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Abstract. One of the fundamental research themes in cryptography is to clarify
what the minimal assumptions to realize various kinds of cryptographic primi-
tives are, and up to now, a number of relationships among primitives have been
investigated and established. Among others, it has been suggested (and some-
times explicitly claimed) that a family of one-way trapdoor permutations (TDP)
is sufficient for constructing almost all the basic primitives/protocols in both
“public-key” and “private-key” cryptography. In this paper, however, we show
strong evidence that this is not the case for the constructions of a one-way per-
mutation (OWP), one of the most fundamental primitives in private cryptography.
Specifically, we show that there is no black-box construction of a OWP from a
TDP, even if the TDP is ideally secure, where, roughly speaking, ideal security of
a TDP corresponds to security satisfied by random permutations and thus captures
major security notions of TDPs such as one-wayness, claw-freeness, security un-
der correlated inputs, etc. Our negative result might at first sound unexpected
because both OWP and (ideally secure) TDP are primitives that implement a
“permutation” that is “one-way”. However, our result exploits the fact that a TDP
is a “secret-coin” family of permutations whose permutations become available
only after some sort of key generation is performed, while a OWP is a publicly
computable function which does not have such key generation process.

Keywords: black-box separation, trapdoor permutation, one-way permutation,
family of one-way permutations.

1 Introduction

1.1 Background and Motivation

One of the fundamental research themes in cryptography is to clarify what the minimal
assumptions to realize various kinds of cryptographic primitives are, and up to now,
a number of relationships among primitives have been investigated and established.
Clarifying these relationships gives us a lot of insights for how to construct and/or
prove the security of cryptographic primitives, enables us to understand the considered
primitives more deeply, and leads to systematizing the research area in cryptography.

In this paper, we focus on two central cryptographic primitives, a family of trap-
door permutations (TDP) and a one-way permutation (OWP). Among others, it has
been suggested, and sometimes explicitly claimed (see, e.g. [9]), that a TDP is suffi-
cient for constructing (almost) all basic primitives/protocols in both “public-key” and
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“private-key” cryptography. In particular, it has been shown that a TDP can be used for
constructing a family of one-way trapdoor functions, public-key encryption schemes,
key agreement protocols, private information retrieval, oblivious transfer, etc. More-
over, it has also been shown that a OWP is sufficient to construct most of private-
key cryptographic primitives/protocols including symmetric key encryption schemes,
message authentication codes, digital signature schemes [37], pseudorandom genera-
tors/functions/permutations [7,47,16,32], bit commitment schemes [35], etc. (Some of
them later turned out to be possible to construct from any one-way function, e.g. a
pseudorandom generator from any one-way function [22].) These primitives can also
be constructed from a TDP as well.

Somewhat surprisingly, however, the following simple but fundamental question has
not been answered yet: “Can we construct a OWP from a TDP?” The main motivation
of this paper is to clarify the answer to this question, in order to fully establish the re-
lationships among these very basic and important primitives. One might think that the
answer is trivially yes (and that this is obvious), because a TDP is trivially a family of
one-way permutations if we keep trapdoors secret. However, we show strong evidence
that the answer to the above question is no by showing that there is no black-box con-
struction of a OWP from a TDP. Roughly, a black-box construction of a target primitive
P from a building block primitive Q requires that the construction of P treats an in-
stance of Q as a black-box (i.e. treats as an oracle) and furthermore that the reduction
algorithm for the security proof treats an adversary that breaks the security of the con-
struction of P (and the instance of Q) as a black-box. (The impossibility of the opposite
direction, i.e. constructing a TDP from a OWP in a black-box way, is due to [25].)

Actually, to tackle the above question, we have to be careful about the difference be-
tween a “single” one-way permutation and a “family” of one-way permutations (one-
way permutation family, OWPF).1 Our black-box separation result mentioned above
separates a “single” one-way permutation from a TDP. Furthermore, for OWPFs, we
have to be also careful about the difference between the public-coin case and the secret-
coin case. Informally, a OWPF is said to be public-coin if the randomness for choosing a
permutation from the family can be revealed together with the description of the permu-
tation. On the other hand, a OWPF is said to be secret-coin if the security (one-wayness)
is not guaranteed if the randomness is revealed. (The distinction between public-coin
primitives and secret-coin primitives is studied by Hsiao and Reyzin [24] for the case
of collision-resistant hash function families.) With these categorizations, it is straight-
forward to see that any one-way TDP can always be seen as a secret-coin OWPF by
regarding an evaluation-key (public-key) output from a key generation algorithm of the
TDP as an index specifying a permutation in the family. However, the same OWPF
derived from a TDP is not secure as a public-coin OWPF, because the randomness
for choosing the evaluation-key (public-key) cannot be revealed: If revealed, then any-
one can compute the corresponding trapdoor, which makes the permutation invertible.
Furthermore, it is also straightforward to see that a single OWP is a special type of
a public-coin OWPF (by implementing the permutations in the family with the given

1 In order not to mix up with the difference between single function and function family of
one-way permutations, when we just write “OWP”, we always mean it is a “single” one-way
permutation (i.e. not a family), and when we mean a family of OWPs, we write “OWPF”.
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single OWP). Here, what is not at all trivial is whether we can construct a public-coin
OWPFs from a TDP in general. We also partially answer to this question in the negative.

1.2 Our Contribution

In this paper, we show that there is no black-box construction of a OWP from a TDP,
even if the TDP is ideally secure [11,29], where, roughly speaking, ideal security of
a TDP corresponds to the security satisfied by random permutations (see Section 2.3
for the formal definition), and thus captures major security notions for a TDP such as
one-wayness, claw-freeness [19], security under correlated inputs [42], etc. Therefore,
our impossibility result rules out the black-box constructions of a OWP from TDP sat-
isfying these security notions, and is strictly stronger than the result by Chang et al.
[9] who showed the black-box separation of a OWP from a family of injective trap-
door functions. Our impossibility result might at first sound unexpected because both
OWP and (one-way) TDP are primitives that implement a “permutation” that is “one-
way”. However, our result is established by exploiting the essential difference between
a family of functions and a single function, that a TDP is a “secret-coin” family of per-
mutations whose permutations become available only after some sort of key generation
is performed, while a OWP is a publicly computable function which does not have such
key generation process. (We explain the overview of the proof in Section 1.3.)

The type of black-box constructions that our main result rules out is called a fully-
black-box construction in the taxonomy of Reingold et al. [41]. (The formal definition
for a fully-black-box construction of a OWP from an ideal TDP is given in Section 3.)
In fact, our result can be easily strengthened to rule out a semi-black-box construction,
which is a less restrictive type than fully-black-box one, using the technique called “em-
bedding” by Reingold et al. [41]. (We discuss this extension in Section 4.) Although the
absence of (fully- and semi-)black-box constructions of a OWP from an ideal TDP does
not necessarily mean that constructing a OWP from an ideal TDP is generally impossi-
ble, it should be emphasized that most of the known primitive-to-primitive constructions
are fully-black-box, and thus the impossibility of black-box constructions is considered
as a very strong evidence that “natural” and “efficient” constructions are impossible.

Our result also sheds light on the difference between “public-coin” and “secret-coin”
OWPFs (their formal definitions can be found in Section 2.2). Whether a primitive
remains secure in the sense of public-coin is usually related to whether we need some
kind of trusted setup in a cryptographic protocol such as multi-party computation. Hsiao
and Reyzin [24] conjectured that there is no (fully-)black-box construction of a public-
coin OWPF from a secret-coin one. We partially answer to this conjecture: Specifically,
we show that there is no black-box construction of a public-coin OWPF that satisfies
a special property called canonical domain sampling (the formal definition is given in
Section 2.2) from an ideal TDP (and especially from a secret-coin OWPF). This result
is obtained as a corollary of our main result above by combining it with the result
by Goldreich et al. [17] who showed that a OWP can be constructed, in a black-box
manner, from a public-coin OWPF with the canonical domain sampling property. (See
Section 4 for more details.) We note that the techniques we use to prove the black-box
separation of a public-coin OWPF from a secret-coin one (and the black-box separation
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of a OWP from an ideal TDP) are different from those used by Hsiao and Reyzin in
[24] (in fact, we use a part of the results in [24]).

Why Studying OWP vs. TDP? Historically, OWP and (public-coin/secret-coin) OWPF
have much more often been treated as assumptions rather than as target primitives that
are constructed from other primitives, and thus one may wonder why we should care
the (im)possibility of constructing a OWP from TDP (or from other primitives).

Our opinion is that firstly, OWP, OWPF, and TDP are very basic primitives, and thus
clarifying any of their properties as well as relations is important, and we believe that
our results contribute to correctly understanding and firmly establishing relationships
among these basic cryptographic primitives. Specifically, our results suggest that there
is no simple hierarchy of black-box constructions even among very basic cryptographic
primitives. Our results also clarify explicitly that there is a real difference among single
function, public-coin and secret-coin families of functions in the case of permutations,
which should be contrasted with the case of “functions” because the existence of a
single one-way function is equivalent to the existence of a family of one-way functions
(regardless of whether the family is secret-coin or public-coin). Furthermore, our results
also show that it is not always the case that “public-key”-type primitives are stronger
than “non-public-key”-typeprimitives (at least in the case of permutations). This should
be again contrasted with the case of “functions”, where there is a (trivial) black-box con-
struction of a one-way function from basically all known “public-key”-type primitives
(because key generation algorithms typically have to be a one-way function), but there
does not exist a black-box construction for the opposite direction [25].

Secondly, there might actually be a cryptographic primitive that can be constructed
from a OWP, but not from a TDP. One of such candidates may be a public-coin point
obfuscation (an obfuscator for a point function) [1,45]. Wee [45] showed that a point
obfuscator can be constructed from a (very strong) OWP, while his point obfuscator
does not seem to be proved secure if we replace the OWP in his construction with a
permutation from a TDP together with its public-key (at least the “public-coin” property
will be lost unless we assume some additional property for the TDP). We believe that
there are much more (natural) examples of this sort, and that it is interesting to seek
for such examples. (In particular, the difference between public-coin and secret-coin
primitives will stand out more in the context of interactive protocols.)

1.3 Technical Overview

The main result of our paper builds on the results and techniques from several previous
work [43,26,15,24,9,30,23], and our technical contribution lies in coming up with an
appropriate combination of these results/techniques for achieving our purpose of sepa-
rating OWP from (ideal) TDP.

We will use the “two oracle separation” paradigm [15,24] (which is an extension of
the one oracle separation [25,41]) to show that there is no fully-black-box construc-
tion of a OWP from an ideal TDP. That is, we will use two oracles (more precisely, a
random instance picked from all possible instances of oracles): the first oracle models
a “building block” primitive (TDP in our case) and the second oracle is the “break-
ing” oracle that is useful for breaking all candidates of a target primitive (OWP in our
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case) but useless for breaking the security of the building block oracle. As the “building
block” oracle, we use a random instance of a TDP oracle T that consists of suboracles
(G, E ,D) that essentially constitutes a (random) TDP, namely, G is the key generation,
E is the evaluation of permutations, and D is the inversion of permutations. As the
“breaking” oracle, we use the PSPACE oracle that has often been used in the literature
of black-box separations, e.g. [25,15,9], mainly in order to guarantee that any compu-
tational hardness comes only from the building block oracle. If we pick T randomly,
then T can be shown to be “ideally secure” even against computationally unbounded
adversary that makes only polynomially many queries to T . Since such adversary can
simulate the PSPACE oracle by itself, it follows that an “ideally secure” TDP exists
relative to T and PSPACE.

The difficult part of the proof is to show that any permutationPT is inverted, and thus
a OWP does not exist relative to T and PSPACE. Here, we note that the evaluation-key
space of T cannot be dense [20] (i.e. an inverse-polynomial fraction of strings are in the
range of G), because in this case, an evaluation-key ek of permutations in E could be
picked without using G, and thus implementing a permutation PT by the permutation
(in E) made available by this picked ek might lead to a OWP (even in the presence
of the PSPACE oracle). To prevent this, we make the range of G sparse, and make E
useless unless it is invoked with an honestly generated evaluation-key that is generated
by making a query to G. This guarantees that when calculating the permutation PT ,
permutations in E become available only after making a query to G and obtaining an
evaluation-key ek, together with the corresponding trapdoor td. Put differently, from
the viewpoint of an entity computing the permutation PT , every permutation in E as-
sociated with ek that becomes available during the computation of PT can be seen as
an invertible permutation, because the entity must have known td corresponding to ek.
This observation leads to the idea of simulating the TDP oracle T in PT with a block
cipher oracle, which is a family of invertible permutations. More specifically, we intro-
duce a new oracle B, which we call block cipher oracle that models an ideally secure
block cipher, and show that for any permutation PT , there is another permutation ̂PB

such that inverting ̂PB is as hard as inverting PT . The idea and the technique of sim-
ulating a TDP oracle T (used in a constructed primitive) with a block cipher oracle
is previously used by Lindell and Zarosim [30] who showed the black-box separation
of an adaptively secure oblivious transfer protocol from a TDP. Furthermore, by using
the result by Holenstein et al. [23] who showed that a random invertible permutation is
simulatable by the fourteen-round Feistel-network construction of a permutation [32]
in which each round function is an independent random function,2 we can simulate
the block cipher oracle B in the permutation ̂PB with another oracle R (which we call
round function oracle) that consists only of random functions (not permutations). More
specifically, we show that for any permutation ̂PB , there is another permutation ˜PR

such that inverting ˜PR is as hard as inverting ̂PB. Finally, using the previous results
by Rudich [43], Kahn et al. [26], and Chang et al. [9] on the black-box separations of

2 More precisely, [23] shows that the fourteen-round Feistel-network is indifferentialble [34]
from an (invertible) random permutation. The statement that a constant-round Feistel-network
was sufficient was originally suggested by Coron et al. [10]. However, it was pointed out in
[23] that the original proof in [10] for six rounds had a gap and was not completed.
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a OWP from random (injective) functions, we can show that there is a good inverter
(which uses the PSPACE oracle) for any permutation ˜PR.3 Then, this inverter can be
used to invert not only ˜PR but also PT , and thus any permutation PT is inverted using
the PSPACE oracle.

It is already known that a OWP is black-box separated from a one-way function
(OWF) [43,26] and that there is a black-box construction of a pseudorandom permu-
tation, which is a standard security notion of a block cipher, from a OWF [22,16,32].
Therefore, one might wonder that if we give up the “ideal security” of a TDP and just
consider one-way TDPs, then we may be able to conclude that there is no black-box
construction of a OWP from a one-way TDP, as soon as we reduce a TDP-based permu-
tation PT to a block-cipher-based permutation ̂PB . However, that a OWP is separated
from a OWF in a black-box manner does not immediately mean that our block-cipher-
based permutation ̂PB cannot be proved one-way, because our block-cipher oracle B
contains random permutations which may help ̂PB to be one-way (with some clever use
of permutations in B). This is the main reason why we further reduce the block-cipher-
based permutation ̂PB to a random function-based permutation ˜PR by using the result
of [23], so that random permutations in the oracle B do not help achieving a OWP any
better than random “functions” in the oracle R do.

1.4 Related Work

Up to now, a number of black-box separations among various kinds of primitives have
been established. For an excellent survey of the literature and the techniques of black-
box separations, we refer the reader to [48]. Here, we review black-box separations
related to OWPs and TDPs.

Regarding the black-box separations of a OWP from other primitives, it is known
that it is separated from one-way functions [43,26], from injective trapdoor functions
and a private information retrieval protocols [9], and from length-increasing injective
one-way functions (even if they are just 1-bit-increasing) [33].

On the other hand, recently, several black-box separation results have shown the
limitations of a (one-way) TDP as a base primitive for constructing and/or proving the
security of several “highly functional” cryptographic primitives or basic primitives with
special functional/security properties. Those include the impossibility of constructing
identity-based encryption [8], a wide class of predicate encryption [27], lossy trap-
door functions [42], trapdoor functions secure under correlated inputs [44], encryption
schemes secure under key-dependent inputs [21], adaptively secure oblivious transfer
protocols [30], non-interactive or perfectly binding commitment schemes secure under
selective-opening attacks [2], verifiable random functions [12], a natural class of three-
move blind signature schemes [13], succinct non-interactive argument systems [14],
constant-round sequentially witness-hiding special-sound protocols for unique witness

3 We note that a random function (which is length preserving) is indistinguishable from a ran-
dom permutation for any (even computationally unbounded) algorithm that can make only
polynomially many queries to the random function (even in the presence of the PSPACE or-
acle), but this fact does not mean that we can construct a OWP from a random function in a
black-box way (in fact, it is not possible [43,26,9,33]).
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relations [39], and many of the cryptographic primitives that admit the so-called simu-
latable attacks [46]. We note that in fact, the results of [21,2,13,14,39,46] rule out the
possibility of constructions (and/or, security proofs) of the target primitives based not
only on one-way TDP but also on much broader class of primitives or assumptions,
such as all falsifiable assumptions [36].

Black-box separations for a particular construction that uses a TDP as a building
block are also known. The unforgeability of the FDH signature scheme [4] cannot be
based on an ideal TDP, if the TDP is treated as a black-box [11]. [6] shows a similar
result for the PSS signature scheme, and [29] shows the impossibility of basing chosen
ciphertext security of padding-based encryption schemes which include many known
TDP-based encryption schemes such as the OAEP encryption scheme [3], on the (ideal)
security of the building block TDP.

1.5 Paper Organization

The rest of this paper is organized as follows. In Section 2 we review some basic defi-
nitions and terminology. In Section 3, we show our main result on the black-box sepa-
ration of a OWP from an ideal TDP, and we discuss further results, and the possibility
of more general separation results in Section 4.

2 Preliminaries

In this section, we review the basic notation and the definitions of primitives.

Basic Notation. N denotes the set of natural numbers. For n ∈ N, we define [n] =
{1, . . . , n}. If x and y are strings, then “|x|” denotes the bit-length of x, and “(x||y)”
denotes a concatenation of x and y. “x ← y” denotes an assignment of y to x. If S
is a set then “|S|” denotes its size, and “x ←R S” denotes that x is chosen uniformly
at random from S. “PPTA” denotes probabilistic polynomial time algorithm. If A is a
probabilistic algorithm, then “z ←R A(x, y, . . . )” means that A takes x, y, . . . as input
and outputs z, and “z ← A(x, y, . . . ; r)” means that A takes x, y, . . . as input, uses r
as an internal randomness, and outputs z. For an oracle algorithm AO , we say that AO

has query complexity q if A makes queries to the oracle O at most q times. “Permn”
denotes the set of all permutations over {0, 1}n. If f is a function and D is its domain,
then we define Range(f) = {f(x)|x ∈ D}.

A function f : N → [0, 1] is said to be negligible if f(k) < 1/p(k) for all positive
polynomials p(k) and all sufficiently large k ∈ N, and a function g : N → [0, 1] is said
to be overwhelming if the function f(k) = 1− g(k) is negligible.

2.1 One-Way Permutations

Typically, security of a OWP is defined so that the security parameter k is its input
length. However, since later we consider constructions of a OWP from another primi-
tive, it will be convenient to consider the security parameter and the input length of the
constructed permutation separately, so that the one-wayness advantage of an adversary
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and the input length of the constructed permutation are a function of the security pa-
rameter of the building block. Moreover, it is also convenient to identify a (one-way)
permutation with a PPTA that computes it. Therefore, we take these approaches for the
definition of a OWP.

Let � = �(k) be a positive polynomial and P be a PPTA such that P is a permutation
over {0, 1}�. We say that a PPTA P is a one-way permutation (OWP) for length � if the
following advantage function AdvOWPP,A,�(k) is negligible for any PPTA adversary A (we
assume that P is also given 1k but omit to write it for simplicity):

AdvOWPP,A,�(k) = Pr[x∗ ←R {0, 1}�; y∗ ← P(x∗);x′ ←R A(1k, y∗) : x′ = x∗].

2.2 One-Way Permutation Families

A family of permutations (permutation family) PF consists of the following three PP-
TAs (Gen, Eval, Samp): Gen is the probabilistic evaluation-key generation algorithm
which takes 1k as input and outputs an evaluation-key ek. (An evaluation-key is also
called an index.) Eval is the deterministic evaluation algorithm which takes ek and an
element x ∈ Dek as input, and outputs y ∈ Dek, where Dek is the domain of Eval(ek, ·)
that is determined by ek. Samp is the probabilistic sampling algorithm which takes ek
as input, and outputs a (random) element x ∈ Dek . As a correctness requirement, we
require that for all k ∈ N and all ek ←R Gen(1

k), (i) Samp(ek) is a uniform distribution
over Dek, and (ii) Eval(ek, ·) is a permutation over Dek.

We say that PF = (Gen,Eval, Samp) is a one-way permutation family (OWPF) if
the following advantage function AdvOWPFPF,A(k) is negligible for any PPTA adversary A:

AdvOWPFPF,A(k) = Pr[ek ←R Gen(1
k);x∗ ←R Samp(ek); y∗ ← Eval(ek, x∗);

x′ ←R A(ek, y∗) : x′ = x∗].

If a permutation family PF remains one-way even when A is given the randomness
r that is used to generate ek = Gen(1k; r), then we call PF a public-coin4 OWPF, and
in order to distinguish it from an ordinary one, we call an ordinary OWPF a secret-coin
OWPF.

Canonical Domain Sampling Property. We say that a OWPF PF has the canonical
domain sampling property [17] if the following two conditions are satisfied:

1. (Recognizable domain) There exists a PPTA which, on input ek and x, tells if
x ∈ Dek or not.

2. (Dense domain) There exist a polynomial time computable function � = �(k) and
a positive polynomial p = p(k) so that Dek ⊆ {0, 1}� and |Dek| > 2�/p.

Goldreich et al. [17] showed that a OWP can be constructed in a black-box man-
ner from a public-coin OWPF with the above property, and we briefly review their
construction. Given a public-coin OWPF (Gen,Eval, Samp) with the canonical domain

4 Goldreich et al. [17] called this property “augmented one-wayness.” Here we use the name due
to Hsiao and Reyzin [24].
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sampling property, where Gen(1k) uses a λ = λ(k)-bit randomness, we construct a
single permutation P for length λ + � that works as follows: On input (rg‖z) such
that |rg| = λ and |z| = �, P first calculates ek ← Gen(1k; rg), and then outputs
(rg‖Eval(ek, z)) if z ∈ Dek or (rg‖z) otherwise. This P is indeed a permutation, and
can be shown to be weakly one-way. Then, this weak one-wayness can be amplified by
a standard technique (e.g. [47]) to obtain a OWP (with ordinary one-wayness).

2.3 Trapdoor Permutations

A family of trapdoor permutations (TDP) is a special class of secret-coin permuta-
tion family (Gen, Eval, Samp) with the following additional properties: (1) The algo-
rithm Gen is a deterministic polynomial-time algorithm that takes 1k and a trapdoor
td ∈ {0, 1}k as input, and outputs a corresponding evaluation-key ek.5 (This process is
denoted by “ek ← Gen(1k, td)”.) (2) There is a deterministic inversion algorithm Inv
which takes td ∈ {0, 1}k and an element y ∈ Dek as input (where ek = Gen(1k, td)),
and outputs x ∈ Dek such that Eval(ek, x) = y.

Hard Games and Ideal Security. In this paper, we consider “ideal security” of a TDP,
following [11,29]. Roughly, ideal security of a TDP corresponds to security satisfied by
random permutations.

Let G be a PPTA (called a challenger) that can exchange messages with another algo-
rithm (called an adversary) A by a shared communication tape. We say that G defines a
game regarding random permutations if both G and A have access to t independent ran-
dom permutations π1, . . . , πt over {0, 1}k, where t = t(k) is a polynomial determined
by G, G interacts with A, and finally outputs a decision bit d. This process is denoted by

“d ←R ExptG
π1(·),...,πt(·)

RP,Aπ1(·),...,πt(·)(k).” (Here, “RP” stands for “random permutations.”) We
say that the adversary A wins the game G if d = 1.

Informally, an oracle PPTA G defines a δ-hard game regarding random permuta-
tions, where 0 ≤ δ < 1, if no oracle algorithm A can win the game G regarding
random permutations with probability significantly better than δ. Typically, δ = 0 for
“search games” (e.g. one-wayness experiment) or δ = 1/2 for “distinguishing games”
(e.g. security experiment for a pseudorandom generator). We define the advantage of an
adversary A in a game G as follows:

AdvGRP,A(k) = Pr[π1, . . . , πt ←R Permk; d ←R Expt
Gπ1(·),...,πt(·)

RP,Aπ1(·),...,πt(·)(k) : d = 1].

Then, we define the δ-hardness of the game G as follows.

Definition 1. We say that a game G is δ-hard (for some 0 ≤ δ ≤ 1) for adversaries with
polynomial query complexity if for any (even computationally unbounded) algorithmA
whose query complexity is at most polynomial, there is a negligible function μ(k) such
that AdvGRP,A(k) − δ ≤ μ(k). We call “δ(G)” the hardness of the game G and is the
smallest value such that G is δ-hard for adversaries with polynomial query complexity.

5 It is usual to define the Gen algorithm as a probabilistic algorithm so that it takes 1k as input,
and outputs a pair (ek, td). However, in terms of existence, a TDP with such definition is
equivalent to one defined in this paper, because without loss of generality we can identify the
randomness r for generating (ek, td) ← Gen(1k; r) with the trapdoor of a TDP.
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We stress that unlike [11,29], our definition of the hardness δ(G) of a game G regard-
ing random permutations is with respect to computationally unbounded adversaries,
and the restriction on an adversary is only on its query complexity, rather than its run-
ning time. Though this requirement for hard games is stronger than the ones used in
[11,29] (and thus potentially harder to achieve), most security games that are δ-hard for
all PPTAs remain δ-hard for computationally unbounded adversaries with polynomial
query complexity. Examples include one-wayness, claw-freeness [19], and security un-
der t(k)-correlated inputs [42] for any predetermined polynomial t(k). See also [29,
Table 1] for other types of security games that can be captured by δ-hard games. We
note that, since G does not have access to inversions of permutations, our definition of
hard games does not capture adaptive one-wayness [38,28].

A game for a TDP is then defined by replacing the random permutations in a δ-hard
game with instantiations of permutations in the TDP. More specifically, we define the
advantage of an adversary A in a game G for a TDP TDP = (Gen,Eval, Samp, Inv) as
follows:

AdvGTDP,A(k) = Pr

[

td1, . . . , tdt ←R {0, 1}k; eki ← Gen(1k, tdi) for i ∈ [t]

d ←R Expt
GEval(ek1,·),...,Eval(ekt,·)

TDP,A(ek1,...,ekt) (k)
: d = 1

]

Note that in the above experiment, the interface of G is exactly the same as that of a
game defined for random permutations. However, the interface of A is changed. Un-
like the games regarding random permutations, we do not provide A with oracle ac-
cess to Eval(eki, ·)’s because it gets evaluation keys {eki} and thus can compute each
Eval(eki, ·) by itself.

Definition 2. We say that TDP is secure for game G if for all PPTAs A, there is a
negligible function μ(k) such that AdvGTDP,A(k) − δ(G) ≤ μ(k). Furthermore, we say
that TDP is an ideal TDP if it is secure for all games.

Note that the definition of the hard games for a TDP considers only PPTA adversaries,
although the hardness δ(G) is defined with respect to (computationally unbounded)
adversaries with polynomial query complexity.

It has been observed in [11] that ideal security is too strong to be satisfied by TDPs
implemented by PPTAs. However, we will show the impossibility of constructing a
OWP from an ideal TDP in a black-box manner, and thus ruling out a black-box con-
struction from a TDP with such strong security makes our result stronger.

3 Black-Box Separation of OWP from Ideal TDP

In this section, we show our main result: there is no black-box construction of a OWP
from an ideal TDP.

We first recall the formal definition of the type of black-box constructions that we
will rule out, which is called a fully-black-box construction (reduction) in the taxonomy
of Reingold et al. [41]. (The definition can be easily adapted to other primitives.)

Definition 3. We say that there exists a fully-black-box construction of a OWP from
an ideal TDP, if there exist a positive polynomial � = �(k), an oracle PPTA P (called
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“construction”), and an oracle PPTA R (called “reduction”) such that for all tuples
of algorithms TDP = (Gen,Eval, Samp, Inv) that implement a TDP with security pa-
rameter k and all algorithms A (where each algorithm in TDP and A are of arbitrary
complexity) the following two conditions hold:

(Correctness): PTDP is a permutation over {0, 1}�.
(Security): If AdvOWPPTDP,A,�(k) is non-negligible, then so is AdvGTDP,RA,TDP(k) − δ(G)

for some game G.

The main result in this paper is the following.

Theorem 1. There is no fully-black-box construction of a OWP from an ideal TDP.

Recall that the security games for most of the security notions of a TDP, such as (or-
dinary) one-wayness, security under t(k)-correlated-inputs [42] for any predetermined
polynomial t = t(k), and claw-freeness [19], can be captured by the δ-hard games.
Since “a (fully-)black-construction of a primitive from another primitive” is a transitive
relation, we obtain the following as a corollary of Theorem 1.

Corollary 1. There is no fully-black-box construction of a OWP from a one-way TDP6,
a TDP secure under t-correlated-input for any predetermined polynomial t, or a claw-
free TDP.

To prove Theorem 1, we will use the following “two oracle separation” technique
[15,24] (which is an extension from the “one oracle separation” by [25,41]). Specifi-
cally, to prove Theorem 1, it is sufficient to show the following lemma.

Lemma 1. (adapted from [15,24].) Let PSPACE be an oracle for a PSPACE-complete
problem. Assume there exist a set O of oracles and a tuple of oracle PPTAs TDP =
(Gen,Eval, Samp, Inv) that satisfy the following three conditions:

(1): TDPO = (GenO,EvalO, SampO, InvO) is correct as a TDP for all O ∈ O.
(2): For any game G and for any oracle PPTA A, EO←RO[Adv

G
TDPO,AO,PSPACE(k)] −

δ(G) is negligible.
(3): For any positive polynomial � = �(k) and for any oracle PPTA P, if PO is a

permutation over {0, 1}� for all O ∈ O, then there exists an oracle PPTA A such
that EO←RO[Adv

OWP
PO,AO,PSPACE,�(k)] is overwhelming.

Then, there is no fully-black-box construction of a OWP from an ideal TDP.

In order to use Lemma 1 for showing our main result, we define the set T of “TDP”
oracles T below, which will be used as O in the above lemma. Next, in Section 3.1, we
show Lemmas 2 and 3 which guarantee that there is a tuple of oracle PPTAs TDP =
(Gen,Eval, Samp, Inv) such that T and TDP satisfy the conditions (1) and (2) of the
above lemma, respectively. Then, in Section 3.2, we show Lemma 4 which guarantees
that the set T satisfies the condition (3) of the above lemma. Theorem 1 follows by
combining these lemmas.

6 Actually, permutations in our TDP have a trivial domain {0, 1}k and thus the TDP satisfies
doubly enhanced one-wayness [18]. Furthermore, given a 2k-bit string ek, whether E(ek, ·)
defines a permutation can also be checked easily by checking the result of E(ek, 0k), and thus
it also satisfies the certified property [5]. Thus, our result also rules out constructions from a
one-way TDP with these properties.
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TDP Oracle T . The TDP oracle T models an ideally secure TDP whose evaluation-
key space is sparse. Formally, a TDP oracle T consists of the following three suboracles
(G, E ,D):

G : {0, 1}k → {0, 1}2k: (Corresponding to the key generation for the TDP) This is an
injective function that takes td ∈ {0, 1}k as input, and returns ek ∈ {0, 1}2k.

E : {0, 1}2k×{0, 1}k → {0, 1}k∪{⊥}: (Corresponding to evaluation) For every ek ∈
Range(G), E(ek, ·) is a permutation over {0, 1}k, and for every ek /∈ Range(G) and
every α ∈ {0, 1}k, E(ek, α) = ⊥.

D : {0, 1}k × {0, 1}k → {0, 1}k: (Corresponding to inversion) This function takes
td ∈ {0, 1}k and β ∈ {0, 1}k as input, and returns α ∈ {0, 1}k such that E(G(td),
α) = β.

We denote by T the set consisting of all possible TDP oracles T that satisfy the above
syntax.

3.1 Ideal Trapdoor Permutation Based on T

Here, we show that there exists an ideal TDP that uses a TDP oracle T = (G, E ,D) ∈ T.
Consider the following tuple TDPT = (GenT ,EvalT , SampT , InvT ) of oracle PPTAs,
which are constructed straightforwardly from T :

– GenT (1k, td): Compute ek ← G(td) and output the evaluation-key ek.
– EvalT (ek, x): Compute y ← E(ek, x) and output y. (We define the domain Dek of
EvalT (ek, ·) to be {0, 1}k for all ek ∈ Range(G).)

– SampT (ek): Pick x ∈ {0, 1}k uniformly at random, and output x. (Note that this
algorithm does not use T at all.)

– InvT (td, y): Compute x ← D(td, y) and output x.

Regarding TDPT described above, the following two lemmas can be shown:

Lemma 2. For any T ∈ T, TDPT is correct as a TDP.

Lemma 3. For all games G and any oracle PPTA adversary A, there exists a negligible
function μ(k) such that ET ←RT[Adv

G
TDPT ,AT ,PSPACE(k)]− δ(G) ≤ μ(k).

Lemma 2 is immediate from the definition of the TDP oracle T . The formal proof of
Lemma 3 is given in the full version (but we will give a proof sketch below). Note that
if we pick T = (G, E ,D) uniformly from T, then G is a random injective function that
is length-doubling, and every permutation E(ek, ·) with ek ∈ Range(G) is an indepen-
dent random permutation. Kiltz and Pietrzak [29] showed that a similar construction of
a TDP oracle whose “key generation oracle” is also a random permutation is ideally se-
cure even against computationally unbounded adversary that makes only polynomially
many queries. Our proof of Lemma 3 is similar to theirs.

Proof Sketch of Lemma 3. Fix an arbitrary δ-hard game G, and let t = t(k) be a
polynomial implicitly determined by G. Fix also an arbitrary PPTA adversary A.
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The expectation (over the choice of T ) of the advantage of the adversary A attacking
TDPT = (GenT , EvalT , SampT , InvT ) in the game G (in the presence of the PSPACE
oracle) can be written as follows:

E
T ←RT

[

AdvGTDPT ,AT ,PSPACE(k)
]

= E
T ←RT

[

Pr

[

td∗1, . . . , td
∗
t ←R {0, 1}k; ek∗i ← GenT (1k, td∗i ) for i ∈ [t];

d ←R Expt
GEvalT (ek∗

1 ,·),...,EvalT (ek∗
t ,·)

TDPT ,AT ,PSPACE(ek∗
1 ,...,ek

∗
t )
(k)

: d = 1

]]

= Pr

[

T ←R T; td
∗
1, . . . , td

∗
t ←R {0, 1}k; ek∗i ← G(td∗i ) for i ∈ [t];

d ←R Expt
GE(ek∗

1 ,·),...,E(ek∗
t ,·)

TDPT ,AT ,PSPACE(ek∗
1 ,...,ek

∗
t )
(k)

: d = 1

]

.

Let us denote by ˜Expt
G

TDPT,AT,PSPACE(k) the experiment in the probability in the last
equation.

Now, consider the following two games.

Game 1: This is the ordinary δ-hard game G for TDPT , in which sampling of the

oracle T from T is also taken into account, i.e. ˜Expt
G

TDPT,AT,PSPACE(k).
Game 2: Same as Game 1, except that A’s queries of the following types are answered

with ⊥: (i) a G-query td∗i for some i ∈ [t], and (ii) a D-query (td∗i , ∗) for some
i ∈ [t].

For i ∈ {1, 2}, let Succi be the event that A wins (i.e. d = 1 occurs) in Game i. By
definition we have ET ←RT[Adv

G
TDPT ,AT ,PSPACE(k)] = Pr[Succ1]. Furthermore, we have

E
T ←RT

[AdvGTDPT ,AT ,PSPACE(k)]− δ(G) = Pr[Succ1]− δ(G)

≤ |Pr[Succ1]− Pr[Succ2]|+ Pr[Succ2]− δ(G). (1)

In the full version, we will show how to upperbound each term in the right hand side of
the inequality (1), which will prove Lemma 3. Below we explain the sketches for how
to show these.

|Pr[Succ1]−Pr[Succ2]| can be shown to be negligible, because the adversaryA, who
can make only polynomially many queries, cannot tell the difference between Game 1
and Game 2 (except with negligible probability). More specifically, Game 1 and Game
2 differ only in the response to A’s G-queries and D-queries that contain the preimages
{td∗i }i∈[t] of the evaluation keys {ek∗i }i∈[t], and thus in order for A to distinguish these
games, A has to find one of {td∗i }i∈[t]. However, intuitively, finding any of the preim-
ages {td∗i }i∈[t] is hard because the TDP oracle T is chosen randomly and especially the
function G is a random injective function, and we will formally show that this intuition
works.

Pr[Succ2]−δ(G) can be shown to be negligible, roughly because Game 2 can be per-
fectly simulated by another computationally unbounded adversary S with polynomial
query complexity that interacts with the PPTA (challenger) G for random permutations
(not for the TDP TDPT ), in such a way that AdvGRP,S(k) = Pr[Succ2]. But by the as-

sumption that G is a δ-hard game,AdvGRP,S(k)−δ(G) = Pr[Succ2]−δ(G) is negligible.
This completes the proof sketch of Lemma 3. ��
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3.2 Breaking Any Candidate of One-Way Permutation Based on T

Here, we show that any candidate of a OWP PT based on a TDP oracle T ∈ T can be
broken by some oracle PPTA almost perfectly (using the PSPACE oracle). Specifically,
this subsection is devoted to proving the following lemma.

Lemma 4. Let � = �(k) be a positive polynomial and P be an oracle PPTA such that
PT is a permutation over {0, 1}� for all T ∈ T. Then there exists an oracle PPTA A
such that ET ←RT[Adv

OWP
PT ,AT ,PSPACE,�(k)] is overwhelming.

To prove Lemma 4, we need some further notations, two other oracles than T , and
several intermediate lemmas. Thus, we first introduce them, and in the last of this sub-
section show the proof of Lemma 4. The intuitive explanation on how the above lemma
is proved can be found in Section 1.3.

Further Notations. For notational convenience, we introduce two notations. Let O be
a set of oracles O, � = �(k) be a positive polynomial, and P and A be oracle PP-
TAs. If PO is a permutation over {0, 1}� for all oracles O ∈ O, then we denote by
˜Expt

OWP

PO,AO,PSPACE,�(k) the following experiment:

[ O ←R O; x∗ ←R {0, 1}�; y∗ ← PO(x∗); x′ ←R AO,PSPACE(1k, y∗) ].

Note that ˜Expt
OWP

PO,AO,PSPACE,�(k) includes sampling an oracle O from O.

Then, we define ˜Adv
OWP

PO,AO,PSPACE,�(k) := EO←RO[ Adv
OWP
PO,AO,PSPACE,�(k) ], i.e.,

˜Adv
OWP

PO,AO,PSPACE,�(k)

= Pr[O ←R O;x∗ ←R {0, 1}�; y∗ ← PO(x∗);x′ ←R AO,PSPACE(1k, y∗) : x′ = x∗].

(Our goal in this subsection is to show that ˜Adv
OWP

PT,AT,PSPACE,�(k) is overwhelming.)

Block Cipher Oracle B. Here we introduce a “block cipher” oracle B which models
an ideally secure block cipher (or, keyed invertible permutation) whose key space is
sparse. Formally, a block cipher oracle B consists of the following three suboracles
(̂G,P ,P−1):

̂G : {0, 1}k → {0, 1}2k: (Corresponding to the key generation for the block cipher)
This is an injective function that takes td ∈ {0, 1}k as input, and returns ek ∈
{0, 1}2k.

P : {0, 1}2k×{0, 1}k → {0, 1}k∪{⊥}: (Corresponding to encryption) For every ek ∈
Range(̂G), P(ek, ·) is a permutation over {0, 1}k, and for every ek /∈ Range(̂G)
and every α ∈ {0, 1}k, P(ek, α) = ⊥.

P−1 : {0, 1}2k × {0, 1}k → {0, 1}k ∪ {⊥}: (Corresponding to decryption) For ev-
ery ek ∈ Range(̂G), P−1(ek, ·) is the inversion of P(ek, ·), and for every ek /∈
Range(̂G) and every β ∈ {0, 1}k, P−1(ek, β) = ⊥.

We denote by B the set consisting of all possible block cipher oracles B that satisfy the
above syntax.
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Relationship between T and B. We will use the following simple fact shown by Lindell
and Zarosim [30].

Lemma 5. ([30]) Let φ be the mapping that maps a block cipher oracle B = (̂G,P ,
P−1) ∈ B to a tuple of oracles φ(B) = (G, E ,D), where the suboracles G, E , and D
are defined in the following way: For all td ∈ {0, 1}k, ek ∈ {0, 1}2k, α ∈ {0, 1}k and
β ∈ {0, 1}k, we let

G(td) := ̂G(td), E(ek, α) := P(ek, α), and D(td, β) := P−1(̂G(td), β).

Then, φ is a bijection from B to T.

Round Function Oracle R. Here, we introduce a “round function” oracle R which
models a set of “round functions” in the Feistel-network construction of permutations
[32] (whose evaluation key space is sparse). Formally, a round function oracle R con-
sists of the following two suboracles (˜G,F):

˜G : {0, 1}k → {0, 1}2k: (Corresponding to the key generation for each round func-
tion) This is an injective function that takes td ∈ {0, 1}k as input, and returns
ek ∈ {0, 1}2k.

F : [14] × {0, 1}2k × {0, 1}k/2 → {0, 1}k/2 ∪ {⊥}: (Corresponding to the round
functions in the Feistel-network). For every index i ∈ [14] and ek ∈ Range(˜G),
F(i, ek, ·) is a function from k/2 bit to k/2 bit, and for every ek /∈ Range(˜G) and
every (i, γ) ∈ [14]× {0, 1}k/2, F(i, ek, γ) = ⊥.

We denote by R the set consisting of all possible round function oracles R that satisfy
the above syntax.

Relationship between B and R. Holenstein et al. [23] showed that the random oracle
model and the ideal cipher model are equivalent. (The statement itself was posed by
Coron et al. [10].) More concretely, they proved that a random invertible permutation
can be simulated by the fourteen-round Feistel-network construction of a permutation in
which each round function is an independent random function. (Technically, this means
that the latter is indifferentiable [34] from the former.) Based on their result, we can also
construct oracle PPTAs C and S such that (CR,R) and (B, SB) are indistinguishable.

More formally, consider the following PPTA C that, given access to R = (˜G,F) ∈
R, tries to simulate a block cipher oracle CR = (̂G,P ,P−1) as follows:

̂G(·): Define ̂G(·) = ˜G(·).
P(·, ·): On input (ek, α) ∈ {0, 1}2k × {0, 1}k, check if ek ∈ Range(˜G) by making an

F -query (1, ek, 0k/2). If the answer from F is ⊥ (meaning ek /∈ Range(˜G)), then
return ⊥. Otherwise, regard α as α = (L0||R0) so that |L0| = |R0| = k/2. Then,
for each i ∈ [14], compute Li ← Ri−1 and Ri ← F(i, ek, Ri−1) ⊕ Li−1, and
finally output β ← (L14||R14).

P−1(·, ·): On input (ek, β) ∈ {0, 1}2k × {0, 1}k, check if ek ∈ Range(˜G) as above.
If ek /∈ Range(˜G), then return ⊥. Otherwise, compute and output the inversion of
P(ek, ·) using F .
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Constructed as above, it is guaranteed that CR ∈ B for all R ∈ R, because the Feistel-
network construction yields a permutation no matter what round functions are used.
Moreover, the result in [23] yields the following.

Lemma 6. (follows from [23].) Let C be the oracle PPTA as above. Then, for any
polynomial q = q(k), there exists an oracle PPTA S such that for all (computationally
unbounded) oracle algorithms D making at most q queries, the following difference is
negligible:

| Pr
R←RR

[DCR,R(1k) = 1]− Pr
B←RB

[DB,SB
(1k) = 1]|.

TDP Oracle T Can Be Simulated. Here, we show that if there exists a TDP-based
permutation PT , then so does a “random function”-based permutation ˜PR such that
inverting ˜PR is as hard as inverting PT . Furthermore, the latter is true even in the
presence of PSPACE oracle.

Lemma 7. Let � = �(k) be a positive polynomial and P be an oracle PPTA such that
PT is a permutation over {0, 1}� for all T ∈ T. Then, there exists another oracle PPTA
˜P that satisfies the following two properties: (1) For all R ∈ R, ˜PR ∈ Perm�. (2) For
any oracle PPTA ˜A, there exist another oracle PPTA A and a negligible function μ(k)

such that ˜Adv
OWP

PT,AT,PSPACE,�(k) ≥ ˜Adv
OWP

˜PR, ˜AR,PSPACE,�(k)− μ(k).

Proof of Lemma 7. (The intuitive explanation can be found in Section 1.3.) Let � and
P be as stated in the lemma. First, define the “intermediate” oracle PPTA ̂P by ̂PB(·) =
Pφ(B)(·), where φ is the bijection from B to T due to Lemma 5. This construction
of ̂P also guarantees that PT (·) = ̂Pφ−1(T )(·) where φ−1 is the inversion function
of φ (i.e. φ−1 is also a bijection from T to B). Next, define the oracle PPTA ˜P by
˜PR(·) = ̂PCR

(·), whereC is the oracle PPTA due to Lemma 6. Then, since PT ∈ Perm�

for all T ∈ T, we have ̂PB ∈ Perm� for all B ∈ B. This in turn guarantees that
˜PR ∈ Perm� for all R ∈ R, because CR ∈ B for all R ∈ R. Therefore, ˜P satisfies the
property (1).

Next, we show that ˜P satisfies the property (2). Let ˜A be an arbitrary oracle PPTA

adversary that runs in the experiment ˜Expt
OWP

˜PR, ˜AR,PSPACE,�(k) and makes in total q = q(k)

oracle queries. Note that since ˜A is a PPTA, q is a polynomial. Let S be the simulator
corresponding to the polynomial q, which is guaranteed to exist by Lemma 6, and define
an oracle PPTA ̂A(·),(·) (which expects to have access to an oracle B ∈ B and the
PSPACE oracle) by ˜AS(·),(·). That is, given access to any B ∈ B and the PSPACE

oracle, ̂AB,PSPACE and ˜ASB,PSPACE behave identically. Since both ˜A and S are oracle
PPTAs, ̂A is also an oracle PPTA and thus makes at most polynomially many queries.

Then, consider the following sequence of games.

Game 1. This is the ordinary experiment ˜Expt
OWP

˜PR, ˜AR,PSPACE,�(k) that ˜A runs in. That is:

[R ←R R; x
∗ ←R {0, 1}�; y∗ ← ˜PR(x∗); x′ ←R

˜AR,PSPACE(1k, y∗)].
Game 2. This game is defined as follows:

[B ←R B; x
∗ ←R {0, 1}�; y∗ ← ̂PB(x∗); x′ ←R

̂AB,PSPACE(1k, y∗)].
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Game 3. This game is defined as follows:
[T ←R T; x

∗ ←R {0, 1}�; y∗ ← PT (x∗); x′ ←R
̂Aφ−1(T ),PSPACE(1k, y∗)].

Game 4. Same as Game 3, except that when ̂A makes a P-query (ek, α) or a P−1-
query (ek, β) such that ek is not an answer to some of ̂A’s previous ̂G-queries, the
query is answered with ⊥.

For i ∈ [4], let Succi be the event that x′ = x∗ occurs in Game i. Then we have

˜Adv
˜PR, ˜AR,PSPACE,�(k) = Pr[Succ1] ≤

∑

i∈[3]

|Pr[Succi]−Pr[Succi+1]|+Pr[Succ4]. (2)

To complete the proof, we upperbound each term in the above inequality.

Claim 1. |Pr[Succ1]− Pr[Succ2]| is negligible.

Proof of Claim 1. We show that we can construct a computationally unbounded oracle
algorithm (distinguisher) D that, using ̂P and ˜A as its subroutines, makes at most q
queries, and satisfies

| Pr
R←RR

[DCR,R(1k) = 1]− Pr
B←RB

[DB,SB
(1k) = 1]| = |Pr[Succ1]− Pr[Succ2]|. (3)

D is given access to two oracles (O1,O2), which is either (CR,R) or (B, SB), and runs
as follows:

DO1,O2(1k): D picks x∗ ←R {0, 1}�, computes y∗ ← ̂PO1(x∗), and then simulates
˜AO2,PSPACE(1k, y∗). Note that D is computationally unbounded, and thus can sim-

ulate the PSPACE oracle perfectly for ˜A.
When ˜A terminates with output x′, D checks whether x′ = x∗. If this is the case,
then D outputs 1, otherwise outputs 0, and terminates.

The above completes the description of D. Note that the number of queries that D
makes is at most the number of queries made by ˜A, and thus is at most q.

Now, consider the case when (O1,O2) = (CR,R). Then it is clear that D simulates
Game 1 perfectly for ˜A. In particular, in this case we have ̂PO1(x∗) = ̂PCR

(x∗) =
˜PR(x∗), and ˜A is given access to O2 = R and PSPACE as in Game 1. Under this situ-
ation, the probability that D outputs 1 is exactly the same as the probability that ˜A suc-
ceeds in outputting the preimage x∗ under ˜PR in Game 1, i.e. PrR←RR[DCR,R(1k) =
1] = Pr[Succ1].

Next, consider the case when (O1,O2) = (B, SB). Recall that we defined ̂AB,PSPACE

by ˜ASB,PSPACE, and thus ˜AO2,PSPACE = ˜ASB,PSPACE = ̂AB,PSPACE . Recall also that D
can simulate PSPACE perfectly by its computationally unbounded power. Therefore,
in this case D perfectly simulates Game 2 for ̂A. In particular, in this case we have
̂PO1(x∗) = ̂PB(x∗), and ̂A’s oracle queries are perfectly answered as in Game 2, using
O1 = B and D’s computationally unbounded power. Therefore the probability that
D outputs 1 is exactly the same as the probability that ̂A outputs x∗ in Game 2, i.e.
PrB←RB[DB,SB

(1k) = 1] = Pr[Succ2].
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In summary, our distinguisher D makes in total q queries and satisfies the equation
(3). Thus, Lemma 6 guarantees that |Pr[Succ1] − Pr[Succ2]| is upperbounded to be
negligible. This completes the proof of Claim 1. ��

Claim 2. Pr[Succ2] = Pr[Succ3].

Proof of Claim 2. Recall that due to Lemma 5, φ (and thus φ−1) is a bijection between
B and T. Therefore, the uniform distribution over B is equivalent to the distribution of
φ−1(T ) when T ←R T. Moreover, PT (·) = ̂Pφ−1(T )(·) for all T ∈ T by definition.
These imply that from ̂A’s view point, all values in Game 2 and those in Game 3 are
distributed identically, and thus Pr[Succ2] = Pr[Succ3]. This completes the proof of
Claim 2. ��

Claim 3. |Pr[Succ3]− Pr[Succ4]| is negligible.

Proof Sketch of Claim 3. For i ∈ {3, 4}, let Findi be the event that in Game i, ̂A makes
at least one P- or P−1-query such that ek is not an answer to some of previous ̂A’s
̂G-queries and ek ∈ Range(G). Note that Game 3 and Game 4 proceed identically until
Find3 or Find4 occurs in the corresponding games. Therefore, we have

|Pr[Succ3]− Pr[Succ4]| ≤ Pr[Find3] = Pr[Find4].

Hence, to prove the claim it is sufficient to bound Pr[Find4].
Recall that in Game 4 (and in Game 3) the oracle T ∈ T is picked uniformly, and

thus G oracle is a random injective function which is length-doubling. Therefore, the
probability that Find4 occurs is exactly the same as the probability that an oracle al-
gorithm with polynomial query complexity, which is given access to a random length-
doubling injective function and the corresponding “membership” function for its range
(this membership function tells if a given value is in the range of the injective function),
finds a “fresh” element that is not obtained by actually making a query to the function
but belongs to its range. However, it is easy to prove that such a probability is negligible
(as long as the query complexity of the algorithm is at most polynomial), and this in
turn bounds Pr[Find4] to be negligible. (The formal proof is provided in the full ver-
sion.) This completes the proof sketch of Claim 3. ��

Claim 4. There exists an oracle PPTA A such that Pr[Succ4] = ˜Adv
OWP

PT,AT,PSPACE,�(k).

Proof of Claim 4. Using the oracle PPTA ̂A as a building block, we construct an

oracle PPTA A that runs in ˜Expt
OWP

PT,AT,PSPACE,�(k): A is given (1k, y∗) as input, where
y∗ = PT (x∗) for a randomly chosen x∗ ∈ {0, 1}� and T ∈ T, given access to T and
PSPACE, and runs as follows:

AT ,PSPACE(1k, y∗): A generates an empty list L used to store “known”G-query/answer
pairs, and then runs ̂A(1k, y∗).
A responds to the queries from ̂A as follows:

– For a ̂G-query td, A forwards it to G, receives ek from G, and returns this ek to
̂A. A also stores the pair (td, ek) into the list L.
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– For a P-query (ek, α), if there is no entry of the form (∗, ek) in L, then A
responds with ⊥. Otherwise, A makes a E-query (ek, α), receives β from E ,
and finally returns this β to ̂A.

– For a P−1-query (ek, β), if there is no entry of the form (∗, ek) in L, then
A responds with ⊥. Otherwise, A retrieves td that corresponds to ek from L,
makes a D-query (td, β), receives α from D, and finally returns this α to ̂A.

– For a PSPACE-query, A answers to it by using A’s own PSPACE oracle.
When ̂A terminates with output x′, A also terminates with output this x′.

It is easy to see that A perfectly simulates Game 4 for ̂A in which the oracles given
access to ̂A are φ−1(T ) (that works as specified in Game 4) and PSPACE. Under this
situation, when ̂A succeeds in outputting the value x∗ such that ̂Pφ−1(T )(x∗) = y∗,
since PT (·) = ̂Pφ−1(T )(·) for all T ∈ T by definition, A also succeeds in outputting

the preimage under PT . Therefore, we have ˜Adv
OWP

PT,AT,PSPACE(k) = Pr[Succ4]. This com-
pletes the proof of Claim 4. ��

Claims 1 to 4 imply that for any oracle PPTA ˜A, there exist an oracle PPTA A and a

negligible function μ(k) such that ˜Adv
OWP

PT,AT,PSPACE,�(k) ≥ ˜Adv
OWP

˜PR, ˜AR,PSPACE,�(k) − μ(k),
and thus the property (2) is satisfied as well. This completes the proof of Lemma 7. ��

“Mimicking” Algorithm N and Good Inverter Q for N. The combination of the re-
sults by Rudich [43] and Kahn et al. [26] shows that any permutation which has ora-
cle access to a set of random functions can be inverted using the PSPACE oracle. On
the other hand, Lemma 7 shows that for any TDP-based permutation PT , there is an-
other “random function”-based permutation ˜PR such that if ˜PR can be inverted using
the PSPACE oracle, then so can be PT . Here, it seems that by combining the results
[43,26] and Lemma 7 we can invert the “random function”-based permutation ˜PR using
the PSPACE oracle. However, there is a subtle issue here: The suboracle F in a round
function oracle R is not a pure random function, even if R is sampled randomly from
the set R. Specifically, F returns an “invalid” symbol ⊥ for some inputs, and thus we
cannot directly use the results [43,26].

For convenience, let us refer to a query to the suboracle F in a round function oracle
R ∈ R as invalid if the answer to the query is ⊥, and an oracle algorithm N that expects
to access to an oracle R ∈ R as legal if NR never makes an invalid query for all R ∈ R

and for all inputs.
To resolve the subtlety on invalid queries, we will use the approach by Chang et al.

[9]: we show two lemmas that enable us to finally show that a TDP-based permutation
can be inverted almost perfectly. The first lemma below (Lemma 8) roughly states that
for a permutation ˜PR based on a round function oracle R, there is a “mimicking” algo-
rithm NR which is legal and, for most inputs, computes almost the same result as ˜PR

for most oracles R ∈ R.

Lemma 8. Let � = �(k) > 0 be a polynomial and ˜P be an oracle PPTA such that ˜PR

is a permutation over {0, 1}� for all R ∈ R. Then, there exists an oracle PPTA N (that
expects to access to an oracle from R) with the following properties: (i) N is legal, and
(ii) For sufficiently large k’s, for at least 1 − 2 · 2−k/6 fraction of strings y ∈ {0, 1}�,
(NR)−1(y) = (˜PR)−1(y) holds for at least 1− 2−k/3 fraction of oracles R ∈ R.
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The formal proof proceeds closely to that of [9, Claim 3 and Lemma 3], and is given in
the full version. We give a proof sketch.

Proof Sketch of Lemma 8. Let � and ˜P be as stated in the lemma. Using ˜P as a subrou-
tine, we construct the oracle PPTA N that satisfies the properties (i) and (ii). N takes a
string x ∈ {0, 1}� as input, has access to an oracle R ∈ R, and runs as follows:

NR(x): N firstly generates an empty list L into which “known” evaluation-keys ek ∈
Range(˜G) will be stored, and then runs ˜P(x). N responds to queries from ˜P as
follows:

– When ˜P makes a ˜G-query td ∈ {0, 1}k, N forwards it to ˜G, receives a result ek
from ˜G, and returns this ek to ˜P. N also stores ek into the list L.

– When ˜P makes a F -query (i, ek, γ) ∈ [14]×{0, 1}2k ×{0, 1}k/2, N responds
with ⊥ if ek /∈ L. Otherwise, N forwards (i, ek, γ) to F , receives an answer
δ ∈ {0, 1}k/2 from F , and returns δ to ˜P.

When ˜P terminates with output y, N also terminates with output y.

The above completes the description of N. Note that N is legal, because N’s F -queries
always satisfy ek ∈ Range(˜G). Hence, the property (i) is satisfied.

To show that the above N satisfies the property (ii), we will show the following
two claims that together imply what we want (the formal proofs are given in the full
version), and hence enable us to complete the proof of Lemma 8:

Claim 5. For any string x ∈ {0, 1}�, PrR←RR[N
R(x) �= ˜PR(x)] ≤ 2−k/2 holds for

sufficiently large k’s.

Claim 6. For sufficiently large k’s, the following holds. There are at least 1− 2 · 2−k/6

fraction of strings y ∈ {0, 1}� such that (NR)−1(y) = (˜PR)−1(y) holds for at least
1− 2−k/3 fraction of oracles R ∈ R.

Claim 5 can be shown in a similar manner to the negligible upperbound of Pr[Find4] in
the proof of Claim 3. Specifically, it is clear from the description of N that for any input
x ∈ {0, 1}�, the output of N and that of ˜P agree unless ˜P makes a F -query (∗, ek, ∗)
such that ek is not an answer to ˜P’s previous ˜G-queries. Therefore, “NR(x) �= ˜PR(x)”
must mean that ˜P makes such a F -query. However, if R is chosen uniformly, ˜G is
a random length-doubling injective function, and thus the probability of ˜P finding a
“fresh” element that belongs to Range(˜G) is exponentially small. (Here, F works as the
“membership” oracle regarding the range of ˜G, but it does not help much.)

For showing Claim 6, consider the Boolean matrix M =
(

M(y,R)

)

whose rows are
indexed by y ∈ {0, 1}� and whose columns are indexed by R ∈ R, so that M(y,R) = 1

if and only if (NR)−1(y) �= (˜PR)−1(y). By Claim 5, we know that for sufficiently
large k’s, we have that for each x ∈ {0, 1}�, NR(x) �= ˜PR(x) holds for at most 2−k/2

fraction of oracles R ∈ R. Since any such pair (x,R) contributes at most two 1’s to the
matrix M (namely, to the entries M(NR(x),R) and M(˜PR(x),R)), the total fraction of 1’s

in M is at most 2 · 2−k/2. That is, Pry←R{0,1}�,R←RR
[M(y,R) = 1] ≤ 2 · 2−k/2. Then,

a simple counting argument yields Claim 6.



On the Impossibility of Basing Public-Coin OWPs from TDPs 285

This completes the proof sketch of Lemma 8. ��
We note that even if ˜PR is a permutation, NR in Lemma 8 is not guaranteed to

be a permutation (although NR is very close to a permutation), and this is the main
reason why we cannot directly use the results from [43,26]. A similar situation was
encountered in [9] where the authors could not directly apply the results from [43,26]
to show the separation of a OWP from a trapdoor function.

Fortunately, we can use the next lemma, which is implied by the one shown and used
in [9, Section 3.2] (which is in turn based on [43,26]). The following lemma roughly
says that if most of the images under a legal oracle algorithm NR have a unique preim-
age, (and in particular these properties are satisfied by the algorithm NR in Lemma 8),
then there is an oracle algorithm QR,PSPACE that can invert NR almost always, using
the PSPACE oracle.

Lemma 9. (follows from [9, Lemma 4].) Let � = �(k) be a positive polynomial. There
exists a constant λ > 0 such that for every legal oracle PPTA N(·) : {0, 1}� → {0, 1}�
(that expects to access to an oracle from R), there is another oracle PPTA Q with
the following property: For any ε < λ and any y ∈ {0, 1}�, if the size of the set
(NR)−1(y) = {x ∈ {0, 1}�|NR(x) = y} is one for 1 − ε fraction of oracles R ∈ R,
then QR,PSPACE(1k, y) = (NR)−1(y) holds for 1−

√
ε fraction of oracles R ∈ R.

Inverting Any Permutation Based on T : Proof of Lemma 4. Now, we are ready to prove
Lemma 4. Let � and P be as stated in the lemma. By lemma 7, for this P, there is an
oracle PPTA ˜P such that ˜PR ∈ Perm� for all R ∈ R. Then, Lemma 8 tells us that for
this ˜P, there exists an oracle PPTA N that satisfies the properties (i) and (ii). Since ˜PR is
a permutation for all R ∈ R, the size of the set (˜PR)−1(y) = {x ∈ {0, 1}�|˜PR(x) = y}
is one for all y ∈ {0, 1}� and all R ∈ R. Thus, if (NR)−1(y) = (˜PR)−1(y), the size of
the set (NR)−1(y) = {x ∈ {0, 1}�|NR(x) = y} must also be one. By the property (ii)
of N in Lemma 8, for at least 1 − 2 · 2−k/6 fraction of strings y ∈ {0, 1}�, the size of
the set (NR)−1(y) = {x ∈ {0, 1}�|NR(x) = y} is one for at least 1 − 2−k/3 fraction
of oracles R ∈ R.

Set ε′ = 2−k/3. For any constant λ > 0, ε′ < λ holds for all sufficiently large k’s,
and thus this ε′ can be used as the ε in Lemma 9. Call y ∈ {0, 1}� good if (NR)−1(y) =

(˜PR)−1(y) holds for 1 − 2−k/3 fraction of oracles R ∈ R. By definition, if y is good,
then it is guaranteed that the size of the set (NR)−1(y) = {x ∈ {0, 1}�|NR(x) = y} is
one for at least 1− ε′ = 1− 2−k/3 fraction of oracles R ∈ R, and it is also guaranteed
that Pry←R{0,1}� [y is good] ≥ 1 − 2 · 2−k/6 holds. Furthermore, by using N and ε′,
Lemma 9 implies that there is an oracle PPTA Q such that for sufficiently large k’s and
for all good y’s, QR,PSPACE(y) = (NR)−1(y) holds for 1 −

√
ε′ fraction of oracles

R ∈ R. Recall that for y ∈ {0, 1}� and R ∈ R such that (NR)−1(y) = (˜PR)−1(y)

and QR,PSPACE(1k, y) = (NR)−1(y) = x, it holds that ˜PR(x) = y, i.e. Q succeeds
in calculating the preimage x of y under the permutation ˜PR. Therefore, considering
sufficiently large k’s, we have

Pr[R ←R R;x ←R Q
R,PSPACE(1k, y) : NR(x) = ˜PR(x) = y|y is good]

≥ 1−
√
ε′ = 1− 2−k/6.
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Now, define an oracle PPTA adversary ˜A, which runs in ˜Expt
OWP

˜PR, ˜AR,PSPACE,�(k), by
˜AR,PSPACE(1k, y∗) = QR,PSPACE(1k, y∗). Since x∗ is chosen uniformly from {0, 1}�

in ˜Expt
OWP

˜PR, ˜AR,PSPACE,�(k) and ˜PR is a permutation, y∗ = ˜PR(x∗) is distributed uniformly
over {0, 1}�. Therefore, for sufficiently large k’s, we have:

˜Adv
OWP

˜PR, ˜AR,PSPACE,�(k)

= Pr[R ←R R;x
∗ ←R {0, 1}�; y∗ ← ˜PR(x∗);x′ ←R

˜AR,PSPACE(1k, y∗) : x′ = x∗]

≥ Pr[R ←R R; y
∗ ←R {0, 1}�;x′ ←R Q

R,PSPACE(1k, y∗) : NR(x′) = ˜PR(x′) = y∗]

≥ Pr[R ←R R;x
′ ←R Q

R,PSPACE(1k, y∗) : NR(x′) = ˜PR(x′) = y∗|y∗ is good]

× Pr
y∗←{0,1}�

[y∗ is good]

≥ (1− 2−k/6) · (1− 2 · 2−k/6) ≥ 1− 3 · 2−k/6.

Finally, by the property (2) of P in Lemma 7, for this ˜A, there exist an oracle PPTA

adversary A, which runs in ˜Expt
OWP

PT,AT,PSPACE,�(k), and a negligible function μ(k) such
that for sufficiently large k’s:

˜Adv
OWP

PT,AT,PSPACE(k) ≥ ˜Adv
OWP

˜PR, ˜AR,PSPACE,�(k)− μ(k) ≥ 1− 3 · 2−k/6 − μ(k).

What we have shown thus far is that there exists an oracle PPTA A such that
ET ←RT[Adv

OWP
PT ,AT ,PSPACE,�(k)] = ˜Adv

OWP

PT,AT,PSPACE(k) is overwhelming. The above can
be shown for all positive polynomials �(k) and any PPTA P such that PT ∈ Perm� for
all T ∈ T. This completes the proof of Lemma 4. ��

4 Towards More General Separations

Broader Class of Permutations and Permutation Families. As in the previous black-box
separation results of a OWP from other basic primitives [43,26,9,33], our separation
results rule out a black-box construction of a OWP which is defined over strings (i.e.
the domain is a set of strings of a fixed length determined by the security parameter).
However, we can consider a more general form of a permutation whose domain is not
just a set of strings but an arbitrary set D, and which has a corresponding sampling
algorithm Samp to sample an element from the domain D (although such formulation
of a OWP is not standard). Furthermore, as a more natural and closely related primitive
to a OWP, we can also consider a public-coin OWPF.

Therefore, a natural question regarding our result will be: “Can our impossibility
result be extended to also rule out a black-box construction of a OWP with such general
form of domain or of a public-coin OWPF?”

We note that previously to our work, Hsiao and Reyzin [24] conjectured that there
is no black-box construction of a public-coin OWPF from a secret-coin OWPF. We can
partially answer to the above question in the positive due to the result by Goldreich
et al. [17], who showed that there is a (fully-)black-box construction of a OWP from a
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public-coin OWPF with the canonical domain sampling property (see Section 2.2 for
the definition and a brief review of the construction of [17]). This result, combined with
Theorem 1, yields the following corollary.

Corollary 2. There is no fully-black-box construction of a public-coin OWPF with
canonical domain sampling from an ideal TDP.

It seems to us that if we consider another restricted type of a constructed public-coin
permutation family such that the sampling algorithm Samp of the constructed permuta-
tion family does not use the algorithms of a building block TDP, then we can rule out a
black-box construction of such public-coin OWPF from an ideal TDP, with essentially
the same approach used to show Theorem 1 (although we have not formally checked
this). This is because if Samp of the constructed public-coin permutation family does
not depend on the TDP used as a building block, then whenever we use a same evalu-
ation key ek, the domain Dek of a permutation Eval(ek, ·) remains the same, and thus
slight modifications of Lemmas 7 to 9 seem to work accordingly.

Other than these observations, so far we do not know how to rule out the possibility
of constructing a public-coin OWPF from a TDP (or even from an ordinary secret-coin
OWPF) in general, and thus we would like to leave it as an interesting open problem.
Goldreich et al. [17] showed that under the standard RSA assumption or a discrete
logarithm assumption in the integer group Z

∗
p (with some appropriate condition on p),

we can construct a public-coin OWPF with the canonical domain sampling property,
and hence a OWP. However, they noted that how to construct a OWP or a public-coin
OWPF under the standard factoring assumption is still open. Tackling the above open
problem of clarifying whether there exists a black-box construction of a public-coin
OWPF from a secret-coin OWPF will also contribute to this problem: If it turns out
to be possible (which we think is unlikely), then we can use the Rabin TDP [40] as a
building block to construct a public-coin OWPF, while if it is not possible, one has to
essentially use some specific algebraic property to build a public-coin OWPF under the
factoring assumption.

Stronger Separation. So far, all our results are impossibility of a fully-black-box con-
struction, which is the most restrictive type of black-box constructions. With a slight
modification, however, our separation results can be strengthened to show that there is
no semi-black-box construction (in the taxonomy of Reingold et al. [41]) of a OWP (and
a public-coin OWPF with canonical domain sampling) from an ideal TDP. Specifically,
to show such a result, we need to show a “single” oracle which simultaneously imple-
ments an ideal TDP and PSPACE. However, our TDP oracle T can be easily modified
to such an oracle by using the “embedding” technique due to Reingold et al. [41]. We
discuss more details in the full version.
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12. Fiore, D., Schröder, D.: Uniqueness is a different story: Impossibility of verifiable random
functions from trapdoor permutations. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 636–653. Springer, Heidelberg (2012)
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