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Abstract Free surface moulding processes such as thermoforming and blow
moulding involve thermal and spatial varying rate dependent biaxial deformation
of polymer. These processes are so rapid that the entire forming took place in a
matter of seconds. As a result of the elevated rate of deformation, assumption that
the deforming polymers experience no time dependent viscous dissipation or
perfectly elastic up to large strain has became a common practice in numerical
simulation. Following the above assumption, Cauchy’s elastic and hyperelastic
theories, originally developed for vulcanised natural rubber has been widely used
to represent deforming polymeric materials in free surface moulding processes. To
date, various methodologies were applied in the development of these theories, the
most significant are those develop purely based on mathematical interpolation
(mathematical models) and a more scientific network theories that involves the
interpretation of macro-molecular structure within the polymer. In this chapter, the
most frequently quoted Cauchy’s elastic and hyperelastic theories, including
Ogden, Mooney–Rivlin, neo-Hookean, 3-chain, 8-chain, Van der Waals full net-
work, Ball’s tube model, Edwards–Vilgis crosslinks-sliplinks model and the elastic
model of Sweeney–Ward are reviewed. These models were analysed and fitted to a
series of experimental high strain rate, high temperature, biaxial deformations data
of polypropylene (PP) and high impact polystyrene (HIPS). The performance and
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suitability of the various models in capturing the polymer’s complex deformation
behaviour during free surface moulding processes is presented.

Keywords Hyperelastic model � Biaxial deformation � High strain rate � High
temperature � Free surface moulding

1 Introduction

Free surface moulding processes such as thermoforming and blow moulding are
employed extensively in the food packaging industry, automobile applications,
medical devices and most of our dairy appliances. It is widely recognised that this
process is not utilised to its full potential. Optimisation of these processes are
becoming technically challenging as newer process variations, materials, tighter
sheet/preform and part tolerances, more critical applications and sophisticated
controls are developed. At present, trial and error method is still widely practiced
among small to medium manufacturing industries. Clearly a more scientific, efficient
and sensible technique is required to reduce the excessive lead time and investment
costs incurred during embodiment and detail design. To achieve these aims, the use of
computer simulations to predict material behaviour under various processing con-
ditions appears to be a very powerful tool. However, for these simulations to be useful
it is important to integrate the analysis with an accurate material model. Utilising a
high precision model simulating the material behaviour under actual forming con-
ditions capable of effectively optimise the processing conditions as well as forming
deployment, wall thickness, part shape and dimensional stability of the final part. In
this chapter, the most frequently quoted Cauchy’s elastic and hyperelastic theories,
including Ogden, Mooney–Rivlin, neo-Hookean, 3-chain, 8-chain, Van der Waals
full network, Ball’s tube model, Edwards–Vilgis crosslinks-sliplinks model and the
elastic model of Sweeney–Ward are reviewed. These models were analysed and fitted
to a series of experimental high strain rate, high temperature, biaxial deformations
data of polypropylene (PP) and high impact polystyrene (HIPS). The performance
and suitability of the various models in capturing the polymer’s complex deformation
behaviour during free surface moulding processes is presented.

2 Experimental

2.1 Material

The thermoplastics tested in this work were pre-extruded HIPS sheet consisting
white pigment (single batch production graded as Atofina ATO DPO 02) and
nucleated, non-pigmented semi-crystalline isotactic homopolymer PP sheet with
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anti-static agent (graded as Appryl 3030 BT1). The HIPS sheet has an average
thickness of 1.51 ± 0.01 mm and MFI as quoted by the company was 4.5 (200 �C/
5 kg, g/10 min) while the PP sheets has an average thickness of 1.42 ± 0.01 mm,
MFI of 3 (230 �C/2.16 kg, g/10 min) and weight average molecular weight Mw as
obtained by gel permeation chromatography was 339,000. The crystallinity and
peak melting temperature of the PP sheet as characterised through DSC at heating
rate of 10 �C/min were 59.6 % and 165 �C, respectively.

2.2 Biaxial Test

Equal biaxial (EB) and constant width (CW) deformation tests were carried out
with the aids of a biaxial stretcher available at Queen’s University Belfast. The
pre-extruded specimens were tested under high nominal strain rates (ranging from
2 to 10 s-1) and elevated temperatures (ranging from 145 to 160 �C for PP and
120 to 135 �C for HIPS). The un-stretched samples had a dimension 76 9 76 mm
square and were pre-marked with 10 9 10 mm square ink grid to facilitate
investigation of the local deformation on the post-stretched sample. Figure 1
shows the clamping frame of the biaxial stretcher and a comparison of the final
shape obtained from CW and EB to that of an un-stretched sample.

3 Constitutive Modelling of Materials

In the history of material modelling, various constitutive equations were proposed
in an attempt to represent the behaviour of particular polymer types depending on
their morphological structure, i.e. amorphous or semi-crystalline. Within the lit-
erature, the available constitutive material models generally can be categorised
into two major groups, hyperelastic and viscoelastic material laws. This chapter
mainly concerned on the most frequently quoted Cauchy’s elastic and hyperelastic
theories, including Ogden, Mooney-Rivlin, neo-Hookean, 3-chain, 8-chain, Van

Fig. 1 Queen’s biaxial stretcher (left); CW, un-stretched and EB stretched specimen (right)
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der Waals full network, Ball’s Tube model, Edwards-Vilgis crosslinks-sliplinks
model and the elastic model of Sweeney-Ward.

3.1 Early Development of Classical Linear Elasticity

Robert Hooke 1678 [1], proposed the well-known Hooke’s law of elasticity. For a
perfectly elastic Hookean material, the applied force, F (hence stress) acting on its
body is directly proportional to the extension, u (hence strain), with the inclusion
of a material constant, k (this constant was later identified as the elastic or Young’s
modulus by Thomas Young in 1807 [2]), given as:

F ¼ k � u ð1Þ

French mathematician Augustin Cauchy 1789–1857 [3–6] subsequently gen-
eralised Hooke’s law into three-dimensional elastic bodies and stated that the six
components of stress are linearly related to the six components of strain, most
commonly known as the constitutive Cauchy’s elastic stress-strain relationship.
The Cauchy’s elastic stress-strain relationship written in the general form as:
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where [Cijkl] is the constitutive stiffness matrix. There are 36 matrix components in
general but conservative elastic materials possess a strain energy for a given strain
state, as such, the constitutive stiffness matrix [Cijkl] is symmetric (i.e. C ¼ CT ,
only 21 independent matrix components in the generalised Hooke’s law).

Taking the stress components as rij and strain components as eij, if three planes of
symmetry exist and if the coordinate planes are parallel to these planes, the Cauchy’s
elastic stress-strain relationship can be organised into a simpler form, given as:
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where the stiffness coefficient Cijkl is a fourth order tensor (denoting the ratio of
stress to strain) with only 9 independent coefficients and the material is referred as
orthotropic symmetric.

While the generalised Hooke’s law is capable of describing deformation of a
material within its linear elastic region, this model failed to simulate the non-
linear, large deformation behaviour of polymeric materials. To overcome this
limitation, various forms of constitutive equations have been proposed and this has
led to the development of a number of non-linear elastic or hyperelastic models.
The fundamental concept of these formulations is generally based on the con-
servation of energy. The theory states that any work done (in a reversible iso-
thermal process) in the deformation of a material is stored as potential energy
(frequently called the free energy potential or strain energy) within the deforming
body, and a deformed material will completely recover to its initial un-stretched
state on removal of the forming force. In other words, the nonlinear strain energy
for a given strain state only depends on the strain state itself and not on the manner
in which this strain state was obtained. The many forms of nonlinear strain energy
function W generally can be categorised into two major groups depending on the
fundamental concepts employed in their development, namely phenomenological
and physical network hyperelastic material laws.

3.2 Phenomenological Hyperelastic Material Laws

3.2.1 Mooney-Rivlin Model

Within the many forms of phenomenological strain energy functions, the earliest
and simplest is the Mooney form. Assuming a material is incompressible and
isotropic, Mooney 1940 [7] derived by purely mathematical arguments, a repre-
sentation of the strain energy, W.

W ¼ C1 k2
1 þ k2

2 þ k2
3 � 3

� �
þ C2 k�2

1 þ k�2
2 þ k�2

3 � 3
� �

ð4Þ

and

ki ¼
Li þ DLi

Li
ð5Þ

where ki (i = 1,2,3) are the principal stretch ratios given as the ratio of current
length (L + DL) over the original length L in the three principal directions
respectively, C1 and C2 are two elastic constants.

Once the strain energy function W has been defined, assuming that the material
is incompressible, the principal true stresses rT can be computed (by differenti-
ating W with respect to each of the three principal stretch ratios, i = 1,2,3) from
W to within an arbitrary pressure, P, where P can usually be determined from the
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boundary conditions (in order to eliminate the pressure term, the true stress-stretch
ratio relations are frequently written in terms of the difference in two principal
stresses, i.e. r1 � r2, r2 � r3 and r3 � r1):

ðrTÞi ¼ ki �
oW

oki
þ P ð6Þ

Eight years later in 1948, Rivlin [8, 9] claimed that the strain energy function
W should be formulated such that it is symmetrical with respect to the three
principal stretch ratios for the principle of material objectivity to be satisfied. In
this context, the author proposed that the strain energy function must depend only
on the even powers of the three stretch ratios. This has led to the development of
three strain invariants (I1, I2, and I3) as even power functions of ki (i = 1, 2, 3),
representing strain fields that are independent on the particular choice of coordi-
nate system.

I1 ¼ k2
1 þ k2

2 þ k2
3

I2 ¼ k2
1k

2
2 þ k2

2k
2
3 þ k2

3k
2
1

I3 ¼ k2
1k

2
2k

2
3:

ð7Þ

For an incompressible material, the third strain invariant I3 = 1 since
k1k2k3 = 1, leaving only two independent strain invariants (I1 and I2) in the
system. The author subsequently proposed the use of only first and second
invariants of strain in the strain energy function and stated that this function could
be expanded as an infinite series as show below.

W ¼
X1

i¼0;j¼0

Cij I1 � 3ð Þi I2 � 3ð Þ j ð8Þ

where Cij are material constants with C00 being equal to 0.
However, when considering only the first term, the Rivlin strain energy function

for an incompressible material (Eq. 8) the Mooney form is obtained. This is
generally known as the first order Mooney-Rivlin or simply the Mooney-Rivlin
relationship for higher order terms.

W ¼ C10 I1 � 3ð Þ þ C01 I2 � 3ð Þ ð9Þ

3.2.2 Ogden Model

In a slightly later development, Ogden 1972 [10] employed a more formal treat-
ment by formulating the strain energy function directly in terms of the three
principal stretch ratios. The author proposed that the ‘power (constant ai in Eq. 10
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below)’ applied to the three principal stretch ratios may have any values, positive
or negative and are not necessarily integers, given in the form below.

W ¼
XN

i¼1

2li

a2
i

kai
1 þ kai

2 þ kai
3 � 3

� �
ð10Þ

where li and ai are material constants determined from the experimental data and
i = 1, 2, 3, …, N, representing the order of the strain energy function.

It should be noted that under unique case where N = 1 and constant ai = 2, the
Ogden model yields a special case of the Mooney form with constant C2 = 0.

3.3 Physical Network Hyperelastic Material Laws

In physical network hyperelastic material laws, polymers are considered as con-
sisting of numerous long flexible chains, each of which is capable of assuming a
variety of configurations in response to the thermal vibrations of ‘micro-Brownian’
motion of their constituent atoms. Furthermore it is assumed that the molecular
chains are interlinked so as to form a coherent network but that the number of
cross-links is relatively small and is not sufficient to significantly interfere with the
motion of the chains. In the unstrained state, these chain molecules always tend to
assume a set of more stable configurations corresponding to a state of maximum
entropy. In the case where the chain molecules are constrained by external forces,
their configuration will be changed to produce a state of strain. The probability of
potential stable chain configurations in the unstrained state has been widely studied
using statistical mechanics and assuming that deformation processes at the strained
state are always thermodynamically reversible [11, 12].

3.3.1 Gaussian Network Model

neo-Hookean Model

In 1943, Treloar [13, 14] with the assumption that material being incompressible
and isotropic, developed the neo-Hookean strain energy function by considering
the macroscopic molecular configuration of rubber-like materials with Gaussian
chain length distribution. Since Gaussian statistical analysis was the earliest
concept used to develop physically based models and this concept is closely
related to the development of other physical models, describing this theorem in
further detail will provide a better overall picture and aid in the understanding of
later developments in this area.
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The Gaussian network assumes that:

1. The molecular network within a material contains N chains per unit volume, a
chain being defined as the segment of a molecule between successive points of
cross-linkage.

2. Within a particular chain, there are n ‘freely jointed’ carbon-carbon (C–C)
links/segments, each of length l. The terms freely jointed chain implies that a
chain consists of equal C–C links joined together without the restriction that the
valence angles should remain constant, a case where random joining or ‘ran-
dom walk’ is assumed.

3. The mean-square end-to-end distance for the whole assembly of chains in the
unstrained state is the same as for a corresponding set of free chains (end-to-end
distance r being very much smaller compared to the fully extended length of the
chain).

4. The junction points between chains move on deformation as if they were
embedded in an elastic continuum. As a result, the components of length of
each chain change in the same ratio as the corresponding dimensions of the
bulk rubber, known as ‘affine’ deformation assumption.

5. The entropy of the network is the sum of the entropies of all individual chains.

Based on the assumptions of a Gaussian network, Treloar statistically calcu-
lated for a single molecular chain, the number of possible configurations corre-
sponding to a chosen end-to-end distance described in assumption 3 above as well
as its entropy. The change in entropy of the whole network was successively
computed by the entropy summation of N chains as described in assumption 5.
Figure 2 schematically shows a single molecular chain with n = 36 freely jointed
segments/links of length l, where the probability of the chain assuming end-to-end
distance r, according to assumption 3, was statistically evaluated on the basis of
spherically symmetrical distribution (x2 + y2 + z2 = r2).

Under a Gaussian statistical treatment, the probability that chain end B will fall
within an elemental volume between r and dr of a spherical shell of radius r and
thickness dr was obtained.

P rð Þ � dr ¼ b3

p
3
2

exp �b2r2
� �

� 4pr2 � dr ð11Þ

where b is a function of both the number of segments/links n and their average
length l, given as b2 = [3/(2 nl2)].

By evaluating the most probable value from Eq. 11 (differentiating p(r) with
respect to r), it was subsequently found that the mean-square value of r, (rmean)2, is
n � l2 and thus the un-deformed root-mean-square end-to-end distance,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rmeanð Þ2
q� �

; of any arbitrary molecular chain can be given as Hn � l. Furthermore

it is clear from both Gaussian network assumptions and Fig. 2 that the fully
stretched length of a freely jointed chain can be given by n � l. According to
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Boltzmann’s statistical thermodynamics, the entropy of such a freely jointed chain
is proportional to the natural logarithm of the number of possible configurations,
which in turn can be given in terms of unit volume probability or probability
density (e.g. normalised with respect to the spherical shell volume ‘4pr2 ’), p(r),

s ¼ kb ln p rð Þ½ � ð12Þ

where kb is the Boltzmann’s constant equal to 1.38 9 10-23 JK-1.
Substituting p(r) from Eq. 11 into Eq. 12, a function for the entropy of an un-

deformed freely jointed chain can be expressed as:

s ¼ kb ln cð Þ � b2r2
� �

¼ c� kb �
3

2nl2

	 

� x2 þ y2 þ z2
� �

ð13Þ

where c is an arbitrary constant.
On deformation, where the three principal stretch ratios k1, k2 and k3 were

chosen to be parallel to the three rectangular axes x, y and z, the entropy of the
chain changes to s’.

s0 ¼ c� kb �
3

2nl2

	 

� k2

1x2 þ k2
2y2 þ k2

3z2
� �

ð14Þ

Fig. 2 Single molecular chain with 36 freely jointed segments
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The entropy change on deformation of a single chain was obtained through
subtraction (Ds = s’ - s) and the total entropy change for a Gaussian network
containing N chains can be calculated as:

XN

1

Ds ¼ �kb
3

2nl2

	 

k2

1 � 1
� �XN

1

x2 þ k2
2 � 1

� �XN

1

y2 þ k2
3 � 1

� �XN

1

z2

" #

ð15Þ

For an isotropic material, there will be no preferential orientation for the x, y or
z directions.

XN

1

x2 ¼
XN

1

y2 ¼
XN

1

z2 ¼ 1
3

XN

1

r2 ð16Þ

and from Gaussian statistical treatment,

XN

1

r2 ¼ N � rmeanð Þ2¼ N � nl2 ð17Þ

Assuming that the internal energy remains constant on deformation, substitu-
tion of Eqs. 16 and 17 into 15 produces the Helmholtz free energy for an
incompressible, isotropic material under reversible deformation, in terms of the
neo-Hookean form below.

W ¼ �T � Ds ¼ 1
2

NkbT k2
1 þ k2

2 þ k2
3 � 3

� �
ð18Þ

where N � kb� T is the material’s shear modulus G and T is the absolute
temperature.

It should be noted that the strain energy function derived by Treloar (Eq. 18)
yields a form of the Mooney strain energy function when constant C2 in Eq. 4
equal to 0.

When fitted the neo-Hookean model to experimental data [11], reasonably good
agreement was obtained in the low strain region but the model’s accuracy grad-
ually decreased with increasing strain. This problem was attributed to the possi-
bility that Gaussian distribution function may be valid only as long as the end-to-
end distance of the chain is not so large as to be comparable with its fully extended
length (generally end-to-end distance r should not be more than 1/3 of the fully
extended chain length).
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3.3.2 Non-Gausian Network Models

At about the same time as the neo-Hookean model was proposed, Kuhn and Grun
[15] attempted to describe the probability of the configuration of molecular chains
based on a non-Gaussian statistical theory. In this study, many assumptions of the
Gaussian network remained (assumptions 1, 2, 4 and 5) with the exception of the
assumption 3 which required the end-to-end distance to be very much less than
the fully extended chain length was removed. This was done by replacing the
Gaussian statistical distribution with an ‘inverse Langevin’ approximation func-
tion for the computation of probability distribution. Under inverse Langevin sta-
tistical analysis, Kuhn and Grun demonstrated that the probability density p(r) for
chain end-to-end distance r could be evaluated as:

ln pðrÞ ¼ c� n
r

nl
bþ ln

b
sinh b

	 

ð19Þ

where c is an arbitrary constant and b is a function determined by the fractional
extension of the chain (r/nl), given in the form below.

r

nl
¼ coth b� 1

b
¼ L bð Þ ð20Þ

The function L is the Langevin function and parameter b can be obtained from
the inverse of the Langevin function L-1, which in turn can be expressed in a series
form as shown below:

b ¼ L�1 r

nl

� �
¼ L�1 coth b� 1

b

	 

ð21Þ

) b ¼ 3
r

nl

� �
þ 9

5
r

nl

� �3
þ 297

175
r

nl

� �5
þ 1539

875
r

nl

� �7
þ � � � ð22Þ

By substitution of b from Eq. 22 into Eq. 19, the authors obtained a definition
for the density p(r), which in turn can be expressed as an expansion series.

ln p rð Þ ¼ c� n
3
2

r

nl

� �2
þ 9

20
r

nl

� �4
þ 99

350
r

nl

� �6
þ � � �

� �
ð23Þ

Adopting an analysis identical to Boltzmann’s statistical thermodynamics, the
entropy of a stretched chain with current end-to-end distance r was obtained as:

s ¼ kb ln p rð Þ ¼ c� n � kb
3
2

r

nl

� �2
þ 9

20
r

nl

� �4
þ 99

350
r

nl

� �6
þ � � �

� �
ð24Þ
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For a molecular network containing N chains per unit volume, the total tension
of the network can be evaluated as the summation of the differentiated entropy
function (with respect to r).

f ¼
XN

1

�T
os

or

	 

¼ NkbT

l
3

r

nl

� �
þ 9

5
r

nl

� �3
þ 297

175
r

nl

� �5
� �

¼ NkbT

l
L�1 r

nl

� �

ð25Þ

It should be noted that the Gaussian formula in Eq. 13 is similar to the first term
of Eq. 24 above. This suggested that Gaussian statistical theory assumed all higher
terms in (r/nl) negligible compared to the first term. In the case where the ratio
(r/nl) increases with increasing chain extension, the prediction from the Gaussian
distribution function gradually diverges from the ‘inverse Langevin’ statistical
treatment, leading to the failure of the Gaussian formula at large strain.

Three-Chain Model

The superiority of the non-Gaussian over the Gaussian statistical theory gave rise
to the later development of a network model based on this treatment. Guth et al.
[16, 17] who employed a similar concept, developed the three-chain model based
on assumption that in a molecular network containing N chains per unit volume
(N/3) polymer chains per unit volume are always oriented in each of the three
principal strain axes such that the system can be represented by 3 identical chains,
as shown in Fig. 3.

Fig. 3 Network configuration of the three-chain model: noting that the three polymer chains are
always oriented in the principal strain axes before and during deformation
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Therefore, the total network strain energy can be expressed as the sum of the 3
single-chain strain energy functions weighted by the factor (N/3). The three-chain
model defined in terms of the principal Cauchy stress and stretch ratios relation-
ship can be given as:

r3�chain
i ¼ 1

3
NkbTð Þ

ffiffiffi
n
p
� ki � L�1 kiffiffiffi

n
p
	 


þ P ð26Þ

where (N � kb� T) according to Gaussian statistics is a material parameter defining
its shear modulus, parameter (Hn) is a constant obtained from inverse Langevin
treatment as the ratio of fully extended chain length (n � l) over its initial un-
stretched length (Hn) � l, denoted as the ‘limiting stretch or finite inextensibility’
of the chain kmax. This corresponds to an infinite stress in terms of the model.

Eight-Chain Model

In order to facilitate finite element coding, Arruda and Boyce 1993 [18] developed
a simplified form of the full-network model [19–21] where a constitutive relation
without the need of numerical integration was developed based on an eight chain
representation of the underlying macromolecular network and each individual
chain property was described through the use of non-Gaussian inverse Langevin
theory. The proposed model assumed that in a molecular network containing an
assembly of N chains per unit volume, each chain consists of n links of length l,
there are (N/8) chains per unit volume being arranged in such a way that the
system can be represented by 8 identical chains linked at the centre of an enclosed
symmetric cube in principal space and their outer ends being fixed at the eight
corners of the cube. On deformation, the cube is always oriented in the principal
frame and the length of each enclosed chain was evaluated from the three principal
stretch ratios k1, k2, and k3 of the cube edges, as shows in Fig. 4.

The eight-chain model defined in terms of the principal Cauchy stress and
stretch ratios relationship as

r8�chain
i ¼ 1

3
NkbTð Þ

ffiffiffi
n
p k2

i

kchain
L�1 kchainffiffiffi

n
p

	 

þ P ð27Þ

where material constants (NkbT) and (Hn) as well as the subscript i remain as
defined in Eq. 26. The term kchain is the extension ratio (r/r0) of the eight chains,
defined in terms of the three principal stretch ratios as:

kchain ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 þ k2
2 þ k2

3

3

s
ð28Þ

where k1, k2, and k3 are the principal stretch ratios of the cube edges.
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Ball ‘‘Tube’’ Model

In agreement with the opinions of Flory and Erman [22], Ball, Edwards and co-
workers [23, 24] claimed that the classical theories of rubber elastic networks [16]
were unrealistic as they assumes the network chains to be held only by numerous
cross-linkages and these molecular chains are capable of moving through each
other as ‘phantoms’ under the action of external applied forces. However, in a real
polymeric structure, these molecular chains are capable of rotation, bending, and
kinking about their chemical back-bone according to their steric constraints, in
which a large assembly of randomly coiled chains may forms an enormous
entanglement in addition to the cross-linkages afore mentioned. This topological
entanglement gives an additional contribution to the elasticity of rubber and
therefore must be completely preserved in the evaluation for a more physical strain
energy function. The proposed model assumed that in a dense network consisting
of high molecular weight, the motion of two entangled neighbouring chains (each
of which has a fully extended chain length between cross-linkages of L) are
essentially confined in a tube-like region called slip-links, made of the large
number of surrounding molecular chains. A schematic representation of the pro-
posed ‘tube model’ can be visualised in Fig. 5.

Fig. 4 Schematic diagram of 8-chain model, un-stretched and stretched
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It is clear from Fig. 5 that under the concept of an effective tube of constraint,
the sliding freedom of any entangled chains is thus only an arc length 0.5 L in any
one direction until it locks onto another entanglement or cross-linkage. Through a
rather lengthy treatment of ‘replica formalism’, the authors attained a definition for
the strain energy, W, of the ‘tube model’, involving both the contributions from
enormous cross-linkages and chain entanglements. The resulting change in strain
energy (per unit volume) can be obtained by integrating the differentiated form
(dW/dk) of Eq. 29 below.

W ¼ 1
2

NckbTð Þ
X3

i¼1

k2
i þ

1
2

NskbTð Þ
X3

i¼1

1þ gð Þk2
i

1þ gk2
i

þ ln 1þ gk2
i

� �" #
ð29Þ

where parameters Nc and Ns are related to the number of crosslinks and sliplinks
per unit volume respectively, kb is the Boltzmann’s constant equal to 1.38 9 10-23

JK-1, T is the absolute temperature, g is a measure used to define the freedom to
slide for the sliplinks and its value is either greater or equal to 0. In the extreme
cases where g = 0 (equivalent to zero slippage and value L in Fig. 5 equal to 0),
the change in strain energy reduces to a state depending only on the contribution
from cross-linkages alone.

Fig. 5 Schematic representation of ‘tube model’ consisting of both chain entanglement and
cross-linkages as proposed by Ball, Edwards and co-workers
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Van der Waals Model

Employing an analogy in the interpretation of thermo-mechanical statistics
between the entropy-elastic Gaussian network and ideal conformational gas,
Kilian and Vilgis [25–29] developed the Van der Waals strain energy function.
The function describes the Gaussian network chains as equivalent to the equi-
partition of energy within a Van der Waals conformational gas with weak inter-
actions, mathematically expressed as below.

WVan�der�Waals ¼ NkbTð Þ � k2
m � 3

� �
ln 1� gð Þ þ g½ � � 2

3
a

~I � 3
2

	 
3
2

( )
ð30Þ

where ~I ¼ 1þ bð ÞI1 þ bI2 and g ¼
ffiffiffiffiffiffiffiffi
~I�3
k2

m�3

q

Characterisation of the Van der Waals strain energy function required four
material parameters to be completely defined. They include:

1. (NkbT) denoting the initial shear modulus G of the material.
2. The finite chain extensibility or locking stretch km (corresponding to an infinite

strain energy potential when its limiting value is reached, or more precisely
when ~I ! km

2).
3. Parameter a characterising the global interaction between ‘quasi-particle’ of an

ideal gas, or the global interaction between chains in the interpretation of a
rubber elastic network.

4. Dimensionless constant b represents a linear mixture parameter combining
strain invariants I1 and I2 into ~I. It should be noted that when b = 0, the Van
der Waals potential will depends on the first invariant alone.

Edwards-Vilgis Crosslink-Sliplink Model

Edwards and Vilgis [30, 31] attempted to improve the previously proposed ‘tube
model’ through a detailed treatment of the consequences of entanglements. The
authors found that apart from the replica calculation employed by Ball et. al. [23],
the strain energy function for a network consisting of both cross-links and slip-
links similar to that of ‘tube model’ can be evaluated through several other
methods including (1) Flory segment argument, (2) inextensibility limit of a single
chain that interpret a chain’s maximum locking stretch as the difference between
its fully extended length L and the ‘primitive path’ length of the tube Lpp and/or (3)
the Rouse theory of linear viscoelasticity [32] (the readers are referred to the
literatures [30, 31, 33, 34] for further details in each of these concepts). The
resulting unit volume strain energy function involves an additional parameter a,
which measure the inextensibility kmax (corresponding to a singularity in stress) of
the network chains (a = 1/kmax), expressed in the form given below

214 K. Y. Tshai et al.



WEdwards�Vilgis ¼ WCL þWSL ð31Þ

where the strain energy contribution from cross-links WCL is

WCL ¼
1
2

NckBTð Þ

P3
i¼1

1� a2ð Þk2
i

1� a2
P3
i¼1

k2
i

þ ln 1� a2
X3

i¼1

k2
i

 !
2
6664

3
7775 ð32Þ

and the strain energy contribution as a result of entanglement or slip-links is

WSL ¼
1
2

NskBTð Þ
X3

i¼1

1þ gð Þ 1� a2ð Þk2
i

1� a2
P3
i¼1

k2
i

	 

1þ gk2

i

� �þ ln 1þ gk2
i

� �
2
6664
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7775þ ln 1� a2
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k2
i

 !
8>>><
>>>:

9>>>=
>>>;

ð33Þ

The material’s constants Nc, Ns, and g are as defined in Eq. 29. It should be
noted that under the extreme case where g = 0, the energy contribution from slip-
links (Eq. 33) returns a form similar to that of the cross-links contribution
(Eq. 32). Under such an extreme case, there is no chain slippage allowed in the
entire network and the entanglements act as permanent cross-links.

Sweeney-Ward Model

In the work of Sweeney and Ward [35–37], the authors observed that a necking
phenomenon routinely occurred in the drawing of semi-crystalline PP and sub-
sequently proposed the modelling of such instabilities by exploiting a modified
version of the ‘tube’ model. In a uniaxial stretching simulation of PP incorporating
the ‘tube’ theory, it was found that the model successfully captured the many
features of the empirical data. However, the model could not reproduce the onset
of necking at extension ratios k less than &1.8; in reality empirical results had
shown that the necking of PP initiated at k as early as &1.3. In order to allow the
modelling of the onset of necking at a strain comparable to those observed
experimentally, a modification was proposed such that as deformation proceeds,
interaction between sliplinks in the immediate neighbourhood may lead to a
decrease in the sliplinks number Ns. This has been done by making the previously
constant sliplink number Ns dependent on the first invariant of strain I1

Ns ¼
Ns0 � Nsf

I1 � 2ð Þb
þ Nsf ð34Þ
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where Ns0 and Nsf are constants corresponding to the initial and ultimate sliplink
numbers respectively (Nsf B Ns B Ns0), and b is simply an additional fitting
parameter that controls the rate of decay of Ns.

Assuming incompressibility and expressing the three principal stretch ratios k1,
k2, k3 in terms of the three invariants of strain I1, I2 and I3, the strain energy
function of the ‘tube’ theory can be rewritten as

W

kBT
¼ Nc

2
I1 þ

Ns

2
1þ gð Þ I1 þ 2gI2 þ 3g2ð Þ

1þ gI1 þ g2I2 þ g3
þ ln 1þ gI1 þ g2I2 þ g3

� �� �
ð35Þ

It should be noted that in the evaluation of stress, the expressions (qW/qI1) and
(qW/qI2) were first obtained by treating Ns as constant. The varying Ns function (as
shown in Eq. 34) entered into the proposed model through the differentiated
functions of (qW/qI1) and (qW/qI2).

3.4 Characterisation of Material Models

The behaviour of a particular polymeric system might well be described by a
specific model but not the others. The effectiveness of the chosen material models
were assessed in terms of their accuracy in predicting the experimental material
behaviour of the PP and HIPS used. The characterisations were carried out through
a nonlinear least square fit procedure where the sum of square of the error measure,
E, is to be minimised.

E ¼
XN

i¼1

rtest
i � rth

i

� �2 ð36Þ

where N is the number of experimental true stress-stretch ratio data pairs, ri
test is

true stress value from experimental data and ri
th is model generated true stress.

A number of assumptions were adopted in the evaluation process:

1. The material is assumed to be fully incompressible, i.e. the volume of the
material cannot change throughout the deformation process (k1 � k2 � k3 = 1).

2. The material is assumed to be homogeneous and isotropic.
3. The material is assumed to be perfectly elastic up to large strain.
4. All nonlinear least square fitting were performed on experimental CW and EB

deformation data of PP (at 150 �C, 2 s-1) and HIPS (at 130 �C, 2 s-1).
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4 Results and Discussions

4.1 Phenomenological Hyperelastic Model

4.1.1 Ogden Model

The 1st order Ogden model was least-square fitted to both EB and CW data of PP
and HIPS. Figures 6 and 7 show the fitted results of the 1st order Ogden model.

While the 1st order Ogden model predict relatively well the deformation
behaviour of HIPS, the model failed to capture the deformation response of the PP.
It can be observed that a higher order terms (2nd order Ogden model) introduced
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Fig. 6 Model prediction (1st order Ogden) to EB and CW responses of PP. a Fitted to equal
biaxial test data. b Fitted to constant width test data
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Fig. 7 Model prediction (1st order Ogden) to EB and CW responses of HIPS. a Fitted to equal
biaxial test data. b Fitted to constant width test data
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greater nonlinearity into the model simulated true stress-stretch ratio curves,
Fig. 8, as expected. However, the model revealed an unrealistic material response
in constant width deformation (i.e. deformation stress much higher than in equal
biaxial and the stress heads towards infinity in constant width deformation).

4.1.2 Mooney-Rivlin Model

Figures 9 and 10 depict the fitted results of the 2nd order Mooney-Rivlin model to
PP and HIPS, respectively.

It can be seen that with the use of material parameters fitted from EB test data,
the 2nd order Mooney-Rivlin model show a good agreement (apart from the
pronounced yielding and strain softening exhibited by PP) between model
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Fig. 8 Model prediction (2nd order Ogden) to EB and CW responses of PP. a Fitted to equal
biaxial test data. b Fitted to constant width test data
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Fig. 9 Model prediction (2nd order M-R) to EB and CW responses of PP. a Fitted to equal
biaxial test data. b Fitted to constant width test data

218 K. Y. Tshai et al.



predicted EB response and the experimental results of both PP and HIPS, however,
its reveals an unrealistic material response in constant width deformation.
Employing the material parameters fitted from CW test data, the 2nd order
Mooney-Rivlin model again shows a non-physical result for PP where the model
revealed a dramatic decrease in tensile stress (towards negative) with the increase
in stretch ratio above 2 (in EB) and 3.5 (in CW).

4.2 Physical Network Hyperelastic Model

4.2.1 neo-Hookean Model

Figures 11 and 12 show the fitted results of the neo-Hookean model to PP and
HIPS, respectively. It was found that the neo-Hookean (Gaussian network) model
is incapable of capturing the EB and CW deformation behaviour of both PP and
HIPS used in this study. In addition, the model simulated EB and CW true stress-
stretch ratio curves are observed to be nearly identical.

4.2.2 Three-Chain Model

The 4th-term extension of the inverse Langevin function was employed in the
evaluation of the true stress-stretch ratio relationship of the 3-chain model.
Figures 13 and 14 show the fitted results of the 3-chain model to PP and HIPS,
respectively. It can be observed that the non-Gaussian 3-chain model is incapable
of capturing the equal biaxial and constant width deformation of both PP and HIPS
used in this study. In addition, the model prediction was found to be very similar to
the neo-Hookean Gaussian network model.
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Fig. 10 Model prediction (2nd order M-R) to EB and CW responses of HIPS. a Fitted to equal
biaxial test data. b Fitted to constant width test data
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Fig. 12 Model prediction (neo-Hookean) to EB and CW responses of HIPS. a Fitted to equal
biaxial test data. b Fitted to constant width test data
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Fig. 13 Model prediction (3-chain model) to EB and CW responses of PP. a Fitted to equal
biaxial test data. b Fitted to constant width test data
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Fig. 11 Model prediction (neo-Hookean) to EB and CW responses of PP. a Fitted to equal
biaxial test data. b Fitted to constant width test data

220 K. Y. Tshai et al.



4.2.3 Eight-Chain Model

Similar to the prediction of the neo-Hookean (Gaussian network) and 3-chain
(non-Gaussian network) models, the non-Gaussian 8-chain model was found
incapable of accurately simulating the EB and CW deformation behaviour of both
PP and HIPS used in this study, as shown in Figs. 15 and 16. The 4th-term
extension of the inverse Langevin function was employed in the evaluation of the
true stress-stretch ratio relationship of the 8-chain model.
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biaxial test data. b Fitted to constant width test data
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4.2.4 Van der Waals Model

Figures 17 and 18 show the fitted results of the Van der Waals model to PP and
HIPS, respectively. It can be observed that although the Van der Waals model
gives a better representation of the deformation behaviour of PP compared to the
Gaussian (neo-Hookean) and non-Gaussian (3-chain, 8-chain) network model, the
accuracy of the model prediction is relatively poor. The simulated EB stress moves
towards infinity at a stretch ratio found to be too low for finite element simulation
of typical deep draw free surface moulding processes. On the other hand, the
simulated true stress-stretch ratio curves of the Van der Waals model were found
to be comparable to the experimental data of HIPS. In all cases, the least-square fit
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Fig. 16 Model prediction (8-chain model) to EB and CW responses of HIPS. a Fitted to equal
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Fig. 17 Model prediction (Van der Waals) to EB and CW responses of PP. a Fitted to equal
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of the Van der Waals model parameters reveals that the simulated true stress-
stretch ratio curve is very sensitive to slight changes in each of its material
parameters, especially parameter b.

4.2.5 Ball ‘‘Tube’’ Model

From the nonlinear least-square fit results of Ball model, it can be observed that the
model was unsuccessful in simulating the deformation behaviour of both PP and
HIPS used in this study, as shown in Figs. 19 and 20 respectively. For PP, the
simulated curves were virtually similar for both EB and CW deformation. For
HIPS, it was observed that the optimal least-square fitted parameters produced
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Fig. 18 Model prediction (Van der Waals) to EB and CW responses of HIPS. a Fitted to equal
biaxial test data. b Fitted to constant width test data
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Fig. 19 Model prediction (Ball ‘tube’model) to EB and CW responses of PP. a Fitted to equal
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stresses, which tend to drop with increasing stretch ratio, indicating the onset of the
model’s instability at large stretch.

4.2.6 Edwards-Vilgis Crosslink-Sliplink Model

Figures 21 and 22 show the fitted results of the Edwards-Vilgis model to PP and
HIPS, respectively.

When material constants best fitted to experimental EB data are used, the
Edwards-Vilgis model was found capable of accurately simulating the EB defor-
mation responses of both PP (apart from the significant yielding found in the test
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Fig. 20 Model prediction (Ball ‘tube’ model) to EB and CW responses of HIPS. a Fitted to
equal biaxial test data. b Fitted to constant width test data
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Fig. 21 Model prediction (Edwards-Vilgis) to EB and CW responses of PP. a Fitted to equal
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data) and HIPS. However, the model under-predicted the true stress in CW
deformation of PP. In the case of HIPS, only a slight discrepancy was found in the
simulated constant width curve. When material constants best fitted to experi-
mental CW data are used, the model not only gives unacceptable prediction in the
equal biaxial curve, but also under predicts both the initial modulus and strain
hardening in the constant width curve.

The slight discrepancy observed in the model predicted response of HIPS may
be attributed to the minor variation in experimental data. Alternatively, an average
of the characterised constants from both EB and CW test data of HIPS can be
evaluated to give higher accuracy in the simulated responses, as shown in Fig. 23.
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Fig. 22 Model prediction (Edwards-Vilgis) to EB and CW responses of HIPS. a Fitted to equal
biaxial test data. b Fitted to constant width test data
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4.2.7 Sweeney-Ward Model

The model was proposed as a modified form of the Ball model, where the sliplink
constant Ns was made dependent on the first strain invariant to allow the number of
sliplink Ns to decrease with increasing strain. This modification resulted in a
constitutive function that is no longer hyperelastic (since the strain energy has
been made dependent on the deformation path and a strain energy function does
not exist), but remains elastic in the Cauchy sense (since stress depends only on the
current state of strain and no rate dependency is accounted for). Therefore, the
resulting constitutive function of Sweeney-Ward no longer obeys the theory of
energy conservation. In fact, the authors [37] did point out that the proposed model
is liable to the objection where by loading via a deformation path and unloading
through a different one, the material model may acquire more work on unloading
than was required to load it. The cause of the problem was attributed to the implicit
assumption that the sliplink number Ns will essentially recover to its original value
on unloading, however in practice, the deformation is expected to have permanent
effects.

The entire experimental equal biaxial true stress-stretch ratio data of PP,
including the yield and strain softening were used in the least-square fit procedure
for the Sweeney-Ward model. Figures 24 and 25 show the fitted results of the
Sweeney-Ward model to PP and HIPS, respectively. When material constants best
fitted to EB test data are used, it can be observed that the model is capable of
accurately representing the equal biaxial deformation response of both PP and
HIPS. However, the model simulated CW response was found to be virtually
identical to that of the EB deformation. A similar trend is observed when the
model is fed with material constants characterised from constant width test data.

It should be noted that in the nonlinear least-square fitting procedure of the Ball,
Edwards-Vilgis and Sweeney-Ward models, the material constant corresponding to

0

5

10

15

20

Stretch Ratio

T
ru

e 
St

re
ss

 (
M

P
a)

EB (exp)
CW (exp)
EB (S-W)
CW (S-W)

0

5

10

15

20

1 2 3 4 5 6 1 2 3 4 5 6

Stretch Ratio

T
ru

e 
St

re
ss

 (
M

P
a)

EB (exp)

CW (exp)
EB (S-W)

CW (S-W)

(a) (b)
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the number of crosslink Nc was assigned to 0 for HIPS, due to the fact that HIPS is
an amorphous non-crosslinked material and its modulus is assumed to be con-
tributed by chain entanglements or sliplinks alone. For the PP, the appearance of
the crystalline phase was assumed to act as artificial crosslinks within the material.
This can be attributed to the fact that at forming temperature, the mobility of the
amorphous phase is much higher than the crystalline phase, due to the fact that the
solid phase forming temperature of PP is far higher than its glass transition tem-
perature (Tg at & -5 �C as determined from DMTA) and thus the modulus is
assumed to be contributed from both crosslink and sliplink.

Quantitative fit of the hyperelastic or Cauchy’s elastic models investigated in
this work can be visualised by evaluating the ‘root mean square error’ between the
model’s prediction and the experimental data through

RMSE ¼ 1
N
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

rtest
i � rmodel

ið Þ2
vuut

2
4

3
5 ð37Þ

where N is the number of experimental true stress-stretch ratio data pairs, ri
test is

the true stress value from test data and ri
model is the model generated true stress.

When fitted to either experimental EB or CW data, the ‘root mean square error’
of the models’ prediction can be shown in Table 1.

It should be noted that while the values of the ‘root mean square error’ rep-
resents the goodness of fit to either experimental EB or CW data, they do not
represent the quantitative fit of the models to both deformation modes (e.g. a
material model might accurately capture EB deformation but poorly predict the
CW response).
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5 Conclusions

From the analyses carried out on a range of constitutive hyperelastic models (both
phenomenological and physical), it is observed that the simulated true stress-
stretch ratio curves from the Ogden, Van der Waals and Edwards-Vilgis models
are in reasonably good agreement with the experimental EB and CW deformation
behaviour of amorphous HIPS. However, the material models considered in this
work were generally incapable of accurately capturing the deformation behaviour
of PP, especially in terms of simulating the initial Young’s modulus, yield and
strain softening. In this respect, further development would be required to develop
a new constitutive material model that can accurately capture the complex
deformation behaviour of PP.
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