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Abstract This chapter discusses, in both continuous time and discrete time, the is-
sue of certainty equivalence in two-player zero-sum stochastic differential/dynamic
games when the players have access to state information through a common noisy
measurement channel. For the discrete-time case, the channel is also allowed to fail
sporadically according to an independent Bernoulli process, leading to intermittent
loss of measurements, where the players are allowed to observe past realizations of
this process. A complete analysis of a parametrized two-stage stochastic dynamic
game is conducted in terms of existence, uniqueness and characterization of saddle-
point equilibria (SPE), which is shown to admit SPE of both certainty-equivalent
(CE) and non-CE types, in different regions of the parameter space; for the latter,
the SPE involves mixed strategies by the maximizer. The insight provided by the
analysis of this game is used to obtain through an indirect approach SPE for three
classes of differential/dynamic games: (i) linear-quadratic-Gaussian (LQG) zero-
sum differential games with common noisy measurements, (ii) discrete-time LQG
zero-sum dynamic games with common noisy measurements, and (iii) discrete-time
LQG zero-sum dynamic games with intermittently missing perfect state measure-
ments. In all cases CE is a generalized notion, requiring two separate filters for the
players, even though they have a common communication channel. Discussions on
extensions to other classes of stochastic games, including nonzero-sum stochastic
games, and on the challenges that lie ahead conclude the chapter.

1 Introduction

In spite of decades long research activity on stochastic differential games, there
still remain some outstanding fundamental questions on existence, uniqueness, and
characterization of non-cooperative equilibria when players have access to noisy
state information. Even in zero-sum games and with common measurement channel
that feeds noisy state information to both players, derivation of saddle-point poli-
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cies is quite an intricate task, as first identified in Başar (1981). That paper also
addressed the issue of whether saddle-point equilibria (SPE) in such games is of the
certainty-equivalent (CE) type (Witsenhausen 1971a), that is whether the solution of
a similarly structured game but with perfect state measurements for both players can
be used in the construction of SPE for the stochastic game with noisy measurement,
by simply replacing the state with an appropriately constructed conditional estimate.
The answer was a “cautious conditional yes,” in the sense that not all SPE are of the
CE type, and when they are in both the construction of the conditional estimate and
the derivation of conditions for existence many perils exist. This chapter picks up
where Başar (1981) had left, and develops further insights into the intricacies and
pitfalls in the derivation of SPE of the CE as well as non-CE types. It also provides
a complete solution to a two-stage stochastic game of the linear-quadratic-Gaussian
(LQG) type where the common measurement channel is not only noisy but also fails
intermittently.

Research on stochastic differential games with noisy state measurements goes
back to the 1960’s, where two-person zero-sum games with linear dynamics and
measurement equations, Gaussian statistics, and quadratic cost functions (that is,
LQG games) were addressed when players have access to different measurements,
within however some specific information structures (Behn and Ho 1968; Rhodes
and Luenberger 1969; Willman 1969). A zero sum differential game where one
player’s information is nested in the other player’s was considered in Ho (1974), and
a class of zero-sum dynamic games where one player has noisy state information
while the other one plays open loop was considered in Başar and Mintz (1973)
which showed that the open-loop player’s saddle-point strategy is mixed. A class
of zero-sum stochastic games where the information structure is of the nonclassical
type was considered in Başar and Mintz (1972), which showed that some zero-sum
games could be tractable even though their team counterparts, as in Witsenhausen
(1968), Bansal and Başar (1987), Ho (1980) are not; see also Başar (2008).

When a game is not of the zero-sum type, derivation of equilibria (which in
this case would be Nash equilibria) is even more challenging, even when players
have access to common noisy measurements, with or without delay, as discussed
in Başar (1978a) where an indirect approach of the backward-forward type was
developed and employed; see also Başar (1978b) for a different formulation and
approach for derivation. Recently, a new class of discrete-time nonzero-sum games
with asymmetric information was introduced in Nayyar and Başar (2012), where the
evolution of the local state processes depends only on the global state and control
actions and not on the current or past values of local states. For this class of games, it
was possible to obtain a characterization of some Nash equilibria by lifting the game
and converting it to a symmetric one, solving the symmetric one in terms of Markov
equilibria, and then converting it back. Among many others, two other papers of
relevance to stochastic nonzero-sum dynamic games are Altman et al. (2009) and
Hespanha and Prandini (2001), and one of relevance to teams with delayed sharing
patterns is Nayyar et al. (2011).

The paper is organized as follows. In the next section, we introduce LQG zero-
sum stochastic differential/dynamic games (ZSDGs) with common noisy measure-
ments, first in continuous time and then in discrete time, and for the latter we also



Stochastic Differential Games and Intricacy of Information Structures 25

include the possibility of intermittent failure of the measurement channel (modeled
through a Bernoulli process), leading to occasionally missing measurements. In the
section we also introduce the concept of certainty equivalence, first in the context of
the classical LQG optimal control problem and then generalized (in various ways) to
the two classes of games formulated. In Sect. 3, we introduce a two-stage stochastic
dynamic game, as a special case of the general discrete time LQG game of Sect. 2,
which is solved completely for its SPE in both pure and mixed strategies, some of
the CE type and others non-CE (see Theorem 1 for the complete solution). Analysis
of the two-stage game allows us to develop insight into the intricate role information
structures play in the characterization and existence of SPE for the more general ZS-
DGs of Sect. 2, and what CE means in a game context. This insight is used in Sect. 4
in the derivation of generalized CE SPE for the continuous-time LQG ZSDG with
noisy state measurements (see Theorem 2 for the penultimate result) as well as for
the continuous-time LQG ZSDG with noisy state measurements and perfect state
measurements with intermittent losses. The paper ends with a recap of the results of
the paper and a discussion on extensions and open problems, in Sect. 5.

2 Zero-Sum Stochastic Differential and Discrete-Time Games
with a Common Measurement Channel and Issue of Certainty
Equivalence

2.1 Formulation of the Zero-Sum Stochastic Differential Game

We first consider the class of so-called Linear-Quadratic-Gaussian zero-sum differ-
ential games (LQG ZSDGs), where the two players’ actions are inputs to a linear
system driven also by a Wiener process, and the players have access to the system
state through a common noisy measurement channel which is also linear in the state
and the driving Wiener noise process. The objective function, to be minimized by
one player and maximized by the other, is quadratic in the state and the actions of
the two players.

For a precise mathematical formulation, let {xt , yt , t ≥ 0}, be respectively the
n-dimensional state and m-dimensional measurement processes, generated by

dxt = (Axt + But + Dvt)dt + Fdwt , t ≥ 0, (1)

dyt = Hxtdt + Gdwt, t ≥ 0, (2)

where {ut , t ≥ 0} and {vt , t ≥ 0} are respectively Player 1’s and Player 2’s con-
trols (say of dimensions r1 and r2, respectively), nonanticipative with respect to the
measurement process, and generated by measurable control policies {γt } and {μt },
respectively, that is

ut = γt (y[0,t)), vt = μt(y[0,t)), t ≥ 0. (3)
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In (1) and (2), x0 is a zero-mean Gaussian random vector with covariance Λ0 (that is
x0 ∼ N(0,Λ0)), {wt, t ≥ 0} is a vector-valued standard Wiener process independent
of x0, and A, B , D, F , H , G are constant1 matrices of appropriate dimensions, with
(to avoid singularity) FFT > 0, GGT > 0, and FGT = 0, where the last condition
assures that system and channel noises are independent. We let Γ and M denote
the classes of admissible control policies for Player 1 and Player 2, respectively,
with elements γ := {γt } and μ := {μt }, as introduced earlier. The only restriction on
these policies is that when (3) is used in (1), we have unique second-order stochastic
process solutions to (1) and (2), with almost sure continuously differentiable sam-
ple paths. Measurability and uniform Lipschitz continuity will be sufficient for this
purpose.

To complete the formulation of the differential game, we now introduce a
quadratic performance index over a finite interval [0, tf ]:

J (γ,μ) = E

{
|xtf |2Qf

+
∫ tf

0

[|xt |2Q + λ|ut |2 − |vt |2
]
dt

∣∣∣u = γ (·), v = μ(·)
}
, (4)

where expectation E{·} is over the statistics of x0 and {wt }; further, |x|2Q := xT Qx,
Q and Qf are non-negative definite matrices, and λ > 0 is a scalar parameter. Note
that any objective function with nonuniform positive weights on u and v can be
brought into the form above by a simple rescaling and re-orientation of u and v and
a corresponding transformation applied to B and D, and hence the structure in (4)
does not entail any loss of generality as a quadratic performance index.

The problem of interest in the context of LQG ZSDGs is to find conditions for
existence and characterization of saddle-point strategies, that is (γ ∗ ∈ Γ,μ∗ ∈ M)

such that

J
(
γ ∗,μ

) ≤ J
(
γ ∗,μ∗) ≤ J

(
γ,μ∗), ∀γ ∈ Γ,μ ∈ M. (5)

A question of particular interest in this case is whether the saddle-point equilibrium
(SDE) has the certainty equivalence property, that is whether it can be obtained di-
rectly from the perfect state-feedback SPE of the corresponding deterministic differ-
ential game, by simply replacing the state by its “best estimate,” as in the one-player
version, the so-called LQG optimal control problem. This will be discussed later in
the section.

If a saddle-point equilibrium (SDE) does not exist, then the next question is
whether the upper value of the game is bounded, and whether there exists a con-
trol strategy for the minimizer that achieves it, that is existence of a γ̄ ∈ Γ such
that

inf
γ

sup
μ

J (γ,μ) = sup
μ

J (γ̄ ,μ). (6)

Note that the lower value of the game, supμ infγ J (γ,μ), is always bounded away
from zero, and hence its finiteness is not an issue.

1They are taken to be constant for simplicity in exposition; the main message of the paper and
many of the expressions stand for the time-varying case as well, with some obvious modifications.
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2.2 Formulation of the Discrete-Time Zero-Sum Stochastic
Dynamic Game with Failing Channels

A variation on the LQG ZSDG is its discrete-time version, which will allow us also
to introduce intermittent failure of the common measurement channel. The system
equation (1) is now replaced by

xt+1 = Axt + But + Dvt + Fwt , t = 0,1, . . . , (7)

and the measurement equation (2) by

yt = βt (Hxt + Gwt), t = 0,1, . . . , (8)

where x0 ∼ N(0,Λ0); {wt } is a zero-mean Gaussian process, independent across
time and of x0, and with E{wtw

T
t } = I , ∀t ∈ [0, T − 1] := {0,1, . . . , T − 1}; and

{βt } is a Bernoulli process, independent across time and of x0 and {wt }, with
Probability(βt = 0) = p, ∀t . This essentially means that the channel that carries
information on the state to the players fails with equal probability p at each stage,
and these failures are statistically independent. A different expression for (8) which
essentially captures the same would be

yt = βtHxt + Gwt, t = 0,1, . . . , (9)

where what fails is the sensor that carries the state information to the channel and
not the channel itself. In this case, when βt = 0, then this means that the channel
only carries pure noise, which of course is of no use to the controllers.

Now, if the players are aware of the failure of the channel or the sensor when it
happens (which we assume to be the case), then what replaces (3) is

ut = γt (y[0,t], β[0,t]), vt = μt(y[0,t], β[0,t]), t = 0,1, . . . , (10)

where {γt } and {μt } are measurable control policies; let us again denote the spaces
where they belong respectively by Γ and M .

The performance index replacing (4) for the discrete-time game, over the interval
{0,1, . . . , T − 1} is2

J (γ,μ) = E

{
T −1∑
t=0

[|xt+1|2Q + λ|ut |2 − |vt |2
]
dt

∣∣∣u = γ (·), v = μ(·)
}

, (11)

where the expectation is over the statistics of x0, {wt } and {βt }.
The goal is again the one specified in the case of the LQG ZSDG—to study exis-

tence and characterization of SPE (defined again by (5), appropriately interpreted),

2We are using “T ” to denote the number of stages in the game; the same notation was used to
denote transpose. These are such distinct usages that no confusion or ambiguity should arise.
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boundedness of upper value if a SPE does not exist, and certainty-equivalence prop-
erty of the SPE. We first recall below the certainty-equivalence property of the stan-
dard LQG optimal control problem, which is a special case of the LQG ZSDG ob-
tained by leaving out the maximizer, that is by letting D = 0. We discuss only the
continuous-time case; an analogous result holds for the discrete-time case (Witsen-
hausen 1971a; Yüksel and Başar 2013).

2.3 The LQG Optimal Control Problem and Certainty Equivalence

Consider the LQG optimal control problem, described by the linear state and mea-
surement equations

dxt = (Axt + But )dt + Fdwt , t ≥ 0, (12)

dyt = Hxtdt + Gdwt, t ≥ 0, (13)

and the quadratic cost function

J (γ ) = E

{
|xtf |2Qf

+
∫ tf

0

[|xt |2Q + λ|ut |2
]
dt

∣∣∣u = γ (·)
}
, (14)

where F and G satisfy the earlier conditions, and as before γ ∈ Γ .
It is a standard result in stochastic control (Fleming and Soner 1993) that there

exists a unique γ ∗ ∈ Γ that minimizes J (γ ) defined by (14), and γ ∗
t (y[0,t)) is linear

in y[0,t). Specifically,

u∗(t) = γ ∗
t (y[0,t)) = γ̃t (x̂t ) = −1

λ
BT P (t)x̂t , t ≥ 0, (15)

where P is the unique non-negative definite solution of the retrograde Riccati dif-
ferential equation

Ṗ + PA + AT P − 1

λ
PBBT P + Q = 0, P (tf ) = Qf , (16)

where {x̂t } is generated by the Kalman Filter:

dx̂t = (Ax̂t + But)dt + K(t)(dyt − Hx̂tdt), x̂0 = 0, t ≥ 0, (17)

K(t) = Λ(t)HT
[
GGT

]−1 (18)

with Λ being the unique non-negative definite solution of the forward Riccati dif-
ferential equation

Λ̇ − AΛ − ΛAT + ΛHT
[
GGT

]−1
HΛ − FFT = 0, Λ(0) = Λ0. (19)
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Note that this is a certainty-equivalent (CE) controller, because it has the structure
of the optimal controller for the deterministic problem, that is − 1

λ
BT P (t)xt , with

the state xt replaced by its conditional mean, E[xt |y[0,t), u[0,t)], which is given by
(17). The controller gain (− 1

λ
BT P (t)) is constructed independently of what the

estimator does, while the estimation or filtering is also essentially an independent
process with however the past values of the control taken as input to the Kalman
filter. Hence, in a sense we have a separation of estimation and control, but not
complete decoupling. In that sense, we can say that the controller has to cooperate
with the estimator as the latter needs to have access to the output of the control box
for the construction of the conditional mean. Of course, an alternative representation
for (17) would be the one where the optimal controller is substituted in place of u:

dx̂t =
((

A − 1

λ
BBT P (t)

)
x̂t

)
dt + K(t)(dyt − Hx̂tdt), x̂0 = 0, t ≥ 0, (20)

but in this representation also there is a need for collaboration or sharing of infor-
mation, since the estimator has to have access to P(·) or the cost parameters that
generate it. Hence, the solution to the LQG problem has an implicit cooperation
built into it, but this does not create any problem or difficulty in this case, since the
estimator and the controller are essentially a single unit.

2.4 The LQG ZSDG and Certainty Equivalence

Now we move on to the continuous-time (CT) LQG ZSDG, to obtain a CE SPE,
along the lines of the LQG control problem discussed above. The corresponding
deterministic LQ ZSDG, where both players have access to perfect state measure-
ments, admits the state-feedback SPE (Başar and Olsder 1999):

u∗(t) = γ ∗
t (x[0,t]) = γ̃t (xt ) = −1

λ
BT Z(t)xt , t ≥ 0, (21)

v∗(t) = μ∗
t (x[0,t]) = μ̃t (xt ) = DT Z(t)xt , t ≥ 0, (22)

where Z is the unique non-negative definite continuously differentiable solution of
the following Riccati differential equation (RDE) over the interval [0, tf ]:

Ż + AT Z + ZA − Z

(
1

λ
BBT − DDT

)
Z + Q = 0, Z(tf ) = Qf . (23)

Existence of such a solution (equivalently nonexistence of a conjugate point in the
interval (0, tf ), or no finite escape) to the RDE (23) is also a necessary condition for
existence of any SPE (Başar and Bernhard 1995), in the sense that even if any (or
both) of the players use memory on the state, the condition above cannot be further
relaxed. This conjugate-point condition translates, in this case, on a condition on λ,
in the sense that there exists a critical value of λ, say λ∗ (which will depend on the
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parameters of the game and the length of the time horizon, and could actually be
any value in (0,∞)), so that for each λ ∈ (0, λ∗), the pair (21)–(22) provides a SPE
to the corresponding deterministic ZSDG.

Now, if a natural counterpart of the CE property of the solution to the LQG
optimal control problem would hold for the LQG ZSDG, we would have as SPE:

u∗(t) = γ ∗
t (y[0,t)) = γ̃t (x̂t ) = −1

λ
BT Z(t)x̂t , t ≥ 0, (24)

v∗(t) = μ∗
t (y[0,t)) = μ̃t (x̂t ) = DT Z(t)x̂t , t ≥ 0, (25)

where

x̂t := E
[
xt |y[0,t),

{
us = γ ∗

s (y[0,s)), vs = μ∗
s (y[0,s)),0 ≤ s < t

}]

is generated by (as counterpart of (20)):

dx̂t = Âx̂t dt + K(t)(dyt − Hx̂tdt), x̂0 = 0, t ≥ 0, (26)

where

Â := A −
(

1

λ
BBT − DDT

)
Z(t) (27)

and K is the Kalman gain, given by (18), with Λ now solving

Λ̇ − ÂΛ − ΛÂT + ΛHT
[
GGT

]−1
HΛ − FFT = 0, Λ(0) = Λ0. (28)

The question now is whether the strategy pair (γ ∗,μ∗) above constitutes a SPE
for the LQG ZSDG, that is whether it satisfies the pair of inequalities (5). We will
address this question in Sect. 4, after discussing in the next section some of the
intricacies certainty equivalence entails, within the context of a two-stage discrete-
time stochastic dynamic game. But first, we provide in the subsection below the
counterpart of the main result of this subsection for the discrete-time dynamic game.

2.5 The LQG Discrete-Time ZS Dynamic Game and Certainty
Equivalence

Consider the discrete-time (DT) LQG ZS dynamic game (DG) formulated in
Sect. 2.2, but with non-failing channels (that is, with p = 0). We provide here a
candidate CE SPE for this game, by following the lines of the previous subsection,
but in discrete time. First, the corresponding deterministic LQ ZSDG, where both
players have access to perfect state measurements admits the state-feedback SPE
(Başar and Olsder 1999) (as counterpart of (21)–(22))
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u∗
t = γ ∗

t (x[0,t]) = γ̃t (xt ) = −1

λ
BT Zt+1

(
N−1

t

)−1
Axt , t = 0,1, . . . , (29)

v∗
t = μ∗

t (x[0,t]) = μ̃t (xt ) = DT Zt+1
(
N−1

t

)−1
Axt , t = 0,1, . . . , (30)

where

Nt = I +
(

1

λ
BBT − DDT

)
Zt+1, t = 0,1, . . . , (31)

and Zt is a non-negative definite matrix, generated by the following discrete-time
game Riccati equation (DTGRE):

Zt = Q + AT Zt+1
(
N−1

t

)T
A, Z(T ) = Q. (32)

Under the additional condition

I − DT Zt+1D > 0, t = 0,1, . . . , T − 1, (33)

which also guarantees invertibility of N , the pair (29)–(30) constitutes a SPE. If, on
the other hand, the matrix (33) has a negative eigenvalue for some t , then the upper
value of the game is unbounded (Başar and Bernhard 1995). As in the CT conjugate
point condition, the condition (33) translates into a condition on λ, in the sense that
there exists a critical value of λ, say λc (which will depend on the parameters of the
game and the number of stages in the game), so that for each λ ∈ (0, λc), the pair
(29)–(30) provides a SPE to the corresponding deterministic ZSDG.

Now, the counterpart of (24)–(25), as a candidate CE SPE, would be

u∗
t = γ ∗

t (y[0,t]) = γ̃t (x̂t |t ) = −1

λ
BT Zt+1

(
N−1

t

)T
Ax̂t |t , t = 0,1, . . . , (34)

v∗
t = μ∗

t (y[0,t]) = μ̃t (x̂t |t ) = DT Zt+1
(
N−1

t

)T
Ax̂t |t , t = 0,1, . . . , (35)

where

x̂t |t := E
[
xt |y[0,t],

{
us = γ ∗

s (y[0,s]), vs = μ∗
s (y[0,s]), s = 0, . . . , t − 1

}]
is generated by, with x̂0|−1 = 0:

x̂t |t = x̂t |t−1 + ΛtH
T
(
HΛtH

T + GGT
)−1

(yt − Hx̂t |t−1)

x̂t+1|t = (Nt )
−1Ax̂t |t−1

+ (Nt )
−1AΛtH

T
(
HΛtH

T + GGT
)−1

(yt − Hx̂t |t−1),

(36)

where the sequence {Λt, t = 1,2, . . . , T } is generated by

Λt+1 = (Nt )
−1AΛt

[
I − HT

(
HΛtH

T + GGT
)−1

HΛt

]
AT

(
(Nt )

−1)T

+ FFT ,
(37)

with the initial condition Λ0 being the covariance of x0.
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Now, if instead of the noisy channel, we have intermittent failure of a channel
which otherwise carries perfect state information, modeled as in Sect. 2.2 but with
clean transmission when the channel operates (failure being according to an inde-
pendent Bernoulli process as before), then as a candidate CE SPE, the pair (34)–(35)
is replaced by

u∗
t = γ ∗

t (y[0,t]) = γ̃t (ζt ) = −1

λ
BT Zt+1

(
N−1

t

)T
Aζt , t = 0,1, . . . , (38)

v∗
t = μ∗

t (y[0,t]) = μ̃t (ζt ) = DT Zt+1
(
N−1

t

)T
Aζt , t = 0,1, . . . , (39)

where the stochastic sequence {ζt , t = 0,1, . . .} is generated by

ζt = βtyt +(1−βt )

(
I −

(
1

λ
BBT +DDT

)
Zt+1

(
N−1

t

)T
)

Aζt−1, ζ0 = y0. (40)

We will explore in Sect. 4 whether these CE policies are in fact SPE policies, and
under what conditions.

3 A Two-Stage Discrete-Time Game with Common
Measurement

To explicitly demonstrate the fact that certainty equivalence generally fails in games
(but holds in a restricted sense), we consider here a specific 2-stage version of the
formulation (7), (8), (11):

x2 = x1 − u + w1; x1 = x0 + 2v + w0, (41)

y1 = β1(x1 + r1); y0 = β0(x0 + r0), (42)

J (γ,μ) = E
{
(x2)

2 + λu2 − v2|u = γ (·), v = μ(·)}, (43)

with u = γ (y1, y0;β1, β0), v = μ(y0;β0), where the random variables x0, w0, w1,
r0, r1 are independent, Gaussian, with zero mean and unit variance, and β1, β0 are
independent Bernoulli random variables with Probability(βt = 0) = p, for t = 0,1.

3.1 Certainty-Equivalent SPE

The deterministic version of the game above, with u = γ (x1, x0), v = μ(x0), admits
a unique saddle-point solution (Başar and Olsder 1999), given by

γ ∗(x1, x0) = 1

1 + λ
x1, μ∗(x0) = 2λ

1 − 3λ
x0, (44)
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whenever

0 < λ <
1

3
, (45)

and for λ > 1/3, the upper value is unbounded.
Now, a certainty-equivalent (CE) SPE for the original stochastic game, if exists,

would be one obtained from the SPE of the related deterministic dynamic game, as
above, by replacing x0 and x1 by their conditional means, which in the case of x1
would require the SP policy at the earlier stage (that is, stage 0). Carrying this out,
we have

μ∗(y0;β0) = 2λ

1 − 3λ
E[x0|y0;β0] = λ

1 − 3λ
y0, (46)

and

γ ∗(y[0,1];β[0,1]) = 1

1 + λ
E

[
x1|y1, y0;β1, β0;v = μ∗(y0;β0)

]

= 1

1 + λ

[
β1

(
2

3
y1 − 3

10
y0 − 6

5
μ∗(y0;β0)

)

+ β0

(
− 1

15
y1 + 1

2
y0 + 2μ∗(y0;β0)

)]
. (47)

Note that if the channel does not fail at all (that is, β0 = β1 = 1), then one can have
a simpler expression for (47), given by:

γ ∗(y1, y0) = 3

5(1 + λ)
y1 + 1

5(1 − 3λ)
y0. (48)

3.2 Analysis for p = 0 for CE SPE and Beyond

We assume in this subsection that p = 0, in which case the CE SPE (whose SPE
property is yet to be verified) is given by (46)–(48). It is easy to see that J (γ ∗, v),
with γ ∗ as in (48) is unbounded in v unless λ < 3/25, which means that the CE pair
(46)–(48) cannot be a SPE for λ ∈ [3/25,1/3), even though the pair (44) was for the
deterministic game. For the interval λ ∈ (0,3/25), however, the CE pair (46)–(48) is
a SPE for the stochastic game, as it can easily be shown to satisfy the pair of inequal-
ities (5). Further, for this case, since μ∗ is the unique maximizer to J (γ ∗,μ), and γ ∗
is the unique minimizer to J (γ,μ∗), it follows from the ordered interchangeability
property of multiple SP equilibria (Başar and Olsder 1999) that the SPE is unique.
Hence, for the parametrized stochastic dynamic game, a “restricted” CE property
holds—restricted to only some values of the parameter.

Now the question is whether the parametrized stochastic game admits a SPE for
λ ∈ [3/25,1/3). Clearly, it cannot be a CE SPE, that is the SPE of the determinis-
tic version cannot be used to obtain it. Note that, for λ ∈ [3/25,1/3), if one picks
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γ (y1, y0) = [1/(1 + λ)]y1 in J (γ,μ), then the maximum of this function with re-
spect to μ exists and is bounded, which means that the upper value of the stochastic
game is bounded. Its lower value is also clearly bounded (simply pick v = 0).

Again working with the special case p = 0 (that is no failure of the noisy chan-
nels), we now claim that there indeed exists a SPE for λ ∈ [3/25,1/3), but it entails
a mixed strategy for the maximizer (Player 2) and still a pure strategy for the mini-
mizer (Player 1). These are:

v = μ∗(y0) = 2λ

1 − 3λ
E[x0|y0] + ξ = λ

1 − 3λ
y0 + ξ,

ξ ∼ N
(
0, σ 2), σ 2 = 4 − 5

√
1 − 3λ

8
√

1 − 3λ
,

(49)

and

u = γ ∗(y1, y0) = 1

1 + λ
E

[
x1|y1, y0, v = μ∗(y0)

]

= 2 − √
1 − 3λ

2(1 + λ)
y1 + 1

4
√

1 − 3λ
y0. (50)

First note that σ 2 > 0 for λ ∈ (3/25,1/3), and σ 2 = 0 at λ = 3/25, and further
that the policies (49)–(50) agree with (46)–(47) at λ = 3/25, and hence transition
from CE SPE to the non-CE one is continuous at λ = 3/25. Now, derivation of (49)–
(50) as a SPE uses the conditional equalizer property of the minimizer’s policy (that
is (50)). One constructs a policy γ for the minimizer, under which (that is, with
u = γ (y0, y1)) the conditional cost

E
{
(x2)

2 + λu2 − v2|y0
}

becomes independent of v, and (50) is such a policy; it is in fact the unique such
policy in the linear class. Hence, any choice of μ, broadened to include also mixed
policies, would be a maximizing policy for Player 2, and (49) is one such policy.
This establishes the left-hand-side inequality in (5). For the right-hand-side inequal-
ity, it suffices to show that (50) minimizes J (γ,μ∗); this is in fact a strictly convex
LQG optimization problem, whose unique solution is (50). Because of this unique-
ness, and ordered interchangeability of multiple SPE (Başar and Olsder 1999), the
SPE (49)–(50) is unique.

3.3 The Case p > 0

We now turn to the case where the channels fail with positive probability, for which
a candidate pair of SPE policies, based on CE, was given by (46)–(47). Their SPE
property is yet to be shown, as well as the range of values of λ for which it is valid as
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a SPE is yet to be determined, which we address in this subsection. Toward that end,
let us first consider, as a benchmark, the special case with noise-free (but still failure
prone) measurement channel. This would therefore correspond to the formulation
where (42) is replaced by

y1 = βx1; y0 = β0x0.

The counterpart of (46)–(47) in this case would be (this can also be obtained directly
from the perfect-state SPE):

v = μ∗(y0;β0) = 2λ

1 − 3λ
y0, (51)

u = γ ∗(y[0,1];β[0,1]) = β1
1

1 + λ
y1 + (1 − β1)

1

1 + λ

[
y0 + 2μ∗(y0)

]
. (52)

Now, if Player 2 employs (51), then the unique response of Player 1 will be (1/(1 +
λ))x1 for β1 = 1, and (1/(1 + λ))E[x1|x0] = (1/(1 + λ))(x0 + 2μ∗(x0)) if β1 = 0
and β0 = 1, which agrees with (52); if both β’s are zero, then clearly Player 1’s
response will also be zero. Note that the responses by Player 1 in all these cases are
unique.

If Player 1 employs (52), then the conditional cost (conditioned on y0, β0) seen
and to be maximized by Player 2 is:

For β0 = 1 (after some simplifications):

1 + p + (1 − p)
λ

1 + λ

[
1 + (x0 + 2v)2] + p

[
λ

1 + λ
x0 + 2v − 2

1 + λ
μ∗(y0)

]2

p

+ λ

(1 + λ)2

[
x0 + 2μ∗(y0)

]2
p − v2 (53)

and for β0 = 0 (after some simplifications):

1 + p + λ

1 + λ
(2 − p) + 3λ + 4p − 1

1 + λ
v2. (54)

Both (53) and (54) are strictly concave in v if and only if

p <
1

4
and λ <

1 − 4p

3
, (55)

in which case the unique maximizing solution to (54) is v∗ = 0, and likewise to
(53) is v∗ = μ∗(x0) = (2λ/1 − 3λ)x0, both of which agree with (51). Hence, the
CE pair (51)–(52) indeed provides a SPE if the condition (55) holds, that is the
failure probability should be less than 1/4, and the parameter λ should be less than
a specific threshold, which decreases with increasing p. Note that if p = 0, we
recover the earlier condition (45) for the deterministic game, where we know that
if λ > 1/3, then the upper value is unbounded. The question is whether the same
applies here, for λ > (1−4p)/3. This indeed is the case, as one can easily argue that
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the concavity condition of (54) cannot be improved further as universally optimal
choice for γ when Player 1 has access to x1 but not x0 has led to that conditional
cost. Hence, the pair (51)–(52) is the complete set of SPE for the game of this
subsection (with channel failure but no noise in the channel), and the condition (55)
is tight.

We are now in a position to discuss the SPE of the original stochastic game of
this section, to find the conditions (if any) under which the CE policies (46)–(47)
are in SPE, and whether those conditions can be relaxed by employing structurally
different policies (as in Sect. 3.2).

3.4 CE SPE and Beyond for the 2-Stage Game

To obtain the complete set of SPE for the original stochastic 2-stage game, our
starting point will be the pair of CE policies (γ ∗,μ∗) given by (47) and (46), and to
find the region in the λ−p space for which these policies constitute a SPE. Clearly,
we would expect that region (if exists) to be no larger than the one described by (55)
since that one corresponded to the noise-free channel.

Let us first consider the right-hand inequality of (5) for this game, with
μ∗(y0;β0) given by (46). In terms of γ this is a strictly convex quadratic opti-
mization problem, which one minimizes with respect to u after conditioning the
cost on y[0,1] and β[0,1]; the result is the unique solution given by (47). This part of
the inequality does not bring in any additional restriction on λ and p, other than the
condition λ < 1/3 needed in the expression for μ∗.

The left-hand inequality of (5) for this game is a bit more involved. We now pick
γ ∗ as given by (47), and maximize the resulting cost over μ, which is equivalent to
maximizing the conditional cost with respect to v where conditioning is with respect
to y0 and β0. Even though this is also a quadratic optimization problem, existence
and uniqueness of maximum are not guaranteed for all values of λ and p, and we
have to find (necessary and sufficient) conditions for strict concavity (in v). Now,
the conditional cost (conditioned on (y0, β0), and with v = μ(y0, β0)) is:

For β0 = 1 (after some simplifications):

p

[
x0 + 2v − 1

2(1 − 3λ)
y0

]2

+ (1 − p)

[
2 + 5λ

5(1 + λ)
(x0 + 2v) − 1

5(1 − 3λ)
y0

]2

+ λ(1 − p)

[
3

5(1 + λ)
(x0 + 2v) + 1

5(1 − 3λ)
y0

]2

− v2

+ 2p + (1 − p)
50λ2 + 88λ + 38

25(1 + λ)2
+ λp

4(1 − 3λ)2
(y0)

2, (56)

and for β0 = 0 (after some simplifications):
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(1 − p)

[
2 + 5λ

5(1 + λ)
(x0 + 2v)

]2

+ λ(1 − p)

[
3

5(1 + λ)
(x0 + 2v)

]2

− v2

+ p[x0 + 2v]2 + 2p + (1 − p)
50λ2 + 88λ + 38

25(1 + λ)2
. (57)

Both (56) and (57) are strictly concave in v if and only if the coefficients of the
quadratic terms in v (identical in the two cases) are negative, that is

(1 − p)

[
4(2 + 5λ)2

25(1 + λ)2
+ 36λ

25(1 + λ)2

]2

+ 4p − 1 < 0,

which is equivalent to

p <
3

28
and λ <

3 − 28p

25
. (58)

We note that the upper bound on the failure probability p is precisely the condition
that makes the upper bound on λ in (58) positive. Another point worth making is
that we naturally would expect the conditions on p and λ as given above in (58) to
be more stringent than the ones in (55), for the noise-free case. Clearly the condition
on p is more restrictive, as 3/28 < 1/4. For the bound on λ, it again immediately
follows that

3 − 28p

25
<

1 − 4p

3
, (59)

whenever p < 1.
Now, to complete the verification of the SPE property of the pair (47) and (46),

we still have to show that the unique maximizers of the strictly concave (under (58))
quadratic conditional costs (57) and (56) are given by (46). For the former, the result
follows readily since its maximizer is v = 0. For the latter, a simple differentiation
with respect to v, and using E[x0|y0, β0 = 1] = (1/2)y0, leads after some extensive
calculations and simplifications to v = [λ/(1 − 3λ)]y0, which is the same as (46).

Hence, the SPE for the 2-stage game of this section (with noisy channels and
nonzero failure probabilities) is a CE SPE, but for a more restrictive set of values
for p and λ (compare (58) with (55), as we have noted earlier). The question now is
whether the gap can be closed by using non-CE policies, as was done in the failure-
free case (p = 0). Clearly, the upper bound of the game is finite for the entire set of
values of p and λ in (55) (simply substitute (52) into the cost for u, with additive
noise in y1 and y0) and note that the presence of additive noise in the channels does
not alter the required concavity condition, and hence we have a well-defined strictly
concave quadratic maximization problem for v under the same condition (55).

As already mentioned, the region in the parameter space λ − p that corresponds
to the CE SPE (47) and (46) is smaller than the region corresponding to the SPE of
the noise-free channel case, and the question now is whether region of existence of
a SPE can be enlarged by transitioning to a pair of non-CE policies, as it was done
in Sect. 3.4 for the case when p = 0. We will see that this is indeed the case, and
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an equalizer policy for Player 1 does the job. Its derivation, however, is a bit more
complicated than the one of Sect. 3.4 because the possibility of channel failures
brings in an additional element of complexity (even though the basic idea is still
the same). Let us first assume that β0 = 1, and start with a general linear policy for
Player 1:

u = γ̂ (y1, y0, β1) = α1y1 + α0(β1)y0, (60)

where α1, α0(β1 = 1) =: α1
0 , α0(β1 = 0) =: α0

0 are constant parameters yet to be
determined.3 They will be determined in such a way that with (60) used in J (γ, v),
the latter expression becomes independent of v (when conditioned on y0). Skipping
the details, the expression for

J (γ̂ , v) = E
{(

x1 − γ̂ (y1, y0, β1)+w1
)2 +λ

(
γ̂ (y1, y0, β1)

)2 −v2|y0, β0 = 1
}

(61)

is

p
[
x0 + 2v − α0

0y0
]2 + (1 − p)

[
(1 − α1)(x0 + 2v) − α1

0y0
]2

+ λ(1 − p)
[
α1(x0 + 2v) + α1

0y0
]2 − v2 + (1 − p)λ

(
2(α1)

2 + (
α1

0

)2 + 1
)

+ 2p + (1 − p)
(
(α1)

2 + (1 − α1)
2 + 1

) + λp
(
α0

0

)2
(y0)

2 + 1. (62)

This is a quadratic function of v; the coefficient of v2 can be annihilated by choosing

α1 = 1

1 + λ

[
1 −

√
(1 − 4p − 3λ)(1 − p)

2(1 − p)

]
, (63)

which is a well-defined expression provided that 4p + 3λ < 1, and naturally (since
λ > 0) also p < 1/4 which are identical to (55). For annihilation of the coefficient
of v, on the other hand, we need the following relationship between α1

0 and α0
0 :

2pα0
0 + α1

0

√
(1 − 4p − 3λ)(1 − p) = 1

4
. (64)

Now, we have to show that these are best responses to some policy by Player 2,
which will necessarily be a mixed strategy, as in Sect. 3.4. The process now is to
assume that v has the form4

v = μ̂(y0) = k0y0 + ξ, ξ ∼ N
(
0, σ 2), (65)

for some k0 and σ 2; find the best response of Player 1 to this by minimizing J (γ, μ̂)

with respect to γ (which, by strict convexity, will clearly be unique, and be in

3We have taken α1 not to be dependent on β1, because when β1 = 0, y1 ≡ 0, making α1 superflu-
ous.
4One can take any form here, since γ̂ had annihilated v, but we take linear-plus-Gaussian in antic-
ipation of γ̂ to be in equilibrium with v.
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the structural form (60)); require consistency with (63)–(64); and solve for k0, σ 2,
α1

0 , α0
0 . The outcome is the following set of unique expressions:

k0 = λ

1 − 3λ
, σ 2 =

√
(1 − p)

2
√

(1 − 4p − 3λ)
− 5

8
(66)

α0
0 = 1

2(1 − 3λ)
, α1

0 =
√

(1 − 4p − 3λ)(1 − p)

4(1 − p)(1 − 3λ)
. (67)

To complete the construction of the SPE, we still have to find the conditions under
which σ 2 as given above is well defined (that is, it is positive). The required con-
dition (both necessary and sufficient, provided that (55) holds, which is a natural
condition) is

4(1 − p) > 5
√

(1 − 4p − 3λ)(1 − p) ⇔ λ > max

(
0,

3 − 28p

25

)
. (68)

Note that the (lower) bound on λ matches exactly the upper bound in (58), and hence
non-CE SPE policies make up for the restriction brought in by the CE SPE.

To gain further insight (for purposes of establishing continuity) we can look at
two limiting cases: (i) For p = 0, the non-CE solution matches exactly the one
given in Sect. 3.2 for the failure-free case. (ii) At λ = (3 − 28p)/25, with p > 3/28,
which is the boundary between the two regions corresponding CE and non-CE SPE,
α1 in (63) is 3/[5(1 + λ)], which is exactly the coefficient of y1 in (47) with β1 =
β0 = 1; α1

0 in (67) is 1/[5(1 − 3λ)], which is exactly the coefficient of y0 in (47)
with β1 = β0 = 1; and finally, α0

0 in (67) (which does not depend on p) is exactly
the coefficient of y0 in (47) with β1 = 0, β0 = 1, and this one is for all λ satisfying
all other conditions, and not only at the boundary.

The remaining case to analyze is β0 = 0. The CE SPE in this case would be (from
(46)–(47)):

γ ∗(y1;β1) = 2

3(1 + λ)
y1, v∗ = 0, (69)

which is a valid one (that is the cost under γ ∗ is strictly concave in v) if and only if
the multiplying term for v2 is negative, that is

(1 − p)

[
4(3λ + 1)2

9(1 + λ)2
+ 16λ

9(1 + λ)2

]
− 1 + 4p < 0,

which simplifies to λ < (5 − 32p)/27, for which we need p < 5/32 (for positivity).
To extend the solution to a larger region, we again have to look for an equalizer
policy that annihilates v, and is also best response to v = ξ ∼ N(0, σ 2) for some σ 2.
Following the same process as earlier, we start with u = α1y1, and compute the cost
faced by Player 2, where the multiplying term for v2 is:

4(1 − p)
[
(1 − α1)

2 + λ(α1)
2] − 1 + 4p.
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Setting this equal to zero, and solving for α1 we obtain the expression given by (63).
Now, the best response by Player 1 to v = ξ is

u = 1

1 + λ
E[x0 + 2ξ + w0|y1] = 1

λ

(
1 − 1

2

√
1 − 3λ

)
y1,

where we then invoke the multiplying term above to equal α1 given by (63), which
leads to the following unique expression for σ 2:

σ 2 =
√

1 − p

2
√

1 − 4p − 3λ
− 3

4
, (70)

which is well-defined and positive provided that

max

(
0,

5 − 32p

27

)
< λ <

1 − 4p

3
. (71)

Note that the lower bound on λ matches the upper bound in the case of the CE
SPE, and that the SPE policy of Player 1 is continuous across the boundary λ =
(5 − 32p)/27.

We now collect all this in the following theorem, which is the main result of this
section.

Theorem 1 The two stage discrete-time stochastic game formulated in this section
admits a saddle-point equilibrium (SPE) provided that

0 ≤ p <
1

4
and 0 < λ <

1 − 4p

3
;

otherwise, the upper value of the game is unbounded. The SPE policies of the play-
ers, (γ ∗,μ∗), admit different characterizations in two different regions of the pa-
rameter space, and also depending on whether β0 = 1 or 0:

• For λ ≤ (5 − 32p)/27 and p < 5/32 when β0 = 0, and λ ≤ (3 − 28p)/25 and
p < 3/28 when β0 = 1, γ ∗ and μ∗ are given by (47) and (46), respectively; this
constitutes a certainty-equivalent (CE) SPE.

• For max(0, (5 − 32p)/27) < λ < 1 − (4p/3) and p < 1/4 when β0 = 0, and
max(0, (3 − 28p)/25) < λ < 1 − (4p/3) and p < 1/4 when β0 = 1, the SPE
policies are of the non-CE type, given by

γ ∗(y1, y0;β1, β0) = α1y1 + (
β1α

1
0 + (1 − β1)α

0
0

)
y0 (72)

μ∗(y0;β0) = k0y0 + ξ,

ξ ∼ N
(
0, σ 2), σ 2 =

√
1 − p

2
√

1 − 45 − 3λ
− 3

4
+ 1

8
β0,

(73)

where α1 is given by (63), and the pair (α0
0, α1

0) is given by (67).
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4 CE SPE of the LQG ZSDG in Continuous and Discrete Time

4.1 Various Approaches Toward Construction of SPE

For a two-person ZSDG (in normal or strategic form), with strategy spaces Γ (for
Player 1, the minimizer) and M (for Player 2, the maximizer), with (expected) cost
function J , defined on Γ ×M, let us recall from (5) that a pair (γ ∗ ∈ Γ,μ∗ ∈ M)

is in SPE if

J
(
γ ∗,μ

) ≤ J
(
γ ∗,μ∗) ≤ J

(
γ,μ∗), ∀γ ∈ Γ,μ ∈ M.

The general direct approach toward derivation of a SPE would be:

• Fix μ ∈M as an arbitrary policy for Player 2, and minimize J (γ,μ) with respect
to γ on Γ .

• Fix γ ∈ Γ as an arbitrary policy for Player 1, and maximize J (γ,μ) with respect
to μ on M.

• Look for a fixed point, which would then be a SPE.

Even though direct, this approach would entail a very complex process for dynamic
games (in continuous or discrete time), even if they are of the linear-quadratic type.
Unless the information structure is static, the optimization problems involved struc-
turally depend on the selection of arbitrarily fixed policies, rendering the underlying
optimization problems unwieldy.

An alternative (still direct) approach would be a recursive (backward-forward)
one, applicable to discrete-time dynamic games with particular information struc-
tures, and possibly extendable to some classes of continuous-time ZSDGs:

• Proceed recursively at t = T − 1, T − 2, . . . .
• At t , solve for SPE (if exists) of the 1-stage game by fixing in J policies for

t + 1, . . . , T − 1 at their optimum choices and for 0, . . . , t − 1 arbitrarily, with
the former possibly depending on the optimum policies (yet to be determined) at
0,1, . . . , t .

Such a construction is doable, but it is quite tedious (and depends on the specific in-
formation structure, and applies primarily to discrete-time games); for such a deriva-
tion, in a broader Nash equilibrium context, see Başar (1978a).

A third, indirect approach, entails expansion of information structures of the
players, obtaining a SPE in the induced expanded (richer) policy spaces, and then
projecting the solution (contracting it) back to the original policy spaces. Such an
approach works when the SPE values of the two games (one on original policy
spaces and the other one on the expanded ones) are the same, and this is generally
the case if the expansion involves only past actions of the players. Hence, we have
the following process:

• Endow both players with past actions, assuming that they already have access to
the past measurements in terms of which the actions were generated.
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• Any SPE to the original stochastic dynamic game (SDG) is also a SPE to the new
one (but naturally not vice versa).

• Any two SPE of the new SDG are ordered interchangeable.
• Solve for some (conveniently constructed) SP policies for the new SDG, and find

representations (Başar and Olsder 1999) in the original policy spaces.
• Verify for the original SDG that the policies arrived at are indeed in SPE (this step

is a verification of existence, which is much simpler than verifying characteriza-
tion).

A further justification of this indirect approach can be found in Başar (1981). In
the next two subsections, we illustrate the approach on the two LQ ZSDGs intro-
duced and discussed in Sects. 2.1, 2.2, 2.4, and 2.5. While doing this, we have to
keep in mind the features we have observed within the context of the 2-stage ZS
SDG of Sect. 3.

4.2 SPE Property of CE Policies of the LQG ZSDG

We turn here to the continuous-time LQG ZSDG of Sect. 2.1, for which the CE
policies (24)–(25) were offered as a candidate SPE for the original SDG with noise
in the common channel. We now investigate whether these policies are indeed in
SPE for at least some region of the parameter space (as was the case for the 2-stage
game of Sect. 3). Toward this end, we first enlarge the policy spaces of the players to
include also past actions, that is, the players now have access to (y[0,t), u[0,t), v[0,t))

at time t . Denote the corresponding expanded policy spaces for Players 1 and 2
by Γ̃ and M̃, respectively. If y[0,t) was replaced by xt (that is, the perfect state
measurement case) and still allowing players to have access to past actions, the
pair of policies (21)–(22) would still be in SPE (Başar and Olsder 1999), whose CE
counterpart in Γ̃ ×M̃ would still be of the form (24)–(25), with however {x̂t , t ≥ 0}
replaced by {ζt , t ≥ 0}, generated by

dζt = (Aζt + But + Dvt)dt + K(t)(dyt − Hζtdt), ζ0 = 0, t ≥ 0. (74)

Note that the above is still the Kalman filter equation, but driven not only by the
measurement but also by the past actions. Now, one can show using the ordered
interchangeability property of multiple SPE policies that any pair of SP policies
in Γ × M also constitute a SPE in the expanded policy spaces Γ̃ × M̃ (but not
vice versa) (Başar and Olsder 1999; Başar 1981), and further that by some standard
properties of the LQG control problem discussed in Sect. 2.3, the pair (24)–(25)
indeed constitutes a SPE for the new SDG with expanded policy spaces, provided
that the RDE (23) does not have a conjugate point in the interval [0, tf ], which
is exactly the condition of existence of SPE to the LQG ZSDG with perfect-state
measurements.

Clearly, however, the SP policies above for the SDG with expanded policy spaces
are not implementable even for that game, because they require cooperation on the
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generation of the conditional mean of x, or that estimate ζ (as in (74)) to be gen-
erated by a third party, and supplied to the two antagonistic players, which is not
realistic. To make it real-time implementable, and in line with the adversarial aspect
of the game, we have to replace these policies with ones that allow players to run
their own filters, driven by the common measurement (but not with actions of the
players), as given below:

u∗(t) = γ ∗
t (y[0,t)) = γ CE

t (zt ) = −1

λ
BT Z(t)zt , t ≥ 0, (75)

v∗(t) = μ∗
t (y[0,t)) = μCE

t (ηt ) = DT Z(t)ηt , t ≥ 0, (76)

where z and η are generated by (as counterpart of (74)):

dzt = Âztdt + K(t)(dyt − Hztdt), z0 = 0, t ≥ 0, (77)

dηt = Âηtdt + K(t)(dyt − Hηtdt), η0 = 0, t ≥ 0, (78)

where

Â := A −
(

1

λ
BBT − DDT

)
Z(t),

K is the Kalman gain, given again by (18), with Λ solving (28).
The policies (γ CE,μCE) given by (75)–(76) constitute representations of the SP

policies in the expanded policy spaces and now belong to Γ ×M, and as such also
constitute SPE for the original SDG, as argued earlier, provided that the response
of Player 1 to (76) and that of Player 2 to (75) are well defined, leading to bounded
costs. For the former, it can be shown easily (and in fact argued without any explicit
computation) that

min
γ∈Γ

J
(
γ,μCE) = J

(
γ CE,μCE)

,

and particularly that the quadratic function J (u,μCE) is strictly convex in u. This
establishes the right-hand-side of the SP inequality (5). For the left-hand-side in-
equality, on the other hand, we have the LQG optimal control problem

max
μ∈M

J
(
γ CE,μ

)
,

with 2n-dimensional differential constraints:

dxt = (Ax + Dvt)dt − 1

λ
BT Z(t)ztdt + Fdwt, t ≥ 0,

dzt = Ãztdt + K(t)(dyt − Hztdt), z0 = 0, t ≥ 0.

The conjugate-point condition on (23) is not sufficient for this LQG optimal con-
trol problem to be well defined, as the cost J (γ CE, v) could be non-concave in v.
Strict concavity here is in fact the only condition that would be needed for the pair
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(γ CE,μCE) in (75)–(76) to constitute a SPE. Now note that J (γ CE, v) can be written
as

J
(
γ CE, v

) = E

{
|xtf |2Qf

+
∫ tf

0

[
|xt |2Q + 1

λ

∣∣BT Z(t)zt

∣∣2 − |vt |2
]
dt

}

=: E

{
|mtf |2

Q̃f
+

∫ tf

0

[|mt |2Q̃ − |vt |2
]
dt

}
,

where m := (xT zT )T , Q̃f := block diag(Qf ,0), and Q̃ := block diag(Q, (1/λ) ×
ZBBT Z). Further, m evolves according to

dmt = Ãmtdt + D̃vtdt + F̃ dwt ,

where D̃ := [DT ,0]T , F̃ := [FT ,GT KT ]T , and Ã is a 2n × 2n matrix, whose ij -
th block is, for i, j = 1,2: [Ã]11 := A, [Ã]21 := KH , [Ã]12 := −(1/λ)BBT Z, and
[Ã]22 := Â − KH .

The condition for strict concavity for this optimization problem, regardless of
the nature of the information available to Player 2, is (Başar and Bernhard 1995)
nonexistence of a conjugate point to the RDE below on the interval [0, tf ]:

Ṡ + SÃ + ÃT S + SD̃D̃T S + Q̃ = 0, S(tf ) = Q̃f . (79)

We now collect all this in the theorem below.

Theorem 2 The continuous-time LQG ZSDG of Sect. 2.1 admits a pure-strategy
SPE provided that the RDEs (23) and (79) have well-defined nonnegative-definite
solutions on the interval [0, tf ], in which case the corresponding policies for the
players, in SPE, are given by (75)–(76). These feature a restricted certainty equiva-
lence property.

Remark 1 A number of observations are in order here. First, the policies in SPE for
the SDG are not simple CE versions of the SPE of the deterministic game, that is
they are not the pair (24)–(25), even though they can be derived from the SPE of
the deterministic game by endowing the players with two separate filter equations
even though the players have access to a common measurement channel. Second,
the condition of existence of a pure-strategy SPE for the SDG is more restrictive
than its counterpart for the perfect-state version (or essentially equivalently the de-
terministic game). This would not be surprising in view of the results of Sect. 3
for perhaps the simplest stochastic dynamic game, where the gap between the two
conditions (for existence of pure-strategy SPE in the games with perfect state and
noisy state information) was completely covered by allowing for mixed strategies
(for the maximizing player). It is quite plausible that the same would hold here, but
derivation of such a mixed-strategy SPE for the continuous-time LQG ZSDG still
remains a challenging task.
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4.3 SPE Property of CE Policies of the LQG Discrete-Time ZSDG

We now proceed with an analysis that is the counterpart of the one above (in
Sect. 4.2) for the discrete-time game of Sect. 2.2 and Sect. 2.5, not for the most
general case, but for two scenarios: (i) when there is no failure of channels (that
is p = 0, as in Sect. 3.2), and (ii) the channel provides perfect state measurement,
but intermittently fails (as in Sect. 3.3). In both cases, we obtain restricted CE SPE.
The derivation is a direct counterpart of the one in Sect. 4.2), and hence to avoid
duplication we will just provide the basic results without providing details of the
reasoning and the pathway.

Let us first discuss case (i). In Sect. 2.5, we had offered (34)–(35) as a candidate
SPE pair for this scenario, but as we have argued in the previous subsection, having
a single filter to be shared by both players is not a realistic situation, and hence we
will have to introduce individualized compensators. In view of this, (34)–(35) will
have to be modified as follows:

u∗
t = γ ∗

t (y[0,t]) = γ CE
t (zt |t ) = −1

λ
BT Zt+1

(
N−1

t

)T
Azt |t , t = 0,1, . . . , (80)

v∗
t = μ∗

t (y[0,t]) = μCE
t (ηt ) = DT Zt+1

(
N−1

t

)T
Aηt |t , t = 0,1, . . . , (81)

where zt |t and ηt |t are generated by, with z0|−1 = 0:

zt |t = zt |t−1 + ΛtH
T
(
HΛtH

T + GGT
)−1

(yt − Hzt |t−1)

zt+1|t = (Nt )
−1Azt |t−1

+ (Nt )
−1AΛtH

T
(
HΛtH

T + GGT
)−1

(yt − Hzt |t−1),

(82)

and, with η0|−1 = 0,

ηt |t = ηt |t−1 + ΛtH
T
(
HΛtH

T + GGT
)−1

(yt − Hηt |t−1)

ηt+1|t = (Nt )
−1Aηt |t−1

+ (Nt )
−1AΛtH

T
(
HΛtH

T + GGT
)−1

(yt − Hηt |t−1),

(83)

and the sequence {Λt, t = 1,2, . . . , T } is as in (37). By going through similar argu-
ments as in the previous subsection, the pair (80)–(81) provides a SPE, provided that
(33) holds and the quadratic function J (γ CE, v) is strictly concave in v. An explicit
condition can be obtained for the latter in terms of a 2n × 2n discrete-time Riccati
equation, which involves a recursive verification as in (33).

For case (ii), that is when yt = βtxt , t = 0,1, . . . , T − 1, the starting point is the
pair of policies (38)–(39), where as before we endow the players with two separate
compensators, with states ζ 1 and ζ 2, generated by, for i = 1,2,
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ζ i
t = βtyt + (1 − βt )

(
I −

(
1

λ
BBT + DDT

)
Zt+1

(
N−1

t

)T
)

Aζ i
t−1, ζ i

0 = y0.

(84)

Hence, the players’ CE policies become

u∗
t = γ ∗

t (y[0,t]) = γ̃ CE
t (ζt ) = −1

λ
BT Zt+1

(
N−1

t

)−1
Aζ 1

t , t = 0,1, . . . , (85)

v∗
t = μ∗

t (y[0,t]) = μ̃CE
t

(
ζ 2
t

) = DT Zt+1
(
N−1

t

)−1
Aζt , t = 0,1, . . . , (86)

which, by an argument similar to the earlier case, are in SPE provided that (33)
holds and the quadratic function J (γ̃ CE, v) is strictly concave in v. As before, an
explicit condition can be obtained for the latter in terms of a 2n × 2n discrete-time
Riccati equation, which involves a recursive verification as in (33).

In view of the complete set of results of Sect. 3 for a 2-stage version of this
game, for case (ii), we would not expect a less stringent condition to be obtained
(that is, there would not be any need to expand the policy spaces to include mixed
strategies), whereas for case (i) the extra condition introduced in terms of strict
concavity of J (γ CE, v) in v can be dispensed with by inclusion of mixed strategies.
We do not pursue this any further here.

For the more general case, however, when the channel is noisy and failure prob-
ability is p > 0, still a restricted CE will hold, with z and η in (82)–(83) now in-
corporating the possibility of failures, as in the case of derivation of Kalman filters
with missing measurements (Shi et al. 2010). Here also a strict concavity condition
will be needed for the existence of a pure-strategy SPE, in addition to the one for
p = 0, which however can be dispensed with by inclusion of mixed strategies.

5 Discussion, Extensions, and Conclusions

One important message that this chapter conveys (which applies to more general
differential/dynamic games with similar information structures) is that in zero-sum
stochastic differential/dynamic games (ZS SDGs) a restricted certainty equivalence
(CE) applies if players have a common measurement channel, but the adversarial
nature of the problem creates several caveats not allowing the standard notions of
certainty equivalence or separation prominent in stochastic control problems (Wit-
senhausen 1971a, 1971b; Fleming and Soner 1993; Yüksel and Başar 2013) to find
an immediate extension. Expansion of information structures to include also action
information compatible with the original information, and without increasing payoff
relevant information, appears to be a versatile tool in an indirect derivation of pure-
strategy saddle-point equilibria (SPE), which however does not apply to derivation
of mixed-strategy SPE, as it relies heavily on the ordered interchangeability prop-
erty of multiple pure-strategy SPE. For the same reason, the indirect approach does
not apply to nonzero-sum dynamic games; in fact, Nash equilibria of genuinely
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nonzero-sum stochastic games (unless they are strategically equivalent to zero-sum
games or team problems) never satisfy CE (Başar 1978b). Now, coming back to ZS
SDGs, when a generalized CE SPE exists in some region of the parameter space,
this is not the full story because the game may also admit mixed-strategy SPE out-
side that region, which however has to be obtained using a different approach–using
notions of annihilation and conditional equalization, as it has been demonstrated in
Sect. 3. Hence, expansion of strategy (policy) spaces from pure to mixed helps to
recover the missing SPE.

We have deliberately confined our treatment in this paper to ZS SDGs with sym-
metric information, to be able to introduce a restricted (and in some sense gener-
alized) notion of CE and to show that any attempt of directly extending CE from
stochastic optimal control to games is a path full of pitfalls, even though the prob-
lem (of derivation of SPE) is still tractable, but using an indirect approach (that
makes use of expansion of strategy spaces and ordered interchangeability property
of multiple pure-strategy SPE). As indicated earlier, this approach does not extend
to nonzero-sum games (NZSGs), because expansion of strategy spaces (through
actions) leads to multiplicity of Nash equilibria, and in fact a continuum of them
(Başar and Olsder 1999), and multiple Nash equilibria (NE) are not orderly inter-
changeable. Still, there is another approach to derivation of NE with nonredundant
information, as briefly discussed in Sect. 1, provided that we have a discrete-time
game, with complete sharing of information (that is, a common measurement chan-
nel) or sharing of observations with one step delay (Başar 1978a). The same ap-
proach would of course apply to ZSDGs as well (with one-step delayed sharing),
but then the SPE will not be of the CE type. If there is no sharing of information
(or with delay of two units or more), and players receive noisy state information
through separate channels, then the problem remains to be challenging in both ZS
and NZS settings, unless there is a specific structure of the system dynamics along
with the information structure, as in Nayyar and Başar (2012).

Several fairly direct extensions of the results of this chapter are possible, all in
the ZS setting. First, it is possible to introduce intermittent failure of the common
measurement channel (2) in the continuous-time case, by mimicking (8):

dyt = βt (Hxtdt + Gdwt) or dyt = βtHxtdt + Gdwt, t ≥ 0,

where βt is an independent two-state Markov jump process (or a piecewise deter-
ministic process) with a given rate (jumps are between βt = 1 and βt = 0), and
both players observe realization of this process. The counterpart of the analysis for
the discrete-time case could be carried over to this case also (for a related frame-
work, see Pan and Başar 1995). A variant of this, in both discrete and continuous
time, is the more challenging class of problems where the failure of the transmis-
sion of the common noisy measurement of the state to the players is governed by
two independent Bernoulli processes with possibly different rates. Such ZS SDGs
would involve primarily two scenarios: (i) the players are not aware of the failure of
links corresponding to each other, and (ii) this information is available (that is play-
ers share explicitly or implicitly the failure information) but with one step delay.
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Further extensions to (i) multi-player ZS SDGs (with teams playing against teams,
where agents in each team do not have identical information), and (ii) nonzero-
sum stochastic differential games (with particular type of asymmetric information
among the players) constitute yet two other classes of challenging problems. In all
these problems, including the ones discussed in Sect. 4, characterization of mixed-
strategy SPE (as extension of the analysis of Sect. 3) or NE stand out as challenging
but tractable avenues for future research.
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Bansal, R., & Başar, T. (1987). Stochastic teams with nonclassical information revisited: when is
an affine law optimal? IEEE Transactions on Automatic Control, 32(6), 554–559.
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Yüksel, S., & Başar, T. (2013). Systems & control: foundations and applications series. Stochas-
tic networked control systems: stabilization and optimization under information constraints.
Boston: Birkhäuser.


	Stochastic Differential Games and Intricacy of Information Structures
	1 Introduction
	2 Zero-Sum Stochastic Differential and Discrete-Time Games with a Common Measurement Channel and Issue of Certainty Equivalence
	2.1 Formulation of the Zero-Sum Stochastic Differential Game
	2.2 Formulation of the Discrete-Time Zero-Sum Stochastic Dynamic Game with Failing Channels
	2.3 The LQG Optimal Control Problem and Certainty Equivalence
	2.4 The LQG ZSDG and Certainty Equivalence
	2.5 The LQG Discrete-Time ZS Dynamic Game and Certainty Equivalence

	3 A Two-Stage Discrete-Time Game with Common Measurement
	3.1 Certainty-Equivalent SPE
	3.2 Analysis for p=0 for CE SPE and Beyond
	3.3 The Case p>0
	3.4 CE SPE and Beyond for the 2-Stage Game

	4 CE SPE of the LQG ZSDG in Continuous and Discrete Time
	4.1 Various Approaches Toward Construction of SPE
	4.2 SPE Property of CE Policies of the LQG ZSDG
	4.3 SPE Property of CE Policies of the LQG Discrete-Time ZSDG

	5 Discussion, Extensions, and Conclusions
	References


