta is narrowed. The pressure drop through the aorta depends on
the extension of this narrowing. Therefore, severe coarctations have im-
portant side-effects on the hemodynamic conditions of the circulatory
system. The Computational Fluid Dynamics (CFD) simulation of the
hemodynamics in a patient specific aortic coarctation can help to pre-
dict the pressure drop produced by the aorta narrowing. Nevertheless,
an accurate prediction of the pressure drop, by means of CFD tools,
depends strongly on the boundary conditions (BCs). In this study we
present the results of ten simulations performed on a patient specific aor-
tic coarctation vasculature proposed in the second MICCAI-STACOM
CFD Challenge. The model includes ascending aorta, arch, descending
aorta, and upper branch vessels. Specifically, we consider; two different
physiological states a) rest and b) stress condition. For both cases the
flow rate waveforms are provided at the ascending aorta and descend-
ing aorta. The ten simulations are performed using five different set of
boundary conditions. The results are reported and indications on the
more accurate boundary conditions are discussed.

1 Introduction

Aortic coarctation can have important side-effects on the hemodynamic condi-
tions of the circulatory system and can lead to hypertension [1]. Advances in
patient specific computational hemodynamic techniques allow to simulate blood
flow and pressure in thoracic coarctation models extracted from patient data.
These emergent technologies offer the possibility of predicting the pressure drop
through the coarctation [2]. This can be satisfactory accomplished if; 1) mea-
surements of the flow through the main vessel branching from the aorta are
available 2) the three dimensional virtual phantom of the aorta is accurately
reproduced and 3) information about vessel thickness and elasticity are avail-
able. Unfortunately, in the clinical practice only part of this information can
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be obtained. Consequently, this lack of information can lead to consider a wide
range of different boundary conditions for the simulation. This can affect the
consistency and repeatability of the simulations. The objective of this study is
to assess the predictive power of CFD methods in computing the blood pres-
sure drop through a moderate aortic coarctation model, under rest and stress
conditions. The case under study has been set within the STACOM 2013 CFD
challenge [3]. Specifically five different set of boundary condition are used and
their effect on the pressure at rest and stress is discussed.

Fig. 1. a) Rendering of MRA and stl file representing the aorta with a close-up view
of the surface mesh. b) Ascending aortic and diaphragmatic aortic flow waveforms at
rest condition and under stress conditions. c) Pressure wave at coarctation.

2 Material and Methods

The anatomic data and of a moderate aortic coarctation at rest and the phys-
iological flow condition at rest and under stress conditions of the subject of
this study are provided by the organizers of the STACOM 2013 CFD challenge
[3]. Figure 1.a shows the virtual phantom of the segmentation from the MRA
data. The model includes the ascending aorta, arch, descending aorta, and upper
branch vessels. The cardiac output of the patient at rest was 3.71 L/min, the
heart rate 47 beats per minute (cardiac cycle T = 1.277 s). The cardiac output
of the patient, under stress condition, increased to 13.53 L/min, the heart rate
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to 141 beats per minute (cardiac cycle T = 0.425 s). The proximal systolic, dias-
tolic, and mean pressures were at rest condition 83.92, 49.68, and 63.35 mmHg,
respectively, and under stress condition 123.35, 36.77, and 64.30 mmHg, respec-
tively [3]. For both physiological conditions (rest and stress), the flow waveforms
and the pressure wave were reconstructed at the levels of the ascending aorta
(AscAo) and diaphragmatic aorta (DiaphAo). These waveforms are depicted in
Figures 1.b and 1.c. The organisers of the challenge provided a 15-term Fourier
reconstruction of the flow waveforms [3]. Note that in Figure 1.b the positive
flow rates indicate inflow and negative values correspond to outflow.

CFD Model: The blood flow through the three-dimensional virtual phantom
was modeled as an incompressible Newtonian fluid. The governing equations
are the unsteady incompressible Navier-Stokes equations, which were solved nu-
merically, together with the corresponding boundary conditions, using the com-
mercial CFD code Ansys Fluent [4]. Due to the lack of information about the
vessel wall elasticity and thickness, the vessel walls were assumed to be rigid.
A constant viscosity equal to 0.004 Pa · s and a constant density equal to 1000
Kg/m3 were set. Non-Newtonian effects of blood were neglected. One hundred
time-steps per cardiac cycle were used, and the calculations were performed for
2 cardiac cycles. The discretized momentum and pressure equations were solved
using second order spatial discretization schemes and an implicit second order
discretization scheme was used for the time marching.

Table 1. Combinations of boundary conditions BC1, B2, BC3, BC4 and B5 imposed
for the simulations under rest and stress conditions

Outlet-1 Outlet-2 Outlet-3 Outlet-4 Inlet Vessel wall

BC1 Outflow Outflow Outflow Outflow Velocity-plug No-slip
BC2 Velocity-plug Outflow Outflow Outflow Velocity-plug No-slip
BC3 Velocity-plug Outflow outflow Pressure Velocity-plug No-slip
BC4 Pressure Outflow Outflow Outflow Velocity-plug No-slip
BC5 Velocity plug Pressure Pressure Pressure Velocity-plug No-slip

Boundary Conditions:We used the given physiological data to implement five
different combination of boundary conditions (BCs). The BCs are summarized
in Table 1. In the next we will refer to these five sets of boundary conditions as:
BC1 to BC5, respectively. In all the types of BC the following two conditions are
maintained 1) no-slip boundary conditions were prescribed at the vessel walls
and 2) pulsatile velocity boundary conditions, according to Fig. 1.b, are imposed
at the model inlet by using a uniform plug velocity distribution. The outflow BC
used by the commercial code assumes zero diffusion flux for all flow variables
along the direction perpendicular to the outlet and it adjusts the instantaneous
mass flow rate to satisfy the overall mass balance in the computational domain.
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This BC is exact for steady fully developed flows. The different set of boundary
conditions used in the simulations are:

1) in the set BC1 we imposed, instantaneously, the flow distribution through
the various outlets to match the data given in Table 2, which corresponds to the
averaged flow rate distribution through the inlets and outlets provided by the
organizers of the challenge.

2) in BC2 the outflow condition at the outlet-1 of BC1 was changed by an
unsteady plug velocity boundary condition according to the time evolutions of
Fig. 1.b. The instantaneous flow rates at outlets 2, 3 and 4 were distributed
according to Table 2.

3) in BC3 we changed the condition at the outlet-4 of BC1 by imposing on this
face the pulsatile pressure boundary conditions of the pressure wave proximal
to the coarctation (Fig. 1.c). The outflow at outlets 2 and 3 are distributed
according to Table 2

4) in BC4 we set the pulsatile pressure boundary conditions by imposing the
pressure wave proximal to the coarctation at outlet-1. The outflow at outlets 2,
3 and 4 are distributed according to Table 2.

5) in BC5 we imposed the pulsatile pressure boundary condition at outlet-2,
3 and 4.

It should be noted that with all the different sets of BCs the overall mass flow
balance is satisfied, instantaneously, within 0.03%.

Table 2. Total flow through the various branches of the aortic model under rest and
stress conditions. Positive values indicate inflow and negative values outflow.

Outlet-1 Outlet-2 Outlet-3 Outlet-4 Inlet

Flow at rest [L/min] -2.41 -0.364 -0.312 -0.624 3.71
Flow at stress [L/min] -8.03 -1.4575 -0.6875 -3.355 13.53

Volumetric Mesh: We constructed three different body-fitted tetrahedral vol-
umetric meshes of the given virtual phantom for the CFD model. Mesh-1 has
280596 cells and five prism layers at the vessel wall, Mesh-2 has 515242 cells and
three prism layers at the vessel wall and Mesh-3 has 1348866 cells and five prism
layers at the vessel wall. All the meshes were constructed using the commer-
cial code ICEM [5]. The CFD model under stress condition with BC1 has been
computed using the three meshes. The results of these three simulations have
been used to make a mesh dependence analysis. Specifically, we compared the
pressure drop at the centerline at the systolic time. The results of this analysis
show that the pressure field for the solution with Mesh-2 and Mesh-3 are very
similar (3% error for the case under stress condition and at systolic time t=0.08
s). Following this analysis, all the simulations were carried out with Mesh-3.
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Table 3. Average mass flow rate at outlets and inlet in Kg/s and average and maximum
pressure at coarctation in mmHg

EXP BC1 BC2 BC3 BC4 BC5

Average mass flow rate under rest, L/min

at inlet 3.83 3.83 3.83 3.83 3.83 3.83
at outlet-1 -2.49 -2.49 -2.45 -2.45 0.00 -2.46
at outlet-2 -0.38 -0.38 -0.39 -0.77 -1.43 -0.19
at outlet-3 -0.31 -0.31 -0.31 -0.61 -1.14 -0.17
at outlet-4 -0.65 -0.65 -0.67 0.00 -1.26 -1.01

Average mass flow rate under stress, L/min

at inlet 13.96 13.96 13.96 13.96 13.96 13.96
at outlet-1 -8.24 -8.24 -8.15 -8.15 0.00 -8.15
at outlet-2 -1.54 -1.54 -1.56 -4.01 -3.74 -1.26
at outlet-3 -0.69 -0.70 -0.71 -1.80 -1.70 -0.71
at outlet-4 -3.49 -3.49 -3.54 0.00 -8.51 -3.84

Average pressure in mmHg

at coarctation under rest condition 63.4 52.2 48.4 58.2 62.2 60.0
at coarctation under stress condition 64.3 50.8 41.0 57.1 62.5 77.8

Maximum pressure in mmHg

at coarctation under rest condition 83.9 67.5 61.8 74.2 81.7 106
at coarctation under stress condition 123 102 159 160 118 217

3 Results and Discussions

In this section we present and discuss the effect of the different boundary condi-
tions on (1) the pressure at the coarctation, which was measured experimentally
under rest and stress conditions (Fig.1.c) and (2) on the blood flow rates through
the different outlets. This information is summarized in Table 3. The mean and
maximum values of pressure for each case and for both physiological situations
are also included in Table 3.

The numerically predicted time evolutions of the mass flow rates and pressures
under rest condition are plotted in Figure 2, while Figure 3 shows the correspond-
ing data under stress conditions. The available experimental measurements are
included in these figures for comparison.

The set of boundary conditions BC1 assumes that the instantaneous flow
through the different outlets is proportional to the instantaneous flow at the
inlet (see for example Fig. 2.a and BC1 in Fig. 2.b). This is not completely
true according to Figure 1.b in which it can be seen that the measured mass
flow rate through the outlet-1 is not proportional to the flow rate at the inlet
during the cardiac cycle. In fact, Figure 1.b indicates that the absolute value of
the flow rate through inlet is larger than that at the outlet-1 for t < 0.18 s under
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Fig. 2. Time evolutions during a cycle of, (a) to (e), the mass flow rates at the inlets
and outlets and (f) of the pressure at the coarctation for the rest conditions. In, (b) to
(e), positive values indicate outflow and negative values inflow.

stress conditions and for t < 0.35 s under rest conditions. This produces that
the flow rate through outlets 2, 3 and 4 should exit the computational domain.
However at larger times the flow through these surfaces has to enter into the
computational domain to satisfy the overall mass balance. These limitations of
BC1 produce significant differences between the computed and measured time
evolution of the pressure in the coarctation under rest conditions (see Fig. 2.f
and Table 3). It is interesting to note that these differences are reduced under
stress conditions for t < 0.07 s (see Fig. 3.f) probably because the experimental
distribution of the flow rates through the different branches is well reproduced
by BC1 during this period of time.

The sets BC2 and BC3 impose the measured mass flow rate evolution at
outlet-1 and the flow rate is distributed through the remaining outlets to satisfy
continuity. In BC3 the time evolution of pressure at the coarctation is imposed
at outlet-4, which is the closest to the narrowing. Although the flow rate distri-
bution of these sets is closer to the experimental conditions than that of BC1
the numerical predictions of the time evolution of pressure (Figs. 2.f and 3.f and
Table 3) using BC2 or BC3 do not improve with respect to BC1. In fact the set
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Fig. 3. Time evolutions during a cycle of (a) to (e) the mass flow rates at the inlets
and outlets and (f) of the pressure at the coarctation for the stress conditions. In, (b)
to (e), positive values indicate outflow and negative values inflow.

BC3 predicts zero flow rate at outlet-4 (Figs. 2.e and 3.e) in which the pressure
BC is imposed. The use of the same pressure BC in outlets 2, 3 and 4, as in
BC5, overcomes this limitation (see Figs. 2.e and 3.e) but produces significant
larger peaks of pressure than those measured (see for example Table 3).

If the time evolution of pressure is imposed at outlet-1 (BC4) the experimental
pressure is well reproduced under rest (Fig. 2.f) and stress (Fig. 3.f) conditions
but the distribution of flow rates through the different outlets do not agree with
that measured (see Table 3). In addition, it can be seen in Figs. 2.b and 3.b that
the numerically predicted flow rate through outlet-1 differs from that measured
experimentally.

From these considerations, one can conclude that the numerical predictions of
the measured time evolution of pressure would need the complete instantaneous
time history of the flow rate through all the inlets and outlets during the car-
diac cycle instead of the time-averaged distribution available for outlets 2, 3 and
4. Note that even these outlets have a smaller diameter than outlet-1, they, on
average, contribute, approximately, 35% and 40% to the total outflow during the
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cardiac cycle for rest and stress conditions, respectively, as indicated in Table 2.
These results suggest that the use of more elaborated boundary conditions, such
as reduced-order lumped parameter BC models, need to be considered.

4 Supplementary Material

In order to compare the results of this study to the results of all participants
to the Statcom CFD challenge [3], we report the coarctation pressure drops
between given proximal and distal planes. The proximal plane correspond to the
intersection between the 3D coarctation model and the plane with origin (188.96,
40.18, 253.22) and normal (0.98,-0.09, 0.19). The distal plane correspond to the
intersection between the 3D coarctation model and the plane with origin (261.97,
23.56, 277.10) normal (0.99,-0.03, -0.14). These locations correspond roughly
to where the invasive pressure wire measurements were acquired. In Figure 4
we report the time-resolved spatial average of the pressure drop between the
proximal and distal planes. In Table 4 we report mean and maximum pressure
drops (in mmHg) between the proximal and distal locations, respectively under
rest and stress condition.

Table 4. Pressure drop between the proximal and distal planes computed using the
five different boundary conditions under rest and stress condition

EXP BC1 BC2 BC3 BC4 BC5

Mean P drop under rest, mmHg 4.01 3.85 4.37 1.71 3.70
Maximum P drop under rest, mmHg 33.33 23.82 35.17 12.87 23.19
Mean P drop under stress, mmHg 21.11 18.74 29.45 9.51 18.14
Maximum P drop under stress, mmHg 212.49 97.11 188.05 46.95 98.10

Fig. 4. Time-resolved spatial average of the pressure drop between the proximal and
distal planes computed with the five set of boudary conditions. (a) Under rest condition.
(b) Under stress condition
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Abstract. Computational fluid dynamics (CFD) simulation of internal hemody-
namics in complex vascular models can provide accurate estimates of pressure 
gradients to assist time-critical diagnostics or surgical decisions. Compared to 
high-fidelity pressure transducers, CFD offers flexibility to analyze baseline he-
modynamic characteristics at rest but also under stress conditions without applica-
tion of pharmacological stress agents which present undesirable side effects.  In 
this study, the variations of pressure gradient and velocity field across a mild tho-
racic coarctation of aorta (CoA) is studied under pulsatile ascending aortic flow, 
simulative of both rest and stress cardiac output. Simulations were conducted in 
FLUENT 14.5 (ANSYS Inc., Canonsburg, PA, USA) - a finite volume solver, 
COMSOL 4.2a (COMSOL Multiphysics Inc., Burlington, MA) - a finite element 
solver, and an in-house finite difference cardiovascular flow solver implementing 
an unsteady artificial compressibility numerical method, each employing second-
order spatio-temporal discretization schemes, under assumptions of incompressi-
ble, Newtonian fluid domain with rigid, impermeable walls. The cardiac cycle-
average pressure drop across the CoA modeled relative to the given pressure data 
proximal to the CoA is reported and was found to vary significantly between rest 
and stress conditions. A mean pressure gradient of 2.79 mmHg was observed for 
the rest case as compared to 17.73 mmHg for the stress case. There was an inter-
solver variability of 16.9% in reported mean pressure gradient under rest condi-
tions and 23.71% in reported mean pressure gradient under stress conditions. In 
order to investigate the effects of the rigid wall assumption, additional simulations 
were conducted using a 3-element windkessel model implemented at the descend-
ing aorta, using FLUENT. Further, to investigate the appropriateness of the invis-
cid flow assumption in a mild CoA, CFD pressure gradients were also compared 
results of a simple Bernoulli-based formula, used clinically, using just the peak 
blood flow velocity measurements (in m/s) obtained distal to the aortic coarctation 
from CFD. Helicity isocontours were used as a visual metric to characterize  
pathological hemodynamics in the CoA. 

1 Introduction 

Coarctation of the aorta (CoA) is a common congenital disease present in adolescence 
or adulthood, and often identified in the context of investigation for hypertension  
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[1, 2]. CoA is often associated with other congenital diseases including atrial septa 
defect, pulmonary stenosis, etc [3, 4]. Decrease in regional diameter at the aortic 
coarctation results in elevated pressure gradients across it. These pressure gradients 
increase several fold under stress conditions, in contrast with rest conditions[5]. Com-
pared to high-fidelity pressure transducers employed during invasive pressure mea-
surement, computational fluid dynamics (CFD) offers flexibility to analyze baseline 
pre-repair hemodynamic characteristics non-invasively at rest and also under stress 
conditions in-silico, without application of pharmacological stress agents which 
present undesirable side effects, including chest pain, blood pressure decrease, arr-
hythmia, palpitations, shortness of breath and headaches [6, 7]. CFD can provide 
information regarding peak velocities distal to CoA and visual representations of flow 
structures using flow derived parameters such as helicity isocontours which can ob-
jectify characterizing the pathological extent of pre-repair CoA hemodynamics[8]. In 
this study, we use CFD to predict pressure gradients across a mild CoA (~30%) in 
a17-year old male patient, at both rest (Re = 95) and pharmacological stress condi-
tions (Re = 3400) [5]. We provide a comparison of results between two commercial 
solvers – a finite volume (FVM) and a finite element (FEM) solver – as well as one 
in-house finite difference (FDM) solver, each set up to model rigid-wall CFD sup-
plied with the same inflow and outflow conditions specified for the 2013 STACOM 
CFD Challenge. Pressure gradients from CFD were compared against those obtained 
from the commonly used clinical formula [9], ΔP = 4V2, where V is the peak velocity 
(in m/s) distal to CoA, in order to assess the validity of the Bernoulli assumptions it is 
based upon (i.e. inviscid flow) in the context of a mild CoA. 

The paper is organized as follows: in section 2.1, the computational methods for 
the three different solvers utilized in this study are described including methods for 
data sampling and analysis. Section 2.2 presents a mesh sensitivity analysis conducted 
to ensure consistency and convergence of the CFD solution. In section 2.3, the me-
thod for implementing a 3-element windkessel model at the descending aorta (DAo) 
is described for the purpose of analyzing transient differences in pressure gradients 
across the CoA between the rigid wall models and one that considers compliance. 
Finally, section 3 presents the pressure gradients and velocity fields at rest and stress 
conditions, contrasting results from the three solvers along with a discussion of the 
limitations of this study in section 4. 

2 Methods 

2.1 Inter-solver Variability – A Verification Study 

The numerical solution to the Navier-Stokes (NS) equations modeling incompressi-
ble, viscous flow may be arrived at in a discretized fluid domain by using multiple 
established numerical methods[10-13], within an FEM, FDM or FVM discretization 
framework. For this study, simulations were conducted in FLUENT 14.5 (ANSYS 
Inc., Canonsburg, PA, USA) - a FVM solver, COMSOL 4.2a (COMSOL Multiphys-
ics Inc., Burlington, MA) – FEM solver and an in-house FDM cardiovascular flow 
solver implementing an unsteady artificial compressibility numerical method, each 
employing second-order spatio-temporal discretization schemes, under assumptions  
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of incompressible, Newtonian fluid domain with rigid, impermeable walls. The aorta 
CoA model examined in this study was segmented from a contrast enhanced magnetic 
resonance angiography (MRA) and was provided as a STL file for the CFD Chal-
lenge. The STL surface mesh was converted into solid model constituted of NURBS 
patches after conducting minimal surface correction operations and finally exported 
as an IGS file for purposes of universal compatibility with different solvers. Direct 
numerical solutions (DNS) CFD was performed without considering a turbulence 
model, as per the specifications of the CFD challenge, for identical rigid-wall geome-
try, inlet flow rates (as provided for rest and stress conditions) with a plug profile  
and outlet mass-flow splits. Outlet mass-flow splits of 17%, 8%, 10% and 65%  
were applied for the rest condition and 25%, 5%, 11% and 59% were applied for the 
stress condition, at the Innominate, left carotid, left subclavian and DAo branches, 
respectively. 

Finite Volume Solver: FLUENT 
FLUENT is a FVM code. The IGS geometry was meshed in ANSYS Workbench 14. 
The curvature-based advanced mesh size function tool was used to obtain better mesh 
resolution in the region of the coarctation. A mesh containing ~500,000 tetrahedral 
elements was considered for the final FLUENT simulations reported in this study. A 
mesh sensitivity analysis was also performed as described in section 2.2. A User  
Defined Function (UDF) was implemented to input pulsatile mass flow rate waveform 
at the inlet for rest and stress cases. The pressure at the inlet was set to 63.35 mmHg 
for rest conditions and 64.3 mmHg for stress conditions. For all the FLUENT  
simulations, the pressure-velocity coupling algorithm was set as SIMPLE which im-
plements a pressure based segregated algorithm. The SIMPLE algorithm uses a rela-
tionship between velocity and pressure corrections to enforce mass conservation and 
to obtain the pressure field. A second-order discretization of pressure and momentum 
terms was employed. The pressure discretization method was set as PRESTO!, rec-
ommended for complex geometries which induce swirl flow such as the aorta model. 
A second-order implicit time advancement with a fixed time step of 0.016 sec was 
chosen. 

Finite Element Solver: COMSOL 
COMSOL Multiphysics is a FEM code. A mesh containing ~600,000 and ~1,000,000 
tetrahedral elements with an imposed boundary layer mesh was considered for the 
final rest and stress case COMSOL simulations respectively. The inlet flow waveform 
(15 Fourier-term waveform reconstructions) was specified at the inlet via COMSOL’s 
live-link capabilities using MATLAB 2011b (The MathWorks Inc., Natrick, MA). A 
constant pressure was imposed at the inlet of the model as per the given pressure 
waveform. Simulations were conducted using the laminar flow module and a time 
dependent study. Furthermore, a preconditioned generalized minimal residual method 
(GMRES) iterative solver for the flow field at each time step and a constant (Newton) 
nonlinear solver time marching were implemented. Also, to aid in convergence for a 
highly nonlinear problem, the Jacobean matrix was updated after every iteration. 
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Finite Difference Solver- In-House Solver 
DNS was also performed using a second-order accurate, in-house FDM, artificial 
compressibility numerical solver. This solver has been used extensively for image-
based hemodynamic modeling and incorporates a validated multi-grid artificial com-
pressibility numerical solver [8, 14, 15]. Flow was simulated on a high-resolution 
unstructured Cartesian immersed boundary grid composed of ~500,000 uniformly 
spaced nodes, with an average node spacing resolution of 0.02 mm, which was gener-
ated after immersing the surface model in a Cartesian grid of 498 x 126 x 156 cubical 
elements. Computations were performed using normalized spatial and temporal units.  
The temporal resolution was considered as 0.01 simulation time units i.e. ~O (10-4) 
sec. A second order interpolation scheme was employed in order to obtain inlet condi-
tions based on the input discrete cardiac cycle data. Mean pressure at the inlet was set 
to the mean of the given pressure waveforms. 

Data Sampling 
For the purpose of standardizing data collection a plane proximal to CoA and plane 
distal to CoA were defined as specified in Table 1. All results for pressure gradient 
across the CoA were reported at these planes and data was gathered for the 5th  
cardiac cycle, in order to ensure damping of initial transients. 

Table 1. Planes before and after CoA defined by a point and through through the plane 

 Origin Normal to plane 
Proximal plane (188.96, 40.18, 253.22) (0.98,-0.09,-0.19) 

Distal plane (261.97,23.56,277.10) (0.99,-0.03,-0.14) 

2.2 Mesh Sensitivity Analysis 

A fine mesh (Fig 1a, 1c) consisting of ~500,000 elements and a coarse mesh (Fig 1b) 
consisting of ~250,000 elements were considered for the mesh sensitivity study in 
case of FLUENT. Flow was simulated for these meshes as described in section 2.1. 
The differences in pressure values for the two meshes for stress case are presented in 
Table 2 and Fig 2. Minor changes were observed before and after the CoA as a result 
of increasing the mesh size in FLUENT. As the mesh was refined similar consistency 
was observed in the reported pressure gradients for the in-house solver. In case of 
COMSOL, a finer mesh was required to obtain accurate results as per mesh sensitivity 
convergence tests. A mesh containing ~600,000 and ~1,000,000 tetrahedral elements 
was considered for the final rest and stress case COMSOL simulations respectively. 
Even for such fine meshes, the pressure results did were only approaching conver-
gence but mesh refinement. Since the aim of this study was to compare pressure gra-
dients using three solvers for similar mesh sizes, the mesh wasn’t refined beyond this 
point. The FLUENT simulation results can be considered most accurate in this  
study since the pressure results converged appropriately as the final mesh density was 
approached. 
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Table 3. Maximum, minimum and mean pressure at inlet and Dao including pressure drop (dP) 
across proximal and distal plane in mmHg 

 Rest Stress 

FLUE
NT 

In-
house 

COMS
OL 

FLUE
NT 

In-
house 

COMS
OL 

 
 
Systole 

Inlet 83.92 83.92 83.92 123.35 123.35 123.35 
Proximal (P) 81.46 83.06 82.91 111.16 118.50 116.03 
Distal (D) 68.13 66.92 68.33 70.52 51.84 26.33 
DAo 59.83 61.80 65.00 34.20 28.10 3.892 
dP = P – D 13.34 16.15 14.58 40.64 66.66 89.7 

 
 
Diastol
e 

Inlet 49.68 49.68 49.68 36.77 36.77 36.77 
Proximal 49.67 50.07 49.68 36.87 37.00 36.68 
Distal 49.48 49.99 49.68 39.07 37.36 36.63 
DAo 49.38 49.78 49.69 39.38 37.46 36.59 
dP = P – D 0.19 0.08 0.00 -2.20 -0.36 0.05 

 
 
Mean 
flow 

Inlet 63.35 63.35 63.35 64.30 64.30 64.30 
Proximal 62.96 63.02 63.12 61.34 63.24 62.34 
Distal 60.12 60.94 59.66 46.70 47.53 38.29 
DAo 58.55 60.23 58.64 35.52 42.01 32.22 
dP = P – D 2.84 2.08 3.46 14.64 15.71 24.04 

In order to compare the nature of vortical structures in the DAo flow field between 
rest and stress conditions, helicity was computed as a flow derived parameter and 
rendered as isocontours (Fig 5a) for time-averaged inflow conditions. Helicity was 
computed as the normalized magnitude of the dot product between vorticity and ve-
locity vectors at each node in the computed flow field. Positive helicity (highlighted 
red) indicates right handed vortical structures and negative helicity (highlighted blue) 
indicates left handed vortical structures. It was observed that opposing vortical struc-
tures are created as the flow enters the coarctation in a very similar formation for both 
rest and stress conditions in case of mild CoA. This was distinct from the opposing 
vortical structures that are formed which naturally spiral helically in the DAo by vir-
tue of the curvature of the transverse aortic arch. However, the vortical structures 
distal to the modeled mild CoA were not as pronounced as seen for more severe CoA 
cases previously reported to demonstrate distinct downstream jet-flow effects[8].  

Similar max-normalized cross-sectional velocity flow profiles were observed for 
the rest and stress conditions at the studied proximal and distal planes (Fig 5b) at rest 
and stress conditions. A shift in flow streams toward the outer curvature of the aortic 
arch was observed for stress conditions (viz. higher flow rates), leading to an elon-
gated low-pressure pressure region distal to the CoA in contrast with the rest case  
(Fig 5b). Comparatively higher pressures were observed at the outer curvature of the 
aortic arch as seen on the proximal and distal plane (see Fig 4). 
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vascular wall-compliance requires to be considered accurately in order to yield physi-
ologically relevant results. Compliances applied at the outlets may not be enough for 
accurate pressure predictions and hence FSI must be adopted in future to take into 
consideration regional elasticity of arterial walls in a manner matched to wall motion 
observable from gated cine cardiac MRI studies. 
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Abstract. The here presented work is part of a CFD challenge investigating the 
potential for computational fluid dynamics (CFD) simulations to predicted pres-
sures and flows in an aortic coarctation during stress when conditions for the 
rest case are known. In our approach, we choose to couple a three element 
Windkessel model to the outlet boundary conditions. Good reproducibility of 
flow and pressures for the rest case were achieved. In the stress case, where on-
ly the inflow boundary condition was changed, baseline pressure was too high, 
indicating that the total resistance in the Windkessel models may need to be re-
duced. This would correspond to dilating the blood vessels as might be the  
result of a pharmacological stress test. Future work is needed to develop an op-
timization strategy to tune the Windkessel data for matching the clinical results. 

Keywords: computational fluid dynamics, aortic coarctation, Windkessel model. 

1 Introduction 

The work described in this manuscript is a contribution to a computational fluid dy-
namics (CFD) challenge investigating hemodynamics at rest and stress through an 
aortic coarctation [1]. As was stated on the website for the challenge 
(http://www.vascularmodel.org/miccai2013/), narrowing of the aorta (coarctation, 
CoA) accounts for approximately 10 % of congenital heart defects in the western 
world. A consequence of the reduction in luminal cross section is the existence of 
high pressure gradients which lead to an increase in the cardiac workload. In addition 
to the degree of luminal narrowing, also the flow rate will influence the value of the 
pressure gradient. Hemodynamics, in particular the 4D velocity field (3D plus time), 
can be assessed non-invasively by medical imaging techniques such as phase contrast 
magnetic resonance imaging [2]. Due to the reduction in the luminal diameter,  
flow changes during stress may result in a several-fold increase compared to rest.  
To replicate physiological stress condition during exercise, a pharmacological stress-
test is sometimes performed, which are not ideal for the patient as often unwanted 
side-effects such as palpitations, chest pain, shortness of breath, headache nausea or 
fatigue may occur. 
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An alternative or complementary approach may be therefore to assess changes in 
the pressure gradient during stress using computational simulations utilizing patient-
specific information (flow rates and geometries). In this approach, the simulation is 
first performed at rest to ensure that the corresponding (measured) pressure gradient is 
reproduced. Through adequate modification of the boundary conditions for stress 
conditions, the pressure gradient during stress is then estimated from these modified 
simulations. In this approach, it has not yet been established, how to 'adequately'  
modify the boundary conditions for the stress case. A wide variety of simulation  
techniques utilizing different concepts of boundary conditions exist, which have yet 
not thoroughly assessed towards their applicability for the here described medical 
problem. In our approach, we coupled an implicit unsteady model to a three element 
Windkessel model (RCR) for a more accurate treatment of the outlet boundary  
conditions. 

2 Materials and Methods 

2.1 Geometry 

The geometry of the aorta was provided by the organizers of the CFD challenge in the 
form of a stereolithographic (STL) file containing a 2D surface mesh (138,532 faces 
and 69,268 vertices). This geometry was originally extracted from a 3D contrast-
enhanced magnetic resonance angiography (MRA) dataset (contrast agent Dotarem). 
The geometry included aortic inflow (INLET 1), supra-aortic vessel outflow 
(OUTLET 2 - 4) and descending aorta outflow (OUTLET 1). This STL file was im-
ported into STAR-CCM+ 8.04. The outlet lengths of the great arteries were extruded 
to stabilize the solution and ensure the boundary conditions (BCs) were not being 
applied too close to the bifurcation from the aorta. The definition of outlet 2 in the 
STL file supplied was not planar As such the boundary was modified to fix this issue 
before extruding. 

2.2 Computational Mesh 

The final computational mesh constructed based on the provided STL file contained 
2, 946, 175 polyhedral elements with 5 prism layers in the near wall region. A local 
refinement was used in the region of the co-arctation to improve the resolution of the 
flow structures as the blood accelerates through the constriction (figure 1). 

2.3 Solver and Physics 

The simulation was run in STAR-CCM+ 8.04. An implicit unsteady model using a 
segregated approach was used to solve the time-accurate Navier-Stokes equations.  
A second order backward Euler scheme was used to advance through time. Second 
order upwind schemes were used for convection. Time-step size was 0.001 seconds, 
fluid density was 1000 kg/m3 and fluid viscosity was 0.004 Pa. 
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Vessel wall was assumed rigid to be rigid which may be responsible for the over 
estimation of the pressure during systole. Including vessel compliance in the simula-
tions would improve the correlation to clinical results. This effect may even be 
stronger in the Stress case where the compliance would have a larger damping effect 
on the peak pressure.  

In general, CFD simulations of blood flow in vascular pathologies may be a viable 
alternative or can supply supplementary information to measurements provided the 
simulation results have been sufficiently validated and verified.  Considerable work 
has been performed by many groups to qualitatively and quantitatively obtain insight 
in hemodynamics by simulations in a variety of patient-derived models: Pioneered 
early on [4-6], CFD simulations have recently been the focus of much attention in 
cerebral aneurysms [7-11] and abdominal aortic aneurysms [12-14] for assessing 
rupture risk. Usually, the workflow for such a simulation follows the following for-
mat: A suitable three-dimensional (3D) image set is obtained either from a medical 
image data using either computed tomographic angiography or MRI angiography. 
Both techniques display the aortic lumen hyperintense relative to the surrounding 
parenchyma. A surface model of the entire aorta is then created by applying image 
segmentation techniques. In addition to the technical challenge, this segmentation also 
includes judgment by the user which regions in the model are pertinent for obtaining 
accurate results and which can be safely omitted making this part of the workflow the 
most critical step. Commercial CFD software is capable of importing the surface 
model and from it, creating a computational mesh on which the governing partial 
differential equations, usually the Navier-Stokes equations, are solved. Recent post-
processing efforts have included converting the simulation results into image possibly 
to integrate the additional information from the simulations back into the clinical 
workflow [15]. Inflow and outflow boundary conditions are either taken from the 
literature or are individually measured in each patient.  

Validation of the computational solutions is an essential step which should be per-
formed for every different pathology. Without it, CFD will not gain broad acceptance 
in clinical research. Validation of computational results have been reported for cere-
bral aneurysms [16] [17] emphasizing the need for patient-derived geometries and 
inflow boundary conditions to arrive at realistic results. After validation has been 
performed, large-scale simulations may be performed towards their clinical efficacy 
for predicting disease progression and outcome. In this context, the CFD challenge 
posed here serves two purposes: First, it evaluates CFD for predicting clinical mea-
surements (pressures and flow) based on given boundary conditions. Second, it also 
addresses variability of simulation results with different CFD software packages 
which is another important issue: Even is consistent and validated results are obtained 
with one solver code, there may still be variability when using another solver. This 
CFD challenge will give a good overview over the art of CFD for reproducing and 
predicting clinical measurements and others have to follow until a consensus on tech-
niques and methodologies is achieved. 
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5 Conclusion  

Our approach utilizing a three-element Windkessel model for simulating hemodynam-
ics in the coarctation model of the CFD challenge resulted in good agreement between 
clinically measured pressures and flow at the descending aorta at rest but lacked 
agreement in the stress case. The reason for the discrepancies in the latter originated 
from suboptimal parameters of the Windkessel model not taking into account dilata-
tion effects of the vessels. These effects are difficult to measure and consequently the 
adjustment of the boundary conditions is not trivial. Our findings show the potential 
but also current limitation of CFD. Future work is need to develop an approach where 
changes in boundary conditions caused by physiological effects can be predicated an 
integrated into the simulations. 
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Abstract. The 2nd CFD Challenge Predicting Patient-Specific Hemo-
dynamics at Rest and Stress through an Aortic Coarctation provides
patient-specific flow and pressure data. In this work, a multiscale 0D-
3D strategy is tested to match the given data. The 3D outlet boundary
conditions for the supra-aortic vessels are represented by three-element
Windkessel models. In order to estimate the Windkessel parameters at
these outlets, a 0D lumped parameter model for the full aorta is consid-
ered. The parameters in such a 0D model are estimated by a sequential
estimation method, the unscented Kalman filter. The filtering approach
estimates the parameters such that the results of the 0D model closely
match the measured data: flow waveforms in the ascending and diaphrag-
matic aorta, mean flow rates in the supra-aortic vessels, and the pressure
waveform in the ascending aorta. Information from the 3D model is taken
into account in the full 0D model. This process is repeated for the two
separate cases of rest and stress conditions to estimate separate sets of
parameters for the two physiological states. Results such as the pressure
gradient across the coarctation, comparison with target values and more
detailed time or spatial variations are presented. Modelling choices and
assumptions about how the data are interpreted are then discussed.

1 Introduction

In the ‘The 2nd CFD Challenge Predicting Patient-Specific Hemodynamics at
Rest and Stress through an Aortic Coarctation’, the aim is to predict the pres-
sure loss across a restrictive geometry, namely a coarctation of the aorta, at rest
and under stress, based on specific flow and pressure data measured for that
patient. This raises several modelling and numerical issues that have driven new
developments in the last decade. The geometry (assumed rigid) of this case con-
sists of a patient aorta, with given inlet (aortic arch) and outlet (diaphragmatic
aorta) flow waveforms over one cardiac cycle, and three supra-aortic vessels for
which only the average flow is given. The inlet pressure waveform over one cy-
cle is in addition given (systolic, diastolic and average pressures required to be
matched), and the challenge requires that the inlet flow waveform is imposed.

O. Camara et al. (Eds.): STACOM 2013, LNCS 8330, pp. 102–109, 2014.
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This set of data are incomplete to directly set the necessary boundary condi-
tions for a 3D Navier-Stokes simulation. Hence, the first step is to complement
this data by modelling assumptions. The easiest way from an implementation
and numerical point of view is to assume a constant distribution of flow rates
(matching the average given values) and velocity profiles, thus imposing veloc-
ities at each outlet nodes. However, these strong modelling assumptions may
not generate the measured inlet pressure, and tuning of this distribution is then
required. Besides, such a model has little predictive capabilities. In contrast,
imposing a relationship between pressure and flow at the outlets such as the
0D Windkessel model, has been advocated, leading to multiscale modelling. It
has the advantage of being more predictive (valid over a certain range of flow)
and less constraining on the boundary velocities. At a given time point, the dis-
tribution of flows among the branches depends on the chosen 0D model (here
Windkessel) parameters. Tuning of these parameters to match the given clin-
ical data is, however, also necessary. Several strategies have been devised to
achieve such goal. Manual tuning has been the first method used in practice,
often requiring 0D experience [1]. This can become rapidly intractable, espe-
cially if there are many branches, and more precise data to match than average
flow values. Automatic iterative approaches have thus been developed. In [2], a
quasi-Newton method was used to tune the Windkessel parameters of the 3D
model, to achieve a few pressure and flow waveform features. In [3], a fixed point
algorithm was used to match given average regional flow rates (right and left
lungs) and a measured pressure gradient (between the 3D inlet and the distal
pressure of the outlet 0D models) on geometries involving dozens of branches.
In [4], an adjoint-based method in a 3D bifurcating aneurysm lead to the estima-
tion of Windkessel parameters to match systolic, diastolic and average pressure
differences. In [6], wall displacement values were used to estimate the stiffness of
the 3D fluid-solid interaction idealized aneurysm model and its outlet proximal
resistance, based on a sequential estimation approach. Recently, [7] proposed
two approaches, deterministic and Bayesian, for two inverse problems in hemo-
dynamics: first, to identify arterial wall parameters by pressure measurements in
a steady fluid structure interaction (FSI) problem; and second, for robust design
optimisation of bypass grafts. Here we propose a different strategy to tune the
0D parameters of the 3D model, based on the filtering approach used in [6], but
on a full representative 0D model. This has all the advantages of a sequential
estimation approach, and in addition involves a fast-to-compute model that can
be run over enough cycles to match given targets, while being enriched by a few
3D simulations.

2 Methods

2.1 Windkessel Parameter Estimation with a 0D Model

As will be seen in the next section, the outlet boundary conditions for the supra-
aortic vessels in the 3D simulations are represented by three-element Wind-
kessels. For Windkessel parameter estimation, a lumped parameter model of the
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3D geometry is considered. Such a 0D model is shown in Figure 1: the 0D ab-
straction of the 3D domain is represented in black and the Windkesssel boundary
conditions are represented in orange. Each segment of the aorta in the 3D do-
main is represented by a resistor and inductor, placed in series, to model the
viscous and inertial effects, respectively. As will become clear in what follows,
the authors believe that the FSI effects in the aorta play a significant role in de-
termining the inlet pressure. Consequently, to model the FSI effects in a lumped
manner, a capacitance (Cfsi) before the inlet is added.

In Figure 1 the variables y0 – y15 (in blue) and pv (venous pressure) represent
pressures, and the variables y16 – y25 (in red) and yc represent flow-rates. This
electrical analog can be represented by a set of differential-algebraic equations,
which can be solved in time, given the boundary conditions: qin, qout, and pv = 0.
Initially, the value of the 0D parameters to represent the 3D domain, i.e. the
parameters RAA, LAA, RIN, LIN, RLC, LLC, RLS, LLS, RCoA, LCoA, RDA, and
LDA are determined by the average geometric lengths and radii of the respective
branches (c.f. [5] for the analytical expressions).

It should be noted that the authors did not initially include the inlet capac-
itance, Cfsi, but rather the results before its inclusion necessitated its presence.
Without the inclusion of Cfsi, for the rest case, physiologically reasonable results
were obtained in the the 3D simulations. However, the maximum errors between
the 3D results and the quantities required to be matched were still around 20%.
Moreover, for the stress case, the 0D model (without Cfsi) was unable to closely
match the data provided, and the CFD simulations (with best found values
of Windkessel parameters) showed abnormally high pressures in the ascending
aorta. With these results the authors hypothesized that, perhaps, the reason for
such an anomaly, particularly in the stress case, is due to the absence of FSI
in the 3D model. This line of argument seems reasonable as it is required to
match real measured data (with considerable movement of the arterial walls in
general) with rigid wall assumptions in the CFD simulations. This presents a
contradiction if FSI is non-negligible. Hence, to circumvent this difficulty, and
yet not to break the rules of the challenge, the authors choose to model the FSI
in a lumped manner by including a capacitance before the inlet of the 3D do-
main and keeping the 3D domain walls rigid as before. In what follows next, the
parameter estimation methodology, which is primarily the same with or without
Cfsi, except due to differences in the 0D model, is described.

A sequential estimation method, namely the unscented Kalman filter (UKF)
[9–11], is employed for parameter estimation. In particular the library Ver-
dandi [12] is used to implement the UKF. Owing to paucity of space, we refer
for example to [6] for the details of such a method for parameter estimation
in hemodynamic systems. The filtering approach estimates the parameters such
that the results of the 0D model closely match the measured data in the pa-
tient. The pressure in the ascending aorta (y0) and flow rates in the supra-aortic
branches (y17, y20, and y23) are prescribed as observations to the UKF (see [6] for
the concept of state and observations) to estimate parameters. Since the UKF
needs complete flow profiles for the supra-aortic branches, and only the mean



A Multiscale Filtering-Based Parameter Estimation Method 105

Table 1. Parameter estimates from the UKF procedure (all units in CGS)

Outlet Segment/ Rest Stress
boundary Parameter Rp C Rd Rp C Rd

Dirichlet outlet

Innominate 459.1 1.87E-04 7364.4 193.3 6.39E-04 1069
Left carotid 87.0 8.75E-05 14271.1 308.7 1.91E-04 5386.2
Left subclavian 584.4 1.05E-04 12628.4 512.2 2.72E-04 2498.9
Cfsi 4.41E-04 2.31E-04
tshift 0.083 s 0.002 s

RCR outlet

Innominate 877.2 2.67E-04 7249.4 405.3 1.26E-03 852.3
Left carotid 868.18 1.35E-04 14754.9 988.2 3.84E-04 4656.23
Left subclavian 1443.7 1.59E-04 12858.5 885.1 7.03E-04 2015.7
Descending aorta 177.3 5.9E-04 1851.1 70.9 2.44E-04 468.44
Cfsi 6.2E-04 3.49E-04
tshift 0.116 s 0.02 s

flow rates are measured, the flow difference between the inlet and the outlet
is split according to measured mean-flow splits at each time to generate time-
dependent flow-curves in these branches. It is noted that the provided ascending
aorta pressure leads (in time) the ascending aorta flow. In reality, this relation-
ship is usually the opposite, i.e. the flow leads the pressure. Since the pressure
and flow measurements were not taken simultaneously, it is imperative that the
time-difference between the provided pressure and flow curves be accounted for.
Hence, a parameter, tshift, which reflects the time difference between measured
flow and pressure curves is added to the estimation procedure. Once an estimate
on the Windkessel parameters is obtained, a 3D CFD simulation (for details see
next section) is run. From the results of this CFD simulation, the values of the
0D model parameters that represent the abstracted 3D domain are updated.
In particular, a regression analysis is performed between the pressure drop in
each segment versus the flow and flow-derivative through that segment to obtain
revised estimates for the 0D resistance and inductance. With the updated 0D
model, UKF estimation is performed again. This process is repeated until an
acceptable match is found between the measured quantities and CFD results or
the 0D parameters stop changing.

2.2 The 3-D Model

Blood is considered to be an incompressible Newtonian fluid modelled by the
incompressible Navier-Stokes equations (solved using the finite element library
FELiSce). The following boundary conditions are imposed:

Inlet boundary condition. As discussed in the previous section a lumped FSI
capacitance is introduced before the inlet. The resulting pressure-flow relation,
i.e. Pn+1 = Pn + dt

Cfsi

(
qin − qn+1

)
, where qin is the inlet flow, is imposed at the

inlet.
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Fig. 1. The 0D model used: IN represents the innominate artery; LC represents the left
carotid artery; LS represents the left subclavian artery; AA represents the ascending
aorta; DA represents the descending aorta; CoA represents the aortic coarctation

The supra-aortic arteries. For the three upper arteries, explicit RCR Windkessel
models are imposed. These boundary conditions are non homogeneous Neumann
boundary conditions where the enforced pressure P is given by the following

relations: Pn+1 = Rpq
n + Pn+1

c , Pn+1
c = Pn

c

(
1− dt

RdC

)
+ qn dt

C .

Outlet boundary condition. For the descending aorta outlet, two boundary con-
ditions are considered:

(a) Dirichlet outlet : In this case, an auxiliary steady Stokes equation, with
natural boundary conditions at the inlet and outlets, is solved first. The result-
ing outlet velocity profile is scaled at each time to match the measured flow-rate,
and is imposed at the outlet.

(b) RCR outlet : In this case an RCR Windkessel is imposed. It should be
noted the Windkessel parameters are estimated as described in the previous sec-
tion with the modified 0D model to include the Windkessel model at the outlet.

2.3 Mesh Generation

The 3-D mesh is generated from the surface mesh with the software ghs3d. The
problems with the surface mesh are fixed, and subsequently a mesh-adapting
code, Feflo [8], is run to both adapt and coarsen the mesh. The resulting 3-
D mesh has 293016 tetrahedra. Feflo can adapt a 3-D mesh with respect to a
velocity field. Mesh adaptation based on the velocity field in systole leads to a
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375149 tetrahedra mesh for the rest case. For the stress case, a first 1138100
tetrahedra adapted mesh is obtained, followed by a second one with 291829
elements. Negligible differences between the solutions for these two meshes were
found and thus computations were done on the coarser mesh.

3 Results and Discussion

As described in section 2.1 there are 11 and 14 parameters to be estimated
for the two boundary conditions of ‘Dirichlet outlet’ and ‘RCR outlet’ at the
descending aorta, respectively. The final estimated values of these parameters
are tabulated in Table 1. For the two cases of rest and stress, three and seven
iterations between the 0D and 3D models are needed, respectively, to achieve
less than 10% errors between the 3D results and the measurements. Since a
0D model is used for parameter estimation, the time taken for one UKF run is
negligible compared to the time taken for a full 3D simulation.

Figure 2 shows the pressures at the proximal and distal planes for both the two
outlet boundary conditions. It is noticed that for the ‘Dirichlet outlet’ boundary
condition, the pressure in the descending aorta shows oscillatory behaviour. This
could be a result of the Dirichlet boundary condition being too constraining on
the solution. The oscillations disappear when a Windkessel model is used at the
outlet. For this latter boundary condition, the results of the 3D simulations and

Table 2. 3D results (for the ‘RCR outlet’ boundary condition) and comparison with
targets: Flow rates are in L/min; Pressures are in mmHg; CoA represents the coarcta-
tion, fs represents flow split as percentage of the inlet flow, P represents pressure, and
ΔP represents pressure drop

Quantity REST STRESS

3D result Target Error % err. 3D result Target Error % error

Flow Innominate 0.624 0.624 0.000 0.00% 3.655 3.3550 0.300 8.94%

Flow Left-carotid 0.31 0.312 0.002 0.64% 0.748 0.6875 0.0605 8.80%

Flow Left-subclavian 0.358 0.364 0.006 1.65% 1.569 1.4575 0.1115 7.65%

Flow Desc. Aorta 2.417 2.410 0.007 0.29% 7.552 8.0300 0.4780 5.95%

fs Innominate 16.8% 16.8% 0.0% - 27.0% 24.8% 2.2% -

fs Left-carotid 8.4% 8.4% 0.0% - 5.5% 5.1% 0.4% -

fs Left-subclavian 9.7% 9.8% 0.1% - 11.6% 10.8% 0.8% -

fs Desc. Aorta 65.2% 65.0% 0.2% - 55.8% 59.3% 3.5% -

Pmax Proximal plane 85.08 83.92 1.16 1.38% 112.58 123.35 10.77 8.73%

Pmin Proximal plane 48.43 49.68 1.25 2.52% 34.81 36.77 1.96 5.33%

Pmean Proximal plane 63.84 63.35 0.49 0.77% 66.73 64.30 2.43 3.78%

Pmax Distal plane 78.64 - - - 77.11 - - -

Pmin Distal plane 48.43 - - - 30.35 - - -

Pmean Distal plane 61.84 - - - 54.08 - - -

ΔPmax CoA 11.8 - - - 41.34 - - -

ΔPmean CoA 2.00 - - - 12.65 - - -
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Fig. 2. Pressure results for the rest and stress cases; left: ‘Dirichlet outlet’ and
right:‘RCR outlet’ boundary conditions

their comparison with the target (experimentally measured) values are shown in
Table 2.

From Table 2 it can be noted that the errors between CFD results and exper-
imentally measured quantities are less than 3% and 9% for the rest and stress
cases, respectively. The higher errors for the stress case can be attributed to the
fact that modelling of FSI in a lumped manner is relatively more difficult com-
pared to the rest case as the flow gradients are significantly higher. It should also
be noted that the current strategy for parameter estimation not only matches
the systolic, diastolic, and mean pressures but also the full pressure profile of the
measurements. Moreover, it is encouraging that for the rest case the estimated
time shift, tshift, corrects the possible anomaly of pressure leading the flow in
the data provided for the challenge.

For the coarctation, mean and maximum pressure drops of 2.0 and 11.8 mmHg
are reported for the rest case. Similarly, for the stress case, mean and maximum
pressure drops of 12.65 and 41.34 mmHg are reported, respectively.

4 Conclusion

A complete framework, involving coupling of 0D and 3D models, for both pa-
rameter estimation and consequent 3D simulations is presented. The efficacy of
such a method is demonstrated for the present case of patient-specific coarcta-
tion. The results for both the physiological states of rest and stress are shown to
be in good agreement with the measured data: less than 3% and 9% errors for
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all measured quantities in the rest and stress cases, respectively. It is also found
that a Dirichlet boundary condition at the outlet is significantly constraining
on the solution and can result in pressure oscillations. In this sense, the use of
Windkessel boundary conditions is reported to yield significantly better results.
The proposed strategy of parameter estimation is also shown to be effective in
dealing with some uncertainty in measurements, for example the time-difference
between pressure and flow curves, if they are not measured simultaneously.
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Abstract. This paper presents a numerical simulation of the flow characteristics 
through a patient-specific model of an aortic coarctation. The purpose of the 
study was to predict the pressure gradient at rest and at exercise conditions. The 
commercial package ADINA was used to numerically solve the governing 
equations using finite-elements methods. The model was based on the patient's 
MR angiography data. The boundary conditions imposed in the model included 
the flow and pressure waveforms acquired at the ascending aorta inlet and flow 
at the descending aorta outlet. Imposed flow waveforms at the supra-aortic 
vessels were estimated from the time-dependent difference between the 
ascending and descending aorta waveforms, and the flow distribution was 
dictated according to the total flow rates at each branch. The simulations 
considered two cases of rest and stress flow conditions. The time-dependent 
pressure in the proximal and distal planes and pressure gradients along the aorta 
are reported for rest and stress conditions. 

1 Introduction 

Coarctation of the aorta (CoA) is a constriction of the aorta. It is one of the most 
common diagnoses in congenital cardiac defects with prevalence variation from 5% to 
11% of all congenital heart defects. It is characterized by significant systolic pressure 
gradient (> 20 mm Hg), resulting in an increased cardiac workload[1]. Pressure 
gradients increase mainly during stress conditions. CoA was traditionally treated by 
surgery, however it is increasingly replaced by catheter techniques such as balloon 
angioplasty in children and stents in adolescents and adults[2, 3].  

Patient specific numerical simulations can assist in diagnosis and management of 
CoA by predicting the flow and pressure dynamics and the effect of the specific 
pathological anatomy on the patient's blood pressure [3, 4]. However, different 
numerical approaches might lead to different pressure predictions.  

Therefore, in the scope of the MICCAI 2013 CFD challenge, multiple groups 
investigate the same case in order to analyze and compare different numerical 
approaches and to find the effect of method concept on the calculated patient-specific 
hemodynamics. The defined model is of a mild thoracic aortic coarctation of a 17 year 
old male. The purpose of the challenge is to compare different numerical approaches 
for the simulation of blood pressure gradients along a given aorta model and 
prescribed physiological conditions measured at rest and under exercise. In the 
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present manuscript, a computational fluid dynamics (CFD) simulation of the CoA 
hemodynamics is presented using the finite-element commercial software ADINA 
(ADINA R&D, Inc., MA).  

2 The Numerical Model 

The 3D patient-specific geometry (shown in Figure 1a) was based on data acquired 
using Gadolinium-enhanced MR angiography (MRA). The data segmentation was 
provided to the challenge in STereo Lithography (STL) file format, describing only 
the surface geometry of the 3D geometry.  

The boundary representation file was imported into ADINA-M using the ADINA 
discrete boundary representation (BREP) feature and the body was adapted to the 
specified mesh. The resulted geometric mesh included the lumen of the ascending 
aorta (AscAo), the aortic arch, the coarctation, the descending aorta (DAo), and the 
three large branches: the innominate artery (Inn), the left common carotid (LCC) 
artery, and the left subclavian (LS) artery (see Figure 1b). The average diameter of 
each inlet and outlet in the model are listed in Table 1. 

The boundary conditions included time-dependent proximal flowrate and pressure 
and distal flowrate waveforms, for rest and stress conditions. In addition, flow 
division between the three large branches was provided for the two cases, as listed in 
Table 1. From that data, time-dependent velocities were extracted for each outlet (see 
Figure 2).  Velocity boundary conditions were imposed at the AscAo inlet and at the 
DAo, LCC and LS outlets.   

Since the model assumes rigid walls, and the objective of the challenge is the 
pressure gradient, no pressure boundary conditions were specified. Time dependent 
pressure and flowrate values were extracted at the specified proximal and distal 
planes shown in Figure 3.  

Each model was composed of 3,920,681 tetrahedral elements with refinements 
near the boundaries and at the supra-aortic vessels (see Figure 1b and c). For both 
cases, time steps of 0.01 sec were used to solve the time-dependent flow field along 
the cardiac cycle.  

The flow and pressure fields in the lumen were calculated by numerically solving 
the equations governing momentum and continuity in the fluid domain: 

   (1) 

where p is static pressure, t is time, V is velocity vector, ρ and μ  are density and the 
dynamic viscosity of blood, and g is vector of gravity. Blood was assumed 
homogenous, incompressible (with density ρ = 0.001g/mm3), and Newtonian (with 
viscosity μ = 0.004 g/mm/s). The flow was assumed laminar. No gravity was 
employed. 
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Fig. 1. The 3D patient-specif
conditions (b) and a magnified

Table 1. M

d  [mm] 

Total Flow at REST  [L/m

% flow at REST 
Total Flow at STR
[L/min] 

% flow at STRESS 
 
 

Fig. 2. Prescribed time-depen
conditions 

fic geometry (a), the numerical model with velocity bound
d view on the mesh near the upper vessels (c) 

Model data - Geometry dimensions and flowrate 

AscAo Innominate LCC LS DiaphA

21.39 7.81 3.61 5.98 12.84

min] 3.71 0.624 0.312 0.364 2.41

100% 17% 8% 10% 65%
RESS 

13.53 3.355 0.6875 1.4575 8.03

100% 25% 5% 11% 59%

ndent velocity boundary-conditions for rest (a) and stress 

 

dary 

Ao 

4 

 

% 

 

% 

 

(b) 



 A Finite Element CFD Si

Fig. 3. Specified proximal an
acquired 

For the simulations, a D
computational time for the
respectively.   

3 Results 

Examples of the calculated 
diastole in Figure 4. Avera
distal and proximal planes
difference between them (s
average flowrate are detaile

In addition, time depend
and compared with the s
resulted average flowrate w
listed in Table 1 for both ca

%
pQ

err =

where Qcalculated(t) is the fl
average flowrate and errors

mulation for Predicting Patient-Specific Hemodynamics 

 

nd distal planes at which the pressure and flowrate results w

Dell PowerEdge R710 server was used with 16 cores. T
e REST and STRESS simulations were 22 and 18 hou

pressure gradient for both cases are shown for systole 
age pressure values are listed as a function of time at 
s and the time-dependent gradient was calculated as 
see Figure 5). Mean and maximum pressure gradients 
ed in Table 2 .  
dent flowrate at the proximal and distal planes were lis
pecified measured flowrate waveforms (Figure 6). T

was compared with the prescribed total flowrate (Qprescr

ases. The error (%err) was calculated using: 

( )
%100*

prescribed

calculated

prescribed

Q
T

dttQ−
   

lowrate at each time step and T is the time period. T
 are listed in Table 3.   

113 

were 

The 
urs, 

and 
the 
the 
and 

sted 
The 

ribed) 

(1) 

The 



114 I. Avrahami 
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4 Discussion 

The results from the 3D simulations for rest and stress conditions reveal the high blood 
pressure gradient in the thoracic aorta due to the coarctation. In both cases there is a 
significant pressure gradient across the coarctation at peak systole of 39 mmHg under 
rest and 112.5 mmHg under stress conditions, respectively. The corresponding results 
for mean pressure gradient are 5.7 mmHg and 27.9 mmHg for rest and stress cases, 
respectively. In previously reported studies of moderate CoA by LaDisa et al.[3], 
maximal values of pressure gradients reached 22 mmHg and 73 mmHg at rest and 
exercise conditions, respectively. The mean values reported are 7 mmHg and 31 
mmHg, which are a little higher than the results of the present study.  

The extremely high values at peak systole of the exercise case are probably an 
overestimation of the real values. In order to make the simulation effort simpler and to 
reduce the variability in the result obtained by different groups, some major 
simplifications were defined for the challenge. Some of the more important 
simplifications are: the arterial wall was assumed to be rigid, blood was assumed 
Newtonian and the flow is assumed laminar. 

The assumption of Newtonian fluid should be reasonable in this case, because the 
shear rates in the aorta are generally greater than 100 s-1 [5]. However, the effect of 
wall motion can be critical. The effect of wall motion was discussed by previous 
studies [6] and it was suggested that the flow in the aorta is a result not only of aorta 
geometric curvatures, but also of the motion of the aorta resulting from its attachment 
to the beating heart. In addition, simulations of aortic hemodynamics with fluid-
structure interaction (FSI) approaches were found to predict better the pressure and 
wall shear stress in the aorta [7]. However, since the mechanical properties and 
thickness of the aortic wall are in doubt, simulations that include the passive wall 
motion due to its compliance are a great challenge. Therefore, this simplification was 
necessary to avoid a large difference between groups in the challenge.  

The assumption of laminar flow is even more problematic. In an aortic coarctation, 
the blood flow can undergo a transition from a well-structured laminar state to a 
chaotic turbulent state, as the narrowing causes the velocity to increase[8, 9]. This 
transition is a challenge to model. Recent investigations partially succeeded  to 
develop and use low-Reynolds turbulence models that showed good agreements 
between measurements and numerical results within accuracy of up to 10%.[9]. 
However these models required high computational resources (the simulations 
required 12 cardiac cycles and mesh sizes of 7 Million elements in order to ensure 
convergence). 

Since the purpose of the challenge was to compare between different numerical 
approaches, the results should be compared to the physiological data in respect to the 
above simplifications. 
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Abstract. Flow of a blood analog is modeled through a patient-specific
aortic coarctation using ANSYS Fluent software. Details of the patient
data (aortic geometry and prescribed flow conditions) were provided by
the MICCAI-STACOM CFD Challenge website. The objective is to pre-
dict a blood pressure difference across the rigid coarctation under both
rest and exercise (stress) conditions. The supplied STL geometry was
used to create coarse and fine viscous meshes of 250K and 4.6M cells. Our
CFD method employed laminar, Newtonian flow with a total pressure
inlet condition and special outlet BCs derived from reconstructed flow
waveforms. Analysis setup and outlet BCs were treated as a traditional
non-physiological CFD problem. CFD results demonstrate that the sup-
plied AscAo pressure waveform and flow distributions are well matched
by our simulations. A non-uniform pressure gradient field is predicted
across the coarctation with strong interactions with each supra-aortic
vessel branch.

Keywords: computational fluid dynamics, aortic arch flow.

1 Introduction

Physiology of an aorta involves a significant compliant volume change driven by
pressure/flow pulses generated by a beating left ventricle. The aorta acts as the
central pressurized arterial blood plenum that supplies all major organ systems in
the human circulation. CFD analysis of an isolated aorta is challenging because
both its dynamic shape and its interaction with the circulation must be realisti-
cally approximated. This study performs a highly simplified but physically valid
fluid dynamic simulation of an isolated rigid aorta. Directly using the BC data
supplied by the website (namely, time-varying pressure/flow profiles at the As-
cAo and flow profiles at the DescAo), a pressure field is predicted that identically
matches the AscAo and DescAo profiles subject to the basic constraint that the
three supra-aortic vessels account for the flow differences required to conserve
mass. This study intentionally neglects key features defining a physiologically
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realistic aorta, particularly, its time varying shape compliance and interaction
with fluid dynamically nonlinear vascular subsystems of the circulation. The ob-
jective is to generate baseline flow solutions of a simplified idealized aorta for
comparisons to physiological data and to other CFD solutions that involve more
complex modeling approaches.

2 CFD Model Setup

The commercial software package ANSYS Fluent v14.0 was used to perform the
simulations. Laminar flow was assumed for the flow throughout the entire cardiac
cycle. The working fluid was a Newtonian blood analog with constant density
of 1000 kg/m3 and viscosity of 0.004 kg/ms. The simulations used second-order
spatial discretization for the momentum equations, the second order interpo-
lation scheme for discretization of the pressure, and the SIMPLE scheme for
pressure-velocity coupling. Unsteady terms were discretized using a second-order
implicit scheme.

The time-accurate simulations were based on a repeating cardiac cycle using
400 uniform time steps per cycle. To ensure accuracy of the unsteady solution,
100 subiterations were used at each time step. For each case, unsteady calcula-
tions were performed for a time period of two cardiac cycles to ensure that a
periodic flow pattern was achieved. Solutions extracted from the second cardiac
cycle are reported and analyzed.

At the inlet and outlet boundary surfaces, unsteady flow conditions were in-
corporated into the FLUENT solver using user-defined function subroutines. The
prescribed ascending aortic pressure variation was applied via a spatially uni-
form, time-varying total pressure boundary condition derived from the supplied
waveforms of the ascending aortic pressure and flow rate. A temporally-varying,
spatially-uniform velocity boundary condition based on the provided waveform
was prescribed at the descending aortic outlet. Flow velocities were also specified
at the three supra-aortic vessels (Innominate, LCC, LS). These velocities were
based on the instantaneous net flow rate, i.e., the difference between the flow
rate entering the domain and the flow rate exiting the domain at the descending
aortic outlet. The net flow rate was partitioned among the three outlets to pre-
serve the ratios provided in Table 1. The ratio of flow through each supra-aortic
vessel was assumed to be a constant fraction of the total flow through all three
vessels. This approach ensures that the correct average flow rate is obtained
at each inlet/exit. No-slip conditions were applied at wall boundaries. All walls
were considered to be strictly rigid with no fluid-structure interaction.

Volumetric flow rates and spatially-averaged static pressures at each bound-
ary were recorded at every time step to characterize the unsteady flow. In or-
der to evaluate the coarctation pressure gradients consistently with the invasive
pressure wire measurements, pressures in the proximal and distal planes at the
required locations were recorded at each time step as well.
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Table 1. CFD-predicted total flow rates (L/min) through outlets

Outlet Rest Condition Stress Condition

Supplied CFD Supplied CFD

Fine Mesh Coarse Mesh Fine Mesh Coarse Mesh

AscAo 3.71 3.73 3.70 15.53 13.64 13.54
Innominate 0.624 0.630 0.625 3.355 3.384 3.358
LCC 0.312 0.306 0.294 0.6875 0.6989 0.6716
LS 0.364 0.372 0.368 1.4575 1.4950 1.4775
DiaphAo 2.41 2.42 2.41 8.03 8.06 8.04

3 Mesh Refinement

A mesh refinement study was performed by comparing results computed on
a coarse mesh (250k cells) and a fine mesh (4.57M cells). Both meshes were
tetrahedral-dominant with five layers of prismatic boundary layer cells. Simula-
tions were conducted using both meshes under the stress condition. Comparing
the time-resolved spatial-average pressure at each boundary surface, slight differ-
ences are observed only in the descending pressure data at the descending outlet
(Fig. 1(a)). Based on these results the fine mesh was judged to be sufficient for
analysis of results.

4 CFD Results

The unsteady simulations were conducted for two physiologic states of a patient,
in rest condition and in stress condition. The heart rate is 47 beats per minute
under rest condition, and 141 beats per minute under stress condition. The
corresponding cardiac cycle is 1.277 seconds for rest condition, and 0.45 seconds
for stress condition.

4.1 Rest Condition

For the rest condition, unsteady simulations were performed for a time period
of two cardiac cycles (cardiac cycle 1.277 sec, total flow time 2.554 sec) using
total 800 time steps with a uniform step size of 3.1925e-3 sec.

Fig. 1(b) shows that the static pressure obtained at the ascending boundary
in the CFD simulations and the supplied ascending aortic pressure are in good
agreement, which indicates that the total pressure specified at the inlet face
matches the given inlet condition. The unsteady flow rate at the ascending inlet
should automatically match the supplied ascending aortic flow waveforms when
all the outlet boundary flow rates are specified based on the given flow conditions.
Fig. 1(c) depicts the time history of predicated pressure gradients responding to
the flow waveforms. Solutions of pressure and velocity fields were extracted at
the instant of peak flow (0.19 sec) as shown in Figs. 2, 3 and 4.
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(a) (b)

(c) (d)

Fig. 1. (a) Static pressure at descending outlet shows only slight differences between
coarse and fine mesh. (b) Static pressure at ascending inlet under rest condition. (c)
Pressure gradient and flow waveforms under rest condition. (d) Pressure gradient and
flow waveforms under stress condition.

The aorta wall pressure shown in (Fig. 2) indicates that the pressure distribu-
tion in the supra-aortic vessels are related to their size. The left carotid artery
(LCC) is the narrowest branch with lower flow rate and lower pressure. A cut-
ting plane shown in Fig. 3 details the pressure change in the aorta interior. The
higher ascending pressure pumps blood into the supra-aortic vessels. As the flow
of blood is turning at the arch of aorta, pressure drops quickly until it enters the
descending aorta, thereafter flow pressure is gradually decreasing to reach the
lowest value at the descending outlet.

Contours of flow velocity magnitude in Fig. 4 reveal two regions of flow sep-
aration. The arch of the aorta induced large flow separations due to the sudden
change of flow direction. Another thin layer of separation is observed on the
wall of the descending aorta. The coarctation (i.e. narrowing or pinching) in
the aorta of this patient, between the aortic arch and descending aorta, forms a
shape similar to a converging-diverging nozzle. The diverging wall produces ad-
verse pressure gradients on the boundary layer, and encourages flow separation,
which helps to explain the separations that occur on the diverging section of the
aorta wall.
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Fig. 2. Aorta wall pressure at the instant of peak ascending flow at rest (left) and
stress (right) condition

Fig. 3. Pressure in aorta cutting plane at the instant of peak ascending flow at rest
(left) and stress (right) condition
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Fig. 4. Velocity magnitude in aorta cutting plane at the instant of peak ascending flow
at rest (left) and stress (right) condition

4.2 Stress Condition

For the stress condition, unsteady simulations were also performed for a time
period of two cardiac cycles (cardiac cycle 0.425 sec, total flow time 0.85 sec)
using a total of 800 time steps with a uniform time step of 1.0625e-3 sec. The
predicted pressure gradient corresponding to the supplied flow rate is presented
in Fig. 1(d).

For the stress condition, all of the outlet branches experienced large pressure
drops at peak flow (Fig. 2) indicating higher cardiac workload on all the supra-
aortic vessels.

For the stress condition, the lowest pressure appears at the aortic arch, rather
than the descending outlet as in the rest condition case (compared in Figs. 2
and 3). Flow separations also occur in the region around the arch and on the
diverging wall downstream the site of the coarctation in the descending aorta
(Fig. 4). However, due to the higher flow velocity under stress condition, the
separated boundary layer grows along one side of the descending aorta wall.
On the other side of the wall, flow retains higher velocity and no separation is
observed.

Tables 1 and 2 summarize the average values of flow rates and pressures
over one cardiac cycle. Throughout the cardiac cycle, the flow splitting ratios
among the three supra-aortic vessels were assumed constant and estimated by
the supplied average flow rates through each upper branch. Considering the fact
that this simple boundary condition of constant flow ratio is not physiologically
accurate, the effect of flow splits on the coarctation pressure gradients was further
investigated.
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Table 2. CFD-predicted pressure gradients (mmHg): dp = PProximal − PDistal

Rest Stress

Min. Max. Mean Min. Max. Mean

PProximal Fine mesh 49 81 63 29 111 60
PDistal Fine mesh 48 73 60 -38 89 47

dp Fine mesh -7 21 2.8 -12 90 14

measured (released at STACOM13) 6.50 1.23 45.74 14.65

dp flow split test cases on coarse mesh
Inno 25%,LCC 5%, LS 11% of AscAo -12 96 15
evenly split -12 115 17
through LCC only -12 138 13

(a) (b)

Fig. 5. (a) Pressure gradient variation with different supra-aortic flow splits. (b) Pres-
sure (mmHg) at proximal and distal locations.

4.3 Effect of Flow Splits on Pressure Prediction

At any given instant of time, specific flow splits into the innominate, left carotid,
and left subclavian arteries remain unknown. It should be noted that, other than
non-uniformity of flow variables at inlets and outlets, this was the only remaining
degree of freedom provided by the problem constraints. Since pressure gradients
are highly dependent on the supra-aortic flow rates, the effects of different supra-
aortic flow splits on predicted pressure gradients in the aorta were investigated.
To this end, two additional simulations were performed for the stress condition
on the coarse mesh, namely, a condition that assumed supra-aortic flow evenly
split among the three upper branches; and a condition that arbitrarily assumed
all supra-aortic flow is shunted only through the left carotid artery with the
other two branches 100% blocked.

Fig. 5 shows the predicted pressure gradients corresponding to the supplied
flow waveforms with different supra-aortic flow splits. The proximal plane is
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located upstream of the upper branches and close to the ascending inlet where
the supplied pressure waveform is imposed. Hence, the predicted pressure at
the proximal plane is little affected by the flow splitting at the upper branches.
However, for distal locations at the arch and beyond, the effects of the different
flow splitting ratios are stronger as evidenced by the larger pressure differences
during the instances of peak flow. At lower flow rates, the splitting influences are
limited. Overall, the influence of flow splitting on pressure gradients over time
is moderate as indicated by the small differences in time-averaged mean values
summarized in Table 2.

5 Conclusions

Unsteady flow simulations of a patient-specific aortic coarctation were conducted
based on the supplied flow conditions using ANSYS Fluent software. For sim-
plification purposes, laminar Newtonian flow, rigid aortic walls, and traditional
CFD outlet BCs were assumed. Physiology-based boundary conditions and fluid-
structure interactions were not considered, which challenges the accuracy of the
present results. At the end of the 4th International Workshop STACOM 2013, the
measured pressure gradients were released. Compared to the measured pressure
gradients (shown in Table 2), peak pressure gradients are dramatically overesti-
mated in current work. Future studies need to systematically identify and correct
deficiencies of the present simplified CFD approach.
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Abstract. We present a novel and clinically useful method to automatically 
determine the regions that carry cardiac and respiratory motion information 
directly from standard mono-plane X-ray fluoroscopy images. We demonstrate 
the application of our method for the purposes of retrospective cardiac and 
respiratory gating of X-ray images. Validation is performed on five mono-plane 
imaging sequences comprising a total of 284 frames from five patients 
undergoing radiofrequency ablation for the treatment of atrial fibrillation. We 
established end-inspiration, end-expiration and systolic gating with success 
rates of 100%, 100% and 95.3%, respectively. This technique is useful for 
retrospective gating of X-ray images and, unlike many previously proposed 
techniques, does not require specific catheters to be visible and works without 
any knowledge of catheter geometry.   

1 Introduction 

Electrophysiology (EP) procedures are minimally invasive catheter procedures that 
are used to treat cardiac arrhythmias. They are carried out under X-ray fluoroscopic 
image guidance. However, X-ray images have poor soft tissue contrast. To overcome 
the lack of soft tissue contrast, pre-procedural three-dimensional (3D) images can be 
registered and overlaid in real-time with the 2D X-ray images using specialized 
hybrid imaging systems [1]. Achieving the registration in a conventional mono-plane 
catheter laboratory is challenging. A solution was proposed in [2] where catheters 
were used to constrain the registration. An implementation of this approach used 3D 
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catheter reconstructions from sequential bi-plane X-ray images [3]. This technique 
required manual cardiac and respiratory phase matching of the bi-plane images. A 
similar requirement for automatic frame matching exists when catheter positional 
information needs to be measured with reference to a registered anatomical model. 
This is important for recording the position of electrical measurements, pacing 
locations and ablation treatments [4,5].  

A cardiac electrocardiogram (ECG) synchronously recorded with X-ray images 
can be used for cardiac gating. However, this facility is not always present in X-ray 
systems and when present, there may be unknown delay between the ECG signal and 
the X-ray data. Respiratory gating can be achieved using breath-holding. This is 
commonly used during magnetic resonance imaging (MRI) [6]. However, this is 
impractical in the catheter laboratory where patients can be heavily sedated.  

Image-based motion estimation should be more reliable and robust. This approach 
do not require any special hardware, fiducial markers or additional contrast agent. In 
[7,8] diaphragm tracking was used for respiratory phase determination. However, the 
diaphragm is not always visible in cardiac X-ray images due to collimation to reduce 
radiation dose. A more promising approach is to track the EP catheters [9, 10, 11]. 
Nevertheless, decoupling the cardiac from the respiratory motion can be challenging. 
The technique presented in [12] was used to estimate the motion between successive 
frames using a phase correlation algorithm, without requiring specific catheters to be 
present. The technique was tested on 2D X-ray angiographic and 3D liver and intra-
cardiac ultrasound sequences. The main drawback of this technique is that it assumes 
that objects in the scene exhibit only translations, which is not the case in EP images.  

Manifold learning (ML) has been shown to be a useful image-based method for 
cardiac and respiratory phase detection. In [13] the Laplacian Eigenmaps (LE) 
method was used for respiratory gating in MRI and ultrasound (US) applications. In 
US applications, LE has been used for cardiac gating [14]. In [15] a technique called 
Hierarchical Manifold Learning (HML) was used to learn the regional correlations in 
motion within a sequence of time-resolved MR images of the thoracic cavity. 

We propose a novel approach for cardiac and respiratory phase gating for cardiac 
EP X-ray images based on HML. The algorithm is validated using X-ray images 
taken during radiofrequency ablation (RFA) procedures for patients being treated for 
atrial fibrillation (AF). The novelty of our approach is that it does not rely on specific 
catheters being present in the image data or the localisation of these devices, and 
makes no assumptions about the nature of the motion present in the images.  

2 Methods 

A block diagram of the proposed method for cardiac and respiratory gating is shown 
in Fig. 1. We first describe the respiratory gating approach and then outline how this 
technique is expanded with a number of other image processing operations to make it 
suitable for cardiac motion gating.  
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Fig. 1. Block diagram of the proposed HML-based method. (Top) For respiratory gating; 
(bottom) for cardiac gating. 

2.1 Respiratory Gating 

2.1.1   Hierarchical Manifold Learning 
ML is a non-linear dimensionality reduction technique, which aims to embed data that 
originally lies in a high dimensional (high-D) space into a lower dimensional (low-D) 
space, while preserving characteristic properties. LE is a particular ML technique, which is 
often chosen for medical imaging applications [16]. One of the disadvantages of applying 
conventional ML techniques to medical images is that the whole of the image is 
represented by a single value even though not all the image contains relevant information. 
To prevent this weakness we used HML, a recently proposed technique [15]. To avoid the 
need to pre-define regions of interest, the images are separated into regular patches, of size 
2x2 pixels each, finding a manifold embedding for each image patch. The idea is to align 
each patch embedding to several parent manifolds, with the strength of the aligning 
constraint dependent on the distance to parent patch centers.  For a 2D image, it would 
seem natural to constrain a new patch to be close to its four nearest (in terms of distance) 
parent patches [15]. Consequently, for our experiments, we simply use four (2D) parent 
patches. As we are trying to recover both the cardiac and respiratory motions, we reduce 
the data to 2 dimensions. By using a manifold embedding dimensionality of 2, each patch 
in each time frame is represented by a 2D coordinate. We treated the values in each 
dimension separately. We found by visual inspection that the coordinates of the 1st 
dimension represent the respiratory motion while the coordinates of the 2nd dimension 
represent the cardiac motion. We denote the output of the HML process by ,  for the 
1st and 2nd dimension, respectively. 
 
2.1.2   Gating 
HML is applied to the 2x2 patches of our X-ray images, denoted I. Then, Eq. 1 is used 
to obtain the respiratory phase. 

 , ∑ , , ⁄                   (1) 
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where , ,  is the 1st dimension of HML result at patch j, frame i and   is the total 
number of patches in I.  The peaks of the plots at each time frame represent end-
inspiration (EI) respiratory frames, ΩIX, while the troughs represent end-expiration 
(EX) respiratory frames, ΩEX. 
 

            ΩEI= i| 1,i-1< 1,i> 1,i+1                    (2) 

 

ΩEX= i| 1,i-1> 1,i< 1,i+1                          (3) 

2.2 Cardiac Gating 

The embedding coordinates of the 2nd dimension, P2, of each patch for every frame of 
each sequence relate to the cardiac motion. However, this is significantly affected by 
respiratory motion. To compensate for the respiratory motion three additional steps 
are applied to our X-ray images, a Frangi vesselness (FV) filter [17] followed by 
morphological opening, morphological dilation and a band pass filter.  

 
2.2.1   Frangi Vesselness Filter 
The FV filter is applied to all X-ray images in the sequence. This technique identifies 
tubular structures in the X-ray images, which are expected to carry useful cardiac and 
respiratory motion information, using Hessian eigenvalues. The responses of the FV 
filter are binarised by applying a threshold. To remove the noise present while 
preserving the shape and size of the detected structures we apply morphological 
opening to the binarised responses. We denote the results of this opening process by 
I1,i, where i is the X-ray frame number.  

 
2.2.2   Morphological Dilation 
The previous step is followed by the application of morphological dilation. This 
operation adds pixels to the boundaries of detected structures, which produces I2,i. 

In 
morphological dilation the value of the output pixel is the maximum value of all the 
pixels in the input pixel’s neighbourhood. Computing I3,i=I2,i-I1,i the image patches 
around the detected tubular structures are identified. The HML is applied to these 
patches only. These patches were found to be more useful for extracting cardiac 
motion information than using the tubular structures themselves. Although the tubular 
structures are expected to carry useful cardiac motion information, they also carry 
respiratory motion information that adversely affects the accuracy of our systolic 
peaks. For cardiac motion we use 

 
   , ∑ , , ,⁄,    (4) 

 
where , ,  is the 2nd dimension of the HML results at patch j, frame i and ,  is the 

total number of patches in I3,i . 
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2.2.3   Band Pass Filter and Gating 
To remove residual respiratory motion, a 2nd order band pass filter is applied to our 
plots. The peaks of the plots represent systolic frames. 
             Ωsys= i| 2,i-1< 2,i> 2,i+1                              (5) 

 

3 Experiments  

3.1 Materials   

All patient procedures were carried out using a mono-plane 25cm-flat-panel cardiac 
X-ray system (Philips Allura Xper FD10, Philips Healthcare, Best, The Netherlands), 
in one of the catheterization laboratories at St. Thomas’ Hospital, London, U.K. In 
total, 5 different clinical fluoroscopy sequences from 5 patients who underwent RFA 
procedures for the treatment of AF were used. A total of 284 X-ray images were 
processed. For each patient, X-ray imaging was performed at 3 frames per second. All 
X-ray images were 512×512 pixels in resolution, with a pixel to mm ratio of 0.25. 
Included in this ratio is the typical magnification factor of the X-ray system.  

3.2 Optimization of Parameters 

We built our algorithm using the leave-one-out cross-validation (LOOCV) approach. 
This involved using 4 sequences as the training data and the remaining sequence as 
the validation data. To build our algorithm, we optimised the four parameters 
involved in extracting the cardiac phases. These parameters include: a threshold level 
on the normalised output, 0 to 1, of the FV filter, the number of morphological 
dilations of the identified structures, and the pass band and stop band frequencies of 
the band pass filter, optimised to be >0.02, 30±3, 0.62 and 0.98, respectively. 

3.3 Validation of Our Retrospective Cardiac and Respiratory Gating 

We validated the respiratory gating using either diaphragm or heart border tracking as 
described in [8] for the ground truth. The choice of ground truth was determined by 
which structure was visible in the X-ray images. The signals obtained using the 
tracking method (gold standard) were compared to the signals obtained using the 
HML-based method. In order to validate our cardiac gating method, manual gating of 
the cardiac cycle at systole was performed by an experienced observer, by visually 
detecting the onset of contraction of the left ventricle from the fluoroscopic left heart 
border shadow. The systolic frame number was recorded and compared with the 
corresponding systolic frame number from the automatic detection. We chose systole 
as opposed to diastole for validation since the manual ground truth is more reliable for 
systole where rapid motion can be used as the visual cue. 
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4 Results 

4.1 FV Filter and Morphological Dilation Output Images 

Fig. 2(a) gives an illustration of the output of the thresholded FV filter response, I1,1, 
of the first frame of one example X-ray sequence after the application of the threshold 
level and the morphological opening, overlaid with the corresponding X-ray image. 
Fig. 2(b) illustrates the image output, I3,1, overlaid with the corresponding X-ray 
image for the first frame of the same example case.   

 

           
                         (a)                               (b) 

Fig. 2. (a) Image output of the FV filter followed by morphological opening, I1,1, overlaid with 
the corresponding X-ray image for Case 1. The EP catheters during the ablation stage of a 
procedure are shown. (b) Image output, I3,1, overlaid with the corresponding X-ray image for 
Case 1. 

4.2 Qualitative Validation  

For respiratory gating validation, a plot of the respiratory trace obtained using the 
HML-based method for Case 1 is illustrated in Fig. 3(a) as a solid black line. The 
diaphragm/heart border tracking is shown as a dashed black line. The results of the 
cardiac gating validation are shown in Fig. 3(b) for the first 45 frames for the same 
case. The plotted vertical black lines correspond to the gold standard systolic frames.  

4.3 Comparative Quantitative Validation  

It is important to investigate whether our new HML-based technique is superior to our 
previously presented retrospective PCA-based gating approach [11]. Therefore, for 
both cardiac and respiratory gating, the absolute frame difference was computed 
between the HML-based method and the gold standard methods. Specifically, 
systolic, EI and EX frames were recorded from the HML-based and gold standard 
methods and their corresponding absolute frame differences were computed. This was  
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(a) (b) 

Fig. 3. (a) Graphical representation of the obtained respiratory trace with X-ray frame number. 
The heart border tracking (gold standard) is shown as a dashed black line. (b) The HML-based 
method cardiac trace obtained is illustrated for the same example case. The vertical black lines 
are the gold standard identification of systole. 

also done for the PCA-based technique. Faultless gating results are signified when the 
absolute frame difference between the automatic and gold standard method is zero. The 
results can be seen in the frequency distribution bar charts in Fig. 4(a, b and c), for EI, 
EX and systolic gating, respectively. Results illustrate that our HML-based method is 
faultless in EI and EX gating and outperforms the results of our PCA-based technique. It 
is also almost faultless for systolic gating. While our PCA-based technique outperforms 
the HML-based technique in cardiac gating, it relies on the tracking of a specific catheter, 
the CS catheter. Our proposed HML-based technique does not depend on any particular 
catheter being present in our X-ray images and requires no knowledge of catheter 
geometry. 
 
 

 
               (a)                           (b)                               (c) 

Fig. 4. Frequency distributions of frame difference errors for (a) End-inspiration gating (b) 
End-expiration gating and (c) Cardiac gating. Results are illustrated for the HML-based method 
(blue) and PCA-based method (green) 
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Percentage success rates were computed using 100 ( x xtotal⁄ ), where x corresponds to 
the number of perfectly matched gold standard and automatic gating frames and 

 corresponds to the total number of gold standard gating frames. Percentage 
success rates computed for EI, EX and systolic gating for our proposed HML-based 
technique were calculated to be 100%, 100% and 95.3%, respectively. For cardiac 
gating 4 extra false systolic peaks were obtained over all processed sequences.  

5 Discussion and Conclusions 

We have presented a novel and robust retrospective HML-based method for image-
based automatic cardiac and respiratory motion gating. This method is able to detect 
cardiac and respiratory phase directly from X-ray images.  We have applied our 
technique on 5 clinical fluoroscopy sequences and computed the success rates for EI, 
EX and systolic gating which were 100%, 100% and 95.3%, respectively. The HML-
based method is fully automatic, requires no user interaction, no prior knowledge and 
can operate within a few seconds per image sequence. As our technique is not 
dependent on any particular catheter being present in the procedure, it has potential 
application in more types of cardiac catheterization procedures, rather than only RFA 
procedures. The method will be particularly useful for registration and overlay of pre-
procedural images with X-ray fluoroscopy for guidance and biophysical modelling. 
Future work will focus on testing our method on X-ray coronary angiography images 
where no catheters are present. Investigations show that the reason for optimising 
systolic gating on the specified patches is because of the inclusion of the heart border, 
a structure that carries significant cardiac motion information. Further work will focus 
on modifying our technique by giving more emphasis to the importance of the heart 
border structure in an attempt to improve the systolic gating success rate.  
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Abstract. Objective: To develop an accurate and mathematically un-
ambiguous method for interpolation of tensor orientation, specifically
for the interpolation of cardiac microstructural orientation. Methods:
A dyadic tensor-based (DY) orientation interpolation method, which
sidesteps the eigenvector sign ambiguity problem by interpolating be-
tween the dyadic tensors of eigenvectors, is proposed and evaluated. The
quaternion-based (QT) orientation interpolation method, which interpo-
lates along the minimum rotation path between tensor orientations, is
also revised and evaluated. DY and QT are compared to conventional
tensor-based interpolation methods using both synthetic and cardiac DT-
MRI data. Results: All methods (except QT) perform similarly well for
recovery of the primary eigenvector. DY has significantly less bias than
all other methods for recovery of the secondary and tertiary eigenvec-
tor, which is especially important for interpolating myolaminar sheet
orientation. Conclusion: DY is a fast, commutative, and mathematically
unambiguous tensor orientation interpolation method that accurately in-
terpolates cardiac microstructural orientation.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) [1] characterizes soft
tissue microstructural organization by measuring, for example, tissue anisotropy
and myofiber and myolaminae orientations. DT-MRI methods estimate the self-
diffusion tensor of water in each image voxel. The second-order symmetric posi-
tive definite diffusion tensor (D) can be decomposed into eigenvalues (λi, shape)
and eigenvectors (ei, orientation). Tensor shape can also be intuitively and
saliently represented by tensor invariants such as tensor trace (J1), fractional
anisotropy (FA, J2) and tensor mode (J3) [2–5].

The three eigenvectors correspond to the myofiber long-axis (e1), the cross-
fiber direction within the myolaminar sheet (e2) and the sheet-normal direction
(e3) in cardiac applications [6]. To build computational models of cardiac me-
chanics and electrophysiology (EP), both myofiber and myolaminae orientation
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information is required at millions of closely spaced nodes. DT-MRI measure-
ments, however, are on a lattice and typically number < 1e6 for ex vivo studies
< 1e4 for in vivo studies [7], so interpolation of tensor orientation is needed.
The orientation (SO(3)) interpolation problem has been widely studied in the
computer graphics literature, but the tensor orientation interpolation problem
in DT-MRI is more challenging because eigenvectors have an arbitrary sign
(physiologically and mathematically) so tensor orientation cannot be uniquely
described.

Most of the conventional approaches have been tensor-based and amongst the
simplest is the Euclidean (EU) method, but it suffers from the tensor shape
swelling effect [8, 9]. The affine-invariant Riemannian (AI) and log-Euclidean
(LE) tensor interpolation methods [8, 9] were proposed to solve the tensor shape
(tensor swelling) problem, but they underestimate other tensor invariants in-
cluding tensor trace and FA [5, 10]. The geodesic-loxodrome (GL) method [4]
guarantees monotonic interpolation of orthogonal tensor invariants [2], but is
computationally expensive. The linear invariant (LI) method [5] linearly inter-
polates tensor invariants (shape) at significantly reduced computational cost, but
no new method for tensor orientation interpolation was presented. The tensor-
based methods mostly focus on tensor shape interpolation, and no distinct ad-
vantage of the methods in tensor orientation has been reported [5]. Recently a
separate tensor interpolation method [10] was proposed that interpolates Euler
angles or quaternions along the minimum rotation path between tensor orienta-
tions, but it was not quantitatively validated using cardiac DT-MRI data.

We propose a new dyadic-tensor based (DY) tensor orientation interpolation
method that sidesteps the eigenvector sign ambiguity problem by interpolating
between the dyadic tensors of eigenvectors with subsequent reduction to rank-1
dyadics and orthogonal matrices. We also revise and simplify the quaternion-
based (QT) method [10], and evaluate it using cardiac DT-MRI data. The QT
and DY tensor-based methods are compared to the tensor-based interpolation
methods including EU, AI, LE and GL for accurate recovery of cardiac mi-
crostructural orientation using four experimentally measured DT-MRI datasets
from rabbit and pig hearts.

2 Theory

Quaternion-Based Interpolation. One approach to resolve the eigenvector
sign ambiguity problem is to directly tackle it by choosing the minimum rotation
path between tensor orientations. Tensor orientation is commonly represented by
a rotation matrix R = [ei] consisting of three eigenvectors, sorted in descending
order of their corresponding eigenvalues, but can also be represented by a unit
quaternion q = a+ bi+ cj + dk = [a, b, c, d] where a2 + b2 + c2 + d2 = 1. Tensor
orientation has four different descriptions intuitively represented by rotation
matrices RP where P = diag(pj) such that pj = ±1 and p1p2p3 = 1, which can
be converted into unit quaternions qk:

qk = [a, b, c, d], [b,−a, d,−c], [c,−d,−a, b], [d, c,−b,−a] . (1)
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Then the minimum rotation path between two tensor orientations RA and RB

can be determined by the maximum magnitude of inner products between fixed
qA and four different qB (or between fixed qB and four different qA). If the
maximum value has a negative sign, the corresponding quaternion qB (or qA)
should be negated. Once the unit quaternions are uniquely determined, normal-
ized linear interpolation (nlerp) is used:

qC = ((1− t)qA + tqB) /‖(1− t)qA + tqB‖ , (2)

which is computationally less expensive than spherical linear interpolation (slerp)
[11]. The interpolated quaternion qC is easily converted to a rotation matrixRC.

Dyadic Tensor-Based Interpolation. Our approach is to sidestep the sign
ambiguity problem by using dyadic tensors [12]. Dyadic tensors of eigenvectors
ei are defined by Ei = ei ⊗ ei = eie

T
i . Note, ei ⊗ ei = −ei ⊗ −ei. Dyadic

tensors are rank-1 with only one non-zero eigenvalue whose value is 1 and the
corresponding eigenvector is exactly ei or−ei. Interpolation betweenRA = [eAi]
and RB = [eBi] starts with linear interpolation between their dyadic tensors:

Fi = (1− t)EAi + tEBi . (3)

Since Fi are not generally rank-1, the nearest rank-1 dyadic tensor (x⊗ x) can
be obtained by minimizing:

J(x) = ‖Fi − x⊗ x‖2F = tr
{
(Fi − xxT )T (Fi − xxT )

}
= tr

{
F2

i − 2Fixx
T + (xxT )2

}
= ‖Fi‖2F − 2tr(xTFix) + ‖x‖4 , (4)

where ‖ · ‖F denotes the Frobenius norm, and the derivative is:

J ′(x) = −4Fix+ 4‖x‖2x . (5)

By setting the derivative equal to zero, the eigenvalue equation Fix = ‖x‖2x is
obtained. Therefore, the eigenvector mi corresponding to the largest eigenvalue
of Fi minimizes Eq. 4. However, since the interpolation between dyadic tensors
is separately performed on each pair of eigenvectors the matrix M = [mi] is not
generally orthogonal. The orthogonal matrix closest to M can be obtained by
minimizing:

w1‖x1 −m1‖2 + w2‖x2 −m2‖2 + w3‖x3 −m3‖2 , (6)

where [xi] is an orthogonal matrix, and wi are the eigenvalues computed by the
LI method [5], which assigns different weights to each eigenvector term according
to the interpolated tensor shape. Equation 6 can be rewritten in a matrix form:

‖(M−X)W‖2F = tr
{
(MW −XW)(MW −XW)T

}
= tr

{
(MW)(MW)T

}
+ tr

(
XWWTXT

)− 2tr
(
MW2XT

)
= ‖MW‖2F + ‖W‖2F − 2tr

(
MW2XT

)
, (7)



138 J.K. Gahm and D.B. Ennis

where X ∈ O(3) and W2 = diag(wi). Minimizing Eq. 7 is achieved by
maximizing:

tr
(
MW2XT

)
= tr

(
UΣVTXT

)
= tr

(
VTXTUΣ

) ≤ tr (Σ) , (8)

where U, Σ and V are obtained from the singular value decomposition (SVD)
of MW2 = UΣVT , implying that Eq. 8 is maximized when VTXTU = I ⇔
X = UVT . Therefore, the interpolated tensor orientation RC = [eCi] can be
obtained by replacing the singular values with ones from the SVD of MW2. If
the determinant of RC is −1, then RC should be negated to be a right-handed
rotation matrix.

3 Methods

Synthetic Tensors. Using the EU, LE, GL, quaternion-based (QT) and dyadic
tensor-based (DY) methods, interpolation was performed between two tensors of
the same shape (Ji = {1, 0.5, 0.8}), and different orientations whose angles be-
tween each pair of eigenvectors are 82◦, 45◦ and 64◦. LI was used for tensor shape
interpolation and combined with QT and DY for complete tensor interpolation.

Real DT-MRI Data. The rabbit heart DT-MRI data was acquired using a
7T Bruker Biospin scanner, and a 3D fast spin echo sequence with the following
imaging parameters: TE/TR = 30/500 ms, b-value = 1000 s/mm2, 24 diffu-
sion gradient encoding directions, 6 nulls, and RARE factor two. The in-plane
imaging resolution was 0.5×0.5×0.80 mm obtained by using a 96×96 encoding
matrix, 72–96 slices and a 48×48×54–72 mm imaging volume. The pig heart
DT-MRI data was acquired using a Siemens 1.5T Avanto and a 3T Trio scan-
ner, and a 2D readout-segmented echo-planar pulse sequence with the following
imaging parameters: TE/TR = 80/6800 ms, b-value = 1000 s/mm2, 30 diffusion
gradient encoding directions, one null, 15 readout segments, and 8-10 averages.
The in-plane imaging resolution was 1×1×3 mm obtained by using an 150×150
encoding matrix, 43–44 slices and a 150×150×129–132mm imaging volume. Dif-
fusion tensors were estimated without zero padding and with linear regression.

Evaluation Procedure. The same tensor orientation evaluation procedure pro-
posed in [5] was applied to the two rabbit and two pig heart DT-MRI datasets.
The median autocorrelation (AC) length for every dimension was computed in
each tensor invariant (Ji) map of the segmented myocardium. The myocardial
DT-MRI volume was down-sampled in each dimension by a factor of the small-
est integer not less than the median AC length for each tensor invariant map,
and trilinear tensor orientation interpolation was performed with the EU, AI,
LE, GL, QT and DY methods at the removed voxels using the remaining data.
Then the interpolated tensor orientations by each method were compared to
the originally measured data by computing the angle difference between each
pair of eigenvectors. Subsequently the population of the angle difference data
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Fig. 1. Interpolation between two synthetic tensors of equal shape and different orienta-
tion. The angle between every pair of the primary, secondary and tertiary eigenvectors
is monotonically interpolated only in (d) and (e). All the tensor-based methods (a), (b),
and (c) fail to monotonically interpolate the angle between the secondary eigenvectors.

was spatially decorrelated by decimating the data in every dimension by the
smallest integer not less than the AC lengths, and the decorrelated data was
bootstrapped 1000 times by random sampling with replacement to compute the
95% confidence interval (CI) about the median.

4 Results

Synthetic Example. Figure 1 shows an example of interpolation between two
synthetic tensors with the same shape and different orientations using the EU,
LE, GL, LI+QT and LI+DY methods. Tensors are visualized as superquadric
glyphs [13], and plots of each eigenvector’s angle relative to the leftmost tensor’s
orientation are shown along the interpolation paths. EU and LE fail to preserve
the tensor shape during rotation, but GL, LI+QT and LI+DY maintain the
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Fig. 2. Bootstrap statistics for eigenvector orientation errors (angle differences) relative
to real DT-MRI data. Each dot represents the median angle difference, and each error
bar represents the bootstrapped 95% CI of the median. The (black, dark gray, and light
gray) dashed lines represent the upper limits of DY’s CIs associated with the (primary,
secondary, and tertiary) eigenvectors, which define whether or not DY’s CIs overlap
with the others’. DY introduces the least error to the secondary and tertiary eigenvector
orientations, and similar errors to the primary eigenvector orientation compared to the
tensor-based methods (EU, AI, LE and GL).

tensor shape. With respect to tensor orientation, QT and DY monotonically
interpolates the angle of every eigenvector. The tensor-based methods (EU, LE
and GL), however, fail to monotonically interpolate the angle of the secondary
eigenvector.

DY’s monotonic interpolation of each eigenvector needs to be more carefully
investigated. Each method has a distinct interpolation path between tensor ori-
entations, and QT’s path is explicitly the minimum rotation path. Monotonic
interpolation of eigenvectors and/or the minimum rotation path does not imply
interpolation of tensor orientation with the least error. Therefore, we experimen-
tally evaluated each method using real DT-MRI data.

Evaluation Statistics. The smallest integers not less than the median AC
lengths were 2, 2, and 3 for the rabbit heart data and 3, 3, and 2 for the pig heart
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data in the x–, y– and z–directions, respectively. Figure 2 shows the bootstrap
statistics of angle differences between each eigenvector pair from the original and
interpolated tensor orientations.

Comparison of the orientation errors between methods reveals that each
method performs consistently across the various data sets (e.g. errors for recov-
ering e1 significantly decrease from QT to DY). QT’s e1 median error, however,
is significantly higher than all other methods (i.e. 95% CI does not overlap) for
the rabbit data, but not for the pig data. DY performs similarly to conventional
tensor interpolation methods for recovering e1 in both rabbit and pig DT-MRI
data.

DY has the lowest median error for recovery of both e2 and e3 compared to
all other methods. Notably, DY has a significantly lower median recovery error
for e2 and e3 compared to either EU or GL for all four datasets.

5 Conclusion

Accurate interpolation of myofiber and myolaminar sheet orientations is essential
for computational modeling of cardiac mechanics and electrophysiology (EP).
Cardiac mechanics and EP modeling requires accurate tensor orientation infor-
mation at every computational node in order to assign correctly the axes of
anisotropic electrical activation.

The comparison results show that DY performs significantly better than the
tensor based methods, especially EU and GL, for recovery of each component of
cardiac microstructural orientation. In particular, the improvement in recovery of
the secondary and tertiary eigenvectors is important for recovery of myolaminar
sheet orientation. Note that QT’s minimum rotation path has significantly larger
median errors for recovery of the primary eigenvector than DY’s interpolation
path.

LI+DY is a commutative, computationally efficient (compared to GL’s numer-
ical solution), and mathematically unambiguous tensor interpolation method
that most accurately interpolates both cardiac microstructural shape [5] and
orientation. Further investigations using brain DT-MRI data and the same eval-
uation process may be needed to evaluate if the most accurate interpolation is
dependent on the underlying tissue characteristics. Furthermore, the required
tensor interpolation accuracy for cardiac mechanics and EP simulations remains
incompletely understood.
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Abstract. Statistical descriptions of regional wall motion abnormali-
ties of the heart are key to understanding both sub-clinical and clinical
progression of dysfunction. In this paper we establish a temporal reg-
istration framework of the cardiac cycle to build a spatio-temporal at-
las of 300 asymptomatic volunteers and 300 symptomatic patients with
myocardial infarction. A finite-element model was customised to each
person’s magnetic resonance images with expert-guided semi-automatic
spatial and temporal registration of model parameters. A piece-wise lin-
ear temporal registration from user-defined key frames was followed by a
Fourier series temporal estimation, providing temporal continuity. All
spatial and temporal data were then statistically analysed by means
of principal component analysis. Results show differences in spheric-
ity, wall thickening and mitral valve dynamics between the two groups.
The modes are available from www.cardiacatlas.org. These atlases can
be readily applied to abnormality detection and quantification and can
also aid in anatomically constrained shape-based algorithms in automatic
planning or segmentation.

1 Introduction

Cardiac magnetic resonance imaging (CMRI) provides detailed spatial and func-
tional information of the human heart. Typically, clinical parameters of interest
include endocardial volume, left ventricular (LV) mass, wall thickening and ejec-
tion fraction. However, regional wall motion abnormalities are clinically impor-
tant in the diagnosis and evaluation of regional heart disease such as myocardial
infarction. These take the form of spatial variation of temporal characteristics
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which are at present qualitatively assessed by clinicians as being normal or ab-
normal, for example in determining regional wall motion scores.

Statistical atlases of the heart are, in this context, collections of patient
datasets, which can be the images themselves or derived measurements or mod-
els which have been registered to a common reference. In this paper we build the
latter, i.e. a distribution of regional wall motion in terms of shape and function
from two different populations. These atlases are becoming increasingly pop-
ular in both the bioengineering [5, 14] and clinical fields [11] since they offer
an unprecedented quantitative comparison between a patient and a population.
However, to date most atlases have typically focused on specific time points such
as end-diastole (ED) and end-systole (ES) and do not usually include all tem-
poral information [10, 12, 13]. In our previous work [14], a similar finite-element
model was used however the data and methodology were different. Examples of
fully spatio-temporal atlases include [3, 5, 8].

Full coverage of the time domain presents two main challenges, time registra-
tion and continuous interpolation. In this paper we address these two challenges
and present an asymptomatic and symptomatic spatio-temporal atlas through
their modes of variation. The main contributions of this paper are:

1. A compact representation of the spatio-temporal variation of regional wall
motion in terms of a parametric model with a relatively small number of
parameters

2. Application to a reasonably large number of asymptomatic and symptomatic
cases

3. Identification of clinically important shape indicators including sphericity
and wall thickening in the symptomatic vs. asymptomatic groups.

2 Data and Methods

Image data were obtained using the Cardiac Atlas Project [6] from two clini-
cal studies: the Multi-Ethnic Study of Atherosclerosis (MESA) study [1] for the
asymptomatic cohort and the Defibrillators To Reduce Risk By Magnetic Reso-
nance Imaging Evaluation (DETERMINE) clinical trial [9] for the symptomatic
sample. Three hundred cases were randomly selected from each study. A typical
dataset comprised 20-30 frames in 6-8 short-axis slices and 3-4 long-axis slices
(imaging parameters can be found in [1, 9]). All images were acquired using
prospective electrocardiogram gating and therefore cover the entire cycle.

At the time of recruitment, the MESA study protocol ensured that partici-
pants did not have clinical evidence of heart attack, angina, stroke, heart failure
or atrial fibrillation [1]. The DETERMINE study was designed as a prospective,
multi-centre, randomised, clinical trial in patients with coronary artery disease
and mild-to-moderate LV dysfunction [9].

Guide-point modelling [19] was used to adaptively optimise a time-varying
3D finite-element model of the LV to fit each subject’s images using custom
software (CIM version 6.0, Auckland, New Zealand). The model was interactively
fitted to “guide points” provided by the analyst, as well as computer-generated
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data points calculated from the image using an edge detection algorithm by
linear least-squares. The typical time of analysis for a trained expert varied
between 24-35 minutes. This finite-element representation enabled a succinct
parametrisation with anatomical correspondence across subjects. The spatial
representation comprised 215 Bézier parameters (i = 1 . . . 215) which governed
the shape of the endocardial and epicardial surfaces [16]. These parameters were
expressed in prolate spheroidal coordinates in terms of focal length f (overall
scaling) and radial λi, hyperboloidal μi and azimuthal θi coordinates for each
control point.

2.1 Temporal Analysis

Functional analysis of the time-varying data [18] comprised two main steps:

1. Temporal Registration. Since the number of frames varied with subject,
a temporal registration step was needed to ensure that all cases conformed
to a common normalised temporal reference (2.1.1).

2. Temporal Continuity. A continuous extension through time is desirable
for data smoothing, continuity and applying dimension reduction techniques
in the time domain. This enables sampling of the models at any time point
in the cardiac cycle (2.1.2).

Once these two challenges are overcome, the statistical analysis of linear modes
of variation can be written in terms of perturbations about the mean, either for
any arbitrary time-point t = ti in the cardiac cycle (thus becoming static), or
by coupling all time variability (discussed in 2.2).

2.1.1 Temporal Registration

To align all cases to a common temporal reference, a time warp from the discrete
frame space (f = 0, 1, 2, . . . , fi, . . . , F ) to a normalised cardiac cycle [0, 1] was
constructed such that t = 0 represented the ED frame and t = 0.35 represented
the ES frame (fES). The normalised time coordinate of 0.35 was chosen for ES
because this is the typical normal duration of systole in normal people [7]. This
defines a periodic time reference where the warped discrete points ti ∈ [0, 1] are
given by:

ti =

⎧⎪⎪⎨
⎪⎪⎩
0.35

fi
fES

for ti ≤ fES

0.35 + 0.65
fi − fES

F − fES + 1
for ti > fES

(1)

2.1.2 Temporal Continuity

The Fourier series is a natural representation for our periodic data [2]. Not only
does it provide a continuous description of function but it also conveniently
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represents our function with a small number of coefficients (if we accept some
error due to loss of high frequencies).

The Fourier partial sums for any periodic function f(t) at least L1-integrable
in [−π, π] are

(SNf)(t) =
a0
2

+

N∑
n=1

(an cos(nt) + bn sin(nt)) N ≥ 0,

where an =
1

π

∫ π

−π

f(t) cos(nt) dt (n ≥ 0) and bn =
1

π

∫ π

−π

f(t) sin(nt) dt (n ≥ 1).

In our case, the cycle occurs in [0, 1] and we fix the number of harmonics
to N = 5 which yields 11 coefficients. This has been shown previously to give
acceptable error with respect to a high frame rate (60 fps) standard [20].

We therefore have:

(S5f)(t) =
a0
2

+

5∑
n=1

(an cos(2πnt) + bn sin(2πnt))

where an = 2

∫ 1

0

f(t) cos(2πt) dt (n ≥ 0) and bn = 2

∫ 1

0

f(t) sin(2πt) dt (n ≥ 1).

Given that f(t) must be integrable in [0, 1] and that the available data is
discrete with non-uniform spacing (due to the temporal registration), f(t) was
chosen to be a cubic B-spline [4] supporting all time-registered points from 2.1.1.
This enabled efficient integration by quadrature using QUADPACK [17].

0.0 0.2 0.4 0.6 0.8 1.0
0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Normalised time

Fig. 1. Example of a λi(t) parameter. The blue dots represent the time-registered λi(tj)
points at each frame, the green line the cubic B-spline, and the red line the Fourier
partial sums with 5 harmonics (S5f).
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Figure 1 shows an example of this approximation which leads to two important
remarks:

1. By construction, the B-spline function (in green) goes through all available
time-points whereas the Fourier approximation S5f (in red) can only ap-
proximate them since the number of degrees of freedom is smaller than the
number of time-points (11 < 30 in this particular example)

2. S5f is continuously periodic at the boundaries of [0, 1].

Henceforth, for each one of the spatial shape parameters, we use the corre-
sponding (S5λi)(t) as the continuous and smooth temporal extension of our data
for statistical time analysis.

2.2 4D Modes of Variation

In order to analyse spatio-temporal variation, two scenarios were built. Let B be
the data matrix where the rows represent the different variables and the columns
different observations. In our case the variables are the model parameters and the
number of observations is N1 = 300 for DETERMINE and N2 = 300 for MESA.
Let Bc be a single observation column of B. The first scenario (these results
are available on-line1) is to simply treat time independently, thus resulting in
a variance analysis at a standard sampling of t ∈ [0, 1], e.g. for ED BT

c =
[λ1(tED)λ2(tED)λ3(tED) · · · ], and for ES BT

c = [λ1(tES)λ2(tES)λ3(tES) · · · ] .
The second scenario, and the one we focus on for the remainder of this paper,

is to investigate the spatio-temporal parametric variance. To this end, all 11
Fourier coefficients were coupled into a single vector or column of B. Following
the notation in 2.1.2, we then have

BT
c =

⎡
⎢⎣aλ1

0 aλ1
1 bλ1

1 aλ1
2 bλ1

2 . . . aλ1
5 bλ1

5︸ ︷︷ ︸
a0+5 harmonics

aλ2
0 aλ2

1 bλ2
1 aλ2

2 bλ2
2 . . . aλ2

5 bλ2
5 · · ·

⎤
⎥⎦

where for each parameter of the LV model, we have 11 coefficients which carry
most of the temporal information. This can be interpreted as a multi-variate
analysis in shape and time (function) simultaneously, taking advantage of the
full physiological information of the finite-element model.

Typically one is only interested in the first few modes of variation, i.e. those
which portray most statistical variability. The number of modes that should be
kept is a broad topic of research [15] and is dependent on the application.

Figure 2 and Figure 3 show the first three PCA modes of variation for the
coupled temporal analysis when using all prolate spheroidal parameters except
the focal length (f) for the asymptomatic and symptomatic datasets. To capture
90% of total variation, 22 modes were required for the MESA dataset, whereas
the DETERMINE dataset required 27. Temporal animations of these modes and
lower-variance modes can be seen on-line1.

1 http://www.cardiacatlas.org/web/guest/modes

http://www.cardiacatlas.org/web/guest/modes
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t 0 (ED) 0.175 0.35 (ES) 0.525 0.7 0.875

Mode 1 (39.0%)

(−2σ)

(+2σ)

Mode 2 (11.4%)

(−2σ)

(+2σ)

Mode 3 (6.1%)

(−2σ)

(+2σ)

Fig. 2. Asymptomatic (MESA) Fourier temporal modes for all variable prolate sphe-
roidal parameters except focal length (56.5% of variability shown). Slightly elevated
anterior view (septum on the left).

3 Discussion

In the MESA or asymptomatic modes of variation in Figure 2, it could be rea-
soned that the first mode corresponds to the lengthening component of the ven-
tricle, and modes 2 and 3 correspond to features of the mitral valve geometry
and base plane tilt. However, from an overall geometric or clinical perspective,
there are no pure modes of variation, e.g. only sphericity.

In the DETERMINE or symptomatic (infarct) modes in Figure 3, mode 1
represents the sphericity (as was also found in a previous static analysis [13]),
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t 0 (ED) 0.175 0.35 (ES) 0.525 0.7 0.875

Mode 1 (33.1%)

(−2σ)

(+2σ)

Mode 2 (8.5%)

(−2σ)

(+2σ)

Mode 3 (6.3%)

(−2σ)

(+2σ)

Fig. 3. Symptomatic (DETERMINE) Fourier temporal modes for all variable prolate
spheroidal parameters except focal length (47.9% of variability shown). Slightly ele-
vated anterior view (septum on the left).

mode 2 the lower mid-ventricular thickness, mode 3 shows mitral valve geometry
features along with a rounding or bulging of the apical region. These features
correlate well with clinical indicators of heart failure, i.e. sphericity, wall thinning
and local dilation of the ventricle are features of infarcted models.

When comparing the modes of variation in Figures 2 and 3 with their static
counterparts (available on-line1), the first characteristic that becomes apparent is
the similarities of the temporal modes with the static counterparts. This implies
that the time variability is in itself lesser than the shape variability.
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The quantification of these shape and function differences —by projecting
onto the atlas modes— enable detection and classification of abnormality by us-
ing statistical distances such as Mahalanobis or Bhattacharyya (current ongoing
research in our team).
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Abstract. MR image-based computer heart models are powerful non-invasive 
tools that can help us predict the transmural electrical propagation of abnormal 
depolarization-repolarization waves in the presence of infarct scars (i.e., 
collagenous fibrosis), a major cause of sudden death; however, an important 
step is the customization of these models from electrophysiology studies (EP) . 
In this work, we used MR-EP data obtained in a pre-clinical animal model (i.e., 
three healthy and two infarcted swine hearts) and customized a simple mono-
domain model (i.e., the Aliev-Panfilov model). Specifically, we estimated the 
mathematical parameters corresponding to: a) the repolarization phase from in 
vivo activation-recovery intervals, ARIs (recorded in vivo with a CARTO 
system), and b) the anisotropy ratio (from fluorescence microscopic imaging of 
connexin 43, Cx43). Our measurements showed that in the ischemic peri-infarct 
areas the ARIs intervals were shorter by ~ 14% compared to those in normal 
tissue, and that there was a significant reduction (> 50%) in the Cx43 density 
(which tunes the cell-to-cell coupling and tissue bulk conductivity) with respect 
to both longitudinal and transverse directions of the myocyte. In addition, we 
included comparisons between virtual in silico simulations of activation maps  
obtained with different parameters used as input to a 3D MR-based 
biventricular model. Our preliminary results demonstrated the feasibility of 
using generic parameters to customize such MR-based models; however, 
further quantitative studies are needed. Finally, we discussed the overall 
advantages and limitations of our simplified approach, along with future 
directions. 

Keywords: cardiac MRI, modelling, electrophysiology, histopathology. 
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1 Introduction 

Abnormal propagation of the electrical wave in patients with structural disease (e.g. 
myocardial infarct) is a major cause (> 85%) of sudden cardiac death due to lethal 
ventricular arrhythmias (such as ventricular tachycardia, VT, and ventricular 
fibrillation, VF) [1]. An important task is the evaluation of chronic fibrosis in post-
infarction, together with the quantification of structural and electrical properties 
changes due to the scar and peri-infarct (i.e., the VT substrate, which is the target of 
RF ablation) [2, 3]. To achieve this, imaging and electrophysiology (EP)  
methods as well as computational tools have been continuously refined [4, 5, 6]. 
Integration of myocardial electrical and structural characteristics, along with the 
model customization from measurements, are complex processes that include 
experimentation using clinical EP tools, non-invasive imaging and modelling  
[7, 8].  

Our broad aim is to predict the propagation of the electrical wave using MRI-based 
computer models enriched with in vivo EP measurements obtained in healthy and 
chronically infarcted swine. Such a pre-clinical model is advantageous to use in a 
translational experimental-modelling framework, because the swine heart size is close 
to the human heart. Previously, we focused on: a) building 3D MRI-based models 
from high resolution diffusion-weighted MR imaging (which also enabled the 
incorporation of fiber directions); and b) customizing the model parameter 
corresponding to a global 'bulk' conductivity of tissue [9, 10]. For the latter, the 
customization step was performed by calculating the speed of depolarization wave 
from the local activation times, LAT, measured at precise locations (i.e., determined 
from the spatial coordinates of the catheter tip).  

In this current work, we report further progress within our experimental-modelling 
framework and we focus on tuning other important parameters in the computer model. 
For instance, we customized the parameter corresponding to the 'recovery' phase from 
measured ARIs, a clinical surrogate of the action potential duration, APD [11]. 
Furthermore, we also derived the anisotropy ratio for tissue conductivity from 
fluorescence microscopy imaging of connexin 43 (Cx43) protein, a major ventricular 
gap junction that facilitates the flow of the ionic current between the cells, and 
therefore tunes the electrical conductivity [1]. Typically, in healthy myocardium, 
Cx43 proteins have a higher abundance in the intercalated disks (connecting the cells 
edge-to-edge), resulting in two-three times faster propagation of the activation wave 
in the direction parallel to the myocytes; however, this ratio changes in ischemic 
conditions due to the gap junctions closure. These measurements (i.e., ARI and Cx43 
density) were used to determine generic parameters in the Aliev-Panfilov model [12] 
and to predict in silico the wave propagation using a 3D MR-based heart model 
previously developed (with fiber directions integrated from diffusion-weighting, DW) 
[10]. Figure 1 shows a simplified diagram of the workflow in the experimental-
theoretical framework. 
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Fig. 1. The integration of experimental data into predictive MRI-based computer models 

2 Material and Methods  

2.1 The Experimental Data  

In this paper we included results from five EP studies performed in a swine pre-
clinical model (i.e., three healthy and two chronically infarcted hearts, at 5 weeks 
post-infarction), approved by our Sunnybrook Research Institute (Toronto, Canada). 
The methodology of generating infarctions as well as the procedures steps associated 
with the EP studies in healthy and infarcted hearts was previously described [9, 10]. 
Briefly, the activation maps were recorded using an invasive contact electro-
anatomical mapping system (i.e., CARTO-XP, Biosense, USA), using filters applied 
to measure only signals within 30-400Hz. Here, ARIs, were determined for all intra-
cardiac unipolar waves using a CARTO analysis software, as explained in [11]. For 
each wave, a local repolarization time (LRT) was found for biphasic and negative 
deflections using dV/dtmax (maximum rate of rise of voltage), whereas for positive 
deflections we used dV/dtmin on the descending limb of the T-wave. Finally, ARI was 
calculated as the difference between LRT and LAT. All calculations and annotations 
were manually performed off-line.  

In addition, samples from the two infarcted hearts were taken from the healthy 
myocardium, peri-infarct and dense scar. The samples were fixed in 10% formalin 
and embedded in paraffin. Thin slices (4-5μm) were fixed and stained with Picrosirius 
Red for collagen assessment. Adjacent slices were also stained and prepared for 
fluorescence microscopic imaging of Cx43 as in [13]. The Cx43 density was 
quantified from fluorescence images on select ROIs. We assessed the alteration in 
cell-to-cell coupling (longitudinal direction) and side-to-side coupling (transverse 
direction) using the Visiopharm  software tool (www.visiopharm.com).  
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2.2 Mathematical Formalism and Computer Model  

The Aliev-Panfilov (A-P) Model is based on reaction-diffusion type of equations and 
solves for the action potential (V) and recovery term (r) as described in [12]: 
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One parameter of interest is a, which tunes the action potential duration, APD. Other 
parameters corresponding to recovery phase (k=8, and μ1&μ2) were given in [14]. 
This simplified model accounts for the heart muscle structural anisotropy (i.e., fiber 
directions) via the diffusion tensor D, which can be written as: 
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where d is the 'bulk' conductivity of tissue. The anisotropy ratio ρ depends on the 
conductivities in the transverse and longitudinal direction of myocytes. At a  cellular 
level, this ratio is generated by a heterogeneous distribution of connexin Cx43 in the 
intercalated disks vs. on the surrounding sheath [1]. In ischemia, ρ is altered [1], 
changing the solution to the action potential in eq. (2).  Furthermore, a reduced value 
of d results in a slower propagation of activation wave, as per the relation between the 
propagation speed c and 'bulk' conductivity d  [7]: 

   ( )adkc −⋅⋅= 5.02                     (3) 

3 Results  

3.1 Estimation of Model Parameters from Experimental Data 

Figure 2 shows an exemplary unipolar CARTO wave recorded in a healthy swine in 
sinus rhythm, along with the interpolated ARI map on the LV-endocardium (the white 
dots correspond to the valve). Approximately 470 points were recorded in the hearts 
(n=5) included in this paper. We obtained a mean ARI value of ~306±11ms for 
healthy zones and ~265±19ms for peri-infarct zones, and these ARI values were 
considered surrogates for APD90 corresponding to these two myocardial zones.  

Figure 3 shows a theoretical calibration curve a vs. APD90 generated with the 
Aliev-Panfilov mathematical model, from which we extracted the a values of interest. 
Specifically, by using fitting functions implemented in Matlab (Mathworks) as in [12] 
and [15], the mean values for measured ARIs yielded the following values for a: 
0.113 for healthy zones and 0.116 for peri-infarct, respectively. Note that here k was 
kept fixed, as we only derived generic a values for sinus rhythm cases (i.e., heart 
cycle length usually longer than 600 ms). 
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Fig. 2. Determination of ARI from the unipolar waves recorded by the CARTO system 

 

Fig. 3. Theoretical calibration curve used to derive generically the parameter "a" 

 

Fig. 4. (a) Fluorescence micrographs of Cx43 (scale 100 μm) for ROIS selected from (b) areas 
with different fibrosis severity in Picrosirius Red stain 

Figure 4 shows histopathology results obtained from samples containing healthy, 
peri-infarct and dense scar. A quantitative analysis demonstrated a significant 
reduction (> 50%) in Cx43 density in the peri-infarct as compared to the healthy 
myocardium; specifically, we measured a ~61% reduction of Cx43 in the longitudinal 
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direction and ~52% in the transverse direction. This reduction can be qualitatively 
observed in the light micrographs of fluorescence Cx43 included in Fig 4a. These 
values correspondingly lead to reduced conduction velocities in the normal and peri-
infarct areas, as per eq. (3). The analysis from selected ROIs, also yielded the 
following conductivity ratios (transverse : longitudinal) (1:2.53)2 for the normal 
myocardium and (1:2.07)2 for the peri-infarct areas, respectively.  

Notably, the myocardial tissue was categorized by an expert based on our novel 
grading system for fibrosis [18] into: healthy, peri-infarct and scar, using the 
Picrosirius Red stain, where collagen stains red and the healthy myocytes stain yellow 
(see Fig 4b). 

3.2 Impact of Model Parameters on Simulation Results 

To illustrate the impact of these generic parameters on activation maps, we included 
below several results from in silico simulations obtained using a 3D MRI-based 
biventricular heart model, previously constructed [10].  For simplicity, we virtually 
paced the heart from the apex of RV-endocardium, and observed the propagation of 
action potential under different combinations of model parameters. Figure 5a shows 
the 3D model with the pacing site and the scar (in the LCX territory) indicated by 
arrows, whereas Fig 5b shows the resulting simulated action potential waves in the  

 

 

Fig. 5. Simulation results obtained for an in silico 3D MR image-based model (a-b) using 
different input model parameters (c-d-e) (see text for details)  
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healthy and peri-infarct areas. The a values determined in Section 3.1 were set such 
that the APD90 values were equal to the mean ARI values obtained in the CARTO 
measurements. Figures 5c, 5d and 5e represent repolarization maps. These were 
obtained using different combinations of model parameters, where a 'bulk' 
conductivity in the normal tissue was set to d=3 to tune a conduction velocity of ~80 
cm/s in the direction parallel to the myocytes axes.  

The other model parameters were set to obtain the following combinations: (5c) 
isotropic healthy and peri-infarct tissue, (5d) reduced conductivity d in the peri-infarct 
by 50% and the same anisotropic conduction velocity ratio (1:2) in both healthy and 
peri-infarct zones, and (5e) a model customization per zones with the ratio of 
conduction velocities as obtained in Section 3.1.  

4 Discussion and Future Work 

Non-invasive evaluation methods like cardiac MR imaging and predictive image-
based computer models are becoming powerful tools for the clinician, as they can 
supplement the surfacic invasive EP data by providing transmural information such 
as: infarct location/extent and 3D propagation of the electrical wave through the heart. 
The integration of electrical and structural information will help us target such 
predictive models to desired clinical applications. However, the alteration of 
myocardial structure/function and corresponding tissue heterogeneities need to be 
quantified and integrated into appropriate predictive models. Hence, the estimation of 
generic parameters, the customization of image-based computer models, as well as the 
validation/testing under controlled experimental conditions, will remain important 
prerequisites prior to the integration of such MR image-based cardiac computer 
models into the clinical treatment planning platforms. 

In this work, we demonstrated the feasibility of estimating the Aliev-Panfilov 
model parameters corresponding to the repolarization phase and the anisotropy ratio. 
First, our experimental repolarization values (i.e., shorter ARI in the peri-infarct 
compared to the healthy myocardium) are consistent with the results obtained in a 
previous ex vivo optical study [15], and appear to be a hallmark of the changes in 
electrical properties at ~5-6 weeks after infarction. It is well known that in the acute 
phase (hours after insult) the APD becomes dramatically shorter due to hypoxia and 
altered pH, after which, in the sub-acute & early chronic phases, the APD starts to 
recover and eventually, month-years after the insult, the APD becomes longer in the 
ischemic peri-infarct in other large hearts (dog and human) [16].  A limitation is that, 
so far, we derived only a from sinus rhythm measures. At higher (pacing) frequencies, 
another recovery parameter (i.e., k) needs to be determined in order to reproduce 
correctly the restitution curve; however, there is no unique solution for the (a,k) pair 
(a disadvantage of the Aliev-Panfilov model). Lastly, we should mention that for the 
Aliev-Panfilov mono-domain model, the simulation time of 0.8s of the heart cycle on 
a mesh of approx. 200,000 elements (element size of ~1.2 mm), was about 40 min on 
an Intel ® Core™ 2 duo CPU, T5550 @1.83GHz, with 4 GB of RAM. With this 
respect, the Mitchell-Schaeffer physiological model might be more accurate to use 
and much faster if implemented using GPU [19].  
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We acknowledge that we used a simplified anisotropic model, which is distinct 
from the orthotropic models in that it only includes the fiber directions and neglects 
the sheet-like anisotropy and correspondingly, the (more realistic) three conductivity 
tensors. Although limited to measurements taken relative the fiber directions (and not 
including the sheets), our results showed that ρ was altered in the ischemic peri-infarct 
area, where Cx43 density was reduced by > 50% in both directions (longitudinal and 
transverse, respectively), consistent with other studies [17]. The redistribution of 
Cx43 triggers a reduced conduction velocity along with abnormal activation patterns 
as revealed by other studies [1], with conduction velocity considerably reduced in the 
peri-infarct areas. Such Cx43 measurements offered an alternative to the extraction of 
ρ from surfacic EP measurements (using the CARTO system) because the conduction 
velocity estimated from the depolarization times depends on the density of the 
recorded points (which are sparse around the peri-infarct and usually only from the 
endocardium).  

Overall, this study underlies the feasibility of customizing predictive MR image-
based models with generic model parameters derived from experimental data. In the 
myocardial infarction case, these model parameters should reflect the structural and 
electrical properties corresponding to a specific healing phase. Our parameters have to 
be used cautiously, as they are derived from a small set of data; thus, more 
experiments are needed to confirm these values as well as a quantitative comparison 
between the activation times predicted by the computer model and the measured 
depolarization-repolarization maps. From the experimental point of view, we need to 
reduce: a) the total procedure time associated with a typical in vivo MR study 
followed by an EP study, and b) the errors between the location of scar & peri-infarct 
identified by MR imaging and by the EP system. Here, an alternative would be to 
perform the EP study under real-time MR guidance. Such system has been 
successfully implemented and feasibility studies yielded promising results [20], with 
the MR-guided EP mapping producing a significantly lower average location error 
(i.e., a point to surface distance mean error of 2.1±1.1 mm when compared to a 
4.8±2.0 mm error obtained using CARTO). We illustrate below an example from a 
real-time EP-MR study performed in our laboratory, where the data was visualized 
using the open-source Vurtigo tool (www.vurtigo.ca). Figure 6 (left panel) shows the 
MR-compatible EP catheter maneuvered inside the LV cavity, together with a 
myocardial tissue classification from contrast-enhanced MR images in an infarcted 
swine. In the right panel, we included an interpolated depolarization map 
reconstructed over the LV endocardial surface, together with examples from two 
electrical signals (waves) from the healthy myocardium (ARI ~ 300ms) and ischemic 
peri-infarct (ARI ~ 270ms), which are within the range of the CARTO-based values 
derived in this paper and are also close to those derived by us from optical imaging, 
ex vivo [15]. These preliminary results, together with the lessons learned from the 
experimental-modelling framework integrating MR imaging and CARTO studies, 
give us confidence to anticipate successful implementation of predictive models using 
the real-time MR-guided EP studies and potentially integrate fast computer models 
into such platforms [19]. 
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Fig. 6. Example of a real-time MRI-EP study (see text for details) 

To conclude, computational models should include sufficient level of details at 
both anatomical and electrophysiological levels, and should capture accurately the 
structure and electrical function of the myocardium (in healthy and ischemic states). 
To do so, collaborative and multi-disciplinary efforts must be at the center of future 
research, and this will pave the success of translating the pre-clinical models into 
clinical platforms for image-guidance of cardiac EP procedures. 
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Abstract. Patient-specific computational models including morpholog-
ical and biomechanical models based on medical images have been pro-
posed to provide quantitative information to aid clinicians for Mitral
Valve (MV) disease management. Morphological models focus on ex-
tracting geometric information by automatically detecting the mitral
valve structure and tracking its motion from medical images. Biomechan-
ical models are primarily used for analyzing the underlying mechanisms
of the observed motion pattern. The recently developed patient-specific
biomechanical models have integrated the personalized mitral appara-
tus and boundary conditions estimated from medical images to predica-
tively study the pathological changes and conduct surgical simulations.
As a next step towards transitioning patient-specific models into clin-
ical settings, an automatic personalization algorithm is proposed here
for biomechanical models extracted from Transesophageal Echocardio-
graphy (TEE). The algorithm achieves the customization by adjusting
both the chordae rest length and material parameters such as Young’s
modulus which are challenging to estimate or measure directly from the
medical images. The algorithm first estimates the mitral valve motion
from TEE using a machine learning method and then fits the biome-
chanical model generated motion into the image-based estimation by
minimizing the Euclidean distances between the two. The algorithm is
evaluated on 4D TEE images of five patients and yields promising results,
with an average fitting error of 1.84 ± 1.17mm.

1 Introduction

Medical imaging techniques provide powerful tools to visualize valvular struc-
tures with echocardiography being the most widely used modality in clinical
applications because of its high temporal resolution, ease of use and relatively
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low cost. The newly developed 4D Transesophageal Echocardiography (TEE)
acquires clearer images with higher temporal resolution thus is now the prefered
modality for valve assessment. The advancement in imaging techniques allows for
more accurate quantitative evaluation and modeling of the Mitral Valve (MV)
structure. Quantitative patient-specific modeling tools are demanded to aid pre-
dictive surgical planing to achieve optimal treatment in clinical practice. [1]

Several approaches have been proposed to model MV geometry and dynamics,
including morphological and biomechanical models. The morphological models
employ an automatic or semi-automatic method to detect the mitral apparatus
and track its motion from medical images[3,4,5,6]. These models can provide
visualization and quantitative measurements of the anotomical structure, but
do not explain the underlying mechanisms of the motion pattern or pathological
changes. Several patient-specific biomechanical models [2,7] of MV have been
proposed using geometric information from medical images and general mate-
rial parameters of the mitral leaflet tissues from experimental results. Mansi
et al. [2] proposed a patient-specific biomechanical model and simulated Mi-
tralClip intervention with comparison to real outcome. Such models have great
potential to become efficient predictive tools to design preoperative treatment
plans in selecting the patients and determining clipping sites to ensure the op-
timal outcome. Votta et al. [1] reviewed recent advancement in computational
biomechanical models and identified areas of improvement to develop clinically
applicable tools. Realistic morphological and functional information is essential
for a comprehensive patient-specific model.

To facilitate the transition of patient-specific model to clinical applications,
a user-friendly platform has to be built for the clinicians to easily set up the
model for their purpose without going through complex training. An automatic
personalization algorithm is proposed in this paper to customize the biomechan-
ical model based on TEE images without any user interaction. The algorithm
automatically detects mitral valve motion from TEE images and fits the biome-
chanical model into the observed motion following a two step procedure. The first
step estimates the chordae rest length which can have a significant influence on
mitral valve dynamics[2], using a coarse-to-fine maximum derivative approach.
The second step estimates the material parameters such as Young’s modulus,
using Extended Kalman Filter (EKF)[8,9]. The algorithm provides a framework
for personalization of the biomechanical model where additional parameters of
interest can also be estimated in more complex models. The algorithm is evalu-
ated on TEE images of five patients with promising results.

2 Method

2.1 Overview of the Algorithm

In this paper, we study the mitral valve closure process from the end diastole,
which is the last frame (I0) where the mitral valve is seen fully open in TEE
images, to the first systolic frame (IN ) where the mitral valve is seen maximally
closed. The algorithm first estimates the leaflet geometry at the nth frame (gn)
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and tracks its motion to ensure inter- and intra- patient point correspondence
of the geometric representation. The biomechanical model generated motion se-
quence (h(g0,m)) is then fit into the image-based observation by adjusting a set
of patient-specific parameters (m), which are composed of leaflet biomechanical
parameters and the chordae rest length. The estimation problem is formulated
as follows:

m = min
m

f(m) = min
m

‖gn − h(g0,m)‖ (1)

where the cost function is represented by the Euclidean distances between
biomechanical model generated and image observed mitral valve closure. Model
personalization is achieved by minimizing the cost function to obtain the patient-
specific parameters. The cost function can be modified to penalize the mismatch
in degree of coaptation for certain clinical applications when matching at the
leaflet edge is more important than other regions. To solve the optimization
problem, a two-step procedure is followed as illustrated in Fig 1.

Fig. 1. Overview of the algorithm

2.2 Morphological Model

The mitral valve apparatus, including the mitral annulus, anterior and posterior
leaflets, and papillary tips, is extracted from end diastole and early systole using
the hierarchical discriminative learning algorithm described in [5]. The inter-
and intra- patient point correspondence is achieved through a manifold-based
motion model. The mitral leaflets are represented by triangulated surface meshes
as shown in Fig. 1. The geometry at the end diastole is then further processed
to be loaded into the biomechanical model. First, the one layer leaflet surface
mesh is extruded towards the ventricle for a set distance, which is 1.32 mm
and 1.26 mm for the anterior and posterior leaflet respectively, to move the
layer closer to the left ventricle thus forming a volumetric structure. Next, the
volumetric structure is discretized into tetrahedral meshes. This is followed by
mapping fiber models on the leaflets as in [2], where the fiber directions are
mainly parallel to the annulus while those in the anterior leaflet close to the
commissures gradually rotate to become perpendicular to the annulus. Finally,
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the chordae are attached between the leaflet and the papillary tips including
twenty eight marginal chordae and eight basal chordae. The insertion points
are determined by visual inspection and are identical for all the patients. The
geometry at early systole are processed in a similar manner and used in the
automatic personalization process.

2.3 Biomechanical Model

The mitral leaflets are modeled as linear, transversely isotropic and nearly in-
compressible elastic tissues [2]. The tissue material properties, including Young’s
modulus along and across the collagen fiber and shear modulus (EALf

, EALf⊥ ,
GAL, EPLf

, EPLf⊥and GPL respectively), of the anterior and posterior leaflet
are assumed to be different for different patients. The Poisson’s ratio (ν) is set
to be 0.488 to capture the incompressible nature of the tissues for both leaflets.
The mitral valve dynamics is simulated using a finite element method to solve
the dynamic equation:

MÜ + CU̇ +KU = Fc + Fp (2)

where U , U̇ and Ü are the displacement, velocity and acceleration vectors of
the vertices of the mitral valve mesh respectively. M is the diagonal mass ma-
trix (a uniform mass density ρ = 1.04g/ml is used), K is the stiffness matrix
and a function of material parameters, and C is the Rayleigh damping matrix
(C=0.1(M+K)). Fp is the force developed by the heart pressure and modeled
by a generic pressure profile that increases from 0mmHg to 120mmHg. Fc is the
force induced by the chordae which is calculated using the following equation:

Fc(vi, pi, t) = −kc,i(εc,i, t)× (Li(t)− Li,0) (3)

where Li(t) is the current elongation, Li,0 is the chordae rest length, εc,i(t) =
(Li(t)− Li,0)/Li,0 is the strain, kc,i is the spring tensile stiffness and related to
chordae material properties. The mitral annulus motion and the papillary tip
motion derived from the TEE images are used as the boundary condition for the
biomechanical model. The biomechanical model is implemented in SOFA1 . The
target set of patient-specific parameters are defined as

m = [EALf
, EALf⊥ , GAL, EPLf

, EPLf⊥ , GPL, L1MA, . . . , L14MA,

L1MP , . . . , L14MP , L1BA, . . . , L4BA, L1BP , . . . , L4BP ]

where LMA,LMP ,LBA,LBP are the chordae rest length of the marginal and basal
chordae attached to anterior and posterior papillary tips.

2.4 Personalization of the Biomechanical Model

The goal of personalization is to determine a set of parameters that mini-
mizes the distance (f(m)) between the biomechanical model driven and the
image-observed mitral valve closure. The first step of the algorithm aims to
personalize the rest length using a coarse-to-fine maximum derivative method
1 http://www.sofa-framework.org/

http://www.sofa-framework.org/
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Algorithm 1. Coarse-to-fine maximum derivative
1. Initialize the chordae rest length using the point-to-point distance from the papillary
tip and the insertion points at the end systole
2. At Jth level, change the group of the parameters in the direction of maximum
derivative to reduce the cost function
3. Repeat 2 until the cost function does not change between two consecutive iterations
4. Go to the (J+1)th level and repeat 2,3

as shown in Algorithm 1. Twenty-eight marginal chordae are used, fourteen of
which attached to each leaflet, and seven attached to each papillary tip. Eight
basal chordae are used, four of which are attached to each leaflet, and two at-
tached to each papillary tip. Fixing the material parameters, thirty-six param-
eters need to be estimated in the first step (m1 = [L1MA, . . . , L14MA, L1MP ,
. . . , L14MP , L1BA, . . . , L4BA, L1BP , . . . , L4BP ]). The estimation starts from the
first and coarsest level which has eight groups of parameters and ends at the
finest level where each chordae rest length is estimated individually. Grouping is
determined by their location where seven marginal chordae form one group while
two basal chordae form the other group. The grouping become finer at each level
and the number of chordae included in each group is halved until each chordae
rest length is estimated individually. Seven groups of marginal chordae and eight
groups of basal chordae are used in the second level. Fourteen groups of maginal
chordae are used in the third level and each of the marginal chordae rest length
are estimated individually in the fourth level. The method provides better com-
putational efficiency since the optimization at the coarse level provides a better
starting point for finer tuning.

The second step of the algorithm aims to personalize material parameters
using an Extend Kalman filter (EKF) approach since EKF provides the stable
sequential least square solution and has been shown to be efficient for material
parameter estimation in [8,9]. Once the chordae rest length is fixed, there are six
parameters (m2 = [EALf

, EALf⊥ , GAL, EPLf
, EPLf⊥ ]) to be estimated, four of

which can be derived from the other two. The ratio of Young modulus along and
across the fiber (r = Ef/Ef⊥) is fixed and the shear modulus is approximated by
G ≈ Ef/ (2 ((1 + ν))) to ensure the physiological consistency of the parameters.
The state space representation is written as follows:

m2,k = f (m2,k−1) + wk−1 = m2,k−1 + wk−1

gk = h(m2,k) + vk

where wk−1 and vk are the state and process noises respectively and assumed to
follow Gaussian distributions with covariance matrix Qk and Rk. The observa-
tion vector gk = [xk1, yk1, zk1, ..., xki, yki, zki, ..., xkL, ykL, zkL] is the geometry
vector which is represented by L number of vertices (L=3248 in this study).The
process function f (�) is derived from the assumption that material parameters
and the chordae rest length stay constant during the cardiac cycle. The obser-
vation function h(�) is derived from the biomechanical model specifying loading,
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geometry, tissue property, boundary condition, and dynamic equilibrium func-
tion and is the same as in the cost function (eq. 1).

The EKF estimation is first initialized with the general material parameters
(m̂2,0,) and its covariance matrix (Q0 equals the identity matrix) and then
follows a prediction-correction iteration. In the prediction step, the targeted
parameters mf

2,k are predicted to be the same as the last estimates. In the
correction step, the predicted closure h(mf

2,k) using the predicted parameters
mf

2,k is compared to the observation gk to generate new estimates ma
2,k. The

iterative process is stopped when the average distances of the patient-specific
model and the image based estimation between two consecutive iterations are
less than 0.01mm or the maximum number of iteration is reached. The whole
set of patient-specific parameters is obtained after the second step.

Fig. 2. The comparison between the patient-specific model and the image based esti-
mation (treated as ground truth)

3 Experiments and Results

The automatic personalization algorithm is evaluated on the TEE images of five
patients. First, the mitral valve apparatus and its motion is estimated from the
TEE images using the machine learning method described in 2.2. The mitral
leaflets are represented by tetrahedron finite elements with 9408 elements and
3248 vertices. Second, the mitral valve apparatus at the end diastole is loaded
into the biomechanical model and the motion of mitral annulus and papillary
tips are used as the prescribed boundary conditions. Third, the two step person-
alization algorithm is applied by adjusting the chordae rest length and material
parameters from a coarse to fine level. The initial value of the chordae rest length
is determined by the point-to-point distance from the papillary tip and the in-
sertion points at the end systole. The initial value of the Young’s modulus at the
anterior and posterior leaflet is set to be 6.233 MPa and 2.087 MPa respectively
which is the value estimated experimentally and used in [2].
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Table 1. The Euclidean distances between the mitral valve closure generated from the
biomechanical model and TEE with different level of personalization

Chordae I Chordae II Chordae III Chordae IV Final Semi-Manual
Patient 1 1.49±0.83 1.46±0.84 1.46±0.84 1.46±0.84 1.45±0.84 1.47±0.89
Patient 2 2.98±1.86 2.89±1.88 2.89±1.88 2.47±1.46 2.47±1.46 2.25±1.27
Patient 3 1.87±1.19 1.87±1.18 1.86±1.17 1.70±1.07 1.66±1.08 1.91±1.18
Patient 4 1.80±1.20 1.79±1.21 1.79±1.21 1.69±1.14 1.55±1.09 1.74±1.34
Patient 5 2.09±1.36 2.05±1.35 2.04±1.35 2.04±1.35 2.04±1.35 2.27±1.40

The results of the automatic personalization at each level compared to the
semi-manual patient-customization method in [9] are shown in Table 1. The au-
tomatic algorithm performs similarly if not better than the semi-manual method
with an expert adjusting the chordae rest length and the EKF adjusting the ma-
terial parameters. The average fitting error is 1.84±1.17mm. It can be seen that
most patients achieve a good match at the coarse level of chordae adjustment.
Some patients do not require fine tuning for the chordae. The adjustment of
the chordae rest length brings the leaflet to the matching surface from the mor-
phological perspective and reduces the average distances to about 2mm which
is comparable to the error of the image-based observation from the quantita-
tive perspective. The first step adjustment provides a better starting point to
estimate the patient-specific material parameters to reduce the distance even
further. Fig. 2 shows the distances between the personalized model and the im-
age based estimation as the ground truth in the form of a color-map from both
top and side views. It can be seen that the patient-specific model simulates the
mitral valve closure very closely to image based estimation. The matching is
especially close in the mitral annulus region thanks to the use of the boundary
conditions. The performance of the algorithm can be improved in certain regions
by employing the cost function with related terms (eq.1).

Table 2. Patient-specific material parameters

EALf EALf⊥ GAL EPLf EPLf⊥ GPL

P1 6.28 2.37 2.11 2.21 1.99 0.74
P2 6.23 2.35 2.09 2.09 1.89 0.70
P3 5.73 2.16 1.93 4.58 4.14 1.54
P4 3.60 1.36 1.21 2.34 2.11 0.78
P5 6.23 2.35 2.09 2.09 1.89 0.70

The estimated patient-specific material parameters are shown in table 2. The
anterior leaflet shows stiffer properties compared to the posterior leaflet for all
patients. The general material parameters are also the optimized estimation for
two patients. Different initial value of Young’s modulus are used here but reach
the same estimate.
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4 Discussion and Conclusion

An automatic personalization algorithm is presented to estimate the patient-
specific chordae rest length and material parameters. The quantitative evalua-
tion on five patients demonstrates that the algorithm works as an efficient tool
for patient-specific biomechanical model calibration. The algorithm allows the
biomechanical model to simulate mitral valve closure with an average Euclidean
distance of 1.84±1.17mm compared to the image based observation without any
user interaction. It provides possibilities for biomechanical model to be used in
clinical applications to simulate mitral valve motion and surgical modification in
a user-friendly setting. The closer match between the biomechanical model and
image observation creates a solid foundation for predictive surgical simulations.
In addition, the patient-specific material parameters estimated using the algo-
rithm may be used as quantitative support to explain the pathological changes.
The applications of the algorithm are not limited to one imaging modality or
certain biomechanical models. Instead, it provides a framework with great flexi-
bility which can be used for cardiac Computed Tomography (CT) and Magnetic
Resonance (MR) images with a different biomechanical model. Further valida-
tion on animal data compared to the material parameters measured in-vivo will
confirm the performance of the algorithm.
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Abstract. For most cardiac catheterization interventions, X-ray imag-
ing is currently used as a standard imaging technique. However, lack
of 3D soft tissue information and harmful radiation mean that X-ray
imaging is not an ideal modality. In contrast, 3D echocardiography can
overcome these disadvantages. In this paper, we propose a fast catheter
tracking strategy for 3D ultrasound sequences. The main advantage of
our strategy is low use of X-ray imaging, which significantly decreases
the radiation exposure. In addition, 3D soft tissue imaging can be intro-
duced by using ultrasound. To enable the tracking procedure, initializa-
tion is carried out on the first ultrasound frame. Given the location of
the catheter in the previous frame, which is in the form of a set of or-
dered landmarks, 3D Speeded-Up Robust Feature (SURF) responses are
calculated for candidate voxels in the surrounding region of each land-
mark on the next frame. One candidate is selected among all voxels for
each landmark based on Fast Primal-Dual optimization (Fast-PD). As a
result, a new set of ordered landmarks is extracted, corresponding to the
potential location of the catheter on the next frame. In order to adapt the
tracking to the changing length of the catheter in the view, landmarks
which may not be located on the catheter are ruled out. Then a catheter
growing strategy is performed to extend the tracked part of the catheter
to the untracked part. Based on 10 ultrasound phantom sequences and
two clinical sequences, comprising more than 1300 frames, our experi-
mental results show that the tracking system can track catheters with
an error of less than 2.5mm and a speed of more than 3 fps.

Keywords: Catheter Tracking, Ultrasound, Cardiac Catheterization.

1 Introduction

X-ray fluoroscopic imaging is used as a standard modality in cardiac catheter ab-
lation procedures. However, it lacks 3D soft tissue information and uses harmful
ionizing radiation. Alternatively, electroanatomical mapping systems are able to
locate and guide catheters relative to the anatomy, but require additional hard-
ware to track the catheters. In contrast, echocardiographic (ultrasound, US)
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imaging has none of these problems and has been used to guide other types
of interventions such as needle biopsies. The main disadvantages of US are its
narrow field of view and acoustic artifacts when visualizing interventional de-
vices. These drawbacks make detecting and tracking these devices challenging.
Quantitative localisation can be used to augment visualisation or to monitor
the precise treatment sites relative to the soft tissue information. Some existing
work has focused on general surgical tool tracking in US by introducing external
markers. In [1,2], passive markers attached to a surgical instrument were used to
estimate the position and orientation of the instrument based on the US image
using simple image processing. In [3], small US sensors were mounted on surgical
tools to receive and transform acoustic energy to electrical signals, which were
then analyzed to reconstruct the 3D coordinates of the tool. However, external
markers are difficult to attach to micro surgical tools such as thin catheters.
Micro surgical tool tracking in US has mainly focused on biopsy needle track-
ing. A efficient and robust needle detection and tracking algorithm based on
level sets and partial differential equations was proposed in [4]. A more general
micro tool localization in US based on model fitting using random sample con-
sensus (RANSAC) and local optimization refinement was proposed in [5] and
[6]. Recently another improved needle detection algorithm was proposed in [7].
Kalman filtering was used to combine the results of RANSAC-based and speckle
tracking-based needle tip localization.

Currently, most research is focused on tracking rigid surgical tools rather
than non-rigid tools such as long, flexible and thin catheters. To the best of our
knowledge, only [8] managed to extract catheters in US volumes. The key idea
was to use a registration between X-ray and US imaging. The tracking results
in X-ray images were then employed to extract catheters from a reduced search
space in US. This work had limited experimental validation and required long
X-ray exposures.

In this paper, we present a fast catheter tracking system based on only ultra-
sound imaging for cardiac catheterization interventions. The main contributions
of this work are as follows: (1) To the best of our knowledge, this is the first work
towards real-time catheter tracking using only ultrasound sequences for cardiac
catheterization; (2) Compared with combined X-ray and US guided catheter
tracking [8], we perform experimental validation in more than 800 phantom and
more than 500 clinical US images. Our results show that with a small trade-off
in accuracy we can avoid long-term X-ray exposure and achieve higher tracking
speed.

2 Methodology

Given an initialization comprising a set of ordered landmarks defining the catheter
on the first frame (obtained either manually or automatically[8]) the voxels in
each landmark’s neighborhood in the next frame are allocated with credits, which
are calculated based on 3D Speed-Up Robust Features (SURF)[9]. Fast Primal-
Dual optimization (Fast-PD) [10] is then used to select one voxel for each land-
mark. The selected and ordered voxels represent the potential catheter in the
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next frame. Non-credible voxels, which may not be located on the catheter,
are removed. Finally, a catheter-growing algorithm is performed to extend the
tracking to untracked parts of the catheter.

2.1 Search Neighborhood and Measurement Definition

The tracked catheter in US is represented as a group of ordered landmarks. The
distance between each pair of adjacent landmarks is 3–5 voxels (approximately
1–2 mm). Given the representation of the catheter in the previous frame, the
search for the catheter in the next frame is constrained to a 2D search region
around each landmark, each with its own local coordinate system. Within this
region, each candidate voxel is allocated with a credit, calculated based on the
SURF feature response in 3D.

Search Neighborhood Definition Based on Local Coordinate System.
Each landmark pi, i = 1, . . . , n (pi denotes the global coordinate in the US
volume) defines a local coordinate system Ol,iXl,iYl,iZl,i. The direction of axis
Zl,i is aligned tangentially to the catheter, towards the next landmark. The
direction of Xl,1 and Yl,1, for the first landmark, can be determined arbitrarily.
However, given the coordinate system of a previous landmark i, Xl,i+1 and Yl,i+1

should be determined according to the following rule, shown in Fig. 1.
Given the local coordinate system Ol,iXl,iYl,iZl,i (colored in blue in Fig. 1(a))

of the previous landmark and the direction of Zl,i+1 (colored in green) for the
next landmark, we first rotate Ol,iXl,iYl,iZl,i around axis Yl,i to align the Z
axis to the projection of axis Zl,i+1 onto the plane Ol,iXl,iZl,i. This defines a
new coordinate system OtempXtempYtempZtemp (colored in red). This is then
rotated around OtempXtemp to align axis Ztemp with axis Zl,i+1. Through these
two rotations, the local coordinate system Ol,i+1Xl,i+1Yl,i+1Zl,i+1 is determined.
The purpose of this transformation is to ensure that two voxels which have the
same local coordinates but in two adjacent coordinate systems have a small
spatial distance between them. This is shown in red in Fig. 1(b) and (c).

After the definition of the local coordinate system for each landmark, the
search region for landmark pi, i = 1, . . . , n can be denoted by:

Si = {|xl,i| < R, |yl,i| < R, zl,i = 0} (1)

where (xl,i, yl,i, zl,i) are the local coordinates and R is a search range. A more
efficient discrete search is realized by constraining the search range to the plane
zl,i = 0 for each landmark.

Measurement Definition. For each voxel ci,j , j = 1, . . . ,m in the search re-
gion for a landmark pi, a credit credi,j is allocated. The credit indicates the like-
lihood of the catheter passing through this voxel. Hessian matrix based methods
are preferred to calculate the credit. We use 3D SURF because it is fast, based
on integral images and robust to inaccurate computation of the Hessian matrix
compared with the Frangi vesselness filter[11].
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(a) (b) (c)

Fig. 1. Local coordinate definition. (a) Transformation between two local coordinate
systems for adjacent landmarks; (b) Correct determination of local coordinates for the
next landmark; (c) Incorrect determination of local coordinates for the next landmark.

2.2 Fast-PD Optimization

Fast-PD [10] is a fast discrete multi-label approach for solving a Markov Random
Field (MRF) optimization based on a weighted graph. In our application, the
graph is defined as G =< V,E >, where V consists of all of the n landmarks
of the catheter and E consists of edges connecting any two adjacent landmarks.
For each landmark pi, a search region Si and the corresponding local coordinate
system Ol,iXl,iYl,iZl,i are defined according to Section 2.1, with each region Si

containing m voxels. Each voxel ci,j has its own credit credi,j and its own local
2D coordinate (xl,i,j , yl,i,j) (because zl,i,j = 0, all voxels in the search region are
constrained to a local plane) corresponding to the ith landmark. Each coordinate
in any local coordinate system within the search region is considered as one label.
Voxels with the same 2D local coordinate, even though they belong to different
coordinate systems corresponding to different landmarks, are assigned the same
label. Thus all of the voxels in a search region define a label space L of size m.

The energy function in our application is defined as:

argmin
x

f(x) =

n∑
i=1

(ui(xi)) + γ

n−1∑
i=1

(dis(xi, xi+1)) (2)

where x = {x1, x2, · · · , xn} is the selected voxel among all m candidates in
the search region for each landmark, also known as the label assignment. The
unary term ui(xi) should be a decreasing function of its credit credi,j (we used
ui(xi) = (1 − credi,j)). dis(a, b) is the 2D Euclidean distance between the local
2D coordinates of the voxels corresponding to labels a and b.

Given a, b ∈ L, the unary term indicates the likelihood of the catheter passing
through. The piecewise term is the planar distance between two locations in the
search area corresponding to two labels, which functions as a smoothing term.
All edge weights are set to one. γ is the balance parameter set manually.
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2.3 Non-credible Landmark Removal and Catheter Growing

Fast-PD tracking can track catheters with motion along their normal direction,
as this keeps the length of catheter in view unchanged. However, in practice the
length of the catheter gradually changes. This gradual change causes the tracking
error accumulate and eventually results in a tracking failure. To address this
problem, a non-credible landmark removal algorithm, as well as a consequent
catheter growing algorithm are included in the tracking system. Non-credible
landmarks, which correspond to a low likelihood of a catheter, are ruled out to
adapt the tracking to a decreasing length. If more of the catheter comes into
view, the growing algorithm can extend to undetected parts.

Starting from the two ends of the already tracked part of the catheter, each
landmark is checked for its credibility until a credible landmark is found. All non-
credible landmarks are removed from the representation by a threshold τcred to
each landmark’s credit credi,lb, where lb is the label selected for landmark i
through Fast-PD. After removal, an orientation vi, along which the growing
should continue, is calculated for each of the two end landmarks i based on
edge points extracted in the neighborhood. Because each edge point has its own
gradient direction vector ei,j , j = 1, . . . , k (for k edge points), the orientation
vector can be solved through the following equation:

Aivi = 0, ‖vi‖ = 1. (3)

where Ai = {eTi,1, eTi,2, . . . , eTi,k, }T .
This equation is solved by SVD. After a coarse solution is obtained, non-

supporting edge points, which have a smaller angle with vi, are removed (the
threshold is π/3 in our application). Then the coarse solution is refined based
on the remaining supporting points. The ratio of the number of supporting edge
points over all edge points for each landmark is denoted by τi. If τi > 0.5, the
growing will continue, otherwise it is terminated.

If the orientation is accepted, then the step size of growing should be deter-
mined. Given two adjacent landmarks pi−1 and pi, a normalized vector vi−1,i

from pi−1 to pi is calculated. The size of the growth step is determined by:

�si = (M −N)vT
i−1,ivi +N. (4)

whereM andN are the maximum and minimum size of growth step set manually
(M = 5, N = 3 voxels in our application). By setting the size of the steps through
this equation, the growth will take smaller steps when a sharp turn occurs. After
both the direction and the size of the step are determined, the next candidate
position can be acquired by:

p′
i+1 = pi +�si(vi). (5)

The final position of the next landmark is determined by finding the voxel within
a defined neighborhood of p′

i+1 with the largest credit calculated through the
method in Section 2.1. If all of the candidates’ credits are below the threshold
τcred, the growth will be terminated.
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3 Experiments

A comparison was made between the proposed algorithm with [8] using 10 se-
quences of dynamic phantom data with ground truth catheter positions manu-
ally annotated by a single expert observer. A further two long clinical sequences,
containing cardiac valves with inserted guidewires (approximately 2mm in thick-
ness), were also used to validate its practical performance. The phantom data,
acquired with a Philips X7-2t TEE probe, comprised more than 800 frames with
160×64×208 voxels. The two clinical sequences comprised more than 500 frames
in total with 144×160×208 and 160×64×208 voxels respectively. Experiments
were performed on an Ubuntu Linux system on a 3.40GHz, 8GB desktop.

The following performance metrics were defined to evaluate each algorithm’s
speed, accuracy and robustness: (1)Average frame rate. This evaluates speed,
which directly determines performance for real-time applications; (2) Average
tracking error. For each landmark i, a shortest distance di to the ground truth
is calculated. Then a threshold ρ is used to select correctly tracked landmarks
with di ≤ ρ. The average of di among correctly tracked landmarks is defined as
the tracking error; (3) Incorrect tracking percentage (ITP). ITP is defined
as the number of incorrectly tracked landmarks over the total number of land-
marks. ITP indicates the reliability of the tracking results. (4) Failed tracking
percentage (FTP). For each landmark on the ground truth, the minimum
distance to the tracked curve is calculated. The landmark is considered as suc-
cessfully tracked if the distance is below ρ. FTP is defined as the number of failed
landmarks over the total number of landmarks on the ground truth. It evaluates
to what extent the whole catheter can be tracked. (5) Ratio of failed tracked
frames. If the average credit for all landmarks is below τcred/3, we treat it as a
failure. The number of frames where a tracking failure is detected over the total
number of frames can indicate the need for re-initialisation.

Parameters were selected based on prior information and experiments on a
range of candidate values. Some of them, such as the scale of SURF, are depen-
dent on the data and were selected based on prior knowledge for each dataset
such as the size of the catheter. Others were selected based on experiments and
can be generally extended to other data. Based on clinical sequence 1, Fig. 2
shows the performance in terms of accuracy, ITP and FTP, which are the most
important measures, for a range of values of the two most important parame-
ters: the threshold for non-credible landmarks, τcred, and the balance ratio for
Fast-PD, γ. These results show that a range of τcred = 0.2 ∼ 0.4 and γ = 0.5 ∼ 2
gives robust performance. We set τcred = 0.3 and γ = 0.1.

Fig. 3 shows a comparison with [8], marked with (x), for different ρ (1–15)
based on all the phantom data. In addition, the average speed of [8] is 1.69
fps while ours is 6.68 fps. For phantom data, the ratios of failures are all zero.
The results show that our method can achieve a faster speed and a decrease in
FTP. The trade-off is a small rise in tracking error and ITP, which is caused by
inferior echo imaging quality compared with X-ray imaging. The most impor-
tant advantage of our method is that X-ray exposure can be reduced significantly.
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Fig. 2. Parameter selection based on clinical sequence 1:(a) feature credit threshold
τcred; (b) Fast-PD balance γ
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Fig. 3. Evaluation with different ρ based on phantom data

Fig. 4. An example of one tracked result. From left to right are phantom data, clinical
sequence 01 and 02. The tracking results are marked with yellow curves.
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Given ρ = 5mm, our method on clinical sequences 01/02 can achieve a speed
of 3.19/6.19 fps and an error of 1.39/2.36 mm, with FTP of 8.47/10.96%, ITP
of 3.21/10.73% and a failure ratio of 0.00/6.13%, respectively. Fig. 4 shows an
example of the tracked results on both phantom and clinical data.

4 Conclusion

We have proposed a fast catheter tracking strategy based on only ultrasound
imaging for cardiac catheterization. The experimental results show that it can
track catheter motions at more than 3fps, with an error of less than 2.5mm.
Less than 30% of the tracked results are incorrect and less than 11% of the
ground truth is not tracked. Compared with [8], our method is faster and can
track a larger percentage of the catheter with a small trade-off in accuracy and
incorrectly tracked percentage. The low failure rate within 7% indicates that
re-initialisation by X-ray or manual intervention will be rare. Future work will
introduce catheter tip localization and temporal consistency into this system.
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Abstract. We propose a novel deformable model with statistical and
deterministic components for LV segmentation in cardiac magnetic res-
onance (MR) cine images. The statistical deformable component learns
a global reference model of the LV using Principal Component Analy-
sis (PCA) while the deterministic deformable component consists of a
finite-element deformable surface superimposed on the reference model.
The statistical model accounts for most of the global variations in shape
found in the training set while the deterministic skin accounts for the
local deformations consistent with the detailed image features. Intensity
gradient-based image forces are applied to the model to segment and re-
construct LV shape. We validate our model on the MICCAI Grand Chal-
lenge dataset using leave-one-out training. Comparing the automated
segmentation to the manual segmentation yields a Mean Perpendicular
Distance (MPD) of 3.65 mm and a Dice coefficient of 0.86.

1 Introduction

The myocardial wall in the left ventricle (LV) is the main pumping structure
of the heart and its function is important in the assessment of cardiovascular
disease. By accurately segmenting the LV in cine MR images, cardiac contrac-
tile function can be quantified according to LV volumes and ejection fractions.
Manual segmentation in MR images is a tedious process performed by clinicians,
which is subject to inter- and intra-observer variability that can lead to incon-
sistent diagnosis. These issues have motivated researchers to develop automated
methods that aspire to match the ability of expert clinicians to segment LV
shape. The recent survey [1] provides an overview of different methods that have
been applied to LV segmentation in MR images.

Deformable models have revolutionized model-based image analysis and their
variational approach has been successfully applied to segmentation and track-
ing in medical images [2]. For example, the deformable model in [3] involves a
regularization energy, which controls smoothness of the surface, and an image
energy, which is generated from image features. The shape of the surface evolves
under the influence of external forces to attain a minimum-energy configuration.
Such models provide local control over the surface and include only weak shape
priors that impose anatomical constraints yielding smooth, closed LV shapes in
MR short axis images.
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The Deformable Superquadric Model (DSM) formulation in [4] includes a
stronger shape prior in the form of a global superquadric shape. A finite-element
locally deformable skin is superimposed on this global parameterized reference
shape. The global and local degrees of freedom of the deformable model evolve
under the influence of external forces, leading to the optimal fit of the reference
shape and skin. As we show in the present paper, this formulation is appropriate
for introducing statistically learned global reference shapes.

The statistical deformable model-based analysis of images was pioneered by
the introduction of the Active Shape Model (ASM) [5] and the Active Appear-
ance Model (AAM) [6], which use Principal Component Analysis (PCA) to learn
appropriate shape/deformation priors from hand-segmented data. The AAM has
been successfully applied to LV segmentation from cardiac MR images [7–10].
These methods provide a strong prior for shape and texture, such that the result-
ing shape is influenced by the variations present in the training set. PCA-based
methods provide global control of shape and appearance, but the PCA priors can
often be too restrictive and may not generalize well to variations not observed
in the training set. Such uncommon variations can occur in pathological cases
such as myocardial infarction and cardiomyopathy.

The above considerations have motivated our efforts to combine statistical
and deterministic deformable models. In [11] we combined AAMs and DSMs in
a multi-model, multi-stage approach. In the present paper, we further develop
our approach by proposing a novel unified deformable model that replaces the
superquadric reference shape with a statistically-learned PCA reference shape.

With similar motivations, a PCA shape prior is embedded in the internal
energy formulation of a deformable mesh in [13]. At each iteration, the inter-
nal energy is dictated by the projection of the resulting shape on the modes of
variation. The gradient-based data term is part of the external energy, and is
responsible for pulling the mesh towards features of interest. Our model is more
generic in the sense that any kind of external forces (gradient, inertial, or optical
flow) can be applied to influence shape without any change to the model’s for-
mulation. The PCA parameters evolve simultaneously along with the pose and
local displacement parameters, all under the influence of external forces. Such
abstraction of external forces facilitates the design of image potential functions
that influence the shape of the model. For example, we can design a potential
based on optical flow to change the shape of the model according to the LV mo-
tion across phases in the images. Finally, the finite element skin provides good
control over the smoothness of the surface, and by virtue of its ability to evolve
independently, it is able to assume shapes that may not have been captured by
the learned deformations of the PCA reference shape.

2 Model Formulation

Our formulation combines the strengths of deterministic and statistical de-
formable models. On the one hand, a PCA statistical component provides a
strong learned shape prior that captures the global variations in the training
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Fig. 1. Model Geometry

set. On the other hand, a deterministic deformable component affords local vari-
ations in shape that are dictated by the observed image features. The formula-
tion of our model mainly involves embedding the PCA reference as illustrated
in Fig. 1.

2.1 Geometry

The model is a closed surface that has u = (u, v) as its material coordinates.
Principal Component Analysis (PCA) is applied to a set of aligned 3D LV shapes
to obtain a discrete reference shape s(u) as

s(u) = s̄(u) +Ps(u)qs(u)
T , (1)

where s̄ is the mean shape, the columns of matrix Ps are the modes of variation,
and qs are the shape or the PCA parameters. The translational offsets across the
training shapes are removed by translating the respective centroids to the origin,
and the rotational offsets are removed using Ordinary Procrustes Analysis. The
Jacobian of the PCA reference shape s is given by

J(u) =
∂s(u)

∂qs(u)
= Ps(u), (2)

thus characterizing how the shape changes when the parameters qs change. The
Jacobian is key to the interaction of external forces with the model dynamics
described later.

A finite element deformable skin is superimposed on the reference shape
(Fig. 2) to account for local deformations. The local displacements d(u) are
expressed as a linear combination of finite element basis functions bi(u) as fol-
lows:

d(u) =
∑
i

diag(bi(u))qi = Sqd, (3)
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where qd = (...,qi, ...)
T is a set of local displacements qi at each mesh node i

and S holds the basis functions. In addition to the PCA parameters qs and the
local displacement parameters qd, the unified model also has global translation
and rotation parameters qc and qθ. All the degrees of freedom (DOF) for the
model are collected in a single vector

q = (qT
c ,q

T
θ ,q

T
s ,q

T
d )

T . (4)

2.2 Dynamics

Given a new set of MR image slices for a patient, the vector q yielding a model
that best fits the images must be computed. Applying Lagrangian dynamics, the
model is made dynamic in q, thus characterizing the evolution of q under the
influence of external forces. The equations of motion are given as

Cq̇+Kq = fq, (5)

where q̇ is the time derivative of the DOF, Cq̇ are damping forces,Kq are elastic
forces and fq are external forces applied to the model. The stiffness matrix K
determines the material/elastic properties of the finite element skin.

We impose a spline deformation energy on the local displacements qd as

E(d) =

∫
w1(u)

((
∂d

∂u

)2

+

(
∂d

∂v

)2
)

+ w0(u)d
2 du dv, (6)

where w0(u) controls the magnitude of the local deformation and w1(u) controls
its variation across adjacent nodes on the skin.

The equations of motion in (5) are integrated through time using an explicit
Euler method. The degrees of freedom in the vector q are updated from time t
to time t+Δt as follows:

q(t+Δt) = q(t) +Δt
(
C(t)

)−1 (
f (t)q −Kq(t)

)
. (7)

Such a system will come to rest when the internal (damping and elastic) and
external (image) forces equilibrate. Additional background details about the
formulation and implementation are provided in [4].

2.3 Image Forces

The model, initialized with a mean PCA reference shape, is placed in the 3D
volume formed by the MR slice stack, and deformed under the influence of image
forces. The image forces are designed to attract the surface of the model towards
the respective myocardial boundaries (endo and epi). The first step in designing
forces is to define a gradient-based potential function on an image I as

P = ‖∇(Gσ ∗ I)‖, (8)
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Fig. 2. PCA reference (left). Finite Element skin (center). Skin pulled away from the
reference (right).

where the Gaussian smoothing width σ determines the range of influence of the
forces. Multiple smoothing widths (Fig. 3) are used to attain equilibrium faster.
Such a potential function presents image forces that attract the surface of the
model towards image intensity edges. The force distribution is the gradient of
the potential function:

f = β∇P, (9)

where β controls the scale of the force. The values for β, the stiffness parameters
w1(u) and w0(u), and the time step Δt are carefully selected to maintain sta-
bility. In our implementation, we have used constant values w1 = 4 × 10−3 and
w0 = 2 × 10−6, β = 30, and Δt = 1. The image smoothing and normalization
methods affect the choice of these values.

We apply two different kinds of forces to the inner and outer walls of our
model to differentiate between the endocardial wall (LV blood pool-myocardium
interface) and the epicardial wall (myocardium/right ventricle (RV) and my-
ocardium/outer organs interfaces). Since the blood pool and the pericardial fat
appear bright and the myocardium appears dark in cine MR images, we can
make use of the information present in the direction of the image gradients. At
the endocardial border, the image gradients are oriented towards the LV blood
pool, whereas at the epicardial border, the image gradients are oriented away
from the LV blood pool. Thus, the endocardial forces fI and the epicardial forces
fO are given as

fI(u) =

{
f(u), if ∇I · x(u) < 0

0, otherwise,
(10)

fO(u) =

{
f(u), if ∇I · x(u) > 0

0, otherwise,
(11)

where the tests involve the projection of the image gradient on the position
vectors x(u) of the points on the model surface whose centroid is at the origin.
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Fig. 3. Image potentials at multiple smoothing widths (4, 3, 2, 0 mm)

Table 1. Mean Perpendicular Distance (mm) and Dice coefficient (45 cases)

MPD ED-Epi ED-Endo Dice ED-Epi ED-Endo

MEAN 3.6 3.7 MEAN 0.88 0.84
STD 0.52 0.62 STD 0.02 0.04
MAX 4.89 4.68 MAX 0.93 0.91
MIN 2.11 2.16 MIN 0.81 0.75

3 Results

We validated the segmentation ability of our model using leave-one-out train-
ing on end-diastolic (ED) images of the 45 MICCAI Grand Challenge datasets.
The leave-one-out validation was fully automated and the mean reference model
was initialized in the volume such that the centroid of the model coincided with
the center of the mid-slice. Initially, the model was subject only to translational
forces designed using optical flow potentials across phases. Such forces approx-
imately localize the myocardium and help in moving the initial mean reference
closer to the actual solution. Subsequently, all the parameters (rigid and non-
rigid) were stepped forward in time. The PCA parameters qs are restricted
within +2 and −2 standard deviations (which can be obtained from the corre-
sponding eigenvalues) from the mean in order to prevent unlikely shapes. The
deformation of the skin is controlled by the w1 and w0 constants. The model
is stepped forward across multiple Gaussian smoothing widths (4, 3, 2, 0 mm),
finally converging at the myocardial boundaries.

Due to the ambiguous gradient information at the myocardium interface with
lungs and other organs, the epicardial boundary is harder to localize. By virtue
of the model having the MICCAI Grand Challenge trained PCA reference shape,
the papillary muscles were included in the blood pool (Fig. 4). We used the Mean
Perpendicular Distance (MPD) and Dice coefficients (Table 1) to compare the
positioning errors of automated contours with respect to the expert-delineated
contours. The average Dice coefficient and the average MPD for the ED seg-
mentation are 0.86 and 3.65 mm respectively, and these are close to the results
presented in [14], [15], and [16]. The automated contours for the mid-slices are
more accurate than those for the slices towards the apex due to partial volume
effects.
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Fig. 4. Examples of automated contour segmentation for four cases

4 Conclusion

We have proposed a novel deformable model for LV segmentation in cardiac
MR images, which combines a strong statistical prior learned from manually-
segmented training data through PCA with a finite element deformable skin.
Our model is unique in the sense that the PCA reference shape is embedded
in its physical formulation and it evolves under the influence of external image
forces. Leave-one-out validation on the 45 MICCAI Grand Challenge datasets
yields good results. Our work brings us a step closer to the automation of all
phases of LV segmentation in cardiac cine MRI.
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Abstract. Valvular heart disease affects a high number of patients, ex-
hibiting significant mortality and morbidity rates. Mitral Valve (MV)
Regurgitation, a disorder in which the MV does not close properly dur-
ing systole, is among its most common forms. Traditionally, it has been
treated with MV replacement. However, recently there is an increased
interest in MV repair procedures, providing better long-term survival,
better preservation of heart function, lower risk of complications, and
usually eliminating the need for long-term use of blood thinners (anti-
coagulants). These procedures are complex and require an experienced
surgeon and elaborate pre-operative planning. Hence, there is a need
for efficient tools for training and planning of MV repair interventions.
Computational models of valve function have been developed for these
purposes. Nevertheless, state-of-the-art models remain approximations
of real anatomy with considerable simplifications, since current modali-
ties are limited by image quality. Hence, there is an important need to
validate such low-fidelity models against comprehensive ex-vivo data to
assess their clinical applicability. As a first step towards this aim, we
propose an integrated pipeline for the validation of MV geometry and
function models estimated in ex-vivo TEE data with respect to ex-vivo
microCT data. We utilize a controlled experimental setup for ex-vivo
imaging and employ robust machine learning and optimization tech-
niques to extract reproducible geometrical models from both modalities.
Using one exemplary case, we demonstrate the validity of our framework.

1 Introduction

The mitral valve (MV) separates the left atrium from the left ventricle and pre-
vents the blood flow back to the left atrium during systole. Incorrect MV closure

O. Camara et al. (Eds.): STACOM 2013, LNCS 8330, pp. 188–195, 2014.
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appears in many cardiac diseases and often requires MV replacement or repair
surgery. In recent years, MV repair procedures, where the valve is surgically
altered in order to restore its proper hemodynamic function, are substituting
classical valve replacements [1]. It is the best option for nearly all patients with
a regurgitant MV and for many with a narrowed (stenotic) MV [2]. However, the
procedure is technically challenging and requires an experienced surgical team
to achieve optimal results [1], since the deformation of complex valve anatomy
during the intervention has to be predicted and associated with post-operative
implications regarding valve anatomy and function. Having a framework to ex-
plore different surgical repair strategies for an individual patient and virtually
compute their outcomes would be a desired tool in current clinical practice.

Driven by the growing prevalence of MV diseases, researchers are developing
methods to assess MV anatomy from multiple imaging modalities and simulate
its physiology using biomechanical models [3,4]. However, the clinical applica-
bility is limited as they either do not enable patient-specific personalization of
the geometric model or this process requires tedious manual interactions.

In recent years, methods have been proposed to delineate the MV using
semi-manual or advanced automated algorithms [5]. Using these models, biome-
chanical computations can be performed based on a personalized patient-specific
geometry as in [6]. However, their model relies on a simplified geometrical model,
mainly due to the limitations of in-vivo TEE imaging. In particular, the MV
leaflet clefts were not captured and the complex chordae anatomy was simplified
with a parachute model. In order to apply such methods in clinical practice, the
first step is to validate the prediction power of simplified models against ideal,
high-fidelity models in a controlled ex-vivo environment.

We propose a novel validation framework for both geometric and biomechan-
ical models extracted from non-invasive modalities. We developed a controlled
experimental setup for MV ex-vivo imaging in order to acquire functional TEE
data and high-resolution microCT images of the MV. Robust machine learning
and optimization algorithms are utilized to produce accurate and reproducible
models of the MV from both modalities. Based on the TEE model extracted dur-
ing end-diastole (MV open), we utilize state of the art computational models to
compute the geometric configuration of the MV during systole. We illustrate the
capabilities of our framework using one excised sheep MV, showing promising
results towards an integrated platform for comprehensive model validation.

2 Experimental Setup

In-vitro Simulator. A novel closed-loop left heart simulator (Fig. 1) was uti-
lized to carry out controlled in-vitro MV experiments [7,8]. It allows for pre-
cise control of annular and subvalvular MV geometry at physiological left heart
hemodynamics. The modular design was optimized to allow for micro-computed
tomography (microCT) and echocardiography techniques. The rigid left atrium
and ventricle consists of a thin-walled acrylic chamber with a cylindrical cross
section, resulting in uniform scattering and X-ray absorption for the microCT
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Fig. 1. Schematic representation of the in-vitro simulator with mounted mitral valve

and thus facilitating segmentation. The aortic chamber was designed at a 135◦

angle from the MV to preserve their physiologic spatial orientation.

Experimental Protocol. For experimentation, a fresh ovine heart was ob-
tained and the MV excised preserving its annular and subvalvular anatomy. All
leaflet chordae of the selected MV are inserting directly into the papillary muscles
(PM). The MV was sutured to the simulator’s annulus using a Ford interlocking
stitch. During valve suturing, care was taken to place each suture just above the
valve’s natural hinge and not through the leaflet tissue.

After annular suturing, each PM was attached to the PM control rods. Each
PM was carefully positioned and fine-tuned to establish the control MV geome-
try as previously described [9]. The simulator was filled with 0.9% saline solution
and leaflet dynamics and coaptation geometry were studied at room tempera-
ture under physiologic hemodynamic conditions (120mmHg peak left ventricular
pressure, 5.0 L/min average cardiac output at a heart rate of 70bpm) to ensure
proper valvular function. 3D echocardiography at a good temporal resolution of
50Hz was acquired using a Phillips iE33 system with an X7-2 pediatric probe.

MicroCT Protocol. The atrial chamber and aortic section were removed from
the left heart simulator, and the left ventricle was fixed to the microCT gantry
using a custom adaptor plate. The MV geometry did not get perturbed by these
changes. The valve was scanned in air under ≈ 30mmHg ventricular pressure
using a viva CT 40 system (Scanco Medical AG). The geometry was acquired
at 39μm voxel size (≈ 600 slices) using scanning parameters optimized for low
density soft tissues (55 keV energy, 109 uA intensity, 300ms integration time).

3 Methods

3.1 Extraction of High-Fidelity Model from Ex-vivo MicroCT

We propose a novel automated segmentation procedure for microCT images of
the MV (see Fig. 2), where the structure of the valve is decomposed into parts
relevant to the subsequent computation of geometric measurements.
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Fig. 2. Left: microCT scan of MV suspended in the simulator, right: extracted model

Locating MV Annulus and Papillary Muscles. An adaption of the ap-
proach proposed in [10] based on convex programming is exploited for the local-
ization task. Efficient implementations as described in [11] allow for exhaustive
parameter search within seconds. We utilize a sparse model of the MV, which
can be generated manually or extracted automatically from corresponding TEE
models. Instead of directly using the raw image, a smooth Euclidean distance
transform of the MV is required. We approximate the transform by a distance
map based on an anisotropically filtered image derived from the microCT scan
using Danielsson’s method [12]. The described workflow allows for the extraction
of rough estimates of the centers of the papillary muscles, several points on the
mitral annulus, and points in the posterior and anterior leaflet.

Extracting Full Model.Based on the estimated locations of the mitral annulus
and papillary muscles, we generate seed points for the RandomWalker algorithm,
yielding a segmentation of the MV in the original image. The parameters were
set heuristically. The resulting mask is then converted into a triangulated mesh
model for the remaining model decomposition steps utilizing the Marching Cube
algorithm.

Chordae Tracing. Given the MV mesh and points in each papillary muscle
(PM) and on the annulus, we estimate the configuration of the chordae tendineae,
which we use to determine the exact locations of the chordae insertion points,
i.e. those locations, where a chord is connected to the leaflet. This information is
necessary in order to split the MV mesh into PMs, chordae, annulus and leaflets.
Chordae segmentation is not straightforward, since the chordae are structured in
a tree-like fashion and a chord is not necessarily a straight line, it rather shows
high curvature under certain conditions. Hence, we perform a novel path tracing
approach based on geodesic distances on the mesh, where we determine all paths
from the annulus to the PMs (start and end point are given by the sparse model
estimation). It is a valid assumption that each of those paths contains a chord.
Starting from the annulus, for each point on the descending path, we compute
the mesh thickness at this location and retrieve the leaflet insertion points by
analyzing the thickness profile throughout the path. A threshold of lower than
0.5mm thickness on the descending path from the annulus was determined to be
the location of an insertion point. Next, we cut the mesh at the insertion point
and repeat the previous procedure until no more paths connecting the mitral
annulus with one of the papillary muscles are found.
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Fig. 3. Estimated MV model from ex-vivo TEE scan visualized in the TEE volume

3.2 TEE Mitral Valve Apparatus Parametrization and Estimation

In this study, we utilize the non-invasive anatomical point distribution model
S of the MV and its subvalvular components from [5,13] estimated on 3D TEE.
S comprises mitral annulus, and anterior and posterior leaflets and papillary
tips. Nine anatomical landmarks (two trigones, two commissures, one posterior
annulus mid-point, two leaflet tips, and two papillary tips) allow for a consistent,
patient-specific derivation of S, which is capable of capturing a broad spectrum
of morphological variations. The parameters of S are incrementally estimated
within the hierarchical, discriminative Marginal Space Learning framework using
classifiers based on the Probabilistic Boosting Tree with Haar-like and Steerable
features. Fig. 3 depicts the extracted model based on the TEE image.

3.3 Biomechanical Model of the Mitral Valve

MV closure is calculated from the TEE anatomy based on the model proposed
in [6]. In brief, the dynamics systemMü+Cu̇+Ku = f t+fp+fc is solved, where
M is the diagonal mass matrix calculated from the mass density ρ = 1040 g/L, C
is the Rayleigh damping matrix with coefficients 1e4 s−1 and 0.1 s for the mass
and stiffness matrix respectively, K is the stiffness matrix, f t is the force created
by the chords on the leaflets, fp the pressure force, f c the contact forces and u
the displacement. In this study, we rely on transverse isotropic linear tissue elas-
ticity implemented using a co-rotational finite elements method (FEM) to cope
with large deformations. The choice of linear elasticity is motivated by recent
findings suggesting a linear behavior in-vivo [14]. Poisson ratio is ν = 0.488 for
both leaflets, fiber Young’s modulus is EAL = 6.23MPa and EPL = 2.09MPa
for the anterior and posterior leaflets respectively, cross-fiber Young’s modulus
is EAL = 2.35MPa and EPL = 1.88MPa and shear modulus is 1.37MPa.
Mitral annulus and PMs are fixed. Chordae are modeled as in [6]: twenty-eight
marginal chordae are evenly attached at the free-edges of the leaflets and four
chordae are tethered at the base of the leaflets. In that way, we mimic a real-case
scenario where the detailed configuration of the chordae is unknown. Chordae
follow an exponential law [6]. Finally, self collisions are modeled, with collision
stiffness of 100 kPa and friction coefficient of 0.1. The model is implemented in
the SOFA framework1. Spatial variables are discretized using linear tetrahedra
while an Euler implicit time discretization is employed for robust computation.

1 http://www.sofa-framework.org/

http://www.sofa-framework.org/
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Fig. 4. Geometric comparison at systole from microCT, annotated and simulated TEE

4 Experimental Results

We utilize our framework on one ovine valve and compare the geometric config-
uration between the model constructed from TEE and microCT during systole
(MV closed). In addition, we compute the MV geometry at systole from an end-
diastolic (MV open) TEE image and compare it to the ground-truth geometrical
configuration obtained from the microCT image.

4.1 Geometric Comparison

Based on the geometric models extracted during systole (MV closed) from TEE
and microCT, we measured clinically relevant parameters (coaptation length,
coaptation area, closure line length, and anterior and posterior leaflet length,
see Fig. 4, left panel) in order to quantitatively compare geometric differences
between the two models (see Fig. 4, right panels). The maximum coaptation
length is 2.41mm vs 2.62mm for microCT and TEE, respectively. Closure line
lengths are measured as 23.08mm vs 21.1mm, and coaptation areas are 45.8mm2

vs 41.1mm2. Qualitative comparisons are shown in Fig. 5. These results indi-
cate that the utilized simplified TEE model can accurately represent important
biomarkers compared to an idealized model (extracted from microCT).

4.2 MV Closure Computation

Starting from the end-diastolic TEE MV model (last frame where the MV is seen
open in the TEE image), we computed MV closure based on the model described
in Sec. 3.3. In this experiment, we used a time step of 10ms. A nominal pressure
profile varying from 0mmHg to 120mmHg was applied [6]. Anterior leaflet chord
rest length was set to 1.6× longer than the distance between free-edges and
papillary muscles to cope with folded chords at end-diastole (MV open). That
ratio was estimated on other microCT data. Finally, to capture the fast dynamics
and correctly account for collisions and inertia, pressure increase duration was
scaled to last 10 s. 1000 iterations were calculated.

Fig. 6 illustrates the calculated MV closure geometry from time 0 s to 7 s,
before peak pressure was reached (afterwards the valve stayed closed). As one
can see, our model could capture MV closure qualitatively well. Quantitatively,
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Fig. 5. Qualitative comparison of MV geometry from TEE (cyan) and microCT (beige)

Fig. 6. Left: fiber orientations of computational TEE model, right: different time steps
of computed MV closure geometry, initialized from end-diastolic (MV open) TEE image

we measured clinically-related parameters as described above from the predicted
closure and compared them against the idealized model (Fig. 4). Maximum coap-
tation length is 2.71mm for the computed model vs 2.41mm for the idealized
microCT model. Closure line lengths are measured as 23.3mm vs 23.08mm, and
coaptation areas are 46.1mm2 vs 45.8mm2. These results confirm that simplified
models from TEE can be utilized to build biomechanical models and compute
accurate MV closure geometry in respect to relevant clinical parameters.

5 Conclusion

We proposed a novel complete pipeline for validating geometrical and functional
models of the mitral valve utilizing a controlled ex-vivo setup capable of acquir-
ing both high-resolution ex-vivo microCT scans in order to obtain ground-truth
information, and standard low-resolution TEE images. This pipeline serves as
a bridge between ex-vivo and non-invasive clinical modalities. We integrated
robust algorithms in order to extract reproducible models from microCT and
TEE images. Thus, quantitative comparison of clinically relevant measurements
is possible. Measurements were computed from simplified models extracted from
non-invasive modalities and compared to idealized high-fidelity models based on
microCT. Finally, experiments on real data obtained from one ovine valve were
conducted as a proof of concept, demonstrating the capabilities of our frame-
work. Now that we have an integrated and comprehensive ex-vivo microCT /
TEE setup, we are able to evaluate models in a consistent manner on a larger
population and thus validate the prediction power of current in-vivo computa-
tional frameworks, which will be the next step of the current study.
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Abstract. Fibers play an important role in electrophysiological (EP) 
simulations as they determine the shape and directions of the electrical waves 
traveling throughout the myocardium. Due to the limited unavailability of in 
vivo images of the fiber structure, computational modeling of electrophysiology 
has been performed thus far mostly using the well-known rule-based Streeter 
model. The aim of this paper is to present an EP simulation study based on a 
statistics-based fiber model. With this approach, the missing subject-specific 
fiber model is predicted directly from the available shape information based on 
a predictive model constructed from a training sample of ex vivo DTI images. 
Experiments are carried out based on a database of canine datasets (including 
normal and abnormal cases), by considering the DTI-, the Streeter-, and the 
statistics-based fiber models. The results show that the shape-based predicted 
fiber models improve significantly the estimation accuracy of the electrical 
activation times and patterns, from average errors of about 10% to 1%. 

1 Introduction 

Simulation-based studies of many cardiac phenomena and pathologies, as well as the 
the in silico planning of related electrophysiological interventions, require the 
construction of accurate subject-specific models of fibers. This is because the fibers 
determine the shape and directions of the electrical waves traveling throughout the 
myocardium. Ideally, the subject-specific fibers would be extracted from in vivo DT-
MRI, but the modality is known to be sensitive to the cardiac motion, which affects 
the diffusion measurements. As a result, alternative methods for the personalization of 
fiber orientations are still required in order to derive realistic EP models. 

Thus far, the most popular method for generating fiber orientations remains the 
rule-based model by Streeter et al. ever since its introduction in 1969 [1]. It was 
originally described based on histological studies, before it was confirmed in more 
recent years using ex vivo DTI datasets [2]. Essentially, the Streeter model states that 
the fiber orientations rotate counterclockwise in the myocardium, while varying 
smoothly between the endo- and the epi-cardial walls. Currently, the Streeter model is 
by far the fiber model of choice in EP simulation as illustrated by these recent works 
(e.g., [3], [4], [5], [6], [7], [8], [9], [10]). This model, however, is rather simplistic and 



 Personalized Modeling of Cardiac Electrophysiology Using Shape-Based Prediction 197 

idealistic. While it approximates the overall patterns of the fiber structure, it might not 
conform well to the subject-specific local distribution of the myocytes. This can 
potentially lead to suboptimal simulations of the electrical activation. 

As a result, some researchers have recently proposed alternative statistics-based 
techniques for the modeling of fibers, in order to encode the fiber variability across 
individuals and groups of individuals [11], [12]. In particular, the work in [12] 
suggests to predict the fiber orientations directly from the more easily extracted shape 
information, using a statistical predictive model constructed from a training sample of 
ex vivo DTI datasets. However, the efficiency of such statistics-based methods for the 
simulation of electrophysiology is yet to be measured. Consequently, the goals of this 
paper are two-fold: firstly, to build and apply a predictive model of fiber orientation 
within an EP simulation framework, and secondly to perform a comparative study 
between the DTI-, the existing Streeter-, and the statistics-based fiber models in order 
to quantify the potential improvement in the accuracy of EP simulations.  

2 Methods 

2.1 DTI-Based Fibers 

The first part of this study consists of producing DTI-based models of fiber 
orientations, which is achieved based on a publicly available database of ex vivo DTI 
data from John Hopkins University [2]. The sample includes nine DTI datasets, of 
which seven are normal cases and two failing hearts (which do not have infarct scars). 
To obtain the DTI-based fiber models for these subjects, we first extract the 
myocardial surfaces by using a modified active shape model (ASM) search [13]. We 
use the maps of fractional anisotropy (FA) to search for the myocardial edges (one 
can also use the sharper B0 maps instead of the FA maps, in our case we perform a 
manual correction of the segmentations to ensure global, as well as local, accuracy in 
the boundary definitions). The obtained myocardial surfaces are then used to extract a 
mean volumetric mesh using the well-known TetGen tool, which is subsequently 
propagated to all subjects using Thin Plate Spline (TPS). We finally calculate the 
fiber orientation vectors at all myocardial locations of the volumetric meshes by using 
linear interpolation based on the 8 nearest voxels for each node (thus with minimal 
smoothing). Note that the fiber orientation at each voxel is taken to be equal to the 
first eigenvector of the diffusion tensor as obtained from the DT-MRI datasets. 

2.2 Streeter Fiber Model 

To assess the relative performance of the proposed predictive model for EP 
simulation, we also implement the well-known synthetic fiber model introduced by 
Streeter [1]. It consists of set of a rules which describe the distribution of the 
myocytes in the myocardium as observed initially in histological studies [1] and later 
on confirmed with ex vivo image data [2]. Essentially, it was shown that the 
longitudinal fiber direction rotates clockwise thorough the ventricular walls in parallel 
lines, while varying smoothly the elevation angle a  between the fiber orientations 
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and the short-axis planes, from the endocardium (
0
a+ ) to the epicardium (

0
a- ). To 

derive a mathematical formulation of the elevation angle, one must first calculate for 
each node position x  the normalized distance to the walls, i.e., 
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d d
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+

x
x

x x
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The challenge here is in calculating the minimal distances from each node to the 
myocardial walls, which can be computationally demanding depending on the method 
(e.g., Laplacian or nearest neighbor approach). Finally, the variation in the elevation 
angle can be derived as follows [7]: 

0
1 2( ) ( ( )) ,nea a= -x x  (2)

where 1n =  for linear or 3n =  for cubic interpolation between the endocardial and 

epicardial walls. For the canine datasets 
0
a  is typically set to 60 degrees [14]. 

2.3 Predictive Fiber Model 

In this section we describe the implemented predictive fiber model as developed by 
Lekadir et al. [12], which is applied in this paper for statistics-based EP simulation. 
The fundamental goal of the approach is to statistically encode the relationship 
between myocardial morphology and fiber, with the ultimate aim to predict the 
missing fiber information from the more easily extracted subject-specific shape. This 
can be done for example by using the DTI-based fiber models extracted in Section 2.1 
as a training population.  

The implementation of the approach requires two key stages. Firstly, to enable a 
consistent manipulation of the training data within the proposed predictive model, it is 
important to use a suitable representation of the fibers. In particular, fiber orientations 
by definition should be non-directional, which means opposite vectors y  and −y  

must correspond to the same fiber. The solution to this problem consists of a 

Knutsson mapping from a 3D fiber vector y  to a 5D representation 3 5:
K

M R R  

such that ( ) ( )
K K

M M= -y y . Given a unit vector characterized by the angles ,θ ϕ  of 

its spherical representation, we obtain the following fiber coordinates: 

2 2 2 1
2 2 2 2 3

3
(sin cos , sin sin , sin cos , sin sin , (cos )).θ φ θ φ θ φ θ φ θ −  (3)

Once the input shapes X  and output Knutsson fiber coordinates Y  are obtained, 
the second stage involves the estimation of an optimal regression model, which is 
done using kernel partial least squares regression (PLSR) [15], i.e., new predictions 
can be written in the form: 

1ˆ ( ) ,T T
t

−=y K U T KU T Y  (4)
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where K  refers the kernel Gramm matrix and T  and U  are the regression matrices 
(see [12], [15] for more details). The advantage of this regression technique is that it 
extracts in the input space (myocardial shapes) the directions that are optimal for the 
prediction of the output (fibers). Also, while the Streeter model uses predefined shape 
variables (e.g., distances to myocardial walls, ventricular axis) for all fiber nodes, the 
predictive technique extracts the relevant shape predictors specifically for each 
myocardial node based on statistical criteria.  

It is important to note that the predictive fiber model requires point correspondence 
between the ventricular meshes. This is achieved in this work by using key 
anatomical landmarks, which include the location of the apex, mitral valves and 
LV/RV junction points.  

 

Fig. 1. Two cross-section examples of myocardial fiber orientations as obtained with the 
Streeter, DTI- and predictive models 

2.4 Electrophysiological Simulation 

An important goal of the fiber personalization is ultimately to simulate with the 
highest accuracy the electrical activation, both in terms of propagation times and 
patterns. Currently, the most popular approach to achieve this is the Eikonal equation, 
which has been used and validated extensively for the description of wave front 
propagation [6], [8]. Existing research has shown that a limited loss of accuracy can 
be obtained with such models, while obtaining computationally efficient solutions, 
thus allowing for large scale EP simulations to be performed [3].  

In this paper, we model myocardial electrophysiology using the anisotropic 
formulation by Pashaei et al. [8]. One important advantage of the method is that it 
couples the cardiac conduction system to cardiac myocytes through a model of 
Purkinje-ventricular junctions, which leads to a more realistic electrical activation of 
the ventricles. The EP wave propagation is modeled only through element edges in 
both the myocardium and the cardiac conduction system (including the Purkinje tree) 
based on a one-manifold implementation of the fast marching method (FMM). 
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Information exchange across these two domains is achieved through their nodal 
connectivity thus keeping the solution on a one-manifold.  

For consistent comparisons, the same EP parameters were used for all simulations 
(the conduction velocity for the Purkinje system was set to 3.0 m/s, the working 
myocardial velocity along the fiber orientations to 0.75 m/s, and the transversal 
conduction velocity to 0.3 m/s, as reported in the literature [14]). For the 
personalization of the fiber orientations, the simulated dataset was removed from the 
training of the predictive fiber model (leave-one-out). 

3 Results 

3.1 Normal Cases 

Examples of the myocardial fiber orientations obtained using the different models are 
given in Fig. 1. For numerical evaluation, the total activation times for all simulations 
were calculated. The Streeter vs. DTI and predictive vs. DTI errors (in %) are plotted 
in Fig. 2 for all normal subjects. It can be seen that the statistical fiber personalization 
derives low errors in the estimation of the activation times in a consistent manner 
throughout all datasets, with an average error of only 1.98% and a maximum error of 
4.28%. For two cases, the error is less than 0.5%, which is a significant accuracy for 
EP simulation given the fact that the training sample did not include those datasets 
(leave-one-out experiments). In contrast, the average error for the Streeter model is 
equal to 10.4%, and the error even reaches 15% for subject 1.  

 

Fig. 2. Error bars comparing the Streeter and predictive fiber models for the estimation of total 
activation times in the normal datasets  
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Fig. 3. Examples of EP simulations obtained with the different fiber models, showing good 
agreement between the DTI- and statistics-based results 

Fig. 3 displays three examples of the obtained activation patterns on the ventricular 
surfaces (normal subjects 1, 2, and 7). For each subject, the longest of the three total 
activation times was used to determine a set of ten equally spaced isochrones, from 
which it can be observed that the simulated propagation patterns using the Streeter 
model (a) can vary from those obtained with the original DTI data (b). In contrast, the 
statistical approach approximates well the DTI-based electrical propagations for all 
subjects, both globally and locally. The obtained EP simulations with the DTI- (b) and 
the statistics-based fiber structures (c) are nearly identical for all cases. 

3.2 Abnormal Cases 

In this section we assess the ability of the predictive model constructed using the 
seven normal datasets to extrapolate the fiber modeling for abnormal cases. To 
achieve this, the EP simulation was applied to two failing canine hearts based on the 
DTI-, Streeter, and predictive fiber models. The total activation times and associated 
errors are summarized in Table 1, where it can be seen that the predictive fiber model 
enables to obtain accurate results for both cases, with an average error of less than 
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1%. On the contrary, the Streeter fiber model produces one accurate estimation of the 
activation times (subject 1) but introduces significant error (13.64%) for the second 
failing case (see Table 1).  

Fig. 3 (last row) shows the activation patterns for the abnormal heart 1, where it 
can be seen that the maps obtained with the DTI- (b) and statistics-based (c) fiber 
models are almost identical. On the other hand, while the synthetic Streeter model 
estimates the total activation times with a low error (2.66%) for subject 1, the 
associated electrical propagation curves in Fig. 3 differ from those obtained with the 
DTI fiber model (b). This demonstrates the importance of accurate personalization of 
fibers, not only for the estimation of the total activation times but also to realistically 
simulate the electrical activation patterns both globally and locally.  

Table 1. Total activation times and estimation errors for the abnormal cases 

 
TAT (ms) 
Streeter 

TAT (ms) 
DTI 

TAT (ms) 
Statistical 

Error (%) 
Streeter-DTI 

Error (%) 
Stat.-DTI 

Abnormal 1 74.79 72.85 73.51 2.66 0.90 

Abnormal 2 88.97 78.29 78.79 13.64 0.63 

4 Conclusions 

This paper presented a study on the application of statistics-based fiber models for 
electrophysiological simulation, with comparison to the widely used Streeter model 
and the more realistic DTI-based fibers. These initial results clearly promote the use 
of statistics-based fiber models, as they significantly improve the estimation accuracy 
of the electrical activation times (from an average of 10% to 1% errors) and 
propagation patterns. This performance is due to the fact that the predicted fibers, 
unlike the synthetic Streeter model, are more realistic and conform better to the 
subject-specific distribution of the myocytes.  

Several improvements can be made to the current implementation of the predictive 
fiber model, for example by using tensor descriptors instead of the Knutsson 
mapping, which would allow keeping the orthotropic information. Furthermore, a 
more detailed comparison to an average fiber atlas as the one developed by Peyrat  
et al. [11] will be performed as a future work in order to quantify in detail the benefits 
of linking subject-specific morphology to fiber structure. 
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Abstract. In this work, a new method is proposed for automatic extraction of  
the left ventricular diastolic transmitral vortex ring from 3D whole-heart three  
directional Phase Contrast MRI. The proposed method consists of two parts, 
training and extraction. In the training step, an average reference signature of the 
complex transmitral vortex ring is captured from training subjects using Laplace-
Beltrami spectrum and the Lambda2 method. In the vortex extraction step, the 
trained signature is used to identify the vortex ring by performing an iterative 
search for the vortex object with minimum distance from the trained signature. 
The proposed method is validated on a dataset of 8 healthy volunteers with 32 
observed diastolic vortex rings. The method was able to successfully extract 27 
diastolic vortex rings from a total of 32. Furthermore, the conducted experiments 
showed the capability of the proposed method in dealing with vortex shape 
changes that occur between the phases of early and late diastolic filling. 

1 Introduction 

Vortex formation in intra-cardiac flow patterns has recently gained much interest due 
to its vital role in keeping balance between blood motion and stresses of surrounding 
structures. Vortices are complex flow structures that evolve as a result of a change in 
velocity direction around an imaginary axis. In the cardiac Left Ventricle (LV), dur-
ing early and late diastolic filling, the flow behind the mitral valve develops as a 
closed vortex tube: a vortex ring [1]. Vortex rings are frequently observed in nature 
because of their stability [1]. Recent studies have shown that transmitral vortex rings 
evolve in the LV during rapid early filling (E-wave) and late filling (A-wave) [11,13]. 
These vortex rings help in improving blood transport through the ventricle towards 
the aorta, minimizing the loss of energy and preventing blood stagnation [1,6,13]. 
Moreover, patients with diastolic dysfunction have been shown to form different dias-
tolic vortex rings compared to healthy volunteers [5,10,12]. This makes vortex ring 
analysis a promising tool for detection of diastolic blood flow abnormalities. Never-
theless, most of the reported studies are based on Computational Fluid Dynamics 
(CFD) simulations [1,6] or Echocardiography [5,10]. CFD simulations usually require 
simplifications of the anatomy (i.e. cardiac chambers) or boundary conditions, which 
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might result in simulated blood flow velocities different from the actual flow.  
In echocardiography, generally only one single velocity component out of the three 
velocity components can be acquired providing limited flow velocity information.  

Phase Contrast MRI (PC-MRI), also referred to as Velocity-Encoded MRI, can  
acquire all the three directional velocity components (in-plane and through-plane) of 
the blood flow relative to the three spatial dimensions and over the cardiac cycle, 
providing a powerful tool for cardiac flow analysis. In [12], Toger et al. used PC-MRI 
flow data to measure diastolic vortex ring volume using manual delineation of the 
vortex ring boundary from visualized Lagrangian coherent structures. They used the 
measured vortex volumes to differentiate between healthy volunteers and patients 
with dilated ischemic cardiomyopathy. In [4], Eriksson et al. proposed to quantify the 
intraventricular cardiac blood flow based on the visualization of PC-MRI data using 
pathline extraction, which allowed them to subdivide the intracardiac flow into four 
components based on their rates of passage relative to the cardiac cycle. In [2,3], flow 
visualization techniques (e.g. particle tracing, stream lines, streaklines,…etc) for PC-
MRI flow were used to qualitatively assess the aorta function. Nevertheless, in most 
of these studies, vortex rings were defined qualitatively using flow visualization tech-
niques (e.g. as region of swirling pathlines or steamlines), which might suffer from 
observer bias or high cluttered data. In [14], ElBaz et al. used the lambda2 method 
which is a quantitative method to define vortex rings. However, vortex rings were 
then extracted manually which is a tedious and time consuming process. 

Due to the complex intra-cardiac blood flow, vortex rings are neither the only nor 
always the largest vortex object in the heart. Thus, using simple metrics (e.g. vortex 
size or location) is not enough to extract the LV vortex ring from surrounding vortex 
structures, similar in size, close in space, but different in shape. Furthermore, cardiac 
vortex rings are not ideally shaped rings but rather complex structures that tend to 
have a quasi-ring-like shape (Fig.1). All these factors make automatic vortex ring 
extraction from PC-MRI flow data a difficult and challenging task.  

In this paper, we propose a novel method for automatic extraction of diastolic 
transmitral vortex rings from three-directional, three dimensional time resolved Phase 
Contrast MRI flow data during the rapid early (E) and late (A) filling phases. In the 
proposed work, we use a cardiac-vortex-specific shape signature to tackle the com-
plex cardiac vortex shape and structure problems.  

The proposed method consists of two parts. First, vortex structures are identified 
from the PC-MRI flow field using the Lambda2 method [7]. From this, a cardiac vor-
tex ring signature is defined using the Laplace-Beltrami spectrum method [8]. Second, 
the cardiac vortex is extracted from the PC-MRI flow field by searching iteratively for 
the object with the best signature match relative to the reference signature. To the best 
of our knowledge, this work is the first attempt to extract vortex rings automatically 
from Phase Contrast MRI flow data in general and from the LV in particular. 

2 Methodology 

2.1 Vortex Identification Using the Lambda2 Method 

The first step towards vortex ring extraction is to identify vortex structures from the 
MRI flow field. To achieve this, we use the Lambda2 method [8] to detect vortex 
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2.2 Capturing Vortex Ring Shape Signature Using Laplace-Beltrami 
Spectrum 

From Fig.1, it is obvious that cardiac vortex rings are rather complex structures which 
tend to have a quasi-ring-like shape. Therefore, a method for extraction of cardiac 
vortex rings should capture the features specific for cardiac vortex rings. We achieve 
this by using the recently introduced Laplace-Beltrami spectral shape signature [8]. 
This spectral shape signature is a global shape signature computed only from the ob-
ject’s inherent geometry (e.g. curvature, surface area and volume). Furthermore, this 
signature can be used to compare objects independent of their representation, position 
and size. This signature is defined as the beginning sequence of the Laplace-Beltrami 
(LB) differential operator. That is, for a given manifold , if the LB operator is de-
noted by ∆, then the Laplacian eigenvalue equation can be written as : ∆                                    (2) 

where  is a real scalar value corresponding to the eigenvalue of the Laplacian ∆ and 
corresponds to its eigenvectors. The shape spectral signature is then defined as the 

diverging sequence of eigenvalues 0  ∞. This spectrum is 
truncated at the dth eigenvalue where  is application specific, and determined empir-
ically. In our case, we apply the LB operator on the Lambda2 vortex isosurfaces 
which are discrete triangle meshes, hence, we solve (2) using a finite element method 
and apply the discrete Laplace-Beltrami (LB) operator and follow the same procedure 
as described in [8] to capture the LB spectrum for the vortex isosurface.  

Though similar, cardiac vortex rings differ between subjects. Therefore, we derive 
an averaged signature from multiple subjects using Laplace-Beltrami analysis as fol-
lows. First, for each training subject, the peak early filling (E phase) transmitral vor-
tex ring isosurface is manually selected from the identified vortex structures. Second, 
for each extracted vortex, the Laplace-Beltrami signature is captured as described 
above. Then, every signature is normalized by both slope of its fitting line and the 
volume of the vortex isosurface (i.e. the number of voxels in the isosurface) [10]. The 
reason for this normalization is to make signatures scale invariant. Finally, signature 
average is computed. Through the rest of the paper we denote the computed vortex 
shape signature average by VS. Due to the representation, position and size invariance 
properties of the LB signature [8], no shape registration is required prior to averaging. 
The steps for the vortex ring signature extraction from one subject are illustrated in 
Fig.2. 

Of note, in addition to the E-phase averaged signature, we tested a signature 
trained on shapes of both phases (E and A) vortex rings. However, this provided iden-
tical results as for using only E-phase averaged signature. 

2.3 Vortex Ring Extraction 

The vortex ring extraction starts by identifying the vortex structures from the PC-MRI 
data using Lambda2 method as explained in section 2.1 Then, the normalized signa-
ture of each vortex object in the desired frame is captured using Laplace-Beltrami 
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spectral shape analysis as explained in the previous section.  For each vortex object in 
the current frame, its signature distance  from the reference signature VS is com-
puted as the L2 norm and computed as: 

  =  ∑ g  , m=1…M                                  (3) 

with g  being the mth object signature and M the total number of vortex objects in the 
frame under processing. The extracted vortex ring is then defined as the vortex struc-
ture with the minimum .  

3 Experiments 

3.1 Data and Preprocessing 

The proposed method was evaluated on a data from eight healthy volunteers (mean 
age: 40±15 years) who underwent three-dimensional (3D), time resolved, three-
directional Phase Contrast (VE) MR imaging at 1.5 T (Philips). VE MRI was per-
formed in a 3D isotropic dataset of 4.2×4.2×4.2mm3 covering all 4 cardiac chambers. 
Retrospective gating with 30 phases with average temporal resolution of 30 ms were 
reconstructed and velocity sensitivity of 150cm/s in all directions were used. This data 
was then linearly interpolated spatially to result in a 1 mm3 spatial resolution. The 
whole heart (not just the LV) region was then outlined manually from all slices and 
time frames. There are two reasons behind segmenting the whole heart region instead 
of just the LV. First, to investigate the ability of our method in extracting the LV vor-
tex rings in the presence of other vortex structures formed in other ventricles. Second, 
to avoid the need for  LV segmentation from the PC-MRI magnitude images (Fig.1. b 
and d) which usually suffer from low contrast between LV and right ventricle (RV) 
boundaries making LV segmentation a difficult task. 

 

Fig. 2. Steps of the proposed vortex ring shape signature extraction from one subject, U,V,W 
are three volumes representing the PC-MRI flow field velocity components 

3.2 Diastolic Vortex Ring Extraction  

Using the manually segmented whole heart flow field volumes resulting from the 
previous step, vortex structures were identified using the Lamda2 method. After  
Applying threshold T  (as explained in Sec. 2.1), connected component analysis 
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method (CCA) [9] was then applied to define the identified vortices as connected 
vortex objects. After that, LV vortex rings were labeled manually to be used as 
ground truth. In this work, for each subject, two observed rings were labeled from 
each of the rapid early (E) and late filling (A) diastolic phases. The two early filling 
rings correspond to the rings of the peak early filling PC-MRI phase and the subse-
quent frame. Similarly, the two late filling rings were labeled from the peak late fill-
ing phase and the subsequent frame. These were the frames in which vortex rings 
were observed consistently in all 8 subjects. From the eight volunteers, in total 32 LV 
vortex rings were manually labeled which then used as the ground truth to evaluate 
the proposed extraction method. For computing the Laplace-Beltrami (LB) signature 
[8], the vortex shape signature is captured from the Lambda2 isosurfaces with T  as 
isovalue.  

To quantitatively evaluate the proposed method and to avoid bias in the selection 
of the average signature VS, a leave-one-out cross-validation approach was used. The 
average signature VS was computed from 7 subjects out of the available 8 subjects 
(i.e. computed as average of the corresponding 28 vortex signatures). This VS is then 
used to extract the LV vortex rings from the 4 aforementioned frames of the left out 
subject. This is repeated 8 times, leaving out different subjects. To evaluate the ex-
traction performance we used the precision criterion, which was computed as the 
proportion TP/(TP+FP) where TP stands for the true positive i.e. the number of cor-
rectly extracted LV vortex rings, FP for false positive i.e. the number of the mis-
extracted LV vortex rings. 

 
Parameter Selection 
In the proposed method there are two empirically determined parameters, T  and . T  is application and subject specific. In this study, T  was manually adjusted per 
subject until meaningful vortex rings could be differentiated from surrounding struc-
tures. In our experiments, T  in the range of [2-5]  (with  as the  average of  
voxels with 0 ) was found to give good results. Second, in the applied Laplace-
Beltrami analysis, a signature of 300 eigenvalues (i.e. =300 ) was sufficient in all 
experiments. 

4 Results 

The overall precision is 0.844, detailed results for the performance over the two dias-
tolic phases are given in Table 1, where every phase has a total of 16 LV transmitral 
vortex rings to be extracted. In the reported results, vortex rings were extracted from 
an average of 43 different sized surrounding vortex structures in the E-phases and  
an average of 30 structures in the A-diastolic phases. The proposed method failed  
in extracting only 5 rings, 1 from the E phase and 4 from A, out of the total 32 vortex 
rings. 
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Table 1. LV Transmitral vortex ring extraction results 

Phase E (n=16) A (n=16) Total (n=32) 
True Positive 15 12 27 
False Positive 1 4 5 

5 Discussion and Conclusion 

Our results show that the proposed cardiac-vortex-specific signature based extraction 
is rather accurate in extracting LV diastolic transmitral vortex rings from whole heart 
PC-MRI with 27 successfully extracted LV vortex rings out of the total 32 rings 
yielding an overall precision of 0.844. In all 5 failed cases, the proposed algorithm 
extracted the RV C-shape or incomplete rings instead of the LV ring i.e. it was suc-
cessful in ring extraction but could not differentiate between the RV partial rings and 
the more complete LV vortex rings. This could be due to the similarity in shape (e.g. 
curvature and complexity) of RV and LV vortex rings. Moreover, in all failed expe-
riments, the LV vortex ring was ranked second after the RV partial ring based on the 
distance defined in Eqn.3 with a small difference of 0.16 0.23 from the highest rank 
while the third ranking structure (not ring) was more distant (2.72 1.90) from the 
highest ranking structure. It is important to note that the proposed E-phase trained 
average signature was able to detect most of the A-phase rings (12 out of 16), which 
shows the ability of the proposed method to deal with shape variability of the transmi-
tral vortex rings between the E and A diastolic phases. The proposed method is auto-
matic relative to the LV vortex ring extraction process. In this work, the whole heart 
region was still segmented manually from PC-MRI as automatic segmentation is out 
of this paper’s focus. On the other hand, vortex identification is a complex fluid dy-
namics topic and no definite rigorous vortex definition is yet reached. In this work, we 
used the Lambda2 method which is the most commonly accepted fluid dynamics 
definition of a vortex [1]. Nevertheless, this method requires definition of T  thre-
shold for defining meaningful vortex structures. To the best of our knowledge, no 
objective method has been reached yet for defining T . Currently, we are working on 
developing a method for objective definition of this threshold. For the LB signature 
normalization, we evaluated different normalizations as suggested in [8], however, the 
best normalization in our case was to normalize by both the signature’s fitting line 
slope and the vortex volume. 

To our knowledge, this is the first attempt to automatically extract transmitral vor-
tex rings from PC-MRI in general and from the LV in particular. Our results show 
that the proposed method is a promising technique for left ventricular vortex ring 
extraction. Furthermore, the results show the capability of the proposed method deal-
ing with the vortex ring shape differences between the two diastolic (E and A) phases. 
As such, this work can be seen as a first step towards a quantitative understanding of 
cardiac vortex structures, their evolution and physiological implications. In addition, 
the proposed method could be used for vortex ring analysis in CFD simulations. 

Acknowledgement. This work is supported by Dutch Technology Foundation 
(STW): project number 11626. 
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Abstract. We propose a new method to analyse deformation of the car-
diac left ventricular wall from tagging magnetic resonance images. The
method exploits the fact that the time-dependent frequency covector
field representing the tag pattern is tightly coupled to the myocardial
deformation and not affected by tag fading. Deformation and strain ten-
sor fields can be retrieved from local frequency estimates given at least
n (independent) tagging sequences, where n denotes spatial dimension.
Our method does not require knowledge of material motion or tag line
extraction. We consider the conventional case of two tag directions, as
well as the overdetermined case of four tag directions, which improves ro-
bustness. Additional scan time can be prevented by using one or two grid
patterns consisting of multiple, simultaneously acquired tag directions.
This concept is demonstrated on patient data. Tracking errors obtained
for phantom data are smaller than those obtained by HARP, 0.32± 0.14
px versus 0.53± 0.07 px. Strain results for volunteers are compared with
corresponding linearised strain fields derived from HARP.

Keywords: Tagging Magnetic Resonance Imaging, Myocardial Defor-
mation, Myocardial Strain, Gabor Transform, Frequency Analysis.

1 Introduction

Cardiovascular disease (CVD) is globally the leading cause of death1 with es-
timated 17.3 million deaths in 2008 (30% of all global deaths). Therefore it is
important to develop methods for diagnosis and therapy assessment at early
stages of the disease. In literature it has been reported that heart disease may

1 World Health Organization, Fact sheet N◦ 317, March 2013.
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Fig. 1. Short-axis tMRI images of a left ventricle in systole

affect strain before remodeling occurs as a consequence of persistent heart dys-
function [1,2].

Speckle tracking echocardiography [3] is often the initial choice for cardiac
movement assessment, since it is relatively cheap and widely accessible. However,
the estimated strain depends on the angle of imaging and therefore the results
are highly operator sensitive. In order to avoid this, some approaches employ
tagging Magnetic Resonance Imaging (tMRI) [4,5]. tMRI uses spatial modulation
of magnetisation (SPAMM) [5] to visualise the tissue deformation during the
cardiac cycle by imprinting a tagging pattern in the tissue, see Fig. 1. The
method that we present here is based on local frequency estimation and therefore
insensitive to tag fading due to spin-lattice relaxation.

Different motion extraction methods have been developed to quantify cardiac
function from tMRI. Harmonic Phase (HARP) [6,7] tracks material points based
on the phase conservation principle and is the de facto standard for calculation
of cardiac deformation. Other approaches are based on local frequency estima-
tion, e.g. [8,9]. We pursue a new approach, but similar in spirit, in which the
Gabor transform is employed to construct a local frequency representation of
the tagging images. Subsequently, local frequency covector fields are extracted
and used to determine the deformation tensor.

Since our method exploits frequency instead of amplitude information, it is
more robust with respect to tag fading. Moreover, the method is designed to work
with any number A of tag directions (A ≥ n, where n denotes spatial dimension),
which results in an overdetermined system of equations when A > n.

Thus, similarly to Qian et al. [8], we bypass the classic approach to assess
strain through the gradient of the motion field [10]. In [8], line elements are
considered, along which the deformation gradient is calculated and from which
linearised radial and circumferential strains are obtained. These are thus con-
founded with shear strains. However, coordinate independence requires specifi-
cation of the full strain tensor, which is the approach we choose here. The full
deformation tensor thus obtained is used to disentangle radial, circumferential
and shear components using the Lagrangian strain tensor. The first two are
widely used measures for deformation. In this study, myocardial deformation is
assessed using stripe tags in A∈{2, 4} directions and grid tags, see Fig. 1.
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2 Calculating Deformation from Local Frequency

Let us consider the tissue configuration at two distinct moments of time t0=0
and t>0. In an infinitesimally small neighbourhood, the global tagging pattern
at t0 can be considered as a constant frequency pattern ω0. At time t this
frequency pattern is deformed relative to the reference tissue configuration. The
Gabor transform [11] offers a position-frequency representation of an image. In
the continuous case this Gabor transform reads

G(p,ω) =

∫
R2

f(q)ψ(q − p)e−2πi(q−p)·ωdq, (1)

where f : R2 → R is the 2-dimensional tagging image, ψ : R2 → C the Gabor
window, · denotes complex conjugation and p,ω ∈ R

2 are position and spatial
frequency respectively. For our purpose, we extract a single frequency covector
ω(p(t), t) at each position p(t) = (x(t), y(t)) at time t for each tag direction.
A Gaussian window is chosen for ψ, for this has the best position-frequency
localisation [12]. Details on the frequency selection method based on the Gabor
transform can be found in [13].

While HARP and optical flow [10] assume phase conservation of a material
point, this method employs phase difference constancy between tip and tail of a
material vector inducing the covector transformation law

ωt = ω0F
−1, (2)

where F is the deformation tensor [14] and row vectors ω0, ωt represent the
local frequencies evaluated at corresponding material points. For more details
see [15].

The relation between corresponding material points is not known, since we
do not compute material motion. Hence, we assume that at the fiducial moment
t0, when the tagging pattern is applied in the scanner, the tag frequency is a
known, global constant and therefore equal for every material point, obviating
knowledge of material motion. We use this (unobserved) configuration at time
t0 as a reference.

Because a tMRI acquisition typically consists of at least two encoding direc-
tions, A ≥ 2, Eq. (2) constitutes a system of equations that can be written as

Ωt=Ω0 F
−1, with Ω=

⎡
⎢⎣ω1

...
ωA

⎤
⎥⎦, (3)

with upper indices 1, . . . , A enumerating tag directions. The least squares solu-
tion for the deformation tensor at a material point at time t relative to t0 can
then be obtained via the pseudo-inverse

F =
(
ΩT

t Ωt

)−1

ΩT

t Ω0, (4)
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where T denotes transposed. The Lagrangian strain tensor is consequently de-
fined as

E =
1

2
(FTF− I). (5)

One can extract circumferential (Ecc), radial (Err) and shear (Ecr) strains

Ecc = êT

c E êc , Err = êT

r E êr , Ecr = êT

c E êr (6)

with local unit radial and circumferential basis vectors êr and êc.
The numerical implementation consists of the following steps:

1. Calculate the Gabor transform G(p(t),ω(t)) in each pixel, Eq. (1), for all
tag directions, using a Gaussian filter ψ with width σ.

2. Determine the local frequency ω with highest intensity in the Gabor domain,
excluding a priori unreachable areas limited by physical muscle deformation.

3. Compute the deformation tensor F, Eq. (4) for every time t, relative to the
reference time t0.

4. Calculate the strain tensor E, Eq. (5), and components Err, Ecc and Ecr,
Eq. (6).

Here we used σ = 4. The optimal value of σ depends on the tag width.

3 Data Description

In this study, artificial, volunteer and patient tMRI data are used. The artificial
tMRI data consisted of a series of 16 frames (64× 64 pixels) of contracting and
rotating rings, simulating the systolic phase in a single short-axis slice of the left
ventricle, with two and four tag directions (A ∈ {2, 4}). The wall thickens and
rotation decreases linearly with increasing radius, causing the endocardium to
rotate more than the epicardium, inducing shear deformation. Tag fading was
modelled by exponential decay and Rician noise was added.

For six volunteers, single short-axis slices of the left ventricle were obtained
in 30 frames with SPAMM imaging, forming a whole heart cycle (systole and
diastole). Data was acquired for four tag directions (A=4) with a tag size of 7
mm. Volunteers were scanned with a 3T MRI scanner (Achieva, Philips Medical
Systems, Best, The Netherlands) after informed consent and with permission
given by the Medical Ethics Committee of the local institute.

A 2D multi-shot gradient-echo with Echo Planar Imaging with breath holding
in end-expiration was used. Scan parameters were: TE 3.2 ms, TR 6.3 ms, flip
angle 10◦, slice thickness 10 mm and acquisition pixel size 1.34× 1.34 mm2 for
volunteer 2 and 1.37× 1.37 mm2 for all other volunteers. Prospective triggering
was used with a maximal number of reconstructed phases to ensure optimal
temporal resolution. Contours of the myocardium were manually drawn.

The patient dataset was obtained with a 2D SPAMM gradient-echo sequence
with breath holding in end-expiration. Scan parameters were: 1.5T MRI, TE 4
ms, TR 6.4 ms, a tag size of 7 mm, slice thickness 8 mm and acquisition pixel
size 1.33× 1.33 mm2.
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Fig. 2. Short-axis view of circumferential (left), radial (middle), and shear (right) com-
ponents of the Lagrangian strain tensor for artificial data (mid-systole) comparing
ground truth (top) with two diagonal (middle) and four (bottom) tag directions

Table 1. Average displacement errors of a rectangular grid for two and four tag direc-
tions using our novel method and HARP in mid-systole on artificial tMRI data

hor. and vert. directions diagonal directions four directions
Gabor estimation 0.5 ± 0.22 px 0.38 ± 0.2 px 0.32 ± 0.14 px
HARP 0.54 ± 0.07 px 0.54 ± 0.05 px 0.53 ± 0.07 px

4 Results

For both artificial and volunteer data, local frequencies were calculated for all
tag directions. We tested our method for both two (A=2) and four (A=4) tag
directions. An adapted implementation was used for the grid tagging sequence
of the patient dataset. In this case, two dominant peaks were located in the
Gabor domain to determine the local frequencies corresponding to the two tag
orientations of the grid. For all datasets, deformation tensors were computed
according to Eq. (4). These were used to obtain radial, circumferential and shear
strains, as presented in Fig. 2, Fig. 3 and Fig. 4.

For the artificial data, based on the deformation tensors from Eq. (4) displace-
ments were calculated for a large number of points organised in a rectangular
grid. The results of our method as well as deformed lattices calculated by our
own implementation of HARP [16] are compared with the ground truth, using
both four and two tag directions as inputs. We adapted HARP to accept four in-
put image sequences by adding two equations to the iterative scheme and solving
the obtained system with the least squares method. Although more precise im-
plementations of HARP exist, we chose to use the faster implementation based
on linearised strains [6]. As a consequence, these linearised strains can not be
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Volunteer 5

Volunteer 6

Fig. 3. Strain computed in short-axis view of the left ventricle (volunteer) for four tag
directions. Left: Components of the Lagrangian strain tensor in end systole obtained
with local frequency extraction. Right: Linearised strains obtained with HARP.
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Fig. 4. Short-axis view of left ventricle grid tagging slice in end-systole (patient). Left:
Circumferential, radial, and shear components of the Lagrangian strain tensor respec-
tively. Right: Circumferential and radial linearised strains obtained with HARP.

directly compared with strain results of our method. Therefore, Table 1 shows
the average displacement errors in pixels with respect to their true counterparts
(average distance between calculated and true grids) in the mid-systolic frame
using our novel method and HARP.
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5 Discussion and Conclusion

We have shown that quantitative myocardial deformation can be accurately and
robustly obtained from the Gabor frequency analysis of artificial tMRI data us-
ing four tag directions. Our method does neither require explicit knowledge of
material motion nor tag line extraction. It is robust with respect to tag fading
and can be straightforwardly generalised to any number of tag directions and
to volumetric tagging data. Moreover, the proposed method uses the full form
of the strain tensor instead of approximated linearised strain, which is used for
HARP strain calculations. Due to the fact that estimated frequencies are di-
rectly used to calculate deformations, the smoothness of the frequency map has
a major influence on the results. This effect is expected to be reduced by means
of adapting the Gabor filter depending on the location in the muscle or muscle
width, cf. [13], which is a subject for future work. Position dependent weight-
ing in the least squares method Eq. (4) may lead to additional improvements.
Nevertheless, subsequent approximation of tissue displacements performs com-
parably to HARP, while unlike with HARP using four tag directions improves
the quality of the results in comparison with using two tag directions (cf. Ta-
ble 1). Since HARP is an iterative method, it stops after a certain prescribed
tolerance is achieved. This explains why the performance of HARP does not
improve with more tag directions. Interestingly, and somewhat unexpectedly, a
combination of diagonal tag patterns performs better than a horizontal-vertical
tag pattern in artificial data. Considering the approximate rotational symmetry
of the model, this is most likely caused by a discretisation effect related to the
relative orientations of tag lines and pixel grid.

In current medical practice it is common to use only two tag directions for
analysis. We used more directions to achieve more stable and homogeneous re-
sults, which may increase acquisition time. However, this can be prevented by
using one or two grid patterns consisting of multiple, simultaneously acquired
tag directions. Applicability of our method to a diagonal grid tagging sequence
is shown on clinical data. Combining horizontal, vertical and diagonal tagging
stripes in two grids will preserve robustness and keep acquisition times clinically
acceptable.
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Abstract. The electrical activation of the heart is a complex physio-
logical process that is essential for the understanding of several cardiac
dysfunctions, such as ventricular tachycardia (VT). Nowadays, electro-
anatomical mappings of patient-specific activation times on the left
ventricle surface can be estimated, providing crucial information to the
clinicians for guiding cardiac treatment. However, some electrical path-
ways of particular interest such as Purkinje or still viable conduction
channels are difficult to interpret in these maps. We present here a novel
method to find some of these electrical pathways using minimal cost
paths computations on surface maps. Experiments to validate the pro-
posed method have been carried out in simulated data, and also in clinical
data, showing good performance on recovering the main characteristics
of simulated Purkinje trees (e.g. end-terminals) and promising results on
a real case of fascicular VT.

Keywords: electrical pathways, Purkinje, streamlines, fast marching,
singular points, electro-anatomical mapping, cardiac arrhythmias,
ventricular tachycardia.

1 Introduction

Ventricular tachycardia (VT) is one type of severe cardiac arrhythmias which is
often treated with Radio-Frequency Ablation (RFA). The planning of these inter-
ventions has been substantially improved by integrating patient-specific imag-
ing data with electro-anatomical mapping ([1,2]) to better targeting ablation
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sites. Nevertheless, some VTs are induced by patho-physiological mechanisms
for which very limited patient-specific data is available such as abnormalities of
the cardiac conduction system (CCS) in fascicular VTs.

The CCS is a heterogeneous network of cells responsible for the fast and
coordinated distribution of the electrical impulses that triggers the contraction
of the heart. In the ventricles, the CCS is composed of the His bundle (HB)
and bundle branches (BB) that are connected to the most distal section, often
called Purkinje (PK) system (see Fig. 1 left). The PK system plays a key role
in the synchronous activation of the ventricles since it dictates the electrical
activation sequence [3]. The CCS cannot be extracted from in vivo data due to
the small size of its structures. Nevertheless, generic computational models have
been developed capturing PK tree-like structure from ex vivo data available for
different species, see [2] for a review of these models.

In severe fascicular VTs, the RFA intervention is based on the ablation of PK
end-terminals (junctions between the CCS and the myocardial muscle) which are
identified by manual detection of PK activations from electrocardiogram signals.
Unfortunately, the detected PK end-terminals do not provide information about
the whole tree-like structure of the CCS. We present here a methodology to
obtain patient-specific activation lines from electro-anatomical maps based on
finding geodesic paths. The methodology is a three-step procedure: first, the end
terminals are detected from the electro-anatomical map; second, the electrical
paths going from the detected end-terminals are reconstructed from the electro-
anatomical map; and third, the conduction velocity of the geodesic paths are
computed, to distinguish those that are close to the PK system from those that
are only due to muscle activation.

For validation purposes we performed two experiments on synthetically gener-
ated electro-anatomical mappings. The first one is a simplistic simulation based
on a surface fast marching solution to show the behavior of the geodesics gener-
ation. The performance of the detection of the end-terminals is evaluated with
a second experiment where a simulated local activation map (LAT) is obtained
for every point using detailed electrophysiological models and including a PK
tree constructed with a L-systems-like method [2] on a LV geometry extracted
from a CT image. Finally, we applied the algorithm to a real case of a patient
with fascicular VT, finding relevant information about PK terminal distribution
for the planning of ablation procedures.

2 Methods

2.1 Minimal Cost Paths

Minimal cost path computation is a well-known problem that is usually solved
by Dijkstra algorithm [4] in graphs. For 2D/3D images, the pixels or voxels are
used as the nodes and the distances between them are the weights associated
to the edges of the graph. Computation of geodesics on surfaces has a higher
level of complexity that has been addressed by other authors [5,6] in the past. In
particular, given a surface S, with a weighted map ψ defined on it, ψ(x) ∀ x ∈ S,
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and a surface point z denoted as the end point, the geodesic problem consists in
finding the shortest weighted path Γψ,y : [0, 1] → S lying on the surface between
any point on the surface y and z:

Γψ,y = argmin
γ

{Lψ(γ) : γ(0) = y, γ(1) = z},

where Lψ(γ) is the curve weighted length

Lψ(γ) =

∫ 1

0

ψ(γ(s))||γ(s)′||ds.

It is known [5,7] that a solution to this problem can be obtained using a
hamilton-jacobi formulation, solving the eikonal equation for φ(x), that will
define a distance map on the surface starting from z

||∇φ(x)|| = 1/ψ(x), ∀ x ∈ S,
with initial condition φ(z) = 0. The solution to this equation is optimally com-
puted using the fast marching algorithm [8]. Once φ is computed, the computa-
tion of the geodesic can be reformulated as a backtracking procedure following
the gradient of φ

Γψ,y = {x ∈ S|∇Γψ,y(x) = ∇Sφ(x), Γψ,y(0) = y, Γψ,y(1) = z}, (1)

where ∇Sφ(x) denotes the gradient of φ intrinsic to the surface. This means
that starting from any point y, the geodesic on the surface induced by ψ is
obtained following the gradient of φ. Two considerations have to be taken into
account. First, the surface S has to be a good approximation of a Riemmanian
manifold, in other words, be smooth enough to allow computing its gradient.
Secondly, ∇Sφ(x) has to be defined for all x on S. Singular points, such as sink
or source points are excluded from the path computation, however, they will
provide important information as we will show later. Notice that if the weighted
map ψ is constant, we are in the Euclidean case. However, it is interesting for
other applications the use of other maps defined on the surface. In our case, φ
is directly given by the LAT map, where z is located at the HIS, and therefore,
direct application of equation 1 (i.e. backtracking) will provide the geodesics.
Notice that the geodesics will be calculated from late local activation times to
early activation times, thus using the negative of the gradient field, −∇Sφ. Our
implementation will follow the description given in [7], where the computations
are performed on implicit surfaces instead of on triangular meshes.

2.2 End-Terminals Detection

The end-terminals are estimated directly from the electro-anatomical maps. Ob-
serving closely the gradient field of a simulated electro-anatomical map (Fig. 1
right) one can clearly distinguish points where the geodesics converge or diverge,
which are singular points of the map, i.e. points where the gradient field of the
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map is not well defined. Therefore, a point x on a distance map φ defined on
the surface S will be detected as a singular point if the lateral derivatives of the
gradient map are different at every tangential direction. In practice, the singu-
lar points are detected when the sum of these derivatives are below a certain
threshold:

lim
h→0+

∇uiφ(x)−∇uiφ(x− uih)

h
+ lim

h→0−

∇uiφ(x)−∇uiφ(x− uih)

h
< ε,

where ui are the coordinates of the tangential plane of S defined on x, and ∇uiφ
the gradient component in this direction. The threshold selection will be studied
in Section 3.2.

A distinction has to be made between two types of singular points, those where
geodesics converge, denoted as sink points (point A in Fig. 1) and source points
where geodesics diverge (point B in Fig. 1). These points can be discriminated
based on the change of sign of ∇uiφ along each tangential direction. A change
from positive to negative gives sink points and source points otherwise. Our
points of interest here are the sink points of the activation map φ(x), that will
be equivalent to source points of the negative map −φ(x).

Fig. 1. Left: detail of the Purkinje fiber system in a real case. Right: vector field of an
electrical activation map. Two singular points are indicated with arrows, a sink point:
A, and a source point: B.

3 Validation Experiments with Simulated Data

3.1 Fast Marching Generated Simplistic Map

To show the behavior of the proposed technique we have designed a simple
simulation experiment with synthetic data. Notice that the simulated map is not
meant to be realistic but it is designed to show the tracking method performance.
We have taken a surface model of a left ventricle, S, and a tree mimicking its
main PK system defined on it. Starting from a tree point located at the HIS, a
signal is propagated to the rest of points in the PK tree with a constant velocity
v1. Starting from the local activation times obtained on this tree, a signal is
propagated using fast marching to the rest of the surface points with a lower
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velocity, v2 = v1/10, obtaining a simulated activation map φ(x) ∀ x ∈ S. Fig. 2
(left) shows the reference tree with the surface mapped with the local activation
times obtained in this way. Our goal in this experiment is to use this map to
recover the initial tree with the backtracking algorithm described above. In Fig. 2
(middle), we show the geodesic paths obtained starting from a set of seeds equally
distributed on the surface (2478 seeds in total). This gives us information about
many possible activation paths on the ventricle. Then, calculating the velocity
along the generated paths and keeping the ones with high velocities we are able
to recover the original PK tree as shown in Fig. 2 (right). We have then computed
the LAT map from the estimated tree to compare it with the original LAT map.
This map is shown in figure Fig. 2 (middle) and the absolute differences between
both are shown in Fig. 2 (right), with a maximum difference of 6.4 ms and an
average relative error of 0.4 %. This figure shows that the bigger differences are
obtained close to the estimated tree, particularly at gaps.

Fig. 2. Ventricle surface with simulated activation maps. Left: a reference (simulated)
PK tree is shown from which the activation map is computed. Middle: geodesic paths
estimated from the simulated map using uniformly distributed seeds over the surface
(shown in red), and map generated from the filtered tree. Right: differences between
initial LAT and LAT computed with the estimated filtered tree, shown in white.

3.2 Realistic Simulated Data

A detailed electrophysiolocal model including a complete Purkinje tree has been
used with the method described in [2], resulting in simulated electrical maps of
the left ventricle. The method is an enhancement of a rule-based method known
as the Lindenmayer systems (L-systems). The construction of the PK tree is
divided into three consecutive stages, which subsequently develop the CCS from
proximal to distal sections. Each stage is governed by a set of independent user
parameters together with anatomical and physiological constraints to direct the
generation process and adhere to the structural observations derived from histol-
ogy studies. Several properties of the tree are defined using statistical distribu-
tions to introduce stochastic variability in the models. The CCS built with this
approach can generate electrical activation sequences with physiological charac-
teristics. The electrical propagation in the myocardium was modeled using the
monodomain equation.
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Using these maps, we have tested our end-terminals detection, by finding the
singular points, depicted in Fig. 3 (middle), and comparing them with the true
end-terminals used in the simulations, shown in Fig. 3 (left). For quantitative
evaluation, the distances from the detected points and the reference points are
computed. To account for under or overestimation of the detected points with
respect to the threshold used, two distance measures are computed: the average
distance computed from each reference point to its nearest detected point; and
viceversa, the average distance computed from each detected point to its nearest
reference point. The optimal threshold value is taken when these two distances
reach low values at the same time. From Fig. 3 (right) the optimal threshold is
found at approximately 0.35, providing average distances of 0.98 and 0.88 mm
respectively.

Fig. 3. Left: synthetically generated electrical map using [2], with end-terminals shown
in white. Middle: automatically detected end-terminals shown in blue for ε = 0.35.
Left: Average differences between the reference end-terminals and the detected singular
points and viceversa vs the threshold value, ε.

4 Clinical Data Results

We had access to clinical data for one case of fascicular VT, where the Cardiac
Conduction System is thought to play a relevant role. Specifically a pre-operative
CT image was available and used to extract the LV geometry and electro-
anatomical mapping data (CARTO, Biosense Webster) giving intra-cardiac elec-
trical information at the LV endocardium. The mapping of the CARTO data onto
the CT geometry was based on establishing an homeomorphism between both
surfaces using a common parameterization computed by mesh flattening (see
details in [9]). The electro-anatomical maps is composed of 231 points where
a 1D electrocardiogram signal (acquired at 1 kHz) is available for each point
during approximately three cardiac cycles. Purkinje and muscle activations were
visually identified by an experienced technician in Hospital Clnic de Barcelona
on these 1D signals. The final reference surface mesh based on the CT geometry
has 50k nodes and LAT values from CARTO are linearly interpolated.
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Fig. 4 shows the geodesic paths automatically estimated for this real case,
generated from the singular sink points detected by our method from the neg-
ative gradient field of the activation map, −∇Sφ. The LV is colored with the
activation map in two different views (A, B). The geodesic paths have also been
colored according to the velocity, see Fig. 4 (E, F), in the same views for com-
parison. Notice that a discrimination between fast or slow conduction channels
is difficult or impossible in the clinical case because the conduction velocity con-
siderably changes along every path. However, it is interesting to see regions with
consistently higher velocity, giving a hint about possible contacts with the PK
system.

Fig. 4. A, B: LV surface from a real patient with overlaid measured activation maps,
computed geodesic paths (white), and seeds (red). C, D: detail of the geodesic paths
with the gradient vector field obtained from the activation maps. E, F: geodesics colored
according to their conduction velocity.

5 Conclusions

We have proposed a method to automatically trace the electrical pathways in
activation maps of the LV surface. It is important to remind that these electrical
pathways are just the pathways of electrical activation through the muscle, and
are not meant to be an exact reconstruction of the PK system. Taking this
into account, the geodesic paths obtained here have several advantages over the
standard electrical maps. First, they provide an attractive and an alternative
visualization to the activation maps, giving more detailed local information.
For instance, we can better see channels forming loops, or branching systems,
that are sometimes hidden by the global color-coded maps, and that are useful
to the clinicians to understand and treat abnormal electrical patterns. Second,
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the velocity information along the geodesic paths give us an approximate idea
about how is the distribution of the PK system, providing information about
the connections of the conduction paths of the muscle to the PK system. The
geodesics shown here open up the possibility for better visualizations in other
cases of VT and can be used as an alternative way to identify scar tissues.
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Abstract. Cardiac contractility personalization from medical images is a major
step for biophysical models to impact clinical practice. Existing gradient-based
optimization approaches show promising results of identifying the maximum
contractility from images, but the contraction and relaxation rates are not ac-
counted for. A main reason is the limited choice of objective functions when their
gradients are required. For complicated cardiac models, analytical evaluation of
the gradient is very difficult if not impossible, and finite difference approxima-
tion may introduce numerical difficulties and is computationally expensive. We
remove such limits by using derivative-free optimization, and propose a velocity-
based objective function on identifying the maximum contraction, contraction
rate, and relaxation rate simultaneously with intact model complexity. Experi-
ments on synthetic data show that the parameters are better identified using the
velocity-based optimization than the position-based one. Experiments on clinical
data show that the framework can obtain personalized contractility consistent to
the physiologies of the patients.

1 Introduction

Cardiac model personalization is a process to obtain a biophysical model accounting
for the subject-specific cardiac physiology, usually realized as parameter estimation.
Given a generic cardiac model designed from invasive experiments, model parameters
of anatomy, electrophysiology or mechanics are estimated from the subject-specific in
vivo measurements such as non-contact endocardial mappings and magnetic resonance
images (MRI). As simulation of the whole organ has reached a degree of realism which
is quantitatively comparable with available cardiac images and signals acquired rou-
tinely on patients, model personalization gives a potential impact to clinical practice by
improving disease diagnoses and planning therapies.

Cardiac mechanics is the interaction among active contraction, tissue stiffness, and
boundary conditions of surrounding anatomical structures [1]. Various cardiac elec-
tromechanical models have been proposed to describe such an interaction with different
physiological plausibilities, complexities, and computational efficiencies. According to
the characteristics of the models, different personalization algorithms have been pro-
posed to estimate tissue stiffness and active contraction properties [2–4].
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This paper will concentrate on cardiac contractility personalization. To estimate
model parameters, the gradient-based optimization is probably the mostly used method
for the variational approach [5–7]. For example, in [7], the quasi-Newton L-BFGS-B al-
gorithm was utilized to optimize the position-based objective function, which requires
the gradient of the objective function with respect to the contraction parameters. Al-
though the utilized adjoint method allows efficient computation of the gradient, it re-
quires the system derivatives of the complicated cardiac electromechanical model. This
limits the exploration of the proper objective functions and also the types of parameters
to be estimated, as some objective functions are highly nonlinear with respect to the
desired parameters. Therefore, only the maximum contraction was estimated even after
some model simplifications.

In consequence, we propose the use of derivative-free optimization for cardiac con-
tractility personalization. Without the analytical, numerical, and computational difficul-
ties associated with gradient evaluation, objective functions which may provide better
parameter estimation can be investigated with relative ease. By using the derivative-free
optimization method based on trust region methods [8], we propose a velocity-based
objective function for simultaneous estimation of regional maximum contraction, rate
of contraction, and rate of relaxation. Experiments were performed on synthetic data to
show the capability of the framework in identifying regional parameters, and on patient
data to show the clinical relevance.

2 Cardiac Electromechanical Model

The dynamics of a cardiac electromechanical model can be given as:

MÜ+CU̇+KU = Fb + Fc (1)

where M, C, and K are the mass, damping, and stiffness matrices, and Ü, U̇, and U
are the acceleration, velocity, and displacement vectors. Fb is the external load vector
of boundary conditions, comprising the simulated blood pressures and the displacement
constraints.Fc is the active contraction force vector derived from electrophysiology and
the tissue structure. The electromechanical model in [9] is used in this paper.

To obtain Fc at any point of the myocardium, the relation between the action poten-
tial and the active contraction can be modeled as [9]:{

σc(t) = σ0(1− eαc(Td−t)) if Td ≤ t ≤ Tr

σc(t) = σc(Tr)e
αr(Tr−t) if Tr < t < Td +HP

(2)

with σc the contraction stress and HP the heart period. σ0 is the maximum contraction,
and αc and αr are the contraction and relaxation rates to control the change of σc. Td

and Tr are the depolarization and repolarization times derived from the action poten-
tial, and a time constant can be added to model the delay between the electrical and
mechanical phenomena. Therefore, the parameters of interest are σ0, αc, and αr.

3 Electrophysiology and Kinematics Personalization

To avoid accumulating sources of uncertainties, patient-specific datasets including a rich
description of cardiac electrophysiology were utilized. In addition to the acquisition of
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anatomical and cine MRI, non-contact endocardial mappings have been acquired. The
extracted depolarization and repolarization isochrones then serve as input information
to an electrophysiology personalization method [10] which minimizes the discrepancy
between measured and simulated isochrones, providing the electrical propagation for
both kinematics and mechanics personalization.

Kinematics personalization consists in estimating the motion of cardiac structures
from images. The kinematics personalization approach in [5] is used with the cardiac
electromechanical model in Section 2. The two ventricles are meshed with tetrahedra
from the anatomical MRI (Fig. 1). The evolution of the displacement of each mesh node
is governed by (1) with an embedded image force:

MÜ+CU̇+KU = Fb + Fc + βFimg (3)

In the kinematics personalization, Fimg corresponds to a force vector which tracks
salient image features in the image sequence, computed using a 3D block-matching
algorithm to attract points towards the nearest edge voxels. Image forces are not phys-
iology based since their sole purpose is to help tracking the cardiac motion, and they
are discarded during the mechanical personalization. The personalized nodal positions
and velocities are obtained from the kinematics personalization, which are used as the
inputs for contractility personalization, along with the personalized electrophysiology.

4 Mechanics Personalization with Derivative-Free Optimization

Kinematics personalization produces cardiac motion consistent with the apparent mo-
tion in the images. Nevertheless, it cannot address the underlying physiological proper-
ties of the patient, such as the active contraction properties. To infer the physiological
properties, mechanics personalization is required. To reduce the complexity of the prob-
lem, we only concentrate on the active parameters.

4.1 Objective Function

The similarity between simulations and measurements is defined by an objective func-
tion. Supposing that the heart geometry is partitioned into regions, the objective func-
tion for variational data assimilation can be given as:

F(θ) =
∑
k

∑
r

(∑
i ‖ȳk,i − yk,i(θ)‖2

nr

)
(4)

where θ is a vector comprising parameters (σ0, αc, αr) of all regions. ȳk,i is the mea-
surement at discrete time instant k of point i in region r, and yk,i(θ) is the correspond-
ing simulated quantity. nr is the number of measurements in a region, which can be
used to remove the bias towards regions with more measurements.

Different types of measurements ȳk,r can give different results. In [5, 7], the po-
sitions of the personalized cardiac kinematics were used. As only the maximum con-
traction parameters σ0 were estimated, the sole use of measured positions may provide
meaningful results. Nevertheless, if αc and αr are also desired, positions alone may
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(a) (b) (c)

Fig. 1. Heart representation. (a) Heart geometry and fiber orientations. (b) Scar regions. (c) 5-
region representation.

not provide the necessary temporal information. Furthermore, it has been shown using
control theory that velocity-based data assimilation can lead to a more stable system
[11]. Therefore, we use velocities instead.

4.2 Bound Constrained Optimization without Derivatives

To estimate the contraction parameters, the optimization problems were solved using
gradient-based algorithms on synthetic data in [5, 6] and on clinical data in [7]. An-
alytical computation of the gradient requires the derivatives of the electromechanical
model. These derivatives are difficult to derive as the model involves interactions be-
tween myocardial deformation, contraction stresses, and different boundary conditions.
Therefore, it is difficult to compute the gradient analytically without making significant
simplifications which sacrifice the model integrity and thus the estimation accuracy.
On the other hand, finite difference is a popular numerical alternative when analyti-
cal evaluation of the gradient is infeasible. Nevertheless, the associated computational
complexity is impractical to our problem, and may also introduce further numerical
difficulties and instability.

In view of these issues, the BOBYQA algorithm for derivative-free optimization
is utilized in this framework [8]. The basic idea is to approximate the curvature of
the objective function by forming a quadratic model using interpolation. Let n be the
number of parameters to be estimated. By providing the initial parameters, and also
the beginning and ending trust regions, the algorithm forms a quadratic model Q by
computing the values F(θi) of 2n+1 interpolation points θi within the beginning trust
region. With the quadratic model available, its minimum point θ̄ can be determined.
F(θ̄) is then computed to verify if Q is a good local approximation of F , and Q and the
trust region are updated using the information. These procedures iterate until the trust
region is smaller than the ending trust region, which defines the desired preciseness
of the estimation. Therefore, explicit computation of the gradient is not required in
BOBYQA. This gives larger flexibility in choosing objective functions and parameters,
as we do not need to consider how to obtain the system derivatives. Moreover, as each
iteration only requires one function evaluation of F(θ̄), the computational load is much
lower than that of the finite difference, with requires at least n function evaluations.
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(a) Position-based optimization
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(b) Velocity-based optimization

Fig. 2. Synthetic data. Estimated parameters, with dotted lines representing the ground truth val-
ues. Left to right: maximum contraction σ0, contraction rate αc, and relaxation rate αr .

5 Experiments

5.1 Evaluation on Synthetic Data

Experimental Setups. The heart representation was created from the data of a patient
with myocardial infarction. The heart geometry was segmented from the image frame
at mid-diastole, and a FEM mesh with synthetic fiber orientations was obtained with
known infarcted regions identified by clinicians through late-enhancement MRI (Fig.
1(a) and (b)). The personalized Td and Tr derived from the patient noncontact endocar-
dial electrical mappings were used in (2) [10]. The simulated positions and velocities
on the heart surfaces were used as the inputs to the experiments, with initial parameters
σ0 = 80 kPa, αc = αr = 20 s−1.

Results. Fig. 2 shows the estimation results. For the position-based optimization, most
estimated parameters are inaccurate, and the regional orders cannot reflect those of the
ground truth. On the other hand, the velocity-based optimization has correct regional
orders and more accurate results.

Fig. 3 shows the mean position differences between the ground truth and the person-
alized simulations in a cardiac cycle. Although all differences are below the usual spatial
resolution of MRI (< 0.6 mm), the velocity-based optimization has smaller differences
and variations. These results show that the velocity-based optimization performs better
than the position-based one.
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Fig. 3. Synthetic data. Mean position differences between the ground truth and the personalized
simulations in a cardiac cycle. The shaded area represents the standard deviation.
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Fig. 4. Patient data. (a) Patient 2. LV regions based on AHA nomenclature. (b) Patient 1. Results
of velocity-based optimization. Left: LV pressures. Right: the corresponding time derivatives.

5.2 Evaluation on Clinical Data

Experimental Setups. Two data sets were tested. Patient 1 has myocardial infarction,
whose data set was used in Section 5.1 to generate the synthetic data, with infarcted
regions identified through late-enhanced MRI. Patient 2 has dilated myocardiopathy
without identified infarction. All patients have left bundle branch block (LBBB) and
suffer from heart failure. Each data set has a cine MRI sequence of 30 frames, with the
heart periods of Patient 1 and 2 as 1.03 and 0.73 s respectively. The corresponding in-
plane resolutions are 1.56 and 1.45 mm2, and all images have inter-slice resolution of
10 mm. All data sets have the endocardial activation maps measured with the Ensite bal-
loon, which were extrapolated to the myocardial volume using an electrophysiological
model to provide the subject-specific Td and Tr in (2) for the experiments [10].

For each data set, the heart geometry was segmented from the image frame at
mid-diastole, and a FEM mesh with synthetic fiber orientations was constructed. For
Patient 1, the 5-regional heart representation in Section 5.1 was used (Fig. 1). For Pa-
tient 2, in our early experiments, the heart geometries were only divided into LV and
RV. Nevertheless, the personalized simulations were inconsistent with the measure-
ments because of the local variations possibly caused by the diseases. Therefore, the
LV was divided into eight regions by grouping the American Heart Association (AHA)
regions to balance between preciseness and computational load (Fig. 4(a)). Kinematics
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(a) Patient 1

(b) Patient 2

Fig. 5. Patient data at end systole. Left: heart geometries overlapped with images, with red, green,
and blue representing personalized kinematics, initializations, and personalized simulations re-
spectively. Right: personalized simulations and the corresponding contraction stresses in kPa.

Table 1. Patient data. Estimated contraction parameters.

Patient 1
Region LV RV Scar Sep Apex
σ0 (kPa) 84.7 85.0 54.2 60.0 49.3
αc (s−1) 27.2 11.8 21.3 22.2 20.8
αr (s−1) 33.2 26.4 30.1 7.9 26.5

Patient 2
Region 1 2 3 4 5 6 7 8 RV
σ0 (kPa) 52.3 56.6 55.5 97.7 54.6 62.9 35.9 122.0 83.1
αc (s−1) 23.8 29.0 11.0 25.8 33.7 25.9 30.5 20.2 5.8
αr (s−1) 31.8 40.9 25.7 27.1 39.5 26.9 36.3 14.0 14.4

personalization was performed on each data set to provide positions and velocities for
the experiments. Only the points on the heart surfaces were used as motion information
is unavailable inside the myocardium for cine MRI. The initial contraction parameters
were σ0 = 100 kPa, αc = αr = 30 s−1.

Results. As we have shown that the velocity-based optimization is better on the syn-
thetic data, it will be the concentration in the following discussions.

Fig. 5 provides the comparisons among the personalized kinematics, simulations
with initial parameters, and personalized simulations. In all cases, the simulations with
the personalized parameters are much closer to the personalized kinematics. Fig. 5 also
shows the active contraction stresses at the end of systole, which correspond to the
maximal contractility. In all cases, the RV has larger contractility compared with most
regions at the LV. For Patient 1, the scar region has lower contractility, which is con-
sistent to the pathology. Nevertheless, the septum also has lower contractility even it
is not infarcted. In fact, septal flash can be observed in the image sequence, thus the
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low contractility partially accounts for the corresponding condition. For the apex, as a
large part of this region is out of the image, it is hard to justify the clinical relevance
of its contractility. For Patient 2, the small contractility of the LV adequately reflect the
symptom of dilated cardiomyopathy. The inconsistently high contractility of the apex
was mainly caused by the imposed displacement boundary conditions, and its location
outside of the image region. The estimated parameters are shown in Table 1.

To show the realism of the personalized mechanics, the simulated blood pressures
through ventricular isovolumetric constraints and Windkessel model are compared with
the invasively measured blood pressure of the patients (Fig. 4(b)). The LV blood pres-
sure and its time derivative show large improvement after mechanics personalization.
This means that the personalized electromechanical model can partially reflect the sub-
ject’s actual physiology.
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Abstract. We propose a new framework for 4D relative pressure map
computations from 4D flow MRI that uses enhanced geometric models
for the blood vessels and flow-aware surface and volumetric tags. The
enhanced geometric modeling provides better accuracy compared to a
simple voxelized mask, while tagging of inlets and outlets allows im-
posing physiologically meaningful boundary conditions, contributing to
more accurate pressure computations. An integrated software suite for
semi-automatic processing of 4D flow MR images, preparation and com-
putation of the flow parameters is presented. This enables a fast and
intuitive workflow, with accurate final results, ready in minutes.

1 Introduction

Knowledge of pressure and velocity of blood flow in the human cardiovascular
system can be decisive for clinical evaluations (initial and post-procedural) and
procedure planning. In particular, the severity of various cardiovascular diseases
such as aortic valve stenosis and aortic coarctation can be assessed from in-
traluminal pressure gradients [3]. Non-invasive time-resolved 3D phase contrast
(PC) MRI with three-directional velocity encoding (also termed as 4D flow MRI)
[11,12] provides in-vivo blood velocity information that can be used to derive
intraluminal relative pressures. This approach offers a full 3D+time computa-
tion of the relative pressure, which can be used to estimate temporal and spatial
gradients within a vessel segment. In this work we present an efficient workflow
for the computation of relative pressure from 4D flow MRI.

Previous works [1,15,6] that consider the issues of velocity reconstruction and
pressure map estimation from PC-MRI data, use, in a first step, various tech-
niques which essentially act as enhancement filters, in order to enforce incom-
pressibility of the given velocity field. Such filters are either global [14] or, more
commonly, have compact support [2,13,10,5] given by voxel masks approximat-
ing the region of interest. In a second step, the pressure map is computed from
the filtered velocity field by solving the Pressure Poisson Equation (PPE) with
either Neumann or Dirichlet boundary conditions. The numerical formulations
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vary between Cartesian methods (finite differences or finite volumes) and finite
element methods (FEM). Another class of methods compute the time-varying
pressure drop by computing Navier-Stokes flow in the vessel, using aortic ge-
ometries modeled either as 3D rigid walls, or as axisymmetric 1D full FSI model
with Windkessel boundary conditions [9].

In this paper, we propose a method that addresses issues with some of the
simplifying assumptions used in the previous work, that may introduce errors
in the estimation of relative pressure. For example, we go beyond models which
use streamline/pathline pressure integrals, which offer information insufficient
for determining cross-sectional gradients. We also note that, if the boundary
conditions do not recognize the different types of boundaries that the computa-
tional cells cross, wall fluxes could be easily overestimated or underestimated,
and small changes in the lumen mask may introduce significant flux changes.
Krittian et. al. ([10]) recently proposed a method that mitigates such issues by
rewriting the PPE in weak form and solving a volume integral equation us-
ing FEM. However, flux mass conservation may not be enforced properly if the
specific branch fluxes are not taken into account. Furthermore, using the same
mask for all time phases may shrink the domain, making it harder to enforce
mass conservation.

Our approach for filtering the initial velocity field and solving the PPE with
Neumann boundary conditions improves on the state of the art by using en-
hanced geometric models for the blood vessels that are an order of accuracy
above the voxelized mask, and include flow-aware tagging of inlet and outlet re-
gions, which allows flux constraints. We built an integrated framework for data
processing and computation that enables the user to progress through the data
processing pipeline in a fast, semi-automatic, intuitive fashion, and to obtain the
final result in a matter of minutes. Our pressure computation module is refined
but efficient at the same time, providing the complete 4D results in less than a
minute for a usual 4D PC-MRI dataset.

2 Relative Pressure from Velocity Fields: Theory

Blood in larger vessels can be appropriately modeled as an incompressible New-
tonian fluid, whose flow inside a given moving domain can be modeled by the
classical Navier-Stokes equations [7]

ρ (ut + (u−w) · ∇u) = −∇p+ μΔu+ ρF, (1)

∇ · u = 0 (2)

where t is time, ρ is the fluid density, u is the fluid velocity, w is the reference
domain velocity, p is the fluid pressure, μ is the dynamic viscosity, and F is the
sum of external forces such as gravity. By taking the divergence of equation 1,
one obtains the Pressure Poisson Equations (PPE). Further, projecting equation
1 along the normal to the domain boundary, we obtain the natural (Neumann)
boundary condition:

Δp = ∇ · RHS, ∂p
∂n = RHS · n̂ (3)
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where RHS = −ρ (ut + (u−w) · ∇u) + μΔu + ρF. In this work we ignore
the role of gravity, due to horizontal patient positioning, which mitigates its
effect on measurements. While the Neumann boundary condition is the natural
choice when the velocity is incompressible, this is not necessarily the case with
measured data, and Dirichlet boundary conditions for pressure can be used on
vessel outlets whose fluxes are known.

3 Relative Pressure from Velocity Fields: Methodology

As the quality of 4D flow MRI improves, one can compute progressively better
geometric models of vessel geometries, and luminal velocity with increased accu-
racy. In particular, recently [8] have presented, as part of an investigational 4D
Flow tool (Siemens AG), a methodology for extracting a 4D geometric model of
the aorta and deformable masks from 4D flow MRI thoracic data, including the
associated 4D aortic flow information. We used the 4D Flow tool as a baseline
for our workflow, and added further functionality to compute tagging informa-
tion for the aortic walls, virtual inlets and outlet locations, as well as a level set
representation for the mask. Our computational domain is therefore computed
with enhanced accuracy, which further allows more accurate application of the
boundary conditions for the pressure Poisson solver. In particular, the level set
allows computation of enhanced edge weights for the Poisson solver.

Our approach is summarized in the schematic and flowchart given in Figure 1.
In the following we discuss in more detail each of these components.

Fig. 1. Left: flowchart depicting the workflow from image acquisition to relative pres-
sure computation. Right: our geometric setup: (left image) wall surface defined as the
zero of a level set; inlet/outlet tagging included. Previous methods use voxelized data
(right top) while we use smooth tagged representations (right bottom).

4D Intensity and Velocity Masks. 4D flow data are imported into the 4D
Flow Tool, and a vascular model at a reference time point is obtained by perform-
ing aortic lumen segmentation following a semi-automated centerline extraction
[8]. This vascular model is propagated across the entire time sequence using the
displacement fields derived from a deformable registration technique.
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Flow-Aware Geometric Tagging. While standard finite difference spatial
discretization of the PPE computational domain relies on low order accuracy
voxelized masks, with staircase boundary, our computational mask is defined
implicitly by a level set, and therefore provides a smooth wall surface. Further-
more, we introduce a “flow-aware” semi-automatic procedure to tag the inlets
and outlets of the vessel mesh, as well as the inlet and outlet cells and nodes
of the computational domain (Figure 1). The semi-automatic workflow proceeds
as follows: the user clicks on the desired position where the virtual cut is to be
placed, and prescribes the appropriate tag corresponding to an inlet or an outlet.
The virtual cut normal plane is computed using connected component separation
of all the mesh triangles intersected by the plane, followed by an area cut min-
imization procedure. The non-inlet/outlet triangles are tagged as walls. A level
set function is subsequently computed as the signed-distance to the mesh. In
the next step, wall, inlet and outlet cells are tagged (based on their intersection
with the tagged mesh), followed by nodal tagging based on the cell tagging and
level set values. The inlet/outlet cuts are then propagated both as topological
and geometric cuts in time, using the displacement fields from section 3.1, and
Taubin-like curve-smoothing in order to minimize distortion and preserve flat-
ness. The outcome is a set of 4D tagged meshes with point-correspondence, and
corresponding 4D grids with tagged cells and nodes (solid/fluid/inlet/outlet)
and level set information.

Velocity Field Enhancement Prior to PPE Solution. The velocity field
measured in 4D flow MRI is not discretely incompressible, and suffers from
various aliasing and noise artifacts, especially near the wall, and various methods
have been proposed to address such issues. In our framework, we perform a
correction step prior to solving the PPE by setting up a Poisson equation with
Neumann boundary conditions. We use the centerlines and cross sections (Figure
2) to find mean values for the measured fluxes in the ascending and descending
aorta, and in the supra-aortic arteries. These spatially averaged values of the
measured aortic fluxes can be used as constraint fluxes, to be used as a base for
corrections applied on the domain boundaries.

Relative Pressure Computation. To find the relative pressure map we have
to solve the PPE equation with Neumann boundary conditions inside an irregular
domain, which rewrite below in kinematic form (ν is the kinematic viscosity
coefficient).

1

ρ
Δp = ∇ · RHS,

1

ρ

∂p

∂n
= RHS · n̂ (4)

RHS = − (ut + (u · ∇)u) + νΔu (5)

Let us consider the time-varying simply-connected domain Dn, with a locally
Lipschitz interface C. We seek to solve the PPE on the domain D, and represent
it by a level function Φ such that D = {x|Φ(x) ≤ 0}, Doutside = {x|Φ(x) > 0}
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Fig. 2. Semi-automatic centerline tagging (left) and segmental division for regional
mean flow computation (middle). Discretization of the variables: cell centered velocities
and pressures, nodal level set.

and C = {x|Φ(x) = 0}. We use a constant density, finite volume discretization
of the equations on a rectangular (possibly non-isotropic) grid configuration in
which the velocity and pressure are given at cell centers, while the level set is
given at the nodes (Figure 2). The level set allows a first order accurate compu-
tation for the face fractions used in the discretization of the Laplace operator. In
contrast, a staircase approach would have zeroth order accuracy. The transient
inertia terms at an intermediate time step n+1/2 are computed using temporal
differences on the reference domain Dn at time n, onto which we warp the ve-
locities from time step n+ 1 using the displacement fields computed by the 4D
Flow Tool. The velocity Laplacian and the divergence operators are discretized
using centered differences.

By discretizing the PPE inside a computational cell Cij , after using the di-
vergence theorem and performing numerical manipulations, we obtain (we write
this in 2D for simplicity):

li− 1
2 ,j

·pi,j − pi−1,j

Δx
+li+ 1

2 ,j
·pi,j − pi+1,j

Δx
+li,j− 1

2
·pi,j − pi,j−1

Δy
+li,j+ 1

2
·pi,j − pi,j+1

Δy
(6)

= li− 1
2 ,j

· R1
i− 1

2 ,j
− li+ 1

2 ,j
· R1

i+ 1
2 ,j

+ li,j− 1
2
· R2

i,j− 1
2
− li,j+ 1

2
·R2

i,j+ 1
2

(7)

In the above we denoted RHS = (R1, R2), and li,j are the length (in 2D, face
in 3D) fractions, which can be obtained with the help of the level set. Using
the above discretization one puts together a symmetric positive definite linear
system for the relative pressure, which is then solved iteratively using a multi-
grid method. Note that for interior nodes (defined as nodes with only fluid node
neighbors, hence with face weights equal to one) one obtains the usual seven-
point discretization of the 3D Laplace operator. For computational efficiency the
numerical domain is tagged to include only the masked cells and their imme-
diate outside neighbors and use a sparse matrix representation for the discrete
Laplacian. This ensures a computation time of several seconds on single CPU
for the 2.5mm resolution 4D flow MRI data sets that were considered, which is
essential for fast clinical feedback.
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4 Results and Discussion

We tested our methodology on both synthetic data and 4D flow MRI data. Each
PPE computation took less than a minute for the full sequence 4D flow data, on
a single Intel Xeon CPU with 2.53GHz frequency and a 32 bit machine.

The simplest in-silico test used analytical data for Poiseuille flow in a cylin-
drical pipe and our computed relative pressures matched the theoretical values
with less than 0.3% error. The code was also tested for convergence on analytical
tests and achieved between first and second order of accuracy in L∞ norm.

The in-vivo measurements included 4D flow MRI in 4 healthy volunteers (2
male, 2 female) on a 3T MR system (3T, Magnetom TRIO, Siemens, Erlangen,
Germany). All examinations were performed using a standard 12-element torso
coil. 4D flow MRI consisted of a previously described, k-space segmented, rf-
spoiled gradient echo sequence with interleaved 3-directional velocity encoding
([11]). Other imaging parameters were: TE=2.4 ms, TR=4.8 ms, flip angle=7o,
field of view (FOV) = 320x240 mm, spatial resolution = 2.5x2.5x2.8 mm3, tem-
poral resolution = 38.4 ms, scan time 15-25 min, parallel imaging with reduc-
tion factor R=2. MRI acquisitions were synchronized to the heart and breathing
cycle using prospective ECG-gating and adaptive diaphragm navigator gating.
Data were acquired in a sagittal oblique 3D volume. The total scan time for
the flow-sensitive measurement was 15-20 min (heart rate dependent). The data
was processed using the 4D Flow tool and the flow-aware geometric cutting and
tagging procedures previously described. After following the workflow presented

Fig. 3. Left: mean and standard deviation of pressure drop variation over time (mean
inlet/AAo minus mean outlet/DAo) for the four healthy volunteers. The trigger step
is 38± 1 milliseconds. Right: figure 4, last image, from [1].

in Section 3, relative pressure maps were obtained for each of the four healthy
volunteers, and, for convenience of comparative analysis, the descending aorta
mean outlet pressure was chosen as reference and the curves were scaled by the
respective luminal volumes. We show in Figure 3 a very good match of the mean
and standard deviation pressure drop between the AAo (mean over inlet as mea-
sured in this paper) and DAo (mean over outlet), as well as the variation of the
pressure drop between the peak and its inversion peak, with the results obtained
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by [1] for the set of healthy volunteers. The peak-systolic pressure drop in the
4 volunteers along the centerline, between the AAo and DAo stations described
above, varied between 5-10mmHg, similarly to the results obtained by [5].

We note furthermore that our relative pressure computation recovers the phys-
iological inversion of the aortic pressure profile during diastole, associated with
deceleration of blood flow during diastole as well as with the pressure pulse wave
reflection at the periphery. As shown by [1], this inversion cannot be captured by
using a Bernoulli approach to pressure estimation. A second qualitative obser-
vation is the variation of the computed pressure profile across the aortic lumen,
especially in curved regions. This may be important to functionally assess clini-
cally significant cases like bicuspid aortic valve (BAV), for which ascending aortic
dilation and spatial pressure distribution and magnitude are correlated.

Fig. 4. Pressure drop variation over time (mean inlet minus mean outlet) for the four
healthy volunteers. The top images show the pressure drops corresponding to the re-
spective temporal peaks, while the bottom images show the pressure drops correspond-
ing to the respective temporal troughs.

The success of our approach depends on the flow MRI quality: insufficient
spatial and temporal data resolution may impede segmenting the supraaortic
vessels, in which case one would need to use models for supraaortic flow. Testing
will need to be done on more data sets, both healthy and diseased, to further
validate the method and understand its limitations. Future work will also be fo-
cused on data assimilation techniques like Least-Squares FEM [4], which will use
the whole time resolved 3D PC-MRI data prepared with the presented workflow,
to constrain at each luminal grid point full 3D CFD computations. Furthermore,
one can envision a direct application of the workflow for efficient computation
of relative pressure, as a tool for assessment of risk in pathologies like aortic
coarctation or BAV.
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Abstract. Clinically, segmentation has many benefits for effective pa-
tient management, both in terms of pre-operative planning and post-
operative assessment. Volumetric image segmentation of medical data
still remains as a major challenge, largely due to the complexities of in-
vivo anatomical structures, cross-subject and cross-modality variations.
This correspondence presents a semiautomatic segmentation algorithm
that is based on graph and chaos theory. Also, we introduce a new weight-
ing function in the method for accurate delineation of regions of interest
in medical images that contain regional inhomogeneities; the preliminary
results show the potential of the proposed technique.

Keywords: Chaos concept, magnetic resonance images, segmentation.

1 Introduction

Image segmentation is known to provide adequate information about the shape
and size of an object, therefore, it bears the utmost importance before any
surgery. A rich tradition of work (for example, [1]) in image segmentation has
focused on the establishment of appropriate image (object) models; because
of the space constraint, we restrict ourselves only to a few related methods.
Though fully automatic segmentation techniques are being pursued as a major
research effort in the medical image computing community, the reliability of
automatic methods is still inferior [1]. Without doubt, graph-based methods have
advanced our understanding of image segmentation and have successfully been
employed since sometime without heavy reliance on explicitly learned/encoded
priors. Intelligent scissors is a boundary-based interactive method, that computes
minimum-cost path between user-specified boundary points. However, this is
unable to integrate any regional bias naturally, which is overcome by the Graph
Cut method as follows. Graph Cut [2] is a combinatorial optimization technique;
the globally optimal pixel labeling can be efficiently computed by maxflow/min-
cut algorithms. Grab Cut [14] extends Graph Cut (GC) by introducing iterative
segmentation scheme. However, current graph-cuts methods do exhibit certain
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limitations. For example, in case of shape priors, the energy term usually contains
additive shape energies which require templates or assume circular or ellipsoidal
regions [3]. These priors greatly improve performance in the case of object classes
with similar shapes or in the presence of templates or statistical shape models.
However, the smoothness energy term in most graph-cuts methods is based on
pixel intensities only. The pixel intensities can be locally erroneous due to noise
and other image acquisition problems especially in medical data. The failure of
these methods on medical images mostly attribute to the presence of high noise
level and poor pixel intensity distribution in the images. In this scenario, we
present a chaos based semi-automatic segmentation algorithm for left ventricle
(LV) magnetic resonance (MR) images that exhibits graph theory. Here, we
assume various objects in the image as vacillant which are aimed to stabilize
and segment by applying the chaos concept; the preliminary results show the
potential of the proposed technique.

2 Method and Materials

A French mathematician Henri Poincare first developed this chaotic model (CM)
[4] by observing a significant deviation in the output if the input is varied even
slightly. Edward Lorenz revisited this behavior with a set of 3 equations as
follows:

dx/dt = σ (y − x) , dy/dt = (rx − y − xz) , dz/dt = (xy − bz) (1)

where t, (x, y, z), σ, r and b denote time, dependent variables, Prandtl number,
Rayleigh number and width-height ratio, respectively. Lorenz has found the val-
ues of σ, r, and b as 10, 25, and 8

3 , respectively as the best representation in his
experiment [4]; presently, we too persist with these values.

2.1 Exposition of Chaos Concept for Image Segmentation

Our proposed method for image segmentation is based on graph theory where the
candidate image is treated as a graph (G) or network; all edges in the graph are
assigned some nonnegative weight (cost) by a weighting function, such as we =

e−ξ(xi−xj)
2

[5], where xi is the pixel intensity at node i. The graph is decomposed
into maximal strongly connected components (vertices of the graph). We look at
the strongly connected components (largely responsible for segmentation) cor-
responding to vertices in the graph and call them the leading strong connected
components (LSCC). Since there are usually more than one such LSCC due to
the in-homogeneity nature of a typical medical image, it is not be possible to syn-
chronize the entire network. Here the individual systems, meaning various objects
present in an image, are considered chaotic. Therefore, in order to make a specific
individual system stable (since we are interested in one object, say LV), it is re-
quired to impose some boundary conditions by placing seed points on the image.
Here comes the chaotic theory that can be applied in image segmentation ensuring
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Fig. 1. Flow chart showing determination of ξ from CM parameters

deterministic convergence by keeping initial conditions constant. The scenario is
analogous to- “iron particles are moving randomly in a cell and a strong magnet
is suddenly placed on its center”. Our objective is to find the probabilities of the
particles reaching the magnet.

The stable points (σ, r and b) are responsible to stabilize the system; ad-
ditionally, these are also useful to empirically determine ξ of we by following

ξ = κ + 0.67r0.25

[1+1.48σ0.56 ]
4
9

[6], κ being the mean intensity value of the image (as

shown in Fig. 1). The probability of a particle to reach the magnet due to its
magnetic force depends on its position, resistance along the trajectory and other
constraints. In context with image, only one variable (gray-scale/pixel intensity
value) is being considered; upon substituting the corresponding values for σ,
r and b, the above equation can be generalized into a Dirichlet format [7] as

D [v] =
∫
Ω
|∇v|2dΩ, where v is the field (twice differentiable boundary condi-

tion on dΩ), and Ω is the region (domain Ω of Rn). The solution of D [v] has to
satisfy the boundary conditions imposed by the initial seeds for image segmen-
tation. In context with segmentation, image pixels are treated as iron particles
and the probabilities with which a pixel reaches the initial seed points need to
be found out.

2.2 Image Segmentation

The input image I is represented as a graph, G = (V,E); where V and E
represent the set of vertices and edges, respectively; pixels are the nodes of the
graph. A weight is associated with each edge based on some property of the
pixels that it connects, such as their image intensities.

– Input: The seed points are set on different labels in the image depending
upon number of objects to be segmented.

– Laplacian matrix L is built based on the computed edge weights w.

– The Laplacian matrix is partitioned, L =

(
Lm B
BT Lu

)
. Subscript m and u

represent likelihood for marked (seeded) and unmarked (unseeded) pixels,
respectively.
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– The linear system is set up as, LuXu = −BTXm

where the variable Xu represents the set of probabilities corresponding to
unseeded nodes,Xm is the set of probabilities corresponding to seeded nodes.
Lu, B, and Lm correspond to the matrix decomposition of L.

– The linear system needs to be solved to get Xu (set of probabilities for each
seed point).

– The most probable pixels are then marked with label numbers.
– Finally, computation of gradient on the image results non zero values at the

object boundary.

2.3 Influence of Weighting Function

The weighting function is responsible to measure the similarity between two con-
nected vertices and the performance of any graph based segmentation method
depends on the choice of this function [8]. Usually, Gaussian function is a regu-
lar candidate for this purpose. However, the performance of Gaussian weighting
function is limited on medical images due to high noise level and poor inten-
sity distribution. Therefore, we explore for another suitable function that could
improve the performance of Laplacian operator at the fundamental level and
produce good segmentation results on blurry edged CMR images.

2.4 Derivative of Gaussian (DroG) Weighting Function

A blurred edge v (x) is represented by a concatenation of an exponential function

followed by a step function. Therefore, v (x) =

⎧⎨
⎩ e

(
− (x−t)2

2σ2
s

)
, x ≤ t

1, x > t,
, where t

and σs denote the width of the region of interest and the extent of blurring of
the blurred edge, respectively. Let a characteristic function (CF) Ew

v be defined
that determines the suitability of a weighting function (w) to a particular edge
(v); lesser its magnitude, more suitable is the corresponding weighting function.

The characteristic function (CF) is given by Ew
v =

2t∫
0

f (x)w (x) dx,, where f (x)

and w represent the input signal and candidate weighting function, respectively.
The derivative of the Gaussian function (Gauss(x)) is obtained by,

∂n

∂xn
Gauss (x) = (−1)

n 1(
σ
√
2
)nHn

(
x

σ
√
2

)
Gauss (x) (2)

where n is the order of the derivative and Hn (x) is the Hermite polynomial;
in our case we take n = 1. Simplifying the above function we get, wDroG (x) =

−xξ

2
√
2πσ3

e−
x2

2σ2 . The difference between two CFs can be expressed as,
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EDroG
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(3)

where erf is the error function and Γ (a, x) =
∞∫
z

e−tta−1dt. In order to show

the effect of blurring, σs is varied (as shown in Fig. 3(i)), keeping the value of σ
constant. For t >= 3, the plot shows negative values of EDroG

v −EGauss
v , which

means the CF magnitude due to DroG is less.

Table 1. The employed metrics for quantitative evaluation

Measure Definition

Hausdorff distance (HD) Minimum distance between two sets of points

False positive ratio (FPR) Fragment of pixels incorrectly segmented

False negative ratio (FNR) Fragment of pixels incorrectly rejected

Mean error rate (MER) (False positive + false negative)/total samples × 100

Intra-region (Ih) uniformity index of homogeneity inside a region

Specificity (Spec) True negative/(true negative + false positive)

Precision (Prec) True positive/(True positive + false positive)

Accuracy (Acc) (True positive + true negative)/total samples

Sensitivity (Sens) True positive/(true positive/false negative)

Dice coefficient (DC) Quantity of overlapping of two contours

Pratt’s Figure of merit (FOM) segmentation accuracy

2.5 Method Summary

Four-five slices (if 5, Si, i = 1, ..., 5), depending on the intensity distribution, of
a subject are first empirically selected; one apex, one basal and the rest from
the mid slices with clear boundary. These slices are segmented using the pro-
posed method considering the 2nd (smallest) eigenvector of the Laplacian ma-
trix as the optimal cut. Initially, the image is treated as a graph; seed points
on both foreground and background determine the probability map. The la-
bel map is built by considering the maximum of two probabilities at a node.
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Finally, gradient operation on the label map determines the coordinates that
carry nonzero value as the desired contour coordinates. Next, we generate seg-
mentation on the rest of the slices of the subject by following a level set procedure
to build the volumetric LV where we keep the record of track changes of a con-
tour (of a slice) until it reaches the next selected slice contour. These recorded
tracks are the intermediate contours between the two segmented slices (Si and
Si−1). In this way, the volumetric LV is formed.

3 Results and Discussion

The suggested segmentation algorithm is implemented on two databases, one
from a hospital (33 subjects) [9] and the other from MICCAI Challenge 2009 (30
subjects) [10]. Ground truth images were provided along with the datasets by the
respective organizers. In [9], each patients image sequence consisted of exactly 20
frames and the number of slices acquired varied between 8-15; spacing-between-
slices ranged between 6mm - 13mm. Each image slice consisted of 256×256 pixels
with a pixel-spacing of 0.93mm - 1.64mm. The qualitative results are shown
in Fig. 2; a nearly complete match may be observed if the segmented images
are compared with the corresponding ground truth images. Also, we evaluate
the segmentation performance by some standard measures as provided in Table
1. The corresponding values of first six in the table should be as minimum
as possible where as that of the rest should be as maximum as possible for a
good segmentation output meaning that the resulting contour closely approaches
the ground truth. We have just included the analysis of 20 subjects (randomly
selected) from each dataset in this paper due to page constraint and presented the
average quantitative figures of the 20 subjects in Fig. 3 to let the reader feel the
difference between the methods GC and CM. Also, we evaluate its segmentation
accuracy by comparing the results of the proposed method with some similar
standard methods that have reportedly overcome the possible limitations of state
of the art segmentation methods; this is summarized in Table 2. The average
variance for each measure for the methods in this table can be summarized as
0.4±0.2, 0.0±0.005, 0.0±0.002, 0.0±0.005, 0.0±0.0004, 0.0±0.006, 0.0±0.004,
0.0 ± 0.005, 0.0 ± 0.03, 0.5 ± 0.3, and 0.0 ± 0.01. The proposed method seems
to have performed better if we examine the results in Fig. 3(a) -3(h) and Table
2. On MICCAI dataset [10], the mean Dice metric (DM) and mean of mean
absolute distance (MAD) are found to be 90.0± 1.3 and 2.0± 0.7, respectively.
As reference, one of the best methods [11] of MICCAI 2009 challenge achieved
a mean DM of 91± 0.4 and mean MAD of 2.96± 1.09. The average time taken
for segmentation is 5 s per slice (without optimization) on MATLAB 7.5 on a
PC with Pentium 4, 3 GHz dual core processor.
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Table 2. Segmentation comparison with different methods

Method HD DC FPR FNR Sens Spec Prec Acc MER Ih FOM

NCut [8] 3.5453 .8343 .0234 .0084 .8356 .8487 .8534 .8490 .8009 4.21 0.86
Kmeans [12] 3.7422 0.8135 .0256 .0092 .8206 .8829 .8419 .8232 .8670 4.24 0.83
GrowCut [13] 3.2581 .8768 .0193 .0078 .8910 .7813 .9012 .9134 .6937 3.98 0.87
GrabCut [14] 3.2409 .8623 .0211 .0079 .8780 .8321 .8879 .8869 .7156 4.03 0.92
Our
method

3.0132 .9191 .0184 .0072 .9412 .7532 .9481 .9574 .6199 3.86 0.97

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a-d) Ground truth CMR images. (e-h) Segmented CMR images
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Fig. 3. Values of (a) HD. (b) DC and Sensitivity. (c) FPR. (d) FNR. (e) Specificity
and Precision. (f) Accuracy and FOM. (g) MER. (h) Ih. (i) E

DroG
v − EG

v .

4 Conclusions

This paper has presented a graph-based semi-automatic algorithm for volumetric
LV reconstruction from a few slices based on Chaotic theory. Though the perfor-
mance is satisfactory, the computational still remains a concern which we expect
to reduce after its optimization. In future, we intend to explore its behavior on
various subjects and different modalities.
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Abstract. This manuscript presents a framework for the pre-clinical
validation of LBM-EP, a fast cardiac electrophysiology model based on
the lattice-Boltzmann method (LBM). The overarching goal is to assess
whether the model is able to predict ventricular tachycardia (VT) in-
duction given lead location and stimulation protocol. First, the random-
walk algorithm is used to interactively segment the heart ventricles from
delayed-enhancement magnetic resonance images (DE-MRI). Scar and
border zone are visually delineated using image thresholding. Then, a
detailed anatomical model is generated, comprising fiber architecture
and spatial distribution of action potential duration. That information
is rasterized to a Cartesian grid, and the cardiac potentials are computed.
The framework is illustrated on one swine data, for which two different
pacing protocols at four different sites were tested. Each of the protocols
were then virtually tested by computing seven seconds of heart beat.
Model predictions in terms of VT induction were compared with what
was observed in the animal. Our parallel implementation on graphics
processing units required a total computation time of about two minutes
at an isotropic grid resolution of 0.8mm (21s at a resolution of 1.5mm),
thus enabling interactive VT testing.
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1 Introduction

Ventricular tachycardia (VT) and ventricular fibrillation are among the most life-
threatening cardiac events, causing the majority of the 200,000 yearly sudden
deaths. In addition to anti-arrhythmic drugs, radio-frequency ablation consti-
tutes a relatively efficient and cost-effective therapy. However, ablation in the
setting of healed myocardial infarction has only 58% initial success rate and 71%
eventual success rate following repeated procedures [1]. Possible explanations in-
clude: 1) the reentrant pathways to treat are complex and their origination point
is challenging to map; 2) ablation is performed by successive, localized burns,
which may not provide continuous lines of block; and 3) registration errors be-
tween electrophysiological mapping and anatomy make ablation planning and
guidance inaccurate [5]. These limitations not only limit the success of the pro-
cedure but also significantly prolong the duration of the intervention and increase
complication rates. There is therefore a need for new approaches to assist VT
ablation therapy both prior and during the intervention to improve outcomes.

To tackle this challenge, computational models of cardiac electrophysiology
(EP) are being investigated. In [13,15], preoperative magnetic resonance images
(MRI) were employed to generate a model of patient’s heart anatomy. Car-
diac EP was then computed using patient-specific parameters estimated from
intraoperative endocardial mapping at sinus rhythm [13]. The authors then vir-
tually stimulated the myocardium close to the scar to induce VT. However,
in both studies, the results were not validated against clinical observations.
Pre-clinical studies have recently been performed to thoroughly evaluate the
approach. In [11], a phenomenological model was employed to compute car-
diac EP in two swine hearts, for which in-vivo EP measurements and ex-vivo
diffusion tensor imaging (DTI) were available. The model was able to predict
VT induction, using both DTI and synthetic fibers. In [10], the authors in-
vestigated whether an isotropic EP model, with generic parameters (i.e. non
subject-specific), was able to predict VT induction. One protocol and different
lead positions were virtually tested on eight pigs, showing promising predic-
tions of VT induction compared to the observed inducibiliy. Yet, the question
of whether the model was able to predict induction for a specific lead location
and protocol was not tackled. A similar hypothesis has also been evaluated in 12
patients [2]. Promising results were obtained. VT induction could be predicted
by the model in nine cases, but the electrocardiogram (ECG) morphology of VT
and re-entrant circuits could not be validated. Hence, comprehensive validation
on clinical setups is still missing.

As a first step towards in-silico testing of tachycardia induction, we propose
a framework for the pre-clinical validation of a fast EP model, LBM-EP [12], in
terms of VT planning. Combined with advanced image analysis methods (Sec. 2),
our framework allows the fast computation of patient-specific EP for interactive
virtual electrophysiology studies. Furthermore, an efficient ECG model is incor-
porated in the model to compute the predicted ECG VT morphology. Sec. 3
reports preliminary results of two pacing protocols at four different locations in
one swine, for which VT inducibility is known. Sec. 4 concludes the manuscript.



A Framework for the Pre-clinical Validation of LBM-EP 255

2 Material and Methods

2.1 Pre-clinical Protocol

Animal Model.One swine was used in this study. Under general anesthesia, the
middle-left anterior descending coronary artery was occluded between the first
and second diagonal branch for 120 minutes using a 2.7Fr balloon angioplasty
catheter via a femoral artery, to create a myocardial infarction (MI). Sixteen
weeks after MI induction, the swine underwent in-vivo MRI and two days after
the MRI, an EP study was done to determine inducibility of sustained VT.

Electrophysiological Evaluation. Detailed left ventricular (LV) mapping dur-
ing sinus rhythm was performed with a multi-electrode 2-mm-tip catheter (6Fr)
with 2, 6, 2-mm inter-electrode spacing (Dynamic XT, Bard Electrophysiology,
Lowell) to construct a 3D voltage map using an electro-anatomic mapping sys-
tem (NavX, St. Jude Medical). Peak-to-peak bipolar amplitudes were displayed
color-coded and recorded, with electrograms ≤ 1.5mV defined as low voltage
electrograms. The programmed electrical stimulation protocol was conducted to
induce VT using a pacing catheter (6Fr) advanced to the right and then left
ventricular chambers through a femoral vein. The stimulation protocol consisted
of three decreasing extra-stimuli at two different drive cycle lengths (Sec. 3.2).

MRI Protocol. Imaging took place on a 3.0 Tesla system with a 32-channel
cardiac phased array (Achieva, Philips Medical Systems, Best, The Nether-
lands). Global cardiac function was measured using 2D breath-hold balanced
steady-state free precession (1.25 × 1.25 × 5.0mm3). For visualization of the
border zone (BZ) and scar, a custom 3D delayed contrast enhancement (DE-
MRI) sequence (ECG-gated, respiratory navigator gated, phase-sensitive inver-
sion recovery spoiled gradient echo [8]) with the following imaging parameters
was used: 60 slices with 1.00x1.25x3.0 mm3 in-plane resolution reconstructed to
0.75× 0.75× 1.5mm3, TR/TE 5.6/2.7ms, 18◦ flip angle, acquired ≈ 25-35 min
post intravenous administration of 0.2mmol/kg Magnevist (Berlex/Schering
AG, Berlin, Germany).

2.2 Model of Cardiac Anatomy

The bi-ventricular geometrical model was segmented from the DE-MRI using
an interactive method based on the random-walk algorithm [7] (the atria were
not considered in this study). Scar and BZ regions were delineated using image
thresholding. In particular, a threshold of approximatively half the grey level
peak intensity of the myocardium was used (image artifacts were removed from
the calculation of the myocardium intensities). A second threshold was visually
selected for the BZ to cover the hyper-intense area around the scar but not the
healthy tissue. The resulting segmentations were fused to form a closed surface
of the biventricular myocardium (Fig. 1, left panel) and mapped back onto a
Cartesian grid using a level-set representation.

To cope with tissue anisotropy, a model of fiber architecture was calculated by
following a rule-based approach [12]. Below the basal plane, fiber elevation angle
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varied linearly from the epicardium to the endocardium (from −60◦ to +60◦

for the LV, from −80◦ to +80◦ for the right ventricle (RV)), which were then
geodesically extrapolated up to the valves (Fig. 1, right panel). Finally, a model
of the spatial heterogeneity of the action potential distribution (APD) was used
by spatially varying the parameter τclose of the EP model (Sec. 2.3). In addition
to the endocardial and epicardial cells (τcloseendo

and τcloseepi respectively), we
incorporated in our model the M-cells (τclosemid

) as it has been showed they
contribute to the T-wave morphology [3]. A slight base-to-apex gradient (base
APD equal to 95% of apex APD) was also used (Fig. 1, right panel)).
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Fig. 1. Subject-specific anatomical model. Left : Heart segmentation (scar in red).
Right : Mesh visualization of the anatomical model estimated from the segmentation.

2.3 Model of Cardiac Electrophysiology

The LBM-EP method was used to compute cardiac EP in a computationally
efficient way. LBM-EP solves any mono-domain model by using the Lattice-
Boltzmann method (LBM) [12]. In this work, the trans-membrane potential
v(x, t) ∈ [−70mV, 30mV ] was calculated according to the Mitchell-Schaeffer
model [9]:

∂v(x, t)

∂t
= h

v2(1− v)

τin
− v

τout
+ c∇ ·D∇v + Istim

dh(x, t)

dt
=

{
(1− h)/τopen if v < vgate

−h/τclose otherwise

where, x is the spatial location, t is the time, h(x, t) is a gating variable that
models the state of the ion channels, c is the tissue diffusivity whose anisotropy
is captured by the tensor D and Istim is the stimulation current at the probe po-
sition. The parameters τ and vgate control the dynamics of the action potential.
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The mono-domain equation was solved on a 7-connectivity Cartesian grid (six
edges and central position). For higher spatial accuracy, Neumann boundary con-
ditions were enforced by using a level-set representation of the heart anatomy.
Stimulation currents were applied through Dirichlet boundary conditions at the
position of the pacing lead. Seven different domains were identified on the Carte-
sian grid: the left and right ventricular septum, used to pace the heart and to
mimic the His bundle; the left and right endocardia, with fast electrical diffusiv-
ity, cLV and cRV , to mimic the Purkinje network; the myocardium, with slower
diffusivity cMyo, the BZ (cbz) and the scar, which does not conduct the electrical
wave altogether.

We also computed the ECG resulting from the calculated EP. The extra-
cellular potentials were obtained according to an algebraic equation [4] and
mapped to the torso using the boundary element method. Finally, the algorithm
was implemented on a graphics processing unit (GPU) for maximal performance.

2.4 Virtual Pacing Protocol

Virtual pacing was performed interactively. The user first chose the protocol to
apply in terms of pacing interval. The pacing lead was then placed on the 3D
mesh interactively. Finally, cardiac EP was computed over 7 s to cover the pacing
session. Stimulus pulse width was 2ms.

3 Experiments and Results

3.1 Model Personalization

For all experiments, EP was computed on a 0.8×0.8×0.8mm3 grid. Tissue diffu-
sivity and action potential duration (APD) were manually adjusted to match the
measured QRS duration (QRSd = 116ms) and QT interval (QTd = 488ms) at
sinus rhythm. Fig. 2 shows the depolarization time map and the I-lead ECG cal-
culated by the model. After personalization, computed QRSd and QTd matched
the measurements: QRSdcomp. = 117ms and QTdcomp. = 445ms (cLV = cRV =
1500mm2/s, cMyo = 400mm2/s, τcloseendo

= 180ms, τclosemid
= 190ms and

τcloseepi = 140ms). τopen was globally increased to match trends reported in [13]
(τopen = 200ms). The nominal values τin = 0.3ms and τout = 6ms were used.
The diffusivity in the scar was set to 0mm2/s. BZ diffusivity was assumed to be
half of the healthy tissue, cBZ = 200mm2/s while τclose was increased by 30ms
to mimic the longer APD observed in the healing tissue [10].

3.2 Virtual Electrophysiological Evaluation

For all experiments, natural septal pacing occurred at t = 80ms, then ev-
ery 1180ms, the measured cycle length. The first stimulus (S1) was applied
at t = 600ms, except when mentioned otherwise, followed by the subsequent
stimulations according to the selected protocol. Two stimulation protocols (P1:
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Fig. 2. Computed depolarization times (left) and I-lead ECG (right) at sinus rhythm

8 × 400ms (S1), 360ms (S2), 320ms (S3), 290ms (S4); P2: 8 × 450ms (S1),
310ms (S2), 250ms (S3), 230ms (S4) were tested at four different locations
(right ventricle endocardium apex (RV), right ventricle outflow tract (RVOT),
left ventricle endocardium apex (LV), left ventricle outflow tract (LVOT), Fig. 3).
For P2-LV, S1 was applied at 500ms in order to avoid the refractory period.

Fig. 4 reports the computed I-lead ECG traces. For all virtual EP evalua-
tions, sustained VT could not be induced. This finding was consistent with what
was observed in the animal for P1 protocols and P2-RV, P2-RVOT and P2-
LVOT. For P2-LV, three monomorphic VT beats could eventually be observed
in the animal but they immediately degenerated into fibrillation. The model,
with these parameters, was not able to capture this pattern. Yet, non-reported
experiments with an increased τclose value inside the BZ yielded monomorphic
VT, suggesting that more localized model personalization is necessary. Interest-
ingly though, while for all P1 experiments no arrhythmias could be induced, the
second protocol yielded some non sustained arrhythmias during or shortly after
the pacing. Visual inspection of the dynamics of the trans-membrane potential
identified that these arrhythmias happened when the electrical wave generated
by the pacing lead collided with the one resulting from the natural pacing. It
should be noted that because the stimuli were applied as Dirichlet boundary
conditions (i.e. the trans-membrane potential v(x, t) was prescribed during the
stimulus), no pacing artifacts due to the current source could be computed in
the ECG. Fig. 4 therefore shows only the resulting ECG complexes.

3.3 Computational Efficiency

On a standard desktop machine (Intel Xeon 8-core @ 2.4 GHz, 4GB RAM,
NVIDIA GeForce GTX 580), EP over 1 s was computed in 19.5 s, yielding ap-
proximatively 2 minutes of computation for a complete VT pacing protocol. To
the best of our knowledge, this is the first time interactive virtual VT study
could be performed at relatively high resolution. It should be noted that on a
1.5mm-isotropic grid, 3.4 s only where needed to calculate 1 s of EP. However,



A Framework for the Pre-clinical Validation of LBM-EP 259
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Fig. 3. Position of the leads for the four VT pacing protocols tested in this study
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Fig. 4. Computed I-lead ECG for the different pacing protocols. None of them induced
sustained VT after the end of the stimulations. Stimuli are represented by the red lines.
See text for details.
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using such a coarse resolution is not recommended as details of the scar and
BZ morphology would be lost compared to the native image resolution, thus
hindering the accuracy of the predictions. Further speed-up could be achieved
by using a more powerful graphics card, LBM-EP being highly scalable both in
terms of computational node and number of cores [6].

4 Discussion and Conclusion

This manuscript presented a framework for the pre-clinical validation of LBM-
EP, a fast computational model of cardiac electrophysiology, in terms of pre-
diction of VT induction. Our approach couples advanced image analytics for
patient-specific anatomical modeling with a GPU-implementation of LBM-EP
and a model of ECG. Two minutes are needed to compute 7 s of heart beat, which
is enough to detect if VT can be induced or not, compared to the hours of com-
putations needed in [2,10] (although a direct comparison is difficult due to the
different systems and methods). Our framework thus enables interactive virtual
electrophysiological evaluations. Moreover, contrary to current approaches, the
ECG morphology of VT could be computed, which will enable more thorough
evaluation of the framework. Preliminary experiments in one swine confirmed
the feasibility of the approach. Results were promising in terms of VT induction
prediction. More localized personalization would further improve prediction ac-
curacy. Non-reported experiments with different fiber orientations (from −45◦

at the epicardium to +60◦ at the endocardium as suggested in [11]) yielded the
same clinical conclusion: VT could not be virtually induced. In this work, we
included the M-cells into our model. Numerical simulations showed their impor-
tance on the T-wave morphology. Yet, while experimental studies on adult swine
confirmed the presence of this type of cells [14], they may not be present in ju-
venile swine [11]. More experimental and numerical studies would be needed to
evaluate this aspect of the model. The next steps consist in comprehensive and
quantitative evaluation against ECG signals and invasive endocardial mapping.
More cases are also being evaluated, along with a comprehensive sensitivity anal-
ysis of the model predictions with respect to the input parameters, in particular
conduction velocity, refractory period duration, scar and BZ segmentation, as
well as lead position and S1 starting time.
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Abstract. In this paper, we propose to estimate myocardial acceler-
ation using a temporal diffeomorphic free-form deformation (TDFFD)
algorithm. The use of TDFFD has the advantage of providing B-spline
parameterized velocities, thus temporally smooth, which is an asset for
the computation of acceleration. The method is tested on 3D+t echocar-
diographic sequences from a realistic physical heart phantom, in which
ground truth displacement is known in some regions. Peak endocardial
acceleration (PEA) error was 20.4%, part of error being due to the low
temporal resolution of the images. The allure of the acceleration profile
was reasonably preserved. The study suggests a non-invasive technique
to measure cardiac acceleration that may be used to improve the moni-
toring of cardiac mechanics and consecutive therapy planning.

1 Introduction

Several studies have shown that cardiac acceleration such as peak endocardial
(PEA) and epicardial acceleration can be used as an index to assess function of
the heart (such as max dp/dt) and detection of myocardial ischemia [1, 2]. For
this reason, accelerometer devices have been proposed for monitoring myocardial
ischemia and cardiac resynchronization therapy (CRT) optimization [2, 3, 4].
A pilot study on optimization of CRT has shown significant increase in the
proportion of patients who improved with therapy [5]. Despite their advantages,
accelerometer measurements are highly invasive, and only available at a single-
location. Also, it was indicated that accelerometer measurements are influenced
by patient orientation and gravity [6, 7].

Image-based computation of cardiac acceleration has been recently proposed,
which may resolve these issues [8]. This study computed the acceleration di-
rectly from the displacement fields estimated by an image-based registration
algorithm [9].

In the present work, we address this issue by computing acceleration directly
from the parametric differentiation of myocardial velocities, the estimation of
which is inherent to the registration process. The use of temporal diffeomorphic
free-form deformation (TDFFD) algorithm has the advantage of providing B-
spline parameterized velocities, thus spatiotemporally smooth, which is an asset

O. Camara et al. (Eds.): STACOM 2013, LNCS 8330, pp. 262–270, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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(a) (b)

Fig. 1. (a) Dynamic heart phantom, and (b) M-mode data showing the sinus waveform
displacement function of equation (1) generated by the phantom

for the computation of acceleration directly from these velocities. We extend
the evaluation of the accuracy of such computations using data from a realistic
physical heart phantom, for which ground truth is known at specific locations.

2 Materials and Methods

2.1 Imaging Data

A dynamic multimodality heart phantom (DHP-01, Shelley Medical Imaging
Technologies, London, ON, CA) was employed to provide data for computation of
the cardiac acceleration from images. This phantom mimics realistic anatomical
geometry of the left and right ventricles of the human heart. The dynamic heart
phantom setup is shown in Fig. 1(a).

This phantom has two controlable actuation systems for translational and
rotational movement. Translation phantom actuator (located at the apex) was
programmed to follow a sinus waveform, without any rotation. The function for
the movement of actuator was:

dapex =
A

2
(1− cos(2πt/T )) , (1)

hence providing the acceleration as;

aapex =
A

2

(
2π

T

)2

cos(2πt/T ). (2)

The actuator was set to have stroke value A = 0.02m within a period of
T = 1.05 sec. The movement contained a short delay after each movement,
hence providing a heart rate of 34 bpm.

Fig. 1(b) shows 2DM-mode visualization of the programmed phantommotion,
for qualitative checking purposes.

3D+t echocardiographic sequences were acquired for the acceleration compu-
tations. Fig. 2 shows a representation of the acquired 3D data. Animated version
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Fig. 2. Acquired 3D data at end-diastole

of this figure is available online here. The difference with real data acquisitions
is that the phantom is surrounded by water inside and outside its walls, con-
trary to clinical images where tissue is visible outside the cardiac cavities, and
therefore can make the image quality lower and the estimation of wall motion
more difficult. Two temporal resolutions (11.9 and 21.7 fps) were used for 3D+t
echocardiographic acquisition. All images were acquired with gating to a simu-
lated vector ECG.

2.2 Image Processing

Segmentation of the left and right ventricles was first performed using 3D Ac-
tive Shape Models (ASM) [10]. The mesh resulting from the segmentation was
matched to the 3D+t echocardiographic sequences and propagated along the cy-
cle by means of a non-rigid image registration algorithm (TDFFD) [9]. We used
a two-level multiresolution implementation of the TDFFD. The initial grid size
was of one control point per frame in the temporal direction, 5 control points in
the short-axis direction and in the long-axis direction. As similarity measure, we
used the sum of squared differences between the intensities of each frame and a
reference (end-diastole) one. We used the L-BFGS-B as optimizer [11]. The left
ventricle was divided using the 17-segment model as proposed by the American
Heart Association (AHA) [12].

2.3 Computation of Acceleration

Acceleration is computed as the derivative of the estimated velocity function,
which is defined in terms of B-Spline kernels. Here we modified this function
to estimate acceleration directly from the TDFFD output. If the B-Spline

https://dl.dropboxusercontent.com/u/40491983/forever/phantom3D.mov
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coefficients of all contol points are presented in a vector of parameters p, the
velocity v(x, t;p) is computed as

v(x, t;p) =
∑
i,j,k,l

β
(x− xi

Δx

)
β
(y − yj

Δy

)
β
(z − zk

Δz

)
β
( t− tl

Δt

)
pi,j,k,l , (3)

where x = (x, y, z), β(·) is a 1D cubic B-Spline kernel, {xi, yj , zk, tl} define a
regular grid of 4D control points, and Δx, Δy, Δz, Δt are the spacings between
control points in each dimension. We can compute the acceleration a(x, t;p) as

a(x, t;p) =
dv(x, t;p)

dt
=

∑

i,j,k,l

β
(x− xi

Δx

)
β
(y − yj

Δy

)
β
(z − zk

Δz

) d

dt
β
( t− tl

Δt

)
pi,j,k,l ,

(4)

Acceleration is computed on all nodes of the mesh obtained from segmentation
of biventricular heart.

t=0.0 t=0.20 t=0.40 t=0.60 t=0.80 t=1.0 t=1.7 sec

Fig. 3. Distribution of the displacement (upper row), velocity (middle row) and accel-
eration (lower row) magnitudes during the heart cycle. Units for displacement, velocity
and acceleration are m, m/s and m/s2, respectively.
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3 Results

3.1 Displacement, Velocity and Acceleration in Heart

Fig. 3 shows the magnitude of the estimated displacement, velocity and accel-
eration of the myocardium, along the cardiac cycle. These results are computed
based on the image acquisition with frame rate 21.7 fps. Results were coherent
with the echocardiographic images, and the program used for the phantom: sta-
tionary position in the cycle before t = 0.20 sec and after t = 1 sec; higher values
at the apex with respect to the basal level, and at end-diastole. Values change
smoothly both in time and space due to the use of the TDFFD algorithm.

Results are detailed in Fig. 4 for four locations covering the myocardium from
base to apex. The four points correspond to epicardium on apex, apical inferior,
mid inferior and basal inferior section of the AHA 17-segment model, which
are labeled with 17, 15, 10 and 4 respectively. Displacement and acceleration
components in radial, circumferential and longitudinal directions are presented
in Fig. 4(a) and (b), respectively. Realistic displacements are observed: sinus
waveform as programmed along the radial direction at the apex (note that due
to the phantom materials and setup, radial contraction is not necessarily guar-
anteed in the other regions); almost no circumferential motion; and decreasing
longitudinal motion from apex to base.

(a) (b)

Fig. 4. (a) Displacement and (b) acceleration in radial, circumferential and longitudinal
directions on four regions on epicardium during heart cycle
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3.2 Displacement and Acceleration in Apex

Solid curve in Fig. 5(a) illustrates the recovered displacements at the apex from
TDFFD algorithm. The presented curve is the average magnitude of displace-
ment over the 17th AHA segment, along the cardiac cycle. Dashed line in this
figure is the configured displacement function from equation (1). TDFFD fol-
lows the configured displacement function with mean squared error (MSE) of
5.15×10−6m2. The magnitude of peak displacement was 16.2mm, which corre-
sponds to 19% relative error with respect to the settings of the phantom actuator.

The solid line in Fig. 5(b) shows the cardiac acceleration estimated by TDFFD
at the apex. Dashed line in this figure shows the second analytic derivative of
displacement function in equation (2). The MSE error from this estimation was
found to be 0.011m2/s4. PEA was measured 0.285m/s2, which shows 20.4%
error with respect to the ground truth peak acceleration 0.358m/s2 computed
from equation (2).

3.3 Effect of Frame Rate

We performed an experiment where the frame rate was decreased from 21.7 to
11.9 fps to study the impact of temporal resolution on the image based esti-
mations. Fig. 5(c) shows the radial acceleration at the same point in the apex
computed from high and low frame rate imaging data. Acceleration magnitude
has considerably changed under the effect of a lower temporal resolution. PEA
from the low frame rate images was measured 0.235m/s2, which under-estimates
this value by factor of 34.3% and 17% with respect to the ground truth data and
estimation from high frame rate images, respectively.

4 Discussion

Computing myocardial acceleration from medical images has several advantages
over other existing techniques: the measurement is non-invasive and provides
information at any location of the myocardium, and not at a single point. Fur-
thermore (not demonstrated here) accelerometer sensors are sensitive to envi-
ronmental factors such as gravity [7], which is not the case of image-based data.

In this study, we presented a method for estimating cardiac acceleration di-
rectly from temporal sequences of images. We used a non-rigid registration al-
gorithm (TDFFD) to track the myocardium along the cycle, which has several
advantages: (i) it provides differentiable velocities, necessary to the computation
of acceleration; (ii) output data is smooth in both time and space, which may
prevent from artifacts due to low image quality and low temporal resolution.

Fig. 5 shows the performance of this method for tracking the sinus waveform
displacement. The error on peak displacement was 19% and PEA error was 20.4%
and 34.3% using imaging data with frame rate 21.7 and 11.9 fps, respectively.
Some possible reasons for this error can be the sensitivity of the measurements
to image quality and temporal resolution. This hypothesis is reinforced by our
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(a)

(b)

(c)

Fig. 5. (a) Estimated displacement (solid line) versus analytical plot of equation (1)
(dashed lines), (b) estimated acceleration (solid line) compared to analytical plot of
equation (2) (dashed lines), and (c) estimated acceleration from image data of frame
rate 21.7 fps (solid line) comapred to that of image data with frame rate 11.9 fps
(dashed line)

experiment on lower frame rate sequences, which results in a drop-off of the
acceleration accuracy.

In our study, the acceleration was computed at every spatiotemporal location,
but validation against ground truth was only possible at apex. The use of a FFD-
based registration scheme, which intrinsically contains spline interpolation, may
result in oversmoothing of the estimated curves. While this is not desirable
for real applications measuring faster motion and deformation patterns, it also
prevents the acceleration from being too noisy and therefore unexploitable. This
is one limit of our study, that one may consider less relevant in the future with
the availability of higher frame rates for 3D echocardiography.

Sonomicrometry cristals may be used to provide ground truth at other specific
locations, but this was not retained in our study due to the risk of damage to the
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phantom material. Tagged-MRI is another option usually used as a surrogate of
ground truth, but this would require a MR compatible phantom, which is not
the case of the one we have.

5 Conclusion

We tested a method for estimating myocardial acceleration directly from image
sequences, using non-rigid registration techniques (TDFFD), which has the ad-
vantage of providing spatiotemporally smooth velocities, and allows to compute
acceleration directly from them. Experiments on a realistic phantom showed
feasibility of recovery of acceleration profiles using this method. However peak
acceleration measurement was conditioned by image quality and temporal reso-
lution. It suggests a non-invasive technique to measuring the cardiac acceleration
that could be used to improve the monitoring of cardiac mechanics and optimiza-
tion of CRT.
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Housden, R. James 126, 171

Ionasec, Razvan Ioan 162, 188
Itu, Lucian 236

Kadish, Alan H. 143
Kamen, Ali 236, 253
Kanik, Jingjing 162
Karim, Rashed 1
Karmonik, Christof 94
Kause, Hanne B. 212
Kertzscher, Ulrich 65
King, Andrew P. 126
Kuehne, Titus 65



272 Author Index

Lee, Daniel C. 143
Lekadir, Karim 196
Lelieveldt, Boudewijn P.F. 204
Lima, João A.C. 143
Liu, Youjun 57
Lumsden, Alain B. 94

Ma, YingLiang 126, 171
Mahmoudi, Säıd 14, 42
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