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Preface

Probability theory was at its origin, almost solely, centered around games of chance
(cards and dice). With the Ars Conjectandi, Jakob Bernoulli, while obtaining the first
version of the theorem now known as the Law of Large Numbers (LLN), moved the
theory of probability away from being primarily a vehicle for calculating gambling
odds. This step has been crucial by showing that the probability theory might have
an important role in the understanding of a variety of problems in many areas of the
natural sciences and human experiences.

In 1913, when the tsar Nicholas II called for celebrations of the 300th Anniver-
sary of the Romanov rule, the great Russian mathematician Andrei Andreyevich
Markov responded by organizing a symposium aimed at commemorating a different
anniversary. Markov took the occasion to celebrate the bicentenary of Bernoulli’s
Ars conjectandi: Bernoulli actually completed his book by 1690, but the book was
only published posthumously in 1713 by his nephew Niklaus because of family
quarrels.

Nowadays, one century after Markov, the autocratic tsarist government is over
and we can take the occasion to celebrate the Law of Large Numbers with no need
of extra scientific pretexts.

The LLN is at the base of a scientific legacy whose relevance cannot be
overestimated. We can start mentioning the great visionary idea of the ergodic
hypothesis by Ludwig Boltzmann. The ergodicity issue, originally introduced in the
context of the statistical mechanics and then developed as an autonomous branch of
measure theory, can be seen as the generalization of the LLN to non-independent
variables. This topic is still an active research field in mathematical physics. In
addition, it constitutes the starting point of the numerical methods used in statistical
mechanics, namely the molecular dynamics and the Monte Carlo methods.

The most important physical properties of macroscopic objects are determined
by mean values, whose mathematical base is guaranteed by the LLN. But, in many
cases, also the fluctuations can be important. The control of “small” fluctuations
around the mean value is provided by the Central Limit Theorem (CLT), whose
general relevance was established for the first time in 1812 with the book Théorie
Analytique des Probabilités by Pierre Simon Laplace. From a physical point of
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vi Preface

view, however, even very small fluctuations can be dramatically important. As a
paradigmatic example, we can mention the treatment of the Brownian motion, which
among the many still in progress applications brought conclusive evidence for the
atomic hypothesis.

Beyond their conceptual importance, thanks to their link to response functions
via the fluctuation-dissipation theorem, fluctuations are becoming more and more
important in present-day applications, especially via the recently established fluctu-
ation relations. Their relevance is amplified in small (micro- and nano-) systems,
and in materials (as granular matter) where the number of effective elementary
constituents is not as large as in gases or liquids. In such systems large excursions
from the average cannot be neglected, therefore it is necessary to go beyond the
Gaussian approximation, i.e. beyond the realm of validity of the CLT. The proper
technical tool to study such strong fluctuations is the Large Deviation Theory (LDT),
which generalizes the CLT.

The first general mathematical formulation of the Large Deviation Theory is due
to Harald Cramér in the 1930s. However, the very first application of LDT can
be ascribed to Boltzmann who, using combinatorial arguments, had been able to
show the relevance of the entropy as a bridge between microscopic and macroscopic
levels.

This book encompasses some recent developments of the fundamental limit
theorems – LLN, CLT and LDT – of the probability theory in statistical physics,
in particular: ergodicity breaking, non-equilibrium and fluctuation relations, dis-
ordered systems, computational methods, systems with long-range interactions,
Brownian motors, chaotic dynamics, anomalous diffusion and turbulence.

Rome, Italy Angelo Vulpiani
December 2013 Fabio Cecconi

Massimo Cencini
Andrea Puglisi
Davide Vergni
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Chapter 1
From the Law of Large Numbers to Large
Deviation Theory in Statistical Physics: An
Introduction

Fabio Cecconi, Massimo Cencini, Andrea Puglisi, Davide Vergni,
and Angelo Vulpiani

Abstract This contribution aims at introducing the topics of this book. We start
with a brief historical excursion on the developments from the law of large numbers
to the central limit theorem and large deviations theory. The same topics are then
presented using the language of probability theory. Finally, some applications of
large deviations theory in physics are briefly discussed through examples taken from
statistical mechanics, dynamical and disordered systems.

1.1 Introduction

Describing the physical properties of macroscopic bodies via the computation of
(ensemble) averages was the main focus of statistical mechanics at its early stage.
In fact, as macroscopic bodies are made of a huge number of particles, fluctuations
were expected to be too small to be actually observable. Broadly speaking, we can
say that the theoretical basis of statistical descriptions was guaranteed by the law of
large numbers. Boltzmann wrote: In the molecular theory we assume that the laws
of the phenomena found in nature do not essentially deviate from the limits that they
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would approach in the case of an infinite number of infinitely small molecules, while
Gibbs1 remarked : : : [the fluctuations] would be in general vanishing quantities,
since such experience would not be wide enough to embrace the more considerable
divergences from the mean values [1].

Although very small, the importance of fluctuations was recognized quite early
to find conclusive evidence for the atomistic hypothesis. At the end of the nineteenth
century, atomic theory was still considered, by influential scientists as Ostwald and
Mach, useful but non real for the building of a consistent description of nature: The
atomic theory plays a part in physics similar to that of certain auxiliary concepts in
mathematics; it is a mathematical model for facilitating the mental reproduction of
facts [1].

The situation changed at the beginning of the twentieth century, when Einstein
realized the central role played by the fluctuations and wrote: The equation [NA:
for the energy fluctuations hE2i � hEi2 D kT 2CV , CV D @hEi=@T being the
specific heat] we finally obtained would yield an exact determination of the universal
constant [NA: the Avogadro number], if it were possible to determine the average
of the square of the energy fluctuations of the system; this is however not possible
according to our present knowledge. For macroscopic objects the equation for the
energy fluctuations cannot actually be used for the determination of the Avogadro
number. However, Einstein’s intuition was correct as he understood how to relate
the Avogadro number to a macroscopic quantity—the diffusion coefficient D—
obtained by observing the fluctuations of a Brownian particle—D indeed describes
the long time (t ! 1) behavior of particle displacement h.x.t/ � x.0//2i '
2Dt, which is experimentally accessible. The theoretical work by Einstein and
the experiments by Perrin gave a conclusive evidence of atomism: the celebrated
relationship between the diffusion coefficient (measurable at the macroscopic level)
and the Avogadro number NA (related to the atomistic description) is

D D RT

6NA��a
;

where T and � are the temperature and dynamic viscosity of the fluid respectively,
a the radius of the colloidal particle, R D NAk is the perfect gas constant and k is
the Boltzmann constant.

Einstein’s seminal paper on Brownian motion contains another very important
result, namely the first example of Fluctuation-Dissipation Theorem (FDT): a
relation between the fluctuations (given by correlation functions) of an unperturbed
system and the mean response to a perturbation. In the specific case of Brownian
motion, FDT appears as a link between the diffusion coefficient (a property of the
unperturbed system) and the mobility, which measures how the system reacts to a
small perturbation.

1Who, by the way, already knew the expression for the mean square energy fluctuations.
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Beyond their conceptual relevance and the link with response functions, fluctua-
tions in macroscopic systems are quantitatively extremely small and hard to detect
(but for the case of second order phase transition in equilibrium systems). However,
in recent years statistical mechanics of small systems is becoming more and more
important due to the theoretical and technological challenges of micro- and nano-
physics. In such small systems2 since large excursions from averages values become
increasingly important, it is mandatory to go beyond the Gaussian approximation
(i.e. beyond the realm of validity of the central limit theorem) by means of the large
deviation theory.

Next section presents a non-exhaustive historical survey from the law of large
numbers to large deviation theory. Then, in Sect. 1.3 we illustrate with two examples
how large deviation theory works. Section 1.4 illustrates some applications of large
deviations in statistical physics.

1.2 An Informal Historical Note

Perhaps the most straightforward way to understand the connection between Law of
Large Numbers (LLN), the Central Limit Theorem (CLT) and the Large Deviation
Theory (LDT) is to consider a classical topic of probability theory, namely the
properties of the empirical mean

yN D 1

N

NX

jD1
xj (1.1)

of a sequence fx1; : : : ; xN g of N random variables. Three basic questions naturally
arise when N is very large:

(a) The behavior of the empirical mean yN , the possible convergence to an
asymptotic value and its dependence on the sequence;

(b) The statistics of small fluctuations of yN around hyN i, i.e., of ıyN D yN �hyN i
when jıyN j is “small”;

(c) The statistical properties of rare events when such fluctuations are “large”.

In the simplest case of sequences fx1; : : : ; xN g of independent and identically
distributed (i.i.d.) random variables with expected value hxi and with finite variance,
the law of large numbers answers point (a): the empirical average gets close and
closer to the expected value hxi when N is large:

lim
N!1P .jyN � hxij < �/! 1 : (1.2)

2We note that sometimes even in macroscopic systems (e.g. granular materials) the number of
effective elementary constituents (e.g. the seeds) is not astonishingly large as in gases or liquids.
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In the more general case of dependent variables, in principle, the empirical mean
may depend on the specific sequence of random variables. This is the essence
of the ergodic problem which generalizes the LLN and had a crucial role for the
development of statistical mechanics.

Issue (b) is addressed by the central limit theorem. For instance, in the simple
case of i.i.d. variables with expected value hxi and finite variance �2, the CLT
describes the statistics of small fluctuations, jıyN j . O.�=

p
N/, around the mean

value when N is very large. Roughly speaking, the CLT proves that, in the limit
N � 1, the quantity

zN D 1

�
p
N

NX

jD1
.xj � hxi/ (1.3)

is normally distributed, meaning that

p.zN D z/ ' 1p
2�
e�

z2
2 ; (1.4)

independently of the distribution of the random variables. Under suitable hypothesis
the theorem can be extended to dependent (weakly correlated) variables.

Finally, the last point (c) is the subject of large deviation theory which, roughly,
states that in the limit N � 1

p.yN D y/ � e�NC .y/ : (1.5)

Unlike the central limit theorem result with the “universal” limit probability
density (1.4), the detailed functional dependence of C .y/—the Cramér or rate
function—depends on the probability distribution of fx1; : : : ; xN g. However, C .y/
possesses some general properties: it is zero for y D hyN i and positive otherwise,
moreover—when the variables are independent (or weakly correlated)—it is a
convex function. Clearly, whenever the CLT applies, C .y/ can be approximated
by a parabola around it minimum in hyi.

As frequently occurring in the development of science, the actual historical path
did not follow the simplest trajectory: (a) then (b) and at the end (c). Just to mention
an example, Boltzmann introduced the ergodic problem and developed—ante
litteram—some aspects of large deviations well before the precise mathematical
formulation of the central limit theorem.

1.2.1 Law of Large Numbers and Ergodicity

In the origins, the calculus of probabilities was, to a large extent, a collection of
specific rules for specific problems, mainly a matter for rolling dice and card games.
For instance, the works by Pascal and Fermat originated by practical questions
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in gambling raised by the chevalier de Méré (a French nobleman in love with
gambling) [2].

1.2.1.1 J. Bernoulli

J. Bernoulli gave the first important contribution moving the theory of probability
away from gambling context with the posthumous book Ars Conjectandi (The art
of conjecturing), published in 1713 and containing the LLN.3 In modern terms, if
fx1; : : : ; xN g are i.i.d. with finite variance and expected value hxi then for each
� > 0 and if N !1

P
�ˇ̌
ˇ
1

N

NX

jD1
xj � hxi

ˇ̌
ˇ > �

�
! 0 : (1.6)

A particularly important case of the above result is

P.jfN � pj > �/! 0 ; (1.7)

where fN is the frequency of an event over N independent trials, and p is its
occurrence probability in a single trial. The result (1.7) stands at the basis of the
interpretation of probability in terms of frequencies.

1.2.1.2 Boltzmann

Boltzmann introduced the ergodic hypothesis while developing statistical mechan-
ics [3]. In modern language, we can state the ergodic problem as follows. Consider
a deterministic evolution law U t in the phase space ˝ ,

X.0/! X.t/ D U tX.0/ ;

and a probability measure d�.X/ invariant under the evolution U t , meaning that
d�.X/ D d�.U�tX/. The dynamical system f˝;U t ; d�.X/g is ergodic, with
respect to the measure d�.X/, if, for every integrable functionA.X/ and for almost
all initial conditions X.t0/, time and phase average coincide:

A � lim
T !1

1

T

Z t0CT

t0

A.X.t//dt D
Z
A.X/d�.X/ � hAi ; (1.8)

where X.t/ D U t�t0X.t0/.

3The most rudimentary form of the LLN seems to be credited to Cardano.
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It is worth recalling why the ergodic hypothesis was so important for the
development of statistical mechanics. Simplifying, Boltzmann’s program was to
derive thermodynamics for macroscopic bodies—composed by, say, N � 1

particles—from the microscopic laws of the dynamics. Thermodynamics consists
in passing from the 6N degrees of freedom to a few macroscopic, experimentally
accessible quantities such as, e.g., the temperature and pressure. An experimental
measurement is actually the result of a single observation during which the system
passes through a very large number of microscopic states. Denoting with qi and pi
the position and momentum vectors of the i -th particle, the microscopic state of the
N -particles system at time t is described by the 6N -dimensional vector X.t/ �
.q1.t/; : : : ;qN .t/Ip1.t/; : : : ;pN .t//, which evolves according to the Hamilton
equations. The measurement of an observable A.x/ effectively corresponds to an
average performed over a very long time (from the microscopic point of view):
AT D .1=T /

R t0CT
t0

A.X.t//dt . The theoretical calculation of the time average

AT , in principle, requires both the knowledge of the microscopic state at time t0
and the determination of its evolution. The ergodic hypothesis eliminates both these
necessities, provided we know the invariant measure. In statistical mechanics of,
e.g., isolated systems a natural candidate for the invariant measure d�.X/ is the
microcanonical measure on the constant energy surface H D E .

To the best of our knowledge the first precise result on ergodicity, i.e. the
validity of (1.6) for non independent stochastic processes has been obtained by
A.A. Markov, for a wide class of stochastic processes (now called Markov Chains).
Consider an aperiodic and irreducible Markov Chain with M states, transition
probabilities fPi!j g, and invariant probabilities �1; �2; : : : ; �M , and an observable
A which takes value Aj on the state j , then for almost all the realizations fjt g
we have

A � lim
T!1

1

T

TX

tD1
Ajt D

NX

jD1
Aj �j D hAi ; (1.9)

where jt indicates the state of the chain at time t of a “walker” performing a
trajectory according to the transition probabilities fPi!j g. There is a curious story
at the origin of the above result [4]. Markov, who was an atheist and a strong critic
of both the tsarist government and the Orthodox Church, at the beginning of the
twentieth century had a rather hot diatribe with the mathematician Nekrasov, who
had opposite political and religious opinions. The subject of the debate was about
the statistical regularities and their role for the problem of free will. Nekrasov noted
that the LLN of Bernoulli is based on the independence of successive experiments,
while, among human beings, the situation is rather different, hence the LLN cannot,
in any way, explain the statistical regularities observed in social life. Such a remark
led Markov to find an example of non independent variables for which a generalized
LLN holds; in a letter to a colleague he wrote:

I considered variables connected in a simple chain, and from this came the idea of the
possibility of extending the limit theorems of the calculus of probability also to a complex
chain.
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The ergodic problem in deterministic systems is much more difficult than its
analogous for Markov chains. It is rather natural, both from a mathematical and
a physical point of view, to wonder under which conditions a dynamical system
is ergodic. At an abstract level for a dynamical system .˝;U t ; d�.X/ /, the
problem has been tackled by Birkhoff and von Neumann who proved the following
fundamental theorems:

Theorem 1.1. For almost every initial condition X0 the time average

A.X0/ � lim
T !1

1

T

Z T

0

A.U tX0/dt (1.10)

exists.

Theorem 1.2. A necessary and sufficient condition for the system to be ergodic, is
that the phase space ˝ be metrically indecomposable. The latter property means
that˝ can not be subdivided into two invariant (under the dynamicsU t ) parts each
of positive measure.

Sometimes instead of metrically indecomposable the equivalent term “metrically
transitive” is used. Theorem 1.1 is rather general and not very stringent, in fact
time average A.X0/ can depend on the initial condition. The result of Theorem 1.2,
while concerning the foundations of statistical mechanics, remains of poor practical
utility, since, in general, it is almost impossible to decide whether a given system
satisfies the condition of metrical indecomposability. So that, at a practical level,
Theorem 1.2 only shifts the problem.

1.2.1.3 Ergodicity and Law of Large Numbers in Statistical Mechanics

Strictly speaking, the ergodicity is a too demanding property to be verified and
proved in systems of practical interest. Khinchin in his celebrated book Mathemat-
ical Foundation of the Statistical Mechanics [5] presents some important results on
the ergodic problem which overcome the formal mathematical issues.

The general idea of his approach is based on the following facts:

(a) In the systems which are of interest to statistical mechanics the number of
degrees of freedom is very large;

(b) In statistical mechanics, the important observables are not generic (in mathe-
matical sense) functions, so it is enough to restrict the validity of the ergodic
hypothesis (1.8) just to the relevant observables;

(c) One can accept that Eq. (1.8) does not hold for initial conditions X0 in a region
of small measure (which goes to zero as N !1).

Khinchin considers a separable Hamiltonian system i.e.:

H D
NX

nD1
Hn.qn;pn/ (1.11)
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and a special class of observables (called sum functions) of the form

f .X/ D
NX

nD1
fn.qn;pn/ (1.12)

where fn D O.1/. Interesting examples of sum functions are the pressure, the
kinetic energy, the total energy and the single-particle distribution function. Notice
that a change O.1/ in a single fn results in a relative variation O.1=N/ in f .X/:
the sum functions are “good” macroscopic functions, since they are not so sensitive
to microscopic details.

The main result, obtained using the LLN, is:

Prob

 
jf � hf ij
jhf ij � K1N

�1=4
!
� K2N

�1=4 (1.13)

whereK1 and K2 are O.1/.
The restriction to the separable structure of the Hamiltonian, i.e. (1.11), had been

removed by Mazur and van der Linden [6]. They extended the result to systems
of particles interacting through a short range potential. Let us stress that in the
Khinchin result, as well as in the generalization of Mazur and van der Linden,
basically the dynamics has no role and the existence of good statistical properties
follows from the LLN, i.e. using the fact that N � 1.

1.2.1.4 Ergodicity at Work in Statistical Mechanics

We conclude this short excursus on LLN and ergodicity mentioning some important
uses of such topics in statistical physics.

The Boltzmann ergodic hypothesis and the result (1.9) for Markov chains are
the conceptual starting point for two powerful computational methods in statistical
mechanics: molecular dynamics and Monte Carlo method, respectively. In the first
approach one assumes (without a mathematical proof) ergodicity4 and computes
time averages from the numerical integration of the “true” Hamilton’s equations.
In the Monte Carlo approach one selects an ergodic Markov chain5 with the
correct equilibrium probability. Of course, in practical computations, one has to

4It is now well known, e.g. from KAM theorem and FPU simulations, that surely in some limit
ergodicity fails, however it is fair to assume that the ergodic hypothesis holds for liquids or
interacting gases.
5Note that, at variance with the molecular dynamics, the Monte Carlo dynamics is somehow
artificial (and not unique), therefore the dynamical properties, e.g. correlation functions, are not
necessarily related to physical features.
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face nontrivial problems, firstly how to estimate the typical time necessary to have
a good average and how to control the errors.

Another interesting application is the following: consider a simple multiplicative
process: xN D aN xN�1 where faj g are i.i.d. positive. Using the LLN6 it is
simple to show that for almost all the realizations one has xN � e�N , where
� D hln ai or more formally P.j.1=N / ln.xN =x0/ � �j > �/ ! 0 as N ! 1.
Let us now repeat the problem for non commutative random matrices fAj g, i.e.
the multiplicative process XN D ANXN�1, we can wonder about the limit for
N ! 1 of .1=N / ln jjXN jj=jjXojj, where jj. : /jj indicates a norm. At first glance
the above problem can sound rather artificial, on the contrary it is important
for disordered systems7 and chaotic dynamics. In the 1960s Furstenberg and
Kester [7] have proven, under suitable general conditions, the existence of the limit
.1=N / ln jjXN jj=jjXojj for almost all the realizations: assume that hlnC jjAj jji <
1 (where lnC x D 0 if x � 1 and lnC x D lnx otherwise) then the limit
�1 D limN!1.1=N / ln jjXN jj=jjXojj exists with probability 1. This result had been
extended to deterministic ergodic system by Oseledec [8] in the case the fAj g are
obtained linearizing the dynamics along the trajectory.

1.2.2 Central Limit Theorems

1.2.2.1 The Beginning

The first version of the CLT is due to A. de Moivre who studied the asymptotic
behavior of the sum

SN D x1 C : : :C xN
in the specific case of binomial random variables with P.xj D 1/Dp and
P.xj D 0/ D 1 � p. Starting from the binomial distribution and the Stirling
approximation de Moivre discovered that

lim
N!1P

�
a � SN �Npp

Np.1� p/ � b
�
D 1p

2�

Z b

a

e�
1
2 x

2

dx : (1.14)

The history of the CLT as universal law, i.e. not only for dichotomic variables, began
with Laplace who was able to prove a generalization of the de Moivre’s result. With
the use of the characteristic functions and asymptotic methods of approximating

6It is enough to consider the variables tj D ln xj and qj D ln aj , and then, noting that tN D
q1 C q2 C : : :C qN , one can use the LLN and obtain the result.
7For instance the discrete one-dimensional Schrödinger equation with a random potential can be
written in terms of a product of 2� 2 random matrices.
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integrals, Laplace proved that, for the case where fxi g are i.i.d. discrete variables
with mean value hxi and variance �2 <1:

lim
N!1P

�
a � SN �N hxip

N�2
� b

�
D 1p

2�

Z b

a

e�
1
2 x

2

dx : (1.15)

1.2.2.2 The Russian School and Lindeberg

The first mathematical detailed treatment of the CLT, i.e. the validity of (1.15)
for generic i.i.d. (even non discrete) with finite variance, is due to the Russian
school with Chebyshev and Markov who used in a rigorous way the method of
the characteristic functions and moments [9].

A generalization of the CLT for independent variables with different distribution
is due to Lindeberg (around 1920) who proved that, if hxj i D 0 (this is not a real
limitation) and 0 < �2j <1, under the hypothesis that, for any 	 ,

lim
N!1

1

D2
N

NX

nD1

Z

jxj>	DN
x2pxn.x/dx D 0 ; where D2

N D
NX

nD1
�2n ; (1.16)

one has

lim
N!1P

�
a � SNq

D2
N

� b
�
D 1p

2�

Z b

a

e� 1
2 x

2

dx : (1.17)

Intuitively the Lindeberg condition means that each variance �2n must be small
respect to D2

N : for any 	 and for N large enough one has �n < 	DN for all n � N .
Feller and Lévy found that the Lindeberg condition is not only sufficient but also

necessary for the validity of the CLT [9].

1.2.2.3 Modern Times

The case of independent variables is quite restrictive, so it is interesting to wonder
about the possibility of extending the validity of CLT to non independent variables.
Intuition suggests that if the correlation among variables is weak enough a CLT is
expected to hold. Such an argument is supported by precise rigorous results [10].
We just mention the basic one. Consider a stationary process with zero mean and
correlation function c.k/ D hxnCkxni. If the correlation is summable,

1X

kD1
c.k/ <1 ; (1.18)
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it is possible to prove that

lim
N!1P

�
a � SNq

N�2eff

� b
�
D 1p

2�

Z b

a

e� 1
2 x

2

dx ; (1.19)

where �2eff D �2 C 2
P1

kD1 c.k/. In other words �2 is replaced by �2eff; note that for
N � 1

hSN i ' 2�2effN : (1.20)

The previous result is rather important in the context of diffusion. Interpreting N
as a discrete time, Eq. (1.20) simply expresses the diffusive behavior of SN with
diffusion coefficient �2eff. Violation of the condition (1.18) are thus at the origin
of anomalous diffusive behaviors, for instance to observe hSN i � N˛ with ˛ >

1 and � < 1 it is necessary to have
P1

kD1 c.k/ D 1, i.e. strongly correlated
random variables. Another possible violation is when � D 1, in such case CLT
can be generalized and this is the subject of the infinitely divisible and Lévy stable
distributions.

1.2.3 Large Deviation Theory

The large deviation theory studies the rare events and can be seen as a generalization
of the CLT, as it describes not only the “typical” fluctuations but also the very large
excursions.

The first general mathematical formulation of LDT has been introduced in the
1930s mainly by Cramér for i.i.d. random variables x1; x2 ; : : : with mean value
hxi. Under the rather general assumption of existence of the moment generating
function heqxi in some neighborhood of q D 0, it is possible to prove that for the
“empirical mean” yN D .x1 C : : :C xN /=N

lim
N!1

1

N
lnP.yN > y/ D �C .y/ (1.21)

provided y > hxi and P.x > y/ > 0. Of course, by repeating the previous
reasoning for the variable reflected with respect to the mean (i.e. x ! 2hxi � x),
one proves the complementary result for yN < y < hxi. The Cramér function C .y/
depends on the probability distribution of x, is positive everywhere but for y D hxi
where it vanishes. In addition, it is possible to prove that is convex, i.e. C 00 > 0.

Roughly speaking, the essence of the above result is that for very large N the
probability distribution function of the empirical mean takes the form

p.yN D y/ � e�NC .y/ : (1.22)



12 F. Cecconi et al.

It is interesting to remind that the first LDT calculation has been carried out
by Boltzmann. He was able to express the asymptotic behavior of the multinomial
probabilities in terms of relative entropy, see Sect. 1.3.1. In his approach a crucial
physical aspect is the statistical interpretation of the entropy as a bridge between
microscopic and macroscopic levels.

Let us note that, in general, the Cramér function (for independent or weakly
correlated variables) must obey some constraints:

(i) C .y/ > 0 for y ¤ hyi D hxi;
(ii) C .y/ D 0 for y D hyi;

(iii) C .y/ ' .y � hyi/2=.2�2/, where �2 D h.x � hxi/2i, if y is close to hyi.
Properties (i) and (ii) are consequences of the law of large numbers, and (iii) is
nothing but the central limit theorem.

Moreover, the Cramér function C .y/ is linked via a Legendre transform

C .y/ D sup
q

fqy �L.q/g ; (1.23)

to the cumulant generating function of the variable x

L.q/ D lnheqxi : (1.24)

The result (1.23) is easily understood by noticing that the average heqNyN i can be
written in two equivalent ways,

heqNyN i D heqxiN D eNL.q/

heqNyN i D
Z
eqNyN p.yN /dyN �

Z
eŒqy�C .y/
N dy ;

yielding

Z
eŒqy�C .y/
N dy � eNL.q/ : (1.25)

In the limit of large N , a steepest descent evaluation of the above integral provides

L.q/ D sup
y
fqy � C .y/g ; (1.26)

which is the inverse of (1.23). Due to the convexity of C .y/, Eqs. (1.23) and (1.26)
are fully equivalent. For a nice general discussion on large deviations see the booklet
by Varadhan [11].

For dependent variables, in analogy with the central limit theorem, we expect that
if the dependence is weak enough a large deviations description such as (1.22) holds,
where the Cramér function depends on the specific features of the correlations.
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We sketch in the following the case of ergodic Markov chains with a finite number
of states.

Consider a sequence S .N / D .s1; s2; : : : ; sN / where st denotes the state of the
chain at time t . Given a function of state, f .st /, the Cramér function of the sum

FN D 1

N

NX

tD1
f .st / (1.27)

can be explicitly computed [12]. From the transition probabilities Pi!j for any real
q we can define the matrix

P
.q/
ij D Pi!j eqfi (1.28)

where fi is the value of the function f .st / when st D i . Denoting with �.q/ the
largest eigenvalue of P

.q/, whose uniqueness is ensured by the Perron-Frobenius
theorem for positive-entry matrices [13], the Cramér function is given by the
formula

C .F / D sup
q

fqF � ln �.q/g ; (1.29)

which generalizes (1.23) to Markov chains.
For general non independent variables, L.q/ is defined as

L.q/ D lim
N!1

1

N
lnheq

PN
nD1 xni ;

and (1.23) is exact whenever C .y/ is convex, otherwise Eq. (1.23) just gives the
convex envelop of the correct C .y/.

1.3 LDT for the Sum and Product of Random
Independent Variables

1.3.1 A Combinatorial Example

A natural way to introduce the large deviation theory and show its deep relation
with the concept of entropy is to perform a combinatorial computation. Consider
the simple example of a sequence of independent unfair-coin tosses. The possible
outcomes are head (C1) or tail (�1). Denote the possible result of the n-th toss by
xn, where head has probability� , and tail has probability 1�� . Let yN be the mean
value after N � 1 tosses,
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yN D 1

N

NX

nD1
xn: (1.30)

The number of ways in which K heads occur in N tosses is NŠ=ŒKŠ.N � K/Š
,
therefore, the exact binomial distribution yields

P

�
yN D 2K

N
� 1

�
D NŠ

KŠ.N �K/Š�
K.1 � �/N�K : (1.31)

Using Stirling’s approximation and writingK D pN and N �K D .1 � p/N one
obtains

P.yN D 2p � 1/ � e�NI.�;p/ ; (1.32)

where

I.�; p/ D p ln
p

�
C .1 � p/ ln

1 � p
1 � � : (1.33)

I.�; p/ is called “relative entropy” (or Kullback-Leibler divergence), and I.�; p/ D
0 for � D p, while I.�; p/ > 0 for � ¤ p. It is easy to repeat the argument for the
multinomial case, where x1; : : : ; xN are independent variables that take m possible
different values a1; a2; : : : ; am with probabilities f�g D �1; �2; : : : ; �m.8 In the
limit N � 1, the probability of observing the frequencies ff g D f1; f2; : : : ; fm
is

P.ff g D fpg/ � e�NI.f�g;fpg/

where

I.f�g; fpg/ D
mX

jD1
pj ln

pj

�j

is called “relative entropy” of the probability fpg, with respect to the probability
f�g. Such a quantity measures the discrepancy between fpg and f�g in the sense
that I.f�g; fpg/ D 0 if and only if fpg D f�g, and I.f�g; fpg/ > 0 if fpg ¤ f�g.

From the above computation one understands that it is possible to go beyond the
central limit theory, and to estimate the statistical features of extreme (or tail) events,
as the number of observations grows without bounds. Writing I.�; p/ in terms of
y D 2p � 1, we have the asymptotic behavior of the probability density:

p.y/ � e�NC .y/ ; (1.34)

8Such a result has been obtained by Boltzmann, who firstly noted the basic role of the entropy [14].
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with

C .y/ D 1C y
2

ln
1C y
2�

C 1 � y
2

ln
1 � y
2.1� �/ : (1.35)

For p close to � , i.e. y ' hyi, a Taylor expansion of C .y/ reproduces the central
limit theorem.

1.3.2 Product of Random Variables

Large deviation theory accounts for rare events pertaining to the tails of the
probability density function (pdf) of the sum of random variables. Ironically, one
of the best examples to appreciate its importance is the product of random variables
such as

MN D
NY

kD1
ˇk ; (1.36)

where fˇkg are real and positive random variables. The statistical properties of the
productMN can be straightforwardly related to those of the sum of random numbers
by noticing that

MN D
NY

kD1
ˇk D eN. 1N

PN
kD1 xk/ D eNyN with xk D lnˇk ; (1.37)

where again yN D .1=N /
PN

kD1 lnˇk denotes the empirical mean. Below, we
illustrate the importance of LDT product of random numbers partially following
Ref. [15], using a simple example which allows us to use the results of the previous
section. In particular, we can take ˇk D e and e�1 (i.e. xk D lnˇk D ˙1) with
probability � and 1�� , respectively, so that we can write P.MN D eKe�.N�K// D
P.yN D 2K=N � 1/ as given by Eq. (1.31). Therefore, we can directly compute
the moments of order q

hMq

N i D .�eq C .1 � �/e�q/N : (1.38)

Using Eq. (1.34) we can write the moments as

hMq

N i D heN q yN i �
Z

dy e�N.C .y/�q y/ � e�N infyfC .y/�q yg ; (1.39)

where in the second equality we used the LDT result with the Cramér function C
given by Eq. (1.35) and, in the third, we made a steepest descent estimate of the
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Fig. 1.1 Comparison
between the Cramér
function (1.35) (black) and its
parabolic approximation QC
(grey), for � D 1=2. Inset:
y�.q/ vs q, as obtained using
LDT or CLT

integral; both steps require N to be large. Using Eq. (1.35), a rather straightforward
computation shows that the minimum in Eq. (1.39) is realized at y�.q/ D .�eq �
.1 � �/e�q/=.�eq C .1 � �/e�q/, with

inf
y
fC .y/� q yg D C .y�/� q y� D � ln .�eq C .1 � �/e�q/ ; (1.40)

so that we recover the result (1.38).
Now to appreciate the importance of rare events, we can disregard them by

repeating the estimate of the moments using the CLT. In practice, this amounts to
Taylor expanding C in (1.35) around its minimum y D 2� � 1, i.e. to approximate
C with the parabola

QC .y/ D .y C 1 � 2�/2
8�.1 � �/ : (1.41)

This approximation corresponds to assume a lognormal distribution for the product
MN [16]. The moments can be computed by finding the minimum in (1.39) with C
replaced by its parabolic approximation QC . A straightforward computation gives
y� D 2� � 1 C 4�.1 � �/q and infyf QC .y/ � q yg D QC .y�/ � q y� D
�q.2� � 1 C .1 � �/q/, which leads to moments very different from the correct
ones (1.38) also for moderate values of q. Moreover, the fast growth of the moments
(� exp.const.Nq2/) makes the lognormal distribution not uniquely determined by
the values of its moments [17]. Figure 1.1 shows the Cramér function (1.39) and its
parabolic approximation. The minimum position y�.q/ obtained with the lognormal
deviates from the correct value also for moderate values of q (see inset).

In the above example, the CLT (and thus the lognormal approximation) does not
take into account the fact that yN cannot exceed 1, which is the value corresponding
to a sequence consisting of N consecutive ˇk D e. Such a sequence has an
exponentially small probability to appear, but it carries an exponentially large
contribution compared to the events described by CLT.

For an introductory discussion of LDT in multiplicative processes see Ref. [15].
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1.4 Large Deviation Theory: Examples From Physics

1.4.1 Energy Fluctuations in the Canonical Ensemble

The large deviation theory finds a rather natural application in statistical mechanics,
e.g. for the fluctuations of the energy e per particle in a system of N particles at
temperature T :

p.e/ ' 1

ZN

expf�NˇŒe � Ts.e/
g ;

where s.e/ is the microcanonical entropy per particle. Since
R
p.e/de D 1, the

constant ZN (partition function) turns out to be

ZN � expf�N f̌ .T /g ;

where f .T / is the free energy per particle

f .T / D min
e
fe � Ts.e/g :

The value e� for which the function e�Ts.e/ reaches its minimum is determined by

1

T
D @s.e/

@e
; (1.42)

i.e. it is the value such that the corresponding microcanonical ensemble has
temperature T . It is rather obvious what is the Cramér function and its physical
meaning:

C .e/ D ˇŒe � Ts.e/ � f .T /
 :

Let us note that the value of e such that C .e/ is minimum (zero) is nothing but
e� D hei given by (1.42). The Gaussian approximation around e� is

C .e/ ' 1

2
C 00.e�/.e � e�/2 ;

and therefore h.e � e�/2i D 1=ŒNC 00.e�/
, since

h.e � e�/2i D kB

N
T 2cV ;

where cV D @hei=@T is the specific heat per particle. The convexity of the Cramér
function has a clear physical meaning: cV .T / must be positive. The case of non-
convex Cramér function corresponds to phase transitions, i.e. non-analytic f .T /.
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1.4.2 Multiplicative Cascade in Turbulence

Turbulent flows are characterized by fluctuations over a wide range of scales,
with a disordered alternation of quiescent regions and sparse bursting events—
intermittency [18]. Intermittency of this kind is well captured by multiplicative
processes which, in turbulence, find their justification in the phenomenology of
the energy cascade [18]: the nonlinear process by which velocity fluctuations flow
from the large scales (of injection) to the small ones, where they are dissipated
by molecular diffusion. The book in Ref. [18] provides a detailed discussion of
turbulence within the framework of LDT (and the multifractal model). Here we just
illustrate a simple d -dimensional multiplicative process, inspired to turbulence, able
to generate an intermittent signal similar to those experimentally observed.

At step N D 0 consider a (mother) hypercube of side `0 (the forcing scale)
where energy dissipation is nonrandom and equal to �0. The N D 1 step is obtained
subdividing the hypercube in 2d (daughter) hypercubes of side `0=2 (powers of 2 are
just for simplicity). In each daughter hypercube the energy dissipation is obtained
by multiplying �0 by independent random variables w � 0 (such that hwi D 1 and
hwqi < 1 for any q > 0). At the n-th step we thus have 2Nd hypercubes of side
`N D `02�N , with energy dissipation

�N D wN �N�1 D
NY

kD1
wk�0 : (1.43)

Although the prescription hwi D 1 ensures that h�N i D �0, the multiplicative
process is non-conservative, i.e. the value of the energy dissipation of a specific
hypercube of side `N is not equal to the sum of the energy dissipation in the
daughters hypercube at scale `N =2. Moreover, as discussed in Sect. 1.3.2, large
fluctuations are typical of product of random variables, so that we can expect that
for N large intermittency shows up. For instance, the choice

w D
�
ˇ�1 with prob: ˇ

0 with prob: 1 � ˇ 0 < ˇ � 1 ; (1.44)

corresponds to a popular model known as ˇ-model for turbulence [19]. Clearly,
with (1.44) at the N -th step energy dissipation will be different from zero only in
a fraction ˇN D 2N log2 ˇ D .`0=`N /

log2 ˇ of the 2Nd D .`0=`N /
d hypercubes, in

other terms energy dissipation will distribute on a fractal of dimension DF D d �
log2.1=ˇ/. This qualitatively explains the sparseness of bursting events. However,
whenever different from zero energy dissipation will be equal to ˇ�N �0. Therefore,
to account for the unevenness of energy dissipative values in each hypercube where
it is different from zero, one possibility is to generalize (1.44) by assuming that ˇ is
not a fixed value but a realization of i.i.d. random variables with a given pdf p.ˇ/
[20]. Essentially this leads the energy dissipation to be a multifractal measure [18],
which can be characterized in terms of the moments
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h�qN i D
Z NY

kD1
ˇkp.ˇk/dˇk�

q
0ˇ

�q
k : (1.45)

To compute the moments in the limitN !1 we can proceed similarly to (1.39). In
particular, we have �N D �0.`N =`0/�yN with yN DPN

kD1 log2 ˇk=N . LDT implies
that p.yN D y/ � .`N =`0/

C .y/= log 2, so that estimating the integral in (1.45) with
the saddle point method we obtain

h�qN i D �q0
�
`N

`0

�	q
with 	q D inf

y

�
C .y/

log 2
� y.q � 1/

�
: (1.46)

In general, 	q will be a nonlinear function of q: the signature of multifractality
and intermittency. Conversely, in the model (1.44) with ˇ non-random, 	q D
.q�1/.d�DF / is a linear function. The exponents 	q is linked to the scaling behav-
ior of moments of the difference of velocities, the so-called structure functions,
which are directly accessible experimentally. As shown in Ref. [20] a careful choice
of p.ˇ/ allows for reproducing the behavior of the structure functions’ exponents
which display a seemingly universal nonlinear dependence on q.

1.4.3 Chaotic Systems

The most characterizing feature of chaotic systems is the sensitive dependence on
initial conditions: starting from nearby initial conditions, trajectories exponentially
diverges. The classical indicators of the degree of instability of trajectories are the
Lyapunov Exponents (LE), that quantify the mean rate of divergence of trajectories
which start infinitesimally close. For the sake of simplicity we consider a 1d discrete
time dynamical system

x.t C 1/ D f .x.t// (1.47)

and given an initial condition x.0/, we look at two trajectories, x.t/ and Qx.t/ starting
from x.0/ and Qx.0/ D x.0/ C ıx.0/, respectively, where jıx.0/j 	 1. Denoting
with ıx.t/ D jx.t/� Qx.t/j the distance between the two trajectories, we expect that
for non-chaotic systems jıx.t/j remains bounded or increases algebraically in time,
while for chaotic systems it grows exponentially

jıx.t/j D jıx.0/je�t ; (1.48)

where

� D 1

t
ln
jıx.t/j
jıx.0/j ; (1.49)

is the local exponential rate of divergence between trajectory.
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The Maximum Lyapunov Exponent, characterizing the sensitivity to initial
conditions, is defined by the limit

�max D lim
t!1 lim

jıx.0/j!0

1

t
ln
jıx.t/j
jıx.0/j : (1.50)

Note that � is fluctuating while �max is a non-fluctuating quantity, but it can depend
on x.0/. It is easy to understand that the existence of the limit in Eq. (1.50) is
a generalization of LLN for dependent variables. In order to obtain ıx.t/ from
ıx.t � 1/, in the case of an infinitesimal jıx.t � 1/j one can use a simple Taylor
expansion of the first order and the local exponent � can be computed as

� D 1

t
ln
jıx.t/j
jıx.0/j D

1

t

tX

kD1
ln jf 0.x.k � 1//j : (1.51)

The Maximum Lyapunov Exponent is nothing but

�max D lim
t!1

1

t

tX

kD1
ln jf 0.x.k � 1//j ;

and, if the system is ergodic, it does not depend on x.0/. Moreover, in simple cases,
it is possible to obtain also the Cramér function of � . Let us consider the tent map

x.t C 1/ D f .x.t// D

8
ˆ̂<

ˆ̂:

x.t/

p
0 � x.t/ < p

1 � x.t/
1 � p p � x.t/ � 1;

(1.52)

with p 2 .0; 1/. The derivative of the map takes only two values, 1=p and
1=.p � 1/, moreover the map can be shown to generate a memory-less process so
that the sum (1.51) can be interpreted as the sum of Bernoullian random variables

j D
� � lnp with prob. p
� ln.1 � p/ with prob. 1 � p:

Therefore the effective Lyapunov exponent on a time interval t is

�.t/ D �k lnp C .t � k/ ln.1 � p/
t

with prob.

�
t

k

�
pk.1 � p/t�k ;

where k is the number of occurrences of j D � lnp. Using the Stirling approxi-
mation, with some algebra it is possible to obtain the probability of the occurrence
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of � in a time interval t as Pt.�/ ' exp.�tC .�// where the Cramér function is
given by

C .�/D
"
� C ln.1 � p/

ln 1�p
p

ln

 
� C ln.1 � p/
p ln 1�p

p

!
� � C lnp

ln 1�p
p

ln

 
� � C lnp

.1 � p/ ln 1�p
p

!#
:

(1.53)

The Cramér function has its minimal value in � D �p lnp � .1 � p/ ln.1 � p/
(where it also vanishes) which is the Maximum Lyapunov Exponent, and the Taylor
expansion of Eq. (1.53) around this minimum provides the Central Limit Theorem
for the sum (1.51). Unfortunately this computation can be performed almost only
for piecewise linear maps.

For generic dynamical systems

x.t C 1/ D f.x.t//

there exists a theorem due to Oseledec that under very general hypothesis, states the
existence of the Lyapunov exponents. But a major difficulty arises, i.e., the product
of Eq. (1.51) cannot be factorized because of the non commutativity of the Jacobian
matrix with entries Aij D @fi =@xj .

1.4.4 Disordered Systems

Products of matrices and Oseledec’s limit theorem find a natural application to the
study of statistical mechanics of disordered systems. Indeed, their thermodynamical
properties can be recast, via transfer matrix formalism, as the evaluation of the
asymptotic properties of products of matrices. The presence of randomness induced
by disorder introduces sample to sample fluctuations of observables which require
proper averaging procedures over different disorder realizations. In this case the
transfer-matrix approach involves products of random matrices.

As an example, which already includes all the difficulties, consider an array ofN
binary variables �i D ˙1 (spins) whose interaction is defined by the Hamiltonian,

H.� / D �J
NX

iD1
�i�iC1 C

NX

iD1
hi�i ; (1.54)

where J determines a ferromagnetic internal coupling between nearest neighbor
sites and fhigNiD1 D h represent a set of local magnetic fields acting on site, each
independently extracted from a distribution �.h/. Typically, �.h/ is chosen to be a
Gaussian or a bimodal distribution and usually periodic boundary conditions are
assumed, �iCN D �i . For finite N , the system has 2N possible configurations,
however we are interested in the thermodynamic limit N ! 1, where extensive
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thermodynamics quantities becomes independent of N and the choice of boundary
conditions is irrelevant.

Once a given realization of the disorder is assigned, h D fhigNiD1, the equilibrium
thermodynamics of the N -spin chain is determined by the free-energy:

fN .ˇ;h/ D � 1

ˇN
lnZN .ˇ;h/; (1.55)

where

ZN.ˇ;h/ D
X

�1

: : :
X

�N

e�ˇ.J�1�2�h1�1/ 
 
 
 e�ˇ.J�N �1�hN �N / (1.56)

is the partition function of the system, the summation covers all the 2N spin
configurations and ˇ D 1=.kBT /. In principle, the free-energy (1.55) for every finite
N is a random variable, because it depends on the disorder realizations, however,
as we shall see in the transfer matrix formalism, a straightforward application of
Oseledec’s limit theorem implies that

lim
N!1fN .ˇ;h/ D lim

N!1�
1

ˇN
hlnZN .ˇ;h/ih; (1.57)

where the average h: : : :ih is meant over the random field distribution. Result (1.57)
can be interpreted as follows, in the thermodynamic limit fN .ˇ;h/ is a non-random
quantity as it converges to its limit average over the disorder, for almost all disorder
configurations. In an equivalent physical language, whenN !1, fN is practically
independent of fhigNiD1, and it is a self-averaging observable with respect to sample
to sample disorder fluctuations.

The transfer matrix approach amounts to re-writing the partition function

ZN D
X

f�i g

NY

iD1
e�ˇ.J�i �iC1�hi �i / D T r

� NY

iD1
TŒi 


�
(1.58)

as an iterated matrix product in indexes �2; �3; : : : ; �N and the summation over �1 as
a trace operation, where the 2�2 fundamental matrix TŒi 
 has entries: T .�i ; �iC1/ D
expŒˇ.J�i�iC1 � hi�i /
, more explicitly:

TŒi 
 D
�
eˇ.J�hi / e�ˇ.JChi /
e�ˇ.J�hi / eˇ.JChi /

	
: (1.59)

In the thermodynamic limit, the free energy per spin is given by the maximum
Lyapunov exponent �1 of the product of matrices in Eq. (1.58):
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� f̌ .ˇ;h/ D lim
N!1

1

N
ln

�
T r

� NY

iD1
TŒi 


�	
D �1: (1.60)

When the field hi D H is the same on every site (no disorder), the computation of
free-energy is particularly simple because the product involves identical symmetric
matrices: ZN D T r.TN / D �NC C �N� being �˙ the eigenvalues of T. Therefore
the free energy coincides with the logarithm of the maximum eigenvalue of T:
f .ˇ;H/ D �ˇ�1 ln.�C/, where

�˙ D eˇJ cosh.ˇH/˙
q

cosh2.ˇH/2e2ˇJ sinh.2ˇJ /:

When hi is not constant, the matrices (1.59) are not commuting, and the
asymptotic behavior of the random matrix product has to be numerically evaluated.
Practically, one resorts to compute the exponential growth rate of an arbitrary initial
vector z0 D .u0; v0/, with positive components, under the effect of the iterated
matrix multiplication znC1 D TŒn
zn�1,

�1 D lim
N!1

1

N
ln

� jzN j
jz0j

�
D lim

N!1
1

N

N�1X

nD0
ln

� jznC1j
jznj

�
:

Oseledec’s theorem grants that, under rather general conditions, the above limit
exists and it is a non-random quantity (self averaging property). Then, the com-
putation of free-energy of a one-dimensional random field Ising model to some
extent constitutes a physical example of the application of the law of large numbers.
Moreover the self-averaging property of the free-energy in the context of disordered
systems corresponds to the ergodicity condition for dynamical systems.

A large deviation approach can be formulated also for the fluctuations of the
free-energy of a random field Ising model at finite N around its thermodynamic
limit value. The transfer random-matrix formalism makes the characterization of
large deviations an application of the generalized Lyapunov exponents. It is easy
to compute the asymptotic behavior of hjznjqi for q D 1; 2; 3; : : : and therefore
compute the generalized Lyapunov exponents

L.q/ D lim
n!1

1

n
lnhjznjqi: (1.61)

It is possible to show that L.1/ is the logarithm of the largest eigenvalue of hTi
while L.2/ is the logarithm of the largest eigenvalue of hT˝2i where hT˝2i is the
tensorial product hT˝ Ti and so on for hT˝3i, etc. In such a way we have an exact
bound �1 � L.q/=q for q D 1; 2; : : :. To consider L.1/ instead of �1 corresponds,
in physical terms, to consider an annealed average, i.e. lnhZN i instead of hlnZN i.
The knowledge of L.q/, for all q, is equivalent to the knowledge of the Cramér
function C.�/.
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1.4.5 Entropy Production in Markov Processes

A recent application of the theory of large deviations concerns the dynamical
behaviour of deterministic and stochastic systems at large times.

Consider a continuous time Markov process with a finite number of states, whose
evolution is such that: if the system is in state x, it remains in such a state for
a random time t � 0 extracted with a probability density p.t/ D !.x/e�!.x/t
and then jumps to a new state x0 with transition probability w.x!x0/

!.x/
. The functions

w.x ! x0/ are said to be the transition rates of the Markov process and !.x/ DP
x0 w.x ! x0/ is the total exit rate from x. It is useful to introduce also a notion of

time-reversed state x for a given state x: for the so-called “even” variables, such as
positions or forces, one has x � x, while for “odd” variables, such as velocities, one
has x � �x. For what follows, a further assumption is crucial: if w.x ! x0/ > 0

then w.x0 ! x/ > 0.
From the above definitions, a trajectory of time-length t can be written as

˝t
0 D f.x0; t0/; .x1; t1/; .x2; t2/; : : : ; .xn; tn/g, where the system undergoes n jumps

visiting states xi in temporal order from i D 0 to i D n and stays in each
of them for a waiting time ti , with

P
i ti D t . Its time-reversal reads ˝t

0 D
f.xn; tn/; .xn�1; tn�1/; : : : ; .x2; t2/; .x1; t1/; .x0; t0/g.

The probabilityPx.t/ of finding the system in state x at time t evolves according
to the master equation:

dPx.t/

dt
D
X

x0

Px0.t/w.x
0 ! x/ � !.x/Px.t/: (1.62)

We denote by P inv
x the steady state solution of (1.62). The particular steady state

where P inv
x0

w.x0 ! x/ D P inv
x w.x ! x0/ is a steady state which is said to

satisfy detailed balance. The detailed balance conditions imply that the probability
of occurrence of any trajectory is invariant under time-reversal P.˝t

0/ D P.˝t
0/:

in short, a movie of the system of any time-length cannot be discriminated to be
played in the forward or backward direction. Markov processes describing physical
systems at thermal equilibrium (or isolated), satisfy the detailed balance conditions.
On the contrary, the presence of external forces and/or internal dissipation leads to
steady states with physical currents, with the consequent breakdown of the detailed
balance conditions.

Following a series of studies [21–24], a “fluctuating entropy production func-
tional” has been proposed in [25] for the general case of Markov processes. The
functional, for a trajectory which in the time Œ0; t 
 includes n jumps, reads

Wt.˝
t
0/ D

nX

iD1
ln

w.xi�1 ! xi /

w.xi ! xi�1/
: (1.63)
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It is immediate to verify that in a steady state satisfying detailed balance Wt D
� lnŒP inv

x0
=P inv

xn

 and therefore—given the finiteness of the space of states—one has

limt!1 Wt
t
D 0. Otherwise, as discussed below, limt!1 hWt i

t
> 0.

More precisely, a large deviation principle for the stochastic variable Wt can
be obtained, such that its associated Cramér function satisfies a particular relation,
called “Fluctuation-Relation”. An instructive way to derive it is the following [25].
Let us define the joint probability px.Wt ; t/ of finding the system at time t in state
x with a value of the entropy production (measured starting from time 0) Wt ; we
also define the vector p.Wt ; t/ D fpx1 : : : pxM g where M is the number of possible
states for the system. It is not difficult to realize that its evolution is governed by a
modified master equation that reads

dpx.Wt ; t/

dt
D
X

x0

px0


Wt ��W.x0 ! x/; t

�
w.x0 ! x/ � !.x/px.Wt ; t/:

(1.64)
With �W.x0 ! x/ D ln w.x0!x/

w.x!x0/
. If we consider the generating function for Wt

conditioned to state x, i.e.

gx.s; t/ D
Z
dWte

�sWt px.Wt ; t/; (1.65)

we find for its time evolution, immediately descending from Eq. (1.64):

dgx
dt
D
X

x0

w.x0 ! x/e�s�W.x0!x/gx0.s; t/ � !.x/gx.s; t/ D
X

x0

w.x0 ! x/1�sw.x ! x0/sgx0.s; t/ � !.x/gx.s; t/ D ŒL.s/g.s; t/
x (1.66)

where we have used the definition of �W.x0 ! x/. The initial conditions for
Eq. (1.66) is gx.s; 0/ D

R
dWte

�sWt Px.0/ı.Wt/ D Px.0/, so that

gx.s; t/ D
X

y

ŒeLt .s/
xyPy.0/: (1.67)

Finally, summing over all possible states x, weighted with their probability, we get
the unconditioned generating function, that reads

g.s; t/ D
X

x;y

Px.t/Œe
Lt .s/
xyPy.0/: (1.68)

The Perron-Frobenius theorem guarantees that L.s/ has a unique maximal eigen-
vector Qg.s/ > 0 with real eigenvalue ��.s/. This allows one to define the limit
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lim
t!1�

1

t
lng.s; t/ D �.s/: (1.69)

It is immediate to verify that �.s/ is the time-rescaled cumulant generating function
for the steady state of the variableWt . Its Legendre transform is the Cramér function
for the large deviations of the same variable, i.e.

p.Wt / � exp

�
t sup

s

�
s
Wt

t
C �.s/

�	
� expŒtC .Wt=t/
: (1.70)

From its definition in Eq. (1.66), it is straightforward to realize thatL�.s/ D L.1�s/
and therefore�.s/ D �.1�s/. This immediately reflects into the following relation
for the Cramér function of wt D Wt=t :

C .wt /� C .�wt / D wt ; (1.71)

which is known as Steady State Fluctuation Relation (SSFR).
In the limit of an infinite space of states (M ! 1) problems may arise in

the derivation sketched above, when the inverse transform is operated to retrieve
the large deviation rate function C .wt /. In some cases a modified SSFR holds true
instead of Eq. (1.71): to recover the validity of formula (1.71) one has to measure
a different entropy production, modified by adding so-called “boundary terms”, as
discussed in [26–28].

Notwithstanding the problems for unbounded spaces, the result (1.70) together
with (1.71) is remarkable: the “entropy production” measured on very long trajec-
tories tends to be sharply peaked around its average value, which is positive for
non-equilibrium systems and zero otherwise. Moreover, if the trajectories have finite
time-length, one can observe also negative fluctuations, representing a sort of “finite
size violation” of the second principle of thermodynamics, but with exponentially
small probability.

References

1. J. Mehra, The Golden Age of Theoretical Physics (World Scientific, Singapore, 2001)
2. I. Todhunter, History of the Mathematical Theory of Probability from the Time of Pascal to that

of Laplace (BiblioBazaar, Charleston, 2009)
3. C. Cercignani, Ludwig Boltzmann: The Man Who Trusted Atoms (Oxford University Press,

Oxford, 2007)
4. L. Graham, J.M. Kantor, Naming Infinity: A True Story of Religious Mysticism and Mathemat-

ical Creativity (Harvard University Press, Cambridge, 2009)
5. A. Khinchin, Mathematical Foundations of Statistical Mechanics (Dover, New York, 1949)
6. P. Mazur, J. van der Linden, J. Math. Phys. 4, 271 (1963)
7. H. Furstenberg, H. Kesten, Ann. Math. Stat. 31, 457 (1960)
8. V.I. Oseledec, Trans. Moscow Math. Soc. 19, 197 (1968)
9. H. Fischer, A History of the Central Limit Theorem (Springer, Berlin, 2010)



1 From LLN to LDT in Statistical Physics: An Introduction 27

10. W. Hoeffding, H. Robbins, Duke Math. J. 15, 773 (1948)
11. S.R.S. Varadhan, Large Deviations and Applications (Society for Industrial and Applied

Mathematics, Philadelphia, 1984)
12. H. Touchette, Phys. Rep. 478, 1 (2009)
13. G. Grimmett, D. Stirzaker, Probability and Random Processes (Oxford University Press,

Oxford, 2001)
14. R.S. Ellis, Physica D 133, 106 (1999)
15. S. Redner, Am. J. Phys. 58, 267 (1990)
16. J. Aitchison, J.A.C Brown, The Lognormal Distribution (Cambridge University Press,

Cambridge, 1963)
17. S.A. Orszag, Phys. Fluids 13, 2211 (1970)
18. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press,

Cambridge, 1995)
19. E.A. Novikov and R.W. Stewart, Isv. Akad. Nauk. USSR Ser. Geophys. 3, 408 (1964)
20. R. Benzi, G. Paladin, G. Parisi, A. Vulpiani, J. Phys. A 17, 3521 (1984)
21. D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)
22. G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)
23. D.J. Evans, D.J. Searles, Adv. Phys. 51, 1529 (2002)
24. J. Kurchan, J. Phys. A.: Math. Gen. 31, 3719 (1998)
25. J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)
26. R. van Zon, E.G.D. Cohen, Phys. Rev. Lett. 91, 110601 (2003)
27. F. Bonetto, G. Gallavotti, A. Giuliani, F. Zamponi, J. Stat. Phys. 123, 39 (2006)
28. A. Puglisi, L. Rondoni, A. Vulpiani, J. Stat. Mech. P08010 (2006)



Chapter 2
Ergodicity: How Can It Be Broken?

Giancarlo Benettin, Roberto Livi, and Giorgio Parisi

Abstract The introduction of the ergodic hypothesis can be traced back to the
contributions by Boltzmann to the foundations of Statistical Mechanics. The
formulation of this hypothesis was at the origin of a long standing debate between
supporters and opponents of the Boltzmann mechanistic formulation of thermo-
dynamics. The great intuition of the Austrian physicist nevertheless inspired the
following contributions that aimed at establishing rigorous mathematical basis for
ergodicity. The first part of this chapter will be devoted to reconstructing the
evolution of the concept of ergodicity, going through the basic contributions by
Birkhoff, Khinchin, Kolmogorov, Sinai etc. The second part will be focused on
more recent case studies, associated with the phenomenon known as “ergodicity
breaking” and its relations with physical systems. In particular, we describe how it
can be related to the presence of exceedingly large relaxation time scales that emerge
in nonlinear systems (e.g., the Fermi-Pasta-Ulam model and the Discrete Nonlinear
Schrödinger Equation) and to the coexistence of more than one equilibrium phase
in disordered systems (spins and structural glasses).
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2.1 The Ergodic Hypothesis

2.1.1 The Fundamental Physical Ideas

Providing a mechanical foundation to thermodynamics was the main goal of
statistical mechanics, that was conceived on the basis of an atomistic view of
matter. The mathematical model of a monoatomic ideal gas summarized some
of the basic ingredients of this approach. The gas is constituted by a large number
N of mechanical particles, with equal mass m and no internal structure, that are
contained into a volume V and interact among themselves and with the walls of
the container by elastic collisions. On the basis of classical mechanics this model
could be studied, in principle, by integrating the equations of motion starting from
any initial condition. Accordingly, such a mechanical representation should exclude
any need of introducing a thermodynamic description of the system, its evolution
in time being completely determined by the laws of mechanics. On the other
hand, as argued by Boltzmann already in 1872 [1], computing the trajectories of a
macroscopic number of particles (approximately 1023 in a mole of gas) is practically
unfeasible, and is even unnecessary if one aims to know only the few interesting
macroscopic properties of the gas, like pressure or density. The alternative proposal
is to replace the detailed microscopic description of the system by convenient
hypotheses of statistical nature. On one hand, this needs the introduction of the
idea of probability of microscopic states in the phase space of the system. This
concept can be used to compute statistical averages of any physically interesting
observable. On the other hand, it is obviously crucial understanding the link between
the microscopic dynamical description and the macroscopic statistical one, i.e. in
which sense deterministic dynamics is compatible with probability and supports it.

This problem of connecting in some way dynamics and probability is known
as the ergodic problem; investigating it gave rise to deep developments and
perspectives, including a well-posed mathematical theory, known as ergodic theory,
started by Birkhoff around 1920, still growing and producing beautiful questions and
results. The central idea suggested by Boltzmann is the so-called ergodic hypothe-
sis. Before describing it in some detail, we wish to stress that Boltzmann’s program
of deducing thermodynamics from dynamics through probabilistic considerations,
appeared at that time intrinsically weak and open to easy criticism. Boltzmann’s
theory was challenged, in particular, by two paradoxes, attributed to Loschmidt
and Zermelo. The first one is known as the reversibility paradox: since all the
microscopic evolution processes of the ideal gas model (i.e., elastic collisions and
free flight between collisions) are reversible—so that, for each possible microscopic
trajectory, the reversed trajectory is possible as well—dynamics cannot be consistent
with the intrinsic irreversibility of thermodynamics.1 The second one is called the

1It is worth pointing out that the second law of thermodynamics allows to reach the conclusion
that in the absence of external forcing a thermodynamic system evolves spontaneously to its
equilibrium state, that corresponds to an extremal point (maximum) of the state function entropy.
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recurrence paradox and it is based on Poincare’s recurrence theorem: a mechanical
conservative system made of a finite number of particles in a finite phase space
(like the above gas model, at finite total energy) during its evolution will return
arbitrarily close to any initial state (apart a set of initial data of zero Lebesgue
measure). This implies that, contrary to everyday experience, a gas in a container,
after having expanded freely and reached its equilibrium state, sooner or later will
return arbitrarily close to its initial out-of-equilibrium state.

Let us briefly illustrate the essence of the Boltzmann’s ergodic hypothesis, still
making reference for simplicity to the above elementary gas model. The phase space
of the system, traditionally denoted � , has dimension 6N (three coordinates and
three momenta per particle). Following Boltzmann, we introduce in � and in the
dynamics a discretization. First of all, since the microscopic dynamics conserves
energy, we focus the attention on a thin layer �E between energies E and E C
ıE , with some given ıE so small to be physically not appreciable. The volume of
the layer will be denoted ˝E . The layer is then divided into very small cells of
equal volume—so small, say, that microscopic states in the same cell are physically
indistinguishable. A cell, in this discretized picture, identifies a possible microscopic
state, and the dynamics, if time is similarly discretized, is replaced by a deterministic
jump from cell to cell. In this framework, the essential assumptions of Boltzmann’s
theory are the following:

– A macroscopic state—a state, say, in which the values of all thermodynamic
variables like (possibly local) temperature or density are specified—consists of a
bunch of microscopic states, i.e. of cells, compatible with those values.

– All microscopic states, or cells, have the same a priori probability; correspond-
ingly, the overall volume ! of the cells associated to a given macroscopic state,
normalized to ˝E i.e. !=˝E , has the meaning of a priori probability that the
state is realized. The location of the set in �E is not relevant, only its volume
is. Such an assumption is usually referred to as the a priori equiprobability of
microscopic states. Notice that the interpretation of the volume as probability is
consistent, because the microscopic evolution preserves volume.

– The above probabilistic assumption is in turn supported by a nontrivial dynamical
assumption, known as Boltzmann’s ergodic hypothesis: in an infinite time any
trajectory, starting in any cell, goes one after the other through all cells of�E , thus
spending in any set of cells of overall volume ! a fraction of time proportional
to !. An equivalent assumption (frequently referred to as Boltzmann’s ergodic
hypothesis in textbooks) is that for any observable (any function on � ), its
time average over an infinite trajectory equals its phase average, i.e. the average
computed by the above a priori probability.

Such a “coarse grained” description of phase space and dynamics, which avoids
mathematical formalism and introduces quickly the main physical ideas, might
appear mathematically rough and weak. As a matter of fact, as first shown by
Birkhoff, everything can be turned into a clean mathematical framework, leading
to the notion of microcanonical measure and of ergodicity; see Sect. 2.1.2 below.
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The above assumptions do not use in any deep way the fact that the number N
of particles in the system is large: they remain meaningful even for a system of, say,
two particles. N large is instead essential for a fourth statement, which however, at
least for our ideal gas model, is not anymore an assumption but a computation:

– For large N , the equilibrium state (uniform density and temperature, in our
gas example, up to negligible fluctuations) occupies the overwhelming majority
of ˝E , while all the other nonequilibrium states occupy absolutely negligible
volumes. See for comments classical textbooks, among them [2].

Correspondingly, a system started out of equilibrium will reach, after a transient,
the equilibrium state, and stay there almost forever. However, large fluctuations
occasionally leading the system from equilibrium to an out-of-equilibrium state
are not forbidden, although they are extremely rare events—so rare that there is
no chance to see them in a human life and even in the Universe lifetime. In this
view the irreversibility of the usual thermodynamic description, which excludes
such large fluctuations, appears to be an approximation, although of course a
beautiful one, actually better and better for larger and larger N . Boltzmann’s view,
including fluctuations, makes a conceptual step beyond the standard thermodynamic
picture. It is worthwhile to stress that thanks to the inclusion of fluctuations, the
paradoxes are solved: concerning recurrence, the far from equilibrium initial state
occupies an extremely thin set in �E ; the fluctuation leading the system back there,
is an extremely rare event, which however is not forbidden and sooner or later,
after possibly many Universe lifetimes, will occur. Concerning reversibility, in a
similar way a reversed trajectory, along which, say, entropy decreases, occurs for an
extremely small set of initial data (as small as the arrival lower entropy state, since
dynamics preserves volumes), and so is extremely unlike, but is not forbidden.2

In the same years when Boltzmann developed his fundamental scientific theory,
the American physicist J.W. Gibbs worked out his equilibrium ensemble theory,
that certainly took inspiration and, on its turn, influenced further contributions by
Boltzmann. On the other hand, despite Gibbs’ approach yields essentially the same
practical consequences of Boltzmann theory of equilibrium thermodynamic states,
it is worth stressing that the conceptual basis are quite different. In his approach
Boltzmann makes reference to the statistical properties of a single, although
“typical”, dynamical trajectory of a given system: a typical trajectory spends in each
volume ! of �E a time proportional to !, thus giving probability !=˝E to that set.
In Gibbs’ thoughts, instead, probability plays a more primitive role. The basic idea
is that a macroscopic state of a system is an “ensemble” of microscopic states, all
existing simultaneously; states are distributed with some given probability density
�t , depending on time, in �E or, for systems in contact with a thermal bath so that
energy is not conserved, in the whole phase space � . The density �t includes all the
macroscopic information one has on the system, and is itself the macroscopic state

2This is the basic consideration that inspired even the modern formulation of the so-called
fluctuation theorem [3].
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of the system. Initially �0 depends on the way the system is prepared—for example
(with reference to the model of ideal gas we are dealing with), with all the molecules
in one corner of the vessel, the velocities possibly having a preferred direction, or
similar prescriptions. Different points evolve independently in time according to the
laws of microscopic dynamics: precisely like having an ensemble of independent
non interacting mental replicas of the system at hand. The microscopic evolution
makes the ensemble density �t evolve in time; at each time, �t can be used to
compute the expectation of any observable. Natural very basic questions, in this
approach, include the search for equilibrium ensembles, i.e. probability densities
that stay invariant, as well as the possible convergence (in a sense to be made
precise) of an initial nonequilibrium ensemble to an equilibrium one.

We shall come back to both the Boltzmannn and the Gibbs approaches in the
next paragraph, after introducing the modern mathematical setting of the ergodic
problem.

2.1.2 A Well-Posed Mathematical Setting

Boltzmann and Gibbs (as well as Maxwell and Einstein, who also gave fundamental
contributions to kinetic theory) did not worry too much about the mathematical
precision of the physical ideas they introduced. A convenient mathematical setting,
known as ergodic theory, was produced by mathematicians like Birkhoff, von
Neumann and Khinchin, starting around 1930. The basic notion is that of a
dynamical system. For this, one needs three objects: (i) A phase space where motion
takes place, actually some manifoldM of finite dimension. (ii) A deterministic law
of motion, such that for any initial state x 2 M and any time t 2 R, the state at
time t (the solution of the microscopic equations of motion of the system), denoted
˚t.x/, is univocally determined. For each t 2 R, ˚t is a map: M ! M and, since
˚0 D identity, the inverse of ˚t is ˚�t , and the composition rule ˚t ı ˚s D ˚tCs
holds, the set of all maps

˚ D f˚t; t 2 Rg

is a one-parameter group, called flow. (iii) A measure � in M , normalized so as
�.M/ D 1, preserved by the dynamics: that is, for any measurable A �M and any
t 2 R,

�.˚�t .A// D �.A/ ; where ˚�t .A/ D fx 2M W ˚t.x/ 2 Ag :

Within ergodic theory, the triplet .M;�;˚/ is known as a dynamical system.3

3Variants that we shall not considered here include the discrete case t 2 Z and the non-invertible
cases t 2 R

C and t 2 N.
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For comments and simple examples we demand to textbooks like [4]. The only
example we are here interested in is that of an isolated Hamiltonian system with
n degrees of freedom. Let � denote its 2n-dimensional phase space and �E be
any surface of constant energy (a true surface, not anymore a layer as before).
The Hamiltonian dynamics is known to preserve the volume in � , and this in turn
induces the conservation of a measure �L, called Liouville measure, on each �E ; a
possible definition is

d�L D C d˙

krHk ;

where d˙ is the Euclidean area on �E , rH is the gradient of the Hamiltonian H
and k : k denotes Euclidean norm; C is just a normalization constant.4 The triplet
.�E; �L;˚/ is, in ergodic theory, a Hamiltonian dynamical system.5

For any measurable functionM ! R, let hf i denote its phase average:

hf i D
Z

M

f d� :

The first (highly) nontrivial result in ergodic theory is the so-called Birkhoff–
Khinchin ergodic theorem, stating that For any measurable f , and almost any
x 2 M ,the time average

f .x/ D lim
t!1

1

T

Z T

0

f .˚t .x// dt

exists, is equal to the corresponding backwards average, and moreover hf i D hf i.
Now we are ready to introduce the mathematical notion of ergodicity. For any

measurable set A � M , let TA.x; T / be the time spent in A up to time T by the
motion starting in x, and

	A.x/ D lim
T!1

1

T
TA.x; T / :

A possible formal definition of ergodicity, closely following Boltzmann’s ergodic
hypothesis, is

E1: for any measurable A �M , and almost any x 2M , it is 	A.x/ D �.A/.

4Where the gradient is smaller, nearby surfaces of constant energy are, so to speak, more separated;
correspondingly, the measure associated to the same area of �E is larger. The measure �L keeps
the Boltzmann original attitude of looking at the 2n-dimensional volume in a thin layer between
nearby surfaces of constant energy, just turning it into a precise mathematical language.
5One might also consider the whole � in place of �E and the volume in � in place of �L: an
easier point of view, which however does not lead to any interesting result because the dynamics
never mixes different constant energy surfaces.
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A necessary and sufficient condition (and so an equivalent definition of ergodicity),
also interpreting Boltzmann’s thoughts, is

E2: for any measurable f WM ! R, almost everywhere it is f .x/ D hf i.
Let us come to the Gibbs’ view. Let �t be a probability density on M

(an ensemble) evolving in time; the dynamics obviously preserves probability (the
probability of being at time t in A�M is the same as being in ˚�t .A/ at time 0),
and consequently

�t .˚
t .x// D �0.x/ :

A trivial equilibrium state, known as the microcanonical ensemble, is the constant
one, ��.x/ D 1 for any x 2 M (recall the normalization �.M/ D 1). Are there
other candidates? It is easy to prove that �� is the only invariant density (among
measurable functions), if and only if E1, E2 hold. So, a further property equivalent
to E1, E2, to be possibly used as definition of ergodicity, is6

E3: there exists only one (measurable) equilibrium state, namely ��.

It is quite remarkable that the mathematical notion of ergodicity keeps the central
ideas of both the Boltzmann and the Gibbs approaches, formalizing them together.
In fact, none of the properties E1–E3 was used by Birkhoff as his primitive notion
of ergodicity, but a fourth still equivalent one7:

E4: let A be an invariant subset of M (i.e., ˚�t .A/ D A). Then A is trivial, i.e.
�.A/ D 0 or 1.

Besides ergodicity a second notion, called mixing, plays a fundamental role in
ergodic theory. The idea is that any initial set A, transported by the dynamics,
spreads uniformly overM ; formally, the definition is

M1: for any measurable A;B �M , it is

lim
t!1�.˚

�t .A/\ B/ D �.A/�.B/ : (2.1)

This turns out to be equivalent to the decay of all time correlations, indeed an
alternative equivalent definition of mixing:
M2: for any square–summable observables f; g WM ! R, it is

lim
t!1

Z

M

f .˚t .x//g.x/d�.x/ D
Z

M

f .x/d�.x/
Z

M

g.x/d�.x/ : (2.2)

6Usually reported as: any measurable constant of motion (i.e. f .�t .x// D f .x/ for any x)
is trivial, i.e. almost everywhere constant in M ; the restriction to � positive and normalized is
irrelevant.
7E4 is known as metrical indecomposability of M : no decomposition of M into A and M nA can
be invariant, unless it is trivial.
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Mixing is shown to be stronger than ergodicity. A particular case of (2.2), but
equivalent to the general one, is when g is an initial Gibbs distribution �0. The
trivial replacement x0 D ˚t.x/, recalling

R
M
�0d� D 1, turns M2 into

M2’: for any initial �0 and any f , it is

lim
t!1hf i�t D hf i�� ; where hf i� D

Z

M

f .x/�.x/ d�.x/ :

In this weak sense, any initial probability density �0 approaches, for t ! 1, the
equilibrium density ��. Quite clearly, the notion of mixing appropriately formalizes
Gibbs’ question whether a system, no matter how prepared, asymptotically reaches
equilibrium.

The notion of mixing also allows to better understand the reversibility para-
dox: (2.2) shows that in a mixing system, in spite of the reversibility of the
microscopic dynamics, Gibbs macroscopic states behave irreversibly, without
contradiction. Similarly, (2.1) shows that in a mixing system, the dilution of a set A
overM , in spite of the reversibility of the dynamics, is one way.8

Deciding whether a given system is ergodic or mixing, is quite hard, apart from
very elementary model examples. It is especially hard in the realm of statistical
mechanics, that is when the number of degrees of freedom is large. Even for simple
models of gases, like hard spheres in a cubic box, the question is not yet completely
solved. Very few is known concerning systems of (nonlinearly) coupled oscillators.
A crucial question concerns the time scales entering the game: a system might
be ergodic and mixing, but evolve so slowly towards equilibrium, that for any
human time scale it could appear as not evolving at all and “frozen” in some non-
equilibrium state. A few important examples will be discussed in the next section.

2.2 Ergodicity Breaking

The lack of ergodicity in models with many degrees of freedom provides a kind of
paradox in statistical mechanics, and is often referred to as ergodicity breaking. In
recent years, it has been realized that the breaking of ergodicity is more frequent
than previously expected, and characterizes a series of physical models of great
phenomenological interest.

8This happens of course also if we change t in �t , i.e. there is no preferred direction of time.
A deep discussion could be opened here. Take a common gas and consider a low entropy initial
condition, for example with all molecules initially confined in a corner of the container. For most
initial states satisfying such condition, both in the forward and in the backward evolution of the
system, with perfect symmetry, the gas evolves towards equilibrium and entropy increases. This is
not always told to students, when discussing about the “arrow of time”.
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In fact, one should consider that, despite ergodicity has played a basic role for
enabling a solid conceptual basis for statistical mechanics, i.e. for a mechanical
approach to thermodynamics, only a few mathematical models can be rigorously
proved to be ergodic. Their list reduces essentially to billiard-like systems9 and,
in the direction of statistical mechanics, to systems of a few hard discs in a box:
the ergodicity of a (not too dense) gas of N discs or spheres in a box, for large
N , is conjectured but not completely mathematically demonstrated. Very few is
known concerning physically realistic models, like gases of molecules interacting
with typical intermolecular potentials, possibly including internal vibrational or
rotational degrees of freedom. Even less understood are models of many nonlinearly
coupled oscillators, say nonlinear discrete vibrating strings, or membranes, or
crystals. Among them, the first and most studied system is certainly the Fermi-
Pasta-Ulam (FPU) model, introduced to describe the relaxation to thermodynamic
equilibrium in a chain of nonlinearly coupled oscillators. Such a system has been
studied mainly numerically, although relevant theoretical investigations do exist. As
a matter of fact, the system exhibits nice ergodic properties10 at large enough energy
(or temperature), although, likely, it is never ergodic in the strict mathematical sense;
at lower energies instead the behavior is very complex and, so to speak, more far
from ergodicity than at higher energies. An account including just a few results,
extracted from the very wide literature on the subject, is presented in the next
subsection.

2.2.1 Ergodicity Breaking in the Fermi-Pasta-Ulam Model
at Low Energies

In 1954 Enrico Fermi, John Pasta and Stanislaw Ulam, universally known by
the acronym FPU, decided to use one of the first electronic computers ever
constructed—the MANIAC I,11 of the Los Alamos National Laboratory—to numer-
ically integrate the microscopic equations of motion of a Hamiltonian system,
elementary but interesting for statistical physics, aiming to understand its ergodic
and statistical properties.

Enrico Fermi does not need any presentation; its interest in the ergodic problem
is not surprising, since already in 1923 he published an important paper on the

9One point bounces elastically inside a bounded region. The ergodic properties depend in a non
trivial way on the shape of the boundary. The first example, due to Sinai [5, 6], represented an
important breakthrough in ergodic theory.
10This means, essentially, that the system behaves nicely, as if it were ergodic, if one does not look
at the behavior of microscopic degrees of freedom, but restricts the observation to macroscopic
observables, possibly to a selected subset of them. Such a point of view was proposed by Khinchin
[7]. It looks physically deep, but never gave rise to a well-posed mathematical theory.
11Mathematical Analyzer, Numerical Integrator (or perhaps Numerator, Integrator) and Computer.
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subject [8].12 John Pasta was a computer scientist, certainly a pioneer in the
field. Stanislaw Ulam was a mathematician, expert mainly in diffusion equations,
mostly known as the inventor of the so-called “Monte–Carlo” methods in statistical
problems.

The resulting paper13 [11] was a quite innovative one, from several points of
view.

– It started a new research field, nowadays highly developed and known as
“molecular dynamics”, aiming at understanding the macroscopic properties of
a system starting “ab initio”, i.e. from its microscopic laws of motion. Clusters
of hundreds or even thousands of computers nowadays are normally used, mainly
by chemical physicists, to investigate larger and larger systems, in particular
quantum ones.

– It started a new branch of mathematics: as it is not much known, the modern
theory of integrable nonlinear wave equations like KdV, mKdV or NLS—
including relevant phenomena like solitons—precisely originated as an effort to
understand the unexpected phenomena observed by FPU [12].

– It raised concrete questions in ergodic theory that after almost 60 years, in spite
of the great progress of the theory and the enormous progress of computers,14

still are poorly understood.

In the next paragraph we shall quickly describe the model and the early results, then
we shall provide examples of more recent investigations.

The model and the early results The FPU model is a chain of particles connected
by nonlinear springs, with Hamiltonian

H.q1; 
 
 
 ; qN ; p1; 
 
 
 ; pN / D 1

2

NX

jD1
p2j C

NC1X

jD1
V .qjC1 � qj / ; (2.3)

where

V.r/ D 1

2
r2 C ˛

3
r3 C ˇ

4
r4 ;

12Such a paper contains a mathematical theorem which suitably generalizes a well known result by
Poincaré [9], followed by an heuristic application to the ergodic problem. This latter part is open
to criticism (a crucial regularity that Fermi assumes to be generic, is not).
13Quite interestingly, the paper remained for several years an internal report of the Los Alamos
Laboratories [10], and only in 1965 it got published in Fermi’s Collected Papers [11].
14MANIAC I is referred to as capable of 104 “operations” per second. This means a possible ratio
105, compared to common nowadays cpu’s; a cluster of 100 cpu’s—a quite common object—rises
the ratio to 107. This means that what is easily done, nowadays, in 1 h, would have required about
400;000 years of computation on MANIAC I.
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˛ and ˇ being the nonlinearity constants (ˇ > 0; the sign of ˛ is irrelevant).
The mass of the particles and the elastic constant of the springs are set equal to
one. We shall here consider (as FPU did) fixed end conditions, i.e. q0 D qNC1 D 0;
periodic boundary conditions are also widely studied. As it can be easily checked,
the only quantities that determine the dynamics up to a rescaling are the products
˛2" and ˇ", where " D E=N is the specific energy, E denoting of course the total
energy of the chain.

The normal modes of the linear chain (˛; ˇ D 0), as it is well known, are given by

Qk D
q

2
NC1

NX

nD1
qn sin

�kn

N C 1 ; Pk D
q

2
NC1

NX

nD1
pn sin

�kn

N C 1 ; (2.4)

k D 1; : : : ; N , while the dispersion relation (frequency vs. mode index k) is

!k D 2 sin
�k

2N C 2 I (2.5)

the harmonic energy associated to each mode k is finally

Ek D 1

2

�
P2
k C !2kQ2

k


: (2.6)

Relevant observables of the problem are the mode energies Ek and their time
averages, namely

Ek.t/ D 1

t

Z t

0

Ek.Qk.t
0/; Pk.t 0// dt 0 ; k D 1; : : : ; N : (2.7)

The authors could work only with a small number of particles, typically N D 32,
up to short times, of the order of 104 or slightly larger; this however was enough to
them, to understand that some serious obstacle to ergodicity and mixing did exist.
The aim of the work was indeed understanding how, and on which time scale,
the model, if prepared in a state far from statistical equilibrium, does approach
equilibrium. To this purpose, the authors gave initially all of the energy to only one
normal mode, actually the lowest one (k D 1), expecting a progressive involving in
the dynamics of all modes, till energy equipartition. With great surprise, they did not
find any tendency to equipartition, rather they observed the formation of a strange
state in which only a few modes did effectively share energy, and moreover, the
dynamics appeared to be close to a quasi-periodic one, with no trace of the expected
“molecular chaos”. In their very words:

Let us here say that the results of our numerical computations show features which were,
from the beginning, surprising to us. Instead of a gradual, continuous flow of energy from
the first mode to the higher modes, all of the problems show an entirely different behavior.
.: : :/ Instead of a gradual increase of all the higher modes, the energy is exchanged,
essentially, among only a certain few. It is, therefore, very hard to observe the rate of
‘thermalization’ or mixing in our problem, and this was the initial purpose of the calculation.
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Fig. 2.1 The instantaneous values of the energies Ek , k D 1; 2; 3, versus t , for N D 32, ˛ D 1,
ˇ D 2, " D 2� 10�4, all energy initially given to mode k D 1

The sense of surprise, and the consciousness to be in front of a real novelty, is still
present, several years later, in Ulam’s introduction to the FPU paper in [11]:

The results of the computations were interesting and quite surprising Fermi. He expressed
to me the opinion that they really constituted a little discovery in providing intimations that
the prevalent beliefs in the universality of ‘mixing and thermalization’ in non-linear systems
may not be always justified.

Figure 2.1, a modern remake of one of the original FPU figures, shows the time
behavior of Ek.t/ vs. t , k D 1; 2; 3, for a small model with N D 32, ˛ D 1, ˇ D 2,
at low energy " D 10�4, only mode k D 1 being initially excited. The presence of
quasi-periodicity is rather evident. Recurrences on even larger times were observed
a few years later15 in [13], see Fig. 2.2. If we look at the time averages Ek , the
lack of energy equipartition, and thus of ergodicity and equilibrium, is even more
clear. Figure 2.3 shows Ek.t/ vs. the averaging time t , in the same conditions of the
previous Figs. 2.1 and 2.2, for k D 1; : : : ; N ; the clear impression is that each of the
Ek’s reaches its own asymptotic value, different from the equipartition value 1=N .

At sufficiently high energies, as first recognized in [14], the situation completely
changes: regularity disappears, and the system reaches rather quickly energy
equipartition; see Fig. 2.4, where " is raised to " D 10�2. The difference with respect
to Fig. 2.3 is striking.

15Reference [13] was published only in 1972, but the results certainly circulated since 1961, see
Ulam’s introduction to FPU in [11].
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Fig. 2.2 The instantaneous value of E1, on a ten times larger time interval, in the same conditions
as Fig. 2.1

Fig. 2.3 The averaged energies Ek.t/ vs. t for the first few modes (semi-log scale), in the same
conditions as in Fig. 2.1
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Fig. 2.4 The averaged energies Ek.t/ vs. t (log-log scale), at larger specific energy " D 10�2.
Parameters as in the previous figures

The debate on the FPU problem continued for several years, having in mind, as
the main goal, the localization of a threshold below which ergodicity breaks. The
underlying theoretical paradigm was, basically, KAM theory: indeed the idea of
a critical nonlinearity, and the evidence of quasi-periodicity at low nonlinearities,
remind that theory. The idea of a threshold, however, soon appeared to be rough:
different indicators, different choices of the initial conditions, perhaps even different
personal attitudes of the authors in interpreting data, led to quite different conclu-
sions, and results, mainly concerning the crucial question of the persistence of the
ergodicity breaking—no matter how defined—in the thermodynamic limit, could
not provide a clear answer. In the early eighties of last century, however, the point
of view significantly changed, and two important new ideas entered the game.

(i) The state observed by FPU, in which only a few normal modes do share
energy, is not really asymptotic in time, rather it represents a kind of metastable
situation, or intermediate state, which on a much larger time scale slowly
evolves and possibly reaches equipartition. That is: on larger times, ergodicity
is possibly recovered even at low energies. The new point of view was intro-
duced, and supported by heuristic theoretical reasoning and some numerical
calculations, in [15, 16]. It should be stressed that the cultural background,
in the meanwhile, had changed: in statistical mechanics, the theory of spin
glasses, with metastability and associated long times, entered the discussion; in
dynamical systems, Nekhoroshev theory developed as complementary to KAM
theory and introduced, as a generic scenario, the possible presence of long time
scales, when a natural perturbative parameter is small.
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(ii) The intermediate state, and specifically the quasi-periodicity characterizing
it, reflects the closeness of the FPU model to an integrable16 model, which
however is not the linear chain, but the so-called Toda model: on the time scale
observed by FPU, at the low nonlinearities they did work, FPU and Toda are
hardly distinguishable. This point of view was first proposed and supported in
[17], but apart a few exceptions, it was not much further exploited till very
recently [20].

The literature on the subject, after the above cornerstone papers i.e. in the last
30 years, is rather wide, and let us say somehow disorienting: a coherent picture
of the FPU phenomenon still looks far away. The state of the art dated a few years
ago can be found in [18,19]; the points of view there expressed, however, are rather
deeply different and, consequently, hard to summarize. In the remaining part of this
section we shall limit ourselves to present only very few recent numerical results,
with the only aim to quickly illustrate the two above ideas and to show, at least, the
complexity of the problem. The main question we shall have in mind is whether the
FPU phenomena are significant for statistical mechanics, i.e., if they persists in the
limit of large N at fixed ".

An excerpt of recent results Among recent papers, the ones that mainly are con-
cerned with the persistence in the thermodynamic limit of the FPU phenomenon—
that we now appropriately describe as necessity of quite large time scales for
ergodicity, and ergodicity breaking for shorter observation times—are [20–24]. We
shall limit ourselves to very few results taken from (some of) them. We need to
consider values of N much larger than 32 as in FPU,17 moreover the initial data
too need to be more adapted to a statistical mechanics approach: in particular for
largeN the equivalent of the FPU-like initial conditions is not exciting a single or a
few modes, but some fraction of N , moreover with random initial phases (see [23]
for a study of the crucial role of phases in the thermodynamic limit). Figure 2.5
illustrates the presence of two time scales in the problem. The figure refers to a
model with N D 1;023, ˛ D 1, ˇ D 2, small " D 10�4, the lowest 10 % of
modes being initially excited (see the rectangle marked t D 0). The figure shows
the time averages18 Ek.t/ vs. k=N , at different times in geometric progression.

16We shall not define integrability here. In the very essence, an integrable system is a system
having many constants of motion—as many as the number of degrees of freedom—and all motions
are quasi periodic. Ergodicity is far away, and statistical approaches like using a microcanonical
measure are meaningless.
17How many degrees of freedom do already represent the thermodynamic limit, is a delicate
question discussed rather widely in [24]. Basically, the more " is small, the larger N needs to
be to reasonably approach the thermodynamic limit. Taking instead the limit " ! 0 at fixed large
N (no matter how large) is not appropriate: the limits are in the reverse order. The exchange of
the limits, although very spontaneous having finite computational resources, might lead to a wrong
picture of the thermodynamic limit behavior.
18With a minor change of the definition of Ek , namely

Ek.t/ D 1

t=3

Z t

.2=3/t

Ek.Qk.t
0/; Pk.t

0// dt 0 I
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Fig. 2.5 The shape of the averaged energy spectrum of normal modes Ek.t/ plotted vs. k=N , at
selected times t (marked in the figure) in geometric progression. Energy initially equidistributed
among modes with 0 < k=N < 0:1, see the rectangle marked t D 0. Each point is the average over
24 random extractions of the initial phases. Parameters: N D 1;023, ˛ D 1, ˇ D 2, "D 10�4

The phases of the excited modes are chosen randomly, moreover, just to clean the
curves, an average over 24 different random choices of the phases is added. The
figure shows that quite soon, already at t ' 103, a well defined profile is formed, in
which only some low frequency modes effectively take part to energy sharing, the
energies of the remaining ones decaying exponentially with k=N . The energy profile
keeps its form nearly unchanged for a rather large time scale, definitely much larger
than the time needed to form it; only on much larger times, say t D 109 or 1010,
the system does approach energy equipartition, the high-frequency modes being
progressively involved into the energy sharing. The first profile, i.e. the one formed
at t D 103, is clearly the analog of the FPU state, in which ergodicity appears to be
broken. Similarly to the glassy behavior, however, on much larger times ergodicity is
recovered. A similar behavior can be found for different initial excitations, see [20].

For given parameters and initial conditions (for example, 10 % of modes initially
excited as above), let us denote T .N; "/ the large time scale, i.e. the equilibrium
or ergodicity time. T of course needs to be appropriately defined, and some
arbitrariness necessarily enters the definition; the idea in [24] is to look at the time of

similar averages in a running window (of amplitude proportional to t ) are in principle equivalent
to the usual time averages from t D 0, but are less “lazy” to change, and better show the evolution
of the time averages on the appropriate time-scale.
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the raise of the tail in Fig. 2.5, making it quantitative through an appropriate index;
here we cannot be more precise (see the quoted paper for details) and proceed by
assuming T .N; "/ is somehow defined. The numerical evidence, see [24], is that:

– By increasingN at fixed ", T .N; "/ converges to a limit value T1."/, representing
the time scale for ergodicity in the thermodynamic limit for a given ".

– T1."/ grows, for "! 0, following a power law19:

T1."/ � "�a ; a D 9=4 : (2.8)

This seems to be the time scale at which, in the thermodynamic limit, ergodicity
is re-established.

Let us quickly come to point (ii) above. The Toda model, let us recall, has
Hamiltonian as in (2.3), but the potential V is replaced by

VT .r/ D U.e�r � 1 � �r/ :

For all values of the parameters U , �, the model is exactly integrable [25, 26]. For
the particular choice

U D 1
4
˛�2 ; � D 2˛ ;

the Toda potential follows the FPU one up to third order, namely

VT .r/ D 1
2
r2 C 1

3
˛r3 C 1

4
ˇT r

4 C 1
5
�T r

5 C 
 
 


with

ˇT D 2
3
˛2 ; �T D 1

3
˛3 ; : : :

So, the FPU model is closer to a certain Toda model than to the linear chain: roughly
speaking, the distance of FPU to the linear chain is ˛

p
", while the distance to Toda

is jˇ � ˇT j", much smaller at low ".
As understood in [17], the Toda model provides the best integrable approxi-

mation to FPU, and it turns out that the dynamics of FPU, within the first time
scale—the one in which ergodicity is broken—is almost indistinguishable from
the Toda dynamics. Figure 2.6, actually a remake of a figure in [17], shows the
instantaneous values of the energies Ek.t/ for a Toda model with small N D 32, in

19If instead N is kept fixed, even if large, then T .N; "/, for small " below a certain "N , abandons
the power law to follow a stretched exponential T .N; "/ � e1="

�
, � D 1=8. This is different

from the thermodynamic limit. Performing the limits in the correct way is numerically painful but
necessary.
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Fig. 2.6 The analog of Fig. 2.1, for the Toda model with the sameN D 32, in the same conditions

conditions identical to those of Fig. 2.1. The similarity of the two figures is striking.
The similarity persists for larger N , see [20]. Figure 2.7 is instead the analog of
Fig. 2.5: same N , same conditions. Quite clearly, the Toda model has only the first
time scale; the tail never raises and ergodicity is never recovered. The profile of
the energy spectrum in Fig. 2.7 is hardly distinguishable from the profile appearing
in Fig. 2.5, up to t D 105. Further evidences of the role of the Toda model as a
good integrable approximation of FPU during the shorter time scale, as well as the
progressive loss of integrability on larger times, can be found in [20].

Part of such a rich phenomenology and complexity of the FPU model is present
in other one-dimensional models, like the so-called FPU ˇ-model (˛ D 0) or the
“discrete �4” model: with however some important differences, also due to the fact
that an integrable nonlinear approximation like Toda in such other models does not
exist (at least, is not known). In higher dimension 2 or 3, very few modern results
do exist. The most recent and detailed one is probably [27], devoted to dimension 2;
the essential result is that some phenomena like the presence of two time scales, in
higher dimension, do persist, but the large time scale is not as large as in dimension
one: a power law like in (2.8) is indeed found, but with smaller exponent a D 5=4

or even a D 1, depending on the model.
Whether or not the nontrivial behavior of the FPU models is relevant in physical

reality, is hard to say. For sure, they provide a beautiful example of the possible
complexity in the realization of ergodicity and mixing in some large systems,
interesting in principle for statistical mechanics.
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Fig. 2.7 The analog of Fig. 2.5, for the Toda model with the same N D 1;023, in the same
conditions

2.2.2 Ergodicity Breaking Induced by Breather States
in the Discrete Nonlinear Schrödinger Equation

The ergodicity breaking mechanism in the FPU model is associated to the exceed-
ingly large time scales characterizing its approach to equilibrium at low energies,
where the model is close to integrability. A similar phenomenon occurs in the
Discrete Nonlinear Schrödinger Equation (DNLSE), despite the basic dynamical
mechanism and its statistical implications are quite different. In fact, the DNLSE
exhibits ergodicity breaking for high values of the energy, where it is quite far
from any integrable limit. In particular, it exists a negative temperature region of
the model, where the spontaneous formation of localized excitations in the form
of breathers prevents any practically accessible convergence to equilibrium. This
peculiar non-equilibrium mechanism is expected to yield relevant consequences for
many of the physical problems described by the DNLSE.

Generalities of the model The Discrete Nonlinear Schrödinger Equation has been
widely investigated in various domains of physics as a model of propagation
of nonlinear excitations [28, 29]. In fact, it provides an effective description of
electronic transport in biomolecules [30] as well as of nonlinear waves propagation
in a layered photonic or phononic systems [31,32]. More recently, a renewed interest
for this multipurpose equation emerged in the physics of gases of cold atoms trapped
in periodic optical lattices (e.g., see Ref. [33] and references therein for a recent
survey).
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The one-dimensional DNLSE reads

i Pzn D �2jznj2zn � znC1 � zn�1 (2.9)

and it can be derived from the Hamiltonian

H D
NX

nD1
jznj4 C z�nznC1 C znz�nC1; (2.10)

where zn.t/ is a complex variable that can be interpreted as the “wave function”
at site n on a chain made of N sites. Boundary conditions for the moment
are unspecified. Notice that Eq. (2.9) and Hamiltonian (2.10) are fully classical.
As described in [33] they can be derived through a suitable procedure as the
classical limit of a genuine quantum model. This is the reason why the dynamical
variables, zn.t/, keep track of this quantum origin. On the other hand, the canonical
transformation zn � .pn C {qn/=

p
2 allows to rewrite Hamiltonian (2.10) by the

usual classical canonically conjugated variables of momentum, pn, and position,
qn, as follows

H D
NX

nD1
.p2n C q2n/2 C 2.pnC1pn C qnC1qn/; (2.11)

The sign of the quartic term is assumed to be positive (in the language of cold atoms
this corresponds to a repulsive interaction), while the sign of the hopping term is
irrelevant, due to the symmetry associated with the canonical (gauge) transformation
zn ! znei�n. At variance with its continuum version, the DNLSE is not integrable
and this is the property that makes it interesting not only for dynamics but also for
thermodynamics. In fact, it has only two conserved quantities, the energyH and the
total norm (or total number of particles),

A D 1

2

NX

nD1
.p2n C q2n/ : (2.12)

As a consequence, the equilibrium phase-diagram is two-dimensional, as it involves
the energy density h D H=N and the particle density a D A=N . The first
reconstruction of the diagram was carried out in Ref. [34], where the authors derived
the thermodynamics of the DNLSE model by assuming the existence of a grand-
canonical measure.20 In fact, the grand-canonical ensemble seems the appropriate
one for the statistical mechanics description of a model like the DNLSE, where both

20Explicit calculations of gran-partition function of the DNLSE were carried out by transfer
integral techniques.
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Fig. 2.8 Equilibrium phase diagram .a; h/ of the DNLSE. The positive temperature region Rp lies
between the ground state (solid blue line) and the infinite temperature isothermal (dashed red line).
The purple line corresponds to the isothermal at temperature T D 1. The “negative temperature”
region Rn extends above the infinite temperature line. Below the ground state extends the physically
forbidden region Rf

the total energy and the total mass are conserved quantities. It can be easily realized
that the ground state of Hamiltonian (2.10) is identified by the relation

h D a2 � 2a

that is the lower curve in Fig. 2.8. The corresponding temperature and chemical
potential are T D 0 and � D 2.a � 1/, respectively. The upper curve in Fig. 2.8 is
identified by the relation

h D 2a2

and corresponds to the infinite temperature line (random phases) with T D 1 and
� D �1.

Many interesting aspects concern the thermodynamics of the DNLSE in the
region in between these two curves (e.g., see [35]). Here we are rather interested
to discuss the ergodicity breaking mechanism characterizing the region above the
infinite temperature line.

Thermodynamics in the region of negative temperatures It was conjectured
already in [34] that the region Rn should correspond to negative temperatures.
Actually, this can be argued by the following considerations. The hypersurface in
phase space corresponding to constant energy, H , and number of particles, A, is a
compact manifold, being the interception between the constant energy hypersurface
and the hypersphere corresponding to constant number of particles. According to
Weierstrass’ Theorem, the energyH has to be bounded for any value of A. Making
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reference to the microcanonical statistical ensemble, in this case the entropy S is a
function of the energy E D H defined on a finite interval I D ŒEmin; Emax
, where
Emin D A2=N � 2A is the ground-state energy and Emax D A2 corresponds to all
the energy concentrated into a single site (notice that this “upper” state is N-fold
degenerate). Since S.E/ has to be a differentiable function and certainly has two
minima in correspondence of the extrema of I , there must be a maximum of S
inside I and this maximum is located at E� D 2A2=N (i.e., it corresponds to the
T D1 line). The microcanonical definition of temperature T is

1

T
D @S

@E
; (2.13)

which is a positive quantity in the interval ŒEmin; E
�
 and, accordingly, a negative

one in the interval ŒE�; Emax
. This conclusion can be rigorously verified, by
obtaining an explicit analytic expression for T by differential geometry methods
[36]. On the other hand, while in the region Rp of Fig. 2.8 there are equilibrium states
for any value of T (e.g., see the purple line, corresponding to the isothermal T D 1),
equilibrium states for negative temperatures (i.e. in the region Rn of Fig. 2.8)
cannot exist. This peculiar feature of the DNLSE was first realized by B. Rumpf
[37]. From a thermodynamic point of view, the presence of negative temperature
states indicates that the entropy of a system is locally a decreasing function of
the internal energy (quite an unusual thermodynamic scenario!). In a series of
papers, Rumpf provided a solid theoretical argument that excludes the existence
of negative temperature equilibrium states in the DNLSE [38–40]. More precisely,
he showed that also in Rn the maximum entropy criterion for equilibrium implies
that the system eventually evolves to a delocalized, incoherent background state at
infinite temperature, superposed to a single breather that collects the “excess” of
energy. This mechanism of relaxation to equilibrium by an energy collapse of a
finite fraction of energy onto a single site is, on the other hand, counterintuitive, if
not astonishing: it is reminiscent of the formation of a black hole in the Universe
or of a vortex in a fluid. As it was already observed in [34], in the region Rn

the energy density is sufficiently high to allow for the spontaneous formation of
breathers through the well known dynamical mechanism of modulational instability.
This mechanism appears when a nonlinear wave propagates in discrete space (the
lattice of the DNLSE). For a suitable mathematical description see [41–43]. Here
we prefer to illustrate it by an intuitive argument. Propagating nonlinear waves are
typical dynamical structures of models like the DNLSE. In general, they propagate
at different speed in points where they have different amplitude, like the sea waves
that eventually fold onto themselves, before spreading. But sea waves are in a
continuum medium (water), while nonlinear waves on a lattice are not allowed to
fold, because lattice points have to maintain their original order. Accordingly, at
some instant of time when the nonlinear wave would like to fold it occurs a shock
wave (singularity) that concentrates a large fraction of wave amplitude (i.e., energy)
onto a few lattice sites. This is the first step of the dynamical process yielding the
formation of an exponentially localized time-periodic state, the so called breather.
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The reason why the breather is periodic can be understood again by a simple
argument. The concentration of a large amount of energy in a few sites essentially
amounts to decouple these sites from the rest of the lattice, as one can easily infer
from the very structure of Hamiltonian (2.10). In practice, the breather is a very
close approximation to a single nonlinear oscillator located at some lattice site, very
weakly interacting with the nearby sites (where its amplitude is exponentially small
w.r.t. the site where it is localized). Since the single nonlinear oscillator is known to
go through a periodic evolution (with an energy dependent period), the same holds
for the breather. In a rigorous mathematical approach one can prove that breathers
can be intended as continuation of a single oscillator solution to a lattice solution
by methods based on the implicit function theorem. Their dynamical stability is
guaranteed if their frequency is not resonant with those of linear lattice waves (for
details see [44–47]).

Relaxation dynamics in the region of negative temperatures Studying these
dynamical properties of the DNLSE equation demands numerical integration of
Eq. (2.9) by suitable algorithms: in this case a Yoshida symplectic algorithm [48]
is an appropriate choice, since it applies to non separable Hamiltonians, like (2.11).
According to the argument by Rumpf [37–40], one should expect that, after having
selected an initial condition in Rn, the dynamics should go through the formation
of breathers that eventually merge into each other, thus relaxing to the equilibrium
state, where the background obeys random phase statistical properties (T D 1) and
the energy excess is collected into a single black hole, as a result of a coarsening
process among breathers. But this is not what the integration of the DNLSE equation
tells us, as shown in Fig. 2.9.

In fact, if one takes a randomly seeded initial condition, where the number of
particles is on average equally distributed on the lattice sites, with a sufficiently large
amplitude to be located in Rn, dynamics produces spontaneously some breathers
superposed to a radiation-like background. Breathers are not solitons, meaning that
they are not conserved dynamical structures when they interact among themselves.
A fortiori they go through inelastic collisions with the background waves. On the
other hand, breathers typically form in lattice regions quite far from each other,
so that their mutual interaction is practically negligible. In fact, they are quasi-
static dynamical structures and their mobility is very much reduced with respect
to the speed of sound of linear lattice waves. Accordingly, they can interact among
themselves mainly through the background field (collisions among breathers cannot
be excluded, but they are extremely rare events). On the other hand, a breather,
due to its very nature of localized excitation, is on average weakly coupled to the
background, the less the larger is its amplitude. It can be easily concluded that
only large-deviation events driven by the background fluctuations can destabilize a
breather and destroy it. This is what one can observe in Fig. 2.9, where breathers
evolve before being eventually reabsorbed into the background. Their lifetime,
that can be exceedingly long, depends on their amplitude. On the other hand,
for a breather that disappears there is a new one that is spontaneously formed in
another lattice region, in such a way that the average number of breathers in the
lattice is kept practically constant. Numerical simulations show that this dynamical
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Fig. 2.9 Evolution in time of the local amplitude in a negative temperature state with a D 1 and
h D 2:4. Notice that we are just above the line h D 2a2 (T D 1) in Fig. 2.8. The plot has
been obtained by drawing a black dot at any lattice point n where the amplitude jznj2 overtakes
the threshold value 10, expressed in the adimensional units of the DNLSE model. The choice of
this threshold value can be motivated on the basis of refined mathematical arguments (see [49]).
In practice, a breather state is unambiguously signaled when the local amplitude overtakes this
threshold value. The vertical scale in expressed in millions of proper time units of the model, thus
indicating that there are breathers with very different lifetimes. On the other hand they keep on
being destroyed and formed again, in such a way that there is an average number of localized
solution at any time distributed all over the lattice. In this figure we are dealing with quite a large
one, i.e. N D 4;096 D 212. This number has not been chosen by chance: using a chain length
equal to a power of 2 allows to optimize the algorithm performances [48]

regime is still observed after O.107/ proper time units (an intrinsic limit due
to the maximum available computing resources for integrating a lattice made of
O.103/ sites). Notice that, if the same kind of initial conditions are used in Rp,
the DNLSE chain is found to relax to thermodynamic equilibrium in O.10/ proper
time units. Very approximate analytic estimates indicate that the time needed to
reach equilibrium in Rn could be astronomical even in a finite lattice [50]. The
dynamical mechanisms yielding the formation of breathers and ruling their stability
in practice keep the evolution far from the predicted equilibrium state, that is
practically unreachable. The breaking of ergodicity is due to the very presence
of breathers, that amount to localized periodic solution (“islands” in phase space)
very weakly overlapping among themselves and with the surrounding “chaotic” sea,
representing the background field. As discussed in the previous section for the FPU
model, also in this case relaxation dynamics inhibits a fast equilibration. Anyway,
in the DNLSE case, the ergodicity breaking effect is even more dramatic, since it is
a genuine nonperturbative phenomenon, associated with the spontaneous formation
of nonlinear excitations named breathers.

In this perspective, it should be pointed out that this is a phenomenon with
relevant physical consequences. Actually, despite the dynamical regime observed in
numerical simulations cannot be considered a genuine thermodynamic equilibrium
state, nonetheless it exhibits robust statistical properties. In particular, if one
measures the temperature of this transient states by formula (2.13), one finds that
its time average converges to a negative value. Moreover, an energy fluctuation
produced at any lattice point typically produces a breather state, rather than being
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equally redistributed into the background field (as it happens in Rp). This definitely
clarifies the peculiar scenario we are dealing with: the equilibrium state can emerge
from a large-deviation event (the collapse of a macroscopic fraction of energy onto
a single site), whose probability is practically zero, even over a time comparable
with the age of the universe.

2.3 Ergodicity Breaking at Equilibrium

2.3.1 General Concepts

We have seen in the previous sections that the key idea behind ergodicity breaking
in the dynamics is the existence of more that one equilibrium state (in the dynamic
context the equilibrium states are defined as the average over a trajectory of time
length going to infinity). Different equilibrium states may be obtained in the infinite
time limit starting from different initial configurations. It is clear that the notion
of ergodicity breaking is strictly tied to that of equilibrium state. In the dynamic
approach systems with finite number of degrees of freedom may be non-ergodic. In
the simplest case this non-ergodicity is due to the existence of conserved quantities,
however we have already seen that this is not the only possible source of non
ergodicity.

In this section we would like to discuss the precise definition of an equilibrium
state not from a dynamical view point, but from a static viewpoint, i.e. in the frame-
work of the standard ensembles of equilibrium thermodynamics. In other words we
do not use the Boltzmann approach of averaging over the time, but we suppose
that the dynamics has been such to carry the system in equilibrium configuration.
We thus follow the Gibbs-Einstein approach of introducing a probability measure
over the configurations, i.e. to consider an ensemble of configurations to which we
associate the appropriate weigh [51, 52] (different options are the micro-canonical,
the canonical and the grand-canonical ensemble).

Usually it is said that if the dynamics reaches the micro-canonical distribution
at large times, the system is ergodic, so that the reader may wonder which kind
of ergodicity breaking may be present in the micro-canonical (or in the canonical)
ensemble. We shall see that the question is well posed and that ergodicity breaking
in the ensemble approach is a rather subtle phenomenon that may be present only in
the infinite volume limit and it is absent for systems with a finite number of degrees
of freedom.

Indeed in this approach the breaking of ergodicity in the equilibrium ensemble is
associated to the coexistence of more than one equilibrium phase of the system and
to first order phase transitions. We shall see later that this conventional view point
reflects only part of the reality and in glassy systems we may have coexistence of
many equilibrium phases in absence of a first order phase transition.

In the case of a finite system the microcanonical or the canonical ensembles are
obviously well defined (in most of the cases) and they are clearly unique. We assume
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(as usually happens) that the two ensembles become equivalent for large enough
systems and in the following we will consider mostly the case of the canonical
ensemble:

�G.A/ � hA.C /iG D
Z
d�.C /A.C / ; d�.C / D Z.ˇ/�1 exp.�ˇH.C //d.C / ;

(2.14)

where C is a generic configuration of the system and the partition function (Z.ˇ/)
is such that

R
d�.C / D 1. The previous equation defines the Gibbs state �G .

Things become more complex in the infinite volume systems. In order to
study what happens in the infinite volume limit there are two complementary
approaches:

• We consider the infinite volume system as a limit of finite volume systems.
• We consider directly the infinite volume system.

We will discuss both approaches in the following.

2.3.2 The Gibbs States

The study of the infinite volume limit contains many subtle points also if we
consider the simplest cases, bounded Hamiltonians with a finite range interaction.
In this case it is quite simple to prove that the free energy density is well defined
[51, 52], unfortunately the situation is much more complex if we consider the
limiting behavior of the probability distribution of the configurations and of the
expectation values of the observables.

Crucial phenomena as phase transitions are present only in the infinite volume
limit: we would like to control this limit in details; the issues at stakes are quite
subtle: some of the key mechanisms that lead to phase transitions where discovered
after the second world war. Here we will only discuss some of the general principles
without studying the models where the phenomena we describe are realized.

We clarify here the language we use and we give a few mathematical definitions
in order to be precise.

The first point we have to address is the definition of a state of a system. We could
use either a probabilistic language or a more algebraic setting; we choose the second
possibility because we find it more elegant. We prefer to use this algebraic approach
also because the notion of a state can be easily extended to an infinite system, while
we cannot naively define a probability distribution over infinite configurations.

The reader should notice that the word state is often used in mathematics, with
different underlying meanings; we will use the following definition [53–58]. Let A
be the algebra of observables.21 An example of this algebra in spin models are the

21In classical statistical mechanics it is an Abelian algebra with identity while it would be a non-
Abelian algebra in the quantum case.
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functions of a finite number of spins. We say that a linear functional � over the
algebra A is a state if for all elements (A) of the algebra:

A � 0) �.A/ � 0; jj�jj D 1 ; (2.15)

where this second condition (the norm of � is one) is equivalent to �.A D 1/ D 1.
Sometimes we will use the standard notation of statistical mechanics:

�.A/ D hAi� : (2.16)

To any finite volume state we can associate a normalized probability distribution
of the configurations: it associates to any function its expectation value. The
advantage of this algebraic setting is that positive linear functionals on algebras
are extremely well studied and many mathematical results are available. Moreover
the whole approach translates immediately to statistical quantum mechanics, where
quantum phenomena like Bose-Einstein condensation cannot so easily be dealt in a
probabilistic approach.

Let us start to discuss a physical implementation: we consider a system in D
dimension in a box of size � and we assume that each of the D coordinates of the
particles (or of the spins) are in the interval Œ��=2 W �=2
. The free energy density
f is given by

� f̌ D lim
�!1�

�D log.Z�/ ; (2.17)

where the partition functionZ� is computed using an HamiltonianH� that depends
only on the degrees of freedom inside the box (with some appropriate boundary
conditions, e.g. periodic boundary conditions, open boundary conditions, fixed
boundary conditions).

We say that a sequence of states �k of increasing size �k (limk!1�k D 1)
converges to � if

lim
k!1�k.A/ D �.A/ ; (2.18)

for all observables that depend only on degrees of freedom inside a box of fixed
arbitrary size R.

In the nutshell we fix an arbitrary box of size R and we ask that the observables
inside the box do not depend on �k in the limit where �k ! 1 (obviously this
construction is possible only for �k > R and this happens for large k). In other
words we impose some kind of weak topology on the space of states22: the crucial
point is that A does not depend on k.

22The experienced reader may ask why we have introduced the extra length R that may seems to
be unnecessary. One would be tempted to assume that the volume average in the box of side �k

of the observable should become k independent for large k. This simpler formulation does not
have problems as far the expectation values of the observables are space independent. In the most
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The existence of a limit for the state when the volume goes to infinity
(i.e. k !1) is less evident than the existence of a limit for the free energy.

We could assume (or prove, if we are smart enough) that the limit in Eq. (2.18)
exists and in this way we could define an infinite volume equilibrium state. However
this construction may be non-unique. When we consider finite volume systems we
should specify the boundary conditions (e.g. periodic, free, fixed) and the result
may depend on the choice of these boundary conditions. Moreover there is no
warranty that the sequence of states �k converges to something. In many case, using
compactness arguments (i.e. generalizations of the Bolzano-Weierstrass theorem),
we could prove that there is a subsequence of the k’s such that the �k have a limit
[57], but the limit may depend on the subsequence (as we shall see later in an explicit
example).

Let us neglect all these problems: we consider only one kind of boundary
condition (e.g. periodic) and we assume that we are lucky enough that the infinite
volume limit is well defined (as it happens in the ferromagnetic Ising model at
positive temperature). In this way we arrive to define in an unique way the infinite
volume Gibbs state �G .

The introduction of the notion of pure states in statistical physics has the main
goal, as we said before, to allow a clear definition of ergodicity breaking. As we
shall see later in more details a crucial notion is the one of clustering: a state is
called clustering if connected correlation functions (defined below) computed in
such state go to zero at large distance. There exist plenty of systems where the
previously defined infinite volume Gibbs state has the unwanted property that its
correlation functions do not satisfy the clustering properties [51, 53, 58].

Physical consistency requires that, when a system is in a given phase, intensive
quantities do not fluctuate: this is possible only if correlation functions are cluster-
ing. Moreover the equilibrium linear response theorem tells us that the response to a
small external perturbation is proportional to the appropriate connected correlation
function. If the connected correlation functions do not vanish at large distance a
small perturbation would propagate to the whole system and this is unphysical.

Let us discuss in details ergodicity breaking in this context. We will see that there
are two phenomena (i.e. clustering and purity) that are related.

2.3.2.1 Clustering and Purity

Connected correlation functions play a crucial role in equilibrium statistical
mechanics [51, 53]: in the case of two observables we have:

hABic � hABi � hAihBi : (2.19)

general case where no (even approximate) translational invariance is present we have better to stick
to the formulation we use in the main text.
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Connected correlations functions should be familiar to the reader as far the
linear response theorem relates the connected correlation functions to the response
function. It is natural to require that the connected correlation functions vanishes at
large distance: for example in spin systems

lim
x!1h�.x/�.y/ic D 0 (2.20)

This clustering requirement corresponds to ask that the variance of intensive
quantities (e.g. the average of the spins in a box) goes to zero when the size of
the box goes to infinity. On the contrary, if connected correlation functions would
not go to zero, the integrated response to local perturbation would propagate to the
whole space and this is an unphysical result.

A state that satisfies the clustering condition is called a clustering state. As we
have already remarked the Gibbs state may be not a clustering state. A possible way
to find clustering states (i.e. states that have a physical interpretation) is based on
the idea that a non-clustering state can be interpreted as the linear combination of
two clustering state. From the mathematical view point this procedure corresponds
to decompose a non-clustering state as a sum (or an integral) of clustering states.
We shall see now how it can be done starting from a simple example.

A popular example of a system, where this decomposition is possible, is given
by a ferromagnetic system at zero external magnetic field in the low temperature
region, where a spontaneous magnetization is present.

When a spontaneous magnetization is present (e.g. 0.5) the typical configurations
can be of the following types:

• The proportion of spins that are positive is definitely greater than 50 % (i.e. 75 %)
and the probability of negative spins is definitively less than 50 % (i.e. 75 %).

• We have the opposite situation with positive and negative spins interchanged.

Configurations where positive spins are around 50 % of the total number is
possible, but their probability is exponentially small when the volume goes to
infinity.

If we call pC and p� respectively the probability of positive or negative spins
(pCCp� D 1), we find that in this state the expectation value of the magnetization
is m D pC � p�. In this situation a spontaneous magnetization m is present (we
could also have a state of magnetization equal to �m).

We can compute the correlation function and we have for x not near to y (i.e. for
x � y large):

h�.x/iG D 0 ; h�.x/�.y/iG � m2 : (2.21)

The resulting infinite volume Gibbs state will be a statistical mixture of two
clustering states having positive or negative magnetization. We can write

�G D 1

2
�C C 1

2
�� ; �.�.x//˙ � h�.x/i˙ D ˙m ; (2.22)



58 G. Benettin et al.

Here it is possible to prove that these two states with given magnetization are
clustering.

This decomposition of the Gibbs state into two or more clustering states is the
simplest example of ergodicity breaking in equilibrium setting and it corresponds to
the existence of two or more equilibrium phases.

Sometimes in the literature the words clustering and ergodic are used with the
same meaning. We can understand the reason if we come back to the dynamics
evolution described in the previous section: it is easy to see that if we consider the
evolution of a non ergodic system in time, the time correlation functions are not
clustering. Let us consider a system with a dynamics such that the quantity A.t/ is
conserved. If we consider an ensemble of trajectories having the same initial value
for A.0/ it is evident that

hA.t/ D A.0/i ; hA.t/A.t 0/i D A.0/2 ; hA.t/A.t 0/ic D 0 : (2.23)

If the initial probability distribution is not concentrated at only one value of A and
we have a non trivial distribution of A at the initial time P.A/ we find that the

hA.t/A.t 0/ic D hA.t/A.t 0/i � hA.t/ihA.t 0/i D hA2.0/i � hA.0/i2 ¤ 0 : (2.24)

A general analysis may be done much more deeply in the case of translational
invariant systems. We can introduce the concept of purity of a state [54–56]. A state
in a given set is pure if it cannot be written as linear combination with positive
weight of different states in the same set. More precisely, if the state � is pure and
the w’s are positive,

� D w1�1 C w2�1 (2.25)

implies that � D �1 D �2.
In the case of a finite system the canonical state is not pure: e.g. it is the integral

of microcanonical states. Indeed for a finite system we have that

hAicˇ D
R

dE exp.�ˇE C S.E//hAi�cER
dE exp.�ˇE C S.E// ; (2.26)

where the superscript c and �c denote respectively the canonical and the micro-
canonical distribution and E and S.E/ are respectively the total energy and the
total entropy. The previous equation can be written as

�cˇ D
R

dE exp.�ˇE C S.E//��cER
dE exp.�ˇE C S.E// : (2.27)

In the infinite volume limit the situation changes (e.g. microcanonical states with
a finite difference of total energy becomes identical) and the previous formula
collapses to
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�cˇ D ��ce.ˇ/ ; (2.28)

where ��ce is the microcanonical state as function of the energy density e and e.ˇ/
is an appropriate function.

In the case of translational invariant systems a classical result implies that if we
consider the space of translational invariant states the condition of purity coincides
with clustering. Now the Aloaglu theorem [59,60] tells us that a state can be written
in an unique way as linear combination of pure states (that for this reason are also
called extreme states). The conclusion is that we can write in full generality the
relation

�G D
Z
d�.�/�� ; (2.29)

where d�.�/ is a measure over the pure clustering states that are label by �.

2.3.2.2 The Gibbs Rule

It should have not escaped to the reader that the phenomenon of spontaneous
magnetization in ferromagnets is present only in zero magnetic field. When constant
non-zero external magnetic field h is present, one of the two magnetizations are
selected depending on the sign of the magnetic field. A non-zero external magnetic
field lifts the degeneracy between these two states. However we obtain two different
results in the limit of zero magnetic field depending on the sign of the magnetic
field:

�˙ D lim
h!0˙

�.h/ : (2.30)

Therefore we could have avoided the decomposition into clustering states and
considered only what happens at non zero magnetic field. At the end we perform
the limit of zero magnetic field only after the infinite volume limit [61].

This observation may be formalized by considering a system with an Hamilto-
nian that depends on some parameters p that belong to a vector space. If we neglect
continuous symmetries, under some technical hypothesis on the differentiability in
the Banach space of all interactions (whose physical meaning is not clear) it can be
proved that for a generic choice of the parameters p the Gibbs states is clustering
[62].

More detailed results can be proved in this approach. Let us suppose that for some
choice of the parameters two different states are obtained depending on the direction
(in the space of Hamiltonians) from which we reach these points and two different
phases coexist. These points form a manifold of codimension one in the space of
Hamiltionians. If there are points where three different phases coexist (e.g. the triple
point where gas liquid and solid coexist) they form a manifold of codimension
two. Generally speaking the n C 1 phases may be present only on a manifold of
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codimension n, i.e. we must impose n conditions (one for each additional phase).
This is essentially the well known Gibbs rule for phase coexistence that is valid in
most of the common situations.

2.3.3 The Local DRL Equilibrium States

The previous discussion is based on approaching the infinite volume system as a
sequence of finite volume systems. However it would be interesting to discuss the
whole question directly for the infinite volume system.

The problem of dealing with an actual infinite system is that the Hamiltonian
is infinite and that Eq. (2.18) does not make senses. We have to find a different
way to say that our state � is a Gibbs distribution. Dobrushin, Lanford and Ruelle
(DRL) [63] have proposed the following condition for a system with finite range
interaction. Let us divide the systems in three space regions, a first one( that we call
S ), such that the space is partitioned in two other region: the interior of S (I ) and
its exteriorE: S is essentially the boundary of a finite region (I ). OnlyE is infinite;
S and I are finite. The region S is thick enough that there is no direct interaction
among the interior and the exterior. The DLR condition requires that

P.CI jCS/ / exp .�ˇH.CI ; CS// ; (2.31)

where P.CI jCS/ is the probability of an interior configuration (CI ) conditioned to
the surface configuration (CS ) and H.CI ; CS/ is the part of the Hamiltonian that
depends only on the interior configuration (it is defined apart from an irrelevant
additive constant).

If the condition (2.31) is satisfied for any region S the state is a local (DRL)
equilibrium state. It is trivial to verify that the previously constructed Gibbs state is
a DLR state so this notion extends the concept of Gibbs state directly to the infinite
volume system.

Since we are able now to consider the set of all possible DLR states (a convex
set), it would be natural to find the extreme points of this set (i.e. the pure states
according to Aloaglu theorem) and to identify them as possible phases of the
system. This is a very nice definition of state, unfortunately it is non-constructive,
because in the general case we do not know to construct all the DLR states. We can
mimic the discussion in the previous section and look for clustering DLR states. A
general theorem tell us that, if we consider the set of translational invariant DLR
states, clustering states and pure states do coincide [59, 60]: this results makes us
very happy.

It would be natural to conjecture that in the general case clustering DLR
states and pure DRL states do coincide. However such an intuitive results is
not established. It is likely that we should put some extra conditions. The most
physically relevant situation is the case of random systems with a translational
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invariant probability distribution of the quenched disorder (e.g. impurities in semi-
conductors). Here each realization of the disorder is not invariant under translation,
however the ensemble is invariant. Unfortunately also in this situation it is not clear
if the notions of clustering DRL states and pure states do coincide.

2.3.3.1 Some Considerations on Random Systems

We will give now an example of a situation where the Boltzmann-Gibbs distribution
does not have a limit when the volume diverges. We consider a ferromagnetic Ising
model with a small random magnetic field at low temperature in three dimensions.

The heuristic analysis goes as follows. In a finite box of size L there are two
relevant finite volume states, the one with positive magnetization and the one
with negative magnetization. In a first approximation, valid at small field and
temperature, the difference in free energy of the two states is proportional to
2
P

i hi , which is a number of order L3=2. Therefore (with the exception of rare
choices of the random field) for a given value of L only one state dominates.
However, when increasing L, there will be an infinite number of values of L where
we will go from the situation where the magnetization is positive to a situation
where the magnetization is negative (and viceversa). The magnetization itself does
not have a limit when the volume goes to infinity.23

A definite limit may be obtained by taking the limit by subsequences, i.e.
choosing only those value of L for which the magnetization is positive. A different
limit is obtained if we choose only those value of L for which the magnetization is
negative.

Once the infinite volume limit has been taken we can decompose the state into
extremal DLR states. Here the typical relevant states for the infinite volume limit are
those with positive or negative magnetization. If we choose the first approach (limit
by appropriate subsequences) we will find a pure state that is a clustering state.

Similar and more complex phenomena are frequent both in random and in non-
random system (e.g. those having quasi-periodic or chaotic ground states). In these
case a special care is needed in order to obtain the infinite volume limit. When the
naive infinite volume limit does not exist, it is often said the system has a chaotic
dependence on the volume. Sometimes in discussing the infinite volume limit one
use the metastate construction described in [57], although other different approaches
are possible [58, 64], however a presentation of these approaches would take too
much space; the interested reader should look to the original papers.

23The limit may not exist also in non-random systems: the simplest example is a two dimensional
Ising model that is ferromagnetic in the y direction (with periodic boundary conditions) and
antiferromagnetic in the x direction with fixed boundary conditions (positive at the left and negative
on the right). It is possible to check that at low temperatures two different states are obtained in the
infinite L limit, depending on the parity of L.
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2.4 Glassy System

It has been suggested that glassy systems (spin glasses, structural glasses,
colloids: : :) may have many equilibrium states, also in a situation where there
is no first order phase transition. These systems are characterized by an extremely
slow approach to the infinite volume limit. On phenomenological ground we can
conjecture that this extreme slowness is due to the existence of many states and
to the large amount of time needed to jump from one state to another. This old
observation is strongly supported by the discovery that infinite many states do exist
in the corresponding mean field models, where analytic and rigorous results have
been obtained.

These states are very different on a microscopical level, however they look quite
similar as far as most of the intensive quantities are concerned. The coexistence of
many states for generic values of the parameters is a complete violation of the Gibbs
rule. A careful analysis has showed that this is possible only if some identities (that
sometimes go under the name of stochastic stability) are valid [65–67]: they are
extremely powerful and they can be used to arrive at a general classification of the
structure of these states.

In this situation the approach described in the previous section may be non-
optimal [57]. The mathematical construction is quite heavy and the number of
equilibrium states is quite likely an uncountable number. In order to bypass this
difficulty it is convenient to consider the finite volume pure states that will be
described in the next section.

2.4.1 A Heuristic Construction: Finite Volume States

We have seen that the construction of infinite volume pure states is thorny. We
find convenient to introduce the heuristic concept of pure states in a finite volume
[58]. This concept is crystal clear from a physical point of view. However it can
be difficult to state it in a rigorous way (i.e. to prove existence theorems) mostly
because the notion of finite volume pure states (or phases) is deeply conditioned
by the physical properties of the system under consideration. In order to prove
theorems on finite volume pure states one needs a very strong rigorous command
of the physical properties of finite, large statistical systems. We stress that we will
use the concepts of finite volume states only as tools to interpret formulae that are
mathematically well defined.

Most of the research in mathematical physics has been devoted to the study
of the pure states of an infinite system. Unfortunately the concept of pure states
of an infinite system may be too rigid to capture all the statistical properties of a
finite system: here we need, as we will see later, more sophisticated tools, i.e. finite
volume pure states. We stress that the finite volume pure states we introduce here
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are mathematically very different from the pure states for an infinite system that are
normally used in the literature.24

Let us see how approximate pure states or phases in a large but finite system can
be defined, using a definition of state that is different from the usual one that we have
seen for non-random systems. We will give only a rough definition that concentrates
more on the physics of the system. Our strategy is to mimic the definition of pure
states of an infinite system and to apply it to the physical relevant situation of a finite
(and large) system (which is the only one accessible by numerical simulations and
by experiments).

We consider a system in a box of linear size L, containing a total of N spins. We
partition the configuration space25 into regions (lumps in the notation of Talagrand
[68]), labeled by ˛, and we define averages restricted to these regions [58]: these
regions will correspond to our finite volume pure states or phases. It is clear that
in order to produce something useful we have to impose sensible constraints on the
form of these partitions.

We require that the restricted averages on these regions are such that connected
correlation functions are small26 at large distance x. In the case of a ferromagnet the
two regions are defined by considering the sign of the total magnetization. The first
region includes configurations with a positive total magnetization, the second region
selects configurations with a negative total magnetization. There are ambiguities for
those configurations that have exactly zero total magnetization, but the probability
that such a configuration can occur is exponentially small at low temperature.27

Physical intuition tells us that this decomposition exists (at least for familiar
systems), otherwise it would make no sense to speak about the spontaneous
magnetization of a ferromagnetic sample, or to declare that a finite amount of
water (at the melting point) is in the solid or liquid state. Moreover all numerical
simulations gather data that are based on these kinds of notions, since the systems
that we can store in a computer are always finite. The concept of finite volume
states is preeminent from the physical point of view: infinite volume states are
mainly an attempt to capture their properties in an amenable mathematical setting.
This decomposition of a finite but large system into phases makes sense, although
its translation in a rigorous mathematical setting has not been done (also because

24It is very easy to arrive to contradictions if one does not make a clear distinction between these
two different concepts.
25In the Ising case the configuration space contains 2N points.
26The precise definition of small at large distance in a finite volume system can be phrased in many
different ways. For example we can introduce a function g.x/ which goes to zero when x goes to
infinity and require that the connected correlation functions evaluated in a given phase are smaller
than g.x/. Of course the function g.x/ should be carefully chosen in order to avoid to give trivial
results; one should also prove the independence of the results from the choice of g in a given class
of functions.
27The probability distribution in a finite volume pure state is not the Gibbs one: the DLR relations,
which tell us that the probability distribution is locally a Gibbs distribution, are violated, but the
violation should go to zero in the large volume limit.
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working in the infinite volume setting is much simpler, and in most cases informative
enough).

According to the previous discussion the finite volume Gibbs measure can be
decomposed in a sum of such finite volume pure states. The states of the system are
labeled by ˛: we can write

hAiG D
X

˛

w˛hAi˛ �
X

˛

w˛A˛ ; (2.32)

with the normalization condition

X

˛

w˛ D 1 : (2.33)

Things become more interesting if we consider quantities that depend on two
configurations (let us call them � and 	). In the case of spin systems a well studied
quantity is the overlap between two configurations [69, 70]:

q.�; 	/ D 1

N

X

iD1;N
�i 	i : (2.34)

If there would be only one state we would have that for large systems, neglecting
correlations,

hqi D 1

N

X

iD1;N
m2
i ; hq2i � hqi2 : (2.35)

In the presence of many states we would have

hqi D
X

˛;ˇ

w˛wˇq˛;ˇ ; hq2i �
X

˛;ˇ

w˛wˇq
2
˛;ˇ ; (2.36)

where

q˛;ˇ D 1

N

X

iD1;N
m˛
i m

ˇ
i ; m˛

i � h�i i˛ : (2.37)

The interesting case is when

Var.q/ � hq2i � hqi2 ¤ 0 : (2.38)

In presence of an unique infinite volume states intensive quantities like q do not
fluctuate. If Var.q/ ¤ 0 the one state picture cannot be correct. We can interpret this
result using the finite volume pure state approach and from the previous formulae
we get
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Var.q/ �
X

˛;ˇ

w˛wˇ
�
q˛;ˇ � hqi

2
: (2.39)

Similar arguments can be presented for the probability distribution of q that should
be equal to

P.q/ �
X

˛;ˇ

w˛wˇı.q˛;ˇ � q/ : (2.40)

If we take care of the correlations inside a single state we find that a better
approximation would be to substitute the ı function with a smooth function of very
small width (vanishing when the volume goes to infinity).28

2.4.2 The Case of Many States

It is interesting to note that in usual situations in Statistical Mechanics the
classification into phases is not very rich. For usual materials, in the generic case,
there is only one phase: such a classification is not very interesting. In slightly more
interesting cases (e.g. symmetry breaking) there may be two states. For example,
if we consider the configurations of a large number of water molecules at 0ı,
we can classify them as water or ice: here there are two states. In slightly more
complex cases, if we tune carefully a few external parameters like the pressure or
the magnetic field, we may have coexistence of three or more phases (a tricritical or
multicritical point).

In all these cases the classification is simple and the number of states is small
as a consequence of the Gibbs rule. On the contrary, in the mean field theory of
some glassy systems the number of states is very large (it goes to infinity with
N ), and a very interesting nested classification of states is possible [69]. We stress
that this behavior implies that the Gibbs rule is not valid in these cases. We have
seen that Gibbs rule states that in order to have coexistence of n C 1 phases we
must tune n parameters. Here no parameters are tuned and the number of coexisting
phases is infinite! This is possible only if some conditions are satisfied: they are
the Ghirlanda-Guerra identities and their generalizations (that sometimes are called
stochastic stability) [58, 65–67].

2.4.2.1 Stochastic Stability

If we consider a generic random system, there are general identities that are valid
almost everywhere in Hamiltonian space: they have been proved firstly in a mean

28This refinement is not crucial in the infinite volume limit.
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field setting and later on generalized to some short range realistic models: it is
reasonable to conjecture that they are valid in general (in some cases they have
been proved [71]). These identities have remarkable consequences.

In order to decide if an ensemble of systems with HamiltonianH is stochastically
stable, we have to consider the free energy of an auxiliary system with the following
Hamiltonian:

H C "HR ; (2.41)

where " is a small parameter and HR is a random Hamiltonian, i.e. is a generic
element in an appropriate set of random Hamiltonians.

The interesting quantity is the dependence of the free energy density (f ."/) on
the parameter " after we average over the different choices ofHR. If the average free
energy f ."/ is a differentiable function of " (and the limit where the volume goes to
infinity commutes with the derivative with respect to ") the system is stochastically
stable. In the nutshell, stochastic stability tells us that the Hamiltonian H does not
has any special features and that its properties are analogous to those of similar
random systems (H may contain quenched random disorder). These conditions are
the opposite of the situation described in the Gibbs rule where a perturbation induces
a first order transition. The requirement that in presence of many states a random
perturbation does not induce a first order transition is a very strong one.

Let us give a very simple example of the Ghirlanda-Guerra identities. Let us
consider a random system where the random coupling are indicated by J and by an
overline the average over J . For each realization of the system we can compute the
probability distribution PJ .q/ and consider its ensemble average

P.q/ D PJ .q/ : (2.42)

The function P.q/ usually has a smooth limit when the volume goes to infinity
(i.e. P1.q/), in contrast with the individual PJ .q/ that may have a strong volume
dependence.

We are interested to know how much the function PJ .q/ fluctuates from system
to system. In the case where

PJ .q/ � P1.q/ D ı.q � q�/ (2.43)

the answer is trivial (i.e. no fluctuations), so that the interesting case is when P1.q/
is not a single delta function. A first information of the fluctuation is encoded in the
function

P1
1;2;3;4.q1;2; q3;4/ D lim

N!1PJ .q1;2/PJ .q3;4/ : (2.44)

The Girlanda-Guerra identities tell us that P1
1;2;3;4 is not an arbitrary function, but it

is given by
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P1
1;2;3;4.q1;2; q3;4/ D

�
2

3
C 1

3
ı.q1;2 � q3;4/

�
P1.q1;2/P1.q3;4/ : (2.45)

Of course we are assuming that all these functions have a limit when the volume
goes to infinity.

Stochastic stability is a very strong property. Many properties can be derived
from stochastic stability. Maybe, the most extraordinary one is ultrametricity [69].
For a given system we can consider three equilibrium configuration and we can
define the corresponding overlaps. Let us order the configurations in such a way
that q1;2 � q1;3 � q2;3 The system is ultrametric if the probability of finding

q1;3 ¤ q2;3 (2.46)

is equal to zero.
For a certain time it was believed that stochastic stability could be an indepen-

dent property from ultrametricity, however there have been recently many papers
suggesting the contrary, and this line of research culminated in the general proof of
Panchenko that stochastic stability does imply ultrametricity [72].

At the end of the game we find the following surprising result. In the case where
the function PJ .q/ fluctuates when we change the parameters of the system, we can
define its functional probability distribution PŒP 
. This functional order parameter
is a description of the probability of PJ .q/ when we change the disorder.29 The
functional probability distribution PŒP 
 is an object that should have an infinite
volume limit, i.e. P1ŒP 
.

In general the functional probability distribution P1ŒP 
 tell us many important
information on the structure of states in the infinite volume limit. If stochastic
stability is satisfied it is relatively easy to prove [73] that the functional probability
distribution P1ŒP 
 has it support on functions P.q/ of the form

P.q/ D
X

s

csı.q � qs/ : (2.47)

with
P

s cs D 1. Much more work is needed to prove that the distribution P1ŒP 

has it support on functions P.q/ of the form

P.q/ D
X

˛;ˇ

w˛wˇı.q˛;ˇ � q/ ; (2.48)

where the probability distribution of the q˛;ˇ’s and the w˛’s has an explicit form that
can be computed from the knowledge of P1.q/. Explicit formulae can be written,

29It may be possible that also for non-random systems we have a similar description where the
average over the number of degrees of freedom plays the same role of the average over the disorder.
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but they are too complex to be discussed here (they can be generated using Ruelle
probability cascade [74]).

We have seen that there are systems where the structure of ergodicity breaking
that is quite different from the conventional one; in these systems the Gibbs rule
is not valid and it is substituted by its antithesis, the stochastic stability identities.
It is conjectured that this is the situation in the case of glassy systems both for
random and non-random systems. One can prove that this alternative scenario is
present in many mean field models [69, 75]. It is quite possible that the same
scenario holds also in the finite dimensional case (and in particular for some three
dimensional systems). Rigorous theorems for the moment are still lacking, however
there is plenty of numerical evidence (and also some experimental indications) that
this pattern of ergodicity breaking is realized in some finite dimensional glassy
systems like spin glasses [76,77] and structural glasses [78]. Recent very large scale
simulations [76, 77] show that the predictions of this approach do agree very well
for three-dimensional Ising spin glasses at zero magnetic field.
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Chapter 3
Large Deviations in Stationary States,
Especially Nonequilibrium

Giovanni Jona-Lasinio

Abstract Over the last 10 years, in collaboration with L. Bertini, A. De Sole,
D. Gabrielli and C. Landim, we developed a general approach to nonequilibrium
diffusive systems known as Macroscopic Fluctuation Theory. Our theory has been
inspired by stochastic models of interacting particles (stochastic lattice gases). It is
based on the study of rare fluctuations of macroscopic variables in stationary states
and is applicable to a wide class of systems. The present overview emphasizes the
main ideas and provides a guide to the literature including contributions from other
authors.

3.1 Introduction

Since the first attempts to construct a nonequilibrium thermodynamics, a guiding
idea has been that of local equilibrium. This means the following. Locally on the
macroscopic scale it is possible to define thermodynamic variables like density,
temperature, chemical potentials: : : which vary smoothly on the same scale. Micro-
scopically this implies that the system reaches local equilibrium in a time which
is short compared to the times typical of macroscopic evolutions as described for
example by hydrodynamic equations. So what characterizes situations in which this
description applies is a separation of scales both in space and time.

The simplest nonequilibrium states one can imagine are stationary states of
systems in contact with different reservoirs and/or under the action of external
fields. In such cases there are currents (electrical, heat, matter of various chemical
constitutions : : :) through the system whose macroscopic behavior is encoded in
transport coefficients like the diffusion coefficient, the conductivity or the mobility.
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The ideal would be to approach the study of these states starting from a microscopic
model of atoms interacting with realistic forces and evolving with Newtonian
dynamics. This is beyond the reach of present day mathematical tools and much
simpler models have to be adopted in the reasonable hope that some essential
features are adequately captured.

In the last decades stochastic lattice gases have provided a very useful laboratory
for studying properties of stationary nonequilibrium states (SNS). Besides many
interesting results specific to the different models considered, the following features
of general significance have emerged.

1. Local equilibrium and hydrodynamic equations have been derived rigorously
from the microscopic dynamics for a wide class of stochastic models.

2. A definition of nonequilibrium thermodynamic functionals has emerged via a
theory of dynamic large fluctuations, moreover a general equation which they
have to satisfy has been established [5]. This is a time independent Hamilton-
Jacobi (H-J) equation whose independent arguments are the local thermodynamic
variables and requires as input the transport coefficients. These coefficients can
be either calculated explicitly for given models or obtained from measurements
so that H-J can be used also as a phenomenological equation.

3. Nonequilibrium long range correlations have been observed experimentally in
various types of fluids [27]. In our simplified models mathematically they appear
to be a generic consequence of H-J [5, 11] and their origin can be traced back to
the violation of time reversal invariance [10].

4. The analysis of large fluctuations of thermodynamic variables, e.g. the density,
has shown that phase transitions exist far from equilibrium that are not possible
in equilibrium. In particular this has been demonstrated in the case of the weakly
asymmetric exclusion process which macroscopically is described by a viscous
Burgers equation [12].

5. An analysis of the fluctuations of the currents averaged over long times has
revealed the possibility of different dynamical regimes, which are interpreted
as dynamical phase transitions in which translational invariance in time is
spontaneously broken. Such phase transitions have actually been proved to exist
in some well known models [7, 9].

As we shall see the results we are referring to are a consequence of a basic
large deviation formula describing, when the number of degrees of freedom tend
to infinity, the joint fluctuations of the density and the current. This approach is
now known as Macroscopic Fluctuation Theory [4, 5] which can be considered as
a more refined form of fluctuating hydrodynamics. As a general comment we may
say that this theory goes beyond the theory developed long ago by Onsager [43] and
by Onsager-Machlup [44], to which it reduces for states close to equilibrium. This
statement will be made more precise in the following.

The topics discussed are dispersed through several papers and the present article
may serve as a guide to the literature.
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3.2 Assumptions

We introduce in this section some general assumptions for the macroscopic
description of out of equilibrium driven diffusive systems which are characterized
by conservation laws. For simplicity of notation, we restrict to the case of a single
conservation law, e.g. the conservation of the mass described locally by a density �.
The system is in contact with boundary reservoirs, characterized by their chemical
potential �, and under the action of an external field E . We denote by � � R

d the
bounded region occupied by the system, by x the macroscopic space coordinates
and by t the macroscopic time. We shall consider also the case in which � and E
depend explicitly on the time t .

In the sequel we shall use the same letter � both for space-time dependent paths
�.t; x/ and time independent profiles �.x/. When it is necessary to emphasize the
time dependence we shall write �.t/ omitting the x dependence.

1. The macroscopic state is completely described by the local density �.t; x/ and
the associated current j.t; x/.

2. The macroscopic evolution is given by the continuity equation together with
the constitutive equation which express the current as a function of the density.
Namely,

(
@t�.t/Cr 
 j.t/ D 0;
j.t/ D J.t; �.t//; (3.1)

where we omit the explicit dependence on the space variable x 2 �. For driven
diffusive systems the constitutive equation takes the form

J.t; �/ D �D.�/r�C �.�/E.t/ (3.2)

where the diffusion coefficient D.�/ and the mobility �.�/ are d � d positive
matrices.

3. The transport coefficientsD and � satisfy the local Einstein relation

D.�/ D �.�/ f 00.�/; (3.3)

where f is the equilibrium free energy per unit of volume which is a local
function of �.

4. The Eqs. (3.1) and (3.2) have to be supplemented by the appropriate boundary
condition on @� due to the interaction with the external reservoirs. If �.t; x/, x 2
@�, is the chemical potential of the external reservoirs, this boundary condition
reads

f 0��.t; x/
 D �.t; x/; x 2 @�: (3.4)
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We can now make more precise in what sense our setting goes beyond Onsager’s
near equilibrium theory. Our systems may admit nonlinear hydrodynamic equations.
In second place we can consider states far from equilibrium: take as an example a
one dimensional system in contact with two reservoirs at the boundaries character-
ized by the chemical potentials �1; �2. Near equilibrium means that j�1 � �2j is
small. In our theory we do not have any restriction.

In the case of stochastic microscopic models with time independent driving, the
above macroscopic description is derived in the diffusive scaling limit [5, 9, 23, 36,
50]. The extension to time dependent driving does not present special problems.

Given time-independent chemical potential �.x/ and external field E.x/, we
denote by N��;E the stationary solution of (3.1)–(3.4),

8
<

:
r 
 J. N�/ D r 


�
�D. N�/r N�C �. N�/E

�
D 0; x 2 �;

f 0. N�.x// D �.x/; x 2 @�:
(3.5)

Observe that if the field E is gradient, E D rU , and if it is possible to choose
the arbitrary constant in the definition of U such that U.x/ D �.x/, x 2 @�,
then the stationary solution satisfies f 0� N��;E.x/

 D U.x/ and the stationary current
vanishes, J. N��;E/ D 0. Conversely, given any profile N�.x/ it is possible to choose
�.x/ and E.x/ so that N� solves (3.5) and moreover J. N�/ D 0. It is indeed enough
to set �.x/ D f 0. N�.x//, x 2 @�, and E.x/ D rf 0. N�.x//, x 2 �. Therefore in
general equilibrium states in presence of boundary conditions and external fields are
inhomogeneous.

3.3 The Fundamental Formula

We first suppose that the boundary conditions and the external field do not depend
on time. A large part of this paper discusses the consequences of the following
formula, first derived in [7,9], describing the joint fluctuations of the density and the
current in a thermodynamic system obeying the equations of the previous section.
Given trajectories �.t; u/ for the density and j.t; u/ for the current, up to a prefactor
according to the macroscopic fluctuation theory we have

P
�
�.t; u/; j.t; u/; t 2 Œ0; T 
 � expf���dˇGŒ0;T 
.�; j /g (3.6)

Here P is the stationary probability measure, � the ratio between the microscopic
length scale (say the typical intermolecular distance) and the macroscopic one. The
temperature ˇ in the following will be kept constant and equal to 1.

GŒ0;T 
.�; j / D
(
V.�.0//CIŒ0;T 
.j / if @t�Cr 
 j D 0
C1 otherwise

(3.7)
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V.�/ is the large deviation functional of the invariant measure and provides the
probability of the initial condition �.0/. We shall refer to it as the quasi potential .
The other term, which determines the probability of the chosen trajectory, is
given by

IŒ0;T 
.j / D 1

4

Z T

0

dt
˝
Œj.t/ � J.�.t//
; �.�.t//�1Œj.t/ � J.�.t//
˛ (3.8)

where J.�/ D �D.�/r�C �.�/E and h; i means space integration.
A heuristic derivation of the above formula for a lattice gas in the case of a fixed

initial configuration can be given as follows. The basic microscopic model is given
by a stochastic lattice gas with a weak external field and particle reservoirs at the
boundary. More precisely, let� � R

d be a smooth domain and set�N D N�\Zd ;
we consider a Markov process on the state space X�N , where X is a subset of N,
e.g. X D f0; 1g when an exclusion principle is imposed. The number of particles at
the site i 2 �N is denoted by �i 2 X and the whole configuration by � 2 X�N . The
dynamical evolution is given by a continuous time Markov process on the state space
X�N . This is specified by transition rates ci;j .�/ describing the jump of a particle
from a site i to its nearest neighbor j and rates ci̇ .�/ describing the appearance
or loss of a particle at the boundary site i . The reservoirs are characterized by a
chemical potential �. We assume that the rates satisfy the local detailed balance
condition [10] with respect to a Gibbs measure associated to some Hamiltonian
H . Typically, for a nonequilibrium model, we can consider � the cube of side one
and the system under a constant force E=N . Moreover we choose the chemical
potential � so that �.j=N / D �0 if the first coordinate of j is 0, �.j=N / D �1 if
the first coordinate of j is N , and impose periodic boundary conditions in the other
directions.

To define the current denote by N
i;j
t the number of particles that jumped from i

to j in the macroscopic time interval Œ0; t 
. At the boundary we adopt the convention
that N i;j

t represents the number of particles created at j due to the reservoir at i
if i 62 �N , j 2 �N and that N i;j

t represents the number of particles that left the
system at i by jumping to j if i 2 �N , j 62 �N . The difference J i;jt D N

i;j
t �N j;i

t

is the net number of particles flown across the bond fi; j g in the time interval Œ0; t 
.
In other words, given a path �.s/, 0 � s � t , the instantaneous current dJi;jt =dt is
a sum of ı–functions localized at the jump times across the bond fi; j g with weight
C1, respectively �1, if a particle jumps from i to j , respectively from j to i .

We now define the empirical current density

jN .t; x/ D 1

NdC1
dX

kD1

X

i

ı.x � i=N / dJt
dt

i;iCek
(3.9)

Fix a current profile j.t; x/ and an initial configuration �N ; in order to make j.t; x/
typical, we introduce an external field F . Let � be the solution of
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�
@t�Cr 
 j D 0
�.0; x/ D �0.x/ (3.10)

and F W Œ0; T 
 ��! R
d be the vector field such that

j D J.�/C �.�/F

D �1
2
D.�/r�C �.�/frH C F g

We introduce a perturbed measure PN;F
�N

which is obtained by modifying the rates as
follows

cFi;j .�/ D ci;j .�/ e
N�1F .t;i=N /�.j�i /

One can show by a direct calculation for which we refer to [9] that

dPN
�N

dP
N;F

�N

� exp
n
�Nd 1

2

Z T

0

dt hF; �.�/F i
o

D exp
˚�NdIŒ0;T 
.j /

�

Moreover, under PN;F
�N

, as N !1, jN .t; x/ converges to j.t; x/. Therefore,

P
N
�N

�
jN .t; x/ � j.t; x/; .t; u/ 2 Œ0; T 
 ��

�

D E
N;F

�N

� dPN
�N

dP
N;F

�N

1Ifj N�j g
�
� e�NdIŒ0;T 
.j /

where E
N;F

�N
denotes expectation with respect to the perturbed probability measure

P
N;F

�N
. Introducing now the empirical density

�N .u/ D 1

Nd

X

x2�N
ı.u � x=N/�x

we can write the fundamental formula (3.6) in the more precise form

P
�
�N � �.t; u/; jN � j.t; u/; t 2 Œ0; T 
 � expf�NdˇGŒ0;T 
.�; j /g (3.11)

We emphasize that we need to allow general non–gradient external fields F .
On the other hand for the large deviation principle of the density it is sufficient to
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consider gradient external fields. The latter is therefore a special case and can be
recovered from (3.6) and (3.7) as we will now show.

The large deviation functional for the trajectories of the density can be obtained
by projection. We fix a path � D �.t; x/, .t; x/ 2 Œ0; T 
 � �. There are many
possible trajectories j D j.t; x/, differing by divergence free vector fields, such
that the continuity equation is satisfied. By minimizing IŒ0;T 
.�; j / over all such
paths j

IŒ0;T 
.�/ D inf
j W

r�jD�@t �
IŒ0;T 
.j / (3.12)

Let F be the external field which generates the current j according to

j D �D.�/r�C �.�/.E C F / :

and minimize with respect to F . We show that the infimum above is obtained when
the external perturbation F is a gradient vector field whose potentialH solves

@t � D r 

�
D.�/r� � �.�/
E CrH �

�
(3.13)

which is a Poisson equation for H .
Write

F D rH C QF (3.14)

Using (3.13) we get

IŒ0;T 
.j / D 1

4

Z T

0

dt
n
hrH;�.�/rH i C h QF ; �.�/ QF i

o

Therefore the infimum is obtained when QF D 0. Then IŒ0;T 
.�/ can be written

IŒ0;T 
.�/ D 1

4

Z T

0

dt
˝rH.t/; �.�.t//rH.t/˛ (3.15)

D 1

4

Z T2

T1

dt
D

@t�Cr 
 J.�/

�
K.�/�1



@t �Cr 
 J.�/

�E

where the positive operatorK. O�/ is defined on functions u W �! R vanishing at the
boundary @� byK. O�/u D �r 
 ��. O�/ru


. Compare (3.15) with the large deviation

functional of Freidlin-Wentzell theory [29].
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3.4 Time Reversal and Its Consequences

To the time reversed process corresponds the adjoint generator with respect to the
invariant measure. Let us define the operator inverting the time of a trajectory
Œ�f 
.t/ D f .�t/ for f scalar and Œ�j 
.t/ D �j.�t/ for the current. The stationary
adjoint process, that we denote by P

N;a

�N
, is the time reversal of PN

�N
, i.e. we have

P
N;a

�N
D P

N
�N
ı #�1. Then at the level of large deviations we have

P
N
�N

�
�N � �; jN � j t 2 Œ�T; T 


�

D P
N;a

�N

�
�N � #�; jN � #j t 2 Œ�T; T 


�
(3.16)

which implies

GŒ�T;T 
.�; j / D G a
Œ�T;T 
.#�; #j / (3.17)

where G a
Œ�T;T 
 is the large deviation functional for the adjoint process.

The previous relationship has far reaching consequences. By dividing both sides
by 2T and taking the limit T ! 0 we find

�
DıV
ı�
;r 
 j

E
D �˝J.�/C J a.�/; �.�/�1j ˛

C1
2

˝
J.�/C J a.�/; �.�/�1ŒJ.�/ � J a.�/
˛ (3.18)

which has to be satisfied for any � and j . Integrating by parts the left hand side we
obtain

J.�/C J a.�/ D �2�.�/r ıV
ı�

(3.19)

˝
J.�/; �.�/�1J.�/

˛ D ˝J a.�/; �.�/�1J a.�/˛ (3.20)

The first of these equations is a fluctuation-dissipation relation for the current which
inserted into the second gives the equation for the quasi potential V

D
r ıV
ı�
; �.�/r ıV

ı�

E
�
DıV
ı�
;r 
 J.�/

E
D 0 (3.21)

This is the Hamilton-Jacobi equation associated to the following variational charac-
terization of V

V.�/ D inf
� W �.�1/DN�

�.0/D�
IŒ�1;0
.�/ (3.22)
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This characterization follows by considering the functional I as an action functional
in the variables � and @t� and performing a Legendre transform. The associated
Hamiltonian is

H .�; �/ D
D
r� 
 �.�/r�

E
C
D
r� 
 J.�/

E
(3.23)

where � is the conjugate momentum.
Consider a trajectory connecting the density profiles �t1 and �t2 . From time

reversal we have

V.�t1 /C IŒt1;t2
.�/ D V.�t2 /C I aŒ�t2;�t1
.��/ (3.24)

By taking �t1 D N�, which implies V.�t1 / D 0, �t2 D �, the inf over all possible
trajectories and time intervals we obtain the variational expression of V with the
minimizer defined by

I aŒ�1;0
.��/ D 0 (3.25)

that is �� must be a solution of the adjoint hydrodynamics. The adjoint hydrody-
namics follows immediately recalling the relationship between J and J a

J a.�/ D �2�.�/r ıV
ı�
� J.�/

We have

@t�CrJ a D @t�CrfD.�/r� � �.�/.E C 2r ıV
ı�
/g D 0 (3.26)

The minimizer is therefore the time reversal of the relaxation solution of this
equation connecting � to N�. The optimal field to create the fluctuation is F D 2r ıV

ı�
,

that is minus twice the dissipative thermodynamic force.
From the Hamilton-Jacobi equations it follows that the hydrodynamic equations

for the process and its adjoint can be written respectively

@t � D r 

�
�.�/r ıV

ı�

�
CA .�/ (3.27)

@t � D r 

�
�.�/r ıV

ı�

�
�A .�/ (3.28)

This can be seen as follows. Decompose the current J.�/

J.�/ D JS.�/C JA.�/; (3.29)
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with

JS.�/ D ��.�/r ıV�;E.�/
ı�

(3.30)

and JA.�/ D J.�/ � JS.�/. The Hamilton-Jacobi equation implies that for every �

Z

�

dx JS.�/ 
 �.�/�1JA.�/ D 0 : (3.31)

From (3.19)

J a.�/ D JS.�/� JA.�/ (3.32)

The orthogonality condition for the currents implies also

DıV
ı�
; A .�/

E
D 0

with A .�/ D �rJA.
We shall refer to JS.�/ as the symmetric current and to JA.�/ as the antisym-

metric current. This terminology refers to symmetric and antisymmetric part of the
underlying Markovian microscopic dynamics [5,6,9]. More precisely, the generator
of the evolution can be decomposed into a symmetric and an antisymmetric part
which are respectively even and odd under time reversal. We emphasize that the
decomposition (3.29) depends non trivially on �;E .

3.5 Long Range Correlations

We are concerned only with macroscopic correlations which are a generic feature
of nonequilibrium models. Microscopic correlations which decay as a summable
power law disappear at the macroscopic level.

We introduce the pressure functional as the Legendre transform of the quasi-
potential V

G.h/ D sup
�

˚hh�i � V.�/�

By Legendre duality we have the change of variable formulae h D ıV
ı�
; � D ıG

ıh
, so

that the Hamilton-Jacobi equation can then be rewritten in terms of G as

D
rh 
 �

� ıG
ıh

�
rh
E
C
D
rh 
 J

� ıG
ıh

�E
D 0 (3.33)
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where h vanishes at the boundary of �. As for equilibrium systems, G is the
generating functional of the correlation functions.

We define

Cn.x1; : : : ; xn/ D ınG

ıh.x1/ 
 
 
 ıh.xn/
ˇ̌
ˇ
hD0 (3.34)

By expanding (3.33) around the stationary state and writing the pair correlation
function in the form

C.x; y/ D Ceq.x/ı.x � y/C B.x; y/

where

Ceq.x/ D D�1. N�.x//�. N�.x//

we obtain the following equation for B

L �B.x; y/ D ˛.x/ı.x � y/ (3.35)

where L � is the formal adjoint of the elliptic operator L D Lx C Ly given by,
using the usual convention that repeated indices are summed,

Lx D Dij. N�.x//@xi @xj C �0ij. N�.x//Ej .x/@xi (3.36)

and

˛.x/ D @xi


�0ij
� N�.x/D�1

jk

� N�.x/ NJk.x/
�

where NJ D J. N�/ D �D. N�.x//r N�.x/ C �. N�.x//E.x/ is the macroscopic current
in the stationary profile. Therefore if ˛.x/ is non-vanishing the inhomogenous
equation (3.35) has a non trivial solution and long range correlations are present.
The existence of such correlations in lattice gases and in particular in the symmetric
simple exclusion process was first established, using fluctuating hydrodynamics, in
[49]. Remark that � independent of � implies ˛ D 0. Equations for the correlation
functions of any order have been derived in [11].

3.6 Fluctuations of the Current and Dynamical
Phase Transitions

Currents involve time in their definition so it is natural to consider space-time
thermodynamics. According to our fundamental formula the cost functional to
produce a current trajectory j.t; x/ is
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IŒ0;T 
.j / D 1

4

Z T

0

dt
˝
Œj.t/ � J.�.t//
; �.�.t//�1Œj.t/ � J.�.t//
˛ (3.37)

in which we recall that J.�/ D �D.�/r�C �.�/E . where � D �.t; u/ is obtained
by solving the continuity equation @t�Cr 
 j D 0.

Among the many problems we can discuss within this theory, the fluctuations of
the time average of the current JN over a large time interval have been analysed
[7, 9]. Let J.x/ be the time average of j.t; x/ that we assume divergence free, i.e.

J.x/ D 1

T

Z T

0

j.x; t/dt (3.38)

In [15] Bodineau and Derrida addressed this problem in one space dimension
by postulating an “additivity principle” which relates the fluctuation of the time
averaged current in the whole system to the fluctuations in subsystems. However
their approach does not always apply. In fact the probability of observing a given
divergence free time averaged fluctuation J can be described by a functional ˚.J /
which we characterize, in any dimension, in terms of a variational problem for the
functional IŒ0;T 


˚.J / D lim
T!1 inf

j

1

T
IŒ0;T 
.j / ; (3.39)

where the infimum is carried over all paths j D j.t; u/ having time average J .
The static additivity principle postulated in [15] gives the correct answer only under
additional hypotheses which are not always satisfied.

Let us denote by U the functional obtained by restricting the infimum in (3.39)
to divergence free current paths j , i.e.

U.J / D inf
�

1

4

˝
ŒJ � J.�/
; �.�/�1ŒJ � J.�/
˛; (3.40)

where the infimum is carried out over all the density profiles � D �.u/ satisfying
the appropriate boundary conditions. From (3.39) and (3.40) it follows that ˚ �
U . In one space dimension the functional U is the one introduced in [15]. While
˚ is always convex the functional U may be non convex. In such a case U.J /
underestimates the probability of the fluctuation J . In [7, 9] we interpreted the lack
of convexity ofU , and more generally the strict inequality˚ < U , as the occurrence
of a dynamical phase transition.

There are cases in which ˚ D U . Sufficient conditions on the transport
coefficientsD, � for the coincidence of˚ and U can be given [9]. Consider the case
when the matricesD.�/ and �.�/ are multiples of the identity, i.e., there are strictly
positive scalar functions still denoted by D.�/, �.�/, so that D.�/i;j D D.�/ıi;j ,
�.�/i;j D �.�/ıi;j , i; j D 1; : : : ; d . Let us first consider the case with no external
field, i.e. E D 0; if
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D.�/�00.�/ � D0.�/�0.�/; for any �; (3.41)

where 0 denotes the derivative, then ˚ D U . In this case U is necessarily convex.
Moreover if

D.�/�00.�/ D D0.�/�0.�/; for any �; (3.42)

then we have ˚ D U for any external field E .
To exemplify situations in which ˚ < U consider the fluctuations of the

time averaged current for periodic boundary conditions. Two models have been
discussed so far. The Kipnis–Marchioro-Presutti (KMP) model [8, 37], which is
defined by a harmonic chain with random exchange of energy between neighboring
oscillators, and the exclusion process. In the case of the KMP model we have
U.J / D .1=4/J 2=�.m/ D .1=4/J 2=m2, where m is the (conserved) total energy.
For J large enough, ˚.J / < U.J /. This inequality is obtained by constructing a
suitable travelling wave current path whose cost is less than U.J / [9]. A similar
result has been obtained by Bodineau and Derrida [16] for the periodic simple
exclusion process with external field. For the KMP process this phenomenon is
rather striking as it occurs even in equilibrium, i.e. without external field. This result
has been verified in numerical simulations which provide an estimate of the critical
Jc at which the transition takes place [33].

The behavior of I and˚ under time reversal shows that˚ satisfies a fluctuation
relationship akin to the Gallavotti-Cohen theorem for the entropy production [30].
The anti-symmetric part of ˚ is equal to the power produced by the external field
and the reservoirs independently of the details of the model

˚.J /� ˚.�J / D ˚.J /� ˚a.J / D �hJ;Ei C
Z

@�

d˙ �0 J 
 On; (3.43)

the right hand side of this equation is the power produced by the external field and
the boundary reservoirs (recall E is the external field and �0 the chemical potential
of the boundary reservoirs). From this relationship one derives a macroscopic
version of the fluctuation theorem for the entropy production.

For an extensive analysis of fluctuation theorems see [20].

3.7 Universality in Current Fluctuations and Other Results

From the functional ˚.J / the moments of the time averaged current can be
obtained and an interesting universal expression has been obtained in [2] for a one
dimensional system on a ring. Let Q.t/ D R t

0
j.t 0/dt0 the total integrated current

during the time interval .0; t/. Define the generating function of the cumulants
of Q
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 J .s/ D lim
t!1

lnhexp�sQi
t

D ˚�.s/ (3.44)

where the brackets denote an average over the time evolution during .0; t/. ˚�.s/ is
the Legendre transform of ˚.J /. In [2] the authors estimate ˚.J / and they obtain

lim
t!1

hQ2nic
t
D B2n�2 2nŠ

nŠ.n � 1/ŠD.
���00
8D2

/nN 2n�2 (3.45)

where B2n�2 are the Bernoulli numbers. This is an interesting universal relationship
which follows from the MFT. For the study of cumulants in higher dimension see
the recent preprint [1].

The fundamental formula can be used also in the study of non stationary states.
By a direct calculation Derrida and Gerschenfeld [24] evaluated the generating
function of the moments of Qt for the symmetric simple exclusion process with
a step initial condition. Then they showed [25] that their results can be obtained
and extended using the macroscopic fluctuation theory. The distribution of Qt has
generically the non-gaussian decay expŒ�q3=t
. For further results on non stationary
states see [40].

3.8 Nonequilibrium Phase Transitions

Are there phase transitions forbidden in equilibrium but possible in nonequilibrium?
We consider the weakly asymmetric simple exclusion process which is charac-

terized at the macroscopic scale by D D 1 and � D �.1 � �/. We fix boundary
conditions on the segment Œ0; 1
 �.0/ D �0 and �.1/ D �1. We take a constant
external field E which may push the current in the same direction or opposite to
the boundary conditions. The hydrodynamic equation for this model is the viscous
Burgers equation

@t � D �� � r�.�/E (3.46)

The interesting case is the second one. For E sufficiently large there are density
profiles where V.�/ is non-differentiable, i.e. there is a discontinuity in the first
derivative [12] which is interpreted as a first order phase transition.

The reason for this phenomenon is that the variational principle defining V.�/
admits two minimizers. It can be shown that in the limit E D 1 this is the case if
the density profile � is suitably chosen. Then by a continuity argument one shows
that this persists when the external field E is large. Such a situation is not possible
in equilibrium due to the convexity of V.�/. For a follow-up to our work [12]
see [19].
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3.9 Large Deviations for Reaction-Diffusion Systems

Unlike the models discussed so far, the so-called Glauber + Kawasaki process is
not a lattice gas in the sense that the number of particles is not locally conserved.
A reaction term allowing creation/annihilation of particles is added in the bulk. The
hydrodynamics is

@t � D ��C b.�/� d.�/ D ��C v (3.47)

where the reaction terms b and d are polynomials in �.
The large deviation functional for the density was first calculated in [35]

IŒ0;T 
.�/ D
Z T

0

dt
n1
4

˝rH; �.1 � �/rH ˛

C
D
b.�/;

�
1 � eH C HeH

EC
D
d.�/;

�
1 � e�H �He�H

Eo
(3.48)

where the external potentialH is connected to the fluctuation � by

@t� D �� � r 

�
�.1� O�/rH C b.�/eH � d.�/e�H (3.49)

The hydrodynamic equation has a local source term v and it is natural to consider
the joint fluctuations of �, J.�/ D �r�, v D b.�/�d.�/. A large deviation formula
extending (3.6) to this case has been obtained in [17] with large deviation functional

I0.�; j; v/ D
Z T

0

dt
D ( 1

4

�
j � J.�/2
�
�
�
 C ˚

�
�; v

�) E
; (3.50)

where

˚.�; v/ D b.�/C d.�/�
p

v2 C 4d.�/b.�/C v ln

 p
v2 C 4d.�/b.�/C v

2b.�/

!
:

(3.51)
�, j and v are connected by the equation

@t� D �rj C v (3.52)

3.10 Thermodynamic Interpretation of the Large
Deviation Functional

In this section we discuss two different interpretations of the quasi potential [13].
The first one deals with the appearance of the quasi potential in a thermodynamic
transformation, the second with its connection with Shannon entropy.
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The energy exchanged between the system and the external reservoirs and fields
in a thermodynamic transformation during the time interval Œ0; T 
 is

WŒ0;T 
 D
Z T

0

dt
n
�
Z

@�

d�.x/�.t; x/j.t; x/ 
 On.x/C
Z

�

dxj.t; x/ 
E.t; x/
o
; (3.53)

where On is the outer normal to @� and d� is the surface measure on @�. The first
term on the right hand side is the energy provided by the reservoirs while the second
is the energy provided by the external field.

Fix time dependent paths �.t; x/ of the chemical potential and E.t; x/ of the
driving field. Given a density profile �, let �.t; x/, j.t; x/, t � 0, x 2 �, be the
solution of (3.1)–(3.4) with initial condition �. We claim that

WŒ0;T 
 D
Z T

0

dt
n
�
Z

@�

d� f 0.�.t// j.t/ 
 OnC
Z

�

dx j.t/ 
E.t/
o

D
Z T

0

dt
Z

�

dx
˚ � r 
 
f 0.�.t// j.t/

�C j.t/ 
E.t/�

D
Z T

0

dt
Z

�

dx

 � f 0.�.t//r 
 j.t/ � f 00.�.t//ru.t/ 
 j.t/C j.t/ 
E.t/�

D
Z T

0

dt
d

dt

Z

�

dxf .�.t// C
Z T

0

dt
Z

�

dx j.t/ 
 �.�.t//�1j.t/;
(3.54)

where F is the equilibrium free energy functional,

F.�/ D
Z

�

dx f .�.x//: (3.55)

We used the continuity equation (3.1), the Einstein relation (3.3), and the constitu-
tive equation (3.2).

Consider at time t D 0 a stationary nonequilibrium profile N�0 corresponding to
some driving .�0; E0/. This system is put in contact with new reservoirs at chemical
potential �1 and a new external field E1. For t > 0 the system evolves according to
the hydrodynamic equation (3.1)–(3.4) with initial condition N�0, time independent
boundary condition �1 and external field E1. Along such a path we have

WŒ0;T 
 D F.�.T // � F.�.0//C
Z T

0

dt
Z

�

dxJS.�.t// 
 �.�.t//�1JS.�.t//

C
Z T

0

dt
Z

�

dxJA.�.t// 
 �.�.t//�1JA.�.t//:

(3.56)

where JS is computed by using the quasi potential V�1;E1 , that is the quasi potential
corresponding to the stationary state with external driving �1;E1. We have used the
orthogonality of JS and JA under constant boundary conditions.
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By definition (3.30) of the symmetric part of the current and by an integration by
parts,

Z T

0

dt
Z

�

dxr 
 J.�.t// ıV�1;E1.�.t//
ı�

D �
Z 1

0

dt
Z

�

dx @t�.t/
ıV�1;E1 .�.t//

ı�
:

(3.57)
Therefore

WŒ0;T 
 D F.�.T // � F. N�/C V�1;E1. N�0/� V�1;E1 .�.T //

C
Z T

0

dt
Z

�

dxJA.�.t// 
 �.�.t//�1JA.�.t//:
(3.58)

This equation shows that in the transformation considered the variation of the
quasi potential in the interval Œ0; T 
 represents the energy dissipated by the
thermodynamic force �r ıV�;E .�/

ı�
. To understand the meaning of the last term let

us consider first a stationary state. Since the quasi potential V�;E is minimal in the
stationary profile, recalling the decomposition of the current (3.29) we deduce that
JS. N��;E/ D 0; namely, the stationary current coincides with the total current and is
purely antisymmetric. In view of Eq. (3.56) the amount of energy per unit of time
needed to maintain the system in the stationary profile N��;E is

Z

�

dx JA. N��;E/ 
 �. N��;E/�1JA. N��;E/: (3.59)

In (3.58) the antisymmetric current JA.t/ is computed not at density profile
N��.t/;E.t/ but at the solution �.t/ of the hydrodynamic equation. However due to the
orthogonality between JS and JA, it is still possible an unambiguous identification
of the dissipation associated with the thermodynamic force �r ıV�;E .�/

ı�
interpreting

the rest as energy necessary to keep the system out of equilibrium. In the more
general case of time dependent external driving Eq. (3.57) fails as additional terms
appear.

The transformation considered is the nonequilibrium analog of the one discussed
in [47, Ch. 7] to define availability, that is the maximal work [41] obtainable
in the transformation. While a definition of thermodynamic potentials, that is
functionals of the state of the system, does not appear possible in nonequilibrium
thermodynamics, the quasi potential is the natural extension of the availability.

In [13] by interpreting the ideas in [45] we defined in a nonequilibrium setting
the renormalized work as the total work minus the energy dissipated to keep the
system out of equilibrium. Fix, therefore, T > 0, a density profile �, and space-time
dependent chemical potentials �.t/ D �.t; x/ and external field E.t/ D E.t; x/,
0 � t � T , x 2 �. Let �.t/ D �.t; x/, j.t/ D j.t; x/, t � 0, x 2 �, be the solution
of (3.1)–(3.4) with initial condition �. We thus defined the renormalized work

W ren
Œ0;T 
 D WŒ0;T 
 �

Z T

0

dt
Z

�

dx JA.t; �.t// 
 �.�.t//�1JA.t; �.t//: (3.60)
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where

J.t; �/ D JS.t; �/C JA.t; �/; JS.t; �/ D ��.�/r ıV�.t/;E.t/.�/
ı�

with J.t; �/ given by (3.2) and V�.t/;E.t/ is the quasi potential relative to the state
�.t/; E.t/ with frozen t . We do not discuss further this topic and for more details
we refer the reader to [13].

From an operational point of view however the contributions to dissipation of
the symmetric and antisymmetric currents are not easily separable. While �F can
be obtained from equilibrium measurements, the other terms require a preliminary
knowledge of the quasi potential, a generically nonlocal quantity. It can be estimated
from measurements of the density correlation functions, in principle an infinite
number. In fact V is the Legendre transform of the generating functional of density
correlation functions [5]. The operational aspects will be discussed in more detail in
a forthcoming paper [14].

We now discuss in the case of stochastic lattice gases an interesting relationship
between the quasi potential and the relative entropy between the initial and the final
state of the system. We refer again to [13]. Recall that � � R

d is the macroscopic
volume, and denote by�� the corresponding subset of the lattice with spacing �, so
that the number of sites in�� is approximately ��d j�j. Given the chemical potential
� of the boundary reservoirs and the external field E , let ��;E�� be the stationary
measure of a driven stochastic lattice gas.

Given .�0; E0/ and .�1; E1/, we claim that

lim
�!0

�d S
�
�
�0;E0
��

ˇ̌
�
�1;E1
��

 D ˇ V�1;E1 . N�0/; (3.61)

where ˇ D 1=�T , and N�0 is the stationary profile corresponding to .�0; E0/.
We present a simple heuristic argument leading to (3.61). In view of the definition

of the relative entropy of two probability distributions we have

�d S
�
�
�0;E0
��

ˇ̌
�
�1;E1
��

 D �d
X

�

�
�0;E0
��

.�/ log
�
�0;E0
��

.�/

�
�1;E1
��

.�/
:

By approximating the distributions ��i ;Ei��
with their large deviation asymptotics we

obtain

�d S
�
�
�0;E0
��

ˇ̌
�
�1;E1
��

 � �dˇ
X

�

�
�0;E0
��

.�/


V�1;E1 .��.�// � V�0;E0 .��.�//

�

� ˇ
V�1;E1 . N�0/ � V�0;E0 . N�0/
� D ˇ V�1;E1 . N�0/ ;
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where ��.�/ denotes the density profile associated to the microscopic configuration
�. In the final step we used the law of large numbers for the microscopic density
profile under the probability ��0;E0��

.
To clarify the meaning of (3.61) we call the reader’s attention to the following

apparent but false counter examples. Let, for instance, �ˇ� be the Gibbs measure
for a one-dimensional Ising model at zero magnetic field and inverse temperatures
ˇ0 and ˇ1 on a ring with ��1 sites. The magnetization satisfies a large deviation
formula and its typical value is zero for both ensembles so that the right hand
side of (3.61) vanishes. On the other hand, by a direct computation, for ˇ0 ¤ ˇ1,
lim� �S.�

ˇ0
� j�ˇ1� / > 0.

However this example does not contradict (3.61) as we are comparing two
ensembles in which we varied the temperature and not the magnetic field. In this
example, the correct formulation of (3.61) would be in terms of the large deviation
function for the energy, that is the extensive variable conjugated the the intensive
parameter that has been changed.

3.11 Concluding Remarks and Additional References

Over the last decade the macroscopic fluctuation theory has been used in the study
of several problems. Whenever the comparison has been possible, it is remarkable
that a perfect agreement has been found between the results obtained by this theory
and the microscopic approaches. This agreement provided a strong motivation
already in the early stages of development of the theory. In [5] we derived from
the Hamilton-Jacobi equation the quasi potential for the nonequilibrium symmetric
simple exclusion process from the Hamilton-Jacobi equation obtaining the same
result as [26] from the exact calculation of the invariant measure. Moreover the
MFT led to the prediction of rather surprising properties of diffusive systems, such
as the existence of phase transitions not permitted in equilibrium, the possibility of
phase transitions in the large deviation functional of the current, the universality of
the cumulants of the current on the ring geometry. The theory requires as input
the transport coefficients. Therefore all the systems characterized by the same
coefficients behave in the same way.

The quasi potential V.�/ induces a splitting of the total current into a symmetric
and an antisymmetric part under time reversal which is crucial also for the
analysis of the energy balance in thermodynamic transformations. The study of
transformations from one state to another one is a most relevant subject and has been
addressed by several authors in different contexts. For instance, following the basic
papers [21, 32, 34], the case of Hamiltonian systems with finitely many degrees of
freedom has been recently discussed in [28,31] while the case of Langevin dynamics
is considered in [22]. See also [3, 18, 42]. For a detailed study of thermodynamic
transformations from the standpoint of the macroscopic fluctuation theory we refer
to [13].
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A very general approach to the theory of nonequilibrium thermodynamic trans-
formations was initiated by Oono and Paniconi [45] and pursued in the work of
Hatano, Sasa, Tasaki [32, 48]. While in [32] a stochastically perturbed dynamical
system underlies the analysis, in [48] a guiding idea is to keep as much as possible
the phenomenological character of classical thermodynamics without reference
to an underlying microscopic dynamics. In this work the authors discuss the
operational definition of nonequilibrium thermodynamic observables in concrete
situations and generalize basic operations like decomposition, combination and
scaling of equilibrium thermodynamics to nonequilibrium states. The possibility of
experimental tests is then examined. In more recent papers by Komatsu, Nakagawa
[38] and by Komatsu, Nakagawa, Sasa, Tasaki, [39] the problem of constructing
microscopic ensembles describing stationary states of both stochastic and Hamil-
tonian systems, is considered. Expressions for the nonequilibrium distribution
function are proposed either exact or valid up to a certain order in the parameters
keeping the system out of equilibrium and some consequences are worked out.
All these works, although different in spirit from our approach, have provided a
stimulus and a source of inspiration especially in connection with the study of
thermodynamic transformations.

In [46] Öttinger developed an approach to nonequilibrium called GENERIC
(general equation for the nonequilibrium reversible-irreversible coupling) based on
a separation in the macroscopic evolution equations of dissipative and conservative
terms which reminds of our decomposition (3.27).
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Chapter 4
Fluctuation-Dissipation and Fluctuation
Relations: From Equilibrium to Nonequilibrium
and Back

Paolo Adamo, Roman Belousov, and Lamberto Rondoni

Abstract The fluctuation-dissipation relation is a most remarkable classical result
of statistical physics, which allows us to understand nonequilibrium properties
of thermodynamic systems from observations of equilibrium phenomena. The
modern transient fluctuation relations do the opposite: they allow us to understand
equilibrium properties from nonequilibrium experiments. Under proper conditions,
the transient relations turn into statements about nonequilibrium steady states, even
far from equilibrium. The steady state relations, in turn, generalize the fluctuation-
dissipation relations, as they reduce to them when approaching equilibrium. We will
review the progress made since Einstein’s work on the Brownian motion, which
gradually evolved from the theory of equilibrium macroscopic systems towards
an ever deeper understanding of nonequilibrium phenomena, and is now shedding
light on the physics of mesoscopic systems. In this evolution, the focus also shifted
from small to large fluctuations, which nowadays constitute a unifying factor for
different theories. We will conclude illustrating the recently introduced t-mixing
property and discussing a fully general and simple response formula, which applies
to deterministic dynamics and naturally extends the Green-Kubo theory.

4.1 Concise History

The study of fluctuations in statistical mechanics received the ultimate impulse
from Einstein’s work on the Brownian motion [1], in which the first fluctuation-
dissipation relation was derived, and from Einstein’s paper [2], which turned
Boltzmann’s celebrated equation

P. Adamo • R. Belousov • L. Rondoni (�)
Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24,
Torino, I-10129 Italy
e-mail: adamatrice@gmail.com; belousov.roman@gmail.com; lamberto.rondoni@polito.it

A. Vulpiani et al. (eds.), Large Deviations in Physics, Lecture Notes in Physics 885,
DOI 10.1007/978-3-642-54251-0__4, © Springer-Verlag Berlin Heidelberg 2014

93

mailto:adamatrice@gmail.com
mailto:belousov.roman@gmail.com
mailto:lamberto.rondoni@polito.it


94 P. Adamo et al.

S D k
B

logW (4.1)

in one expression for the probability P.�S/ of a fluctuation out of an equilibrium
state resulting in an entropy jump �S :

P.�S/ D e�S=kB (4.2)

In the following 100 years, Einstein’s work was developed by so many scientists
that it would be too long to list them here.1 In particular, Nyquist obtained a formula
applicable to linear electrical circuits for spectral densities and correlation functions
of the thermal noise in terms of their impedance [5]. The same formula is valid for
mechanical systems, if the correspondence of mechanical and electrical quantities
is properly established. Onsager found the complementary result, computing the
transport coefficients in terms of thermal fluctuations [6, 7].

In the 1950s, authors such as Callen and Welton [8], Callen and Greene [9],
Green [10–12], and Kubo [13] gave further contributions to the fluctuation-
dissipation theory, while Onsager and Machlup provided a generalization for
fluctuation paths of Einstein’s formula (4.2), [14, 15]. Alder and Wainwright later
discovered that long time tails in the velocity autocorrelation functions prevent
the existence of the self-diffusion coefficient in two-dimensional fluids [16], a
phenomenon further studied by Kadanoff and Swift for systems near a critical point
[17]. Physicists such as Cohen, Dorfman, Kirkpatrick, Oppenheim, Procaccia, Ronis
and Spohn investigated the long range correlations in nonequilibrium steady states
[18–20].

In the 1970s Hänggi and Thomas obtained certain “nonequilibrium fluctuation
theorems” [21, 22], using a kind of terminology that became quite popular 20 years
later, after another corner stone had been laid: the transient time correlation function
formalism. Developed by Visscher [23], Dufty and Lindenfeld [24], Cohen [25], and
Morriss and Evans [26], it yields an exact relation between nonlinear steady state
response and transient fluctuations in the thermodynamic fluxes.

More recent results in dynamical systems theory allowed the derivation of
nonequilibrium fluctuation response relations, similar to those of equilibrium
states, [27–29]. Numerous nonequilibrium extensions of the fluctuation dissipation
theorem have been obtained in other contexts, see e.g. Refs. [30–34] and references
therein.

The 1993 paper by Evans et al. [35] on the fluctuations of the entropy production
rate of a deterministic particle system, modeling a shearing fluid, opened the way
to a unifying framework for a variety of nonequilibrium phenomena, under a
mathematical expression nowadays called Fluctuation Relation (FR). Within this
context, fluctuation relations for transient states were derived by Evans and Searles

1We recall a few of them, with the intent to show how prolific this research line has been for over
a century, and how it has gradually shifted from equilibrium to nonequilibrium problems. Recent
reviews on the subject include [3, 4].
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in 1994 [36, 37], while in 1995 Gallavotti and Cohen fully formalized the theory
of steady state relations for systems of the Anosov type [38, 39]. These FRs are
exact and general. They extend the Green-Kubo and Onsager relations to far from
equilibrium states, in the sense that they reduce to those relations in the vicinity of
the equilibrium regime [40–43]. Among the recent results, transient relations, such
as the Jarzynski equality, have been obtained independently and have motivated
much research e.g. in biophysics [44, 45]. Indeed, fluctuations are not directly
observable in macroscopic systems, while they are substantial in small systems or
small parts of macroscopic systems.2

With an eye kept on recent developments and open problems, the purpose of the
present paper is to review the main results obtained through the specialized literature
in a non-technical fashion accessible to a wide audience. The most recent results will
be considered in the context of deterministic dynamics.

4.2 The Brownian Motion and the Langevin Equation

Observing with a microscope the pollen suspended in a glass of water, one realizes
that pollen grains move erratically and incessantly, although no work is done on
them to balance the energy dissipated by the viscosity of the fluid, and although the
water appears to be still. This phenomenon was named after the botanist Robert
Brown, who tried unsuccesfully to explain it [47], and remained a puzzle until
Einstein tackled it in terms of kinetic theory, to prove that atoms exist.

The puzzle arises observing the equation of motion for the velocity of one
spherical particle of mass m and radius a in a fluid of viscosity �, which reads:

dv
dt
D �6�a�

m
v (4.3)

and predicts the exponentially decaying behaviour

v.t/ D v.0/ exp.�t=	/ ; with 	 D m

6�a�
: (4.4)

Here v.0/ is the initial velocity, v.t/ the velocity at a subsequent time t and 	 is
a characteristic time depending on the properties of both water and pollen, which
takes values of order 10�4 s for particles of radius a � 10�4 m and mass 10�7 g.
Consequently, the particle should come to rest in less than a few milliseconds, but it
does not.

Einstein’s theory [1] boldly solved the riddle, introducing an ingredient which
had been previously thought to be uninfluential: a stochastic force fR acting on

2An exception is provided by gravitational waves detectors, whose resolution is so high that their
thermal fluctuations are revealed [46].
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the pollen grains, resulting from many random collisions with the water molecules
and bearing no memory of events occurring at different times. This idea required
Eq. (4.3) to be replaced by a new dynamical law, which was proposed by Langevin
3 years later [48]:

dv
dt
D �6�a�

m
vC fR.t/ ; (4.5)

Here, the acceleration fR is greater at higher temperatures T , but averages to zero at
all temperatures, hfRi D 0, because the average work done on the pollen particles
by the forcemfR must vanish. Would this not be the case, there would be an overall
loss of energy in time, and pollen would sooner or later stop moving, while water
would cool down. This has never been observed. Furthermore, the lack of memory,
can be idealized assuming that the force acting at times t and t 0 ¤ t are uncorrelated,
i.e.

D�
fR ı St

 �
fR ı St 0

�E
D qı.t � t 0/ (4.6)

where St represents the time evolution for a time t ,3 q is a constant and ı is Dirac’s
delta function. Here and above, h:i represents averages over all possible realizations
of the process, or over all possible initial conditions, if pollen and water behave as
prescribed by classical mechanics.4

Because fR cannot be known more precisely than on average and as expressed
by (4.6), even v.t/ can only be known in statistical terms. These, however, are fully
satisfactory. Indeed, the behaviour of a single pollen particle yields practically no
insight on the phenomenon, whereas the collective behaviour of all pollen particles
does. The problem can then be tackled as follows. Let � be a point in the phase
space of all pollen particles and water molecules. Then, treat fR formally as a known
function and integrate (4.5), with initial condition v.0/ D v0. For simplicity, assume
the motion takes place in a 1-dimensional space. The result is:

v.t/ D e��tv0 C
Z t

0

e��.t�t 0/fR.t 0/dt 0 (4.7)

3So that fR ı Stx D fR.S
tx/, with Stx the position of a Brownian particle initially in x, after a

time t .
4There are various points of view on the significance of the random term fR . Some view Nature as
intrinsically deterministic and randomness merely as the result of incomplete information. Others
take the laws of Nature as ultimately stochastic, and determinism just as a convenient idealization
in the description of certain phenomena. We adopt a pragmatic standpoint: mathematical models,
whether stochastic or deterministic, are meant to describe non-exhaustively complementary
features of natural phenomena. Depending on the feature of interest, one kind of model may be
more convenient or may bear deeper insight than the other.
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where � D 6�a�=m. Taking the average, one obtains hv ı St i D e��tv0, because
this operation can be taken (quite generally) inside the integral and hfRi D 0.
Therefore, on average, the velocity behaves as predicted by Eq. (4.4). Analogously,
multiplying two subsequent values of v and averaging, yields:

h�v ı St1 �v ı St2i D e��.t1Ct2/v20 C
Z t1

0

dt 01
Z t2

0

dt 02 e��.t1Ct2�t
0

1�t 02/qı.t 01 � t 02/
(4.8)

Considering separately the case with t1 > t2 and that with t2 > t1, some algebra
eventually yields:

h�v ı St1 �v ı St2i D q

2�

h
e�� jt1�t2j � e��.t1Ct2/

i
C e��.t1Ct2/v20 (4.9)

For large times t1 and t2, the system is found in a steady state, characterized by

h�v ı St1 �v ı St2i ' q

2�
e�� jt1�t2j (4.10)

and, in particular, by mean energy per Brownian particle given by

hEi D lim
t!1

m

2
h�v ı St 2i D mq

4�
(4.11)

Assuming this corresponds to the equilibrium with the heat bath at temperature T
constituted by the fluid, the equipartition principle, hEi D kBT=2, leads to:

q D 2kBT �

m
(4.12)

It is now possible to make predictions on the behaviour of an observable quantity:
the position of pollen particles. Assume that all particles are initially clustered in
position x0. Integrating the velocity and averaging, one obtains:

D�
x ı St � x2

E
D
�Z t

0

v ı St1 dt1

Z t

0

v ı St2 dt2

�

D
�

v20 �
kBT

m

�
.1 � e��t /2

�2
C kBT

m

�
2t

�
� 2 .1 � e

��t /
�2

	
;

(4.13)

which grows asymptotically linearly in time, with diffusion coefficient D and
mobility � given by:

D D lim
t!1

D
.x ı St � x/2

E

t
D 2kBT

m�
; � D D

kBT
(4.14)
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In the 3-dimensional case with spherical particles of radius a and mass m, one
eventually obtains the celebrated Einstein-Smoluchowski relation:

D D k
B
T

6��a
D RT

6��a

 1
NA

; (4.15)

where R is the universal gas constant and NA Avogadro’s number.
Equation (4.15) turned out to be extremely important, since it connected the

experimentally easily accessible macroscopic quantity
D
.x ı St /2

E
with Avogadro’s

number, which could thus be estimated.5 Perrin’s experiments [49] confirmed the
validity of the theory and convinced practically everybody that atoms could be
counted, hence that they really existed.

There are two interesting limits that can be taken in Eq. (4.5): �=m ! 1 and
�=m! 0. Keepingm fixed, the first limit corresponds to a fluid with high viscosity,
while the second limit corresponds to an inviscid fluid. In the first case, the effect of
the molecular impacts is negligible and the description of a macroscopic object in a
liquid is restored. In the second case, only molecular impacts can perturb the motion
of the object of massm, as it happens to particles of molecular sizes which, obeying
microscopic reversible laws, perform effectively random motions, unaware of any
viscous damping. Viscosity is, indeed, a collective effect which emerges when in
very large numbers molecules act on a sufficiently large surface of a moving object.

The intermediate situation in which viscosity and random molecular impacts
are of comparable magnitude, which is of interest for the Brownian motion,
unveils one level of description, the mesoscopic level, which differs substantially
from the well understood microscopic and macroscopic levels. The ingenuity
of this theory lies in its ability to identify three coexisting but separate scales
of observations: the microscopic scale (which we describe as deterministic and
reversible), the mesoscopic scale (which we describe as stochastic and irreversible),
and the macroscopic scale (which we describe as deterministic and irreversible).
The phenomena observed at the different scales obviously coexist, but pertain to
such widely separated domains of reality that totally different kinds of description
are required to represent them. However, fluctuations at the mesoscopic scale shed
light on the whole picture, as we will see later.

Equation (4.15) constitutes the first Fluctuation-Dissipation Relation (FDR), in
the sense that it links the equilibrium fluctuations of the particles positions (which
correspond to the mesoscopic scale) with the macroscopic property � of the fluid,
which characterizes nonequilibrium, dissipative, phenomena.

The great generality of such a result can be understood observing that many
different phenomena can be treated by means of equations mathematically indistin-
guishable from Eq. (4.5). For instance, an RC circuit at temperature T is described
by the following equation:

5At that time, the numerical value of NA was unknown.
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R
dQ

dt
C 1

C
Q D fR (4.16)

where Q is the charge in the capacitor of capacitance C , U.t/ D CQ.t/ is
the voltage across the resistance R, and fR represents the random motion of the
electrons, which averages to zero, but varies randomly in time, as the consequence of
thermal agitation. If fR has the properties assumed earlier for the Brownian motion,
the mathematical analysis is identical. In particular, in place of Eq. (4.10) one has
hQ.t/Q.t 0/i D k

B
TC exp .�jt � t 0j=RC/, which describes a phenomenon known

as the Johnson-Nyquist noise .

Remark. This illustrates how the FDR allows the calculation of nonequilibrium
properties by means of equilibrium experiments: no external forces drag the pollen
particles in the liquid, yet we compute the viscosity they would experience if
dragged; no emf pushes the electrons, yet we compute the resistance encountered
when they are pushed.

4.3 The Fluctuation-Dissipation Relation

The above theory can be cast in a more general context, useful to analyze a very
wide spectrum of situations of e.g. technological interest. Assume that the friction
acts as a memory term in the equations of motion, so that Eq. (4.5) is replaced by:

Pv.t/ D �
Z t

�1
�.t � t 0/v.t 0/ dt 0 C fR.t/ (4.17)

which reduces to the previous form, if �.t/ D const 
 ı.t/. To obey the principle of
causality, one may take �.t/ D 0 for t < 0. Then,

Z t

�1
�.t � t 0/v ı St 0 dt 0 D

Z 1

�1
�.t � t 0/v ı St 0 dt 0 (4.18)

is a convolution integral, which suggests a solution by Fourier transforms. Introduc-
ing the Fourier transforms and anti-transforms as:

Qz.!/ D 1

2�

Z 1

�1
z.t/e�i!tdt ; and z.t/ D

Z 1

�1
Qz.!/ei!td! (4.19)

one obtains

Qv.!/ D
QfR.!/

i! C Q�.!/ (4.20)
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At this stage, many possible routes can be taken, by assuming different relations
between � and fR. For this purpose let us introduce the power spectrum Iz of a given
signal z,6 i.e. the square absolute value of the Fourier components of z. Thanks to
the Wiener-Khinchin theorem, this is given by:

Iz.!/ D 1

2�

Z 1

�1
�z.t/e

�i!tdt (4.21)

where �z is the steady state autocorrelation function of z:

�z.t/ D
˝�

z ı St0 �z ı St0Ct ˛ (4.22)

which does not depend on t0 because of stationarity. If we perform a Fourier analysis
of Eq. (4.5), with � D 6�a�=m and the following definitions:

v.t/ D
1X

nD�1
vne

i!nt ; fR.t/ D
1X

nD�1
fne

i!nt ; (4.23)

we obtain

vn D fn

i!n C � ; and Iv.!/ D If .!/

!2 C �2 (4.24)

the first of which is clearly a special instance of Eq. (4.20). The simplest case
corresponds to constant If . In that case, the stochastic term fR is called a white
noise, and the power spectrum of the velocity takes the form of a Lorentzian curve,
characteristic of equilibrium states. One further obtains:

�v.t1 � t2/ D
˝�

v ı St1 �v ı St2˛ D �If

�
e�� jt1�t2j (4.25)

which yields I .BM/
f D �kBT=�m, if the equipartition of energy applies.

Question. Assuming Eq. (4.17) as the relevant equation of motion, could If .!/ be

obtained as a generalization of the Brownian motion expression I .BM/
f ?

For instance, let Q� D ReŒ Q�
 C i ImŒ Q�
 be given in terms of its real and imaginary
parts, and require If to be expressed by:

If .!/ D 2kBT

m
Re Œ Q�.!/
 (4.26)

6The terminology originates in the context of electrical circuits, where the power spectrum
represents the electrical power dissipated at various frequencies.
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Which relation between � and fR would lead to (4.26) with positive Re Œ Q�.!/
, as
appropriate for power spectra? One finds that the relation

hfR.t1/fR.t2/i D kBT

m
Œ�.t1 � t2/C �.t2 � t1/
 ; (4.27)

which means that the viscosity is affected by the properties of the bath and vice
versa, suffices to obtain the desired result. If �.t/ takes the form �ı.t/, we fall back
in the original situation with ı-correlated noise and If .0/ D kBT �=�m D I

.BM/
f .

To generalize the expression for the mobility, observe that one can pose:

� D D

kBT
D lim

t!1

D
.x ı St � x/2

E

2tkBT

D lim
t!1

1

2tkBT

Z t

0

dt1

Z t

0

dt2
˝�

v ı St1 �v ı St2˛ (4.28)

D lim
t!1

1

2tkBT

Z t

0

dt1

Z t

0

dt2
˝
v
�
v ı St2�t1˛ (4.29)

D lim
t!1

1

kBT t

Z t

0

.t � s/ hv .v ı Ss/i ds (4.30)

D 1

kBT
lim
t!1

Z t

0

hv .v ı Ss/i ds (4.31)

where (4.29) holds, because we consider a steady state, while (4.30) and (4.31) are
derived with a little bit of algebra, provided the following is satisfied:

ˇ̌
ˇ̌
Z 1

0

s�v.s/ds

ˇ̌
ˇ̌ <1 : (4.32)

The equality between � and (4.31) is one example of Green-Kubo relation, which
suggests the following generalization of the mobility,

�.!/ D 1

2�k
B
T

Z 1

0

dt
˝
v
�
v ı St ˛ e�i!t ; (4.33)

for the diffusion coefficient to equalD D kBT�.0/. Further manipulations yield:

Iv.!/ D 1

2�

Z 1

�1
�v.t/e

�i!tdt D k
B
T Œ�.!/C �.�!/
 D 2k

B
T Re Œ�.!/


(4.34)
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Recalling Eq. (4.20), one has jQv.!/j2 D j QfR.!/j2=


!2 C Q�.!/2�, which implies:

Iv.!/ D If .!/

!2 C Q�.!/2 D
2kBT

m

ReŒ Q�.!/

!2 C Q�.!/2 (4.35)

Then we can recover �v in two different ways, the first using the above equation:

�v.t/ D
Z
Iv.!/e

i!tdt D k
B
T

m

Z 1

�1
dtei!t

�
1

i! C Q�.!/ C
1

�i! C Q�.!/�
	

(4.36)

where � represents complex conjugation; the second using Eq. (4.34). Comparing
term by term, we deduce:

�.!/ D 1

m Œi! C Q�.!/
 (4.37)

which is called a Fluctuation-Dissipation Relation of first kind , whereas

Re Œ Q�.!/
 D m

2kBT
If .!/ D m

4�kBT

Z 1

�1
dte�i!t

˝
fRfR ı St

˛
(4.38)

is called a Fluctuation-Dissipation Relation of second kind . The first kind gives
the complex mobility (admittance, in general) in terms of the autocorrelation of the
velocity (flow, in general). The second kind gives the complex viscosity (impedance,
in general) in terms of the autocorrelation of the the random force. As explained
in Ref. [50], these two kinds of FDR imply that the response of a system to
external actions which perturb its equilibrium is linked to the spontaneous thermal
fluctuations in absence of perturbing forces. The FDR of the first kind has to be
considered more fundamental than the second, since it refers to experimentally
accessible quantities (the flows), while the second kind relies on the rather prob-
lematic distinction between frictional and random forces.

To conclude this section, it is interesting to analyze the procedure we have
followed: given the result we wanted to obtain, we have searched for the conditions
that produce it. Consequently, the model we have constructed certainly yields the
desired result. The question is now to look for the systems of physical interest
which satisfy the imposed conditions. This is standard practice in physics, often
more useful than the straight logical deductions from general principles, which
are frequently cumbersome or even impossible. For instance, in statistical physics,
one typically relies on macroscopic observations to infer the form of the molecular
interaction potentials, not vice versa. The theory of Brownian motion is of the other
kind: some general ideas on the microscopic dynamics led to predictions on the
macroscopic behaviour, which were subsequently experimentally verified.
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4.4 Evolution of Probability Distributions

This section recalls some basic notions of dynamical systems theory, introducing
the notation which will be used later. Consider a dynamical system defined by an
evolution equation on a phase space M :

P� D F.� / ; � 2M (4.39)

whose trajectories for each initial condition � are given by fSt� gt2R, where St is
the operator that moves � to its position after a time t , hence S0� D � . We will
consider time reversal invariant dynamics, i.e. the dynamics for which

ISt� D S�t I� ; 8� 2M (4.40)

holds, where the linear operator I W M ! M is an involution (I 2 Didentity)
representing a time reversal operation [in Hamiltonian dynamics, where � D .q;p/,
one usually takes I.q;p/ D .q;�p/]. Furthermore, we will consider evolutions such
that fStgt2R satisfies the group property StSs D StCs . The time averages of a phase
variable � WM ! R, along a trajectory starting at � , will be denoted by:

�.� / D lim
t!1

1

t

Z t

0

� .Ss� / ds (4.41)

If the dynamics represent a thermodynamic system, in which � is a single
microscopic state, the time average should not depend on � ,7 and could be obtained
as a phase space average, with respect to a given probability distribution �:

�.� / D
Z

M
�.X/ d�.X/ D h�i� ; for almost every � 2M (4.42)

This is the case when the dynamical system .S;M ; �/ is ergodic (cf. Sect. 4.4.1).
Ergodicity is a very strong property, which is not strictly obeyed by most of the
systems of physical interest. It can be however assumed to hold very often, because
physics is usually concerned with a small set of observables and for systems made
of exceedingly large numbers of particles, cf. [51].

Once M is endowed with a probability distribution �0, �0.M / D 1 and
�0.E/ � 0 for all allowed events E � M , the dynamics in M may be used
to induce an evolution in the space of probabilities. One may assume that the
subsets of the phase space have a certain probability, which they carry along where
the dynamics moves them. As a consequence, the probability distribution on M
changes in time, and one may introduce a set of distributions f�tgt2R as follows:

7Except a negligible set of phase space points.
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�t.E/ D
Z

E

d�t D
Z

S�tE

d�0 D �0.S�tE/ (4.43)

where S�tE is the preimage of E a time t earlier. This relation simply means
that the probability of S�tE at the initial time, belongs to E at time t . With this
definition, probability is conserved in phase space and flows like a compressible
fluid, in general.8 Taking much care, the evolution of the probability distributions
may be used to define an evolution of the observables, introducing

h�it D
Z

M

� d�t (4.44)

As the mean values of the phase functions completely characterize the system, one
often refers to �t as to the state of the system at time t . A probability measure � is
called invariant if �.E/ D �.S�tE/ for all t and all measurable sets E .

At times �t has a density ft , i.e. d�t.� / D ft .� /d� . In that case, the
evolution of �t follows from the evolution of the normalized non-negative function
ft , determined by Eq. (4.43). Operating the change of coordinates Y D StX , i.e.
X D S�t Y , in the last integral of the following expression

�t.E/ D
Z

E

ft .X/ dX D
Z

S�t E

f0.X/ dX (4.45)

one obtains:
Z

E

ft .X/ dX D
Z

E

f0.Y /J
�t .Y / dY (4.46)

where J�t .Y / D j.@S�tX=@X/jY is the Jacobian of the transformation. As
Eqs. (4.43–4.46) hold for all allowed subsets of M , one can write

ft .X/ D f0.S�tX/J�t .X/ (4.47)

For Hamiltonian dynamics, J�t .X/ D 1, hence ft .X/ D f0.S
�tX/. In general,

for the evolution of the observables one obtains:

h�it D
Z

M

�.� /ft .� /d� D
Z

M

�.� /f0.S
�t� /J�t .� /d� (4.48)

Introducing Y D St� in the last integral, so that d� D J t .Y /dY , one finds:

h�it D
Z

M
�.StY /f0.Y /J

�t .S tY /J t .Y /dY (4.49)

8In case of Hamiltonian dynamics, and more generally in the case of the so-called adiabatically
incompressible systems, probabilities flow like incompressible fluids.
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To make this expression more explicit, recall that probability is transported by the
phase space points like mass is transported in a fluid. Then, the evolution equation
for a density f in the phase space is given by a formal continuity equation:

@f

@t
D �r� 
 .Ff / ;

df

dt
D @f

@t
Cr� f 
 F D �f r� 
 F D �f� (4.50)

where� D r� 
F , called phase space expansion rate, is the divergence of the vector
field F on M , cf. Eq. (4.39). Equations (4.50) generalize the Liouville equation
to non-Hamiltonian dynamics. Because the global existence and uniqueness of
solutions of the equations of motion is practically assured for all particles systems
of physical interest,9 one may safely assume that the solutions of the Liouville
equation also exist and can be constructed by means of formal calculations. Various
procedures are available for this purpose. For example, let us introduce the f -
Liouvillean operator L :

L D �i .r� 
 F C F 
 r� / ; so that
@f

@t
D �iL f (4.51)

and let us express @ft =@t to first order in the time increment�t :

@ft

@t
.� / D �i .L ft / .� / D ftC�t.� / � ft .� /

�t
CO .�t/ (4.52)

It follows that

f�t .� / D .1 � iL�t/ f0.� /CO
�
�t2



f2�t .� / D .1 � iL�t/ f�t .� /CO
�
�t2

 D .1 � iL�t/2 f0.�/CO
�
�t2



(4.53)
::: (4.54)

fn�t.� / D .1 � iL�t/n f0.� /C nO
�
�t2


(4.55)

Taking�t D t=n, so that �! 0 and nO
�
�t2

! 0 as n!1, one obtains:

ft .� / D lim
n!1

�
1 � itL

n

�n
f0.� / D

1X

nD0

.�itL /n

nŠ
f0.� / � e�itL f0.� / (4.56)

9Global solution means that particles do no cease to exist after a while; Uniqueness implies that
the same particles do not exist at once along distinct trajectories. If these properties are violated,
one typically concludes that the equations of motion do not suit the problem at hand.
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The question is now to connect Eq. (4.56) with Eq. (4.47), to give a more useful
expression of the corresponding evolution operators. One can write

Y D StX D St=n �St=n �
 
 
St=n .X/ 
 
 
  (4.57)

Hence, the chain rule yields

@Y

@X

ˇ̌
ˇ̌
Xi

D
 
@St=nX

@X

ˇ̌
ˇ̌
Xn�1

! 
@St=nX

@X

ˇ̌
ˇ̌
Xn�2

!

 
 

 
@St=nX

@X

ˇ̌
ˇ̌
X0

!
(4.58)

where Xj D S jt=nX0, and X0 is the initial point of a trajectory. One can expand to
first order each derivative in brackets as follows:

@
�
St=nX



@X

ˇ̌
ˇ̌
ˇ
Xj

D @

@X

�
X C F�t CO.�t2//

ˇ̌
ˇ̌
Xj

(4.59)

and further

@
�
St=nX



@X

ˇ̌
ˇ̌
ˇ
Xj

D �C @F

@X

ˇ̌
ˇ̌
Xj

�t CO ��t2 D e
@F
@X jXj �t CO ��t2 ;

� being the identity matrix. Substituting Eq. (4.60) in Eq. (4.58), and noting that
the exponential operators do not commute in general, the n ! 1 limit leads to a
so-called left ordered exponential, which can also be expressed as a Dyson series:

e

R t
0 T .S

sX/ds
L D �C

Z t

0

dt1 T .St1X/C
Z t

0

dt1

Z t1

0

dt2 T .St1X/T .St2X/

C
Z t

0

dt1

Z t1

0

dt2

Z t2

0

dt3 T .St1X/T .St2X/T .St3X/C : : : (4.60)

where the time dependent matrix

T .SsX/ D @F

@X

ˇ̌
ˇ̌
SsX

(4.61)

is the Jacobian matrix of F computed at the point SsX . Considering that the identity
det.eL/ D exp.TrL/ holds for left ordered exponentials as well, one obtains:

det

�
e

R t
0 T .S

sX/ds
L

�
D exp

�Z t

0

r� 
 F .SsX/ ds

�
D
Z t

0

� .SsX/ ds (4.62)

This implies that:
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J t .X/ D e
R t
0 �.S

uX/du D e
R 0
�t �.S

tCsX/ds D 1

J�t .S tX/
D 1

J�t .Y /
(4.63)

where we have taken u D tCs in the second integral. Equation (4.63) is obvious for
compressible fluids: a fluid element about X varies in a time t by a factor which is
the inverse of the variation of the fluid element about Y , when tracing backwards its
trajectory. Consequently J�t .S tX/J t .X/ D 1, and Eq. (4.47) may be rewritten as:

ft .X/ D f0.S�tX/e
R 0
�t �.S

sX/ds (4.64)

while Eq. (4.49) takes the interesting form

h�it D
Z

M

�
� ı St .X/ f0.X/J�t .S tX/J t .X/ dX D h� ı St i0 (4.65)

4.4.1 Ergodicity and Mixing

Let us recall some notion concerning invariant probability distributions. Let � be
one such distribution. Then, the following statements are equivalent:

E1. For every integrable phase function one has �.� / D h�i�, where h�i� �R
� d�, except for a set of vanishing � probability;

E2. Except for a set of vanishing � probability, 	E.� / D �.E/, where E �M
is a �-measurable set and

	E.� / D lim
t!1

1

t

Z t

0

�E .S
s� / ds I with �E .� / D

�
1 if � 2 E
0 else

(4.66)
is the the mean time in E;

E3. Let � be �-integrable and let �.St� / D �.� / for all t and all � . Then
�.� / D C �-almost everywhere, for a given C 2 R;

E4. The dynamical system .S;M ; �/ is metrically indecomposable, i.e. given the
invariant set E (which means S�tE D E), either �.E/ D 0 or �.E/ D 1.

We call ergodic the dynamical systems that verify these statements.

Remark. Ergodicity is a very strong property becasue � can be any integrable
function. Physics needs much less; only several phase variables are physically
relevent.

The following statments are equivalent too:

M1. For every pair of measurable sets D;E �M one has:

lim
t!1�

�
S�tD \E D �.D/�.E/ (4.67)
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M2. For all �; 2 L2.M ; �/ the following holds:

lim
t!1

˝�
� ı St ˛

�
D h�i� h i� (4.68)

We call mixing the dynamical systems that verify these two statements. Mixing is
an even stronger property than ergodicity, in the sense that mixing systems are also
ergodic, whereas not all ergodic systems are mixing.

For mixing Hamiltonian dynamics one can prove that an initial state charac-
terized by a probability density f0 eventually converges to the microcanonical
ensemble. Indeed, for every square integrable phase function �, one can write:

h�it D
Z
�.� /ft .� /d�

D
Z
�.� /

�
f0 ı S�t .� /d� D

Z �
� ı St.� /f0.� /d� (4.69)

The equalities in (4.69) are due to the fact that the Hamiltonian dynamics preserve
phase space volumes. Now, assuming that the uniform distribution d� is normal-
ized,

R
d� D 1, the mixing condition implies that the last integral obeys

lim
t!1

˝�
� ı St f0

˛
d� D h�id� hf0id� D h�id� 
 1 D h�id� (4.70)

which is the convergence to the microcanonical average for all phase functions.

Remark. This proof is deceitfully simple. In general, convergence to a steady state
is quite hard to prove. Although it is a very strong property, in general mixing does
not suffice to prove convergence to a steady state, because it amounts to the decay in
time of the microscopic correlations within already stationary macroscopic states.

4.5 Linear Response

Let us address the problem of the response of a given system to external actions.
As an example, consider a system of N particles in contact with a thermal bath at
inverse temperature ˇ, and the following Hamiltonian:

H.� / D H0.� /C �A.� / ; (4.71)

where � is a small parameter and A perturbs the canonical equilibrium expressed
by f0 D exp.�ˇH0/=

R
d� exp.�ˇH0/. After some time, a new canonincal

equilibrium is established which, to the first order in �, is given by:
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f D e�ˇH0e�ˇ�AR
d� e�ˇH0e�ˇ�A

D e�ˇH0


1 � ˇ�ACO.ˇ2�2A2/�R

d� e�ˇH0 Œ1 � ˇ�ACO.ˇ2�2A2/


' f0 1 � �ˇA
1 � �ˇ hAi0

' f0.� / Œ1 � �ˇ .A.� / � hAi0/
 (4.72)

where, h
i0 denotes averaging with respect to f0. The effect of the perturbation on a
given observable �, is then expressed by:

h�i � h�i0 D
Z

d� �.� / Œf .� / � f0.� /
 ' ��ˇ Œh�Ai0 � h�i0hAi0
 (4.73)

which is the correlation of the observble � with the perturbation A, with respect to
the state expressed by f0. Taking � D A D H0, one obtains an expression for the
heat capacity at constant volume CV , which expresses the response of the system to
temperature variations. Indeed, defining CV as

CV D @hH0i0
@T

D dˇ

dT

@hH0i0
@̌

D hH
2
0 i0 � hH0i20
kBT

2
(4.74)

one obtains:

@hH0i
@̌

D lim
�!0

hH0i � hH0i0
�ˇ

D � 
hH2
0 i0 � hH0i20

� D �kBT 2CV (4.75)

More in general, consider time dependent perturbations of form �F .t/A.� /:

H.�; t/ D H0.� / �F .t/A.� / (4.76)

and split the corresponding evolution operator in two parts:

iL0f D ff;H0g ; iLext.t/f D �F .t/ ff;Ag (4.77)

where f
g are the Poisson brackets. One has iL0f0 D 0, which means that f0 is
invariant for the unperturbed dynamics. Then, the solution of the Liouville equation

@f

@t
D �i .L0 CLext.t// f (4.78)

can be expressed by:

ft .� / D eitL0f0.� /� i
Z t

0

dt 0e�i.t�t 0/L0Lext.t
0/ft 0.� /

D f0.� /� i
Z t

0

dt 0e�i.t�t 0/L0Lext.t
0/f0.� /C higher order in Lext (4.79)
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as proved by inspection. If the deviations from the unperturbed system are consid-
ered small, the higher orders in Lext can be omitted. Then Eq. (4.73) implies:

h�it � h�i0 '
Z

d� �.� /
Z t

0

dt 0e�i.t�t 0/L0F .t 0/ ff0; Ag (4.80)

where

ff0; Ag D fH0;Ag @f0
@H0

D f̌0
dA

dt
(4.81)

Eventually, one obtains:

h�it � h�i0 '
Z t

0

dt 0R.t � t 0/F .t 0/ (4.82)

where R.t/ is the response function:

R.t/ D ˇ ˝ PA �� ı St ˛
0
D ˇ

Z
d�f0.� /

dA

dt
.� /eitF0�.� / (4.83)

Once again, the macroscopic nonequilibrium behaviour of a given system has been
related solely to the correlations of microscopic fluctuating quantities, computed
with respect to the relevant equilibrium ensemble.

Equation (4.82) suggests that even the linear response is in general affected
by memory effects. From this point of view, the Markovian behaviour seems
to be either very special or a crude approximation, implying, for instance, that
all nonequilibrium fluids have a viscoelastic behaviour. In practice, however, in
normal fluids and normal conditions the memory terms decay exponetially fast,
so that the Markovian approximation is by and large justified. The viscoelastic
behaviour is indeed noticeable only in complex fluids or under extreme conditions,
i.e. exceedingly far from equilibrium.

Question. Can this formalism be extended to perturbations of nonequilibrium
steady states? For instance, to steady states whose dynamics is dissipative, hence
not Hamiltonian, as in the important case of viscous hydrodynamics [4]?

Recently, it has been shown that the approach we have outlined does indeed apply, if
the steady state is represented by a regular probability density, as commonly happens
in the presence of noise, cf. Refs. [4, 28].

Differently, the invariant phase space probability distribution of a dissipative
system �, say, is typically singular and supported on a fractal attractor. Con-
sequently, it is not obvious anymore that the statistical features induced by a
perturbation can be related to the unperturbed statistics. The reason is that even very
small perturbations may lead to microscopic states whose probability vanishes in
the unperturbed state �. In such a case, the information contained in � is irrelevant.
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Indeed, Ruelle [52] showed that in certain cases10 a perturbation ı� about a
microstate � and its evolution Stı� can be decomposed in two parts, .St ı� /k and
.St ı� /?, respectively perpendicular and parallel to the fibres of the attractor:

Stı� D .St ı� /k C .Stı� /?
The first addend can be related to the dynamics on the attractor, while the second
may not.

Later, it has been pointed out [53] that this difficulty should not concern the
systems of many interacting particles which are of statistical mechanics interest.
In those cases, rather than the full phase space, one considers the much lower
dimensional projections, afforded by a few physically relevant observables. Hence,
one is typically interested in the marginals of singular phase space measures,
on spaces of sufficiently lower dimension, which are usually regular [54, 55].
These facts can be briefly recalled as follows. Ruelle showed that the effect of a
perturbation ıF.t/ D ıFk.t/CıF?.t/ on the response of a generic (smooth enough)
observable � is given by:

h�it � h�i0 D
Z t

0

R
.�/

k .t � 	/ıFk.	/d	 C
Z t

0

R
.�/

? .t � 	/ıF?.	/d	 (4.84)

where the subscript 0 denotes averaging with respect to �, R.�/k may be expressed

in terms of correlation functions evaluated with respect to �, while R.�/? depends on
the dynamics along the stable manifold, hence it may not.

Let us adopt the point of view of Ref. [53]. For a d -dimensional dissipative
dynamical system consider, for simplicity, an impulsive perturbation � ! � Cı� ,
such that all components of ı� vanish except one, denoted by ı�i . The probability
distribution � is correspondingly shifted by ı� , and turns into a non-invariant
distribution �0, whose evolution �t tends to � in the t ! 1 limit. For every
measurable set E � M , �0.E/ is given by �.E � ı� /,11 and �t.E/ is computed
as explained in Sect. 4.4. Taking �.� / D �i , one obtains:

h�iit � h�ii0 D
Z
�i d�t.� / �

Z
�i d�.� / (4.85)

Approximate the singular � by means of piecewise constant distributions, introduc-
ing an �-partition made of a finite set of d -dimensional hypercubes �k.�/ of side
� and centers �k. We define an �-approximation of � and of �t in terms of the
probabilities Pk.�/ and Pt;k.�I ı� / of the hypercubes�k.�/:

Pk.�/ D
Z

�k.�/

d�.� / ; Pt;k.�/ D
Z

�k.�/

d�t.� / : (4.86)

10Concerning certain smooth, uniformly hyperbolic dynamical systems.
11The set E � ı� is defined by f� 2 M W � C ı� 2 Eg.
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This yields the coarse grained invariant density �.� I �/:

�.� I �/ D
X

k

�k.� I �/ ; with �k.� I �/ D
�
Pk.�/=�

d if x 2 �k.�/

0 else
(4.87)

If Zi is the number of one-dmensional bins of form
h
�
.q/
i � �=2; � .q/

i C �=2
�

,

q 2 f1; 2; : : : ; Zi g, in the i -th direction, marginalizing the approximate distribution
yields the following quantities:

p
.q/
i .�/ D

Z �
.q/
i C �

2

�
.q/
i � �

2

8
<

:

Z
�.� I �/

Y

j¤i
d�j

9
=

; d�i (4.88)

Each of them is the invariant probability that the coordinate �i of � lie in one of the
Zi bins. Similarly, one gets the marginal of the evolving approximate probability
p
.q/
t;i .�/. In both cases, dividing by �, one obtains the coarse grained marginal

probability densities �.q/i .�/ and �.q/t;i .�/, as well as the �-approximate response
function:

B
.q/
i .�i ; ı�; t; �/ D 1

�

h
p
.q/
t;i .�/ � p.q/i .�/

i
D �.q/t;i .�/ � �.q/i .�/ (4.89)

Reference [53] shows that the right hand side of Eq. (4.89) tends to a regular function
of �i under the Zi ! 1, � ! 0 limits. Consequently, B.q/

i .�i ; ı�; t; �/ yields an
expression similar to that of standard response theory, in the sense that it depends
solely on the unperturbed state, although that is supported on a fractal set. There
are exceptions to this conclusion, most notably those discussed by Ruelle. But
for systems of many interacting particles this is the expected result. The idea is
that the projection procedure makes unnecessary the explicit calculation of R.�/? in

Eq. (4.84). This does not mean that R.�/? is necessarily negligible [56]. However,
apart from peculiar situations, it does not need to be explicitly computed and the
response may be referred only to the unperturbed dynamics, as in the standard
theory.

4.6 Onsager-Machlup: Response from Small Deviations

The classical theory of fluctuations was developed by Onsager and Machlup [14]
and Machlup and Onsager [15] in order to quantify the probability of temporal
fluctuations paths, and not just of fluctuation values. Their theory is based on the
following assumptions:
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A1. Onsager regression hyptothesis: the decay of a system from a nonequi-
librium state produced by a spontaneous fluctuation obeys on average the
macroscopic law describing the decay from the same state produced by a
macroscopic constraint that has been suddenly removed;

A2. The observables and the random forces are Gaussian random variables (i.e.
their probability density of m values taken at m consecutive instants of time
is an m-dimensional Gaussian);

A3. The probability density P.� / of the microstate � obeys Boltzmann’s
principle:

kB logP.� / D S .� /C const (4.90)

A4. The state St� is statistically independent of the state St
0

� for jt � t 0j > 	d ,
	d being the very short decorrelation time12;

A5. The microscopic dynamics is time reversal invariant;
A6. The vector of observables ˛ D .˛1; : : : ; ˛n/ is chosen so that its evolution is

Markovian. This is possible if n is neither too small nor too large. This choice
is system dependent and must satisfy the following criteria

– Each component ˛i of ˛ must represent a macroscopic quantity referring
to a subsystem containing very many particles;

– ˛i must be an algebraic sum of molecular variables, so that by the Central
Limit Theorem its fluctuations (not the large deviations) are Gaussians
centered on its average (equilibrium) value;

– ˛i must be an even function of the molecular variables that are odd under
time reversal (a manifestation of the microscopic time reversal invariance);

A7. The system is in local thermodynamic equilibrium;
A8. The fluxes P̨i depend linearly on the thermodynamic forces Xi :

P̨ i D
nX

jD1
LijXj ; Xi D

nX

jD1
Rij P̨j I (4.91)

A9. The process is stationary: i.e. given the times t1; t2; : : : ; tp and the n-
dimensional vectors ˛.1/; ˛.2/; : : : ; ˛.p/, the probabilities Fi;p; i D 1; : : : ; n,
that each component of the observable vector is smaller by value than the
corresponding component of the vector sequence ˛.k/ at the corresponding
times tk satisfy:

12Onsager and Machlup observe that (cf. Footnote 2 of Ref. [14]): “This statement is, of course,
charged with meaning, and requires elaborate precautions about ergodicity, etc. It may be said
to hold for systems which ‘forget’ their initial states in a ‘reasonably’ short time. It is, however,
precisely the choice of time scale that matters. In a sufficiently long time, all physical systems
‘forget’.”
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Fi;p

�
˛i � ˛.k/i ; tk; k D 1; : : : ; p

�
D Fi;p

�
˛i � ˛.k/i ; tk C 	; k D 1; : : : ; p

�

(4.92)

for all 	 and, analogously, the corresponding probability densities fi;p, satisfy

fi;p

�
˛i D ˛.k/i ; tk; k D 1; : : : ; p

�
D fi;p

�
˛i D ˛.k/i ; tk C 	; k D 1; : : : ; p

�

(4.93)
where

Fi;p

�
˛i � ˛.k/i ; tk ; k D 1; : : : ; p

�

D
Z ˛

.1/
i

�1
d˛.1/i 
 
 


Z ˛
.p/
i

�1
d˛.p/i fi;p

�
˛i D ˛.k/i ; tk; k D 1; : : : ; p

�
(4.94)

For simplicity, let ˛ be the vector of the deviations from the equilibrium values.
Then, the entropy S is a function of the observables ˛, which can be expanded
about its equilibrium value S0 as:

S D S0 � 1
2

nX

i;jD1
sij˛i˛j C higher order in ˛ (4.95)

There is no linear term in ˛ because S0 is the maximum of S . Correspondingly,
the thermodynamic forces are expressed (to the same order of approximation) by

Xi D @S

@˛i
D �

nX

jD1
sij˛j ; i D 1; : : : ; n (4.96)

which implies

nX

jD1



Rij P̨j C sij˛j

� D 0 ; i D 1; : : : ; n (4.97)

To compute the evolution of the state ˛, we may introduce a function ˚ depending
on the rate of change of the state and another, � , depending on the state itself or,
equivalently because of Eq. (4.96), on the thermodynamic forces:

˚
�
P̨ ; P̌

�
D 1

2

nX

i;jD1
Rij P̨ i P̌j ; � .X; Y / D 1

2

nX

i;jD1
LijXiXj (4.98)

These functions characterize the real evolution when P̨ D P̌ are the real evolving
fluxes and when X D Y are the real thermodynamic forces, in which case one has:
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PS D 2˚ . P̨ ; P̨ / D 2� .X;X/ (4.99)

Nonetheless they are defined for other evolutions as well. In particular, if the molec-
ular chaos is accounted for by the following random perturbation of Eq. (4.97),

nX

jD1



Rij P̨j C sij˛j

� D �i ; h�i i D 0 ; i D 1; : : : ; n (4.100)

where �i is a random force which allows different paths with different probabilities
and which does no net work, ˚ and � are defined for those paths. Assumption A2
here is used to express the statistics of the �i ’s. Assumption A5 is used to exclude
rotating systems and external magnetic fields, which would imply further terms, and
later an asymmetry e.g. in the transition probabilities. Assumption A7 allows us to
consider the thermodynamic quantities ˛; P̨ etc.

Let fi;1
�
˛
.1/
i ; t1

�
be the probability density for the i -th observable to take

values close to ˛.1/i at time t1. By assumptions A1 and A3, it is independent of

t1. Let fi;1
�
˛
.k/
i ; tkj˛.k�1/i�1 ; tk�1

�
be the conditional probability density for the i -th

observable to take values close to ˛.k/i at time tk , given that it was ˛.k�1/i�1 at time
tk�1. Because of the Markov property A6, which makes use of A4, and becasue of
A3, one thus has:

fi;p

�
˛i D ˛.k/i ; tk; k D 1; : : : ; p

�

D fi;1
�
˛
.p/
i ; tpj˛.p�1/i�1 ; tp�1

�

 
 
fi;1

�
˛
.2/
i ; t2j˛.1/i ; t1

�
fi;1

�
˛
.1/
i ; t1

�
(4.101)

D fi;1
�
˛
.p/
i ; tpj˛.p�1/i�1 ; tp�1

�

 
 
fi;1

�
˛
.2/
i ; t2j˛.1/i ; t1

�
eS .˛.1//=kB (4.102)

with the constraints

lim
	!0

fi;1

�
˛i ; t1 C 	 j˛.1/i ; t1

�
D Kı �˛ � ˛.1/ (4.103)

because 	 ! 0 is the limit in which ˛ deterministically approaches ˛.1/, and

lim
	!1fi;1

�
˛i ; t1 C 	 j˛.1/i ; t1

�
D eS .˛.1//=kB (4.104)

because of the correlations loss A4 between the times t1 and t1 C 	 , and because

of A3. Solving the Langevin equation (4.100), fi;1
�
˛i ; t1 C 	 j˛.1/1 ; t1

�
can be

explicitly given. For ease of explications, let us now refer to the case with n D 1,
the general case being trivially related to that. We then consider the equation:

R P̨ C s˛ D � (4.105)
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which leads to

f1
�
˛; t C uj˛.0/; t D

s exp

�
� s.˛�˛.0/e�su=R/

2

2kB .1�e�2su=R/

�

p
2�kB

p
1 � e�2su=R

(4.106)

With this information and with Ito’s discretization convention:

R
˛.k/ � ˛.k�1/

ı	
C s˛.k�1/ D �.tk/ ; i.e. ˛.k/ �

�
1 � sı	

R

�
˛.k�1/ D ı	

R
�.tk/

(4.107)
substituting in Eq. (4.102), with fixed ˛ and ˛.0/, and recalling A4, A6, one
eventually obtains:

f1
�
˛; t C 	 j˛.0/; t D

�
1

2kB

�p �
sR

�ı	

�p=2
�

Z
d˛.1/ 
 
 


Z
d˛.p/ exp

(
� R

4kB

pX

kD1

h
P̨ .k/ C s

R
˛.kC1/

i2
ı	

)
(4.108)

(4.109)

Under the p !1, ı	 ! 0 limits, with 	 D pı	 , the sum in the exponential tends
to the integral along the path:

Z tC	

t

h
P̨ .t 0/C s

R
˛.t 0/

i2
dt 0 (4.110)

which must be minimized to find the most likely path. Analogously, the n-
dimensional case, after diagonalization, yields

˚ . P̨ ; P̨ / D 1

2

nX

iD1
Ri˛

2
i I � .X;X/ D 1

2

nX

iD1

1

R i
X2
i D

1

2

nX

iD1

s2i
R i
˛2i (4.111)

and the integral to be minimized to achieve the maximum probability is

Z tC	

t

nX

iD1

h
P̨ i .t 0/C si

R i
˛i .t

0/
i2

dt 0: (4.112)

The integrand can be expressed as

L .˛; P̨ / D 2˚ . P̨ ; P̨ /� 2 PS .˛/C 2� .X.˛/;X.˛// (4.113)
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and the path of minimum integral follows from the standard Lagrangian formalism:

d

dt

@L

@ P̨ �
@L

@˛
D 0 ; which yields Rj R̨j �

s2j

Rj
˛j D 0 ; j D 1; : : : ; n (4.114)

Interestingly, each of the n 2nd order differential equations (4.114) is equivalent to
two first order equations. Indeed, their general solution

˛j .t/ D Cj1 e�sj t=Rj C Cj2 esj t=Rj (4.115)

requires Cj2 D 0 when the t !1 limit is considered – in which case we have the
relaxation to equilibrium from a nonequilibrium initial condition – while it requires
Cj1 D 0 when the previous history, beginning with a previous equilibrium state at
t D �1, is considered. But then, one may think of the first case as a solution of the
differential equation

P̨j C sj

Rj
˛j D 0 (4.116)

and the second case as corresponding to

P̨j � sj

Rj
˛j D 0 : (4.117)

We thus have two possible evolutions, which are symmetric under time reversal:
one describes the relaxation to equilibrium, in accord with the hydrodynamic laws;
the other treats fluctuations away from the equilibrium, and is the first example
of the so-called adjoint hydrodynamics [57]. In the large n limit, the most probable
path becomes the only path of positive probability. Therefore, Onsager and Machlup
obtained a justification of hydrodynamics for macroscopic systems, starting from
a mesoscopic description, in which the molecular chaos appears in the form of
noise.

Remark. Because these results are crucially based on the Gaussian distributions,
they are restricted to small deviations, from which the linear response about
equilibrium states can be properly derived.

Considering large, rather than small deviations, this theory has been generalized
to fluctuations about nonequilibrium steady states and which are not symmetric
under time reversal [57]. This lack of symmetry has been interpreted as the cause of
macroscopic irreversibility. For dissipative deterministic particle systems, that are
time reversal invariant, it has been shown that similar asymmetries may arise, when
particles interact [58]. This confirms the importance of microscopic interactions for
the irreversible macroscopic behaviour.



118 P. Adamo et al.

4.7 Fluctuation Relations: Response from Large Deviations

In 1993, the paper [35] addressed the question of the fluctuations of the entropy
production rate in a pioneering attempt towards a unified theory of a wide range
of nonequilibrium phenomena. In particular, a Fluctuation Relation (FR) was there
derived and tested. Obtained on purely dynamical grounds, it constitutes one of the
few general exact results for systems almost arbitrarily far from equilibrium, while
close to equilibrium it is consistent with the Green-Kubo and Onsager relations.
This FR reads:

Prob	 .� � A/
Prob	 .� � �A/ D e

	A (4.118)

where A and �A are average values of the normalized power dissipated in a driven
system, denoted by � , in a long time 	 , and Prob	 .� � ˙A/ is the steady state
probability of observing values close to ˙A.

Remark. Because this relation holds asymptotically in the observation time 	 ,
it constitutes a large deviation result: for large 	 , any A ¤ h�i lies many
standard deviations away from the mean. In other words, it corresponds to a
large (macroscopic) deviation from the macroscopically observable value h�i. The
standard deviation typically shrinks as O.	�1=2/ with 	 .

The FR (4.118) was derived for the following time reversal invariant dissipative
isoenergetic model of a 2-dimensional shearing fluid:

8
ˆ̂̂
<

ˆ̂̂
:

d

dt
qi D pi

m
C � yi Ox

d

dt
pi D Fi .q/C �p.y/i Ox � ˛thpi

(4.119)

where � is the shear rate in the y direction, Ox is the unit vector in the x-direction,
and the friction term ˛th, called “thermostat” , takes the form

˛th.� / D � �
PN

iD1 p2i

NX

iD1
p
.x/
i p

.y/
i (4.120)

as prescribed by Gauss’ principle of least constraint, in order to keep fixed the
internal energy H0 D ˚WCA CK , where ˚WCA is the potential by which particles
interact, which was assumed to be the so-called WCA-potential [59], and K is the
kinetic energy of the system.

This molecular dynamics model was chosen by the authors of [35] because its
phase space expansion rate � is proportional to ˛th. Hence a dynamical quantity,
which can be expressed in terms of the probability distribution in the phase space,
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could be related to the irreversible entropy production or, alternatively, to the energy
dissipation rate divided by

P
p2i . The FR is parameter-free and, being dynamical

in nature, it applies almost arbitrarily far from equilibrium as well as to small
systems. This makes the FR a milestone of contemporary nonequilibrium statistical
mechanics.

Gallavotti and Cohen accurately delineated the mathematical context in
which the result of [35] had been framed, introducing the Chaotic Hypothesis
[38, 39, 60, 61]:
Chaotic Hypothesis: A reversible many-particle system in a stationary state can be
regarded as a transitive Anosov system for the purpose of computing its macroscopic
properties.
Anosov systems can indeed be proven to have probability distributions of the kind
assumed in [35]. The result is a steady state FR for the fluctuations of �, which we
call �-FR and which will be described below. As the Anosov property practically
means a high degree of randomness, analogous results have been obtained first
for finite state space Markov chains and later for many other stochastic processes
[62–64]. Stochastic processes are easier to handle than deterministic dynamics,
but ambiguities affect their observables, except for special cases. The reader is
addressed to the numerous existing review papers, such as Refs. [3,4,34]. We focus
now on some specific results for deterministic dynamics.

4.7.1 The Gallavotti-Cohen Approach

The idea proposed by Gallavotti and Cohen is that dissipative, reversible, transitive
Anosov maps, S W M ! M , are idealizations of nonequilibrium particle systems
[39]. That the system evolves with discrete or continuous time was thought to be
a side issue [39]. The �-FR for Anosov maps relies on time reversibility and on
the fact that these dynamical systems admit arbitrarily fine Markov partitions [65].
These are subdivisions of M in cells with disjoint interiors and with boundaries
forming invariant sets, which in two dimensions consist of pieces of stable and
unstable manifolds. Gallavotti and Cohen further assumed that the dynamics is
transitive, i.e. that a typical trajectory explores all regions of M , as finely as one
wishes. This structure justifies the probability (Lyapunov) weights of Eq. (1) in
Ref. [35], from which the �-FR emerges.

Let the dynamics be given by XkC1 D SXk and introduce the phase space
expansion rate �.X/ D logJ.X/, where J is the Jacobian determinant of S . The
dynamics is called dissipative if h�i < 0, where h:i is the steady state phase space
average. Then, consider the dimensionless phase space contraction rate e	 , obtained
along a trajectory segment wX;	 with origin at X 2M and duration 	 , defined by:

e	.X/ D 1

	h�i
	=2�1X

kD�	=2
�.SkX/ (4.121)



120 P. Adamo et al.

Let J u be the Jacobian determinant of S restricted to the unstable manifold V C,
i.e. the product of the asymptotic separation factors of nearby points, along the
directions in which distances asymptotically grow at an exponential rate. If the
system is Anosov, the probability that e	 .X/ 2 Bp;� � .p � �; p C �/ equals,
in the fine Markov partitions and long 	 limits, with the sum of weights of form

wX;	 D
	=2�1Y

kD�	=2

1

J u.SkX/
(4.122)

which are assigned to the cells containing the points X such that e	 .X/ 2 Bp;� .
Then, denoting by �	 .Bp;�/ the corresponding probability, one can write

�	 .e	 .X/ 2 Bp;�/ � 1

M	

X

X We	 .X/2Bp;�
wX;	 (4.123)

where M	 is a normalization constant. If the support of the physical measure is
M , as in the case of moderate dissipation [66], time-reversibility and dissipation
guarantee that the range of possible fluctuations includes a symmetric interval
Œ�p�; p�
, with p� > 0, and one can consider the ratio

�	 .Bp;�/

�	 .B�p;�/
�

P
X;e	 .X/2Bp;� wX;	

P
X;e	 .X/2B�p;�

wX;	
; (4.124)

where each X in the numerator has a counterpart in the denominator. Denoting by
I the involution which replaces the initial condition of a given trajectory with the
initial condition of the reversed trajectory, time-reversibility yields:

�.X/ D ��.IX/ ; wIX;	 D w�1
X;	 and

wX;	
wIX;	

D e�	h�ip (4.125)

if e	 .X/ D p. Taking small � in Bp;� , the division of each term in the numerator
of (4.124) by its counterpart in the denominator approximately equals e�	h�ip ,
which then equals the ratio in (4.124). Therefore, in the limit of small �, infinitely
fine Markov partition and large 	 , the authors of [39] obtain the following theorem:
Gallavotti-Cohen Theorem. Let .M ; S/ be dissipative and reversible and assume
that the chaotic hypothesis holds. Then, in the 	 !1 limit, one has

�	 .Bp;�/

�	 .B�p;�/
D e�	h�ip : (4.126)

with an error in the argument of the exponential which can be estimated to be p-
and 	-independent.
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If the �-FR (hence the chaotic hypothesis on which it is based) holds, the function
C.pI 	; �/ D .1=	h��i/ log



�	 .Bp;�/=�	 .B�p;�/

�
tends to a straight line of

slope 1 for growing 	 , apart from small errors. If � can be identified with a
physical observable, the �-FR is a parameter-free statement about the physics
of nonequilibrium systems. Unfortunately, � differs from the dissipated power in
general, [43], hence alternative approaches have been developed.

4.7.2 Fluctuation Relations for the Dissipation Function

Question. If the FR has been observed to hold for the energy dissipation of a given
system, which mechanisms are responsible for that?

In attempts to answer this question, various results have been achieved and others
clarified. In particular:

1. Transient, or ensemble, FRs have been derived, which differ in nature from the
steady state FRs;

2. Classes of infinitely many identities have been obtained to characterize equilib-
rium and nonequilibrum states;

3. A novel ergodic notion, now knonw as t-mixing, has been introduced;
4. A quite general response formula has been derived.

These further develoments originated with a paper by Evans and Searles [36],
who proposed the first transient fluctuation relation for the Dissipation Function
˝ , which is formally similar to Eq. (4.118). In states close to equilibrium, ˝ can
be identified with the entropy production rate, � D JVFext=kBT , where, J is the
(intensive) flux due to the thermodynamic force F ext, V and T are the volume and
the kinetic temperature, respectively [36, 37]. This relation, called transient ˝-FR,
is obtained under virtually no hypothesis, except for time reversibility; it is transient
because it concerns non-invariant ensembles of systems, instead of the steady state.
The approach stems from the belief that the complete knowledge of the invariant
measure implied by the Chaotic Hypothesis is not required to understand the few
properties of physical interest, like thermodynamic relations do not depend on the
details of the microscopic dynamics [67].

Let M be the phase space of the system at hand, and S	 W M ! M be
a reversible evolution corresponding to P� D F.� /. Take a probability measure
d�0.� / D f0.� /d� on M , and let the observable O W M ! IR be odd with
respect to the time reversal, i.e. O.I� / D �O.� /. Denote its time averages by

O t;tC	 .� / � 1

	
Ot0;t0C	 .� / �

1

	

Z t0C	

t0

O.Ss� /ds : (4.127)

For a density f0 that is even under time reversal [f0.I� / D f0.� /], define the
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Dissipation function:

˝.� / D � d

d�
lnf0

ˇ̌
ˇ̌
�


 P� ��.� / ; so that

˝t;tC	 .� / D 1

	

�
ln

f0.S
t� /

f0.StC	� /
��t;tC	

	
(4.128)

For a compact phase space, the uniform density f0.� / D 1=jM j implies ˝ D �,
which was the case of the original FR. The existence of the logarithmic term
in (4.128) is called ergodic consistency, a condition met if f0 > 0 in all regions
visited by all trajectories St� .

For ı > 0, let Aı̇ D .˙A � ı;˙A C ı/, and let E.O 2 .a; b// be the set of
points � such that O.� / 2 .a; b/. Then, we have E.˝0;	 2 A�

ı / D IS	E.˝0;	 2
AC
ı / and:

�0.E.˝0;	 2 AC
ı //

�0.E.˝0;	 2 A�
ı //
D

R
E.˝0;	2AC

ı /
f0.� /d�

R
E.˝0;	2AC

ı /
f0.S	X/e��0;	 .X/dX

D
R
E.˝0;	2AC

ı /
f0.� /d�

R
E.˝0;	2AC

ı /
e�˝0;	 .X/f0.X/dX

D ˝e�˝0;	 ˛�1
˝0;	2AC

ı
(4.129)

where by h
i
˝0;	2AC

ı
we mean the average computed with respect to �0 under the

condition that ˝0;	 2 AC
ı . This implies the

Transient ˝-FR:

�0.E.˝0;	 2 AC
ı //

�0.E.˝0;	 2 A�
ı //
D eŒAC�.ı;A;	/
	 ; (4.130)

with j�.ı; A; 	/j � ı, an error term due to the finiteness of ı.

Remarks. (i) The transient ˝-FR refers to the non-invariant probability distribu-
tion �0. Time reversibility is basically the only ingredient of its derivation.

(ii) From an experimental point of view, its similarity with the steady state FR is
deceitful: rather than expressing a statistical property of fluctuations of a given
system, it expresses a property of the initial ensemble of identical systems.

(iii) In order for ˝ to be the energy dissipation, f0 has to be the equilibrium
ensemble corresponding to the given dissipative dynamics, which is invariant
when the forcing terms (but not the thermostats) are switched off.

(iv) Consequently, the transient ˝-FR yields a property of the equilibrium state
by means of nonequilibrium experiments. This closes the circle with the FDR,
which does the opposite.



4 Fluctuation-Dissipation and Fluctuation Relations 123

The steady state ˝-FR requires further hypotheses. In the first place let averaging
begin at time t , i.e. consider

�0.E.˝t;tC	 2 AC
ı //

�0.E.˝t;tC	 2 A�
ı //

: (4.131)

Taking Ot D t C 	 C t , performing the transformation � D IS OtW in the integral
defining �0.E.˝t;tC	 2 A�

ı //, with W 2M , and doing some algebra yields:

�0.E.˝t;tC	 2 AC
ı //

�0.E.˝t;tC	 2 A�
ı //
D ˝

exp
��˝0;Ot

˛�1
˝t;tC	2AC

ı

D eŒAC�.ı;t;A;	/
	
˝
e�˝0;t�˝tC	;2tC	

˛�1
˝t;tC	2AC

ı
(4.132)

where j�.ı; t; A; 	/j � ı. Here, the second line follows from the first because˝0;Ot D
˝0;t C˝t;tC	 C˝tC	;Ot , with the central contribution made approximately equal to
A by the condition ˝t;tC	 2 AC

ı . Recall that �0.E/ D �t .S
tE/, where �t is the

evolved probability distribution, with density ft . Then, taking the logarithm and
dividing by 	 Eq. (4.132) produces:

1

	
ln
�t.E.˝0;	 2 AC

ı //

�t .E.˝0;	 2 A�
ı //
D

D AC �.ı; t; A; 	/ � 1
	

ln
˝
e�˝0;t�˝tC	;2tC	

˛
˝t;tC	2AC

ı
(4.133)

� AC �.ı; t; A; 	/CM.A; ı; t; 	/

because E.˝0;	 / D StE.˝t;tC	 /.
If �t tends to a steady state �1 when t ! 1, the (exact) relation (4.133)

should change from a statement on the ensemble ft , to a statement on the statistics
generated by a single typical trajectory. But to be of practical use, this identity
requiresM.A; ı; t; 	/ to behave properly. If in the steady state, i.e. after the t !1
limit, M.A; ı; t; 	/ is negligible in the ı ! 0 and 	 !1 limits, one obtains the:
Steady State ˝-FR. For any tolerance � > 0, there is a sufficiently small ı > 0

such that

lim
	!1

1

	
ln
�1.E.˝0;	 2 AC

ı //

�1.E.˝0;	 2 A�
ı //
D AC � ; with � 2 .��; �/ (4.134)

For this to be the case, one needs some assumption. Indeed, M.A; ı; t; 	/ could
diverge with t , making fruitless the 	 !1 limit. If on the other handM.A; ı; t; 	/
remains bounded by a finite M.A; ı; 	/, lim	!1M.A; ı; 	/ could still exceed �.
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The first difficulty is simply solved by the observation that the divergence of
M.A; ı; t; 	/ implies that one of the probabilities on the left hand side of Eq. (4.133)
vanishes, hence that A or �A are not observable in the steady state. If no value A is
observable, the steady state˝-FR loses interest, because there are no fluctuations in
the steady state. Therefore, let us assume thatA and�A are observable. To proceed,
observe that Eqs. (4.128) lead to

fs.� / D f0 .S�s� / e���s;0 .� / D f0.� /e˝�s;0.� / (4.135)

which implies the following relation, first derived by Evans and Morriss [68]:

˝
e�˝0;s

˛
0
D 1 ; for every s 2 IR : (4.136)

Suppose now that the correlation with respect to fo of exp .�˝0;s/with exp .�˝s;t /,
decays instantaneously in time. In that case, one can write:

1 D ˝e�˝0;t ˛
0
D ˝e�˝0;s�˝s;t ˛

0
D ˝e�˝0;s ˛

0

˝
e�˝s;t

˛
0
; (4.137)

hence
˝
e�˝s;t

˛
0
D 1 ; for all s and t (4.138)

and the values of the exponentials in the conditional average of Eq. (4.133) do not
depend on the condition˝t;tC	 2 AC

ı , so that:

˝
e�˝0;t 
 e�˝tC	;2tC	

˛
˝t;tC	2AC

ı
D ˝e�˝0;t 
 e�˝tC	;2tC	

˛
0
D 1 : (4.139)

Then, the logarithmic correction term in (4.133) identically vanishes for all t; 	 ,
and the ˝-FR is verified at all 	 > 0. This idealized situation does not need to be
realized, but tests performed on molecular dynamics systems [69] indicate that the
typical situation is similar to this; typically, there is a constant K such that

0 <
1

K
� ˝e�˝0;t�˝tC	;2tC	

˛
˝t;tC	2AC

ı
� K : (4.140)

As a matter of fact, the de-correlation or Maxwell time, tM , expresses a physical
property of the system, thus it does not depend on t or 	 . Its order of magnitude is
that of the mean free time. If 	 � tM , the boundary terms˝t�tM ;t and˝tC	;tC	CtM
are typically small compared to ˝t;tC	 . Hence, ˝t�tM ;t and ˝tC	;tC	CtM are
expected to contribute only a fraction of order O.tM=	/ to the arguments of the
exponentials in the conditional average. One may then write:

˝
e�˝0;t 
 e�˝tC	;2tC	

˛
˝t;tC	2AC

ı
� (4.141)

� ˝e�˝0;t�tM 
 e�˝tC	CtM ;2tC	
˛
˝t;tC	2AC

ı
(4.142)
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� ˝e�˝0;t�tM 
 e�˝tC	CtM ;2tC	
˛
0

(4.143)

� ˝e�˝0;tCtM

˛
0

˝
e�˝tC	CtM ;2tC	

˛
0
D O.1/ ; (4.144)

with improving accuracy for growing t and 	 , since tM is fixed. If these scenarios are
realized, Eq. (4.140) follows andM.A; ı; t; 	/ vanishes as 1=	 , with a characteristic
scale of orderO.tM /.

Remark. The assumption that Eqs. (4.141)–(4.144) hold is not usual in dynamical
systems theory. It is a kind of mixing property which, however, refers to non-
invariant probability distributions, differently from the standard notion of mixing.

Various other relations can be obtained following the same procedure. For instance,
for each odd O , any ı > 0, any t and any 	 the following transient FR holds:

�0.O0;	 2 AC
ı /

�0.O0;	 2 A�
ı /
D hexp .�˝0;	 /i�1O0;	2AC

ı

; (4.145)

which is another relation expressing some property of the equilibrium state by
means of nonequilibrium dynamics.

4.7.3 Green-Kubo Relations

As mentioned at the beginning of this section, the present theory affords a derivation
of the Green-Kubo relations and stresses the role of the physical time scales. Take,
for instance, a Nosé-Hoover thermostatted system [68], with internal energyH0, in
which the interaction between particles and reservoir is represented by an additional
degree of freedom .s; ps/ and the whole (Hamiltonian) system has energy:

H D H0 C 3NkT ln.s/C p2s
2Q

(4.146)

where H0 is the energy of the system alone. The equilibrium state density is
microcanonical in the original frame but canonical in the extended frame:

fc.�; ˛/ D e�ˇ.H0CQ˛2=2/
R
d˛ d� e�ˇ.H0CQ˛2=2/

; (4.147)

where Q D 2K0	
2, ˛ D ps=Q is a phase variable with its own equation of motion,

andK0 is the reservoir’s target kinetic energy [68]. This yields

fc.˛/ D
Z
d�fc.�; ˛/ D

r
ˇQ

2�
exp


�ˇQ˛2=2� (4.148)
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Therefore, the distribution of ˛0;t is Gaussian in equilibrium, and near equilibrium it
can be assumed to remain such, around its mean, for large t . To use the FR together
with the Central Limit Theorem, the values A and �A must be a small number of
standard deviations away from h˝i. For a system subject to an external field Fe
which induces a current J , Ref. [70] proved that

	�J	 .Fe/ D 2L.Fe/kBT=V CO..Fe/2=	N / ;

where J	 is the variable obtained integrating J for a time 	 , and �J	 its variance,

L.Fe/ D ˇV
Z 1

0

dth.J ı St � hJ iFe /.J � hJ iFe /iFe ;

h
iFe is the phase space average at field Fe and L.0/ D limFe!0 L.Fe/ is the
corresponding linear transport coefficient. When 	 grows, A D 0 gets more and
more standard deviations away from h˝i, which is O.F 2

e /, for small Fe , while the
standard deviation tends to a positive constant, since that of ˛ tends to 1=

p
ˇQ.

Assume for simplicity that the variance of ˝0;	 .Fe/ is monotonic in Fe at fixed
	 , and in 	 at fixed Fe . Then, there is 	� .Fe; A/ such that the variance is large if
	 < 	�.Fe; A/. At the same time, 	 has to be larger than a given 	ı.Fe; A/ for
the steady state ˝-FR to apply to the values A and �A, with accuracy ı. Assume
that also 	ı.Fe; A/ is monotonic in Fe . To derive the Green-Kubo relations, one
then needs 	ı.Fe; A/ < 	 < 	�.Fe; A/ for Fe ! 0, which is possible because the
distribution tends to a Gaussian centered in zero, when Fe tends to zero and 	 is
fixed. Letting �2.˝0;	 / be the variance of the PDF of the phase variable ˝0;	 , one
eventually obtains:

h˝i D 	

2
�2.˝0;	 / i.e. L.0/ D lim

Fe!0

hJ iFe
Fe
D ˇV

Z 1

0

dt hJ �J ı St iFeD0 :
(4.149)

4.7.4 Jarzynski Equality

Among the transient relations, the one independently obtained by Jarzynski is
noteworthy. Consider a finite particle system, in equilibrium with a much larger
system, constituting a heat bath at temperature T . Assume that the overall system is
described by a Hamiltonian of the form

H .� I�/ D H.xI�/CHE.y/C hi .x; y/ (4.150)

where x and y denote the positions and momenta of the particles in, respectively,
the system of interest and the bath, hi represents the interaction between system and
bath, and � is an externally controllable parameter. This system can be driven away
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from equilibrium, performing work, by acting on �. Let �.0/ D A and �.	/ D B

be the initial and final values of � for a given evolution protocol �.t/. Suppose
the process is repeated many times to build the statistics of the work done, varying
� from A to B always in the same manner. Let � be the PDF of the externally
performed work W . This is not the thermodynamic work done on the system, if the
process is not performed quasi statically [71], but it is a measurable quantity. The
Jarzynski equality predicts that [44]:

˝
e�ˇW

˛
A!B

D
Z

dW �.W /e�ˇW D e�ˇŒF .B/�F.A/
 (4.151)

where ˇ D 1=kBT , and ŒF .B/ � F.A/
 is the free energy difference between the
initial equilibrium state with � D A and the equilibrium state which is eventually
reached for � D B . The average he�ˇW iA!B is the average over all works done
in varying � from A to B . While the process always begins in the equilibrium
state corresponding to � D A, the system does not need to be in equilibrium
when � reaches the value B . However, the equilibrium state with � D B exists
and is unique, hence F.B/ is well defined. Equation (4.151) is supposed to hold
whichever protocol one follows to change � from A to B , hence also arbitrarily
far from equilibrium (large P�); therefore the presence of the equilibrium quantities
F.A/ and F.B/ in Eq. (4.151) is remarkable. From the thermodynamic point of
view, one observes that the externally measured work does not need to coincide
with the internal work (which would not differ from experiment to experiment, if
performed quasistatically). From an operational point of view, it does not matter
whether the system is in local equilibrium or not: certain forces are applied, certain
motions are registered, hence certain works are recorded. The Jarzynski equality is
a transient relation and, similarly to the transient˝-FR, rests on minimal conditions
on the microscopic dynamics.

Remark. The Jarzynski Equality, analogously to the transient FRs, connects equi-
librium to nonequilibrium properties of physical systems, allowing us to compute
equilibrium properties by performing nonequilibrium experiments. This is the task
complementary to the one performed by the FDR.

4.8 t-Mixing and General Response Theory

Observing that Eq. (4.65), implies:

˝
e�˝s;t

˛
0
D ˝e�˝0;t�s ˛

s
(4.152)

the correlations decay of Eqs. (4.141)–(4.144) appears to be one special case of a
property which can be expressed as follows:

lim
t!1


˝
 
�
� ı St ˛

0
� h i0 h�it

� D 0 (4.153)
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Consider the particular case in which D ˝ . The fact that h˝i0 D 0, because˝ is
odd and f0 is even under time reversal, reduces Eq. (4.153) to the simpler expression

lim
t!1

˝
˝
�
� ı St ˛

0
D 0 (4.154)

If the convergence of this limit is faster than O.1=t/, one further has:

Z 1

0

˝
˝
�
� ı St˛

0
dt 2 R (4.155)

a condition which has been called t-mixing.
Let us now consider the response of observables, starting from an equilibrium

state, but evolving arbitrarily far from equilibrium:

h�it � h�i0 D
Z t

0

d

ds
h�is ds D

Z t

0

ds
d

ds

Z
d�fs.� /�.� / (4.156)

Substituting the expression for fs given by Eq. (4.135), we obtain

d

ds

Z
d�fs.� /�.� / D

Z
d�f0.� /e

˝
�s;0.� /˝ .S�s� / �.� / (4.157)

Introducing X D S�s� , � D SsX , with the Jacobian determinant given by
j@� =@X j D exp.�0;s.X/, the above equation takes the form:

d

ds
h�.� /is D

Z
dXf0.S

sX/e˝�s;0.S
sX/e�0;s.X/˝ .X/�.SsX/ (4.158)

Observe that

˝�s;0.SsX/ D
Z 0

�s
du ˝ .SuSsX/ D

Z s

0

dz˝.S zX/ D ˝0;s.X/ (4.159)

so that, using Eq. (4.128), we obtain:

d

ds
h�.� /is D

Z
dX � .SsX/˝.X/e˝0;s.X/e�0;s.X/f0.S

sX/

D
Z

dX ˝.X/� .SsX/ f0.X/ D h˝ .� ı Ss/i0 (4.160)

which is the integrand of Eq. (4.155). Therefore, we have the totally general
Response Formula:

h�it D h�i0 C
Z t

0

ds h˝ .� ı Ss/i0 (4.161)
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Moreover, if the t-mixing condition holds for all observables �, the fact that

h�it t!1�! h�i0 C
Z 1

0

ds h˝ .� ı Ss/i0 2 R (4.162)

implies that the system under investigation converges to a steady state. This proof
is as simple as the one based on standard mixing for the convergence to the
microcanonical ensemble, but is much more general, since it holds for dissipative
dynamics as well. The relation between standard mixing and t-mixing is still to be
largely understood. However one interesting aspect is the following.

Remark. While standard mixing concerns the decay of correlations among the
evolving microstates of a given steady state, t-mixing concerns the decay of
correlations among evolving macrostates. For this reason, the t-mixing property
implies the convergence to a steady state, whereas the mixing property in general
does not.

Mixing assumes the state to be stationary, making irrelevant the issue of
relaxation. The derivation of convergence to a microcanonical state, illustrated in
Sect. 4.4.1, is thus very fortunate.13 That derivation is soley possible because, in the
case of mixing with respect to a stationary probability density, one may formally
interpret the evolving transient probability densities as evolving observables as well.
This way one combines in one mathematical object two physically distinct entities:
the distribution of microscopic states and a macroscopic (supposedly) measurable
observable.14 In reality, this extends quite a bit the meaning of mixing, which
concerns the decay of correlations among the successive micro-states within a given
invariant macrostate. Consequently, the argument does not carry over the much
more common case of dissipative dynamics and of singular invariant distributions.15

4.9 Concluding Remarks

We have summarised the hystorical development of response theory, from Einstein’s
ingenius works to the recentmost theories for the steady states of deterministic
systems. We have illustrated how the FDR and its consequences allow us to infer
nonequilibrium properties of macroscpic systems from observations on equilibrium
states. Those results were based on a theory of small fluctuations, which allowed

13An argument similar to that outlined in Sect. 4.4.1 applies if the dynamics is mixing with respect
to other invariant densities.
14Something similar happens when the equilibrium thermodynamic entropy of a physical object
is expressed by the equilibrium average of the logarithm of the equilibrium density, which is the
Gibbs entropy.
15The analogy concerning the identification of the thermodynamic entropy with the Gibbs entropy
continues: if the steady state is singular, the Gibbs entropy does not represent any thermodynamic
entropy at all.
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frequent recourse to the Central Limit Theorem and Gaussian approximations.
The modern theories concerned with the large deviations have produced the
complementary result: evaluation of equilibrium properties from nonequilibrium
experiments.

We have seen that the transient relations are almost tautological: they hold very
generally as long as the microscopic dynamics are time reversal invariant. From
this point of view, besides the most important fact of providing information on
equilibrum states, they afford useful tests for the validity of the models adopted
in the investigation of nonequilibrium phenomena. The steady state ˝-FR, instead,
can be obtained from the time reversibility and from the ˝-autocorrelation decay,
expressed with respect to the equilibrium ensemble. This is an unusual condition
in dynamical systems theory, since correlations are usually referred to the invariant
measures. The result is a novel ergodic property, now called t-mixing.

The t-mixing condition has been suggested by the work on the large deviations
of the dissipation function, as a natural condition under which the steady state FR
holds. Its use in the investigation of other questions led us to a completely general
response formula, which holds whether a perturbed system eventually settles on a
steady state or it does not. In both cases, for any observable �, it gives the observable
value h�it at any instant of time t , as the time integral of the correlation function
of ˝ with �, computed with respect to the corresponding equlibrium ensemble
�0. This completes the Green-Kubo theory as, somewhat surprisingly, it makes
the equilibrium ensemble play a fundamental role even for systems driven very
far from equilibrium. The counterpart is that, far from equilibrium ˝ may not be
recognized as a standard thermodynamic property, although it continues to represent
the dissipated energy.

The other important issue is that the theory illustrated above is fully dynamical
and does not require the large system limit. Therefore, it may be useful in the study
of small (meso- as well as micro-scopic) objects. This is indeed the case but, again,
for small systems the meaning of ensembles differs from that of macroscpic objects,
thus care must be taken in interpreting the corresponding results.

In the context of dissipative reversible dynamics we have thus closed the circle,
going from equilibrium to non-equilibrium descriptions and vice versa. Open
questions are numerous. Among issues that seem to be within close reach, we
mention: (a) the relation between standard mixing and t-mixing, which is not a
merely mathematical question, and (b) the applicability of both transient and steady
state FR, especially those involving two observables, such as Eq. (4.145). The role of
the dissipation function˝ , which is a kind of thermodynamic potential in the theory
outlined above, and its relation to specific situations is perhaps the most interesting
of the present challenges, especially with regard to the response formula Eq. (4.161).
We believe that the t-mixing notion and Eq. (4.161) are among the most significant
results emerging from the deterministic theory of the FRs.
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Chapter 5
Large Deviations in Disordered Spin Systems

Andrea Crisanti and Luca Leuzzi

Abstract This contribution is an introduction to the use of large deviations to study
properties of disordered systems. We present some features of the application of
the theory of large deviations to models with random bonds or fields. Proceeding
by examples, starting from the mean field Ising model we introduce the notation
for the rate function and the cumulant generating function for small and large
deviations. By means of the replica theory we analyze sample-to-sample free energy
and overlap fluctuations. In particular, we address the random Ising chain, random
directed polymers, mean-field spin-glasses both with Ising and spherical spins and
the random field Ising model. For pedagogical aims, we put more emphasis on low
dimensional systems, where product of random matrices can be employed, leaving
out more advanced methods, focusing on the basic ideas behind the application of
large deviations.

5.1 Some General Results on Large Deviations

In this section we shall introduce some definitions and recall some general results on
large deviations. The presentation will be informal because our primary scope is the
application of large deviations to disordered systems, rather than the study of large
deviations themselves. For a more rigorous definition we refer to, e.g., Ref. [1], for a
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review on large deviations see, e.g., Ref. [2]. The reader interested in the application
of product of Random Matrices to low dimensional disordered systems, and more,
is referred to Ref. [3].

To set up the problem consider a physical observable AN of a system made of
N spins. If AN depends on the system configuration, the magnetization density for
example, then AN will be a fluctuating quantity. If (quenched) disorder is present,
the observableAN , e.g., the free energy density, can depend on it and its fluctuations
will, as well, stem from it. Its probability distribution (density) depends on the
system size N , but usually it becomes more and more concentrated around a value
a� as N increases, and values of AN different form a� become more and more
unlikely as N increases. The value a� is called the most probable or typical value
of AN . The existence of this typical value is an expression of the Law of Large
Numbers, which in its weak form states that AN converges to a� as N ! 1 with
probability 1:

P
�jAN � a�j � �

! 0 as N !1 (5.1)

for all � > 0. In physics this property is usually referred to as self-averaging, to
stress the fact that probability density of AN converges for N ! 1 to the delta
function ı.AN � a�/.

Beside the existence of the typical value, it is of interest to understand how
fast AN converges in probability to its typical value. It turns out that often the
convergence is exponential, that is, if PN is the probability density of AN , then

lim
N!1�

1

N
lnPN .AN D a/ D I.a/ (5.2)

with I.a/ a continuous function called, in this context, rate function.
An equivalent statement is that the asymptotic form of PN is

PN .AN D a/ � g.N; a/ e�N I.a/; N � 1: (5.3)

where g.N; a/ is a slowly varying function compared to the exponential. The mean-
ing of the sign “�” is that expressed in Eq. (5.2). Whenever PN .AN / satisfies (5.2),
or (5.3), we say that it obeys a large deviation principle with the rate function I.a/.
The rate function is always non-negative, otherwise the probability distribution
function would diverge as N ! 1, and takes its (global) minimum value for
a D a�. Since I.a/ is defined up to a constant we can always set I.a�/ D 0.

If I.a/ only displays one global minimum it is easy to recover the Law of Large
Number. If ˝ is a sub-set of possible values of AN then, using (5.3) and Laplace’s
approximation, we have
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P.AN 2 ˝/ D
Z

˝

daPN .AN D a/

�
Z

˝

dag.a;N / e�N I.a/

� e�N infa2˝ I.a/; N � 1: (5.4)

Therefore P.AN 2 ˝/ ! 0 exponentially fast if a� 62 ˝ , and hence P.AN 2
˝/! 1 exponentially fast if a� 2 ˝ . The large deviations principle hence extends
the law of large number in the sense that it provides informations on how fast is the
convergence.

It should be stressed that the rate function I.a/may possess more than one global
minimum. In this case the law of large numbers may not hold. In physics the typical
value a� determined by a global minimum of I.a/ is called an equilibrium state.
The presence of multiple global minima is then associated with the coexistence of
different equilibrium phases. If the rate function possesses local minima, in addition
to one or more global minima, these are identified with metastable states. The rate
functions are indeed closely related to thermodynamic potentials.

Let us go back to the case of single global minimum, and make the additional
assumption that I.a/ is twice differentiable at a D a�, so that we can approximate
it as

I.a/ D 1

2
A�.a � a�/2: (5.5)

where A� D d2I.a/=da2jaDa� . Then from (5.3), dropping the irrelevant slow term
g.a;N /, it follows

PN .AN D a/ � exp

�
�NA

�

2
.a � a�/2

	
: (5.6)

This Gaussian approximation is valid for values of a � a� up to O.N�1=2/, and
hence describes the small deviations of AN around the typical value a�. One then
essentially recovers the Central Limit Theorem. Values of a for which the quadratic
approximation of I.a/ cannot be used are the large deviations. These arguments
can be extended also to the case in which I.a/ does not possess a quadratic Taylor
expansion around its minimum. We shall see more on these later. The central point
here is that the knowledge of I.a/ provides information on both small and large
deviations.

Unfortunately, a direct calculation of the rate function I.a/ in a general case is
a rather difficult task. A useful and rather general method to have access to I.a/
consists in perturbing the measure to make unlikely rare events appear. From the
knowledge of the “strength” needed to make a value AN D a likely one can infer
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the rate function I.a/. Practically, one defines the cumulant generating function
of a as

WN.k/ � 1

N
ln
Z

R

daPN .AN D a/ eNka (5.7)

where k 2 R. When PN obeys a large deviation principle, we can compute the
large-N limit of WN.k/ using the Laplace integration method,

W.k/ D lim
N!1WN.k/ D lim

N!1
1

N
ln
Z

R

da eNŒka�I.a/
 D sup
a2R

Œka � I.a/
: (5.8)

W.k/ is then the Legendre transform of I.a/. If I.a/ is differentiable this is also
expressed as

W.k/ D ka� I.a/ (5.9)

where a D a.k/ is the solution of

d

da
I.a/ D k: (5.10)

The cumulant generating functionWN.k/, and henceW.k/, is a convex function of
k by construction. The Legendre transform can then be inverted, leading to

� .a/ D sup
k2R

Œka �W.k/
 (5.11)

where � .a/ is the convex envelope of I.a/. If W.k/ is differentiable we can write
the Legendre transform as

� .a/ D ka �W.k/ (5.12)

where k D k.a/ is the solution of

d

dk
W.k/ D a: (5.13)

A simple calculation shows that if I.a/ has the quadratic form (5.5), then

W.k/ D ka� C 1

2

k2

A� (5.14)

and � .a/ D I.a/.
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5.1.1 An Example: The Mean Field Ising Model

To illustrate the above statements we consider the Mean Field Ising Model,
where the calculation can be explicitly carried out. The model is defined by the
Hamiltonian

H D � 1
N

1;NX

i<j

�i�j (5.15)

where �i D ˙1 are Ising spins. As observable we take the magnetization density

mN D 1

N

MX

iD1
�i : (5.16)

When the system is in equilibrium with a thermal bath at temperature T the
probability that the magnetization density takes a given value m is

PN .mN D m/ D 1

ZN

X

�1;:::�N

e�ˇH ı
 
m � 1

N

MX

iD1
�i

!
(5.17)

where ZN is the partition function

ZN D
X

�1;:::�N

e�ˇH : (5.18)

A standard calculation leads to the asymptotic result

X

�1;:::�N

e�ˇH ı
 
m � 1

N

MX

iD1
�i

!
� eN�.m/; N � 1 (5.19)

valid for large N , where

�.m/ D ˇ

2
m2 � 1Cm

2
ln

�
1Cm
2

�
� 1 �m

2
ln

�
1 �m
2

�
: (5.20)

From this expression it also follows

ZN D
Z 1

�1
dm

X

�1;:::�N

e�ˇH ı
 
m � 1

N

MX

iD1
�i

!
� eN�.m�/; N � 1 (5.21)
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Fig. 5.1 The rate function I.m/ of the mean-field Ising model above (T > 1) and below (T < 1)
the Curie-Weiss transition point Tc D 1

with m� given by

m� D arg sup
m2Œ�1;1


�.m/ ) d

dm
�.m/

ˇ̌
ˇ̌
m�

D 0: (5.22)

Using �.m/ from (5.20) one gets the well known result

m� D tanh.ˇm�/ (5.23)

for the Mean Field Ising Model.
Collecting all contributions we see that PN .m/ obeys a large deviation principle

PN .m/ � e�NI.m/ with rate function

I.m/ D �.m�/ � �.m/: (5.24)

The form of I.m/ depends on T , see Fig. 5.1. For temperatures T > 1 (ˇ < 1)
I.m/ is a convex function, with a single global minimum at m� D 0. For these
temperatures � .m/ coincides with I.m/. When T decreases, and becomes smaller
than 1, ˇ > 1, I.m/ develops two local minima atm� D ˙jm�j, jm�j 6D 0, and it is
no more convex in the whole interval m 2 Œ�1; 1
. In this temperature range � .m/
does not coincides with I.m/ in the whole intervalm 2 Œ�1 W 1
.
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Fig. 5.2 The cumulant generating function W.k/ of the mean-field Ising model above (T > 1)
and below (T < 1) the Curie-Weiss transition point Tc D 1

From the definition of WN.k/ it follows that

d

dk
WN.k/ D hai.N /k (5.25)

where h
 
 
 i.N /k denotes averaging with the weight PN .AN D a/eNka. Then, under
the hypothesis that W.k/ exists and is differentiable, using the Laplace method
we have

W 0.k/ D d

dk
W.k/ D arg sup

a2R
Œak � I.a/
: (5.26)

For the Mean Field Ising model we thus find

lim
k!0˙

W 0.k/ D 0 T > 1 (5.27)

while

lim
k!0˙

W 0.k/ D ˙jm�j T < 1 (5.28)

andW.k/ has a cusp for T < 1, see Fig. 5.2. Since k has the same role as a uniform
external field, Eq. (5.28) expresses the well known fact that when an infinitesimal
external field applied to a Ferromagnetic system in equilibrium tends to zero, the
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Fig. 5.3 The Legendre Transform � .m/ of the generating function W.k/ for the mean-field Ising
model above (T > 1) and below (T < 1) the Curie-Weiss transition point Tc D 1

magnetization parallel to the field does not vanish if the system temperature is below
its critical temperature. Direct consequence of Eq. (5.28) is that � .m/ and I.m/ do
not coincide for T < 1. Indeed, a direct calculation shows that for T < 1

� .m/ D
8
<

:

I.m/ jmj > jm�j

0 m 2 Œ�m�; m�

(5.29)

as shown in Fig. 5.3.

5.2 Sample-to-Sample Free Energy Fluctuations
and Replica Trick

In systems with quenched disorder each system realization will be characterized
by a different configuration of disorder. We will call such a realization a sample.
The thermodynamic properties fluctuate from sample to sample. Most of them are,
however, self-averaging, if the disorder does not have long range correlations [4].
Standard example is the free energy, just to name one, on which we will mainly
concentrate. This means that in the large volume limit the free energy per variable
of different samples deviates arbitrarily little from the typical value
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f D � lim
N!1

lnZN
ˇN

(5.30)

where ZN is the partition function of a given disordered sample. Here, and in the
following, the bar indicates the average over the realizations of disorder. In this
specific framework we anticipate that, besides being interesting by themselves, large
deviations are also interesting because intrinsically related to the replica method,
i.e., the mathematical method used to perform the disorder average.

5.2.1 Random Ising Chain

To introduce the problem consider a one dimensional random Ising chain with
Hamiltonian,

H D �
NX

iD1
.Ji�i �iC1 C hi�i / (5.31)

where periodic boundary condition �NC1 D �1 are assumed. The couplings Ji
between spins �i and �iC1 and/or the magnetic field hi are independent random
variables. For any quenched realization of disorder the free energy density of a chain
made of N spins is

yN D � 1

ˇN
lnZN : (5.32)

and, since it depends on Ji and hi , it is a random quantity. The self-averaging
property assures that in the limit of large N its probability distribution converges
to ı.yN � f /, and, hence, yN ! f for almost all realization of disorder. However,
for finite N the free energy yN fluctuates from sample to sample. The probability
distribution function of yN depends in a complicate way on the probability
distributions of couplings and local fields. Nevertheless, for large, though finite N ,
the fluctuations of yN about f can be characterized using large deviations.

The partition function ZN of the Ising chain can be computed from the product

ZN D Tr
NY

iD1
Li (5.33)

of the random transfer matrices

Li D
�
eˇ.JiChi / eˇ.�JiChi /
e�ˇ.JiChi / e�ˇ.�JiChi /

	
: (5.34)
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In this context a theorem due to Oseledec [5] ensures that for – almost – all
realizations of Li , the limit of

lim
N!1

1

N
ln

"
Tr

NY

iD1
Li

#
D �1 (5.35)

exists and is equal to the largest Lyapunov exponent �1 of the product matrixQN
iD1 Li . The exponent �1 can be related to the rate of growth of a generic vector

.0/ 2 R
2 under repeated applications of the matrix Li:

�1 D lim
N!1

1

N
lnR.N/ (5.36)

where

R.N/ D j.N /jj.0/j ; .i C i/ D Li .i/: (5.37)

The Oseledec’s Theorem for products of random matrices, from the point of view of
the statistical mechanics of disordered systems, is a statement on the self-averaging
property of the free energy yN of the disordered spin system whose average free
energy, cf. Eq. (5.30), is f D ��1=ˇ. Once f is known, the thermodynamic
properties of the model can be derived.

The exponent �1, and hence f , is a non-random quantity. To study the sample-
to-sample fluctuations one then considers the so called effective Lyapunov exponent

�N D 1

N
ln

"
Tr

NY

iD1
Li

#
� �1; N � 1;

related to the rate of growth of a generic vector .0/ 2 R
2 under the application of

N random matrices Li . The exponent �N is a fluctuating quantity, and information
on its probability distribution can be obtained through the generalized Lyapunov
exponentsL.q/ [6],

L.q/ D lim
N!1

1

N
ln ŒR.N /
q (5.38)

which plays the role of the generating functionalW.k/, cf. Eq. (5.8), in the context
of large deviation theory. For large N the probability distribution of �N obeys a
large deviation principle

PN .�N D �/ � e�NS.�/ (5.39)

with S.�1/ D 0. The rate or entropy function S.�/ gives the number of sequences
.L1; : : : ;LN / with �N 2 Œ�; � C d�
. The rate function S.�/ is related to L.q/ by
the Legendre transform
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L.q/ D max
�
Œq� � S.�/
 (5.40)

which, once inverted, yields S.�/, or its convex envelope if L.q/ is not differen-
tiable.

By expandingL.q/ in powers of q around q D 0 we have

L.q/ D q�1 C 1

2
�2q2 CO.q2/ (5.41)

where �1 D dL.q/=dqjqD0 and the variance �2 (not to be confused with the Ising
spin) is

�2 D lim
N!1

1

N

�
ŒlnR.N/
2 �

h
lnR.N/

i2	 D lim
N!1ˇ

2N
h
y2N � yN 2

i
(5.42)

as follows by direct differentiation of Eq. (5.38), see also Eqs. (5.7) and (5.8). Note
that a finite �2 implies

y2N � yN 2 �
1

N
for N � 1;

i.e., normal fluctuations. The inversion of the Legendre transform leads to

S.�/ D 1

2�2
.� � �1/2 (5.43)

cf. also Eqs. (5.5) and (5.14), and hence

PN .yN D y/ � exp

�
�Nˇ

2

2�2
.y � f /2

	
; N � 1: (5.44)

The analysis of one-dimensional systems can be efficiently done in terms of
products of matrices. While this approach can in principle be extended to higher
dimensional systems, its use becomes less and less useful as the dimension of the
system increases. The main reason is that for dimensions greater than one the size of
the matrices increases exponentially with the number of spins, making the approach
practically unfeasible.

5.2.2 Replica Trick

Since the thermodynamic properties of disordered systems are obtained from
the disorder averaged free energy, in higher dimensional system the difficulty of
averaging a logarithm is usually overcome using the replica method. This procedure
is essentially the identity
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lnZN D lim
n!0

.ZN /n � 1
n

: (5.45)

For integer n, .ZN /n can be expressed as

.ZN /
n D

nY

aD1
Za
N

and may be interpreted as the partition function of n independent identical replicas
a D 1; : : : ; n of the system.

The generalized exponents L.q/ are directly related to the replica method.
Defining the cumulant generating function, cf. Eqs. (5.7) and (5.32), as

� ˇWN .n/ D 1

N
ln .ZN /n D 1

N
ln
Z

dyPN .yN D y/ e�ˇNny (5.46)

one readily sees that

� ˇW.n/ D �ˇ lim
N!1WN.n/ D L.n/: (5.47)

In the replica method one usually considers the (annealed) free energy density per
replica f .n/ D W.n/=n because the average free energy per spin f , cf. Eq. (5.30)
is, then, obtained as

f D � lim
N!1

1

ˇN
lnZN D lim

n!0
f .n/: (5.48)

Expanding f .n/ in powers of n, and using (5.41), we have

f .n/ D f � �
2
nCO.n2/ (5.49)

where f D ��1=ˇ, while � D �2=ˇ2 measures the strength of the free energy
sample to sample fluctuations.

Analytic calculations of f .n/ are usually constrained to integer n, for which
the replica method can be applied. This leads to the problem of extrapolating
f .n/ evaluated for n D 1; 2; 3 : : : down to n D 0. This problem is well known
in higher dimensional disordered systems, such as the Sherrington-Kirkpatrick
model [18, 19], a mean-field model for spin-glasses, see Sect. 5.2.6, where the
naive computation and extrapolation of f .n/ to n D 0 leads to an unphysical
negative entropy. This is associated with the occurrence of a phase transition at
finite temperature and a consequent breaking of the replica permutation symmetry.
In presence of large fluctuations, though, a “naive” extrapolation may lead to wrong
results even for one-dimensional systems, where no replica symmetry breaking is
known to occur.
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5.2.3 Replicas in the Random Ising Chain

In one-dimensional Ising chains, where we can use transfer matrices, the function
f .n/ can be computed for integer positive n from the direct product of transfer
matrices. Indeed it can be shown that [7]:

L.n/ D ln jjL˝njj (5.50)

where ˝ denotes the ordinary direct product, and jjL˝njj the largest, in modulus,
eigenvalue of L˝n. The results can then be compared with the direct numerical
calculation of �1 using Eq. (5.36).

As a specific example we consider the one-dimensional Ising chain (5.31) with
uniform external field hi D h and bimodal random couplings:

P.Ji / D 1

2
Œı.Ji � J /C ı.Ji C J /
 : (5.51)

This model is known to possess a positive zero-temperature entropy [8,9]. Since the
coupling constant can assume only two values,˙J , we have

L˝n D 1

2

"�
eˇ.JCh/ e�ˇJ
e�ˇJ eˇ.J�h/

�˝n
C
�
eˇ.�JCh/ eˇJ
eˇJ eˇ.�J�h/

�˝n#
: (5.52)

The size of the matrix is 2n � 2n and the diagonalization can be easily performed, at
least for values of n not too large.

Figure 5.4 shows f .n/ evaluated at integer n, the extrapolated f .n ! 0/

and the correct f D ��1=ˇ values for high and low temperature. For high
temperature the values of f .n/ for integer n sit very close to a linear function, and
the straightforward extrapolation to n! 0 leads to a result in very good agreement
with ��1=ˇ. At low temperature the values of f .n/ evaluated at integer n deviate
from a linear function and the agreement between the naive f .n! 0/ extrapolation
and ��1=ˇ is lost.

In Fig. 5.5 (left panel) the free energy f D ��1=ˇ and the result from the
naive extrapolation f .n ! 0/ are compared as function of temperature. At high
temperatures the two curves coincide. As the temperature T decreases the naive
extrapolation f .n ! 0/ starts to deviate from f , and eventually decreases with T
leading to an unphysical solution with negative entropy. This is a scenario similar
to that observed in the Sherrington-Kirkpatrick model when the replica permutation
symmetry is not broken. Here, however, the origin of the unphysical result can be
traced back to the increase of sample-to-sample fluctuations of the free energy as
the temperature decreases. There is no relationship to replica symmetry breaking
and spin-glass transition. This is evidenced in Fig. 5.5 (right panel) which shows
that the strength � of the free energy sample-to-sample fluctuations is larger where
the naive extrapolation f .n! 0/ fails.



148 A. Crisanti and L. Leuzzi

4
n

-3.5

-3

-2.5

-2

-1.5

f(
n)

0 1 0 1 42 3 5 6 2 3 5 6
n

-3.5

-3

-2.5

-2

-1.5

f(
n)

Fig. 5.4 Annealed free energy density per replica f .n/ of the random Ising chain at high
(left panel) and low (right panel) temperature. The exact average free energy density f D ��1=ˇ
is identified by a triangle
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Fig. 5.5 Left panel: Free energy f D ��1=ˇ (line) and naive extrapolation f .n ! 0/ (dots) of
the annealed free energy density per replica as function of temperature for the random Ising chain.
Right panel: The sample-to-sample fluctuation strength � D �T vs. T on a log-log plot

5.2.4 From Small to Large Deviations

We have seen that if the coefficient of n2 in the expansion ofW.n/ is non-zero then
the fluctuations of yN about the typical value f are normal, that is O.N�1=2/ as
N � 1, cf. Eqs. (5.41, 5.42 and 5.47). But what if, instead, this coefficient vanishes?
To address this question we go back to the cumulant generating function WN.n/.
From its definition, Eq. (5.46), it follows that

� ˇNWN .n/ D
X

k	1

Ck

kŠ
nk I Ck � @ lnZn

N

@nk

ˇ̌
ˇ
nD0 (5.53)

where Ck is the kth cumulant of lnZN D �ˇNyN , that is

C1 D lnZN ; C2 D .lnZN/2 �
�
lnZN

2
;
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and so on. It is sufficient to take successive derivatives of Eq. (5.46) with respect
to n, and evaluate them at n D 0. Thus, if WN.n/ is known, the cumulants are
identified with the coefficients of its Taylor expansion around n D 0. In particular,
the coefficient of the n2 term in the expansion

C2 D ˇ2N 2Œy2N � yN 2
 (5.54)

gives a measure of the fluctuations of yN about the average value yN evaluated for
finite N . This expression is indeed valid for any N and not only in the limitN � 1.

From Eq. (5.53) readily follows:

� ˇW.n/ D lim
N!1

1

N

X

k	1

Ck

kŠ
nk �

X

k	1

ck

kŠ
nk (5.55)

where ck D limN!1 Ck=N . If the cumulant Ck � o.N /, then the corresponding
nk term is missing in the expansion. Consequence of this is that a c2 6D 0 implies
normal fluctuations y2N � yN 2 � N�1. Vice versa, if C2 � N1�a with a > 0, so
that the n2 is missing, means

y2N � yN 2 �
1

N 1Ca : (5.56)

As a consequence, the absence of the n2 term in the expansion of W.n/ signals
anomalous fluctuations. In this case, to have the correct scaling of C2 with N , one
has to go back to WN.n/, the calculation of which is, in general, more difficult than
that of W.n/.

As emphasized above, C2 is associated with the sample-to-sample fluctuations
in a finite system about the average value yN , and not about the asymptotic value
f D limN!1 yN . While to access the first one we needWN.n/, information on the
latter can be directly obtained fromW.n/. Indeed, let us assume that the probability
distribution of yN obeys a large deviation principle

PN .yN D y/ � e�NS.y/;

with S.f / D 0 and S.y/ > 0 if y 6D f . From Eqs. (5.46) and (5.47) it follows, via
a saddle point integration, that

ˇW.n/ D inf
y
ŒS.y/C ˇny
: (5.57)

The rate S.y/ can now be obtained by inverting the Legendre transform:

S.y/ D ˇŒW.n/ � ny
 (5.58)
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where n is eliminated in favor of y using

d

dn
W.n/ D y: (5.59)

We recall that, strictly speaking,W.n/ gives the convex envelope of S.y/. Moreover,
if the moments Zn

N grow more than exponentially with n for n � 1, then the
probability distribution is not uniquely determined by W.n/ [10, 11]. Nevertheless,
W.n/ yields information on small deviations of yN from f . We have indeed seen,
as, for example, Eqs. (5.41), (5.43) and (5.44), that if

W.n/ D f n � �
2
n2 CO.n3/ (5.60)

with � > 0, �W.n/ is a convex function of n. It follows

S.y/ D ˇ

2�
.y � f /2 (5.61)

and, hence, .y � f /2 � N�1. Otherwise stated, this expresses the fact that the
Gaussian approximation is valid for (small) deviations y�f , up to orderO.N�1=2/.

Consider now the case in which the term n2 is missing, andW.n/ takes the form

W.n/ D f n � �C
3
n3 CO.n4/; n � 0 (5.62)

where as before�C > 0 for convexity. The restriction n � 0 is now necessary since
�W.n/ given by Eq. (5.62) is not convex for n < 0. Use of Eqs. (5.58) and (5.59),
and a simple calculation, shows that this form of W.n/ leads to

S.y/

ˇ
D 2

3
p
�C

.f � y/3=2; f � y � 0: (5.63)

The restriction f �y � 0 is a consequence of the constraint n � 0, because positive
values of n favors smaller values of y, see, e.g., Eq. (5.46). This is similar to what
we have seen in the example of the Mean Field Ising model (Sect. 5.1.1) where
positive (negative) values of k select positive (negative) value of magnetization m.
From Eq. (5.63) it follows that for large N

.f � y/ � N�2=3; .f � y/2 � N�4=3; f � y � 0: (5.64)

To gain informations on the region f � y � 0, we need W.n/ for negative n.
In principle W.n/ for positive and negative n may have different functional forms.
Under the hypothesis that

W.n/ D f nC ��
3
n3 CO.n4/; n � 0 (5.65)
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with �� > 0, we have

S.y/

ˇ
D 2

3
p
��

.y � f /3=2; f � y � 0: (5.66)

and the constraint in the scaling, cf. Eq. (5.64), can thus be removed. Note that the
scaling .f � y/ � N�2=3 requires �C 6D ��, i.e. a non symmetric probability
distribution, otherwise the average vanishes by symmetry. Were this the case, the
.f � y/ scaling is valid only if we restrict the energy domain to f �y � 0 (or� 0).

The above arguments can be extended to a generic power of n. If the first non-
vanishing term in the expansion of W.n/ � f n is proportional to nm with m � 3,
then a straightforward calculation shows that

.f � y/ � N�.m�1/=m; .f � y/2 � N�2.m�1/=m: (5.67)

Again, if the probability distribution is symmetric the scaling for .f � y/ is valid if
restricted to f � y � 0 (or � 0), otherwise it vanishes by symmetry at any N .

5.2.5 Random Directed Polymer

A cumulant generating function of the form (5.62) has been found using a replica
calculation in the study of random directed polymers [12, 13]. From the above
arguments it then follows that the probability distribution of the extensive free
energy YL of polymers of lengthL for small deviations from the typical valueLf is

PL.YL D Y / � exp

�a˙jLf � Y j3=2L�1=2� ; L� 1 (5.68)

where we take either aC or a� depending on the sign of Lf � Y . This form, and
the associated scaling

.Lf � Y / � L1=3; L� 1 (5.69)

are in agreement with both analytical [14, 15] and numerical [16, 17] results.

5.2.6 Mean-Field Spin-Glass

The large deviation scenario depicted in Sect. 5.2.4 is found, for example, in
the Sherrignton-Kirkpatrick model, a mean field spin-glass model defined by the
Hamiltonian [18, 19]
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H D �1
2

1;NX

i 6Dj
Jij �i�j (5.70)

where � D ˙1 are Ising spins and the symmetric couplings Jij are independent
identically distributed quenched Gaussian random variables of zero mean and
variance equal to 1=N . All pairs of spins .i; j / interacts, and the scaling of the
variance ensures a well defined thermodynamic limit as N !1. Using the replica
method the (annealed) free energy density per replica f .n/ D W.n/=n can be
computed for integer n [18, 19].

For high temperature the symmetry under permutation of the n replicas is
unbroken and one has W.n/ D f n, the naive extrapolation n ! 0 is trivially
correct. This result can be seen as the limiting casem!1 of the general case just
discussed, cf. Eq. (5.67). Therefore in this phase, called replica symmetric, one has

.f � y/ � N�1; .f � y/2 � N�2: (5.71)

If we turn to WN.n/ an explicit calculation shows [20] that

ˇ yN D �ˇ
2

4
� ln 2 � 1

4N
ln.1 � ˇ2/C o.N�1/ (5.72)

ˇC2=N D � 1

2N



ˇ2 C ln.1 � ˇ2/�C o.N�1/: (5.73)

From this result we see that C2=N diverges as ˇ ! 1� signaling the spin glass
transition at the critical temperature Tc D 1. Indeed, the 1=N terms contain the
contributions from the fluctuations about the saddle point used to evaluateW.n/, so
that the divergence of C2=N signals the instability of the high temperature replica
symmetric phase.

Below Tc the phase space is broken into a large, yet entropically not extensive,
number of degenerate locally stable states, and the replica permutation symmetry is
broken both in the zero replicas limit and for positive small values of n. The study
of the model below Tc becomes then rather difficult. For temperature slightly below
Tc , working with a truncated version of the SK model [21–23] Kondor found [24]

f .n/ D fP .	/ � 9

5;120
n5 C 
 
 
 ; n � ns.	/ D 4

3
	 C 
 
 
 (5.74)

where the so-called Parisi free energy fP .	/ can be computed in the truncated model
around the critical temperature as [23]

fP .	/ D 	3

12
C 	4

24
C 	5

20
C 
 
 
 I 	 � 1 � T 2

2
(5.75)
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or it can be computed in the original SK model,1 where also the non variational part
of the free energy is included and 	 is defined as 	 D .Tc � T /=Tc [35]

fP .	/ D � ln 2 � 1
4
C 	 ln 2 � 	

4
� 	

2

4
� 	

3

12
C 	4

24
� 	5

120
C 
 
 
 I (5.76)

For n > ns.	/ the replica symmetric solution remains stable.
From this result, it follows that the first non-vanishing term in the expansion of

W.n/�f n is proportional to n6, and so, from the above general result, cf. Eq. (5.67),
we conclude that [25]

.f � y/ � N�5=6; .f � y/2 � N�5=3: (5.77)

Using scaling argument one may also infer that C2 � N1=3.
The above prediction has been tested in recent years in numerical simulations

also significantly below Tc and, in particular, at T D 0 [26–33]. Kondor’s computa-
tion has been extended down to zero temperature and for higher orders in n [34,35],
generalizing Eq. (5.74) to the following expression valid at any temperature:

f .n/ � fP D � 9

640

� n
T

�5
ŒT Pq.0/
3 CO.n7/; (5.78)

where Pq.0/ is the derivative of the overlap parameter function q.x/ characterizing
the infinite Replica Symmetry Breaking (RSB) spin-glass phase evaluated at
xD 0.2 As T D Tc , Pq.0/ D 1=2, thus leading back to Kondor’s result. As T ! 0,
the resolution of Parisi anti-parabolic equation for the1-RSB Ansatz [36], yields
T Pq.0/ D 0:743 [37,38]. In all cases, theN�5=6 scaling for free energy density large
deviations is confirmed at all temperatures, including T D 0, thus allowing for a
direct comparison with the results of numerical simulations.

5.2.7 Positive Large Deviations

A different scenario arises for positive large fluctuations of free energy, i.e., above
the typical value f . In this case the probability distribution of y does not follow a
large deviation principle as in Eq. (5.39) but, rather,

1The computations differ for two reasons. First, the small perturbative parameter 	 is defined in
two different ways and 	exact D 	trunc � 	2trunc=2. Second, the truncated model represents the exact
one near the critical point but already at the fourth order in 	 the free energy behavior differs.
2The function q.x/ is the continuous order parameter characterizing the spin-glass phase in
presence of a continuous, that is, an infinite number, of breakings of replica symmetry. It is always
zero in the paramagnetic phase and it becomes continuously non zero and x-dependent at the
transition point to the spin-glass phase. The variable x, defined in the interval Œ0; 1
, is the so called
RSB parameter labeling the RSB’s in the continuous limit [23, 36, 46].
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PN .y/ � e�N2S2.y/ (5.79)

i.e., the rate function scales as N�2 [27, 39, 44]. In the SK model the rate function
takes the form [39]

S2.y/ D �a ŒT Pq.0/
�6=5 .f � y/12=5 C o
�
.f � y/12=5 (5.80)

a D
�
� 7

12 C

�7=5
I C D 0:64.2/

thus leading to the same scaling (5.77) when small deviations are matched. On top
of this the exponent 12=5 is in good agreement with zero temperature numerical
simulations [27]. The computation is much more complicated than in the negative
deviation case, where the rate function scale linearly in N . In the first place because
as y > f , the large deviation rate function S.y/ !1 and one has to work with a
negative number of replicas. Namely, n is chosen as proportional to the size N with
a negative coefficient. The large size limit eventually corresponds to n! �1.

The O.N2/ scaling for the rate function is not something special related to
the replica symmetry breaking solution of mean-field spin-glasses. In the case of
Gaussian random matrices, indeed, this kind of large deviations appears in different
fields [39]. Let us consider, as an instance, the simpler, replica symmetric, spherical
mean-field spin-glass model.

5.2.8 Spherical Spin-Glass Model and Gaussian
Random Matrices

Let us consider the Hamiltonian (5.70) with soft spins, rather than hard Ising spins
� D ˙1, with a global spherical constraint

NX

iD1
�2i D N : (5.81)

At zero temperature the energy of this model is equal to the largest eigenvalue (with
a minus sign in front) of a random Gaussian matrix of dimensionN�N . For random
Gaussian matrices the small deviations of the largest eigenvalue are described by
the Tracy-Widom distribution [40] and the probability that the largest eigenvalue
is lower than its typical value – else said that the energy is higher than its typical
value – goes like Eq. (5.79).

The O.N2/ large deviation behavior plays, indeed, an important role to deter-
mine, e.g., the expected number of minima of a random polynomial [41] or in the
framework of the anthropic principle in string theory [42]. In the latter case a crucial
point is the estimate of the probability that all eigenvalures of a Gaussian matrix are
positive (or negative) [43]. This turns out to behave as
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PN � e�b�N2 I � D ln 3

4
(5.82)

where the so called Dyson index b is b D 1 for matrices whose entries belong to
the Gaussian orthogonal ensemble, b D 2 for elements extracted from a Gaussian
unitary ensemble and b D 4 for self-dual Hermitian matrices of the Gaussian
symplectic ensemble [44, 45].

5.3 Sample-to-Sample Fluctuation of the Overlap

The use of large deviation is not restricted to the study of free energy fluctuations.
Other quantities can be analyzed. Here we consider the overlap parameter. In
disordered magnetic systems such as spin glasses the couplings between spins
can be of either sign. Consequence of this is that it is not possible to satisfy
simultaneously all constraints and the system becomes frustrated. This results in
a large number of equivalent equilibrium states that cannot be characterized only
in terms of free energy and a single-valued order parameter as in non-disordered
systems. To have a characterization of this phase one introduces the notion of
distance between equilibrium states through the overlap q and its probability
distribution.

Given two spin configurations f�i g and f	ig their mutual overlap is

qN D 1

N

NX

iD1
�i 	i (5.83)

The overlap qN is a fluctuating quantity and its probability distribution in equilib-
rium at temperature T is given by

PJ;N .q/ D 1

.ZN /2

X

�1;:::�N

X

	1;:::	N

e�ˇH.�/ e�ˇH.	/ ı
 
q � 1

N

MX

iD1
�i 	i

!
(5.84)

where ZN is the partition function. We have added the subscript J because in
general PJ;N depends on the particular realization of the couplings (disorder), even
in the limit N ! 1. In other words, the structure of the equilibrium states may
vary with the disorder realization in thermodynamic limit as well: PJ;N is not self-
averaging.

The disorder average PJ can ben computed using the replica method, see
e.g., Refs. [46, 47]. The cumulant generating function WJ;N .k/ associated with
PJ;N .qN D q/ is
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eNWJ;N .k/ D
Z 1

�1
dq PJ;N .q/ e

Nkq

D 1

.ZN /2

X

�1;:::�N

X

	1;:::	N

exp

"
�ˇH.�/ � ˇH.	/C k

X

i

�i 	i

#

D Z.2/
N .k/=.ZN /

2 (5.85)

where Z.2/
N .k/ is the partition function of two replicas of the system coupled by

the term k
P

i �i 	i . Then WJ;N .k/ can be obtained from the moments .ZN /n and

ŒZ
.2/
N .k/


n using the replica trick, cf. Eq. (5.45).

5.3.1 Back to the Replicated Random Ising Chain

Here we shall not enter into the details of the replica approach, but rather consider
the case of the random Ising chain (5.31) where transfer matrices can be used. In
the previous section we have seen that the partition function of the Ising chain
can be written as a product of the 2 � 2 (random) matrices Li , see Eqs. (5.33)
and (5.34). Similarly the 2-replica partition function can be written as a product
of 4� 4 matrices. Then in term of matrices the cumulant generating function (5.85)
reads

WJ;N .k/ D 1

N
ln

"
Tr

NY

iD1
ŒAiB.k/


#
� 2

N
ln

"
Tr

NY

iD1
Li

#
(5.86)

where

Ai D Li ˝ Li ; (5.87)

with Li defined in Eq. (5.34), and B.k/ is the diagonal matrix

B.k/ D

2

664

ek 0 0 0

0 e�k 0 0

0 0 e�k 0
0 0 0 ek

3

775 : (5.88)

The Oseledec theorem [5] ensures that W.k/ D limN!1WJ;N .k/ exists, and is
equal to

W.k/ D �.k/� �.0/ (5.89)
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where �.k/ is the maximum Lyapunov exponent of the product of random matrices
Mi D AiB.k/ and �.0/ D 2�1, see Eq. (5.36). We have suppressed the subscript
J because the Oseledec theorem also ensures that the Lyapunov exponent takes the
same value for almost all realization of disorder, i.e., it is self-averaging quantity,
and hence WJ .k/ D W.k/. For large positive (negative) k the integral in (5.85) is
dominated by the extreme q D C1 (�1), andW.k/ � ˙k as k ! ˙1.

If W.k/ is differentiable for all k 2 R, then the Gärtner-Ellis theorem [48, 49],
see also [2], ensures that qN satisfies a large deviation principle with rate function
given by

� .q/ D sup
k2R

Œkq �W.k/
 (5.90)

implying that PJ;N .qN D q/ is itself a self-averaging quantity, converging to a
delta function as N !1. The non-self-averaging character of PJ;N .qN D q/ thus
requires that, as N ! 1, it rather becomes a smooth, non-trivial, function with a
finite bounded support Œqmin; qmax
. As a consequence

W.k/ �
8
<

:

kqmin if k � 0�

kqmax if k � 0C
(5.91)

so that W.k/ is not differentiable at k D 0.
Note that while PJ .q/ D limN!1 PJ;N .qN D q/ is not self-averaging, its

support Œqmin; qmax
 is self-averaging and, moreover,

qmin;max D lim
k!0�

d

dk
W.k/ (5.92)

This result can be considered as a distinctive feature of a replica symmetry breaking
[46].

On the basis of these results it follows that PJ;N .qN D q/ obeys a large deviation
principle

PJ;N .qN D q/ � AJ .q/ e�NSJ .q/; N � 1 (5.93)

with SJ .q/ D 0 if q 2 Œqmin; qmax
 and SJ .q/ > 0 if q 62 Œqmin; qmax
. The rate
function may depend on the disorder realization, but its convex envelop � .q/ given
by Eq. (5.90) is self-averaging.

We have derived these results using the theory of the products of random
matrices, however their validity is more general and can be extend to other random
systems where random matrices cannot be used, see e.g. Ref. [50].
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Fig. 5.6 The cumulant generating functionW.k/ (top) and its Legendre Transform � .q/ (bottom)
for the random Ising chain with Ji D 1 and hi D �i � �iC1, where P.�i / D ı.�2i � 1/, at zero
temperature. A closer look of W.k/ about k D 0, inset top panel, reveals that its derivative W 0.k/

is continuous as k ! 0˙, so that qmin D qmax D q� D W 0.k D 0/

5.3.2 Random Field Ising Model

We conclude this section by reporting some results for the random Ising chain with
Ji D 1 and random fields hi D �i � �iC1, where � are independent identically
distributed random variables taking the value ˙1 with equal probability. As a
consequence of the site correlation of the field hi frustration is important, and the
zero temperature entropy does not vanishes. The function W.k/ D �.k/ � �.0/,
evaluated from the Lyapunov exponent of the product of random matrices, is shown
in Fig. 5.6 for zero temperature. The function is smooth and differentiable for all k,
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indicating that PJ;N .qN D q/ � ı.q� q�/ as N !1. The value of q� is obtained
from the slope of W.k/ at the origin: q� D limk!0 W

0.k/ ' 0:256. Its non-zero
value confirms the relevance of frustration, though there is no replica symmetry
breaking. For other results for the random Ising chain along these lines see, e.g.,
Ref. [51].

5.4 A Final Word

This contribution is an introduction to the use of large deviations to study properties
of disordered systems. We have intentionally put more emphasis on low dimensional
systems, where product of random matrices can be employed, for its pedagogical
impact. The intent was indeed to write a simple and easy introduction to the subject,
leaving out all unnecessary mathematics and advanced methods, focusing on the
basic ideas behind the application of large deviations to disordered systems. As a
consequence the contribution does not pretend to be exhaustive, nor self-contained.
The reader interested in details on calculations is then referred to the references.
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Chapter 6
Large Deviations in Monte Carlo Methods

Andrea Pelissetto and Federico Ricci-Tersenghi

Abstract Numerical studies of statistical systems aim at sampling the Boltzmann-
Gibbs distribution defined over the system configuration space. In the large-volume
limit, the number of configurations becomes large and the distribution very narrow,
so that independent-sampling methods do not work and importance sampling is
needed. In this case, the dynamic Monte Carlo (MC) method, which only samples
the relevant “equilibrium” configurations, is the appropriate tool.

However, in the presence of ergodicity breaking in the thermodynamic limit
(for instance, in systems showing phase coexistence) standard MC simulations are
not able to sample efficiently the Boltzmann-Gibbs distribution. Similar problems
may arise when sampling rare configurations. We discuss here MC methods that
are used to overcome these problems and, more generally, to determine thermo-
dynamic/statistical properties that are controlled by rare configurations, which are
indeed the subject of the theory of large deviations.

We first discuss the problem of data reweighting, then we introduce a family
of methods that rely on non-Boltzmann-Gibbs probability distributions, umbrella
sampling, simulated tempering, and multicanonical methods. Finally, we discuss
parallel tempering which is a general multipurpose method for the study of
multimodal distributions, both for homogeneous and disordered systems.

6.1 Introduction

Statistical mechanics was developed at the end of the nineteenth century to
provide a theoretical framework to thermodynamics. However, the complexity
of the formulation made ab initio calculations essentially impossible: only ideal
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(noninteracting) systems could be treated exactly, the two-dimensional Ising model
being a notable exception. To understand the behavior of more complex systems,
crude approximations and phenomenological models, in most of the cases only
motivated by physical intuition, were used. The understanding of statistical systems
changed completely in the late 1950s, when computers were first used [1–4].
The first machine calculations showed that the behavior of macroscopic systems
containing a large number of molecules (of the order of the Avogadro’s number,
NA � 6:022 
 1023) could be reasonably reproduced by relatively small systems
with a number of molecules of the order of 102–103, which could be simulated with
the computer facilities of the time. These results, which, for many years, were met
with skepticism by the more theoretically-oriented part of the statistical-mechanics
community, opened a new era: theoreticians had their own laboratory, in which they
could analyze the behavior of different systems under well-controlled theoretical
conditions. Since then, numerical methods have been extensively used and have
provided quantitatively accurate predictions for the behavior of many condensed-
matter systems. Similar methods have also been employed in many other fields of
science, from high-energy physics (in the 1970s the first lattice QCD simulations
were performed) to astrophysics, chemistry, biology, statistics, etc.

The Monte Carlo (MC) method is one of the most powerful techniques for
the simulation of statistical systems. Since the Boltzmann-Gibbs distribution is
strongly concentrated in configuration space, MC methods implement what is called
importance sampling: points in configuration space are not generated randomly,
but according to the desired probability distribution. In practice, in a MC simu-
lation one only generates typical configurations, i.e. those that most contribute to
thermodynamic averages. From a mathematical point of view, a MC algorithm is a
Markov chain that (a) is stationary with respect to the Boltzmann-Gibbs distribution
and (b) satisfies ergodicity (mathematicians call the latter property irreducibility). If
these two conditions are satisfied, time averages converge to configuration averages:
hence, by using the MC results one can compute ensemble averages for the system
at hand. While condition (a) is usually easy to satisfy—the Metropolis algorithm is
a general purpose method to define a Markov chain that satisfies (a)—condition (b)
is more subtle. Indeed, in the presence of phase transitions or of quenched disorder,
a statistical system may show an infinite number of inequivalent thermodynamic
states in the infinite-volume limit, which in turn implies ergodicity breaking for any
(physical or MC) local dynamics. For instance, consider the Ising model in a finite
volume with some boundary conditions that do not break the up-down symmetry
(for instance, the usual periodic boundary conditions). Since the symmetry is exactly
preserved, the magnetization per site m is exactly zero. However, if the temperature
T is low enough, in any MC simulation of a sufficiently large system one observes
that the system magnetizes, i.e. m is equal either to m0 or to �m0. This result
can be easily understood. The correct distribution P.m/ of the magnetization has
maxima Pmax at ˙m0 and a minimum Pmin at m D 0. The important point is that
the ratio Pmin=Pmax is extremely small, of the order of e�aNp , a; p > 0, where N
is the number of system variables. To obtain the correct average one should sample
all relevant configurations, i.e., both those that have m � m0 and those that have
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m � �m0. But these two regions of configuration space are separated by a barrier
of rare configurations, i.e. that occur with an exponentially small probability and
which, therefore, are never sampled—importance sampling MC samples only the
typical configuration space. Hence, any simulation gets stuck in one of the two
minima, ergodicity is lost, and therefore MC does not provide the correct answer.

In this contribution we wish to discuss MC methods that are used to overcome
the problem of ergodicity breaking and, more generally, to determine thermo-
dynamic/statistical properties that are controlled by rare configurations, which
are indeed the subject of the theory of large deviations [5]. In this contribution
we will first discuss the problem of data reweighting, then we will introduce
a family of methods that rely on non-Boltzmann-Gibbs probability distributions,
umbrella sampling, simulated tempering, and multicanonical methods. Finally, we
will discuss parallel tempering which is a general multipurpose method for the study
of multimodal distributions, both for homogeneous and disordered systems.

6.2 Data Reweighting

In this contribution we shall work in the canonical ensemble, considering configu-
rations x distributed according to the Boltzmann-Gibbs probability density

�ˇ.x/ D e�ˇH.x/

Zˇ
;

where H.x/ is the energy function and the normalizing constant Zˇ is the partition
function at inverse temperature ˇ. Note that the energy function H is extensive,
i.e., proportional to the number N of system variables; in the thermodynamic limit
N !1, the distribution �ˇ.x/ becomes peaked around its maximum. We indicate
by h
iˇ the average with respect to �ˇ.x/.

The dynamic MC method which uses importance sampling can efficiently sample
from a distribution which is strongly concentrated in the space of configurations
as �ˇ.x/ is for large values of N . Thus, a MC run at ˇ0 allows us to compute
any interesting thermodynamic quantity at ˇ0. However, suppose that we are also
interested in the behavior at a different temperature ˇ1: do we need to run a new MC
simulation or can we re-use the data collected at ˇ0? The answer mainly depends on
the energy function H.x/, on how close ˇ1 and ˇ0 are, and, though this is usually
much less relevant, on the amount of data collected at ˇ0.

In this context one useful technique is called data reweighting [6–8]. If A.x/ is
any observable, its average at ˇ1 can be expressed as

hAiˇ1 D
P

x A.x/e
�ˇ1H.x/

P
x e

�ˇ1H.x/ D
P

x A.x/e
��ˇH.x/e�ˇ0H.x/P

x e
��ˇH.x/e�ˇ0H.x/

D hAe
��ˇH iˇ0

he��ˇH iˇ0
;

(6.1)
where�ˇ D ˇ1 � ˇ0.
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Though in principle this formula solves the problem, in practice it is only useful
if the two averages at ˇ0 can be computed with reasonable accuracy. But this is
not obvious. Since H is extensive, the calculation of averages involving e��ˇH is a
large-deviation problem for N !1. Therefore, accurate results are only obtained
if rare configurations, i.e. configurations that have an exponentially small probability
for N !1, are correctly sampled. From a physical point of view the origin of the
difficulties can be understood quite easily. Problems arise because configurations
sampled by the MC at ˇ0 are not those giving the largest contribution to hAiˇ1 ,
since �ˇ1.x/ and �ˇ0.x/ are strongly concentrated on different configurations. If
we call Dˇ the set of typical configurations of �ˇ.x/,1 then the estimate of hAiˇ1
obtained by data reweighting is reliable only if the configurations obtained at ˇ0
sample well enough Dˇ1 . Usually this requirement is stated by saying that the
energy histograms at inverse temperatures ˇ0 and ˇ1 should overlap. This statement
is qualitatively correct, although of little practical use, given that we do not know
the energy histogram at ˇ1 (this is something we would like to compute from the
data measured at ˇ0).

Data reweighting provides also the answer to a second problem that arises in
many different contexts, that of computing free energy differences. In the canonical
ensemble one would consider the Helmholtz free energy F.ˇ/ D �ˇ�1 lnZˇ .
Given F.ˇ0/, one can compute F.ˇ1/ by using

ˇ1F.ˇ1/� ˇ0F.ˇ0/ D � lnhe��ˇH iˇ0 D lnhe�ˇH iˇ1 : (6.2)

The same type of averages appear here as in Eq. (6.1) and indeed, this type of
computations suffers from the same problems discussed above.

We wish now to make this qualitative discussion quantitative. For this purpose,
let us compute the statistical error on hAiˇ1 . Since this quantity is expressed as a
ratio of two mean values, the variance of the estimator can be obtained by using the
general expression

�2est � var

 
1
n

P
i Ai

1
n

P
i Bi

!
D 1

n

hAi2
hBi2

˝
O2
˛
.1C 2	O/CO.n�2/ ; (6.3)

where n is the number of measurements performed,

O D A

hAi �
B

hBi ; (6.4)

and 	O is the integrated autocorrelation time associated with O . Equation (6.3) is
valid as n ! 1, neglecting corrections of order n�2. In our case the relevant
quantity is

˝
O2
˛
. If we specialize Eq. (6.4) to our case, we obtain

1 A precise definition of Dˇ is not necessary for our purposes. For example, we can consider for
Dˇ the smallest set of configurations such that

P
x2Dˇ

�ˇ.x/ > 1� ".
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hO2i0 D
*�

Ae��ˇH

hAe��ˇH i0 �
e��ˇH

he��ˇH i0
�2+

0

D
*�

A

A1
� 1

�2
e�2�ˇH
˝
e��ˇH

˛2
0

+

0

D Z2
0

Z2
1

*�
A

A1
� 1

�2+

2

˝
e�2�ˇH

˛
0
D Z0Z2

Z2
1

*�
A

A1
� 1

�2+

2

:

Here we have introduced ˇ2 D 2ˇ1 � ˇ0, h
iˇi has been written as h
ii , and A1 D
hAi1. In terms of the Helmholtz free energy F.ˇ/ we have

hO2i0 D
*�

A

A1
� 1

�2+

2

eNf .ˇ0;ˇ1/ ;

where

Nf .ˇ0; ˇ1/ D 2ˇ1F.ˇ1/� ˇ0F.ˇ0/ � ˇ2F.ˇ2/ :

The extensivity of the free energy F.ˇ/ implies that f is finite for N ! 1. It is
easy to show that f is a positive function and increases as jˇ0 � ˇ1j increases.
Indeed, using E D @.ˇF /=@̌ and CV D @E=@T at constant volume (in our
language at constantN ), we can rewrite

Nf .ˇ0; ˇ1/ D
Z ˇ1

ˇ0

ŒE.ˇ0/� E.ˇ0 C ˇ1 � ˇ0/
dˇ0 D

D
Z ˇ1

ˇ0

�
ˇ0 � ˇ0
ˇ02 CV .ˇ

0/C ˇ1 � ˇ0

.ˇ0 C ˇ1 � ˇ0/2 CV .ˇ
0 C ˇ1 � ˇ0/

	
dˇ0 :

The positivity of the specific heat immediately implies that f .ˇ0; ˇ1/ > 0. For
jˇ1 � ˇ0j 	 1 we can expand f .ˇ0; ˇ1/ in powers of ˇ1 � ˇ0, obtaining

f .ˇ0; ˇ1/ D cV

ˇ20
.ˇ1 � ˇ0/2 ; (6.5)

where cV D CV =N is the specific heat per system variable at ˇ D ˇ0. Collecting
all terms we obtain for the variance of the estimate

�2est

hAi21
D 1

n

h.A�A1/2i2
A21

eNf .ˇ0;ˇ1/.1C 2	O/CO.n�2/ :

Since Eq. (6.1) is a ratio, the estimate is also biased. The bias can be easily computed
in the case of independent sampling (if correlations are present formulae are more
involved, but the conclusions reported below remain unchanged). Using
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bias

 
1
n

P
i Ai

1
n

P
i Bi

!
D
*
1
n

P
i Ai

1
n

P
i Bi

+
� hAihBi D

D 1

2n

hAi
hBi

�
varO � varA

hAi2 C
varB

hBi2
	
CO.n�2/ ; (6.6)

we easily check that also the bias is proportional to expŒNf .ˇ0; ˇ1/
.
We can also compute the error ��F on the free-energy difference as computed

by using Eq. (6.2). We have

�2�F D
� he�2�ˇH i0
he��ˇH i20

� 1
	
.1C 2	/ � Z2Z0

Z2
1

.1C 2	/ D eNf .ˇ0;ˇ1/.1C 2	/ ;

where 	 is the integrated autocorrelation time associated with e��ˇH . Note that the
same exponential factor occurs also here.

The presence of the exponential term sets a bound on the width of the interval in
which data reweighting can be performed. Requiring �est=hAi1 	 1 we obtain

1

n
expŒNf .ˇ0; ˇ1/
	 1 ;

which implies for small values of �ˇ D ˇ0 � ˇ1 the condition

j�ˇj 	 �ˇmax � ˇ0
p

ln n=.NcV / : (6.7)

Notice that this bound depends on the model under study (through the specific heat
cV at ˇ0) and on the system size, as N�1=2, while the dependence on the number of
measurements is only logarithmic. The dependence of �ˇmax on .NcV /�1=2 can be
physically explained: energy fluctuations at ˇ0 are of order .NcV /1=2 and are thus
comparable to the energy difference E0 � E1 / NcV �ˇmax, only if �ˇmax scales
like .NcV /�1=2.

The origin of the function f can be better understood by a physical argument
which relies on the intuitive idea of the histogram overlaps. Indeed, the probability
that a configuration x generated according to �ˇ0.x/ is in Dˇ1 is given by

X

x2Dˇ1
�ˇ0.x/ D eˇ0F.ˇ0/

X

x2Dˇ1
e�ˇ0H.x/ '

' eˇ0F.ˇ0/eS.ˇ1/�ˇ0E.ˇ1/ � e�S�ˇ0�E ; (6.8)

where S D ˇ.E�F / is the entropy. To obtain the second equality we have assumed
that all configurations in Dˇ1 have the same energy E.ˇ1/ and that their number
is eS.ˇ1/, which is fully justified in the thermodynamic limit. Given that both �S
and �E are extensive, the probability in Eq. (6.8) is exponentially small in N .
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Fig. 6.1 Error on the energy E.ˇ/ for two different sets of data (we use squares and circles to
distinguish them). We report: (empty symbols) the error computed using Eq. (6.3), (solid symbols)
the error computed using the jackknife method, (continuous line) c eNf=2 obtained by using
Onsager’s expression for the free energy, (dashed line) c eNf=2 using the approximation in Eq. (6.5)
and the value of the specific heat at the critical point; c is the error at the critical point. The vertical
dotted lines give the interval in which we have 100 “good” measures, as defined in the text

The corresponding large deviation (or Cramér) function is given by ˝.ˇ0; ˇ1/ D
�s � ˇ0�e, with s D S=N and e D E=N . For small jˇ1 � ˇ0j we have

N˝.�ˇ/ D
Z T1

T0

dT

�
CV

T
� CV
T0

�
� �CV �ˇ

2

2ˇ20
� �1

2
Nf .ˇ0; ˇ1/ ;

where CV is the specific heat at ˇ0. The number of “good” measurements for the
estimate of hAiˇ1 (i.e., those in Dˇ1) is then n exp.�Nf =2/. The reweighting is
reliable if this number is much larger than 1, which again implies condition in
Eq. (6.7).

To give an example on how the method works, let us consider the Ising model
on a square lattice of size N D 1002 and let us perform a simulation at the critical
inverse temperature ˇc D log.

p
2C 1/=2. We wish to compute hEiˇ in an interval

around the critical point. In Fig. 6.1 we report the statistical error on this quantity
obtained by reweighting 104 independent measurements. The error computed by
using Eq. (6.3) first increases significantly and then decreases exponentially as
jˇ � ˇc j becomes large. This behavior is due to the fact that the reweighted dataset
becomes dominated by a single data point and fluctuations within the reweighted
dataset disappear. However, this decrease is inconsistent with the exact expression
we have derived above—and also with physical intuition—which shows that the
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error should always increase as jˇ � ˇcj increases. The origin of this discrepancy
is related to the fact that, as we move out of the critical point, not only does the
error on the energy increase, but also the error on the error increases, hence also
the error becomes unreliable. It is important to stress that in any case �est cannot
be computed by using Eq. (6.3) as soon as the error becomes large. Indeed, that
relation is an asymptotic formula valid as long as the neglected corrections (of
order n�2) are small. But it is clear that, when the leading term is large, also the
corrections become relevant, making the formula unsuitable for the computation
of the error. In this case, a more robust method should be used, like the jackknife
method [9, 10]. The jackknife error behaves better, but also this method becomes
unreliable when the reweighted dataset concentrates on very few data points (those
with the largest or smallest energy, depending on the sign of �ˇ). In practice, the
jackknife error converges for large jˇ � ˇcj to the absolute value of the difference
between the two largest (or smallest) energy data points. It is interesting to compare
the error determined from the numerical data with the exact result. Hence, in the
figure we also report c exp.Nf=2/, where c is the error at the critical point and f
has been computed by using Onsager’s expression [11, 12] for the free energy. It
is clear that the error computed from the MC data becomes immediately unreliable
as soon as jˇ � ˇc j & 0:01. Indeed, the true error increases quite fast and becomes
enormous outside this small interval. For instance, for the extreme case ˇ D 0 we
have f .ˇc; 0/ D 0:473 so that exp.Nf =2/ � 101027. In Fig. 6.1 we also report the
interval in which we have at least m D 100 good measures, where m is defined by
n exp.�Nf=2/, as discussed above. In this range the jackknife and the asymptotic
error estimates agree, as expected. Moreover, in this interval also the quadratic
approximation in Eq. (6.5) is quite accurate.

6.3 Multiple Histogram Method

Given that the reweighting method can cover only a limited temperature range of
width �ˇmax around the temperature ˇ0 where the original data were collected,
one could improve it by running new simulations at ˇ1, with jˇ1 � ˇ0j > �ˇmax,
but such that, combining all measured data, the entire range .ˇ0; ˇ1/ is covered.
More generally, suppose one has performed MC simulations at R different inverse
temperatures fˇi giD1;:::;R. What is the best way to combine these R datasets to
estimate average values hAiˇ at any ˇ?

The most naive method would consist in performing a weighted average of the
reweighted data. To explain the shortcomings of this approach, let us assumeR D 2
and, for instance, let us consider a value of ˇ between ˇ1 and ˇ2 which is closer
to ˇ1 than to ˇ2. A formally correct strategy to compute an average hAiˇ could be
the following. We first use the data at ˇ1 to obtain an estimate A1 with error �1 and
then the data at ˇ2 to obtain an estimate A2 with error �2. Since ˇ is not close to
ˇ2, A2 has a somewhat large error; but, what is worse, also the error estimate �2
has a somewhat large error. Hence, �2 as estimated from the data could be largely
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underestimated, as we have seen in Sect. 6.2. Finally, one could combine the two
estimates as

A12 D A1�
�2
1 C A2��2

2

��2
1 C ��2

2

:

But, if �2 is largely underestimated, we would give too much weight to A2, adding
essentially noise and not signal to A1. In these cases A12 would be a worst estimate
than A1.

A much better method has been proposed by Ferrenberg and Swendsen [13].2

Before presenting the method let us define a few fundamental quantities. For
simplicity, let us assume that the system is discrete so that the energy takes discrete
values. Then, we introduce the density of states �.E/ which is defined such that

Zˇ D
X

E

�.E/e�ˇE ;

and the energy histogram variable h.E0; ˇ/ defined by

h.E0; ˇ/ D hıE;E0iˇ D
1

Zˇ

X

E

�.E/ıE;E0e
�ˇE D 1

Zˇ
�.E0/e

�ˇE0 : (6.9)

The latter quantity has the important property

var Œh.E0; ˇ/
 D hı2E;E0iˇ � hıE;E0i2ˇ D h.E0; ˇ/Œ1 � h.E0; ˇ/
 � h.E0; ˇ/ ;

where we have used the obvious property ı2E;E0 D ıE;E0 and, in the last step, that
h.E0; ˇ/	 1.

We can now define the method. Suppose we have taken ni independent measure-
ments3 at ˇi and let us denote with Ni.E/ the number of measures with energy
E . The ratio Ni.E/=ni is an estimator of the histogram variable h.E; ˇi /. Using
Eq. (6.9) we can estimate �.E/ using the data at ˇi as

�i .E/ � n�1i Ni .E/eˇiEZi ;

whereZi , the partition function at ˇi , has still to be determined. The variance of the
estimator of �i .E/ can be easily computed if one assumes that Zi is known exactly.
Indeed, with this assumption

2 It is interesting to observe that, for R D 2, the multiple histogram method is equivalent to
Bennett’s acceptance ratio method [14] which was developed for liquid systems.
3 In the case the measures are correlated with an autocorrelation time 	i , then an effective Qni D
ni=.2	i C 1/ should be used in all following formulae.



170 A. Pelissetto and F. Ricci-Tersenghi

�2i .E/ D n�1i var Œ�.E/
 D n�1i e2ˇiEZ2
i var Œh.E; ˇi /
 D

D n�1i e2ˇiEZ2
i h.E; ˇi / D n�1i eˇiEZi�.E/ :

In the usual error analysis one would replace �.E/ in the r.h.s. with its estimator �i .
Since we know that this estimator may be very imprecise—it provides an accurate
estimate of �.E/ only if E is a typical energy at inverse temperature ˇi—we do
not do it here. This is a crucial point in the method and it is the one that guarantees
the robustness of the results. It is also important to stress that �i is not the “true”
error, since Zi is also a random variable which has to be determined. However, we
will only use �i to write down a weighted average of the estimators �i .E/. For
this purpose, it is not necessary that the weights are correct variances or estimates
thereof.4 A robust estimate of the density of states using all R datasets is given by a
weighted average, where each estimate �i .E/ enters with a weight proportional to
1=�2i .E/:

�.E/ D
RX

iD1
�i .E/

1=�2i .E/PR
jD1 1=�2j .E/

D
PR

iD1 Ni.E/PR
jD1 nj e�ˇj E Z�1

j

: (6.10)

At this point it is important to stress two important differences between this method
and the naive method presented at the beginning. First, observe that for any givenE ,
the only runs that contribute to the determination of �.E/ are those for which
Ni.E/ 6D 0. This means that we are using the data at ˇi only where they are
relevant. Moreover, the estimate of the error �i is robust, since it follows from an
exact identity for the histogram variable.

Equation (6.10) still depends on the unknown partition functions Zi . They can
be determined in a self-consistent way by noticing that

Zk D
X

E

�.E/e�ˇkE D
X

E

PR
iD1 Ni.E/PR

jD1 nj e.ˇk�ˇj /E Z�1
j

: (6.11)

which can be rewritten as

X

E

PR
iD1 Ni.E/PR

jD1 nj e.ˇk�ˇj /E .Zk=Zj /
D 1 :

4We remind the reader of a few basic facts. If Ai are different estimates of the same quantity, i.e.,
they all satisfy hAi i D a, any weighted average Awt D P

wiAi ,
P

i wi D 1, is correct in the
sense that hAwti D a. Usually, one takes wi D k��2

i (k is the normalization factor) because this
gives the optimal estimator, that is the one with the least error. Here, however, robustness and not
optimality is the main issue.
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The consistency condition gives us R equations for the partition function ratios
Zi=Zj . Since the number of independent ratios is R � 1, one would expect only
R � 1 independent equations and, indeed, the R equations are linearly dependent:

RX

kD1
nk
X

E

PR
iD1 Ni.E/PR

jD1 nj e.ˇk�ˇj /E .Zk=Zj /
D
X

E

RX

iD1
Ni .E/ D

RX

iD1
ni :

To solve the problem one proceeds iteratively. We define OZk D Zk=Z1 and rewrite
Eq. (6.11) as

OZk D
X

E

PR
iD1 Ni.E/PR

jD1 nj e.ˇk�ˇj /E OZ�1
j

:

A first estimate of OZk can be obtained by using the data reweighting method
presented before.5 The first estimate the OZi ’s is plugged on the r.h.s. and the l.h.s.
provides a new estimate, which is used again in the r.h.s. to get a third estimate and
so on. Since we are only able to compute the ratios of the partition functions, we do
not obtain at the end �.E/ but rather �.E/=Zi for all values of i . However, this is
enough to compute averages of functions of the energy since

hg.E/iˇi D
X

E

g.E/e�ˇiEŒ�.E/=Zi 
 :

or ratios of partition functions

Zˇ

Zi
D
X

E

e�ˇEŒ�.E/=Zi 
 :

The procedure we have presented can be generalized to allow us to compute
averages of generic observables A.x/. In this case, the basic quantities are the joint
histogram with respect to E and A

h.E0;A0; ˇ/ D hıE;E0ıA;A0iˇ ;
its estimator Ni.E0; A0/=ni , and the density of states �.E0; A0/ which counts the
number of states such that E D E0 and A D A0. Repeating the same steps as
before, we end up with

�.E;A/ D
PR

iD1 Ni.E;A/PR
jD1 nj e�ˇj E Z�1

j

:

5If the inverse temperatures ˇi are ordered, one could determineZi=Zi�1 by using the reweighting
method and then OZi D .Zi =Zi�1/.Zi�1=Zi�2/ : : : Z2=Z1.
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Once �.E;A/=Zi is known, any average involving E and A can be directly
computed.

It is worth noticing that the use of histograms in the multiple histogram method
(which is in general information degrading) is not strictly necessary if one is able to
save the full configurations or, at least, the measurements Ai;t and Ei;t at each MC
time t . Indeed, the consistency equations can be rewritten as

OZk D
X

i;t

1
PR

jD1 nj e.ˇk�ˇj /Ei;t OZ�1
j

;

where Ei;t is the t-th energy measurement at ˇi , while the average of any quantity
at any inverse temperature ˇ can be computed as

hAiˇ D OZ�1
ˇ

X

i;t

Ai;tP
j nj e

.ˇ�ˇj /Ei;t OZ�1
j

;

with

OZˇ D
X

i;t

1
P

j nj e
.ˇ�ˇj /Ei;t OZ�1

j

:

Remember that each term entering the sums in the denominators is exponential inN .
Much care needs to be taken in doing these sums, since the summations involve
terms of very different sizes, and even a single term can exceed the range of floating-
point numbers. The suggestion is to work with the logarithms of these terms.

6.4 Umbrella Sampling and Simulated Tempering

6.4.1 Umbrella Sampling

In the previous sections we have shown how to use several runs at ˇ1 < : : : < ˇR to
compute averages for any ˇ in the interval Œˇ1; ˇR
 and to compute free energy
differences. The umbrella sampling (US) method was introduced by Torrie and
Valleau [15] to perform the same tasks by means of a single simulation. The idea
consists in performing MC simulations with a non-Boltzmann-Gibbs distribution
function of the form

�.x/ D 1

Z�

RX

iD1
˛i e

�ˇiH.x/ ; (6.12)
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where i runs over the R different temperatures, Z� is the normalizing factor,
and ˛i are positive constants that should be carefully chosen as described below.
By sampling the distribution in Eq. (6.12) one aims at sampling in a single run the
configurations that are typical for all ˇi ’s and, as a consequence, all configuration
space which is relevant for the computation of hAiˇ with ˇ1 � ˇ � ˇR. In order
for the method to work two requirements should be satisfied. First of all, the
temperatures should be finely spaced, so that typical configurations at inverse
temperature ˇi overlap with those at ˇi˙1. If this does not occur, the system is
unable to move in configuration space and does not visit the typical configuration
domain of all ˇi ’s. This condition is the same that occurs in the application of the
data reweighting method. Using the results presented in Sect. 6.2 and, in particular,
Eq. (6.7), we can conclude that jˇi �ˇiC1j should scale as .cV N /�1=2: if the system
size is increased, temperatures should be closer. A second important condition
fixes the coefficients ˛i or, more precisely, their ratios. We require that the typical
configuration domains at each ˇi have approximately the same probability under
� . Using the notations of Sect. 6.2, the probability of the typical domain Dˇk is
given by

X

x2Dˇk
�.x/ D 1

Z�

X

i

˛i
X

x2Dˇk
e�ˇiH.x/ � 1

Z�
˛kZk :

Therefore, we require

1

Z�
˛iZi D 1

Z�
˛jZj ) ˛i

˛j
D Zj

Zi
D eˇiF .ˇi /�ˇj F.ˇj / : (6.13)

Hence the ratios ˛i=˛j must be related to the free-energy differences. This is a
shortcoming of the method, since these differences are exactly one of the quantities
one wishes to compute from the simulation. However, the algorithm is correct,
though not optimal, for any choice of the ˛i ’s, so that it is enough to have a very
rough estimate of the free-energy differences to run a US simulation. Note that we
only fix the ratios of the ˛i ’s: this is not a limitation since one can always set, say,
˛1 D 1, by redefining Z� . Once the US simulation has been performed, one can
compute averages with respect to the Boltzmann-Gibbs distribution by using

hAiˇ D hAe
�ˇH.

P
i ˛i e

�ˇiH /�1i�
he�ˇH.Pi ˛i e

�ˇiH /�1i� : (6.14)

6.4.2 Simulated Tempering

As the US method, also the simulated tempering (ST) method [16, 17] aims at
sampling the configurations that are typical at a set of inverse temperatures ˇ1 <
: : : < ˇR and, indeed, it represents a stochastic version of the US method. In the ST
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case, one enlarges the configuration space by adding an index i which runs from 1
to R. Hence, a configuration in the ST simulation is a pair .x; i/. Configurations are
sampled with probability (˛i > 0)

˘.x; i/ D ˛ie
�ˇiH

Zi
: (6.15)

As in the US method, the temperatures and the coefficients ˛i should be carefully
chosen, using the same criteria we discussed in the US case. In particular, also the
ST method requires an a priori determination of the free energy differences. As we
discuss in Sect. 6.4.3, the ST and the US method are essentially equivalent, although
the ST has a practical advantage: it is trivial to modify a standard MC code into a ST
code (we discuss in Sect. 6.4.3 how to implement ST), while significant more work
is needed to implement the US method.

6.4.3 Equivalence of Simulated Tempering and Umbrella
Sampling

Madras and Piccioni [18] have analyzed the US and ST methods and shown their
equivalence under very general conditions, that are usually satisfied in practical
applications. We will present here their results trying to avoid all mathematical
details. Let us first extend the US method to a general family of probabilities.
Consider a state space S and a family of probability functions �i .x/, i D 1; : : : R,
defined on S . We assume the state space S to be discrete, to avoid mathematical
subtleties, but the arguments can be easily extended to the continuous case. In
physical terms S is the space of the configurations, while �i are the Boltzmann-
Gibbs distributions e�ˇiH =Zi . A general umbrella probability is given by

�.x/ D
X

i

ai�i .x/
X

i

ai D 1; ai > 0 :

The coefficients ai are related to the coefficients ˛i defined before by ai D
˛iZi=Z� , while the optimality condition in Eq. (6.13), which is not assumed to
be satisfied in the following, becomes ai=aj D 1.

By means of a single MC simulation (i.e., by considering a Markov chain that
has � as stationary distribution) one generates a set of points x1; : : : ; xn in S . If
A.x/ is a function defined on S , the sample average converges to the average with
respect to � as n!1:

1

n

nX

kD1
A.xk/!

X

x

�.x/A.x/ D hAi� :
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One can also obtain averages with respect to any of the probabilities �i , by simply
reweighting the data. Equation (6.14) can be rewritten as

hAii D
X

x

�i .x/A.x/ D h�iA=�i�h�i=�i� : (6.16)

Let us now formulate the ST method in the same framework. The idea is to enlarge
the state space S to

S 0 D S � f1 : : : ; Rg
(we shall often call the additional index a label) and consider the probability
˘.x; i/ D ai�i .x/ on S 0.

We first show that the ST and the US methods generate equally distributed points
in S . Suppose that we use a general MC algorithm on S 0 (mathematically, a Markov
chain that has ˘ as stationary distribution) to generate data .x1; i1/, : : :, .xn; in/.
If A.x/ is a function defined on S , the sample mean converges to ˘ -averages as
n!1:

1

n

nX

kD1
A.xk/!

X

x;i

A.x/˘.x; i/ D
X

x;i

A.x/ai�i .x/ D
X

x

A.x/�.x/ :

Roughly speaking, this means that, if we start the MC in equilibrium, x1, : : : xn
are distributed according to the umbrella sampling distribution, as if they had been
obtained by a MC US simulation.

The fact that the US and the ST methods generate data with the same distribution
probability does not imply that dynamics are equivalent in the two methods and
one may wonder whether, by enlarging the state space, one can define algorithms
that can speed up significantly simulations. After all, there is a well-known example
in which this strategy works very nicely: the Swendsen-Wang (or cluster) algorithm
[19] for the Ising model is indeed obtained [20] by enlarging the configuration space
of the Ising spins fsi g to fsi g � fbhijig, where bhiji are the bond occupation variables.
For the case of the US and ST methods, this issue has been investigated in Ref. [18],
for the case in which each system is updated by means of the Metropolis algorithm.

Let us first define the specific update considered in Ref. [18] for ST. This
is not the most general one, but it corresponds to the update used in practical
implementations. If .x; i/ is the present configuration, an iteration consists first
in updating the label i , followed by an update of the configuration x. Labels are
updated using the conditional probability of the labels at fixed x: a new label j
is chosen with probability aj �j .x/=

P
kŒak�k.x/
 D aj �j .x/=�.x/. Then, a new

configuration y 2 S is chosen by using a MC method appropriate for the system
with probability �j , i.e. the system is updated with a Markov chain Tj .x; y/ which
is stationary with respect to �j (we remind the reader that this corresponds to the
condition

P
x �j .x/Tj .x; y/ D �j .y/, a formula which will be often used in the

following). The transition matrix is therefore
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P.x; i Iy; j / D aj �j .x/

�.x/
Tj .x; y/ : (6.17)

Note that one often uses the Metropolis algorithm to update the labels, by proposing,
for instance, i ! i ˙ 1. This choice is certainly (slightly) more efficient, but should
not change the general conclusions: the label dynamics should not be the relevant
part of the algorithm. The Markov process in Eq. (6.17) induces a Markov process
on S whose transition matrix is obtained by summing P.x; i Iy; j / over j :

Ps.x; y/ D
X

j

P.x; i Iy; j / D 1

�.x/

X

j

aj �j .x/Tj .x; y/ : (6.18)

Such a process has �.x/ as equilibrium distribution, since

X

x

�.x/Ps.x; y/ D
X

j

aj
X

x

�j .x/Tj .x; y/ D
X

j

aj �j .y/ D �.y/ :

We will finally show that under very general conditions, if the Tj are Metropolis
updates, also Ps is a Metropolis update:

(a) Assume that the probabilities �i .x/ satisfy the following condition: for any pair
x; y 2 S we have either �i .x/=�i .y/ < 1 for all i ’s or �i .x/=�i .y/ � 1

for all i ’s. This is obviously satisfied for Boltzmann-Gibbs distributions. Given
x and y one computes the energies E.x/ and E.y/. If E.x/ > E.y/ then
e�ˇiE.x/=e�ˇiE.y/ < 1 for all ˇi > 0. If the energies satisfy the opposite
inequality, also the ratio of the Boltzmann-Gibbs factors satisfies the opposite
inequality for all ˇi > 0.

(b) The Metropolis update consists in two steps: a proposal in which a new configu-
ration y is proposed, and an acceptance step. We assume that the proposal does
not depend on the label i . For the Boltzmann-Gibbs distribution, this means that,
given configuration x, we propose a new configuration y with a method which
does not depend on temperature. Moreover—most practical algorithms satisfy
this condition—we require the proposal matrix to be symmetric: the probability
of proposing y given x is the same as that of proposing x given y.

For the Metropolis update, if K.x; y/ is the proposal matrix, we have [21]

Ti.x; y/ D K.x; y/min

�
1;
�i .y/

�i .x/

�
x 6D y ;

Ti .x; x/ D 1 �
X

y 6Dx
Ti .x; y/ :

Inserting this expression in Eq. (6.18), we obtain for x 6D y
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Ps.x; y/ D 1

�.x/

X

j

aj �j .x/K.x; y/min

�
1;
�j .y/

�j .x/

�
:

Now, assume that �i .y/=�i .x/ > 1 for all i (we use here assumption (a)). In this
case we have also �.y/=�.x/ > 1 and

Ps.x; y/ D 1

�.x/

X

j

aj �j .x/K.x; y/ D K.x; y/ :

In the opposite case we have instead

Ps.x; y/ D 1

�.x/

X

j

aj �j .x/K.x; y/
�j .y/

�j .x/
D K.x; y/�.y/

�.x/
:

Hence

Ps.x; y/ D K.x; y/min

�
1;
�.y/

�.x/

�
:

But this is the transition matrix of a Metropolis update with respect to the probability
�.x/. Hence, for the Metropolis case there is a complete equivalence between the
US and the ST methods. Madras and Piccioni [18] have also considered the case in
which condition (a) is not satisfied, proving that in this case ST is no better than the
US method (they prove that the probability of null transitions in the US method is
equal or smaller than that in the ST).

Finally, let us compare how averages are computed in the US and in ST methods.
To compute averages with respect to �i in the US method one uses formula (6.16).
This formula also holds for the ST:

hAii D h�iA=�ih�i=�i ; (6.19)

where averages h 
 iwithout any subscript refer to the ST measure˘.x; i/. However,
in ST simulations, one usually considers

hAii D hAIiihIii ; (6.20)

where Ii .x; j / D ıij for every point .x; j / 2 S 0. That is, in Eq. (6.20) only
data at ˇi are used for estimating hAii . The two expressions (6.19) and (6.20) are
clearly different, but not that unrelated. Indeed, one could also determine hAii by
reweighting the data measured at ˇk :

hAii D hA�iIk=�kih�iIk=�ki D Ai;k :
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The average in Eq. (6.20) corresponds to Ai;i . Let us now show that the estimator in
Eq. (6.19) is roughly a weighted average of the Ai;k . Let us define

1

bi
D
D�i
�

E
:

Then, note that in systems of physical interest the supports of the distributions �i are
mostly disjoint: if x is such that �i .x/ is significantly larger than zero, then �k.x/ is
very small for all k 6D i . In physical terms it means that, if we have a configuration
that is typical at temperature ˇi , such a configuration will be not be typical at all
other temperatures. If this holds, then we can approximate

1

�.x/
�
X

k

Ik

ak�k.x/
; (6.21)

so that Eq. (6.19) can be rewritten as

hAii �
X

k

bi

ak

�
A
Ik�i

�k

�
:

Hence, the estimator in Eq. (6.19) is essentially equivalent to the following weighted
average of the Ai;k :

hAii �
X

k

bi

ak

�
�iIk

�k

�
Ai;k : (6.22)

Using Eq. (6.19) to estimate hAii , one is taking into account not only the data with
label i , but all data by means of a proper reweighting as shown by Eq. (6.22). Of
course, Eq. (6.22) is not quantitatively correct, since in practical implementations
there must be configurations that are typical for two distributions (otherwise, the
algorithm would not work): for them the approximation made in Eq. (6.21) fails.
However, the argument gives a direct physical interpretation of Eq. (6.19) as some
kind of, though not exact, reweighting of the data. Note that, when reweighting is
used, there is always the technical problem of determining the weights of the average
(see Sect. 6.3). No such problem arises here: everything is fixed in Eq. (6.19).

6.5 Generalizing the Umbrella Method: Multicanonical
Sampling

Umbrella sampling, like simulated or parallel tempering, provides a way to sample
in the same run different probability distributions along a connected configuration
path P , i.e., a connected subset of the configuration space S such that, if x 2 P ,
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Fig. 6.2 A sketch of the
energy distributions in the
Potts model for q > 4
(first-order transition): the
high-temperature (HT) and
low-temperature (LT)
distributions are unimodal,
while at the critical
temperature (CR) the
distribution is bimodal

x is a typical configuration of at least one of the probabilities �i .x/: in our previous
notationsP should be connected and contained in[RiD1Dˇi . In the presence of first-
order phase transitions this path may not exist, hence the above methods cannot be
applied. As an example let us consider the q-state Potts model on a square lattice.
The model is defined in terms of spins (sometimes called colors) si defined at the
sites of the lattice. Each si can assume q integer values between 1 and q. The
Hamiltonian is given by

Hq.f�g/ D �
X

hiji
ısi ;sj ;

where the sum is over all nearest-neighbor lattice pairs hiji, ıs;s D 1 and ıs;t D 0

if s 6D t . As probability distribution we consider the usual Boltzmann-Gibbs
distribution

� / e�ˇHq :
This model shows two different phases depending on ˇ. For ˇ D ˇc a phase
transition occurs. For q > 4 such a transition is of first order and the energy has
a bimodal distribution at ˇ D ˇc . A sketch of the energy distributions close to the
transition point is reported in Fig. 6.2. Typical high-temperature (HT) distributions
are unimodal and overlap with only one of the peaks appearing at the critical point,
that with the highest energy. Analogously, low-temperature (LT) distributions are
also unimodal; they only overlap with the low-energy peak of the critical-point
distribution. This particular behavior of the energy distributions implies that any
US or ST (these considerations also apply to the parallel tempering method which
will be discussed in the next section) algorithm with local updates of the spins
cannot move rapidly between LT and HT typical configurations. For the mean-
field case (Potts model on a complete graph) and the Metropolis algorithm, this is
indeed a rigorous theorem [22]: the exponential autocorrelation time of Metropolis
ST algorithms increases exponentially with the size of the system. The origin of
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the phenomenon is easily understood qualitatively. Suppose we use any of the
previously mentioned methods and consider a set of temperatures such that ˇ1
is in the HT phase and ˇR is in the LT phase. Start the simulation in the HT
phase. Provided that the temperatures are finely spaced, one would eventually
reach the critical point. Since the configuration has been obtained by cooling a HT
configuration, it has an energy that belongs to the HT peak. Because of the bimodal
nature of the energy distribution at ˇc , local updates at ˇc would only generate
new configurations with energy belonging to the HT peak. Hence, any attempt to
further reduce the temperature would fail, since the configuration would never be
a typical LT configuration. Hence, LT configurations would never be visited. This
argument is quite general and shows that US and ST, when used in combination
with local algorithms, only work when the configuration path does not go through
first-order transitions. A second-order transition should not be a limitation, since at
the transition distributions are broader but usually still unimodal.6

To solve the problem one might consider an enlarged parameter space that allows
one to go from the LT phase to the HT phase without intersecting the first-order
transition point. In the Potts model this could be obtained by adding, for instance,
a magnetic field, but this should in any case be done carefully, to be sure that all
low-temperature degenerate states are equally visited. In practice, these extensions
are usually not efficient.

We now discuss a family of methods that generalize the umbrella sampling
method and are appropriate for the study of first-order transitions. They also work
with a nonphysical distribution function �.x/ which is constructed in such a way
to allow good sampling of both phases. Sometimes that are called multicanonical
algorithms following Berg and Neuhaus [25, 26] that applied these methods to the
study of first-order transitions.

Let us consider again the Potts model and suppose that one is at the transition
point ˇc , or at least very close to it. For q > 4 (the case we are considering now)
the distribution of the energy h.E/ is bimodal, with two maxima at E1 < E2.
If hi D h.Ei / is the value of the distribution at the maximum i , one defines the
multicanonical distribution �.x/ as follows

�.x/ D e�ˇH

Zh1
E.x/ � E1 ;

D e�ˇH

Zh.E/
E1 < E.x/ < E2 ;

D e�ˇH

Zh2
E2 � E.x/ ;

6There are instances of second-order transitions which show bimodal distributions in finite volume
[23, 24]: however, in these cases the two peaks get closer and the gap decreases as the volume
increases. ST should work efficiently in these instances. Note, however, that the algorithm may
not work in some disordered systems, even if the transition is of second order. One example is the
random field Ising model.
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where Z is the partition function for � . If we now compute the distribution of the
energy in the new ensemble, we find

h�.E/ D ˛ h.E/=h1 E.x/ � E1 ;
D ˛ E1 < E.x/ < E2 ;

D ˛ h.E/=h2 E2 � E.x/ ;

where ˛ is a normalization constant. The probability is now flat for E1 < E.x/ <

E2 and thus local algorithms should have no problem in going from one phase to
the other.

The main problem of the method stays in the fact the ˇc as well as h.E/ are not
known beforehand. In practical implementations one may work as follows. First,
one roughly determines the position of the transition point. This can be obtained by
running a hysteresis cycle. One thermalizes a configuration at a value of ˇ which
is deep in the HT phase and measures its energy. Then, one slightly increases ˇ,
thermalizes the configuration at this new temperature and recomputes the energy.
One keeps repeating these steps until the configuration “jumps” in the LT phase:
this is signalled by a big decrease of the energy. Let us call ˇmax this value of ˇ.
Then, one begins a series of runs in which ˇ is decreased until the configuration (for
ˇ D ˇmin) jumps back in the HT phase. The cycle allows one to infer that ˇc lies
in the interval Œˇmin; ˇmax
. In the absence of any other information we can just take
the midpoint as the value of ˇ at which the multicanonical simulation is performed.
Note that it is not needed that such value be an accurate estimate of ˇc . It is only
crucial that at this value of ˇ the distribution is bimodal, i.e. that there is a significant
overlap with both phases.

Once the value of ˇ at which the simulation should be performed has been
chosen, one must determine �.x/. This can be done recursively. We will illustrate
the procedure with an example, considering the liquid-gas transition in a fluid. Here
the number N of molecules present in the system plays the role of order parameter
in the transition (it is the analogue of E in the Potts model), while the grand
canonical distribution �0 D e�ˇHCˇ�N=.N ŠZ/ plays the role of the Boltzmann-
Gibbs distribution. The gas and liquid phases are the analog of the HT and LT Potts
phases. The iterative procedure starts by performing two runs: one run starts from
a gas configuration, while the other run starts from a liquid (dense) configuration.
For each of the two runs (discarding the equilibration transient) we measure the
histograms h0G.N / and h0L.N / of N , see Fig. 6.3 (top, left). We observe two
clearly separated peaks centered around N � 30 and N � 200. Then, we choose
an interval I D ŒNmin; Nmax
 that contains the two peaks. In the present case, we
choose Nmin D 0 and Nmax D 220. Then, we modify the updating step so that
N always belongs to the interval I . This is a crucial modification to have a stable
recursion; of course, this restriction should be eliminated at the end, once �.x/ has
been determined.
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Fig. 6.3 Top, left: we report the distributions h0G.N / and h0L.N / of N at the beginning of the
iterative procedure. Top, right: function Kn.N / after several iterations (n D 5; 10; 20) during the
first part of the procedure. Bottom, left: functionKn.N / at the end of the first part of the procedure
(n D 20) and after otherm iterations following Eq. (6.23). Bottom, right: histogram of N obtained
in a MC simulation using the final umbrella distribution �.x/

The recursion method determines at each step a function Kn.N / and uses
�nC1 / �0=Kn.N / as the distribution function for the next MC simulation. The
function Kn.N / should be such that the new distribution �nC1 is as flat as possible
in the range ŒNmin; Nmax
. Let us first determine the zeroth-order approximation
K0.N /. If M0G D maxh0G.N / and M0L D maxh0L.N /, we define H0G.N / D
h0G.N /=M0G and H0L.N / D h0L.N /=M0L. Then, we set

K0.N / D " if H0G.N / � " and H0L.N / � " ,

K0.N / D H0G.N / if H0G.N / > " and H0L.N / � " ,

K0.N / D H0L.N / if H0G.N / � " and H0L.N / > " .

We have introduced a lower cutoff " on the histograms to discard noisy data (the
longer the runs, the smaller " can be). In the example we use " D 1=200, hence we
use all data except those for which h0G.N / � "MOG ' 1 and h0L.N / � "MOL '
2. Once K0.N / is defined, we perform two runs using �1 / �0=K0.N / and again
determine the distributions h1G.N / and h1L.N /. The successive approximations
Kn.N / are obtained as
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Kn.N / D Kn�1.N / " if HnG.N / � " andHnL.N / � " ,

Kn.N / D Kn�1.N /HnG.N / if HnG.N / > " andHnL.N / � " ,

Kn.N / D Kn�1.N /HnL.N / if HnG.N / � " andHnL.N / > " ,

where Hn.N/ D hn.N /=Mn and Mn is the maximum of hn.N /. The procedure is
repeated several times until the distributions hnG.N / and hnL.N / overlap, i.e., there
is an NN such that HnG. NN/ > " and HnL. NN/ > ". In the example 20 iterations are
needed. In Fig. 6.3 (top, right) we show Kn.N / for n D 5; 10, and 20. To allow
a better comparison, we have multiplied the functions by a constant (irrelevant in
the definition of �n) so that the maximum of Kn.N / is always 1. Note how the
double-peak structure emerges as the number of iterations is increased, in spite of
the fact that there are 26 orders of magnitude between maximum and minimum.
From a practical point of view the procedure can be improved and speeded up in
several ways. First, one can smooth the histograms to eliminate noise. Second, after
a few iterations one can try to guess K.N/: one can fit the peaks with Gaussians
and restart the iterations from the fitted function. Third, one can perform a different
number of iterations in the two phases if the efficiency of the algorithm is phase
dependent. Finally, note that thermalization is needed only in the first run. Then,
one can restart the simulation from the last configurations generated in the previous
iteration.

Once the gas and liquid distributions overlap, there is no longer need of two
different simulations. One performs a single runm times, determines the distribution
hm.N /, its maximum Mm, defines Hm.N/ D hm.N /=Mm, and updates Km as
follows:

Km.N/ D Km�1.N / " if Hm.N/ � " ,

Km.N/ D Km�1.N /Hm.N / if Hm.N/ > " .
(6.23)

In this second part of the procedure it is usually a good idea to increase both " and the
number of iterations, to increase the precision on hm.N /. The obtained Km.N/ for
the specific example are reported in Fig. 6.3 (bottom, left). After m D 6 iterations
following Eq. (6.23), the functionKm.N/ reaches its asymptotic form. Note that this
iterative procedure is quite stable: if we increase the number of iterations, Km.N/

does not change (see the curve for m D 15 in the figure). Once K.N/ has been
determined, we can eliminate the restrictions on N , setting K.N/ D K.Nmax/ for
N > Nmax andK.N/ D K.Nmin/ forN < Nmin. In Fig. 6.3 we report the histogram
ofN obtained by using the final � / �0=Km.N /. All values ofN are visited and in
particular we are sampling in both phases. We can thus use the final �.x/ to analyze
in detail the behavior at coexistence.

It is important to stress that this procedure correctly works for first-order
transitions with two single minima and for which the relevant order parameter is
known, but cannot be applied to study the LT phase of disordered systems, like spin
glasses.
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6.6 Parallel Tempering

6.6.1 General Considerations

In the previous section we have discussed multicanonical sampling, which is
appropriate for the study of first-order transitions. In that case, sampling correctly
all free-energy minima requires the system to visit also the barrier region, where
the probability distribution is extremely small, of the order of e�aNp , where N is
the system size. In the presence of second-order phase transitions, the behavior is
quite different, since the different free-energy minima characterizing the ordered
phase merge at the critical point, giving rise to a single thermodynamic state.
Hence, if one wishes to visit all ordered states, there is no need to go over the
barriers. For instance, consider a thermal second-order transition, as it occurs in
the Ising model. To sample the LT magnetized phases, one can adopt an algorithm
in which temperature is varied. Starting from a LT configuration, one can rise the
temperature till that of the critical point, where all minima merge, then move into
the HT phase, where a single thermodynamic state exists. If the system spends
enough time in the HT phase, it loses memory of the thermodynamic LT phase
it was coming from. Hence, when temperature is decreased again, it may well fall
into a different LT thermodynamic state. This simple argument should convince the
reader that algorithms that allow temperature changes are powerful tools for the
study of the ordered phases in the presence of second-order phase transitions. ST
was indeed devised with this motivation in mind [17]. However, as we discussed
in Sect. 6.4.2, ST has a serious shortcoming: a ST simulation requires some free-
energy differences to be determined before starting the simulation; moreover, the
efficiency of the simulation depends on the accuracy with which these quantities are
determined. These problems can be avoided by using a variant of ST, the parallel
tempering (PT) method, which is, at present, the most efficient general-purpose
algorithm for studying models undergoing second-order phase transitions. The PT
method works well even in very complex models, like spin glasses, that have a very
large number of LT local minima. It is also very useful in systems which, even in the
absence of phase transitions, cannot be simulated efficiently due to the presence of
geometric constraints, like complex molecules in dense systems, or in the presence
of boundaries, or in porous systems, just to name a few examples. In computer
science and statistics, PT is often used in connection with multimodal distributions.

PT has a quite interesting history. It was first introduced in the computer-
science/statistics community by Geyer in 1991 [27], as an efficient method to
sample multimodal probability distributions and it was named Metropolis-coupled
Markov chain Monte Carlo. The work of Geyer stirred a lot of interest in the
statistical physics community working on polymer physics and PT was carefully
analyzed and compared with US by Tesi et al. [28]. Independently, in 1996 the PT
algorithm was introduced by Hukushima and Nemoto [29] with the name of replica-
exchange algorithm, and found widespread application in spin-glass simulations.
At the same time, thanks to the works of Hansmann [30] the algorithm found its
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way in the chemical physics and biophysics community, as a more efficient and
simpler alternative to US and multicanonical algorithms (for a list of applications
in this field, see the review by Earl and Deem [31]). At present the name “parallel
tempering” is apparently the most widely used name in the physics community,
while mathematicians prefer to indicate it as “swapping algorithm”.

The PT algorithm is a simple generalization of ST. The state space S 0 is formed
by R replicas of the original state space S : S 0 D S � : : : � S . On S 0 one takes as
probability

˘.x1; : : : ; xR/ D �1.x1/�2.x2/ : : : �R.xR/ :

In the standard case, �1.x/, : : :, �R.xR/ are the Boltzmann-Gibbs distributions at R
different values of the inverse temperatures ˇ1 < : : : < ˇR. The algorithm usually
works as follows:

(a) If .x1; : : : ; xR/ is the present configuration, one updates each xi using any MC
algorithm that leaves �i .x/ invariant.

(b) One proposes a swapping move7:

.x1; : : : ; xi ; xiC1; : : : xR/! .x1; : : : ; xiC1; xi ; : : : xR/ ;

which is accepted with probability

pswap D min

�
1;
�iC1.xi /�i .xiC1/
�iC1.xiC1/�i .xi /

�
D min

�
1; e.ˇiC1�ˇi /.EiC1�Ei / :

It is immediate to verify that the algorithm satisfies the stationarity condition
with respect to ˘ , though it may not necessarily satisfy detailed balance (this
depends on how i and i C 1 are chosen).

As in the US or ST case, in order to perform a PT simulation, one must decide
the number R of inverse temperatures and their values. We note that one of the
two conditions we discussed in the case of US and ST should hold also here:
temperatures should be close enough, so that the typical configuration domains at
nearby temperatures overlap. If this does not occur, no swap is accepted. For an
efficient simulation it is important to discuss how close temperatures should be.
This will be discussed in Sect. 6.6.3.

Whenever a PT run is performed, it is important to make checks to verify that the
algorithm is working correctly. The simplest quantity to measure is the swapping
rate ai;iC1 between adjacent temperatures, that is the fraction of accepted swaps. The
algorithm works efficiently only if, for all i , ai;iC1 is not too small. As we discuss
in Sect. 6.6.3, the optimal value for ai;iC1 lies between 0.2 and 0.3, but larger, or

7In principle the swapping can be attempted among any pair of replicas, but only for nearby replicas
the swap has a reasonable probability of being accepted.
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slightly smaller values, although not optimal, are still acceptable. A reasonable
swapping rate is, however, not enough to guarantee that the algorithm is working
correctly. Indeed, there are situations in which the swapping rates take the desired
values, but the PT simulation is inefficient. This typically occurs when there is a
“bottleneck” at a certain temperature ˇK (usually it is the closest to the critical
temperature). In this case aK�1;K and aK;KC1 are both reasonable, but the algorithm
is unable to move a LT configuration to the other, HT side. In this case, HT replicas
mix very slowly with the LT replicas, so that the dynamics, which is based on
the idea that LT replicas rapidly move into the HT phase, becomes very slow. To
identify bottlenecks, it is not enough to compute the swapping acceptances. One
should measure quantities that take into account how temperature changes for each
individual replica. Often one considers the average round-trip time, i.e., the time
for a replica to start from the lowest temperature, reach the highest one, and finally
go back to the lowest one. If the swapping procedure is working efficiently, the
round-trip time should be comparable to the return time of a random walker moving
among temperatures with the swapping rates actually measured in the simulation.
On the contrary, if the swapping procedure has a bottleneck, then the round-trip time
becomes large and is essentially controlled by the time it takes for a replica to go
through the bottleneck.8

As in all MC simulations, also in PT simulations one should thermalize the
system before measuring. Two checks should be performed: first, one should check
that equilibrium has been attained at all temperatures. Note that it is not enough
to check convergence at the lowest temperature. For instance, in PT simulations of
non-disordered systems that go through a second-order phase transition, the slowest
mode is controlled by the behavior at the critical point, not at the lowest-temperature
point (see the discussion in Sect. 6.6.2). Second, the thermalization time should be
larger than the time needed to go through any bottleneck present in the model:
typically a few round-trip times suffice.

6.6.2 Some General Rigorous Results

The PT algorithm has been studied in detail by mathematicians which have proved
theorems [32–34] confirming the general arguments given at the beginning of
Sect. 6.6.1. These theorems give bounds on the spectral gap � of the Markov chain
associated with the PT algorithm. In physical terms � is related to the exponential
autocorrelation time 	exp D �1= ln.1 � �/, which gives the number of iterations
needed to generate an independent configuration. An efficient algorithm requires �
to be significantly different from zero.

8 If the PT method is applied to a system undergoing a first-order transition, the swapping
procedure would be highly inefficient, because HT replicas would hardly swap with LT replicas.
The two sets of replicas would remain practically non-interacting.
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To establish the notation, let Pk.x; y/ be a Markov chain defined on the state
space S which leaves invariant �k :

P
x �k.x/Pk.x; y/ D �k.y/. The basic idea

used in the theorems is the state-space decomposition of Madras and Randall [35].
If (a) the state space is decomposable as S D [lAl such that all �k are unimodal in
each Al ,9 (b) swaps occur with sufficient frequency along a configuration path that
connects all sets Al , and (c) P1 is a fast update on S , then the size of the spectral
gap is essentially controlled by the spectral gap of the restrictions Pkl of Pk on
Al . In other words, PT is, at most, as fast as the slowest of the Pkl [34]. To clarify
this result, let us consider the Ising model and a PT simulation with ˇ1 in the HT
phase and ˇR in the LT phase. Suppose we use the Metropolis algorithm to update
the configurations at each temperature. In the LT phase the Metropolis algorithm
is of course inefficient (it cannot go through the barriers). However, if we partition
S D MC [M�, where MC and M� are the positive and negative magnetization
configurations, respectively, the restrictions PkC and Pk� of Pk to MC and M�
are efficient algorithms that sample correctly each free-energy minimum. With this
decomposition, the slowest dynamics occurs at the critical point, which represents
the bottleneck of the simulation. Hence, the theorem essentially states that the
autocorrelation time of the PT simulation is of the order of the autocorrelation time
of the algorithm at the critical point, which is also the typical time it takes for a
HT configurations to become a LT one and viceversa. Note that the improvement is
enormous. We are able to sample the LT phase with autocorrelations that increase
polynomially as N z when the system size N goes to infinity (z � 2 for the Ising
model with Metropolis update) and not exponentially in N1�1=d , where d is the
space dimension (for the two-dimensional Ising model one can prove 	 � eaN1=2 for
a standard MC simulation [36]).

6.6.3 Optimal Choice of Temperatures

Let us now discuss how to choose optimal temperatures in a PT simulation. First of
all, the set of temperatures must extend enough in the HT phase in order to allow
replicas at the highest temperatures to decorrelate fast. More precisely, we would
like the autocorrelation time 	 at the highest temperature to be smaller than the
typical time a replica spends in the HT regime, so that, when a replica goes back
to the LT phase, it has completely forgotten the previous free-energy minimum.
This condition fixes the highest temperature, while the lowest temperature is usually
determined by the problem we wish to study (e.g., critical properties of the model
or the nature of its LT phase).

Once ˇmin and ˇmax have been fixed, what is the best sequence for the remaining
temperatures? Under the hypothesis that there are no bottlenecks and thus the

9The condition of unimodality is not required in the proofs of the theorems. However, the theorems
have physically interesting consequences only if a unimodal decomposition is possible.
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round-trip time is mainly determined by the swapping rate, the optimal solution is to
keep swapping rates constant in the whole temperature range, so that the diffusion
of the replicas in temperature space is maximal. The optimal value of the swapping
rate depends on the system under study, but in general one has to avoid too small
values (replicas almost do not swap) and also too large ones (in this case a smaller
number of temperatures would be enough). With the random-walk picture in mind,
in order to obtain the largest diffusion rate in temperature space (more precisely in
the variable lnˇ), one would like to maximize �2 D ln2.ˇi=ˇiC1/pacc.ˇi ; ˇiC1/,
where pacc.ˇi ; ˇiC1/ is the average acceptance rate for the swap between ˇi and
ˇiC1. If the specific heat is constant, the average acceptance rate is well represented
for N !1 by the formula [37–39]

pacc.ˇi ; ˇiC1/ D erfc

�
1 � r
1C r .NcV /

1=2

	
;

where r D ˇi=ˇiC1 < 1 (we assume ˇiC1 > ˇi ). If we require a constant accep-
tance rate, r should be constant, hence temperatures should increase geometrically,
i.e. ˇiC1 D r ˇi . The optimal value for r can be found by maximizing �2. It turns
out, see Fig. 6.4, that the average acceptance rate for the optimal r is very close
to 0:23, with essentially no dependence on NcV [38–40]. This gives rise to the so-
called 0.23 rule, according to which temperatures should be spaced in such a way
to guarantee a 0.23 average acceptance rate. Note also that NcV �2 is essentially a
universal function of pacc, see Fig. 6.4, that converges very quickly to its large NcV
limit

NcV �
2 D 4 pacc

h
erfc�1.pacc/

i2
:

This function has a maximum of height 0:6629 at pacc D 0:2338. Hence
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.ln ropt/
2 D 0:6629

0:2338

1

NcV
; ropt D 1 � 1:684p

NcV
:

As already found in Sect. 6.2 when discussing data reweighting, also in this case
�ˇ / .1 � ropt/ / .NcV /�1=2. If the specific heat is not constant, �ˇ / .NcV /�1=2
should still hold, hence temperatures should be denser where the specific heat is
larger.

6.6.4 Improving Parallel Tempering

Sometimes, even with an optimal choice of the temperatures, the PT simulation
may show up a bottleneck in temperature, unexpectedly. The problem is that the
analytical computation of the swapping rate is made under the hypothesis that each
configuration at inverse temperature ˇ is generated according to �ˇ.x/ with no
memory of its past trajectory; this assumption is valid if the time �t between two
consecutive swapping attempts is larger than the autocorrelation time 	ˇ at ˇ. On
the contrary, if 	ˇ > �t , then a replica is likely to swap back to the temperature
it came from, since its energy is still correlated with its old temperature. This
phenomenon of swapping forward and then immediately backward is exactly what
makes diffusion in temperature space much slower.

Recently there have been some proposals to overcome this problem and improve
the PT method. In Ref. [41] a method called feedback-optimized PT has been
proposed, which iteratively readjusts the temperatures in order to minimize the
average round-trip time. The outcome of this procedure is an increase of the density
of temperatures (and thus of the swapping rate) where the autocorrelation time 	
is larger. In some sense this solution can be viewed as a brute-force one, because
forces replicas to spend more time where 	 is larger by adding temperatures there.
A more elegant solution has been proposed in Ref. [42] and it consists in adapting
the time �t between consecutive swapping attempts to the autocorrelation time 	 .
Indeed, results for the 2D Ising model show that, by taking �t � 	 , the resulting
time series are nearly uncorrelated and replicas make an unbiased diffusion among
temperatures; unfortunately this choice makes the simulation too long, so the final
suggestion is to have the ratio �t=	 more or less fixed to a small number.

Let us finish this overview of the PT method with a comment on its use
for disordered systems. Certainly the numerical study of disordered models (e.g.,
spin glasses) has benefited very much from the PT algorithm in the last decades.
Nonetheless, it is important to recall that models with strong quenched disorder
show impressive sample-to-sample fluctuations. As a consequence, the optimiza-
tions illustrated above should be performed separately on each different sample:
indeed, we would expect a very different scheduling of temperatures and swapping
times for a strongly frustrated sample with respect to a weakly frustrated one. Since
this sample-by-sample optimization is not easy to do, in practice one usually fixes a
common scheduling of temperatures and times for all samples, based on average
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properties (e.g., on the sample-averaged specific heat). However, thermalization
checks and autocorrelation-time analyses should be performed on each sample
separately, allowing the simulation to run longer for the slower samples [43].

6.7 Conclusions

In this contribution we present several numerical methods which are used to com-
pute large-deviation observables, that is quantities that require a proper sampling
of rare configurations. First, we discuss the problem of data reweighting and
the optimal multiple-histogram method [6, 13]. Then, we introduce a family of
algorithms that rely on non-Boltzmann-Gibbs distributions and which are able to
sample the typical configurations corresponding to a large temperature interval.
We present the umbrella sampling [15] and the simulated tempering method
[16, 17] and show that these two algorithms are equivalent [18] if configurational
updates are performed by using the Metropolis method. The main difficulty in the
implementation of the US and ST methods is the determination of the constants
˛i that parametrize the probability distribution, see Eqs. (6.12) and (6.15). This
problem can be overcome by using the PT algorithm [27–29], which is at present the
most efficient algorithm to sample the low-temperature phase of systems undergoing
a second-order phase transition, even in the presence of quenched disorder—hence,
it can be applied successfully to, e.g., spin glasses. None of these methods can be
employed directly in the presence of first-order phase transitions. Multicanonical
methods, in which the non-Boltzmann-Gibbs distribution is determined recursively,
can be used instead [25, 26].
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Chapter 7
Large Deviations Techniques for Long-Range
Interactions

Aurelio Patelli and Stefano Ruffo

Abstract After a brief introduction to the main equilibrium features of long-
range interacting systems (ensemble inequivalence, negative specific heat and
susceptibility, broken ergodicity, etc.) and a recall of Cramèr’s theorem, we discuss
in this chapter a general method which allows us to compute microcanonical
entropy for systems of the mean-field type. The method consists in expressing
the Hamiltonian in terms of global variables and, then, in computing the phase-
space volume by fixing a value for these variables: this is done by using large
deviations. The calculation of entropy as a function of energy is, thus, reformulated
as the solution of a variational problem. We show the power of the method by
explicitly deriving the equilibrium thermodynamic properties of the three-state Potts
model, the Blume-Capel model, an XY spin system, the �4 model and the Colson-
Bonifacio model of the free electron laser. When short range interactions coexist
with long-range ones, the method cannot be straightforwardly applied. We discuss
an alternative variational method which allows us to solve the XY model with both
mean-field and nearest neighbor interactions.

7.1 Long-Range Interactions

In this chapter we will present some applications of the large deviations technique
to the calculation of entropy and free-energy of systems with long-range interac-
tions [1]. Indeed, most of the examples we will treat are simple mean-field models.
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However, it can be shown that some of the methods we discuss here are applicable
to all systems for which the interaction decays slowly with the distance.

There is not a unique definition of long-range interactions in the literature [2].
Some authors extend the definition to those interactions that decay with a power
of the interparticle distance, therefore including within the definition the van der
Waals interaction. We are here interested in the definition which is related to the
additive property of the energy. Not all interactions that decay with a power induce
non additivity of the energy, which is the important property we want to stress here.
Let us therefore adopt the following definition of long-range two-body potential

V.r/ � Jr�˛ ; (7.1)

0 � ˛ � d; r � rs ;

with d the dimension of the embedding space and J the coupling strength. The
short-distance scale rs is related to the size of the particle itself. Mean-field systems
correspond to ˛ D 0.

In nature one finds many examples of this kind of potential: the Newtonian
potential between massive bodies, the Coulomb potential between charged particles
such as in a plasma, the hydrodynamic interactions between vortices in dimension
d D 2.

Extensivity, meaning that thermodynamic potentials (energy, entropy, free-
energy, etc.) scale with system size, is an essential property in the construction of
thermodynamics. Energy per particle � D E=N should converge to a constant in
the thermodynamic limit: N ! 1,V ! 1 with � D N=V � const: The energy
per particle can be roughly estimated as

� D lim
N!1

E

N
D
Z R

ı

dd r�
J

r˛
D �J˝d

d � ˛


Rd�˛ � ıd�˛� ; (7.2)

where R is the size of the system, ı is a small distances cut-off and ˝d the angular
volume in dimension d . It is then straightforward to check that

• If ˛ > d then � ! const when R!1.
• If 0 � ˛ � d then � � V 1�˛=d (V � Rd ).

The first case shows that the limit R ! 1 can be safely performed and defines
an intensive energy per particle. In the second case, the energy per particle is not
intensive and diverges with the volume, it is super-extensive. Thus, in terms of the
energyE D �V , one finds the scaling

˛ � d E � V 2�˛=d : (7.3)

Typically, the entropy scales linearly with the volume S � V , and the free-energy
is defined as

F D E � TS ; (7.4)
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with T the intensive temperature. Therefore, the thermodynamic properties of long-
range systems are dominated by the energy E , because it scales with volume V
faster than linear. A way out from this energy dominance was proposed by Mark
Kac. It consists in scaling the coupling constant

J ! JV˛=d�1 : (7.5)

After this “unphysical” rescaling, the free energy turns out to be extensive in the
volume

F � V : (7.6)

However, this is a mathematical trick and doesn’t correspond to any physical effect.
It can be used only for the sake of performing a meaningful large volume limit, in
order to get thermodynamic behavior. Once the free energy per particle is obtained,
the physical description can be retrieved by scaling back the coupling constant. An
alternative would be to rescale temperature with volume

T ! TV1�˛=d : (7.7)

With this choice, free energy scales superlinearly with the volume

F � V 2�˛=d ; (7.8)

exactly like the energy. The two approaches are both possible, but the first one,
rescaling the coupling, is more common in the literature [2].

The need to use Kac’s trick teaches that the thermodynamic limit is not trivial for
long-range systems. Moreover, although the use of this trick restores extensivity of
the energy, this does not mean that the energy is necessarily additive. An observable
of a given system is additive if it can be expressed as a sum of the observables of
every subsystem. Let us consider a system divided in two subsystem, with given
energies EI and EII . In general, the total energy is

Etot D EI C EII C Eint ; (7.9)

where Eint is the interaction energy between the two subsystems. For short-
range systems the interaction energy scales as the contact area between system
I and system II, while the two energies EI and EII scale with the volume. It
is then straightforward that, in the thermodynamic limit, the interaction energy
is sub-dominant and can be neglected. On the contrary, for long-range systems,
the interaction energy scales with the volume exactly as the energies of the two
subsystems and, therefore, cannot be neglected.

The violation of additivity is crucial in determining the thermodynamic prop-
erties of systems with long-range interactions [1]. For instance, it determines a
violation of convexity of the domain of accessible macrostates. An example is
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Fig. 7.1 Non convex shape
of the region of admissible
macrostates in the
magnetization/energy plane
for long-range systems

shown in Fig. 7.1 where the boundary of admissible macrostates is represented by
the thick line with the shape of a bean. In standard thermodynamics, for short range
interactions, all states should satisfy the condition

E D �E1 C .1 � �/E2 ; M D �M1 C .1 � �/M2 ; 0 � � � 1 ; (7.10)

at the macroscopic level, because additivity is satisfied. This is in general not true
for long-range interactions and can have important consequences, like the violation
of ergodicity in the microcanonical ensemble [3, 4].

The microcanonical ensembles describe the thermodynamic behaviour of an
isolated system. The probability that the system lies in a macrostate at a given energy
E depends on the degeneracy of its microstates. The number of microstates with a
given energy is the microcanonical partition function

˝N.E/ D
Z
d3N q d3Np

h3N
ı.E �H.p; q// ; (7.11)

where .q; p/ are canonically conjugate variable, H is the Hamiltonian and h is
Planck’s constant. Boltzmann’s formula gives the microcanonical entropy

S.E/ D �B ln˝N.E/ : (7.12)

where �B is the Boltzmann constant. Thanks to additivity of the entropy and of the
energy, one can define the probability density that a subsystem of N1 	 N � N1
particles has energyE1, as follows

p.E1/ D ˝1.E1/˝2.E � E1/R
dE1˝1.E1/˝2.E �E1/ �

e�ˇE1
Z

: (7.13)
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Fig. 7.2 Different behaviors
of long-range systems
depending on dimension d
and the exponent � D ˛ � d

The parameter ˇ D @S2=@E2 is the inverse of the temperature times the Boltzmann
constant. This is the canonical ensemble and physically describes a closed system
in contact with a thermal bath. Contrary to the microcanonical ensemble, the energy
of a canonical system fluctuates around a mean value.

The lack of additivity forbids the classical derivation of the canonical ensemble
from the microcanonical one sketched above. However, in the following, we wish
to consider the canonical distribution (7.13) also for long-range systems. In order
to justify its use for systems with long-range interactions, that are non additive, one
must resort to an alternative physical interpretation. For instance, one can consider
that the system is in interaction with an external bath of a different nature. One can
for instance add damping and noise to the dynamical equations.

The main difference among ensembles arises in the behavior at phase transitions,
as we will see in the following sections. Continuous phase transitions can be
classified by their behaviors near criticality by a set of critical exponents which
govern the divergence of physical quantities. These exponents show universal
features depending only on the dimension of the system and on the nature of
the interaction potential. Let us briefly show the different behaviors of long-range
interacting systems when the exponent � D ˛ � d is varied. One can identify
different regions in the d; � plane (see Fig. 7.2). The non additive long-range region
has �d � � � 0, as discussed above. However, the long-range behavior extends to
� > 0, although the energy is here additive. It can be shown that, if 0 < � � d=2
the critical behavior is characterized by mean-field (classical) exponents, exactly as
for the full region d > 4 (any value of �) [5]. Moreover, in a region � > d=2 and
below a given line which is only partially known, the systems preserves some long-
range features, but with non classical �-dependent critical exponents. Some points
along this line are known. At d D 1 the line passes through � D 1, and in the whole
range 0 � � � 1 one can find phase transitions in one dimension, which is a strong
feature of the long-range nature of the interaction [6, 7]. For d D 2, numerical



198 A. Patelli and S. Ruffo

simulations show that the line passes through � D 7=4. Finally, renormalization
group techniques suggest that the line reaches � D 2 from below at d D 4. Above
this line and below d D 4 the system becomes short-range.

7.2 Some Useful Results of Large Deviations Theory

Let us consider a set of N d�dimensional random variables Xi , i D 1; : : : ; N ,
whose probability distribution function (PDF) is p.fXi g/. In large deviation theory,
one is interested in deriving the PDF of extensive observables

MN D 1

N

NX

iD1
f .Xi / ; (7.14)

in the limit of large N . The function f defines the single variable observable and,
for example, when it is the identity, MN corresponds to the sample mean.

A large deviation principle is formulated, according to which the following limit
exists [8]

I.x/ D lim
N!1 �

1

N
lnP.MN 2 Œx; x C dx
/ ; (7.15)

and defines the rate function I.x/. This means that, at leading order, the PDF takes
an exponential form P.MN 2 Œx; x C dx
/ � exp.�NI.x//.

Let us define the scaled cumulant generating function

 .�/ D lim
N!1

1

N
lnE

"
exp.�

NX

iD1
f .Xi //

#
; (7.16)

where � 2 Rd and the average EŒ
 is performed over the PDF of Xi .
The Gärtner-Ellis’ theorem [8] states that, for the sample mean, the rate function

is obtained by solving the following variational problem

I.x/ D sup
�2Rd
f�x �  .�/g ; (7.17)

when  .�/ < 1 and is differentiable everywhere. When the random variables Xi

are independent and identically distributed (i.i.d.) the scaled cumulant generating
function is differentiable and assumes the form

 .�/ D lnhexp.�X/i ; (7.18)

where h i is the average with respect to distribution of the single variable. This gen-
erating function is differentiable everywhere, because the exponential is an analytic
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Fig. 7.3 The rate function of
coin tossing for ˛ D 1=3

(dashed line), 1=2 (solid
line), 2=3 (dotted line)

function, and the rate function satisfies Gartner-Ellis’ theorem. A generalization of
this theorem to other observables is given by Varadhan’s theorem [8].

Let us consider the example of coin tossing, which physically corresponds to
a model of non-interacting spins. The one-dimensional, i.i.d. random variables Xi
take the value �1 with probability ˛ andC1 with probability 1�˛, with ˛ 2 Œ0; 1
.
The scaled cumulant generating function is

 ˛.�/ D lnfexp.�/ � 2˛ sinh.�/g : (7.19)

When ˛ D 1=2 coin tossing is unbiased. In Fig. 7.3 we show the rate function for
˛ D 1=3; 1=2; 2=3.

The rate function I.x/ determines the number of microstates fXi g which
correspond to a macroscopic configuration characterized by a fraction x of up-spins.
In the statistical mechanics vocabulary I.x/ is the opposite of Boltzmann entropy.

7.3 Thermodynamic Functions From Large
Deviations Theory

In this section we will show how large deviation theory can be used to compute
entropy of long-range systems within the microcanonical ensemble and free energy
in the canonical ensemble, in particular when the usual microstate counting
procedure cannot be used.

Let us illustrate this approach, which we divide in three steps. The first step
consists in the definition of the global variables � . They play the role of the
observables for which we compute the PDF. The Hamiltonian, in terms of global
variables, is composed by two parts
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HN .!N / D QHN.�.!N //CRN.!N / ; (7.20)

where QH is the extensive part, while RN is a sub-extensive rest. The variable !N
represents a phase-space configuration of the N particles, and it can be a vector of
all the local variables. Hence, we are naturally led to take the following limit of
infinite number of particles

h.�/ D lim
N!1

HN

N
D lim

N!1
QHN

N
: (7.21)

The second step relies on the computation of entropy in terms of the global
variables

s.�/ D lim
N!1

1

N
log˝N.�/ ; (7.22)

where ˝N.�/ is the number of microscopic configurations !N with a fixed value
of � . This entropy is the opposite of the rate function (7.15). If one assumes that the
local variables are i.i.d. random variables, then the entropy, can be evaluated using
the Gartner-Ellis theorem [8].

The third step amounts to solve either the microcanonical

s."/ D sup
�
fs.�/jh.�/ D "g ; (7.23)

or the canonical

f̌ .ˇ/ D inf
�
fˇh.�/� s.�/g ; (7.24)

variational problem. Free energy (7.24) is the Legendre-Fenchel transform of
microcanonical entropy (7.23). On the other hand, the Legendre-Fenchel transform
of free energy is not the microcanonical entropy, but rather its concave envelope.
When the concave envelope coincides with microcanonical entropy (7.23), the two
ensembles are equivalent, because there exists a bijective map between microcanon-
ical and canonical macrostates.

Let us discuss these results in the context of phase transitions. Some phase
transition are characterized by an order parameter which is zero in a phase and
non-zero in the other. For instance, in the case of ferromagnetic phase transition the
order parameter is the magnetization of the system along a given direction, denoted
by m. In the paramagnetic phase magnetization vanishes (m D 0) while in the
ferromagnetic phase it assumes values between zero and one (m 2 .0; 1
).

Second order phase transitions, which imply discontinuities in second order
derivatives of thermodynamic functions, have an involutive microcanonical entropy
(see Fig. 7.4), i.e. entropy can be obtained either directly or by Legendre-Fenchel
transform of the free-energy. This involution property is a simple consequence of
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Fig. 7.5 Relation between entropy and free energy at a first order phase transition

the fact that the Legendre-Fenchel transform implies only first order derivatives.
Here, the two ensembles are equivalent.

At a first order phase transition, entropy shows a constant slope in the energy
range Œ"1; "2
, which is the phase coexistence region. The free energy has a cusp at
the transition inverse temperature ˇt , see Fig. 7.5, for which there is a continuum of
microcanonical states with different energies and the same temperature.

A first order phase transition is thus the extreme case of equivalence between
ensembles. Specific heat turns out to be ill defined and one must introduce the
concept of latent heat.
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Fig. 7.6 Left panel: Microcanonical entropy with negative specific heat and temperature jump in a
system with symmetry breaking. Right panel: Corresponding free energy in the canonical ensemble

The two ensembles become inequivalent when microcanonical entropy is non
concave. The Legendre-Fenchel transform is no more involutive and one can define
a canonical entropy which is the concave envelope of microcanonical entropy. This
is the basic feature causing ensemble inequivalence. In the microcanonical ensemble
the order parameter changes its value with continuity, while it has a discontinuity
in the canonical ensemble. Due to the presence of a convex region of the entropy,
specific heat can become negative in the microcanonical ensemble.

Phase transition with symmetry breaking, like ferromagnetic phase transitions,
show an entropy with two branches at high and low energies, characterized by a
different value of the order parameter. The two branches of the entropy generically
cross at the transition with different slopes. At the transition energy "t two different
microcanonical temperatures coexist and one find a temperature jump. Conceptually
this behavior is similar to the energy jump, due to latent heat, found in the canonical
ensemble. Convexity is the main feature which allows for this behavior, because a
temperature jump appears only when entropy is convex in a given energy range. In
Fig. 7.6 we show a situation where also a region of negative specific heat is present,
but this is not necessary for the existence of a temperature jump.

The Legendre-Fenchel transform washes out these behaviour in the canonical
ensemble, as shown in Fig. 7.6, and one recovers free energies similar to those at first
order phase transitions. It has indeed been conjectured that a necessary condition in
order to have negative specific heat and temperature jumps in the microcanonical
ensemble is the presence of a first-order transition in the canonical ensemble [9].

7.4 Applications

In this section we show how to apply large deviations methods to find the
thermodynamic functions of some model of physical interests. This will illustrate
on simple examples the counter intuitive thermodynamic behaviors that appear due
to long-range interactions.
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7.4.1 Three-States Potts Model

In order to show the application of the method of solution discussed in the previous
section to a concrete example, we consider the mean-field three-states Potts model.
This is a lattice model where at every site i we associate a spin variable Si D a; b; c.
The Hamiltonian is

H Potts
N D � J

2N

NX

i;jD1
ıSi ;Sj ; (7.25)

where ı is the Kronecker’s ı-symbol, it returns one only when Si D Sj . We identify
the spins as the local random variables. The first step of the procedure consists
in the identification of the global variables. The form and the symmetries of the
Hamiltonian suggest to define the following vector

� D .na; nb; nc/ ; (7.26)

where

n˛ D 1

N

X

i

ıSi ;˛; ˛ D a; b; c ; (7.27)

represents the fraction of local random variables populating a given state ˛. Using
these global variables, the extensive part of the Hamiltonian reads

QH Potts
N D �JN

2
.n2a C n2b C n2c/ D Nh.�/ ; (7.28)

and the sub-extensive part vanishes in this case because the Hamiltonian is pure
mean-field. The second step deals with the calculation of the entropy in terms of
the global variables. Assuming that the three values of the local random variable are
equally probable (this corresponds to the principle of “maximal ignorance” often
used in statistical mechanics [10]), the scaled cumulant generating function is

 .�/ D ln

�
1

3

�
e�a C e�b C e�c 

�
; (7.29)

where � D .�a; �b; �c/ are Lagrange multipliers. The corresponding rate function
is then given by formula (7.17)

I.�/ D sup
�

f�ana C �bnb C �cnc �  .�/g : (7.30)

The extrema of the bracketed expression are obtained when �˛ D ln n˛ , ˛ D a; b; c.
Entropy, as a function of the global variables, is then
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Fig. 7.7 Inverse temperature vs. energy for the mean-field three-state Potts model in both the
microcanonical and the canonical ensemble. The microcanonical solution coincides with the
canonical one for " 
 "t and is otherwise shown by the dash-dotted line for "t 
 " < �J=6.
The increasing part of the microcanonical dash-dotted line corresponds to a negative specific heat
region. In the canonical ensemble, the model displays a first order phase transition at ˇt

s.�/ D �I.�/C lnN ; (7.31)

where lnN derives from the normalization of the probability, and in this case is
lnN D ln 3.

In the third step one evaluates the microcanonical entropy from the variational
formula

s."/ D sup
na;nb

n
�na lnna � nb lnnb � .1 � na � nb/ ln.1 � na � nb/

jh.na; nb/ D "
o
: (7.32)

The solution of this variational problem is necessarily numerical, because it requires
the solution of an implicit equation. However, both the derivation of the entropy
and of the microcanonical temperature are straightforward. The dependence of
microcanonical temperature on energy is shown in Fig. 7.7: it has a parabolic shape
and in the energy range where ˇ grows with energy " 2 Œ�0:215J;�J=6
, one finds
a negative specific heat. By solving the canonical variational problem

f̌ .ˇ/ D inf
na;nb;nc

nX

˛

n˛ lnn˛ � ˇJ
2
.n2a C n2b C n2c/

o
(7.33)

one can get the average energy " as a function of ˇ from " D @. f̌ /=@̌ . This
curve is also plotted in Fig. 7.7. It coincides with the microcanonical curve for
energies below "t D �0:255J . At the inverse temperature value ˇt D 2:75 the
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Fig. 7.8 Phase diagram of
the Blume-Capel model

model undergoes a first order phase transition, with an associated latent heat in the
canonical ensemble. Hence, the results are quite different in the two ensembles: a
first order phase transition in the canonical ensemble and no phase transition in the
microcanonical one with an associated negative specific heat region in energy.

7.4.2 The Blume-Capel Model

A paradigmatic system showing ensemble inequivalence is the Blume-Capel model.
It is a lattice system with both a mean-field coupling and an on-site potential. The
model has been used to reproduce the relevant features of superfluidity in He3–He4

mixtures and was also proposed as a realistic model of ferromagnetism [11]. Its
Hamiltonian reads

H BC
N D �

NX

iD1
S2i �

J

2N

NX

iD1

NX

j¤i
SiSj Si D 0;˙1 : (7.34)

The canonical ensemble shows first and second order phase transitions. The
crossover, which separate the two phases, occurs at the tricritical point. In the
phase diagram, this point is located at �=J D ln 4=3; T=J D 1=3, see Fig. 7.8.
The coupling constant can be set to J D 1 without loss of generality. The first
order phase transition point at zero temperature can be computed by equating the
paramagnetic and ferromagnetic energies, then Eferro D � � 1=2, Epara D 0. On
the other hand, the second order phase transition at � D 0 is the usual Curie-Weiss
transition for a spin one system, typical of mean-field models. It is obtained by
solving the consistency equation

m D exp.ˇm/ � exp.�ˇm/
exp.ˇm/C exp.�ˇm/C 1 ; (7.35)

wherem is the modulus of magnetization.
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The entropy of the model can be obtained either by a direct counting of the
number of microstates, or by using the large deviation method. We show both these
methods, starting from the most common one based on counting of microstates.
An example of a typical configuration of the model is pictorially shown below for
N D 30;NC D 11;N� D 9;N0 D 10.

CCCCCC�� ��00000� �� �� �CC0000CCC (7.36)

Fixing the number of up-spins, down-spins and zeros, one can exchange any pair
in the group without changing the energy, because the range of interaction covers
the whole lattice. Therefore, the number of configurations with given energy is the
usual Boltzmann weight

˝" D NŠ

NCŠN�ŠN0Š
: (7.37)

Using Stirling approximation, lnnŠ D n ln n�n for large n, one obtains the entropy

S.q;m;N / D ��BN Œ.1 � q/ ln.1 � q/C 1

2
.q Cm/ ln.

q Cm
2

/

C1
2
.q �m/ ln.

q �m
2

/
 ; (7.38)

wherem D .NC �N�/=N is magnetization and q D .NC CN�/=N the so-called
quadrupolar moment. This latter can be expressed in terms of the energy per spin
using the relation

" D E

N
D �.q � Km2/ ; (7.39)

where K D J=2�. This entropy (7.38) is the same as the entropy of the second
step of the large deviation procedure. Maximizing it with respects to magnetization
m at fixed " one obtains the microcanonical entropy, which is the third step in large
deviations.

We want to show here how to obtain the same entropy using the large deviations
procedure that we have introduced previously. The local random variables are
Xi D .S2i ; Si /, where Si D 0;˙1. The identification of the global variables
is straightforward, they are magnetization m and quadrupolar moment q. The
extensive Hamiltonian, in terms of the global variables, is

h.�/ D �.q � Km2/ : (7.40)

With the assumption that the local variables are i.i.d, the scaled cumulant generating
function is also easily computed using the formula (7.16)
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Fig. 7.9 Temperature versus energy for the Blume-Capel model for different values of �=J ,
showing how negative specific heat and temperature jumps develop when entering the region where
the phase transition is first order in the canonical ensemble

 .�; �/ D lnhexpf�S2 C �Sgi D ln
�
1C 2e� cosh.�/

 � ln 3 ; (7.41)

where � and � are Lagrange multipliers. The rate function then reads

I.�/ D sup
�;�

f�mC �q �  .�; �/g : (7.42)

The solution of this variational problem gives � D tanh�1.q=m/ and � D
� ln.2 cosh.�.q;m/// C ln.m=.1 � m//. Finally, the substitution of these values
into (7.42) returns the rate function in terms of the global variables, and gives the
formula (7.38). Hence, the use of large deviations method is a powerful alternative
to the direct counting method, whenever the global variables can be identified.

Let us summarize the main features of ensemble inequivalence in this model
and give some details about the difference in the thermodynamic states. The
inverse temperature is the derivative of entropy with respect to the energy in
the microcanonical ensemble. Microcanonical temperature vs. energy is plotted in
Fig. 7.9 for decreasing values of the coupling constant �=J . It shows how the first
order transition appears and induces negative specific heat and temperature jumps.
Panel (a) shows a kink in the slope of the temperature at the critical energy. Negative
specific heat shows up in panel (b), while the transition is still second order in
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the microcanonical ensemble. The transition becomes first order in panel (c) at the
microcanonical tricritical point. Panel (d) shows the emergence of the temperature
jump and in panel (e) the specific heat region disappears in favor of the temperature
jump itself.

The microcanonical tricritical point can be found by expanding the entropy in
series of m

s D �B.s0 C Am2 C Bm4 C : : :/ : (7.43)

The coefficients of the expansion are

s0 D �.1 � �/ ln.1 � �/ � � ln � C � ln 2 ; (7.44)

A D �K ln.
�

2.1� �/ / �
1

2�
; (7.45)

B D � K2

2�.1 � �/ C
K

2�2
� 1

12�3
; (7.46)

where � D "=�. In order to obtain the second order transition line one has to impose
that A D 0 with B < 0. This line coincides with the canonical second order line in
Fig. 7.8 and ends at the microcanonical tricritical point, which is determined by the
condition A D B D 0. We can now compare the two tricritical points

• Canonical Ktr � 1:0820, ˇtr� D 1:3995,
• MicrocanonicalKtr � 1:0813, ˇtr� D 1:3998.

Although these two points are quite close for this model, they do not coincide. For
other models the distance between these two points is larger as for the XY model
described below. The region of the phase diagram near the canonical (CTP) and
microcanonical (MTP) tricritical points is pictorially represented in Fig. 7.10. This
pattern of transitions is found in many different models [2].

7.4.3 A System with Continuous Variables: The XY Model

We will now deal with a model whose Hamiltonian depends on continuous variable,
to show the efficiency of the large deviation method also in a case in which
one cannot use direct counting of microstates. Let us consider the following
Hamiltonian, which describes N XY-spins on a fully connected lattice

H XY
N D

NX

iD1

p2i
2
� J

2N

 
X

i

si

!2
� K

4N3

2

4
 
X

i

si

!23

5
2

; (7.47)
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Fig. 7.10 Zoom of the phase diagram of the Blume-Capel model in the tricritical region. CTP and
MTP are the canonical and microcanonical tricritical points, respectively. The dotted line above
CTP is the canonical/microcanonical second-order line. The full line is the canonical first-order
line. In the microcanonical ensemble, the second-order line continues below CTP (dashed line)
and reaches MTP, from there it splits in two lines, a signature of temperature jumps. The two
lines join together, and the canonical first-order line, at T D 0. In the region between the two
microcanonical lines one finds only metastable and unstable states of the microcanonical ensemble
(coexistence region)

where si D .cos �i ; sin �i / is a spin vector with constant modulus and direction �i 2
Œ��; �
. The local variable pi is the conjugated momentum of the angle �i . The two
coupling constants J and K are scaled differently: the first one by 1=N following
Kac’s prescription and the second one by 1=N 3, in order to make the contribution
of the last term of the same size as the others in the N ! 1 limit. We will here
sketch how to get microcanonical entropy using the large deviation approach. The
three-step procedure begins with the identification of the local random variable: it is
here natural to choose X D .cos �; sin �; p2/. We then define theX and Y directions
of the magnetization

mx D 1

N

X

i

cos �i ; my D 1

N

X

i

sin �i : (7.48)

The modulus of the corresponding magnetization vector m D .mx;my/ is the
order parameter of the paramagnetic-ferromagnetic phase transition taking place
in this model. As global variables we identify the three-vector composed by the two
magnetizations and by the averaged kinetic energyEK DPi p

2
i =N

� D .mx;my;EK/ : (7.49)

In terms of the global variables, energy density can be written as

h.�/ D 1

2
.EK � Jm2 � K

2
m4/ : (7.50)



210 A. Patelli and S. Ruffo

1 2 3 4 5

0.2

0.4

0.6

0.8

1

1.2

mmic �= 0
mcan �= 0

mmic = 0

Canonical tricritical point mcan �= 0
mmic = 0

mcan = 0

T=J

Microcanonical tricritical point

K=J

Fig. 7.11 Phase diagram of the XY model (7.47) for both the canonical and microcanonical
ensemble. The canonical second order transition line (solid line at T=J D 1=2) becomes first
order (dotted line, determined numerically) at the canonical tricritical point. The microcanonical
second order transition line coincides with the canonical one below K=J D 1=2 but extends
further to the right up to the microcanonical tricritical point atK=J D 5=2. At this latter point, the
transition line bifurcates in two first order microcanonical lines, corresponding to a temperature
jump. The region within these lines is forbidden in the microcanonical ensemble. In the figure we
also report the magnetization in the different parts of the diagram

The second step of the procedure consists in the evaluation of the scaled cumulant
generating function. Its approximate expression, neglecting subleading terms, is the
following

 .�/ ' ln

2
64
I0.
q
�2x C �2y/p��K

3
75 ; (7.51)

where I0 is the modified Bessel function of order zero and �x; �y; �K are Lagrange
multipliers. The corresponding rate function, which depends on the global variables,
is evaluated by using formula (7.17). From the rate function, which is nothing but
the opposite of entropy, one can again obtain microcanonical entropy by solving the
corresponding variational problem. Similarly for canonical free energy.

Let us summarize the main features of this model. By varying the value of the
ratio between the coupling constants K � 0 and J > 0 the system shows different
behaviours. ForK D 0 the model has a second order phase transition at T=J D 1=2,
and the ensembles are equivalent in this limit. The second order transition line
extends to K > 0 for both the canonical and the microcanonical ensemble, see
Fig. 7.11. Above that line both the ensembles show the paramagnetic phase (m D 0),
while below the line the system is ferromagnetic (m ¤ 0). The canonical second
order line remains at the temperature T=J D 0:5 along the segment with K=J 2
Œ0; 0:5/, until it reaches the canonical tricritical point at K=J D 0:5, T=J D 0:5.
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Fig. 7.12 Caloric curve for the XY model (7.47) withK=J D 10. The solid line is the theoretical
prediction in the microcanonical ensemble. It shows a phase transition where temperature has a
jump. A negative specific heat region is present, where temperature has a negative slope. The
points correspond to the results of microcanonical simulations of a system composed by N D 100

spins. The transition is smoothed by finite size effects. The dashed line represents the first order
phase transition in the canonical ensemble

For larger values of K=J the predictions of the two ensembles differ: in the
canonical ensemble the transition becomes first order (see the upper dotted line in
Fig. 7.11), while in the microcanonical ensemble the line remains of second order up
to the microcanonical tricritical point, located atK=J D 5=2, T=J D 0:5. Between
the canonical first order line and the microcanonical second order line the ensembles
give different predictions for the order parameter. This is zero (paramagnetic phase)
in the microcanonical ensemble and non zero (ferromagnetic phase) in the canonical
one. Increasing the coupling, K=J > 5=2, the difference between the predictions
of the two ensembles becomes even more peculiar. While in the canonical ensemble
the transition remains first order, in the microcanonical ensemble temperature jumps
appear. The coexistence of two temperatures at the transition energy is shown by the
two dotted lines in Fig. 7.11. No stable microcanonical states exist between these
two lines.

Figure 7.12 shows the caloric curve for K=J D 10: both a region of negative
specific heat and a temperature jump are presents in the microcanonical ensemble.

Another important feature of this model appears in presence of a competition
between ferromagnetic and anti-ferromagnetic terms. This competition can induce
a violation of ergodicity. We set J D �1 and K > 0. Intuitively, we expect that
for large values of jK=J j the system is ferromagnetic, while for small values of this
ratio the antiferromagnetic term dominates and the system becomes paramagnetic
for all energies. For some intermediate values of the ratio, the system shows a phase
transition between a paramagnetic and a ferromagnetic phase. In both these phases,
due to the competition, there are gaps in the accessible value of magnetization at
a fixed energy, and this breaks ergodicity. A convenient parameter plane where
to discuss ergodicity breaking for this model is .";K/. For some values of these
parameters, as those in panel (a) of Fig. 7.13, entropy is well defined for all values
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a

b

Fig. 7.13 Time evolution of the magnetization for the XY model (7.47) with J D �1. Panel
(a) corresponds to the case " D 0:1, K D 8, panel (b) to " D 0:0177, K D 3. In panel (a)
magnetization flips from a value close to zero to a non zero value, showing that the phase space
is connected. The corresponding entropy vs. magnetization curve is shown in the inset: it has, as
expected, a double hump. In panel (b) two different trajectories, started at initially different values
of the magnetization, are shown. No flip is observed over a very long time stretch, proving that
phase space is indeed disconnected. This is confirmed by the shape of the entropy in the inset,
which shows that no accessible macrostate is present in the interval Œm

�
; m

C



of magnetization in a given range. A microcanonical dynamics shows flips among
the most probable values, corresponding to entropy maxima. For other values of
.";K/ entropy is not a surjective function of magnetization and it is well defined
only for disconnected values of m, as shown in the inset of panel (b) in Fig. 7.13.
Equilibrium states, which are maxima of the entropy, can exist in each range of
accessible values of magnetization, but the system cannot visit both these ranges
with a continuous dynamics because there are no intermediate states. This effect,
shown in the main plot of panel (b) of Fig. 7.13, is a direct consequence of the
violation of the additivity.

7.4.4 Negative Susceptibility: �4 Model

Ensemble inequivalence can also determine a negative magnetic susceptibility.
As for specific heat, this quantity is positively defined in the canonical ensemble,
while it can be negative in the microcanonical ensemble.
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Let us recall the first law of thermodynamics for magnetic systems, TdS D dE�
hdM. This expression can be a guide for the interpretation of the following formula

h.";m/ D � @s
@m

=
@s

@"
D � 1

ˇ.";m/

@s

@m
; (7.52)

which defines the external field h in terms of magnetization m and energy ".
The function s.";m/ is the entropy as a function of the global variables (7.22).
Microcanonical entropy is given by the formula (7.23) and the stability of the
resulting equilibrium states is a consequence of the requirement that the entropy
is maximal. Then,

smm D @2s.";m/

@m2
< 0 : (7.53)

We use here the convention that subscripts correspond to derivatives with respect to
the corresponding variable. On the contrary the canonical ensemble has a different
stability criterion

smm < 0; s"" < 0; s2" � smms"" > 0; (7.54)

because the variational problem is here defined as a function of two variables.
These difference in stability determines different thermodynamic states in the two
ensembles.

Susceptibility � measures the variation of magnetization induced by an external
field of size h. Its expression is the same in the two ensembles,

� D @m

@h
D ˇ s""

s2"m � s""smm
: (7.55)

It is clear from this formula that in the canonical ensemble susceptibility can be
only positive, due to the stability conditions discussed above. On the other hand,
in the microcanonical ensemble stability requires only that smm < 0. As a result,
microcanonical susceptibility is negative whenever the entropy is non concave inm.

To illustrate the concept of negative susceptibility on a concrete example, let us
introduce the �4 mean-field model, which is in the same universality class of the
Curie-Weiss model of magnetism [12]

H
�4

N D
NX

iD1

�
p2i
2
� 1
4
q2i C

1

4
q4i

�
� 1

4N

NX

iD1

NX

j¤i
qiqj ; (7.56)

where .qi ; pi / are conjugate variables. The global variables are
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Fig. 7.14 Susceptibility vs. magnetization for different energies for the mean-field �4 model
(7.56). The full lines are theoretical results, while the points are the results of numerical simulations

m D 1

N

X

i

qi ; z D 1

4N

X

i

q4i � q2i ; u D
X

i

p2i : (7.57)

The quantity m corresponds to the magnetization of the system while z is related
to the nature of on-site potential, here a double well. The variable u is nothing but
twice the average kinetic energy. The scaled cumulant generating function reads

 .�/ D � ln�u

2
C ln

Z
dq e��mq��z.q

4�q2/ C const. (7.58)

Microcanonical entropy in terms of the global variables is given by

s.u; z; m/ D inf
�u;�z ;�m

f�uuC �zzC �mm �  .�/g ; (7.59)

and in terms of energy and magnetization

s.";m/ D sup
u;z

n
s.u; z; m/j" D u

2
C z � m

2

4

o
: (7.60)

Although this function cannot be obtained in explicit form, because the full
analytical treatment implies the solution of an implicit equation, it can be obtained
numerically with any precision. Using then formula (7.55), one can derive an
explicit expression of the susceptibility for the mean-field �4 model. Figure 7.14
shows a comparison of this formula with the numerical results obtained directly
from Hamiltonian (7.56). Below a given energy value, corresponding to the ferro-
magnetic transition, a range of m appears where susceptibility becomes negative.
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Fig. 7.15 Pictorial representation of a linear free electron laser

7.4.5 The Free Electron Laser

An experimental apparatus where long-range forces are at play is the free electron
laser [13]. In the linear free electron laser, a relativistic electron beam propagates
through a spatially periodic magnetic field, interacting with the co-propagating
electromagnetic wave, see Fig. 7.15. Lasing occurs when the electrons bunch in a
subluminar beat wave [14].

After scaling away the time dependence of the system and introducing appropri-
ate variables, it is possible to catch the essence of the asymptotic state by studying
the following equations of motion

d�j

dz
D pj ; (7.61)

dpj
dz
D �Aei�j �A�e�i�j ; (7.62)

dA
dz
D iıAC 1

N

X

j

e�i�j ; (7.63)

which derive from the Hamiltonian

HN D
NX

jD1

p2j

2
�NıA2 C 2A

NX

jD1
sin.�j � '/: (7.64)

The pi ’s are related to the energies relative to the center of mass of the N electrons
and the conjugated variables �i characterize their positions with respect to the co-
propagating wave. The complex electromagnetic field variable, A D Aei' , defines
the amplitude and the phase of the dominating mode (A and A? are canonically
conjugate variables). The parameter ı measures the average deviation from the
resonance condition.

This model can be solved using the large deviations method. The global variables
are � D .m;A; �; u/, where m is the magnetization as defined in (7.48), A is the
modulus of the field, u twice the average kinetic energy and
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� D 1

N

X

i

pi C A2 ; (7.65)

is the total momentum. This last quantity is conserved by the dynamics, as the
energy of the system. In the others examples we have derived microcanonical
entropy only as a function of energy, because we have supposed that energy is
the only non zero conserved quantity of the dynamics. Here, we deal with a
microcanonical entropy which depends on both energy and momentum, the two
conserved quantities of the dynamics. The extensive part of the Hamiltonian reads

h.�/ D u

2
� ıA2 C 2A

�
my cos.'/ �mx sin.'/

�
: (7.66)

The second and third steps of the procedure lead us to solve the variational problem
which defines microcanonical entropy as

s."; �; ı/ D sup
A;m

n 1

2
ln

��
" � �

2

2

�
C 4AmC 2.ı � �/A2 �A4

	

Csconf .m/
o
; (7.67)

where the configurational entropy scon.m/ is given by

sconf .m/ D � sup
�

f�m� ln I0.�/g ; (7.68)

and I0 is the modified Bessel function of order zero. Numerical solutions of this
variational problem show that the model displays a second order phase transition at
the critical energy "c D �1=.2ı/ for ı < 0. Microcanonical and canonical ensemble
are equivalent for this model.

7.5 The Min-Max Procedure and a Model with Short
and Long-Range Interactions

There are cases in which it is not straightforward to identify the global variables
and, therefore, the large deviations method cannot be applied. One can alternatively
rely on a procedure that has been called Min-Max [15]. This method allows us
to obtain microcanonical entropy from canonical free energy, providing a better
understanding of how ensemble inequivalence occurs.

The starting point is to assume that there exist a function G.ˇ; x/ such that the
canonical partition function can be written as follows

Z.ˇ;N / D
Z

R

dx expf�NG.ˇ; x/g ; (7.69)
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where x is a dummy variable. This is for instance the form that the partition function
Z takes as a result of the Hubbard-Stratonovich transformation in a mean-field
system. The free energy is then defined as �.ˇ/ D f̌ .ˇ/ D infx G.ˇ; x/. Let
us introduce the Legendre-Fenchel transform of G by the relation

s."; x/ D inf
ˇ
fˇ"�G.ˇ; x/g : (7.70)

We cannot identify this function as the large deviation function because it is
always concave in x. Instead, s.";m/ can be non concave in m, as shown by the
presence of negative susceptibility. The dummy variable x cannot be interpreted as
a magnetization m. On the other hand, one can define a microcanonical entropy
from the following variational problem

s."/ D sup
x

fs."; x/g D sup
x

inf
ˇ
fˇ"�G.ˇ; x/g : (7.71)

Inverting inf with sup one gets the concave envelope of s."/

s�."/ D inf
ˇ

sup
x

fˇ"�G.ˇ; x/g ; (7.72)

which defines a canonical entropy. The Legendre-Fenchel transform of both s."/
and s�."/ returns the free energy �.ˇ/. Indeed sup inf � inf sup and the equality
holds when the function G is differentiable everywhere.

The XY-model with both long and short-range interactions is an example where
the identification of the global variable is not straightforward [4]. Its Hamiltonian is

H XYs
N D

X

i

p2i
2
C J

2N

X

i;j

Œ1 � cos.�i � �j /
 �K
X

i

cos.�iC1 � �i / : (7.73)

In the long-range term of the Hamiltonian the sum is extended over all pairs of
spins, while in the short-range term it is restricted to nearest-neighbour spins on a
one-dimensional lattice. The microcanonical thermodynamics of this model can be
obtained using the Min-Max procedure.

The first step of this method consists in writing the canonical partition function in
the form of (7.69). Performing a Hubbard-Stratonovich transformation, the function
Z become

Z �
Z

zdz
Y

i

d�i exp
�
�Nˇ
2

z2 C ˇz
X

i

cos �i

CˇK
X

i

cos.�iC1 � �i /
�
: (7.74)
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Fig. 7.16 Phase diagram of
the XY model with long and
short-range interactions. The
full line is the second order
line in both the canonical and
microcanonical ensemble.
The triangular point
corresponds to the canonical
tricritical point. Below it, the
dashed line is the first order
transition line in the canonical
ensemble. The circular point
is the microcanonical
tricritical point and the two
dotted lines correspond to
temperature jumps

The integral over the �i can be performed using the transfer operator method. This
operator is defined by the following integral eigenvalue equation

T  .�/ D
Z
d˛ exp

�
ˇ

z

2
.cos � C cos˛/C ˇK cos.� � ˛/

�
 .˛/ : (7.75)

In the following we suppose that the transfer operator is diagonalizable. We denote
by �.ˇz; ˇK/ its largest eigenvalue and we suppose that its logarithm is well
defined. The partition function is the N -times iterate of the transfer operator and
is given by

Z D
Z

zdz exp

�
�Nˇ
2

z2 CN ln�.ˇz; ˇK/

�
: (7.76)

Here, the partition function shows the required form in order to apply the Min-Max
procedure. The function G does not depend explicitly on the number of particles,
hence its N !1 limit is straightforward. Finally, microcanonical entropy reads

s."/ D sup
z

inf
ˇ

�
ˇu � ˇ1C z2

2
C ln�.ˇz; ˇK/C 1

2
ln
2�

ˇ

	
; (7.77)

which can be obtained, as usual, by solving numerically the variational problem.
Figure 7.16 shows the phase diagram of this model. Both the canonical and

microcanonical ensemble predict a second order transition line for large T and K ,
till the canonical tricritical point is reached. Below it, the two ensembles become
inequivalent. The canonical ensemble shows a first order transition line, while the
microcanonical one predicts a second order line until the microcanonical tricritical
point is reached. As discussed for the previous XY model, in the microcanonical
ensemble the model shows temperature jumps.
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7.6 Conclusions and Perspectives

In this chapter we have introduced and illustrated for simple mean-field systems
a method, based on large deviations techniques, which allows us to compute
entropy in the microcanonical ensemble. This direct computation is necessary
because for such systems, and in general for systems with long-range interactions,
entropy cannot be obtained as a Legendre-Fenchel transform of free-energy. This
feature is in turn determined by the fact that entropy can be non concave as a
function of energy. This latter property is at the origin of ensemble inequivalence,
whose physical consequence is the presence of negative specific heat and negative
susceptibility in the microcanonical ensemble.

The tools discussed in this chapter could be extended to systems with interactions
that decay with the distance, as defined in formula (7.2), although not much
progress has been made along this direction. However, it has been recently claimed
that equilibrium mean-field states are not always entropy maximizers for weakly
decaying interactions [16], a remark that points out the difficulty of treating such
systems.

Large deviations techniques have been also used to study systems driven
out of equilibrium. In some cases, long-range correlations can be described by
Hamiltonians with mean-field interactions, as shown in Ref. [17]. For such models,
all the features of ensemble inequivalence discussed here show up in the context of
non equilibrium.
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Chapter 8
Large Deviations of Brownian Motors

Alessandro Sarracino and Dario Villamaina

Abstract We review some recent results on the behavior of fluctuations in the
framework of molecular motors. We present both theoretical and experimental
studies, pointing out some interesting analogies shown by the large deviations of
quantities such as work and entropy production in different systems. These common
features reveal some underlying symmetry properties governing the nonequilibrium
behavior of Brownian motors.

8.1 Introduction

One of the most amazing phenomenona peculiar to nonequilibrium dynamics is the
possibility of rectifying unbiased fluctuations. First pointed out by Smoluchoswki in
1912 [1] as “molecular phenomenon opposing the conventional thermodynamics”,
this observation was later discussed and explained by Feynman in one of his
Lectures on Physics [2]. According to the Curie principle, rectification of unbiased
noise, also called “ratchet effect”, requires to break the spatial symmetry and the
time reversal symmetry associated with equilibrium (detailed balance) [3].

As a matter of fact, from microscopic transport in cells to muscle fibers, from
micro-organisms to every human activity, the conversion of different forms of
energy to mechanical work plays a central role for living beings. Thermodynamics
provides precise and well established rules for energy conversion in macroscopic
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systems but these rules become blurred at small scales when thermal fluctuations
play a decisive role [4]. Extracting work under such conditions requires subtle
strategies radically different from those effective in the macroscopic world. Within
this framework, the theory of Brownian motors (or ratchet systems) deals with the
rectification of thermal fluctuations [5–7], a goal which can only be achieved in the
presence of dissipation.

Nature possesses an excellent command of these subtle processes, as shown in
the cellular world: sophisticated mechanisms can realize the required conversion of
chemical energy into mechanical one, allowing unidirectional motion, for instance
of proteins and other macro-molecules [8]. In recent years, the study of nonequi-
librium fluctuations in small systems has become directly accessible and has raised
a great interest due to new experimental techniques, based on micromanipulation
technology, allowing one to perform experiments on micro- and nanosystems [9].
In small systems, thermodynamic quantities such as internal energy, work and heat
exchanged with the environment, are fluctuating variables, due to the presence
of thermal noise, and therefore the study of the probability distributions of such
quantities is central to characterize and understand the properties of these systems.
For instance, the symmetry properties of these distributions can provide important
information about the system response to external perturbations or under specific
experimental protocols. In particular, work and heat exchanged with the environ-
ment in a given time interval are extensive quantities in time and it is important to
characterize their large fluctuations, often playing a central role in the behavior of
the system.

From a general theoretical point of view, the study of nonequilibrium fluctuations
in the systems mentioned above can be carried on exploiting the mathematical
formalism of the large deviations theory (LDT). In the field of nonequilibrium
statistical mechanics, for instance, this theory underlies nonequilibrium fluctu-
ating hydrodynamics discussed in [10] which also describes transformations in
nonequilibrium stationary states (see contribution by Jona-Lasinio in the present
volume). The LDT is also useful to characterize the symmetry relations for the
probability density functions of entropy production, work and heat, observed in
several nonequilibrium processes and generally referred to as Fluctuation Relations
(FR) [11–16] (see contribution by Adamo et al. in the present volume). See also
the review by Touchette [17], and reference therein, for the connection between
nonequilibrium and LDT. Due to the mathematical difficulty, exact results for
large deviations functions (LDF) in nonequilibrium systems are very few (see for
instance [14, 18–22]), while general studies on the work and current fluctuations in
nonequilibrium models can be found in [23–27].

In this chapter we review and discuss some recent analytical and experimental
results concerning the study of large deviations of the nonequilibrium dynamics of
Brownian motors, tracing some analogies which have not been noticed before.

According to the second principle of thermodynamics, a basic ingredient for the
construction of a ratchet device is the presence of nonequilibrium conditions. These
induce a continuous energy flux in the system, breaking the time-reversal symmetry
of the dynamics. Nonequilibrium conditions can be realized in different ways,
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and they are characterized by many interesting phenomena, such as violations of
the equilibrium fluctuation-dissipation theorem [28–32], positive entropy produc-
tion [14, 33, 34], velocity cross-correlations [35–37], and so on.

Since the presence of dissipation is a fundamental ingredient to induce nonequi-
librium conditions, a natural framework where ratchet systems have been studied
is the realm of granular media [38], where interactions do not conserve energy due
to inelastic collisions. Moreover, fluctuations are always relevant in the framework
of granular systems, because of the relatively small number of particles involved.
Indeed, several experimental [39–42] and theoretical results [43–46] have been
obtained for granular ratchets directly inspired by the Smoluchowski-Feynman
model.

More in general, instances of nonequilibrium conditions, relevant to the follow-
ing discussion, can be induced by the presence of

• Time-dependent temperature: noise amplitude is periodically varied in time, so
that the system is prevented from reaching any equilibrium state;

• Temperature gradients: if the system is in contact with two (or more) reservoirs
at different temperatures a stationary heat flux is present in the systems, flowing
from the hot source to the cold one;

• Chemical reactions: conversion of chemical energy (derived for instance from
the hydrolysis of ATP) into mechanical work;

• Dissipative (granular) interactions: a gas of macroscopic granular particles,
which is characterized by dissipative interactions where a certain amount of
energy is lost in each collision, can be kept in a nonequilibrium stationary state
by the coupling with an energy source (e.g. a vibrating wall);

• Active particles: self-propelling agents (e.g. bacteria) are out of equilibrium due
to the internal conversion of energy into motion;

• Aging: a ferromagnet or a glass-forming liquid quenched to below the critical
temperature shows a nonequilibrium non-stationary dynamics;

• Dry friction: solid-on-solid friction (also known as Coulomb friction) is a source
of dissipation which induces nonequilibrium behaviors.

In all the situations mentioned above a ratchet device can be realized if a spatial
asymmetry is introduced in the system, as illustrated below for some specific
examples. A spatial anisotropy can be introduced by the presence of asymmetric
potentials, asymmetric shape of the probe, or some asymmetric interactions. In these
systems, work against external loads can be extracted by unbiased fluctuations. The
study of work fluctuations is therefore a central issue in order to assess some recent
results in the context of general nonequilibrium processes and the LDT provides a
useful tool to this aim.

In Sect. 8.2 we review, with some explicative examples, two main classes
of Brownian motors: kinetic ratchets, which are macroscopic devices where the
fluctuations are induced by collisions with gas particles, and molecular motors,
which play a fundamental role in transport phenomena in biological systems. In
particular, we report analytical results for the LDF of some solvable models within
these classes. In Sect. 8.3 we review two experiments where work fluctuations and
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large deviations are measured, in the framework of granular media. Finally, in
Sect. 8.4 some conclusions are drawn.

8.2 Nonequilibrium Fluctuations and Brownian Motors

Before describing in detail several examples of Brownian motors, we present
some general considerations on nonequilibrium stochastic models, relevant in
this context. In particular, let us notice that exact results on large deviations in
nonequilibrium dynamics are very scarce. In this direction, it is crucial to make some
approximations to obtain the LDF and its dependence on the effective parameters of
the models considered. In the present literature this kind of approximations can be
divided in two different classes:

(a) In the first class, a time scale separation between an asymmetric intruder and
the component of the rest of the system can be exploited. Then, the whole
system can be reduced to a single particle problem: an intruder (slow degree of
freedom) interacting with an external nonequilibrium environment (fast degrees
of freedom) and with the additional presence of some effective asymmetric
potential. From a mathematical point of view, this approximation corresponds
to pass from a many variables master equation to some effective stochastic
Langevin equation, where it is possible to calculate explicitly the entropy
production and its associated LDF and fluctuation relation.

(b) In the second case, the key point is given by passing from a continuous to
a discrete space. This approximation is frequently used to treat the so called
flashing ratchet, often an effective model for molecular motors. This kind
of models are characterized by a stochastic (equilibrium) dynamics on some
proper potential, for instance VA.r/, that can change to VB.r/ according to some
transition rates and viceversa. In this class of processes all the irreversibility is
contained in the transition rates of the switching potential and the details of
the dynamics are not relevant for the nonequilibrium properties of the whole
system. It is natural, then to pass from a continuous description to a discrete
one where the position of the particle is on a lattice, together with another
discrete variable identifying the state of the external potential (A or B in our
example). Within this approximation the dynamics is described by some master
equation and it is often possible to explicitly calculate the LDF and evaluate the
corresponding FR.

The case (a) is typical of the kinetic motors and it is illustrated in Sect. 8.2.1. On
the contrary, the discrete approximation (b) is often used in the context of biological
applications in order to obtain minimal models for molecular motors, as shown in
Sect. 8.2.2. The purpose of this sections is not to review neither the FR nor the
molecular motors (the interested reader can refer to the recent review [47]), but
rather to mention the main theoretical issues of this research. As examples, two
specific models in which it is possible to calculate the LDF will be considered.
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8.2.1 Kinetic Ratchets

This class of ratchet models includes systems where the fluctuations of an asym-
metric probe are induced by collisions with gas particles, as originally proposed by
Smoluchowski and Feynman.

Many examples of kinetic ratchets have been studied in the literature, where
nonequilibrium conditions are realized in one of the forms enumerated in the
Introduction. For instance, a ratchet working in contact with two thermostats at
different temperature has been studied in [48, 49]. A different realization has been
introduced by Costantini et al. [44] and by Cleuren et al. [43], where a driven
granular gas is the source of fluctuations. Moreover, other ratchets exploiting
granular interactions have been studied in [45, 50, 51]. Recently, the dry (or
Coulomb) friction has also been considered as unique source of dissipation which
is able to drive a ratchet effect in models where the asymmetric probe is in contact
with a thermal bath at equilibrium [52]. Kinetic ratchets have been also realized in
numerical simulations exploiting aging properties of glasses [53] and in experiments
with active matter (bacteria) [54]. In the large part of the cases cited above, the
asymmetric intruder is largely bigger than the surrounding particles. This induces a
time scale separation and it is possible to consider the gas particles weakly perturbed
by the presence of the intruder. Within this strong assumption, the gas distribution is
fixed and independent of the motion of the probe, and the dynamics can be described
by a master equation for the probability density function P.V; t/ of the velocity V
of the probe at time t

@P.V; t/

@t
D
Z

dV 0ŒW.V jV 0/P.V 0; t/ �W.V 0jV /P.V; t/


C @

@V
F.V /P.V; t/; (8.1)

where W.V 0jV / are the transition rates for the jump from V to V 0 due to the
collisions, which depend on the mass M of the probe and on the gas parameters
(such as density, temperature T , mass of particles and coefficient of restitution for
inelastic collisions), and F.V / is an external force (generally dependent on the
velocity, for instance due to the presence of friction affecting the motion of the
probe). In order to calculate the large deviation function, it is necessary to specify
the transition rates W , that depend on the geometry of the problem. Let us now
focus on the specific case of the asymmetric piston in the presence of a constant
force field (F.V / � F ). For this example we mainly refer to [51, 55].

We consider a piston of massM undergoing collisions with bath particles of mass
m and the velocity of the particles is distributed according to some distribution �.v/.
The peculiarity of the piston is given by the fact that it has two different inelasticity
coefficients (˛� and ˛C) on its two different faces (see Fig. 8.1). Then the collision
rules can be written in the following way:
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Fig. 8.1 Scheme of the
asymmetric inelastic piston,
where the two faces have
different restitution
coefficients and an external
force is applied

V 0̇ D V C .1C ˛˙/ �2

1C �2 .v � V / v0 D v � 1C ˛˙
1C �2 .v � V /; (8.2)

where the parameter � D m
M

has been introduced. The transition rates reflect this
asymmetry and are given by

W.V jV 0/ D �L
Z

dv.V 0 � v/�.v/


�.V 0 � v/ı.CC/��.v � V 0/ı.C�/

�
(8.3)

where

C˙ D V � V 0 C .1C ˛˙/�2
1C �2 .V 0 � v/: (8.4)

The large deviations properties, for instance of the work done by the force F , cannot
be deduced in this general case and some approximation is necessary. Then, by
assuming a large difference of masses (i.e. � 	 1) the master equation (8.1) can be
simplified with the standard Fokker-Planck expansion [56], yielding the statistical
properties of the process described by the stochastic equation:

M
dV

dt
D �a.V /C F Cpb.V /.t/; (8.5)

where .t/ is an uncorrelated white noise with unitary variance and

a.V / D �
Z 1

0

dvv2 Œ.1C ˛�/�.V � v/ � .1C ˛C/�.V C v/
 (8.6)

b.V / D �
Z 1

0

dvv3


.1C ˛�/2�.V � v/C .1C ˛C/2�.V C v/

�
: (8.7)

Considering the case F D 0, the steady state velocity Vl is given by the solution
of a.V / D 0. In the symmetric case, when ˛C D ˛�, it is evident from Eq. (8.6)
that Vl D 0, but in general Vl ¤ 0. Consistently with the time scale separation,
an expansion for small fluctuations around the average velocity can be considered,
yielding
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M
dV

dt
D �� .V � Vl/C F C

p
2� Tg.t/: (8.8)

In this limit it is evident that the position �X	 D X.t C 	/ � X.t/ is a Gaussian
variable. If we consider the work done in the time interval Œt; t C 	
 than it is
given by

W D F�	X; (8.9)

the work W is a Gaussian variable

P.W D w/ / exp

�
� .w � hwi/

2

2�2w

�
; (8.10)

where, for large times (i.e. for t � M
�

)

hwi D F
�
Vl C F

�

�
t �2w '

2F 2Tg

�
t: (8.11)

Thanks to the Gaussianity of the process, from Eq. (8.11) it is easy to prove the
following FR

ln

�
P.W	 D w/

P.W	 D �w/

�
D 2 hwiw

�2w
'
�
� Vl C F

F

�
w

Tg
: (8.12)

In conclusion, Eq. (8.12) quantifies the probability of exploiting nonequilibrium
fluctuations in order to perform work on the system. Let us note that, in the
symmetric limit, when Vl ! 0, and the slope of the FR approaches the inverse
granular temperature of the surrounding gas, but this is true only in this specific
case. Some experimental works defined a sort of “effective temperature” from the
measure of the entropy production [57] on a vibrating granular gas. Actually it has
been shown that this interpretation is not convincing for several reasons [58]. Indeed,
a generalization of Eq. (8.12) to more realistic cases meets different problems. Apart
from the limit case (8.12), the Gaussian approximation fails and non-symmetric
fluctuations are present as soon as the mass of the piston is comparable with that
one of the gas particles [51]. Moreover, at higher densities, velocity correlations
and memory effects play a crucial role [34] and a generalization of Eq. (8.12) for
molecular motors in these cases has not yet been investigated.

8.2.2 Molecular Motors

Molecular motors are small biological devices (size from few to some hundreds
nanometers) that can convert chemical energy into mechanical work. Using sophis-
ticated intramolecular amplification mechanisms [8], these motors transport a wide
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variety of cargo, power cell locomotion, drive cell division and, when combined
in large ensembles, allow organisms to move. An example is kinesin, which is a
molecule that uses the energy of bond hydrolysis (ATP) to perform replication,
transcription and repair of DNA and the translation of RNA. Other examples are
myosins, which move on actin filaments, and dyneins [59].

An important issue to address is to understand the nonequilibrium thermody-
namics of these systems. Because of their nanometric size and their incessant
exchanges with the surrounding environment, large fluctuations are present and their
behavior is thus stochastic as observed experimentally. Accordingly, their motion is
unidirectional only on average and random steps in the direction opposite to their
mean motion can occur. The study of the deviations from the average motion can be
important to characterize the behavior of these systems.

Avoiding biological complexity and focusing on the physical mechanisms, these
systems can be modeled as simple stochastic processes [60]. In particular, the
underlying chemical processes can be described by Langevin equations in the
presence of fluctuating forces with non-Gaussian correlation functions and time-
dependent potentials or introducing other degrees of freedom, such as transitions
between different states. Being more specific, one can start from the motion of a
Brownian particle in an effective potential

� Px D F � @U
eff .x; t/

@x
C �.t/; (8.13)

where

U eff .x; t/ D
�
U1.x/ r.t/ D 0
U2.x/ r.t/ D 1 ; (8.14)

where r.t/ is a stochastic process defined below.
Usually, in this kind of ratchet (called flashing ratchet in literature) the potentials

Ui.x/ have some asymmetric shape (a typical case is depicted in Fig. 8.2). All the
time dependence of the process is ruled by r.t/, a stochastic process that can take
only the values between 0 and 1 and its transition rates can be written as:

!2.x/

!1.x/
D eˇ.U2.x/�U1.x//C��.x/: (8.15)

By summing up, there are two different sources of nonequilibrium conditions in
this model. First, there is the external force F and, secondly, there is the factor
��.x/ that violates detailed balance for the hopping process r.t/. Both of these
elements can produce a net drift of the particle, since the detailed balance is violated
(time symmetry breaking) and the potentialsUi.x/ are asymmetric (space symmetry
breaking). These kinds of models have been studied for a long time (see [7] for
a review) and have been proposed as candidates for modeling molecular motors.
In particular, �� mimics the chemical activity of the motor, for instance the ATP
consumption.
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Fig. 8.2 Top: Scheme of the
flashing ratchet and reduction
to the discrete variables (The
picture is taken from [61]).
Bottom: Large deviations
function G.v/ for some
specific values of the
parameters (From [62])

A possible way to tackle the problem from an analytical point of view is to
construct a proper discrete version of the model, as recently proposed by Lacoste
et al. [62]. Their main approximation consists in considering only transitions
occurring in the minima of the potentials and essentially a vanishing occupation
time for all the other possible positions. In this way, the continuous process can
be recast in a discrete random walk, the relevant parameters being n (the distance
of the walker) and y (the number of changes of the potential, that is supposed to be
related to the ATP consumption). The effective evolution equation for the probability
Pn.y; t/ that the motor, at time t , has consumed y units of ATP and is at position n
is given by:

@tPn.y; t/ D �
� �! n C�!! n

�
Pn.y; t/

C
X

lD�1;0;1

h �! l
nC1 PnC1.y � l; t/C�!! l

n�1 Pn�1.y � l; t/
i
; (8.16)

where  �! n D P
l
 �! l

n and �!! n D P
l
�!! l

n, and  �! l
n and �!! l

n are the transition
rates for the motor to jump from site n to n � 1 or to n C 1, respectively, with
l.D �1; 0; 1/ ATP molecules consumed. These transition rates are properly related
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to their continuous version described in Eq. (8.15), see Fig. 8.2 (top) for a visual
explanation. We omit here their complete expression, and refer the interested reader
to [63] for details. Within this model it is possible to easily calculate the average
velocity:

Nv D lim
t!1

hn.t/i
t
D 2

�!! a
�!! b � �! a

 �! b

�!! a C�!! b C �! a C �! b

: (8.17)

As evident from Eq. (8.17), Nv is zero if detailed balance is satisfied, namely when
one has �!! a

�!! b D  �! a
 �! b . By using Eq. (8.17) and the corresponding average

consumption rate r , the authors has been able to connect this model to some
experiments on kinesin [63].

Going beyond the average velocity, it is possible to study large fluctuations. Then,
it is possible to show that [62] the probability for a particle to have a velocity v, after
it has gone a distance n from the origin in a time t , is given by

P
�n
t
D v

�
� e�G.v/t : (8.18)

This large deviations property follows directly from the property of the master
equation (8.16). In order to see that, one has to consider the probability Pi.n; t/
that the motor is on the site i D a or b and at a distance n, which is obtained
by integrating over y in the quantity Pn.y; t/. The LDF G.v/ is the Legendre
transform of the largest eigenvalue of the evolution matrix for the processFi .�; t/ DP

n e
��nPi .n; t/.

Note that the function G.v/ has a strong asymmetric shape as shown in Fig. 8.2
(for its analytical expression, see [62]). This is a quite common feature in ratchet
models, and, noticeably, it has been also recovered in experiments on other kinds of
motors, as described in Sect. 8.3.1. Associated with this large deviations principle it
is possible to derive the corresponding FR:

lim
t!1

1

t
ln

�
P.n

t
D v/

P.n
t
D �v/

�
D G.�v/�G.v/ D ��v; (8.19)

where

� � 1

2
ln

 �!! a
�!! b

 �! a
 �! b

!
: (8.20)

As already shown for the kinetic ratchets, Eq. (8.19) puts a strong constraint on
the positive or negative fluctuations of velocity. Remarkably, the coefficient  is
a measure of the irreversibility of the cycle a � b and it is a particular example
of a more general related quantity called affinity [64]. Such a relation has been
pointed out also in other models of molecular motors [65]. An experimental test of
this single motor theory is still undone, and the FR could help to have access to the
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microscopic parameters ( ) by means of a measure of the asymmetry in the velocity.
Moreover, in terms of perspectives, both from a theoretical and experimental point
of view, the study of many interacting molecular motors is still a challenging and
open issue [66, 67].

8.3 Experiments in Granular Systems

An ideal framework where the role of nonequilibrium fluctuations can be studied
is the realm of vibrated granular systems [38]: the dissipation due to inelastic
collisions is balanced by some energy injection mechanism, so that a nonequilibrium
stationary state with energy fluxes is attained. For a general review about the
experimental study of nonequilibrium fluctuations in this context we refer the reader
to [68].

The context of granular systems paves the way to the realization of experiments
aimed at validating some important general relations derived for nonequilibrium
systems, mentioned in Sect. 8.1. In particular, in granular systems, where noise
and time-scale separation are often not fully under control and where usually the
accessible quantities are somehow coarse-grained, the experimental study of FR is
very useful to assess such results in a more general framework [69–71].

Here we focus on the study of systems where the presence of dissipation coupled
with some spatial anisotropy induces a macroscopic ratchet effect, namely a finite
average drift of a probe which is subjected to collisions with granular particles. In
these cases, the more natural, and directly accessible, fluctuating quantity to study is
the displacement of the probe over a given time interval. This quantity can be related
to the work performed by the ratchet and, therefore, the study of its large deviations
is important to characterize general nonequilibrium behaviors in these systems.

The first experimental realization of a ratchet device in the context of granular
media was obtained by Eshuis et al. [40]. In this experiment a rotor consisting
of four vanes was put in contact with a vibrofluidized granular gas. The spatial
symmetry breaking was obtained by applying a soft coating to one side of each
vane. Above a certain threshold of the shaking amplitude of the granular medium, a
net unidirectional rotation of the probe was observed.

Next, Joubaud et al. [69] studied a similar experiment, measuring the injected
work and the entropy production in the system. Generally, the identification of the
observable quantities directly related to the entropy production is not easy, due to the
difficulty of assessing and measuring the relevant degrees of freedom in the system.
However, as discussed more in detail in the following examples, in some limits
such an identification is possible. In particular, this is the case when an underlying
Langevin description is shown to be valid for the system: then, the amount of
injected work is proportional to the displacement of the probe in a time interval.
Exploiting this observation, the authors of [69] verified the FR for this granular
ratchet.
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Another source of dissipation has been shown to play an important role in the
dynamics of kinetic ratchets: the Coulomb (or dry) friction [50, 52, 72, 73]. Its main
effect is the introduction of two dynamical regimes: one is dominated by the effect of
collisions, while the other by the dissipation due to friction. More surprisingly, it has
also been shown that the Coulomb friction itself can be sufficient to drive a motor
effect, even if the probe is in contact with a molecular fluid at equilibrium [52, 73].

In the following we report two experimental results concerning the study of the
fluctuations and large deviations of nonequilibrium currents in the framework of
granular systems. The first experiment studies the motion of a self-propelled polar
particle in contact with a dense granular medium, while the second analyzes the
dynamics of an asymmetric rotor interacting with a dilute granular gas.

8.3.1 Velocity Fluctuations of a Self-Propelled Polar Particle

In the experiment reported in [74], Kumar et al. studied the symmetry properties of
the LDF of the velocity of a self-propelled polar particle. The authors considered
the motion of a geometrically polar tracer in a dense (packing fraction � � 0:8)
monolayer of granular particles on a vertically agitated horizontal surface, see
Fig. 8.3. Due to its geometrical asymmetry, the behavior of the polar particle shows
a noisy self-propelled motion, with a finite average drift.

The quantity of interest in this system is the fluctuating velocity defined as

W	.t/ D .1=	/
Z tC	

t



V.t 0/= hV i� dt0 (8.21)

where V.t/� v.t/ 
 On.t/, with v.t/ and On.t/ the particle velocity and orientation
vector in the plane, respectively, and h: : :i denotes an average over the time t .
Introducing the probability density function P.W	/ the LDF is defined as F.W	/ �
lim	!1.�1=	/ lnP.W	/. As shown in Fig. 8.4, the LDF measured in the exper-
iment presents a peculiar shape, far from a Gaussian, and, interestingly, satisfies
a symmetry relation similar to the FR, F.W	/ � F.�W	/ / W	 . Data collapse
of the empirical LDF is found for 	 > 0:12 s. Figure 8.4 (top panel) shows
F.W	/ for 	 D 0:20, 0.30 and 0.40 s, covering almost the entire range of W	 .
Notice that F.W	/ shows a sharp kink at zero, remaining almost flat between 0
and 1. Figure 8.4 (bottom panel) also shows the LDF obtained for lower shaking
amplitude: the distribution is again non-Gaussian and a kink at zero is observed.
The asymmetric shape of the LDF reflects the unidirectional self-propelled motion
of the polar particle.

In order to understand the shape observed, in [74] it is also discussed a
comparison to the LDF of the entropy production rate for a colloidal particle driven
by a constant force through a periodic potential obtained theoretically in [22], where
the same qualitative behavior, namely the presence of a kink in the LDF, is found.
A similar behavior of the entropy production has been also observed numerically
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Fig. 8.3 Polar tracer in a
dense monolayer of granular
particles (From Kumar
et al. [74])

Fig. 8.4 Large deviations
functions of the velocity
fluctuations,
.�1=	/ lnP.W	 /=A	 where
A	 is the maximum value of
P.W	 /, measured in the
experiments [74], for high
(top) and low (bottom)
shaking accelerations (From
Kumar et al. [74])

in the stationary state of a one-dimensional kinetic model where a probe particle
is driven by an external field and collides with a bath of particles at a certain
temperature [75]. However, as noticed in [74], it has to be pointed out that the
LDF measured in the experiment is the LDF for the velocity, not for the entropy
production. The results of the experiment can be compared to the predictions of [22]
only if the motion of the polar particle can be approximated as propelled by a
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constant force. This is not clear in the experiment, where the propulsive force
could have significant time dependence. Furthermore, we would also stress the close
similarity with the shape of the LDF for the model of molecular motor described in
Sect. 8.2.2, see Fig. 8.2 (bottom). In that case, the similarity is more clear because
the LDF for the same quantity, namely the velocity, is computed.

This experiment shows that the LDF of the velocity fluctuations, in some cases,
share the same symmetry relations as the entropy production. This could indicate
that the validity of the FR, proven under well defined hypotheses, may also hold in
more general situations. Therefore, the study of the extension of such relations to
wider context is very important in order to assess their real meaning. Such a point is
also illustrated in the experiment described in the following section.

8.3.2 Asymmetric Rotor in a Granular Gas

In the experiment reported in [76] a new setup for a frictional granular kinetic
ratchet is considered in order to get closer to conditions where kinetic theory can
be applied. In particular, the study focuses on the nonequilibrium fluctuations of the
angle spanned in a time interval by an asymmetric rotator in contact with a granular
gas. This quantity is related to the work done by the ratchet against frictional forces
present in the system.

The two main components of the setup are the granular gas and the rotator,
as sketched in Fig. 8.5. The granular gas is made of small spheres contained in
a cylinder which is vertically shaken at fixed frequency with maximum rescaled
acceleration � . Suspended into the gas, a rotator of mass M turns around a vertical
axis, see Fig. 8.5 (right). The spatial asymmetry is introduced by applying insulating
tape to the rotator, partially covering its two largest surfaces.

The central quantity to study is the angular velocity ! of the rotator which can
be described by the following equation of motion:

P!.t/ D ���Œ!.t/
 � �a!.t/C �coll.t/ (8.22)

where � D Ffrict=I is the frictional force rescaled by inertia, �a is some viscous
damping rate related to air, and �coll.t/ is the random force due to collisions with
the granular gas particles. It is useful to introduce the “equipartition” angular
velocity !0 D v0�=RI where � D p

m
M

and RI D
p
I=M . The single particle

probability density function (PDF) p.!; t/ for the angular velocity of the rotator
is fully described, under the assumption of diluteness which guarantees Molecular
Chaos, by a Boltzmann equation [45, 50, 52].

As mentioned above, the presence of Coulomb friction in the support bearing the
rotator introduces two time scales in the system. An estimate of the ratio between
the stopping time due to dissipation (dominated by dry friction) 	� � !0

�
and the

collisional time 	c � 1
n˙v0

, where ˙ is the surface of the sides and n is the gas
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Fig. 8.5 The experimental setup of the experiment of Gnoli et al. [76]

density, is given by the parameter ˇ�1 D �n˙v20p
2�RI �

� 	�
	c

. This parameter controls the

transition from a regime (at ˇ�1 	 1) with fast stopping due to dissipation, called
RC (rare collisions), and a regime (at ˇ�1 � 1) with the rotator always in motion,
continuously perturbed by collisions, called FC (frequent collisions). A steady drift,
signaling the presence of a Brownian motor effect, is observed both in the friction
dominated regime (ˇ�1 < 1) and in the collisions dominated regime (ˇ�1 > 1).

A further simplification of the model can be obtained when the mass of the rotator
is large with respect to the mass of the granular gas particles, so that the collisional
noise in Eq. (8.22) can be cast into the sum of a white noise �.t/ plus a viscous drag
and a systematic force inducing the motor effect:

�coll.t/! �.t/ � �g!.t/C 	motor; (8.23)

with h�i D 0 and h�.t/�.t 0/i D �gı.t� t 0/. The expression for �g , 	motor and �g are
reported in [50]. Notice that the collisional noise �coll is in general not white, and,
even more importantly, it is not independent of the instantaneous velocity !. In the
FC limit, ˇ�1 � 1, the Coulomb friction term and the external viscosity may be
neglected, i.e. �a!C��.!/	 �g!, so that Eq. (8.22) is cast into the much simpler
form

P!.t/ D ��g!.t/C �.t/C 	motor: (8.24)
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From the above equation one may estimate the average velocity of the Brownian
motor to be h!i D 	motor=�g [50,72]. Equation (8.24) also allows one to characterize
the fluctuations P.��/ of the spanned angle in a time interval of length �t , �� D
�.t C �t/ � �.t/ for any t in the steady state. For the particularly simple linear
Langevin case it can be shown, see Sect. 8.2.1, that such fluctuations obey, for large
�t , the following FR:

�.��/ D log

�
P.��/

P.���/
	
� s��; (8.25)

with

s D �g	motor

�g
� 	motor

h!2i : (8.26)

We mention that such an FR is closely related to the FR for the entropy produced
in the time �t , which in this system is approximated by the work done by the
“Brownian motor force”W � 	motor�� divided by the “temperature” h!2i [33].

In the RC regime, on the other hand, one may assume that the dynamics of the
probe is a sequence of independent kicks received at zero velocity, resulting in an
explicit formula for the adimensional average angular velocity [50]. In this regime
the behavior of �.��/ is unknown in principle. A FR for the entropy production
certainly exists, but there is not a simple relation between �� and the entropy
produced in a given time interval.

Once stated the possibility of extracting useful work from nonequilibrium
fluctuations, it is important to characterize the statistical behavior of the system,
by studying the large deviations for the spanned angle in a time interval. Indeed, the
PDF of such a quantity contains important information on the underlying symmetry
relations for the ratchet currents. The empirical LDF F.��/ D � logŒP.��/
=�t
of the PDF P.��/ for different choices of the time window �t , are reported
in Fig. 8.6 for two experiments with a small and a large value of ˇ�1. In both
experiments deviations from the parabolic fit, i.e. slightly non-Gaussian tails, can
be appreciated, signaling the large deviations of the PDF of �� . In particular, the
asymmetric shape of the LDF reflects the unidirectional motion of the ratchet effect.
In order to point out the symmetry properties of the PDF of �� , in Fig. 8.7 the

asymmetry function �.��/ D log
h
P.��/

P.���/
i

is shown for the same two experiments.

At values of �t large enough, but smaller than those necessary to achieve a stable
large deviation rate, the asymmetry functions already display a linear behavior
�s�� with an almost constant slope s.

This study unveils some important information: (1) for large values of ˇ�1 the
system is described by Eq. (8.24), which is confirmed by the good agreement of
the slope with Eq. (8.26); (2) at moderate and small values of ˇ�1 the “simplified”
Langevin description of Eq. (8.24) is not expected to hold, and indeed discrepancy
is found between experimental slopes of �.��/ and those predicted by Eq. (8.26);
nevertheless (3) such experimental values of the slope appear to depend only weakly
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upon ˇ�1 [76], so that they do not differ too much from the values at large ˇ�1. This
empirical observation cannot be easily explained: indeed, at small values of ˇ�1,
the discontinuous nature of noise due to collisions prevents one from describing the
average drift as the effect of a continuous torque (as it is 	motor in the FC limit).
Therefore it is not clear at all how to define a work or an injected power and,
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consequently, a candidate for the entropy production. A theory for the fluctuations
of �� in such a situation has to be developed and the discovery of the validity of
the FR with a slope similar to a very different regime is largely unanticipated. We
mention that in the Gaussian approximation, i.e. assuming a parabolic form for the
LDF of �� or equivalently

P.��/ � exp

�
� .�� � h!i�t/

2

2D�t

	
; (8.27)

leads to the identification s D 2h!i=D, see Sect. 8.2.1. Again, no general theoretical
expectations exist for the ratio between the average drift and the angular “diffusion”
coefficient D. The empirical observation that such a ratio is somehow independent
of the relative importance between collisions and dry friction (controlled by ˇ�1) is
quite surprisingly. This suggests that some properties of the LDF for driven systems
share general symmetry relations, which are valid in wider contexts.

8.4 Conclusions

Ratchet systems, in their several different realizations, provide an interesting context
where nonequilibrium fluctuations play a central role. Since such systems are
characterized by the continuous conversions of “thermal” energy into work, they
provide us a suitable framework where transformations between nonequilibrium
steady states can be studied, with the final aim to extend and assess the validity
of general thermodynamic relations in nonequilibrium systems.

As the last decades have shown, a powerful tool to characterize nonequilibrium
fluctuations is the theory of large deviations, which describe the behavior of
the system beyond the Gaussian approximation, pointing out the role of large
fluctuations and rare events in the dynamics. As shown in this chapter, analytical
results on the large deviations function for the displacement in ratchet models are
very few, due to the mathematical difficulty of the problem. Still, such results shed
some light on the underlying mechanisms which produce the general symmetry
relations in the fluctuations distributions.

The experimental study of large deviations of velocity currents in ratchet systems
is also very intriguing. Results in this framework show that some nonequilibrium
relations, which are mathematically proven under strict hypotheses, can be verified
also in more general regimes. We have discussed two examples where the velocity
statistics of a probe has been observed to verify a symmetry relation like the FR,
which is expected to hold for the entropy production in the system. The experimental
observations call for a deeper analysis of these relations in a wider and more general
framework.
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Chapter 9
Stochastic Fluctuations in Deterministic Systems

Antonio Politi

Abstract The unavoidable presence of inhomogeneities in the phase space of a
chaotic system induces fluctuations in the degree of stability, even when long
trajectories are considered. The characterization of such fluctuations requires to
go beyond average indicators: this is achieved with the help of the multifractal
formalism which contributes to: (i) establishing a general connection between the
positive Lyapunov exponents and the Kolmogorov-Sinai entropy; (ii) identifying
and quantifying deviations from a purely hyperbolic dynamics; (iii) characterizing
anomalous bifurcations, where the attractor looses progressively its stability. In the
context of spatially extended dynamical systems, the study of Lyapunov exponent
fluctuations leads to a non conventional assessment of the extensivity of the resulting
dynamics. Finally, a careful study of the fluctuations allows clarifying the odd
phenomenon of “stable chaos”, where an irregular dynamics is accompanied by
a negative (average) Lyapunov exponent.

9.1 Introduction

A dynamical system is said to be deterministic if the perfect knowledge of its current
state allows, in principle, to determine any future state. The (possibly finite) number
N of variables that is necessary to know to specify the current configuration is
the dimension of the corresponding phase-space. The deterministic evolution rule
is typically given as a relationship linking the configurations in two consecutive
instants. If the time variable is assumed to be discrete, we are before a so-called
recursive map [1, 2]

xnC1 D F.xn/ ; (9.1)
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where xn is an N -dimensional vector that identifies the configuration at time n.
In the case of a continuous-time variable (and a finite-dimensional phase space),
the evolution is typically determined by a set of ordinary differential equations
(ODEs). After introducing a suitable surface of section S , a set of ODEs can, in
principle, be reduced to a recursive map linking two consecutive crossings with the
section S . Accordingly, from now on, I assume that the time is discrete and refer to
an evolution rule of the type (9.1). Although the knowledge of the initial condition
x0 suffices to determine the future (and the past, if the system is invertible), the
requested configuration can be obtained only by composing a chain of operators.
Since in practical applications, the current state is never known with a perfect
accuracy, it is convenient to introduce the uncertainty ıxn. As long as ıxn is small
enough, it can be treated as an infinitesimal quantity and thereby linearize the
evolution equation, obtaining [1, 2]

ıxnC1 D Fxıxn ; (9.2)

where the subscript x denotes the derivative with respect to the set of variables.
By looking at the evolution of ıxn, it is possible to infer some general properties
of the deterministic evolution rule. In particular, as long as ıxn does not grow
(too rapidly) with time, one can claim that future states are predictable. However,
if ıxn grows, e.g., exponentially in time, it is obvious that there exists a time
scale beyond which the knowledge of principle of the future is practically useless.
This is indeed the case of deterministic chaos, a rather general phenomenon in
nonlinear systems. Deterministic chaos is basically characterized by the stretching
of one or more directions, accompanied by the squeezing along other directions
(the confinement in phase space is ensured by suitable folding processes). The
reader interested in the mechanisms that lead to the onset of a chaotic dynamics
may read Refs. [1, 2]. In this chapter, I am mainly interested in the fluctuations that
unavoidably accompany chaotic motion. With the help of a series of dynamical
systems of increasing complexity, I illustrate in Sect. 9.2 a distinctive property
of deterministic chaos: the existence of a multitude of different orbits and its
quantification with the Kolmogorov-Sinai entropy [3]. A close look at the problem
reveals that different definitions may give different results. This circumstance, which
seems to reveal the presence of an ill-defined quantity, is instead the consequence
of fluctuations, whose treatment requires the combination of a large-deviation
formalism, with a suitable encoding of the trajectories. Given the practical difficulty
to fully carry out this strategy in generic models, it is, however, more convenient
to make use of (finite-time) Lyapunov exponents which are indeed introduced in
Sect. 9.3, where their relationship with the Kolmogorov-Sinai entropy is also briefly
illustrated.

An important property of a chaotic dynamics is hyperbolicity, i.e. the transver-
sality between stable and unstable manifold (see Ref. [3] for a precise definition), as
it allows for rigorous proofs of many properties, starting from the structural stability
of a chaotic dynamics [3]. The fluctuations of the Lyapunov exponents help to reveal
deviations from a perfectly hyperbolic dynamics. In Sect. 9.4, I present several
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examples, starting from the very existence of a negative tail in the distribution of
the maximal Lyapunov exponent. Other examples are: (i) the bubbling transition
which accompanies the synchronization of chaotic systems; (ii) a fluctuating number
of unstable directions. The same formalism can be extended to spatio-temporal
systems (although within a Gaussian approximation), where it allows recognizing
a strong form of extensivity (see Sect. 9.5). Finally, in Sect. 9.6, I show that the
study of large-deviations allows reconciling an atypical form of irregular dynamics,
“stable chaos” (characterized by a negative maximum Lyapunov exponent), with
standard chaos: the existence of a positive tail in the distribution of the maximum
Lyapunov exponent signals the presence of a lower-dimensional strange repeller,
a condition that is believed to be a necessary prerequisite for the occurrence of
stable chaos.

9.2 Kolmogorov-Sinai Entropy

The simplest setup where one can speak of deterministic chaos is that of 1D maps;
the prototypical model is the piece-wise linear Bernoulli map xnC1 D 2xnmod 1.
It is linear, as it involves only a multiplication by a constant and the possible
subtraction of yet another constant; it is “piecewise”, since the constant that is
being subtracted is either 0 (if x < 1=2) or 1 (if x > 1=2). The evolution is rather
trivial, especially if referred to the binary expansion of xn: bnbnC1bnC2 : : :, where
bn 2 f0; 1g. In fact, the mth iterate of xn, is nothing but bnCmbnCmC1bnCmC2 : : :.
For this reason, it is called a shift dynamical system: the complexity of the time
evolution is entirely contained in the complexity of the sequence of bits in the
initial condition. Although rather simple, this model allows illustrating some basic
concepts and properties that can be encountered in general dynamical system. In
particular: (i) one can recognize the existence of infinitely many periodic orbits
that are attained when starting from eventually periodic binary sequences (i.e. any
rational number); (ii) initial conditions with a larger fraction of 0s in their expansion
produce trajectories that stay closer to x D 0 than to x D 1. In other words, the
model is compatible with many different orbits.

The most convenient way to quantify the abundance of different orbits is by
counting the number of distinct trajectories of a given length. This is the approach
that eventually leads to the introduction of the so-called Kolmogorov-Sinai or metric
entropy: here I proceed by first illustrating the problem in a simple setup and thereby
progressively refining the definition. As a first step, it is necessary to introduce a
partition P" of the phase space, i.e. a collection of cells (atoms) Cm of size " such
that

S
m Cm covers all the accessible phase space. As a result, the state xn can be

turned into the symbol Cm, depending whether xn 2 Cm. Here, it is clear that "
plays the role of the observational resolution: giving the sequence of cells Cm is
equivalent to locating the phase point with an approximation that corresponds to the
cell size. Now, one can introduce the numberN."; n/ of distinct orbits (i.e. different
symbol sequences) of length n that can be generated by our dynamical system. In the
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specific case of the Bernoulli map, if C0 � Œ0; 1=2
, and C1 � Œ1=2; 1
, assigning
the sequence of C0/C1 is equivalent to assigning the 0 and 1 bits. We are now in the
position to define a dynamical entropy as

K0 D lim
n!0

logN."; n/

n
(9.3)

A value of K0 > 0 means that the number of distinct trajectories of length n grows
exponentially with the time span n. This property is the landmark of chaos, as it
implies an extraordinary richness in the type of trajectories that may be actually
generated by the (deterministic) system. Again with reference to the Bernoulli map,
since there is no restriction in assigning 0s and 1s in the initial condition, it is easy
to verify that the K0 D log 2.

In order to make the above definition more appealing, one should ascertain
whether the exponentK0 is independent of the partition adopted. This is indeed the
case, provided that, either the limit of infinitesimal boxes (" ! 0) is taken, or the
definition is restricted to the so-called generating partitions [4]. A partition is said to
be generating if, given the infinitely long sequence of cells visited by any trajectory,
it is possible to identify the trajectory itself with infinite accuracy. The Bernoulli
map can help to clarify how this is possible: in fact, if one knows the (approximate)
future positions, it is possible to refine the knowledge of the current state. This is a
consequence of the fact that the x axis is stretched (by a factor 2) at every iterate,
so that an uncertainty ınC1 implies an uncertainty ınC1=2 at the previous time. The
main obstacle to the refinement is the folding process, which, in the case of the
Bernoulli map, is provided by the modulus operation. It implies that two distinct
points with the same binary expansion (but the first symbol) are mapped onto the
same point. As a result, there must be some care in selecting the borders of the atoms
of the partition, as they must coincide with the points where the folding occurs.
For instance, had one decided to split the unit interval into two uneven cells (e.g.
Œ0; 0:6
 and Œ0:6; 1
), it would be easily seen that the (periodic) trajectory stemming
from 0.6 (0.2,0.4,0.8,0.6 : : :) and from 1/15 (2/15,4/15,8/15,1/15,: : :.) would be
encoded in the same way. If the atoms of the partition are not properly selected,
the number of different trajectories and K0 are underestimated. Although very
difficult to achieve in practice, symbolic encoding is conceptually very appealing,
since it allows to map the evolution of a generic dynamical system onto a shift
of a sequence of symbols. What could not emerge from the trivial example of the
Bernoulli map is that, in general, once a meaningful encoding has been introduced,
it is not generally true that all sequences of symbols are allowed, or that the various
symbols have equal probabilities. One dimensional maps can again help to clarify
the general expectations. I start with the simple asymmetric tent map that is depicted
in Fig. 9.1a. Given the partition made of the two atoms C0 and C1, that can, for
simplicity, be identified with 0 and 1, it is clear that since the image of C0 coincides
with C1, any symbol 0 is followed by the symbol 1 and no two consecutive 0s can
be generated. This is a minimal example of the complexity that is to be expected in
more generic dynamical systems. In full generality, there may be very complicate
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Fig. 9.1 Two examples of tent maps: (a) no two consecutive 0s can be generated; (b) 0s and 1s
have a different probability

constraints which forbid the appearance of symbols of various lengths. This implies
that the legal trajectories of an encoded dynamical system represent a nontrivial
subset of all possible sequences. The problem of characterizing a dynamical system
could be formulated as that of identifying the proper language that is generated by
the given dynamical system [5]. Less striking, but nevertheless enlightening is the
map illustrated in Fig. 9.1b. In this case there are no forbidden sequences, but the
two symbols 0 and 1 have a different probability. In fact, one can see that a flat
distribution P.x/ D 1 is left invariant by the map transformation; accordingly the
probability of each symbol is equal to the length of the corresponding interval.

Therefore, one learns that the problem of characterizing the dynamics of a
given chaotic system is equivalent to that of studying ensembles of (infinitely) long
symbolic sequences. Before proceeding along this direction, it is useful to remind
that almost rigorous methods to build generating partitions have been developed also
for two dimensional maps. In this case, the key ingredients that allow identifying the
borders of the atoms are the primary homoclinic tangencies, which correspond to the
folding points [6], and various kinds of symmetry lines, which allow incorporating
the islands of order in Hamiltonian systems [7].

Altogether, symbolic encoding allows reducing the study of a dynamical system
to that of symbol sequences. The first problem that is encountered is that different
averaging strategies may lead to different results. Going back to the counting
of distinct trajectories invoked in Eq. (9.3), one can appreciate this ambiguity by
invoking the so-called Renyi entropies [8],

Hq D � log
P

i p
q
i

q � 1 : (9.4)

For q D 0, H0 coincides with logN , while for q D 1, H1 reduces to the standard
Shannon entropy. In practice, Eq. (9.4) allows extending Eq. (9.3) to a generic q
value,

Kq D lim
n!0

Hq

n
: (9.5)
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For q D 1, one obtains the celebrated Kolmogorov-Sinai or metric entropy. In the
Bernoulli map, since all pi ’s are equal to one another, theKq entropies are also equal
to one another and it is a matter of taste the selection of the q value one wishes
to consider. However, in the slightly more realistic tent map plotted in Fig. 9.1b,
the various definitions yield different results, simply because the two symbols have
different probabilities. One can turn the q-dependence into a tool to extract more
detailed information on the underlying dynamical system.

This is quite evident by following an equivalent but more enlightning approach.
Let us rewrite Eqs. (9.4) and (9.5), as

e�.q�1/Kqn D
X

i

p
q
i ; (9.6)

where n is assumed to be large enough. The r.h.s. can be conveniently rewritten
as an integral over all possible values taken by the probability p. Moreover, it is
convenient to replace the integration variablep with the so-called pointwise entropy,

˛ D � logp

n
(9.7)

which tells us how should the probability of a box scale with n in order to take
the current value, p D exp.�˛n/. Next, let us introduce the number N.˛; n/d˛ of
sequences of length n that are characterized by the same pointwise entropy ˛, and
introduce a suitable scaling Ansatz,

N.˛; n/ D ef .˛/n (9.8)

where the “multifractal” distribution f .˛/ identifies the range of possible ˛ values.
The name multifractal comes from the theory of fractals, where this approach was
first developed [9]: it understands the fact that a simple fractal is characterized
by a single scaling exponent ˛. By assembling all of the above ingredients, one
eventually obtains

e�.q�1/Kqn D
Z
d˛ e.f .˛/�q˛/n: (9.9)

In the Bernoulli map, all sequences of length n are characterized by the same
exponent ˛ D log 2 that is also the value of the Kolmogorov-Sinai entropy. In this
case, the domain of f .˛/ is restricted to a single value and, for this reason, it is
called a uniform attractor. In general, the integral can be solved by invoking the
saddle point technique, i.e. by looking for the maximum value of the exponent. This
leads to a standard Legendre transform structure,

.q � 1/Kq D q˛ � f .˛/ I f 0.˛/ D q (9.10)
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Fig. 9.2 Schematic illustration of the Legendre transform linking f .˛/ with .q � 1/Kq

which allows determining .q � 1/K.q/, once the multifractal distribution f .˛/ is
given. The corresponding geometrical construction is illustrated in Fig. 9.2, where a
generic distribution f .˛/ is plotted together with the corresponding spectrumK.q/.
In practice, once f .˛/ is known, it is sufficient to draw the tangent to the curve in ˛
and thereby identify the intersection with the vertical axis as .q � 1/Kq, while the
slope of the curve corresponds to q. One expects f .˛/ to vanish in correspondence
of the minimum ˛min and maximum ˛max, since the multiplicity of the extremal
values does not typically increase with n. Moreover, it is easy to verify that K1,
andK�1 coincide with the minimal and maximal pointwise entropies, respectively.
Another special value is the abscissa ˛� of the maximum: f .˛�/ corresponds to
the topological entropy K0. Finally, the point q D 1 is the most important one, as
it identifies the metric entropy: it coincides with the tangency of the multifractal
distribution with the bisectrix. The reason why it is so can be understood by
introducing the probability P.˛; n/ to observe a sequence with pointwise entropy ˛
while generating a natural trajectory. It is given by pN.˛; n/ and invoking the same
scaling arguments as before, one expects that

P.˛; n/ � e�s.˛/n (9.11)

where s.˛/ D ˛�f .˛/ is nothing but a large-deviation function. Obvious properties
of probability distributions imply that s.˛/ � 0 and the minimum value s.˛0/
is equal to zero. From the very definition of s.˛/, we then conclude that f .˛/
touches the bisectrix at ˛ D ˛0. Moreover, the central limit theorem implies that
the minimum is generally a quadratic function. In fact, by expanding s up to second
order, one can write P.˛; n/ D expŒ�.˛ � ˛0/2=.�2=n/
, where �2, related to the
second derivative of f .˛/, measures the multifractality of the underlying attractor.
As a result, we see that the distribution is Gaussian and the standard deviation
decreases as 1

p
n. This is consistent with the expectation that a chaotic dynamics

is characterized by a short-term memory. One should be anyway warned that there
are regimes such as intermittency, where anomalous distributions are expected as
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the consequence of long-range correlations [2]. In any case, the minimum of s.˛/
must be always equal to zero. Finally, Eqs. (9.10) can be inverted. GivenKq , one can
determine the multifractal distribution by invoking the relationship Œ.q�1/Kq


0 D ˛.
This means that f .˛/ and K.q/ provide equivalent descriptions of the chaotic
dynamics.

9.3 Lyapunov Exponents

So far we have considered probabilities of symbolic sequences, but it is not generally
easy to determine them, since they require constructing a generating partition.
Fortunately, there exists a tight relationship between dynamical entropies and
another class of indicators that are more easily accessible to numerical studies: the
Lyapunov exponents. Analogosly to fixed points, whose linear stability is quantified
by the N eigenvalues of a suitable Jacobian matrix, chaotic attractors can be
characterized by N expansion factors �i.n/ (i D 1; : : : ; N ) over a time n. The
rates �i D �i.n/=n are the so-called finite-time Lyapunov exponent (FTLE)[10].
For finite n, the FTLEs exhibit fluctuations that become smaller and smaller upon
increasing the time span n. In the infinite-time limit, �i converges to the standard
Lyapunov exponent �i (whenever, it is necessary to distinguish between the FTLE
and the asymptotic value, the latter is identified by an overline). Altogether, a
complete characterization of the fluctuations can be obtained by invoking the theory
of large deviations, which suggests that, in the long-time limit, the probability
distribution P.�; n/ (where � D f�1; �2; : : : ; �N g) scales as

P.�; n/ /
n!1 e�S.�/n (9.12)

where S.�/ is a positive-defined large deviation function.
In practice, there are at least two different methods to define FTLEs: (i) by

repeatedly applying the QR decomposition (by either implementing the Gram-
Schmidt orthogonalization procedure or the Householder transformation) to a
set of linearly independent perturbations [11]; (ii) by determining the expansion
rates of the so-called covariant Lyapunov vectors [12]. The former (standard)
approach is essentially based on the computation of the expansion of volumes; the
latter one is based on the idea of determining the expansion rate along suitably
selected directions, the covariant vectors vc.n/, that are the natural extension of
the eigenvectors. I start by considering the maximum Lyapunov exponent, in which
case, the two methods are equivalent over all times. I consider one of the most
popular dynamical systems, the 2d Hénon map, xnC1 D a � x2n C bxn�1, which
has the advantage over the above mentioned 1d maps of being invertible. Besides,
the Hénon map is a typical example of low-dimensional systems, so that it can be
used as testbed for general ideas. It is easy to check that volumes are contracted by
a factor b at each time step. This implies that the sum of the two FTLEs is constant
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Fig. 9.3 The large deviation function s.�1/ fore the Hénon map with the standard parameter
values (a D 1:4, b D 0:3). The solid, dashed, dotted, and dotted-dashed curves correspond to
n D 10, 15, 20, and 25, respectively. The dashed purple straight line has slope 1

(�1C�2 D log b), so that the fluctuations in phase space can be captured by studying
only the first exponent. By inverting Eq. (9.12), one obtains

S.�/ D � lim
n!1

logP.�; n/

n
: (9.13)

Accordingly, one can infer the very existence of an n-independent S.�/ from the
overlap of the functions obtained by implementing Eq. (9.13) for different values
of n. In Fig. 9.3, I have plotted s.�1/ for the usual parameter values (aD 1:4,
bD 0:3) as estimated from finite trajectories (the various curves correspond to
nD 10, 15, 20 and 25, respectively). There is a clear tendency to converge towards a
given shape (that is approximately asymptotic already for nD 15). The most striking
feature is that although the distribution refers to the maximum (positive) Lyapunov
exponent, it extends to negative as well as to positive values. This is a consequence
of occasional tangencies between the unstable and the stable manifold, where, as
a matter of fact, nearby points along the unstable manifold are not expanded but
rather contracted. Such points are a manifestation of a non-hyperbolicity, which in
general, represents a major obstacle towards the characterization of chaotic systems
and the proof of rigorous theorems. In fact, it is typically assumed that the stable and
unstable directions are everywhere transversal (hyperbolic systems) and even the
factorization (transversality) of the various directions may be required. Accordingly,
numerical analysis is very welcome as it can help to identify any signature of a
non-hyperbolic behaviour, such as the extension of the maximum FTLE domain
to negative values. In particular, it is interesting to notice that the negative tail
of s.�1/ exhibits a slope that saturates to a value qc � 1 [13]. By adopting the
language of thermodynamic formalism [14] this is the signature of a so-called
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Fig. 9.4 The large deviation function s.�2/ for the generalized Hénon map (a D 1:4 and b D
0:1). Solid and dotted lines refer to the FTLEs as computed with the Gram-Schmidt procedure and
covariant vectors, respectively. Black and red lines correspond to n D 10, and n D 20, respectively

phase transition. In fact, it implies that the Legendre transform is not a smooth
function of q: it exhibits a cusp in correspondence of qD qc[13]. This means that
the attractor is characterized by two phases, the “hyperbolic” and “non-hyperbolic”
one. As the non-hyperbolic phase emerges for s.�1/ larger than some finite value,
one can (at least numerically) conclude that it is restricted to a subset of negligible
(vanishing) measure. This result authorizes to conjecture that the general theorems
proved for hyperbolic systems should apply to generic physical systems, in spite of
the fact they are not uniformly hyperbolic. One important example is the fluctuation
theorem in Ref. [15].

For all, but the maximal Lyapunov exponent, the above definitions of FTLE are
not a priori formally equivalent. A minimal setup where it makes sense to explore
the relationship between the two methods is that of 3d maps. I have selected the
generalized Hénon map xnC1 D a � x2n�1 � bxn�2, as a possible testbed. The
model has been studied in Ref. [16], where the authors have found that the model
may exhibit hyperchaos (more than one positive Lyapunov exponent) as well as
“normal” chaos. In this case too, volumes are contracted by a factor b at each time
step. However, since there exist three Lyapunov exponents, the second exponent
is allowed to fluctuate, when the first one is known. The large deviation function
s.�2/ as computed with the two approaches is plotted in Fig. 9.4. For n D 10 there
are clear differences (notice that the fluctuations are real and not due to a lack of
statistics), but upon increasing n, the differences tend to disappear, not only in the
vicinity of the minimum, but also away from it. This suggests that, over long times,
the two methods are equivalent. A possible explanation comes from the periodic
orbit theory [17]. In fact, the very reason for observing fluctuations of the FTLE
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even over long times is the existence of periodic orbits (embedded in the chaotic
attractor) that are characterized by a different stability. For instance, referring to
the asymmetric tent map in Fig. 9.1b, it is clear that there are two fixed points
(identified by the crossing with the diagonal), whose stability is determined by
the local slope of the map: the two corresponding Lyapunov exponents coincide
with the minimum and maximum value of �1. Once the stability of the periodic
orbits is known, there are powerful methods (typically based on the so-called
dynamical zeta-function formalism [17]) that allow reconstructing the entire large-
deviation function, although this is more the case when all sequences are allowed.
Accordingly, since the fluctuations can be attributed to the presence of periodic
orbits with a different degree of stability, it is implicitely reasonable to expect
that any method to compute FTLEs yields the same result. What this argument
leaves out is the fluctuations of the non-hyperbolic phase which, nevertheless, seem
to be captured in the same way by both approaches. Finally, let us notice that
the relationship with periodic orbits, that are, by definition, dynamical invariants,
implies that the function s.�/ is a dynamical invariant too.

9.3.1 Pesin Relation

The metric entropy and the positive Lyapunov exponents are related to one another.
This is expressed by the Pesin relation [18],

HKS �
DuX

iD1
�i (9.14)

where Du is the number of unstable directions. In the following, I describe
an insightful, though not mathematically rigorous, approach to derive the above
formula. The first step consists in estimating the probability P."; n/ to select a
bunch of trajectories that stay closer than " over a time n. In order to ensure that
the distance is smaller than " along an expanding direction, it is sufficient that the
inequality is satisfied at the final time n. This means that the probability for this to
happen is on the order of "e��i n at the initial time, where we have used that the
invariant measure is smooth along the unstable directions. On the contrary, along a
stable direction, it is sufficient to impose that the trajectories are closer than " in the
very beginning. Altogether, one can then write

P."; n/ D exp

"
�
DuX

i

�in

#
"DuG."/ ; (9.15)

where the function G."/ accounts for the (unknown) scaling along the stable
directions. A comparison with Eq. (9.11) shows that

P
�i is equivalent to ˛ and
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this in turn implies not only the Pesin formula, but suggests also that the formula
can be extended to the entire spectrum of pointwise entropies, by defining

s.˛/ D min

(
S.�/j

DuX

i

�i D ˛
)

(9.16)

A more rigorous proof of the Pesin formula leads to the inequality (9.14), since the
factorization hypothesis among the unstable directions need not be satisfied.

Finally, I recall another famous formula which links Lyapunov exponents with
the information dimension D1 of a chaotic attractor. This is the Kaplan-Yorke
formula, which states that [19]

D1 D nC C
Pn

C

i �i

j�n
C
C1j (9.17)

where nC is the maximal number such that
Pn

C

i �i > 0. Analogously to the Pesin
relationship, such a formula can be extended to link the spectrum of generalized
fractal dimension with that of the Lyapunov exponents, although the resulting
formula is less straightforward [20].

9.4 Non Hyperbolicity

The lack of a clear separation between stable and unstable directions is a source
of non-hyperbolicity as well as of a more complex dynamics. A relatively sim-
ple example that can be accurately analysed is the bubbling transition [21], a
phenomenon that emerges in systems where an invariant manifold progressively
looses transversal stability. The typical context where this can happen is that of
synchronization transitions. Let us consider two identical coupled maps,

xnC1 D f .xn/C ".f .yn/� f .xn// (9.18)

ynC1 D f .yn/C ".f .xn/� f .yn//

where f .x/ is a 1d map and " measures the coupling strength. Upon introducing
un D .xn C yn/=2 and vn D .xn � yn/=2, the evolution equations can be written as

unC1 D 1

2
Œf .un C vn/C f .un � vn/
 (9.19)

vnC1 D
�
1

2
� "

�
Œf .un C vn/ � f .un � vn/
 :
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Fig. 9.5 Phase portrait for two tent maps coupled as in Eq. (9.18) for two coupling strengths: panel
a and b refer to "D 0:23 and "D 0:27, respectively

It is easy to see that the synchronized regime vn D 0 (xn D yn) is an invariant
state for any " value. It is characterized by two Lyapunov exponents: the maximal
�1 (along u), which coincides with that of the uncoupled map, and the transversal
one �2 (along v), that is determined by the linearized equation

ıvnC1 D .1 � 2"/f 0.un/ıvn : (9.20)

As a result,

�2 D log j1� 2"j C �1 : (9.21)

The critical coupling, where �2 changes sign is "c D Œ1 � exp.��1/
=2. For the
tent map depicted in Fig. 9.1b with an atom C0 of length ` D 0:4, the critical
value is "c D 0:2499 : : :. In Fig. 9.5, the attractor is plotted below (panel a) and
above (panel b) the transition, showing that in the latter case, the measure is indeed
confined along the diagonal. However, the overall scenario is more complicated
than it looks [22]. In fact, the relation (9.21) extends to FTLE. Therefore, the
fluctuations of the two FTLEs are strictly correlated and the domain of S.�1; �2/
is restricted to a segment in the .�1; �2/ plane, as shown in Fig. 9.6 for different
coupling strengths. There we see that in a finite "-interval, the transversal FTLEs
range from positive to negative values, meaning that some (periodic) orbits are
transversally stable, while other are unstable. This is quite a general scenario that is
likely to arise whenever the synchronous regime is characterized by a distribution
of exponents with �max > �min. In such cases, if a second attractor exists, outside
the diagonal (this does not happen in model (9.18)) this mixed transversal stability
implies that trajectories originating nearby an unstable periodic orbit escape, while
those starting near a stable orbit are attracted back to the attractor. Altogether, since
the two kinds of orbits are intimately interlaced, so are the basins of attractions of
the synchronous and asynchronous attractors. The specific term of riddled basin
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Fig. 9.6 Range of possible
.�1; �2/ values for different
coupling strengths. Upon
increasing ", �2 progressively
assumes negative values

has been coined [23], to mean that the points of the two basins are arbitrarily and
systematically close to each other. Furthermore, the standard notion of attractor
becomes questionable, since arbitrarily close to it, there are points that may escape:
the weaker form of Milnor attractor [24] has to be adopted in such cases.

9.4.1 A 3d Map

3d maps offer another source of complex deterministic behaviour, with two
directions that may be simultaneously unstable in an invertible dynamics. Here, I
illustrate the scenario that emerges in the generalized Hénon map xnC1 D a�x2n�1�
bxn�2 (again for a D 1:4 and b D 0:1). At variance, with the two coupled 1d maps,
here, the first two FTLEs may be independent of each other. The domain of values
taken by �1 and �2 is plotted in Fig. 9.7. The picture has been built by partitioning
the .�1; �2/ plane into boxes of size 10�3 � 10�3 and plotting only those boxes
which contain at least one point. The white circle identifies the (average) Lyapunov
exponents, revealing that only the first one is positive in this case. Nevertheless,
both FTLEs can be simultaneously positive, indicating that the unstable manifold
is two-dimensional, but also simultaneously negative, indicating the presence of
several homoclinic tangencies with the stable manifold, a property that makes the
model strongly nonhyperbolic. Finally it is interesting to notice that in many places
the second exponent is larger than the first one, indicating that another property
of hyperbolic dynamics is violated: i.e. the ordering of the finite-time Lyapunov
exponents. In fact, in uniformly hyperbolic systems, the transversality between
stable and unstable manifolds implies that the positive FTLEs are strictly separated
from the negative ones. This is the concept of dominated Oseledec splitting [25].
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Fig. 9.7 Lyapunov exponent
domain for the generalized
Henon map (a D 1:4 and
b D 0:1). The numerical
values are obtained by
computing the FTLE over 25
iterates

9.5 Space-Time Chaos

In spatially extended systems it is known that, in the thermodynamic limit, i.e.
for the size L ! 1, the Lyapunov exponents �i depend on the scaled variable
� D i=L. This means that the chaotic dynamics is extensive, i.e., for instance, the
Kolmogorov-Sinai entropy is proportional to the system size [14,26]. From the point
of view of the fluctuations, the scenario is less clear. If a dynamical system were the
Cartesian product of uncoupled ones (perfect extensivity with the typical meaning
of the word), S.�/ would be the sum of various contributions, each dependent on
a few variables (those which characterize the single systems). To what extent, does
this naive idea apply to a generic space-time system? A direct and reliable numerical
analysis is out of question, as it would require a prohibitive statistics. A possible
way out consists in focusing on not-too-large deviations, in practice, on Gaussian
fluctuations. In practice, this amounts to consider a parabolic approximation of S
around the minimum [27],

S.�/ � 1

2
.� � �/Q.�� �/� (9.22)

where � denotes the transpose. This approximation is equivalent to assuming a
multivariate Gaussian distribution. In practice, instead of referring to Q, it is
preferable to consider the equivalent, symmetric, matrix, D D Q�1. In fact, the
elements Dij can be estimated from the (linear) growth rate of the (co)variances of
.�i .	/ � �i	/,

Dij D lim
	!1

�
�i.	/�j .	/ � �i�j 	2

�
=	: (9.23)
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Fig. 9.8 (Panel a): diffusion coefficients along the diagonal for a chain of Hénon maps (lengths
80, 160 and 320); (panel b) principal components of the covariance matrix for the same system

In the following, I briefly illustrate the general scenario by referring to a specific
model, a chain of Hénon maps,

xnC1.i/ D a�


xn.i/C "

�
xn.i � 1/� 2xn.i/C xn.i C 1/

�2Cbxn�1.i/ ; (9.24)

where " represents the diffusive coupling strength. The scaling behaviour of the
diagonal elements Dii is reported in Fig. 9.8a for a D 1:4, b D 0:3, " D 0:025

and periodic boundary conditions. The nice overlap of the rescaled elements reveals
a rather anomalous behaviour, Dii � L�0:85, whose degree of universality is still
to be settled. Much clearer is the scaling behaviour of the eigenvalues �k of the
covariance matrix D. Such eigenvalues allow characterizing in a compact way the
fluctuations in spatio-temporal systems, as they represent the amplitudes along the
most prominent directions. First of all the� spectrum captures the presence of more
or less hidden constraints. For instance, in the case of a symplectic dynamics, the
FTLEs come in pairs whose sum is zero (�i C �N�iC1 D 0). As a result, the
fluctuations of the negative FTLEs are anticorrelated with those of the positive
ones, so that DNC1�i;j D Di;NC1�j D �Dij. This implies that half of the �k
eigenvalues are equal to zero. It turns out that this property holds also in the case of
the above Hénon maps [27]. As for the L eigenvalues that are different from zero,
it can be seen in Fig. 9.8b that they scale as 1=L. Since the matrices Q and D are
diagonal in the same basis, the eigvenvalues of Q are the inverse of those of D.
This implies that the eigenvalues of Q scale also as 1=L and this eventually implies
that the large deviation function S (in the vicinity of the minimum) is proportional
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to the number L of degrees of freedom. This is a different way of assessing the
extensivity of space-time chaos from the standard way mentioned in the beginning
of this section. In fact, in the trivially extensive case of uncoupled maps, there would
be a perfectly degenerate �k spectrum with exponents that do not scale at all with
L. The only reminiscence of this behaviour can be observed in the beginning of the
spectrum, where one can notice a divergence which is due to the existence of one and
only one direction along which the fluctuations remain finite in the thermodynamic
limit. Altogether, the implications of this form of extensivity are still to be fully
appreciated.

9.6 Stable Chaos

Another example, where large deviations are responsible for an intriguing dynam-
ical behaviour is that of the so-called stable chaos, i.e. a dynamics that is
characterized by a negative Lyapunov exponent and yet is irregular [28]. This
phenomenon has been recently observed in models of neural networks [29], but
for the sake of coherence with the other models discussed in this chapter, I consider
a 1d coupled map lattice,

xi .t C 1/ D .1 � "/f .xi .t//C "

2
Œf .xi�1.t//C f .xiC1.t//
 (9.25)

where " 2 Œ0; 1
 is the coupling constant and the map of the interval f is piecewise
linear,

f .x/ D

8
ˆ̂<

ˆ̂:

x=˛1 0 � x � ˛1
1 � .1 � ˇ/.x � ˛1/=� ˛1 < x < ˛1 C �
ˇ C .x � xc � �/=˛2 ˛1 C � < x � 1;

(9.26)

This continuous map is composed of three branches, one of which (the middle one)
is highly expanding, but rarely visited if � 	 1. For ˛1 D 1=2:7, ˇ D 0:07,
˛2 D 10, and � 	 1, the single map evolves towards a stable period-3 solution,
while large lattices of such maps typically (for a broad range of coupling values)
exhibit an irregular dynamics in spite of a negative maximal Lyapunov exponent.
The paradox can be resolved by noticing that the chaotic behaviour exhibited by
this model is akin to that of (chaotic) cellular automata [30]. In fact, in both cases,
in finite systems, generic initial conditions, sooner or later, collapse onto periodic
orbits: in a cellular automaton, this is because there exists a finite number of different
configurations; in the coupled-map model, this is because of the contraction in
phase-space. On the other hand, the average time needed to approach the final
attractor grows exponentially with the system size. Therefore, in infinitely extended
systems it is legitimate to claim that the genuine invariant measure is that one
generated by the chaotic dynamics, although it is characterized by a negative
Lyapunov exponent.
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Fig. 9.9 Distribution of FTLEs for the map (9.25) and (9.26) for " D 2=3 and � D 10�4, where
the average Lyapunov exponent is negative (the chain length isL D 200). Solid and dashed curves
refer to n D 20 and 40, respectively

Roughly speaking the reason why this awkward phenomenon is able to self-
sustain is that small but finite perturbations can be suddenly amplified and become
of order 1. The reader interested in a more detailed description of the phenomenon
can look at Ref. [28]. Here, I limit myself to comment on the role of large deviations.
In fact, the reference to finite perturbations seems to indicate that one cannot extract
relevant information from the evolution of infinitesimal perturbations (i.e. from
Lyapunov exponents). This is indeed true for the strictly discontinuous case .� D 0/.
Nevertheless, in the more realistic case of a continuous rule, interesting discoveries
can be made by looking at s.�1/. The results obtained for n D 20 and 40 iterates
are plotted in Fig. 9.9.

There one can notice a reasonable overlap, although finite-size corrections are
still large. The smoothed step are indeed a manifestation of the still relatively small
number of visits of the sample trajectory to the expanding branch of the map.
It is nevertheless clear that the most probable (negative) Lyapunov exponent is
accompanied by a positive tail of the large deviation function which thus reveals
a signature of standard deterministic chaos. The origin of such a signature resides
in the existence of a chaotic repeller and to the fact that the trajectory occasionally
comes arbitrarily close to it. The very existence of a chaotic repeller can be traced
back to the presence of the highly expanding branch of the single map. How the
expansion, sporadically experienced in the vicinity of the repeller, can sustain
an overall chaotic dynamics still needs to be clarified, but it is encouraging to
notice that a large deviation approach may help to bridge seemingly contradictory
observations.
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Chapter 10
Anomalous Diffusion: Deterministic
and Stochastic Perspectives

Roberto Artuso and Raffaella Burioni

Abstract Normal diffusion arises in a natural way from random walks with
uncorrelated steps of bounded variance, or, in the deterministic setting, from
wandering trajectories of a chaotic map. There are many ways in which such a
picture fails, and, for instance, the variance of the traveller’s position does not grow
linearly with time. We review the basic mechanisms that induce deviations from
normal transport (long waiting times, broad step length distributions, intermittency,
topological issues), and we describe how their origin can be traced back in stochastic
and deterministic settings, illustrating a few techniques that allow for a quantitative
analysis of such anomalies.

10.1 Introduction

In this contribution we illustrate how to deal with systems where a transport process
sets in with profound differences with respect to the paradigmatic – normally
diffusing – case, where the variance of the position grows linearly with time, and a
description in terms of a diffusion equation becomes asymptotically correct. In the
last few decades it has been realized that systems which behave anomalously are
not to be considered as cumbersome examples, but rather are both representative
of important physical issues, and, on a more conceptual perspective, they witness
the physical import of generalized central limit theorem, where the “attracting”
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distribution is not Gaussian. The settings where such anomalies have been invoked
are simply too many to mention, ranging from 2-d fluid flows [1], to the description
of human travels [2]: we here concentrate on a very small set of examples, with
a twofold purpose: first we want to stress the basic mechanisms that give rise
to anomalies (long waiting times, broad step length distributions, ballistic flights,
topological issues), secondly we want to emphasize how stochastic methods can
play an important role in deterministic examples, where, however, they have to be
supplemented by more appropriate techniques.

10.2 Stochastic Anomalous Transport

We start by introducing the relevant quantities we will use in the rest of the chapter,
then we provide the simplest examples of anomalous transport, pointing out the
relationships with a generalized form of the central limit theorem.

10.2.1 Moments and Scaling

For simplicity, we consider transport in one dimension, and let X represent the
diffusing variable, while t denotes the (either continuous or discrete) time. We will
denote by P.X; t/ the probability distribution function (PDF), of being at position
X at time t . The moments of the distribution are thus defined by

Mn.t/ D hXni.t/ D
Z 1

�1
dXXnP.X; t/: (10.1)

More generally we can define moments for any real order q, as

�q.t/ D hjX jqi D
Z 1

�1
dX jX jqP.X; t/I (10.2)

we will be interested in the large t asymptotics of such moments, so we define the
corresponding spectrum ˇ.q/ as

�q.t/ � tˇ.q/; (10.3)

or, equivalently,

ˇ.q/ D lim
t!1

ln �q.t/

ln t
I (10.4)
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(actually there are more sophisticated ways of defining the algebraic growth of
moments, that eliminate problems which may arise in (10.4) due to subleading
contributions, see for instance [3]). The “normal” case, random walk being the
paradigmatic example, leads to the spectrum ˇ.q/ D q=2 (and in particular a
linearly growing variance), characterized by a Gaussian PDF

PG.X; t/ D 1p
4�Dt

e�
X2

4tD ; (10.5)

where the diffusion constantD is defined as

D D lim
t!1

M2.t/

2t
: (10.6)

Notice that (10.5) may be rewritten in the scaling form:

PG.X; t/ D 1

t1=2
HG.jX j=t1=2/; (10.7)

where

HG.z/ D 1p
4�D

e�
z2
4D : (10.8)

Since jzjqHG.z/ is integrable for any non negative q, the scaling form (10.7)
automatically yields the normal spectrum ˇ.q/ D q=2.

The usual way in which the diffusing variable arises is via a partial sum (our
notation refers to discrete t case, but it is easily generalizable):

Xt D
t�1X

	D0
x	 ; (10.9)

i.e. a sum of i.i.d. random variables in the simplest probabilistic setting (like a ran-
dom walk), or a Birkhoff sum for instantaneous displacements, in the deterministic
case. The form of the PDF (10.5), is then dictated by the Central Limit Theorem.
Some care has to be taken in using the asymptotic PDF when evaluating moments
asymptotics, since no uniform convergence is guaranteed in the CLT: more precisely
let X be the sum of t i.i.d. variables, � being the (finite) width of the distribution:
once the scaled variable

Y D X � t < x >
�
p
t

(10.10)

is introduced we have that, as regards fluctuations,
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lim
t!1 P.Y > H/ D

Z 1

H

dwp
2�

e�w2=2 (10.11)

but, for finite t indeed deviations occur [4–6]. In the case where the original PDF of
the x variable has sufficiently fast tails decay, this is immaterial, since deviations are
expressed as a perturbative series in 1=

p
t , which provide subleading corrections to

the asymptotic behavior.
Anomalous diffusion is generally associated to a second moment which does not

grow linearly (i.e. ˇ.2/ ¤ 1),

hX2i.t/ � t� � ¤ 1I (10.12)

subdiffusion concerns the case � < 1, while the opposite case (� > 1) is referred
to as superdiffusion: more generally anomalies may also arise in the form of
logarithmic corrections.

Anomalous diffusion represents a much studied issue in the last decades, and
several reviews have been devoted to the subject (see for example [7–10]): here our
focus is on a slightly different perspective: through the analysis of model systems
we will try to show how features of anomalous transport are closely linked to other
dynamical and topological issues both in the deterministic and in the stochastic
approach. One of the features we will consider in some detail is connected to
the notion of strong anomalous diffusion, which arises when the whole moments
spectrum is considered: according to [11] a remarkably interesting case is the one
in which a single scaling fails to account for the whole behavior so that

ˇ.q/ ¤ ˛ 
 q 8qI (10.13)

differently from the standard situation for “normal”, Gaussian transport.
Notice that a “weak” anomalous transport is quite easily obtained from a scaling

form of the PDF: if

P.X; t/ D 1

t˛=2
H .jX j=t˛=2/; (10.14)

and the condition

jzjqH .z/ 2 L.RC/ 8q � 0 (10.15)

is satisfied (i.e. the functions in (10.15) are integrable on the positive half line),
we get

ˇ.q/ D ˛=2 
 q; (10.16)

that, whenever ˛ ¤ 1, leads to (weak, single-scale) anomalous behavior. This
observation is however rather formal, if we think about it in terms of the central
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limit theorem: as a matter of fact if the starting probability is in the basin of attraction
of the Gaussian distribution then property (10.15) is satisfied, but this is not the case
for other stable distributions that are relevant to the present context: namely Lévy
stable laws.

10.2.2 A Few Observations About Lévy Stable Laws

Lévy distributions appear in the problem of finding stable laws, namely PDF which
do not change shape (apart from a dilation and, eventually, a translation) when
passing from a single random variable y, to the sum Yt DPt�1

iD0 yi of i.i.d. random
variables: this means that for some constants �t and�t one has

P.Y 0; t/dY 0 D P1.y/dy; (10.17)

where Y 0 D �ty C �t and P1.y/ is the common PDF of the random variables
yi . A physically interesting interpretation of (10.17) is as a fixed point of a
renormalization group transformation [6], which originates the following picture:
if we start from a single variable distribution P1 and consider higher and higher
sums of independent random variables all distributed according to P1, the process
leads asymptotically to a stable law: the attracting fixed points have different basins
of attraction, that are essentially determined by the tails of P1. The Gaussian fixed
point has a large basin of attraction, consisting of all P1 decaying at least as jyj�3
as y !˙1. Broad distributions (with weaker asymptotic decay) fall into the basin
of attraction of Lévy stable laws [4]: a complete account of this class is outside the
scope of the present contribution, we will just say a few words about the symmetric
(zero average) case, where the distribution depend just on a single exponent� (once
we fix an overall scale). The exponent � is obviously related to the decay law:
both Lévy laws and the set of P1 in their basin of attraction fall as jyj�.1C�/ as
y ! ˙1: � > 0 has to be imposed in order to get a bona fide (normalizable)
probability distribution, while if � � 2 we enter the basin of attraction of the
Gaussian distribution, since the variance of the distribution function is finite. In
general we have no explicit analytic form for the Lévy stable laws L�.z/, except
when � D 1:

L1.z/ D 1

z2 C �2 (10.18)

(Cauchy distribution), and � D 1=2:

L1=2.z/ D 2p
�

e�1=.2z/

.2z/3=2
(10.19)
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(Smirnov distribution) (see [4]). From an analytic point of view a key result is that
an explicit expression is available for the Fourier transform:

OL�.k/ D
Z C1

�1
dz eikzL�.z/ D e���jkj� (10.20)

(see [4] for full details, and explicit expressions of pre factors ��). The generalized
CLT in this case take the following form:

P�.X; t/  1

t1=�
L�.X=t

1=�/; (10.21)

where again we are considering symmetric distributions (otherwise we should have
treated on different footing the case where � > 1, where zL�.z/ is integrable, and
� 2 .0; 1
, where the average diverges). Though the scaling form in (10.21) is
as (10.14), condition (10.15) holds just when q < �, so we have a very peculiar
(anomalous) moments spectrum

�q.t/ �
�
tq=� q < �

1 q � � (10.22)

This is indeed related to the fact that Lévy laws exhibit themselves divergence of
moments: this motivated the introduction of different truncation of L� (see for
instance [7, 12, 13]): notice that as soon as we correct for fat tails in the original
P1, we shift to the basin of attraction of Gaussian distribution in the CLT. In
order to give an example of a non trivial spectrum of moments we introduce the
following heuristic model: we use Lévy asymptotic for moments, but introduce a
cutoff corresponding to a maximal speed of transport, so that at finite time t , the
corresponding sum of increments Xt � v 
 t : the corresponding moments are then
expressed as

�q.t/ D 2

t1=�

Z v�t

0

dXL�.X=t
1=�/Xq: (10.23)

While for all q < � the spectrum (10.22) is reproduced, the cutoff avoid divergences
for q > �, and we may estimate

�q.t/ � tq=�
Z t 1�1=�

0

dzL�.z/z
q � tq=� 
 t .1�1=�/�.q��/; (10.24)

with corresponding scaling function:

ˇ.q/ D
�
q=� q < �

q � .� � 1/ q > �
(10.25)

which is typical for “strong” anomalous diffusion [11].
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10.2.3 An Extension: Continuous Time Random Walks

Up to now we have considered processes in which the events’ clock is regular, and
anomalies arise only from a fat distribution of step lengths. Continuous time random
walks (CTRW) [14, 15] are stochastic processes in which jumps occur at times ti ,
chosen according to some waiting time distribution. In their more general attire
(again for simplicity we consider a 1-d setting) they are described by a probability
density function}.l; t/ that a step of length l takes place at a time t . In their simplest
version, space and time distributions are decoupled

}.l; t/ D !.l/ .t/: (10.26)

Given such a probability density, once again we want to construct P.X; T /, the
PDF that a walker is at the position X at time T .

We assume that the process starts at x D 0 at time t D 0, and use the
decomposition

P.X; T / D
1X

nD0
˝n.X/�n.T /; (10.27)

where ˝n.X/ is the probability density that the walker reaches the position X
exactly in n steps, while �n.t/ is the probability density that the physical time to
perform exactly n steps equals T . We will instead denote by �n.T / the probability
that the same number of jumps occurs ending the sequence just before a jump. Now:

˝n.X/ D
Z C1

�1
dx1 : : :

Z C1

�1
dxn !.x1/ 
 
 
!.xn/ı.X � x1 � 
 
 
 � xn/ (10.28)

and a particularly simple expression is obtained in the Fourier representation:

O!.k/ D
Z C1

�1
dx eikx !.x/; (10.29)

that is

Ő
n.k/ D O!.k/nI (10.30)

as regards the time distribution, we have to modify the argument a little bit, by taking
into account the possibility that once the walker jumped the n-th time, it waits there
up to the observation time t . The probability that a jump does not take place up to
time t is

'.t/ D 1 �
Z t

0

d	  .	/I (10.31)
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and so

�n.T / D
Z T

0

d	 �n.	/'.T � 	/: (10.32)

As time distributions are supported on the positive real axes, the proper representa-
tion is in terms of Laplace transform:

Q .s/ D
Z 1

0

dt e�st  .t/ W (10.33)

so

�n.t/ D
Z 1

0

dt1 : : :
Z 1

0

dtn  .t1/ 
 
 
 .tn/ı.t � t1 � 
 
 
 � tn/; (10.34)

and, in terms of the Laplace transform,

Q�n.s/ D Q .s/n: (10.35)

Now, from Eq. (10.31)

Q'.s/ D 1 � Q .s/
s

; (10.36)

and we finally get

Q�n.s/ D .1 � Q .s//
s

Q .s/n; (10.37)

so, once we sum the geometric series in (10.27), we get, for the Fourier-Laplace
transform of P.X; t/, the following representation

MP.k; s/ D .1 � Q .s//
s

1

.1 � O!.k/ Q .s// (10.38)

which is the key expression to deal with in applications of (factorized) CTRW.
In particular moments of integer order may be straightforwardly derived from the
(space) Fourier transform of P , the so called generating function:

Gt .k/ D OP.k; t/ D 1

2�i

Z aCi1

a�i1
ds est MP.k; s/; (10.39)

since
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Mn.t/ D< Xn > .t/ D .�i/n d
n

dkn
OP.k; t/

ˇ̌
ˇ̌
kD0
D 1

2�i

Z aCi1

a�i1
ds est QMn.s/I

(10.40)

a, as usual, has to be chosen larger than the real part of all the singularities of the
transform. The last identity plays an important technical role, since we are interested
in the large time behavior ofMn.t/, which is connected to small s behavior of QMn.s/

by means of Tauberian theorems [5]:

Q�.u/ � 1

u�
L

�
1

u

�
u! 0 ” �.t/ � 1

� .�/
t��1L.t/ t !1 (10.41)

for � > 0, and L slowly varying (i.e. L.ty/=L.t/! 1 when t !1).
Let us discuss a specific example (somehow complementary to the one we

discussed in the former section): we consider a Gaussian distribution in the jump
lengths

!.x/ D 1p
2�
e�x2=2 O!.k/ D e�k2=2; (10.42)

and waiting times with fat tails:

 .t/ � ˛

� .1 � ˛/
	˛

t1C˛
0 < ˛ < 1I (10.43)

in order to evaluate the small s behavior of the transform Q .s/we cannot use directly
a Tauberian argument (10.41), since  .t/ vanishes too fast as t ! 1. We may
however use the following argument: we introduce

G.t/ D
Z 1

t

d 	  .	/  .t/ D �dG

dt
; (10.44)

and use integration by parts:

Q .s/ D �
Z 1

0

dt e�st dG

dt
D G.0/C s

Z 1

0

dt e�stG.t/; (10.45)

and use the Tauberian theorem to estimate the last integral in (10.45); so we obtain

Q .s/ � 1 � 	˛s˛; (10.46)

and the small s expression for MP.k; s/ is

MP.k; s/ � 	˛s˛�1

.1 � e�k2=2.1 � 	˛s˛// : (10.47)
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If we consider the variance, we are led to evaluate (10.40)

QM2.s/ D � d2

dk2
MP.k; s/

ˇ̌
ˇ̌
kD0
� 1

	˛s1C˛
; (10.48)

so that, for large t we get by (10.41)

M2.t/ � t˛; (10.49)

which provides an example of subdiffusion.

10.2.4 Topological Effects in Subdiffusion: Weak Anomalous
Diffusion and Random Walks on Graphs

In the previous section, we have seen an example of subdiffusion generated by a
CTRW with Gaussian distributed step lengths and heavy tailed traps, leading to a
non trivial scaling form of the probability distribution and of the moments.

A key point in the previous analysis is the scaling form of the PDF (10.14),
that, together with the condition (10.15), leads to anomalous diffusion with a single
scaling length, that rules all the moments of the distribution.

To get a further insight on the scaling properties of the probability distribution
functions involved in anomalous diffusion, we will now consider a typical case of
subdiffusion generated by topological effects, that is random walks on graphs [16].
This is still a very general approach, as it is well known that large scale behavior
of random walks exhibits the same phenomena as that of diffusions on manifolds
or fractals. Now the diffusing variable X can take discrete values, defined to be the
vertices of the graph, and jumps can occur between vertices which are connected by
a link, through a simple random walk [17]. There is therefore a topological effect
induced by the underlying structure.

We will always be interested in the long time behavior of the PDF and we will
consider its scaling form in this limit. Interestingly, rigorous results can be obtained
for the scaling form of the P.X; t/ in particular cases, through the so called sub-
Gaussian estimates [18]. These bounds allow to give, under precise topological
conditions for the diffusion process on the graph, a general scaling form for
P.X; t/, in terms of relevant exponents. Moreover, this approach provides a direct
link, through the Einstein relation, with the resistance of the equivalent electric
problem on the graph [19]. In these cases, which can be rigorously controlled, a
weak anomalous diffusion is always observed, and a scaling dominated by a single
scale is detected in the moments. Analogous estimate can be obtained by Flory
arguments [7].
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In the simple random walk, the walker can occupy positions on the sites of the
graph G , which is a countable set VG of vertices (or sites) X connected pairwise
by a set LG of unoriented edges (or links) .X; Y / D .X; Y /. The connectivity of
the site X , i.e. the number of its nearest neighbors, is denoted with zX , and the
graph is assumed to be locally finite. A path in G is a sequence of consecutive edges
f.X; Y /.Y;K/ : : : .K;M/g and its length is the number of edges in the sequence. In
connected graphs, for any two vertices X; Y 2 VG , there is always a path joining
them. This allows to define an intrinsic distance rX;Y , as the length of the shortest
path connecting the vertices X and Y . The intrinsic distance in turn defines on the
graph the balls of radius r 2 N and center o 2 VG , as the subgraph of G , given by
the set of vertices V.o; r/ D fX 2 V jrX;o � rg and by the set of edges L.o; r/ D
f.X; Y / 2 LjX 2 V.o; r/; Y 2 V.o; r/g. An important requirement for the graph is
that the volume growth is polynomial. If we denote by jS j the number of elements
of a set, then jV.o; r/j, as a function of the distance r , describes the growth rate of
the graph at the large scales. In particular, a graph is said to have polynomial growth
if 8o 2 VG , at large r:

jV.o; r/j � rd : (10.50)

This is a global relation on the volume growth of the graph. Interestingly, in
recent works this can sometimes be replaced by a weaker local condition of volume
doubling that is:

jV.o; 2r/j � C jV.o; r/j (10.51)

where C is a suitable constant, and this condition is used linked to the Harnack
inequalities [20]. The parameter d is the connectivity dimension of the graph,
and it coincides with the Euclidean dimension in regular lattices and in Euclidean
spaces. It also coincides with the fractal dimension when the graph is embedded by
preserving its topological structure.

The adjacency matrix AX;Y , that fully describes the topology of the graph is:

AXY D
�
1 if .X; Y / 2 EG

0 if .X; Y / 62 EG
(10.52)

The (simple) random walk on the graph G is then defined by the jumping
probabilities pXY between nearest neighbors sites X and Y :

pXY D AXY

zX
D .Z�1A/XY (10.53)

whereZXY D zXıXY and zX is the number of nearest neighbors of siteX . We assume
the graph to be locally finite. Then the probability distribution of reaching in t steps
site Y starting from X is:

P.XY; t/ D .pt /XY : (10.54)
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As the graph can in general be highly inhomogeneous, we will include in the
notation also the dependence on the starting point, which will be useful in the
following discussion. An interesting quantity for the random walks is the exit time
from a set A:

TA D minft W Xt 2 G nAg (10.55)

and let us denote its average value from the starting point X0, the mean exit time
from set A, as EX0.A/. Then, once defined the ball of radius r and centre oV.o; r/,
let us denote as E.o; r/ the average exit time from A D V.o; r/ starting in X0 D o
at t D 0. The discrete Laplace transform of P.XY; t/, which maps the time function
into its generating function, is then:

QP.XY/.�/ D
1X

tD0
�tP.XY; t/ (10.56)

where � is a complex number. The functionG.X; Y / D lim�!1
QP.XY/.�/ is called

the Green kernel of the problem, which can also be infinite in low dimensional
graphs.

Given the random walk process on the graph, which is now entirely encoded
in the topology by mean of the adjacency matrix, an interesting question is then
to prove and to characterize the scaling form of the PDF, as a function of some
parameters related to the topological structure of the graph. Interestingly, this can
be done by sub-Gaussian estimates [18]. In these cases, the probability distribution
satisfies the following relation, providing a specific scaling form:

P.XY; t/ � 1

jV.X; t1=ˇ/j exp

2

4�
 
r
ˇ
X;Y

ct

!1=.ˇ�1/3

5 (10.57)

Notice that the previous relation introduces a scaling length in the process, growing
as t1=ˇ . An important result [18] is then that the scaling form is satisfied if the graph
has polynomial growth with connectivity dimension d and the average exit time has
a power law behavior:

E.o; r/ � rˇ 8o 2 VG : (10.58)

The exponents in the scaling form (10.57) can be related to usual random walks
quantities. We expect to recover from the scaling form the general definition of the
spectral dimension of a graph, which describes the asymptotic behavior of the return
probability to the starting site on graphs [21]. We have then P.X;X; t/ � t�ds=2.
Therefore d=ˇ D ds=2, or ˇ D 2d=ds.

There are many ways of stating the sub-Gaussian results. An interesting one,
holding in the case d >ˇ� 2, i.e. on transient graphs, is in term of the Green kernel,
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and it states that the sub-Gaussian estimate is satisfied if and only if the Green kernel
has a polynomial decays:

G.X IY / � r�.d�ˇ/X;Y : (10.59)

The powerful sub-Gaussian estimate is in general not easy to derive, and it has
been rigorously proven for a class of deterministic fractal graphs [20]. There are
many ways of stating it, beside relating it to the average exit time of to the Green
kernel [18]. Let us give here a simple and not rigorous derivation, based on scaling,
implying the so called Einstein relation, which correspond to the results (10.57)
and (10.58) in terms of scaling exponents. Interestingly, the Einstein relation links
the spectral dimension, the exponents for the resistance R.N/ � N˛ between sites
at large distanceN in the equivalent electric network problem, and the connectivity
dimension [22] for recurrent graphs, with ds < 2. This is obtained by the well
known analogy between the master equation of the random walk and the Kirchhoff
equations [19], that maps the graph in a networks of resistors. Let us briefly recall
this mapping [23].

The PDF can be written as a function of the dynamical scaling length of the
process in the following form:

P.XY; t/ D t�ds=2f .rX;Y =`.t// (10.60)

where `.t/ is the scaling length on the process.
The equation for the electric potential VX on a network of unitary resistors with

a unitary current flowing from site 0 to site N reads:

�
X

Y

LY;XVY D ıX0 � ıXN (10.61)

where LX;Y D zXıXY � AXY is the Laplacian matrix of the graph. This equation
simply corresponds to the fact that the sum of all the currents entering a node
with their sign must be zero, apart the two nodes where the current is injected and
extracted. Now, the master equation of the random walk process on the graph can
be written as:

P.0X; t C 1/�P.0X/.t/ D �
X

Y

LY;XP.0Y; t/=zY C ıX0ıt0: (10.62)

Denoting with QP.0X; !/ the Fourier transform of P.0X; t/ we get

QP.0X; !/.ei! � 1/ D �
X

Y

LY;X QP.0Y; !/=zY C ıX0 (10.63)
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and, comparing Eqs. (10.61) and (10.63)

VX D 1

zX
lim
!!0

. QP.0X; !/� QP.NX; !//: (10.64)

The potential difference between sites 0 and N as a function of their distance N ,
can be, hence, obtained introducing in lim!!0

QP.0N; !/ the scaling form of the
PDF:

V.N / � lim
!!0

Z
dtei!t t�ds=2f

�
r

`.t/

�
(10.65)

Changing the variable of integration into t 0 D !t we obtain

V.N / � N2d=ds�d lim
!!0

g

�
r

Q̀.!/
�

(10.66)

where g is a suitable function and Q̀.!/ D !�ds=.2d/ is the correlation length in
terms of the frequency !. Therefore, one has:

˛ D 2d

ds
� d (10.67)

holding for ds < 2. For transient graphs, with ds > 2, the sub-Gaussian estimate
based on Green kernels can be used [24, 25]. If ˛ is known, the scaling exponents
follow. Notice that the scaling of the resistance is a static problem on the graph, and
it is in general much easier to solve.

There are many open problem in proving sub-Gaussian estimate on highly
inhomogeneous graphs. An interesting example is provided by combs, where it
can be shown that it is impossible to rigorously derive an uniform sub-Gaussian
estimates for the PDF [26].

Another very interesting case of an inhomogeneous graph where it is difficult
to obtain a sub-Gaussian estimate is the so called NTd graph, introduced in [19]
and studied in terms of random walks in [27]. This is a tree graph, built recursively
by starting from an origin point, and connecting it to another site a by a link, then
splitting the tree from a in k branches of length 21, then splitting every end point
of the branches into other k branches of length 22 and so on. On this graph, the
spectral dimension can be exactly determined, and the mean square displacement
grows diffusively. Due to the long 1 dimensional branches, the NTd graph features
a strong inhomogeneity, and the scaling form of the PDF is difficult to determine,
even if the scaling of the moments appears to be weak and determined by a single
length.
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10.2.5 Topological Effects in Superdiffusion: Strong
Anomalous Diffusion and Quenched Lévy Walks

In the framework of CTRW, we have considered the case of simple Lévy walks
with decoupled space and time distributions. We will now consider a process where
topology effects comes into play to modify this decoupling, once again crucial for
the general scaling picture of the PDF. In this case the transport process can still
be described by a Lévy walk, but with correlations induced by the mutual position
of the steps. The general scaling form of the probability distribution can still be
determined through estimates that closely follows the sub-Gaussian estimates of
the previous section. However in this case the scaling of the moments is strongly
modified.

In this Lévy process, scatterers are placed and spaced according to a Lévy-type
distribution, so that the probability density for two consecutive scatterer to be at
distance l is

!.l/ � �l�0
1

l�C1
; l 2 Œl0;1/; (10.68)

where l0 is a cutoff fixing the scale-length of the system. Then, the continuous
time random walk CTRW naturally defined on this structure is a walker that moves
ballistically (at constant velocity v) until it reaches one of the scatterers, and then it
is transmitted or reflected with probability 1=2. The underling structure is therefore
quenched, the steps are correlated and the choice of the starting point of the walker
can influence the long time behavior of the PDF.

Interestingly, this model features strong anomalous diffusion with a non trivial
form of the ˇ.q/, as the (single) scaling violation introduced by the physical cut
off at finite velocity is modified due to a long tail developed in the PDF. To
determine the scaling form of the PDF, one can use the same approach considered
in the subdiffusive case, in the previous section, mapping the problem into the
equivalent electric problem [28]. Once again, the problem is translated into the exact
calculation of the scaling exponent for the resistance [29].

Then, in order to obtain the correct form of the function ˇ.q/ it is necessary to
estimate the effect of the physical cut off by a “single long jump” hypothesis, an
approximation that allows to extract the most important contribution of the long
tail [28]. The general picture obtained within this method applies also to higher
dimension but in that case an exact calculation leading to the explicit value of the
scaling exponent for the resistance is lacking. However, if this is measured from
experiments or from numerical data [30], this provides the scaling form of the PDF.

For the calculation of the PDF, several initial conditions can be considered. If one
averages over all the starting point of the structure at t D 0, and then one averages
over all stochastic processes and realizations of the disorder, this is general called
an equilibrium average, and it has been analyzed in details in [31]. Let us briefly
recall the main steps of the results. For � < 1 the motion is always ballistic, while
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for � > 1 a crucial point is the calculation of the probability of reaching a site at
distance l at the first step. This decays as 1=l� (i.e. much more slowly than !.l/)
and therefore the motion is dominated by the first jump (called ballistic peak). In
particular, for 1 � � � 2 the first step provides the major contribution to the mean
square displacement, which can be estimated to be hX2.t/i � t3��. As a matter
of fact, what it happens is that the single length scaling is violated precisely by
the ballistic peak and the estimate closely follows that performed in Sects. 10.2.2
and 10.2.3.

If the processes start with a scattering event, and then one averages over
scattering points, a so called non equilibrium average, the probability of reaching a
distance l at the first step is the same as that of any other scattering event. Therefore,
the first-jump does not determine the behavior of the mean square displacement [31].
We will consider this case in detail, discussing the scaling form of the distribution
and the strong anomalous picture arising for the moments of the PDF.

A particular care must be taken in identifying the scaling properties of the PDF,
including the subleading terms that can violate the single length scaling. To be
precise, the most general scaling hypothesis for P.X; t/ is given by:

P.X; t/ D `�1.t/f .X=`.t//C g.X; t/ (10.69)

defined by a convergence in probability

lim
t!1

Z vt

0

jP.X; t/ � `�1.t/f .X=`.t//jdX D 0 (10.70)

where the physical cut off X � vt has been introduced in the upper limit of the
integral. The two parts in Eq. (10.69) give their contribution in different regions: the
leading contribution to P.X; t/ is `�1.t/f .X=`.t//, which is significantly different
from zero only if X is of the order or less than `.t/. The subleading term g.X; t/,
with limt!1

R jg.X; t/jdX D 0, describes the behavior at larger distances, i.e.
`.t/	 X < vt. The function g.X; t/ does not contribute to the PDF in the infinite
time limit; however, if it does not vanish rapidly enough, it can nevertheless provide
important contributions to hX2.t/i and to the other moments.

Let us now consider the Einstein relation derived in the previous section. If we
now use this new scaling form for the probability distribution, since g.X; t/ is
relevant only in the regime X � `.t/ and the resistance is evaluated at a finite
distance N and for a diverging characteristic length `.t/ (i.e. ! ! 0), g.X; t/ does
not provide significant contributions to the resistance R.N/. Therefore, recalling
that the system is in 1 dimension, the scaling of the resistance is given by

R.N/ � N2=ds�1: (10.71)

The stationary problem and the calculus of the resistance are a much more simple
task than the direct solution of random walks and its spectral dimension, so that
the asymptotic behavior of R at large distances can be calculated analytically [29]



10 Anomalous diffusion 279

obtaining R.N/ � N� for � < 1 and R.N/ � N for � > 1. Putting this result
into Eq. (10.71) we obtain the value of ds as a function of �. Then, the asymptotic
behavior of `.t/ is obtained from the following general consideration. From the
normalization of the PDF, and from its scaling form we have:

t�ds=2
Z
f

�
X

`.t/

�
KXd�1dX D 1: (10.72)

and changing the integration variable to r=`.t/ we finally obtain, in 1 dimension:

`d .t/ � tds=2: (10.73)

By using this relation, together with the result on the scaling of the resistance [29]
and the Einstein relation (10.71), we finally obtain the scaling length of the process:

`.t/ � t 1
1C� if 0 < � < 1 (10.74)

and

`.t/ � t 12 if 1 � �: (10.75)

Let us now consider the mean square displacement, and the other moments of the
PDF. The mean square displacement reads, introducing also the physical cut off as
in Sect. 10.2.2

hX2.t/i D
Z vt

0

`�1.t/f .X=`.t//X2dX C
Z vt

0

g.X; t/X2dX: (10.76)

We have to take into account two anomalies with respect to the usual behavior
hX2.t/i � `2.t/. The second term g.X; t/ in the probability distribution can be
dominant with respect the first one, as it happens precisely when averaging over any
starting site [31] due to the contribution of the ballistic peak. A different anomaly
can be present if the scaling function f .x/ decays too slowly for x ! 1, as it
happens in the case of the standard Lévy walk [32, 33]. Here, depending on the
value of �, both contribution can arise [28].

As we expect that the scaling violations arise from the regime where X � `.t/,
the estimate is based on a single long jump hypothesis, providing the most important
contribution to the moments in this region. In averages over all starting sites the
probability of long jumps is much higher at the first step, hence the single long
range event occurs at t D 0, through the contribution of the ballistic peak. Here
on the other hand, it can happen, with equal probability, at any scattering site. In
particular, neglecting the possibility of multiple “long jumps” we obtain, for X �
`.t/, P.X; t/ � N.t/=X1C� 	 1, where N.t/ is the number of scattering sites
visited by the walker in a time t and 1=X1C� is the probability for a scatterer to be
followed by a jump of length X , as described by the !.l/. If one does not take into
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account the single long jump, the distance crossed by the walker in time t is always
of order `.t/. According to the results in [29], the number of scattering sites visited
in this time is the resistance of a segment of length `.t/, i.e. `.t/� for � < 1 and
`.t/ for � � 1. This implies that N.t/ � t�=.1C�/ for � < 1 and N.t/ � t1=2 for
� � 1.

For � < 1 and r � `.t/, the P.X; t/ reads:

P.X; t/ � t �
1C�

1

X1C� �
1

`.t/

�
X

`.t/

��.1C�/
(10.77)

Hence the scaling function f .x/ features a long tail for large x decaying as x�1��.
On the other hand for � � 1 and X � `.t/:

P.X; t/ � t 12 1

X1C� �
1

t.��1/=2`.t/

�
X

`.t/

��.1C�/
� g.X; t/ (10.78)

Now g.X; t/ provides a subleading contribution to P.X; t/. Indeed it is easy to see
that limt!1

R vt
`.t/
g.X; t/ D 0 (� > 1). This clearly indicates that the scaling is

violated both from the subleading term in the scaling form of the PDF, and by the
long tail developed in the PDF directly.

The contribution to hX2.t/i of lengths X of the order or less than `.t/ is always
of order `.t/2, while, at larger distances, the dominant contribution is provided by
probabilities (10.77) and (10.78). The contributions coming from these tails are, for
� < 1

Z vt

`.t/

t
�

1C�
X2

r1C�
dX � t 2C2���2

1C� (10.79)

and for � > 1

Z vt

`.t/

t
1
2
X2

X1C� dX � t 52��: (10.80)

The first part (10.79), at large times is always greater than `2.t/, while (10.80) is
dominant with respect `2.t/ only for � < 3=2. The overall behavior of the mean
square displacement is therefore given by:

hX2.t/i �

8
<̂

:̂

t
2C2���2

1C� 0 < � < 1

t
5
2�� 1 � � � 3=2
t 3=2 < �

(10.81)

Notice that for 0 < � < 3=2 the scaling is strongly anomalous and the standard
single length scaling behavior hr2.t/i � `.t/2 is violated.
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Analogously we can estimate the moments of the PDF:

hXq.t/i �

8
ˆ̂̂
<̂

ˆ̂̂
:̂

t
q

1C� � `.t/q � < 1; q < �

t
q.1C�/��2

1C� � < 1; q > �

t
q
2 � `.t/q � > 1; q < 2� � 1
t
1
2Cq�� � > 1; q > 2� � 1

(10.82)

The strong anomalous picture arising from the correlated Lévy walk process
described in this section is expected to play a role also in higher dimensions.
Interestingly, the correlation induced by the mutual position of the steps should
influence experimental settings where superdiffusion appears to take place [34].

10.3 Deterministic Anomalous Transport

While the former section was based on a underlying stochastic process, it is well
known that interesting transport features may be observed also in deterministic
systems. For the sake of simplicity we will consider only discrete deterministic
evolution, labelled by an integer time t , induced by a mapping T from the phase
space to itself. Namely a trajectory of the system, corresponding to the initial
condition x0, will be

x0; x1 D T .x0/; x2 D T 2.x0/; : : : ; xn D T n.x0/; (10.83)

where powers indicate functional composition T 2.y/ D T .T .y//, and so forth.
This also provides the opportunity to mention how concepts like the central limit

theory or large deviations appear in a deterministic setting.

10.3.1 A Brief Tour of Intermittency

From a dynamical point of view, intermittency is characterized by long laminar,
regular sequences punctuated by chaotic bursts. A paradigmatic example of such a
behavior is provided by a family of one-dimensional maps on the unit interval (the
phase space) [35], which we write in the following form [36] (see Fig. 10.1).

xtC1 D T�.xt / D
�
xt .1C 2�x�t / xt 2 Œ0; 1=2/
2xt � 1 xt 2 Œ1=2; 1
 (10.84)

When � D 0 the Bernoulli map is recovered, which provides the simplest example
of complete (and uniform) chaos: as soon as � > 0 global hyperbolicity is lost,
as x D 0 is an indifferent fixed point of (10.84): though elsewhere instability is
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Fig. 10.1 The map (10.84),
for � D 0:5

maintained (T 0
�.x/ > 1 8x > 0), the influence of the indifferent fixed point is

very deep. This can be seen in a number of ways: we will just emphasize those
related to the subject of the present volume. For small enough � the map is still
ergodic, though the invariant measure d�� is quite different from the Lebesgue (flat-
density) invariant measure in the Bernoulli limit. More precisely for � 2 .0; 1/ an
absolutely continuous invariant probability measure exists, but its density diverges
as �� .x/ D d��=dx � x�� as x ! 0 [35, 37]; when � > 1 no normalizable
absolutely continuous invariant measure exists, and we enter the realm of infinite
ergodic theory [38], which lies outside the scope of the present contribution. The
way in which the nature of the indifferent fixed point modifies dynamical properties
can be appreciated if we consider correlation decay: for generic observables A,
correlations decay polynomially where the power law depends on the intermittency
exponent � :

CA.t/ D
Z 1

0

d��.x/A.x/.A ı T t� /.x/�
�Z 1

0

d��.x/A.x/

�2
� t��� ; (10.85)

where [36, 37, 39]:

�� D 1

�
� 1: (10.86)

In the range � 2 .0; 1=2/, thus correlations are integrable, and the CLT is expected
to hold (for a rigorous approach see [40]; we notice that the CLT holds for mixing
systems once observables decorrelate with sufficient speed): when � 2 Œ1=2; 1/

(thus still in the ergodic – and mixing – regime), for zero average (smooth)
observables G, with G.0/ ¤ 0, (10.86) shows that correlations are no more
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integrable, and a CLT holds only in a generalized sense [41], where both the scaling
of Birkhoff sums and the limit law are different from the usual form of the law of
large numbers. Indeed the rigorous results states that

1

t�

t�1X

kD0
G ı T k� �! L1=�;c;ˇ (10.87)

where the convergence is in distribution according to the invariant measure d�� ,
and L1=�;c;ˇ is a (non-symmetric) Lévy distribution of order 1=� . The slow decay
of correlations influences all statistical properties: in particular as regards large
deviations. Exponential large deviations are indeed known to hold for systems
with strong chaotic properties [42], but intermittent maps enjoy weaker statistical
properties, and generally exhibit polynomial large deviations, where the exponent is
exactly�� [43,44]. More precisely the result in [43,44] states that for an observable
G, whose correlations decay according to a power law with exponent�� , (and withR
G d�� D 0) we get

��

(
x 2 Œ0; 1
 W

ˇ̌
ˇ̌
ˇ
1

t

t�1X

iD0
G.T i� x/

ˇ̌
ˇ̌
ˇ � �

)
D O.t��� /: (10.88)

Incidentally, we notice that such a result holds for a large class of dynamical systems
exhibiting power law correlations, and it has been implemented as a numerical tool
to get precise estimates of the polynomial rate of mixing [45]. From a qualitative
point of view, the most striking way in which the marginal fixed point influences
the dynamics is a sort of stickiness, namely generic trajectories, once they pass in
the vicinity of the fixed point typically spend a long time there: this is quantified
by long time tails in the waiting time distribution, like in the CTRW we examined
in the previous section. The asymptotic form of the distribution can be obtained
explicitly [46]: the idea is of partitioning the “laminar” branch (I0 D Œ0; 1=2/), by
inverse images of the “chaotic” branch I1 D Œ1=2; 1
. Let’s call 0 D 1=2, and
denote by $� � D 0; 1 the inverse mappings of T ($0;.1/ map the unit interval onto
I0;.1/, respectively). We now define n D $ n

0 .0/: then the interval .n; n�1/ is
mapped onto I1 exactly in n iterations. The asymptotic location of the sequence of
points fng is obtained by a continuous time approximation [46], as follows: since

k�1 D k C 2�1C�k (10.89)

in a continuous time approximation we may write

d

�
1

�

�
D �2�dk .0/ D 1

2
; (10.90)

from which we get
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k D 1

.2� .1C � 
 k//1=� k � 1

k1=�
k � 1: (10.91)

This allows us to estimate the size �k of intervals where exactly k iterations are
needed to be mapped to the chaotic branch:

�k D k�1 � k � 1

k1C1=�
W (10.92)

this is the crucial estimate, since linearity of the chaotic branch implies a uniform
reinjection from I1 to the laminar branch I0 and thus the waiting time distribution
in the laminar region behaves like

 .t/ � 1

t1C1=�
t � 1: (10.93)

Such a distribution has to satisfy the normalization condition

Z 1

0

dt .t/ D 1; (10.94)

and we also notice that, in the ergodic regime � 2 .0; 1/, the average waiting time
is finite

h	i D
Z 1

0

dt t .t/ <1I (10.95)

in the infinite ergodic case � > 1 this is no longer true, and this leads to peculiar
dynamical features (see for instance [47]). Notice that when � 2 Œ0; 1=2/ also the
variance is finite, while we have that

Z 1

0

dt t2 .t/ D C1 � 2 Œ1=2; 1/: (10.96)

10.4 Chain of Intermittent Maps

The first example of deterministic dynamics yielding anomalous transport (both
subdiffusive [48] and superdiffusive [46]) was obtained by lifting intermittent maps
over the whole real line. Such a procedure, which we will shortly describe, follows
closely the way early models of deterministic transport were indeed designed [49].
Again we consider a discrete time dynamics induced by a mappingF , defined on the
whole real line, and satisfying the translation property F.xCm/ D mCF.x/ (see
Fig. 10.2), we will also consider the associated torus (interval) map OF , as discussed
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Fig. 10.2 A chaotic map leading to normal diffusion

in a few lines. To get a map of this form we may start by defining the lift F on a
finite interval, as I0 D Œ0; 1
: a particularly simple example is [50]

F.x/ D 1

2
C�

�
x � 1

2

�
; (10.97)

with � > 2. We then extend the map on the whole real line by defining it on each
Ik D Œk; k C 1
 as F.y/ D k C F.y � k/ (see Fig. 10.2); finally, the torus map
on T1 is OF .�/ D F.�/jmod 1. Lifting hyperbolic maps on the real line usually leads
to normal diffusion, even though the relationship between dynamical properties and
the diffusion coefficient may be rather complex [50, 51]. To provide models for
anomalous diffusion we consider intermittent rather than hyperbolic maps: the lift
can be devised in such a way to lead to long waiting times (as in Fig. 10.3), or the
marginal fixed points can be associated to “running” modes (as in Fig. 10.4, in such
a way that motion is characterized by long sequences of ballistic transport). In this
section we discuss how CTRW models may describe such anomalous deterministic
transport: we will discuss in the next section how well such a stochastic technique
is able to cope with the present truly deterministic setting, where the only statistical
average is over a set of initial conditions.
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Fig. 10.3 An intermittent map leading to slowed diffusion
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Fig. 10.4 An intermittent map leading to superdiffusion
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10.4.1 Subdiffusion

Let’s consider the case of Fig. 10.3: dynamically it consists in finite size jumps
occurring after a long time tailed distribution of waiting times: the analysis in terms
of CTRW is quite similar to the discussion after Eqs. (10.42) and (10.43), but, if we
consider the ergodic case, we are not getting any anomaly: they come only in the
infinite ergodic case, where, as in (10.43) the distribution yields an infinite waiting
time [48, 52].

10.4.2 Superdiffusion

We now consider the case in which laminar sequences correspond to ballistic
segments. The simple CTRW expression (10.26) in this case is not appropriate,
and we must take into account a more sophisticated picture, given by the velocity
model [33, 53] (Lévy walks). Again we start from the probability density function
that a step of length l takes place at time t : but we suppose that t is chosen from a
broad distribution, and that during that period the walker travels with a unit velocity:

}.l; t/ D  .t/Q.l jt/; (10.98)

where

Q.l jt/ D 1

2
.ı.l � y/C ı.l C t// I (10.99)

and we choose the “ballistic” time distribution according to the intermittent
dynamics:

 .t/ � 1

t
1C 1

�

: (10.100)

We assume that the processes starts at the position x D 0 at time t D 0, and we
decompose the probability density P.X; T / in a sum over the “number of events”.
First of all consider the probability of being at position X at time T in a single
motion event:

P1.X; T / D 1

2
.ı.X � T /C ı.X C T //

Z 1

T

d	 .	/; (10.101)

where we have taken into account also cases in which the ballistic segment does not
end at X : notice that this has a form similar to (10.98) where instead of  we have
the function
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�.t/ D
Z 1

t

d 	  .	/ �.0/ D 1 �.t/ � 1

t
1
�

t � 1: (10.102)

Higher order contributions are easily evaluated: for instance

P2.X; T / D
Z
d

Z
d	 }.; 	/P1.X � ; T � 	/; (10.103)

and

P3.X; T / D
Z
d1 d2

Z
d	1 d	2 }.1; 	1/}.2; 	2/P1.X�1�2; T �	1�	2/:

(10.104)
When we take the Fourier-Laplace transform we get the following structure:

MP1.k; s/ D 1

2

Z 1

0

dt
�
e�.sCik/t C e�.s�ik/t


�.t/ D 1

2
. Q�.s C ik/C Q�.s � ik//:

(10.105)
By summing over all terms we finally get:

MP.k; s/ D
MP1.k; s/

1 � M}.k; s/ D
1
2
. Q�.s C ik/C Q�.s � ik//

1 � 1
2
. Q .s C ik/C Q .s � ik//

: (10.106)

In order to get the moments’ spectrum we need to estimate the leading behavior
of (10.106) for small arguments, and this depends crucially on the range of
intermittency exponent � we are taking into account. Let us briefly consider the
case � 2 .1=2; 1/, which corresponds to a genuine ergodic case, where, however,
ballistic duration times have an infinite variance. Usual tauberian theorems cannot
once again be directly applied to get the small argument behavior of either Q or Q� ,
but asymptotic expressions easily come out by using integration by parts. Take for
instance Q , where the large t behavior of  .t/ is with a power law exponent in the
range 1C 1

�
2 .2; 3/: if we consider the following function

W .t/ D
Z 1

t

dt1

Z 1

t1

dt2 .t2/
d 2W

dt2
D  .t/ dW

dt
D ��.t/; (10.107)

we get, for small arguments,

Q .u/ � 1� < 	 > uC Qcu
1
� (10.108)

and

Q�.u/ �< 	 > �Qcu
1
� �1; (10.109)
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so, if we put

q D s C ik � D Qc= < 	 >; (10.110)

we have, for small q,

MP.k; s/ D
2 ��

�
q
1
� �1 C q� 1

� �1
�

q C q� ��
�
q
1
� C q� 1

�

� : (10.111)

Moments can be then evaluated according to (10.40), and, for instance, we have that

hX2i.t/ � t3� 1
� ; (10.112)

namely an accelerated diffusion. When considering the whole spectrum we have
to take care that velocity is finite, and this leads to a nontrivial behavior of the
whole spectrum, like the one described in Sect. 10.2.2. As a matter of fact we
have from the very beginning that P.X; T / D 0 for jX j > T , while the tight
relationship with Lévy distributions may be appreciated by the fact that for very
small arguments (10.111) may be approximated by

MP.k; s/ D A

s C Bjkj 1�
; (10.113)

whose Laplace transform gives the conventional Fourier transformed form of a Lévy
distribution.

10.5 Deterministic vs Stochastic Approximation

The natural questions to ask, since we considered a crude stochastic modeling of
a deterministic dynamics, is whether hypotheses like independence of successive
steps are reasonably satisfied for deterministic systems, and whether crisply deter-
ministic techniques, not relying on probabilistic hypotheses can be introduced to
evaluate in a quantitative way the asymptotic growth of moments’, the average over
which they are computed being over a suitable set of initial conditions. In the case of
intermittent systems, the approximation in which successive laminar sequences are
supposed to be uncorrelated has been widely investigated [54,55]: in particular [55]
contains an analysis of correlation functions for the infinite horizon Lorentz gas:
here a trajectory is partitioned into independent events defined by collisions with
the array of disks: the approximation is shown to be quite accurate for long times,
while short time correlations are obviously missed.
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The most satisfying theoretical framework in which anomalous transport is
quantitatively analyzed for intermittent systems is periodic orbit theory [56–58]
(see [59] for an exhaustive presentation of periodic orbit theory). We will only
sketch very briefly the idea: for a full account see [60, 61].

The theory applies to systems enjoying periodicity properties like the maps in
Figs. 10.3 and 10.4 (or like a periodic Lorenz gas): the strategy is to introduce a
generalized transfer operator whose spectral properties determine the asymptotics
for large times, in analogy with statistical mechanics evaluation of leading behavior
in the thermodynamic limit through eigenvalues of transfer matrices. We will again
denote by T the map on the real line and by OT the corresponding torus map (in the
Lorenz gas case the corresponding reduced system would be a Sinai-like billiard).
The generating function of the diffusing variable is

Gn.ˇ/ D heˇ.T n.x0/�x0/i0; (10.114)

where angular brackets denote an average over a suitable set of initial conditions:
moments can be computed through derivatives of (10.114) with respect to ˇ. As
we mentioned before, the generating function may be expressed at the trace of a
generalized transfer operator Lˇ in the following way:

Gn.ˇ/ D
R 1
0 dx

R 1
0 dyL n

ˇ .x; y/

D R 1
0

dx
R 1
0

dzn�1 
 
 

R 1
0

dz1
R 1
0

dxLˇ.x; z1/ 
 
 
Lˇ.zn�1; y/;
(10.115)

where the transfer operator is defined as:

�
Lˇh


.x/ D

Z 1

0

dzh.z/ eˇ. OT .z/Cnz�z/ı.x � OT .z//; (10.116)

where h is chosen in an appropriate space of smooth functions, and nz denotes the
jump once the orbit is unfolded on the real line: namely T .z/ D OT .z/C nz.

Periodic orbits come into play when we evaluate the leading eigenvalue of the
transfer operator (which, in view of (10.115) will dominate the large t behavior of
the generating function). In particular the leading eigenvalue �0.ˇ/ is the inverse of
the smallest z.ˇ/ solving the secular equation

det
�
1� z.ˇ/Lˇ

 D 0: (10.117)

Manipulations on (10.117) (details are provided in [60,61]) show that z.ˇ/ is a zero
of the dynamical zeta function:

��1ˇ .z/ D
Y

fpg

�
1 � znp

eˇ��p
j�pj

�
; (10.118)
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where fpg denotes the set of periodic orbits of the map OT , and for any of such
orbits p, np is the prime period,�p the instability and the integer �p is the unfolded
jump: for any orbit point xi we have that OT np .xi / D xi , while T np .xi / D xi C �p .
Calculations of moments are then carried out through

Mk.n/ D h.xn � x0/ki0 D @k

@̌ k
Gn.ˇ/

ˇ̌
ˇ̌
ˇD0

� @k

@̌ k

1

2�i

Z aCi1

a�i1
ds esn

d

ds
ln
h
��1ˇ .e�s/

iˇ̌
ˇ̌
ˇD0

(10.119)

What makes such calculations delicate in the intermittent case (and originates
anomalies) is that the transfer operator does not have a spectral gap [62], and this
is reflected in the analytic behavior of ��1ˇ near the first zero. Once again, the
dynamical origin is the behavior around the marginal fixed point. Like in our former
analysis it led to polynomial tails in the waiting time distribution, here it leads to
polynomial growth of instability �p of orbits that approach more and more closely
the marginal fixed point.

From the point of view of the present review, the most significant point is that
periodic orbit theory reproduces exactly the results we derived in the former section
by using a stochastic approximation.

10.6 A Final Warning

As we mentioned in the introduction, the present contribution does not want to be
exhaustive, and many important issues have been left out. We hope to have conveyed
the idea on the basic mechanisms leading to anomalous transport, and how models
can be devised to a quantitative study of their effects both in the stochastic and in
the deterministic framework.
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Chapter 11
Large Deviations in Turbulence

Guido Boffetta and Andrea Mazzino

Abstract We give a survey of the use of the multifractal method, as a manifestation
of the large deviation theory, to study the scaling behavior in fully developed
turbulence. Particular emphasis is reserved to the phenomenon of intermittency,
i.e., the most relevant manifestation of the break-down of mean field arguments in
turbulence. To explain intermittency, the statistical role of fluctuations are explicitly
accounted for by means of the multifractal formalism. Its application to the statistics
of velocity gradients and acceleration will be discussed. A remark related to the use
of large deviation theory in multifractal formalism will be emphasized. Also, the
presentation of the famous Refined Similarity Hypothesis due to Kolmogorov and
Obukhov in 1962 to account for the statistical role of fluctuations will be reviewed.

11.1 Introduction

The multifractal approach to fully developed turbulence stands, technically speak-
ing, on the shoulders of the large deviation theory and is one of the most fruitful
idea which allowed to physically understand the phenomenology of intermittency
and anomalous scaling in turbulence [1–3].

From a technical point of view, one can say that multifractal analysis is a large
deviation theory of self-similar measure [4]. The so-called multifractal spectrum
and structure function, which are related by Legendre transforms, are the analogs of
an entropy and a free energy function, respectively.
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These important relationships permitted to gain a rigorous formulation of
multifractals, as well as to provide a guide for deriving new results. As pioneering
works which anticipated some aspects of the the multifractal approach to turbulence
we can cite the lognormal theory of Kolmogorov [5], the contributions of Novikov
and Stewart [6] and Mandelbrot [7]. In the lognormal model of Kolmogorov, the
anomalous scaling of structure functions was attributed to large fluctuations of the
velocities which, in turn, were supposed to be triggered by “intermittent” nature of
the coarse grained energy dissipation rate. Since then, a number of models have
been proposed to understand the essential features of these fluctuations. Among
these models, the multifractal model represents the most general approach to
intermittency and anomalous scaling in turbulence.

Our main aim here is to give a survey of the use of the multifractal method, as
a manifestation of the large deviation theory, to study the scaling behavior of fully
developed turbulence.

The material of the chapter is organized as follows. In Sect. 11.2 we introduce the
concept of scale invariance in turbulence and how it is related to the famous 4=5-th
law for fully developed turbulence. In Sect. 11.3 the statistical role of fluctuations are
explicitly accounted for by means of the multifractal formalism. A remark related
to the use of large deviation theory in multifractal formalism will be also discussed.
Sect. 11.4 is devoted to the presentation of the Refined Similarity Hypothesis due to
Kolmogorov and Obukhov in 1962. Conclusions are reserved to Sect. 11.5.

11.2 Global Scale Invariance and Kolmogorov Theory

Turbulence in fluids is described by the Navier-Stokes equations for an incompress-
ible (r 
 v D 0) velocity field v.x; t/

@tvC v 
 rv D �rp C �r2vC f (11.1)

where p represents the pressure, � is the kinematic viscosity of the fluid and f is
a forcing terms necessary to have a statistically stationary state. Turbulence appears
spontaneously as the dimensionless Reynolds number Re D UL=� ! 1 (U is a
typical velocity in the flow and L a typical scale, e.g. the scale at which the forcing
is acting). The nonlinearity of the equation, together with the non-locality (due to
the pressure term), implies that in general an analytical treatment of (11.1) is a
formidable task, while some special, time-independent solutions, for small Re are
known [8]. A confirmation of this difficulty comes from the fact that for the three-
dimensional case, and given some initial conditions, mathematicians have not yet
proved that smooth solutions always exist, or that if they do exist they have bounded
kinetic energy. This is called the Navier-Stokes existence and smoothness problem.
The Clay Mathematics Institute in May 2000 made this problem one of its seven
Millennium Prize problems in mathematics. It offered a US 1;000;000 prize to the
first person providing a solution for a specific statement of the problem.
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In two dimensions it is possible to prove that in the deterministic case the solution of
the Cauchy problem exists and is unique [9] and, very recently, that in the stochastic
case (see, e.g., [10]) the solution is a Markov process exponentially mixing in time
and ergodic with a unique invariant (steady state) measure even when the forcing
acts only on two Fourier modes [11].

For an inviscid fluid (� D 0) and in the absence of external forces (i.e. f D
0), the evolution of the velocity field (11.1) becomes the Euler equation, which
conserves kinetic energy. In such a case, introducing an ultraviolet cutoff Kmax on
the wave numbers, it is possible to build up an equilibrium statistical mechanics
simply following the standard approach used in Hamiltonian statistical mechanics.
However, because of the so-called dissipative anomaly [3, 12], in 3D the limit of
zero viscosity is singular and cannot be interchanged with Kmax ! 1. In other
words, given any viscosity as small as possible, there exist a wavenumber k < Kmax

at which the dissipative term in (11.1) is not negligible and the energy dissipation
rate reaches a value which is independent on �. This basic empirical property of
turbulent flows implies that the statistical mechanics of an inviscid fluids has a rather
limited relevance for the Navier-Stokes equations at very high Reynolds numbers Re
(which is equivalent to very small �).

In addition, mainly as a consequence of the non-Gaussian statistics, even a
systematic statistical approach, e.g. in term of closure approximations, is very
difficult [3, 12]. In the fully developed turbulence (FDT) limit, i.e. Re!1, and in
the presence of forcing at large scale, one has a non equilibrium statistical steady
state, with an inertial range of scales, where neither energy pumping nor dissipation
acts, which shows strong departures from the equipartition [3, 12].

The main features of FDT are described by the statistical theory of Kolmogorov
developed in three papers published in 1941 (now called K41 theory) [13,14]. At the
basis of the K41 theory [3, 13] there is the idea of turbulent cascade (introduced by
Richardson in [15]): energy fluctuations, introduced at large scale by a mechanical
forcing, reach the smallest scale (where they are converted into heat) via a scale-
by-scale cascade process. As a conseguence, one may expect that small scale
turbulence, at sufficiently high Reynolds numbers, is statistically independent on the
large scales and can thus locally recover homogeneity and isotropy. This implies that
small scale features of turbulence are universal, i.e. independent on the particular
flow and forcing mechanism. The concept of homogeneous and isotropic turbulence
was already introduced by Taylor [16] for describing grid generated turbulence. The
important step made by Kolmogorov in 1941 was to postulate that small scales are
statistically isotropic, no matter how turbulence is generated.

This hypothesis is based on intrinsic properties of the dynamics, i.e. the
invariance of Navier-Stokes equations (11.1) under space translations, rotations and
scaling transformation:

x ! �x ; v! �h v ; t ! �1�h t ; � ! �hC1� ; (11.2)

for any � > 0 and h (and we have neglected the contribution of forcing). A classical
example of scaling symmetry is the so-called similarity principle of fluid mechanics
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which states that two flows with the same geometry and the same Reynolds number
are similar. The similarity principle is at the basis of laboratory modeling of
engineering and geophysical flows where, because usually the fluid is water, its
application requires h D �1 in (11.2) in order to keep the value of �.

Kolmogorov’s treatment of small scale turbulence is based on the hypothesis that,
in the limit of high Reynolds numbers and far from boundaries, the symmetries of
Navier-Stokes equation are restored for statistical quantities. To be more precise,
let us consider the velocity increment ıv.x; `/ � v.x C `/ � v.x/ over the scales

`	 L. Restoring of homogeneity in statistical sense requires that ıv.x C r; `/
lawD

ıv.x; `/, where equality in law means that the PDF of ıv.x C r ; `/ and ıv.x; `/
are identical. Similarly, statistical isotropy, also used by Kolmogorov in his 1941

papers, requires ıv.Ax; A`/
lawD ıAv.x; `/ where A is a rotation matrix. Because

we will consider homogeneous, isotropic turbulence, in the following for simplicity
we will use the notation ıv.`/ for the velocity increment.

In the limit of large Reynolds number, Kolmogorov made the hypothesis that
for separation in the inertial range of scales `D 	 ` 	 L (where the dissipative
scale is `D ' LRe�3=4) the PDF of ıv.`/ becomes independent on viscosity �. As
a consequence, in this limit and in this range of scales, scaling invariance (11.2) is
statistically recovered without fixing the value of the scaling exponent h:

ıv.�`/
lawD �hıv.`/: (11.3)

The values of the scaling exponent, h are now limited only by the requiring that the
velocity fluctuations do not break incompressibility, which is equivalent to h� 0 [3].

Starting from (11.1) Kolmogorov was able to derive an exact relation, known as
the “4=5-th law” [3, 13], which, under the assumption of stationarity, homogeneity
and isotropy, and in the inertial range of scales `D 	 `	 L states

hıv3jj.`/i D �
4

5
N"` ; (11.4)

where ıvjj.`/ is the longitudinal velocity difference, i.e. ıvjj.`/ D ıv.`/
`=` (which,
under homogeneity and isotropy, depends on ` only). Assuming global scaling
invariance, i.e. a unique exponent h in (11.3), the 4=5-law (11.4) fixes its value
to h D 1=3. As a consequence, one expects a power-law behavior in the inertial
range for any structure function of velocity difference

S.p/.`/ � hıvpjj.`/i D Cp N"p=3`p=3 (11.5)

where the Cp are dimensionless, universal constant, not determined by the theory
except for C3 D �4=5.

We remark that the fact that the third moment of velocity differences does not
vanish is a consequence of the directional transfer (from large to small scales) of
energy on average. An important consequence, which will be discussed in details,
is that the PDF of velocity differences in turbulence cannot be Gaussian.
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11.3 Accounting for the Fluctuations: The Multifractal
Model

Kolmogorov 41 theory is not exact because both experiments and numerical sim-
ulations show that higher order structure functions display unambiguous departure
from the scaling exponents (11.5). Indeed one has

S.p/.`/ �
�
`

L

��.p/
(11.6)

with �.p/ ¤ p=3. We remark that in (11.6) and in the following we do not include,
for notation simplicity, the terms built on " and needed in order to make these
expressions dimensionally correct. In Fig. 11.1 we report a collection of scaling
exponents �.p/ extracted from different experimental data [17]. Let us recall that
the scaling exponents are not completely free as (11.4) requires �.3/ D 1. Under
very general hypothesis, one can also demonstrate that �p has to be a concave
and nondecreasing function of p [3]. From Fig. 11.1 it is evident that the �.p/
exponents are firstly universal and secondarily anomalous, i.e. they are expressed by
a non-linear function of p. This also means that the PDF’s of velocity differences
ıv.`/ not only deviate from the Gaussian (as required by (11.4)), but also that at
different scales the PDF’s are differents and that the skewness of velocity differences
increases going to small scales.

The deviation of scaling exponents �p from p=3 goes under the name of
intermittency [3], and is physically due to the fact that the turbulent intensity
and local energy dissipation " are strongly fluctuating in physical space. One
consequence is that, for example, "p=3 ¤ N"p=3 and therefore (11.5) is not justified
(apart from p D 3, of course).
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A simple way to modify the K41 consists in assuming that the energy dissipation
" is distributed uniformly on a subset S � R3 of fractal dimension DF < 3. This
is equivalent to assume that ıv.x; `/ � .`=L/h with h D .DF � 2/=3 for x on the
fractal set S and ıv.x; `/ non singular otherwise. The relation between h andDF is
obtained by the request that �3 D 1. This assumption leads to the so-called absolute
curdling or ˇ-model for which

�p D DF � 2
3

p C .3 �DF / : (11.7)

Such a prediction, with DF ' 2:83, is in fair agreement with the experimental data
for small values of p, but higher order scaling exponents give a clear indication of a
non linear behavior in p (see Fig. 11.1).

One generalization of the (fractal) ˇ-model is the multifractal model of tur-
bulence [1, 3, 18]. The multifractal model relaxes the assumption of global scale
invariance for a more general local invariance, i.e. the existence of a continuous set
of exponents h such that ıv.`/ � .`=L/h where, as in the ˇ-model, each exponent
is realized on a different fractal set of dimensionD.h/. More precisely one assumes
that in the inertial range of scales ` one has

ıv.x; `/ �
�
`

L

�h
; (11.8)

if x 2 Sh, where Sh is a fractal set with dimension D.h/ and h 2 (hmin, hmax). The
probability to observe a given scaling exponent h at the scale ` is determined by the
codimension 3 �D.h/ of the fractal set as P`.h/ � `3�D.h/ and therefore

Sp.`/ �
Z hmax

hmin

`hp`3�D.h/dh � `�p : (11.9)

For `	 1, a steepest descent estimation gives the scaling exponent

�p D min
h
fhpC 3 �D.h/g D h�p C 3 �D.h�/ (11.10)

where h� D h�.p/ is the solution of the equationD0.h�.p// D p. The Kolmogorov
4=5-th law (11.4) imposes �3 D 1 which implies that

D.h/ � 3hC 2 ; (11.11)

with the equality realized by h�.3/. We remark that the Kolmogorov similarity
theory �p D p=3 corresponds to the case of only one singularity exponent h D 1=3
with D.h D 1=3/ D 3.

It is important to remark that the multifractal model is not predictive in a strict
sense as it depends on an infinite set of parameters (the function D.h/) which are
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not derived from the Navier-Stokes equations. Nonetheless, it is able to reproduce
the set of scaling exponents �p on the basis of simple phenomenological arguments,
as it will be discussed in the next section. Moreover, once D.h/ has been obtained
from a model or from experimental data, the multifractal model can be used to make
predictions on other statistical quantities in turbulence [19].

Let us now discuss an important issue related to the use of large deviation theory
in the multifractal formalism. To obtain the scaling behavior of Sp.`/ � .`=L/�p

given by (11.9) with �p obtained from (11.10), one has to assume that the exponent
ph C 3 � D.h/ has a minimum, �p , which is a function of h, and that such an
exponent behaves quadratically with h in the vicinity of the minimum. This is the
basic assumption to apply the Laplace’s method of steepest descent. The point we
would like to discuss here is that, for small separations `, indeed Sp.`/ � .`=L/�p
but with a logarithmic prefactor:

Sp.`/ �
�
� ln

�
`

L

�	�1=2 �
`

L

��p
: (11.12)

Such a prefactor is usually not considered in the naive application of Laplace method
leading to (11.10). Moreover, the presence of logarithmic correction would clearly
invalidate the 4=5-th law (11.4), which is an exact results obtained from the Navier-
Stokes equations.

The problem to reconcile logarithmic corrections in the multifractal model
with the 4=5-th law has been quantitatively addressed by Frisch et al. [20].
There, exploiting the refined large-deviations theory, the Authors were able to
show in which way logarithmic contributions cancel out thus giving a prediction
compatible with the naive (and a priory not justified) procedure to extract the scaling
behavior (11.9). The key point is that the leading order large deviation result for the
probability P`.h/ to be within a distance ` of the set Sh carrying singularities of
scaling exponent h must be extended to take into account next subleading order. As
a result one obtains [20]

P`.h/ �
�
`

L

�3�D.h/ �
� ln

�
`

L

�	1=2
; (11.13)

which contains subleading logarithmic correction. It is worth observing that despite
the multiplicative character of the logarithmic correction one speaks of “subleading
correction”. This is justified by the fact that the correct statement of the large-
deviations leading-order result involves the logarithm of the probability divided by
the logarithm of the scale. The correction is then a subleading additive term.

Once the expression (11.13) is plugged in the integral

Sp.`/ �
Z

dhP`.h/

�
`

L

�ph
(11.14)
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and the saddle point estimation is carried out according to [21], logarithms disappear
and the 4=5-th law is correctly recovered.

It is worth mentioning that the presence of a square root of a logarithm correction
in the multifractal probability density had already been discussed in [22] on the basis
of a normalization requirement. In that paper, the Authors also pointed out that a
similar correction has been proposed by [23] in connection with the measurement
of generalized Renyi dimensions.

We conclude this section by observing that anomalous scaling for the velocity
differences implies that the local dissipative scale, `D , does not take a unique value.
The latter scale is indeed determined by imposing the effective Reynolds number to
be of order unity:

Re.`D/ D ıvD`D
�
� 1 ; (11.15)

therefore the dependence of `D on h is thus

`D.h/ � LRe�
1

1Ch (11.16)

where Re D Re.L/ is the large scale Reynolds number [18]. The fluctuation of
the dissipative scale has important consequences on the statistics of small scale
quantities, such as velocity gradients and acceleration, which will be discussed
in the next sections. Another consequence is that it predicts the existence of an
intermediate dissipation range at the lower bound of the inertial range, where the
inertial range contributions of the various scaling exponents h are successively
turned off [24].

11.3.1 The Statistics of Velocity Gradient

Let us denote by s the longitudinal velocity gradient, e.g. s D @ux=@x. On the basis
of the above considerations, this quantity can be expressed in terms of the singularity
exponents h as

s � ıvD
`D
D v0`

h�1
D D v

2
1Ch

0 �
h�1
hC1 (11.17)

where we used the fact that ıvD ' v0.`D=L/h and we have exploited (11.16).
From (11.17) we realize that we can easily express the probability density function
(PDF) of s (for a fixed h), Ph.s/, in terms of the PDF, ˘.V0/, of the large-scale
velocity differences V0, with v0 � jV0j. The latter PDF is indeed known to be in
general well described by a Gaussian distribution [25]. The link between the two
PDFs is given by the standard relation:
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Ph.s/ D ˘.V0/
ˇ̌
ˇ̌dV0

ds

ˇ̌
ˇ̌ (11.18)

from which one immediately gets:

Ph.s/ � �

jsj
1�h
2
e
� �1�hjsj1Ch

2hV 20 i : (11.19)

The K41 theory corresponds to h D 1=3, therefore (11.19) predicts a stretched
exponential form for the PDF with an exponent, 1Ch, larger than one. Experimental
data (see e.g. [26,27]) are not consistent with this prediction and indicate for the tail
of the PDF a stretched exponential with exponent smaller than one. In this respect,
the multifractal description has been used to describe correctly these experimental
evidences (see, e.g., [19] for a derivation).

11.3.2 The Statistics of Acceleration

Acceleration in fully developed turbulence is an extremely intermittent quantity
which displays fluctuations up to 80 times its root mean square [28]. These extreme
events generate very large tails in the PDF of acceleration which is therefore
expected to be very far from Gaussian.

We remark that even within non-intermittent, Kolmogorov scaling turbulence,
acceleration PDF is expected to be non-Gaussian. Indeed acceleration can be
estimated from velocity fluctuations at the Kolmogorov scale as

a D ıv.	D/

	D
(11.20)

where 	D D `D=ıvD and the Kolmogorov scale `D is given by the condition
`DıvD=� D 1. Using the relation ıv.`/ ' v0.`=L/h (with h D 1=3 for Kolmogorov
scaling) one obtains

`D

L
�
�

v0L

�

�� 1
1Ch

(11.21)

and finally

a D v20
L

�
v0L

�

� 1�2h
1Ch

(11.22)
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Similarly to the derivation of the velocity gradient, assuming a Gaussian distribution
for large scale velocity fluctuations v0, and taking h D 1=3, one obtains for the PDF
of a a stretched exponential tail p.a/ � exp.�Ca8=9/.

In the presence of intermittency the above argument has to be modified by taking
into account the fluctuations of the scaling exponent and of the dissipative scale.
In the recent years, several models have been proposed for describing turbulent
acceleration statistics, on the basis of different physical ingredients. In the following
we show that the multifractal model of turbulence, when extended to describe
fluctuation at the dissipative scale, is able to predict the PDF of acceleration
observed in simulations and experiments with high accuracy [29]. Moreover the
model does not require the introduction of new parameters, besides the set of
Eulerian scaling exponents. In this sense, multifractal model become a predictive
model for the statistics of the acceleration.

Accounting for intermittency in the above argument is simply obtained by
weighting (11.22) with both the distribution of v0 (still assumed Gaussian, as
intermittency is not expected to affect large scale statistics) and the distribution of
scaling exponent h which can be rewritten, using (11.21), as

p.h/ �
�
`D

L

�3�D.h/
�
�

v0L

�

�D.h/�3
1Ch

(11.23)

The final prediction, when written for the dimensionless acceleration Qa D
a=ha2i1=2, becomes [29]

p. Qa/ �
Z

h

QaŒh�5CD.h/
=3Ry.h/� exp

�
�1
2
Qa2.1Ch/=3Rz.h/

�

�
dh (11.24)

where y.h/ D �.h � 5 C D.h//=6 C 2.2D.h/ C 2h � 7/=3 and z.h/ D �.1 C
h/=3C4.2h�1/=3.R� D vrms�=� is the Reynolds number based on the Taylor scale
� D vrms=h.@xvx/2i1=2. The coefficient � is the scaling exponent for the Reynolds
dependence of the acceleration variance, ha2i � R

�

� . Its expression is given
by � D suph .2.D.h/ � 4h� 1/=.1C h//. For the non-intermittent Kolmogorov
scaling (h D 1=3 and D.1=3/ D 3) one obtains � D 1 and (11.24) recovers the
stretched exponential prediction discussed above.

We note that (11.24) may show an unphysical divergence for a ! 0 for many
multifractal models of D.h/ at small h. This is not a real problem for two reasons.
First, the multifractal formalism cannot be extended to very small velocity and
acceleration increments because it is based on arguments valid only to within a
constant of order one. Thus, it is not suited for predicting precise functional forms
for the core of the PDF. Second, small values of h correspond to very intense
velocity fluctuations which have never been accurately tested in experiments or
DNS. The precise functional form of D.h/ for those values of h is therefore
unknown.
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Fig. 11.2 Log-linear plot the PDF of the acceleration. Points are obtained from Direct Numerical
Simulations of homogeneous-isotropic turbulence at R� ' 280 [29] with the statistics of 1010

events. The dashed line represents the K41 prediction p.a/ � exp.�Ca8=9/. The continuous line is
the multifractal prediction. Inset: Qa4p.Qa/ for the DNS data (crosses) and the multifractal prediction

Figure 11.2 shows the comparison between the PDF of the acceleration obtained
from high-resolution Direct Numerical Simulations [29] together with the theoret-
ical prediction obtained from K41 and the multifractal models. The figure clearly
shows that the multifractal model is able to capture accurately the shape of the
PDF. It is remarkable is that (11.24) agrees with the DNS data over a wide range
of fluctuations – from the order of one standard deviation �a up to order 70�a. We
emphasize that the only free parameter in the multifractal formulation of p. Qa/ is the
minimum value of the acceleration, Qamin.

11.3.3 Multiplicative Processes for the Multifractal Model

We have seen in the previous section that the knowledge of the functionD.h/ allows
to predicts several features of a turbulent flow. An analytic computation of D.h/,
or equivalently �p , from the Navier-Stokes equations is a prohibitive task. In the
past years a different approach has been developed, based on a phenomenological
approach which gives closed expression for D.h/ on the basis of multiplicative
processes. The use of multiplicative processes is inspired again from the Richardson
cascade picture and the log-normal theory of Kolmogorov.

Let us briefly remind the so-called random ˇ-model [2], generalization of the ˇ-
model discussed at the beginning of Sect. 11.3. This model describes the energy
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cascade in real space looking at eddies of size `n D 2�nL, with L the length
at which the energy is injected. At the n-th step of the cascade a mother eddy
of size `n splits into daughter eddies of size `nC1, and the daughter eddies cover
a fraction ˇj (0 < ˇj < 1) of the mother volume. The ˇj ’s are independent,
identically distributed random variables (the probabilistic nature of ˇj reflects
the complex dynamics generated by the Navier-Stokes equations). Therefore the
velocity fluctuations vn D ıv`n at the scale `n receive contributions only on a
fraction of volume

Q
j ˇj . Taking into account the fact that the energy flux must

be constant throughout the cascade (i.e. the 4=5-th law), one has

vn D v0`
1=3
n

nY

jD1
ˇ
�1=3
j : (11.25)

As stated above, all the physics is contained in the distribution of the coefficients ˇj .
A simple, and somehow phenomenologically motivated choice is to take ˇj D 1

with probability x and ˇj D B D 2�.1�3hmin/ with probability 1�x (we remark that
the distribution is independent on the scale). This multiplicative process generates a
two-scale Cantor set, which is a common structure in chaotic systems. The resulting
scaling exponents are given by

�p D p

3
� ln2Œx C .1 � x/B1�p=3
 (11.26)

corresponding to

D.h/ D 3C �3h� 1
h
1C ln2

�1 � 3h
1 � x

�i
C 3h ln2

� x
3h

�
: (11.27)

The two limit cases of interest are x D 1, i.e. K41 theory with �p D p=3, and
x D 0 which gives the ˇ-model with DF D 2C 3hmin. Using x D 7=8, hmin D 0

(i.e. B D 1=2) one has a good fit for the �p of the experimental data (see Fig. 11.1).
There are many others different models which fit well the experimental scaling

exponents, all based on some physical arguments. A popular model is the so-called
She-Leveque model [30] where vortex filaments are a fundamental ingredient for
intermittency. In terms of the multifractal model, the She-Leveque model is obtained
by taking

D.h/ D 1C 2ˇ � 3h� 1
lnˇ

�
1 � ln

�
2ˇ � 1 � 3h
2 lnˇ

�	
(11.28)

and gives for the scaling exponents

�p D 2ˇ � 1
3

p C 2.1� ˇp=3/ : (11.29)
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The set of exponents given by (11.29) are close to the experimental data for ˇ D 2=3
(see Fig. 11.1). Another important model, which was introduced by Kolmogorov
himself without reference to the multifractal model, is the recalled log-normal model
which will be discussed in the next section.

11.4 Fluctuations of the Energy Dissipation Rate

On September 1961, Kolmogorov gave a famous talk at a turbulence colloquium
organized in Marseille. In this talk he presented new hypotheses, due to himself
and to Obukhov which constitute the basis of what is known as the Kolmogorov-
Obukhov 62 (KO62) theory [5].

At that time, there were not strong experimental motivations to call for an
improvement of the K41 theory. The main criticisms were based on a theoretical
ground and were due to a remark by Landau. The Landau’s remark, as reported for
instance by Frisch [3], states that the constants in (11.5), for example the constant
C2 for the second order longitudinal structure function, cannot be universal. As "2=3

differs from "2=3, the former depends from the distribution of " at large scales,
close to the integral one, which cannot be universal, as it depends on the forcing
mechanism. This remark applies to all the structure functions and implies that
Cp (a part C3 which depends only on the average ") cannot be universal. The
point that Kolmogorov emphasized, starting from this remark, is that dissipation
is concentrated on very tiny regions of the flow. This may lead to anomalous values
for the scaling exponents of velocity structure functions.

To take into account this point, Kolmogorov introduced the coarse grained energy
dissipation on a ball of radius ` centered on x

"`.x; t/ D 1

4=3�`3

Z

jyj<`
dy ".x C y; t/ (11.30)

and postulated that the dimensionless quantity

ıv.`/

"
1=3

` `1=3
(11.31)

has a probability distribution independent of the local Reynolds number Re` D
ıv.`/`=� in the limit Re` ! 1. This is what is called the Refined Similarity
Hypothesis (RSH). This hypothesis links the scaling laws of velocity structure
functions with the scaling properties of the energy dissipation:

Sp.`/ � hıvp.`/i � Cp"p=3` `p=3 (11.32)



308 G. Boffetta and A. Mazzino

Kolmogorov then introduces a simple multiplicative model for the statistics of "`.
This leads to a Gaussian distribution for the logarithm of "` with variance (for ln "`)

�2` D AC 9� ln.L=`/ (11.33)

The lognormal model leads to a parabolic prediction for scaling exponents

�p D p

3
C �

18
p.3 � p/ (11.34)

in which the value of the free parameter can be fixed by experimental data as � '
0:025.

The lognormal model KO62 can be described within the general framework of
multifractal model by taking a quadraticD.h/

D.h/ D � 9

2�
h2 C 32C �

2
h � 4 � 20�C �

2

8�
(11.35)

which, inserted in (11.10), leads to (11.34).
It can be useful to highlight the relationship between the multifractal model

for fully developed turbulence and the description of singular measures (e.g. in
chaotic attractors) based on the so-called f .˛/ spectrum [12]. For this purpose, let
us introduce the measure �.x/ D ".x/= N", based on the local energy dissipation rate,
a partition of non overlapping cells �` of size ` and the coarse graining probability

Pi.`/ D
Z

�`.xi /
d�.x/ (11.36)

where�`.xi / is a cube of edge ` centered in xi .
The coarse grained energy dissipation averaged over �` is given by "` �

"`�3P.`/. Denoting by ˛ the scaling exponent of P` and with f .˛/ the fractal
dimension of the subfractal with scaling exponent ˛, we can introduce the Renyi
dimensions [18] dp:

X

i

Pi .`/
p � `.p�1/dp (11.37)

where the sum is over the non empty boxes. A simple computation gives

.p � 1/dp D min
˛
Œp˛ � f .˛/
 : (11.38)

Noting that from the definition

h"p` i D `3
X

"
p

` (11.39)
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we finally have

h"p` i � `.p�1/.dp�3/ (11.40)

In conclusion, we have the following correspondence between the multifractal
model and the f .˛/ spectrum

h$ ˛ � 2
3

; D.h/$ f .˛/ ; �p D p

3
C �p

3
� 1�dp

3
� 3 : (11.41)

which, as it should, gives �3 D 1 independently on the form of f .˛/.

11.5 Conclusions

The experimental study of fully developed turbulence led to the introduction of
large deviation theory, in the form of the multifractal model, in order to describe
the intermittent nature of the turbulent flow. The multifractal model has been
successfully used to describe many features of turbulent flows: from scaling
exponents of the structure functions to the statistics of the velocity gradients and
acceleration, to the scaling of Lagrangian quantities. Despite the fact that the model
is not predictive, once the function D.h/ is given, or measured from experimental
data, all the other quantities are given without free parameters. In this sense we can
see at the multifractal model as a tool which provides, within the general framework
of large deviations, a general and consistent comprehension of different aspects of
turbulence.
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