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Abstract This chapter examines the conduct and performance of large mutually
dependent firms. Its objective is to study contractual relationships in a dynamic
bilateral monopoly, where producers’ investment choices must obey a technology
constraint. This is in contrast to previous studies of accumulation games, in which
technological interdependence was not explicitly allowed for. The analysis focuses
on investment incentives and payoff allocation under two regimes: (1) contracting
based on input quantities, and (2) contracting based on final revenues. The techno-
logically feasible equilibrium strategies and the terms of trade that support them are
characterized with intuitive necessary conditions which reflect the players’ intertem-
poral trade-offs. To assess the factors that influence efficiency and market power, the
chapter presents a linear-quadratic example. Our simulations indicate that contracts
based on input quantities generate higher joint payoffs and tend to benefit the input
producer.

1 Introduction

Closeness of geographic locations and development of relationship-specific assets
may give rise to bilateral monopolies. That is, sometimes two firms become “locked
in” to one another and can only operate in a tandem. Examples of exclusive pro-
duction arrangements are numerous and include: coal mine—thermal power gen-
erator, power generator—aluminium smelter, timber mill—furniture factory. Famil-
iarity and the desire to avoid renegotiation costs often drive bilateral monopolists
into long-term contractual relationships. While the fundamentals of these contracts
are rather durable, the terms of trade may undergo periodic adjustments to account
for changes in the operating environment.

J.B. Krawczyk (B) · V.P. Petkov
Victoria University of Wellington, Wellington, New Zealand
e-mail: J.Krawczyk@vuw.ac.nz

V.P. Petkov
e-mail: Vladimir.Petkov@vuw.ac.nz

J. Haunschmied et al. (eds.), Dynamic Games in Economics,
Dynamic Modeling and Econometrics in Economics and Finance 16,
DOI 10.1007/978-3-642-54248-0_8, © Springer-Verlag Berlin Heidelberg 2014

161

mailto:J.Krawczyk@vuw.ac.nz
mailto:Vladimir.Petkov@vuw.ac.nz
http://dx.doi.org/10.1007/978-3-642-54248-0_8


162 J.B. Krawczyk and V.P. Petkov

The primary objective of the present chapter is to examine long-term contracting
in such dynamic bilateral monopolies.1 We study an infinite-horizon game between
an input supplier and a final good producer, where investment in capacity gives rise
to intertemporal spillovers. Firms are technologically interdependent: their choices
are bound by a “production function.” The players’ strategies, as well as the terms
of trade that govern surplus allocation, are assumed to have a Markovian structure.
Thus, each player takes current prices as given, but also accounts for the conse-
quences of his actions for future surplus shares.

We analyze and compare contract designs that support bilateral trade as a tech-
nologically feasible non-cooperative equilibrium. Our focus is on two payoff allo-
cation regimes: (i) contracting based on input quantities, and (ii) contracting based
on final revenue. Both arrangements are quite common in the real word. For exam-
ple, Gazprom (the dominant Russian producer and exporter of natural gas) makes
deliveries to European countries on the basis of contracts over input quantities. On
the other hand, various software developers have an arrangement with Apple Inc.
(a provider of hardware platforms) which specifies shares of final revenues.

We investigate how these regimes affect the division of surplus within the bi-
lateral monopoly, and explore their consequences for firms’ behavior. Furthermore,
our model sheds light on the efficiency of such contractual arrangements. We show
that strategic considerations drive investment away from the plan that maximizes the
present value of the stream of joint profits. Last but not least, this study can be used
by a central planner to design an allocation mechanism which ensures that neither of
the bilateral monopolists will be stuck with unused production capacity in the long
run.

Our methodology exhibits two desirable features. First, the Markovian assump-
tion for contracts and investments allows us to endogenously determine the techno-
logically feasible terms of trade.2 Second, firms’ choices are obtained as subgame-
perfect equilibrium strategies in a non-cooperative game. This implies that contracts
will be self-enforcing. Since these strategies specify optimal actions in all periods
and for any history, no player will have an incentive to unilaterally deviate at any
point in the game.

To quantify and compare the properties of the contractual arrangements, we an-
alyze a numerical example based on a linear-quadratic formulation. It yields terms
of trade and investment strategies that are linear in the state variables. The simula-
tions underscore the importance of trading procedures for payoff allocation within
the bilateral monopoly: for a given set of parameters, the player who has control
over the value of the contractible variable is able to attain a higher surplus share.
Moreover, the example shows that the choice of a contractible variable can have im-
portant consequences for economic efficiency. Specifically, joint payoffs are higher
when contracts are based on input quantities rather than on final revenue.

1This chapter draws from and extends Petkov and Krawczyk (2004).
2The assumption of Markovian terms of trade relates our chapter to the literature on asset pricing
originating from Lucas (1978).
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We model bilateral trade using a classical capital accumulation framework that
gives rise to intertemporal trade-offs. In this setting, firms are willing to incur instan-
taneous costs in order to gain a future strategic advantage. Thus, our analysis deliv-
ers equilibrium conditions similar to those in the literature on investment games
(e.g. Hanig 1986; Reynolds 1987). More generally, our chapter contributes to the
theory of dynamic oligopoly (e.g. Maskin and Tirole 1987, 1988), which studies the
importance of strategic commitment in market interactions.

Previous work in this field has assumed a particular functional form for payoffs,
effectively determining the strategic properties of the game (i.e., whether players’
choices would be strategic complements or substitutes). In contrast, our surplus al-
locating procedure emerges as an equilibrating mechanism that accounts for techno-
logical interdependence. It permits the analysis and comparison of various bilateral
trading relationships without making ad-hoc assumptions regarding the nature of
competition.

There also exists abundant literature on bargaining and bilateral exchange with
incomplete contracts which aims to explore the boundaries of the firm and asset
ownership. It originates from the seminal work of Coase (1937) and is further de-
veloped by Williamson (1975, 1979, 1985), Klein et al. (1978), Grossman and Hart
(1986), Hart and Moor (1990), and Whinston (2003). These papers model the alloca-
tion of final payoffs as a cooperative bargaining game, usually employing the Nash
solution with exogenously fixed bargaining weights. In a more complicated dynamic
setup where firms receive streams of payoffs, this approach may lack plausibility.
It could be argued that intertemporal spillovers will cause bargaining weights to
change over time. In particular, their dynamics will reflect forward-looking attempts
to strategically influence the future terms of trade. While non-cooperative bargaining
games can account for forward-looking behavior, they usually require the specifi-
cation of restrictive bargaining procedures e.g., alternating offers as in Rubinstein
(1982). Our methodology, on the other hand, is amenable to various modifications
and environments.

The remainder of the chapter is organized as follows. Section 2 describes the
bilateral monopoly setting and our solution concept. Section 3 provides formal
analysis of the allocation arrangements and derives general equilibrium conditions.
A linear-quadratic algebraic formulation of the model is motivated and solved nu-
merically in Sect. 4. The concluding remarks are presented in Sect. 5.

2 The Setup

2.1 Key Features

The setup below is a mathematical abstraction of the following key aspects of dy-
namic bilateral monopolies.

• Technological interdependence: firms need to operate in a tandem in order to
generate surplus.
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• Existence of market power: each party has the ability to influence the future terms
of trade.

• Strategic conduct: firms take into account the effect of their investment choices
on the opponent’s behavior.

• Noncooperative decision making: private payoff maximization ensures that con-
tracts will be self-enforcing.

2.2 Technology and Industry Structure

Suppose that, in each period t = 0,1, . . . , the market for a final good x is served
by a single downstream producer (referred to as firm A). The production process
involves the use of an intermediate good y. Input y is supplied by a single upstream
firm (referred to as firm B).3 To manufacture one unit of their goods, the two firms
must use one unit of their capacities. The laws of motion of these capacities are
given by the state equations

xt+1 = μAxt + ut (1)

yt+1 = μByt + vt , (2)

where ut , vt ∈ R are the (non-contractible) investment levels of players A and B,
respectively, and (1 − μA) and (1 − μB) are the corresponding depreciation rates.
The firms choose ut , vt simultaneously and non-cooperatively. They also incur con-
vex investment costs, CA(ut ) and CB(vt ). For simplicity we assume that there are
no other costs involved in the manufacturing of x and y.

The available technology implies a relationship between input and output quan-
tities that is represented by a production function:

xt+1 = F(yt+1, xt , yt ). (3)

This dynamic specification accounts for inherently intertemporal phenomena such
as congestion, learning-by-doing, etc. The technology constraint imposed by the
production function is only required to hold in equilibrium. Short-run violations of
(3) would not cause discontinuities in the players’ payoffs. In particular, we assume
that:

• firm A is contractually obligated to purchase the entire production of firm B at the
current terms of trade (i.e., firm B can sell yt units at the current terms of trade
even if xt < F(yt , xt−1, yt−1));

3For example, consider a thermal power station (the final good producer) which purchases coal
from a nearby coal mine (the intermediate good producer). This power station produces output
(i.e. electricity) that is technologically constrained by the available supply of coal, and may as well
be the single most important customer of the coal mine. Other examples of such relationships were
alluded to in the Introduction.
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• firm A has limited reserves of the intermediate good, and thus it can operate in
the event of a temporary shortage of yt (i.e., firm A can produce and sell xt units
even if xt > F(yt , xt−1, yt−1)).

Consequently, both producers can fully exploit their capacities although (3) may
not be satisfied in the current period. It should be pointed out that it is in the play-
ers’ private interest to adhere to this constraint, as any unilateral deviation from the
equilibrium will be suboptimal. Even if a violation occurs, it will not persist through
time: when firms implement their equilibrium strategies in the following period, (3)
will hold again regardless of previous investment decisions.

2.3 Revenue Sharing

For reasons explained in the introduction we study long-term contractual relation-
ships with a time-invariant structure. In our model, this structure is characterized by
two elements: (i) an observable and contractible variable z which is agreed on by
the firms in a pre-play period, and (ii) a differentiable allocation function g which
represents endogenously determined terms of trade.

Our analysis focuses on arrangements where the contractible variable zt is a
function of current input and output levels (capacities) i.e., zt ≡ z(xt , yt ). Thus,
we assume away trading in futures. Furthermore, we restrict attention to allocation
functions that depend only on the current industry state i.e., g ≡ g(xt , yt ). This as-
sumption implies that firms take the current terms of trade as given, but their invest-
ment choices will reflect the desire to affect future surplus allocations. Note that we
do not impose restrictions on the functional form of g (other than differentiability):
the terms of trade are pinned down by our solution concept.

Let R(xt ) denote the period-t bilateral monopoly revenue generated from the
sale of the final good, and let SA(z(xt , yt ), g(xt , yt )) and SB(z(xt , yt ), g(xt , yt )) be
the revenue shares of firm A and firm B. The instantaneous period-t payoffs of the
two players are defined as

πA
t ≡ SA

(
z(xt , yt ), g(xt , yt )

) − CA(ut ) (4)

and

πB
t ≡ SB

(
z(xt , yt ), g(xt , yt )

) − CB(vt ). (5)

Contracts are allocatively feasible if

SA
(
z(xt , yt ), g(xt , yt )

) + SB
(
z(xt , yt ), g(xt , yt )

) = R(xt ), ∀xt , yt . (6)

In order to account for technological interdependence, we also require that surplus
allocation induces forward-looking firms to behave in a manner consistent with the
production function. Thus, contracts are technologically feasible if the terms of trade
function g(xt , yt ) gives rise to equilibrium investment strategies that satisfy (3).
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As discussed earlier, we examine two types of revenue-sharing arrangements,
distinguished by the specification of the contractible variable.

• Contracting over input quantities: zt = yt . Under this regime, g can be interpreted
as the input price. The instantaneous revenue shares are thus defined as

SA = R(x) − g(x, y)y, SB(x, y) = g(x, y)y, (7)

where g(xt , yt ) :R2+ → (0,R(x)/y).
• Contracting over the realized revenue: zt = R(xt ). In this case, g can be inter-

preted as firm B’s share of the final revenue. The players’ revenue shares are now
given by

SA = (
1 − g(x, y)

)
R(x), SB = g(x, y)R(x), (8)

where g(xt , yt ) :R2+ → (0,1).

2.4 A Solution Concept

A plausible solution concept for the bilateral monopoly problem at hand needs to
allow for strategic behavior of forward-looking players, while also accounting for
technological interdependence that requires coordination of investment in order to
generate surplus. Given an arbitrary allocation function g(x, y), we have a well-
defined two-player dynamic game. We will refer to this game as Γ g . By assumption,
(i) firm A is obligated to purchase the entire production of firm B; and (ii) the final
good producer has sufficient reserves to cover temporary input shortages. Therefore,
both players can choose any positive or negative investment levels while maintaining
full capacity utilization in the short run. Even when the technological constraint is
violated in the current period, payoffs would still be given by (4) and (5).

We focus on the Markov perfect equilibrium (MPE) of Γ g , where the players’
strategies are time-invariant functions of the current industry state.4 Let

ut = f A(xt , yt ), vt = f B(xt , yt )

be the MPE strategies of firm A and firm B when the allocation function is g(x, y).
Payoff maximization requires that the players’ choices satisfy the Bellman equations
for the final good producer,

V A(xt , yt ) = max
ut

{
R(xt ) − SB

(
z(xt , yt ), g(xt , yt )

) − CA(ut )

+ δV A
(
μAxt + ut ,μ

Byt + f B(xt , yt )
)}

, (9)

4This solution concept is also known as feedback-Nash equilibrium.
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and for the intermediate good producer,

V B(xt , yt ) = max
vt

{
SB

(
z(xt , yt ), g(xt , yt )

) − CB(ut )

+ δV B
(
μAxt + f A(xt , yt ),μ

Byt + vt

)}
. (10)

Stationarity of Markovian strategies implies that

f A(xt , yt ) = arg max
ut

{
SB

(
z(xt , yt ), g(xt , yt )

) − CB(ut )

+ δV A
(
μAxt + ut ,μ

Byt + f B(xt , yt )
)}

, (11)

and

f B(xt , yt ) = arg max
vt

{
SB

(
z(xt , yt ), g(xt , yt )

) − CB(ut )

+ δV B
(
μAxt + f A(xt , yt ),μ

Byt + vt

)}
. (12)

As usual, the MPE strategy functions f A(x, y), f B(x, y) of the game Γ g are a
fixed point of the mapping defined by (11), (12).

Remark 1 The Bellman equations (9), (10) will have a well-defined interior solution
only if the instantaneous payoffs πA

t , πB
t can ensure the concavity of their right-

hand sides.5

The MPE of the game Γ g yields investment choices that maximize the play-
ers’ private payoffs for an arbitrary allocation function g. However, the equilibrium
strategies are also bound by the constraint of the existing production technology.
Thus, we need to focus on contracts that are technologically feasible. In other words,
the terms of trade should give rise to MPE investment levels which are consistent
with the production function (3) for all possible states (xt , yt ):

μAxt + f A(xt , yt ) = F
(
μByt + f B(xt , yt ), xt , yt

)
, ∀xt , yt . (13)

Definition 1 For a pre-agreed contractible variable z(xt , yt ), a Markovian alloca-
tion equilibrium of the bilateral exchange game described above is characterized by
an investment strategy f A(x, y) of the final good producer, an investment strategy
f B(x, y) of the input producer, and an allocation function g(x, y) with the follow-
ing properties:

1. contingent on g(x, y), the functions f A(x, y), f B(x, y) are the MPE strategies
of the game Γ g , i.e. they are obtained as a fixed point of (11), (12);

2. the allocation function g(x, y) is such that f A(x, y), f B(x, y) satisfy the tech-
nology constraint (13).

5For some results on solutions to concave dynamic games see Krawczyk and Tidball (2006).
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The solution concept described above has two desirable features.

• The specification of the terms of trade is quite general. The only requirements for
the allocation function are differentiability and Markovian structure. Yet, these
mild restrictions enable us to pin down the functional form of g. As a result, the
number of possible equilibria is reduced, which boosts the predictive power of
our model.

• The investment choices f A(x, y), f B(x, y) are the Markov perfect (and there-
fore subgame-perfect) equilibrium strategies of a non-cooperative dynamic game.
Firms will choose to follow these strategies in all periods and for all states. This
implies that the agreement between the input supplier and the final good pro-
ducer is self-enforcing: no player will have an incentive to unilaterally breach the
contract at any point in the game regardless of past history.

The above features of the proposed solution concept may lead to inefficient out-
comes. In particular, the equilibrium plans may fail to maximize the joint surplus
available for allocation between the firms. We will discuss how strategic considera-
tions will distort the players’ incentives in Sect. 3.2.

3 The Analysis

In this section, we analyze the bilateral monopoly game defined above. To simplify
the notation, we will suppress the arguments of payoffs and strategies. In addition,
we will use subscripts to denote partial derivatives. For example, ϕi would signify
the derivative of a function ϕ(r1, . . . , rn) with respect to its i-th argument: ϕi =
∂ϕ(r1, . . . , rn)/∂ri .6 Finally, let ϕ′ and ϕ′′ be the values of ϕ one and two periods
ahead, respectively.

3.1 Characterization of the Equilibrium

When firms choose investment levels, they take into account the direct and strategic
effects of their decisions for current and future costs and revenues. The consider-
ations that influence these choices are spelled out by Proposition 1. In this propo-
sition, we use Bellman equations (9) and (10) to derive conditions for the players’
equilibrium strategies. The derivations are provided in Appendix A.

Proposition 1 The Markovian equilibrium strategies f A(x, y), f B(x, y) and the
allocation function g(x, y) of the bilateral monopoly game satisfy the private Euler

6Since our objective is to derive necessary conditions for the equilibrium strategies and allocation
function, we do not need to compute second order derivatives. For a brief discussion on concavity
see Remark 1 and footnote 5 on page 167.
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equations,

−CA
1 + μAδCA′

1 + δRA′
1 + δ2f B′

1 RA′′
2

− δf B′
1 (μB + f B′′

2 )

f B′′
1

(−CA′
1 + μAδCA′′

1 + δRA′′
1

) = 0, (14)

−CB
1 + μBδCB′

1 + δRB′
2 + δ2f A′

2 RB′′
1

− δf A′
2 (μA + f A′′

1 )

f A′′
2

(−CB′
1 + μBδCB′′

1 + δRB′′
2

) = 0, (15)

and the technological feasibility condition,

μAx + f A(x, y) = F
(
μBy + f B(x, y), x, y

)
, ∀x, y, (16)

where RA(x, y) ≡ SA(z(xt , yt ), g(xt , yt )) and RB(x, y) ≡ SB(z(xt , yt ), g(xt , yt ))

are the revenues of firm A and firm B, respectively.

When players contract over input quantities, the firms’ marginal revenues RA
1 ,

RB
1 , RA

2 , RB
2 take the form

RA
1 = R1 − g1y, RA

2 = −g2y − g

RB
1 = g1y, RB

2 = g2y + g.

If, instead, the arrangement specifies shares of final revenues, RA
1 , RB

1 , RA
2 , RB

2
become

RA
1 = R1 − g1x − g, RA

2 = −g2x

RB
1 = g1x + g, RB

2 = g2x.

The Euler equations reflect the economic factors underlying the players’ decision
making process. In the following description of these factors, we focus on firm A’s
condition (14). The intuition behind Euler equation (15) is analogous.

The left-hand side of (14) incorporates the effects of a marginal change in firm
A’s current investment on the costs and revenues over its planning horizon. In equi-
librium, the change in costs must be equal to the change in revenues. Thus, these
effects will sum up to 0. Their interpretation is provided below.

• An increase in current investment generates an additional adjustment cost of
CA

1 in the current period. However, capacity carry-over will create cost savings
μAδCA′

1 by reducing the need for future investment.
• The additional capacity has a delayed direct effect of δRA′

1 on future revenues
through two channels: the contractible variable, SA′

1 z′
1, and the terms of trade,

SA′
2 g′

1.
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• Furthermore, a marginal change in firm A’s investment will invoke a reaction from
its opponent in the subsequent period, which will have repercussions for firm B’s
future capacity, y′′, and induce a strategic revenue effect, δ2f B′

1 RA′′
2 .

• Finally, firm A anticipates B’s reaction, and will concurrently re-adjust its ca-
pacity. This gives rise to additional strategic cost effects δf B′

1 (μB + f B′′
2 )(CA′

1 −
μAδCA′′

1 )/f B′′
2 and delayed revenue effects −δf B′

1 (μB + f B′′
2 )RA′′

1 /f B′′
2 .

Differentiating the technology constraint with respect to x and y yields

μA + f A
1 = F1f

B
1 + F2,

f A
2 = F1

(
f B

2 + μB
) + F3.

Substitution in (15) shows that technologically feasible input choices must also sat-
isfy

−CB
1 + μBδCB′

1 + δRB′
2 + δ2(F ′

1

(
f B ′

2 + μB
) + F ′

3

)

×
(

RB′′
1 − δ(F ′′

1 f B′′
1 + F ′

2)

F ′′
1 (f B ′′

2 + μB) + F ′′
3

(−CB′
1 + μBδCB′′

1 + δRB′′
2

)) = 0. (17)

3.2 Efficiency Results

In this subsection we compare the Markovian allocation equilibrium characterized
in Sect. 3.1 to an efficient outcome. For presentation purposes, we define efficiency
as maximization of the net present value of the stream of joint surplus. The question
of interest is whether the strategies defined by (14), (15) and (16) are consistent with
this type of efficient behavior.

Let wt ≡ R(xt ) − CA(ut ) − CB(vt ) denote the period-t joint surplus generated
by the bilateral monopoly.

Definition 2 A bilateral trade contract (z, g) is efficient if it maximizes the net
present value of the stream of joint surplus W = ∑∞

t=1 δt−1wt .

Now we show that the equilibrium input and output paths generated by (14), (15)
and (16) are usually inefficient. Although firms fully utilize the available capacities
in each period, their decisions are distorted by strategic considerations regarding the
allocation of future revenues. In the game studied here, the Markovian structure of
contracts implies that current investments have repercussions for the subsequent val-
ues of the terms of trade and the contractible variable. Forward-looking players take
these repercussions into account. They choose their actions to bias the division of
future surplus in their favor, thus creating inefficiencies. This phenomenon is analo-
gous to the problem of “hold-up,” which often arises in the literature on incomplete
contracts (see Grossman and Hart 1986; Klein et al. 1978).
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To illuminate the underlying reasons, we now derive necessary conditions for the
efficient investment policies of firm A and firm B, hA(x, y) and hB(x, y). We will
argue that the private Euler equations (14), (15) are generically inconsistent with
these efficiency conditions.

Technological feasibility requires that

ut = F
(
μByt + vt , xt , yt

) − μAxt . (18)

Substitution of (18) allows us to write the period-t joint surplus as

w(xt , yt ) = R(xt ) − CA
(
F

(
μByt + vt , xt , yt

) − μAxt

) − CB(vt ). (19)

Therefore, efficient investment in input capacity will solve the Bellman equation

W(xt , yt ) = max
vt

{
R(xt ) − CA

(
F

(
μByt + vt , xt , yt

) − μAxt

)

− CB(vt ) + δW
(
F

(
μByt + vt , xt , yt

)
,μByt + vt

)}
. (20)

In Appendix B, we use (20) to derive the following Euler equation:

F1
(
δR′

1 − CA
1 + δμACA′

1

) − CB
1 + δμBCB′

1

+ δ
(
F1F

′
2 + F ′

3

)(
δR′′

1 − CA′
1 + δμACA′′

1

)

− δF ′′
2 (F1F

′
2 + F ′

3)

(F ′
1F

′′
2 + F ′′

3 )

(
F ′

1

(
δR′′

1 − CA′
1 + δμACA′′

1

) − CB′
1 + δμBCB′′

1

)

= 0. (21)

Condition (18) in conjunction with (21) defines the efficient investment policies
hA(x, y) and hB(x, y).

In general, the equilibrium strategy functions that solve Euler equations (14)
and (15) will fail to satisfy (21). Hence, the contracts considered here are typi-
cally inefficient. As already discussed, this failure is driven by the strategic nature
of interactions. More precisely, both players will attempt to influence the future con-
tractible variable and terms of trade in order to increase their payoffs. Such behavior
precludes the implementation of efficiency: firms will deviate from the investment
policies that maximize joint surplus.

To see this, suppose that the efficient investment policies hA(x, y) and hB(x, y)

are in fact solutions to (14) and (15). Then we can rewrite the private Euler equations
as

δR′
1 − CA

1 + δμACA′
1 = DA, −CB

1 + δμBCB′
1 = DB,

where DA and DB embody the strategic payoff effects:

DA = δ
(
SB′

1 z′
1 + SB′

2 g′
1

) − δ2hB′
1 RA′′

2

+ δhB′
1 (μB + hB′′

2 )

hB′′
1

(−CA′
1 + μAδCA′′

1 + δRA′′
1

)
(22)
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DB = −δ
(
SB′

1 z′
2 + SB′

2 g′
2

) − δ2hA′
2 RB′′

1

+ δhA′
2 (μA + hA′′

1 )

hA′′
2

(−CB′
1 + μBδCB′′

1 + δRB′′
2

)
. (23)

Note that (22) and (23) are generically non-zero so long as the players follow state-
contingent investment rules. Substitution in (21) shows that if the equilibrium was
efficient, it would necessarily imply the following condition:

F1D
A + DB + δ

(
F1F

′
2 + F ′

3

)
DA′ − δF ′′

2 (F1F
′
2 + F ′

3)

(F ′
1F

′′
2 + F ′′

3 )

(
F ′

1D
A′ + DB′) = 0. (24)

However, if DA �= 0 and DB �= 0, (24) will typically fail to hold.
The features of our model suggest that these inefficiencies would arise for most

allocation mechanisms. Nevertheless, some contracts might generate a smaller dead-
weight loss than others. We address this issue in Sect. 4, where we compute the
Markovian allocation equilibrium in a linear-quadratic example. It allows us to com-
pare the welfare properties of the different contractual arrangements.

4 A Linear-Quadratic Formulation

In this section, we consider a linear-quadratic formulation of the bilateral monopoly
game defined above. As expected, it yields a computationally tractable equilibrium
with linear strategies and a linear allocation function. We use numerical simulations
to explore how the contractual arrangements affect the size and the allocation of
joint surplus.

4.1 Payoffs

We believe that quadratic investment costs can adequately capture the observation
that marginal costs are often positively related to the magnitude of capacity adjust-
ments. In conjunction with the assumptions of linear final revenue and production
function, this specification delivers a computable equilibrium characterized by a lin-
ear allocation function and investment strategies.

Specifically, suppose that the investment costs incurred by firm A and firm B are
given by

CA(u) = ψA

2
u2, CB(v) = ψB

2
v2. (25)

Furthermore, assume a perfectly elastic demand for the final good, which translates
into a linear revenue function

R(x) = px. (26)
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The final assumption concerns the technology constraint. Suppose that it has the
form

xt+1 = a + byt+1 + dxt + eyt . (27)

That is, output is produced according to a linear production function.
The above structure motivates the conjecture that the equilibrium strategies are

linear in the state variables:

ut = αA + βA
1 xt + βA

2 yt (28)

vt = αB + βB
1 xt + βB

2 yt . (29)

Moreover, we guess a linear allocation function:

g(x, y) = η + θ1x + θ2y. (30)

These conjectures, together with (25) and (26), suggest that contracting over input
quantities would generate instantaneous payoffs

πA
t = pxt − (η + θ1xt + θ2yt )yt − ψA

2
u2

t ,

πB
t = (η + θ1xt + θ2yt )yt − ψB

2
v2
t ,

(31)

while contracting over final revenues would yield

πA
t = pxt − (η + θ1xt + θ2yt )pxt − ψA

2
u2

t ,

πB
t = (η + θ1xt + θ2yt )pxt − ψB

2
v2
t .

(32)

4.2 Existence

Non-negative input and output paths and an allocation profile {xt , yt , gt }∞t=0 consti-
tute an equilibrium if the investment strategies and the supporting allocation func-
tion satisfy the players’ necessary conditions (14), (15), as well as the technology
constraint (16). Furthermore, firms will engage in bilateral trade only if it is mutu-
ally beneficial. Hence, the equilibrium path must be such that

V A(xt , yt ) ≥ 0, V B(xt , yt ) ≥ 0, t = 0,1, . . .

Finally, we would like our solutions to be dynamically stable. This requirement
suggests that the eigenvalues of the capacity transition matrix

(
μA + βA

1 βA
2

βB
1 μB + βB

2

)
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should be inside the unit circle.
An equilibrium with these properties may not always exist in the above linear-

quadratic setting. The issue of non-existence is particularly serious when contracts
are based on final revenues. For some parameter values, the players’ problems may
not have interior solutions. For example, suppose that firm B’s investment is very
productive (i.e., b is high) or that it is rather durable (i.e., μB is high). Then the
linear technology constraint (27) might never be satisfied so long as the allocation
function features a positive θ2. On the other hand, a negative θ2 would imply that
the surplus share of the intermediate good producer, SB

t = (η + θ1xt + θ2yt )pxt ,
is decreasing in his capacity yt . But then firm B’s marginal return on investment is
negative, and so Euler equation (36) will not have a solution. Moreover, existence
of equilibrium requires concavity of the right hand sides of the private Bellman
equations, which may be lost for some parameter values (e.g., when the output price
p is low).

4.3 Simulations

4.3.1 Numerical Results

To compute the Markovian allocation equilibrium, we substitute the expressions for
payoffs (31), (32) and conjectures (28), (29), (30) in equations (14), (15) and (16).

• When firms contract over input quantities, the private Euler equation (14) and
(15) become

−ψAut + μAδut+1 + δ(p − θ1yt+1) − δ2βB
1 (η + θ1xt+2 + 2θ2yt+2)

− δ
(
μB + βB

2

)(−ut+1 + μAδut+2 + δ(p − θ1yt+2)
) = 0 (33)

and

−ψBvt + μBδψBvt+1 + δ(η + θ1xt+1 + 2θ2yt+1) + δ2βA
2 θ1yt+2

− δ
(
μA + βA

1

)(−ψBvt+1 + μBδψBvt+2 + δ(η + θ1xt+2 + 2θ2yt+2)
) = 0.

(34)

• If, instead, contracts are based on the final revenues, (14) and (15) are given by

−ψAut + μAδψAut+1 + δp(1 − η − 2θ1xt+1 − θ2yt+1) − δ2βB
1 θ2pxt+2

− δ
(
μB + βB

2

)

× (−ψAut+1 + μAδψAut+2 + δp(1 − η − 2θ1xt+2 − θ2yt+2)
)

= 0 (35)
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Table 1 The base case
parameter set Firm A Firm B Technology Other

μA = 0.8 μB = 0.5 a = 30, b = 0.35 p = 30

ψA = 0.4 ψB = 0.4 d = 0.2, e = −0.25 δ = 0.9

and

−ψBvt + μBδψBvt+1 + δθ2pxt+1 + δ2βA
2 p(η + 2θ1xt+2 + θ2yt+2)

− δ
(
μA + βA

1

)(−ψBvt+1 + μBδψBvt+2 + δθ2pxt+2
) = 0. (36)

• Under both arrangements, technological feasibility requires that the equilibrium
strategies satisfy the constraint (16) for all possible states:

μAxt +αA+βA
1 xt +βA

2 yt = a+b
(
μByt +αB +βB

1 xt +βB
2 yt

)+dxt +eyt . (37)

Applying the method of undetermined coefficients to (33)–(37) yields nine equa-
tions that pin down the nine unknown variables needed to fully describe the equilib-
rium in each of the two regimes. These variables are the MPE strategy parameters
αA, βA

1 , βA
2 and αB , βB

1 , βB
2 , as well as the parameters of the allocation function,

η, θ1, θ2.
We can now compute a baseline scenario with parameters as listed in Table 1.

Specifically, we assume a negative value of the parameter e in (27) to reflect in-
put congestion and capacity deterioration caused by previous heavy workloads; the
positive sign of d can be attributed to learning-by-doing effects.

The corresponding Markovian allocation equilibria are presented in Table 2 for
contracts based on input quantities, and in Table 3—for contracts based on final
revenues. The first rows in these tables show the results for our baseline scenario.
Then we vary one parameter at a time (denoted by bold font in the first column of
each table) and obtain the rest of the table entries.

Figure 1 and Fig. 2 depict the equilibrium transition paths for contracting over
input quantities and contracting over final revenues, respectively, as well as the effi-
cient input and output paths. Figure 3 illustrates the evolution of the terms of trade
under the two regimes. The initial conditions are set at y0 = 10, x0 = 10. Then Fig. 4
shows a number of transition paths for various values of y0 and x0. The input and
output paths each converge to an identical (technologically feasible) steady state, as
would be expected in a Markov perfect equilibrium.

4.3.2 Equilibrium Investment Strategies

Each player’s investment choice will reflect his direct and strategic considerations
regarding current and future profits. These considerations are influenced by the
terms of trade function, which is constructed so that the technology constraint holds
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Table 2 Contracting over input quantities. The table shows the equilibrium strategies and allo-
cation function, the steady-state output and input quantities, total surplus, value of the allocation
function and the surplus share of firm B

Strategy of
firm A

Strategy of
firm B

Allocation
function

Steady
state

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 45.86
βA

1 = −0.541
βA

2 = −0.110

αB = 45.30
βB

1 = 0.167
βB

2 = −0.010

η = −0.775
θ1 = 0.008
θ2 = 0.009

x̂ = 48.63
ŷ = 89.06
ŵ = 1043
ĝ = 0.448
ŝB = 24.6 %

μA = 0.8, μB = 0.55
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 39.04
βA

1 = −0.565
βA

2 = −0.074

αB = 25.83
βB

1 = 0.101
βB

2 = −0.048

η = −554
θ1 = 0.012
θ2 = 0.006

x̂ = 45.12
ŷ = 60.93
ŵ = 1187
ĝ = 0.364
ŝB = 28.8 %

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.45
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 42.43
βA

1 = −0.551
βA

2 = −0.103

αB = 35.40
βB

1 = 0.139
βB

2 = −0.081

η = −0.666
θ1 = 0.010
θ2 = 0.009

x̂ = 46.52
ŷ = 72.20
ŵ = 1085
ĝ = 0.426
ŝB = 27.8 %

μA = 0.85, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 48.85
βA

1 = −0.585
βA

2 = −0.114

αB = 53.85
βB

1 = 0.185
βB

2 = −0.112

η = −1.007
θ1 = 0.008
θ2 = 0.010

x̂ = 50.40
ŷ = 103.23
ŵ = 968
ĝ = 0.431
ŝB = 12.2 %

μA = 0.8, μB = 0.5
ψA = 0.42, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 48.42
βA

1 = −0.536
βA

2 = −0.113

αB = 52.62
βB

1 = 0.181
βB

2 = −0.110

η = −0.969
θ1 = 0.008
θ2 = 0.010

x̂ = 50.15
ŷ = 101.22
ŵ = 971
ĝ = 0.427
ŝB = 13.4 %

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 35, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 43.97
βA

1 = −0.542
βA

2 = −0.110

αB = 39.92
βB

1 = 0.167
βB

2 = −0.010

η = −0.429
θ1 = 0.007
θ2 = 0.008

x̂ = 47.47
ŷ = 79.77
ŵ = 1325
ĝ = 0.538
ŝB = 43.4 %

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.32
d = 0.2, e = −0.25

αA = 50.53
βA

1 = −0.530
βA

2 = −0.141

αB = 64.17
βB

1 = 0.218
βB

2 = −0.159

η = −1.053
θ1 = 0.005
θ2 = 0.012

x̂ = 47.39
ŷ = 113.04
ŵ = 764
ĝ = 0.540
ŝB = 16.8 %

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 25, b = 0.35
d = 0.2, e = −0.25

αA = 36.33
βA

1 = −0.542
βA

2 = −0.110

αB = 32.37
βB

1 = 0.167
βB

2 = −0.010

η = −0.371
θ1 = 0.008
θ2 = 0.009

x̂ = 39.37
ŷ = 64.92
ŵ = 957
ĝ = 0.553
ŝB = 46.2 %
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Table 3 Contracting over final revenue shares. The table shows the equilibrium strategies, alloca-
tion function and the steady-state output and input quantities, total surplus, value of the allocation
function and the surplus share of firm B

Strategy of
firm A

Strategy of
firm B

Allocation
function

Steady
state

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 39.52
βA

1 = −0.500
βA

2 = −0.178

αB = 27.21
βB

1 = 0.286
βB

2 = −0.293

η = −7.41
θ1 = 0.504
θ2 = −0.032

x̂ = 43.76
ŷ = 50.04
ŵ = 1172
ĝ = 13.07
ŝB = 45.1 %

μA = 0.8, μB = 0.55
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 39.04
βA

1 = −0.506
βA

2 = −0.182

αB = 25.82
βB

1 = 0.268
βB

2 = −0.357

η = −7.88
θ1 = 0.558
θ2 = −0.063

x̂ = 43.30
ŷ = 46.36
ŵ = 1197
ĝ = 13.35
ŝB = 44.4 %

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.45
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 38.74
βA

1 = −0.508
βA

2 = −0.183

αB = 24.97
βB

1 = 0.262
βB

2 = −0.210

η = −8.14
θ1 = 0.570
θ2 = −0.052

x̂ = 43.10
ŷ = 44.82
ŵ = 1165
ĝ = 14.08
ŝB = 44.4 %

μA = 0.85, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 39.20
βA

1 = −0.545
βA

2 = −0.176

αB = 26.28
βB

1 = 0.300
βB

2 = −0.288

η = −8.17
θ1 = 0.507
θ2 = −0.025

x̂ = 43.75
ŷ = 50.00
ŵ = 1179
ĝ = 12.76
ŝB = 43.5 %

μA = 0.8, μB = 0.5
ψA = 0.42, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 39.19
βA

1 = −0.497
βA

2 = −0.175

αB = 26.25
βB

1 = 0.296
βB

2 = −0.286

η = −8.04
θ1 = 0.503
θ2 = −0.026

x̂ = 43.73
ŷ = 49.82
ŵ = 1172
ĝ = 12.66
ŝB = 43.3 %

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 35, δ = 0.95
a = 30, b = 0.35
d = 0.2, e = −0.25

αA = 41.79
βA

1 = −0.500
βA

2 = −0.178

αB = 33.69
βB

1 = 0.286
βB

2 = −0.293

η = −5.45
θ1 = 0.504
θ2 = −0.032

x̂ = 44.83
ŷ = 58.61
ŵ = 1381
ĝ = 15.30
ŝB = 52.5 %

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 30, b = 0.32
d = 0.2, e = −0.25

αA = 38.70
βA

1 = −0.507
βA

2 = −0.182

αB = 27.18
βB

1 = 0.292
βB

2 = −0.287

η = −7.58
θ1 = 0.502
θ2 = −0.019

x̂ = 41.88
ŷ = 50.06
ŵ = 1117
ĝ = 12.50
ŝB = 44.8 %

μA = 0.8, μB = 0.5
ψA = 0.4, ψB = 0.4
p = 30, δ = 0.95
a = 25, b = 0.35
d = 0.2, e = −0.25

αA = 35.20
βA

1 = −0.500
βA

2 = −0.178

αB = 29.15
βB

1 = 0.286
βB

2 = −0.293

η = −4.21
θ1 = 0.504
θ2 = −0.032

x̂ = 37.53
ŷ = 50.26
ŵ = 988
ĝ = 13.13
ŝB = 54.0 %
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Fig. 1 Contracting over input quantities (a output paths, b input paths). Panel a illustrates the
equilibrium and efficient output paths. Panel b illustrates the equilibrium and efficient input paths.
The calculations are based on parameters p = 30, δ = 0.95, ψA = 0.4, ψB = 0.4, μA = 0.8,
μB = 0.5, a = 20, b = 0.35, d = 0.2, e = −0.25 and initial conditions x0 = y0 = 10

Fig. 2 Contracting over final revenue shares (a output paths, b input paths). Panel a illustrates the
equilibrium and efficient output paths. Panel b illustrates the equilibrium and efficient input paths.
The calculations are based on parameters p = 30, δ = 0.95, ψA = 0.4, ψB = 0.4, μA = 0.8,
μB = 0.5, a = 20, b = 0.35, d = 0.2, e = −0.25 and initial conditions x0 = y0 = 10

for any (xt , yt ). We focus on strategies that are linear in the state variables.7 Specif-
ically, they are defined by (28) and (29). The strategy parameters βA

1 , βB
2 , βA

2 , βB
1

capture the effect of the observed output and input capacities xt , yt on the players’
investment decisions. As Table 2 and Table 3 show, all numerical examples studied
here yield βA

1 < 0, βB
2 < 0 and βA

2 < 0, βB
1 > 0. We contend that the signs of these

parameters are in line with economic intuition. Our reasoning is explained below.

7As noted earlier, such equilibria may not always exist. Also, there could be equilibria involving
non-linear strategies, see e.g. Haurie et al. (2012).
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Fig. 3 Equilibrium terms of trade (a contracting over input quantities, b contracting over final
revenue). Panel a shows the evolution of the equilibrium allocation function with contracting over
input quantities. Panel b shows the evolution of the equilibrium allocation function with contract-
ing over final revenues. The calculations are based on parameters p = 30, δ = 0.95, ψA = 0.4,
ψB = 0.4, μA = 0.8, μB = 0.5, a = 30, b = 0.35, d = 0.2, e = −0.25 and initial conditions
x0 = y0 = 10

Fig. 4 Equilibrium paths under alternative initial conditions (a contracting over input quanti-
ties, b contracting over final revenue). Panel a shows the equilibrium input and output paths with
contracting over input quantities. Panel b shows the equilibrium input and output paths with con-
tracting over final revenues. The calculations are based on parameters p = 30, δ = 0.95, ψA = 0.4,
ψB = 0.4, μA = 0.8, μB = 0.5, a = 30, b = 0.35, d = 0.2, e = −0.25. The respective initial con-
ditions are x0 = y0 = 0, x0 = y0 = 25 and x0 = y0 = 50

• The simulations yield allocation function parameters θ1 and θ2 whose signs sug-
gest that marginal payoffs are constant or decreasing in the players’ own capac-
ities. However, (25) gives rise to increasing marginal costs of investment. Thus,
cost considerations will motivate each firm to cut down on investment if its ca-
pacity has gone up, implying that βA

1 < 0, βB
2 < 0.
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• To satisfy the technology constraint (27) for the assumed values of a, b, d and
e, we need to have βA

2 < 0 and βB
1 > 0. That is, the investment of firm A should

be decreasing in the capacity of the intermediate good producer, while the invest-
ment of firm B should be increasing in the capacity of the final good producer.
Note that the allocation function (30) must ensure that it is in the players’ self
interest to behave accordingly. The resulting implications for the parameters θ1

and θ2 are discussed in the next subsection.

To assess the efficiency of the contractual arrangements, it may be useful to com-
pare the equilibrium input and output paths to the plans that maximize joint surplus.
As shown in Fig. 1 and Fig. 2, both types of contracting will lead to overinvestment
relative to the efficient levels in our baseline scenario. However, for other parameter
values (e.g., a high b) the equilibrium might involve underinvestment. Whether MPE
capacities will exceed or fall short of their efficient levels will depend on the incen-
tives provided by the revenue sharing arrangements. In general, if an incremental
change in investment increases a player’s private continuation payoff by more than
the future joint surplus, then the equilibrium behavior of this player will involve
overinvestment.

4.3.3 Equilibrium Allocation Function

Given a linear allocation function (30), the firms’ ability to affect the future terms of
trade will depend on θ1 and θ2. The signs of these parameters determine whether the
capacities of the intermediate good producer and the final good producer are strate-
gic complements or substitutes. As already established, the technology constraints
in our examples are consistent with linear feedback strategies (28) and (29) whose
parameters satisfy βA

2 < 0 and βB
1 > 0. Therefore, we would expect to obtain an

allocation function such that: (i) firm A’s marginal return on investment is decreas-
ing in firm B’s output (i.e., ∂2πA

t /∂xt∂yt < 0), and (ii) firm B’s marginal return on
investment is increasing in firm A’s output (i.e., ∂2πB

t /∂xt∂yt > 0).

• If the parties contract over input quantities, these complementarity requirements
would imply that θ1 > 0 and θ2 < 0. That is, the input price should be decreasing
in the capacity of the input producer and increasing in the capacity of the final
good producer. This appears to be consistent with the standard laws of supply
and demand. The numerical results shown in Table 2 confirm this intuition.

• If, on the other hand, contracts are based on final revenues, these complementar-
ity requirements would amount to θ1 > 0 and θ2 > 0. In other words, firm B’s
revenue share should be increasing in both production capacities. This intuition
is supported by the results in Table 3.

The transitional dynamics of the terms of trade are illustrated in Fig. 3.



Capacity Accumulation Games with Technology Constraints 181

4.3.4 Equilibrium Surplus Allocation

The numerical examples also shed light on the factors that influence the distribution
of surplus in bilateral trade. Tables 2 and 3 illustrate the allocative properties of the
Markov perfect equilibrium by providing information about the steady-state surplus
share of the input producer, sB

t = πB
t /(πA

t + πB
t ).

The simulations suggest that the choice of a contractible variable z plays an
important role in payoff allocation. A comparison between the two arrangements
shows that the firm which chooses the value of the contractible variable usually at-
tains a higher surplus share. In particular, contracting over input quantities tends to
benefit the input producer (high steady-state surplus share ŝB ), while contracting
over final revenue is more favorable for the final good producer (low steady-state
surplus share ŝB ). This result is consistent with the observation that in real-world
interactions control is often advantageous.

4.3.5 Contract Efficiency

The linear-quadratic formulation also enables us to compare the efficiency of the two
regimes as measured by the joint surplus wt generated by the bilateral exchange.
The numerical examples underscore the importance of design and procedure for
economic efficiency.

Interestingly, Table 2 and Table 3 show that, in all of the cases studied here, con-
tracting over input quantities yields a higher steady-state joint surplus ŵ relative to
contracting over final revenue. For some parameter values those welfare differences
are rather significant. A brief inspection of Fig. 1 and Fig. 2 shows that contracting
over input quantities generates transition paths that are much closer to their effi-
ciency counterparts. On the other hand, contracts based on final revenues seem to
cause substantial distortions in the input supply decisions of firm B.

We can use condition (21) to compute the welfare generated by the efficient in-
put and output paths, and compare it to the joint surplus arising in the Markovian
allocation equilibrium. Our numerical example shows that contracting over input
quantities gives rise to a small deadweight loss: in our baseline scenario, steady-
state welfare is only 0.8 % lower than the efficient level. The corresponding number
for contracting over final revenues is 11.7 %.

A comparison between Figs. 1 and 2 suggests a possible explanation for this re-
sult. While both arrangements cause the intermediate good producer to overinvest
in our numerical examples, this problem is exacerbated when contracts are based on
final revenues. The smaller deviations from surplus maximization observed in Fig. 1
are likely due to the effect of firm B’s investment on the future value of the alloca-
tion function (30). As we already established, contracts based on input quantities
yield θ2 < 0. Thus, an increase in investment of the intermediate good producer will
worsen his future terms of trade. As a result, his incentives to boost input capacity
will be mitigated. On the other hand, when contracts are based on final revenues, we
have θ2 > 0. Therefore, an increase in investment will now improve firm B’s future
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terms of trade. This suggests that the intermediate good producer will overinvest
more relative to the other regime, adversely affecting overall efficiency.

5 Concluding Remarks

This chapter offers a novel perspective on contract design and firm conduct in dy-
namic environments where the production process necessitates bilateral exchange.
The analysis illuminates the factors that govern surplus allocation within bilateral
monopolies and explores the efficiency of different contractual arrangements.

Our model incorporates dynamic capacity constraints, where technological inter-
dependence causes firms to engage in trade. Two types of surplus allocation proce-
dures are considered: (i) contracting based on input quantities; and (ii) contracting
based on final revenues. Furthermore, we impose a Markovian restriction on con-
tracts and strategies. The benefit of this approach is twofold:

• it explicitly accounts for the strategic motives driving the firms’ investment deci-
sions;

• it enables us to determine the prevailing terms of trade implied by profit maxi-
mization, technological constraints and the surplus allocation mechanism.

Using dynamic programming, we derive necessary conditions for the equilib-
rium investment strategies that are consistent with the production technology. We
argue that strategic concerns will typically prevent the firms from attaining joint
surplus maximization. The adoption of a linear-quadratic payoff formulation allows
us to characterize numerically the equilibrium investment decisions and the terms
of trade. We find that surplus allocation arrangements based on input quantities are
more efficient, but tend to benefit the input producer. This helps explain why “domi-
nant” suppliers like Gazprom may want to entice their partners to sign contracts that
are tied to input quantities.

Acknowledgements We are grateful to an anonymous referee for an insightful report and im-
provement requests that have assisted us in clarifying and, hopefully, sharpening our message.

Appendix A: Markov Allocation Equilibrium Conditions of the
Bilateral Monopoly Game

This appendix derives the necessary conditions that characterize the Markov equi-
librium of the bilateral monopoly game.

A.1 Euler Equation of the Final Good Producer

First consider the problem of firm A. Differentiating Bellman equation (9) yields
the first-order condition:
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V A′
1 = CA

1

δ
. (38)

By assumption the equilibrium strategies of firm A and firm B are respectively
f A(x, y) and f B(x, y). Therefore, these strategy functions satisfy the recursive
equation

V A(xt , yt ) = R(xt ) − SB
(
z(xt , yt ), g(xt , yt )

) − CA
(
f A(xt , yt )

)

+ δV A
(
μAxt + f A(xt , yt ),μ

Byt + f B(xt , yt )
)
. (39)

Differentiating with respect to xt gives us

V A
1 = R1 − SB

1 z1 − SB
2 g1 − CA

1 f A
1

+ δ
(
μA + f A

1

)
V A′

1 + δf B
1 V A′

2 . (40)

Substituting V A
1 (x, y) from the first-order condition into (40) forwarded one period

yields an equation for V A
2 (x, y):

V A′′
2 = − 1

δf B′
1

{
R′

1 − SB′
1 z′

1 − SB′
2 g′

1 − CA
1

δ
+ μACA′

1

}
. (41)

Furthermore, differentiating (39) with respect yt−1 delivers

V A
2 = R1 − SB

1 z2 − SB
2 g2 − CA

1 f A
2

+ δf A
2 V A′

1 + δ
(
μB + f B

2

)
V A′

2 . (42)

Substituting V A
1 (x, y) from (38) and V A

2 (x, y) from (41) into (42) yields (14).

A.2 Euler Equation of the Intermediate Good Producer

Now consider the decision problem of firm B. Bellman equation (10) implies that
the optimal strategy solves the first-order condition

V B′
2 = CB

1

δ
. (43)

Furthermore, by assumption the optimal strategies of firm A and firm B are re-
spectively f A(x, y) and f B(x, y). Therefore, these strategy functions satisfy the
recursive equation

V B(xt , yt ) = SB
(
z(xt , yt ), g(xt , yt )

) − CB
(
f B(xt , yt )

)

+ δV B
(
μAxt + f A(xt , yt ),μ

Byt + f B(xt , yt )
)
. (44)
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Differentiating (44) with respect to yt yields

V B
2 = SB

1 z2 + SB
2 g2 − f B

2 CB
1 + δf A

2 V B′
1 + δ

(
μB + f B

2

)
V B′

2 . (45)

Substituting V B
2 from the first-order condition and solving for V B

1 we get

V B′′
1 = − 1

δf A′
2

{
SB′

1 z′
2 + SB′

2 g′
2 − CB

1

δ
+ μBCB′

1

}
. (46)

Similarly, differentiating (44) with respect to xt gives us

V B
1 = SB

1 z1 + SB
2 g1 − f B

1 CB
1 + δ

(
μA + f A

1

)
V B′

1 + δf B
1 V B′

2 . (47)

After substitution of (43) and (46) into (47) we obtain (15).

Appendix B: Dynamically Efficient Investment

This appendix derives the necessary condition for joint surplus maximization.
Bellman equation (20) yields the first-order condition

−F1C
A
1 − CB

1 + δF1W
′
1 + W ′

2 = 0. (48)

Differentiation with respect to x gives us the envelope condition

W1 = R1 − (
F2 − μA

)
CA

1 + δF2W
′
1. (49)

Furthermore, differentiation with respect to y gives us the envelope condition

W2 = −(
μBF1 + F3

)
CA

1 + δ
(
μBF1 + F3

)
W ′

1 + δμBW ′
2. (50)

Multiplying (49) by F1 and adding it to (50) yields

F1W
′
1 + W ′

2 = F1C
A
1 − CB

1

= δF1R
′
1 − δF1

(
F2 − μA

)
CA′

1 − (
μBF ′

1 + F ′
3

)
CA′

1

+ δ2μB
(
F ′

1W
′′
1 + W ′′

2

) + δ2(F1F
′
2 + F ′

3

)
W ′′

1 . (51)

Substituting F ′
1W

′′
1 + W ′′

2 from the first-order condition into (51) gives us an equa-
tion for W1:

W ′′
1 = 1

δ2(F1F
′
2 + F ′

3)

{
F1C

A
1 − CB

1 − δF1R
′
1

+ δF1
(
F ′

2 − μA
)
C′A

1 + F ′
3C

A′
1 − δμBCB′

1

}
. (52)

Finally, substituting (52) into (49) delivers Euler equation (21).
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