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Abstract The multi-agent optimal control problem involves a decision process with
multiple agents, where each agent solves an optimal control problem with the indi-
vidual cost functional and strategy set, and the cost functional is dependent on all
the other agents’ state and/or control variables. Here the “agent” can be understood
as a true decision maker, or as an abstract optimization criterion. The strategy sets,
along with admissible control set, are often described by a system of parameterized
ordinary differential/difference equations (the state dynamic) or partial differential
equations, and in realistic settings they may be dependent on the rivals’s variables
due to, for example, certain constraints from the common resources. This chapter
describes the multi-agent optimal control problem, and studies the reformulation
of a system of differential equations constrained by parameterized variational in-
equalities, along with some initial and/or boundary conditions. This reformulation
presents differential equations, variational inequalities, and equilibrium conditions
in a systematic way, and is advantageous since it can be treated as a system of differ-
ential algebraic equations, for which abundant theory and algorithms are available.

1 Optimal Control Problems

In a multi-agent optimal control problem each agent solves an optimal control prob-
lem that is dependent on the rivals’ states and decisions. Let us begin the study with
the single-agent case: the standard optimal control problem.
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For more details on optimal control problems and on the multi-agent extension
we refer to the basic books by Leitmann (1976, 1981).

1.1 Problem Description

Let the terminal time T > 0 and the initial point x0 ∈ R
n be given, let U ⊂ R

n be
an open bounded set, Ξ ∈ R

m be convex and closed, let (Ω,F ,P) be a probability
space and {W(s)}0≤t≤T be a d-dimensional Brownian motion, let A be a subset of
all progressive measurable stochastic processes u(·) : [0, T ] × Ω → Ξ . Given the
following four functions, of which the first two constitute the dynamic and the last
two give the cost functional:

• f : [0, T ] ×R
n × Ξ →R

n (drift term),
• σ : [0, T ] ×R

n × Ξ →R
n×d (diffusion term),

• ϕ : [0, T ] × Ū × Ξ → R (running cost),
• ψ : [0, T ] × Ū × Ξ →R (terminal cost).

For a t ≥ 0 and for every u(·) ∈ A and (s, x) ∈ [t, T ] × Ū , the state dynamic is a
stochastic differential equation (SDE for short) which is to find an Itô process x(s)

satisfying: {
dx(s) = f (s, x(s), u(s))ds + σ(s, x(s), u(s))dW(s)

x(t) = x
(1)

for s ∈ (t, T ], where a u(·) ∈ A is called the control, and x(·) is called the state. We
define the cost functional J : [0, T ] ×R

n ×A :→R by:

J
(
t, x, x(·), u(·)) := E

{∫ T

t

ϕ
(
s, x(s), u(s)

)
ds + ψ

(
T ,x(T )

)}
, (2)

where E means the expectation over the statistics of {W(s)}. Denote J (x(·), u(·)) =
J (0, x0, x(·), u(·)) for simplicity if the state x(·) starts from x0 at t = 0. Then the
optimal control problem is just to find a pair (x(·), u(·)) minimizing J (x(·), u(·))
under the constraint given by the SDE (1):

min J
(
x(·), u(·))

s.t. dx(s) = f
(
s, x(s), u(s)

)
ds + σ

(
s, x(s), u(s)

)
dW(s)

x(0) = x0.

(3)

For the SDE (1), one of the problems of the most interest is its solvability. For
the details on this issues we refer to Øksendal (2003). Here we just mention the
conditions required in part for guaranteeing the existence and the uniqueness of the
strong solution with continuous paths of (1) for any choice of u(·):
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∥∥f (t, x,u) − f (s, y,u)
∥∥

2 + ∥∥σ(t, x,u) − σ(s, y,u)
∥∥

F
≤ C

(‖x − y‖2 + |t − s|)∥∥f (t, x,u)
∥∥

2 + ∥∥σ(t, x,u)
∥∥

F
≤ C

(
1 + ‖x‖2

)
,

where ‖ · ‖F denotes the Frobenius norm, f (s, x,u) and σ(s, x,u) are assumed in
C0([0, T ] × R

n × Ξ) and f (·, ·, u) and σ(·, ·, u) are in C1([0, T ] × R
n) for every

u ∈ Ξ , and C ≥ 0 is a constant, u ∈ Ξ , x, y ∈R
n and t, s ∈ [0, T ] are arbitrary.

1.2 Hamilton–Jacobi–Bellman Equation

Define the value function:

v(t, x) := min J
(
t, x, x(·), u(·))

s.t. dx(s) = f
(
s, x(s), u(s)

)
ds + σ

(
s, x(s), u(s)

)
dW(s)

x(t) = x.

Denote χ(t, x,u) = 1
2‖σ(t, x,u)‖2

F , and denote

H(t, x,u,∇v,Δv) = χ(t, x,u)Δv(t, x) + 〈
f (t, x,u),∇v(t, x)

〉 + ϕ(t, x,u). (4)

Suppose that H(t, x,u,∇v,Δv) is continuously differentiable in u. Then the opti-
mal control problem (3) can be reformulated as the Hamilton–Jacobi–Bellman equa-
tion (HJB equation for short):

∂v(t, x)

∂t
+ min

u∈Ξ
H

(
t, x, u,∇v(x, t),Δv(t, x)

) = 0, (5)

along with the terminal condition v(T , x) = ψ(T ,x), where Δv(t, x) and ∇v(t, x)

denote the Laplacian and the gradient of v in x, respectively. Normally, the HJB
equation does not have a classic solution, for this one has to use another notion of
solution: viscosity solution (refer to Fleming and Rishel 1975, for example).

1.3 Constrained Hamilton System

For the deterministic case: σ(t, x,u) ≡ 0, we introduce the costate variable p(t) =
∇v(t, x(t)). Then the Hamiltonian defined in (4) reads:

H(t, x,u,p) = f (t, x,u)T p + ϕ(t, x,u), (6)
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and by simple calculus we obtain the following Hamilton system from the HJB
equation: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ṗ(t) = −∇xH(t, x(t), u(t),p(t))

ẋ(t) = ∇pH(t, x(t), u(t),p(t))

u(t) ∈ arg min{H(t, x(t), z,p(t)), s.t. z ∈ Ξ}
x(0) = x0 and p(T ) = ∇xψ(T , x(T )),

(7)

where ∇xψ(T , x) denotes the gradient of ψ(t, x) with respect to x.

1.4 VI Based Reformulations

Variational inequality (VI for short) is a powerful model for characterizing the op-
timal condition of optimization problems in a general setting (Facchinei and Pang
2003). Given a closed and convex subset Ω ⊆ R

m and a mapping G : Ω →R. Then
by the minimum principle, we know that a local minimizer x∗ of G(·) over the feasi-
ble domain Ω must satisfy the variational inequality (VI for short) of the following
form (

x − x∗)T ∇G
(
x∗) ≥ 0, ∀x ∈ Ω. (8)

We remind us that Ξ is assumed convex and closed set. Here we allow us an abuse
of the notation u: it means the control variable in the general case and means also
a local minimizer of H(t, x, ·,∇v,Δv) in some specific cases, which can be read-
ily distinguished in the context. Then by the minimum principle, we know that u

satisfies the VI

(z − u)T ∇uH(t, x,u,∇v,Δv) ≥ 0 ∀z ∈ Ξ, (9)

where ∇uH(t, x,u,∇v,Δv) denote the gradient of H(t, x,u,∇v,Δv) in u. We
denote by SOL(Ξ,∇uH(t, x, ·,∇v,Δv)) the solution set of the above VI. Further
known is that if moreover ∇uH is convex in u, then a solution of the VI is just a
global minimizer of H .

Now we arrive at the position for reformulating the HJB equation as the following
PDE, which is constrained by a VI⎧⎪⎨

⎪⎩
∂v(t,x)

∂t
+ H(t, x,u,∇v(t, x),Δv(t, x)) = 0

u ∈ SOL(Ξ,∇uH(t, x, ·,∇v(t, x),Δv(t, x))

v(T , x) = ψ(T ,x).

It is well known that u ∈ SOL(Ξ,∇uH(t, x, ·,∇v,Δv)) if and only if

u = PrΞ
(
u − ∇uH(t, x,u,∇v,Δv)

)
,
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where PrΞ(·) denotes the projection onto Ξ . Then the HJB equation can further be
reformulated as the PDE constrained by a system of algebraic equations⎧⎪⎨

⎪⎩
∂v(t,x)

∂t
+ H(t, x,u,∇v(t, x),Δv(t, x)) = 0

u = PrΞ(u − ∇uH(t, x,u,∇v(t, x),Δv(t, x)))

v(T , x) = ψ(T ,x).

(10)

Note that the projection operation often leads to the nonsmoothness of the algebraic
system in the above hybrid system.

For the constrained Hamilton system (7), the VI formulation gives the following
system: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ṗ(t) = −∇xH(t, x(t), u(t),p(t))

ẋ(t) = ∇pH(t, x(t), u(t),p(t))

u(t) = PrΞ(u(t) − ∇uH(t, x(t), u(t),p(t)))

x(0) = x0 and p(T ) = ∇xψ(T , x(T )),

(11)

where H(t, x,u,p) is defined by (6). This is a system of ordinary differential equa-
tions constrained by a parameterized VI, called differential variational inequality
(DVI for short). For a comprehensive treatment of the DVI, we refer to Pang and
Stewart (2008).

The system (11) usually has no classic solution, and we have to seek the weak
solution (x(t),p(t), u(t)), where x and p are absolutely continuous and u is inte-
grable on [0, T ] such that ∀0 ≤ s ≤ t ≤ T :

x(t) − x(s) =
∫ t

s

∇pH
(
τ, x(τ ), u(τ ),p(τ)

)
dτ,

and

p(t) − p(s) = −
∫ t

s

∇xH
(
τ, x(τ ), u(τ ),p(τ)

)
dτ,

and u(t) = PrΞ(u(t) − ∇uH(t, x(t), u(t),p(t))) holds for almost all t ∈ [0, T ].

2 Multi-agent Optimal Control Problems

2.1 Problem Description

The multi-agent optimal control problem involves a decision process with multiple
agents, where each agent solves an optimal control problem with his own cost func-
tional and admissible control set. Each agent’s cost functional is, and its admissible
control set may be, dependent on all the other agents’ state and control variables.
Such a problem is also referred as the Nash equilibrium problem, where the agent
is usually called as player.
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Denote by xν ∈ R
nν and uν ∈ R

mν the ν-th player’s state and control variables,
respectively. The control is also called as strategy, action or decision. Collectively
write x = (xν)

N
ν=1 ∈ R

n, u = (uν)
N
ν=1 ∈ R

m, x−ν = (xν′)ν′ �=ν ∈ R
n−nν and u−ν =

(uν′)ν′ �=ν ∈ R
m−mν , where n = ∑N

ν=1 nν and m = ∑N
ν=1 mν . When we emphasize

the ν-th player’s state and strategy variables, we use the block form x = (xν, x−ν)

and u = (uν, u−ν) to represent x and u, respectively. For the ν-th player, we denote

• admissible control set (the strategy set) by

Ξν(u−ν) = {
uν |hν(uν) ≤ 0, g(uν,u−ν) ≤ 0

}
,

where hν(·) : Rnν → R
lν and g(·, u−ν) :Rnν →R

�;
• the state dynamic by{

dxν(t) = fν(t, xν(t), uν(t))dt + σν(t, xν(t), uν(t))dW(t)

xν(0) = x0
ν ,

(12)

where x0
ν ∈ R

nν is the initial state, fν : [0, T ] ×R
nν × Ξ → R

n is the drift term,
σν : [0, T ] ×R

nν × Ξ → R
nν×dν is the diffusion term;

• the cost functional by

Jν

(
x(·), u(·)) := E

{∫ T

0
ϕν

(
t, x(t), u(t)

)
dt + ψν

(
T ,xν(T )

)}
, (13)

where ψν : [0, T ] ×R
nν → R and ϕν : [0, T ] ×R

n ×R
m → R, and T > 0 is the

terminal time.

Writing

Jν

(
x(·), u(·)) = Jν

(
xν(·), x−ν(·), uν(·), u−ν(·)

)
,

the solution (or called the equilibrium point) of the multi-agent optimal control
problem is a state-control pair (x∗(·), u∗(·)) satisfying: for fixed x∗−ν(·) and u∗−ν(·),
(x∗

ν (·), u∗
ν(·)) is a solution of the following optimal control problem

min Jν

(
xν(·), x∗−ν(·), uν(·), u∗−ν(·)

)
s.t. dxν(t) = fν

(
t, xν(t), uν(t)

)
dt + σν

(
t, xν(t), uν(t)

)
dW(t)

xν(0) = x0
ν

uν(t) ∈ Ξν

(
u∗−ν(t)

)
for almost all t ∈ [0, T ].

(14)

Note that Ξν(·) is a set-valued mapping given by the shared constraint g(uν,u−ν) ≤
0, namely, the ν-th player’s strategy set is dependent on its rivals’ states and controls.
Without the shared constraint, the strategy set Ξν is constant, and then the problem
(14) reduces to the standard dynamic Nash equilibrium problem.

Here we make the following blanket assumptions on the convexity of the strategy
set.

Assumption 1 Suppose that all the components of hν and g are convex for any ν.
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2.2 Reformulation of System of HJB Equations

Define the value function for the ν-th player:

vν(t, x) := min Jν

(
xν(·), x∗−ν(·), uν(·), u∗−ν(·)

)
s.t. dxν(s) = fν

(
s, xν(s), uν(s)

)
ds + σν

(
s, xν(s), uν(s)

)
dW(s)

xν(t) = xν

uν(s) ∈ Ξν(u
∗−ν(s)) for almost all s ∈ [t, T ].

Denote χν(t, x,u) = 1
2‖σν(t, x,u)‖2

F , and denote

Hν(t, x,u,∇xν vν,Δxν vν)

= χν(t, xν, uν)Δxν vν(t, x) + 〈
fν(t, xν, uν),∇xν vν(t, x)

〉 + ϕν(t, x,u), (15)

Δxν vν(t, x) and ∇xν vν(t, x) denote the Laplacian and the gradient of vν in xν , re-
spectively. We suppose in our setting that Hν(t, x,u,∇xν vν,Δxν vν) is continuously
differentiable in uν . Write vν(T , x) = vν(T , xν, x−ν). Then the HJB equation (5) for
the problem (14) has the following form:{

∂vν(t,x)
∂t

+ minuν∈Ξν(u−ν ) Hν(t, x,u,∇xν vν,Δxν vν) = 0,

vν(T , xν, x−ν) = ψν(T , xν).
(16)

Applying the VI formulation (9) to characterize the optimality of the minimization
in (16), it gives

⎧⎪⎨
⎪⎩

∂vν(t,x)
∂t

+ Hν(t, x,u,∇xν vν,Δxν vν) = 0,

uν ∈ SOL(Ξν(u−ν),∇uν Hν(t, x,u,∇xν vν,Δxν vν))

vν(T , xν, x−ν) = ψν(T , xν).

(17)

Now we have for each player one partial differential equation, which is parame-
terized by the rivals’ states and controls, and is subject to the parameterized VI. We
are going to collect all such equations into one system, whose solution may give an
equilibrium state of the multi-agent optimal control. Denote

Ξ(u) =
N∏

ν=1

Ξν(u−ν),
(
Rm ⇒R

m
)

here we mention that Ξ is a set-valued mapping. Collecting all the value functions,
we have the value function profile:

V (t, x) = (
vν(t, x)

)N

ν=1,
([0, T ] ×R

n →R
N

)
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which is to be computed. Collecting all the terminal payoff, we have the profile:

Ψ (t, x) = (
ψν(t, xν)

)N

ν=1.
([0, T ] ×R

n →R
N

)
Collecting the functions defining the HJB equations, we have

F(t, x,u,V ) = (
Hν(t, x,u,∇xν vν,Δxν vν)

)N

ν=1,

and collecting the functions defining the parameterized VIs, we have

G(t, x,u,V ) = (∇uν Hν(t, x,u,∇xν vν,Δxν vν)
)N

ν=1.

Then by concentrating the HJB equations of the form (17) and the parameterized
VIs for all the players, we have the following system⎧⎪⎨

⎪⎩
∂V (t,x)

∂t
+ F(t, x,u,V ) = 0,

u ∈ SOL(Ξ(u),G(t, x,u,V ))

V (T , x) = Ψ (T ,x).

(18)

Here u ∈ SOL(Ξ(u),G(t, x,u,V )) is meant given t , x, V fixed, it holds

(z − u)T G(t, x,u,V ) ≥ 0, ∀z ∈ Ξ(u).

This is just a quasi variational inequality (QVI for short). Then (18) is a system of
partial differential equations constrained by a QVI.

Because of the complex structure of Ξ(u), it is hard to analyze the solvability and
the convergence of numerical algorithms for solving (18). Here we try to propose a
VI-based formulation, instead of the quasi one. Denote

Ξ = {
u ∈ R

m|hν(uν) ≤ 0, g(uν,u−ν) ≤ 0
}
. (19)

Assumption 1 ensures that Ξ is closed and convex. The following lemma states that
the solvability of the VI implies the solvability of the quasi VI.

Lemma 1 (Facchinei et al. 2007) For any fixed t , x and V , we have

SOL
(
Ξ,G(t, x, ·,V )

) ⊆ SOL
(
Ξ(u),G(t, x, ·,V )

)
.

This lemma justifies the VI-based reformulation of the multi-agent optimal con-
trol problem: ⎧⎪⎨

⎪⎩
∂V (t,x)

∂t
+ F(t, x,u,V ) = 0,

u ∈ SOL(Ξ,G(t, x,u,V ))

V (T , x) = Ψ (T ,x).

Moreover, using the projection formulation of the VI, we equivalently rewrite the
above system of HJB equations as the following form, which is a system of partial
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differential equations, along with the boundary value conditions and the algebraic
constraints: ⎧⎪⎨

⎪⎩
∂V (t,x)

∂t
+ F(t, x,u,V ) = 0,

u = PrΞ(u − G(t, x,u,V ))

V (T , x) = Ψ (T ,x).

(20)

Note that the algebraic constraints is defined by a system of equations that is nons-
mooth, as the projection operator is nonsmooth.

2.3 Reformulation of Hamilton System

For the deterministic case: σν(t, xν, uν) ≡ 0 for ν = 1, . . . ,N , we introduce the
costate variable pν = ∇xν vν(t, x). Then for the ν-th player the Hamiltonian reads

Hν(t, x,u,pν) = 〈
fν(t, xν, uν),pν

〉 + ϕν(t, x,u),

and we have the following constrained Hamilton system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ṗν(t) = −∇xν Hν(t, x,u,pν)

ẋν(t) = ∇pν Hν(t, x,u,pν)

uν(t) ∈ SOL(Ξν(u−ν),∇uν Hν(t, x, ·, u−ν,pν)),

xν(0) = x0
ν and pν(T ) = ∇xν ψν(T , x(T )),

(21)

where we write Hν(t, x,u,pν) = Hν(t, x,uν, u−ν,pν) for emphasizing the depen-
dence of the mapping Hν(t, x,u,pν) on the rivals’ control variables u−ν , and where
∇xν ψν(t, xν) denotes the gradient of ψν(t, xν) with respect to xν .

Collectively write

G(t, x,u,p) = (∇uν Hν(t, x,u,pν)
)N

ν=1

and

Γ
(
x(0),p(0), x(T ),p(T )

) =
(

xν(0) − x0
ν

pν(T ) − ∇xν ψν(T , x(T ))

)N

ν=1
.

Concatenating (21) for ν = 1, . . . ,N , we can formulate the multi-agent optimal con-
trol problem as the following differential quasi VI:

ṗ(t) = (−∇xν Hν(t, x,u,pν)
)N

ν=1,

ẋ(t) = (∇pν Hν(t, x,u,pν)
)N

ν=1,

u(t) ∈ SOL
(
Ξ(u),G(t, x, ·,p)

)
0 = Γ

(
x(0),p(0), x(T ),p(T )

)
.

(22)
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Again, Lemma 1 implies a VI-based reformulation of the multi-agent optimal
control problem:

ṗ(t) = (−∇xν Hν(t, x,u,pν)
)N

ν=1,

ẋ(t) = (∇pν Hν(t, x,u,pν)
)N

ν=1,

u(t) ∈ SOL
(
Ξ,G(t, x, ·,p)

)
0 = Γ

(
x(0),p(0), x(T ),p(T )

)
,

(23)

where Ξ is defined by (19). Moreover, we use the projection operator to reformulate
the system (23) into the following system of differential algebraic equations:

ṗ(t) = (−∇xν Hν(t, x,u,pν)
)N

ν=1,

ẋ(t) = (∇pν Hν(t, x,u,pν)
)N

ν=1,

u(t) = PrΞ
(
u − G(t, x,u,p)

)
0 = Γ

(
x(0),p(0), x(T ),p(T )

)
.

(24)

Write ϕν(t, x,u) = ϕν(t, xν, x−ν, uν, u−ν). Suppose for any ν = 1, . . . ,N that
ψν(T , ·) and each components of hν and g(·, u−ν) are convex, and suppose that
ϕν(t, ·, x−ν, ·, u−ν) and each component of ∇pν Hν(t, x,u,pν) are convex and con-
tinuously differentiable for any fixed x−ν and u−ν , suppose that ∇pν Hν(t, x,u,pν)

is linear with respect to (xν, uν). Here we call (x,u) as a feasible pair of the
multi-agent optimal control problem if u ∈ Ξ and ẋν(t) = ∇pν Hν(t, x,u,pν) for
ν = 1, . . . ,N . Then we can show that

Theorem 1 Let (x∗, u∗) be a weak solution of (23). Then (x∗, u∗) is a solution of
the multi-agent optimal control problem in the following sense: for any feasible pair
(x,u), we have for ν = 1, . . . ,N :

Jν

(
xν(·), x∗−ν(·), uν(·), u∗−ν(·)

) ≥ Jν

(
x∗
ν (·), x∗−ν(·), u∗

ν(·), u∗−ν(·)
)
.

Proof The details of the proof can be found in Chen and Wang (2013b). �

3 Approximation of Variational Inequality

The systems (20) and (24) concern the projection equation u = PrΞ(u − G(t, x,

u,V )) and u = PrΞ(u−G(t, x,u,p)), respectively, which may have no solution, or
have multiple (possibly infinitely many) solutions. Finding a solution of the systems
involves solving optimization problems without standard constraint qualifications at
each grid. Let G : Rm × R

k → R
m be given for defining the concerned parameter-

ized VI, where the parameter vector is taken in the space of Rk . Denote

Φ(u,α) = u − PrΞ
(
u − G(u,α)

)
,
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where α is a parameter, and we are interested in finding for a given parameter α a
vector u satisfying

Φ(u,α) = 0. (25)

Here we propose a regularized smoothing method to find a solution of (25). Our
main idea is to replace Φ(u,α) by the following regularized and smoothing function

Φλ,μ(u,α) =
∫

R

[
u − PrΞ

(
u − G(u,α) − λu − μse

)]
ρ(s)ds, (26)

where λ > 0 and μ > 0 are the regularization and smoothing parameters. The inte-
gration is performed componentwise with e = (1,1, . . . ,1)T and ρ(·) is a density
function with

κ =
∫

R

|s|ρ(s)ds < ∞.

Suppose that G(·, α) is monotone for any fixed α. Then when μ = 0, the regu-
larized system

Φλ,0(u,α) := u − PrΞ
(
u − G(u,α) − λu

) = 0

has a unique solution u for any fixed α, but Φλ,0 and u may not be differentiable with
respect to (t, x). To overcome the non-smoothness of the projection operator, we
adopt the smoothing approximation. The regularized smoothing function Φλ,μ(u,α)

has the following properties

∥∥Φλ,0(u,α) − Φ(u,α)
∥∥

2 ≤ λ‖u‖2

and ∥∥Φλ,μ(u,α) − Φλ,0(u,α)
∥∥

2 ≤ κ
√

mμ.

For fixed α ∈ R
k , λ > 0 and μ > 0 the mapping Φλ,μ(·, α) is continuously differen-

tiable and the system

Φλ,μ(u,α) = 0 (27)

has a unique solution uλ,μ(α), which is continuously dependent on α. For λ,μ ↓ 0
(λ, μ chosen in an appropriate way—see also the second point in the summary) we
approximate the solution of (25).

Namely, we approximate (20) by the following differential algebraic system

⎧⎪⎨
⎪⎩

∂V (t,x)
∂t

+ F(t, x,u,V ) = 0,

Φλ,μ(t, x,u,V ) = 0

V (T , x) = Ψ (T ,x),

(28)



216 G. Leitmann et al.

and approximate (24) by the following differential algebraic system

ṗ(t) = (−∇xν Hν(t, x,u,p)
)N

ν=1,

ẋ(t) = (∇pν Hν(t, x,u,p)
)N

ν=1,

0 = Φλ,μ(t, x,u,p)

0 = Γ
(
x(0),p(0), x(T ),p(T )

)
.

(29)

We mention four points on this methodology.

• Finding an equilibrium point of the multi-agent optimal control problem is of
the great practical importance, which is quite hard because the problem is cou-
pled by the optimization problems, dynamical systems and the side constraints.
Existing methods normally can not treat the generalized case: the problem with
coupled strategy sets (see for example Krabs et al. 2000; Krabs 2005; Krabs and
Pickl 2010). The methodology proposed here is promising since it reformulates
the multi-agent optimal control problem as a differential algebraic equation, for
which abundant theory and algorithms can be utilized. This new approach will be
extended in the future.

• The convergence of the solution of the approximating system to the original
one is of the most interest. Suitable notions of convergence, for example the Γ -
convergence, have to be carefully selected. The convergence may be considerably
dependent on the dependence between λ and μ, different dependence defines dif-
ferent regularized smoothing system, and therefore the different system of differ-
ential algebraic equations. Now we are in the position to touch the next point.

• Smoothing approximation and regularization have been studied extensively in
solving the static VI (Facchinei and Pang 2003). However, to the best of our
knowledge, the impact of the dependence between the smoothing and regulariza-
tion parameters on the convergence behavior has not been studied. An example
can be found in Chen and Wang (2013a, 2013b), which shows that for different
relations of the two parameters λ, μ, the solution uλ,μ(α) of (27) can be diver-
gent, or convergent to different solutions of the original projection equation (25).
For the system (27), if μ = o(λ) is taken, then uλ,μ(α) is convergent to the least
norm element of the solution set of (25). Note that finding the least norm solu-
tion is significant since it can provide a stable solution (refer to Chen and Wang
2013b, for more details).

• Our methodology is variational, which employs the comparison of solutions in a
neighborhood of the optimal one to derive the necessary conditions, and to obtain
candidate of the optimal solutions. Of course we need to impose additional condi-
tions for ensuring the optimality. A different approach, namely the direct method,
is also available, which offers global optima by using coordinate transformations
instead of comparison techniques (Leitmann 1962). This method can also be ap-
plied to a class of differential games (Leitmann 1976). It is our aim to combine
these destinguished approaches in the future.
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• As mentioned before the multi-agent optimal control problem involves a certain
decision process with multiple agents, where each agent solves an optimal control
problem with the individual cost functional and strategy set. As a specialty the
cost functional itself is dependent on all the other agents’ state and/or control
variables.

In a forthcoming contribution we would like to apply this specific model to
decision problems in the context of complex aviation management processes. It
is our aim to apply the gained algorithms to the solution of concrete decision
problems which occur in this innovative context of Operations Research.
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