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Abstract Cooperative advertising is an important mechanism used by manufac-
turers to influence retailers’ promotional decisions. In a typical arrangement, the
manufacturer agrees to reimburse a fraction of a retailer’s advertising cost, known
as the subsidy rate. We consider a case of new product adoption of a durable good
with retail oligopoly, in which a manufacturer sells through a number of indepen-
dent and competing retailers. We model the problem as a Stackelberg differential
game with the manufacturer as the leader and the retailers as followers. The man-
ufacturer announces his subsidy rates for the retailers, and the retailers in response
play a Nash differential game to increase their cumulative sales and choose their
optimal advertising efforts. We obtain feedback Stackelberg strategies consisting of
manufacturer’s subsidy rates and retailers’ optimal advertising efforts. We obtain
the conditions under which it is optimal for the manufacturer to not offer any adver-
tising subsidy and study the role of retail competition on the manufacturer’s subsidy
rates decisions. For a special case of two retailers, using a linear demand formula-
tion, we present managerial insights on issues such as: dependence of subsidy rates
on key model parameters, impact on channel profits and channel coordination, and
finally, a case of an anti-discrimination legislation which restricts the manufacturer
to offer equal subsidy rates to the two retailers.

1 Introduction

Firms spend huge sums of money in advertising, particularly in competitive markets.
For some product categories, a firm’s market performance and competitiveness over
its competitor relies heavily upon its advertising and promotional strategy. Quite
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often, the responsibility of local advertising lies with the retailers as they usually
have much better knowledge about customers and local advertising channels such
as TV stations, local newspapers, radio stations, etc. Since advertising can be quite
expensive, a retailer might not advertise to the extent desired by the manufacturer,
whose product the retailer is selling. In such a case, the manufacturer may consider
providing some incentive to the retailer to advertise more. An important incentive
comes in the form of cooperative advertising, an important and commonly used ar-
rangement in which the manufacturer agrees to reimburse a fraction of the retailer’s
advertising expenditures in selling his product (Bergen and John 1997). This frac-
tion is commonly known as the ‘subsidy rate.’

Cooperative advertising is a fast growing activity amounting to billions of dollars
a year, and it can be a significant portion of the advertising budgets of a manufac-
turer. Nagler (2006) found that the total expenditure on cooperative advertising in
2000 was estimated at $15 billion, compared with $900 million in 1970. Recent
estimates put a figure of more than $25 billion for 2007. According to Dant and
Berger (1996), as many as 25–40 % of local advertisements and promotions are co-
operatively funded. In addition, Dutta et al. (1995) reported that the subsidy rates
differ from industry to industry: it was 88.38 % for consumer convenience products,
69.85 % for other consumer products, and 69.29 % for industrial products.

Many researchers in the past have used static models to study cooperative adver-
tising. Berger (1972) modeled cooperative advertising in the form of a wholesale
price discount offered by a manufacturer to his retailer as an advertising allowance.
He concluded that both the manufacturer and the retailer can do better with cooper-
ative advertising. Dant and Berger (1996) extended the Berger model to incorporate
demand uncertainty. Kali (1998) studied cooperative advertising from the perspec-
tive of coordinating a manufacturer-retailer channel. Huang et al. (2002) allowed
for advertising by a manufacturer in addition to cooperative advertising. They also
justified their static model by making a case for short-term effects of promotion.

Jørgensen et al. (2000) formulated a dynamic model with cooperative advertis-
ing as a Stackelberg differential game between a manufacturer and his retailer with
the manufacturer as the leader. They considered short term as well as long term
forms of advertising efforts made by the retailer as well as the manufacturer. They
showed that the manufacturer’s support of both types of retail advertising benefits
both channel members more than the support of only one type, and support of one
type is better than no support at all. Jørgensen et al. (2001) modified the above model
by introducing decreasing marginal returns to goodwill and studied two scenarios:
a Nash game without advertising support and a Stackelberg game with support from
the manufacturer as the leader. They characterized stationary feedback policies in
both cases. Jørgensen et al. (2003) explored the possibility of advertising coopera-
tion even when the retailer’s promotional efforts may erode the brand image. Karray
and Zaccour (2005) extended the above model to consider both the manufacturer’s
national advertising and the retailer’s local promotional effort. All of these papers
use the Nerlove–Arrow (1962) model, in which goodwill increases linearly in adver-
tising and decreases linearly in goodwill, and there is no interaction term between
the sales and the advertising effort in the dynamics of sales. He et al. (2009) solved
a manufacturer-retailer Stackelberg differential game with cooperative advertising
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using the Sethi (1983) model. He et al. (2011) considered a cooperative advertising
channel consisting of a manufacturer selling its product through two retailers. In
their study, they used a Lanchester-style extension of the Sethi model, in which the
two competitors split the total market.

In this chapter, we study cooperative advertising in the case of durable goods.
A durable good can be defined as a commodity which, once purchased by the con-
sumer, does not need to be repurchased for a lengthy period of time. Examples of
durable goods include cars, TV’s, microwave ovens, washing machines, etc. The
market potential of such items depletes with time as cumulative sales increase and,
eventually, saturation is reached. The advertising decisions for such products can be
crucial, particularly in the early stages of their diffusion in the market. The mod-
eling of durable goods sales dynamics is important in economics and management
science. Many researchers in the past have studied the sales-advertising dynamics to
study new product adoption for durable goods. Mahajan et al. (1990) review some
of these models. A well known example of such a model is the Bass (1969) model
of innovation diffusion, given by

Ẋ(t) = a
(
1 − X(t)

) + bX(t)
(
1 − X(t)

)
, (1)

where X(t) is the cumulative sales by time t , and a and b are positive constants.
Many researchers have extended this model by highlighting the dependence of these
constants on pricing and advertising policies. Feichtinger et al. (1994) reviewed
such models. From the point of view of our research, we use the following model
developed recently by Sethi et al. (2008):

Ẋ(t) = ρu(t)D
(
p(t)

)√
1 − X(t), X(0) = X0 ∈ [0,1], (2)

where X(t) is the cumulative sales by time t with the total market potential
normalized to one, D(p(t)) is the demand as a function of price p(t) with
∂D(p(t))/∂p(t) < 0, u(t) is the advertising effort rate at time t , and ρ is the ef-
fectiveness of advertising. Krishnamoorthy et al. (2010) presented its duopolistic
extension in which the sales-dynamics is given by

Ẋi(t) = ρiui(t)Di

(
pi(t)

)√
1 − X1(t) − X2(t), Xi(0) = Xi0 ∈ [0,1], i = 1,2,

(3)

where the subscript i refers to firm i, i = 1,2.
We study a dynamic cooperative advertising model for a retail market oligopoly

of a durable product. We use an oligopolistic extension of (3), specified in the next
section as our sales dynamics. The manufacturer sells his product through n inde-
pendent and competing retailers and may choose to share their advertising costs. We
model the problem as a Stackelberg differential game in which the manufacturer, as
the leader announces his subsidy rates for the n retailers, and the retailers, acting
as followers, respond by choosing their respective advertising efforts. The retailers,
thus compete among themselves to increase their cumulative sales and play a Nash
differential game to find their optimal advertising efforts.
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To the best of our knowledge, with the exception of Chutani and Sethi (2012a),
there has not been much work addressing the issue of manufacturer’s promotional
support decisions for a dynamic market of durable goods. Chutani and Sethi (2012a)
studied optimal pricing and advertising decisions for a retailer duopoly of durable
goods. They considered the wholesale and retail prices, the retailers’ advertising
efforts, and the manufacturer’s subsidy rates to the retailers’ advertising efforts as
decision variables. They found that for a linear demand formulation, the manufac-
turer’s optimal subsidy rates are constant and independent of the model parameters.
In this chapter, we study an oligopoly of n retailers with only the retailers’ advertis-
ing efforts and the manufacturer’s subsidy rates to those efforts as decision variables.
By keeping the wholesale and retail prices as exogenously given, we can focus only
on the advertising decisions. This allows us to obtain important managerial insights
on such key issues as dependence of subsidy rates on various model parameters,
threshold conditions for non-zero subsidy rates, channel coordination with optimal
subsidy rates, and the impact of an anti-discrimination legislation when applied to
subsidy rates.

In comparison to Chutani and Sethi (2012b) who also study cooperative advertis-
ing in a retailer oligopoly setting for a perishable goods market, we focus on durable
goods such as refrigerators and vacuum cleaners. In our paper, the state variable is
cumulative sales to account for the fact that those who have already purchased the
good are no longer in the market, and its derivative, namely the sales rate, enters into
the objective function. On the other hand, with frequently purchased goods such as
soft drinks and soaps, the customers do not exit the market after their purchases,
although they may switch to other brands for their future purchases. Thus in the
perishable goods setting, the state is the rate of sales, expressed often times as a
fraction of the market potential. It is this sales rate that enters directly into the ob-
jective function and makes the model of Chutani and Sethi (2012b) quite different
from the model discussed in this chapter. There is another difference between the
two models, i.e., the absence of the decay term in (3). This is due to the fact that
the cumulative sales, which have already taken place, do not decay. In the perishable
goods case, on the other hand, the decay term is ascribed to the effect of factors such
as competition, product obsolescence, forgetting, etc., on the change in the rate of
sales.

Thus, we make contributions to the existing literature in areas of cooperative
advertising, durable goods sales-advertising dynamics, and supply chain coordina-
tion by answering the following key research questions. First, what are the optimal
subsidy rates of the manufacturer and the optimal advertising responses by the re-
tailers in feedback form for a durable goods retail oligopoly? Second, is cooperative
advertising always optimal for the manufacturer, or are there cases under which it
is optimal for the manufacturer not to offer any subsidy to the retailers? Moreover,
whenever possible, we find a threshold condition, based on model parameters, which
delineates the cases under which no subsidy is optimal for the manufacturer. Third,
what role does retail level competition play on the subsidy rate policies? Fourth,
how do subsidy rates depend on various model parameters? Fifth, what is the im-
pact of a coop advertising program on the profits of all the members in the channel?
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How does the channel profit with coop program compare to that without coop ad-
vertising, and to the integrated channel profit? Can coop advertising lead to better
channel coordination? Finally, sixth, what are the effects of an anti-discrimination
legislation that restricts the manufacturer to offer equal subsidy rates to his retail-
ers. How does it impact the optimal subsidy rates, profits of all the members in the
channel, and the total channel profit?

The rest of the chapter is organized as follows. In Sect. 2 we describe the model
in detail, followed by some preliminary results in Sect. 3. In Sect. 4, we consider a
special case of identical retailers and obtain some explicit analytical results along
with some useful insights. In Sect. 5, we study a special case of two competing
retailers. We perform numerical analysis in a general case and examine the effect
of various model parameters on the optimal subsidy rates in the special case of
linear demand. In the same section, we discuss the issue of channel coordination
with cooperative advertising. In this special case of two retailers, we discuss an
extension in which the manufacturer is required to offer equal subsidy rates, if any,
to both the retailers. We also study the impact of such an anti-discriminatory act on
the profits of all the channel members and on the performance of the channel as a
whole. Finally, we conclude the chapter and summarize our findings in Sect. 6.

2 The Model

We consider a model in which a manufacturer sells his product through n indepen-
dent and competing retailers, labeled 1,2, . . . , n. The manufacturer may subsidize
the advertising expenditures of the retailers. The subsidy, expressed as a fraction of
a retailer’s total advertising expenditure, is referred to as the manufacturer’s subsidy
rate to that retailer. We now introduce key notation used in the chapter:

t Time t ∈ [0,∞),
i Indicates retailer i, i = 1,2, . . . , n, when used as a subscript,
Xi(t) ∈ [0,1] Cumulative normalized sales of retailer i,
X̄(t) = ∑N

j=1 Xi(t) Total cumulative sales combined over n retailers,
X(t) ≡ (X1(t),X2(t), . . . ,Xn(t)) Cumulative sales vector of n retailers at time t ,
ui(t) Retailer i’s advertising effort rate at time t ,
wi Wholesale price for retailer i,
pi Retail price of retailer i,
pi − wi = mi Margin of retailer i,
θi(t) ≥ 0 Manufacturer’s subsidy rate for retailer i at time t ,
Θ(X(t)) ≡ (θ1(X(t)), . . . , θn(X(t))) Subsidy rate vector in feedback form at
time t ,

Di Demand of goods sold by retailer i, Di ≥ 0,
ρi > 0 Advertising effectiveness parameter of retailer i,
r > 0 Discount rate of the manufacturer and the retailers,
Vi , Vm Value functions of retailer i and of the manufacturer, respectively,
V I Value function of the integrated channel.
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Fig. 1 Sequence of events

Without any loss of generality, we assume that the manufacturing cost of the product
is zero. Thus, the margin for the manufacturer from retailer i is equal to the whole-
sale price wi . Furthermore, we use the standard notations, i.e., ViXj

= ∂Vi/∂Xj ,
i = 1,2, . . . , n, j = 1,2, . . . , n, and VmXi

= ∂Vm/∂Xi and VXi
= ∂V/∂Xi , i =

1,2, . . . , n. For simplicity, X(t) and Θ(X(t)) are also referred to as X, and Θ(X),
respectively

We normalize the total market potential to be one and the cumulative normalized
sales of the retailer i, at time t to be denoted by Xi(t), i = 1,2, . . . , n. The rate of
change of cumulative units sold, which is the instantaneous rate of sales, is denoted
by Ẋi(t), and is given by

Ẋi(t) = dXi(t)

dt
= ρiui(t)Di

√
1 − X̄(t), Xi(0) = Xi ∈ [0,1], i = 1,2, . . . , n,

(4)

where X̄(t) = ∑n
j=1 Xj(t) is the cumulative sales of the manufacturer at time t ,

ui(t) is the retailer i’s advertising effort at time t , ρi is the effectiveness of firm i’s
advertising, and Di is the demand of retailer i. The state of the system is denoted
by the cumulative sales vector, i.e., X(t) ≡ {Xi(t)} = (X1(t),X2(t), . . . ,Xn(t)).
The sequence of events is shown in Fig. 1. The manufacturer as the Stackelberg
leader announces the subsidy rate θi(t) for retailer i, i = 1,2, . . . , n, at time t . The
retailers, acting as followers respond by choosing their respective advertising efforts
ui(t), i = 1,2, . . . , n, by playing a Nash differential game to increase their sales.

For a solution of our game, we adopt the concept of a feedback Stackelberg equi-
librium (see, e.g., Başar and Olsder 1999, and Bensoussan et al. 2014). This type of
equilibrium is subgame perfect as well as strongly time-consistent (see Başar and
Olsder 1999). Accordingly, the manufacturer’s subsidy rates policy, denoted by its
subsidy rate vector Θ(X) ≡ (θ1(X), θ2(X), . . . , θn(X)), is expressed as a function
of the cumulative sales vector X ≡ (X1,X2, . . . ,Xn). Thus, the subsidy rates at
time t ≥ 0 are θi(X(t)), i = 1,2, . . . , n. The retailers in response choose their opti-
mal advertising efforts by solving their respective optimization problems. The cost
of advertising is quadratic in the advertising effort, representing a marginal dimin-
ishing effect of advertising. The use of such quadratic cost function is common in
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the literature. Retailer i’s optimal control problem is to maximize the present value
of his profit stream over the infinite horizon, i.e.,

Vi(X) = max
ui(t)≥0,t≥0

∫ ∞

0
e−rt

(
(pi − wi)Ẋi(t)

− (
1 − θi

(
X(t)

))
u2

i (t)
)
dt, i = 1,2, . . . , n, (5)

subject to (4), where pi − wi = mi equals the margin of retailer i and Vi(X) is
referred to as the value function of retailer i. The vector X = (X1,X2, . . . ,Xn) is
the vector of initial conditions such that Xi ≥ 0, ∀i = 1,2, . . . , n and

∑n
i=1 Xi ≤ 1.

The solution to the Nash differential game defined by (4)–(5) gives retailer i’s feed-
back advertising effort ui(X(t)), i = 1,2, . . . , n, which, with a slight abuse of nota-
tion, can be written as ui(X1,X2, . . . ,Xn | θ1(X1,X2, . . . ,Xn), . . . , θn(X1,X2, . . . ,

Xn)) ≡ ui(X | θ(X)), i = 1,2, . . . , n.
The manufacturer anticipates the retailers’ optimal responses and incorporates

them into his optimization problem, which is a stationary infinite horizon optimal
control problem:

Vm(X) = max
0≤θi (t)≤1

i=1,2,...,n,t≥0

∫ ∞

0
e−rt

n∑

j=1

[
wjẊj (t)

− θj (t)
[
uj

(
X(t) | θ1(t), . . . , θn(t)

)]2]
dt, (6)

subject to for i = 1,2, . . . , n

Ẋi(t) = ρiui

(
X(t) | θ1(t), . . . , θN(t)

)
Di

√
1 − X̄, Xi(0) = Xi ∈ [0,1]. (7)

The solution to the optimal control problem (6)–(7) gives the optimal subsidy policy
in feedback form, which is expressed as θ∗

i (X1,X2, . . . ,Xn) ≡ θ∗
i (X). We can also

write retailer i’s feedback advertising policy, with a slight abuse of notation, as
u∗

i (X) ≡ u∗
i (X | θ∗

1 (X), . . . , θ∗
n (X)) ≡ u∗

i (X | Θ∗(X)), i = 1,2, . . . , n.
The subsidy rate and advertising policies, θ∗

i (X) and u∗
i (X), i = 1,2, . . . , n, re-

spectively, constitute a feedback Stackelberg equilibrium of the problem (4)–(7).
Substituting these policies into the state equations (4) gives the cumulative sales
vector X∗(t) = (X∗

1(t),X∗
2(t), . . . ,X∗

n(t)), t ≥ 0, and the decisions of the manu-
facturer and the retailers, as θ∗

i = θ∗
i (t) = θ∗

i (X(t)) and u∗
i = u∗

i (t) = u∗
i (X

∗(t)),
i = 1,2, . . . , n, t ≥ 0, respectively.

3 Preliminary Results

We first solve retailer i’s problem to find the optimal advertising policy u∗
i (X |

Θ(X)), given the subsidy rates θi(X), i = 1,2, . . . , n, announced by the manu-
facturer. The Hamilton–Jacobi–Bellman (HJB) equation for the value function of
retailer i, i = 1,2, . . . , n, is
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rVi(X) = max
ui≥0

[

(pi − wi)ρiuiDi

√
1 − X̄

− (
1 − θi(X)

)
u2

i +
n∑

j=1

ViXj
ρjujDj

√
1 − X̄

]

, (8)

where ViXj
represents the marginal increase in the total discounted profit of retailer

i, i = 1,2, . . . , n, with respect to an increase in the cumulative sales of retailer j ,
j = 1,2, . . . , n.

Remark 1 Although we have restricted θi(X), i = 1,2, . . . , n, to be nonnegative, it
is obvious that 0 ≤ θi(X) < 1, i = 1,2, . . . , n. This is because, if the optimal subsidy
rate for a retailer were greater than or equal to one, then that retailer would choose to
have an infinite level of advertising, resulting in the manufacturer’s value function
to be −∞. This would mean that the manufacturer would have even less profit than
he would have by not subsidizing any retailer at all. Since the manufacturer is the
leader, it also follows that optimal subsidy rates are less than one.

We now obtain the optimal advertising policy of a retailer i, given the subsidy
rate policy of the manufacturer.

Proposition 1 For a given subsidy rate policy θi(X), i = 1,2, . . . , n, the optimal
feedback advertising decision of retailer i is

u∗
i = u∗

i (X | Θ) = (pi − wi + ViXi
)ρiDi

√
1 − X̄

2(1 − θi(X))
, i = 1,2, . . . , n, (9)

and the value function Vi(X) satisfies the partial differential equation

rVi(X) = (1 − X̄)

[
(pi − wi + ViXi

)2ρ2
i Di

2

4(1 − θi(X))
+

∑

j 	=i

VjXj
(pj − wj + VjXj

)ρ2
j

2(1 − θj (X))

]
.

(10)

Proof Using the first-order conditions w.r.t. ui in (8), i = 1,2, . . . , n, we obtain (9),
and then use (9) in (8) to obtain (10). The second order conditions are also satisfied
as it can be seen that Vi(X) is concave in ui . �

We can see that the advertising effort by retailer i increases with his demand Di

and with the marginal benefit of his own market share. Moreover, the advertising ef-
fort is greater for a higher un-captured market (1− X̄). Taking into account retailers’
optimal responses to his subsidy rates policy, the manufacturer solves his problem
to obtain his optimal subsidy rates. The HJB equation for the manufacturer’s value
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function Vm(X) is

rVm(X) = max
θi≥0,i=1,2,...,n

n∑

j=1

[
(wj + VmXj

)ρju
∗
jDj

√
1 − X̄ − θju

∗
j

2]
.

Using (9), we can rewrite the above HJB equation as

rVm(X)

(−1 + X̄)
= max

θi≥0
i=1,2,...,n

n∑

j=1

[
(pj − wj + VjXj

)

× (
2(wj + VmXj

)(−1 + θj ) + (pj − wj + VjXj
)θj

)
ρ2

j D2
j

/(
4(−1 + θj )

2)
]
. (11)

We can now obtain the manufacturer’s optimal subsidy rates policy as shown below.

Proposition 2 The manufacturer’s optimal subsidy rate for retailer i is

θ∗
i (X) = max

{
θ̂i (X),0

}
, i = 1,2, . . . , n, (12)

where

θ̂i (X) = 2(wi + VmXi
) − (pi − wi + ViXi

)

2(wi + VmXi
) + (pi − wi + ViXi

)
, i = 1,2, . . . , n, (13)

and the manufacturer’s value function Vm(X) satisfies

rVm(X)

(−1 + X̄)
=

n∑

j=1

[
(pj − wj + VjXj

)

× (
2(wj + VmXj

)
(−1 + θ∗

j (X)
) + (pj − wj + VjXj

)θ∗
j (X)

)
ρ2

j D2
j

/(
4
(−1 + θ∗

j (X)
)2)]

. (14)

Proof The first-order conditions w.r.t. θi , i = 1,2, . . . , n, in (11) give a unique solu-
tion, i.e., θ̂i , i = 1,2, . . . , n, as shown in (13). This along with Remark 1 yields the
optimal subsidy rates policy as in (12). Finally, we obtain (14) by using (12) in (11).
In order to verify the second-order conditions for the optimality of the subsidy rates,

we compute the Hessian matrix ∂2Vm(X)
∂θi∂θj

, i = 1,2, . . . , n, j = 1,2, . . . , n. We find

that ∂2Vm(X)
∂θi∂θj

= 0 for i 	= j , and ∂2Vm(X)

∂θ2
i

< 0 when we use θi = θ̂i , i = 1,2, . . . , n.

Therefore, the Hessian matrix is negative definite for θi = θ̂i , ∀i = 1,2, . . . , n, and
the second-order conditions are satisfied. �

Equation (13) shows that the optimal subsidy rate offered by the manufacturer
to retailer i increases as the manufacturer’s marginal profit with respect to the cu-
mulative sales of retailer i increases. Thus, the manufacturer provides more support
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to the retailer who offers a higher marginal profit from his sales to the manufac-
turer. However, as a retailer’s own marginal profit with respect to his cumulative
sales increases, then the subsidy rate offered by the manufacturer to that retailer
decreases. This is because the manufacturer is aware that the retailer has his own
incentive to increase his sales by advertising more, and so the manufacturer would
lower his subsidy rate to that retailer. Moreover, by using (13) in (9), we see that

u∗
i (X) = 1

4 (ρiDi(pi)(2(wi +VmXi
)+ (pi −wi +ViXi

))
√

1 − X̄), which shows that
the advertising effort by retailer i increases with the marginal profit of the retailer
as well as that of the manufacturer with respect to his cumulative sales.

To obtain the optimal advertising and subsidy rate strategies which constitute a
feedback Stackelberg equilibrium, we must find continuously differentiable func-
tions Vi(X), i = 1,2, . . . , n, and Vm(X) that satisfy equations (10) and (14), respec-
tively. As in Sethi et al. (2008), we look for affine value functions

Vi(X) = βi(1 − X̄), i = 1,2, . . . , n, (15)

Vm(X) = α(1 − X̄), (16)

where α and βi , i = 1,2, . . . , n, are constants, and later show that these solve (10)
and (14). In order to obtain the coefficients α and βi , i = 1,2, . . . , n, we see from
(15) and (16) that

ViXi
= ViXj

= βi, and VmXi
= α, i = 1,2, . . . , n, j = 1,2, . . . , n, j 	= i.

(17)

We can also see that with (15)–(16), θ̂i (X) and θ∗
i (X), i = 1,2, . . . , n, given in (12)

and (13) will be constants, and thus, can be simply denoted as θ̂i and θ∗
i , respec-

tively, i = 1,2, . . . , n.
We compare the coefficients of Xi , i = 1,2, . . . , n, and the constant term of the

value functions Vi(X), and Vm(X) in equations (10), (14), and (15)–(16), and obtain
the following nonlinear system of equations to be solved for the coefficients α and
βi , i = 1,2, . . . , n:

4rβi = − (pi − wi − βi)
2ρ2

i D2
i

(−1 + θ∗
i )

+
∑

j 	=i

2βi(pj − wj − βj )ρ
2
j D2

j

(−1 + θ∗
j )

, i = 1,2, . . . , n, (18)

4rα =
n∑

j=1

[
(pj − wj − βj )ρ

2
j D2

j

× (2(wj − α)(1 − θ∗
j ) − (pj − wj − βj )θ

∗
j )

(1 − θ∗
j )2

]
, (19)

θ∗
i = max

{
2(wi − α) − (pi − wi − βi)

2(wi − α) + (pi − wi − βi)
,0

}
, i = 1,2, . . . , n. (20)
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Using (17) and (20), we can obtain a condition under which the manufacturer
will support retailer i. We define

Pi = 2(wi + VmXi
) − (pi − wi + ViXi

)

= 2(wi − α) − (pi − wi − βi), i = 1,2, . . . , n. (21)

The optimal subsidy rate for retailer i will clearly depend on the sign of Pi ,
i = 1,2, . . . , n. Thus, when Pi > 0, the manufacturer supports retailer i, otherwise
he does not. When Pi ≤ 0, ∀i, no retailer gets advertising support from the man-
ufacturer. In this case, θ∗

i = 0, i = 1,2, . . . , n, and the set of equations given by
(18) can be solved independently of (19) for the coefficients βi , i = 1,2, . . . , n. By
computing the coefficients α and βi , i = 1,2, . . . , n, when θ∗

i = 0, i = 1,2, . . . , n,
we can write the conditions for a zero subsidy rate for each retailer, i.e., Pi ≤ 0,
i = 1,2, . . . , n, in terms of the model parameters pi , wi , ρi and Di , i = 1,2, . . . , n.

In general, it is difficult to obtain an explicit solution of the system of equations
(18)–(20). However, in the special case of identical retailers, defined by m1 = m2 =
· · · = mn (i.e., p1 − w1 = p2 − w2 = · · · = pn − wn), D1 = D2 = · · · = Dn, and
ρ1 = ρ2 = · · · = ρn, we can obtain some explicit results, including the values of
Pi , i = 1,2, . . . , n. In addition to this, when M1 = M2 = · · · = Mn i.e., w1 = w2 =
· · · = wn), more explicit results can be obtained. In the general case, nevertheless,
it is easy to solve the system numerically and study the dependence of the subsidy
rates on the various model parameters. We now consider some special cases to get
some insights into the problem.

4 Special Case: n Identical Retailers

Let mi = pi − wi = m, Di = D, and ρi = ρ, i = 1,2, . . . , n. Without loss of gener-
ality, we can assume that w1 > w2 > w3 > · · · > wn−1 > wn, which is equivalent to
p1 < p2 < · · · < pn. In order to obtain the condition under which none of the retail-
ers will be supported (i.e., Pi ≤ 0, i = 1,2, . . . , n), we set θ∗

i = 0, i = 1,2, . . . , n, in
equations (18)–(19) and then solve for βi , i = 1,2, . . . , n, and α in an explicit form
to obtain Pi , i = 1,2, . . . , n, as follows:

Pi = 2wi

[
1 − 2D2m2ρ2

2r + (n + 1)D2mρ2 + √
4r2 + 4nrD2mρ2 + (n − 1)2D4m2ρ4

]

− 2W−i

[
2D2m2ρ2

2r + (n + 1)D2mρ2 + √
4r2 + 4nrD2mρ2 + (n − 1)2D4m2ρ4

]

− (n − 1)D2mρ2 − 2r + √
4r2 + 4nrD2mρ2 + (n − 1)2D4m2ρ4

(2n − 1)D2ρ2
, (22)

where W−i = ∑n
j=1
j 	=i

wj . The derivation of (22) is shown in the Appendix. We can

now conclude the following result.
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Proposition 3 When Pi ≤ 0, i = 1,2, . . . , n, we have a non-cooperative equilib-
rium in which it is optimal for the manufacturer not to support any retailer. Fur-
thermore, if Pi > 0 and Pj ≤ 0, j = 1,2, . . . , n, j 	= i, we have θ∗

i > 0 and θ∗
j = 0,

j = 1,2, . . . , n, j 	= i, that is, the manufacturer supports retailer i only.

We can observe that Pi is linear in wj , i = 1,2, . . . , n, j = 1,2, . . . , n. In Pi , the
coefficient of wi is positive and that of wj , j 	= i is negative. Thus, Pi increases as
the margin of the manufacturer from retailer i (which is the same as the wholesale
price charged from retailer i) increases, and it decreases as the margin from any
other retailers decreases. As retailer i pays a higher wholesale price to the manu-
facturer, his likelihood of receiving advertising support from the manufacturer in-
creases. Moreover, this increase in wi further hampers the case of retailer j , j 	= i,
in getting support from the manufacturer. This is intuitive because it is beneficial for
the manufacturer to support the retailer who is more profitable to him and increase
his sales, and since the n retailers compete for the same market, it comes at a cost
for the other n − 1 retailers. Indeed, it can be seen that

Pi − Pj = 2(wi − wj), (23)

which means that wi > wj implies Pi > Pj . Thus, when Pi ≤ 0 and Pj ≤ 0 for
i 	= j , retailer i will be the first to start receiving a positive subsidy rate, whenever
changes in the parameters (m, D, ρ) cause the sign of Pi to change from negative to
positive, and retailer j will never receive any support as long as wi > wj . In other
words, a retailer who pays a higher wholesale price is more likely to get a positive
subsidy rate from the manufacturer when compared to a retailer who offers a lower
wholesale price.

To further enhance the understanding of our results, we assume that the discount
rate is very small, i.e., r ≈ 0. Under this condition, the expressions for Pi can be
simplified to

Pi = 2wi(n − 1)

n
− 2W−i

n
− 2m(n − 1)

(2n − 1)
, (24)

where W−i = ∑n
j=1
j 	=i

wj . Equation (24) yields some useful insights from our anal-

ysis of the case of identical retailers for small values of the discount rate. We can
see from (24) that if wi is less than the average wholesale price of other n − 1
retailers, i.e., W−i

(n−1)
, then retailer i will not be supported. In addition, if the retail-

ers are also symmetric (i.e., w1 = w2 = · · · = wn), then Pi < 0, i = 1,2, . . . , n,
and no retailer will be supported. If we assume that wj = 0, j = 2,3, . . . , n,
j 	= 1, so that only retailer 1 sells the manufacturer’s product and all other re-
tailers compete with retailer 1, then, under competition, the condition for support
for retailer 1 is w1

(n−1)
n

≥ m
(n−1)
(2n−1)

= (p1 − w1)
(n−1)
(2n−1)

. Furthermore, if the num-
ber of retailers n is very large, then retailer i receives advertising support when
wi > m/2 = (pi − wi)/2, i.e. when the manufacturer’s margin from retailer i is
at-least half of retailer i’s margin.
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5 Special Case: Two Non-identical Retailers

In this section, we further explore our model in the case of two non-identical retail-
ers, to get some useful managerial insights. We look into issues such as dependence
of subsidy rates on different model parameters, issue of channel coordination and
profits of the channel members with cooperative advertising, and a case of anti-
discriminatory legislation.

5.1 Numerical Analysis

We perform numerical analysis to study the dependence of the manufacturer’s sub-
sidy rates on wholesale prices (w1,w2), retailers’ margins (p1 − w1,p2 − w2), and
advertising effectiveness coefficients (ρ1, ρ2). We consider a linear demand form
and study the impact of the price sensitivity of demand on the subsidy rates. In this
analysis, we first take a base case with a value for each parameter and then vary
different parameters one by one to study their impacts on θ∗

1 and θ∗
2 . To study the

effect of retailer 1’s margin, we vary p1 and keep all other parameters unchanged.
Similarly, by changing w1 and keeping all other parameters constant, we study the
impact of manufacturer’s margin. We consider the following demand specification
for given retail prices:

Di = 1 − ηipi, i = 1,2, (25)

where ηi represents the price sensitivity of the demand. The linear demand function
is popular in the literature (e.g., Petruzzi and Dada 1999; Sethi et al. 2008; Krish-
namoorthy et al. 2010). We perform numerical analysis for a wide range of parame-
ters and present some representative results for a base case of w1 = w2 = 0.3, p1 =
p2 = 0.6, η1 = η2 = 1, and ρ1 = ρ2 = 1. Thus in the base case m1 = m2 = 0.3.

(a) Effect of the manufacturer’s margin Fig. 2: We vary w1 to change the manufac-
turer’s margin from retailer 1, but also change p1 accordingly to keep retailer
1’s margin (p1 −w1) constant. Note that as p1 increases retailer 1’s demand D1

decreases. We find that as w1 increases, the manufacturer starts offering a higher
subsidy rate to retailer 1, rewarding him for providing a higher margin. Retailer
2’s subsidy rate decreases initially and then increases. The retailer who offers a
higher margin (wholesale price) to the manufacturer gets a higher subsidy rate.

(b) Effect of the manufacturer’s margin and changing retailer 1’s margin Fig. 3:
We vary w1 to change the manufacturer’s margin and keep p1 constant, thereby
changing retailer 1’s margin as well. As w1 increases, the manufacturer offers a
higher subsidy rate to retailer 1 and reduces the subsidy rate to retailer 2. Since
p1 remains constant, retailer 1’s margin decreases as w1 increases, so he has
less incentive to advertise. The manufacturer rewards retailer 1, now that he
gives him a higher margin, by increasing his subsidy rate, and simultaneously
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Fig. 2 Subsidy rates vs. w1,
fixed p1 − w1

Fig. 3 Subsidy rates vs. w1

reduces the subsidy rate of retailer 2. The manufacturer gives a higher subsidy
rate to the retailer who gives a higher margin.

(c) Effect of retail price (and hence retailer’s margin) Fig. 4: As p1 increases, re-
tailer 1’s margin increases and demand D1 decreases. With a higher p1, the
manufacturer knows that retailer 1 has a higher incentive of his own to adver-
tise more. Moreover as retailer 1’s demand decreases, the manufacturer sees a
greater possibility of increase in its sales through retailer 2. The combined ef-
fect of these factors makes the subsidy rate for retailer 1 to decrease and that
of retailer 2 to increase gradually. The retailer with the lower retail price gets a
higher subsidy rate.

(d) Effect of the advertising effectiveness parameter Fig. 5: As the advertising ef-
fectiveness of retailer 1 increases, the subsidy rates for both retailers decrease.
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Fig. 4 Subsidy rates vs. p1

Fig. 5 Subsidy rates vs. ρ1

The rate of decrease is higher for retailer 2 than for retailer 1. All other parame-
ters being the same, the retailer with the higher advertising effectiveness gets a
higher subsidy rate.

(e) Effect of the price sensitivity of demand Fig. 6: As η1 increases, D1 = 1 −η1p1
decreases. The manufacturer increases the subsidy rate for both retailers. The
retailer with the higher price sensitivity gets a lower subsidy rate.

5.2 Channel Coordination

In this section, we analyze the impact of cooperative advertising arrangement on
the profits of the manufacturer and the retailers, and thereby investigate the role
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Fig. 6 Subsidy rates vs. η1

of cooperative advertising in coordinating the channel and improving the overall
channel profit. We compare the value functions of the channel members and that
of the channel as a whole in three cases: (i) an integrated channel in which the
advertising decisions are taken on the basis of maximization of the total combined
profit of the manufacturer and the retailers, (ii) a decentralized channel with optimal
subsidy rates, where the manufacturer chooses the optimal subsidy rates and the
retailers decide their optimal levels of advertising, and (iii) a decentralized channel
without any cooperative advertising.

In the integrated channel case, the optimization problem to decide the optimal
level of advertising can be written as follows:

V I (X1,X2) = max
u1(t)≥0,u1(t)≥0,t≥0

∫ ∞

0
e−rt

(
p1Ẋ1(t) + p2Ẋ2(t) − u2

1(t) − u2
2(t)

)
dt

(26)

subject to

Ẋi(t) = dXi(t)

dt
= ρiui(t)Di

√
1 − X1(t) − X2(t), Xi(0) = Xi ∈ [0,1], i = 1,2.

(27)

The HJB equation for the integrated channel value function V I is

rV I (X1,X2) = max
u1(t)≥0,u1(t)≥0,t≥0

[
p1Ẋ1 + p2Ẋ2 − u2

1 − u2
2 + V I

X1
Ẋ1 + V I

X2
Ẋ2

]
,

(28)

where Ẋ1 and Ẋ2 are given by (27). Using (27) in the HJB equation (28) and apply-
ing the first-order conditions for maximization with respect to u1 and u2, we obtain
the following
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Proposition 4 The optimal feedback advertising policies for the integrated channel
are

u∗
1 = ρ1

2
D1(p1 + VX1)

√
1 − X1 − X2,

u∗
2 = ρ2

2
D2(p2 + VX2)

√
1 − X1 − X2,

(29)

and the value function of the integrated channel satisfies the partial differential
equation

4rV I (X1,X2) = (1 − X1 − X2)
[
(p1 + VX1)

2ρ2
1D2

1 + (p2 + VX2)
2ρ2

2D2
2

]
. (30)

Proof We obtain (29) by applying the first-order conditions with respect to u1 and
u2 in the HJB equation (28), and (30) can be obtained by using (29) and (27) in
(28). �

Once again, we show that

V I (X1,X2) = αI (1 − X1 − X2), (31)

solves (30), for some αI to be determined. Since αI = −V I
X1

= −V I
X2

is a constant,
it must satisfy the equation

αI = (
p1 − αI

)2
ρ2

1D2
1 + (

p2 − αI
)2

ρ2
2D2

2 . (32)

This is a quadratic equation in αI which gives two real roots. We choose the one
which gives p1 − αI ≥ 0 and p2 − αI ≥ 0, as it ensures u∗

1 ≥ 0 and u∗
2 ≥ 0. We

therefore have

αI = 2r + p1ρ
2
1D2

1 + p2ρ
2
2D2

2

ρ2
1D2

1 + ρ2
2D2

2

−
√

4r2 + 4r(p1ρ
2
1D2

1 + p2ρ
2
2D2

2) − (p1 − p2)ρ
2
1D2

1ρ2
2D2

2

ρ2
1D2

1 + ρ2
2D2

2

. (33)

In the second case, we consider a decentralized channel with cooperative ad-
vertising, where the manufacturer chooses the optimal subsidy rates. We define the
value function in this case as V c(X1,X2) = V c

m(X1,X2) + V c
r (X1,X2), where V c

m

is the manufacturer’s value function (given by (16)) and V c
r is the sum of the value

functions of the two retailers obtained by (15).
The third case is of a decentralized channel with no cooperation, with the channel

value function defined as V n(X1,X2) = V n
m(X1,X2) + V n

r (X1,X2), where V n
m and

V n
r are the manufacturer’s value function and the sum of the two retailers’ value

functions, respectively, in the non-cooperative setting. These value functions are
computed by setting θ∗

1 = θ∗
2 = 0 in (18)–(19), and then using the resulting values

of α, β1, and β2 in (15)–(16). We term the values of these coefficients in the non-
cooperative case as αn, βn

1 , and βn
2 , respectively.
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Fig. 7 Channel value
functions in integrated, coop,
and non-cooperative cases

Since the manufacturer is the leader and decides the subsidy rates by maximizing
his total discounted profit, it is obvious that

V c
m(X1,X2) ≥ V n

m(X1,X2). (34)

In general, it is difficult to establish explicit analytical relationships between
the value functions of the retailers and the channel as a whole. We therefore
use numerical analysis to study the effect of cooperative advertising on the prof-
its of all the parties in the channel. Recall that V I = αI (1 − X1 − X2), V c =
(α + β1 + β2)(1 − X1 − X2), and V n = (αn + βn

1 + βn
2 )(1 − X1 − X2). Thus,

in order to do a comparison of any two value functions, it is sufficient to compare
their respective coefficients of (1−X1 −X2). We study V I , V c and V n with respect
to the changes in the optimal subsidy rates brought about by changes in the model
parameters. In the results shown, the changes in the value functions correspond to
the changes in the margin of retailer 1 (caused by changes in p1). As p1 increases,
we know from Fig. 4 that θ1 decreases, and θ2 increases gradually. Figure 7 de-
picts the values of αI , (α + β1 + β2), and (αn + βn

1 + βn
2 ), and thus compares V I ,

V c, and V n, respectively, for D1 = 1 − η1p1, D2 = 1 − η2p2, p2 = 0.6, w1 = 0.3,
w2 = 0.3, η1 = 1, η2 = 1, ρ1 = 1, and ρ2 = 1. Thus, for any point in Fig. 7, the val-
ues of the optimal subsidy rates are the same as the corresponding values in Fig. 4.
We find that under all instances, αI > (α + β1 + β2) > (αn + βn

1 + βn
2 ), and thus

V I > V c > V n. The result that V I is the highest of all is obvious, as we expect the
integrated channel value function to be greater than that in the decentralized chan-
nel, with or without cooperative advertising. This result also indicates that through
a cooperative advertising mechanism, as proposed in our model, total channel profit
can be increased and better channel coordination can be achieved. The level of par-
tial coordination measured by the ratio (V c −V n)/(V I −V n) is found to be as high
as 82.5 %.

Figure 8 shows the difference in the value function coefficients between coop-
erative and non-cooperative settings for the manufacturer, the two retailers, and the
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Fig. 8 Difference between
the value functions in the
coop case and the non-coop
case

total channel, i.e., α−αn, β1 −βn
1 , β2 −βn

2 , and (α+β1 +β2)− (αn +βn
1 +βn

2 ), re-
spectively. Once again, we use D1 = 1 −η1p1, D2 = 1 −η2p2, p2 = 0.6, w1 = 0.3,
w2 = 0.3, η1 = 1, η2 = 1, ρ1 = 1, and ρ2 = 1. As expected, the manufacturer always
benefits from cooperative advertising. In view of results in Fig. 4, we can see that
the manufacturer’s benefit is higher when, roughly speaking, the difference between
the subsidy rates of the two retailers is higher. The retailers, however, do not seem
to benefit always from cooperative advertising. It is found that when a retailer re-
ceives a much lower subsidy rate in comparison to his competitor, he does not seem
to benefit from this arrangement. In other words, when θ∗

1 − θ∗
2 is high, retailer 2

does not benefit from cooperative advertising, and vice versa. Figure 8 also shows
that the region in which both retailers benefit from cooperative advertising is a small
range of values of p1, around the point when p1 = p2, which is when both retail-
ers receive almost equal subsidy rates. Thus, the retailer which has a higher margin
relative to his competitor and thus gets a significantly lower subsidy rate from the
manufacturer, might not prefer a cooperative advertising arrangement.

These observations raise the issue of the manufacturer preferring one retailer
over the other, in terms of subsidy rates, particularly when it seems that the retailer
receiving a significantly lower subsidy rate might make less profit from coopera-
tive advertising than without it. Next, we study the effect of an anti-discriminatory
legislation, such as the Robinson–Patman Act of 1936, which would compel the
manufacturer to offer equal subsidy rates to both retailers.

5.3 Equal Subsidy Rate for Both Retailers

We consider the case when the manufacturer is required to offer equal subsidy
rates to both retailers. We let V RP

m (X1,X2), V RP
1 (X1,X2), V RP

2 (X1,X2), and
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V RP (X1,X2) denote the value functions of the manufacturer, retailer 1, retailer
2, and the total channel, respectively, with the superscript RP standing for Robinson
and Patman. These value functions solve the control problems defined by (4)–(6)
with θ1 = θ2 = θ , as the manufacturer’s optimization problem now has only one
subsidy rate decision. As in the general model, we obtain value functions that are
linear in X1 and X2 and are a multiple of (1 − X1 − X2), and we express them as in
(15)–(16). The value function coefficients for the manufacturer and the two retailers
are now defined as αrp , β

rp

1 , and β
rp

2 , respectively. The coefficients solve the sys-
tem of equations obtained by setting θ∗

1 = θ∗
2 = θ∗ in (18)–(19). We thus have the

following system of equations:

4rβ
rp
i = − (p1 − w1 − β

rp
i )2ρ2

i D2
i

(−1 + θ∗)

+ 2β
rp
i (p3−i − w3−i − β

rp

3−i )ρ
2
3−iD

2
3−i

(−1 + θ∗)
, i = 1,2, (35)

4rαrp = −
2∑

i=1

[(
pi − wi − β

rp
i

)
ρ2

i D2
i

× ((pi − wi − β
rp
i )θ∗ + 2(wi − αrp)(−1 + θ∗))

(−1 + θ∗)2

]
, (36)

θ∗ = max

{
(2A1 − B1)B1ρ

2
1D2

1 + (2A2 − B2)B2ρ
2
2D2

2

(2A1 + B1)B1ρ
2
1D2

1 + (2A2 + B2)B2ρ
2
2D2

2

,0

}
, (37)

where

A1 = w1 − αrp, A2 = w2 − αrp,

B1 = p1 − w1 − β
rp

1 and B2 = p2 − w2 − β
rp

2 .
(38)

The threshold for no cooperation with both retailers is that

P = (2A1 − B1)B1ρ
2
1D2

1 + (2A2 − B2)B2ρ
2
2D2

2 ≤ 0. (39)

We perform numerical analysis to study the behavior of θ∗ with respect to differ-
ent model parameters and compare it with the optimal subsidy rates in the general
model with no restriction on the subsidy rates. Figures 9, 10, 11, 12, and 13 show
the dependence of θ∗ on w1 with fixed p1 − w1, w1 with fixed p1, p1, ρ1, and η1,
respectively, and compare θ∗ with θ∗

1 and θ∗
2 (optimal subsidy rates with no legis-

lation in effect) for linear demand, i.e., Di = 1 − ηipi . We find that as w1 and p1
increase while keeping retailer 1’s margin (p1 − w1) constant, the common subsidy
rate for the two retailers increases, but at a decreasing rate Fig. 9. However, when the
increase in w1 is accompanied by a fixed p1, thereby reducing retailer 1’s margin,
we find that the common subsidy rate first increases and then decreases. As p1 in-
creases, θ∗ changes in a more complicated decreasing-increasing fashion as shown
in Fig. 11. Recall that an increase in p1 causes D1 to decrease. The dependence of
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Fig. 9 Subsidy rate vs. w1,
constant p1 − w1

Fig. 10 Subsidy rate vs. w1,
constant p1

the common subsidy rate on ρ1 and η1 is similar to the dependence of the optimal
subsidy rates in the unrestricted model, i.e., decreasing with ρ1 and increasing with
η1, as shown in Fig. 12, and Fig. 13.

We now investigate the impact of an anti-discriminatory legislation on the value
functions of all the parties in the supply chain and on the channel value function.
We compare the value functions in three cases: a channel without any cooperative
advertising, a channel with no anti-discriminatory act and optimal subsidy rates, and
a channel with an anti-discriminatory act and optimal common subsidy rate for both
retailers. Recall that the value functions in our model take the form of a constant
times (1 − X1 − X2), and thus we compare the value of these coefficients (α, β1,
β2, αrp , β

rp

1 , β
rp

2 , αn, βn
1 , βn

2 ) via numerical analysis to understand the comparison
between the various value functions. Figures 14 and 15 show a comparison of these
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Fig. 11 Subsidy rate vs. p1

Fig. 12 Subsidy rate vs. ρ1

coefficients with changes in p1. The values of the parameters are chosen so that for
any point in these curves, the optimal subsidy rates (θ∗

1 , θ∗
2 , θ∗) are the same as the

corresponding values in Fig. 11. Figure 14 shows the impact of a Robinson–Patman
like legislation on the profits of all the parties in the channel by plotting the differ-
ence between the value function coefficients with and without the legislation. As
is obvious, the manufacturer does not benefit from this legislation because of the
additional constraint on his optimization problem. The manufacturer’s loss is high
when p1 is very low, i.e., when the difference θ∗

1 − θ∗
2 is high. The manufacturer’s

loss is low when the difference between the two optimal subsidy rates in the uncon-
strained problem is low. We find that the retailer receiving a higher subsidy rate in
the absence of the legislation, does not benefit either. However, a less efficient re-
tailer who would have received a lower subsidy rate without the legislation, benefits
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Fig. 13 Subsidy rate vs. η1

Fig. 14 Impact of
anti-discriminatory legislation
on the value functions

as his subsidy rate is increased under the act. Thus, when p1 is low, retailer 1 loses
and retailer 2 benefits, and when p1 is high, retailer 1 loses and retailer 2 benefits
from the legislation. Noticeably though, in all the instances studied, the gain of one
retailer was not able to offset the losses of the other two parties and the total channel
suffered as a whole. These results indicate that an anti-discriminatory legislation in
the context of cooperative advertising could be beneficial to only one of the two
retailers and not to the other parties, and could also result in a lower channel profit.

Figure 15 compares the total profit of an integrated channel (V I ) with the to-
tal channel profit in three cases: no advertising cooperation (V n), cooperation with
no legislation (V c), and cooperation with equal subsidy rates (V rp), with a view
of comparing the level of channel coordination possible in these three scenarios.
Here again, we see that while an unrestricted cooperative advertising arrangement
can coordinate the channel to a great extent (up to 85 %, as found previously), the
enforcement of an anti-discriminatory law on the manufacturer can decrease the
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Fig. 15 Value functions in
different cases divided by the
integrated channel value
function

channel profit and thereby reduce the level of coordination achieved. The case of no
advertising cooperation seems to perform worst of all with the lowest channel profit
and thus, the lowest level of coordination. Once again, these results suggest that for
a durable goods duopoly with a sales dynamics as ours, cooperative advertising with
no regulation might be the best alternative of the three from the perspective of total
channel profit.

6 Concluding Remarks

We study a cooperative advertising model for durable goods in a retail oligopoly of
n independent and competing retailers. We obtain the Stackelberg equilibrium and
obtain the optimal subsidy rates policy of the manufacturer and the optimal advertis-
ing policy of the retailers in feedback form. We explore the conditions under which
it is not optimal for manufacturer to support retailers and compute this explicitly as
a function of the model parameters in a special case of n identical retailers, and ob-
tain managerial insights on the role of retail competition. For a special case of two
non-identical retailers with linear demand, we numerically study the dependence of
the optimal subsidy rate on the model parameters. We investigate the impact of co-
operative advertising on the profits of the channel members in a channel with two
retailers and explore the extent to which cooperative advertising can coordinate the
channel. Our numerical analysis shows that a cooperative advertising arrangement
can result in higher channel profit and greater supply chain coordination. However,
we find that while the manufacturer always benefits with an arrangement with the
optimal subsidy rates, the two retailers may not benefit simultaneously. Indeed, we
find that both retailers seem to benefit when the retailer are nearly symmetric and
thus the subsidy rates they receive are nearly equal. And finally, we consider a case
of anti-discrimination legislation in the case of two retailers, in which the manufac-
turer is required to offer equal subsidy rates to the two retailers. We find that such a
legislation may result in a lower channel coordination.
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Appendix: Proof of the Derivation of Pi in the Case of Identical
Retailers

Proof Using mi = pi − wi = m, Di = D, ρi = ρ, and θ∗
i = 0, i = 1,2, . . . , n, in

(18)–(19), we get the following system of equations:

4rβi = (m − βi)
2ρ2D2 −

∑

j 	=i

2βi(m − βj )ρ
2D2, (40)

4rα =
n∑

j=1

[
(m − βj )ρ

2D22(wj − α)
]
. (41)

Equations (40) and (41) can be solved to give the following: For i = 1,2, . . . , n,

βi = β = 2r + D2mnρ2 − √
4r2 + 4D2ρ2mnr + D4ρ4m2(n − 1)2

D2ρ2(2n − 1)
(42)

or

βi = β = 2r + D2mnρ2 + √
4r2 + 4D2ρ2mnr + D4ρ4m2(n − 1)2

D2ρ2(2n − 1)
. (43)

We choose the first value, given by (42), which satisfies m − β ≥ 0, which in turn
ensures that ui ≥ 0, i = 1,2, . . . , n. Now, using (43) in (41), we get

α = (
∑n

i=1 wi)D
2mρ2

2r + D2m(n + 1)ρ2 + √
4r2 + 4D2ρ2mnr + D4ρ4m2(n − 1)2

, (44)

where W = ∑n
j=1 wj . Finally, we use (44) and (43) in the equation Pi = 2(wi −

α) − (pi − wi − βi) to show that the values of Pi , i = 1,2, . . . , n, are as given in
(22). �
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