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Preface

TCC 2014 was held at the University of California San Diego in California, during
February 24–26, 2014. TCC 2014 was sponsored by the International Association
for Cryptologic Research (IACR). The general chairs of the conference were Mihir
Bellare and Daniele Micciancio. I would like to thank them in the name of the
TCC community in general, and in the name of all of the participants of TCC
2014 in particular, for their hard work in organizing the conference.

The conference received 90 submissions, of which the Program Committee
selected 30 for presentation at the conference. These proceedings consist of the
revised versions of the 30 papers. The revisions were not reviewed, and the au-
thors bear full responsibility for the contents of their papers. In addition to
the regular paper presentations, TCC 2014 featured a rump session where short
presentations of recent results were given, and two invited talks. The invited
speakers were Russell Impagliazzo and Silvio Micali, and the Program Commit-
tee is very grateful to them for accepting our invitation.

I am greatly indebted to many people who contributed to the success of TCC
2014. First and foremost, I would like to thank all those who submitted their
papers to TCC. The success of TCC is due mainly to your work. In addition,
I would like to thank the Program Committee for all of their hard work and
diligence in reviewing the submissions and choosing the program. A lot of work
is involved in this process, and your service to the community is greatly appreci-
ated. I would also like to thank all of the external reviewers who participated in
the process and provided in-depth reviews of the papers that they read. Finally,
I owe deep thanks to Shai Halevi and Tal Rabin who provided me with valuable
advice when I needed it. The TCC Program Committee also used Shai’s excel-
lent web-review software, and I thank Shai for writing it and for the support he
provided when needed.

This was the 11th Theory of Cryptography Conference, and it was my honor
and pleasure to act as the program chair of TCC as it entered its second decade.
A quick look at the proceedings herein suffices to appreciate the vibrant and
dynamic work being carried out by the TCC community. The proceedings include
research on new and exciting topics like obfuscation, as well as basic foundational
research on classic topics like zero-knowledge, secure computation, encryption,
black-box separations, cryptographic coding theory and more. In addition to
the fascinating research presented at TCC, the conference atmosphere is always
warm and friendly and is essentially a meeting of friends who come together
to study the fundamentals of our field. I thank the entire TCC community for
creating this event and for maintaining its unique and special qualities.

February 2014 Yehuda Lindell
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Collusion and Privacy in Mechanism Design

Silvio Micali

Laboratory for Computer Science,
MIT, Cambridge, MA 02139

silvio@csail.mit.edu

Abstract. Mechanism design aims at engineering games that, rationally
played, yield desired outcomes. In such games, multiple players interact
very much as in a cryptographic protocol. But there are some fundamen-
tal differences. No player is “good”, that is, always follows his prescribed
instruction. No player is “malicious”, that is, always acts so as to pre-
vent the desired outcome from being achieved. Rather, every player is
RATIONAL, that is, always acts so as to maximize HIS OWN utility.

Rational players too, however, have incentives to collude, and value
privacy. Thus, privacy and collusion can disrupt the intended course of a
game, and ultimately prevent the desired outcome from being achieved.
Mechanism design has been only moderately successful in protecting
against collusion, and has largely ignored privacy.

I believe that there is an opportunity for cryptographers and game
theorists to join forces and produce new mechanisms that are resilient
to collusion and privacy issues. I also believe that, to be successful, this
effort requires a good deal of modeling and the development of new
conceptual frameworks. In sum, there is the promise of a great deal of
fun, challenge, and excitement, and I would like to recruit as much talent
as possible towards this effort.

As a concrete example of what may be done in this area, I will describe
a (quite) resilient mechanism, designed by Jing Chen and I, for achieving
a (quite) alternative revenue benchmark in unrestricted combinatorial
auctions. In such auctions there are multiple distinct goods for sale, each
player privately attributes an arbitrary value to any possible subset of the
goods, and the seller has no information about the players valuations.
(Traditional mechanisms for unrestricted combinatorial auctions were
uniquely “vulnerable” to collusion and privacy.)



Specific versus General Assumptions

in Cryptography

Russell Impagliazzo �

CSE Department, UCSD

Abstract. Modern cryptography began with the insight that computa-
tional difficulty could limit the ability of an attacker to break encryption
or forge signatures. However, it was not for another few years that the
required computational difficulty of specific problems on specific distri-
butions for a cryptographic protocol to be secure was made explicit and
quantitative. A further advantage of formalizing this connection is that
it clarifies the exact properties, both in terms of which aspects should be
computationally feasible and which related problems should be compu-
tationally intractable, were used to prove security of the protocol. This
lays the foundation for proving possibility results in cryptography based
on general assumptions, about the existence of types of cryptographically
useful tools, rather than based on the difficulty of specific problems. A
pattern emerged, where a new cryptographic goal is proposed, an “exis-
tence proof” given based on specific assumptions (sometimes untested)
is given, then a variety of protocols are given based on different assump-
tions, and then these protocols are abstracted in terms of more general
assumptions that suffice.

This talk will focus on the history of how this pattern emerged, the
advantages that proofs of security based on general assumptions gives
over protocol design based on specific assumptions, and on both progress
and set-backs in basing cryptography on general assumptions.

* Work supported by the Simons Foundation and NSF grant CCF-121351.
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Virtual Black-Box Obfuscation for All Circuits

via Generic Graded Encoding

Zvika Brakerski1 and Guy N. Rothblum2

1 Weizmann Institute of Science
2 Microsoft Research

Abstract. We present a new general-purpose obfuscator for all polyno-
mial size circuits. The obfuscator uses graded encoding schemes, a gen-
eralization of multilinear maps. We prove that the obfuscator exposes
no more information than the program’s black-box functionality, and
achieves virtual black-box security, in the generic graded encoded scheme
model. This proof is under the Bounded Speedup Hypothesis (BSH, a
plausible worst-case complexity-theoretic assumption related to the Ex-
ponential Time Hypothesis), in addition to standard cryptographic as-
sumptions. We also prove that it satisfies the notion of indistinguishability
obfuscation without without relying on BSH (in the same generic model
and under standard cryptographic assumptions).

Very recently, Garg et al. (FOCS 2013) used graded encoding schemes
to present a candidate obfuscator for indistinguishability obfuscation.
They posed the problem of constructing a provably secure indistinguisha-
bility obfuscator in the generic graded encoding scheme model. Our
obfuscator resolves this problem (indeed, under BSH it achieves the
stronger notion of virtual black box security, which is our focus in this
work).

Our construction is different from that of Garg et al., but is inspired
by it, in particular by their use of permutation branching programs. We
obtain our obfuscator by developing techniques used to obfuscate d-CNF
formulas (ITCS 2014), and applying them to permutation branching pro-
grams. This yields an obfuscator for the complexity class NC1. We then
use homomorphic encryption to obtain an obfuscator for any polynomial-
size circuit.

1 Introduction

Code obfuscation is the task of taking a program, and making it “unintelligible”
or impossible to reverse engineer, while maintaining its input-output function-
ality. While this is a foundational question in the theory and practice of cryp-
tography, until recently very few techniques or heuristics were known. Recently,
however, several works have leveraged new constructions of cryptographically
secure graded encoding schemes (which generalize multilinear maps) [23,20] to
propose obfuscators for complex functionalities [10,11] and, in a fascinating re-
cent work of Garg et al [24], even for arbitrary polynomial size circuits.

Y. Lindell (Ed.): TCC 2014, LNCS 8349, pp. 1–25, 2014.
c© International Association for Cryptologic Research 2014



2 Z. Brakerski and G.N. Rothblum

In this work, we propose a new code obfuscator, building on techniques intro-
duced in [10,24,11]. The obfuscator works for any polynomial-time circuit, and its
security is analyzed in the idealized generic graded encoding scheme model. We
prove that, in this idealized model, the obfuscator achieves the strong “virtual
black-box” security notion of Barak et al. [5] (see below). Security in the ideal-
ized model relies on a worst-case exponential assumption on the hardness of the
NP-complete 3SAT problem (in the flavor of the well known exponential time
hypothesis). Our construction relies on asymmetric graded encoding schemes,
and can be instantiated using the new candidate constructions of Garg, Gentry
and Halevi [23], or of Coron, Lepoint and Tibouchi [20].

Obfuscation: Definitions. Intuitively, an obfuscator should generate a new pro-
gram that preserves the the original program’s functionality, but is impossible to
reverse engineer. The theoretical study of this problem was initiated by Barak et
al. [5]. They formalized a strong simulation-based security requirement of black
box obfuscation: namely, the obfuscated program should expose nothing more
than what can be learned via oracle access to its input-output behavior. We
refer to this notion as “black-box” obfuscation, and we use this strong formal-
ization throughout this work.

A weaker notion of obfuscation, known as indistinguishability or best-possible
obfuscation was studied in [5,27]. An indistinguishability obfuscator guarantees
that the obfuscations of any two programs (boolean circuits) with identical func-
tionalities are indistinguishable. We note that, unlike the black-box definition of
security, indistinguishability obfuscation does not quantify or qualify what infor-
mation the obfuscation might expose. In particular, the obfuscation might reveal
non-black-box information about the functionality. Recently, Sahai and Waters
[37] showed that indistinguishability obfuscation suffices for many cryptographic
applications, such as transforming private key cryptosystems to public key, and
even for constructing deniable encryption schemes.

Prior Work: Negative Results. In their work, [5] proved the impossibility of
general-purpose black-box obfuscators (i.e. ones that work for any polynomial-
time functionality) in the virtual black box model. This impossibility result was
extended by Goldwasser and Kalai [26]. Goldwasser and Rothblum [27] showed
obstacles to the possibility of achieving indistinguishability obfuscation with
information-theoretic security, and to achieving it in the idealized random oracle
model.

Looking ahead, we note that the impossibility results of [5,26] do not extend
to idealized models, such as the random oracle model, the generic group model,
and (particularly relevant to our work) the generic graded encoding model.

Prior Work: Positive Results. Positive results on obfuscation focused on specific,
simple programs. One program family, which has received extensive attention,
is that of “point functions”: password checking programs that only accept a sin-
gle input string, and reject all others. Starting with the work of Canetti [13],
several works have shown obfuscators for this family under various assumptions
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[17,32,39], as well as extensions [14,8]. Canetti, Rothblum and Varia [18] showed
how to obfuscate a function that checks membership in a hyperplane of constant
dimension (over a large finite field). Other works showed how to obfuscate cryp-
tographic function classes under different definitions and formalizations. These
function classes include checking proximity to a hidden point [21], vote mixing
[1], and re-encryption [29]. Several works [13,17,28,29] relaxed the security re-
quirement so that obfuscation only holds for a random choice of a program from
the family.

More recently, Brakerski and Rothblum [10] showed that graded encoding
schemes could be used to obfuscate richer function families. They constructed a
black-box obfuscator for conjunctions, the family of functions that test whether
a subset of the input bits take on specified values. Building on this result, in
a followup work [11], they constructed a black-box obfuscator for d-CNFs and
(more generally) conjunctions of NC0 circuits. These constructions were proved
secure in the generic graded encoding model. The conjunction obfuscator was
also shown to be secure under falsifiable (see [34]) multilinear DDH-like assump-
tions, so long as the conjunction is drawn from a family with sufficient entropy.

In recent work, Garg et al. [24] use cryptographic graded encoding schemes
to construct a candidate indistinguishability obfuscator (see above) for all poly-
nomial size circuits. This is the first non-trivial candidate in the literature for
general-purpose obfuscation. The main differences between our results and theirs
are: (i) we construct an obfuscator with the stronger security notion of black-box
obfuscation (for the same class of functions), and (ii) we provide a security proof
in the generic graded encoding scheme model. This was posed as a major open
question in [24].1

Canetti and Vaikuntanathan [19] outline a candidate obfuscator and prove
its security in an idealized pseudo-free group model. They also use Barrington’s
theorem and randomization techniques. The main difference from our work is in
the nature of their idealized pseudo-free group model: in particular, we do not
know of an instantiation that is conjectured to be secure.

1.1 Our Work: Black-Box Obfuscation for All of P

In this work we construct an obfuscator for any function in P , using crypto-
graphic graded encoding schemes. Our obfuscator can be instantiated using re-
cently proposed candidates [23,20]. The main component of our construction is
an obfuscator for the complexity class NC1, which is then leveraged to an ob-
fuscator for P using homomorphic encryption. Our main contribution is a proof
that the main component is a secure black-box obfuscator in the generic graded
encoding scheme model, assuming the bounded speedup hypothesis (BSH) [11], a
generalization of the exponential time hypothesis. More details follow.

Theorem 1.1. There exists an obfuscator PObf for any circuit in P, which is
virtual black-box secure in the generic graded encoding scheme model, assuming

1 [24] provide a proof of security in a more restricted “generic colored matrix model”.
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the bounded speedup hypothesis, and the existence of homomorphic encryption
with an NC1 decryption circuit.

We also prove that our obfuscator is an indistinguishability obfuscator in the
generic graded encoding scheme model (in fact, we show that this is true even
for a simplified variant of the construction). This proof does not require the
bounded speedup hypothesis.2

Theorem 1.2. There exists an obfuscator PIndObf for any circuit in P, which is
an indistinguishability obfuscator in the generic graded encoding scheme model,
assuming the existence of homomorphic encryption with an NC1 decryption cir-
cuit.

To prove Theorem 1.2, we use an equivalent formulation for the security
of indistinguishability obfuscators. This formulation requires the existence of
a computationally unbounded simulator, which only has black-box access to the
obfuscated program.

For the remainder of this section, we focus our attention on black-box obfus-
cation. Our construction proceeds in two steps. As hinted above, the first (and
main) step is an obfuscator for NC1 circuits. Then, in the second step, we use ho-
momorphic encryption [35,25] to obfuscate any polynomial-size circuit. (Which
is done by encrypting the input circuit using the homomorphic scheme, and
obfuscating a “verified decryption” circuit, as explained in the full version [12].)

Our obfuscator for NC1 circuits combines ideas from: (i) the d-CNF obfus-
cator of [11] and its security proof. In particular, we build on their technique
of randomizing sub-assignments to prove security in the generic model based on
the bounded speedup hypothesis, and we also build on their use of random gen-
erators in each ring of the graded encoding scheme. We also use ideas from (ii)
the indistinguishability obfuscator of [24], in particular their use of Barrington’s
theorem [6] and randomization techniques for permutation branching programs.
We note that the obfuscator of [19] was also based on Barrington’s theorem and
randomization techniques. See Section 1.2 for an overview of the construction
and its proof, Section 3 for the detailed construction, and the full version [12]
for the security proof.

The Generic Graded Encoding Scheme Model. We prove that our construction
is a black-box obfuscator in the generic graded encoding scheme model. In this
model, an adversary must operate independently of group elements’ representa-
tions. The adversary is given arbitrary strings representing these elements, and
can only manipulate them using oracles for addition, subtraction, multilinear
operations and more. See Section 2.5 for more details.

The Bounded Speedup Hypothesis. We prove security based on the Bounded
Speedup Hypothesis, as introduced by [11]. This is a worst-case assumption about

2 Under the BSH, the claim follows immediately from Theorem 1.1, because any virtual
black-box obfuscator is also an indistinguishability obfuscator [27].
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exponential hardness of 3SAT, a strengthening of the long-standing exponential
time hypothesis (ETH) for solving 3SAT [30]. The exponential-time hypothesis
states that no sub-exponential time algorithm can resolve satisfiability of 3CNF
formulas. Intuitively, the bounded-speedup hypothesis states that no polynomial-
time algorithm for resolving satisfiability of 3CNFs can have “super-polynomial
speedup” over a brute-force algorithm that tests assignments one-by-one. More
formally, there does not exist an ensemble of polynomial-size circuits {An}, and
an ensemble of super-polynomial-size sets of assignments {Xn}, such that on
input a 3CNF Φ on n-bit inputs, w.h.p. An finds a satisfying assignment for
Φ in Xn if such an assignment exists. We emphasize that this is a worst-case
hypothesis, i.e. it only says that for every ensemble A, there exists some 3CNF
on which A fails. See Section 2.2 for the formal definition.3

Perspective. Barak et al. [5] show that there are function families that are impos-
sible to obfuscate under the black-box security definition. Their results do not
apply to idealized models such as the random oracle model, the generic group
model, and the generic graded encoding model. This is because their adver-
sary needs to be able to execute the obfuscated circuit on parts of its own
explicit description. In idealized models, the obfuscated circuit does not have
a succinct explicit description, and so these attacks fail. Indeed, our main re-
sult, Theorem 1.1, shows that general-purpose black-box obfuscation is possible in
the generic graded encoding model (under plausible assumptions). Indeed, prior
works have shown that virtual black-obfuscation is possible in various idealized
models: [5] showed that there exists an (arguably contrived) oracle that allows
general-purpose obfuscation. [19] proposed a black-box obfuscator in an ideal-
ized generic pseudo-free group model, but we do not know an instantiation of
this model that is conjectured to be secure. In contrast, Theorem 1.1 provides
an (arguably) natural idealized model that allows general-purpose black-box ob-
fuscation. It is natural to ask how one should interpret this result in light of the
impossibility theorems.

One immediate answer, is that if one implements a graded encoding scheme
using opaque secure hardware (essentially implementing the generic model), then
the hardware can be used to protect any functionality (under plausible assump-
tions). The hardware is (arguably) natural, simple, stateless, and independent
of the functionality being obfuscated.

Another answer, is that the security proof shows that (under plausible as-
sumptions) our obfuscator is provably resilient to attacks from a rich family:
namely, to all attacks that are independent of the encoding scheme’s instantia-
tion. While we find this guarantee to be of value, we caution that it should not
be over-interpreted. The results of [5] imply that, for any concrete instantiation
of the graded encoding scheme, the obfuscation of their unobfuscatable functions
is not secure. In particular, their result (applied to our construction) provides a

3 We note that if both the adversary and the black-box simulator are allowed to run in
quasi-polynomial time, security can be based on the (standard) Exponential-Time
Hypothesis.
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non-generic attack against any graded encoding candidate. This is similar to the
result of [15], showing an attack against any instantiation of a random oracle
in a particular protocol. Somewhat differently from their result, however, in our
case the primitive in question is altogether impossible in the standard model. In
the result of [15], the primitive is not achieved by a specific construction when
the idealized model is instantiated with any concrete functionality. We find this
state of affairs to be of interest, even irrespective of the applications to code
obfuscation.

Taking a more optimistic view, the new construction invites us to revisit
limits in the negative results: both in the unobfuscatable functionalities, and in
the nature of the attacks themselves. It may suggest new relaxations that make
obfuscation achievable in standard models, e.g. obfuscating functionalities that
inherently do not allow self-execution, or protecting against a class of attackers
that cannot execute the obfuscated code on itself.

Finally, the relaxed notion of indistinguishability obfuscation, where only lim-
ited hardness and impossibility results are known, remains a promising avenue
for future research. Our construction is the first provably secure indistinguisha-
bility obfuscator in the generic graded encoding model. It is interesting to explore
whether indistinguishability obfuscation can be proved in the standard model
under falsifiable assumptions.

Follow-up Work. In recent follow-up work, Barak et al. [4] propose an obfuscator
that achieves virtual black-box security in the generic graded encoding scheme
model without relying on the BSH. Their construction builds on encoding and
randomization techniques introduced in this work.

1.2 Construction Overview

We proceed with an overview of the main step in our construction: an obfuscator
for NC1. We are assuming basic familiarity with graded encoding schemes. The
full construction appears in Section 3. Due to space limitations, the proof of its
security in the generic model appears in the full version of this manuscript [12].

Permutation Branching Programs. The obfuscator NC1Obf takes as input an
NC1 program, represented as an oblivious width 5 permutation branching pro-
gram C, as in [24]. Let m denote the depth of C (as is necessary, we allow the ob-
fuscator to expose m or some upper bound thereof). Let C = {Mj,0,Mj,1}j∈[m],
where Mj,b ∈ {0, 1}5×5 are matrices, and let i = �(j) indicate which variable xi

controls the jth level branch. See Section 2.1 for more background on (oblivious)
branching programs.

Graded Encoding Schemes. We begin by recalling the notion of multilinear maps,
due to Boneh and Silverberg [9]. Rothblum [36] considered the asymmetric case,
where the groups may be different. The obfuscator makes (extensive) use of
an asymmetric graded encoding schemes, which are an extension of multilinear
maps.
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Similarly to [24,19], we assign a group progj to each level j of the branching
program, and encode the matrices Mj,b in the group progj .

4 This encoding is
done as in [10,11]: we encode each matrix Mj,b relative to a unique generator of
progj (denoted ρprogj ,b), and also provide an encoding of the generators. In other
words, in the j-th group progj , we have two pairs:

(ρprogj ,0, (ρprogj ,0 ·Mj,0)) and (ρprogj ,0, (ρprogj ,0 ·Mj,0))

We note that this encoding, relative to a random generator, is different from
what was done in [24], and plays a crucial role in the security proof.

Randomizing the Matrices. As computed above, the encoded pairs clearly hide
nothing: Mj,b are binary matrices, and so they are completely revealed (via zero-
testing). As a first step, we use the NC1 randomization technique (see [3,31,22]),
as was done in [24] (however, unlike [24], we don’t need to extend the matrix
dimensions beyond 5×5). The idea is to generate a sequence of random matrices
Yj (over the ring R underlying the encoding scheme), and work with encodings
ofNj,b = Y−1

j−1 ·Mj,b·Yj instead of the originalMj,b. This preserves the program’s
functional behavior, but each matrix, examined in isolation, becomes completely
random. In fact, even if we take one matrix out of each pair, the joint distribution
of these m matrices is uniformly random (see Section 2.1).

There is an obstacle here, because using the standard graded encoding inter-
face, we can generate a random level 0 encoding of Y, but we cannot derive Y−1

(in fact, this is not possible even for scalars). Indeed, to perform this step, [24]
rely on the properties of a specific graded encoding instantiation. We propose
a difference solution that works with any graded encoding scheme: instead of
Y−1, we use the adjoint matrix Z = adj(Y), which is composed of determinants
of minors of Y, and is therefore computable given the level 0 encoding of Y. We
know that Y · Z = det(Y) · I, which will be sufficient for our purposes.5 Using
the encoding scheme from [10,11], in the j-th group progj we encode two pairs:

(ρprogj ,b, (ρprogj ,b · Nj,b))b∈{0,1}, where Nj,b = Zj−1 ·Mj,b · Yj

To efficiently evaluate this program, we need an additional group, which we
denote by chk. In this group we encode a random generator ρchk, and the element
(ρchk · (

∏
j det(Yj)) · Ym[1, 1]). We evaluate the branching program using the

graded encoding scheme’s zero-test feature, by checking whether:(
(ρprog1,x�(1)

N1,x�(1)
) · · · (ρprogm,x�(m)

Nm,x�(m)
) · ρchk

)
[1, 1]−

ρprog1,x�(1)
· · · ρprogm,x�(m)

· (ρchk · (
∏
j

det(Yj)) · Ym[1, 1]) = 0 .

4 In the setting of multilinear maps, we typically refer to input groups. The map takes
a single element from each input group, and maps them to a target group. In the
setting of graded encoding schemes, the groups are replaced with indexed sets. See
Section 2.4 for further details.

5 We use here the fact that all matrices we work with are of constant dimension, and
so we can compute the determinants of the minors in polynomial time while using
only multilinear operations.
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This provides the required functionality, but it does not provide a secure
construction.

Enforcing Consistency. An obvious weakness of the above construction is that
it does not verify consistency. For a variable xi that appears multiple time in the
program, the above scheme does not enforce that the same value will be used at
all times. This will be handled, similarly to [24,11], by adding consistency check
variables. In each group grp that is “associated” with a variable xi (so far, these
only include groups of the form progj s.t. �(j) = i), the obfuscator generates
two random variables βgrp,i,0 and βgrp,i,1, and multiplies the relevant variables.
Namely, in group progj with �(j) = i, we provide encodings of

(ρprogj ,b, (ρprogj ,b · βprogj ,i,b · Nj,b))b∈{0,1}

To preserve functionality, we would like to choose the β variables so that the
product of all zero-choices and the product of all one-choices are the same (one
might even consider imposing a constraint that the product is 1). For clarity of
exposition, we prefer the following solution: we use an additional auxiliary group
cci for every variable xi, such that

βcci,0 = β′
cci ·

∏
j:�(j)=i

βprogj ,1 ,

and vice versa (and β′
cci is the same for both cases). This guarantees that the

product of all zero-choices, and the product of all one-choices, is the same. We
denote this value by γi.

To preserve functionality, we multiply the element in the chk group by
∏

i γi.
Now in the chk group we have encodings of:

(ρchk, (ρchk ·
∏
i

γi · (
∏
j

det(Yj)) · Ym[1, 1]))

Intuitively, it seems that this change renders inconsistent assignments useless:
if, for some bit i of the input, the β values for i are not all taken according to
the same value (0 or 1), then the constraint does not come into play. Therefore,
the β values completely randomize these selected values.

One could postulate that the above construction is secure. In fact, we do
not know of an explicit generic-model attack on this construction. Still, there
are challenges to constructing a simulator. The crux of the difficulty is that an
attacker might somehow efficiently produce a multilinear expression that corre-
sponds to the evaluation of multiple (super-polynomially many) consistent in-
puts at the same time (or some function of super-polynomially many inputs: e.g.
checking if the circuit accepts all of them simultaneously). This would break the
obfuscator’s security, since an (efficient) simulator cannot evaluate the function
on super-polynomially many inputs.
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Indistinguishability Obfuscation via Inefficient Simulation. If we allow a com-
putationally unbounded simulator, then the above is not a problem. We show
that the existence of a computationally unbounded black-box simulator implies
indistinguishability obfuscation. In fact, the notions are equivalent both in the
standard model and in the generic graded encoding scheme model. Indistin-
guishability obfuscation for NC1 therefore follows, and an indistinguishability
obfuscator for P can be derived using the NC1 to P transformation of [24].

We note that the main conceptual difference that allows us to prove indis-
tinguishability obfuscation for our construction, as opposed to [24]’s, is our use
of the randomized ρ generators. This allows us, for any multilinear expression
computed by the adversary, to isolate the relevant consistent inputs that affect
the value of that expression.

Efficient Simulation and Virtual Black-Box Obfuscation. To get efficient black-
box simulation (and virtual black-box security), we need to address the above
difficulty. To do so, we build on the randomizing sub-assignments technique from
[11]. Here, we use this technique to bind the variables together into triples. This

done by adding
(
n
3

)
additional groups, denoted bindT , where T ∈

(
[n]
3

)
(i.e. one

for each triple of variables). The group bindT is associated with the triple of
variables {i1, i2, i3} ∈ T , and contains 8 pairs of encodings:

(ρbindT ,b1b2b3 , (ρbindT ,b1b2b3 · βbindT ,i1,b1 · βbindT ,i2,b2 · βbindT ,i3,b3))b1b2b3∈{0,1}3

In evaluating the program on an input x, for each group bindT , the evaluator
chooses one of these 8 pairs according to the bits of x|T , and uses it in computing
the two products that go into the zero test (as above). The aforementioned
consistency variables βcci,b take the new β’s into account, and are accordingly
computed as

βcci,0 = β′
cci ·

∏
j:�(j)=i

βprogj ,1 ·
∏

T :i∈T

βbindT ,i,1 ,

and vice versa. The γi values are modified in the same way.
Intuitively, in order to evaluate the program, the adversary now needs not

only to consistently choose the value of every single variable, but also to jointly
commit to the values of each triple, consistently with its choices for the sin-
gleton variables. We show that if a polynomial adversary is able to produce an
expression that corresponds to a sum of superpolynomially many consistent eval-
uations, then it can also evaluate a 3SAT formula on superpoynomially many
values simultaneously, which contradicts the bounded speedup hypothesis (BSH,
see Section 2.2).

A Taste of the Security Proof. The (high-level) intuition behind the security
proof is as follows. In the idealized generic graded encoding scheme model, an
adversary can only compute (via the encoding scheme) multilinear arithmetic
circuits of the items encoded in the obfuscation. Moreover, the expansion of these
multilinear circuits into a sum-of-monomials form, will only have one element
from each group in each monomial (note that this expansion may be inefficient
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and the number of monomials can even be exponential). We call this a cross-
linear polynomial.

The main challenge for simulation is “zero testing” of cross linear polynomi-
als, given their circuit representation:6 determining whether or not a polynomial
f computed by the adversary takes value 0 on the items encoded in the obfus-
cation. We note that this is where we exploit the generic model—it allows us
to reason about what functions the adversary is computing, and to assume that
they have the restricted cross-linear form. We also note that zero-testing is a
serious challenge, because the simulator does not know the joint distribution of
the items encoded in the obfuscation (their joint distribution depends on the
branching program C in its entirety). Due to space limitations, the full details
on the simulator are deferred to the full version [12].

A cross-linear polynomial f computed by the adversary can be decomposed
using monomials that only depend on the ρ variables in the construction outlined
above. f must be a sum of such “ρ-monomials”, each multiplied with a function
of the other variables (the variables derived from the matrices of the branch-
ing program and the randomized elements used in the obfuscation). Because of
the restricted structure of these ρ-monomials, they each implicitly specify an
assignment to every program group progj (a bit value for the �(j)-th bit), every
binding group bindT (a triple of bit values for the input bits in T ), and every
consistency variable cci (a bit value for the i-th bit). We say that the assignment
is full and consistent, if all of these groups are assigned appropriate values, and
the value assigned to each bit i (0 or 1) is the same in throughout all the groups.
We show that if a polynomial f computed by the adversary contains even a
single such ρ-monomial that is not full and consistent, then it will not take 0
value (except with negligible probability over the obfuscator’s coins), and thus
it can be simulated. Further, if f contains only full and consistent ρ-monomials,
the simulator can isolate each of these monomials, discover the associated full
and consistent input assignment, and then zero-test f .

The main remaining concern, as hinted at above, is that f might have super-
polynomially many full and consistent ρ-monomials. Isolating these monomials
as described above would then take super-polynomial time (whereas we want
a polynomial time black-box simulator). Intuitively, this corresponds to an ad-
versary that can test some condition on the obfuscated circuit’s behavior over
super-polynomially many inputs (which the black-box simulator cannot do). Let
X ⊆ {0, 1}n denote the (super-polynomial) set of assignments associated with
the above ρ-monomials. We show that given such f (even via black-box access),
it is possible to test whether any given 3CNF formula Φ has a satisfying as-
signment in X . This yields a worst-case “super-polynomial speedup” in solving
3SAT. Since the alleged f is computable by a polynomial size arithmetic circuit,
we get a contradiction to the Bounded Speedup Hypothesis.

This connection to solving 3SAT is proved by building on the “randomizing
sub-assignment” technique from [11] and the groups bindT . The intuition is as

6 In fact, all we need is black-box access to the polynomial, and the guarantee that it
is computable by a polynomial-size arithmetic circuit.
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follows. The generic adversary implicitly specifies a polynomial-size arithmetic
circuit that computes the function f . Recall that f has many full and consistent
ρ-monomials, each associated with an input x ∈ X ⊆ {0, 1}n. For a given 3CNF
formula Φ, we can compute a restriction of f by setting some of the variables
ρbindT ,i,�v to 0, in a way that “zeroes out” every ρ-monomial associated with an
input x ∈ X that does not satisfy Φ, which is possible since the binding variables
correspond exactly to all possible clauses in a 3CNF formula (see below). We
then test to see whether or not the restricted polynomial (which has low degree)
is identically 0, i.e. whether any of the ρ-monomials were not “zeroed out” by
the above restriction. This tells us whether there exists x ∈ X that satisfies Φ.

All that remains is to compute the restriction claimed above. For every clause
in the 3CNF formula Φ, operating on variables T = {i1, i2, i3}, there is an
assignment �v ∈ {0, 1}3 that fails to satisfy the clause. For each such clause,
we set the variable ρbindT ,�v to be 0. This effectively “zeroes out” all of the ρ-
monomials whose associated assignments do not satisfy Φ (i.e., the ρ-monomials
whose assignments simultaneously fail to satisfy all clauses in Φ).

The full construction appears in Section 3. The security proof appears in
the full version [12], and is omitted from this extended abstract due to space
limitations.

2 Preliminaries

For all n, d ∈ N we define
(
[n]
d

)
to be the set of lexicographically ordered sets of

cardinality d in [n]. More formally:(
[n]

d

)
=
{
〈i1, . . . , id〉 ∈ [n]d : i1 < · · · < id

}
.

Note that
∣∣∣([n]d )∣∣∣ = (nd).

For �x ∈ {0, 1}n and I = 〈i1, . . . , id〉 ∈
(
[n]
d

)
, we let �x|I ∈ {0, 1}d denote

the vector 〈�x[i1], . . . , �x[id]〉. We often slightly abuse notation when working with
�s = �x|I , and let �s[ij ] denote the element x[ij ] (rather than the ijth element in
�s).

2.1 Branching Programs and Randomizations

A width-5 length-m permutation branching program C for n-bit inputs is com-
posed of: a sequence of pairs of permutations represented as 0/1 matrices (Mj,v ∈
{0, 1}5×5)j∈[m],v∈{0,1}, a labelling function � : [m]→ [n], an accepting permuta-
tion Qacc, and a rejecting permutation Qrej s.t. Q

T
acc · �e1 = �e1 and QT

rej · �e1 = �ek
for k �= 1. Without loss of generality, we assume that all permutation branching
programs have the same accepting and rejecting permutations.

For an input �x ∈ {0, 1}, taking P =
∏

j∈[m] Mj,�x[�(j)], the program’s output is
1 iff P = Qacc, and 0 iff P = Qrej. If P is not equal to either of these permutations,
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then the output is undefined (this will never be the case in any construction we
use).

Barrington’s Theorem [6] shows that any function in NC1, i.e. a function that
can be computed by a circuit of depth d can be computed by a permutation
branching program of length 4d. Moreover, the theorem is constructive, and gives
an algorithm that efficiently transforms any depth d circuit into a permutation
branching program in time 2O(d). This program is oblivious, in the sense that its
labeling function is independent of the circuit C (and depends only on its depth).
An immediate implication is that NC1 circuits, which have depth d(n) = log(n),
can be transformed into polynomial length branching program, in polynomial
time.

Theorem 2.1 (Barrington’s Theorem [6]).
For any circuit depth d and input size n, there exists a length m = 4d, a labeling
function � : [m] → [n], an accepting permutation Qacc and a rejecting permuta-
tion Qrej, s.t. the following holds. For any circuit with input size n, depth d and
fan-in 2, which computes a function f , there exists a permutation branching pro-
gram of length m that uses the labeling function �(·), has accepting permutation
Qacc and rejecting permutation Qrej, and computes the same function f .

The permutation branching program is computable in time poly(m) given the
circuit description.

Randomized Branching Programs. Permutation branching programs are amen-
able to randomization techniques that have proved very useful in cryptography
and complexity theory [3,31,22,2]. The idea is to “randomize” each matrix pair
while preserving the program’s functional behavior. Specifically, taking p to be a
large prime, for i ∈ [m] multiply the i-th matrix pair (on its right) by a random
invertible matrix Yi ∈ Z∗

p
5×5, and multiply the (i + 1)-th pair by Y−1

i (on its
left). This gives a new branching program:

(Nj,v)j∈[m],v∈{0,1} : Nj,v = (Y−1
j−1 ·Mj,v · Yj)

(where we take Y−1
0 to be the identity). The new randomized program preserves

functionality in the sense that intermediate matrices cancel out. For an input
�x ∈ {0, 1}n, taking P =

∏
j Nj,v, the program accepts �x if P = (Qacc · Ym) (or,

equivalently P [1, 1] = Ym[1, 1]) and rejects �x if P = (Qrej · Ym) (or, equivalently,
P [1, 1] = Ym[k, 1], for k �= 1). We note that there is a negligible probability of
error due to the multiplication by Ym. In terms of randomization, one can see
that for any assignment y : [m]→ {0, 1}, the collection of matrices (Nj,y(j))j∈[m]

are uniformly random and independent invertible matrices. We note that this
holds even if y is not a “consistent” assignment: for j, j′ ∈ [m] : �(j) = �(j′) =
i, y can assign different values to j and j′ (corresponding to an inconsistent
assignment to the i-th bit of �x).

Implementing the randomization idea over graded encoding schemes (see Sec-
tion 2.4) is not immediate, because we do not know an efficient procedure for
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computing inverses, and we also do not know how to sample random invertible
matrices. To handle these difficulties, we utilize a variant of the above idea (see
the discussion in Section 1.2).

Instead of Y−1
j , we use the adjoint matrix Zj = adj(Yj), which is composed

of determinants of minors of Y, and satisfies Y · Z = det(Y) · I. We take:

(Nj,v)j∈[m],v∈{0,1} : Nj,v = (Zj−1 ·Mj,v · Yj)

(where Z0 is again the identity matrix). Observe that for �x ∈ {0, 1}n, taking
P =

∏
j Nj,v, the program accepts �x if P [1, 1] = ((

∏
j∈[m−1] det(Yj)) · Ym)[1, 1]

and rejects �x if P [1, 1] = ((
∏

j∈[m−1] det(Yj))·Ym)[k, 1]. It is not hard to see that
this also preserves the randomization property from above. The only remaining
subtlety is that we do not know how to pick a uniformly random invertible matrix
(without being able to compute inverses). This is not a serious issue, because
for a large enough prime p, we can simply sample uniformly random matrices in
Zp

5×5, and their joint distribution will be statistically close to uniformly random
and invertible matrices.

Lemma 2.2 (Randomized Branching Programs). For security parameter
λ ∈ N, let pλ be a prime in [2λ, 2λ+1]. Fix a length-� permutation branching
program, and let y : [m] → {0, 1} be any assignment function. Let (Yj)j∈[m]

be chosen uniformly at random from Zp
5×5, and for j ∈ [m], v ∈ {0, 1} take

Nj,v = (Zj−1 ·Mj,v · Yj). (where Z0 is the identity matrix).
Then the joint distribution of (Nj,y(j))j∈[m] is negl(λ)-statistically close to

uniformly random and independent.

2.2 The Bounded Speedup Hypothesis (BSH)

The Bounded Speedup Hypothesis was introduced in [11] as a strengthening of
the exponential time hypothesis (ETH). Formally, the hypothesis is as follows.

Definition 2.3 (X -3-SAT Solver). Consider a family of sets X = {Xn}n∈N

such that Xn ⊆ {0, 1}n. We say that an algorithm A is a X -3-SAT solver if
it solves the 3-SAT problem, restricted to inputs in X . Namely, given a 3-CNF
formula Φ : {0, 1}n → {0, 1}, A finds whether there exists x ∈ Xn such that
Φ(x) = 1.

Assumption 2.4 (Bounded Speedup Hypothesis). There exists a polyno-
mial p(·), such that for any X -3-SAT solver that runs in time t(·), the family of
sets X is of size at most p(t(·)).

The plausibility of this assumption is discussed in [11, Appendix A], where
it is shown that a quasi-polynomial variant of BSH follows from ETH. Further
evidence comes from the field of parameterized complexity.



14 Z. Brakerski and G.N. Rothblum

2.3 Obfuscation

Definition 2.5 (Virtual Black-Box Obfuscator [5]).
Let C = {Cn}n∈N be a family of polynomial-size circuits, where Cn is a set of
boolean circuits operating on inputs of length n. And let O be a PPTM algo-
rithm, which takes as input an input length n ∈ N, a circuit C ∈ Cn, a security
parameter λ ∈ N, and outputs a boolean circuit O(C) (not necessarily in C).
O is a (black-box) obfuscator for the circuit family C if it satisfies:

1. Preserving Functionality: For every n ∈ N, and every C ∈ Cn, and every
�x ∈ {0, 1}n, with all but negl(λ) probability over the coins of O:

(O(C, 1n, λ))(�x) = C(�x)

2. Polynomial Slowdown: For every n, λ ∈ N and C ∈ C, the circuit O(C, 1n, 1λ)
is of size at most poly(|C|, n, λ).

3. Virtual Black-Box: For every (non-uniform) polynomial size adversary A,
there exists a (non-uniform) polynomial size simulator S, such that for every
n ∈ N and for every C ∈ Cn:∣∣ Pr

O,A
[A(O(C, 1n, 1λ)) = 1]− Pr

S
[SC(1|C|, 1n, 1λ) = 1]

∣∣ = negl(λ)

Remark 2.6. A stronger notion of functionality, which also appears in the lit-
erature, requires that with overwhelming probability the obfuscated circuit is
correct on every input simultaneously. We use the relaxed requirement that for
every input (individually) the obfuscated circuit is correct with overwhelming
probability (in both cases the probability is only over the obfuscator’s coins). We
note that our construction can be modified to achieve the stronger functionality
property (by using a ring of sufficiently large size and the union bound).

Definition 2.7 (Indistinguishability Obfuscator [5]). Let C be a circuit
family and O a PPTM as in Definition 2.5. O is an indistinguishability obfus-
cator for C if it satisfies the preserving functionality and polynomial slowdown
properties of Definition 2.5 with respect to C, but the virtual black-box property
is replaced with:

3. Indistinguishable Obfuscation: For every (non-uniform) polynomial size ad-
versary A, for every n ∈ N and for every C1, C2 ∈ Cn s.t. |C1| = |C2| and
C1 ≡ C2:∣∣ Pr

O,A
[A(O(C1, 1

n, 1λ)) = 1]− Pr
O,A

[A(O(C2, 1
n, 1λ)) = 1]

∣∣ = negl(λ)

Definition 2.8 (iO2: Indistinguishability Obfuscator, Alternative For-
mulation). Let C be a circuit family and O a PPTM as in Definition 2.5. O
is an indistinguishability obfuscator2 (iO2) for C if it satisfies the preserving
functionality and polynomial slowdown properties of Definition 2.5 with respect
to C, but the virtual black-box property is replaced with:
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3. Unbounded simulation: For every (non-uniform) polynomial size adversary
A, there exists a computationally unbounded simulator S, such that for
every n ∈ N and for every C ∈ Cn:∣∣ Pr

O,A
[A(O(C, 1n, 1λ)) = 1]− Pr

S
[SC(1|C|, 1n, 1λ) = 1]

∣∣ = negl(λ)

Lemma 2.9. Let C be a circuit family and O a PPTM as in Definition 2.5.
Then O is iO if and only if it is iO2.

Proof. Assume that O is iO2, let A be an adversary and let C1 ≡ C2 ∈ Cn s.t.
|C1| = |C2|. Then by Definition 2.8 there exists a computationally unbounded S
such that∣∣ Pr

O,A
[A(O(C1, 1

n, 1λ)) = 1]− Pr
S
[SC1(1|C1|, 1n, 1λ) = 1]

∣∣ = negl(λ)

and also∣∣ Pr
O,A

[A(O(C2, 1
n, 1λ)) = 1]− Pr

S
[SC2(1|C2|, 1n, 1λ) = 1]

∣∣ = negl(λ) .

However, since C1 ≡ C2, then |C1| = |C2| and an oracle to C1 is identical to an
oracle to C2, and in particular

Pr
S
[SC1(1|C1|, 1n, 1λ) = 1] = Pr

S
[SC2(1|C2|, 1n, 1λ) = 1] .

The triangle inequality immediately implies that∣∣ Pr
O,A

[A(O(C1, 1
n, 1λ)) = 1]− Pr

O,A
[A(O(C2, 1

n, 1λ)) = 1]
∣∣ = negl(λ) ,

and therefore O is iO.

In the opposite direction, let O be iO and let A be an adversary. We define
the following simulator SC(1|C|, 1n, 1λ). The simulator first queries the oracle C
on all x ∈ {0, 1}n, thus obtaining its truth table. Then it performs exhaustive
search over all C′ of size 1|C| and finds C′ ∈ C such that C′ ≡ C (this can be
tested using the truth table). Finally the simulator outputs A(O(C′, 1n, 1λ)).

By definition we have that∣∣ Pr
O,A

[A(O(C, 1n, 1λ)) = 1]− Pr
S
[SC(1|C|, 1n, 1λ) = 1]

∣∣ =∣∣ Pr
O,A

[A(O(C, 1n, 1λ)) = 1]− Pr
O,A

[A(O(C′, 1n, 1λ)) = 1]
∣∣ ,

and since C ≡ C′ and O is iO, this quantity is negligible and iO2 follows.

2.4 Graded Encoding Schemes

We begin with the definition of a graded encoding scheme, due to Garg, Gentry
and Halevi [23]. While their construction is very general, for our purposes a more
restricted setting is sufficient as defined below.
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Definition 2.10 (τ-Graded Encoding Scheme [23]). A τ-encoding scheme

for an integer τ ∈ N and ring R, is a collection of sets S = {S(α)
�v ⊂ {0, 1}∗ : �v ∈

{0, 1}τ , α ∈ R} with the following properties:

1. For every index �v ∈ {0, 1}τ , the sets {S(α)
�v : α ∈ R} are disjoint, and so they

are a partition of the indexed set S�v =
⋃

α∈R S
(α)
�v .

In this work, for a 5 × 5 matrix Y, we use S
(Y)
�v to denote the set of 5 ×

5 matrices where for all i, j ∈ [5], the matrix’s [i, j]-th entry contains an

element in S
(Y[i,j])
�v .

2. There are binary operations “+” and “−” such that for all �v ∈ {0, 1}τ ,
α1, α2 ∈ R and for all u1 ∈ S

(α1)
�v , u2 ∈ S

(α2)
�v :

u1 + u2 ∈ S
(α1+α2)
�v and u1 − u2 ∈ S

(α1−α2)
�v ,

where α1 + α2 and α1 − α2 are addition and subtraction in R.
3. There is an associative binary operation “×” such that for all �v1, �v2 ∈ {0, 1}τ

such that �v1 + �v2 ∈ {0, 1}τ , for all α1, α2 ∈ R and for all u1 ∈ S
(α1)
�v1

,

u2 ∈ S
(α2)
�v2

, it holds that

u1 × u2 ∈ S
(α1·α2)
�v1+�v2

,

where α1 · α2 is multiplication in R.

In this work, the ring R will always be Zp for a prime p.

For the reader who is familiar with [23], we note that the above is the special
case of their construction, in which we consider only binary index vectors (in the
[23] notation, this corresponds to setting κ = 1), and we construct our encoding
schemes to be asymmetric (as will become apparent below when we define our
zero-test index vzt = �1).

Definition 2.11 (Efficient Procedures for τ-Graded Encoding Scheme
[23]). We consider τ-graded encoding schemes (see above) where the following
procedures are efficiently computable.

– Instance Generation: InstGen(1λ, 1τ ) outputs the set of parameters params,
a description of a τ-Graded Encoding Scheme. (Recall that we only consider
Graded Encoding Schemes over the set indices {0, 1}τ , with zero testing in
the set S�1). In addition, the procedure outputs a subset evparams ⊂ params
that is sufficient for computing addition, multiplication and zero testing7 (but
possibly insufficient for encoding or for randomization).

– Ring Sampler: samp(params) outputs a “level zero encoding” a ∈ S
(α)
0 for

a nearly uniform α ∈R R.

7 The “zero testing” parameter pzt defined in [23] is a part of evparams.
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– Encode and Re-Randomize:8 encRand(params, i, a) takes as input an index

i ∈ [τ ] and a ∈ S
(α)
0 , and outputs an encoding u ∈ S

(α)
�ei

, where the dis-
tribution of u is (statistically close to being) only dependent on α and not
otherwise dependent of a.

– Addition and Negation: add(evparams, u1, u2) takes u1 ∈ S
(α1)
�v , u2 ∈ S

(α2)
�v ,

and outputs w ∈ S
(α1+α2)
�v . (If the two operands are not in the same in-

dexed set, then add returns ⊥). We often use the notation u1 + u2 to de-
note this operation when evparams is clear from the context. Similarly,

negate(evparams, u1) ∈ S
(−α1)
�v .

– Multiplication: mult(evparams, u1, u2) takes u1 ∈ S
(α1)
�v1

, u2 ∈ S
(α2)
�v2

. If �v1 +
�v2 ∈ {0, 1}τ (i.e. every coordinate in �v1+�v2 is at most 1), then mult outputs

w ∈ S
(α1·α2)
�v1+�v2

. Otherwise, mult outputs ⊥. We often use the notation u1× u2

to denote this operation when evparams is clear from the context.

– Zero Test: isZero(evparams, u) outputs 1 if u ∈ S
(0)
�1

, and 0 otherwise.

In the [23,20] constructions, encodings are noisy and the noise level increases
with addition and multiplication operations, so one has to be careful not to go
over a specified noise bound. However, the parameters can be set so as to sup-
port O(τ) operations, which are sufficient for our purposes. We therefore ignore
noise management throughout this manuscript. An additional subtle issue is that
with negligible probability the initial noise may be too big. However this can be
avoided by adding rejection sampling to samp and therefore ignored throughout
the manuscript as well.

As was done in [10,11], our definition deviates from that of [23]. We define two
sets of parameters params and evparams. While the former will be used by the
obfuscator in our construction (and therefore will not be revealed to an exter-
nal adversary), the latter will be used when evaluating an obfuscated program
(and thus will be known to an adversary). When instantiating our definition,
the guideline is to make evparams minimal so as to give the least amount of
information to the adversary. In particular, in the known candidates [23,20],
evparams only needs to contain the zero-test parameter pzt (as well as the
global modulus).

2.5 The Generic Graded Encoding Scheme Model

We would like to prove the security of our construction against generic ad-
versaries. To this end, we will use the generic graded encoding scheme model,
which was previously used in [10], and is analogous to the generic group model
(see Shoup [38] and Maurer [33]). In this model, an algorithm/adversary A can
only interact with the graded encoding scheme via oracle calls to the add, mult,
and isZero operations from Definition 2.11. Note that, in particular, we only

8 This functionality is not explicitly provided by [23], however it can be obtained by
combining their encoding and re-randomization procedures.
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allow access to the operations that can be run using evparams. To the best of
our knowledge, non-generic attacks on known schemes, e.g. [23], require use of
params and cannot be mounted when only evparams is given.

We use G to denote an oracle that answers adversary calls. The oracle operates
as follows: for each index �v ∈ {0, 1}τ , the elements of the indexed set S�v =⋃

α∈R S
(α)
�v are arbitrary binary strings. The adversary A can manipulate these

strings using oracle calls (via G) to the graded encoding scheme’s functionalities.
For example, the adversary can use G to perform an add call: taking strings s1 ∈
S
(α1)
�v , s2 ∈ S

(α2)
�v , encoding indexed ring elements (�v, α1), (�v, α2) (respectively),

and obtaining a string s ∈ S
(α1+α2)
�v , encoding the indexed ring element (�v, (α1+

α2)).
We say that A is a generic algorithm (or adversary) for a problem on graded

encoding schemes (e.g. for computing a moral equivalent of discreet log), if it can
accomplish this task with respect to any oracle representing a graded encoding
scheme, see below.

In the add example above, there may be many strings/encodings in the set

S
(α1+α2)
�v . One immediate question is which of these elements should be returned

by the call to add. In our abstraction, for each �v ∈ {0, 1}τ and α ∈ R, G always
uses a single unique encoding of the indexed ring element (�v, α). I.e. the set Sα

�v

is a singleton. Thus, the representation of items in the graded encoding scheme
is given by a map σ(�v, α) from �v ∈ {0, 1}τ and α ∈ R, to {0, 1}∗. We restrict
our attention to the case where this mapping has polynomial blowup.

Remark 2.12 (Unique versus Randomized Representation).
We note that the known candidates of secure graded encoding schemes [23,20]

do not provide unique encodings: their encodings are probabilistic. Nonetheless,
in the generic graded encoding scheme abstraction we find it helpful to restrict
our attention to schemes with unique encodings. For the purposes of proving se-
curity against generic adversaries, this makes sense: a generic adversary should
work for any implementation of the oracle G, and in particular also for an im-
plementation that uses unique encodings.

Moreover, our perspective is that unique encodings are more “helpful” to an
adversary than randomized encodings: a unique encoding gives the adversary
the additional power to “automatically” check whether two encodings are of the
same indexed ring element (without consulting the oracle). Thus, we prefer to
prove security against generic adversaries even for unique representations.

It is important to note that the set of legal encodings may be very sparse
within the set of images of σ, and indeed this is the main setting we will consider
when we study the generic model. In this case, the only way for A to obtain a
valid representation of any element in any graded set is via calls to the oracle
(except with negligible probability). Finally, we note that if oracle calls contain
invalid operators (e.g. the input is not an encoding of an element in any graded
set, the inputs to add are not in the same graded set, etc.), then the oracle
returns ⊥.
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Random Graded Encoding Scheme Oracle. We focus on a particular randomized
oracle: the random generic encoding scheme (GES) oracle RG. RG operates as
follows: for each indexed ring element (with index �v ∈ {0, 1}τ and ring element
σ ∈ R), its encoding is of length � = (|τ | · log |R| · poly(λ)) (where |τ | is the
bit representation length of τ). The encoding of each indexed ring element is
a uniformly random string of length �. In particular, this implies that the only
way that A can obtain valid encodings is by calls to the oracle RG (except with
negligible probability).

The definitions of secure obfuscation in the random GES model are as follows.

Definition 2.13 (Virtual Black-Box in the Random GES Model).
Let C = {Cn}n∈N be a family of circuits and O a PPTM as in Definition 2.5.

A generic algorithm ORG is an obfuscator in the random generic encoding
scheme model, if it satisfies the functionality and polynomial slowdown properties
of Definition 2.5 with respect to C and to any GES oracle RG, but the virtual
black-box property is replaced with:

3. Virtual Black-Box in the Random GES Model: For every (non-uniform)
polynomial size generic adversary A, there exists a (non-uniform) generic
polynomial size simulator S, such that for every n ∈ N and every C ∈ Cn:∣∣( Pr

RG,O,A
[ARG(ORG(C, 1n, 1λ))] = 1)− (Pr

S
[SC(1|C|, 1n, 1λ)] = 1)

∣∣ = negl(λ)

Remark 2.14. We remark that it makes sense to allow S to access the oracle
RG. However, this is in not really necessary. The reason is that RG can be
implemented in polynomial time (as described below), and therefore S itself can
implement RG.

Definition 2.15 (GiO: Indistinguishability Obfuscator in the Random
GES Model). Let C = {Cn}n∈N be a family of circuits and O a PPTM as in
Definition 2.5. A generic algorithm ORG is an indistinguishability obfuscator in
the random generic encoding scheme model, if it satisfies the functionality and
polynomial slowdown properties of Definition 2.5 with respect to C and to any
GES oracle RG, but the virtual black-box property is replaced with:

3. Indistinguishable Obfuscation in the Random GES Model: For every (non-
uniform) polynomial size generic adversary A, for every n ∈ N and for every
C1, C2 ∈ Cn s.t. C1 ≡ C2 and |C1| = |C2|:∣∣( Pr

RG,O,A
[ARG(ORG(C1, 1

n, 1λ))] = 1)

− Pr
RG,O,A

[ARG(ORG(C2, 1
n, 1λ))] = 1)

∣∣ = negl(λ)

Definition 2.16 (GiO2: Indistinguishability Obfuscator in the Random
GES Model, Alternative Formulation).
Let C = {Cn}n∈N be a family of circuits and O a PPTM as in Definition 2.5.
A generic algorithm ORG is an indistinguishability obfuscator2 in the random
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generic encoding scheme model (GiO2), if it satisfies the functionality and poly-
nomial slowdown properties of Definition 2.5 with respect to C and to any GES
oracle RG, but the virtual black-box property is replaced with:

3. Indistinguishable Obfuscation2 in the Random GES Model: For every (non-
uniform) polynomial size generic adversary A, there exists a (possibly com-
putationally unbounded) simulator S, such that for every n ∈ N and every
C ∈ Cn:∣∣( Pr

RG,O,A
[ARG(ORG(C, 1n, 1λ))] = 1)− (Pr

S
[SC(1|C|, 1n, 1λ)] = 1)

∣∣ = negl(λ)

The following lemma asserts the equivalence between GiO and GiO2 in the
generic model. The proof is identical to that of Lemma 2.9 (note that S does
not need access to RG).

Lemma 2.17. Let C be a circuit family and O = ORG an oracle PPTM as in
Definition 2.5. Then O is GiO if and only if it is GiO2.

Online Random GES Oracle. In our proof, we will use the property that the
oracle RG can be approximated to within negligible statistical distance by an
online polynomial time process, which samples the representations on-the-fly.
Specifically, the oracle will maintain a table of entries of the form (�v, α, label�v,α),

where label�v,α ∈ {0, 1}� is the representation of S
(α)
�v in RG (the table is ini-

tially empty). Every time RG is called for some functionality, it checks that its
operands indeed correspond to an entry in the table, in which case it can re-
trieve the appropriate (�v, α) to perform the operation (if the operands are not in

the table, RG returns ⊥). Whenever RG needs to return a value S
(α)
�v , it checks

whether (�v, α) is already in the table, and if so returns the appropriate label�v,α.
Otherwise it samples a new uniform label, and inserts a new entry into the table.

When interacting with an adversary that only makes a polynomial number
of calls, the online version of RG is within negligible statistical distance of the
offline version (in fact, the statistical distance is exponentially small in λ) . This
is because the only case when the online oracle implementation differs from
the offline one is when when the adversary guesses a valid label that it has
not seen (in the offline setting). This can only occur with exponentially small
probability due to the sparsity of the labels. The running time of the online
oracle is polynomial in the number of oracle calls.

3 Obfuscating NC1

See Section 1.2 for an overview of the construction. We proceed with a for-
mal description of the obfuscator. Functionality follows by construction, virtual
black-box security is only stated, and the proof is deferred to the full version [12].

Obfuscator NC1Obf, on input (1λ, 1n, C = (. . . , (Mj,0,Mj,1), . . .)j∈[m])
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Input: Security parameter λ; Number of input variables n; Oblivious permuta-
tion branching program C (with labeling function �), where (Mj,b)j∈[m],b∈{0,1}
are 5 × 5 permutation matrices. Let Qacc, Qrej be the accepting and rejecting
permutations for C (see Section 2.1).

Output: Obfuscated program for C.

Execution:

1. Generate asymmetric encoding scheme.
Generate (params, evparams)← InstGen(1λ, 1τ), where τ = m+n+

(
n
3

)
+1.

Namely, we have τ level-1 groups. As explained above, we denote these
groups as follows:
– Groups 1, . . . ,m are related to the execution of the branching program

and are denoted prog1, . . . , progm.

– Groups m+1, . . . ,m+n are related to consistency check and are denoted
cc1, . . . , ccn.

– Groups m+ n+ 1, . . . ,m+ n+
(
n
3

)
are used to bind triples of variables

and are denoted bindT , for T ∈
(
[n]
3

)
.

– Lastly, the group m+n+
(
n
3

)
+1 is the check group and is denoted chk.

We let L(i) denote the set of groups that are related to the ith variable:

L(i) = {progj : i = �(j)} ∪ {bindT : i ∈ T } ∪ {cci} .

We let L denote the set of all groups: L = ∪i∈[n]L(i) ∪ chk.

2. Generate consistency check variables.
For all i ∈ [n]:
(a) for each grp ∈ (L(i) \ {cci}) and v ∈ {0, 1}: bgrp,i,v ← samp(params) ∈

S
(βgrp,i,v)
0 . 9

(b) b′cci ← samp(params) ∈ S
(β′

cci
)

0

for v ∈ {0, 1}: bcci,i,v ← b′cci ×
(∏

grp∈(L(i)\{cci}) bgrp,i,(1−v)

)
∈ S

(βcci,v
)

0

(c) ci ←
∏

grp∈L(i) bgrp,i,0 ∈ S
(γi)
0 , where

γi =
∏

grp∈L(i)

βgrp,i,0 =
∏

grp∈L(i)

βgrp,i,1 .

3. Generate randomizing matrices.
For each j ∈ [m]:

Sample Yj ← samp(params)5×5 ∈ S
(Yj)
0 ,

and compute Zj = adj(Yj) ∈ S
(Zj)
0 , s.t. Yj · Zj = det(Yj) · I

Sample Z0 ← samp(params)5×5 ∈ S
(Z0)
0

9 For notational convenience, we drop i when it is uniquely defined by grp. E.g., we
use βprogj ,v to refer to βprogj ,�(j),v.
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4. Encode elements in program groups (prog).
For each j ∈ [m] and v ∈ {0, 1} :
Dprogj ,v ← bprogj ,v · (Zj−1 ×Mj,v × Yj) ∈ S

(Dj,v)
0 , where Dj,v = (βprogj ,v ·

(Zj−1 ·Mj,v · Yj)︸ ︷︷ ︸
Nj,v

)

rprogj ,v ← samp(params) ∈ S
(ρprogj ,v

)

0 ,

Kprogj ,v ← (rprogj ,v ·Dj,v) ∈ S
(ρprogj ,v

·Dj,v)

0

wprogj ,v ← encRand(params, progj , rprogj ,v) ∈ S
(ρprogj ,v)

�eprogj
,

Uprogj ,v ← encRand(params, progj ,Kprogj ,v) ∈ S
(ρprogj ,v

·Dj,v)

�eprogj

5. Encode elements in consistency check groups (cc).
For each i ∈ [n] and v ∈ {0, 1}:
dcci,v ← bcci,�v[i] ∈ S

(δcci,v)
0 , where δcci,v = βcci,v.

rcci,v ← samp(params) ∈ S
(ρcci,v

)

0 , qcci,v ← (rcci,v · dcci,v) ∈ S
(ρcci,v

·δcci,v)
0

wcci,v ← encRand(params, cci, rcci,v) ∈ S
(ρcci,v

)

�ecci

ucci,v ← encRand(params, cci, qcci,v) ∈ S
(ρcci,v

·δcci,v)
�ecci

6. Encode elements in binding groups (bind).

For each T ∈
(
[n]
3

)
and �v ∈ {0, 1}3:

dbindT ,�v ← (
∏

i∈T bbindT ,i,�v[i]) ∈ S
(δbindT ,�v)

0 , where δbindT ,�v =
∏

i∈T βbindT ,i,�v[i]

rbindT ,�v ← samp(params) ∈ S
(ρbindT ,�v)

0 ,

qbindT ,�v ← (rbindT ,�v · dbindT ,�v) ∈ S
(ρbindT ,�v ·δbindT ,�v)

0

wbindT ,�v ← encRand(params, bindT , rbindT ,�v) ∈ S
(ρbindT ,�v)

�ebindT
,

ubindT ,�v ← encRand(params, bindT , qbindT ,�v) ∈ S
(ρbindT ,�v ·δbindT ,�v)

�ebindT

7. Encode elements in last group (chk).

dchk ←
(
(
∏

i∈[n] ci) · (
∏

j∈[m−1] det(Yj)) · Z0 · Ym

)
[1, 1] ∈ S

(δchk)
0 ,

where δchk =
(
(
∏

i∈[n] γi) · (
∏

j∈[m−1] det(Yj)) · Z0 · Ym

)
[1, 1]

rchk ← samp(params) ∈ S
(ρchk)
0 , qchk ← rchk · dchk ∈ S

(ρchk·δchk)
0

wchk ← encRand(params, chk, rchk) ∈ S
(ρchk)
�echk

,

uchk ← encRand(params, chk, qchk) ∈ S
(ρchk·δchk)
�echk

8. Output.
Output evparams and the obfuscation:(

{(wprogj ,v, Uprogj ,v)}j∈[m],v∈{0,1}, {(wcci,v, ucci,v)}i∈[n],v∈{0,1},

{(wbindT ,�v, ubindT ,�v)}T∈(([n]
3 )),�v∈{0,1}3 , (wchk, uchk)

)
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Evaluation, on input x ∈ {0, 1}n

1. t←
(
wchk · (

∏
j∈[m] Uprogj ,x[�(j)]

) · (
∏

T∈([n]
3 )

ubindT ,x|T ) · (
∏

i∈[n] ucci,x[i])
)
[1, 1]

2. t′ ←
(
uchk · (

∏
j∈[m] wprogj ,x[�(j)]

) · (
∏

T∈([n]
3 )

wbindT ,x|T ) · (
∏

i∈[n] wcci,x[i])
)

3. output the bit: isZero(evparams, (t− t′)).

Virtual Black-Box Security. The following theorem states the security properties
of our scheme. The proof is deferred to the full version [12].

Theorem 3.1. Under the bounded speedup hypothesis, NC1Obf is a virtual black
box obfuscator in the random GES model for the class NC1.
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Abstract. An evasive circuit family is a collection of circuits C such that for
every input x, a random circuit from C outputs 0 on x with overwhelming prob-
ability. We provide a combination of definitional, constructive, and impossibility
results regarding obfuscation for evasive functions:

1. The (average case variants of the) notions of virtual black box obfuscation
(Barak et al, CRYPTO ’01) and virtual gray box obfuscation (Bitansky and
Canetti, CRYPTO ’10) coincide for evasive function families. We also define
the notion of input-hiding obfuscation for evasive function families, stipulat-
ing that for a random C ∈ C it is hard to find, given O(C), a value out-
side the preimage of 0. Interestingly, this natural definition, also motivated
by applications, is likely not implied by the seemingly stronger notion of
average-case virtual black-box obfuscation.

2. If there exist average-case virtual gray box obfuscators for all evasive func-
tion families, then there exist (quantitatively weaker) average-case virtual
gray obfuscators for all function families.

3. There does not exist a worst-case virtual black box obfuscator even for eva-
sive circuits, nor is there an average-case virtual gray box obfuscator for
evasive Turing machine families.

4. Let C be an evasive circuit family consisting of functions that test if a low-
degree polynomial (represented by an efficient arithmetic circuit) evaluates
to zero modulo some large prime p. Then under a natural analog of the dis-
crete logarithm assumption in a group supporting multilinear maps, there
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exists an input-hiding obfuscator for C. Under a new perfectly-hiding multi-
linear encoding assumption, there is an average-case virtual black box ob-
fuscator for the family C.

1 Introduction

The study of Secure Software Obfuscation — or, methods to transform a program (say
described as a Boolean circuit) into a form that is executable but otherwise completely
unintelligible — is a central research direction in cryptography. In this work, we study
obfuscation of evasive functions— an evasive function family is a collection Cn of
Boolean circuits mapping some domain D to {0, 1} such that for every x ∈ D the
probability over C ← Cn that C(x) = 1 is negligible. Focusing on evasive functions
leads us to new notions of obfuscation, as well as new insights into general-purpose
obfuscation.

Why Study Obfuscation of Evasive Functions? To motivate the study of the obfuscation
of evasive functions, let us consider the following scenario taken from [13]: Suppose
that a large software publisher discovers a new vulnerability in their software that causes
the software to behave in undesirable ways on certain (rare) inputs. The publisher then
designs a software patch P that tests the input x to see if it falls into the set S of bad
inputs, and if so outputs 1 to indicate that the input x should be ignored. If x /∈ S,
the patch outputs 0 to indicate that the software can behave normally. If the publisher
releases the patch P “in the clear”, an adversary could potentially study the code of
P and learn bad inputs x ∈ S that give rise to the original vulnerability. Since it can
take months before a majority of computers install a new patch, this would give the
attacker plenty of time to exploit this vulnerability on unpatched systems even when the
set S of bad inputs was evasive to begin with. If instead, the publisher could obfuscate
the patch P before releasing it, then intuitively an attacker would gain no advantage
in finding an input x ∈ S from studying the obfuscated patch. Indeed, assuming that
without seeing P the attacker has negligible chance of finding an input x ∈ S, it makes
sense to model P as an evasive function.

Aside from the motivating scenario above, evasive functions are natural to study in
the context of software obfuscation because they are a natural generalization of the
special cases for which obfuscation was shown to exist in the literature such as point
functions [8], hyperplanes [10], and conjunctions [6].1 Indeed, as we shall see, the study
of obfuscation of evasive functions turns out to be quite interesting from a theoretical
perspective, and sheds light on general obfuscation as well.

What notions of obfuscation makes sense for evasive functions? As the software
patch problem illustrates, a very natural property that we would like is input hiding:
Given an obfuscation of a random circuit C ← Cn, it should be hard for an adversary
to find an input x such that C(x) = 1. It also makes sense to consider (average case
versions of) strong notions of obfuscation, such as “virtual black box” (VBB) obfusca-
tion introduced by Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan and Yang [3],

1 Conjunctions are not necessarily evasive, however the interesting case for obfuscation is large
conjunctions which are evasive.
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which, roughly speaking, states that any predicate of the original circuit C computed
from its obfuscation could be computed with almost the same probability by an effi-
cient simulator having only oracle (i.e., black box) access to the function (see Section 2
for a formal definition). One can also consider the notion of “virtual gray box” (VGB)
introduced by Bitansky and Canetti [4], who relaxed the VBB definition to allow the
simulator to run in unbounded time (though still with only a polynomial number of
queries to its oracle). Another definition proposed in [3], with a recent construction
given by [15], is of “indistinguishability obfuscation” (IO). The actual meaning of IO
is rather subtle, and we discuss it in Section 1.2.

1.1 Our Results

We provide a combination of definitional, constructive, and impossibility results regard-
ing obfuscation for evasive functions. First, we formalize the notion of input-hiding
obfuscation for evasive functions (as sketched above). We give evidence that this no-
tion of input-hiding obfuscation is actually incomparable to the standard definition of
VBB obfuscation. While it is not surprising that input-hiding obfuscation does not im-
ply VBB obfuscation, it is perhaps more surprising that VBB obfuscation does not
imply input-hiding obfuscation (under certain computational assumptions). Intuitively,
this is because VBB obfuscation requires only that predicates of the circuit being ob-
fuscated are simulatable, whereas input hiding requires that no complete input string x
that causes C(x) = 1 can be found.

Second, we formalize a notion of perfect circuit-hiding obfuscation, which asks that
for every predicate of the circuit C ← Cn, the probability that the adversary can guess
the predicate (or its complement) given an obfuscation of C is negligibly close to the
expected value of the predicate over C ← Cn. We then show that for any evasive circuit
family C, this simple notion of obfuscation is equivalent to both average-case VBB
obfuscation and average-case VGB obfuscation. Thus, in particular, we have:

Theorem 1 (Informal). For every evasive function collection C and obfuscator O, it
holds thatO is an average-case VBB obfuscator for C if and only if it is an average-case
VGB obfuscator for C.

We also show that evasive functions are at the heart of the VGB definition in the sense
that if it is possible to achieve VGB obfuscators for all evasive circuit families then it is
possible to achieve a slightly weaker variant of VGB obfuscation for all circuits:

Theorem 2 (Informal). If there exists an average-case VGB obfuscator for every eva-
sive circuit family then there exists a “weak” average-case VGB obfuscator for every
(not necessarily evasive) circuit family.

The notion of “weak” VGB obfuscation allows the simulator to make a slightly
super-polynomial number of queries to its oracle. It also allows the obfuscating al-
gorithm to be inefficient. The latter relaxation is not needed if we assume the existence
of indistinguishability obfuscators for all circuits, as conjectured in [15].

We then proceed to give new constructions of obfuscators for specific natural fam-
ilies of evasive functions. We focus on functions that test if a bounded (polynomial)
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degree multivariate polynomial, given by an arithmetic circuit, evaluates to zero mod-
ulo some large prime p. We provide two constructions that build upon the approximate
multilinear map framework developed by Garg, Gentry, and Halevi [14] and continued
by Coron, Lepoint, and Tibouchi [12]. We first construct an input-hiding obfuscator
whose security is based on a variant of the discrete logarithm assumption in the mul-
tilinear setting. We then construct a perfect circuit-hiding obfuscator based on a new
assumption, called perfectly-hiding multilinear encoding. Very roughly, we assume that
given encodings of k and r · k, for a random r and k, the value of any predicate of k
cannot be efficiently learned.

Theorem 3 (Informal). Let C be the evasive function family that tests if a bounded
(polynomial) degree multivariate polynomial, given by an arithmetic circuit, evaluates
to zero modulo some large prime p. Then: (i) Assuming the existence of a group sup-
porting a multilinear map in which the discrete logarithm problem is hard, there exists
an input-hiding obfuscator for C, and (ii) Under the perfectly-hiding multilinear encod-
ing assumption, there exists an average-case VBB obfuscator for all log-depth circuits
in C.

These constructions can be combined to obtain a single obfuscator for testing if an
input is in the zero-set of a bounded-degree polynomial, that simultaneously achieves
input-hiding and average-case VBB obfuscation. We give an informal overview of our
construction in Section 3.

Finally, we complement our constructive results by giving two impossibility results
regarding the obfuscation of evasive functions. First, we show impossibility with respect
to evasive Turing Machines:

Theorem 4 (Informal). There exists a class of evasive Turing Machines M such that
no input-hiding obfuscator exists with respect to M and no average-case VGB obfus-
cator exists with respect toM.

We also show that there exist classes of evasive circuits for which VBB obfuscation is
not possible. However, here we only rule out worst case obfuscation:

Theorem 5 (Informal). There exists a class of evasive circuits C such that no worst-
case VBB obfuscator exists with respect to C.

1.2 Alternative Approaches to Obfuscation

We briefly mention two other approaches to general program obfuscation. One is to use
the notion of indistinguishability obfuscation (IO) [3]. Indeed, in a recent breakthrough
result, Garg, Gentry, Halevi, Raykova, Sahai and Waters [15] propose a candidate gen-
eral obfuscation mechanism and conjecture that it is IO for all circuits. Improved vari-
ants of this construction have been proposed in [7, 2]. Roughly speaking, IO implies
that an obfuscation of a circuit C hides “as much as possible” about the circuit C in
the sense that if O is an IO obfuscator, and there exists some other obfuscatorO′ (with
not too long output) that (for instance) achieves input hiding or VBB obfuscation for C,
then O(C) will achieve the same security as well [16]. However, while IO obfuscators
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have found uses for many cryptographic applications [15, 18, 17], its hard to quantify
what security is obtained by directly obfuscating a function with an IO obfuscator since
for most classes of functions we do not know what “as much as possible” is. In particu-
lar, IO obfuscators are not known to imply properties such as input hiding or VBB/VGB
for general circuits. For insance, the “totally unobfuscatable functions” of [3] (which
are functions that are hard to learn but whose canonical representation can be recovered
from any circuit) can be trivially IO-obfuscated, but this clearly does not give any mean-
ingful security guarantees. Furthermore, we do not know whether IO obfuscators give
guarantees such as input hiding or VBB on any families of evasive functions beyond
those families that we already know how to VBB-obfuscate. Thus our work here can be
seen as complementary to the question of constructing indistinguishability obfuscators.
Furthermore, the hardness assumptions made in this work are much simpler than those
implied by the IO security of any of the above candidates.

Another approach is to consider obfuscation mechanisms in idealized models where
basic group operations are modeled as calls to abstract oracles. Works along this line,
using different levels of abstraction, include [15, 11, 7, 2]. It should be stressed however
that, as far as we know, proofs of security in any of these idealized models bear no
immediate relevance to the security of obfuscation schemes in the plain model.

1.3 Organization of the Paper

In Section 2 we formally define evasive function families and the various notions of
obfuscation that apply to them, and show equivalence between several of these notions.
Section 3 contains our constructions for obfuscating zero-testing functions for low de-
gree polynomials. In Section 4 we show that obtaining virtual gray box obfuscation for
evasive functions implies a weaker variant of VGB for all functions. Section 5 con-
tains our impossibility results for worst-case VBB obfuscation of evasive circuits and
average-case VGB obfuscation of evasive Turing machines.

2 Evasive Circuit Obfuscation

Let C = {Cn}n∈N
be a collection of circuits such that every C ∈ Cn maps n input bits

to a single output bit, and has size poly(n). We say that C is evasive if on every input,
a random circuit in the collection outputs 0 with overwhelming probability:2

Definition 2.1 (Evasive Circuit Collection). A collection of circuits C is evasive if
there exist a negligible function μ such that for every n ∈ N and every x ∈ {0, 1}n:

Pr
C←Cn

[C(x) = 1] ≤ μ(n) .

An equivalent definition that will be more useful to us states that given oracle access
to a random circuit in the collection it is hard to find an input that maps to 1.

2 To avoid confusion, we note that the notion here is unrelated (and quite different) from the
notion of evasive relations in [9].
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Definition 2.2 (Evasive Circuit Collection - Alternative Definition). A collection of
circuits C is evasive if for every (possibly inefficient)A and for every polynomial q there
exist a negligible function μ such that and for every n ∈ N:

Pr
C←Cn

[C(AC[q(n)](1n)) = 1] ≤ μ(n) .

Where C[q(n)] denotes an oracle to the circuit C which allows at most q(n) queries.

2.1 Definitions of Evasive Circuit Obfuscation

We start by recalling the syntax and functionality requirement for circuit obfuscation as
defined in [3].

Definition 2.3 (Functionality of Circuit Obfuscation). An obfuscatorO for a circuit
collection C is a PPT algorithm such that for all C ∈ C, O(C) outputs a description of
a circuit that computes the same function as C.

We suggest two new security notions for obfuscation of evasive collections: perfect
circuit-hiding and input-hiding. Both notions are average-case notions, that is, they only
guarantee security when the obfuscated circuit is chosen at random from the collection.

The notion of input hiding asserts that given an obfuscation of a random circuit in
the collection, it remains hard to find input that evaluates to 1.

Definition 2.4 (Input-Hiding Obfuscation). An obfuscator O for a collection of cir-
cuits C is input-hiding if for every PPT adversary A there exist a negligible function μ
such that for every n ∈ N and for every auxiliary input z ∈ {0, 1}poly(n) to A:

Pr
C←Cn

[C(A(z,O(C))) = 1] ≤ μ(n) ,

where the probability is also over the randomness of O.

Our second security notion of perfect circuit-hiding asserts that an obfuscation of a
random circuit in the collection does not reveal any partial information about original
circuit. We show that for evasive collections, this notion is equivalent to existing defi-
nitions of average-case obfuscation such as average-case virtual black-box (VBB) [3],
average-case virtual gray-box (VGB) [4], and average-case oracle indistinguishability
[8].

Definition 2.5 (Perfect Circuit-Hiding Obfuscation). Let C be a collection of circuits.
An obfuscator O for a circuit collection C is perfect circuit-hiding if for every PPT
adversary A there exist a negligible function μ such that for every balanced predicate
P , every n ∈ N and every auxiliary input z ∈ {0, 1}poly(n) to A:

Pr
C←Cn

[A(z,O(C)) = P(C)] ≤ 1

2
+ μ(n) ,

where the probability is also over the randomness of O.
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Remark 2.1 (On Definition 2.5). The restriction to the case of balanced predicates is
made for simplicity of exposition only. We note that the proof of Theorem 2.1 implies
that Definition 2.5 is equivalent to a more general definition that considers all predicates.

Remark 2.2 (On extending the definitions for non-evasive functions). The definitions of
input-hiding and perfect circuit-hiding obfuscation are tailored for evasive collections
and clearly cannot be achieved for all collections of circuits. For the case of input-
hiding, this follows directly from Definition 2.2 of evasive collections. For the case of
perfect circuit-hiding, consider the non-evasive collection C such that for every C ∈ C,
C(0n) outputs the first bit of C. Clearly, no obfuscator can preserve functionality while
hiding the first bit of the circuit.

2.2 On the Relations between the Definitions

An input-hiding obfuscation is not necessarily perfect circuit-hiding since an input-
hiding obfuscation might always include, for example, the first bit of the circuit in
the output. In the other direction we do not believe that every perfect circuit-hiding
obfuscation is also input hiding. Intuitively, the reason is that the perfect circuit-hiding
obfuscation only prevents the adversary from learning a predicate of the circuit. Note
that there may be many inputs on which the circuit evaluates to 1, and therefore, even
if the obfuscation allows the adversary to learn some input that evaluates to 1, it is not
clear how to use such an input to learn a predicate of the circuit.

In the full version of this paper [1] we give an example of an obfuscation for some
evasive collection that is perfect circuit-hiding but not input-hiding. The example is
based on a worst case obfuscation assumption for hyperplanes [10]. Nonetheless, we
prove that for evasive collections where every circuit only evaluates to 1 on a polynomial
number of inputs, every perfect circuit-hiding obfuscation is also input-hiding.

2.3 Perfect Circuit-Hiding Obfuscation Is Equivalent to Existing Notions

We start by recalling the average-case versions of existing security definitions of obfus-
cation.

Definition 2.6 (Average-Case Virtual Black-Box (VBB) from [3]). An obfuscatorO
for a collection of circuits C is average-case VBB if for every PPT adversary A there
exists a PPT simulator Sim and a negligible function μ such that for every predicate P ,
every n ∈ N and every auxiliary input z ∈ {0, 1}poly(n) to A:∣∣∣∣ Pr

C←Cn

[A(z,O(C)) = P(C)]− Pr
C←Cn

[SimC(z, 1n) = P(C)]

∣∣∣∣ ≤ μ(n) ,

where the probability is also over the randomness of O and Sim.

The notion of VGB relaxes VBB by considering a computationally unbounded sim-
ulator, however, the number of queries the simulator makes to its oracle is bounded.



Obfuscation for Evasive Functions 33

Definition 2.7 (Average-Case VGB Obfuscation from [4]). An obfuscator O for a
collection of circuits C is average-case VGB if for every PPT adversary A there exists
a negligible function μ, a polynomial q and a (possibly inefficient) simulator Sim such
that for every predicate P , every n ∈ N and every auxiliary input z ∈ {0, 1}poly(n) to
A: ∣∣∣∣ Pr

C←Cn

[A(z,O(C)) = P(C)]− Pr
C←Cn

[SimC[q(n)](z, 1n) = P(C)]

∣∣∣∣ ≤ μ(n) ,

where C[q(n)] denotes an oracle to the circuit C which allows at most q(n) queries
and where the probability is also over the randomness of O and Sim.

The notion of oracle indistinguishability was originally formulated in the context
of point functions, and here we give a variation of it for general collections. Similarly
to our new notions, this definition is meaningful for evasive collections, but not for
arbitrary collections.

Definition 2.8 (Average-Case Oracle-Indistinguishability Obfuscation from [8]).
An obfuscator O for a collection of circuits C is average-case oracle indistinguish-
able if for every PPT adversary A that outputs one bit, the following ensembles are
computationally indistinguishable:

– {(C,A(z,O(C))) | C ← Cn}n∈N,z∈{0,1}poly(n) ,
– {(C,A(z,O(C′))) | C,C′ ← Cn}n∈N,z∈{0,1}poly(n) .

The following theorem showing that, for evasive collections, the above notions are all
equivalent to perfect circuit-hiding is proven in the full version of this paper [1]. We note
that, for general circuits, average-case VBB and average-case VGB may not be equiv-
alent (follows from [4, Proposition 4.1]). The equivalence of average-case VBB and
average-case oracle-indistinguishability was proven for point functions by Canetti [8].
We generalize the claim for all evasive functions.

Theorem 2.1. Let O be an obfuscator for an evasive collection C. The following state-
ments are equivalent:

1. O is perfect circuit-hiding (Definition 2.5).
2. O is average-case VBB (Definition 2.6).
3. O is average-case VGB (Definition 2.7).
4. O is average-case oracle-indistinguishability (Definition 2.8).

Remark 2.3 (On evasive obfuscation with a universal simulator). It follows from the
proof of Theorem 2.1 that every obfuscatorO for an evasive collection C that is average-
case VBB-secure (or average-case VGB-secure) can be simulated as follows: given an
adversary A, the simulator Sim simply executes A on a random obfuscation O(C′)
of a circuit C′ sampled uniformly from the collection C. The simplicity of the above
simulator can be demonstrated as follows:

– The simulator is universal, that is, the same algorithm Sim can simulate every ob-
fuscatorO and family C given only black box access toO and the ability to sample
uniformly from C.
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– The simulator only makes black-box use of the adversary A. This is in contrast
to the case of worst-case VBB-security where non-black simulators are required
([8, 20]).

– The simulator does not make any calls to its oracle. This is in contrast to the case of
non-evasive function where, for example, the possibility of obfuscating learnable
functions can only be demonstrated by a simulator that queries it oracle.

3 Obfuscating Root Sets of Low Degree Polynomials

In this section, we present constructions of input-hiding obfuscation and of perfect
circuit-hiding obfuscation for a subclass of evasive collections. We will be able to
obfuscate collections that can be expressed as the zero-set of some low-degree poly-
nomial. More concretely, we say that a collection C is of low arithmetic degree if for
every n, there is a θ(n)-bit prime p, and a polynomial size low degree arithmetic circuit
U(k, x) over Zp where k ∈ Z�

p, x ∈ Zm
p such that Cn = {Ck}k∈Z�

p
and Ck(x) = 1 iff

U(k, x) = 0.
Note that the Schwartz-Zippel Lemma, together with the fact that U(k, x) is of low

degree implies that for every x ∈ Zm
p either

Pr
k←Z�

p

[Ck(x) = 0] = negl(n) or, Pr
k←Z�

p

[Ck(x) = 0] = 1 .

Thus, there exists a single function h such that the collection {Ck − h}k∈Z�
p

is evasive,

where h(x) = 1 iff:
Pr

k←Z�
p

[Ck(x) = 0] = 1 .

In other words, a collection of low arithmetic degree is either evasive or it is a “transla-
tion” of an evasive collection by a fixed, efficiently computable (in RP) function that is
independent of the key. Therefore, we can restrict ourselves WLOG to evasive collec-
tion of low arithmetic degree.

Both constructions will be based on graded encoding as introduced by Garg, Gen-
try, and Halevi [14]. The high-level idea behind both constructions is as follows. The
obfuscation of a circuit Ck will contain some encoding of the elements of k. Using
this encoding, an evaluator can homomorphically evaluate the low-degree polynomial
U(k, x). Then, the evaluator tests whether the output is an encoding of 0 and learns the
value of Ck(x).

The two constructions will encode the key k in two different ways, and their security
will be based on two different hardness assumptions. The security of the input-hiding
construction will be based on a discrete-logarithm-style assumption on the encoding.
The obfuscation will support evasive collections of low arithmetic degree defined by a
polynomial size circuit U(k, x) of total degree poly(n). This class of circuits is equiva-
lent to polynomial size arithmetic circuits of depthO(log2(n)) and total degree poly(n)
[19]. The security of the perfect circuit-hiding construction will be based on a new as-
sumption called the perfectly-hiding multilinear encoding assumption. The obfuscation
will support evasive collections defined by a polynomial size circuit U(k, x) of depth
O(log(n)). We also discuss a stronger variant of this assumption, which like in the
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input-hiding construction, supports arbitrary arithmetic circuits with total polynomial
degree.

3.1 Graded Encoding

We start by defining a variant of the symmetric graded encoding scheme from ([14]),
used in our construction, and by specifying hardness assumptions used.

Definition 3.1. A d-graded encoding system consists of a ring R and a collection of

disjoint sets of encodings
{
S
(α)
i |α ∈ R, 0 ≤ i ≤ d

}
. The scheme supports the follow-

ing efficient procedures:

– Instance Generation: given security parameter n and the parameter d, Gen(1n, 1d)
outputs public parameters pp.

– Encoding: given the public parameters pp and α ∈ R, Enc(pp, α)

outputs u ∈ S
(α)
1 .

– Addition and Negation: given the public parameters pp and two encodings
u1 ∈ S

(α1)
i , u2 ∈ S

(α2)
i , Add(pp, u1, u2) outputs an encoding in S

(α1+α2)
i , and

Neg(pp, u1) outputs an encoding in S
(−α1)
i .

– Multiplication: given the public parameters pp and two encodings u1 ∈ S
(α1)
i1

,

u2 ∈ S
(α2)
i2

such that i1+ i2 ≤ d, Mul(pp, u1, u2) outputs an encoding in S
(α1·α2)
i1+i2

.
– Zero Test: given the public parameters pp and an encodings u, Zero(pp, u) outputs

1 if u ∈ S
(0)
d and 0 otherwise.

The main difference between this formulation and the formulation in [14] is that we
assume that there is an efficient procedure for generating level 1 encoding of every ring
element. In [14], it is only possible to obliviously generate an encoding of a random
element in R, without knowing the underlying encoded element. While we currently
do not know how how to use the construction of [14] to instantiate our scheme, we can
get a candidate construction with public encoding based on the construction of [12], by
publishing encodings of all powers of 2 as part of the public parameters. The known
candidate constructions involve noisy encodings. Since in our construction we use at
most O(d) operations, we may set the noise parameter to be small enough so that it
can be ignored. Therefore, from hereon, we omit the management of noise from the
interfaces of the graded encoding.

Our first hardness assumption (used in the construction of input-hiding obfuscation)
is that the encoding function is one-way. That is, given the output of Enc(pp, α) for
randomly generated parameters pp and a random ring element α ∈R R, it is hard to
find α.

Our second hardness assumption (used in the construction of perfect circuit-hiding
obfuscation) is a new assumption called perfectly-hiding multilinear encoding. The as-
sumption states that given level 1 encodings of r and r ·k for random r, k ∈ R, the value
of any one bit predicate of k cannot be efficiently learned. The perfectly-hiding multi-
linear encoding assumption can be shown to hold in an ideal model where the encoding
is generic (such as the generic ideal models described in [7, 2]).
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Assumption 3.1 (perfectly-hiding multilinear encoding). For every PPT adversary
A that outputs one bit, the following ensembles are computationally indistinguishable:

–
{
pp, k,A(Enc(pp, r),Enc(pp, r · k)) : k, r ← R, pp← Gen(1n, 1d)

}
,

–
{
pp, k,A(Enc(pp, r),Enc(pp, r · k′)) : k, k′, r← R, pp← Gen(1n, 1d)

}
.

We note that both of the above assumptions do not hold for the candidate construc-
tion of [14] (assuming there is an efficient encoding procedure for every ring element).
However, they are possibly satisfied by other constructions. In particular, to our knowl-
edge there are no known attacks violating this assumption for the candidate construction
of [12].

3.2 Input-Hiding Obfuscation

Let Cn be an evasive collection defined by the arithmetic circuit U(k, x), k ∈ Z�
p, x ∈

Zm
p of degree d = poly(n). The obfuscator will make use of a d-symmetric graded

encoding scheme over the ring Zp. For every k ∈ Z�
p the obfuscationO(Ck) generates

parameters pp ← Gen(1n, 1d) for the graded encoding, and outputs a circuit that has
the public parameters pp and the encodings {Enc(pp, ki)} for i ∈ [�] hardwired into
it. The circuit O(Ck), on input x ∈ Zm

p , first generates encodings {Enc(pp, xi)} for
i ∈ [m], and uses the evaluation functions of the graded encoding system to compute

an encoding u ∈ S
(U(k,x))
d . O(Ck) then uses the zero test to check whether u ∈ S

(0)
d .

If so it outputs 1 and otherwise it outputs 0.
More concretely, the encoding u ∈ S

(U(k,x))
d is obtained by computing the encoded

value for every wire of the arithmetic circuit U(k, x). For every gate in the circuit con-
necting the wires w1 and w2 to w3, given encodings

uw1 ∈ S
(α1)
d1

, uw2 ∈ S
(α2)
d2

,

for the values on wires w1 and w2, an encoding uw2 of the value on wire w3 is computed
as follows. If the gate is an addition gate we first obtain encodings

u′
w1
∈ S

(α1)
max(d1,d2)

, u′
w2
∈ S

(α2)
max(d1,d2)

,

by multiplying either uw1 or uw2 by the appropriate encoding of 1. The encodings

u′
w1

, u′
w2

are added to obtain the encoding uw3 ∈ S
(α1+α2)
max(d1,d2)

. If the gate is a multipli-

cation gate, we multiply the encodingsuw1 , uw2 to obtain the encoding uw3 ∈ S
(α1·α2)
d1+d2

.
Note that the degree of the encoding computed for every is at most the degree of the
polynomial computed by the wire and therefore does not exceed d.

Theorem 3.2. O is an input-hiding obfuscator for C, assuming Enc is one-way.

Proof. We need to prove that O satisfies both the functionality requirement and the
security requirement. The functionality requirement follows immediately from the guar-
antees of the graded encoding scheme. Thus, we focus on proving the security require-
ment. To this end, fix any PPT adversary A, and suppose for the sake of contradiction
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that for infinitely many values of n,

Pr
k←Z�

p

[Ck(A(O(Ck))) = 1] ≥ 1

poly(n)
. (1)

Next we prove that there exists a PPT adversary A′ that brakes the one-wayness
of the encoding. The adversary A′ will make use of the the helper procedure Simplify
described in the following claim:

Claim 3.3. There exists an efficient procedure Simplify that, given a multivariate non-
trivial polynomial P : Z�

p → Zp of total degree d, represented as an arithmetic circuit,
outputs a set of multivariate polynomials {Pj}j∈[�] (represented as arithmetic circuits)
such that:

1. Pj is a multivariate non-trivial polynomial of total degree d.
2. For every r ∈ Z�

p such that P (r) = 0 there exist j ∈ [�] such that P (r) = 0 but the
univariate polynomial Q(x) = P (r1, . . . , rj−1, x, rj+1 . . . , r�) is non-trivial.

We note that a very similar claim was proven by Bitansky et al. [5, Proposition 5.15].
We reprove it here for completeness

Proof (Claim 3.3). Given an arithmetic circuit computing a multivariate polynomial
P : Z�

p → Zp of total degree d such that P �≡ 0, the procedure Simplify is as follows:

1. Set P1 = P . repeat the following for j = 1 to �.
2. Decompose Pj as follows:

Pj(kj , . . . , k�) =
d∑

i=1

ki
j · Pj,i(kj+1, . . . , k�).

3. Set Pj+1 to be the non-zero polynomial Pj,i with the minimal i.

Note that decomposing an arithmetic circuit into homogeneous components can be
done efficiently. It is left to show that for every r ∈ Z�

p if P (r) = 0 then there exists
j ∈ [�] such that

Q(x) = Pj(x, rj+1, . . . , r�) �≡ 0 ,

and
Pj(rj , rj+1, . . . , r�) = 0.

The proof is by induction on j. The base case is when j = 1, for which it holds that:

P1(x1, . . . , x� �≡ 0

P1(r1, . . . , r�) = 0 .

For any 1 ≤ j < �, suppose that:

Pj(xj , . . . , x�) �≡ 0

Pj(rj , . . . , r�) = 0

Pj(x, rj+1, . . . , r�) ≡ 0 ;
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then, by the construction of Pj+1 from Pj ,

Pj+1(xj+1, . . . , x�) �≡ 0

Pj+1(rj+1, . . . , r�) = 0 .

If this inductive process reaches P�, then it holds that:

P�(x�) �≡ 0

P�(r�) = 0 ,

which already satisfies the claim. ��

The adversaryA′. A′ is given the public parameters pp, and an encoding u of a random
element r ∈ Zp. A′ is defined as follows:

1. A′ samples a random index i ∈ [�] and a random element kj ← Zp for every
j ∈ [�] \ {i}.

2. A′ generates a random obfuscation O(Ck) from the encodings {Enc(kj)}j∈[�]\{i}
and using his input u as the encoding of ki.

3. A′ executesA(O(Ck)) and obtains an input x. If O(Ck)(x) �= 1, A′ aborts.
4. Otherwise, A′ executes the helper procedure Simplify on the polynomial U(·, x)

with the values of x fixed and obtains the polynomials {Pj}j∈[�].
5. A′ constructs the univariate polynomial Q(x) = Pi(k1, . . . , ki−1, x, ki+1, . . . , k�)

(the rest of the elements of k are known to A′).
6. If Q ≡ 0, A′ aborts, otherwise it outputs a random root of Q.

We show that A′ outputs the correct value of r with noticeable probability. By our
assumption on A, O(Ck)(x) �= 1 with some noticeable probability ε. In this case, it
follows from the correctness of O that U(k, x) = 0. Let j be the index guaranteed by
Claim 3.3. Since the distribution of k1, . . . , k� is independent from the choice of i, it
follows that conditioned on the event U(k, x) = 0, i = j with probability 1/�. In this
case by Claim 3.3 it holds that Pi(k) = 0 but the univariate polynomial P defined above
is not identically zero, which means that r is one of the at most d roots of P . Therefore,
A′ will output the correct root with probability at least ε/(�d). ��

3.3 Perfect Circuit-Hiding Obfuscation

Let Cn be an evasive collection defined by the arithmetic circuit U(k, x), k ∈ Z�
p, x ∈

Zm
p of depth degree h = O(log(n)). The obfuscator will make use of a d-symmetric

graded encoding scheme for d = 2h over the ring Zp. For every k ∈ Z�
p, the obfusca-

tion O(Ck) generates parameters pp ← Gen(1n, 1d) for the graded encoding, samples
random elements r1, . . . r� ∈ Zp, and outputs a circuit that has the public parame-
ters pp hardwired into it, and for every for i ∈ [�], has the encodings Enc(pp, ri) and
Enc(pp, ri · ki) hardwired into it.

The circuit O(Ck), on input x ∈ Zm
p , does the following: For i ∈ [m], it generates

the encodings Enc(pp, r′i) and Enc(pp, r′i · xi) where r′i = 1 (Note that when encoding
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the input we do not need r′i to be random for security. We only use r′i the make the
encoding of the input x and the key k have the same format). Using the evaluation
functions of the graded encoding system, O(Ck) then computes a pair of encodings

u0 ∈ S
(r̃)
d and u1 ∈ S

(r̃·U(k,x))
d for some r̃ �= 0 that is a function of r1, . . . , r�. Finally,

it uses the zero test to check whether u1 ∈ S
(0)
d . If so it outputs 1 and otherwise it

outputs 0.
We next elaborate on how this encoded output is computed. The circuitO(Ck) eval-

uates the arithmetic circuit U(k, x) gate by gate, as follows: Fix any gate in the circuit
connecting the wires w1 and w2 to w3. Suppose that for wires w1 and w2 we have the
pairs of encodings

(uw1
0 , uw1

1 ) ∈ S
(r̃1)
d1

× S
(r̃1·α1)
d1

, (uw2
0 , uw2

1 ) ∈ S
(r̃2)
d2

× S
(r̃2·α2)
d2

,

where r̃1, r̃2 �= 0 (supposedly the value on the wire w1 is α1 and the value on wire w2

is α2). If the gate is a multiplication gate, one can compute an encoding for wire w3, by
simply computing the pair of encodings:

(uw3

0 , uw3

1 ) ∈ S
(r̃1·r̃2)
d1+d2

× S
(r̃1·r̃2·α1·α2)
d1+d2

.

If the gate is an addition gate we compute uw3
0 in the same way. We also compute the

encodings:
u
w3,1

1 , u
w3,2

1 ∈ S
(r̃1·r̃2·α1)
d1+d2

× S
(r̃1·r̃2·α2)
d1+d2

,

which can then be added to get:

uw3
1 ∈ S

(r̃1·r̃2·(α1+α2))
d1+d2

.

Note that in any case r̃1 · r̃2 �= 0. Also note that in the evaluation of every level of the
circuit U the maximal degree of the encodings at most doubles and therefore it never
exceeds d = 2h.

Theorem 3.4. O is a perfect circuit-hiding obfuscator for C, assuming the encoding
satisfies the perfectly-hiding multilinear encoding assumption.

Proof. By Theorem 2.1, it suffices to prove that O is an average-case oracle indistin-
guishability obfuscator for C. Namely, it suffices to prove that for every PPT adversary
A that outputs a single bit,{

(Ck,A(O(Ck)))
∣∣ k ← Z�

p

}
≈c

{
(Ck,A(O(Ck′ )))

∣∣ k, k′ ← Z�
p

}
.

Suppose for the sake of contradiction there exists a PPT adversary A (that outputs a
single bit), a distinguisher D, and a non-negligible function ε, such that∣∣∣∣∣ Pr

k←Z�
p

[D(k,A(O(Ck))) = 1]− Pr
k,k′←Z�

p

[D(k,A(O(Ck′ ))) = 1]

∣∣∣∣∣ ≥ ε(n) ,

Recall that the obfuscated circuit O(Ck) consists of the public parameters pp and
from the encodings:

{Enc(pp, ri),Enc(pp, ri · ki)}i∈[�] ,
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where r1, . . . , r� ← Z∗
p. Since sampling encoding corresponding to random input wires

is efficient, the equation above, together with a standard hybrid argument, implies that
there exists i ∈ [�], a PPT adversary A′ (that outputs a single bit), a distinguisher D′,
and a non-negligible function ε′, such that∣∣∣∣Prki←Zp [D

′(pp, ki,A′(Enc(pp, ri),Enc(pp, ri · ki))) = 1]−
Prki,k′

i←Zp
[D′(pp, ki,A′(Enc(pp, ri),Enc(pp, ri · k′

i))) = 1]

∣∣∣∣ ≥ ε′(n) ,

contradicting the perfectly-hiding multilinear encoding assumption. ��

Remark 3.1 (On unifying the constructions). Under a stronger variant of the perfectly-
hiding multilinear encoding assumption we can directly prove that the input hiding ob-
fuscation construction presented in Section 3.2 is also perfect circuit-hiding. Intuitively,
the stronger variant assumes that the the function Enc given a random input k already
hides every predicate of k (without adding any additional randomization).

Assumption 3.5 (strong perfectly-hiding multilinear encoding). For every PPT ad-
versary A that outputs one bit, the following ensembles are computationally indistin-
guishable:

–
{
pp, k,A(Enc(pp, k)) : k,← R, pp← Gen(1n, 1d)

}
,

–
{
pp, k,A(Enc(pp, k′)) : k, k′,← R, pp← Gen(1n, 1d)

}
.

Note that this strong perfectly-hiding multilinear encoding assumption cannot hold for a
deterministic encoding function (unlike with the perfectly-hiding multilinear encoding
assumption). Using the stronger assumption above, we can get perfect circuit-hiding
obfuscation for a larger class of functions. Specifically, U(k, x) can be any arithmetic
circuit computing a polynomial of degree poly(n), removing the logarithmic depth
restriction.

4 Evasive Function and Virtual Grey Box Obfuscation

We show that average-case VGB obfuscation for all evasive functions implies a slightly
weaker form of average-case VGB obfuscation for all function.

We start by giving a slightly more general definition for VGB obfuscation that con-
siders also computationally unbounded obfuscators and allows for the query complexity
of the simulator to be super-polynomial. Note that when the obfuscator is unbounded,
we need to explicitly require that it has a polynomial slowdown, that is, the that the
obfuscated circuit is not too large.

Definition 4.1 (Weak Average-Case VGB Obfuscation). Let C = {Cn}n∈N
be a col-

lection of circuits such that every C ∈ Cn is a circuit of size poly(n) that takes n bits
as input. A (possibly inefficient) algorithm O is a weak average-case VGB obfuscator
for C if it satisfies the following requirements:

– Functionality: for all C ∈ C,O(C) outputs a description of a circuit that computes
the same function as C.
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– Polynomial Slowdown: There exist a polynomial p such that for every C ∈ C,
|O(C)| < p(|C|).

– Security: For every super-polynomial function q = q(n) and for every PPT ad-
versary A there exist a (possibly inefficient) simulator Sim and a negligible func-
tion μ such that for every predicate P , every n ∈ N and every auxiliary input
z ∈ {0, 1}poly(n) to A:∣∣∣∣ Pr

C←Cn

[A(z,O(C)) = P(C)]− Pr
C←Cn

[SimC[q(n)](z, 1n) = P(C)]

∣∣∣∣ ≤ μ(n) .

Where C[q(n)] denotes an oracle to the circuit C which allows at most q(n) queries.

Remark 4.1 (On obfuscation with inefficient obfuscator). The notion of obfuscation
with computationally unbounded obfuscators was first considered in [3]. To demon-
strate the meaningfulness of this notion we note that assuming the existence of indis-
tinguishability obfuscation for a collection C with an effficent obfuscator, the existence
of a (weak) average-case VGB Obfuscation for C with a computationally unbounded
obfuscator already implies the existence of a (weak) average-case VGB Obfuscation
for C with an effficent obfuscator.

Theorem 4.1. If there exists an average-case VGB obfuscator for every collection of
evasive circuits, then there exists a weak average-case VGB obfuscator for every col-
lection of circuits.

Proof overview of Theorem 4.1. Let C be a (non-evasive) collection of circuit that we
want to VGB obfuscate. We start by showing a computationally unbounded leaning
algorithm L that given oracle access to a circuit C ∈ C tries to learn the circuit C.
Clearly, If L can make unbounded number of queries it can learn C exactly. However,
if the number of queries L makes to C is bounded by some super-polynomial function
q(n), we show that L can still learn a circuit C ′ ∈ C that is “close” to C. That is, C and
C′ only disagree on some negligible fraction of the inputs.

The learning algorithm L will repeatedly query C on the input that gives maximal
information about the circuit C, taking into account the information gathered from all
the previous oracle answers. L stops when it learns C or when there is no query that
will give “enough” information about C. In this case, we denote by K(C) the set of all
circuits in Cn that are consistent with all the previous oracle answers. We show that all
the circuits in K(C) are close to C, and Lwill just output a random circuit C′ ∈ K(C).

The high-level idea behind the construction of the weak average-case VGB obfusca-
torO for C is that given black box access to a random circuit C a weak VGB simulator,
that is, an unbounded adversary that can make at most q(n) oracle queries to C, is able
to run the learning algorithmL and learn the set K(C). Therefore, a secure obfuscation
O(C) of C does not need to hide the set K(C). In particular, O(C) may contain a
random circuit C ′ ← K(C) in the clear. To satisfy the functionality requirement, the
obfuscation cannot contain only C′. Additionally, O(C) will contain the circuit Cdiff ,
where Cdiff = C⊕C′ is a circuit that outputs 1 on every input on which C and C′ differ.
Now, to evaluate C on an input x an evaluator can compute C(x) = C′(x) ⊕ Cdiff(x).
Clearly,O(C) cannot contain Cdiff in the clear, since Cdiff depends on C. instead,O(C)
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will obfuscate Cdiff using the VGB obfuscator for evasive collections. Since C′ is a ran-
dom function in K(C) it only differs from C on a negligible fraction of the inputs, and
therefore Cdiff outputs 1 only on a negligible fraction of the inputs.

Unfortunately, this high-level idea does not quite work. The problem is that since
O(C) contains the circuit C′ in the clear, we cannot argue that Cdiff is taken at random
from an evasive collection. In particular, given C it may be easy to find an input where
Cdiff outputs 1. For example, if C outputs 1 only on a single input x, and C′ outputs 1
only on a single input x′, then Cdiff will output 1 on both inputs x and x′. Now, given
the circuit C′ it is easy find the input x′ such that Cdiff(x

′) = 1 and therefore we do not
know how to securely obfuscate Cdiff .

To fix this problem we do not choose C′ to be a random circuit in the set K(C), but
instead C′ will be a circuit computing the majority function on many random circuits
taken from the set K(C). Now we can show that even given the circuit C′ it is hard to
find an input where C and C′ differ, and therefore the obfuscation of Cdiff is secure.

Proof (Theorem 4.1). Let O be an average-case VGB secure obfuscator for every col-
lection of evasive circuits. Let C = {Cn}n∈N

be a (not necessarily evasive) collection
of circuits such that every C ∈ Cn is a circuit of size p(n), for some polynomial p, that
takes n bits as input. Let q(n) be any super-polynomial function. We construct a weak
average-case VGB obfuscatorO′ for C where the simulator makes at most q(n) queries
to its oracle. O′ will make use of the following learning algorithm L as a subroutine.
The algorithm L is an inefficient algorithm that has oracle access to C, it queries its
oracle at most q′(n) times for q′(n) � q(n)

(n+1) , and outputs a circuit that is “close” to C.
Loosely speaking, algorithm L starts by setting K to be the set of all circuits in Cn.

Then, in each iteration L reduces the size of K so that, at the end, it contains only
circuits that are “close” to C. The number of iterations is at most q′(n) and in each
iteration L makes a single oracle call. However, the computation done by L in each
iteration is inefficient.

Formally, the algorithm L is defined as follows:

1. Set K ← Cn.
2. For every b ∈ {0, 1} and every x ∈ {0, 1}n, compute:

pbx = Pr
C′←K

[C′(x) = b], px = min(p0x, p
1
x) .

3. Set x∗ = argmaxx px.
4. If px∗ < p(n)

q′(n) , then return a random C′ ← K .
5. Else, query the oracle on x∗ and set:

K ← K ∩ {C′|C(x∗) = C′(x∗)} .

6. If K contains a single element C, return C.
7. Else, goto Step 2.

We later argue that the output of LC is a circuit that is close to C, that is, the circuits
only disagree on a negligible fraction of the inputs. Next, we describe a weak average-
case VGB obfuscatorO′ for C. In the description of O′, we use the following notation:
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we denote by C1 ⊕ C2 the circuit that is composed from the circuits C1 and C2 where
the output wires of these circuits are connected by a XOR gate. Similarly, we we denote
by Majorityi∈[n] Ci the circuit that is composed from the circuits C1, . . . , Cn where the
output wires of these circuits are connected by a Majority gate.

Note about notation. For any two circuits C and C′, we use C ≡ C′ to denote that C
and C′ are functionally equivalent. That is, the circuits compute the same function, but
may be very different as “formal” circuits. We use the notation C = C′ when C and C′

are not only functionally equivalent, but are also equal as “formal” circuits.

The obfuscator. The obfuscatorO′ on input C ∈ C operates as follows:

1. For i ∈ [n], set Ci ← LC where all executions of L use independent randomness.
2. Construct the circuit Cmaj = Majorityi∈[n] Ci.
3. Construct the circuit Cdiff = Cmaj ⊕ C.
4. Construct and output the circuit Cout = Cmaj ⊕O(Cdiff).

The correctness and polynomial slowdown properties ofO′ follow from those of O,
and from the fact that the circuits in Cn are of (approximately) the same size.

To show that O′ is a weak average-case VGB secure, we demonstrate an ineffi-
cient simulator Sim. For every PPT adversary A, and for every auxiliary input z ∈
{0, 1}poly(n) to A, Sim is given z, and oracle access to C[q(n)]. Sim acts as follows:

1. For i ∈ [n], set Ci ← LC[q′(n)], where independent randomness is used in different
executions of L.

2. Construct the circuit C′
maj = Majorityi∈[n] Ci.

3. Sample C′ ← LC[q′(n)] and construct the circuit C′
diff = C′

maj ⊕ C′.
4. Construct the circuit Csim = C′

maj ⊕O(C′
diff ).

5. ExecuteA(z, Csim) and output the result.

Sim invokes the learning algorithm,L, n+1 times, and each invocation may include
q′(n) = q(n)

(n+1) queries to the oracle. Thus, in total Sim makes at most q(n) oracle calls.

Another note about notation. In the rest of the proof, C denotes a random circuit in Cn
(unless specified otherwise we assume C is distributed uniformly among all circuits in
Cn). The random variables Cmaj, Cdiff and Cout represent the value of the corresponding
local variable in a random execution of the obfuscator O′ on input C (this random
variable is both over the random choice of C and of the coins used by O′). Similarly,
the random variables C′

maj, C
′
diff and Csim represent the value of the corresponding local

variable in a random execution of SimC[q(n)] (the value of these random variables does
not depend on the auxiliary input z passed to Sim). For simplicity of notation, in the
rest of the proof, we omit the auxiliary input z from the parameter list ofA and of Sim.

The simulator Sim is valid if for every predicate P :∣∣∣∣ Pr
C←Cn

[A(O′(C)) = P(C)]− Pr
C←Cn

[SimC[q(n)](1n) = P(C)]

∣∣∣∣ ≤ negl(n) .
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That is, if: ∣∣∣∣PrC←Cn [A((Cmaj,O(Cdiff))) = P(C)]
−PrC←Cn [A((C′

maj,O(C′
diff))) = P(C)]

∣∣∣∣ ≤ negl(n) . (2)

Before proving Equation (2), we introduce the following notation. For every circuit
C ∈ Cn, let K(C) be the value of the set K when LC terminates. Note that once C is
fixed K(C) is fully determined; indeed, up to step Step 4, where L outputs a random
circuit from K(C), L is deterministic. Define GOOD(C,Cmaj) to be the event that:

Cmaj ≡ Majority
C′∈K(C)

C′

The following three lemmas imply Equation (2), and thus conclude the proof.

Lemma 4.1. For every circuit C ∈ Cn, the variables Cmaj and C′
maj are identically

distributed.

Lemma 4.2.

Pr
C←Cn

[GOOD(C,Cmaj)] ≥ 1− negl(n) .

Lemma 4.3. For every C∗
maj in the support of Cmaj, i.e., such that:

Pr
C←Cn

[Cmaj = C∗
maj] > 0 ,

it holds that:∣∣∣∣∣∣∣∣
PrC←Cn

[
A((Cmaj,O(Cdiff))) = P(C)

Cmaj = C∗
maj

GOOD(C,C∗
maj)

]
−PrC←Cn

[
A((C′

maj,O(C′
diff))) = P(C)

C′
maj = C∗

maj

GOOD(C,C∗
maj)

]
∣∣∣∣∣∣∣∣ ≤ negl(n) .

Proof (Lemma 4.1). C′
maj is computed by Sim in the same way that Cmaj is computed

byO′ except that that Sim limits the learning algorithm L to make at most q′(n) oracle
queries. It is therefore sufficient to show that L makes at most q′(n) queries. By the
choice of x∗, in every execution of L, at Step 5, the size of the set K reduces by a factor
of at least (1− p∗x) ≥ 1− p(n)

q′(n) . Since |Cn| ≤ 2p(n), after q′(n) queries K must contain
a single element and will thus L terminate. ��

Proof (Lemma 4.2). Fix C, and denote by C̃maj the circuit:

C̃maj ≡ Majority
C′∈K(C)

C′ .

If K(C) contains a single element (corresponding to Step 6 of L), then GOOD must
occur. Else, the stopping condition in Step 4 of L guarantees that for every x ∈ {0, 1}n,
and letting pbx = PrC′′←K(C)[C

′′(x) = b], it holds that min(p0x, p
1
x) < p(n)

q′(n) . That is,
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almost all circuits in K(C) agree with the majority value C̃maj(x). Formally, for every
x ∈ {0, 1}n,

Pr
C′′←K(C)

[C′′(x) �= C̃maj(x)] <
p(n)

q′(n)
.

The event GOOD does not occur if and only if there exist x ∈ {0, 1}n such that at
least n/2 of the circuits C1, . . . , Cn disagree with C̃maj on x. Since every Ci is sampled
independently from K(C) and since q′ is super-polynomial we have that:

Pr
C←Cn

[¬GOOD] ≤ 2n ·
(
n
n
2

)
·
(

p(n)

q′(n)

)n
2

<

(
16p(n)

q′(n)

)n
2

= negl(n) .

��

Proof (Lemma 4.3). Fix C∗
maj such that:

Pr
C←Cn

[Cmaj = C∗
maj] > 0 .

If Cmaj = C∗
maj, the circuits have the exact same structure and therefore, C∗

maj is of the
form C∗

maj = Majorityi∈[n] C
∗
i for some circuits C∗

1 , . . . C
∗
n ∈ Cn. The next claim will

be useful for proving the lemma.

Claim 4.2.

1. For every C∗ ∈ Cn and every C,C′ ∈ K(C∗), the random variable Cmaj in the
execution of O(C) and the random variable Cmaj in the execution of O(C′) are
identically distributed.

2. For every C∗
1 , . . . , C

∗
n ∈ Cn, for C∗

maj = Majorityi∈[n] C
∗
i , and for every C /∈

K(C∗
1 ), C

∗
maj is outside the support of Cmaj (defined by the execution of O′(C)).

To prove Claim 4.2, we will use yet another simpler claim:

Claim 4.3. For every C∗ ∈ Cn and every C ∈ K(C∗) it holds that K(C) = K(C∗).

Proof. Fix any C∗ ∈ Cn and any C ∈ K(C∗). Consider the set of oracle queries
made by LC and by LC∗

and their answers. If the two query-answer sets are equal
then K(C) = K(C∗). Else, both LC and LC∗

make some query x∗ such that C(x∗) �=
C∗(x∗). However, this contradicts the fact that C ∈ K(C∗), which means that C agrees
with C∗ on all the queries performed by LC∗

in the formation of K(C∗).
��

Proof (Claim 4.2). For Part 1, fix any C∗ ∈ Cn and any C,C′ ∈ K(C∗). Claim 4.3
implies that K(C) = K(C′) = K(C∗). Since the output of LC is just a random
element in K(C) if follows that the output of LC and the output of LC′

are identically
distributed, and therefore the random variable Cmaj in the execution of O′(C) and the
random variable Cmaj in the execution of O′(C′) are also identically distributed.

For Part 2, fix C∗
1 , . . . , C

∗
n ∈ Cn, and C /∈ K(C∗

1 ), and let C∗
maj = Majorityi∈[n] C

∗
i .

If Cmaj = C∗
maj (that is, the circuits are formally identical) then it must be that C∗

1 ∈
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K(C). Indeed, because the circuits Cmaj, C
∗
maj are formally equal, C∗

1 equals a circuit
C1 ∈ K(C) where Cmaj = Majorityi∈[n] Ci. This, together with Claim 4.3, implies
that K(C) = K(C∗

1 ). Since it is always true that C ∈ K(C), this also implies that
C ∈ K(C∗

1 ), contradicting our assumption.
��

We are now ready to prove Lemma 4.3. Recall that C∗
maj = Majorityi∈[n] C

∗
i . Denote

the set K(C∗
1 ) by K∗. By Claim 4.2 (Part 2), the lemma’s statement is equivalent to the

following, where we sample C from K∗ instead of from Cn:∣∣∣∣∣∣∣∣
PrC←K∗

[
A((Cmaj,O(Cdiff))) = P(C)

Cmaj = C∗
maj

GOOD(C,C∗
maj)

]
−PrC←K∗

[
A((C′

maj,O(C′
diff))) = P(C)

C′
maj = C∗

maj

GOOD(C,C∗
maj)

]
∣∣∣∣∣∣∣∣ ≤ negl(n) . (3)

Let the adversaryA′ be A with C∗
maj hard-coded to it. That is, A′(O(Cdiff)) outputs

A((C∗
maj,O(Cdiff))). Now we can rewrite Equation (3) as:∣∣∣∣∣∣∣∣

PrC←K∗

[
A′(O(Cdiff)) = P(C)

Cmaj = C∗
maj

GOOD(C,C∗
maj)

]
−PrC←K∗

[
A′(O(C′

diff )) = P(C)
C′

maj = C∗
maj

GOOD(C,C∗
maj)

]
∣∣∣∣∣∣∣∣ ≤ negl(n) . (4)

Let P ′ be a predicate that has C∗
maj hardwired into it, and is defined as follows:

On inputs of the form Cdiff = C∗
maj ⊕ C where GOOD(C,C∗

maj) holds, the predicate
P ′(Cdiff) outputs P(C). On all other inputs the output of P ′ is arbitrarily defined to be
0. Now we can rewrite Equation (4) as:∣∣∣∣∣∣∣∣

PrC←K∗

[
A′(O(Cdiff)) = P ′(Cdiff)

Cmaj = C∗
maj

GOOD(C,C∗
maj)

]
−PrC←K∗

[
A′(O(C′

diff)) = P ′(Cdiff)
C′

maj = C∗
maj

GOOD(C,C∗
maj)

]
∣∣∣∣∣∣∣∣ ≤ negl(n) . (5)

Recall that O′ sets Cdiff = Cmaj ⊕ C. Let Cdiff be the collection:

Cdiff =

⎧⎨⎩Cdiff = Cmaj ⊕ C

∣∣∣∣∣∣
C ← K∗

Cmaj = C∗
maj

GOOD(C,C∗
maj)

⎫⎬⎭
n∈N,C∗

maj

.

Additionally, recall that Sim sets C′
diff = C′

maj⊕C′ where C′ ← LC . Let C′diff be the
collection:

C′diff =

⎧⎪⎪⎨⎪⎪⎩C′
diff = C′

maj ⊕ C′

∣∣∣∣∣∣∣∣
C ← K∗

C′ ← LC

C′
maj = C∗

maj

GOOD(C,C∗
maj)

⎫⎪⎪⎬⎪⎪⎭
n∈N,C∗

maj

.
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Now we can rewrite Equation (5) as:∣∣∣∣PrCdiff←Cdiff
[A′(O(Cdiff)) = P ′(Cdiff)]

−PrC′
diff←Cdiff ,Cdiff←C′

diff
[A′(O(C′

diff )) = P ′(Cdiff)]

∣∣∣∣ ≤ negl(n) . (6)

By the proof of Claim 4.2, for any circuit C ∈ K∗, it holds that K(C) = K∗. Noting
that C,C′ defined in the collections Cdiff and C′diff are random circuits in K∗, and thus
the two collections are identical. We can now rewrite Equation (6) as:∣∣∣∣PrCdiff←Cdiff

[A′(O(Cdiff)) = P ′(Cdiff)]
−PrC′

diff
,Cdiff←Cdiff

[A′(O(C′
diff)) = P ′(Cdiff)]

∣∣∣∣ ≤ negl(n) . (7)

��

To prove equation Equation 7 and conclude the proof of the lemma, we show that the
collection Cdiff is evasive. This, together with the fact thatO is average-case VGB secure
evasive collections and the proof of Theorem 2.1, imply that Equation 7 holds.

Claim 4.4. The collection Cdiff is evasive.

Proof. Let C be the random variable given in the definition of Cdiff . If K∗ contains
a single element (corresponding to Step 6 of L) then C ≡ Cmaj and the collection
Cdiff contains, in fact, only the all-zero function, and is therefore evasive. Assuming
|K∗| > 1, the stopping condition in Step 4 of L guarantees that for every x ∈ {0, 1}n,
letting pbx = PrC′′←K(C)[C

′′(x) = b], it holds that for min(p0x, p
1
x) < p(n)

q′(n) . This
implies:

Pr
C′′←K(C)

[
C′′(x) �= Majority

C̄∈K(C)

C̄(x)

]
<

p(n)

q′(n)
.

By the proof of Claim 4.2, K(C) = K∗ for every C ∈ K∗, and therefore also

Pr
C′′←K∗

[C′′(x) �= Majority
C̄∈K∗

C̄(x)] <
p(n)

q′(n)
.

Plugging-in the definitions of Cdiff and of GOOD(C,C∗
maj), we get that for every x ∈

{0, 1}n,

Pr
C←K∗

[Cdiff(x) = 1] = Pr
C←K∗

[C(x) �= C∗
maj(x)] <

p(n)

q′(n)
=

p(n)

nω(1)
= negl(n),

which implies that Cdiff is evasive. ��
��

5 Impossibility Results

Definitions 2.5 and 2.4 only consider circuit obfuscation with average-case security. In
this section we give impossibility results for obfuscating evasive Turing machines and
for obfuscating evasive circuits with worst-case security.
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5.1 Impossibility of Turing Machine Obfuscation

Barak et. al. [3] show the impossibility general obfuscation of circuits and Turing ma-
chines. We show that the impossibility of Turing machines obfuscation can be extended
to the case of evasive functions. Similarly to the result of [3], our negative result applies
for VBB obfuscation as well as for weaker notions such as average-case obfuscation
(see [3] for more details). In particular, we get an impossibility for the Turing machine
versions of Definitions 2.5 and 2.4.

Let M = {Mn}n∈N
be a collection of Turing machines such that every M ∈ Mn

has description of size poly(n) and outputs a bit. We say that M is evasive if given
oracle access to a random machine in the collection it is hard to find an input that
evaluates to 1.

Definition 5.1 (Evasive Turing Machine Collection). A collection of Turing machines
M is evasive if there exists a negligible function μ such that for every n ∈ N and every
x ∈ {0, 1}∗

Pr
M←Mn

[M(x) = 1] ≤ μ(n) .

We start by recalling the syntax, functionality, and polynomial slowdown require-
ments for Turing machine obfuscation as defined in [3]. Then we give security defini-
tions that are the Turing machine versions of Definitions 2.5 and 2.4.

Definition 5.2 (Turing Machine Obfuscation). An obfuscator O for M is a PPT al-
gorithm that satisfies the following requirements:

– Functionality: For every n ∈ N and every M ∈ Mn , O(M) outputs a description
of a Turing machine that computes the same function as M .

– Polynomial Slowdown: There exists a polynomial p such that for every M ∈ M
and for every x ∈ {0, 1}∗ if the running time of M(x) is t, then the running time of
(O(M))(x) is at most p(t).

Definition 5.3 (Perfect Turing-Machine-Hiding). An obfuscatorO for a collection of
Turing machines M is perfect circuit-hiding if for every PPT adversary A there exist
a PPT simulator Sim and a negligible function μ such that for every n ∈ N and every
efficiently computable predicate P:∣∣∣∣ Pr

M←Mn

[A(O(M)) = P(M)]− Pr
M←Mn

[Sim(1n) = P(M)]

∣∣∣∣ ≤ μ(n) .

Definition 5.4 (Input Hiding). A obfuscatorO for a collection of Turing machinesM
is input hiding if there exists a negligible function μ such that for every n ∈ N and for
every PPT adversary A

Pr
M←Mn

[M(A(O(M))) = 1] ≤ μ(n) .
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The impossibility. The impossibility of [3] demonstrates a pair of functions Cα,β , Dα,β

such that given oracle access to these functions, it is impossible to learn the key (α, β).
However, given any efficient implementation of Cα,β and Dα,β as a pair of Turing
machines, it is possible to learn (α, β). The two functions are then combined into a
single function that cannot be obfuscated. The idea is to “embed” the functions Cα,β

and Dα,β of [3] inside an evasive Turing machine.
For a key α, β ∈ {0, 1}n define the machine Cα,β as follows:

Cα,β(x; i) =

{
βi if x = α

0 otherwise

The machine Dα,β takes as input a description of a machine C that is suppose to run
in time p(n) and checks whether C computes the same function as Cα,β on the inputs
{(α, i)}i∈[n]. Namely,

Dα,β(C) =

{
β1 if ∀i ∈ [n], C(α, i) outputs βi within p(n) steps

0 otherwise
.

The polynomial p is defined to be greater than the running time of O(Cα,β). Next
we define a single machine Mα,β combining the machines Cα,β and Dα,β , as follows:

Mα,β(b, z) =

{
Cα,β(z) if b = 0

Dα,β(z) if b = 1
.

It is straightforward to verify that Cα,β and Dα,β are evasive, and therefore Mα,β

is also evasive. By construction, an adversary that is given O(Mα,β) can compute a
description of machines MC and MD, computing Cα,β and Dα,β respectively, where
the running time of MC is at most p. The adversary can therefore execute MD(MC)
and obtain β1 with probability 1. Note that a simulator (with no access to Mα,β) can
guess β1 with probability at most 1/2 and therefore O is not perfect circuit-hiding
(Definition 5.3).

To show that O is not input hiding (Definition 5.4) we consider an adversary that
produces the input (1,MC) to Mα,β . Since fα,β(1,MC) = β1 and β is random, the
adversary outputs a preimage of 1 with probability 1/2.

5.2 Impossibility of Worst-Case Obfuscation

The impossibility of [3] for circuit obfuscation demonstrates a collection of circuits
Cn = {Cs}s∈{0,1}n such that given oracle access to Cs for a random seed s it is im-
possible to learn s. However, given any circuit computing the same function as Cs, an
adversary can learn s. In general we do not know how to “embed” C inside an evasive
collection without loosing the above learnability property. However, such embedding
is possible when the adversary has some partial knowledge about the seed of the cir-
cuit taken from the evasive collection. This type of attack can be used to rule out a
worst-case security definition.



50 B. Barak et al.

We recall the definition of worst-case VBB from [3]. We present an equivalent ver-
sion of the definition that uses a predicate and resembles Definition 2.6 for average-case
VBB. Note that a worst-case version of the input-hiding security definition (Defini-
tion 2.4) cannot hold against non-uniform adversaries.

Definition 5.5 (Worst-Case Virtual Black-Box (VBB) from [3]). An obfuscator O
for a collection of circuits C is perfect circuit-hiding in the worst-case if for every PPT
adversaryA there exists a PPT simulator Sim and a negligible function μ such that for
every n ∈ N, every C ∈ Cn and every predicate P:∣∣∣Pr[A(O(C)) = P(C)]− Pr[SimC(1n) = P(C)]

∣∣∣ ≤ μ(n) .

Let Cn = {Cs}s∈{0,1}n be the collection defined by [3]. For α, s ∈ {0, 1}n we
define C′

α,s as follows:

C′
α,s(x1, x2, i) =

{
[Cs(x1)]i if x2 = α

0 otherwise
.

First note that the collection C is evasive, since for every input (x1, x2, i) the proba-
bility over a random key (α, s) that x2 = α is negligible. However, this circuit cannot
be VBB obfuscated. There is an adversary that given an obfuscation of C′

α,s for α = 0n

and for a random s, can transform this obfuscation into a circuit computing the same
function as Cs and thereby learn s. Conversely, every simulator that is given oracle ac-
cess to C′

α,s for α = 0n and for a random s, cannot learn more than what can be learned
with oracle access to Cs, and in particular cannot learn s.

Acknowledgement. We thank Vijay Ganesh for suggesting to us the “software patch”
problem.
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eO for a class of algorithms M guarantees that if an efficient attacker A
can distinguish between obfuscations eO(M1), eO(M2) of two algorithms
M1,M2 ∈ M, then A can efficiently recover (given M1 and M2) an input
on which M1 and M2 provide different outputs.

– We rely on the recent candidate virtual black-box obfuscation con-
structions to provide candidate constructions of extractability obfus-
cators for NC1; next, following the blueprint of Garg et al. (FOCS
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contrast to the construction of Garg et al., which relies on indistin-
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enables encrypting a message m with respect to an instance x, lan-
guage L, and function f , such that anyone (and only those) who
holds a witness w for x ∈ L can compute f(m,w) on the message
and particular known witness. We show that functional witness en-
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– We demonstrate other applications of extractability extrac-
tion, including the first construction of fully (adaptive-message)
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1 Introduction

Obfuscation. The goal of program obfuscation is to “scramble” a computer pro-
gram, hiding its implementation details (making it hard to “reverse-engineer”),
while preserving its functionality (i.e, input/output behavior). A first formal def-
inition of such program obfuscation was provided by Hada [22]: roughly speaking,
Hada’s definition—let us refer to it as strongly virtual black-box—is formalized
using the simulation paradigm. It requires that anything an attacker can learn
from the obfuscated code, could be simulated using just black-box access to the
functionality.1 Unfortunately, as noted by Hada, only learnable functionalities
can satisfy such a strong notion of obfuscation: if the attacker simply outputs
the code it is given, the simulator must be able to recover the code by simply
querying the functionality and thus the functionality must be learnable.

An in-depth study of program obfuscation was initiated in the seminal work
of Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [2]. Their
central result shows that even if we consider a more relaxed simulation-based
definition of program obfuscation—called virtual black-box obfuscation—where
the attacker is restricted to simply outputting a single bit, impossibility can
still be established (assuming the existence of one-way functions). Their result
is even stronger, demonstrating the existence of families of functions such that
given black-box access to fs (for a randomly chosen s), not even a single bit of s
can be guessed with probability significantly better than 1/2, but given the code
of any program that computes fs, the entire secret s can be recovered. Thus,
even quite weak simulation-based notions of obfuscation are impossible.

Barak et al. [2] also suggested an avenue for circumventing these impossibility
results:2 introducing the notions of indistinguishability and “differing-inputs”
obfuscation. Roughly speaking, an indistinguishability obfuscator iO for a class of
circuits C guarantees that given any two equivalent circuits C1 and C2 (i.e., whose
outputs agree on all inputs) from the class, obfuscations iO(C1) and iO(C2) of
the circuits are indistinguishable. In a recent breakthrough result, Garg, Gentry,
Halevi, Raykova, Sahai, and Waters [14] provide the first candidate construction
of indistinguishability obfuscators for all polynomial-size circuits. Additionally,
Garg et al [14] and even more recently, the elegant works of Sahai and Waters
[29] and Hohenberger, Sahai and Waters [23], demonstrate several beautiful (and
surprising) applications of indistinguishability obfuscation.

In this work, we initiate the study of the latter notion of obfuscation—
“differing-inputs”, or as we call it, extractability obfuscation—whose security
guarantees are at least as strong as indistinguishability obfuscation, but weaker
than virtual black-box obfuscation. We demonstrate candidate constructions of
such extractability obfuscators, and new applications.

1 Hada actually considered slight distributional weakening of this definition.
2 Hada also suggested an approach for circumventing his impossibility result, sticking
with a simulation-based definition, but instead restricting to particular classes of
attacker. It is, however, not clear (to us) what reasonable classes of attackers are.
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Extractability Obfuscation. Roughly speaking, an extractability obfuscator eO
for a class of circuits C guarantees that if an attacker A can distinguish between
obfuscations iO(C1), iO(C2) of two circuits C1, C2 ∈ C, then A can efficiently re-
cover (given C1 and C2) a point x on which C1 and C2 differ: i.e., C1(x) �= C2(x).

3

Note that if C1 and C2 are equivalent circuits, then no such input exists, thus re-
quiring obfuscations of the circuits to be indistinguishable (and so extractability
obfuscation implies indistinguishability obfuscation).

We may rely on the candidate obfuscator for NC1 of Brakerski and Roth-
blum [9] or Barak et al. [1] to obtain extractability obfuscation for the same
class. We next demonstrate a bootstrapping theorem, showing how to obtain
extractability obfuscation for all polynomial-size circuits. Our transformation
follows [14], but incurs a somewhat different analysis.

Theorem 1 (Informal). Assume the existence of an extractability obfuscator
for NC1 and the existence of a (leveled) fully homomorphic encryption scheme
with decryption in NC1 (implied, e.g., by Learning With Errors). Then there
exists an extractability obfuscation for P/poly.

Relying on extractability obfuscation, however, has additional advantages: in
particular, it allows us to achieve obfuscation of (non-uniform) Turing machines.
The size of the obfuscated code preserves a polynomial relation to the size of
the original Turing machine. In contrast, existing obfuscator constructions [14,9]
can achieve this only by first converting the Turing machine to a circuit, turning
running time into size.

To achieve this, we additionally rely on the existence of P-certificates in the
CRS model—namely, succinct non-interactive arguments for P.4

Theorem 2 (Informal). Assume the existence of extractability obfuscation for
NC1, fully homomorphic encryption with decryption in NC1 and P -certificates
(in the CRS model). Then there exists extractability obfuscation for polynomial-
size Turing machines.

On a high level, our construction follows the one from [14] but (1) modifies it to
deal with executions of Turing machines (by relying on an oblivious Turing ma-
chine), and more importantly (2) compresses “proofs” by usingP-certificates. We
emphasize that this approach does not work in the setting of indistinguishability
obfuscation. Intuitively, the reason for this is that P-certificates of false state-
ments exist, but are just hard to find; efficiently extracting such P-certificates
from a successful adversary is thus crucial (and enabled by the extractability
property).

We next explore applications of extractability obfuscation.

3 Pedantically, our notion is a slightly relaxed version of that of [2]; see Section 3.
4 Such certificates can be either based on knowledge-of-exponent type assumptions
[4], or even on falsifiable assumptions [12].
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Functional Witness Encryption. Consider the following scenario: You wish to
encrypt the labels in a (huge) graph (e.g., names of people in a social network)
so that no one can recover them, unless there is a clique in the graph of size,
say, 100. Then, anyone (and only those) who knows such a clique should be able
to recover the labels of the nodes in the identified clique (and only these nodes).
Can this be done?

The question is very related to the notion of witness encryption, recently
introduced by Garg, Gentry, Sahai, and Waters [15]. Witness encryption makes
it possible to encrypt the graph in such a way that anyone who finds any clique
in the graph can recover the whole graph; if the graph does not contain any such
cliques, the graph remains secret. The stronger notion of extractable witness
encryption, introduced by Goldwasser, Kalai, Popa, Vaikuntanathan, and Zel-
dovich [20], further guarantees that the graph can only be decrypted by someone
who actually knowns a clique. However, in contrast to existing notions, here we
wish to reveal only the labels associated with the particular known clique.

More generally, we put forward the notion of functional witness encryption
(FWE). An FWE scheme enables one to encrypt a message m with respect to
an NP -language L, instance x and function f , such that anyone who has (and
only those who have) a witness w for x ∈ L can recover f(m,w). In the above
example, m contains the labels of the whole graph, w is a clique, and f(m,w)
are the labels of all nodes in w. More precisely, our security definition requires
that if you can tell apart encryptions of two messages m0,m1, then you must
know a witness w for x ∈ L such that f(m0, w) �= f(m1, w).

We observe that general-purpose FWE and extractability obfuscation actu-
ally are equivalent (up to a simple transformation).

Theorem 3 (Informal). There exists a FWE for NP and every polynomial-
size function f if and only if there exists an extractability obfuscator for every
polynomial-size circuit.

The idea is very simple: Given an extractability obfuscator eO, an FWE en-
cryption of the message m for the language L, instance x and function f is the
obfuscation of the program that on input w outputs f(m,w) if w is a valid wit-
ness for x ∈ L. On the other hand, given a general-purpose FWE, to obfuscate a
program Π , let f be the universal circuit that on input (Π, y) runs Π on input
y, let L be the trivial language where every witness is valid, and output a FWE
of the message Π—since every input y is a witness, this makes it possible to
evaluate Π(y) on every y.

Other Applications. Functional encryption [6,28] enables the release of “tar-
geted” secret keys skf that enable a user to recover f(m), and only f(m), given
an encryption of m. It is known that strong simulation-based notions of security
cannot be achieved if users can request an unbounded number of keys. In con-
trast, Garg et al. elegantly showed how to use indistinguishability obfuscation
to satisfy an indistinguishability-based notion of functional encryption (roughly,
that encryptions of any two messages m0,m1 such that f(m0) = f(m1) for all
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the requested secret keys skf are indistinguishable). The main construction of
Garg et al, however, only achieves selective-message security, where the attacker
must select the two message m0,m1 to distinguish before the experiment be-
gins (and it can request decryption keys skf ). Garg et al. observe that if they
make subexponential-time security assumptions, use complexity leveraging, and
consider a small (restricted) message space, then they can also achieve adaptive-
message security.

We show how to use extractability obfuscation to directly achieve full
adaptive-message security for any unbounded size message space (without re-
lying on complexity leveraging).

The idea behind our scheme is as follows. Let the public key of the encryption
scheme be the verification key for a signature scheme, and let the master secret
key (needed to release secret keys skf ) be the signing key for the signature
scheme. To encrypt a message m, obfuscate the program that on input f and a
valid signature on f (with respect to the hardcoded public key) simply computes
f(m). The secret key skf for a function f is then simply the signature on f . (The
high-level idea behind the construction is somewhat similar to the one used
in [20], which used witness encryption in combination with signature schemes to
obtain simulation-based FE for a single function f ; in contrast, we here focus
on FE for an unbounded number of functions).

Proving that this construction works is somewhat subtle. In fact, to make the
proof go through, we here require the signature scheme in use to be of a special
delegatable kind—namely, we require the use of functional signatures [7,3] (which
can be constructed based on non-interactive zero-knowledge (NIZK) arguments
of knowledge), which make it possible to delegate a signing key sk′ that allows
one to sign only messages satisfying some predicate. The delegation property is
only used in the security reduction and, roughly speaking, makes it possible to
simulate key queries without harming security for the messages selected by the
attacker.

Theorem 4 (Informal). Assume the existence of NIZK arguments of knowl-
edge for NP and the existence of extractability obfuscators for polynomial-size
circuits. Then there exists an (adaptive-message) indistinguishability-secure func-
tional encryption scheme for arbitrary length messages.

Another interesting feature of our approach is that it directly enables con-
structions of Hierarchical Functional Encryption (HiFE) (in analogy with Hier-
archical Identity-Based encryption [24]), where the secret keys for functions f
can be released in a hierarchical way (the top node can generate keys for sub-
sidiary nodes, those nodes can generate keys for its subsidiaries etc.). To do this,
simply modify the encryption algorithm to release the f(m) message in case
you provide an appropriate chain of signatures that terminates with a signature
on f .

From Indistinguishability Obfuscation to Extractability Obfuscation. A natural
question is whether we can obtain extractability obfuscation from indistinguisha-
bility obfuscation. We address this question in two different settings: first directly
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in the context of obfuscation, and second in the language of FWE. (Recall that
these two notions are equivalent when dealing with arbitrary circuits and arbi-
trary functions; however, when considering restricted function classes, there are
interesting differences).

– We introduce a weaker form of extractability obfuscation, in which extrac-
tion is only required when the two circuits differ on only polynomially many
inputs. We demonstrate that any indistinguishability obfuscation in fact im-
plies weak extractability obfuscation.

Theorem 5 (Informal). Any indistinguishability obfuscator for P/poly is
also a weak extractability obfuscator for P/poly.

– Mirroring the definition of indistinguishability obfuscation, we may define a
weaker notion of FWE—which we refer to as indistinguishability FWE (or
iFWE)—which only requires that if f(m0, w) = f(m1, w) for all witnesses w
for x ∈ L, then encryptions of m0 and m1 are indistinguishable (in contrast,
the stronger notion requires that if you can distinguish between encryptions
of m0 and m1 you must know a witness on which they differ). It follows
that iFWE for languages in NP and functions in P/poly is equivalent to
indistinguishability obfuscation for P/poly, up to a simple transformation.
We show that if restricting to languages with polynomially many witnesses,
it is possible to turn any iFWE to an FWE.

Theorem 6 (Informal). Assume there exists indistinguishability FWE for
every NP language with polynomially many witnesses, and the function f .
Then for every language L in NP with polynomially many witnesses, there
exists an FWE for L and f .

Our proof relies on a local list-decoding algorithm for a large-alphabet
Hadamard code due to Goldreich, Rubinfeld and Sudan [19].

Theorems 5 and 6 are incomparable in that Theorem 5 begins with a stronger
assumption and yields a stronger conclusion. More precisely, if one begins with
iFWE supporting all languages in NP and functions in P/poly, then the
equivalence between indistinguishability (respectively, standard) FWE and in-
distinguishability (resp., extractability) obfuscation, in conjunction with the
transformation of Theorem 5, yields a stronger outcome in the setting of FWE
than Theorem 6: Namely, a form of FWE where (extraction) security holds
as long as the function M(m,w) is not “too sensitive” to m: i.e., if for any
two messages m0,m1 there are only polynomially many witnesses w for which
M(m0, w) �= M(m1, w). This captures, for example, functions M that only rarely
output nonzero values. Going back to the example of encrypting data m associ-
ated with nodes of a social network, we could then allow someone holding clique
w to learn whether the nodes in this clique satisfy some chosen rare property
(e.g., contains someone with a rare disease, all have the same birthday, etc).
Indeed, while there may be many cliques (corresponding to several, even expo-
nentially many, witnesses w), it will be the case that M(m,w) is almost always
0, for all but polynomially many w.
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On the other hand, Theorem 6 also provides implications of iFWE for re-
stricted function classes. In particular, Theorem 6 gives a method for transform-
ing indistinguishability FWE for the trivial function f(m,w) = m to FWE for
the same function f . It is easy to see that indistinguishability FWE for this
particular f is equivalent to the notion of witness encryption [15], and FWE for
the same f is equivalent to the notion of extractable witness encryption of [20].
Theorem 6 thus shows how to turn witness encryption to extractable witness
encryption for the case of languages with polynomially many witness.

Finally, we leave open whether there are corresponding transformations from
indistinguishability obfuscation in the case of many disagreeing inputs, and
iFWE in the case of many witnesses. In the latter setting, this is interesting
even for the special case of witness encryption (i.e., the function f(m,w) = m).

Overview of the Paper. In Section 2, we present definitions and notation for
some of the tools used in the paper. In Section 3, we introduce the notion of
extractability obfuscation and present a bootstrapping transformation from any
extractability obfuscator for NC1 to one for all poly-time Turing machines. In
Section 4, we define functional witness encryption (FWE), and show an equiva-
lence between FWE and extractability obfuscation. In Section 5, we describe an
application of extractability obfuscation, in achieving indistinguishability func-
tional encryption with unbounded-size message space. In Section 6, we explore
the relationship between indistinguishability and extractability obfuscation, pro-
viding transformations from the former to the latter in special cases.

2 Preliminaries

2.1 Fully Homomorphic Encryption

A fully homomorphic encryption scheme E = (GenFHE,EncFHE,DecFHE,EvalFHE)
is a public-key encryption scheme associated with an additional polynomial-time
algorithm EvalFHE, which enables computation on encrypted data. Formally, we
require E to have the following correctness property:

Definition 1 (FHE correctness). There exists a negligible ν(k) s.t.

Pr
pk,sk←Gen(1k)

⎡⎣∀ ciphertexts c1, ..., cn s.t. ci ← Encpk(bi),
∀ poly-size circuits f : {0, 1}n → {0, 1}
Decsk(Evalpk(f, c1, ..., cn)) = f(b1, ..., bn),

⎤⎦ ≥ 1− ν(k).

The size of c′ = EvalFHE(pk,EncFHE(pk,m), C) must depend polynomially on the
security parameter and the length of C(m), but be otherwise independent of the
size of the circuit C. For security, we require that E is semantically secure. We
also require that Eval is deterministic, and that the decryption circuit Decsk(·) is
in NC1. Most known schemes satisfy these properties. Since the breakthrough
of Gentry [17], several fully homomorphic encryption schemes have been con-
structed with improved efficiency and based on more standard assumptions such
as LWE (Learning With Errors) (e.g., [10,8,18,11]), together with a circular se-
curity assumption. We refer the reader to these works for more details.



On Extractability Obfuscation 59

Remark 1 (Homomorphic evaluation of Turing machines). As part of our ex-
tractability obfuscation construction for general Turing machines (TM), we re-
quire the homomorphic evaluation of an oblivious TM with known runtime.
Recall that a TM is said to be oblivious if its tape movements are independent
of its input. The desired evaluation is done as follows.

Suppose x̂ = (x̂1, x̂2, · · · , x̂k) is an FHE encryption of plaintext message x
(where x̂� encrypts the �th position of x), â = (â1, â2, . . .) an FHE encryption of
the tape values, ŝ an FHE ciphertext of the current state, and M an oblivious
TM terminating on all inputs within t steps. More specifically, a description of
M consists of an initial state s and description of a transition circuit, CM . In
each step i = 1, . . . , t of evaluation, M accesses some fixed position posinput(i) of
the input, fixed position postape(i) of the tape (extending straightforwardly to
the multi-tape setting), and the current value of the state, and evaluates CM on
these values.

Homomorphic evaluation of M on the encrypted input x̂ then takes place in
t steps: In each step i, the transition circuit CM of M is homomorphically eval-
uated on the ciphertexts x̂posinput , âpostape , and ŝ, yielding updated values for these
ciphertexts. The updated state ciphertext ŝ resulting after t steps is the desired
output ciphertext. Note that obliviousness of the Turing machine is crucial for
this efficient method of homomorphic evaluation, as any input-dependent choices
for the head location would only be available to an evaluator in encrypted form.

Overall, homomorphic evaluation of M takes time O(t(k) · poly(k)), and can
be described in space O(|M | · poly(k)).

2.2 (Indistinguishability) Functional Encryption

A functional encryption scheme [6,28] enables the release of “targeted” secret
keys that enable a user to recover f(m)—and only f(m)—given an encryption
of m. In this work, we will consider the indistinguishability notion of security for
functional encryption. Roughly, such a scheme is said to be secure if an adversary
who requests and learns secret keys skf for a collection of functions f cannot
distinguish encryptions of any two messages m0,m1 for which f(m0) = f(m1)
for every requested f . We refer the reader to e.g. [6,28] for a formal definition.

2.3 P-Certificates

P-Certificates are a succinct argument system for P. We consider P certificates
in the CRS model.

For every c ∈ N, let Lc = {(M,x, y) : M(x) = y within |x|c steps}. Let
TM (x) denote the running time of M on input x.

Definition 2 (P-certificates). [13] A tuple of probabilistic interactive Turing
machines (CRSGencert, Pcert, Vcert) is a P-certificate system in the CRS model if
there exist polynomials gP , gV , � such that the following hold:
– Efficient Verification: On input crs← CRSGen(1k), c ≥ 1, and a statement

q = (M,x, y) ∈ Lc, and π ∈ {0, 1}∗, Vcert runs in time at most gV (k + |q|).
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– Completeness by a Relatively Efficient Prover: For every c, d ∈ N,
there exists a negligible function μ such that for every k ∈ N and every
q = (M,x, y) ∈ Lc such that |q| ≤ kd,
Pr[crs← CRSGen(1k);π ← Pcert(crs, c, q) : Vcert(crs, c, q, π) = 1] ≥ 1− μ(k).
Furthermore, Pcert on input (crs, c, q) outputs a certificate of length �(k) in
time bounded by gP (k + |M |+ TM (x)).

– Soundness: For every c ∈ N, and every (not necessarily uniform) PPT P ∗,
there exists a negligible function μ such that for every k ∈ N,
Pr[crs ← CRSGen(1k); (q, π) ← P ∗(crs, c) : Vcert(crs, c, q, π) = 1 ∧ q /∈ Lc] ≤ μ(k).

P-certificates are directly implied by any publicly-verifiable succinct non-
interactive argument system (SNARG) for P. It was shown by Chung et al. [13]
that P-certificates can be based on falsifiable assumptions [27].

Theorem 7. Assuming that Micali’s CS proof [26] is sound, or assuming the
existence of publicly-verifiable fully succinct SNARG system for P [4] (which
in turn can be based on any publicly-verifiable SNARG [21,25,16,5]), then there
exists a P-certificate system in the CRS model.

3 Extractability Obfuscation

We now present and study the notion of extractability obfuscation, which is a
slight relaxation of “differing-inputs obfuscation” introduced in [2]. Intuitively,
such an obfuscator has the property that if a PPT adversary can distinguish
between obfuscations of two programs M0,M1, then he must “know” an input
on which they differ.

Definition 3 (Extractability Obfuscator). (Variant of [2]5) A uniform PPT
machine eO is an extractability obfuscator for a class of Turing machines
{Mk}k∈N if the following conditions are satisfied:
– Correctness: There exists a negligible function negl(k) such that for ev-

ery security parameter k ∈ N, for all M ∈ Mk, for all inputs x, we have
Pr[M ′ ← eO(1k,M) : M ′(x) = M(x)] = 1− negl(k).

– Security: For every PPT adversary A and polynomial p(k), there exists a
PPT extractor E and polynomial q(k) such that the following holds. For every
k ∈ N, every pair of Turing machines M0,M1 ∈ Mk, and every auxiliary
input z,

Pr

[
b← {0, 1};

M ′ ← eO(1k,Mb)
: A(1k,M ′,M0,M1, z) = b

]
≥ 1

2
+

1

p(k)
(1)

=⇒ Pr
[
w ← E(1k,M0,M1, z) : M0(w) �= M1(w)

]
≥ 1

q(k)
. (2)

5 Formally, our notion of extractability obfuscation departs from differing-inputs ob-
fuscation of [2] in two ways: First, [2] require the extractor E to extract a differing
input for M0,M1 given any pair of programs M ′

0,M
′
1 evaluating equivalent functions.

Second, [2] consider also adversaries who distinguish with negligible advantage ε(k),
and require that extraction still succeeds in this setting, but within time polynomial
in 1/ε. In contrast, we restrict our attention only to adversaries who succeed with
noticeable advantage.
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We remark that we can also consider a distributional-variant of the extrac-
tion condition, where instead of requiring the condition to hold with respect to
every M0,M1 ∈ Mk and z ∈ {0, 1}∗, we consider a distribution D that sam-
ples (M0,M1, z)← D and requires that for every distribution D, there exists an
extractor such that the extraction condition to hold with respect to D. In appli-
cations, it often suffices to require the extraction condition to hold with respect
to some specific distribution D. We here focus on the above definition for con-
crete exposition, but our results hold naturally also for the distributional-variant
definition.

We contrast this notion with indistinguishability obfuscation:

Definition 4 (Indistinguishability Obfuscator). [2] A uniform PPT ma-
chine iO is an indistinguishability obfuscator for a class of circuits {Ck} if iO
satisfies the Correctness and Security properties as in Definition 3 (for circuit
class {Ck} and circuits C0, C1 in the place of Turing machines), except with
Line (2) replaced with the following:

=⇒ ∃w : C0(w) �= C1(w). (2′)

Note that any extractability obfuscator is also directly an indistinguishability
obfuscator, since existence of an efficient extraction algorithm E finding desired
distinguishing input w as in (2) in particular implies that such an input exists,
as in (2′).

Remark 2. Note that in the definition of extractability obfuscation, the extractor
is given access to the programs M0,M1. One could consider an even stronger
notion of obfuscation, in which the extractor is given only black-box access to the
two programs. As we show in the full version, however, achieving general-purpose
obfuscation satisfying this stronger extractability notion is impossible.

We now present specific definitions of extractability obfuscators for special
classes of Turing machines.

Definition 5 (Extractability Obfuscator for NC1). A uniform PPT ma-
chine eONC1 is called an extractability obfuscator for NC1 if for constants
c ∈ N, the following holds: Let Mk be the class of Turing machines correspond-
ing to the class of circuits of depth at most c log k and size at most k. Then
eO(c, ·, ·) is an extractability obfuscator for the class {Mk}.

Definition 6 (Extractability Obfuscator for TM). A uniform PPT ma-
chine eOTM is called an extractability obfuscator for the class TM of polynomial-
size Turing machines if it satisfies the following. For each k, let Mk be the class
of Turing machines Π containing a description of a Turing machine M of size
bounded by k, such that Π takes two inputs, (t, x), with |t| = k, and the output
of Π(t, x) is defined to be the the output of running the Turing machine M(x)
for t steps. Then eOTM is an extractability obfuscator for {Mk}.

Applying the properties of extractability obfuscation to this class of Tur-
ing machines {Mk} implies that for programs Π0, Π1 ∈ Mk defined above
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(corresponding to underlying size-k Turing machines M0,M1), efficiently dis-
tinguishing between obfuscations of Π0 and Π1 implies that one can efficiently
extract an input pair (t′, x′) for which Π0(t

′, x′) �= Π1(t
′, x′). In particular,

either M0(x
′) �= M1(x

′) or Runtime(M0, x
′) �= Runtime(M1, x). Thus, if re-

stricting attention to a subclass ofMk for which each pair of programs satisfies
Runtime(M0, x) = Runtime(M1, x) for each input x, then “standard” extrac-
tion is guaranteed (i.e., such that the extracted input contains x′ satisfying
M0(x

′) �= M1(x
′)), while achieving input-specific runtime of the obfuscated pro-

gram. (Indeed, for an input x of unknown runtime, one simply executes the obfus-
cated program Π̃ sequentially with increasing time bounds t = k, 2k, 22k, 23k, · · ·
until a non-⊥ output is received). If restricting to a subclassMk that has a poly-
nomial runtime bound t(k), then “standard” extraction can be guaranteed by
simply defining Runtime(M,x) = t(k) for every M ∈Mk and every input x.

In the sequel, when referring to an extractability obfuscation of a Turing
machine M , we will implicitly mean the related program ΠM as above, but will
suppress notation of the additional input t.

Definition 7 (Extractability Obfuscator for Bounded-Input TM). A uni-
form PPT machine eOBI is called an extractability obfuscator for bounded-input
Turing machines if it satisfies the following. For each k and polynomial �(k), let
M�

k be the class of Turing machines Π as in Definition 6, but where the inputs
(t, x) of Π are limited by |t| = k and |x| ≤ �(k). Then there exists a polynomial
ps(k) for which eOBI is an extractability obfuscator for {M �

k}, and for every
k ∈ N, and every M ∈M�

k, it holds that the obfuscation M ′ ← eOBI(1
k,M, �(k))

has size bounded by ps(�(k), k).

3.1 Extractability Obfuscation for NC1

In this work, we build upon the existence of any extractability obfuscator for
NC1. In particular, this assumption can be instantiated using the candidate
obfuscator for NC1 given by Brakerski and Rothblum [9] or Barak et al. [1].
These works achieve (stronger) virtual black-box security within an idealized
model, based on certain assumptions. We refer the reader to [9,1] for more details.

Assumption 8 (NC1 Extractability Obfuscator). There exists a secure ex-
tractability obfuscator eONC1 for NC1, as in Definition 5

3.2 Amplifying to General Polynomial-Sized Turing Machines

In this section, we demonstrate how to bootstrap from an extractability obfusca-
tor for NC1 to one for all (bounded-input) Turing machines with a polynomial-
sized description, by use of fully homomorphic encryption (FHE), in conjunc-
tion with a P-certificate system (a succinct argument system for statements
in P).6 Our construction provides also two corollaries. Relaxing our assump-

6 P-certificates are immediately implied by any succinct non-interactive argument
(SNARG) system for NP, but can additionally be based on falisifiable assumptions.
We refer the reader to Section 2.3 for details.
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tions, by using leveled FHE, and removing P-certificates, we achieve extractabil-
ity obfuscation for polynomial-size circuits. And strengthening our assumption,
replacing P-certificates with succinct non-interactive arguments of knowledge
(SNARKs), yields extractability obfuscation for all polynomial-size Turing ma-
chines. Our construction follows the analogous amplification transformation of
Garg et. al [14] in the (weaker) setting of indistinguishability obfuscation.

At a high level, the transformation works as follows. An obfuscation of a
Turing machine M consists of two FHE ciphertexts g1, g2, each encrypting a
description of M under a distinct public key, and an obfuscation of a certain
(low-depth) verify-and-decrypt circuit. To evaluate an obfuscation of M on input
x, a user will homomorphically evaluate the oblivious7 universal Turing machine
U(·, x) on both ciphertexts g1 and g2, and generate a P-certificate φ that the
resulting ciphertexts e1, e2 were computed correctly. Then, he will provide a low-
depth proof π that the certificate φ properly verifies (e.g., simply providing the
entire circuit evaluation). The collection of e1, e2, φ, π is then fed into the NC1-
obfuscated program, which checks the proofs, and if valid outputs the decryption
of e1.

Note that the use of computationally sound P-certificates enables the size
of the obfuscation of M to depend only on the description size of M , and not
its runtime. This approach is not possible in the setting of indistinguishability
obfuscation, as certificates of false statements exist, but are simply hard to find.

Theorem 9. There exists a succinct extractability obfuscator eO for bounded-
input TM, as in Definition 7, assuming the existence of the following tools:
– eONC1 : an extractability obfuscator for the class of circuits NC1.
– E = (GenFHE,EncFHE,DecFHE,EvalFHE): a fully homomorphic encryption

scheme with decryption Dec in NC1.
– (CRSGencert, Pcert, Vcert): a P-certificate system in the CRS model.

We remark that by replacing the P-certificates with succinct non-interactive
arguments of knowledge (SNARKs) and additionally using collision resistant
hash functions, then the resulting extractability obfuscator is secure for all
polynomial-size Turing machines of possibly unbounded input size.

Corollary 1. Based on any extractability obfuscator for the class of circuits
NC1, fully homomorphic encryption, succinct non-interactive arguments of
knowledge (SNARKs), there exists an extractability obfuscator for TM, as in
Definition 6.

We also observe that by using a leveled FHE, and removing the P-certificates
from the construction, we can still achieve extractability obfuscation for P/poly.
Namely, instead of generating a P-certificate that the homomorphic evaluation
of Uk was performed correctly and then computing a low-depth proof that the

7 A Turing machine is said to be oblivious if the tape movements are independent of
the input. Without obliviousness, one would be unable to homomorphically evaluate
the Turing machine efficiently, as the location of the head of the Turing machine is
encrypted.



64 E. Boyle, K.-M. Chung, and R. Pass

resultingP-certificate properly verifies, simply generate a (large) low-depth proof
of correctness of the homomorphic evaluation directly. Further, in the place of
FHE, simply sample and utilize keys for a leveled FHE scheme with sufficient
levels to support homomorphic evaluation of Uk. The resulting transformation
eO′ still satisfies the required correctness and security properties, but no longer
achieves succinctness (i.e., the size of the obfuscated Turing machine depends
polynomially on its runtime).

Corollary 2. Based on any extractability obfuscator for the class of circuits
NC1, and leveled fully homomorphic encryption, there exists a (non-succinct)
extractability obfuscator for P/poly.

We refer the reader to the full version of this paper for the full construction
and analysis of the bootstrapping procedure and associated corollaries.

4 Functional Witness Encryption

We put forth the notion of functional witness encryption (FWE). An FWE
scheme enables one to encrypt a message m with respect to an NP language L,
instance x and a function f , such that anyone that has, and only those that have,
a witness w for x ∈ L can recover f(m,w). More precisely, our security definition
requires that if you can distinguish encryptions of two messages m0,m1, then
you must know a witness w for x ∈ L such that f(m0, w) �= f(m1, w).

For example, an FWE scheme would allow one to encrypt the nodes of a
large graph in such a way that anybody (and only those) who knows a clique in
the graph can decrypt the labels on the corresponding clique.

Definition 8 (Functional Witness Encryption). A functional witness en-
cryption scheme for an NP language L (with corresponding witness relation R)
and class of Turing machines {Mk}k∈N, consists of the following two polynomial-
time algorithms:

– Enc(1k, x,m,M): On input the security parameter 1k, an unbounded-length
string x, message m ∈ MSG for some message space MSG, and Turing
machine description M ∈ Mk, Enc outputs a ciphertext c.

– Dec(c, w): On input a ciphertext c and an unbounded-length string w, Dec
outputs an evaluation m′ or the symbol ⊥.

satisfying the following conditions:

Correctness: There exists a negligible function negl(k) such that for every
security parameter k, for any message m ∈ MSG, for any Turing ma-
chine M ∈ Mk, and for any x ∈ L such that R(x,w) holds, we have that
Pr
[
Dec(Enc(1k, x,m,M), w) = M(m,w)

]
= 1− negl(k).

Security: For every PPT adversary A and polynomials p(k), �(k), there exists
a PPT extractor E and polynomial q(k) s.t. for every security parameter k,
pair of messages m0,m1 ∈MSGk, Turing machine M ∈ Mk, string x, and
auxiliary input z of length at most �(k),
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Pr
[
b← {0, 1}; c← Enc(1k, x,mb,M) : A(1k, c, z) = b

]
≥ 1

2 + 1
p(k)

⇒ Pr
[
w ← E(1k, p(k), x,m0,m1,M, z) : M(m0, w) �= M(m1, w)

]
≥ 1

q(k) .

We demonstrate that FWE is, in fact, equivalent to extractability obfuscation,
up to a simple transformation.

Theorem 10 (Equivalence of FWE and Extractability Obfuscation).
The existence of the following two primitives is equivalent:
1. Succinct functional witness encryption for NP and P/poly.
2. Succinct extractability obfuscation for P/poly.

Roughly, given an extractability obfuscator eO, an FWE encryption of the
message m, for the language L, instance x and function f will be the obfuscation
of the program that on input w outputs f(m,w) if w is a valid witness for x ∈ L.
On the other hand, given a general-purpose FWE, to obfuscate a program Π , let
f be the universal circuit that on input (Π, y) runs Π on input y, let L be the
trivial language where every witness is valid, and output a FWE of the message
Π . We defer the proof of Theorem 10 to the full version of this paper.

5 Applications to Functional Encryption

We show how to use extractability obfuscation to directly achieve (indistin-
guishability) functional encryption for unbounded number of key queries and
with full adaptive-message security for any unbounded size message space, with-
out relying on complexity leveraging.

The intuition behind our scheme is simple. Let the public key of the FE
scheme be the verification key for a signature scheme, and let the master secret
key (needed to release secret keys skf ) be the signing key for the signature
scheme. To encrypt a message m, obfuscate the program that on input f and a
valid signature on f (given the public key) simply computes f(m). The secret key
skf for a function f is then simply the signature on f . (The high-level idea behind
the construction is somewhat similar to the one used in [20], which uses witness
encryption in combination with signature schemes to obtain simulation-based
FE for a single function f ; in contrast, we here focus on FE for an unbounded
number of functions).

Proving that this construction works is somewhat subtle. In fact, to make
the proof go through, we require the signature scheme in use to be of a spe-
cial delegtable kind—namely, we require the use of functional signatures [7,3]
(which can be constructed based on non-interactive zero-knowledge arguments
of knowledge), which make it possible to delegate a signing key sk′ that enables
one to sign only messages that satisfy some predicate.8 The delegation property
is only used in the security reduction and, roughly speaking, makes it possible

8 Note that functional signatures were not needed in [20], as they only consider a single
key query. In our case, functional signatures are needed to answer “CCA”-type key
queries.
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to simulate key queries without harming security for the messages selected by
the attacker.

We defer the full construction of the functional encryption scheme and proof
of security to the full version.

Theorem 11. Assume the existence of non-interactive zero-knowledge argu-
ments of knowledge (NIZKAoK) for NP and the existence of a extractability
obfuscators for P/poly. Then there exists a (fully) indistinguishability-secure
functional encryption scheme for arbitrary length messages.

6 Relating Extractability and Indistinguishability
Obfuscation

A natural question is whether we can obtain extractability obfuscation from
indistinguishability obfuscation. We address this question in two different set-
tings: first directly in the context of obfuscation, and second in the language of
FWE. (Recall that these two notions are equivalent when dealing with arbitrary
circuits and arbitrary functions; however, when considering restricted function
classes, there are interesting differences).

In Section 6.1, we demonstrate that any indistinguishability obfuscation in
fact implies a weak version of extractability obfuscation, in which extraction is
only guaranteed when the two circuits differ on only polynomially many inputs.
In Section 6.2, we define a weaker notion of FWE mirroring the definition of
indistinguishability obfuscation, and provide a transformation from any such
indistinguishability FWE to standard FWE for languages with polynomially
many witnesses.

The two results are incomparable, in that the former transformation (in Sec-
tion 6.1) starts with a stronger assumption and yields a stronger result. Indeed,
if one begins with indistinguishability FWE for all NP and P/poly, then by the
equivalence of FWE and obfuscation, the former transformation yields a stronger
outcome in the setting of FWE, guaranteeing indistinguishability of encryptions
of messages m0,m1 with respect to a function f and NP statement x with
potentially exponentially many witnesses, as long as only polynomially many
such witnesses w produce differing outputs f(m0, w) �= f(m1, w). On the other
hand, the FWE transformation (in Section 6.2) also treats the case of restricted
function classes. For example, it provides a method for transforming indistin-
guishability FWE for the trivial function f(m,w) = m to FWE for the same
function f . It is easy to see that indistinguishability FWE for this particular f is
equivalent to the notion of witness encryption [15], and FWE for the same f is
equivalent to the notion of extractable witness encryption of [20]. The transfor-
mation in Section 6.2 thus shows how to turn witness encryption to extractable
witness encryption for the case of languages with polynomially many witness.
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6.1 From Indistinguishability Obfuscation to Extractability
Obfuscation for Circuits with Polynomial Differing Inputs

We show that indistinguishability obfuscation directly implies a weak version
of extraction obfuscation, where extraction is successful for any pair of circuits
C0, C1 that vary on polynomially many inputs.

Definition 9 (Weak Extractability Obfuscation). A uniform transforma-
tion O is a weak extractability obfuscator for a class of Turing machines M =
{Mk} if for every PPT adversary A and polynomial p(k), there exists a PPT
algorithm E and polynomials pE(k), tE(k) for which the following holds. For
every polynomial d(k), for all sufficiently large k, and every pair of circuits
M0,M1 ∈ Mk differing on at most d(k) inputs, and every auxiliary input z,

Pr
[
b← {0, 1}; M̃ ← O(1k, Cb) : A(1k, M̃ ,M0,M1, z) = b

]
≥ 1

2 + 1
p(k)

=⇒ Pr
[
x← E(1k,M0,M1, z) : M0(x) �= M1(x)

]
≥ 1

pE(k) ,

and the runtime of E is tE(k, d(k)).

Theorem 12. Let O be an indistinguishability obfuscator for P/poly. Then O
is also a weak extractability obfuscator for P/poly.

Denote by n = n(k) the (polynomial) input length of the circuits in ques-
tion. At a high level, the extractor E associated with an adversary A performs a
form of binary search over {0, 1}n for a desired input by considering a sequence
of intermediate circuits lying “in between” C0 and C1. The goal is that after
n iterations, E will reach a pair of circuits CLeft, CRight for which: (1) A can
still distinguish between obfuscations {O(CLeft)} and {O(CRight)}, and yet (2)
CLeft and CRight are identical on all inputs except a single known x, for which
CLeft(x) = C0(x) and CRight(x) = C1(x). Thus, by the indistinguishability secu-
rity of O, it must be that E has extracted an input x for which C0(x) �= C1(x).

To demonstrate, consider the case where the circuits C0, C1 differ on a single
unknown input x∗. In the first step, the extractor algorithm E will consider an
intermediate circuit CMid equal to C0 on the first half of its inputs, and equal
to C1 on the second half of its inputs. Then since CMid(x∗) ∈ {C0(x

∗), C1(x
∗)}

and all three circuits agree on inputs x �= x∗, it must be that CMid is equiva-
lent to either C0 or C1. By the security of the indistinguishability obfuscator,
it follows that the obfuscations of such equivalent circuits are indistinguishable.
But, if an adversary A distinguishes between obfuscations of C0 and C1 with
non-negligible advantage ε, then A must successfully distinguish between ob-
fuscations of C0 & CMid or CMid & C1. Namely, it must be the case that A’s
distinguishing advantage is very small between one of these pairs of distributions
(corresponding to the case CMid ≡ Cb) and is nearly ε for the other pair of dis-
tributions (corresponding to CMid �≡ C1−b). Thus, by generating samples from
these distributions and estimating A’s distinguishing advantages for the two dis-
tribution pairs, E can determine whether CMid ≡ C0 or CMid ≡ C1 and, in turn,
has learned whether x∗ lies in the first or second half of the input space. This
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process is then repeated iteratively within a smaller window (i.e., considering a
new intermediate circuit lying “in between” CMid and Cb for which CMid �≡ Cb).
In each step, we decrease the input space by a factor of two, until x∗ is completely
determined.

The picture becomes more complicated, however, when there are several in-
puts on which C0 and C1 disagree. Here the intermediate circuit CMid need not
agree with either CLeft or CRight on all inputs. Thus, whereas above A’s distin-
guishing advantage along one of the two paths was guaranteed to drop no more
than a negligible amount, here in each step A’s advantage could split by as much
as half. At this rate, after only log k iterations, A’s advantage will drop below
usable levels, and the binary search approach will fail. Indeed, if C0, C1 differ
on superpolynomially may inputs d(k) ∈ kω(1), there may not even exist a pair
of adjacent circuits CLeft and CRight satisfying the desired properties (1) and (2)
described above. (Intuitively, for example, it could be the case that each time
one evaluation is changed from C0(x) to C1(x), the adversary’s probability of
outputting 1 increases by the negligible amount 1/d).

We show, however, that if there are polynomially many differing inputs
D ⊂ {0, 1}n for which C0(x) �= C1(x), then this issue can be overcome. The
key insight is that, in any step of the binary search where the adversary’s dis-
tinguishing advantage may split noticeably among the two possible continuing
paths, this step must also split the set of differing inputs into two subsets: that
is, the number of points d′ on which CLeft and CRight disagree is equal to the sum
of the number of points dL on which CMid and CLeft disagree and the number
of points dR on which CMid and CRight disagree. Then even though the adver-
sary’s distinguishing advantage may split as ε′ = εL + εR, for at least one of
the two paths b ∈ {L,R}, it must be that the ratio of εb/db ≥ ε′/d′ is roughly
maintained (up to a negligible amount). Since there are only polynomially many
total disagreeing inputs d(k) ∈ kO(1) to start, and assuming A begins with non-
negligible distinguishing advantage, the original ratio ε/d at the root node begins
as a non-negligible amount. And so we are guaranteed that there exists a path
down the tree for which ε′/d′ (and, in particular, the intermediate distinguishing
advantage ε′) stays above this non-negligible amount ε/d. Our extractor E will
find this path by simply following all paths which maintain distinguishing ad-
vantage above this value. By the security of the indistinguishability obfuscation
scheme, there will be at most polynomially many such paths (corresponding to
those terminating at the inputs x ∈ D), and all other paths in the tree will be
pruned.

More specifically, our extractor E runs as follows. At the beginning of ex-
ecution, it sets a fixed threshold thresh = ε/dk based on the original (signed)
distinguishing advantage ε of A and the number of inputs d on which the circuits
differ (note that if d = d(k) is unknown, E will repeat the whole extraction pro-

cedure with guesses k, k2, k22 , k23 , etc, for this value). At each step it considers
three circuits CLeft, CMid, CRight, and estimatesA’s (signed) distinguishing advan-
tage between obfuscations of CLeft & CMid and of CMid & CRight, using repeated
sampling with sufficiently low error (err = ε/dk2). For each pair that yields
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distinguishing probability above thresh (possibly neither, one, or both pairs), E
recurses by repeating this process at a circuit lying between the relevant window.
More explicitly, if the left pair yields sufficient distinguishing advantage, then
E will repeat the process for the triple of circuits CLeft, C′, CMid for the circuit
C′ “halfway between” CLeft, CMid; analogous for the right pair; if both surpass
threshold, E repeats for both; and if neither surpass threshold, then E will not
continue down this path of the binary search.

In the full version, we prove that for appropriate choice of threshold, E will
only ever visit polynomially many nodes in the binary search tree, and will
be guaranteed to find a complete path for which A’s distinguishing advantage
maintains above threshold through all n steps down the tree (thus specifying a
desired n-bit distinguishing input).

Note that Theorem 12 implies, for example, that for the class of polynomial
multipoint locker functions (i.e., functions evaluating to nonzero bit strings at
polynomially many hidden points), indistinguishability obfuscation is equivalent
to extractability obfuscation.

6.2 From Indistinguishability FWE to FWE for Languages with
Polynomial Witnesses

We now address this question in the language of FWE.
Mirroring the definition of indistinguishability obfuscation, we define a weaker

notion of FWE—which we refer to as indistinguishability FWE—which only re-
quires that if f(m0, w) = f(m1, w) for all witnesses w for x ∈ L, then encryptions
of m0 and m1 are indistinguishable. Recall that, in contrast, the stronger notion
requires that if you can distinguish between encryptions of m0 and m1 you must
know a witness on which they differ.

Definition 10 (Indistinguishability FWE). An indistinguishability func-
tional witness encryption (iFWE) scheme for an NP language L and class of
functions F = {Fk} consists of encryption and decryption algorithms Enc,Dec
with the same syntax as standard FWE, satisfying the same correctness property,
and the following (weaker) security property:
(Indistinguishability) security: For every PPT adversary A and polynomial

�(·), there exists a negligible function ν(·) such that for every security pa-
rameter k, every function f ∈ Fk, messages m0,m1 ∈MSGk, string x, and
auxiliary information z of length at most �(k) for which f(m0, w) = f(m1, w)
for every witness w of x ∈ L,∣∣Pr [A(1k,Enc(1k, x,m0, f), z) = 1

]
− Pr

[
A(1k,Enc(1k, x,m1, f), z) = 1

] ∣∣ < ν(k).

Using the same transformation as in the Extractability Obfuscation-FWE
equivalence (see Theorem 10), it can be seen that iFWE for P/poly and NP is
directly equivalent to indistinguishability obfuscation for P/poly. We now con-
sider the question of whether we can turn any iFWE into an FWE. We provide
an affirmative answer for two restricted cases.
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The first result is derived from the transformation from the previous section,
combined with the simple extractability obfuscation-to-FWE equivalence trans-
formation (see Theorem 10). Loosely, it says that from iFWE for P/poly, we
can obtain a weak form of FWE where (extraction) security holds as long as the
function f(m,w) is not “too sensitive” to m: i.e., if for any two messages m0,m1

there are only polynomially many witnesses w for which f(m0, w) �= f(m1, w).
For example, this captures functions f that rarely output nonzero values. Re-
turning to the example of encrypting data m associated with nodes of a social
network, we could allow someone holding clique w to learn whether the nodes
in this clique satisfy some chosen rare property (e.g., contains someone with a
rare disease, all have the same birthday, etc). Then, while there may be many
cliques (corresponding to several, even exponentially many, witnesses w), it will
hold that f(m,w) = 0 for all but polynomially many w.

As a special case, if the language has only polynomially many witnesses for
each statement, then this property holds for any function class.

Definition 11. We say a class of functions F = {Fk} has t-bounded sensitivity
w.r.t. message space MSG and NP language L (with relation R), if for every
f ∈ Fk, every m0,m1 ∈ MSG, and every x ∈ {0, 1}∗ there are at most t(|x|)
witnesses w s.t. R(x,w) = 1 and f(m0, w) �= f(m1, w).

Corollary 3. Suppose there exists iFWE for NP and P/poly. Then for any
polynomial t(·), there exist FWE schemes for any class of functions F = {Fk},
message space MSG, and NP language L, for which F has t-bounded sensitivity
with respect to MSG and L.

The second result considers iFWE for general function classes (instead of just
P/poly), but restricts to NP languages with polynomial witnesses. In the en-
crypted social network example, this allows basing on a weaker assumption (not
requiring the iFWE scheme to support all P/poly), but would restrict to social
networks with only polynomially many cliques. The transformation preserves the
supported function class: For example, given iFWE for the singleton function
class {f(m,w) = m} (corresponding to standard witness encryption), one ob-
tains standard FWE for the same class (i.e., extractable witness encryption). This
result requires a new approach, and makes use of techniques in error-correcting
codes.

Definition 12. Let L be an NP language with corresponding relation R. We say
that L has t-bounded witness if for every x ∈ {0, 1}∗, there are at most t(|x|)
distinct witnesses w such that R(x,w) = 1.

Theorem 13. For every function class F = {Fk} and polynomial t(·), if there
exist indistinguishability functional witness encryption schemes for F and every
t-bounded witness NP language, then for every t-bounded witness NP language
L (with corresponding relation R), there exists a functional witness encryption
schemes for F and L.
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Proof. Let L be a t-bounded witness NP language with corresponding relation
R for some polynomial t(·). Define q(·) such that for every k ∈ N, q(k) is the
smallest prime ≥ 8t(k). Assume without loss of generality (by padding) that any
witness of any x ∈ L has length u(|x|) for some polynomial u. To construct a
functional witness encryption scheme (Enc,Dec) for L and F , we consider the
following NP language L′.

L′ = {(x, r, a) : ∃w ∈ {0, 1}u(|x|) s.t. (R(x,w) = 1)∧ (r ∈ F
u(|x|)
q(|x|) )∧ (〈r, w〉 = a)},

where Fq = {0, . . . , q − 1} is the prime field of size q and 〈·, ·〉 denotes inner
product over Fu

q .

Let (Enc′,Dec′) be a indistinguishability FWE scheme for L′ and F . We
construct a FWE scheme (Enc,Dec) for L and F as follows.

– Enc(1k, x,m, f): On input security parameter 1k, statement x ∈ {0, 1}∗,
message m ∈MSGk, and function f ∈ Fk, Enc generates c as:
• Let q = q(|x|) and u = u(|x|). Sample r ← Fu

q uniformly random.

• For every a ∈ Fq, compute ca = Enc′(1k, (x, q, r, a),m, f).
• Output c = {ca}a∈Fq .

– Dec(c, w): On input a ciphertext c = {ca}a∈Fq and a witness w ∈ {0, 1}∗,
Dec runs Dec′(ca, w) for every a ∈ Fq. If there exists some a such that
Dec′(ca, w) �= ⊥, then output the first non-⊥ Dec′(ca, w). Otherwise, output
⊥.
It is not hard to see that correctness of (Enc′,Dec′) implies correctness of

(Enc,Dec): For every k, x,m, f, w, if w is a witness for x ∈ L, then there exists
some a ∈ Fq such that w is a witness for (x, q, r, a) ∈ L′, and for the first such
a, by the correctness of (Enc′,Dec′), Dec′(ca, w) = f(m,w) with 1 − negl(k)
probability, which implies that Dec(Enc(1k, x,m, f), w) output f(m,w) with 1−
negl(k) probability as well.

We refer the reader to the full version of this paper for the proof of security
of (Enc,Dec). At a high level, we show that if an adversary A can distinguish
Enc(1k, x,m0, f) and Enc(1k, x,m1, f) with a non-negligible advantage, then
there is a non-negligible fraction of r ∈ Fu

q such that we learn non-trivial informa-
tion about the value of 〈r, w〉 for some witness w such that f(m0, w) �= f(m1, w).
Note that a linear function gw(r) := 〈r, w〉 can be viewed as a q-ary Hadamard
code of w. The non-trivial information allows us to obtain a (randomized) func-
tion h(r) that agree with gw(r) on non-negligibly more than 1/q fraction of
points. We can then apply the local list-decoding algorithm of Goldreich, Ru-
binfield, and Sudan [19] to recover w.
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Abstract. One fundamental complexity measure of an MPC protocol is
its round complexity. Asharov et al. recently constructed the first three-
round protocol for general MPC in the CRS model. Here, we show how
to achieve this result with only two rounds. We obtain UC security with
abort against static malicious adversaries, and fairness if there is an
honest majority. Additionally the communication in our protocol is only
proportional to the input and output size of the function being evaluated
and independent of its circuit size. Our main tool is indistinguishability
obfuscation, for which a candidate construction was recently proposed
by Garg et al.

The technical tools that we develop in this work also imply virtual
black box obfuscation of a new primitive that we call a dynamic point
function. This primitive may be of independent interest.

1 Introduction

Secure multiparty computation (MPC) allows a group of mutually distrusting
parties to jointly compute a function of their inputs without revealing their
inputs to each other. This fundamental notion was introduced in the seminal
works of [Yao+82, GMW+87], who showed that any function can be computed
securely, even in the presence of malicious parties, provided the fraction of ma-
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of the work related to MPC has been devoted to improving efficiency. There are
various ways of measuring the efficiency of a MPC protocol, the most obvious
being its computational complexity. In this paper, we focus on minimizing the
communication complexity of MPC, primarily in terms of the number of rounds
of interaction needed to complete the MPC protocol, but also in terms of the
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1.1 Our Main Result: Two-Round MPC from Indistinguishability
Obfuscation

Our main result is a compiler that transforms any MPC protocol into a 2-round
protocol in the CRS model. Our compiler is conceptually very simple, and it uses
as its main tool indistinguishability obfuscation (iO) [BGI+12]. Roughly, in the
first round the parties commit to their inputs and randomness, and in the second
round each party provides an obfuscation of their “next-message” function in the
underlying MPC protocol. The parties then separately evaluate the obfuscated
next-message functions to obtain the output.

A bit more precisely, our main result is as follows:

Informal Theorem. Assuming indistinguishability obfuscation, CCA-secure
public-key encryption, and statistically-sound noninteractive zero-knowledge, any
multiparty function can be computed securely in just two rounds of broadcast.

We prove that our MPC protocol resists static malicious corruptions in the UC
setting [Can+01]. Moreover, the same protocol also achieves fairness if the set of
corrupted players is a strict minority. Finally the communication in our protocol
can be made to be only proportional to the input and output size of the function
being evaluated and independent of its circuit size.

Minimizing round complexity is not just of theoretical interest. Low-interaction
secure computation protocols are also applicable in the setting of computing on
the web [HLP+11], where a single server coordinates the computation, and par-
ties “log in” at different times without coordination.

1.2 Indistinguishability Obfuscation

Obfuscation was first rigorously defined and studied by Barak et al. [BGI+12].
Most famously, they defined a notion of virtual black box (VBB) obfuscation, and
proved that this notion is impossible to realize in general – i.e., some functions
are VBB unobfuscatable.

Barak et al. also defined a weaker notion of indistinguishability obfuscation
(iO), which avoids their impossibility results. iO provides the same functionality
guarantees as VBB obfuscation, but a weaker security guarantee. Namely, that
for any two circuits C0, C1 of similar size that compute the same function, it is
hard to distinguish an obfuscation of C0 from an obfuscation of C1. Barak et
al. showed that iO is always realizable, albeit inefficiently: the iO can simply
canonicalize the input circuit C by outputting the lexicographically first circuit
that computes the same function. More recently, Garg et al. [GGH+13b] pro-
posed an efficient construction of iO for all circuits, basing security in part on
assumptions related to multilinear maps [GGH+13a].

It is clear that iO is a weaker primitive than VBB obfuscation. In fact, it is not
hard to see that we cannot even hope to prove that iO implies one-way functions:
Indeed, if P = NP then one-way functions do not exist but iO does exist (since
the canonicalizing iO from above can be implemented efficiently). Therefore we
do not expect to build many “cryptographically interesting” tools just from iO,
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but usually need to combine it with other assumptions. (One exception is witness
encryption [GGSW+13], which can be constructed from iO alone.)

It is known that iO can be combined with one-way functions (OWFs) to con-
struct many powerful primitives such as public-key encryption, identity-based en-
cryption, attribute-based encryption (via witness encryption), as well as NIZKs,
CCA encryption, and deniable encryption [SW+12]. However, there are still basic
tools that are trivially constructible from VBB obfuscation that we do not know
how to construct from iO and OWFs: for example, collision-resistant hash func-
tions, or compact homomorphic encryption. (Compact homomorphic encryption
implies collision-resistant hash functions [IKO+05].) The main challenge in con-
structing primitives from iO is that the indistinguishability guarantee holds only
in a limited setting: when the two circuits in question are perfectly functionally
equivalent.

1.3 Our Techniques

To gain intuition and avoid technical complications, let us begin by consider-
ing how we would construct a 2-round protocol if we could use “perfect” VBB
obfuscation. For starters, even with VBB obfuscation we still need at least two
rounds of interaction, since a 1-round protocol would inherently allow the cor-
rupted parties to repeatedly evaluate the “residual function” associated to the
inputs of the honest parties on many different inputs of their choice (e.g., see
[HLP+11]).

It thus seems natural to split our 2-round protocol into a commitment round
in which all players “fix their inputs,” and then an evaluation round where the
output is computed. Moreover, it seems natural to use CCA-secure encryption
to commit to the inputs and randomness, as this would enable a simulator to
extract these values from the corrupted players.

As mentioned above, our idea for the second round is a simple compiler: take
any (possibly highly interactive) underlying MPC protocol, and have each party
obfuscate their “next-message” function in that protocol, one obfuscation for
each round, so that the parties can independently evaluate the obfuscations to
obtain the output. Party i’s next-message function for round j in the underlying
MPC protocol depends on its input xi and randomness ri (which are hardcoded
in the obfuscations), it takes as input the transcript through round j− 1, and it
produces as output the next broadcast message.

However, there is a complication: unlike the initial interactive protocol, the
obfuscations are susceptible to a “reset” attack – i.e., they can be evaluated on
multiple inputs. To prevent such attacks, we ensure that the obfuscations can
be used for evaluation only on a unique set of values – namely, values consistent
with the inputs and randomness that the parties committed to in the first round,
and the current transcript of the underlying MPC protocol. To ensure such con-
sistency, naturally we use non-interactive zero-knowledge (NIZK) proofs. Since
the NIZKs apply not only to the committed values of the first round, but also
to the transcript as it develops in the second round, the obfuscations themselves
must output these NIZKs “on the fly”. In other words, the obfuscations are now
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augmented to perform not only the next-message function, but also to prove
that their output is consistent. Also, obfuscations in round j of the underlying
MPC protocol verify NIZKs associated to obfuscations in previous rounds before
providing any output.

If we used VBB obfuscation, we could argue security intuitively as follows.
Imagine an augmented version of the underlying MPC protocol, where we prepend
a round of commitment to the inputs and randomness, after which the parties
(interactively) follow the underlying MPC protocol, except that they provide
NIZK proofs that their messages are consistent with their committed inputs and
randomness and the developing transcript. It is fairly easy to see that the security
of this augmented protocol (with some minor modifications to how the random-
ness is handled) reduces to the security of the underlying MPC protocol (and
the security of the CCA encryption and NIZK proof system). Now, remove the
interaction by providing VBB obfuscations of the parties in the second round.
These VBB obfuscations “virtually emulate” the parties of the augmented pro-
tocol while providing no additional information – in particular, the obfuscations
output ⊥ unless the input conforms exactly to the transcript of the underlying
MPC protocol on the committed inputs and randomness; the obfuscations might
accept many valid proofs, but since the proofs are statistically sound this gives
no more information than one obtains in the augmented protocol.

Instead, we use indistinguishability obfuscation, and while the our protocol
is essentially as described above, the proof of security is more subtle. Here, we
again make use of the fact that the transcript in the underlying MPC protocol is
completely determined by the commitment round, but in a different way. Specif-
ically, there is a step in the proof where we change the obfuscations, so that
instead of actually computing the next-message function (with proofs), these
values are extracted and simply hardcoded in the obfuscations as the output on
any accepting input. We show that these two types of obfuscations are function-
ally equivalent, and invoke iO to prove that they are indistinguishable. Once
these messages have been “hardcoded” and separated from the computation, we
complete the security proof using standard tricks. The most interesting remain-
ing step in the proof is where we replace hardcoded real values with hardcoded
simulated values generated by the simulator of the underlying MPC protocol.

1.4 Additional Results

Two-Round MPC with Low Communication. In our basic 2-round MPC proto-
col, the communication complexity grows polynomially with the circuit size of
the function being computed. In Section 3.2, we show how to combine our basic
2-round protocol with multikey fully homomorphic encryption [LATV+12] to ob-
tain an MPC that is still only two rounds, but whose communication is basically
independent of the circuit size. Roughly speaking, this protocol has a first round
where the players encrypt their inputs and evaluate the function under a shared
FHE key (and commit to certain values as in our basic protocol), followed by a
second round where the players apply the second round of our basic protocol to
decrypt the final FHE ciphertext.
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Dynamic Point Functions. As a side effect of our technical treatment, we observe
that iO can be used to extend the reach of (some) known VBB obfuscators. For
example, we can VBB obfuscate dynamic point functions. In this setting, the
obfuscation process is partitioned between two parties, the “point owner” Penny
and the “function owner” Frank. Penny has a secret string (point) x ∈ {0, 1}∗,
and she publishes a commitment to her point cx = com(x). Frank has a function
f : {0, 1}∗ → {0, 1}∗ and knows cx but not x itself. Frank wants to allow anyone
who happens to know x to compute f(x). A dynamic point function obfuscator
allows Frank to publish an obfuscated version of the point function

Ff,x(z) =

{
f(x) if z = x
⊥ otherwise.

The security requirement here is that Ff,x is obfuscated in the strong VBB sense
(and that cx hides x computationally). We believe that this notion of dynamic
point functions is interesting on its own and that it may find future applications.

1.5 Other Related Work

The round complexity of MPC has been studied extensively: both lower and
upper bounds, for both the two-party and multiparty cases, in both the semi-
honest and malicious settings, in plain, CRS and PKI models. See [AJLA+12,
Section 1.3] for a thorough overview of this work.

Here, we specifically highlight the recent work of Asharov et al.
[AJLA+12], which achieves 3-round MPC in the CRS model (and 2-round MPC
in the PKI model) against static malicious adversaries. They use fully homomor-
phic encryption (FHE) [RAD+78, Gen+09], but not as a black box. Rather, they
construct threshold versions of particular FHE schemes – namely, schemes by
Brakerski, Gentry and Vaikuntanathan [BV+11, BGV+12] based on the learning
with errors (LWE) assumption. (We note that Myers, Sergi and shelat [MSS+11]
previously thresholdized a different FHE scheme based on the approximate gcd
assumption [vDGHV+10], but their protocol required more rounds.)

In more detail, Asharov et al. observe that these particular LWE-based FHE
schemes have a key homomorphic property. Thus, in the first round of their
protocol, each party can encrypt its message under its own FHE key, and then
the parties can use the key homomorphism to obtain encryptions of the inputs
under a shared FHE key. Also, in the last round of their protocol, decryption
is a simple one-round process, where decryption of the final ciphertext under
the individual keys reveals the decryption under the shared key. In between,
the parties use FHE evaluation to compute the encrypted output under the
shared key. Unfortunately, they need a third (middle) round for technical reasons:
LWE-based FHE schemes typically also have an “evaluation key” – namely, an
encryption of a function of the secret key under the public key. They need the
extra round to obtain an evaluation key associated to their shared key.

Recently, Gentry, Sahai and Waters [GSW+13] proposed an LWE-based FHE
scheme without such an evaluation key. Unfortunately, eliminating the evalua-
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tion key in their scheme does not seem to give 2-round MPC based on thresh-
old FHE, since their scheme lacks the key homomorphism property needed by
Asharov et al.

We note that our basic two-round protocol does not rely on any particular
constructions for iO (or CCA-secure PKE or NIZK proofs), but rather uses these
components as black boxes.

Our low-communication two-round protocol uses multikey FHE, but only as
a black box. This protocol can be seen as a realization of what Asharov et al.
were trying to achieve: a first round where the players encrypt their inputs and
evaluate the function under a shared FHE key, followed by a second round where
the players decrypt the final FHE ciphertext.

2 Preliminaries

In this section we will start by briefly recalling the definition of different notions
essential for our study. We refer the reader to the full version of the paper
[GGHR+13] for additional background. The natural security parameter is λ, and
all other quantities are implicitly assumed to be functions of λ. We use standard
big-O notation to classify the growth of functions. We let poly(λ) denote an
unspecified function f(λ) = O(λc) for some constant c. A negligible function,
denoted generically by negl(λ), is an f(λ) such that f(λ) = o(λ−c) for every
fixed constant c. We say that a function is overwhelming if it is 1− negl(λ).

2.1 Indistinguishability Obfuscators

We will start by recalling the notion of indistinguishability obfuscation (iO)
recently realized in [GGH+13b] using candidate multilinear maps[GGH+13a].

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform
PPT machine iO is called an indistinguishability obfuscator for a circuit class
{Cλ} if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that

Pr[C′(x) = C(x) : C ′ ← iO(λ,C)] = 1

– For any (not necessarily uniform) PPT distinguisher D, there exists a neg-
ligible function α such that the following holds: For all security parameters
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x)
for all inputs x, then∣∣∣Pr [D(iO(λ,C0)) = 1

]
− Pr

[
D(iO(λ,C1)) = 1

]∣∣∣ ≤ α(λ)

Definition 2 (Indistinguishability Obfuscator for NC1).
A uniform PPT machine iO is called an indistinguishability obfuscator for

NC1 if for all constants c ∈ N, the following holds: Let Cλ be the class of circuits
of depth at most c logλ and size at most λ. Then iO(c, ·, ·) is an indistinguisha-
bility obfuscator for the class {Cλ}.
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Definition 3 (Indistinguishability Obfuscator for P/poly). A
uniform PPT machine iO is called an indistinguishability obfuscator for P/poly
if the following holds: Let Cλ be the class of circuits of size at most λ. Then iO
is an indistinguishability obfuscator for the class {Cλ}.

2.2 Semi-honest MPC

We will also use a semi-honest n-party computation protocol π for any function-
ality f in the stand-alone setting. The existence of such a protocol follows from
the existence of semi-honest 1-out-of-2 oblivious transfer [Yao+82, GMW+87]
protocols. Now we build some notation that we will use in our construction.

Let P = {P1, P2, . . . Pn} be the set of parties participating in a t round pro-
tocol π. Without loss of generality, in order to simplify notation, we will assume
that in each round of π, each party broadcasts a single message that depends on
its input and randomness and on the messages that it received from all parties
in all previous rounds. (We note that we can assume this form without loss of
generality, since in our setting we have broadcast channels and CCA-secure en-
cryption, and we only consider security against static corruptions.) We let mi,j

denote the message sent by the ith party in the jth round. We define the func-
tion πi such that mi,j = πi(xi, ri,Mj−1) where mi,j is the jth message generated
by party Pi in protocol π with input xi, randomness ri and the series of previous
messages Mj−1

Mj−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

m1,1 m2,1 . . . mn,1

m1,2 m2,2 . . . mn,2

...
. . .

m1,j−1 m2,j−1 . . . mn,j−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
sent by all parties in π.

3 Our Protocol

In this section, we provide our construction of a two-round MPC protocol.

Protocol Π. We start by giving an intuitive description of the protocol. A formal
description appears in Figure 1. The basic idea of our protocol is to start with an
arbitrary round semi-honest protocol π and “squish” it into a two round protocol
using indistinguishability obfuscation. The first round of our protocol helps set
the stage for the “virtual” execution of π via obfuscations that all the parties
provide in the second round.

The common reference string in our construction consists of a CRS σ for a
NIZK Proof system and a public key pk corresponding to a CCA-secure public
key encryption scheme. Next, the protocol proceeds in two rounds as follows:
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Protocol Π

Protocol Π uses an Indistinguishability Obfuscator iO, a NIZK proof system
(K,P, V ), a CCA-secure PKE scheme (Gen,Enc,Dec) with perfect correctness and
an n-party semi-honest MPC protocol π.
Private Inputs: Party Pi for i ∈ [n], receives its input xi.
Common Reference String: Let σ ← K(1λ) and (pk, ·) ← Gen(1λ) and then
output (σ, pk) as the common reference string.

Round 1: Each party Pi proceeds as:
– ci = Enc(i||xi) and,
– ∀j ∈ [n], sample randomness ri,j ∈ {0, 1}� and generate di,j = Enc(i||ri,j).

(Here � is the length of the maximum number of random coins needed by
any party in π.)

It then sends Zi = {ci, {di,j}j∈[n]} to every other party.
Round 2: Pi generates:

– For every j ∈ [n], j �= i generate γi,j as the NIZK proof under σ for the
NP-statement: {

∃ ρri,j
∣∣ di,j = Enc(i||ri,j ; ρri,j )

}
. (1)

– A sequence of obfuscations (iOi,1, . . . iOi,t) where iOi,j is the obfuscation

of the program Prog
0,xi,ρxi

,ri,i,ρri,i ,{Zi},0�i,j
i,j . (Where �i,j is output length of

the program Progi,j .)
– It sends ({ri,j , γi,j}j∈[n],j �=i, {iOi,j}j∈[t]) to every other party.

Evaluation (MPC in the Head): For each j ∈ [t] proceed as follows:
– For each i ∈ [n], evaluate the obfuscation iOi,j of program Progi,j on input

(R,Γ,Mj−1, Φj−1) where

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

· r2,1 . . . rn,1

r1,2 · . . . rn,2

...
. . .

r1,n r2,n . . . ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

· γ2,1 . . . γn,1

γ1,2 · . . . γn,2

...
. . .

γ1,n γ2,n . . . ·

⎞⎟⎟⎟⎟⎟⎟⎟⎠

Mj−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

m1,1 m2,1 . . . mn,1

m1,2 m2,2 . . . mn,2

...
. . .

m1,j−1 m2,j−1 . . . mn,j−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

φ1,1 φ2,1 . . . φn,1

φ1,2 φ2,2 . . . φn,2

...
. . .

φ1,j−1 φ2,j−1 . . . φn,j−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
– And obtain, m1,j , . . . ,mn,j and φ1,j , . . . , φn,j .
Finally each party Pi outputs mi,t.

Fig. 1. Two Round MPC Protocol
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Prog
flag,xi,ρxi

,ri,i,ρri,i
,{Zi},fixedOutput

i,j

Program Prog
flag,xi,ρxi

,ri,i,ρri,i
,{Zi},fixedOutput

i,j takes as input (R, Γ,Mj−1, Φ) as defined above and

outputs mi,j and φi,j . Specifically, it proceeds as follows:

- ∀p, q ∈ [n] such that p �= q check that γp,q is an accepting proof under σ for the NP-statement:

{
∃ ρrp,q

∣∣ dp,q = Enc(p||rp,q ; ρrp,q )
}

- ∀p ∈ [n], q ∈ [j − 1] check that φp,q is an accepting proof for the NP-statement

{
∃ (xp, rp,p, ρxp , ρrp,p )

∣∣(
cp = Enc(p||xp; ρxp )

∧
dp,p = Enc(p||rp,p, ρrp,p )

∧
mp,q = πp(xp,⊕k∈[n]rk,p,Mq−1)

)}

- If the checks above fail, output ⊥. Otherwise, if flag = 0 then output
(πi(xi,⊕j∈[n]rj,i,Mj−1), φi,j) where φi,j is the proof for the NP-statement: (under
some fixed randomness)

{ ∃ (xi, ri,i, ρxi
, ρri,i

) |(
ci = Enc(i||xi; ρxi

)
∧

di,i = Enc(i||ri,i, ρri,i
)

∧
mi,j = πi(xi,⊕j∈[n]rj,i,Mj−1)

)}

Otherwise, output fixedOutput.

Fig. 2. Obfuscated Programs in the Protocol

Round 1: In the first round, the parties “commit” to their inputs and random-
ness, where the commitments are generated using the CCA-secure encryp-
tion scheme. The committed randomness will be used for coin-flipping and
thereby obtaining unbiased random coins for all parties. Specifically, every
party Pi, proceeds by encrypting its input xi under the public key pk. Let
ci be the ciphertext. Pi also encrypts randomness ri,j for every j ∈ [n]. Let
the ciphertext encrypting ri,j be denoted by di,j . Looking ahead the ran-
dom coins Pi uses in the execution of π will be si = ⊕jrj,i. Pi broadcasts
{ci, {di,j}j} to everyone.

Round 2: In the second round parties will broadcast obfuscations correspond-
ing to the next message function of π allowing for a “virtual emulation” of
the interactive protocol π. Every party Pi proceeds as follows:

– Pi reveals the random values {ri,j}j �=i∈[n] and generates proofs
{γi,j}j �=i∈[n] that these are indeed the values that are encrypted in the
ciphertexts {di,j}j �=i∈[n].

– Recall that the underlying protocol π is a t round protocol where each
party broadcasts one message per round. Each player Pi generates t
obfuscations of its next-round function, (iOi,1, . . . , iOi,t).
In more detail, each iOi,k is an obfuscation of a function Fi,k that takes
as input the ri,j values sent by all the parties along with the proofs that
they are well-formed, and also all the π-messages that were broadcast
upto round k − 1, along with the proof of correct generation of these
messages. (These proofs are all with respect to the ciphertexts generated
in first round and the revealed ri,j values.) The output of the function
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Fi,j is the next message of Pi in π, along with a NIZK proof that it was
generated correctly.

Pi broadcasts all the values {ri,j}j �=i∈[n], {γi,j}j �=i∈[n], and {iOi,k}k∈[t].
Evaluation: After completion of the second round each party can indepen-

dently “virtually” evaluate the protocol π using the obfuscations provided
by each of the parties and obtain the output.

Theorem 1. Let f be any deterministic poly-time function with n inputs and
single output. Assume the existence of an Indistinguishability Obfuscator iO, a
NIZK proof system (K,P, V ), a CCA secure PKE scheme (Gen,Enc,Dec) with
perfect correctness and an n-party semi-honest MPC protocol π. Then the pro-
tocol Π presented in Figure 1 UC-securely realizes the ideal functionality Ff in
the FCRS-hybrid model.

3.1 Correctness and Proof of Security

Correctness. The correctness of our protocol Π in Figure 1 follows from the
correctness of the underlying semi-honest MPC protocol and the other primitives
used. Next we will argue that all the messages sent in the protocol Π are of
polynomial length and can be computed in polynomial time. It is easy to see
that all the messages of round 1 are polynomially long. Again it is easy to see
that the round 2 messages besides the obfuscations themselves are of polynomial
length.

We will now argue that each obfuscation sent in round 2 is also polynomially
long. Consider the obfuscation iOi,j, which obfuscates Progi,j ; we need to ar-
gue that this program for every i, j is only polynomially long. Observe that this
program takes as input (R,Γ,Mi−1, Φj−1), where Γ and Φj−1 consist of poly-
nomially many NIZK proofs. This program roughly proceeds by first checking
that all the proofs in Γ and Φj−1 are accepting. If the proofs are accepting then
Prog outputs mi,j and φi,j .

Observe that Γ and Φj−1 are proofs of NP-statements each of which is a fixed
polynomial in the description of the next message function of the protocol π.
Also observe that the time taken to evaluate mi,j and φi,j is bounded a fixed
polynomial. This allows us to conclude that all the computation done by Progi,j
can be bounded by a fixed polynomial.

Security. Let A be a malicious, static adversary that interacts with parties run-
ning the protocol Π from Figure 1 in the FCRS-hybrid model. We construct an
ideal world adversary S with access to the ideal functionality Ff , which simu-
lates a real execution of Π with A such that no environment Z can distinguish
the ideal world experiment with S and Ff from a real execution of Π with A.

We now sketch the description of the simulator and the proof of security,
restricting ourselves to the stand-alone setting. The fully detailed description of
our simulator and the proof of indistinguishability are provided in Appendix A.
Those more formal proofs are given for the general setting of UC-security.

Our simulator S roughly proceeds as follows:
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– Common reference string: Recall that the common reference string in
our construction consists of a CRS σ for a NIZK Proof system and a public
key pk corresponding to a CCA secure public key encryption scheme. Our
simulator uses the simulator of the NIZK proof system in order to generate
the reference string σ. Note that the simulator for NIZK proof system also
generates some trapdoor information that can be used to generate simulated
NIZK proofs. Our simulator saves that for later use. S also generates the
public key pk along with its secret key sk, which it will later use to decrypt
ciphertexts generated by the adversary.

– Round 1: Recall that in round 1, honest parties generate ciphertexts cor-
responding to encryptions of their inputs and various random coins. Our
simulator just generates encryptions of the zero-string on behalf of the hon-
est parties. Also S uses the knowledge of the secret key sk to extract the
input and randomness that the adversarial parties encrypt.

– Round 2: Recall that in the second round the honest parties are required to
“open” some of the randomness values committed to in round 1 along with
obfuscations necessary for execution of π.
S proceeds by preparing a simulated transcript of the execution of π using the
malicious party inputs previously extracted and the output obtained from
the ideal functionality, which it needs to force onto the malicious parties. S
opens the randomness on behalf of honest parties such that the randomness
of malicious parties becomes consistent with the simulated transcript and
generates simulated proofs for the same. The simulator generates the obfus-
cations on behalf of honest parties by hard-coding the messages as contained
in the simulated transcript. The obfuscations also generate proofs proving
that the output was generated correctly. Our simulator hard-codes these
proofs in the obfuscations as well.

Very roughly, our proof proceeds by first changing all the obfuscations S gener-
ates on behalf of honest parties to output fixed values. The statistical soundness
of the NIZK proof system allows us to base security on the weak notion of in-
distinguishability obfuscation. Once this change has been made, in a sequence
of hybrids we change from honest execution of the underlying semi-honest MPC
protocol to a the simulated execution. We refer the reader to Appendix A for a
complete proof.

3.2 Extensions

Low Communication. Our protocol Π (as described in Figure 1) can be used
to UC-securely realize any functionality Ff . However the communication com-
plexity of this protocol grows polynomially in the size of the circuit evaluating
function f and the security parameter λ. We would like to remove this restriction
and construct a protocol Π ′ whose communication complexity is independent of
the the function being evaluated.

A key ingredient of our construction is multikey fully homomorphic encryp-
tion [LATV+12]. Intuitively, multikey FHE allows us to evaluate any circuit on
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Protocol Π ′

Let Π be the MPC Protocol from Figure 1.
Let (SetupMK ,EncryptMK ,EvalMK ,DecryptMK) be a multikey FHE scheme.
Private Inputs: Party Pi for i ∈ [n], receives its input xi.
Common Reference String: Generate the CRS corresponding to Π .

Round 1: Pi proceeds as follows:
– (pki, ski) ← SetupMK(1λ; ρi) and generates encryption ci :=

EncryptMK(pki, xi; i).
– Generates the first round message Zi ofΠ playing as Pi with input (xi, ρi, i).

(Recall that the first message of Π does not depend on the function Π is
used to evaluate.)

– Sends3 (pki, ci, Zi) to all parties.
Round 2: Every party Pi computes c∗ := EvalMK(C, (c1, pk1), . . . , (cn, pkn)). Pi

generates Pi’s second round message of Π , where Π computes the following
function:
– For every i ∈ [n], check if (pki, ski) ← SetupMK(1λ; ρi) and ci :=

EncryptMK(pki, xi; i).
– If all the checks pass then output DecryptMK(sk1, . . . , skn, c

∗) and otherwise
output ⊥.

Evaluation: Pi outputs the output of Pi in Π .

Fig. 3. Two Round MPC Protocol with Low Communication Complexity

ciphertexts that might be encrypted under different public keys. To guarantee
semantic security, decryption requires all of the corresponding secret keys. We
refer the reader to the full version of the paper [GGHR+13] for more details.

Our protocol Π ′ works by invoking Π . Recall that Π proceeds in two rounds.
Roughly speaking, in the first stage parties commit to their inputs, and in the
second round the parties generate obfuscations that allow for “virtual” execution
of sub-protocol π on the inputs committed in the first round. Our key observation
here is that the function that the sub-protocol π evaluates does not have to be
specified until the second round.

We will now give a sketch of our protocol Π ′. Every party Pi generates a
public key pki and a secret key ski using the setup algorithm of the multikey
FHE scheme. It then encrypts its input xi under the public key pki and obtains
ciphertext ci. It then sends (pki, ci) to everyone along with the first message of Π
with input the randomness used in generation of pki and ci. This completes the
first round. At this point, all parties can use the values ((pk1, c1), . . . , (pkn, cn))
to obtain an encryption of f(x1, . . . xn), where f is the function that we want to
compute. The second round of protocol Π can be used to decrypt this value. A
formal description of the protocol appears in Figure 3.

Theorem 2. Under the same assumptions as in Theorem 1 and assuming the
semantic security of the multikey FHE scheme, the protocol Π ′ presented in Fig-
ure 3 UC-securely realizes the ideal functionality Ff in the FCRS-hybrid model.
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Furthermore the communication complexity of protocol Π ′ is polynomial in the
input lengths of all parties and the security parameter. (It is independent of the
size of f .)

Proof. The correctness of the our protocol Π ′ follows from the correctness of
the protocol Π and the correctness of the multikey FHE scheme. Observe that
the compactness of the multikey FHE implies that the ciphertext c∗ evaluated in
Round 2 on the description of Protocol Π (Figure 3) is independent of the size of
the function f being evaluated. Also note that no other messages in the protocol
depend on the function f . This allows us to conclude that the communication
complexity of protocol Π ′ is independent of the size of f .

We defer the formal description of our simulator and the proof of indistin-
guishability to the full version of the paper [GGHR+13].

General Functionality. Our basic MPC protocol as described in Figure 1 only
considers deterministic functionalities (See [GGHR+13]) where all the parties
receive the same output. We would like to generalize it to handle randomized
functionalities and individual outputs (just as in [GGHR+13, AJW+11]). First,
the standard transformation from a randomized functionality to a deterministic
one (See [Gol+04, Section 7.3]) works for this case as well. In this transformation,
instead of computing some randomized function g(x1, . . . xn; r), the parties com-

pute the deterministic function f((r1, x1), . . . , (rn, xn))
def
= g(x1, . . . , xn;⊕n

i=1ri).
We note that this computation does not add any additional rounds.

Next, we move to individual outputs. Again, we use a standard transformation
(See [LP+09], for example). Given a function g(x1, . . . , xn) → (y1, . . . , yn), the
parties can evaluate the following function which has a single output:

f((k1, x1), . . . , (kn;xn)) = (g1(x1, . . . , xn)⊕ k1|| . . . ||gn(x1, . . . , xn)⊕ kn)

where a||b denotes a concatenation of a with b, gi indicates the ith output of
g, and ki is randomly chosen by the ith party. Then, the parties can evaluate
f , which is a single output functionality, instead of g. Subsequently every party
Pi uses its secret input ki to recover its own output. The only difference is that
f has one additional exclusive-or gate for every circuit-output wire. Again, this
transformation does not add any additional rounds of interaction.

Corollary 1. Let f be any (possibly randomized) poly-time function with n in-
puts and n outputs. Assume the existence of an Indistinguishability Obfuscator
iO, a NIZK proof system (K,P, V ), a CCA secure PKE scheme (Gen,Enc,Dec)
with perfect correctness and an n-party semi-honest MPC protocol π. Then the
protocol Π presented in Figure 1 UC-securely realizes the ideal functionality Ff

in the FCRS-hybrid model.

Common Random String vs Common Reference String. Our basic MPC protocol
as described in Figure 1 uses a common reference string. We can adapt the
construction to work in the setting of common random string by assuming the
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existence of a CCA secure public-key encryption scheme with perfect correctness
and pseudorandom public keys and a NIZK scheme [FLS+90]. See [GGHR+13]
for details.

Fairness. We note that the same protocol Π can be used to securely and fairly
UC-realize the generalized functionality in the setting of honest majority, by
using a fair semi-honest MPC protocol for π.

4 Applications

In this section we will discuss additional applications of our results.

4.1 Secure Computation on the Web

In a recent work, Halevi, Lindell and Pinkas [HLP+11] studied secure computa-
tion in a client-server model where each client connects to the server once and
interacts with it, without any other client necessarily being connected at the
same time. They show that, in such a setting, only limited security is achievable.
However, among other results, they also point out that if we can get each of the
players to connect twice to the server (rather than once), then their protocols
can be used for achieving the standard notion of privacy.

One key aspect of the two-pass protocols of Halevi et. al [HLP+11] is that
there is a preset order in which the clients must connect to the server. Our
protocol Π from Section 3 directly improves on the results in this setting by
achieving the same two-pass protocol, but without such a preset order. Also,
we achieve this result in the common reference/random string model, while the
original protocols of Halevi et. al [HLP+11] required a public key setup.

4.2 Black-Box Obfuscation for More Functions

In this subsection, we generalize the class of circuits that can be obfuscated
according to the strong (virtual black box (VBB) notion of obfuscation. This
application does not build directly on our protocol for two-round MPC. Rather,
the main ideas here are related to ideas (particularly within the security proof)
that arose in our MPC construction.

Our Result. Let C be a class of circuits that we believe to be VBB obfuscat-
able, e.g., point functions or conjunctions. Roughly speaking, assuming indis-
tinguishability obfuscation, we show that a circuit C can be VBB obfuscated if
there exists a circuit C′ such that C′ ∈ C and C(x) = C′(x) for every input x.
The non-triviality of the result lies in the fact that it might not be possible to
efficiently recover C′ from C. We refer the reader to the full version of the paper
[GGHR+13] for a formal statement and proof.
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Dynamic Point Function Obfuscation. We will now highlight the relevance of
the results presented above with an example related to point functions. We
know how to VBB obfuscate point functions. Now, consider a setting of three
players. Player 1 generates a (perfectly binding) commitment to a value x. Player
2 would like to generate an obfuscation of an arbitrary function f that allows an
arbitrary Player 3, if he knows x, to evaluate f on input x alone (and nothing
other than x). Our construction above enables such obfuscation. We stress that
the challenge here is that Player 2 is not aware of the value x, which is in fact
computationally hidden from it.
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A Proof of Security of Theorem 1

Let A be a malicious, static adversary that interacts with parties running the
protocol Π from Figure 1 in the FCRS-hybrid model. We construct an ideal
world adversary S with access to the ideal functionality Ff , which simulates a
real execution of Π with A such that no environment Z can distinguish the ideal
world experiment with S and Ff from a real execution of Π with A.

Recall that S interacts with the ideal functionality Ff and with the environ-
ment Z. The ideal adversary S starts by invoking a copy of A and running a

http://eprint.iacr.org/
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simulated interaction of A with the environment Z and the parties running the
protocol. Our simulator S proceeds as follows:

Simulated CRS: The common reference string is chosen by S in the following
manner (recall that S chooses the CRS for the simulated A as we are in the
FCRS-hybrid model):

1. S generates (σ, τ)← S1(1
λ), the simulated common reference string for the

NIZK proof system (K,P, V ) with simulator S = (S1, S2).
2. S runs the setup algorithm Gen(1λ) of the CCA secure encryption scheme

and obtains a public key pk and a secret key sk.

S sets the common reference string to equal (σ, pk) and locally stores (τ, sk).
(The secret key sk will be later used to extract inputs of the corrupted parties
and the trapdoor τ for the simulated CRS σ will be used to generate simulated
proofs.)

Simulating the Communication with Z: Every input value that S receives from
Z is written on A’s input tape. Similarly, every output value written by A on
its own output tape is directly copied to the output tape of S.

Simulating Actual Protocol Messages in Π: Note that there might be multiple
sessions executing concurrently. Let sid be the session identifier for one spe-
cific session. We will specify the simulation strategy corresponding to this spe-
cific session. The simulator strategy for all other sessions will be the same. Let
P = {P1, . . . , Pn} be the set of parties participating in the execution of Π corre-
sponding to the session identified by the session identifier sid. Also let PA ⊆ P
be the set of parties corrupted by the adversary A. (Recall that we are in the
setting with static corruption.)

In the subsequent exposition we will assume that at least one party is honest.
If no party is honest then the simulator does not need to do anything else.

Round 1 Messages S → A: In the first round S must generate messages on behalf
of the honest parties, i.e. parties in the set P\PA. For each party Pi ∈ P\PA

our simulator proceeds as:

1. ci = Enc(i||0�in) and, (recall that �in is the length of inputs of all parties)
2. ∀j ∈ [n], and generate di,j = Enc(i||0�). (Recall that � is the length of the

maximum number of random coins needed by any party in π.)

It then sends Zi = {ci, {di,j}j∈[n]} to A on behalf of party Pi.

Round 1 Messages A → S: Also in the first round the adversary A generates
the messages on behalf of corrupted parties in PA. For each party Pi ∈ PA our
simulator proceeds as:

1. Let Zi = {ci, {di,j}j∈[n]} be the message that A sends on behalf of Pi. Our
simulator S decrypts the ciphertexts using the secret key sk. In particular S
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sets x′
i = Dec(sk, ci) and r′i,j = Dec(sk, di,j). Obtain xi ∈ {0, 1}�in such that

x′
i = i||xi. If x

′
i is not of this form the set xi = ⊥. Similarly obtain ri,j from

r′i,j for every j setting the value to ⊥ in case it is not of the right format.
2. S sends (input, sid,P , Pi, xi) to Ff on behalf of the corrupted party Pi. It

saves the values {ri,j}j for later use.

Round 2 Messages S → A: In the second round S must generate messages on
behalf of the honest parties, i.e. parties in the set P\PA. S proceeds as follows:
• S obtains the output (output, sid,P , y) from the ideal functionality Ff and

now it needs to force this output onto the adversary A.
• In order to force the output, the simulator S executes the simulator Sπ and

obtains a simulated transcript. The simulated transcript specifies the random
coins of all the parties in PA and the protocol messages. Let si denote the
random coins of party Pi ∈ PA and let mi,j for i ∈ [n] and j ∈ [t] denote the
protocol messages. (Semi-honest security of protocol π implies the existence of
such a simulator.)
• For each Pj ∈ PA sample ri,j randomly in {0, 1}� for each Pi ∈ P\PA subject

to the constraint that ⊕n
i=1ri,j = sj .

• For each Pi ∈ P\PA, S proceeds as follows:

1. For every j ∈ [n], j �= i generate γi,j as a simulated NIZK proof under σ for
the NP-statement: {

∃ ρri,j
∣∣ di,j = Enc(i||ri,j ; ρri,j )

}
.

2. A sequence of obfuscations (iOi,1, . . . iOi,t) where iOi,j is the obfuscation of

the program Prog
1,xi,ρxi

,ri,i,ρri,i
,{Zi},fixedOutput

i,j , where fixedOutput is the value
(mi,j , φi,j) such that φi,j is the simulated proof that mi,j was generated cor-
rectly. (Recall that the flag has been set to 1 and this program on accepting
inputs always outputs the value fixedOutput.)

3. It sends ({ri,j , γi,j}j∈[n],j �=i, {iOi,j}j∈[t]) to A on behalf of Pi.

Round 2 Messages A → S: Also in the second round the adversary A generates
the messages on behalf of corrupted parties PA. For each party Pi ∈ P\PA that
has obtained “correctly formed” second round messages from all parties in PA,
our simulator sends (generateOutput, sid,P , Pi) to the ideal functionality.

This completes the description of the simulator.
Next we will prove via a sequence of hybrids that no environment Z can

distinguish the ideal world experiment with S and Ff (as defined above) from a
real execution of Π with A. We will start with the real world execution in which
the adversary A interacts directly with the honest parties holding their inputs
and step-by-step make changes till we finally reach the simulator as described
above. At each step will argue that the environment cannot distinguish the
change except with negligible probability.

• H1: This hybrid corresponds to the Z interacting with the real world adversary
A and honest parties that hold their private inputs.
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We can restate the above experiment with the simulator as follows. We replace
the real world adversaryA with the ideal world adversary S. The ideal adversary
S starts by invoking a copy of A and running a simulated interaction of A with
the environment Z and the honest parties. S forwards the messages that A
generates for it environment directly to Z and vice versa (as explained in the
description of the simulator S). In this hybrid the simulator S holds the private
inputs of the honest parties and generates messages on their behalf using the
honest party strategies as specified by Π .

• H2: In this hybrid we change how the simulator generates the CRS. In par-
ticular we will change how S generates the public key pk of the CCA secure
encryption scheme. We will not change the way CRS for the NIZK is generated.
S runs the setup algorithm Gen(1λ) of the CCA secure encryption scheme and

obtains a public key pk and a secret key sk. S will use this public key pk as part
of the CRS and use the secret key sk to decrypt the ciphertexts generated by A
on behalf of PA. In particular for each party Pi ∈ PA our simulator proceeds
as:

– Let Zi = {ci, {di,j}j∈[n]} be the message that A sends on behalf of Pi. Our
simulator S decrypts the ciphertexts using the secret key sk. In particular S
sets x′

i = Dec(sk, ci) and r′i,j = Dec(sk, di,j). Obtain xi ∈ {0, 1}�in such that
x′
i = i||xi. If x

′
i is not of this form the set xi = ⊥. Similarly obtain ri,j from

r′i,j for every j setting the value to ⊥ in case it is not of the right format.

Note that in hybrid H2 the simulator S additionally uses the secret key sk to
extract the inputs of the adversarial parties. Furthermore if at any point in the
execution any of the messages of the adversary are inconsistent with the input
and randomness extracted but the adversary succeeds in providing an accepting
NIZK proof then the simulator aborts, which event we call Extract Abort.

The distribution of the CRS, and hence the view of the environment Z, in the
two cases is identical. Also note that it follows from the perfect correctness of
the encryption scheme and the statistical soundness of the NIZK proof system
that the NIZK proofs adversary generates will have to be consistent with the
extracted values. In other words over the random choices of the CRS we have
that the probability of Extract Abort is negligible.

• H3: In this hybrid we will change how the simulator generates the obfuscations
on behalf of honest parties. Roughly speaking we observe that the obfuscations
can only be evaluated to output one unique value (consistent with inputs and
randomness extracted using sk) and we can just hardcode this value into the
obfuscated circuit. More formally in the second round S generates the messages
on behalf of the honest parties, i.e. parties in the set P\PA as follows:

1. For every Pj , S obtains sj = ⊕n
i=1ri,j .

2. S virtually executes the protocol π with inputs x1, . . . , xn and random coins
s1, . . . , sn for the parties P1, . . . Pn respectively, and obtains the messages
mi,j for all i ∈ [n] and j ∈ [t].

3. For each Pi ∈ P\PA, S proceeds as follows:
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(a) For every j ∈ [n], j �= i generate γi,j as a NIZK proof under σ for the
NP-statement: {

∃ ρri,j
∣∣ di,j = Enc(i||ri,j ; ρri,j )

}
.

(b) A sequence of obfuscations (iOi,1, . . . iOi,t) where iOi,j is the obfuscation

of the program Prog
1,xi,ρxi

,ri,i,ρri,i
,{Zi},fixedOutput

i,j , where fixedOutput is
the value (mi,j , φi,j) such that φi,j is the proof that mi,j was generated
correctly. (Recall that the flag has been set to 1 and this program on all
accepting inputs always outputs the value fixedOutput.)

(c) It sends ({ri,j , γi,j}j∈[n],j �=i, {iOi,j}j∈[t]) to A on behalf of Pi.

We will now argue that hybrids H2 and H3 and computationally indistin-
guishable. More formally we will consider a sequence of t · |P\PA| hybrids
H3,0,0, . . .H3,|P\PA|,t. In hybrid H3,i,j all the obfusctaions by the first i − 1

honest parties and the first j obfuscations generated by the ith honest party are
generated in the modified way as described above. It is easy to see that hybrid
H3,0,0 is same as hybrid H2 and hybrid H3,|P\PA|,t is same as hybrid H3 itself.

We will now argue that the hybrids H3,i,j−1 and H3,i,j for j ∈ [t] are compu-
tationally indistinguishable. This implies the above claim, but in order to argue
the above claim we first prove the following lemma.

Lemma 1.

Pr

⎡⎢⎢⎢⎢⎢⎣
∃ a, b :

Prog
0,xi,ρxi

,ri,i,ρri,i ,{Zi},0�i,j
i,j (a) �= Prog

0,xi,ρxi
,ri,i,ρri,i ,{Zi},0�i,j

i,j (b)

∧ Prog
0,xi,ρxi

,ri,i,ρri,i ,{Zi},0�i,j
i,j (a) �= ⊥

∧ Prog
0,xi,ρxi

,ri,i,ρri,i ,{Zi},0�i,j
i,j (b) �= ⊥

⎤⎥⎥⎥⎥⎥⎦ = negl(λ)

where the probability is taken over the random choices of the generation of the
CRS.

Proof. Recall that program Prog
0,xi,ρxi

,ri,i,ρri,i
,{Zi},0�i,j

i,j represents the jth mes-

sage function of the ith party in protocol π. Recall that the input to the program
consists of two (R,Γ,Mj−1, Φj−1). We will refer to the (R,Mj−1) as the main
input part and the Γ, Φj−1 as the proof part.

Observe that since the proofs are always consistent with the extracted inputs
and randomness, we have that there is a unique main input part for which
adversary can provide valid (or accepting) proof parts. Further note that if the
proof part is not accepting then Progi,j just outputs ⊥. In other words if the
proof is accepting then the program outputs a fixed value that depends just
on the values that are fixed based on {Zi} values. We stress that the output
actually does include a NIZK proof as well, however it is not difficult to see that
this NIZK proof is also unique as a fixed randomness is used in generation of
the proof.
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Armed with Lemma 1, we can conclude that the programs

Prog
0,xi,ρxi

,ri,i,ρri,i
,{Zi},0�i,j

i,j and Prog
1,xi,ρxi

,ri,i,ρri,i
,{Zi},fixedOutput

i,j are func-
tionally equivalent. Next based on the indistinguisbaility obfuscation property,
it is easy to see that the hybrids H3,i,j−1 and H3,i,j are computationally
indistinguishable.

• H4: In this hybrid we change how the simulator generates the NIZKs on behalf
of honest parties. Formally S generates the σ using the simulator S1 of the NIZK
proof system and generates all the proofs using the simulator S2. The argument
can be made formal by considering a sequence of hybrids and changing each of
the NIZK proofs one at a time.

The indistinguishability between hybrids H3 and H4 can be based on the
zero-knowledge property of the NIZK proof system.

• H5: In this hybrid we change how the simulator S generates the first round
messages on behalf of honest parties. In particular S instead of encrypting inputs
and randomness of honest parties just encrypts zero strings of appropriate length.

We could try to base the indistinguishabilty between hybrids H4 and H5 on
the semantic security of the PKE scheme. However observe that S at the same
time should continue to be able to decrypt the ciphertexts that A generates on
behalf of corrupted parties. Therefore we need to rely on the CCA security of
the PKE scheme.

• H6: In this hybrid instead of generating all the messages mi,j on behalf of hon-
est parties honestly S uses Sπ (the simulator for the underlying MPC protocol)
to generated simulated messages.

The indistinguishability between hybrids H5 and H6 directly follows for the
indistinguishability of honestly generated transcript in the execution of π from
the transcript generated by Sπ .
• H7: Observe that in hybridH6, S uses inputs of honest parties just in obtaining
the output of the computation. It can obtain the same value by sending extracted
inputs of the malicious parties to the ideal functionality Ff .

Note that the hybrids H6 and H7 are identical. Observe that hybrid H7 is
identical to our simulator, which concludes the proof.
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Abstract. In this paper, we show two new constructions of chosen ciphertext
secure (CCA secure) public key encryption (PKE) from general assumptions.
The key ingredient in our constructions is an obfuscator for point functions with
multi-bit output (MBPF obfuscators, for short), that satisfies some (average-case)
indistinguishability-based security, which we call AIND security, in the presence
of hard-to-invert auxiliary input. Specifically, our first construction is based on
a chosen plaintext secure PKE scheme and an MBPF obfuscator satisfying the
AIND security in the presence of computationally hard-to-invert auxiliary input.
Our second construction is based on a lossy encryption scheme and an MBPF
obfuscator satisfying the AIND security in the presence of statistically hard-to-
invert auxiliary input. To clarify the relative strength of AIND security, we show
the relations among security notions for MBPF obfuscators, and show that AIND
security with computationally (resp. statistically) hard-to-invert auxiliary input is
implied by the average-case virtual black-box (resp. virtual grey-box) property
with the same type of auxiliary input. Finally, we show that a lossy encryption
scheme can be constructed from an obfuscator for point functions (point obfus-
cator) that satisfies re-randomizability and a weak form of composability in the
worst-case virtual grey-box sense. This result, combined with our second generic
construction and several previous results on point obfuscators and MBPF ob-
fuscators, yields a CCA secure PKE scheme that is constructed solely from a
re-randomizable and composable point obfuscator. We believe that our results
make an interesting bridge that connects CCA secure PKE and program obfusca-
tors, two seemingly isolated but important cryptographic primitives in the area of
cryptography.

Keywords: public key encryption, lossy encryption, key encapsulation mecha-
nism, chosen ciphertext security, point obfuscation.

1 Introduction

1.1 Background and Motivation

One of the fundamental research themes in cryptography is to clarify what the minimal
assumptions to realize various kinds of cryptographic primitives are, and up to now,
a number of relationships among primitives have been investigated and established.
Clarifying these relationships gives us a lot of insights for how to construct and/or
prove the security of cryptographic primitives, enables us to understand the considered
primitives more deeply, and leads to systematizing the research area in cryptography.

Y. Lindell (Ed.): TCC 2014, LNCS 8349, pp. 95–120, 2014.
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In this paper, we focus on the constructions of public key encryption (PKE) schemes
secure against chosen ciphertext attacks (CCA) [54,29] from general cryptographic as-
sumptions. CCA secure PKE is one of the most important cryptographic primitives that
has been intensively studied, due to its resilience against practical attacks such as [10],
and its implication to many useful security notions, such as non-malleability [29] and
universal composability [18].

The first successful result regarding this line of research is the construction by Dolev,
Dwork, and Naor [29] that uses a chosen plaintext secure (CPA secure) PKE scheme and
a non-interactive zero-knowledge proof. Since these two primitives can be constructed
from (an enhanced variant of) trapdoor permutations (TDP) [35], CCA secure PKE
can be constructed solely from TDPs. Canetti, Halevi, and Katz [20] showed that CCA
secure PKE can be constructed from an identity-based encryption (IBE). It was later
shown that in fact, a weaker primitive called tag-based encryption suffices [45]. Peikert
and Waters [53] showed that CCA secure PKE can be constructed from any lossy trap-
door function (TDF), and subsequent works showed that injective TDFs with weaker
properties suffice: injective TDFs secure for correlated inputs [55], slightly lossy TDFs
[49], adaptive one-way TDFs [46], and adaptive one-way relations [59]. (CPA secure)
PKE schemes with additional security/functional properties have also turned out to be
useful for constructing CCA secure PKE: Hemenway and Ostrovsky [40] showed that
we can construct CCA secure PKE in several ways from homomorphic encryption with
appropriate properties. The same authors [41] also showed that CCA secure PKE can
be constructed from a lossy encryption scheme [6] if the plaintext space is larger than
the randomness space (the results of [40,41] achieve CCA secure PKE via lossy TDFs
[53]). Hohenberger, Lewko, and Waters [42] showed that if one has a PKE scheme
which satisfies the notion called detectable CCA security, which is somewhere between
CCA1 and CCA2 security, then using it one can construct a CCA secure PKE scheme.
Myers and Shelat [50] showed how to construct a CCA secure PKE scheme that can en-
crypt plaintexts with arbitrary length from a CCA secure one with 1-bit plaintext space.
Lin and Tessaro [47] showed how to amplify weak CCA security into ordinary one.
Very recently, Dachman-Soled [25] constructs CCA secure PKE from PKE satisfying
(standard model) plaintext-awareness together with some additional property.

The main purpose of this work is to show that a different kind of cryptographic prim-
itives is also useful for achieving CCA secure PKE. Specifically, we add new recipes
for the construction of CCA secure PKE, based on the techniques and results from pro-
gram obfuscation [3] for the very simple classes of functions, point functions and point
functions with multi-bit output. Despite the tremendous efforts, it is not known whether
it is possible to construct CCA secure PKE only from CPA secure one (in fact, a partial
negative result is known [33]). Clarifying new classes of primitives that serve as build-
ing blocks is important for tackling this problem. In particular, it has been shown that
there is no black-box construction of IBE and a TDF from (CCA secure) PKE [11,34]
and thus to tackle the CPA-to-CCA problem, the attempts to construct IBE or the above
TDF-related primitives from a CPA secure PKE scheme seem hopeless (though there is
a possibility that some non-black-box construction exists). Our new constructions based
on (multi-bit) point obfuscators do not seem to be covered by these negative results, and
thus potentially it could serve as a new target for building CCA secure PKE.
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1.2 Our Contribution

In this paper, we show two new constructions of CCA secure PKE schemes from general
cryptographic assumptions, using the techniques and results from program obfuscation
[3]. We actually construct CCA secure key encapsulation mechanisms (KEMs) [24],
where a KEM is a “PKE”-part of hybrid encryption that encrypts a random “session-
key” for symmetric key encryption (SKE). By combining a CCA secure KEM with a
CCA secure SKE scheme, one obtains a full-fledged CCA secure PKE scheme [24].
The key ingredient in our constructions is an obfuscator for point functions with multi-
bit output (MBPF obfuscators) [48,19,27,37,21,7], that satisfies a kind of average-case
indistinguishability-based security in the presence of “hard-to-invert” auxiliary inputs.
The formal definition of this security notion is given in Section 3. For brevity, we call
it AIND security.

Our first construction in Section 4.1 is based on a CPA secure PKE scheme and
an MBPF obfuscator satisfying the above mentioned AIND security in the presence of
computationally hard-to-invert auxiliary input. Our second construction in Section 4.2
is based on a lossy encryption scheme [6] and an MBPO satisfying the above men-
tioned AIND security in the presence of statistically hard-to-invert auxiliary input.
Interestingly, the first and the second constructions are in fact exactly the same, and
we show two different security analyses from different assumptions on building
blocks. These two constructions add new recipes into the current picture of the
constructions of CCA secure PKE schemes/KEMs from general cryptographic
assumptions.

In order to clarify where these AIND security definitions for MBPF obfuscators are
placed, in Section 5 we show that AIND security with computationally (resp. statisti-
cally) hard-to-invert auxiliary inputs is implied by the (average-case) virtual black-box
property [3] (resp. virtual grey-box property [7]) in the presence of the same auxiliary
inputs. Besides these, we show the relations among several related worst-/average-case
virtual black-/grey-box properties under several types of auxiliary inputs, and summa-
rize them in Fig. 2, which we believe is useful for further research on this topic and
might be of independent interest.

Finally, in Section 6, we show that a lossy encryption scheme can be constructed from
an obfuscator for point functions (point obfuscator) that satisfies re-randomizability [7]
and a weak form of composability [48,19,7] in the worst-case virtual grey-box sense.
This result, combined with our second generic construction and the results on compos-
able point obfuscators with the virtual grey-box property in [7], shows that a CCA secure
PKE scheme can be constructed solely from a point obfuscator which is re-randomizable
and composable.

We believe that our results make an interesting bridge that connects CCA secure
PKE and program obfuscators,1 two seemingly isolated but important primitives in the
area of cryptography, and hope that our results motivate further studies on them.

1 Recently, Sahai and Waters [57] (among others) showed how to construct CCA secure PKE us-
ing indistinguishability obfuscation. We explain the difference with our results in Section 1.4.
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1.3 Overview of Techniques

Our proposed constructions of KEMs are based on the “witness-recovering” technique
[53,55,50,42] in which a part of randomness used to generate a ciphertext is somehow
embedded into the ciphertext itself, and is later recovered in the decryption process for
checking the validity of the ciphertext by re-encryption. What we believe is novel in
our constructions is how to implement this mechanism of witness-recovering by using
an MBPF obfuscator with an appropriate security property.

Let Iα→β denote an MBPF such that Iα→β(x) = β if x = α and ⊥ otherwise,
and let MBPO denotes an MBPF obfuscator which takes an MBPF Iα→β as input, and
outputs an obfuscated circuit DL for Iα→β . (“DL” stands for “digital locker,” the name
due to [19].) Let Π = (PKG,Enc,Dec) be a PKE scheme, where PKG, Enc, and Dec
are the key generation, the encryption, and the decryption algorithms of Π , respectively.

Below we give a high level idea behind our main proposed constructions in Sec-
tion 4 by explaining how the “toy” version of our constructions Π ′ = (PKG′,Enc′,
Dec′), constructed using Π and MBPO, is proved CCA1 secure based on the assump-
tions that Π is CPA secure and that MBPO satisfies the virtual black-box property with
respect to dependent auxiliary input [36]. (As mentioned earlier, in this paper we ac-
tually construct KEMs rather than PKE schemes, but the intuition for our results are
captured by the explanation here.) A public/secret key pair (PK, SK) of Π ′ is of the
form PK = (pk1, pk2), SK = (sk1, sk2), where each (pki, ski) is an independently
generated key pair by runningPKG. To encrypt a plaintext m under PK , Enc′ first picks
a random string α ∈ {0, 1}k (where k is the security parameter) and two randomness
r1 and r2 for Enc, and computes a ciphertext C in the following way:

C = (c1, c2, DL) =
(
Enc(pk1, (m‖α); r1),Enc(pk2, (m‖α); r2),MBPO(Iα→(r1‖r2))

)
where “‖” denotes the concatenation of strings, and “Enc(pk,m; r)” means to encrypt
the plaintext m under the public key pk using the randomness r. To decrypt C, we first
decrypt c1 by using sk1 to obtain (m‖α), then run DL(α) to recover (r1‖r2). Finally,
m is returned if ci = Enc(pki, (m‖α); ri) holds for both i = 1, 2, and otherwise we
reject C. Here, it should be noted that due to the symmetric roles of pk1 and pk2 and the
validity check by re-encryption performed in Dec′, we can also decrypt C using sk2, so
that the decryption result of C using sk1 and that using sk2 always agree.

Now, recall the interface of a CCA1 adversaryA = (A1,A2), whereA1 andA2 rep-
resent an adversary’s algorithm before and after the challenge, respectively.A1 is firstly
given a public key PK , and can start using the decryption oracle Dec′(SK, ·). After
that, A1 terminates with output two plaintexts (m0,m1) and some state information st
that is passed to A2. A2 is given st and the challenge ciphertext C∗ = (c∗1, c

∗
2, DL

∗)
which is an encryption of mb (where b is the challenge bit), and outputs a bit as its
guess for b.

The key observation is thatA2 can be seen as an adversary for the MBPF obfuscator
MBPO, by regarding (st, c∗1, c

∗
2) as an auxiliary input z about the obfuscated circuit

DL∗ of the MBPF Iα∗→(r∗1‖r∗2). Then, if MBPO satisfies the virtual black-box property
with respect to dependent auxiliary input [36], there exists a simulator S that takes
only z = (st, c∗1, c

∗
2) as input, has oracle access to Iα∗→(r∗1‖r∗2), and has the property
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that A’s success probability (in guessing b) is negligibly close to the probability that S
succeeds in guessing b. (For convenience, let us call the latter probability “S’s success
probability,” although S is not a CCA1 adversary and thus its task is not to guess a
challenge bit.) This means that if S’s success probability is close to 1/2, then so is A’s
success probability, which will prove the CCA1 security of Π ′.

To show that S’s success probability is close to 1/2, we consider the hypothetical
experiment for S in which the auxiliary input z is generated so that decryption queries
from A1 are answered using sk2, and both c∗1 and c∗2 are an encryption of a fixed value
(say, 0|m0|+k). Since z contains no information on b and α∗, in this hypothetical exper-
iment S’s success probability is exactly 1/2 and the probability that S makes the query
α∗ (which is chosen randomly) is negligible. Next, we make the experiment closer to
the actual S’s experiment, by changing c∗1 into an encryption of (mb‖α∗). By the CPA

security regarding pk1, S’s success probability as well as the probability of S making
the query α∗ is negligibly close to those in the hypothetical experiment. Then, we fur-
ther modify the previous experiment by changing c∗2 into an encryption of (mb‖α∗), but
this time we use sk1 for answering A1’s queries. Notice that this is exactly the actual
experiment for S. As mentioned above, switching sk2 to/from sk1 for answering A1’s
queries does not affectA1’s behavior, and thus again by the CPA security regarding pk2,
S’s success probability is negligibly close to 1/2 and the probability that S makes the
query α∗ is negligible. Then, by the virtual black-box property of MBPO with auxiliary
input, A’s original success probability is negligibly close to 1/2, meaning that A has
negligible advantage in breaking the CCA1 security of the scheme Π ′.

The above completes a proof sketch of how Π ′ is proved CCA1 secure. By encrypting
a random K , Π ′ can be used as a CCA1 secure KEM. Our proposed CCA2 secure KEMs
are obtained by applying several optimizations and enhancement to this KEM:

– Firstly, we do not need the full virtual black-box property with auxiliary input of
[36]. As mentioned earlier, an indistinguishability-based definition in the presence
of only “hard-to-invert” auxiliary input is sufficient for a similar argument to work.

– Secondly, we need not include a plaintext into each of ci. Instead, we pick a ran-
domness K ∈ {0, 1}k used as a plaintext of a KEM, and include this K into the
output of the MBPF, i.e now we obfuscate the MBPF Iα→(r1‖r2‖K). (This is the
actual our basic construction whose formal description and security proof are given
in the full version.)

– Lastly, note that the above construction cannot be proved to be CCA2 secure as
it is. In particular, the obfuscated circuit DL could be malleable. To deal with this
issue, instead of the Naor-Yung-style double encryption [52], we employ the Dolev-
Dwork-Naor-style multiple encryption [29] together with the technique of the
“unduplicatable set selection” [56]. Unlike the classical method of using a one-
time signature scheme, we implement the technique using a universal one-way hash
function (UOWHF) [51], where a hash value of the obfuscated circuit DL is used as
a “selector” of the public key components. Another issue is that the second stage ad-
versaryA2 in the CCA2 experiment can also make decryption queries, and thus the
above explained idea of replacing A2 with a simulator S does not work. However,
our indistinguishability-based security definition for MBPF obfuscators enables us
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to directly work with an original CCA2 adversary, and we can avoid considering
how a simulator deal with the queries fromA2. For more details, see Section 4.

1.4 Related Work: Program Obfuscation

Roughly speaking, an obfuscator is an algorithm that takes a program (e.g. Turing ma-
chine or circuit) as input, and outputs another program with the same functionality, but
otherwise “unintelligible.”

After the impossibility of general-purpose program obfuscation satisfying the nowa-
days standard security notion called virtual black-box property shown in the seminal
work by Barak et. al. [3], several subsequent works extended the impossibility in var-
ious other settings [36,58,38,7]. The other line of research pursues possibilities of ob-
fuscating a specific class of functions. Before 2013, most known positive results were
about obfuscation for point functions and their variants, e.g. [48,58,19,22,7]. Relaxing
the security requirements to “average-case” in which a program is sampled according
to some distribution, several more complex tasks have been shown to be obfuscatable,
such as proximity testing [28] and cryptographic tasks such as re-encryption [43].

Since the first candidates of a cryptographic multilinear map have been proposed in
2013 [30,23], the research field of (cryptographic) obfuscation has drastically changed
and accelerated. Brakerski and Rothblum [14] showed how to construct an obfuscator
for conjunctions from graded encoding schemes [30,23], and the same authors showed
a further extension [13]. Most recently, they showed a general-purpose obfuscator sat-
isfying a virtual black-box property in an idealized model called the generic graded
encoded scheme model [15]. Barak et al. [2] studied obfuscation for a class of func-
tions called evasive functions which in particular includes point functions (with multi-
bit output). A series of works [32,57,44,31] (and many other recent works) have shown
that a general-purpose obfuscator satisfying a security notion weaker than the virtual
black-box property, called indistinguishability obfuscator, which seems to be too weak
to be useful, is in fact surprisingly powerful and can be used as a building block for
constructing a various kinds of cryptographic primitives. Garg et al. [32] constructed
the first candidate of general-purpose indistinguishability obfuscation. A security no-
tion stronger than indistinguishability obfuscation, called differing-inputs obfuscation
(a.k.a. extractability obfuscation [12]), has also been shown to be quite powerful and
useful [1,12].

Among a number of recent fascinating results, especially relevant to our work is
the work by Sahai and Waters [57] who showed (among several other primitives) how
to construct CCA secure PKE from an indistinguishability obfuscator (and a one-way
function). Although our work and [57] have the common property that both works build
CCA secure PKE using techniques and results from obfuscation, our use of obfuscators
and that of [57] are quite different: We use an obfuscator for a specific class of functions,
point functions and MBPFs, while [57] uses an obfuscator for all polynomial-sized cir-
cuits. Furthermore, the indistinguishability-based security notion for MBPF obfuscators
used in our main result is about randomly chosen MBPFs, while that used in [57] is for
the worst-case choice of circuits (that compute the same functions). We would also like
to stress that our work and [57] were done concurrently and independently.
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1.5 Paper Organization

The rest of the paper is organized as follows: In Section 2 (and Appendix A) we review
the basic notations and definitions of primitives. In Section 3, we introduce the formal
definitions of our new indistinguishability-based security notions for MBPF obfusca-
tors. In Section 4, we show our main results: two CCA secure KEMs using a MBPF
obfuscator. In Section 5, we investigate relations between our new security notions and
other notions for MBPF obfuscators. In Section 6, we show how to construct a lossy
encryption scheme from a point obfuscator with re-randomizability and composability.
In Section 7, we discuss some issues on the MBPF obfuscators that we use.

2 Preliminaries

Here, we review the basic notation and the definitions for lossy encryption [6] and
(cryptographic) obfuscation. The definitions for standard cryptographic primitives that
are not given here are given in Appendix A, which include PKE, KEMs, and UOWHFs.

Basic Notation. N denotes the set of all natural numbers, and if n ∈ N then [n] =
{1, . . . , n}. “x← y” denotes that x is chosen uniformly at random from y if y is a finite
set, x is output from y if y is a function or an algorithm, or y is assigned to x otherwise.
If x and y are strings, then “|x|” denotes the bit-length of x, and “x‖y” denotes the

concatenation x and y. “x
?
= y” is the operation that returns 1 if and only if x = y.

“PPTA” stands for a probabilistic polynomial time algorithm. If A is a probabilistic
algorithm then y ← A(x; r) denotes that A computes y as output by taking x as input
and using r as randomness. AO denotes an algorithm A with oracle access to O. A
function ε(k) : N → [0, 1] is said to be negligible if for all positive polynomials p(k)
and all sufficiently large k ∈ N, we have ε(k) < 1/p(k). Throughout this paper, we use
the character “k” to denote a security parameter.

2.1 Lossy Encryption

Definition 1. A tuple of PPTAs Π = (PKG,Enc,Dec, LKG) is said to be an ε-lossy
encryption scheme2 if the following properties are satisfied:

– (Syntax) (PKG,Enc,Dec) constitutes a PKE scheme. The algorithm LKG is called
a lossy key generation algorithm, which takes 1k as input, and outputs a “lossy”
public key pk.

– (Indistinguishability of ordinary/lossy keys) For all PPTAs A, AdvKEYΠ,A(k) := 2 ·
|Pr[ExptKEYΠ,A(k) = 1] − 1/2| is negligible, where the experiment ExptKEYΠ,A(k) is
defined as follows:

[ (pk0, sk)← PKG(1k); pk1 ← LKG(1k); b← {0, 1}; b′ ← A(pkb);

Return (b′
?
= b) ].

2 In this paper, we consider the “exact security”-style definition for lossy encryption and CPA

secure PKE. This is to quantify the “hardness” of inverting an auxiliary input functions used
in the security definitions of MBPF obfuscators. For details, see Section 3.
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– (Statistical lossiness) For all computationally unbounded algorithmsA and for all
sufficiently large k ∈ N it holds that AdvLOS-CPAΠ,A (k) := 2 · |Pr[ExptLOS-CPAΠ,A (k) =

1]−1/2| ≤ ε(k), where the experiment ExptLOS-CPAΠ,A (k) is defined in the same way as
the ordinary CPA experiment ExptCPAΠ,A(k) except that the public key pk is generated
as pk← LKG(1k). We call ε lossiness.

2.2 Obfuscation for Circuits and Worst-Case Security Definitions

Here, we recall the definition of circuit obfuscations, following the definitions given
in [3,48,36,8]. In the following, by C we denote an ensemble {Ck}k∈N, where Ck is
a collection of circuits whose input length is k and whose size is bounded by some
polynomial of k.

Definition 2. We say that a PPTA Obf is an obfuscator for C if it satisfies the following:

– (Functionality) For every k ∈ N and every C ∈ Ck, a circuit output from Obf(C)
computes the same function as C.

– (Polynomial blowup) There exists a polynomial p = p(k) > 0 such that for every
k ∈ N and every C ∈ Ck, the size of a circuit output from Obf(C) is bounded by p.

Note that Definition 2 is only about the functionality requirements of obfuscators.
Next, we recall the security definitions for “worst-case” choice of circuits.: The vir-

tual black-box property is due to Barak et al. [3], the virtual black-box property with
(dependent) auxiliary input is due to Goldwasser and Kalai [36], and virtual “grey”-box
(with (dependent) auxiliary input) is due to Bitansky and Canetti [7].

Definition 3. We say that an obfuscator Obf for C satisfies:

– the worst-case virtual black-box property (WVB security, for short), if for every
PPTA A (adversary) and every positive polynomial q = q(k), there exists a PPTA
S (simulator) such that for all sufficiently large k ∈ N and all circuits C ∈ Ck, it
holds that

|Pr[A(1k,Obf(C)) = 1]− Pr[SC(1k) = 1]| ≤ 1/q,

– the worst-case virtual black-box property w.r.t. auxiliary input (WVB-AI security,
for short), if for every PPTA A and every positive polynomials q = q(k) and � =
�(k), there exists a PPTA S such that all sufficiently large k ∈ N, all circuits
C ∈ Ck, and all strings z ∈ {0, 1}�, it holds that

|Pr[A(1k, z,Obf(C)) = 1]− Pr[SC(1k, z) = 1]| ≤ 1/q,

where the probabilities are over the randomness consumed by Obf, A, and S.
Furthermore, we define the worst-case virtual grey-box property (WVG security), and

the worst-case virtual grey-box property w.r.t. auxiliary input (WVG-AI security) of Obf,
in the same way as the definitions for the corresponding virtual black-box properties,
except that we replace “a PPTA S” in each definition with “a computationally un-
bounded algorithm S that makes only polynomially many queries.”
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Note that in the above definitions, the simulator S can depend on the polynomial q
which represents the “quality of simulation.” Wee [58] refers to the simulators of this
type as a “weak simulator.”

We also define (t-)composability of obfuscations [48,19,7,21]. Following [8], we
only define the composability in the grey-box (WVG) notion, using a computationally
unbounded simulator, which is sufficient for our purpose in this paper.

Definition 4. ([7]) Let t = t(k) > 0 be a polynomial. We say that an obfuscator Obf
for C satisfies t-composability, if for every PPTAA and a positive polynomial q = q(k),
there exists a computationally unbounded algorithm S that makes only polynomially
many queries, such that for all sufficiently large k ∈ N and for all circuits C1, . . . , Ct ∈
Ck, it holds that:

|Pr[A(1k,Obf(C1), . . . ,Obf(Ct)) = 1]− Pr[SC1,...,Ct(1k) = 1]| ≤ 1/q,

where the probabilities are over the randomness consumed by Obf, A, and S.

Notations for Point Obfuscators and MBPF Obfuscators. Let X be a finite set, t ∈ N,
α ∈ X , and β ∈ {0, 1}t. A point function Iα and a multi-bit point function (MBPF)
Iα→β are functions defined as follows:

Iα(x) =
{
� if x = α

⊥ otherwise
and Iα→β(x) =

{
β if x = α

⊥ otherwise

We refer to α and β as the point address and the point value, respectively.
In this paper, we will only consider circuits for computing point functions/MBPFs

with the properties that (1) the description is given in some canonical form and thus
there is a one-to-one correspondence between a point address/value and the circuit for
computing the point function/MBPF, and (2) the description of the circuits reveals the
point address/value in the clear. Hereafter, we will identify a point function and an
MBPF with circuits that compute them (with the above mentioned properties).

For an ensemble X = {Xk}k∈N, where each Xk is a set, we denote by PF(X ) the
ensemble of point functions {Iα}α∈Xk

. Similarly, for X and a polynomial t, we denote
by MBPF(X , t) the ensemble MBPFs {Iα→β}α∈Xk,β∈{0,1}t .

Hereafter, we refer to an obfuscator for point functions as a point obfuscator and will
denote it by PO. Furthermore, we refer to an obfuscator for MBPFs as an MBPF ob-
fuscator and will denote it by MBPO. Moreover, we call an ensemble X = {Xk}k∈N a
“domain ensemble” (for point functions and MBPFs) if (1) for all k ∈ N, each element
of Xk is k-bit, (2) |Xk| is superpolynomially large in k (and thus 1/|Xk| is negligible),
and (3) we can efficiently sample an element from Xk uniformly at random.

Concrete Instantiations of a Composable Point Obfuscator and an MBPF Obfusca-
tor. In Appendix B, we recall the concrete construction of a point obfuscator due
to the results [17,7], which is originally proposed by Canetti [17] as a perfectly one-
way function and is later shown to be t-composable under the t-strong vector decision
Diffie-Hellman (t-SVDDH) assumption [7], which is a stronger variant of the decisional
Diffie-Hellman (DDH) assumption. There, we also recall the construction of an MBPF
obfuscator based on a composable point obfuscator [19,7].
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3 New Security Definitions for MBPF Obfuscators

In this section, we introduce and formalize the new security notions for MBPF obfusca-
tors that we call average-case indistinguishability w.r.t. (computationally/statistically)
partially uninvertible auxiliary input, which will play a central role in our proposed
KEMs given in Section 4. This security definition requires that obfuscated circuits of
MBPFs hide the point values on average, even in the presence of “dependent” auxiliary
inputs [36,27], as long as the auxiliary input has some “hard-to-invert” property.

In the following, we formally define what we mean by “hard-to-invert” auxiliary
input in Section 3.1. Then, in Section 3.2, we define the new indistinguishability-based
notions.

For notational convenience, in this section,X will always denote a domain ensemble
{Xk}k∈N, and t = t(k) > 0 be a polynomial that will be used for MBPF obfuscators
for MBPF(X , t), and do not introduce them in each definition.

3.1 Auxiliary Input Functions and Partial Uninvertibility

For MBPF obfuscators, we will consider the average-case security in the presence of
“dependent” auxiliary input [36] that depends on the description of an MBPF Iα→β be-
ing obfuscated. We will capture this by a probabilistic function ai that takes as input the
point address/value pair (α, β) ∈ Xk×{0, 1}t. Furthermore, we consider the (average-
case) “partial uninvertibility” of the function ai. That is, given z output by ai(α, β) for a
randomly chosen (α, β), it is hard to find α. We consider computational and statistical
partial uninvertibility.

Definition 5. Let δ : N → [0, 1], and let ai : Xk × {0, 1}t → {0, 1}∗ be a (possi-
bly probabilistic) two-input function. We say that ai is a δ-computationally (resp. δ-
statistically) partially uninvertible auxiliary input function (δ-cPUAI (resp. δ-sPUAI)
function, for short) if (1) it is efficiently computable, and (2) for all PPTAs (resp. com-
putationally unbounded algorithms) F and for all sufficiently large k ∈ N, it holds
that AdvP-Invai,F (k) := Pr[ExptP-Invai,F (k) = 1] − 1/|Xk| ≤ δ(k),3 where the experiment
ExptP-Invai,F (k) is defined as follows:

[ α← Xk; β ← {0, 1}t; z ← ai(α, β); α′ ← F(1k, z); Return (α′ ?
= α) ].

Furthermore, we say that ai is �-bounded if the output length of ai is bounded by
� = �(k).

3.2 Average-Case Indistinguishability of Point Values with Auxiliary Input

In our proposed KEM constructions, what we need for an MBPF obfuscator is that it
hides the point value “on average,” in the presence of auxiliary input that is simlta-
neously dependent on the point address and the point value. This indistinguishability-
based definition, formalized below, enables us to avoid using simulator-based security
notions, and helps to make the security analyses of our proposed constructions simpler.

3 Here, the subtraction of 1/|Xk| is to offset the trivial success probability by a random guess.
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Definition 6. Let δ : N → [0, 1]. We say that an MBPF obfuscator MBPO satisfies
average-case indistinguishability w.r.t. δ-computationally (resp. δ-statistically) partially
uninvertible auxiliary input ( AIND-δ-cPUAI (resp. AIND-δ-sPUAI) secure, for short), if
for all PPTAsA and all δ-cPUAI (resp. δ-sPUAI) functions ai, AdvAIND-AIMBPO,ai,A(k) := 2 ·
|Pr[ExptAIND-AIMBPO,ai,A(k) = 1]−1/2| is negligible, where the experimentExptAIND-AIMBPO,ai,A(k)
is defined as follows:

[ α← Xk; β0, β1 ← {0, 1}t; z ← ai(α, β0); b← {0, 1};

DL← MBPO(Iα→βb
); b′ ← A(1k, z, DL); Return (b′

?
= b) ].

In the experiment, DL stands for a “digital locker” (the name is due to [19]).
The following is a simple fact that in order for the new definitions to be meaningful,

δ has to be a negligible function. (The proof is given in the full version.)

Lemma 1. Let δ : N→ [0, 1]. If δ is non-negligible, then an MBPF obfuscator cannot
be AIND-δ-sPUAI secure (and hence it cannot be AIND-δ-cPUAI secure, either).

4 Chosen Ciphertext Security via MBPF Obfuscation

In this section, we show our main results: two constructions of CCA2 secure KEMs. The
first and second constructions are given in Sections 4.1 and 4.2, respectively. We also
explain several extensions applicable to our proposed constructions in Section 4.3.

4.1 First Construction

Let Π = (PKG,Enc,Dec) be a PKE scheme with the plaintext space {0, 1}k, the public
key length �PK(k), the randomness length �R(k), and the ciphertext length �C(k) (where
the definitions of these are given in Appendix A). We define t(k) = k · �R(k) + k and
t′(k) = k·�PK(k)+k·�C(k)+k. LetX = {Xk}k∈N be a domain ensemble such that each
element in Xk is of length k, and let MBPO be an MBPF obfuscator for MBPF(X , t).
Furthermore, let H = (HKG,H) be a UOWHF. Then we construct the proposed KEM
Γ = (KKG,Encap,Decap) as in Fig. 1.

Useful Properties of Γ . To show the CCA2 security of the proposed KEM Γ , it is useful
to note the following two simple properties, which are both due to the validity check
performed in the last step of Decap (and the correctness of the underlying PKE scheme
Π). The first property states that in order to generate a valid ciphertext, an obfuscated
circuit DL cannot be copied from other valid ciphertexts.

Lemma 2. Let (PK, SK) be a key pair output by KKG(1k), and C = (c1, . . . , ck, DL)
be a ciphertext output by Encap(PK). Then, for any ciphertext C′ = (c′1, . . . , c

′
k, DL

′)
satisfying DL′ = DL and (c′1, . . . , c

′
k) �= (c1, . . . , ck), it holds that Decap(SK,C′) =

⊥.

The second property is the existence of the “alternative” decapsulation algorithm
AltDecap. For a k-bit string h∗ = (h∗

1‖ . . . ‖h∗
k) ∈ {0, 1}k and a key pair (PK, SK)
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KKG(1k) :
κ ← HKG(1k)

(pk
(j)
i , sk

(j)
i ) ← PKG(1k) for (i, j) ∈ [k]× {0, 1}

PK ← ({pk(j)
i }i∈[k],j∈{0,1}, κ)

SK ← ({sk(j)
i }i∈[k],j∈{0,1}, κ)

Return (PK,SK)

Encap(PK) :

Parse PK as ({pk(j)
i }i∈[k],j∈{0,1}, κ)

α ← Xk; β ← {0, 1}t
DL ← MBPO(Iα→β)
h ← Hκ(DL)
View h as (h1‖ . . . ‖hk) ∈ {0, 1}k
Parse β as (r1, . . . , rk,K) ∈ ({0, 1}�R )k × {0, 1}k

ci ← Enc(pk
(hi)
i , α; ri) for i ∈ [k]

C ← (c1, . . . , ck, DL)
Return (C,K)

Decap(SK,C) :

Parse SK as ({sk(j)
i }i∈[k],j∈{0,1}, κ)

Parse C as (c1, . . . , ck, DL)
h ← Hκ(DL)
View h as (h1‖ . . . ‖hk) ∈ {0, 1}k

α ← Dec(sk
(h1)
1 , c1)

If α = ⊥ then return ⊥
β ← DL(α)
If β = ⊥ then return ⊥
Parse β as (r1, . . . , rk,K)

∈ ({0, 1}�R )k × {0, 1}k

If ∀i ∈ [k] : Enc(pk
(hi)
i , α; ri) = ci

then return K else return ⊥

Fig. 1. The proposed CCA2 secure KEM Γ

output by KKG(1k), where SK = ({sk(j)
i }i∈[k],j∈{0,1}, κ), we define the “alternative”

secret key ŜKh∗ associated with h∗ by ŜKh∗ = (h∗, PK, {sk(1−h∗
i )

i }i∈[k]). AltDecap

takes an “alternative” secret key ŜKh∗ and a ciphertext C = (c1, . . . , ck, DL) as input,
and runs as follows:

AltDecap(ŜKh∗ , C): First check if Hκ(DL) = h∗, and return ⊥ if this is the case.
Otherwise, let h = Hκ(DL) and let � ∈ [k] be the smallest index such that h� =
1−h∗

� , where h� is the �-th bit of h. (Note that such � must exist because h �= h∗ in
this case.) Run in exactly the same way as Decap(SK,C), except that it executes

Dec(sk
(1−h∗

� )
� , c�) in the fifth step, instead of executing Dec(sk

(h1)
1 , c1).

Regarding AltDecap, the following lemma holds due to the symmetric role of each of
sk

(j)
i and the validity check of each ci by re-encryption performed at the last step.

Lemma 3. Let h∗ ∈ {0, 1}k be a string, (PK, SK) be a key pair output by KKG(1k),
and ŜKh∗ be an alternative secret key defined as above. Then, for any ciphertext C =
(c1, . . . , ck, DL) (which could be outside the range of Encap(PK)) satisfying Hκ(DL) �=
h∗, it holds that Decap(SK,C) = AltDecap(ŜKh∗ , C).

The formal proofs of Lemmas 2 and 3 are given in the full version.

CCA2 Security of Γ . The security of Γ is guaranteed by the following theorem. (The
formal proof is given in the full version.)

Theorem 1. Assume that Π is ε-CPA secure with negligible ε, H is a UOWHF, and
MBPO is AIND-δ-cPUAI secure with δ(k) ≥ kε(k). Then, the KEM Γ constructed as
in Fig. 1 is CCA2 secure.
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Proof Sketch of Theorem 1. Let A = (A1,A2) be any PPTA adversary that attacks
the CCA2 security of the KEM Γ . Consider the following sequence of games: (Here, the
values with asterisk (*) represent those related to the challenge ciphertext forA.)

Game 1: This is the experiment ExptCCA2Γ,A (k) itself. Without loss of generality, we gen-
erate the challenge ciphertextC∗ = (c∗1, . . . , c

∗
k, DL

∗) and the challenge session-key
K∗

b for A, where b is the challenge bit for A, before running A1. (Note that this
modification does not affect A’s behavior.)

Game 2: Same as Game 1, except that all decapsulation queries C = (c1, . . . , ck, DL)
satisfying DL = DL∗ are answered with ⊥.

Game 3: Same as Game 2, except that all decapsulation queries C = (c1, . . . , ck, DL)
satisfying Hκ(DL) = h∗ = Hκ(DL

∗) are answered with ⊥.
Game 4: Same as Game 3, except that all decapsulation queries C are answered with

AltDecap(ŜKh∗ , C), where ŜKh∗ is the alternative secret key corresponding to
(PK, SK) and h∗ = Hκ(DL

∗) ∈ {0, 1}k.
Game 5: Same as Game 4, except that DL∗ is replaced with an obfuscation of the

MBPF Iα∗→β′ with an independently chosen random value β′ ∈ {0, 1}t.
That is, the step “DL∗ ← MBPO(Iα∗→β∗)” is replaced with the steps “β′ ←
{0, 1}t; DL∗ ← MBPO(Iα∗→β′).” (Note that each r∗i and K∗

1 are still generated
from β∗.)

For i ∈ [5], let Si be the event thatA succeeds in guessing the challenge bit (i.e. b′ =
b occurs) in Game i. Using the above notation, A’s CCA2 advantage can be calculated
as follows:

AdvCCA2Γ,A (k) = 2 · |Pr[S1]−
1

2
| ≤ 2 ·

∑
i∈[4]

|Pr[Si]− Pr[Si+1]|+ 2 · |Pr[S5]−
1

2
|. (1)

To complete the proof, it remains to upperbound the right hand side of the above in-
equality (1).

Firstly, notice that the difference between Game 1 and Game 2 is only in how A’s
decapsulation query C = (c1, . . . , ck, DL) satisfying DL = DL∗ is answered. (It is an-
swered with ⊥ in Game 2, while it may be answered with some value that is not ⊥ in
Game 1.) However, due to Lemma 2, the only ciphertext C that contains DL∗ and can
be decapsulated to some value that is not ⊥ is the challenge ciphertext C∗ itself, and
A2 is not allowed to ask it. Furthermore, since DL∗ is information-theoretically hidden
from A1’s view, the probability of A1 making a decapsulation query containing DL∗ is
negligible. Hence, the oracles behave almost identically in both Game 1 and Game 2,
which shows that |Pr[S1]− Pr[S2]| is negligible.

Next, notice that |Pr[S2]−Pr[S3]| can be upperbounded by the probability ofAmak-
ing a decapsulation query C = (c1, . . . , ck, DL) satisfying Hκ(DL) = h∗ = Hκ(DL

∗)
and DL �= DL∗ (because Game 2 and Game 3 proceed identically without such a query),
but it is easy to see that this probability is negligible due to the security of the UOWHF
H.

It is also easy to see that Pr[S3] = Pr[S4], because the behavior of the oracle in
Game 3 and that in Game 4, are identical due to Lemma 3.



108 T. Matsuda and G. Hanaoka

To show the upperbound of |Pr[S4] − Pr[S5]|, we need to use the AIND-δ-cPUAI
security of MBPO. We therefore first specify the auxiliary input function that we are
going to consider. Define the probabilistic function aiΓ : Xk×{0, 1}t → {0, 1}t′ which
takes (α, β) ∈ Xk ×{0, 1}t as input, and computes z = ({pki}i∈[k], c

∗
1, . . . , c

∗
k,K

∗) ∈
{0, 1}t′ in the following way:

aiΓ (α, β) : [ (pki, ski)← PKG(1k) for i ∈ [k];

Parse β as (r∗1 , . . . , r
∗
k,K

∗) ∈ ({0, 1}�R)k × {0, 1}k;
c∗i ← Enc(pki, α; r

∗
i ) for i ∈ [k]; Return z ← ({pki}i∈[k], c

∗
1, . . . , c

∗
k,K

∗) ].

Note that aiΓ is efficiently computable. Furthermore, due to the ε-CPA security of the
underlying PKE scheme Π and the security of the k-repetition construction Πk (which
is (kε)-CPA secure based on the ε-CPA security of Π)4, it is straightforward to see that
aiΓ is (kε)-computationally partially uninvertible (in particular, in the P-Inv experi-
ment regarding aiΓ , each r∗i is a uniformly chosen randomness (independently of any
other values), and thus we can rely on the CPA security of Π). In the full proof, we will
show that there exists a PPTA Bo such that AdvAIND-AIMBPO,aiΓ ,Bo

(k) = |Pr[S4] − Pr[S5]|:
Bo takes an auxiliary input z = ({pki}i∈[k], c

∗
1, . . . , c

∗
k,K

∗) ← aiΓ (α, β0) and an ob-
fuscated circuit DL∗ which is either computed as MBPO(Iα→β0) or MBPO(Iα→β1) as
input. Bo will generate A’s challenge ciphertext C∗ based on the auxiliary input z and
the obfuscated ciphertext DL∗ that it receives, and generates the remaining key materi-
als, which enables Bo to generate the alternative key ŜKh∗ , and thus using AltDecap,
Bo can perfectly simulate the decryption oracle in Game 4 (and Game 5) for A. Here,
by regarding α, β0, and β1 in Bo’s experiment as α∗, β∗, and β′ (in Game 4 and Game
5), respectively, Bo will simulate the whole of Game 4 or Game 5 perfectly for A de-
pending on the value of B’s challenge bit, and we can derive AdvAIND-AIMBPO,aiΓ ,Bo

(k) =
|Pr[S4]− Pr[S5]|. But here, since aiΓ is a (kε)-cPUAI function and δ(k) ≥ kε(k), the
AIND-δ-cPUAI security of MBPO guarantees that |Pr[S4]− Pr[S5]| is negligible.

Finally, observe that in Game 5, the “real” session-key K∗
1 is independent of the

challenge ciphertext C∗ and thus the challenge session-key K∗
b (together with other

values available to A in Game 5) is distributed identically regardless of A’s challenge
bit b. This implies Pr[S5] = 1/2.

Therefore, the right hand side of the inequality (1) is shown to be negligible, which
implies that Γ is CCA2 secure. ��

4.2 Second Construction

In the first construction shown above, we used an ordinary CPA secure PKE scheme
for Π . Now, we consider the construction of the KEM Γ in which Π is replaced with
a lossy encryption scheme. Π now has the lossy key generation algorithm LKG, and
thus is of the form Π = (PKG,Enc,Dec, LKG). (The lossy key generation algorithm

4 Here, by “k-repetition construction” Πk we mean the PKE scheme in which a public key con-
sists of k independently generated public keys of Π , and a ciphertext consists of k ciphertexts
of a same plaintext.
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LKG is actually not used in the construction, and is used only in the security proof.)
Because of this change, we can now relax the requirement for the MBPF obfuscator
MBPO to be secure in the presence of only statistically partially uninvertible auxiliary
input. This result is captured by the following theorem. (The formal proof is given in
the full version.)

Theorem 2. Assume Π is an ε-lossy encryption scheme with negligible ε, H is a
UOWHF, and MBPO is AIND-δ-sPUAI secure with δ(k) ≥ kε(k). Then, the KEM Γ
constructed as in Fig. 1 is CCA2 secure.

Proof Sketch of Theorem 2. The proof proceeds very similarly to that of Theorem 1.
The main difference is that we consider an additional game between Game 4 and
Game 5 (say, Game 4.5), in which we generate all public keys for {pk(h∗

i )
i }i∈[k] by

using the lossy key generation algorithm LKG(1k), instead of PKG(1k), where h∗
i is

the i-th bit of h∗ = Hκ(DL
∗). Then the difference between a CCA2 adversary A’s suc-

cess probability in Game 4 and that in Game 4.5 can be bounded to be negligible by the
indistinguishability of keys of the k-repetition lossy encryption scheme Πk. In particu-
lar, the corresponding secret keys {sk(h∗

i )
i }i∈[k] are already not used in Game 4, and the

reduction algorithm (for distinguishing ordinary/lossy public keys of Πk) need not use
them. Correspondingly to the above, in order to show that the difference between A’s
success probability in Game 4.5 and that in Game 5 is negligible, we will use the AIND-
δ-sPUAI security of MBPO, with the auxiliary input ai′Γ : Xk × {0, 1}t → {0, 1}t′

that is defined in the same way as aiΓ used in the proof of Theorem 1 except that
the public keys {pki}i∈[k] are generated by executing the lossy key generation algo-
rithm LKG(1k). Since the keys {pki}i∈[k] are generated from LKG, due to ε-lossiness
of the lossy encryption scheme Π and (kε)-lossiness of the k-repetition construction
Πk (where (kε)-lossiness of Πk based on ε-lossiness of Π can be shown by a standard
hybrid argument), we can easily see that ai′Γ is a (kε)-sPUAI function. The rest of the
proof proceeds identically to that of Theorem 1. ��

4.3 Extensions

A-priori Fixed and Bounded-length Auxiliary Input Functions. Note that for both of our
proposed constructions, the auxiliary input functions under which the building block
MBPF obfuscator MBPO needs to be secure, are dependent only on the building block
PKE/lossy encryption scheme Π , which is fixed when Π is fixed. In particular, MBPO
is required to satisfy AIND-δ-cPUAI (and AIND-δ-sPUAI) security only for t′-bounded
δ-cPUAI (and δ-sPUAI) functions with t′(k) = k · �PK(k) + k · �C(k) + k. This a-priori
bounded output length for auxiliary input functions might make it easier to achieve
AIND-δ-cPUAI (and AIND-δ-sPUAI) secure MBPF obfuscators. We note that a similar
observation on the possibility of weakening the requirement regarding auxiliary inputs
by bounding the output length is also given in [9].

Using MBPF Obfuscators with Short Point Values. In our constructions, the MBPF
obfuscator MBPO needs to obfuscate an MBPF Iα→β whose point value β is relatively
long (which consists of k randomness {ri}i∈[k] and a k-bit string K). For our first
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construction, however, we can shorten the length of a point value of MBPFs that need
to be obfuscated by utilizing a pseudorandom generator (PRG). More specifically, let
G : {0, 1}k → {0, 1}t be a PRG (where t(k) = k · �R(k) + k). Then instead of picking
{ri}i∈[k] and K ∈ {0, 1}k uniformly at random, these values can be generated from
a short seed s ∈ {0, 1}k by β = (r1‖ . . . ‖rk‖K) ← G(s), and now we only need to
obfuscate Iα→s, instead of Iα→β . However, this modification is at the cost of a stronger
requirement for AIND-δ-cPUAI security ofMBPO. That is, now δ has to be large enough
to incorporate the security of the used PRG. Specifically, if the PRG is εg-secure, then it
is required that δ ≥ kε+ εg (where a PRG is said to be ε-secure if all PPTA adversaries
have at most advantage ε = ε(k) in distinguishing a pseudorandom value from a truly
random value for all sufficiently large k ∈ N). We note that this idea of using a PRG
does not work for our second construction, because we cannot use a pseudorandom
string as a randomness in the encryption algorithm of a lossy encryption scheme. Using
a pseudorandomness violates the statistical lossiness property in general.

A Simpler Construction with CCA1 Security. We can show that a simpler variant of the
proposed construction which employs the Naor-Yung-style double encryption [52] (in-
stead of the Dolev-Dwork-Naor-style multiple encryption), leads a CCA1 secure KEM.
This KEM is partly explained in Introduction, and we will show the details in the full
version. Interestingly, unlike our CCA2 secure constructions, in the proof of this CCA1
secure variant, we need to use an auxiliary input function that internally runs (a part of)
a CCA1 adversary, and thus its output length cannot be a-priori bounded.

5 Relations among Security Notions for MBPF Obfuscators

In this section, we investigate the relations between our new indistinguishability-based
security notions for MBPF obfuscators, AIND-δ-cPUAI/sPUAI, and the worst-/average-
case virtual black-/grey-box properties in the presence of auxiliary inputs. For the
average-case virtual black-/grey-box properties, we consider the auxiliary input func-
tions defined in Section 3.1, and show that our new security notions are implied by the
average-case virtual black-/grey-box properties with the same type of auxiliary inputs.

We first formally define the average-case virtual black-/grey-box properties. For no-
tational convenience, for an MBPF obfuscator MBPO, a probabilistic algorithm M
whose output is restricted to be a bit, and a two-input probabilistic function ai : Xk ×
{0, 1}t → {0, 1}∗, we define the following three experiments:

ExptRealMBPO,ai,M(k) :
α ← Xk

β ← {0, 1}t
z ← ai(α, β)
DL ← MBPO(Iα→β)
Return b ← M(1k, z, DL)

ExptSimai,M(k) :
α ← Xk

β ← {0, 1}t
z ← ai(α, β)
Return b ← MIα→β (1k, z)

Expts-Simai,M (k) :
α ← Xk

β ← {0, 1}t
z ← ai(α, β)
Return b ← M(1k, z)

(Note that in Expts-Simai,M (k), the algorithmM does not have access to any oracle.)

Definition 7. We say that an MBPF obfuscator MBPO satisfies
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– the average-case virtual black-box property w.r.t. δ-computationally (resp.
δ-statistically) partially uninvertible auxiliary input (AVB-δ-cPUAI (resp. AVB-δ-
sPUAI) security, for short), if for every PPTA A and all positive polynomials q =
q(k) and � = �(k), there exists a PPTA S such that for every �-bounded δ-cPUAI
(resp. δ-sPUAI) function ai and all sufficiently large k ∈ N, it holds that

AdvA-MBPO-AIMBPO,ai,A,S(k) := |Pr[ExptRealMBPO,ai,A(k) = 1]− Pr[ExptSimai,S(k) = 1]| ≤ 1/q.

– the strong average-case virtual black-box property w.r.t. δ-computationally (resp.
δ-statistically) partially uninvertible auxiliary input (SAVB-δ-cPUAI (resp. SAVB-
δ-sPUAI) security, for short), if for every PPTA A and all positive polynomials
q = q(k) and � = �(k), there exists a PPTA S such that for every �-bounded
δ-cPUAI (resp. δ-sPUAI) function ai and all sufficiently large k ∈ N, it holds that

AdvSA-MBPO-AIMBPO,ai,A,S(k) := |Pr[ExptRealMBPO,ai,A(k) = 1]−Pr[Expts-Simai,S (k) = 1]| ≤ 1/q.

Furthermore, we define the (strong) average-case virtual grey-box property w.r.t. δ-
computationally (resp. δ-statistically) partially uninvertible auxiliary input ((S)AVG-δ-
cPUAI (resp. (S)AVG-δ-sPUAI) security for short) for an MBPF obfuscator MBPO, in
the same way as the definitions for the corresponding virtual black-box properties, ex-
cept that we replace “a PPTA S” in each definition with “a computationally unbounded
algorithm S that makes only polynomially many queries.”

Now, we show the relations among security notions, which are summarized in Fig. 2.
Most of the relations are obvious. Namely, the virtual black-box properties always im-
ply the virtual grey-box properties for the same class of auxiliary inputs. Furthermore,
WVB-AI security implies AVB-δ-cPUAI security for arbitrary (not necessarily negligi-
ble) δ, and AVB-δ-cPUAI security implies AVB-δ-sPUAI security because the class of
δ-sPUAI functions are smaller than the class of δ-cPUAI functions for the same δ.
Moreover, by definition, for both X ∈ {δ-cPUAI, δ-sPUAI}, SAVB-X and SAVG-X imply
AVB-X and AVG-X, respectively, because the former notions consider simulators that do
not make any oracle queries and thus can also be used as simulator for the latter.

In the following, we show the implications of the non-trivial directions. The follow-
ing equivalence is due to the result by Bitansky and Canetti [7]. (Note that the following
results are only for non-uniform PPTA adversaries, while our default notions in this pa-
per are with respect to uniform PPTA adversaries.)

Lemma 4. ([8, Propositions 8.3 and A.3]) For MBPF obfuscators, WVB security for
non-uniform PPTA adversaries with non-uniform PPTA simulators, WVG security for
non-uniform PPTA adversaries, and WVG-AI security for PPTA non-uniform adver-
saries, are equivalent.

The following is useful for showing the implication to the AIND security notions that
we will show later.

Lemma 5. Let δ : N → [0, 1] be a negligible function. For MBPF obfuscators, for
both X ∈ {δ-cPUAI, δ-sPUAI}, AVB-X security and SAVB-X security are equivalent.
Furthermore, AVG-δ-sPUAI security and SAVG-δ-sPUAI security are equivalent.
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Fig. 2. Relations among security notions for MBPF obfuscators defined in this paper. The arrow
“X → Y” indicates that X-security implies Y-security. The dotted arrows indicate the implications
that hold only for the non-uniform setting in which an adversary (and a simulator) are non-
uniform algorithms. In the figure, δ is a negligible function.

Intuition. For both cPUAI and sPUAI cases, the implication from the latter to the for-
mer is trivial by definition. The implications of the opposite directions can be shown
because the partial uninvertibility of an auxiliary input function guarantees that a simu-
lator cannot find the point address of the MBPF being obfuscated and thus having oracle
access to an MBPF does not give much advantage. The computational uninvertibility
and statistical uninvertibility naturally correspond to the uninvertibility of auxiliary in-
put functions against a PPTA simulator and that against a computationally unbounded
simulator, respectively.

Finally, the following implications clarify that AIND notions introduced in Section 3.2
are indeed implied by the average-case virtual black-box/grey-box properties.

Lemma 6. Let δ : N → [0, 1] be a negligible function. For both X ∈ {δ-cPUAI,
δ-sPUAI}, if an MBPF obfuscator is SAVG-X secure, then it is AIND-X secure.

Intuition. This lemma is shown by considering a hybrid experiment in which a (com-
putationally unbounded) simulator S (due to SAVG-δ-cPUAI/sPUAI security) is given
only an auxiliary input ai(α, β) (for randomly chosen (α, β)) as input, and outputs a
bit.; By the SAVG-δ-cPUAI/sPUAI security, for both cases b ∈ {0, 1}, the probability
that an adversary (attacking the AIND-δ-cPUAI/sPUAI security) on input ai(α, β0) and
MBPO(Iα→βb

) (for randomly chosen α, β0, β1) outputs 1 can be shown to be negli-
gibly close to the probability that the simulator S outputs 1 in the hybrid experiment,
which proves the lemma.

6 Lossy Encryption from Re-randomizable Point Obfuscation

In this section, we show that a re-randomizable point obfuscator yields a lossy encryp-
tion scheme. We first recall the definition of re-randomizability [7].
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PKG(1k) :
α0 ← Xk

α1 ← Xk\{α0}
P̂i ← PO(Iαi) for i ∈ {0, 1}
pk ← (P̂0, P̂1); sk ← α0

Return (pk, sk)

LKG(1k) :
α ← Xk

P̂i ← PO(Iα) for i ∈ {0, 1}
Return pk ← (P̂0, P̂1)

Enc(pk,m) :

Parse pk as (P̂0, P̂1)
View m as
(m1‖ . . . ‖mt) ∈ {0, 1}t

Pi ← ReRand(P̂mi)
for i ∈ [t]

Return c ← (P1, . . . , Pt)

Dec(sk, c) :
Parse c as (P1, . . . , Pt)
For i ∈ [t]:

mi ←
{
0 if Pi(sk) = �
1 otherwise

End For
Return m ← (m1‖ . . . ‖mt)

Fig. 3. Lossy encryption from a re-randomizable point obfuscator

Definition 8. ([7]) Let X = {Xk}k∈N be a domain ensemble and let PO be a point
obfuscator for PF(X ) whose randomness space is {0, 1}�(k). We say that PO is re-
randomizable if there exists a PPTA ReRand (called the re-randomization algorithm)
such that for all k ∈ N, all α ∈ Xk, and for all r ∈ {0, 1}�, the distribution of
ReRand(PO(Iα; r)) and the distribution of PO(Iα) are identical.

We note that the point obfuscator based on the perfect one-way hash function by Can-
neti [17] is re-randomizable. (We review the construction in Appendix B.)

Now, we formally describe our proposed lossy encryption scheme. LetX = {Xk}k∈N

be a domain ensemble, and let PO be a re-randomizable point obfuscator for PF(X )
with the re-randomization algorithm ReRand, and let t = t(k) > 0 be a polynomial.
Then we construct a lossy encryption scheme Π = (PKG,Enc,Dec, LKG) whose plain-
text space is {0, 1}t as in Fig. 3.

Our construction is inspired partly by the construction of a PKE scheme from a re-
randomizable point obfuscator due to Bitansky and Canetti [7], and partly by the con-
struction of lossy encryption from a re-randomizable encryption scheme due to Hemen-
way et al. [39]. The following theorem guarantees that Π constructed as above is indeed
a lossy encryption scheme. (The formal proof is given in the full version.)

Theorem 3. If PO is re-randomizable and 2-composable, then Π constructed as in
Fig. 3 is a 0-lossy encryption scheme.

Intuition. Theorem 3 is shown by using the equivalence of t-composability and t-
distributional indistinguishability for coordinate-wise well-spread (CWS) distributions,
established by Bitansky and Canetti [8]. The latter property roughly states that if
(α1, . . . , αt) are chosen from a distribution so that each αi has high min-entropy (but
αi’s could be arbitrarily correlated), (PO(α1), . . . ,PO(αt)) is computationally indis-
tinguishable from (PO(u1), . . . ,PO(ut)) where each ui is chosen uniformly at random
(the formal definition appears in the full version). This property can be used to show the
indistinguishability of keys, which is easy to see due to the design of PKG and LKG.
Moreover, note that a lossy key consists of a pair of obfuscated circuits of point func-
tions with a same point address. Therefore, due to the re-randomizability, an encryption
of any plaintext have identical distribution, which implies 0-statistical lossiness.
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CCA2 Secure PKE/KEM Based Solely on Re-randomizable, Composable Point Obfusca-
tors. Recall that when considering non-uniform PPTA adversaries, WVB security (with
non-uniform PPTA simulators), WVG security, and WVG-AI security for MBPF obfusca-
tors are equivalent (see Lemma 4). Therefore, the WVG secure MBPF obfuscator for t-bit
point values due to [19,7] based on a (t + 1)-composable point obfuscator can be used
as an AIND-δ-sPUAI secure MBPF obfuscator (with any negligible δ). Note that if we
denote by � the length of the randomness used by ReRand, then the randomness length
�R of the lossy encryption scheme Π for the k-bit plaintext space is �R(k) = k · �(k).
Combining these results with our second generic construction, we obtain the following.

Theorem 4. Assume there exists a point obfuscator which is (1) re-randomizable where
ReRand uses �(k)-bit randomness, and (2) (k2 · �(k) + k + 1)-composable for non-
uniform PPTA adversaries. Then there exists a CCA2 secure PKE scheme/KEM.

7 Discussion

On Replacing MBPF Obfuscators with SKE. As has been clarified in several previous
works [19,27,37,21], there is a strong connection between MBPF obfuscators and SKE
schemes. More specifically, an MBPF obfuscator can always be used as a SKE scheme.
In order for the opposite direction to be true, among other things regarding security, it is
necessary that a SKE scheme has the property called the unique-key property [27,37,21].
Therefore, a variant of our KEM Γ in Section 4 in which an MBPF obfuscator is re-
placed with a SKE scheme that has the unique-key property and satisfies the security
that we call AIND-δ-cPUAI (and AIND-δ-sPUAI) security (which is defined similarly to
that for MBPF obfuscator), can also be proved CCA2 secure.

Since the unique-key property is not satisfied by SKE schemes in general, it may be
the case that a SKE scheme is in general a weaker primitive than an MBPF obfusca-
tor, and is potentially easier to achieve. (Although a generic transformation of a SKE
scheme into one that has this property was proposed in [21], we could not figure out
whether this transformation preserves AIND-δ-cPUAI security and AIND-δ-sPUAI secu-
rity.) Motivated by this observation, in the full version we will show another variant of
the proposed KEM based on a SKE scheme without the unique-key property.

On the Difficulty of Achieving AIND-δ-cPUAI Security. We have shown that AIND-δ-
sPUAI security is implied by the virtual grey-box properties (see Fig. 2), and thus by
the results established by [19,7] we can construct an AIND-δ-sPUAI secure MBPF ob-
fuscator (or SKE) from any composable point obfuscator. Unfortunately, however, we
could not come up with a natural assumption that is sufficient to realize an AIND-δ-
cPUAI secure MBPF obfuscator, and we would like to leave it as an interesting open
problem. In the full version, we will show that constructing it is at least as difficult as
constructing a SKE scheme which is one-time chosen plaintext secure in the presence of
computationally hard-to-invert leakage where leakage occurs only from a key. There,
we will also show that the MBPF obfuscator by Lynn et al. [48] can be shown to be
AIND-δ-cPUAI secure for any negligible δ. This at least suggests that it can be achieved
under a strong assumption. We conjecture that the MBPF obfuscator by Lynn et al. can
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be shown to be AIND-δ-cPUAI secure for any negligible δ if we instantiate the random
oracle as a family of hash functions satisfying (some version of) UCE security that is
recently introduced by Bellare et al. [5].

We see that the difficulty of achieving AIND-δ-cPUAI security is that it allows a leak-
age from a random point address/value pair (α, β) (or a key/message pair in the case of
SKE) that could be arbitrarily correlated, as long as partial uninvertibility is satisfied.
This definition allows β to be (a part of) the source of the hardness of the partial un-
invertibility. For example, we could consider an auxiliary input function ai(α, β) that
returns an encryption of the “plaintext” α under the “key” β, using some SKE scheme,
which will be a δ-cPUAI function under a reasonable assumption on the SKE scheme.
This is quite different from a usual indistinguishability-based security definition (e.g.
CPA security of a SKE scheme) in which a point value (or a message in SKE) is chosen
by an adversary, and thus cannot be a source of hardness. This is one of the reasons why
we cannot straightforwardly use the existing results on MBPF obfuscators/SKE [27,21]
(or a stronger primitive of PKE secure under hard-to-invert leakage [26]). We notice that
the formulation of AIND-δ-cPUAI security looks close to the security definition for de-
terministic encryption in the hard-to-invert auxiliary input setting [16], which considers
a leakage from a plaintext (as opposed to a key). This setting is in some sense a “dual”
of the settings that consider leakage only from a key. We also notice the similarity to the
notion called security under chosen distribution attacks [4] that considers the security
under a correlated leakage from a message and randomness simultaneously (this is a se-
curity notion for PKE but can be considered for SKE as well), but this does not consider
a leakage from a key or leakage with computational uninvertibility. It would be worth
clarifying further whether it is possible to leverage techniques from these various kinds
of “leakage resilient” cryptography for achieving AIND-δ-cPUAI/sPUAI secure MBPF
obfuscators/SKE schemes.

Acknowledgement. The authors would like thank the members of the study group
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comments and suggestions.
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A Basic Cryptographic Primitives

Public Key Encryption. A public key encryption (PKE) scheme Π consists of the three
PPTAs (PKG,Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk)← PKG(1k) c← Enc(pk,m) m (or ⊥)← Dec(sk, c)

where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c is a
ciphertext of a plaintext m under pk. We require for all k ∈ N, all (pk, sk) output by
PKG(1k), and all m, it holds that Dec(sk,Enc(pk,m)) = m.

We define the “public key length” �PK(k) as the length of pk output by PKG(1k).
Moreover, if Enc can encrypt k-bit plaintexts (for security parameter k), we define the
“randomness length” �R(k) and the “ciphertext length” �C(k), respectively, as the length
of randomness used by Enc and the length of ciphertexts output from Enc.

We say that a PKE scheme Π is ε-CPA secure if for all PPTAs A = (A1,A2) and
for all sufficiently large k ∈ N, it holds that AdvCPAΠ,A(k) := 2 · |Pr[ExptCPAΠ,A(k) =

1]− 1/2| ≤ ε(k), where the experiment ExptCPAΠ,A(k) is defined as in Fig. 4 (left). In the
experiment, it is required that |m0| = |m1|.
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ExptCPAΠ,A(k) :

(pk, sk) ← PKG(1k)
(m0,m1, st) ← A1(pk)
b ← {0, 1}
c∗ ← Enc(pk,mb)
b′ ← A2(st, c

∗)

Return (b′ ?
= b)

ExptCCA2Γ,A(k) :

(pk, sk) ← KKG(1k)

st ← ADecap(sk,·)
1 (pk)

(c∗,K∗
1 ) ← Encap(pk)

K∗
0 ← {0, 1}k; b ← {0, 1}

b′ ← ADecap(sk,·)
2 (st, c∗,K∗

b )

Return (b′ ?
= b)

ExptUOWH,A(k) :

(m, st) ← A1(1
k)

κ ← HKG(1k)
m′ ← A2(st, κ)
If Hκ(m

′) = Hκ(m) ∧m′ �= m
then return 1 else return 0

Fig. 4. The CPA security experiment for a PKE scheme Π (left), the CCA2 security experiment
for a KEM Γ (center), and the security experiment for a UOWHF H (right)

Key Encapsulation Mechanism. A key encapsulation mechanism (KEM) Γ consists of
the three PPTAs (KKG,Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk)← KKG(1k) (c,K)← Encap(pk) K (or ⊥)← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c is a
ciphertext of a session-key K ∈ {0, 1}k under pk. We require for all k ∈ N, all (pk, sk)
output by KKG(1k), and all (c,K)← Encap(pk), it holds that Decap(sk, c) = K .

We say that a KEM Γ is CCA2 secure if for all PPTAsA = (A1,A2), Adv
CCA2
Γ,A (k) :=

2 · |Pr[ExptCCA2Γ,A (k) = 1] − 1/2| is negligible, where the experiment ExptCCA2Γ,A (k) is
defined as in Fig. 4 (center). In the experiment,A2 is not allowed to query c∗.

Universal One-Way Hash Function. We say that a pair of PPTAs H = (HKG,H) is a
universal one-way hash function (UOWHF) if the following two properties are satisfied:
(1) On input 1k, HKG outputs a hash-key κ. For any hash-key κ output from HKG(1k),
H defines an (efficiently computable) function of the form Hκ : {0, 1}∗ → {0, 1}k. (2)
For all PPTAsA = (A1,A2), Adv

UOW
H,A(k) := Pr[ExptUOWH,A(k) = 1] is negligible, where

the experiment is defined as in Fig. 4 (right).

B Concrete Instantiations of Point/MBPF Obfuscators

Composable Point Obfuscator. Here we recall the point obfuscator due to Canetti [17]
(which was originally introduced as a perfectly one-way hash function). Let G be a
cyclic group with prime order p (where the size of p is determined by the security
parameter k). Then, consider the following point obfuscator PO for PF(Zp):

PO(Iα): (where α ∈ Zp) Pick a group element r ← G uniformly at random, and
outputs the circuit Cr,rα(·) : Zp → {�,⊥}, where CA,B is the circuit which takes
x ∈ Zp as input, and outputs� if Ax = B and otherwise outputs⊥.

Bitansky and Canetti [7] showed that the above point obfuscator is t-composable,
under a strong variant of the decisional Diffie-Hellman (DDH) assumption, called the
t-strong vector DDH (t-SVDDH) assumption (see [7] for a formal definition).
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MBPO(Iα→β) :
P0 ← PO(Iα)
View β as (β1‖ . . . ‖βt) ∈ {0, 1}t
α′ ← Xk\{α}
For i ∈ [t]:

Pi ←
{
PO(Iα) if βi = 1

PO(Iα′) otherwise
End For
Return DL ← CP0,...,Pt .

CP0,...,Pt (x) :
If P0(x) = ⊥ then return ⊥
For i ∈ [t]:

βi ←
{
1 if Pi(x) = �
0 otherwise

End For
Return β ← (β1‖ . . . ‖βt).

Fig. 5. The construction of an MBPF obfuscator MBPO from a composable point obfuscator
PO [19,7]. MBPO takes an MBPF Iα→β as input, and returns a circuit DL = CP0,...,Pt that is
described in the right column.

We remark that as mentioned in [7], the point obfuscator based on the t-SVDDH
assumption described here satisfies the re-randomizability in the sense of Definition 8.
Specifically, we can just re-randomize two group elements in an obfuscated circuit out-
put from PO without changing the point address.

WVG Secure MBPF Obfuscator from Composable Point Obfuscator. We recall the con-
struction of an MBPF obfuscator based on a composable point obfuscator, due to Canetti
and Dakdouk [19] and Bitansky and Canetti [7]. Let PO be a point obfuscator for
PF(X ) and let t = t(k) > 0 be a polynomial. Then an MBPF obfuscator MBPO
for MBPF(X , t) is constructed as in Fig. 5.

Based on the result of [19], Bitansky and Canetti [7] showed that if PO is (t + 1)-
composable, then the MBPF obfuscator MBPF constructed as in Fig. 5 is a WVG secure.
By instantiating this conversion with the above mentioned point obfuscator, we obtain
a WVG secure t-bit-output MBPF obfuscator under the (t+ 1)-SVDDH assumption.
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Abstract. A probabilistically Checkable Proof (PCP) allows a random-
ized verifier, with oracle access to a purported proof, to probabilistically
verify an input statement of the form “x ∈ L” by querying only few
bits of the proof. A PCP of proximity (PCPP) has the additional fea-
ture of allowing the verifier to query only few bits of the input x, where
if the input is accepted then the verifier is guaranteed that (with high
probability) the input is close to some x′ ∈ L.

Motivated by their usefulness for sublinear-communication cryptogra-
phy, we initiate the study of a natural zero-knowledge variant of PCPP
(ZKPCPP), where the view of any verifier making a bounded number
of queries can be efficiently simulated by making the same number of
queries to the input oracle alone. This new notion provides a useful ex-
tension of the standard notion of zero-knowledge PCPs. We obtain two
types of results.

– Constructions. We obtain the first constructions of query-efficient
ZKPCPPs via a general transformation which combines standard
query-efficient PCPPs with protocols for secure multiparty compu-
tation. As a byproduct, our construction provides a conceptually
simpler alternative to a previous construction of honest-verifier zero-
knowledge PCPs due to Dwork et al. (Crypto ’92).

– Applications. We motivate the notion of ZKPCPPs by apply-
ing it towards sublinear-communication implementations of commit-
and-prove functionalities. Concretely, we present the first sublinear-
communication commit-and-prove protocols which make a black-box
use of a collision-resistant hash function, and the first such mul-
tiparty protocols which offer information-theoretic security in the
presence of an honest majority.

1 Introduction

In this work we initiate the study of probabilistically checkable proofs of prox-
imity with a zero-knowledge property, and use such proofs to design efficient
cryptographic protocols. Before describing our main results, we first give a short
overview of probabilistic proof systems.

� Research supported by the European Union’s Tenth Framework Programme (FP10/
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Probabilistically Checkable Proof (PCP) systems [1,2] are proof systems that
allow an efficient randomized verifier, with oracle access to a purported proof,
to probabilistically verify claims such as “x ∈ L” (for some input x and an
NP-language L) by probing only few bits of the proof. The verifier accepts the
proof of a true claim with probability 1 (the completeness property), and rejects
false claims with high probability (the probability that the verifier accepts a
false claim is called the soundness error). The celebrated PCP theorem [1,2,11]
asserts that any NP language admits a PCP system with soundness error 1/2
in which the verifier reads only a constant number of bits from the proof. The
soundness error can be reduced to 2−σ by running the verifier σ times.

Probabilistically Checkable Proofs of Proximity (PCPPs), also known as as-
signment testers, are proof systems that allow probabilistic verification of claims
by probing few bits of the input and a purported proof. Needless to say, the ver-
ifier of such a system cannot generally be expected to distinguish inputs in the
language from inputs that are not in the language, but rather it should accept
every x ∈ L with probability 1 and reject (with high probability) every input
that is “far” from all x′ ∈ L. First introduced in [7,12,11] as building blocks
for the construction of more efficient PCPs, there are currently known PCPP
systems for NP with parameters comparable to those of the best known PCP
systems [8,23].

A seemingly unrelated concept is that of zero-knowledge (ZK) proofs [15],
namely proofs that carry no extra knowledge other than being convincing. Com-
bining the advantages of ZK proofs and PCPs, a zero-knowledge PCP (ZKPCP)
is defined similarly to a traditional PCP, with the additional guarantee that
the view of any (possibly malicious) verifier can be efficiently simulated up to a
small statistical distance. ZKPCPs were first constructed by Kilian et al. [21],
building on a previous weaker “honest-verifier” notion of ZKPCPs implicitly
constructed by Dwork et al. [13]. More concretely, the work of [21] combines
the weaker variant of ZKPCPs from [13] with an unconditionally secure oracle-
based commitment primitive called a “locking scheme” to obtain ZKPCPs for
NP that guarantee statistical zero-knowledge against query-bounded malicious
verifiers, namely ones who are limited to asking at most p (|x|) queries for some
fixed polynomial p. A simpler construction of locking schemes was recently given
in [17].

ZKPCPPs. In this work we put forward and study the new notion of zero-
knowledge PCPP (or ZKPCPP for short), which extends the previous notion of
ZKPCP and makes it more useful. A ZKPCPP is a PCPP with a probabilistic
choice of proof and the additional guarantee that the view of any (possibly-
malicious) verifier, making at most q∗ queries to his input and his proof oracle,
can be efficiently simulated by making the same number of queries to the input
alone. ZKPCPPs are a natural extension of ZKPCPs (indeed, the existence of a
ZKPCPP system implies the existence of a ZKPCP system with related param-
eters) and interesting objects on their own. As we explain next, they are also
motivated by cryptographic applications that involve sublinear-communication
zero-knowledge arguments on distributed or committed data.
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To give the flavor of these applications, suppose that a database owner (prover)
commits to a large sensitive database D by robustly secret-sharing it among
a large number of potentially unreliable servers. At a later point in time, a
user (verifier) may want to learn the answer to a query q(D) on the commit-
ted database. ZKPCPPs provide the natural tool for efficiently verifying that
the answer a provided by the prover is indeed consistent with the committed
database, namely that a = q(D), without revealing any additional information
about the database to the verifier and a colluding set of servers. Concretely, the
prover distributes between the servers a ZKPCPP asserting that the shares of
D (the input) are indeed valid shares of some database D′ such that q(D′) = a.
The verifier, by probing only few entries in the input and the proof string, is
convinced that the shares held by the servers are indeed close to being consistent
with valid shares of some database D′ such that q(D′) = a. If not “too many”
servers are corrupted, the robustness of the underlying secret-sharing scheme
guarantees that D′ = D. (Unlike the ZKPCPP model, the answers provided
by malicious servers may depend on the identity of the verifier’s queries; this
difficulty can be overcome by ensuring that with sufficiently high probability the
verifier’s queries are answered by honest servers.) The above approach can also
be used for verifiable updates of a secret distributed database, where a ZKP-
PCPP is used to convince a verifier that the shares of the updated version of
the database are consistent with the original shares with respect to the update
relation.

A similar idea can be used to get a sublinear-communication implementa-
tion of a “commit-and-prove” functionality in the two-party setting. Here the
prover first succinctly commits, using a Merkle tree, to the shares of D. To later
prove that q(D) = a, the prover again uses a Merkle tree to succinctly com-
mit to a ZKPCPP asserting that the values it committed to in the previous
phase are valid shares of some database D′ such that q(D′) = a. This gives the
first sublinear-communication implementations of commit-and-prove which only
make a black-box use of a collision-resistant hash function. (See Section 5.2 for
a non-black-box alternative using standard sublinear arguments.)

1.1 Summary of Results

We introduce the notion of ZKPCPPs and construct query-efficient ZKPCPPs
for any NP language L. More precisely, given an input x ∈ L, a corresponding
witness w, and a zero-knowledge parameter q∗, the prover can efficiently generate
a proof string π of length poly(|x|, q∗) which is statistical zero-knowledge against
(possibly malicious) verifiers that make at most q∗ queries to (x, π); by making
only a polylogarithmic number of queries (in |x| and q∗), an honest verifier can
get convinced that x is at most δ-far from L, except with negligible soundness
error, where δ can be any positive constant (or even inverse polylogarithmic).
We then present applications of this construction to sublinear commit-and-prove
protocols in both the two-party and the multiparty setting, as discussed above.
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1.2 Techniques

Our main ZKPCPP construction is obtained by combining an (efficient) PCPP
system without zero-knowledge with a protocol for secure multiparty compu-
tation (MPC), inheriting the efficiency from the PCPP component and the
zero-knowledge from the MPC component. The transformation has two parts.
The first consists of a general transformation from a PCPP and a secure MPC
protocol to a PCPP system with zero-knowledge against semi-honest verifiers
(HVZKPCPP, for honest-verifier ZKPCPP). The transformation can also be
applied to PCPs, yielding an HVZKPCP comparable to that of [13] that is con-
ceptually simpler. (Thus, our construction also simplifies the ZKPCP of Kilian
et al. [21] which uses the HVZKPCP of [13] as a building block.)

The second part strengthens the zero-knowledge property to hold against ar-
bitrary (query-bounded) malicious verifiers, by forcing the queries of any such
verifier to be distributed (almost) as the queries of the honest verifier of the
HVZKPCPP system. This part follows the approach of [21] of using a locking
scheme. Concretely, we use the combinatorial construction of locking schemes
from [17], except that to achieve negligible soundness error and negligible simu-
lation error simultaneously we need to apply a natural amplification technique
for reducing the error of the previous construction.

Organization. We first give the necessary preliminaries in Section 2. In Section 3
we describe the construction of a ZKPCPP from MPC protocols, and in Sec-
tion 4 we state and prove our result regarding the existence of efficient ZKPCPP
systems for NP. We describe our cryptographic applications in Section 5. Due to
space limitations, we defer several definitions, constructions, and proofs, as well
as the discussion regarding amplification of locking schemes, to the full version.

2 Preliminaries

We consider efficient probabilistic proof system for NP relations. (We refer to
a relation rather than a language because we require the prover to be com-
putationally efficient given an NP-witness.) Recall that an NP relation R is a
polynomial-time recognizable binary relation which is polynomially bounded in
the sense that there is a polynomial p such that if (x,w) ∈ R then |w| ≤ p(|x|).
We refer to x as an input and to w as a witness.

We denote by LR the NP language corresponding to R, namely LR =
{x : ∃w, (x,w) ∈ R}. We say that x is δ-far from LR (for some δ ∈ [0, 1]) if
the relative hamming distance between x and every x′ ∈ LR of the same length
is more than δ.

We say that two distribution ensembles Xn, Yn are computationally (resp.
statistically) indistinguishable if every computationally bounded (respectively,
computationally unbounded) distinguisher achieves only a negligible advantage
in distinguishing a sample drawn according toXn from a sample drawn according
to Yn.
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A probabilistic proof system (P, V ) for R consists of a PPT prover P , that on
input (x,w) outputs a proof π, and a PPT verifier V that given input 1|x| and
oracle access to x (the input oracle) and π (the proof oracle) outputs either accept
or reject. Intuitively, P tries to convince V of the claim “x ∈ LR” using w such
that (x,w) ∈ R. All the probabilistic proof systems studied in this work will have
perfect completeness (i.e. V accepts true claims with probability 1). The system
has soundness error ε if every input x /∈ LR is accepted by V with probability at
most ε, regardless of the proof oracle. Our systems are sometimes parameterized
by a statistical security parameter σ and a zero-knowledge parameter q∗. These
parameters are given as additional inputs to both P and V .

In the following sections, we define several classes consisting of NP relations
that have probabilistic proof systems with additional properties, and discuss the
containment relations between these classes. (We associate each class of relations
with the corresponding class of proof systems.) Every containment stated in
this paper follows from constructive transformations, namely if we claim that
Class1 ⊆ Class2, then the proof also shows an efficient transformation from a
pair (P, V ) ∈ Class1 to a pair (P ′, V ′) ∈ Class2.

PCPs. A standard probabilistically checkable proof (PCP) is a probabilistic
proof system (P, V ) in which V can query his input oracle x freely (that is,
his queries to x are not counted towards the query complexity). We write R ∈
PCPΣ [r, q, ε, �] if R admits a PCP with verifier randomness complexity r, query
complexity q, soundness error ε, and a proof π of length � over the alphabet Σ.

PCPPs. Intuitively, the verifier of a PCPP system tries to validate the claim
“x ∈ LR”, while reading only few bits of x. Of course, V cannot generally be
expected to distinguish the case that x ∈ LR from the case that x /∈ LR but is
very “close” to it. Instead, V is only expected to reject when x is “far” from LR.
Concretely, A probabilistically checkable proof of proximity (PCPP) system with
soundness error 0 ≤ ε < 1 and proximity parameter 0 ≤ δ < 1 is a probabilistic
proof system (P, V ) for which the following holds. For every x that is δ-far from
LR, V accepts x with probability at most ε, regardless of his proof oracle. In
this case we write R ∈ PCPPΣ [r, q, δ, ε, �] where r, q, � are as above. We refer to
a PCPP system with proximity parameter δ = 0 (i.e., in which soundness holds
for every x /∈ LR) as an exact PCPP.

We also consider systems with the following notion of strong soundness, where
every x /∈ LR is rejected with probability that is proportional to its distance
from LR. That is, there exists a function εS = εS (δ, |x|) : [0, 1]×N→ [0, 1] such
that for every δ ∈ [0, 1], every x that is δ-far from LR is accepted by V with
probability at most εS (δ, |x|). Such PCPPs are called strong PCPPs, see [8,22].
A strong PCPP system has rejection ratio β if every x that is δ-far from LR is
rejected with probability at least βδ.

ZKPCPPs and ZKPCPs. We are interested in PCPs and PCPPs that reveal
(almost) no information to verifiers who do not make “too many” queries. Intu-
itively, a probabilistic proof system is q∗-zero-knowledge if whatever a (possibly
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malicious) verifier learns by making q′ ≤ q∗ queries to x, π can be simulated
by making q′ queries to x alone. In particular, zero-knowledge of a PCP system
implies the witness is entirely hidden (the queries of the verifier to the input
oracle are not counted towards the query complexity, so the simulator can query
all of x, and consequently only the witness is hidden), while in a zero-knowledge
PCPP system not only is the witness hidden, but so is most of x. Notice that the
prover in a zero-knowledge proof system must be probabilistic (while the prover
in standard proof systems for NP can be deterministic).

More formally, let (P, V ) be a probabilistic proof system, and let V ∗ be
a (possibly malicious) q-bounded verifier (namely a verifier that never makes
more than q queries). We compare the real-life interaction between P and V ∗

with an ideal-world interaction, in which a simulator Sim with oracle access
to V ∗ interacts with a trusted third party (TTP) that knows only x. Denote
the distribution ensemble describing the view of V ∗ with oracles x, π (where
π was honestly generated by P on input x,w) by ViewV ∗x,π , and let qV ∗ de-
note the total number of queries V ∗ sent to the input and proof oracles. Let
RealV ∗,P (x,w) = (ViewV ∗x,π , qV ∗). Similarly, for an ideal-world simulator Sim
let Sim (x) denote the distribution ensemble describing the output of Sim (after
making his queries to x), and let qS denote the number of queries Sim made. We
define IdealSim (x) = (Sim (x) , qS).

We say that (P, V ) is (ε, q∗)-zero knowledge with respect to R (for some
ε ∈ [0, 1] and q∗ ∈ N) if for every real-life q∗-bounded verifier V ∗ there ex-
ists an ideal-world simulator Sim such that for every (x,w) ∈ R, we have
RealV ∗,P (x,w) ≈ε IdealSim (x), where ≈ε denotes statistical distance of ε. If
(P, V ) is (0, q∗)-zero-knowledge we say that it has perfect q∗-zero-knowledge,
and write RealV ∗,P (x,w) ≡ IdealSim (x). We may choose ε, q∗ to be functions
of a security parameter σ and the input size |x|. By default, we will make the
stronger requirement that there exist a single, PPT black-box simulator S such
that for every q∗-bounded V ∗, the simulator Sim = SV

∗
satisfies the above re-

quirement. Moreover, S can only interact with V ∗ in a straight-line fashion (i.e.,
it cannot rewind V ∗). The latter straight-line simulation requirement is useful
for one of our motivating applications.

Remark 1. The above notion of zero-knowledge requires that the number of in-
put bits read by the simulator be the same as the total number of bits read by
the verifier. One may consider stronger notions which require that the number of
input bits read by the simulator coincide with the number of input bits read by
the verifier, or even that the same input bits are read by the verifier and the sim-
ulator. The latter is captured by letting Real and Ideal, instead of including the
number of queries V ∗ and Sim made (respectively), include the specific indices
V ∗, Sim queried in x. Our constructions do not satisfy these stronger notions.

Notation 1. If a system (P, V ) ∈ PCPPΣ [r, q, δ, εS, �] for relation R guar-
antees (εZK , q∗)-zero-knowledge, we say that (P, V ) is a q∗-zero-knowledge
PCPP and write (P, V ) ∈ ZKPCPPΣ [r, q, εZK , δ, εS, �]. Similarly, if (P, V ) ∈
PCPΣ [r, q, εS , �] for relation R guarantees (εZK , q∗)-zero-knowledge, we write
(P, V ) ∈ ZKPCPΣ [r, q, εZK , εS , �].
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We also consider the following honest-verifier variant of zero-knowledge which
is used as a simpler building block and is also of independent interest. We say
that (P, V ) has honest-verifier zero-knowledge (HVZK) with statistical distance
ε ∈ [0, 1] if for the honest verifier V there exists a PPT simulator Sim such that
the previous zero-knowledge requirement holds, namely for every pair (x,w) ∈ R,
RealV,P (x,w) ≈ε IdealSim (x).

Secure MPC. We follow the terminology and notation of [16]. Let P1, ..., Pn be n
parties, where every party Pi holds a private input zi (we allow zi to be empty,
which we denote by zi = λ). We consider protocols for securely realizing an
n-party functionality g, that maps the tuple of inputs (z1, ..., zn) to an output in
{0, 1}. All parties are expected to have the same output. The view of a party Pi,
denoted Vi, includes his private input zi and a random input ri, together with
all the messages that Pi received during the protocol execution. (The messages
Pi sends during the execution, as well as his local output, are determined by this
view.) A pair Vi,Vj of views are consistent with respect to zi, zj and Π , if the
outgoing messages (from Pi to Pj) implicit in Vi in an execution of Π on inputs
zi, zj , are identical to the incoming messages (from Pi to Pj) reported in Vj , and
vice versa. Consistency between a view and one of its incident communication
channels is defined similarly.

We consider the execution of the protocol in the presence of an adversary A
who may corrupt up to t parties. A semi-honest adversary can only passively
corrupt parties (i.e., it does not modify their behavior but can learn their entire
view), whereas a malicious adversary can arbitrarily modify the behavior of
corrupted parties. A static adversary is restricted to pick the set of corrupted
parties in advance, whereas an adaptive adversaries may pick them one by one,
choosing the next party to corrupt based on its view so far.

A protocol Π realizes a deterministic n-party functionality g (z1, ..., zn) with
perfect correctness if for all inputs z1, ..., zn, when no party is corrupted, all
parties output g (z1, ..., zn). For a security threshold 1 ≤ t ≤ n, we say that Π
realizes g with perfect t-privacy if for every semi-honest adversary A corrupting
a set T ⊆ [n] , |T | ≤ t of parties there exists a simulator Sim that can perfectly
simulate the view of A given only the inputs of corrupted parties and the output.
One can naturally define a variant of privacy that applies to adaptive adversaries.
(In the adaptive case, we require the existence of a PPT black-box straight-line
simulator.) We say that Π realizes g with perfect T -robustness (for some subset
T ⊆ [n]) if for every malicious adversary A corrupting the parties in T , and
for every tuple zT̄ of inputs of uncorrupted parties, the following holds. If g
evaluates to 0 on all choices of inputs z consistent with zT̄ , then all uncorrupted
parties are guaranteed to output 0.1 This property is implied by the standard
simulation-based notion of security against malicious adversaries.

1 Notice that we only define robustness for the case that g evaluates to 0, which
suffices for our purposes since we only consider functions g representing relations
R. More specifically, robustness is used to construct sound proofs systems, where
the corrupted party is the party holding the witness (and the bits of the input are
partitioned between the honest parties). As soundness concerns the case x /∈ LR,
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Locking schemes [21,17]. Informally, a locking scheme allows a sender S to com-
mit some secret to a receiver R, such that given a key the receiver can “open” the
lock and retrieve the secret, whereas without the key this is almost impossible
(for a query-bounded receiver). More formally, a locking scheme (S,R) for mes-
sage spaceW consists of a sender S and a receiver R that interact in two phases:
Commitment, during which S sends a locking oracle Lw to R, thus committing
to some w ∈ W ; and Decommitment, in which S decommits w by sending R a
key Kw that “opens” the lock. The requirements from the locking scheme are
as follows. First, for every honestly-generated pair (Lw,Kw), R with key Kw

and oracle access to Lw outputs w at the end of the decommitment phase with
probability 1 (this is called perfect completeness). Second, the scheme is hiding,
namely without knowing the key, R learns nothing about w, even if he probes
many bit coordinates of the lock. Thirdly, we require binding, i.e. every (possi-
bly ill-formed) lock commits the sender to some value w′. (See [17] for formal
definitions.)

3 From MPC Protocols to (Inefficient) EZKPCPPs

We show a general connection between secure MPC protocols and (exact)
ZKPCPPs. More specifically, given an NP-relation R, we define the characteris-
tic function gRm : {0, 1}∗×{0, 1}m → {0, 1} of Rm = {(x,w) ∈ R : |x| = m} (or
simply g, when R,m are clear from the context) as follows. gRm (w, x1, ..., xm) =
1 if and only if (x1 ◦ ... ◦ xm, w) ∈ Rm. Following techniques of Ishai et al. [16],
we transform a protocol Π securely realizing gRm into an EZKPCPP system for
Rm, with perfect zero-knowledge against malicious (query-bounded) verifiers.
Concretely, for any t = t (m), if the underlying n-party protocol is t-private
(for some n = n (m, t)), then the system has perfect zero-knowledge against
t-bounded verifiers.

Construction 2 (EZKPCPP from MPC.). The system is parameterized by
a length parameter m ∈ N, a zero-knowledge parameter t = t (m), and employs
an n-party protocol Π realizing gRm with perfect adaptive t-privacy and perfect
static 1-robustness.2 We assume without loss of generality that the bits x1, ..., xm

are given as input to P1, ..., Pm.

Prover algorithm. On input (x,w) , 1t the prover PE emulates “in his head” a
random execution of Π on inputs (w, x1, ..., xm). Let V0, ...,Vn be the views of

i.e., (x,w∗) /∈ R for every “witness” w∗, then g evaluates to 0 on every input of the
party holding the witness.

2 We could get the same results using secure protocols in the semi-honest model, by
sharing the witness w between t + 1 parties (similar to the construction of zero-
knowledge protocols from MPC of [16]). However, this solution requires a larger
number of parties than in our solution. We prefer to rely on robust protocols, since
it suffices to have {P0}-robustness, and such protocols can be instantiated by more
efficient protocols in the semi-honest model (e.g., [5]).
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P0, ..., Pn in this execution, and for every 0 ≤ i < j ≤ n, let Chi,j describe the
messages sent over the communication channel between i, j during the execution.
PE outputs the proof π consisting of the concatenation of the views V1, ...,Vn

and the communication channels Chi,j for 0 ≤ i < j ≤ n, where every view and
communication channel constitutes a symbol of the proof. (Notice that the proof
does not include the view V0, since V0 reveals the witness w.)

Verifier algorithm. The verifier VE with input 1t,m and oracles x, π flips a
random coin to decide which test to perform. If the outcome was 0, VE picks
a random view Vi, i ∈R [m], and verifies that the input of Pi in the protocol
execution was xi (this ensures the protocol execution is consistent with x). If the
outcome was 1, VE picks i ∈R [n] and j ∈R {0, 1, ..., n}, i �= j and verifies that
Vi is consistent with Chi,j (this ensures the emulated execution is consistent). In
both cases VE verifies that the output of the protocol (implicit in Vi) was 1.

Lemma 1 (From MPC to EZKPCPPs). For any NP-relation R =
R (x,w), Construction 2 is a perfectly t-zero-knowledge exact-PCPP for R, with
soundness error

(
1−Ω

(
1
n2

))
, where the honest verifier makes only 2 oracle

queries.

Proof (sketch). Set some m ∈ N and let Π = Πm. The perfect completeness
follows from the perfect completeness of Π . As for soundness, if x /∈ LR then a
malicious prover has three possible courses of action. First, he can emulate an
execution of Π on some x′ �= x, which is detected by the verifier with probability
at least 1

2m ≥ 1
n2 . Second, he can provide a proof in which some view Vi is

inconsistent with some incident communication channel (either Chj,i, 0 ≤ j < i
or Chi,j , 1 ≤ i < j ≤ n), which VE detects with probability at least 1

2n(n+1) .

Thirdly, PE can generate a proof in which every view Vi is consistent with all
incident communication channels (with respect to Π,x). In this case, it can be
shown that there exists an execution of Π on x, in which all parties (except,
possibly, P0) are honest, such that the view of Pi in the execution is Vi, and
the messages exchanged between Pi, Pj are according to Chi,j . Therefore, the
P0-robustness of Π guarantees that the output implicit in V1, ...,Vn is 0, so VE

rejects (with probability 1). We note that the soundness error can be reduces by
repetition (� t2� iterations can be performed while preserving zero-knowledge).
The t-zero-knowledge follows from the privacy of Π . Indeed, for every i, j ∈ [n],
the communication channel Chi,j can be reconstructed from Vi (and from Vj).
Therefore, the answers to the queries of every (possibly malicious) verifier V ∗

can be simulated given the views of (a specific subset of) t parties Pi1 , ..., Pit .
By the privacy of Π , these views can be perfectly simulated given xi1 , ..., xit .
Therefore, the view of V ∗ can be simulated with only t TTP-queries. ��

Notice that if we only require honest-verifier zero-knowledge, then it suffices
for Π to be 1-private. (PE , VE) is weakly-sound in the sense that its soundness
error is large. (As noted above, the error can be reduced by repetition, but this
increases the query complexity and again requires Π to be private against larger
coalitions of parties.)
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We note that Construction 2 is inefficient in the sense that the alphabet
size may be exponential in m, t, since it contains symbols for all possible views
and communication channels in Π . This inefficiency will not pose a problem in
later constructions. Indeed, the construction of honest-verifier ZKPCPPs uses
EZKPCPPs only for constant sized claims, and the construction of a ZKPCPP
(with zero-knowledge against malicious verifiers) uses EZKPCPPs for claims of
size O (σ), where σ denotes the security parameter of the ZKPCPP. Moreover,
we will only use EZKPCPPs for relations in P.

Basing Construction 2 on efficient multiparty protocols that can withstand a
constant fraction of corrupted parties, we obtain the following result.

Corollary 1 (EZKPCPPs for NP). Let R = R (x,w) be an NP-
relation. Then for every zero-knowledge parameter t = t (|x|), R ∈
EZKPCPPΣ [r, q, εZK, δ, εS, �], where Σ = 2poly(t,|x|), r = O (log t+ log |x|),
q = 2, εZK = 0, εS = 1 − 1

poly(t,|x|) , � = poly (t, |x|), and the EZKPCPP system

is t-zero-knowledge. Furthermore, R has an EZKPCPP system over the binary
alphabet with q = 3 (and r, εZK, εS, � are as above).

The existence of the EZKPCPP over a large alphabet follows from Contruc-
tion 2. The natural approach towards reducing the alphabet size, is to define
the proofs over Σ and represent every view and communication channel using
several symbols, and have the verifier read all the bits corresponding to the sym-
bol he wishes to query. However, this solution does not preserve zero-knowledge.
Indeed, it increases the query complexity of the honest verifier, and consequently
a malicious (even query bounded) verifier may query many parts of views, thus
potentially breaking the privacy of the underlying protocol, and consequently
the zero-knowledge of the system.

Proof (sketch). The existence of an EZKPCPP system over a large alphabet
follows from Lemma 1, when Construction 2, based on an efficient multiparty
protocol (e.g., the protocols of [5]).

The EZKPCPP over a binary alphabet, denoted (Pbin, Vbin), is obtained using
techniques of Dwork et al. [13]. The general idea is to represent a proof generated
by PE over the binary alphabet, but avoid increasing the query complexity of
the honest verifier by having Vbin probabilistically check that the oracles satisfy
the decision circuit of VE . More specifically, Pbin on input (x,w) uses PE to
generate a proof πE . Then, for every random string r of VE , Pbin writes down the
assignment Ar to the inner gates of the verification circuit of VE (i.e., the circuit
VE uses when he has randomness r). Pbin outputs the proof πE , concatenated
with the assignments Ar for all random strings r of VE . (The proof should
actually include, for every r, a proof that Ar is consistent with the verification
circuit of VE and the bits of x, πE that VE queries. We refer the reader to [20] or
the full version for additional details. We note that these “proofs” have length
O (Ar) so they can be ignored when analyzing the efficiency properties of the
system.) To verify that x ∈ LR, Vbin picks a random string r for VE , and checks
that x, πE , Ar satisfy a random gate in the verification circuit of VE .
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Notice that VE reads only poly (|x| , t) bits from his oracles (i.e., the symbols
he reads can be represented using poly (|x| , t) bits), and his verification circuit
has size poly (|x| , t) (since VE is efficient in the number of bits he reads). There-
fore, the randomness complexity increases by only O (log t+ log |x|) (Vbin needs
to pick a random gate in the verification circuit of VE), and the proof increases
by a factor of poly (|x| , t) (there are poly (|x| , t) random strings for VE , and
every random string corresponds to a circuit of size poly (|x| , t)). Moreover, the
soundness error degrades only by a factor of 1

poly(|x|,t) , since in every verification

circuit of VE which x, πE do not satisfy, at least one gate (out of poly (|x| , t))
is not satisfied. Regarding zero-knowledge, notice that every t-bounded verifier
algorithm V ∗

bin in the modified system induces a verifier algorithm V ∗ in the
original system, whose queries correspond to the queries VE makes in t indepen-
dent invocations. Therefore, the view of V ∗ can be simulated given the views
Vi1 , ...,Vit which V ∗ queries, and these views can be simulated given the inputs
of Pi1 , ..., Pit in Π . As the view of V ∗

bin can be reconstructed from the view of
V ∗, this implies the system is t-zero-knowledge. ��

Remark 2 (Strong HVZK). Both of the EZKPCPP systems mentioned above
have a stronger honest-verifier zero-knowledge guarantee, which is formalized
next. For an integer parameter c and a soundness parameter ε, we say a proof
system has (ε, c)-strong honest-verifier zero-knowledge, if there exists a straight-
line simulator Sim such that the following holds for every c′ ≤ c and every (x, ) ∈
R. Sim interacts with V c′ (V c′ denotes c′ random and independent invocations of
the honest verifier V ) without rewinding the verifier. During the simulation, Sim
makes only c′ TTP queries, and generates a view which is statistically close (up
to distance ε) to the real-world view of V c′ , when V c′ has oracle access to x and
a random honestly-generated proof for x. Both our EZKPCPP systems have
perfect t-strong honest-verifier zero-knowledge (where t is the zero-knowledge
parameter), i.e., the simulated view is indistinguishable from the real world view.
(This stronger zero-knowledge feature will be used in Section 4.1 to construct
an HVZKPCPP with similar properties, which in turn will be used to construct
a ZKPCPP in Section 4.2.)

4 From Efficient PCPPs to Efficient ZKPCPPs

We show a general transformation from PCPPs to ZKPCPPs, and construct
an efficient ZKPCPP system for any NP-relation R. (Using the same methods
one can transform a PCP into a ZKPCP.) First, we use proof-composition tech-
niques to transform a PCPP into an HVZKPCPP, using an EZKPCPP as the
inner proof system. Then, we show a transformation from an HVZKPCPP and
a locking scheme, into a ZKPCPP that guarantees zero-knowledge against ma-
licious query-bounded verifiers. Finally, by applying the first transformation
to an efficient PCPP, and the second to an efficient locking scheme and to
the HVZKPCPP obtained through the first transformation, we get an efficient
ZKPCPP.
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4.1 From PCPPs to HVZKPCPPs

In this section we present the general transformation from PCPPs to
HVZKPCPPs. We first describe a basic transformation (with weak parameters),
and then improve it. The high-level idea is to use proof composition (see, e.g.,
[7,12,11]). In the context of PCPs, proof composition is used to reduce the query
complexity of a PCP verifier: instead of making q queries and applying some
predicate to the oracle answers, the verifier delegates the verification task to an
“inner verifier”, who probabilistically checks the oracle satisfies the decision cir-
cuit of the outer verifier (the query complexity is reduced since the inner verifier
makes less queries than the original verifier). Intuitively, as the verifier of the
composed system emulates the verification procedure of the inner verifier, then
the composed system should have a zero-knowledge guarantee if the inner sys-
tem does (even when the outer system has no zero-knowledge guarantee). The
advantage in using composition in this case is similar to the advantage achieved
by composition in standard PCP constructions: the inner system may be very
inefficient, but the composed system is efficient if the outer system is.

More specifically, letR be a relation, and let (Pout, Vout) be a PCPP forR with
soundness error ε and proximity parameter δ, where Vout makes q oracle queries
and uses r random bits. Then every random string rand of Vout corresponds
to a set of q queries, and a predicate ϕrand : {0, 1}q → {0, 1} describing the
decision of Vout. Denote the vector of the 2r predicates corresponding to all
random strings of Vout by (ϕ1, ..., ϕ2r ), then the following holds. If x ∈ LR
and π was honestly-generated by Pout for x, then (x, π) satisfies ϕi for every
1 ≤ i ≤ 2r, and if x is δ-far from LR then for any “proof” π∗, (x, π∗) satisfies at
most an ε-fraction of ϕ1, ..., ϕ2r . In standard proof-composition constructions,
the prover concatenates π with proofs π1

in, ..., π
2r

in , where πi
in should convince the

inner verifier that (x, π) satisfies ϕi. The verifier then runs the outer verifier
to generate rand and ϕrand, and the inner verifier to check that (x, π) satisfies
ϕrand. However, the verification procedure of the inner verifier may query π, and
is consequently not zero-knowledge (since π may reveal additional information
about x). Therefore, we need to use proof composition, together with a form
of secret-sharing which guarantees that π also remains hidden. Concretely, we
replace every proof bit πi (i.e., every predicate variable corresponding to a proof
bit) with a set of bits {πi,j} (i.e., with a set of new predicate variables) such
that πi is reconstructable given all the new bits πi,j , but (any) subset of the new
bits {πi,j} reveals no information about πi. We refer to a predicate obtained
thorough this “secret-sharing” transformation as a private predicate, since a
partial assignment to few predicate variables reveals no information about the
proof π.

More specifically, given a predicate ϕ : {0, 1}q → {0, 1} over variables
v1, ..., vq, we partition its variables to a set Vinp of input variables (i.e., variables
corresponding to bits of the input oracle) and a set Vpf of proof variables.
The k-private form of ϕ (for any k ∈ N), denoted ϕ (k), is obtained from ϕ
by replacing every proof variable vi ∈ Vpf with the exclusive-or of k + 1 new
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variables yi,1, ..., yi,k+1 (i.e., every appearance of vi is replaced with
k+1
⊕
j=1

yi,j). The

private-predicates relation Rpriv consists of all pairs of private predicates and
satisfying assignments for them, i.e.,

Rpriv = {((w,ϕ (k)) , λ) : w satisfies ϕ (k)} .

We now describe the basic transformation from PCPPs to (weakly-sound)
HVZKPCPPs.

Construction 3 (HVZKPCPPs from PCPPs.). The basic HVZKPCPP
system, denoted (PB , VB), will be the composition of a PCPP system (Pout, Vout)
for R as the outer PCPP system, and the inner EZKPCPP system (Pin, Vin) for
the relation Rpriv. The system is parameterized by d ∈ N which determines the
zero-knowledge requirement from the inner system. (Without loss of generality,
d ≥ 3.)

Prover algorithm. On input 1d, x, w such that (x,w) ∈ R, PB :

– Generates the verification predicates ϕ1, ..., ϕm of Vout (for m := 2r, where
r denotes the length of the randomness of Vout), and a proof π ∈ Pout (x,w).

– Generates the d-private form ϕi (d) of every predicate ϕi, and replaces ev-
ery proof variable vj ∈ Vpf with the exclusive-or of d + 1 new variables

yj,1, ..., yj,d+1, such that
d+1
⊕
k=1

π (d)yj,k
= πvj . (As (x, π) is interpreted as an

assignment to the predicates ϕ1, ..., ϕm, this transforms (x, π) into an as-
signment to the private predicates. We denote this partial assignment to
ϕ1 (d) ∧ ... ∧ ϕm (d) by π (d).)3

– “Proves” that (x, π (d)) satisfies the private predicates. Concretely,
let (x, π (d))i denote the restriction of (x, π (d)) to the variables of
the private predicate ϕi (d). Then PB generates a proof πi

in ∈
Pin

(
1d, ((x, π (d))i , ϕi (d)) , λ

)
for the claim (((x, π (d))i , ϕi (d)) , λ) ∈ Rpriv.

– Outputs the proof πB = π1
in ◦ ... ◦ πm

in ◦ π (d).

Verifier algorithm. VB on input 1d, |x| and given oracle access to x and a proof
πB = π1

in ◦ ... ◦ πm
in ◦ π (d), picks an i ∈R [m], uses Vout to generate the predicate

ϕi, and transforms it into the d-private predicate ϕi (d). Then, V runs Vin to
check that (x, π (d))i satisfies ϕi (d) ((x, π (d))i is used as the input oracle, and
πi
in as the proof oracle, of Vin).

Lemma 2. Let R ∈ PCPP [r, q, δ, εout, �] with the PCPP system (Pout, Vout).
Let (Pin, Vin) be a perfectly d-zero-knowledge EZKPCPP system for Rpriv with
soundness error εin (�, d) (where εin is non-decreasing and � is the length of the
input to the EZKPCPP system), in which the honest verifier makes qin ≤ d
queries. Then Construction 3, based on (Pout, Vout) and (Pin, Vin), is a PCPP

3 We say that π is a partial assignment to the predicates, since some of the variables
are assigned values by the input x.
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system for R with perfect completeness, perfect honest-verifier zero-knowledge,
and soundness error εout (1− εin (� (d+ 1) , d))+ εin (� (d+ 1) , d). Moreover, VB

makes only qin queries, and the prover generates proofs of length Oq,d (�+ 2r).

Proof (sketch). The completeness follows directly from the completeness of the
underlying proof systems. As for zero-knowledge, the zero-knowledge of the inner
EZKPCPP system guarantees there exists a simulator Simin that can perfectly
simulate the view of the honest verifier Vin (since Vin is d-query bounded), given
oracle access to the input oracle of Vin (through the TTP). Notice that the “input
oracle” of Vin is of the form (x, π (d))i for some i ∈ [m], i.e., Simin may query
bits of π (d). However, in a random proof πB ∈R PB

(
1d, x, w

)
, π (d) is a random

sharing of π (that is, every set of bits πj,1, ..., πj,d+1 that correspond to a bit πj

of π, is random such that πj,1 ⊕ ... ⊕ πj,d+1 = πj). Therefore, Sim can simulate
the view of VB by running Simin, and answering his TTP queries with random
bits. These bits are distributed as the answers Simin would have been given by
its TTP, so it suffices to prove indistinguishability conditioned on the “input”
oracle π (d). In this case, indistinguishability follows from the zero-knowledge of
(Pin, Vin).

Regarding soundness, if x is δ-far from LR then the soundness of (Pout, Vout)
guarantees that for every “proof” π∗ at most an εout-fraction of the pred-
icates ϕ1, ..., ϕm are satisfied by (x, π∗). Consequently, for every “proof”
π∗ (d), (x, π∗ (d)) satisfies at most an εout-fraction of the private predicates
ϕ1 (d) , ..., ϕm (d). If VB chooses to verify a predicate ϕi (d) that is not satis-
fied by x ◦ π∗ (d), then the soundness of (Pin, Vin) guarantees that he accepts
with probability at most εin (q (d+ 1) , d). (Indeed, every predicate contains at
most q proof variables, so Vin has input of length at most q (d+ 1), and εin is
non-decreasing.) ��

It is clear from Lemma 2 that the soundness error degrades through this
transformation (since the soundness error of the composed system depends not
only on the soundness error of the outer PCPP system, but also on that of the
inner EZKPCPP system). Therefore, our next goal is to reduce the soundness
error.

Reducing the soundness error. The main idea is to have the verifier repeat the
verification procedure of VB . However, we must change the ZKPCPP itself since
repetition does not necessarily preserve zero-knowledge. (That is, if the verifier
simply repeats the verification procedure, then his queries may exceed the upper
bound for which zero-knowledge is guaranteed.) Intuitively, the prover can gener-
ate several independent copies of basic proofs (i.e., a proof generated by PB), and
the verifier can repeat the basic verification scheme, using a “fresh” proof in ev-
ery iteration. This “assumption” that the verifier uses every proof at most once,
is the reason the system guarantees only honest-verifier zero-knowledge. Indeed,
we increase the query complexity of the verifier without increasing the zero-
knowledge guarantee of the basic system (since increasing the zero-knowledge
parameter will also increase the soundness error). Therefore, a malicious
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verifier can potentially break the zero-knowledge by using the same proof in
several iterations.

Construction 4 (HVZKPCPP). The modified HVZKPCPP system
(PH , VH) uses the the system (PB , VB) as a building block, and is param-
eterized by l, the number of basic proofs in a proof generated by PH ; t, the
number of runs (of VB) that VH emulates; and d, to be passed on to the
underlying HVZKPCPP system. We assume without loss of generality that
l ≥ t.

Prover algorithm. PH on input 1l, 1d and (x,w) ∈ R, uses PB to generate l
independent (basic) proofs π1

B, ..., πl
B for the claim (x,w) ∈ R, and outputs the

proof πH = π1
B ◦ ... ◦ πl

B .

Verifier algorithm. VH on input 1t, l, 1d, |x|, and given access to oracles x, πH ,
picks at random t different basic proofs π1

B , ..., πt
B, and for every 1 ≤ i ≤ t, runs

VB with parameter d and oracles x, πi
B (all emulations of VB are performed in

parallel). VH accepts if VB accepted in all t iterations, otherwise he rejects.

Theorem 5 (HVZKPCPPs from PCPPs). Let σ be a security parameter.
Then for any q ∈ N, εS = εS (σ, |x|), δ = δ (σ, |x|), r = r (σ, |x|) and � = � (σ, |x|),

PCPP

[
r, q, δ,

1

2
, �

]
⊆ HVZKPCPP [r′, q′, ε′ZK = 0, δ′ = δ, εS, �

′]

where r′ = Oq

(
r · poly log 1

εS

)
, q′ = Oq

(
log 1

εS

)
and �′ = Oq

(
(�+ 2r) log 1

εS

)
.

Proof (sketch). We take d = O (1) and t = l = Oq

(
log 1

εS

)
in Construction

4, which increase the query complexity and proof length (of the basic system)
by a factor of log 1

εS
, and the randomness complexity by a factor of poly log 1

εS
(since in every iteration the verifier needs to pick a new basic proof to use).
Completeness follows from the completeness of the basic HVZKPCPP system.
Regarding soundness, the soundness error of (PB, VB) is

1
2 (1 + εin) (where εin <

1 is the soundness error of the EZKPCPP, and depends only on q since d is
constant). As VH emulates t independent runs of VB , and accepts only if all
iterations succeed, then VH accepts an x that is δ-far from LR with probability

at most
(
1
2 (1 + εin)

)t
= εS (for an appropriate choice of the constant defining

t). As for zero-knowledge, every emulation of VB can be perfectly simulated (by
some simulator SimB) while making at most d = O (1) TTP queries, and as the
emulations are independent (and use independent basic proof), a simulator Sim
for VH can run SimB t independent times, and forward the TTP queries of SimB

to his own TTP. ��

Remark 3 (Strong HVZK). The strong honest-verifier zero-knowledge feature of
Construction 2 (see Section 3, Remark 2) implies that both the HVZKPCPP
systems described in this section also guarantee (εZK, q∗)-strong honest-verifier
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zero-knowledge, as defined in Remark 2. More specifically, to get (εZK, q∗)-
strong HVZK it suffices to take l = poly (q∗) in Construction 4, and use
the EZKPCPP (over a binary alphabet) of Section 3 with zero-knowledge

parameter d = O
(
log 1

εZK

)
. Consequently, the proof length increases by

a factor of poly
(
q∗, log 1

εZK

)
, the randomness complexity by a factor of

poly
(
log q∗, log log 1

εZK

)
, and the query complexity by a factor of poly log 1

εZK
.

Moreover, if the original PCPP has strong soundness then so does the
HVZKPCPP. (To get soundness error εS on inputs that are δ-far from the re-
lation for some δ ∈ (0, 1), the proof length, query complexity and randomness
complexity increase by a factor of O

(
1
δ

)
.)

It is evident from Theorem 5 that Construction 4 inherits many of its prop-
erties from the underlying PCPP system, so efficient PCPPs yield efficient
HVZKPCPPs. More specifically, we can use the following PCPP due to Dinur
[11], to obtain an efficient HVZKPCPP.

Theorem 6 (PCPP, implicit in [11]). Let R = R (x,w) ⊆ DTIME(t (n)),
then R has a strong PCPP system (P, V ) with constant rejection ratio, such that
V on inputs of length n tosses O (log t (n)) coins and reads O (1) bits from his
oracles.

Plugging the PCPP system of Theorem 6 into Theorem 5, we get the following
result.

Corollary 2 (Efficient HVZKPCPP). Let ε be a soundness parameter
and let δ be a proximity parameter. Then every relation R = R (x,w) ∈
DTIME (t (n)) has an HVZKPCPP system (PH , VH) with perfect completeness,
perfect honest-verifier zero-knowledge, and soundness error ε with proximity pa-
rameter δ. On input x, PH generates a proof of size poly

(
t (|x|) , log 1

ε ,
1
δ

)
and

VH makes O
(
1
δ log

1
ε

)
queries.

4.2 From HVZKPCPPs and Locking Schemes to ZKPCPPs

In this section we construct a ZKPCPP with zero-knowledge against arbi-
trary query-bounded verifiers, from a locking scheme and an HVZKPCPP with
strong honest-verifier zero-knowledge (see Remark 2 for a discussion of this zero-
knowledge property). We first give a high-level description of the transformation.
For q∗ ∈ N, let (PH , VH) be an HVZKPCPP with q∗-strong honest-verifier zero-
knowledge (e.g., the system of Construction 4, see Remark 3). Intuitively, all we
need to do to achieve zero-knowledge against arbitrary (q∗-bounded) verifiers is
to force the queries of every (possibly malicious) verifier to be distributed as the
queries in q∗ random and independent invocations of VH . Following techniques
of Kilian et al. [21], we achieve this by employing a locking scheme. Hiding
a few technical details, the high-level idea is as follows. The proof consists of
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three sections: the PCPP section in which the prover P locks (using the locking
scheme) every bit of the HVZKPCPP; the PERM section which contains a locked
permutation of the random strings of the honest verifier VH (namely, P picks
a random permutation τ over the space of random strings of VH , and for every
possible random string r of VH , P lock the image τ(r) in the PERM section); and
the MIX section, where the location indexed by τ(r) contains r and the collection
of keys for the locks holding the HVZKPCPP bits VH (with randomness r)
queries. To verify the proof, V picks a random string r′, queries MIXr′ , and
retrieves some (other) random string r and a set of keys, which he uses to unlock
the corresponding locks. Then, V verifies that the lock PERMr holds the string
r′ and that VH would accept (if he was given the HVZKPCPP bits locked in the
PCPP section of the proof).

Applying this transformation to an efficient HVZKPCPP and an efficient
locking scheme, we get the following result (full details are deferred to the full
version).

Theorem 7 (Efficient ZKPCPP). Let ε be a soundness parameter, let δ
be a proximity parameter and let q∗ ∈ N. Then every relation R (x,w) ∈
DTIME (t (n)) has a ZKPCPP system (P, V ) with soundness error ε, prox-
imity parameter δ, and straight-line (ε, q∗)-zero-knowledge. P on input x gen-
erates proofs of length poly

(
t (|x|) , q∗, log 1

ε ,
1
δ

)
and V on input |x| makes

poly
(
log t (|x|) , log q∗, log 1

ε ,
1
δ

)
queries.

(P, V ) inherits its properties from those of the HVZKPCPP and the locking
scheme combined. More specifically, perfect completeness follows from the per-
fect completeness of both building blocks. As for soundness, the binding of the
locking scheme guarantees the proof oracle V uses to emulate VH is consistent
with some proof oracle for VH , and therefore (by the soundness of (PH , VH)) if
x is far from LR then VH rejects (with high probability). As for zero-knowledge,
the hiding of the locking scheme guarantees that by probing the locks, V learns
almost nothing about the values locked within them. Therefore, V can only
“hope” to gather some information by retrieving the keys and using them to
open the locks (i.e. by reading MIX entries and then the corresponding PCPP
entries). However, in this case the random permutation τ guarantees that his
queries to πH are distributed as in random and independent emulations of VH ,
so the oracle-answers to his queries can be simulated (by the strong honest-
verifier zero-knowledge of (PH , VH)).
The adaptivity of the honest verifier. Unlike our HVZKPCPP systems
(Section 4.1), the verifier in Theorem 7 is inherently adaptive. Indeed, to de-
commit the locks the verifier must first retrieve the corresponding keys from the
appropriate MIX entry, and therefore cannot make his queries non-adaptively.
However, all iterations of the verification procedure may be executed in parallel
(i.e. all MIX-queries are asked simultaneously, all locks are then simultaneously
unlocked etc.), giving a verifier with adaptivity klock + 1, where klock is the
adaptivity of the locking scheme receiver.
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5 Cryptographic Applications

In this section we describe several applications of ZKPCPPs. Concretely, we
construct two-party and multiparty protocols that allow a dealer to commit
to a secret and prove (with sublinear communication) that it satisfies an NP
predicate.

5.1 Certifiable VSS

Motivated by applications that require verification with no information leakage,
we focus on reducing the communication complexity of verifying the shares in
a verifiable secret sharing (VSS) protocol [10,14,5,9,6]. Roughly speaking, VSS
allows a dealer D to distribute a secret s among n servers in a way that prevents
a coalition of up to t servers from learning or modifying the secret, while on the
other hand guaranteeing unique reconstruction, even if D and up to t servers
can collude. We study a certifiable variant of VSS (which we call cVSS) which
is similar to traditional VSS, except that it provides the additional guarantee
that the secret satisfies some NP predicate. Similar to [18], to achieve sublinear
verification we consider networks that include an additional receiver entity R
who eventually receives the secret, and may assist in the verification. We now
provide more details about the model we consider.

We assume that the participating parties can interact over a synchronous net-
work of secure point-to-point channels. The parties also have access to a broadcast
channel, where a message sent over this channel is received by all other parties.
When measuring communication complexity, we count a message sent over a
broadcast channel only once towards the total communication. Alternatively,
our protocols can be implemented with similar communication complexity using
a public bulletin board, where every time a message is written to or read from
the board is counted towards the communication complexity.

The security of protocols is defined by considering their execution in the pres-
ence of a malicious, static adversary, who may corrupt and control a subset of
the parties. The adversary is capable of rushing, namely sending his messages
only after receiving all messages sent by honest parties in the same round.

A cVSS protocol for an NP-relation R consists of three phases. In the sharing
phase, the dealer D is give input (x,w) ∈ R and sends a message to each server.
In the verification phase, the receiver R can freely interact with the servers,
possibly using a broadcast channel. Finally, in the reconstruction phase, each
server sends a single message to R, and R reconstructs the secret. We note that
R and the servers are given 1|x| as input.

A protocol as above is said to be (t, ε)-secure if it satisfies the following re-
quirements:

– Correctness. For every adversary A corrupting t out of n servers and for
every (x,w) ∈ R, in the end of the reconstruction phase R outputs x, except
with at most ε probability.
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– Secrecy. For every adversary A corrupting R and t servers there exists a
PPT simulator Sim such that for every (x,w) ∈ R, ViewA (x,w) ≈ε Sim (|x|),
where ViewA (x,w) denotes the view of A during the sharing and verification
phases.

– Commitment. For every adversaryA corruptingR and t servers and for every
(x,w) ∈ R, the following holds except with at most ε failure probability
over the randomness of the sharing and verification phases. In the end of
the verification phase, either R outputs ⊥, or there is a unique secret x∗

(determined by the messages exchanged up to this point), such that x∗ ∈ LR,
|x∗| = |x|, and R will output x∗ regardless of the messages sent by the
adversary during the reconstruction phase.

We note that traditional VSS is stronger than our certifiable VSS in that the
verification phase does not involve the receiver R. Thus, when there are multiple
receivers, traditional VSS can guarantee that the same secret x∗ is reconstructed
by all receivers. However, traditional VSS protocols do not guarantee that the
reconstructed secret possess any specific properties, as guaranteed by certifiable
VSS, and also do not achieve sublinear verification. (We note that certifiable
VSS can be implemented using general MPC protocols, but the communication
complexity required to verify the shares will not be sublinear.)
Certifiable VSS from ZKPCPPs. The protocol uses a ZKPCPP system
(P, V ), and a robust secret sharing scheme. (A robust secret sharing scheme
maps a secret x into a vector (s1, ..., sm) of shares such that “few” shares reveal
no information on x, but x can be reconstructed from the shares even if “few”
of them are replaced with incorrect values.) We note that for the protocol to
be efficient, P, V should be efficient, as well as the sharing and reconstruction
algorithms of the secret sharing scheme.

In the sharing phase, the dealer D secret shares x ∈ LR using the secret
sharing scheme, generates a ZKPCPP for the claim ‘the secret shares are “close”
to a vector of “legal” secret shares and x ∈ LR’, and partitions the shares and
the proof between the servers. In the verification phase, the receiver R verifies
that the sharesD distributed are close to a sharing of some x′ ∈ LR by emulating
a the verifier V , where R broadcasts the queries of V and the servers answer.
(The use of broadcast prevents R from contacting too many servers, which would
violate the secrecy requirement.) If the verification fails, R outputs ⊥ and ignores
further messages. For reconstruction, the servers holding the secret shares send
them to R, who reconstructs the secret x.

This description is in fact an over-simplification of the actual protocol.
Indeed, the verification procedure of the ZKPCPP cannot be used as-is since
in the context of VSS, verification is executed in the presence of an adversary
that can determine the answers of the corrupted servers after seeing the queries
of the verifier, while ZKPCPPs guarantee completeness and soundness when
the verification is performed with oracles (in particular, the oracle answers are
independent of the queries). Intuitively, to restrict the influence the adversary has
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on the verification procedure, it suffices to guarantee that symbols held by cor-
rupted servers are queried with low probability, which can be done as follows.
The dealer distributes several copies of the secret shares and the proof, and
the value of every specific symbol V queries is determined by the majority vote
over the corresponding symbols in several randomly selected copies. (This can
be thought of as applying a sort of “error correction” to the symbols of the
secret shares and the proof.) In addition, the verification procedure is repeated
several times, and the verification phase passes (i.e., R does not abort) only if V
accepted in most of the iterations. Further details are differed to the full version.

The secrecy property follows from the secrecy of the secret sharing scheme
and from the straight-line zero-knowledge property of (P, V ). Indeed, the zero
knowledge implies R learns only few shares, and the secrecy of the secret sharing
scheme guarantees that these shares reveal no information on x. (Straight-line
zero-knowledge is required to guarantee that the view of the adversary can be
simulated.) The “error correction” applied to the secret shares and the proof
guarantees that with high probability, corrupted servers are queried only in few
of the emulations of V . Therefore, in most emulations we can think of the verifi-
cation as being performed with oracles, which is useful both for correctness and
for binding. Indeed, for correctness, if D is honest then with high probability
V accepts in most iterations (by the completeness of the ZKPCPP), and the
robustness of the secret sharing guarantees that R will reconstruct x∗ = x ∈ LR
in the end of the reconstruction phase, even if t servers are corrupted. As for
binding, a corrupted D has 2 possible courses of actions. First, if he distributes
a shares vector that is far from every “legal” shares-vector, or close to a shares
vector of some x∗ /∈ LR, then the soundness of the ZKPCPP implies that V
rejects in most of the emulations (since corrupted servers are queried only in
few of these emulations), so R outputs ⊥ with high probability. Second, if he
distributes a shares vector that is close to a legal shares vector of some x∗ ∈ LR,
then either R outputs ⊥ at the end of the verification phase, or x∗ will be re-
constructed (due to the robustness of the secret sharing). Thus, we obtain the
following result.

Theorem 8 (verification-efficient certifiable VSS). Let R = R(x,w) be
an NP-relation. Then for every corruption threshold t ∈ N and every sound-
ness parameter ε, there exists a (t, ε)-secure cVSS protocol for R, with n =
poly

(
|x| , t, log 1

ε

)
servers, total communication complexity poly

(
|x| , t, log 1

ε

)
,

and a verification phase that uses poly
(
log |x|, log t, log 1

ε

)
bits of communica-

tion.

Our certified VSS protocol has non-interactive single-round sharing and re-
construction phases, and a 6-round verification phase. During the sharing phase
D sends a single bit to each server, and during the reconstruction phase every
server sends a single bit to R. The servers are deterministic and the communi-
cation complexity of every server (throughout the protocol) is O(1). Moreover,
there is no direct communication between the servers.
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5.2 Two-Party Commit-and-Prove

We use ZKPCPPs to construct a “2-party analog” of cVSS, or alternatively, a
“certifiable” generalization of a commitment scheme, which we call Commit-and-
Prove. A commitment scheme is a two-phase protocol between a sender S and
a receiver R. In the first phase, called the commit phase, the server on input x
freely interacts with R (who has input 1|x|). The messages exchanged between
S,R during the phase are called the commitment. In the second phase, called
the reveal pahse, S sends x, together with a decommitment string dec to R, and
R decides whether to accept of reject x, based on dec and the commitment.

A commitment scheme should have the following properties. First, it should
be hiding, in the sense that a (possibly malicious) receiver interacting with the
honest sender learns nothing about the secret x during the commit phase. Sec-
ond, it should be binding, namely there exists no efficient malicious sender that,
after the interaction with R during the commit phase, can find distinct x, x′ of
the same length, and two decommitment strings dec, dec′, such that R would
have accepted x, x′ with decommitment dec, dec′, respectively.

A commit-and-prove protocol is certifiable in the sense that S not only com-
mits to x, but also proves it satisfies some predicate. (The relation between
commitment schemes and commit-and-prove protocols is similar to the relation
between VSS and cVSS.) Specifically, it is similar to a commitment scheme, but
at the end of the reveal phase R either outputs x and x ∈ LR (for some relation
R), or aborts. As R,S are both efficient algorithms, the sender cannot generally
be expected to find on its own a “witness” to the fact that x satisfies the predi-
cate (think, for example, of an NP predicate). Therefore, S is given a witness w
(in addition to the input x).

We say a commit-and-prove protocol for a relation R is secure if it satisfies
the following requirements:

– Correctness. For every (x,w) ∈ R, if S,R are honest then R outputs x at
the end of the reveal phase.

– Binding. Every efficient (possibly malicious) sender algorithm S∗ wins the
following game with only negligible probability. First, S∗ interacts with R
in the commit phase, with common input 1n. Then, S∗ outputs two pairs
(x, dec) ,

(
x′, dec′

)
such that |x| = |x′| = n. S∗ wins if R would have accepted

x, x′ given the decommitments dec, dec′ (respectively), and in addition either
x �= x′ or x /∈ LR.

– Hiding. There exists a PPT oracle machine Sim such that for every (possibly
malicious) PPT receiver algorithm R∗ and for every sender input (x,w) ∈ R,

SimR∗
(|x|) is computationally indistinguishable from the view of R∗ during

the commitment phase, when interacting with S (x,w).

– Zero-knowledge after reveal. There exists a PPT oracle machine Sim such
that for every (possibly malicious) PPT receiver algorithm R∗ and for every

sender input (x,w) ∈ R, SimR∗
(x) is computationally indistinguishable from

the view of R∗ during the entire interaction with S (x,w).
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Similar to standard commitments, one can also consider stronger variants in
which the binding or the hiding property is statistical. Our construction in fact
satisfies the statistical variant of hiding and zero-knowledge after reveal.

Using techniques similar to those employed by [17] to construct sublinear
ZK arguments, we construct a commit-and-prove protocol with polylogarithmic
communication during the commit phase, and the protocol makes a black-box
use of an exponentially-hard collision-resistant hash function. (By relaxing the
communication requirements such that the communication during commit is
sublinear, instead of polylogarithmic, the protocol can be based on a super-
polynomially hard hash function.)
Commit-and-prove from ZKPCPPs. As in the cVSS protocol described in
Section 5.1, the protocol is based on a robust secret sharing scheme, and an
HVZKPCPP system (P, V ), e.g., the HVZKPCPP system of Construction 3.
(Notice that honest-verifier zero-knowledge suffices in this case, since the sender
can refuse to answer queries the honest ZKPCPP verifier would not make.) In
addition, the protocol employs a family H of collision resistent hash functions. In
the commit phase, R chooses a function h ∈ H and sends (the index of) h to S.
S secret-shares x ∈ LR into shares s1, ..., sn and, using P , generates a proof π for
the claim that the secret shares are “close” to the shares of some x∗ ∈ LR. Next,
S commits to π using a computationally-binding and statistically-hiding com-
mitment scheme Comh,

4, and “compresses” the commitments, using a “Merkle
Hash Tree” [19]. (That is, the commitments are compressed by repeatedly apply-
ing the hash function h to pairs of adjacent strings, where every application of h
shrinks the input. Thus, a “tree” of hash values is generated, and its root is used
as the compressed commitment.) S commits to (s1, ..., sn) in a similar manner.
Then, S sends the compressed commitments Cπ (of π) and Cx (of (s1, ..., sn)) to
R, and R verifies the commitments as follows. R picks a randomness r for V and
sends it to S. S determines the set Q of queries V , with randomness r, would
have made, and answers every query q ∈ Q by decommitting the corresponding
bit of π, s1, ..., sn (using the reveal phase of Comh) and sending the pre-images
of all the hash values computed along the path in the Merkle hash tree leading
from that bit to the root. R verifies that the values on the paths are consistent
with Cπ, Cx and h, that V makes the queries Q when using randomness r, and
that V would accept given these oracle answers. In the reveal phase, S sends
R the entire hash tree used to compress the commitments to s1, ..., sn, together
with the random strings used to generates the commitments (through Comh) of
s1, ..., sn. R verifies that the commitments and the Merkle tree are consistent
with s1, ..., sn, and if so reconstructs x from the shares, and outputs it.

The properties of the protocol follow from a combination of the properties
of the HVZKPCPP, the secret sharing scheme, and the collision-resistent hash
function. More specifically, hiding follows from the secrecy of the secret shar-
ing scheme and from the zero-knowledge property of (P, V ), and holds even if

4 Such a scheme can be constructed from a collision-resistant hash function, with no
additional assumptions. Moreover, if the hash function has exponential hardness
then the resultant commitments can be polylogarithmic (in the length of the input).
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the commitments to s1, ..., sn, π are not compressed (the compression is required
to “save” on communication during commit). Indeed, by the zero-knowledge of
(P, V ) even a malicious R∗ learns only few shares, which reveal no information
on x. Zero-knowledge after reveal follows in a similar manner, since a simulator
for the entire view of a (possibly malicious) receiver R∗ receives x, and can there-
fore emulate a simulation of a malicious verifier in the underlying HVZKPCPP
system. As for binding, the collision-resistance of h and the binding of Comh

guarantee that except with negligible probability, S is committed to some shares
vector (s∗1, ..., s

∗
n). (If Cx is inconsistent with all possible Merkle hash tree com-

mitments to all vectors (s∗1, ..., s
∗
n) then R necessarily aborts during the reveal

phase.) Therefore, if (s∗1, ..., s
∗
n) is far from every “legal” shares-vector, or close

to a shares vector of some x∗ /∈ LR, then R detects this during the commit phase
with high probability (even when interacting with a malicious sender S∗). Oth-
erwise, (s∗1, ..., s

∗
n) is “close” to a legal shares-vector of some x∗ ∈ LR, meaning

the only value a (possibly malicious) S∗ can successfully decommit during the
reveal phase, is x∗.

We note that the protocol as described above achieves a constant error, which
can be reduced (while preserving hiding and zero-knowledge after reveal) by
sequential repetition of the commit phase (further details are differed to the full
version). Consequently, we obtain the following result.

Theorem 9 (Sublinear Commit-and-Prove). Let H be any family of
exponentially-hard collision-resistant hash functions. Then there exists a
computationally-binding and statistically-hiding Commit-and-Prove protocol with
negligible soundness error and polylogarithmic communication complexity during
the Commit phase. Moreover, the protocol makes only black-box use of H.

We note that ifH only satisfies the usual notion of super-polynomial hardness,
the communication complexity (during commit) of the resulting Commit-and-
Prove protocol can be O(nε), for an arbitrarily small ε > 0.

A non-black-box alternative. We have shown how to apply ZKPCPPs
towards obtaining sublinear-communication commit-and-prove protocols that
make a black-box use of any collision-resistant hash function. Settling for a
non-black-box use of the hash function, one could avoid the use of ZKPCPPs
by combining a sublinear commitment Com with sublinear zero-knowledge argu-
ments of knowledge [3,4]. Concretely, during the commit phase S first commits
to x using Com, and then proves to R that he knows a witness w and random-
ness r such that (x, r) are consistent with the transcript of Com and (x,w) ∈ R.
For the reveal phase, S sends (x, r) to R. Both of the above primitives can be
based on a collision-resistant hash function. However, the commit phase of the
protocol is inherently non-black-box because the sublinear argument applies to
an NP-relation which depends on the hash function (since Com depends on the
hash function).
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Abstract. Recently there has been a huge emphasis on constructing
cryptographic protocols that maintain their security guarantees even in
the presence of side channel attacks. Such attacks exploit the physi-
cal characteristics of a cryptographic device to learn useful information
about the internal state of the device. Designing protocols that deliver
meaningful security even in the presence of such leakage attacks is a
challenging task.

The recent work of Garg, Jain, and Sahai formulates a meaningful
notion of zero-knowledge in presence of leakage; and provides a con-
struction which satisfies a weaker variant of this notion called (1 + ε)-
leakage-resilient-zero-knowledge, for every constant ε > 0. In this weaker
variant, roughly speaking, if the verifier learns � bits of leakage during
the interaction, then the simulator is allowed to access (1 + ε) · � bits of
leakage. The round complexity of their protocol is n

ε
�.

In this work, we present the first construction of leakage-resilient zero-
knowledge satisfying the ideal requirement of ε = 0. While our focus is
on a feasibility result for ε = 0, our construction also enjoys a constant
number of rounds. At the heart of our construction is a new “public-coin
preamble” which allows the simulator to recover arbitrary information
from a (cheating) verifier in a “straight line.” We use non-black-box
simulation techniques to accomplish this goal.

1 Introduction

The concept of zero-knowledge interactive proofs, originating in the seminal work
of Goldwasser, Micali, and Rackoff [39], is a fundamental concept in theoretical
cryptography. Informally speaking, a zero-knowledge proof allows a prover P to
prove an assertion x to a verifier V such that V learns “nothing more” beyond
the validity of x. The proof is an interactive and randomized process. To for-
mulate “nothing more,” the definition of zero-knowledge requires that for every
malicious V ∗ attempting to lean more from the proof, there exists a polynomial
time simulator S which on input only x, simulates a “real looking” interaction
for V ∗.

In formulating the zero-knowledge requirement, it is assumed that the prover
P is able to keep its internal state — the witness and the random coins —

� IACR Eprint Archive Report 2012/362.
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perfectly hidden from the verifier V ∗. It has been observed, however, that this
assumption may not hold in many settings where an adversary has the ability
to perform side channel attacks. These attacks enable the adversary to learn
useful information about the internal state of a cryptographic device (see e.g.,
[48,6,68,59] and the references therein). In presence of such attacks, standard
cryptographic primitives often fail to deliver any meaningful notion of security.
As a matter of fact, even formulating a meaningful security notion under such
attacks—as is the case with leakage-resilient zero-knowledge—can be a challeng-
ing task.

To deliver meaningful security in the presence side channel attacks, many
recent works consider stronger adversarial models in which the device implement-
ing the honest algorithm leaks information about its internal state to the adver-
sary. The goal of these works is then to construct cryptographic primitives that
are “resilient” to such leakage. Leakage resilient constructions for many basic
cryptographic tasks are now known [29,3,64,26,4,5,57,47,15,25,24,50,30,49,14,2].

Leakage-resilient zero-knowledge. Very recently Garg, Jain, and Sahai [33] ini-
tiated an investigation of leakage-resilient zero-knowledge (LRZK). Their notion
considers a cheating verifier V ∗ who can learn an arbitrary amount of leakage on
the internal state of the honest prover, including the witness. This is formulated
by allowing V ∗ to make leakage queries F1, F2, . . . throughout the execution of
the protocol. Then the definition of LRZK, roughly speaking, captures the intu-
ition that no such V ∗ learns anything beyond the validity of the assertion and
the leakage.

The actual formulation of this intuition is slightly more involved. Observe
that during the simulation, S will need to answer leakage queries of V ∗, which
may contain information about the witness to V ∗. Simulator S cannot answer
such queries without having access to the witness. The definition of [33] there-
fore provides S with access to a leakage oracle which holds a witness to x. The
oracle, Ln

w(·), is parameterized by the witness w and n = |x|; on input a function
F expressed as a boolean circuit, it returns F (w). To ensure that S can answer
leakage requests of V ∗, the simulator is also allowed to query Ln

w on leakage
functions of its choice. Of course, providing S with uncontrolled access to the
witness will render the notion meaningless.1 Therefore, to ensure that the notion
delivers meaningful security, the LRZK definition requires the following restric-
tion on the length of bits that S can read from Ln

w. Suppose that SLn
w outputs a

simulated view υ for V ∗. Denote by �S(υ) the number of bits S reads from Ln
w

in generating this particular view υ. Denote by �V ∗(υ) the total length of the
leakage answers that S provides to V ∗ (which are already included in υ, and can
be different from answers received by S). Then, it is required that:

�S(υ) ≤ �V ∗(υ). (1)

1 S can simply access the entire witness, and then simulate.
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More precisely, in [33], a slightly more general notion of (1 + ε)-LRZK is defined
in which the above condition is relaxed to:

�S(υ) ≤ (1 + ε) · �V ∗(υ),

where ε > 0 is a constant. In addition, [33] also present a protocol of �nε � rounds,
which achieves (1 + ε)-LRZK for every a-priori fixed constant ε > 0. Since ε > 0,
the resulting notion is weaker than the one required by equation 1. Neverthe-
less, [33] show that despite this relaxation, (1 + ε)-LRZK still delivers meaning-
ful security. By applying this notion in the context of cryptography based on
hardware-tokens, [33] were able to weaken the requirements of tamper-proofness
on the hardware tokens.

Our main result. Although a protocol with ε > 0 is still useful certain contexts,
it is significantly weaker than the ideal requirement of ε = 0—both qualitatively
and philosophically. Qualitatively, a constant ε > 0 allows the simulator to learn
strictly more information about the internal secret than the actual leakage allows!
Qualitatively, it means that a protocol proven to be (1 + ε)-LRZK “secure” may
actually expose additional parts of the internal secret than the actual leakage.
Furthermore, even in situations where (1+ ε)-LRZK is sufficient, protocol of [33]
requires a large round complexity, which continues to increase as we lower the
value of ε.

Philosophically, an ε > 0 essentially defies the very nature of simulation-
based security. In particular, as argued above, since it allows S to learn strictly
more than what the verifier does, it is not “zero” knowledge, but only an “ε-
approximation” of it, and closer in spirit to super-polynomial time simulation
[61,67,65]. Furthermore, this is not merely a philosophical issue—(1 + ε)-LRZK
can be particularly problematic in protocol composition [16,17]. For example,
using such a simulator in place of a cheating party may result in learning more
“outputs” than allowed.

In this work, we present the first construction of an LRZK protocol satisfying
ε = 0. Although our main goal is to obtain a feasibility result, our protocol also
enjoys a constant number of rounds. Our protocol uses standard cryptographic
tools. However, it requires some of them – particularly, oblivious transfer – to
have an invertible sampling property [20,42]. To the best of our knowledge,
instantiations satisfying this property are known only based on the decisional
Diffie-Hellman assumption (ddh) [23]. We leave constructing an LRZK proof
system based on general assumption as an interesting open question.

Theorem 1 (Main Result). Suppose that the decision Diffie-Hellman assump-
tion holds. Then, there exists a constant-round leakage-resilient zero-knowledge
proof system for all languages in NP.

We remark that the low round-complexity is usually a desirable protocol fea-
ture [37,7,69,66,70]. In the context of side channel attacks, however, it can be a
particularly attractive one to have. This is because a protocol with high round
complexity may require the device to maintain state for more rounds, and there-
fore may give an adversary more opportunities to launch side-channel attacks.
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1.1 An Overview of Our Approach

Let us start by recalling the main difficulty in constructing an LRZK protocol.
Recall that a zero-knowledge simulator S “cheats” in the execution of the pro-
tocol so that it can produce a convincing view. When dealing with leakage, not
only the simulator needs to continue executing the protocol, but it also needs
to “explain its actions” so far by maintaining a state consistent with an honest
prover.

To be able to simultaneously perform these two actions, the GJS simulator
does the following. It combines the following two different but well-known meth-
ods of “cheating.” The first method, due to Goldreich-Kahan [37], requires the
verifier to commit its challenge ch; the second method, due to Feige-Shamir
[31], requires the prover to use equivocal2 commitments. The GJS simulator
uses these methods together. It uses ch to perform its main simulation (by using
[37] strategy), and uses the trapdoor of equivocal commitments, denoted t1, to
“explain its actions” so far. We call (t1, ch) the double trapdoor.

The GJS simulator “rewinds” the verifier to obtain the two trapdoors before
it actually enters the main proof stage. By using a precise rewinding strategy
[53], GJS achieves (1 + ε)-LRZK. However, since rewinding strategy is crucial to
their simulation, this approach by itself seems insufficient for achieving LRZK.

A fundamentally different simulation strategy, in which the simulator uses the
program of the malicious verifier V ∗, was presented in Barak’s work [7]. This
method does not need to “rewind” the verifier to produce its output. Our first
idea there is to somehow use Barak’s simulation strategy along with the use of
equivocal commitments as in [31]. Unfortunately, this does not work since the
trapdoor t1 for equivocation has to be somehow recovered and only then any
other simulation strategy (such as knowing the challenge ch) can be used.

We therefore modify this approach so that we can use Barak’s method to
recover arbitrary information from the verifier during the simulation. For the
purpose of this discussion, let us assume that Barak’s technique provides a way
for P and V to interactively generate a statement σ for some NP-relation Rsim

so that no cheating prover P ∗ can prove σ ∈ Lsim, but a simulator S holding
the program of the cheating verifier V ∗ will always have a witness ω such that
Rsim(σ, ω) = 1. At this point, let us just assume that the verifier does not ask
leakage queries.

Then, we need to design a two party protocol for the following task. The first
party P holds a private input ω, the second party V holds an arbitrary private
message m, the common input to both parties is σ. The protocol allows P to
learn m if and only if Rsim(σ, ω) = 1, nothing otherwise; V learns nothing. This
is similar in spirit to the conditional disclosure primitive of [34], except that
here the condition is an arbitrary NP-relation Rsim(σ, ω) = 1. Constructing
such protocols for NP-conditions has not been studied, since they follow from
work on secure two-party computation [71,35,54]. Clearly, we cannot directly use

2 These are commitments which, given appropriate trapdoor information, can be
opened to both 0 or 1.
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secure two-party computation since their security-guarantee is often simulation-
based—which is essentially what our protocol is trying to achieve in the first
place.

Our next observation is that we do not really require the strong simulation-
based guarantee. We only need to construct a conditional disclosure protocol
for a very specific NP-relation. We construct such a protocol based on Yao’s
garbled circuit technique. We show that if we use properly chosen OT proto-
cols (constructed in [1,56]) — then we get a conditional disclosure protocol. In
addition, the protocol ensures that the messages of P are pseudorandom (more
precisely, invertible samplable [20,42]). As a result, the protocol maintains its
security claims even in the presence of leakage. This is a two-round protocol,
and a crucial ingredient in achieving leakage resilience.

Armed with this new tool, simulation now seems straightforward: use the
conditional disclosure protocol to recover both (t1, ch) and then use the GJS-
simulator. While this idea works, there is a difficulty in proving the soundness
of this protocol. Recall that in Barak’s protocol, one must find collisions in the
hash function h to prove that no cheating P ∗ can succeed in learning a witness
to statement σ. Typically, this is achieved by applying “rewinding techniques”
to extract knowledge P ∗. However, ensuring this typical requires the simulator
to demonstrate “knowledge”—which is difficult to “explain” later when leakage
queries are asked by the cheating prover.

To resolve this difficulty, we need to ensure that extraction can be performed
from a party without requiring it to maintain knowledge.3 We ensure this by
using a variant of the commitment protocol of Barak and Lindell [11]. We use
this protocol to extract useful information directly from Barak’s preamble [7],
without requiring the honest party to maintain knowledge explicitly.

Recall that we work in the model of [33]. In this model the verifier is allowed
to ask arbitrary leakage queries F1, F2, . . . on prover’s state. The state of the
prover at any given round only consists of its witness and the randomness up to
that round. In particular, the randomness of future rounds is determined only
at the beginning of those round. Observe that all ingredients described by us
so far actually require the prover to send only random strings. Therefore, it is
easy to asnswer the leakage queries up to this point in the simulation. By the
time simulator enters the main body, it recovers (t1, ch) and use them to answer
leakage queries as in [33].

1.2 Related Work

Relevant to our work are the works on zero-knowledge proofs in other more
complex attack models such as man-in-middle attacks [27], concurrent attacks
[28], resettable attacks [19,8], and so on. Also relevant to our work are different
variants of non-black-box simulation used in the literature [7,9,62,63,22] as well
as efficient and universal arguments [46,52,10,43].

3 Indeed, there is a difference between the two, see discussion in [11].
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The explicit study of leakage-resilient cryptography was started by Dziem-
bowski and Pietrzak [29]. Related study on protecting devices appears in the
works of Ishai, Prabhakaran, Sahai, and Wagner [45,44]. After these works a long
line of research has focussed on constructing primitives resilient to leakage includ-
ing public-key encryption and signatures [3,64,26,4,5,57,47,15,25,24,49,14,50],
devices [30,2], and very recently interactive protocols [33,12].

Also relevant to our work are the works on adaptive security [18] and invertible
sampling [20,42]. Adaptively secure protocols and leakage-resilience in interactive
protocols were shown to be tightly connected in the work of Bitansky, Canetti,
and Halevi [12].

2 Notation and Definitions

Notation. For a randomized algorithm A we write A(x; r) the process of evalu-
ating A on input x with random coins r. We write A(x) the process of sampling
a uniform r and then evaluating A(x; r). We define A(x, y; r) and A(x, y) anal-
ogously. The set of natural numbers is represented by N. Unless specified other-
wise, n ∈ N represents a security parameter available as an implicit input when
necessary. All inputs are assumed to be of length at most polynomial in n. We
assume familiarity with standard concepts such as interactive Turing machines
(itm), computational indistinguishability, commitment schemes, NP-languages,
witness relations and so on (see [36]).

For two randomized itms A and B, we denote by [A(x, y) ↔ B(x, z)] the
interactive computation between A and B, with A’s inputs (x, y) and B’s in-
puts (x, z), and uniform randomness; and [A(x, y; rA) ↔ B(x, z; rB)] when
we wish to specify randomness. We denote by viewB[A(x, y) ↔ B(x, z)] and
outB[A(x, y)↔ B(x, z)] the view and output of B in this computation; viewA,
outA are defined analogously. Finally, trans[A(x, y) ↔ B(x, z)] denotes the
public transcript of the interaction [A(x, y)↔ B(x, z)].

For two probability distributions D1 and D2, we write D1
c≡ D2 to mean

that D1 and D2 are computationally indistinguishable.

Definition 1 (Interactive Proofs). A pair of probabilistic polynomial time
interactive Turing machines 〈P, V 〉 is called an interactive proof system for a
language L ∈ NP with witness relation R if the following two conditions with
respect to some negligible function negl(·):
– Completeness: for every x ∈ L, and every witness w such that R(x,w) = 1,

Pr [outV [P (x,w)↔ V (x)] = 1] ≥ 1− negl(|x|).
– Soundness: for every x /∈ L, every interactive Turing machine P ∗, and every

y ∈ {0, 1}∗,

Pr [outV [P
∗(x, y)↔ V (x)] = 1] ≤ negl(|x|).

If the soundness condition holds only against polynomial time machines P ∗,
〈P, V 〉 is called an argument system. We will only need/construct argument
systems in this work.
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Leakage attack. Machine P and V are modeled as randomized itm which inter-
act in rounds. It is assumed that the the random coins used by a party in any
particular round are determined only at the beginning of that round. Denote
by state a variable initialized to prover’s private input w. At the end begin-
ning of each round i, P flips coins ri to be used for that round, and updates
state := state ‖ ri. A leakage query on prover’s state in round i corresponds
to verifier sending a function Fi (represented as a polynomial-sized circuit), to
which the prover responds with Fi(state). The verifier is allowed to any number
of arbitrary leakage queries throughout the interaction. A malicious verifier who
obtains leakage under this setting is said to be launching a leakage attack.

To formulate zero-knowledge under a leakage attack, we consider a ppt ma-
chine S called the simulator, which receives access to an oracle Ln

w(·). Ln
w(·) is

called the leakage oracle, and parametrized by the witness w and the security
parameter n. A query to the leakage oracle consists of an efficiently computable
function F , to which the oracle responds with F (w). The leakage-resilient zero-
knowledge is defined by requiring that the output of S be computationally indis-
tinguishable from the real view; in addition the length of all bits read by S from
Ln
w in producing a particular view υ is at most the length of leakage answers

contained in the υ.
For x ∈ L, w such that R(x,w) = 1, z ∈ {0, 1}∗, and randomness r ∈ {0, 1}∗

defining the output υ = SLn
w(·)(x, z; r), we let the function �S(υ, r) denote the

number of bits that S receives from Ln
w(·) in generating view υ with randomness

r. Further, we let the function �V ∗(υ) denote the total length of leakage answers
that V ∗ receives in the output υ. By convention, randomness r will be included
in the notation only when we need to be explicit about it.

Definition 2 (Leakage-resilient Zero-knowledge). We say that an inter-
active proof system 〈P, V 〉 for a language L ∈ NP with a witness relation R,
is leakage-resilient zero-knowledge if for every probabilistic polynomial time ma-
chine V ∗ launching a leakage attack on P , there exists a probabilistic polynomial
time machine S such that the following two conditions hold:

1. For every x ∈ L, every w such that R(x,w) = 1, and every z ∈ {0, 1}∗, dis-
tributions viewV ∗ [P (x,w)↔ V ∗(x, z)] and SLn

w(·)(x, z) are computationally
indistinguishable.

2. For every x ∈ L, every w such that R(x,w) = 1, every z ∈ {0, 1}∗, and every
sufficiently long r ∈ {0, 1}∗ defining the output υ = SLn

w(·)(x, z; r), it holds
that �S(υ, r) ≤ �V ∗(υ).

The definition of standard zero-knowledge is obtained by removing condition 2,
and enforcing that no leakage queries are allowed to any machine.

3 Cryptographic Tools

We start by recalling some standard cryptographic tools and two-party protocols.
Looking ahead, we will require that our protocols satisfy the following important
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property. For a specific party (chosen depending upon the protocol), all messages
sent by this party be pseudorandom strings. In some cases where this is not
possible, it will be sufficient if the messages are pseudorandom elements of group
(e.g., a prime-order subgroup of Z∗

p for a (safe) prime p of length n).4 We will
provide necessary details when appropriate.

Statistically-Binding Commitments. We use Naor’s scheme [55], based on a pseu-
dorandom generator (prg). Recall that in this scheme, first the receiver sends a
random string τ of length 3n; to commit to bit b, the sender selects a uniform
seed s of length n and sends y such that if b = 0 then y = prg(s), otherwise
y = τ ⊕ prg(s). This scheme is statistically binding; in addition, sender’s mes-
sage is pseudorandom. A string can be committed by committing bitwise, and
it suffices to use same τ for all the bits. We write sbcomτ (m; s) to represent
sender’s string, when receiver’s first message is τ .

Statistically-Hiding Commitments. We use a statistically hiding commitment
scheme as well. We require the receiver of this scheme to be public coin. Such
schemes are known, including a two-round string commitment scheme, based
on collision-resistant hash functions (crhf) [58,41,21]. We write shcomρ(m; s) to
denote sender’s commitment string, when receiver’s first message is ρ. Without
loss of generality, |ρ| = n.

Zero-Knowledge Proofs. We use a statistical zero-knowledge argument-of-
knowledge (szkaok) protocol for proving NP-statements. We require the verifier
of this protocol to be public coin. Such protocols are known to exist; including
a constant-round protocol based on crhf [7,10,63], and a ω(1)-round protocol
based on statistically-hiding commitments [38,13].

We choose the constant-round protocol of Pass and Rosen, denoted Πpr, as
our candidate szkaok. Let Spr denote the corresponding simulator for Πpr. We
remark that Spr is a “straight-line” simulator, with strict polynomial running
time.

3.1 Oblivious Transfer

We will use a two-round oblivious transfer protocol OT := 〈Sot, Rot〉. For the
choice bit b of the receiver, we denote by {Rot(1

n, b)}n∈N the message sent by
Rot on input (1n, b).

Let p, q be primes such that p = 2q + 1 and |p| = n. Then, we require the
OT protocol to satisfy the following requirement. There exists a randomized ppt

algorithm Rpub
ot

such that for every n ∈ N, every b ∈ {0, 1}, and every safe prime
p = 2q + 1, the following two conditions hold:

4 This will be sufficient since public sampling from such a group admits invertible
sampling [20,42]. However, it is more convenient to directly work with the assumption
that algorithms can receive random elements in such a group as part of their random
tape.
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1. Rot(1
n, 0)

c≡ Rpub
ot

(1n, p)

2. The output of Rpub
ot

(1n, p) consists of components {αi}poly(n)i=1 such that every
αi is a uniform and independent element in an order q subgroup of Z∗

p.

We can formulate the second requirement by simply requiring the output to
contain independent and random bits. The difficulty is that we do not know
any OT protocol that would satisfy such a requirement. We therefore choose
the above formulation. Note that without loss of generality, we can assume that
uniform and independent elements can be provided as part of the random tape.5

We will call algorithm Rpub
ot

the “fake” receiver algorithm.

Concrete Instantiation: The existence of Rpub
ot

is extremely crucial for our con-
struction. Unfortunately, no OT protocol satisfying this requirement are known
to exist based on general assumptions. However, two round OT protocols of
[56,1] based on the ddh assumption, do satisfy both of our requirements. For
concreteness, we fix the Naor-Pinkas oblivious transfer (protocol 4.1 in [56]) as

our choice, and denote it by OTnp. Algorithm Rpub
ot

in this protocol consists of
sending random and independent elements in order q subgroup of Z∗

p. When
multiple secrets must be exchanged we simply repeat this protocol in parallel.

Security of OT. In terms of security, the protocols in [56,1] are secure against
malicious adversaries. However, they do not satisfy the usual simulation based
(i.e., “ideal/real”) security. Instead, they satisfy the following (informally stated)
security notions:

1. Indistinguishability for receiver: it ensures that

{Rot(1
n, 0)}n∈N

c≡ {Rot(1
n, 1)}n∈N, where {Rot(1

n, b)}n∈N denotes the
message sent by honest receiver on input (1n, b).

2. Statistical secrecy for sender: it ensures either

{Sot(1n,m0,m1, q)}n∈N

s≡ {Sot(1n,m0,m
′)}n∈N or

{Sot(1n,m0,m1, q)}n∈N

s≡ {Sot(1n,m′,m1)}n∈N, where m′ is an
arbitrary message and Sot(1

n,m0,m1, q) denotes the message sent by the
honest sender on input (1n,m0,m1) when receiver’s message is q.

This type of security notion is sufficient for our purpose. A formal description,
following [40], is given in the full version of this work [60].

3.2 Extractable Commitments

We will need a perfectly-binding commitment scheme which satisfies the follow-
ing two properties. First, if a cheating committer C∗ successfully completes the
protocol, then there exists an extractor algorithm E which outputs the value

5 This assumption is easily removed by requiring an invertible sampling algorithm for
Rpub
ot

, which are known to exist. Also, the two-round requirement is not essential and
can be relaxed.
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committed by C∗ during the commit stage. Second, there exists a public-coin al-
gorithm Cpub such that no cheating receiver can tell if it is interacting with Cpub

or the honest committing algorithm C. Algorithm Cpub is essentially the “fake”
committing algorithm for C (much like the fake receiver Rp

ot
define above). Let

us first define these properties.

Commit-with-Extract. We will actually need a slightly property than mere ex-
traction, called commit-with-extract [11,51]. Informally, commit-with-extract re-
quires that for every cheating C∗, there exists an extractor E which first simulates
the view of the cheating committer in an execution with honest receiver; further,
if the view is accepting then it also outputs the value committed to in this view.
Our specific use requires that the quality of simulation be statistical.

Definition 3 (Commit-with-extract [11]). Let n ∈ N be the security pa-
rameter. A perfectly-binding commitment scheme Πcom := 〈C,R〉 is a commit-
with-extract scheme if the following holds: there exists a strict ppt commitment-
extractor E such that for every ppt committer C∗, for every m ∈ {0, 1}n, every
(advice) z ∈ {0, 1}∗ and every r ∈ {0, 1}∗, upon input (C∗,m, z, r), machine E
outputs a pair, denoted (E1(C

∗,m, z, r), E2(C
∗,m, z, r)), such that the following

conditions hold:

1. E1(C
∗,m, z, r)

s≡ viewC∗ [C∗(m, z; r)↔ R()]
2. Pr [E2(C

∗,m, z, r)] = value(E1(C
∗,m, z, r)) ≥ 1− negl(n)

where value(·) is a deterministic function which outputs either the unique value
committed to in the view E1(C

∗,m, z, r), or ⊥ if no such value exists.

We say that a perfectly binding commitment scheme Πcom admits public
decommitment if there exists a deterministic polynomial time algorithm Dcom

which on input the public transcript of interaction m̂, and the decommitment
information d, outputs the unique value m committed in m̂. If there is no such
value, the algorithm outputs ⊥. For perfectly binding commitment schemes, the
function value is well defined on the public transcripts as well. Therefore, we can
write Dcom(d, m̂) = value(m̂).

We now specify our “fake” public-coin sender requirement. Since we are work-
ing with ddh based construction, we will use a safe prime p = 2q + 1 of length
n, (as used in Rpub

ot
).

Let n ∈ N be the security parameter. We say that a perfectly binding com-
mitment scheme Πcom := 〈C,R〉 has a fake public-coin sender if there exists an
algorithm Cpub such that for every malicious ppt R∗, every m ∈ {0, 1}n, every
safe prime p of length n, every advice z ∈ {0, 1}∗, the following two conditions
hold:

1. viewR∗ [C(m)↔ R∗(z)]
c≡ viewR∗ [Cpub(p)↔ R∗(z)]

2. The output of Cpub(p) consists of components {αi}poly(n)i=1 such that for every
i: αi is a uniform and independent element either in {0, 1} or in an order q
subgroup of Z∗

p.
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Concrete Instantiation. Unfortunately, no commitment protocol satisfying these
requirements is known. The central reason behind this is that the fake public-coin
sender Cpub requirement interferes with the commit-with-extract requirement.
In [11], Barak and Lindell constructed a commitment protocol with the goal of
strict polynomial time extraction. We observe that somewhat surprisingly, with
some very minor changes, this protocol actually satisfies all our requirements. In
particular, this commitment scheme is a commit-with-extract scheme, has a fake
public-coin sender, and admits public decommitment. However, as with the OT
protocol, this change requires us to use ElGamal [32] and hence ddh (instead of
a general trapdoor permutation). For completeness, we present the protocol of
[11] and explain the required modifications in the full version of this work [60].

Important Notation. For concreteness, fix Πcom := 〈C,R〉 to be a specific com-
mitment protocol satisfying all three conditions above, and let Dcom denote it’s
public decommitment algorithm. Let Lcom := {(m, m̂) : ∃d s.t. Dcom(m̂, d) =
m}. That is, Lcom is an NP-language containing statements (m, m̂) such that
m̂ is a commitment-transcript for value m. Let Rcom be the corresponding NP-
relation so that Rcom((m, m̂), d) = 1 if Dcom(m̂, d) = m and 0 otherwise.

3.3 Barak’s Preamble

In this section, we will recall Barak’s non-black-box simulation method. In addi-
tion, we will make a slight change to this protocol which requires us to reprove
some of the claims. We start by recalling Barak’s relation for the complexity
class NTIME(nlog log(n)).

Barak’s Relation. Let n ∈ N be the security parameter, and {Hn}n be a family of
crhf, h : {0, 1}∗ → {0, 1}n. Since we are using Naor’s commitment scheme, we will
have an extra string τ for the commitment scheme sbcom. Barak’s relation, Rb

takes as input an instance of the form 〈h, τ, c, r〉 ∈ {0, 1}n×{0, 1}3n×{0, 1}3n
2

×
{0, 1}n+n2

and a witness of the form 〈M, y, s〉 ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}poly(n).

Relation: Rb(〈h, τ, c, r〉, 〈M, y, s〉) = 1 if and only if:
1. |y| ≤ |r| − n.
2. c = sbcomτ (h(M); s).
3. M(c, y) = r within nlog logn steps.

Let LB be the language corresponding to RB. We use this more complex
version involving y, since it will allow us to successfully simulate even in the
presence of leakage queries, which a cheating verifier obtains during the protocol
execution.6

6 This relation is identical to the one used for constructing bounded concurrent zero-
knowledge in constant rounds in [7].
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Universal Arguments and Statement Generation. Universal arguments (uarg)
are four-round public-coin interactive argument systems [46,52,10], which can be
used to prove statements in LB. Let 〈Pua, Vua〉 be such a system. We will denote
the four rounds of this uarg by 〈α, β, γ, δ〉. Consider the following protocol be-
tween a party PB and a party Vb.

Protocol GenStat: Let {Hn}n be a family of crhf functions.

1. Vb sends h← Hn and τ ← {0, 1}3n

2. Pb sends c← {0, 1}3n
2

3. Vb sends r ← {0, 1}n+n2

.

Note that that length of r is n2+n which allows y to be of length at most n2.
Length of c is 3n2 since it is supposed to be a commitment to n bits. We have
the following lemma:7

Composed Protocol 〈P⊗, V ⊗〉. We define this for convenience. The composed
protocol is simply the GenStat protocol followed by an universal argument that
the transcript σ := 〈h, τ, c, r〉 is in Rb. More precisely, strategy P⊗ := PB � Pua

is the composed prover, and V ⊗ := VB � Vua is the composed verifier, where
A � B denotes the process of running itm A first, and then continuing itm B
from then onwards.8 The following lemma states that the composed verifier V ⊗

almost always rejects in an interaction with any ppt prover (i.e., it always rejects
that σ ∈ Lb).

Lemma 1 ([7]). Suppose that {Hn}n is a family of crhf functions. There exists
a negligible function negl such that for every ppt strategy P ∗, every z ∈ {0, 1}∗,
every r ∈ {0, 1}∗, and every sufficiently large n,

Pr
[
outV ⊗ [P ∗(z; r)↔ V ⊗()]

]
≤ negl(n)

where the probability is taken over the randomness of V ⊗.

The “Encrypted” Version. In Barak’s protocol, an “encrypted” version of the
above protocol is used in which the honest prover sends commitments to its
uarg-messages (instead of the messages themselves). This is possible to do since
the verifier is public coin.

We will use our commit-with-extract scheme Πcom := 〈C,R〉 for this purpose.9
Recall that for Πcom, there exists a fake public-coin sender algorithm Cpub whose

7 The version of Barak’s relation that we use is actually a somewhat simplified form
of the relation given in [10], which results only in a reduction to hash functions that
are crhf against circuits of size nlog n. By using the more complex version of [10], we
get a reduction to standard crhf, without affecting any of our claims.

8 A and B do not share states and run with their own independent inputs.
9 Recall that Πcom is perfectly-binding commitment scheme which satisfies the
commit-with-extract notion. In addition, the protocol has a public decommitment
algorithm Dcom, an associated NP-relation Rcom, and NP-language Lcom, and a
fake public-coin sender algorithm. See section 3.2.
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execution is indistinguishable from that of C. During the commitment phase, our
prover algorithm will follow instructions of Cpub; the verifier will continue to use
the normal receiver strategy R.

“Encrypted” preamble. 〈P̂b, V̂b〉: Let {Hn}n be a family of crhf func-
tions.

1. P̂b and V̂b run the GenStat protocol.
Let 〈h, τ, c, r〉 denote the resulting statement.

2. P̂b and V̂b execute uarg for the statement 〈h, τ, c, r〉.
(a) V̂b sends α, obtained from Vua.

(b) P̂b runs Cpub, and V̂b runs R;

Let β̂ be the commitment transcript.
(c) V̂b sends γ, obtained from Vua.

(d) P̂b runs Cpub, and V̂b runs R;

Let δ̂ be the commitment transcript.

The full transcript of the preamble is 〈h, τ, c, r, α, β̂, γ, δ̂〉.
Since the prover messages are committed, we cannot make a claim along the

lines of lemma 1. Therefore, we define the following NP-relation Rsim and claim
that it is a “hard” relation. This relation simply tests that there exist valid de-
commitments (d1, d2) for strings β̂, δ̂ so that the transcript is accepted by the
uarg verifier.

Relation: Rsim(〈h, τ, c, r, α, β̂, γ, δ̂〉, 〈β, d1, δ, d2〉) = 1 if and only if:

1. Rcom(〈β, β̂〉, d1) = 1.

2. Rcom(〈δ, δ̂〉, d2) = 1.
3. Vua(h, τ, c, r, α, β, γ, δ) = 1.

The language corresponding to relation Rsim is denoted by Lsim. Also note
that P̂b sends either random strings of uniform elements in a prime order group
of Z∗

p. The proof of the following lemma appears in the full version of this work
[60].

Lemma 2. Suppose that {Hn}n is a family of crhf functions. There exists a
negligible function negl such that for every ppt strategy P ∗, every z ∈ {0, 1}∗,
every r ∈ {0, 1}∗, and every sufficiently large n,

Pr
[
σ ← trans[P ∗(z; r)↔ V̂b()];σ ∈ Lsim

]
≤ negl(n)

where the probability is taken over the randomness of V̂b.

4 Conditional Disclosure via Garbled Circuits

Yao’s garbled circuit method [72] allows two parties to compute any arbitrary
function f of their inputs in a “secure” manner. Without loss of generality, let
f : {0, 1}n × {0, 1}n → {0, 1}n.
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The Method. The garbled circuit method specifies two polynomial time algo-
rithms (Garble,Eval). Algorithm Garble is randomized; on input 1n and the de-
scription of a circuit (that computes) f , it outputs a triplet (C, key0, key1). C,
which consists of a set of tables containing encrypted values, is called the gar-
bled circuit ; and key0 = {(k0

0,i, k
1
0,i)}ni=1 and key1 = {(k0

1,i), k
1
1,i}ni=1 are called

the keys. Let a = a1, . . . , an and b = b1, . . . , bn be binary strings. Algorithm
Eval, on input (C,Ka,Kb) outputs a value v ∈ {0, 1}n such that if Ka = {kai

0,i}
and Kb = {kbi

1,i} then v = f(a, b).

For an NP-relation R, and σ ∈ {0, 1}∗, let fσ,R be the following function.

Function fσ,R(ω,m):

If R(σ, ω) = 1, output m; otherwise output 0|m|.

That is, fσ,R discloses m if and only if ω is a valid witness for the statement σ.
We will use the garbled circuit method for such functions fσ,R. Jumping ahead,
we will use fσ,Rsim

for the NP-relation Rsim described in section 3.3.

Conditional disclosure via garbled-circuits. In the two party setting, one party
prepares the garbled circuit C and sends the keys Kb corresponding to her input
b to the other party. An OT protocol is used by the first party to receive keys
Ka for her input a, so that it can execute the evaluation algorithm. This allows
the receiver of the garbled circuit (and OT) to learn f(a, b) but “nothing more”.
In addition, receiver’s input remains secure due to OT-security for receiver.

Looking forward, we will require our protocol so that it will admit a “fake”
receiver algorithm. Therefore, we will use the Naor-Pinkas OT protocol, denoted
OTnp (see section 3.1). For a technical reason, our protocol starts by first execut-
ing steps of OTnp, and then executes the garbled circuit step. Note that the first
step involves n parallel executions of OT, one for each input bit. The resulting
two-round conditional disclosure protocol, Πcd, is as follows.

Protocol Πcd for computing fσ,R(ω,m): The protocol consists of two par-
ties, a receiver Rcd and a sender Scd. Rcd’s private input is bit string ω =
ω1, . . . , ωn, and Scd’s private input is bit string m = m1, . . . ,mn. The com-
mon input to the parties is the description of the function fσ,R as a circuit
(equivalently, just σ).
1. Rcd computes v = (v1, . . . , vn), where vi is the first message of OTnp

using the input ωi and fresh randomness for i ∈ [n]. It then sends v.
2. Scd prepares a garbled circuit for the function fσ,R: (Cσ,R, key0, key1)←

Garble(fσ,R). Next, Scd prepares v′ = (v′1, . . . , v
′
n) where v′i is the second

message of OTnp computed using (k0
0,i, k

1
0,i) as sender’s input and vi as

receiver’s first message. Here the keys (k0
0,i, k

1
0,i) are the ith component

of key0. Finally, let Km denote the keys taken from key1 corresponding
to m. Scd sends (Cσ,R, v′,Km).

Recall that OTnp is a two-round protocol, it provides statistical secrecy for the
sender, and has a fake public-coin receiver. Also recall that OTnp does not satisfy
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the the standard simulation-based security. As a result, we cannot directly use
known results about the security of Yao’s protocol. Nevertheless, we can make
weaker indistinguishability-style claims which suffice for our purpose. First notice
that the OT-security for receiver, intuitively guarantees indistinguishability for
the input of Rcd. For the sender, we can prove the following claim, whose proof
appears in the full version of this work [60].

Lemma 3 (Security for sender). Let L ∈ NP with witness relation R and
σ ∈ {0, 1}∗. For the security parameter n, let Scd(1

n, fσ,R,m, q) represent the
response of the honest sender (of protocol Πcd), with input (fσ,R,m) when re-
ceiver’s first message is q. Then, for every pair of distinct messages (m,m′),
every q ∈ {0, 1}∗ (from a possibly malicious ppt receiver), and every σ /∈ L, it
holds that

Scd(1
n, fσ,R,m, q)

c≡ Scd(
n, fσ,R,m′, q).

5 A Constant Round Protocol

In this section we will present our constant round protocol. The protocol will use
the dual simulation idea, introduced in [33], as an important tool. To simplify
the exposition and the proofs, we isolate a part of the protocol from [33], and
present it as a separate building block.10

Shortened GJS Protocol 〈Pgjs, Vgjs〉. The common input is an n vertex graph
G in the form of an adjacency matrix, and prover’s auxiliary input is a Hamil-
tonian cycle H in G. The protocol proceeds in following three steps.

1. Commitment stage:
(a) Pgjs sends a random string ρ.

(b) Vgjs sends t̂1 = shcomρ(t1; s1) and ĉh = shcomρ(ch; s2),

where t1 ← {0, 1}3n
4

, ch ∈ {0, 1}n, and s1, s2 ← {0, 1}poly(n).
2. Coin flipping stage:

(a) Pgjs sends a random string t2.
(b) Vgjs opens t̂1 by sending (t1, s1).

Let t = t1 ⊕ t2.
3. Blum Hamiltonicity protocol:

(a) Let t = t1, . . . , tn3 so that |ti| = 3n for i ∈ [n3].
Prover chooses n random permutations π1, . . . , πn and sets

Gi = πi(G)
for each i ∈ [n]. It then commits to each bit bj in Gi using

sbcomti×j .

10 The only difference is that the challenge-response slots in the [33] protocol have been
removed. As a result, many other parameters of their protocol become irrelevant,
and also do not appear in this protocol. This does not affect the soundness of the
protocol.
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(b) Verifier opens to ĉh by sending (ch, s2).
(c) Let ch = ch1, . . . , chn. For every i ∈ [n], if chi = 0 then

prover opens
each edge in Gi and reveals πi; else, it opens edges of the

cycle in Gi.

The following lemma has been shown in [33].

Lemma 4 ([33]). Protocol 〈Pgjs, Vgjs〉 is a sound interactive argument system
for all of NP.

5.1 Our Protocol

We are now ready to present our protocol 〈P, V 〉. The protocol starts with an
execution of the “encrypted” preamble protocol (see section 3.3); this is followed
by the first i.e., commitment, stage of the GJS protocol. Before completing the
GJS protocol, verifier executes the garbled-circuit protocol Πcd for fσ,Rsim

and
a specific m (described shortly), and proves using an szkaok that this step was
performed honestly. This will enable the simulator to extract useful information
in m. Finally, the rest of the GJS protocol is executed to complete the proof.
The full description of the protocol is given in figure 1. It is easy to see that our
protocol has constant rounds. The completeness of the protocol follows directly
from the completeness of 〈Pgjs, Vgjs〉. In next two sections, we prove the sound-
ness and zero-knowledge of this protocol. Note that the the prover is actually
“public coin” up until the final step.

Proving Leakage-resilient Zero-Knowledge. Due to space constraints, the proof
of security of this protocol—theorem 1—appears in the full version of this work
[60]. At a high level, we use Barak’s non-black-box simulation idea along with
GJS simulation. Let V ∗ be an arbitrary ppt verifier whose program is given as
an input to the simulator S. There are four main ideas:

1. First, the simulation uses V ∗’s code to execute the preamble in such a way,
that at the end of the preamble, σ ∈ Lsim. In addition, the simulator will
also have a witness ω so that Rsim(σ, ω) = 1. The properties of the compo-
nents used in the preamble (in particular the use of fake sampling algorithms
that are public coin) guarantee that simulator’s actions in the preamble are
indistinguishable from a real execution with an honest prover. In addition,
it is easy to answer leakage queries since the messages exchanged so far rep-
resent the entire random-tape of the prover at this point. This allows the
simulator to answer leakage queries by simply appending these messages to
the state, and sending an appropriate query to the leakage oracle.

2. Next, the simulator will use ω in the garbled circuit step to obtain keys Kω.
Once again, since the first message of OTnp provides indistinguishability for
receiver’s input, this step does not affect the simulation. Further, since P is
public coin in this step as well, the simulator can continue to answer leakage
queries as before.
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Protocol 〈P, V 〉. The common input consists of 1n, and an n vertex graph G
in the form of its adjacency matrix. Prover’s private input is a Hamiltonian
cycle H in G.

1. “Encrypted” preamble: P ⇒ V
P and V run Barak’s encrypted preamble. P runs the public-coin strategy
P̂b, and V runs strategy V̂b. Let the transcript be σ := 〈h, τ, c, r, α, β̂, γ, δ̂〉.

2. Commitment step: V ⇒ P
P and V run the first, i.e. commitment, step of 〈Pgjs, Vgjs〉.
(a) P sends a random string ρ

(b) V sends t̂1 = shcomρ(t1; s1) and ĉh = shcomρ(ch; s2), where t1 ←
{0, 1}3n

4

,

ch ← {0, 1}n, and s1, s2 ← {0, 1}poly(n); let m := (t1, s1, ch, s2).
3. Garbled-circuit step: V ⇒ P

P and V run the two-round garbled circuit protocol, Πcd, for the function
fσ,Rsim

. V acts as the sender with private input m.

(a) P runs the fake receiver, v1 ← Rpub
ot

(1n, p) for a random safe prime p;
sends v1.
(b) V sends (C, v2,Km) ← Scd(fσ,R,m, v1; s3), using fresh coins s3.

4. Proof of correctness: V ⇒ P
V proves to P using public-coin szkaok Πpr the knowledge of s3 and m =
(t1, s1, ch, s2) so that:
(a) t̂1 = shcomρ(t1; s1),

(b) ĉh = shcomρ(ch; s2),
(c) Scd(fσ,R,m, v1; s3) = (C, v2, Km).

5. Final step: P ⇒ V
P and V complete all remaining five rounds of 〈Pgjs, Vgjs〉. P uses H as
the witness.

Fig. 1. Our Constant Round LRZK Protocol

3. Having obtained Kω along with C,Km in the garbled circuit step, the simula-
tor can evaluate the C and learn fσ,Rsim

(ω,m) to learn m. By the soundness
of szkaok of the next step, it is guaranteed that m contains valid openings

(t1, s1, ch, s2) for t̂1 and ĉh.
4. Finally, observe that (t1, ch) is precisely the information needed by the GJS

simulation method to successfully simulate the last step, while answering
leakage queries properly. Briefly, ch is the challenge for Blum’s protocol, and
a first message can be created by the simulator to successfully answer V ∗’s
challenge in the last message. At the same time, since t1 is known prior to
the coin-flipping stage of the GJS protocol (see section 5), the simulator will
have the ability to equivocate in Naor’s commitment scheme, allowing it to
successfully answer leakage queries.
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An important point to note is that if V ∗ asks more than n2 bits of leakage
after receiving c and before sending r (see GenStat), the simulator will not
be able to ensure that σ ∈ Lsim. However, if this happens, the simulator can
simply ask for the entire witness H from the leakage oracle since the length of
leakage is more than the witness size. The simulator can then continue to run
like the honest prover and output a view. See full proof in the full version of this
work [60].
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Abstract. The notion of Zero Knowledge introduced by Goldwasser,
Micali and Rackoff in STOC 1985 is fundamental in Cryptography. Mo-
tivated by conceptual and practical reasons, this notion has been ex-
plored under stronger definitions. We will consider the following two
main strengthened notions.

Statistical Zero Knowledge: here the zero-knowledge property will
last forever, even in case in future the adversary will have unlimited
power.

Concurrent Non-Malleable Zero Knowledge: here the zero-
knowledge property is combined with non-transferability and the
adversary fails in mounting a concurrent man-in-the-middle attack
aiming at transferring zero-knowledge proofs/arguments.

Besides the well-known importance of both notions, it is still unknown
whether one can design a zero-knowledge protocol that satisfies both
notions simultaneously.

In this work we shed light on this question in a very strong sense.
We show a statistical concurrent non-malleable zero-knowledge argument
system for NP with a black-box simulator-extractor.

1 Introduction

The notion of zero knowledge, first introduced in [10], is one of the most pivotal
cryptographic constructs. Depending on both natural and real-world attack sce-
narios, zero knowledge has been studied considering different conceptual flavors
and practical applications.
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Zero Knowledge and Man-in-the-Middle Attacks. In distributed settings such as
the Internet, an adversary that controls the network can play concurrently as
a verifier in some proofs1 and as a prover in the other proofs. The goal of the
adversary is to exploit the proofs it receives from the provers to then generate
new proofs for the verifiers. The original notion of zero knowledge does not
prevent such attacks since it assumes the adversarial verifier to only play as a
verifier and only in sequential sessions.

The need of providing non-transferable proofs secure against such man-in-
the-middle (MiM, for short) attacks was first studied by Dolev, Dwork and Naor
in [7]. In [1], Barak, Prabhakaran and Sahai achieved for the first time such
a strong form of zero knowledge, referred to as concurrent non-malleable zero
knowledge (CNMZK, for short) is possible in the plain model. They provide a
poly(λ)-round construction, for λ being the security parameter, based on one-
way functions, and a O(log(λ))-round construction based on collision-resistant
hash functions. More recent results focused on achieving round efficiency with a
mild setup [23], computationally efficient constructions [22], security with adap-
tive inputs [16].

Zero Knowledge and Forward Security. The zero-knowledge property says that
the view of the adversarial verifier does not help her in gaining any useful infor-
mation. This means that it does not include information that can be exploited
by a PPT machine. However, even though the execution of a zero-knowledge
protocol can be based on the current hardness of some complexity assumptions,
it is quite risky to rely on the assumed resilience of such assumptions against
more powerful machines of the future. What is zero knowledge in a transcript
produced today could not be zero knowledge in the eyes of a distinguisher that
will read the transcript in 2040.

It is therefore appealing to provide some forward security flavor so that what-
ever is zero knowledge today will be zero knowledge forever. Statistical zero
knowledge [2,25,21,9,20,12,19] is the notion that satisfies this requirement. It
has been achieved in constant rounds using collision-resistant hash functions [14],
and even under the sole assumption that one-way functions exist requiring more
rounds [13].

Unfortunately, all the known constructions for CNMZK protocols strongly
rely on the computational indistinguishability of the output of the simulator.
Techniques so far used to design protocols that are then proved to be CNMZK
require the protocol to fix a witness in a commitment, that therefore must be
statistically binding and thus only computationally hiding. There is therefore
no hope to prove those protocol to be statistical zero knowledge. Moreover it
does not seem that minor changes can establish the statistical zero knowledge
property still allowing to prove CNMZK.

1 While in our general discussion, we often refer to zero-knowledge proofs, we will
finally need to resort to only arguments since our goal is to achieve statistical zero-
knowledge property.
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The Open Problem. Given the above state-of-the-art a natural question is the
following: is it possible to design an argument system that combines the best
of both worlds, namely, a statistical concurrent non-malleable zero-knowledge
argument system?

1.1 Our Contribution

In this work, we provide the first statistical concurrent non-malleable zero-
knowledge argument system. Our construction is an argument of knowledge
(AoK, for short) and has a black-box simulator-extractor producing a statis-
tically indistinguishable distribution.

As mentioned earlier, Barak et al. [1] presented the first CNMZKAoK proto-
col; we will refer to their work here as BPS. However, their construction had an
inherent limitation that the simulation can only be computational, the reason
being the following. In their protocol, the prover needs to commit to a valid
witness via a statistically binding non-malleable commitment scheme. The com-
mitment scheme being statistically binding is extremely crucial in their proof
of security. This implies that when the simulator cheats and commits to a non-
witness, the simulated view can only be computationally indistinguishable and
not statistically so.

In this work, we overcome this shortcoming with the following idea. We take
the BPS argument as a starting point and modify it. Firstly, we work on the
root of the problem – the non-malleable commitment. We replace it with a
special kind of a commitment scheme called ‘mixed non-malleable commitment ’
scheme. The notion of mixed commitment was first introduced by Damg̊ard and
Nielsen [6]. Our mixed non-malleable commitment is parameterized by a string
that if sampled with uniform distribution makes the scheme statistically hiding
and computationally binding. Instead, when it is taken from another (compu-
tationally indistinguishable) distribution it is a statistically binding, computa-
tionally hiding, and non-malleable. We will construct such a scheme by using as
distributions non-DDH and DDH tuples.

The next idea would be to append the (modified) BPS argument to a coin-
flipping phase in which the prover and the verifier generate a random string.
Thus, in the real-world the above mixed commitment is statistically hiding. This
thus enables us to prove statistical simulatability of our protocol. Furthermore,
in order to also achieve extractability of witnesses for the arguments given by
the adversary, we switch to a hybrid which biases the coin-flipping outcome
to a random DDH tuple. Typically, a coin-flipping protocol would involve the
verifier committing to its share of randomness, the prover sending its share
of randomness in the clear, and finally, the verifier opening the commitment.
However, in order to enable the simulator to bias the outcome, instead of the
verifier opening the commitment to its share of randomness, it gives only the
committed value in the clear and presents an AoK for the randomness used. This
argument is again played by using the BPS AoK, since we would need concurrent
non-malleability here.
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In order to simplify our proofs, we rely on the Robust Extraction Lemma of
Goyal et al. [11] that generalizes concurrent extractability of the PRS preamble
(or concurrently extractable commitments – CECom, for short) [24] in the fol-
lowing sense. Consider an adversary who sends multiple CECom commitments
interleaving them arbitrarily and also interacts with an external party B in an
arbitrary protocol. Then, [11] shows how to perform concurrent extraction of the
CECom commitments without rewinding the external party B. The extractor
designed by them is called the ‘robust simulator’.

Technical Challenges. While we will encounter multiple technical challenges,
which will be clear as we go ahead, we point out the core technical challenge
here and the way we will solve it.

One of the main technical challenges is when we prove witness extractability of
our protocol. Namely, in our hybrid argument, we will encounter two consecutive
hybrids Ha and Hb, wherein a coin-flipping phase of a particular right hand ses-
sion is ‘intact’ in Ha, but is biased in Hb. This results in the mixed commitment
changing from statistically hiding to statistically binding. In order to finally be
able to argue that the extracted values are indeed valid witnesses, we will need
to argue for the hybrid Hb that the value committed in this commitment is a
valid witness. Herein, we will need to reduce our claim to computational bind-
ing of a CECom commitment in the protocol. Thus, the requirement in this
reduction would be that no extraction performed should rewind the external
CECom sender. Even the Robust Extraction Lemma will not be helpful here as
the Lemma requires that the external protocol have round complexity strictly
less than the round complexity of CECom commitments (on which the robust
simulator performs extraction) and the external protocol in this case is a CE-
Com commitment itself. The condition for the Lemma thus cannot be met. We
get around this difficulty through a carefully designed sequence of hybrid argu-
ments. A similar difficulty arises in the proof of statistical simulatability of our
protocol. Here again, we rely on a carefully designed sequence of hybrids.

The second main technical challenge, still of the same flavor as the first one
above, is in the proof of witness extractability. Here, we encounter a pair of hy-
brids: in the former hybrid, we would have a few CECom commitments of the
right session being extracted by the robust simulator; in the latter hybrid, the
modification introduced would be to change the value committed in a (statis-
tically hiding) CECom commitment of a left session from a valid witness to a
zero-string. Here again, we will not be able to argue a reduction to the hiding
property of the CECom commitment of the left session in question, just by rely-
ing on the Robust Extraction Lemma. Here, we instead present a more detailed
hybrid argument. Namely, in the CECom commitment, we change the commit-
ted value one sub-commitment at a time [24]. Since every sub-commitment in
the standard CECom commitment of [24] ranges over just three rounds, we are
now still able to apply the Robust Extraction Lemma.
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2 Background

We assume familiarity with interactive Turing machines, denoted ITM. Given
a pair of ITMs, A and B, we denote by 〈A(x), B(y)〉(z) the random variable
representing the (local) output of B, on common input z and private input
y, when interacting with A with private input x, when the random tape of
each machine is uniformly and independently chosen. In addition, we denote
viewA

B(x, z) to be the random variable representing the content of the random
tape of B together with the messages received by B from A during the interaction
on common input x and auxiliary input z to B.

If D1 and D2 are two distributions, then we denote that they are statistically
close by D1 ≈s D2; we denote that they are computationally indistinguishable
by D1 ≈c D2; and we denote that they are identical by D1 ≡ D2.

Definition 1 (Pseudorandom Language). An NP-language L ⊆ {0, 1}∗ is
said to be a pseudorandom language if the following holds. For λ ∈ N, let Dλ be
a uniform distribution over L∩{0, 1}λ. Then, for every distinguisher D running
in time polynomial in λ, there exists a negligible function negl(·) such that D can
distinguish between Dλ and Uλ with probability at most negl(λ).

We assume familiarity with notions like witness relation, interactive argu-
ment systems, and statistical witness-indistinguishable argument of knowledge
(sWIAoK).

The verifier’s view of an interaction consists of the common input x, followed
by its random tape and the sequence of prover messages the verifier receives
during the interaction. We denote by viewP

V∗(x, z) a random variable describing
V∗(z)’s view of the interaction with P on common input x.

We will use various forms of commitment schemes. We will denote by SB,
SH, CB, CH the usual properties that can be enjoyed by classic commitment
schemes, namely: statistical binding, statistical hiding, computational binding
and computational hiding.

Statistical Concurrent Non-malleable Zero Knowledge. The definition of sta-
tistical CNMZK is taken almost verbatim from [1] except for the additional
requirement on the simulation being statistical. Let 〈P ,V〉 be an interactive
proof for an NP-language L with witness relation RL, and let λ be the secu-
rity parameter. Consider a man-in-the-middle adversaryM that participates in
mL “left interactions” and mR “right interactions” described as follows. In the
left interactions, the adversary M interacts with P1, . . . ,PmL , where each Pi

is an honest prover and proves the statement xi ∈ L. In the right interactions,
the adversary proves the validity of statements x1, . . . , xmR . Prior to the inter-
actions, both P1, . . . ,PmL receive (x1, w1), . . . , (xmL , wmL), respectively, where
for all i, (xi, wi) ∈ RL. The adversary M receives x1, . . . , xmL and the aux-
iliary input z, which in particular might contain a-priori information about
(x1, w1), . . . , (xmL , wmL). On the other hand, the statements proved in the right
interactions x1, . . . , xmR are chosen by M. Let viewM(x1, . . . , xmL , z) denote a
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random variable that describes the view ofM in the above experiment. Loosely
speaking, an interactive argument is statistical concurrent non-malleable zero-
knowledge (sCNMZK) if for every man-in-the-middle adversaryM, there exists
a probabilistic polynomial time machine (called the simulator-extractor) that
can statistically simulate both the left and the right interactions for M, while
outputting a witness for every statement proved by the adversary in the right
interactions.

Definition 2 ((Black-Box) Statistical Concurrent Non-Malleable Zero
Knowledge Argument of Knowledge). An interactive protocol 〈P ,V〉 is
said to be a (Black-Box) Statistical Concurrent Non-Malleable Zero Knowledge
(sCNMZK) argument of knowledge for membership in an NP language L with
witness relation RL, if the following hold:

1. 〈P ,V〉 is an interactive argument system;
2. For every mL and mR that are polynomial in λ, for every PPT adversary
M launching a concurrent non-malleable attack (i.e., M interacts with hon-
est provers P1, . . . ,PmL in “left sessions” and honest verifiers V1, . . . ,VmR

in “right sessions”), there exists an expected polynomial time simulator-
extractor SE such that for every set of “left inputs” x1, . . . , xmL we have
SE(x1, . . . , xmL) = (view, w1, . . . , wmR) such that:
– view is the simulated joint view of M and V1, . . . ,VmR . Further, for

any set of witnesses (w1, . . . , wmL) defining the provers P1, . . . ,PmL,
the view view is distributed statistically indistinguishable from the view
of M, denoted viewM(x1, . . . , xmL , z), in a real execution;

– In the view view, let trans� denote the transcript of �-th left execution,
and transt that of t-th right execution, � ∈ [mL],t ∈ [mR]. If xt is the
common input in transt, transt �= trans� (for all �) and Vt accepts, then
RL(xt, wt) = 1 except with probability negligible in λ.

The probability is taken over the random coins of SE . Further, the protocol
is black-box sCNMZK, if SE is a universal simulator that uses M only as
an oracle, i.e., SE = SEM.

We remark here that the statistical indistinguishability is considered only
against computationally unbounded distinguishers, and not against unbounded
man-in-the-middle adversaries. This restriction is inherent to the definition since
we require statistical zero-knowledge and thus cannot simultaneously ask for
soundness against unbounded provers.

Extractable Commitment Schemes.

Definition 3 (Extractable Commitment Schemes). An extractable com-
mitment scheme 〈Sender,Receiver〉 is a commitment scheme such that given
oracle access to any PPT malicious sender Sender∗, committing to a string,
there exists an expected PPT extractor E that outputs a pair (τ, σ∗) such that
the following properties hold:

Simulatability. The simulated view τ is identically distributed to the view of
Sender∗ (when interacting with an honest Receiver) in the commitment phase.
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Extractability. the probability that τ is accepting and σ∗ correspond to ⊥ is at
most 1/2. Moreover if σ∗ �=⊥ then the probability that Sender∗ opens τ to a
value different than σ∗ is negligible.

Lemma 1. [15] Comnm is an extractable commitment scheme.

As shown in [15], Comnm is an extractable commitment scheme. This is in fact
the core property of the scheme that is relied upon in proving its non-malleability
in [8,15].

Extractable Mixed Robust Non-malleable Commitments w.r.t. 1-Round Protocols.
In our protocol we make use of a special kind of commitment scheme, that we
call a extractable mixed robust non-malleable commitment scheme. These are
basically the mixed commitment schemes introduced by Damg̊ard and Nielsen [6]
that are also non-malleable (or robust) not only w.r.t. themselves but also w.r.t.
1-round protocols and also extractable.

We shall first discuss how we get mixed non-malleable commitments, and then
at the end, we shall discuss how we also get mixed non-malleable commitments
that are also robust w.r.t. 1-round protocols.

Intuitively, a mixed non-malleable commitment scheme is a commitment
scheme that is parameterized by a string srs in such a way that if srs is from some
specific distribution, then commitment scheme is SH, and if srs is from another
specific indistinguishable distribution, then the scheme is non-malleable. We re-
quire that both the distributions be efficiently samplable. When srs is randomly
sampled (from the dominion over which both the distributions are defined), we
would require that srs is such that with all but negligible probability the scheme
is SH. We denote such a scheme by NMMXComsrs. More formally:

Definition 4 (Mixed Non-Malleable Commitments). A commitment
scheme is said to be a mixed non-malleable commitment scheme if it is param-
eterized by a string srs and if there exist two efficiently samplable distributions
D1, D2, such that, D1 ≈c D2, and if srs ← D1 then the commitment scheme is
SH and if srs← D2 then the commitment scheme is non-malleable. Furthermore,
|Supp(D2)|/|Supp(D1)| = negl(λ).

Below, we show how to construct such a scheme. At a high level, we achieve
this by using a mixed commitment scheme which, roughly speaking, is a commit-
ment scheme parameterized by a string srs in such a way that if srs is from some
specific efficiently samplable distribution, then commitment scheme is SH, and
if srs is from another specific indistinguishable efficiently samplable distribution,
then the scheme is SB. We denote such a scheme by MXComsrs. More formally:

Definition 5 (Mixed Commitments). A commitment scheme is said to be a
mixed commitment scheme if it is parameterized by a string srs and if there exist
two efficiently samplable distributions D1, D2, such that, D1 ≈c D2, and if srs←
D1 then the commitment scheme is SH and if srs ← D2 then the commitment
scheme is SB. Furthermore, |Supp(D2)|/|Supp(D1)| = negl(λ).
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In [6], Damg̊ard and Nielsen gave two constructions of mixed commitment
schemes, one based on one based on the Paillier cryptosystem and the other
based on the Okamoto-Uchiyama cryptosystem. For concreteness, we provide
a construction below based on Σ-protocols and that builds on previous ideas
presented in [5,3,4].

Constructing Mixed Commitments. Let us first describe how to construct a
mixed commitment scheme. The idea is to have D1 be uniform over {0, 1}poly(λ)
and D2 be uniform over a pseudorandom language L (as per Definition 1) with
a Σ-protocol (i.e., public-coin 3-round special-sound special honest-verifier zero-
knowledge proof system). Then, to commit to a value β, sender would first run
the simulator of the Σ-protocol for the statement that srs ∈ L such that the
simulated proof has β as the challenge; let (α, β, γ) be the simulated proof.
Then the commitment would just be α. The opening would be γ.

Observe that if srs �∈ L, then for any β there is only one accepting (α, β, γ),
making the scheme parameterized by this srs to be SB. Furthermore, with srs
sampled uniformly at random from {0, 1}∗ \ L, we will also be able to argue
that the resulting scheme is CH. On the other hand, if srs ∈ L, then, for every
α (in its valid domain as defined by the Σ-protocol), there exists γ′ for every
β′ such that (α, β′, γ′) is an accepting transcript. This implies that there exists
an opening of α to any β′. This makes the scheme SH. Furthermore, with srs
sampled uniformly at random from L, it shall hold for any PPT machine that
it can only run the simulator and it is infeasible for the machine to open α to
also any β′ �= β (with some γ′ as an opening), assuming special-soundness of
the Σ-protocol (Otherwise, one could extract the witness from (α, β, γ, β′, γ′)).
This makes the system only computationally binding. In detail:

Mixed Commitment from Σ-protocol. Let RL be a hard relation for a pseudo-
random language L i.e., L = {srs ∈ {0, 1}λ| ∃w : RL(srs, w) = 1} and L ≈c Uλ.
Consider a Σ-protocol for the above language L. The special honest-verifier
zero-knowledge property of the Σ-protocol implies existence of a simulator S
that on input the instance srs, a string β and a randomness r, outputs a pair
(α, γ) such that (srs, α, β, γ) is computationally indistinguishable from a tran-
script (srs, α, β, γ) played by the honest prover when receiving β as challenge.

The commitment scheme played by sender C and receiver R that we need
goes as follows.

Shared Random String: A random string srs ∈ {0, 1}λ is given as a common
input to both the parties;

Commitment Phase: We denote the commitment function by MXComsrs(·; ·)
and to commit to a string β ∈ {0, 1}λ:
1. C runs the Σ-protocol simulator S(srs, β, r) to obtain (α, γ);
2. C sends α to R;

Decommitment Phase: To open α to β:

1. C sends (β, γ) to R;
2. R accepts if (srs, α, β, γ) is an accepting transcript for the Σ-protocol.
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If srs ∈ L, then the commitment is computationally binding (since, with two
openings one gets two accepting conversations for the same α, and from the
special-soundness property of the Σ-protocol one can extract the witness) and
statistically hiding (which is directly implied by perfect completeness of the Σ-
protocol; i.e., for any α output as the first message by the simulator – for any
β as the challenge – for every β′, given the witness, one can efficiently compute
a final message γ′ such that the verifier accepts). If srs �∈ L the commitment is
statistically binding (since, for any α, there exists at most one β that makes R
accept the decommitment, as there is no witness for srs ∈ L and two accepting
transcripts (α, β, γ), (α, β′, γ′) with β �= β′ implies a witness owing to the special-
soundness property of the Σ-protocol) and computationally hiding (since, if on
input α, one can guess β efficiently, then this can be used to decide whether or
not srs ∈ L, a contradiction).

While there are many instantiations for L, we shall work with the following
simple one. Define L = {(g1, g2, g3, g4) ∈ G4| ∃a, b : a �= b ∧ ga1 = g2 ∧ gb3 = g4}
withG being a prime order group, where DDH is believed to be hard. That is, L is
the language of non-DDH triplets. Note that in this case if srs is chosen uniformly
at random from G4 the commitment is statistically hiding with overwhelming
probability (most strings are not DDH triplets).

Relaxing the Assumption. Another example for L is the following language: let
(G,E,D) be a dense cryptosystem (i.e., valid public keys and ciphertexts can
be easily extracted from random strings). The language L is:

L = {(pk0, pk1, c0, c1)|∃r0, r1,m0,m1, s0, s1 : m0 �= m1, (pk0, sk0)← G(1k, r0),

c0 = Epk0 (m0, s0), (pk1, sk1)← G(1k, r1), c1 = Epk1 (m1, s1))}.
Also in this case most strings are in the language, while the simulator can

choose a string not in the language (i.e., with m0 = m1).
Moreover, we can plug this mixed commitment MXCom in a zero-knowledge

protocol in the SRS model NMMXCom, so that when srs is a random DDH
triple, the zero-knowledge protocol is a proof (i.e., statistically sound) and com-
putational zero-knowledge, while when the srs is a random non-DDH triple then
the zero-knowledge protocol is statistical zero-knowledge (and computationally
sound). For eg., an implementation of Blum’s protocol by using MXCom as com-
mitment scheme when the prover commits to the permuted adjacency matrices
gives us a computational zero-knowledge proof-of-knowledge (ZKPoK, for short)
if srs of the MXCom commitment used is a random DDH tuple and a statistical
zero-knowledge argument-of-knowledge (ZKAoK, for short) if the srs is a random
non-DDH tuple.

Constructing Mixed Non-malleable Commitments. As mentioned earlier, we
show how to construct a mixed non-malleable commitment scheme by using a
mixed commitment scheme. For concreteness, we shall work with the mixed com-
mitment scheme MXCom described earlier. To thus recall, by the construction
of MXCom, our mixed non-malleable commitment scheme will be non-malleable
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when srs is a random DDH tuple and, is statistically hiding and computationally
binding when srs is a random non-DDH tuple.

Our scheme NMMXComsrs is described as follows. At a high level, our approach
is to slightly modify the DDN non-malleable commitment scheme in [8]. In fact,
we shall describe our modification by considering the concurrent non-malleable
commitment scheme that appears in [15] (whose analysis of non-malleability is
similar to that of the DDN commitment and is simpler). The protocol in [15]
is in fact non-malleable w.r.t. any arbitrary protocols of logarithmic round-
complexity, a property that is called log(λ)-robust non-malleability. This is one
of the properties which will be of a crucial use to us and we shall elaborate
on this property shortly. In fact, we only need 1-robust non-malleability. The
scheme of [15] is described below.

Common Input : An identifier ID ∈ {0, 1}L, where L = poly(λ). Define
� := log(L) + 1.

Input for Sender : A string V ∈ {0, 1}λ.
Sender ← Receiver: Sender chooses V1, V2, . . . , VL ← {0, 1}λ such that

V1 ⊕ V2 ⊕ . . .⊕ VL = V . For each i ∈ [L], run Stage 1 and Stage 2 in
parallel with v := Vi and id = (i, IDi), where IDi is the i-th bit of ID.

Stage 1 :
Sender ← Receiver: Receiver samples x ← {0, 1}λ, computes y = f(x),

and sends s to Sender. Sender aborts if y is not in the range of f .
Sender → Receiver: Sender chooses randomness ← {0, 1}λ and sends

c = Comsb(v; randomness).
Stage 2 :

Sender → Receiver: 4� special-sound WI proofs of the statement:
either there exists values v, randomness such that c = Comsb(v; randomness)
or there exists a value x such that y = f(x)
with 4� WI proofs in the following schedule:
For j = 1 to � do: Execute designidj

followed by design1−idj
.

Fig. 1. O(log(λ))-round Non-Malleable Commitment of [15]

At a high level, the protocol of the sender who wishes to commit to some
value v proceeds as follows. To catch the core of the intuition, we describe here
a simplified version of the protocol while ignoring the currently unnecessary
details (such as parallel repetitions, etc.); later in the formal description, we
shall present the original protocol of [15]. The sender proceeds as follows. In the
first stage, upon receiving an output of a one-way function from the receiver,
commit to v using a statistically binding commitment scheme Comsb. In the
second stage, engage in log(λ) (special-sound)WI proofs of knowledge of either
the value committed to using Comsb or of a pre-image of the one-way function
output sent by the receiver. (The number of WI proofs is logarithmic in the
length of the identities of the senders; hence, it is considered to be log(λ) in
general). We note here that a special-sound WI proof can be instantiated by
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using Blum’s Hamiltonicity protocol, wherein the commitment sent by the WI
prover in this protocol is SB.

Now to construct the mixed non-malleable commitment, the idea is to replace
the SB commitment Comsb of the first stage and the SB commitment within the
Blum’s Hamiltonicity protocol (where both the commitments are given by the
sender to the receiver) with the mixed commitment MXComsrs. We shall analyze
the properties of the resulting commitment scheme, denoted by NMMXComsrs,
below.

Recall that if srs is a random DDH tuple, then MXComsrs is SB and CH.
Under this case, the resulting scheme would have the properties identical to the
original scheme of [18]; namely it is SB, CH, and non-malleable. On the other
hand, if srs is a random non-DDH tuple, then MXComsrs is SH and CB. This
would render the the resulting scheme to be SH (owing to the SH property of
the commitment scheme in the first phase and witness-indistinguishability of
the Hamiltonicity protocol that is instantiated with SH commitment) and CB
(owing to the computational binding property of the commitment scheme in
the first phase; this is due to the fact that decommitment of the scheme in [15]
is simply an opening of the commitment of the first phase). In fact, if srs is a
random string, then it is a non-DDH tuple with all but negligible probability.
Hence, we also have that when srs is a random string, MXComsrs is SH and CB
with all but negligible probability. For future reference, we shall bookmark this
into the following proposition.

Proposition 1. If srs is a uniform DDH tuple, then MXComsrs is SB, CH, and
non-malleable. If srs is a uniform random string, then MXComsrs is SH and CB.

Robustness w.r.t. 1-Round Protocols of the Mixed Non-Malleable Commitments.
Recall that we modified the [15] non-malleable commitment scheme that is ro-
bust w.r.t. 1-round protocols to get mixed non-malleable commitment scheme. It
turns out that the modified scheme still retains robust w.r.t. 1-round protocols.
Here, we only give a high-level description of the reason behind this fact as this
can be easily verified. The reason is that robustness of the non-malleable commit-
ment scheme in Figure 1 is proved in [15] by relying only upon the structure (the
‘designs’, in particular) of the commitment scheme in Figure 1. In particular,
this proof does not rely upon the specifics of the underlying commitment scheme.
Now recall that the only modification we introduced in the robust non-malleable
commitment scheme of [15] to get a mixed non-malleable commitment scheme
is the following. Instead of using any underlying commitment scheme, we used
a mixed commitment scheme. Thus, the scheme continues to be non-malleable
commitment scheme robust w.r.t. 1-round protocols even when the underlying
commitment schemes are mixed commitments.

Non-malleability of NMMXComsrs w.r.t. Comnm. Another property of
NMMXComsrs that we need is the following. Let Comnm be the NMCom commit-
ment robust w.r.t. 1-round protocol. We shall argue below that NMMXComsrs is
non-malleable w.r.t. Comnm.
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Proposition 2. The non-malleable commitment NMMXComsrs is robust w.r.t.
the non-malleable commitment Comnm.

Proof Sketch. Essentially, the proof is exactly the same as the proof of
non-malleability of the non-malleable commitment scheme of [15] presented in
Figure 1. We argue this here next. Consider a MiM adversary against non-
malleability of NMMXComsrs that executes a Comnm session on the left by playing
the role of the receiver and a NMMXComsrs session on the right by playing the
role of a sender. The key technique in proving non-malleability in [8,18,15] is to
show that, immaterial of the way a MiM adversary interleaves the left and right
commitments, there exists at least one WI proof (within some design) on the
right session such that it is ‘safe’ to rewind the MiM adversary for this proof;
by ‘safe’, we mean that rewinding the MiM adversary at this point can be done
without rewinding the external sender on the left. (Recall that to rewind a WI
proof is to rewind to the point between the first and the second message of the
proof). To then understand what WI proof qualifies to be safe to rewind, we
begin by giving a high level idea of when a proof does not qualify to be safe.
Consider any WI proof (αr, βr, γr) on the right. If it is trying to use and ‘maul’
some WI proof (αl, βl, γl) on the left, then the right proof is positioned in time
with respect to the left one as shown in Figure 2. Observe that rewinding such a
proof on the right with a new challenge may make the MiM adversary send a new
challenge for the left proof too asking for a new response which tantamounts to
rewinding the sender on the left. [8,18,15] provide a characterization for theWI
proofs on the right that qualify as safe for being rewound; however, the details
of this characterization itself will not be important to us; the core argument in
proving non-malleability in [8,18,15] is an argument that, immaterial of the way
a MiM adversary interleaves the left and right commitments, there exists a WI
proof on the right that is safe to rewind. This is so owing to the fact that the
adversary can use only one proof on the left for every proof on the right and
to the fact that there are exactly the same number of proofs on the left and
the right. This would imply that if the left and the right identities are distinct
(at least at one bit position), then at proofs corresponding to this bit position,
design0 on the left ‘matches up’ with design1 on the right, depicted in Figure 2.
With a closer look at this interleaving, it can be easily derived that at least one
of the WI proofs within this design1 on the right is safe to be rewound.

We first observe that the only way NMMXComsrs differs from Comnm in Fig-
ure 1 is that a specific kind of commitment, namely, a mixed commitment is used
to instantiate the underlying commitments used in building Comnm in Figure 1.
Next, we observe that non-malleability of the commitment scheme NMMXComsrs

is mainly due to the structure (or designs) of the WI proofs, and the same ar-
guments on interleaving and safety of rewinding would hold even if the left
commitment is under an Comnm session. ��

We remark that in fact the non-malleable commitments NMMXComsrs and
Comnm are robust w.r.t. each other by the same arguments as above. However,
it suffices for us that NMMXComsrs is robust w.r.t. Comnm.



Statistical Concurrent Non-malleable Zero Knowledge 179

αl

αr

βr

βl

γl

γr

Fig. 2. Prefix (until the dotted line) that is not a safe point

αl
1

αr
2

αr
1

βr
1

βl
1

γl
1

γr
1

αl
2

βr
2

βl
2

γl
2

αr
2

Fig. 3. A design0 matches up with design1



180 C. Orlandi et al.

Concurrently Extractable Commitment Schemes. Concurrently extractable com-
mitment (CECom) schemes consist of committing using the PRS preamble, and
decommitting by opening all the commitments within the preamble [24]. Roughly
speaking, the preamble consists of the sender committing to multiple shares of
the value to be committed; then the receiver, in multiple rounds, would challenge
the sender to open a subset of them in such a way that the opened shares do
not reveal the committed value, but this would somehow facilitate consistency
checks as shown in [24,20].

A challenge-response pair in the preamble is called a ‘slot’. [20] formalized
concurrent extractability and showed that the PRS preamble satisfies it if the
number of slots therein is ω(log(λ)). We denote a CECom commitment that is
SB by CEComsb, the one that is SH by CEComsh.

Robust Concurrent Extraction. In [24], Prabhakaran et al. demonstrated an ex-
traction procedure by which, for an adversary Sender∗ that executes multiple
concurrent sessions of CECom commitments, commitment information (com-
mitment value and randomness) for each session can be extracted in polynomial
time before the corresponding commitment phase is completed.

In [11], Goyal et al. extended the technique of [24] and showed how to per-
form efficient extractions of CECom commitments when an adversary Sender∗,
besides concurrently performing CECom commitments, also interacts with an
‘external’ party B in some arbitrary protocol Π . This setting now additionally
requires that the extraction procedure rewinds the adversary Sender∗ in a way
that B does not get rewound in the process. This is achieved in [11] by build-
ing a robust concurrent simulator (or just ‘robust simulator’) RobustSim that
interacts with both a robust concurrent adversary, which commits to multiple
CECom commitments, and an external party B, with which it runs some arbi-
trary protocol Π . For every CECom commitment that is successfully completed,
Goyal et al. show that, the robust concurrent simulator – without rewinding
the external party – extracts a commitment information, with all but negligible
probability. [11] present this result as the Robust Extraction Lemma which in-
formally states that if �external = �external(λ) and �cecom = �cecom(λ) denote the
round complexities of Π and the CECom commitment, respectively, the Lemma
guarantees the following two properties for RobustSim:

– RobustSim outputs a view whose statistical distance from the adversary’s
view is at most 2−(�cecom−�external·log(T (λ))), where, T (λ) is the maximum
number of total CECom commitments by the adversary.

– RobustSim outputs commitment information for every CECom commitment
sent by the adversary with an assurance that the external party B of protocol
Π is not rewound.

3 Statistical Concurrent Non-malleable Zero-Knowledge

We start by giving an intuition behind the design of our protocol. In [1], Barak
et al. gave a construction of a computational CNMZK argument of knowledge.
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The simulation for this protocol was restricted to be only computational due to
the following reason. In their protocol, one of the messages sent by the prover is
a non-malleable commitment to a valid witness. Since the non-malleable com-
mitment is SB, and the simulator, unlike an honest prover, does not use a valid
witness in this non-malleable commitment, the simulated view was only compu-
tationally indistinguishable from the real-world view of a MiM adversary. It will
be quite relevant for us to note that the non-malleable commitment being SB
was crucially used in the proof of concurrent non-malleability of their protocol,
therefore it is not possible to replace the above commitment scheme with a sta-
tistically hiding non-malleable commitment. More specifically, the proof would
begin with the real-world view and through a series of hybrids would move to-
wards the simulated view. In some certain hybrid along the way there would be
introduced PRS rewindings to facilitate simulation. Given such a hybrid that
performs PRS rewindings, it would be difficult to establish that one can ex-
tract a value out of the non-malleable commitment and that the extracted value
is a valid-witness. The difficulty here is in ensuring that the PRS rewindings
would not interfere with the non-malleable commitment on which the NMCom
extractor is run. The idea in their proof instead was to first prove for the real-
world view itself that the value committed in the NMCom commitment is a valid
witness, and then make transitions to hybrids by introducing PRS rewindings.
The point to be noted here is that it was crucial in their proof that the non-
malleable commitment is a statistically binding commitment, so that they could
put forth arguments on the values committed in it. With this, since introducing
PRS rewindings would only bias the distribution of the view output by at most a
negligible amount, their proof boiled down to proving that the value committed
in the NMCom commitment does not adversely change as we move across various
hybrids. Now, since we began with a hybrid where the values committed were
valid witnesses, the values committed in the NMCom commitments after the
PRS rewindings too are valid witnesses by non-malleability (and in particular
statistical binding) of the commitment scheme.

Our idea begins from noticing that statistical binding of the NMCom com-
mitment is crucial in proving extractability of valid witnesses and not important
in simulating the view of the adversary. So the core idea is to somehow ensure
that when we prove the indistinguishability of the simulation, the commitment
scheme is statistically hiding. Instead, when we need to argue that the distri-
bution of the extracted message does not change, then the commitment should
be statistically binding. With this being the crux of our idea, the way we shall
execute it is via what we call ‘mixed non-malleable commitments’. Intuitively, a
mixed non-malleable commitment scheme is associated with two efficiently sam-
plable, computationally indistinguishable distributions, and every commitment
is parameterized by some string. Furthermore, one of the distributions is such
that if the string is uniformly sampled from this distribution then the commit-
ment is SH and CB; on the other hand, a commitment that is parameterized by
a string that is uniformly sampled from the other distribution is SB and CH.
Given such a commitment scheme, our protocol basically is an instantiation of
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the BPS protocol except that the NMCom commitment in the BPS protocol is
replaced by a mixed non-malleable commitment. Also, the string that param-
eterizes this commitment computed jointly by both the prover and the verifier
is the outcome of a coin-flipping protocol. Namely, in our mixed non-malleable
commitment scheme, the distribution on the parameter that produces a SH, CB
commitment is the uniform distribution. Hence, the parameter generated via the
coin-flipping protocol is SH and CB, as required. The BPS protocol forms the
Main BPS Phase and the coin-flipping protocol is run in the Coin-flipping
Phase of our protocol.

A traditional coin-flipping protocol would involve the verifier committing to a
random string in the first round, followed by the prover sending another random
string in the clear in the second round, the verifier opening the commitment in
the third round, and finally having the prover’s and the verifier’s strings XOR-
ed as the outcome of the coin-flipping protocol. However, now that we would
also like to be able to cheat and bias the outcome to another (computationally
indistinguishable) distribution (so that the mixed non-malleable commitment
would then be SB), we modify the third round. Namely, instead of the third
round being the verifier opening the commitment by giving both the committed
value and the randomness used, the verifier would only give the committed value
and then give an argument that there exists a randomness that would explain
the commitment to this value. However, we won’t be able to work with just any
argument since we are in the concurrent setting. Furthermore, we also would
like to ensure that when our simulator cheats in the argument to bias the coin-
flipping outcome, the MiM adversary will not get any undue advantage. Thus,
the argument that we use here is a CNMZK argument. In particular, we use the
BPS argument itself. This argument forms the BPSCFP Phase in our protocol.

Furthermore, towards simplifying our proof, we introduce the following slight
modification of the BPS protocol in the ‘Main BPS Phase’. In the original BPS
protocol, the commitment in which the prover commits the valid witness to is
an NMCom commitment; on the other hand, in the ‘Main BPS Phase’, besides
sending the NMCom commitment to the witness, the prover also sends a concur-
rently extractable (CECom) commitment to the same witness. The simplification
we achieve by adding the CECom commitment is that even the extraction of the
witnesses (by the simulator-extractor) can be performed just like an extraction
on any other CECom commitments in the protocol. Since, for simulation, we
anyway need to employ certain techniques for the extraction from the other CE-
Com commitments, we are now able to recycle the same techniques for witness
extractions too, thus letting our focus stay on the other crucial subtleties (which
we shall see as we get to the proofs of security).

We will now give a formal description of the protocol.

3.1 Our sCNMZKAoK Protocol 〈P,V〉
Ingredients.

1. Let CEComsh and CEComsb be SH and SB concurrently-extractable com-
mitment scheme, respectively. Let each of them be of kcecom-slots, where
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kcecom ∈ ω(logλ). Let the sender’s randomness space for these commitments
be RandSpacececom.

2. Let Comsh be a SH commitment scheme. Let ksh be its round-complexity,
where ksh is a constant.

3. Let sWIAoK be a statistical WIAoK protocol. Let kswiaok be its round-
complexity, where kswiaok is a constant.

4. Let NMMXCom(·) be our mixed non-malleable commitment scheme. Recall
that it satisfies extractability and is robust w.r.t. 1-round protocols. Let
knmmxcom be its round-complexity, where knmmxcom is O(log(λ)).

5. Let Comnm be the non-malleable commitment scheme (described in Fig. 1).
Recall that it satisfies extractability and is robust w.r.t. 1-round protocols.
Let knmcom be its round-complexity.

In summary, the round complexities of the sub-protocols in our protocol are
as follows: kcecom ∈ ω(logλ), kswiaok, ksh are constants, and knmcom, knmmxcom ∈
O(log(λ)).

Coin-Flipping Phase (CFP).

cfp1 (V → P): Sample rV ← {0, 1}λ, rand ← RandSpacececom and commit to
rV using CEComsh and randomness rand.

cfp2 (P → V): Sample rP ← {0, 1}λ and send rP .
cfp3 (V → P): Send rV .

BPSCFP Phase.

bpscfp1 (P → V): Sample α← {0, 1}λ and commit to α using CEComsb.
bpscfp2 (V → P): Commit to 0λ using Comsh and argue knowledge of a commit-

ment information (i.e., a commitment value and randomness) using sWIAoK.
bpscfp3 (P → V): Open the commitment of Step bpscfp1 to α.
bpscfp4 (V → P): Commit to rand (used as commitment randomness in Step

cfp1) using the NMCom commitment Comnm. In the rest of the paper, we
shall refer to rand as the sub-witness.

bpscfp5 (V → P): Send sWIAoK to argue knowledge of either rand or rcomsh

such that:
1. the value committed to by V with the NMCom commitment at Step

bpscfp4 is rand and rand explains the CECom commitment at Step cfp1
to rV .

2. Randomness rcomsh explains Comsh at Step bpscfp2 being committed to
α.

Let srs = rP ⊕ rV .

Main BPS Phase.

bps1 (V → P): Sample σ ← {0, 1}λ and commit to it using CEComsb.
bps2 (P → V): Commit to 0λ using Comsh and argue knowledge of a commit-

ment information (i.e., a commitment value and randomness) using sWIAoK.
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bps3 (V → P): Open the commitment of Step bps1 to σ.

bps4 (P → V): Commit to the witnessw usingmixed commitmentNMMXComsrs.

bps4+ (P → V): Commit to the witness w using CEComsh
2.

bps5 (P → V): Send sWIAoK to argue knowledge of either w, rnm, rcecom or
r′comsh such that:

1. rnm and rcecom explain the NMMXComsrs commitment of Step bps4 and
the CECom commitment of Step bps4+ to w, respectively, and w is such
that RL(x,w) = 1,

2. Randomness r′comsh explains Comsh at Step bps2 being committed to σ.

3.2 Proofs of Security

In this section, we prove that our proposed protocol 〈P ,V〉 is a statistical con-
current non-malleable zero-knowledge argument of knowledge. In other words,
we show that there exists a simulator-extractor SE that, for every concurrent
MiM adversary M, outputs a view view that is statistically indistinguishable
from the view viewM(x1, . . . , xmL , z) ofM in a real execution, and also outputs
valid witnesses y1, . . . , ymR

for all accepting right sessions.

Our Simulator-Extractor. The Simulator-Extractor SE runs RobustSim which is
the robust concurrent simulator for a robust concurrent attack. The adversary
of the robust concurrent attack is a procedure I that we describe below. SE will
then output the output of RobustSimI(z). Recall that RobustSim runs a given
adversary that mounts a robust concurrent attack by committing to multiple
CECom commitments, where the adversary also interacts with an external party
B in an arbitrary external protocol. RobustSim then is guaranteed to extract
commitment information from every CECom commitment sent by the adversary
before the completion of its commitment phase, in such a way that the external
party B does not get rewound.

Procedure I(z). I incorporates the MiM adversary M, initiates an execution,
and simulates its view as follows. Let the mL left sessions be ordered with some
arbitrary ordering. Let the mR right sessions be ordered as follows: Consider any
two right sessions, the i-th and the j-th; i ≤ j if and only if the CEComsb commit-
ment at Step bps1 of the i-th session begins earlier to the CEComsb commitment
at Step bps1 of the j-th session.

For every right session: Run the code of the verifier except isolate CEComsh at
Step bps4+ and relay it to external receiver. Let value y′t be received from the
outside (RobustSim) at the end of the CEComsh commitment.

2 In order to make the difference from the BPS protocol more easily noticeable, the
five steps here that are common to the BPS protocol are numbered in sequence from
bps1 through bps5, while this ‘extra’ step is given a distinctive notation, bps4+.
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For every left session: When M initiates an �-th new session on the left, I
proceeds as follows.

– Run the coin-flipping phase and the BPSCFP phase honestly. Let srs be the
outcome.

– Isolate CEComsb at Step bps1 and relay it to an external receiver. Let σ′ be
the value received from the outside (RobustSim) at the end of the CEComsb

commitment.
– Then commit to σ′ using Comsh at Step bps2; also, use the same extracted

value as the witness in executing the sWIAoK of Step bps2.
– In Step bps3, let M opens its CEComsb (of Step bps1) to σ. Abort if σ �= σ′.
– Commit to 0λ using the mixed non-malleable commitment NMMXComsrs in

Step bps4.
– Commit to 0λ using the CEComsh commitment in Step bps4+.
– Use σ′ committed to in Step bps2 as the witness in executing sWIAoK of

Step bps5.

WhenM halts, I outputs the view ofM together with y′1, . . . , y
′
mR

, and halts.

Statistical simulation. We shall prove that the view output by SE is distributed
statistically close to the real-world view of the MiM adversaryM.

Theorem 1. For every PPT adversaryM, {viewM(x1, . . . , xmL)}x1,...,xmL
∈L ≈s

{view}x1,...,xmL
∈L.

We only provide an intuition to the proof here below. Full proof appears in the
full version of the paper.

Proof Sketch. To prove the indistinguishability, we first take note of the ways
in which the view generated by the simulator differs from the real-world view
of the MiM adversary. Basically, the differences are that: for left sessions, the
simulator does not use valid witnesses but tries to get ‘fake’ witnesses via the
robust simulator; and for the right sessions, the simulator tries to extract wit-
nesses via the robust simulator. While we know that using the robust simulator
can incur at most negligible distance, what still remains to be shown is that the
simulator using fake-witnesses for the left sessions also creates at most negligible
distance from the real-view. For this, we simply rely on the statistical properties
of the sub-protocols in which the simulator uses different values; namely, we rely
upon SH of Comsh of Step bps2, sWI property of sWIAoK of Step bps2, SH of
the mixed non-malleable commitment of Step bps4, and sWI of sWIAoK of Step
bps5– the steps at which the simulator uses different values in left sessions. Ex-
cept for SH of the mixed non-malleable commitment of Step bps4, all the above
properties are already guaranteed by the corresponding primitives themselves;
however, on the other hand, to ensure that the mixed non-malleable commit-
ment – parameterized by srs which is the outcome of the coin-flipping protocol
– is SH, we need to ensure that srs is uniformly random with all but negligible
probability. Before we proceed, we thus prove that in the real-world view srs is
uniform in every left session with all but negligible probability.
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Claim. In the real-world view viewM(x1, . . . , xmL), for every left session, srs is
uniformly random with all but negligible probability.

Proof Sketch. We begin by outlining the structure of the proof.

1. First, we show that, there exists a PPT algorithm that can extract a value
r′V from CEComsh of Step cfp1 of every left session before Step cfp2 of that
session is reached. Thus, since rP is sent to the adversary after r′V is ex-
tracted, r′V is independent of rP , and since rP is uniformly random, rP ⊕ r′V
is also uniformly random with all but negligible probability.

2. Then, we show that, in every left session, with all but negligible probability,
r′V = rV , where, rV is the value sent by M in Step cfp3.

The above items together imply that srs = rP ⊕ rV is uniformly random, with
all but negligible probability.

We prove the first step above by relying upon the Robust Extraction Lemma.
Basically, the PPT algorithm (mentioned in the first step above) just emulates
honest provers and honest verifiers to M except that it relays the CEComsh

of Step cfp1 of every left session to RobustSim for extraction. We establish the
second step as follows. Recall that a commitment information for r′V of CEComsh

of Step cfp1 in question is extractable as shown for the first step. Furthermore,
from the witness-extractability of the BPS protocol in BPSCFP phase, we can
extract a witness – that we call sub-witness – for rV being committed in the
same CEComsh commitment. Thus, if rV �= r′V , we break CB of CEComsh.

However, the proof is still not complete. The reason is for an implicit as-
sumption in proving the second step above that the BPS argument given by
the adversary in BPSCFP phase of the left session is sound. To prove this, we
establish the following claim.

Sub-Claim 1. In the real world view, if BPSCFP phase of the �-th left session is
accepted by the prover P�, then the value committed to by M in Comnm at Step
bpscfp4 of the �-th left session is a valid sub-witness.

Proof Sketch. Intuitively, Comnm at Step bpscfp4 of the �-th left session contains
a valid sub-witness owing to

computational hiding of CEComsb – to argue that M does not learn α, com-
mitted to by the prover in CEComsb, and use it in its commitment Comsh

and sWIAoK at Step bpscfp2,
knowledge-soundness of sWIAoK in Step bpscfp2– to extract knowledge of com-

mitment information (i.e., commitment value and randomness) for Comsh in
Step bpscfp2 and to verify that the extracted value will not be α,

knowledge-soundness of sWIAoK in Step bpscfp5– to argue that either the value
committed to in Comnm at Step bpscfp4 is a valid sub-witness or to argue
knowledge of a commitment information for Comsh in Step bpscfp2 with com-
mitment value as α,

and finally, computational binding of Comsh at Step bpscfp2 to show the knowl-
edge extracted is not α as a commitment value.
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We prove each of the above steps by carefully designing interfaces that launch
robust concurrent attacks and by crucially relying upon the Robust Extraction
Lemma for extraction of commitment information out of these interfaces. ��

With this, we continue with a hybrid argument by moving from the real-world
view to the simulated view. This is facilitated by the already established facts
that the messages where the simulator deviates in its behavior from the real-
world are statistically hiding (in some sense). ��

Witness Extractability. We shall prove that the values y′1, . . . , y
′
mR

extracted by
the simulator-extractor SE are valid witnesses for the statements of the corre-
sponding right sessions.

Theorem 2. For every PPT adversary M, the output of the simulator SE(x1,
. . . , xmL , z) = (view, y1, . . . , ymR

) is such that, ∀i ∈ [mR], (xi, yi) ∈ RL.

We discuss some of the core technical difficulties of the proof together with a
high-level proof structure. Full proof appears in the full version of the paper

Proof Sketch. Recall that in our protocol, the prover commits to a valid
witness in NMMXComsrs at Step bps4 and also commits to the same valid witness
in CEComsh at Step bps4+ (accompanied by a sWIAoK later in Step bps5 for
correctness of behavior). Note that both of these commitments are extractable.
However, we cannot in a straight-forward manner employ the proof techniques
of [1] or [17] to prove that the values extracted from these commitments by the
simulator are indeed valid witnesses.

We begin by pointing out the reason why we are not able to simply make
use of the proofs of [1] or [17]. In both [1] and [17], the prover commits to the
witness with a non-malleable commitment. Thus, the commitment is statistically
binding. Their proofs essentially proceed in the following manner: First, prove
that the values committed to in the non-malleable commitments are valid wit-
nesses. Secondly, move to a hybrid where extractions are performed to extract
‘trapdoors’ for cheating in the left sessions and to extract witnesses of the right
sessions. Although cheating by the simulator on the left sessions may adversely
change the values committed by M in the commitments of the right sessions,
one can argue that the values committed to in the commitments of the right
sessions are still valid witnesses owing to non-malleability of the commitment
schemes.

Indeed, the statistically binding NMCom commitments are the reason why
the protocols of [1] and [17] are not statistical CNMZK, but only computation-
ally so. Our approach, to recall, is to use a mixed NMCom commitment which is
parameterized by a string that is output of the coin-flipping phase that precedes
the main argument phase. Thus, in the real-world, as proven earlier for Theo-
rem 1, the parameter is a uniform random string rendering the mixed NMCom
commitment to be SH. (Recall that the commitment being SH was crucial in
proving statistical simulation in Theorem 1). Thus, it is not clear how to solely
rely on the proof techniques of [1,17] for our proof.
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Our proof technique instead is as follows. We begin with the real-world ex-
periment where the outcome of the coin-flipping protocol is a uniform random
string and thus the commitment scheme at Step bps4 is a SH commitment. Then
we start moving towards the hybrid which cheats in right sessions by biasing the
outcome of the coin-flipping protocol to a uniform DDH tuple. The technical
challenge will be the following. Fix any right session. Let Ha and Hb be the two
hybrids in our hybrid sequence such that, the commitment at Step bps4 in Ha is
SH while the same commitment is SB in Hb (due to cheating in the coin-flipping
protocol). Here, we need to establish that in Hb, the committed value in the
commitment at Step bps4 is a valid witness. We establish this through a care-
ful design of hybrids and their sequence. We expand on our techniques and the
whole high-level structure of the proof here below. We shall discuss the further
multiple technical difficulties in the full proof in the full version of the paper.

We begin with a hybrid that is identical to the real-world view. Then we grad-
ually modify the behavior of the hybrid for the right sessions towards biasing
the coin-flipping protocol outcome to a random DDH tuple (from a uniform ran-
dom string). Here, we will also prove that the values committed to by the MiM
adversary in the mixed commitment at Step bps4 is a valid witness (note that,
with the outcome of coin-flipping being a random DDH tuple, this commitment
scheme is now SB, thus allowing us to put forth arguments on the values com-
mitted in it). Next, we further move to hybrids which also behave differently
in the left sessions by using ‘trapdoors’ (or fake-witnesses) extracted from the
adversary itself (instead of valid witnesses). Here, we argue that such deviation
in the hybrids’ behavior for the left sessions does not adversely change the values
committed to in the mixed NMCom commitments of the right sessions. Finally,
we thereby reach a hybrid that behaves the same as our simulator-extractor,
thus proving that the values extracted by SE are indeed valid witnesses.

Observe that it is easy to prove indistinguishability of hybrids as we change
hybrids’ behavior for the left sessions. The reason is that the left sessions will
still have the outcome of coin-flipping to be uniformly random and thus the cor-
responding mixed commitment is SH. Thus, hybrids using fake-witnesses instead
of the real ones will only introduce negligible statistical distance. However, the
challenging part would be to argue indistinguishability of hybrids as they devi-
ate in their behavior on the right sessions. We expand on the difficulty and our
techniques briefly here below.

In order for hybrids to start cheating in coin-flipping phases of the right ses-
sions, it is crucial that the hybrids are ordered carefully. Note that, we cannot
at once move to a hybrid which changes the outcome of the coin-flipping phase
due to soundness of the BPS protocol in BPSCFP phase. Thus, we first simulate
this BPS protocol. We do so by extracting a trapdoor from the adversary in a
way similar to [1]. Then, the next hybrid would be ‘free’ to bias the coin-flipping
outcome to a random DDH tuple. However, note that this change is not statis-
tically indistinguishable but only computationally so. Hence, this may adversely
change the values committed to in the NMCom commitments in the protocol.
However, with a careful sequence of arguments, we will be able to obtain a reduc-
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tion to robustness w.r.t. 1-round protocols. Here it will be crucial to ensure that
the other rewindings performed by the hybrids would not rewind the external
NMCom receiver of the reduction.

Let us now consider the first hybrid that biases the coin-flipping outcome of
the i-th right session. By this hybrid, we will already have biased coin-flipping
outcomes of the first i− 1 sessions. We thus need to make sure that this biasing
will also not adversely change the values committed to in the mixed NMCom
commitments at Step bps4 of the first i− 1 right sessions. Here again we rely on
w.r.t. 1-round protocols for these NMCom commitments too.

A major technical difficulty would be the following. Fix any right session.
Consider the first hybrid that biases the coin-flipping outcome of this session.
Note that the previous hybrid had coin-flipping outcome to be a random string
and thus the mixed commitment at Step bps4 of the right session here to be
SH. But in the current hybrid, due to the bias, the commitment scheme is SB.
Here we need to argue that the committed value is a valid witness. As shown
in the full proof, this would entail proving computational binding of a CEComsh

commitment. Here, we are no longer able to rely only upon the Robust Extraction
Lemma to ensure us of successful extractions for the following reason. In Robust
Extraction Lemma, it is essential that the external protocol whose party is not
supposed to be rewound is such that its round complexity is strictly less than
the number of slots of the CECom commitments extracted from. However, in
the current case, the external protocol itself is a CECom commitment and hence
this condition can not be met. We get around this difficulty again with a careful
sequencing of hybrid arguments.

Furthermore, the above technical difficulty arises at another juncture in the
proof of witness extractability. Namely, we encounter a hybrid where coin-
flippings of all right sessions are biased, and in the subsequent hybrid we start
changing the values committed in CEComsh commitments of the left sessions.
Here, we are still able to rely on the robustness of the concurrent extraction as
follows. Although one cannot use the Robust Extraction Lemma for a reduction
to statistical hiding of the entire left CEComsh commitment, we can consider in-
termediate hybrids where, at a time, only one sub-commitment of the CEComsh

commitment is changed. Thus, we are still able to use robustness of the concur-
rent extraction since the sub-protocol in question is only of three rounds (as per
the standard CECom commitment of [24]).

Then, once we ensure that the commitments at Step bps4 of right sessions
contain valid witnesses, we proceed to argue that the values extracted from the
CEComsh commitments are are valid witnesses with the following argument. We,
along the way, show that the adversary cannot have a trapdoor, namely, r′comsh

that explains Comsh at Step bps2 being committed to σ. This implies that, for
every right session, the witness that is extractable from the sWIAoK argument
at Step bps5 of is an opening of the CEComsh commitment (together with the
opening of the NMMXComsrs commitment of Step bps4) to a valid witness.
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With this, we finally are at a hybrid that extracts valid witnesses from the
right sessions. Furthermore, this hybrid is identical to our simulator-extractor,
thus proving witness extractability of our protocol 〈P ,V〉. ��
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Abstract. While 4-round constructions of zero-knowledge arguments
are known based on the existence of one-way functions, constuctions of
resettably-sound zero-knowledge arguments require either stronger as-
sumptions (the existence of a fully-homomorphic encryption scheme), or
more communication rounds. We close this gap by demonstrating a 4-
round resettably-sound zero-knowledge argument for NP based on the
existence of one-way functions.

1 Introduction

Zero-knowledge (ZK) interactive protocols [18] are paradoxical constructs that
allow one player (called the Prover) to convince another player (called the Ver-
ifier) of the validity of a mathematical statement x ∈ L, while providing zero
additional knowledge to the Verifier. We are here interested in a stronger notion
of zero-knowledge arguments known as resettably-sound zero-knowledge. This no-
tion, first introduced by Barak, Goldwasser, Goldreich and Lindell (BGGL)[2],
additionally requires the soundness property to hold even if the malicious prover
is allowed to “reset” and “restart” the verifier. This model is particularly relevant
for cryptographic protocols being executed on embedded devices, such as smart
cards. BGGL provided a construction of a resettably-sound zero-knowledge ar-
gument for NP based on the existence of collision-resistant hash-functions. More
recently, Bitansky and Paneth [5] presented a resettably-sound zero-knowledge
argument based on the existence of an oblivious transfer (OT) protocol. Finally,
Chung, Pass and Seth (CPS) [10] show how to construct such protocol based on
the minimal assumption of one-way functions (OWFs).1

1 As shown by Ostrovsky and Wigderson, one-way functions are also “essentially”
necessary for non-trivial zero-knowledge [25]. In [9] one-way functions have been
shown to suffice also when resettable zero knowledge is desired.
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Our focus here is on the round-complexity of resettably-sound zero-knowledge
arguments. All the above protocols only require a constant number of rounds;
but what is the exact round-complexity? The original BGGL protocol requires
8 rounds and collision-resistant hash functions (CRHs); an implementation in
6 rounds of the BGGL construction has been shown in [24]. More recently, Bi-
tansky and Paneth in [6] improved the round complexity of resettably-sound
zero knowledge to 4 rounds but additionally requiring the existence of a fully
homomorphic encryption (FHE) schemes [13,8]. Additionally they showed a 6-
round protocol based on trapdoor permutations. In contrast, for “plain” (i.e.,
not resettably-sound) zero-knowledge, Bellare, Jakobsson and Yung [4] show how
to obtain a 4-round zero-knowledge argument for NP based on the existence of
the existence of one-way functions. This leaves open the question of whether
round-efficient (namely 4-round) resettably-sound arguments can be based on
weaker assumptions than FHE.

1.1 Our Results

We close the gap between resettably-sound and “plain” zero-knowledge argu-
ments, demonstrating a 4-round resettably sound zero-knowledge argument (of
knowledge) based solely on the existence of OWFs.

Theorem 1 (Informal). Assume the existence of one-way functions. Then
there exists a 4-round resettably-sound zero-knowledge argument of knowledge
for every language in NP .

Our starting point is the constant-round resettably-sound zero-knowledge ar-
gument for NP due to CPS. Our central contribution is a method for “collapsing”
rounds in this protocol. A key feature of the CPS protocol is that, although the
protocol consist of many rounds, the honest prover actually just sends commit-
ments to 0 in all but two of these rounds. These “commitment to 0” preamble
messages are only used by the simulator; roughly speaking, the simulator uses
these message to come up with a “fake witness” that it can use in the remain-
ing part of the protocol. On a very high-level, we show that all these pream-
ble messages can be run in parallel, if appropriately adjusting the remaining
two messages. An initial observation is that if we simply run all the preamble
rounds in parallel—in a single “preamble slots”—then both completeness and
zero-knowledge will still hold; the problem is that soundness no longer holds. In
fact, soundness of the CPS protocol relies on the fact that the preamble messages
are executed in sequence. Our key-idea for dealing with this issue is to have the
verifier additionally provide a signature on the message-response pair for the
“preamble” slot, and we now modify the “fake witness” part of the protocol to
be a chain of signatures of the preamble messages in the right order. Soundness
is now restored, and zero-knowledge simulation can be re-established by having
the simulator rewind the preamble slot to get a signed sequence of messages in
the right order.
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1.2 Techniques

To explain our techniques in more detail, let us first recall Barak’s non-black-
box zero knowledge protocol on which BGGL is based, and then recall how CPS
modify this protocol to only rely on OWF. We finally explain how to “collapse”
rounds in this protocol.

Barak’s Protocol and the BGGL Transformation. Recall that Barak’s protocol
relies on the existence of a family of collision-resistant hash function h : {0, 1}∗ →
{0, 1}n; note that any such family of collision-resistant hash functions can be
implemented from a family of collision-resistant hash functions mapping n-bit
string into n/2-bit strings using tree hashing [21]. Roughly speaking, in Barak’s
protocol, on common input 1n and x ∈ {0, 1}poly(n), the Prover P and Verifier
V , proceed in two stages. In Stage 1, V starts by selecting a function h from
a family of collision-resistant hash function and sends it to P ; P next sends a
commitment c = Com(0n) of length n, and finally, V next sends a “challenge”
r ∈ {0, 1}2n; we refer to this as the “commit-challenge” round. In Stage 2, P
shows (using a witness indistinguishable argument of knowledge) that either x
is true, or that c is a commitment to a “hash” (using h) of a program M (i.e.,
c = Com(h(M)) such that M(c) = r.

Roughly speaking, soundness follows from the fact that even if a malicious
prover P ∗ tries to commit to (the hash of) some program M (instead of com-
mitting to 0n), with high probability, the string r sent by V will be different
from M(c) (since r is chosen independently of c). To prove ZK, consider the
non-black-box simulator S that commits to a hash of the code of the malicious
verifier V ∗; note that, by definition, it thus holds that M(c) = r, and the simu-
lator can use c as a “fake” witness in the final proof. To formalize this approach,
the witness indistinguishable argument in Stage 2 must actually be a witness in-
distinguishable universal argument (WIUARG) [22,1] since the statement that c
is a commitment to a program M of arbitrary polynomial-size, and that proving
M(c) = r within some arbitrary polynomial time, is not in NP . WIUARGs are
known based on the existence of CRH and those protocols are constant-round
public-coin; as a result, the whole protocol is constant-round and public-coin.

Finally, BGGL show that any constant-round public-coin zero-knowledge ar-
gument of knowledge can be transformed into a resettable-sound zero-knowledge
argument, by simply having the verifier generate its (random) message by ap-
plying a pseudorandom function to the current partial transcript.2

The CPS Protocol. We now turn to recall the ideas from CPS for removing the
use of CRHs in Barak’s protocol. Note that hash functions are needed in two
locations in Barak’s protocol. First, since there is no a-priori polynomial upper-
bound of the length of the code of V ∗, we require the simulator to commit to the

2 Strictly speaking, Barak’s protocol is not a argument of knowledge, but rather a
“weak” argument of knowledge (see [1,2] for more details), but the transformation
of [2] applies also to such protocol.
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hash of the code of V ∗. Secondly, since there is no a-priori polynomial upper-
bound on the running-time of V ∗, we require the use of universal arguments (and
such constructions are only known based on the existence of collision-resistant
hash functions).

The main idea of CPS is to notice that digital signature schemes—which can
be constructed based on one-way functions—share many of the desirable proper-
ties of CRHs, and to show how to appropriately instantiate (a variant of) Barak’s
protocol using signature schemes instead of using CRHs. More precisely, CPS
show that by relying on strong fixed-length signature schemes, which can be con-
structed based on one-way functions, one can construct signature tree analogous
to the tree hashing that could be used to compress arbitrary length messages
into a signature of length n and satisfies an analogue collision-resistance prop-
erty. A strong fixed-length signature scheme allows signing messages of arbitrary
polynomial-length (e.g length 2n) using a length n signature and satisfies that
no polynomial time attacker can obtain a new signature even for messages that
it has seen a signature on [14].

CPS then show how to replace tree hashing by signature trees by appropriately
modifying Barak’s protocol. Firstly, CPS adds a signature slot at the beginning
of the protocol. More precisely, in an initial stage of the protocol, the verifier
generates a signature key-pair sk,vk and sends only the verification key vk to
the prover. Next, in a “signature slot”, the prover sends a commitment c of some
message to the verifier, and the verifier computes and returns a valid signature σ
of c (using sk). This is used by the simulator to construct a signature tree through
rewinding the (malicious) verifier as a fake witness for WIUARG in an analogous
way as before. Note that the commitment is used to hide the message to be
signed from the malicious verifier, and as such, the signature tree is constituted
by signatures of commitments of signatures...etc—this is referred to as a Sig-com
tree. On the other hand, soundness follows in a similar way to Barak’s protocol
by relying on the fact that Sig-com tree satisfy a strong “collision-resistance”
property—namely, no attacker getting the vk can find collisions, even given
access to a signing oracle.

Secondly, CPS use a variant of Barak’s protocol due to Pass and Rosen [26],
which relies on a special-purpose WIUARG, in which the honest prover never
needs to perform any hashing.3 More precisely, the WIUARG consist two phases:
a first phase where the honest provery simply sends commitments to 0n, and a
second phase where it proves that either x ∈ L or the messages it committed to
consistutes a valid UARG proving that the prover knows a fake witness.

While this protocol is not public-coin, CPS nevertheless shows that it suffices
to apply the PRF transformation of BGGL to just the the public-coin part of the
protocol to obtain a resettably soundness protocol; recall that the only part of
the protocol that is not public-coin is the “signature slot” and, thus, intuitively,
the only “advantages” a resetting prover gets is that it may rewind the signature
slot, and thus get an arbitrary polynomial number of signatures on messages of
its choice. But, as noted above, signature trees are collision-resistant even with

3 In fact, an early version of Barak’s protocol also had this property.
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respect to an attacker that gets an arbitrary polynomial number of queries to a
signing oracle and thus resettable-soundness follows in exactly the same way as
the (non-resetting) soundness property.

Formalizing this intuition, however, is subtle. CPS first introduce an “oracle-
aided” model where both players have access to a signing oracle, and construct a
public-coin zero knowledge argument of knowledge in this model. Then the trans-
formation of [2] is applied to this protocol to obtain an oracle-aided resettably-
sound zero-knowledge argument of knowledge. CPS then show a general trans-
formation for turning the protocol into a “fixed-input” resettably-sound zero-
knowledge argument (of knowledge) in the “plain” model (i.e. without any or-
acle); fixed-input resettable-soundness means that resettable soundness is only
required to hold with respect to a single fixed input. Finally, CPS show another
general transformation that turns any fixed-input resettable soundness argument
of knowledge into “full-fledged” resettable sound argument (or knowledge). Com-
bining all these steps leads to constant-round resettably-sound zero-knowledge
argument of knowledge for NP based on one-way functions.

Collapsing Rounds for the CPS Protocol. We are now ready to explain our
method for collapsing rounds in the CPS protocol. Note that, although the CPS
protocol consists of many rounds, the honest prover actually just sends commit-
ments to 0, in all but the final two rounds, where the prover shows that it either
has a “fake witness” or that x ∈ L. More precisely, in the final “proof phase” of
the protocol (where the prover only sends two messages), the prover shows the
verifier that either x ∈ L or that the “committed UARG” transcript is accepting.
The key idea is to modify the protocol to let the prover show in the “proof phase”
that either x ∈ L or it knows a ”commit-challenge” pair (c, r) and a committed
UARG transcript showing that the commit-challenge pair was successful. This,
alone, clearly does not work: soundness no longer hold if the prover can come
up with its own “invented transcript”. Inspired by the work of Lin and Pass
[20], we instead require the prover to show that it knows a transcript—that has
been signed, message-by-message, by the verifier through a “signature-chain”. A
similar approach was used also in [11,19]. Once we have done this change, we
can simply remove all messages in the preamble phase (where the honest prover
commits to 0) and just replace them with a signature slot. More precisely, we
modify the CPS protocol in the following way:

– We start by running two signature slots in parallel: the first one is used for
the signature-trees as in the original CPS protocol; the second one is used
for the “signature-chain”.

– In parallel with the signature slots, we start running the modified “proof
phase” where the prover is requested to (using a WI argument of knowledge)
prove that either x ∈ L or it knows a ”successful” transcript for the preamble
phase that has been signed, message-by-message, in the right sequence using
the second signature key.

Intuitively, simulation can be performed similarly to CPS, except that instead of
simply providing the UARG messages in the protocol, the simulator rewinds the
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signature slot to get an appropriately signed transcript of the UARG protocol.
(Proving this is a bit delicate since the CPS simulator is already providing its
own rewindings, so we need to be careful to ensure that the composition of these
rewindings does not blow up the expected running-time.)

The key challenge, however, is proving resettable-soundness of the resulting
protocol. On a very high-level, we shows that how to transform any resetting
attacker to a “stand-alone” (i.e., non-resetting) attacker for oracle-aided CPS
protocol (recall that the CPS protocol was first constructed in an oracle-model
where the prover and verifier have access to signature oracles, and then the
oracle-aided protocol was transformed into a protocol in the “plain” model by
adding the the signature slots).4 Roughly speaking, we show how to extract out
the implicit transcript messages from any successful resetting prover and we can
then use these messages in the (oracle-aided) CPS protocol. This is not entirely
trivial, since in the CPS protocol these messages need to be provided one-by-one,
whereas we can only extract out a full transcript. Our key technical contribution
consist of showing how to appropriately rewind the resetting attacker to make it
provide accepting transcript that are consistent with a current partial transcript
of the CPS protocol. We here rely on the properties of signature-chains, and the
fact the the protocol only has a constant number of rounds.

2 Definitions

We now give definitions for interactive proof/argument systems with all variants
that are useful in this work.

Definition 1 (interactive proofs [17]). A proof system for the language L, is
a pair of interactive Turing machines (P, V ) running on common input x such
that:

– Efficiency: P and V are PPT.
– Completeness: There exists a negligible function ν(·) such that for every pair

(x,w) such that RL(x,w) = 1,

Prob[ 〈P (w), V 〉(x) = 1 ] ≥ 1− ν(|x|).

– Soundness: For every x �∈ L and for every interactive Turing machine P ∗

there exists a negligible function ν(·) such that

Prob[ 〈P ∗, V 〉(x) = 1 ] < ν(|x|).

In the above definition we can relax the soundness requirement by considering
P ∗ as PPT. In this case, we say that (P, V ) is an argument system.

We denote by view
P (w)
V ∗(x,z) the view (i.e., its private coins and the received mes-

sages) of V ∗ during an interaction with P (w) on common input x and auxiliary
input z.

4 This is a slight oversimplification; we actually need to slightly modify the oracle-
aided CPS protocol. See Section 3 for more details.
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Definition 2 (zero-knowledge arguments [17]). Let (P, V ) be an interac-
tive argument system for a language L. We say that (P, V ) is zero knowledge
(ZK) if, for any probabilistic polynomial-time adversary V ∗ receiving an auxil-
iary input z, there exists a probabilistic polynomial-time algorithm SV ∗ such for

all pairs (x,w) ∈ RL the ensembles {viewP (w)
V ∗(x,z)} and {SV ∗(x, z)} are compu-

tationally indistinguishable.

Arguments of knowledge are arguments where there additionally exists an
expected PPT extractor that can extract a witness from any successful prover,
and this is a stronger notion of soundness. We will give now a definition that is
slightly weaker than the standard definition of [3] but is useful for our construc-
tions.

Note, also, that in the following definition, the extractor is given non-black
box access to the prover. This is an essential property for our techniques.

Definition 3 (arguments of knowledge [2]). Let R be a binary relation. We
say that a probabilistic, polynomial-time interactive machine V is a knowledge
verifier for the relation R with negligible knowledge error if the following two
conditions hold:

– Non-triviality: There exists a probabilistic polynomial-time interactive ma-
chine P such that for every (x,w) ∈ R, all possible interactions of V with
P on common input x, where P has auxiliary input w, are accepting, except
with negligible probability.

– Validity (or knowledge soundness) with negligible error: There exists a
probabilistic polynomial-time machine K such that for every probabilistic
polynomial-time machine P ∗, every polynomial p(·) and all sufficiently large
x’s,
Pr[w ← K(desc(P ∗), x) ∧RL(x,w) = 1] > Pr[〈P ∗, V 〉(x) = accept]− 1

p(|x|)
where 〈P ∗, V 〉(x) denotes V ’s output after interacting with P ∗ upon common
input x and desc(P ∗) denotes the description of P ∗’s strategy.

Further, (P, V ) is an argument of knowledge for relation R.

Definition 4 (witness indistinguishability [12]). Let L be a language in
NP and RL be the corresponding relation. An interactive argument (P, V ) for
L is witness indistinguishable (WI) if for every verifier V ∗, every pair (w0, w1)
such that (x,w0) ∈ RL and (x,w1) ∈ RL and every auxiliary input z, the fol-
lowing ensembles are computationally indistinguishable:

{viewP (w0)
V ∗(x,z)} and {viewP (w1)

V ∗(x,z)}.

2.1 Resettably-Sound Proofs

A polynomial-time relation R is a relation for which it is possible to verify in
time polynomial in |x| whether R(x,w) = 1. Let us consider an NP-language L
and denote by RL the corresponding polynomial-time relation such that x ∈ L
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if and only if there exists w such that RL(x,w) = 1. We will call such a w a
valid witness for x ∈ L. A negligible function ν(k) is a non-negative function
such that for any constant c < 0 and for all sufficiently large k, ν(k) < kc.
We will denote by Probr[ X ] the probability of an event X over coins r. The
abbreviation “PPT” stands for probabilistic polynomial time. We will use the
standard notion of computational indistinguishability [16].

Let us recall the definition of resettable soundness due to [2].

Definition 5 (resettably-sound arguments [2]). A resetting attack of a
cheating prover P ∗ on a resettable verifier V is defined by the following two-
step random process, indexed by a security parameter k.

1. Uniformly select and fix t = poly(k) random-tapes, denoted r1, . . . , rt, for
V , resulting in deterministic strategies V (j)(x) = Vx,rjdefined by Vx,rj (α) =

V (x, rj , α),
5 where x ∈ {0, 1}k and j ∈ [t]. Each V (j)(x) is called an incar-

nation of V .
2. On input 1k, machine P ∗ is allowed to initiate poly(k)-many interactions

with the V (j)(x)’s. The activity of P ∗ proceeds in rounds. In each round
P ∗ chooses x ∈ {0, 1}k and j ∈ [t], thus defining V (j)(x), and conducts a
complete session with it.

Let (P, V ) be an interactive argument for a language L. We say that (P, V )
is a resettably-sound argument for L if the following condition holds:

– Resettable-soundness: For every polynomial-size resetting attack, the proba-
bility that in some session the corresponding V (j)(x) has accepted and x /∈ L
is negligible.

We will also consider a slight weakening of the notion of resettable soundness,
where the statement to be proven is fixed, and the verifier uses a single random
tape (that is, the prover cannot start many independent instances of the verifier).

Definition 6 (fixed-input resettably-sound arguments [27]). An interac-
tive argument (P, V ) for a NP language L with witness relation RL is fixed-
input resettably-sound if it satisfies the following property: For all non-uniform
polynomial-time adversarial resetting prover P ∗, there exists a negligible function
μ(·) such that for every all x /∈ L,

Pr[R← {0, 1}∞; (P ∗VR(x), VR)(x) = 1] ≤ μ(|x|)
The following theorem was proved in [10]

Claim 1. Let (P, V ) be a fixed-input resettably sound zero-knowledge (resp. wit-
ness indistinguishable) argument of knowledge for a language L ∈ NP . Then
there exists a protocol (P ′, V ′) that is a (full-fledged) resettably-sound zero-
knowledge (resp. witness indistinguishable) argument of knowledge for L.

As a result, in the sequel, we only focus on proving fixed-input resettable-
soundness.
5 Here, V (x, r, α) denotes the message sent by the strategy V on common input x,
random-tape r, after seeing the message-sequence α.
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2.2 Commitment Schemes

We now give a definition for a commitment scheme. For readability we will use
“for all m” to mean any possible message m of length polynomial in the security
parameter.

Definition 7. (Gen,Com,Ver) is a commitment scheme if:

- efficiency: Gen, Com and Ver are polynomial-time algorithms;
- completeness: for all m it holds that Pr[hcom ← Gen(1n); (com, dec) ←
Com(hcom,m) : Ver(hcom,com, dec,m) = 1] = 1;

- binding: for any polynomial-time algorithm committer∗ there is a negligible
function ν such that for all sufficiently large k it holds that:
Pr[hcom ← Gen(1n); (com,m0,m1, dec0, dec1)← committer∗(hcom) :
m0 �= m1 and Ver(hcom,com, dec0,m0) = Ver(hcom,com, dec1,m1) = 1] ≤
ν(k);

- hiding: for any algorithm polynomial-time receiver∗ there is a negligible
function ν such that for all m0,m1 where |m0| = |m1| and all sufficiently
large k it holds that

Pr [(hcom, aux)← receiver(1n); b← {0, 1}; (com, dec)← Com(hcom,mb)

: b← receiver∗(com, aux)] ≤ 1

2
+ ν(n)

When hcom is clear from context, we often say “m, dec is a valid opening for
com” to mean that Ver(hcom,com, dec,m) = 1.

Collision-resistant hash functions. We will use hash functions as defined below.

Definition 8. Let H = {hα} be an efficiently sampleable hash function ensem-
ble where hα : {0, 1}∗ → {0, 1}α. We say that H is collision-resistant against
polynomial size circuits if for every (non-uniform) polynomial-size circuit fam-
ily {An}n∈N , for all positive constants c, and all sufficiently large k, it holds
that

Prob[ α
R→ {0, 1}k : An(α) = (x, x′) ∧ hα(x) = hα(x

′) ] < n−c.

2.3 Signature Trees

Constructions of universal arguments (defined later) rely on Merkle-trees and
collision-resistant hash-functions to be able to commit to a program of arbitrary
polynomial length where no apriori-bound is known. In [10], they construct an
analog to Merkle-trees, called signature trees, while relying only on one-way
functions. Below, we recall definitions from [10]. Some of the text in this section,
is copied verbatim from [10]
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Definition 9 (Strong Signatures). A strong, length-�, signature scheme SIG
is a triple (Gen, Sign,Ver) of PPT algorithms, such that

1. for all n ∈ N,m ∈ {0, 1}∗,

Pr[(sk,vk)← Gen(1n), σ ← Sign
sk
(m);Vervk(m,σ) = 1 ∧ |σ| = �(n)] = 1

2. for every non-uniform PPT adversary A, there exists a negligible function
μ(·) such that

Pr
[
(sk,vk)← Gen(1n), (m,σ)← ASign

sk
(·)(1n) :

Vervk(m,σ) = 1 ∧ (m,σ) /∈ L] ≤ μ(n),

where L denotes the list of query-answer pairs of A’s queries to its oracle.

Strong, length-�, deterministic signature schemes with �(n) = n are known
based on the existence of OWFs; see [23,28,14] for further details.

Definition 10 (Signature Trees). Let SIG = (Gen, Sign,Ver) be a strong,
length-n signature scheme. Let (sk,vk) be a key-pair of SIG, and s be a string
of length 2d. A signature tree of the string s w.r.t. (sk,vk) is a complete binary
tree of depth d, defined as follows.

– A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at position γ in s.

– An internal node lγ indexed by γ ∈
⋃d−1

i=0 {0, 1}i satisfies that
Vervk((lγ0, lγ1), lγ) = 1.

To verify whether a Γ is a valid signature-tree of a string s w.r.t. the signature
scheme SIG and the key-pair (sk,vk) knowledge of the secret key sk is not
needed. However, to create a signature-tree for a string s, the secret key sk is
needed.

Definition 11 (Signature Path). A signature path w.r.t. SIG, vk and
a root lλ for a bit b at leaf γ ∈ {0, 1}d is a vector ρ =
((l0, l1), ((lγ≤10, lγ≤11), . . . (lγ≤d−10, lγ≤d−11)) such that for every i ∈ {0, . . . , d−1},
Vervk((lγ≤i0, lγ≤i1), lγ≤i

) = 1.

Let PATHSIG(ρ, b, γ, lλ,vk) = 1 if ρ is a signature path w.r.t. SIG, vk, lλ for
b at γ.

2.4 Sig-Com Schemes

Definition 12 (Sig-Com Schemes). Let SIG = (Gen, Sign, Ver) be a strong,
length-n, signature scheme, and let com be a non-interactive commitment
schemes. Define SIG′ = (Gen′, Sign′,Ver′) to be a triple of PPT machines de-
fined as follows:
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– Gen′ = Gen.
– Sign′

sk
(m) : compute a commitment c = com(m; τ) using a uniformly selected

τ , and let σ = Sign
sk
(c); output (σ, τ)

– Ver′
vk
(m,σ, τ) : Output 1 iff Vervk(com(m, τ), σ) = 1.

We call SIG′ the Sig-Com Scheme corresponding to SIG and com.

Definition 13 (Sig-Com Trees). Let SIG = (Gen, Sign, SHVerhcom) be a
strong, length-n signature scheme, let com be a non-interactive commitment
and let SIG′ = (Gen′, Sign′,SHVer′hcom

) be the sig-com scheme corresponding to
SIG and com. Let (sk,vk) be a key-pair of SIG′, and s be a string of length 2d.
A signature tree of the string s w.r.t. (sk,vk) is a complete binary tree of depth
d, defined as follows.

– A leaf lγ indexed by γ ∈ {0, 1}d is set as the bit at position γ in s.

– An internal node lγ indexed by γ ∈
⋃d−1

i=0 {0, 1}i satisfies that there exists
some τγ such that Ver′

vk
((lγ0, lγ1), lγ , τγ) = 1.

Definition 14 (Sig-Com Path). Let SIG′ = (Gen′, Sign′, Ver′) be a sig-com
scheme. A sig-com path w.r.t. SIG′, vk and a root lλ for a bit b at leaf γ ∈ {0, 1}d
is a vector ρ = ((l0, l1, τλ), ((lγ≤10, lγ≤11, τγ≤1

), . . . , (lγ≤d−10, lγ≤d−10, τγ≤d−1
) such

that for every i ∈ {0, . . . , d − 1}, Ver′
vk
((lγ≤i0, lγ≤i1), lγ≤i

, τγ≤i
)) = 1. Let

PATHSIG′
(ρ, b, γ, lλ,vk) = 1 if ρ is a signature path w.r.t. SIG′, vk, lλ for

b at γ.

2.5 Oracle-Aided Zero Knowledge Protocols

In this section we recall definitions of oracle-aided protocols from [10].
Let O be a probabilistic algorithm that on input a security parameter n, out-

puts a polynomial-length (in n) public-parameter pp, as well as the description
of an oracle O. The oracle-aided execution of an interactive protocol with com-
mon input x between a prover P with auxiliary input y and a verifier V consist
of first generating pp, O ← O(1|x|) and then letting PO(x, y, pp) interact with
V (x, pp).

Definition 15 (Oracle-aided Interactive Arguments). A pair of oracle al-
gorithms (P, V ) is an O-oracle aided argument for a NP language L with witness
relation RL if it satisfies the following properties:

– Completeness: There exists a negligible function μ(·), such that for all x ∈ L,
if w ∈ RL(x),

Pr[pp, O ← O(1|x|); (PO(w), V )(x, pp) = 1] = 1− μ(|x|)

– Soundness: For all non-uniform polynomial-time adversarial prover P ∗,
there exists a negligible function μ(·) such that for every all x /∈ L,

Pr[pp, O ← O(1|x|); (P ∗O, V )(x, pp) = 1] ≤ μ(|x|)
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Additionally, if the following condition holds, (P, V ) is an O-oracle aided argu-
ment of knowledge:

– Argument of knowledge: There exists a expected PPT algorithm E such that
for every polynomial-size P ∗, there exists a negligible function μ(·) such that
for every x,

Pr[pp, O ← O(1|x|);w← EP∗O(x,pp)(x, pp);w ∈ RL(x)]

≥ Pr[pp, O← O(1|x|); (P ∗O, V )(x, pp) = 1]− μ(|x|)

Definition 16 (Oracle-aided Resettably-sound Interactive Argu-
ments). An O-oracle aided resetting attack of a cheating prover P ∗ on a
resettable verifier V is defined by the following three-step random process,
indexed by a security parameter n.

1. An initial setup where a public parameter and an oracle are generated:
pp, O← O(1n). P ∗ is given pp and oracle access to O.

2. Uniformly select and fix t = poly(n) random-tapes, denoted r1, . . . , rt, for
V , resulting in deterministic strategies V (j)(x) = Vx,rjdefined by Vx,rj (α) =

V (x, rj , α), where x ∈ {0, 1}n and j ∈ [t]. Each V (j)(x) is called an incar-
nation of V .

3. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions
with the V (j)(x)’s. The activity of P ∗ proceeds in rounds. In each round
P ∗ chooses x ∈ {0, 1}n and j ∈ [t], thus defining V (j)(x), and conducts a
complete session with it.

Let (P, V ) be an O-oracle aided interactive argument for a language L. We
say that (P, V ) is an O-oracle aided resettably-sound argument for L if the
following condition holds:

– O-oracle aided resettable soundness: For every polynomial-size resetting at-
tack, the probability that in some session the corresponding V (j)(x) has ac-
cepted and x /∈ L is negligible.

Oracle-Aided Universal Arguments. Universal arguments (introduced in [1]
and closely related to CS-proofs [22]) are used in order to provide “efficient”
proofs to statements of the form y = (M,x, t), where y is considered to be
a true statement if M is a non-deterministic machine that accepts x within t
steps. The corresponding language and witness relation are denoted LU and RU
respectively, where the pair ((M,x, t), w) is in RU if M (viewed here as a two-
input deterministic machine) accepts the pair (x,w) within t steps. Notice that
every language in NP is linear time reducible to LU . Thus, a proof system for
LU allows us to handle all NP-statements. In fact, a proof system for LU enables
us to handle languages that are beyond NP , as the language LU is NE-complete
(hence the name universal arguments).6

6 Furthermore, every language in NEXP is polynomial-time (but not linear-time)
reducible to LU .
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Definition 17 (Oracle-aided Universal Argument). An oracle-aided pro-
tocol (P, V ) is called an O-oracle-aided universal argument system if it satisfies
the following properties:

– Efficient verification: There exists a polynomial p such that for any y =
(M,x, t), and for any pp, O generated by O, the total time spent by the (prob-
abilistic) verifier strategy V , on common input y, pp, is at most p(|y|+ |pp|).
In particular, all messages exchanged in the protocol have length smaller than
p(|y|+ |pp|).

– Completeness with a relatively efficient oracle-aided prover: For every (y =
(M,x, t), w) in RU ,

Pr[pp, O ← O(1|y|); (PO(w), V )(y, pp) = 1] = 1.

Furthermore, there exists a polynomial q such that the total time spent by
PO(w), on common input y = (M,x, t), pp, is at most q(TM (x,w) + |pp|) ≤
q(t+ |pp|), where TM (x,w) denotes the running time of M on input (x,w).

– Weak proof of knowledge for adaptively chosen statements: For every polyno-
mial p there exists a polynomial p′ and a probabilistic polynomial-time oracle
machine E such that the following holds: for every non-uniform polynomial-
time oracle algorithm P ∗, if

Pr[pp, O ← O(1n);R← {0, 1}∞; y ← P ∗O
R (pp) :

(P ∗O
R (pp), V (y, pp)) = 1] > 1/p(n)

then

Pr[pp, O← O(1n);R, r ← {0, 1}∞; y ← P ∗O
R (pp) : ∃w = w1, . . . wt ∈ RU(y)

s.t. ∀i ∈ [t], E
P∗O

R
r (pp, y, i) = wi] >

1

p′(n)

where RU (y)
def
= {w : (y, w) ∈ RU}.

Let SIG′ be a canonical sig-com scheme with SIG = (Gen, Sign, Ver) and com

being its underlying signature scheme and commitment scheme.

Definition 18 (Signature Oracle). Given SIG = (Gen, Sign,Ver) a signature
scheme , we define a signature oracle OSIG as follows: On input a security
parameter n, OSIG(1n) generates (vk, sk) ← Gen(1n) and lets pp = vk and
O(m) = Sign

sk
(m) for every m ∈ {0, 1}poly(n).

Definition 19 (Valid Sig-com Oracle). An oracle O′ is a valid (SIG′, �) or-
acle if there is a negligible μ(·) such that for every n ∈ N , the following holds
with probability 1 − μ(n) over pp, O ← O′(1n): for every m ∈ {0, 1}�(n), O(m)
returns (σ, τ) such that Ver′

vk
(m,σ, τ) = 1 with probability at least 1− μ(n).

Definition 20. An OSIG-aided universal arg. (P, V ) has (SIG′, �)-completeness
if there exists a prover P ′ such that the completeness condition holds for (P ′, V )
when the oracle OSIG is replaced by any valid (SIG′, �) oracle O′.
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The following theorem was proved in [10] (relying on Barak and Goldreich [1])

Theorem 2. Let SIG′ be a canonical sig-com scheme with SIG and com being
its underlying signature scheme and commitment scheme. Then there exists a
(SIG′, �)-complete OSIG-aided universal argument with �(n) = 2n.

3 A Variant of the Signature Oracle-Aided ZK Protocol
from CPS

In this section, we provide a formal protocol description and theorem statement
for a slight variant of the CPS protocol in a signature oracle-aided model. We
will show in the next section how to collapse rounds of this protocol, and prove
resettable soundness of the collapsed protocol by reducing the resetting attacker
to a stand-alone (i.e., non-resetting) adversary that breaks soundness of this
protocol.

Common Input: An instance x of a language L ∈ NP with witness relation RL.
Auxiliary input to P : A witness w such that (x,w) ∈ RL.
Primitives Used: A canonical sig-com scheme SIG′ with SIG and com as the

underlying signature and commitment schemes, and a (SIG′, �)-complete OSIG-
aided universal argument (PUA, VUA) with �(n) = 2n.

Set Up: Run (pp, O) ← OSIG(1n), add pp to common input for P and V . Fur-
thermore, allow P oracle access to O.

Stage One (Trapdoor—Commit-Challenge):
P1: Send c0 = com(02n, τ0) to V with uniform τ0

V1: Send r
$←{0, 1}4n to P

Stage Two (Encrypted Universal Argument):
P2: Send c1 = com(02n, τ1) for uniformly selected τ1
V3: Send r′, uniformly chosen random tape for VUA
P3: Send c2 = com(0k, τ2) for uniformly selected τ2, where k is the length of

PUA’s second message.
Stage Three: (Main Proof)

P ⇔ V : A WI-AOK 〈PWI, VWI〉 proving the OR of the following statements:
1. ∃ w ∈ {0, 1}poly(|x|) s.t. (x,w) ∈ RL.
2. ∃ 〈p1, p2, τ1, τ2〉 s.t. (〈c0, r, c1, c2, r′, pp〉, 〈p1, p2, τ1, τ2〉) ∈ RL2 (defined

in Fig. 2).

Fig. 1. OSIG-aided ZK Argument of Knowledge

We refer the readers to Section 1.2 for the ideas and intuition behind the
CPS protocol. A formal description of the protocol can be found in Figure 1
and 2, where we make a slight modification to the language proved in the UA
where we require the committed program either output the string r when fed
a commitment to its own description or output r as the second component of
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4-tuple output when fed by a string of length shorter than r. This modification is
inconsequential to the soundness property of the protocol, but will be useful for
us to prove soundness of the collapsed protocol in the next section. The following
theorem follows by [10].

Theorem 3. Assume the existence of one-way functions. The protocol defined
in Figure 1 and 2 is a signature oracle-aided zero-knowledge argument of knowl-
edge for NP.

Relation 1: Let SIG′ a sig-com scheme, with underlying signature scheme SIG
and commitment scheme com. Let ECC be a binary error-correcting code
with constant min-distance and efficient encoding algorithm. We say that
〈c0, r, pp〉 ∈ L1 if ∃〈τ0, d, lλ, C, {ρi}i∈[2d], y〉 such that
– c0 = com((d, lλ), τ0)
– (d, lλ) are the depth and root of a sig-com tree for C w.r.t. pp
– Each ρi is a valid sig-com path for leaf i of this sig-com tree. That is,

PATHSIG′
(ρi, Ci, i, lλ, pp) = 1 for each i.

– C = ECC(Π) for some circuit Π
– Π(c0) = r or |y| < 2n and Π(y) = (s1, r, s2, s3) for some strings s1, s2, s3

and appropriate encoding of the 4-tuple.
We let RL1 be the witness relation corresponding to L1.

Relation 2: Let L1 be described as above, with respect to SIG′ and ECC. Let
(PUA, VUA) be a (SIG′, �)-complete OSIG-aided universal argument with �(n) =
2n. We say that 〈c0, r, c1, c2, r′, pp〉 ∈ L2 if ∃〈p1, p2, τ1, τ2〉 such that
– c1 = com(p1, τ1), c2 = com(p2, τ2).
– (p1, r

′, p2) constitutes an accepting (PUA, VUA) transcript for 〈c0, r, pp〉 ∈
L1.

We let RL2 be the witness relation corresponding to L2.

Fig. 2. Relations used in the OSIG-aided ZK protocol in Fig. 1

4 4-Round Resettably-Sound Zero Knowledge

We are now ready to describe our 4-round protocol. Our protocol relies on Blum’s
4-round Hamiltonicity WI-AOK, 〈PWI, VWI〉 [7]. Our protocol is obtained by first
constructing a ”basic” protocol where the verifier uses ”fresh” randomness in
each round, and then applying the BGGL transformation to this protocol (i.e.,
having the verifier pick its randomness by applying a PRF to the current tran-
script). The ”basic” protocol proceeds as follows.

1. The verifier V picks two signature key pairs (vk, sk) and (vk′, sk′) using
Gen(1k). V also generates the first message BH1 for the WI AoK.
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The language considered for the WI argument of knowledge is identical to one
used in the protocol presented in the previous section, i.e. (x, vk, vk′) ∈ L∗

iff

(a) ∃ w ∈ {0, 1}poly(|x|) s.t. (x,w) ∈ RL.

(b) ∃ 〈c0, r, c′1, r′, p1, p2, τ1, τ2, σ1, σ2〉 s.t.
(〈vk, vk′〉, 〈c0, r, c1, r′, p1, p2, τ1, σ1, σ2〉) ∈ RL3 (defined in Fig. 4).

V sends vk, vk′, BH1 to the prover P.

2. P responds with a commitment c to the all 0’s string of length k and the
second message for the WI AoK, BH2.

3. V sends r, σ, σ′, BH3 to the prover where r ← {0, 1}3k, σ and σ′ are signatures
of messages c|r and c under keys sk and sk′ respectively and BH3 is the third
message of WI AoK .

4. P finally sends BH4, the fourth message of the WI AoK. The verifier accepts
if the transcript (BH1, BH2, BH3, BH4) is accepting for (x, h, vk) ∈ L∗.

We finally modify the basic protocol by having the verifier first pick a random
seed s for a PRF f and then, at each round, generating the randomness it needs
by applying the fs to the current transcript.

A formal description of the protocol is presented in Figure 3.

Theorem 4. Assume the existence of OWFs, then protocol in Fig. 3 is a 4-
round resettably sound zero knowledge argument of knowledge.

Proof. We prove completeness and resettable-soundness of the protocol. As
proved in [10], it suffices to prove fixed-input resettable-soundness.

Completeness. Completeness of 〈P, V〉 follows directly from the completeness of
the WI-AOK protocol.

Common Input: An instance x of a language L ∈ NP with witness relation RL.
Auxiliary input to P : A witness w such that (x,w) ∈ RL.

1 : V → P: Send BH1, vk, vk
′ where (vk, sk) ← Gen(1n) and (vk′, sk′) ← Gen(1n).

2 : P → V: Send BH2, c = com(02n, τ ) for a randomly chosen τ .

3 : V → P: Send BH3, r, σ, σ
′ where r ← {0, 1}3n, σ ← sign(sk, c|r) and σ′ ←

sign(sk′, c).
4 : P → V: Send BH4.

We finally modify the above protocol by having the verifier first pick a random
seed s for a PRF f and then, at each round, generating the randomness it needs
by applying the fs to the current transcript.

Fig. 3. Our 4-round rsZK Argument of Knowledge π = (P, V)
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Relation 3: Let L1 be as described in Fig 2, with respect to SIG′ and ECC. Let
(PUA, VUA) be a (SIG′, �)-complete OSIG-aided universal argument with �(n) =
2n. We say that 〈vk, vk′〉 ∈ RL3 , if ∃ 〈c0, r, c1, r′, p1, p2, τ1, σ1, σ2〉) ∈ RL3 such
that
– Vervk(c0|r, σ1) = 1,c1 = com(p1|σ1, τ1) and Vervk(c1|r′, σ2) = 1.
– (p1, r

′, p2) constitutes an accepting (PUA, VUA) transcript for 〈c0, r, vk′〉 ∈
L1.

We let RL3 be the witness relation corresponding to L3.

Fig. 4. Relations used in the protocol in Fig. 3

Soundness. To prove the fixed-input resettable-soundness of 〈P, V〉, we show how
to convert a malicious prover P ∗ for 〈P, V〉 into an oracle-aided malicious prover
B that violates the stand-alone soundness of 〈Pzk, Vzk〉 (from the previous sec-
tion).

First, we consider the experiment hyb
A
1 (n, z) where we run an adversary

A on input (n, z) by supplying the messages of an honest verifier, with the
exception that the verifier challenges, i.e. r and BH3 in the third message are
chosen uniformly at random even in the rewindings instead of applying the PRF.
Upon completion, we run the extractor of the WI AoK in a random session to
obtain witness w. If this witness is not a real witness, output the transcript along
with w. Otherwise output ⊥.

From the pseudo-randomness of F , we know that if P ∗ convinces an honest
verifier of a false statement with non-negligible probability in the original ex-
periment, then it will succeed in proving a false statement with non-negligible
probability in hyb1 as well. Since there are only polynomially many sessions,
hyb

P∗

1 (n, z) outputs the second (or fake) witness with non-negligible probabil-
ity.

More precisely, for a statement (x, vk, vk′) ∈ L∗ the fake witness contains
〈c0, r, c′1, r′, p1, p2, τ1, σ1, σ2〉. From the unforgeability of the signature scheme
under verifier key vk, it follows that, if P ∗ proves using the fake witness, then
P ∗ must have obtained σ1, σ2 by querying the verifier with the appropriate
commitment as part of the second message of the protocol. Let J1 (and J2) be
the random variable representing the message index where the commitment c0
and the corresponding signature σ1 (resp., c

′
1 and σ2) were sent in the experiment

hyb
P∗

1 (n, z). We also denote by J3 the message index where P ∗ sends (the same)
BH2 of the convincing session. We set each of them to ⊥ if no such session exists.
From the unforgeability of the signature scheme and the binding property of the
commitment, we have the following claims.

Claim 2. For every adversary A there exists a negligible function ν1() such that
for all n ∈ N, z ∈ {0, 1}∗, the probability that the output of hybA

1 (n, z) is not ⊥
and any of J1,J2 or J3 is ⊥ is at most ν1(n).
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Claim 3. For every adversary A there exists a negligible function ν2() such that
for all n ∈ N, z ∈ {0, 1}∗, the probability that the output of hybA

1 (n, z) is not ⊥,
J1,J2,J3 �= ⊥ and J1 ≥ J2 or J2 > J3 is at most ν2(n).

Before proving Claims 2 and 3, we prove soundness using these claims. Con-
sider BO(1n, pp) that internally incorporates P ∗ and begins an internal emula-
tion by supplying the verifier messages internally and proceeds as follows:

1. B picks three integers i1, i2, i3 at random such that i1 < i2 < i3.

2. B selects keys (vk, sk) ← Gen(1n). It then internally feeds P ∗ with
(BH1, vk, pp) where BH1 is the first message of the WI-AOK proving language
L∗. To generate the third message as the verifier, B∗ first queries the oracle
with the commitment c received in the second message of that session and
obtains σ′. Then it generates a random string r and obtains a signature for
c|r, σ under key sk. B then feeds P ∗ with BH3, r, σ, σ

′ where BH3 is honestly
generated. In this manner B continues with the emulation internally.

3. B continues the emulation until the partial transcript has i1 messages. If
this is not a second message of any session, it halts. Otherwise, it takes the
commitment c as part of this message and forwards it to Vzk as the first
message in the external execution. Upon receiving the challenge r from the
external verifier, it forwards that challenge internally as part of the third
message corresponding to the same session; it generates σ, σ′ as before. It
then continues the emulation until the partial transcript has i2 messages. If
this is not a second message of any session, it halts. Otherwise, let β be the
partial transcript and α be its session number.

4. Next, it continues the emulation from β until the partial transcript has
totally i3 messages. If the last message is not the third message of session α
it halts. Otherwise, let the partial transcript be (β :: β1) (where :: denotes
concatenating transcripts). Now, it runs two random continuations from i3
to completion and extracts a witness use in the WI-AOK using the special-
sound property. Let the two transcripts be (β :: β1 :: β11) and (β :: β1 :: β12).
If it fails to extract a fake witness internally then it halts. If it obtains a fake
witness but the witness does not contain c, r from the previous step it halts.
Otherwise, it takes p1 from the witness and sends com(p1, τ1) where τ1 is
randomly chosen externally to Vzk.

5. Upon receiving the challenge r′ from Vzk, B internally rewinds P ∗ to the
prefix β. B starts a new continuation from this point and feeds r′ as part
of the third message in the current session. B then continues the internal
emulation until the partial transcript (β :: β2) has i3 messages. Once again B
extracts the witness in the WI-AOK by emulating two random continuations
to completion from (β :: β2), say (β :: β2 :: β21) and (β :: β2 :: β22). If
c, r, p1, r

′ are not part of the witness B aborts. Otherwise it takes p2 from
the witness and sends com(p2, τ2) where τ2 is randomly chosen externally
to Vzk.

6. B stops the internal emulation and proceeds to complete the external exe-
cution with Vzk by using (p1, p2, τ1, τ2) as the witness for the proof phase.
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It follows from the soundness of the WI AOK and the wayRL3 is defined, that
if B succeeds in extracting the fake witness that contains the appropriate previ-
ous messages, then, except with negligible probability, B succeeds in convincing
Vzk in the external execution. It suffices to argue that B is able to achieve this
with non-negligible probability. Recall that P ∗ succeeds in convincing a false
statement to V with non-negligible probability, say 1

p(n) .

By Claims 2 and 3, it holds for sufficiently large n that with probability
at least 1

p(n) − ν1(n) − ν2(n) that P ∗ cheats and J1,J2,J3 �= ⊥ and J1 <

J2 < J3 in hyb
P∗

1 (n, z). Since there are only polynomially many sessions we can
further assume that there exists a polynomial p1(n) and functions i1(), i2(), i3()
such that, for sufficiently large n, with probability 1

p1(n)
over the experiment

hyb
P∗

1 (n, z), it holds that J1 = i1(n), J2 = i2(n) and J3 = i3(n). For a complete
transcript β of an interaction with P ∗, we say event WO(β) occurs if J1(β) =
i1(n), J2(β) = i2(n) and J3(β) = i3(n) (for well-ordered).

We now analyze the success probability of B. We do this by analyzing the
probability that B succeeds in each of the steps iteratively.

Event E1: We say E1 holds if i1 = i1(n), i2 = i2(n) and i3 = i3(n). Since
there are only polynomially many sessions, this happens with polynomial
probability, say 1

p2(n)
.

Event E2: We say that E2 holds for a partial transcript β, i.e. E2(β) = 1, if β is
of length i2 and WO holds in random continuation from β with probability

1
2p1(n)

. Since WO holds with probability 1
p1(n)

, using an averaging argument,

we can conclude that with probability at least 1
2p1(n)

over partial transcripts

of length i2, WO holds in a random continuation with probability at least
1

2p1(n)
. So conditioned on E1, E2(β) holds with probability 1

2p1(n)
over β.

Event E3: We say that E3 holds for a partial transcript β, i.e. E3(β) = 1, if β is
of length i3 and WO holds in random continuation from β with probability

1
4p1(n)

. We estimate the probability E3 holds conditioned on E2 and E1. If

E1 and E2 holds for transcript β, we know a random continuation from β
yields a transcript where WO holds with probability at least 1

2p1(n)
. So using

another averaging argument, we get that, Pr[E3(β :: β1)|E2(β)∧E1] ≥ 1
4p1(n)

B succeeds if it extracts the correct witness in Steps 4 and 5. More precisely,
B will succeed except with negligible probability, if WO holds in all of (β :: β1 ::
β11), (β :: β1 :: β12), (β :: β1 :: β21) and (β :: β1 :: β21) as the witness will
be correct and the special-sound extractor will succeed. This probability can be
written as

Pr[B succeeds] = Pr [WO(β :: β1 :: β11) ∧WO(β :: β1 :: β12)

∧WO(β :: β1 :: β21) ∧WO(β :: β1 :: β22)]− 2ν(n) (1)
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where ν(·) is the probability that the special-sound extractor fails. From the
description of the events, it holds that

Pr[WO(β :: β1 :: β11)|E3(β :: β1) ∧ E1] ≥
1

4p1(n)

Pr[E3(β :: β1)|E2(β) ∧ E1] ≥
1

4p1(n)

Pr[E2(β)|E1] ≥
1

2p1(n)

Pr[E1] ≥
1

p2(n)

And similar bounds hold for the other transcripts as well. Therefore, simplifying
Equation 1, we get that

Pr[B succeeds] ≥ 1

p2(n)

1

2p1(n)

(
1

4p1(n)

)2(
1

4p1(n)

)4

− 2ν(n)

which is non-negligible
We remark that the transformation works only for a constant-round protocol

since B makes a guess for each round (i.e., i1, i2 and i3) each correct only with
polynomial probability.

It only remains to prove Claims 2 and 3. This on a high-level will follow from
the binding property of the commitment and the unforgeability of the signature
scheme.
Proof of Claim 2. Since the output of hyb1 is not⊥, it immediately follows that
J3 �= ⊥. We now show that P ∗ must have obtained the signature σ1, σ2 obtained
from the witness by sending the commitment and receiving the corresponding
random string with the signature in some session. Suppose not, then we can
violate the unforgeability of the signature scheme by constructing an adversary
C that receives a verification key vk as input conducts the hyb1 experiment
by supplying vk to P ∗ and forwarding all signing queries to the signing oracle.
Finally upon extracting a fake witness, C simply outputs either (c0|r, σ1) or
(c′1|r′, σ2) which ever is valid.
Proof of Claim 3. Using the preceding argument, we can conclude that the
signatures must be obtained before P ∗ convinces the verifier in some session,
i.e. J1 < J3 and J2 < J3.

7 It only remains to argue that J3 > J1 > J2

does not happen. Assume for contradiction that with non-negligible probability
J1,J2,J3 �= ⊥ and J3 > J1 > J2. This means that P ∗ was able to commit to
a signature σ1 as part of p1|σ1 in session J2 before it obtained the signature σ1

from the verifier in session J1. We construct an adversary C that violates the
collision-resistance property of the signature scheme.

C on input (n, vk) and oracle access to a signing oracle Signsk() first selects
i1, i2 and i3 at random. Then it internally incorporates P ∗(n, z) and begins an

7 Consider C that proceeds as in Claim 2, but stops at a random session, extracts the
witness and outputs the signature obtained from the witness.
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internal emulation of an execution of P ∗ as follows. It forwards the verification-
key vk internally to P ∗ as part of the first message and generates all the verifier
messages honestly except the signatures corresponding to vk which it obtains
by feeding the corresponding message to the signing oracle. C then runs the
emulation until the partial transcript, say β, has i2 messages. If this is not
the second message of a session, C halts. Otherwise, it spawns two random
continuation from β until the partial transcripts, say (β :: β1) and (β :: β2)
of both threads has i3 messages. If in either of the thread the current message
is not the second message of a session C halts. Otherwise, it runs two random
continuations from both (β :: β1) and (β :: β2) to obtain (β :: β1 :: β11),
(β :: β1 :: β12), (β :: β1 :: β21) and (β :: β1 :: β21) and run the special-sound
extractor of the WI-AOK protocol to obtain two witnesses. If the extractor
succeeds in extracting a fake witness from both these sessions and σ1 is the
same in both these witnesses, then the message signed will be different with
high-probability. This is because the message being signed has a random string
r of length O(n) and for two threads to have the same challenge is exponentially
small, say ν1(n). Therefore, by the soundness of the WI-AOK protocol we have
two different messages with the same signature. C outputs them as a collision.

To argue that C succeeds with non-negligible probability we proceed exactly
as in the previous argument. We know that with non-negligible probability, there
exists i1(n), i2(n), i3(n) such that J1 = i1(n),J2 = i2(n),J3 = i3(n) and J2 >
J1 > J3 with probability 1

p1(n)
. Lets call this event WO as before. Define events

E1, E2 and E3 exactly as before. Following the same approach we can conclude
that C succeeds with probability at least

1

p2(n)

1

2p1(n)

(
1

4p1(n)

)2(
1

4p1(n)

)4

− 2ν(n)− ν1(n)

which is non-negligible and thus we arrive at a contradiction.

Argument of Knowledge Since the OSIG-oracle aided 〈Pzk, Vzk〉 protocol is also
a argument of knowledge, from the proof of soundness, it holds that our 4-round
protocol is also an argument of knowledge.

Zero Knowledge. Before we describe the simulator, we need the following defi-
nition of a valid SIG′′-oracle similar to Definition 19.

Definition 21 (Valid SIG′′ Oracle). An oracle O′′ is a valid (SIG′′, �) oracle
if there is a negligible μ(·) such that for every n ∈ N , the following holds with
probability 1−μ(n) over pp, O ← O′′(1n): for every m ∈ {0, 1}�(n), O(m) returns
(BH2, c, r, σ, τ) such that Vervk(c|r, σ) = 1, c = com(m, τ) and r is the second
string in the tuple output by V ∗ when fed BH2, c with probability at least 1−μ(n).

Consider some malicious (w.l.o.g. deterministic) verifier Ṽ ∗ for (P, V) of size
TṼ ∗ . We remark that while the simulator for the resettably-sound ZK protocol
in [10] had one signing slot, here we have a slot that serves as a signing slot for
two different keys sk and sk′. We use two signing keys for simplicity. We use
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two keys for simplicity. We construct a simulator S for Ṽ ∗ that starts simulating
(P, Ṽ ∗) until it receives BH1 and two verification keys vk, vk′. Let V ∗ be the
“residual” verifier after the first message is sent. It then proceeds as follows.

1. S prepares a valid (SIG′, 2n) oracle O′ and (SIG′′, 2n) oracle O′′ by rewinding
V ∗ and using the second and third message of the protocol as a Signing Slot
for both sk and sk′. This step is essentially the same as what the simulator
does in the protocol presented in [10] which in turn is inspired by Goldreich-
Kahan [15]),

2. S will convince V ∗ in the WI-AOK using the second witness. Towards this, S
will first use oracle O′ to produce a Sig-com tree for C = ECC(Π) where Π =
V ∗. Let d and lλ be the depth and root of the Sig-com tree. Using the oracle
O′′, S obtains (c0, r, σ1, τ) where (c0, r, vk

′) ∈ RL1 and Vervk(c0|r, σ1) = 1.
3. S then generates the first prover message p1 using the witness for (c0, r, vk

′) ∈
RL1 . Using the oracle O′′ again, S generates c1, r

′, σ2, τ1 such that c1 =
com(p1|σ1, τ1) and Vervk(c1|r′, σ2) = 1. S now generates the second prover
message p2 for the UA using r′ as the challenge message for the UA.

4. Finally, S rewinds V ∗ to the top and completes the interaction with V ∗ by
using 〈c0, r, c1, r′, p1, p2, τ1, σ1, σ2〉 as the second witness in the WI-AOK.

The correctness of S follows essentially using the same proof as in [10]. First,
we argue that S can prepare valid oracles for both the keys. Given valid oracles,
S obtains a valid second witness for the WI-AOK. It then runs V ∗ in a straight-
line manner by generating messages for the WI-AOK protocol using the second
witness and all the other messages as the honest prover. Indistinguishability of
the output of the simulator follows directly from the witness-indistinguishability
property of the WI-AOK protocol. It only remains to argue that S can prepare
valid OSIG′

and OSIG′′
oracles. We remark that the approach we take is similar

to [10], with the exception that the preamble phase of the oracle preparation is
executed only once for both oracles. First S executes the following preamble.

– S sends c, BH2 to V ∗ where c = com(02n; τ) with uniform τ and BH2 is a
random dummy second message of the Blum-Hamiltonicity protocol8, and
then receives BH3, r, σ, σ

′ from V ∗. If σ is not a valid signature of c|r under
verification vk or σ′ is not a valid signature of c under vk′, then the simulation
halts immediately and outputs the transcript up to that point.

– S repetitively queries V ∗ with fresh commitments com(02n; τ) at the Signing
Slot along with dummy BH2 messages until it collects 2n valid signatures. Let
t be the number of queries S̃ makes.

Preparing OSIG ′′
Oracle: Define O′′ that outputs pp = vk, and an oracle O that

on input a message m ∈ {0, 1}2n, proceeds as follows: O repetitively queries V ∗

at the Signing Slot with fresh commitments cm = com(m; τ) with dummy BH2
messages for at most t times. If V ∗ ever replies BH3, r, σ, σ

′ where Vervk(cm|r, σ) =
1, then O outputs (BH2, cm, r, σ, τ). Otherwise, O returns ⊥.
8 Recall that, in the second message of the Blum-Hamiltonicity protocol, the prover
sends a set of commitments. Hence, to generate a dummy message, the simulator
can simply commit to the all 0’s string.
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Preparing OSIG′
Oracle: Define O′ that outputs pp = vk′, and an oracle O that

on input a message m ∈ {0, 1}2n, proceeds as follows: O repetitively queries
V ∗ at the Signing Slot with fresh commitments com(m; τ) for at most t times.
If V ∗ ever replies a valid signature σ′ for com(m, τ), then O outputs (σ′, τ).
Otherwise, O returns ⊥.

We now analyze the running time. If t ≥ 2n/2, then S aborts. To analyze this
part of the simulator S, we introduce some notation. Let p(m) be the proba-
bility that V ∗ on query BH2, cm where BH2 is the specific second message of the
Blum-Hamiltonicity protocol and cm = com(m, τ) of m ∈ {0, 1}2n a random
commitment returns a valid signature of cm|r under sk where r is part of V ∗’s
output when fed BH2, cm and a valid signature of cm under sk′. Let p = p(02n).

We first show that S runs in expected polynomial time. To start, note that S
aborts at the end of the Signature Slot with probability 1− p, and in this case,
S runs in polynomial time. With probability p, S continues to invoke a strictly
polynomial-time simulator S for the residual V ∗, which has size bounded by
TṼ ∗ . Thus, S runs in some T = poly(T~V∗) time and makes at most T queries
to both its oracles, which in turn runs in time t · poly(n) to answer each query.
Also note that S runs in time at most 2n, since S aborts when t ≥ 2n/2. Now,
we claim that t ≤ 10n/p with probability at least 1−2−n, and thus the expected
running time of S is at most

(1− p) · poly(n) + p · T · (10n/p) · poly(n) + 2−n · 2n ≤ poly(T~V∗ , n).

To see that t ≤ 10n/p with overwhelming probability, let X1, . . . , X10n/p be i.i.d.
indicator variables on the event that V ∗ returns a valid signature for the message
02n, and note that t ≤ 10n/p implies

∑
i Xi ≤ 2n, which by a standard Chernoff

bound, can only happen with probability at most 2−n.
Finally, we argue indistinguishability. First, the computational hiding prop-

erty of com implies that there exists some negligible ν(·) such that |p(m)− p| ≤
ν(n) for every m ∈ {0, 1}2n. Now we consider two cases. If p ≤ 2ν, then the
indistinguishability trivially holds since the interaction aborts at the end of the
Signature Slot (in this case, the view is perfectly simulated) with all but negligi-
ble probability. On the other hand, if p ≥ 2ν, we show that O′′ generated by S
is a valid (SIG′′, 2n) oracle for SIG′′ and O′ generated by S is a valid (SIG′, 2n)
oracle for SIG′ with overwhelming probability, and thus the indistinguishability
of S follows by the indistinguishability of S.

To see that O′′ is a valid (SIG′′, 2n) oracle for SIG′′ with overwhelming prob-
ability, note again by a Chernoff bound that n/p ≤ t ≤ 2n/2 with probability at
least 1−2−Ω(n). In this case, for every m ∈ {0, 1}2n, p(m) ≥ p−ν ≥ p/2 implies
that t ≥ n/2p(m), and thus O(m) learns a valid signature of com(m; τ) from V ∗

with probability at least 1 − 2−Ω(n). A similar argument establishes that O′ is
a valid (SIG′, 2n) oracle for SIG′ with overwhelming probability. This concludes
the proof of correctness.
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Abstract. Coin tossing is a basic cryptographic task that allows two distrustful
parties to obtain an unbiased random bit in a way that neither party can bias the
output by deviating from the protocol or halting the execution. Cleve [STOC’86]
showed that in any r round coin tossing protocol one of the parties can bias the
output by Ω(1/r) through a “fail-stop” attack; namely, they simply execute the
protocol honestly and halt at some chosen point. In addition, relying on an earlier
work of Blum [COMPCON’82], Cleve presented an r-round protocol based on
one-way functions that was resilient to bias at most O(1/

√
r). Cleve’s work left

open whether ”‘optimally-fair”’ coin tossing (i.e. achieving bias O(1/r) in r
rounds) is possible. Recently Moran, Naor, and Segev [TCC’09] showed how
to construct optimally-fair coin tossing based on oblivious transfer, however,
it was left open to find the minimal assumptions necessary for optimally-fair
coin tossing. The work of Dachman-Soled et al. [TCC’11] took a step toward
answering this question by showing that any black-box construction of optimally-
fair coin tossing based on a one-way functions with n-bit input and output needs
Ω(n/ log n) rounds.

In this work we take another step towards understanding the complexity of
optimally-fair coin-tossing by showing that this task (with an arbitrary number
of rounds) cannot be based on one-way functions in a black-box way, as long
as the protocol is ”‘oblivious”’ to the implementation of the one-way function.
Namely, we consider a natural class of black-box constructions based on one-
way functions, called function oblivious, in which the output of the protocol does
not depend on the specific implementation of the one-way function and only
depends on the randomness of the parties. Other than being a natural notion on
its own, the known coin tossing protocols of Blum and Cleve (both based on one-
way functions) are indeed function oblivious. Thus, we believe our lower bound
for function-oblivious constructions is a meaningful step towards resolving the
fundamental open question of the complexity of optimally-fair coin tossing.

Keywords: Coin-Tossing, One-Way Functions, Black-Box Separations.

1 Introduction

In this work, we address the fundamental problem of secure, two-party coin-tossing,
where two mutually distrustful parties wish to generate a common random bit. A secure

Y. Lindell (Ed.): TCC 2014, LNCS 8349, pp. 217–239, 2014.
c© International Association for Cryptologic Research 2014
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coin-tossing scheme has the following complementary properties: (1) Security—even
if one of the parties deviates arbitrarily from the protocol, the output bit of the honest
party should be almost completely unbiased (namely be equal to 1 with probability that
is at most negligibly far from 1/2) and (2) Correctness—when both parties follow the
protocol they are guaranteed to output the same random bit. Unfortunately, a classic
result by Cleve [Cle86] shows that even if the party which deviates from the protocol
misbehaves only by choosing whether or not to abort early (this is known as a fail-stop
adversary), then secure coin-tossing cannot be achieved. In particular, Cleve proved
that for any coin tossing protocol running for r̂ rounds, there exists an efficient fail-stop
adversary that can bias the output bit of the honest party by at least Ω(1/r̂).

It turns out that in a weaker model we can, in fact, construct secure coin-tossing
protocols. An early result by Blum [Blu82] uses one-way functions (OWF) to construct
a weak coin tossing protocol where no party can increase the probability of 0 or 1 by
more than negligible by deviating from the protocol or halting. In a weak coin tossing
protocol whenever a party aborts, the other party is not required output anything. Weak
coin tossing can be useful for scenarios where Alice and Bob each have a preferred
outcome in mind (e.g., Alice wants 0 and Bob wants 1) simply because if any party
aborts the other one can take their desired outcome as the output. However, note that
the weak coin tossing definition doesn’t preclude the possibility that a malicious party
can cause the output to always be either 0 or abort; indeed this is the case for Blum’s
protocol (where a malicious party can discover first the emerging output and then
choose whether to abort or continue). In contrast, in a strong coin tossing protocol
(which is the focus of our work), the protocol always requires an output. A strong coin
tossing protocol with bias at most δ is one where each honest party always announces
an output (even if the other party aborted), and yet no malicious party can bias the
honest party’s output (in any direction) by more than δ. The weak coin tossing protocol
of Blum was used as a building block by Cleve [Cle86] to construct a strong coin
tossing protocol that (for any polynomial r̂) runs for r̂ rounds and for which no efficient
adversary can bias the output bit by more than O(1/

√
r̂). In our work, whenever not

explicitly mentioned, we are referring to strong coin tossing protocols.
The question of closing the gap between this best known upper bound (O(1/

√
r̂)

based on OWF) and lower bound (Ω(1/r̂) regardless of any assumption) remained
unresolved for more than two decades. A few years ago, the gap was closed by Moran
et al. [MNS09] who constructed a protocol for coin tossing whose bias matches the
lower-bound of [Cle86]. Specifically, for any r̂ they constructed an O(r̂)-round protocol
with the property that no efficient adversary can bias the output by more than O(1/r̂).
Thus, they demonstrated that the O(1/r̂) lower-bound is tight. We call a protocol which
achieves bias O(1/r̂) optimally-fair, because no protocol can achieve asymptotically-
lower bias. The protocol of [MNS09], however, uses general secure computation
and thus requires the strong assumption that protocols for oblivious transfer exist.
In contrast, the coin tossing protocol of Blum [Blu82] and the protocol of [Cle86]
achieving bias of O(1/

√
r̂) can be constructed from any one-way function, and in fact,

rely only on the existence of a commitment scheme. This leads us to our main question:

Can optimally-fair coin tossing be based on one-way functions?
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This question was already asked by Moran et al. [MNS09] as a challenging open
problem. Indeed, the question of whether one-way functions suffice for optimally-fair
coin-tossing seems to be a difficult problem and remains open, despite much effort.
A partial answer to the main question above was presented in the work of Dachman-
Soled et al. [DSLMM11]. Informally, they show that if C is a black-box construction
of optimally-fair coin tossing based on one-way functions with input and output length
n, then the number of rounds of interaction in C is at least Ω(n/ logn). Thus, they
rule out such black-box constructions with a “small” number of rounds. However, their
results say nothing about constructions with a higher number of rounds. For example,
they do not rule out the possibility of constructing coin-tossing protocols from one-
way functions of input size n, which have r̂ = n3 number of rounds and for which no
efficient adversary can bias the output by more than 1/n3 = 1/r̂.

In this work, we make an important step towards answering our main question.
In particular, we manage to remove the limitation on the round complexity in the
impossibility result of [DSLMM11]. Indeed, we consider protocols with an arbitrary
polynomial number of rounds: r̂ = poly(n). However, we introduce another limitation:
our impossibility results only rule out protocols which posses the following property.

Definition 1 (Function-Obliviousness:). A coin-tossing protocol Cf = 〈Af ,Bf 〉
based on one-way functions is called function-oblivious if the outcome of the coin
tossing protocol 〈Af (rA),B

f (rB)〉, when both parties are honest, depends only on the
random tapes rA, rB of the two parties and not on the choice of one-way function f .

Function-obliviousness captures the intuition that the one-way function f is being
used only to achieve security for the coin-tossing protocol but does not affect correct-
ness. In this work, we rule out (fully) black-box constructions of optimally-fair coin-
tossing protocols which are function-oblivious from one-way functions.

Theorem 1 (Main Theorem, Informal). There is no (fully) black-box and function-
oblivious construction of optimally-fair coin-tossing protocols from one-way functions.

Our result is incomparable to that of [DSLMM11]: we restrict ourselves to function-
oblivious protocols but handle protocols with arbitrary polynomial number of rounds.

We believe that function-obliviousness is a natural assumption on coin-tossing proto-
cols. Indeed, the known one-way-function based coin tossing protocols of Blum [Blu82]
and Cleve [Cle86], as well as any other protocols based only on commitment schemes,
are function-oblivious. The notion of function-obliviousness as defined in Definition 1
can be directly generalized to other pairs of primitives as well, and so understanding
the limits of oblivious black-box constructions could be considered as a first step
towards understanding the full power of black-box constructions. Thus, introducing
the notion of oblivious black-box constructions, as a natural form of black-box
constructions, is a conceptual contribution of our work. On a technical level, to deal
with function-oblivious protocols, we introduce several new techniques which were
not needed/applicable in the case of black-box O(n/ logn)-round protocols. These
techniques also may be of independent interest and indicate that we are making progress
on a fundamental question by considering this class of protocols. Thus, we believe that
our partial negative result is meaningful and improves our understanding of the relative
complexity of one-way functions and optimally-fair coin-tossing protocols.
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An important remaining open question is whether function-obliviousness is nec-
essary for our result, or we can completely rule out any black-box construction of
optimally-fair coin tossing from one-way functions. Our results together with those
of [DSLMM11] indicate that if any such construction exists, it must have many
(ω(n/ logn)) rounds, and must use the one-way function in a novel way, not only for
commitment but to determine the coin toss outcome even when both parties are honest.

1.1 Black-Box Separations

One of the main goals of modern cryptography has been to identify the minimal
assumptions necessary to construct secure cryptographic primitives. For example,
[Yao82, GM84, Rom90, HILL99, GGM86, LR88, IL89, NY89, Nao91] have shown
that private key encryption, pseudorandom generators, pseudorandom functions and
permutations, bit commitment, and digital signatures exist if and only if one-way
functions exist. On the other hand, some cryptographic primitives such as public key
encryption, oblivious transfer, and key agreement are not known to be equivalent
to one way functions. Thus, it is natural to ask whether the existence of one-way
functions implies these primitives. However, it seems unclear how to formalize such
a question; since it is widely believed that both one-way functions and public key
encryption exist, this would imply in a trivial logical sense that the existence of one-
way functions implies the existence of public key encryption. Thus, we can only
hope to rule out restricted types of constructions that are commonly used to prove
implications in cryptography. Impagliazzo and Rudich [IR89] were the first to develop
a framework and techniques to rule out the existence of an important class of reductions
between primitives known as black-box reductions. Intuitively, this is a reduction
where the primitive is treated as an oracle or a “black-box”. There are actually several
flavors of black-box reductions (fully black-box, semi black-box and weakly black-box
[RTV04]). In our work, we only deal with fully black-box reduction, and so we will
focus on this notion here.

Informally, a fully black-box reduction from a primitiveQ to a primitive P is a pair
of oracle PPT machines (G;S) such that the following two properties hold:

Correctness: For every implementation f of primitive P , g = Gf implementsQ.
Security: For every implementation f of primitive P , and every adversary A, if A

breaks Gf (as an implementation of Q) then SA;f breaks f .

We remark that an implementation of a primitive is any specific scheme that meets
the syntactical requirements of that primitive (e.g., an implementation of a public-key
encryption scheme provides samplability of key pairs, encryption with the public-key,
and decryption with the private key). Correctness thus states that when G is given
oracle access to any valid implementation of P , the result is a valid implementation
of Q. Furthermore, security states that any adversary breaking Gf yields an adversary
breaking f . The reduction here is fully black-box [RTV04] in the sense that the
adversary S breaking f uses A in a black-box manner.
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Separation from One-Way Functions. A common technique to separate a cryptographic
primitive P from one-way functions is to show that any implementation of P in the
random oracle can be broken by an attacker that asks “a few” (more specifically
2o(n)) queries to the random oracle (e.g. see [BM07] or [DSLMM11]). The reason,
roughly speaking, is that if a 2o(n) attacker Adv exists, the security reduction could
turn Adv into a 2o(n)-query attack to invert the random oracle, which is not possible
[IR89, GT00].1 We will also take this approach in this work.

1.2 Related Work

Cleve and Impagliazzo [CI93] showed that the bias O(1/
√
r̂) is optimal when the

attacker is computationally unbounded, and so their result does not resolve our main
question.2 However, using the result of [CI93], Dachman-Soled et al. [DSLMM11]
gave a partial answer to the question of whether optimally-fair coin-tossing can be
constructed in a black-box manner from one-way functions. As mentioned previously,
they showed that if C is a construction of optimally-fair coin tossing based on one-way
functions with input and output length n, then the number of rounds of interaction in
C is at least Ω(n/ logn). More specifically, [DSLMM11] shows how to “compile out”
the random oracle from the coin-tossing protocol by asking (poly(n))r̂ oracle queries
by the parties where r̂ is the number of rounds of the protocol. Note that whenever r̂ =
o(n/ logn), the number of queries asked by the parties will be (poly(n))r̂ = 2o(n), and
using the result of [CI93] for the no-oracle protocols one obtains a 2o(n)-query attacker
for one of the parties A or B in the with-oracle protocol which, as explained above,
leads to a black-box separation. Unfortunately, the techniques of [DSLMM11] do not
seem to extend to the case where r̂ = ω(n/ logn) since in this case, the adversarial
strategy will require (poly(n))ω(n/ logn) = 2ω(n) number of queries which is in fact
enough to successfully invert the random oracle and does not lead to contradiction.

We also mention two other works, which deal with seemingly unrelated problems
to ours, but leverage similar techniques. The first work of Haitner et al. [HOZ13]
considers the question of constructing protocols for semi-honest no-input two-party
computation in the random oracle model. They show that any semi-honest no-input
two-party functionality which can be realized in the random oracle model, is trivial
in the sense that, essentially, it can also be realized in the information-theoretic semi-
honest setting with no random oracle. Note, however, that our coin-tossing in the semi-
honest setting is trivial and our setting deals with malicious adversaries, so the result of
[HOZ13] does not apply to our case. Mahmoody et al. [MMP13] consider semi-honest,
deterministic functionalities with polynomial-sized domains and show that any such
functionality which can be realized in the random oracle model is “trivial” in the same
sense as above. As in our work, both of the above works utilize the “Eve” algorithm
of [BM09] and rely on its specific properties (as described in Lemma 1). Moreover,
some of the techniques in the work of [MMP13], where one of the players resamples a
fake view and proceeds to compute using this fake view, are similar to our techniques.
See the Technical Overview Section (Section 1.3) for additional details.

1 Note that this technique works even if the attacker is not efficient.
2 Although, as we will see, we use the results and approach of [CI93] as a starting point.
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1.3 Technical Overview

We consider two-party coin tossing protocols C = 〈A,B〉 with r̂ rounds (i.e., 2r̂
messages). Let C denote the outcome of coin tossing protocol C = 〈A,B〉 and let Tj

denote the transcript of the protocol immediately after message j is sent. Moreover,
since we consider the setting where one party may abort early, we denote by Cj the
output of the other party, when one party aborts before sending the j-th message.

Cleve and Impagliazzo [CI93] showed that for any coin tossing protocol we have
that with probability at least 1/5 over the choice of random tapes of the parties, there
is some point in the execution of the protocol that |E[C | Tj ] − E[C | Tj+1]| ≥
Ω(1/

√
r̂). Moreover, in [CI93], it was observed that if for some x, y, we have that an

x-fraction of the executions of the coin-tossing protocol with uniformly chosen random
tapes for the two parties reach a point where |E[C | Tj ]−E[Cj | Tj ]| ≥ y then the
party who sends the mesasge j has a strategy for biasing the output towards either 0 or
1 by Ω(x ·y) by aborting before sending the j-th message when the above event occurs.
Thus, the fact that with probability 1/5 there is some point in the execution such that
|E[C|Tj] − E[C|Tj+1]| ≥ Ω(1/

√
r̂) immediately implies a strategy for either A or B

for imposing bias Ω(1/
√
r̂).

In our work, we extend the [CI93] observation in two ways. First, we allow a
party to condition not just on the current transcript, but on its entire view and abort
before sending message j when |E[C | VA,j ]−E[Cj | VA,j ]| ≥ y, where A is the party
sending the j-th message and VA,j denotes her partial view right before sending the j-th
message. Additionally, we allow a party to abort immediately after sending a message.
More specifically, we allow a party to abort immediately after sending message j when
|E[C | Tj]−E[Cj+2 | Tj]| ≥ y. Although this is technically equivalent to waiting to
get the (j+1)-st message and aborting immediately after, it will be conceptually helpful
to think of the party as aborting immediately after sending the j-th message. In what
follows, we refer to the above described strategies as “[CI93]-type strategies”. We do
not consider our extensions of the [CI93] strategies as our main technical contribution,
but we consider tham as useful tools for our proofs.

In our setting, we would like to apply the result of [CI93] in the random oracle model
(see Section 1.1). The reason is that, it is well-known that, roughly speaking, (even
inefficient) attacks in the random oracle model imply black-box separations from one-
way functions. One might might correctly say that it is in fact impossible to break a coin-
tossing protocol in the random oracle model through a fail-stop attack, simply because
the parties can trivially use oracle’s answer to a fixed query as their output. However,
recall that: (1) our goal is to obtain black-box separations from one-way functions and
the mentioned trivial protocol does not work when the random oracle is substituted
with an actual one-way function, and (2) we are in fact focusing on function-oblivious
protocols that prevent using the random oracle for obtaining the output.

Unfortunately, a straightforward implementation of [CI93] in the random oracle
model (where expectations are taken also over the choice of oracle) fails due to the
fact that in order for the [CI93] techniques to go through, it must be the case that
E[Cj | Tj−1] = E[Cj | Tj ] (or at least that |E[Cj | Tj−1]−E[Cj | Tj ]| = o(1/

√
r̂)) in

all rounds. However, due to dependencies between parties’ views created by the random
oracle (in addition to the dependencies created by the transcript) it may in fact be the
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case that |E[Cj | Tj−1] − E[Cj | Tj ]| = Ω(1/
√
r̂) in the random oracle model. I.e.,

the distribution over views of B till end of round j, denoted by VB,j , conditioned on
Tj−1 may be very far from the the distribution over VB,j conditioned on Tj . This is due
to the fact oracle answers received by A during the computation of Tj can affect the
distribution over views of B even though A sends the j’th message.

A natural approach to solving the above problem, would be to leverage the results
of [IR89, BM09] on finding so-called “intersection queries” in 2-party protocols.
Intersection queries are queries made by both parties A,B during an execution of a
protocol in the random oracle model. Intuitively, it is these intersection qeries that
cause dependencies between the views of A and B. Moreover, in [IR89, BM09], it
was shown that an eavesdropping adversary “Eve” can with high probability find all
these intersection queries made by A and B, while making only a polynomial number
of queries to the random oracle. Intuitively, one could hope that by running the “Eve”
protocol of [IR89, BM09] after each pass of the protocol (which we call running the
Eve protocol alongside the main protocol) these intersection queries could be found
before they are made, thus eliminating dependencies between the views of A and B.
It turns out that there is a subtle problem here: In order for [CI93] techniques to go
through, we must prevent intersection queries even between Eve queries made alongside
the j-th message (sent by A) and private queries that were made previously by B.
Unfortunately, this property is not guaranteed by the Eve algorithm of [IR89, BM09].
However, [DSLMM11] showed that the Eve algorithm can be modified (becoming
far less efficient) to guarantee that the above does not occur. Using such (inefficient)
Eve [DSLMM11] still managed to rule out optimally-fair coin-tossing protocols with
O(n/ logn) number of rounds, where n is the input-output length of the one-way
function. In this work, we shall find a different approach that allows us to deal with
an arbitrary polynomial number of rounds.

Our Approach. In the following,D denotes the distribution over views of A,B running
the coin-tossing protocol C with uniformly random coins. Additionally, for joint random
variables X,Y , we denote by X | Y the distribution over X drawn fromD, conditioned
on Y . Mi denotes the i-th message of the coin-tossing protocol and Ti denotes the
transcript which includes both the messages M1, . . . ,Mi of the protocol C as well as
Evei, the information “Eve” has learned by making her queries alongside in the first
i messages. Finally, the partial view of a party after the i-th message is sent, denoted
by VA,i or VB,i includes its random tape rA or rB, its queries to the oracle and the
responses, as well as the transcript M1, . . . ,Mi of the C protocol.

We consider the “middle value”: MV = EVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej ]], where

A sends the (j + 1)’st message of the protocol. We shall clarify that for brevity, in our
notation above Evej is consistent with Tj+1 from which we are sampling VB,j (even
though this his not explicitly mentioned). Intuitively, this means that we sample views
of B, VB,j , conditioned on the transcript at the j + 1-st pass (which A knows before
B) and look at the expectation of the outcome of the coin-toss conditioned on these
views, VB,j . Then we take the expectation over these expected values. Here, we give
some intuition as to why MV is significant for our analysis. Observe that B, given its
real view can of course compute E[C | VB,j ,Evej ] = E[C | VB,j ,Tj ], which is the
expected value of the outcome of the coin-toss, C, from B’s point-of-view. Note that A
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cannot compute this value since conditioned on its view, it does not know the real VB,j .
Before computing its message in the j + 1-st pass, A would only be able to compute
EVB,j ,Evej |Tj

[E[C | VB,j ,Evej ]], the expectation when views of B, VB,j are sampled
conditioned on only Tj , which is equivalent to E[C|Tj ]. However, after computing
Tj+1, A gets more information about B’s view and thus can get a better estimate of
B’s real expected value by sampling views of B, VB,j conditioned on Tj+1. It is this
advantage which we leverage in the final strategy in order to allow A to impose bias.

In the following we give some more details of our approach. First, using a similar
argument to that of [CI93] shows that one of the following cases occurs:

1. With probability at least 1/20 there is some point in the execution such that
E[C|Tj]−MV ≥ Ω(1/

√
r).

2. With probability at least 1/20 there is some point in the execution such that MV −
E[C|Tj+1] ≥ Ω(1/

√
r).

3. With probability at least 1/20 there is some point in the execution such that MV −
E[C|Tj] ≥ Ω(1/

√
r).

4. With probability at least 1/20 there is some point in the execution such that
E[C|Tj+1]−MV ≥ Ω(1/

√
r).

For each of the above cases, we need to come up with corresponding strategies that
allow A or B to impose bias on the final outcome. It turns out that Cases 1 and 2 give
rise to adversarial strategies for biasing towards 0, while Cases 3 and 4 will give rise to
adversarial strategies for biasing towards 1. In the following, we give some intuition for
the analysis of cases 1 and 2; cases 3 and 4 are entirely analogous.

It is not difficult to see (details can be found in Section 4) that if Case 1 occurs, then
one of the following will occur:

– With probability Ω(1/r̂1/4) there is a (first) point where E[C | Tj ] − E[Cj+2 |
Tj] ≥ Ω(1/

√
r̂).

– With probability Ω(1/r̂1/2) there is a (first) point where E[C | Tj ] − E[Cj+2 |
Tj] ≥ Ω(1/r̂1/4).

– With probability Ω(1/r̂1/4) there is a (first) point where E[C | VB,j ,Evej ] −
E[Cj+2 | VB,j ,Evej ] ≥ Ω(1/

√
r̂).

– With probability Ω(1/r̂1/4) there is a (first) point where E[C | VB,j ,Evej ] −
E[Cj+2 | VB,j ,Evej ] ≥ Ω(1/

√
r̂).

By directly using [CI93]-type strategies we can impose bias of Ω(1/r̂3/4) when any
of the above items occurs. On the other hand, if Case 2 occurs then we have either:

– with probability at least 1/40 there is a (first) point where E[Cj+1 | Tj+1]−E[C |
Tj+1] ≥ Ω(1/

√
r̂), or:

– with probability at least 1/40 there is a (first) point where EVB,j ,Evej |Tj+1
[E[C |

VB,j ,Evej ]]−E[Cj+1 | Tj+1] ≥ Ω(1/
√
r̂).

Again, if the first item above occurs, we can impose bias of Ω(1/
√
r̂) using [CI93]-

type strategies. However, in order to utilize the second item above, which we refer to
as Case (2b), to impose ω(1/r̂) bias, we need quite a bit of additional work. More
specifically, we show that in order to leverage Case (2b), it is sufficient to present a way
to simulate a fake transcripts Tj+1, which we denote by T′

j+1 such that:
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– Real transcripts Tj+1 and fake transcripts T′
j+1 are distributed nearly identically.

– The expected value of outcomes conditioned on views of B sampled w.r.t. the real
transcript Tj+1 = tj+1 is nearly the same as the expected value of outcomes
conditioned on views of B sampled w.r.t. T′

j+1 = tj+1. Formally, we have that:
EVB,j ,Evej |Tj+1

[E[C | VB,j ,Evej ]] ≈ EVB,j ,Evej |T′
j+1

[E[C | VB,j ,Evej ]].

– T′
j+1 reveals almost no information about the real VA,j+1.

In what follows, we give some intuition as to how the simulated T′
j+1 is constructed.

We note that some of the techniques we use here are similar to those used by [MMP13].
In order to constructT′

j+1, we critically use independence of the views of A andB (once
the Eve queries have been made). We sample a fake view for A, V′

A,j+1, conditioned
only on Tj and use it to compute a fake next message M′

j+1. Then we run the Eve
algorithm (pretending that M′

j+1 is the real j+1-st message) carefully choosing which
queries to answer w.r.t. the real oracle and which queries to “lie” about. The main
idea (although the actual algorithm is slightly more complicated) is the following: All
queries made by Eve that are in V′

A,j+1 are answered according to V′
A,j+1, all queries

made by Eve that are in the real VA,j+1 and not in V′
A,j+1 are answered uniformly at

random. All remaining queries are asked to the oracle and the response from the oracle
is returned. Now, intuitively, items (1) and (2) above hold since by independence, it
is highly likely that all “modified” Eve queries (i.e. queries that appear in VA,j+1 or
V′
A,j+1) do not intersect with the real VB,j . For item (3), recall that T′

j+1 is computed by
“ignoring” the realVA,j+1, sampling a newV′

A,j+1 and continuing with the computation
as though V′

A,j+1 were the real view. Intuitively,T′
j+1 is close to independent of VA,j+1

(conditioned on Tj) and so knowledge of T′
j+1 does not give additional information on

VA,j+1 beyond what is already given by Tj .
Properties (1) and (2) are used to argue that if with high probability there is a first

point where EVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej ]] − E[Cj+1 | Tj+1] is large (as occurs in

Case (2b)) then with high probability there is a first point where EVB,j ,Evej |T′
j+1

[E[C |
VB,j ,Evej ]]−E[Cj+1 | T′

j+1] is large (see Claim 1 for the precise statement).
Property (3) is used to argue that EVB,j ,Evej |T′

j+1
[E[C | VB,j ,Evej]] is close to

E[C | T′
j+1] (see Claim 2 for the precise statement). To give some intuition into

why this holds, note that E[C | T′
j+1] can be re-written as: EVA,j+1,VB,j |T′

j+1
[E[C |

VA,j+1,VB,j ]]. Now, the quantity EVB,j ,Evej |T′
j+1

[E[C | VB,j ,Evej ]] is nearly the
same, except views of B, VB,j are sampled conditioned on T′

j+1, but views of A,
VA,j+1, are sampled conditioned only on (VB,j ,Evej) (which in particular includes
Tj). Intuitively, this reflects the fact that T′

j+1 does not provide additional information
about the real view of A, VA,j+1 over what is contained in Tj . However, the fact
that T′

j+1 does not leak additional information on VA,j+1, is not sufficient to argue
that EVB,j ,Evej |T′

j+1
[E[C | VB,j ,Evej ]] is close to E[C | T′

j+1]. This is because T′
j+1

still contains additional Eve queries which, although they do not provide additional
information about VA,j+1, do provide additional overall information about the oracle.
Thus, in order for item (3) to hold, we need the additional “function-obliviousness”
property (see Property 1) which guarantees that the outcome C of the coin-toss does
not depend on the oracle, but only on the random tapes of the two parties. We note
that this is the only place in the proof where the “fuction-obliviousness” property
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is used. Thus, as long as we can sample partial views of A and B, VA,j+1,VB,j

according to the correct distribution, we can compute the expected value of the coin
toss C(VA,j+1,VB,j) = C(rA, rB).

When the above are combined, we get that with high probability there is a first point
where E[C | T′

j+1] − E[Cj+1 | T′
j+1] is large, which means that an adversary can

impose bias by adopting a [CI93]-type strategy.
Unfortunately, the actual argument is somewhat more complicated than what is

described above, because once the adversarial party A′ playing the role of A has
computed the simulated transcript T′

j+1 and the associated information (which we
denote by Kj+1), A′ cannot just throw away the additional information in Kj+1 and
start afresh when computing expectations in the j + 3-rd pass. This is because just the
fact that A′ has not aborted itself gives information that might impact the expected
value of the coin toss. Thus, A′ cannot decide to abort by conditioning only on T′

j+3,
but must additionally condition on its extra knowledge Kj+1, which it obtained in the
previous round, when deciding whether or not to abort. Therefore, all the information in
the Kj variables must be used when A′ computes subsequent expectations. Moreover,
when V′

A,j+1 is sampled (in order to compute T′
j+1), it must be consistent not only with

Tj but also with the additional knowledge Kj collected thus far. See Section 4.1 for the
precise description and analysis of the final adversarial strategy.

2 Preliminaries

Definition 2 (Black-Box Coin Tossing from One-Way Functions). For (interactive)
oracle algorithms A,B we call C = 〈A,B〉 a black-box construction of coin tossing with
bias at most δ based on one-way functions with input/output length n, if the following
properties hold:

– The parties A and B get access to private randomness rA, rB and common input 1n

and run in time poly(n) and interact for r̂(n) = poly(n) number of rounds. The
transcript of their interaction determines an output a. Also, if during the protocol,A
(resp. B) receives the special message⊥ (denoting that the other party has stopped
playing in the protocol) then A (resp. B) outputs a bit a (resp b) on their own which
will be the output of the protocol.

– Completeness: For any function f , if A and B are given oracle access to f and
execute the protocol honestly, then the output is an unbiased random bit.

– Security: There is an oracle algorithm S running in polynomial time over its input
length with the following property. Given any adversary A (playing on behalf
of A or B) that achieves bias δ(n) over common input 1n w.r.t a function f ,
Sf,A(1n, 11/δ(n)) breaks the security of f as a one-way function.

2.1 The Eavesdropper Algorithm Eve

In this section, we recall the Eve algorithm, first introduced by Impagliazzo and
Rudich [IR89] in the context of separating one-way function and key agreement. The
Eve algorithm of [IR89] was later improved by Barak and Mahmoody [BM13]. In our
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work, we will use the Eve algorithm of [BM13] in a black-box manner. Thus, we do not
describe the algorithm itself, and simply state the properties we will need from the Eve
algorithm of [BM13] in the following lemma.

Lemma 1 (Implied by Theorem 4.2 in [BM13]). Let C = 〈A,B〉 be an oracle
protocol in which the parties A,B ask at most m queries each from the oracle O. Then
there is an Eve algorithm who only gets to see the public messages and asks her own
oracle queries after each message is sent and on input parameter ε < 1/100:

– poly(m/ε)-Efficiency: Eve is deterministic and, over the randomness of the oracle
and A and B’s private randomness, the expected number of Eve queries from the
oracle O is at most (10m/ε)10.

– (1 − ε)-Security: Let Ti = M1, . . . ,Mi||Evei be the transcript of messages sent
between A and B so far, including the the additional information that Eve has
learned till the end of the i’th pass. Let (VA,VB) | Ti be the joint distribution over
the views (VA,VB) of A and B only conditioned on Ti. By VA | Ti and VB | Ti

we refer to the projections ofD(Ti) over its first or second components. Then, with
probability at least 1 − ε over the randomness of A, B, and the random oracle O,
the following holds at all moments during the protocol when Eve is done with her
learning phase in that round:
1. The statistical distance between VA | Ti × VB | Ti and D(Ti) is at most ε.

Namely: Δ(VA | Ti × VB | Ti, (VA,VB) | Ti) ≤ ε.
2. For every oracle query q /∈ Evei it holds that Pr(VA,VB)|Ti

[q ∈ QVA
∪QVB

] ≤ ε.

In the following, we will run the Eve algorithm with input parameter ε = 1
3mr̂4 .

For simplicity of the notation and when it is clear from the context, in the following,
for probabilities and expected values taken over (VA,VB) ∼ D, instead of writing
E(VA,VB)∼D or Pr(VA,VB)∼D, we simply write E and Pr.

We consider coin-tossing protocols C, where the Eve algorithm is run alongside the
protocol and Eve queries are made immediately after every message Mj is sent. We
denote by Evej the set of queries made by the Eve algorithm up to and including the
queries made immediately after the j-th message is sent. We denote byTj , the transcript
of the protocol with the Eve queries made alongside. Thus, Tj = M1, . . . ,Mj||Evej .

3 Types of Coin Tossing Protocols We Consider

Consider a coin-tossing protocol C = 〈A,B〉 with r̂ = r̂(k) = poly(k) rounds and 2r̂
passes. For 1 ≤ w ≤ r̂, let C2w−1 denote the output of party B in the case that A aborts
before sending the 2w − 1-st message. Similarly, For 1 ≤ w ≤ r̂, let C2w denote the
output of party A in the case that B aborts before sending the 2w-th message.

Let VA,j (resp. VB,j) denote the partial view of A (resp. B) up to and including pass
j. In particular, VA,j consists of the transcript Mj thus far as well as the random tape rA
of A and the queries and responses, QVA,j

, that have been made by A thus far. VB,j and
QVB,j

are defined analogously.
We consider the distribution D to be the distribution over pairs of complete views

(VA,2r̂,VB,2r̂) (also denoted simply by VA,VB) generated by a run of C with a random
oracle. More specifically, a draw from D is obtained as follows:
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– Draw O ∼ Υ , rA, rB ← {0, 1}p(n), for some polynomial p(·) and execute C =
〈A,B〉 with O, rA, rB.

– Output the views (VA,VB) resulting from the execution of C = 〈A,B〉 above.

We prove our result for so-called instant constructions as defined in [DSLMM11].
Instant constructions are coin-tossing protocols where for 1 ≤ w ≤ r̂, A (resp. B)
computes the value C2w (resp. C2w+1) before sending message M2w−1 (resp. M2w).
Thus, in case a party (say A) aborts before sending message M2w+1, then B can simply
output its precomputed value C2w+1 which depends only on B’s view at the point right
after B computed message M2w without making any additional oracle queries. It is not
hard to see that the restriction of instant constructions can be removed as was shown
by [DSLMM11]. This is a subtle argument relying on the fact that our ultimate goal
is to rule out separations from one-way functions and not random oracles (since in the
random oracle model coin tossing is trivial). In the following we sketch the argument
of [DSLMM11] on why assuming the protocol to be instant is w.l.o.g.

Instant vs. General Protocols. Dealing with non-instant protocols can be done exactly
as it was done in [DSLMM11], so in this work we focus on instant protocols and leave
the full discussions on dealing with non-instant protocols for the full version of the
paper. However, here we give a sketch of how this can be done. Firstly, note that any
general coin tossing protocol using an oracle can be made “almost instant” without
losing the security as follows. Whenever a party A (or B) wants to send a message
Mi, they also go ahead and ask any oracle query that they would need to ask in case the
other party halts the execution of the protocol and not sent Mi+1. This way, the protocol
becomes almost instant because the only time that the instant property might be violated
is when the first message is aborted by Alice in which case, Bob might still need to query
the oracle to decide the output. However, as shown in [DSLMM11], it is always possible
to “fix” a “small” set S of queries of the random oracle in a way that (1) Bob does not
ask any query to decide the output if he gets aborted in the first message, and (2) the
protocol remains as secure. Roughly speaking, the set S is determined (and its answers
are fixed) as follows. The set S contains any query q that has a “non-negligible” chance
of being asked by Bob in case of not receiving the first message. It is easy to show that
|S| ≤ poly(n), and by sampling (and fixing) the answer of the queries in S, Bob will
not need to ask any oracle queries in case of getting aborted in the first round. Finally,
observe that a partially-fixed random oracle is still one-way and so one can apply the
argument of our work for the instant protocols to the final instant protocol.

We consider coin-tossing protocols that are so-called “function oblivious.” As
defined in Definition 1, these are coin-tossing protocols such that the outcome of
protocol Cf = 〈Af ,Bf 〉 when both parties are honest depends only on the random
tapes rA, rB of the two parties and not on the choice of one-way function f . We denote
by C(rA, rB) the output of protocol C when run with random tapes rA, rB. When the
settings of rA, rB are clear from context, we denote the output of the protocol by C.

We are now ready to state our main theorem.

Theorem 2 (Main Theorem, Formal). There is no (fully) black-box construction of
an r̂ = r̂(n)-round, function-oblivious coin-tossing protocol Cf = 〈Af ,Bf 〉 with bias
o(1/r̂3/4) from one-way functions.
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4 Proof of the Main Theorem

Towards proving Theorem 2, we begin with the following fact, which follows straight-
forwardly from [CI93].

Fact 1. Let C be a coin-tossing protocol and let {Y1, . . . , Y2r̂} be a set of random
variables, where Yj is associated with some state of protocol C immediately after the
j-th message (Mj ,Evej) has been computed.

– For 1 ≤ w ≤ r̂, set j = 2w − 2 and define the indicator variable IValAj+1
in the

following way: IValAj+1
= 1 if |E[C|Yj+1]−E[Cj+1|Yj+1]| ≥ β and for 1 ≤ � ≤

w, IValA2�−1
= 0. Otherwise IValAj+1

= 0.
– For 1 ≤ w ≤ r̂, set j = 2w and define the indicator variable IValAj+1

in the

following way: IValBj = 1 if |E[C|Yj ]−E[Cj+2|Yj ]| ≥ β and for 1 ≤ � ≤ w,
IValB2� = 0. Otherwise IValBj = 0.

If for some (α, β)
r̂∑

w=1

Pr[IValA2w−1
= 1] ≥ α

then player A has a fail-stop strategy for imposing bias ±1/2 · α · β on C by aborting
before sending message M2j−1 either when E[C|Y2w−1] − E[C2w−1|Y2w−1] ≥ β or
when E[C|Y2w−1]−E[C2w−1|Y2w−1] ≤ −β. An analogous claim holds for player B.

If for some (α, β),
r̂∑

w=1

Pr[IValB2w = 1] ≥ α

then playerB has a fail-stop strategy for imposing bias±1/2·α·β onC by aborting after
sending message M2j either when E[C|Y2w]−E[C2w+2|Y2w] ≥ β or when E[C|Y2w]−
E[C2w+2|Y2w] ≤ −β. An analogous claim holds for player A.

The following fact is implicit in [CI93]:

Fact 2. With prob. at least 1/5 over choice of random tapes and oracle there is some
point in the execution such that |E[C|Tj]−E[C|Tj+1]| ≥ Ω(1/

√
r).

Let us choose the quantity

MV = EVB,j ,Evej |Tj+1
[E[C|VB,j ,Evej ]]

as the ”middle value.”
Thus, it must be the case that either with prob. at least 1/10 there is some point in

the execution such that |E[C|Tj]−MV| ≥ Ω(1/
√
r). OR with prob. at least 1/10 there

is some point in the execution such that |MV −E[C|Tj+1]| ≥ Ω(1/
√
r).



230 D. Dachman-Soled, M. Mahmoody, and T. Malkin

In particular, there are four possible cases.

1. With probability 1/20 there is some point s.t. E[C|Tj ]−MV ≥ Ω(1/
√
r).

2. With probability 1/20 there is some point s.t. MV −E[C|Tj+1] ≥ Ω(1/
√
r).

3. With probability 1/20 there is some point s.t. MV −E[C|Tj] ≥ Ω(1/
√
r).

4. With probability 1/20 there is some point s.t. E[C|Tj+1]−MV ≥ Ω(1/
√
r).

Note that Cases 1 and 2 will give rise to adversarial strategies for biasing towards 0,
while Cases 3 and 4 will give rise to adversarial strategies for biasing towards 1. In the
following, we analyze only cases 1 and 2; cases 3 and 4 are entirely analogous.

Lemma 2. Assume Case 1 occurs with probability at least 1/20, then there is a strategy
that biases the output by Ω(1/

√
r).

Proof. Assume that Case (1) occurs. Then this means that with prob. at least 1/20 there
is some point in the execution such that

E[C | Tj]−MV = E[C | Tj ]−EVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej ]] ≥ Ω(1/

√
r).

Fix Tj+1 such that Case (1) occurs. Note that Tj+1 completely defines Tj and so the
quantity above can be calculated for every valid Tj+1. Now, for each such Tj+1 we
must have that one of the following two subcases occurs:

(1a) PrVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej ]−E[C | Tj ] ≥ Ω(1/r̂1/4)] ≥ Ω(1/

√
r̂) OR

(1b) PrVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej ]−E[C | Tj ] ≥ Ω(1/

√
r)] ≥ Ω(1/r̂1/4).

To see this, assume towards contradiction that neither item (1a) nor item (1b) occur.
Then this means that when VB,j is sampled conditioned on Tj+1, we have that the
contribution from VB,j such that E[C | VB,j ,Evej ] − E[C | Tj ] ≥ Ω(1/

√
r) and

E[C | VB,j ,Evej ]− E[C | Tj] ≤ Ω(1/r̂1/4) is at most o(1/r̂1/4) · 1/r̂1/4 = o(1/
√
r̂).

Additionally, the contribution from VB,j such that E[C | VB,j ,Evej ] − E[C | Tj ] ≥
Ω(1/r̂1/4) is at most o(1/

√
r̂) · 1 = o(1/

√
r̂). This is a contradiction to Case 1

occurring.
Now, if item (1a) occurs then this means that either with probability Ω(1/r̂1/4) we

have that E[C | Tj] − E[Cj+2 | Tj] ≥ Ω(1/
√
r̂) occurs OR that with probability

Ω(1/r̂1/4) we have that E[C | VB,j ,Evej ] − E[C | Tj ] ≥ Ω(1/
√
r̂) AND E[C |

Tj]−E[Cj+2 | Tj] ≤ o(1/
√
r̂).

In the first case, B can employ the following strategy:
Abort immediately after sending message Mj if:

E[C|Tj]−E[Cj+2|Tj] ≥ Ω(1/
√
r̂)

By Fact 1 the strategy above imposes bias of at least Ω(1/r̂3/4) towards 0.
In the second case, note that since Cj+2 is a function of only VA,j+1, we have by

the properties of the Eve algorithm given in Lemma 1 we have that with probability
1 − O(1/r̂2), we have that |E[Cj+2 | Tj ] − E[Cj+2 | VB,j ,Evej ]| ≤ O(1/r̂2). Thus,
in this case, we have that with probability Ω(1/r̂1/4), E[C | VB,j ,Evej ] − E[Cj+2 |
VB,j ,Evej ] ≥ Ω(1/

√
r̂) and in this case, B can employ the following strategy:
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Abort immediately after sending message Mj if:

E[C | VB,j ,Evej ]−E[Cj+2 | VB,j ,Evej ] ≥ Ω(1/
√
r̂)

Thus by Fact 1 the above strategy imposes bias of at least Ω(1/r̂3/4) towards 0.
The analysis for item (1b) is entirely analogous.

Lemma 3. Assume Case 2 occurs with porbability at least 1/20, then there is a strategy
that biases the output by Ω(1/r̂3/4).

Proof. Case (2) implies that one of the following occurs with prob. at least 1/40:

(2a)
E[Cj+1 | Tj+1]−E[C | Tj+1] ≥ Ω(1/

√
r̂)

(2b)

MV−E[Cj+1 | Tj+1] = EVB,j ,Evej |Tj+1
[E[C | VB,j ,Evej ]]−E[Cj+1 | Tj+1] ≥ Ω(1/

√
r̂)

Note that in Case (2a), A can employ the following strategy:
Abort before sending message Mj+1 if:

E[C | Tj+1]−E[Cj+1 | Tj+1] ≥ Ω(1/
√
r̂)

and thus, by Fact 1 imposes bias Ω(1/
√
r̂) towards 0. Thus, to complete the lemma,

we need to show that if Case (2b) occurs with probability at least 1/40 then there is a
strategy for imposing bias of Ω(1/r̂3/4) on the outcome.

Since this case becomes more complicated, we devote the following section to show
how to deal with Case (2b).

4.1 Analysis for Case (2b)

The Protocol C′. The modified protocol C′ will execute the regular C protocol with
Eve queries made alongside. B behaves as in the original protocol. A′ behaves as A in
the original protocol and additionally computes extra state information Ki and related
values in each round i.

For each pass 0 ≤ j ≤ 2r̂ − 1, we consider the distribution Dextend,j+1, which is
a distribution over a tuple consisting of partial views VA,j+1,VB,j+1, transcripts (with
Eve queries alongside) Tj+1, and additional knowledge Kj+1 generated by a random
execution of C′ with random oracleO.

More specifically, a draw from Dextend,j+1 is obtained as follows:

– Draw O ∼ Υ , rA′ , rB ← {0, 1}p′(n), for some polynomial p′(·) and execute C′ =
〈A′,B〉 with O, rA′ , rB.

– Output a tuple consisting of the views VA,j+1,VB,j+1, transcript Tj+1, and
additional state information Kj+1 resulting from the execution of C′ = 〈A′, B〉
above.
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We are now ready to describe how Kj+1 is computed: For j = 0, the variable K0

is set to empty. For each round 1 ≤ w ≤ r̂, set j = 2(w − 1). A′ computes the state
information Kj+1 in the following way:

– Sample a random partial view V′
A,j+1 from Dextend,j+1(Tj ,Kj). Recall that this

denotes the distribution Dextend, conditioned on the current transcript with Eve
queries, Tj , and the additional state information Kj . Note that V′

A,j+1 includes the
next message, M′

j+1.
– We run a modified version of the Eve algorithm, called the Eve′ algorithm. For each

pass �, let QEve′
�

denote the set of queries and responses made by Eve′ in the j-th
pass. In the j + 1-st pass do the following: Run the Eve algorithm at pass j + 1
conditioned on Tj ||M′

j+1 (i.e. as if M′
j+1 is the real next message). Answer oracle

queries made by Eve′ in the following way3:
• If the query q appears in V′

A,j+1, answer according to V′
A,j+1 (without querying

the oracle).
• Otherwise, if for some i ≤ j, the query q appears in QEve′i

\ QV′
A,i

, respond
according to the value listed in QEve′i

(without querying the oracle).
• Otherwise, if a query q appears in VA,j , sample and return a uniformly random

string (without querying the oracle).
• Otherwise, query the oracle and return the oracle’s response.

– We denote by T′
j+1 the fake transcript generated. More specifically, T′

j+1 =
Tj||M′

j+1||QEve′j+1
.

– Set Kj+1 and Kj+2 to be Kj with the variables V′
A,j+1, QEve′j+1

appended.

Intuitively, the point of the protocol C′ is that it allows a malicious A to sample
fake transcripts T′

j+1, which, conditioned on Tj,Kj , are distributed (almost) identically
to real transcripts Tj+1, but reveal (almost) no additional information about the real
VA,j+1, beyond what was revealed by Tj ,Kj . In particular, a ”‘fake”’ view V′

A,j+1,
independent of the real VA,j+1, is sampled and a fake next message M′

j+1 is computed.
Now, when we run the Eve′ algorithm, ideally we would like to answer all oracle queries
q appearing in QV′

A,j+1
dishonestly according to V′

A,j+1 and all other queries honestly
according to the real oracle. However, there is a sublte issue here: Queries in the real
QVA,j+1

may be ”‘incorrectly”’ distributed if they are answered according to the real
oracle. In particular, queries which appear in QEve′i

\QV′
A,i

and do not appear in V′
A,j+1,

must be answered according to the value listed there (regardless of whether they are in
VA,j+1). Queries which do not appear in QV′

A,j+1
and do not appear in QEve′i

\ QV′
A,i

,
but do appear in QVA,j+1

are answered uniformly at random.
We are now ready to describe the final adversarial strategy:

– Set f(r̂) = 1/
√
r̂ or f(r̂) = 1/r̂1/4.

– Play the role of A′ in an execution C′, while interacting with an honest B.
– Abort immediately before sending message Mj+1 if:

E[C|T′
j+1,Kj ]−E[Cj+1|T′

j+1,Kj] = Ω(f(r̂))

3 We assume that Eve′ never re-queries a query that is already contained in Evej
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Fact 1 implies that all we need to show is that the event occurs “frequently.” More
specifically, we prove the following lemma, which is sufficient for completing the proof
of Case (2b).

Lemma 4. If Case (2b) occurs with probability 1/40 then either:

– With probability Ω(1/r̂1/2) over executions of C′ and choice of oracleO there is a
first message j where

E[C|T′
j+1,Kj ]−E[Cj+1|T′

j+1,Kj] = Ω(1/r̂1/4)

– With probability Ω(1/r̂1/4) over executions of C′ and choice of oracleO there is a
first message j where

E[C|T′
j+1,Kj ]−E[Cj+1|T′

j+1,Kj] = Ω(1/r̂1/2)

Before proving Lemma 4, we introduce the following notation. For f(r̂) = 1/
√
r̂

or f(r̂) = 1/r̂1/4 and for every j = 0, 1 ≤ j ≤ 2r̂, we define the indicator
random variables IfEVj

and IfEV′
j

which are set before the j-th message is sent during

an execution of C′. For j = 0, IfEV′
0
= 0 and IfEV0

= 0. For j ≥ 1, IfEV′
j+1

, IfEV′
j+2

are

set to 1 if:

– IfEV′
j
= 1 OR

– EVB,j |T′
j+1

=t′
j+1

,Kj=kj
[E[C|VB,j ,Kj = kj ]] − EVB,j |T′

j+1
=t′

j+1
,Kj=kj

[Cj+1(VB,j)] =

Ω(f(r̂)).

For j ≥ 1, IfEVj+1
, IfEVj+2

are set to 1 if:

– IfEVj
= 1 OR

– EVB,j |T′
j+1

=tj+1,Kj=kj
[E[C|VB,j ,Kj = kj ]] − EVB,j |T′

j+1
=tj+1,Kj=kj

[Cj+1(VB,j)] =

Ω(f(r̂)).

Note that in the last expression, we condition on T′
j+1 = tj+1. This means that

Tj+1 = tj+1 is sampled via a run of the protocol C′. Then, the expectation above is
computed using this same value of tj+1, but conditioning on the variable T′

j+1 being
equal to this value.

Let the event Bj be the event that upon a draw from Dextend,j+1 there is a query
q such that q ∈ QVB,j

∩ (QV′
A,j+1

∪ QVA,j+1
) and q /∈ Evej . Note that by Lemma 1,

for each j, the probability that Bj occurs is at most 3m
3mr̂4 = O(1/r̂4). Let DGoodj

extend,j+1

denote the distribution Dextend,j+1, conditioned on Bj .
By Dextend we denote the distribution Dextend,2r̂. Additionally, for joint random

variables X,Y , we denote by X | Y the distribution over X drawn from Dextend,
conditioned on Y .

We first consider three important properties of the C′ protocol which which will help
us prove the lemma:
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Property 1 (Tj+1 and T′
j+1 are close). The two distributions

DGoodj
T′

j+1
(Tj = tj ,Kj = kj) DGoodj

Tj+1
(Tj = tj ,Kj = kj)

are identical.

Since Bj occurs with probability at most O(1/r̂4), Property 1 immediately implies
the following: With probability 1 − O(1/r̂2) over Tj = tj ,Kj = kj drawn from
Dextend, we have that

DT′
j+1

(Tj = tj ,Kj = kj) DTj+1(Tj = tj ,Kj = kj)

are O(1/r̂2)-close.

Property 2 (VB conditioned on Tj+1 or T′
j+1 are close). For every 1 ≤ j ≤ 2r̂, the

two distributions

DGoodj
VB,j

(T′
j+1 = tj+1,Kj = kj) DGoodj

VB,j
(Tj+1 = tj+1,Kj = kj)

are identical.

Since Bj occurs with probability at most O(1/r̂4), Property 2 immediately implies
the following: For every 1 ≤ j ≤ 2r̂, we have that with probability 1 − O(1/r̂2) over
draws of Tj+1 = tj+1 and Kj = kj from Dextend, the statistical distance between the
following:

DVB,j
(T′

j+1 = tj+1,Kj = kj) DVB,j
(Tj+1 = tj+1,Kj = kj)

is at most O(1/r̂2).

Property 3 (T′
j+1 does not reveal much information about VA,j). With probability 1−

O(1/r̂2) over Tj = tj ,T
′
j+1 = tj ||m′

j+1, eve
′
j+1,Kj = kj drawn from Dextend, we

have that

DVA,j+1
(T′

j+1 = t′j+1,Kj = kj) DVA,j+1
(Tj = tj ,Kj = kj)

are O(1/r̂2)-close.

We defer the proofs of Properties 1, 2, 3 to the full version and now complete the
proof of Lemma 4 via the following claims and facts:

Claim 1. If Case (2b) occurs with probability 1/40 then either:

– With probability Ω(1/r̂1/2) there is a first point where

EVB,j ,Evej |T′
j+1,Kj

[E[C|VB,j ,Evej ,Kj]]−EVB,j|T′
j+1,Kj

[Cj+1(VB,j)] = Ω(1/r̂1/4).

– With probability Ω(1/r̂1/4) there is a first point where

EVB,j ,Evej |T′
j+1,Kj

[E[C|VB,j ,Evej ,Kj]]−EVB,j|T′
j+1,Kj

[Cj+1(VB,j)] = Ω(1/r̂1/2).
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Claim 2. With probability 1−O(1/r̂2), we have that

|E[C|T′
j+1,Kj ]−EVB,j ,Evej |T′

j+1,Kj
[E[C|VB,j ,Evej ,Kj ]]| = O(1/r̂2).

Fact 3. We have the following equivalence:

E[Cj+1|T′
j+1,Kj ]] = EVB,j |T′

j+1,Kj
[Cj+1(VB,j)]

The above immediately imply Lemma 4. We now proceed to prove Claims 1 and 2

Proof. (Claim 1) The hypothesis of Claim 1 and Markov’s inequality imply that one of
the following must occur:

– With probability Ω(1/r̂1/2) there is a first point where

EVB,j ,Tj |Tj+1,Kj
[E[C|VB,j ,Tj,Kj ]]−EVB,j |Tj+1,Kj

[Cj+1(VB,j)] ≥ Ω(1/r̂1/4)

– With probability Ω(1/r̂1/4) there is a first point where

EVB,j ,Tj |Tj+1,Kj
[E[C|VB,j ,Tj,Kj ]]−EVB,j |Tj+1,Kj

[Cj+1(VB,j)] ≥ Ω(1/r̂1/2)

Let us assume that the first case above occurs. The analysis for the remaining case is
entirely analogous. Now, by Claim 2 we have that with probability 1 − O(1/r̂2), over
Tj+1 = tj+1,Kj = kj drawn fromDextend the distributions VB,j | Tj+1 = tj+1,Kj =
kj and VB,j | T′

j+1 = tj+1,Kj = kj are O(1/r̂2)-close.
Thus, we have that with probability Ω(1/r̂1/2) over Tj+1 = tj+1,Kj = kj drawn

from Dextend

EVB,j ,Tj |T′
j+1

=tj+1,Kj
[E[C|VB,j ,Tj ,Kj ]]−EVB,j |T′

j+1
=tj+1,Kj

[Cj+1(VB,j)] = Ω(1/r̂1/4).

(4.1)

By definition of If=1/r̂1/4

EVj+1
we have by (4.1) that Pr[If=1/r̂1/4

EVj+1
= 1 for some 1 ≤ j ≤

2r̂] = Ω(1/r̂1/2). In the following, we will use this fact to show that Pr[If=1/r̂1/4

EV′
j+1

=

1 for some 1 ≤ j ≤ 2r̂] = Ω(1/r̂1/2) as well. This will immediately imply the Claim.
First, for 1 ≤ w ≤ r̂, where j = 2w − 2, we define

v2w−1 = Pr[I
f=1/r̂1/4

EVj+1
= 1 ∧ I

f=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0]

y2w−1 = Pr[I
f=1/r̂1/4

EV′
j+1

= 1 ∧ I
f=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0].

Now, we have by Claim 1 that for every 1 ≤ w ≤ r̂, j = 2w − 2, one of the following
occurs:

– Pr[I
f=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0] = O(1/r̂2)

– The distributions Tj+1,Kj | I
f=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0 and T′
j+1,Kj |

I
f=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0 are at most O(1/r̂2)-far.
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We show that in both cases, we must have that

v2w−1 = y2w−1 ±O(1/r̂2). (4.2)

In the first case, we clearly must have that 0 ≤ v2w−1, y2w−1 ≤ O(1/r̂2). In the
second case, we bound the difference between v2w−1, y2w−1 in the following way:

v2w−1 = Pr[I
f=1/r̂1/4

EVj+1
= 1 ∧ I

f=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0]

= Pr[I
f=1/r̂1/4

EVj+1
=1 | If=1/r̂

1/4

EVj
=0, I

f=1/r̂1/4

EV′
j

= 0] · Pr[If=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0]

=
(
Pr[I

f=1/r̂1/4

EV′
j+1

= 1 | If=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0]±O(1/r̂2)
)

· Pr[I
f=1/r̂1/4

EVj
= 0 ∧ I

f=1/r̂1/4

EV′
j

= 0]

= Pr[I
f=1/r̂1/4

EV′
j+1

= 1 ∧ I
f=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0]±O(1/r̂2)

= y2w−1 ±O(1/r̂2),

where the third equality follows since I
f=1/r̂1/4

EVj+1
, I

f=1/r̂1/4

EV′
j+1

are completely determined

by Tj+1,Kj and T′
j+1,Kj , respectively.

Now, using the definition of If=1/r̂1/4

EVj+1
and (4.2) above, we have that

Pr[I
f=1/r̂1/4

EVj+1
= 1 for some j = 2w − 2, 1 ≤ w ≤ r̂] ≤

r̂∑
w=1

v2w−1 + y2w−1

≤ O(1/r̂) + 2

r̂∑
w=1

y2w−1.

Moreover, (4.1) implies that

Ω(1/r̂1/2) = Pr[I
f=1/r̂1/4

EVj+1
= 1 for some j = 2w − 2, 1 ≤ w ≤ r̂]

≤ O(1/r̂) + 2

r̂∑
w=1

y2w−1.

Thus, it must be the case that

r̂∑
w=1

y2w−1 =

r̂∑
w=1

Pr[I
f=1/r̂1/4

EV′
2w−1

= 1 ∧ I
f=1/r̂1/4

EV2w−2
= 0 ∧ I

f=1/r̂1/4

EV′
2w−2

= 0]

= Ω(1/r̂1/2).

Finally, by definition, this implies that with probability Ω(1/r̂1/2) over Dextend we

have some j such that If=1/r̂1/4

EVj
= 0, I

f=1/r̂1/4

EV′
j

= 0 and

EVB,j ,Evej |T′
j+1,Kj

[E[C|VB,j ,Evej ,Kj ]]−EVB,j |T′
j+1,Kj

[Cj+1(VB,j)] = Ω(1/r̂1/4).

and so the claim is proved.
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Proof. (Claim 2) Towards proving the claim, note that by Lemma 1 we have that with
probability 1−O(1/r̂4) for every j

VA,j ,VB,j | Tj VA,j | Tj × VB,j | Tj

are O(1/r̂4)-close.
Thus, by applying Markov’s inequality, we have that with probability 1 − O(1/r̂2),

for every 1 ≤ j ≤ 2r̂,

VA,j ,VB,j | T′
j+1,Kj VA,j | T′

j+1,Kj × VB,j | T′
j+1,Kj

are O(1/r̂2)-close.
Now, by applying Property 3 we have that for every 1 ≤ j ≤ 2r̂ with probability

1−O(1/r̂2), over draws of Tj = tj ,T
′
j+1 = tj ||m′

j+1, eve
′
j+1,Kj = kj ,

VA,j | T′
j+1,Kj × VB,j | T′

j+1,Kj VA,j | Tj ,Kj × VB,j | T′
j+1,Kj

are O(1/r̂2)-close.
By combining the above, we have that for every j, with probability 1 − O(1/r̂2),

over draws of Tj = tj,T
′
j+1 = tj ||m′

j+1, eve
′
j+1,Kj = kj ,

VA,j ,VB,j | T′
j+1,Kj, VA,j | Tj,Kj × VB,j | T′

j+1,Kj (4.3)

are O(1/r̂2)-close.
Now, let us consider the expression EVB,j ,Tj|T′

j+1,Kj
[E[C | VB,j ,Tj ,Kj]] and the

expression E[C | T′
j+1,Kj ]. If we expand notation, we have that:

EVB,j ,Tj |T′j+1
,Kj

[E[C | VB,j ,Tj ,Kj ]] = EVB,j ,Tj |T′j+1
,Kj

[EVA,2r̂ ,VB,2r̂ |Tj ,Kj ,VB,j [C(VA,2r̂ ,VB,2r̂)]].

and that
E[C|T′

j+1,Kj] = EVA,2r̂ ,VB,2r̂ |T′
j+1,Kj

[C(V iewA,2r̂,VB,2r̂)].

Due to the function-obliviousness property (see Property 1), we have that C(VA,VB)
depends only on the random tapes rA, rB of A,B, which are contained in the partial
views VA,j ,VB,j , and so

EVB,j ,Tj |T′j+1
,Kj

[EVA,VB|Tj ,Kj,VB,j [C(rA, rB)]] = EVB,j ,Tj |T′j+1
,Kj

[EVA,j |Tj ,Kj ,VB,j [C(rA, rB)]]

and that

E[C|T′
j+1,Kj ] = EVA,j ,VB,j |T′

j+1
,Kj

[C(rA, rB)].

Next, we have by Lemma 1 and Markov’s inequality, that with probability 1−O(1/r̂2),

VA,j | VB,j ,Tj,Kj VA,j | Tj ,Kj

are O(1/r̂2)-close.
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Thus, we have that with probability 1−O(1/r̂2):

∣∣∣∣EVB,j ,Tj |T′j+1
,Kj

[E[C | VB,j ,Tj ,Kj]] − EVB,j ,Tj |T′j+1
,Kj

[EVA,j |Tj ,Kj [C(VA,j ,VB,j)]]

∣∣∣∣ = O(1/r̂2).

Equivalently, we have that with probability 1−O(1/r̂2) over draws of Tj = tj ,T
′
j+1 =

tj ||m′
j+1, eve

′
j+1,Kj = kj :∣∣∣EVB,j ,Tj |T′
j+1,Kj

[E[C | VB,j ,Tj,Kj]]−EVA,j |Tj ,Kj×VB,j |T′
j+1,Kj

[C]
∣∣∣ = O(1/r̂2).

Finally, by applying (4.3), and since VB,j ,Tj and VB,j ,Evej contain the same
information, we have that with all but O(1/r̂2) probability,

∣∣∣∣EVB,j ,Evej |T′j+1
,Kj

[E[C|VB,j , Evej ,Kj ]] − EVA,j ,VB,j |T′
j+1

,Kj)
[C(VA,j ,VB,j)]

∣∣∣∣ = O(1/r̂
2
).

Equivalently, we have that with all but O(1/r̂2) probability,∣∣∣E[C|T′
j+1,Kj ]−EVB,j ,Evej |T′

j+1,Kj
[E[C|VB,j ,Evej ,Kj ]]

∣∣∣ = O(1/r̂2),

and so the claim is proved.

References

[Blu82] Blum, M.: Coin flipping by telephone - a protocol for solving impossible problems.
In: COMPCON, pp. 133–137 (1982)

[BM07] Barak, B., Mahmoody, M.: Lower bounds on signatures from symmetric
primitives. In: FOCS: IEEE Symposium on Foundations of Computer Science,
FOCS (2007)

[BM09] Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal–an o(n2)-query
attack on key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009)

[BM13] Barak, B., Mahmoody, M.: Merkle’s key agreement protocol is optimal - an

O(n2)-query attack on any key exchange from random oracles (2013),
http://www.cs.cornell.edu/
˜mohammad/files/papers/MerkleFull.pdf

[CI93] Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete
control processes (1993) (unpublished)

[Cle86] Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC, pp. 364–369 (1986)

[DSLMM11] Dachman-Soled, D., Lindell, Y., Mahmoody, M., Malkin, T.: On the black-box
complexity of optimally-fair coin tossing. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 450–467. Springer, Heidelberg (2011)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2),
270–299 (1984)

http://www.cs.cornell.edu/~mohammad/files/papers/MerkleFull.pdf
http://www.cs.cornell.edu/~mohammad/files/papers/MerkleFull.pdf


Can Optimally-Fair Coin Tossing Be Based on One-Way Functions? 239

[GT00] Gennaro, R., Trevisan, L.: Lower bounds on the efficiency of generic cryptographic
constructions. In: FOCS, pp. 305–313 (2000)
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Abstract. We qualitatively separate semi-honest secure computation of non-
trivial secure-function evaluation (SFE) functionalities from existence of key-
agreement protocols. Technically, we show the existence of an oracle (namely,
PKE-oracle) relative to which key-agreement protocols exist; but it is useless for
semi-honest secure realization of symmetric 2-party (deterministic finite) SFE
functionalities, i.e. any SFE which can be securely performed relative to this
oracle can also be securely performed in the plain model.

Our main result has following consequences.
– There exists an oracle which is useful for some 3-party deterministic SFE;

but useless for semi-honest secure realization of any general 2-party (deter-
ministic finite) SFE.

– With respect to semi-honest, standalone or UC security, existence of key-
agreement protocols (if used in black-box manner) is only as useful as the
commitment-hybrid for general 2-party (deterministic finite) SFE function-
alities.

This work advances (and conceptually simplifies) several state-of-the-art tech-
niques in the field of black-box separations:

1. We introduce a general common-information learning algorithm (CIL) which
extends the “eavesdropper” in prior work [1,2,3], to protocols whose mes-
sage can depend on information gathered by the CIL so far.

2. With the help of this CIL, we show that in a secure 2-party protocol using
an idealized PKE oracle, surprisingly, decryption queries are useless.

3. The idealized PKE oracle with its decryption facility removed can be mod-
eled as a collection of image-testable random-oracles. We extend the anal-
ysis approaches of prior work on random oracle [1,2,4,5,3] to apply to this
class of oracles. This shows that these oracles are useless for semi-honest
2-party SFE (as well as for key-agreement).

These information theoretic impossibility results can be naturally extended to
yield black-box separation results (cf. [6]).

� Research done while at Cornell and supported in part by NSF Awards CNS-1217821 and
CCF-0746990, AFOSR Award FA9550-10-1-0093, and DARPA and AFRL under contract
FA8750-11-2- 0211.

�� Supported by NSF CI Postdoctoral Fellowship.
��� Research supported in part by NSF grants 1228856 and 0747027.

Y. Lindell (Ed.): TCC 2014, LNCS 8349, pp. 240–264, 2014.
c© International Association for Cryptologic Research 2014



On the Power of Public-Key Encryption in Secure Computation 241

1 Introduction

Public-key encryption (PKE) is an important security primitive in a system involving
more than two parties. In this work, we ask if PKE could be useful for protecting two
mutually distrusting parties against each other, if there is no other party involved. More
specifically, we ask if the existence of PKE can facilitate 2-party secure function evalu-
ation (SFE). Informally, our main result in this work shows the following:

The existence of PKE (as a computational complexity assumption, when used in
a black-box manner) is useless for semi-honest secure evaluation of any finite,
deterministic 2-party function.

Here, a complexity assumption being “useless” for a task means that the task can be
realized using that assumption alone (in a black-box manner) if and only if it can be
realized unconditionally (i.e., information-theoretically).1 As is typical in this line of
research, our focus is on deterministic functions whose domain-size is finite. (However,
all our results extend to the case when the domain-size grows polynomially in the secu-
rity parameter; our proofs (as well as the results we build on) do not extend to exponen-
tially growing domain-sizes, though.) Technically, we show an “oracle-separation” re-
sult, by presenting a randomized oracle which enables PKE in the information-theoretic
setting, but does not enable SFE for any 2-party function for which SFE was impossible
without the oracle. Then, using standard techniques, this information theoretic impossi-
bility result is translated into the above black-box separation result [6]. While the above
statement refers to semi-honest security, as we shall shortly see, a similar statement
holds for security against active corruption, as well.

It is instructive to view our result in the context of “cryptographic complexity” the-
ory [7]: with every (finite, deterministic) multi-party function f , one can associate a
computational intractability assumption that there exists a secure computation protocol
for f that is secure against semi-honest corruption.2 Two assumptions are considered
distinct unless they can be black-box reduced to each other. Then, the above result im-
plies that secure key agreement (i.e., the interactive analog of PKE) does not belong to
the universe of assumptions associated with 2-party functions. However, it is not hard
to see that there are 3-party functions f such that a semi-honest secure protocol for f
(in the broadcast channel model) is equivalent to a key agreement protocol.3 Thus we
obtain the following important conclusion:

1 The task here refers to 2-party SFE in the “plain” model. We do not rule out the possibility
that PKE is useful for 2-party SFE in a “hybrid” model, where the parties have access to a
trusted third party.

2 This is the simplest form of assumptions associated with functionalities in [7], where a more
general framework is presented.

3 As an example, consider the 3-party function f(x, y, z) = x ⊕ y. A semi-honest secure
protocol π for f over a broadcast channel can be black-box converted to a key-agreement
protocol between Alice and Bob, where, say, Alice plays the role of the first party in π with
the key as its input, and Bob plays the role of the second and third parties with random inputs.
Conversely, a key-agreement protocol can be used as a black-box in a semi-honest secure
protocol for f , in which the first party sends its input to the second party encrypted using a
key that the two of them generate using the key-agreement protocol.
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The set of computational complexity assumptions associated (in the above sense)
with 3-party functions is strictly larger than the set associated with 2-party
functions.

This answers an open question posed in [7], but raises many more questions. In partic-
ular, we ask if the same conclusion holds if we consider (n + 1)-party functions and
n-party functions, for every n > 2.

Another consequence of our main result is its implications for SFE secure against
active corruption. Following a related work in [5], using characterizations of functions
that have SFE protocols secure against semi-honest and active corruptions [8,9,10,11],
we obtain the following corollary of our main result.

The existence of PKE (as a black-box assumption) is exactly as useful as a
commitment functionality (given as a trusted third party) for secure evaluation
of any finite, deterministic 2-party function. This holds for semi-honest security,
standalone active security and UC-security.

Note that for semi-honest security, the commitment functionality is not useful at all
(since semi-honest parties can commit using a trivial protocol), and this agrees with the
original statement. The interesting part of the corollary is the statement about active
(standalone or UC) security. Commitment is a “minicrypt” functionality that can be im-
plemented using one-way functions (in the standalone setting) or random oracles. PKE,
on the other hand, is not a minicrypt primitive [1]. Yet, in the context of guaranteeing se-
curity for two mutually distrusting parties, computing a (finite, deterministic) function,
without involving a trusted third party, PKE is no more useful than the commitment
functionality.

In the rest of this section, we state our main results more formally, and present an
overview of the techniques. But first we briefly mention some of the related work.

1.1 Related Work

Impagliazzo and Rudich [1] showed that random oracles are not useful against a com-
putationally unbounded adversary for the task of secure key agreement. This analysis
was recently simplified and sharpened in [2,3]. Haitner, Omri, and Zarosim [12,3] show
that random oracles are essentially useless in any inputless protocol.4

Following [1] many other black-box separation results have appeared
(e.g. [13,14,15,16,17]). In particular, Gertner et. al [18] insightfully asked the
question of comparing oblivious-transfer (OT) and key agreement (KA) and showed
that OT is strictly more complex (in the sense of [1]). Another trend of results has
been to prove lower-bounds on the efficiency of the implementation in black-box
constructions (e.g. [19,20,21,22,23,2,22]). A complementary approach has been to find
black-box reductions when they exist (e.g. [24,25,26,27,28]). Also, results in the black-
box separation framework of [1,6] have immediate consequences for computational

4 Ideally, a result similar to that of [3] should be proven in our setting of secure function evalu-
ation too, where parties do have private inputs, as it would extend to randomized functions as
well. While quite plausible, such a result remains elusive.
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complexity theory. Indeed, as mentioned above, separations in this framework can be
interpreted as new worlds in Impagliazzo’s universe [29].

Our work relies heavily on [5], where a similar result was proven for one-way func-
tions instead of PKE. While we cannot use the result of [5] (which we strictly improve
upon) in a black-box manner, we do manage to exploit the modularity of the proof there
and avoid duplicating any significant parts of the proof.

1.2 Our Contribution

For brevity, in the following we shall refer to “2-party deterministic SFE functions
with polynomially large domains” simply as SFE functions. Also, we consider security
against semi-honest adversaries in the information theoretic setting, unless otherwise
specified (as in Corollary 1).

Our main result establishes that there exists an oracle which facilitates key-agreement
while being useless to 2-party SFE.

Theorem 1. There exists an oracle PKE such that, the following hold:

– There is a secure key-agreement protocol (or equivalently, a semi-honest secure
3-party XOR protocol) using PKE.

– A general 2-party deterministic function f , with a polynomially large domain, has a
semi-honest secure protocol against computationally unbounded adversaries using
PKE if and only if f has a perfectly semi-honest secure protocol in the plain model.

As discussed below, this proof breaks into two parts — a compiler that shows that
the decryption queries can be omitted, and a proof that the oracle without the decryp-
tion queries is not useful for SFE. For proving the latter statement, we heavily rely on
a recent result from [5] for random oracles; however, this proof is modular, involving
a “frontier analytic” argument, which uses a few well-defined properties regarding the
oracles. Our contribution in this is to prove these properties for a more sophisticated
oracle class (namely, family of image-testable random oracles), rather than random or-
acles themselves.

As in [5], Theorem 1 translates to a black-box separation of the primitive PKE from
non-trivial SFE. Also, it yields the following corollary, that against active corruption,
our PKE oracle is only as useful as the commitment-hybrid model, as far as secure
protocols for 2-party SFE is concerned.

Corollary 1. There exists an oracle PKE such that, the following hold:

– There is a secure key-agreement protocol (or equivalently, a semi-honest secure
3-party XOR protocol) using PKE.

– A general 2-party deterministic function f , with a polynomially large domain, has
a statistically semi-honest, standalone or UC-secure protocol relative to PKE if
and only if f has a perfectly, resp., semi-honest, standalone or UC-secure protocol
in the commitment-hybrid.
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Apart from there results, and their implications to the complexity of 2-party and 3-
party functions, we make important technical contributions in this work. As described
below, our “common-information learner” is simpler than that in prior work. This also
helps us handle a more involved oracle class used to model PKE. Another module in
our proof is a compiler that shows that the decryption facility in PKE is not needed in a
(semi-honest secure) protocol that uses PKE, even if the PKE is implemented using an
idealized oracle.

1.3 Technical Overview

The main result we need to prove (from which our final results follow, using arguments
in [5]) is that there is an oracle class PKEκ relative to which secure public-key encryp-
tion (i.e., 2-round key agreement) protocol exists, but there is no secure protocol for any
non-trivial SFE function relative to it.

The oracle class PKEκ is a collection of following correlated oracles:

– Gen(·): It is a (length-tripling injective) random oracle which maps secret keys sk
to respective public keys pk.

– Enc(·, ·): For each public key pk, it is an independently chosen (length tripling
injective) random oracle which maps messages m to cipher texts c.

– Dec(·, ·): Given a valid secret key sk and a valid cipher text c it outputs m such that
message m was encrypted using public key pk = Gen(sk).

– Additionally, it provides test oracles Test which output whether a public key pk is a
valid public key or not; and whether a cipher text c has been created using a public
key pk or not.

Note that without the Test oracle, this oracle class can be used to semi-honest se-
curely perform OT; hence, all 2-party SFE will be trivial relative to it (see discussion
in [18,30]). The main technical contribution of this paper is the negative result which
shows that the above mentioned oracle class PKEκ is useless for 2-party SFE against
semi-honest adversaries.

This is shown in two steps:

1. First, we show that the decryption oracle Dec(·, ·) is not useful against semi-honest
adversaries. That is, given a (purported) semi-honest secure protocol ρ for a 2-party
SFE f we compile it into another semi-honest secure protocol Π (with identical
round complexity, albeit polynomially more query complexity) which has slightly
worse security but performs no decryption-queries.

2. Finally, we observe that the oracle class “PKEκ minus the decryption oracle” is
identical to image-testable random-oracles. And we extend the negative result of
[5] to claim that this oracle class is useless for 2-party SFE.

The key component in both these steps is the Common Information Learner al-
gorithm, relative to image-testable random oracle class. But we begin by introducing
image-testable random oracles.
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Image-testable Random-oracle Class. It is a pair of correlated oracles (R, T ), where R
is a (length-tripling injective) random oracle and test oracle T which outputs whether a
point in range has a pre-image or not. We consider keyed-version of these oracle, where
for each key in an exponentially large key-space K we have an independent copy of
image-testable random oracle.

Note that the answer to an image test query can slightly change the distribution of
exponentially many other queries; namely, when we know that y is not in the image
of R, the answer to any query x for R will not be uniformly distributed (because it
cannot be y). However, since the number of tested images are polynomial-size and the
number of possible queries to R are exponentially large, this will affect the distribution
of the answers by R only negligibly. Also, because of the expansion of the random
oracle R, the fraction of the image-size of R is negligibly small relative to the range
of R. So an algorithm, with polynomially-bounded query complexity, who queries the
test oracle T has negligible chance of getting a positive answer (i.e. an image) without
actually calling R. We emphasize that our whole analysis is conditioned on this event
(i.e. accidentally discovering y in the image of the oracle) not taking place; and this
requires careful accounting of events because it holds only for (polynomially) bounded
query algorithms.

Common Information Learner. The common information learner is a procedure that can
see the transcript of an oracle-based protocol between Alice and Bob, and by making
a polynomial number of publicly computable queries to the oracle, derives sufficient
information such that conditioned on this information, the views of Alice and Bob are
almost independent of each other. Our common information learner is similar in spirit
to those in [1,2,5,3] but is different and more general in several ways:

– Handling Image-Testable Oracles. Our common information learner applies to
the case when the oracle is not just a random oracle, but an image-testable random
oracle family.5

– Interaction between Learner and the System. It is important for the first part
of our proof (i.e. compiling out the decryption queries) that the common informa-
tion learner interacts with the protocol execution itself. That is, at each round the
information gathered by the common information learner is used by the parties in
subsequent rounds. We require the common information learner to still make only a
polynomial number or oracle queries while ensuring that conditioned on the infor-
mation it gathers, the views of the two parties remain almost independent. In show-
ing that the common information learner is still efficient, we show a more general
result in terms of an interactive process between an oracle system (the Alice-Bob
system, in our case) and a learner, both with access to an arbitrary oracle (possibly
correlated with the local random tapes of Alice and Bob).

– Simpler Description of the Learner. The common information learner in our work
has a simpler description than that in [1,2,5]. Our learner queries the random oracle
with queries that are most likely to be queried by Alice or Bob in a protocol exe-
cution. The learner in [2,5] is similar, but uses probabilities not based on the actual

5 The work of [3] also handles a larger set of oracles than random oracles (called simple oracle),
but that class is not known to include image-testable oracles as special case [31].



246 M. Mahmoody, H.K. Maji, and M. Prabhakaran

protocol, but a variant of it; this makes the description of their common informa-
tion learner more complicated, and somewhat complicates the proofs of the query
efficiency of the learner.6

Showing that Image-Testable Random Oracles are Useless for SFE. In [5] it was shown
that random oracles are useless for SFE. This proof is modular in that there are four
specific results that depended on the nature of the oracle and the common information
learner. The rest of the proof uses a “frontier analytic” argument that is agnostic to the
oracle and the common information learner. Thus, in this work, to extend the result of
[5] to a family of image-testable random oracles, we need only ensure that these four
properties continue to hold. The four properties are as follows:

1. Alice’s message conditioned on the view of the CIL is almost independent of Bob’s
input, see Section 6.1 item 1.

2. Safety holds with high probability, see Section 6.1 item 2.
3. A strong independence property of Alice’s and Bob’s views conditioned on that of

the CIL, see Section 6.1 item 3.
4. Finally, local samplability and oblivious rerandomizability of image-testable ran-

dom oracles which permit simulation of alternate views, see Section 6.

Compiling Out the Decryption Queries. The main idea behind compiling out the de-
cryption queries is that if Alice has created a ciphertext by encrypting a message using
a public-key that was created by Bob, and she realizes that there is at least a small (but
significant) probability that Bob would be querying the decryption oracle on this cipher-
text (since he has the secret key), then she would preemptively send the actual message
to him. We need to ensure two competing requirements on the compiler:

1. Security. Note that with some probability Alice might send this message even if
Bob was not about to query the decryption oracle. To argue that this is secure, we
need to argue that a curious Bob could have called the decryption oracle at this
point, for the same ciphertext.

2. Completeness. We need to ensure that in the compiled protocol, Bob will never
have to call the decryption oracle, as Alice would have sent him the required de-
cryptions ahead of time.

For security, firstly we need to ensure that Alice chooses the set of encryptions to be
revealed based only on the common information that Alice and Bob have. This ensures
that Bob can sample a view for himself from the same distribution used by Alice to
compute somewhat likely decryption queries, and obtain the ciphertext and secret-key
from the decryption query made in this view. The one complication that arises here is
the possibility that the secret-key in the sampled view is not the same as the secret-key
in the actual execution. To rule this out, we rely on the independence of the views of
the parties conditioned on the common information. This, combined with the fact that
it is unlikely for a valid public-key to be discovered by the system without either party

6 [1] uses an indirect mechanism to find the heavy queries, and reasoning about their common
information learner is significantly more involved.
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having actually called the key-generation oracle using the corresponding secret-key, we
can show that it is unlikely for a sampled view to have a secret-key different from the
actual one.

For completeness of the compiler, we again rely on the common information learner
to ensure that if Alice uses the distribution based on common information to compute
which decryption queries are likely, then it is indeed unlikely for Bob to make a decryp-
tion query that is considered unlikely by Alice.

1.4 Overview of the Paper

The full version of the paper is available at [32]. In Section 2 we formally define all
the relevant oracle classes. Section 3 introduces relevant definitions and notations for
this paper. The efficiency of an algorithm which performs heavy-queries is argued
in Section 4.1. This is directly used to provide an independence learner for protocols
where parties do not have private inputs in Section 4.2. In Section 5 we show that for
2-party deterministic SFE Decryption queries in PKEκ are useless. Next, in Section 6,
we extend Lemma 2 to protocols where parties have private inputs. Finally, we prove
our main result (Theorem 1) in Section 7.

2 Oracle Classes

General class of oracles shall be represented by O. We are interested in three main
classes of oracles, each parameterized by the security parameter κ.

2.1 Image-Testable Random Oracle Class

The set Oκ consists of the all possible pairs of correlated oracles O ≡ (R, T ) of the
form:

1. R : {0, 1}κ !→ {0, 1}3κ is a function, and
2. T : {0, 1}3κ !→ {0, 1} is defined by: T (β) = 1 if there exists α ∈ {0, 1}κ such

that R(α) = β; otherwise T (β) = 0.

This class of oracles is known as image-testable random oracle class. Based on the
length of the query string we can uniquely determine whether it is a query to R or T
oracle. We follow a notational convention. Queries to R oracle shall be denoted by α
and its corresponding answer shall be denoted by β.

2.2 Keyed Version of Image-Testable Random Oracle Class

Given a class K of keys,7 consider the following oracle O(K): For every k ∈ K, let
O(k) ∈ Oκ. Given a query 〈k, q〉, where k ∈ K and q is the query to an oracle in Oκ,

answer it with O(k)(q). Let O(K)
κ be the set of all possible oracles O(K). This class of

oracle O(K)
κ is called keyed-version of image-testable random oracle class.

7 Note that the description of the keys in K is poly(κ); so the size of the set K could possibly
be exponential in κ.
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2.3 Public-Key Encryption Oracle

We shall use a “PKE-enabling” oracle similar to the one used in [18]. With access to
this oracle, a semantically secure public-key encryption scheme can be readily con-
structed,8 yet we shall show that it is useless for SFE. This oracle, which we will
call PKEκ (or simply PKE, when κ is understood), is a collection of the oracles
(Gen,Enc,Test1,Test2,Dec) defined as follows:

– Gen: It is a length-tripling random oracle from the set of inputs {0, 1}κ to {0, 1}3κ.
It takes as input a secret key sk and provides a public-key pk corresponding to it,
i.e. Gen(sk) = pk.

– Enc: This is an “encryption” oracle. It can be defined as a collection of length-
tripling random oracles, keyed by strings in {0, 1}3κ. For each key pk ∈ {0, 1}3κ,
the oracle implements a random function from {0, 1}κ to {0, 1}3κ. When queried
with a (possibly invalid) public key pk, and a message m ∈ {0, 1}κ, this oracle
provides the corresponding cipher text c ∈ {0, 1}3κ for it, i.e. Enc(pk,m) = c.

– Test1: It is a test function which tests the validity of a public key, i.e. given a
public-key pk, it outputs 1 if and only if there exists a secret key sk such that
Gen(sk) = pk.

– Test2: It is a test function which tests the validity of a public key and cipher text
pair, i.e. given a public-key pk and cipher text c, it outputs 1 if and only if there
exists m such that Enc(pk,m) = c.

– Dec: This is the decryption oracle, from {0, 1}κ×{0, 1}3κ to {0, 1}κ∪{⊥}, which
takes a secret-key, cipher-text pair (sk, c) and returns the lexicographically smallest
m such that Enc(Gen(sk),m) = c. If no such m exists, it outputs⊥.

We note that the encryption oracle produces cipher texts for public keys pk irrespec-
tive of whether there exists sk satisfying Gen(sk) = pk. This is crucial because we
want to key set K to be defined independent of the Gen oracle.

PKEκ Without Dec. We note that if we remove the oracle Dec, the above oracle is
exactly the same as the image-testable random oracle O(K)

κ , with K = {0, 1}3κ ∪ {⊥}.
Here we identify the various queries to PKEκ with queries to O

(K)
κ as follows: Gen(sk)

corresponds to the query 〈⊥, sk〉, Enc(pk,m) corresponds to 〈pk,m〉, Test1(pk) cor-
responds to 〈⊥, pk〉 and Test2(pk, c) corresponds to 〈pk, c〉.

3 Preliminaries

We say a = b ± c if |a− b| ≤ c. We shall use the convention that a random variable
shall be represented by a bold face, for example X; and a corresponding value of the
random variable without bold face, i.e. X in this case. We say that two distributionsD1

and D2 are ε-close to each other if Δ (D1,D2) ≤ ε.

8 To encrypt a message of length, say, κ/2, a random string of length κ/2 is appended to it, and
passed to the “encryption” oracle, along with the public-key.
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Two-party Secure Function Evaluation. Alice and Bob have inputs x ∈ X and y ∈ Y
and are interested in evaluating f(x, y) securely, where f is a deterministic function
with output space Z .

Protocols and Augmented Protocols. We shall consider two-party protocols π between
Alice and Bob relative to an oracle class. Alice and Bob may or may not have private
inputs for the parties. An augmentation of the protocol with a third party Eve, repre-
sented as π+, is a three party protocol where parties have access to a broadcast channel
and speak in following order: Alice, Eve, Bob, Eve, and so on. In every round one party
speaks and then Eve speaks.

Views of Parties. We shall always consider Eve who have no private view; her com-
plete view is public. Such Eve shall be referred to as public query-strategy. Transcript
message sent by Eve in a round is her sequence of oracle query-answer pairs per-
formed in that round. The oracle query-answer sets of Alice, Bob and Eve are rep-
resented by PA, PB and PE , respectively. The transcript is represented by m (note
that m only contains messages from Alice and Bob). View of Eve is VE = (m,PE);
view of Alice is VA = (x, rA,m, PA, PE) (where x is Alice’s private input and rA
is her local random tape; in input-less protocols x is not present) and view of Bob is
VB = (y, rB ,m, PB, PE).

If i is odd then Alice performs local query-answers PA,i and sends the message
mi in that round followed by Eve message PE,i. If i is even then Bob sends the mes-
sage mi, followed by Eve message PE,i. View of Alice up to round i is represented

by V
(i)
A = (x, rA,m(i), P

(i)
A , P

(i)
E ), where m(i) = m1 . . .mi; and P

(i)
A and P

(i)
E are

similarly defined.

Relative to Oracle Class O(K)
κ . Our sample space is distribution over complete Alice-

Bob joint views when: rA
$←U, rB

$←U and O
$←O

(K)
κ .

Definition 1 (Canonical). A canonical sequence of query-answer pairs is a sequence
of query-answer pairs such that an R-query of form 〈k, α〉 is immediately followed by a
T-query of form 〈k, β〉, where the query 〈k, α〉 was answered by β.

Definition 2 (Normal Form for Protocols). A three party protocol between Alice, Bob
and (public query strategy) Eve is in normal form, if:

1. In every round Alice or Bob sends a message; followed by a sequence of query-
answer pairs from Eve. We allow Alice and Bob to base their messages on prior
messages broadcast by Eve.

2. In rounds i = 1, 3, . . . Alice sends the message mi; and in i = 2, 4, . . . Bob sends
a message.

3. In every round i after Alice/Bob has sent the message mi, Eve broadcasts PE,i.
4. Alice, Bob and Eve always perform canonical queries.
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4 Common Information Learner

In this section we shall introduce a Heavy-query Performer algorithm (see Fig. 2). Us-
ing this heavy querier, we shall augment any two-party protocol with a third party algo-
rithm. Relative to the oracle class O(K)

κ we show that the distribution of Alice-Bob joint
views is (nearly) independent of each other conditioned on the transcript of the aug-
mented protocol. Thus, the third party is aptly called an common information learner
(see Eveπ in Fig. 3).

4.1 Heavy-Query Performer

In this section we shall introduce a Heavy-query Performer algorithm. Let O be a finite
class of oracles with finite domain D. Our experiment is instantiated by an oracle sys-
tem Σ and a deterministic “Heavy-query Performer”H (with implicit parameter σ, see
Fig. 2).

The oracle system Σ takes a random tape as input which has finite length. Let S be
the set of pairs of random tape r for Σ and oracle O ∈ O. The system Σ could possibly
be computationally unbounded; but its round complexity is finite.

Consider the experiment in Fig. 1.

1. Let DS be a distribution over S such that Supp(DS) = S. Sample (r,O) ∼ DS.
2. Start an interactive protocol between ΣO(r), i.e. the oracle system Σ with access to

oracle O and local random tape r, and the heavy-query performer H.

Fig. 1. Protocol between Oracle system Σ and the Heavy-query Performer H

We emphasize that the heavy-query performer H never performs a query unless its
answer is uncertain. If the answer to the query q∗ in uncertain, we say that the answer
to this query has (max) entropy. Let QΣ

(〈
ΣO(r),H

〉)
represent the query-answer set

of the oracle system Σ when its local random tape is r, has oracle access to O and is
interacting with the heavy-query performerH. Similarly,QH

(〈
ΣO(r),H

〉)
represents

the query-answer set of the heavy-query performer H which were actually performed
to the oracle when Σ has local random tape r and has oracle access to O. Note that
QΣ

(〈
ΣO(r),H

〉)
andQH

(〈
ΣO(r),H

〉)
could possibly be correlated to each other.

Efficiency of the Heavy-query Performer. We argue that the expected query complexity
of the heavy-query performer cannot be significantly larger than the query complexity
of the system Σ itself:

Lemma 1 (Efficiency of Heavy-query Performer). LetDS be a joint distribution over
the space S as defined above. For every (randomized) oracle system Σ, the expected
query complexity of the heavy-query performer H (presented an Fig. 2) is at most 1

σ
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After every message sent by the oracle system Σ, perform the following step:

– Repeatedly call Heavy-Query-Finder to obtain a query-answer pair (q∗, a∗); and add
the query-answer pair (q∗, a∗) to the transcript T . Until it reports that there are no
more heavy queries left.

Heavy-Query-Finder: Let T be the transcript between the oracle system Σ and heavy-
query performer H. The messages added by Σ are represented by TΣ and the set of query-
answer pairs added by H are represented by TH. It has an implicit parameter σ, which is
used to ascertain whether a query is heavy or not.

1. For every q ∈ D \ TH, compute the probability that Σ performs the query q when
(r̃, Õ) ∼ DS conditioned on transcript T .

2. If there is no query q with probability ≥ σ then report that there are no more heavy
queries left and quit. Otherwise, let q∗ be the lexicographically smallest such query.

3. If the answer to q∗ is uncertain (given the transcript T ) then query O at q∗ and obtain
the answer a∗. Otherwise, let a∗ be the fixed answer to q∗.

4. Return (q∗, a∗).

Fig. 2. Heavy-Query-Performer H

times the expected query complexity of the oracle system Σ in the experiment shown in
Fig. 1. Formally,

E
(r,O)∼DS

[∣∣QH
(〈

ΣO(r),H
〉)∣∣] ≤ E(r,O)∼DS

[∣∣QΣ

(〈
ΣO(r),H

〉)∣∣]
σ

In particular, the probability thatH asks more than
E(r,O)∼DS

[|QΣ(〈ΣO(r),H〉)|]
σ2 queries

is at most σ.

The proof is provided in the full version of the paper [32]. We mention some highlights
of the current proof. The proof is significantly simpler and is more general than the ones
presented in [2,3] because our learner is directly working with heavy queries rather than
concluding the heaviness of the queries being asked by the learner. Also note that in our
setting the oracles might be correlated with local random tape of the system Σ; and
the future messages of the oracle system Σ could, possibly, depend on prior messages
of H. We also note that the same proof also works in the setting where Σ cannot read
the transcript T 9 but H also considers queries performed in the future by Σ while
computing the set of heavy-queries.10 We emphasize that it is possible that the future
messages of the oracle system Σ could possible depend on the prior messages sent by
the heavy-query performer H. This property is inherited by Lemma 2, which (in turn)
is crucially used by Theorem 2.

9 More specifically, it cannot read TH; note that Σ already knows the part TΣ generated by Σ
itself.

10 Note that if Σ can also read from T then the distribution of future queries is not well defined.
But if Σ cannot read T , then future queries are well defined after (r,O) is instantiated.
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Specific to Image-testable Random-oracles. Relative to the oracle class O
(K)
κ , we can

make an assumption that after performing a R-query 〈k, α〉 and receiving β as answer,
it immediately performs the next query as 〈k, β〉. Note that this query has no entropy
(because this query will surely be answered 1); and, hence, need not be performed to
the oracle.

4.2 Common Information Learner for Input-Less Protocols

In this section we shall consider two-party protocols where parties have access to an or-
acle O ∈ O

(K)
κ . For a two-party input-less protocol π, we augment it with the following

eavesdropper strategy, referred as Eveπ, to obtain π+:

1. Interpret the two-party oracle protocol π as the oracle system Σ in Fig. 1. Messages
produced by Alice or Bob in round i is interpreted as the message of Σ.

2. Define O = O
(K)
κ and DS as the uniform distribution over O and the space of local

random tapes of Alice and Bob.
3. Let Eveπ be the heavy-query performer algorithm in Fig. 2 instantiated with a suitably

small parameter σ.

Fig. 3. Eavesdropper strategy to augment an input-less protocol π

Note that the query-complexity of Eveπ is poly(κ) with 1 − 1/poly(κ) probability, if
σ is set to 1/poly(κ) and the query complexity of the parties in π is (at most) poly(κ)
(due to Lemma 1).

Lemma 2 (Common Information Learner for Input-less Protocols). Let π be an
input-less protocol in normal form between Alice and Bob relative to O

(K)
κ , and Eveπ

be as defined in Fig. 3. Let the distributions V(i)
AB and V

(i)
A×B for each round i of π be

as follows:

1. V
(i)
AB = (V

(i)
A ,V

(i)
B );

2. Distribution V
(i)
A×B defined as: Sample V

(i)
E ∼ V

(i)
E and output (VA, VB) ∼

(V
(i)
A |V

(i)
E )× (V

(i)
B |V

(i)
E ).

For every ε = 1/poly(κ), there exists a choice of Eveπ’s parameter σ = 1/poly(κ)
such that, for every i,

Δ
(
V

(i)
AB,V

(i)
A×B

)
≤ ε.

Below, we sketch the ideas behind proving this lemma. Interested reader may refer to
the full version of this paper [32] for the proof.
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The Case of Random Oracles. First we consider the case of random oracles without
image-testing. This case was already analyzed in [1,2], but it will be helpful to rephrase
this proof, so that we can extend it to the case when image-testing is present. At the
beginning of the execution, the views of Alice and Bob are indeed independent of each
other. As the execution progresses, at each round, we introduce a “tidy” distribution over
(VA, VB, VE), which has the following properties: a tidy distribution is obtained simply
by restricting the support of the real execution to “good” tuples. Below, (PA, PB, PE)
stand for the query-answer sets of (VA, VB , VE).

Definition 3 (Good). Three query-answer sets PA, PB and PE are called good, repre-
sented by Good(PA, PB , PE), if Consistent(PA ∪ PB ∪ PE) and PA ∩ PB ⊆ PE .

This has the consequence that a tidy distribution is identical to a “conditional prod-
uct distribution” – i.e., a distribution which, when conditioned on each Eve view in
its support, is a product distribution – when restricted to the same support as the tidy
distribution.

When the execution evolves for one step (an Alice or Bob round), we start with the
tidy distribution at that step, but will end up with a distribution that is not tidy. This
distribution is again tidied up to obtain a new tidy distribution.

Then we argue the following:
1. Claim: At any point, the tidy distribution is close to a “conditional product distri-

bution” – i.e., a distribution which, when conditioned on each Eve view in its support,
is close to a conditional product distribution.
This closeness property is maintained inductively. Indeed, during an Eve round, it is
easy to see that the distance from the conditional product distribution can only decrease.
In an Alice or Bob step, we bound the additional distance from a conditional product
distribution using the fact that, since Eve had just finished its step before the beginning
of the current step, every query not in Eve’s view was of low probability for either party
(“lightness” guarantee). A lightness threshold parameter for Eve controls this additional
distance.

2. Claim: After each Alice or Bob step, the statistical difference incurred in modify-
ing the resulting distribution to become a tidy distribution is small.
Note that in an Alice or Bob step, even tough we start from a tidy distribution, after
that step, tuples that are not good can indeed be introduced. But their probability mass
can be bounded by the fact that the tidy distribution was close to a conditional product
distribution.

Thus at each step, the statistical difference from the actual execution incurred by
tidying up can be bounded, as well as the distance of the tidy distribution from a con-
ditional product distribution. By choosing the lightness threshold parameter for Eve to
be sufficiently small, after a polynomial number of steps, we obtain that the distribution
of (VA, VB, VE) in the actual execution is close to a tidy distribution, which is in turn
close to a conditional product distribution.

We remark that, the “lightness” guarantee in [2] was ensured directly for the tidy
distribution. However, it is enough to ensure that the lightness holds for the original
distribution, since the tidy distribution is obtained by restricting the support of the actual
distribution (without changing the relative probabilities within the support). This allows
for a more modular description of the Eve’s dropper’s algorithm, independent of the
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definition of the tidy distributions. This turns out to be helpful when we move to the
setting of image-testable random oracles, where the tidy distributions are much more
complicated.

The Case of Image-testable Random Oracles. To adapt the above argument to accom-
modate test queries, we need to change several elements from above. Firstly, we replace
the notion of good tuples, with a more refined notion of “nice” tuples, which takes into
account the presence of positive test queries. (As it turns out, negative test queries by
themselves have a negligible effect in the probability of individual views.)

Given a query-answer set P relative to O
(K)
κ , we say that a query q = 〈k, β〉 ∈

K× {0, 1}3κ is unexplained if (q, 1) ∈ P (i.e. T (q) = 1) but there is no q′ = 〈k, α〉 ∈
K × {0, 1}κ such that (q, β) ∈ P (i.e. R(q′) = β). We define T1Guess(P ) as the total
number of unexplained queries in P .

Definition 4 (Typical and Nice Views). A query-answer set P relative to O
(K)
κ is typ-

ical, represented by Typical(P ), if T1Guess(P |k) = 0, for every k ∈ K.
Alice, Bob and Eve views in a normal protocol are called nice, represented as

Nice(VA, VB , VE) if:

1. Consistent(PA, PB , PE), Good(PA, PB , PE), and
2. Typical(PA ∪ PB ∪ PE), Typical(PA \ PE) and Typical(PB \ PE).

Apart from replacing goodness with niceness, the tidy distributions we use are differ-
ent in a few other important ways. Firstly, a tidy distribution’s support would typically
not contain all the nice tuples in the actual execution; we remove certain kinds of nice
tuples too from the support, to ensure that test queries do not lead to increased distance
from a conditional product distribution. Secondly, to ensure that a tidy distribution is
identical to a conditional product distribution, when the latter is restricted to the sup-
ported of the former, we let it be different from the actual distribution restricted to
the same support. The definition of niceness however, ensures that this difference is at
most a 1± negl factor point-wise. (The 1± negl factor corresponds to the negative test
queries in the actual distribution, which are ignored in defining the probabilities in a
tidy distribution.)

More formally, let Ai, Bi and Ei denote the set of possible views of Alice, Bob
and Eve respectively, after i steps of the augmented protocol execution (where each
“round” consists of an Alice or Bob step, and an Eve step). To specify a tidy distribution
Γ over the views after i steps of the augmented protocol we need to specify two sets
S(i)
A ⊆ Ai × Ei and S(i)

B ⊆ Bi × Ei. Then the distribution is defined as follows:

Γ (VA, VB, VE) =

⎧⎪⎨⎪⎩
Z · γ(VA, VE) · γ(VB, VE) if (VA, VE) ∈ S(i)

A , (VB, VE) ∈ S(i)
B ,

and Nice(VA, VB, VE)

0 otherwise

Here Z is a normalization factor, and γ(VA, VE) = 2−rN−3w where r is the length
of the random tape in VA and w is the number of random oracle queries (not including
test queries) in PA \ PE . Note that by restricting to Nice(VA, VB , VE), the positive test
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queries are taken into account by the definition of Γ , but the number of negative test
queries in the views are not accounted for. But the probability of (VA, VB, VE) in an
actual distribution of any protocol, when restricted to the support of Γ , can be shown to
be Γ (VA, VB , VE)(1 ± negl).

Another major difference in our proof is the tidying up operation itself. Unlike in the
random oracle case, we need to introduce a tidying up step even during the Eve round. In
fact, this tidying up is done per query that Eve makes. Before each fresh query that Eve
makes, we tidy up the distribution to ensure that at most one of Alice or Bob could have
made that query previously. Further, after an Eve test query that is answered positively
for which Eve does not have an explanation (i.e., none of the random oracle queries
that Eve has made so far returned the image being tested), we remove the possibility
that neither party has an explanation. (By tidying up before this query, we would have
already required that at most one party had made that query previously; the current
tidying up ensures that, exactly one party has an explanation for this query.)

Though this tidying up is carried per query that Eve makes, we ensure that the en-
tire statistical difference incurred by the tidying up process during one round of Eve’s
execution is bounded in terms of the distance to the conditional product distribution at
the start of this round. Indeed, this latter distance can only decrease through out Eve’s
round.

The tidying up procedure when Alice or Bob makes a query is similar to that in the
case of the random oracle setting. It ensures that the tidied up distribution is close to a
conditional product distribution, and the additional distance can be bounded in terms
of the lightness threshold parameter for Eve, as before.

With these modifications, the resulting proof follows the outline mentioned above.
At each round we tidy up the distribution over (VA, VB, VE), by incurring a statistical
difference related to the distance between the previous tidy distribution and a condi-
tional product distribution. In turn, we bound the increase in the latter distance (during
Alice’s and Bob’s rounds) in terms of the lightness guarantee by Eve.

As a direct consequence of Lemma 2, we can conclude that:

Corollary 2. There is no key-agreement protocol relative to O
(K)
κ , for any key set K.

5 Compiling out Decryption Queries

In this section we show that a family of PKE-enabling oracles is only as useful as
a family of image testable random oracles, for semi-honest SFE. Combined with the
result that this image testable random oracle family is useless for SFE, we derive the
main result in this paper, that PKE is useless for semi-honest SFE.

As pointed out by [18], care must be taken in modeling such an oracle so that it does
not allow oblivious transfer. In our case, we need to separate it from not just oblivious
transfer but any non-trivial SFE.

In our proof we shall use the oracle PKEκ defined in Section 2.3. This oracle fa-
cilitates public-key encryption (by padding messages with say κ/2 random bits before
calling Enc), and hence key agreement. But, as mentioned before, by omitting the Dec
oracle, the collection (Gen,Enc,Test1,Test2) becomes an image-testable random ora-
cle family O(K). As we will see in Section 6, an image-testable random oracle is not
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useful for SFE or key agreement. The challenge is to show that even given the de-
cryption oracle Dec, which does help with key-agreement, the oracle remains useless
for SFE. [18] addressed this question for the special case of oblivious transfer, rely-
ing on properties that are absent from weaker (yet non-trivial) SFE functionalities. Our
approach is to instead show that the decryption facility is completely useless in SFE,
by giving a carefully compiled protocol whereby the parties help each other in finding
decryptions of ciphertexts without accessing Dec oracle, while retaining the security
against honest-but-curious adversaries. We show the following.

Theorem 2. Suppose Π is an N -round 2-party protocol with input domainX ×Y , that
uses the oracle PKEκ. Then for any polynomial poly, there is an N -round protocol Π∗

using the oracle O
(K)
κ that is as secure as Π against semi-honest adversaries, up to a

security error of |X ||Y|/poly(κ).

Below we present the compiler used to prove this theorem, and sketch why it works.
The full proof appears in the full version of the paper [32].

The Idea Behind the Compiler. For ease of presentation, we assume here that the ora-
cles Gen(·) and Enc(·, ·) are injective (which is true, except with negligible probability,
because they are length tripling random oracles). Conceptually the compiler is simple:
each party keeps track of the ciphertexts that it created that the other party becomes “ca-
pable of” decrypting and sends the message in the ciphertext across at the right time.
This will avoid the need for calling the decryption oracle. But we need to also argue
that the compilation preserves security: if the original protocol was a secure protocol
for some functionality, then so is the compiled protocol. To ensure this, a party, say
Bob, should reveal the message in an encryption it created only if there is a high prob-
ability that Alice (or a curious adversary with access to Alice) can obtain that message
by decryption. Further, the fact that Bob found out that Alice could decrypt a ciphertext
should not compromise Bob’s security. This requires that just based on common in-
formation between the two parties it should be possible to accurately determine which
ciphertexts each party can possibly decrypt. This is complicated by the fact that the
protocol can have idiosyncratic ways of transferring ciphertexts and public and private
keys between the parties, and even if a party could carry out a decryption, it may choose
to not extract the ciphertext or private key implicit in its view. By using the common
information learner for image testable random oracles, it becomes possible to

Definition of the Compiler. Given a 2-party protocol Π , with input domains X ×Y , we
define the compiled protocol Π∗ below. Π has access to PKEκ, where as Π∗ will have
access to the interface of PKEκ consisting only of (Gen,Enc,Test1,Test2) (or equiv-

alently, to O
(K)
κ as described in Section 2). For convenience, we require a normal form

for Π that before making a decryption query Dec(sk, c) a party should make queries
Gen(sk),Test1(pk) and Test2(pk, c) where pk was what was returned by Gen(sk).

We define Π∗ in terms of a 3-party protocol involving Alice0,Bob0,Eve, over a
broadcast channel. In the following we will define Alice0 and Bob0; this then defines
an (inputless) system Σ which consists of them interacting with each other internally,
while interacting with an external party; in Σ, the inputs to Alice0 and Bob0 are picked
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uniformly at random. Then, Eve is defined to be H for the system Σ, as defined in
Fig. 3: after each message from Σ (i.e., from Alice or Bob), Eve responds with a set of
publicly computable queries to the oracle. Finally, Π∗ is defined as follows: Alice runs
Alice0 and Eve internally, and Bob runs Bob0 and Eve.11

So to complete the description of the compiled protocol, it remains to define the
programs Alice0 and Bob0. We will define Alice0; Bob0 is defined symmetrically.

Alice0 internally maintains the state of an execution of Alice’s program in Π (denoted by
AliceΠ ). In addition, Alice0 maintains a list LA of entries of the form (m, pk, c), one for
every call Enc(pk,m) = c that AliceΠ has made so far, along with such triples from the
(secondary) messages from Bob0.
Corresponding to a single message mi from Alice in Π , Alice0 will send out two messages
— a primary message mi and a secondary message CA,i (with an intermediate message
from Eve) — as follows. (For the sake of brevity we ignore the boundary cases i = 1 and
i− 1 being the last message in the protocol; they are handled in a natural way.)
The list LA,, before receiving the i− 1st message, is denoted by LA,i−2.

– On receiving mi−1 and CB,i−1 from Bob0 (and the corresponding messages from
Eve), first Alice sets LA,i−1 := LA,i−2 ∪ CB,i−1 (where CB,i−1 is parsed as a set
of entries of the form (m, pk, c)).

– Then Alice0 passes on mi−1 to AliceΠ , and AliceΠ is executed. During this execution
AliceΠ is given direct access to (Gen,Enc,Test1,Test2); but for every query of the
form Dec(sk, c) from AliceΠ , Alice0 obtains pk = Enc(sk) and checks if any entry
in LA,i−1 is of the form (m,pk, c) for some m. If it is, Alice0 will respond to this
query with m. Otherwise Alice0 responds with ⊥. At the end of this computation, the
message output by AliceΠ is sent out as mi.
Also Alice updates the list LA,i−1 (which was defined above as LA,i−2 ∪CB,i−1) to
LA,i by including in it a tuple (m, pk, c) for each encryption query Enc(pk,m) = c
that AliceΠ made during the above execution.

– Next it reads a message from Eve. Let T (i) denote the entire transcript at this point
(including messages sent by Alice0, Bob0 and Eve). Based on this transcript Alice0
computes a set DT (i)

B of ciphertexts that Bob is “highly likely” to be able to decrypt
in the next round, but has not encrypted itself,a and then creates a message CA,i

that would help Bob decrypt all of them without querying the decryption oracle. The
algorithm AssistA used for this is detailed below in Fig. 5. Alice finishes her turn by
sending out CA,i.

a The threshold δ used in defining DT (i)

B by itself does not make it highly likely for the
honest Bob to be able to decrypt a ciphertext. However, as we shall see, this will be
sufficient for a curious Bob to be able to decrypt with high probability.

Fig. 4. Definition of Alice0 procedure

11 Note that Eve follows a deterministic public-query strategy, and can be run by both parties.
Alternately, in Π∗, one party alone could have run Eve. But letting both parties run Eve will
allow us to preserve the number of rounds exactly, when consecutive messages from the same
party are combined into a single message.
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For each possible view VB of BobΠ at the point T (i) is generated let,

dB(VB) := {(pk, c)|∃sk s.t. [Gen(sk) = pk], [Test1(pk) = 1], [Test2(pk, c) = 1] ∈ VB

and � ∃m s.t. [Enc(pk,m) = c] ∈ VB}.

We define the set

DT (i)

B := {(pk, c)|Pr[(pk, c) ∈ dB(VB)|T (i)] > δ} (1)

where the probability is over a view VB for BobΠ sampled conditioned on T (i), in the
interaction between Σ (i.e., Alice0 and Bob0 with a random input pair) and Eve.a The
threshold δ which will be set to an appropriately small quantity (larger than, but polyno-
mially related to, σ associated with Eve).

The message CA,i is a set computed as follows: for each (pk, c) ∈ DT (i)

B , if there is an m
such that Enc(pk,m) = c appears in LA,i, then the triple (m, pk, c) is added to CA,i. If
for any (pk, c), if there is no such m, then the entire protocol is aborted.

a Even though we define Alice0 in terms of a probability that is in terms of the behavior
of a system involving Alice0, we point out that this probability is well-defined. This is
because the probability computed in this round refers only to the behavior of the system
up till this round. Also Eve, which is also part of the system generating T (i), depends
only on the prior messages from Alice0.

Fig. 5. Procedure AssistA for computing CA,i

Security of the Compiled Protocol. To formally argue the security of the compiled
protocol we must show an honest-but-curious simulator with access to either party in
an execution of Π , which can simulate the view of an honest-but-curious adversary in
Π∗. Here we do allow a small (polynomially related to σ), but possibly non-negligible
simulation error. We give a detailed analysis of such a simulation in the full version of
the paper. Below we sketch some of the important arguments.

Firstly, it must be the case that the probability of Alice0 aborting in Π∗ while com-
puting a secondary message CA,i, is small. Suppose, with probability p Alice fails to

find an encryption for some (pk, c) ∈ DT (i)

B . Then, by the independence property guar-
anteed by Lemma 2, with about probability δp this Alice execution takes place in con-
junction with a Bob view VB such that (pk, c) ∈ dB(VB). This would mean that with
close to probability δp we get an execution of the original protocol Π in which (pk, c)
is present in the parties’ views, but neither Alice nor Bob created this ciphertext. This
probability must then be negligible.

The more interesting part is to show that it is safe to reveal an encrypted message,
when there is only a small (but inverse polynomial) probability that the other party
would have decrypted it. For concreteness, consider when the honest-but-curious ad-
versary has access to Alice. In the execution of Π∗ it sees the messages CB,i that are
sent by Bob (assuming Bob does not abort). These contain the messages for each (pk, c)
pair in DT

A where T is the common information so far. So we need to show that the sim-
ulator would be able to extract all these messages as well. Consider a (pk, c) ∈ DT

A . If
Alice’s view contains an Enc query that generates c, or a Gen query that generates pk,
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then the simulator can use this to extract the encrypted message. Otherwise it samples
a view A′ for Alice consistent with T , but conditioned on (pk, c) ∈ dA(A

′) (such A′

must exist since (pk, c) ∈ DT
A ). Then A′ does contain a secret key sk′ for pk that Alice

will use to decrypt the ciphertext.
However, note that the view of the oracle in A′ need not be consistent with the given

oracle. Thus it may not appear meaningful to use sk′ as a secret key. But intuitively,
if it is the case that with significant probability Alice did not generate pk herself, then
it must have been generated by Bob, and then the only way Alice could have carried
out the decryption is by extracting Bob’s secret key from the common information.
Thus this secret key is fixed by the common information. Further, by sampling an Alice
view in which a secret key for pk occurs, this secret key must, with high probability
agree with the unique secret key implicit in the common information. Formalizing this
intuition heavily relies on the independence characterization: otherwise the common
information need not fix the secret key, even if it fixes the public key.

In the full version of this paper we give a detailed proof of security of Π∗, by defin-
ing a complete simulation, and using a coupled execution to analyze how good the
simulation is. We show that the compiled protocol is as secure as the original protocol
up to a security error of O|X ||Y|(N(σ/δ + δ)) = O(1/poly) by choosing appropriate
parameters, assuming |X ||Y| is polynomial.

The proof relies on Lemma 2. It shows that even when the protocol allows the parties
to use the information from the common information learner, it holds that the views of
the two parties (in an inputless version of the protocol considered in the proof) are
nearly independent of each other’s, conditioned on the common information gathered
by Eve.

6 Limits of Image-Testable Random Oracles

Applying the compiler from the above section, we can convert a protocol using the PKE

oracle to one using an image-testable random oracle O(K). Then, to complete the proof
of Theorem 1 it will suffice to prove the following result, which asserts that no protocol
ρ using O(K) can be a secure realization of f , if f is semi-honest non-trivial.

Lemma 3. Suppose ρ is a 1−λ(κ) semi-honest secure protocol (with round complexity

N ) for 2-party finite semi-honest non-trivial f relative to oracle class O(K)
κ , for any key

set K. There exists Λ = 1/poly(·) such that, for infinitely many κ, we have λ(κ) >
Λ(N, κ).

The proof of this lemma follows the proof of a similar result of [5], which considered
the class of random oracles instead of image-testable random-oracles. The proof in [5]
uses a detailed frontier analysis, in which the following two properties of the random or-
acles (informally stated here) were used, which we extend to the case of image-testable
random oracles.

1. Local Samplability: We need Bob to sample hypothetical Bob view V ′
B , based on

his actual view VB , but without exactly knowing what view VA Alice has. A crucial
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step in this is to sample a new query-answer set P ′
B which is consistent with PE ;

and this sampling has to be independent of the exact query-answer set PA of Alice.
2. Oblivious Re-randomizability: Once Bob has sampled a hypothetical Bob view, it

needs to simulate the view further (for just one round, before the next message from
Alice arrives). This simulation includes answering further queries to the (hypotheti-
cal) oracle. A crucial step in this is to answer these new queries with answers which
are consistent with Alice’s query-answer set PA, but are otherwise independent of
PB . That is, in simulating answers to further oracle queries, Bob should reran-
domize the part of the oracle which is consistent with the actual Bob query-answer
pairs PB .

Local samplability is a direct consequence of Lemma 2, which characterized the views
in the actual execution of the prototocl as close to a conditional product distribution. For
proving the oblivious rerandomization property, we need to specify the rerandomization
procedure. Such a procedure for the case of random oracles was provided in [5]. In
Fig. 6 we extend this to the case of image-testable random oracles.

Suppose Alice has private query-answer sequence PA, Eve has PE and Bob has
PB . Assume that Bob has been provided with P ′

B; and Typical(PA ∪ P ∪ PE) and
Good(PA, P, PE) hold, for P ∈ {PB , P ′

B}.
Let D be the set of R-queries in PB which are not already included in Q(PE ∪ P ′

B).
We re-emphasize that the queries in Q(PB) ∩ Q(P ′

B) outside Q(PE) could possible by
inconsistently answered.
Initialize a global set Rlocal = ∅.
Query-Answering (q) :

1. If q is answered in PE ∪ P ′
B use that answer.

2. If q = 〈k, α〉 is a new R-query and q ∈ D, answer with a
$←{0, 1}3κ. Add 〈k, a〉 to

Rlocal.
3. If q is a T-query which is already in Rlocal then answer 1.
4. Otherwise (i.e. if the conditions above are not met) forward the query to the actual

oracle and obtain the answer a.

Fig. 6. Bob’s algorithm to answer future queries using re-randomization (oblivious to PA)

We need to show that the result of the simulated execution using the rerandomized
oracle is close to that of an actual execution with the hypothetical view V ′

B that was
sampled. Formally, the analysis requires the following “safety” property to hold with
high probability, when Bob samples V ′

B at a point when the views are (VA, VB, VE).

Definition 5 (Safety). For Alice view VA, pair of Bob views (VB , V ′
B) and Eve view

VE , we define the following predicate:

Safety(VA, (VB, V ′
B), VE):=Nice(VA, VB, VE) ∧ Nice(VA, V ′

B, VE).
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In the full version we show that at all rounds of the protocol, the safety condition is
satisfied with high probability. The proof, again, is a consequence of the fact that the
actual distributions are close to tidy distributions, and the tidy distributions are close to
conditional product distributions.

6.1 Extending to Protocols with Inputs

The final ingredient we need to extend the proof in [5] to the case of image-testable
random oracles is to extend our common information learner to protocols with private
inputs for Alice and Bob. As was done in [5], such a common information learner can
be easily reduced to one for inputless protocols, as long as the domain size of the inputs
is polynomial in the security parameter.12 For this we transform the given protocol to
an inputless protocol by randomly sampling inputs for Alice and Bob. We augment the
protocol ρ where parties have private inputs with an eavesdropper strategy as guaranteed
by Lemma 2 when we assume that parties have picked their input uniformly at random.
This augmented protocol is referred to as ρ+.

By choosing the threshold parameter σ of the eavesdropper to be suitably small, we
can ensure the following strong independence properties:

1. Suppose i is an even round in the augmented protocol ρ+. If x ∈ X and y, y′ ∈ Y
are likely inputs at V (i)

E (transcript of the augmented protocol), then the message
sent by Alice is nearly independent of Bob’s private input being y or y′.

2. Suppose i is an even round in the augmented protocol ρ+. If x ∈ X and y, y′ ∈ Y
are likely inputs at V (i)

E , then sample a Alice-Bob joint view (V
(i+1)
A , V

(i)
B ) just after

Alice has sent the message mi+1. Conditioned on the transcript V (i)
E , message sent

by Alice mi+1 and Bob input being y′, sample a new Bob view V ′(i)
B . With high

probability: Safety(V (i+1)
A , (V

(i)
B , V ′(i)

B ), V
(i)
E ) holds, i.e. Nice(V (i+1)

A , V
(i)
B , V

(i)
E )

and Nice(V
(i+1)
A , V ′(i)

B , V
(i)
E ).

3. For an even round i, and likely inputs x ∈ X and y, y′ ∈ Y the distribution
of (V (i+1)

A , V
(i)
B V ′(i)

B ) is close to a product distribution where each component is

independently sampled conditioned on (V
(i)
E ,mi+1).

Analogous conditions hold when i is odd. For a formal version of this result, refer to
the full version of the paper [32].

Given the above results, the frontier analysis of [5] can be carried out for image-
testable random oracles.

7 Putting Things Together

Now we show how to complete the proof of Theorem 1. Suppose f is a 2-party finite
semi-honest non-trivial SFE. Assume that there exists a 1 − negl(κ) secure protocol ρ
relative to oracle class PKEκ, with round complexity N . By Theorem 2, we construct a

12 Note that we depend on the input domains being of polynomial size also for applying the
decomposability characterization of [8,10].
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1−λ∗(κ) secure protocol ρ∗ relative to oracle class O(K)
κ , where λ∗ could be arbitrarily

small 1/poly and K = {0, 1}2κ ∪ {⊥}.
Now, if we choose λ∗ in Lemma 3 to be sufficiently small so that λ∗(κ) < Λ(N, κ),

ρ∗ contradicts Lemma 3 and hence also the assumption that ρ is a (1− negl(κ)) secure
protocol for semi-honest non-trivial f relative to PKEκ. Note that this result crucially
relies on the fact that Theorem 2 preserves round-complexity and the simulation error
exhibited in Lemma 3 is function of only round complexity (and independent of the
query complexity).

8 Conclusions and Open Problems

As mentioned in the introduction, our result can be set in the larger context of the
“cryptographic complexity” theory of [7]: with every (finite, deterministic) multi-party
function f , one can associate a computational intractability assumption that there exists
a secure computation protocol for f that is secure against semi-honest corruption. The
main result of this work shows that the set of such assumptions associated with 3-party
functions is strictly larger than the set associated with 2-party functions. However, we
do not characterize this set either for the 3-party case or for the 2-party case.

It remains a major open problem in this area to understand what all computational
intractability assumptions could be associated with multi-party functions. For the 3-
party case, this question is far less understood than that for 2-party functions. Intuitively,
there are many more “modes of secrecy” when more than two parties are involved, and
these modes will be associated with a finer gradation of intractability assumptions. Our
result could be seen as a first step in understanding such a finer gradation. It raises the
question whether there are further modes of secrecy for larger number of parties, and if
they always lead to “new” complexity assumptions.

Stepping further back, the bigger picture involves randomized and reactive func-
tionalities, various different notions of security, and “hybrid models” (i.e., instead of
considering each multi-party function f and a secure protocol for it in plain model, we
can consider a pair of functions (f, g) and consider a secure protocol for f given ideal
access to g). The cryptographic complexity questions of such functions remain wide
open.
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Abstract. One of the fundamental research themes in cryptography is to clarify
what the minimal assumptions to realize various kinds of cryptographic primi-
tives are, and up to now, a number of relationships among primitives have been
investigated and established. Among others, it has been suggested (and some-
times explicitly claimed) that a family of one-way trapdoor permutations (TDP)
is sufficient for constructing almost all the basic primitives/protocols in both
“public-key” and “private-key” cryptography. In this paper, however, we show
strong evidence that this is not the case for the constructions of a one-way per-
mutation (OWP), one of the most fundamental primitives in private cryptography.
Specifically, we show that there is no black-box construction of a OWP from a
TDP, even if the TDP is ideally secure, where, roughly speaking, ideal security of
a TDP corresponds to security satisfied by random permutations and thus captures
major security notions of TDPs such as one-wayness, claw-freeness, security un-
der correlated inputs, etc. Our negative result might at first sound unexpected
because both OWP and (ideally secure) TDP are primitives that implement a
“permutation” that is “one-way”. However, our result exploits the fact that a TDP
is a “secret-coin” family of permutations whose permutations become available
only after some sort of key generation is performed, while a OWP is a publicly
computable function which does not have such key generation process.

Keywords: black-box separation, trapdoor permutation, one-way permutation,
family of one-way permutations.

1 Introduction

1.1 Background and Motivation

One of the fundamental research themes in cryptography is to clarify what the minimal
assumptions to realize various kinds of cryptographic primitives are, and up to now,
a number of relationships among primitives have been investigated and established.
Clarifying these relationships gives us a lot of insights for how to construct and/or
prove the security of cryptographic primitives, enables us to understand the considered
primitives more deeply, and leads to systematizing the research area in cryptography.

In this paper, we focus on two central cryptographic primitives, a family of trap-
door permutations (TDP) and a one-way permutation (OWP). Among others, it has
been suggested, and sometimes explicitly claimed (see, e.g. [9]), that a TDP is suffi-
cient for constructing (almost) all basic primitives/protocols in both “public-key” and
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“private-key” cryptography. In particular, it has been shown that a TDP can be used for
constructing a family of one-way trapdoor functions, public-key encryption schemes,
key agreement protocols, private information retrieval, oblivious transfer, etc. More-
over, it has also been shown that a OWP is sufficient to construct most of private-
key cryptographic primitives/protocols including symmetric key encryption schemes,
message authentication codes, digital signature schemes [37], pseudorandom genera-
tors/functions/permutations [7,47,16,32], bit commitment schemes [35], etc. (Some of
them later turned out to be possible to construct from any one-way function, e.g. a
pseudorandom generator from any one-way function [22].) These primitives can also
be constructed from a TDP as well.

Somewhat surprisingly, however, the following simple but fundamental question has
not been answered yet: “Can we construct a OWP from a TDP?” The main motivation
of this paper is to clarify the answer to this question, in order to fully establish the re-
lationships among these very basic and important primitives. One might think that the
answer is trivially yes (and that this is obvious), because a TDP is trivially a family of
one-way permutations if we keep trapdoors secret. However, we show strong evidence
that the answer to the above question is no by showing that there is no black-box con-
struction of a OWP from a TDP. Roughly, a black-box construction of a target primitive
P from a building block primitive Q requires that the construction of P treats an in-
stance of Q as a black-box (i.e. treats as an oracle) and furthermore that the reduction
algorithm for the security proof treats an adversary that breaks the security of the con-
struction of P (and the instance of Q) as a black-box. (The impossibility of the opposite
direction, i.e. constructing a TDP from a OWP in a black-box way, is due to [25].)

Actually, to tackle the above question, we have to be careful about the difference be-
tween a “single” one-way permutation and a “family” of one-way permutations (one-
way permutation family, OWPF).1 Our black-box separation result mentioned above
separates a “single” one-way permutation from a TDP. Furthermore, for OWPFs, we
have to be also careful about the difference between the public-coin case and the secret-
coin case. Informally, a OWPF is said to be public-coin if the randomness for choosing a
permutation from the family can be revealed together with the description of the permu-
tation. On the other hand, a OWPF is said to be secret-coin if the security (one-wayness)
is not guaranteed if the randomness is revealed. (The distinction between public-coin
primitives and secret-coin primitives is studied by Hsiao and Reyzin [24] for the case
of collision-resistant hash function families.) With these categorizations, it is straight-
forward to see that any one-way TDP can always be seen as a secret-coin OWPF by
regarding an evaluation-key (public-key) output from a key generation algorithm of the
TDP as an index specifying a permutation in the family. However, the same OWPF
derived from a TDP is not secure as a public-coin OWPF, because the randomness
for choosing the evaluation-key (public-key) cannot be revealed: If revealed, then any-
one can compute the corresponding trapdoor, which makes the permutation invertible.
Furthermore, it is also straightforward to see that a single OWP is a special type of
a public-coin OWPF (by implementing the permutations in the family with the given

1 In order not to mix up with the difference between single function and function family of
one-way permutations, when we just write “OWP”, we always mean it is a “single” one-way
permutation (i.e. not a family), and when we mean a family of OWPs, we write “OWPF”.
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single OWP). Here, what is not at all trivial is whether we can construct a public-coin
OWPFs from a TDP in general. We also partially answer to this question in the negative.

1.2 Our Contribution

In this paper, we show that there is no black-box construction of a OWP from a TDP,
even if the TDP is ideally secure [11,29], where, roughly speaking, ideal security of
a TDP corresponds to the security satisfied by random permutations (see Section 2.3
for the formal definition), and thus captures major security notions for a TDP such as
one-wayness, claw-freeness [19], security under correlated inputs [42], etc. Therefore,
our impossibility result rules out the black-box constructions of a OWP from TDP sat-
isfying these security notions, and is strictly stronger than the result by Chang et al.
[9] who showed the black-box separation of a OWP from a family of injective trap-
door functions. Our impossibility result might at first sound unexpected because both
OWP and (one-way) TDP are primitives that implement a “permutation” that is “one-
way”. However, our result is established by exploiting the essential difference between
a family of functions and a single function, that a TDP is a “secret-coin” family of per-
mutations whose permutations become available only after some sort of key generation
is performed, while a OWP is a publicly computable function which does not have such
key generation process. (We explain the overview of the proof in Section 1.3.)

The type of black-box constructions that our main result rules out is called a fully-
black-box construction in the taxonomy of Reingold et al. [41]. (The formal definition
for a fully-black-box construction of a OWP from an ideal TDP is given in Section 3.)
In fact, our result can be easily strengthened to rule out a semi-black-box construction,
which is a less restrictive type than fully-black-box one, using the technique called “em-
bedding” by Reingold et al. [41]. (We discuss this extension in Section 4.) Although the
absence of (fully- and semi-)black-box constructions of a OWP from an ideal TDP does
not necessarily mean that constructing a OWP from an ideal TDP is generally impossi-
ble, it should be emphasized that most of the known primitive-to-primitive constructions
are fully-black-box, and thus the impossibility of black-box constructions is considered
as a very strong evidence that “natural” and “efficient” constructions are impossible.

Our result also sheds light on the difference between “public-coin” and “secret-coin”
OWPFs (their formal definitions can be found in Section 2.2). Whether a primitive
remains secure in the sense of public-coin is usually related to whether we need some
kind of trusted setup in a cryptographic protocol such as multi-party computation. Hsiao
and Reyzin [24] conjectured that there is no (fully-)black-box construction of a public-
coin OWPF from a secret-coin one. We partially answer to this conjecture: Specifically,
we show that there is no black-box construction of a public-coin OWPF that satisfies
a special property called canonical domain sampling (the formal definition is given in
Section 2.2) from an ideal TDP (and especially from a secret-coin OWPF). This result
is obtained as a corollary of our main result above by combining it with the result
by Goldreich et al. [17] who showed that a OWP can be constructed, in a black-box
manner, from a public-coin OWPF with the canonical domain sampling property. (See
Section 4 for more details.) We note that the techniques we use to prove the black-box
separation of a public-coin OWPF from a secret-coin one (and the black-box separation
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of a OWP from an ideal TDP) are different from those used by Hsiao and Reyzin in
[24] (in fact, we use a part of the results in [24]).

Why Studying OWP vs. TDP? Historically, OWP and (public-coin/secret-coin) OWPF
have much more often been treated as assumptions rather than as target primitives that
are constructed from other primitives, and thus one may wonder why we should care
the (im)possibility of constructing a OWP from TDP (or from other primitives).

Our opinion is that firstly, OWP, OWPF, and TDP are very basic primitives, and thus
clarifying any of their properties as well as relations is important, and we believe that
our results contribute to correctly understanding and firmly establishing relationships
among these basic cryptographic primitives. Specifically, our results suggest that there
is no simple hierarchy of black-box constructions even among very basic cryptographic
primitives. Our results also clarify explicitly that there is a real difference among single
function, public-coin and secret-coin families of functions in the case of permutations,
which should be contrasted with the case of “functions” because the existence of a
single one-way function is equivalent to the existence of a family of one-way functions
(regardless of whether the family is secret-coin or public-coin). Furthermore, our results
also show that it is not always the case that “public-key”-type primitives are stronger
than “non-public-key”-typeprimitives (at least in the case of permutations). This should
be again contrasted with the case of “functions”, where there is a (trivial) black-box con-
struction of a one-way function from basically all known “public-key”-type primitives
(because key generation algorithms typically have to be a one-way function), but there
does not exist a black-box construction for the opposite direction [25].

Secondly, there might actually be a cryptographic primitive that can be constructed
from a OWP, but not from a TDP. One of such candidates may be a public-coin point
obfuscation (an obfuscator for a point function) [1,45]. Wee [45] showed that a point
obfuscator can be constructed from a (very strong) OWP, while his point obfuscator
does not seem to be proved secure if we replace the OWP in his construction with a
permutation from a TDP together with its public-key (at least the “public-coin” property
will be lost unless we assume some additional property for the TDP). We believe that
there are much more (natural) examples of this sort, and that it is interesting to seek
for such examples. (In particular, the difference between public-coin and secret-coin
primitives will stand out more in the context of interactive protocols.)

1.3 Technical Overview

The main result of our paper builds on the results and techniques from several previous
work [43,26,15,24,9,30,23], and our technical contribution lies in coming up with an
appropriate combination of these results/techniques for achieving our purpose of sepa-
rating OWP from (ideal) TDP.

We will use the “two oracle separation” paradigm [15,24] (which is an extension of
the one oracle separation [25,41]) to show that there is no fully-black-box construc-
tion of a OWP from an ideal TDP. That is, we will use two oracles (more precisely, a
random instance picked from all possible instances of oracles): the first oracle models
a “building block” primitive (TDP in our case) and the second oracle is the “break-
ing” oracle that is useful for breaking all candidates of a target primitive (OWP in our
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case) but useless for breaking the security of the building block oracle. As the “building
block” oracle, we use a random instance of a TDP oracle T that consists of suboracles
(G, E ,D) that essentially constitutes a (random) TDP, namely, G is the key generation,
E is the evaluation of permutations, and D is the inversion of permutations. As the
“breaking” oracle, we use the PSPACE oracle that has often been used in the literature
of black-box separations, e.g. [25,15,9], mainly in order to guarantee that any compu-
tational hardness comes only from the building block oracle. If we pick T randomly,
then T can be shown to be “ideally secure” even against computationally unbounded
adversary that makes only polynomially many queries to T . Since such adversary can
simulate the PSPACE oracle by itself, it follows that an “ideally secure” TDP exists
relative to T and PSPACE.

The difficult part of the proof is to show that any permutationPT is inverted, and thus
a OWP does not exist relative to T and PSPACE. Here, we note that the evaluation-key
space of T cannot be dense [20] (i.e. an inverse-polynomial fraction of strings are in the
range of G), because in this case, an evaluation-key ek of permutations in E could be
picked without using G, and thus implementing a permutation PT by the permutation
(in E) made available by this picked ek might lead to a OWP (even in the presence
of the PSPACE oracle). To prevent this, we make the range of G sparse, and make E
useless unless it is invoked with an honestly generated evaluation-key that is generated
by making a query to G. This guarantees that when calculating the permutation PT ,
permutations in E become available only after making a query to G and obtaining an
evaluation-key ek, together with the corresponding trapdoor td. Put differently, from
the viewpoint of an entity computing the permutation PT , every permutation in E as-
sociated with ek that becomes available during the computation of PT can be seen as
an invertible permutation, because the entity must have known td corresponding to ek.
This observation leads to the idea of simulating the TDP oracle T in PT with a block
cipher oracle, which is a family of invertible permutations. More specifically, we intro-
duce a new oracle B, which we call block cipher oracle that models an ideally secure
block cipher, and show that for any permutation PT , there is another permutation P̂B

such that inverting P̂B is as hard as inverting PT . The idea and the technique of sim-
ulating a TDP oracle T (used in a constructed primitive) with a block cipher oracle
is previously used by Lindell and Zarosim [30] who showed the black-box separation
of an adaptively secure oblivious transfer protocol from a TDP. Furthermore, by using
the result by Holenstein et al. [23] who showed that a random invertible permutation is
simulatable by the fourteen-round Feistel-network construction of a permutation [32]
in which each round function is an independent random function,2 we can simulate
the block cipher oracle B in the permutation P̂B with another oracle R (which we call
round function oracle) that consists only of random functions (not permutations). More
specifically, we show that for any permutation P̂B , there is another permutation P̃R

such that inverting P̃R is as hard as inverting P̂B. Finally, using the previous results
by Rudich [43], Kahn et al. [26], and Chang et al. [9] on the black-box separations of

2 More precisely, [23] shows that the fourteen-round Feistel-network is indifferentialble [34]
from an (invertible) random permutation. The statement that a constant-round Feistel-network
was sufficient was originally suggested by Coron et al. [10]. However, it was pointed out in
[23] that the original proof in [10] for six rounds had a gap and was not completed.
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a OWP from random (injective) functions, we can show that there is a good inverter
(which uses the PSPACE oracle) for any permutation P̃R.3 Then, this inverter can be
used to invert not only P̃R but also PT , and thus any permutation PT is inverted using
the PSPACE oracle.

It is already known that a OWP is black-box separated from a one-way function
(OWF) [43,26] and that there is a black-box construction of a pseudorandom permu-
tation, which is a standard security notion of a block cipher, from a OWF [22,16,32].
Therefore, one might wonder that if we give up the “ideal security” of a TDP and just
consider one-way TDPs, then we may be able to conclude that there is no black-box
construction of a OWP from a one-way TDP, as soon as we reduce a TDP-based permu-
tation PT to a block-cipher-based permutation P̂B . However, that a OWP is separated
from a OWF in a black-box manner does not immediately mean that our block-cipher-
based permutation P̂B cannot be proved one-way, because our block-cipher oracle B
contains random permutations which may help P̂B to be one-way (with some clever use
of permutations in B). This is the main reason why we further reduce the block-cipher-
based permutation P̂B to a random function-based permutation P̃R by using the result
of [23], so that random permutations in the oracle B do not help achieving a OWP any
better than random “functions” in the oracleR do.

1.4 Related Work

Up to now, a number of black-box separations among various kinds of primitives have
been established. For an excellent survey of the literature and the techniques of black-
box separations, we refer the reader to [48]. Here, we review black-box separations
related to OWPs and TDPs.

Regarding the black-box separations of a OWP from other primitives, it is known
that it is separated from one-way functions [43,26], from injective trapdoor functions
and a private information retrieval protocols [9], and from length-increasing injective
one-way functions (even if they are just 1-bit-increasing) [33].

On the other hand, recently, several black-box separation results have shown the
limitations of a (one-way) TDP as a base primitive for constructing and/or proving the
security of several “highly functional” cryptographic primitives or basic primitives with
special functional/security properties. Those include the impossibility of constructing
identity-based encryption [8], a wide class of predicate encryption [27], lossy trap-
door functions [42], trapdoor functions secure under correlated inputs [44], encryption
schemes secure under key-dependent inputs [21], adaptively secure oblivious transfer
protocols [30], non-interactive or perfectly binding commitment schemes secure under
selective-opening attacks [2], verifiable random functions [12], a natural class of three-
move blind signature schemes [13], succinct non-interactive argument systems [14],
constant-round sequentially witness-hiding special-sound protocols for unique witness

3 We note that a random function (which is length preserving) is indistinguishable from a ran-
dom permutation for any (even computationally unbounded) algorithm that can make only
polynomially many queries to the random function (even in the presence of the PSPACE or-
acle), but this fact does not mean that we can construct a OWP from a random function in a
black-box way (in fact, it is not possible [43,26,9,33]).
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relations [39], and many of the cryptographic primitives that admit the so-called simu-
latable attacks [46]. We note that in fact, the results of [21,2,13,14,39,46] rule out the
possibility of constructions (and/or, security proofs) of the target primitives based not
only on one-way TDP but also on much broader class of primitives or assumptions,
such as all falsifiable assumptions [36].

Black-box separations for a particular construction that uses a TDP as a building
block are also known. The unforgeability of the FDH signature scheme [4] cannot be
based on an ideal TDP, if the TDP is treated as a black-box [11]. [6] shows a similar
result for the PSS signature scheme, and [29] shows the impossibility of basing chosen
ciphertext security of padding-based encryption schemes which include many known
TDP-based encryption schemes such as the OAEP encryption scheme [3], on the (ideal)
security of the building block TDP.

1.5 Paper Organization

The rest of this paper is organized as follows. In Section 2 we review some basic defi-
nitions and terminology. In Section 3, we show our main result on the black-box sepa-
ration of a OWP from an ideal TDP, and we discuss further results, and the possibility
of more general separation results in Section 4.

2 Preliminaries

In this section, we review the basic notation and the definitions of primitives.

Basic Notation. N denotes the set of natural numbers. For n ∈ N, we define [n] =
{1, . . . , n}. If x and y are strings, then “|x|” denotes the bit-length of x, and “(x||y)”
denotes a concatenation of x and y. “x ← y” denotes an assignment of y to x. If S
is a set then “|S|” denotes its size, and “x ←R S” denotes that x is chosen uniformly
at random from S. “PPTA” denotes probabilistic polynomial time algorithm. If A is a
probabilistic algorithm, then “z ←R A(x, y, . . . )” means that A takes x, y, . . . as input
and outputs z, and “z ← A(x, y, . . . ; r)” means that A takes x, y, . . . as input, uses r
as an internal randomness, and outputs z. For an oracle algorithmAO , we say that AO

has query complexity q if A makes queries to the oracle O at most q times. “Permn”
denotes the set of all permutations over {0, 1}n. If f is a function and D is its domain,
then we define Range(f) = {f(x)|x ∈ D}.

A function f : N → [0, 1] is said to be negligible if f(k) < 1/p(k) for all positive
polynomials p(k) and all sufficiently large k ∈ N, and a function g : N→ [0, 1] is said
to be overwhelming if the function f(k) = 1− g(k) is negligible.

2.1 One-Way Permutations

Typically, security of a OWP is defined so that the security parameter k is its input
length. However, since later we consider constructions of a OWP from another primi-
tive, it will be convenient to consider the security parameter and the input length of the
constructed permutation separately, so that the one-wayness advantage of an adversary
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and the input length of the constructed permutation are a function of the security pa-
rameter of the building block. Moreover, it is also convenient to identify a (one-way)
permutation with a PPTA that computes it. Therefore, we take these approaches for the
definition of a OWP.

Let � = �(k) be a positive polynomial and P be a PPTA such that P is a permutation
over {0, 1}�. We say that a PPTA P is a one-way permutation (OWP) for length � if the
following advantage function AdvOWPP,A,�(k) is negligible for any PPTA adversaryA (we
assume that P is also given 1k but omit to write it for simplicity):

AdvOWPP,A,�(k) = Pr[x∗ ←R {0, 1}�; y∗ ← P(x∗);x′ ←R A(1k, y∗) : x′ = x∗].

2.2 One-Way Permutation Families

A family of permutations (permutation family) PF consists of the following three PP-
TAs (Gen, Eval, Samp): Gen is the probabilistic evaluation-key generation algorithm
which takes 1k as input and outputs an evaluation-key ek. (An evaluation-key is also
called an index.) Eval is the deterministic evaluation algorithm which takes ek and an
element x ∈ Dek as input, and outputs y ∈ Dek, where Dek is the domain of Eval(ek, ·)
that is determined by ek. Samp is the probabilistic sampling algorithm which takes ek
as input, and outputs a (random) element x ∈ Dek . As a correctness requirement, we
require that for all k ∈ N and all ek←R Gen(1

k), (i) Samp(ek) is a uniform distribution
over Dek, and (ii) Eval(ek, ·) is a permutation over Dek.

We say that PF = (Gen,Eval, Samp) is a one-way permutation family (OWPF) if
the following advantage function AdvOWPFPF,A(k) is negligible for any PPTA adversaryA:

AdvOWPFPF,A(k) = Pr[ek←R Gen(1
k);x∗ ←R Samp(ek); y∗ ← Eval(ek, x∗);

x′ ←R A(ek, y∗) : x′ = x∗].

If a permutation family PF remains one-way even when A is given the randomness
r that is used to generate ek = Gen(1k; r), then we call PF a public-coin4 OWPF, and
in order to distinguish it from an ordinary one, we call an ordinary OWPF a secret-coin
OWPF.

Canonical Domain Sampling Property. We say that a OWPF PF has the canonical
domain sampling property [17] if the following two conditions are satisfied:

1. (Recognizable domain) There exists a PPTA which, on input ek and x, tells if
x ∈ Dek or not.

2. (Dense domain) There exist a polynomial time computable function � = �(k) and
a positive polynomial p = p(k) so that Dek ⊆ {0, 1}� and |Dek| > 2�/p.

Goldreich et al. [17] showed that a OWP can be constructed in a black-box man-
ner from a public-coin OWPF with the above property, and we briefly review their
construction. Given a public-coin OWPF (Gen,Eval, Samp) with the canonical domain

4 Goldreich et al. [17] called this property “augmented one-wayness.” Here we use the name due
to Hsiao and Reyzin [24].
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sampling property, where Gen(1k) uses a λ = λ(k)-bit randomness, we construct a
single permutation P for length λ + � that works as follows: On input (rg‖z) such
that |rg| = λ and |z| = �, P first calculates ek ← Gen(1k; rg), and then outputs
(rg‖Eval(ek, z)) if z ∈ Dek or (rg‖z) otherwise. This P is indeed a permutation, and
can be shown to be weakly one-way. Then, this weak one-wayness can be amplified by
a standard technique (e.g. [47]) to obtain a OWP (with ordinary one-wayness).

2.3 Trapdoor Permutations

A family of trapdoor permutations (TDP) is a special class of secret-coin permuta-
tion family (Gen, Eval, Samp) with the following additional properties: (1) The algo-
rithm Gen is a deterministic polynomial-time algorithm that takes 1k and a trapdoor
td ∈ {0, 1}k as input, and outputs a corresponding evaluation-key ek.5 (This process is
denoted by “ek ← Gen(1k, td)”.) (2) There is a deterministic inversion algorithm Inv
which takes td ∈ {0, 1}k and an element y ∈ Dek as input (where ek = Gen(1k, td)),
and outputs x ∈ Dek such that Eval(ek, x) = y.

Hard Games and Ideal Security. In this paper, we consider “ideal security” of a TDP,
following [11,29]. Roughly, ideal security of a TDP corresponds to security satisfied by
random permutations.

Let G be a PPTA (called a challenger) that can exchange messages with another algo-
rithm (called an adversary)A by a shared communication tape. We say that G defines a
game regarding random permutations if both G andA have access to t independent ran-
dom permutations π1, . . . , πt over {0, 1}k, where t = t(k) is a polynomial determined
by G, G interacts withA, and finally outputs a decision bit d. This process is denoted by

“d ←R ExptG
π1(·),...,πt(·)

RP,Aπ1(·),...,πt(·)(k).” (Here, “RP” stands for “random permutations.”) We
say that the adversaryA wins the game G if d = 1.

Informally, an oracle PPTA G defines a δ-hard game regarding random permuta-
tions, where 0 ≤ δ < 1, if no oracle algorithm A can win the game G regarding
random permutations with probability significantly better than δ. Typically, δ = 0 for
“search games” (e.g. one-wayness experiment) or δ = 1/2 for “distinguishing games”
(e.g. security experiment for a pseudorandom generator). We define the advantage of an
adversaryA in a game G as follows:

AdvGRP,A(k) = Pr[π1, . . . , πt ←R Permk; d←R Expt
Gπ1(·),...,πt(·)

RP,Aπ1(·),...,πt(·)(k) : d = 1].

Then, we define the δ-hardness of the game G as follows.

Definition 1. We say that a game G is δ-hard (for some 0 ≤ δ ≤ 1) for adversaries with
polynomial query complexity if for any (even computationally unbounded) algorithmA
whose query complexity is at most polynomial, there is a negligible function μ(k) such
that AdvGRP,A(k) − δ ≤ μ(k). We call “δ(G)” the hardness of the game G and is the
smallest value such that G is δ-hard for adversaries with polynomial query complexity.

5 It is usual to define the Gen algorithm as a probabilistic algorithm so that it takes 1k as input,
and outputs a pair (ek, td). However, in terms of existence, a TDP with such definition is
equivalent to one defined in this paper, because without loss of generality we can identify the
randomness r for generating (ek, td) ← Gen(1k; r) with the trapdoor of a TDP.
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We stress that unlike [11,29], our definition of the hardness δ(G) of a game G regard-
ing random permutations is with respect to computationally unbounded adversaries,
and the restriction on an adversary is only on its query complexity, rather than its run-
ning time. Though this requirement for hard games is stronger than the ones used in
[11,29] (and thus potentially harder to achieve), most security games that are δ-hard for
all PPTAs remain δ-hard for computationally unbounded adversaries with polynomial
query complexity. Examples include one-wayness, claw-freeness [19], and security un-
der t(k)-correlated inputs [42] for any predetermined polynomial t(k). See also [29,
Table 1] for other types of security games that can be captured by δ-hard games. We
note that, since G does not have access to inversions of permutations, our definition of
hard games does not capture adaptive one-wayness [38,28].

A game for a TDP is then defined by replacing the random permutations in a δ-hard
game with instantiations of permutations in the TDP. More specifically, we define the
advantage of an adversaryA in a game G for a TDP TDP = (Gen,Eval, Samp, Inv) as
follows:

AdvGTDP,A(k) = Pr

[
td1, . . . , tdt ←R {0, 1}k; eki ← Gen(1k, tdi) for i ∈ [t]

d←R Expt
GEval(ek1,·),...,Eval(ekt,·)

TDP,A(ek1,...,ekt) (k)
: d = 1

]

Note that in the above experiment, the interface of G is exactly the same as that of a
game defined for random permutations. However, the interface of A is changed. Un-
like the games regarding random permutations, we do not provide A with oracle ac-
cess to Eval(eki, ·)’s because it gets evaluation keys {eki} and thus can compute each
Eval(eki, ·) by itself.

Definition 2. We say that TDP is secure for game G if for all PPTAs A, there is a
negligible function μ(k) such that AdvGTDP,A(k) − δ(G) ≤ μ(k). Furthermore, we say
that TDP is an ideal TDP if it is secure for all games.

Note that the definition of the hard games for a TDP considers only PPTA adversaries,
although the hardness δ(G) is defined with respect to (computationally unbounded)
adversaries with polynomial query complexity.

It has been observed in [11] that ideal security is too strong to be satisfied by TDPs
implemented by PPTAs. However, we will show the impossibility of constructing a
OWP from an ideal TDP in a black-box manner, and thus ruling out a black-box con-
struction from a TDP with such strong security makes our result stronger.

3 Black-Box Separation of OWP from Ideal TDP

In this section, we show our main result: there is no black-box construction of a OWP
from an ideal TDP.

We first recall the formal definition of the type of black-box constructions that we
will rule out, which is called a fully-black-box construction (reduction) in the taxonomy
of Reingold et al. [41]. (The definition can be easily adapted to other primitives.)

Definition 3. We say that there exists a fully-black-box construction of a OWP from
an ideal TDP, if there exist a positive polynomial � = �(k), an oracle PPTA P (called
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“construction”), and an oracle PPTA R (called “reduction”) such that for all tuples
of algorithms TDP = (Gen,Eval, Samp, Inv) that implement a TDP with security pa-
rameter k and all algorithms A (where each algorithm in TDP and A are of arbitrary
complexity) the following two conditions hold:

(Correctness): PTDP is a permutation over {0, 1}�.
(Security): If AdvOWPPTDP,A,�(k) is non-negligible, then so is AdvGTDP,RA,TDP(k) − δ(G)

for some game G.

The main result in this paper is the following.

Theorem 1. There is no fully-black-box construction of a OWP from an ideal TDP.

Recall that the security games for most of the security notions of a TDP, such as (or-
dinary) one-wayness, security under t(k)-correlated-inputs [42] for any predetermined
polynomial t = t(k), and claw-freeness [19], can be captured by the δ-hard games.
Since “a (fully-)black-construction of a primitive from another primitive” is a transitive
relation, we obtain the following as a corollary of Theorem 1.

Corollary 1. There is no fully-black-box construction of a OWP from a one-way TDP6,
a TDP secure under t-correlated-input for any predetermined polynomial t, or a claw-
free TDP.

To prove Theorem 1, we will use the following “two oracle separation” technique
[15,24] (which is an extension from the “one oracle separation” by [25,41]). Specifi-
cally, to prove Theorem 1, it is sufficient to show the following lemma.

Lemma 1. (adapted from [15,24].) Let PSPACE be an oracle for a PSPACE-complete
problem. Assume there exist a set O of oracles and a tuple of oracle PPTAs TDP =
(Gen,Eval, Samp, Inv) that satisfy the following three conditions:

(1): TDPO = (GenO,EvalO, SampO, InvO) is correct as a TDP for all O ∈ O.
(2): For any game G and for any oracle PPTA A, EO←RO[Adv

G
TDPO,AO,PSPACE(k)] −

δ(G) is negligible.
(3): For any positive polynomial � = �(k) and for any oracle PPTA P, if PO is a

permutation over {0, 1}� for all O ∈ O, then there exists an oracle PPTA A such
that EO←RO[Adv

OWP
PO,AO,PSPACE,�(k)] is overwhelming.

Then, there is no fully-black-box construction of a OWP from an ideal TDP.

In order to use Lemma 1 for showing our main result, we define the set T of “TDP”
oracles T below, which will be used as O in the above lemma. Next, in Section 3.1, we
show Lemmas 2 and 3 which guarantee that there is a tuple of oracle PPTAs TDP =
(Gen,Eval, Samp, Inv) such that T and TDP satisfy the conditions (1) and (2) of the
above lemma, respectively. Then, in Section 3.2, we show Lemma 4 which guarantees
that the set T satisfies the condition (3) of the above lemma. Theorem 1 follows by
combining these lemmas.

6 Actually, permutations in our TDP have a trivial domain {0, 1}k and thus the TDP satisfies
doubly enhanced one-wayness [18]. Furthermore, given a 2k-bit string ek, whether E(ek, ·)
defines a permutation can also be checked easily by checking the result of E(ek, 0k), and thus
it also satisfies the certified property [5]. Thus, our result also rules out constructions from a
one-way TDP with these properties.
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TDP Oracle T . The TDP oracle T models an ideally secure TDP whose evaluation-
key space is sparse. Formally, a TDP oracle T consists of the following three suboracles
(G, E ,D):

G : {0, 1}k → {0, 1}2k: (Corresponding to the key generation for the TDP) This is an
injective function that takes td ∈ {0, 1}k as input, and returns ek ∈ {0, 1}2k.

E : {0, 1}2k×{0, 1}k → {0, 1}k∪{⊥}: (Corresponding to evaluation) For every ek ∈
Range(G), E(ek, ·) is a permutation over {0, 1}k, and for every ek /∈ Range(G) and
every α ∈ {0, 1}k, E(ek, α) = ⊥.

D : {0, 1}k × {0, 1}k → {0, 1}k: (Corresponding to inversion) This function takes
td ∈ {0, 1}k and β ∈ {0, 1}k as input, and returns α ∈ {0, 1}k such that E(G(td),
α) = β.

We denote by T the set consisting of all possible TDP oracles T that satisfy the above
syntax.

3.1 Ideal Trapdoor Permutation Based on T

Here, we show that there exists an ideal TDP that uses a TDP oracle T = (G, E ,D) ∈ T.
Consider the following tuple TDPT = (GenT ,EvalT , SampT , InvT ) of oracle PPTAs,
which are constructed straightforwardly from T :

– GenT (1k, td): Compute ek ← G(td) and output the evaluation-key ek.
– EvalT (ek, x): Compute y ← E(ek, x) and output y. (We define the domain Dek of
EvalT (ek, ·) to be {0, 1}k for all ek ∈ Range(G).)

– SampT (ek): Pick x ∈ {0, 1}k uniformly at random, and output x. (Note that this
algorithm does not use T at all.)

– InvT (td, y): Compute x← D(td, y) and output x.

Regarding TDPT described above, the following two lemmas can be shown:

Lemma 2. For any T ∈ T, TDPT is correct as a TDP.

Lemma 3. For all games G and any oracle PPTA adversaryA, there exists a negligible
function μ(k) such that ET ←RT[Adv

G
TDPT ,AT ,PSPACE(k)]− δ(G) ≤ μ(k).

Lemma 2 is immediate from the definition of the TDP oracle T . The formal proof of
Lemma 3 is given in the full version (but we will give a proof sketch below). Note that
if we pick T = (G, E ,D) uniformly from T, then G is a random injective function that
is length-doubling, and every permutation E(ek, ·) with ek ∈ Range(G) is an indepen-
dent random permutation. Kiltz and Pietrzak [29] showed that a similar construction of
a TDP oracle whose “key generation oracle” is also a random permutation is ideally se-
cure even against computationally unbounded adversary that makes only polynomially
many queries. Our proof of Lemma 3 is similar to theirs.

Proof Sketch of Lemma 3. Fix an arbitrary δ-hard game G, and let t = t(k) be a
polynomial implicitly determined by G. Fix also an arbitrary PPTA adversaryA.
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The expectation (over the choice of T ) of the advantage of the adversaryA attacking
TDPT = (GenT , EvalT , SampT , InvT ) in the game G (in the presence of the PSPACE
oracle) can be written as follows:

E
T ←RT

[
AdvGTDPT ,AT ,PSPACE(k)

]
= E

T ←RT

[
Pr

[
td∗1, . . . , td

∗
t ←R {0, 1}k; ek∗

i ← GenT (1k, td∗i ) for i ∈ [t];

d←R Expt
GEvalT (ek∗

1 ,·),...,EvalT (ek∗
t ,·)

TDPT ,AT ,PSPACE(ek∗
1 ,...,ek

∗
t )
(k)

: d = 1

]]

= Pr

[
T ←R T; td∗1, . . . , td

∗
t ←R {0, 1}k; ek∗

i ← G(td∗i ) for i ∈ [t];

d←R Expt
GE(ek∗

1 ,·),...,E(ek∗
t ,·)

TDPT ,AT ,PSPACE(ek∗
1 ,...,ek

∗
t )
(k)

: d = 1

]
.

Let us denote by Ẽxpt
G

TDPT,AT,PSPACE(k) the experiment in the probability in the last
equation.

Now, consider the following two games.

Game 1: This is the ordinary δ-hard game G for TDPT , in which sampling of the

oracle T from T is also taken into account, i.e. Ẽxpt
G

TDPT,AT,PSPACE(k).
Game 2: Same as Game 1, except thatA’s queries of the following types are answered

with ⊥: (i) a G-query td∗i for some i ∈ [t], and (ii) a D-query (td∗i , ∗) for some
i ∈ [t].

For i ∈ {1, 2}, let Succi be the event that A wins (i.e. d = 1 occurs) in Game i. By
definition we have ET ←RT[Adv

G
TDPT ,AT ,PSPACE(k)] = Pr[Succ1]. Furthermore, we have

E
T ←RT

[AdvGTDPT ,AT ,PSPACE(k)]− δ(G) = Pr[Succ1]− δ(G)

≤ |Pr[Succ1]− Pr[Succ2]|+ Pr[Succ2]− δ(G). (1)

In the full version, we will show how to upperbound each term in the right hand side of
the inequality (1), which will prove Lemma 3. Below we explain the sketches for how
to show these.
|Pr[Succ1]−Pr[Succ2]| can be shown to be negligible, because the adversaryA, who

can make only polynomially many queries, cannot tell the difference between Game 1
and Game 2 (except with negligible probability). More specifically, Game 1 and Game
2 differ only in the response to A’s G-queries and D-queries that contain the preimages
{td∗i }i∈[t] of the evaluation keys {ek∗

i }i∈[t], and thus in order forA to distinguish these
games, A has to find one of {td∗i }i∈[t]. However, intuitively, finding any of the preim-
ages {td∗i }i∈[t] is hard because the TDP oracle T is chosen randomly and especially the
function G is a random injective function, and we will formally show that this intuition
works.

Pr[Succ2]−δ(G) can be shown to be negligible, roughly because Game 2 can be per-
fectly simulated by another computationally unbounded adversary S with polynomial
query complexity that interacts with the PPTA (challenger) G for random permutations
(not for the TDP TDPT ), in such a way that AdvGRP,S(k) = Pr[Succ2]. But by the as-

sumption that G is a δ-hard game,AdvGRP,S(k)−δ(G) = Pr[Succ2]−δ(G) is negligible.
This completes the proof sketch of Lemma 3. ��
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3.2 Breaking Any Candidate of One-Way Permutation Based on T

Here, we show that any candidate of a OWP PT based on a TDP oracle T ∈ T can be
broken by some oracle PPTA almost perfectly (using the PSPACE oracle). Specifically,
this subsection is devoted to proving the following lemma.

Lemma 4. Let � = �(k) be a positive polynomial and P be an oracle PPTA such that
PT is a permutation over {0, 1}� for all T ∈ T. Then there exists an oracle PPTA A
such that ET ←RT[Adv

OWP
PT ,AT ,PSPACE,�(k)] is overwhelming.

To prove Lemma 4, we need some further notations, two other oracles than T , and
several intermediate lemmas. Thus, we first introduce them, and in the last of this sub-
section show the proof of Lemma 4. The intuitive explanation on how the above lemma
is proved can be found in Section 1.3.

Further Notations. For notational convenience, we introduce two notations. Let O be
a set of oracles O, � = �(k) be a positive polynomial, and P and A be oracle PP-
TAs. If PO is a permutation over {0, 1}� for all oracles O ∈ O, then we denote by

Ẽxpt
OWP

PO,AO,PSPACE,�(k) the following experiment:

[ O ←R O; x∗ ←R {0, 1}�; y∗ ← PO(x∗); x′ ←R AO,PSPACE(1k, y∗) ].

Note that Ẽxpt
OWP

PO,AO,PSPACE,�(k) includes sampling an oracle O from O.

Then, we define Ãdv
OWP

PO,AO,PSPACE,�(k) := EO←RO[ Adv
OWP
PO,AO,PSPACE,�(k) ], i.e.,

Ãdv
OWP

PO,AO,PSPACE,�(k)

= Pr[O ←R O;x∗ ←R {0, 1}�; y∗ ← PO(x∗);x′ ←R AO,PSPACE(1k, y∗) : x′ = x∗].

(Our goal in this subsection is to show that Ãdv
OWP

PT,AT,PSPACE,�(k) is overwhelming.)

Block Cipher Oracle B. Here we introduce a “block cipher” oracle B which models
an ideally secure block cipher (or, keyed invertible permutation) whose key space is
sparse. Formally, a block cipher oracle B consists of the following three suboracles
(Ĝ,P ,P−1):

Ĝ : {0, 1}k → {0, 1}2k: (Corresponding to the key generation for the block cipher)
This is an injective function that takes td ∈ {0, 1}k as input, and returns ek ∈
{0, 1}2k.

P : {0, 1}2k×{0, 1}k → {0, 1}k∪{⊥}: (Corresponding to encryption) For every ek ∈
Range(Ĝ), P(ek, ·) is a permutation over {0, 1}k, and for every ek /∈ Range(Ĝ)
and every α ∈ {0, 1}k, P(ek, α) = ⊥.

P−1 : {0, 1}2k × {0, 1}k → {0, 1}k ∪ {⊥}: (Corresponding to decryption) For ev-
ery ek ∈ Range(Ĝ), P−1(ek, ·) is the inversion of P(ek, ·), and for every ek /∈
Range(Ĝ) and every β ∈ {0, 1}k, P−1(ek, β) = ⊥.

We denote by B the set consisting of all possible block cipher oracles B that satisfy the
above syntax.
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Relationship between T and B. We will use the following simple fact shown by Lindell
and Zarosim [30].

Lemma 5. ([30]) Let φ be the mapping that maps a block cipher oracle B = (Ĝ,P ,
P−1) ∈ B to a tuple of oracles φ(B) = (G, E ,D), where the suboracles G, E , and D
are defined in the following way: For all td ∈ {0, 1}k, ek ∈ {0, 1}2k, α ∈ {0, 1}k and
β ∈ {0, 1}k, we let

G(td) := Ĝ(td), E(ek, α) := P(ek, α), and D(td, β) := P−1(Ĝ(td), β).

Then, φ is a bijection from B to T.

Round Function Oracle R. Here, we introduce a “round function” oracle R which
models a set of “round functions” in the Feistel-network construction of permutations
[32] (whose evaluation key space is sparse). Formally, a round function oracle R con-
sists of the following two suboracles (G̃,F):

G̃ : {0, 1}k → {0, 1}2k: (Corresponding to the key generation for each round func-
tion) This is an injective function that takes td ∈ {0, 1}k as input, and returns
ek ∈ {0, 1}2k.

F : [14] × {0, 1}2k × {0, 1}k/2 → {0, 1}k/2 ∪ {⊥}: (Corresponding to the round
functions in the Feistel-network). For every index i ∈ [14] and ek ∈ Range(G̃),
F(i, ek, ·) is a function from k/2 bit to k/2 bit, and for every ek /∈ Range(G̃) and
every (i, γ) ∈ [14]× {0, 1}k/2, F(i, ek, γ) = ⊥.

We denote by R the set consisting of all possible round function oraclesR that satisfy
the above syntax.

Relationship between B and R. Holenstein et al. [23] showed that the random oracle
model and the ideal cipher model are equivalent. (The statement itself was posed by
Coron et al. [10].) More concretely, they proved that a random invertible permutation
can be simulated by the fourteen-round Feistel-network construction of a permutation in
which each round function is an independent random function. (Technically, this means
that the latter is indifferentiable [34] from the former.) Based on their result, we can also
construct oracle PPTAs C and S such that (CR,R) and (B, SB) are indistinguishable.

More formally, consider the following PPTA C that, given access to R = (G̃,F) ∈
R, tries to simulate a block cipher oracle CR = (Ĝ,P ,P−1) as follows:

Ĝ(·): Define Ĝ(·) = G̃(·).
P(·, ·): On input (ek, α) ∈ {0, 1}2k × {0, 1}k, check if ek ∈ Range(G̃) by making an

F -query (1, ek, 0k/2). If the answer from F is ⊥ (meaning ek /∈ Range(G̃)), then
return ⊥. Otherwise, regard α as α = (L0||R0) so that |L0| = |R0| = k/2. Then,
for each i ∈ [14], compute Li ← Ri−1 and Ri ← F(i, ek, Ri−1) ⊕ Li−1, and
finally output β ← (L14||R14).

P−1(·, ·): On input (ek, β) ∈ {0, 1}2k × {0, 1}k, check if ek ∈ Range(G̃) as above.
If ek /∈ Range(G̃), then return ⊥. Otherwise, compute and output the inversion of
P(ek, ·) using F .
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Constructed as above, it is guaranteed that CR ∈ B for all R ∈ R, because the Feistel-
network construction yields a permutation no matter what round functions are used.
Moreover, the result in [23] yields the following.

Lemma 6. (follows from [23].) Let C be the oracle PPTA as above. Then, for any
polynomial q = q(k), there exists an oracle PPTA S such that for all (computationally
unbounded) oracle algorithms D making at most q queries, the following difference is
negligible:

| Pr
R←RR

[DCR,R(1k) = 1]− Pr
B←RB

[DB,SB
(1k) = 1]|.

TDP Oracle T Can Be Simulated. Here, we show that if there exists a TDP-based
permutation PT , then so does a “random function”-based permutation P̃R such that
inverting P̃R is as hard as inverting PT . Furthermore, the latter is true even in the
presence of PSPACE oracle.

Lemma 7. Let � = �(k) be a positive polynomial and P be an oracle PPTA such that
PT is a permutation over {0, 1}� for all T ∈ T. Then, there exists another oracle PPTA
P̃ that satisfies the following two properties: (1) For all R ∈ R, P̃R ∈ Perm�. (2) For
any oracle PPTA Ã, there exist another oracle PPTA A and a negligible function μ(k)

such that Ãdv
OWP

PT,AT,PSPACE,�(k) ≥ Ãdv
OWP

P̃R,ÃR,PSPACE,�(k)− μ(k).

Proof of Lemma 7. (The intuitive explanation can be found in Section 1.3.) Let � and
P be as stated in the lemma. First, define the “intermediate” oracle PPTA P̂ by P̂B(·) =
Pφ(B)(·), where φ is the bijection from B to T due to Lemma 5. This construction
of P̂ also guarantees that PT (·) = P̂φ−1(T )(·) where φ−1 is the inversion function
of φ (i.e. φ−1 is also a bijection from T to B). Next, define the oracle PPTA P̃ by
P̃R(·) = P̂CR

(·), whereC is the oracle PPTA due to Lemma 6. Then, since PT ∈ Perm�

for all T ∈ T, we have P̂B ∈ Perm� for all B ∈ B. This in turn guarantees that
P̃R ∈ Perm� for all R ∈ R, because CR ∈ B for all R ∈ R. Therefore, P̃ satisfies the
property (1).

Next, we show that P̃ satisfies the property (2). Let Ã be an arbitrary oracle PPTA

adversary that runs in the experiment Ẽxpt
OWP

P̃R,ÃR,PSPACE,�(k) and makes in total q = q(k)

oracle queries. Note that since Ã is a PPTA, q is a polynomial. Let S be the simulator
corresponding to the polynomial q, which is guaranteed to exist by Lemma 6, and define
an oracle PPTA Â(·),(·) (which expects to have access to an oracle B ∈ B and the
PSPACE oracle) by ÃS(·),(·). That is, given access to any B ∈ B and the PSPACE

oracle, ÂB,PSPACE and ÃSB,PSPACE behave identically. Since both Ã and S are oracle
PPTAs, Â is also an oracle PPTA and thus makes at most polynomially many queries.

Then, consider the following sequence of games.

Game 1. This is the ordinary experiment Ẽxpt
OWP

P̃R,ÃR,PSPACE,�(k) that Ã runs in. That is:

[R←R R; x∗ ←R {0, 1}�; y∗ ← P̃R(x∗); x′ ←R ÃR,PSPACE(1k, y∗)].
Game 2. This game is defined as follows:

[B ←R B; x∗ ←R {0, 1}�; y∗ ← P̂B(x∗); x′ ←R ÂB,PSPACE(1k, y∗)].
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Game 3. This game is defined as follows:
[T ←R T; x∗ ←R {0, 1}�; y∗ ← PT (x∗); x′ ←R Âφ−1(T ),PSPACE(1k, y∗)].

Game 4. Same as Game 3, except that when Â makes a P-query (ek, α) or a P−1-
query (ek, β) such that ek is not an answer to some of Â’s previous Ĝ-queries, the
query is answered with ⊥.

For i ∈ [4], let Succi be the event that x′ = x∗ occurs in Game i. Then we have

ÃdvP̃R,ÃR,PSPACE,�(k) = Pr[Succ1] ≤
∑
i∈[3]

|Pr[Succi]−Pr[Succi+1]|+Pr[Succ4]. (2)

To complete the proof, we upperbound each term in the above inequality.

Claim 1. |Pr[Succ1]− Pr[Succ2]| is negligible.

Proof of Claim 1. We show that we can construct a computationally unbounded oracle
algorithm (distinguisher) D that, using P̂ and Ã as its subroutines, makes at most q
queries, and satisfies

| Pr
R←RR

[DCR,R(1k) = 1]− Pr
B←RB

[DB,SB
(1k) = 1]| = |Pr[Succ1]− Pr[Succ2]|. (3)

D is given access to two oracles (O1,O2), which is either (CR,R) or (B, SB), and runs
as follows:

DO1,O2(1k): D picks x∗ ←R {0, 1}�, computes y∗ ← P̂O1(x∗), and then simulates
ÃO2,PSPACE(1k, y∗). Note that D is computationally unbounded, and thus can sim-
ulate the PSPACE oracle perfectly for Ã.
When Ã terminates with output x′, D checks whether x′ = x∗. If this is the case,
then D outputs 1, otherwise outputs 0, and terminates.

The above completes the description of D. Note that the number of queries that D
makes is at most the number of queries made by Ã, and thus is at most q.

Now, consider the case when (O1,O2) = (CR,R). Then it is clear thatD simulates
Game 1 perfectly for Ã. In particular, in this case we have P̂O1(x∗) = P̂CR

(x∗) =

P̃R(x∗), and Ã is given access to O2 = R and PSPACE as in Game 1. Under this situ-
ation, the probability that D outputs 1 is exactly the same as the probability that Ã suc-
ceeds in outputting the preimage x∗ under P̃R in Game 1, i.e. PrR←RR[DCR,R(1k) =
1] = Pr[Succ1].

Next, consider the case when (O1,O2) = (B, SB). Recall that we defined ÂB,PSPACE

by ÃSB,PSPACE, and thus ÃO2,PSPACE = ÃSB,PSPACE = ÂB,PSPACE . Recall also that D
can simulate PSPACE perfectly by its computationally unbounded power. Therefore,
in this case D perfectly simulates Game 2 for Â. In particular, in this case we have
P̂O1(x∗) = P̂B(x∗), and Â’s oracle queries are perfectly answered as in Game 2, using
O1 = B and D’s computationally unbounded power. Therefore the probability that
D outputs 1 is exactly the same as the probability that Â outputs x∗ in Game 2, i.e.
PrB←RB[DB,SB

(1k) = 1] = Pr[Succ2].
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In summary, our distinguisher D makes in total q queries and satisfies the equation
(3). Thus, Lemma 6 guarantees that |Pr[Succ1] − Pr[Succ2]| is upperbounded to be
negligible. This completes the proof of Claim 1. ��

Claim 2. Pr[Succ2] = Pr[Succ3].

Proof of Claim 2. Recall that due to Lemma 5, φ (and thus φ−1) is a bijection between
B and T. Therefore, the uniform distribution over B is equivalent to the distribution of
φ−1(T ) when T ←R T. Moreover, PT (·) = P̂φ−1(T )(·) for all T ∈ T by definition.
These imply that from Â’s view point, all values in Game 2 and those in Game 3 are
distributed identically, and thus Pr[Succ2] = Pr[Succ3]. This completes the proof of
Claim 2. ��

Claim 3. |Pr[Succ3]− Pr[Succ4]| is negligible.

Proof Sketch of Claim 3. For i ∈ {3, 4}, let Findi be the event that in Game i, Âmakes
at least one P- or P−1-query such that ek is not an answer to some of previous Â’s
Ĝ-queries and ek ∈ Range(G). Note that Game 3 and Game 4 proceed identically until
Find3 or Find4 occurs in the corresponding games. Therefore, we have

|Pr[Succ3]− Pr[Succ4]| ≤ Pr[Find3] = Pr[Find4].

Hence, to prove the claim it is sufficient to bound Pr[Find4].
Recall that in Game 4 (and in Game 3) the oracle T ∈ T is picked uniformly, and

thus G oracle is a random injective function which is length-doubling. Therefore, the
probability that Find4 occurs is exactly the same as the probability that an oracle al-
gorithm with polynomial query complexity, which is given access to a random length-
doubling injective function and the corresponding “membership” function for its range
(this membership function tells if a given value is in the range of the injective function),
finds a “fresh” element that is not obtained by actually making a query to the function
but belongs to its range. However, it is easy to prove that such a probability is negligible
(as long as the query complexity of the algorithm is at most polynomial), and this in
turn bounds Pr[Find4] to be negligible. (The formal proof is provided in the full ver-
sion.) This completes the proof sketch of Claim 3. ��

Claim 4. There exists an oracle PPTAA such that Pr[Succ4] = Ãdv
OWP

PT,AT,PSPACE,�(k).

Proof of Claim 4. Using the oracle PPTA Â as a building block, we construct an

oracle PPTA A that runs in Ẽxpt
OWP

PT,AT,PSPACE,�(k): A is given (1k, y∗) as input, where
y∗ = PT (x∗) for a randomly chosen x∗ ∈ {0, 1}� and T ∈ T, given access to T and
PSPACE, and runs as follows:

AT ,PSPACE(1k, y∗): A generates an empty list L used to store “known”G-query/answer
pairs, and then runs Â(1k, y∗).
A responds to the queries from Â as follows:

– For a Ĝ-query td,A forwards it to G, receives ek from G, and returns this ek to
Â. A also stores the pair (td, ek) into the list L.
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– For a P-query (ek, α), if there is no entry of the form (∗, ek) in L, then A
responds with ⊥. Otherwise, A makes a E-query (ek, α), receives β from E ,
and finally returns this β to Â.

– For a P−1-query (ek, β), if there is no entry of the form (∗, ek) in L, then
A responds with ⊥. Otherwise, A retrieves td that corresponds to ek from L,
makes a D-query (td, β), receives α from D, and finally returns this α to Â.

– For a PSPACE-query,A answers to it by usingA’s own PSPACE oracle.
When Â terminates with output x′, A also terminates with output this x′.

It is easy to see that A perfectly simulates Game 4 for Â in which the oracles given
access to Â are φ−1(T ) (that works as specified in Game 4) and PSPACE. Under this
situation, when Â succeeds in outputting the value x∗ such that P̂φ−1(T )(x∗) = y∗,
since PT (·) = P̂φ−1(T )(·) for all T ∈ T by definition, A also succeeds in outputting

the preimage under PT . Therefore, we have Ãdv
OWP

PT,AT,PSPACE(k) = Pr[Succ4]. This com-
pletes the proof of Claim 4. ��

Claims 1 to 4 imply that for any oracle PPTA Ã, there exist an oracle PPTA A and a

negligible function μ(k) such that Ãdv
OWP

PT,AT,PSPACE,�(k) ≥ Ãdv
OWP

P̃R,ÃR,PSPACE,�(k) − μ(k),
and thus the property (2) is satisfied as well. This completes the proof of Lemma 7. ��

“Mimicking” Algorithm N and Good Inverter Q for N. The combination of the re-
sults by Rudich [43] and Kahn et al. [26] shows that any permutation which has ora-
cle access to a set of random functions can be inverted using the PSPACE oracle. On
the other hand, Lemma 7 shows that for any TDP-based permutation PT , there is an-
other “random function”-based permutation P̃R such that if P̃R can be inverted using
the PSPACE oracle, then so can be PT . Here, it seems that by combining the results
[43,26] and Lemma 7 we can invert the “random function”-based permutation P̃R using
the PSPACE oracle. However, there is a subtle issue here: The suboracle F in a round
function oracle R is not a pure random function, even if R is sampled randomly from
the set R. Specifically, F returns an “invalid” symbol ⊥ for some inputs, and thus we
cannot directly use the results [43,26].

For convenience, let us refer to a query to the suboracle F in a round function oracle
R ∈ R as invalid if the answer to the query is⊥, and an oracle algorithm N that expects
to access to an oracleR ∈ R as legal if NR never makes an invalid query for allR ∈ R

and for all inputs.
To resolve the subtlety on invalid queries, we will use the approach by Chang et al.

[9]: we show two lemmas that enable us to finally show that a TDP-based permutation
can be inverted almost perfectly. The first lemma below (Lemma 8) roughly states that
for a permutation P̃R based on a round function oracleR, there is a “mimicking” algo-
rithm NR which is legal and, for most inputs, computes almost the same result as P̃R

for most oraclesR ∈ R.

Lemma 8. Let � = �(k) > 0 be a polynomial and P̃ be an oracle PPTA such that P̃R

is a permutation over {0, 1}� for allR ∈ R. Then, there exists an oracle PPTA N (that
expects to access to an oracle from R) with the following properties: (i) N is legal, and
(ii) For sufficiently large k’s, for at least 1 − 2 · 2−k/6 fraction of strings y ∈ {0, 1}�,
(NR)−1(y) = (P̃R)−1(y) holds for at least 1− 2−k/3 fraction of oraclesR ∈ R.
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The formal proof proceeds closely to that of [9, Claim 3 and Lemma 3], and is given in
the full version. We give a proof sketch.

Proof Sketch of Lemma 8. Let � and P̃ be as stated in the lemma. Using P̃ as a subrou-
tine, we construct the oracle PPTA N that satisfies the properties (i) and (ii). N takes a
string x ∈ {0, 1}� as input, has access to an oracleR ∈ R, and runs as follows:

NR(x): N firstly generates an empty list L into which “known” evaluation-keys ek ∈
Range(G̃) will be stored, and then runs P̃(x). N responds to queries from P̃ as
follows:

– When P̃ makes a G̃-query td ∈ {0, 1}k, N forwards it to G̃, receives a result ek
from G̃, and returns this ek to P̃. N also stores ek into the list L.

– When P̃ makes a F -query (i, ek, γ) ∈ [14]×{0, 1}2k×{0, 1}k/2, N responds
with ⊥ if ek /∈ L. Otherwise, N forwards (i, ek, γ) to F , receives an answer
δ ∈ {0, 1}k/2 from F , and returns δ to P̃.

When P̃ terminates with output y, N also terminates with output y.

The above completes the description of N. Note that N is legal, because N’s F -queries
always satisfy ek ∈ Range(G̃). Hence, the property (i) is satisfied.

To show that the above N satisfies the property (ii), we will show the following
two claims that together imply what we want (the formal proofs are given in the full
version), and hence enable us to complete the proof of Lemma 8:

Claim 5. For any string x ∈ {0, 1}�, PrR←RR[N
R(x) �= P̃R(x)] ≤ 2−k/2 holds for

sufficiently large k’s.

Claim 6. For sufficiently large k’s, the following holds. There are at least 1− 2 · 2−k/6

fraction of strings y ∈ {0, 1}� such that (NR)−1(y) = (P̃R)−1(y) holds for at least
1− 2−k/3 fraction of oraclesR ∈ R.

Claim 5 can be shown in a similar manner to the negligible upperbound of Pr[Find4] in
the proof of Claim 3. Specifically, it is clear from the description of N that for any input
x ∈ {0, 1}�, the output of N and that of P̃ agree unless P̃ makes a F -query (∗, ek, ∗)
such that ek is not an answer to P̃’s previous G̃-queries. Therefore, “NR(x) �= P̃R(x)”
must mean that P̃ makes such a F -query. However, if R is chosen uniformly, G̃ is
a random length-doubling injective function, and thus the probability of P̃ finding a
“fresh” element that belongs to Range(G̃) is exponentially small. (Here,F works as the
“membership” oracle regarding the range of G̃, but it does not help much.)

For showing Claim 6, consider the Boolean matrix M =
(
M(y,R)

)
whose rows are

indexed by y ∈ {0, 1}� and whose columns are indexed byR ∈ R, so that M(y,R) = 1

if and only if (NR)−1(y) �= (P̃R)−1(y). By Claim 5, we know that for sufficiently
large k’s, we have that for each x ∈ {0, 1}�, NR(x) �= P̃R(x) holds for at most 2−k/2

fraction of oraclesR ∈ R. Since any such pair (x,R) contributes at most two 1’s to the
matrix M (namely, to the entries M(NR(x),R) and M(P̃R(x),R)), the total fraction of 1’s

in M is at most 2 · 2−k/2. That is, Pry←R{0,1}�,R←RR
[M(y,R) = 1] ≤ 2 · 2−k/2. Then,

a simple counting argument yields Claim 6.
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This completes the proof sketch of Lemma 8. ��
We note that even if P̃R is a permutation, NR in Lemma 8 is not guaranteed to

be a permutation (although NR is very close to a permutation), and this is the main
reason why we cannot directly use the results from [43,26]. A similar situation was
encountered in [9] where the authors could not directly apply the results from [43,26]
to show the separation of a OWP from a trapdoor function.

Fortunately, we can use the next lemma, which is implied by the one shown and used
in [9, Section 3.2] (which is in turn based on [43,26]). The following lemma roughly
says that if most of the images under a legal oracle algorithm NR have a unique preim-
age, (and in particular these properties are satisfied by the algorithm NR in Lemma 8),
then there is an oracle algorithm QR,PSPACE that can invert NR almost always, using
the PSPACE oracle.

Lemma 9. (follows from [9, Lemma 4].) Let � = �(k) be a positive polynomial. There
exists a constant λ > 0 such that for every legal oracle PPTA N(·) : {0, 1}� → {0, 1}�
(that expects to access to an oracle from R), there is another oracle PPTA Q with
the following property: For any ε < λ and any y ∈ {0, 1}�, if the size of the set
(NR)−1(y) = {x ∈ {0, 1}�|NR(x) = y} is one for 1 − ε fraction of oracles R ∈ R,
then QR,PSPACE(1k, y) = (NR)−1(y) holds for 1−

√
ε fraction of oraclesR ∈ R.

Inverting Any Permutation Based on T : Proof of Lemma 4. Now, we are ready to prove
Lemma 4. Let � and P be as stated in the lemma. By lemma 7, for this P, there is an
oracle PPTA P̃ such that P̃R ∈ Perm� for all R ∈ R. Then, Lemma 8 tells us that for
this P̃, there exists an oracle PPTA N that satisfies the properties (i) and (ii). Since P̃R is
a permutation for allR ∈ R, the size of the set (P̃R)−1(y) = {x ∈ {0, 1}�|P̃R(x) = y}
is one for all y ∈ {0, 1}� and allR ∈ R. Thus, if (NR)−1(y) = (P̃R)−1(y), the size of
the set (NR)−1(y) = {x ∈ {0, 1}�|NR(x) = y} must also be one. By the property (ii)
of N in Lemma 8, for at least 1 − 2 · 2−k/6 fraction of strings y ∈ {0, 1}�, the size of
the set (NR)−1(y) = {x ∈ {0, 1}�|NR(x) = y} is one for at least 1 − 2−k/3 fraction
of oraclesR ∈ R.

Set ε′ = 2−k/3. For any constant λ > 0, ε′ < λ holds for all sufficiently large k’s,
and thus this ε′ can be used as the ε in Lemma 9. Call y ∈ {0, 1}� good if (NR)−1(y) =

(P̃R)−1(y) holds for 1 − 2−k/3 fraction of oracles R ∈ R. By definition, if y is good,
then it is guaranteed that the size of the set (NR)−1(y) = {x ∈ {0, 1}�|NR(x) = y} is
one for at least 1− ε′ = 1− 2−k/3 fraction of oraclesR ∈ R, and it is also guaranteed
that Pry←R{0,1}� [y is good] ≥ 1 − 2 · 2−k/6 holds. Furthermore, by using N and ε′,
Lemma 9 implies that there is an oracle PPTA Q such that for sufficiently large k’s and
for all good y’s, QR,PSPACE(y) = (NR)−1(y) holds for 1 −

√
ε′ fraction of oracles

R ∈ R. Recall that for y ∈ {0, 1}� and R ∈ R such that (NR)−1(y) = (P̃R)−1(y)

and QR,PSPACE(1k, y) = (NR)−1(y) = x, it holds that P̃R(x) = y, i.e. Q succeeds
in calculating the preimage x of y under the permutation P̃R. Therefore, considering
sufficiently large k’s, we have

Pr[R←R R;x←R Q
R,PSPACE(1k, y) : NR(x) = P̃R(x) = y|y is good]

≥ 1−
√
ε′ = 1− 2−k/6.
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Now, define an oracle PPTA adversary Ã, which runs in Ẽxpt
OWP

P̃R,ÃR,PSPACE,�(k), by

ÃR,PSPACE(1k, y∗) = QR,PSPACE(1k, y∗). Since x∗ is chosen uniformly from {0, 1}�

in Ẽxpt
OWP

P̃R,ÃR,PSPACE,�(k) and P̃R is a permutation, y∗ = P̃R(x∗) is distributed uniformly
over {0, 1}�. Therefore, for sufficiently large k’s, we have:

Ãdv
OWP

P̃R,ÃR,PSPACE,�(k)

= Pr[R ←R R;x
∗ ←R {0, 1}�; y∗ ← P̃R(x∗);x′ ←R ÃR,PSPACE(1k, y∗) : x′ = x∗]

≥ Pr[R ←R R; y
∗ ←R {0, 1}�;x′ ←R Q

R,PSPACE(1k, y∗) : NR(x′) = P̃R(x′) = y∗]

≥ Pr[R ←R R;x
′ ←R Q

R,PSPACE(1k, y∗) : NR(x′) = P̃R(x′) = y∗|y∗ is good]

× Pr
y∗←{0,1}�

[y∗ is good]

≥ (1− 2−k/6) · (1− 2 · 2−k/6) ≥ 1− 3 · 2−k/6.

Finally, by the property (2) of P in Lemma 7, for this Ã, there exist an oracle PPTA

adversary A, which runs in Ẽxpt
OWP

PT,AT,PSPACE,�(k), and a negligible function μ(k) such
that for sufficiently large k’s:

Ãdv
OWP

PT,AT,PSPACE(k) ≥ Ãdv
OWP

P̃R,ÃR,PSPACE,�(k)− μ(k) ≥ 1− 3 · 2−k/6 − μ(k).

What we have shown thus far is that there exists an oracle PPTA A such that
ET ←RT[Adv

OWP
PT ,AT ,PSPACE,�(k)] = Ãdv

OWP

PT,AT,PSPACE(k) is overwhelming. The above can
be shown for all positive polynomials �(k) and any PPTA P such that PT ∈ Perm� for
all T ∈ T. This completes the proof of Lemma 4. ��

4 Towards More General Separations

Broader Class of Permutations and Permutation Families. As in the previous black-box
separation results of a OWP from other basic primitives [43,26,9,33], our separation
results rule out a black-box construction of a OWP which is defined over strings (i.e.
the domain is a set of strings of a fixed length determined by the security parameter).
However, we can consider a more general form of a permutation whose domain is not
just a set of strings but an arbitrary set D, and which has a corresponding sampling
algorithm Samp to sample an element from the domain D (although such formulation
of a OWP is not standard). Furthermore, as a more natural and closely related primitive
to a OWP, we can also consider a public-coin OWPF.

Therefore, a natural question regarding our result will be: “Can our impossibility
result be extended to also rule out a black-box construction of a OWP with such general
form of domain or of a public-coin OWPF?”

We note that previously to our work, Hsiao and Reyzin [24] conjectured that there
is no black-box construction of a public-coin OWPF from a secret-coin OWPF. We can
partially answer to the above question in the positive due to the result by Goldreich
et al. [17], who showed that there is a (fully-)black-box construction of a OWP from a
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public-coin OWPF with the canonical domain sampling property (see Section 2.2 for
the definition and a brief review of the construction of [17]). This result, combined with
Theorem 1, yields the following corollary.

Corollary 2. There is no fully-black-box construction of a public-coin OWPF with
canonical domain sampling from an ideal TDP.

It seems to us that if we consider another restricted type of a constructed public-coin
permutation family such that the sampling algorithm Samp of the constructed permuta-
tion family does not use the algorithms of a building block TDP, then we can rule out a
black-box construction of such public-coin OWPF from an ideal TDP, with essentially
the same approach used to show Theorem 1 (although we have not formally checked
this). This is because if Samp of the constructed public-coin permutation family does
not depend on the TDP used as a building block, then whenever we use a same evalu-
ation key ek, the domain Dek of a permutation Eval(ek, ·) remains the same, and thus
slight modifications of Lemmas 7 to 9 seem to work accordingly.

Other than these observations, so far we do not know how to rule out the possibility
of constructing a public-coin OWPF from a TDP (or even from an ordinary secret-coin
OWPF) in general, and thus we would like to leave it as an interesting open problem.
Goldreich et al. [17] showed that under the standard RSA assumption or a discrete
logarithm assumption in the integer group Z∗

p (with some appropriate condition on p),
we can construct a public-coin OWPF with the canonical domain sampling property,
and hence a OWP. However, they noted that how to construct a OWP or a public-coin
OWPF under the standard factoring assumption is still open. Tackling the above open
problem of clarifying whether there exists a black-box construction of a public-coin
OWPF from a secret-coin OWPF will also contribute to this problem: If it turns out
to be possible (which we think is unlikely), then we can use the Rabin TDP [40] as a
building block to construct a public-coin OWPF, while if it is not possible, one has to
essentially use some specific algebraic property to build a public-coin OWPF under the
factoring assumption.

Stronger Separation. So far, all our results are impossibility of a fully-black-box con-
struction, which is the most restrictive type of black-box constructions. With a slight
modification, however, our separation results can be strengthened to show that there is
no semi-black-box construction (in the taxonomy of Reingold et al. [41]) of a OWP (and
a public-coin OWPF with canonical domain sampling) from an ideal TDP. Specifically,
to show such a result, we need to show a “single” oracle which simultaneously imple-
ments an ideal TDP and PSPACE. However, our TDP oracle T can be easily modified
to such an oracle by using the “embedding” technique due to Reingold et al. [41]. We
discuss more details in the full version.
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1 Introduction

In the setting of secure multiparty computation, some mutually distrusting par-
ties wish to compute some function of their inputs in the presence of adversarial
behavior. The security requirements of such a computation are that nothing is
learned from the protocol other than the output (privacy), that the outputs are
distributed according to the prescribed functionality (correctness) and that the
parties cannot choose their inputs as a function of the others’ inputs (indepen-
dence of inputs). Another important security property is that of fairness, which
intuitively means that the adversary learns the output if and only if, the honest
parties learn their output.

In the multiparty case, where a majority of the parties are honest, it is possi-
ble to compute any functionality while guaranteeing all the security properties
mentioned above [14,6,8,25,13]. In the multiparty case when honest majority is
not guaranteed, including the important case of the two-party settings where
one may be corrupted, it is possible to compute any function while satisfying
all security properties mentioned above except for fairness [29,14,13]. The defi-
ciency of fairness is not just an imperfection of theses constructions, but rather
a result of inherent limitation. The well-known impossibility result of Cleve [9]
shows that there exist functions that cannot be computed by two parties with
complete fairness, and thus, fairness cannot be achieved in general. Specifically,
Cleve showed that the coin-tossing functionality, where two parties toss an un-
biased fair coin, cannot be computed with complete fairness. This implies that
any function that can be used to toss a fair coin (like, for instance, the boolean
XOR function) cannot be computed fairly as well.

Since Cleve’s result, the accepted belief has been that only trivial functions1

can be computed with complete fairness. This belief is based on a solid and
substantiate intuition: In any protocol computing any interesting function, the
parties move from a state of no knowledge about the output to full knowledge
about it. Protocols proceed in rounds and the parties cannot exchange informa-
tion simultaneously, therefore, apparently, there must be a point in the execution
where one party knows more about the output than the other party. Aborting
at that round yields the unfair situation where one party can guess better the
output, and learn the output alone.

Our understanding regarding fairness has been changed recently by the sur-
prising work of Gordon, Hazay, Katz and Lindell [17]. This work shows that there
exist some non-trivial (deterministic, finite-domain) boolean functions that can
be computed in the malicious settings with complete fairness, and re-opens the
research on this subject. The fact that some functions can be computed fairly,
while some other were proven to be impossible to compute fairly, raises the
following fundamental question:

Which functions can be computed with complete fairness?

1 In our context, the term “trivial functions” refers to constant functions, functions
that depend on only one party’s input and functions where only one party receives
output. It is easy to see that these functions can be computed fairly.
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Recently, [3] provided a full characterization for the class of functions that
imply fair coin-tossing and thus are ruled out by Cleve’s impossibility. This
extends our knowledge on what functions cannot be computed with complete
fairness. However, there have been no other works that further our understanding
regarding which (boolean) functions can be computed fairly, and the class of
functions for which [17] shows possibility are the only known possible functions.
There is therefore a large class of functions for which we have no idea as to
whether or not they can be securely computed with complete fairness.

To elaborate further, the work of [17] show that any function that does
not contain an embedded XOR (i.e., inputs x1, x2, y1, y2 such that f(x1, y1) =

f(x2, y2) �= f(x1, y2) = f(x2, y1)) can be computed fairly. Examples of functions
without an embedded XOR include the boolean OR / AND functions and the
greater-than function. Given the fact that Cleve’s impossibility result rules out
completely fair computation of boolean XOR, a natural conjuncture is that any
function that does contain an embedded XOR is impossible to compute fairly.
However, the work shows that this conclusion is incorrect. Namely, it considers
a specific function that does contain an embedded XOR, and constructs a proto-
col that securely computes this function with complete fairness. Furthermore, it
presents a generalization of this protocol that may potentially compute a large
class of functions. It also shows how to construct a (rather involved) set of equa-
tions for a given function, that indicates whether the function can be computed
fairly using this protocol.

These results are ground-breaking and completely change our perception re-
garding fairness. The fact that something non-trivial can be computed fairly is
very surprising, it contradicts the aforementioned natural intuition and com-
mon belief and raises many interesting questions. For instance, are there many
functions that can be computed fairly, or only a few? Which functions can be
computed fairly? Which functions can be computed using the generalized GHKL
protocol? What property distinguishes these functions from the functions that
are impossible to compute fairly? Furthermore, the protocol of GHKL is espe-
cially designed for deterministic symmetric boolean functions with finite domain,
where both parties receive the same output. Is fairness possible in any other
class of functions, over larger ranges, or for asymmetric functions? Overall, our
understanding of what can be computed fairly is very vague.

1.1 Our Work

In this paper, we study the fundamental question of characterizing which func-
tions can be computed with complete fairness. We show that any function that
defines a full-dimensional geometric object, can be computed with complete fair-
ness. That is, we present a simple property on the truth table of the function,
and show that every function that satisfies this property, the function can be
computed fairly. This extends our knowledge of what can be computed fairly,
and is an important step towards a full characterization for fairness.

Our results deepen out understanding of fairness and show that many more
functions can be computed fairly than what has been thought previously. Using
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results of combinatorics, we show that a random function with distinct domain
sizes (i.e., functions f : X × Y → {0, 1} where |X| �= |Y |) defines a full-dimensional
geometric object with overwhelming probability. Therefore, surprisingly, almost
all functions with distinct domain sizes can be computed with complete fairness.

Although only one bit of information is revealed by output, the class of
boolean functions that define full-dimensional geometric object is very rich, and
includes fortune of interesting and non-trivial tasks. For instance, the task of
set-membership, where P1 holds some set S ⊆ Ω, P2 holds an element x ∈ Ω, and
the parties wish to find (privately) whether x ∈ S, is a part of this class. Other
examples are tasks like private matchmaking and secure evaluation of a private
(boolean) function, where the latter task is very general and can be applied in
many practical situations. Unexpectedly, it turns out that all of these tasks can
be computed with complete fairness.

In addition to the above, we provide an additional property that indicates that
a function cannot be computed using the protocol of GHKL. This property is
almost always satisfied in the case where |X| = |Y |. Thus, at least at the intuitive
level, almost all functions with |X| �= |Y | can be computed fairly, whereas almost
all functions with |X| = |Y | cannot be computed using the protocol of GHKL.
This negative result does not rule out the possibility of these functions using
some other protocols, however, it shows that the only known possibility result
does not apply to this class of functions. Combining this result with [3] (i.e.,
characterization of coin-tossing), there exists a large class of functions for which
the only known possibility result does not apply, the only known impossibility
result does not apply either, and so fairness for this set of functions is left as an
interesting open problem.

Furthermore, we also consider larger families of functions rather than the
symmetric boolean functions with finite domain, and show that fairness is also
possible in these classes. We consider the class of asymmetric functions where the
parties do not necessarily get the same output, as well as the class of functions
with non-binary outputs. This is the first time that fairness is shown to be
possible in both families of functions, and it shows that fairness can be achieved
in a much larger and wider class of functions than previously known.

Intuition. We present some intuition before proceeding to our results in more
detail. The most important and acute point is to understand what distinguishes
functions that can be computed fairly from functions that cannot. Towards this
goal, let us reconsider the impossibility result of Cleve. This result shows that
fair coin-tossing is impossible by constructing concrete adversaries that bias and
influence the output of the honest party in any protocol implementing coin-
tossing. We believe that such adversaries can be constructed for any protocol
computing any function, and not specific to coin-tossing. In any protocol, one
party can better predict the outcome than the other, and abort the execution
if it is not satisfied with the result. Consequently, it has a concrete ability to
influence the output of the honest party by aborting prematurely. Of course, a
fair protocol should limit and decrease this ability to the least possible, but in
general, this phenomenon cannot be totally eliminated and cannot be prevented.
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So if this is the case, how do fair protocols exist? The answer to this question
does not lie in the real execution but rather in the ideal process: the simulator can
simulate this influence in the ideal execution. In some sense, for some functions,
the simulator has the ability to significantly influence the output of the honest
party in the ideal execution and therefore the bias in the real execution is not
considered a breach of security. This is due to the fact that in the malicious
setting the simulator has an ability that is crucial in the context of fairness:
it can choose what input it sends to the trusted party. Indeed, the protocol of
GHKL uses this switching-input ability in the simulation, and as pointed out
by [3], once we take off this advantage from the simulator – every function that
contains an embedded XOR cannot be computed fairly, and fairness is almost
always impossible.

Therefore, the algebraic structure of the function plays an essential role in the
question of whether a function can be computed fairly or not. This is because
this structure reflects the “power” and the “freedom” that the simulator has
in the ideal world and how it can influence the output of the honest party. The
question of whether a function can be computed fairly is related to the amount of
“power” the simulator has in the ideal execution. Intuitively, the more freedom
that the simulator has, it is more likely that the function can be computed fairly.

A Concrete Example. We demonstrate this “power of the simulator” on two
functions. The first is the XOR function, which is impossible to compute by
a simple implication of Cleve’s result. The second is the specific function for
which GHKL has proved to be possible (which we call “the GHKL function”).
The truth tables of the functions are as follows:

(a)

y1 y2
x1 0 1
x2 1 0

(b)

y1 y2
x1 0 1
x2 1 0
x3 1 1

Fig. 1. (a) The XOR function – impossible, (b) The GHKL function – possible

What is the freedom of the simulator in each case? Consider the case where P1

is corrupted (that is, we can assume that P1 is the first to receive an output, and
thus it is “harder” to simulate). In the XOR function, let p be the probability
that the simulator sends the input x1 to the trusted party, and let (1−p) be the
probability that it sends x2. Therefore, the output of P2 in the ideal execution
can be represented as (q1, q2) = p ·(0, 1)+(1−p) ·(1, 0) = (1−p, p), which means that
if P2 inputs y1, then it receives 1 with probability 1−p, and if it uses input y2,
then it receives 1 with probability p. We call this vector “the output distribution
vector” for P2, and the set of all possible output distribution vectors reflects
the freedom that the simulator has in the ideal execution. In the XOR function,
this set is simply {(1−p, p) | 0 ≤ p ≤ 1}, which gives the simulator one degree
of freedom. Any increment of the probability in the first coordinate, must be
balanced with an equivalent decrement in the second coordinate, and vice versa.
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On the other hand, consider the case of the GHKL function. Assume that
the simulator chooses x1 with probability p1, x2 with probability p2 and x3 with
probability 1−p1−p2. Then, all the output vector distributions are of the form:

(q1, q2) = p1 · (0, 1) + p2 · (1, 0) + (1− p1 − p2) · (1, 1) = (1− p1, 1− p2) .

This gives the simulator two degrees of freedom, which is significantly more
power.

Geometrically, we can refer to the rows of the truth table as points in R2, and
so in the XOR function we have the two points (0, 1) and (1, 0). All the output
distribution vectors are of the form p · (0, 1) + (1−p) · (1, 0) which is exactly the
line segment between these two points (geometric object of dimension 1). In the
GHKL function, all the output distribution vectors are the triangle between the
points (0, 1), (1, 0) and (1, 1), which is a geometric object of dimension 2 (a full
dimensional object in R2).

The difference between these two geometric objects already gives a perception
for the reason why the XOR function is impossible to compute, whereas the
GHKL function is possible, as the simulator has significantly more options in
the latter case. However, we provide an additional refinement. At least in the
intuitive level, fix some output distribution vector of the honest party (q1, q2).
Assume that there exists a real-world adversary that succeeds to bias the output
and obtain output distribution vector (q′1, q

′
2) that is at most ε-far from (q1, q2).

In the case of the XOR function, this results in points that are not on the line,
and therefore this adversary cannot be simulated. On the contrary, in case of the
GHKL function, these points are still in the triangle, and therefore this adversary
can be simulated.

In Figure 2, we show the geometric objects defined by the XOR and the
GHKL functions. The centers of the circuits are the output distribution of honest
executions, and the circuits represent the possible biases in the real execution.
In (a) there exist small biases that are invalid points, whereas in (b) all small
biases are valid points that can be simulated.

(a) The potential output distribution vec-
tors of the XOR function: a line segment
between (0, 1) and (1, 0)

(b) The potential output distribution vec-
tors of the GHKL function: the triangle
between (0, 1), (1, 0) and (1, 1)

Fig. 2. The geometric objects defined by the XOR (a) and the GHKL (b) functions
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1.2 Our Results

For a given function f : {x1, . . . , x�} × {y1, . . . , ym} → {0, 1}, we consider its geo-
metric representation as � points over Rm, where the jth coordinate of the ith
point is simply f(xi, yj). We then prove that any function that its geometric
representation is of full dimension can be computed with complete fairness. We
prove the following theorem:

Theorem 1.1 (informal). Let f : X × Y → {0, 1} be a function. Under suit-
able cryptographic assumptions, if the geometric object defined by f is of full-
dimension, then the function can be computed with complete fairness.

For the proof, we simply use the extended GHKL protocol. Moreover, the proof
uses tools from convex geometry. We find the connection between the problem
of fairness and convex geometry very appealing.

On the other hand, we show that if the function is not full dimensional,
and satisfies some additional requirements (that are almost always satisfied in
functions with |X| = |Y |), then the function cannot be computed using the
protocol of [17].

We then proceed to the class of asymmetric functions where the parties do not
necessarily get the same output, and the class of non-binary output. Interestingly,
the GHKL protocol can be extended to these classes of functions. We show:

Theorem 1.2 (informal). Under suitable cryptographic assumptions,

1. There exists a large class of asymmetric boolean functions that can be com-
puted with complete fairness.

2. For any finite range Σ, there exists a large class of functions f : X×Y → Σ

that can be computed with complete-fairness.

For the non-binary case, we provide a general criteria that holds only for func-
tions for which |X| > (|Σ| − 1) · |Y |, that is, when the ratio between the domain
sizes is greater than |Σ| − 1. This, together with the results in the binary case,
may refer to an interesting relationship between the size of the domains and
possibility of fairness. This is the first time that a fair protocol is constructed
for both non-binary output, and asymmetric boolean functions. This shows that
fairness is not restricted to a very specific and particular type of functions, but
rather a property that under certain circumstances can be achieved. Moreover,
it shows the power that is concealed in the GHKL protocol alone.

Related Work. Several other impossibility results regarding fairness, rather
than the result of Cleve, have been published [12,1]. However, it seems that only
Cleve’s impossibility can be reduced into the family of boolean functions with
finite domain. The work of [3] identifies which function imply fair coin-tossing
and are ruled out by the impossibility result of Cleve. Interestingly, the class of
functions that imply fair coin-tossing shares a similar (but yet distinct) algebraic
structure with the class of functions that we show that cannot be computed using
the GHKL protocol. We link between the two criterions in the body of our work.
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For decades fairness was believed to be impossible, and so researchers have
simply resigned themselves to being unable to achieve this goal. Therefore, a
huge amount of works consider several relaxations like gradual release, partial
fairness and rational adversaries ([10,15,5,19,4,21] to state a few. See [16] for a
survey of fairness in secure computation).

Open Problems. Our work is an important step towards a full characterization
of fairness of finite domain functions. The main open question is to finalize this
characterization. In addition, it seems appealing to generalize our results to
functions with infinite domains (domains with sizes that depend on the security
parameter). Finally, in the non-binary case, we have a positive result only when
the ratio between the domain sizes is greater than |Σ| − 1. A natural question is
whether fairness be achieved in any other case, or for any other ratio.

2 Definitions and Preliminaries

We assume that the reader is familiar with the definitions of secure computation,
and with the ideal-real paradigm. We distinguish between security-with-abort,
for which the adversary may receive output while the honest party does not
(security without fairness), and security with fairness, where all parties receive
output (this is similar to security with respect to honest majority as in [7],
although we do not have honest majority). In the following, we present the
necessary notations, and we cover the mathematical background that is needed
for our results.

Notations.We let κ denote the security parameter. We use standard O notation,
and let poly denote a polynomial function. A function μ(·) is negligible if for
every positive polynomial poly(·) and all sufficiently large κ’s it holds that μ(κ) <
1/poly(κ). In most of the paper, we consider binary deterministic functions over
a finite domain; i.e., functions f : X × Y → {0, 1} where X,Y ⊂ {0, 1}∗ are finite
sets. Throughout the paper, we denote X = {x1, . . . , x�} and Y = {y1, . . . , ym},
for constants �,m ∈ N. Let Mf be the �×m matrix that represents the function,
i.e., a matrix whose entry position (i, j) is f(xi, yj). For 1 ≤ i ≤ �, let Xi denote
the ith row of Mf , and for 1 ≤ j ≤ m let Yj denote the jth column of Mf . A
vector p = (p1, . . . , p�) is a probability vector if pi ≥ 0 for every 1 ≤ i ≤ � and∑�

i=1 pi = 1. As a convention, we use bold-case letters to represent a vector
(e.g., p, q), and sometimes we use upper-case letters (e.g., Xi, as above). All
vectors will be assumed to be row vectors. We denote by 1k (resp. 0k) the all
one (resp. all zero) vector of size k. We work in the Euclidian space Rm, and use
the Euclidian norm ||x|| =

√
〈x, x〉 and the distance function as d(x, y) = ||x− y||.

2.1 Mathematical Background

Our characterization is based on the geometric representation of the function
f . In the following, we provide the necessary mathematical background, and
link it to the context of cryptography whenever possible. Most of the following
Mathematical definitions are taken from [26,20].
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Output Vector Distribution and Convex Combination. We now analyze
the “power of the simulator” in the ideal execution. The following is an inherent
property of the concrete function and the ideal execution, and is correct for any
protocol computing the function. Let A be an adversary that corrupts the party
P1, and assume that the simulator S chooses its input according to some distri-
bution p = (p1, . . . , p�). That is, the simulator sends an input xi with probability

pi, for 1 ≤ i ≤ �. Then, the length m vector q = (qy1 , . . . , qym)
def
= p ·Mf represents

the output distribution vector of the honest party P2. That is, in case the input
of P2 is yj for some 1 ≤ j ≤ m, then it gets 1 with probability qyj .

Convex Combination. The output distribution vector is in fact a convex com-
bination of the rows {X1, . . . , X�} of the matrix Mf . That is, when the simulator
uses p, the output vector distribution of P2 is:

p ·Mf = (p1, . . . , p�) ·Mf = p1 ·X1 + . . .+ p� ·X� .

A convex combination of points X1, . . . , X� in Rm is a linear combination of the
points, where all the coefficients (i.e., (p1, . . . , p�)) are non-negative and sum up
to 1.

Convex Hull. The set of all possible output distributions vectors that the
simulator can produce in the ideal execution is:

{p ·Mf | p is a probability vector} .

In particular, this set reflects the “freedom” that the simulator has in the ideal
execution. This set is in fact, the convex hull of the row vectors X1, . . . , X�, and
is denoted as conv({X1, . . . , X�}). That is, for a set S = {X1, . . . , X�}, conv(S) ={∑�

i=1 pi ·Xi | 0 ≤ pi ≤ 1,
∑m

i=1 pi = 1
}
. The convex-hull of a set of points is a

convex set, which means that for every X,Y ∈ conv(S), the line segment between
X and Y also lies in conv(S), that is, for every X, Y ∈ conv(S) and for every
0 ≤ λ ≤ 1, it holds that λ ·X + (1− λ) · Y ∈ conv(S).

Geometrically, the convex-hull of two (distinct) points in R2, is the line-
segment that connects them. The convex-hull of three points in R2 may be a
line (in case all the points lie on a single line), or a triangle (in case where all the
points are collinear). The convex-hull of 4 points may be a line, a triangle, or a
parallelogram. In general, the convex-hull of k points in R2 may define a convex
polygon of at most k vertices. In R3, the convex-hull of k points can be either a
line, a triangle, a tetrahedron, a parallelepiped, etc.

Affine-Hull and Affine Independence. A subset B of Rm is an affine sub-
space if λ · a + μ · b ∈ B for every a,b ∈ B and λ, μ ∈ R such that λ + μ = 1.
For a set of points S = {X1, . . . , X�}, its affine hull is defined as: aff(S) ={∑�

i=1 λi ·Xi |
∑�

i=1 λi = 1
}
, which is similar to convex hull, but without the

additional requirement for non-negative coefficients. The set of points X1, . . . , X�

in Rm is affinely independent if
∑�

i=1 λiXi = 0m holds with
∑�

i=1 λi = 0 only if
λ1 = . . . = λ� = 0. In particular, it means that one of the points is in the affine
hull of the other points. It is easy to see that the set of points {X1, . . . , X�} is
affinely independent if and only if the set {X2 − X1, . . . , X� − X1} is a linearly
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independent set. As a result, any m+ 2 points in Rm are affine dependent, since
any m+1 points in Rm are linearly dependent. In addition, it is easy to see that
the points {X1, . . . , X�} over Rm is affinely independent if and only if the set of
points {(X1, 1), . . . , (X�, 1)} over Rm+1 is linearly independent.

If the set S = {X1, . . . , X�} over Rm is affinely independent, then aff(S) has
dimension � − 1, and we write dim(aff(S)) = � − 1. In this case, S is the affine
basis for aff(S). Note that an affine basis for an m-dimensional affine space has
m+ 1 elements.

Linear Hyperplane. A linear hyperplane in Rm is a (m−1)-dimensional affine-
subspace of Rm. The linear hyperplane can be defined as all the points X =

(x1, . . . , xm) which are the solutions of a linear equation:

a1x1 + . . . amxm = b ,

for some constants a = (a1, . . . , am) ∈ Rm and b ∈ R. We denote this hyperplane
by:

H(a, b)
def
= {X ∈ R

m | 〈X,a〉 = b} .

Throughout the paper, for short, we will use the term hyperplane instead of
linear hyperplane. It is easy to see that indeed this is an affine-subspace. In R1,
an hyperplane is a single point, in R2 it is a line, in R3 it is a plane and so on. We
remark that for any m affinely independent points in Rm there exists a unique
hyperplane that contains all of them (and infinitely many in case they are not
affinely independent). This is a simple generalization of the fact that for any
distinct 2 points there exists a single line that passes through them, for any 3

(collinear) points there exists a single plane that contains all of them and etc.

Convex Polytopes. Geometrically, a full dimensional convex polytope in Rm is
the convex-hull of a finite set S where dim(aff(S)) = m. Polytopes are familiar
objects: in R2 we get convex polygons (a triangle, a parallelogram etc.). In R3

we get convex polyhedra (a tetrahedron, a parallelepiped etc.). Convex polytopes
play an important role in solutions of linear programming.

In addition, a special case of polytope is simplex. If the set S is affinely in-
dependent of cardinality m + 1, then conv(S) is an m-dimensional simplex (or,
m-simplex). For m = 2, this is simply a triangle, whereas in m = 3 we get a tetra-
hedron. A simplex in Rm consists of m+1 facets, which are themselves simplices
of lower dimensions. For instance, a tetrahedron (which is a 3-simplex) consists
of 4 facets, which are themselves triangles (2-simplex).

3 The Protocol of Gordon, Hazay, Katz and Lindell [17]

In the following, we give a high level overview of the protocol of [17]. We also
present its simulation strategy, and the set of equations that indicates whether a
given function can be computed with this protocol, which is the important part
for our discussion.

The Protocol.Assume the existence of an online dealer (a reactive functionality
that can be replaced using standard secure computation that is secure-with-
abort). The parties invoke this online-dealer and send it their respective inputs
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(x, y) ∈ X × Y . The online dealer computes values a1, . . . , aR and b1, . . . , bR (we
will see later how they are defined). In round i the dealer sends party P1 the
value ai and afterward it sends bi to P2. At each point of the execution, each
party can abort the online-dealer, preventing the other party from receiving its
value at that round. In such a case, the other party is instructed to halt and
output the last value it has received from the dealer. For instance, if P1 aborts
at round i after it learns ai and prevents from P2 to learn bi, P2 halts and
outputs bi−1.

The values (a1, . . . , aR), (b1, . . . , bR) are generated by the dealer in the following
way: The dealer first chooses a round i∗ according to some geometric distribution
with parameter α. In each round i < i∗, the parties receive bits (ai, bi), that
depend on their respective inputs solely and uncorrelated to the input of the
other party. In particular, for party P1 the dealer computes ai = f(x, ŷ) for some
random ŷ, and for P2 it computes bi = f(x̂, y) for some random x̂. For every
round i ≥ i∗, the parties receive the correct output ai = bi = f(x, y). In case
one of the party initially aborts (i.e., does not invoke the online-dealer in the
first round and the parties do not receive a1, b1), each party can locally compute
initial outputs a0, b0 similarly to the way the values ai, bi are computed by the
online-dealer for i < i∗. Note that if we set R = α−1 · ω(lnκ), then i∗ < R with
overwhelming probability, and so correctness holds.

Security. Since P2 is the second to receive an output, it is easy to simulate
an adversary that corrupts P2. If the adversary aborts before i∗, then it has
not obtained any information about the input of P1. If the adversary aborts at
or after i∗, then in the real execution the honest party P1 already receives the
correct output f(x, y), and fairness is obtained. Therefore, the protocol is secure
with respect to corrupted P2, for any function f .

The case of corrupted P1 is more delicate, and defines some requirements from
f . Intuitively, if the adversary aborts before i∗, then the outputs of both parties
are uncorrelated, and no one gets any advantage. If the adversary aborts after
i∗, then both parties receive the correct output and fairness is obtained. The
worst case, then, occurs when P1 aborts exactly in iteration i∗, as P1 has then
learned the correct value of f(x, y) while P2 has not. Since the simulator has to
give P1 the true output if it aborts at i∗, it sends the trusted party the true
input xi in round i∗. As a result, P2 in the ideal execution learns the correct
output f(x, y) at round i∗, unlike the real execution where it outputs a random
value f(x̂, y). [17] overcomes this problem in a very elegant way: in order to
balance this advantage of the honest party in the ideal execution in case the
adversary aborts at i∗, the simulator chooses a random value x̂ different from
the way it is chosen in the real execution in case the adversary abort before i∗

(that is, according to a different distribution than the one the dealer uses in the
real execution). The calculations show that overall, the output distribution of
the honest party is distributed identically in the real and ideal executions. This
balancing is possible only sometimes, and depends on the actual function f that
is being evaluated.
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In more detail, in the real execution the dealer before i∗ chooses bi as f(x̂, y),
where x̂ is chosen according to some distribution Xreal. In the ideal execution,
in case the adversary sends x to the simulated online-dealer, aborts at round
i < i∗ upon viewing some ai, the simulator chooses the input x̃ it sends to the
trusted party according to distribution Xx,ai

ideal. Then, define Qx,ai = Xx,ai
ideal · Mf ,

the output distribution vector of the honest party P2 in this case. In fact, the
protocol and the simulation define the output distribution vectors Qx,ai , and
simulation is possible only if the corresponding Xx,ai

ideal distribution exists, which
depends on the function f being computed. Due to lack of space, we now show
the definitions of the desired output distribution vectors Qx,ai without getting
into the calculations for why these are defined like that. We refer the reader
to [17] or the full version of this paper [2] to see how the protocol defines these
requirements.

The Output Distributions Vectors Qx,a. Let f : {x1, . . . , x�}×{y1, . . . , ym} →
{0, 1}. Fix Xreal, and let UY denote the uniform distribution over Y . For every x ∈
X, denote by px the probability that ai = 1 before i∗. Similarly, for every yj ∈ Y ,

let pyj denote the probability bi = 1 before i∗. That is: px
def
= Prŷ←UY [f(x, ŷ) = 1],

and pyj
def
= Prx̂←Xreal

[f(x̂, yj) = 1]. For every x ∈ X, a ∈ {0, 1}, define the row
vectors Qx,a = (qx,ay1 , . . . , qx,aym ) indexed by yj ∈ Y as follows:

qx,0yj

def
=

{
pyj if f(x, yj) = 1

pyj +
α·pyj

(1−α)·(1−px)
if f(x, yj) = 0

qx,1yj

def
=

{
pyj +

α·(pyj−1)

(1−α)·px if f(x, yj) = 1

pyj if f(x, yj) = 0
(1)

In case for every x ∈ X, a ∈ {0, 1} there exists a probability vector Xx,a
ideal such

that Xx,a
ideal ·Mf = Qx,a, then the simulator succeeds to simulate the protocol. We

therefore have the following theorem:

Theorem 3.1. Let f : {x1, . . . , x�}×{y1, . . . , ym} → {0, 1} and let Mf be as above.
If there exist probability vector Xreal and a parameter 0 < α < 1 (where α−1 ∈
O(poly(κ))), such that for every x ∈ X, a ∈ {0, 1}, there exists a probability vector
Xx,a

ideal for which:
Xx,a

ideal ·Mf = Qx,a ,

then the protocol securely computes f with complete fairness.

An alternative formulation of the above, is to require that for every x, a, the
points Qx,a are in conv({X1, . . . , X�}), where Xi is the ith row of Mf . Moreover,
observe that in order to decide whether a function can be computed using the
protocol, there are 2� linear systems that should be satisfied, with m constraints
each, and with 2�2 variables overall. This criterion depends heavily on some
parameters of the protocols (like px, pyj) rather than properties of the function.
We are interested in a simpler and easier way to validate criteria.
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4 Our Criteria

4.1 Possibility of Full-Dimensional Functions

In this section, we show that any function that defines a full-dimensional geo-
metric object, can be computed using the protocol of [17]. A full dimensional
function is defined as follows:

Definition 4.1 (full-dimensional function). Let f : X × Y → {0, 1} be a
function, and let X1, . . . , X� be the � rows of Mf over Rm. We say that f is a
full-dimensional function if dim(aff({X1, . . . , X�})) = m.

Recall that for a set of points S = {X1, . . . , X�} ∈ Rm, if dim(aff(S)) = m then
the convex-hull of the points defines a full-dimensional convex polytope. Thus,
intuitively, the simulator has enough power to simulate the protocol. Recall that
a basis for an affine space of dimension m has cardinality m+1, and thus we must
have that � > m. Therefore, we assume without loss of generality that � > m (and
consider the transposed function fT : {y1, . . . , ym}× {x1, . . . , x�} → {0, 1}, defined
as fT (y, x) = f(x, y), otherwise). Overall, our property inherently holds only if
� �= m.

Alternative Representation. Before we prove that any full-dimensional func-
tion can be computed fairly, we give a different representation for this definition.
This strengthens our understanding of this property, and is also related to the
balanced property defined in [3] (we will elaborate more about these two crite-
rions in Subsection 4.3). The proof for the following claim appears in the full
version [2]:

Claim 4.2. Let f : {x1, . . . , x�}×{y1, . . . , ym} → {0, 1} be a function, let Mf be as
above and let S = {X1, . . . , X�} be the rows of Mf (� points in Rm). The following
are equivalent:

1. The function is right-unbalanced with respect to arbitrary vectors.
That is, for every non-zero q ∈ Rm and any δ ∈ R it holds that: Mf ·qT �= δ·1�.

2. The rows of the matrix do not lie on the same hyperplane.
That is, for every non-zero q ∈ Rm and any δ ∈ R, there exists a point Xi

such that Xi �∈ H(q, δ). Alteratively, conv({X1, . . . , X�}) �⊆ H(q, δ).
3. The function is full-dimensional.

There exists a subset of {X1, . . . , X�} of cardinality m + 1, that is affinely
independent. Thus, dim(aff({X1, . . . , X�})) = m.

From Alternative 1, checking whether a function is full-dimensional can be
done efficiently. Giving that � > m, all we have to do is to verify that the only
possible solution q for the linear system Mf · qT = 0T

� is the trivial one (i.e.,
q = 0), and that there is no solution q for the linear system Mf · qT = 1T

� . This
implies that the function is unbalanced for every δ ∈ R.
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The Proof of Possibility. We now show that any function that is full dimen-
sional can be computed with complete fairness, using the protocol of [17]. The
proof for this Theorem is geometrical. Recall that by Theorem 3.1, we need to
show that there exists a solution for some set of equations. In our proof here,
we show that such a solution exists without solving the equations explicitly. We
show that all the points Qx,a that the simulator needs (by Theorem 3.1) are
in the convex-hull of the rows {X1, . . . , X�}, and therefore there exist probabil-
ity vectors Xx,a

ideal as required. We show this in two steps. First, we show that
all the points are very “close” to some point c, and therefore, all the points
are inside the Euclidian ball centered at c for some small radius ε (defined as

B(c, ε)
def
= {Z ∈ Rm | d(Z, c) ≤ ε}). Second, we show that this whole ball is em-

bedded inside the convex-polytope that is defined by the rows of the function,
which implies that all the points Qx,a are in the convex-hull and simulation is
possible.

In more detail, fix some distribution Xreal for which the point c=(py1 , . . . , pym)

= Xreal · Mf is inside the convex-hull of the matrix. Then, we observe that by
adjusting α, all the points Qx,a that we need are very “close” to this point c. This
is because each coordinate qx,ayj is exactly pyj plus some term that is multiplied
by α/(1 − α), and therefore we can control its distance from pyj (see Eq. (1)).
In particular, if we choose α = 1/ ln κ, then for all sufficiently large κ’s the
distance between Qx,a and c is smaller than any constant. Still, for α = 1/ lnκ,
the number of rounds of the protocol is R = α−1 ·ω(ln κ) = ln κ ·ω(lnκ), and thus
asymptotically remains unchanged.

All the points Qx,a are close to the point c. This implies that they all lie in
the m-dimensional Euclidian ball of some constant radius ε > 0 centered at c.
Moreover, since the function is of full-dimension, the convex-hull of the function
defines a full-dimensional convex polytope, and therefore this ball is embedded
in this polytope. We prove this by showing that the center of the ball c is “far”
from each facet of the polytope, using the separation theorems of closed convex
sets. As a result, all the points that are “close” to c (i.e., our ball) are still “far”
from each facet of the polytope, and thus they are inside it. As an illustration,
consider again the case of the GHKL function in Figure 2 (in Section 1). We
conclude that all the points that the simulator needs are in the convex-hull of
the function, and therefore the protocol can be simulated.

Before we proceed to the full proof formally, we give an additional definition
and an important Claim. For a set F ⊆ Rm and a point p ∈ Rm, we define the
distance between p and F to be the minimal distance between p and a point
in F , that is: d(p, F ) = min{d(p, f) | f ∈ F}. The following claim shows that
if a point is not on a closed convex set, then there exists a constant distance
between the point and the convex set. We use this claim to show that the point c
is far enough from each one of the facets of the polytope (and therefore the ball
centered in c is in the convex). The proof for this claim is a simple implication
of the separation theorems for convex sets, see [26]. We have:
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Claim 4.3. Let C be a closed convex subset of Rm, and let a ∈ Rm such that
a �∈ C. Then, there exists a constant ε > 0 such that d(a, C) > ε (that is, for every
Z ∈ C it holds that d(a, Z) > ε).

We now ready for our main theorem of this section:

Theorem 4.4. Let f : {x1, . . . , x�} × {y1, . . . , ym} → {0, 1} be a boolean function.
If f is of full-dimension, then f can be computed with complete fairness.

Proof: Since f is full-dimensional, there exists a subset of m+ 1 rows that are
affinely independent. Let S′ = {X1, . . . , Xm+1} be this subset of rows. We now
locate c to be inside the simplex that is defined by S′, by choosing Xreal to be
the uniform distribution over S′ (i.e., the ith position of Xreal is 0 if Xi �∈ S′,
and 1/(m+ 1) if Xi ∈ S′). We then let c = (py1 , . . . , pym) = Xreal ·Mf . Finally, we
set α = 1/ ln κ. We consider the GHKL protocol with the above parameters, and
consider the set of points {Qx,a}x∈X,a∈{0,1}. The next claim shows that all these
points are close to c, and in the m-dimensional ball B(c, ε) for some small ε > 0.
That is:

Claim 4.5. For every constant ε > 0, for every x ∈ X, a ∈ {0, 1} , and for all
sufficiently large κ’s it holds that:

Qx,a ∈ B(c, ε)

Proof: Fix ε. Since α = 1/ lnκ, for every constant δ > 0 and for all sufficiently
large κ’s it holds that: α/(1 − α) < δ. We show that for every x, a, it holds that
d(Qx,a, c) ≤ ε, and thus Qx,a ∈ B(c, ε).

Recall the definition of Qx,0 as in Eq. (1): If f(x, yj) = 1 then q0yj = pyj and
thus |pyj −q0yj | = 0. In case f(x, yj) = 1, for δ = ε(1−px)/

√
m and for all sufficiently

large κ’s it holds that:

∣∣∣pyj − qx,0yj

∣∣∣ = ∣∣∣∣pyj − pyj −
α

1− α
·

pyj
(1− px)

∣∣∣∣ ≤ α

1− α
· 1

(1− px)
≤ δ

(1− px)
=

ε√
m

.

Therefore, for all sufficiently large κ’s,
∣∣∣pyj − qx,0yj

∣∣∣ ≤ ε/
√
m irrespectively to

whether f(x, yj) is 1 or 0. In a similar way, for all sufficiently large κ’s it holds

that:
∣∣∣pyj − qx,1yj

∣∣∣ ≤ ε/
√
m. Overall, for every x ∈ X, a ∈ {0, 1} we have that the

distance between the points Qx,a and c is:

d(Qx,a, c) =

√√√√ m∑
j=1

(
qx,byj − pyj

)2
≤

√√√√ m∑
j=1

(
ε√
m

)2

≤ ε

and therefore Qx,a ∈ B(c, ε).

We now show that this ball is embedded inside the simplex of S′. That is:

Claim 4.6. There exists a constant ε > 0 for which B(c, ε) ⊂ conv(S′).
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Proof: Since S′ = {X1, . . . , Xm+1} is affinely independent set of cardinality
m + 1, conv(S′) is a simplex. Recall that c is a point in the simplex (since it
assigns 0 to any row that is not in S′), and so c ∈ conv(S′). We now show that
for every facet of the simplex, there exists a constant distance between the point
c and the facet. Therefore, there exists a small ball around c that is “far” from
each facet of the simplex, and inside the simplex.

For every 1 ≤ i ≤ m+ 1, the ith facet of the simplex is the set Fi = conv(S′ \
{Xi}), i.e., the convex set of the vertices of the simplex without the vertex Xi.
We now show that c �∈ Fi, and therefore, using Claim 4.3, c is ε-far from Fi, for
some small ε > 0.

In order to show that c �∈ Fi, we show that c �∈ H(q, δ), where H(q, δ) is an
hyperplane that contains Fi. That is, let H(q, δ) be the unique hyperplane that
contains all the points S′ \ {Xi} (these are m affinely independent points and
therefore there is a unique hyperplane that contains all of them). Recall that
Xi �∈ H(q, δ) (otherwise, S′ is affinely dependent). Observe that Fi = conv(S′ \
{Xi}) ⊂ H(q, δ), since each point Xi is in the hyperplane, and the hyperplane is
an affine set. We now show that since Xi �∈ H(q, δ), then c �∈ H(q, δ) and therefore
c �∈ Fi.

Assume by contradiction that c ∈ H(q, δ). We can write:

δ = 〈c,q〉 =
〈m+1∑

j=1

1

m+ 1
·Xj ,q

〉
=

1

m+ 1
〈Xi,q〉+

1

m+ 1

∑
j �=i

〈Xj ,q〉

=
1

m+ 1
〈Xi,q〉+

m

m+ 1
· δ

and so, 〈Xi,q〉 = δ, which implies that Xi ∈ H(q, δ) in contradiction.
Since c �∈ Fi, and since Fi is a closed2 convex, we can apply Claim 4.3 to get

the existence of a constant εi > 0 such that d(c, Fi) > εi.
Now, let F1, . . . , Fm+1 be the facets of the simplex. We get the existence of

ε1, . . . , εm+1 for each facet as above. Let ε = min{ε1, . . . , εm+1}/2, and so for every
i, we have: d(c, Fi) > 2ε.

Consider the ball B(c, ε). We show that any point in this ball is of distance
at least ε from each facet Fi. Formally, for every b ∈ B(c, ε), for every facet Fi it
holds that: d(b, Fi) > ε. This can be easily derived from the triangle inequality,
where for every b ∈ B(c, ε/2):

d(c,b) + d(b, Fi) ≥ d(c, Fi) > 2ε ,

and so d(b, Fi) > ε since d(b, c) ≤ ε.
Overall, all the points b ∈ B(c, ε) are of distance at least ε from each facet of

the simplex, and inside the simplex. This shows that B(c, ε) ⊂ conv(S′).

For conclusion, there exists a constant ε > 0 for which B(c, ε) ⊂ conv(S′) ⊆
conv({X1, . . . , X�}). Moreover, for all x ∈ X, a ∈ {0, 1} and for all sufficiently large
κ’s, it holds that Qx,a ∈ B(c, ε). Therefore, the requirements of Theorem 3.1 are
satisfied, and the protocol securely computes f with complete fairness.

2 The convex-hull of a finite set S of vectors in Rm is a compact set, and therefore is
closed (See [26, Theorem 15.4]).



Towards Characterizing Complete Fairness 307

On the Number of Full-Dimensional Functions. We count the number
of functions that are full dimensional. Recall that a function with |X| = |Y |
cannot be full-dimensional, and we consider only functions where |X| �= |Y |. In-
terestingly, the probability that a random function with distinct domain sizes is
full-dimensional tends to 1 when |X|, |Y | grow. Thus, almost always, a random
function with distinct domain sizes can be computed with complete fairness(!).
The answer for the frequency of full-dimensional functions within the class of
boolean functions with distinct sizes relates to a beautiful problem in combi-
natorics and linear algebra, that has received careful attention: Estimating the
probability that a random boolean matrix of size m×m is singular. Denote this
probability by Pm. The answer for our question is simply 1 − Pm, and is even
larger when the difference between |X| and |Y | increases (see Claim 4.7 below).

The value of Pm is conjectured to be (1/2+o(1))m, and recent results [23,22,28]
are getting closer to this conjuncture, by showing that Pm ≤ (1/

√
2 + o(1))m,

which is roughly the probability to have two identical or compliments rows or
columns. Since our results hold only for the case of finite domain, it is remarkable
to address that Pm is small already for very small dimensions m. For instance,
P10<0.29, P15<0.047 and P30<1.6·10−6 (and so > 99.999% of the 31×30 functions
can be computed fairly). See more experimental results in [27]. The following
Claim is based on [30, Corollary 14]:

Claim 4.7. With a probability that tends to 1 when |X|, |Y | grow, a random
function with |X| �= |Y | is full-dimensional.

Proof: An alternative question for the first item is the following: What is the
probability that the convex-hull of m + 1 (or even more) random 0/1-points in
Rm is an m-dimensional simplex?

Recall that Pm denotes the probability that a random m vectors of size m

are linearly dependent. Then, the probability for our first question is simply
1 − Pm. This is because with very high probability our m + 1 points will be
distinct, we can choose the first point X1 arbitrarily, and the rest of the points
S = {X2, . . . , Xm+1} uniformly at random. With probability 1 − Pm, the set S

is linearly independent, and so it linearly spans X1. It is easy to see that this
implies that {X2 − X1, . . . , Xm+1 − X1} is a linearly independent set, and thus
{X1, . . . , Xm+1} is affinely-independent set. Overall, a random set {X1, . . . , Xm+1}
is affinely independent with probability 1− Pm.

4.2 Functions That Are Not Full-Dimensional

A Negative Result. We now consider the case where the functions are not full-
dimensional. This includes the limited number of functions for which |X| �= |Y |,
and all functions with |X| = |Y |. In particular, for a function that is not full-
dimensional, all the rows of the function lie in some hyperplane (a (m− 1)-
dimensional subspace of Rm), and all the columns of the matrix lie in a different
hyperplane (in R�). We show that under some additional requirements, the pro-
tocol of [17] cannot be simulated for any choice of parameters, with respect to
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the specific simulation strategy defined in the proof of Theorem 3.1. We have
the following Theorem:

Theorem 4.8. Let f,Mf , {X1, . . . , X�} be as above, and let {Y1, . . . , Ym} be the
columns of Mf . Assume that the function is not full-dimensional, that is, there
exist non-zero p ∈ R�, q ∈ Rm and some δ1, δ2 ∈ R such that:

X1, . . . , X� ∈ H(q, δ2) and Y1, . . . , Ym ∈ H(p, δ1) .

Assume that in addition, 0�,1� �∈ H(p, δ1) and 0m, 1m �∈ H(q, δ2). Then, the func-
tion f cannot be computed using the GHKL protocol, for any choice of parameters
(α,Xreal), with respect to the specific simulation strategy used in Theorem 3.1.

Proof: We first consider the protocol where P1 plays the party that inputs
x ∈ X and P2 inputs y ∈ Y (that is, P2 is the second to receive output, exactly
as GHKL protocol is described in Section 3). Fix any Xreal, α, and let c =

(py1 , . . . , pym) = Xreal · Mf . First, observe that conv({X1, . . . , X�}) ⊆ H(q, δ2),
since for any point Z ∈ conv({X1, . . . , X�}), we can represent Z as a ·Mf for some
probability vector a. Then, we have that 〈Z,q〉 = 〈a · Mf ,q〉 = a · δ2 · 1� = δ2
and so Z ∈ H(q, δ2). Now, assume by contradiction that the set of equations
is satisfied. This implies that Qx,a ∈ H(q, δ2) for every x ∈ X, a ∈ {0, 1}, since
Qx,a ∈ conv({X1, . . . , X�}) ⊆ H(q, δ2).

Let ◦ denote the entrywise product over Rm, that is for Z = (z1, . . . , zm),
W = (w1, . . . , wm), the point Z ◦ W is defined as (z1 · w1, . . . , zm · wm). Recall
that c = (py1 , . . . , pym). We claim that for every Xi, the point c ◦ Xi is also in
the hyperplane H(q, δ2). This trivially holds if Xi = 1m. Otherwise, recall the
definition of Qxi,0 (Eq. (1)):

qxi,0
yj

def
=

{
pyj if f(xi, yj) = 1

pyj +
α·pyj

(1−α)·(1−pxi
)
if f(xi, yj) = 0

,

Since Xi �= 1m, it holds that pxi �= 1. Let γ = α
(1−α)·(1−pxi

)
. We can write Qx,0 as

follows:

Qx,0 = (1 + γ) · c− γ · (c ◦Xi) .

Since for every i, the point Qxi,0 is in the hyperplane H(q, δ2), we have:

δ2 = 〈Qx,0,q〉 = 〈(1 + γ) · c− γ · (c ◦Xi),q〉 = (1 + γ) · 〈c,q〉 − γ · 〈c ◦Xi,q〉
= (1 + γ) · δ2 − γ · 〈c ◦Xi,q〉

and thus, 〈c ◦Xi,q〉 = δ2 which implies that c ◦Xi ∈ H(q, δ2).
We conclude that all the points (c ◦ X1), . . . , (c ◦ X�) are in the hyperplane

H(q, δ2). Since all the points Y1, . . . , Ym are in H(p, δ1), it holds that p·Mf = δ1·1m.
Thus,

∑�
i=1 pi ·Xi = δ1 · 1m, which implies that:

�∑
i=1

pi · δ2 =
�∑

i=1

pi ·
〈
c ◦Xi,q

〉
=
〈 �∑

i=1

pi · (c ◦Xi),q
〉
=
〈
c ◦ (

�∑
i=1

pi ·Xi),q
〉

= 〈c ◦ (δ1 · 1m),q〉 = δ1 · 〈c,q〉 = δ1 · δ2
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and thus it must hold that either
∑�

i=1 pi = δ1 or δ2 = 0, which implies that
1 ∈ H(p, δ1) or 0 ∈ H(q, δ2), in contradiction to the additional requirements.

The above shows that the protocol does not hold when the P1 party is the first
to receive output. We can change the roles and let P2 to be the first to receive
an output (that is, we can use the protocol to compute fT ). In such a case, we
will get that it must hold that

∑m
i=1 qi = δ2 or δ1 = 0, again, in contradiction to

the assumptions that 1 �∈ H(q, δ2) and 0 �∈ H(p, δ1).

This negative result does not rule out the possibility of these functions us-
ing some other protocol. However, it rules out the only known possibility result
that we have in fairness. Moreover, incorporating this with the characteriza-
tion of coin-tossing [3], there exists a large set of functions for which the only
possibility result does not hold, and the only impossibility result does not hold
either. Moreover, this class of functions shares similar (but yet distinct) algebraic
structure with the class of functions that imply fair coin-tossing. See more in
Subsection 4.3.

Our theorem does not hold in cases where either 0� ∈ H(p, δ1) or 1� ∈ H(p, δ1)

(likewise, for H(q, δ2)). These two requirements are in some sense equivalent.
This is because the alphabet is not significant, and we can switch between the
two symbols 0 and 1. Thus, if for some function f the hyperplane H(p, δ1) passes
through the origin 0, the corresponding hyperplane for the function f̄(x, y) =

1−f(x, y) passes through 1 and vice versa. Feasibility of fairness for f and f̄ is
equivalent.

On the Number of Functions That Satisfy the Additional Require-
ments. We now count on the number of functions with |X| = |Y | that sat-
isfy these additional requirements, that is, define hyperplanes that do not pass
through the origin 0 and the point 1. As we have seen in Theorem 4.8, these
functions cannot be computed with complete fairness using the protocol of [17].
As we will see, only negligible amount of functions with |X| = |Y | do not satisfy
these additional requirements. Thus, our characterization of [17] is almost tight:
Almost all functions with |X| �= |Y | can be computed fairly, whereas almost all
functions with |X| = |Y | cannot be computed using the protocol of [17]. We have
the following Claim:

Claim 4.9. With a probability that tends to 0 when |X|, |Y | grow, a random
function with |X| = |Y | define hyperplanes that pass through the points 0 or 1.

Proof: Let m = |X| = |Y |. Recall that Pm denotes the probability that a
random m vectors of size m are linearly dependent. Moreover, by Claim 4.7,
the probability that a random set {X1, . . . , Xm+1} is affinely independent with
probability 1− Pm, even when one of the points is chosen arbitrarily.

Thus, with probability Pm, the set {X1, . . . , Xm,1} where X1, . . . , Xm are cho-
sen at random is affinely dependent. In this case, the hyperplane defined by
{X1, . . . , Xm} contains the point 1. Similarly, the set {X1, . . . , Xm,0} is affienely
dependent with the same probability Pm. Overall, using union-bound, the prob-
ability that the hyperplane of random points X1, . . . , Xm contains the points 1 or
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0 is negligible. From similar arguments, the probability that the hyperplane that
is defined by the columns of the matrix contains either 1 or 0 is also negligible.

Functions withMonochromatic Input. We consider a limited case where the
above requirements do not satisfy, that is, functions that are not full-dimensional
but define hyperplanes that pass through 0 or 1. For this set of functions, the nega-
tive result does not apply. We now show that for some subset in this class, fairness
is possible. Our result here does not cover all functions in this subclass.

Assume that a function contains a “monochromatic input”, that is, one party
has an input that causes the same output irrespectively to the input of the other
party. For instance, P2 has input yj such that for every x ∈ X: f(x, yj) = 1. In
this case, the point 1� is one of the columns of the matrix, and therefore, the
hyperplaneH(p, δ1)must pass through it. We show that in this case we can ignore
this input and consider the “projected” m× (m−1) function f ′ where we remove
the input yj . This latter function may now be full-dimensional, and the existence
of a protocol for f ′ implies the existence of a protocol for f . Intuitively, this is
because when P2 uses yj, the real-world adversary P1 cannot bias its output since
it is always 1. We have:

Claim 4.10. Let f : X × Y → {0, 1}, and assume that Mf contains the all-one
(resp. all-zero) column. That is, there exists y ∈ Y such that for every x̂ ∈ X,
f(x̂, y) = 1 (resp. f(x̂, y) = 0).

If the function f ′ : X × Y ′ → {0, 1}, where Y ′ = Y \ {y} is full-dimensional,
then f can be computed with complete-fairness.

Proof: Assume that the function contains the all one column, and that it is ob-
tained by input ym (i.e., the mth column is the all-one column). Let X1, . . . , Xm

be the rows of Mf , and let X ′
i be the rows over Rm−1 without the last coordi-

nate, that is, Xi = (X ′
i , 1). Consider the “projected” function f ′ : {x1, . . . , xm} ×

{y1, . . . , ym−1} → {0, 1} be defined as f ′(x, y) = f(x, y), for every x, y in the
range (we just remove ym from the possible inputs of P2). The rows of Mf ′

are X ′
1, . . . , X

′
m.

Now, since f ′ is of full-dimensional, the function f ′ can be computed using the
GHKL protocol. Let Xx,a

ideal be the solutions for equations of Theorem 3.1 for the
function f ′. It can be easily verified that Xx,a

ideal are the solutions for equations
for the f function as well, since for every x, a, the first m− 1 coordinates of Qx,a

are the same as f ′, and the last coordinate of Qx,a is always 1. For Qx,0 it holds
immediately, for Qx,1 observe that pym = 1 no matter what Xreal is, and thus

pyj +
α·(pyj−1)

(1−α)·px = 1 + 0 = 1). Therefore, Xx,a
ideal are the solutions for f as well, and

Theorem 3.1 follows for f as well.

The above implies an interesting and easy to verify criterion:

Proposition 4.11. Let f : {x1, . . . , xm} × {y1, . . . , ym} → {0, 1} be a function.
Assume that f contains the all-one column, and that Mf is of full rank. Then,
the function f can be computed with complete fairness.
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Proof: Let X1, . . . , Xm be the rows of Mf , and assume that the all-one column
is the last one (i.e., input ym). Consider the points X ′

1, . . . , X
′
m in Rm−1, where

for every i, Xi = (X ′
i , 1) (i.e., X

′
i is the first m − 1 coordinates of Xi). Since Mf

is of full-rank, the rows X1, . . . , Xm are linearly independent, which implies that
m points X ′

1, . . . , X
′
m in Rm−1 are affinely independent. We therefore can apply

Claim 4.10 and fairness in f is possible.

Finally, from simple symmetric properties, almost always a random matrix
that contains the all one row / vector is of full rank, in the sense that we have
seen in Claims 4.7 and 4.9. Therefore, almost always a random function that
contains a monochromatic input can be computed with complete fairness.

4.3 Conclusion: Symmetric Boolean Functions with Finite Domain

We summarize all the known results in complete fairness for symmetric boolean
functions with finite domain, and we link our results to the balanced property
of [3].

Characterization of Coin-tossing [3]. The work of Asharov, Lindell and
Rabin [3] considers the task of coin-tossing, which was shown to be impossible
to compute fairly [9]. The work provides a simple property that indicates whether
a function implies fair coin-tossing or not. If the function satisfies the property,
then the function implies fair coin tossing, in the sense that a fair protocol for the
function implies the existence of a fair protocol for coin-tossing, and therefore
it cannot be computed fairly by Cleve’s impossibility. On the other hand, if a
function f does not satisfy the property, then for any protocol for coin-tossing in
the f-hybrid model there exists an (inefficient) adversary that biases the output
of the honest party. Thus, the function does not imply fair coin-tossing, and
may potentially be computed with complete fairness. The results hold also for
the case where the parties have an ideal access to Oblivious Transfer [24,11].
The property that [3] has defined is as follows:

Definition 4.12 (strictly-balanced property [3]). Let f : {x1, . . . , x�} ×
{y1, . . . , ym} → {0, 1} be a function. We say that the function is balanced with
respect to probability vectors if there exist probability vectors p = (p1, . . . , p�),
q = (q1, . . . , qm) and a constant 0 < δ < 1 such that:

p ·Mf = δ · 1m and Mf · qT = δ · 1T
� .

Intuitively, if such probability vectors exist, then in a single execution of the
function f , party P1 can choose its input according to distribution p which fixes
the output distribution vector of P2 to be δ ·1m. This means that no matter what
input (malicious) P2 uses, the output is 1 with probability δ. Likewise, honest
P2 can choose its input according to distribution q, and malicious P1 cannot
bias the result. We therefore obtain a fair coin-tossing protocol. On the other
hand, [3] shows that if the function does not satisfy the condition above, then
there always exists a party that can bias the result of any coin-tossing protocol
that can be constructed using f .
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The Characterization. A full-dimensional function is an important special
case of this unbalanced property, as was pointed out in Claim 4.2. Combining
the above characterization of [3] with ours, we get the following Theorem:

Theorem 4.13. Let f : {x1, . . . , x�} × {y1, . . . , ym} → {0, 1}, and let Mf be the
corresponding matrix representing f as above. Then:

1. Balanced with respect to probability vectors [3]:
If there exist probability vectors p = (p1, . . . , p�),q = (q1, . . . , qm) and a con-
stant 0 < δ < 1 such that:

p ·Mf = δ · 1m and Mf · qT = δ · 1T
� .

Then, the function f implies fair coin-tossing, and is impossible to compute
fairly.

2. Balanced with respect to arbitrary vectors, but not balanced with
respect to probability vectors:
If there exist two non-zero vectors p = (p1, . . . , p�) ∈ R�, q = (q1, . . . , qm) ∈ Rm,
δ1, δ2 ∈ R, such that:

p ·Mf = δ1 · 1m and Mf · qT = δ2 · 1T
�

then we say that the function is balanced with respect to arbitrary vectors.
Then, the function does not (information-theoretically) imply fair-coin toss-
ing [3]. Moreover:

(a) If δ1 and δ2 are non-zero,
∑�

i=1 pi �= δ1 and
∑m

i=1 qi �= δ2, then the function
f cannot be computed using the GHKL protocol (Theorem 4.8).

(b) Otherwise: this case is left not characterized. For a subset of this subclass,
we show possibility (Proposition 4.10).

3. Unbalanced with respect to arbitrary vectors:
If for every non-zero p = (p1, . . . , p�) ∈ R� and any δ1 ∈ R it holds that:
p ·Mf �= δ1 ·1m, OR for every non-zero q = (q1, . . . , qm) ∈ Rm and any δ2 ∈ R

it holds that: Mf ·qT �= δ2 ·1T
� , then f can be computed with complete fairness

(Theorem 4.4).

We remark that in general, if |X| �= |Y | then almost always a random function
is in subclass 3. Moreover, if |X| = |Y |, only negligible amount of functions
are in subclass 2b, and thus only negligible amount of functions are left not
characterized.

If a function is balanced with respect to arbitrary vectors (i.e., the vector may
contain negative values), then all the rows of the function lie in the hyperplane
H(q, δ2), and all the columns lie in the hyperplane H(p, δ1). Observe that δ1 = 0

if and only if H(p, δ1) passes through the origin, and
∑�

i=1 pi = δ1 if and only if
H(p, δ1) passes through the all one point 1. Thus, the requirements of subclass 2a
are a different formalization of the requirements of Theorem 4.8. Likewise, the
requirements of subclass 3 are a different formalization of Theorem 4.4, as was
proven in Claim 4.2.
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5 Extensions: Asymmetric Functions and Non-binary
Outputs

5.1 Asymmetric Functions

We now move to a richer class of functions, and consider asymmetric boolean
functions where the parties do not necessarily get the same output. We consider
functions f(x, y) = (f1(x, y), f2(x, y)), where each fi, i ∈ {1, 2} is defined as: fi :

{x1, . . . , x�}×{y1, . . . , ym} → {0, 1}. Interestingly, our result here shows that if the
function f2 is of full-dimensional, then f can be computed fairly, irrespectively
to the function f1. This is because simulating P1 is more challenging (because
it is the first to receive an output) and the simulator needs to assume the rich
description of f2 in order to be able to bias the output of the honest party P2.
On the other hand, since P2 is the second to receive an output, simulating P2 is
easy and the simulator does not need to bias the output of P1, thus, nothing is
assumed about f1.

In the full version of this paper [2], we revise the protocol of [17] to deal with
this class of functions. This is done in a straightforward way, where the online
dealer computes at each round the value ai according to the function f1, and bi
according to f2. We then derive a set of equations, similarly to Eq. (1) and obtain
an analogue theorem to Theorem 3.1. We then show the following Corollary:

Corollary 5.1. Let f : {x1, . . . , x�} × {y1, . . . , ym} → {0, 1} × {0, 1}, where f =

(f1, f2). If f2 is a full-dimensional function, then f can be computed with complete
fairness.

5.2 Functions with Non-binary Output

Until now, all the known possibility results in fairness deal with the case of
binary output. We now extend the results to the case of non-binary output. Let
Σ = {σ1, . . . , σk} be an alphabet for some finite k > 0, and consider functions
f : {x1, . . . , x�} × {y1, . . . , ym} → Σ.

The protocol is exactly the GHKL protocol presented in Section 3, where
here ai, bi are elements in Σ and not just bits. However, the analysis for this
case is more involved. For instance, in the binary case for every input yj ∈
Y , we considered the parameter pyj , the probability that P2 receives 1 in each
round before i∗ when its input is yj . In the non-binary case, we have to define
an equivalent parameter pyj (σ) for any symbol σ in the alphabet Σ (i.e., the
probability that P2 receives σ in each round before i∗ when its input is yj). This
makes things harder, and in order to obtain fairness, several requirements should
be satisfied simultaneously for every σ ∈ Σ.

In order to see this, fix some Xreal. For any symbol σ ∈ Σ, and for every
yj ∈ Y , let pyj (σ) denote the probability that bi is σ (when i ≤ i∗). That is:

pyj (σ)
def
= Pr

x̂←Xreal

[f(x̂, yj) = σ] .

Observe that
∑

σ∈Σ pyj (σ) = 1. For every σ ∈ Σ, we want to represent the vector
(py1(σ), . . . , pym(σ)) as a function of Xreal and Mf , as we did in the binary case
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(where there we just had: (py1 , . . . , pym) = Xreal · Mf ). However, here Mf does
not represent exactly what we want, and the multiplication Xreal ·Mf gives the
“expected output distribution vector” and not exactly what we want. Instead,
for any σ ∈ Σ we define the binary matrix Mσ

f as follows:

Mσ
f (i, j) =

{
1 if f(xi, yj) = σ

0 otherwise
.

Now, we can represent the vector (py1(σ), . . . , pym(σ)) as Xreal ·Mσ
f . However, here

a single vector Xreal determines the values of |Σ| vectors, one for each σ ∈ Σ.
Therefore, we overall get |Σ| systems of equations, one for each symbol in the
alphabet. In [2] we show that it is enough to consider only |Σ| − 1 systems since
our probabilities sum-up to 1 (i.e.,

∑
σ∈Σ pyj (σ) = 1), and provide the sets of

equations that guarantees fairness. In the following, we provide a corollary of
our result which provides a simpler criterion.

Given a function f : X × Y → Σ, let ρ ∈ Σ be arbitrarily, and define Σρ =

Σ \ {ρ}. Define the boolean function f ′ : X × Y Σρ → {0, 1}, where Y Σρ = {yσ
j |

yj ∈ Y, σ ∈ Σρ}, as follows:

f ′(x, yσ
j ) =

{
1 if f(x, yj) = σ

0 otherwise

Observe that |Y Σρ | = (|Σ| − 1) · |Y |. We show that if the boolean function f ′ is
full-dimensional, then the function f can be computed with complete-fairness.
Observe that this property can be satisfied only when |X|/|Y | > |Σ| − 1.

An Example. We give an example for a non-binary function that can be com-
puted with complete-fairness. We consider trinary alphabet Σ = {0, 1, 2}, and
thus we consider a function of dimensions 5 × 2. We provide the trinary func-
tion f and the function f ′ that it reduced to. Since the binary function f ′ is a
full-dimensional function in R4, it can be computed fairly, and thus the trinary
function f can be computed fairly as well. We have:

f y1 y2

x1 0 1

x2 1 0

x3 1 1

x4 2 0

x5 1 2

=⇒

f ′ y1
1 y1

2 y2
1 y2

2

x1 0 1 0 0

x2 1 0 0 0

x3 1 1 0 0

x4 0 0 1 0

x5 1 0 0 1
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Abstract. We study the complexity of realizing the “worst” functions
in several standard models of information-theoretic cryptography. In par-
ticular, for the case of security against passive adversaries, we obtain the
following main results.
– OT complexity of secure two-party computation. Every func-

tion f : [N ]× [N ] → {0, 1} can be securely evaluated using Õ(N2/3)
invocations of an oblivious transfer oracle. A similar result holds for
securely sampling a uniform pair of outputs from a set S ⊆ [N ]×[N ].

– Correlated randomness complexity of secure two-party com-
putation. Every function f : [N ] × [N ] → {0, 1} can be securely

evaluated using 2Õ(
√

logN) bits of correlated randomness.
– Communication complexity of private simultaneous mes-

sages. Every function f : [N ]× [N ] → {0, 1} can be securely evalu-
ated in the non-interactive model of Feige, Kilian, and Naor (STOC
1994) with messages of length O(

√
N).

– Share complexity of forbidden graph access structures. For
every graph G on N nodes, there is a secret-sharing scheme for N
parties in which each pair of parties can reconstruct the secret if and
only if the corresponding nodes in G are connected, and where each
party gets a share of size Õ(

√
N).

The worst-case complexity of the best previous solutions was Ω(N) for
the first three problems and Ω(N/ logN) for the last one. The above
results are obtained by applying general transformations to variants of
private information retrieval (PIR) protocols from the literature, where
different flavors of PIR are required for different applications.

1 Introduction

How bad are the worst functions? For most standard complexity measures of
boolean functions, the answer to this question is well known. For instance, the cir-
cuit complexity of the worst function f : [N ]→ {0, 1} is Θ(N/ logN) [53,49] and
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the two-party communication complexity of the worst function f : [N ]× [N ]→
{0, 1} is Θ(logN) in every standard model of communication complexity [48].1

In sharp contrast, this question is wide open for most natural complexity mea-
sures in information-theoretic cryptography that involve communication or ran-
domness rather than computation. Standard counting techniques or information
inequalities only yield very weak lower bounds, whereas the best known upper
bounds are typically linear in the size of the input domain (and exponential in
the bit-length of the inputs).

The only exceptions to this state of affairs are in the context of secure multi-
party computation where it is known that, when a big majority of honest par-
ties is guaranteed, the communication and randomness complexity can always
be made sublinear in the input domain size [5,40] (see Section 1.2 for discussion
of these and other related works). However, no similar results were known for
secure computation with no honest majority and, in particular, in the two-party
case.

In the present work we study the complexity of the worst-case functions in
several standard models for information-theoretic secure two-party computation,
along with a related problem in the area of secret sharing.

We restrict our attention to security against passive (aka semi-honest) ad-
versaries. We will usually also restrict the attention to deterministic two-party
functionalities captured by boolean functions f : [N ]× [N ]→ {0, 1}, where the
output is learned by both parties.2 In the following, the term “secure” will refer
by default to perfect security in the context of positive results and to statistical
security in the case of negative results. In this setting, we consider the following
questions.

OT Complexity. The first model we consider is secure two-party computation
in the OT-hybrid model, namely in a model where an ideal oracle implementing
1-out-of-2 oblivious transfer [52,29] (of bits) is available. Secure computation in
this model is motivated by the possibility of realizing OT using noisy communi-
cation channels [22], the equivalence between OT and a large class of complete
functionalities [45,46], and the possibility of efficiently precomputing [4] and (in
the computational setting) extending [3,37] OTs. See [43] for additional moti-
vating discussion.

Viewing OT as an “atomic currency” for secure two-party computation, it
is natural to study the minimal number of OT calls required for securely com-
puting a given two-party functionality f . We refer to this quantity as the OT
complexity of f . Special cases of this question were studied in several previous
works (e.g., [25,3,56]), and a more systematic study was conducted in [12,51].

1 Here and in the following, we let [N ] denote the set {1, 2, . . . , N} and naturally
identify an input x ∈ [N ] with a log2 N�-bit binary representation.

2 Using standard reductions (cf. [31]), our results can be extended to general (possibly
randomized or even reactive) functionalities that may deliver different outputs to the
two parties. While some of our results can also be extended to the case of k-party
secure computation, we focus here on the two-party case for simplicity.
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The GMW protocol [32,33,31] shows that the OT complexity of any function
f is at most twice the size of the smallest boolean circuit computing f . For most
functions f : [N ]× [N ]→ {0, 1}, this only gives an upper bound of O(N2/ logN)
on the OT complexity.3

A simpler and better upper bound can be obtained by using 1-out-of-N OT
(denoted

(
N
1

)
-OT). Concretely, the first party P1, on input x1, prepares a truth-

table of the function fx1(x2) obtained by restricting f to its own input, and
using

(
N
1

)
-OT lets the second party P2 select the entry of this table indexed by

x2. Since
(
N
1

)
-OT can be reduced to N − 1 instances of standard OT [17], we

get an upper bound of N − 1 on the OT complexity of the worst-case f . This
raises the following question:

Question 1. What is the OT complexity of the worst function f : [N ]× [N ] →
{0, 1}? In particular, can every such f be securely realized using o(N) OTs?

Given the existence of constant-rate reductions between OT and any finite
complete functionality [35,42], the answer to Question 1 remains the same, up to
a constant multiplicative factor, even if the OT oracle is replaced by a different
complete functionality, such as binary symmetric channel. In particular, the
OT complexity of f is asymptotically the same as the “AND complexity” of f
considered in [12].

We will also be interested in a sampling variant of Question 1, where the goal
is to securely sample from some probability distribution over output pairs from
[N ] × [N ] using a minimal number of OTs. This captures the rate of securely
reducing complex correlations to simple ones, a question which was recently
studied in [51].

Correlated Randomness Complexity. The second model we consider is that of se-
cure two-party computation with an arbitrary source of correlated randomness.
That is, during an offline phase, which takes place before the inputs are known,
the two parties are given a pair of random strings (r1, r2) drawn from some fixed
joint distribution, where ri is known only to Pi. During the online phase, once the
inputs (x1, x2) are known, the parties can use their correlated random inputs,
possibly together with independent secret coins, to securely evaluate f . This
model can be viewed as a relaxation of the OT-hybrid model discussed above,
since each OT call is easy to realize given correlated randomness corresponding
to a random instance of OT [4]. The model is motivated by the possibility of
generating the correlated randomness using semi-trusted servers or a (computa-
tionally) secure interactive protocol, thus capturing the goal of minimizing the
online complexity of secure computation via offline preprocessing. See [14,41,24]
for additional discussion.

General correlations have several known advantages over OT correlations in
the context of secure computation. Most relevant to our work is a result from [41],

3 The GMW protocol can handle XOR and NOT gates for free, but it is not clear if
this can be used to significantly lower the complexity of the worst-case functions. A
negative result in a restricted computation model is given in [20].
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showing that for any f : [N ] × [N ] → {0, 1} there is a source of correlated
randomness (r1, r2) given which f can be realized using only O(logN) bits of
communication. However, the correlated randomness complexity of this proto-
col, namely the length of the random strings r1, r2, is O(N2). Minimizing the
correlated randomness complexity is desirable because the correlated random-
ness needs to be communicated and stored until the online phase begins. The
simple OT complexity upper bound discussed above also implies an O(N) up-
per bound on the correlated randomness complexity of the worst functions. No
better bound is known. This raises the following question:

Question 2. What is the correlated randomness complexity of the worst function
f : [N ]× [N ]→ {0, 1}? In particular, can every such f be securely realized using
o(N) bits of correlated randomness?

Communication Complexity of Private Simultaneous Messages Protocols. Feige,
Kilian, and Naor [30] considered the following non-interactive model for secure
two-party computation. The two parties simultaneously send messages to an
external referee, where the message of party Pi depends on its input xi and a
common source of randomness r that is kept secret from the referee. From the
two messages it receives, the referee should be able to recover f(x1, x2) but learn
no additional information about x1, x2. Following [38], we refer to such a proto-
col as a private simultaneous messages (PSM) protocol for f . A PSM protocol
for f can be alternatively viewed as a special type of randomized encoding of
f [39,1], where the output of f is encoded by the output of a randomized function

f̂((x1, x2); r) such that f̂ can be written as f̂((x1, x2); r) = (f̂1(x1; r), f̂2(x2; r)).
This is referred to as a “2-decomposable” encoding in [36].

It was shown in [30] that every f : [N ]× [N ]→ {0, 1} admits a PSM protocol
with O(N) bits of communication. While better protocols are known for func-
tions that have small formulas or branching programs [30,38], this still remains
the best known upper bound on the communication complexity of the worst-case
functions, or even most functions, in this model. We thus ask:

Question 3. What is the PSM communication complexity of the worst function
f : [N ]× [N ] → {0, 1}? In particular, does every such f admit a PSM protocol
which uses o(N) bits of communication?

Share Complexity of Forbidden Graph Access Structures. A longstanding open
question in information-theoretic cryptography is whether every (monotone) ac-
cess structures can be realized by a secret-sharing scheme in which the share
size of each party is polynomial in the number of parties. Here we consider a
“scaled down” version of this question, where the access structure only specifies,
for each pair of parties, whether this pair should be able to reconstruct the secret
from its joint shares or learn nothing about the secret.4 This type of graph-based

4 In contrast to the more standard notion of graph-based access structures, we make
no explicit requirement on bigger or smaller sets of parties. However, one can easily
enforce the requirement that every single party learns nothing about the secret and
every set of 3 parties can reconstruct the secret.
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access structures was considered in [54] under the name “forbidden graph” access
structures.

A simple way of realizing such an access structure is by independently shar-
ing the secret between each authorized pair. For most graphs, this solution
distributes a share of length Ω(N) to each party. This can be improved by
using covers by complete bipartite graphs implying that every graph access
structure can be realized by a scheme in which the share size of each party
is O(N/ logN) [18,16,28]. This raises the following question:

Question 4. What is share length required for realizing the worst graphs G? In
particular, can every forbidden graph access structure on N nodes be realized
by a secret-sharing scheme in which each party receives o(N/ logN) bits?

1.1 Our Results

For each of the above questions, we obtain an improved upper bound. Our
upper bounds are obtained by applying general transformations to variants of
information-theoretic private information retrieval (PIR) protocols from the lit-
erature (see Section 1.2), where different flavors of PIR are required for different
applications. At a high level, our results exploit new connections between 2-server
PIR and OT complexity, between 3-server PIR and correlated randomness com-
plexity, and between a special “decomposable” variant of 3-server PIR and PSM
complexity. The secret sharing result is obtained by applying a general transfor-
mation to the PSM result, in the spirit of a transformation implicit in [9]. More
concretely, we obtain the following main results.

OT Complexity of Secure Two-Party Computation. We show that every function
f : [N ] × [N ] → {0, 1} can be securely evaluated using Õ(N2/3) invocations of
an oblivious transfer oracle. In fact, the total communication complexity and
randomness complexity of the protocol are also bounded by Õ(N2/3). We also
obtain a similar result for securely sampling a uniform pair of outputs from a set
S ⊆ [N ]×[N ]. More generally and precisely, for any joint probability distribution
(U, V ) over [N ]× [N ] and any ε > 0, we obtain an ε-secure protocol for sampling
correlated outputs from (U, V ) using N2/3 ·poly(logN, log 1/ε) OTs. This can be
viewed as a nontrivial secure reduction of complex correlations (or “channels”)
to simple ones. These results apply the 2-server PIR protocol from [21]. See full
version for more details.

Correlated Randomness Complexity of Secure Two-Party Computation. We show
that every function f : [N ] × [N ] → {0, 1} can be securely evaluated using

2Õ(
√
logN) bits of correlated randomness. In fact, the same bound holds also

for the total randomness complexity of the protocol (counting private indepen-
dent coins as well) and also for the communication complexity of the protocol.
This result applies the 3-server PIR protocol of [27]. It was previously observed
in [30,41] that secure two-party computation with correlated randomness gives
rise to a 3-server PIR protocol. Here we show a connection in the other direction.
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Communication Complexity of Private Simultaneous Messages. We show that
every function f : [N ] × [N ] → {0, 1} can be realized by a PSM protocol with
messages of length O(

√
N). The construction is based on a special “decompos-

able” variant of 3-server PIR which we realize by modifying a PIR protocol
from [21]. In the hope of improving our O(

√
N) upper bound, we reduce the

problem of decomposable 3-server PIR to a combinatorial question of obtaining
a decomposable variant of matching vector sets [58,26]. See full version for more
details. We leave open the existence of decomposable matching vector sets with
good parameters.

In the terminology of randomized encoding of functions, the above result
shows that every f : [N ] × [N ] → {0, 1} admits a 2-decomposable randomized
encoding of length O(

√
N). It is instructive to note that whereas previous PSM

protocols from [30,38] employ a universal decoder (i.e., referee algorithm), which
does not depend on the function f other than on a size parameter, the decoder in
our construction strongly depends on f . It follows by a simple counting argument
that this is inherent.

Share Complexity of Forbidden Graph Access Structures. We show that for every
graph G with N nodes, the corresponding forbidden graph access structure can
be realized by a secret-sharing scheme in which each party gets a share of size
Õ(
√
N). This result is obtained by applying a general transformation to our

new PSM protocols. Curiously, while our secret-sharing scheme is not linear, a
simple generalization of a result of Mintz [50] implies a lower bound of Ω(

√
N)

on the share complexity of any linear scheme realizing the worst forbidden graph
access structure. This extends a previous lower bound from [7] that applies to the
stricter notion of graph-based access structures. The existence of linear secret-
sharing schemes meeting this lower bound is left open.

1.2 Related Work

Prior to our work, the only previous context in which sublinear communication
was known is that of secure multiparty computation in the presence of an honest
majority. While the complexity of standard protocols [13,19] grows linearly with
the circuit size, it is possible to do much better when there is a sufficiently
large majority of honest parties. Beaver et al. [5] have shown that when only
logn parties are corrupted, any function f : {0, 1}n → {0, 1} can be securely
evaluated using only poly(n) bits of communication and randomness, namely
the complexity is polylogarithmic in the input domain size. Their technique
makes an ad-hoc use of locally random reductions, which are in turn related to
the problem of information-theoretic private information retrieval (PIR) [21].
A k-server PIR protocol allows a client to retrieve an arbitrary bit Di from a
database D ∈ {0, 1}N , which is held by k servers, while hiding the selection i
from each individual server. The main optimization goal for PIR protocols is
their communication complexity, which is required to be sublinear in N .

Ishai and Kushilevitz [40] present a general method for transforming
communication-efficient PIR protocols into communication-efficient secure
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multiparty protocols in which the number of parties is independent of the total
input length n. In contrast to our constructions, which require the underlying
PIR protocols to satisfy additional computational and structural requirements,
the transformation from [40] is completely general. On the down side, it does
not apply in the two-party case and it requires (information theoretic) PIR pro-
tocols with polylogarithmic communication, which are not known to exist for a
constant number of servers k.

Beimel and Malkin [12] put forward the general goal of studying the minimal
number of OTs/ANDs required for securely realizing a given two-party function-
ality f , observe that this quantity can be smaller in some cases than the circuit
size of f , and obtain several connections between this question and communica-
tion complexity. These connections are mainly useful for proving lower bounds
that are logarithmic in the domain size N or upper bounds for specific func-
tions that have low communication complexity. More results in this direction
are given in [44]. Prabhakaran and Prabhakaran [51] put forward the question
of characterizing the rate of secure reductions between sampling functionalities,
and strengthen previous negative results from [56] on the rate of secure reduc-
tions between different OT correlations. None of the above results give nontrivial
upper bounds for the worst (or most) functions f . Winkler and Wulschlegger [56]
prove an Ω(logN) lower bound on the correlated randomness complexity of se-
cure two-party computation. Except for very few functions, this lower bound is
very far from the best known upper bounds even when considering the results
of this work.

The complexity of secret sharing for graph-based access structures was ex-
tensively studied in a setting where the edges of the graph represent the only
minimal authorized sets, that is, any set of parties that does not contain an edge
should learn nothing about the secret. The notion of forbidden graph access
structures we study, originally introduced in [54], can be viewed as a natural
“promise version” of this question, where one is only concerned about sets of
size 2. It is known that every graph access structure can be realized by a (linear)
scheme in which the share size of each party is O(N/ logN) [18,16,28]. The best
lower bound for the total share size required to realize a graph access struc-
ture by a general secret-sharing scheme is Ω(N logN) [55,15,23]. The best lower
bound for total share size required to realize a graph access structure by a linear
secret-sharing scheme is Ω(N3/2) [7]. The problem of secret sharing for dense
graphs was studied in [8]. Additional references on secret sharing of graph access
structures can be found in [8].

2 Preliminaries

2.1 Models and Definitions

Notation. Let [n] denote the set {1, 2, . . . , n}. Let FN denote the set of all
boolean functions from [N ] × [N ] to {0,1}. We will interpret f ∈ FN as a 2-
party function from [N ] × [N ] to {0,1}. For an algorithm B, let τ(B) denote
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the size (measured as number of AND gates) of a boolean circuit, over the basis
{∧,⊕,¬}, that represents B.

Computational Model. Since our results refer to perfect security, we incorpo-
rate perfect uniform sampling of [m], for an arbitrary positive integer m, into
the computational model as an atomic computation step.

Protocols. A k-party protocol can be formally defined by a next message func-
tion. This function on input (i, xi, j,m) specifies a k-tuple of messages sent by
party Pi in round j, when xi is its input and m describes all the messages Pi

received in previous rounds. The next message function may also instruct Pi to
terminate the protocol, in which case it also specifies the output of Pi.

Protocols with Preprocessing. In the preprocessing model, the specification
of a protocol also includes a joint distribution D over R1×R2 . . .×Rk, where the
Ri’s are finite randomness domains. This distribution is used for sampling cor-
related random inputs (r1, . . . , rk) that the parties receive before the beginning
of the protocol (in particular, the preprocessing is independent of the inputs).
The next message function, in this case, may also depend on the private random
input ri received by Pi from D. We assume that for every possible choice of
inputs and random inputs, all parties eventually terminate.

OT Correlations and the OT-Hybrid Model. We will be interested in
the special case of the 2-party setting when the correlated random inputs (X,Y )
given to the two parties are random OT correlations, corresponding to a random
instance of oblivious transfer, in which the receiver obtains one of two bits held
by the sender. That is, X = (X0, X1) is uniformly random over {0, 1}2 and
Y = (b,Xb) for a random bit b. We refer to a model in which the correlated
randomness given to the parties consists of random OT correlations, as the OT
preprocessing model. Alternatively, we may consider a setting where (each pair
of) parties have access to an ideal (bit) OT functionality that receives from one
of the parties, designated as the sender, a pair of bits (x0, x1), and a choice bit b
from the other party, designated as the receiver, and sends back to the receiver
the value xb. We call this model the OT-hybrid model.

Security Definition. We use the standard ideal-world/real-world simulation
paradigm. We restrict our attention mainly to the case of semi-honest (passive)
corruptions. (In Appendix B, we show how to extend some of our results to
the malicious setting.) Using the standard terminology of secure computation,
the preprocessing model can be thought of as a hybrid model where the parties
have a one-time access to an ideal randomized functionality D (with no inputs)
providing them with correlated, private random inputs ri. For lack of space, we
omit the full security definitions (see, e.g., [41, App. A] adapted to the semi-
honest setting).
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2.2 Private Information Retrieval

The following is a somewhat non-standard view of PIR protocols, where the
index is thought of as a pointer into a two-dimensional table, which in turn is
thought of as a two-argument function.

Definition 1 (Private Information Retrieval). Let FN be the set of all
boolean functions f : [N ]×[N ]→ {0, 1}. A k-server private information retrieval
(PIR) scheme P = (Q,A,R) for FN is composed of three algorithms: a random-
ized query algorithm Q, an answering algorithm A, and a reconstruction algo-
rithm R. At the beginning of the protocol, the client has an input x ∈ [N ]× [N ]
and each server has an identical input f representing a function in FN . Using
its private randomness r ∈ {0, 1}γ(N), the client computes a tuple of k queries
(q1, . . . , qk) = Q(x, r), where qi ∈ {0, 1}α(N), for all i ∈ [k]. The client then
sends the query qj to server Sj, for every j ∈ [k]. Each server Sj responds with
an answer aj = A(j, qj , f), with aj ∈ {0, 1}β(N). Finally, the client computes
the value f(x) by applying the reconstruction algorithm R(x, r, a1, . . . , ak). We
ask for the following correctness and privacy requirements:

Correctness. The client always outputs the correct value of f(x). Formally, for
every function f ∈ FN , every input x ∈ [N ]× [N ], and every random string r, if
(q1, . . . , qk) = Q(x, r) and aj = A(j, qj , f), for j ∈ [k], then R(x, r, a1, . . . , ak) =
f(x).

Client’s Privacy. Each server learns no information about x. Formally, for
every two inputs x, x′ ∈ [N ]× [N ], every j ∈ [k], and every query q, the server
Sj cannot know if the query q was generated with input x or with input x′; that
is, Pr[Qj(x, r) = q] = Pr[Qj(x

′, r) = q], where Qj denotes the jth query in the
k-tuple that Q outputs and the probability is taken over a uniform choice of the
random string r.

The communication complexity of a protocol P is the total number of bits
communicated between the client and the k servers (i.e.,

∑
j(|qj | + |aj |) =

k(α(N) + β(N))).

Every function f ∈ FN is represented by anN2-bit string y = (y1,1, . . . , yN,N),
where f(i, j) = yi,j . The string y is also called a database, and we think of the
client as querying a bit yi,j from the database.

Observe that the query received by each server is independent of the client’s
input x. In particular, this holds for the first query q1, which therefore, may
be thought of as depending only on the private randomness, say r, of the client,
and not on the client input x. That is, we may assume that the query generation
algorithm Q is expressed as the combination of two algorithms Q1,Q−1 and we
assume that the client, with private randomness r, computes a tuple of k queries
(q1, . . . , qk) as q1 = Q1(r), and q2, . . . , qk = Q−1(x, r).
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2.3 Private Simultaneous Messages

The Private Simultaneous Messages (PSM) model was introduced by [30] as a
minimal model for secure computation. It allows k players P1, . . . , Pk with access
to shared randomness, to send a single message each to a referee Ref, so that
the referee learns the value of a function f(x1, . . . , xk) (where xi is the private
input of Pi) but nothing else. It is formally defined as follows:

Definition 2 (Private Simultaneous Messages). Let X1, . . . , Xk, Z be finite
domains, and let X = X1 × · · · ×Xk. A private simultaneous messages (PSM)
protocol P, computing a k-argument function f : X → Z, consists of:

– A finite domain R of shared random inputs, and k finite message domains
M1, . . . ,Mk.

– Message computation function μ1, . . . , μk, where μi : Xi ×R→Mi.
– A reconstruction function g : M1 × · · · ×Mk → Z.

Let μ(x, r) denote the k-tuple of messages (μ1(x1, r), . . . , μk(xk, r)). We say that
the protocol P is correct (with respect to f), if for every input x ∈ X and every
random input r ∈ R, g(μ(x, r)) = f(x). We say that the protocol P is private
(with respect to f), if the distribution of μ(x, r), where r is a uniformly random
element of R, depends only on f(x). That is, for every two inputs x, x′ ∈ X such
that f(x) = f(x′), the random variables μ(x, r) and μ(x′, r) (over a uniform
choice of r ∈ R) are identically distributed. P is a PSM protocol computing f if
it is both correct and private.

The communication complexity of the PSM protocol P is naturally defined as∑n
i=1 log |Mi|. The randomness complexity of the PSM protocol P is defined as

log |R|.

3 Our Results

Secure Computation in the OT-hybrid Model. We show a connection
between secure computation in the (bit) OT-hybrid model and 2-server PIR.
More formally, we show:

Theorem 1. Let P = (Q,A,R) be a 2-server PIR scheme for FN as described
in Definition 1. Then, for any 2-party functionality f : [N ] × [N ] → {0, 1},
there is a protocol π which realizes f in the (bit) OT-hybrid model, and has the
following features:

– π is perfectly secure against semi-honest parties;
– The total communication complexity, and in particular the number of calls

to the OT oracle, is O(τ(Q) + τ(R)).

Plugging in parameters from the best known 2-server PIR protocol [21] in
Theorem 1, we obtain:
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Corollary 1. For any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a
protocol π that realizes f in the (bit) OT-hybrid model; this protocol is perfectly
secure against semi-honest parties, and has total communication complexity (in-

cluding communication with the OT oracle) Õ(N2/3).

Prior to our work, the best upper bound on the communication complexity of
an information-theoretically secure protocol in the OT-hybrid model for evaluat-
ing arbitrary functions f : [N ]× [N ]→ {0, 1} was Ω(N). This can, for instance,
be achieved by formulating the secure evaluation of f : [N ]× [N ] → {0, 1} as a
1-out-of-N OT problem between the two parties, where party P1 participates as
sender with inputs {f(x1, i)}i∈[N ] and party P2 participates as receiver with in-
put x2. An instance of 1-out-of-N OT can be obtained information theoretically
from O(N) instances of 1-out-of-2 OT by means of standard reductions [17].

Secure Computation in the Preprocessing Model. Since OTs can be
precomputed [4], the protocol implied by Theorem 1 yields a perfectly secure
semi-honest protocol in the OT-preprocessing model where the communication
complexity of the protocol and number of OTs required are both O(τ(Q)+τ(R)).

Our next theorem shows that it is possible to obtain much better communi-
cation complexity in a setting where we are not restricted to using precomputed
OT correlations alone. We show this by demonstrating a connection between se-
cure computation in the preprocessing model and 3-server PIR. More formally,

Theorem 2. Let P = (Q,A,R) be a 3-server PIR scheme for FN as described
in Definition 1. Then, for any 2-party functionality f : [N ]× [N ]→ {0, 1}, there
is a protocol π that realizes f in the preprocessing model, and has the following
features:

– π is perfectly secure against semi-honest parties;
– The total communication complexity is O(τ(Q) + τ(R));
– The total correlated randomness complexity is O(τ(Q) + τ(R)).

Remark 1. We point out that a transformation in the other direction (i.e., con-
structing 3-server PIR protocols from protocols in the preprocessing model) was
shown in [41]. In more detail, they show that a semi-honest secure protocol in
the preprocessing model for f : [N ] × [N ] → {0, 1} with correlated randomness
complexity s(N) implies the existence of a 3-server, interactive PIR protocol,

with communication complexity s(N̂1/2) +O(log N̂), where N̂ is the size of the
database held by the servers. Taken together with our Theorem 2, this shows
a two-way connection between the communication complexity of 3-server PIR
protocols and the correlated randomness complexity of protocols in the prepro-
cessing model.

Plugging in parameters from the best known 3-server PIR protocols [27,11]
in Theorem 2, we obtain:
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Corollary 2. For any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a
protocol π that realizes f in the preprocessing model; this protocol is perfectly
secure against semi-honest parties, and has total communication complexity and

correlated randomness complexity 2Õ(
√

logN).

While we mainly focus here on efficiency of 2-party secure computation, we
show how to construct protocols in the multiparty setting, and also for the setting
with honest majority in Appendix A. We summarize our results on t-private k-
party semihonest secure computation in Table 1. In Appendix B we show how
to extend our results on secure computation to the malicious setting.

Table 1. Summary of upper bounds on different complexity measures of t-private
k-party semihonest secure computation of the worst function f : [N ]k → {0, 1}

Complexity measure (t, k) This work Reference

OT complexity in the
OT-hybrid model

(1, 2) O(N2/3) Cor. 1

(t, k ≤ 2t) Nk/	2k−1/t
 · poly(k) Cor. 5

Correlated randomness
complexity in the
preprocessing model

(1, 2) 2Õ(
√

logN) Cor. 2

(t > 1, k ≤ 2t) Nk/	2k+1/t
 · poly(k) Cor. 4

Communication
complexity in the
plain model

(t, 2t < k < 3t) Nk/	2k−1/t
 · poly(k) Cor. 4

(t, k ≥ 3t) 2Õ(
√

k logN) · poly(k) Cor. 5

Private Simultaneous Messages (PSM) Model. We obtain the following
upper bound for 2-party protocols in the PSM model.

Theorem 3. For any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a
PSM protocol π that realizes f , and has the following features:

– π is perfectly secure against semi-honest parties;
– The total communication complexity and the randomness complexity are

O(N1/2).

This improves upon the best known upper bound of O(N) on the communi-
cation and randomness complexity of PSM protocols [30].

Secret Sharing for Forbidden Graph Access Structures. Consider a
graph G = (V,E). We are interested in the following graph access structure AG

in which the parties correspond to the vertices of the graph and (1) every vertex
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set of size three or more is authorized, and (2) every pair of vertices that is not
connected by an edge in E is authorized. Such an access structure is called a
forbidden graph access structure [54] since pairs of vertices connected by an edge
in G are forbidden from reconstructing the secret. We obtain the following upper
bound on the share size for a secret-sharing scheme realizing AG, for all G.

Theorem 4. Let G = (V,E) be a graph with |V | = N , and let AG be the
corresponding access structure. Then, there exists a perfect secret-sharing scheme
realizing AG with total share size O(N3/2 logN).

4 Secure Computation in the OT-Hybrid Model

In this section, we construct a 2-party secure computation protocol realizing
f : [N ]×[N ]→ {0, 1} in the (bit) OT-hybrid model from a 2-server PIR protocol

P = (Q,A,R). The resulting protocol has communication complexity Õ(N2/3)

and makes Õ(N2/3) calls to the ideal OT functionality, improving over prior
work whose worst-case complexity (both in terms of communication and calls to
the ideal OT functionality) was Ω(N) [17,25].

Let P = (Q,A,R) be a 2-server PIR protocol. Let the truth table of the
function f : [N ]× [N ] → {0, 1} that we are interested in, serve as the database
(of length N2). The high level idea behind our protocol is that the two par-
ties P1 and P2, with their respective inputs x1, x2, securely emulate a virtual
client with input x = x1‖x2, and two virtual servers holding as database the
truth table of f , in the PIR protocol P . In more detail, parties P1 and P2, with
inputs x1 ∈ [N ], r(1) ∈ {0, 1}γ(N) and x2 ∈ [N ], r(2) ∈ {0, 1}γ(N) respectively,
emulate a PIR client by securely evaluating the query generation algorithm Q
on input x = x1‖x2 ∈ [N2] and randomness r = r(1)⊕r(2), such that party P1

obtains query q1 and party P2 obtains query q2. Then, using the PIR queries
as their respective inputs, the parties locally emulate the PIR servers by run-
ning the PIR answer generation algorithm A and obtaining PIR answers a1 and
a2, respectively. Finally, using the answers a1, a2, the inputs x1, x2, and the
randomness r(1), r(2), parties P1 and P2 once again participate in a secure com-
putation protocol to securely evaluate the PIR reconstruction algorithm R to
obtain the final output z. The protocol is described in Figure 1. It is easy to see
that the communication complexity as well as the number of calls to the ideal
OT functionality is O(τ(Q) + τ(R)), that is, the complexity is proportional to
the circuit size of the query and reconstruction algorithms. For a detailed proof,
see full version.

Intuitively, the protocol is private because (1) each individual PIR query does
not leak any information about the query location and the reconstruction algo-
rithms outputs nothing but the desired bit (both follow from the definition of
PIR schemes); and (2) emulation of the algorithms run by the PIR client is done
via secure computation protocols.

Instantiating the protocol in Figure 1 with the 2-server PIR protocol of Chor
et al. [21] yields a perfectly secure protocol in the OT-hybrid model whose



330 A. Beimel et al.

communication complexity is Õ(N2/3) and which makes Õ(N2/3) calls to the
ideal OT functionality. This proves Corollary 1.

Preliminaries: Let P = (Q,A,R) be a 2-server PIR protocol where servers hold
as database the truth table of a function f : [N ] × [N ] → {0, 1}. Parties P1, P2

have inputs x1, x2 ∈ [N ] respectively. At the end of the protocol, both parties
learn z = f(x1, x2).

Protocol:

1. P1, P2 choose uniformly random r(1), r(2) ∈ {0, 1}γ(N), respectively (where

γ(N) is the size of the randomness required by algorithm Q). Let Q̃ de-
note an algorithm that takes as input (x1, r

(1)), (x2, r
(2)) and runs algo-

rithm Q(x1‖x2, r
(1)⊕r(2)). Party P1 with inputs (x1, r

(1)) and P2 with inputs
(x2, r

(2)) run a 2-party semi-honest secure GMW protocol in the OT-hybrid

model to evaluate circuit C(Q̃). Let q1, q2 denote their respective outputs.
2. P1 and P2 locally compute a1 = A(1, q1, f) and a2 = A(2, q2, f) respectively.

3. Let R̃ denote an algorithm that takes as input (a1, x1, r
(1)), (a2, x2, r

(2)) and
runs algorithm R(x1‖x2, r

(1)⊕r(2), a1, a2). Party P1 with inputs (a1, x1, r
(1))

and P2 with inputs (a2, x2, r
(2)) run a 2-party semi-honest secure GMW pro-

tocol in the OT-hybrid model to evaluate circuit C(R̃), where z denotes their
common output. Both parties output z and terminate the protocol.

Fig. 1. A perfectly secure protocol in the OT-hybrid model

5 Secure Computation in the Preprocessing Model

In this section, we construct a 2-party secure computation protocol realizing
f : [N ]× [N ]→ {0, 1} in the preprocessing model from a 3-server PIR protocol
P = (Q,A,R). The resulting protocol will have communication and correlated

randomness complexity 2Õ(
√
logN) improving over prior work whose worst-case

complexity was Ω(N) [17,25]. Note that we manage to emulate a protocol with
3 servers and one client by a protocol with 2 parties.

Let P = (Q,A,R) be a 3-server PIR protocol. We assume that the database
represents the truth table of the function f : [N ] × [N ] → {0, 1} that we are
interested in. The high level idea behind our protocol is that the two parties P1

and P2 with their respective inputs x1, x2 securely emulate a virtual client with
input x = x1‖x2, and two of the three virtual servers, say S2 and S3, holding
as database the truth table of f , in the PIR protocol P . The key observation is
that server S1’s inputs and outputs can be precomputed and shared between P1

and P2 as preprocessed input. This is possible because S1’s input, namely the
PIR query q1, is distributed independently of the client’s input, and thus can be
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computed beforehand. Similarly, a1, the answer of S1, is completely determined
by q1 and the truth table of the function f , and thus can be precomputed as
well. Thus, the preprocessed input along with the emulation done by P1 and P2

allow them to securely emulate all PIR algorithms Q, A, R of the 3-server PIR
protocol P . We provide a more detailed description of the protocol below.

Parties P1 and P2, are provided as preprocessed input, values (r(1),a
(1)
1 ) and

(r(2), a
(2)
1 ) respectively along with sufficient OT correlations (whose use we will

see later). The values r(1) and r(2) together determine the randomness used in
PIR query generation algorithm Q as r = r(1)⊕r(2). Given randomness r, the
first server’s query q1 (resp. answer a1) is completely determined as Q1(r) (resp.

A(1, q1, f)). The values a
(1)
1 and a

(2)
1 together form a random additive sharing

of a1.
In the online phase, when parties obtain their respective inputs x1 and x2, they

proceed to emulate the PIR client by securely evaluating the query generation
algorithm on input x = x1‖x2 ∈ [N2] and randomness r = r(1)⊕r(2), such
that party P1 obtains query q2 and party P2 obtains query q3. Then, using
the PIR queries as their respective inputs, the parties locally emulate the PIR
servers by running the PIR answer generation algorithm A and obtain PIR
answers a2 and a3 respectively. Recall that a random sharing of answer a1 is
already provided to the parties as preprocessed input. Using this random sharing
of answer a1, the locally computed answers a2, a3, the inputs x1, x2, and the
randomness r = r(1)⊕r(2), parties P1 and P2 once again participate in a secure
computation protocol to securely evaluate the PIR reconstruction algorithm R
to obtain the final output z. It is easy to see that the communication and
correlated randomness complexity of the protocol equals O(τ(Q) + τ(R)).

Intuitively, the protocol is private because (1) each party knows at most one
PIR query, and (2) each individual PIR query does not leak any information
about the query location (follows from the definition of PIR properties), and (3)
emulation of the algorithms run by the PIR client is done via secure computa-
tion protocols. Instantiating the protocol described above with the best known
3-server PIR protocol [58,27,11] we obtain a perfectly secure protocol in the pre-
processing model whose communication and correlated randomness complexity

is 2Õ(
√
logN). The details are deferred to the full version.

6 Private Simultaneous Messages

In this section, we provide a new framework for constructing PSM protocols (cf.
Definition 2). Our proposed framework is based on a new variant of PIR proto-
cols that we call decomposable PIR protocols. We define decomposable PIR in
Section 6.1. We construct a 2-party PSM protocol using 3-server decomposable
PIR protocols in Section 6.2, and we present a concrete decomposable 3-server
PIR protocol in Section 6.3. The PSM protocol of Section 6.2, instantiated with
this concrete decomposable 3-server PIR protocol, has communication (and ran-
domness) complexity O(N1/2), for all f : [N ]× [N ]→ {0, 1}.
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6.1 Decomposable PIR Schemes

A k-server decomposable PIR protocol allows a client with input x =
(x1, . . . , xk−1) ∈ [N ]k−1 to query k servers, each holding a copy of a database
of size Nk−1 and retrieve the contents of the database at index x while offering
(possibly relaxed) privacy guarantees to the client. Loosely speaking, decompos-
able PIR protocols differ from standard PIR protocols (cf. Definition 1) in two
ways: (1) the query generation and reconstruction algorithms can be decom-
posed into “simpler” algorithms that depend only on parts of the entire input.
(2) We change the privacy requirement and require that the query of server Sk
together with some information about the answers of the first k− 1 servers does
not disclose information about the input of the client. We note that the privacy
of the first k−1 queries follows from the decomposability of the query generation
algorithm. We provide the formal definition below.

Definition 3 (Decomposable PIR). Let FN,k−1 be the set of all boolean func-
tions f : [N ]k−1 → {0, 1}. A k-server decomposable PIR protocol P = (Q,A,R)
for FN,k−1 consists of three algorithms: a randomized query algorithm Q, an an-
swering algorithm A, and a reconstruction algorithm R. The client has an input
x = (x1, . . . , xk−1) ∈ [N ]k−1 (i.e., x is from the input domain of FN,k−1) and
each server has an identical input f representing a function in FN,k−1. Using
its private randomness r ∈ {0, 1}γ(N), the client computes a tuple of k queries
(q1, . . . , qk) = Q(x, r), where each qi ∈ {0, 1}α(N). The client then sends the
query qj to server Sj, for every j ∈ [k]. Each server Sj responds with an answer
aj = A(j, qj , f), with aj ∈ {0, 1}β(N). Finally, the client computes the value
f(x) by applying the reconstruction algorithm R(x, r, a1, . . . , ak). The query
generation algorithm Q and the reconstruction algorithm R satisfy the following
“decomposability” properties.

Decomposable Query Generation. The randomized query generation
algorithm Q can be decomposed into k algorithms Q1, . . . ,Qk−1,Qk =
(Q1

k, . . . ,Qk−1
k ), such that for every input x = (x1, . . . , xk−1) ∈ [N ]k−1, and

for every random string r ∈ {0, 1}γ(N), the queries (q1, . . . , qk) = Q(x, r)
are computed by the client as qj = Qj(xj , r) for j ∈ [k − 1], and qk =
(q1k, . . . , q

k−1
k ) = (Q1

k(x1, r), . . . ,Qk−1
k (xk−1, r)).

Decomposable Reconstruction. There exists algorithms R′,R′′ such that
for every input x = (x1, . . . , xk−1) ∈ [N ]k−1, and for every random string
r ∈ {0, 1}γ(N), if (q1, . . . , qk) = Q(x, r), and aj = A(j, qj , f) for j ∈
[k], then the output of the reconstruction algorithm R(x, r, a1, . . . , ak) equals
R′′(ak,R′(x, r, a1, . . . , ak−1)).

We ask for the following correctness and privacy requirements:

Correctness. The client always outputs the correct value of f(x). Formally, for
every function f ∈ FN,k−1, every input x ∈ [N ]k−1, and every random string r, if
(q1, . . . , qk) = Q(x, r) and aj = A(j, qj , f), for j ∈ [k], then R(x, r, a1, . . . , ak) =
f(x).
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Privacy. We require that qk, the query of Sk, and R′(x, r, a1, . . . , ak−1) do not
disclose information not implied by f(x). Formally, for every f ∈ FN,k−1, for
every two inputs x, x′ ∈ [N ]k−1 such that f(x) = f(x′), and every values q, b,
letting aj = A(j,Qj(x, r), f) and a′j = A(j,Qj(x

′, r), f) for j ∈ [k − 1], and
qk = Qk(x, r), q′k = Qk(x

′, r)

Pr
r
[qk = q ∧ R′(x, r, a1, . . . , ak−1) = b] = Pr

r
[q′k = q ∧ R′(x′, r, a′1, . . . , a

′
k−1) = b],

where the probability is taken over a uniform choice of the random string r.

As usual, the communication complexity of such a protocol P is the total
number of bits communicated between the client and the k servers (i.e.,

∑
j(|qj |+

|aj |) = k(α(N) + β(N))).

6.2 From 3-Server Decomposable PIR to 2-Party PSM

Given a function f : [N ]× [N ]→ {0, 1}, we construct a 2-party PSM protocol for
f using a 3-Server Decomposable PIR protocol. We give an informal description
of the protocol. The shared randomness of the two parties is composed of two
strings, one string for the decomposable PIR protocol and one for a PSM protocol
π for computing R′. (We remark that R′ is “simpler” than f , and consequently
existing PSM protocols (e.g., [38,47]) can realize R′ very efficiently.) In the
protocol, P1, holding x1 and f , computes the query q1 and its part of the query of
server S3, namely q13 (party P1 can compute these queries by the decomposability
of the query generation). P1 also computes a1. Similarly, P2, holding x2 and f ,
computes q2, its part of the query of server S3, namely q23 , and a2. Parties
P1 and P2 send q13 and q23 to the referee, who uses this information and f to
compute a3. Furthermore, P1 and P2 execute a PSM protocol that enables the
referee to compute z′ = R′((x1, x2), r, a1, a2). The referee reconstructs f(x) by
computing R′′(a3, z

′), where a3 is the answer computed by the referee for query
q3 = (q13 , q

2
3).

The correctness of the protocol described above follows immediately from the
definition of decomposable PIR. Furthermore, the information that the referee
gets is q3 and the messages of a PSM protocol computing R′. By the privacy
of the PSM protocol, the referee only learns the output of R′ from this PSM
protocol. Thus, the referee only learns q3 and the output of R′; by the privacy
requirement of the decomposable PIR protocol the referee learns only f(x). We
summarize the properties of our PSM protocol in the following lemma.

Lemma 1. Let P be a 3-server decomposable PIR protocol where the query
length is α(N) and the randomness complexity is γ(N). Furthermore, assume
that R′ can be computed by a 2-party PSM protocol π′ with communication com-
plexity α′(N) and randomness complexity γ′(N). Then, every function f ∈ FN

can be computed by a 2-party PSM protocol π with communication complexity
α(N) + α′(N) and randomness complexity γ(N) + γ′(N).
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6.3 A 3-Server Decomposable PIR Protocol

In this section, we show how to construct a decomposable 3-server PIR protocol.
Our construction is inspired by the cubes approach of [21]. We start with a high
level description of this approach, specifically for the case of 4-dimensional cubes
and of its adaptation to the decomposable case. In the following, for set S and
element i, let S⊕{i} denote the set S\{i} if i ∈ S, and S ∪ {i} otherwise.

The starting point of the CGKS [21] cubes approach (restricted here to di-
mension 4) is viewing the n-bit database as a 4-dimensional cube (i.e., [n1/4]4).
Correspondingly, the index that the client wishes to retrieve is viewed as a 4-
tuple i = (i1, . . . , i4). The protocol starts by the client choosing a random subset
for each dimension, i.e. S1, . . . , S4 ⊆R [n1/4]. It then creates 16 queries of the
form (T1, . . . , T4) where each Tj is either Sj itself or Sj ⊕{ij} (we often use vec-
tors in {0, 1}4 to describe these 16 combinations; e.g., 0000 refers to the query
(S1, . . . , S4) while 1111 refers to the query (S1 ⊕ {x1}, . . . , S4 ⊕ {x4})). If there
were 16 servers available, the client could send each query (T1, . . . , T4) to a dif-
ferent server (4 ·n1/4 bits to each), who would reply with a single bit which is the
XOR of all bits in the sub-cube T1⊗. . .⊗T4. The observation made in [21] is that
each element of the cube appears in an even number of those 16 sub-cubes, and
the only exception is the entry i = (i1, . . . , i4) that appears exactly once. Hence,
taking the XOR of the 16 answer bits, all elements of the cube are canceled out
except for the desired element in position i.

The next observation of the cubes approach is that a server who got a query
(T1, . . . , T4) can provide a longer answer (but still of length O(n1/4) bits) from
which the answers to some of the other queries can be derived (and, hence, the
corresponding servers in the initial solution can be eliminated). Specifically, it
can provide also the answers to the queries (T1 ⊕{�}, T2, T3, T4), for all possible
values � ∈ [n1/4]. One of these is the bit corresponding to � = i1 which is the
desired answer for another one of the 16 queries; and, clearly, the same can be
repeated in each of the 4 dimensions. Stated in the terminology of 4-bit strings, a
server that gets the query represented by some b ∈ {0, 1}4 can reply with O(n1/4)
bits from which the answer to the 5 queries of hamming distance at most one
from b can be obtained; further, it can be seen that 4 servers that will answer
the queries corresponding to {1100, 0011, 1000, 0111} provide all the information
needed to answer the 16 queries in the initial solution (this corresponds also to
the notion of “covering codes” from the coding theory literature).

Next, we informally describe how to turn the above ideas into a decompos-
able 3-server PIR protocol. We still view the database as 4-dimensional cube
and the client is still interested in obtaining the answers to the same 16 queries.
Moreover, we are allowed to use only 3 servers for this. However, the require-
ments of decomposable PIR give us some freedom that we did not have before;
specifically, we allow the answer of the first server to depend on x1 = (i1, i2)
and the answer of the second server to depend on x2 = (i3, i4). The query to the
third server should still give no information about i. Specifically, we will give the
first server the basic sets S1, . . . , S4 along with the values i1, i2. This server can
easily compute the answer to all 4 queries of the form (T1, . . . , T4) with T1 being
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either S1 or S1 ⊕ {i1} and T2 being either S2 or S2 ⊕ {i2} (in vectors notation,
those correspond to the queries 0000,0100,1000,1100). Moreover, using the idea
described above, even though the first server does not know the value of i3 it
can provide O(n1/4)-bit answer corresponding to all choices of i3 from which the
client can select the right ones (in vectors notation, those corresponding to the
queries 0010,0110,1010,1110). Similarly it can provide O(n1/4)-bit answer corre-
sponding to all choices of i4 from which the client can select the right ones (in
vectors notation, those corresponding to the queries 0001,0101,1001,1101). The
query to the second server consists of S1, . . . , S4 along with the values i3, i4. In a
similar way, this server provides an answer of O(n1/4) bits that can be used
to answer the queries 0000,0010,0001,0011 directly and 1000,1010,1001,1011,
0100,0110,0101,0111 by enumerating all values of i1 and then all values of i2
(some queries are answered by both servers; this small overhead can be eas-
ily saved – see full version). So, based on a1, a2, the only query that remained
unanswered is the 1111 query. For this, the client asks the third server the query
(S1 ⊕ {i1}, . . . , S4 ⊕ {i4}) (which is independent of i) and gets the missing bit,
denoted a3, back. Finally, note that the reconstruction has the desired “decom-
posable” form: the client output can be obtained by processing the answers of
the first two servers to get the sum v of the first 15 queries (this is the desired
R′) and then adding a3 to it. Moreover, the pair (q3, v) gives no information on
i beyond the output: q3 is independent of i (it is just a random sub-cube), and
v is just the exclusive-or of the output and a3 (which depends only on q3 and
hence independent of i).

7 Secret Sharing

We present a generic transformation from any 2-party PSM protocol to secret-
sharing schemes for forbidden graph access structures, and then use the results
from Section 6 to obtain efficient secret-sharing schemes for these access struc-
tures. Specifically, we obtain N -party secret-sharing schemes for forbidden graph
access structures whose total share size is O(N3/2). The best previous construc-
tions for these access structures had total share size O(N2/ logN) [18,16,28].

In Section 7.1, we demonstrate our transformation from PSM protocols to
secret-sharing schemes for forbidden graph access structures, for the simple case
when the graph is bipartite. For lack of space, our generalized construction is
presented in the full version. We start by formally defining forbidden graph
access structures.

Definition 4. Let G = (V,E) be an arbitrary graph. A forbidden graph access
structure, denoted AG, is an access structure where the parties are the vertices
in V and the only unauthorized sets are singletons (i.e., sets containing a single
vertex in V ), and sets of size 2 corresponding to edges on G (i.e., sets {x, y}
with (x, y) ∈ E).
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7.1 Secret Sharing Schemes for Forbidden Bipartite Graph Access
Structures

We first show how to realize forbidden graph access structures AG, where the
graph G is bipartite.

Definition 5. Let G = (L,R,E) be a bipartite graph, where |L| = |R| = N . We
label the vertices in L by 1, 2, . . . , N , and similarly, vertices in R by 1, 2, . . . , N .
We associate the bipartite graph G = (L,R,E) with a boolean function fG :
[N ]× [N ]→ {0, 1}, where f(x, y) equals 0 iff there exists an edge between vertex
x ∈ L and vertex y ∈ R.

Lemma 2. Let G = (L,R,E) be a bipartite graph where |L| = |R| = N and
fG : [N ] × [N ] → {0, 1} be the function associated with G. Let P be a PSM
protocol for computing fG with communication complexity cP(N). Then, there
exists a secret sharing realizing AG with domain of secrets {0, 1} and total share
size O(N · cP(N)).

Proof. In a forbidden bipartite graph access structure the sets that can recon-
struct the secret are: (1) All sets of 3 or more parties, (2) all pairs of parties that
correspond to vertices from the same “side” of the graph (L or R), and (3) all
pairs of parties that correspond to vertices from different sides of the graph and
are not connected by an edge.

We construct a secret-sharing scheme for AG by dealing with the three types
of authorized sets. First, the dealer shares the secret with Shamir’s 3-out-of-
2N threshold secret-sharing scheme among the 2N parties of the access struc-
ture. Next, the dealer independently shares the secret with Shamir’s 2-out-of-
N threshold secret-sharing scheme among the parties in L, and independently
among the parties in R.

The interesting case is how to share the secret for sets {x, y} such that x ∈
L, y ∈ R, and (x, y) /∈ E. Let μ1, μ2 represent the message computation functions
of the PSM protocol P (as defined in Definition 2). To share a secret s ∈ {0, 1},
the dealer chooses the randomness r, required for P . Then, depending on the
value of s, it distributes the shares to the parties as follows:

– If s = 0, then the dealer chooses arbitrary x0, y0 ∈ [N ] such that fG(x0, y0) =
0, and gives the share mx = μ1(x0, r) to each party x ∈ L, and the share
my = μ2(y0, r) to each party y ∈ R.

– Else, if s = 1, then the dealer gives the share mx = μ1(x, r) to each party
x ∈ L, and the share my = μ2(y, r) to each party y ∈ R.

Any two parties x ∈ L and y ∈ R that are not connected by an edge in
G reconstruct the secret by returning the output of the PSM reconstruction
function s′ = g(mx,my) (cf. Definition 2). Correctness of this reconstruction for
(x, y) /∈ E follows from the correctness of the PSM protocol P . Specifically, (1)
when s = 0, the parties x and y reconstruct f(x0, y0) = 0 = s, and (2) when
s = 1, the parties x and y reconstruct fG(x, y) = 1 = s.
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For the privacy, consider a pair of parties x, y such that x ∈ L, y ∈ R, and
(x, y) ∈ E. When s = 0, these parties hold shares μ1(x0, r) and μ2(y0, r) respec-
tively. When s = 1, these parties hold shares μ1(x, r) and μ2(y, r) respectively.
Since fG(x, y) = fG(x0, y0) = 0, the shares do not reveal any information about
s (by the privacy of the PSM protocol). ��

Using the PSM protocols described in Theorem 3 in Lemma 2, we get the
following corollary.

Corollary 3. Let G = (L,R,E) be a bipartite graph where |L| = |R| = N .
There exists a secret sharing realizing AG with domain of secrets {0, 1} and
total share size O(N3/2).

In the full version, we show how to construct secret-sharing schemes realizing
AG for general graphs, using the secret-sharing scheme for forbidden bipartite
graph access structures.
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A Multiparty Secure Computation

Notation. Let Fk
N denote the set of all boolean functions from [N ]k to {0, 1}.

We will interpret f ∈ Fk
N as a k-party function. Also, we consider t-private k-

server PIR for Fk
N , a natural generalization of 1-private k-server PIR for FN

defined in Section 2.
The following theorems summarize the connections between t-private k-server

PIR, and multiparty secure computation in the plain model, OT-hybrid model,
and the preprocessing model. The protocols implied by the theorems are straight-
forward extensions of the ideas behind the protocols of Sections 4 and 5.

Theorem 5. Let P = (Q,A,R) be a t-private k-server PIR scheme for Fk
N .

Then, for any k-party functionality f : [N ]k → {0, 1}, the following hold:

– There is a perfectly secure k-party protocol π that realizes f in the plain
model, tolerates t < k/2 passively corrupt parties, and has communication
complexity O(k2 · (τ(Q) + τ(R))).

– There is a perfectly secure k-party protocol π that realizes f in the OT-hybrid
model, tolerates t < k passively corrupt parties, and has communication
complexity O(k2 · (τ(Q) + τ(R))).

Theorem 6. Let P = (Q,A,R) be a t-private (k + 1)-server PIR scheme for
Fk

N . Then, for any k-party functionality f : [N ]k → {0, 1}, there is a perfectly
secure k-party protocol π that realizes f in the preprocessing model, and tolerates
t < k passively corrupt parties, and has correlated randomness complexity (and
communication complexity) O(k2 · (τ(Q) + τ(R))).

Plugging in parameters from the best known t-private k-server (resp. (k+1)-
server) PIR protocols [10,57] in Theorem 5 (resp. Theorem 6), we obtain the
following corollary.

Corollary 4. Let f : [N ]k → {0, 1} be any k-party functionality. Then,

– There is a perfectly secure k-party protocol π that realizes f in the plain
model, tolerates t < k/2 passively corrupt parties, and has communication
complexity Nk/�2k−1/t� · poly(k).

– There is a perfectly secure k-party protocol π that realizes f in the OT-hybrid
model, tolerates t < k passively corrupt parties, and has communication
complexity Nk/�2k−1/t� · poly(k).

– There is a perfectly secure k-party protocol π that realizes f in the preprocess-
ing model, tolerates t < k passively corrupt parties, and has correlated ran-
domness complexity (and communication complexity) Nk/�2k+1/t� · poly(k).

We point out that for the specific case of t = k − 1 our protocol in the OT-
hybrid model has communication complexity Nk/2 ·poly(k) which improves over
prior work which had complexity Nk−1 · poly(k) [34].
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For the case of honest majority, it is possible to obtain better results for t-
private k-party computation when k ≥ 3t via the best known t-private 3t-server
PIR protocols obtained by boosting (via [2]) the PIR protocols of [58,27,11].

Corollary 5. For any t ≥ 0, and for any k ≥ 3t-party functionality f : [N ]k →
{0, 1}, there is a protocol π that realizes f in the plain model, and has the fol-
lowing features:

– π is perfectly secure, and tolerates t passively corrupt parties;

– The total communication complexity is 2Õ(
√
k logN) · poly(k).

B Extension to the Malicious Setting

In this section, we show how to compile our semihonest secure protocols for se-
cure computation in the OT-hybrid/preprocessing/plain model in to malicious
secure protocols for secure computation in the respective models. The high level
idea is to use the IPS compiler [43], which is parameterized by an outer malicious
secure protocol (that helps computing the target function) and an inner semi-
honest secure protocol (for simulating the next message function of the outer
protocol). The main challenge is in implementing the compiler while somewhat
preserving the complexity of the underlying semihonest secure protocol.

To this end, the outer protocol that we employ is inspired by the instance
hiding scheme of Beaver et al. [6]. If f represents the target function that we
need to realize, then we set the target function of the outer protocol, say g
to be, for parameter m, an m-variate degree-d polynomial over F obtained by
arithmetizing f . To evaluate a function g, our outer protocol will use k parties
(where k depends on the size of the input domain N), that evaluate g on shares
of the actual input. Note that (1) the actual parties need to distribute shares
computed from the joint input of both parties to the k virtual parties, and (2)
each of the k virtual parties compute their next message which is the evaluation
of g on the share they received. The share computation step depends only on
the length of g’s input, and the number of virtual parties. To evaluate g, the
actual parties first interpret g as a boolean function g∗ (with multi-bit output),
and then use our semihonest secure protocol multiple times to evaluate each
output bit of g∗. In other words, our semihonest secure protocol acts as the IPS
compiler’s inner protocol. The final output is obtained as in the scheme of [6]
via polynomial interpolation, which in our compiled protocol will be performed
using a secure computation protocol.

We summarize the discussion by stating the final theorems that we obtain,
and defer the proofs to the full version.

Theorem 7. Let σ be a statistical security parameter. For all ε > 0, and for any
2-party functionality f : [N ] × [N ] → {0, 1}, there is a protocol π that realizes
f in the OT-hybrid model; this protocol is statistically secure against malicious
parties, and has total communication complexity (including communication with

the OT oracle) Õ(N
2
3+ε) + poly(σ, logN, 1/ε).
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Theorem 8. Let σ be a statistical security parameter. For any 2-party func-
tionality f : [N ]× [N ] → {0, 1}, there is a protocol π that realizes f in the pre-
processing model; this protocol is statistically secure against malicious parties,
and has total communication complexity and correlated randomness complexity

2Õ(
√
logN) + poly(σ, logN).

Theorem 9. Let σ be a statistical security parameter. For any 3-party func-
tionality f : [N ]× [N ]× [N ]→ {0, 1}, there is a protocol π that realizes f in the
plain model; this protocol is statistically secure against a single malicious party,

and has total communication complexity 2Õ(
√
logN) + poly(σ, logN).
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Abstract. We present the first general MPC protocol that satisfies the
following: (1) the construction is black-box, (2) the protocol is univer-
sally composable in the plain model, and (3) the number of rounds is con-
stant. The security of our protocol is proven in angel-based UC security
under the assumption of the existence of one-way functions that are secure
against sub-exponential-time adversaries and constant-round semi-honest
oblivious transfer protocols that are secure against quasi-polynomial-time
adversaries.We obtain theMPC protocol by constructing a constant-round
CCA-secure commitment scheme in a black-box way under the assump-
tion of the existence of one-way functions that are secure against sub-
exponential-time adversaries. To justify the use of such a sub-exponential
hardness assumption in obtaining our constant-round CCA-secure com-
mitment scheme, we show that if black-box reductions are used, there does
not exist any constant-round CCA-secure commitment scheme under any
falsifiable polynomial-time hardness assumptions.

1 Introduction

Protocols for secure multi-party computation (MPC) enable mutually distrustful
parties to compute a functionality without compromising the correctness of the
outputs and the privacy of the inputs. In the seminal work of Goldreich et al. [14],
a general MPC protocol was constructed in a model with malicious adversaries
and a dishonest majority.1 (By “a general MPC protocol,” we mean a protocol
that can be used to securely compute any functionality.)

Black-box Constructions. A construction of a protocol is black-box if it uses
the underlying cryptographic primitives only in a black-box way (that is, only
through their input/output interfaces). In contrast, if a construction uses the
codes of the underlying primitives, it is non-black-box.

Obtaining black-box constructions is an important step toward obtaining
practical MPC protocols. This is because black-box constructions are typically
more efficient than non-black-box ones. (Typical non-black-box constructions,

1 In the following, we consider only such a model.
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such as that of [14], use the codes of the primitives to compute NP reductions
in general zero-knowledge proofs. Thus, they should be viewed as feasibility
results.) Black-box constructions are also theoretically interesting, since under-
standing whether non-black-box use of primitives is necessary for a cryptographic
task is of great theoretical interest.

Recently, a series of works showed black-box constructions of general MPC
protocols. Ishai et al. [20] showed the first construction of a general MPC proto-
col that uses the underlying low-level primitives in a black-box way. Combined
with the subsequent work of Haitner [18], their work showed a black-box con-
struction of a general MPC protocol based on a semi-honest oblivious transfer
protocol [19]. Subsequently, Wee [37] showed an O(log∗ n)-round protocol un-
der polynomial-time hardness assumptions and a constant-round protocol under
sub-exponential-time hardness assumptions, and Goyal [15] showed a constant-
round protocol under polynomial-time hardness assumptions.

The security of these black-box protocols is considered in the stand-alone
setting. That is, the protocols of [15, 20, 37] are secure in the setting where only
a single instance of the protocol is executed at a time.

Composable Security. The concurrent setting, in which many instances of
protocols are executed concurrently in an arbitrary schedule, is a more general
and realistic setting than the stand-alone one. In the concurrent setting, an
adversary can perform a coordinated attack in which he chooses his messages in
an instance based on the executions of the other instances.

As a strong and realistic security notion in the concurrent setting, Canetti
[2] proposed universally composable (UC) security. The main advantage of UC
security is composability, which guarantees that when we compose many UC-
secure protocols, we can prove the security of the resultant protocol using the
security of its components. Thus, UC security enables us to construct protocols
in a modular way. Composability also guarantees that a protocol remains secure
even when it is concurrently executed with any other protocols in any schedule.
Canetti et al. [8] constructed a UC-secure general MPC protocol in the common
reference string (CRS) model (i.e., in a model in which all parties are given a
common public string that is chosen by a trusted third party).

UC security, however, turned out to be too strong to achieve in the plain model
(i.e., in a model without any trusted setup except for authenticated communica-
tion channels). That is, we cannot construct UC-secure general MPC protocols
in the plain model [3, 6].

To achieve composable security in the plain model, Prabhakaran and Sahai
[36] proposed a variant of UC security called angel-based UC security. Roughly
speaking, angel-based UC security is the same as UC security except that the
adversary and the simulator have access to an additional entity—the angel—
that allows some judicious use of super-polynomial-time resources. It was proven
that, like UC security, angel-based UC security guarantees composability. Fur-
thermore, as argued in [36], angel-based UC security guarantees meaningful
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security in many cases. (For example, angel-based UC security implies super-
polynomial-time simulation (SPS) security [1, 12, 29, 31]. In SPS security, we
allow the simulator to run in super-polynomial time. Thus, SPS security guar-
antees that whatever an adversary can do in the real world can also be done in
the ideal world in super-polynomial time.) Then, Prabhakaran and Sahai [36]
presented a general MPC protocol that satisfies this security notion in the plain
model, based on new (unstudied and non-standard) assumptions. Subsequently,
Malkin et al. [25] constructed another general MPC protocol that satisfies this
security notion in the plain model based on new number-theoretic assumption.
In [1], Barak and Sahai remarked that their protocol (which is SPS secure un-
der subexponential-time hardness assumptions) can be shown to be secure in
angel-based UC security.

Recently, Canetti et al. constructed a polynomial-round general MPC pro-
tocol in angel-based UC security based on a standard assumption (the exis-
tence of enhanced trapdoor permutations). Subsequently, Lin [21] and Goyal et

al. [17] reduced the round complexity to Õ(logn) under the same assumption.
They also proposed constant-round protocols, where the security is based on a
super-polynomial-time hardness assumption (the existence of enhanced trapdoor
permutations that are secure against quasi-polynomial-time adversaries). These
constructions, however, use the underlying primitives in a non-black-box way.

Black-Box Constructions of Composable Protocols. Lin and Pass [23]
showed the first black-box construction of a general MPC protocol that guar-
antees composable security in the plain model. The security of their protocol is
proven under angel-based UC security, and based on the minimum assumption
of the existence of semi-honest oblivious transfer (OT) protocols.

The round complexity of their protocol is O(nε), where ε > 0 is an arbitrary
constant. In contrast, for non-black-box constructions of composable protocols,
we have constant-round protocols in the plain model (under non-standard as-
sumptions or super-polynomial-time hardness assumptions) [17,21,25,36]. Thus,
a natural question is the following.

Does there exist a constant-round black-box construction of a general
MPC protocol that guarantees composability in the plain model (possibly
under super-polynomial-time hardness assumptions)?

1.1 Our Result

In this paper, we answer the above question affirmatively.

Theorem (Informal). Assume the existence of one-way functions that are se-
cure against sub-exponential-time adversaries and constant-round semi-honest
oblivious transfer protocols that are secure against quasi-polynomial-time adver-
saries. Then, there exists a constant-round black-box construction of a general
MPC protocol that satisfies angel-based UC security in the plain model.

The formal statement of this theorem is given in Section 7.
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CCA-Secure Commitment Schemes. We prove the above theorem by con-
structing a constant-round CCA-secure commitment scheme [7, 23] in a black-
box way. Once we obtain a CCA-secure commitment scheme, we can construct
a general MPC protocol in essentially the same way as Lin and Pass do in [23].

Roughly speaking, a CCA-secure commitment scheme is a tag-based com-
mitment scheme (i.e., a commitment scheme that takes an n-bit string, or tag,
as an additional input) such that the committed value of a commitment with
tag id remains hidden even if the receiver has access to a super-polynomial-time
oracle—the committed-value oracle—that returns the committed value of any
commitment with tag id′ �= id. Lin and Pass [23] showed an O(nε)-round black-
box construction of a CCA-secure commitment scheme for arbitrary ε > 0 by
assuming the minimum assumption of the existence of one-way functions.

Our main technical result is the following.

Theorem (Informal). Assume the existence of one-way functions that are se-
cure against sub-exponential-time adversaries. Then, there exists a constant-
round black-box construction of a CCA-secure commitment scheme.

The formal statement of this theorem is given in Section 7.
To obtain our CCA-secure commitment scheme, we use the idea of non-

malleability amplification that was used in previous works on concurrent non-
malleable (NM) commitment schemes [22, 34]. That is, we construct a CCA
commitment scheme in the following steps.

Step 1. We say that a commitment scheme is one-one CCA secure if it is CCA
secure with respect to restricted classes of adversaries that receive only a
single answer from the oracle. Then, we construct a constant-round one-one
CCA-secure commitment for tags of length O(log log logn).

Step 2. We construct a transformation from the commitment scheme constructed
in Step 1 to a CCA-secure commitment for tags of length O(n) with a con-
stant additive increase in round complexity. Toward this end, we construct the
following two transformations:
– A transformation from any one-one CCA-secure commitment scheme

for tags of length t(n) to a CCA-secure commitment scheme for tags of
length t(n) with a constant additive increase in round complexity

– A transformation from any CCA-secure commitment scheme for tags of
length t(n) to a one-one CCA-secure commitment scheme for tags of
length 2t(n)−1 with no increase in round complexity

(The latter transformation is essentially the same as the “DDN logn trick”
[11,24].) By repeatedly composing these two transformations, we obtain the
desired transformation.

On the Use of Super-Polynomial-Time Hardness Assumption. Although
the round complexity of our CCA-secure commitment scheme is constant, it relies
on a super-polynomial-time hardness assumption. (Recall that the O(nε)-round
CCA-secure commitment scheme of [23] relies on a polynomial-time hardness
assumption.)
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We show that the use of such a strong assumption is inevitable, as long as the
security of a constant-round CCA-secure commitment scheme is proven under
falsifiable assumptions [13, 28] by using a black-box reduction. Roughly speak-
ing, a falsifiable assumption is an assumption that is modeled as an interactive
game between a challenger and an adversary such that the challenger can decide
whether the adversary won the game in polynomial time. Then, we say that the
CCA security of a commitment scheme 〈C,R〉 is proven under a falsifiable as-
sumption by using a black-box reduction if the CCA security of 〈C,R〉 is proven
by constructing a ppt Turing machine R such that for any adversary A that
breaks the CCA security of 〈C,R〉, R can break the assumption by using A only
in a black-box way. Then, we show the following theorem.

Theorem (Informal). Let 〈C,R〉 be any constant-round commitment scheme.
Then, the CCA security of 〈C,R〉 cannot be proven by using black-box reductions
under any falsifiable polynomial-time hardness assumption.

(Due to lack of space, we defer the formal statement of this theorem and its
proof to the full version. Roughly speaking, we obtain this theorem by using
techniques of the negative result on concurrent zero-knowledge protocols [5].)
Since all standard cryptographic assumptions are falsifiable, this theorem says
that if we want to construct a constant-round CCA-secure commitment scheme
based on standard assumptions, we must use either super-polynomial-time hard-
ness assumptions (as this paper does) or non-black-box reductions.2

We note that this negative result holds even for non-black-box constructions.
That is, we cannot construct constant-round CCA-secure commitment schemes
even when we use primitives in a non-black-box way, as long as we use black-box
reductions and polynomial-time hardness assumptions.

2 Overview of the Protocols

In this section, we give overviews of our main technical results: a one-one CCA-
secure commitment scheme for short tags and a transformation from one-one
CCA security to CCA security.

2.1 One-One CCA-Security for Short Tags

We obtain our one-one CCA-secure commitment scheme by observing that the
non-black-box construction of a NM commitment scheme of [34] is one-one CCA
secure and converting it into a black-box one.

First, we recall the scheme of [34].3 The starting point of the scheme is “two-
slot message length” technique [30]. The basic idea of the technique is to let the
receiver sequentially send two challenges—one “long” and one “short”—where

2 We note that, although very recently Goyal [16] showed how to use non-black-box
techniques in the fully concurrent setting, Goyal’s technique requires polynomially
many rounds.

3 In the following, some of the text is taken from [34].
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the length of the challenges are determined by the tag of the commitment. The
protocol is designed so that the response to a shorter challenge does not help a
man-in-the-middle adversary to provide a response to a longer challenge. A key
conceptual insight of [34] is to rely on the complexity leveraging technique [4] to
construct these challenges: For one-way functions with sub-exponential hardness,
an oracle for inverting challenges of length no(1) (the “short” challenge) does not
help invert random challenges of length n (the “long” challenge), since we can

simulate such an oracle by brute force in time 2n
o(1)

.
More precisely, the scheme of [34] is as follows. Let d = O(log logn) be the

number of tags, and let nω(1) = T0(n)$ T1(n)$ · · · $ Td+2(n) be a hierarchy
of running times. Then, to commit to v ∈ {0, 1}n with tag id ∈ {0, 1, . . . , d− 1},
the committer C does the following with the receiver R.

1. C commits to v by using a statistically binding commitment Com that is
hiding against Td+1(n)-time adversaries but is completely broken in time
Td+2(n).

2. (Slot 1) C proves knowledge of v by using a zero-knowledge argument of
knowledge that is computationally sound against Tid+1(n)-time adversaries
and can be simulated in straight line in time o(Tid+2(n)), where the simulated
view is indistinguishable from the real one in time Td+2(n).

3. (Slot 2) C proves knowledge of v by using a zero-knowledge argument of
knowledge that is computationally sound against Td−id(n)-time adversaries
and can be simulated in straight line in time o(Td−id+1(n)), where the sim-
ulated view is indistinguishable from the real one in time Td+2(n).

We can show that the scheme of [34] is one-one CCA secure as follows (by using
essentially the same proof as the proof of its non-malleability). Recall that a
commitment scheme is one-one CCA secure if it is hiding against adversaries
that give a single query to the committed-value oracle O. Let id be the tag used
in the left session (a commitment from the committer to the adversary A) and
ĩd be the tag used in the right session (a commitment from A to O). Then, let
us consider a hybrid experiment in which the proofs in the second and third
steps are replaced with the straight-line simulations in the left session. Since the
running time of O is at most Td+2(n), the zero-knowledge property guarantees
that the view of A in the hybrid experiment is indistinguishable from that of
A in the real experiment even when A interacts with O. Furthermore, in the
right session of the hybrid experiment, the soundness of the zero-knowledge ar-
gument still holds either in the second step or in the third step. This follows from
the following reasons. For simplicity, let us consider a synchronized adversary.4

Then, since the simulation of the second step takes at most time o(Tid+2(n))
and the soundness of the second step holds against Tĩd+1(n)-time adversaries,

the soundness of the second step holds if id < ĩd; similarly, the soundness of
the third step holds if id > ĩd. In the hybrid experiment, therefore, the com-
mitted value v can be extracted by using the knowledge extractor either in the

4 An synchronized adversary sends the i-th round message to O immediately after
receiving the i-th round messages from the committer, and vise verse.
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second step or in the third step, and thus the committed value oracle O can
be simulated in time o(max(Tid+2(n), Td−id+1(n))) · poly(n) $ Td+1(n). Then,
from the hiding property of Com in the first step, the view of A in the hybrid
experiment is computationally independent of the value v. Thus, one-one CCA
security follows.

To convert the scheme of [34] into a black-box protocol, we use a black-box
trapdoor commitment scheme TrapCom of [33]. We observe that TrapCom has
similar properties to the zero-knowledge argument used in the scheme of [34]:
TrapCom is extractable and a TrapCom commitment can be simulated in straight
line in super-polynomial time. Then, we modify the scheme of [34] and let the
committer commit to v instead of proving the knowledge of v. To ensure the
“soundness,” that is, to ensure that the committed value of TrapCom is v, we
use the cut-and-choose technique and Shamir’s secret sharing scheme in a similar
manner to previous works on black-box protocols [9, 10, 23, 37]. That is, we let
the committer commit to Shamir’s secret sharing s = (s1, . . . , s10n) of value v
in all steps, let the receiver choose a random subset Γ ⊂ [10n] of size n, and
let the committer reveal sj and decommit the corresponding commitments for
every j ∈ Γ . The resultant scheme uses the underlying primitives only in a
black-box way, and can be proven to be one-one CCA secure from a similar
argument to the scheme of [34]. (We note that the actual scheme is a little more
complicated. For details, see Section 4.) We note that Lin and Pass [23] also
use TrapCom to convert a non-black-box protocol into a black-box one. Unlike
them, who mainly use the fact that TrapCom is extractable and is secure against
selective opening attacks, we also use the fact that TrapCom commitments are
straight-line simulatable.

2.2 CCA Security from One-One CCA Security

We give an overview of the transformation from any one-one CCA-secure com-
mitment scheme to a CCA-secure commitment scheme. Let nω(1) = T0(n) $
T1(n) $ T2(n) $ T3(n) be a hierarchy of running times. Then, we construct
a CCA-secure commitment scheme CCACom0 that is secure against T0(n)-time
adversaries from a one-one CCA-secure commitment scheme CCACom1:1

3 that
is secure against T3(n)-time adversaries. Let Com1 be a 2-round statistically
binding commitment scheme that is secure against T1(n)-time adversaries but is
completely broken in time o(T2(n)), and CECom2 be a constant-round commit-
ment scheme that is hiding against T2(n)-time adversaries and is concurrently
extractable by rewinding the committer poly(nlogn) times [26,32]. Then, to com-
mit to value v, the committer C does the following with the receiver R.

1. R commits to a random subset Γ ⊂ [10n] of size n by using CCACom1:1
3 .

2. C computes an (n+1)-out-of-10n Shamir’s secret sharing s = (s1, . . . , s10n)
of value v and commits to sj for each j ∈ [10n] in parallel by using Com1.

3. C commits to sj for each j ∈ [10n] in parallel by using CECom2.
4. R decommits the commitment of the first step and reveal Γ .
5. For each j ∈ Γ , C decommits the Com1 and CECom2 commitments whose

committed values are sj .
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The committed value of CCACom0 is determined by the committed values of
Com1. Thus, the running time of O is at most o(T2(n)) · poly(n)$ T2(n).

To prove the CCA security of the scheme, we consider a series of hybrid
experiments.

In the first hybrid, in the left interaction the committed value Γ of CCACom1:1
3

is extracted by brute force and the committed value of CECom2 is switched from
sj to 0 for every j �∈ Γ . Note that, during the CECom2 commitments of the left,
the combined running time of A and O is at most T2(n). Thus, from the hiding
property of CECom2, the view of A in the first hybrid is indistinguishable from
that of A in the honest experiment.

The second hybrid is the same as the first one except for the following: in
every right session of which the second step ends after the start of the second
step of the left session, the committed values of the CECom commitments are
extracted; then, the answer ofO are computed from the extracted values (instead
of the committed values of Com1). We note that, since the second hybrid differs
from the first one only in how the answers of O are computed, to show the
indistinguishability it suffices to show that in the first hybrid the committed
values of CECom2 agree with those of Com1 in “most” indexes in every right
session. We first note that if we ignore the messages that A receives in the left
session, we can prove that the committed values of CECom2 agree with those of
Com1 in most indexes by using the property of the cut-and-choose technique.
In the hybrid, however, A receives messages in the left session, in which Γ is
extracted by brute force and the committed values of CECom2 disagree with
those of Com1 in 90% of indexes. Thus, A may be able to use the messages in
the left to break the hiding property of CCACom1:1 in the right. (Note that, if A
can break the hiding property of CCACom1:1, we cannot use the property of the
cut-and-choose technique.) We show that A cannot break the hiding property
of CCACom1:1 even with the messages of the left session. A key is that given
Γ , the left session can be simulated in polynomial time. Hence, one-one CCA
security of CCACom1:1 guarantees that the messages of the left session are useless
for breaking the hiding property of CCACom1:1. Thus, even with messages of the
left session, the cut-and-choose guarantees that the committed values of CECom2

agree with those of Com1 in most indexes. The view of A in the second hybrid
is therefore indistinguishable from that of A in the first one.

The third hybrid is the same as the first one except that in the left session,
the committed value of Com1 is switched from sj to 0 for every j �∈ Γ . Note that
during the Com1 commitments of the left, the combined running time of A and
O is at most T0(n) · poly(nlog n)$ T1(n). This is because

– for every right session in which A completes the second step before the start
of the second step of the left session, the answer of O (i.e., the committed
value of CCACom0) can be computed before the start of Com1 commitments
of the left session, and

– for every right session in which A completes the second step after the start
of the second step of the left session, the answer of O is computed by
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extracting the committed values of CECom2, which requires rewinding A
at most poly(nlogn) times.

Thus, from the hiding property of Com1, the view of A in the third hybrid is
indistinguishable from that of A in the second one.

Note that, since s is (n + 1)-out-of-10n secret sharing, A receives no infor-
mation of v in the third hybrid. Thus, the view of A in the third hybrid is
independent of v, and thus the CCA security follows.

3 Preliminaries

In this section, we explain the assumptions and the definitions that we use in
this paper.

3.1 Assumptions

For our CCA-secure commitment scheme, we use a one-way function f that is
secure against 2n

ε

-time adversaries, where ε < 1 is a positive constant. Without

loss of generality, we assume that f can be inverted in time 2n. Let Ti(n)
def
=

2(logn)(2/ε)
10i+1

for i ∈ N. Then, by setting the security parameter of f to �i(n) =

(logn)(2/ε)
10i+2

, we obtain a one-way function fi that is secure against Ti(n)-
time adversaries but can be inverted in time less than Ti+0.5(n). We note that
when i ≤ O(log logn), we have �i(n) ≤ poly(n).

For our composable MPC protocol, we additionally use semi-honest oblivious
transfer protocols that are secure against 2poly(log n)-time adversaries.

3.2 Shamir’s Secret Sharing Scheme

In this paper, we use Shamir’s (n+1)-out-of-10n secret sharing scheme. For any
positive real number x ≤ 1 and any s = (s1, . . . , s10n) and s′ = (s′1, . . . , s

′
10n),

we say that s and s′ are x-close if |{i | si = s′i}| ≥ x · 10n. We note that
Shamir’s secret sharing is a codeword of Reed-Solomon code with minimum
relative distance 0.9. Thus, for any x > 0.55 and any s that is x-close to a valid
codeword w, we can compute w from s.

3.3 Commitment Schemes

Recall that commitment schemes are two-party protocols between the committer
C and the receiver R. A transcript of the commit phase is accepted if R does not
abort in the commit phase. A transcript of the commit phase is valid if there
exists a valid decommitment of this transcript. We use a 2-round statistically
binding commitment scheme Com based on one-way functions [27].



352 S. Kiyoshima, Y. Manabe, and T. Okamoto

Strong computational binding property. We say that a commitment scheme
〈C,R〉 satisfies a strong computational binding property if for any ppt committer
C∗ interacting with the honest receiver R, the probability that C∗ generates a
commitment that has more than one committed value is negligible.5

3.4 Extractable Commitments

Roughly speaking, a commitment scheme is extractable if there exists an expected
polynomial-time oracle machine (or extractor) E such that for any committer
C∗, EC∗

extracts the value that C∗ commits to whenever the commitment is
valid. We note that when the commitment is invalid, E may output a garbage
value. (This is called over-extraction.)

There exists a 4-round extractable commitment scheme ExtCom based on
one-way functions [33]. The commit phase of ExtCom consists of three stages—
commit, challenge, and reply—and given two accepted transcripts that have
the same commitmessage but have different challengemessages, we can extract
the committed value. Thus, we can extract the committed value by rewinding
the committer and obtaining two such transcripts. In the following, we use slot to
denote a pair of the challenge and replymessages in ExtCom. As shown in [33],
ExtCom is in fact parallel extractable. Thus, even when a committer commits to
many values in parallel, we can extract all committed values.

3.5 Concurrently Extractable Commitments

Roughly speaking, a commitment scheme is concurrently extractable if there
exists an expected polynomial-time extractor E such that for any committer C∗
that concurrently commits to many values, EC∗

extracts the committed value of
each commitment immediately after C∗ generates each commitment.

Micciancio et al. [26] showed a concurrently extractable commitment CECom,
which consists of r executions of ExtCom, where r is a parameter (see Figure 1).
Note that CECom has r sequential slots. Then, by using the rewinding strategy
of [35], the committed values of CECom are concurrently extractable when r =
ω(logn).

Concurrently T (n)-Extractable Commitments

For any function T (n), we consider a relaxed notion of concurrent extractability
called concurrent T (n)-extractability, which is the same as concurrent
extractability except that the expected running time of the extractor is T (n).

By using the rewinding strategy of [32], we can show that CECom is concur-
rently poly(nlogn)-extractable when r ≥ 3. Note that in the stand-alone setting,
we can extract the committed value of CECom by rewinding any single slot.

5 The standard computational binding property guarantees only that for any ppt

committer C∗, the commitment that C∗ generates cannot be decommitted to more
than one value in polynomial time. Thus, this commitment may have more than one
committed value.
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Commit Phase. The committer C and the receiver R receive common
inputs 1n and parameter r. To commit to v ∈ {0, 1}n, the committer C does
the following.
Step 1. C and R execute commit stage of ExtCom r times in parallel.
Step 2i (i ∈ [r]). R sends the challenge message of ExtCom for the i-th

session.
Step 2i+ 1 (i ∈ [r]). C sends the reply message of ExtCom for the i-th

session.

Decommit Phase. C sends v to R and decommits all the ExtCom com-
mitments in the commit phase.

Fig. 1. Concurrently extractable commitment CECom [26]

3.6 Trapdoor Commitments

Roughly speaking, trapdoor commitments are ones such that there exists a sim-
ulator that can generate a simulated commitment and can later decommit it to
any value.

Pass and Wee [33] showed that the black-box protocol TrapCom in Figure
2 is a trapdoor bit commitment scheme. In fact, given the receiver’s challenge
e in advance, we can generate a simulated commitment and decommit it to
both 0 and 1 in a straight-line manner (i.e., without rewinding the receiver) as
follows. To generate a simulated commitment, the simulator internally simulates
an interaction between C and R∗ honestly except that in Step 2, the simulator
chooses random γ ∈ {0, 1} and lets each vi be a matrix such that the ei-th
row of vi is (ηi, ηi) and the (1 − ei)-th row of vi is (γ ⊕ ηi, (1 − γ) ⊕ ηi). To
decommit the simulated commitment to σ ∈ {0, 1}, the simulator decommits all
the commitments in the (σ ⊕ γ)-th column of each vi.

From the extractability of ExtCom, we can show that TrapCom is extractable.
In addition, by using the hiding property of Com, we can show that TrapCom
satisfies the strong computational binding property. (Roughly speaking, if C∗
generates a commitment that has more than one committed value, we can com-
pute the committed value e of Com by extracting v1, . . . , vn.)

Pass and Wee [33] showed that by running TrapCom in parallel, we obtain
a black-box trapdoor commitment PTrapCom for multiple bits. PTrapCom also
satisfies the strong computational binding property and extractability.

3.7 CCA-Secure Commitments

We recall the definition of CCA security and κ-robustness [7, 23]. Tag-based
commitment schemes are ones such that both the committer and the receiver
receive a string, or tag, as an additional input.
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Commit Phase. To commit to σ ∈ {0, 1} on common input 1n, the com-
mitter C does the following with the receiver R:
Step 1. R chooses a random n-bit string e = (e1, . . . , en) and commits to e

by using Com.
Step 2. For each i ∈ [n], the committer C chooses a random ηi ∈ {0, 1}

and sets

vi :=

(
v00i v01i
v10i v11i

)
=

(
ηi ηi

σ ⊕ ηi σ ⊕ ηi

)
.

Then, for each i ∈ [n], α ∈ {0, 1}, and β ∈ {0, 1} in parallel, C commits

to vαβi by using ExtCom; let (vαβi , dαβi ) be the corresponding decommit-
ment.

Step 3. R decommits the Step 1 commitment to e.
Step 4. For each i ∈ [n], C sends (vei0i , dei0i ) and (vei1i , dei1i ) to R. Then, R

checks whether these are valid decommitments and whether vei0i = vei1i .

Decommit Phase. C sends σ and random γ ∈ {0, 1} to R. In addition,
for every i ∈ [n], C sends (v0γi , d0γi ) and (v1γi , d1γi ) to R. Then, R checks

whether (v0γi , d0γi ) and (v1γi , d1γi ) are valid decommitments for every i ∈ [n]

and whether v0γ0 ⊕ v1γ0 = · · · = v0γn ⊕ v1γn = σ.

Fig. 2. Black-box trapdoor bit commitment TrapCom

CCA Security (w.r.t. the Committed-value Oracle). Roughly speaking,
a tag-based commitment scheme 〈C,R〉 is CCA-secure if the hiding property of
〈C,R〉 holds even against adversary A that interacts with the committed-value
oracle during the interaction with the committer. The committed-value oracle O
interacts with A as an honest receiver in many concurrent sessions of the commit
phase of 〈C,R〉 using tags chosen adaptively by A. At the end of each session,
if the commitment of this session is invalid or has multiple committed values, O
returns ⊥ to A. Otherwise, O returns the unique committed value to A.

More precisely, let us consider the following probabilistic experiment
indb(〈C,R〉,A, n, z) for each b ∈ {0, 1}. On input 1n and auxiliary input z, ad-
versary AO adaptively chooses a pair of challenge values v0, v1 ∈ {0, 1}n and an
n-bit tag id ∈ {0, 1}n. Then, AO receives a commitment to vb with tag id, and A
outputs y. The output of the experiment is ⊥ if during the experiment, A sends
O any commitment using tag id. Otherwise, the output of the experiment is y.
Let INDb(〈C,R〉,A, n, z) denote the output of experiment indb(〈C,R〉,A, n, z).

Then, the CCA security of 〈C,R〉 is defined as follows.

Definition 1. Let 〈C,R〉 be a tag-based commitment scheme and O be
the committed-value oracle of 〈C,R〉. Then, 〈C,R〉 is CCA-secure (w.r.t the



Constant-Round Black-Box Construction 355

committed-value oracle) if for any ppt adversary A, the following are computa-
tionally indistinguishable:

– {IND0(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗

– {IND1(〈C,R〉,A, n, z)}n∈N,z∈{0,1}∗

If the length of the tags chosen by A is t(n) instead of n, 〈C,R〉 is CCA-secure
for tags of length t(n). ♦

We also consider a relaxed notion of CCA security called one-one CCA se-
curity. In the definition of one-one CCA security, we consider adversaries that
interact with O only in a single session of the commit phase.

In the following, we use left session to denote the session of the commit phase
between the committer and A, and use right sessions to denote the sessions
between A and O.

κ-robustness (w.r.t. the Committed-value Oracle). Roughly speaking,
a tag-based commitment scheme is κ-robust if for any adversary A and any
ITM B, the joint output of a κ-round interaction between AO and B can be
simulated without O by a ppt simulator. Thus, the κ-robustness guarantees
that the committed-value oracle is useless in attacking any κ-round protocol.

Formally, let 〈C,R〉 be a tag-based commitment scheme and O be the
committed-value oracle of 〈C,R〉. For any constant κ ∈ N, we say that 〈C,R〉 is
κ-robust (w.r.t. the committed value oracle) if there exists a ppt oracle machine
(or simulator) S such that for any ppt adversary A and any κ-round ppt ITM
B, the following are computationally indistinguishable:

– {outputB,AO [〈B(y),AO(z)〉(1n, x)]}n∈N,x,y,z∈{0,1}n

– {outputB,SA [〈B(y),SA(z)〉(1n, x)]}n∈N,x,y,z∈{0,1}n

Here, for any ITM A and B, we use outputA,B[〈A(y), B(z)〉(x)] to denote the
joint output of A and B in an interaction between them on inputs x, y to A and
x, z to B respectively.

We also consider a relaxed notion of κ-robustness called κ-pqt-robustness.
In the definition of κ-pqt-robustness, we allow the simulator to run in quasi-
polynomial time.

4 One-One CCA Security for Short Tags

In this section, we construct a one-one CCA-secure commitment for tags of
length O(log log logn). (Due to lack of space, the full proof is deferred to the full
version.) Since the length of the tags is O(log log logn), we can view each tag as
a value in {0, 1 . . . , d− 1 = O(log logn)}.
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4.1 Building Blocks

Let Ti(n)
def
= 2(logn)(2/ε)

10i+1

for i ∈ N. Then, for constants a, b ∈ N, PTrapComb
a

is a commitment scheme such that

– the hiding property holds against any Ta(n)-time adversary but is completely
broken in time Ta+0.5(n),

– the strong computational binding property holds against any Tb(n)-time
adversary, and

– there exists a Tb+0.5(n)-time straight-line simulator (of the trapdoor prop-
erty) such that the simulated commitment is indistinguishable from the ac-
tual commitment in time Ta(n). (This holds even when Tb+0.5(n)% Ta(n).)

We can construct PTrapComb
a by appropriately setting the security parameters

of Com and ExtCom in PTrapCom.
PCETrapComb

a is the same as PTrapComb
a except that we use CECom in Step

2 instead of ExtCom.

4.2 One-One CCA Security for Tags of Length O(log log logn)

Lemma 1. Let ε < 1 be a positive constant, and for any i ∈ N, let Ti(n)
def
=

2(logn)(2/ε)
10i+1

. Assume the existence of one-way functions that are secure against
2n

ε

-time adversaries. Then, for any i ∈ N, there exists a constant-round commit-
ment scheme CCACom1:1

i that satisfies the following for any Ti(n)-time
adversary.

– Strong computational binding property, and
– One-one CCA security for tags of length O(log log logn).

Furthermore, CCACom1:1
i uses the underlying one-way function only in a black-

box way.

Proof. CCACom1:1
i is shown in Figure 3. The binding property follows from that

of PTrapComi+d+1
i+d+1. Thus, it remains to show that CCACom1:1

i is one-one CCA
secure for tags of length O(log log logn).

To show that CCACom1:1
1 is one-one CCA secure, we show that for any Ti(n)-

time adversary A that interacts with O only in a single session, the following
are computationally indistinguishable:

– {IND0(CCACom
1:1
i ,A, n, z)}n∈N,z∈{0,1}∗

– {IND1(CCACom
1:1
i ,A, n, z)}n∈N,z∈{0,1}∗

At the end of the right session, the committed-value oracle O does the following.
First, O computes the committed values s = (s1, . . . , s10n) of the Stage 1 com-
mitments by brute force. (If the committed value of the j-th commitment is not
uniquely determined, sj is defined to be ⊥.) Then, O checks whether the follow-
ing conditions hold: (1) s is 0.9-close to a valid codeword w = (w1, . . . , w10n)
and (2) for every j ∈ Γ (where Γ is the subset that O sends to A in Stage 4),



Constant-Round Black-Box Construction 357

Commit Phase. The committer C and the receiver R receive common
inputs 1n and id ∈ {0, 1, . . . , d−1 = O(log logn)}. To commit to v ∈ {0, 1}n,
the committer C does the following with the receiver R.
Stage 1. C computes an (n + 1)-out-of-10n Shamir’s secret sharing s =

(s1, . . . , s10n) of value v. Then, for each j ∈ [10n] in parallel, C commits
to sj by using PTrapComi+d+1

i+d+1. Let (sj , dj) be the decommitment of the
j-th commitment.

Stage 2. For each j ∈ [10n] in parallel, C commits to (sj , dj) by using

PCETrapComi+id+1
i+d+2 . Here, the number of slots in PCETrapComi+id+1

i+d+2 is

max(3, r + 1), where r is the round complexity of PTrapComi+d+1
i+d+1 in

Stage 1.
Stage 3. For each j ∈ [10n] in parallel, C commits to (sj , dj) by using

PCETrapComi+d−id
i+d+2 . Here, the number of slots in PCETrapComi+d−id

i+d+2 is
max(3, r + 1).

Stage 4. R sends a random subset Γ ⊆ [10n] of size n to C.
Stage 5. For each j ∈ Γ , C decommits the j-th Stage 2 commitment and

the j-th Stage 3 commitment to (sj , dj). Then, R checks whether (sj , dj)
is a valid decommitment of the j-th Stage 1 commitment.

Decommit Phase. C sends v, s = (s1, . . . , s10n), and d = (d1, . . . , d10n)
to R. Then, R checks whether (sj , dj) is a valid decommitment of the j-th
Stage 1 commitment for every j ∈ [10n]. Furthermore, R checks whether
(1) s is 0.9-close to a valid codeword w = (w1, . . . , w10n) and (2) for each
j ∈ Γ , wj is equal to the share that was revealed in Stage 5. Finally, R
checks whether w is a codeword corresponding to v.

Fig. 3. One-one CCA-secure commitment CCACom1:1
i

wj is equal to the share that was revealed in Stage 5. If both conditions hold, O
recovers v from w and returns v to A. Otherwise, O returns v := ⊥ to A. We
note that the running time of O is at most poly(n) · Ti+d+1.5(n).

To show the indistinguishability, we consider hybrid experiments Gb
a(n, z) for

a ∈ {0, 1, 2, 3} and b ∈ {0, 1}.

Hybrid Gb
0(n, z) is the same as experiment indb(CCACom

1:1
i ,A, n, z).

Hybrid Gb
1(n, z) is the same as Gb

0(n, z) except for the following:
– In Stage 2 (resp., Stage 3) on the left, the left committer simulates the

10n commitments of PCETrapComi+id+1
i+d+2 (resp., PCETrapComi+d−id

i+d+2 ) by
using the straight-line simulator.

– In Stage 5 on the left, for each j ∈ Γ , the left committer decommits the
simulated commitment of PCETrapComi+id+1

i+d+2 (resp., PCETrapComi+d−id
i+d+2 )

to (sj , dj) by using the simulator.
We note that the running time of Gb

1(n, z) is at most poly(n) · Ti+d+1.5(n).
Hybrid Gb

2(n, z) is the same as Gb
1(n, z) except for the following:
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– Let ĩd be the tag of the right session. In Stage 2 (resp., Stage 3) of

the right session, the committed values of the PCETrapComi+ĩd+1
i+d+2 (resp.,

PCETrapComi+d−ĩd
i+d+2 ) commitments are extracted without rewinding Stage

1 on the left by using the technique of [7,22]. (That is, in Step 2 of each

PCETrapComi+ĩd+1
i+d+2 (resp. PCETrapComi+d−ĩd

i+d+2 ) commitment, the com-
mitted values of CECom are extracted by rewinding a single slot that
does not contain any Stage 1 messages of the left session. Such a slot
must exist, since the number of slots in CECom is max(3, r + 1).) Then,
ŝ = (ŝ1, . . . , ŝ10n) is defined as follows: if there exists a ∈ {2, 3} such that

the extracted value (ŝ
(a)
j , d̂

(a)
j ) of the j-th commitment in Stage a is a

valid decommitment of the j-th commitment in Stage 1, let ŝj
def
= ŝ

(a)
j (if

both (ŝ
(2)
j , d̂

(2)
j ) and (ŝ

(3)
j , d̂

(3)
j ) are valid decommitments but ŝ

(2)
j �= ŝ

(3)
j ,

let ŝj
def
= ⊥); otherwise, let ŝj

def
= ⊥.

– At the end of the right session,O checks whether the following conditions
hold: (1) ŝ is 0.8-close to a valid codeword ŵ = (ŵ1, . . . , ŵ10n) and (2)
for every j ∈ Γ , ŵj is equal to the share that was revealed in Stage
5. If both conditions hold, O recovers v̂ from ŵ and returns v̂ to A.
Otherwise, O returns v̂ := ⊥ to A. We note that O does not extract the
committed values of the Stage 1 commitments.

We note that the expected running time of Gb
2(n, z) is poly(n) · Ti+d+0.5(n).

Hybrid Gb
3(n, z) is the same as Gb

2(n, z) except that on the left, the Stage 1
commitments are simulated by the straight-line simulator of PTrapComi+d+1

i+d+1.

Since A receives no information about {sj}j �∈Γ in G0
3(n, z) and G1

3(n, z), the
output of G0

3(n, z) and that of G1
3(n, z) are identically distributed. Then, we

consider the following claims. In what follows, we use Gb
i (n, z) to denote the

output of experiment Gb
i (n, z).

Claim 1. For each b ∈ {0, 1}, {Gb
0(n, z)}n∈N,z∈{0,1}∗ and {Gb

1(n, z)}n∈N,z∈{0,1}∗

are computationally indistinguishable.

Claim 2. For each b ∈ {0, 1}, {Gb
1(n, z)}n∈N,z∈{0,1}∗ and {Gb

2(n, z)}n∈N,z∈{0,1}∗

are statistically indistinguishable.

Claim 3. For each b ∈ {0, 1}, {Gb
2(n, z)}n∈N,z∈{0,1}∗ and {Gb

3(n, z)}n∈N,z∈{0,1}∗

are computationally indistinguishable.

The lemma follows from these claims. ��

Proof (of Claim 1). Gb
1(n, z) differs from Gb

0(n, z) only in that the Stage 2
commitments and the Stage 3 commitments on the left are simulated by the
simulator of PCETrapComi+id+1

i+d+2 and that of PCETrapComi+d−id
i+d+2 . Then, since the

running time of Gb
0(n, z) and that of Gb

1(n, z) are at most poly(n) ·Ti+d+1.5(n)$
Ti+d+2(n), the claim follows from the trapdoor property of PCETrapComi+id+1

i+d+2

and that of PCETrapComi+d−id
i+d+2 . ��



Constant-Round Black-Box Construction 359

Next, we consider Claim 2. Note that Gb
2(n, z) differs from Gb

1(n, z) in that
O computes the committed value of the right session from the extracted values
of the Stage 2 commitments and those of the Stage 3 commitments instead of
from those of Stage 1 commitments. We prove Claim 2 by showing that in the
right session of Gb

2(n, z), the value v̂ that O computes is the same as the value
v that O computes in Gb

1(n, z). Toward this end, we first show that in the right
session of Gb

1(n, z), the strong computational binding property holds in Stage 1
and either in Stage 2 or in Stage 3. (Note that from the property of the cut-
and-choose technique, this implies that the committed values of either the Stage
2 commitments or the Sage 3 commitments are 0.9-close to those of the Stage
1 commitments except with negligible probability.) Let us say that A cheats in
Stage 1 if at least one of 10n PTrapCom commitments in Stage 1 on the right
has more than one committed value. We define cheating in Stage 2 and cheating
in Stage 3 similarly. Then, we prove two subclaims.

Subclaim 1. In Gb
1(n, z), the probability that A cheats in Stage 1 is negligible.

Proof (sketch). This subclaim follows directly from the strong computational
binding property of PTrapComi+d+1

i+d+1, since the running time of Gb
1(n, z) is at

most poly(n) · Ti+d+0.5(n)$ Ti+d+1(n) when A completes Stage 1 on the right.
��

Subclaim 2. In Gb
1(n, z), the probability that A cheats in Stage 2 and Stage 3

simultaneously is negligible.

Proof (sketch). To prove this subclaim, we need to show that even though the
left committer “cheats,” A cannot use the messages received on the left to cheat
on the right. This can be proven by following the proof of the scheme of [34].
Roughly speaking, we show that there always exists a∗ ∈ {2, 3} such that during
Stage a∗ on the right, the left session can be simulated in “short” time (i.e.,
the left session can be simulated without breaking the strong computational
binding property of PCETrapCom in Stage a∗). A little more precisely, we show
the following. Recall that the commitment of PCETrapCom can be simulated
in polynomial time if we know the committed value of the Step 1 commitment
of PCETrapCom. Then, we show that in the left session, either this committed
value can be extracted in “short” time (during Stage a∗ of the right session)
or it can be extracted before A starts Stage a∗ on the right (and thus can be
considered as an auxiliary input). Once we show that A cannot use the messages
received on the left to cheat on the right, the subclaim follows from the strong
computational binding property of PCETrapCom on the right. ��

Now, we are ready to prove Claim 2.

Proof (sketch of Claim 2). As noted above, we prove Claim 2 by showing that
in the right session, the value computed by O in Gb

2(n, z) is equal to the value
computed by O in Gb

1(n, z). From Subclaim 2, there exists a ∈ {2, 3} such that
the committed values of the Stage a commitments are uniquely determined.
Then, since the committed values of the Stage 1 commitments and those of
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Stage a commitments are uniquely determined before Γ is chosen, the committed
values of the Stage 1 commitments and those of Stage a commitments are 0.9-
close except with negligible probability. Then, since we have carefully defined
the behavior of O in Gb

2(n, z) (in particular, since O checks whether the share is
0.8-close to a valid codeword in Gb

2(n, z)), we can show that the value computed
by O from the extracted values of Stage 2 and 3 is the same as the one computed
from the committed values of Stage 1 in a similar manner to the previous works
on black-box constructions [9, 10, 23, 37]. ��

Finally, we prove Claim 3.

Proof (of Claim 3). Gb
3(n, z) differs from Gb

2(n, z) only in that on the left, the
Stage 1 commitments and their decommitments are generated by the simulator
of PTrapComi+d+1

i+d+1. Then, since the running time of Gb
2(n, z) and that of Gb

3(n, z)
are at most poly(n) ·Ti+d+0.5(n)$ Ti+d+1(n) except for Stage 1 on the left, and
since Stage 1 on the left is not rewound in Gb

2(n, z) and in Gb
3(n, z), the claim

follows from the trapdoor property of PTrapComi+d+1
i+d+1. ��

5 CCA Security from One-One CCA Security

In this section, we show a transformation from any one-one CCA-secure commit-
ment scheme to a CCA-secure commitment scheme. To use this transformation
to obtain a general MPC protocol, we also show that the resultant CCA-secure
commitment satisfies κ-pqt-robustness for any κ ∈ N. (Due to lack of space, the
full proof is deferred to the full version.)

Lemma 2. Let ε < 1 be a positive constant, and assume the existence of one-
way functions that are secure against 2n

ε

-time adversaries. Let r(·) and t(·) be ar-
bitrary functions, let Ti(n)

def
= 2(logn)(2/ε)

10i+1

for any i ∈ N, and let CCACom1:1
i+3

be an r(n)-round commitment scheme that satisfies the following for any Ti+3(n)-
time adversary.

– Strong computational binding property, and
– One-one CCA security for tags of length t(n).

Then, for any κ ∈ N, there exists an (r(n) + O(1))-round commitment scheme
CCAComi that satisfies the following for any Ti(n)-time adversary.

– Statistical binding property,
– CCA security for tags of length t(n), and
– κ-pqt-robustness.

If CCACom1:1
i+3 uses the underlying one-way function only in a black-box way,

then CCAComi uses the underlying one-way function only in a black-box way.

In the proof of Lemma 2, we use the following building blocks, which we
can obtain by appropriately setting the security parameters of known protocols
[26, 27, 32].
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Commit Phase. The committer C and the receiver R receive common
inputs 1n and id ∈ {0, 1}t(n). To commit to v ∈ {0, 1}n, the committer C
does the following with the receiver R.
Stage 1. R chooses a random subset Γ ⊆ [10n] of size n. Then, R commits

to Γ by using CCACom1:1
i+3 with tag id.

Stage 2. C computes an (n + 1)-out-of-10n Shamir’s secret sharing s =
(s1, . . . , s10n) of value v. Then, for each j ∈ [10n] in parallel, C commits
to sj by using Comi+1.

Stage 3. For each j ∈ [10n] in parallel, C commits to sj by using CEComi+2.
Stage 4. R decommits the Stage 1 commitment to Γ .
Stage 5. For every j ∈ [10n], let the j-th column denote the j-th commit-

ment in Stage 2 and the j-th one in Stage 3 (that is, the commitments
whose committed value is sj). Then, for each j ∈ Γ , C decommits the
commitments of the j-th column to sj .

Decommit Phase. C sends v to R and decommits the Stage 2 com-
mitments to s. Then, R checks whether all of these decommitments are
valid. Furthermore, R checks whether (1) s is 0.9-close to a valid codeword
w = (w1, . . . , w10n) and (2) for every j ∈ Γ , wj is equal to the share that
was revealed in Stage 5. Finally, R checks whether w is a codeword corre-
sponding to v.

Fig. 4. CCA-secure commitment CCAComi

– A 2-round statistically binding commitment Comi+1 that is secure against
Ti+1(n)-time adversaries but is completely broken in time Ti+1.5(n).

– A constant-round concurrently poly(nlogn)-extractable commitment
CEComi+2 that is secure against Ti+2(n)-time adversaries but is completely
broken in time Ti+2.5(n). The number of slots in CEComi+2 is κ+ 3.

We note that both Comi+1 and CEComi+2 use the underlying one-way function
in a black-box way.

Proof (of Lemma 2). CCAComi is shown in Figure 4. The statistical binding
property of CCAComi follows from that of Comi+1. Then, we consider the fol-
lowing propositions.

Proposition 1. For any Ti(n)-time adversary, CCAComi is CCA secure for
tags of length t(n).

Proposition 2. For any Ti(n)-time adversary, CCAComi is κ-pqt-robust.

The lemma follows from these propositions. ��

Below, we prove Proposition 1. The proof of Proposition 2 is given in the full
version. (Proposition 2 can be proven by extending the proof of Proposition 1.)
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Proof (of Proposition 1). We show that for any Ti(n)-time adversary A, the
following are computationally indistinguishable:

– {IND0(CCAComi,A, n, z)}n∈N,z∈{0,1}∗

– {IND1(CCAComi,A, n, z)}n∈N,z∈{0,1}∗

Note that O does the following in each right session. First, O extracts the com-
mitted values s = (s1, . . . , s10n) of the Stage 2 commitments by brute force. (If
the committed value of the j-th commitment is not uniquely determined, sj is
defined to be ⊥.) Then, at the end of the session, O checks whether the following
conditions hold: (1) s is 0.9-close to a valid codeword w = (w1, . . . , w10n), and
(2) for every j ∈ Γ (where Γ is the value that O sends to A in Stage 4), wj

is equal to the share that was revealed in Stage 5. If both conditions hold, O
recovers v from w and returns v to A. Otherwise, O returns v := ⊥ to A. We
note that the running time of O is at most poly(n) · Ti+1.5(n).

To show the indistinguishability, we consider hybrid experiments Hb
a(n, z) for

a ∈ {0, 1, 2, 3} and b ∈ {0, 1}.

Hybrid Hb
0(n, z) is the same as experiment indb(CCAComi,A, n, z).

Hybrid Hb
1(n, z) is the same as Hb

0(n, z) except for the following:

– In Stage 1 of the left session, the committed value Γ is extracted by brute
force. If the commitment is invalid or has multiple committed values, Γ
is defined to be a random subset.6

– In Stage 3 of the left session, the left committer commits to 0 instead of
sj for each j �∈ Γ .

The running time of Hb
1(n, z) is at most poly(n) · Ti+1.5(n) except for the

brute-force extraction of the Stage 1 commitment on the left.
Hybrid Hb

2(n, z) is the same as Hb
1(n, z) except for the following:

– In every right session of which Stage 2 ends after A starts Stage 2 on
the left, the committed values of the Stage 3 commitments are extracted
by using the concurrent poly(nlog n)-extractability of CEComi+2. Let ŝ =
(ŝ1, . . . , ŝ10n) be the extracted values, where ŝj is defined to be ⊥ if the
extraction of the j-th commitment fails.

– At the end of each right session in which ŝ = (ŝ1, . . . , ŝ10n) is extracted,
O does the following. First, O checks whether the following conditions
hold: (1) ŝ is 0.8-close to a valid codeword ŵ = (ŵ1, . . . , ŵ10n) and (2)

for every j ∈ Γ̃ (where Γ̃ is the value that O sends to A in this session),
ŵj is equal to the share that was revealed in Stage 5. If both conditions
hold, O recovers v̂ from ŵ and returns v̂ to A. Otherwise, O returns
v̂ := ⊥ to A. We note that O does not extract the committed values of
the Stage 2 commitments in such right sessions.

The expected running time of Hb
2(n, z) is at most poly(nlog n) · Ti(n) after

the start of Stage 2 on the left.

6 Since the running time of A and O is at most poly(n) · Ti+1.5(n) � Ti+2(n), the
strong computational binding property of CCACom1:1

i+3 guarantees that the Stage 1
commitment has at most one committed value except with negligible probability.
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Hybrid Hb
3(n, z) is the same as Hb

2(n, z) except that in Stage 2 on the left, the
left committer commits to 0 instead of sj for each j �∈ Γ .

Since A receives no information about {sj}j �∈Γ on the left in H0
3 (n, z) and

H1
3 (n, z), and since s is (n+1)-out-of-10n secret sharing, the output of H0

3 (n, z)
and that of H1

3 (n, z) are identically distributed. Then, we consider the follow-
ing claims. In what follows, we use Hb

i(n, z) to denote the output of experiment
Hb

i (n, z).

Claim 4. For each b ∈ {0, 1}, {Hb
0(n, z)}n∈N,z∈{0,1}∗ and {Hb

1(n, z)}n∈N,z∈{0,1}∗

are computationally indistinguishable.

Claim 5. For each b ∈ {0, 1}, {Hb
1(n, z)}n∈N,z∈{0,1}∗ and {Hb

2(n, z)}n∈N,z∈{0,1}∗

are statistically indistinguishable.

Claim 6. For each b ∈ {0, 1}, {Hb
2(n, z)}n∈N,z∈{0,1}∗ and {Hb

3(n, z)}n∈N,z∈{0,1}∗

are computationally indistinguishable.

The proposition follows from these claims. ��

Proof (sketch of Claim 4). The view of A in Hb
0(n, z) and that of A in Hb

1(n, z)
differ only in the committed values of CEComi+2 on the left. In addition, the
running time of Hb

0(n, z) and that of Hb
1(n, z) are poly(n) · Ti+1.5(n)$ Ti+2(n)

(except for the brute force extraction of the Stage 1 commitment on the left in
Hb

1(n, z)). Thus, by considering Γ as non-uniform advice, we can prove indistin-
guishability from the hiding property of CEComi+2. ��

Next, we consider Claim 5. As in Section 4.2, we first show that in every
right session of Hb

1(n, z), the committed values of the Stage 2 commitments and
those of Stage 3 commitments are 0.9-close. Formally, for any right session, let

s(2) = (s
(2)
1 , . . . , s

(2)
10n) be the committed values of the Stage 2 commitments (if

the committed value of the j-th commitment is not uniquely determined, s
(2)
j is

defined to be ⊥) and let s(3) = (s
(3)
1 , . . . , s

(3)
10n) be the committed values of the

Stage 3 commitments. Then, for every j ∈ [10n], we say that the j-th column

of this session is bad if s
(2)
j = ⊥, s(3)j = ⊥, or s

(2)
j �= s

(3)
j . In addition, we say

that A cheats in this session if the session is accepted and the number of bad
columns is at least n. Then, we prove the following subclaim.

Subclaim 3. In any right session of Hb
1(n, z), A cheats with at most negligible

probability.

Proof (sketch). At first sight, it seems that we can prove this subclaim by sim-
ply using the hiding property of CCACom1:1

i+3 and the property of cut-and-choose
technique (i.e., it seems that, since the committed value Γ of the Stage 1 com-
mitment on the right is hidden from A, the probability that there are at least
n bad columns but the session is accepted is negligible). However, A interacts
with the left committer as well as with O, and the left committer “cheats” in
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the left session (i.e., on the left, the committed values of the Stage 2 commitments
and those of the Stage 3 commitments are not 0.9-close). Thus, A may be able to
cheat in a right session by using the messages received on the left. A key to prove
this subclaim is that the left session can be simulated by using the committed-
value oracle of CCACom1:1

i+3 (i.e., if we know the committed value Γ of the Stage
1 commitment on the left, we can simulate the later stages in polynomial time).
Thus, the one-one CCA security of CCACom1:1

i+3 guarantees that A cannot break

the hiding property of CCACom1:1
i+3 even with the messages of the left session.

We can therefore use the cut-and-choose technique to prove the subclaim. ��

Given Subclaim 3, we can prove Claim 5 in a similar manner to Claim 2 in
Section 4.2.

Finally, we prove Claim 6.

Proof (sketch of Claim 6). Hb
2(n, z) and Hb

3(n, z) differ only in the committed
values of Comi+1. Since the running time of Hb

2(n, z) and that of Hb
3(n, z) are

poly(nlogn) · Ti(n)$ Ti+1(n) after the start of Stage 2 on the left, we can prove
Claim 6 from the hiding property of Comi+1 (by considering Γ of the left session
and the answers of O for some right sessions as non-uniform advice). Here, we
use the fact that Comi+1 is a 2-round commitment scheme. This fact enables
us to rewind A in the right sessions of Hb

2(n, z) without breaking the hiding
property of Comi+1. ��

6 One-One CCA Security for Long Tags from CCA
Security for Short Tags

In this section, we consider a transformation from any CCA-secure commitment
scheme for tags of length t(n) to a one-one CCA-secure commitment scheme
for tags of length 2t(n)−1. The transformation are essentially the same as those
in [24], which shows a transformation from any concurrent NM commitment
scheme for short tags to a NM commitment scheme for long tags.

Lemma 3. Let ε < 1 be a positive constant, and assume the existence of one-
way functions that are secure against 2n

ε

-time adversaries. Let r(·) and t(·) be

arbitrary functions such that t(n) ≤ O(log n), let Ti(n)
def
= 2(logn)(2/ε)

10i+1

for
i ∈ N, and let CCAComi+1 be an r(n)-round commitment scheme that satisfies
the following for any Ti+1(n)-time adversary.

– Statistical binding property, and
– CCA security for tags of length t(n).

Then, there exists an r(n)-round commitment scheme CCACom1:1
i that satisfies

the following for any Ti(n)-time adversary.

– Statistical binding property, and
– One-one CCA security for tags of length 2t(n)−1.
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If CCAComi+1 uses the underlying one-way function only in a black-box way,
then CCACom1:1

i uses the underlying one-way function only in a black-box way.

Due to lack of space, the proof is deferred to the full version.

7 Constant-Round Black-Box Composable Protocol

In this section, we show a constant-round black-box construction of a general
MPC protocol that satisfies angel-based UC security. Roughly speaking, the
framework of angel-based UC security (called H-EUC framework) is the same
as the UC framework except that both the adversary and the environment in
the real and the ideal worlds have access to a super-polynomial-time angel H.

To construct our protocol, we use the following theorem, which we obtain by
combining Lemmas 1, 2, and 3.

Theorem 1. Assume the existence of one-way functions that are secure against
sub-exponential-time adversaries. Then, for any constant κ ∈ N, there exists a
constant-round commitment scheme that is CCA secure and κ-pqt-robust. This
commitment scheme uses the underlying one-way functions only in a black-box
way.

We additionally use the following results of [7] and [23].
Let 〈C,R〉 be any rcca(n)-round commitment scheme that is CCA secure

and κ-robust for any constant κ, 〈S,R〉 be any rot(n)-round semi-honest OT
protocol, andH be an angel that breaks 〈C,R〉 essentially in the same way as the
committed-value oracle of 〈C,R〉 does. Then, Lin and Pass [23] showed that there
exists a black-box O(max(rot(n), rcca(n)))-round protocol that securely realizes
the ideal OT functionality FOT in the H-EUC framework. By using essentially
the same security proof as that of [23], we can show that even when 〈C,R〉 is
CCA secure and only κ-pqt-robust for a sufficiently large κ, the protocol of [23]
is still secure if 〈S,R〉 is secure against any pqt adversary.7 Thus, we have the
following theorem from [23].

Theorem 2. Assume the existence of an rcca(n)-round commitment scheme
〈C,R〉 that is CCA secure and κ-pqt-robust for a sufficiently large κ, and
assume the existence of an rot(n)-round semi-honest oblivious transfer pro-
tocol 〈S,R〉 that is secure against any pqt adversary. Then, there exists an
O(max(rcca(n), rot(n)))-round protocol that H-EUC-realizes FOT . This protocol
uses 〈C,R〉 and 〈S,R〉 only in a black-box way.

In [7], Canetti et al. showed the following.

Theorem 3 ( [7]). For every well-formed functionalityF , there exists a constant-
round FOT -hybrid protocol that H-EUC-realizes F .

Then, by combining Theorems 1, 2, and 3, we obtain the following theorem.

7 This is because κ-pqt-robustness guarantees that the committed-value oracle is use-
less in attacking any κ-round protocol if the protocol is pqt-secure.
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Theorem 4. Assume the existence of one-way functions that are secure against
sub-exponential-time adversaries and constant-round semi-honest oblivious trans-
fer protocols that are secure against quasi-polynomial-time adversaries. Then,
there exists an angel H such that for every well-formed functionality F , there
exists a constant-round protocol that H-EUC-realizes F . This protocol uses the
underlying one-way functions and oblivious transfer protocols only in a black-box
way.
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Abstract. Adaptive security is a strong security notion that captures additional
security threats that are not addressed by static corruptions. For instance, it cap-
tures real-world scenarios where “hackers” actively break into computers, possi-
bly while they are executing secure protocols. Studying this setting is interesting
from both theoretical and practical points of view. A primary building block in
designing adaptively secure protocols is a non-committing encryption (NCE) that
implements secure communication channels in the presence of adaptive corrup-
tions. Current constructions require a number of public key operations that grows
linearly with the length of the message. Furthermore, general two-party protocols
require a number of NCE calls that is linear in the circuit size.

In this paper we study the two-party setting in which at most one of the par-
ties is adaptively corrupted, which we believe is the right security notion in the
two-party setting. We study the feasibility of (1) NCE with constant number of
public key operations for large message spaces (2) Oblivious transfer with con-
stant number of public key operations for large input spaces of the sender, and (3)
constant round secure computation protocols with a number of NCE calls, and an
overall number of public key operations, that are independent of the circuit size.
Our study demonstrates that such primitives indeed exist in the presence of single
corruptions, while this is not known for fully adaptive security.

Keywords: Adaptively Secure Computation, Non-Committing Encryption, Obliv-
ious Transfer.

1 Introduction

1.1 Background

Secure two-party computation. In the setting of secure two-party computation, two
parties with private inputs wish to jointly compute some function of their inputs while
preserving certain security properties like privacy, correctness and more. In this setting,
security is formalized by viewing a protocol execution as if the computation is executed
in an ideal setting where the parties send inputs to a trusted party that performs the com-
putation and returns its result (also known by simulation-based security). Starting with
the work of [36,22], it is by now well known that (in various settings) any polynomial-
time function can be compiled into a secure function evaluation protocol with practical
complexity; see [30,16,33] for a few recent works. The security proofs of these con-
structions assume that a party is statically corrupted. Meaning, corruptions take place at
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the outset of the protocol execution and the identities of the corrupted parties are fixed
throughout the computation. Adaptive security is a stronger notion where corruptions
takes place at any point during the course of the protocol execution. That is, upon cor-
ruption the adversary sees the internal data of the corrupted party which includes its
input, randomness and the incoming messages. This notion is much stronger than static
security due to the fact that the adversary may choose at any point which party to cor-
rupt, even after the protocol is completed! It therefore models real world threats more
accurately than the static corruption model.

Typically, when dealing with adaptive corruptions we distinguish between corrup-
tions with erasures and without erasures. In the former case honest parties are trusted to
erase data if are instructed to do so by the protocol, whereas in the latter case no such
assumption is made. This assumption is often problematic since it relies on the willing-
ness of the honest parties to carry out this instruction without the ability to verify its
execution. In settings where the parties are distrustful it may not be a good idea to base
security on such an assumption. In addition, it is generally unrealistic to trust parties to
fully erase data since this may depend on the operating system. Nevertheless, assuming
that there are no erasures comes with a price since the complexity of adaptively secure
protocols without erasures is much higher than the analogue complexity of protocols
that rely on erasures. In this paper we do not rely on erasures.

Adaptive Security. It is known by now that security against adaptive attacks captures
important real-world concerns that are not addressed by static corruptions. For instance,
such attacks capture scenarios where “hackers” actively break into computers, possibly
while they are running secure protocols, or when the adversary learns from the com-
munication which parties are worth to corrupt more than others. This later issue can
be demonstrated by the following example. Consider a protocol where some party (de-
noted by the dealer) shares a secret among a public set of

√
n parties, picked at random

from a larger set of n parties. This scheme is insecure in the adaptive model if the ad-
versary corrupts

√
n parties since it can always corrupt the particular set of parties that

share the secret. In the static setting the adversary corrupts the exact same set of parties
that share the secret with a negligible probability in n.

Other difficulties also arise when proving security. Consider the following protocol
for transferring a message: A receiver picks a public key and sends it to a sender that
uses it to encrypt its message. Then, security in the static model is simple and relies on
the semantic security of the underlying encryption scheme. However, this protocol is
insecure in the adaptive model since standard semantically secure encryption binds the
receiver to a single message (meaning, given the public key, a ciphertext can only be de-
crypted into a single value). Thus, upon corrupting the receiver at the end of the protocol
execution it would not be possible to “explain” the simulated ciphertext with respect to
the real message. This implies that adaptive security is much harder to achieve.

Adaptively Secure Two-Party Computation. In the two-party setting there are scenarios
where the system is comprised from two devices communicating between themselves
without being part of a bigger system. For instance, consider a scenario where two
devices share an access to an encrypted database that contains highly sensitive data
(like passwords). Moreover, the devices communicate via secure computation but do not
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communicate with other devices due to high risk of breaking into the database. Thus,
attacking one of the devices does not disclose any useful information about the content
of the database, while attacking both devices is a much harder task. It is reasonable to
assume that the devices are not necessarily statically corrupted since they are protected
by other means, while attackers may constantly try to break into these devices (even
while running secure computation).

In 2011, RSA secureID authentication products were breached by hackers that lever-
aged the stolen information from RSA in order to attack the U.S. defense contractor
Lockheed Martin. The attackers targeted SecurID data as part of a broader scheme to
steal defense secrets and related intellectual property. Distributing the SecureID secret
keys between two devices potentially enables to defend against such an attack since in
order to access these keys the attackers need to adaptively corrupt both devices, which
is less likely to occur. Many other applications face similar threats when attempt to
securely protect their databases.

We therefore focus on a security notion that seems the most appropriate in this
context. In this paper, we study secure two-party computation with single adaptive cor-
ruptions in the non-erasure model where at most one party is adaptively corrupted. To
distinguish this notion from fully adaptive security, where both parties may get cor-
rupted, we denote it by one-sided adaptive security. Our goal in this work is to make
progress in the study of the efficiency of two-party protocols with one-sided security.
Our measure of efficiency is the number of public key encryption (PKE) operations.
Loosely speaking, our primitives are parameterized by a public key encryption scheme
for which we count the number of key generation/encryption/decryption operations.
More concretely, these operations are captured by the number of exponentiations in
several important groups (e.g., groups where the DDH assumption is hard and compos-
ite order groups where the assumptions DCR and QR are hard), and further considered
in prior works such as [19]. Finally, our proofs are given in the universal composable
(UC) setting [6] with a common reference string (CRS) setup. The reductions of our
non-committing encryption and oblivious transfer with one-sided security are tight. The
reductions of our general two-party protocols are tighter than in prior works since we
do not need to encrypt the entire communication using non-committing encryption; see
more details below. All our theorems are not known to hold in the fully adaptive setting.

1.2 Our Results

One-sided NCE with Constant Overhead. A non-committing encryption (NCE) scheme
[8] implements secure channels in the presence of adaptive corruptions and is an im-
portant building block in designing adaptively secure protocols. In [13], Damgård and
Nielsen presented a theoretical improvement in the one-sided setting by designing an
NCE under strictly weaker assumptions than simulatable public key encryption scheme
(the assumption for fully adaptive NCE). Nevertheless, all known one-sided [8,13] and
fully adaptive NCE constructions [13,11] require O(1) PKE operations for each trans-
mitted bit. It was unknown whether this bound can be reduced for one-sided NCEs and
even matched with the overhead of standard PKEs.

We suggest a new approach for designing NCEs secure against one-sided adap-
tive attacks. Our protocols are built on two cryptographic building blocks that are
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non-committing with respect to a single party. We denote these by NCE for the sender
and NCE for the receiver. Non-committing for the receiver (NCER) implies that one
can efficiently generate a secret key that decrypts a simulated ciphertext into any plain-
text. Whereas non-committing for the sender (NCES) implies that one can efficiently
generate randomness for any plaintext for proving that a ciphertext, encrypted under
a fake key, encrypts this plaintext. A core building block in our one-sided construc-
tion is (a variant) of the following protocol, in which the receiver generates two sets of
public/secret keys; one pair of keys for each public key system, and sends these public
keys to the sender. Next, the sender partitions its message into two shares and encrypts
the distinct shares under the distinct public keys. Finally, the receiver decrypts the ci-
phertexts and reconstructs the message. Both NCES and NCER are semantically secure
PKEs and they are as efficient as standard PKEs. Informally, we prove that,

Theorem 1. (Informal) Assume the existence of NCER and NCES with constant num-
ber of PKE operations for message space {0, 1}q and simulatable PKE. Then there
exists a one-sided NCE with constant number of PKE operations for message space
{0, 1}q, where q = O(n) and n is the security parameter.

Importantly, the security of this protocol only works if the simulator knows the iden-
tity of the corrupted party since fake public keys and ciphertexts cannot be explained
as valid ones. We resolve this issue by slightly modifying this protocol using somewhat
NCE [19] in order to encrypt only three bits. Namely, we use somewhat NCE to encrypt
the choice of having fake/valid keys and ciphertexts (which only requires a single non-
committing bit per choice). This enables the simulator to “explain” fake keys/ciphertext
as valid and vice versa using only a constant number of asymmetric operations. In this
work we consider two implementations of NCER and NCES. For polynomial-size mes-
sage spaces the implementations are secure under the DDH assumption, whereas for
exponential-size message spaces security holds under the DCR assumption. The NCER
implementations are taken from [25,9]. NCES was further discussed in [17] and realized
under the DDH assumption in [5] using the closely related notion of lossy encryption.1

In this paper we realize NCES under the DCR assumption.

One-sided Oblivious Transfer with Constant Overhead. We use our one-sided NCEs
to implement 1-out-of-2 oblivious transfer (OT) between a sender and a receiver. We
consider a generic framework that abstracts the statically secure OT of [34] that is based
on a dual-mode PKE primitive, while encrypting only a small portion of the communi-
cation using our one-sided NCE. Our construction requires a constant number of PKE
operations for an input space {0, 1}q of the sender, where q = O(n). This is signif-
icantly better than the fully adaptively secure OT of [19] (currently the most efficient
fully adaptive construction), that requiresO(q) such operations. We prove that:

Theorem 2. (Informal) Assume the existence of one-sided NCE with constant number
of PKE operations for message space {0, 1}q and dual-mode PKE. Then there exists a

1 This notion differs from NCES by not requiring an efficient opening algorithm that enables to
equivocate the ciphertext’s randomness. We further observe that the notion of NCES is also
similar to mixed commitments [14].
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one-sided OT with constant number of PKE operations for sender’s input space {0, 1}q,
where q = O(n) and n is the security parameter.

We build our one-sided OT based on the PVW protocol as follows. (1) First, we
require that the sender sends its ciphertexts via a one-sided non-committing channel
(based on our previous result, this only inflates the overhead by a constant). (2) We fix
the common parameters of the dual-mode PKE in a single mode (instead of alternating
between two modes as in the [19] protocol). To ensure correctness, we employ a special
type of ZK PoK which uses a novel technique; see below for more details. Finally, we
discuss two instantiations based on the DDH and QR assumptions.

Constant Round One-Sided Secure Computation. Theoretically, it is well known that
any statically secure protocol can be transformed into a one-sided adaptively secure
protocol by encrypting the entire communication using NCE. This approach, adopted
by [26], implies that the number of PKE operations grows linearly with the circuit size
times a computational security parameter.2 A different approach in the OT-hybrid model
was taken in [24] and achieved a similar overhead as well.

In this work we demonstrate the feasibility of designing generic constant round pro-
tocols based on Yao’s garbled circuit technique with one-sided security, tolerating semi-
honest and malicious attacks. Our main observation implies that one-sided security can
be obtained even if only the keys corresponding to the inputs and output wires are
communicated via a one-sided adaptively secure channel. This implies that the bulk
of communication is transmitted as in the static setting. Using our one-sided secure
primitives we obtain protocols that outperform the constant round one-sided construc-
tions of [26,24] and all known generic fully adaptively secure two-party protocols. Our
proofs take a different simulation approach, circumventing the difficulties arise due to
the simulation technique from [28] that builds a fake circuit (which cannot be applied
in the adaptive setting). Specifically, we prove that

Theorem 3. (Informal) Under the assumptions of achieving statically secure two-party
computation and one-sided OT with constant number of PKE operations for sender’s
input space {0, 1}q, where q = O(n) and n is the security parameter, there exists a con-
stant round one-sided semi-honest adaptively secure two-party protocol that requires
O(|C|) private key operations andO(|input|+ |output|) public key operations.

In order to obtain one-sided security against malicious attacks we adapt the cut-and-
choose based protocol introduced in [30]. The idea of the cut-and-choose technique is
to ask one party to send s garbled circuits and later open half of them by the choice
of the other party. This ensures that with very high probability the majority of the un-
opened circuits are valid. Proving security in the one-sided setting requires dealing with
new subtleties and requires a modified cut-and-choose OT protocol, since [30] defines
the public parameters of their cut-and-choose OT protocol in a way that precludes the
equivocation of the receiver’s input. Our result in the malicious setting follows.

2 We note that this statement is valid regarding protocols that do not employ fully homomorphic
encryptions (FHE). To this end, we only consider protocols that do not take the FHE approach.
As a side note, it was recently observed in [27] that adaptive security is impossible for FHE
satisfying compactness.
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Theorem 4. (Informal.) Under the assumptions of achieving static security in [30],
one-sided cut-and-choose OT with constant number of PKE operations for sender’s
input space {0, 1}q, where q = O(n) and n is the security parameter, and simulatable
PKE, there exists a constant round one-sided malicious adaptively secure two-party
protocol that requiresO(s · |C|) private key operations andO(s · (|input|+ |output|))
public key operations where s is a statistical parameter that determines the cut-and-
choose soundness error.

This asymptotic efficiency is significantly better than in prior protocols [26,24].

Witness Equivocal UC ZK PoK for Compound Statements. As a side result, we demon-
strate a technique for efficiently generating statically secure UC ZK PoK for known
Σ-protocols. Our protocols use a new approach where the prover commits to an addi-
tional transcript which enables to extract the witness with a constant overhead.

We further focus on compound statements (where the statement is comprised of sub-
statements for which the prover only knows a subset of the witnesses), and denote a
UC ZK PoK by witness equivocal if the simulator knows the witnesses for all sub-
statements but not which subset is given to the real prover. We extend our proofs for
this notion to the adaptive setting as well. In particular, the simulator must be able
to convince an adaptive adversary that it does not know a different subset of witnesses.
This notion is weaker than the typical one-sided security notion (that requires simulation
without the knowledge of any witness), but is still meaningful in designing one-sided
secure protocols. In this work, we build witness equivocal UC ZK PoKs for a class of
fundamental compound Σ-protocols, without relying on NCE. Our protocols are round
efficient and achieve a negligible soundness error. Finally, they are proven secure in the
UC framework [6].

To conclude, our results may imply that one-sided security is strictly easier to achieve
than fully adaptive security, and for some applications this is indeed the right notion to
consider. We leave open the feasibility of constant round one-sided secure protocols in
the multi-party setting. Currently, it is not clear how to extend our techniques beyond
the two-party setting (such as within the [4] protocol), and achieve secure constructions
with a number of PKE operations that does not depend on the circuit size.

1.3 Prior Work

We describe prior work on NCE, adaptively secure OT and two-party computation.

Non-committing Encryption. One-sided NCE was introduced in [8] which demon-
strated feasibility of the primitive under the RSA assumption. Next, NCE was studied
in [13,11]. The construction of [13] requires constant rounds on the average and is
based on simulatable PKE, whereas [11] presents an improved expected two rounds
NCE based on a weaker primitive. [13] further presented a one-sided NCE based on a
weakened simulatable PKE notion. The computational overhead of these constructions
is O(1) PKE operations for each transmitted bit. An exception is the somewhat NCE
introduced in [19] (see Section 2.5 for more details). This primitive enables to send
arbitrarily long messages at the cost of log � PKE operations, where � is the equivocal-
ity parameter that determines the number of messages the simulator needs to explain.
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This construction improves over NCEs for sufficiently small �’s. Finally, in [32] Nielsen
proved that adaptively secure non-interactive encryption scheme must have a decryption
key that is at least as long as the transmitted message.

Adaptively Secure Oblivious Transfer. [1,10] designed semi-honest adaptively se-
cure OT (using NCE) and then compiled it into the malicious setting using generic ZK
proofs. More recently, in a weaker model that assumes erasures, Lindell [29] used the
method of [35] to design an efficient transformation from any static OT to a semi-honest
composable adaptively secure OT. Another recent work by Garay et al. [19] presented
a UC adaptively secure OT, building on the static OT of [34] and somewhat NCE. This
paper introduces an OT protocol with security under a weaker semi-adaptive notion,
that is then compiled into a fully adaptively secure OT by encrypting the transcript of
the protocol using somewhat NCE.3 Finally, [12] presented an improved compiler for a
UC adaptively secure OT in the malicious setting (using NCE as well).

Adaptively Secure Two-Party Computation. In the non-erasure model, adaptively
secure computation has been extensively studied [10,15,7,26,24,29,11,12,20]. Starting
with the work of [10], it is known by now how to compute any well-formed two-party
functionality in the adaptive settings. The followup work of [15] showed how to use a
threshold encryption to achieve UC adaptive security but requires honest majority. A
generic compiler from static to adaptive security was shown in [7] (yet without consid-
ering post-execution corruptions). Then the work by Katz and Ostrovsky [26] studied
the round complexity in the one-sided setting. Their protocol is the first round efficient
construction, yet it takes the naive approach of encrypting the entire communication us-
ing NCE. Moreover, the work of [24] provided a UC adaptively secure protocol given
an adaptively secure OT. Their compiler generates one-sided schemes that either require
a number of adaptively secure OTs that is proportional to the circuit’s size, or a number
of rounds that is proportional to the depth of the circuit. Finally, a recent work by Garg
and Sahai [20] shows adaptively secure constant round protocols tolerating n − 1 out
of n corrupted parties using a non-black box simulation approach. Their approach uses
the OT hybrid compiler of [24].

In the erasure model, one of the earliest works by Beaver and Haber [3] showed an
efficient generic transformation from adaptively secure protocols with ideally secure
communication channels, to adaptively secure protocols with standard (authenticated)
communication channels. A more recent work by Lindell [29] presents an efficient
semi-honest constant round two-party protocol with adaptive security.

2 Preliminaries

We denote the security parameter by n. A function μ(·) is negligible if for every poly-
nomial p(·) there exists a value N such that for all n > N it holds that μ(n) < 1

p(n) .
We denote by a ← A the random sampling of element a from a set A and write PPT
for probabilistic polynomial-time. We denote the message spaces of our schemes and
the message space of the sender in our OT protocols by {0, 1}q for q = O(n).

3 We stress that the semi-adaptive notion is incomparable to the one-sided notion since the for-
mer assumes that either one party is statically corrupted or none of the parties get corrupted.
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Definition 5 (Computational indistinguishability). Let X = {Xn(a)}n∈IN,a∈{0,1}∗

and Y = {Yn(a)}n∈IN,a∈{0,1}∗ be distribution ensembles. We say that X and Y are
computationally indistinguishable, denoted X ≈c Y , if for every family {Cn}n∈IN of
polynomial-size circuits, there exists a negligible function μ(·) such that for all a ∈
{0, 1}∗, |Pr[Cn(Xn(a)) = 1]− Pr[Cn(Yn(a)) = 1]| < μ(n).

We denote a PKE by three algorithms Π = (Gen,Enc,Dec). We say that a protocol π
realizes functionality F with t PKE operations (relative to Π) if the number of calls π
makes to either one of (Gen,Enc,Dec) is at most t. Importantly, this definition is not
robust in the sense that one might define an encryption algorithm Enc′ that consists of
encrypting n times in parallel using Enc. In this work we do not abuse this definition
and achieve a single basic operation relative to algorithms (Gen,Enc,Dec), which are
implemented by O(1) group exponentiations in various group descriptions.

2.1 Simulatable Public Key Encryption

A simulatable public key encryption scheme is a semantically secure PKE with four ad-
ditional algorithms. I.e., an oblivious public key generator G̃en and a corresponding key

faking algorithm G̃en
−1

, and an oblivious ciphertext generator Ẽnc and a correspond-

ing ciphertext faking algorithm Ẽnc
−1

. Intuitively, the key faking algorithm is used
to explain a legitimately generated public key as an obliviously generated public key.
Similarly, the ciphertext faking algorithm is used to explain a legitimately generated
ciphertext as an obliviously generated one.

Definition 6 (Simulatable PKE [13]). A Simulatable PKE is a tuple of algorithms (Gen,

Enc,Dec, G̃en, G̃en
−1

, Ẽnc, Ẽnc
−1

) that satisfy the following properties:

– Semantic Security. (Gen,Enc,Dec) is a semantically secure encryption scheme.
– Oblivious public key generation. Consider the experiment (PK, SK)← Gen(1n),

r ← G̃en
−1

(PK) and PK′ ← G̃en(r′). Then, (r, PK) ≈c (r
′, PK′).

– Oblivious ciphertext generation. For any message m in the appropriate do-
main, consider the experiment (PK, SK) ← Gen(1n), c1 ← ẼncPK(r1), c2 ←
Encpk(m; r2), r′1 ← Ẽnc

−1
(c2). Then (PK, r1, c1) ≈c (PK, r′1, c2).

The El Gamal PKE [18] is one example for simulatable PKE.

2.2 Dual-Mode PKE

A dual-mode PKE ΠDUAL is specified by the algorithms (Setup, dGen, dEnc, dDec,
FindBranch,TrapKeyGen) described below.

– Setup is the system parameters generator algorithm. Given a security parameter n
and a mode μ ∈ {0, 1}, the algorithm outputs (CRS, t). The CRS is a common
string for the remaining algorithms, and t is a trapdoor value that is given to either
FindBranch or TrapKeyGen, depends on the mode. The setup algorithms for messy
and decryption modes are denoted by SetupMessy and SetupDecryption, respec-
tively; namelySetupMessy := Setup(1n, 0) andSetupDecryption := Setup(1n, 1).
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– dGen is the key generation algorithm that takes a bit α and the CRS as input. If
α = 0, then it generates left public and secret key pair. Otherwise, it creates right
public and secret key pair.

– dEnc is the encryption algorithm that takes a bit β, a public key PK and a message
m as input. If β = 0, then it creates the left encryption of m, else it creates the right
encryption.

– dDec decrypts a message given a ciphertext and a secret key SK.
– FindBranch finds whether a given public key (in messy mode) is left key or right

key given the messy mode trapdoor t.
– TrapKeyGen generates a public key and two secret keys using the decryption mode

trapdoor t such that both left encryption as well as the right encryption using the
public key can be decrypted using the secret keys.

Definition 7 (Dual-mode PKE). A dual-mode PKE is a tuple of algorithms described
above that satisfy the following properties:

1. Completeness. For every mode μ ∈ {0, 1}, every (CRS, t) ← Setup(1n, μ),
every α ∈ {0, 1}, every (PK, SK) ← dGen(α), and every m ∈ {0, 1}�, de-
cryption is correct when the public key type matches the encryption type, i.e.,
dDecSK(dEncPK(m,α)) = m.

2. Indistinguishability of modes. The CRS generated by SetupMessy and
SetupDecryption are computationally indistinguishable, i.e., SetupMessy(1n) ≈c

SetupDecryption(1n).
3. Trapdoor extraction of key type (messy mode). For every (CRS, t) ←

SetupMessy(1n) and every (possibly malformed) PK, FindBranch(t, PK) outputs
the public key type α ∈ {0, 1}. Encryption at branch 1 − α is then message-lossy;
namely, for every m0,m1 ∈ {0, 1}�, dEncPK(m0, 1− α) ≈s dEncPK(m1, 1− α).

4. Trapdoor generation of keys decrypt both branches (decryption mode). For
every (CRS, t)← SetupDecryption(1n), TrapKeyGen(t) outputs (PK, SK0, SK1)
such that for every α, (PK, SKα) ≈c dGen(α).

2.3 NCE for the Receiver

An NCE for the receiver is a semantically secure PKE with an additional property that
enables generating a secret key that decrypts a simulated (i.e., fake) ciphertext into any
plaintext. Specifically, the scheme operates in two modes. The “real mode” enables to
encrypt and decrypt as in the standard definition of PKE. The “simulated mode” en-
ables to generate simulated ciphertexts that are computationally indistinguishable from
real ciphertexts. Moreover, using a special trapdoor one can produce a secret key that
decrypts a fake ciphertext into any plaintext. Intuitively, this implies that simulated ci-
phertexts are generated in a lossy mode where the plaintext is not well defined given
the ciphertext and the public key. This leaves enough entropy for the secret key to be
sampled in a way that determines the desired plaintext. Formally,

Definition 8 (NCE for the receiver (NCER)). An NCE for the receiver encryption
scheme is a tuple of algorithms (Gen,Enc,Enc∗,Dec,Equivocate) specified as follows:
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– Gen,Enc,Dec are as specified for public key encryption scheme.
– Enc∗, given the public key PK output a ciphertext c∗ and a trapdoor tc∗ .
– Equivocate, given the secret key SK, trapdoor tc∗ and a plaintext m, output SK∗

such that m← DecSK∗(c∗).

Definition 9 (Secure NCER). An NCE for the receiver ΠNCR = (Gen,Enc,Dec,Enc∗,
Equivocate) is secure if it satisfies the following properties:

– Gen,Enc,Dec are as specified in the standard semantically secure encryption
scheme.

– The following ciphertext indistinguishability holds for any plaintext m:
(PK, SK∗, c∗,m) and (PK, SK, c,m) are computationally indistinguish-
able, for (PK, SK) ← Gen(1n), (c∗, tc∗) ← Enc∗(PK), SK∗ ←
Equivocate(SK, c∗, tc∗ ,m) and c← EncPK(m).

A review of two implementations of NCER under the DDH [25,9] and DCR [9]
assumptions is found in our full version [23].

2.4 NCE for the Sender

NCE for the sender is a semantically secure PKE with an additional property that en-
ables generating a fake public key, such that any ciphertext encrypted under this key
can be viewed as the encryption of any message together with the matched random-
ness. Specifically, the scheme operates in two modes. The “real mode” that enables to
encrypt and decrypt as in standard PKEs and the “simulated mode” that enables to gen-
erate simulated public keys and an additional trapdoor, such that the keys in the two
modes are computationally indistinguishable. In addition, given this trapdoor and a ci-
phertext generated using the simulated public key, one can produce randomness that is
consistent with any plaintext. We continue with a formal definition.

Definition 10 (NCE for the sender (NCES)). An NCE for the sender encryption
scheme is a tuple of algorithms (Gen,Gen∗,Enc,Dec,Equivocate) specified as follows:

– Gen,Enc,Dec are as specified for public key encryption scheme.
– Gen∗ generates public key PK∗ and a trapdoor tPK∗ .
– Equivocate, given a ciphertext c∗ computed using PK∗, a trapdoor tPK∗ and a plain-

text m, output r such that c∗ ← Enc(m, r).

Definition 11 (Secure NCES). An NCE for the sender ΠNCES = (Gen,Gen∗,Enc,Dec,
Equivocate) is secure if it satisfies the following properties:

– Gen,Enc,Dec are as specified in the standard semantically secure encryption
scheme.

– The following public key indistinguishability holds for any plaintext m:
(PK∗, r∗,m, c∗) and (PK, r,m, c) are computationally indistinguishable, for
(PK∗, tPK∗) ← Gen∗(1n), c∗ ← EncPK∗(m′, r′), r∗ ← Equivocate(c∗, tPK∗ ,m)
and c← EncPK(m, r).

A review of the DDH based implementation from [5] and a new DCR based implemen-
tation is found in our full version [23].
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2.5 Somewhat Non-committing Encryption [19]

The idea of somewhat NCE is to exploit the fact that it is often unnecessary for the
simulator to explain a fake ciphertext for any plaintext. Instead, in many scenarios it
suffices to explain a fake ciphertext with respect to a small set of size � determined in
advance (where � might be as small as 2). Therefore there are two parameters that are
considered here: a plaintext of bit length l and an equivocality parameter � which is
the number of plaintexts that the simulator needs to explain a ciphertext for (namely,
the non-committed domain size). Note that for NCE � = 2l. Somewhat NCE typically
improves over fully NCE whenever � is very small but the plaintext length is still large,
say O(n) where n is the security parameter.

3 One-Sided Adaptively Secure NCE

In this section we design one-sided NCE, building on NCE for the sender (NCES)
and NCE for the receiver (NCER). The idea of our protocol is to have the receiver
create two public/secret key pairs where the first pair is for NCES and the second pair
is for NCER. The receiver sends the public keys and the sender encrypts two shares
of its message m, each share with a different key. Upon receiving the ciphertexts the
receiver recovers the message by decrypting the ciphertexts. Therefore, equivocality
of the sender’s input can be achieved if the public key of the NCES is fake, whereas,
equivocality of the receiver’s input can be achieved if the ciphertext of the NCER is
fake. Nevertheless, this idea only works if the simulator is aware of the identity of the
corrupted party prior to the protocol execution in order to decide whether the keys or the
ciphertexts should be explained as valid upon corruption (since it cannot explain fake
keys/ciphertext as valid). We resolve this problem using somewhat NCE in order to
commit to the choice of having fake/valid keys and ciphertexts. Specifically, it enables
the simulator to “explain” fake keys/ciphertext as valid and vice versa using only a
constant number of asymmetric operations, as each such non-committing bit requires
an equivocation space of size 2.

Formally, denote byFSC (m,−) !→ (−,m) the secure message transfer functionality,
and let ΠNCES = (Gen,Gen∗,Enc,Dec,Equivocate) and ΠNCER = (Gen,Enc,Enc∗,
Dec,Equivocate) denote secure NCES and NCER for a message space {0, 1}q.
Consider the following one-sided protocol for FSC.

Protocol 1 (One-sided NCE (ΠOSC))

– Inputs: Sender SEN is given input message m ∈ {0, 1}q . Both parties are given security
parameter 1n.

– The Protocol:
1. Message from the receiver. REC invokes Gen(1n) of ΠNCES and ΠNCER and obtains

two public/secret key pairs (PK0, SK0) and (PK1, SK1), respectively. REC sends PK1

on clear and PK0 using somewhat NCE with equivocality parameter � = 2.
2. Message from the sender. Upon receiving PK0 and PK1, SEN creates two shares

of m, m0 and m1, such that m = m0 ⊕ m1. It then encrypts each mi using PKi,
creating ciphertext ci, and sends c0 and c1 using two instances of somewhat NCE with
equivocality parameter � = 2.
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3. Output. Upon receiving c0, c1, REC decrypts ci using SKi and outputs the bitwise
XOR of the decrypted plaintexts.

Note that the message space of our one-sided NCE is equivalent to the message space
of the NCES/NCER schemes, where q can be as large as n. Therefore, our protocol
transmits q-bits messages using a constant number of PKE operations, as opposed to
NCEs that require O(q) such operations. We provide two instantiations for the above
protocol. One for polynomial-size message spaces using DDH based NCES and NCER,
and another for exponential-size message spaces using DCR based NCES and NCER.
We conclude with the following theorem and the complete proof.

Theorem 12. Assume the existence of NCER and NCES with constant number of PKE
operations for message space {0, 1}q and simulatable PKE. Then Protocol 1 UC re-
alizes FSC in the presence of one-sided adaptive malicious adversaries with constant
number of PKE operations for message space {0, 1}q, where q = O(n) and n is the
security parameter.

Proof: Let ADV be a malicious probabilistic polynomial-time adversary attacking
Protocol 1 by adaptively corrupting one of the parties. We construct an adversary SIM

for the ideal functionalityFSC such that no environment ENV distinguishes with a non-
negligible probability whether it is interacting with ADV in the real setting or with SIM

in the ideal setting. We recall that SIM interacts with the ideal functionalityFSC and the
environment ENV. We refer to the interaction of SIM with FSC and ENV as the external
interaction. The interaction of SIM with the simulated ADV is the internal interaction.
We explain the strategy of the simulation for all corruption cases.

Simulating the communication with ENV. Every input value received by the simula-
tor from ENV is written on ADV’s input tape. Likewise, every output value written
by ADV on its output tape is copied to the simulator’s output tape (to be read by its
environment ENV).

SEN is corrupted at the onset of the protocol. SIM begins by activating ADV and
emulates the honest receiver by sending to ADV, PK0 using the somewhat NCE
and PK1 in clear. Upon receiving two ciphertexts c0 and c1 from ADV, SIM ex-
tracts m by computing DecSK0

(c0) ⊕ DecSK1
(c1). SIM externally forwards m to

the ideal functionality FSC.
REC is corrupted at the onset of the protocol. SIM begins by activating ADV and

obtains REC’s output m fromFSC. SIM invokes ADV and receives PK0 from ADV

via the somewhat NCE and PK1 in clear. Next, SIM completes the execution play-
ing the role of the honest sender on input m. Note that it does not make a difference
whether REC generates invalid public keys since SIM knows m and thus perfectly
emulates the receiver’s view.

If none of the parties is corrupted as above, SIM emulates the receiver’s message as
follows. It creates public/secret key pair (PK1, SK1) for ΠNCER and sends the public
key in clear. It then creates a valid public/secret key pair (PK0, SK0) and a fake public
key with a trapdoor (PK∗

0, tPK∗
0
) for ΠNCES (using Gen and Gen∗, respectively). SIM

sends (PK0, PK∗
0) using somewhat NCE. Namely, the simulator does not send the valid

PK0 as the honest receiver would do, rather it encrypts both valid and invalid keys
within the somehwat NCE.
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SEN is corrupted after Step 1 is concluded. Since no message was sent yet on behalf
of the sender, SIM completes the simulation playing the role of the honest sender
using m.

REC is corrupted after Step 1 is concluded. Upon receiving m, SIM explains the
receiver’s internal state which is independent of the message m so far. Specifically,
it reveals the randomness for generating PK0, SK0 and PK1, SK1 and presents the
randomness for the valid key PK0 being the message sent by the somewhat NCE.
SIM plays the role of the honest sender with input m as the message.

If none of the above corruption cases occur, SIM emulates the sender’s message as
follows. It first chooses two random shares m′

0,m
′
1 and generates a pair of ciphertexts

(c0, c
∗
0) for ΠNCES that encrypts m′

0 using PK0 and PK∗
0. It then generates a pair of

ciphertexts (c1, c∗1) for ΠNCER such that c1 is a valid encryption of m′
1 using the public

key PK1, and c∗1 is a fake ciphertext generated using Enc∗ and PK1. SIM sends (c0, c∗0)
and (c∗1, c1) via two instances of somewhat NCE.

SEN is corrupted after Step 2 is concluded. Upon receiving a corruption instruction
from ENV, SIM corrupts the ideal SEN and obtains SEN’s input m. It then explains
the sender’s internal state as follows. It explains PK∗

0 for being the public key sent
by the receiver using the somewhat NCE. Furthermore, it presents the randomness
for c∗0 and c1 being the ciphertexts sent via the somewhat NCE. Finally, it computes
r′′ ← EquivocatePK∗

0
(tPK∗

0
,m′

0, r,m
′′
0 ) for m′′

0 such that m = m′′
0 ⊕m′

1 and r the
randomness used to encryptm′

0, and presents r′′ as the randomness used to generate
c∗0 that encrypts m′′

0 . The randomness used for generating c1 is revealed honestly.
REC is corrupted after Step 2 is concluded. Upon receiving a corruption instruc-

tion from ENV, SIM corrupts the ideal REC and obtains REC’s output m. It then
explains the receiver’s internal state as follows. It presents the randomness for PK0

for being the public key sent via the somewhat NCE and presents the randomness
for generating (PK0, SK0). It then explains c0 and c∗1 for being sent via the some-
what NCE. Finally, it generates a secret key SK∗

1 so that m′′
1 ← DecSK∗

1
(c∗1) and

m′′
1 ⊕m′

0 = m. That is, it explains (PK1, SK∗
1) as the other pair of keys generated

by the receiver.

We now show that for every corruption case described above, there is not any polynomial-
time ENV that distinguishes with a non-negligible probability the real execution with
ADV and the simulated execution with SIM.

SEN/REC is corrupted at the onset of the protocol. In these corruption cases there
is no difference between the real execution and the simulated execution and the
views are statistically indistinguishable.

SEN/REC is corrupted after Step 1 is concluded. In these cases the only difference
between the real and simulated executions is with respect to the somewhat NCE
that delivers the public key of NCES. Specifically, in the real execution it always
delivers a valid public key while in the simulated execution it delivers a fake key.
Indistinguishability follows from the security of the somewhat NCE.
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SEN/REC is corrupted after Step 2 is concluded. Here the adversary sees in the
simulation either a fake public key or a fake ciphertext. Indistinguishability follows
from the security of ΠNCES and ΠNCER and the security of somewhat NCE.

4 One-Sided Adaptively Secure OT

A common approach to design an adaptive OT [2,10] is by having the receiver gen-
erate two public keys (PK0, PK1) such that it only knows the secret key associated
with PKσ . The sender then encrypts x0, x1 under these respective keys so that the re-
ceiver decrypts the σth ciphertext. The security of this protocol in the adaptive setting
holds if the underlying encryption scheme is an augmented non-committing encryption
scheme [10]. In this section we follow the approach from [19] and build one-sided OT
based on the static OT from [34], which is based on a primitive called dual-mode PKE.

The PVW OT. Dual-mode PKE is a semantically secure encryption scheme that is ini-
tialized with system parameters of two types. For each type one can generate two types
of public/secret key pair, labeled by the left key pair and the right key pair. Similarly,
the encryption algorithm generates a left or a right ciphertext. Moreover, if the key la-
bel matches the ciphertext label (i.e., a left ciphertext is generated under the left public
key), then the ciphertext can be correctly decrypted. (A formal definition of dual-mode
PKE is given in Section 2.2.) This primitive was introduced in [34] which demonstrates
its usefulness in designing efficient statically secure OTs under various assumptions.
First, the receiver generates a left key if σ = 0, and a right key otherwise. In response,
the sender generates a left ciphertext for x0 and a right ciphertext for x1. The receiver
then decrypts the σth ciphertext.

The security of dual-mode PKE relies on the two indistinguishable modes of gener-
ating the system parameters: messy and decryption mode. In a messy mode the system
parameters are generated together with a messy trapdoor. Using this trapdoor, any pub-
lic key (even malformed ones) can be labeled as a left or as a right key. Moreover,
when the key type does not match the ciphertext type, the ciphertext becomes statisti-
cally independent of the plaintext. The messy mode is used to ensure security when the
receiver is corrupted since it allows to extract the receiver’s input bit while hiding the
sender’s other input. On the other hand, the system parameters in a decryption mode are
generated together with a decryption trapdoor that can be used to decrypt both left and
right ciphertexts. Moreover, left public keys are statistically indistinguishable from right
keys. The decryption mode is used to ensure security when the sender is corrupted since
the decryption trapdoor enables to extract the sender’s inputs while statistically hiding
the receiver’s input. [34] instantiated dual-mode PKE and their generic OT construction
based on various assumptions, such as DDH, QR and lattice-based assumptions.

Our Construction. We build our one-sided OT based on the PVW protocol considering
the following modifications. (1) First, we require that the sender sends its ciphertexts
using one-sided NCE (see Section 3). (2) We fix the system parameters in a decryption



382 C. Hazay and A. Patra

mode, which immediately implies extractability of the sender’s input and equivocality
of the receiver’s input. We further achieve equivocality of the sender’s input using our
one-sided NCE. In order to ensure extractability of the receiver’s input we employ a
special type of ZK PoK. Namely, this proof exploits the fact that the simulator knows
both witnesses for the proof yet it does not know which witness will be used by the real
receiver, since this choice depends on σ. Specifically, it allows the simulator to use both
witnesses and later convince the adversary that it indeed used a particular witness. In
addition, it enables to extract σ since the real receiver does not know both witnesses.
We denote these proofs for compound statements by witness equivocal and refer to
Section 6 for more details.

Our construction is one-sided UC secure in the presence of malicious adversaries,
and uses a number of non-committed bits that is independent of the sender’s input
size or the overall communication complexity. We formally denote the dual-mode PKE
of [34] by ΠDUAL = (SetupMessy, SetupDecryption, dGen, dEnc, dDec,FindBranch,
TrapKeyGen) and describe our construction in the (FSC,FRLR

ZKPoK
)-hybrid model, where

FSC is instantiated with one-sided NCE. Furthermore, the latter functionality is required
to ensure the correctness of the public key and is defined for a compound statement that
is comprised from the following two relations,

RLEFT =
{
(PK, r0) | (PK, SK)← dGen(CRS, 0; r0)

}
,

where CRS are the system parameters. Similarly, we defineRRIGHT for the right keys.
Specifically, FRLR

ZKPoK
receives a public key PK and randomness rσ for σ ∈ {0, 1}

and returns Accept if either σ = 0 and PK = dGen(CRS, 0; r0), or σ = 1 and
PK = dGen(CRS, 1; r1) holds. Security is proven by implementing this functionality
using a witness equivocal ZK PoK that allows the simulator to equivocate the witness
during the simulation (i.e., explaining the proof transcript with respect to either r0 or
r1). We consider two instantiations of dual-mode PKE (based on the DDH and QR as-
sumptions). For each implementation we design a concrete ZK PoK, proving that the
prover knows rσ with respect to σ ∈ {0, 1}; see details below.

We define our OT protocol as follows,

Protocol 2 (One-sided OT ( ΠOT))

– Inputs: Sender SEN has x0, x1 ∈ {0, 1}q and receiver REC has σ ∈ {0, 1}.
– CRS: CRS such that (CRS, t) ← SetupDecryption.
– The Protocol:

1. REC sends SEN PK, where (PK, SK) ← dGen(CRS, σ; rσ). REC calls FRLR
ZKPoK with

(PK, rσ).
2. Upon receiving Accept from FRLR

ZKPoK and PK from REC, SEN generates c0 ←
dEncPK(x0, 0) and c1 ← dEncPK(x1, 1). SEN calls FSC twice with inputs c0 and
c1, respectively.

3. Upon receiving (c0, c1), REC outputs dDecSK(cσ).

Theorem 13. Assume the existence of one-sided NCE with constant number of PKE
operations for message space {0, 1}q and dual-mode PKE. Then Protocol 2 UC realizes
FOT in the (FSC,FRLR

ZKPoK
)-hybrid model in the presence of one-sided adaptive malicious

adversaries with constant number of PKE operations for sender’s input space {0, 1}q,
where q = O(n) and n is the security parameter.
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Proof: Let ADV be a probabilistic polynomial-time malicious adversary attacking Pro-
tocol2 by adaptively corrupting one of the parties. We construct an adversary SIM for
the ideal functionality FOT such that no environment ENV distinguishes with a non-
negligible probability whether it is interacting with ADV in the real setting or with SIM

in the ideal setting. We recall that SIM interacts with the ideal functionalityFOT and the
environment ENV. We refer to the interaction of SIM with FOT and ENV as the external
interaction. The interaction of SIM with the simulated ADV is the internal interaction.
Upon computing (CRS, t)← SetupDecryption(1n), SIM proceeds as follows:

Simulating the communication with ENV. Every input value received by the simula-
tor from ENV is written on ADV’s input tape. Likewise, every output value written
by ADV on its output tape is copied to the simulator’s output tape (to be read by its
environment ENV).

SEN is corrupted at the outset of the protocol. SIM begins by activating ADV and
emulates the receiver by running (PK, SK0, SK1)← TrapKeyGen(t). It then sends
PK and an Accept message to ADV on behalf of FRLR

ZKPoK
. Whenever ADV returns

c0, c1 via FSC, SIM extracts SEN’s inputs x0, x1 by invoking dDecSK0
(c0) and

dDecSK1(c1) as in static case. It then sends x0, x1 to FOT and completes the exe-
cution playing the role of the receiver using an arbitrary σ.
Note that, in contrast to the hybrid execution where the receiver uses its real input
σ to dGen in order to create public/secret keys pair, the simulator does not know
σ and thus creates the keys using TrapKeyGen. Nevertheless, when the CRS is set
in a decryption mode the left public key is statistically indistinguishable from right
public key. Furthermore, the keys (PK, SKi) that are generated by TrapKeyGen are
statistically close to the keys generated by dGen with input bit i. This implies that
the hybrid and simulated executions are statistically close.

REC is corrupted at the outset of the protocol. SIM begins by activating ADV and
receives its public key PK and a witness rσ on behalf of FRLR

ZKPoK. Given rσ , SIM

checks if PK is the left or the right key and use it to extract the receiver’s input
σ. It then sends σ to FOT, receiving back xσ . Finally, SIM computes the sender’s
message using xσ and an arbitrary x1−σ .
Unlike in the hybrid execution, the simulator uses an arbitrary x1−σ instead of the
real x1−σ . However, a decryption mode implies computational privacy of x1−σ .
Therefore, the hybrid view is also computationally indistinguishable from the sim-
ulated view as in the static setting proven in [34].

If none of the above corruption cases occur SIM invokes (PK, SK0, SK1) ←
TrapKeyGen(t) and sends PK to the sender. Note that the simulator knows a witness r0
such that PK = dGen(CRS, 0; r0) and a witness r1 such that PK = dGen(CRS, 1; r1).

SEN is corrupted between Steps 1 and 2. SIM trivially explains the the sender’s
internal state since SEN did not compute any message so far. The simulator com-
pletes the simulation by playing the role of REC using arbitrary σ as in the case
when the sender is corrupted at the outset of the execution.

Indistinguishability for this case follows similarly to the prior corruption case
when SEN is corrupted at the outset of the execution.
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REC is corrupted between Steps 1 and 2. Upon corrupting the receiver SIM obtains
σ, xσ fromFOT and explains the receiver’s internal state as follows. It first explains
rσ as the witness given to FRLR

ZKPoK and PK as the outcome of dGen(CRS, σ; rσ).
The simulator completes the simulation playing the role of the honest sender with
xσ and an arbitrary x1−σ .

Indistinguishability for this case in the hybrid setting follows similarly to the
prior corruption case, since the only difference in the simulation is relative to the
witness equivocality proof which only makes a difference in the real execution.

If none of the above corruption cases occur then SIM chooses two arbitrary inputs x′
0, x

′
1

for the sender and encrypts them using the dual-mode encryption. Denote these cipher-
texts by c′0, c

′
1. SIM pretends sending these ciphertexts using FSC.

SEN is corrupted after Step 2. Upon corrupting the sender, SIM obtains (x0, x1)
from FOT. It then explains the sender’s internal state as follows. It first computes
c0, c1 that encrypts x0 and x1 respectively. It then explains c0 and c1 as being sent
using FSC.

In the hybrid setting indistinguishability follows as in the prior corruption case
of the sender, since the simulator emulates the sender’s message via the one-sided
non-committing channel. In the real execution, security is reduced to the security
of the one-sided encryption scheme implementation.

REC is corrupted after Step 2. Upon corrupting the receiver, SIM obtains REC’s
input and output (σ, xσ) from FOT. It then explains the receiver’s internal state as
follows. It first explains rσ as the witness given toFRLR

ZKPoK and PK as the outcome of
dGen(CRS, σ; rσ). Finally, it explains the output of FSC as cσ so that cσ is indeed
a valid encryption of xσ .

Indistinguishability follows similarly to the prior corruption case of the receiver
since the second message is computed by the sender which is not corrupted.

Concrete Instantiations. In the DDH-based instantiation the CRS is a Diffie-Hellman
tuple (g0, g1, h0, h1) and the trapdoor is logg0 g1. Moreover, the concrete ZK PoK func-

tionality is FRDL,OR
ZKPoK which is invoked with the statement and witness

(
((g0h0, g

r
σh

r
σ),

(g1h1, g
r
σh

r
σ)), r

)
, such that PK = (grσ, h

r
σ), SK = r and r ← Zp.

In the QR-based instantiation the CRS is a quadratic residue y and the trapdoor is s
such that y = s2 mod N and N is an RSA composite. The concrete ZK PoK function-
ality is FRQR,OR

ZKPoK which is invoked with the statement and witness
(
(y · PK, PK), r

)
,

such that PK = r2/yσ, SK = r and r ← Z∗
N .

5 Constant Round One-Sided Adaptively Secure Computation

In the following section we demonstrate the feasibility of one-sided adaptively secure
two-party protocols in the presence of semi-honest and malicious adversaries. Our con-
structions are constant round and UC secure and use a number of non-committed bits
that is independent of the circuit size, thus reduce the number of PKE operations so that
it only depends on the input and output lengths. A high-level overview of Yao’s garbled
circuit construction G(C) for a circuit C is found in the full version.
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5.1 One-Sided Secure Computation for Semi-honest Adversaries

Our first construction adapts the semi-honest two-party protocol [36,28] into
the one-sided adaptive setting at a cost of O(|C|) private key operations and
O(|input|+ |output|) public key operations. Using our one-sided secure primitives we
obtain efficient protocols that outperform the constant round one-sided constructions
of [26,24] and all known fully adaptively secure two-party protocols. Namely, we show
that one-sided security can be obtained by only communicating the keys corresponding
to the input/output wires via a non-committing channel. This implies that the number
of PKE operations does not depend on the garbled circuit size as in prior work.

Informally, the input keys that correspond to P0’s input are transferred to P1 using
somewhat NCE with equivocation parameter � = 2, whereas P1’s input keys are sent us-
ing one-sided OT. Next, the entire garbled circuit (without the output decryption table)
is sent to P1 using a standard communication channel. P1 evaluates the garbled circuit
and finds the keys for the output wires. The parties then run a one-sided bit OT for each
output key where P1 plays the role of the receiver, and learns the output bit that corre-
sponds to its output wire. Finally, P1 sends P0 the output using one-sided NCE. We note
that obtaining the output via one-sided OT is crucial to our proof since it enables us to
circumvent the difficulties arise when implementing the simulation technique from [28]
that uses a fake circuit. To carry out these OTs successfully we require that the keys
associated with a output wire have distinct most significant bits that are fixed indepen-
dently of the bits they correspond to. For simplicity we only consider deterministic and
same-output functionalities. This can be further generalized using the reductions speci-
fied in [21]. The formal description of our one-sided semi-honest protocol Π SH

f is given
below in the FOT-hybrid model.

Protocol 3 (One-sided adaptively secure semi-honest Yao (Π SH
f ))

– Inputs: P0 has x0 ∈ {0, 1}n and P1 has x1 ∈ {0, 1}n. Let x0 = x1
0, . . . , x

n
0 and x1 =

x1
1, . . . , x

n
1 .

– Auxiliary Input: A boolean circuit C such that for every x0, x1 ∈ {0, 1}n, C(x, y) =
f(x, y) where f : {0, 1}n × {0, 1}n → {0, 1}n . Furthermore, we assume that C is such
that if a circuit-output wire leaves some gate, then the gate has no other wires leading from
it into other gates (i.e. no circuit-output wire is also a gate-output wire). Likewise, a circuit-
input wire that is also a circuit-output wire enters no gates.

– The Protocol:
1. Setup and garbling circuit computation. P0 constructs garbled circuit G(C) subject

to the constraint that the keys corresponding to each circuit-output wire have a distinct
most significant bit.

2. Transferring the garbled circuit and input keys to P1. Let (k0
i , k

1
i ) be the key pair

corresponding to the circuit-input wire that takes the ith bit of x0 and let (k0
n+i, k

1
n+i)

be the key pair corresponding to the circuit-input wire that takes the ith bit of x1. Then,

(a) For all i ∈ [1, . . . , n], P0 sends k
xi
0

i using an instance of somewhat NCE with
� = 2.

(b) For all i ∈ [1, . . . , n], P0 and P1 call FOT with input (k0
n+i, k

1
n+i) and xi

1, re-

spectively. Let k
xi
1

n+i denotes P1’s ith output.
(c) P0 sends G(C) without the output decryption table to P1.
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3. Circuit evaluation and interactive output computation. P1 evaluates G(C) on the
above input keys and obtains the keys that correspond to f(x0, x1) in the circuit-output
wires. Let (k0

2n+i, k
1
2n+i) be the key pair corresponding to the ith circuit-output wire

with distinct most significant bits. Also assume P1 obtains key kα
2n+i corresponding to

the ith circuit-output wire of G(C). Then,
(a) For all i ∈ [1, . . . , n], P0 and P1 call FOT in which P0’s input equals (0, 1) if

the most significant bit of k0
2n+i is 0, and (1, 0) otherwise. P1’s input is the most

significant bit of kα
2n+i.

(b) P1 computes f(x0, x1) by concatenating the bits received from the above n calls.
4. Output communication. P1 sends y using an instance of one-sided NCE.

Theorem 14 (One-sided semi-honest). Let f be a deterministic same-output function-
ality and assume that the encryption scheme for garbling has indistinguishable encryp-
tions under chosen plaintext attacks, and an elusive and efficiently verifiable range.
Furthermore, assume that FOT is realized in the presence of one-sided semi-honest ad-
versaries with constant number of PKE operations for sender’s input space {0, 1}q,
where q = O(n) and n is the security parameter. Then Protocol 3 UC realizes Ff

in the presence of one-sided semi-honest adversaries at a cost of O(|C|) private key
operations andO(|input|+ |output|) public key operations.

We note that the ideal OT calls in Step 2 can be realized using string one-sided OTs,
whereas the OT calls in Step 3 can be replaced with bit one-sided OTs. The complete
proof can be found in our full version [23].

5.2 Security against Malicious Adversaries

Next, we modify ΠSH

f and adapt the cut-and-choose OT protocol introduced in [30] in
order to achieve security against malicious adversaries. The idea of the cut-and-choose
technique is to ask P0 to send s garbled circuits and later open half of them (aka, check
circuits) by the choice of P1. This ensures that with very high probability the majority
of the unopened circuits (aka, evaluation circuits) are valid. The cut-and-choose OT
primitive of [30] allows P1 to choose a secret random subset J of size s/2 for which it
learns both keys for each input wire that corresponds to the check circuits, and the keys
associated with its input with respect to the evaluation circuits.

In order to ensure that P0 hands P1 consistent input keys for all the circuits, the [30]
protocol ensures that the keys associated with P0’s input are obtained via a Diffie-
Hellman pseudorandom synthesizer [31]. Namely, P0 chooses ga

0
1 , ga

1
1 , . . . , ga

0
n , ga

1
n

and gc1 , . . . , gcs , where n is the input/output length, s is the cut-and-choose parame-
ter and g is a generator of a prime order group G. So that the pair of keys associated
with the ith input of P0 in the jth circuit is (ga

0
i cj , ga

1
i cj).4 Given values {ga0

i , ga
1
i , gcj}

and any subset of keys associated with P0’s input, the remaining keys associated with
its input are pseudorandom by the DDH assumption. Furthermore, when the keys are
prepared this way P0 can efficiently prove that it used the same input for all circuits.

4 The actual key pair used in the circuit garbling is derived from (ga
0
i cj , ga

1
i cj ) using an extrac-

tor. A universal hash function is used in [30] for this purpose, where the seeds for the function
are picked by P0 before it knows J .
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P1 then evaluates the evaluation circuits and takes the majority value for the final
output. In Section 5.2 we demonstrate how to adapt the cut-and-choose OT protocol
into the one-sided setting using the building blocks introduced in this paper. This re-
quires dealing with new subtleties regarding the system parameters and the ZK proofs.
Formally,

Theorem 15 (One-sided malicious). Let f be a deterministic same-output functional-
ity and assume that the encryption scheme for garbling has indistinguishable encryp-
tions under chosen plaintext attacks, an elusive and efficiently verifiable range, and that
the DDH and DCR assumptions are hard in the respective groups. Then Protocol ΠMAL

f

UC realizesFf in the presence of one-sided malicious adversaries at a cost ofO(s·|C|)
private key operations andO(s · (|input|+ |output|)) public key operations where s is
a statistical parameter that determines the cut-and-choose soundness error.

Specifically, the concrete DCR assumption implies cut-and-choose OT with constant
number of PKE operations for sender’s input space {0, 1}q, where q = O(n) and n is
the security parameter.

One-sided Single Choice Cut-and-Choose OT. We describe next the single choice
cut-and-choose OT functionality FCCOT from [30] and present a protocol that imple-
ments this functionality with UC one-sided malicious security. We then briefly describe
our batch single choice cut-and-choose OT construction using a single choice cut-and-
choose OT, which is used as a building block in our two-party protocol. Formally,
FCCOT is defined as follows

1. Inputs:
(a) SEN inputs a vector of pairs {(xj

0, x
j
1)}sj=1.

(b) REC inputs a bit σ and a set of indices J ⊂ [s] of size exactly s/2.
2. Output: If J is not of size s/2, then SEN and REC receive ⊥ as output. Otherwise,

(a) For all j ∈ J , REC obtains the pair (xj
0, x

j
1).

(b) For all j �∈ J , REC obtains xj
σ .

This functionality is implemented in [30] by invoking the DDH based [34] OT s
times, where the receiver generates the system parameters in a decryption mode for s/2
indices corresponding to J and the remaining system parameters are generated in a
messy mode. The decryption mode trapdoor enables the receiver to learn both sender’s
inputs for the instances corresponding to J . This idea is coupled with two proofs that
are run by the receiver: (i) a ZK PoK for proving that half of the system parameters set
is in a messy mode which essentially boils down to a ZK PoK realizing functionality

FRDDH,COMP(s,s/2)

ZKPoK (namely, the statement is a set of s tuples and the prover proves the
knowledge of s/2 Diffie-Hellman tuples within this set). (ii) A ZK PoK to ensure that
the same input bit σ has been used for all s instances which boils down to a ZK proof

realizing functionality FRDDH,OR(s)

ZKPoK (namely, the statement contains two sets of tuples,
each of size s, for which the prover proves that one of the sets contains DH tuples).

Our first step towards making the [30] construction one-sided adaptively secure is
to invoke our one-sided OT scheme s times with all system parameters in a decryption
mode. Notably, we cannot use the messy mode for the s/2 instances not in J as in the
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static settings since that would preclude the equivocation of the receiver’s bit. Similarly
to [30], our constructions have two phases; a setup phase and a transfer phase. In the
setup phase, the receiver generates the system parameters in a decryption mode for
the s/2 OTs corresponding to indices in J , while the remaining system parameters
are generated in the same mode but in a way that does not allow REC to learn the
trapdoor. This is obtained by fixing two random generators g0, g1, so that the receiver
sets the first component of every CRS from the system parameters to be g0. Moreover,
the second component in positions j �∈ J is a power of g1, else this element is a power
of g0. Note that REC does not know logg0 g1 which is the decryption mode trapdoor for
j �∈ J . To ensure correctness, REC proves that it knows the discrete logarithm of the
second element with respect to g1 of at least s/2 pairs. This is achieved using a witness

equivocal proof for functionality FRDL,COMP(s,s/2)

ZKPoK .
In the transfer phase, the receiver uses these system parameters to create a pub-

lic/secret key pair for each OT execution, for keys not in the set J . For the rest of
the OT executions the receiver invokes the TrapKeyGen algorithm of the dual-mode
PKE and obtains a public key and two secret keys that enable it to decrypt both of
the sender’s inputs. In order to ensure that the receiver uses the same input bit σ for

all OTs the receiver proves its behavior using a proof for functionalityFRDDH,OR(s)

ZKPoK . To
ensure one-sided security, the proof if further witness equivocal (see Section 6). Finally,
we prove the equivocality of the sender’s input and the receiver’s output based on our
one-sided NCE.

Formally, denote by ΠDUAL = (SetupMessy, SetupDecryption, dGen, dEnc, dDec,
FindBranch,TrapKeyGen) the DDH based dual-mode PKE of [34]. We present our

one-sided OT ΠCCOT in the (FSC,F
RDL,COMP(s,s/2)

ZKPoK ,FRDDH,OR(s)

ZKPoK )-hybrid model.

Protocol 4 (One-sided adaptive single choice cut-and-choose OT (ΠCCOT))

– Inputs: SEN inputs a vector of pairs {(xi
0, x

i
1)}si=1 and REC inputs a bit σ and a set of

indices J ⊂ [s] of size exactly s/2.
– Auxiliary Inputs: Both parties hold a security parameter 1n and G, p, where G is an

efficient representation of a group of order p and p is of length n.
– CRS: The CRS consists of a pair of random group elements g0, g1 from G.
– Setup phase:

1. REC chooses a random xj ∈ Zp and sets gj1 = g
xj

0 for all j ∈ J and gj1 = g
xj

1

otherwise.
For all j, REC chooses a random yj ∈ Zp and sets CRSj =(
g0, g

j
1, h

j
0 = (g0)

yj , hj
1 = (gj1)

yj
)
. It then sends {CRSj}sj=1 to SEN.

Furthermore, for all j ∈ J , REC stores the decryption mode trapdoor tj = xj .

2. REC calls FRDL,COMP(s,s/2)

ZKPoK with ({g1, gj1}sj=1, {xj}j∈J ) to prove the knowledge of
the discrete logarithms of s/2 values within the second element in {CRSj}j and with
respect to g1.

– Transfer phase (repeated in parallel for all j):

1. For all j �∈ J , REC computes (PKj , SKj) = ((gj , hj), rj) ← dGen(CRSj , σ).
For all j ∈ J , REC computes (PKj , SK0

j , SK1
j ) = ((gj, hj), rj , rj/tj) ←

TrapKeyGen(CRSj , tj).
Finally, REC sends the set {PKj}sj=1 and stores the secret keys.
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2. REC calls FRDDH,OR(s)

ZKPoK with input (({(g0, hj
0, gj , hj)}sj=1, {(gj1, h

j
1, gj , hj)}sj=1),

{rj}sj=1) to prove that all the tuples in one of the sets {(g0, hj
0, gj , hj)}sj=1 or

{(gj1, h
j
1, gj , hj)}sj=1 are DH tuples.

3. For all j, SEN generates cj0 ← dEncPKj (x
j
0, 0) and cj1 ← dEncPKj (x

j
1, 1). Let cj0 =

(cj00, c
j
01) and cj1 = (cj10, c

j
11). SEN calls FSC with cj01 and cj11.

– Output: Upon receiving (cj01, c
j
11) from FSC,

1. REC outputs xj
σ ← dDecSKj (c

j
σ) for all j /∈ J .

2. REC outputs (xj
0, x

j
1) ← (dDecSK0

j
(cj0), dDecSK1

j
(cj1)) for all j ∈ J .

Theorem 16. Assume that the DDH assumption is hard in G. Then Protocol 4 UC real-

izes FCCOT in the (FSC,F
RDL,COMP(s,s/2)

ZKPoK ,FRDDH,OR(s)

ZKPoK )-hybrid model in the presence
of one-sided malicious adversaries.

The complete proof can be found in our full version [23].

Malicious One-Sided Adaptively Secure Two-Party Computation. First, we remark
that the single choice cut-and-choose protocol is executed for every input bit of P1 in
the main two-party computation protocol, but with respect to the same set J . In order
to ensure that the same J is indeed used the parties engage in a batch single choice cut-
and-choose OT where a single setup phase is run first, followed by n parallel invocations
of the transfer phase. We note that CRS and the set J are fixed in the setup phase and
remain the same for all n parallel invocations of the transfer phase. We denote the batch
functionality by FBATCH

CCOT
and the protocol by ΠBATCH

CCOT
.

We are now ready to describe the steps of our generic protocol ΠMAL

f computing any
functionality f on inputs x0 and x1. We continue with a high-level overview of [30]
adapted to the one-sided setting.

Step 1. P0 constructs s copies of Yao’s garbled circuit for computing the function f .
All wires keys are picked at random. Keys that are associated with P0’s input wires
are picked as follows. P0 picks n pairs of random values ((a01, a

1
1), . . . , (a

0
n, a

1
n))

and (c1, . . . , cs) and sets the keys associated with the ith input wire of the jth circuit
as the pair (ga

0
i cj , ga

1
icj ). These values constitute commitments to all 2ns keys of

P0.5 This set of keys forms a pseudorandom synthesizer [31], implying that if some
subset of the keys is revealed then the remaining keys are still pseudorandom. We
also require that each pair of keys that is associated with a circuit output wire differs
within the most significant bit.

Step 2. The parties call FBATCH
CCOT where P0 inputs the key pairs associated with P1’s in-

put and P1 inputs its input x1 and a random subset J ⊂ [s] of size s/2. P1 receives
from FBATCH

CCOT
the keys that are associated with its input wires for the s/2 circuits

indexed by J (denoted the check circuits). In addition, it receives the keys corre-
sponding to its input for the remaining circuits (denoted the evaluation circuits).

Step 3. P0 sends P1 s copies of the garbled circuit (except for the output tables) and the
values ((ga

0
1 , ga

1
1), . . . , (ga

0
n , ga

1
n), (gc1 , . . . , gcs)) which are the commitments to

5 Recall that the actual symmetric keys of the ith input within the jth circuit are derived from
(ga

0
i cj , ga

1
i cj ) using randomness extractor such as a universal hash function.
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the input keys on the wires associated with P0’s input. At this point P0 is committed
to all the keys associated with the s circuits.

Step 4. P1 reveals J and proves that it used this subset in the cut-and-choose batch
OT protocol by sending the keys that are associated with P1’s first input bit in each
check circuit. Note that P1 knows the keys corresponding to both bits only for the
check circuits.

Step 5. In order to let P1 know the keys for the input wires of P0 within the check
circuits, P0 sends cj for j ∈ J . P1 computes the key pair (ga

0
i cj , ga

1
i cj ).

Step 6. P1 verifies the validity of the check circuits using all the keys associated with
their input wires. This ensures that the evaluation circuits are correct with high
probability.

Step 7. To complete the evaluation phase P1 is given the keys for the input wires of
P0. P0 must be forced to give the keys that are associated with the same input for
all circuits. Specifically, the following code is executed for all input bits of P0:

1. For every evaluation circuit Cj , P0 sends yi,j = ga
xi
0

i cj using an instance of
somewhat NCE with � = 2, where xi

0 is the ith input bit of P0.

2. P0 then proves that ax
i
0

i is in common for all keys associated with the ith input

bit, which is reduced to showing that either the set {(g, ga
xi
0

i , gcj , yi,j)}sj=1

or the set {(g, ga
1−xi

0
i , gcj , yi,j)}sj=1 is comprised of DH tuples. Notably, it is

sufficient to use a single UC ZK proof for the simpler relation RDDH,OR since
the above statement can be compressed into a compound statement of two DH
tuples as follows: P0 first chooses s random values γ1, . . . , γs ∈ Zp and sends
them to P1. Both parties compute g̃ =

∏s
j=1(g

cj )γj , ỹ =
∏s

j=1(yi,j)
γj , of

which P0 proves that either (g, ga
xi
0

i , g̃, ỹ) or (g, ga
1−xi

0
i , g̃, ỹ) is a DH tuple.

Step 8. Upon receiving Accept from FRDDH,OR
ZKPoK , P1 completes the evaluation of the

circuits. Namely, for every i ∈ [1, . . . , ns] P0 and P1 call FOT in which P0’s input
equals (0, 1) if the most significant bit of the output wire key is associated with 0,
and (1, 0) otherwise. Moreover, P1’s input is the most significant bit of its output
key. P1 concatenates the bits obtained from these OTs and sets the majority of these
values as the output y.

Step 9. P1 sends y using an instance of one-sided NCE.

To ensure the one-sided security of ΠMAL

f we realize the functionalities used in the
protocol as follows: (1) FBATCH

CCOT is realized in Step 2 using our one-sided batch single
choice cut-and-choose OT. This implies the equivocation of P1’s input. (2) The state-
ment of FRDDH,OR

ZKPoK is transferred in Step 7.1 via a somewhat NCE with � = 2. To
obtain a witness equivocal proof for functionality FRDDH,OR

ZKPoK (invoked in Step 7.2), it
is sufficient to employ a standard static proof realizing this ZK functionality where the
prover sends the third message of the proof using a somewhat NCE with � = 2 (this
is due to the fact that we anyway send the statement using a somewhat NCE). Specif-
ically, a statically secure proof is sufficient whenever both the statement and the third
message of the (Σ-protocol) proof can be equivocated. This implies the equivocation
of P0’s input. (3) Finally, in Step 8 the FOT calls are realized using one-sided bit OT.
This implies output equivocation.
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6 Efficient Statically Secure and Witness Equivocal UC ZK PoKs

This section includes two results that are given in details in the full version. First, we
discuss a technique for generating efficient statically secure UC ZK PoK for various Σ-
protocols. Our protocols take a new approach where the prover commits to an additional
transcript which, in turn, enables witness extraction without using rewinding. Our in-
stantiations imply UC ZK PoK constructions that incur constant overhead and achieve
negligible soundness error. Briefly, the prover is instructed to send two responses to a
pair of distinct challenges. The first response is sent on clear and publicly verified as
specified in the protocol, whereas the second response is encrypted using a homomor-
phic PKE and its validity is carried out by a UC ZK proof of consistency.

Next, we show how to generate efficient witness equivocal UC ZK PoK for various
compound Σ-protocols. The additional feature that witness equivocal UC ZK PoK of-
fers over statically secure UC ZK PoK is that it allows the simulator to equivocate the
simulated proof upon corrupting the prover. Interestingly, we build witness equivocal
UC ZK PoKs for a class of fundamental compound Σ-protocols without relying on
NCE. Our approach yields witness equivocal UC ZK PoK only for compound state-
ments where the simulator knows the witnesses for all sub-statements (but not the real
witness). This notion is weaker than the notion of one-sided UC ZK PoK where the
simulator is required to simulate the proof obliviously of the witness, and later prove
consistency with respect to the real witness. The rest of the details can be found in [23].
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Abstract. Multi-linear secret-sharing schemes are the most common
secret-sharing schemes. In these schemes the secret is composed of some
field elements and the sharing is done by applying some fixed linear map-
ping on the field elements of the secret and some randomly chosen field
elements. If the secret contains one field element, then the scheme is
called linear. The importance of multi-linear schemes is that they pro-
vide a simple non-interactive mechanism for computing shares of linear
combinations of previously shared secrets. Thus, they can be easily used
in cryptographic protocols.

In this work we study the power of multi-linear secret-sharing schemes.
On one hand, we prove that ideal multi-linear secret-sharing schemes in
which the secret is composed of p field elements are more powerful than
schemes in which the secret is composed of less than p field elements (for
every prime p). On the other hand, we prove super-polynomial lower
bounds on the share size in multi-linear secret-sharing schemes. Previ-
ously, such lower bounds were known only for linear schemes.

Keywords: Ideal secret-sharing schemes, multi-linear matroids, Dowl-
ing geometries.

1 Introduction

Consider a scenario where a user holds some secret information and wants to
store it on some servers such that only some predefined sets of servers (i.e.,
trusted sets) can reconstruct this information. Secret-sharing schemes enable
such storage, where the dealer – the user holding the secret – computes some
strings, called shares, and privately gives one share to each server. In the sequence
we will refer to the servers as the parties and to the collection of sets of parties
that can reconstruct the secret as an access structure. Secret-sharing schemes
are an important cryptographic primitive and they are used nowadays as a basic
tool in many cryptographic protocols, e.g., [2,9,10,12,27,18,41,34,37].

In this work we study the most useful construction of secret-sharing schemes,
namely, multi-linear secret-sharing schemes. In these schemes the secret is a
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sequence of elements from some finite field, and each share is a linear combination
of these elements and some random elements from the field. If the secret contains
exactly one element of the field, then the scheme is called linear. Linear and
multi-linear secret-sharing schemes are very useful as they provide a simple non-
interactive mechanism for computing shares of linear combinations of previously
shared secrets.

We prove two results on the power of multi-linear secret-sharing schemes. Our
first results shows advantages of multi-linear secret-sharing schemes compared
to linear schemes, that is, we prove that ideal schemes in which the secret con-
tains p elements of the field are more efficient than schemes in which the secret
contains less than p field elements (for every prime p). Our second results proves
super polynomial lower bounds on the size of shares in multi-linear secret-sharing
schemes.

Previous Results. Threshold secret-sharing schemes, where all sets of parties
whose size is at least some threshold, were introduced by Shamir [33] and Blak-
ley [5]. Secret-sharing schemes for general access structures were introduced and
constructed by Ito et al. [19]. Better constructions were introduced by Benaloh
and Leichter [3]. Linear secret-sharing schemes were presented by Brickel [7] for
the case that each share is one field element and by Krachmer and Wigder-
son [20] for the case that each share can contain more than one field element.
Karchmer and Wigderson’s motivation was studying a complexity model called
span programs; in particular, they proved that monotone span programs are
equivalent to linear secret-sharing schemes. It is important to note that all previ-
ously mentioned constructions of secret-sharing schemes are linear. Multi-linear
secret-sharing schemes were studied by [4,13], who gave the conditions when
a multi-linear scheme realizes an access structure. Construction of multi-linear
secret-sharing schemes were given by, e.g., [36,6,39,38].

To explain why linear secret-sharing schemes are useful, we describe the ba-
sic idea in using secret-sharing schemes in protocols, starting from [2]. In such
protocols the parties share their inputs among the other parties, and, thereafter,
the shares of different secrets are “combined” to produce shares of some function
of the original secrets. For example, the parties hold shares of two secrets a and
b, and they want to compute shares of a+ b (without reconstructing the original
secrets). If the schemes are multi-linear, the two secrets a and b are shared using
the same multi-linear scheme, and each party sums the shares of the two secrets,
then the resulting shares are of the secret a+ b.

In any secret-sharing scheme, the size of the share of each party is at least
the size of the secret [21]. An ideal secret-sharing scheme is a scheme in which
the size of the share of each party is exactly the size of the secret. For ex-
ample, Shamir’s scheme [33] is ideal. Brickell [7] considered ideal schemes and
constructed ideal schemes for some access structures, e.g., for hierarchical ac-
cess structures. Brickell and Davenport [8] showed an interesting connection
between ideal access structures and matroids, that is, (1) If an access structure
is ideal then it is induced by a matroid, (2) If an access structure is induced by
a representable matroid, then the access structure is ideal. Following this work,



396 A. Beimel et al.

many works have studied ideal access structures and matroids, e.g. [32,35,25,24].
In particular, if an access structure is induced by a multi-linear representable
matroid, then it is ideal [35].

Simonis and Ashikhmin [35] considered the access structure induced by the
Non-Pappus matroid. They construct an ideal multi-linear secret-sharing scheme
realizing this access structure, where the secret contains two field elements, and
they prove (using known results about matroids) that there is no ideal linear
secret-sharing realizing this access structure (that is, in any linear secret-sharing
realizing this access structure at least one share must contain more than one
field element). Pendavingh and van Zwam [29] (implicitly) provided another
example of an access structure that can be realized by an ideal multi-linear
secret-sharing scheme, where the secret contains two field elements, but cannot
be realized by an ideal linear secret-sharing scheme. Their example is the access
structure induced by the rank-3 Dowling matroid of the quaternion group. Note
that the rank-3 Dowling matroid [15,14] can be defined with an arbitrary group
(see Definition 2.9); in this paper we will use it with properly chosen groups.

For a scheme to be efficient and useful, the size of the shares should be small
(i.e., polynomial in the number of parties). The best known schemes for general
access structures, e.g., [19,3,20,13], are highly inefficient, that is, for most ac-
cess structures the size of shares is 2O(n) times the size of the secret, where n
is the number of parties in the access structure. The best lower bound known
on the total share size for an access structure is Ω(n2/ logn) times the size of
the secret [11]. Thus, there exists a large gap between the known upper and
lower bounds. Bridging this gap is one of the most important questions in the
study of secret-sharing schemes. In contrast to general secret-sharing schemes,
super-polynomial lower bounds are known for linear secret-sharing schemes.
That is, there exist explicit access structures such that the total share size of
any linear secret-sharing scheme realizing them is nΩ(logn) times the size of the
secret [1,16,17].

Our Results and Techniques. The simplest way to construct a multi-linear secret-
sharing scheme, where the secret is composed of k field elements, is to share each
field element independently using a linear secret-sharing scheme. This results in
a multi-linear scheme whose information ratio (the ratio between the length of
the shares and the length of the secret) is the same as the information ratio
of the linear scheme. The question is if one can construct multi-linear secret-
sharing schemes whose information ratio is better than linear schemes. Our first
result gives a positive answer to this question. Our second result implies that in
certain cases the answer is no – we show that the lower bound of [17] for linear
secret-sharing schemes holds also for multi-linear secret-sharing schemes.

Our first results shows advantages of multi-linear secret-sharing schemes com-
pared to linear schemes. For every prime p > 2, we show that there is an access
structure such that: (1) It has an ideal multi-linear secret-sharing scheme in
which the secret is composed of p field elements. (2) It does not have an ideal
multi-linear secret-sharing scheme in which the secret is composed of k field el-
ements, for every k < p. In other words, we prove that schemes in which the
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secret is composed of p field elements are more efficient than schemes in which
the secret is composed of less than p field elements. Previously, this was known
only for p = 2.

To prove this result we consider the access structures induced by rank-3 Dowl-
ing matroids of various groups. By known results, it suffices to study when these
matroids are k-linearly representable. We study this question and show that
it can be answered using tools from representation theory. The important step
in our proof is showing that the Dowling matroid of a group G is k-linearly
representable if and only if the group G has a fixed-point free representation
of dimension k (see Section 2.5 for definition of these terms). To complete our
proof, we show that for every p there is a group Gp that has a fixed-point free
representation of dimension p and does not have a fixed-point free representation
of dimension k < p.

Our second results is super polynomial lower bounds on the size of shares in
multi-linear secret-sharing schemes. Prior to our work, such lower bounds were
known only for linear secret-sharing schemes. As proving super polynomial lower
bounds for general secret-sharing schemes is a major open question, any exten-
sion of the lower bounds to a broader class of schemes is important. Specifically,
as the class of multi-linear secret-sharing schemes is the class that is useful for
applications, it is interesting to prove lower bounds for this class. We show that
the method of Gál and Pudlák [17] for proving lower bounds for linear secret-
sharing schemes applies also to multi-linear secret-sharing schemes. As a result,
we get that there exist access structures such that the total share size of any
multi-linear secret-sharing scheme realizing them is nΩ(logn) times the size of
the secret (even when the secret contains any number of field elements).

2 Preliminaries

Notations. We will frequently use block matrices throughout this paper. To
differentiate these block matrices, they will be inside square brackets, or in bold

letters (e.g. A =

[
A B
C D

]
, where A,B,C,D are matrices). In all the proofs and

examples, except in the proof of Theorem 4.5, all blocks are of size k × k. For
a matrix A, we denote the ith column of A by Ai. We denote fields by F or E

(general fields), C (complex numbers), F̃ (algebraic closure of F), and Fpm (the
unique field with pm elements). We denote the integers by Z and the non-negative
integers by N.

2.1 Secret-Sharing Schemes

A secret-sharing scheme is, informally, an algorithm in which a dealer distributes
a secret to a set of parties in such that only authorized subsets of parties can
reconstruct the secret, while unauthorized subsets cannot learn anything about
the secret. We next define secret-sharing schemes, starting with some notations.
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Definition 2.1. Let {p1, . . . , pn} be a set of parties. A collection A ⊆ 2{p1,...,pn}

is monotone if B ∈ A and B ⊆ C imply that C ∈ A. An access structure is a
monotone collection A ⊆ 2{p1,...,pn} of non-empty subsets of {p1, . . . , pn}. Sets
in A are called authorized, and sets not in A are called unauthorized.

Definition 2.2 (secret-sharing). A secret-sharing scheme Σ with domain of
secrets S is a pair Σ = 〈Π,μ〉, where μ is a probability distribution on some
finite set R called the set of random strings and Π is a mapping from S ×R to
a set of n-tuples K1 ×K2 × · · · ×Kn, where Kj is called the domain of shares
of pj. A dealer distributes a secret s ∈ S according to Σ by first sampling a
random string r ∈ R according to μ, and applying the mapping Π on s and
r, that is, computing a vector of shares Π(s, r) = (s1, . . . , sn), and privately
communicating each share sj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote
ΠA(s, r) as the restriction of Π(s, r) to its A-entries.

Correctness. The secret s can be reconstructed by any authorized set of parties.
That is, for any set B ∈ A (where B = {pi1 , . . . , pi|B|}), there exists a
reconstruction function ReconB : Ki1 × . . .×Ki|B| → S such that for every
s ∈ S,

Pr[ReconB(ΠB(s, r)) = s ] = 1. (1)

Perfect Privacy. Every unauthorized set cannot learn anything about the secret
(in the information theoretic sense) from their shares. Formally, for any set
T /∈ A, for every two secrets a, b ∈ S, and for every possible vector of shares
〈sj〉pj∈T :

Pr[ΠT (a, r) = 〈sj〉pj∈T ] = Pr[ΠT (b, r) = 〈sj〉pj∈T ]. (2)

The information ratio of a secret-sharing scheme is
max1≤j≤n log |Kj |

log |S| , where S

is the domain of secrets and Kj is the domain of shares of pj .
In every secret-sharing scheme, the information ratio is at least 1 [21]. Ideal

secret-sharing schemes are those where the information ratio is exactly 1, which
means that the size of the domain of the shares is exactly the size of the domain
of the secret.

Multi-linear secret-sharing schemes are schemes in which the computation of
the shares is a linear mapping. More formally, in a multi-linear secret-sharing
scheme over a finite field F, the secret is a vector of elements of the field. To
share a secret s ∈ Fk, the dealer first chooses a random vector r ∈ Fm with
uniform distribution (for some integer m). Each share is a vector over the field
such that each coordinate of this vector is some fixed linear combination of the
coordinates of the secret s and the coordinates of the random string r.

2.2 Matroids

Matroids are combinatorial objects that can be defined in many equivalent ways.
To make things simple, we will stick to one definition based on rank function.
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Definition 2.3. A matroid M is an ordered pair (E, r) with E a finite set (usu-
ally E = {1, ..., n}) called the ground set and a rank function r : 2E → N satis-
fying the following conditions, called the matroid axioms:

1. r(∅) = 0,
2. If X ⊆ E and x ∈ E, then r(X) ≤ r(X ∪ {x}) ≤ r(X) + 1,
3. If X ⊆ E and x, y ∈ E such that r(X ∪ {x}) = r(X ∪ {y}) = r(X) then

r(X ∪ {x} ∪ {y}) = r(X).

A set X ⊆ E is independent if r(X) = |X |, otherwise X is dependent. The
rank of the matroid is defined r(M) := r(E). A base of M is an independent set
X ⊆ E such that r(X) = r(M). The set of bases of a matroid uniquely identifies
the matroid. A circuit is a minimal dependent set. The set of all circuits of
a matroid also uniquely identifies the matroid. Throughout this paper we will
assume that every set X ⊆ E of size 2 is independent (called simple matroids or
geometries in the literature).

The simplest example of a matroid is the size of a group, i.e., let E = {1, ..., n}
and r(X) = |X |. The 3 axioms are trivially verified. In this matroid, all sets
are independent. Matroids originated from trying to generalize axioms in graph
theory and linear algebra.

Example 2.4. Let E = {v1, ..., vn} be a set of vectors over some field F. For
X ⊆ E let r(X) = dim(span(X)). By linear algebra, the 3 matroid axioms hold.
Furthermore, we can look at the matrix A, in which the ith column is the vector
vi. In this case, r(X) is the rank of the submatrix containing the columns of the
vectors in X . Matroids that arise in this manner are called linearly representable
(over F). This can also be generalized as follows:

Definition 2.5. Let M = (E = {1, ..., n}, r) be a matroid and F a field. A k-
linear representation of M over F is a matrix A with k · n columns A1, ..., Ak·n
such that the rank of every set X = {i1, ..., ij} ⊆ E satisfies

r(X) =
dim(span(Ui1 ∪ · · · ∪ Uij ))

k
,

where U� = {A(�−1)·k+1, A(�−1)·k+2, ..., A�·k} for 1 ≤ � ≤ n. If such a repre-
sentation of M exists then M is k-linearly representable. One-linearly repre-
setable matroids are called linearly representable. A matroid is multi-linearly
representable if it is k-linearly representable for some k ∈ N.

An example of a multi-linear representation is given in Example 2.6.
Matroids of rank 3 can be expressed by a geometric representation on a plane

as follows – the bases are the sets of 3 points that are not on a single line.
For a diagram on the plane to represent a matroid it must satisfy the following
condition: Every 2 distinct points lie on a single line. Since every 2 points lie on
a line, usually only lines that pass through at least 3 points are drawn. See [28,
Chapter 1.5] for more details and the more general statement.
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Example 2.6. Let A and B be the following matrix and block matrix:

1 2 3 g′1 g′′1 g′′′1 1 2 3 g′1 g′′1 g′′′1

A =

⎛⎝1 0 0 −1 0 1
0 1 0 1 −1 0
0 0 1 0 1 −1

⎞⎠ ,B =

⎡⎣Ik 0 0 −Ik 0 Ik
0 Ik 0 Ik −Ik 0
0 0 Ik 0 Ik −Ik

⎤⎦ .

For any field F, the matrix A (resp. the block matrix B) is a linear (k-linear)
representation of the matroid with 6 points whose geometric representation is
Figure 1 (a). For example, the columns labelled by 1, 2, g′′1 are independent.
Therefore, they do not lie on the same line in Figure 1 (a). On the other hand,
the columns labelled by 1, 2, g′1 are dependent, thus, they lie on a line.

�
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�
�
�
��

�
�
�

�
�

�
�

��

�1

�2

�3

�g′1

�
g′′′1

�g′′1

(a)

, �
�
�
�
�
�
�
��

�
�

�
�

�
�

�
��

�1

�2

�3

�g′1

�g′2

�
g′′′1

�
g′′′2

�g′′1

�g′′2

(b)

Fig. 1. Geometric Representation of the matroids Q3({1}) and Q3(Z2)

Definition 2.7. Let M be a matroid and F a field. We say that that M is k-
minimally representable over F if there is a k-linear representation of M over
F, but for every j < k there is no j-linear representation of M over F. We will
say that M is k-minimally representable if it is k-minimally representable over
some field F, but not j-linearly representable over any field for j < k.

Example 2.8. The Non-Pappus matroid (cf. [28, Example 1.5.15, page 39]) whose
geometric representation appears in Figure 2 is not linearly representable over
any field [28, Proposition 6.1.10], but has a 2-linear representation over F3 [35].
Therefore, the Non-Pappus matroid is 2-minimally representable.

Our primary focus in the first part of the paper will be the multi-linear rep-
resentability of the rank-3 Dowling Matroids. These matroids were presented by
Dowling [15,14]. We will show that for every prime p there is a Dowling Matroid
which is p-minimally representable, and furthermore, over a relatively small field.
The Dowling Matroid is defined as follows:

Definition 2.9. Let G = {1G = g1, g2,. . . ,gn} be a finite group. The rank-
3 Dowling Matroid of G, denoted Q3(G), is a matroid of rank 3 on the set
E = {1, 2, 3, g′1, . . . , g′n, g

′′
1 , . . . , g′′n, g

′′′
1 , . . . , g′′′n }. That is, for every element
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Fig. 2. The Non-Pappus matroid

gi ∈ G, there are 3 elements in the ground set of the matroid g′i, g
′′
i , g

′′′
i ∈ E and

there are 3 additional ground set elements 1, 2, 3 not related to the group. Every
subset of 3 elements not in C1 ∪C2 ∪ C3 ∪ C4 is a base of the matroid, where,

C1 = {{1, 2, g′i}|1 ≤ i ≤ n} ∪ {{1, g′i, g′j}|1 ≤ i < j ≤ n} ∪ {{2, g′i, g′j}|1 ≤ i < j ≤ n},
C2 = {{2, 3, g′′i }|1 ≤ i ≤ n} ∪ {{2, g′′i , g′′j }|1 ≤ i < j ≤ n} ∪ {{3, g′′i , g′′j }|1 ≤ i < j ≤ n},
C3 = {{1, 3, g′i}|1 ≤ i ≤ n} ∪ {{1, g′′′i , g′′′j }|1 ≤ i < j ≤ n} ∪ {{3, g′′′i , g′′′j }|1 ≤ i < j ≤ n},
C4 = {{g′i, g′′j , g′′′� }|gj · gi · g� = 1}.

Alternatively, it can be defined by the geometric representation appearing in
Figure 3, with additional lines that go through points g′i, g

′′
j , g

′′′
� if and only if

gj · gi · g� = 1G (e.g., there is always a line that goes through g′1, g
′′
1 , g

′′′
1 since

g1 = 1G and 1G · 1G · 1G = 1G).
1

	
	
	
	
	
	
	
		






















�1

�2

�3
�g′1
�g′2
�g′3

�g′n �g′′1
�g′′2
�g′′3

�g′′n
�

g′′′1

�
g′′′2

�
g′′′3

�
g′′′n

(d)

Fig. 3. The Rank-3 Dowling matroid with the lines corresponding to sets
{
g′i, g

′′
j , g

′′′
�

}
such that gj · gi · g� = 1G missing

We note that the matroid in Example 2.6 is the Dowling matroid of the trivial
group. Figure 1 (b) is a geometric representation of the Dowling matroid of the
group Z2, the unique group with 2 elements. Dowling [15,14] showed that Q3(G)

1 In the literature, the matroid is sometimes defined a bit differently, e.g., a line goes
through g′i, g

′′
j , g

′′′
� if and only if (gj)

−1 · (gi)−1 · g� = 1G. This is just a different
naming of the ground set elements.
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is linearly representable over F if and only if G is isomorphic to a subgroup of
F∗, the group of invertible elements in F. Our main theorem generalizes this
statement for multi-linear representability. Other forms of representability of
Q3(G), namely representability over partial fields and skew partial fields, have
been studied by Semple and Whittle [30] and Pendavingh and Van Zwam [29].

2.3 Ideal Secret-Sharing Schemes and Matroids

There is a strong connection between secret-sharing schemes and matroids. Ev-
ery matroid with ground set E = {p0, p1, . . . , pn} induces an access structure
A with n parties E′ = {p1, . . . , pn} by the rule ∀A ⊆ E′, A ∈ A if and only if
r(A∪{p0}) = r(A). The access structure A is also known as the matroid port. In
a sense, we think of p0 as the dealer. Brickell and Davenport [8] showed that all
access structures admitting ideal secret-sharing schemes are induced by matroids.
However, not all access structures induced by matroids are ideal [32][25]. The
class of matroids inducing ideal access structures are called secret-sharing ma-
troids and also almost affinely representable, and discussed in [35]. Every multi-
linearly representable matroid is a secret-sharing matroid. It is still open whether
this inclusion is proper. There is also a strong connection between ideal multi-
linear secret-sharing schemes and multi-linearly representable matroids [20,13].

Proposition 2.10. The class of access structures induced by multi-linearly rep-
resentable matroids is exactly the access structures admitting an ideal multi-
linear secret-sharing scheme.

2.4 Basic Results in Linear Algebra and Multi-linear
Representability

In this section we give some basic results in linear algebra and matroid theory
that are used in the paper. Recall that a matrix A ∈ Mn×n(F) is invertible
if and only if it is of full rank if and only if Av �= 0 for every v �= 0. Also
recall that block matrix multiplication can be carried out in block fashion, e.g.,[
A B
C D

]
·
[
E F
G H

]
=

[
AE +BG AF +BH
CE +BG CF +DH

]
, as long as the dimensions match (note

that the order written is important as usually AE �= EA, etc.).

Proposition 2.11. Let A,B,C be k × k matrices then

(a) rank

⎡⎣−Ik 0 C
A −Ik 0
0 B −Ik

⎤⎦ = 2k + rank(BAC − I).

(b) rank

⎡⎣−Ik −Ik
A B
0 0

⎤⎦ = k + rank(B −A).
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Proof. Multiplying by invertible matrices does not change the rank of a matrix.
Therefore,

rank

⎡⎣−Ik 0 C
A −Ik 0
0 B −Ik

⎤⎦ = rank

⎛⎝⎡⎣−Ik 0 C
A −Ik 0
0 B −Ik

⎤⎦ ·
⎡⎣Ik 0 C
0 Ik A · C
0 0 Ik

⎤⎦⎞⎠
= rank

⎡⎣−Ik 0 0
A −Ik 0
0 B BAC − Ik

⎤⎦ = 2k + rank(BAC − Ik).

and

rank

⎡⎣−Ik −Ik
A B
0 0

⎤⎦ = rank

⎛⎝⎡⎣−Ik −Ik
A B
0 0

⎤⎦ · [Ik −Ik
0 Ik

]⎞⎠
= rank

⎡⎣−Ik 0
A B −A
0 0

⎤⎦ = k + rank(B −A).

Proposition 2.12. Let B :=

⎡⎢⎣B1,1 . . . B1,n

...
. . .

...
Bm,1 . . . Bm,n

⎤⎥⎦ be a k-linear representation of

a matroid M , with Bi,j being k × k block matrices, and let G be any invertible
k × k matrix. Then:

a) For every 1 ≤ i ≤ n then

⎡⎢⎣B1,1 . . . B1,j ·G . . . B1,n

...
. . .

...
. . .

...
Bm,1 . . . Bm,j ·G . . . Bm,n

⎤⎥⎦ is a k-linear repre-

sentation of M .

b) For every 1 ≤ i ≤ m then

⎡⎢⎢⎢⎢⎢⎢⎣
B1,1 . . . B1,n

...
. . .

...
G ·Bi,1 . . . G ·Bi,n

...
. . .

...
Bm,1 . . . Bm,n

⎤⎥⎥⎥⎥⎥⎥⎦ is a k-linear representation

of M .

c) If {1, . . . ,m} is a base of M then there exists a matrix of the form⎡⎢⎣Ik . . . 0 B′
1,m+1 . . . B′

1,n
...
. . .

...
. . .

...
0 . . . Ik B′

m,m+1 . . . B′
m,n

⎤⎥⎦ that is also a k-linear representation of M .
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Proof. a) Since G is invertible, it is immediate from basic linear algebra that

rank

⎡⎢⎣B1,i1 . . . B1,i� . . . B1,is
...

. . .
...

. . .
...

Bm,i1 . . . B1,i� . . . Bm,is

⎤⎥⎦

= rank

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎢⎣B1,i1 . . . B1,i� . . . B1,is

...
. . .

...
. . .

...
Bm,i1 . . . B1,i� . . . Bm,is

⎤⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣

Ik . . . 0 . . . 0
...
. . .

...
. . .

...
0 . . . G . . . 0
...
. . .

...
. . .

...
0 . . . 0 . . . Ik

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
= rank

⎡⎢⎣B1,i1 . . . B1,i� ·G . . . B1,is
...

. . .
...

. . .
...

Bm,i1 . . . B1,i� ·G . . . Bm,is

⎤⎥⎦ ,

for any submatrix (with j = i�), which is exactly what we need to prove.
b) Simillarly, for any submatrix,

rank

⎡⎢⎢⎢⎢⎢⎢⎣
B1,1 . . . B1,n

...
. . .

...
Bi,1 . . . Bi,n

...
. . .

...
Bm,1 . . . Bm,n

⎤⎥⎥⎥⎥⎥⎥⎦ = rank

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
Ik . . . 0 . . . 0
...
. . .

...
. . .

...
0 . . . G . . . 0
...
. . .

...
. . .

...
0 . . . 0 . . . Ik

⎤⎥⎥⎥⎥⎥⎥⎦ ·
⎡⎢⎢⎢⎢⎢⎢⎣
B1,1 . . . B1,n

...
. . .

...
Bi,1 . . . Bi,n

...
. . .

...
Bm,1 . . . Bm,n

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

= rank

⎡⎢⎢⎢⎢⎢⎢⎣
B1,1 . . . B1,n

...
. . .

...
G ·Bi,1 . . . G ·Bi,n

...
. . .

...
Bm,1 . . . Bm,n

⎤⎥⎥⎥⎥⎥⎥⎦ .

c) Since {1,. . . ,m} is a base of M then the columns c1, . . . , cm·k of B are a basis
of the column space of B (which is, therefore, Fk·m). Therefore, there is an
invertible linear transformation T such that ∀1 ≤ i ≤ mk, T (ci) = ei. Since
T is invertible dim(span{T (ci1), . . . , T (cij )}) = dim(span{ci1 , . . . , cij}) for
any set of columns {ci1 , . . . , cij}, which implies that by applying T to all the
columns of B we get that⎡⎢⎢⎢⎢⎣

Ik 0 . . . 0
... . . .

...
0 Ik . . . 0 T (ckm+1) . . . T (ckn)
...

...
. . .

...
...

...
0 0 . . . Ik · ·

⎤⎥⎥⎥⎥⎦
is a k-linear representation of M
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We will call operations Proposition 2.12(a) and 2.12(b) column and row block-
scaling respectively.

2.5 Fixed-Point Free Representations

A standard tool in studying groups is representation theory. Our result relies
heavily on theorems from this extensively researched field of mathematics. We
will only give the necessary definitions and state the result. We then sketch the
main ideas of the proof of this result. The complete proof, which requires much
more representation theory, will appear in the full version.

Definition 2.13. Let G be a finite group and F a field. A representation of
G is a group homomorphism ρ : G → GLn(F) (the group of n × n invertible
matrices). The dimension or degree of a representation is n. A representation is
called faithful if it is injective. A representation ρ : G → GLn(F) is fixed-point
free if for every 1 �= g ∈ G the field element 1 is not an eigenvalue of ρ(g), i.e.,
ρ(g) · v �= v for every g �= 1 and for every v �= 0. A fixed-point free group is one
which has a fixed-point free representation.

We note that not all representations of a fixed-point free group G are fixed-
point free, even if the representation is faithful. For example, cyclic groups are
fixed-point free, but also admit non fixed-point free representations:

Example 2.14. Let G = Zm be the additive group with m elements. Denote ζ =

e
2πi
m . If ρ : G→ GL2(C) is defined by ρ(k) =

(
ζk 0
0 1

)
then ρ is faithful (because

i �= k ⇒ ρ(i) �= ρ(k)) but not fixed-point free because

(
ζk 0
0 1

)(
0
1

)
=

(
0
1

)
(and

this should only happen for k = 0). However, if we define ρ(k) =

(
ζk 0
0 ζk

)
then ρ

is fixed-point free, because if k �= 0 then 1 is not an eigenvalue of

(
ζk 0
0 ζk

)
. We

note that the group Zm also has a fixed-point free representation of dimension
1, by ρ(k) = (e

2kπi
m ).

Fixed-point free groups have been completely classified by the works of Burn-
side and later Vincent [40] and Zassenhaus [44]. The classification can be found,
for example, in [42]. For our purposes we will require only the following result,
easily achieved from the classification:

Proposition 2.15. For every prime p > 2, there exist a prime q > p and a
group Gp of order p2q such that:

1. Gp has a fixed-point free representation of dimension p over the field F2pq ,
i.e., the field of characteristic 2 with 2pq elements.

2. The group Gp does not admit a fixed-point representation of dimension less
than p over any field.
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Moreover, there exists such q with q = O(p5.18), so the field F2pq has 2O(p6.18)

elements.

Our proof uses the construction of semidirect product of groups. The definition
can be found in most group theory books. See for example [26]. It also requires
some classical theorems from representation theory, which can be found, for
example, in [31].

The complete proof of Proposition 2.15 will be given in the full version. We
now sketch the main ideas of the proof.

Proof Sketch. Let p > 2 be a prime number. From Linnik’s Theorem [22,23], there
exists a prime q such that q = np + 1 for some n ∈ N, and q is polynomially
bounded by p. The state of the art improvement, by Xylouris [43], shows that
q = O(p5.18).

From the fact that q = np + 1, it can be deduced that there exists a non-
trivial semidirect product Gp = Zq � Zp2 , with the action of Zp (we give a
brief explanation of the construction of this group, and why this group works,
in Appendix A). We then show, both directly and using the classification of
fixed-point free groups, that the group Gp is fixed-point free, and, thus, has a
fixed-point free representation.

Then, using classical theorems from representation theory, we show that a
fixed-point free representation of Gp is of dimension at least p, and that there
indeed exists a fixed-point free representation of dimension p. In particular, we
show directly that there exists such a representation over the field F2pq , which
has 2pq = 2O(p6.18) elements.

3 Main Theorem and Result

In this section, we prove that there is an access structure that has an ideal p-
linear secret-sharing scheme and does not have an ideal k-linear secret-sharing
scheme for every k < p. As explained in Section 2.3, it suffices to prove that
there is a matroid that is p-minimally representable. We prove this result for the
Dowling matroid, for an appropriate group G. We next state our main theorem.

Theorem 3.1. For a finite group G, the matroid Q3(G) is k-linearly repre-
sentable over a field F if and only if there is a fixed-point free representation
ρ : G→ GLk(F).

The main contribution of the theorem is the new connection between multi-linear
representation of the Dowling matroid over G to the existence of a fixed-point
free representation of the group G. The theorem transfers the problem of multi-
linear representablity of Q3(G) to finding fixed-point free representations of G.
Since fixed-point free groups and representations have been completely classified,
it gives a complete answer to this problem.

To discuss the representations of Q3(G), we define the following block matrix
Aρ. In Lemma 3.2, we will prove that if Q3(G) is multi-linearly representable,
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then Aρ is a multi-linear representation of Q3(G) for some representation ρ of
G. Then we prove in Lemmas 3.3 and 3.4 that Aρ represents Q3(G) if and only
if ρ is fixed-point free.

For a finite group G = {1 = g1, g2, . . . , gn}, a field F, and a faithful repre-
sentation ρ : G → GLk(F) we denote by Aρ the following block matrix, which
contains 3k rows and 3(n+ 1)k columns.

Aρ :=

⎡⎣Ik 0 0 −Ik . . . −Ik
0 Ik 0 ρ(g1) . . . ρ(gn)
0 0 Ik 0 . . . 0

0 . . . 0 ρ(g1) . . . ρ(gn)
−Ik . . . −Ik 0 . . . 0
ρ(g1) . . . ρ(gn) −Ik . . . −Ik

⎤⎦ .

Lemma 3.2. If M = Q3(G) is k-linearly representable over F, then there exists
a faithful representation ρ : G→ GLk(F) such that Aρ is a k-linear representa-
tion of M .

Proof. The technique we use to prove this lemma is a standard one (e.g., see the
proofs of [28, Proposition 6.4.8, Lemma 6.8.5, Theorem 6.10.10] and [29, Lemma
3.35]). We generalize this technique to multi-linear representations by looking
at the representation matrix as a block matrix and using Proposition 2.12. We
repeatedly use the fact that for any multi-linear representation of M , if X ⊆ E
and r(X) = n then the rank of the relevant sub-matrix of the representation
(i.e., deleting the columns of elements not in X) is n · k.

Suppose that

B :=

⎡⎣B1,1 B1,2 B1,3 B1,g′
1
. . . B1,g′

n

B2,1 B2,2 B2,3 B2,g′
1
. . . B2,g′

n

B3,1 B3,2 B3,3 B3,g′
1
. . . B3,g′

n

B1,g′′
1
. . . B1,g′′

n
B1,g′′′

1
. . . B1,g′′′

n

B2,g′′
1
. . . B2,g′′

n
B2,g′′′

1
. . . B2,g′′′

n

B3,g′′
1
. . . B3,g′′

n
B3,g′′′

1
. . . B3,g′′′

n

⎤⎦
is a k-linear representation of M . Then r({1, 2, 3}) = 3 = r(M) so B1, . . . ,B3k

span the columns of B. By changing the basis of the column space of B (see
Proposition 2.12(c)) there exists a block matrix C of the form

C :=

⎡⎣Ik 0 0 C1,g′
1
. . . C1,g′

n

0 Ik 0 C2,g′
1
. . . C1,g′

n

0 0 Ik C3,g′
1
. . . C1,g′

n

C1,g′′
1
. . . C1,g′′

n
C1,g′′′

1
. . . C1,g′′′

n

C2,g′′
1
. . . C2,g′′

n
C2,g′′′

1
. . . C2,g′′′

n

C3,g′′
1
. . . C3,g′′

n
C3,g′′′

1
. . . C3,g′′′

n

⎤⎦
that is a k-linear representation of M . As ∀g ∈ G, r({1, 2, g′}) = 2, we have that

rank

⎡⎣Ik 0 C1,g′

0 Ik C2,g′

0 0 C3,g′

⎤⎦ = 2k.

Thus, C3,g′ = 0. Also r({1, g′}) = 2, so

rank

⎡⎣Ik C1,g′

0 C2,g′

0 C3,g′

⎤⎦ = 2k,
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therefore, C2,g′ is invertible (it has to be of full rank since C3,g′ = 0). Since
r({2, g′}) = 2, by the same argument C1,g′ is also invertible. Similarly ∀g ∈ G,
C1,g′′ = 0, and C3,g′′ , C2,g′′ are invertible, and C2,g′′′ = 0, and C1,g′′′ , C3,g′′′ are
invertible.

We now apply column block-scaling (Proposition 2.12(a)) on the columns of
g′1, . . . , g

′
n by −(C1,g′

1
)−1, . . . ,−(C1,g′

n
)−1 respectively to get that⎡⎣Ik 0 0 C1,g′1

(−(C1,g′1
)−1) . . . C1,g′n(−(C1,g′n)

−1)

0 Ik 0 C2,g′1
(−(C1,g′1

)−1) . . . C2,g′n(−(C1,g′n)
−1)

0 0 Ik 0 . . . 0

0 . . . 0 C1,g′′′1
. . . C1,g′′′n

C2,g′′1
. . . C2,g′′n 0 . . . 0

C3,g′′1
. . . C3,g′′n C3,g′′′1

. . . C3,g′′′n

⎤⎦
=

⎡⎣Ik 0 0 −Ik . . . −Ik
0 Ik 0 C′

2,g′1
. . . C′

2,g′n
0 0 Ik 0 . . . 0

0 . . . 0 C1,g′′′1
. . . C1,g′′′n

C2,g′′1
. . . C2,g′′n 0 . . . 0

C3,g′′1
. . . C3,g′′n C3,g′′′1

. . . C3,g′′′n

⎤⎦
is a k-linear representation of M . Now by row block-scaling (Propostion 2.12(b))
on the second row by (C′

2,g′
1
)−1 we get that

⎡
⎣Ik 0 0 −Ik . . . −Ik

0 (C′
2,g′

1
)−1 0 Ik . . . C′

2,g′n
(C′

2,g′
1
)−1

0 0 Ik 0 . . . 0

0 . . . 0 C1,g′′′1
. . . C1,g′′′n

C2,g′′
1
(C′

2,g′
1
)−1 . . . C2,g′′n

(C′
2,g′

1
)−1 0 . . . 0

C3,g′′1
. . . C3,g′′n

C3,g′′′1
. . . C3,g′′′n

⎤
⎥⎦

is a k-linear representation of M . We continue in the same fashion by block-
scaling on the columns of g′′1 , . . . , g

′′
n, then row block-scaling on the third row,

then column block-scaling of columns g′′′1 , . . . , g′′′n , and finally column block scal-
ing of columns 2, 3 to get that

D :=

⎡⎣Ik 0 0 −Ik −Ik . . . −Ik
0 Ik 0 Ik D2,g′2

. . . D2,g′n
0 0 Ik 0 0 . . . 0

0 0 . . . 0 D1,g′′′1
D1,g′′′2

. . . D1,g′′′n

−Ik −Ik . . . −Ik 0 0 . . . 0
Ik D3,g′′2

. . . D3,g′′n −Ik −Ik . . . −Ik

⎤⎦
is a k-linear representation of M .

We next use the fact that D is a multi-linear representation of Q3(G) to prove
that blocks in different parts of the representation are equal, e.g., D3,g′′ = D2,g′ .
Since r({g′1, g′′1 , g′′′1 }) = 2, we have that

rank

⎡⎣−Ik 0 D1,g′′′
1

Ik −Ik 0
0 Ik −Ik

⎤⎦ = 2k,

and this forces D1,g′′′
1

= Ik. For j, � such that gj = g−1
� (thus, gj · g1 · g� = 1), we

have that r({g′1, g′′j , g′′′� }) = 2. So,

rank

⎡⎣−Ik 0 D1,g′′′
�

Ik −Ik 0
0 D3,g′′

j
−Ik

⎤⎦ = 2k.

By Proposition 2.11(a) we get that rank(D3,g′′
j
· D1,g′′′

�
− Ik) = 0 so D3,g′′

j
=

(D1,g′′′
�
)−1. By symmetric arguments,D1,g′′′

j
= (D2,g′

�
)−1 and D2,g′

j
= (D3,g′′

�
)−1.
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Therefore,

∀g ∈ G,D3,g′′ = D2,g′ = D1,g′′′ . (3)

Now let ρ : G→ GLk(F) be the map ρ(g) = D2,g′ . We see that ρ(1) = I (because
D2,g′

1
= I). By Proposition 2.11(a)

rank

⎡⎣ −Ik 0 D1,g′′′
�

D2,g′
i
−Ik 0

0 D3,g′′
j
−Ik

⎤⎦ = 2k + rank(D3,g′′
j
D2,g′

i
D1,g′′′

�
− I)

= 2k + rank(ρ(gj) · ρ(gi) · ρ(g�)− I). (4)

By the matroid rank, it is equal to 2k if gj · gi · g� = 1 and 3k otherwise, thus,

∀gi, gj, g� ∈ G, gj · gi · g� = 1⇔ ρ(gj) · ρ(gi) · ρ(g�) = I. (5)

We now use (5) to show that ρ is an injective group homomorphism, which
completes the proof:

For every g ∈ G, since 1 · g−1 · g = 1, we have I = ρ(1) · ρ(g−1) · ρ(g) =
I · ρ(g−1) · ρ(g), forcing ρ(g)−1 = ρ(g−1).

Therefore, ∀g, h ∈ G, as g ·h · (gh)−1 = 1, we have I = ρ(g) ·ρ(h) ·ρ((gh)−1) =
ρ(g) · ρ(h) · ρ(gh)−1. Thus, ρ(gh) = ρ(g) · ρ(h). This proves that ρ is a group
homomorphism.

For injectivity, if g �= h then g · h−1 · 1 �= 1, which implies that ρ(g) · ρ(h)−1 ·
ρ(1) �= I, so ρ(g) �= ρ(h).

Lemma 3.3. Let ρ : G → GLk(F) be a faithful representation. If Aρ is a k-
linear representation of Q3(G) then ρ is fixed-point free.

Proof. Since Aρ is a k-linear representation of Q3(G), for every g �= 1G we have
that r({g′1, g′}) = 2. So

rank

⎡⎣−Ik −Ik
Ik ρ(g)
0 0

⎤⎦ = 2k. (6)

By Proposition 2.11(b) we have that

rank

⎡⎣−Ik −Ik
Ik ρ(g)
0 0

⎤⎦ = k + rank(ρ(g)− Ik). (7)

By combining (6) and (7), rank(ρ(g) − Ik) = k. This implies that ρ(g) − Ik is
invertible, so ∀v �= 0, (ρ(g)−Ik)v �= 0, therefore, ∀v �= 0, ρ(g)v �= v, which means
that 1 is not an eigenvalue of ρ(g). So, ρ is fixed-point free, as desired.

Lemma 3.4. If ρ : G→ GLk(F) is a fixed-point free representation, then Aρ is
a k-linear representation of Q3(G).
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Proof. To prove that Aρ is a k-linear representation of M , we need to verify
that ∀X ⊂ E, if r(X) = n then the rank of the relevant sub-matrix of Aρ (i.e.,
deleting the columns of elements not in X) is nk. Ranks of most sub-matrices
are trivially verified, e.g.,

rank

⎡⎣Ik 0 −Ik
0 Ik 0
0 0 ρ(g)

⎤⎦ = rank

⎡⎣Ik −Ik −Ik
0 ρ(gi) 0
0 0 ρ(gj)

⎤⎦ = 3k, rank

⎡⎣Ik −Ik
0 ρ(g)
0 0

⎤⎦ = 2k.

(Note that ∀g ∈ G, the matrix ρ(g) is invertible, and, therefore, of rank k). So
it is necessary and sufficient to ensure that the following 2 requirements hold:

1. For every two distinct elements gi �= gj

rank

⎡⎣−Ik −Ik
ρ(gi) ρ(gj)
0 0

⎤⎦ = 2k, (8)

2. For all gi, gj, g� ∈ G (not necessarily distinct)

rank

⎡⎣−Ik 0 ρ(g�)
ρ(gi) −Ik 0
0 ρ(gj) −Ik

⎤⎦ = r(
{
g′i, g

′′
j , g

′′′
�

}
) =

⎧⎨⎩2k if gj · gi · g� = 1,

3k otherwise.
(9)

Ranks of all other relevant sub-matrices follow from similar arguments.

We first show that Equation (8) holds. By Proposition 2.11(b)

rank

⎡⎣−Ik −Ik
ρ(gi) ρ(gj)
0 0

⎤⎦ = k + rank(ρ(gj)− ρ(gi)), (10)

so in order to show that Equation (8) holds, we need to verify that for every
two distinct group elements gi, gj rank(ρ(gi) − ρ(gj)) = k. Since ρ is fixed-
point free and g−1

i gj �= 1, for every v �= 0, v �= ρ(g−1
i gj)v = (ρ(gi)

−1ρ(gj))v, so
∀v �= 0, ρ(gi)v �= ρ(gj)v, thus, ∀v �= 0, (ρ(gi) − ρ(gj))v �= 0, which implies that
ρ(gi)− ρ(gj) is invertible and, therefore, of rank k, so (8) holds.

We next show that Equation (9) holds. By Proposition 2.11(a) and the defi-
nition of a homomorphism,

rank

⎡⎣−Ik 0 ρ(g�)
ρ(gi) −Ik 0
0 ρ(gj) −Ik

⎤⎦ = 2k + rank(ρ(gj · gi · g�)− Ik). (11)

So, to prove that (9) holds, we need to show that

rank(ρ(gj · gi · g�)− Ik) =

{
0 if gj · gi · g� = 1
k otherwise.

By arguments similar to the above
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1. If gj · gi · g� �= 1 then rank(ρ(gj · gi · g�)− Ik) = k, as ρ is fixed-point free.
2. If gj · gi · g� = 1 then rank(ρ(gj · gi · g�)− Ik) = 0. (This in fact true for any

representation because ρ(gj · gi · g�) = ρ(1) = Ik.)

Proof (Proof of Theorem 3.1). Combining the lemmas we get Theorem 3.1:
If G has a fixed-point free representation ρ of dimension k, then by Lemma 3.4,
the block matrix Aρ is a k-linear representation of Q3(G), and, in particular,
Q3(G) has a k-linear representation. On the other hand, if Q3(G) is k-linearly
representable then, by Lemma 3.2, it has a faithful representation ρ of dimension
k such that Aρ is a k-linear representation of Q3(G), so, by Lemma 3.3, ρ is
fixed-point free.

We combine Theorem 3.1 with Proposition 2.15 to get our desired result:

Corollary 3.5. For every prime p > 2 there is a matroid that is p-minimally
representable. Moreover, the matroid has poly(p) ground points and this repre-

sentation exists over a finite field with 2O(p6.18) elements.

Proof. Let q and Gp be as in Proposition 2.15. By Theorem 3.1 and Proposition
2.15, over the field F2pq , the matroid Q3(Gp), which has 3p2q+3 elements in the
ground set, is p-linearly representable. Furthermore, over any field, the matroid
Q3(Gp) is not j-linearly representable for any j < p. So, Q3(Gp) is p-minimally
representable. By Proposition 2.15, if we chose the appropriate q, then the field
F2pq has 2O(p6.18) elements.

We next rephrase the result in secret-sharing terms.

Corollary 3.6. For every prime p, there exists an access structure with poly(p)
parties, which has an ideal p-linear secret-sharing scheme with secrets of length
poly(n), but has no ideal k-linear secret-sharing scheme for every k < p.

Since the matroid has 3p2q + 3 elements in the ground set, the corresponding
access structure has 3p2q + 2 parties. Therefore, for every prime p, the smallest
access structure of this type has O(p7.18) parties. Also note that the schemes is
over a field with 2poly(p) elements, so every share can be represented by poly(p)
bits.

4 Lower Bounds for Multi-linear Secret-Sharing Schemes

The best known lowerbounds for linear secret-sharing schemes isnΩ(logn) [1,16,17].
By modification of the claims in [17], we show that these lower bounds hold also
for multi-linear secret-sharing schemes. Thus, even using multi-linear schemes one
cannot construct efficient schemes for general access structures.

We will use the following alternative definition of multi-linear secret sharing
schemes, proven to be equivalent in [13] (following [7,20]).
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Definition 4.1 (Multi-Target Monotone Span Program). A multi-target
monotone span program is a quadruple M = (F,M, ρ,X), where F is a finite
field, M is an a × b matrix over F, the function ρ : {1, . . . , a} → {p1, . . . , pn}
labels each row of M by a party, and X is a set of k independent vectors in Fb

such that for every A ⊆ {p1, . . . , pn} either

– The rows of the sub-matrix obtained by restricting M to the rows labeled by
parties in A, denoted MA, span every vector in X. In this case, we say that
M accepts A, or,

– The rows of MA span no non-zero vector in the linear space spanned by X.
In this case, we say that M rejects B.

We say that M accepts an access structure A if M accepts a set B if B ∈ A,
and rejects every set B /∈ A. The size of a multi-target monotone span program
is a/k, where a is the number of rows in the matrix and k is the number of
vectors in the set X.

Note that not every labeled matrix is a multi-target span program. For example,
if k > 1 and for some set A, the rows in MA span exactly one vector in X , then
this is not a multi-target span program. By [13] a multi-linear secret-sharing
scheme realizing an access structure A with total share size a exists if and only if
there exists a multi-target monotone span program accepting A that has a rows.
In particular, if there exists a multi-target monotone span program accepting
A with aj rows labeled by pj for 1 ≤ j ≤ n and k vectors in the set X , then
the exists a multi-linear secret-sharing scheme realizing A with information ratio
max1≤j≤n aj/k. In ideal multi-linear secret-sharing schemes aj = k for every j.

Assume, w.l.o.g., that X = {e1, . . . , ek}. We make 2 observations regarding
multi-target monotone span program.

Observation 4.2. If B ∈ A and N = MB then the rows of N span X, thus
∀0 < s < k there exists some vector vs such that es = vsN .

Observation 4.3. If T /∈ A then for every s ∈ {1, . . . , k} there exists a vector
ws ∈ Fb such that the following hold: (1) MTws = 0, (2) ∀i �= s, ei · ws = 0,
and (3) es ·ws = 1 (that is, the coordinate s in ws is 1).

Proof. If T /∈ A, then the rows of MT do not span any of the vectors in X . Let
MT,X be the matrix containing the rows of MT and additional rows e1, . . . , ek
and MT,X\{s} the same matrix with the row es deleted. By simple linear algebra,
for every 1 ≤ s ≤ k, we have that rankMT,X > rankMT,X\{s}, which implies

that |kernelMT,X | <
∣∣kernelMT,X\{s}

∣∣, and so there is some vector ws ∈ Fb

such that es · ws = 1 and MT,X\{s}ws = 0 (so evidently MTws = 0 and
∀i �= s, ei ·ws = 0).

We next quote the definition of a collection with unique intersection from [17].
Such collections are used in [17] to prove lower bounds for monotone span pro-
grams; we show that the same lower bound holds for multi-target monotone span
programs.
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Definition 4.4. Let A be a monotone access structure, with B = {B1, . . . , B�}
the collection of minimal authorized sets in A. Let C = {(C1,0, C1,1), (C2,0, C2,1),
. . . ,(Ct,0, Ct,1)} be a collection of pairs of sets of parties. We say that C satisfies
the unique intersection property for A if

1. For every 1 ≤ j ≤ t, {p1, . . . , pn} \ (Cj,0 ∪ Cj,1) /∈ A.
2. For every 1 ≤ i ≤ � and every 1 ≤ j ≤ t, exactly one of the following

conditions hold (1) Bi ∩ Cj,0 �= ∅, (2) Bi ∩ Cj,1 �= ∅.
Note that if B ∈ A and {p1, . . . , pn} \ C /∈ A, then B ∩ C �= ∅ (otherwise,

B ⊆ {p1, . . . , pn}\C, contradicting the monotonicity of A). Thus, Condition (2)
in Definition 4.4 requires that Bi intersects at most one of the sets Cj,0, Cj,1.

Theorem 4.5. Let C be a collection satisfying the unique intersection property
for A. Define a matrix D of size � × t, with Di,j = 0 if Bi ∩ Ci,0 �= ∅ and
Di,j = 1 if Bi ∩ Ci,1 �= ∅. Then, the size of every multi-target monotone span
program accepting A is at least rankF(D).

Proof. Let M = (F,M, ρ,X = {e1, . . . , ek}) be a multi-target monotone span
program accepting A, and denote the number of rows of M by m. For every
1 ≤ i ≤ � since Bi ∈ A the rows of M labeled by the parties of Bi span X . By
Observation 4.2, for every 1 ≤ r ≤ k, there exists vi,r such that vi,rM = er and
the non-zero coordinates of vi,r are only in rows labeled by Bi.
Fix 1 ≤ j ≤ t and let Tj = {p1, . . . , pn} \ (Cj,0 ∪ Cj,1). Since Tj /∈ A, by Obser-
vation 4.3, for every 1 ≤ s ≤ k there exists a vector wj,s such that MTjwj,s = 0,
es ·wj,s = 1 and ∀r �= s, er ·wj,s = 0. Let yj,s := Mwj,s and define zj,s to be
the column vector achieved from yj,s by replacing all coordinates in yj,s labeled
by parties in Cj,0 with zero. The only non-zero coordinates in zj,s are in coor-
dinates labeled by Cj,1.
Define L as the matrix with rows v1,1, . . . , v�,1, v1,2, . . . , v�,2, . . . , v�,k and R the
matrix with columns z1,1, . . . , z�,1, z1,2, . . . , z�,2,. . . , z�,k. Note that by definition
the rows of L are of length m, so L has m columns, thus, rank(L) ≤ m.

Let D = LR. We next prove that D is a block matrix of the form:

D =

⎡⎢⎢⎢⎣
D 0 . . . 0
0 D . . . 0
...

...
. . .

...
0 0 . . . D

⎤⎥⎥⎥⎦ , (12)

whereD is the matrix defined in the Theorem.We need to show that vi,r ·zs,j = 0
if r �= s (off the diagonal matrix block) and vi,r · zs,j = Di,j if r = s.

– If Bi ∩ Cj,0 �= ∅, Di,j = 0. Furthermore, Bi ∩ Cj , 1 = ∅, thus, vi,r and zs,j

do not share non-zero coordinates and vi,r · zs,j = 0. In particular, if r = s
then vi,r · zr,j = 0 = Di,j , and if r �= s then vi,r · zs,j = 0 as desired.

– If Bi ∩ Cj,1 �= ∅, then Di,j = 1, Bi ∩ Cj,0 = ∅, and all coordinates in vi,r

labeled by Cj,0 are zero, thus,

vi,r · zs,j = vi,r · ys,j = vi,rMws,j = er ·ws,j =

{
0 r �= s
1 r = s

.
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In particular, if r = s then vi,r ·zr,j = 1 = Di,j and if r �= s then vi,r ·zs,j = 0.

So rankF(D) = k · rankF(D), and sinceM is a k-linear representation, its size is
m
k ≥

rankF(L)
k ≥ rankF(D)

k = rankF(D).

By [17], for every n there is an access structure A with n parties, for which
there exists a collection C satisfying the unique intersection property, such that
rankF(D) ≥ nΩ(logn) (where D is as defined in Theorem 4.5). So by Theorem
4.5,

Corollary 4.6. For every n, there exists an access structure Nn with n parties
such that every multi-target monotone span program over any field accepting it
has size nΩ(logn).

As multi-target monotone span program are equivalent to multi-linear secret-
sharing schemes [20], the same lower bound applies to multi-linear secret-sharing
schemes.

Corollary 4.7. For every n, there exists an access structure Nn with n par-
ties such that the information ratio of every multi-linear secret-sharing scheme
realizing it is nΩ(logn).
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A The Construction of the Group Gp

In this section we briefly explain the construction of the group Gp (for any prime
p), which appears in Proposition 2.15. We then give a partial explanation of why
any fixed-point free representation of Gp is of dimension at least p. The complete
proofs, and more details on the construction, will be given in the full version.

Semidirect products. We assume some familiarity with group basics, such as
group homomorphisms and automorphisms. Let N be a group. Recall that the
set of all automorphisms of N , denoted Aut(N), is also a group, with group
operation being composition, and the identity element being the identity map.
We now recall the definition of an action of a group H on a group N .

Definition A.1. Let H and N be two groups. By an action of H on N , denoted
H � N , we mean a group homomorphism φ : H → Aut(N).

To simplify the notation, if no confusion is possible, we use shorter notation
xg := (φ(g))(x). Since φ is a homomorphism, the identity of G is mapped to the
identity automorphism.

Example A.2. For any pair of groups H and N , there always exists the trivial
action τ : H → Aut(N), which maps every element of H to the identity auto-
morphism. A non-trivial action, however, does not always exist, and depends on
the choice of H and N .
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Example A.3. Let H = Z2 and N = Z3. To avoid confusion we denote N =
{0, 1, 2} and H = {f0, f1} . Then H acts on N by φ(f1)(1) = 2. We note that
this completely identifies the action because f1 and 1 are generators of H and
N respectively. Thus, for example, f1(2) = f1(1+1) = f1(1)+ f1(1) = 2+2 = 1
and f0(1) = f1 ◦ f1(1) = f1(2) = 1. So it remains to verify only that this is well
defined, which is a very small task.

Lemma A.4. Let ψ : G1 → G2 be a group homomorphism, and φ : G2 � N a
group action. Then ψ induces a group action ψ∗(φ) : G1 � N , given by compo-
sition (ψ∗(φ))(x) := φ(ψ(x)). Furthermore, if ψ is surjective and the action φ is
non-trivial then so is ψ∗(φ).

Proof. Follows easily from the definitions.

The following proposition is well known.

Proposition A.5. For any prime q, the group of automorphisms of Zq is iso-
morphic to the group Zq−1.

This allows us to build a non-trivial action of Zp on Zq, if p, q are primes such
that q ≡ 1 mod p.

Proposition A.6. Let p, q ∈ N be two primes such that q ≡ 1 mod p. Then Zp

admits a non-trivial action on Zq.

Proof. From Proposition A.5 Aut(Zq) ( Zq−1. Thus, it suffices to construct a
non-trivial homomorphism φ : Zp → Zq−1. Let n ∈ N be such that q − 1 = np,
and set φ(x) := nx mod q. Then φ is a non-trivial homomorphism.

Corollary A.7. Let p, q be as in Proposition A.6. Then Zp2 admits a non-trivial
action on Zq.

Proof. We have a natural surjective homomorphism ψ : Zp2 → Zp given by
ψ(x) := x mod p. Thus, by Proposition A.6 and Lemma A.4, ψ∗(φ) is a non-
trivial action of Zp2 on Zq.

There may exist other non-trivial actions of Zp2 on Zq. However, from now
on when we mention the action of Zp2 on Zq, we mean that we have fixed
an isomorphism Aut(Zq) ( Zq−1 and we refer to the non-trivial action ψ∗(φ)
constructed in the proof of Corollary A.7.

Definition A.8. Let H be a group acting on another group N , and φ : H →
Aut(N) the action. The semidirect product, denoted N�φH, is the set N×H =
{(n, h)|n ∈ N, h ∈ H} equipped with the following operation

(n1, h1) · (n2, h2) := (n1 · nh1
2 , h1 · h2). (13)

We leave to the reader to verify that (13) indeed defines a group-law. We will
often omit φ in the notation of the semidirect product, and write simply N �G.
When the action of G on N is not trivial we will say that the semidirect product
is non-trivial. An attractive property of non-trivial semidirect products is that
they are not abelian, even if H and N are.
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Lemma A.9. If N�G is a non-trivial semidirect product then it is not abelian.

Proof. Since G acts non-trivially, there exist g ∈ G and h ∈ N such that hg �= h.
Therefore (eN , g) · (h, eG) = (hg, g) �= (h, g) = (h, eG) · (eN , g).

Proposition A.10. Let p and q be prime integers satisfying q ≡ 1 mod p.
Then there exists a non-trivial semidirect product Gp = Zq �Zp2 . The group has
p2 · q elements.

Proof. Follows immediately from the definitions and Corollary A.7.

Suitability of Gp. We now explain why the above construction works for us.
Since a full proof requires quite a few pages of background in representation
theory, we will only give a brief overview and refrain from proving the following
claims, which rely on some classical theorems in representation theory. But first
we state Linnik’s theorem:

Theorem A.11 (Linnik’s Theorem). There exists constants c, L such that
for any pair of co-prime integers a and d, with 1 ≤ a < d, the smallest prime of
the form a+ nd (n ≥ 1) is smaller than cdL.

Linnik didn’t give an explicit bound on L, but later works have shown that L is
in fact very small. The current state of the art is L ≤ 5.18 due to Xylouris [43].

Corollary A.12. For every prime p, there exists a prime q, with q = O(p5.18),
for which a non-trivial semidirect product Zq � Zp2 exists.

Now fix a prime p and a prime q such that q ≡ 1 mod p, and let Gp = Zq�Zp2

be the non-trivial semidirect product explained above.

Lemma A.13. The group Gp is solvable and every proper subgroup of Gp is
cyclic. Thus, from the classification of solvable fixed-point free groups (see for
example [42, Theorem 6.1.11]), the group Gp admits a fixed-point free represen-
tation.

Lemma A.14. The group Gp is not abelian. This implies that Gp does not have
fixed-point free representations of dimension 1.

Lemma A.15. The group Gp does not have any fixed-point free representations
over fields of characteristic p, q.

Lemma A.16. Over fields of characteristic different from p, q, the dimension of
the smallest fixed-point representation of Gp divides the order of Gp. Thus, since
the dimension cannot be 1, Gp has a fixed-point free representation of dimension
≥ p.

The completion of Proposition 2.15 (i.e., bounding the size of the field) is done
by explicitly building a fixed-point free representation of Gp of dimension p over
the field F2pq .



Broadcast Amplification

Martin Hirt, Ueli Maurer, and Pavel Raykov

ETH Zurich, Switzerland
{hirt,maurer,raykovp}@inf.ethz.ch

Abstract. A d-broadcast primitive is a communication primitive that
allows a sender to send a value from a domain of size d to a set of par-
ties. A broadcast protocol emulates the d-broadcast primitive using only
point-to-point channels, even if some of the parties cheat, in the sense
that all correct recipients agree on the same value v (consistency), and
if the sender is correct, then v is the value sent by the sender (validity).
A celebrated result by Pease, Shostak and Lamport states that such a
broadcast protocol exists if and only if t < n/3, where n denotes the
total number of parties and t denotes the upper bound on the number
of cheaters.

This paper is concerned with broadcast protocols for any number of
cheaters (t < n), which can be possible only if, in addition to point-to-
point channels, another primitive is available. Broadcast amplification
is the problem of achieving d-broadcast when d′-broadcast can be used
once, for d′ < d. Let φn(d) denote the minimal such d′ for domain size d.

We show that for n = 3 parties, broadcast for any domain size is
possible if only a single 3-broadcast is available, and broadcast of a single
bit (d′ = 2) is not sufficient, i.e., φ3(d) = 3 for any d ≥ 3. In contrast, for
n > 3 no broadcast amplification is possible, i.e., φn(d) = d for any d.

However, if other parties than the sender can also broadcast some
short messages, then broadcast amplification is possible for any n. Let
φ∗
n(d) denote the minimal d′ such that d-broadcast can be constructed

from primitives d′1-broadcast,. . . , d
′
k-broadcast, where d′ =

∏
i d

′
i (i.e.,

log d′ =
∑

i log d
′
i). Note that φ∗

n(d) ≤ φn(d). We show that broadcasting
8n log n bits in total suffices, independently of d, and that at least n− 2
parties, including the sender, must broadcast at least one bit. Hence
min(log d, n− 2) ≤ log φ∗

n(d) ≤ 8n log n.

1 Introduction

1.1 Byzantine Broadcast

We consider a set P = {P1, . . . , Pn} of n parties connected by authenticated
synchronous point-to-point channels.1 The broadcast problem (also known as

1 Synchronous means that the parties work in synchronous rounds such that the mes-
sages are guaranteed to be delivered within the same round in which they were sent.
If the sending party inputs no message (or a message outside the agreed domain) to
the channel, then the receiving party gets a default output.
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the Byzantine generals problem) is defined as follows [PSL80]: A specific party,
the sender, wants to distribute a message to the other parties in such a way that
all correct parties obtain the same message, even if up to t of the parties cheat
(also called Byzantine) and deviate arbitrarily from the prescribed protocol. We
assume that P1 is the sender and R = P \{P1} is the set of recipients. Formally:

Definition 1. A protocol for the set P = {P1, . . . , Pn} of parties, where P1 has
an input value v ∈ D and each party in R outputs a value in D, is called a
broadcast protocol for domain D if the following conditions are satisfied:2

Consistency: All correct parties Pi ∈ R output the same value v ∈ D.
Validity: If the sender P1 is correct, then v is the input value of P1.
Termination: Every correct party in P terminates.

A broadcast protocol can be understood as emulating a so-called broadcast
primitive (or channel), i.e., an ideal communication primitive where P1 inputs
a value which is output to all other parties. Broadcast is one of the most fun-
damental primitives in distributed computing. It is used as building block in
various protocols like voting, bidding, collective contract signing, secure multi-
party computation, etc.

A celebrated result by Pease, Shostak and Lamport states that for any non-
trivial D (i.e., |D| ≥ 2), a broadcast protocol exists if and only if the upper
bound t on the number of cheaters satisfies t < n/3 [PSL80, BGP92, CW92].

1.2 Broadcast Amplification

This paper is concerned with broadcast protocols for any number of cheaters
(t < n), which can be possible only if, in addition to point-to-point channels,
another primitive is available.3 We consider perfect security, which means that
the cheating probability is zero.

The perhaps most natural choice of such an additional primitive is the avail-
ability of some broadcast primitives for smaller domain sizes. Let d-broadcast
be a broadcast primitive (or broadcast channel) for message domain size d for a
specific sender.

We assume that in addition to point-to-point channels, the parties have access
to a system called BBB which provides a broadcast primitive as a black-box. If
invoked for sender Pi and domainD′, BBB takes input v ∈ D′ from Pi and outputs
v to all parties in P (except Pi).

In this setting, the first and most natural question that arises is: Can a sender
broadcast a message with domain size d by using point-to-point communication
and broadcasting only a single message with domain size d′ < d?

2 The domain can without essential loss of generality be assumed to be D = [d], where
here and below we define [k] = {1, . . . , k}.

3 One type of primitive considered previously is a so-called trusted set-up [DS83,
PW96]. In such a model, perfect security is not achievable, but statistical or cryp-
tographic security is.
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Definition 2. Let φn(d) denote the minimal d′ such that d-broadcast can be
constructed from d′-broadcast.

Trivially, φn(d) ≤ d, as d-broadcast can be constructed directly from
d-broadcast.

The most natural generalization of the above question is the following:4 If any
party can broadcast short messages, what is the minimal total number of bits
that need to be broadcast to construct an �-bit broadcast? More precisely, since
we consider arbitrary alphabet sizes (not just powers of 2), the question is to
determine the quantity φ∗

n(d) defined below.

Definition 3. Let φ∗
n(d) denote the minimal d′ such that d-broadcast can be

constructed from the k primitives d′1-broadcast, . . . , d′k-broadcast, where d′ =∏
i d

′
i.

Note that log d′ =
∑

i log d′i is the total number of bits of information5 broad-
cast using BBB. It is therefore often natural to state results for the quantity
logφ∗

n(d). It is obvious that φ∗
n(d) ≤ φn(d).

A protocol that amplifies the domain of a broadcast, in the sense of the above
two definitions, is called a broadcast-amplification protocol. A broadcast amplifi-
cation protocol for domain size d can be used to replace a call to a d-broadcast
primitive within another protocol. Hence broadcast amplification protocols can
be constructed recursively.

One can call φn(d) and φ∗
n(d) the intrinsic broadcast complexity of domain

size d, in the single-sender and in the general multi-sender model, respectively.6

The goals of this paper are twofold. First, we study feasibility results, i.e., what
is possible in principle. Therefore while studying the quantities φn(d) and φ∗

n(d)
we do not make any restriction on the use of point-to-point channels (In fact,
our protocols which are optimized for the BBB usage communicate exponential
number of messages over point-to-point channels and are built for succinctness
of the proof, not for communication complexity.) Second, based on the obtained
bounds for φn(d) and φ∗

n(d) we search for protocols which are both efficient in
terms of the BBB and point-to-point channels usage.

1.3 Contributions of This Paper

This paper introduces the concept of broadcast amplification and proves a num-
ber of results, both feasibility results in terms of protocols as well as infeasibility
results in terms of impossibility proofs.

We first study the first question mentioned above, namely the setting where
the sender uses a single broadcast primitive of smaller domain. For the case of

4 More refined versions of this question exist but will not be considered.
5 Not necessarily exactly the number of actual bits.
6 One could also consider a single-sender multi-shot model, i.e., the model where the
sender can broadcast with BBB multiple times. Later we give a protocol for the single-
sender setting which requires only a single call to BBB and is optimal even in the
multi-shot model.
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three parties (n = 3), the smallest non-trivial case, we show the quite surprising
result that broadcast for any domain size d is possible if only a single 3-broadcast
(d′ = 3) is available. Moreover broadcast of a single bit (d′ = 2) is not sufficient.
In other words, φ3(d) = 3 for any d ≥ 3.

In contrast, for n > 3 no broadcast amplification is possible, i.e., φn(d) = d
for any d.

If not only the sender, but also other parties can broadcast some short mes-
sages, then (strong) broadcast amplification is possible for any n. We show that
broadcasting 8n logn bits of information in total suffices, independently of d, i.e.,
logφ∗

n(d) ≤ 8n logn. On the negative side, we show that at least n − 2 parties
must broadcast at least one bit, i.e., min(log d, n− 2) ≤ logφ∗

n(d).
The protocol that uses 8n logn bits to broadcast a value of domain size d com-

municates exponentially many messages over point-to-point channels. We give
an optimized version of this protocol which communicates a polynomial number
of messages over point-to-point channels but needs to broadcast O(n2 log log d)
bits with BBB.

1.4 Related Work

All knownprotocols for efficientmulti-valued broadcast [TC84, FH06, LV11, Pat11]
can be interpreted as broadcast-amplification protocols, as they actually employ
an underlying broadcast scheme for short messages (besides the point-to-point
channels). These protocols tolerate only t < n/3 or t < n/2, where the underly-
ing broadcast itself is realizable with a normal broadcast protocol (hence the given
broadcast channels are not needed at all).

Another approach for broadcast amplification can be derived from existing
signature-based broadcast protocols [DS83, PW96]. One can use the available
black-box broadcast to generate an appropriate setup (e.g., a PKI) and then use
the corresponding protocol over point-to-point channels to broadcast the � bit
message. Thus we obtain broadcast-amplification protocols for t < n with crypto-
graphic and statistical security that require all parties to broadcast Poly(n) log �
bits in total for the construction of an �-bit broadcast.

Fitzi andMaurer considered amplification of the broadcast recipient set [FM00].
That is, they showed that with the access to local broadcast among every k parties
one can construct broadcast among n parties iff t < k−1

k+1n [FM00, CFF+05].
Another related line of research is the amplification of other primitives, like

OT extension [Bea96, IKNP03] or coin-toss extension [HMQU06].
In [HR13] the authors give a protocol for 3 players allowing to broadcast

message of any length by broadcasting 10 bits only is given. In our notation this
shows that logφ3(d) ≤ 10 for all d.

Broadcast amplification is an example of the construction of a consistency
primitive from another consistency primitive as defined in [Mau04].
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2 Broadcast-Amplification Model

A broadcast-amplification protocol consists of the programs π1, . . . , πn that the
players P1, . . . , Pn use. Each program πi is a randomized algorithm (which takes
an input from domain D in case of the sender’s program π1) and produces
an output. The program πi has n − 1 interfaces to point-to-point channels to
communicate with the other programs and additional interfaces to access BBB.

We now describe how the programs interact with BBB. First, we extend the
notion of d-broadcast given in Section 1.2. Let (r, Pi, d)-broadcast be a broadcast
channel available in round r which allows Pi to broadcast one single value from
a domain of size d among the parties. We assume that each program πj has an
interface to each (r, Pi, d)-broadcast channel. Whenever we say that the parties
broadcast with BBB, we mean that they actually access the corresponding broad-
cast channel by explicitly giving input/asking for an output on that channel’s
interface.

The protocol must ensure that the correct parties agree on which (r, Pi, d)-
broadcast channels to invoke, that is, on r, Pi and d.7 We say that a (r, Pi, d)-
broadcast channel is used if the correct parties access it, i.e., in round r correct
parties expect an output provided by Pi of a domain of the size d (in case of a
correct Pi, he provides the corresponding input). Note that which channels are
used by the protocol may not be necessarily fixed a priori and may depend on
the execution. We say that a broadcast-amplification protocol has a static BBB

usage pattern if the broadcast channels used are fixed beforehand. As opposed to
the static case, protocols with a dynamic BBB usage pattern allow to broadcast
with BBB adaptively to the execution, where of course still agreement on which
broadcast channels to use is required among the correct parties.

Depending on which channels are used we distinguish the following models.

Definition 4. The single-sendermodel allows for protocols where only (r, P1, d)-
broadcast channels are used, i.e., only P1 broadcasts with BBB (If only one chan-
nel is used then such a single-sender model is called single-shot; otherwise, it is
called multi-shot.) The multi-sender model does not put any limitations on the
broadcast channels used.

The costs d′ of BBB usage of a broadcast-amplification protocol with a static
BBB pattern is defined to be

∏
i di, where di’s are the domain sizes of the broad-

cast channels used. The protocols with a dynamic BBB usage pattern have costs
d′ to be computed as the maximum of

∏
i di among all possible executions.

We say that a broadcast-amplification protocol is non-trivial if its costs d′ is
strictly smaller than the size of the broadcast value domain d = |D|, i.e., d′ < d.

7 This requirement stems from the observation that the broadcast channel may be
implemented via a different protocol and hence in order to employ it all correct
parties must start its execution together while agreeing on the broadcasting party
and the domain of the broadcast value. Note that without this requirement, the
BBB could be abused to reach agreement on “hidden” information, e.g., one could
broadcast an �-bit message v with using BBB only for a single bit (in round v).
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3 Single-Sender Model

In this section we consider a single-sender model, that is, only the sender is
allowed to use the BBB oracle. First, we completely investigate the situation for
n = 3, that is, we show that 3-broadcast is enough to simulate any d-broadcast
while 2-broadcast is not. On the negative side, we prove that for any n > 3
perfectly secure broadcast amplification is not possible, showing that n = 3 is a
peculiar case in the context of broadcast-amplification protocols.

3.1 Broadcast Amplification for 3 Parties

We construct a broadcast-amplification protocol for three parties that allows the
sender to broadcast a value v from domain D of size d, where the sender uses BBB
to broadcast one value from a domain D′ of size d′ = 3. For ease of presentation,
we assume that D = [d] and D′ = [3].

The protocol works recursively. For d = 3, v is broadcast directly via BBB. For
d ≥ 4, the sender transmits v to both recipients, who then exchange the received
values and forward the exchanged values back to the sender. Finally, the sender
broadcasts a hint h from domain [d − 1], which allows each recipient to decide
which of the values he holds is the right one. Broadcasting the hint is realized
via recursion.8

The crucial trick in this protocol is the computation of the hint h. Very gener-
ically, this computation is expressed as a special function which takes as input
three values (the original value v and the two values sent back to the sender)
and outputs h. Given the hint h, the recipients decide on the value received from
the sender if it is consistent with h. Otherwise, if the other recipient’s value (as
received in the exchange phase) is consistent with h, then that value is taken.
Otherwise, some default value (say ⊥) is taken.

More formally, denote the value of the sender by v; the values received by
the recipients P2 and P3 by v2 and v3, respectively; the values received by the
recipients in the exchange phase by v32 and v23, respectively; and the values sent
back to the sender by v321 and v231, respectively. The function producing the
hint is denoted with gd and maps triples of values from [d] × [d] × [d] into the
hint domain [d− 1]. Then the sender computes the hint h = gd(v, v321, v231) and
broadcasts it. Recipient P2 outputs v2 if h = gd(v2, v32, ṽ231) for some ṽ231 ∈ [d].
Otherwise, P2 outputs v32 if h = gd(v32, ṽ321, v2) for some ṽ321 ∈ [d]. Otherwise,
P2 outputs ⊥. P3 decides analogously. Clearly, this protocol guarantees validity.
Consistency is achieved as long as

∀v2, v3, ṽ231, ṽ321 ∈ [d] : v2 �= v3 ⇒ gd(v2, v3, ṽ231) �= gd(v3, ṽ321, v2). (1)

For d ≥ 4, the function gd(x, y, z) can be constructed as follows: For x ≤ d−1,
let gd(x, y, z) = x (for any y, z). For x = d, let gd(x, y, z) = min([d− 1] \ {y, z}).
One can easily verify that gd satisfies (1).

8 As we see later, the recursion can be made much more efficient with the help of
so-called identifying predicates. We focus on the feasibility results and hence do not
optimize the protocols.
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Protocol AmplifyBC3(d, v)
1. If d = 3 then broadcast v using the BBB.
2. Otherwise:

2.1 P1 sends v to P2 and P3. Denote the values received with v2 and v3,
respectively.

2.2 P2 sends v2 to P3 and P3 sends v3 to P2. Denote the values received
by P2 and P3 with v32 and v23, respectively.

2.3 P2 sends v32 to P1 and P3 sends v23 to P1. Denote the values received
by v321 and v231, respectively.

2.4 P1 computes h = gd(v, v321, v231). Parties invoke AmplifyBC3(d− 1, h).
2.5 P2: If there exists ṽ231 such that h = gd(v2, v32, ṽ231) decide on v2.

Else if there exists ṽ321 such that h = gd(v32, ṽ321, v2) decide on v32.
Otherwise decide on ⊥.

2.6 P3: If there exists ṽ321 such that h = gd(v3, ṽ321, v23) decide on v3.
Else if there exists ṽ231 such that h = gd(v23, v3, ṽ231) decide on v23.
Otherwise decide on ⊥.

Lemma 1. The protocol AmplifyBC3 achieves broadcast. The sender P1 broad-
casts one value from domain [3] via BBB.

Proof. We prove by induction that the broadcast properties are satisfied. For
d = 3, broadcast is achieved by assumption of BBB. Now consider d ≥ 4:

Validity: If the sender is correct, then P2 and P3 receive h = gd(v, v321, v231)
as output from the recursive call to AmplifyBC3. As h = gd(v2, v32, ṽ231) for
ṽ231 = v231, a correct P2 decides on v2 = v. Analogously, h = gd(v3, ṽ321, v23)
for ṽ321 = v321, a correct P3 decides on v3 = v.

Consistency: This property is non-trivial only if both P2 and P3 are correct,
hence v23 = v2 and v32 = v3. Due to the Consistency property of the recursive
call to AmplifyBC3 both P2 and P3 receive the same hint h. If v2 = v3, then
by inspection of the protocol both parties decide on the same value (namely
on v2 if h ∈ {gd(v2, v2, ·), gd(v2, ·, v2)} and on ⊥ otherwise). If v2 �= v3, then
(1) implies that if P2 decides on v2 (i.e., h = gd(v2, v32, ṽ231)), then P3 does
not decide on v3 (i.e., h �= gd(v3, ṽ321, v23)), but decides on v23 = v2 (i.e.,
h = gd(v23, v3, ṽ231)). Analogously, if P3 decides on v3, then P2 decides on v3
as well.

Termination: Follows by inspection.
��

3.2 Generic Structure of Impossibility Proofs

The given lower-bounds proofs employ a standard indistinguishability argument
that is used to prove that certain security goals cannot be achieved by any pro-
tocol in the Byzantine environment [PSL80]. Such a proof goes by contradiction,
i.e., by assuming that the security goals can be satisfied by means of some pro-
tocol (π1, . . . , πn). Then the programs πi are used to build a configuration with
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Fig. 1. Drawing of a program πi. It has n−1 interfaces to bilateral channels with other
players P \ {Pi} labeled accordingly. The program πi is given v as input.

contradictory behavior. The configuration consists of multiple copies of πi con-
nected with bilateral channels and given admissible inputs. A pictorial drawing
of a program in such a configuration is shown in Figure 1. When describing a
configuration we will often use such a drawing accompanied with a textual de-
scription. If in the drawing an interface to a bilateral channel is not depicted
then it is connected to a “null” device which simulates the program sending no
messages. The interfaces to BBB are never drawn. Once the configuration is built,
one simultaneously starts all the programs in the configuration and analyzes the
outputs produced by the programs locally. By arguing that the view of some
programs πi and πj in the configuration is indistinguishable from their view
when run by the corresponding players Pi and Pj (while the adversary corrupts
the remaining players in P \{Pi, Pj}) one deduces consistency conditions on the
outputs by πi and πj that lead to a contradiction.

The main novelty of the proofs presented in this paper is that we consider an
extended communication model where in addition to bilateral channels players
are given access to BBB. While following the path described above, one needs to
additionally define the BBB behavior in the configuration.

In the following impossibility proofs we assume that the BBB usage pattern is
static. (In the full version of the paper we show how to adapt the impossibility
proofs given to include protocols with a dynamic BBB usage pattern.) Further-
more, the lower bounds are given only for perfectly-secure protocols, i.e., those
that fail with probability 0.

3.3 Lower Bounds in the Single-Sender Model

Lemma 2. There is no perfectly-secure protocol among 3 parties achieving broad-
cast amplification for domain D with |D| ≥ 3 by broadcasting only 1 bit via BBB.

Proof. Assume towards a contradiction that there is such a protocol (π1, π2, π3).
Without loss of generality, assume that D = [d] for some d ≥ 3.

We consider the following configuration: For i = 1, 2, 3 and j = 1, 2, 3 let πj
i

be an instance of πi. For j = 1, 2, 3 let πj
1 be given input j. We construct the

configuration by connecting programs πj
i as shown in Figure 2. Now we execute

the programs. Whenever any program πj
1 broadcasts a bit with BBB it is given

to programs πj
2 and πj

3.
Since there are 3 programs π1

1 , π
2
1 , π

3
1 broadcasting 1 bit only, there exist two

of them πi
1 and πj

1 broadcasting the same bit. Without loss of generality, assume
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π1
1 π2

1

π3
1

π1
3 π2

2

π3
3

π1
2 π2

3

π3
2

2

1

3

2

1

3

1

2

2

3

3

1

3 1 2 3 1 2
1 2

3

Fig. 2. The configuration for n = 3 to show the impossibility of broadcast amplification
with broadcasting 1 bit only via BBB

π1
1 π2

2 π3
3 π4

4 π5
2 π6

3 π7
4

. . . π1
z
q+2

V

2 1 3 2 4 3 2 4 3 2 4 3 2

Fig. 3. The configuration for n = 4 to show the impossibility of non-trivial broadcast
amplification with only the sender broadcasting

that π1
1 and π2

1 broadcast the same bit. The configuration can be interpreted in
three different ways, which lead to contradicting requirements on the outputs of
the programs. (i) P1 holds input 1 and executes π1

1 , P3 executes π1
3 , and P2 is

corrupted and executes the remaining programs in the configuration. Due to the
validity property, π1

3 must output 1. (ii) P1 holds input 2 and executes π2
1 , P2

executes π2
2 , and P3 is corrupted and executes the remaining programs in the

configuration. Due to the validity property, π2
2 must output 2. (iii) P3 executes

π1
3 , P2 executes π2

2 , and P1 is corrupted and executes the remaining programs in
the configuration. Due to the consistency property, π1

3 and π2
2 must output the

same value. These three requirements cannot be satisfied simultaneously, hence
whatever output the programs make, the protocol (π1, π2, π3) is not a perfectly-
secure broadcast-amplification protocol. ��

Lemma 3. There is no perfectly-secure protocol among n ≥ 4 parties achieving
non-trivial broadcast amplification in the single-sender multi-shot model.

Proof. We first prove the lemma for n = 4, then reduce the case of arbitrary
n > 4 to n = 4.

(Case n = 4). Assume towards a contradiction that there exists a perfectly-
secure protocol (π1, π2, π3, π4) achieving non-trivial broadcast-amplification in
the single-sender model in q rounds (for some q ∈ N). On the highest level our
proof consists of three steps. (i) we define a configuration. (ii) we show that all
programs in the configuration must output the same value v. (iii) we use an



428 M. Hirt, U. Maurer, and P. Raykov

information flow argument to prove that there is a program in the configuration
that does not have enough information to output v with probability 1 (this
argument is inspired by [Lam83]).
(i) We consider the following configuration: Let πj

i denote an instance of the
program πi. Consider a chain of q + 2 programs π1

1 , π
2
2 , π

3
3 , π

4
4 , π

5
2 , π

6
3 , . . . , π

q+2
z

connected as shown in Figure 3. The chain is built starting with a program π1
1

and then by repeatedly alternating copies of the programs π2, π3 and π4 until
the chain has q + 2 programs. To simplify the notation we will sometimes refer
to the programs in the chain without the subscript, i.e., as to π1, π2, . . . , πq+2.
Let π1

1 be given as input a uniform random variable V chosen from domain D.
Now we execute the programs. Whenever π1

1 uses BBB to broadcast some x, the
value x is given to all programs in the configuration.
(ii) First, we prove that any pair of connected recipients’ programs (πa

i , π
a+1
j )

(a ≥ 2) in the chain output the same value. One can view the configuration as
the player Pi running the program πa

i and Pj running πa+1
j while the adversary

corrupting {P1, P2, P3, P4}\{Pi, Pj} is simulating the programs π1, . . . , πa−1 and
πa+2, . . . , πq+2. Due to the consistency property, πa

i and πa+1
j must output the

same value. Since every connected pair of the recipients’ programs in the chain
outputs the same value, then the programs π2, . . . , πa+1 in the configuration out-
put the same value. Moreover, the configuration can be viewed as P1 executing
π1
1 , P2 executing π2

2 while the adversary who corrupts {P3, P4} is simulating the
remaining chain. Due to the validity property, π2

2 must output V . Finally, each
recipient’s program π2, . . . , πq+2 in the chain outputs V .
(iii) Let Sr

i be a random variable denoting the state of the program πi in the
chain after r rounds of the protocol execution. By state we understand the input
that the program has, the set of all messages that the program received up to
the rth round over point-to-point channels and on the BBB’s interface together
with the random coins it has used. Let Br be a random variable denoting the
list of the values that have been broadcast with BBB up to the rth round.
After r rounds only programs π1, π2, . . . , πr+1 can receive full information about
V . The remaining programs in the chain πr+2, πr+3, . . . , πq+2 can receive only
the information that was distributed with BBB, i.e., the information contained
in Br. That is, one can verify by induction that for any r and for all i ≥ r + 2
holds I(V ;Sr

i |Br) = 0. Hence, for the last program in the chain πq+2 after q
rounds of computation it holds that I(V ;Sq

q+2|Bq) = 0 and hence I(V ;Sq
q+2) ≤

H(Bq). Because we assumed that the protocol achieves non-trivial broadcast-
amplification we have that H(Bq) < H(V ). Combining these facts we get that
I(V ;Sq

q+2) < H(V ). Hence, the last program πq+2 cannot output V with prob-
ability one, a contradiction.

(Case n > 4). Assume towards a contradiction that there is a protocol (π1, π2,
π3, . . . , πn) allowing to do broadcast amplification in the single-sender model.
One particular strategy of the adversary is to corrupt parties P5, . . . , Pn and
make them not execute their corresponding programs π5, . . . , πn. Still, the re-
maining protocol (π1, π2, π3, π4) must achieve broadcast, which contradicts the
first case. ��
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3.4 Summary

Theorem 1. If n = 3 then ∀d ≥ 3 φ3(d) = 3; otherwise, if n > 3 then
∀d φn(d) = d.

The first statement follows from combining Lemma 1 and Lemma 2. The
second statement follows from Lemma 3.

4 Multi-sender Model

As we have seen in the previous section in the single-sender model no broadcast-
amplification is achievable for n ≥ 4. In this section we consider a generalization
of this model by allowing recipients to broadcast with BBB as well. In such a
model we show that broadcast-amplification is achievable for any n. Moreover, we
prove that in order to achieve a non-trivial broadcast-amplification for arbitrary
n essentially all recipients must broadcast with BBB.

4.1 Broadcast Amplification for n Parties

In this section we present a broadcast-amplification protocol for n parties, where
the parties broadcast with BBB at most 8n logn bits in total. We first introduce
the notion of identifying predicates and give an efficient construction of them.
Then we present a protocol for graded broadcast, which achieves only a relaxed
variant of broadcast, but only requires the sender to use BBB. Finally, we give
the main broadcast-amplification protocol, which uses graded broadcast and BBB

(by each party) to achieve broadcast.
While the presented protocol is very efficient in terms of the BBB usage (it

broadcasts via BBB only 8n logn bits to achieve broadcast of any � bits), it com-
municates exponentially many messages over authenticated channels. We then
show how to optimize this protocol such that it communicates only a polynomial
(in n) number of messages at the expense of a higher BBB usage.

Identifying Predicates. An identifying predicate allows to identify a specific
element v from some small subset S ⊆ D, where D is a potentially large domain.
To our knowledge, this concept has been firstly introduced in [HR13].

Definition 5. A c-identifying predicate for domain D is a family of functions
Qk∈K : D → {0, 1} such that for any S ⊆ D with |S| ≤ c and any value v ∈ S
there exists a key k ∈ K with Qk(v) = 1 and Qk(v

′) = 0 for all v′ ∈ S \ {v}. We
say that such v is uniquely identified by Qk in S.

Note that any identifying predicates Qk achieve monotonicity in the following
sense:

Lemma 4. If v is uniquely identified by Qk in S, then v in uniquely identified
in any S′ ⊆ S with v ∈ S′.

The goal of constructing an identifying predicate family is to have |K| as small
as possible given c and |D|. We give a construction of a c-identifying predicate
with domain D below.
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Polynomial-Based Identifying Predicate Construction. Let � = log |D|. For κ ∈
N, let any value v ∈ D be interpreted as a polynomial fv over GF(2κ) of degree
at most )�/κ*. We find a point x ∈ GF(2κ) such that fv(x) is different from all
other values fv′(x) for v′ ∈ S \ {v}. For such a point x to always exist we need
that the total number of points in the field is larger than the number of points
in which fv may coincide with other polynomials fv′ , i.e., 2κ > (c − 1))�/κ*.
To satisfy this condition, it is enough to choose κ := �log(c�)�. The key for
the identifying predicate is defined as k = (x, fv(x)), which is encoded using
2�log(c�)� bits.9 The predicate is defined as follows:

Q(x,y)(v) =

{
1, if fv(x) = y;

0, otherwise.

Lemma 5. The polynomial-based construction gives a c-identifying predicate Q
with domain D and key space KD

c = {0, 1}2�log(c log |D|)�.

Graded Broadcast. Graded broadcast (a.k.a. gradecast) was introduced by
Feldman and Micali [FM88]. It allows to broadcast a value among the set of
recipients but with weaker consistency guarantees. In addition to the value vi
each recipient Pi also outputs a grade gi describing the level of agreement reached
by the players. In this paper we extend the original gradecast definition [FM88]
with a more flexible grading system:

Definition 6. A protocol achieves graded broadcast if it allows the sender P1 to
distribute a value v among parties R with every party Pi outputting a value vi
with a grade gi ∈ [n] such that:

Validity: If the sender P1 is correct, then every correct Pi ∈ R outputs (vi, gi)=
(v, 1).

Graded Consistency: If a correct Pi ∈ R outputs (vi, gi) with gi < n, then
every correct Pj ∈ R outputs (vj , gj) with vj = vi and gj ≤ gi + 1.

Termination: Every correct party in P terminates.

Intuitively, the grade can be understood as the consistency level achieved. The
“strongest” grade gi = 1 means that from the point of view of Pi, the sender
“looks correct”. Grade gi = 2 means that Pi actually knows that the sender
is incorrect; however, there might be an honest Pj for whom the sender looks
correct. Grade gi = 3 means that Pi knows that the sender is incorrect and every
honest Pj knows so, too; however, there might be an honest Pk who does not
know that every honest Pj knows that the sender is incorrect. And so on till the
“weakest” grade gi = n.

The protocol proceeds as follows: The sender sends the value v he wants
to broadcast to all parties, who then exchange the received value(s) during 2n

9 Such a point x can be efficiently found by random sampling elements in GF(2κ).
Indeed, for κ = log(c �)� more than half of the elements in GF(2κ) are points where
fv is different from all other fv′ .
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rounds. That is, in every round each party sends the set of values received so
far to every other party. In this way each recipient Pi forms a growing sequence
of sets M1

i ⊆ M2
i ⊆ · · · ⊆ M2n

i (the set M r
i represents the set of all messages

received by Pi up to the round r). Finally, the sender distributes a hint consisting
of the key k for an identifying predicate Qk that should identify v among the
values that the recipients hold. Then each recipient Pi computes his grade gi
to be the smallest number in [n] such that both Mgi

i and M2n−gi
i contain a

uniquely identified message. There could be only one value vi uniquely identified
in both sets since Mgi

i ⊆M2n−gi
i . Then Pi outputs vi with the grade gi. Clearly,

if the sender is correct, then each correct recipient outputs gi = 1. Otherwise,
since for every pair Pi, Pj of correct recipients it holds that Mgi

i ⊆ Mgi+1
j and

M
2n−(gi+1)
j ⊆M2n−gi

i we have gj ≤ gi + 1.
Let us detail the step when sender distributes his hint k. While it can be done

directly with the help of BBB (which would lead to a less efficient construction),
we let the parties to invoke gradecast recursively for the distribution of k. Once
each player Pi outputs a key ki with a grade g′i he uses ki as a hint. Then the
final grade is computed by Pi as the maximum of two grades gi and g′i, i.e., it is
computed as the “weakest” grade among the two.

Protocol GradedBC(P1,D, v)
1. If |D| ≤ |KD

n2n | then P1 broadcasts v using BBB, and every Pi ∈ R outputs
(v, 1).

2. Otherwise:
2.1 Sender P1: Set M0

1 := {v}. ∀Pi ∈ R: Set M0
i := ∅.

2.2 For r = 0, . . . , 2n− 1:
∀Pi ∈ P : Send M r

i (of size at most nr) to all Pj ∈ P , Pj denotes
the union of the received sets with M r+1

j , i.e., M r+1
j =

⋃
i M

r
i .

2.3 Sender P1: Choose a key k for the n2n-identifying predicate Q with
domain D, the set of values M2n

1 and the value v.
2.4 Players P invoke GradedBC(P1,KD

n2n , k) recursively. Let (ki, g
′
i) denote

the output of Pi ∈ R.
2.5 ∀Pi ∈ R: Let g be the smallest number in [n] such that there exists

u which is uniquely identified by Qki in Mg
i and in M2n−g

i . Output
(vi, gi) = (u,max(g, g′i)). If such g does not exist output (vi, gi) =
(⊥, n);

Lemma 6. The protocol GradedBC achieves graded broadcast while requiring
only the sender to use BBB to broadcast one value of at most �7n logn� bits.

Proof. We prove by induction that graded broadcast is achieved. For |D| ≤
|KD

n2n |, graded broadcast is achieved by assumption of BBB. For |D| > |KD
n2n |:

Validity: If the sender is correct then he selects a key k for the n2n-identifying
predicate Qk such that only his value v is identified by Qk in M2n

1 . All correct
players get (k, 1) as output from the recursive call to GradedBC (due to the
Validity property of the recursive GradedBC). Since for every correct player Pi



432 M. Hirt, U. Maurer, and P. Raykov

it holds that M1
i ⊆M2n−1

i ⊆M2n
1 and v ∈M1

i this implies that v is uniquely
identified in M1

i and in M2n−1
i . Hence Pi computes vi = v and gi = 1.

Graded Consistency: Let Pi denote a correct recipient outputting the small-
est grade gi. If gi = n then Graded Consistency holds trivially. Now assume
that gi < n, and hence g′i < n. Consider any other correct recipient Pj . Due
to the Graded Consistency property of the recursive GradedBC, the fact that
g′i < n implies that Pi and Pj have the same keys ki and kj which we denote

with k. Observe that Mgi
i ⊆ Mgi+1

j ⊆ M
2n−(gi+1)
j ⊆ M2n−gi

i . The value vi

is uniquely identified by Qk in both Mgi
i and M2n−gi

i , hence vi is uniquely

identified in both Mgi+1
j and M

2n−(gi+1)
j . Hence the grade gj ∈ {gi, gi + 1}.

If gj = gi + 1 then vj = vi. If gj = gi then, since Mgi
j ⊆ Mgi+1

j and vi is

uniquely identified in Mgi+1
j , the only value that can be uniquely identified

by Qk in Mgi
j is vi. This implies that vj = vi.

Termination: Follows by inspection.

It remains to prove the stated usage complexity of BBB. Note that BBB is only
used at the deepest recursion level. We denote the logarithm of broadcast domain
size at the rth recursive level to be �r. We have that �0 = log |D| and �i+1 is
defined recursively to be 2�log(n2n�i)�. It can be verified that �i+1 < �i for any
�i > 7n logn. Hence, the sender P1 broadcasts with BBB at most �7n logn� bits.

��

Main Protocol. The broadcast-amplification protocol first invokes graded
broadcast. Then, each party broadcasts his grade (using BBB), and decides de-
pending on the grades broadcast whether to use the output of graded broadcast
or to use some default value (say ⊥) as output.

The core idea of the protocol lies in the analysis of the grades broadcast.
Denote the set of all grades by G = {gi}i. As |R| = n − 1, there exists a grade
g ∈ [n] with g /∈ G. Consider the smallest grade gi of an honest party Pi. If
gi > g, then clearly the grade gj of each honest party Pj is gj > g. On the other
hand, if gi < g, then by the definition of graded broadcast, the grade gj of any
honest party Pj is gj ≤ gi + 1, hence gj < g. In other words, either the grades
of all honest parties are below g, or the grades of all honest parties are above g.
In the former case, every honest party Pi has gi < n and hence all values vi are
equal (and are a valid output of broadcast). In the latter case, no honest party
Pi has grade gi = 1, hence the recipients can output some default value ⊥.

Protocol AmplifyBCn(P1,D, v)
1. Players P invoke GradedBC(P1,D, v), let (gi, vi) denote the output of Pi.
2. ∀Pi ∈ R: Broadcast gi using BBB. Let G denote the set of all gi broadcast.
3. ∀Pi ∈ R: Let g = min([n] \ G). If gi < g, then decide on vi, otherwise

decide on ⊥.
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Lemma 7. The protocol AmplifyBCn achieves broadcast and requires the sender
to broadcast with BBB one value of at most �7n logn� bits and each of the recip-
ients to broadcast one value from domain [n]. In total at most 8n logn bits need
to be broadcast via BBB.

Proof. We show that each of the broadcast properties are satisfied:

Validity: If the sender is correct then all correct parties get (v, 1) as an output
from GradedBC and decide on v.

Consistency: Let g = min([n] \G), and let Pi denote a correct recipient out-
putting the smallest grade gi. If gi < g, then clearly gi < n, and all honest
parties Pj hold the same value vj = vi and grade gj ≤ gi + 1. As gj �= g, it
follows gj < g. Hence, every honest party Pj outputs vj = vi. On the other
hand, if gi > g, then every honest party Pj holds gj > g and outputs ⊥.

Termination: Follows by inspection.

It remains to prove the stated usage complexity of BBB. The protocol AmplifyBCn
requires the sender to broadcast one value of at most �7n logn� bits during the
GradedBC invocation (cf. Lemma 6). Furthermore, each recipient broadcasts the
grade (of domain [n]) using BBB. This sums up to 8n logn bits overall. ��

Efficient Protocol. The main disadvantage of the protocol AmplifyBCn is
that the underlying gradecast protocol GradedBC requires exponential message
communication. Here we briefly sketch how one can achieve polynomial commu-
nication complexity in GradedBC at the cost of higher BBB usage. The main idea
of the optimized protocol GradedBC+ is to allow recipients to use BBB such that
they can filter out messages from the sets M r

i . Roughly speaking, if a recipient
holds a set of messages M r

i then he broadcasts a “challenge” forcing the sender
in his response to invalidate at least all but one values in M r

i . After each of the
recipients has his set M r

i filtered, recipients continue exchanging sets consisting
of at most one element. The detailed description of this protocol and its analysis
is given in Appendix A.

Lemma 8. The protocol AmplifyBCn with the underlying gradecast implemen-
tation by GradedBC+ allows to broadcast an �-bit message while broadcasting
O(n2 log �) bits with BBB and communicating O(n3�) bits over point-to-point
channels.

4.2 Lower Bounds in the Multi-sender Model

Based on the approach presented in Section 3.2 we investigate the lower bounds
on the broadcast-amplification protocols in the multi-sender model. As it was
shown for the single-sender model there is no broadcast-amplification possible
when only the sender uses BBB for n ≥ 4. We extend this result by showing
that the sender and at least all but 2 recipients are required to broadcast some
information via BBB to achieve non-trivial broadcast-amplification.
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πu
1 πv

1π2
2 π2

3

u v

2 1 313 2

Fig. 4. The configuration for n = 3 to show that the sender must use BBB to broadcast
at least one bit

Lemma 9. Every perfectly-secure broadcast-amplification protocol for domain
D requires the sender P1 to broadcast at least 1 bit via BBB.

Proof. We first prove the theorem for n = 3, then reduce the case of arbitrary
n > 3 to n = 3.

(Case n = 3) Assume towards a contradiction that there is a protocol (π1,
π2, π3) allowing the parties P1, P2, P3 to do broadcast amplification, where the
sender does not broadcast with BBB. We consider the following configuration:
Let πu

1 and πv
1 denote two instances of the program π1, where πu

1 is given input
u and πv

1 is given input v for u, v ∈ D and u �= v. We connect programs πu
1 ,

π2, π3 and πv
1 with bilateral channels as shown in Figure 4. Now we execute the

programs. Whenever π2 or π3 use BBB to broadcast some x, the value x is given
to all programs.
The configuration can be interpreted in three different ways, which lead to con-
tradicting requirements on the outputs of the programs. (i) P1 holds input u and
executes πu

1 , P2 executes π2, and P3 is corrupted and executes π3 and πv
1 . Due

to the validity property, π2 must output u. (ii) P1 holds input v and executes
πv
1 , P3 executes π3, and P2 is corrupted and executes π2 and πu

1 . Due to the
validity property, π3 must output v. (iii) P2 executes π2, P3 executes π3, and P1

is corrupted and executes πu
1 and πv

1 . Due to the consistency property, π2 and π3

must output the same value. These three requirements cannot be satisfied simul-
taneously, hence whatever output the programs make, the protocol (π1, π2, π3)
is not a perfectly-secure broadcast-amplification protocol.

(Case n > 3) Assume towards a contradiction that there is a protocol (π1, π2,
π3, . . . , πn) allowing to do broadcast amplification where the sender does not
broadcast with BBB. One particular strategy of the adversary is to corrupt parties
P4, . . . , Pn and make them not execute their corresponding programs π4, . . . , πn.
Still, the remaining protocol (π1, π2, π3) must achieve broadcast, which contra-
dicts the first case. ��

Lemma 10. Every perfectly-secure non-trivial broadcast-amplification protocol
requires that at least all but 2 of the recipients broadcast at least 1 bit with BBB.

Proof. Assume towards a contradiction that there is a protocol (π1, π2, π3, . . . ,πn)
allowing to do non-trivial broadcast amplification with three recipients’ pro-
grams not broadcasting with BBB. Without loss of generality, assume that these



Broadcast Amplification 435

programs are π2, π3, π4.
10 One particular strategy of the adversary is to corrupt

parties P5, . . . , Pn and make them not execute their corresponding programs
π5, . . . , πn. The programs π1, π2, π3, π4 of the remaining honest players can then
put the values sent and broadcast by the corrupted parties to some default value
(say ⊥). The remaining protocol (π1, π2, π3, π4) achieves non-trivial broadcast
amplification, which contradicts Lemma 3. ��

4.3 Summary

The following theorem summarizes results obtained in this section (The proof of
this theorem follows from Lemmas 7, 9 and 10.)

Theorem 2. For all n, d we have 8n logn ≥ logφ∗
n(d) ≥ min(log d, n− 2).11

Additionally, we give an efficient protocol that allows to broadcast an �-bit
value while broadcasting O(n2 log �) bits with BBB and communicating O(n3�)
bits over point-to-point channels.

5 Conclusions

Broadcast amplification is the task of achieving d-broadcast given point-to-point
channels and access to a d′-broadcast primitive, for d′ < d. The existence of such
a broadcast-amplification protocol means in a certain sense that d-broadcast
and d′-broadcast are equivalent (respectively that d′-broadcast is “as good as”
d-broadcast).

It is well known that perfectly-secure broadcast cannot be constructed from
point-to-point channels when the number of cheaters is not limited. In this paper,
we have shown that:

– For three parties, 3-broadcast and d-broadcast are equivalent for any d ≥ 3.
However, 2-broadcast and 3-broadcast are not equivalent.

– For an arbitrary number of parties, (8n logn)-bit broadcast and �-bit broad-
cast are equivalent for any � ≥ 8n logn. However, for n ≥ 4 parties, (n−3)-bit
broadcast and �-bit broadcast are not equivalent for large enough �.

In summary, for three parties, we have given a complete picture of equivalence
of broadcast primitives for different domains, under the assumption that point-
to-point channels are freely available. For n ≥ 4 parties, we have proved a lower
bound and an upper bound on the broadcast primitive necessary for broadcasting
arbitrary messages, namely Ω(n) and O(n log n) bits, respectively.

10 Such not broadcasting programs are fixed because we considered protocols with
static BBB usage pattern.

11 The last inequality combines the facts that any non-trivial broadcast amplification
protocol broadcasts at least n−2 bits, whereas the trivial protocol always uses log d
bits.
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A A Broadcast-Amplification Protocol with Polynomial
Number of Messages

In this section we present an optimized implementation GradedBC+ of the graded
broadcast protocol GradedBC. We first introduce the notion of resolution func-
tions (which is closely related to identifying predicates) and give an efficient
construction of them. Then we describe the optimized protocol GradedBC+ that
communicates polynomially many messages over point-to-point channels. Af-
ter substituting GradedBC with GradedBC+ in AmplifyBCn we get a broadcast-
amplification protocol with the following properties.

Lemma 8. The protocol AmplifyBCn with the underlying gradecast implemen-
tation by GradedBC+ allows to broadcast an �-bit message while broadcasting
O(n2 log �) bits with BBB and communicating O(n3�) bits over point-to-point
channels.

A.1 Resolution Functions

An identifying predicate allows to identify a specific element v from some set
S of potentially a large domain D. Resolution functions extend this notion by
providing a collision-free way of choosing one of the values in S while explicitly
not choosing the others.

Definition 7. A c-resolution function for domain D and range Y is a family of
functions Fk∈K : D → Y such that for any S ⊆ D with |S| ≤ c there exists a
key k ∈ K with Fk(v) �= Fk(v

′) for any v �= v′ from S. Such a key k is said to
resolve the set S.

We say that v is identified by a pair (k, y) in S if Fk(v) = y (trivially, only
one value can be identified if k resolves the set S). The goal of constructing such
a function F is to have |K| and |Y| as small as possible given c and |D|. We give
a construction of a c-resolution function with domain D below.

Polynomial-Based Resolution Function Construction. This construction is very
similar to the polynomial-based construction for identifying predicates presented
before. Let � = log |D|. Consider any set S ⊆ D with |S| ≤ c. For κ ∈ N, let
any value v ∈ D be interpreted as a polynomial fv over GF(2κ) of degree at
most )�/κ*. We find a point x ∈ GF(2κ) such that fv(x) �= fv′(x) for any
two v �= v′ ∈ S. For such a point x to always exist we need that the total
number of points in the field is larger than the number of points in which any
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fv may coincide with other polynomials fv′ , i.e., 2κ > c(c−1)
2 )�/κ*. To satisfy

this condition, it is enough to choose κ := �log(c2�)�. The resolution function is
defined as Fx(v) = fv(x) with the key space and range space being GF(2κ). So,
the key and the value of the resolution function can be encoded using �log(c2�)�
bits.

Lemma 11. The polynomial-based construction gives a c-resolution function F
for domain D with key and range spaces KD

c = YD
c = {0, 1}�log(c2 log |D|)�.

A.2 The Optimized Graded Broadcast Protocol

The protocol proceeds as follows: The sender sends the value v he wants to broad-
cast among all recipientsR, who then exchange the received value(s) during n−1
rounds. In each round r each party Pi sends the value it currently holds (denoted
with vri ) to every other party and forms the set of at most n received values.
Then each party broadcasts a key ki for an n-resolution function which resolves
the set of the values received. In the end of the round the sender broadcasts the
values y1, . . . , yn of the resolution function for the keys k1, . . . , kn so that each
of the recipients keeps at most one value identified by all (ki, yi). Finally, each
recipient Pi decides on the grade gi to be the first “stable” round starting from
which the value he holds remain unchanged, i.e., vgii = vgi+1

i = · · · = vni .

Protocol GradedBC+(P1,D, v):
1. Sender P1: Send v to every Pi ∈ R.
∀Pi ∈ R: Denote the message received from the sender by v1i .

r. In each step r = 2, . . . , n, execute the following sub-steps:
r.1 ∀Pi ∈ R: Send the value vr−1

i to all Pj ∈ R, Pj denotes the set of the
received values with M r

j .
r.2 ∀Pi ∈ R: Choose a key kr

i for an n-resolution function F with domain
D, that resolves the set of values Sr

i . Broadcast the key kr
i using the

BBB.
r.3 Sender P1: Broadcast a list of values (Fkr

2
(v), . . . , Fkr

n
(v)) using the

BBB. Denote the list broadcast with (yr2 , . . . , y
r
n).

r.4 ∀Pi ∈ R: Select vri to be some u ∈ M r
i such that u is identified by

(kr
j , y

r
j ) for all j; set vri to ⊥ if no such u exists.

n+1.∀Pi ∈ R: Compute gi to be the smallest step r such that vri = vr+1
i = · · · =

vni . Output (vni , gi).

Lemma 12. The protocol GradedBC+ achieves graded broadcast while requiring
O(n2 log �) bits to be broadcast with BBB and communicating O(n3�) bits over
point-to-point channels.

Proof. We show that each of the graded broadcast properties is satisfied:

Validity: If the sender is correct then for any key k he broadcasts y = Fk(v)
such that only his value v is chosen by correct recipients at every iteration.
Hence each correct Pi computes vi = v and gi = 1.
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Graded Consistency: Let Pi denote a correct recipient outputting the small-
est grade gi. If gi = n then Graded Consistency holds trivially. Now as-
sume that gi < n. Consider any other correct recipient Pj . Observe that
vgii ∈M

gi+1

j . Since Pi kept the value vgii till the round n it implies that vgii is
identified in Sr

i by all pairs (kr
a, y

r
a) for all a and r ≥ gi. Hence, v

gi
i is identified

in Sgi+1
j , Sgi+2

j , . . . , Sn
j by all pairs (kr

a, y
r
a) for all a and r ≥ gi+1. Moreover,

since Pj chose the keys kr
j for a resolution function faithfully, only a unique

value can be identified in Sgi+1
j , Sgi+2

j , . . . , Sn
j . Since only a unique value can

be identified then Pj outputs vj = vgii with the grade gj ≤ gi + 1.

Termination: Follows by inspection.

It remains to prove the stated usage complexity of BBB. At each step r =
2, . . . , n of the protocol GradedBC+, every recipient Pi broadcasts a key kr

i for
a family of n-resolution functions and the sender broadcasts a list of n values
of the function. If the polynomial-based construction of the resolution function
is used then each key and a value of function consists of �log(n2�)� bits. Since
in total the protocol works in n − 1 rounds we broadcast 2(n − 1)2�log(n2�)�
bits with BBB. This expression can be rewritten as O(n2(log n+ log �)). We can
assume that � > n, since for � ≤ n it is easier to run the trivial algorithm that
broadcasts a message bit by bit. Summing up the analysis above, we have that
the total number of the BBB invocations during the protocol run is O(n2 log �).

The communication costs of GradedBC+ over authenticated channels consist of
distributing n−1 �-bit messages during Step 1 and exchanging of (n−1)2(n−1)
�-bit messages during Steps 2, . . . , n. Hence, the total number of bits that need
to be communicated is O(n3�). ��
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Abstract. Non-malleable coding, introduced by Dziembowski, Pietrzak
and Wichs (ICS 2010), aims for protecting the integrity of information
against tampering attacks in situations where error-detection is impos-
sible. Intuitively, information encoded by a non-malleable code either
decodes to the original message or, in presence of any tampering, to an
unrelated message. Non-malleable coding is possible against any class of
adversaries of bounded size. In particular, Dziembowski et al. show that
such codes exist and may achieve positive rates for any class of tamper-
ing functions of size at most 22
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ability 1− exp(−Ω(n)) (while still allowing a compact description of
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2. We initiate the study of seedless non-malleable extractors as a natu-
ral variation of the notion of non-malleable extractors introduced by
Dodis and Wichs (STOC 2009). We show that construction of non-
malleable codes for the split-state model reduces to construction of
non-malleable two-source extractors. We prove a general result on
existence of seedless non-malleable extractors, which implies that
codes obtained from our reduction can achieve rates arbitrarily close
to 1/5 and exponentially small error. In a separate recent work, the
authors show that the optimal rate in this model is 1/2. Currently,
the best known explicit construction of split-state coding schemes is
due to Aggarwal, Dodis and Lovett (ECCC TR13-081) which only
achieves vanishing (polynomially small) rate.

Keywords: coding theory, cryptography, error detection, information
theory, randomness extractors, tamper-resilient storage.

1 Introduction

Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs [12]
as a relaxation of the classical notions of error-detection and error-correction.
Informally, a code is non-malleable if the decoding a corrupted codeword either
recovers the original message, or a completely unrelated message. Non-malleable
coding is a natural concept that addresses the basic question of storing mes-
sages securely on devices that may be subject to tampering, and they provide
an elegant solution to the problem of protecting the integrity of data and the
functionalities implemented on them against “tampering attacks” [12]. This is
part of a general recent trend in theoretical cryptography to design cryptographic
schemes that guarantee security even if implemented on devices that may be sub-
ject to physical tampering. The notion of non-malleable coding is inspired by the
influential theme of non-malleable encryption in cryptography which guarantees
the intractability of tampering the ciphertext of a message into the ciphertext
encoding a related message.

The definition of non-malleable codes captures the requirement that if some
adversary (with full knowledge of the code) tampers the codeword Enc(s) encod-
ing a message s, corrupting it to f(Enc(s)), he cannot control the relationship
between s and the message the corrupted codeword f(Enc(s)) encodes. For this
definition to be feasible, we have to restrict the allowed tampering functions f
(otherwise, the tampering function can decode the codeword to compute the
original message s, flip the last bit of s to obtain a related message s̃, and
then re-encode s̃), and in most interesting cases also allow the encoding to be
randomized. Formally, a (binary) non-malleable code against a family of tam-
pering functions F each mapping {0, 1}n to {0, 1}n, consists of a randomized
encoding function Enc : {0, 1}k → {0, 1}n and a deterministic decoding function
Dec : {0, 1}n → {0, 1}k ∪ {⊥} (where ⊥ denotes error-detection) which satisfy
Dec(Enc(s)) = s always, and the following non-malleability property with error
ε: For every message s ∈ {0, 1}k and every function f ∈ F , the distribution
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of Dec(f(Enc(s)) is ε-close to a distribution Df that depends only on f and is
independent of s (ignoring the issue that f may have too many fixed points).

If some code enables error-detection against some family F , for example if
F is the family of functions that flips between 1 and t bits and the code has
minimum distance more than t, then the code is also non-malleable (by taking
Df to be supported entirely on ⊥ for all f). Error-detection is also possible
against the family of “additive errors,” namely Fadd = {fΔ | Δ ∈ {0, 1}n} where
fΔ(x) := x+Δ (the addition being bit-wise XOR). Cramer et al. [8] constructed
“Algebraic Manipulation Detection” (AMD) codes of rate approaching 1 such
that offset by an arbitrary Δ �= 0 will be detected with high probability, thus
giving a construction of non-malleable codes against Fadd.

The notion of non-malleable coding becomes more interesting for families
against which error-detection is not possible. A simple example of such a class
consists of all constant functions fc(x) := c for c ∈ {0, 1}n. Since the adversary
can map all inputs to a valid codeword c∗, one cannot in general detect tampering
in this situation. However, non-malleability is trivial to achieve in this case as the
output distribution of a constant function is trivially independent of the message
(so the rate 1 code with identity encoding function is itself non-malleable).

The original work [12] showed that non-malleable codes of positive rate exist
against every not-too-large family F of tampering functions, specifically with
|F| � 22

αn

for some constant α < 1. In a companion paper [5], we proved that
in fact one can achieve a rate approaching 1− α against such families, and this
is best possible in that there are families of size ≈ 22

αn

for which non-malleable
coding is not possible with rate exceeding 1 − α. (The latter is true both for
random families as well as natural families such as functions that only tamper
the first αn bits of the codeword.)

1.1 Our Results

This work is focused on two natural families of tampering functions that have
been studied in the literature.

Bit-Tampering Functions. The first class consists of bit-tampering functions
f in which the different bits of the codewords are tampered independently (i.e.,
each bit is either flipped, set to 0/1, or left unchanged, independent of other bits);
formally f(x) = (f1(x1), f2(x2), . . . , fn(xn)), where f1, . . . , fn : {0, 1} → {0, 1}.
As this family is “small” (of size 4n), by the above general results, it admits
non-malleable codes with positive rate, in fact rate approaching 1 by our recent
result [5].

Dziembowski et al. [12] gave a Monte Carlo construction of a non-malleable
code against this family; i.e., they gave an efficient randomized algorithm to
produce the code along with efficient encoding and decoding functions such
that w.h.p the encoder/decoder pair ensures non-malleability against all bit-
tampering functions. The rate of their construction is, however, close to .1887
and thus falls short of the “capacity” (best possible rate) for this family of
tampering functions, which we now know equals 1.
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Our main result in this work is the following:

Theorem 1. For all integers n � 1, there is an explicit (deterministic) con-
struction, with efficient encoding/decoding procedures, of a non-malleable code
against bit-tampering functions that achieves rate 1 − o(1) and error at most
exp(−nΩ(1)).

If we seek error that is exp(−Ω̃(n)), we can guarantee that with an effi-
cient Monte Carlo construction of the code that succeeds with probability 1 −
exp(−Ω(n)).

The basic idea in the above construction (described in detail in Section 4.1)
is to use a concatenation scheme with an outer code of rate close to 1 that has
large relative distance and large dual relative distance, and as (constant-sized)
inner codes the non-malleable codes guaranteed by the existential result (which
may be deterministically found by brute-force if desired). This is inspired by
the classical constructions of concatenated codes [13,16]. The outer code pro-
vides resilience against tampering functions that globally fix too many bits or
alter too few. For other tampering functions, in order to prevent the tamper-
ing function from locally freezing many entire inner blocks (to possibly wrong
inner codewords), the symbols of the concatenated codeword are permuted by
a pseudorandom permutation1. The seed for the permutation is itself included
as the initial portion of the final codeword, after encoding by a non-malleable
code (of possibly low rate). This protects the seed and ensures that any tam-
pering of the seed portion results in the decoded permutation being essentially
independent of the actual permutation, which then results in many inner blocks
being error-detected (decoded to ⊥) with noticeable probability each. The final
decoder outputs ⊥ if any inner block is decoded to ⊥, an event which happens
with essentially exponentially small probability in n with a careful choice of the
parameters. Though the above scheme uses non-malleable codes in two places
to construct the final non-malleable code, there is no circularity as the codes for
the inner blocks are of constant size, and the code protecting the seed can have
very low rate (even sub-constant) as the seed can be made much smaller than
the message length.

The structure of our construction bears some high level similarity to the op-
timal rate code construction for correcting a bounded number of additive errors
in [15]. The exact details though are quite different; in particular, the crux in
the analysis of [15] was ensuring that the decoder can recover the seed correctly,
and towards this end the seed’s encoding was distributed at random locations
of the final codeword. Recovering the seed is both impossible and not needed in
our context here.

Split-State Adversaries. Bit-tampering functions act on different bits in-
dependently. A much more general class of tampering functions considered in

1 Throughout the paper, by pseudorandom permutation we mean t-wise independent
permutation (as in Definition 8) for an appropriate choice of t. This should not be
confused with cryptographic pseudorandom permutations, which are not used in
this work.
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the literature [12,11,1] is the so-called split-state model. Here the function f :
{0, 1}n → {0, 1}n must act on each half of the codeword independently (as-
suming n is even), but can act arbitrarily within each half. Formally, f(x) =
(f1(x1), f2(x2)) for some functions f1, f2 : {0, 1}n/2 → {0, 1}n/2 where x1, x2

consist of the first n/2 and last n/2 bits of x. This represents a fairly general
and useful class of adversaries which are relevant for example when the codeword
is stored on two physically separate devices, and while each device may be tam-
pered arbitrarily, the attacker of each device does not have access to contents
stored on the other device.

The capacity of non-malleable coding in the split-state model equals 1/2, as
established in our recent work [5]. A natural question therefore is to construct
efficient non-malleable codes of rate approaching 1/2 in the split-state model
(the results in [12] and [5] are existential, and the codes do not admit polyno-
mial size representation or polynomial time encoding/decoding). This remains
a challenging open question, and in fact constructing a code of positive rate
itself seems rather difficult. A code that encodes one-bit messages is already
non-trivial, and such a code was constructed in [11] by making a connection to
two-source extractors with sufficiently strong parameters and then instantiating
the extractor with a construction based on the inner product function over a fi-
nite field. We stress that this connection to two-source extractor only applies to
encoding one-bit messages, and does not appear to generalize to longer messages.

Recently, Aggarwal, Dodis, and Lovett [1] solved the central open problem
left in [11] — they construct a non-malleable code in the split-state model that
works for arbitrary message length, by bringing to bear elegant techniques from
additive combinatorics on the problem. The rate of their code is polynomially
small: k-bit messages are encoded into codewords with n ≈ k7 bits.

In the second part of this paper (Section 5), we study the problem of non-
malleable coding in the split-state model. We do not offer any explicit construc-
tions, and the polynomially small rate achieved in [1] remains the best known.
Our contribution here is more conceptual. We define the notion of non-malleable
two-source extractors, generalizing the influential concept of non-malleable ex-
tractors introduced by Dodis and Wichs [10]. A non-malleable extractor is a
regular seeded extractor Ext whose output Ext(X,S) on a weak-random source
X and uniform random seed S remains uniform even if one knows the value
Ext(X, f(S)) for a related seed f(S) where f is a tampering function with no
fixed points. In a two-source non-malleable extractor we allow both sources to be
weak and independently tampered, and we further extend the definition to allow
the functions to have fixed points in view of our application to non-malleable
codes. We prove, however, that for construction of two-source non-malleable
extractors, it suffices to only consider tampering functions that have no fixed
points, at cost of a minor loss in the parameters.

We show that given a two-source non-malleable extractor NMExt with expo-
nentially small error in the output length, one can build a non-malleable code in
the split-state model by setting the extractor function NMExt to be the decoding
function (the encoding of s then picks a pre-image in NMExt−1(s)).
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This identifies a possibly natural avenue to construct improved non-malleable
codes against split-state adversaries by constructing non-malleable two-source
extractors, which seems like an interesting goal in itself. Towards confirming
that this approach has the potential to lead to good non-malleable codes, we
prove a fairly general existence theorem for seedless non-malleable extractors,
by essentially observing that the ideas from the proof of existence of seeded
non-malleable extractors in [10] can be applied in a much more general setting.
Instantiating this result with split-state tampering functions, we show the ex-
istence of non-malleable two-source extractors with parameters that are strong
enough to imply non-malleable codes of rate arbitrarily close to 1/5 in the split-
state model.

Explicit construction of (ordinary) two-source extractors and closely-related
objects is a well-studied problem in the literature and an abundance of explicit
constructions for this problem is known2 (see, e.g., [2,3,7,17,20,21]). The problem
becomes increasingly challenging, however, (and remains open to date) when the
entropy rate of the two sources may be noticeably below 1/2. Fortunately, we
show that for construction of constant-rate non-malleable codes in the split-state
model, it suffices to have two-source non-malleable extractors for source entropy
rate .99 and with some output length Ω(n) (against tampering functions with
no fixed points). Thus the infamous “1/2 entropy rate barrier” on two-source
extractors does not concern our particular application.

Furthermore, we note that for seeded non-malleable extractors (which is a
relatively recent notion) there are already a few exciting explicit construc-
tions [9,14,19]3. The closest construction to our application is [9] which is in
fact a two-source non-malleable extractor when the adversary may tamper with
either of the two sources (but not simultaneously both). Moreover, the cod-
ing scheme defined by this extractor (which is the character-sum extractor of
Chor and Goldreich [7]) naturally allows for an efficient encoder and decoder.
Nevertheless, it appears challenging to extend known constructions of seeded
non-malleable extractors to the case when both inputs can be tampered. We
leave explicit constructions of non-malleable two-source extractors, even with
sub-optimal parameters, as an interesting open problem for future work.

2 Preliminaries

2.1 Notation

We use Un for the uniform distribution on {0, 1}n and Un for the random variable
sampled from Un and independently of any existing randomness. For a random
variable X , we denote by D(X) the probability distribution that X is sampled
from. Generally, we will use calligraphic symbols (such as X ) for probability dis-
tributions and the corresponding capital letters (such as X) for related random

2 Several of these constructions are structured enough to easily allow for efficient
sampling of a uniform pre-image from Ext−1(s).

3 [19] also establishes a connection between seeded non-malleable extractors and or-
dinary two-source extractors.
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variables. We useX ∼ X to denote that the random variableX is drawn from the
distribution X . Two distributions X and Y being ε-close in statistical distance is
denoted by X ≈ε Y. We will use (X ,Y) for the product distribution with the two
coordinates independently sampled from X and Y. All unsubscripted logarithms
are taken to the base 2. Support of a discrete random variable X is denoted by
supp(X). A distribution is said to be flat if it is uniform on its support. We use
Õ(·) and Ω̃(·) to denote asymptotic estimates that hide poly-logarithmic factors
in the involved parameter.

2.2 Definitions

In this section, we review the formal definition of non-malleable codes as intro-
duced in [12]. First, we recall the notion of coding schemes.

Definition 2 (Coding schemes). A pair of functions Enc : {0, 1}k → {0, 1}n
and Dec : {0, 1}n → {0, 1}k ∪ {⊥} where k � n is said to be a coding scheme
with block length n and message length k if the following conditions hold.

1. The encoder Enc is a randomized function; i.e., at each call it receives a
uniformly random sequence of coin flips that the output may depend on.
This random input is usually omitted from the notation and taken to be
implicit. Thus for any s ∈ {0, 1}k, Enc(s) is a random variable over {0, 1}n.
The decoder Dec is; however, deterministic.

2. For every s ∈ {0, 1}k, we have Dec(Enc(s)) = s with probability 1.

The rate of the coding scheme is the ratio k/n. A coding scheme is said to have
relative distance δ (or minimum distance δn), for some δ ∈ [0, 1), if for every
s ∈ {0, 1}k the following holds. Let X := Enc(s). Then, for any Δ ∈ {0, 1}n of
Hamming weight at most δn, Dec(X +Δ) =⊥ with probability 1. ��

Before defining non-malleable coding schemes, we find it convenient to define
the following notation.

Definition 3. For a finite set Γ , the function copy : (Γ ∪ {same}) × Γ → Γ is
defined as follows:

copy(x, y) :=

{
x x �= same,

y x = same.
��

The notion of non-malleable coding schemes from [12] can now be rephrased as
follows.

Definition 4 (Non-malleability). A coding scheme (Enc,Dec) with message
length k and block length n is said to be non-malleable with error ε (also called
exact security) with respect to a family F of tampering functions acting on
{0, 1}n (i.e., each f ∈ F maps {0, 1}n to {0, 1}n) if for every f ∈ F there is
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a distribution Df over {0, 1}k ∪ {⊥, same} such that the following holds for all
s ∈ {0, 1}k. Define the random variable S := Dec(f(Enc(s))), and let S′ be
independently sampled from Df . Then, D(S) ≈ε D(copy(S′, s)). ��

Dziembowski et al. [12] also consider the following stronger variation of non-
malleable codes, and show that strong non-malleable codes imply regular non-
malleable codes as in Definition 4.

Definition 5 (Strong non-malleability). A pair of functions as in Defini-
tion 4 is said to be a strong non-malleable coding scheme with error ε with
respect to a family F of tampering functions acting on {0, 1}n if the follow-
ing holds. For any message s ∈ {0, 1}k, let Es := Enc(s), consider the random
variable

Ds :=

{
same if f(Es) = Es,

Dec(f(Es)) otherwise,

and letDf,s := D(Ds). It must be the case that for every pair of distinct messages
s1, s2 ∈ {0, 1}k, Df,s1 ≈ε Df,s2 . ��

Remark 1 (Efficiency of sampling Df ). The original definition of non-malleable
codes in [12] also requires the distribution Df to be efficiently samplable given
oracle access to the tampering function f . It should be noted; however, that
for any non-malleable coding scheme equipped with an efficient encoder and
decoder, it can be shown that the following is a valid and efficiently samplable
choice for the distribution Df (possibly incurring a constant factor increase in
the error parameter): “Let S ∼ Uk, and X := f(Enc(S)). If Dec(X) = S, output
same. Otherwise, output Dec(X).”

Definition 6 (Sub-cube). A sub-cube over {0, 1}n is a set S ⊆ {0, 1}n such
that for some T = {t1, . . . , t�} ⊆ [n] and w = (w1, . . . , w�) ∈ {0, 1}�, S =
{(x1, . . . , xn) ∈ {0, 1}n : xt1 = w1, . . . , xt� = w�}. The � coordinates in T are
said to be frozen and the remaining n− � are said to be random.

Throughout the paper, we use the following notions of limited independence.

Definition 7 (Limited independence of bit strings). A distribution D over
{0, 1}n is said to be �-wise δ-dependent for an integer � > 0 and parameter
δ ∈ [0, 1) if the marginal distribution of D restricted to any subset T ⊆ [n]
of the coordinate positions where |T | � � is δ-close to U|T |. When δ = 0, the
distribution is �-wise independent.

Definition 8 (Limited independence of permutations). The distribution
of a random permutation Π : [n] → [n] is said to be �-wise δ-dependent for an
integer � > 0 and parameter δ ∈ [0, 1) if for every T ⊆ [n] such that |T | � �,
the marginal distribution of the sequence (Π(t) : t ∈ T ) is δ-close to that of
(Π̄(t) : t ∈ T ), where Π̄ : [n]→ [n] is a uniformly random permutation.

We will use the following notion of Linear Error-Correcting Secret Sharing
Schemes (LECSS) as formalized by Dziembowski et al. [12] for their construction
of non-malleable coding schemes against bit-tampering adversaries.
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Definition 9 (LECSS). [12] A coding scheme (Enc,Dec) of block length n
and message length k is a (d, t)-Linear Error-Correcting Secret Sharing Scheme
(LECSS), for integer parameters d, t ∈ [n] if

1. The minimum distance of the coding scheme is at least d,
2. For every message s ∈ {0, 1}k, the distribution of Enc(s) ∈ {0, 1}n is t-wise

independent (as in Definition 7).
3. For every w,w′ ∈ {0, 1}n such that Dec(w) �=⊥ and Dec(w′) �=⊥, we have

Dec(w + w′) = Dec(w) + Dec(w′), where we use bit-wise addition over F2.

3 Existence of Optimal Bit-Tampering Coding Schemes

In this section, we recall the probabilistic construction of non-malleable codes
introduced in [5]. This construction, depicted as Construction 1, is defined with
respect to an integer parameter t > 0 and a distance parameter δ ∈ [0, 1).

– Given: Integer parameters 0 < k � n and integer t > 0 such that t2k � 2n, and
a distance parameter δ � 0.

– Output: A pair of functions Enc : {0, 1}k → {0, 1}n and Dec : {0, 1}n → {0, 1}k,
where Enc may also use a uniformly random seed which is hidden from that
notation, but Dec is deterministic.

– Construction:
1. Let N := {0, 1}n.
2. For each s ∈ {0, 1}k, in an arbitrary order,

• Let E(s) := ∅.
• For i ∈ {1, . . . , t}:

(a) Pick a uniformly random vector w ∈ N .
(b) Add w to E(s).
(c) Let Γ (w) be the Hamming ball of radius δn centered at w. Remove

Γ (w) from N (note that when δ = 0, we have Γ (w) = {w}).
3. Given s ∈ {0, 1}k, Enc(s) outputs an element of E(s) uniformly at random.
4. Given w ∈ {0, 1}n, Dec(s) outputs the unique s such that w ∈ E(s), or ⊥ if

no such s exists.

Construction 1. Probabilistic construction of non-malleable codes in [5]

Non-malleability of the construction (for an appropriate choice of the pa-
rameters) against any bounded-size family of adversaries, and in particular bit-
tampering adversaries, follows from [5]. We derive additional properties of the
construction that are needed for the explicit construction of Section 4. In par-
ticular, we state the following result which is proved in the final version of the
paper.

Lemma 10. Let α > 0 be any parameter. Then, there is an n0=O(log2(1/α)/α)
such that for any n � n0, Construction 1 can be set up so that with probability 1−
3 exp(−n) over the randomness of the construction, the resulting coding scheme
(Enc,Dec) satisfies the following properties:
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1. (Rate) Rate of the code is at least 1− α.
2. (Non-malleability) The code is non-malleable against bit-tampering adver-

saries with error exp(−Ω(αn)).
3. (Cube property) For any sub-cube S ⊆ {0, 1}n of size at least 2, and US ∈
{0, 1}n taken uniformly at random from S, PrUS [Dec(US =⊥)] � 1/2.

4. (Bounded independence) For any message s ∈ {0, 1}k, the distribution of
Enc(s) is exp(−Ω(αn))-close to an Ω(αn)-wise independent distribution with
uniform entries.

5. (Error detection4) Let f : {0, 1}n → {0, 1}n be any bit-tampering adversary
that is neither the identity function nor a constant function. Then, for every
s ∈ {0, 1}k, Pr[Dec(f(Enc(s))) =⊥] � 1/3, where the probability is taken
over the randomness of the encoder.

4 Explicit Construction of Optimal Bit-Tampering
Coding Schemes

In this section, we describe an explicit construction of codes achieving rate close
to 1 that are non-malleable against bit-tampering adversaries. Throughout this
section, we use N to denote the block length of the final code.

4.1 The Construction

At a high level, we combine the following tools in our construction: 1) an in-
ner code C0 (with encoder Enc0) of constant length satisfying the properties
of Lemma 10; 2) an existing non-malleable code construction C1 (with encoder
Enc1) against bit-tampering achieving a possibly low (even sub-constant) rate; 3)
a linear error-correcting secret sharing scheme (LECSS) C2 (with encoder Enc2);
4) an explicit function Perm that, given a uniformly random seed, outputs a
pseudorandom permutation (as in Definition 8) on a domain of size close to N .
Figure 1 depicts how various components are put together to form the final code
construction.

At the outer layer, LECSS is used to pre-code the message. The resulting
string is then divided into blocks, where each block is subsequently encoded by
the inner encoder Enc0. For a “typical” adversary that flips or freezes a pre-
scribed fraction of the bits, we expect many of the inner blocks to be sufficiently
tampered so that many of the inner blocks detect an error when the correspond-
ing inner decoder is called. However, this ideal situation cannot necessarily be
achieved if the fraction of global errors is too small, or if too many bits are
frozen by the adversary (in particular, the adversary may freeze all but few of the
blocks to valid inner codewords). In this case, we rely on distance and bounded
independence properties of LECSS to ensure that the outer decoder, given the
tampered information, either detects an error or produces a distribution that is
independent of the source message.

4 This property is a corollary of non-malleability, cube property and bounded inde-
pendence.
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A problem with the above approach is that the adversary knows the location
of various blocks, and may carefully design a tampering scheme that, for exam-
ple, freezes a large fraction of the blocks to valid inner codewords and leaves
the rest of the blocks intact. To handle adversarial strategies of this type, we
permute the final codeword using the pseudorandom permutation generated by
Perm, and include the seed in the final codeword. Doing this has the effect of
randomizing the action of the adversary, but on the other hand creates the prob-
lem of protecting the seed against tampering. In order to solve this problem, we
use the sub-optimal code C1 to encode the seed and prove in the analysis that
non-malleability of the code C1 can be used to make the above intuitions work.

Π ∈ Sn

CC1 ∈ {0, 1}B C2 ∈ {0, 1}B · · · Cnb ∈ {0, 1}B

C′ ∈ {0, 1}n = {0, 1}n2B/b

Z′ ∈ {0, 1}γ1n=n1

S′
1 ∈ {0, 1}b S′

2 ∈ {0, 1}b · · · S′
nb

∈ {0, 1}b

Enc0
Enc0 · · · Enc0

Enc2 : {0, 1}k → {0, 1}n2

Message: s ∈ {0, 1}k = {0, 1}k2

((δ2n2, t2 = γ′
2n2)-LECSS, rate = 1− γ2)

(rate = b/B

= 1− γ0)

Z ∼ Uγ1rn=k1

Perm

Enc1

(rate = r,

�-wise

δ-dependent

error = ε1)

Fig. 1. Schematic description of the encoder Enc from our explicit construction

The Building Blocks. In the construction, we use the following building
blocks, with some of the parameters to be determined later in the analysis.

1. An inner coding scheme C0 = (Enc0,Dec0) with rate 1−γ0 (for an arbitrarily
small parameter γ0 > 0), some block length B, and message length b =
(1 − γ0)B. We assume that C0 is an instantiation of Construction 1 and
satisfies the properties promised by Lemma 10.

2. A coding scheme C1 = (Enc1,Dec1) with rate r > 0 (where r can in general be
sub-constant), block length n1 := γ1n (where n is defined later), and message
length k1 := γ1rn, that is non-malleable against bit-tampering adversaries
with error ε1. Without loss of generality, assume that Dec1 never outputs ⊥
(otherwise, identify ⊥ with an arbitrary fixed message; e.g., 0k). The non-
malleable code C1 need not be strong.
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3. A linear error-correcting secret sharing (LECSS) scheme C2 = (Enc2,Dec2)
(as in Definition 9) with message length k2 := k, rate 1 − γ2 (for an arbi-
trarily small parameter γ2 > 0) and block length n2. We assume that C2
is a (δ2n2, t2 := γ′

2n2)-linear error-correcting secret sharing scheme (where
δ2 > 0 and γ′

2 > 0 are constants defined by the choice of γ2). Since b is a con-
stant, without loss of generality assume that b divides n2, and let nb := n2/b
and n := n2B/b.

4. A polynomial-time computable mapping Perm : {0, 1}k1 → Sn, where Sn
denotes the set of permutations on [n]. We assume that Perm(Uk1) is an
�-wise δ-dependent permutation (as in Definition 8, for parameters � and δ.
In fact, it is possible to achieve δ � exp(−�) and � = �γ1rn/ logn� for some
constant γ > 0. Namely, we may use the following result due to Kaplan,
Naor and Reingold [18]:

Theorem 11. [18] For every integers n, k1 > 0, there is an explicit function
Perm : {0, 1}k1 → Sn computable in worst-case polynomial-time (in k1 and
n) such that Perm(Uk1) is an �-wise δ-dependent permutation, where � =
�k1/ logn� and δ � exp(−�).

The Encoder. Let s ∈ {0, 1}k be the message that we wish to encode. The
encoder generates the encoded message Enc(s) according to the following proce-
dure.

1. Let Z ∼ Uk1 and sample a random permutation Π : [n] → [n] by letting
Π := Perm(Z). Let Z ′ := Enc1(Z) ∈ {0, 1}γ1n.

2. Let S′ = Enc2(s) ∈ {0, 1}n2 be the encoding of s using the LECSS code C2.
3. Partition S′ into blocks S′

1, . . . , S
′
nb
, each of length b, and encode each block

independently using C0 so as to obtain a string C = (C1, . . . , Cnb
) ∈ {0, 1}n.

4. Let C′ := Π(C) be the string C after its n coordinates are permuted by Π .
5. Output Enc(s) := (Z ′, C′) ∈ {0, 1}N , where N := (1+ γ1)n, as the encoding

of s.

A schematic description of the encoder summarizing the involved parameters
is depicted in Figure 1.

The Decoder. We define the decoder Dec(Z̄ ′, C̄′) as follows:

1. Compute Z̄ := Dec1(Z̄ ′).
2. Compute the permutation Π̄ : [n]→ [n] defined by Π̄ := Perm(Z̄).
3. Let C̄ ∈ {0, 1}n be the permuted version of C̄′ according to Π̄−1.
4. Partition C̄ into n1/b blocks C̄1, . . . , C̄nb

of size B each (consistent to the
way that the encoder does the partitioning of C̄).

5. Call the inner code decoder on each block, namely, for each i ∈ [nb] compute
S̄′

i := Dec0(C̄i). If S̄′
i =⊥ for any i, output ⊥ and return.

6. Let S̄′ = (S̄′
1, . . . , S̄′

nb
) ∈ {0, 1}n2. Compute S̄ := Dec2(S̄′), where S̄ =⊥ if

S̄′ is not a codeword of C2. Output S̄.
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Remark 2. As in the classical variation of concatenated codes of Forney [13] due
to Justesen [16], the encoder described above can enumerate a family of inner
codes instead of one fixed code in order to eliminate the exhaustive search for
a good inner code C0. In particular, one can consider all possible realizations of
Construction 1 for the chosen parameters and use each obtained inner code to
encode one of the nb inner blocks. If the fraction of good inner codes (i.e., those
satisfying the properties listed in Lemma 10) is small enough (e.g., 1/nΩ(1)), our
analysis still applies.

In the following theorem, we prove that the above construction is indeed a
coding scheme that is non-malleable against bit-tampering adversaries with rate
arbitrarily close to 1. Proof of the theorem appears in Section 4.3.

Theorem 12. For every γ0 > 0, there is a γ′
0 = γ

O(1)
0 and N0 = O(1/γ

O(1)
0 )

such that for every integer N � N0, the following holds5. The pair (Enc,Dec)
defined in Section 4.1 can be set up to be a strong non-malleable coding scheme
against bit-tampering adversaries, achieving block length N , rate at least 1− γ0
and error ε � ε1 + 3 exp

(
−Ω

( γ′
0rN

log3 N

))
, where r and ε1 are respectively the rate

and the error of the assumed non-malleable coding scheme C1. ��

4.2 Instantiations

We present two possible choices for the non-malleable code C1 based on existing
constructions. The first construction, due to Dziembowski et al. [12], is a Monte
Carlo result that is summarized below.

Theorem 13. [12, Theorem 4.2] For every integer n > 0, there is an efficient
coding scheme C1 of block length n, rate at least .18, that is non-malleable against
bit-tampering adversaries achieving error ε = exp(−Ω(n)). Moreover, there is
an efficient randomized algorithm that, given n, outputs a description of such a
code with probability at least 1− exp(−Ω(n)).

More recently, Aggarwal et al. [1] construct an explicit coding scheme which
is non-malleable against the much more general class of split-state adversaries.
However, this construction achieves inferior guarantees than the one above in
terms of the rate and error. Below we rephrase this result restricted to bit-
tampering adversaries.

Theorem 14. [1, implied by Theorem 5] For every integer k > 0 and ε > 0,
there is an efficient and explicit6 coding scheme C1 of message length k that
is non-malleable against bit-tampering adversaries achieving error at most ε.

5 We can extend the construction to arbitrary block lengths N by standard padding
techniques and observing that the set of block lengths for which construction of
Figure 1 is defined is dense enough to allow padding without affecting the rate.

6 To be precise, explicitness is guaranteed assuming that a large prime p = exp(Ω̃(k+
log(1/ε))) is available.
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Moreover, the block length n of the coding scheme satisfies n = Õ((k+log(1/ε))7).
By choosing ε := exp(−k), we see that we can have ε = exp(−Ω̃(n1/7)) while the
rate r of the code satisfies r = Ω̃(n−6/7).

By instantiating Theorem 12 with the Monte Carlo construction of Theo-
rem 13, we arrive at the following corollary.

Corollary 15. For every integer n > 0 and every positive parameter γ0 =
Ω(1/(logn)O(1)), there is an efficient coding scheme (Enc,Dec) of block length
n and rate at least 1− γ0 such that the coding scheme is strongly non-malleable
against bit-tampering adversaries, achieving error at most exp(−Ω̃(n)), More-
over, there is an efficient randomized algorithm that, given n, outputs a descrip-
tion of such a code with probability at least 1− exp(−Ω(n)).

If, instead, we instantiate Theorem 12 with the construction of Theorem 14,
we obtain the following strong non-malleable extractor (even though the con-
struction of [1] is not strong).

Corollary 16. For every integer n > 0 and every positive parameter γ0 =
Ω(1/(logn)O(1)), there is an explicit and efficient coding scheme (Enc,Dec) of
block length n and rate at least 1−γ0 such that the coding scheme is strongly non-
malleable against bit-tampering adversaries and achieves error upper bounded by
exp(−Ω̃(n1/7)). ��

4.3 Proof of Theorem 12

It is clear that, given (Z ′, C′), the decoder can unambiguously reconstruct the
message s; that is, Dec(Enc(s)) = s with probability 1. Thus, it remains to
demonstrate non-malleability of Enc(s) against bit-tampering adversaries.

Fix any such adversary f : {0, 1}N → {0, 1}N . The adversary f defines the
following partition of [N ]:

– Fr ⊆ [N ]; the set of positions frozen to either zero or one by f .
– Fl ⊆ [N ] \ Fr; the set of positions flipped by f .
– Id = [N ] \ (Fr ∪ Fl); the set of positions left unchanged by f .

Since f is not the identity function (otherwise, there is nothing to prove), we
know that Fr ∪ Fl �= ∅.

We use the notation used in the description of the encoder Enc and decoder
Dec for various random variables involved in the encoding and decoding of the
message s. In particular, let (Z̄ ′, C̄′) = f(Z ′, C′) denote the perturbation of
Enc(s) by the adversary, and let Π̄ := Perm(Dec1(Z̄ ′)) be the induced pertur-
bation of Π as viewed by the decoder Dec. In general Π and Π̄ are correlated
random variables, but independent of the remaining randomness used by the
encoder.

We first distinguish three cases and subsequently show that the analysis of
these cases suffices to guarantee non-malleability in general. The first case con-
siders the situation where the adversary freezes too many bits of the encoding.
The remaining two cases can thus assume that a sizeable fraction of the bits are
not frozen to fixed values.
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Case 1: Too Many Bits Are Frozen by the Adversary

First, assume that f freezes at least n−t2/b of the n bits of C′. In this case, show
that the distribution of Dec(f(Z ′, C′)) is always independent of the message s
and thus the non-malleability condition of Definition 5 is satisfied for the chosen
f . In order to achieve this goal, we rely on bounded independence property of
the LECSS code C2. We remark that a similar technique has been used in [12] for
their construction of non-malleable codes (and for the case where the adversary
freezes too many bits).

Observe that the joint distribution of (Π, Π̄) is independent of the message s.
Thus it suffices to show that conditioned on any realization Π = π and Π̄ = π̄,
for any fixed permutations π and π̄, the conditional distribution of Dec(f(Z ′, C′))
is independent of the message s.

We wish to understand how, with respect to the particular permutations
defined by π and π̄, the adversary acts on the bits of the inner code blocks
C = (C1, . . . , Cnb

).
Consider the set T ⊆ [nb] of the blocks of C = (C1, . . . , Cnb

) (as defined in
the algorithm for Enc) that are not completely frozen by f (after permuting the
action of f with respect to the fixed choice of π). We know that |T | � t2/b.

Let S′
T be the string S′ = (S′

1, . . . , S
′
nb
) (as defined in the algorithm for Enc)

restricted to the blocks defined by T ; that is, S′
T := (S′

i)i∈T . Observe that the
length of S′

T is at most b|T | � t2. From the t2-wise independence property of
the LECSS code C2, and the fact that the randomness of Enc2 is independent of
(Π, Π̄), we know that S′

T is a uniform string, and in particular, independent of
the original message s. Let CT be the restriction of C to the blocks defined by T ;
that is, CT := (Ci)i∈T . Since CT is generated from ST (by applying the encoder
Enc0 on each block, whose randomness is independent of (Π, Π̄)), we know that
the distribution of CT is independent of the original message s as well.

Now, observe that Dec(f(Z ′, C′)) is only a function of T , CT , the tampering
function f and the fixed choices of π and π̄ (since the bits of C that are not picked
by T are frozen to values determined by the tampering function f), which are all
independent of the message s. Thus in this case, Dec(f(Z ′, C′)) is independent
of s as well. This suffices to prove non-malleability of the code in this case.
However, in order to guarantee strong non-malleability, we need the following
further claim.

Claim. Suppose t2 � n2/2. Then, regardless of the choice of the message s,
Pr[f(Z ′, C′) = (Z ′, C′)] = exp(−Ω(γ0n)) =: ε′1.

Proof. We upper bound the probability that the adversary leaves C′ unchanged.
Consider the action of f on C = (C1, . . . , Cnb

) (which is a permutation of how
f acts on each bit according to the realization of Π). Recall that all but at
most t2/b of the bits of C (and hence, all but at most t2/b of the nb blocks of
C) are frozen to 0 or 1 by f . Let I ⊆ [nb] denote the set of blocks of C that
are completely frozen by f . We can see that |I| � nb/2 by the assumption that
t2 � n2/2 = nbb/2.
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In the sequel, we fix the realization of S′ to any fixed string. Regardless of
this conditioning, the blocks of C picked by I are independent, and each block is
Ω(γ0B)-wise, exp(−Ω(γ0B))-dependent by property 4 of Lemma 10. It follows
that for each block i ∈ I, the probability that Ci coincides with the frozen value
of the ith block as defined by f is bounded by exp(−Ω(γ0B)). Since the blocks
of C picked by I are independent, we can amplify this probability and conclude
that the probability that f leaves (Ci)i∈I (and consequently, (Z ′, C′)) unchanged
is at most

exp(−Ω(γ0B|I|)) = exp(−Ω(γ0Bnb/2)) = exp(−Ω(γ0n)) .

Consider the distribution Df,s in Definition 5. From Claim 4.3, it follows
that the probability mass assigned to same for this distribution is at most ε′1 =
exp(−Ω(γ0n)) for every s, which implies

Df,s ≈ε′1
D(Dec(f(Enc(s)))),

since the right hand side distribution is simply obtained from Df,s by moving the
probability mass assigned to same to s. Since we have shown that the distribution
of Dec(f(Enc(s))) is the same for every message s, it follows that for every
s, s′ ∈ {0, 1}k,

Df,s ≈2ε′1
Df,s′ ,

which proves strong non-malleability in this case.

Case 2: The Adversary Does Not Alter Π

In this case, we assume that Π = Π̄, both distributed according to Perm(Uk1)
and independently of the remaining randomness used by the encoder. This situ-
ation in particular occurs if the adversary leaves the part of the encoding corre-
sponding to Z ′ completely unchanged. Our goal is to upper bound the probability
that Dec does not output ⊥ under the above assumptions. We furthermore as-
sume that Case 1 does not occur; i.e., more than t2/b = γ′

2n2/b bits of C′ are
not frozen by the adversary.

To analyze this case, we rely on bounded independence of the permutation Π .
The effect of the randomness of Π is to prevent the adversary from gaining any
advantage of the fact that the inner code independently acts on the individual
blocks.

Let Id′ ⊆ Id be the positions of C′ that are left unchanged by f . We know
that |Id′∪Fl| > t2/b. Moreover, the adversary freezes the bits of C corresponding
to the positions in Π−1(Fr) and either flips or leaves the rest of the bits of C
unchanged.

If |Id′| > n−δ2nb, all but less than δ2nb of the inner code blocks are decoded to
the correct values by the decoder. Thus, the decoder correctly reconstructs all but
less than b(n−|Id′|) � δ2n2 bits of S′. Now, the distance property of the LECSS
code C2 ensures that the remaining errors in S′ are detected by the decoder, and
thus, in this case the decoder always outputs ⊥; a value that is independent of
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the original message s. Thus in the sequel we can assume that |Fr∪Fl| � δ2n2/b.
Moreover, we fix randomness of the LECSS C2 so that S′ becomes a fixed string.
Recall that C1, . . . , Cnb

are independent random variables, since every call of the
inner encoder Enc0 uses fresh randomness.

Since Π = Π̄ , the decoder is able to correctly identify positions of all the
inner code blocks determined by C. In other words, we have

C̄ = f ′(C),

where f ′ denotes the adversary obtained from f by permuting its action on the
bits as defined by Π−1; that is,

f ′(x) := Π−1(f(Π(x))).

Let i ∈ [nb]. We consider the dependence between Ci and its tampering C̄i,
conditioned on the knowledge of Π on the first i−1 blocks of C. Let C(j) denote
the jth bit of C, so that the ith block of C becomes (C(1+(i−1)B), . . . , C(iB)).
For the moment, assume that δ = 0; that is, Π is exactly a �-wise independent
permutation.

Suppose iB � �, meaning that the restriction of Π on the ith block (i.e.,
(Π(1+(i−1)B), . . . , Π(iB)) conditioned on any fixing of (Π(1), . . . , Π((i−1)B))
exhibits the same distribution as that of a uniformly random permutation.

We define events E1 and E2 as follows. E1 is the event that Π(1 + (i− 1)B) /∈
Id′, and E2 is the event that Π(2 + (i − 1)B) /∈ Fr. That is, E1 occurs when
the adversary does not leave the first bit of the ith block of C intact, and E2
occurs when the adversary does not freeze the second bit of the ith block. We
are interested in lower bounding the probability that both E1 and E2 occur,
conditioned on any particular realization of (Π(1), . . . , Π((i− 1)B)).

Suppose the parameters are set up so that

� � 1

2
min{δ2n2/b, γ

′
2n2/b}. (1)

Under this assumption, even conditioned on any fixing of (Π(1), . . . , Π((i −
1)B)), we can ensure that

Pr[E1] � δ2n2/(2bn),

and
Pr[E2|E1] � γ′

2n2/(2bn),

which together imply

Pr[E1 ∧ E2] � δ2γ
′
2

( n2

2bn

)2
=: γ′′

2 . (2)

We let γ′′
2 to be the right hand side of the above inequality.

In general, when the random permutation is �-wise δ-dependent for δ � 0, the
above lower bound can only be affected by δ. Thus, under the assumption that

δ � γ′′
2 /2, (3)

we may still ensure that
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Pr[E1 ∧ E2] � γ′′
2 /2. (4)

Let Xi ∈ {0, 1} indicate the event that Dec0(C̄i) =⊥. We can write

Pr[Xi = 1] � Pr[Xi = 1|E1 ∧ E2] Pr[E1 ∧ E2] � (γ′′
2 /2)Pr[Xi = 1|E1 ∧ E2],

where the last inequality follows from (4). However, by property 5 of Lemma 10
that is attained by the inner code C0, we also know that

Pr[Xi = 1|E1 ∧ E2] � 1/3,

and therefore it follows that

Pr[Xi = 1] � γ′′
2 /6. (5)

Observe that by the argument above, (5) holds even conditioned on the realiza-
tion of the permutation Π on the first i − 1 blocks of C. By recalling that we
have fixed the randomness of Enc2, and that each inner block is independently
encoded by Enc0, we can deduce that, letting X0 := 0,

Pr[Xi = 1|X0, . . . , Xi−1] � γ′′
2 /6. (6)

Using the above result for all i ∈ {1, . . . , )�/B*}, we conclude that

Pr[Dec(Z̄ ′, C̄′) �=⊥] � Pr[X1 = X2 = · · · = X��/B� = 0] (7)

�
(
1− γ′′

2 /6
)��/B�

, (8)

where (7) holds since the left hand side event is a subset of the right hand side
event, and (8) follows from (6) and the chain rule.

Case 3: The Decoder Estimates an Independent Permutation

In this case, we consider the event where Π̄ attains a particular value π̄. Sup-
pose it so happens that under this conditioning, the distribution of Π remains
unaffected; that is, Π̄ = π and Π ∼ Perm(Uk1 ). This situation may occur if the
adversary completely freezes the part of the encoding corresponding to Z ′ to a
fixed valid codeword of C1. Recall that the random variable Π is determined by
the random string Z and that it is independent of the remaining randomness
used by the encoder Enc. Similar to the previous case, our goal is to upper bound
the probability that Dec does not output ⊥. Furthermore, we can again assume
that Case 1 does not occur; i.e., more than t2/b bits of C′ are not frozen by the
adversary. For the analysis of this case, we can fix the randomness of Enc2 and
thus assume that S′ is fixed to a particular value.

As before, our goal is to determine how each block Ci of the inner code is
related to its perturbation C̄i induced by the adversary. Recall that

C̄ = π̄−1(f(Π(C))).
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Since f is fixed to an arbitrary choice only with restrictions on the number
of frozen bits, without loss of generality we can assume that π̄ is the identity
permutation (if not, permute the action of f accordingly), and therefore, C̄ ′ = C̄
(since C̄′ = π̄(C̄)), and

C̄ = f(Π(C)).

For any τ ∈ [nb], let fτ : {0, 1}B → {0, 1}B denote the restriction of the adversary
to the positions included in the τth block of C̄.

Assuming that � � t2 (which is implied by (1)), let T ⊆ [n] be any set of size
)�/B* � )t2/B* � t2/b of the coordinate positions of C′ that are either left
unchanged or flipped by f . Let T ′ ⊆ [nb] (where |T ′| � |T |) be the set of blocks
of C̄ that contain the positions picked by T . With slight abuse of notation, for
any τ ∈ T ′, denote by Π−1(τ) ⊆ [n] the set of indices of the positions belonging
to the block τ after applying the permutation Π−1 to each one of them. In other
words, C̄τ (the τth block of C̄) is determined by taking the restriction of C to
the bits in Π−1(τ) (in their respective order), and applying fτ on those bits
(recall that for τ ∈ T ′ we are guaranteed that fτ does not freeze all the bits).

In the sequel, our goal is to show that with high probability, Dec(Z̄, C̄′) =⊥.
In order to do so, we first assume that δ = 0; i.e., that Π is exactly an �-
wise independent permutation. Suppose T ′ = {τ1, . . . , τ|T ′|}, and consider any
i ∈ |T ′|.

We wish to lower bound the probability that Dec0(C̄τi) =⊥, conditioned on
the knowledge of Π on the first i−1 blocks in T ′. Subject to the conditioning, the
values of Π becomes known on up to (i−1)B � (|T ′|−1)B � �−B points. Since
Π is �-wise independent, Π on the B bits belonging to the ith block remains
B-wise independent. Now, assuming

� � n/2, (9)

we know that even subject to the knowledge of Π on any � positions of C, the
probability that a uniformly random element within the remaining positions falls
in a particular block of C is at most B/(n− �) � 2B/n.

Now, for j ∈ {2, . . . , B}, consider the jth position of the block τi in T ′. By
the above argument, the probability that Π−1 maps this element to a block of
C chosen by any of the previous j − 1 elements is at most 2B/n. By a union
bound on the choices of j, with probability at least

1− 2B2/n,

the elements of the block τi all land in distinct blocks of C by the permutation
Π−1. Now we observe that if δ > 0, the above probability is only affected by at
most δ. Moreover, if the above distinctness property occurs, the values of C at
the positions in Π−1(τ) become independent random bits; since Enc uses fresh
randomness upon each call of Enc0 for encoding different blocks of the inner code
(recall that the randomness of the first layer using Enc2 is fixed).

Recall that by the bounded independence property of C0 (i.e., property 4 of
Lemma 10), each individual bit of C is exp(−Ω(γ0B))-close to uniform. There-
fore, with probability at least 1 − 2B2/n − δ (in particular, at least 7/8 when
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n � 32B2 (10)

and assuming δ � 1/16) we can ensure that the distribution of C restricted
to positions picked by Π−1(τ) is O(B exp(−Ω(γ0B)))-close to uniform, or in
particular (1/4)-close to uniform when B is larger than a suitable constant. If
this happens, we can conclude that distribution of the block τi of C̄ is (1/4)-close
to a sub-cube with at least one random bit (since we have assumed that τ ∈ T ′

and thus f does not fix all the bit of the τth block). Now, the cube property of
C0 (i.e., property 3 of Lemma 10) implies that

Pr
Enc0

[Dec0(C̄τi) �=⊥ |Π(τ1), . . . , Π(τi−1)] � 1/2 + 1/4 = 3/4,

where the extra term 1/4 accounts for the statistical distance of C̄τi from being
a perfect sub-cube.

Finally, using the above probability bound, and running i over all the blocks
in T ′, and recalling the assumption that C̄ = C̄′, we deduce that

Pr[Dec(Z̄ ′, C̄′) �=⊥] � (7/8)|T
′| � exp(−Ω(�/B2)), (11)

where the last inequality follows from the fact that |T ′| � )�/b*/B.

The General Case and Setting Up the Parameters

Recall that Case 1 eliminates the situation in which the adversary freezes too
many of the bits. For the remaining cases, Cases 2 and 3 consider the special
situations where the two permutations Π and Π̄ used by the encoder and the
decoder either completely match or are completely independent. However, in
general we may not reach any of the two cases. Fortunately, the fact that the
code C1 encoding the permutation Π is non-malleable ensure that we always end
up with a combination of the Case 2 and 3. In other words, in order to analyze
any event depending on the joint distribution of (Π, Π̄), it suffices to consider
the two special cases where Π is always the same as Π̄, or when Π and Π̄ are
fully independent. Formal details of this argument, as well as the appropriate
setting of the parameters leading to Theorem 12, appear in the full version of
the paper.

5 Construction of Non-Malleable Codes Using
Non-Malleable Extractors

In this section, we introduce the notion of seedless non-malleable extractors that
extends the existing definition of seeded non-malleable extractors (as defined in
[10]) to sources that exhibit structures of interest. This is similar to how classical
seedless extractors are defined as an extension of seeded extractors to sources
with different kinds of structure7.

7 For a background on standard seeded and seedless extractors, see [4, Chapter 2].



460 M. Cheraghchi and V. Guruswami

Furthermore, we obtain a reduction from the non-malleable variation of two-
source extractors to non-malleable codes for the split-state model. Dziembowski
et al. [11] obtain a construction of non-malleable codes encoding one-bit messages
based on a variation of strong (standard) two-source extractors. This brings up
the question of whether there is a natural variation of two-source extractors
that directly leads to non-malleable codes for the split-state model encoding
messages of arbitrary lengths (and ideally, achieving constant rate). Our notion
of non-malleable two-source extractors can be regarded as a positive answer to
this question.

Our reduction does not imply a characterization of non-malleable codes using
extractors, and non-malleable codes for the split-state model do not necessarily
correspond to non-malleable extractors (since those implied by our reduction
achieve slightly sub-optimal rates). However, since seeded non-malleable extrac-
tors (as studied in the line of research starting [10]) are already subject of in-
dependent interest, we believe our characterization may be seen as a natural
approach (albeit not the only possible approach) for improved constructions of
non-malleable codes. Furthermore, the definition of two-source non-malleable
extractors (especially the criteria described in Remark 3 below) is somewhat
cleaner and easier to work with than then definition of non-malleable codes
(Definition 4) that involves subtleties such as the extra care for the “same”
symbol.

As discussed in Section 5.2, our reduction can be modified to obtain non-
malleable codes for different classes of adversaries (by appropriately defining the
family of extractors based on the tampering family being considered).

5.1 Seedless Non-malleable Extractors

First, we introduce the following notion of non-malleable functions that is defined
with respect to a function and a distribution over its inputs. As it turns out,
non-malleable “extractor” functions with respect to the uniform distribution
and limited families of adversaries are of particular interest for construction of
non-malleable codes.

Definition 17. A function g : Σ → Γ is said to be non-malleable with error ε
with respect to a distribution X over Σ and a tampering function f : Σ → Σ if
there is a distribution D over Γ ∪ {same} such that for an independent Y ∼ D,
D(g(X), g(f(X))) ≈ε D(g(X), copy(Y, g(X))).

Using the above notation, we may naturally define seedless non-malleable
extractors. Roughly speaking, a seedless non-malleable extractor is a seedless
extractor (in the traditional sense) that is also a non-malleable function with
respect to a certain class of tampering functions. The general definition is de-
ferred to the final version of the paper. However, for our applications we are
particularly interested in the special case of two-source non-malleable extractors
which is defined below.
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Definition 18. A function NMExt : {0, 1}n× {0, 1}n → {0, 1}m is a two-source
non-malleable (k1, k2, ε)-extractor if, for every product distribution (X ,Y) over
{0, 1}n×{0, 1}n where X and Y have min-entropy at least k1 and k2, respectively,
and for any arbitrary functions f1 : {0, 1}n → {0, 1}n and f2 : {0, 1}n → {0, 1}n,
the following hold.

1. NMExt is a two-source extractor for (X ,Y); that is, NMExt(X ,Y) ≈ε Um.
2. NMExt is a non-malleable function with error ε for the distribution (X ,Y)

and with respect to the tampering function (X,Y ) !→ (f1(X), f2(Y )).

The theorem below, proved in the full version, shows that non-malleable two-
source extractors exist and in fact a random function is w.h.p. such an extractor.

Theorem 19. Let NMExt : {0, 1}n × {0, 1}n → {0, 1}m be a uniformly random
function. For any γ, ε > 0 and parameters k1, k2 � n, with probability at least
1 − γ, the function NMExt is a two-source non-malleable (k1, k2, ε)-extractor
provided that 2m � k1+k2−3 log(1/ε)− log log(1/γ), and min{k1, k2} � logn+
log log(1/γ) +O(1). ��

In general, a tampering function may have fixed points and act as the iden-
tity function on a particular set of inputs. Definitions of non-malleable codes,
functions, and extractors all handle the technicalities involved with such fixed
points by introducing a special symbol “same”. Nevertheless, it is more conve-
nient to deal with adversaries that are promised to have no fixed points. For this
restricted model, the definition of two-source non-malleable extractors can be
modified as follows. We call extractors satisfying the less stringent requirement
relaxed two-source non-malleable extractors. Formally, the relaxed definition is
as follows.

Definition 20. A function NMExt : {0, 1}n × {0, 1}n → {0, 1}m is a relaxed
two-source non-malleable (k1, k2, ε)-extractor if, for every product distribution
(X ,Y) over {0, 1}n×{0, 1}n where X and Y have min-entropy at least k1 and k2,
respectively, the following holds. Let f1 : {0, 1}n×{0, 1}n and f2 : {0, 1}n×{0, 1}n
be functions such that for every x ∈ {0, 1}n, f1(x) �= x and f2(x) �= x. Then, for
(X,Y ) ∼ (X ,Y),

1. NMExt is a two-source extractor for (X ,Y); that is, NMExt(X ,Y) ≈ε Um.
2. NMExt is a non-malleable function with error ε for the distribution of (X,Y )

and with respect to the following three tampering functions: (X,Y ) !→
(f1(X), Y ); (X,Y ) !→ (X, f2(Y )); and (X,Y ) !→ (f1(X), f2(Y )).

Remark 3. In order to satisfy the requirements of Definition 20, it suffices (but
not necessary) to ensure

(NMExt(X ,Y),NMExt(f1(X ),Y)) ≈ε (Um,NMExt(f1(X ),Y)),
(NMExt(X ,Y),NMExt(X , f2(Y))) ≈ε (Um,NMExt(X , f2(Y))),

(NMExt(X ,Y),NMExt(f1(X ), f2(Y))) ≈ε (Um,NMExt(f1(X ), f2(Y))).
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The proof of Theorem 19 shows that these stronger requirements (which are
quite similar to the definition of seeded non-malleable extractor in [10]) can be
satisfied with high probability by random functions.

It immediately follows from the definitions that a two-source non-malleable
extractor (according to Definition 18) is a relaxed non-malleable two-source ex-
tractor (according to Definition 20) and with the same parameters. Interestingly,
below we show that the two notions are equivalent up to a slight loss in the pa-
rameters (see the full version for a proof).

Lemma 21. Let NMExt be a relaxed two-source non-malleable (k1−log(1/ε), k2−
log(1/ε), ε)-extractor. Then, NMExt is a two-source non-malleable (k1, k2, 4ε)-
extractor. ��

5.2 From Non-malleable Extractors to Non-malleable Codes

In this section, we present our reduction from non-malleable extractors to non-
malleable codes. For concreteness, we focus on tampering functions in the split-
state model. It is straightforward to extend the reduction to different families of
tampering functions, for example:

1. When the adversary divides the input into b � 2 known parts, not necessarily
of the same length, and applies an independent tampering function on each
block. In this case, a similar reduction from non-malleable codes to multiple-
source non-malleable extractors may be obtained.

2. When the adversary behaves as in the split-state model, but the choice of
the two parts is not known in advance. In this case, the needed extractor
is a non-malleable variation of the mixed-sources extractors studied by Raz
and Yehudayoff [22].

We note that Theorem 22 below (and similar theorems that can be obtained
for the other examples above) only require non-malleable extraction from the
uniform distribution. However, the reduction from arbitrary tampering func-
tions to ones without fixed points (e.g., Lemma 21) strengthens the entropy
requirement of the source while imposing a structure on the source distribution
which is related to the family of tampering functions being considered.

Theorem 22. Let NMExt : {0, 1}n × {0, 1}n → {0, 1}k be a two-source non-
malleable (n, n, ε)-extractor. Define a coding scheme (Enc,Dec) with message
length k and block length 2n as follows. The decoder Dec is defined by Dec(x) :=
NMExt(x). The encoder, given a message s, outputs a uniformly random string
in NMExt−1(s). Then, the pair (Enc,Dec) is a non-malleable code with error
ε′ := ε(2k + 1) for the family of split-state adversaries.

Proof. Deferred to the full version of the paper.

We can now derive the following corollary, which is the main result of this
section, using Lemma 21 and Theorem 22 (see the full version for a proof).
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Corollary 23. Let NMExt : {0, 1}n× {0, 1}n → {0, 1}m be a relaxed two-source
non-malleable (k1, k2, ε)-extractor, where m = Ω(n), n − k1 = Ω(n), n − k2 =
Ω(n), and ε = exp(−Ω(m)). Then, there is a k = Ω(n) such that the following
holds. Define a coding scheme (Enc,Dec) with message length k and block length
2n (thus rate Ω(1)) as follows. The decoder Dec, given x ∈ {0, 1}2n, outputs the
first k bits of NMExt(x). The encoder, given a message x, outputs a uniformly
random string in Dec−1(x). Then, the pair (Enc,Dec) is a non-malleable code
with error exp(−Ω(n)) for the family of split-state adversaries. ��

Finally, using the above tools and the existence result of Theorem 19, we con-
clude that there are non-malleable two-source extractors defining coding schemes
in the split-state model and achieving constant rates; in particular, rates arbi-
trarily close to 1/5.

Corollary 24. For every α > 0, there is a choice of NMExt in Theorem 22 that
makes (Enc,Dec) a non-malleable coding scheme against split-state adversaries
achieving rate 1/5− α and error exp(−Ω(αn)).

Proof. First, for some α′, we use Theorem 19 to show that if NMExt : {0, 1}n ×
{0, 1}n → {0, 1}k is randomly chosen, with probability at least .99 it is a
two-source non-malleable (n, n, 2−k(1+α′))-extractor, provided that k � n −
(3/2) log(1/ε) − O(1) = n − (3/2)k(1 + α′) − O(1), which can be satisfied
for some k � (2/5)n − Ω(α′n). Now, we can choose α′ = Ω(α) so as to en-
sure that k � 2n(1 − α) (thus, keeping the rate above 1 − α) while having
ε � 2−k exp(−Ω(αn)). We can now apply Theorem 22 to attain the desired
result.
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Abstract. Non-malleable codes are a natural relaxation of error cor-
recting/detecting codes that have useful applications in the context of
tamper resilient cryptography. Informally, a code is non-malleable if an
adversary trying to tamper with an encoding of a given message can
only leave it unchanged or modify it to the encoding of a completely
unrelated value. This paper introduces an extension of the standard
non-malleability security notion – so-called continuous non-malleability
– where we allow the adversary to tamper continuously with an encoding.
This is in contrast to the standard notion of non-malleable codes where
the adversary only is allowed to tamper a single time with an encoding.
We show how to construct continuous non-malleable codes in the com-
mon split-state model where an encoding consist of two parts and the
tampering can be arbitrary but has to be independent with both parts.
Our main contributions are outlined below:
1. We propose a new uniqueness requirement of split-state codes which

states that it is computationally hard to find two codewords X =
(X0, X1) and X ′ = (X0, X

′
1) such that both codewords are valid,

but X0 is the same in both X and X ′. A simple attack shows that
uniqueness is necessary to achieve continuous non-malleability in the
split-state model. Moreover, we illustrate that none of the existing
constructions satisfies our uniqueness property and hence is not se-
cure in the continuous setting.

2. We construct a split-state code satisfying continuous non-malleability.
Our scheme is based on the inner product function, collision-resistant
hashing and non-interactive zero-knowledge proofs of knowledge and
requires an untamperable common reference string.

3. We apply continuous non-malleable codes to protect arbitrary cryp-
tographic primitives against tampering attacks. Previous applica-
tions of non-malleable codes in this setting required to perfectly erase
the entire memory after each execution and required the adversary
to be restricted in memory. We show that continuous non-malleable
codes avoid these restrictions.

Keywords: non-malleable codes, split-state, tamper resilience.

1 Introduction

Physical attacks that target cryptographic implementations instead of breaking
the black-box security of the underlying algorithm are amongst the most severe
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threats for cryptographic systems. A particular important attack on implemen-
tations is the so-called tampering attack. In a tampering attack the adversary
changes the secret key to some related value and observes the effect of such
changes at the output. Traditional black-box security notions do not incorpo-
rate adversaries that change the secret key to some related value; even worse,
as shown in the celebrated work of Boneh et al. [6] already minor changes to
the key suffice for complete security breaches. Unfortunately, tampering attacks
are also rather easy to carry out: a virus corrupting a machine can gain par-
tial control over the state, or an adversary that penetrates the cryptographic
implementation with physical equipment may induce faults into keys stored in
memory.

In recent years, a growing body of work (see [21,22,17,24,1,2,19] and many
more) develop new cryptographic techniques that protect against tampering at-
tacks. Non-malleable codes introduced by Dziembowski, Pietrzak and Wichs [17]
are an important approach to achieve this goal. Intuitively a code is non-malleable
w.r.t. a set of tampering functions T if the message contained in a codeword mod-
ified via a function in T is either the original message, or a completely unrelated
value. Non-malleable codes can be used to protect any cryptographic function-
ality against tampering with the memory. Instead of storing the key in memory,
we store its encoding and decode it each time the functionality wants to accesses
the key. As long as the adversary can only apply tampering functions from the
set T , the non-malleability property guarantees that the (possibly tampered)
decoded value is not related to the original key.

The standard notion of non-malleability considers a one-shot game: the ad-
versary is allowed to tamper a single time with the codeword and obtains the
decoded output. In this work we introduce so-called continuous non-malleable
codes, where non-malleability is guaranteed even if the adversary continuously
applies functions from the set T to the codeword. We show that our new se-
curity notion is not only a natural extension of the standard one-shot notion,
but moreover allows to protect against tampering attacks in important settings
where earlier constructions fall short to achieve security.

Continuous Non-malleable Codes. A non-malleable code consists of two al-
gorithms Code = (Encode,Decode) that satisfy the correctness property
Decode(Encode(x)) = x, for all x ∈ X . To define non-malleability for a func-
tion class T , consider the random variable TamperT,x defined for every function
T ∈ T and any message x ∈ X in the game below:

1. Compute an encoding X ← Encode(x) using the encoding procedure.
2. Apply the tampering function T ∈ T to obtain the tampered codeword

X ′ = T(X).
3. If X ′ = X then return the special symbol same�; otherwise, return

Decode(X ′). Notice that Decode(X ′) may return the special symbol ⊥ in
case the tampered codeword X ′ was invalid.
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A coding scheme Code is said to be (one-shot) non-malleable with respect to
functions in T and message space X , if for every T ∈ T and any two messages
x, y ∈ X the distributions TamperT,x and TamperT,y are indistinguishable.

To define continuous non-malleable codes, we do not fix a single tampering
function T a-priori.1 Instead, we let the adversary repeat step 2 and step 3 from
the above game a polynomial number of times, where in each iteration the adver-
sary can adaptively choose a tampering function Ti ∈ T . We emphasize that this
change of the tampering game allows the adversary to tamper continuously with
the initial encoding X . As shown by Gennaro et al. [21] such a strong security
notion is impossible to achieve without further assumptions. To this end, we rely
on a self-destruct mechanism as used in earlier works on non-malleable codes.
More precisely, when in step 3 the game detects an invalid codeword and returns
⊥ for the first time, then it self-destructs. This is a rather mild assumption as
it can, for instance, be implemented using a single public untamperable bit.

From Non-malleable Codes to Tamper Resilience. As discussed above one main
application of non-malleable codes is to protect cryptographic schemes against
tampering with the secret key [17,24]. Consider a reactive functionality G with
secret state st that can be executed on input m, e.g., G may be the AES with
key st encrypting messages m. Using a non-malleable code earlier work showed
how to transform the functionality (G, st) into a functionality (GCode, X) that
is secure against tampering with X . The transformation compiling (G, st) into
(GCode, X) works as follows. Initially, X is set to X ← Encode(st). Each time
GCode is executed on input m, the transformed functionality reads the encoding
X from memory, decodes it to obtain st = Decode(X) and runs the original
functionality G(st ,m). Finally, it erases the memory and stores the new state
X ← Encode(st). Additionally to executing evaluation queries the adversary
can issue tampering queries Ti ∈ T . A tampering query replaces the current
secret state X with a tampered state X ′ = Ti(X), and the functionality GCode

continues its computation using X ′ as the secret state. Notice that in case of
Decode(X ′) = ⊥ the functionality GCode sets the memory to a dummy value—
resulting essentially in a self-destruct.

The above transformation guarantees continuous tamper resilience even if the
underlying non-malleable code is secure only against one-shot tampering. This
security “boost” is achieved by re-encoding the secret state/key after each exe-
cution of the primitive GCode. As one-shot non-malleability suffices in the above
cryptographic application, one may ask why we need continuous non-malleable
codes. Besides being a natural extension of the standard non-malleability notion,
our new notion has several important applications that we discuss in the next
two paragraphs.

Tamper Resilience Without Erasures. The transformation described above nec-
essarily requires that after each execution the entire content of the memory is
erased. While such perfect erasures may be feasible in some settings, they are

1 Our actual definition is slightly stronger than what is presented next (cf. Section 3).
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rather problematic in the presence of tampering. To illustrate this issue consider
a setting where besides the encoding of a key, the memory also contains other
non-encoded data. In the tampering setting, we cannot restrict the erasure to
just the part that stores the encoding of the key as a tampering adversary may
copy the encoding to some different part of the memory. A simple solution to
this problem is to erase the entire memory, but such an approach is not possible
in most cases: for instance, think of the memory as being the hard-disk of your
computer that besides the encoding of a key stores other important files that
you don’t want to be erased. Notice that this situation is quite different from
the leakage setting, where we also require perfect erasures to achieve continuous
leakage resilience. In the leakage setting, however, the adversary cannot mess
around with the state of the memory by, e.g., copying an encoding of a secret
key to some free space, which makes erasures significantly easier to implement.

One option to prevent the adversary from keeping permanent copies is to
encode the entire state of the memory. Such an approach has, however, the
following drawbacks.

1. It is unnatural: In many cases secret data, e.g., a cryptographic key, is stored
together with non-confidential data. Each time we want to read some small
part of the memory, e.g., the key, we need to decode and re-encode the entire
state—including also the non-confidential data.

2. It is inefficient: Decoding and re-encoding the entire state of the memory
for each access introduces additional overhead and would result in highly
inefficient solutions. This gets even worse as most current constructions of
non-malleable codes are rather inefficient.

3. It does not work in general: Consider a setting where we want to compute
with non-malleable codes in a tamper resilient way (similar in spirit to tam-
per resilient circuits). Clearly, in this setting the memory will store many
independent encodings of different secrets that cannot be erased. Continu-
ous non-malleable codes are hence a first natural step towards non-malleable
computation.

Using our new notion of continuous non-malleable codes we can avoid the above
issues and achieve continuous tamper resilience without using erasures and with-
out relying on inefficient solutions that encode the entire state.

Stateless Tamper Resilient Transformations. To achieve tamper resilience from
one-shot non-malleability we necessarily need to re-encode the state using fresh
randomness. This not only reduces the efficiency of the proposed construction,
but moreover makes the transformation stateful. Using continuous non-malleable
codes we get continuous tamper resilience for free, eliminating the need to refresh
the encoding after each usage. This is in particular useful when the underlying
primitive that we want to protect is stateless itself. Think, for instance, of any
standard block-cipher construction that typically keeps the same key. Using con-
tinuous non-malleable codes the tamper resilient implementation of such state-
less primitives does not need to keep any secret state. We discuss the protection
of stateless primitives in further detail in Section 5.
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1.1 Our Contribution

In this work, we propose the first construction of continuous non-malleable codes
in the split-state model first introduced in the leakage setting [16,13]. Various re-
cent works study the split-state model for non-malleable codes [24,15,1] (see more
details on related work in Section 1.2). In the split-state tampering model, the
codeword consists of two halves X0 and X1 that are stored on two different parts
of the memory. The adversary is assumed to tamper with both parts indepen-
dently, but otherwise can apply any efficiently computable tampering function.
That is, the adversary picks two polynomial-time computable functions T0 and
T1 and replaces the state (X0, X1) with the tampered state (T0(X0),T1(X1)).
Similar to the earlier work of Liu and Lysyanskaya [24] our construction assumes
a public untamperable CRS. Notice that this is a rather mild assumption as the
CRS can be hard-wired into the functionality and is independent of any secret
data.

Continuous Non-malleability of Existing Constructions. The first construction
of (one-shot) split-state non-malleable codes in the standard model was given by
Liu and Lysyanskaya [24]. At a high-level the construction encrypts the input
x with a leakage resilient encryption scheme and generates a non-interactive
zero-knowledge proof of knowledge showing that (a) the public/secret key of the
PKE are valid, and (b) the ciphertext is an encryption of x under the public
key. Then, X0 is set to the secret key while X1 holds the corresponding public
key, the ciphertext and the above described NIZK proof.

Unfortunately, it is rather easy to break the non-malleable code of Liu and
Lysyanskaya in the continuous setting. Recall that our security notion of con-
tinuous non-malleable codes allows the adversary to interact in the following
game. First, we sample a codeword (X0, X1)← Encode(x) and then repeat the
following process a polynomial number of times:

1. The adversary submits two polynomial-time computable functions (T0,T1)
resulting in a tampered state (X ′

0, X
′
1) = (T0(X0),T1(X1)).

2. We consider three different cases: (1) if (X ′
0, X

′
1) = (X0, X1) then return

same�; (2) otherwise compute x′ = Decode(X ′
0, X

′
1) and return x′ if x′ �= ⊥;

(3) if x′ = ⊥ self-destruct and terminate the experiment.

The main observation that enables the attack against the scheme of [24] is as
follows. For a fixed (but adversarially chosen) part X ′

0 it is easy to come-up
with two corresponding parts X ′

1 and X ′′
1 such that both (X ′

0, X
′
1) and (X ′

0, X
′′
1 )

form a valid codeword that does not lead to a self-destruct. Suppose further
that Decode(X ′

0, X
′
1) �= Decode(X ′

0, X
′′
1 ), then under continuous tampering the

adversary may permanently replace the original encoding X0 with X ′
0, while

depending on whether the i-th bit of X1 is 0 or 1 either replace X1 by X ′
1 or

X ′′
1 . This allows to recover the entire X1 by just |X1| tampering attacks. Once

X1 is known to the adversary it is easy to tamper with (X0, X1) in a way that
depends on Decode(X0, X1).

Somewhat surprisingly, our attack can be generalized to break any non-
malleable code that is secure in the information theoretic setting. Hence, also
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the recent breakthrough results on information theoretic non-malleability [15,1]
fail to provide security under continuous attacks. Moreover, we emphasize that
our attack does not only work for the code itself, but (in most cases) can be also
applied to the tamper-protection application of cryptographic functionalities.

Uniqueness. The attack above exploits that for a fixed known part X ′
0 it is easy

to come-up with two valid parts X ′
1, X

′′
1 . For the encoding of [24] this is indeed

easy to achieve. If the secret key X ′
0 is known it is easy to come-up with two

valid parts X ′
1, X

′′
1 : just encrypt two arbitrary messages x0 �= x1 and generate

the corresponding proofs. The above weakness motivates a new property that
non-malleable codes shall satisfy in order to achieve security against continuous
non-malleability. We call this property uniqueness, which informally guarantees
that for any (adversarially chosen) valid encoding (X ′

0, X
′
1) it is computationally

hard to come up with X ′′
b �= X ′

b such that (X ′
b, X

′′
1−b) forms a valid encoding.

Clearly the uniqueness property prevents the above described attack, and hence
is a crucial requirement for continuous non-malleability.

A New Construction. In light of the above discussion, we need to build a non-
malleable code that achieves our uniqueness property. Our construction uses as
building blocks a leakage resilient storage (LRS) scheme [13,14] for the split-state
model (one may view this as a generalization of the leakage resilient PKE used
in [24]), a collision-resistant hash function and (similar to [24]) an extractable
NIZK. At a high-level we use the LRS to encode the secret message, hash the
resulting shares using the hash function and generate a NIZK proof of knowledge
that indeed the resulting hash values are correctly computed from the shares.
While it is easy to show that collision resistance of the hash function guarantees
the uniqueness property, a careful analysis is required to prove continuous non-
malleability. We refer the reader to Section 4 for the details of our construction
and to Section 4.1 for an outline of the proof.

Tamper Resilience for Stateless and Stateful Primitives. We can use our new
construction of continuous non-malleable codes to protect arbitrary computation
against continuous tampering attacks. In contrast to earlier works our construc-
tion does not need to re-encode the secret state after each usage, which besides
being more efficient avoids the use of erasures. As discussed above, erasures are
problematic in the tampering setting as one would essentially need to encode
the entire state (possibly including large non-confidential data).

Additionally, our transformation does not need to keep any secret state. Hence,
if our transformation is used for stateless primitives, then the resulting scheme
remains stateless. This solves an open problem of Dziembowski, Pietrzak and
Wichs [17]. Notice that while we do not need to keep any secret state, the
transformed functionality requires one single bit to switch to self-destruction
mode. This bit can be public but must be untamperable, and can for instance
be implemented through one-time writable memory. As shown in the work of
Gennaro et al. [21] continuous tamper resilience is impossible to achieve without
such a mechanism for self-destruction.
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Of course, our construction can also be used for stateful primitives, in which
case our functionality will re-encode the new state during execution. Note that
in this setting, as data is never erased, an adversary can always reset the func-
tionality to a previous valid state. To avoid this, our transformation uses an
untamperable public counter2 that helps us to detect whenever the functional-
ity is reset to a previous state, leading to a self-destruct. We notice that such
an untamperable counter is necessary, as otherwise there is no way to protect
against the above resetting attack.

Adding Leakage. As a last contribution, we show that our code is also secure
against bounded leakage attacks. This is similar to the works of [24,15] who also
consider bounded leakage resilience of their encoding scheme. We then show that
bounded leakage resilience is also inherited by functionalities that are protected
by our transformation. Notice that without perfect erasures bounded leakage
resilience is the best we can achieve, as there is no hope for security if an encoding
that is produced at some point in time is gradually revealed to the adversary.

1.2 Related Work

Constructions of Non-malleable Codes. Besides showing feasibility by a proba-
bilistic argument, [17] also built non-malleable codes for bit-wise tampering and
gave a construction in the split-state model using a random oracle. This result
was followed by [9] which proposed non-malleable codes that are secure against
block-wise tampering. The first construction of non-malleable codes in the split-
state model was given by Liu and Lysyanskaya [24] assuming an untamperable
CRS. Very recently two beautiful works showed how to build non-malleable codes
in the split-state model without relying on a CRS [15,1] even when the adversary
has unlimited computing power. Dziembowski et al. [15] show how to encode a
single bit using the inner product function. Agrawal et al. [1] developed a con-
struction that goes beyond single-bit encoding but induces a huge overhead.

See also [8,7,19] for other recent advances on the construction of non-malleable
codes. We also notice that the work of Genarro et al. [21] proposed a generic
method that allows to protect arbitrary computation against continuous tam-
pering attacks, without requiring erasures. We refer the reader to [17] for a more
detailed comparison between non-malleable codes and the solution of [21].

Other Works on Tamper Resilience. A large body of work shows how to protect
specific cryptographic schemes against tampering attacks (see [4,3,23,5,25,12]
and many more). While these works consider a strong tampering model (e.g.,
they do not require the split-state assumption), they only offer security for spe-
cific schemes. In contrast non-malleable codes are generally applicable and can
provide tamper resilience of any cryptographic scheme.

In all the above works, including ours, it is assumed that the circuitry that
computes the cryptographic algorithm using the potentially tampered key runs
2 Note that a counter uses very small (logarithmic in the security parameter) number

of bits.
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correctly, and is not subject to tampering attacks. An important line of works
analyze to what extent we can guarantee security when even the circuitry is prone
to tampering attacks [22,20,11]. These works typically consider a restricted class
of tampering attacks (e.g., individual bit tampering) and assume that large parts
of the circuit (and memory) remain untampered.

2 Preliminaries

2.1 Notation

We let N be the set of naturals. For n ∈ N, we write [n] := {1, . . . , n}. Given a
set S, we write s← S to denote that element s is sampled uniformly from S. If
S is an algorithm, y ← S(x) denotes an execution of S with input x and output
y; if S is randomized, then y is a random variable.

Throughout the paper we denote the security parameter by k ∈ N. A function
δ(k) is called negligible in k (or simply negligible) if it vanishes faster than
the inverse of any polynomial in k, i.e., δ(k) = k−ω(1). A machine S is called
probabilistic polynomial time (PPT) if for any input x ∈ {0, 1}∗ the computation
of S(x) terminates in at most poly(|x|) steps and S is probabilistic (i.e., it uses
randomness as part of its logic).

Oracle O�(s) is parametrized by a value s and takes as input functions L and
outputs L(s), returning a total of at most � bits.

2.2 Robust Non-interactive Zero Knowledge

Given an NP-relation, let L = {x : ∃w such that R(x,w) = 1} be the corre-
sponding language. A robust non-interactive zero knowledge (NIZK) proof sys-
tem for L, is a tuple of algorithms (GNIZK,Prove,Verify, Sim = (Sim1, Sim2),Xtr)
such that the following properties hold [26].

Completeness. For all x ∈ L of length k and all w such that R(x,w) = 1, for
all Ω ← GNIZK(1

k) we have that Verify(Ω, x,Prove(Ω,w, x)) = accept
Multi-theorem zero knowledge. For all PPT adversaries A, we have Real(k) ≈

Simu(k), where Real(k) and Simu(k) are distributions defined via the follow-
ing experiment:

Real(k) =
{
Ω ← GNIZK(1

k); out ← AProve(Ω,·,·)(Ω);Output: out .
}

Simu(k) =
{
(Ω, tk)← Sim1(1

k); out ← ASim2(Ω,·,tk)(Ω);Output: out .
}
.

Extractability. There exists a PPT algorithm Xtr such that, for all PPT adver-
saries A, we have

P

⎡⎣ (Ω, tk, ek)← Sim1(1
k); (x, π)← ASim2(Ω,·,tk)(Ω);

w← Xtr(Ω, (x, π), ek);
R(x,w) �= 1 ∧ (x, π) �∈ Q ∧ Verify(Ω, x, π) = accept

⎤⎦ ≤ negl(k),

where the list Q contains the successful pairs (xi, πi) that A has queried to
Sim2.
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Similarly to [24], we assume that different statements have different proofs, i.e.,
if Verify(Ω, x, π) = accept we have that Verify(Ω, x′, π) = reject for all x′ �= x.
This property can be achieved by appending the statement to its proof.

We also require that the proof system supports labels, so that the Prove,
Verify, Sim and Xtr algorithms now also take a public label λ as input, and the
completeness, zero knowledge and extractability properties are updated accord-
ingly. (This can be easily achieved by appending the label λ to the statement x.)
More precisely, we write Proveλ(Ω,w, x) and Verifyλ(Ω, x, π) for the prover and
the verifier, and Simλ

2 (Ω, x, tk) and Xtrλ(Ω, (x, π), ek) for the simulator and the
extractor.

2.3 Leakage Resilient Storage

We recall the definition of leakage resilient storage from [13,14]. A leakage re-
silient storage scheme (LRS,LRS−1) is a pair of algorithms defined as follows.
(1) Algorithm LRS takes as input a secret x and outputs an encoding (s0, s1)
of x. (2) Algorithm LRS−1 takes as input shares (s0, s1) and outputs a message
x′. Since the LRS that we use in this paper is secure against computationally
unbounded adversaries, we state the definition below in the information theo-
retic setting. It is easy to extend it to also consider computationally bounded
adversaries.

Definition 1 (LRS). We call (LRS,LRS−1) an �-leakage resilient storage
scheme (�-LRS) if for all θ ∈ {0, 1}, all secrets x, y and all adversaries A it
holds that {

LeakageA,x,θ(k)
}
k∈N

≈s

{
LeakageA,y,θ(k)

}
k∈N

,

where

LeakageA,x,θ(k) =

{
(s0, s1)← LRS(x); outA ← AO�(s0,·),O�(s1,·);

Output: (sθ, outA).

}
.

We remark that Definition 1 is stronger than the standard definition of LRS,
in that the adversary is allowed to see one of the two shares after he is done with
leakage queries. A careful analysis of the proof, however, shows that the LRS
scheme of [14, Lemma 22] satisfies the above generalized notion since the inner
product function is a strong randomness extractor [10].

3 Continuous Non-malleability

We start by formally defining an encoding scheme in the common reference string
(CRS) model.

Definition 2 (Split-state Encoding Scheme in the CRS Model). A split-
state encoding scheme in the common reference string (CRS) model is a tuple of
algorithms Code = (Init,Encode,Decode) specified below.

– Init takes as input the security parameter and outputs a CRS Ω ← Init(1k).
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– Encode takes as input some message x ∈ {0, 1}k and the CRS Ω and outputs
a codeword consisting of two parts (X0, X1) such that X0, X1 ∈ {0, 1}n.

– Decode takes as input a codeword (X0, X1) ∈ {0, 1}2n and the CRS and
outputs either a message x′ ∈ {0, 1}k or a special symbol ⊥.

Consider the following oracle Ocnm((X0, X1)), which is parametrized by an
encoding (X0, X1) and takes as input functions T0,T1 : {0, 1}n → {0, 1}n.

Ocnm((X0, X1), (T0,T1)):
(X ′

0, X
′
1) = (T0(X0),T1(X1))

If (X ′
0, X

′
1) = (X0, X1) return same�

If Decode(Ω, (X ′
0, X

′
1)) = ⊥, return ⊥ and “self-destruct”

Else return (X ′
0, X

′
1).

By “self-destruct” we mean that once Decode(Ω, (X ′
0, X

′
1)) outputs ⊥, the oracle

will answer ⊥ to any further query.

Definition 3 (Continuous Non-Malleability). Let Code = (Init,Encode,
Decode) be a split-state encoding scheme in the CRS model. We say that Code
is q-continuously non-malleable �-leakage resilient ((�, q)-CNMLR for short), if
for all messages x, y ∈ {0, 1}k and all PPT adversaries A it holds that{

Tampercnmlr
A,x (k)

}
k∈N

≈c

{
Tampercnmlr

A,y (k)
}
k∈N

where

Tampercnmlr
A,x (k) =

{
Ω ← Init(1k); (X0, X1)← Encode(Ω, x);

outA ← AO�(X0),O�(X1),Ocnm((X0,X1));Output: outA

}
and A asks a total of q queries to Ocnm.

Without loss of generality we assume that the variable outA consists of all the
bits leaked from X0 and X1 (in a vector Λ) and all the outcomes from oracle
Ocnm(X0, X1) (in a vector Θ); we write this as outA = (Λ,Θ) where |Λ| ≤ 2�
and Θ has exactly q elements.

Intuitively, the above definition captures a setting where a fully adaptive ad-
versaryA tries to break non-malleability by tampering several times with a target
encoding, obtaining each time some leakage from the decoding process. The only
restriction is that whenever a tampering attempt decodes to ⊥, the system “self-
destructs”.3 Note that whenever the adversary mauls (X0, X1) to a valid encoding
(X ′

0, X
′
1), oracle Ocnm returns (X ′

0, X
′
1). This is different from [17,24], where the

experiment returns the output of the decoded message, i.e. Decode(Ω, (X ′
0, X

′
1)).

The recent work of Faust et al. [19] consider a similar extension where also the
codeword is returned instead of the decoded message and call it super strong non-
malleability. Also, we remark that Definition 3 implies strong non-malleability
3 As described in [21] it is easy to see that without such a restriction non-malleability

can indeed be broken, since A can simply recover the entire (X0, X1) after polyno-
mially many queries.
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(as defined in [17,24]) if we restrict A to ask a single query (i.e., q = 1) to oracle
Ocnm.4 We choose the formulation above because it is stronger and at the same
time achieved by our code!

3.1 Uniqueness

As we argue below, constructions that satisfy our new Definition 3 have to
meet the following uniqueness requirement. Informally this means that for any
(possibly adversarially chosen) side of an encoding X ′

b it is computationally hard
to find two corresponding sides X ′

1−b and X ′′
1−b such that both (X ′

b, X
′
1−b) and

(X ′
b, X

′′
1−b) form a valid encoding.

Definition 4 (Uniqueness). Let Code = (Init,Encode,Decode) be a split-state
encoding in the CRS model. We say that Code satisfies uniqueness if for all PPT
adversaries A and for all b ∈ {0, 1} we have:

P

[
Ω ← Init(1k); (X ′

b, X
′
1−b, X

′′
1−b)← A(1k, Ω);X ′

1−b �= X ′′
1−b;

Decode(Ω, (X ′
b, X

′
1−b)) �= ⊥; Decode(Ω, (X ′

b, X
′′
1−b)) �= ⊥

]
≤ negl(k).

The following attack shows that the uniqueness property is necessary to
achieve Definition 3.

Lemma 1. Let Code be (0, poly(k))-CNMLR. Then Code must satisfy unique-
ness.

Proof. For the sake of contradiction, assume that we can efficiently find a triple
(X ′

0, X
′
1, X

′′
1 ) such that (X ′

0, X
′
1) and (X ′

0, X
′′
1 ) are both valid and X ′

1 �= X ′′
1 . For

a target encoding (Y0, Y1), we describe an efficient algorithm recovering Y1 with
overwhelming probability, by asking n = poly(k) queries to Ocnm((Y0, Y1), ·).

For all i ∈ [n] repeat the following:
Prepare the i-th tampering function as follows:
- T(i)

0 (Y0): Replace Y0 by X ′
0;

- T(i)
1 (Y1): If Y1[i] = 0 replace Y1 by X ′

1; otherwise replace it by X ′′
1 .

Submit (T
(i)
0 ,T

(i)
1 ) to Ocnm((Y0, Y1), ·) and obtain (Y ′

0 , Y
′
1).

If (Y ′
0 , Y

′
1) = (X ′

0, X
′
1), set Z[i]← 0.

Otherwise, if (Y ′
0 , Y

′
1) = (X ′

0, X
′′
1 ), set Z[i]← 1.

Output Z as the guess for Y1.

The above algorithm clearly succeeds with overwhelming probability, whenever
X ′

1 �= Y1 �= X ′′
1 .5

4 It is easy to see that encoding from [24] satisfies the stronger variant of strong non-
malleability.

5 In case (X ′
0, X

′
1) = (Y0, Y1) or (X ′

0, X
′′
1 ) = (Y0, Y1), then the entire encoding can

be recovered even with more ease. In this case, whenever the oracle returns same�

we know Y0 = X ′
0 and Y1 ∈ {X ′

1, X
′′
1 }. In the next step we replace the encoding

with (X ′
0, X

′
1); if the oracle returns same� again, then we conclude that Y1 = X ′

1,
otherwise we conclude Y1 = X ′′

1 .
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Once Y1 is known, we ask one additional query (T
(n+1)
0 ,T

(n+1)
1 ) to

Ocnm((Y0, Y1), ·), as follows:

– T
(n+1)
0 (Y0) hard-wires Y1 and computes y ← Decode(Ω, (Y0, Y1)); if the first

bit of y is 0 then T0 behaves like the identity function, otherwise it overwrites
Y0 with 0n.

– T
(n+1)
1 (Y0) is the identity function.

The above clearly allows to learn one bit of the message in the target encoding
and hence contradicts the fact that Code is (0, poly(k))-CNMLR.

Attacking existing schemes. The above procedure can be applied to show that
the encoding of [24] does not satisfy our notion. Recall that in [24] a message x
is encoded as X0 = (pk, c := Enc(pk, x), π) and X1 = sk. Here, (pk, sk) is a valid
key pair and π is a proof of knowledge of a pair (x, sk) such that c decrypts to
x under sk and (pk, sk) forms a valid key-pair. Clearly, for some X ′

1 = sk′ it is
easy to find two valid corresponding parts X ′

0 �= X ′′
0 which violates uniqueness.

We mention two important extensions of the attack from Lemma 1, leading
to even stronger security breaches:

1. In case the valid pair of encodings (X ′
0, X

′
1), (X ′

0, X
′′
1 ) which vio-

lates the uniqueness property are such that Decode(Ω, (X ′
0, X

′
1)) �=

Decode(Ω, (X ′
0, X

′′
1 )), one can show that Lemma 1 still holds in the weaker

version of the Definition 3 in which the experiment does not output tam-
pered encodings but only the corresponding decoded message. Note that this
applies in particular to the encoding of [24].

2. In case it is possible to find both (X ′
0, X

′
1, X

′′
1 ) and (X ′

0, X
′′
0 , X

′
1) violating

uniqueness, a simple variant of the attack allows us to recover both halves
of the target encoding which is a total breach of security! However, it is
not clear for the scheme of [24] how to find two valid corresponding parts
X ′

1, X
′′
1 , because given pk′ it shall of course be computationally hard to find

two corresponding valid secret keys sk′, sk′′.

The above attack can be easily extended to the information theoretic setting
to break the constructions of the non-malleable codes (in split-state) recently
introduced in [15] and in [1]. In fact, in the following lemma we show that there
does not exist any information theoretic secure CNMLR code.

Lemma 2. It is impossible to construct information theoretically secure
(0, poly(k))-CNMLR codes.

Proof. We prove the lemma by contradiction. Assume that there exists an infor-
mation theoretically secure (0, poly(k))-CNMLR code with 2n bits codewords.
By Lemma 1, the code must satisfy the uniqueness property. In the information
theoretic setting this means that, for all codewords (X0, X1) ∈ {0, 1}2n such that
Decode(Ω, (X0, X1)) �= ⊥, the following holds: (i) for all X ′

1 ∈ {0, 1}n such
that X ′

1 �= X1, we have Decode(Ω, (X0, X
′
1)) = ⊥; (ii) for all X ′

0 ∈ {0, 1}n, such
that X ′

0 �= X0, we have Decode(Ω, (X ′
0, X1)) = ⊥.
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Given a target encoding (X0, X1) of some secret x, an unbounded A can de-
fine the following tampering function Tb (for b ∈ {0, 1}): Given Xb as input,
try all possible X1−b ∈ {0, 1}n until Decode(Ω, (X0, X1)) �= ⊥. By property
(i)-(ii) above, we conclude that for all X ′

1−b �= X1−b, the decoding algorithm
Decode(Ω, (Xb, X

′
1−b)) outputs ⊥ with overwhelming probability. Thus, Tb can

recover x = Decode(Ω, (Xb, X1−b)) and if the first bit of the decoded value is
0 leave the target encoding unchanged, otherwise (T0,T1) modifies the encod-
ing with an invalid codeword. The above clearly allows to learn one bit of the
message in the target encoding, and hence contradicts the fact that the code is
(0, poly(k))-CNMLR.

Note that the attack of Lemma 2 requires the tampering function to be un-
bounded. In case when the tampering functions are computationally bounded
and only the adversary is computationally unbounded we do not know how to
make the above attack work.

4 The Code

Consider the following split-state encoding scheme in the CRS model
(Init,Encode,Decode), based on an LRS scheme (LRS,LRS−1), on a family of
collision resistant hash functions H = {Ht : {0, 1}poly(k) → {0, 1}k}t∈{0,1}k and
on a robust non-interactive zero knowledge proof system (GNIZK,Prove,Verify)
which supports labels, for language LH,t = {h : ∃s such that h = Ht(s)}.

Init(1k). Sample t← {0, 1}k and run Ω ← GNIZK(1
k).

Encode(Ω, x). Let (s0, s1) ← LRS(x). Compute h0 = Ht(s0), h1 = Ht(s1)
and π0 ← Proveλ1(Ω, s0, h0), π1 ← Proveλ0(Ω, s1, h1), where the labels
are defined as λ0 = h0, λ1 = h1. (Note that the pre-image of hb is sb
and the proof πb is computed for statement hb using label h1−b.) Output
(X0, X1) = ((s0, h1, π1, π0), (s1, h0, π0, π1)).

Decode(Ω, (X0, X1)). The decoding parses Xb as (sb, h1−b, π1−b, πb), computes
λb = Ht(sb) and then proceeds as follows:
(a) Local check. If Verifyλ1(Ω, h0, π0) or Verifyλ0(Ω, h1, π1) output reject

in any of the two sides X0, X1, return x′ = ⊥.
(b) Cross check. If (i) h0 �= Ht(s0) or h1 �= Ht(s1), or (ii) the proofs (π0, π1)

in X0 are different from the ones in X1, then return x′ = ⊥.
(c) Decoding. Otherwise, return x′ = LRS−1(s0, s1).

We start by showing that the above code satisfies the uniqueness property (cf.
Definition 4).

Lemma 3. Let Code = (Init,Encode,Decode) be as above. Then, if H is a
family of collision resistant hash functions Code satisfies uniqueness.

Proof. We show that Definition 4 is satisfied for b = 0. The proof for b = 1 is
identical and is therefore omitted.
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Assume that there exists a PPT adversary A that, given as input Ω ←
Init(1k), is able to produce (X ′

0, X
′
1, X

′′
1 ) such that both (X ′

0, X
′
1) and (X ′

0, X
′′
1 )

are valid, but X ′
1 �= X ′′

1 . Let X ′
0 = (s′0, h

′
1, π

′
1, π

′
0), X ′

1 = (s′1, h
′
0, π

′
0, π

′
1) and

X ′′
1 = (s′′1 , h

′′
0 , π

′′
0 , π

′′
1 ).

Since s′0 is the same in both encodings, we must have h′
0 = h′′

0 as the hash
function is deterministic. Furthermore, since both (X ′

0, X
′
1) and (X ′

0, X
′′
1 ) are

valid, the proofs must verify successfully and therefore we must have π′
0 = π′′

0

and π′
1 = π′′

1 . It follows that X ′′
1 = (s′′1 , h

′
0, π

′
0, π

′
1), such that s′′1 �= s′1. Clearly

(s′1, s
′′
1 ) is a collision for h′

1, a contradiction.

While the uniqueness property is a necessary requirement to achieve continuous
non-malleability, showing that that the above code is a continuous non-malleable
and leakage resilient code requires to overcome several technical challenges. We
next state our main theorem and give a proof outline in the following section.
The full proof of Theorem 1 is deferred to the full version of this paper.

Theorem 1. Let Code = (Init,Encode,Decode) be as above. Assume that
(LRS,LRS−1) is an �′-LRS, H = {Ht : {0, 1}poly(k) → {0, 1}k}t∈{0,1}k is a
family of collision resistant hash functions and (GNIZK,Prove,Verify) is a ro-
bust NIZK proof system for language LH,t. Then Code is (�, q)-CNMLR, for any
q = poly(k) and �′ ≥ max{2�+ (k + 1)�log(q)�, 2k + 1}.

4.1 Outline of the Proof

In order to build some intuition, let us first explain why a few natural attacks do
not work. Clearly, the uniqueness property (cf. Lemma 3) rules out the attack
of Lemma 1. As a first attempt, the adversary could try to modify the proof
π0 to a different proof π′

0, by using the fact that X0 contains the corresponding
witness s0 and the correct label h1. However, to ensure the validity of (X ′

0, X
′
1),

this would require to place π′
0 in X ′

1, which should be hard without knowing a
witness (by the robustness of the proof system). Alternatively, one could try to
maul the two halves (s0, s1) of the LRS scheme, into a pair (s′0, s

′
1) encoding a

related message.6 This requires, for instance, to change the proof π0 into π′
0 and

place π′
0 in X ′

1, which again should be hard without knowing a witness and the
correct label.

Let us now try to give a high-level overview of the proof. Given a polyno-
mial time distinguisher D that violates continuous non-malleability of Code, we
build another polynomial time distinguisher D′ which breaks leakage resilience
of (LRS,LRS−1). Distinguisher D′, which can access oracles O�′(s0) and O�′(s1),
has to distinguish whether (s0, s1) is the encoding of message x or message y
and will do so with the help of D’s advantage in distinguishing Tampercnmlr

x from
Tampercnmlr

y . The main difficulty in the reduction is how D′ can simulate the
answers from the tampering oracle Ocnm (cf. Definition 3), without knowing the
target encoding (X0, X1). This is the main point where our techniques diverge
6 When the LRS is implemented using the inner product extractor this is indeed

possible, as argued in [15].
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significantly from [24] (as in [24] the reduction “knows” a complete half of the
encoding). In our case, in fact, D′ can only access the two halves X0 and X1

“inside” the oracles O�′(s0) and O�′(s1).7 However, it is not clear how this helps
answering tampering queries, as the latter requires access to both X0 and X1 for
decoding the tampered message, whereas the reduction can only access X0 and
X1 separately.

For ease of description, in what follows we simply assume that D′ can access
directly O�′(X0) and O�′(X1). Furthermore, let us assume that D can only issue
tampering queries (we discuss how to additionally handle leakage briefly at the
end of the outline). Like any standard reduction, D′ samples some randomness
r and fixes the random tape of D to r. Our novel strategy is to construct a
polynomial time algorithm F(r) that, given access to O�′(X0), O�′(X1), outputs
the smallest index j∗ which indicates the round where D(r) provokes a self-
destruct in Tampercnmlr

∗ . Before explaining how the actual algorithm works, let
us explain how D′ can complete the reduction using such a self-destruct finder
F. At the beginning, it runs F(r) in order to leak the index j∗. At this point
D′ is done with leakage queries and asks to get X0 (i.e., it chooses θ = 0 in
Definition 1).8 Given X0, distinguisher D′ runs D(r) (with the same random
coins r used for F). Hence, for all 1 ≤ j < j∗, upon input the j-th tampering
query (T

(j)
0 ,T

(j)
1 ), distinguisher D′ lets X ′

0 = T
(j)
0 (X0) = (s′0, h

′
1, π

′
1, π

′
0) and

answers as follows:

1. In case X ′
0 = X0 (so called type A queries), output same�.

2. In case X ′
0 �= X0 and either of the proofs in X ′

0 does not verify correctly (so
called type B queries), output ⊥.

3. In case X ′
0 �= X0 and both the proofs in X ′

0 verify correctly (so called type C
queries), check if π′

1 = π1; if ‘yes’ (in which case there is no hope to extract
from π′

1) then output ⊥.
4. Otherwise (so called type D queries), attempt to extract s′1 from π′

1, define
X ′

1 = (s′1, h
′
0, π

′
0, π

′
1) and output (X ′

0, X
′
1).

Note that from round j∗ on, all queries can be answered with ⊥, and this is
a correct simulation as D(r) provokes a self-destruct at round j∗ in the real
experiment.

In the proof of Theorem 1, we show that the above strategy is sound. with
overwhelming probability over the choice of r the output produced by the above
simulation is equal to the output that D(r) would have seen in the real experi-
ment until a self-destruct occurs.9

Let us give some intuition why the above simulation is indeed sound. For type
A queries, note that when X ′

0 = X0 we must have X ′
1 = X1 with overwhelming

7 Looking ahead, this can be achieved by first leaking the hash values h0, h1 of s0,
s1, simulating the proofs π0, π1, and then hard-wiring these values into all leakage
queries.

8 Recall that this is a simplification, as by choosing θ = 0 the distinguisher will obtain
s0. See also footnote 7.

9 It is crucial that both the real and simulated experiments are run with the same r.
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probability, as otherwise (X0, X1, X
′
1) would violate uniqueness. In case of type B

queries, the decoding process in the real experiment would output ⊥, so D′ does
a perfect simulation. The case of type C queries is a bit more delicate. In this case
we use the facts that (i) in the NIZK proof system we use, different statements
must have different proofs and (ii) the hash function is collision resistant, to show
that X ′

0 must be of the form X ′
0 = (s0, h1, π1, π

′
0) and π′

0 �= π1. A careful analysis
shows that the latter contradicts leakage resilience of the underlying LRS scheme.
Finally, for type D queries, note that whenever D′ extracts a witness from a valid
proof π′

1 �= π1, the witness must be valid with overwhelming probability (as the
NIZK is simulation extractable).

Next, let us explain how to construct the algorithm F. Roughly, F(r) runs
D(r) “inside” the oracles O�′(X0), O�′(X1) as part of the leakage functions, and
simulates the answers for D(r)’s tampering queries using only one side of the
target encoding, in the exact same way as outlined in (1)-(4) above. Let Θb,
for b ∈ {0, 1}, denote the output simulated by F inside O�′(Xb). To locate the
self-destruct index j∗, we rely on the following property: the vectors Θ0 and
Θ1 contain identical values until coordinate j∗ − 1, but Θ0[j

∗] �= Θ1[j
∗] with

overwhelming probability (over the choice of r).
This implies that j∗ can be computed as the first coordinate where Θ0 and Θ1

are different. Hence, F can obtain the self-destruct index by using its adaptive
access to oraclesO�′(X0), O�′(X1) and apply a standard binary search algorithm
to Θ0, Θ1. Note that the latter requires at most a logarithmic number of bits
of adaptive leakage.

One technical problem is that F, in order to run D(r) inside of, say O�′(X0),
and compute Θ0, has also to answer leakage queries from D(r). Clearly, all
leakages from X0 can be easily computed, however it is not clear how to simulate
leakages from X1 (as we cannot access O�′(X1) inside O�′(X0)). Fortunately, the
latter issue can be avoided by letting F query O�′(X0) and O�′(X1) alternately,
and aborting the execution of D(r) whenever it is not possible to answer a leakage
query. It is not hard to show that after at most � steps all leakages will be known,
and F can run D(r) inside O�′(X0) without having access to O�′(X1). (All this
comes at the price of some loss in the leakage bound, but, as we show in the
proof, not too much.)

5 Application to Tamper Resilient Security

In this section we apply our notion of CNMLR codes to protect arbitrary func-
tionalities against split-state tampering and leakage attacks.

5.1 Stateless Functionalities

We start by looking at the case of stateless functionalities G(st , ·), which take as
input a secret state st ∈ {0, 1}k and a value x ∈ {0, 1}u to produce some output
y ∈ {0, 1}v. The function G is public and can be randomized.
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The main idea is to transform the original functionality G(st , ·) into some
“hardened” functionality GCode via a CNMLR code Code. Previous transforma-
tions aiming to protect stateless functionalities [17,24] required to freshly re-
encode the state st each time the functionality is invoked. Our approach avoids
the re-encoding of the state at each invocation, leading to a stateless transfor-
mation. This solves an open question from [17]. Moreover we consider a setting
where the encoded state is stored in a memory (M0,M1) which is much larger
than the size needed to store the encoding itself (say |M0| = |M1| = s where
s is polynomial in the length of the encoding). When (perfect) erasures are not
possible, this feature allows the adversary to make copies of the initial encoding
and tamper continuously with it, and was not considered in previous models.

Let us formally define what it means to harden a stateless functionality.

Definition 5 (Stateless hardened functionality). Let Code = (Init,
Encode,Decode) be a split-state encoding scheme in the CRS model, with k
bits messages and 2n bits codewords. Let G : {0, 1}k × {0, 1}u → {0, 1}v be
a stateless functionality with secret state st ∈ {0, 1}k, and let ϕ ∈ {0, 1} be
a public value initially set to zero. We define a stateless hardened function-
ality GCode : {0, 1}2s × {0, 1}u → {0, 1}v with a modified state st ′ ∈ {0, 1}2s
and s = poly(n). The hardened functionality GCode is a triple of algorithms
(Init, Setup,Execute) described as follows:

– Ω ← Init(1k): Run the initialization procedure of the coding scheme to sample
Ω ← Init(1k).

– (M0,M1) ← Setup(Ω, st): Let (X0, X1) ← Encode(Ω, st). For b ∈ {0, 1},
store Xb in the first n bits of Mb, i.e. Mb[1 . . . n] ← Xb. (The remaining
bits of Mb are set to 0s−n.) Define st ′ := (M0,M1).

– y ← Execute(x): Read the public value ϕ. In case ϕ = 1 output ⊥. Otherwise,
let Xb =Mb[1 . . . n] for b ∈ {0, 1}. Run st ← Decode(Ω, (X0, X1)); if st =
⊥, then output ⊥ and set ϕ = 1. Otherwise output y ← G(st , x).

Remark 1 (On ϕ). The public value ϕ is just a way how to implement the
“self-destruct” feature. An alternative approach would be to let the hardened
functionality simply output a dummy value and overwrite (M0,M1) with the
all-zero string. As we insist on the hardened functionality being stateless, we use
the first approach here.

Note that we assume that ϕ is untamperable. It is easy to see that this is
necessary, as an adversary tampering with ϕ could always switch-off the self-
destruct feature and apply a variant of the attack from [21] to recover the secret
state.

Similarly to [17,24], security of GCode is defined via the comparison of a real
and an ideal experiment. The real experiment features an adversary A interacting
with GCode; the adversary is allowed to honestly run the functionality on any
chosen input, but also to modify the secret state and retrieve a bounded amount
of information from it. The ideal experiment features a simulator S; the simulator
is given black-box access to the original functionality G and to the adversary A,
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but is not allowed any tampering or leakage query. The two experiments are
formally described below.

Experiment REAL
GCode(st′,·)
A (k). First Ω ← Init(1k) and (M0,M1) ←

Setup(Ω, st) are run and Ω is given to A. Then A can issue the following com-
mands polynomially many times (in any order):

– 〈Leak, (L(j)0 , L
(j)
1 )〉: In response to the j-th leakage query, compute Λ

(j)
0 ←

L
(j)
0 (M0) and Λ

(j)
1 ← L

(j)
1 (M1) and output (Λ

(j)
0 , Λ

(j)
1 ).

– 〈Tamper, (T(j)
0 ,T

(j)
1 )〉: In response to the j-th tampering query, compute

M′
0 ← T

(j)
0 (M0) and M′

1 ← T
(j)
1 (M1) and replace (M0,M1) with

(M′
0,M′

1).
– 〈Eval, xj〉: In response to the j-th evaluation query, run yj ← Execute(xj).

In case yj = ⊥ output ⊥ and self-destruct; otherwise output yj.

The output of the experiment is defined as

REAL
GCode(st ′,·)
A (k) = (Ω; ((x1, y1), (x2, y2), . . . ); ((Λ

(1)
0 , Λ

(1)
1 ), (Λ

(2)
0 , Λ

(2)
1 ), · · · )).

Experiment IDEAL
G(st ,·)
S (k). The simulator sets up the CRS Ω and is given

black-box access to the functionality G(st , ·) and the adversary A. The output
of the experiment is defined as

IDEAL
G(st ,·)
S (k) = (Ω; ((x1, y1), (x2, y2), . . . ); ((Λ

(1)
0 , Λ

(1)
1 ), (Λ

(2)
0 , Λ

(2)
1 ), · · · )),

where ((xj , yj), ((Λ
(j)
0 , Λ

(j)
1 ))) are the input/output/leakage tuples simulated by

S.

Definition 6 (Polyspace leak/tamper simulatability). Let Code be a split-
state encoding scheme in the CRS model and consider a stateless functionality G
with corresponding hardened functionality GCode. We say that Code is polyspace
(�, q)-leak/tamper simulatable for G, if the following conditions are satisfied:

1. Each memory part Mb (for b ∈ {0, 1}) has size s = poly(n).
2. The adversary asks at most q tampering queries and leaks a total of at most

� bits from each memory part.
3. For all PPT adversaries A there exists a PPT simulator S such that for any

initial state st ,{
REAL

GCode(st ′,·)
A (k)

}
k∈N

≈c

{
IDEAL

G(st ,·)
S (k)

}
k∈N

.

We show the following result.

Theorem 2. Let G be a stateless functionality and Code = (Init,Encode,
Decode) be any (�, q)-CNMLR split-state encoding scheme in the CRS model.
Then Code is polyspace (�, q)-leak/tamper simulatable for G.
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Proof. We discuss the overall proof approach first. We start with describing a
simulator S running in experiment IDEAL

G(st ,·)
S (k) which attempts to simulate

the view of adversary A running in the experiment REAL
GCode(st′,·)
A (k); the sim-

ulator is given black-box access to A (which can issue Tamper, Leak, and Eval

queries) and to the functionality G(st , ·) for some state st . To argue that our
simulator is “good” we show that if there exists a PPT distinguisher D and a
PPT adversary A such that for some state st , D distinguishes the experiments
IDEAL

G(st ,·)
S (k) and REAL

GCode(st′,·)
A (k) with non-negligible probability, then we

can build another distinguisher D′ and an adversary A′ such that D′ can dis-
tinguish Tampercnmlr

A′,0k and Tampercnmlr
A′,st with non-negligible probability. In the

last step essentially we reduce the CNMLR property of Code to the polyspace
leak/tamper simulatability of the code itself.

The simulator starts by sampling the common reference string Ω ← Init(1k)
and the public value ϕ = 0. Then it samples a random encoding of 0k, namely
(Z0, Z1)← Encode(Ω, 0k) and setsMb[1 . . . , n]← Zb for b ∈ {0, 1}. The remain-
ing bits of (M0,M1) are set to 0s−n. Hence, S alternates between the following
two modes (starting with the normal mode in the first round):

– Normal Mode. Given state (M0,M1), while A continues issuing queries,
answer as follows:
• 〈Eval, xj〉: Upon input the j-th evaluation query invoke G(st , ·) to get

yj ← G(st , xj) and reply with yj.
• 〈Tamper, (T(j)

0 ,T
(j)
1 )〉: Upon input the j-th tampering query, compute

M′
b ← T

(j)
b (Mb) for b ∈ {0, 1}. In case (M′

0[1 . . . n],M′
1[1 . . . n]) =

(Z0, Z1) then continue in the current mode. Otherwise go to the over-
written mode defined below with state (M′

0,M′
1).

• 〈Leak, (L(j)0 , L
(j)
1 )〉: Upon input the j-th leakage query, compute Λ

(j)
b =

L
(j)
b (Zb) for b ∈ {0, 1} and reply with (Λ

(j)
0 , Λ

(j)
1 ).

– Overwritten Mode. Given state (M′
0,M′

1), while A continues issuing queries,
answer as follows:
• Let τ = (M′

0,M′
1). Simulate the hardened functionality GCode(τ, ·) and

answer all Eval and Leak queries as the real experiment REALG
Code(τ,·)

A (k)
would do.

• Upon input the j-th tampering query (T
(j)
0 ,T

(j)
1 ), compute M′′

b ←
T
(j)
b (M′

b) for b ∈ {0, 1}. In case (M′′
0 [1 . . . n],M′′

1 [1 . . . n]) = (Z0, Z1)
then go to the normal mode with state (M0,M1) := (M′′

0 ,M′′
1). Oth-

erwise continue in the current mode.
– When A halts and outputs viewA = (Ω; ((x1, y1), (x2, y2), . . . );

((Λ
(1)
0 , Λ

(1)
1 ), (Λ

(2)
0 , Λ

(2)
1 ), · · · )), set viewS = viewA and output viewS as output

of IDEALG(st ,·)S (k).

Intuitively, since the coding scheme is non-malleable, the adversary can either
keep the encoding unchanged or overwrite it with the encoding of some unrelated
message. These two cases are captured in the above modes: The simulator starts
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in the normal mode and then, whenever the adversary mauls the initial encoding,
it switches to the overwritten mode. However, the adversary can use the extra
space to keep a copy of the original encoding and place it back at some later
point in time. When this happens, the simulator switches back to the normal
mode; this switching is important to maintain simulation.

To finish the proof, we have to argue that the output of experiment
IDEAL

G(st ,·)
S (k) is computationally indistinguishable from the output of experi-

ment REAL
GCode(st ′,·)
A (k). This is done in the lemma below.

Lemma 4. Let S be defined as above. Then for all PPT adversaries A and all
st ∈ {0, 1}k, the following holds:{

REAL
GCode(st′,·)
A (k)

}
k∈N

≈c

{
IDEAL

G(st ,·)
S (k)

}
k∈N

.

Proof. By contradiction, assume that there exists a PPT distinguisher D, a PPT
adversary A and some state st ∈ {0, 1}k such that:∣∣∣P [D(IDEALG(st ,·)S (k)) = 1

]
− P

[
D(REAL

GCode(st ′,·)
A (k)) = 1

]∣∣∣ ≥ ε, (1)

where ε(k) is some non-negligible function of the security parameter k.
We build a PPT distinguisher D′ and a PPT adversary A′ telling apart the

experiments Tampercnmlr
A′,0k (k) and Tampercnmlr

A′,st (k); this contradicts our assumption
that Code is CNMLR. The distinguisher D′ is given the CRS Ω ← Init(1k) and
can access Ocnm((X0, X1), ·) (for at most q times) and O�(X0), O�(X1); here
(X0, X1) is either an encoding of 0k or an encoding of st . The distinguisher D′

keeps a flag Same (initially set to True) and a flag Stop (initially set to False).
After simulating the public values, D′ mimics the enviroment for D as follows:

– 〈Tamper, (T(j)
0 ,T

(j)
1 )〉: Upon input tampering functions (T

(j)
0 ,T

(j)
1 ), the dis-

tinguisher D′ uses the oracle Ocnm((X0, X1), ·) to answer them.10 However,
it can not simply forward the queries because of the following two reasons:
• The tampering functions (T

(j)
0 ,T

(j)
1 ) maps from s bits to s bits, whereas

the oracle Ocnm((X0, X1), ·) expects tampering functions mapping from
n bits to n bits.

• In both the real and the ideal experiments the tampering functions are
applied to the current state (which may be different from the initial
state), whereas in experiment Tampercnmlr

A′,∗ the oracle Ocnm((X0, X1), ·)
always applies (T

(j)
0 ,T

(j)
1 ) to the target encoding (X0, X1).

To take into account the above differences, D′ modifies (T(j)
0 ,T

(j)
1 ) as follows.

Define the functions Tin : {0, 1}n → {0, 1}s and Tout : {0, 1}s → {0, 1}n
as Tin(x) = (x||0s−n) and Tout(x||x′) = x, for any x ∈ {0, 1}n and x′ ∈
{0, 1}s−n. The distinguisher D′ queries Ocnm((X0, X1), ·) with the function

10 Formally D′ has to access Ocnm(·) via A′. For simplicity we assume that D′ can
access the oracle directly. In fact, A′ just acts as an interface between the experiment
Tampercnmlr

A′,∗ and D′.
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pair (T̃
(j)
0 , T̃

(j)
1 ) where each T̃

(j)
b is defined as T̃

(j)
b := Tout ◦ T(j)

b ◦ T(j−1)
b ◦

. . . ◦ T(1)
b ◦ Tin for b ∈ {0, 1}.

In case the oracle returns ⊥, then D′ sets Stop to True. In case the oracle
returns same�, then D′ sets Same to True. Otherwise, in case the oracle
returns an encoding (X ′

0, X
′
1), then D′ sets Same to False.

– 〈Leak, (L(j)0 , L
(j)
1 )〉: Upon input leakage functions (L

(j)
0 , L

(j)
1 ), the distin-

guisher D′ defines (L̃
(j)
0 , L̃

(j)
1 ) (in a similar way as above), forwards those

functions to O�(X0), O�(X1) and sends the answer from the oracles back to
D.

– 〈Eval, xj〉: Upon input an evaluation query for value xj , the distinguisher D′

checks first that Stop equals False. If this is not the case, then D′ returns
⊥ to D. Otherwise, D′ checks that Same equals True. If this is the case,
it runs yj ← G(st , xj) and gives yj to D. Else (if Same equals False), it
computes yj ← G(st ′, xj), where st ′ is the output of Decode(Ω, (X ′

0, X
′
1)),

and gives yj to D.

Finally, D′ outputs whatever D outputs.
For the analysis, first note that D′ runs in polynomial time. Furthermore, D′

asks exactly q queries to Ocnm and leaks at most � bits from the target encoding
(X0, X1). It is also easy to see that in case (X0, X1) is an encoding of st ∈
{0, 1}k, then D′ perfectly simulates the view of adversary D in the experiment
REAL

GCode(st′,·)
A (k). On the other hand, in case (X0, X1) is an encoding of 0k, we

claim that D′ perfectly simulates the view of D in the experiment IDEALG(st ,·)S (k).
This is because: (i) Whenever Same equals True, then D′ answers evaluation
queries by running G on state st and tampering/leakage queries using a pre-
sampled encoding of 0k (this corresponds to the normal mode of S); (ii) Whenever
Same equals False, then D′ answers evaluation queries by running G on the
current tampered state st ′ which results from applying the tampering functions
to a pre-sampled encoding of 0k (this corresponds to the overwritten mode of
S).

Combining the above argument with Eq. (1) we obtain∣∣∣P [D(Tampercnmlr
A′,0k (k)) = 1

]
− P

[
D(Tampercnmlr

A′,st (k)) = 1
]∣∣∣ ≥ ε,

which is a contradiction to the fact that Code is (�, q)-CNMLR.

5.2 Stateful Functionalities

Finally, we consider the case of primitives that update their state at each exe-
cution, i.e. functionalities of the type (stnew, y) ← G(st , x) (a.k.a. stateful func-
tionalities). Note that in this case the hardened functionality re-encodes the new
state at each execution.

Note that, since we do not assume erasure in our model, an adversary can
always ‘reset’ the functionality to a previous valid state as follows: It could just
copy the previous state to some part of the large memory and replace the current
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encoding by that. To avoid this, our transformation uses an untamperable public
counter (along with the untamperable self-destruct bit) that helps us to detect
whether the functionality is reset to a previous state, leading to a self-destruct.
However such a counter can be implemented, for instance using log(k) bits.
We notice that such a counter is necessary to protect against the above resetting
attack. However, we stress that if we do not assume such a counter this “resetting”
is the only harm the adversary can make in our model.

Below, we define what it means to harden a stateful functionality.

Definition 7 (Stateful hardened functionality). Let Code =
(Init,Encode,Decode) be a split-state encoding scheme in the CRS model,
with 2k bits messages and 2n bits codewords. Let G : {0, 1}k × {0, 1}u →
{0, 1}k × {0, 1}v be a stateful functionality with secret state st ∈ {0, 1}k,
ϕ ∈ {0, 1} be a public value and let 〈γ〉 be a public log(k)-bit counter
both initially set to zero. We define a stateful hardened functionality
GCode : {0, 1}2s× {0, 1}u → {0, 1}2s× {0, 1}v with a modified state st ′ ∈ {0, 1}2s
and s = poly(n). The hardened functionality GCode is a triple of algorithms
(Init, Setup,Execute) described as follows:

– Ω ← Init(1k): Run the initialization procedure of the coding scheme to sample
Ω ← Init(1k).

– (M0,M1) ← Setup(Ω, st): Let (X0, X1) ← Encode(Ω, st ||〈1〉) and incre-
ment 〈γ〉 ← 〈γ〉 + 1. For b ∈ {0, 1}, store Xb in the first n bits of Mb, i.e.
Mb[1 . . . n] ← Xb.11 (The remaining bits of Mb are set to 0s−n.) Define
st ′ := (M0,M1).

– y ← Execute(x): Read the public bit ϕ. In case ϕ = 1 output ⊥. Oth-
erwise recover Xb = Mb[1 . . . n] for b ∈ {0, 1} and run (st ′′||〈γ′〉) ←
Decode(Ω, (X0, X1)). Read the public counter 〈γ〉. If 〈γ〉 �= 〈γ′〉 or st ′′ =
⊥, set ϕ = 1. Else run (stnew, y) ← G(st ′′, x) and output y. Finally,
write Encode(Ω, stnew||〈γ + 1〉) in (M0[1, . . . , n],M1[1, . . . , n]) and incre-
ment 〈γ〉 ← 〈γ〉+ 1.

Remark 2 (On 〈γ〉). Note that the counter is incremented after each evaluation
query, and the current value is encoded together with the new state. We require
〈γ〉 to be untamperable. This assumption is necessary, as otherwise an adversary
could always use the extra space to keep a copy of a previous valid state and place
it back at some later point in time. The above attack allows essentially to reset
the functionality to a previous state, and cannot be simulated with black-box
access to the original functionality.

In the case of stateful primitives, the hardened functionality has to re-encode
the new state at each execution. Still, as the memory is large, the adversary can
use the extra space to tamper continuously with a target encoding of some valid
state. Security of a stateful hardened functionality is defined analogously to the
stateless case (cf. Definition 6). We show the following result (for space reasons
we defer the proof to the full version [18]):
11 Without erasure this can be easily implemented by a stack.
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Theorem 3. Let G be a stateful functionality and Code = (Init,Encode,
Decode) be any (�, q)-CNMLR encoding scheme in the split-state CRS model.
Then Code is polyspace (�, q)-leak/tamper simulatable for G.
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Abstract. We introduce the notion of locally updatable and locally
decodable codes (LULDCs). In addition to having low decode locality,
such codes allow us to update a codeword (of a message) to a codeword
of a different message, by rewriting just a few symbols. While, intuitively,
updatability and error-correction seem to be contrasting goals, we show
that for a suitable, yet meaningful, metric (which we call the Prefix
Hamming metric), one can construct such codes. Informally, the Prefix
Hamming metric allows the adversary to arbitrarily corrupt bits of the
codeword subject to one constraint – he does not corrupt more than a
δ fraction (for some constant δ) of the t “most-recently changed” bits of
the codeword (for all 1 ≤ t ≤ n, where n is the length of the codeword).

Our results are as follows. First, we construct binary LULDCs for mes-
sages in {0, 1}k with constant rate, update locality of O(log2 k), and read
locality of O(kε) for any constant ε < 1. Next, we consider the case where
the encoder and decoder share a secret state and the adversary is com-
putationally bounded. Here too, we obtain local updatability and decod-
ability for the Prefix Hamming metric. Furthermore, we also ensure that
the local decoding algorithm never outputs an incorrect message – even
when the adversary can corrupt an arbitrary number of bits of the code-
word. We call such codes locally updatable locally decodable-detectable
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codes (LULDDCs) and obtain dramatic improvements in the parameters
(over the information-theoretic setting). Our codes have constant rate,
an update locality of O(log2 k) and a read locality of O(λ log2 k), where
λ is the security parameter.

Finally, we show how our techniques apply to the setting of dynamic
proofs of retrievability (DPoR) and present a construction of this prim-
itive with better parameters than existing constructions. In particular,
we construct a DPoR scheme with linear storage, O(log2 k) write com-
plexity, and O(λ log k) read and audit complexity.

1 Introduction

Standard error correcting codes (ECC) enable the recovery of a message even
when a large fraction of its codeword is corrupted. One disadvantage of ECCs
is that, in order to read even a single bit of the data, the entire codeword needs
to be decoded. This becomes very inefficient if a user frequently needs to access
specific parts of the underlying data. Locally decodable codes LDCs, introduced
by Katz and Trevisan [15], overcome this problem and allow recovery of a single
symbol of the message by reading only a few symbols of the potentially corrupted
codeword. Another disadvantage of standard ECCs is that, in order to change
even a single bit of the data, the entire codeword needs to be recomputed. A
natural question to ask is: can we obtain codes which also allow us to change
the underlying data by rewriting only a few symbols of the codeword? That is,

Can we build an ECC that allows you to decode and update the message by
reading and/or modifying sub-linear number of symbols of the codeword?

In this work, we explore this question and its cryptographic connection.

1.1 Codes with Locality

Locally Decodable Codes. As mentioned before, locally decodable codes (LDCs),
introduced by Katz and Trevisan [15] are a class of error correcting codes, where
every bit of the message can be probabilistically decoded by reading only a few
bits of the (possibly corrupted) codeword. In more detail, a binary locally decod-
able code encodes messages in {0, 1}k into codewords in {0, 1}n. The parameters
of interest in such codes are: a) the rate of the code ρ = k

n ; b) the distance δ,
which signifies that the decoding algorithm succeeds even when δn of the bits of
the codeword are corrupted; c) the locality r which denotes the number of bits
of the codeword read by the decoding algorithm; and d) the error probability ε
that denotes that for every bit of the message, the decoding algorithm success-
fully decodes it with probability 1 − ε. Ideally, one would like to minimize both
the length of the code as well as the locality; unfortunately, there is a trade-off
between these parameters. On the one hand, we have the Hadamard code that
has a locality of 2; however its length is exponential in k. (Indeed, the best code
length for LDCs with constant locality are super-polynomial in k [27,8,6].). On
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the other hand, the best known codes with constant rate, [16,11,13], have a lo-
cality of O(nε) for any constant 0 < ε < 1. For a survey on locally decodable
codes, see Yekhanin’s survey [28].

Locally Updatable and Locally Decodable Codes. As we mentioned before, LDCs
(and error correcting codes in general) are extremely useful as they provide
reliability even when many bits of the codeword may be corrupted; unfortunately,
the (unavoidable) price that we pay is that even small changes to the message
result in a large change to the codeword. In this work, we ask “can we have
locally decodable codes that are locally updatable?”. That is, can we have locally
decodable codes such that in order to obtain a codeword of message m′ from a
codeword of message m (where m and m′ differ only in one bit) one only needs
to modify a few bits of the codeword? We call such codes locally updatable and
locally decodable codes (LULDCs); the number of bits that are modified by the
update algorithm is then referred to as the update locality and the number of
bits read by the (local) decoding algorithm is referred to as the read locality.

The Prefix Hamming Metric. As in the case of LDCs, our goal is to tolerate a
constant fraction of errors while achieving subliniear locality (for both read and
update). However, a little thought reveals that updatability and error correction
are conflicting goals – if a code tolerates a δ-fraction of errors then, to change
even one bit of the data, at least 2δ-fraction of the codeword symbols do need
to be re-written.

In light of this, we consider a weaker, yet meaningful, adversarial model of
corruption. In this model, the adversary is still allowed to corrupt constant
fraction of the bits of the codeword. However, the bits of the codeword have
an “age” associated with them and the adversary is allowed to corrupt fewer
of the younger/newer bits and is allowed to corrupt many of the older bits.
Whenever we touch (i.e., write) a particular bit i of the codeword during an
update procedure, this bit becomes a young bit with an age less than every
other bit in the codeword. At this point of time, the ith bit of the codeword
is the youngest bit in the codeword. Now, suppose we touch the jth bit of the
codeword, then this bit becomes the youngest bit, with the ith bit now becoming
the second youngest bit of the codeword and so on. Note that if we were to now
touch the ith bit, it would once again become the youngest bit of the codeword.

We allow the adversary to corrupt a constant fraction of the bits of the code-
word subject only to one constraint – he never corrupts more than a δ fraction
of the t youngest bits (for all 1 ≤ t ≤ n). We call this metric the Prefix Hamming
Metric. This metric models a situation where the longer the time a bit of the
codeword resides in the system, the easier it is for an adversary to corrupt it.
That is, stored data (codeword bits) gets “stale” unless refreshed, and hence the
more time the data is untouched, the more errors it will have.

Comparison with Tree Codes. Our error model is similar to the one considered by
Schulman [23],[24] in his seminal work on Tree Codes. Tree codes were specifically
designed for streaming messages and allow the encoding of messages one bit
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at a time; the corresponding codeword symbol for every bit of the message is
obtained by traversing down a tree. The codeword of the message is obtained
by simply concatenating all the individual codeword symbols. Schulman’s code
guarantees the following: consider any two (different) paths of length t beginning
at a particular node in the tree (that denote two different messages); then, the
codewords corresponding to these messages have Hamming distance at least αt
(for some constant α). Alternately viewed, at any given instance, as long as
the adversary does not corrupt more than a α fraction of the t most recently
transmitted codeword symbols, the codeword will decode to the correct message.
Tree codes were designed for arbitrary (polynomial length) messages; however,
we do not know of explicit constructions of tree codes with constant rate.

In our work, the message and codeword lengths are fixed in advance. But
the message bits can be updated in a streaming fashion by rewriting certain
bits of the codeword. Our adversarial error model says the following: at any
given instance, as long as the adversary does not corrupt more than a particular
constant fraction of the t most recently rewritten bits of the codeword (for all
t), the codeword will decode to the correct message.

1.2 Our Results

Information-Theoretic Codes. We first construct an LULDC in the information-
theoretic setting for the Prefix Hamming metric. We define this metric and such
codes in detail in Section 2; for now, we give an overview of the result and the
parameters that we achieve.

– Result 1 (Informal): We construct binary LULDCs for the Prefix Hamming
metric for messages in {0, 1}k. Our codes have a rate of O(1), an amortized
update locality of O(log2 k) and a worst case read locality of O(kε) for any
constant ε < 1. For codes that operate on a larger alphabet Σ, with |Σ| ≥
log k, we can improve the update locality to O(log k) (other parameters
remaining the same).

Computational Codes. Next, we consider a scenario where the encoder and de-
coder share a secret state S and where the adversary is computationally bounded.
In such a setting, we are able to provide the added guarantee that the (local) de-
coding algorithm never outputs an incorrect message, irrespective of the number
of corrupted bits in the codeword. For the sake of clarity, we refer to such codes
as locally updatable and locally decodable-detectable codes (LULDDCs). In ad-
dition to providing stronger guarantees, we also obtain dramatic improvements
over the parameters achieved by our information-theoretic LULDC construction.
In particular, we obtain the following parameters:

– Result 2 (Informal): We construct binary LULDDCs for messages in {0, 1}k.
Our codes have constant rate, an amortized update locality of O(log2 k) and
a worst case read locality of O(λ log2 k), where λ is the security parameter
of the system.
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Finally, we note that our techniques for building LULDDCs lend themselves
to the construction of a Dynamic Proof of Retrievability (DPoR) scheme. Below
we discuss our result on DPoR, which we believe, is of independent interest.

Dynamic Proofs of Retrievability. Informally, a proof of retrievability allows a
client to store data on an untrusted server and later on, obtain a short proof
from the server, that indeed all of the client’s data is present on the server. In
other words, the client can execute an audit protocol such that any malicious
server that deletes or changes even a single bit of the client’s data will fail to
pass the audit protocol, except with negligible probability in the security param-
eter1. Proofs of retrievability, introduced by Juels and Kaliski [14], were initially
defined on static data, building upon the closely related notion of sublinear au-
thenticators defined by Naor and Rothblum [18]. Several works have studied the
efficiency of such schemes [25,7,2,1] with the work of Cash, Küpçü, and Wichs [3]
considering the notion of proofs of retrievability on dynamically changing data;
in other words, they constructed a proof of retrievability scheme that allowed
for efficient updates to the data. Their DPoR scheme has O(k) server storage,
O(λ) client storage, O(λ log2 k) read complexity, O(λ2 log2 k) write and audit
complexity2. We improve their parameters and obtain the following result:

– Result 3 (Informal): We obtain a construction of a dynamic proof of re-
trievability with O(k) server storage, O(λ) client storage, O(λ log k) read
complexity, O(log2 k) write complexity and O(λ log k) audit complexity3.

1.3 Our Techniques

We now give a high-level overview of the techniques used to obtain our re-
sults. We shall make use of the hierarchical data structure introduced by Os-
trovsky [19],[20] in the context of oblivious RAMs. Oblivious RAMs [9,19] allow
efficient random access to memory without revealing the access pattern to an ad-
versary that observes the reads and writes made to memory. ORAM protocols
hide the access pattern by making use of several tools carefully put-together.
Here we distill out exactly what we need for our construction. In particular, we
will primarily make use of the hierarchical data structure, coupled with certain
other techniques, to construct LULDCs.

Hierarchical Data Structure. At a high level, this data structure comprises of
buffers buff0, · · · , buffτ of increasing size. Buffer buffi has 2

i elements and each

1 Formally, this guarantee is provided by requiring the existence of an extractor al-
gorithm, that given black-box rewinding access to any malicious server that passes
the audit with non-negligible probability, will extract all of the client’s data, except
with negligible probability.

2 The work of Cash et al. [3] considered the complexity without explicitly including
the (storage as well as verification) complexity of the MAC; if one did this, then
the parameters obtained will all be larger by a factor of O(λ).

3 These parameters include the cost for storage and verification of the MACs.
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element in the buffer is of the form (index, value). In addition, there is a special
buffer, buff∗ which has all bits of the message in order (and hence without an
index). To read a value at a particular index i, we scan the buffers in top-down
manner. To write (or re-write) a value v at index i, we write it to the top
buffer. Writing to buffers evenutally fills them up. To handle this, buffers are
periodically combined and moved to an empty buffer in some lower level in a
careful manner.

LULDCs for the Prefix Hamming Metric. The first idea behind our construction
in the information-theoretic setting is as follows. To achieve local decodability,
we encode each buffer (including buff∗) with a locally decodable code (LDC).
Whenever we wish to update a bit of the message, we will write it to the topmost
buffer buff0 and re-encode the top buffer using an LDC to encode this latest
update. Naturally, the top buffer gets full after an update operation. Whenever
we encounter a full buffer, we move its contents to the buffer below it (that is,
we decode the entire buffer, combine top level buffers together and re-encode
them at a level below, once again using an LDC for the encoding). When we
wish to (locally) decode a particular index i of the message, we scan buffers
one-by-one starting with topmost buffer. Now, note that we need to check if
a particular index is found in a buffer or not. In order to do this, we always
ensure that buffers store (index, value) pairs that are sorted according to the
index value. This will enable us to perform a binary search (decoded via the
underlying LDC) to check if a buffer contains a particular index i or not. Since
we are performing the binary search via the decode algorithm of the underlying
LDC, we must ensure that the decode does not fail with too high a probability;
hence, we repeat the decode procedure at each level some fixed number of times
to ensure this and make sure that our overall local decoding algorithm succeeds
except with ε probability. When the index is found, we stop searching lower level
buffers and output the value retrieved (our construction will always ensure that
if an index value was updated, then the latest value of the index will be stored
at a high level buffer). If the index is not found, then we read the corresponding
element from the special buffer buff∗, once again using the underlying LDC.

Since we must store every updated element as a (index, value)-pair, the above
described technique will decrease the rate of the code by a factor of O(log k).
Hence, in order to ensure that our code has constant rate, we carefully choose
the total number of buffers τ + 1 in our construction to ensure that we obtain
constant rate codes and yet achieve good update and read locality.

Now, in the above construction, we first show that the decode and update
algorithms succeed (with small locality) as long as an adversary corrupts only
a constant fraction of the bits of each buffer. We then proceed to show that if
an adversary corrupts bits of the codeword according to the Prefix Hamming
metric, then he can only corrupt a constant fraction of the bits of each buffer
(within a factor of 2). This gives us our construction of LULDCs.

Computational LULDDCs. To obtain our construction in the computational set-
ting, at a high level, we follow our information-theoretic construction. However,
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there are three main differences. First, when decoding the ith bit of the codeword,
we still scan each buffer to see if a “latest” copy of the ith bit is present in that
buffer. However, now, because we are in the computational setting, we no longer
need to store the buffer in sorted order and perform a binary search. Instead, we
simply use hash functions to check if a particular index is present in a buffer or
not. Furthermore, we use cuckoo hash functions to minimize our read locality in
this case. Second, we store each buffer using a computational LDC that has con-
stant rate and O(λ) locality (such codes are obtained through the construction
of Hemenway et al. [12]). Third, we authenticate each bit of the codeword using
a message authentication code so that we never decode incorrectly (irrespecitve
of the number of errors that the adversary introduces).

The above ideas do not suffice for our construction: in particular, if we applied
these techniques, we do not obtain a constant rate code as MACing each bit of
the codeword would result in a O(λ) blowup in the rate of the code. One could
think of MACing O(λ) bits of the codeword, block by block, but then this would
result in a O(λ2) blowup in the read locality, as we must read λ bits now in
each buffer through the underlying LDC. In order to obtain our result, we MAC
each bit of the codeword using a constant size MAC; this technique is similar in
spirit to the use of constant size MACs when authenticating codewords in the
context of optimizing privacy amplification protocols [5]. To obtain our result,
we make a careful use of these constant size MACs to verify the correctness of a
codeword as well as to decode correctly (except with negligible probability).

Dynamic Proofs of Retrievability. Cash et al. [3] showed how to convert any
oblivious RAM (ORAM) protocol that satisfied a special property (which they
define to be next-read-pattern-hiding (NRPH)) into a dynamic proof of retriev-
ability (DPoR) scheme. We show that we do not need an ORAM scheme with
this property and the techniques used to construct LULDDCs can be used to
directly build a DPoR scheme. Moreover, we do not need to hide the read and
write access pattern, thereby leading to significant savings in the complexity. In
particular, we show, that by encoding each buffer of the ORAM structure using
a standard error correcting code (that is also appropriately authenticated with
constant size MACs), and additionally storing authenticated elements of the raw
data in the clear, we can use the techniques developed for LULDDCs to con-
struct a DPoR scheme with O(k) server storage, O(λ) client storage, O(λ log k)
read complexity, O(log2 k) write complexity and O(λ log k) audit complexity.
Moreover, these parameters include the cost for storage and verification of the
MACs.

1.4 Organization of the Paper

In Section 2, we introduce our notion of locally updatable and locally decod-
able codes as well as formally define the Prefix Hamming metric. We present
our construction of locally updatable and locally decodable codes for the Prefix
Hamming metric in Section 3. We consider the computational setting in Sec-
tion 4 and construct locally updatable and locally decodable-detectable codes.
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Finally, we give our construction of a dynamic proof of retrievability scheme in
Section 5. Due to the lack of space, we present further details of our schemes
and proofs in the full version [4].

2 Definitions

Notation. Let k denote the length of the message. LetM denote a metric space
with distance function dis(, ). Let the set of all codewords corresponding to a
message m be denoted by Cm – we will define this set shortly. Let n denote the
length of all codewords. m(i) denotes the ith bit of message m for i ∈ [k], where
[k] denotes the set of integers {1, 2, · · · , k}.

2.1 Codes with Locality

Locally decodable codes. We first recall the notion of locally decodable codes.
Informally, locally decodable codes allow the decoding of any bit of the message
by only reading a few (random) bits of the codeword. Formally:

Definition 1 (Locally decodable codes). A binary code C : {0, 1}k →
{0, 1}n is (k, n, rk, δ, ε)-locally decodable if there exists a randomized decoding
algorithm D such that

1. ∀m ∈ {0, 1}k, ∀i ∈ [k], ∀cm ∈ Cm, and for all ĉm ∈ {0, 1}n such that
dis(cm, ĉm) ≤ δn:

Pr[Dĉm(i) = m(i)] ≥ 1− ε,

where the probability is taken over the random coins of the algorithm D.
2. D makes at most rk queries to ĉm.

Locally updatable codes. We now define the notion of locally updatable and
locally decodable codes. A basic property that updatable codes must have is
that one can convert a codeword of message m into a codeword of message m′

(where m′ and m differ possibly only at the ith position), by changing only a few
bits of the codeword of m. However, we will obtain codes that have a stronger
property; namely, will ensure that we can convert any string that decodes to m
into a string that decodes to m′. That is, let m and m′ be two k-bit messages that
(possibly) differ only in the ith position, where m′(i) = bi. For some appropriate
metric space that defines a measure of closeness, given a string ĉm that is “close”
to a codeword for messagem, our update algorithm (that writes bit bi at position
i) must convert ĉm into a new string ĉm′ that is now “close” to a codeword for
message m′. Furthermore, the update algorithm must query and change only a
few bits of ĉm. Additionally, our code should also be locally decodable.

Before we present the formal definition of a locally updatable and locally
decodable code, we first need to define the set of codewords Cm for a message m.
Conceptually, with a locally updatable code, there are two kinds of codewords
that correspond to a message m – ones obtained by computing E(m) and those
obtained by computing updating the codeword of different message m′.
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We let mibi denote a message that is exactly the same as m except possibly

at the ith position (where it is bi). Note that mibi maybe equal to m itself.

Definition 2 (The set Cm). For a message m, if there exists a message m̄,
codeword cm̄ = E(m̄) (possibly m̄ = m and cm̄ = cm) and a (possibly empty) set

of indices {i1, · · · , it} such that m = m̄i1
b1 ···itbt and cm = u(....u(u(cm̄, i1, b1), i2,

b2), ...., it, bt), then cm is in the set Cm.

It is easy to see that Cm contains all the codewords that decode to m. We
now present the formal definition of a LULDC.

Definition 3 (Locally updatable and locally decodable codes
(LULDC)). A binary code C : {0, 1}k → {0, 1}n is (k, n, w, r, δ, ε)-locally
updatable and locally decodable if there exist (possibly) randomized algorithms
ELDC, U and D such that the following conditions are satisfied:

1. Local Updatability:

(a) Let m0 ∈ {0, 1}k and let cm0 = ELDC(m0). Let mt be a message obtained
by any (potentially empty) sequence of updates. (t = 0 corresponds to
the case where the codeword has not been updated so far.) Then ∀m0 ∈
{0, 1}k, ∀cm0 ∈ Cm0 , ∀t, ∀mt, ∀it+1 ∈ [k], ∀bt+1 ∈ {0, 1}, for all ĉmt ∈
{0, 1}n such that dis(ĉmt , cmt) ≤ δn,

– The actions of U ĉmt (it+1, bt+1), change ĉmt to u(ĉmt , it+1, bt+1) ∈
{0, 1}n, where dis(u(ĉmt , it+1, bt+1), cmt+1) ≤ δn for some cmt+1 ∈
Cmt+1 , where mt+1 and mt are identical except (possibly) at the itht+1

position, where mt+1(it+1) = bt+1.

(b) The total number of queries and changes that U makes to the bits of ĉm
is at most w.

2. Local Decodabilty:

(a) Let mt denote the latest message. ∀mt ∈ {0, 1}k, ∀i ∈ [k], ∀cmt ∈ Cmt ,
and for all ĉmt ∈ {0, 1}n such that dis(cmt , ĉmt) ≤ δn:

Pr[Dĉmt (i) = mt(i)] ≥ 1− ε,

where the probability is taken over the random coins of the algorithm D.
(b) D makes at most r queries to ĉmt .

2.2 The Prefix Hamming Metric

If we want codes that are truly updatable, the update locality w needs to be
<< δn. However, as mentioned earlier, we cannot hope to achieve such locality
for metrics where an adversary can arbitrarily corrupt a constant fraction of the
bits of the codeword. (Indeed, if we updated a codeword from cm to cm′ with a
locality of w, then by corrupting those w bits of cm′ , an adversary can ensure
that the decoding algorithm does not output the correct message – in particular,
the decode algorithm would output m instead of m′.)
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In light of this, we turn to a new, yet meaningful metric, for which we can
guarantee that even if an adversary corrupts a bounded number of bits of the
codeword, though not in a completely arbitrary manner, our decode algorithm
still functions correctly. At a high level, bits of the codeword “age” and the
adversary can corrupt a fraction of the bits as a function of their age. Our
metric relies crucially on the order in which bits were written or updated during
the creation of a codeword – nonetheless, we abuse notation and refer to Prefix-
Hamming as a metric. We first define the “age-ordering” of a codeword.

Definition 4 (Age-ordering of a codeword). Let c ∈ {0, 1}n. Let w1 denote
the index/position of the most recent bit of the codeword that was either written
or updated. Let w2 denote the unique index of the next most recent bit that was
written/updated and so on, with wn denoting the index of the earliest bit written
(in comparison with the rest of the bits of the codeword). We call w1, · · · ,wn the
age-ordering of c. c(wi) denotes the bit value of the codeword at index wi. For
all 1 ≤ t ≤ n, let c[1, t] denote the bits c(w1), · · · , c(wt).

We are now ready to define how the adversary in our model can corrupt bits
of the codeword. That is, we define our metric space and its distance function.

Definition 5 (The Prefix Hamming Metric). Let c ∈ {0, 1}n. Let
w1, · · · ,wn denote the age-ordering of c. Let c′ ∈ {0, 1}n and for 1 ≤ t ≤ n,
let c′[1, t] denote the bits c′(w1), · · · , c′(wt). We say that the Prefix Hamming
distance between c and c′, denoted by Prefix(c, c′) is ≤ δn if for all 1 ≤ t ≤ n,
Hamm(c[1, t], c′[1, t]) ≤ δt, where Hamm(x, y) denotes the Hamming Distance
between any two strings x and y of equal length.

3 LULDCs for the Prefix Hamming Metric

3.1 Our Results

In this section, we show how to construct locally updatable locally decodable
error correcting codes (LULDCs) that are resilient to a constant fraction of
adversarial errors for the Prefix Hamming metric that we defined in Section 2.2.
Formally, we show:

Theorem 1. Let τ = log k−log(log k+1)−1. Let CLDC be a family of (ki, ni, ri, ε,
δ)−locally decodable code for Hamming distance with algorithms (ELDC,DLDC),
where ki = 2i(log k + 1) for all 0 ≤ i ≤ τ . Additionaly, let CLDC contain a
(k∗, n∗, r∗, ε, δ)−locally decodable code for Hamming distance, where k∗ = k. Let
ρi =

ki

ni
for all i and let ρ∗ = k∗

n∗ . Then there exists a (k, n, w, r, ε, δ
2 ) − LULDC

code C = (E ,D,U) for the Prefix Hamming metric with:

– Length of the code (n): n = n∗ +
τ∑

i=0

ni.

– Update locality (w): w = (log k + 1)
τ∑

i=0

1
ρi

+ log k+1
ρ∗ , in the amortized

sense.
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– Read locality (r): r = 8(1−ε)
(1−2ε)2T log T

ε + r∗, where

T = (log k + 1)

(
r0 +

∑
1≤j≤τ

jrj

)
, in the worst case.

As a corollary to Theorem 1, using the LDCs from [16,11,13] we obtain:

Corollary 1. For every ε, α > 0, there exists a (k, n, w, r, ε, δ) − LULDC code
C = (E ,D,U) for the Prefix Hamming metric achieving the following parameters,
for some constant 0 < δ < 1

4 :

– Length of the code (n): n = 2k
1−α .

– Update locality (w): w = O(log2 k), in the amortized sense.
– Read locality (r): r = O(kε′), for some constant ε′, in the worst case.

Large alphabet codes. We remark that for codes over larger alphabet Σ, with
|Σ| ≥ c log k for some constant c, we can modify our code to obtain a better
update locality of O(log k) (other parameters remaining the same).

3.2 Code Description

We will now construct the codes that will prove Theorem 1. Our codeword will
have a structure similar to that of the hierarchical data-structure used by Ostro-
vsky [19,20] in the construction of oblivious RAMs. Let τ = log k − log(log k +
1)−1. Each codeword of C will consist of τ+1 buffers, buff0, . . . , buffτ and a spe-
cial buffer buff∗. We will ensure that as updates take place, at any point of time,
buffi will be either empty or full (for all i > 0). A full buffer, buffi, will contain

an encoding of a set μi of 2
i elements. In particular, μi = [(a1i , v

1
i ), . . . , (a

2i

i , v2
i

i )]

where aji is an address (between 0 and k−1) and vji is the value corresponding to
it. buffi (when non-empty) will store ψi = ELDC(μi). The special buffer buff

∗ will
contain an encoding of the bits of the entire message in order, without address
values; in particular, buff∗ stores ψ∗ = ELDC(m).

Encode algorithm. Our encoding algorithm works as follows:

Algorithm E(m):

1. Creates the τ + 1 empty buffers (buff0, . . . , buffτ ).
2. Let μ∗ = {m(1), · · · ,m(k)}, where m(i) denotes the ith bit of the message.

It computes ψ∗ = ELDC(μ
∗) and stores it in buff∗.

Local update algorithm. Our update algorithm updates a string ĉm (such that
Prefix(ĉm, cm) ≤ δn, for some cm ∈ Cm) into a string ĉ′m, setting m(i) to bi.

Algorithm U ĉm(i, bi):

1. If the first buffer is empty, computes ELDC(i, bi) and stores it in buff0.
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2. If the first buffer is non-empty, it finds the first empty buffer. Let this be
buffj . It decodes all the buffers above it to get μ0 to μj−1

4. Recall that each
μh is a set of (a, v) pairs where a denotes the address (of length log k) and v
denotes a value (∈ {0, 1}). It merges all these pairs of values as well the pair
(i, bi) in a sorted manner (where the sorting is done on address) and stores
it in μj . Note, there are 2j elements and therefore μj is now a full buffer.
Handling Repetitions: While merging elements from multiple buffers, we
might encounter repetition of addresses. Instead of removing repetitions,
we simply ensure that all values stored in the buffers until j − 1 store only
the “latest value” corresponding to the repeated address. (The latest value
is easy to determine – it is the first value corresponding to the buffer that
you encounter when reading the buffers in a top-down manner. Of course,
for the address being inserted, namely i, the latest value will be bi.)

3. The update algorithm computes ψj = ELDC(μj) and stores it in buffj .
4. The buffers from μj−1 . . . μ0, in that order, are now set to empty by writing

special symbols into it. Looking ahead, the order in which this done is im-
portant as this ensures that buffh always has bits that are “younger” than
the bits in buffh+1 for all h (when considering the age-ordering of the bits).

5. If none of the buffers are empty, namely, all buffers buff0, · · · , buffτ are full,
then the update algorithm simply re-computes a new encoding of the message
using the LDC encode algorithm and stores it in buff∗. In other words,
the algorithm decodes all the buffers to obtain the latest value of each bit,
concatenates these bits together to form μ∗ = {m(1), · · · ,m(k)} and encodes
these bits to compute ψ∗ = ELDC(μ

∗). Once again, the buffers from buffτ to
buff0 are set to empty in that order by writing special symbols into it.

Local decode algorithm. Recall that our buffers satisfy the following conditions:

– The buffers are always sorted (based on the address a).
– If the address a “appears” in the same buffer multiple times, then all values

corresponding to this address are the same. (This is guaranteed by the way
we handle repetitions during our merging procedure.)

– Finally, across multiple buffers, the most recent value corresponding to an
address appears in the higher buffer (i.e. a lower buffer value).

Algorithm Dĉm(i):

1. The decode algorithm starts with the top-most buffer (buff0) and proceeds
downwards until it finds the address i.

2. To search a buffer buffj for the element i, it performs a binary search on
elements stored in that buffer. Because buffj contains an LDC encoding,
we additionally need to use DLDC() algorithm to access these j elements.
Since DLDC() might fail with ε probability to decode one coordinate of the
underlying message, we need to repeat DLDC() multiple (i.e. λ) times to
amplify the success probability (where λ is a carefully chosen parameter).

4 Here, these buffers need not be decoded using the local decoding algorithm and one
can obtain perfect correctness by simply running the standard decoding algorithm
for the error correcting code.
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3. If element i is not found in any of the buffers buff0 through buffτ , then the
algorithm simply (locally) decodes the ith element from buff∗ (which contains
an LDC encoding of the message).

3.3 Proof of Theorem 1

We shall now prove Theorem 1; namely, we show that the construction described
above in Section 3.2 is a locally updatable, locally encodable binary error cor-
recting code (for the Prefix Hamming metric) with the parameters listed in
Theorem 1. Instead of directly proving Theorem 1, we will instead show that
the construction is a LULDC for a metric that we call the Buffered-Hamming
metric. From this, the proof of Theorem 1 directly follows. We shall now define
the Buffered-Hamming metric and its associated distance function.

Buffered-Hamming Distance. Let c ∈ {0, 1}n comprise of buffers buff =
buff0, . . . , buffq of lengths n0, . . . , nq respectively. Let c′ ∈ {0, 1}n be another
string with buffers buff′ = buff′

0, . . . , buff
′
q. Then we say that Buffered-Hamming

Distance, BHdis(cm, c′) ≤ δn if ∀i Hamm(buffi, buff
′
i) ≤ δni.

Lemma 1. Let τ = log k − log(log k + 1) − 1. Let CLDC be a family of
(ki, ni, ri, ε, δ)−locally decodable code for Hamming distance with algorithms
(ELDC,DLDC), where ki = 2i(log k + 1) for all 0 ≤ i ≤ τ . Additionaly, let CLDC

contain a (k∗, n∗, r∗, ε, δ)−locally decodable code for Hamming distance, where
k∗ = k. Let ρi =

ki

ni
for all i and let ρ∗ = k∗

n∗ . Then the construction described
above in Section 3.2 is a (k, n, w, r, ε, δ) − LULDC code C = (E ,D,U) for the
Buffered-Hamming metric achieving the following parameters:

– Length of the code (n): n = n∗ +
τ∑

i=0

ni.

– Update locality (w): w = (log k + 1)
τ∑

i=0

1
ρi

+ log k+1
ρ∗ , in the worst case.

– Read locality (r): r = 8(1−ε)
(1−2ε)2T log T

ε + r∗, where

T = (log k + 1)

(
r0 +

∑
1≤j≤τ

jrj

)
, in the worst case.

Proof. Length of the code. Recall that we have buffers in levels 0, 1, . . . , τ .
Each buffer encodes a message μj of length kj = 2j(log k + 1); the encoding
is denoted ψj and is of length nj . Buffer buff∗ contains an LDC encoding of a

message of length k. It is easy to see that the length of the code n = n∗+
τ∑

i=0

ni.

Read Locality and Decode Correctness. We now analyze the read locality and
the decodability of our code. Let ĉm be the given (corrupted) codeword and
let ĉm be such that BHdis(ĉm, cm) ≤ δn, where cm ∈ Cm for the most “recent”
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m ∈ {0, 1}k (obtained after an encoding of a message and possible subsequent
updates). We compute the read locality of our local decoding algorithm and
also prove that for all i ∈ [k], the decoding algorithm will output m(i) with
probability ≥ 1− ε.

Let μ = {μ0, . . . , μτ} and let ψ = {ψ0, . . . , ψτ}, where ψi = ELDC(μi). Let
CjLDC denote the locally decodable code used to encode μj . We use μx(y) to
denote the yth bit of μx. Recall that in order to read an index i of the message
m = m0, . . . ,mk, the algorithm Dψ(i) does a binary-search on the buffers in a
top-down manner to see if there is a value corresponding to address i. The worst
case locality occurs when mi has never been updated. In this case, the binary
search needs to be done on every buffer and will then conclude by performing a
(local) deocoding for the ith bit in buff∗ which contains ψ∗ = ELDC(m).

We first calculate the number of bits of μj (for j ≥ 1), one would need to
read, if we were doing the binary search directly over μj . There are 2j elements
i.e.,(a, v) pairs, in level j. So the binary search would need to look at j elements
(in the worst case). Each element has length log k+ 1. The total number of bits
of μj we access if we did a binary search over μj would be j(log k+1) (for j ≥ 1).

Dψ(i) learns these bits by making calls to Dψj

LDC which has locality rj . Therefore

the number of bits of ψj , read via calls to Dψj

LDC, is at most j(log k + 1)rj (for
1 ≤ j ≤ τ) and (log k + 1)rj (for j = 0). (Recall, that in buff∗, a binary search
is not performed and the decode algorithm simply decodes the (single) ith bit of
the message via LDC decode calls to ψ∗.)

Define a set Read and add (x, y) to it if μx(y) was accessed; let T = |Read|.
Then,

T = (log k + 1)

⎛⎝r0 +
∑

1≤j≤τ

jrj

⎞⎠ and (1)

the total decode locality r = Tλ+ r∗ (2)

Equation 2 follows from that fact that in order to read a bit of μj correctly,

we must amplify the success probability of Dψj

LDC, by taking the majority of
λ executions (Note, that just as in standard LDCs, even though our LULDC
allows a decoding error of ε, we cannot afford to have an error of ε while reading
every bit of our binary search in every buffer, as this would lead to an overall
worse error probabaility). If the element is not found in the buffers buff0 through
buffτ , then we only need to read 1 bit of the underlying message via a single
LDC decoding call to ψ∗ and hence we pay an additional r∗ in our read locality.

In order to determine r, all that is left, is for us to determine λ. Let the

variable #Succ(x, y) denote the number of calls such that Dψ′
x

LDC(y) = μ(x, y). Let
SuccRead(x, y) denote that event that #Succ(x, y) > λ

2 . First, since ĉm is such
that BHdis(ĉm, cm) ≤ δn, it follows that, Hamm(ψ′

j , ψj) ≤ δ|ψj | for all 0 ≤ j ≤ τ
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and Hamm(ψ∗′
, ψ∗) ≤ δ|ψ∗|. Now, since Cψ

′
j

LDC has error-rate ε, E[#Succ(x, y)] =

λ(1 − ε). By the Chernoff bound5, Pr[#Succ(x, y) ≤ λ
2 ] ≤ p = e−

λ(1−2ε)2

8(1−ε) .
In other words,

Pr[SuccRead(x, y) = 0] ≤ p = e−
λ(1−2ε)2

8(1−ε) (3)

i.e.,
∑

(x,y)∈Read

Pr[SuccRead(x, y) = 0] ≤ Tp. (4)

Our goal is to ensure that

Pr

⎡⎣ ∧
(∀(x,y)∈Read)

SuccRead(x, y) = 1

⎤⎦ (≥ 1− Tp) ≥ 1− ε.

In other words, we need to set λ such that Tp ≤ ε. Substituting for p =

e−
λ(1−2ε)2

8(1−ε) , we get that

λ ≥ 8(1− ε)

(1 − 2ε)2
log

(
T

ε

)
.

By setting λ = 8(1−ε)
(1−2ε)2 log

(
T
ε

)
and substituting in Equation 2, we get that

the decode locality,

r =
8(1− ε)

(1 − 2ε)2
T log

T

ε
+ r∗.

This proves the correctness and the read locality of our decoding algorithm.

Update Locality and Correctness. First, we count the number of coordinates
accessed in order to rewrite one bit of the message mi. This includes the total
number of coordinates read and written.

It is easy to see that in algorithm UCm(x, bx), buffer buffj (for 0 ≤ j ≤ τ)
is rewritten every 2j steps. Buffer buff∗ is re-written every 2τ+1 steps. In 2j

updates (when j < τ + 1), therefore, the total number of bits re-written is

= 2j
|μ0|
ρ0

+ 2j−1 |μ1|
ρ1

+ . . .+ 20
|μj |
ρj

= 2j|μ0|
∑

0≤i≤j

1

ρi
(since μi = 2μi−1, ∀i)

When j ≥ τ + 1, buff∗ is re-written and hence, in this case, the total number
of bits re-written is

5 Recall that for a variable X with expectation E(X), the Chernoff bound states

that for any t > 0, Pr[X ≤ (1 − t)E(X)] ≤ e−
t2E(X)

2 . In this case, X =
#Succ(x, y);E(X) = λ(1− ε); t = 1−2ε

2−2ε
.
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= 2j
|μ0|
ρ0

+ 2j−1 |μ1|
ρ1

+ . . .+ 2j−(τ+1) |μτ |
ρτ

+ 2j−(τ+1) |k∗|
ρ∗

= 2j |μ0|
∑

0≤i≤τ

1

ρi
+ 2j−(τ+1) |k∗|

ρ∗

The amortized update locality w per update is

|μ0|
∑

0≤i≤τ

1

ρi
+

|k∗|
2τ+1ρ∗

= (log k + 1)
∑

0≤i≤τ

1

ρi
+

log k + 1

ρ∗
.

Achieving a Worst-Case Guarantee. Note that, similar to the constructions of
oblivious RAMs, one can convert the amortized update locality into a worst-
case guarantee on the write locality, by distributing the work over many write
operations. At a high level, this works by maintaining an additional “working
copy” of data structure. Once levels 1, . . . , i − 1 of the first data structure are
filled in, the contents of level i are computed. This process takes place even as
levels 1, . . . , i − 1 of the second data structure are being filled in. This gives us

a worst case write locality of w = (log k + 1)
τ∑

i=0

1
ρi

+ log k+1
ρ∗ for the Buffered

Hamming metric. Note, however, that a similar argument does not translate to
the setting of the Prefix Hamming metric (since one would need to re-write parts
of buffers at various levels at various points of time) and hence we only get an
amortized bound for this metric.

To show update correctness, we must now argue, that if we begin the update
algorithm with a corrupted codeword ĉmt , such that BHdis(ĉmt , cmt) ≤ δn and
update the message mt to mt+1 (where mt and mt+1 differ (possibly) only at
the itht position, where mt+1(it) = bt+1), then we modify ĉmt to ĉmt+1 where
BHdis(ĉmt+1 , cmt+1) ≤ δn for some cmt+1 that is a codeword of mt+1. To see
this, observe that, the update algorithm decodes all buffers buff0, · · · , buffj for
some 0 ≤ j ≤ τ and possibly re-encodes these buffers into buffj+1. Additionally,
the update algorithm sets buffers buffj , · · · , buff0 to empty. In certain cases, the
update algorithmmight re-write buffer buff∗. Note that if buffj+1 was written/re-
encoded, then all buffers buffj through buff0 were also re-encoded. Similarly, if
buff∗ was re-encoded, then all buffers buffτ through buff0 were also re-encoded.
Now, since BHdis(ĉmt , cmt) ≤ δn, it follows that all the buffers that were de-
coded by the update algorithm, decoded correctly and these buffers were then
re-encoded without any errors. Hence, for all these buffers 0 ≤ h ≤ j+1 in ĉmt+1 ,

Hamm(ψ̂h, ψh) ≤ δ|ψh|. For buffers that were not touched, since no change was

made to these buffers, we still have that Hamm(ψ̂h, ψh) ≤ δ|ψh| (for h > j + 1
and for ψ∗). From these, it follows that BHdis(ĉmt+1 , cmt+1) ≤ δn.

This proves the update correctness as well as the update locality of our update
algorithm. This completes the proof of Lemma 1.
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Lemma 2. Let C = (E ,D,U) be the above described (k, n, w, r, ε, δ) − LULDC
code for the Buffered-Hamming metric. Then C is a (k, n, w, r, ε, δ

2 ) − LULDC
code for the Prefix Hamming metric.

Proof. Note that in our code construction, during a write/update operation, we
never change the bits of the codeword in a buffer buffi without changing the bits
of the codeword in a buffer buffj for any j < i. Furthermore, even when we change
the bits of the codeword in a buffer buffi, we then change the bits of the codeword
in buffers buffi−1, · · · , buff0 in that order. This means that if we consider the
age-ordering of cm, denoted by w1, · · · ,wn, then the indices corresponding to
a buffer buffj will always precede indices corresponding to a buffer buffi, for
any i > j. Now, since every buffer buffi+1 is twice the size of buffer buffi, it
follows that if two codewords cm and ĉm are such that Prefix(cm, ĉm) ≤ δn

2 , then
BHdis(cm, ĉm) ≤ δn, which gives us our result.

The proof of Theorem 1 now follows by simply combining Lemmas 1 and 2.

4 Computational Setting

4.1 Codes for Computationally Bounded Adversaries

In the previous section, we showed how to construct LULDC codes for the Prefix-
Hamming metric. As noted before, we cannot construct LULDCs for metrics
where the adverary can arbitrarily corrupt a constant fraction of the bits of
the codeword. Since it is impossible to construct codes for the case of arbitrary
adversarial errors, one could consider a setting where the decode algorithm will
either decode to the correct message or detect if it is not able to do so; in other
words, the decode algorithm will never output an incorrect message. Here too,
it is easy to see that, unfortunately, one cannot have such information-theoretic
error correcting codes. However, we show that by moving to the computationally-
bounded adversarial setting, and by allowing the encoder/decoder to maintain
a secret state S, one can construct error correcting codes with optimal rate that
are locally updatable. Our code will provide the following guarantees:

– If the Prefix Hamming condition is satisfied, then every bit of the message
will be locally decodable.

– Additionally, the (local) decoding algorithm will never output an incorrect
bit of the message.

These guarantees allow us to achieve a tradeoff between detecting arbitrary
adversarial errors and decoding a smaller class of errors. We will provide such a
guarantee even when the adversary gets to observe the history of updates/writes
made to the codeword; we denote the history of updates/writes made by hist6.

6 While this is the same guarantee that we provide even in the information-theoretic
setting, we make this explicit here as we wish to endow the computationally
bounded adversary with as much power as possible.
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We now define such locally updatable locally decodable-detectable error cor-
recting codes (LULDDC). As before, we provide our definition for the binary
case, but this can be generalized to codes for larger alphabet Σ. Let λ be the
security parameter and neg(λ) denote a function that is negligible in λ. We begin
with the definition of the Prefix Hamming metric for the computational setting.

Definition 6 (The Computational Prefix Hamming Metric). Let E ∈
{0, 1}r7. Let c be of the form E1, . . . ,En. Let w1, · · · ,wn denote the age-ordering
of c. For some c′ of the form E1, . . . ,En and for 1 ≤ t ≤ n, let c′[1, t] denote the
elements c′(w1), · · · , c′(wt). We say that the Computational Prefix Hamming8

distance between c and c′, denoted by Prefixcomp(c, c′), is ≤ δn if for all 1 ≤ t ≤ n,
Hamm(c[1, t], c′[1, t]) ≤ δt, where Hamm(x, y) denotes the Hamming Distance
between any elements x and y.

Definition 7 (Locally updatable and locally decodable-detectable
codes for adversarial errors (LULDDC)). A binary code C : {0, 1}k →
{0, 1}n is (k, n, w, r, λ, S)-locally updatable and locally decodable/detectable if
there exist randomized algorithms U and D such that the following conditions
are satisfied:

1. Local Updatability:

(a) Let the state be initialized to S0. Let m0 ∈ {0, 1}k and let cm0 =
E(m0, S0). Let mt be a message obtained by any (potentially empty) se-
quence of updates. (Note that the state S is updated everytime an update
is made.) Let hist contain the entire history of updates made on poten-
tially corrupted codewords. Let ĉmt be the final codeword obtained.
Then ∀m0 ∈ {0, 1}k, ∀t, ∀mt, ∀i ∈ [k], ∀b ∈ {0, 1}, for all probabilis-
tic polynomial time (PPT) algorithms A, for all hist and for all ĉmt ∈
{0, 1}n output by A(mt, i, b, hist), the following condition holds with all
but a negligible probability:

– If ∃cmt ∈ Cmt such that Prefixcomp(ĉmt , cmt) ≤ δn, then the ac-
tions of U ĉmt (i, b, St), change ĉmt to u(ĉmt , i, b, St) ∈ {0, 1}n, where
Prefixcomp(u(ĉmt , i, b, St), cmt+1) ≤ δn for some cmt+1 ∈ Cmt+1 , where
mt+1 and mt are identical except (possibly) at the ith position, and
mt+1(i) = b.

(b) The total number of queries and changes that U makes to the bits of ĉmt

is at most w.

2. Local Decodabilty-Detectability:

7 We will think of E as a bit bi followed by its constant sized authentication tag
σi = MAC(bi).

8 While the definition of the distance function is not computational, we call it the
computational prefix hamming distance, as this distance function is used only
for the computational LULDDC construction. In our LULDDC codes, security
guarantees will hold for codeword corruptions made by computationally bounded
adversaries.
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(a) Let mt ∈ {0, 1}k denote the latest message, as determined by hist. Then
∀hist, ∀mt ∈ {0, 1}k, ∀i ∈ [k], for all probabilistic polynomial time (PPT)
algorithms A and for all ĉmt ∈ {0, 1}n output by A(mt, i, hist):
– If ∃cmt ∈ Cmt such that Prefixcomp(ĉmt , cmt) ≤ δn, then

Pr[Dĉm(i, S) = m(i)] = 1− neg(λ),

where the probability is taken over the random coin tosses of the
algorithm D and randomness used to generate S.

– If ∀cmt ∈ Cmt ,Prefix
comp(ĉm, cm) > δn, then

Pr[Dĉm(i, S) = m(i) or ⊥] = 1− neg(λ),

where the probability is taken over the random coin tosses of the
algorithm D and randomness used to generate S.

(b) D makes at most r queries to ĉmt .

4.2 Our Results

In this section, we present a construction of a LULDDC in the computational
setting. In particular, we show:

Theorem 2. There exists a (k, n, w, r, λ, S) locally updatable and locally
decodable-detectable error correcting code C = (E ,D,U), for the Computational
Prefix Hamming metric, achieving the following parameters, for some constant
0 < δ < 1

4 :

– Length of the code (n): n = O(k).
– Update locality (w): w = O(log2 k), in the amortized sense.
– Read locality (r): r = O(λ log2 k), in the worst case.

Similar to the information-theoretic consturction, we use a heirarchical data
structure to store our codewords. In addition, we use cuckoo hashing and private
key locally decodable codes, details of which can be found in the full version.

LULDDC Overview. We start by recalling the construction of the information-
theoretic LULDC code from Section 3.2. Recall that codewords had τ buffers.
Each buffj encoded 2j (address, value) pairs, stored in a sorted manner. We
performed a binary search to search for a particular address, a within buffj .
The first difference is that we now use computational locally decodable codes to
encode each buffer. (Such codes were introduced by [21]. In this work, we use the
construction due to [12].) The next difference in the secret key setting is that we
optimize the search performed on the buffers by using cuckoo hash functions9. In

9 Cuckoo hash functions were first used in conjunction with the hierarchical data
structure [19],[20] by Pinkas and Reinman [22] to obtain an ORAM construc-
tion. While it was shown that this construction does not hide the access pattern
(i.e., which elements were read/written) [10],[17], as we will see, the underlying
data structure coupled with cuckoo hashing can still be used securely to obtain a
LULDDC code.
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particular, an element (a, v) is inserted at location h�,1(a) or h�,2(a). To search
for an address a in a particular buffer buff�, our decode algorithm only needs
to read locations h�,1(a) and h�,2(a). (Of course, as in the information-theoretic
case, we don’t store the buffers in the clear. Rather we store an encoding of
the buffers, now computed using the codes of [12] and the locations, h�,1(a)
and h�,2(a), are read via calls to the underlying decode algorithm.) The second
difference from the information theoretic construction is that we now use message
authentication codes to detect a scenario where the codeword has too many
errors. (To ensure local decodability, we need to authenticate each bit of the
codeword separately.) This guarantees that our computational LULDDC code
never decodes to an incorrect message.

Optimizing Parameters. While the above approach does give us an LULDDC
construction, it doesn’t give us our desired parameters. In particular, message
authentication tags need to be of length at least λ, causing a blow-up of at least
λ in the parameters. To avoid this, we use constant-size MACs instead.

Constant-Size Message Authentication Codes. Such message authentication
codes (MAC) authenticate each bit of the message being authenticated (in this
case, the codeword) with a tag of length O(1). While, individually, such MACs
can be forged with constant probability, as we will see in our construction, they
can be made secure when we are checking ω(λ) MAC values at a time.

At a high-level our decode algorithm will work as follows: we check the au-
thenticity of λ randomly chosen bits of the codeword in each buffer. If most of
the tags verify, we get a guarantee that less than a certain constant fraction
of the bits of the codeword are corrupted. (Indeed, since each tag is computed
with an independent MAC key, the odds that an adversary forges λ tags on his
own, is negligible.) This, in turn, ensures that less than a constant fraction of
bits of each codeword are corrupted, except with negligible probability10, and
therefore the codeword will decode correctly. (To the best of our knowledge, the
idea of combining constant sized MACs with error correcting codes in such a
way, was first used in the context of optimizing privacy amplification protocols
in [5].) This combined with certain other ideas, give us the construction with
parameters stated in Theorem 2. We now present the LULDDC construction
and provide the proof of Theorem 2 in the full version.

4.3 LULDDC Construction

We now build our code (denoted Ccomp) in the secret key setting. The secret
state S consists of a counter ctr (that is incremented everytime an update takes
place), and a key to a PRF. S is used to generate the various keys used by the
code. Similar to the information-theoretic case, each codeword c of Ccomp consists

10 This condition remains true only if all the buffers contain codewords that are at
least λ-bits long. We will ensure this by starting our buffers only at a particular
level.
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of τ + 1 buffers, buff0, . . . , buffτ , where τ = log
(

k
log k

)
. In addition, there is a

special buffer, buff∗, which has a structure different from the other buffers.
μi contains (1+γ)2i cells (for some γ > 1) – each being either a “non-empty”

cell containing a (address, value)-pair or an “empty” cell containing a special sym-
bol π. There are at most 2i non-empty elements in μi at any point of time, and
these elements are stored using cuckoo hash functions (hi,1, hi,2). The remaining
locations of μi are filled with empty elements. We let ψi = ELDC(μi). For each bit
j of ψi, let σi(j) = MAC(ψi(j)). Set ηi = {(ψi(j)||σi(j))}. buffi contains ηi. μ

∗

contains all the bits of m in order (without the address values). ψ∗ = ELDC(μ
∗)

and η∗ = {(ψ∗(j)||σ∗(j))}. The codeword is cm = [buff0, . . . , buffτ , buff
∗]. Let α

be a constant. We will pick α (as a function of δ and ζ) later on appropriately.

Encode algorithm. Our encoding algorithm works as follows:

Algorithm E(m, S):

1. Let μ∗ = m(1), · · · ,m(k), where m(i) denotes the ith bit of the message. Let
ψ∗ = ELDC(μ

∗) and η∗ = {(ψ∗(j)||σ∗(j))}, where ψ∗(j) is the jth bit of ψ∗

and σ∗(j) = MAC(ψ∗(j)).
2. Creates the τ + 1 empty buffers (buffτ , . . . , buff0) in that order; i.e., the

underlying μi contains only special symbols.

Local Update Algorithm. The update algorithm takes as input a (potentially
corrupted) codeword ĉ, an index i, a bit bi, and the latest state S. Let the
latest value of the message, as determined by hist, be m. Then if there exists
some codeword cm such that c ∈ Cm and Prefixcomp(ĉ, c) ≤ δn, then the update
algorithm outputs ĉ′ where Prefixcomp(ĉ′, c′) ≤ δn such that c′ ∈ Cm′ and m′ and
m are identical except possibly at the ith position, where m′(i) = bi.

Recall that each codeword has multiple buffers of the form ψi(j)||σi(j)
where ψi(j) is one bit of the codeword and σi(j) is its constant sized message
authentication tag. We refer to each of these ψi(j)||σi(j) as an element of buffi.

Algorithm U ĉm(i, b, S):

1. If the first buffer is empty, compute ψ = ELDC(i||b); σ = MAC(ψ) and insert
η = (ψ||σ) into the first buffer.

2. If the first buffer is non-empty, find the first empty buffer – note this can be
determined easily from ctr. Let the first empty buffer be at level j.

3. Store (i, bi) as well as all the non-empty elements from μ0 to μj−1 into μj .
To do this, we decode ψ0, · · · , ψj−1, insert the elements into μj and then
compute ELDC(μj) to obtain ψj . We compute ηj(�) = {ψj(�), σj(�)}. (The
authentication tags σj(�) are recomputed with the latest key corresponding
to level j.) When decoding ψ0, · · · , ψj−1, ensure that at least (1 − δ)|ψj |
MACs in every buffer verify; otherwise, output ⊥.

4. Starting from buffj−1 up to buff0, fill each of the buffers with empty
elements in order. In other words, set the underlying μ�s for each of the
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buffers to contain only special symbols.

We refer the reader to the full version for further details.

Local Decode Algorithm. The algorithm for reading the ith bit works as follows:

Algorithm Dĉm(i, S):

1. Randomly select λ elements from each of the buffers.
2. For each of the elements, verify that σ(j) = MAC(ψ(j)). (Note that this

verification is done with appropriate MAC keys generated from S.)
3. If, for even one level, less than αλ of the tags verify, then output ⊥.
4. The decode algorithm starts with the top-most buffer (buff0) and proceeds

downwards until it finds the address i.
5. For now, assume that buffj contains μj instead of its encoding. Then to

search a buffer buffj for an index i, we read the locations hj,1(i) and hj,2(i).
If either of these locations contains an entry (i, v) then v is the output of the
algorithm. Since buffj contains {ψj(�), σj(�)}, the steps we just described
are implemented via calls to the underlying decoder DLDC.

6. If we reach the last buffer, buff∗, we read the element v stored at address i in
the buffer – once again, via calls to DLDC. v is the output of the algorithm.

5 Dynamic Proof of Retrievability

A proof of retrievability scheme enables a client, storing his data on an untrusted
server, to execute an audit protocol such that a malicious server that deletes or
changes even a single bit of the client’s data will fail to pass the audit protocol,
except with negligible probability in the security parameter. Proofs of retriev-
ability, introduced by Juels and Kaliski [14], were initially defined on static data
building upon the closely related notion of sublinear authenticators defined by
Naor and Rothblum [18]. The work of Cash, Küpçü, and Wichs [3] considers
this notion for dynamically changing data; in other words, they constructed a
proof of retrievability scheme that allowed for efficient updates to the data. We
show that the techniques used to construct LULDDCs can be used to build a
DPoR scheme. In addition to being conceptually simple, our construction also
significantly improves the parameters achieved by [3].

A dynamic PoR scheme [3] comprises of four protocols PInit,PRead,PWrite,
and Audit between two stateful parties: the client C and a server S who is un-
trusted. The client stores some data m with the server and wishes to perform
read, write, and audit operations on this data. In detail, the protocols are:

– PInit(1λ, Σ, k): In this protocol, the client initializes an empty data storage
on the server of length k, where each element in the data comes from an
alphabet Σ. The security parameter is λ.

– PRead(i): In this protocol, the client reads the ith location of the data and
outputs some value vi at the end of the protocol.



Locally Updatable and Locally Decodable Codes 511

– PWrite(i, vi): In this, the client sets the ith location of the data to vi.

– Audit(): In this protocol, the client verifies that the server is maintaining
the data correctly so that they remain retrievable. The client outputs either
accept or reject.

The (private) state of the client is implicitly assumed in all the above protocols
and the client may also output reject during any of the protocols if it detects
any malicious behavior on the part of the server. A dynamic PoR scheme must
satisfy three properties: correctness, authenticity, and retrievability. We refer the
reader to [3] for the formal definitions of these properties.

Overview of Construction. At a high-level, our construction follows the same
approach as our LULDDC scheme. One main difference is that in addition to
storing encoded messages in buff0 to buffτ and buff∗, we will store the decoded,
authenticated, message of every buffer in another set of τ+2 buffers (denoted by
plain0 to plainτ and plain∗). The read algorithm works by reading these buffers
(instead of the encoded buffers) and verifying their respective MACs. The write
algorithm works the same as before – except that it writes to both encoded and
unencoded buffers. The audit algorithm works by checking λ randomly chosen
locations of each of the encoded buffers and verifying their MACs. Additionally,
to obtain good write complexity, we use linear time encodable and decodable
standard error correcting codes [26] to encode each buffer, as opposed to using
locally decodable codes. We shall also use two types of message authentication
codes: to MAC the elements of buffers buff0 to buffτ and buff∗ (that store code-
words), we shall use constant size MACs; however, to MAC the elements of
buffers plain0 to plainτ (that store elements of the message in the clear), we shall
use MACs with MAC length λ. We shall abuse notation and denote both these
MACs by MAC (it will be clear from context which type of MAC we use).

– PInit(1λ, Σ, k): This protocol is very similar to the Encode algorithm of
our LULDDC. Namely, when storing data m = m(1), · · · ,m(k) = μ∗

on the server, with m(i) ∈ Σ, the client computes ψ∗ = Elin(μ∗) and
η∗ = {(ψ∗(j)||σ∗(j))}, where ψ∗(j) is the jth element of ψ∗ and σ∗(j) =
MAC(ψ∗(j)). The client stores η∗ in buff∗. Additionally the client will also
store every element of m along with its MAC in plain∗11.

– PWrite(i, vi): To write element vi into position i, C does as follows:

• If the first buffer is non-empty, find the first empty buffer – this can be
determined using ctr, but for now, we just assume that we learn this by
decoding buffers in a top-down manner and scanning them to see if they
contain any non-empty element. Let the first empty buffer be at level j.

• Update S to S′ so that it now contains an incremented counter.

11 In order to reduce the storage complexity, every λ
|Σ| elements are grouped together

and MACed so that the storage complexity remains at O(k) and does not become
O(kλ).
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• We store (i, bi) as well as all the non-empty elements from μ0 to μj−1

into μj . To do this, we decode ψ0 · · ·ψj−1, insert the elements into μj and
then compute Elin(μj) to obtain ψj . We compute ηj(�) = {ψj(�), σj(�)}.
(The authentication tags σj(�) are recomputed with the latest key cor-
responding to level j, which in turn is computed from S′).

• Additionally, we store the plain message μj in plainj . Note, that whenever
reading an element, we read the element along with its MAC and reject
if the MAC does not verify.

• The buffers from buffj−1 . . . buff0, as well as plainj−1 . . . plain0, are now
set to empty by writing special elements into it (along with appropriate
MAC values).

– PRead(i): To read the ith element of the most recent message stored on the
server, the client does the following:
• The algorithm starts with the top-most buffer (plain0) and proceeds
downwards until it finds the address i.

• Note that plainj contains μj in plaintext. To search a buffer buffj for
an index i, we read the locations hj,1(i) and hj,2(i). If either of these
locations contains an entry (i, v) then v is the output of the algorithm.

• If we reach the last buffer, plain∗, we read the element v stored at address
i in plain∗. If the tag σ does not verify, for any element read (in any of the
buffers), then the algorithm outputs reject, otherwise v is the output12.

– Audit(): The audit protocol works as follows:
• For every buffer buff0 to buffτ as well as buff∗, pick λ locations of the
codeword ψj (stored in buffj) at random and read these λ elements along
with their MAC values.

• If all the MACs verify, then output accept, otherwise output reject.

We defer the proof of correctness and security for construction to the
full version. For now, we simply state the parameters that this construction
achieves. The (worst case) complexity of the PWrite protocol is O(log2 k). The
complexity of the PRead protocol is simply O(λ log k) as we need to read a
constant number of elements in each buffer (along with their MACs of length
λ). Finally, the complexity of the Audit protocol is O(λ log k) as we read λ
elements of the codeword in each buffer, along with their constant-size MACs.
The client storage is O(λ).
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L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 387–398. Springer, Heidelberg (2007)

22. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)

23. Schulman, L.J.: Communication on noisy channels: A coding theorem for compu-
tation. In: 33rd Annual Symposium on Foundations of Computer Science, FOCS,
pp. 724–733 (1992)

24. Schulman, L.J.: Deterministic coding for interactive communication. In: Proceed-
ings of the 25th Annual ACM Symposium on Theory of Computing, STOC,
pp. 747–756 (1993)

25. Shacham, H., Waters, B.: Compact proofs of retrievability. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 90–107. Springer, Heidelberg (2008)

26. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. In:
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Com-
puting, STOC, pp. 388–397 (1995)

27. Yekhanin, S.: Towards 3-query locally decodable codes of subexponential length.
In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
San Diego

28. Yekhanin, S.: Locally decodable codes. Foundations and Trends in Theoretical
Computer Science 6(3), 139–255 (2012)



Leakage Resilient Fully Homomorphic

Encryption

Alexandra Berkoff1 and Feng-Hao Liu2

1 Brown University
aberkoff@cs.brown.edu

2 University of Maryland, College Park
fenghao@cs.umd.edu

Abstract. We construct the first leakage resilient variants of fully ho-
momorphic encryption (FHE) schemes. Our leakage model is bounded
adaptive leakage resilience. We first construct a leakage-resilient leveled
FHE scheme, meaning the scheme is homomorphic for all circuits of
depth less than some pre-established maximum set at key generation.
We do so by applying ideas from recent works analyzing the leakage
resilience of public key encryption schemes based on the decision learn-
ing with errors (DLWE ) assumption to the Gentry, Sahai and Waters
([1]) leveled FHE scheme. We then move beyond simply leveled FHE,
removing the need for an a priori maximum circuit depth, by presenting
a novel way to combine schemes. We show that by combining leakage
resilient leveled FHE with multi-key FHE, it is possible to create a leak-
age resilient scheme capable of homomorphically evaluating circuits of
arbitrary depth, with a bounded number of distinct input ciphertexts.

1 Introduction and Related Work

Fully homomorphic encryption is a way of encrypting data that allows a user
to perform arbitrary computation on that data without decrypting it first. The
problem of creating a fully homomorphic encryption scheme was suggested by
Rivest, Adleman, and Dertouzos in 1978 [2]. It has received renewed attention in
recent years and has obvious applicability to cloud computing— If a user stores
her data on someone else’s servers, she may wish to store her data encrypted
under a public key encryption scheme, yet still take advantage of that untrusted
server’s computation power to work with her data.

The first candidate for fully homomorphic encryption was proposed by Gen-
try in 2009 [3]. Since then, candidate schemes have been based on a variety of
computational assumptions (see, for example: [4,5,6,7]) including the decision
learning with errors (DLWE ) assumption [8,9,10,1]. The latest DLWE -based
work is due to Gentry, Sahai, and Waters (GSW) [1], and it is this work we
focus most closely on in our paper.

We note that public key encryption schemes based on the DLWE assumption
have typically been based on one of two schemes both described by Regev in
the latest version of [11]. Regev originally constructed so-called “primal Regev”
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(referred to in this work as RPKE) and Gentry, Peikert, and Vaikuntanathan
constructed so-called “dual Regev” [12] in 2008. The instantiations in the papers
describing all the DLWE -based homomorphic schemes cited above use “primal
Regev” as a building block. The Regev schemes have also been used as building
blocks to achieve identity based encryption, attribute based encryption, and, as
described in Section 1.2, leakage resilient encryption.

The term “leakage resilience” is meant to capture the security of a crypto-
graphic algorithm when an adversary uses non-standard methods to learn about
the secret key. Typically in security proofs, attackers are modeled as probabilistic
polynomial time machines with only input/output access to the given crypto-
graphic algorithm. Leakage resilience is a theoretical framework for addressing
security when an attacker learns information about the secret key not obtainable
through the standard interface, for example by obtaining physical access to a
device, or by identifying imperfect or correlated randomness used in secret key
generation.

Starting with the work of Ishai, Sahai and Wagner [13], and Micali and Reyzin
[14], the cryptographic community has worked towards building general theories
of security in the presence of information leakage. This has been an active topic
of research over the past 15 years (see [15,16,17,18,19,20,21,22,23,24,25,26,13,14]
and the references therein), resulting in many different leakage models, and
cryptographic primitives such as public key encryption schemes and signature
schemes secure in each model.

In our work, we, for the first time, apply the framework of leakage resilience
to fully homomorphic schemes.

1.1 Non-adaptive Leakage on FHE

We start with the observation that the Decision Learning With Errors problem
is, with appropriate parameter settings, leakage resilient – Goldwasser, Kalai,
Peikert and Vaikuntanathan showed that the DLWE problem with a binary se-
cret, and a carefully chosen bound on the size of the error term, with a leakage
function applied to the secret, reduces from a DLWE problem with smaller di-
mension, modulus, and error bound, but no leakage [27]. Recently, Alwen, Krenn,
Pietrzak, and Wichs extended this result to apply to a wider range of secrets
and error bounds [28].

Since many FHE schemes (for example [8,9,10,1]) can be instantiated based
on the DLWE assumption, an obvious first attempt to create leakage resilient
FHE is to directly apply those results by instantiating an FHE scheme with
parameters that make the underlying DLWE problem leakage resilient. Indeed,
doing so leads immediately to non-adaptive leakage resilient FHE. We describe
these results in Appendix C in the full version of our paper.

We note as well that the leakage resilience of DLWE leads to leakage resilient
symmetric-key encryption [27], and closely related results lead to non-adaptive
leakage resilience of RPKE [15].
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The differentiation between adaptive and non-adaptive leakage is crucial. In
the non-adaptive leakage model, an adversary can learn any arbitrary (poly-time
computable, bounded output-length) function of the secret key, with the caveat
that he cannot adaptively choose the function based on the scheme’s public key.
This leakage model is not entirely satisfactory, as typically one assumes that
if a value is public, everyone, including the adversary will be able to see it at
all times. In contrast, the adaptive leakage resilience model assumes that an
adversary has full access to all the scheme’s public parameters, and can choose
its leakage function accordingly.

1.2 Adaptive Leakage on Leveled FHE

Given the gap between the non-adaptive leakage resilience model and the ex-
pected real-life powers of an adversary, in this work we primarily consider the
adaptive bounded memory leakage model. The model is described in, for ex-
ample, the works [15,16]. Since an adversary can choose its leakage function
after seeing the public key(s), in effect we consider functions that leak on the
public and secret keys together. This framework has been previously considered
for non-homomorphic public key and identity based encryption schemes based
on bilinear groups, lattices, and quadratic residuosity [16,26,29]. Additionally,
both RPKE and “dual Regev”, schemes based on DLWE, can be made leakage
resilient; Akavia, Goldwasser, and Vaikunatanathan achieve adaptive leakage-
resilient RPKE [15], and Dodis, Goldwasser, Kalai, Peikert, and Vaikuntanathan
construct leakage-resilient “dual Regev” [19]. In fact, the latter scheme is se-
cure against auxiliary input attacks—essentially, they consider a larger class of
leakage functions—ones whose output length has no bound, but which no prob-
abilistic polynomial time adversary can invert with non-negligible probability.

Unfortunately, the non-adaptive leakage resilient scheme described in Ap-
pendix C does not lead in a straightforward way to an adaptively leakage re-
silient scheme. The crux of the problem is that the public key is a function of
the secret key, and when an adversary has leakage access to both the public and
secret keys, it can choose a function which simply asks if the two are related.
Existing proofs of security for DLWE-based FHE schemes all start by proving
the public key indistinguishable from random, and such leakage functions make
this impossible.

In fact, one might expect the same problem when analyzing the adaptive leak-
age resilience of RPKE, as the original security proof for this scheme followed the
same outline [11]. Akavia, Goldwasser, and Vaikuntanathan (AGV) succeeded
in constructing a leakage-resilient variant of RPKE despite this hindrance by
writing a new security proof. They directly show that the ciphertexts are in-
distinguishable from random, without making any statements about the public
key [15].

Inspired by the success of AGV, one might try to use a variation on their
technique to prove prove an FHE scheme secure. We note that typically the pub-
lic key of an FHE scheme consists of two parts: an “encryption key,” which is
used to generate new ciphertexts, and an “evaluation key,” which is used to
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homomorphically combine the ciphertexts. A strengthening of the AGV tech-
nique leads to a secure scheme if the adversary sees the encryption key before
choosing its leakage function, but unfortunately the proof fails if it also sees
the evaluation key. The evaluation key is not just a function of, but actually
an encryption of the secret key, and proving security when an adversary could
potentially see actual decryptions of some bits of the secret key is a more com-
plicated proposition.

Since the presence of an evaluation key is what hampers the proof, our next
step is to apply this technique to a scheme without an evaluation key. The
first leveled FHE scheme without an evaluation key was recently constructed
by Gentry, Sahai, and Waters (GSW) [1]. We strengthen the results of Akavia,
Goldwasser, and Vaikuntanathan to apply to a much broader range of parame-
ters, and use this new result to construct LRGSW, a leakage-resilient variant of
GSW. We present these results in sections 3 and 4.

1.3 Overcoming the “Leveled” Requirement

Note that so far, we have achieved leakage resilient leveled FHE, meaning we
have a scheme where if a maximum circuit depth is provided at the time of key
generation, the scheme supports homomorphic evaluation of all circuits up to
that depth. In contrast, in a true, non-leveled, fully homomorphic encryption
scheme, one should not need to specify a maximum circuit depth ahead of time.

The standard technique for creating a non-leveled FHE scheme, first pro-
posed by Gentry in his original construction, is to first create a “somewhat-
homomorphic” encryption scheme (all leveled schemes are automatically “some-
what homomorphic”), make it “bootstrappable” in some way, and then “boot-
strap” it to achieve full homomorphism [3]. Although LRGSW is somewhat ho-
momorphic, it needs a separate evaluation key to be bootstrappable. In fact,
every known bootstrappable scheme has an evaluation key containing encryp-
tions of the secret key, leaving us back with the same issue we sidestepped by
choosing to modify the GSW scheme.

Our key insight is that while we need encryptions of the secret key to perform
bootstrapping, these encryption do not need to be part of the public key. We
combine a leakage resilient leveled FHE scheme with a N -key multi-key FHE
scheme in a novel way, which allows us to store these encryptions as part of the
ciphertext, letting us achieve a non-leveled leakage resilient FHE scheme. We
provide an instantiation of this using LRGSW and the López-Alt, Tromer, and
Vaikuntanathan multi-key FHE scheme [30]. We discuss these results in section
5. Our contribution is a step towards true fully homomorphic encryption, as we
remove the circuit depth bound. An artifact of our construction is that the N
from our N -key multi-key FHE scheme becomes a bound on the arity of our
circuit instead. The problem of creating leakage resilient, true FHE is still open,
and seems intimately related to the problem of creating true, non-leveled FHE
without bootstrapping.
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2 Preliminaries

We let bold capital letters (e.g. A) denote matrices, and bold lower-case letters
(e.g. x) denote vectors. We denote the inner product of two vectors as either
x · y or 〈x,y〉.

For a real number x, we let )x* be the closest integer ≤ x, and )x� be the
closest integer to x. For an integer y, we let [y]q denote y mod q. For an integer
N , we let [N ] denote the set {1, 2, . . . , N}.

We use x ← D to denote that x was drawn from a distribution D. We use
x

$←− S to denote that x was drawn uniformly from a set S. To denote computa-
tional indistinguishability, we write X ≈c Y, and to denote statistical indistin-
guishability, we write X ≈s Y. To denote the statistical distance between two
distributions, we write Δ(X ,Y). Throughout this work, we use η to denote our
security parameter.

In this work, we refer to the ε-smooth average min-entropy (first defined
in [31]) of X conditioned on Y as H̃ε

∞(X |Y ). We refer the reader to Appendix A
where we fully define this, and other related concepts of min-entropy, and state
versions of the leftover hash lemma that hold true for these concepts.

2.1 Homomorphism

We use standard definitions for fully homomorphic encryption and leveled fully
homomorphic encryption, so we defer full statements of these definitions to Ap-
pendix A. We do define a new, related type of fully homomorphic encryption
below:

Definition 2.1. An encryption scheme is bounded arity fully homomor-
phic if it takes T = poly(η) as an additional input in key generation, and is
T -homomorphic for T = {Tη}η∈N

, the set of all arithmetic circuits over {0, 1}
with arity ≤ T and depth poly(η).

2.2 Leakage Resilience

Definition 2.2. Let λ be a non-negative integer. A scheme HE is adaptively
leakage resilient to λ bits of leakage, if for any PPT adversary A it holds that

ADVALRλ(b=0),ALRλ(b=1)(A) = negl(λ)

where the notation ADVX ,Y(A) := |Pr[A(X ) = 1]−Pr[A(Y) = 1]|

and the experiment ALRλ is defined as follows:

1. The challenger generates (pk, sk) ← HE.KeyGen(1η) and sends pk to the
adversary.

2. The adversary A selects a leakage function h : {0, 1}∗ → {0, 1}λ and sends
it to the challenger.

3. The challenger replies with h(sk).
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4. The adversary A replies with (m0,m1)

5. The challenger chooses b
$←− {0, 1}, computes c← HE.Enc(pk,mb) and sends

c to A.
6. A outputs b′ ∈ {0, 1}

In the above definition, adaptive refers to the fact that A can choose h after
having seen the scheme’s public parameters. In fact, an adversary could “hard-
code” the scheme’s public key into its leakage function, in effect seeing h(pk, sk).
In the remainder of this paper, we therefore consider leakage functions that leak
on both the public key and the secret key together. There is a corresponding
weaker notion of leakage resilience called non-adaptive where the adversary
must choose h independently of the scheme’s public key, and learns only h(sk).

2.3 Learning with Errors

The learning with errors problem (LWE), and the related decision learning with
errors problem (DLWE) were first introduced by Regev [11] in 2005. The problem

is, given a secret s ∈ Zn
q , a matrix A

$←− Zm×n
q and an error vector x

$←− ψm to

distinguish As+x from u
$←− Zm

q . This problem is standard in the literature and
we leave full definitions to Appendix A.

The following statement summarizes much of the recent work analyzing the
hardness of DLWE.

Statement 1. (Theorem 1 in [1], due to work of [11,32,33,34])
Let q = q(n) ∈ N be either a prime power or a product of small (size poly(n))

distinct primes, and let β ≥ ω(log n)·n Then there exists an efficiently sampleable
β− bounded distribution χ such that if there is an efficient algorithm that solves
the average-case LWE problem for parameters n, q, χ, then:

– There is an efficient quantum algorithm that solves GapSVPÕ(nq/β) on any
n-dimensional lattice.

– If q ≥ Õ(2n/2), there is an efficient classical algorithm for GapSVPÕ(nq/β)

on any n-dimensional lattice.

In both cases, if one also considers distinguishers with sub-polynomial advantage,
then we require β ≥ Õ(n) and the resulting approximation factor is slightly larger
than Õ(n1.5q/β).

The GapSVPγ problem is, given an arbitrary basis of an n dimensional lattice,
to determine whether the shortest vector of that lattice has length less than 1
or greater than γ.

Statement 2. (from [8])

The best known algorithms for GapSVPγ [35,36] require at least 2Ω̃(n/(log γ))

time.

These hardness results guide the setting of parameters for our scheme.
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3 The LRGSW Scheme

We now present LRGSW, an adaptively leakage resilient variant of the Gentry,

Sahai, and Waters (GSW) FHE scheme [1]. We box the differences between our
scheme and GSW in our description below. The scheme encrypts messages under
the “approximate eigenvector” method: For a message μ ∈ Zq, ciphertexts are
matricesC = Enc(pk, μ) and have the property thatC·sk ≈ μ·sk, where sk is the
secret key vector. This means that to homomorphically multiply two ciphertexts
C1 = Enc(pk, μ1) and C2 = Enc(pk, μ2), one simply computes Cmult = C1 ·C2.
Crucially, this intuitive method for homomorphic evaluation removes the need
for an “evaluation key” present in other fully homomorphic schemes. Note that
for the error-growth reasons Gentry, Sahai, and Waters gave in Section 3.3 of
their paper [1], our modification of their scheme is designed to homomorphically
evaluate only binary circuits constructed of NAND gates.

3.1 Our Leveled Scheme

(note: we define PowersOfTwo,Flatten,BitDecomp and BitDecomp−1 in Section
3.2 below)

LRGSW.Setup(1η, 1L): Recalling that η is security parameter of the scheme, and
L = poly(η) is the maximum circuit depth our scheme must evaluate, let τ =

max{L, η2}. Choose a lattice dimension n = τ2, modulus q ≥ τ · 22τ log2 τ ,

and error distribution χ = Ψβ , where β = τ · τ log τ bounded Choose

m = m(η, L) ≥ 2n log q + 3η. Let params = (n, q, χ,m). Let � = )log q*+1

and N = (n+ 1) · �.
LRGSW.SecretKeyGen(params): Choose t

$←− Zn
q . Let sk = s =

(1,−t1, . . . ,−tn). Let v = PowersOfTwo(s).

LRGSW.PublicKeyGen(s, params): Let A
$←− Zm×n

q . Let e
$←− χm. Let b = At+

e. Let pk = K = [b||A].

LRGSW.Encrypt(K, μ): For message μ ∈ {0, 1}, choose R
$←− {0, 1}N×m. Let IN

be the N ×N identity matrix.

C = Flatten(μ · IN + BitDecomp(R ·K)) ∈ ZN×N
q

LRGSW.Decrypt(s,C): Let i be the index among the first � elements of v such
that vi = 2i ∈ ( q4 ,

q
2 ]. Let Ci be the ith row of C. Compute xi = 〈Ci,v〉.

Output μ′ =
⌊
xi

vi

⌉
LRGSW.NAND(C1,C2): Output Flatten(IN −C1 ·C2)

3.2 Elementary Vector Operations in LRGSW

The above scheme description makes use of a number of vector operations that
we describe below. Let a,b be vectors of dimension k. Let � = )log q*+ 1. Note
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that the operations we describe are also defined over matrices, operating row by
row on the matrix, and that all arithmetic is over Zq.

BitDecomp(a) = the k ·� dimensional vector (a1,0, . . . , a1,�−1, . . . , ak,0, . . . ak,�−1)
where ai,j is the jth bit in the binary representation of ai, with bits ordered
from least significant to most significant.

BitDecomp−1(a′) For a′ = (a1,0, . . . , a1,�−1, . . . , ak,0, . . . ak,�−1), let

BitDecomp−1(a′) = (
∑�−1

j=0 2
ja1,j, . . . ,

∑�−1
j=0 2

jak,j), but defined even when
a′ isn’t binary.

Flatten(a′) = BitDecomp(BitDecomp−1(a′))
PowersOfTwo(b) = (b1, 2b1, 4b1, . . . , 2

�−1b1, . . . , bk, . . . 2
�−1bk).

3.3 Correctness

Correctness of the scheme follows because: Cv = μv + RAs = μv + Re, so,
xi = μ · vi + 〈Ri, e〉. Since vi > q

4 , if we let B = ||e||∞, since Ri is an N -
dimensional binary vector, as long as NB < q

8 , decryption will be correct.
Gentry et al. analyze the error growth of GSW and determine that if χ is

β-bounded, and if C is the result of L levels of homomorphic evaluation, then
with overwhelming probability, B < β(N +1)L. To maintain correctness of their
scheme, they set B = q

8 , which gives us: q
β > 8(N + 1)L. This same analysis

applies to LRGSW, and we set our ratio of q to β the same way.

4 Leakage Resilient Leveled FHE

Below we prove that LRGSW is leakage resilient, describe the efficiency tradeoffs
we make to achieve leakage resilience, and briefly describe and why our leveled
result but does not extend easily to full non-leveled homomorphism.

4.1 Adaptive Leakage Resilience of LRGSW

Theorem 4.1. The leveled LRGSW scheme is resilient to adaptive bounded leak-
age of λ bits, where λ ≤ n− 2 log q − 4η.

Proof. We consider a probabilistic polynomial time adversary’s advantage at
playing the ALRλ game (described in Definition 2.2). Recall that in this game,
the adversary’s view is (K,Cb, h(K, s)) where Cb is a correctly formed encryp-
tion of b ∈ {0, 1}.

LetC′
b = BitDecomp−1(Cb) = BitDecomp−1(b·IN )+R·K. Since BitDecomp−1

is a deterministic operation, it suffices to consider a probabilistic polynomial time
adversary who plays the ALRλ game with C′

b.
In fact, an adversary’s view after playing the ALRλ game is (K,BitDecomp−1

(b · IN ) +R ·K, h(K, s)). Therefore, it is sufficient to show (K,RK, h(K, s)) ≈c

(K,U
$←− ZN×n

q , h(K, s)).
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Recall that K = [b||A] where A
$←− Zm×n

q , t
$←− Zn

q , e
$←− χm, b = At + e,

and s = (1,−t1, . . . ,−tn). So define:

HALR := (b,A,Rb,RA, h(A, t, e)),HRAND := (b,A,u′,U, h(A, t, e))

Our goal is to show that HALR ≈c HRAND. We can think of the matrix R

as a collection of N independent binary vectors ri
$←− {0, 1}m. So, HALR =

(b,A, {ri · b}i∈[N ] , {riA}i∈[N ] , h(A, t, e))
Now, define a series of hybrid games Hi, for 0 ≤ i ≤ N , where in game i, for

j < i, rj · b is replaced by u′
j

$←− Zq, and rjA is replaced by u
$←− Zn

q , and for
j ≥ i, those terms are generated as they were in game Hi−1.

It follows by inspection that H0 = HALR and HN = HRAND, so all that
remains to show is that Hi ≈c Hi+1.

We use Lemma 4.1, stated below, together with a simple reduction to prove

this. Lemma 4.1 says that for a single r
$←− {0, 1}m, Hreal := (b,A, r ·

b, rA, h(A, t, e)) ≈c Hrand := (b,A, u′,u, h(A, t, e)).
So, given an input H = (b,A,b′, a′, h(A, t, e)) that is equal to either Hreal

or Hrand, if, for j ≤ i choose u′
j

$←− Zq, uj
$←− Zn

q , and for j > i + 1, choose

rj
$←− {0, 1}m, we prepare the following distribution:(

b,A,
{
u′
j

}
j≤i

, b′, {rj · b}j>i+1 , {uj}j≤i , a
′, {rjA}j>i , h(A, t, e)

)
Then if H = Hreal, this distribution is equal to Hi, whereas if H = Hrand,
the distribution is equal to Hi+1. Since Lemma 4.1 (proven below) tells us that
Hreal ≈c Hrand, we conclude that no probabilistic polynomial time adversary
can distinguish Hi and Hi+1 with non-negligible advantage.

Lemma 4.1. Given A
$←− Zm×n

q , e ← χm, t
$←− Zn

q , r
$←− {0, 1}m, b = At+ e,

and u
$←− Zn

q , and u′ $←− Zq, and m, q, n defined as in the LRGSW scheme,

Hreal := (b,A, r · b, rA, h(A, t, e)) ≈c Hrand := (b,A, u′,u, h(A, t, e))

Proof. Our proof proceeds as follows: We define a series of intermediate hybrid
games, Ha,Hb,Hc, and show:
Hreal ≈s Ha ≈c Hb ≈s Hc ≈c Hrand. Our hybrids are:

– Ha := (At+ e,A,ut+ r · e,u, h(A, t, e)), where u
$←− ZN

q .

– Hb := (Ãt + e, Ã,ut + r · e,u, h(Ã, t, e)), where Ã ← Lossy, as defined by
Lemma 4.2.

– Hc := (Ãt+ e, Ã, u′,u, h(Ã, t, e)), where u′ $←− Zq.

Lemma 4.2, stated below, immediately gives us Ha ≈c Hb, and Hc ≈c Hrand,
because it tells us that Ã ≈c A. Thus, no further work is needed for these two
steps.
We use Claim 1 to show that Hreal ≈s Ha.
Finally, we use Claim 2 to prove Hb ≈s Hc.
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Claim 1. Hreal ≈s Ha

Proof. The only difference between games Hreal and Ha is that rA is replaced

by u where u
$←− ZN

q . Note that if we can show:

(At+ e,A, rAt, r · e, rA, h(A, t, e)) ≈s (At + e,A,u · t, r · e,u, h(A, t, e))

this implies our claim.
To prove the above, we use the generalized form of the leftover hash lemma

(Lemma A.2 in Appendix A of this paper), which tells us that for any random
variable x, if H̃∞(r|x) is high enough, then (A, rA, x) ≈s (A,u, x), which in
turn implies that for any t, (A, rA, rAt, x) ≈s (A,u,u · t, x). So, set x = (At+
e, r · e, h(A, t, e)). Since r is an m-dimensional binary vector chosen uniformly
at random and r · e is � = )log q* + 1 bits long, and r is independent of e, we
have:

H̃∞(r|At+ e, r · e, h(A, t, e))

≥H̃∞(r|r · e, e) ≥ H̃∞(r|e)− � = m− �

For Lemma A.2 to hold, we need n ≤ m−�−2η−O(1)
log q . Choosingm ≥ 2n log q+3η

suffices.

Claim 2. Hb ≈s Hc

Proof. The difference between Hb and Hc is that u · t + r · e is replaced by

u′ $←− Zq. We employ a similar strategy to that from claim Claim 1, using the
leftover hash lemma to show

(Ãt+ e, Ã,ut, r · e,u, h(Ã, t, e)) ≈s (Ãt+ e, Ã, v, r · e,u, h(Ã, t, e))

where v
$←− Zq. Note that this distribution contains both ut and r · e, whereas

the adversary only sees ut+ r · e. Proving that ut can be replaced by v implies

that in the adversary’s actual view, ut+ re can be replaced by u′ $←− Zq.
Now, we bound the ε-smooth min-entropy of t. There exists ε = negl(η) such

that

H̃ε
∞(t|Ãt+ e, Ã, r · e, h(Ã, t, e)))

≥H̃ε
∞(t|Ãt+ e, Ã)−BitLength(r · e)−BitLength(h(Ã, t, e))

≥H̃ε
∞(t|Ãt+ e, Ã)− �− λ

and Lemma 4.2 (stated and proven below), tells us that H̃ε
∞(t|Ãt+ e, Ã) ≥ n.

Applying the ε-smooth variant of the leftover hash lemma (Corollary A.1), we
see that we need n− �−λ to be high enough that log q ≤ (n− �−λ)−2η−O(1).
So, if we set h to leak at most λ ≤ n− 2 log q − 4η bits, the claim follows.
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Since Hreal ≈s Ha ≈c Hb ≈s Hc ≈c Hrand, we know that Hreal ≈c Hrand.

We now state Lemma 4.2, used both to prove Claim 2, and to showHa ≈c Hb,
and Hc ≈c Hrand.

Lemma 4.2. There exists a distribution Lossy such that Ã ← Lossy ≈c U
$←−

Zm×n
q and given t

$←− Zn
q , and e← χ, H̃ε

∞(t|Ã, Ãt+ e) ≥ n, where ε = negl(η).

In our proof, we define a distribution Lossy as follows:

– Choose C
$←− Zm×n′

q , D
$←− Zn′×n

q , and Z ← Ψ
m×n

α , where α
β = negl(η) and

n′ log q ≤ n− 2η + 2.
– Let Ã = CD+ Z
– output Ã.

This distribution was first defined in [27] and as our proof is closely related to
proofs in their paper, we defer it to Appendix B.

4.2 The Cost of Leakage Resilience: GSW versus LRGSW

In order to make the GSW scheme leakage resilient, we needed to make a number
of tradeoffs. First, there’s a penalty to efficiency, as a number of the scheme’s
parameters need to be set higher than they are in GSW in order to maintain
equivalent security in the presence of leakage. Second, our proof relies crucially
on the fact that the LRGSW scheme does not have an evaluation key. The leveled
version of the GSW scheme does not have an evaluation key, but the version that
allows for full (non-leveled) FHE does have one. For this reason, LRGSW cannot
be easily extended to a non-leveled scheme.

Parameter Setting. The hardness constraints and the correctness constraints
of our scheme are in conflict. The hardness constraints tell us that the ratio
of the dimension to the error bound affects the relative hardness of the DLWE
problems, with a higher β leading to more security. However, the correctness
constraint shows us that q

β must grow exponentially with the depth of the circuit,
which shows both that β should be set low, and since there is a limit to how
low β can be set, q must grow exponentially with depth. However, the hardness
constraints also tell us that if the depth is O(n) or bigger, since L, the circuit
depth, is in the exponent of q, the underlying GapSVP problems become easy.
To protect against this, we must ensure that n is polynomial in L. We describe
these constraints in more detail and show how to set the parameters to meet all
of them in Appendix B.

Also in the appendix, we present Lemma B.1, which can replace Lemma 4.2 in
our proofs above. This new lemma uses techniques from Alwen, Krenn, Pietrzak,
and Wichs [28] which, as summarized in Corollary B.1, allow us to reduce the
size of q and β (in particular, β is no longer super-polynomial in η), at a cost of
a lower value for λ.

In Table 1 we provide sample parameter settings that simultaneously meet
all correctness and security constraints. We compare these settings to those of
GSW. In the table, τ1 = max{L, η2}, and τ2 = max{L, η3}.
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Table 1. Sample settings of GSW v. LRGSW

Parameter GSW LRGSW with Lemma 4.2 LRGSW with Lemma B.1

n O(η) τ 4
1 τ 3

2

q 2L log n 2τ1 log2 τ1 2τ2 logn

χ O(n) -bounded Ψβ , β = 2log
2 τ1 β = 3n3τ 3

2

m 2n log q 2n log q + 3η 2n log q + 3η
λ 0 n− 2 log q − 4η n− (2 + η) log q − η logm− 4η

Evaluation Keys and the Problem with Bootstrapping. Our current
techniques are sufficient for proving leakage resilience of a leveled fully homo-
morphic encryption scheme, but do not extend to a non-leveled scheme. The
bootstrapping paradigm, first defined by Gentry in [3], is to take a scheme that
is capable of homomorphically evaluating its own decryption circuit and trans-
form it into one that can evaluate functions f of arbitrary depth by performing
the homomorphic-decrypt operation after each gate in f . All existing fully homo-
morphic schemes, including the GSW scheme, achieve full, as opposed to leveled
fully homomorphic encryption through bootstrapping.

The bootstrapping paradigm tells us that given a somewhat homomorphic
scheme, publishing an encryption of the scheme’s secret key, together with any
other data necessary to allow the scheme to homomorphically evaluate its own
decryption procedure, makes the scheme fully homomorphic [3]. Thus, the scheme
must be secure when an adversary sees (pk,Encpk(sk)) (circular security). How-
ever, a scheme that is secure when the adversary sees (pk,Encpk(sk)) or when the
adversary sees (pk, h(pk, sk)), as is the case in the leakage resilience definition,
is not necessarily secure when it sees (pk,Encpk(sk), h(pk, sk,Encpk(sk))) all to-
gether. Formal definitions of bootstrapping and circular security are presented
in Appendix A.

If we tried to make the LRGSW scheme bootstrappable, we would need not
only circular security (which current FHE schemes assume rather than prove),
but circular security in the presence of leakage.

If we were to create an evk that contained an encryption of the secret key
under that same secret key, we would have something of the form A,At + e+
BitDecompose(t). One might try to follow the same technique outlined in the
proof of Lemma 4.2, and show that the average min-entropy of t, conditioned on
seeingA,At+e+BitDecompose(t), is still high. Unfortunately, for this technique
to work, t needs to be only in the secret term, not in the error term as well.

To get around this, we might consider trying to “chain” our DLWE secrets,
so that we have two DLWE secrets: t and t′, but only consider our secret key to
be t′. In this case, our encryption key would be (A,At+ e), and our evaluation
key would be (A′,A′t′ + e′ + BitDecomp(t)). In this case, we would still need
to show that H̃∞(t|A′t′ + e′ + BitDecomp(t)) was sufficiently high, and since t
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is in the error term instead of the secret term, our current techniques will not
suffice.

Notice, as well, that these limitations apply to any LWE-based FHE scheme
with an evaluation key. Since all other existing LWE based FHE schemes use
an evaluation key, our result for the GSW scheme cannot be easily extended to
these schemes either.

5 Going beyond Leveled Homomorphism

In this section we present several new ideas for achieving full (as opposed to
leveled) FHE that is also leakage resilient.

5.1 Our First Approach

We observe that by definition, a leakage function h is a function of the scheme’s
public and secret keys. This means an adversary can see h(pk, sk,Encpk(sk))
only if Encpk(sk) is part of the scheme’s public key. If instead, we can somehow
generate Encpk(sk) on-the-fly as it is needed, the adversary sees only h(pk, sk),
instead.

More precisely, let E = (KeyGen(),Enc(),Dec()) be any encryption scheme
(not necessarily homomorphic) that is also resilient to adaptive bounded leakage
of λ bits, and let HE = (KeyGen(),Enc(),Dec(),Eval()) be any (leveled) fully
homomorphic encryption scheme. Then we consider the following hybrid scheme:

Scheme1.KeyGen(1η): Run (pk, sk) ← E.KeyGen(1η). Set the public and secret
keys to be pk, sk.

Scheme1.Encpk(m): To encrypt a message m, first run (pk′, sk′) ←
HE.KeyGen(1η). Then output
(pk′,HE.Encpk′(m),E.Encpk(sk

′)) as the ciphertext.
Scheme1.Decsk(c): To decrypt a ciphertext c, first parse c = (pk′, c1, c2), and

obtains sk′ = E.Decsk(c2). Then output HE.Decsk′ (c1).
Scheme1.Evalpk(f, c): To evaluate a function f over a ciphertext c, first parse

c = (pk′, c1, c2) and then output (pk′,HE.Evalpk′(f, c1), c2).

It is not hard to obtain the following theorem:

Theorem 5.1. If E is an encryption scheme that is resilient to adaptive bounded
leakage of λ bits and HE is a (leveled) fully homomorphic encryption scheme,
then Scheme1 is a (leveled) fully homomorphic scheme that has the following
properties:

1. It is resilient to adaptive bounded leakage of λ bits.
2. It allows unary homomorphic evaluation over any single ciphertext.
3. If HE is fully homomorphic, then Scheme1 has succinct ciphertexts (whose

lengths do not depend on the size of circuits supported by the evaluation),
while if HE is L-leveled homomorphic, then the size of the ciphertexts in
Scheme1 depends on L.
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A word is in order about property 2 above. If HE is a bit-encryption scheme,
then we can think of the message space as bit-strings, so a message m ∈ {0, 1}t,
and define encryption to be bit-by bit.

In this case, “unary” refers to functions over the bits of m. Another way to
think of this is that Scheme1 is (leveled) fully homomorphic for any group of
bits batch-encrypted at the same time.

The proof of this theorem is simple and quite similar to that of Theorem 5.2,
so we omit the proof here, and refer the reader to our proof of that theorem
below.

5.2 Our Second Approach

Our next step is to extend our result so that we can homomorphically combine
ciphertexts regardless of when they were created. The reason we cannot do so
above is because two ciphertexts formed at different times will be encrypted
under different public keys of the underlying HE scheme. To solve this issue, we
consider instantiating HE with a multi-key FHE scheme, as recently defined and
constructed by López-Alt, Tromer and Vaikuntanathan (LTV) [30].

A scheme HE(N) is a N -Key Multikey (leveled) FHE scheme if it is a (leveled)
FHE scheme with the following two additional algorithms:

– mEval(f, pk1, . . . , pkt, c1, . . . , ct) that takes as input an t-ary function f , t
evaluation keys and ciphertexts, and output a combined ciphertext c∗.

– mDec(sk1, . . . , skt, c
∗) that takes c∗, generated by mEval and t secret keys

such that ski corresponds to pki for i ∈ [t], and outputs f(m1,m2, . . .mt).

where the above holds for any t ≤ T , with c1, . . . ct any ciphertexts under
pk1, . . . pkt, i.e. ci = Encpki(mi) for all i ∈ [t].

If we replace HE with HE(N), we get the following evaluation function:

Scheme2.Evalpk(f, c1, . . . , ct): To evaluate a function f over cipher-
texts c1, . . . ct, first parse ci = (pk′

i, ci,1, ci,2) for i ∈ [t]. Then,
calculate c∗1 = HE(N).Eval(pk′

1, . . . , pk
′
t, c1,1, . . . , ct,1). Finally, output

(pk′
1, . . . pk

′
t, c

∗
1, c1,2, . . . , ct,2).

The problem with this approach is that the resulting ciphertext needs to
include all the public keys and secret keys from HE(N) in order to run multikey
decryption (HE(N).mDec). This means that outputs of the Eval function will have
a different format than freshly generated ciphertexts, and no longer be compact.
Thus Scheme2 cannot possibly meet the definition of fully homomorphic.

5.3 The Final Scheme

We now observe that the LTV construction actually achieves multi-key FHE with
a more fine-grained definition than we provided above: one where not only cipher-
texts, but also keys can be combined. As described in Section 3.4 of their paper,
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given c1 = LTV.Enc(pk1,m1), c2 = LTV.Enc(pk2,m2), one step of LTV.Eval is
to calculate pk∗ = pk1 ∪ pk2. We can separate out this step and generalize it,
defining CombinePK(pk1, pk2, . . . , pkt) =

⋃t
i=1 pki. Similarly, in their scheme, the

secret keys are polynomials, and they show how to create a ”joint secret key” by
multiplying the polynomials together. We give this procedure a name, defining
CombineSK(sk1, sk2, . . . skt) =

∏t
i=1 skk.

Definition 5.1. A scheme HE(N) is an N-Key Multikey (leveled) FHE
scheme if it is a (leveled) FHE scheme with the following additional algo-
rithms: For any t ≤ N , let c1, . . . ct be any ciphertexts under pk1, . . . pkt, i.e.
ci = Encpki(mi) for all i ∈ [t].

– pk∗ = CombinePK(pk1, pk2, . . . , pkt).
– A multi-key encryption algorithm mEval(f, pk1, . . . , pkt, c1, c2, . . . , ct) that

first calls pk∗ = CombinePK(pk1, pk2, . . . , pkt), and then produces c∗, and
outputs c∗ and pk∗. Note that this c∗ and pk∗ can be used as input for
successive calls to mEval.

– sk∗ = CombineSK(sk1, sk2, . . . , skt).
– A multikey decryption algorithm mDec(sk1, . . . , skt, c

∗) that calls CombineSK
and then runs Dec(sk∗, c∗) to produce f(m1,m2, . . .mt).

As long as the outputs of CombineSK and CombinePK are succinct, we can
update our scheme to make ciphertexts succinct.

Let SHE = (KeyGen(),Enc(),Dec(),Eval()) be any somewhat1 homomorphic
encryption scheme that is also resilient to adaptive bounded leakage of λ bits,
and let HE(N) = (KeyGen(),Enc(),Dec(),mEval(), CombinePK(),CombineSK())
be any N -key multikey fully homomorphic encryption scheme. Then we consider
the following combined scheme:

Scheme3.KeyGen(1η): Run (pk, sk) ← SHE.KeyGen(1η). Set the public and se-
cret keys to be pk, sk.

Scheme3.Enc(pk,m): First, run (pk′, sk′)← HE.KeyGen(1η).
Then output (pk′,HE.Enc(pk′,m), SHE.Enc(pk, sk′)) as the ciphertext.

Scheme3.Eval(pk, f, c1, . . . , ct): First parse ci = (pk′
i, ci,1, ci,2) for i ∈ [t].

Then, calculate c∗1 = HE(N).Eval(pk′
1, . . . , pk

′
t, f, c1,1, . . . , ct,1),

pk′∗ = HE(N).CombinePK(pk′
1, . . . , pk

′
t),

c∗2 = SHE.Eval(pk,HE.CombineSK, c1,2, . . . , ct,2).
Finally, output (pk′∗, c∗1, c

∗
2).

Scheme3.Dec(sk, c): To decrypt a ciphertext c, first parse c = (pk′, c1, c2), and
obtain sk′ = SHE.Dec(sk, c2). Then output HE.Dec(sk′, c1).

This lets us achieve the following theorem.

Theorem 5.2. Let SHE be a C-homomorphic encryption scheme for some cir-
cuilt class C such that HE(N).CombineSK ∈ C. Let HE(N) be an N -Key multikey

1 SHE must support circuits large enough to evaluate CombineSK, but does not need
to be fully homomorphic.
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FHE scheme. If SHE is resilient to adaptive, bounded leakage of λ bits, then
Scheme3 has the following properties:

1. It allows homomorphic evaluation of (up to) N -ary circuits of arbitrary
(poly(η)) depth.

2. If SHE is a leveled homomorphic encryption scheme, then the ciphertext size
depends on N . If SHE is fully homomorphic, then Scheme3 has succinct
ciphertexts (whose lengths do not depend N).

3. It is resilient to adaptive bounded leakage of λ bits.

Proof. We address each statement in turn.

1. This follows immediately from the fact that by definition, HE(N) allows ho-
momorphic evaluation of (up to) N -ary circuits of arbitrary (poly(η)) depth.

2. If SHE is leveled, its key-size is dependent on L, the number of levels of
homomorphic evaluation it can support. To instantiate Scheme3, we need
SHE to homomorphically evaluate CombineSK, an N -ary circuit whose depth
is a function of its arity. Thus, the key size of SHE, and by extension, of
Scheme3 is a function of N . In contrast, if SHE is not leveled, its key size is
independent of L, and thus of N as well.

3. A simple reduction shows that if SHE is leakage resilient, then Scheme3 will
be as well. Given a probabilistic polynomial time adversary A who wins the
ALR game with Scheme3 with non-negligible advantage, it is easy to con-
struct a ppt B who wins the ALR game with SHE with the same advantage.
Upon receiving the public key from SHE, B simply forwards this informa-
tion to A. Whenever A requests an encryption of a message, B simply runs
HE.KeyGen, and then follows Scheme3.Enc(), and forwards the result to A.
When A decides upon a leakage function, B uses that same leakage function.
A’s view when interacting with B is exactly its view when interacting with
Scheme3 so its advantage is the same. Therefore, B would have the same
advantage when interacting with Scheme3.

5.4 Instantiation

We instantiate Scheme3 using LRGSW for SHE and LTV for HE(N). The LTV
construction can be summarized by the following theorem:

Theorem 5.3. (from theorem 4.5 in [30]) For every N = poly(η), under the
DSPR2 and RLWE3 assumptions with proper parameters, there exists an N -key
multi-key (leveled) Fully Homomorphic Encryption Scheme. Under the additional
assumption of weak circular security, we can remove the “leveled” constraint.

The above theorem lets us instantiate Scheme3 with LTV and LRGSW, and
together with with theorem 4.1 gives us the following corollary:

2 The DSPR assumption is the “Decisional Small Polynomial Ratio” introduced in
[30].

3 RLWE stands for “Ring Learning With Errors,” first introduced in [37].
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Corollary 5.1. For every T = poly(η) there exists an FHE scheme that supports
homomorphic evaluation of all t-nary circuits for t ≤ T , and depth poly(η), under
appropriate DSPR, RLWE, and DLWE assumptions. Under appropriate choices
of n and q chosen so that certain DLWE assumptions hold, the scheme is resilient
to adaptive bounded leakage of λ bits, where λ ≤ n− 2 log q − 4η.
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A Full Definitions

Below we provide full, formal definitions of concepts used throughout our paper.

A.1 Homomorphism

Definition A.1. A homomorphic (public-key) encryption scheme

HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval)

is a quadruple of probabilistic polynomial time algorithms as described below:

– Key Generation4 The algorithm (pk, sk)← HE.Keygen(1κ) takes a unary
representation of the security parameter, and outputs a public key pk and a
secret decryption key sk.

– Encryption The algorithm c ← HE.Encpk(μ) takes the public key pk and
a message μ ∈ {0, 1} and outputs a ciphertext c.

– Decryption The algorithm μ∗ ← HE.Decsk(c) takes the secret key sk, a
ciphertext c, and outputs a message μ∗ ∈ {0, 1}.

– Homomorphic Evaluation The algorithm cf ← HE.Evalpk(f, c1, . . . , ct)
takes the public key, pk, a function f : {0, 1}t → {0, 1}, and a set of t cipher-
texts c1, . . . , ct and outputs a ciphertext cf . In our paper, we will represent
functions f as binary circuits constructed of NAND gates.

Definition A.2. Let HE be L− homomorphic and let fnand be the augmented
decryption function defined below:

fnand = HE.Dec(sk, c1) NAND HE.Dec(sk, c2)

Then HE is bootstrappable if fnand ∈ L

Definition A.3. A public key encryption scheme (Gen,Enc,Dec) has weak cir-
cular security if it is secure even against an adversary with auxiliary informa-
tion containing encryptions of all secret key bits.

4 In many schemes, the public key is split into two parts, the pk, which is used to
encrypt fresh messages, and the evaluation key (evk) that is used to homomorphically
evaluate circuits, so the output of the algorithm is: (pk, evk, sk) ← HE.Keygen(1κ).
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Definition A.4. For any class of circuits C = {Cη}η∈N
over {0, 1}. A scheme

HE is C − homomorphic if for any function f ∈ C, and respective inputs
μ1, . . . , μt ∈ {0, 1}, it holds that

Pr[HE.Decsk(HE.Evalpk(f, c1, . . . , ct) �= f(μ1, . . . , μt)] = negl(η)

where (pk, sk)← HE.Keygen(1κ) and ci ← HE.Encpk(μi).

Definition A.5. A homomorphic scheme HE is compact if there exists a poly-
nomial p = p(η) such that the output length of HE.Eval(· · · ) is at most p bits
long (regardless of f or the number of inputs).

Definition A.6. A scheme is leveled fully homomorphic if it takes 1L as
additional input in key generation, where L = poly(η), and otherwise satisfies
the definitions for a compact, L-homomorphic encryption scheme, where L is
the set of all circuits over {0, 1} of depth ≤ L.

Definition A.7. A scheme HE is fully homomorphic if it is both compact
and C- homomorphic, where C = {Cη}η∈N

is the set of all circuits with arity and
depth polynomial in η.

A.2 Learning with Errors

Definition A.8. The Decision Learning with Errors Problem:

Given a secret s← Zn
q , m = poly(n) samples ai

$←− Zn
q , and corresponding noise

xi ← χ, Distinguish {As,χ}i = {ai, 〈ai, s〉+ xi}i from {ai, bi}i $←− Z�
q × Zq.

We denote an instance of the problem as DLWEn,q,χ. The decision learning
with errors assumption is that no probabilistic polynomial time adversary can
solve DLWEn,q,χ with more than negligible advantage.

Definition A.9. A family of distributions χ is called β-bounded if
Prx←χ(η)[||x|| > β] = negl(η).

Definition A.10. The Gaussian distribution in one dimension with standard
deviation β is Dβ := exp(−π(x/β)2)/β. For β ∈ Zq, the discretized Gaussian,

Ψβ, is defined by choosing β′ such that β = β′ · q, then choosing x
$←− Dβ′ and

computing )q · x�. Note that Ψβ is β-bounded when β is super-polynomial in η.
When χ = Ψβ we denote the DLWE instance as DLWEn,q,β.

A.3 Min-entropy and the Leftover Hash Lemma

Definition A.11. A distribution X has min entropy ≥ k, denoted H∞(X ) ≥
k, if

∀x ∈ X ,Pr[X = x] ≤ 2−k
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Definition A.12. (From [31]) For two random variables X and Y , the average
min-entropy of X conditioned on Y , denoted H̃∞(X |Y ) is

H̃∞(X |Y ) := − log E
y←Y

[
[max

x
Pr[X = x|Y = y]

]
= − log

[
E

y←Y

[
2−H∞(X|Y=y)

]]
Definition A.13. (From [31]) For two random variables X and Y , the
ε-smooth average min-entropy of X conditioned on Y , denoted H̃ε

∞(X |Y ) is

H̃ε
∞(X |Y ) = max

(X′,Y ′):Δ((X,Y ),(X′,Y ′))<ε
H̃∞(X ′|Y ′)

Note that in particular, for any random variable X, given distributions DY ≈s

DZ with Y ← DY , Z ← DZ , there exists some ε such that Δ(Y, Z) < ε = negl(η),
and

H̃ε
∞(X |Y ) ≥ H̃ε

∞(X |Z)

We now-restate a version of the leftover hash lemma [38] relating to matrix-
vector multiplication in Zq, as it was stated in, for example, [27].

Lemma A.1. [Leftover Hash Lemma] For a security parameter η, let n =

poly(η), let C
$←− Zm×n

q Let s ← D ∈ Zn
q , and let k = H∞(D). If m log q ≤

k − 2 log(1ε ) + 2 then Δ((C,Cs)(C,u
$←− Zm

q )) ≤ ε.

In particular, by setting ε = 2−η, if m log q ≤ k−2η+2 then (C,Cs) ≈s (C,u
$←−

Zm
q )

The leftover hash lemma can easily be generalized to the case where s has
high conditional average min-entropy.

Lemma A.2. [Generalized Leftover Hash Lemma] (from lemma 2.4 in [31]) For

a security parameter η, let n = poly(η), let C
$←− Zm×n

q Let s ← D ∈ Zn
q , let t

be any random variable, and let k = H̃∞(s|t). If m log q ≤ k − 2 log(1ε ) + 2 then

Δ((C,Cs, t)(C,u
$←− Zm

q ), t) ≤ ε. In particular, setting ε = 2−η, if m log q ≤
k − 2η + 2 then (C,Cs, t) ≈s (C,u

$←− Zm
q , t)

An immediate consequence of the above lemma is the following corollary:

Corollary A.1 (Epsilon-Smooth Variant of LHL). For a security parame-

ter η, let n = poly(η), let C
$←− Zm×n

q Let s← D ∈ Zn
q , let t be any random vari-

able, and let H̃ε1
∞(s|t) ≥ k. If m log q ≤ k−2 log( 1

ε2
)+2 Then Δ((C,Cs, t)(C,u

$←−
Zm
q ), t) ≤ 2ε1 + ε2.

Proof. The definition of ε-smooth average min-entropy means there exists a
random variable s′ over the same domain as s and a random variable t′ over
the same domain as t such that Δ((s, t)(s′, t′)) ≤ ε1, and H̃∞(s′|t′) ≥ k.

Lemma A.2 tell us that Δ((C,Cs′, t′)(C,u
$←− Zm

q ), t′) ≤ ε2. Furthermore,
clearly Δ(t, t′) ≤ ε1. Finally, since statistical distance is a metric, we can con-
clude Δ((C,Cs, t)(C,u, t)) ≤ 2ε1 + ε2
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B More Details about Parameter Setting

We now describe in more detail the constraints that drive our setting of param-
eters. We include full proofs of Lemma 4.2 and Lemma B.1, which drive the
setting of many of our parameters.

B.1 Parameter Setting Using Lemma 4.2

Below we restate and prove Lemma 4.2.

Lemma 4.2. There exists a distribution Lossy such that Ã ← Lossy ≈c U
$←−

Zm×n
q and given t

$←− Zn
q , and e← χ, H̃ε

∞(t|Ã, Ãt+ e) ≥ n, where ε = negl(η).

Proof. Recall that we define Lossy as follows:

Choose C
$←− Zm×n′

q , D
$←− Zn′×n

q , and Z ← Ψ
m×n

α , where α
β = negl(η) and

n′ log q ≤ n− 2η + 2.
Let Ã = CD+ Z
output Ã.

First, observe that Ã ≈c U
$←− Zm×n

q :

Ã is a DLWE instance, with D as the secret and Z as the error term, so as long
as DLWEn′,q,α is hard, then Ã ≈c Z

m×n
q .

Next, observe that H̃ε
∞(t|Ãt+ e) = n, where ε = negl(η):

Since t
$←− Zm

q is identically distributed to t = t0 + t1 where t0
$←− {0, 1}m, and

t1
$←− Zm

q , we may consider consider t = t0 + t1.

Clearly for any ε, H̃ε
∞(t|Ãt+ e) ≥ H̃ε

∞(t0|Ãt+ e), so it suffices to bound the
min-entropy of t0.

We can then rewrite Ãt+ e as

= CDt0 + Zt0 +CDt1 + Zt1 + e

Since e is drawn from a discretized Gaussian distribution, and since each
element of Zt0 is negligibly small compared to the corresponding element of e,
we know that e+ Zt0 ≈s e. Thus there exists some ε1 = negl(η) such that

H̃ε1
∞(t0|CDt0 +CDt1 + Zt1 + e) ≥ H̃∞(t0|CDt0 +CDt1 + Zt1 + Zt0 + e)

Since H̃∞(t0|CDt1+Zt1+ e) ≥ n, Lemma A.2 tells us that for our choice of

n′, (CDt0+CDt1+Zt1+e) ≈s (Cu0+CDt1+Zt1+e), where u0
$←− Zn′

q . Since
the statistical distance between these two distributions is some ε2 = negl(η),
there is some ε = ε1 + ε2 = negl(η) such that

H̃ε
∞(t0|Cu0 +CDt1 + Zt1 + e) ≥ H̃∞(t0|CDt0 +CDt1 + Zt1 + Zt0 + e)

Since each of C,u0,D,Z, t1, e, is independent of t0, this quantity equals
H∞(t0) = n. Thus, we can conclude that H̃ε

∞(t|Ãt+ e) ≥ n as well.
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When using Lemma 4.2, the following constraints affect our parameter setting:

1. Statistical Indistinguishability: There are three different places in our
hybrid argument where we prove that two distributions are statistically in-
distinguishable.
– In Lemma 4.2, we argue that the distribution Zt0+e is statistically close

to e, because the magnitude of each element of Zt0 is small. This argu-
ment requires that e be a discretized Gaussian distribution, rather than
just a bounded distribution, as required by the original GSW scheme.

– In Claim 1, inside our proof of Lemma 4.1, we use the leftover hash

lemma to show we can replace rA with u
$←− Zn

q . This step is part of
the security proof of all variations on the RPKE scheme, but an artifact
of our proof technique is that we consider an adversary who can see
r · e, which is � = O(log q) bits long. So for r of dimension m, we have
H̃∞(r) = m− �. The analogous step in the GSW security proof assumes
H∞(r) = m. This leads us to increase the value of m. In our scheme, m
is set to 2n log q + 3η.

– Again in Lemma 4.1, in Claim 2, we use the leftover hash lemma to show

that given u
$←− Zn

q , we can replace u · t with u′ $←− Zq. As described in
our proof, the ε-smooth average min-entropy of t is n − � − λ, where λ
is the the number of bits of leakage we can tolerate. Thus, we must set
λ to a value that keeps H̃∞(t) high enough for the leftover hash lemma
to apply. That is how we arrive at λ ≤ n− 2 log q − 4η.

2. DLWE Considerations: The security of our scheme is based on the hard-
ness of two different DLWE problems: DLWEn′,q,α, where the n′ and α come
from Lemma 4.2, and DLWEn,q,β . For our scheme to be secure, the following
three things need to be true:
– α

β = negl(η). This is a necessary condition in our proof of Lemma 4.2.
– DLWEn′,q,α is hard. We refer to Statement 1, which shows that this

problem is at least as hard as GapSVPn′q/α, and to Statement 2, which
says the best known algorithms for solving GapSVPn′q/α run in time

2
Ω̃
(

n′
log(n′q/α)

)
. This quantity should be at least super-polynomial in our

security parameter for the scheme to be secure.
– DLWEn,q,β is hard. Using the same theorems, we see that we need

2Ω̃(
n

log(nq/β) ) to be super-polynomial in η as well.
3. Correctness: The scheme needs 8(N + 1)L < q

β , where L is the depth of

the circuit, β is the error bound, and N = (log q + 1)n, in order to ensure
the noise never gets large enough to hamper accurate decryption.

Since our FHE scheme supports evaluation of circuits whose depth is poly-
nomial in the security parameter as long as that polynomial is pre-specified, we
know that there exists some constant c such that L ≤ ηc. Let τ = max{L, η2}.
Setting the parameters as follows satisfies all of the hardness and correctness
constraints for the scheme:
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Let n = τ4. Let q = 2τ log2 τ . Let β = 2log
2 τ . Recall that n′ = (n− 2η)/ log q,

and let α = n′.
Note that α

β is clearly negligible in η as required. Since the best algorithm for

GapSVPn′q/α runs in time 2
Ω̃
(

n′
log(n′q/α)

)
, we look more closely at the exponent

n′

log(n′q/α) We can rewrite it as n′

log(q) = n−2η
log2 q

= τ4−2η
τ2 log4 τ

. Since τ ≥ η2, we know

that the above quantity is ≥ η8−2η
2η4 log2 η

≥ η for η ≥ 16. Thus the hardness is 2Ω̃(η).

Similarly, to bound the hardness of GapSVPn,q,β we consider the exponent of

2
n

log(nq/β) .

n

log(nq/β)
=

n

logn+ log q − log β

=
τ4

4 log τ + τ log2 τ − log2 τ

≥ τ

≥ η

This means that DLWEn,q,β is exponentially hard as well. Finally, we verify
that our parameter settings maintain the correctness of the scheme: We need
8(N +1)L < q

β , and since we chose τ ≥ L, it is sufficient to show 8(N +1)τ < q
β .

We can upper bound the left hand side of this inequality as follows:

8(N + 1)τ ≤ 8(2n log q)τ

= 8(2τ4τ log2 τ)τ

≤ 232ττ6τ

= 23+τ+6 log2 τ

Meanwhile, the right hand side is equal to 2(τ−1) log2 τ , which is clearly greater
than the left hand side for sufficiently high τ .

Finally, the number of bits of leakage we can support is n − 2 log q − 4η =
τ4 − 2τ log2 τ − 4η = η8 − 32η4 log η − 4η, which is positive for any η ≥ 3.

B.2 Efficiency/Leakage Tradeoff

We can prove our scheme secure using the following alternate lemma, which gives
us better efficiency but a lower leakage bound.

Lemma B.1. For n,m, n′, q, α, β such that DLWEn′,q,α and DLWEn,q,β are

hard, if β ≥ αnm, there exists a distribution Lossy′ such that Ã ← Lossy′ ≈c

U
$←− Zm×n

q and given t
$←− Zn

q , and e← Ψβ, H̃
ε
∞(t|Ã, Ãt+ e) ≥ n− η(logm+

2 logn), where ε = negl(η).

The proof of this lemma closely follows the outline of Lemma B.4 in [28], so we
defer it to the full version of our paper.

The new lemma leads immediately to the following:
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Corollary B.1. The LRGSW scheme is resilient to λ ≤ n − (2 + η) log q −
η logm− 4η bits of leakage when Ψβ is chosen so that β

m ≥ n2

log q .

Proof. This corollary is true as long as with the new parameter settings, the
scheme still maintains its correctness, so 8(N + 1)L ≤ q

β and its hardness:

DLWEn′,q,α, and DLWEn,q,β , as well as the new requirement that β
m ≥ nα.

If we choose an α = O(n′), which we need for DLWEn′,q,α to be hard, then
α ≤ n/ log q, so our setting of β is sufficient to meet this new requirement. Note
that with these settings, β is no longer super-polynomial in η, and though q will
remain superpolynomial in β, this allows for a much smaller value of q as well.
For example, if we let τ = max{L, η3}, n = τ3, q = 2τ logn, m = 2n log q + 3η,
n′ = (n− 2η + 2)/ log q, α = τ2, β = 3n3τ3, then we have:

– DLWEn′,q,α is hard:

note that n′ = τ3−2τ+2
3τ log τ ≤ τ2 = α. So 2

n′
log(n′q/α) ≥ 2n

′/ log q. We can rewrite

that exponent as n−2η+2
log2 q

= η9−2η+2
81η6 log η . So for η ≥ 20, we have 2n

′/ log q ≥ 2η.

Thus we can conclude that since DLWEn′,q,α takes time 2
Ω̃
(

n′
log(n′q/α)

)
to

solve, it is super-polynomially hard to solve in η.
– DLWEn,q,β is hard:

Since β > n, we know that n
log(nq/β) > n

log q = τ3

3τ log τ ≥ τ/3 ≥ η6/3. So

2Ω̃(
n

log nq/β ) is exponential in η as well.
– The scheme is correct:

We need to show: 8(N + 1)L ≤ q
β . First, we rewrite N + 1.

N + 1 = n(log q + 1) + 1

= τ3(τ log τ3) + τ3 + 1

= 3τ4 log τ + τ3 + 1

≤ 4τ4 log τ

So we have that 8(N +1)L ≤ 2322L24 log τ2log log τ , and since L ≤ τ , we have,
that this is ≤ 22τ+4 log τ+3+log log τ ≤ 22τ+5 log τ .
Meanwhile,

q

β
= 2τ logn/(3n3τ3)

=
1

3
2τ logn−3 logn−3 log τ

≥ 23τ log τ−12 log τ

This quantity is ≥ 22τ+5 log τ for sufficiently high τ , (for example, if τ ≥ 9,
meaning η ≥ 3), so the scheme is secure.
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Abstract. In this work we present an efficient compiler that converts any cir-
cuit C into one that is resilient to tampering with 1/poly(k) fraction of the wires,
where k is a security parameter independent of the size of the original circuit |C|.
Our tampering model is similar to the one proposed by Ishai et al. (Eurocrypt,
2006) where a tampering adversary may tamper with any wire in the circuit (as
long as the overall number of tampered wires is bounded), by setting it to 0 or 1,
or by toggling with it. Our result improves upon that of Ishai et al. which only
allowed the adversary to tamper with 1/|C| fraction of the wires.

Our result is built on a recent result of Dachman-Soled and Kalai (Crypto,
2012), who constructed tamper resilient circuits in this model, tolerating a con-
stant tampering rate. However, their tampering adversary may learn logarithmi-
cally many bits of sensitive information. In this work, we avoid this leakage of
sensitive information, while still allowing leakage rate that is independent of the
circuit size. We mention that the result of Dachman-Soled and Kalai (Crypto,
2012) is only for Boolean circuits (that output a single bit), and for circuits that
output k bits, their tampering-rate becomes 1/O(k). Thus for cryptographic cir-
cuits (that output k bits), our result strictly improves over (Dachman-Soled and
Kalai, Crypto, 2012).

In this work, we also show how to generalize this result to the setting of two-
party protocols, by constructing a general 2-party computation protocol (for any
functionality) that is secure against a tampering adversary, who in addition to
corrupting a party may tamper with 1/poly(k)-fraction of the wires of the com-
putation of the honest party and the bits communicated during the protocol.

Keywords: Tamper-resilient circuits, Two-party computation.

1 Introduction

Constructing cryptographic schemes that are secure against physical attacks is a
fundamental problem which has recently gained much attention in the cryptographic
community. Indeed, physical attacks exploiting the implementation (rather than the
functionality) of cryptographic schemes such as RSA have been known in theory for
several years [41,8] and recent works have shown that these attacks can be carried out
in practice [9,49]. There are many different types of physical attacks in the literature.
For instance, Kocher et al. [42] demonstrated how one can possibly learn the secret
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key of an encryption scheme by measuring the power consumed during an encryption
operation, or by measuring the time it takes for the operation to complete [41]. Other
types of physical attacks include: inducing faults to the computation [7,8,42], using
electromagnetic radiation [28,54,53], and several others [53,39,43,31].

Although these physical attacks have proven to be a significant threat to the
practical security of cryptographic devices, until recently cryptographic models did
not take such attacks into account. In fact, traditional cryptographic models ideal-
ize the parties interaction and implicitly assume that an adversary may only ob-
serve an honest partys input-output behavior. Over the past few years, a large and
growing body of research has sought to introduce more realistic models and to se-
cure cryptographic systems against such physical attacks. The vast majority of these
works focus on securing cryptographic schemes against various leakage attacks (e.g.
[10,34,47,29,33,18,50,1,48,38,15,14,22,35,30]). In these attacks an adversary plays a
passive role, learning information about the honest party through side-channels but
not attempting to interfere with the honest partys computation. However, as mentioned
above, physical attacks are not limited to leakage, and include active tampering attacks,
where an adversary may actively modify the honest partys memory or circuit. In this
work, we focus on constructing schemes that are secure even in the presence of tamper-
ing.

1.1 Our Results

We present a compiler that converts any circuit into one that is resilient to (a certain
form of) tampering. Then, we generalize this result, and show how to construct a general
two-party computation protocol that is secure against such tampering. We consider the
tampering model of Ishai et al. [33]. Specifically, we consider a tampering adversary
that may tamper with any (bounded) set of wires of the computation.

We note that our compiler that converts any circuit into a “tamper resilient” one, can-
not guarantee correctness of the computation in the presence of tampering. This is the
case, since the adversary may always tamper with the final output wire of the circuit.
Therefore, as in [33], we do not guarantee correctness, but instead ensure privacy. In
particular, we consider circuits that are associated with a secret state. We model such
circuits as standard circuits (with AND, OR, and NOT gates), with additional secret,
persistent memory that contains the secret state. The circuit itself is public and its topol-
ogy is fully known to the adversary, whereas the memory content is secret. Following
the terminology of [33], we refer to such circuits as private circuits. Our notion of se-
curity guarantees that the secret state of the circuit is protected even when an adversary
may run the circuit on arbitrary inputs while continuously tampering with the wires of
the circuit.

There are several fundamental impossibility results for tampering, which any positive
result must circumvent. In the following, we discuss some of these limitations.

Class of Tampering Functions. It is not hard to see that it is impossible to construct
private circuits resilient to arbitrary tampering attacks, since an adversary may mod-
ify the circuit so that it simply outputs the entire secret state in memory. Thus, we
must specify a class of allowed tampering functions. As in [33], in this we consider
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tampering adversaries who can tamper with individual wires [33,23,12] and indi-
vidual memory gates [11,29,19]. More specifically, in each run of the circuit we
allow the adversary to specify a set of tampering instructions, where each instruc-
tion is of the form: Set a wire (or a memory gate) to 0 or 1, or toggle with the value
on a wire (or a memory gate). However, in contrast to [37], where the tampering
rate achieved is 1/|C|, where |C| is the size of the original circuit, we allow the
adversary to tamper with any 1/ poly(k)-fraction of wires and memory gates in
the circuit, where k is security parameter and poly(k) is independent of the size of
the original circuit. We note that the recent work of [12] gave a construction that
is resilient to constant tampering rate. However, in their construction a tampering
adversary may learn logarithmically many bit on the secret state of the circuit, and
their guarantee was that such an adversary learns only logarithmically many bits
about the secret state. We give the guarantee that a tampering adversary does not
learn anything beyond the input/output behavior.

Necessity of Feedback. As noted by [29], it is impossible to construct private circuits
resilient against tampering on wires without allowing feedback into memory, i.e.
without allowing the circuit to overwrite its own memory. Otherwise, an adversary
may simply set to 0 or 1 one memory gate at a time and observe whether the final
output is modified or not.
Even if we allow feedback, and place limitations on the type of tampering we al-
low, it is not a priori clear how to build tamper-resilient circuits. As pointed out in
[33,12], the fundamental problem is that the part of the circuit which is supposed to
detect tampering and overwrite the memory, may itself be tampered with. Indeed,
this self-destruct mechanism itself needs to be resilient to tampering.

As in [33,12], we prove security using a simulation based definition, where we re-
quire that for any adversary who continually tampers with the circuit (as described
above), there exists a simulator who simulates the adversarys view. Like in [33], we
give the simulator only black-box access to the original private circuit with no addi-
tional leakage on the secret state. This is in contrast to the work of [12], who achieve
a constant tampering rate, but where the simulator requires O(log k) bits of leakage on
the secret state, where k is security parameter, in order to simulate. Thus, our result is
meaningful in settings where [12] is not.

For example,1 consider a setting where the same cryptographic key is placed on
several devices, which are all obtained by an adversary. In this case, [12] does not
guarantee any privacy for the cryptographic key, since O(log(k)) bits leaked from each
of several devices may give enough information to reconstruct the entire cryptographic
key. Another example is a setting where secrecy of an algorithm is desired in order to
protect intellectual property. In this case, the secret state of the device is the algorithm
and the circuit is the universal circuit. Here, the same algorithm is placed on a large
number of devices and is marketed. Thus, if O(log(k)) bits are leaked from each device,
then it may be possible to recover the entire algorithm.

Finally, we show how one can use our tamper-resilient compiler to achieve tamper-
resilient secure two-party computation. We elaborate on this result in Section 1.4, but

1 The following example, which was the motivating force behind this research, was brought to
our attention by Shamir [55].
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mention here that the results of [12] do not apply to this regime. Loosely speaking, the
reason is that in this setting, the secret state of the circuit consists of the private input
and randomness of each party, and (even logarithmic) leakage on the input and random-
ness of each party may completely compromise security of the two-party computation
protocol.

Our Results More Formally. We present a general compiler T that converts a circuit C
with a secret state s (denoted by Cs) into a circuit T (Cs). We considerPPT adversaries
A who receive access to T (Cs) and behave in the following way: A runs the circuit
many times with arbitrary and adaptively chosen inputs. In addition, during each run of
the circuit the adversaryA may specify tampering instructions of the form “set wire w
to 1”,“set wire w to 0”, “flip value of wire w”, as well as “set memory gate g to 1”, “set
memory gate g to 0”, “flip value of memory gate g”, for any wire w or memory gate g.
We restrict the number of tampering instructions A may specify per run to be at most
λ · σ, where λ = 1

poly(k) and σ is the size of the circuit T (Cs). Thus, in each run, A
may tamper with a 1/ poly(k)-fraction of wires and memory gates.

Theorem 1 (Main Theorem, Informal). There exists an efficient transformation T
which takes as input any circuit Cs with private state s, and outputs a circuit T (Cs)
such that the following two conditions hold:

Correctness: For every input x, T (Cs)(x) = Cs(x).
Tamper-Resilience: For every PPT adversary A, which may tamper with λ =

1/ poly(k)-fraction of wires and memory gates in T (Cs) per run, there exists an
expected polynomial time simulator Sim, which can simulate the view of A given
only black-box access to Cs.

Intuitively, the theorem asserts that adversaries who may observe the input-output be-
havior of the circuit while tampering with at most a λ-fraction of wires and memory
gates in each run, do not get extra knowledge over what they could learn from just
input-output access to the circuit.

1.2 Comparison with Ishai et al. [33] and Dachman-Soled et al. [12]

Our work follows the line of work of [33,12]. As in our work, both these works consider
circuits with memory gates, and consider the same type of faults as we do. Similarly
to us, they construct a general compiler that converts any private circuit into a tamper
resilient one. In the following, we discuss some similarities and differences among these
works.

– In our construction, as in the construction of [33], we require the use of “random-
ness gates”, which output a fresh random bit in each run of the circuit.2 In contrast,
the construction of [12] is deterministic.

2 Alternatively, [33] can get rid of these randomness gates at the cost of relying on a computa-
tional assumption.
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– The constructions of [33,12] provide information-theoretic security, while our con-
struction requires computational assumptions.

– As mentioned previously, [33] constructs tamper resilient circuits that are resilient
only to local tampering: To achieve resilience to tampering with t wires per run, the
circuit size blows up by a factor of at least t. In contrast, our tamper-resilient circuits
are resilient to a 1/ poly(k)-fraction of tampering, where k is security parameter.
Thus, our tampering rate is independent of the original circuit size.

– The construction of [12] achieves a constant tampering rate, but requires O(log k)
leakage on the secret state in order to simulate. As discussed above, in some set-
tings the guarantees provided by [12] are too weak, while our construction still
guarantees meaningful security.
Moreover, [12] achieves constant tampering rate only for Boolean circuits that out-
put a single bit. For circuits with k bit output, the resulting tampering-resilient
circuit is only resilient to 1/k-fraction of tampering.

– The tampering model of [33] allows for “persistent faults”, e.g, if a value of some
wire is fixed during one run, it remains set to that value in subsequent runs. We
note that in our case, we allow “persistent faults” only on memory gates (and not
on wires), so if a memory value is modified during one run, it remains modified for
all subsequent runs.

1.3 Overview of Our Construction

Intuitively, our compiler works by first applying to the circuit Cs the leakage-resilient
compiler TLR of Juma and Vahlis [35]. The Juma-Vahlis compiler, TLR, converts the
circuit Cs into two subcomputations (or modules), Mod(1) and Mod(2), and provides
the guarantee that (continual) leakage on the sub-computationsMod(1) and Mod(2) leak
no information on the secret seed s. We refer the reader to [35] for the precise security
guarantee. We emphasize that TLR(Cs) has no security guarantees against a tampering
adversary (rather only against a leaking adversary).

Our next idea is to use the tamper-resilient compiler TTR of [12]. This compiler pro-
vides security against a (continual) tampering adversary, guaranteeing that the adver-
sary learns at most logn bits about the secret s. In this work our goal is to remove this
leakage from the security guarantee. To this end, we apply the tamper-resilient compiler
TTR to each sub-computation separately, each of which is now resilient to leakage.

We note however, that the Juma-Vahlis compiler relies on a secure hardware com-
ponent. We do not want to rely on any such tamper-proof component. Therefore, we
replace the tamper-proof component with a secure implementation. We describe our
compiler in stages:

– First, we present a compiler (as above) that takes as input a circuit Cs and outputs
a compiled circuit T (1)(Cs) that consists of 4 components. We prove that T (1)(Cs)
is secure against adversaries that tamper with at most a 1/ poly(k) fraction of wires
overall, but do not tamper with any of the wires in the first component, where the
first component corresponds to the hardware component in the [35] construction
(See Section 3.1).

– Then, we show how to get rid of the tamper-proof component and allow 1/ poly(k)-
fraction tampering overall (See Sections 3.2 and 5).
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1.4 Extension to Tamper-Resilient Secure Two-Party Computation

We consider the two-party computation setting, where in addition to corrupting parties,
an adversary may tamper with the circuits of the honest parties and the messages sent
by the honest parties. In this setting, we show how to use our construction of tamper-
resilient circuits to obtain a general tamper-resilient secure two-party computation pro-
tocol, where an adversary may actively corrupt parties and additionally tamper with
1/ poly(k)-fraction of wires, memory gates, and message bits overall.

To achieve our result, we start with any two-party computation (2-PC) protocol that
is secure against malicious corruptions, and where the total number of bits exchanged
depends only on security parameter k, and not on the size of the circuit computing
the functionality. Such a 2-PC protocol can be constructed from fully homomorphic
encryption and (interactive) CS-proofs. In addition we assume that each message sent
in the protocol is accompanied with a signature. Then, for each party and each round
of the protocol, we consider the private circuit computing the next message function,
where the secret state is the party’s private input and randomness and the public input
is the transcript. We then run (a slight modification of) our tampering compiler on each
such next message circuit to obtain a circuit that is resilient to 1/ poly(k)-fraction of
tampering. Since the total number of such circuits is poly(k), we achieve resilience to
a 1/ poly(k)-fraction of tampering overall. We refer the reader to Section 6 for details.

1.5 Related Work

The problem of constructing error resilient circuits dates back to the work of Von Neu-
mann from 1956 [56]. Von Neumann studied a model of random errors, where each
gate has an (arbitrary) error independently with small fixed probability, and his goal
was to obtain correctness (as opposed to privacy). There have been numerous follow up
papers to this seminal work, including [13,52,51,25,20,32,26,21], who considered the
same noise model, ultimately showing that any circuit of size σ can be encoded into a
circuit of size O(σ log σ) that tolerates a fixed constant noise rate, and that any such
encoding must have size Ω(σ log σ).

There has been little work on constructing circuits resilient to adversarial faults,
while guaranteeing correctness. The main works in this arena are those of Kalai et al.
[37], Kleitnam et al. [40], and Gál and Szegedy [27]. The works of [40] and [37] con-
sider a different model where the only type of faults allowed are short-circuiting gates.
[27] consider a model that allows arbitrary faults on gates, and show how to construct
tamper-resilient circuits for symmetric Boolean functions. We note that [27] allow a
constant fraction δ of adversarial faults per level of the circuit. Moreover, if there are
less than 1/δ gates on some level, they allow no tampering at all on that level. [27] also
give a more general construction for any circuit which relies on PCP’s. However, in
order for their construction to work, they require an entire PCP proof π of correctness
of the output to be precomputed and handed along with the input to the tamper-resilient
circuit. Thus, they assume that the input to the circuit is already encoded via an encod-
ing which depends on the output value of that very circuit. We (similarly to [12]) also
use the PCP methodology in our result, but do not require any precomputations or that
the input be encoded in some special format.
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Recently, the problem of physical attacks has come to the forefront in the cryptog-
raphy community. From the viewpoint of cryptography, the main focus is no longer to
ensure correctness, but to ensure privacy. Namely, we would like to protect the hon-
est party’s secret information from being compromised through the physical attacks
of an adversary. There has been much work on protecting circuits against leakage at-
tacks [34,47,18,50,16,24,35,30]. However, there has not been much previous work on
constructing circuits resilient to tampering attacks. In this arena, there have been two
categories of works. The works of [29,19,11,44,36,45,17] allow the adversary to only
tamper with and/or leak on the memory of the circuit in between runs of the circuit, but
do not allow the adversary to tamper with the circuit itself. We note that this model of
allowing tampering only with memory is very similar to the problem of “related key
attacks” (see [4,2] and references therein). In contrast, in our work, as well as in the
works of [33,23,12], the focus is on constructing circuits resilient to tampering with
both the memory as well as the wires of the circuit.

Faust et al. [23] consider a model that is reminiscent to the model of [33,12] and
to the model we consider here. They consider adversarial faults where the adversary
may actually tamper with all wires of the circuit but each tampering attack fails in-
dependently with some probability δ. As in [12], they allow the adversary to learn a
logarithmic number of bits of information on the secret key. In addition, their result
requires the use of small tamper-proof hardware components.

2 The Tampering Model
2.1 Circuits with Memory Gates

Similarly to [33], we consider a circuit model that includes memory gates. Namely, a
circuit consists of (the usual) AND, OR, and NOT gates, connected to each other via
wires, as well as input wires and output wires. In addition, a circuit may have memory
gates. Each memory gate has one (or more) input wires and one (or more) output wires.
Each memory gate is initialized with a bit value 0 or 1. This value can be updated during
each run of the circuit.

Each time the circuit is run with some input x, all the wires obtain a 0/1 value. The
values of the input wires to the memory gates define the way the memory is updated.
We allow only two types of updates: delete or unchange. Specifically, if an input wire
to a memory gate has the value 0, then the memory gate is overwritten with the value 0.
If an input wire to a memory gate has the value 1, then the value of the memory gate
remains unchanged. We denote a circuit C initialized with memory s by Cs.

2.2 Tampering Attacks

We consider adversaries, that can carry out the following attack: The adversary has
black-box access to the circuit, and thus can repeatedly run the circuit on inputs of his
choice. Each time the adversary runs the circuit with some input x, he can tamper with
the wires and the memory gates. We consider the following type of faults: Setting a wire
(or a memory gate) to 0 or 1, or toggling with the value on a wire (or a memory gate).

More specifically, the adversary can adaptively choose an input xi and a set of tam-
pering instructions (as above), and he receives the output of the tampered circuit on
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input xi. He can do this adaptively as many times as he wishes. We emphasize that
once the memory has been updated, say from s to s′, the adversary no longer has access
to the original circuit Cs, and now only has access to Cs′ . Namely, the memory errors
are persistent, while the wire errors are not persistent.

We denote by TAMPA(T (Cs)) the output distribution of an adversary A that car-
ries out the above (continual) tampering attack on a compiled circuit T (Cs). We note
that our tampering compiler T is randomized and so the distribution is over the coins
of T . We say that an adversary A is a λ-tampering adversary if during each run of the
circuit he tampers with at most a λ-fraction of the circuit. Namely,A can make at most
λ · |T (Cs)| tampering instructions for each run, where each instruction corresponds ei-
ther to a wire tampering or to a memory gate tampering.

Remark. In this work, we define the size of a circuit C, denoted by |C|, as the number
of wires in C plus the number of memory gates in C. Note that this is not the common
definition (where usually the size includes also the gates); however, it is equivalent to
the common definition up to constant factors.

To define security of a circuit against tampering attacks we use a simulation-based
definition, where we compare the real world, where an adversary A (repeatedly) tam-
pers with a circuit T (Cs) as above, to a simulated world, where a simulator Sim tries to
simulate the output ofA, while given only black-box access to the circuit Cs, and with-
out tampering with the circuit at all. We denote the output distribution of the simulator
by SimCs .

Definition 1. We say that a compiler T secures a circuit Cs againstPPT λ-tampering
adversaries, if for every PPT λ-tampering adversary A there exists a simulator Sim,
that runs in expected polynomial time (in the runtime of A), such that for sufficiently
large k,

{TAMPA(T (Cs))}k∈N

c≈ {SimCs}k∈N.

In this work we construct such a compiler that takes any circuit and converts it into
one that remains secure against adversaries that tamper with λ = 1/ poly(k)-fraction
of the wires in the circuit, where k is the security parameter. Our compiler is uses both
the Juma-Vahlis leakage compiler [35] and the recent tampering compiler of [12].

3 The Compiler

3.1 Overview of the First Construction

We start by presenting our first tampering compiler T (1) that takes as input a circuit Cs,
and generates a tamper-resilient version of Cs which requires a tamper-proof compo-
nent. In the case of no tampering, we show the correctness property: T (1)(Cs)(x) =
Cs(x). Moreover, we prove that the circuit T (1)(Cs) is resilient to tampering with rate
1/ poly(k), where k is the security parameter.

High-Level. On a very high-level, T (1)(Cs) works as follows.
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1. Apply the Juma-Vahlis compiler TLR to the circuit Cs to obtain a hardware com-
ponent and two modules (Mod(1),Mod(2)). First, Mod(1) = Mod

(1)
PK,EncPK(s)

is
the sub-computation that takes as input a string x and outputs the homomorphic
evaluation of Cs on input x. We refer to this sub-computation as Component 2
of T (1)(Cs) and denote the output of this component by ψcomp. Then a leakage
and tamper-resilient hardware is used generate a “fresh” encryption of 0, denoted
by ψrand, which is used to “refresh” the ciphertext ψcomp. We refer to the leakage
resilient-hardware outputting encryptions of 0 as Component 1. Component 3 of
T (1)(Cs) then takes as input ψcomp and ψrand and outputs the re-randomized cipher-
text ψ∗ = ψcomp + ψrand. Finally, the second sub-computation of the Juma-Vahlis

compiler, Mod(2) = Mod
(2)
SK , takes as input the refreshed ciphertext ψ∗ and de-

crypts it to obtain b = Cs(x). This sub-computation is referred to as Component 4
of T (1)(Cs).

2. The next idea is to apply the tampering compiler of [12], TTR, to each of the com-
ponents separately. We note that this tampering compiler allows a tampering adver-
sary learn logartihmically many bits about the secret state of the circuit. However,
since we apply the compiler to Components 2, 3, 4, which inherit the leakage re-
silient properties of the Juma-Vahlis compiler and are thus resilient to leakage of
logarithmic size, this is not a concern to us.
Unfortunately, this does not quite work. The reason is that the security definition
of the tamper-resilient compiler TTR allows the adversary to tamper with the in-
put. Hence, if we simply take the components described above, then a tampering
adversary may tamper with the inputs to each of the components, and may com-
pletely ruin the security guarantees of the Juma-Vahlis compiler. In particular, the
refreshed ciphertext ψ∗, may no longer be distributed correctly. Instead we do the
following:

3. Compute the second component, i.e. the tamper-resilient circuit TTR(Mod(1)).
However, instead of outputting a single ciphertext ψcomp, the circuit TTR(Mod(1))
will output M copies of ψcomp, where M is a (large enough) parameter that will be
specified below. We will argue that for any tampering adversary, either self-destruct
occurs or a majority of the copies of ψcomp are exactly correct.

4. Next apply a version of TTR to the third and fourth components, with the guar-
antee that now an adversary cannot tamper with the input (without causing a self
destruct), since the input is replicated M times, and an adversary can only tamper
with a small fraction of these wires, and the compiled circuit will check for replicas.
This version of TTR turns out to be much simper than TTR since the is size of the
third and fourth components depends only on the security parameter, independent
of the size of Cs, which turns out to simplify matters significantly.

We defer the details of the construction of T (1)(Cs) to the full version.
We are now ready to state the main theorem of this section:

Theorem 2. T (1)(Cs) is secure against all PPT λ = 1/ poly(k)-tampering adver-
saries (as defined in Definition 1) who do not tamper with Component 1, assuming
semantic security of the underlying encryption scheme EFH .

We defer the proof of Theorem 2 to the full version.
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3.2 Overview of Construction of Component 1

We now show how to construct Component 1, instead of relying on tamer-resilient hard-
ware. Recall that our goal is to compute an encryption of 0 in a robust way so that even
after tampering the output is statistically close to a fresh encryptions of 0 (assuming
the output wires were not tampered with). Unfortunately, we don’t quite manage to do
this. Instead, we achieve a slightly weaker goal. We construct a circuit component that
computes an encryption of 0, so that even after tampering, if self destruct did not occur,
then the output of the computation is of the form ψfresh + ψrest, where ψfresh is a
fresh encryption of 0, and ψrest is a simulatable (not necessarily fresh) encryption of 0
with “good” randomness and which is independent of ψfresh. Moreover, one can effi-
ciently determine when self destruct occurred. It turns out that such a component has the
security guarantees needed in order to replace the hardware component in Sections 3.1.

Clearly, this component will be randomized, since ciphertexts are randomized. We
note that this is the first (and only) time randomization is used by the compiled circuit.
Note that the time it takes to compute a ciphertext is completely independent of the size
of the underlying circuit Cs, and depends only on the security parameter k. Moreover,
recall that we allow the adversary to tamper with at most 1/ poly(k) wires.

The basic idea is the following: repeat the following sub-computation M times:
Compute a fresh ciphertext of 0, along with a non-interactive zero-knowledge proof
that it is indeed an encryption of 0 with “good” randomness. We denote the output of
the i’th sub-computation by (ψi, πi), where ψi ← Enc(0) and πi is the corresponding
NIZK. The basic observation is that at least one of these sub-computations will not be
tampered with at all (due to the limit on the tampering budget), and hence one of these
(untampered) sub-computations can be thought of as a secure hardware component.

Next the idea would be to add all these ciphertext together, to compute the final
ciphertext ψ =

∑M
i=1 ψi. Note that if we knew that this addition computation was not

tampered with, then we would be done. But clearly we do not have such a guarantee.
Instead we will add a proof that this sum was computed correctly. However, in order
to add a proof we need to identify the underlying language (or what exactly are we
proving). Note that it is insufficient to prove that there exist ciphertextsψ′

1, . . . , ψ
′
M , and

corresponding proofs π′
1, . . . , π

′
M , such that ψ =

∑M
i=1 ψ

′
i. This is insufficient since we

will need the guarantee that at least one of these ciphetexts ψ′
i was computed without

any tampering, and thus can be thought of as a fresh encryption of 0. To enforce this, we
need to prove that these ciphertexts ψ′

1, . . . , ψ
′
M are exactly those computed previously.

To this end, we use a signature scheme, and prove that we know a bunch of signed ci-
phertexts and corresponding proofs {ψ′

i, σ
′
i, π

′
i}Mi=1 such that all the signatures are valid,

all the proofs are valid, and
∑M

i=1 ψ
′
i = ψ, where ψ is the claimed sum. More specifi-

cally, we fix an underlying signature scheme, and store in the memory of this component
a pair of keys (sksig, vksig) for this signature scheme. The M sub-computations now
each compute a triplet (ψi, σi, πi), where ψi ← Enc(0), σi is a signature of ψi, and πi

is a NIZK proof that indeed ψi is an encryption of 0 with “good” randomness. As before
the size of each computation of (ψi, σi, πi) depends only on the security parameter and
hence we can assume that at least one of these computations is not tampered with.

Once all these triplets (ψi, σi, πi) were computed, we compute ψ =
∑M

i=1 ψi to-
gether with a succinct proof-of-knowledge that we know M triplets (ψi, σi, πi) such
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that ψ =
∑M

i=1 ψi, each signature σi is a valid signature of ψi, and each proof πi is a
valid proof that ψi is an encryption of 0 with “good” randomness. We note that this part
of the computation takes as input only the outputs of the previous M subcomputations,
the verification key vksig, and the CRS. Intuitively, security seems to follow from the
security of the signature scheme: Since the adversary is not given the secret key sksig
during this computation, he cannot forge a signature on a new message, and hence must
use the M ciphertexts output by the M sub-computations.

Unfortunately, this intuition is misleading, and there is a problem with this approach
that complicates our construction. The problem is that some of the subcomputations
that supposedly output a triplet (ψi, σi, πi) can be completely corrupted, and instead
of outputting a signature σi may output the secret key sksig (or an arbitrary function
of sksig). In such a case, during the proof that ψ =

∑
ψ′
i, a tampering adversary, may

choose the ciphertext ψ′
i arbitrarily (and in particular, depending on the untampered

ciphertext) and forge a signature. We get around such an attack by using a very specific
(one-time) information-theoretically secure signature scheme.

The signature scheme we use is an information-theoretical one-time (symmetric) ver-
sion Lamport’s signature scheme, where there is no verification key (only a secret key
which is used both for verifying and computing signatures). Recall that the secret key in
Lamport’s scheme consists of 2k random strings: sksig = (x1,0, x1,1, . . . , xk,0, xk,1).
A valid encryption of a message m = (m1, . . . ,mk) is the tuple (x1,m1 , . . . , xk,mk

).
The reason we use this specific signature scheme is that it has an important feature,
described below.

In our M subcomputations we use M independent secret keys. Namely, we store M
independently generated keys (sksigi)Mi=1 in memory, where each sksigi = (xi

1,0, x
i
1,1,

. . . , xi
k,0, xi

k,1). During the i’th subcomputation, where supposedly the triplet

(ψi, σi, πi) is computed, we use only sksigi.
Our signature scheme has the following desired property: Consider a tampering ad-

versary, who may completely tamper with the wires of subcomputation i, and thus can
set σi to be an arbitrary function of the secret key sksigi. Our signature scheme has the
guarantee that this arbitrary string σi can (information-theoretically) be used to sign
at most one message, and this message is determined by σi. Thus, we have the guar-
antee that the witness {(ψ′

i, σ
′
i, π

′
i)}Mi=1 extracted from the proof-of-knowledge has the

property that if the signatures and proofs are valid and ψ =
∑

ψ′
i, then (with over-

whelming probability) the signed ciphertexts {ψ′
i} were generated independently of the

untampered ciphertext, and are all “good” encryptions of 0.
The proof system we use must be a succinct proof-of-knowledge. The reason is that

we will run the verification circuit M times, and argue that most of the verification
circuits cannot be tampered with. However, to argue this we use the fact that the size of
each verification circuit is of size poly(k), independent of the original circuit size. To
ensure that each verification circuit is indeed of size poly(k) (independent of M ) we
need to use succinctness, since the verification circuit depends on the proof length.

The actual succinct proof-of-knowledge we use is universal arguments [3], which is
an interactive version of CS-proofs. Universal arguments consist of 4 messages, which
we denote by (α, β, γ, δ). The verifier’s messages α and γ (which are random) are
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stored in the memory, and the prover’s messages (β and δ) are computed during the
computation of the circuit.

There are still some technical difficulties that remain. First, everything in mem-
ory must be stored in a tamper-resilient way, with the guarantee that if something in
memory is corrupted then self-destruct occurs. To this end, we store M copies of the
CRS and M copies of the public key of the encryption scheme. As done in previous
components, we check that all the copies are the same, and if not the component self-
destructs (i.e., the memory is overwritten with zeros). We also need to store the secret
keys sksig1, . . . , sksigM in a robust manner, but note that since there are M such keys,
simply storing M copies of each secret key is not good enough, since we allow poly(k)
fraction of the memory gates to be tampered with, and in particular all of the repetitions
of a single secret key sksigi can be tampered with. Instead, we compute the hash value
h(sksig) = h(sksig1, . . . , sksigM ), where h is a collision resistant hash function, and
we store M copies of h(sksig).

In the proof-of-knowledge, the statement is the tuple (ψ,CRS, PK, h(sksig)), and
we prove that we know a witness {ψi, σi, πi, sksig

i}i∈[M ] such that ψ =
∑M

i=1 ψi,
all the proofs πi are accepted (with respect to CRS), all the signatures σi are valid
(with respect to sksigi), and h(sksig1, . . . , sksigM ) = h(sksig). Unfortuantely, using a
symmetric (information theoretical) signature scheme, introduces a new problem: This
computation now does use the secret key, and hence a new signature may be forged
during this computation.

We solve this problem by adding another proof-of-knowledge before this proof-of-
knowledge, which ties the hands of the adversary, and causes him to “commit” to these
signatures (without knowing the secret keys). More specifically, after the initial M sub-
computations, we compute h(σ) � h(σ1, . . . , σM ) and add a universal argument that
we know (σ1, . . . , σM ) such that h(σ1, . . . , σM ) = h(σ). Note that this computation
does not use the secret keys (sksig1, . . . , sksigM ). We think of h(σ) as a commitment
to the signatures.

Then in the next proof-of-knowledge, the instance is (ψ,CRS, PK, h(sksig), h(σ)),
and we prove that we know a witness (ψi, σi, πi, sksig

i) such that ψ =
∑M

i=1 ψi, all
the proofs πi are accepted (with respect to CRS), all the signatures σi are valid (with
respect to sksigi), h(sksig1, . . . , sksigM ) = h(sksig), and h(σ1, . . . , σM ) = h(σ). We
use the fact that h is collision resistant to argue that even if the adversary uses the secret
key here to forge signatures of new messages, these new signatures cannot hash to h(σ)
assuming the adversary cannot find collisions in h.

We now present the details of the construction and security proof for Component 1.

4 Component 1:

4.1 Universal Arguments

In what follows we give the properties of the universal argument that will be useful
for us. We note that the definition below slightly differs from its original form in [3].
First, we define universal arguments for any language in NTIME(T ) (i.e., any language
computable by a non-deterministic Turing machine running in time T ), for any T :
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N → N, whereas Barak and Goldreich (following Micali [46]) define it for a universal
non-deterministic language. Second, our proof-of-knowledge property slightly differs
from the one presented in [3], but easily follows from their original formulation.

Definition 2. Let T : N → N, and let L be any language in NTIME(T ). A universal
argument for L is a 4-round argument system (P, V ) with the following properties:

1. Efficiency. There exists a polynomial p,3 such that for any instance x ∈ {0, 1}k the
time complexity of V (x) is p(k), independent of T . In particular the communication
complexity is at most p(k) as well. Moreover, if x ∈ L then for any valid witness w,
the runtime4 of P (x,w) is at most T (k) · polylog(T(k)).

2. Completeness. For every x ∈ L and for any corresponding witness w,

Pr[(P (x,w), V (x)) = 1] = 1.

3. Computational Soundness. For every polynomial size circuit family {P ∗
k } and for

every x ∈ {0, 1}k \ L,

Pr[(P ∗
k (x), V (x)) = 1] = neg(k).

4. Proof-of-Knowledge Property. There exists a a polynomial q and a probabilistic
algorithm E (an extractor) such that for every poly-size circuit family {P ∗

k } and
for every x ∈ {0, 1}k, if Pr[(P ∗

k (x), V (x)) = 1] ≥ ε then

Pr[EP∗
n (x) outputs a valid witness after running in time q(1/ε, T (k))] = 1− neg(n).

In particular, if P ∗ succeeds in proving that x ∈ {0, 1}k ∩ L with non-negligible
probability, then E can extract a corresponding witness in expected polynomial
time in T (k).

4.2 A Formal Description of Component 1

We first describe the cryptographic ingredients used by Component 1.

– A one-time symmetric signature scheme ΠSign = (SigGen, Sign,Verify), defined
as follows:

SigGen(1k): SigGen outputs a random string sksig which consists of k pairs of
random strings

(x1,0, x1,1), . . . , (xk,0, xk,1),

where each x�,b ∈R {0, 1}2k is of length 2k.

3 This polynomial is a universal polynomial that does not depend on the language L.
4 We note that this is not the complexity guarantee given in the work of [3]. However, this

complexity can be achieved by instantiating the universal argument using the recent efficient
PCP construction of [5].
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Sign(sksig,m), where |m| = k: Let m = m[1], . . . ,m[k] be the bit representation
of m. Sign outputs σ = (x1,m[1],m[1]), . . . , (xk,m[k],m[k]).

VerifySign(sksig, σ,m): VerifySign parses σ = (y1, b[1]), . . . , (yk, b[k]) and checks
that for every j ∈ [k] it holds that b[j] = m[j] and yj = xj,m[j]. If yes, it
outputs 1, and otherwise it outputs 0.

– A family of collision resistant hash functionsH = {hkey}, where hkey : {0, 1}∗ →
{0, 1}k.

– A non-interactive zero-knowledge (NIZK) proof system ΠNIZK .

– Universal arguments, which is an interactive variant of the CS proof system. Uni-
versal arguments consist of 4 messages, which we denote by (α, β, γ, δ). The mes-
sages α and γ are sent by the verifier and are uniformly random strings.

We now describe Component 1. In what follows M is a parameter chosen as in Sec-
tion 3.

Remark. For the sake of simplicity (and in an effort to focus on the new and interesting
aspects of our component), in our formal description below, we do not formally define
the notion of a ciphertext with “good” randomness. Intuitively, by “good” randomness
we mean randomness r for which the error term in the ciphertext EncPK(0; r) is not
too big, so that one can perform homomorphic operations on it (that can later be de-
crypted using the secret key). We use the fact that a random string r is “good” with
overwhelming probability.

In what follows, we use this notion of “good” randomness in a hand-wavy manner
and assume that the sum of M ciphertext with “good” randomness is a ciphertext with
“good” randomness (an assumption which of course does not hold inductively).

Memory: Encoding the Memory. Generate M secret keys sksig1, . . . , sksigM ←
SigGen(1k) for the signature scheme, and place in memory. Recall that for each i,
the key sksigi consists of k pairs of random values which we denote by (xi

1,0, x
i
1,1),

. . . , (xi
k,0, x

i
k,1). Let sksig = sksig1|| · · · ||sksigM .

In what follows, for any random variable x, we let x̃ = xM denote M concatenated
copies of x.
Compute the following encodings and place in memory:
1. Place P̃K in memory, where PK is the public-key of the underlying (homomor-

phic) encryption scheme.
2. Choose a random function hkey from the collision resistant familyH, and place

k̃ey in memory.

3. Compute h(sksig) = hkey(sksig) and place ˜h(sksig) in memory.
4. Choose a common reference string CRS for the NIZK proof system ΠNIZK

and place C̃RS in memory.
5. Choose random strings (α1, γ1) to be the random coins of the verifier in the

first universal argument, and (α2, γ2) to be the random coins of the verifier in
the second universal argument. Place α̃1, γ̃1, α̃2, γ̃2 in memory.
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In what follows, when the circuit computation accesses one of the stored values
x ∈ {PK, key,CRS, h(sksig), α1, γ1, α2, γ2}, we always assume that it is accessing
the first column of x̃.

Segment 1.

1. The first part of the computation takes randomness of length M · poly(k) as
input and performs M parallel subcomputations. We refer to each subcompu-
tation as a block and denote the M blocks by B1, . . . ,BM . For 1 ≤ i ≤ M ,
a random string ri = r1i ||r2i ∈ {0, 1}poly(k) is generated by hardware ran-
domness gates. Each block Bi receives the corresponding r1i ||r2i as input and
performs the following computation:

– On input r1i , compute ψi = EncPKFHE (0; r
1
i ). Each bit of the output

ψi[1], . . . , ψi[k] is split into 4 wires which are used later on, as specified.
– On input ψi, sksig

i, compute σi = Sign(sksigi, ψi). Each bit of the output
σi[1], . . . , σi[k] is split into 4 wires which are used later on, as specified.

– On input r1i , r
2
i ,CRS, compute a NIZK proof πi, using proof system

ΠNIZK with CRS and randomness r2i , that there exists “good” ran-
domness r1i such that EncPKFHE

(0; r1i ) = ψi. Each bit of the output
πi[1], . . . , π[poly(k)] is split into 2 wires which are used later on, as spec-
ified.

2. The next part of the computation takes as input ψ1, . . . , ψM and outputs
ψrand =

∑M
i=1 ψi. Each of the k output wires corresponding to the bits of

ψrand = ψrand[1], . . . , ψrand[k] will be split into M+2 wires, which are used
later on, as specified.

3. This part of the computation takes as input σ1, . . . , σM and key, and computes
h(σ) = hkey(σ1, . . . , σM ). Each of the k output wires corresponding to the bits
of h(σ) = h(σ)[1], . . . , h(σ)[k] is split into 2M + 4 wires which are used later
on, as specified.

4. This part of the circuit computes a universal argument that proves knowl-
edge of signatures σ1, . . . , σM that hash to h(σ). More specifically, this
part of the computation takes as input a witness σ1, . . . , σM and the tuple
(key, h(σ), α1, γ1), and does the following:

– Take α1 to be the verifier’s first message. Compute the second message β1

of the universal argument for the following language:

L1 = {(h(σ), key) | ∃σ′
1, . . . , σ

′
M : hkey(σ

′
1, . . . , σ

′
M ) = h(σ)}.

Each bit of the output β1 = β1[1], . . . , β1[k] is split into M wires which
are used later on, as specified. This part of the computation also outputs a
state STATE1 which is passed to the next part of the computation, below.

– The next part of the computation takes as input STATE1 and γ1, where γ1
is the third message of the verifier. Compute the fourth message δ1 for
the language L1 and statement (h(σ), key). Each bit of the output δ1 =
δ1[1], . . . , δ1[poly(k)] is split into M wires which are used later on, as
specified.
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5. This part of the circuit computes a universal argument that ψrand was computed
“correctly”. More specifically, this part of the computation takes as input a
witness

((ψ1, σ1, π1, sksig1), . . . , (ψM , σM , πM , sksigM ))

and the tuple (ψrand, key, h(σ), h(sksig),CRS, α2, γ2) and does the following:
– Take α2 to be the verifier’s first message and compute the second message

β2 of the universal argument for the following language:

L2={ψrand, h(σ), key,CRS |∃(ψ′
1, σ

′
1, sksig

′
1, π

′
1), . . . , (ψ

′
M , σ′

M , sksig′M , π′
M ) :

M∑
i=1

ψ′
i = ψrand;

∧ hkey(σ
′
1, . . . , σ

′
M ) = h(σ);

∧ for 1 ≤ i ≤ M,VerifySign(sksig
′
i, ψ

′
i, σ

′
i) = 1

∧ for 1 ≤ i ≤ M,VerifyΠ(CRS, ψ′
i, π

′
i) = 1

∧ hkey(sksig
′
1, . . . , sksig

′
M ) = h(sksig)}

Each bit of the output β2 = β2[1], . . . , β2[k] is split into M wires which
are used later on, as specified. This part of the computation also outputs a
state STATE2 which is passed to the next part of the computation, below.

– The next part of the computation takes γ2 to be the third message of the
verifier, and uses STATE2 to compute the fourth message δ2 for the lan-
guage L2 and statement (ψrand, h(σ), key,CRS). Each bit of the output
δ2 = δ2[1], . . . , δ2[poly(k)] is split into M wires which are used later on,
as specified.

Segment 2: Universal Argument Verification. This part consists of two sub-
computations:

Verification of the Computation of h(σ). This part consists of M copies of the
verifier circuit for the universal argument for language L1 which takes as input
the statement (h(σ), key), first message α1, second message β1 third message
γ1, and fourth message δ1. We denote the i-th verifier circuit for 1 ≤ i ≤ M
by Verify1i and its output by λ1

i .

Verification of the Computation of ψrand. This part consists of M copies of the
verifier circuit for the universal argument for language L2 which takes as input
the statement (ψrand, h(σ), key,CRS), first message α2, second message β2

third message γ2, and fourth message δ2. We denote the i-th verifier circuit for
1 ≤ i ≤M by Verify2i and its output by λ2

i .

All these 2M output wires are inputs to the AND gate Gcas. This gate has 7k ·M
additional input wires that belong to Segment 3 below. The gate Gcas has K ′′+k·M
output wires, where K ′′ is the size of the entire memory of of the circuit (of all
components). We denote the values on these wires by {μi}i∈[K′′+k·M ]. The first
K ′′ output wires (with values {μi}i∈[K′′]) belong to Segment 3, and the other k ·M
output wires belong to Segment 4.
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Segment 3: Error Cascade. This part is split into two subcomputations. The first
subcomputation checks that all of the encodings x̃ that were placed in memory are
uncorrupted. The second part propagates errors and overwrites memory.

– A circuit C k̃ey
codei,j

of constant size σcode for 1 ≤ i ≤M , 1 ≤ j ≤ k:

Input: k̃ey.
Output:

ω1
i,j =�(k̃ey(1, j)⊕ k̃ey(i, j))

Similar subcircuits are constructed for the remaining encodings P̃K, ˜h(sksig),

C̃RS, α̃1, γ̃1, α̃2, γ̃2 with corresponding output wires [ω2
i,j ]i∈[M ],j∈[k],

[ω3
i,j ]i∈[M ],j∈[k], [ω4

i,j ]i∈[M ],j∈[k], [ω5
i,j ]i∈[M ],j∈[k], [ω6

i,j ]i∈[M ],j∈[k],
[ω7

i,j ]i∈[M ],j∈[k], [ω8
i,j ]i∈[M ],j∈[k].

All these output wires are inputs to Gcas. Thus, in total, Gcas has 8kM + 2M
input wires (M from Segment 1, M from Segment 2 and 8k ·M from Seg-
ment 3), and outputs:⎛⎝ ∧

i∈[M ]

λ1
i

⎞⎠ ∧
⎛⎝ ∧

i∈[M ]

λ2
i

⎞⎠ ∧
⎛⎝ ∧

i∈[M ],j∈[k],�∈[7]

ψ�
i,j

⎞⎠
– The first K ′′ output wires of Gcas are fed to all the memory gates. If the output

of Gcas is 0, then the memory gates are set to 0. Otherwise, the memory gates
remain unchanged.

Segment 4: The Output of Component 1. This segment has k AND gates Gout,1, . . . ,
Gout,k, each with fan-in M +1. This segment contains all the k ·M +k input wires
to Gout,1, . . . , Gout,k: The first M input wires to each gate Gout,j come from the

output wires of Gcas (with values {μi}K
′′+j·M

i=K′′+(j−1)·M+1), and the other input wire
of Gout,j is the j-th output wire of the Circuit Computation in Segment 1, which
computes the encryption ψrand. Each AND gate Gout,j has fan-out M , where the
M output wires of Gout,j are set to:

ψ∗
rand[j] = ψrand[j] ∧

⎛⎝ ∧
K′+(j−1)·M+1≤i≤K′+j·M

μi

⎞⎠ .

The final output of Component 1 is denoted by ψ∗
rand.

Remark. We note that the size of Component 1 is of order M · poly(k) · polylog(M ·
poly(k)), which can be written as M ·poly(k) (since M is poly-sized and so polylog(M)
is smaller than k), due to the fact that we use the recent efficient PCP construction of
Ben-Sasson et al. [5] to construct our universal arguments. We note that this implies that
a 1/ poly(k)-tampering adversary cannot tamper with each of the M subcomputations
at the beginning of Component 1. An important assumption throughout the analysis will
be that at least one of the M subcomputations is untampered.
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Notation. In the following theorem, for any λ-tampering adversary A (as defined in
Definition 1), we denote by t the maximum number of times A runs the tampered cir-
cuit. For each run i ∈ [t], we denote by ψrand,i the ciphertext in the statement of the sec-
ond universal argument. For each run i ∈ [t], we denote by ψfresh,i the ciphertext out-
putted by the untampered subcomputation, and denote by ψrest,i = ψrand,i−ψfresh,i.

We denote by

(i∗, (ψfresh,1, ψrest,1), . . . , (ψfresh,i∗−1, ψrest,i∗−1), ψfresh,i∗)← REALA,

where i∗ is the first round where self destruct occurs in the executions with the tam-
pering instructions of A. If self destruct does not occur (i.e. i∗ = t + 1) then set
ψfresh,i∗ = ⊥.

Theorem 3. Assume the soundness of the underlying universal argument, the security
(existential security against adaptive chosen message attacks) of the underlying signa-
ture scheme ΠSign , the semantic security of the underlying encryption scheme EFH ,
the security of the underlying collision resistant hash family H, and the soundness and
security of the underlying NIZK proof system ΠNIZK . Let λ = 1/ poly(k).

Then for any PPT λ-tampering adversary A there exists a simulator S = (S1, S2)
running in expected polynomial time, such that

(i′, ψ′
rest,1, . . . , ψ

′
rest,i′−1, ψ

′
fresh, STATE)← S1(1

M , PK),

and for (ψfresh,1, . . . , ψfresh,t)← EncPK(0) fresh encryptions of 0,

j′ ← S2(1
M , PK, STATE, ψfresh,1, . . . , ψfresh,t),

such that

1. ψ′
rest,1, . . . , ψ

′
rest,i′−1 are (simulatable) encryptions of 0with “good” randomness.

2. j′ ≤ i′.
3. REALA ≡ (j′, (ψfresh,1, ψ

′
rest,1), . . . , (ψfresh,i′′−1, ψ

′
rest,j′−1), ψ̃fresh),

where ψ̃fresh = ψfresh,j′ for j′ < i′, and ψ̃fresh = ψ′
fresh for j′ = i′ ≤ t, and

ψ̃fresh = ⊥ for j′ = i′ = t+ 1.

We defer the proof of Theorem 3 to the full version.

5 The Final Construction

Let T (2)(Cs) be our original compiled circuit T (1)(Cs), described in Sections 3.1,
where Component 1 of T (1)(Cs), which was implemented by tamper-resilient hard-
ware, is replaced with the Component 1 described in Sections 3.2 and 4.

We are now ready to state our main theorem.

Theorem 4. Assume the soundness of the underlying universal argument, the security
(existential security against adaptive chosen message attacks) of the underlying signa-
ture scheme ΠSign , the semantic security of the underlying encryption scheme EFH ,
the security of the underlying collision resistant hash family H, and the soundness and
security of the underlying NIZK proof system ΠNIZK . Let λ = 1/ poly(k).

Then T (2)(Cs) is secure against ppt λ-tampering adversaries (as defined in Defini-
tion 1). Note that the adversary may tamper with all components, including Compo-
nent 1.
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Overview of Proof of Theorem 4. First, we consider a Component 1 which provides
weaker guarantees than the idealized hardware component described in Section 3.1. We
call this hardware component WeakComp1. Next, we show that with small modifica-
tions, we can reprove Theorem 2 when the idealized hardware component is replaced
with the hardware component WeakComp1. Finally, we use Theorem 3 to show that
the construction of Component 1 given in Sections 3.2 and 4 is an implementation of
WeakComp1, which is secure against λ-tampering adversaries.

The WeakComp1 Hardware Component. We assume the existence of a hardware
componentWeakComp1, which computes ciphertextsψfresh, ψrest and outputs M copies
of ψrand = ψrest ⊕ ψfresh, where ψrest is an arbitrary “good” encryption of 0 and ψfresh

is a randomly generated encryption of 0 independent of ψrest.

Plugging in WeakComp1. We state the following lemma, which uses the component
WeakComp1 defined above in order to obtain a fully tamper-resilient circuit. We defer
the proof to the full version.

Lemma 1. Replace Component 1 of T (1)(Cs) with WeakComp1 described above,
yielding T̃ (1)(Cs). Then T̃ (1)(Cs) is secure against ppt λ = 1/ poly(k)-tampering ad-
versaries (as defined in Definition 1), that do not tamper with WeakComp1, assuming
semantic security of the underlying encryption scheme EFH .

Putting It All Together. We now argue that our construction remains secure when we
replace WeakComp1 in T̃ (1)(Cs) with Component 1 described in Section 4 to yield
T (2)(Cs).

Fix any ppt λ-tampering adversary A. Now, consider the adversaries A1, which is
the adversaryA, restricted to tampering with and running only the first component (note
that we simulate the final output of the circuit—assuming self-destruct does not occur—
forA1 in order to obtain the correct tampering function in each run). By Theorem 3, we
have that there exists a simulator S = (S1, S2) for A1 running in expected polynomial
time, such that on input (1M , PK), S1 outputs (i′, ψ′

rest,1, . . . , ψ
′
rest,i′−1, ψ

′
fresh, STATE)

and on input (1M , PK, STATE, ψfresh,1, . . . , ψfresh,t), where ψfresh,1, . . . , ψfresh,t are
fresh encryptions of 0, S2 outputs j′, where j′ is the index of the first run of Compo-
nent 1, where some wire to G1

cas is set to 0. Note that by combining the inputs and
outputs of S1, S2 we obtain ψrand,1 = ψfresh,1 + ψrest,1, . . . , ψrand,j′−1 = ψfresh,j′−1 +
ψrest,j′−1. Let this sequence of ciphertexts define the input-output behavior of the hard-
ware component WeakComp1.

Now, note that by the security properties of Component 1 (See Theorem 3 in Sec-
tion 4), we are guaranteed that the following two distributions are statistically close:
REALA ≡ (j′, (ψfresh,1, ψ

′
rest,1), . . . , (ψfresh,j′−1, ψ

′
rest,j′−1), ψ̃fresh) (where,

loosely speaking, a draw from REALA corresponds to a setting of the above random
variables in a real execution).

To simulate the view of A, we distinguish between two cases: Simulating runs of
the circuit when i < j′ and simulating runs of the circuit when i ≥ j′. Consider
the adversaries A2,3,4, which is the adversary A, restricted to tampering with only the
second, third, and fourth component and interacts with T̃ (1)(Cs). As noted above, for
runs i < j′, the input-output behavior of T (2)(Cs) in the presence of A is identical to
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the input-output behavior of T̃ (1)(Cs) in the presence of A2,3,4, where WeakComp1 is
defined as above. Therefore, by the security of T̃ (1)(Cs) (see Lemma 1) we have that
there exists a simulator Sim for runs i < j′ that simulates the view of A.

Finally, for runs i ≥ j′, we have that “self-destruct” already occurred and so we can
perfectly simulate the view of A as follows: Return 0 unlessA tampers with the output
wire, in which case the circuit returns b if the tamper is “set to b”, and returns 1 if the
tamper is “toggle”. This concludes the proof of Theorem 4.

6 Extension to Tamper-Resilient Two Party Computation

In this section, we consider a two-party computation setting, where in addition to cor-
rupting parties, an adversary may tamper with the circuits of the honest parties and the
messages sent by the honest parties. As usual, we restrict the adversary to tampering
with a λ = 1/ poly(k)-fraction of wires, memory gates, and message bits overall.

Our security definition follows the standard ideal/real paradigm, which requires that
the view of the (real world) adversary, who may tamper with λ-fraction of wires, mem-
ory gates and message bits, can be simulated by a simulator in the ideal world without
tampering. We emphasize that the ideal world we consider is the “standard” ideal world,
whereas in the real world we allow the adversary tampering power.

We note that we allow both parties a tamper-free input-dependent preprocessing
phase, which does not require interaction and can be done individually, offline by each
party. This phase allows the parties to prepare their tamper-resilient circuits and place
their private inputs in memory, while no tampering occurs.

Our approach is quite simple. We begin with any two-party computation (2-PC) pro-
tocol secure against malicious corruptions, where the communication complexity de-
pends only on security parameter, k, and not on the size of the circuit computing the
functionality. Such a 2-PC protocol can be constructed from any fully homomorphic
encryption scheme and succinct argument system (such as universal arguments [46,3]).

For each party Pb, b ∈ {0, 1} and each round i of the protocol, we consider the circuit
Nextixb,rb

, which has the (secret) values xb and rb hardwired into it (corresponding to
the input and the random coins of Party Pb). It takes as input the current transcript
TRANS and it outputs the next message for party Pb. We run (a slight modification
of) our tampering compiler T (2)(Nextixb,rb

) on each such circuit to obtain a circuit
which outputs the poly(k)-bit next message for party Pb at round i. By the security
guarantees of T (2) (see Theorem 4), the compiled circuit T (2)(Nextixb,rb

) is resilient to
1/ poly(k)-fraction of tampering. Since the total number of such circuits is poly(k),
we are ultimately resilient to a λ = 1/ poly(k)-fraction of tampering.

This idea does not quite work, since the adversary may tamper with the messages
sent between the two parties, which may render the resulting protocol insecure. To
get around this, we add signatures to our protocol. Namely, we assume each player is
associated with a verification key. This key can be transmitted via an error-correcting
code in the beginning of the protocol, and we require that the length of this key be a
large enough poly(k) so that an adversary cannot cause this message to decode to a
different key (using his tampering budget). Each time a player sends a message, he will
sign his message together with the entire transcript so far. Intuitively, each party must
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sign the entire transcript to protect against a tampering adversary who gets signatures
σ1, . . . , σz on z protocol messages m1, . . . ,mz , and then forwards a transcript to an
honest party which is a permutation of the z messages m1, . . . ,mz .

6.1 Overview of The Model: Tamper-Resilient 2-PC

We consider the setting where two parties P0, with input x0, and P1, with input x1

interact to compute a functionality f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where
f = (f0, f1). P0 wishes to obtain f0(x0, x1) and P1 wishes to obtain f1(x0, x1). In
what follows, for the sake of simplicity of notation we assume that f0 = f1 = f ,
though our results extend trivially to the case where f0 and f1 differ.

Our security definition follows the ideal/real paradigm. We emphasize that our ideal
model is identical to the standard ideal model, while our real model is stronger that the
standard ideal model since we consider adversaries A who may corrupt one or more
parties P0, P1 and may also behave as a λ-tampering adversary on the honest parties’
circuits (which the honest party may prepare via input-dependent pre-processing).

The random variable IDEALf,Sim(x0, x1) is defined as the output of both parties in
the ideal execution computing functionality f (where Sim controls the malicious party
and chooses its output). If both parties are honest, then IDEALf,Sim(x0, x1) is defined
as the output of both parties in the above ideal execution along with the output of Sim.

The random variable REALΠTAMP,A(x0, x1) is defined as the output of both parties
after running ΠTAMP with inputs (x0, x1), where the honest party outputs the output of
the protocol, and the malicious party controlled by A may output an arbitrary function
of its view. If both parties are honest then REALΠTAMP,A(x0, x1) is defined as the output
of both honest parties, together with the output ofA, which may be an arbitrary function
of its view (i.e., of the transcript).

Definition 3. (secure tamper-resilient two-party computation): Let f and ΠTAMP be as
above. Protocol ΠTAMP is said to securely compute f (in the malicious model and in the
presence of a λ-tampering adversary) if for every probabilistic polynomial-time real-
world adversaryA, who may corrupt one of the parties (or both), and may also behave
as a λ-tampering adversary on the honest parties’ circuits, there exists an expected
polynomial-time simulator Sim in the ideal-world, such that

{IDEALf,Sim(x0, x1)}
c≈ {REALΠTAMP,A(x0, x1)} .

6.2 Achieving Tamper-Resilient 2-PC

Fix any two-party functionality f . We assume the existence of a secure (against active
corruptions) two-party protocol ΠMPC(f) for computing f , where the total communi-
cation complexity is �(k), where k is security parameter, and �(·) is a fixed polyno-
mial, independent of the size of the circuit which computes the functionality f . It is
well-known that such a two-party protocol can be constructed from fully homomorphic
encryption and CS-proofs.
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Protocol ΠTAMP for computing functionality f

Public and Private keys: Party Pb generates a pair of verification and signing keys
(vksigb, sksigb)← SigGen(1k). It publishes the verification key vksigb, while keep-
ing private the corresponding signing key sksigb.

Inputs: Party Pb has an input xb and a random tape rb.

Preprocessing for Party Pb: Construct r + 1 tamper-resilient subcircuits:

T (2)(Nextb,1STATE), . . . , T
(2)(Nextb,rSTATE), T

(2)(OutbSTATE),

where STATE = (xb, rb, vksig0, vksig1, sksigb). We emphasize that the compiler is
run independently r + 1 times, each time with fresh randomness.
For each i ∈ [r], the circuit Next0,iSTATE , is defined as follows (Next1,iSTATE is defined
analogously):

It takes as input a partial transcript TRANSi−1, and does the following:
1. Parse TRANSi−1 as 2(i − 1) signed messages. Consider the last two mes-

sages denoted by (m0,i−1, σ0,i−1) and (m1,i−1, σ1,i−1). Let MSGi−2 =
(mb,j)b∈{0,1},j∈[i−2] be the first i− 2 pairs of messages sent in TRANSi−1.
Check that σ0,i−1 is a valid signature of (MSGi−2,m0,i−1) w.r.t. veri-
fication key vksig0, and that σ1,i−1 is a valid signature of MSGi−1 =
(MSGi−2,m0,i−1,m1,i−1) w.r.t. verification key vksig1. If either fails, send
⊥ to P1 and abort.

2. Otherwise, run the next message function of protocol Π with partial transcript
MSGi−1, to obtain the next message m0,i.

3. Compute σ0,i, a signature of (MSGi−1,m0,i) w.r.t. secret key sksig0.
4. Output the partial (signed) transcript (TRANSi−1,m0,i, σ0,i).

The circuit Out0STATE takes as input a transcript TRANSr, and does the following
(Out1STATE is defined analogously):
1. Parse TRANSr as 2r signed messages. Check the validity and consistency of

the last two signatures If either fails output⊥.
2. Let MSGr denote the 2r messages in TRANSr.
3. Compute the output y0 of protocol Π , assuming the messages exchanged in Π

were MSGr.
4. Output y0.

Protocol Execution:
At round i ∈ [r], party P0, upon receiving a message TRANSi−1, runs
T (2)(Next0,iSTATE) on input TRANSi−1, and sends the output (which is of the form
(TRANSi−1,m0,i, σ0,i)) to P1.
Analogously, party P1, upon receiving a message (TRANSi−1,m0,i, σ0,i) from P0,
runs T (2)(Next1,iSTATE) on input (TRANSi−1,m0,i, σ0,i), and sends the output to P0.

Output:
1. Upon receiving the last message of the protocol, each party Pb runs

T (2)(OutbSTATE) on this last message to compute the output yb.
2. Output yb.

Fig. 1. Tamper-resilient, secure two-party computation protocol of functionality f
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To simplify our exposition, we construct our protocol in the public key model. Here,
each party P0, P1 publishes a verification key vksig0, vksig1 for a digital signature
scheme ΠSign = (SigGen, Sign,Verify), while storing the corresponding secret key
sksig0, sksig1. We note that such a protocol in the public key model can easily be con-
verted to a protocol in the standard model. We defer the details to the full version.

Let r denote the number of rounds in the two-party protocol ΠMPC described above.
For i ∈ [r] let Next0,iSTATE denote the circuit that has the secret state STATE = (x0, r0,
vksig0, vksig1, sksig0) hardwired into it, where x0 and r0 are the input and randomness
of party P0, (vksig0, sksig0) are the verification and signing keys of P0, and vksig1 and
the verification key of P1. The circuit Next0,iSTATE computes the next message function of
party P0 in the i’th round of the resulting tamper-resilient protocol.

The tamper-resilient protocol emulates ΠMPC. Each message of the tamper-resilient
protocol consists of all the messages sent so far in ΠMPC, along with signatures. More
formally, Next0,iSTATE takes as input a message TRANSi−1, which consists of all the i− 1
pairs of messages sent in ΠMPC during the first i − 1 rounds, where each message is
accompanied by a signature of the entire transcript thus far. The circuit Next0,iSTATE , on
input TRANSi−1, does the following (the circuits Next1,iSTATE are defined analogously):

1. Parse TRANSi−1, as 2(i − 1) message-signature pairs (mb,j , σb,j)b∈{0,1},j∈[i−1].
Check that σ1,i−1 is a valid signature of the messageMSGi−1 = (m0,j ,m1,j)j∈[i−1]

w.r.t. vksig1, and check that σ0,i−1 is a valid signature for (MSGi−2,m0,i−1),
where MSGi−2 = (m0,j ,m1,j)j∈[i−2]. If either does not verify, output 0.

2. Otherwise, compute the next message m0,i of party P0 in protocol ΠMPC given
transcript MSGi−1, randomness r0 and input x0.

3. Compute a signature σ0,i corresponding to the message (MSGi−1,m0,i).
4. Output (TRANSi−1,m0,i, σ0,i)

The tamper-resilient protocol ΠTAMP is depicted in Figure 1.

Theorem 5. For every two-party functionality f , ΠTAMP securely computes f in the
malicious model and in the presence of a 1/ poly(k)-tampering adversary, where k is
the security parameter, and poly is a fixed polynomial independent of the size of the
circuit computing the functionality f .

We defer the proof of Theorem 5 to the full version.
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Abstract. Consider a joint distribution (X,A) on a set X ×{0, 1}�. We
show that for any family F of distinguishers f : X × {0, 1}� → {0, 1},
there exists a simulator h : X → {0, 1}� such that
1. no function in F can distinguish (X,A) from (X,h(X)) with advan-

tage ε,
2. h is only O(23�ε−2) times less efficient than the functions in F .

For the most interesting settings of the parameters (in particular, the
cryptographic case where X has superlogarithmic min-entropy, ε > 0 is
negligible and F consists of circuits of polynomial size), we can make the
simulator h deterministic.

As an illustrative application of our theorem, we give a new secu-
rity proof for the leakage-resilient stream-cipher from Eurocrypt’09. Our
proof is simpler and quantitatively much better than the original proof
using the dense model theorem, giving meaningful security guarantees if
instantiated with a standard blockcipher like AES.

Subsequent to this work, Chung, Lui and Pass gave an interactive
variant of our main theorem, and used it to investigate weak notions of
Zero-Knowledge. Vadhan and Zheng give a more constructive version of
our theorem using their new uniform min-max theorem.

1 Introduction

Let X be a set and let � > 0 be an integer. We show that for any joint distribution
(X,A) over X × {0, 1}� (where we think of A as a short �-bit auxiliary input to
X), any family F of functions X ×{0, 1}� → {0, 1} (thought of as distinguishers)
and any ε > 0, there exists an efficient simulator h : X → {0, 1}� for the auxiliary
input that fools every distinguisher in F , i.e.,

∀f ∈ F : |E[f(X,A)]− E[f(X,h(X))]| < ε.

Here, “efficient” means that the simulator h is Õ(23�ε−2) times more complex
than the functions from F (we will formally define “more complex” in Defini-
tion 6). Without loss of generality, we can model the joint distribution (X,A) as
(X, g(X)), where g is some arbitrarily complex and possibly probabilistic func-
tion (where P[g(x) = a] = P[A = a|X = x] for all (x, a) ∈ X × {0, 1}�). Let us
stress that, as g can be arbitrarily complex, one cannot hope to get an efficient
simulator h where (X, g(X)) and (X,h(X)) are statistically close. Yet, one can
still fool all functions in F in the sense that no function from F can distinguish
the distribution (X,A) from (X, g(X)).

� Supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013) / ERC Starting Grant (259668-PSPC).

Y. Lindell (Ed.): TCC 2014, LNCS 8349, pp. 566–590, 2014.
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Relation to [25]. Trevisan, Tulsiani and Vadhan [25, Thm. 3.1] prove a concep-
tually similar result, stating that if Z is a set then for any distribution Z over
Z, any family F̃ of functions Z → [0, 1] and any function g̃ : Z → [0, 1], there

exists a simulator h̃ : Z → [0, 1] whose complexity is only O(ε−2) times larger

than the complexity of the functions from F̃ such that

∀f̃ ∈ F̃ : |E[f̃(Z)g̃(Z)]− E[f̃(Z)h̃(Z)]| < ε. (1)

In [25], this result is used to prove that every high-entropy distribution is in-
distinguishable from an efficiently samplable distribution of the same entropy.
Moreover, it is shown that many fundamental results including the Dense Model
Theorem [23,14,21,10,24], Impagliazzo’s hardcore lemma [18] and a version of
Szémeredi’s Regularity Lemma [11] follow from this theorem. The main differ-
ence between (1) and our statement

∀f ∈ F : |E[f(X, g(X))]− E[f(X,h(X))]| < ε (2)

is that our distinguisher f sees not only X , but also the real or fake auxiliary
input g(X) or h(X), whereas in (1), the distinguisher f̃ only seesX . In particular,
the notion of indistinguishability we achieve captures indistinguishability in the
standard cryptographic sense. On the other hand, (1) is more general in the

sense that the range of f̃ , g̃, h̃ can be any real number in [0, 1], whereas our f
has range {0, 1} and g, h have range {0, 1}�.

Nonetheless, it is easy to derive (1) from (2): consider the case of � = 1 bit of
auxiliary input, and only allow families F of distinguishers where each f ∈ F is
of the form f(X, b) = f̂(X)b for some function f̂ : X → [0, 1]. For this restricted
class, the absolute value in (2) becomes

|E[f(X, g(X))]− E[f(X,h(X))| = |E[f̂(X)g(X)]− E[f̂(X)h(X)]| (3)

As f̂ is arbitrary, this restricted class almost captures the distinguishers consid-
ered in (1). The only difference is that the function g̃ has range [0, 1] whereas our
g has range {0, 1}. Yet, note that in (1), we can replace g̃ having range [0, 1] by
a (probabilistic) g with range {0, 1} defined as P[g(x) = 1] = g̃(x), thus, leaving

the expectation E[f̃(X)g̃(X)] = E[f̃(X)g(X)] unchanged.1

In [25], two different proofs for (1) are given. The first proof uses duality of
linear programming in the form of the min-max theorem for two-player zero-sum
games. This proof yields a simulator of complexity O(ε−4 log2(1/ε)) times the
complexity of the functions in F . The second elegant proof uses boosting and
gives a quantitatively much better O(ε−2) complexity.

1 The simulator h̃ from [25] satisfies the additional property |E[h̃(X)]−E[g̃(X)]| = 0.
If this property is needed, we can get it by requiring that the function f(X, b) = b is
in F . Then (2) for this f implies |E[g(X)]− E[h(X)]| < ε. One can make this term
exactly zero by slightly biasing h towards 0 if E[h(X)] > E[g(X)] or 1 otherwise,
slightly increasing the advantage from ε to at most 2ε.
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Proof outline. As it was just explained, (1) follows from (2). We do not know
if one can directly prove an implication in the other direction, so we prove (2)
from scratch. Similarly to [25], the core of our proof uses boosting with the same
energy function as the one used in [25].

As a first step, we transform the statement (2) into a “product form” like (1)
where Z = X × {0, 1}� (this results in a loss of a factor of 2� in the advantage

ε; in addition, our distinguishers f̂ will have range [−1, 1] instead of [0, 1]). We

then prove that (1) holds for some simulator h̃ : Z → [0, 1] of complexity ε−2

relative to F . Unfortunately, we cannot use the result from [25] in a black-box

way at this point as we need the simulator h̃ : Z → [0, 1] to define a probability

distribution in the sense that h̃(x, b) ≥ 0 for all (x, b) and
∑

b∈{0,1}�

h̃(x, b) = 1 for

all x. Ensuring these conditions is the most delicate part of the proof. Finally,
we show that the simulator h defined via P[h(x) = b] = h̃(x, b) satisfies (2). Note

that for h to be well defined, we need h̃ to specify a probability distribution as
outlined above.

Efficiency of h. Our simulator h is efficient in the sense that it is only O(23�ε−2)
times more complex than the functions in F . We do not know how tight this
bounds is, but one can prove a lower bound of max{2�, ε−1} under plausible
assumptions. The dependency on 2� is necessary under exponential hardness
assumptions for one-way functions.2 A dependency on ε−1 is also necessary.
Indeed, Trevisan et al. [25, Rem. 1.6] show that such a dependency is necessary

for the simulator h̃ in (1). Since (1) is implied by (2) with h and h̃ having exactly
the same complexity, the ε−1 lower bound also applies to our h.

1.1 Subsequent Work

The original motivation for this work was to give simpler and quantitatively
better proofs for leakage-resilient cryptosystems as we will discuss in Section 4.
Our main theorem has subsequently been derived via two different routes.

First, Chung, Lui and Pass [4] investigate weak notions of zero-knowledge. On
route, they derive an “interactive” version of our main theorem. In Section 4,
we will show how to establish one of their results (with better quantitative
bounds), showing that every interactive proof system satisfies a weak notion of
zero-knowledge.

Second, Vadhan and Zheng [26, Thm.3.1-3.2] recently proved a version of von
Neumann’s min-max theorem for two-player zero sum games that does not only
guarantee existence of an optimal strategy for the second player, but also con-
structs a nearly optimal strategy assuming knowledge of several best responses of
the second player to strategies of the first player, and provide many applications
of this theorem. Their argument is based on relative entropy KL projections

2 More precisely, assume there exists a one-way function where inverting becomes 2�

times easier given � bits of leakage. It is e.g. believed that the AES block-cipher gives
such a function as (K,X) → (AES(K,X), X).
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and a learning technique known as weight updates and resembles the the proof
of the Uniform Hardcore Lemma by Barak, Hardt and Kale [2] (see also [16]
for the original application of this method). They derive our main theorem [26,
Thm.6.8], but with incomparable bounds. Concretely, to fool circuits of size t,
their simulator runs in time Õ(t ·2�/ε2+2�/ε4) compared to ours whose run-time
is Õ(t · 23�/ε2). In particular, their bounds are better whenever 1/ε2 ≤ t · 22�.
The additive 2�/ε4 term in their running time appears due to the sophisticated
iterative“weight update” procedure, whereas our simulator simply consists of a
weighted sum of the evaluation of Õ(23�/ε2) circuits from the family we want to
fool (here, circuits of size t).

1.2 More Applications

Apart from reproving one of [4]’s results on weak zero-knowledge mentioned
above, we give two more applications of our main theorem in Section 4:

Chain Rules for Computational Entropy. Gentry and Wichs [13] show that
black-box reductions cannot be used to prove the security of any succinct non-
interactive argument from any falsifiable cryptographic assumption. A key tech-
nical lemma used in their proof ([13, Lem. 3.1]) states that if two distributions X

and X̃ over X are computationally indistinguishable, then for any joint distribu-
tion (X,A) over X ×{0, 1}� (here, A is a short �-bit auxiliary input) there exists

a joint distribution (X̃, Ã) such that (X,A) and (X̃, Ã) are computationally in-
distinguishable. Our theorem immediately implies the stronger statement that
not only such an (X̃, Ã) exists, but in fact, it is efficiently samplable, i.e., there

exists an efficient simulator h : X → {0, 1}� such that (X̃, h(X̃)) is indistinguish-

able from (X̃, Ã) and thus from (X,A). Reyzin [22, Thm.2] observed that the
result of Gentry and Wichs implies a chain rule for conditional “relaxed” HILL
entropy. We give a short and simple proof of this chain rule in Proposition 2 of
this paper. We then show in Corollary 1 how to deduce a chain rule for (regular)
HILL entropy from Proposition 2 using the simple fact (Lemma 1) that short
(i.e., logarithmic in the size of the distinguishers) computationally indistinguish-
able random variables must already be statistically close. Chain rules for HILL
entropy have found several applications in cryptography [10,21,7,12]. The chain
rule that we get in Corollary 1 is the first one that does not suffer from a sig-
nificant loss in the distinguishing advantage (we only lose a constant factor of
4). Unlike the case of relaxed HILL-entropy, here we only prove a chain rule for
the ”non-conditional” case, which is a necessary restriction given a recent coun-
terexample to the (conditional) HILL chain rule by Krenn et al. [19]. We will
provide more details on this negative result after the statement of Corallary 1.

Leakage Resilient Cryptography. The original motivation for this work is to sim-
plify the security proofs of leakage-resilient [10,20,7] and other cryptosystems [12]
whose security proofs rely on chain rules for computational entropy (as discussed
in the previous paragraph). The main idea is to replace the chain rules with
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simulation-based arguments. In a nutshell, instead of arguing that a variable
X must have high (pseudo)entropy in the presence of a short leakage A, one
could simply use the fact that the leakage can be efficiently simulated. This not
only implies that X has high (pseudo)entropy given the fake leakage h(X), but
if X is pseudorandom, it also implies that (X,h(X)) is indistinguishable from
(U, h(U)) for a uniform random variable U on the same set as X . In the security
proofs, we would now replace (X,h(X)) with (U, h(U)) and will continue with
a uniformly random intermediate variable U . In contrast, the approach based
on chain rules only tells us that we can replace X with some random variable
Y that has high min-entropy given A. This is not only much complex to work
with, but it often gives weaker quantitative bounds. In particular, in Section 4.3
we revisit the security proof of the leakage-resilient stream-cipher from [20] for
which we can now give a conceptually simpler and quantitatively better security
proof.

2 Notation and Basic Definitions

2.1 Notation

We use calligraphic letters such as X to denote sets, the corresponding capital
letters X to denote random variables on these sets (equivalently, probability
distributions) and lower-case letters (e.g., x) for values of the corresponding
random variables. Moreover, x ← X means that x is sampled according to the
distribution X and x ← X means that x is sampled uniformly at random from
X . Let Un denote the random variable with uniform distribution on {0, 1}n.
We denote by Δ(X ;Y ) =

1

2

∑
x∈X

|P[X = x] − P[Y = x]| the statistical distance

between X and Y . For ε > 0, s ∈ N, we use X ∼ Y to denote that X and Y
have the same distribution, X ∼ε Y to denote that their statistical distance is
less than ε and X ∼ε,s Y to denote that no circuit of size s can distinguish X
from Y with advantage greater than ε. Note that X ∼ε,∞ Y ⇐⇒ X ∼ε Y and
X ∼0 Y ⇐⇒ X ∼ Y .

Finally, if h : X → {0, 1}� is a probabilistic (randomized) function then we
will use [h] to denote the random coins used by h (a notation that will be used
in various probabilities and expectations).

2.2 Entropy Measures

A random variable X has min-entropy k, if no (computationally unbounded)
adversary can predict the outcome of X with probability greater than 2−k.

Definition 1. (Min-Entropy H∞) A random variable X has min-entropy k,
denoted H∞(X) ≥ k, if max

x
P[X = x] ≤ 2−k.

Dodis et al. [8] gave a notion of average-case min-entropy defined such that X
has average-case min-entropy k conditioned on Z if the probability of the best
adversary in predicting X given Z is 2−k.
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Definition 2. (Average min-Entropy [8] H̃∞) Consider a joint distribution
(X,Z), then the average min-entropy of X conditioned on Z is

H̃∞(X |Z) = − log( E
z←Z

[
max
x

P[X = x|Z = z]
]
) = − log( E

z←Z

[
2−H∞(X|Z=z)

]
)

HILL-entropy is the computational analogue of min-entropy. A random variable
X has HILL-entropy k if there exists a random variable Y having min-entropy
k that is indistinguishable from X . HILL-entropy is further quantified by two
parameters ε, s specifying this indistinguishability quantitatively.

Definition 3. (HILL-Entropy [15] HHILL) X has HILL entropy k, denoted
by HHILL

ε,s (X) ≥ k, if

HHILL
ε,s (X) ≥ k ⇐⇒ ∃Y : H∞(Y ) ≥ k and X ∼ε,s Y

Conditional HILL-entropy has been defined by Hsiao, Lu and Reyzin [17] as
follows.

Definition 4. (Conditional HILL-Entropy [17]) X has conditional HILL
entropy k (conditioned on Z), denoted HHILL

ε,s (X |Z) ≥ k, if

HHILL
ε,s (X |Z) ≥ k ⇐⇒ ∃(Y, Z) : H̃∞(Y |Z) ≥ k and (X,Z) ∼ε,s (Y, Z)

Note that in the definition above, the marginal distribution on the conditional
part Z is the same in both the real distribution (X,Z) and the indistinguishable
distribution (Y, Z). A “relaxed” notion of conditional HILL used implicitly in
[13] and made explicit in [22] drops this requirement.

Definition 5. (Relaxed Conditional HILL-Entropy [13,22]) X has re-
laxed conditional HILL entropy k, denoted Hrlx-HILL

ε,s (X |Z) ≥ k, if

Hrlx-HILL
ε,s (X |Z) ≥ k ⇐⇒ ∃(Y,W ) : H̃∞(Y |W ) ≥ k and (X,Z) ∼ε,s (Y,W )

3 The Main Theorem

Definition 6. (Complexity of a function) Let A and B be sets and let G be
a family of functions h : A → B. A function h has complexity C relative to
G if it can be computed by an oracle-aided circuit of size poly(C log |A|) with C
oracle gates where each oracle gate is instantiated with a function from G.

Theorem 1. (Main) Let � ∈ N be fixed, let ε > 0 and let X be any set. Con-
sider a distribution X over X and any (possibly probabilistic and not necessarily
efficient) function g : X → {0, 1}�. Let F be a family of deterministic (cf. re-
mark below) distinguishers f : X ×{0, 1}� → {0, 1}. There exists a (probabilistic)
simulator h : X → {0, 1}� with complexity3

O(23�ε−2 log2(ε−1))

3 If we model h as a Turing machine (and not a circuit) and consider the expected
complexity of h, then we can get a slightly better O(23�ε−2) bound (i.e. without the
log2(ε−1) term).
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relative to F which ε-fools every distinguisher in F , i.e.

∀f ∈ F :

∣∣∣∣ E
x←X,[g]

[f(x, g(x))]− E
x←X,[h]

[f(x, h(x))]

∣∣∣∣ < ε, (4)

Moreover, if
H∞(X) > 2 + log log |F|+ 2 log(1/ε) (5)

then there exists a deterministic h with this property.

Remark 1 (Closed and Probabilistic F). In the proof of Theorem 1 we as-
sume that the class F of distinguishers is closed under complement, i.e., if f ∈ F
then also 1−f ∈ F . This is without loss of generality, as even if we are interested
in the advantage of a class F that is not closed, we can simply apply the theorem
for F ′ = F ∪ (1 − F), where (1 − F) = {1 − f : f ∈ F}. Note that if h has
complexity t relative to F ′, it has the same complexity relative to F . We also
assume that all functions f ∈ F are deterministic. If we are interested in a class
F of randomized functions, we can simply apply the theorem for the larger class
of deterministic functions F ′′ consisting of all pairs (f, r) where f ∈ F and r is a
choice of randomness for f . This is almost without loss of generality, except that
the requirement in eq.(5) on the min-entropy of X becomes slightly stronger
as log log |F ′′| = log log(|F|2ρ) where ρ is an upper bound on the number of
random coins used by any f ∈ F .

4 Applications

4.1 Zero-Knowledge

Chung, Lui and Pass [4] consider the following relaxed notion of zero-knowledge

Definition 7 (distributional (T, t, ε)-zero-knowledge). Let (P ,V) be an in-
teractive proof system for a language L. We say that (P ,V) is distributional
(T, t, ε)-zero-knowledge (where T, t, ε are all functions of n) if for every n ∈ N,
every joint distributions (Xn, Yn, Zn) over (L ∩ {0, 1}n)× {0, 1}∗ × {0, 1}∗, and
every t-size adversary V∗, there exists a T -size simulator S such that

(Xn, Zn, outV∗ [P(Xn, Yn)↔ V∗(Xn, Zn)]) ∼ε,t (Xn, Zn, S(Xn, Zn))

where outV∗ [P(Xn, Yn) ↔ V∗(Xn, Zn)] denotes the output of V∗(Xn, Zn) after
interacting with P(Xn, Yn).

If L in an NP language, then in the definition above, Y would be a witness
for X ∈ L. As a corollary of their main theorem, [4] show that every proof
system satisfies this relaxed notion of zero-knowledge where the running time T
of the simulator is polynomial in t, ε and 2�. We can derive their Corollary from
Theorem 1 with better quantitative bounds for most ranges of parameters than
[4]: we get Õ(t23�ε−2) vs. Õ(t32�ε−6), which is better whenever t/ε2 ≥ 2�.
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Proposition 1. Let (P ,V) be an interactive proof system for a language L, and
suppose that the total length of the messages sent by P is � = �(n) (on common
inputs X of length n). Then for any t = t(n) ≥ Ω(n) and ε = ε(n), (P ,V) is
distributional (T, t, ε)-zero-knowledge, where

T = O(t23�ε−2 log2(ε−1))

Proof. Let M ∈ {0, 1}� denote the messages send by P(Xn, Yn) when talking to
V∗(Xn, Zn). By Theorem 1 (identifying F from the theorem with circuits of size
t) there exists a simulator h of size O(t · 23�ε−2 log2(ε−1)) s.t.

(Xn, Zn,M) ∼ε,2t (Xn, Zn, h(Xn, Zn)) (6)

Let S(Xn, Zn) be defined as follows, first compute M ′ = h(Xn, Zn) (with h as
above), and then compute out∗V [M

′ ↔ V∗(Xn, Zn)]. We claim that

(Xn, Zn, outV∗ [P(Xn, Yn)↔ V∗(Xn, Zn)]) ∼ε,t (Xn, Zn, S(Xn, Zn)) (7)

To see this, note that from any distinguisher D of size t that distinguishes the
distributions in (7) with advantage δ > ε, we get a distinguisher D′ of size 2t
that distinguishes the distributions in (6) with the same advantage by defining
D′ as D′(Xn, Zn, M̃) = D(Xn, Zn, outV∗ [M̃ ↔ V∗(Xn, Zn)]). ��

4.2 Chain Rules for (Conditional) Pseudoentropy

The following proposition is a chain rule for relaxed conditional HILL entropy.
Such a chain rule for the non-conditional case is implicit in the work of Gentry
and Wichs [13], and made explicit and generalized to the conditional case by
Reyzin [22].

Proposition 2. ([13,22]) Any joint distribution (X,Y,A) ∈ X × Y × {0, 1}�
satisfies4

Hrlx-HILL
ε,s (X |Y ) ≥ k ⇒ Hrlx-HILL

2ε,ŝ (X |Y,A) ≥ k−� where ŝ = Ω

(
s · ε2

23� log2(1/ε)

)
Proof. Hrlx-HILL

ε,s (X |Y ) ≥ k means that there exists a random variable (Z,W )
such that H∞(Z|W ) ≥ k and (X,Y ) ∼ε,s (Z,W ). For any ε̂, ŝ, by Theorem 1,

there exists a simulator h of size sh = O
(
ŝ · 2

3� log2(1/ε̂)
ε̂2

)
such that (we explain

the second step below)

(X,Y,A) ∼ε̂,ŝ (X,Y, h(X,Y )) ∼ε,s−sh (Z,W, h(Z,W ))

4 Using the recent bound from [26] discussed in Section 1.1, we can get ŝ =

Ω
(
s · ε2�

2�
+ �2 log2(1/ε)

ε4

)
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The second step follows from (X,Y ) ∼ε,s (Z,W ) and the fact that h has com-
plexity sh. Using the triangle inequality for computational indistinguishability5

we get
(X,Y,A) ∼ε̂+ε,min(ŝ,s−sh) (Z,W, h(Z,W ))

To simplify this expression, we set ε̂ := ε and ŝ := Θ(sε2/23� log2(1/ε)), then
sh = O(s), and choosing the hidden constant in the Θ such that sh ≤ s/2 (and
thus ŝ ≤ s− sh = s/2), the above equation becomes

(X,Y,A) ∼2ε,ŝ (Z,W, h(Z,W )) (8)

Using the chain rule for average case min-entropy in the first, and H∞(Z|W ) ≥ k
in the second step below we get

H̃∞(Z|W,h(Z,W )) ≥ H̃∞(Z|W )− H0(h(Z,W )) ≥ k − � . (9)

Now equations (8) and (9) imply Hrlx-HILL
2ε,ŝ (X |Y,A) = k − � as claimed. ��

By the following lemma, conditional relaxed HILL implies conditional HILL if
the conditional part is short (at most logarithmic in the size of the distinguishers
considered.)

Lemma 1. For a joint random variable (X,A) over X ×{0, 1}� and s = Ω(�2�)
(more concretely, s should be large enough to implement a lookup table for a
function {0, 1}� → {0, 1}) conditional relaxed HILL implies standard HILL en-
tropy

Hrlx-HILL
ε,s (X |A) ≥ k ⇒ HHILL

2ε,s (X |A) ≥ k

Proof. Hrlx-HILL
ε,s (X |A) ≥ k means that there exist (Z,W ) where H̃∞(Z|W ) ≥ k

and
(X,A) ∼ε,s (Z,W ) (10)

We claim that if s = Ω(�2�), then (10) implies that W ∼ε A. To see this,
assume the contrary, i.e., that W and A are not ε-close. There exists then a
computationally unbounded distinguisher D where

|P[D(W ) = 1]− P[D(A) = 1]| > ε.

Without loss of generality, we can assume that D is deterministic and thus,
implement D by a circuit of size Θ(�2�) via a lookup table with 2� entries (where
the ith entry is D(i).) Clearly, D can also distinguish (X,A) from (Z,W ) with
advantage greater than ε by simply ignoring the first part of the input, thus,
contradicting (10). As A ∼ε W , we claim that there exist a distribution (Z,A)
such that

(Z,W ) ∼ε (Z,A). (11)

5 which states that for any random variables α, β, γ we have

α ∼ε1,s1 β & β ∼ε2,s2 γ ⇒ α ∼ε1+ε2,min(s1,s2) γ
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This distribution (Z,A) can be sampled by first sampling (Z,W ) and then out-
putting (Z, α(W )) where α is a function that is the identity with probability at
least 1 − ε (over the choice of W ), i.e., α(w) = w and with probability at most
ε, it changes W so that it matches A. The latter is possible since A ∼ε W .

Using the triangle inequality for computational indistinguishability (cf. the
proof of Proposition 2) we get with (10) and (11)

(X,A) ∼2ε,s (Z,A) (12)

As H̃∞(Z|W ) ≥ k (for α as defined above)

H̃∞(Z|W ) ≥ k ⇒ H̃∞(Z|α(W )) ≥ k ⇒ H̃∞(Z|A) ≥ k (13)

The first implication above holds as applying a function on the conditioned part
cannot decrease the min-entropy. The second holds as (Z,A) ∼ (Z, α(W )). This
concludes the proof as (12) and (13) imply that HHILL

2ε,s (X |A) ≥ k. ��

As a corollary of Proposition 1 and Lemma 1, we get a chain rule for (non-
conditional) HILL entropy. Such a chain rule has been shown by [10] and follows
from the more general Dense Model Theorem (published at the same conference)
of Reingold et al. [21].

Corollary 1. For any distribution (X,A) ∈ X × {0, 1}� and ŝ = Ω
(

s·ε2
23� log2(�)

)
HHILL

ε,s (X) ≥ k ⇒ Hrlx-HILL
2ε,ŝ (X |A) ≥ k − � ⇒ HHILL

4ε,ŝ (X |A) ≥ k − �

Note that unlike the chain rule for relaxed HILL given in Proposition 2, the chain
rule for (standard) HILL given by the corollary above requires that we start
with some non-conditional variable X . It would be preferable to have a chain
rule for the conditional case, i.e., and expression of the form HHILL

ε,s (X |Y ) = k ⇒
HHILL

ε′,s′ (X |Y,A) = k − � for some ε′ = ε · p(2�), s′ = s/q(2�, ε−1) (for polynomial
functions p(.), q(.)), but as recently shown by Krenn et al. [19], such a chain rule
does not hold (all we know is that such a rule holds if we also allow the security
to degrade exponentially in the length |Y | of the conditional part.)

4.3 Leakage-Resilient Cryptography

We now discuss how Theorem 1 can be used to simplify and quantitatively im-
prove the security proofs for leakage-resilient cryptosystems. These proofs cur-
rently rely on chain rules for HILL entropy given in Corollary 1. As an illustrative
example, we will reprove the security of the leakage-resilient stream-cipher based
on any weak pseudorandom function from Eurocrypt’09 [20], but with much bet-
ter bounds than the original proof.

For brevity, in this section we often write Bi to denote a sequence B1, . . . , Bi

of values. Moreover, A‖B ∈ {0, 1}a+b denotes the concatenation of the strings
A ∈ {0, 1}a and B ∈ {0, 1}b.
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A function F : {0, 1}k × {0, 1}n → {0, 1}m is an (ε, s, q)-secure weak PRF
if its outputs on q random inputs look random to any size s distinguisher, i.e.,
for all D of size s∣∣∣∣ P

K,Xq
[D(Xq,F(K,X1), . . . ,F(K,Xq) = 1]− P

Xq,Rq
[D(Xq, Rq) = 1

∣∣∣∣ ≤ ε,

where the probability is over the choice of the random Xi ← {0, 1}n, the choice
of a random key K ← {0, 1}k and random Ri ← {0, 1}m conditioned on Ri = Rj

if Xi = Xj for some j < i.
A stream-cipher SC : {0, 1}k → {0, 1}k × {0, 1}n is a function that, when

initialized with a secret initial state S0 ∈ {0, 1}k, produces a sequence of output
blocks X1, X2, . . . recursively computed by

(Si, Xi) := SC(Si−1)

We say that SC is (ε, s, q)-secure if for all 1 ≤ i ≤ q, no distinguisher of size s can
distinguish Xi from a uniformly random Un ← {0, 1}n with advantage greater
than ε given X1, . . . , Xi−1 (here, the probability is over the choice of the initial
random key S0)

6, i.e.,∣∣∣∣P
S0

[D(X i−1, Xi) = 1]− P
S0,Un

[D(X i−1, Un]

∣∣∣∣ ≤ ε

A leakage-resilient stream-cipher is (ε, s, q, �)-secure if it is (ε, s, q)-secure as
just defined, but where the distinguisher in the jth round not only gets Xj , but
also � bits of arbitrary adaptively chosen leakage about the secret state accessed
during this round. More precisely, before (Sj , Xj) := SC(Sj−1) is computed, the
distinguisher can choose any leakage function fj with range {0, 1}�, and then

not only get Xj , but also Λj := fj(Ŝj−1), where Ŝj−1 denotes the part of the
secret state that was modified (i.e., read and/or overwritten) in the computation
SC(Sj−1).

Figure 1 illustrates the construction of a leakage-resilient stream cipher SCF

from any weak PRF F : {0, 1}k × {0, 1}n → {0, 1}k+n from [20]. The initial
state is S0 = {K0,K1, X0}. Moreover, in the ith round (starting with round
0), one computes Ki+2‖Xi+1 := F(Ki, Xi) and outputs Xi+1. The state after
this round is (Ki+1,Ki+2, Xi+1).

7 In this section we will sketch a proof of the
following security bound on SCF as a leakage-resilient stream cipher in terms of
the security of F as a weak PRF.

6 A more standard notion would require X1, . . . , Xq to be indistinguishable from ran-
dom; this notion is implied by the notion we use by a standard hybrid argument
losing a multiplicative factor of q in the distinguishing advantage.

7 Note that Xi is not explicitly given as input to fi even though the computation
depends on Xi. The reason is that the adversary can choose fi adaptively after
seeing Xi, so Xi can be hard-coded it into fi.
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Lemma 2. If F is a (εF, sF, 2)-secure weak PRF then SCF is a (ε′, s′, q, �)-secure
leakage resilient stream cipher where

ε′ = 4q
√

εF2� s′ = Θ(1) · sFε
′2

23�

The bound above is quantitatively much better than the one in [20]. Setting

the leakage bound � = log ε−1
F /6 as in [20], we get (for small q) ε′ ≈ ε

5/12
F ,

which is by over a power of 5 better than the ε
1/13
F from [20], and the bound

on s′ ≈ sFε
4/3
F improves by a factor of ε

5/6
F (from sFε

13/6
F in [20] to sFε

8/6
F here).

This improvement makes the bound meaningful if instantiated with a standard
block-cipher like AES which has a keyspace of 256 bits, making the assumption
that it provides sF/εF ≈ 2256 security.8

Besides our main Theorem 1, we need another technical result which states
that if F is a weak PRF secure against two queries, then its output on a sin-
gle random query is pseudorandom, even if one is given some short auxiliary
information about the uniform key K. The security of weak PRFs with non-
uniform keys has first been proven in [20], but we will use a more recent and
elegant bound from [1]. As a corollary of [1, Thm.3.7 in eprint version], we get
that for any (εF, sF, 2)-secure weak PRF F : {0, 1}k×{0, 1}n → {0, 1}m, uniform
and independent key and input K ∼ Uk, X ∼ Un and any (arbitrarily complex)
function g : {0, 1}k → {0, 1}�, one has9

(X,F(K,X), g(K)) ∼ε̂,sF/2 (X,Um, g(K)) where ε̂ = εF+
√

εF2�+2−n ≈
√

εF2�

(14)
Generalizing the notation of ∼ε,s from variables to interactive distinguishers,
given two (potentially stateful) oracles G,G′, we write G ∼ε,s G′ to denote that
no oracle-aided adversary A of size s can distinguish G from G′, i.e.,

G ∼ε,s G′ ⇐⇒ ∀A, |A| ≤ s : |P[AG → 1]− P[A
G′
→ 1]| ≤ ε.

Proof (of Lemma 2 (Sketch)). We define an oracle Greal
0 that models the stan-

dard attack on the leakage-resilient stream cipher. That is, Greal
0 samples a

random initial state S0. When interacting with an adversary AGreal
0 , the oracle

Greal
0 expects as input adaptively chosen leakage functions f1, f2, . . . , fq−1. On

input fi, it computes the next output block (Xi,Ki+1) := SC(Ki−1, Xi−1) and
the leakage Λi = fi(Ki−1). It forwards Xi, Λi to A and deletes everything except
the state Si = {Xi,Ki,Ki+1}. After round q − 1, Greal

0 computes and forwards
Xq (i.e., the next output block to be computed) to A. The game Grand

0 is defined
in the same way, but the final block Xq is replaced with a uniformly random Un.

8 We just need security against two random queries, so the well known non-uniform
upper bounds on the security of block-ciphers of De, Trevisan and Tulsiani [6,5] do
not seem to contradict such an assumption even in the non-uniform setting.

9 The theorem implies a stronger statement where one only requires that K has k− �
bits average-case min-entropy (which is implied by having K uniform and leaking �
bits), we state this weaker statement as it is sufficient for our application.
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To prove that SCF is an (ε′, s′, �, q)-secure leakage-resilient stream cipher, we
need to show that

Greal
0 ∼ε′,s′ G

rand
0 , (15)

for ε′, s′ as in the statement of the lemma.

Defining games Greal
i and Grand

i for 1 ≤ i ≤ q − 1. We define a series of
games Greal

1 , . . . , Greal
q−1 where Greal

i+1 is derived from Greal
i by replacing Xi,Ki+1

with uniformly random values X̃i, K̃i+1 and the leakage Λi with simulated fake
leakage Λ̃i (the details are provided below). Games Grand

i will be defined exactly
as Greal

i except that (similarly to the case i = 0), the last block Xq is replaced
with a uniformly random value.

For every i, 1 ≤ i ≤ q − 1, the variables K̃i, X̃i as defined by the oracles real-
izing the games Grand

j and Greal
j where j ≥ i will satisfy the following properties

(as the initial values (X0,K0,K1) never get replaced, for notational convenience

we define (X̃0, K̃0, K̃1)
def
= (X0,K0,K1))

i. K̃i, X̃i are uniformly random.
ii. Right before the (i − 1)th round (i.e. the round where the oracle computes

Xi‖Ki+1 := F(X̃i−1, K̃i−1)), the oracle has leaked no information about
K̃i−1 except for the � bits fake leakage Λ̃i.

iii. Right before the (i − 1)th round K̃i−1 and X̃i−1 are independent given
everything the oracle did output so far.

The first two properties above will follow from the definition of the games.
The third point follows using Lemma 4 from [9], we will not discuss this here
in detail, but only mention that the reason for the alternating structure of the
cipher as illustrated in Figure 1, with an upper layer computing K0,K2, . . . and
the lower layer computing K1,K3, . . ., is to achieve this independence.

We now describe how the oracle Greal
i+1 is derived from Greal

i . For concreteness,

we set i = 2. In the third step, Greal
2 computes (X3,K4) := F(K̃2, X̃2), Λ3 =

f3(K̃2) and forwards X3, Λ3 to A. The state stored after this step is S3 =

{X3, K̃3,K4}. Let V2
def
= {X̃2, Λ̃2} be the view (i.e. all the outputs she got from

her oracle) of the adversary A after the second round.

K0 F F

X0 K1 F F

eval eval eval eval

A A A A A

X1 X2 X3 X4

K2

K3

K4

X0

X1

X2

X3

f1 f1(K0) f2 f2(K1) f3 f3(K2) f4 f4(K3)

Fig. 1. Leakage resilient stream-cipher SCF from a any weak pseudorandom function
F. The regular evaluation is shown in black, the attack related part is shown in gray
with dashed lines. The output of the cipher is X0, X1, . . ..
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Defining an intermediate oracle. We now define an oracle Greal
2/3 (which will be

in-between Greal
2 and Greal

3 ) derived from Greal
2 by replacing Λ3 = f3(K̃2) with

fake leakage Λ̃3 computed as follows: let h(·) be a simulator for the leakage
Λ̃3 := f3(K̃2) such that (for ε̂, ŝ to be defined)

(Z, h(Z)) ∼ε̂,ŝ (Z, Λ̃3) where Z = {V2, X3,K4} (16)

By Theorem 1, there exists such a simulator of size sh
def
= O(ŝ23�/ε̂2). Note that

h not only gets the pseudorandom output X3,K4 whose computation has leaked
bits, but also the view V2. The reason for the latter is that we need to fool an
adversary who learned V2. Equation (16) then yields

Greal
2 ∼ε̂,ŝ−s0 Greal

2/3 , (17)

where s0 is the size of a circuit required to implement the real game Greal
0 . The

reason we loose s0 in the circuit size here is that in a reduction where we use a
distinguisher for Greal

2 and Greal
2/3 to distinguish (Z, h(Z)) and (Z, Λ̃3) we must

still compute the remaining q − 4 rounds, and s0 is an upper bound on the size
of this computation.

The game Greal
3 is derived from Greal

2/3 by replacing the values X3‖K4 :=

F(K̃2, X̃2) with uniformly random X̃3‖K̃4 right after they have been computed
(let us stress that also the fake leakage that is computed as in (16) now uses
these random values, i.e., Z = {V2, X̃3, K̃4}).

Proving indistinguishability. We claim that the games are indistinguishable with
parameters

Greal
2/3 ∼√εF2�,sF/2−sh−s0

Greal
3 (18)

Recall that in Greal
2/3 , we compute X3‖K4 := F(K̃2, X̃2) where by i. X̃2, K̃2 are

uniformly random, by ii. only � bits of K̃2 have leaked and iii. X̃2 and K̃2 are
independent. Using these properties, equation (14) implies that the outputs are

roughly (
√

εF2�, sF/2) pseudorandom, i.e.,

(X̃2, X3‖K4, Λ̃1) ∼√εF2�,sF/2
(X̃2, X̃3‖K̃4, Λ̃1), (19)

from which we derive (18). Note the loss of sh in circuit size in equation (18) due
to the fact that given a distinguisher for Greal

2/3 and Greal
3 , we must recompute

the fake leakage given only distributions as in (19).
We will assume that s0 ≤ ŝ/2, i.e., the real experiment is at most half as

complex as the size of the adversaries we will consider (the setting where this is
not the case is not very interesting anyway.) Then ŝ− s0 ≥ ŝ/2.

Up to this point, we have not yet defined what ε̂ and ŝ are, so we set them to

ε̂
def
=
√

εF2� and ŝ
def
= Θ(1)

sFε̂
2

23�
then sF = 8 · sh = Θ(1)

ŝ23�

ε̂2
.
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With (17) and (18), we then get Greal
2 ∼2ε̂,ŝ/2 Greal

3 . The same proof works for
any 1 ≤ i ≤ q − 1, i.e., we have

Greal
i ∼2ε̂,ŝ/2 Greal

i+1 , Grand
i ∼2ε̂,ŝ/2 Grand

i+1 .

Moreover, using i.-iii. with (14),

Greal
q−1 ∼2ε̂,ŝ/2 Grand

q−1 .

Using the triangle inequality 2q times, the two equations above yield

Greal
0 ∼4qε̂,ŝ/2 Grand

0 ,

which which completes the proof of the lemma.
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A Proof of Theorem 1

We will prove Theorem 1 not for the family F directly, but for a family F̂ which
for every f ∈ F contains the function f̂ : X × {0, 1}� → [−1, 1] defined as

f̂(x, b) = f(x, b)−wf(x) where wf (x) = E
b←{0,1}�

[f(x, b)] = 2−�
∑

b∈{0,1}�

f(x, b)

Any simulator that fools F̂ also fools F with the same advantage since ∀f̂ ∈ F̂ ,∣∣∣∣ E
x←X,[g]

[f̂(x, g(x))] − E
x←X,[h]

[f̂(x, h(x))]

∣∣∣∣
=

∣∣∣∣ E
x←X,[g]

[f(x, g(x))− wf (x)]− E
x←X,[h]

[f(x, h(x)) − wf (x)]

∣∣∣∣
=

∣∣∣∣ E
x←X,[g]

[f(x, g(x))]− E
x←X,[h]

[f(x, h(x))]

∣∣∣∣

http://www.cs.bu.edu/~reyzin/papers/entropy-survey.pdf
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Evaluating f̂ requires 2� evaluations of f as we need to compute wf (x). We thus

lose a factor of 2� in efficiency by considering F̂ instead of F . The reason that
we prove the theorem for F̂ instead of for F is because in what follows, we will
need that for any x, the expectation over a uniformly random b ∈ {0, 1}� is 0,
i.e.,

∀f̂ ∈ F̂ , x ∈ X : E
b←{0,1}�

[f̂(x, b)] = 0. (20)

To prove the theorem, we must show that for any joint distribution (X, g(X))
over X × {0, 1}�, there exists an efficient simulator h : X → {0, 1}� such that

∀f̂ ∈ F̂ :

∣∣∣∣ E
x←X

[f̂(x, g(x)) − f̂(x, h(x))]

∣∣∣∣ < ε. (21)

Moving to product form. We define the function g̃ : X × {0, 1}� → [0, 1] as
g̃(x, a) := P

[g]
[g(x) = a]. Note that for every x ∈ X , we have

∑
a∈{0,1}�

g̃(x, a) = 1. (22)

We can write the expected value of f̂(X, g(X)) as follows:

E
x←X,[g]

[f̂(x, g(x))] =
∑

a∈{0,1}�

E
x←X

[
f̂(x, a) P

[g]
[g(x) = a]

]
=

=
∑

a∈{0,1}�

E
x←X

[
f̂(x, a)g̃(x, a)

]
=

= 2� E
x←X,u←{0,1}�

[f̂(x, u)g̃(x, u)]. (23)

We will construct a simulator h̃ : X × {0, 1}� → [0, 1] such that for γ > 0 (to be
defined later),

∀f̂ ∈ F̂ : E
x←X,b←{0,1}�

[f̂(x, b)(g̃(x, b)− h̃(x, b))] < γ. (24)

From this h̃, we can then get a simulator h(·) like in (21) assuming that h̃(x, ·)
is a probability distribution for all x, i.e., ∀x ∈ X ,∑

b∈{0,1}�

h̃(x, b) = 1, (25)

∀b ∈ {0, 1}� : h̃(x, b) ≥ 0. (26)

We will define a sequence h0, h1, . . . of functions where h0(x, b) = 2−� for all
x, b.10 Define the energy function

Δt = E
x←X,b←{0,1}�

[(g̃(x, b)− ht(x, b))
2].

10 It is not relevant how exactly h0 is defined, but we need
∑

b←{0,1}� [h0(x, b)] = 1 for
all x ∈ X .
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Assume that after the first t steps, there exists a function f̂t+1 : X × {0, 1}� →
[−1, 1] such that

E
x←X,b←{0,1}�

[f̂t+1(x, b)(g(x, b)− ht(x, b))] ≥ γ,

and define
ht+1(x, b) = ht(x, b) + γf̂t+1(x, b) (27)

The energy function then decreases by γ2, i.e.,

Δt+1

= E
x←X,b←{0,1}�

[(g̃(x, b)− ht(x, b)− γf̂t+1(x, b))
2] =

= Δt + E
x←X,b←{0,1}�

[γ2f̂t+1(x, b)]︸ ︷︷ ︸
≤γ2

− E
x←X,b←{0,1}�

[2γft+1(x, b)(g̃(x, b)− ht(x, b))]︸ ︷︷ ︸
≥2γ2

≤ Δt − γ2.

Since Δ0 ≤ 1, Δt ≥ 0 for any t (as it is a square) and Δi−Δi+1 ≥ γ2, this process

must terminate after at most 1/γ2 steps meaning that we have constructed h̃ =

ht that satisfies (24). Note that the complexity of the constructed h̃ is bounded by
2�γ−2 times the complexity of the functions from F since, as mentioned earlier,
computing f̃ requires 2� evaluations of f . In other words, h̃ has complexity
O(2�γ−2) relative to F .

Moreover, since for all x ∈ X and f̂ ∈ F̂ , we have
∑

b∈{0,1}�

h0(x, b) = 1 and∑
b∈{0,1}�

f̂(x, b) = 0, condition (25) holds as well. Unfortunately, (26) does not

hold since it might be the case that ht+1(x, b) < 0. We will explain later how

to fix this problem by replacing f̂t+1 in (27) with a similar function f̂∗
t+1 that

satisfies ht+1(x, b) = ht + γf̂∗
t+1 ≥ 0 for all x and b in addition to all of the

properties just discussed. Assume for now that h̃ satisfies (24)-(26).
Let h : X → {0, 1}� be a probabilistic function defined as follows: we set

h(x) = b with probability h̃(x, b). Equivalently, imagine that we have a biased
dice with 2� faces labeled by b ∈ {0, 1}� such that the probability of getting the

face with label b is h̃(x, b). We then define h(x) by simply throwing this dice and

reading off the label. It follows that P
[h]
[h(x) = b] = h̃(x, b). This probabilistic

function satisfies

E
[h],x←X

[f̂(x, h(x))] = E
x←X

∑
a∈{0,1}�

f̂(x, a) P
[h]
[h(x) = a]

= E
x←X

∑
a∈{0,1}�

f̂(x, a)ht(x, a)

= E
x←X,u←{0,1}�

2�f̂(x, u)ht(x, u). (28)
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Plugging (28) and (23) into (24), we obtain

∀f̂ ∈ F : E
x←X,[h]

[
f̂(x, g(x))

2�
− f̂(x, h(x)]

2�

]
< γ.

Equivalently,

∀f̂ ∈ F : E
x←X,[h]

[
f̂(x, g(x)) − f̂(x, h(x))

]
< γ2� (29)

We get (4) from the statement of the theorem by setting γ := ε/2�. The simulator

h̃ is thus of complexity O(23�(1/ε)2) relative to F .

Enforcing ht(x, b) ≥ 0 for � = 1. We now fix the problem with the positivity of
ht(x, b). Consider the case � = 1. Consider the following properties:

i.
∑

b∈{0,1}
ht(x, b) = 1 for x ∈ X ,

ii. ∀b ∈ {0, 1}, ht(x, b) ≥ 0 for x ∈ X ,

iii. E
x←X,b←{0,1}

[f̂t+1(x, b)(g(x, b) − ht(x, b))] ≥ γ for γ > 0.

Assume that ht : X → {0, 1} and f̂t+1 : X × {0, 1} → [−1, 1] satisfy i) and ii)
for all x ∈ X and iii) for some γ > 0. Recall that Δt = E

x←X,b←{0,1}
[(g̃(x, b) −

ht(x, b))
2]. We have shown that ht+1 = ht + γf̂t+1 satisfies

Δt+1 ≤ Δt − γ2. (30)

Moreover, for all x ∈ X , ht+1 will still satisfy i) but not necessarily ii). We define

a function f̂∗
t+1 such that setting ht+1 = ht + γf̂∗

t+1 will satisfy i) and ii) for all
x ∈ X and an inequality similar to (30).

First, for any x ∈ X for which condition ii) is satisfied, let f∗
t+1 = f̂t+1.

Consider now x ∈ X for which ii) fails for some b ∈ {0, 1}, i.e., for which

ht(x, b) + γf̂t+1(x, b) < 0. Let γ′ = −ht(x, b)/ft+1(x, b). Note that 0 ≤ γ′ ≤ γ

and ht(x, b) + γ′f̂t+1(x, b) = 0. Let

f̂∗
t+1(x, b) =

γ′

γ
f̂t+1(x, b) f̂∗

t+1(x, 1− b) = f̂t+1(x, 1− b) +
1− γ′

γ
f̂t+1(x, b).

Let ht+1(x, ·) = ht(x, ·) + γf̂∗
t+1(x, ·) and note that∑

b∈{0,1}
f̂∗
t+1(x, b) =

∑
b∈{0,1}

f̂t+1(x, b) = 0.

Condition i) is then satisfied for ht+1 for any x ∈ X . By the definition of γ′,
condition ii) is satisfied for any x ∈ X as well. Condition iii) is more delicate
and in fact need not hold. Yet, we will prove the following:
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Lemma 3. If f̂t+1 and ht satisfy i) and ii) for every x ∈ X , and iii) then

E
x←X,b←{0,1}

[f̂t+1(x, b)(g(x, b) − ht(x, b))]

− E
x←X,b←{0,1}

[f̂∗
t+1(x, b)(g(x, b) − ht(x, b))] ≤

γ

4
. (31)

Proof. To prove (31), it suffices to show that for every x ∈ X ,∑
b∈{0,1}

f̂t+1(x, b)(g(x, b) − ht(x, b))−
∑

b∈{0,1}
f̂∗
t+1(x, b)(g(x, b)− ht(x, b)) ≤

γ

2
.

(32)
If x ∈ X is such that ii) is satisfied for ht+1 then there is nothing to prove.
Suppose that ii) fails for some x ∈ X and b ∈ {0, 1}. For brevity, let f :=

f̂t+1(x, b), g := g(x, b), h = ht(x, b). We have −1 ≤ f < 0, h+ γf < 0, 0 ≤ g ≤ 1
and h = −γf∗. Using g − h ≥ −h, the left-hand side of (32) then satisfies

2(f + h/γ)(g − h) ≤ 2(f + h/γ)(−h)

=
2

γ
(−fγ − h)h ≤ 2

γ

(
−fγ − h+ h

2

)2

=
γf2

2
≤ γ

2
, (33)

where we have used the inequality uv ≤
(
u+ v

2

)2

.

If iii) holds then Lemma 3 implies γ− E
x←X,b←{0,1}

[f̂∗
t+1(x, b)(g(x, b)−ht(x, b))] ≤

γ

4
. Equivalently,

E
x←X,b←{0,1}

[f̂∗
t+1(x, b)(g(x, b)− ht(x, b))] ≥

3γ

4
. (34)

Defining ht+1 = ht + γf̂∗
t+1, we still get

Δt+1 ≤ Δt −
(
3γ

4

)2

= Δt −
9γ2

16
. (35)

Remark 2. In this case, the slightly worse inequality (35) will increase the com-

plexity of h̃, but only by a constant factor of 16/9, i.e., h̃ will still have complexity
O(2�γ−2) relative to F .

Enforcing ht(x, b) ≥ 0 for general �. Let f̂t+1(x, b) be as before and suppose

that there exists x ∈ X such that ht(x, b) + γf̂t+1(x, b) < 0 for at least one

b ∈ {0, 1}�. We will show how to replace f̂t+1 with another function f̂∗
t+1 such

that it satisfies an inequality of type (34) and such that ht+1(x, b) = ht(x, b) +

γf̂∗
t+1(x, b) ≥ 0. Let S be the set of all elements b ∈ {0, 1}� for which ht(x, b) +

γf̂t+1(x, b) < 0. For b ∈ S, it follows that f̂t+1(x, b) < 0. As before, for b ∈ S,
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define f̂∗
t+1(x, b) = −

ht(x, b)

γ
. Note that for each such b, we have added a positive

mass −ht(x, b) + γf̂t+1(x, b)

γ
to modify each f̂t+1(x, b). Let

M =
∑
b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)
(36)

be the total mass. For b /∈ S, define f̂∗
t+1(x, b) = f̂t+1(x, b) −

M

2� − s
. Clearly,

E
b←{0,1}�

f̂∗
t+1(x, b) = 0. We will now show the following

Lemma 4. For every x ∈ X , the function f̂∗
t+1 satisfies∑

b∈{0,1}�

(f̂t+1(x, b)− f̂∗
t+1(x, b))(g(x, b)− ht(x, b)) < 2�−1γ.

Proof. Let s = |S| and hS =

s∑
i=1

ht(x, bi). First, note that (as in the case � = 1)

∀b ∈ S :

(
f̂t+1(x, b) +

ht(x, b)

γ

)
(g(x, b)− ht(x, b))

≤ −
(
f̂t+1(x, b) +

ht(x, b)

γ

)
ht(x, b). (37)

Moreover, ∑
b/∈S

g(x, b) ≤
∑

b∈{0,1}�

g(x, b) = 1. (38)

The difference that we want to estimate is then

Δ =
∑

b∈{0,1}�

(f̂t+1(x, b)− f̂∗
t+1(x, b))(g(x, b) − ht(x, b))

=
∑
b∈S

(
f̂t+1(x, b) +

ht(x, b)

γ

)
(g(x, b)− ht(x, b)) +

M

2� − s

∑
b/∈S

(g(x, b)− ht(x, b))

(37),(38)

≤
∑
b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)
ht(x, b) +

M

2� − s

(
1−

∑
b/∈S

ht(x, b)

)
︸ ︷︷ ︸

=hS

(36)
=
∑
b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)
ht(x, b)︸ ︷︷ ︸

≤γ/4

+
hS

2� − s

∑
b∈S

−
(
f̂t+1(x, b) +

ht(x, b)

γ

)

(33)

≤ sγ

4
− hS

2� − s

∑
b∈S

f̂t+1(x, b)−
h2
S

γ(2� − s)
=

sγ

4
+

hSfS
2� − s

− h2
S

γ(2� − s)
,
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where fS = −
∑
b∈S

f̂t+1(x, b). Note that
∑
b∈S

−f̂t+1(x, b) ≤ s and (using (20))∑
b∈S

−f̂t+1(x, b) =
∑
b/∈S

f̂t+1(x, b) ≤ 2� − s, i.e., fS ≤ min{s, 2� − s}. Since

hSfS
2� − s

− h2
S

γ(2� − s)
=

1

γ(2� − s)
hS(γfS − hS)

≤ 1

γ(2� − s)

(
hS + (γfS − hS)

2

)2

≤ sγ

4
,

where we have used that f2
S ≤ s(2�−s). Since s < 2�, we obtain Δ ≤ sγ

2
< 2�−1γ

which proves the lemma.

To complete the proof, note that the above lemma implies that

E
x←X,b←{0,1}�

[f̂t+1(x, b)(g(x, b)− ht(x, b))]

− E
x←X,b←{0,1}�

[f̂∗
t+1(x, b)(g(x, b)− ht(x, b))] <

γ

2
,

and hence,

E
x←X,b←{0,1}�

[f̂∗
t+1(x, b)(g(x, b)− ht(x, b))] >

γ

2
. (39)

Remark 3. Similarly, the slightly worse inequality (39) will increase the com-

plexity of h̃ by a constant factor of 4, i.e., h̃ will still have complexity O(2�γ−2)
relative to F .

A.1 Derandomizing h̃

Next, we discuss how to derandomize h̃. We can think of the probabilistic func-
tion h̃ as a deterministic function h̃′ taking two inputs where the second input
represents the random coins used by h̃. More precisely, for R ← {0, 1}ρ (ρ is

an upper bound on the number of random bits used by h̃) and for any x in the

support of X , we have h̃′(x,R) ∼ h̃(x).

To get our derandomized ĥ, we replace the randomness R with the output of a
function φ chosen from a family of t-wise independent functions for some large t,
i.e., we set ĥ(x) = h̃′(x, φ(x)). Recall that a family Φ of functions A → B is t-wise
independent if for any t distinct inputs a1, . . . , at ∈ A and a randomly chosen
φ ← Φ, the outputs φ(a1), . . . , φ(at) are uniformly random in Bt. In the proof,
we use the following tail inequality for variables with bounded independence:

Lemma 5 (Lemma 2.2 from [3]). Let t ≥ 6 be an even integer and let
Z1, . . . , Zn be t-wise independent variables taking values in [0, 1].
Let Z =

∑n
i=1 Zi, then for any A > 0

P[|Z − E[Z]| ≥ A] ≤
(

nt

A2

)t/2
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Recall that the min-entropy of X is H∞(X) = − log
(
max
x

P[X = x]
)
, or equiv-

alently, X has min-entropy k if P[X = x] ≤ 2−k for all x ∈ X .

Lemma 6. (Deterministic Simulation) Let ε > 0 and assume that

H∞(X) > 2 + log log |F|+ 2 log(1/ε). (40)

For any (probabilistic) h̃ : X → {0, 1}�, there exists a deterministic ĥ of the same

complexity relative to F as h̃ such that

∀f ∈ F :

∣∣∣∣∣ E
x←X,[h̃]

[f(x, h̃(x))] − E
x←X

[f(x, ĥ(x))]

∣∣∣∣∣ < ε (41)

Remark 4. About the condition (40). A lower bound on the min-entropy
of X in terms of log log |F| and log(1/ε) as in (40) is necessary. For example
one can show that for ε < 1/2, (41) implies H∞(X) ≥ log log |F|. To see this,
consider the case when X is uniform over {0, 1}m (so H∞(X) = m), F contains
all 22

m

functions f : {0, 1}m×{0, 1} → {0, 1} satisfying f(x, 1− b) = 1− f(x, b)

for all x, b ∈ {0, 1}m+1, and h̃(x) ∼ U1 is uniformly random for all x (so it

ignores its input). Now, given any deterministic ĥ, we can choose f ∈ F where

f(x, ĥ(x)) = 1 for all x ∈ {0, 1}m (such an f exists by definition of F). For this
f , ∣∣∣∣∣∣∣∣∣∣

E
x←X,[h̃]

[f(x, h̃(x))]︸ ︷︷ ︸
=1/2

− E
x←X

[f(x, ĥ(x))]︸ ︷︷ ︸
=1

∣∣∣∣∣∣∣∣∣∣
= 1/2.

In terms of log(1/ε), one can show that (41) implies H∞(X) ≥ log(1/ε)−1 (even

if |F| = 1). For this, let h̃ and X be as above, F = {f} is defined as f(x, b) = b

if x = 0m and f(x, b) = 0 otherwise. For any deterministic ĥ, we get

| E
x←X,[h̃]

[f(x, h̃(x))]︸ ︷︷ ︸
1/2m+1

− E
x←X

[f(x, ĥ(x))]︸ ︷︷ ︸
1/2m or 0

| = 1/2m+1

and thus, ε = 1/2m+1. Equivalently H∞(X) = m = log(1/ε)− 1. The condition
(40) is mild and in particular, it covers the cryptographically interesting case
where F is the family of polynomial-size circuits (i.e., for a security parameter
n and a constant c, |F| ≤ 2n

c

), X has superlogarithmic min-entropy H∞(X) =
ω(logn) and ε > 0 is negligible in n. Here, (40) becomes

ω(logn) > 2 + c logn+ 2 log ε−1

which holds for a negligible ε = 2−ω(logn).



How to Fake Auxiliary Input 589

Proof (Proof of Lemma 5). Let m = H∞(X). We will only prove the lemma for
the restricted case where X is flat, i.e., it is uniform on a subset X ′ ⊆ X of
size 2m. 11 Consider any fixed f ∈ F and the 2m random variables Zx ∈ {0, 1}
indexed by x ∈ X ′ sampled as follows: first, sample φ ← Φ from a family of
t-wise independent functions X → {0, 1}ρ (recall that ρ is a upper bound on the

number of random bits used by h̃). Now, Zx is defined as

Zx = f(x, h̃′(x, φ(x))) = f(x, ĥ(x))

and Z =
∑
x∈X ′

Zx. Note that the same φ is used for all Zx.

1. The variables Zx for x ∈ X ′ are t-wise independent, i.e., for any t dis-
tinct x1, . . . , xt, the variables Zx1, . . . , Zxt have the same distribution as

Z ′
x1

, . . . , Z ′
xt

sampled as Z ′
xi
← f(xi, h̃

′(xi, R)). The reason is that the
randomness φ(x1), . . . , φ(xt) used to sample the Zx1 , . . . , Zxt is uniform in
{0, 1}ρ as φ is t-wise independent.

2. E[Zx] = E
φ←Φ

[f(x, h̃′(x, φ(x))] = E
[h̃]

[f(x, h̃(x))].

3. P
x←X,[h̃]

[f(x, h̃(x)) = 1] = E
φ←Φ

[Z/2m].

Let μ = E
φ←Φ

[Z] = E
φ←Φ

[∑
x∈X ′

Zx

]
. By Lemma 5, we have

P[|Z − μ| ≥ ε2m] ≤
(

t

ε22m

)t/2

.

Let us call φ bad for f if |Z − μ| ≥ ε2m (or equivalently, using iii)),∣∣∣∣∣ E
x←X,[h̃]

[f(x, h̃(x))] − E
x←X

[f(x, φ(x))]

∣∣∣∣∣ ≥ ε

We want to choose t such that the probability of φ being bad for any particular
f ∈ F is less than 1/|F|, i.e.

(t/ε22m)t/2 < |F|−1. (42)

We postpone for a second how to choose t and discussing when this is even
possible. Assuming (42),

P
φ←Φ

[|Z − μ| ≥ ε2m] ≤
(

t

ε22m

)t/2

< |F|−1,

11 Any distribution satisfying H∞(X) = m can be written as a convex combination of
flat distributions with min-entropy m. Often, this fact is sufficient to conclude that
a result proven for flat distributions with min-entropy m implies the result for any
distribution with the same min-entropy. Here, this is not quite the case, because we
might end up using a different φ for every flat distribution. But as the only property
we actually require from X is P[X = x] ≤ 2−m, the proof goes through for general
X, but becomes somewhat more technical.
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and by taking a union bound over all f ∈ F , we get

P
φ←Φ

[∃f ∈ F : |Z − μ| ≥ ε2m] < 1,

which implies that there exits φ ∈ Φ such that

∀f ∈ F : |Z − μ| < ε2m.

Equivalently, using how Z and μ were defined,

∀f ∈ F :

∣∣∣∣∣∑
x∈X ′

f(x, ĥ(x)) −
∑
x∈X ′

f(x, h̃(x))

∣∣∣∣∣ < ε2m.

Finally, using that X is uniform over X ′, we get (for the above choice of φ) the
statement of the lemma

∀f ∈ F :

∣∣∣∣∣ E
x←X

[f(x, ĥ(x))] − E
x←X,[h̃]

[f(x, h̃(x))]

∣∣∣∣∣ < ε.

We still have to determine when t can be chosen so that (42) holds. By taking
logarithm and rearranging the terms, (42) becomes

mt/2 > log |F|+ (t/2) log(t) + t log(1/ε),

i.e.,
m > 2 log |F|/t+ log(t) + 2 log(1/ε).

Setting t = log |F|, we get

m > 2 + log log |F|+ 2 log(1/ε).

which holds as it is the condition (5) we made on the min-entropy m = H∞(X).
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Abstract. Suppose many messages are encrypted using a public-key
encryption scheme. Imagine an adversary that may adaptively ask for
openings of some of the ciphertexts. Selective opening (SO) security re-
quires that the unopened ciphertexts remain secure, in the sense that this
adversary cannot derive any nontrivial information about the messages
in the unopened ciphertexts.

Surprisingly, the question whether SO security is already implied by
standard security notions has proved highly nontrivial. Only recently,
Bellare, Dowsley, Waters, and Yilek (Eurocrypt 2012) could show that a
strong form of SO security, simulation-based SO security, is not implied
by standard security notions. It remains wide open, though, whether the
potentially weaker (and in fact comparatively easily achievable) form of
indistinguishability-based SO (i.e., IND-SO) security is implied by stan-
dard security. Here, we give (full and partial) answers to this question,
depending on whether active or passive attacks are considered.

Concretely, we show that:

(a) For active (i.e., chosen-ciphertext) security, standard security does
not imply IND-SO security. Concretely, we give a scheme that is
IND-CCA, but not IND-SO-CCA secure.

(b) In the case of passive (i.e., chosen-plaintext) security, standard se-
curity does imply IND-SO security, at least in a generic model of
computation and for a large class of encryption schemes. (Our sep-
arating scheme from (a) falls into this class of schemes.)

Our results show that the answer to the question whether standard se-
curity implies SO security highly depends on the concrete setting.

Keywords: security definitions, public-key encryption, selective open-
ing security.

1 Introduction

Motivation. It is a challenging task to find a useful and achievable definition
of security for encryption schemes. There seems to be no “one size fits all”
security notion; for instance, certain settings involve key-dependent messages
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(e.g., [7, 9, 2]) or leakage of key material (e.g., [18, 13, 1]). In most of these specific
settings, it is easily seen that standard encryption security notions (such as IND-
CPA or IND-CCA security) do not provide any reasonable security guarantees.
However, one particularly challenging setting is the setting of selective opening
attacks, which models a specific (and realistic) form of adaptive corruptions. The
topic of this paper is the connection of standard and selective opening security.

Selective Opening Attacks. The premise of a selective opening (SO) at-
tack is as follows: suppose an adversary observes many ciphertexts ci, and then
gets to request openings of some of them. (Here, an opening corresponds to an
adaptive corruption of the sender, and yields not only the plaintext mi but also
the random coins used during encryption.) The question is: can the adversary
learn anything about the unopened mi? Of course, if the encrypted messages
are related, then the opened messages may already reveal information about the
unopened messages. (In fact, this is the main source of trouble when trying to
define selective opening security.) However, we would like to express that the
unopened messages remain “as secure as possible”, given the opened messages.

Selective Opening Security Notions. . . Dwork et al. [12] were the first
to propose a formal SO security notion; their notion is simulation-based and
was formulated for commitments. Bellare et al. [5] gave a public-key encryption
(PKE) version of the definition of [12] (SIM-SO-CPA1), along with a weaker,
indistinguishability-based notion (weak IND-SO-CPA).2 Most relations among
SO security notions (and between SO and standard security notions) have al-
ready been investigated (see also Figure 1). Specifically, [8] provided separations3

between SO notions, and Bellare et al. [4] have separated SIM-SO-CPA security
from IND-CPA security. The only remaining open question (that we approach
in this paper) is thus

Does standard security already imply indistinguishability-based selective
opening security?

. . . and Constructions. Bellare et al. [5] proved lossy encryption [22, 21, 20]
weakly IND-SO-CPA secure, and the scheme of Goldwasser and Micali [15] SIM-
SO-CPA secure. Subsequently, several works have developed chosen-ciphertext
secure (i.e., weakly IND-SO-CCA and SIM-SO-CCA secure) PKE schemes [14,
16, 17]. However, it seems safe to say that (weak) indistinguishability-based SO
security is significantly easier to achieve than simulation-based SO security. In

1 The naming of SO notions is not quite consistent in the literature. We follow the
naming of Böhl et al. [8].

2 There is also a stronger indistinguishability-based SO notion called full IND-SO-
CPA. Weak and full IND-SO-CPA security differ in the sense that the considered
(joint) message distributions are arbitrary in full IND-SO-CPA, but restricted in
weak IND-SO-CPA security. No fully IND-SO-CPA secure schemes are known.

3 Here, with a “separation” between two security notions X and Y , we mean that
there is a scheme that achieves X but not Y (or vice versa). We do not mean that
a Y -secure scheme cannot be constructed from an X-secure one (or vice versa).
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IND-CPA SIM-SO-CPA

weak IND-SO-CPA full IND-SO-CPA

BDWY11

BHK12

BHK12

Fig. 1. Relations among notions of selective opening security and IND-CPA security.
Solid arrows denote implications, crossed arrows denote concrete counterexamples, and
the dashed arrow stands for the remaining open question investigated in this paper.

particular, the most efficient SO secure PKE schemes are not known to be SIM-
SO secure. This makes the question whether standard security implies weak
IND-SO security even more interesting.

Our Contribution. We tackle this last remaining question both in the chosen-
plaintext (CPA) and in the chosen-ciphertext (CCA) case. We give a definite
answer in the CCA case and a partial answer in the CPA case. First, we sep-
arate IND-CCA and IND-SO-CCA security: we give an IND-CCA secure but
IND-SO-CCA insecure PKE scheme. Our result utilizes the standard model of
computation and works under the minimal assumption that IND-CCA secure
PKE schemes exist. Nonetheless, the IND-SO-CCA attack on our scheme is com-
pletely generic and does not make use of, e.g., non-black-box techniques (such
as using the internal structure of the IND-CCA secure scheme). Our second re-
sult shows that IND-CPA and IND-SO-CPA security are equivalent in a generic
model of computation and with respect to a restricted class of PKE schemes.
We stress that the generic model considered for the CPA equivalence is realistic:
it covers, e.g., ElGamal, Cramer-Shoup and similar encryption schemes, and in
fact also concrete instantiations (e.g., based on Cramer-Shoup) of our separat-
ing example for the CCA case (including our attack on its weak IND-SO-CCA
security). Interestingly, [4] shows that there is no such equivalence in the case of
SIM-SO-CPA for the class of committing encryption schemes which also includes
ElGamal and Cramer-Shoup. The adversary for which they can show that no
simulator exists is a simple generic algorithm.

Another interesting point of view on our results is the following: For a broad
class of encryption schemes (including instances of our separating scheme), it
holds that any generic IND-SO-CPA adversary can be turned into a generic
IND-CPA adversary, while this does not hold in the CCA case. For instance,
there exists an efficient generic IND-SO-CCA adversary against our separating
scheme, while there are no generic (or even non-generic) IND-CCA adversaries.

Details on Our IND-CCA/IND-SO-CCA Separation. To construct our
separating scheme, we take an arbitrary IND-CCA secure PKE scheme and mod-
ify it such that a weak IND-SO-CCA attack becomes possible. To understand
the basic idea behind our modification, recall that in the weak IND-SO-CCA
experiment, an adversary A first receives a ciphertext vector c = (ci)i with
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ci ← Enc(pk ,mi) for messages mi sampled from a (joint) adversarially selected
message distribution D. A can then select a subset I of all ci to be opened.
In addition to the openings of all mi (for i ∈ I), A also receives a full mes-
sage vector m which either consists of all actually encrypted messages mi, or
of messages m′

i freshly sampled from D, conditioned on m′
i = mi for all i ∈ I.

As usual, A has to decide which case it is. Thus, A has to distinguish between
the encrypted messages and messages that are “just as plausible” given only the
opened messages.

To obtain our separating scheme, we take an IND-CCA secure scheme and
modify its decryption algorithm. Namely, we now allow a special type of decryp-
tion queries (soa, Z) in which Z contains a whole ciphertext vector c, along with
openings of a subset of these ciphertexts. (For now, it is easiest to imagine that
this subset is selected externally and randomly.) If the openings are valid, then
decryption will return an error-corrected version of the message vector from c.
(Hence, the scheme itself actually helps an adversary that can prove that it is
taking part in an SO attack.)

This immediately gives rise to a weak IND-SO-CCA attack: a suitable adver-
sary A essentially only has to relay between its decryption oracle and the SO
experiment to obtain the decryption of all challenge ciphertexts. The message
distribution considered in the attack will only select codewords, so that the men-
tioned error correction will not disturb the decryption. Moreover, the underlying
code has the property that a codeword is not fixed by the openings that occur
during the attack. (Hence, a re-sampling will lead to a different message vector
and can thus be detected.)

It is more challenging to prove that our modification does not harm the
scheme’s IND-CCA security. Intuitively, an IND-CCA adversary B could try
to embed its own (IND-CCA) challenge c∗ into a ciphertext vector c and obtain
the decryption of c∗ through a suitable (soa, Z) query. (With a little luck, B will
not have to open c∗, so decryption will return the full message vector, including
the decryption of c∗.)

To cope with such an IND-CCA adversary B, we will answer (soa, Z) only
with the error-corrected message vector. Decryption will ensure (by the random
choice of I and by ensuring suitably valid openings) that most of the encrypted
messages mi and all opened messages are consistent with a unique single code-
word. (If this is not the case, then the query is rejected. Of course, we will have to
make sure that B also learns nothing from the fact that the query was rejected.)
Decryption then returns this unique codeword, and not simply the decryption
of all individual ciphertexts. This procedure makes sure that a single ciphertext
c∗ embedded into c alone has no significant influence on the returned value.

Our strategy is somewhat reminiscent of the strategy of Bellare et al. [5], who
show a black-box impossibility for IND-SO secure commitments. Our approach
can be seen as a refinement and adaptation of their ideas to the PKE setting
and to the standard model.

Note that our attack only uses two decryption queries; furthermore, one of
these queries can be substituted by a random oracle query when adapting the
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scheme to the random oracle model. Thus, our scheme also gives rise to a
separation between IND and weak IND-SO security in a bounded CCA set-
ting [10]. Moreover, since CCA settings with only 1 decryption query and non-
malleability are tightly related [6], our counterexample has also implications for
non-malleability notions of security. (See Section D for details.)

Details on Our Generic Group IND-CPA/IND-SO-CPA Equivalence.
Our equivalence result applies to a broad class of encryption schemes over prime
order groups for which public keys as well as ciphertexts can be described by
(low-degree) polynomials “in the exponent”. We model the underlying group as
generic (following Shoup’s formalization) with respect to the IND-SO-CPA ad-
versary and the adversarial message sampling algorithm. That means that the
only basic group operations such algorithms may perform are equality testing,
application of the group law, and computation of inverse elements. However,
note that this is already sufficient, e.g., for realizing our efficient IND-SO-CCA
adversary (see also Section C). A potential hash function utilized by the encryp-
tion scheme is modeled as a Random Oracle. Although the model we consider
for our equivalence result may appear highly idealized, proving the equivalence
is anything but trivial. There are several novel and challenging aspects about
this proof; we only highlight a few here.

The common strategy of a proof in the generic group model is to show that,
with overwhelming probability, an adversary does not obtain any information
about the underlying secrets (e.g., secret keys, the challenge bit in indistinguisha-
bility games, etc.) of the considered game (IND-SO-CPA in our case). Thus, it
can only win by mere guessing. To this end, one shows by means of a simulation
game (where all secrets are replaced by formal variables) that a generic algo-
rithm may only obtain information about secrets from nontrivial equations that
hold between low-degree combinations of these secrets. (An equation is called
trivial if it holds for all possible choices of the secrets.) If the secret values are
chosen uniformly at random then by applying standard techniques (e.g., the
Schwartz-Zippel Lemma in the case of prime power order groups) one can see
that such equations may occur only very rarely. However, in our setting also
the adversarial messages, which are chosen according to an arbitrary (efficiently
re-samplable) distribution, belong to the secrets for which we want to argue that
they are hidden information-theoretically. Moreover, in the opening phase, parts
of the secrets are even disclosed to the adversary. We cope with these issues by
modifying the way we usually simulate in the generic model and, hence, how
non-trivial equations are defined. In particular, we need to adapt the simulation
when the opening phase starts and show that a non-trivial equation and “bad”
message distribution can be leveraged to win the IND-CPA game.

In a nutshell, our proof is split into two parts: First, we show that in order to
win the IND-CPA game, it suffices that for all possible public keys and encryp-
tions of a message vector, we can efficiently compute a non-trivial representation
of the neutral group element in terms of the public key and (at least one of)
the corresponding ciphertexts. The idea is to replace one of the messages with
a different one for which this equation does not hold anymore and use the two
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messages in the IND-CPA game. Second, we show that from any generic IND-
SO-CPA adversary, such a representation and message vector can be extracted.

Outline. After recalling some definitions in Section 2, we describe our separa-
tion in Section 3. The generic equivalence in the passive case can be found in
Section 4. Sections A, B, and C discuss the restrictions we make for the CPA
case, and in particular show that our separating scheme from the CCA case
(and its analysis) is generic in our sense. Finally, Section D briefly describes
extensions to our CCA separation.

2 Preliminaries

Notation. For n ∈ �, let [n] := {1, . . . , n}. Throughout the paper, k ∈ �
denotes the security parameter. For a finite set S, we denote by s ← S the
process of sampling s uniformly from S. For a probabilistic algorithm A, we
denote with RA the space of A’s random coins. y ← A(x;R) denotes the process
of running A on input x and with randomness R ← RA, and assigning y the
result. We write y ← A(x) for y ← A(x;R) with uniform R. If A’s running time
is polynomial in k, then A is called probabilistic polynomial-time (PPT).

PRFs. A pseudorandom function (PRF) is a function PRF : K × D → R for
finite K,R, such that oracle access to PRFK(·) (for K ← K) is indistinguishable
from oracle access to a truly random function RF : D → R. Concretely, for
a distinguisher D, let AdvprfPRF,D(k) := Pr

[
DPRFK(·) = 1

]
− Pr

[
DRF (·) = 1

]
. We

require that AdvprfPRF,D is negligible for all PPT D.

PKE Schemes. A public-key encryption (PKE) scheme PKE with message
spaceM consists of three PPT algorithms Gen,Enc,Dec. Key generation Gen(1k)
outputs a public key pk and a secret key sk . Encryption Enc(pk ,m) takes pk
and a message m ∈ M, and outputs a ciphertext c. Decryption Dec(sk , c) takes
sk and a ciphertext c, and outputs a message m. For correctness, we want
Dec(sk , c) = m for all m ∈M, all (pk , sk)← Gen(1k), and all c← Enc(pk ,m).

Standard Security Notions. Let PKE be a PKE scheme as above. For an
adversary A, consider the following experiment: first, the experiment samples
(pk , sk) ← Gen(1k) and runs A on input pk . Once A outputs two messages
m0,m1, the experiment flips a coin b ← {0, 1} and runs A on input c∗ ←
Enc(pk ,mb). We say that A wins the experiment iff b′ = b for A’s final output

b′. We denote A’s advantage with Advind-cpaPKE,A(k) := Pr [A wins]−1/2 and say that

PKE is IND-CPA secure iff Advind-cpaPKE,A is negligible for all PPT A. Similarly, write

Advind-ccaPKE,A(k) := Pr [A wins]−1/2 for A’s winning probability when A additionally
gets access to a decryption oracle Dec(sk , ·) at all times. (To avoid trivialities,
A may not query Dec on c∗, though.) PKE is IND-CCA secure iff Advind-ccaPKE,A is
negligible for all PPT A.

Security under Selective Openings. Following [5, 16, 8], we present an
indistinguishability-based definition for security under selective openings that
captures security of an encryption scheme under adaptive attacks.
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Experiment Expweak-ind-so-cpaPKE,A

b← {0, 1}
(pk , sk)← Gen(1k)

samp(·)← A(pk )

m0 := (mi)i∈[n] ← samp()

R := (Ri)i∈[n] ← (REnc)
n

c := (ci)i∈[n] := (Enc(pk ,mi;Ri))i∈[n]

I ← A(sel, c)

m1 ← samp(mI)

outA ← A(out, (Ri)i∈I ,mb)

return 1 if outA = b, and 0 otherwise

Fig. 2. Weak IND-SO-CPA experiment

Intuitively, an adversary A that re-
ceives a vector of ciphertexts, along
with openings of a subset of these
ciphertexts, should not be able to
distinguish the messages in the un-
opened ciphertexts from indepen-
dently selected messages. The en-
crypted message vector is selected
according to a (joint) message dis-
tribution selected by A. A also se-
lects the set of ciphertexts to be
opened, in a way possibly depend-
ing on the ciphertexts themselves.
Since we currently do not know
how to achieve this security notion
for arbitrary (efficiently samplable)
message distributions, we further
restrict to efficiently re-samplable
message distributions:

Definition 1 (Efficiently re-samplable). Let n = n(k) > 0, and let D be a
joint distribution over Mn. We say that D is efficiently re-samplable if there is
a PPT algorithm samp such that for any I ⊆ [n] and any partial vector m′

I :=
(m′

i)i∈I ∈M|I|, samp(m′
I) samples from D |mI, i.e., from the distribution D,

conditioned on mi = m′
i for all i ∈ I. Note that in particular, samp() samples

from D.
Definition 2 (Weak indistinguishability-based selective opening secu-
rity). For a PKE scheme PKE = (Gen,Enc,Dec), a polynomially bounded func-
tion n = n(k) > 0, and a stateful PPT adversary A, consider the experiment
in Figure 2. We only allow A that always output re-sampling algorithms as in
Definition 1. We call PKE weakly IND-SO-CPA secure if

Advind-so-cpaPKE,A (k) := Pr
[
Expweak-ind-so-cpaPKE,A (k) = 1

]
− 1

2

is negligible for all PPT A. Similarly, we define an experiment Expweak-ind-so-ccaPKE,A

(with advantage Advind-so-ccaPKE,A ) that is identical to Expweak-ind-so-cpaPKE,A , except that A
gets access to a decryption oracle Dec(sk , ·) at all times. To avoid trivialities, we
only allow A that never query their decryption oracle with any ciphertext from c.
We say that PKE is weakly IND-SO-CCA secure if Advind-so-ccaPKE,A (k) is negligible.

There are some minor technical differences between Definition 2 and the IND-
SO-ENC definition from [5]: IND-SO-ENC security universally quantifies over all
(efficiently re-samplable) message distributions. We let A choose samp instead,
e.g., to allow a message distribution that depends on the public key pk . (In
fact, otherwise it is not even clear that the resulting definition implies IND-CPA
security.) Besides, unlike Böhl et al. [8], we model only one round of openings
for simplicity. (However, our results hold also for multiple rounds of openings.)
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3 Our Separating Encryption Scheme

In this section, we describe a PKE scheme that is IND-CCA secure, but not
weakly IND-SO-CCA secure. So our scheme separates standard security from
even the weakest considered form of selective opening security.

3.1 The Scheme

Specific Notation and Assumptions. In the following, let � = �p be the
finite field of size p for a prime p. (We will later choose a (k + 1)-bit p as part
of the public key of our scheme.) By ipol((Xi, Yi)

d
i=0) (for pairwise different Xi),

we denote the unique degree-≤ d polynomial F ∈ �[X ] with F (Xi) = Yi for
all i. Let SS

� denote the set of all �-sized subsets of S. We will assume a PRF

PRF : {0, 1}k × {0, 1}∗ → S [3k]
k (such that oracle access to PRFK(·) for uniform

K ∈ {0, 1}k cannot be distinguished from access to a truly random function that
maps arbitrary bitstrings to uniform k-sized subsets of [3k]). We will also assume
an IND-CCA secure PKE scheme PKE′ = (Gen′,Enc′,Dec′) with message space
�. (The requirement about the message space is without loss of generality [19];
see also Section B for a scheme with a group as message space.)

Construction. PKE = (Gen,Enc,Dec) is constructed from PKE′:

Key generation adds a PRF key to sk : Gen(1k) outputs (pk , sk) = ((pk ′, p),
(sk ′,K)) for (pk ′, sk ′) ← Gen′(1k), a uniformly chosen (k + 1)-bit prime p,
and K ← {0, 1}k.

Encryption marks ciphertexts as “regular”: Enc(pk ,m) runs c′ ← Enc′(pk ′,m)
and outputs c = (reg, c′).

Decryption decrypts “regular” ciphertexts as PKE′, but also offers possibilities
to evaluate PRFK and perform a special type of attack by decrypting “non-
regular” ciphertexts:

Dec(sk , c) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Dec′(sk ′, c′) if c = (reg, c′) for some c′,

PRFK(Z) if c = (sel, Z) for some Z,

SOA(sk , Z) if c = (soa, Z) for some Z,

⊥ else.

Here, the function SOA(sk , Z) operates as follows:

1. Parse Z as Z = ((c′i)i∈[3k], (mi, Ri)i∈I), where I = PRFK((c′i)i∈[3k]).

2. If there are indices i �= j with c′i = c′j , then return ⊥.
3. If there is an i ∈ I with Enc′(pk ′,mi;Ri) �= c′i, then return ⊥.
4. Decrypt the unopened ciphertexts by mi = Dec′(sk ′, c′i) for i ∈ [3k] \ I.
5. First, determine if there is a degree-≤ k polynomial F ∈ �[X ] with

F = ipol((i,mi)i∈I∪{j}) for more than k values j ∈ [3k] \ I. Note that
there are only 2k candidates F� = ipol((i,mi)i∈I∪{�}) (for � ∈ [3k] \ I)
for F ; hence, if such an F exists, it can be found efficiently (and in fact
is unique). Return F , or ⊥ if no such F exists.
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Intuitively, SOA(sk , Z) returns a polynomial F that is consistent with all
opened values mi (for i ∈ I), and most unopened values mi (for i ∈ [3k]\I).
(This slight distinction will be crucial to ensure that access to SOA does not
enable IND-CCA attacks.)

Rationale and Intuition for Security Analysis. The rationale of our mod-
ifications to PKE′ is to enable a specific attack that only a weak IND-SO-CCA
adversary is able to perform. Concretely, once an adversary supplies 3k cipher-
texts along with openings of k of them (in a suitable Dec(sk , (soa, Z)) query),
the scheme itself helps to decrypt all ciphertexts. Indeed, PKE is weakly IND-
SO-CCA insecure with respect to the message distribution D = (F (i))i∈[3k] with
a uniform degree-≤ k polynomial F : by relaying between the experiment and its
Dec oracle, an adversary can obtain all (i.e., even unopened) challenge messages.

The difficult part will be to prove that our modification preserves the IND-
CCA security of PKE′. That is, we will have to prove that (sel, Z) and (soa, Z)
decryption queries do not help an IND-CCA adversary A on PKE. For (sel, Z)
queries, this is intuitively clear, as they are answered independently of the “ac-
tual” secret key sk ′. For (soa, Z) queries, we will argue that the answer can
already be deduced by “regular” decryption queries (reg, c′). Concretely, if the
PKE′ ciphertext c∗ from A’s own challenge (reg, c∗) does not appear as cipher-
text in Z, A can itself use Dec queries to emulate SOA(sk , Z). And even if Z
contains c∗, A can still use Dec to decrypt all ciphertexts in Z except for c∗. We
will show that SOA(sk , Z) can be reasonably well approximated when knowing
all plaintexts encrypted in Z except for at most one. Namely, in order not to be
rejected by SOA(sk , Z), almost all of the ciphertexts in Z must already decrypt
to a value F (i) that is consistent with one F . Knowing all but one plaintext
allows a simulation to compute this F , and thus SOA(sk , Z)’s answer.

Variations. Section D gives variations for bounded CCA security and non-
malleability.

3.2 Why PKE Is Not Weakly IND-SO-CCA Secure

We now formally show that PKE allows for a simple weak IND-SO-CCA attack.

Theorem 1. The PKE scheme PKE from Section 3.1 is not weakly IND-SO-
CCA secure.

Proof. We construct a weak IND-SO-CCA adversary A on PKE. On input pk ,
A outputs the 3k-message distribution

D =
{
(F (1), . . . , F (3k))

∣∣F ∈ �[X ] uniformly chosen degree-≤ k polynomial
}

along with a suitable (re-)sampling algorithm samp. (For instance, samp can
randomly extend its input (F (i))i∈I to k+1 evaluation points as necessary and
then use polynomial interpolation to retrieve F and thus all F (i).) Note that
k messages mi = F (i) from a D-sample do not fully determine F and thus the
whole message vector.
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Once A receives a ciphertext vector c := (reg, c′i)i∈[3k], it queries its decryp-
tion oracle on (sel, (c′i)i∈[3k]) to receive a k-sized subset I ⊂ [3k]. This I is the
subset that A submits to its weak IND-SO-CCA experiment. Let badcoll be the
event that c′i = c′j for some i �= j. By the correctness of PKE′, this can only
happen if mi = mj for these i, j. By definition of D, we have Pr [mi = mj ] =
1/|�| < 1/2k for any fixed i, j. Hence, a union bound over all i, j shows that

Pr [badcoll] <
3k(3k−1)

2 · 1
2k

< 5k2

2k
. We will thus assume ¬badcoll hereafter.

Upon receiving openings (mi, Ri)i∈I and a message vector m∗ = (m∗
i )i∈[3k],

A queries its decryption oracle on (soa, ((c′i)i∈[3k], (mi, Ri)i∈I)). By definition of
Dec (and the function SOA), A will thus receive a polynomial F with mi = F (i)
for all i ∈ [3k] and can thus obtain the actually encrypted messages mi. Finally,
A will output outA = 0 iff m∗

i = F (i) for all i ∈ [3k].
Still assuming ¬badcoll, it is clear that A will output outA = 0 when b = 0,

i.e., when m∗ = m0. On the other hand, if b = 1, then m∗ = m1 has been
re-sampled subject to m∗

i = mi for all i ∈ I. However, since a message vector m
from D is not fixed by only k = |I| values mi, we have that m

∗ �= m0 (so that A
outputs outA = 1) except with probability at most 1/|�| < 1/2k. Summarizing,
we get

Advind-so-ccaPKE,A (k) = Pr [outA = b]−1

2
≥ Pr [outA = b | ¬badcoll]−Pr [badcoll]−

1

2

>
1

2

(
1 + (1− 1

2k
)

)
− 5k2

2k
− 1

2
=

1

2
− 5k2 + 2

2k
,

which is non-negligible (and in fact negligibly close to the maximal advantage).

3.3 Why PKE Is Still IND-CCA Secure

We show that PKE inherits PKE′’s IND-CCA security.

Theorem 2. The PKE scheme PKE from Section 3.1 is IND-CCA secure, as-
suming that PKE′ is IND-CCA secure, and PRF is pseudorandom.

Proof. Let A be a PPT adversary on PKE that makes exactly q decryption
queries. We proceed in games, and let out i denote the output of Game i.

Game 1 is the original IND-CCA game with A. Consequently,

Pr [out1 = 1]− 1/2 = Advind-ccaPKE,A(k).

In Game 2, we answer decryption queries of the form (sel, Z) with RF (Z)

instead of PRFK(Z) for a truly random function RF : {0, 1}∗ → S [3k]
k . (We

will assume that RF is efficiently implemented, e.g., using lazy sampling.) A
straightforward reduction to PRF’s pseudorandomness yields

Pr [out1 = 1]− Pr [out2 = 1] = AdvprfPRF,D(k)

for a suitable PRF distinguisher D.
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InGame 3, we slightly change the way decryption queries of the form (soa, Z)
are answered. Our goal is to avoid a decryption of c∗, where (reg, c∗) is A’s own
challenge ciphertext. Informally, we simply skip decrypting c′i if c

′
i = c∗ in Step 4

of the function SOA(sk , Z). In Step 5, we skip any comparison of mi for c′i = c∗.
Formally, we change Steps 4 and 5 into

4. Let I∗ be the set of all i ∈ [3k] \ I with c′i = c∗. (Note that |I∗| ≤ 1.)
Decrypt the unopened ciphertexts not equal to c∗ by mi = Dec′(sk ′, c′i) for
i ∈ [3k] \ (I ∪ I∗).

5. If there is a degree-≤ k polynomial F ∈ �[X ] with F = ipol((i,mi)i∈I∪{j})
for more than k values j ∈ [3k] \ (I ∪ I∗), then return F . Else return ⊥.

This modified version SOA′ only yields different values from that of Game 2 if

(a) Z = ((c′i)i∈[3k], (mi, Ri)i∈I) with pairwise different c′i and I = RF ((c′i)i∈[3k]),

(b) all openings are valid in the sense Enc′(mi;Ri) = c′i for i ∈ I, and
(c) there are exactly k + 1 indices i ∈ [3k] \ I with mi = F (i) for a degree-≤ k

polynomial F .

In this case, SOA(sk , Z) will return F , while SOA′(sk , Z) might return ⊥ (in
case there is an unopened c′i = c∗ with mi = F (i)). Let us call a query (soa, Z)
satisfying (a)-(c) implausible. Denote by badimpl the event that A ever submits
an implausible decryption query. Unless badimpl occurs, Game 2 and Game 3 are
identical, so that Pr [badimpl] is the same in these games.

Intuitively, badimpl is unlikely, because it necessitates that the (randomly cho-
sen) subset I = RF ((c′i)i∈[3k]) happens to contain only indices i with mi = F (i)
for the uniquely determined polynomial F . However, requirement (c) states that
k − 1 indices i are not compatible with F , meaning mi �= F (i). The probability
that any such i is contained in I is overwhelming. We prove the following lemma
after the main proof.

Lemma 1. Pr [badimpl] ≤ q ·
(
5
6

)k
for k ≥ 2.

Using Lemma 1, we thus get for k ≥ 2:

|Pr [out3 = 1]− Pr [out2 = 1]| ≤ Pr [badimpl] ≤ q ·
(
5

6

)k

.

Finally, we have
Pr [out3 = 1] = Advind-ccaPKE,B + 1/2 (1)

for a suitable IND-CCA adversaryB on PKE′. Concretely, observe that the whole
Game 3 only uses sk ′ to decrypt PKE′ ciphertexts different from c∗. Hence, B
can simulate A, using its own challenge public key pk ′ and ciphertext c∗ as
A’s public key and challenge. A’s choice of challenge messages m0,m1 is also
used by B. A’s decryption queries (reg, c′) are relayed (as c′) to B’s decryption
oracle; (sel, Z) and (soa, Z) queries are answered by B for A, using B’s own
decryption oracle as necessary for (soa, Z) queries. (Note that B’s challenge c∗

will never have to be decrypted by our change from Game 3.) This adversary B
thus perfectly simulates Game 3 for A, so we get (1).
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Taking things together yields

∣∣∣Advind-ccaPKE,A − Advind-ccaPKE,B

∣∣∣ = |Pr [out1]− Pr [out3]| ≤ |AdvprfPRF,D(k)|+ q ·
(
5

6

)k

for k ≥ 2, which shows the theorem.

It remains to prove Lemma 1:

Proof (Proof of Lemma 1). Given a ciphertext vector c = (c′i)i∈[3k], define mi =
Dec(sk ′, c′i) for all i. (Correctness implies that these mi are the same that will
be recovered by SOA, either using openings given by A, or by decryption.) Say
that there is a (unique) degree-≤ k polynomial F and a (2k + 1)-sized subset
I ⊂ [3k] with mi = F (i)⇔ i ∈ I. (Note that this is a prerequisite for badimpl.)

The crucial observation is that the set I = RF (c) that determines which
ciphertexts A must open is chosen independently and uniformly from the set
of all k-sized subsets of [3n]. Furthermore, I is only chosen once A makes a
(sel, Z) or (soa, Z) query that involves c. If I �⊂ I, then there can be no
implausible query with this c. (Condition (b) would require that some i∗ �∈ I is
opened, so that Condition (c) cannot be met, as mi∗ �= F (i∗).) Hence I ⊂ I is
a necessary requirement for an implausible query with this c. But I ⊂ I means
that a random k-sized subset I of [3k] is a subset of a fixed (2k+1)-sized subset
I ⊂ [3k]. Hence,

Pr
[
I ⊂ I

]
=

(
2k+1
k

)(
3k
k

) =
(2k + 1)!(2k)!

(3k)!(k + 1)!
=

(2k + 1) · · · (k + 2)

(3k) · · · (2k + 1)

k≥2

≤
(
5

6

)k

.

Since A makes only q decryption queries, it can only submit at most q different
c. For each c, the probability is at most (5/6)k that an implausible query with
this c exists. Hence, a union bound shows that

Pr [badimpl] ≤ q ·
(
5

6

)k

.

4 Equivalence of IND-SO-CPA and IND-CPA in the
GGM

We give evidence towards the equivalence of IND-SO-CPA and IND-CPA by
showing that for a broad class of encryption schemes any efficient generic IND-
SO-CPA adversary can be turned into an efficient IND-CPA adversary.

In the following, some additional notation is needed: For a vector of variables
X or polynomials P, let |X| and |P| denote the size of the corresponding vector.
For a polynomial P , let |P | denote the number of non-zero monomials.
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4.1 The Class of (P,E,H,H)-CS-Type Encryption Schemes

The following definition covers a broad class of public-key encryption schemes
over prime order groups where messages are group elements. This includes El-
Gamal, Cramer-Shoup (CS), and also a slight variation of the separating scheme
from Section 3.1, e.g., instantiated with Cramer-Shoup (see Section B). Note
that the restrictions on the polynomials in Definition 3 are reasonable for mean-
ingful encryption (see Section A).

Definition 3. Let G be a group of prime order p with generator g and � = �p.
Furthermore, let u1, u2, u3, v1, v2 ∈ �,

– P = (P1 = 1, P2, . . . , Pu1) be public key polynomials in �[X1, . . . , Xv1 ],

– E = (E1, . . . , Eu2) be polynomials in �[X1, . . . , Xv1 , Y1, . . . , Yv2 , Z,M ], called
encryption polynomials, where all monomials have the form

αP e1Ze2M e3

v2∏
i=1

Y di

i

with P ∈ P, e1, e3 ∈ {0, 1}, e1 + e3 ≤ 1, and e2, di ∈ �0,

– H = (H1, . . . , Hu3) be tuple of hash input polynomials, where Hi ∈ E,
degZ(Hi) = 0, and for at least one Hi it holds that degM (Hi) > 0 or
maxj(degYj

(Hi)) > 0,

– H : Gu3 !→ � be a hash function.

Then we call an encryption scheme over G a (P,E,H,H)-CS-type encryp-
tion scheme if the following conditions are satisfied:

– The public key is of the form (gP (x))P∈P, where x← �
v1 .

– The ciphertext of a message m = gm
′
is of the form c = (gE(x,y,z,m′))E∈E ,

where y← �
v2 and z is the output of H given gH1(x,y,m

′), . . . , gHu3 (x,y,m
′).

Example 1. Cramer-Shoup encryption scheme can be viewed as (P,E,H,H)-
CS-type encryption scheme, where we assume that generator g from Definition 3
has been chosen randomly and

– P1 = 1, P2 = X1, P3 = X2 +X1X3, P4 = X4 +X1X5, P5 = X6

– E1 = P1Y1, E2 = P2Y1, E3 = P3Y1 + P4Y1Z, E4 = P5Y1 +M

– H : G3 !→ � is a collision resistant hash function computed over group
elements with exponents of the form H1 = E1, H2 = E2, H3 = E4.

4.2 IND-SO-CPA in the Generic Group Model

We base the formalization of the IND-SO-CPA game for generic adversaries on
the generic group model (GGM) introduced by Shoup [23]. In Shoup’s GGM
elements are encoded as unique random bit strings, ensuring that no special
property of a group’s representation can be exploited. More precisely, let � ⊂
{0, 1}�log2(p)�, where |�| = p, denote the set of possible element encodings of a
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cyclic group G of order p. Since any such group G is isomorphic to (�,+), we
will always use � for the internal representation of G. A generic group oracle
defines the random map between group elements and encodings and allows A
to perform operations from Ω = {+,−} on encoded group elements. Equality
testing can be done without the help of O since encodings are unique.

Internal State of O. The oracle maintains two lists L and E which are used to
define the random mapping between � and � in a lazy manner: L ⊂ � will be
initially populated with the elements comprising the public key of the considered
encryption scheme. While A interacts with O, additional elements are added to
L. The list E ⊂ � contains the random encodings corresponding to the elements
in L. More precisely, the i-th encoding Ei represents the i-th element Li. We will
denote the encoding of an element a ∈ L by [[a]].

Encoding of Elements. Each time an element a should be added to L, O
checks if a is already contained in L. If this is the case, [[a]] is already defined
and will be appended to E again. Otherwise, a fresh encoding σ ← � \ E is
sampled and appended to E . The encoding [[a]] is sent to A. We may assume
that a generic algorithm A always outputs encodings it has previously received
by the oracle: A fresh encoding not contained in E is associated with a random
a ∈ �\L. Assuming |L| is polynomial in log(p), such an element can be efficiently

generated byA itself with overwhelming probability 1− |L|
p by sampling a random

a ∈ �. The corresponding encoding [[a]] can be computed from [[1]] using double-
and-add. Similarly, in our upcoming IND-SO-CPA setting, A will be able to
output an encoding that has been computed by another generic algorithm, but

has not explicitly given to A, only with negligible probability of at most |E|
p .

Query Operations. A may ask O to perform an operation ◦ ∈ Ω on encoded
elements [[a]], [[b]] ∈ E . Then a ◦ b is added to L and [[a ◦ b]] is sent to A.

The GGM IND-SO-CPA Game. The IND-SO-CPA game for generic ad-
versaries against an (P,E,H,H)-CS-type encryption scheme is shown in Figure
3a. By abuse of notation we assume that for a new input [[a]] given to a generic
algorithm (in the sense that a �∈ L), a is first added to L and then an encoding
is determined. The hash function H : Gu4 !→ � is modeled as a Random Oracle,
which on input of u4 concatenated encodings, outputs a fresh hash value z ← �

if it has not received this input before. Otherwise, the hash value which has been
chosen previously is returned. Furthermore, as can be seen from Figure 3a, both
the adversary A and samp are modeled as generic algorithms. The algorithm
samp is stateless but its output may depend on the public key [[P (x)]]P∈P since
this was given as input to A before samp was created.

4.3 Equivalence for (P,E,H,H)-CS-Type Encryption

As a warm-up, consider the IND-SO-CPA game for ElGamal, viewed as a CS-
type encryption scheme whereP = (1, X) and E = (Y,XY +M), in the GGM. In
this model, it is not hard to show (by means of a simulation game) that the only
source of information for the adversary about the challenge bit b are non-trivial
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equations between elements that are linear combinations of the secret key x,
the unopened random coins for encryption (yj)j �∈I , and the unopened encrypted
messages (m′

0,j)j �∈I . More precisely, an adversary may only obtain information
about b if the difference Δ(x, y1, . . . , yn,m

′
0,1, . . . ,m

′
0,n) of two computed ele-

ments is zero, where Δ is a non-zero polynomial of the form

Δ = α0 + α1X +

n∑
j=1

βjYj +

n∑
j=1

γj(XYj +Mj)

and βj = γj = 0 for j ∈ I (I = ∅ if we are not yet in the opening phase). What
is the probability that this happens? Note that in contrast to the secret key and
the random coins, the messages m′

0,j are not necessarily uniformly chosen. So the
well-known Schwartz-Zippel Lemma cannot immediately be applied. However,
since samp is also assumed to be generic,m′

0,j will be of the formm′
0,j = Rj(x) for

some polynomial Rj of the form Rj = α0+α1X . Let us consider the polynomial
Δ′ = Δ(R1, . . . , Rn) which results from replacing any occurrence of Mj by Rj .
It is easy to see that Δ′ �= 0 if Δ �= 0. Finally, we can apply Schwartz-Zippel
to Δ′ to upper bound the probability that Δ(x, y1, . . . , yn,m

′
0,1, . . . ,m

′
0,n) =

Δ′(x1, y1, . . . , yn) is zero, yielding the bound 2
p .

Note that for more general public key and encryption polynomials as con-
sidered in Definition 3, Δ′ is not guaranteed to be non-zero anymore: For in-
stance, consider the slightly modified encryption polynomials E = (Y,XY+Y M)
and the difference polynomial Δ = −Y1 + (XY1 + Y1M1). Here Δ′ becomes
zero for R1 = 1 − X . Fortunately, it turns out that in this case the corre-
sponding encryption scheme is already IND-CPA insecure. In our example, this
is obvious: An IND-CPA adversary could choose m0 = g(gx)−1 and a ran-
dom message m1 and check whether for the challenge ciphertext c = (c1, c2)
holds that c−1

1 c2 = gΔ(X=x,Y1=y1,M1=m′
b) is equal to 1, where m′

0 = 1 − x and
m′

1 = logg(m1). With overwhelming probability this will not hold for b = 1.
More generally, we can show that any Δ and Rj ’s can be used to build an IND-

CPA adversary that works similarly. This is done in the first part (Theorem 3)
of our proof which is actually independent of the generic model. It essentially
says that if for all possible public keys and all possible encryptions of certain
messages, we can efficiently compute a non-trivial representation of 1 ∈ G in
terms of the public key and the ciphertexts, then we can win the IND-CPA game
with overwhelming probability. The idea is to replace one of the messages with
a different one for which the equation does not hold anymore and use these two
messages in the scope of the IND-CPA game. In the second part (Theorem 4),
we show that any efficient generic adversary who wins the IND-SO-CPA game
with non-negligible probability gives rise to such a representation (in form of a
polynomial) and corresponding messages.

Theorem 3. Let a (P,E,H,H)-CS-type encryption scheme PKE over a group
G of prime order p be given. Furthermore, let a polynomial Δ of the form

Δ =
∑
P∈P

αPP (X) +
n∑

j=1

∑
E∈E

βj,EE(X,Yj , Zj ,Mj)
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and polynomials R1, . . . , Rn of the form Ri =
∑

P∈P αPP (X) over � be given
(where the coefficients α, β in the above representation are known) such that Δ �=
0 but Δ(M1 = R1, . . . ,Mn = Rn) = 0 . Then we can build a generic adversary
B who wins the IND-CPA game for PKE, modeling H as a Random Oracle,

with probability at least 1− deg(Δ)
2p using O((maxE∈E(|E|)|E||Y| + |P|) log(p)n)

multiplications over G and �.

Proof. First, observe that there is some 1 ≤ i ≤ n such that Δ(R1, . . . , Ri−1) �=
0 but Δ(R1, . . . , Ri) = 0. Note that in this case, we know that degMj

(Δ) =
degZj

(Δ) = degY (Δ) = 0, for all Y ∈ Yj and j > i. Clearly, also for uniform
x,y1, . . . ,yi, z1, . . . , zi, it holds that Δ(x,y1, . . . ,yi, z1, . . . , zi,m

′
1, . . . ,m

′
i) = 0,

where m′
1 = R1(x), . . . ,m

′
i = Ri(x). Furthermore, if we additionally choose

m′′
i ∈ � at random, the probability that

Δ(x,y1, . . . ,yi, z1, . . . , zi,m
′
1, . . . ,m

′
i−1,m

′′
i ) = 0

is upper bounded by deg(Δ)
p . This follows from the Schwartz-Zippel Lemma ob-

serving that Δ(R1, . . . , Ri−1) is a non-zero and of degree at most deg(Δ).
Now, we are prepared to describe the IND-CPA adversary. First, B re-

ceives the public key (gP (x∗))P∈P of the (P,E,H,H)-CS-type encryption scheme
from the challenger. Using this key it creates the message gm

∗
0 = gRi(x

∗) =∏
P∈P(g

P (x∗))αP , where Ri =
∑

P∈P αPP (X), and gm
∗
1 , where m∗

1 ← �. Then
it sends them to the challenger who responds with the ciphertext

(gE(x∗,y∗,z∗,m∗
b))E∈E , (2)

where b ← {0, 1} and z∗ is the hash value associated with the message gm
∗
b .

Since we consider the IND-CPA game in the Random Oracle Model z∗ has been
chosen uniformly at random from �. Next, B creates the remaining values in
order to evaluate Δ as exponent: It computes the messages gm

′
j = gRj(x

∗) and
chooses yj ← �

v2 , zj ← �, for j < i. Finally, it computes

gΔ(x∗,y1,...,yi−1,y
∗,z1,...,zi−1,z

∗,m′
1,...,m

′
i−1,m

∗) , (3)

where it is easy to see that B is in fact able to evaluate this polynomial in
the exponent (cf. paragraph on runtime). If the resulting element equals 1, B
outputs outB = 0 and otherwise 1.

As we know from the previous analysis, the element in Equation 3 happens to

be 1 for both messages with probability at most deg(Δ)
p . So in this case B’s guess

is correct with probability 1
2 . If this failure does not happen B’s guess is correct

with probability 1. In total, we have a probability of at least 1
2
deg(Δ)

p +1− deg(Δ)
p .

Let us briefly consider the runtime of B. Note that elements involv-
ing yi = y∗, and m′

i = m∗ or zi = z∗, are given and do not need

to be computed (cf. Equation 2). First, constructing the messages gm
′
j re-

quires O(log(p)|P|n) group operations. To compute the group element from
Equation 3, B uses the known representation in P and E. For the first part
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P∈P(g

P (x∗))αP about O(log(p)|P|) group operations are required. To com-
pute the second at most n − 1 encryptions are needed. More precisely, the
second part

∏n
j=1

∏
E∈E gβj,EE(x,yj,zj,m

′
j) can be computed (for j �= i) as a multi-

exponentiation (the exponents are the monomials of each E) with elements of
the form

a
∏v2

k=1 y
dj,k
j,k z

e2
j βj,E ,

where a = g(P (x∗))e1 or a = gm
′
j
e3

which requires O(log(p)|Y|maxE∈E(|E|)|E|n)
multiplications.

Theorem 4 says that from any generic IND-SO-CPA adversaryA certain poly-
nomials as required for Theorem 3 can be extracted using “white-box access” to
A. Here the extraction algorithm B does not only play the role of the IND-SO-
CPA challenger and restricts itself to considering the in- and output of A (in
this case we would be in the standard model) but closely observes the operations
A performs on its inputs, i.e., B substitutes (and modifies) the generic oracle.
More precisely, B’s strategy is as follows: It turns the real IND-SO-CPA game
in the generic model into a simulation game which does not reveal any informa-
tion about the secret bit b chosen by the challenger. So A has no better chance
than mere guessing to win the simulation game. Since the simulation game and
the real game are equivalent unless a certain failure event occurs, an adversary
who has a non-negligible advantage in winning the real game must cause this
simulation failure with non-negligible probability. The crucial point is that a
failure event is defined in a way such that it gives rise to the polynomials from
Theorem 3.

Theorem 4. Let a (P,E,H,H)-CS-type encryption scheme PKE over a group
G of prime order p be given. Furthermore, let d = maxS∈P∪E(deg(S)), d′ =
maxS∈P(deg(S)), and r = maxS∈P∪E(|S|), and s = max(|X|, |Y|). Suppose
there is a generic group adversary A that wins the IND-SO-CPA game for PKE,
where we model H as Random Oracle, with advantage Advind-so-cpaPKE,A , and by using
n challenge messages. Let O(t) and O(t′) denote the runtime of A and samp,
respectively. Then there is a generic algorithm B which, by white-box access to
A, extracts a polynomial Δ of degree at most d as well as polynomials R1, . . . , Rn

satisfying the conditions of Theorem 3 with a probability of at least Advind-so-cpaPKE,A −
dd′

p and by performing at most O(r(|P|+ |E|n)((t+ t′ + |P|+ |E|n)2 + log(p)s))
�-operations.

Proof. Game 1 is the real IND-SO-CPA game as shown in Figure 3a.
Game 2 is the transition game shown in Figure 3b, which is actually equiva-
lent to the real IND-SO-CPA game. Here, we define a new oracle O1 as follows:
O1 uses polynomials to internally represent elements from �. More precisely,
we have L ⊂ �[X,Y1, . . . ,Yn,Z,M]. Initially, the list is populated with the
polynomials P describing the public key. Later, for each message, polynomials E
describing its ciphertext are added. Applying the group operation in this poly-
nomial representation translates to polynomial addition over �. Moreover, the
oracle receives certain elements x,y1, . . . ,yn, z,m

′
0 which are used to evaluate
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Initialization & Challenge

b ← {0, 1}
x ← �

v1

samp(·) ← AO0,H([[P (x)]]P∈P)

[[m′
0,i]]i∈[n] ← sampO0,H()

(y1, . . . ,yn) ← (�v2 )n

zi ← H([[H(x,yi,m
′
0,i)]]H∈H), 1 ≤ i ≤ n

I ← AO0,H(sel, [[E(x,yi, zi,m
′
0,i)]]E∈E,i∈[n])

Opening

[[m′
1,i]]i∈[n] ← sampO0,H([[m′

0,i]]i∈I)

outA ← AO0,H(out, (yi)i∈I , [[m
′
b,i]]i∈[n])

(a) Real Game

Initialization & Challenge

b ← {0, 1}
x ← �

v1

samp(·) ← AO1(x),H([[P (X)]]P∈P)

[[m′
0,i]]i∈[n] ← sampO1(x),H()

(y1, . . . ,yn) ← (�v2)n

zi ← H([[H(X,Yi,Mi)]]H∈H), 1 ≤ i ≤ n

I ← AO1(x,y1,...,yn,z,m′
0),H(sel, [[E(X,Yi, Zi,Mi)]]E∈E,i∈[n])

Opening

[[m′
1,i]]i∈[n] ← sampO2(x,y1 ,...,yn,z,m′

0),H([[m′
0,i]]i∈I)

outA ← AO2(x,y1,...,yn,z,m′
0),H(out, (yi)i∈I , [[m

′
b,i]]i∈[n])

(b) Transition Game

Initialization & Challenge

b ← {0, 1}
x ← �

v1

samp(·) ← AO2(),H([[P (X)]]P∈P)

[[m′
0,i]]i∈[n] ← sampO2(),H()

(y1, . . . ,yn) ← (�v2 )n

zi ← H([[H(X,Yi,Mi)]]H∈H), 1 ≤ i ≤ n

I ← AO2(),H(sel, [[E(X,Yi, Zi,Mi)]]E∈E,i∈[n])

Opening

[[m′
1,i]]i∈[n] ← samp

O2((yi,zi,m
′
0,i)i∈I ),H

([[m′
0,i]]i∈I)

outA ← A
O2((yi,zi,m

′
0,i)i∈I ),H

(out, (yi)i∈I , [[m
′
b,i]]i∈[n])

(c) Simulation Game

Fig. 3. IND-SO-CPA Games: From the Real Game to the Simulation Game

the polynomials in order to determine encodings: Two elements R1, R2 ∈ L are
assigned the same encoding if

((R1 −R2)(M = m′
0))(X = x,Y1 = y1, . . . ,Yn = yn,Z = z) ≡ 0 mod p . (4)

Note that a message m′
0,j, 1 ≤ j ≤ n, might be a non-constant polynomial of

the form
∑

P∈P αPP (X) in which case we assume that it is also evaluated with
x. Now, each time a polynomial R1 is added to L, the list is searched for a
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polynomial R2 satisfying Equation 4. If such an element is found, the corre-
sponding encoding is returned, otherwise a fresh, unused encoding is sampled.

There is only a minor technical difference between the two oracles: O0 imme-
diately evaluates polynomials and calculates with �-elements, whereas O1 does
the calculation with polynomials and delays the evaluation to the point when
encodings are determined. However, this is equivalent and so A has the same
success probability in the real and the transition game.

Game 3 is the simulation game, as shown in Figure 3c, in which the compu-
tation is independent of the bit b. More precisely, we make the computation in-
dependent of all (unopened) secrets and messages. Thus, A has no better chance
than guessing b. The simulation game is equivalent to the transition game unless
a simulation failure occurs yielding polynomials which can be used to build an
IND-CPA adversary.

For the simulation game, we slightly modify O1 resulting in a oracle O2:

– During Initialization & Challenge, O2 assigns two elements R1, R2 ∈ L the
same encoding if they are equal as polynomials over �, i.e., (R1 −R2) ≡ 0.

– In the Opening Phase the oracle receives the choices {yi, zi,m
′
0,i}i∈I revealed

to A and assigns the same encoding if (R1 −R2)(yi, zi,m
′
0,i)i∈I ≡ 0.

The reason why we need to simulate differently in the Opening Phase is that the
adversary obtains additional information about part of the secrets. For instance,
he now can compute the encryption of m′

0,i, for i ∈ I, on his own. So we need to
make sure that he receives the same encodings for the ciphertext that the oracle
has assigned in the previous phase.

Now, the crucial observation is that in the simulation game given [[m′
b,1]], . . . ,

[[m′
b,n]] the only source of information about b would be encodings given to A in

previous steps that depend on m′
0,i or m′

1,i for i �∈ I since m′
0,i = m′

1,i for i ∈ I.
However, encodings representing (combinations of) encryptions are independent
of m′

0,i (and m′
1,i) for i �∈ I, since we never evaluate the variables Mi. Hence,

the probability that outA equals b in the simulation game is 1
2 .

Clearly, due to the modification of O1 we changed the mapping between en-
codings and group elements. This might lead to a different behavior of generic
algorithms when interacting with O2 in comparison to O1. More precisely, a
simulation failure occurs during the

– Initialization & Challenge Phase (bad1) if there exists R1, R2 ∈ L such that

(R1 −R2) �≡ 0 but ((R1 −R2)(m
′
0))(x,y1, . . . ,yn, z) ≡ 0 (5)

– Opening Phase (bad2) if there exists R1, R2 ∈ L such that

((R1 −R2)(m
′
0,i)i∈I)(zi,yi)i∈I �≡ 0
but

((R1 −R2)(m
′
0))(x,y1, . . . ,yn, z) ≡ 0

(6)

Note that if failure event bad1 did not happen (during Initialization & Chal-
lenge) then bad2 may only be caused by a new polynomial computed during the
Opening Phase. So the Initialization & Challenge Phases of the simulation and
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transition game are equivalent unless bad1 happens and the Opening Phases are
equivalent unless bad2 occurs. Hence, A’s probability in winning the IND-SO-
CPA game is upper bounded by 1

2 +Pr[bad1 ∨ bad2]. In other words, A causes a

simulation failure with probability at least Advind-so-cpaPKE,A .
It remains to show that we can extract polynomials as required for Theorem 3

in case bad1 or bad2 occurs. The extraction algorithm B plays the IND-SO-CPA
simulation game with A and takes over the role of the simulation oracle O2. B
checks if bad1 happens during the Initialization & Challenge Phase. If this is the
case, it considers the corresponding polynomials which have caused the failure.
Otherwise, it executes the Opening Phase and checks whether bad2 occurs.

Let us now assume that bad1 happens for some Δ := R1 − R2 and m′
0,1, . . . ,

m′
0,n as well as x,y1, . . . ,yn, z chosen uniformly at random by B.4 Note that

since generic algorithms are only able to add polynomials whose encodings they
receive as input, Δ is of the form

Δ =
∑
P∈P

αPP (X) +

n∑
j=1

∑
E∈E

βj,EE(X,Yj , Zj ,Mj) (7)

and m′
0,1, . . . ,m

′
0,n are of the form m′

0,i =
∑

P∈P αPP (X). The degree of Δ
is upper bounded by d = maxS∈P∪E(deg(S)) and the degree of m′

0,i is upper
bounded by d′ = maxS∈P(deg(S)).

In case bad2 occurs, we consider the partially evaluated polynomial Δ :=
((R1−R2)((m

′
0,i)i∈I))((zi,yi)i∈I) and the polynomials m′

0,1, . . . ,m
′
0,n as before.

Due to the form of the monomials of E, evaluation of E with m′
0,i, zi, and yi

results in polynomials of the form
∑

P∈P αPP (X). Hence, also Δ can be viewed
as a polynomial of the form in Equation 7, where the βi,E coefficients are zero
for i ∈ I. The upper bounds d and d′ specified above also hold in this case.

To summarize, with probability at least Pr[bad1∨bad2], B can extract a non-
zero polynomial Δ as in Equation 7 and polynomials m′

0,1, . . . ,m
′
0,n. Δ becomes

zero when evaluated with m′
0,1, . . . ,m

′
0,n and uniformly and independently cho-

sen values x,yj , zj , where j ∈ {1, . . . , n} for the case bad1 and j �∈ I for the case
bad2. Applying Lemma 2 stated below yields that Δ already becomes zero when
evaluated with the messages with probability at least Pr[bad1 ∨ bad2] − dd′

p . In
this case B has found polynomials as required in Theorem 3.

Lemma 2. Let d, d′ ∈ �0, k, i ∈ � with 1 ≤ i ≤ k. Let dist be a distribution
over (i+1)-tuples (P, x1, . . . , xi) of polynomials from �[X1, . . . , Xk] where P �= 0,
deg(P ) ≤ d, and deg(xj) ≤ d′ for 1 ≤ j ≤ i. Then it holds that

Pr
(P,x1,...,xi)←dist

[P (X1 = x1, . . . , Xi = xi) = 0] ≥

Pr
(P,x1,...,xi)←dist
xi+1,...,xk←�

[(P (X1 = x1, . . . , Xi = xi))(Xi+1 = xi+1, . . . , Xk = xk) = 0]− dd′

p

4 Note that the hash values zj are indeed uniformly chosen since the input to the
Random Oracle is guaranteed to be different for the n encryptions made: For 1 ≤ j ≤
n, the variable Mj or Yj,i ∈ Yj appear in at least one of the encryption polynomials
ensuring that the corresponding encoding, input to the hash function, is fresh.
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Proof.

Pr[(P (x1, . . . , xi))(xi+1, . . . , xk) = 0]
= Pr[(P (x1, . . . , xi))(xi+1, . . . , xk) = 0 ∧ P (x1, . . . , xi) = 0]
+ Pr[(P (x1, . . . , xi))(xi+1, . . . , xk) = 0 ∧ P (x1, . . . , xi) �= 0]
≤ Pr[P (x1, . . . , xi) = 0]
+ Pr[(P (x1, . . . , xi))(xi+1, . . . , xk) = 0 | P (x1, . . . , xi) �= 0]

≤ Pr[P (x1, . . . , xi) = 0] + dd′

p

The last inequality follows from the Schwartz-Zippel Lemma.

Let us briefly estimate the runtime of B. The algorithm runs A once, samp
twice, plays the role of the IND-SO-CPA challenger, the generic oracle O2, and
checks for a simulation failure. We will count the number of operations on poly-
nomials and group elements: B maintains the list L of polynomials on behalf of
O2. This requires at most O(t+ t′) additions of polynomials. Additionally, to de-
termine encodings, B needs to compute at mostO(|L|2) = O((t+t′+|P|+|E|n)2)
difference polynomials Δ. Note that the monomials of all these polynomials come
from a set of at most at most r(|P|+ |E|n) different monomials. Thus, one poly-
nomial addition results in at most r(|P| + |E|n) operations over �.

To check for simulation failures,B needs to evaluate the difference polynomials
Δ. To do so, B maintains a second list L′ ⊂ � just like the real O0 would do
and computes the corresponding differences. Evaluating P and E when added to
L′ requires O(log(p)(|X|maxP∈E(|P |)|P|+ |Y|maxE∈E(|E|)|E|n) �-operations
and computing the differences O(|L′|2) = O((t + t′ + |P|+ |E|n)2) .

To check for a failure during the Opening Phase, B evaluates all polynomials
in L with yi, zi,m

′
0,i, for i ∈ I, when the Opening Phase starts. This requires

O(log(p)|Y|nmaxE∈Q(|E|)|E|) �-operations. These evaluations do not increase
the size of the set of monomials polynomials in L may consist of.

Note that the success probability of the IND-CPA adversaryB fromTheorem 3
is non-negligible if the degrees of the public key and encryption polynomials of
PKE are small, i.e., polynomial in log(p). Moreover,B is efficient if the representa-
tion of these polynomials is polynomial in log(p) (always the case for an
efficient encryption scheme) as well as the number n of involved message poly-
nomials Ri. The same statement holds for the polynomial extraction algorithm
from Theorem 4, where we additionally need to assume that the runtime of the
IND-SO-CPA adversary is polynomial and its advantage is non-negligible.

Acknowledgements. We would like to thank the anonymous reviewers for very
helpful and constructive comments.
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A Some Remarks on Definition 3

We would like to note that the restrictions on the form and degrees of polyno-
mials made in Definition 3 are not of artificial nature and just derived from the
proofs but need to be satisfied by a meaningful encryption scheme. On the other
hand, we would like to stress that they are not sufficient for such a scheme as,
e.g., no conditions on the nature of the decryption algorithm are made.

In particular, the encryption polynomials E may not be “arbitrary” polyno-
mials in X since during encryption we are usually only given P (x) and do not
know how to evaluate encryption polynomials not being “combinations” of pub-
lic key polynomials. Furthermore, any public key polynomial may only appear
linearly in any encryption polynomial. Otherwise, in absence of a pairing we
do not know how to compute, e.g., P 2 efficiently. In fact, in the case of a single
group this translates to solving the Square-DH problem. For this reason, also any
monomial of an encryption polynomial might only contain at most one public
key polynomial. Moreover, assume an encryption polynomial E would include a
monomial of the form αP e1Ze2M e3

∏v2
i=1 Y

di

i with e1+e3 > 1. This would mean
that we have to solve a variant of the DH problem to encrypt a message unless
we know the DL of the message.

Finally, the condition on the input of the hash function ensures that the input
is not constant for different m′. The use of a hash function for constant input
would be meaningless. Note that for an encryption scheme without hash function
like ElGamal e2 is simply set to zero in all encryption polynomials.

B A Separating CS-type Encryption Scheme

Interestingly, we again obtain a CS-type scheme if we instantiate (a slight varia-
tion of) the separating scheme from Section 3.1 with a CS-type scheme according
to Definition 3. Some details can be found in the following.

– Compared to the original definition of the separating scheme, the message
space of a CS-type scheme is a group G of order p and not �. But as already
mentioned, this is no real issue. What we can do in our particular case here
is the following: We only need a means such as the degree-≤ k polynomial F
before that allows to generate and reconstruct the data points (i,mi)i∈[3k],

where mi = gm
′
i ∈ G. This can easily be done “using F in the exponent”.
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Especially, Lagrange Interpolation works in this case. To evaluate a degree-
≤ k interpolation polynomial F defined by k + 1 data points (i,mi) in the

exponent with some � ∈ [3k], one would compute
∏

i m
Qi(�)
i , where Qi(x) =∏

t�=i
x−t
i−t is a Lagrange basis polynomial. To determine if there exists a

unique F in Step 5 of SOA(sk , Z), one could check if there exists some
j ∈ [3k] \ I such that ∏

i∈I∪{j}
m

Qi(�)
i = m�

for k values � ∈ [3k] \ (I ∪ {j}). If this is the case, it suffices to return mj .

– The secret key of the CS-type scheme needs to be extended by a key K for
the PRF. Note that this is not forbidden by Definition 3. Moreover, due to
our slight modification above, we do not need an additional prime p in the
public key of the CS-type scheme.

– In order to mark a ciphertext as regular, Enc′ simply adds a fixed group
element to each regular CS-type ciphertext. For instance, this could translate
to adding polynomials P6 = 0 and E5 = P6 to the specification of Cramer-
Shoup as CS-type encryption scheme shown in Section 4.1. The other types
of inputs we allow to Dec′ can be marked similarly using other fixed elements.

– Note that apart from these markers, we do not need to care about how the
decryption function looks like since Definition 3 only specifies the form of
public keys and (regular) ciphertexts.

C Our CCA-Separation Works in the GGM

In this section, we briefly argue why our CCA-separation also holds in the GGM,
i.e., there exists a IND-CCA secure generic group encryption scheme that can
be efficiently broken by a generic group IND-SO-CCA adversary.

First, it is easy to see that our separating scheme works over any (prime
order) group G when it is instantiated with a generic group encryption scheme
like Cramer-Shoup: The original IND-CCA secure scheme (CS in our case) is
treated as a black box and also the modifications applied work for any group.
In particular, in Section B we show how the message space can be switched
to G and how SOA(sk , Z) can be implemented in this case. It is clear, that
the resulting separating scheme is IND-CCA secure despite this switch of the
message space. To summarize, it perfectly makes sense and is meaningful to
consider the IND-SO-CCA game for our separating scheme in the GGM.

Second, the IND-SO-CCA adversary A and its sampling algorithm only apply
generic group operations: The message distribution A outputs will be

D =
{
(gF (1), . . . , gF (3k))

∣∣F ∈ �[X ] uniformly chosen degree-≤ k polynomial
}
,

where 〈g〉 = G, and can be implemented by a generic group algorithm. Moreover,
the polynomial interpolation A’s resampling algorithm uses can be realized over
generic groups as shown in Section B. As also shown there, the interpolation
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polynomial returned by the decryption oracle on a soa-query can be evaluated
using only multiplications with given group elements.

D Variations of Our CCA-Separation

An Observation. We remark that the attack from Theorem 1 actually only
uses two decryption queries. Moreover, one of these queries is a query (sel, Z)
to a (pseudo)random function. Our proof would work also in the random oracle
model, if we defined I = RO((c′i)i∈[3k]) (instead of I = PRFK((c′i)i∈[3k])). With
this change, we would get the same separation in the random oracle model, but
with a weak IND-SO-CCA attack that requires only one decryption query.

Bounded CCA Security. Cramer et al. [10] define a bounded notion (called
IND-q-CCA security) of IND-CCA security, in which an adversary only gets an a-
priori bounded number q of decryption queries. If we define weak IND-SO-q-CCA
security in the obvious way, our observation above immediately yields a separa-
tion between IND-2-CCA and weak IND-SO-2-CCA security. Furthermore, we
get a separation between IND-1-CCA and weak IND-SO-1-CCA security in the
random oracle model.

Non-malleability. IND-1-CCA security is known to be tightly related to non-
malleability [11, 3]. Concretely, Bellare and Sahai [6] show that non-malleability
under chosen-plaintext attacks (NM-CPA) is equivalent to a mild form of IND-
CCA security, which in turn implies IND-1-CCA security. Since our results yield
a separation between IND-1-CCA and IND-SO-1-CCA security in the random
oracle model, we can expect a similar separation between between NM-CPA and
NM-SO-CPA security. Here, NM-SO-CPA stands for “non-malleability under
chosen-plaintext selective opening attacks,” a notion which has not yet been
formally defined. (We leave such a definition for future work; however, if one
opts to simply equip an NM-CPA adversary with an “opening oracle” for NM-
SO-CPA, the random oracle variation of our result seems to directly apply.)
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Abstract. We introduce the notion of predicate encodings, an information-
theoretic primitive reminiscent of linear secret-sharing that in addition, satisfies a
novel notion of reusability. Using this notion, we obtain a unifying framework for
adaptively-secure public-index predicate encryption schemes for a large class of
predicates. Our framework relies on Waters’ dual system encryption methodology
(Crypto ’09), and encompass the identity-based encryption scheme of Lewko
and Waters (TCC ’10), and the attribute-based encryption scheme of Lewko et
al. (Eurocrypt ’10). In addition, we obtain obtain several concrete improvements
over prior works. Our work offers a novel interpretation of dual system encryption
as a methodology for amplifying a one-time private-key primitive (i.e. predicate
encodings) into a many-time public-key primitive (i.e. predicate encryption).

1 Introduction

Predicate encryption [42, 10, 32] is a new paradigm for public-key encryption that
enables fine-grained access control for encrypted data. In predicate encryption, ci-
phertexts are associated with descriptive values x in addition to a plaintext, secret
keys are associated with functions f , and a secret key decrypts the ciphertext if and
only if f (x) = 1. Here, f may express an arbitrarily complex access policy, which is
in stark contrast to traditional public-key encryption, where access is all or nothing.
Predicate encryption generalizes both identity-based encryption (IBE) [43, 8, 19] where
f checks for equality, and attribute-based encryption (ABE) [42, 27], where f encodes a
boolean formula. The security requirement for predicate encryption enforces resilience
to collusion attacks, namely any group of users holding secret keys for different
functions learns nothing about the plaintext if none of them is individually authorized to
decrypt the ciphertext. This should hold even if the adversary adaptively decides which
secret keys to ask for.

Terminology. Throughout this work, we use predicate encryption to refer to public-
index predicate encryption, and reserve attribute-based encryption for the special case
where the predicate is computed by a boolean formula.

Dual System Encryption. In [45], Waters introduced the powerful dual system
encryption methodology for building adaptively secure predicate encryption. In a dual
system encryption scheme, there are two types of keys and ciphertexts: normal and
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semi-functional. Normal keys and ciphertexts are used in the real system, while the
semi-functional objects are gradually introduced in the hybrid security proof. The
proofs are often quite complex and delicate. In spite of the large body of work relying on
the dual system encryption methodology (e.g. [34, 37, 40, 35, 38, 33, 41]), there seems
to be no concrete, overarching framework explaining these schemes. In particular, even
in the simplest information-theoretic setting in composite-order groups, we do not have
a clear understanding of why the Lewko-Waters heuristic [34] for deriving dual system
encryption schemes via “embedding” works for the IBE scheme in [7] but not the ABE
scheme in [27] (even under the “one use” restriction). We also do not have a formal,
systematic approach for deriving the semi-functional objects used in the security proof:
for instance, the semi-functional keys in the dual system IBE in [34] have independent
random semi-functional components, whereas those in the ABE scheme in [37] are
carefully designed to have certain correlations.

Decoupling Functionalities? A recurring trend in predicate encryption, which arose
with both the introduction of dual system encryption and lattice-based techniques
[24, 13], is a systematic adaption of prior selectively secure in bilinear groups to
achieve either improved parameters (e.g. shorter ciphertexts for HIBE) or larger classes
of functionalities (e.g. from IBE to ABE). Moreover, the new schemes often bear a
structural resemblance to prior schemes. The phenomenon suggests that we should aim
to decouple the way we encode a predicate/functionality in an encryption scheme from
the design and analysis of the scheme.

1.1 Our Contributions

We present a framework for the design and analysis of dual system encryption schemes
in composite-order bilinear groups, which allows us to also decouple the predicate
from the security proof. The crux of our framework is a notion of predicate encodings.
Roughly speaking, predicate encodings are an information-theoretic primitive reminis-
cent of secret-sharing schemes that in addition, satisfies a novel notion of reusability.
Using predicate encodings, we obtain new insights into the dual system encryption
methodology and new concrete predicate encryption schemes. Before we describe our
results, we present an overview of predicate encodings.

Predicate Encodings. A predicate encoding for a Boolean predicateP( · , ·), is specified
by a pair of algorithms (sE,rE) with a common private input w and in addition,

– sender encoding sE takes as input (x,w) and outputs sE(x,w).

– receiver encoding rE takes as input (α, y,w) and randomness r , and outputs
rE(α, y,w ;r ).

The basic requirements for α are the same as that for secret-sharing:

(reconstruction.) if P(x, y)= 1, we can recover α from the encodings;

(privacy.) if P(x, y)= 0, the encodings hide α perfectly.
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The key conceptual novelty in predicate encoding (over other existing notions e.g. [46,
4, 21, 29, 25, 30, 1]) which enables us to handle collusions in predicate encryption is
w-hiding. Informally, w-hiding stipulates that we can hide all information about w in
the receiver encoding by setting the randomness r to some fixed value (e.g. we can hide
w in the expression rw by setting r to 0). Note that the definition of w-hiding treat w
and r differently. Finally, we impose some algebraic structure in the encodings similar
to that for linear secret-sharing, in order to carry out encoding and reconstruction “in
the exponent” in the encryption scheme.

We stress that the requirements for predicate encodings are fairly basic and indeed,
we readily obtain predicate encodings for a large class of predicates like HIBE, doubly
spatial encryption and ABE, many of which are implicit in prior selectively secure
schemes [7, 11, 9]. Moreover, privacy for these encodings follows readily from linear
algebra, as is typically the case for information-theoretic primitives and constructions.
On the other hand, the encodings in [27, 3] do not satisfying our requirements (c.f.
Section 5.5); this provides a partial explanation as to why the Lewko-Waters heuristic
[34] cannot be applied to these schemes.

Predicate Encryption from Predicate Encodings. Starting from a predicate encoding
for P, we construct a predicate encryption scheme in composite-order bilinear groups
whose order is the product of three primes p1,p2,p3, and establish adaptive security in
a modular manner via Waters’ dual system encryption methodology. Here, a secret
key sky can decrypt a ciphertext ctx iff P(x, y) = 1. We associate ciphertext with
sender encoding and secret keys with receiver encodings. Correctness will rely on
the reconstruction property modulo p1, whereas security against collusions will rely
on privacy and w-hiding modulo p2. The third subgroup corresponding to p3 is used
for additional randomization which we ignore in this overview. Roughly speaking, the
master public key, secret key and ciphertext are of the form:

mpk := (g1,g
w
1 ,e(g1,g1)

α), sky := g
rE(α,y,w ;r )
1 , ctx := ((gsE(x,w )

1 )s ,e(g1,g1)
αs ·m)

where g1 is a generator of order p1. Observe that the lengths of w , sE and rE correspond
naturally to the sizes of the public parameters, ciphertexts and secret keys. If P(x, y)= 1,
decryption works by reconstructing α from sE(x,w) and rE(α, y,w ;r ) in the exponent
via a pairing.

Proof Strategy. We outline the key challenges in establishing adaptive security of the
predicate encryption scheme, which yields new insights into dual system encryption
methodology:

– First, predicate encoding is essentially a private-key primitive, in that α-privacy
against an adversary that does not see the shared randomness w , whereas w
must be made public in order that encryption uses the same w as that used for
decryption. The scheme overcomes this conundrum by publishing only gw

1 in the
public parameters. This leaks information about w (mod p1) so that we can exploit
α-reconstruction modulo p1, but completely hides w (mod p2) so that α-privacy
holds modulo p2. In the final step in the hybrid security proof, the message is
masked by α modulo p2 whereas the public parameters and all secret keys reveal
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no information about α modulo p2. Security then follows via a simple information-
theoretic argument.

– Second, predicate encoding only provides one-time security, that is, α-privacy no
longer holds if we use w across more than one receiver encoding, as will be the
case when an adversary requests multiple secret keys. We overcome this difficulty
by ensuring that in each step in the proof of security, at most one secret key leaks
information about w (mod p2). In particular, both normal and semi-functional
keys reveals no information about w (mod p2). We only leak information about
w (mod p2) when transitioning from a normal to a semi-functional key, one key at
a time. During the transition, we rely on w-hiding to “erase” information about w
(mod p2) from all remaining keys (see Fig 2 and Lemma 3).

– Finally, predicate encoding only provides non-adaptive security, namely α-privacy
only holds if x, y are fixed in advance. On the other hand, an adversary may choose
a key query y after seeing the challenge ciphertext for x, which leaks rE(x,w,r ).
This is where we rely crucially on the fact that the encoding achieves perfect
α-privacy, for which non-adaptive implies adaptive privacy. To the best of our
knowledge, this is the first time this requirement is explicitly pointed out for use in
dual system encryption. (A recent work [6] highlights several subtleties in defining
and achieving adaptive privacy in the related setting of garbled circuits.)

In short, dual system encryption allows us to boost security in a private-key, one-time,
non-adaptive setting to a full-fledged public-key, many-time, adaptive setting! Along
the way, we introduce a conceptual simplification where we define the semi-functional
entities via auxiliary algorithms, reminiscent of Cramer-Shoup projective hashing [20].

Instantiations. Our final predicate encryption scheme is adaptively secure under the
standard Subgroup Decision Assumptions in composite order bilinear groups. We note
that our implementation of the dual system encryption methodology differs in subtle
ways from prior composite-order instantiations in [34, 37] (see e.g. Remark 2). In
addition to a unifying proof of security for a large class of predicates, we obtain the
several concrete improvements over prior works:

– We eliminate the need for an additional computational assumption which refers to
the target group, as used in the prior composite-order HIBE and ABE [34, 37]. In
particular, we show how to execute the final transition in the proof of security with
an information-theoretic argument instead of a computational one.

– We reduce the key size of the (key-policy) ABE in [37] by half. The improvement
comes from eliminating some redundant randomization in the associated encoding.

– We obtain novel (to the best of our knowledge) and simple constructions of
adaptively-secure non-zero inner product encryption and doubly spatial encryption
in composite-order bilinear groups.

1.2 Discussion

Predicate encodings decouple and modularize the essential information-theoretic prop-
erties from the broader mechanics of a dual system cryptosystem and its analysis.
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Previous dual-system proofs are often monolithic and hard to follow, and the core
new ideas are sometimes buried underneath lots of algebraic notation that is repeated
(or only slightly tweaked) from one scheme to another. Our framework allows us to
distill the core argument that is common to dual system cryptosystems from a separate
information-theoretic argument which is tailored to the underlying predicate.

Open Problems. This work raises a number of open problems.

– Do bilinear (or multi-linear) predicate encodings exist for all polynomial-time
computable predicates? An affirmative answer would yield adaptively secure ABE
for circuits [26, 22], without relying on complexity leveraging. However, even
achieving perfect α-hiding without the bilinear requirements would likely require
overcoming long-standing barriers.

– Can we prove lower bounds on the length of w, rE or sE for predicate encodings
(corresponding to public parameters, secret keys and ciphertext sizes respectively)?
In particular, the encodings for ABE require that rE grows with the size of the
formula (c.f. Section 5.5) and we conjecture that such a dependency is in fact
necessary for perfect α-privacy.

– Finally, we note that our work does not cover more recent applications of dual
system encryption in the computational setting for ABE with short ciphertexts [36].
There, α-privacy is computational, for which we no longer get adaptive from non-
adaptive security “for free”. We leave these extensions for future work.

Subsequent Work. In subsequent works [16, 17], we built upon the ideas introduced
here in several ways. In [16], we introduced dual system groups, a step towards
abstracting the underlying group structure needed to support the dual system encryption
methodology. This is orthogonal and complementary in this work, which is about
abstracting how we encode the predicate/functionality. In [17], we presented the
first adaptively secure IBE where the security loss does not depend on the number
of secret key queries, partially resolving an open problem in [44, 23]. The crucial
insight lies in replacing the one-time predicate encoding for IBE (a randomized MAC)
with a reusable one (a pseudorandom function). Specifically, we rely on dual system
encryption methodology to “compile” the Naor-Reingold PRF [39] which is a private-
key primitive into a fully secure IBE.

Organization. We formalize predicate encodings in Section 3. We present the generic
construction of a predicate encryption scheme in Section 4. We describe instantiations
of predicate encodings in Section 5. Preliminaries are given in Section 2.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a
finite set S. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout,
we use 1λ as the security parameter. We use · to denote multiplication as well as
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component-wise multiplication. We use lower case boldface to denote (column) vectors
over scalars and upper case boldcase to denote vectors of group elements as well as
matrices. Given two vectors x= (x1,x2, . . .),y= (y1, y2, . . .) over scalars, we use 〈x,y〉 to
denote the standard dot product x�y. Given a group element g , we write g x to denote
(g x1 ,g x2 , . . .).

2.1 Composite Order Bilinear Groups and Cryptographic Assumptions

We instantiate our system in composite order bilinear groups, which were introduced in
[12] and used in [32, 34, 37]. A generator G takes as input a security parameter λ and
outputs a description G := (N ,G,GT ,e), where N is product of distinct primes of Θ(λ)
bits, G and GT are cyclic groups of order N , and e : G ×G → GT is a non-degenerate
bilinear map. We require that the group operations in G and GT as well the bilinear
map e are computable in deterministic polynomial time.We consider bilinear groups G
whose orders N are products of three distinct primes p1,p2,p3 (that is, N = p1p2p3).
We can write G =Gp1Gp2Gp3 where Gp1 ,Gp2 ,Gp3 are subgroups of G of order p1,p2

and p3 respectively. In addition, we use G∗
pi

to denote Gpi \ {1}. We will often write
g1,g2,g3 to denote random generators for the subgroups Gp1 ,Gp2 ,Gp3 of order p1,p2

and p3 respectively.

Cryptographic Assumptions. Our construction relies on the following two assump-
tions which are essentially the first two of three assumptions used in [34, 37] and are
instances of the General Subgroup Decision Assumption in composite-order groups [5].
We define the following two advantage functions:

AdvSD1
G,A(λ) := ∣

∣Pr[A(G,D,T0)= 1]−Pr[A(G,D,T1)= 1]
∣
∣

where G←G,T0 ← Gp1 ,T1 ←R Gp1Gp2

and D := (g1,g3,g{1,2}),g1 ←R G∗
p1
,g3 ←R G∗

p3
,g{1,2} ←R Gp1Gp2

AdvSD2
G,A(λ) := ∣

∣Pr[A(G,D,T0)= 1]−Pr[A(G,D,T1)= 1]
∣
∣

where G←G,T0 ← G∗
p1
Gp3 ,T1 ←R G∗

p1
G∗

p2
Gp3

and D := (g1,g3,g{1,2},g{2,3}),g1 ←R G∗
p1
,g3 ←R G∗

p3
,g{1,2} ←R Gp1Gp2 ,g{2,3} ←R Gp2Gp3

Assumption 1 (resp. 2) asserts that for all PPT adversaries A, the advantage AdvSD1
G,A(λ)

(resp. AdvSD2
G,A(λ)) is a negligible function in λ.

2.2 Predicate Encryption

We define predicate encryption in the framework of key encapsulation. A predicate en-
cryption scheme for a predicate P( · , ·) consists of four algorithms (Setup,Enc,KeyGen,
Dec):

Setup(1λ,X,Y) → (pp,mpk,msk). The setup algorithm gets as input the security
parameter λ, the attribute universe X, the predicate universe Y and outputs the
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public parameter (pp,mpk), and the master key msk. All the other algorithms get
pp as part of its input.

Enc(mpk,x) → (ctx ,κ). The encryption algorithm gets as input mpk and an attribute
x ∈ X. It outputs a ciphertext ctx and a symmetric key κ ∈ {0,1}λ. Note that x is
public given ctx .

KeyGen(msk, y) → sky . The key generation algorithm gets as input msk and a value
y ∈Y. It outputs a secret key sky . Note that y is public given sky .

Dec(sky ,ctx ) → κ. The decryption algorithm gets as input sky and ctx such that
P(x, y)= 1. It outputs a symmetric key κ.

Correctness. We require that for all (x, y) ∈X×Y such that P(x, y)= 1,

Pr[(ctx ,κ)←Enc(mpk,x);Dec(sky ,ctx )= κ)]= 1,

where the probability is taken over (mpk,msk)← Setup(1λ,X,Y) and the coins of Enc.

Security Definition. For a stateful adversary A, we define the advantage function

AdvPE
A (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′ :

(mpk,msk)←Setup(1λ,X,Y);

x←AKeyGen(msk,·)(mpk);

b←R {0,1};κ1 ←R {0,1}λ

(ctx ,κ0)←Enc(mpk,x);

b′ ←AKeyGen(msk,·)(ctx ,κb )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies P(x, y)= 0
(that is, sky does not decrypt ctx ). A predicate encryption scheme is adaptively secure
if for all PPT adversaries A, the advantage AdvPE

A (λ) is a negligible function in λ.

3 Bilinear Predicate Encodings

In this section, we describe predicate encodings more formally. Then, we discuss
several examples, before describing the bilinear requirement.

3.1 Predicate Encodings

Fix a predicate P : X×Y→ {0,1}. A predicate encoding for P is a pair of algorithms
(sE,rE), where sE is deterministic and takes as input (x,w) ∈ X ×W; and rE is
randomized and takes as input (α, y,w) ∈D×Y×W and randomness r ∈R. (We stress
that W and R play very different roles, as evident in the w-hiding property.) In addition,
we require that (sE,rE) satisfy the following three properties:
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(α-reconstruction.) For all (x, y) ∈ X×Y such that P(x, y) = 1 and for all r , we can
(efficiently) recover α given x, y,sE(x,w),rE(α, y,w ;r ).

(α-privacy.) For all (x, y) ∈ X×Y such that P(x, y) = 0, and for all α ∈ D, the joint
distribution sE(x,w),rE(α, y,w ;r ) perfectly hides α. That is, for all α,α′ ∈D, the
following joint distributions are identically distributed:

{x, y,α,sE(x,w),rE(α, y,w ;r )} and {x, y,α,sE(x,w),rE(α′, y,w ;r )}

where the randomness is taken over (w,r )←R W×R.

(w-hiding.) There exists some element 0 ∈R such that for all (α, y,w) ∈D×∈ Y×W,
rE(α, y,w ;0) is statistically independent of w , that is, for all w ′ ∈W:

rE(α, y,w ;0)= rE(α, y,w ′;0)

Remark 1. We rely crucially on the fact that α is perfectly hidden in the proof of
security, so that non-adaptive indistinguishability implies adaptive indistinguishability.
(This is not true in the statistical or computational setting.) Concretely, we claim that
α-privacy implies that even if y is chosen adaptively after seeing (x,α,rE(x,w)), the
distributions

rE(α, y,w ;r ) and rE(0, y,w ;r )

are perfectly indistinguishable. This simply follows from the fact that an adaptive
distinguisher with advantage ε can be converted into a non-adaptive distinguisher
with advantage ε/|Y| via random guessing. Since any non-adaptive distinguisher has
advantage 0, we must have ε= 0 to begin with. The same argument applies to the setting
where x is chosen adaptively after seeing (y,α,rE(·, y,w ;r )).

Remark 2. We note that w-hiding as defined is not the only way to achieve “w-
reusability”. For instance, for the equality predicate as in IBE, the Lewko-Waters
scheme [34] achieves reusability by essentially masking rE(α, y,w ;r ) with a fresh one-
time pad for each secret key query. This works for IBE and HIBE because rE(α, y,w ;r )
has the uniform distribution for every y . However, this approach does not work for the
ABE predicate. Indeed, by using w-hiding, we obtain a different proof of security of
the Lewko-Waters HIBE.

Example 1: Equality. Fix an integer N to be the product of three λ-bit primes.
Consider the equality predicate where X = Y = [N ] and P(x, y) = 1 iff x = y . The
following is a predicate encoding for equality used in [7, 34]:

– D :=ZN ;W :=Z2
N ;R :=Z∗

N .

– sE(x, (w1,w2)) := (1,w1+w2x)

– rE(α, y, (w1,w2);r ) := (α+ r (w1+w2y),−r )
For α-reconstruction when x = y , simply take the dot product of the two vectors. For
α-privacy when x 
= y ,1 we exploit the fact that (w1 +w2x,w1 +w2y) are pairwise

1 Here, we will even assume gcd(x− y,N) = 1; otherwise, we can find a non-trivial factor of N .
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independent and r ∈ Z∗
N . (Note that perfect α-privacy does not hold if we set R to be

ZN instead of Z∗
N .) To achieve w-hiding, we simply set r = 0.2

Example 2: Equality. Consider the same predicate and construction as before, but
replace rE by

rE(α, y, (w1,w2)) := (α+ (w1+w2y),−1).
This still satisfies α-reconstruction and α-privacy, but not w-hiding nor linear receiver
encoding (the latter property is defined in the next Section).

3.2 Bilinearity

Fix a prime p. Let (sE,rE) be a predicate encoding for P : X×Y → {0,1}, where X

and Y may depend on p. We say that (sE,rE) is p-bilinear if it satisfies the following
properties:

(input domains.) D = Zp , W = Z
�W
p and R = Z

�R
p × (Z∗

p )
�′
R for some integers

�W,�R,�′
R

.3

(output domains.) The output of sE and rE are vectors over Zp .

(affine sender encoding.) For all x ∈X, sE(x, ·) is affine in w.

(linear receiver encoding.) For all (α, y,w) ∈D×Y×W, rE( · , y,w; ·) is linear in α,r.

(bilinear α-reconstruction.) For all (x, y) such that P(x, y) = 1, we can efficiently
compute a linear map Mxy (a matrix over Zp ) such that for all r∈R,

〈sE(x,w),Mxy rE(α, y,w;r)〉 =α

(w-hiding.) For all (α, y,w) ∈D×∈Y×W, we have

rE(α, y,w;0)= rE(α, y,0;0)

where we use 0 to refer to the all zeroes vector in Z
�W
p and in Z

�R+�R′
p .4

The above definition extends to any integer N by replacing Zp ,Z∗
p with ZN ,Z∗

N
respectively.

Remark 3. We will exploit the affine sender encoding and linear receiver encoding to
compute sE and rE “in the exponent”. Fix g ∈GN .

2 This does not actually work since 0 ∉R, but we will consider a slight weakening of w-hiding
in the next section.

3 The distinction between Zp and Z∗
p is significant because we require perfect α-privacy.

4 This is in fact a slight relaxation of the general w-hiding property since 0 does not lie in R

whenever �′R > 0.
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Property Where it is used

bilinear α-reconstructionDec and correctness

affine sender encoding Enc

linear receiver encoding KeyGen, 	KeyGen

α-privacy pseudo-normal to pseudo-SF secret keys, Lemma 3

w-hiding pseudo-normal to pseudo-SF secret keys, Lemma 3

Fig. 1. Properties of predicate encodings and where they are used

– Affine sender encoding implies that given x ∈X along with g ,gw, we can compute
g sE(x,w); indeed, we will slightly abuse notation and write this as sE(x,gw).

– Similarly, linear receiver encoding implies that given (y,w) ∈ Y×W along with
gα,g r (but not g ), we can compute g rE(α,y,w;r); again, we will write this as
rE(gα, y,w;g r).

Extensions. We also consider two extensions, first to handle randomized sender’s
encoding in Section 5.5 and second to support delegation in Section 5.3.

4 Predicate Encryption from Bilinear Encoding

We present a predicate encryption scheme in composite-order bilinear groups whose
order is the product of three primes (c.f. Section 2.1), for any predicate P(·, ·) which
admits a bilinear predicate encoding. In addition, we show that the scheme is adaptively
secure under the General Subgroup Decision Assumption. We refer to Section 1.1 for
an overview of the construction and the proof.

4.1 Construction

Fix a predicate P :X×Y→ {0,1}. Given a N -bilinear predicate encoding (sE,rE) for P,
we may construct a predicate encryption scheme for P as follows:

Setup(1λ,X,Y): On input (1λ,X,Y), first generate G ← G(1λ), then sample H : GT →
{0,1}λ from a family of pairwise-independent hash functions. In addition, sample
α←R ZN ,w←R W, and output5

pp := (G,H,g1,g3) and mpk := (gw
1 ,e(g1,g1)

α) and msk := (gα
1 g

α
2 ,w)

5 If we want to be able to derive multiple (mpk,msk) from the same pp, we will need to append
a random generator of G{1,2} to pp, which we can then use to sample msk. Note that this will
not affect the proof of security, since such a generator is provided to the distinguisher in both
Assumption 1 and 2.
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KeyGen(msk, y): On input msk = (gα
1 g

α
2 ,w) and a predicate y , sample r ←R R and

output6

sky := rand3(rE(gα
1 g

α
2 , y,w;g r

1))= rand3(g
rE(α,y,w;r)
1 · g rE(α,y,w;0)

2 )

Here, rand3 is an algorithm that randomizes the Gp3 -components, namely on input
a vector C ∈G�

N , outputs C · g r′
3 where r′ ←R Z�

N .

Enc(mpk,x): On input an attribute x ∈X, sample s ←R ZN and output the ciphertext
and symmetric key

ctx := (sE(x,gw
1 ))

s = g sE(x,w)s
1 and κ :=H((e(g1,g1)

α)s)

Dec(sky ,ctx ): On input sky and ctx where P(x, y)= 1, output

H(e(ctx ,sk
Mxy
y ))

where Mxy is the matrix for bilinear reconstruction and e(ctx ,sk
Mxy
y ) :=

∑

i e((ctx )i ,
∑

j (sky )
(Mxy )i , j
j ).

Correctness. For all (x, y) ∈X×Y such that P(x, y)= 1, we have

Dec(sky ,ctx )=Dec(g
rE(α,y,w;r)
1 g

rE(α,y,w;0)
2 Z3,g

sE(x,w)s
1 )

=H(e(g sE(x,w)s
1 ,(g

rE(α,y,w;r)
1 g

rE(α,y,w;0)
2 Z3)

Mxy ))

=H(e(g sE(x,w)s
1 ,(g

rE(α,y,w;r)
1 )Mxy ))

=H(e(g1,g1)
〈sE(x,w)s,Mxy rE(α,y,w;r)〉)

=H((e(g1,g1)
α)s )

4.2 Proof of Security

We prove the following theorem:

Theorem 1. Under Assumptions 1 and 2 (c.f. Section 2.1), the predicate encryption
scheme described in Section 4.1 is adaptively secure (c.f. Section 2.2). More precisely,
for any adversary A that makes at most q queries against the predicate encryption
scheme, there exist adversaries A1,A2,A3 whose running times are essentially the same
as that of A, such that

AdvPE
A (λ)≤AdvSD1

G,A1
(λ)+q ·AdvSD2

G,A2
(λ)+q ·AdvSD2

G,A3
(λ)+2−Ω(λ)

The proof follows via a series of games, outlined in Section 1.1 and summarized in
Fig 2. Following Waters’ dual system encryption metholodogy [45], there are two types
of keys and ciphertexts: normal and semi-functional. We first describe two auxiliary
algorithms (analogous to “private evaluation” algorithms in Cramer-Shoup projective

6 Refer to Remark 3 for the notation rE(· · · ) as used here.
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hashing [20]), and then defining the semi-functional distributions via these auxiliary
algorithms.

Auxiliary Algorithms. We consider the following algorithms: a deterministic algo-
rithm Ênc for computing ciphertexts and a randomized algorithm 	KeyGen for comput-
ing secret keys.

Ênc(pp,x;msk′,C ): On input x ∈ X, along with msk′ = (h,w) ∈GN ×W and C ∈GN ,
output:

(ctx ,κ) := (C sE(x,w),H(e(C ,h))

Observe that for all (pp,mpk,msk) output by Setup and for all s ∈ZN , we have

Enc(mpk,x; s)= (

g sE(x,w)s
1 ,H(e(g1,g1)

αs)
)= Ênc(pp,x;msk,g s

1)

	KeyGen(msk′, y ;R): On input msk′ = (h,w) ∈ GN ×W, y ∈ Y and R ∈ GN , sample
r←R R and output

sky := rand3(rE(h, y,w;Rr))

Observe that, for any msk′, y and any R ∈G∗
p1
Gp3 , the following three distributions

are identical:

KeyGen(msk′, y) and 	KeyGen(msk′, y ;g1) and 	KeyGen(msk′, y ;R)

That is, we have three different but equivalent ways to generate real secret keys. The
equivalence of the first two distributions is straight-forward. For the equivalence of
the second and the third, we use the fact that R is of the form Z

�R
N × (Z∗

N )�
′
R and

that we randomize using rand3.

Auxiliary Distributions. We consider the following auxiliary distributions for cipher-
text and secret keys, where (pp,mpk,msk,α,w) are sampled as in Setup.

– semi-functional (SF) master secret key: m̂sk= ( gα
1 ,w).

– normal ciphertexts:

Ênc(pp,x;msk,C ), C ←R Gp1

this is identically distributed to real ciphertexts as computed using Enc(mpk,x).

– semi-functional (SF) ciphertexts:

Ênc(pp,x;msk,Ĉ ), Ĉ ←R Gp1Gp2

– normal secret keys:

	KeyGen( msk , y ;R), R ←R G∗
p1
Gp3

this is identically distributed to real secret keys as computed using KeyGen(msk, y).
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GameCiphertext / Key (ctx ,κ)Secret Key sky Justification Remark

0 (0, 0) rE(α, y,w;0) actual scheme

1 (sE(x ,w)s,αs) rE(α, y,w;0) Assumption 1 normal to SF (ctx ,κ)

2.i.1 (sE(x ,w)s,αs) rE(α, y,w; r ) Assumption 2 normal to pseudo-normal sky

3.i.2 (sE(x ,w)s,αs) rE( 0 , y,w;r) α-privacy & w-hidingpseudo-normal to pseudo-SF sky

2.i.3 (sE(x ,w)s,αs) rE(0, y,w; 0 ) Assumption 2 pseudo-SF to SF sky

3 (sE(x ,w)s, random ) rE(0, y,w;0)

Fig. 2. Sequence of games in the semi-functional space (the Gp2 -subgroup), where we drew a box
to highlight the differences between each game and the preceding one, and games 2.i .xx refer to
the i ’th secret key

– pseudo-normal secret keys:

	KeyGen( msk , y ;R), R ←R G∗
p1
G∗

p2
Gp3

– pseudo-semi-functional (pseudo-SF) secret keys:

	KeyGen( m̂sk , y ;R), R ←R G∗
p1
G∗

p2
Gp3

– semi-functional (SF) secret keys:

	KeyGen( m̂sk , y ;R), R ←R G∗
p1
Gp3

Remark 4 (decryption capabilities). Observe that all types of secret keys can decrypt
a normal ciphertext. In addition, only normal and pseudo-normal secret keys can de-
crypt a semi-functional ciphertext, whereas pseudo-SF and SF keys cannot. The latter
is consistent with the fact that we exploit α-hiding and P(x, y) = 0 when we switch
from pseudo-normal to pseudo-SF keys, which is precisely why we lose decryption
capabilities in the Gp2 -components.

Game Sequence. We present a series of games. We write Advxx to denote the advan-
tage of A in Gamexx.

– Game0: is the real security game (c.f. Section 2.2).

– Game1: is the same as Game0 except that the challenge ciphertext is semi-
functional. We also modify the distribution of κ0 accordingly.

– Game2,i for i = 1, . . . ,q: is the same as Game1, except the first i −1 keys are semi-
functional, and the last q − i keys are normal. There are 4 sub-games, where the
i ’th key transitions from normal in Game2.i .0 , to pseudo-normal in Game2.i .1, to
pseudo-SF in Game2.i .2 , to SF in Game2.i .3 .

– Game3: is the same as Game2,q,3, except that κ0 ←R {0,1}λ.

In Game3, the view of the adversary A is statistically independent of the challenge bit
β. Hence, Adv3 = 0. We complete the proof by establishing the following sequence of
lemmas.
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Lemma 1 (normal to semi-functional ciphertexts). There exists A1 whose running
time is roughly that of A such that

|Adv0−Adv1| ≤AdvSD1
G,A1

(λ)

Proof. We will rely on Assumption 1. On input D = (G,g1,g3,gα
1 g

α
2 ) and T ∈ {T0,T1}

where T0 ←R Gp1 ,T1 ←R Gp1Gp2 , the adversary A1 simulates A as follows:

Setup. Sample H,w as in Setup, set msk := (gα
1 g

α
2 ,w) and output

pp := (G,H,g1,g3) and mpk := (gw
1 ,e(g1,g

α
1 g

α
2 )).

Ciphertext. Compute (ctx ,κ0)← Ênc(pp,x;msk,T ).

Key Queries. On input the j ’th key query y j , output

sk j ← 	KeyGen(msk, y ;g1)

Output. Output whatever A outputs.

Observe that when T = T0 ←R Gp1 , the output is identical to that in Game 0, and when
T = T1 ←R Gp1Gp2 , the output is identical to that in Game 1. �
Lemma 2 (normal to pseudo-normal secret keys). There exists A2 whose running
time is roughly that of A such that for all i = 1,2, . . . ,q ,

|Adv2.i .0 −Adv2.i .1| ≤AdvSD2
G,A2

(λ)

Proof. We will rely on Assumption 2. On input D = (G,g1,g3,g{1,2},g{2,3}) and T ∈
{T0,T1} where T0 ←R G∗

p1
Gp3 ,T1 ←R G∗

p1
G∗

p2
Gp3 , the adversary A2 simulates A as

follows:

Setup. Sample α,H,w as in Setup, set

msk := (gα
1 · g{2,3},w) and m̂sk := (gα

1 ,w)

and output

pp := (G,H,g1,g3) and mpk := (gw
1 ,e(g1,g

α
1 )).

Ciphertext. Compute (ctx ,κ0)← Ênc(pp,x;msk,g{1,2}).

Key Queries. On input the j ’th key query y j , output

sky j ←

⎧

⎪⎨

⎪⎩

	KeyGen(m̂sk, y j ;g1) if j < i (semi-functional key)
	KeyGen(msk, y j ;T ) if j = i (normal vs pseudo-normal key)
	KeyGen(msk, y j ;g1) if j > i (normal key)

Output. Output whatever A outputs.

Observe that when T = T0 ←R G∗
p1
Gp3 , the output is identical to that in Game 2.i .0, and

when T = T1 ←R G∗
p1
G∗

p2
Gp3 , the output is identical to that in Game 2.i .1. �
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Lemma 3 (pseudo-normal to pseudo-SF secret keys). For all i = 1,2, . . . ,q ,

|Adv2.i .1−Adv2.i .2| = 0

Proof. Observe that the only difference between Game 2.i .1 and Game 2.i .2 lies in the
distribution of skyi , which we sample using msk = gα

1 g
α
2 and m̂sk = gα

1 respectively.
This means the only difference between Game 2.i .1 and Game 2.i .2 lies in the Gp2 -
component of skyi , which are given by

g rE(α,yi ,w;r)
2 and g rE(0,yi ,w;r)

2 (∗)
respectively, where r←R R. By the Chinese Remainder Theorem, it suffices to focus on
the Gp2 -components of challenge ciphertext and secret keys, which are independent of
the corresponding Gp1 -components. Observe that for all j 
= i , the Gp2 -component of
sky j is given by:

{

rE(0, y j ,w;0)= rE(0, y j ,0;0) if j < i (semi-functional key)

rE(α, y j ,w;0)= rE(α, y j ,0;0) if j > i (normal key)

where the equality above follows by w-hiding. This means that only the challenge
ciphertext and the skyi leaks any information about w (mod p2). It now follows from
the α-privacy property (modulo p2) and P(x, yi )= 0 that

rE(α, yi ,w;r) (mod p2) and rE(0, yi ,w;r) (mod p2)

are identically distributed from the view-point of the adversary. (Here, we also use
secrecy of r (mod p2).) This holds even if the adversary chooses yi adaptively after
seeing the challenge ciphertext ctx , or if the challenge x is chosen after the adversary
sees skyi (c.f. Remark 1). �
Lemma 4 (pseudo-SF to SF secret keys). There exists A3 whose running time is
roughly that of A such that for all i = 1,2, . . . ,q ,

|Adv2.i .2 −Adv2.i .3| ≤AdvSD2
G,A3

(λ)

Proof. We will again rely on Assumption 2. The proof is completely analogous to
Lemma 2, except A3 uses m̂sk instead of msk to sample sky j .That is, A3 outputs

sky j ←

⎧

⎪⎨

⎪⎩

	KeyGen(m̂sk, y j ;g1) if j < i (semi-functional key)
	KeyGen(m̂sk, y j ;T ) if j = i (pseudo-SF vs SF key)
	KeyGen(msk, y j ;g1) if j > i (normal key)

Observe that when T = T1 ←R G∗
p1
G∗

p2
Gp3 , the output is identical to that in Game 2.i .2,

and when T = T0 ←R G∗
p1
Gp3 , the output is identical to that in Game 2.i .3. �

Lemma 5 (final transition).

|Adv3.q.3−Adv4| ≤ 2−Ω(λ)

Proof. In Game 3.q .3, all the secret keys are semi-functional, which means they leak no
information whatsoever about α (mod p2). Next, let us examine the (semi-functional)
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challenge ciphertext. Observe that the quantity (from which the symmetric key κ0 is
derived)

e(Ĉ ,gα
1 ) ·e(Ĉ ,gα

2 )

has logp2 =Θ(λ) bits of min-entropy as long as Ĉ ∈Gp1G
∗
p2

, which occurs with proba-

bility 1−1/p2. Then, by the left-over hash lemma, κ0 =H(e(Ĉ ,gα
1 ) ·e(Ĉ ,gα

2 )) is 2−Ω(λ)-
close to the uniform distribution over {0,1}λ. The claim follows readily. �

5 Instantiations of Predicate Encodings

We present N -bilinear predicate encodings for a large class of predicates that have been
considered in the literature. For concreteness, think of N as the order of the composite-
order bilinear group. Note that in the proof of α-privacy, whenever we compute some
value v 
= 0 ∈ ZN , we will simply assume that gcd(v,N ) = 1; otherwise, we will be
able to compute a non-trivial factor of N . Instantiated via our framework, we obtain
the adaptively-secure composite-order (H)IBE, ABE and spatial encryption schemes in
[34, 37, 14]. In addition, we obtain novel (to the best of our knowledge) and simple
constructions of adaptively-secure NIPE and doubly spatial encryption.

5.1 Inner Product (IPE)

Predicate [32]. Here, X=Y :=Zd
N and

P(x,y)= 1 iff 〈x,y〉 = 0

First Encoding (short secret keys) [7].

– W :=ZN ×Zd
N ;R :=Z∗

N .

– sE(x, (u0,u)) := (u0x+u,1)

– rE(α,y, (u0,u);r ) := (r,α− r 〈u,y〉)

Second Encoding (short ciphertext) [11].

– W :=ZN ×Zd
N ;R :=ZN ×Z∗

N .

– sE(x, (u0,u)) := (1,u0+〈x,u〉)
– rE(α,y, (u0,u); (r ′,r )) := (ru− r ′y,r,α−u0r )

5.2 Non-Zero Inner Product (NIPE)

Predicate [2]. Here, X=Y :=Zd
N and

P(x,y)= 1 iff 〈x,y〉 
= 0

The constructions exploit the following simple algebraic fact: given x,y,u0x+u,〈y,w〉,
– if 〈x,y〉 
= 0, then we can recover u0.

– if 〈x,y〉 = 0, then u0 is perfectly random.
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First Encoding (short ciphertext).

– W :=Zd
N ;R :=Z∗

N .

– sE(x,w) := (〈w,x〉,1)
– rE(α,y,w;r ) := (r,αy− rw)

Second Encoding (short secret keys).

– W :=ZN ×Zd
N ;R :=Z∗

N .

– sE(x, (u0,u)) := (u0x+u,1)

– rE(α,y, (u0,u);r ) := (r,α+u0r,r 〈u,y〉)

5.3 Spatial Encryption

Predicate [9]. Here, X :=Zd
N ,Y :=Zd×�

N and

P(x,Y)= 1 iff x ∈ span(Y)

Recall from [9] that spatial encryption generalizes HIBE.

Supporting Delegation. Consider a predicate P that supports delegation, namely, there
is a partial ordering ≤ on Y such that for all x ∈X, the predicate P(x, ·) is monotone, i.e.

(y ≤ y ′)∧P(x, y)= 1 =⇒ P(x, y ′)= 1.

For instance, in HIBE, y ≤ y ′ iff y ′ is a prefix of y . A bilinear encoding (sE,rE) for
such a predicate supports delegation if given y, y ′ such that y ≤ y ′, we can efficiently
compute a linear map L such that for all (α,w,r) ∈D×W×R, L maps (w,rE(α, y ′,w;r))
to rE(α, y,w;r). Note that we can always rerandomize the output due to linearity of
receiver encoding.

Encoding (short ciphertext) [9, 11, 34, 14].

– W=ZN ×Zd
N ;R=Z∗

N .

– sE(x, (u0,u)) := (u0+u�x,1)

– rE(α,Y, (u0,u);r ) := (ru�Y,−r,α+ ru0)

α-privacy holds for all r ∈ Z∗
N , and relies on the fact that if x ∉ span(Y), then u�x is

statistically independent of u�Y for a random u←R Zd
N .

5.4 Doubly Spatial Encryption

Predicate [28]. Here, X :=ZN ×Zd×�
N ,Y :=Zd×�′

N and

P((x0,X),Y)= 1 iff (x0+ span(X))∩ span(Y) 
= �
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Encoding [28].

– W=ZN ×Zd
N ;R=Z∗

N .

– sE((x0,X), (u0,u)) := (u0+u�x0,u�X,1)

– rE(α,Y, (u0,u);r ) := (ru�Y,−r,α+ ru0)

α-privacy holds for all r ∈Z∗
N , and relies on the fact that if (x0+span(X))∩span(Y)=�

then u�x0 is statistically independent of u�X,u�Y for a random u←R Zd
N .

5.5 Attribute-Based Encryption (ABE)

We define (monotone) access structures using the language of (monotone) span pro-
grams [31].

Definition 1 (access structure [4, 31]). A (monotone) access structure for attribute
universe [n] is a pair (M,ρ) where M is a �×�′ matrix over ZN and ρ : [�]→ [n]. Given
x= (x1, . . . ,xn ) ∈ {0,1}n , we say that

x satisfies (M,ρ) iff 1 ∈ span〈Mx〉,
Here, 1 := (1,0, . . . ,0) ∈ Z�′ is a row vector; Mx denotes the collection of vectors {M j :
xρ( j ) = 1} where M j denotes the j ’th row of M; and span refers to linear span of
collection of (row) vectors over ZN .

That is, x satisfies (M,ρ) iff there exists constants ω1, . . . ,ω� ∈ZN such that
∑

j :xρ( j )=1
ω jM j = 1.

Observe that the constants {ω j } can be computed in time polynomial in the size of the
matrix M via Gaussian elimination.

KP-ABE Predicate [27, 42]. Here, X := Z�
N ,Y := {(M,ρ) :M ∈ Z�×�′

N ,ρ : [�]→ [�] is a
permutation} (that is, �=n) and

P(x, (M,ρ))= 1 iff x satisfies (M,ρ)

Encoding. Our encoding improves upon that in [37] by reducing the length of rE (and
thus the secret key size) from 2� to �+1 elements.

– W=Z�
N ;R=Z�′−1

N ×Z∗
N .

– sE(x,w) := (x1w1, . . . ,x�w�,1)

– rE(α, (M,ρ),w; (u,r )) := (α1 − rwρ(1), . . . ,α� − rwρ(�),r ) where αi := Mi
(α
u

)

is the

i ’th share of α and
(α
u

)

denotes the column vector in Z�′
N formed by concatenating

α ∈ ZN and u ∈ Z �′−1
N .

In the prior construction [37], rE is given by

(α1− r1wρ(1), . . . ,α�− r�wρ(�),r1, . . . ,r�).

Here, α-privacy holds for all r ∈Z∗
N , and relies crucially on the fact that ρ is injective.
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Remark 5 (GPSW encoding [27]). It is instructive here to revisit the encoding used in
the selective ABE in [27] where rE is given by

(α1/wρ(1), . . . ,α�/wρ(�)).

This implies α-privacy but only in a statistical sense (the encoding only hides non-zero
shares). Moreover, it does not satisfy w-hiding.

CP-ABE Predicate [27, 18]. As before with X and Y switched, so that

P((M,ρ),y)= 1 iff y satisfies (M,ρ)

Encoding. In the following encoding, we allow sE to be randomized:

– W=Z�
N ×ZN ;R=Z∗

N .

– sE((M,ρ), (w,v);u) := (1,wρ(1) + v1, . . . ,wρ(�) + v�) where vi := Mi
(v
u

)

is the i ’th
share of v .

– rE(α,y, (w,v);r ) := (α+ r v,r, {wj r } j :y j=1)

Randomized Sender Encodings. We may handle the extension to randomized sender
encodings where sE takes additional randomness u as follows:

– the requirement for α-privacy holds over random coin tosses of sE;

– affine sending encoding says that we can compute g sE(x,w) given gw,x and the coin
tosses used in sE;

– we extend the definition of Enc and Ênc to use randomized sE in a straight-forward
manner;

– the proof remains largely unchanged except for accounting for sender randomness
when invoking α-privacy in the proof of Lemma 3.

Acknowledgments. I would like to thank Jie Chen, Kai-Min Chung, Yuval Ishai,
Allison Lewko and Vinod Vaikuntanathan for insightful discussions.
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1 Introduction

The universal composability (UC) framework [6] provides a way of analyzing
protocols while ensuring strong security guarantees. In particular, protocols
proven secure in this framework remain secure when run concurrently with
arbitrary other protocols in a larger networked environment. Unfortunately,
most interesting cryptographic tasks are impossible to realize in the “plain”
UC framework when an honest majority cannot be assumed and, in particular,
in the setting of two-party secure computation [8,9,36]. This stark negative
result has motivated researchers to explore various extensions/variants of the
UC framework in which secure computation can be achieved [7], with notable
examples being the assumption of a common reference string (CRS) [6,8,10] or
a public-key infrastructure [6,3]. In the real world, implementing either of these
approaches seems to require the existence of some trusted entity that parties
agree to use (though see [11] for some ideas on using a naturally occurring high-
entropy source in place of a CRS).

Katz [32] suggested using tamper-proof hardware tokens for UC computation.
That is, Katz proposed a model where parties can construct hardware tokens
to compute functions of their choice such that an adversary given a token TF
for a function F can do no more than observe the input/output characteristics
of this token. The motivation for this being that the existence of tamper-proof
hardware can be viewed, in principle, as a physical assumption rather than an
assumption of trust in some external entity. (In fact, in Katz’s model the parties
may create the tamper-proof tokens themselves—rather than obtain them from
a trusted provider [28]—and a malicious party can put any algorithm on a token
it creates.) In addition, secure hardware may also potentially result in more
efficient protocols; indeed, it has been suggested for improving efficiency in other
settings (e.g., [17,13,14,5,27,31,34,22]). In addition to introducing the model,
Katz showed that tamper-proof hardware tokens can be used for universally
composable computation of arbitrary functions. His work motivated an extensive
amount of follow-up work [12,37,23,15,24,25,19] that we discuss in detail later.

As our main result, we show here a new protocol for universally composable 1-
out-of-2 string oblivious transfer (OT) based on tamper-proof hardware tokens,
secure against a static, malicious adversary. Our work yields what we believe
to be the most practical and efficient known protocol since it simultaneously
achieves all the following (which are not achieved all at once by any other
solution; see Table 1 for a detailed comparison):

– Our protocol is based on stateless tokens, which seem easier/cheaper to
create in practice and are (automatically) resistant to resetting attacks.

– Our protocol requires the parties to exchange a single pair of tokens. This
can be done in advance, before the parties’ inputs are known. Furthermore,
the tokens can be used to implement an unbounded number of oblivious
transfers, rather than requiring the parties to exchange a fresh pair of tokens
for every oblivious transfer they want to compute. Thus, by relying on known
completeness results [33,30], the parties can use the same tokens to perform
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an unlimited number of secure computations (of possibly different functions,
and on different inputs).

– Our protocol is efficient. It is black-box, and each OT needs mostly standard
symmetric-key operations along with only a few (unique) digital signatures.
Moreover, any desired number of OTs can be obtained (in parallel) in
constant rounds.

– If the total number of OTs is a priori bounded, then a variant of our protocol
can realize any bounded number of OTs in constant rounds based only on
the existence of collision-resistant hash functions.

Inspired by our result, we investigate the minimal number of stateless tokens
needed for universally composable OT/secure computation. We show that
two tokens—one created by each party—are needed even to obtain a single
universally composable OT as long as only “black-box techniques” are used.
(We explain what we mean by “black-box techniques” in the relevant section of
our paper.) Our protocol, above, is thus optimal in this regard. Our impossibility
result is somewhat surprising, since a single stateful token suffices for OT [19].
Our results thus demonstrate an inherent difference between stateful and
stateless tokens.

Since protocols based on nonblack-box techniques tend to be impractical,
our work pins down the minimal number of stateless tokens needed as far as
practical protocols are concerned. From a theoretical point of view, however, it
is still interesting to completely resolve the question. In this vein, we show a
protocol for carrying out an unbounded number of secure computations using
only a single (stateless) token. Our construction uses a variant of the nonblack-
box simulation technique introduced by Barak [2].

In summary, our work shows that efficient, universally composable oblivious
transfer can be realized from two stateless tokens without any additional setup
assumptions, and is unlikely using a single stateless token. On the other hand,
using (inefficient) nonblack-box techniques, a single stateless token serves as a
sufficient setup for general universally-composable two-party computation.

1.1 Related Work

Katz’s original protocol for secure computation using tamper-proof tokens [32]
required stateful tokens and relied on number-theoretic assumptions (specifically,
the DDH assumption). Subsequent work has mainly focused on improving one
or both of these aspects of his work.

Several researchers have explored constructions using stateless tokens. State-
less tokens are presumably easier and/or cheaper to build, and are resistant
to resetting attacks whereby an adversary cuts off the power supply and thus
effectively “rewinds” the token. Chandran et al. [12] were the first to eliminate
the requirement of stateful tokens. They construct UC commitments based on
the existence of one-way functions, and oblivious transfer based on any enhanced
trapdoor permutation (eTDP). They also introduce a variant security model in
which an adversary need not know the code of the tokens he produces, thus
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capturing scenarios where an adversary may pass along tokens whose code he
doesn’t know, e.g., via token replication. (We do not consider this model here.1)
From a practical perspective, however, their work has several drawbacks. Their
OT protocol makes nonblack-box use of the underlying primitives, runs in Θ(λ)
rounds (where λ is the security parameter), and uses the heavy machinery of
concurrent non-malleable zero-knowledge. Improving upon their work, Goyal et
al. [25] show a black-box construction of oblivious transfer; their protocol runs
in constant rounds assuming a collision-resistant hash function, or Θ(λ/ log λ)
rounds based on one-way functions. However, their protocol requires the parties
to exchange Θ(λ) tokens for every oblivious transfer the parties wish to execute.
Compared with these results, our protocol is much more efficient at the expense
of the stronger assumption of existence of unique signature schemes.

A second direction has explored the possibility of eliminating computational
assumptions altogether. This line of work was initiated by Moran and Segev [37],
who showed how to realize statistically secure UC commitments using a single
stateful token. (Note that commitment does not imply OT, or general secure
computation, in the unconditional setting.) Their construction can be used
for any bounded number of commitments, still using only one token, and the
authors note that they can achieve an unbounded number of commitments (with
computational security) based on one-way functions. Goyal et al. [25] show
an unconditional construction of oblivious transfer (and hence general secure
computation) using Θ(λ) stateful tokens. Recently, Döttling et al. [19] show how
to construct unconditionally secure OT using only a single stateful token. Goyal
et al. [24] showed that unconditional security from stateless tokens is impossible
(unless the token model is extended to allow tokens to encapsulate each other). If
such encapsulation is allowed, then they show how to realize statistically secure
OT in constant rounds using Θ(λ) stateless tokens.

Kolesnikov [34] showed an efficient construction of oblivious transfer from
stateless tokens. However, his work is not in the UC setting, and he achieves only
covert security [1] rather than security against malicious parties. Dubovitskaya
et al. [21] constructed an OT protocol from two stateful tokens. Their work
assumes tokens are not reused (it is not clear how this is enforced), and is also
not in the UC setting.

Our Work in Relation to Prior Work. For our main result, we carefully
combine the techniques of [25] and [19] to achieve the most practical and efficient
known protocol for universally composable OT based on tamper-proof hardware
tokens. Our protocol uses two stateless tokens (one per party), and can be
used for either a bounded number of OTs (assuming the existence of collision-
resistant hash functions) or for an unbounded number of OTs (additionally
assuming the existence of unique signatures or, equivalently, verifiable random

1 Although we do not formally consider this model, it appears that our efficient,
two-token protocol would remain secure in that model since the simulator in our
security proof does not refer to the code of the tokens.
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Table 1. Universally composable OT based on tamper-proof hardware tokens. The
security parameter is denoted by λ and TE means token encapsulation.

stateless tokens stateful tokens
Here 1 Here 2 [12] [25] [24] [32] [25] [19]

Tokens: 2 2 2 Θ(λ) Θ(λ) 2 Θ(λ) 1
Rounds: Θ(1) Θ(1) Θ(λ) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)
Asmpt.: CRHF, VRF CRHF eTDP CRHF TE DDH none none
# OTs: unbounded bounded unbounded 1 1 unbounded 1 bounded

functions (VRFs)). Both instantiations run in constant rounds.2 A detailed
comparison of this protocol to relevant prior work is given in Table 1.

In addition to the above, we show two other results: there is no “black-box”
construction of universally composable OT using fewer than two stateless tokens,
but universally composable coin tossing (and hence OT) can be based on a single
stateless token using nonblack-box techniques.

Concurrent Work. Independently, Döttling et al. [20] show a different
nonblack-box construction of UC coin-tossing from a single stateless token,
and argue (without proof) that nonblack-box techniques are needed. Here, we
provide a rigorous version of their argument. Our efficient, black-box OT protocol
using two stateless tokens—which we consider our primary contribution—has no
analog in their work.

2 Preliminaries

Let λ be the security parameter. For a set S, we let x ← S denote choosing x
uniformly at random from S. We assume readers are familiar with pseudorandom
functions, collision-resistant hash functions, strong extractors, commitment
schemes, digital signature schemes, message-authentication codes (MACs), and
witness-indistinguishable arguments of knowledge (WI-AoKs). Due to space
restrictions, we omit the formal definitions; here, we mainly introduce notation.

Throughout the paper, a pseudorandom function is denoted by PRF, and it is
assumed that the output length is sufficiently long so that it can be truncated
to the appropriate length. We let MAC = (Sig,Vrfy) be a deterministic message-
authentication code, where Vrfy is a canonical verification procedure that checks
the validity of a tag τ by recomputing it. We slightly abuse the notation to let
(Kg, Sig,Vrfy) also denote a digital signature scheme (the context should make
it obvious whether the notation indicates a MAC or a signature). A digital
signature scheme is called unique if for every possible verification key vk and

2 The CRHF assumption is only used to make our protocols constant round
by instantiating constant round statistically-hiding commitments. Thus, we can
instead instantiate our protocols in Θ(λ/ log λ) rounds using only one-way
functions.
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every messagem, there is a unique signature σ such that Vrfyvk(m,σ) = 1. Dodis
and Yampolskiy [18] give an efficient construction for unique signatures based
on a certain number-theoretic assumption. Let Ext : {0, 1}2λ×{0, 1}d → {0, 1}λ
denote a strong randomness extractor where the source has length 2λ and the
seed has length d. If the min-entropy of the source is at least 2λ−O(log λ), the
output is statistically close to uniform.

We use SCom to denote a (possibly interactive) statistically-hiding and
computationally-binding commitment scheme [16,26] and Com to denote a
(possibly interactive) computationally-hiding and strongly-binding commitment
scheme. We let comm ← Com(m; rm, r̆m) denote a commitment to a message m,
where the sender (resp., receiver) uses uniform random coins rm (resp., r̆m)
and the final transcript is comm; sometimes we omit r̆m when it is clear
from the context. (We also use similar notation for SCom.) In a strongly
binding commitment scheme [29], with overwhelming probability over the
receiver’s coins r̆m, for any commitment com there is at most one (m, rm)
such that com = Com(m; rm, r̆m). Although this definition is stronger than
usual, the Naor scheme [38] satisfies it. Without loss of generality, we assume
a canonical decommit phase in which the sender sends m together with
the randomness rm (i.e., decomm = (m, rm)). Then the receiver runs the
algorithm Open(comm,m, rm) which checks if (m, rm) is consistent with the
transcript comm. If so, Open outputs m; otherwise it outputs ⊥.

Linear Algebra. By F2 we denote the finite field with two elements. If a ∈ Fλ
2

and b ∈ Fk
2 are two column-vectors, then (abT) = (aibj)ij ∈ Fλ×k

2 is the outer

product (or tensor product) of a and b, and aTb =
∑λ

i=1 aibi ∈ F2 the inner
product.

Let C ∈ Fλ×2λ
2 . Then dim(ker(C)) ≥ λ. Let B = {b1, . . . , bλ} ⊆ ker(C) be a

linearly independent set. One can choose a set B∗ = {bλ+1, . . . , b2λ} such that
B ∪B∗ is a basis of F2λ

2 . Let ei ∈ Fλ
2 be the ith unit-vector. Then, there exists

a matrix G ∈ Fλ×2λ
2 such that Gbi = ei for i = 1, . . . , λ and Gbi = 0 for i =

λ+1, . . . , 2λ. This matrix is called the complementary matrix of C and we denote
by G← Comp(C) its computation. It holds that rank(G) = λ and B∗ ⊆ ker(G).
For such C and G, we can always solve the linear system Cx = r, Gx = s by
solving CxB∗ = r and GxB = s independently with xB ∈ span(B) ⊆ ker(C)
and xB∗ ∈ span(B∗) ⊆ ker(G), and then setting x := xB + xB∗ .

Token Functionality. We model tamper-proof hardware tokens as an ideal
functionality in the UC framework, following Katz [32]; see Figure 1. Our ideal
functionality models stateful tokens: although all our protocols use stateless
tokens, an adversarially generated token may be stateful.

Oblivious-Transfer Functionality. The OT functionality is standard, but
we wish here to model a multi-session variant where the sender and receiver
repeatedly (in different sub-sessions) execute any agreed-upon number m of
parallel OTs (in a given sub-session). We refer to this functionality as Fmulti-OT,
and describe it in Figure 2. We note that the sub-sessions are executed
sequentially. Additionally, as highlighted in [25], the sender is notified each time
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Functionality Fwrap

The functionality is parameterized by a polynomial p(·) and an implicit
security parameter λ.

Create: Upon receiving an input (create, 〈sid,C,U〉,M) from a party C (i.e.,
the token creator), where U is another party (i.e., the token user) in the system
and M is an interactive Turing machine, do:

If there is no tuple of the form 〈C,U, �, �, �〉 stored, store
〈C,U,M, 0, ∅〉. Reveal (create, 〈sid,C,U〉) to the adversary.

Ready: Upon receiving a message (ready, 〈sid,C,U〉) from the adversary,
send (ready, 〈sid,C,U〉) to U.

Execute: Upon receiving an input (run, 〈sid,C,U〉,msg) from the user U, find
the unique stored tuple 〈C,U,M, i, state〉. If no such tuple exists, do nothing.
Otherwise, do:

If the Turing machine M has never been used yet, i.e., i = 0, then
choose ω uniformly at random from {0, 1}p(λ) and set state := ω before
running the Turing machine. Run (out, state′) ← M(msg; state) for
at most p(λ) steps where out is the response and state′ is the new
state of M (set out :=⊥ and state′ := state if M does not respond
in the allotted time). Send (response, 〈sid,C,U〉, out) to U. Erase
〈C,U,M, i, state〉 and store 〈C,U,M, i+ 1, state′〉.

Fig. 1. The ideal Fwrap functionality for stateful tokens

the receiver obtains output. We define the bounded OT functionality similarly
except that the sender and receiver only execute a single sub-session of m parallel
OTs. This allows the sender and receiver to execute any bounded number of OTs.

3 Efficient Oblivious Transfer Using Two Stateless
Tokens

In this section, we first give the details of our unbounded OT protocol. Then,
in Section 3.3 we briefly sketch how this protocol can be modified to achieve
a bounded OT protocol using only CRHFs. We provide some intuition and
background before giving the details of our protocol. Our starting point is the
unconditionally secure OT protocol from [19], which uses a single stateful token.
We sketch a simplified version of their protocol for the case of a single OT carried
out between the sender S with input (x0, x1) ∈ {0, 1}λ×{0, 1}λ and the receiver
R with input b ∈ {0, 1}. We canonically identify the vector space Fλ

2 with the set
{0, 1}λ of strings of length λ. The main steps of the protocol are as follows:

1. S creates a token TS holding random vector a ∈ F2λ
2 and matrix B ∈ F2λ×2λ

2

and gives it to R.
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Functionality Fmulti-OT

Fmulti-OT interacts with sender S, receiver R, and the adversary. The
functionality is parameterized by a security parameter λ. It also maintains
a variable curr-id initialized to ⊥.

Upon receiving (send, 〈sid,S,R〉, ssid, 〈m, {(x0
i , x

1
i )}mi=1〉) from S with x0

i , x
1
i ∈

{0, 1}λ, if curr-id �∈ {⊥, ssid} then ignore it. Otherwise, set curr-id := ssid
and record 〈ssid,m, {(x0

i , x
1
i )}mi=1〉, and reveal (send, 〈sid, S,R〉, ssid) to the

adversary. Ignore further (send, 〈sid,S,R〉, ssid, . . .) inputs with this ssid.

Upon receiving (receive, 〈sid,S,R〉, ssid, 〈m, {bi}mi=1〉) from R with bi ∈ {0, 1},
if curr-id �∈ {⊥, ssid} then ignore it. Otherwise, set curr-id := ssid and record the
tuple 〈ssid,m, {bi}mi=1〉, and reveal (receive, 〈sid,S,R〉, ssid) to the adversary.
Ignore further (receive, 〈sid,S,R〉, ssid, . . .) inputs with this ssid.

Upon receiving (go, 〈sid,S,R〉, ssid) from the adversary, ignore it if curr-id �=
ssid, or either 〈ssid,m, {(x0

i , x
1
i )}mi=1〉 or 〈ssid,m, {bi}mi=1〉 is not recorded.

Otherwise, do the following: set curr-id := ⊥, return (received, 〈sid, S,R〉, ssid)
to S, and return (received, 〈sid,S,R〉, ssid, {xbi

i }mi=1) to R. Ignore further
(go, 〈sid,S,R〉, ssid) messages with this ssid from the adversary.

Fig. 2. The Fmulti-OT functionality

2. R chooses a random matrix C ∈ Fλ×2λ
2 and sends it to S. In turn, S computes

ã := Ca, B̃ := CB, and a complementary matrix G ∈ Fλ×2λ
2 to C and sends

these to R.
3. R sends random h ∈ F2λ

2 to S. Then, S sends x̃0 := x0 + GBh and x̃1 :=
x1 +GBh+Ga to R.

4. R queries the token with a random z ∈ F2λ
2 such that zTh = b. The token

will in turn output V := azT +B. Then R checks that CV = ãzT + B̃ and,
if this is the case, outputs xb := x̃b −GV h. (Otherwise it detects that S was
cheating.)

The basic idea of their protocol is as follows. The receiver R performs a secret
sharing of its input b into shares z and h; by using only h with the sender S and
only z with the token, R maintains the privacy of b. In order to obtain the output
xb, the receiver R has to compute the mask (i.e., GBh or GBh + Ga). This is
achieved by querying the token with z, since GV h = G(azT + B)h = b(Ga) +
GBh. To ensure that the token outputs the correct value V , the receiver checks
that CV = ãzT + B̃. Since the token does not know C, incorrect behavior is
detected with overwhelming probability. To achieve security against a malicious
receiver, it is crucial that the receiver is only able to query the token once,
and this is enforced by making the token stateful. In particular, the token “self
destructs” after the first query by the receiver.

Using Stateless Tokens. We carefully combine the techniques of [19] with
ideas from [25] so that we can use two stateless tokens instead of one stateful
token. This entails several difficulties:
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Multiple queries. A stateless token can be executed multiple times while the
token remains oblivious about it (in contrast, stateful tokens “self destruct”
after their use [23]), so we need to ensure that a malicious party queries the
token only once. Motivated by similar techniques in [25], we handle this issue
by modifying the token so that it only replies to authenticated inputs. That
is, instead of querying z directly to the token, R queries (comz, z, rz, σz)
where comz is a commitment to z, the value σz is a digital signature on
comz (received from S) with respect to a verification key vkS, and z, rz is the
decommitment of comz (see the discussion below about why this technique
is useful).

Extracting the inputs. Using a stateless token additionally introduces the dif-
ficulty of extracting the sender’s inputs during the simulation. Extraction
from a stateful token is possible by having the simulator rewind the token
and query it multiple times. (The fact that the simulator can query the token
multiple times is an advantage of the simulator over the real-world parties.)
Once we move to a stateless token in the real world, and authenticate the
queries as described above, even the simulator is no longer able to rewind
and send multiple (authenticated) queries to the token.
To resolve this issue we introduce a second stateless token TR sent from the
receiver to the sender which allows directly extracting the sender’s inputs.

At a high level, the above results in the following changes to the protocol:

1. The receiver sends a token TR to the sender. (The behavior of this token will
become clear below.)

2(a). S generates a statistically hiding3 commitment com ← SCom(a‖B) and
sends com to R. Then, R chooses a matrix C and authenticates com by
computing σ := SigskR

(com‖C) (where skR is a secret key also embedded in
TR), and sends C and σ to S.

2(b). S queries TR on input (C, com, decom, σ). The token checks that the
signature σ is valid and that decom is a valid opening of com; otherwise
it aborts. TR returns ã := Ca and B̃ := CB together with a signature
σ′ := SigskR

(ã‖B̃). Then S sends (ã, B̃, σ′) to R.

Intuitively, the value (a,B) remains hidden from a corrupted R as before. For
a corrupted sender, the simulator will emulate Fwrap and observe the inputs
to TR. To guarantee that the simulator extracts the sender’s inputs correctly, it is
necessary that the sender queries the token exactly once with a value (a,B). The
binding property of the commitment scheme, together with the unforgeability of
the signature scheme, guarantees that S can make at most one valid query to the
token. The unforgeability of the signature scheme assures that S must query the
token at least once to generate a valid next message of the protocol. A similar
argument holds for the inputs (comz , z, rz, σz) to the sender’s token TS.

3 We were not able to prove security using a computationally hiding commitment
scheme. Indeed, it is an interesting open problem to achieve a constant-round OT
protocol with two stateless tokens based only on one-way functions.
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On input (key):
ouput vkS.

On input (ssid, i, comz, z, rz, σz):
v := VrfyvkS

(ssid‖i‖comz, σz)

if z = Open(comz, z, rz) and v = 1
a := PRFka(ssid‖i)
B := PRFkB (ssid‖i)
V := azT +B
w := SigskS

(ssid‖i)
output (V,w)

else output (⊥,⊥)

Fig. 3. The Turing machine MS

to be embedded in the sender-
created token TS. It is initialized with
(skS, vkS, ka, kB) given by the creator.

On input (key):
ouput vkR.

On input (ssid, i, coma‖B, a, B, ra‖B, σa‖B):
v := VrfyvkR

(ssid‖i‖0‖coma‖B, σa‖B)
if a‖B = Open(coma‖B, a‖B, ra‖B)

and v = 1

ã := Ca; B̃ := CB;

σã‖B̃ := SigskR
(ssid‖i‖1‖ã‖B̃)

output (ã, B̃, σã‖B̃)

else output (⊥,⊥,⊥)

Fig. 4. The Turing machine MR to be
embedded in the receiver-created token
TR. It is initialized with (skR, vkR, C)
given by the creator.

Malicious tokens. There is one additional issue to be taken care of. The above
protocol is secure assuming the tokens are generated as specified by the protocol.
However, a malicious token may try to leak some information about the other
party’s queries to the token creator. For example, a malicious token TR∗ may
output (ã, B̃, σ′) where the bits of σ′ leak information about (a,B). To protect
against this, we require the underlying signature scheme to be unique; then, σ′

carries no more information about (a,B) than (ã, B̃) does. This ensures that
the only information leakage that can occur is from a token abort. For TS, this
type of leakage is already handled by the protocol of [19]. For TR, we handle the
leakage using strong extractors; see the formal description of the protocol below.

The above suffices for a single OT from each pair of tokens. To achieve an
unbounded number of OTs we replace all the secret keys and secret inputs with
pseudorandom values output by a pseudorandom function.

3.1 The Protocol

The protocol π between a sender S and a receiver R consists of an initial token-
exchange phase after which the parties can carry out an unlimited number of
oblivious transfers. We describe π now; see also Figure 8.

Token-Exchange Phase. Each party generates a single token and sends it
to the other party. The sender’s token TS encapsulates the code described in
Figure 3, where ka, kB,← {0, 1}λ and (skS, vkS) ← Kg(). The receiver’s token
TR encapsulates the code described in Figure 4, where (skR, vkR) ← Kg() and
C ← F2λ×4λ

2 . Formally, each party sends the relevant code to Fwrap using an
appropriate (create, . . .) message. Then, S runs TR(key) to obtain vkR; likewise,
R obtains vkS by running TS(key). Finally, R sends C to S, and in turn S computes
the complementary matrix G← Comp(C) and sends it to R.

Oblivious Transfer Phase. Following the token-exchange phase, the parties
can sequentially run an unbounded number of sub-sessions where in each sub-
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session they carry out any desired number m of oblivious transfers. (Each
sub-session uses only a constant number of rounds.) In each sub-session, S
gets (send, 〈sid, S,R〉, ssid, 〈m, {(x0

i , x
1
i )}mi=1〉) and R gets (receive, 〈sid, S,R〉,

ssid, 〈m, {bi}mi=1〉) from the environment, and they execute the following protocol:

S→ R: For i ∈ [m], the sender computes ai := PRFka(ssid‖i) and Bi :=
PRFkB (ssid‖i). Here, we have ai ∈ F4λ

2 , Bi ∈ F4λ×4λ
2 . Then, the sender

commits to (ai, Bi) by executing comai‖Bi
← SCom(ai‖Bi; rai‖Bi

), and sends
{comai‖Bi

}mi=1 to R.

R→ S: R chooses hi ← F4λ
2 and zi ← F4λ

2 subject to the constraint that
bi = zTi hi, and commits to zi by executing comzi ← SCom(zi; rzi). It
next authenticates the commitment comai‖Bi

by computing σai‖Bi
:=

SigskR
(ssid‖i‖0‖comai‖Bi

) for i ∈ [m]. Finally, it sends {(σai‖Bi
, comzi)}mi=1

to S.
S→ R: The sender checks if VrfyvkR

(ssid‖i‖0‖comai‖Bi
, σai‖Bi

) = 1 for i ∈
[m]; if the check fails, then S aborts the protocol. For i ∈ [m], the
sender runs the token TR with (ssid, i, comai‖Bi

, ai, Bi, rai‖Bi
, σai‖Bi

)

and obtains in return (ãi, B̃i, σãi‖B̃i
). Then S checks that ãi = Cai,

B̃i = CBi, VrfyvkR
(ssid‖i‖1‖ãi‖B̃i, σãi‖B̃i

) = 1 for i ∈ [m]; if the check

fails, S aborts the protocol. Otherwise, for i ∈ [m] it authenticates the
commitment comzi by computing σzi := SigskS

(ssid‖i‖comzi). Finally, it

sends {(ã, B̃, σãi‖B̃i
, σzi)}mi=1 to R.

R→ S: The receiver checks that VrfyvkR
(ssid‖i‖1‖ãi‖B̃i, σãi‖B̃i

) = 1, and

VrfyvkS
(ssid‖i‖comzi , σzi) = 1 for i ∈ [m]. If this check fails, it aborts

the protocol. Otherwise, R runs the token TS with (ssid, i, comzi , zi, rzi , σzi)
and obtains in return (Vi, wi), for i ∈ [m]. The receiver checks that
VrfyvkS

(ssid‖i, wi) = 1 and CVi = ãiz
T
i + B̃i for i ∈ [m]. If the check fails,

then it aborts the protocol. Otherwise, it sends {(hi, wi)}mi=1 to S.
S→ R: The sender checks that VrfyvkS

(ssid‖i, wi) = 1 for i ∈ [m]; if not, it aborts
the protocol. Otherwise, for i ∈ [m] it chooses v0i , v

1
i ← {0, 1}d and computes

x̃0
i := Ext(GBihi, v

0
i )⊕x0

i and x̃1
i := Ext(GBihi+Gai, v

1
i )⊕x1

i . Here d is an
appropriate seed length for the extractor. Finally it sends {(v0i , v1i , x̃0

i , x̃
1
i )}mi=1

to the receiver.
R→ S: For i ∈ [m], the receiver computes xbi

i := x̃bi
i ⊕ Ext(GVihi, v

bi
i ) and

outputs it.

Theorem 1. Assume PRF is a pseudorandom function, SCom is statistically
hiding and computationally binding, and (Kg, Sig,Vrfy) is a unique signature
scheme. Then protocol π securely realizes Fmulti-OT in the Fwrap-hybrid model.

3.2 Proof Idea

In this section, we briefly sketch the main ideas behind the proof of Theorem 1.
A complete proof is deferred to the full version.
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S R

Token exchange:

ka, kB ← {0, 1}λ; (skS, vkS) ← Kg() C ← F
2λ×4λ
2 ; (skR, vkR) ← Kg()

generate token TS as in Figure 3 generate token TR as in Figure 4

� TS, TR �
Run TR(key) to get vkR. Run TS(key) to get vkS

� C

G ← Comp(C)
G �

Oblivious transfer:
(ssid,m, {(x0

i , x
1
i )}

m
i=1) (ssid,m, {bi}m

i=1)

For i ∈ [m] :
ai := PRFka (ssid, i)
Bi := PRFkB

(ssid, i)
comai‖Bi

← SCom(ai‖Bi; rai‖Bi
)

{comai‖Bi
}m
i=1 �

For i ∈ [m] :
σai‖Bi

:= SigskR
(ssid‖i‖0‖comai‖Bi

)

hi ← F
4λ
2

zi ← {zi ∈ F
4λ
2 | zT

i hi = bi}
comzi

← SCom(zi; rzi )

�{(σai‖Bi
, comzi

)}m
i=1

For i ∈ [m] :
If VrfyvkR

(ssid‖i‖0‖comai‖Bi
, σai‖Bi

) �= 1

then abort
Run TR(ssid, i, comai‖Bi

, ai, Bi, rai‖Bi
, σai‖Bi

)

to get (ãi, B̃i, σãi‖B̃i
)

If ãi �= Cai or B̃i �= CBi, then abort

If VrfyvkR
(ssid‖i‖1‖ãi‖B̃i, σãi‖B̃i

) �= 1

then abort
σzi

:= SigskS
(ssid‖i‖comzi

)

{(ãi, B̃i, σãi‖B̃i
, σzi

)}m
i=1�

For i ∈ [m] :
If one of the following fails, abort:

VrfyvkR
(ssid‖i‖1‖ãi‖B̃i, σãi‖B̃i

)

VrfyvkS
(ssid‖i‖comzi

, σzi
)

Run TS(ssid, i, comzi
, zi, rzi , σzi

)
to get (Vi, wi)

If VrfyvkS
(ssid‖i, wi) �= 1

or CVi �= ãiz
T
i + B̃i

then abort

� {(hi, wi)}m
i=1

For i ∈ [m] :
If VrfyvkS

(ssid‖i, wi) �= 1, then abort

v0
i , v

1
i ← {0, 1}d

x̃0
i := Ext(GBihi, v

0
i ) ⊕ x0

i

x̃1
i := Ext(GBihi + Gai, v

1
i ) ⊕ x1

i

{(v0
i , v

1
i , x̃

0
i , x̃

1
i )}m

i=1�
For i ∈ [m] :

output x̃
bi
i ⊕ Ext(GVihi, v

bi
i )

Fig. 5. An OT protocol π from two stateless tokens
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To show security of the protocol, we need to construct a simulator Sim for

any non-uniform ppt environment Z such that exec
Fwrap

π,A,Z ≈ idealFmulti-OT,Sim,Z ,
where A is the dummy adversary. Below, we briefly sketch the ideas used to
construct such a simulator. Note that we assume w.l.o.g. that the adversary
never asks the same query twice.

Sender Corruption. First, recall that the token TR takes as input (ssid, i,
comai‖Bi

, ai, Bi, rai‖Bi
, σai‖Bi

) and returns (ãi, B̃i, σãi‖B̃i
). Our protocol forces

the malicious sender S∗ to query TR on exactly one input (ai‖Bi) for a fixed index
i. This allows Sim to extract the input from the protocol transcript. To see this,
note that the receiver authenticates the inputs to its token TR, which in turn
authenticates its output. Thus, if the malicious sender does not query the token
TR but sends a “valid” tuple (ãi‖B̃i, σãi‖B̃i

), then this immediately contradicts
the unforgeability of the underlying signature scheme. Also, S∗ cannot query TR
with two different values (ai‖Bi), (a

′
i‖B′

i) (for a fixed i) without contradicting
the unforgeability of the signature σai‖Bi

or the binding of comai‖Bi
.

Next, consider the maliciously generated token TS∗ . Its input consists of a
tuple (ssid, i, comzi , zi, rzi , σzi), and its output is (Vi, wi). The input is chosen
carefully in combination with the protocol execution such that the output of
the token does not reveal any information about the choice bit bi = zTi hi of the
receiver. Observe that the signature σzi depends only on vkS and comzi in the
information thoeretic sense, since we use a unique signature scheme. Therefore,
the token knows nothing about hi. Also, the signature wi depends only on vkR
and (ssid, i) in the information theoretic sense, and it does not contain any
information about zi.

Still, the token TS∗ may send some limited amount of information about the
previous executions to S∗ by aborting the protocol. Observe that according to
our definition of the functionality, OT sub-sessions are executed in a sequential
manner, and aborting is allowed only once. Thus, the number � of successful
sub-sessions so far can encode some information of the input history of TS∗ up
to O(log λ) bits. Therefore, even with this leakage, the adversary S∗ has only a
negligible advantage in predicting bi. To see this, note that bi = zTi hi remains
unfixed given O(log λ) bits of zi.

Receiver Corruption. First, recall that the input to the token TS is (ssid, i,
comzi , zi, rzi , σzi) and that its output is (Vi, wi). As in the malicious sender case,
our protocol forces the malicious receiver R∗ to query the token on exactly one
input zi for each i. By observing this query, the simulator Sim can extract the
input b̂i = zTi hi of R

∗. This property is achieved using the unforgeability of the
signature scheme and the binding of the commitment scheme SCom. That is,
the unforgeability guarantees that the token runs only on the input (including
comzi) authenticated by the honest sender, and the binding of comzi disables
the malicious receiver R∗ to query the token on two distinct zis.

Next, consider the maliciously generated token TR∗ . The input to the token
and its output are carefully handled such that it does not reveal information
about (x0

i , x
1
i ) of the sender. To see this, recall the token TR∗ takes as input

(ssid, i, comai‖Bi
, ai, Bi, rai‖Bi

, σai‖Bi
) and returns (ãi, B̃i, σãi‖B̃i

). In particular,
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since we use a unique signature scheme, the signature σãi‖B̃i
information-

theoretically depends only on (vkR, ãi, B̃i), so any malicious attempt by R∗ and
TR∗ to gain information about (ai, Bi) beyond (comai‖Bi

, ãi, B̃i) is not possible.
Still, the token TR∗ may reveal to the environment some limited amount of

information about the previous executions to R∗ by aborting the protocol (only
allowed one-time), that is, the number � of successful sub-sessions so far can
encode some information of the input history of TR∗ . This value � can encode at
most O(log λ) bits. Using appropriate extractors in computing the masks for x̃0

i

and x̃1
i , we can handle this amount of leakage.

3.3 Bounded Oblivious Transfer from Collision Resistant Hash
Functions

The bounded OT protocol between a sender S and a receiver R consists of an
initial token-exchange phase after which the parties can carry out a bounded
number of oblivious transfers in a single sub-session. We describe π now; see
also Figure 8. Here, let (Sig,Vrfy) be a MAC scheme.

The main intuition for this protocol is that if we allow only one sub-session
to be executed, then we only need to worry about covert channels that transmit
information observed by each party/token so far up to the covert communication.
We do not need to worry about a later sub-session sending information about a
prior sub-session. This allows us to eliminate the need for unique signature and
use MACs instead, thus giving a protocol based only on the existence of CRHFs.

We eliminate the unique signatures in two ways. First, some of the checks
in the unbounded protocol can be removed. In particular, in the protocol,
the receiver doesn’t check the authentication on comzi before forwarding it
to the sender-created token TS. This is because it cannot contain any useful
information about zi beyond comzi . For other checks, unique signatures are
replaced with (roughly) the following technique: a party A commits to a
MAC key, authenticates the message using the MAC key, and later sends the
decommitment. Due to the unforgeablity of MAC, the party A makes sure that
B runs the token only once before receiving messages of B derived from the
token execution result. Given the decommitment, the other party B can check
that all the messages from A so far have been legitimate.

Token-Exchange Phase. Each party generates a single token and sends it
to the other party. The sender’s token TS encapsulates the code described
in Figure 6, where ka, kB , kw, kW , s2 ← {0, 1}λ. The receiver’s token TR
encapsulates the code described in Figure 7, where s← {0, 1}λ and C ← F2λ×4λ

2 .
Formally, each party sends the relevant code to Fwrap using an appropriate
(create, . . .) message. Finally, R sends C to S, and in turn S computes the
complementary matrix G← Comp(C) and sends it to R.

Oblivious-Transfer Phase. Following the token-exchange phase, the parties
enter the oblivious transfer phase, where m OT instances are executed in
parallel. In this phase, S gets (send, 〈sid, S,R〉, 〈m, {(x0

i , x
1
i )}mi=1〉) and R gets
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On input (i, comz, z, rz, τz):
v := Vrfys2(i‖comz, τz)
if z = Open(comz, z, rz) and v = 1

a := PRFka(i); B := PRFkB (i)
w := PRFkw (i); rw := PRFkW (i)
V := azT +B
output (V,w, rw)

else output (⊥,⊥,⊥)

Fig. 6. The Turing machine MS

to be embedded in the sender-
created token TS. It is initialized
with (ka, kB , kw, kW , s2) given by the
creator.

On input (i, coma‖B , a, B, ra‖B, τa‖B):
v := Vrfys(i‖0‖coma‖B, τa‖B)
if a‖B = Open(coma‖B, a‖B, ra‖B)

and v = 1

ã := Ca; B̃ := CB;

τã‖B̃ := Sigs(i‖1‖ã‖B̃)

output (ã, B̃, τã‖B̃)

else output (⊥,⊥,⊥)

Fig. 7. The Turing machine MR to be
embedded in the receiver-created token
TR. It is initialized with (s, C) given by
the creator.

(receive, 〈sid, S,R〉, 〈m, {bi}mi=1〉) from the environment, and they execute the
following protocol:

S→ R: For i ∈ [m], the sender computes ai := PRFka(i), Bi := PRFkB (i),

wi := PRFkw(i), and rwi := PRFkW (i), and chooses ui ← {0, 1}8λ2+3λ. Here,
we have ai ∈ F4λ

2 , Bi ∈ F4λ×4λ
2 , and wi ∈ {0, 1}λ. Then, the sender commits

to (ai, Bi), wi, and ui by executing comai‖Bi
← SCom(ai‖Bi; rai‖Bi

), and
comwi ← Com(wi; rwi), and comui ← Com(ui; rui), respectively.
The sender sends {(comai‖Bi

, comwi , comui)}mi=1 to R.
R→ S: The receiver commits to s by executing coms ← Com(s; rs). It also

chooses zi ← F4λ
2 , and commits to zi by executing comzi ← SCom(zi; rzi).

It next authenticates the commitment comai‖Bi
by computing

τai‖Bi
:= Sigs(i‖0‖comai‖Bi

) for i = 1, . . . ,m.

Finally, it sends (coms, {(τai‖Bi
, comzi)}mi=1) to S.

S→ R: For i ∈ [m], the sender runs the token TR with (i, comai‖Bi
, ai, Bi, rai‖Bi

,

τai‖Bi
) and obtains in return (ãi, B̃i, τãi‖B̃i

). Then S checks that ãi = Cai

and B̃i = CBi for i ∈ [m]. If the check fails, S aborts the protocol. Otherwise,
S computes Ui := ui ⊕ (ãi‖B̃i‖τãi‖B̃i

) for i ∈ [m] and sends {Ui}mi=1 to R.

R→ S: R sends the decommitment (s, rs) of coms to S.
S→ R: The sender validates all values transmitted so far as follows: It checks

that s = Open(coms, s, rs) and that Vrfys(i‖0‖comai‖Bi
, τai‖Bi

) = 1, as well

as Vrfys(i‖1‖ãi‖B̃i, τãi‖B̃i
) = 1 for i ∈ [m]. If the check fails, then S aborts

the protocol. Otherwise, for i ∈ [m] it authenticates the commitment comzi

by computing τzi := Sigs2(i‖comzi). Finally, it sends ({(ui, rui , τzi)}mi=1)
to R.

R→ S: For i ∈ [m], the receiver checks that ui = Open(comui , ui, rui); if
not, it aborts. Then R sets ãi‖B̃i‖τãi‖B̃i

:= Ui ⊕ ui. It next checks that
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S R

Token exchange:

ka, kB , kw , kW , s2 ← {0, 1}λ C ← F
2λ×4λ
2 ; s ← {0, 1}λ

generate token TS as in Fig 6 generate token TR as in Fig 7

� TS, TR �
� C

G ← Comp(C)
G �

Oblivious transfer:
(m, {(x0

i , x
1
i )}

m
i=1) (m, {bi}m

i=1)

For i ∈ [m] :
ai := PRFka (i);Bi := PRFkB

(i)
wi := PRFkw (i); rwi

:= PRFkW
(i)

ui ← {0, 1}8λ2+3λ

comai‖Bi
← SCom(ai‖Bi; rai‖Bi

)
comwi

← Com(wi; rwi
)

comui
← Com(ui; rui

)

{(comai‖Bi
, comwi

, comui
)}m

i=1� coms ← Com(s; rs)
For i ∈ [m] :

τai‖Bi
:= Sigs(i‖0‖comai‖Bi

)

zi ← F
4λ
2 ; comzi

← SCom(zi; rzi )

For i ∈ [m] : �coms, {(τai‖Bi
, comzi

)}m
i=1

Run TR(i, comai‖Bi
, ai, Bi, rai‖Bi

, τai‖Bi
)

to get (ãi, B̃i, τãi‖B̃i
)

If ãi �= Cai or B̃i �= CBi, then abort

Ui := ui ⊕ (ãi‖B̃i‖τãi‖B̃i
)

{Ui}m
i=1 �

� (s, rs)
// send decommitment of coms

If s �= Open(coms, s, rs), then abort
For i ∈ [m] :

If Vrfys(i‖0‖comai‖Bi
, τai‖Bi

) �= 1 or

Vrfys(i‖1‖ãi‖B̃i, τãi‖B̃i
) �= 1

then abort
τzi := Sigs2 (i‖comzi

)

{(ui, rui
, τzi )}

m
i=1 � For i ∈ [m] :

(ãi‖B̃i‖τãi‖B̃i
) := ui ⊕ Ui

If ui �= Open(comui
, ui, rui

) or

Vrfys(i‖1‖ãi‖B̃i, τãi‖B̃i
) �= 1,

then abort
Run TS(i, comzi

, zi, rzi , τzi )
to get (Vi, w

′
i, r

′
wi

)

If w′
i �= Open(comwi

, w′
i, r

′
wi

)

or CVi �= ãiz
T
i + B̃i, then abort

For i ∈ [m] : � {(hi, w
′
i)}m

i=1 hi ← {hi ∈ F
4λ
2 | zT

i hi = bi}
If w′

i �= wi, abort

v0
i , v

1
i ← {0, 1}d

x̃0
i := Ext(GBihi, v

0
i ) ⊕ x0

i

x̃1
i := Ext(GBihi + Gai, v

1
i ) ⊕ x1

i

{(v0
i , v

1
i , x̃

0
i , x̃

1
i )}m

i=1 � For i ∈ [m] :

output x̃
bi
i ⊕ Ext(GVihi, v

bi
i )

Fig. 8. A bounded OT protocol π from two stateless tokens
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Vrfys(i‖1‖ãi‖B̃i, τãi‖B̃i
) = 1 for i ∈ [m]. If this check does not hold, it

aborts the protocol. Otherwise, for i ∈ [m], it runs the token TS with
(i, comzi , zi, rzi , τzi) and obtains in return (Vi, w

′
i, r

′
wi
). The receiver checks

that w′
i = Open(comwi , w

′
i, r

′
wi
), that CVi = ãiz

T
i + B̃i, and that w′

i �= ⊥ for
i ∈ [m]. If the check fails, then it aborts the protocol. Otherwise, it chooses
hi ← F4λ

2 subject to the constraint that bi = zTi hi for i ∈ [m], and sends
{(hi, w

′
i)}mi=1 to S.

S→ R: The sender checks that wi = w′
i for i ∈ [m]; if not, it aborts the protocol.

Otherwise, for i ∈ [m] it chooses v0i , v
1
i ← {0, 1}d and computes x̃0

i :=
Ext(GBihi, v

0
i ) ⊕ x0

i and x̃1
i := Ext(GBihi + Gai, v

1
i ) ⊕ x1

i . Finally it sends
{(v0i , v1i , x̃0

i , x̃
1
i )}mi=1 to the receiver.

R→ S: For i ∈ [m], the receiver computes xbi
i := x̃bi

i ⊕ Ext(GVihi, v
bi
i ) and

outputs it.

4 Black-Box Impossibility of OT Using One Stateless
Token

In the previous section we showed that an unbounded number of universally
composable OTs (and hence universally composable secure computation) is
possible by having the parties exchange two stateless tokens. We show here that a
construction of (even a single) OT using one stateless token is impossible using
black-box techniques alone. Here, by “black-box” we refer to the simulator’s
access to the code M encapsulated in the token. Note that the token model as
defined by Katz [32] is inherently nonblack-box and, in particular, the simulator
is given the codeM that the malicious party submits to Fwrap. Nevertheless, an
examination of the proof of security of our two-token protocol in Section 3— as
well as the proofs of security in almost all prior work [12,37,23,15,24,25,19]—
shows that the simulator only uses this code in a black-box fashion, namely, by
running the code to observe its input/output behavior but without using any
internal structure of the code itself. We formalize this in what follows.

Specifically, we consider simulators of the form Sim = (Simcode, Simbb), where
Simcode gets the code M that the adversary submits to Fwrap, and then runs
Simbb as a subroutine while giving it oracle access toM. Inspired by [8,9] we show
that, restricting to such simulators, constructions of OT from one stateless token
are impossible. Intuitively, for any such protocol proven secure using black-box
techniques, Simbb must be able to extract the input of a corrupted token-creating
party by interacting with M in a black-box fashion. The real-world adversary
can then use Simbb to extract the input of the honest token-creating party by
running Simbb and answering its oracle queries by querying the token itself; for
stateless tokens, querying the token (in the real world) is equivalent to black-box
access to M (in the ideal world).

Theorem 2. There is no protocol π that uses one stateless token to securely
realize FOT in the Fwrap-hybrid model whose security is proven using a simulator
Sim = (Simcode, Simbb) as defined above.
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Proof (Sketch). For completeness, the (single-session) OT functionality FOT

is given in Figure 9. Let π be a protocol between a sender S and a receiver R,
in which a single token is sent from the sender to the receiver. (The other case
is handled analogously.) Consider the following environment Z ′ and dummy
adversary A′ corrupting the sender: Z ′ chooses random bits s0, s1, and b, and
instructs the sender to run π honestly on input (s0, s1), including submitting
some code to Fwrap to create a token. Once the honest receiver outputs s, then
Z ′ outputs 1 if s = sb and 0 otherwise.

Suppose that π securely realizes FOT, where security is proved via a
simulator Sim = (Simcode, Simbb) as previously described. In the course of the
proof, Simbb plays the role of a receiver while interacting with A′, and Simcode

provides Simbb with black-box access to whatever code A′ submits to Fwrap. At
some point during its execution, Simbb must send some inputs (s̃0, s̃1) to the ideal
functionality FOT. It is not hard to see that we must have (s̃0, s̃1) = (s0, s1) with
all but negligible probability.

We now consider a different environment Z and an adversary A corrupting
the receiver. Z chooses random bits s0, s1, b and provides (s0, s1) as input to the
honest sender; it outputs 1 iff A outputs (s0, s1). Note that A receives a token
from the honest sender as specified by π. Adversary A works as follows:

Run Simbb, relaying messages from the honest sender to this internal
copy of Simbb. Whenever Simbb makes a query to Simcode to runM (the
code created by the honest sender) on some input q, adversary A runs
the token with input q (formally, A sends (run, 〈sid, S,R〉, q) to Fwrap

and gives the response to Simbb). At some point, Simbb sends (s̃0, s̃1)
to FOT, at which point A outputs (s̃0, s̃1) and halts.

The key point is that because the token is stateless, there is no difference
between Simcode running the code M, and A querying the token via Fwrap.
Thus, A provides a perfect simulation for Simbb, and we conclude that (s̃0, s̃1) =
(s0, s1) with all but negligible probability in an execution of π in the Fwrap-hybrid
world. But this occurs with probability at most 1/2 in an ideal-world evaluation
of FOT. Thus, Z can distinguish between the real- and ideal-world executions,
contradicting the claimed security of π. ��

5 Coin Tossing Using One Stateless Token

In the previous section we showed that universally composable OT cannot
be realized from one stateless token if only “black-box techniques” are used.
We complement that result by showing that UC secure computation from one
stateless token is feasible via nonblack-box techniques. Here, we find it somewhat
simpler to construct a protocol for universally composable coin tossing rather
than OT. (The coin-tossing functionality Fcoin is defined in the natural way; see
Figure 10 .) Note that coin tossing suffices for general secure computation under
a variety of cryptographic assumptions [10,35].
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Functionality FOT

FOT interacts with sender S, receiver R, and the adversary.

Upon receiving an input (send, 〈sid,S,R〉, 〈x0, x1〉) from S with x0, x1 ∈ {0, 1},
record the tuple 〈x0, x1〉, and reveal (send, 〈sid,S,R〉) to the adversary. Ignore
further (send, . . .) inputs.

Upon receiving an input (receive, 〈sid,S,R〉, b) from R with b ∈ {0, 1}, record
the bit b, and reveal (receive, 〈sid,S,R〉) to the adversary. Ignore further
(receive, . . .) inputs.

Upon receiving a message (go, 〈sid,S,R〉) from the adversary, ignore the
message if 〈x0, x1〉 or b is not recorded. Otherwise, do the following: return
(received, 〈sid,S,R〉) to S, and return (received, 〈sid,S,R〉, xb) to R. Ignore
further (go, 〈sid,S,R〉) messages from the adversary.

Fig. 9. The ideal FOT functionality for bit-OT

Functionality Fcoin

Fcoin interacts with two parties, Alice A and Bob B, and the adversary. The
functionality is parameterized by a security parameter λ. It also maintains
variables (bA, bB, coins) initialized to (false, false,⊥).

Upon receiving an input (toss, 〈sid,A,B〉) from party P ∈ {A,B}, then set
bP := true, and reveal (toss, 〈sid,A,B〉, P ) to the adversary. Ignore further
(toss, 〈sid,A,B〉) inputs from the party P .

Upon receiving a message (go, 〈sid,A,B〉, P ) from the adversary for P ∈
{A,B}, ignore the message if bA = false or bB = false. Otherwise, do the
following: if coins = ⊥, i.e, coins has not been set yet, then randomly choose
u ← {0, 1}λ and set coins := u; return (coin, 〈sid,A,B〉, coins) to party P .
Ignore further (go, 〈sid,A,B〉, P ) messages for the party P from the adversary.

Fig. 10. The ideal Fcoin functionality for coin tossing

At a high level, our protocol follows the general structure of Blum’s coin-
tossing protocol [4]. This protocol consists of three moves. In the first move (B1),
Alice commits to a random x and sends comx to Bob, who in return chooses a
random value y and sends it to Alice (B2). In the last move (B3), Alice sends
the decommitment to x and both parties output x⊕ y.

To obtain a UC coin-tossing protocol that follows this basic approach, we
need to be able to simulate each party. In particular, if Alice is malicious then
the simulator needs to extract the message contained in comx (extractability),
whereas when Bob is corrupted the simulator needs to open the commitment
in an arbitrary way (equivocation). We achieve both goals by having Bob send
a single stateless token TB to Alice. This token behaves in two different ways,
depending on its input. The first task of the token is to generate a random value
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e upon seeing comx (we discuss the details later); the second task is to generate
a notification t for Bob that Alice knows the decommitment x. The value e is
used for equivocation, and the notification t gives the simulator the ability to
extract x. We give further details next. In the high-level description here, we
assume the token is created honestly; we deal with a potentially malicious token
when we formally define the protocol, below.

Achieving Extractability. Similar to Section 3, the token only works on
authenticated inputs. That is, whenever Alice wants to query the token on some
inputs, she needs to first ask Bob to compute a MAC on those inputs. In order
to achieve extractability, we let Alice query the token on input (comx, x, rx, τx),
where comx ← SCom(x; rx) comes from Alice and τx is a MAC tag on comx.
The output of the token is a random value t that can be seen as a notification to
Bob that Alice knows the decommitment x. As in the previous OT protocol, the
authentication of the inputs guarantees that Alice makes exactly one valid query
to the token: more than one valid query would imply that Alice has violated
security of the MAC or binding of comx; if Alice makes no query, then she
cannot guess t. By forcing Alice to query the token exactly once, we can now
easily construct a simulator that extracts the value x while emulating Fwrap.
Modifying Blum’s coin-tossing protocol, we have the following step:

(B1) Alice commits to x by executing comx ← SCom(x; rx). She sends the
commitment comx to Bob, who in turn computes a tag τx on comx and sends
τx to Alice. Alice runs the token with (comx, x, rx, τx) to obtain output t,
and sends t to Bob. Bob checks if t is correct.

Achieving Equivocation. Toward this goal, we further modify the protocol
and the token. Alice sends comx and a dummy commitment comM before getting
the tag τx on comx‖comM from Bob. The token also gets as an additional input
this commitment comM ; it outputs a random value e on input (comx, comM , τx)
and a random value t on input (comx, comM , x, rx, τx). In step (B3), instead of
sending the decommitment (x, rx) of comx to Bob, Alice sends x together with
a witness-indistinguishable (WI) proof that either x is a valid decommitment
of comx, or comM contains code that outputs the actual output e of the token
TB. (This is where we use the nonblack-box techniques of Barak [2].)
Due to the binding property of comM , and because the notification e is
unpredictable, Alice cannot commit to such code in comM . The simulator,
however, takes advantage of the fact that it obtains the code of the token
generated by Bob while emulating Fwrap. Then, as in [2], the simulator’s ability to
predict the output of the token beforehand can be used to achieve equivocation.
We remark that in contrast to Barak’s work, we do not need to use universal
arguments; this is because Fwrap is parameterized with a fixed polynomial
bounding the running time of the token (whereas Barak had to handle any
polynomial running time).

More formally, we change the protocol as follows:

Token. The token input is either (comx, comM , τx) or (comx, x, rx, comM , τx)
and in both cases it checks the validity of τx before responding. In the first
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Alice (A) Bob (B)

Token exchange: s, t, rt, e ← {0, 1}λ

(0)� TB Construct TB as in Figure 12

Coin tossing: H ← H; comt ← Com(t; rt)

x ← {0, 1}2λ; comx ← SCom(x; rx) (1)� H, comt

comM ← Com(H(0λ); rM )

(2)
comx, comM� τx := Sigs(comx‖comM )

(3)� e, τx

e′ := TB(comx, comM , τx)
(t′, r′t) := TB(comx, x, rx, comM , τx)
If e′ �= e or t′ �= Open(comt, t

′, rt′ ), abort

v ← {0, 1}d; x̃ := Ext(x, v)

(4)
t′, v � If t �= t′, then abort

(5)� y
y ← {0, 1}λ

generate WI argument of knowledge Π
either ∃ x, rx s.t.
x = Open(comx, x, rx) ∧ x̃ = Ext(x, v)

or ∃ M, rM s.t.
H(M) = Open(comM , H(M), rM ) ∧ e = M(comx, comM , τx)

output x̃ ⊕ y (6)
x̃, Π � if Π verifies, output x̃ ⊕ y

Fig. 11. A coin-tossing protocol ψ from a single stateless token

case, the token outputs a random value e. In the second case, it returns a
random value t.

Protocol. Once Alice obtains the token, she runs the following protocol with
Bob:

(B1). Alice commits to x and sends comx together with a dummy com-
mitment comM to Bob. In turn, Bob authenticates comx‖comM using a
MAC and sends (τx, e) to Alice. Alice invokes the token twice, first with
(comx, comM , τx) and then with (comx, x, rx, comM , τx), obtaining the values
e′ and t′, respectively. She checks if e = e′ and, if so, sends t′ to Bob. Finally,
Bob checks if t′ = t.

(B2). Bob sends Alice a random value y.
(B3). Alice sends x together with a WI proof that either (i) (x, rx) is the

decommitment of comx, or (ii) comM is a commitment to a Turing machine
M such that M(comx, comM , τx) = e.

5.1 Formal Description of the Protocol

The protocol ψ between Alice A and Bob B consists of an initial token-exchange
phase, followed by a coin-tossing phase for generating a random λ-bit string. We
now describe ψ formally; see also Figure 11.
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On input (comx, comM , τx) do:
if Vrfys(comx‖comM , τx) = 1

output e
else output ⊥

On input (comx, x, rx, comM , τx) do:
if Vrfys(comx‖comM , τx) = 1

and x = Open(comx, x, rx)
output (t, rt)

else output (⊥,⊥)

Fig. 12. The Turing machine M embedded in the sender-created token TB. Here,
e, s, t, rt ∈ {0, 1}λ are chosen uniformly at random and embedded in the token.

Token-Exchange Phase. Bob generates a single token TB and sends it to Alice.
Bob’s token TB encapsulates the codeM described in Figure 12, where s, e, t, rt
are each chosen uniformly from {0, 1}λ.

Coin-Tossing Phase. In this phase, Alice and Bob proceed as follows.

B→ A: Bob chooses a collision-resistant hash function H ← H. He also commits
to the value t (that he used when creating the token) by executing comt ←
Com(t; rt). He sends H, comt to Alice.

A→ B: Alice chooses a value x ← {0, 1}2λ and commits to x and H(0λ) by
executing comx ← SCom(x; rx) and comM ← Com(H(0λ); rM ). She sends
comx and comM to Bob.

B→ A: Bob generates a MAC tag τx := Sigs(comx‖comM ), and sends (e, τx) to
Alice. Recall that Bob has already chosen e and embedded the value in the
token TB in the token exchange phase.

A→ B: Alice runs the token TB with (comx, comM , τx) and obtains e′ in
response. Then she runs the token with (comx, x, rx, comM , τx) and obtains
(t′, r′t). Alice checks if e′ = e and t′ = Open(comt, t

′, r′t). If not, she aborts
the protocol. Otherwise, she chooses v ← {0, 1}d and sends (t′, v) to Bob,
where d is an appropriate seed length for the extractor.

B→ A: Bob checks that t = t′, and aborts if not. Otherwise he chooses y ←
{0, 1}λ and sends it to Alice.

A→ B: Alice sends x̃ := Ext(x, v) and gives a WI argument of knowledge that
(H, comx, comM , e, τx, v, x̃) belongs to the NP language L defined by the
following relation RL:

RL((H, comx, comM , e, τx, v, x̃), (α, β)) = 1 if either one of the following holds:

(i) α = Open(comx, α, β) and x̃ = Ext(α, v).

(ii) H(α) = Open(comM ,H(α), β). In addition, treating α as the description of a
Turing machine, the execution of α(comx, comM , τx) outputs e in time at most
p(λ), where p is the polynomially bounded running time defined by Fwrap.

If the proof succeeds, both parties output x̃⊕ y.

Theorem 3. Assume Com is computationally hiding and strongly binding,
SCom is statistically hiding and computationally binding, MAC is a deterministic,
unforgeable message-authentication code, H is a family of collision-resistant
hash functions, and the proof system is a witness-indistinguishable argument
of knowledge. Then ψ securely realizes Fcoin in the Fwrap-hybrid model.
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5.2 Proof Idea

In this section, we briefly sketch the main ideas behind the proof of Theorem 3.
A complete proof is deferred to the full version.

To show the security of the protocol, we need to construct a simulator Sim

for any ppt environment Z such that exec
Fwrap

A,π,Z ≈ idealFcoin,Sim,Z , where A is
the dummy adversary. Below, we briefly provide ideas for simulation.

Corrupting Alice. Note that Alice cannot commit to a TM M in comM that
will output e, since e is chosen at random independently. Therefore, from the
collision-resistance of H , Alice has to show that x̃ = Ext(x, v) in the WI proof.
Since v appears in the communication transcript, by forcing malicious Alice A∗

to query TB with x exactly once, the simulator Sim can extract the value x̃ from
binding of comx. Then, upon receiving the random string coins from Fcoin, the
simulator can send y = x̃ ⊕ coins to A∗. To see how the protocol forces exactly
one query to the token, note that malicious Alice is not able to generate a valid
t without querying TB, since t is random and comt is hiding. Also, note that A∗

cannot query TB with different xs without contradicting the unforgeability of
the tag τx and/or the binding of comx. This allows the simulator to extract the
value of x.

Corrupting Bob. The simulator Sim needs to equivocate the value x̃ so that it
may hold that x̃ = coins⊕ y, where coins is the random string from Fcoin. This
is achieved as follows. While emulating Fwrap, the simulator obtains the token
codeM generated by Bob, then it generates comM ← Com(H(M);RM ). Given
the hiding property of comM , the simulated transcript is indistinguishable from
that in the Fwrap-hybrid world. Now, with the witness (M, RM ) in the WI proof,
the simulator can send any value x̃.
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Abstract. We study the complexity of secure computation in the tamper-
proof hardware token model. Our main focus is on non-interactive uncon-
ditional two-party computation using bit-OT tokens, but we also study
computational security with stateless tokens that have more complex
functionality. Our results can be summarized as follows:
– There exists a class of functions such that the number of bit-OT

tokens required to securely implement them is at least the size of
the sender’s input. The same applies for receiver’s input size (with
a different class of functionalities).

– Non-adaptive protocols in the hardware token model imply efficient
(decomposable) randomized encodings. This can be interpreted as
evidence to the impossibility of non-adaptive protocols for a large
class of functions.

– There exists a functionality for which there is no protocol in the
stateless hardware token model accessing the tokens at most a con-
stant number of times, even when the adversary is computationally
bounded.

En route to proving our results, we make interesting connections between
the hardware token model and well studied notions such as OT hybrid
model, randomized encodings and obfuscation.

1 Introduction

A protocol for secure two-party computation allows two mutually distrustful
parties to jointly compute a function f of their respective inputs, x and y, in
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a way that does not reveal anything beyond the value f(x, y) being computed.
Soon after the introduction of this powerful notion [41,18], it was realized that
most functions f(x, y) do not admit an unconditionally-secure protocol that
satisfies it, in the sense that any such protocol implicitly implies the existence
(and in some case requires extensive use [2]) of a protocol for Oblivious Transfer
(OT) [7,3,29,23,35]. Moreover, even if one was willing to settle for computational
security, secure two-party computation has been shown to suffer from severe
limitations in the context of protocol composition [15,5,32,33].

The above realizations have motivated the search for alternative models of
computation and communication, with the hope that such models would enable
bypassing the above limitations, and as a byproduct perhaps also give rise to
more efficient protocols. One notable example is the so called hardware token
model, introduced by Katz [28]. In this model, it is assumed that one party can
generate hardware tokens that implement some efficient functionality in a way
that allows the other party only black-box access to the functionality.

The literature on hardware tokens (sometimes referred to as tamper proof
tokens1) discusses a variety of models, ranging from the use of stateful tokens
(that are destroyed after being queried for some fixed number of times) to state-
less ones (that can be queried for an arbitrary number of times), with either
non-adaptive access (in which the queries to the tokens are fixed in advance) or
adaptive access (in which queries can depend on answers to previous queries).
Tokens with varying levels of complexity have also been considered, starting with
simple functions such as bit-OT, and ranging all the way to extremely complex
functionalities (ones that enable the construction of UC-secure protocols given
only a single call to the token).

The use of hardware tokens opened up the possibility of realizing information-
theoretically and/or composable secure two-party protocols even in cases where
this was shown to be impossible in “plain” models of communication. Two early
examples of such constructions are protocols for UC-secure computation [28], and
one-time programs [20]. More recently, a line of research initiated by Goyal et
al. [22] has focused on obtaining unconditionally-secure two-party computation
using stateful tokens that implement the bit-OT functionality. In [21], Goyal
et al. went on to show how to achieve UC-secure two party computation using
stateless tokens under the condition that tokens can be encapsulated: namely,
the receiver of a token A can construct a token B that can invoke A internally.
Finally, Dottling et al. [12] have shown that it is possible to obtain information-
theoretically secure UC two-party protocols using a single token, assuming it
can compute some complex functionality.

Generally speaking, the bit-OT token model has many advantages over a
model that allows more complex tokens. First of all, the OT functionality is
simple thus facilitating hardware design and implementation. Secondly, in many
cases [22], the bit-OT tokens do not depend on the functionality that is being
computed. Hence, a large number of bit-OT tokens can be produced “offline”

1 There are papers which deal with the leakage of tokens’ contents. We do not
consider such a setting in this work.
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and subsequently used for any functionality. The main apparent shortcoming of
bit-OT tokens in comparison to their complex counterparts is that in all previous
works the number of tokens used is proportional to the size of the circuit being
evaluated, rendering the resulting protocols impractical. This state of affairs
calls for the investigation of the minimal number of bit-OT token invocations in
a secure two-party computation protocol.

In this work we aim to study the complexity of constructing secure proto-
cols with respect to different measures in the hardware token model. Our main
focus is on non-interactive information-theoretic two-party computation using
bit-OT tokens, but we also study computational security with stateless tokens
that compute more complex functionalities. En route to proving our results, we
make interesting connections between protocols in the hardware token model
and well studied notions such as randomized encodings, obfuscation and the OT
hybrid model. Such connections have been explored before mainly in the context
of obtaining feasibility results [22,13].

The first question we address is concerned with the number of bit-OT tokens
required to securely achieve information-theoretic secure two-party computation.
The work on one-time programs makes use of bit-OT tokens in order to achieve
secure two party computation in the computational setting, and the number of
tokens required in that construction is proportional to the receiver’s input size.
On the other hand, the only known construction in the information-theoretic
setting [22] uses a number of tokens that is proportional to the size of the circuit.
This leads us to the following question: is it possible to construct information
theoretic two party computation protocols in the token model, where the number
of tokens is proportional to the size of the functionality’s input? Problems of
similar nature have been also studied in the (closely related) OT-hybrid model
[11,2,40,36,37,39].

The second question we address is concerned with the number of levels of
adaptivity required to achieve unconditional two party computation. The known
constructions [22] using bit-OT tokens are highly adaptive in nature: the num-
ber of adaptive calls required is proportional to the depth of the circuit being
computed. The only existing protocols which are non-adaptive are either for spe-
cific complexity classes ([26] for NC1) or in the computational setting [20]. An
interesting question, therefore, is whether there exist information-theoretic non
adaptive protocols for all efficient functionalities.

The works of [21,34] give negative results on the feasibility of using stateless
tokens in the information-theoretic setting. Goyal et al. [22] have shown that
it is feasible to construct protocols using stateless tokens under computational
assumptions. So, a natural question would be to determine the minimum number
of calls to the (stateless) token required in a computational setting.

1.1 Our Results

We exploit the relation between protocols in the hardware token model and
cryptographic notions such as randomized encodings and obfuscation to obtain
lower bounds in the hardware token model. We focus on non-interactive two-
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party protocols, where only one party (the sender) sends messages and tokens
to the other party (the receiver). Our results are summarized below.

Number of Bit-OT Tokens in the Information-Theoretic Setting. Our first set of
results establishes lower bounds on the number of bit-OT tokens as a function
of the parties’ input sizes. Specifically:

– We show that there exists a class of functionalities such that the number of
tokens required to securely implement them is at least the size of the sender’s
input. To obtain this result, we translate a similar result in the correlated
distributed randomness model by Winkler et al. [39] to this setting.

– We provide another set of functionalities such that the number of tokens
required to securely implement them is at least the size of the receiver’s
input.

While this still leaves a huge gap between the positive result (which uses
number of tokens proportional to the size of the circuit) and our lower bound,
we note that before this result, even such lower bounds were not known to exist.
Even in the case of OT-hybrid model, which is very much related to the hardware
token model (and more deeply studied), only lower bounds known are in terms
of the sender’s input size.

Non-adaptive Protocols and Randomized Encodings. In our second main result
we show that non-adaptive protocols in the hardware token model imply efficient
randomized encodings. Even though currently known protocols [22] are highly
adaptive, it was still not clear that non adaptive protocols for all functionalities
were not possible. In fact, all functions in NC1 admit non adaptive protocols in
the hardware token model [26]. To study this question, we relate the existence of
non-adaptive protocols to the existence of a “weaker” notion of randomized en-
codings, called decomposable randomized encodings. Specifically, we show that if
a function has a non adaptive protocol then correspondingly, the function has an
efficient decomposable randomized encoding. The existence of efficient decom-
posable randomized encodings has far-reaching implications in MPC, providing
strong evidence to the impossibility of non-adaptive protocols for a large class
of functions.

Constant Number of Calls to Stateless Tokens. In our last result we show that
there exists a functionality for which there does not exist any protocol in the
stateless hardware token model making at most a constant number of calls. To
this end, we introduce the notion of an obfuscation complete oracle scheme, a
variant of obfuscation tailored to the setting of hardware tokens. Goyal et al. [22]
have shown such a scheme can be realized under computational assumptions
(refer to Section 6.2.2 in the full version). We derive a lower bound stating that
a constant number of calls to the obfuscation oracle does not suffice. This result
can then be translated to a corresponding result in the hardware token model.
This result holds even if the hardware is a complex stateless token (and hence still
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relevant even in light of our previous results) and (more importantly) against
computational adversaries. Previous known lower bounds on complex tokens
were either for the case of stateful hardware [19,20,14] or in the information
theoretic setting [21,34].

Our hope is that the above results will inspire future work on lower bounds
in more general settings in the hardware token model and to further explore the
connection with randomized encodings, obfuscation and the OT-hybrid model.

2 Preliminaries

2.1 Model of Computation

Hardware Tokens: Hardware tokens can be divided into two broad categories
– stateful and stateless. As the name implies, stateful tokens can maintain some
form of state, which might restrict the extent to which they can be used. On the
other hand, stateless tokens cannot maintain any state, and could potentially be
used an unbounded number of times. The first formal study of hardware tokens
modeled them as stateful entities [28], so that they can engage in a two-round
protocol with the receiver. Later on, starting with the work of Chandran et al.
[6], stateless tokens were also widely studied.

The token functionality models the following sequence of events: (1) a player
(the creator) ‘seals’ a piece of software inside a tamper-proof token; (2) it then
sends the token to another player (the receiver), who can run the software in a
black-box manner. Once the token has been sent, the creator cannot communi-
cate with it, unlike the setting considered in [9,10]. We also do not allow token
encapsulation [21], a setting in which tokens can be placed inside other tokens.

Stateless Tokens: The Fstateless
wrap functionality models the behavior of a state-

less token. It is parameterized by a polynomial p(.) and an implicit security
parameter k. Its behavior is described as follows:

– Create: Upon receiving (create, sid, Pi, Pj ,mid,M) from Pi, where M is a
Turing machine, do the following: (a) Send (create, sid, Pi, Pj ,mid) to Pj , and
(b) Store (Pi, Pj ,mid,M).

– Execute: Upon receiving (run, sid, Pi,mid,msg) from Pj , find the unique
stored tuple (Pi, Pj , mid,M). If no such tuple exist, do nothing. Run M(msg)
for at most p(k) steps, and let out be the response (out = ⊥ if M does not
halt in p(k) steps). Send (sid, Pi,mid, out) to Pj .

Here sid and mid denote the session and machine identifier respectively.

Stateful Tokens: In the class of stateful tokens, our primary interest is the
One Time Memory (OTM) token, studied first in [20]. This token implements a
single Oblivious Transfer (OT) call, and hence is also referred to as OT token.
Oblivious transfer, as we know, is one of the most widely studied primitives in
secure multi-party computation. In the

(
n
t

)
-OTk variant, sender has n strings of

k bits each, out of which a receiver can pick any t. The sender does not learn



668 S. Agrawal et al.

anything in this process, and the receiver does not know what the remaining
n− t strings were. The behavior of an OTM token is similar to

(
2
1

)
-OTk.

The primary difference between the OT functionality and an OTM token is
that while the functionality forwards an acknowledgment to the sender when the
receiver obtains the strings of its choice, there is no such feedback provided by
the token. Hence, one has to put extra checks in a protocol (in the token model)
to ensure that the receiver opens the tokens when it is supposed to (see, for
example, Section 3.1 in [22]). Formal definitions of FOT and FOTM are given
below. We would be dealing with OTMs where both inputs are single bits. We
will refer to them as bit-OT tokens.

Oblivious Transfer (OT): The functionality FOT is parameterized by three
positive integers n, t and k, and behaves as follows.

– On input (Pi, Pj , sid, id, (s1, s2, . . . , sn)) from party Pi, send (Pi, Pj , sid, id)
to Pj and store the tuple (Pi, Pj , sid, id, (s1, s2, . . . , sn)). Here each si is a
k-bit string.

– On receiving (Pi, sid, id, l1, l2, . . . , lt) from party Pj , if a tuple (Pi, Pj , sid, id,
(s1, s2, . . . , sn)) exists, return (Pi, sid, id, sl1 , sl2 , . . . , slt) to Pj , send an ac-
knowledgment (Pj , sid, id) to Pi, and delete the tuple (Pi, Pj , sid, id, (s1, s2,
. . . , sn)). Else, do nothing. Here each lj is an integer between 1 and n.

One Time Memory (OTM): The functionality FOTM which captures the
behavior an OTM is described as follows:

– On input (Pi, Pj , sid, id, (s0, s1)) from party Pi, send (Pi, Pj , sid, id) to Pj and
store the tuple (Pi, Pj , sid, id, (s0, s1)).

– On receiving (Pi, sid, id, c) from party Pj , if a tuple (Pi, Pj , sid, id, (s0, s1))
exists, return (Pi, sid, id, sc) to Pj and delete the tuple (Pi, Pj , sid, id, (s0, s1)).
Else, do nothing.

Non-interactivity: In this paper, we are interested in non-interactive two-party
protocols (i.e., where only one party sends messages and tokens to the other).
Some of our results, however, hold for an interactive setting as well (whenever
this is the case, we point it out). The usual setting is as follows: Alice and Bob
have inputs x ∈ Xk and y ∈ Yk respectively, and they wish to securely compute a
function f : Xk ×Yk → Zk, such that only Bob receives the output f(x, y) ∈ Zk

of the computation (here, k is the security parameter). Only Alice is allowed to
send messages and tokens to Bob.

Circuit Families. In this work, we assume that parties are represented by
circuit families instead of Turing machines. A circuit is an acyclic directed graph,
with the gates of the circuit representing the nodes of the graph, and the wires
representing the edges in the graph. We assume that a circuit can be broken
down into layers of gates such that the first layer of gates takes the input of the
circuit and outputs to the second layer of the gates which in turn outputs to the
third layer and so on. The output of the last layer is the output of the circuit.
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A circuit is typically characterized by its size and its depth. The size of the
circuit is the sum of the number of gates and the number of wires in the circuit.
We define the depth of a circuit C, denoted by Depth(C) to be the number of
layers in the circuit. There are several complexity classes defined in terms of
depth and size of circuits. One important complexity class that we will refer in
this work is the NC1 complexity class. This comprises of circuits which have
depth O(log(n)) and size poly(n), where n is the input size of the circuit. Lan-
guages in P can be represented by a circuit family whose size is polynomial in
the size of the input.

2.2 Security

Definition 1 (Indistinguishability). A function f : N → R is negligible in
n if for every polynomial p(.) and all sufficiently large n’s, it holds that f(n) <
1

p(n) . Consider two probability ensembles X := {Xn}n∈N and Y := {Yn}n∈N.

These ensembles are computationally indistinguishable if for every PPT algo-
rithm A, |Pr[A(Xn, 1

n) = 1] − Pr[A(Yn, 1
n) = 1]| is negligible in n. On the

other hand, these ensembles are statistically indistinguishable if Δ(Xn, Yn) =
1
2

∑
α∈S |Pr[Xn = α] − Pr[Yn = α]| is negligible in n, where S is the support

of the ensembles. The quantity Δ(Xn, Yn) is known as the statistical difference
between Xn and Yn.

Statistical Security: A protocol π for computing a two-input function f :
Xk × Yk → Zk in the hardware-token model involves Alice and Bob exchang-
ing messages and tokens. In the (static) semi-honest model, an adversary could
corrupt one of the parties at the beginning of an execution of π. Though the
corrupted party does not deviate from the protocol, the adversary could use the
information it obtains through this party to learn more about the input of the
other party. At an intuitive level, a protocol is secure if any information the ad-
versary could learn from the execution can also be obtained just from the input
and output (if any) of the corrupted party. Defining security formally though
requires that we introduce some notation, which we do below.

Let the random variables viewπ
A(x, y) = (x,RA,M,U) and viewπ

B(x, y) =
(y,RB, M, V ) denote the views of Alice and Bob respectively in the protocol
π, when Alice has input x ∈ Xk and Bob has input y ∈ Yk. Here RA (resp. RB)
denotes the coin tosses of Alice (resp. Bob), M denotes the messages exchanged
between Alice and Bob, and U (resp. V ) denotes the messages exchanged be-
tween Alice (resp. Bob) and the token functionality. Also, let outπB(x, y) denote
the output produced by Bob. We can now formally define security as follows.

Definition 2 (ε-secure protocol [39]). A two-party protocol π computes a
function f : Xk × Yk → Zk with ε − security in the semi-honest model if there
exists two randomized functions SA and SB such that for all sufficiently large
values of k, the following two properties hold for all x ∈ Xk and y ∈ Yk:

– Δ((SA(x), f(x, y)), (viewπ
A(x, y), out

π
B(x, y))) ≤ ε(k),
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– Δ(SB(y, f(x, y)), viewπ
B(x, y)) ≤ ε(k).

If π computes f with ε-security for a negligible function ε(k), then we simply say
that π securely computes f . Further if ε(k) = 0, π is a prefectly secure protocol
for f .

Information Theory: We define some information-theoretic notions which will
be useful in proving unconditional lower bounds. Entropy is a measure of the
uncertainty in a random variable. The entropy of X given Y is defined as:

H(X |Y ) = −
∑
x∈X

∑
y∈Y

Pr[X = x ∧ Y = y] logPr[X = x | Y = y].

For the sake of convenience, we sometimes use h(p) = −p log p−(1−p) log(1−p)
to denote the entropy of a binary random variable which takes value 1 with
probability p (0 ≤ p ≤ 1).

Mutual information is a measure of the amount of information one random
variable contains about another. The mutual information between X and Y
given Z is defined as follows:

I(X ;Y |Z) = H(X |Z)−H(X |Y Z).

See [8] for a detailed discussion of the notions above.

3 Lower Bounds in Input Size for Unconditional Security

In this section, we show that the number of simple tokens required to be ex-
changed in a two-party unconditionally secure function evaluation protocol could
depend on the input size of the parties. We obtain two bounds discussed in detail
in the sections below. Our first bound relates the number of hardware tokens
required to compute a function with the input size of the sender. (This bound
holds even when the protocol is interactive.) In particular, we show that the
number of bit-OT tokens required for oblivious transfer is at least the sender’s
input size (minus one). Our second result provides a class of functions where the
number of bit-OT tokens required is at least the input size of the receiver.

3.1 Lower Bound in Sender’s Input Size

In this subsection we consider k to be fixed, and thus omit k from Xk, Yk and ε(k)
for clarity. In [39], Winkler and Wullschleger study unconditionally secure two-
party computation in the semi-honest model. They consider two parties Alice
and Bob, with inputs x ∈ X and y ∈ Y respectively, who wish to compute a
function f : X × Y → Z such that only Bob obtains the output f(x, y) ∈ Z
(but Alice and Bob can exchange messages back and forth). The parties have
access to a functionality G which does not take any input, but outputs a sample
(u, v) from a distribution pUV . Winkler and Wullschleger obtain several lower
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bounds on the information-theoretic quantities relating U and V for a secure
implementation of the function f .

Here, we would like to obtain the minimum number of bit-OT tokens required
for a secure realization of a function. The functionality which models the token
behavior FOTM is an interactive functionality: not only does FOTM give output
to the parties, but also take inputs from them. Therefore, as such the results
of [39] are not applicable to our setting. However, if we let U denote all the
messages exchanged between Alice and G, and similarly let V denote the entire
message transcript between Bob and G, we claim that the following lower bound
(obtained for a non-interactive G in [39]) holds even when the functionality G is
interactive. This will allow us to apply this bound on protocols where hardware
tokens are exchanged.

Theorem 1. Let f : X × Y → Z be a function such that

∀x �= x′ ∈ X ∃y ∈ Y : f(x, y) �= f(x′, y).

If there exists a protocol that implements f from a functionality G with ε security
in the semi-honest model, then

H(U |V ) ≥ maxy∈YH(X |f(X, y))− (3|Y| − 1)(ε log |Z|+ h(ε))− ε log |X |,
where H(U |V ) is the entropy of U given V .

In order to prove that Theorem 1 holds with an interactive G, we observe that
the proof provided by Winkler and Wullschleger for a non-interactive G almost
goes through for an interactive one. An important fact they use in their proof is
that for any protocol π, with access to a non-interactive G, the following mutual
information relation holds: I(X ;V Y |UM) = 0, where M denotes the messages
exchanged in the protocol. (In other words, X −UM − V Y is a Markov chain.)
If one can show that the aforementioned relation holds even when G can take
inputs from the parties (and U and V are redefined as discussed above), the rest
of the proof goes through, as can be verified by inspection. Hence, all that is left
to do is to prove that I(X ;V Y |UM) = 0 is true in the more general setting,
where U and V stand for the transcripts of interactions with G. This follows
from a simple inductive argument; for the sake of completeness, we provide a
proof in full version.

Theorem 1 lets us bound the number of tokens required to securely evaluate a
function, as follows. Suppose Alice and Bob exchange � bit-OT tokens during a
protocol. If Bob is the recipient of a token, there is at most one bit of information
that is hidden from Bob after he has queried the token. On the other hand, if
Bob sends a token, he does not know what Alice queried for. Therefore given V ,
entropy of U can be at most � (or H(U |V ) ≤ �). We can use this observation
along with Corollary 3 in [39] (full version) to obtain the following result.

Theorem 2. If a protocol ε-securely realizes m independent instances of
(
n
t

)
-

OTk, then the number of bit-OT tokens � exchanged between Alice and Bob must
satisfy the following lower bound:

� ≥ ((1− ε)n− t)km− (3�n/t� − 1)(εmtk + h(ε)).
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We conclude this section with a particular case of the above theorem which
gives a better sense of the bound. Let us say that Alice has a string of n bits, and
Bob wants to pick one of them. In other words, Alice and Bob wish to realize
an instance of

(
n
1

)
-OT1. Also, assume that they want to do this with perfect

security, i.e., ε = 0. In this case, the input size of Alice is n, but Bob’s input size
is only �logn�. Now, we have the following corollary.

Corollary 1. In order to realize the functionality
(
n
1

)
-OT1 with perfect security,

Alice and Bob must exchange at least n− 1 tokens.

Suppose Alice is the only party who can send tokens. Then, we can understand
the above result intuitively in the following way. Alice has n bits, but she wants
Bob to learn exactly one of them. However, since she does not know which bit
Bob needs, she must send her entire input (encoded in some manner) to Bob.
Suppose Alice sends � bit-OT tokens to Bob. Since Bob accesses every token, the
� bits it obtains from the tokens should give only one bit of information about
Alice’s input. The remaining � positions in the tokens, which remain hidden from
Bob, must contain information about the remaining n− 1 bits of Alice’s input.
Hence, � must be at least n− 1.

One can use Protocol 1.2 in [4] to show that the bound in Corollary 1 is tight.

3.2 Lower Bound in Receiver’s Input Size

In this section, we show that the number of bit-OT tokens required could depend
on the receiver’s input size. We begin by defining a non-replayable function
family, for which we shall show that the number of tokens required is at least
the input size of the receiver.

Definition 3. Consider a function family f : Xk × Yk → Zk, k ∈ I+. We say
that f is replayable if for every distribution Dk over Xk, there exists a randomized
algorithm SB and a negligible function ν, such that on input (k, y, f(x, y)) where
(x, y) ← Dk × Yk, SB outputs ⊥ with probability at most 3/4, and otherwise
outputs (y′, z) such that (conditioned on not outputting ⊥) with probability at
least 1− ν(k), y′ �= y and z = f(x, y′).

Theorem 3. Let f : Xk×Yk → Zk be a function that is not replayable. Then, in
any non-interactive protocol π that securely realizes f in the semi-honest model
using bit-OT tokens, Alice must send at least n(k) = )log |Yk|* tokens to Bob.

Proof. For simplicity, we omit the parameter k in the following. Suppose Alice
sends only n− 1 bit-OT tokens to Bob in the protocol π. We shall show that f
is in fact replayable, by constructing an algorithm SB as in Definition 3, from a
semi-honest adversary A that corrupts Bob in an execution of π.

Let the input of Alice and Bob be denoted by x and y respectively, where x
is chosen from X according to the distribution D, and y is chosen uniformly at
random over Y. On input x, Alice sends tokens (Υ1, · · · , Υn−1) and a message
m to Bob. Bob runs his part of the protocol with inputs y,m, a random tape
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r, and (one-time) oracle access to the tokens. Without loss of generality, we
assume that Bob queries all the n− 1 tokens. Bob’s view consists of y, m, r, and
the bits b = (b1, . . . , bn−1) received from the n − 1 tokens (Υ1, . . . , Υn−1). Let
q = (q1, . . . , qn−1) denote the query bits that Bob uses for the n− 1 tokens. For
convenience, we shall denote the view of Bob as (y,m, r, q, b) (even though q is
fully determined by the rest of the view).

We define SB as follows: on input (y1, z1), it samples a view (y, r,m, q, b) for
Bob in an execution of π conditioned on y = y1 and Bob’s output being z1. Next,
it samples a second view (y′, r′,m′, q′, b′) conditioned on (m′, q′, b′) = (m, q, b).
If y′ = y, it outputs ⊥. Else, it computes Bob’s output z′ in this execution and
outputs (y′, z′).

To argue that SB meets the requirements in Definition 3, it is enough to prove
that when x ∈ X is sampled from any distribution D, y ← Y is chosen uniformly,
and z = f(x, y): (1) (y′, r′,m′, q′, b′) sampled by SB(y, z) is distributed close (up
to a negligible distance) to Bob’s view in an actual execution with inputs (x, y′),
and (2) with probability at least 1

4 , y
′ �= y. Then, by the correctness of π, with

overwhelming probability, whenever SB outputs (y′, z′), it will be the case that
z′ = f(x, y′), and this will happen with probability at least 1/4.

The first claim follows by the security guarantee and the nature of a token-
based protocol. Consider the experiment of sampling (x, y) and then sampling
Bob’s view (y, r,m, q, b) conditioned on input being y and output being z =
f(x, y). Firstly, this is only negligibly different from sampling Bob’s view from
an actual execution of π with inputs x and y, since by the correctness guarantee,
the output of Bob will indeed be f(x, y) with high probability. Now, sampling
(x, y, r,m, q, b) in the actual execution can be reinterpreted as follows: first sam-
ple (m, q, b), and then conditioned on (m, q, b), sample x and (y, r) independent
of each other. This is because, by the nature of the protocol, conditioned on
(m, q, b), Bob’s view in this experiment is independent of x. Now, (y′, r′) is also
sampled conditioned on (m, q, b) in the same manner (without resampling x),
and hence (x, y′, r′,m, q, b) is distributed as in an execution of π with inputs
(x, y′).

To show that SB outputs ⊥ with probability at most 3
4 , we rely on the fact

that the number of distinct inputs y for Bob is 2n, but the number of distinct
queries the Bob can make to the tokens q is at most 2n−1. Below, we fix an (m, b)
pair sampled by SB, and argue that Pr[y = y′] ≤ 3

4 (where the probabilities are
all conditioned on (m, b)).

For each value of q ∈ {0, 1}n−1 that has a non-zero probability of being
sampled by SB, we associate a value Y (q) ∈ {0, 1}n as Y (q) = argmaxy Pr[y|q],
where the probability is over the choice of y ← Y and the random tape r for
Bob. If more than one value of y attains the maximum, Y (q) is taken as the
lexicographically smallest one. Let Y∗ = {y|∃q s.t. y = Y (q)}. Then, |Y∗| ≤
|Y|/2, or equivalently (since the distribution over Y is uniform), Pr[y �∈ Y∗] ≥ 1

2 .
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Let Q∗ = {q|Pr[Y (q)|q] > 1
2}. Further, let β = min{Pr[Y (q)|q]|q ∈ Q∗}. Note

that β > 1
2 . We claim that α := Pr[q ∈ Q∗] ≤ 1

2 . This is because

1

2
≤ Pr[y �∈ Y∗] =

∑
y �∈Y∗,q∈Q∗

Pr[y, q] +
∑

y �∈Y∗,q �∈Q∗

Pr[y, q]

≤
∑
q∈Q∗

(1− β) Pr[q] +
∑
q �∈Q∗

β Pr[q] = α(1 − β) + β(1 − α)

Since β > 1
2 , if α > 1

2 then α(1 − β) + β(1 − α) < 1
2 , which is a contradiction.

Hence α ≤ 1
2 . Now,

Pr[y = y′] ≤ αPr[y = y′|q ∈ Q∗] + (1 − α) Pr[y = y′|q �∈ Q∗]

≤ α+ (1 − α)
1

2
≤ 3

4
.

��

We give a concrete example of a function family that is not replayable. Let
Xk = {1, 2, . . . , k} be the set of first k positive integers. Let Yk = {S ⊆ Xk :
|S| = k/2∧ 1 ∈ S}. Define f : Xk ×Yk → {0, 1} as follows: for all k, x ∈ Xk and
y ∈ Yk, f(x, S) = 1 if x ∈ S, and 0 otherwise.

Fix a value of k. Suppose a simulator SB is given S and f(X,S) as inputs,
where X,S denote random variables uniformly distributed over Xk and Yk re-
spectively. From this input, SB knows that X could take one of k/2 possible
values. Any S′ �= S intersects S′ or its complement in at most k/2− 1 positions.
Hence, SB can guess the value of f(X,S′) with probability at most 1−2/k. This
implies that if SB outputs (S′, Z) with probability 1/4, with a non-negligible
probability Z �= f(X,S′).

Note that the number of bits required to represent an element of Xk is only
�log k�, but that required to represent an element of Yk is n(k) = �log 1

2

(
k

k/2

)
�,

which is at least a polynomial in k. Since f is not replayable, it follows from
Theorem 3 that in any protocol that realizes f , Alice must send at least n(k)
tokens to Bob.

4 Negative Result for Non-adaptive Protocols

4.1 Setting

In this section, we explore the connection between the randomized encodings
of functions and the protocols for the corresponding functionalities 2 in the
bit-OT (oblivious transfer) token model. We deal with only protocols which
are non-adaptive, non-interactive and are perfectly secure. The notions of non-
interactivity (Section 2.1) and perfect security (Definition 2 in Section 2.2) have
already been dealt with in the preliminaries. We will only explain the notion of

2 Here, we abuse the notation and interchangeably use functions and functionalities.
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non-adaptivity. A protocol in the bit-OT token model is said to be non-adaptive
if the queries to the tokens are fixed in advance. This is in contrast with the
adaptive case where the answers from one token can used to generate the query
to the next token.

Such (non-adaptive and non-interactive) protocols have been considered in
the literature and one-time programs [20,22] is one such example, although one-
time programs deal with malicious receivers. Henceforth, when the context is
clear we will refer to “perfectly secure non-adaptive non-interactive protocols”
as just “non-adaptive protocols”.

We show that the existence of non-adaptive protocols for a function in the bit-OT
token model implies an efficient (polynomial sized) decomposable randomized
encoding for that function. This is done by establishing an equivalence relation
between decomposable randomized encodings and a specific type of non-adaptive
protocols in the bit-OT token model. Then, we show that a functionality having
any non-adaptive protocol also has this specific type of protocol thereby showing
the existence of a DRE for this functionality. Since decomposable randomized
encodings are believed to not exist for all functions in P [17,38,16,27], this gives
a strong evidence to the fact that there cannot exist non-adaptive protocols in
the bit-OT token model for all functions in P.

4.2 Randomized Encodings

We begin this section by describing the necessary background required to un-
derstand randomized encodings [25]. A randomized encoding for a function f
consists of two procedures - encode and decode. The encode procedure takes an
input circuit for f , x which is to be input to f along with randomness r and
outputs f̂(x; r). The decode procedure takes as input f̂(x; r) and outputs f(x).
There are two properties that the encode and decode procedures need to satisfy
for them to qualify to be a valid randomized encoding. The first property is
(perfect) correctness which says that the decode algorithm always outputs f(x)

when input f̂(x; r). The second property, namely (perfect) privacy, says that
there exists a simulator such that the output distribution of the encode algo-
rithm on input x is identical to the output distribution of the simulator on input
f(x).

We deal with a specific type of randomized encodings termed as decomposable
randomized encodings [30,17,24,26,31] which are defined as follows.

Definition 4. An (efficient) Decomposable Randomized Encoding, denoted by
DRE, consists of a tuple of PPT algorithms (RE.Encode, RE.ChooseInpWires,
RE.Decode):

1. RE.Encode: takes as input a circuit C and outputs (C̃, state) ,where state =
((s01, s

1
1), . . . , (s

0
m, s1m)) and m is the input size of the circuit.

2. RE.ChooseInpWires: takes as input (state, x) and outputs x̃, where x is of
length m and x̃ = (sx1

1 , . . . , sxm
m ) and xi is the ith bit of x.
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3. RE.Decode: takes as input (C̃, x̃) and outputs out.

A decomposable randomized encoding needs to satisfy the following properties.

(Correctness):- Let RE.Encode on input C output (C̃, state). Let
RE.ChooseInpWires on input (state, x) output x̃. Then, RE.Decode(C̃, x̃) always
outputs C(x).
(Perfect privacy):- There exists a PPT simulator Sim such that the following
two distributions are identical.

–
{
(C̃, x̃)

}
, where (C̃, state) is the output of RE.Encode on input C and x̃ is

the output of ChooseInpWires on input (state, x).

–
{
(C̃Sim, x̃Sim)

}
, where (C̃Sim, x̃Sim) is the output of the simulator Sim on input

C(x).

In the above definition, ε-privacy can also be considered instead of perfect pri-
vacy where the distributions are ε far from each other for some negligible ε.
In this section, we only deal with DRE with perfect privacy. It can be veri-
fied that a decomposable randomized encoding is also a randomized encoding.
There are efficient decomposable randomized encodings known for all functions
in NC1 [30,26]. However, it is believed that there does not exist efficient decom-
posable randomized encodings for all functions in P. The existence of efficient
decomposable randomized encodings for all efficiently computable functions has
interesting implications, namely, multiparty computation protocols in the PSM
(Private Simultaneous Message) model [17], constant-round two-party computa-
tion protocol in the OT-hybrid model [38,16] and multiparty computation with
correlated randomness [27].

We now proceed to relate the existence of non-adaptive protocols for a func-
tionality to the existence of randomized encodings, and more specifically DRE,
for the corresponding function. But first, we give an overview of our approach
and then we describe the technical details.

4.3 Overview

We first make a simple observation which is the starting point to establish the
connection between randomized encodings and non-adaptive protocols in the
bit-OT token model. Consider the answer obtained by the receiver of the non-
adaptive protocol after querying the tokens. This answer can be viewed as a
decomposable randomized encoding. The message contained in the bit-OT to-
kens along with the software sent by the sender corresponds to the output of
the encode procedure. The choose-input-wires procedure corresponds to the al-
gorithm the receiver executes before querying the bit-OT tokens. The decode
procedure corresponds to the decoding of the answer from the tokens done by the
receiver to obtain the output of the functionality. Further, these procedures sat-
isfy the correctness and the privacy properties. The correctness of the decoding of
the output follows directly from the correctness of the protocol. The privacy of
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the decomposable randomized encoding follows from the fact that the answer
obtained from the tokens can be simulated which in turn follows from the privacy
of the protocol. At this point it may seem that this observation directly gives us
a decomposable randomized encoding from a non-adaptive protocol. However,
there are two main issues. Firstly, the output of the encode procedure given by
the protocol can depend on the input of the function while in the case of DRE,
the encode procedure is independent of the input of the function. Secondly, the
choose-inputs-procedure given by the protocol might involve a complex prepro-
cessing on the receiver’s input before it queries the tokens. This is in contrast
to the choose-inputs-procedure of a DRE where no preprocessing is done on the
input of the function.

We overcome these issues in a series of steps to obtain a DRE for a function
from a non-adaptive protocol for that function. In the first step, we split the
sender’s algorithm into two parts - the first part does computation solely on the
randomness and independent of the input while the second part does prepro-
cessing on both its input as well as the randomness. We call protocols which
have the sender defined this way to be SplitState protocols. We observe that
every function that has a non-adaptive protocol also has a SplitState protocol.
In the next step, we try to reduce the complexity of the preprocessing done on
both the sender’s as well as the receiver’s inputs. The preprocessing refers to the
computation done on the inputs before the hardware tokens are evaluated. We
call protocols which have no preprocessing on its inputs to be simplified proto-
cols. Our goal is then to show that if a protocol has a SplitState protocol then
it also has a simplified protcol. At the heart of this result lies the observation
that all NC1 protocols have simplified protocols. We use the simplified protocols
for NC1 to recursively reduce the complexity of the preprocessing algorithm in
a SplitState protocol to finally obtain a simplified protocol. Finally, by using an
equivalence relation established between simplified protocols and efficient DRE,
we establish the result that a function having a non-adaptive protocol also has
an efficient DRE. We now proceed to the technical details.

4.4 Equivalence of RE and Simplified Protocols

We now show the equivalence of randomized encodings and simplified protocols
in the bit-OT token model.

SplitState Protocols. Consider the protocol Π in the bit-OT token model. We
say that Π is a SplitState protocol if the sender and the receiver algorithms in
SplitState protocol are defined as follows. The sender in Π consists of the tuple
of algorithms (Π.InpFreePP, Π.Preprocsen, Π.EvalHTsen). It takes as input x with
randomness Rsen and executes the following steps.

- It first executes Π.InpFreePP on input Rsen to obtain the tokens (htokenssen,
htokensrec) and Software.

- It then executes Π.Preprocsen on input (x,Rsen) to obtain x′.
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- It then executes Π.EvalHTsen on input (x′, htokenssen). The procedure
Π.EvalHTsen evaluates the ith token in htokenssen with the ith bit of x′ to
obtain x̃i. The value x̃ is basically the concatenation of all x̃i.

- The sender then outputs (htokensrec, Software, x̃).

Notice that the third step in the above sender’s procedure involves the sender
evaluating the tokens htokenssen. This seems to be an unnecessary step since the
sender himself generates the tokens. Later we will see that modeling the sender
this way simplifies our presentation of the proof significantly.

The receiver, on the other hand, consists of the algorithms (Π.Preprocrec,
Π.EvalHTrec, Π.Output). It takes as input y, randomness Rrec along with
(htokensrec, Software, x̃) which it receives from the sender and does the following.

- It executes Π.Preprocrec on input (y,Rrec, Software, x̃) to obtain (q, state).
- It then executes Π.EvalHTrec by querying the tokens htokensrec on input q to
obtain ỹ. The ith token in htokensrec is queried by the ith bit of q to obtain
the ith bit of ỹ.

- Finally, Π.Output is run on input (state, ỹ) to obtain z which is output by
the receiver.

This completes the description ofΠ . The following lemma shows that there exists
a SplitState protocol for a functionality if the functionality has a non-adaptive
protocol. The proof of the below lemma is provided in the full version.

Lemma 1. Suppose a functionality f has a non-interactive and a non-adaptive
protocol in the bit-OT token model. Then, there exists a SplitState protocol for
the functionality f .

Whenever we say that a functionality has a protocol in the bit-OT token model
we assume that it is a SplitState protocol. In the class of SplitState protocols, we
further consider a special class of protocols which we term as simplified protocols.

Simplified Protocols. These are SplitState protocols which have a trivial pre-
processing algorithm on the sender’s as well as receiver’s inputs. In more detail,
a protocol is said to be a simplified protocol if it is a SplitState protocol, and
the sender’s preprocessing algorithm Preprocsen as well as the receiver’s prepro-
cessing algorithm Preprocrec can be implemented by depth-0 circuits. Recall that
depth-0 circuits which solely consists of wires and no gates. We now explore the
relation between the simplified protocols and decomposable randomized encod-
ings. We show, for every functionality, the equivalence of DRE and simplified
protocols in the bit-OT token model. The proof can be found in full version.

Theorem 4. There exists an efficient decomposable randomized encoding for a
functionality f iff there exists a simplified protocol for f in the bit-OT token
model.

Ishai et al. [26] show that there exists decomposable randomized encodings for
all functions in NC1. From this result and Theorem 4, the following corollary is
immediate.

Corollary 2. There exists a simplified protocol for all functions in NC1.
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4.5 Main Theorem

We now state the following theorem that shows that every function that has a
non-adaptive protocol in the bit-OT token model also has a simplified protocol.
Essentially this theorem says the following. Let there be a non-adaptive protocol
in the bit-OT token model for a function. Then, no matter how complex the
preprocessing algorithm is in this protocol, we can transform this into another
protocol which has a trivial preprocessing on its inputs. Since a function having
a non-adaptive protocol also has a SplitState protocol from Lemma 1, we will
instead consider SplitState protocols in the below theorem.

Theorem 5. Suppose there exists a SplitState protocol for f in the bit-OT token
model having p(k) number of tokens, for some polynomial p. Then, there exists
a simplified protocol for f in the bit-OT token model having O(p(k)) number of
tokens.

Proof. Consider the set S of all SplitState protocols for f each having O(p(k))
number of tokens. In this set S, consider the protocol Π ′

sen having the least
depth complexity of Preprocsen. That is, protocol Π

′
sen is such that the following

quantity is satisfied.

Depth(Π ′
sen.Preprocsen) = min

Π∈S

{
Depth(Π.Preprocsen)

}
We claim that the Π ′

sen.Preprocsen is a depth-0 circuit. If it is not a depth-0 cir-
cuit, then we arrive at a contradiction. We transform Π ′

sen into Π ′′
sen, and show

that Depth(Π ′
sen.Preprocsen) < Depth(Π ′′

sen.Preprocsen). This would contradict the
fact that the depth of Π ′

sen.Preprocsen is the least among all the protocols in S.
To acheive the transformation, we first break Π ′

sen.Preprocsen into two circuits
Π ′

sen.Preproc
up
sen and Π ′

sen.Preproc
low
sen such that, Π ′

sen.Preprocsen will first execute
Π ′

sen.Preproc
low
sen and its output is fed into Π ′

sen.Preproc
up
sen whose output deter-

mines the output of Π ′
sen.Preprocsen. Further, Π

′
sen.Preproc

up
sen consists of a single

layer of the circuit and hence has depth 1 (If Π ′
sen.Preprocsen was just one layer

to begin with then Π ′
sen.Preproc

low
sen would be a depth-0 circuit.). Then we define a

functionality which executes the algorithms Π ′
sen.Preproc

up
sen and Π ′

sen.EvalHTsen.
We observe that this functionality can be realized by an NC1 circuit. Then,
we proceed to replace the procedures Π ′

sen.EvalHTsen and Π ′
sen.Preproc

up
sen by the

sender algorithm of a simplified protocol defined for this functionality, the exis-
tence of which follows from Corollary 2. The Preprocsen of the resulting protocol
just consists of Π ′

sen.Preproc
low
sen and this would contradict the choice of Π ′

sen. We
now proceed to the technical details.

The sender algorithm of Π ′
sen can be written as (Π ′

sen.InpFreePP, Π
′
sen.Preprocsen,

Π ′
sen.EvalHTsen) and the receiver of Π ′

sen can be written as (Π ′
sen.Preprocrec,

Π ′
sen.EvalHTrec, Π ′

sen.Output). The description of these algorithms are given in
Section 4. Consider the following functionality, denoted by f sen

NC1 .
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f sen
NC1(s, tempx;⊥):- On input (s, tempx) from the sender, it first executes

Π ′
sen.Preproc

up
sen(tempx) to obtain x′. It then parses s as ((s01, s

1
1), . . . , (s

0
m, s1m)),

where the size of x′ is m. It then computes x̃ = (s
x′
1

1 , . . . , s
x′
m

m ), where x′
i is the

ith bit of x′. Finally, output x̃. This functionality does not take any input from
the receiver.

Observe that f sen
NC1 is a NC1 circuit and has a simplified protocol from Corol-

lary 2. Let us call this protocol Πsen
NC1 . Since, the receiver’s input is ⊥, the sender

algorithm in this protocol does not output any tokens 3. We use Π ′
sen and Πsen

NC1

to obtain Π ′′
sen. The protocol Π ′′

sen is described as follows.

Before we describe the sender algorithm of Π ′′
sen, we modify the sender of Π ′

sen

such that, the algorithm Π ′
sen.InpFreePP instead of outputting htokensrec just

outputs s, which is nothing but the string contained in htokenssen. The sender
algorithm of Π ′′

sen on input (x,Rsen), does the following.

– It first executesΠ ′
sen.InpFreePP(Rsen) to obtain (Software, s, htokensrec), where

s, as described before is the string obtained by concatenating all the bits in
htokenssen.

– It then executes Π ′
sen.Preproc

low
sen on input (x,Rsen) to obtain tempx.

– It then executes the sender algorithm of Πsen
NC1 with input (s, tempx). Let the

output of this algorithm be SoftwareNC1

.

– Send (Software, SoftwareNC1

, htokensrec) across to the receiver (recall that the
sender of Πsen

NC1 does not output any tokens.).

The receiver on input (y,Rrec) along with (Software, SoftwareNC1

, htokensrec)
which it receives from the sender, does the following.

– It executes the receiver algorithm of Πsen
NC1 on input SoftwareNC1

as well as
its internal randomness to obtain x̃. Note that the receiver of Πsen

NC1 does not
have its own input.

– It then executes the receiver algorithm of Π ′
sen on input (y, Rrec, Software,

x̃, htokensrec). Let the output of this algorithm be out.
– Output out.

We first claim that the protocol Π ′′
sen satisfies the correctness property. This

follows directly from the correctness of the protocols Π ′
sen and Πsen

NC1 . The security
of the above protocol is proved in the following lemma.

Lemma 2. Assuming that the protocol Π ′
sen and Πsen

NC1 is secure, the protocol
Π ′′

sen is secure.

Proof Sketch. To prove this, we need to construct a simulator SimΠ′′
sen
, such that

the output of the simulator is indistinguishable from the output of the sender of

3 From the Corollary 2 and Ishai et al. [26], the simplified protocols defined for NC1

functionalities are such that the sender does not send any tokens to the receiver if
the receiver does not have any input.
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Π ′′
sen. To do this we use the simulators of the protocols Π ′

sen and Πsen
NC1 which are

denoted by SimΠ′
sen

and SimΠsen
NC1

respectively.

The simulator SimΠ′′
sen

on input out, which is the output of the functionality
f , along with y′ which is the query made by the receiver to the OT tokens does
the following. It first executes SimΠ′

sen
(out, y′) to obtain (Software, x̃, ỹ). Then,

SimΠsen
NC1

on input x̃ is executed to obtain SoftwareNC1

. The output of SimΠ′′
sen

is

(Software,SoftwareNC1

,ỹ). By standard hybrid arguments, it can be shown that
the output of the simulator SimΠ′′

sen
is indistinguishable from the output of the

sender of Π ′′
sen.

The above lemma proves that Π ′′
sen is a secure protocol for f . We claim that the

number of tokens in Π ′′
sen is O(p(k)). This follows directly from the fact that the

number of tokens output by the sender of Π ′
sen is the same as the number of

tokens output by Π ′′
sen. And hence, the number of tokens output by the sender

of Π ′′
sen is O(p(k)). Further, the the depth of Preprocsen of Π ′′

sen is strictly smaller
than the depth of Π ′

sen.Preprocsen. This contradicts the choice of Π
′
sen and so, the

Preprocsen algorithm of Π ′
sen is a depth-0 circuit.

Now, consider a set of protocols, S′ ⊂ S such that the Preprocsen algorithms
of all the protocols in S′ are implementable by depth-0 circuits. From the above
arguments, we know that there is at least one such protocol in this set. We
claim that there exists one protocol in S′ such that its Preprocrec algorithm
is implementable by a depth-0 circuit. Now, the Preprocsen algorithm of this
protocol is also implementable by a depth-0 circuit since this protocol is in the
set S. From this, it follows that there exists a simplified protocol for f having
O(p(k)) tokens. The argument for this is similar to the previous case and due to
lack of space, we present this part in the full version. ��

We now show that the existence of a non-adaptive protocol for a function implies
the existence of a decomposable randomized encoding for that function. Suppose
there exists a non-interactive and a non-adaptive protocol for f in the bit-OT
token model. Then, from Theorem 5 it follows that there exists a simplified
protocol for f . Further, from Theorem 4, it follows that there exists a DRE,
and hence an efficient randomized encoding for f . Summarising, we have the
following.

Theorem 6. If there exists a non-interactive and a non-adaptive protocol in the
bit-OT token model for a function f then there exists an efficient decomposable
randomized encoding for f .

5 Lower Bound for Obfuscation Complete Oracle
Schemes

In this section, we study the notion of an obfuscation complete oracle scheme.
Roughly speaking, an obfuscation complete oracle scheme consists of an oracle
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generation algorithm whose execution results in: (a) a secret obfuscation com-
plete circuit (whose size is only dependent on the security parameter), and, (b)
a public obfuscation function. We call an oracle implementing the functionality
of the secret obfuscation complete circuit an obfuscation complete (OC) oracle.
The public obfuscation function can be applied on any desired (polynomial size)
circuit to produce an obfuscated oracle circuit. This oracle circuit would make
calls to the OC oracle during its execution. The OC oracle implements a fixed
functionality and cannot keep any state specific to the execution of any obfus-
cated program. Informally, our security requirement is that for every polynomial
size circuit C, whatever can be computed given access to the obfuscated ora-
cle circuit for C and the OC oracle, can also be computed just given access to
an oracle implementing the functionality of C. An obfuscation complete oracle
scheme is formally defined as follows.

Definition 5. A secure obfuscation complete oracle scheme consists of a ran-
domized algorithm OracleGen called the oracle generation algorithm such that
an execution OracleGen(1κ) (where κ denotes the security parameter) results in
a tuple (T,OT ). The string T is the description of the circuit called the secret
obfuscation complete circuit while OT is a function (or the description of a Tur-
ing machine) called the public obfuscation function.4 The tuple (T,OT ) has the
following properties:

1. Preserve Functionality. The application of the function OT (·) to a circuit
C results in an obfuscated oracle circuit OT (C) (which during execution
might make calls to the oracle T implementing the functionality T ). We
require the obfuscated oracle circuit OT (C) to have the same functionality
as the circuit C. In other words, ∀C, ∀x, we must have:

OT (C) = C(x)

2. Polynomial Slowdown. There exist polynomials p(·, ·) and q(·) such that
for sufficiently large κ and |C|, we have:

|OT (C)| ≤ p(|C|, κ), and, |T | ≤ q(κ)

Observe that the size of the circuit T is dependent only on the security pa-
rameter.

3. Virtual Black Box. For every PPT adversary A, there exists a PPT sim-
ulator Sim and a negligible function negl(·) such that for every PPT distin-
guisher D, for every circuit C and for every polynomial size auxiliary input
z:

Pr[D(AT (OT (C), z), z) = 1]− Pr[D(SimC(1|C|, T, z), z) = 1] ≤ negl(κ)

4 The modeling of T as a circuit rather than a Turing machine is to reflect the fact
that given the security parameter, the size and the running time of T is fixed and
it handles inputs of fixed size (so that T can, for example, be implemented in a
small tamper proof hardware token).
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In other words, we require the output distribution of the adversary A and
that of the simulator Sim to be computationally indistinguishable.

By replacing the above virtual black box definition by the “predicate” virtual
black box definition used by Barak et al. (see [1] for more details), we obtain a
relaxed security notion for obfuscation complete oracles schemes. This relaxed
version will be used for our lower bounds.

5.1 Lower Bounds

In Section 6.2.2 [22] (full version), Goyal et al. construct an obfuscation complete
oracle scheme in the Fstateless

wrap -hybrid model5. In their scheme, if the size of
original circuit is |C|, then the obfuscated oracle circuit makes O(|C| · log(|C|))
calls to the OC oracle, which is embedded inside a stateless token. Thus, a
natural question is: “Do there exist obfuscation complete oracles schemes for
which the above query complexity is lower?” Towards that end, we show a lower
bound which rules out obfuscation complete oracles schemes where this query
complexity is a constant.

Turing Machines. We start by proving the lower bound result for the case
of Turing machines. While this case is significantly simpler, it would already
illustrate the fundamental limitations of OC Oracle schemes with low query
complexity. For an OC scheme, denote by Q(|M |) the number of queries the
obfuscated Oracle Turing machine OT (M) makes to the Oracle T . We now have
the following theorem.

Theorem 7. For every constant q, there does not exist any obfuscation com-
plete oracle scheme such that for every Turing machine M , query complexity
Q(|M |) ≤ q.

Proof. We prove the above theorem by contradiction. Assume that there exists
such an OC Oracle scheme would query complexity Q(|M |) ≤ q. Let the size
of response to a query to the Oracle T be bounded by p(k). Hence, observe
that the information “flowing” from the Oracle T to the obfuscated Oracle TM
OT (M) is bounded by q · p(k). We will show that this communication between
the Oracle and the obfuscated TM is not sufficient for successful simulation.
Let f1 : {0, 1}≤poly(k) → {0, 1}q·p(k)+k and f2 : {0, 1}≤poly(k) → {0, 1}poly(k)
denote functions drawn from a pseudorandom function ensemble. Now define a
functionality Ff1,f2,s(., .) as follows. For b ∈ {1, 2}, we have Ff1,f2,s(b, x) = fb(x).
For b = 3 (referred to as mode 3), we interpret the input x as the description of an
Oracle TM M and a sequence of q strings a1, . . . , aq. The function outputs ⊥ if
there exists an i s.t. |ai| > p(k). Otherwise, run the machine M(1, f2(M)). When
the machine makes the ith Oracle query, supply ai as the response (irrespective

5 They actually construct a secure protocol for stateless oblivious reactive function-
alities. However, it is easy to see that the same protocol gives us an obfuscation
complete oracle scheme.
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of what the query is). Now, if M(1, f2(M)) = f1(f2(M)), output s, else output
⊥. To summarize, check if the Oracle TM behaves like the PRF f1 on a random
point (determined by applying PRF f2 on the description of the machine) and
if so, output the secret s. (The function Ff1,f2,s(., .) is actually uncomputable.
However, similar to [1], we can truncate the execution after poly(k) steps and
output 0 if M does not halt.) Denote the obfuscated Oracle TM for this function
as OT (Ff1,f2,s).

Consider the real world when the adversary is given access to description of
the Oracle TM M ′ = OT (Ff1,f2,s) and is allowed to query the Oracle T . In
this case, the adversary can recover s as follows. First recover d = M ′(2,M ′)
(by simply running the obfuscated Oracle TM M ′ on its own description string
with the help of the Oracle T ). Now the adversary executes M ′(1, d) and stores
responses of T to all the queries made by M ′(1, d). Call the responses a1, . . . , aq.
Finally, prepare a string x containing the description ofM ′ along with the strings
a1, . . . , aq and execute M ′(3, x). M ′ will in turn execute M ′(1, d) using a1, . . . , aq
and, by construction, will get f1(f2(M

′)). Thus, the adversary will receive s as
output. Hence, we have constructed a real word adversary A such that:

Pr[AT (OT (Ff1,f2,0)) = 1]− Pr[AT (OT (Ff1,f2,1)) = 1] = 1 (1)

Now consider the ideal world where the adversary S only has Oracle access
to the functionality Ff1,f2,s. For simplicity, we first consider the hybrid ideal
world where the functions f1 and f2 are truly random (that is, for each input,
there exists a truly random string which is given as the output). Without loss of
generality, we assume that S does not query Ff1,f2,s multiple times with the same
input. Consider a query (2,M) to the functionality Ff1,f2,s. Then it is easy to see
that, except with negligible probability, S has not issued the query (1, f2(M)) so
far (where the probability is taken over the choice of truly random function f2).
Now when M(1, f2(M)) is executed, depending upon how the Oracle queries are
answered, the total number of possible outputs is 2q·p(k). Lets call this output
set So. The probability (taken over the choice of f1) that f1(f2(M)) ∈ So can be

bounded by 1
2k

( = |So|
2|f1(f2(M))| ) which is negligible. Thus, when S queries with

(3,M ||a1|| . . . ||aq), except with negligible probability, it will get ⊥ as the output
no matter what a1, . . . , aq are. By a straightforward union bound, it can be seen
that except with negligible probability, all the queries of S in mode 3 will result
in ⊥ as the output (as opposed to s). By relying on the pseudorandomness of f1
and f2, this will also be true not only in the hybrid ideal world but also in the
actual ideal world. Hence we have shown that for all ideal world adversaries S,

Pr[SFf1,f2,0(1k) = 1]− Pr[SFf1,f2,1(1k) = 1] ≤ negl(k) (2)

Combining equations 1 and 2, we get a contradiction with the relaxed virtual
black box property (see the predicate based virtual black box property in [1]) of
the OC Oracle scheme. ��

Circuits. In extending the impossibility result to the case of circuits, the ba-
sic problem is that since the input length of the circuit is fixed, it may not be
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possible to execute a circuit on its own description. To overcome this problem,
[1] suggested a functionality “implementing homomorphic encryption”. This al-
lowed the functionality to let the user (or adversary) evaluate a circuit “gate
by gate” (as opposed to feeding the entire circuit at once) and still test certain
properties of the user circuit. These techniques do not directly generalize to our
setting. This is because in our setting, the Oracle queries made by the adver-
sary’s circuit will have to be seen and answered by the adversary. This might
leak the input on which the circuit is being “tested” by the functionality. Thus,
once the adversary knows the input and hence the “right output”, he might, for
example, try to change the circuit or tamper with intermediate encrypted wire
values to convince the functionality that the circuit is giving the right output.
We use the techniques developed in Section 6.2.2 [22] to overcome these prob-
lems. Note that these problems do not arise in the setting of Barak et al [1]
since there the adversary never gets to see the input on which his circuit is being
tested (and hence cannot pass the test even if he can freely force the circuit to
give any output of his choice at any time). We now state our impossibility results
for circuits.

Theorem 8. For every constant q, there does not exist any obfuscation complete
oracle scheme such that for every circuit C, query complexity Q(|C|) ≤ q.

A proof can be found in the full version.
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1 Introduction

Structure-preserving signatures [3] (SPS) are signatures defined over groups with
a bilinear pairing where messages, signatures and public verification keys all
consist of group elements and the verification algorithm evaluates verification
equations consisting of products of pairings of these group elements. Based on
such signatures, one can easily design modular cryptographic protocols with
reasonable efficiency, in particular in combination with non-interactive zero-
knowledge (NIZK) proofs of knowledge about group elements [21]. Numerous
applications of SPS, including blind signatures [3,17], group signatures [3,17,25],
homomorphic signatures [24,9], delegatable anonymous credentials [16], compact
verifiable shuffles [14], network encoding [8], oblivious transfer [19,12], tightly
secure encryption [22,2], anonymous e-cash [26], etc., have been presented in the
literature.

1.1 Symmetric and Asymmetric Bilinear Pairings

Bilinear pairing groups are usually instantiated as groups of points of certain
restricted families of elliptic curves (or more rarely, other abelian varieties), and
can be broadly classified into several types [18] according to the efficient mor-
phisms that exist between the cyclic groups of prime order G1, G2 associated
with the bilinear pairing e : G1 × G2 → GT . The two most important ones are
Type I pairings, where G1 = G2, and Type III pairings defined as the ones that
do not have an efficiently computable isomorphism between G1 and G2 in either
direction. Type II parings, like Type III pairings, have G1 �= G2 but with an
efficiently computable isomorphism from one group to the other. We will also
refer to Type I pairings as symmetric bilinear groups because G1 = G2 and refer
to other types types of pairings where G1 �= G2 as asymmetric bilinear groups.

Type I, or symmetric, pairings are obtained from supersingular curves, and
have traditionally had an efficiency edge in implementations on resource-
constrained devices, although recent advances on the discrete logarithm problem
over finite fields of small characteristic [10] call this into question (large character-
istic Type I pairings remain secure, but they are not as efficient). Pairing-based
protocol designers often present their schemes in the symmetric setting, as pro-
tocol descriptions and security arguments tend to be simpler.

Type III pairings, which are the more efficient kind of asymmetric pairings, are
obtained from special families of ordinary curves, and tend to be more compact,
faster at least in software, and support stronger and more compact hardness
assumptions such as the DDH assumption in their source groups. Thus, Type III
pairings are often preferred for practical purposes. However, certain protocol
descriptions given in the symmetric setting do not easily translate to the Type III
setting.

1.2 Unified Structure-Preserving Signatures

Since SPS are a relatively low-level building block, their efficiency is of crucial
importance. That efficiency is usually measured in terms of the number of group
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elements in signatures and the number of verification equations, and a significant
amount of research has been devoted to obtaining lower and upper bounds with re-
spect to thesemeasures. Abe et al. [4] gave a construction of an SPSwith 3 group el-
ement signatures and 2 verification equations using Type III bilinear groups. They
also gave a matching lower bound in Type III bilinear groups of 3 group elements
for signatures and 2 verification equations, which showed that the construction is
optimal with respect to signature size and verification complexity.

In contrast to the work on Type III pairings, very little is known about SPS
over symmetric bilinear groups. The best known construction for Type I pairings
has signatures with 7 group elements, and no non-trivial lower bounds or more
efficient constructions have been proposed to date. One could hope that symmetric
functions such as e(X,X) that are only possible in Type I pairings would make
more efficient designs possible. Besides, it seems plausible that having only one
group in the symmetric case admits lower complexity than separately handling
two groups as must be done in the asymmetric case. On the other hand, the ability
to use elements as the input in either side of the pairing may give the adversary
additional flexibility and cause additional vulnerabilities. So it is not a priori clear
whether symmetric pairings are advantageous for designers or for attackers.

We answer this question in a strong sense by providing a unified structure-
preserving signature scheme that works in all types of bilinear groups. The design
of the scheme does not exploit any symmetry or maps between the source groups
and can therefore be instantiated in any type of bilinear group. At the same time
though, it is resistant to adversaries that are allowed to exploit symmetry. Our
signature scheme has 3 group element signatures and 2 verification equations
and is therefore optimal with respect to Type III pairings. We will also show
similar lower bounds hold for Type I pairings and the scheme is therefore also
optimal in the symmetric setting.

Designing unified structure-preserving schemes that can be used in either
type of bilinear group is of course conceptually appealing since it is simpler than
having separate schemes for each setting. Unified signature may also be more
resistant to cryptanalysis. Currently Type III pairings are the most efficient
but building cryptographic schemes in this setting may leave us vulnerable if
cryptanalysts find an efficiently computable homomorphism between G1 and G2.
However, if we use a unified structure-preserving signature we can even resist
attacks where the adversary has an isomorphism between G1 and G2 that is
efficiently computable in both directions. It is a fascinating question whether
there are other cryptographic tasks for which we can construct unified structure-
preserving schemes without sacrificing efficiency.

1.3 Minimal Verification Keys

An important efficiency measure that has not received much attention in the
literature on structure-preserving signatures is the size of the public verification
key. For applications that involve certification chains the public key size is of
high importance. If the size of the public key exceeds the size of the messages
the signature scheme can handle, it becomes difficult and cumbersome to build
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certification chains and in the world of structure-preserving signatures it is not
possible to use collision-resistant hash-functions to reduce the size of the mes-
sages since such hash-functions destroy the structure we are trying to preserve.

Abe et al. [4] considered only the size of the signatures and the number of
verification equations but did not try to minimize the size of the public key. To
sign a single group element they have a structure-preserving signature scheme
with strong existential unforgeability where the public key consists of 3 group
elements and a randomizable signature scheme where the public key consists of
2 group elements. This means that their schemes cannot easily be used to sign
public keys. There are generic methods to extend the message space of SPS [7]
but they incur a significant overhead so it is preferable to have an atomic scheme
that can be used to sign verification keys.

Fuchsbauer [15,3] defined an automorphic signature scheme as a structure-
preserving signature scheme where the verification keys belong to the message
space itself. This makes certification chains easy and cheap to construct and
indeed automorphic signatures have been used in the construction of anony-
mous delegatable credentials [15,16]. Current automorphic signatures, however,
are more expensive than the most efficient structure-preserving signatures. The
scheme in [3] has verification keys that consist of 2 group elements, the signatures
consist of 5 group elements and the scheme uses 3 verification equations.

In contrast to these works, we also minimize the size of the verification key.
As in the first construction of automorphic signatures [15,3], we allow the setup
to include some random group elements in the public parameters describing the
bilinear group to help shortening the verification key. In our case, we assume
that a bilinear group has been generated and a random group element X is
included in these parameters. With this type of setup, it is possible to get a
public verification key that consists of just one single group element.

If the signer runs the setup algorithm, she is ensured that the setup is correct.
However, even if the signer uses a pre-existing setup it is a moderate trust as-
sumption since we do not need to trust anybody to store any secret trapdoors
associated with the setup; it is for instance not necessary for the signer to know
the discrete logarithm of X in our scheme. If the setup is generated by a trusted
third party, we therefore only need to assume the trusted third party is honest at
the particular time it is generating the setup without storing a secret trapdoor
at that point in time. Alternatively, we may sample the setup in an oblivious
manner from a trusted source of random bits such as a multi-party coin-flipping
protocol or extract it from a physical source of randomness, e.g., solar activity
in a given time interval.

With a single group element as verification key, it becomes easy to build
certification chains. In the symmetric setting, we get an automorphic signature
scheme where the verification key space is identical to the message space. In
Type III pairings, our construction is not automorphic because the message and
the verification key belong to different groups. However, it is easy to create a
certification ladder where we use a verification key in G2 to certify a verification
key in G1, which can then be used to certify a verification key in G2, etc.
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1.4 Selective Randomizability

We introduce a new feature called selective randomizability that allows a strongly
unforgeable signature to be randomized with the help of a randomization token.
Selective randomizability reconciles the notions of strong unforgeability, where it
is impossible to create new signatures on signed messages, and randomizability,
where it is possible to randomize signatures. Depending on the application, differ-
ent parties may hold randomization tokens corresponding to certain signatures
and they may randomize the signatures, while other parties cannot randomize
the signatures.

Randomizability is useful in reducing the size of the proofs when the SPS is
combined with the Groth-Sahai proof system since a part of a randomized sig-
nature can be shown in the clear. There are other applications and theoretical
results on (not selectively) randomizable signatures in the literature, e.g. [27,23].
Selective randomizability may also have uses on its own; a selectively randomiz-
able signature can for instance be used as a service token. Fee paying users get
a signature on the time period they have paid for and a randomization token
and can in each use reveal a fresh randomized signature. Fraudsters on the other
hand do not know the randomization tokens and cannot modify the signatures
and can therefore only copy previous signatures.

We show that our structure-preserving signature scheme is selectively random-
izable. Our randomization tokens consist of a single group element, so also here
we achieve minimal size.

1.5 Related Work

Abe et al. [3] first used the term structure-preserving signatures but there are ear-
lier works in the area. Groth [20] proposed the first structure-preserving signature
but the construction involves hundreds of group elements and is not practical.
Green and Hohenberger [19] gave a structure-preserving signature scheme, which
is secure against random message attack, but is not known to be secure against
adaptive chosen message attack. Cathalo, Libert and Yung [13] constructed a
signature scheme that structure-preserving in a relaxed sense that permits the
verification key to include target group elements.

Abe et al. [4] showed that structure-preserving signatures in Type III bilinear
groups require at least 3 group elements and 2 verification equations. They also
gave structure-preserving signatures matching those bounds that are secure in
the generic group model. Abe et al. [5] later showed 3 element signatures cannot
be proven secure under a non-interactive assumption using black-box reductions,
so strong assumptions are needed to get optimal efficiency.

Hofheinz and Jager [22] and Abe et al. [1,2] investigated the possibility of
basing structure-preserving signatures on standard assumptions. They give
structure-preserving signatures based on the decision linear (DLIN) assumption.
The use of a nice security assumption, however, comes at the price of reducing
efficiency.
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Table 1. Comparison of structure-preserving signatures on a single group element. ∗1:
Strongly unforgeable. ∗2: Randomizable. ∗3: Automorphic. ∗4: SelectivelyRandomizable.

Scheme Signature Ver. key Equations Type Assumption Notes

[20] Many Many Many I DLIN
[13] 11 11 9 I HSDH, FlexDH, S2D ∗1
[3] 7 13 2 Any SFP ∗2
[15,3] 5 2 3 Any ADH-SDH, AWF-CDH ∗3
[4] 4 4 2 III Non-interactive ∗1
[4] 3 3 2 III Interactive ∗1
[4] 3 2 2 III Interactive ∗2
[1] 17 27 9 I DLIN
[1] 11 21 5 III SXDH, XDLIN
[2] 14 22 7 I DLIN

Ours 3 1 2 Any Interactive ∗4

1.6 Our Contributions

We construct a selectively randomizable structure-preserving signature scheme
with message space M = G1, where a verification key is 1 group element, a sig-
nature is 3 group elements and the verifier uses 2 verification equations to verify
the signature. The setup for the signature scheme consists of the description of
a bilinear group and a single random group element. Our signature scheme is
unified, i.e., it can be used in both symmetric and asymmetric bilinear groups.

We prove our signature scheme secure in the generic group model. The secu-
rity of the signature scheme can therefore be viewed as an interactive security
assumption. However, as shown by Abe et al. [7] it is impossible to base the secu-
rity of structure-preserving signature schemes with 3 group element signatures on
non-interactive intractability assumptions using black-box reductions, so at least
in the Type III setting we could not hope to base security on a non-interactive
assumption. On the positive side, being unified provides a hedge against crypt-
analytic attacks. Even if cryptanalysts uncover efficiently computable homo-
morphisms between G1 and G2, our structure-preserving signature scheme may
remain secure.

Table 1 compares our results to previous work on structure-preserving signa-
tures in the symmetric and asymmetric settings. We only consider the case of
a single group element and in the table we therefore compare all schemes on
the same terms, i.e., the cost for signing a single group element, with the ex-
ception of Fuchsbauer’s automorphic signature scheme, which is tailored to sign
Diffie-Hellman pairs of group elements.

To complement our signature scheme, we provide the first analysis of lower
bounds in the symmetric setting. We demonstrate that in the symmetric setting
a signature must be at least 3 group elements and the verifier must use at least
2 verification equations. This matches the Type III setting previously analyzed
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in [4] and shows that our signature scheme is optimal also in symmetric bilinear
groups.

Interestingly it turns out that in the case of one-time signatures there is
actually a difference between Type I and Type III pairings. While it is known that
Type III pairings admit one-time signatures with a single verification equation,
we show this is not the case for Type I pairings. The lower bound of 2 verification
equations also applies to one-time signatures.

The lower bound of 3 group elements for the size of signatures does not apply
though. We demonstrate this by constructing a one-time signature scheme in
the symmetric setting with 2 group element signatures. We also analyze one-
time signatures with respect to the size of the verification key. We show that
both Type I and Type III pairings have structure-preserving one-time signature
schemes with 1 group element verification keys.

2 Preliminaries

2.1 Bilinear Groups

Let G be a bilinear group generator that returns (p,G1,G2,GT , e, G,H)← G(1k)
given security parameter k with the following properties:

– G1,G2,GT are groups of prime order p
– e : G1×G2 → GT is a bilinear map s.t. e(Ga, Hb) = e(G,H)ab for all a, b ∈ Z

– G generates G1, H generates G2, and e(G,H) generates GT

– There are efficient algorithms for computing group operations, evaluating
the bilinear map, comparing group elements and deciding membership of
the groups

Bilinear groups can be classified in the three types according to the efficient
morphisms that exist between the source groups G1 and G2. Type I pairings
have G1 = G2 and G = H . Type II pairings have an efficiently computable
isomorphism from one source group to the other but none in the reverse direction.
Type III pairings have no efficiently computable isomorphism from either source
group to the other.

2.2 Generic Algorithms

In a bilinear group (p,G1,G2,GT , e, G,H) generated by G we refer to deciding
group membership, computing group operations in G1, G2 or GT , comparing
group elements and evaluating the bilinear map as the generic group operations.
The signature schemes we construct only use generic group operations.

As a matter of notation, we will use capital letters G,H,M,R, S, T, U, V,W
for group elements in G1 and G2. We will use small letters 1,m, r, s, t, u, v, w for
the corresponding discrete logarithms of group elements with respect to base G
or H .
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2.3 Setup

Our signature schemes work over a bilinear group generated by G. This group
may be generated by the signer and included in the public verification key. In
many cryptographic schemes it is convenient for the signer to work on top of a
pre-existing bilinear group though. We will therefore in the description of our
signatures explicitly distinguish between a setup algorithm P that produces a
public parameter PP and a key generation algorithm the signer uses to generate
her own keys.

The setup algorithms we use generate a bilinear group (p,G1,G2,GT , e, G,H)
← G(1k). They may then extend the description of the bilinear group with
additional random group elements. As discussed in Sect. 1.3 this is a moderate
setup assumption since the signer does not need to know the discrete logarithms
of the random group elements. The group elements may therefore be sampled
obliviously without learning the discrete logarithms or the discrete logarithms
may be erased immediately upon generation.

2.4 Secure Signature Schemes

A digital signature scheme (with setup algorithm P) is a quadruple of efficient
algorithms (P ,K,S,V). The setup algorithm P takes the security parameter and
outputs a public parameter PP . The key generation algorithm K takes PP as
input and returns a public verification key VK and a secret signing key SK. We
will always assume that V K includes PP and that SK includes V K. The signing
algorithm S takes a signing key SK and a message M in the message space M
defined by PP and V K as input and returns a signature Σ. The verification
algorithm V takes the verification key V K, a message M and the signature Σ
and returns either 1 (accept) or 0 (reject).

Definition 1 (Correctness). We say the signature scheme (P ,K,S,V) is (per-
fectly) correct if for all security parameters k ∈ N

Pr

⎡⎢⎢⎣
PP ← P(1k)
(V K, SK)← K(PP )
M ←M
Σ ← SSK(M)

: VV K(M,Σ) = 1

⎤⎥⎥⎦ = 1.

A signature scheme is said to be existentially unforgeable if it is hard to forge
a signature on a new message that has not been signed before. The adversary
may see signatures on other messages before making the forgery. We distinguish
between a random message attack (RMA), where the adversary gets pairs of
random messages and corresponding signatures, and an adaptive chosen message
attack (CMA) where the adversary can choose arbitrary messages and receive
signatures on them. Our signatures will be existentially unforgeable against the
strong adaptive chosen message attack, but our lower bounds on the complexity
of signature schemes will hold even for the weaker random message attacks.

We now formally define existential unforgeability under adaptive chosen
message attack.
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Definition 2 (EUF-CMA). A signature scheme (P ,K,S,V) is existentially un-
forgeable under adaptive chosen message attack if for all non-uniform polynomial
time A

Pr

⎡⎣PP ← P(1k)
(V K, SK)← K(PP )

(M,Σ)← ASSK(·)(V K)
: M /∈ Q ∧ VV K(M,Σ) = 1

⎤⎦ = negl(k),

where Q is the set of queries made by A to the signing oracle.

Sometimes it is also useful to prevent the adversary from issuing a new signa-
ture for a message that has already been signed. A signature scheme is strongly
existentially unforgeable if it is hard to find a signature on a message that has not
been signed before and also hard to find a new signature for a message that has
already been signed. This notion, denoted by sEUF-CMA, is formally captured
in the same way as the definition of EUF-CMA except for additionally requiring
(M,Σ) /∈ Q where Q is the set of message-signature pairs from A’s queries to
the signing oracle.

We get the definition for existential unforgeability against random message
attack (EUF-RMA) by modifying the signing oracle to picking M ←M at ran-
dom, computing Σ ← SSK(M) and returning (M,Σ) to the adversary whenever
the signing oracle is queried.

Corresponding security notions for one-time signature schemes can be ob-
tained by restricting the adversary to only calling the signing oracle once in the
above definitions.

2.5 Selectively Randomizable Signatures

Some applications require signatures to be strongly unforgeable, while in other
applications it is desirable that a signature on a message can be randomized
into a new random signature on the same message. A randomizable signature
scheme can only be EUF-CMA secure though since a randomized signature would
violate sEUF-CMA security. In order to reconcile the two notions and get the best
of both worlds, we define the notion of selective randomizability where the signer
can select to make specific signatures randomizable by providing randomization
tokens for them.

In a selectively randomizable signature scheme the signing algorithm returns
both a signature and a randomization token. Furthermore, there is a randomiza-
tion algorithmR that given amessage, signature and randomization token returns
a random signature on the message.We require that the randomization algorithm
R given a message M , signature Σ and corresponding randomization token W
computes a signature Σ′ ←RV K(M,Σ,W ) such that for all correctly generated
inputs RVK(M,Σ,W ) and SSK(M) have identical probability distributions.

Since the signatures are randomizable it is not possible to have strong ex-
istential unforgeability if the randomization tokens are given to the adversary.
However, we can get strong existential unforgeability for signatures on messages
for which the adversary does not have randomization tokens. Formally we define
security against a chosen message and token attack (CMA-TA) as follows.
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Definition 3 (sEUF-CMA-TA). A selectively randomizable signature scheme
(P ,K,S,R,V) is strongly existentially unforgeable under chosen message and
token attack if for all non-uniform polynomial time A

Pr

⎡⎣PP ← P(1k)
(V K, SK)← K(PP )
(M,Σ)← ASSK(·),StSK(·)(V K)

:
(M,Σ) /∈ Q
M /∈ Qt

VVK(M,Σ) = 1

⎤⎦ = negl(k),

where S is a signing oracle that is given a message and returns a signature on the
message, St is a token-signing oracle that is given a message and returns both
a signature and a randomization token, Q is the set of messages and signatures
observed by the signing oracle, and Qt is the set of messages observed by the
token-signing oracle.

Please observe that A can send M to S and St an arbitrary number of times to
get (random) signatures on M so we do not need to provide the adversary with
a randomization oracle in the security definition.

2.6 Structure-Preserving Signature Schemes

We study structure-preserving signature schemes [3] on bilinear groups generated
by group generator G. In a structure preserving signature scheme the verifica-
tion key, the messages and the signatures consist only of group elements from
G1 and G2 and the verification algorithm evaluates the signature by deciding
group membership of elements in the signature and by evaluating pairing prod-
uct equations, which are equations of the form∏

i

∏
j

e(Xi, Yj)
aij = 1,

whereX1, X2, . . . ∈ G1, Y1, Y2, . . . ∈ G2 are group elements appearing in PP , V K,
M and Σ and a11, a12, . . . ∈ Zp are constants stored in PP . Structure-preserving
signatures are extremely versatile because they mix well with other pairing-based
protocols. Groth-Sahai proofs [21] are for instance designed with pairing prod-
uct equations in mind and can therefore easily be applied to structure-preserving
signatures.

Definition 4 (Structure-preserving signatures). A digital signature scheme
(P ,K,S,V) is said to be structure preserving over bilinear group generator G if

– PP includes a bilinear group (p,G1,G2,GT , e, G,H) generated by G, and con-
stants in Zp,

– the verification key consists of PP and group elements in G1 and G2,
– the messages consist of group elements in G1 and G2,
– the signatures consist of group elements in G1 and G2, and
– the verification algorithm only needs to decide membership in G1 and G2 and

evaluate pairing product equations.
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When proving our lower bounds, we will relax the above definition to allow
arbitrary target group elements Z ∈ GT to be included in the verification key and
to appear in the verification equations. This gives the strongest possible results:
our lower bounds hold in a relaxed model of structure-preserving signatures and
our constructions of signatures satisfy the strict model of structure-preserving
signatures.

Generic signer. Abe et al. [3] did not explicitly require the signing algorithm
to only use generic group operations when they defined structure-preserving
signatures. However, all existing structure-preserving signatures in the literature
have generic signing algorithms and we believe it would be a surprising result
in itself to construct a structure-preserving signature with a non-generic signer.
Our constructions have generic signer algorithms and some of our lower bounds
will assume the signer is generic.

3 Selectively Randomizable Structure-Preserving
Signatures

Fig. 1 gives a selectively randomizable structure-preserving signature scheme
with 1 element verification keys, 3 group element signatures and 2 verification
equations. The signature scheme is sEUF-CMA-TA secure. The lower bounds in
[4] and Sect. 5 show that this construction is optimal with respect to size and
verification complexity in both Type I and Type III bilinear groups.

Setup P(1k): Run (p,G1,G2,GT , e,G,H) ← G(1k), pick X ← G1, and return
PP = (p,G1,G2,GT , e,G,X,H).

Key generation K(PP): Choose v ← Zp, compute V ← Hv, and return
V K = (PP , V ) and SK = (PP , v).

Signing SSK(M): On M ∈ G1 choose r ← Z∗
p and compute signature Σ =

(R,S, T ) and randomization token W as:

R ← Hr, S ← M
v
r X

1
r , T ← S

v
r G

1
r , W ← G

1
r .

Randomization RV K(M, (R,S, T ),W ): Pick α ← Z∗
p and compute the random-

ized signature Σ′ = (R′, S′, T ′) given by:

R′ ← R
1
α , S′ ← Sα, T ′ ← Tα2

Wα(1−α).

Verification VV K(M, (R,S, T )): Accept if and only if M,S, T ∈ G1, R ∈ G2 and

e(S,R) = e(M,V )e(X,H) and e(T,R) = e(S, V )e(G,H).

Fig. 1. Minimal structure-preserving signature scheme
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Randomized signatures are perfectly indistinguishable from real signatures
since both types of signatures are uniquely determined by the uniformly ran-
dom non-trivial group element R. Somebody who has a signature on a par-
ticular message and a corresponding randomization token can create as many
uniformly random signatures on the message as she wants. An additional feature
is that the randomization token can also be randomized together with the signa-
ture by computing W ′ ← Wα, so the power to randomize can be delegated to
others.

The signature scheme is designed with Groth-Sahai proofs in mind. If we have
a secret randomization token and use it to randomize a signature, we may reveal
the random group element R without this leaking any information about the
message or the original signature from which the randomized signature was de-
rived. When R is public both verification equations become linear, which makes
Groth-Sahai proofs very efficient.

We will now prove that the signature scheme with selective randomization
is sEUF-CMA-TA secure. This implies as two special cases that the signature in
Fig. 1 is EUF-CMA secure even when all randomization tokens are revealed and
sEUF-CMA secure if no randomization tokens are revealed.

Theorem 1. The signature scheme in Fig. 1 is sEUF-CMA-TA secure in the
generic group model.

Proof. We will without loss of generality show that the signature scheme is sEUF-
CMA-TA secure in the symmetric setting where G1 = G2 since this setting gives
the adversary the most degrees of freedom and hence the best chance of breaking
the scheme. Moreover, the scheme is secure in the generic group model even if
the discrete logarithm logG(H) is known to the adversary and we will therefore
without loss of generality assume H = G.

A generic adversary only uses generic group operations. This means that in
G1 it can only compute linear combinations of group elements from the verifica-
tion key and the signatures it has seen. Linear combinations on verification key
elements and signature elements correspond to formal Laurent polynomials (of
degree ranging from −2q to 2q+1 after q signature queries) in the discrete loga-
rithms of the group elements. We will show that no linear combinations produce
formal Laurent polynomials corresponding to a forgery. By the master theorem
in [11] this means that the signature scheme is secure in the generic group model.

The group elements in V K areG,X, V with corresponding discrete logarithms
1, x, v. On a query Mi with discrete logarithm mi from the adversary, the signa-
ture oracle responds with a signature (Ri, Si, Ti) and possibly a rerandomization
token Wi with discrete logarithms

ri ← Z∗
p si =

miv

ri
+

x

ri
ti =

miv
2

r2i
+

xv

r2i
+

1

ri
wi =

1

ri
.
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Suppose the adversary after q queries constructs (M,R, S, T ). Since the ad-
versary is generic it can only construct m, r, s, t that are linear combinations of
1, x, v, r1, s1, t1, w1, . . . , rq, sq, tq, wq, i.e.,

m =μ+μxx+μvv+

q∑
i=1

[
μriri + μsi(

miv

ri
+

x

ri
) + μti(

miv
2

r2i
+

xv

r2i
+

1

ri
) + μwi

1

ri

]
r =ρ+ρxx+ ρvv +

q∑
i=1

[
ρriri + ρsi(

miv

ri
+

x

ri
) + ρti(

miv
2

r2i
+

xv

r2i
+

1

ri
) + ρwi

1

ri

]
s =σ + σxx+σvv+

q∑
i=1

[
σriri + σsi(

miv

ri
+

x

ri
) + σti(

miv
2

r2i
+

xv

r2i
+

1

ri
)+σwi

1

ri

]
t =τ + τxx+ τvv +

q∑
i=1

[
τriri + τsi(

miv

ri
+

x

ri
) + τti(

miv
2

r2i
+

xv

r2i
+

1

ri
) + τwi

1

ri

]
Similarly, each query mi is a linear combination of 1, x, v, r1, s1, t1, w1, . . ., ri−1,
si−1, ti−1, wi−1.

We will show that the signature scheme is EUF-CMA secure, i.e., an adversary
cannot construct a valid signature (R,S, T ) on M where the discrete logarithms
m, r, s, t satisfy the verification equations

sr = mv + x tr = sv + 1 = mv2 + xv + 1

unless it reuses M = Mj from a previous query.
If a randomization token has not been given for a particular message the

attacker must use τwi = 0 for all indices i where this message was queried. We
will show that the adversary can only randomize a signature by using some
τwj �= 0. This means the signature scheme is strong for those messages where no
randomization token has been given, which gives us sEUF-CMA-TA security.

Our proof strategy is to use the first verification equation sr = mv+x to sim-
plify the descriptions of s and r by demonstrating that many of the coefficients
σ∗ and ρ∗ are 0. After narrowing the solution space down to four distinct cases,
we use the second verification equation tr = sv + 1 to rule out three cases and
determine a single type of possible solutions. These solutions correspond exactly
to randomization of signatures and if no randomization token is given then the
solution must be an exact copy of a previous signature.

In order to get to the core of our proof, we delay the proof of the following
claim.

Claim. The first verification equation sr = mv + x can only be satisfied if the
adversary picks σti = 0, σwi = 0, ρti = 0 and ρwi = 0 for all i = 1, . . . , q.

We now know that σti , σwi , ρti and ρwi are zero for all i = 1, . . . , q. Obviously
we cannot rule out the existence of some j for which σsj �= 0 since the adversary
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could simply copy a previous signature s = sj by setting σsj = 1. We will now
analyze the structure of s and r when there exists a j such that σsj �= 0.

We can write sr = mv + x as

(
σ + σxx + σvv +

q∑
i=1

σri
ri + σsi

(
miv

ri
+

x

ri
)

)
·
(
ρ + ρxx+ ρvv +

q∑
i=1

ρri
ri + ρsi

(
miv

ri
+

x

ri
)

)

=

(
μ + μxx + μvv +

q∑
i=1

μri
ri + μsi

(
miv

ri
+

x

ri
) + μti

(
miv

2

r2i
+

xv

r2i
+

1

ri
) + μwi

1

ri

)
v + x.

We first look at the term x2

r2j
. Observe that all verification key elements and signa-

tures are linear in x and therefore all elements m, r, s, t,m1, . . . ,mq constructed
using generic group operations must also be linear in x. This shows that the

term x2

r2j
has coefficient 0 in mv + x.

Let us now determine the coefficient of x2

r2j
in the product sr. Whenever the

adversary makes a query mi to get a signature (ri, si, ti) the message mi is
multiplied by v or v2 by the signing oracle. It is not possible to decrease the

degree of v, so these queries cannot contribute to the x2

r2j
term. Looking at the

terms in s and r we then see that the coefficient of x2

r2j
in sr is σsjρsj .

Comparing the coefficients of x2

r2j
from the two sides of the verification equation

we get σsjρrj = 0. Since we assumed σsj �= 0 this implies ρsj = 0. Using a similar

analysis of the terms x2

rirj
give us σsiρsj + σsjρsi = σsjρsi = 0 and therefore

ρsi = 0 for all i.

The term x2

rj
gives us σsjρx = 0 and therefore ρx = 0. The term x

rj
gives us

σsjρ = 0 and therefore ρ = 0. The terms xri
rj

give us σsjρri = 0 and therefore

ρri = 0 for all i �= j. Finally, the term x gives us σsjρrj = 1 and therefore
ρrj = 1

σsj
.

We now have r = ρvv + ρrjrj with ρrj = 1
σsj

�= 0. Let us proceed to analyze

the structure of s. The terms
xrj
ri

give us σsiρrj and therefore σsi = 0 for all

i �= j. The term r2j gives us σrjρrj = 0 and therefore σrj = 0. The terms rirj
give us σriρrj + σrjρri = σriρrj = 0 and therefore σri = 0 for all i. The term
rj gives us σρrj = 0 and therefore σ = 0. The term xrj gives us σxρrj = 0 and
therefore σx = 0. We conclude that s = σvv + σsj (

mjv
rj

+ x
rj
).

By symmetry we now have two possible cases:

Case s r
1 : σsj �= 0 s = σvv + σsj (

mjv
rj

+ x
rj
) r = ρvv + 1

σsj
rj

2 : ρsj �= 0 s = σvv + 1
ρsj

rj r = ρvv + ρsj (
mjv
rj

+ x
rj
)
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There still remains the possibility that σsi = 0 and ρsi = 0 for all i. We can
then write sr = mv + x as

(
σ + σxx+ σvv +

q∑
i=1

σriri

)
·
(
ρ+ ρxx+ ρvv +

q∑
i=1

ρriri

)

=

(
μ+ μxx+ μvv +

q∑
i=1

μriri + μsi (
miv

ri
+

x

ri
) + μti(

miv2

r2i
+

xv

r2i
+

1

ri
) + μwi

1

ri

)
v + x.

The term x2 shows that ρxσx = 0, so they cannot both be non-zero. The term
x on the other hand shows σρx + σxρ = 1 so at least one of ρx or σx is non-zero.
Let us in the following assume σx �= 0 and therefore ρ = 1

σx
�= 0. The constant

term gives us σρ = 0 and therefore σ = 0. The terms ri give us σri = 0 for all i
and the terms xri give us ρri = 0 for all i. This means we have s = σxx + σvv
and r = 1

σx
x+ ρvv. By symmetry we now have two additional cases

Case s r
3 : σx �= 0 s = σxx+ σvv r = 1

σx
+ ρvv

4 : ρx �= 0 s = 1
ρx

+ σvv r = ρxx+ ρvv

We will now analyze the four cases we have identified with the help of the
second verification equation tr = sv + 1. In case 4 where r = ρxx + ρvv we see
that in tr all terms involve x or v. This means we do not have a constant term
in either tr or sv, which makes it impossible to get tr = sv + 1.

A similar argument can be used in case 2 where r = ρvv+ρsj (
mjv
rj

+ x
rj
), since

both in tr and in sv all terms involve x or v and therefore it is impossible to get
tr = sv + 1.

Let us now analyze case 3 where r = ρ+ ρvv and s = 1
ρx+ σvv. We get

(
τ + τxx+ τvv +

q∑
i=1

τriri + τsi (
miv

ri
+

x

ri
) + τti(

miv
2

r2i
+

xv

r2i
+

1

ri
) + τwi

1

ri

)
· (ρ+ ρvv)

=
1

ρ
xv + σvv

2 + 1.

The constant term gives us τρ = 1 and therefore ρ = 1
τ �= 0. The term x gives us

τxρ = 0 and therefore τx = 0. But now the xv term yields a contradiction since
it gives us 0 = 1

ρ �= 0.

The only remaining possibility is case 1 where r = ρvv+ ρrjrj with ρrj = 1
σsj

and s = σvv+ σsj (
mjv
rj

+ 1
rj
). Inserting it in the second verification equation we

get

(
τ + τxx + τvv +

q∑
i=1

τriri + τsi (
miv

ri
+

x

ri
) + τti (

miv
2

r2i
+

xv

r2i
+

1

ri
) + τwi

1

ri

)
·
(
ρvv + ρrj

rj
)

=σvv
2 + σsj

(
mjv

2

rj
+

xv

rj
) + 1.
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The terms
xvrj
r2i

give us τtiρrj = 0 and therefore τti = 0 for i �= j. The terms
1

rirj
give us τwiρrj = 0 and therefore τwi = 0 for i �= j. The terms

xrj
ri

give us

τsiρrj = 0 and therefore τsi = 0 for all i �= j. The term x gives us τsjρrj = 0
and therefore τsj = 0. The terms r2j and rirj give us τri = 0 for all i. The term
xrj gives us τx = 0 and the term rj gives us τ = 0.

Since ρrj = 1
σsj

we have now simplified the second verification equation to

(
τvv+τtj (

mjv
2

r2j
+

xv

r2j
+

1

rj
)+τwj

1

rj

)
·
(
ρvv+

1

σsj

rj

)
= σvv

2+σsj (
mjv

2

rj
+

xv

rj
)+1.

The term xv
rj

gives us τtj · 1
σsj

= σsj giving us τtj = σ2
sj . The constant term gives

us (τtj +τwj ) · 1
σsj

= 1 giving us τwj = σsj (1−σsj ). The vrj term gives us τv = 0.

The xv2

r2j
term gives us ρv = 0. Finally, the v2 term gives us σv = 0.

The adversary can therefore only compute a valid signature by using

r =
1

σsj

rj s = σsjsj t = σ2
sj tj + σsj (1− σsj )wj .

The first verification equation then gives us mv + x = sr = sjrj = mjv + x,
showing m = mj and therefore the signature scheme is EUF-CMA secure even in
the presence of randomization tokens. Furthermore, if no randomization token
wj has been provided for the message then τwj = 0. Since τwj = σsj (1 − σsj )
and σsj �= 0 this shows σsj = 1. This implies r = rj , s = sj and t = tj , which
shows that the signature scheme is sEUF-CMA-TA secure.

Let us now prove Claim 3.

Proof. Starting with the first verification equation sr = mv + x we have

(
σ + σxx+ σvv +

q∑
i=1

σriri + σsi (
miv

ri
+

x

ri
) + σti (

miv2

r2i
+

xv

r2i
+

1

ri
) + σwi

1

ri

)

·
(
ρ+ ρxx+ ρvv +

q∑
i=1

ρriri + ρsi (
miv

ri
+

x

ri
) + ρti(

miv
2

r2i
+

xv

r2i
+

1

ri
) + ρwi

1

ri

)

=

(
μ+ μxx+ μvv +

q∑
i=1

μriri + μsi (
miv

ri
+

x

ri
) + μti (

miv2

r2i
+

xv

r2i
+

1

ri
) + μwi

1

ri

)
v + x

We first show that σti = 0 for all i. Assume for contradiction that there exists a

j such that σtj �= 0. We start by looking at the coefficients of x2v2

r4j
. The Laurent

polynomials corresponding to r, s,m and m1, . . . ,mq are all linear in x. Terms
involving x2 can therefore only arise in the product sr. This shows that the

coefficient of x2v2

r4j
is 0 in mv + x. We will in the following argue the coefficient

of x2v2

r4j
in sr is σtjρtj , which by our assumption σtj �= 0 implies ρtj = 0.
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To see that indeed the coefficient of x2v2

r4j
in sr is σtjρtj , we need to rule out

that other cross terms in sr can be x2v2

r4j
. Observe that in all terms of s and

r the degree of rj ranges from −2 to 1 and only has degree -2 in the term

tj =
mjv

2

r2j
+ xv

r2j
+ 1

rj
and in subsequent signatures on queries mi that include a

tj term. However, if a term mi involves tj then the resulting signature terms si
and ti multiply the tj by v or v2. By using the fact that the degree of v never

decreases, we see that all other cross terms involving x2

r4j
have degree 3 or higher

in v. The coefficients of x2v2

r4j
therefore do indeed give us σtjρtj = 0 and therefore

ρtj = 0.

Next we look at the term x2v2

r2j r
2
i
for i �= j. A similar analysis shows that the

coefficients satisfy σtjρti + σtiρtj = 0. Since ρtj = 0 and σtj �= 0 this implies
ρti = 0 for all i.

We proceed to the term x2v
r3j

and will show the coefficient in sr of this term is

σtjρsj . Since the degree of rj is -3 in the term, we see that tj must be used either
directly, or indirectly through a signature on a subsequent query mi involving
tj . However, whenever mi involves tj the degree of v is increased to at least 2
and such subsequent queries cannot contribute to the term. An inspection of the
different cross terms now shows that indeed σtjρsj is the coefficient in sr for the

term x2v
r3j

. Since cross terms involving x2 can only arise in sr and not in mv + x

we then have σtjρsj = 0 and since we assumed σtj �= 0 this means ρsj = 0.

A similar analysis shows that for i �= j the terms x2v
rir2j

have coefficient σtiρsj +

σtjρsi = σtjρsi = 0 and therefore ρsi = 0 for all i.

We now look at the term x2v
r2j

. Again looking at the degrees of v in subsequent

queries with mi using tj we see that they cannot contribute to the coefficient of
x2v
r2j

in sr and therefore the coefficient is σtjρx. Since there are no terms involving

x2 in mv + 1 this means σtjρx = 0 and therefore ρx = 0.
Using the term xv

r3j
we see that σtjρwj = 0 and therefore ρwj = 0. The terms

xv
rir2j

give us σtjρwi + σwiρtj = σtjρwi = 0, which implies ρwi = 0 for all i.

The term xv
r2j

gives us σtjρ = 0 and therefore ρ = 0.

The terms xvri
r2j

give us σtjρri = 0 and therefore ρri = 0 for all i �= j. The

term xv
rj

gives us σtjρrj = 0 and therefore ρrj = 0.

We now have r = ρvv, which means all terms in sr and mv have at least
degree 1 in v. It is therefore impossible to get sr = mv + x when there exists a
j such that σtj �= 0.

By symmetry we can also rule out the existence of ρtj �= 0. We conclude that
both r and s must have ρti = 0 and σti = 0 for all i = 1, . . . , q and will use that
simplification in the rest of our proof.
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Next, we will show that for all i we have σwi = 0. Assume for contradiction
σwj �= 0 for some j. We can write sr = mv + x as

(
σ + σxx+ σvv +

q∑
i=1

σriri + σsi(
miv

ri
+

x

ri
) + σwi

1

ri

)

·
(
ρ+ ρxx+ ρvv +

q∑
i=1

ρriri + ρsi (
miv

ri
+

x

ri
) + ρwi

1

ri

)

=

(
μ+ μxx+ μvv +

q∑
i=1

μriri + μsi (
miv

ri
+

x

ri
) + μti(

miv2

r2i
+

xv

r2i
+

1

ri
) + μwi

1

ri

)
v + x.

The term 1
r2j

gives us σwjρwj = 0 since all other terms involving r−2
j are multi-

plied by powers of x or v. With σwj �= 0 this means ρwj = 0. Similarly, the terms
1

rirj
give us σwiρwj + σwjρwi = σwjρwi = 0 yielding ρwi = 0 for all i.

The term x
r2j

now gives us σwjρsj = 0 and therefore ρsj = 0. The terms x
rirj

give us σwiρsj + σwjρsi = σwjρsi = 0 and therefore ρsi = 0 for all i.
The term 1

rj
gives us σwjρ = 0 and therefore ρ = 0. The term x

rj
now gives

us σwjρx = 0 and therefore ρx = 0.
The constant term gives us σwjρrj = 0 and therefore ρrj = 0. The terms ri

rj

give us σwjρri = 0 and therefore ρri = 0 for all i.
We now have r = ρvv giving us sr = ρvsv = mv + x. Since signing queries

only increase the degree of v this equation cannot be satisfied because of the x.
The contradiction leads us to conclude σwi = 0 for i = 1, . . . , q. By symmetry
this also shows ρwi = 0 for all i = 1, . . . , q.

4 Optimal One-Time Signatures

The construction of a 3-element structure-preserving signature scheme in Sect. 3
leaves open the question whether 2-element one-time signatures exist. (A one-time
signature scheme with 3-element signatures already exists in the symmetric set-
ting [6]. It is sEUF-CMA under the simultaneous double-pairing assumption.) We
will now give a candidate for an sEUF-CMA secure one-time structure-preserving
signature scheme in the symmetric setting, which matches the 2-element lower
bound from Sect. 5. This one-time signature beats the 3-element lower bound for
general structure-preserving signatures in Theorem 5. Moreover, the scheme is
deterministic, so it also demonstrates that Lemma 1 requiring general structure-
preserving signatures to be randomized does not apply to one-time signatures.

The case of one-time signatures also indicates a difference between the sym-
metric and the asymmetric Type III setting. Abe et al. [4] constructed a one-time
signature scheme with a single verification equation for messages belonging ex-
clusively to one of the groups G1 or G2 and in Sect. 4.1 we show that it is even
possible to make 1 element signatures in Type III groups. On the other hand,
there is no known structure-preserving (one-time) signature scheme in the asym-
metric setting for messages that contain groups elements in both G1 and G2

with signature size less than 3.
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The construction of our one-time signature is given in Fig. 2. We observe
that the verification key has two group elements V,W and the signer needs
to know the discrete logarithm of both of these elements. It is an interesting
question whether a 2-element structure-preserving one-time signature scheme
can be constructed with just a single variable verification key element like we
did for 3-element signatures in Fig. 1, but we have some initial indications (not
included in this paper) that for some classes of one-time signature schemes this
may not be possible and that the signer needs to know at least two discrete
logarithms.

Setup P(1k): Run (p,G,GT , e,G) ← G(1k) and return PP = (p,G,GT , e,G).
Key generation K(PP): Choose v, w ← Zp and compute

V ← Gv, W ← Gw.

Return (V K,SK) = ((PP , V,W ), (PP , v, w)).
Signing SSK(M): Given M ∈ G, return the signature Σ = (S, T ) given by:

S = MvGw2

, T = Sv .

Verification VV K(M, (S, T )): Accept if all the input elements are in G and if:

e(S,G) = e(M,V )e(W,W ) and e(T,G) = e(S,V ).

Fig. 2. One-time structure-preserving signature scheme in the symmetric setting

Theorem 2. The scheme given in Fig. 2 is an sEUF-CMA secure one-time sig-
nature scheme in the generic group model.

Proof. A generic adversary only uses generic group operations, which means that
in G it can only compute linear combinations on group elements from the verifica-
tion key or the signature from the one-time chosen message attack. We will show
that linear combinations of verification key elements and signature elements cor-
respond to formal polynomials (of degree 3 or less) in the corresponding discrete
logarithms of these elements and that no linear combinations will produce formal
polynomials corresponding to a forgery. By the master theorem in [11] this means
that the signature scheme is secure in the generic group model.

Suppose the adversary gets a one-time signature (S, T ) on a query M and
then outputs a valid signature (S∗, T ∗) on M∗. Since the adversary is generic
it computes M∗, S∗, T ∗ as linear combinations of G, V,W, S, T . This means the
discrete logarithms are of the form

m∗ = μ+ μvv + μww + μs(mv + w2) + μt(mv2 + w2v)

s∗ = σ + σvv + σww + σs(mv + w2) + σt(mv2 + w2v)

t∗ = τ + τvv + τww + τs(mv + w2) + τt(mv2 + w2v)

where m itself is a linear combination of 1, v, w.
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The second verification equation t∗ = s∗v = m∗v2 + w2v gives us

τ + τvv + τww + τs(mv + w2) + τt(mv2 + w2v)

= μv2 + μvv
3 + μwwv2 + μs(mv3 + w2v2) + μt(mv4 + w2v3) + w2v

The coefficients of w2v3 give us μt = 0. The coefficients of w2v give us τt = 1.
The coefficients of w2 give us τs = 0. The coefficients of w2v2 give us μs = 0.
The coefficients of 1, v, w give us τ = 0, τv = 0, τw = 0. This means mv2 =
μv2 + μvv

3 + μwwv2, which implies m = μ + μvv + μww = m∗. Since the
verification equations uniquely determined the signature once the message is
fixed, m∗ = m implies s∗ = s and t∗ = t. This means (M∗, S∗, T ∗) = (M,S, T ),
which was the message and signature pair from the query. ��

4.1 Optimal One-Time Signatures in the Type III Setting

In Fig. 3, we present a one-time signature scheme over asymmetric bilinear
groups with single element signatures. It can be used to sign vectors of n group
elements in the second base group G2.

Setup P(1k): Return PP= (p,G1,G2,GT , e,G,H) generated by asymmetric bilin-
ear group generator G(1k).

Key generation K(PP): Choose v, a1, . . . , an ← Zp and compute:

V = Gv, A1 = Ga1 , . . . , An = Gan .

Return (V K,SK) = ((PP , V,A1, . . . , An), (PP , v, a1, . . . , an)).
Signing SSK(M): On input M = (M1, . . . ,Mn) ∈ Gn

2 , return the signature:

S ← Hv
n∏

i=1

Mai
i .

Verification VV K((M1, . . . ,Mn), S): Accept if M1, . . . ,Mn, S ∈ G2 and if:

e(G,S) = e(V,H)

n∏
i=1

e(Ai,Mi).

Fig. 3. One-time structure-preserving signature with 1 element signatures in the
Type III setting

Theorem 3. The scheme given in Fig. 3 is an sEUF-CMA secure one-time sig-
nature in the generic group model.

Proof. A generic adversary can only compute linear combinations of group ele-
ments in the base groups, which means its signing query must be (M1, . . . ,Mn) =
(Hm1 , . . . , Hmn) with known discrete logarithms m1, . . . ,mn. The generic adver-
sary gets a signature S = Hv+

∑n
i=1 aimi as response.
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Suppose now the generic adversary computes a message (M∗
1 , . . . ,M

∗
n) =

(Hm∗
1 , . . . , Hm∗

n) and a valid signature S∗ = Hs∗ . Since the adversary only uses
linear combinations of existing group elements it knows μ1, . . . , σs ∈ Zp such
that

m∗
j = μj + μs,j(v +

n∑
i=1

miai) for j ∈ {1, . . . , n}

s∗ = σ + σs(v +

n∑
i=1

miai).

The verification equation gives us s∗ = v +
∑n

i=1 aim
∗
i . This means:

(σs − 1)v = −σ − σs

n∑
j=1

mjaj +

n∑
j=1

μjaj +

n∑
j=1

μs,jaj(v +

n∑
i=1

miai).

It then holds that σs = 1, σ = 0, μj = mj and μs,j = 0 for all j. This means
m∗

j = mj and s∗ = s, so ((M∗
1 , . . . ,M

∗
n), S

∗) = ((M1, . . . ,Mn), S), which is not
a valid forgery. ��

5 Lower Bounds in the Symmetric Setting

We will show that in the Type I setting structure-preserving signatures must have
at least two verification equations and consist of at least three group elements.
This matches the lower bounds in the Type III setting [4]. One-time signature
can be just two group elements but still require two verification equations. Our
lower bounds hold even when the verification key may also include target group
elements Z ∈ GT , and the security is relaxed to random message attacks.

Theorem 4. (No one-equation signatures) The verification algorithm V
of a (one-time) EUF-RMA secure structure-preserving signature scheme over a
symmetric pairing group must evaluate at least two pairing product equations.

Proof. By diagonalizing the corresponding quadratic form, we may assume with-
out loss of generality that the single verification equation for a signature Σ =
(S1, . . . , Sn) on a one-element message M has the following form:

e(M,M)a · e(M,U
n∏

i=1

Sbi
i ) ·

n∏
i=1

e(Si, Si)
ci · e(Si, Vi) = Z. (1)

Let us fix an arbitrary message M ∈ G and a signature Σ = (S1, . . . , Sn) on M
which is valid with respect to the verification equation (1). We will construct
an explicity forgery (M∗, Σ∗) such that Σ∗ coincides with Σ on all components
except one. We distinguish between two cases: either all the coefficients ci in the
verification equation (1) are nonzero or at least one of the ci’s is zero.
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Case 1: ci �= 0 for all i. We first assume that all the ci’s are nonzero,
and fix an arbitrary index i ∈ {1, . . . , n}. Let M be any message and Σ =
(S1, . . . , Sn) a valid signature on M . We concentrate on the component S = Si

of Σ, and claim that we can find a pair (M∗, S∗) �= (M,S) such that Σ∗ =
(S1, . . . , Si−1, S

∗, Si+1, . . . , Sn) is a valid signature on M∗. In terms of discrete
logarithms, this is equivalent to finding (m∗, s∗) �= (m, s) such that:

am2 + m(u + bs+ k) + cs2 + sv = am∗2 + m∗(u + bs+ k) + cs∗2 + s∗v (2)

where we let b = bi, c = ci, V = Vi, and K =
∏

j �=i S
bj
j . To find such a pair, we

look for m∗, s∗ of the form:

m∗ = μ0u+ μ1v + (1 + μ2)m+ μ3s+ μ4k,

s∗ = σ0u+ σ1v + σ2m+ (1 + σ3)s+ σ4k.

such that equation (2) is satisfied regardless of the discrete logarithms, i.e. such
that the corresponding coefficients of the left-hand side and right-hand side
of equation (2), when regarded as polynomials in Zp[u, v,m, s, k], are pairwise
equal.

This gives a quadratic system of 15 equations in the 10 unknowns μ0, . . . , μ4,
σ0, . . . , σ4, which we solve by computing a Gröbner basis of the corresponding
ideal. We obtain, in particular, a rational one-parameter family of solutions. Let
ω be any element in Zp such that τ = b2 − 4ac− ω2 �= 0. Then the following is
a solution:

(μ0, μ1, μ2, μ3, μ4) = 2/τ ·
(
2c, ω − b, bω − δ, 2cω, 2c

)
(σ0, σ1, σ2, σ3, σ4) = (ω − b)/(cτ) ·

(
2c, ω − b, bω − δ, 2cω, 2c

)
(where δ = b2 − 4ac) and defines corresponding group elements (M∗

ω, S
∗
ω).

This is a successful forgery provided that we can find some ω such that M �=
M∗

ω. Suppose that this is not the case. Then for all ω such that τ �= 0, we must
have:

M∗
ω ·M−1 = Uμ0 · V μ1 ·Mμ2 · Sμ3 ·Kμ4 = 1.

By raising to the power τ/2, this gives:

U2cV ω−bM bω−b2+4acS2cωK2c =
(
V M bS2c

)ω · (U2cV −bM−b2+4acK2c
)
= 1,

and since this relation is verified for all ω ∈ Zp except at most two values, this
implies in particular that V M bS2c = 1, or in other words S = V −1/2c ·M−b/2c.
Now recall that all the ci’s are nonzero. By the previous argument, we can either
carry out the previous attack for at least one index i, or the signature on a
message M must be given, with overwhelming probability, by Σ = (S1, . . . , Sn)

where Si = V
−1/2ci
i ·M−bi/2ci for all i, which is obviously insecure.
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Case 2: ci = 0 for some i Suppose ci = 0 for some i. We concentrate on
that index like before, and look again for a forgery (M∗, S∗) given a signature
Σ on an arbitrary message M . With the same notation as before, we find a
one-parameter family (M∗

ω, S
∗
ω) of solutions, given by:

(μ0, μ1, μ2, μ3, μ4) = −ω/(bω + 1) ·
(
0, 1, b, 0, 0

)
(σ0, σ1, σ2, σ3, σ4) = ω ·

(
1,−aω/(bω + 1), a(bω + 2)/(bω + 1), b, 1

)
for all ω such that bω + 1 �= 0. This gives a forgery unless M∗

ω = M for all such
ω, namely (V M b)−ω/(bω+1) = 1. As a result, we get a forgery on any message
except V −1/b (or any message if b = 0). This completes the proof. ��

Corollary 1. (Two group elements required for one-time signatures.)
A structure-preserving one-time signature scheme that is existentially unforgeable
against a one-time random message attack must have at least 2 group elements.

Proof. Suppose there is a scheme where a signature is a single group element S.
If a linear combination of the verification equations give us a non-trivial equa-
tion that is linear in S, then this equation uniquely determines S and we can
just use this equation as the verification equation instead of all the other verifi-
cation equations. If there is no linear combination of the verification equations
that yield a non-trivial linear equation in S then they must all be linearly de-
pendent and we can again reduce to the case where there is a single verification
equation. ��

For structure-preserving signatures where the adversary can ask multiple sig-
nature queries there is a stronger lower bound of 3 group elements.1

Theorem 5. (Three group elements required for structure-preserving
signatures.) A structure-preserving signature scheme with a generic signer that
is existentially unforgeable against random message attacks must have at least 3
group elements.

Proof. We begin by proving the following lemma.

Lemma 1. A structure-preserving signature scheme with a generic signer that is
existentially unforgeable against random message attacks must for each message
have a superpolynomial number of potential signatures.

Proof. Suppose that for a message M there are only polynomially many signa-
ture vectors Σ. Since the signer is generic this means there is a polynomial set

{(→α,
→
β )}poly(k)i=1 of vectors in Zn

p creating signature vectors Σ = G
→
αM

→
β by entry-

wise exponentiation. Given signatures Σ0 and Σ1 on random messages M0 and

1 Our proof of the lower bound is much simpler than the proof for the similar lower
bound of 3 group elements in [4] in the asymmetric Type III setting and can with
minor modifications be adapted to Type III groups. More generally, the proof of
Theorem 5 indicates that in general if there are m verification equations, then the
signature size needs to be m+ 1.
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M1 we have 1
poly(k)2 probability that they are constructed with the same (

→
α,

→
β )

pair. In that case

Σ∗ = Σr
0Σ

1−r
1 = G

→
α (M r

0M
1−r
1 )

→
β

is a signature on M∗ = M r
0M

1−r
1 for all r ∈ Zp. ��

Now suppose thatwe havean SPSwith just two group elements (S, T ) and amin-
imal number of verification equations. We know there must be at least two verifi-
cation equations. This means the discrete logarithms s, t of the signature elements
must satisfy two quadratic equations. By using a linear combination of the two
verification equations, we can without loss of generality ensure the first equation
is linear in t, i.e., t = as2 + bs+ c for some a, b, c ∈ Zp determined by the message
and the verification key. We can then substitute this into the second verification
equation to get a quartic equation in s. If the equation is non-trivial, then there are
at most 4 solutions for s and therefore at most 4 signatures in total contradicting
Lemma 1. On the other hand if the equation is trivial, then the second verification
equation was redundant and could be eliminated, which contradicts our initial as-
sumption that we had a minimal number of verification equations. ��
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for discrete logarithm in finite fields of small characteristic. IACR ePrint Archive,
Report 2013/400 (2013), http://eprint.iacr.org/

11. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

12. Camenisch, J.,Dubovitskaya,M.,Enderlein,R.R.,Neven,G.:Oblivious transferwith
hidden access control from attribute-based encryption. In: Visconti, I., De Prisco, R.
(eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579. Springer, Heidelberg (2012)

13. Cathalo, J., Libert, B., Yung, M.: Group encryption: Non-interactive realization
in the standard model. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 179–196. Springer, Heidelberg (2009)

14. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems
and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012)

15. Fuchsbauer, G.: Automorphic signatures in bilinear groups. IACR ePrint Archive,
Report 2009/320 (2009), http://eprint.iacr.org

16. Fuchsbauer, G.: Commuting signatures and verifiable encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 224–245. Springer, Heidel-
berg (2011)

17. Fuchsbauer, G., Vergnaud, D.: Fair blind signatures without random oracles.
In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055,
pp. 16–33. Springer, Heidelberg (2010)

18. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

19. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 179–197. Springer,
Heidelberg (2008)

20. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 444–459. Springer, Heidelberg (2006)

21. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

22. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012)

23. Hofheinz, D., Jager, T., Knapp, E.: Waters signatures with optimal security re-
duction. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 66–83. Springer, Heidelberg (2012)

24. Libert, B., Peters, T., Joye, M., Yung, M.: Linearly homomorphic structure-
preserving signatures and their applications. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 289–307. Springer, Heidelberg (2013)

25. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revoca-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 571–589. Springer, Heidelberg (2012)

26. Zhang, J., Li, Z., Guo, H.: Anonymous transferable conditional e-cash. In:
Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol. 106,
pp. 45–60. Springer, Heidelberg (2013)

27. Zhou, S., Lin, D.: Unlinkable randomizable signature and its application in group
signature. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS,
vol. 4990, pp. 328–342. Springer, Heidelberg (2008)

http://eprint.iacr.org/
http://eprint.iacr.org


On the Impossibility of Structure-Preserving
Deterministic Primitives

Masayuki Abe1, Jan Camenisch2, Rafael Dowsley3, and Maria Dubovitskaya2,4

1 NTT Corporation, Japan
abe.masayuki@lab.ntt.co.jp
2 IBM Research - Zurich, Switzerland
{jca,mdu}@zurich.ibm.com

3 Karlsruhe Institute of Technology, Germany
rafael.dowsley@kit.edu

4 ETH Zurich, Switzerland
dumaria@inf.ethz.ch

Abstract. Complex cryptographic protocols are often constructed in a modular
way from primitives such as signatures, commitments, and encryption schemes,
verifiable random functions, etc. together with zero-knowledge proofs ensuring
that these primitives are properly orchestrated by the protocol participants. Over
the past decades a whole framework of discrete logarithm based primitives has
evolved. This framework, together with so-called generalized Schnorr proofs,
gave rise to the construction of many efficient cryptographic protocols.

Unfortunately, the non-interactive versions of Schnorr proofs are secure only
in the random oracle model, often resulting in protocols with unsatisfactory se-
curity guarantees. Groth and Sahai have provided an alternative non-interactive
proof system (GS-proofs) that is secure in the standard model and allows for the
“straight line” extraction of witnesses. Both these properties are very attractive,
in particular if one wants to achieve composable security. However, GS-proofs
require bilinear maps and, more severely, they are proofs of knowledge only for
witnesses that are group elements. Thus, researchers have set out to construct ef-
ficient cryptographic primitives that are compatible with GS-proofs, in particular,
primitives that are structure-preserving, meaning that their inputs, outputs, and
public keys consist only of source group elements. Indeed, structure-preserving
signatures, commitments, and encryption schemes have been proposed. Although
deterministic primitives such as (verifiable) pseudo-random functions or verifi-
able unpredictable functions play an important role in the construction of many
cryptographic protocols, no structure-preserving realizations of them are known
so far.

As it turns out, this is no coincidence: in this paper we show that it is im-
possible to construct algebraic structure-preserving deterministic primitives that
provide provability, uniqueness, and unpredictability. This includes verifiable ran-
dom functions, unique signatures, and verifiable unpredictable functions as
special cases. The restriction of structure-preserving primitives to be algebraic
is natural, in particular as otherwise it is not possible to prove with GS-proofs
that an algorithm has been run correctly. We further extend our negative result
to pseudorandom functions and deterministic public key encryption as well as
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non-strictly structure-preserving primitives, where target group elements are also
allowed in their ranges and public keys.

Keywords: Verifiable random functions, unique signatures, structure-preserving
primitives, Groth-Sahai proofs.

1 Introduction

Most practical cryptographic protocols are built from cryptographic primitives such as
signature, encryption, and commitments schemes, pseudorandom functions, and zero-
knowledge (ZK) proofs. Thereby the ZK proofs often “glue” different building blocks
together by proving relations among their inputs and outputs. The literature provides a
fair number of different cryptographic primitives (e.g., CL-signatures [20,21], Pedersen
Commitments [49], ElGamal and Cramer-Shoup encryption [30,27], verifiable encryp-
tion of discrete logarithms [23], verifiable pseudo-random functions [29]) that are based
on the discrete logarithm problem and that together with so-called generalized Schnorr
protocols [50,18] provide a whole framework for the construction of practical protocols.
Examples of such constructions include anonymous credential systems [19,6], oblivi-
ous transfer with access control [15], group signatures [10,43], or e-cash [17]. The
non-interactive versions of generalized Schnorr protocols are secure only in the random
oracle model as they are obtained via the Fiat-Shamir heuristic [31] and it is well known
the random oracles cannot be securely instantiated [25]. Consequently, many protocols
constructed from this framework unfortunately are secure only in the random oracle
model.

A seminal step towards a framework allowing for security proofs in the standard
model was therefore the introduction of the so-called GS-proofs by Groth and Sa-
hai [36]. These are efficient non-interactive proofs of knowledge or language mem-
bership and are secure in the standard model. They make use of bilinear maps to verify
statements and therefore are limited to languages of certain types of equations, includ-
ing systems of pairing product and multi exponentiation equations. In particular, GS-
proofs are proofs of knowledge only for witnesses that are group elements but not for
exponents. Thus, it is unfortunately not possible to use GS-proofs as a replacement for
generalized Schnorr proofs in the “discrete logarithm based framework of cryptographic
primitives” described earlier. To alleviate this, the research community has engaged on
a quest for alternative cryptographic primitives that are structure-preserving, i.e., for
which the public keys, inputs, and output consist of (source) group elements and the
verification predicate is a conjunction of pairing product equations, thus making the
primitives “GS-proof compatible” and enabling a similar, GS-proof-based, framework
for the construction of complex cryptographic protocols. Such a framework is espe-
cially attractive because GS-proofs are “on-line” extractable, a property that is essential
for the construction of UC-secure [24] protocols.

Structure-preserving realizations exist for primitives such as signature schemes
[3,4,38,13,2], commitment schemes [3,5], and encryption schemes [16]. However, so
far no structure-preserving constructions are known for important primitives includ-
ing pseudorandom functions (PRF) [34,28], verifiable unpredictable functions (VUF)
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[46], verifiable random functions (VRF) [46,40], simulatable verifiable random func-
tions (VRF) [26], unique signatures (USig) [35,46,45], and deterministic encryption
(DE) [9,12] despite the fact that these primitives are widely employed in the literature.
Examples include efficient search on encrypted data [12] from deterministic encryption;
micropayments [48] from unique signatures; resettable zero-knowledge proofs [47], up-
datable zero-knowledge databases [44], and verifiable transaction escrow schemes [42]
from verifiable random functions. PRFs together with a proof of correct evaluation have
been used to construct compact e-cash [17], keyword search [32], set intersection pro-
tocols [37], and adaptive oblivious transfer protocols [22,14,41]. We further refer to
Abdalla et al. [1] and Hohenberger and Waters [40] for a good overview of applications
of VRFs .

Our Results. In this paper we show that it is no coincidence that no structure-preserving
constructions of PRF, VRF, VUF, USig, and DE are known: it is in fact impossible to
construct them with algebraic algorithms. To this end, we provide a generic definition
of a secure Structure-Preserving Deterministic Primitive (SPDP) and show that such a
primitive cannot be built using algebraic operations only. The latter is a very reason-
able restriction, indeed all constructions of structure-preserving primitives known to
date are algebraic. We then show that PRF, VRF, VUF, and USig are special cases of
a SPDP. We further extend our results to deterministic encryption and to “non-strictly”
structure-preserving primitives which are allowed to have target group elements in their
public keys and ranges. Regarding the latter, we show that such primitives cannot be
constructed for asymmetric bilinear maps and that the possible constructions for sym-
metric maps are severely restricted in the operations they can use.

Let us point out that of course our results do not rule out the possibility of con-
structing efficient protocols from GS-proofs and non-structure-preserving primitives.
Indeed a couple of such protocols are known where although some of the inputs in-
clude exponents (e.g., x) it turned out to be sufficient if only knowledge of a group ele-
ments (e.g., gx) is proved. Examples here include the construction of a compact e-cash
scheme [7] from the Dodis-Yampolskiy VRF [29] and of a so-called F -unforgeable
signature scheme [6] and its use in the construction of anonymous credentials.

Related Work. Some impossibility results and lower bounds for structure-preserving
primitives are known already. Abe et al. [4] show that a signature from a structure-
preserving signature scheme must consist of at least three group elements when the sig-
nature algorithm is algebraic. They also give constructions meeting this bound. Lower
bounds for structure-preserving commitment schemes are presented by Abe, Haralam-
biev and Ohkubo [5]. They show that a commitment cannot be shorter than the message
and that verifying the opening of a commitment in a symmetric bilinear group setting
requires evaluating at least two independent pairing product equations. They also pro-
vide optimal constructions that match these lower bounds.

To the best of our knowledge, there are no results about the (im)possibility of
structure-preserving deterministic primitives.

Paper Organization. In Section 2 we specify our notation, define the syntax and se-
curity properties of an algebraic structure-preserving deterministic primitive, and show
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that such primitives are impossible to construct. In Section 3 we present some general-
izations to the non-strictly structure-preserving case. Then, in Section 4, we show how
our result can be applied to structure-preserving PRF, VRF, VUF, and unique signatures.
Section 5 is devoted to the impossibility results for structure-preserving deterministic
encryption. Finally, Section 6 concludes the paper and points to open problems and
possible future research directions.

2 Definitions and Impossibility Results for Algebraic
Structure-Preserving Deterministic Primitives

2.1 Preliminaries

Notation. We say that a function is negligible in the security parameter λ if it is asymp-
totically smaller than the inverse of any fixed polynomial in λ. Otherwise, the function
is said to be non-negligible in λ. We say that an event happens with overwhelming prob-
ability if it happens with probability p(λ) ≥ 1− negl(λ), where negl(λ) is a negligible
function of λ.

We denote by Y
$← F(X ) a probabilistic algorithm that on input X outputs Y . A

similar notation Y ← F(X ) is used for a deterministic algorithm with input X and
output Y . We abbreviate polynomial time as PT.

We use an upper-case, multiplicative notation for group elements. By G1 and G2 we
denote source groups and by GT a target group. Let G be a bilinear group generator
that takes as input a security parameter 1λ and outputs the description of a bilinear
group Λ = (p,G1,G2,GT , e, G1, G2) where G1, G2, and GT are groups of prime
order p, e is an efficient, non-degenerated bilinear map e : G1 × G2 → GT , and
G1 and G2 are generators of the groups G1 and G2, respectively. We denote by Λ∗ =
(p,G1,G2,GT , e) the description Λ without the group generators. By Λsym we denote
the symmetric setting where G1 = G2 and G1 = G2. In the symmetric setting we
simply write G for both G1 and G2, and G for G1 and G2.

We also denote the set of all possible vectors of group elements from both G1 and
G2 as {G1,G2}∗, and from G1, G2 and GT as {G1,G2,GT}∗. For example, if H1 ∈
G1, H2 ∈ G2 then (H2, H1) ∈ {G1,G2}∗ and (Ha

1 , H
b
2 , H

c
2 , H

d
1 ) ∈ {G1,G2}∗ for

a, b, c, d ∈ Zp.

Algebraic Algorithms. For a bilinear group Λ generated by G, an algorithm Alg that
takes group elements (X1, . . . , Xn) as input and outputs a group element Y is called
algebraic if Alg always “knows” a representation of Y with respect to (X1, . . . , Xn),
i.e., if there is a corresponding extractor algorithm Ext that outputs (c1, . . . , cn) such
that Y =

∏
Xci

i holds for all inputs and outputs of Alg. We consider this property with
respect to the source groups only. A formal definition for the minimal case where Alg
takes group elements from only one group G and outputs one element of this group is
provided below.

Definition 1 (Algebraic Algorithm). Let Alg be a probabilistic PT algorithm that
takes as an input a bilinear group description Λ generated by G, a tuple of group ele-
ments (X1, . . . , Xn) ∈ Gn for some n ∈ N, and some auxiliary string aux ∈ {0, 1}∗
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and outputs a group element Y and a string ext. The algorithmAlg is algebraic with re-
spect to G if there is a probabilistic PT extractor algorithm Ext that takes the same input
as Alg (including the random coins) and generates output (c1, . . . , cn, ext) such that

for all Λ
$← G(1λ), all polynomial sizes n, all (X1, . . . , Xn) ∈ Gn and all auxiliary

strings aux the following inequality holds:

Pr

[
(Y, ext)← Alg(Λ∗, X1, . . . , Xn, aux; r) ;
(c1, . . . , cn, ext)← Ext(Λ∗, X1, . . . , Xn, aux; r)

∣∣∣∣Y �=
∏

Xci
i

]
≤ negl(λ),

where the probability is taken over the choice of the coins r.

It is straightforward to extend this definition to algorithms that output multiple ele-
ments of the groups G1 and G2 of Λ. We note that all known constructions of structure-
preserving primitives are algebraic in the sense defined here. Indeed if the considered
algorithms were non-algebraic one could no longer prove their correct execution with
GS-proofs.

One may see a similarity between the above definition and the knowledge of expo-
nent assumption (KEA) [11] as both involve an extractor. We, however, emphasize that
the algebraic algorithm definition characterizes honest algorithms, whereas the KEA is
an assumption on adversaries.

2.2 Definitions of Structure-Preserving Deterministic Primitives

We define the syntax of a structure-preserving deterministic primitive (SPDP). An SPDP
consists of the tuple of the following algorithms: (Setup,KeyGen,Comp,Prove,Verify).
Besides the parameters generation (Setup), key generation (KeyGen), and main compu-
tation function (Comp), it includes proving (Prove) and verification (Verify) algorithms
that guarantee that the output value was computed correctly using Comp. We call it
provability property. It captures the verifiability notion of some deterministic primitives
such as verifiable random functions, unique signatures, and verifiable unpredictable
functions. Furthermore, for the deterministic primitives that do not have an inherent
verification property such as pseudorandom functions and deterministic encryption, it
covers their widely used combination with non-interactive proof systems. Indeed, one
of the main advantages of the structure-preserving primitives and one of the reasons to
construct those is their compatibility with the existing non-interactive zero-knowledge
proof systems.

Definition 2 (Provable Structure-Preserving Deterministic Primitive). Let G be a
bilinear group generator that takes as an input a security parameter 1λ and outputs
a description of a bilinear group Λ = (p,G1,G2,GT , e, G1, G2). Let SK,PK,X ,
Y,P be a secret key space, a public key space, a domain, a range, and a proof space,
respectively. Let F : SK × X → Y be a family of deterministic PT computable func-
tions. A primitive P = (Setup,KeyGen,Comp,Prove,Verify) that realizes F is called
a Structure-Preserving Deterministic Primitive with respect to Λ,SK,PK,X ,Y , and
P if:

– PK,X ,Y ,P ⊂ {G1,G2}∗. Namely, the public key space, the domain, range and
the proof space consist only of the source group elements.
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– CP
$← Setup(Λ) is a probabilistic algorithm that takes as input the group de-

scription Λ and outputs the common parameters CP . Without loss of generality we
assume Λ ∈ CP .

– (PK, SK)
$← KeyGen(CP ) is a probabilistic key generation algorithm that takes

as input the common parameters and outputs a public key PK ∈ PK and a secret
key SK ∈ SK. It is assumed without loss of generality that PK includes CP , and
SK includes PK .

– Y ← Comp(X,SK) is a deterministic algorithm that takes X ∈ X and a secret
key SK as input and outputs Y ∈ Y .

– Π
$← Prove(X,SK) is a probabilistic algorithm that takes X,SK as input and

outputs a proof Π ∈ P for relation Y = Comp(X,SK).
– 0/1 ← Verify(X,Y,Π, PK) is a deterministic verification algorithm that takes

(X ∈ X , Y ∈ Y , Π ∈ P , PK ∈ PK) as input and accepts or rejects the proof
that Y was computed correctly. The verification operations are restricted to the
group operations and evaluation of pairing product equations (PPE), which for
a bilinear group Λ and for group elements A1, A2, . . . ∈ G1, B1, B2, . . . ∈ G2

contained in X,Y,Π, PK and constants c11, c12, . . . ∈ Zp are equations of the
form: ∏

i

∏
j

e(Ai, Bj)
cij = 1.

The following properties are required from a provable structure-preserving deter-
ministic primitive:

1. Uniqueness: For all λ, Λ,CP
$← Setup(Λ) there are no values

(PK,X, Y, Y ′, Π,Π ′) such that Y �= Y ′ and Verify(X,Y,Π, PK) =
Verify(X,Y ′, Π ′, PK) = 1.

2. Provability: For all λ, Λ,CP
$← Setup(Λ) ; (PK, SK)

$← KeyGen(CP );

X ∈ X ; Y ← Comp(X,SK) ; Π
$← Prove(X,SK) it holds that

Verify(X,Y,Π, PK) = 1.

Now, we define two security properties. The unpredictability property states that no
PT adversary can predict the output value Y for a fresh input X after having called the
Comp and Prove oracles with inputs that are different from X . The pseudorandomness
property states that no PT adversary can distinguish the output value Y from a random
value.

Definition 3 (Unpredictability). A Structure-Preserving Deterministic Primitive P is
unpredictable if for all probabilistic PT algorithmsA

Pr

⎡⎢⎣ CP
$← Setup(Λ) ;

(PK, SK)
$← KeyGen(CP ) ;

(X,Y )← AComp(·,SK),Prove(·,SK)(PK)

∣∣∣∣∣∣∣ Y = Comp(X,SK) ∧
X /∈ S

⎤⎥⎦ ≤ negl(λ)

where S is the set of inputs queried to the oracles Comp and Prove.
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Definition 4 (Pseudorandomness). A Structure-Preserving Deterministic Primitive P
is pseudorandom if for all probabilistic PT distinguishers D = (D1,D2)

Pr

⎡⎢⎢⎢⎣
CP

$← Setup(Λ) ; (PK, SK)
$← KeyGen(CP ) ;

(X, st)← D1
Comp(·,SK),Prove(·,SK)(PK) ;

Y(0) ← FSK(X) ; Y(1)
$← Y ; b

$← {0, 1} ;
b′

$← D2
Comp(·,SK),Prove(·,SK)(Y(b), st)

∣∣∣∣∣∣∣∣∣
b = b′ ∧
X /∈ S

⎤⎥⎥⎥⎦ ≤ 1

2
+ negl(λ),

where S is the set of queries to the oracles Comp and Prove.

One can see that a provable SPDP having the unpredictability property is a structure-
preserving verifiable unpredictable function (VUF), and a provable SPDP with the pseu-
dorandomness property is a structure-preserving verifiable random function (VRF).

2.3 Inexistence of Structure-Preserving Verifiable Unpredictable Functions

Now, we prove that a structure-preserving VUF as defined in the previous section can-
not exist. Namely, we show that a provable SPDP cannot unpredictable according to
Definition 3 because of its uniqueness property.

Theorem 1. Let G be a bilinear group generator that takes as an input a security pa-
rameter 1λ and outputs a description of bilinear groups Λ = (p,G1,G2,GT , e, G1,
G2). Let P = (Setup,KeyGen,Comp,Prove,Verify) be a Provable Structure-
Preserving Deterministic Primitive as in Definition 2. Suppose that the discrete log-
arithm problem is hard in the groups G1,G2 of Λ and let KeyGen, Comp, and Prove
be restricted to the class of algebraic algorithms over Λ. Then P is not unpredictable
according to Definition 3.

Proof. For simplicity, we first consider a symmetric bilinear setting (Λ = Λsym), where
PK,X ,Y,P ⊂ {G}∗. Furthermore, we consider the input X to consist only of a single
group element. We then show that the same result holds for the input being a tuple of
group elements from G and also in the asymmetric setting, for both Type 2 pairings
(where an efficiently computable homomorphism from G2 to G1 exists and there is no
efficiently computable homomorphism from G1 to G2), and Type 3 pairings (where
there are no efficiently computable homomorphisms between G1 and G2) [33].

The outline of the proof is as follows. First, in Lemma 1 we show that because of
the provability and uniqueness properties of P as specified in Definition 2, the output of
Compmust have a particular format, namelyComp(X,SK) = (Ga1Xb1 , . . . , Ga�Xb�)
for (secret) constants a1, . . . , a�, b1, . . . , b� ∈ Zp. Then, in Lemma 2, we prove that if
the output of Comp has this format then the unpredictability property from Definition 3
does not hold for P. This means that a structure-preserving VUF cannot exist.

Lemma 1. Let P = (Setup,KeyGen,Comp,Prove,Verify) be a Structure-Preserving
Deterministic Primitive such that KeyGen,Comp, and Prove are algebraic algorithms
over Λ. If the discrete-logarithm problem is hard in the base group of Λ and P meets
the provability and uniqueness property as defined in Definition 2, then with an over-
whelming probability it holds that Comp(X,SK) = (Y1, . . . , Y�) = (Ga1Xb1 , . . . ,
Ga�Xb�) for constants a1, . . . , a�, b1, . . . , b� ∈ Zp.
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Proof. Fix (PK, SK)
$← KeyGen(CP ), where PK ⊂ {G}∗. Let x

$← Zp, X = Gx.
First, notice that because Comp, Prove and KeyGen are algebraic algorithms, their

outputs can be expressed as

Comp(X,SK) = Y = (Y1, . . . , Y�) with Yi = GaiXbi ,

Prove(X,SK) = Π = (Π1, . . . , Πn) with Πj = GujXvj , and

PK = (S1, . . . , Sm) with Sf = Gsf ,

where ai = H1,i(X,SK), bi = H2,i(X,SK), vj = H3,j(X,SK; r), uj = H4,j(X,
SK; r), and H�,m are arbitrary functions, and r is the randomness used by the Prove
algorithm. We note that ai, bi, uj , and vj can depend on X in an arbitrary manner, but,
as Comp and Prove are algebraic, one can extract ai, bi, uj , and vj as values from Zp

using the extractors of algorithms Comp and Prove.
Second, we recall that according to Definition 2 the verification algorithm consists

of pairing product equations (PPE). Let the k-th PPE used in the verification algorithm
be

m∏
f=1

e
(
Sf , X

ck,1,f

m∏
t=1

S
ck,2,f,t

t

�∏
i=1

Y
ck,3,f,i

i

q∏
j=1

Π
ck,4,f,j

j

) n∏
q=1

e
(
Πq,

n∏
j=1

Π
ck,5,q,j

j

)
·

· e
(
X,Xck,6

�∏
i=1

Y
ck,7,i

i

q∏
j=1

Π
ck,8,j

j

) �∏
w=1

e
(
Yw,

�∏
i=1

Y
ck,9,w,i

i

n∏
j=1

Π
ck,10,w,j

j

)
= 1.

The intuition behind the proof is the following. We note that Comp should perform
the computation without necessarily knowing the discrete logarithm of the input – oth-
erwise one can use Comp to solve the discrete logarithm for the input X . Now, one
can see that the relation in the exponents of the k-th PPE for the tuple (X,Y,Π, PK)
induce a polynomial Qk(x) in the discrete logarithm x = logG X . Basically, we can
re-write the k-th PPE as e(G,G)Qk(x) = 1. So, first, we prove that Qk(x) is a trivial
function, otherwise it is possible to solve the discrete logarithm problem for the given X
by solving Qk. Second, we show that if Qk is trivial then, by the uniqueness property,
ai and bi are constants. Let ai, bi, uj , and vj be the values computed for one specific
X : Yi = GaiXbi , Πj = GujXvj , and Verify(PK,X, Y,Π) = 1. Proposition 2
shows that these values can be reused to compute a correct Ỹ for any other X̃ ∈ X . So,
if Ỹi is computed as GaiX̃bi and Π̃j as Guj X̃vj , instead of using the normal computa-
tion procedures, then X̃, Ỹ , Π̃, PK is also accepted by the verification algorithm due
to the triviality of Qk. Then, from the uniqueness property, it follows that these ai, bi
are the only valid values, i.e., constants.

Now we provide the proof in detail. First, we prove that all polynomials Qk induced
by the verification PPEs, as described above, are constants with overwhelming proba-
bility.

Proposition 1. If the discrete logarithm problem in the base group of Λ is hard, then
Qk is a trivial function.
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Proof. The proof is done by constructing a reduction algorithm R that takes as an input
a group description Λsym = (p,G,GT , e, G) generated by a group generator G(1λ) and
a random element X ∈ G and outputs x ∈ Zp that satisfies X = Gx with a high
probability.

The reduction algorithm R works as follows. It first takes Λ as an input and sets
the common parameters CP = Λ. R then runs KeyGen(CP ), Comp(X,SK), and
Prove(X,SK) for the given X . It also runs the corresponding extractors for KeyGen,
Comp, and Prove. The extractor for KeyGen outputs representations sf that satisfy
Sf = Gsf with overwhelming probability. Similarly, the extractor for Comp outputs
representations ai and bi such that Yi = GaiXbi , and the extractor for Prove outputs
uj and vj such that Πj = GujXvj as concrete values in Zp.

This set of extracted exponents sf , ai, bi, uj , and vj induce a quadratic equation Qk

in the exponents of the k-th pairing product verification equation (PPE). Let us call the
variable of this exponent equation x̃, then we can write the k-th PPE as e(G,G)Qk(x̃) =
1. Given the representations, R can compute Qk(x̃) : d2x̃

2 + d1x̃ + d0 = 0 in Zp. The
condition that Qk(x̃) is non-trivial guarantees that d2 �= 0 or d1 �= 0. But then R can
solve Qk(x̃) for x̃ with standard algebra. Due to the provability property, x is one of
the possible solutions to x̃. So if the equation is non-trivial, then we can solve this
equation for x̃ and obtain the discrete logarithm of X : x̃ = x. Therefore, if the discrete
logarithm problem is hard in the base group of Λ, Qk must be trivial. ��

Now we show that if Qk is trivial then by the provability and uniqueness properties ai
and bi are constants.

Proposition 2. Fix (PK, SK,X) and let ai ← H1,i(X,SK), bi ← H2,i(X,SK),
uj ← H3,j(X,SK, r) and vj ← H4,j(X,SK, r). If all the relations in the exponents
of the PPEs are trivial, then, for any X̃ ∈ G, Ỹ = (Ỹ1, . . . , Ỹ�) with Ỹi = GaiX̃bi and
Π̃ = (Π̃1, . . . , Π̃n) with Π̃j = Guj X̃vj , it holds that (X̃, Ỹ , Π̃, PK) will be accepted
by the verification algorithm.

Proof. Consider fixed (PK, SK,X), any X̃ ∈ G, and Ỹ and Π̃ computed from X̃ as
specified in the proposition. Note that the verification algorithm only evaluates PPEs
and performs group memberships tests. First, all group memberships tests are clearly
successful for the above tuple (X̃, Ỹ , Π̃, PK). Since all polynomials Qk are trivial
and due to the way in which Ỹ and tildeΠ are defined, it holds that the result of
evaluating the k-th PPE will be the same for any tuple (X̃, Ỹ , Π̃, PK). Therefore,
Verify(X̃, Ỹ , Π̃, PK) should output the same value for every X̃ ∈ G. Now, consider-
ing the case where X̃ = X we have that Ỹ = (Ỹ1, . . . , Ỹ�) with Ỹi = GaiXbi and
Π̃ = (Π̃1, . . . , Π̃n) with Π̃j = GujXvj . But due to the correctness of the extrac-
tors of Comp and Prove, these Ỹ and Π̃ are exactly the outputs of Comp(X,SK) and
Prove(X,SK). Therefore, by the provability property, it holds that Verify(X, Ỹ , Π̃,
PK) = 1 for X̃ = X ; and thus, for any X̃ ∈ G, Verify(X̃, Ỹ , Π̃, PK) = 1 also. ��

Now, for an arbitrary X̃ ∈ G, consider the tuple (PK, SK, X̃, Ỹ , Π̃, a1, . . . , a�, b1,
. . . , b�) of values as defined above. Π̃ is valid proof for (X̃, Ỹ ) and thus the uniqueness
property guarantees that there is no other Ŷ �= Ỹ for which there is a valid proof that
Ŷ is the output corresponding to X̃ . But the provability property guarantees that for
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(X̃,Comp(X̃, SK)) there is a valid proof of correctness. Hence, for any X̃ ∈ G, it
holds that

Comp(X̃, SK) = Ỹ = (Ỹ1, . . . , Ỹ�) = (Ga1X̃b1 , . . . , Ga�X̃b�). ��

Lemma 2. Suppose that P = (Setup,KeyGen,Comp,Prove,Verify) is a provable
Structure-Preserving Deterministic Primitive such that Comp(X,SK) = (Y1, . . . , Y�)
= (Ga1Xb1 , . . . , Ga�Xb�) for some constants a1, . . . , a�, b1, . . . , b� ∈ Zp. Then P
does not satisfy the unpredictability requirement from Definition 3.

Proof. Pick X̂, X̃ and define X , such that X = X̂2/X̃ /∈ {X̂, X̃}. Then an adversary
that learns

Comp(X̂, SK) = (Ŷ1, . . . , Ŷ�) = (Ga1X̂b1 , . . . , Ga�X̂b�) and

Comp(X̃, SK) = (Ỹ1, . . . , Ỹ�) = (Ga1X̃b1 , . . . , Ga�X̃b�)

can compute the value of Comp(X,SK) as:

(
Ŷ 2
1

Ỹ1

, . . . ,
Ŷ 2
�

Ỹ�

)
=

(
G2a1X̂2b1

Ga1X̃b1
, . . . ,

G2a�X̂2b�

Ga�X̃b�

)
=

⎛⎝Ga1

(
X̂2

X̃

)b1

, . . . , Ga�

(
X̂2

X̃

)b�
⎞⎠ =

(
Ga1X

b1
, . . . , Ga�X

b�
)
=Comp(X,SK),

and therefore P is not unpredictable. ��

Now, we show that the same result holds for the input being a tuple of group elements
from G.

X Is a Tuple of Group Elements. Both Lemmas 1 and 2 can be easily modified to the
case where X consists of more than one (say t) group element as follows. The reduction
algorithm, after receiving the discrete logarithm challenge X1, will choose t−1 random
exponents x2, . . . , xt and fix Xi as Gxi for i = 2, . . . , t. Then the lemmas use the first
group element X1 in the place of the original X . Note that in the computation of the
Yj and Πj the exponents corresponding to X2, . . . , Xt can essentially be incorporated
into H1,j(X,SK) and H3,j(X,SK) since the prover knows x2, . . . , xt. If the quadratic
equations Qk(x̃1) in the exponents of the PPEs are not trivial, then the first element of
the input X can be used to solve the discrete logarithm problem; otherwise, supposing
that the uniqueness and provability properties hold, the elements of the output will be

of the form Ỹi = GaiX̃1
bi

(for the fixed values x2, . . . , xt) and this can be used to
break the unpredictability by asking two queries in which only the first elements of the
inputs are different (i.e., X̂1 and X̃1) and then learning the output corresponding to a
third input which has X1 = X̂2

1/X̃1 and the remaining elements equal to the ones of
the oracle queries.
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Asymmetric Bilinear Groups Setting. Lemmas 1 and 2 can be generalized to the asym-
metric setting as well. We consider both Type 2 and Type 3 pairings. The case where
there are efficiently computable homomorphisms in both directions can be reinterpreted
as a symmetric setting [33]. If X consists of t group elements, we choose t− 1 random
exponents x2, . . . , xt and fix Xi as Gxi

1 if the i-th input element is in group G1, or Gxi
2

if the i-th input element is in group G2. Then either some quadratic equation Qk(x̃1)
in the exponents of the PPEs is not trivial in x1 and this can be used to solve the dis-
crete logarithm problem in the base group in which X1 is contained, or one of the three
security properties (provability, uniqueness and unpredictability) does not hold.

In the case of Type 3 pairings, where there are no efficiently computable homomor-
phisms between the groups, each Yj (let Gc denote the group in which it is and Gc its
generator) is of the form

Yj = GH1,j(X,SK)
c X

H2,j(X,SK)
1

(where H2,j(X,SK) = 0 if X1 and Yj are not in the same group) and each Πj (that is

in the groupGc) is of the form Πj = G
H3,j(X,SK)
c X

H4,j(X,SK)
1 (where H4,j(X,SK) =

0 if X1 and Πj are not in the same group), in both cases with the exponents corre-
sponding to X2, . . . , Xt incorporated into H1,j(X,SK) and H3,j(X,SK). Then the
argument continues as in the previous cases.

In the case of Type 2 pairings, there is an efficiently computable homomorphism
φ : G2 → G1. Then an element Yj of the output (or an element Πj of the proof) that is
in the group G1 can depend on both group generators and on X1 or its mapping φ(X1)
into G1.

I.e., if X1 ∈ G1, Yj and Πj have the form:

Yj = G
H1,j(X,SK)
1 X

H2,j(X,SK)
1 φ(G2)

H5,j(X,SK);

Πj = G
H3,j(X,SK)
1 X

H4,j(X,SK)
1 · φ(G2)

H6,j(X,SK);

or if X1 ∈ G2, Yj and Πj have the form:

Yj = G
H1,j(X,SK)
1 φ(X1)

H2,j(X,SK)φ(G2)
H5,j(X,SK);

Πj = G
H3,j(X,SK)
1 φ(X1)

H4,j(X,SK)φ(G2)
H6,j(X,SK).

Then we should have H1,j(X,SK) = aj , H2,j(X,SK) = bj and H5,j(X,SK) =
zj for constants aj, bj , and zj if the provability and uniqueness hold. But in this case
the unpredictability does not hold for the same reasons as before.

Putting Lemmas 1 and 2 together completes the proof of Theorem 1. ��

3 Impossibility Results for “Non-strictly” Structure-Preserving
Primitives

One can see that the definition above only captures so-called “strictly” structure-
preserving primitives, i.e., PK and Y can contain only source group elements. Let us
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discuss the case of structure-preserving primitives that also have target group elements
in their public key space and/or their range. A target group element can be represented
by 2 source group elements using pairing randomization techniques [3] or even deter-
ministically, by fixing the “randomization” exponents. By this the provability property
can be preserved. Now, the question is: if the uniqueness property holds is the output
unpredictable according to the definition above? In this section, we show that our im-
possibility result can be extended to some cases of “non-strictly” structure-preserving
primitives, formally defined below:

Definition 5 (“Non-strictly” Structure-Preserving Deterministic Primitive). Let G
be a bilinear group generator that takes as an input a security parameter 1λ and out-
puts a description of bilinear groups Λ = (p,G1,G2,GT , e, G1, G2). Let SK,PK,
X ,Y,P be the secret key space, public key space, domain, range, and the proof space,
respectively. Let P = (Setup,KeyGen,Comp,Prove,Verify) be a Structure-Preserving
Deterministic Primitive as defined in Definition 2, except that the range of Comp and
KeyGen can contain also target group elements (Y,PK ⊂ {G1,G2,GT }∗). Then the
primitive P is called a “non-strictly” structure-preserving deterministic primitive.

First, we extend the notion of the algebraic algorithms from Definition 1 to operate
in all groups of Λ. We provide a formal definition as follows.

Definition 6 (Algebraic Algorithms over Λ). Let Alg be a probabilistic PT algorithm
that takes as an input a bilinear group description Λ generated by G, two tuples of
group elements (X1,1, . . . , X1,n) ∈ {G1}n and (X2,1, . . . , X2,m) ∈ {G2}m for some
n,m ∈ N, and some auxiliary string aux ∈ {0, 1}∗ and outputs group elements
Y ∈ G1,W ∈ G2, and Z ∈ GT and a string ext. The algorithm Alg is algebraic with
respect to G if there is a probabilistic PT extractor algorithm Ext that takes the same
input as Alg (including the random coins) and generates output (c = (c1, . . . , cn), d =

(d1, . . . , dm), f = (f1, . . . , fnm), ext) such that for all Λ
$← G(1λ), all polynomial

sized n,m, all (X1,1, . . . , X1,n) ∈ {G1}n, (X2,1, . . . , X2,m) ∈ {G2}m and all auxil-
iary strings aux the following inequality holds over the choice of the coins r and for
X = (X1,1, . . . , X1,n, X2,1, . . . , X2,m):

Pr

⎡⎢⎢⎣ (Y,W,Z, ext)← Alg(Λ∗, X, aux; r) ;
(c, d, f, ext)← Ext(Λ∗, X, aux; r)

∣∣∣∣∣∣∣∣
Y �=

∏n
i=1 X

ci
1,i∨

W �=
∏m

j=1 X
dj

2,j∨
Z �=

∏n
i=1

∏m
j=1

e(X1,i, X2,j)
f(j−1)n+i

⎤⎥⎥⎦ ≤ negl(λ),

where the probability is taken over the choice of the coins r.

Similarly to Definition 1, this definition can be extended to algorithms that output
multiple elements of the groups of Λ. Then one can use the extractors of KeyGen and
Comp to also extract representations for target group elements output by them.

Now, as we discussed in Section 2, pairing randomization techniques allow us to
preserve the provability property. Here we show that if the uniqueness property (ac-
cording to Definition 2) holds, then the unpredictability property does not hold in the
asymmetric setting and also in some cases for the symmetric setting.
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Theorem 2. Let P = (Setup,KeyGen,Comp,Prove,Verify) be a “non-strictly”
structure-preserving deterministic primitive as defined in Definition 5. Suppose that
the discrete logarithm problem is hard in the source groups of the asymmetric bilin-
ear groups Λ and let KeyGen, Comp, and Prove be restricted to the class of algebraic
algorithms over Λ. Then P is not unpredictable according to Definition 3.

Proof. The outline of the proof is the same as the one for Theorem 1. First, in Lemma
3 we show that for any P that is provable and has the uniqueness property as specified
in Definition 2, the output of Comp must have a particular format, namely Comp(X,

SK) = (Y1, . . . , Y�,W1, . . . ,Wn, Z1, . . . , Zm) with Yi = G
a1,i

1 X
b1,i
1 ,Wi = G

a2,i

2

X
b2,i
2 , and Zi = e(G1, G2)

a′
ie(X1, G2)

b′ie(G1, X2)
c′ie(X1, X2)

d′
i for X1, G1 ∈ G1,

and X2, G2 ∈ G2 and for constants aj,i, bj,i, a
′
i, b

′
i, c

′
i, d

′
i ∈ Zp. Then in Lemma 4 we

prove that if the output of Comp has this format then the unpredictability property from
Definition 3 does not hold for P, and thus the latter cannot exist.

We note that Lemma 3 holds for both symmetric and asymmetric settings. Lemma
4, however, holds only for the asymmetric setting, thus the result of this theorem holds
only for the asymmetric setting.

Lemma 3. If the discrete-logarithm problem is hard in the source groups of Λ and P
has the provability and the uniqueness properties (Definition 2), then with overwhelm-
ing probability it holds that Comp(X,SK) = (Y1, . . . , Y�,W1, . . . ,Wn, Z1, . . . , Zm)

with Yi = G
a1,i

1 X
b1,i
1 ,Wi = G

a2,i

2 X
b2,i
2 , and Zi = e(G1, G2)

a′
ie(X1,

G2)
b′ie(G1, X2)

c′i · e(X1, X2)
d′
i for X1, G1 ∈ G1;X2, G2 ∈ G2; and for constants

aj,i, bj,i, a
′
i, b

′
i, c

′
i, d

′
i ∈ Zp.

Proof. Similarly to Lemma 1, we start with the symmetric setting (G1 = G2 = G)
and a single group element as an input for simplicity. Fix (PK, SK)

$← KeyGen(CP ),
where a public key consists of both source and target group elements: PK ⊂ {G,GT}∗.

Let x
$← Zp, X = Gx.

First, since Comp is deterministic and KeyGen, Comp and Prove are all algebraic
algorithms over Λ, without loss of generality, their outputs can be expressed as

Comp(X,SK) = Y = (Y1, . . . , Y�, Z1, . . . , Z�′) with Yi = Ga1,iXb1,i ,

Zi = e(GaiXbi , GciXdi) = e(G,G)a
′
ie(X,G)b

′
ie(G,X)c

′
ie(X,X)d

′
i;

Prove(X,SK) = Π = (Π1, . . . , Πn) with Πj = GujXvj ,

PK = (S1, . . . Sm, T1, . . . Tm′) with Sf = Gsf , Tf ′ = Gtf′ ;

where ai = Ha,i(X,SK), bi = Hb,i(X,SK), a′i = Ha′,i(X,SK), b′i = Hb′,i(X,
SK), c′i = Hc′,i(X,SK), d′i = Hd′,i(X,SK), vj = Hv,j(X,SK, r), uj =
Hu,j(X,SK, r), and H∗,∗ are arbitrary functions. We note that ai, bi, a′i, b

′
i, c

′
i, d

′
i, uj, vj

can depend on X in an arbitrary manner, but since Comp and Prove are algebraic, one
can extract ai, bi, a′i, b

′
i, c

′
i, d

′
i, uj, and vj as values from Zp using the extractors of al-

gorithms KeyGen, Comp and Prove.
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Second, we recall that, according to Definition 2, the verification algorithm consists
of pairing product equations (PPE). Let the k-th PPE from the verification algorithm be

e
(
X,Xck,6

�∏
i=1

Y
ck,7,i

i

q∏
j=1

Π
ck,8,j

j

) �∏
w=1

e
(
Yw,

�∏
i=1

Y
ck,9,w,i

i

n∏
j=1

Π
ck,10,w,j

j

) �′∏
i=1

Z
ck,i

i ·

·
m∏

f=1

e
(
Sf , X

ck,1,f

m∏
t=1

S
ck,2,f,t
t

�∏
i=1

Y
ck,3,f,i

i

q∏
j=1

Π
ck,4,f,j

j

) n∏
q=1

e
(
Πq,

n∏
j=1

Π
ck,5,q,j

j

)
= Tk.

The proof works very similarly to the one of Lemma 1. One can see that the relation
in the exponents of the k-th PPE for the tuple (X,Y,Π, PK) induce a polynomial
Qk(x) in the discrete logarithm x = logG X . Basically, we can re-write the k-th PPE
as e(G,G)Qk(x) = 1. So, first, we prove that Qk(x) is a trivial function, otherwise it is
possible to solve the discrete logarithm problem for the given X by solving Qk. Second,
if Qk is trivial, then by the uniqueness property ai, bi, a

′
i, b

′
i, c

′
i, and d′i are constants. Let

ai, bi, a
′
i, b

′
i, c

′
i, d

′
i, uj , and vj be the correct values computed for one specific X . Then

we have that Yi = Ga1,iXb1,i , Zi = e(G,G)a
′
i ·e(X,G)b

′
ie(G,X)c

′
ie(X,X)d

′
i, Πj =

GujXvj , and Verify(PK,X, Y,Π) = 1. Proposition 2 shows that these values can
be reused to compute a correct Ỹ for any other X̃ ∈ X . So if Ỹi, Z̃i, and Π̃i are
computed as Ỹi = Ga1,iX̃b1,i , Z̃i = e(G,G)a

′
ie(X̃,G)b

′
ie(G, X̃)c

′
ie(X̃, X̃)d

′
i , and

Π̃j = Guj X̃vj , respectively, instead of using the normal computation procedures, then
(X̃, Ỹ , Π̃) are also accepted by the verification algorithm due to the triviality of Qk.
Then, from the uniqueness property, it follows that these ai, bi, a

′
i, b

′
i, c

′
i, and d′i are the

only valid values, i.e., constants.
Similarly to the proof of Lemma 1 the proof above can be extended to the asymmetric

setting and to the case when the input consists of a tuple of group elements. ��

Lemma 4. Let Λ be a description of asymmetric bilinear groups. Let P = (Setup,
KeyGen,Comp,Prove,Verify) be a “non-strictly” structure-preserving deterministic
primitive as defined in Definition 5. If P is provable and unique according to Definition
2 then P does not satisfy the unpredictability requirement of Definition 3.

Proof. We consider an input X = (X1, X2) consisting of a single element from the first
source group X1 ∈ G1 and a single element from the second source group X2 ∈ G2.
Applying Lemma 3, the output of Comp looks as follows, without loss of generality:

Comp(X,SK) = (Y1, . . . , Y�,W1, . . . ,W�′′ , Z1, . . . , Z�′) with Yi = G
a1,i

1 X
b1,i
1 ,

Wi = G
a2,i

2 X
b2,i
2 , and Zi = e(Gai

1 Xbi
1 , Gci

2 Xdi
2 ) =

e(G1, G2)
a′
ie(X1, G2)

b′ie(G1, X2)
c′ie(X1, X2)

d′
i .

Pick X̂1, X̃1 ∈ G1 and X2 ∈ G2, set X̂ = (X̂1, X2) and X̃ = (X̃1, X2) and define
X , such that X1 = X̂2

1/X̃1 /∈ {X̂1, X̃1}, and X2 = X2. As we proved in Lemma 2,
the unpredictability does not hold for source group elements. Now we show that with
this choice of the input the adversary can also compute the target group elements of the
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output. For simplicity, let us now assume the output to consist only of the target group
elements.

An adversary that learns Comp(X̂, SK) = (Ẑ1, . . . , Ẑ�′) with Ẑi = e(Gai
1 X̂bi

1 ,

Gci
2 X̂di

2 ) = e(G1, G2)
a′
ie(X̂1, G2)

b′ie(G1, X̂2)
c′ie(X̂1, X̂2)

d′
i and Comp(X̃, SK) =

(Z̃1, . . . , Z̃�′)with Z̃i = e(Gai
1 X̃bi

1 , Gci
2 X̃di

2 ) = e(G1, G2)
a′
ie(X̃1, G2)

b′ie(G1, X̃2)
c′i

e(X̃1, X̃2)
d′
i can already compute the value of Comp(X,SK) = (Z1, . . . , Z�′) as(

Ẑ2
1

Z̃1
, . . . ,

Ẑ2
�′

Z̃�′

)
, because we have that

Ẑ2
i

Z̃i

=
e(G1, G2)

2a′
ie(X̂1, G2)

2b′ie(G1, X̂2)
2c′ie(X̂1, X̂2)

2d′
i

e(G1, G2)a
′
ie(X̃1, G2)b

′
ie(G1, X̃2)c

′
ie(X̃1, X̃2)d

′
i

=

e(G1, G2)
a′
i · e

(
X̂2

1

X̃
,G2

)b′1

· e
(
G1, X2

)c′1 · e(X̂2
1

X̃1

, X2

)d′
1

= Zi.

Therefore, P is not unpredictable for the target group elements either. ��

One can see that for the symmetric setting the result above holds only if there is no
element e(X1, X2)

d′
i in the output. I.e., since X1 = X2 = X , when X appears on both

sides of the pairing, the relation will not be linear – X2 will induce the power of 4 in
the output: e(X,X)4.

Corollary 1. Let P = (Setup,KeyGen,Comp,Prove,Verify) be “non-strictly” struc-
ture-preserving deterministic primitive as defined in Definition 5. Suppose that the dis-
crete logarithm problem is hard in the source groups of the symmetric bilinear groups
Λsym and let KeyGen, Comp, and Prove be restricted to the class of algebraic algo-
rithms over Λ. If the output of Comp algorithm is not of the form e(X,X)d

′
i , then P is

not unpredictable according to Definition 3.

Finally, allowing just a public key to contain target group elements would also induce
the impossibility result in both symmetric and asymmetric settings (see the following
corollary).

Corollary 2. Let G be a bilinear group generator that takes as an input a security
parameter 1λ and outputs a description of bilinear groups Λ = (p,G1,G2,GT , e, G1,
G2). Let SK,PK,X ,Y, and P be a secret key space, public key space, domain, range
and a proof space, respectively. Let P = (Setup,KeyGen,Comp,Prove,Verify) be a
Structure-Preserving Deterministic Primitive as defined in Definition 2, except that the
public key can contain also target group elements (PK ∈ {G1,G2,GT }∗). Then P is
not unpredictable according to Definition 3.

One can see that if Comp does not contain target group elements, but the public key
does, then the result follows from Lemmas 1 and 2 with a slight modification of Lemma
1. Namely, in this case KeyGen is algebraic according to Definition 6 and one can use
its extractor to compute the exponents for both source and target group elements of the
public key.



728 M. Abe et al.

4 Impossibility Results for Structure-Preserving PRF, VRF and
Unique Signatures

In this section, we show how the definition of an abstract provable structure-preserving
deterministic primitive (SPDP) given in Section 2 relates to the definitions of structure-
preserving verifiable random function (VRF), and unique signatures (USig). We show
that the security properties of an SPDP are necessary conditions for any VRF or USig
to be secure.1 We also discuss how the SPDP definition relates to structure-preserving
PRF.

We recall the standard definitions of PRF and USig with a slight adaptation to our
notation in Appendix A. Here we only explain how the requirements for structure-
preserving variants of these primitives are captured by our SPDP definition.

4.1 Impossibility of Structure-Preserving Unique Signatures

A unique signature scheme consists of the setup Setup, key generationKeyGen, signing
Sign and verification Verify algorithms as formally defined below:

Definition 7 (Unique Signatures [45]). A function family σ : SK×X→Y is an unique
signature scheme (USig) if there exists probabilistic PT algorithms Setup and KeyGen,
and deterministic PT algorithms Sign and Verify (in case Verify is probabilistic, the
adjustment to the definition is straightforward) such that:

– CP
$← Setup(Λ) is a common parameter generation algorithm that takes as input

a group description Λ and outputs the common parameters CP .
– (PK, SK)

$← KeyGen(CP ) is a key generation algorithm that takes as input
the common parameters CP and outputs a public key PK and the corresponding
secret key SK.

– Y ← Sign(X,SK) is a deterministic algorithm that takes as input X ∈ X ,SK ∈
SK and outputs the signature Y = σSK(X) ∈ Y .

– 0/1 ← Verify(X,Y, PK) is a verification algorithm that takes as input a public
key PK, X ∈ X , Y ∈ Y and verifies whether Y = σSK(X).

The following properties are required from an unique signature scheme:

1. Uniqueness of the signature: There are no values (PK,X, Y, Y ′) such that Y �=
Y ′ and Verify(X,Y, PK) = Verify(X,Y ′, PK) = 1.

2. Security: For all probabilistic PT adversaries A:

Pr

⎡⎢⎣ CP
$← Setup(Λ) ;

(PK, SK)
$← KeyGen(CP ) ;

(X,Y )
$← ASign(·,SK)(PK)

∣∣∣∣∣∣∣Verify(X,Y, PK)=1 ∧X /∈ S

⎤⎥⎦ ≤ negl(λ),

where S is the set of queries to the oracle Sign.
1 Note that the requirements are necessary conditions, but maybe not sufficient conditions, e.g.,

in the case of VRF pseudorandomness is a stronger requirement than unpredictability.
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Goldwasser and Ostrovsky [35] proposed a relaxed definition for USig. Namely, they
require a proof that the signature is correct as an additional input to the verification algo-
rithm. This proof is also an output of the signing algorithm together with the signature,
but it might not be unique. This definition is sufficient to construct a VRF from USig
[46].

Applying the definition of an SPDP to the context of unique signatures, one can see
that Comp is the signing algorithm, and that the Prove algorithm does not exist, which
is equivalent to a Prove algorithm that always returns an empty string. From the security
point of view, the uniqueness of the unique signatures according to Definition 7 is the
same as in Definition 2. Now we see the match for the unpredictability property.

One can see that in the security game from Definition 7 an adversary can output a
forgery Y that passes the verification equation, but it can be computed in an arbitrary
manner. However, in the unpredictability game from Definition 3 a forgery must be
computed using the Comp algorithm. But because of the provability and uniqueness
properties the former condition (Verify(X,Y, PK) = 1) actually implies the latter one
(Y = Comp(X,SK)). Therefore, the unpredictability property from Definition 3 is
equivalent to the Security property of USig described above. Thus, the following corol-
lary holds:

Corollary 3. Assuming the hardness of the discrete logarithm problem in the base
groups of Λ, there is no unique signature that is algebraic and secure.

4.2 Impossibility of Structure-Preserving Verifiable Random Functions

The syntax of a verifiable random function (VRF) follows our generic definition of an
SPDP: VRF consists of Setup,KeyGen,Comp,Prove, andVerify algorithms. Structure-
preserving VRF has the same restriction on the public key space, domain, range and
proof space as an SPDP, namely, they consist only of source group elements. VRF is
also provable and unique, but instead of unpredictability, VRF has a pseudorandomness
property (see Definition 4).

Lemma 5. If a verifiable random function is pseudorandom according to Definition 4
then its translation to a generic deterministic primitive satisfies unpredictability as de-
fined in Definition 3.

Proof. The distinguisher D = (D1,D2) of the pseudorandomness from Definition 4
can use the adversary A that breaks the unpredictability according to Definition 3. D1

executes a copy of A internally and forwards the oracle queries/answers appropriately.
IfA produces an output pair (X,Y ) where Y is an output value for a fresh input X that
was not queried to the oracle before, then D1 uses X as his output and forwards Y to
D2 who uses Y to distinguish if the returned challenge Y(b) is a random value or the
output of the real function. If no such pair (X,Y ) is produced by A, then D makes a
random guess. ��
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Given the above, the impossibility of an SPDP that provides unpredictability implies
the impossibility of a VRF that provides pseudorandomness:

Corollary 4. Assuming the hardness of the discrete logarithm problem in the base
groups of Λ, there is no verifiable random function that is algebraic and secure.

One can see that this result also rules out the construction of a structure-preserving
simulatable VRF (sVRF) [26], which is a special case of a VRF with the public parame-
ters (see Definition 1 from [26]) and is a key building block in some e-cash
schemes [7].

4.3 Impossibility of Structure-Preserving Pseudorandom Functions

The standard definition of a PRF (Definition 11 in Appendix A) does not feature Prove
and Verify algorithms. However, the reason one wants a PRF to be structure-preserving
is that one can use GS-proofs so that one party can prove to another party that the Comp
algorithm was followed as prescribed. As we mentioned before, one of the examples of
using PRF coupled with non-interactive zero-knowledge (NIZK) proofs is in e-cash
systems [17,7].

This approach essentially adds Prove and Verify algorithms to the definition of a
PRF. We formalize it later in this section. First, note that adding a proof that a PRF was
computed correctly does not result in a VRF as in the latter case there is a public key
and one wants to verify that the VRF was really computed with a specific public key.
Whereas here one is interested in proving that the PRF was correctly computed w.r.t.
any secret key, which is a weaker requirement. We are thus interested in the question
of whether it is possible to construct a PRF for which one can prove the correctness of
computation with GS-proofs. Or, more generally, with NIZK proofs that use only PPE
for verification. With this in mind, we define a variant of Definition 2 and Definition 4,
which are extensions of PRF definitions with Prove and Verify algorithms and further
have Setup generate parameters for NIZK proofs. Note that one can of course always
trivially prove that a PRF was computed correctly without using NIZK proofs by just
revealing the secret key (as is for instance done in the Hohenberger-Waters signature
scheme [39]). Formally, this proof method follows the definition we give, nevertheless,
it is easy to see that a straightforward adaptation of our impossibility proof rules out the
existence of PRFs (or even functions which instead of being pseudorandom are only
unpredictable) that are algebraic and secure according to the suitable modification of
Definition 2 and Definition 4 to allow the verification algorithm to use SK.

Non-interactive Zero-Knowledge Proof System. First, we define a Non-Interactive Zero-
Know-ledge Proof System. Let R be an efficiently computable binary relation. For pairs
(W,S) ∈ R we call S the statement and W the witness. Let L be the language consist-
ing of statements in R.

Definition 8 (Non-Interactive Zero-Knowledge Proof System (NIZK)). Let G be a
bilinear group generator that takes as an input a security parameter 1λ and outputs
a description of a bilinear group Λ = (p,G1,G2,GT , e, G1, G2). The non-interactive
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zero-knowledge proof system for a languageL consists of the following algorithms and
protocols:

– CP
$← Setupnizk(Λ): On input Λ, it outputs the common parameters (CP ) for the

proof system.
– Π

$← Provenizk(CP ,W, S): On input the common parameters CP , a statement S,
and a witness W , it generates a zero-knowledge proof that the witness W satisfies
the statement S.

– 0/1 ← Verifynizk(CP,Π, S): On input a statement S and a proof Π , it outputs 1
if Π is valid, and 0 otherwise.

In this work we refer to Groth-Sahai proofs [36] as the instantiation of the NIZK
proof system.

Theorem 3. [36] The Groth-Sahai ZK proof system is a non-interactive zero-knowledge
(NIZK) proof system with perfect correctness, perfect soundness and composable zero-
know-ledge for satisfiability of a set of equations over a bilinear group where the K-
linear assumption holds.

We refer to [36] for detailed security definitions and proofs. We also note that the re-
sults from this section and Section 5 hold for non-interactive witness-indistinguishable
proofs as well that can be also instantiated with NIWI proofs by Groth and Sahai ([36]).

Combining Structure-Preserving PRF with a NIZK Proof System. Below we provide a
formal definition for the construction of a PRF coupled with NIZK proofs, where veri-
fication operations are restricted to checking group membership and evaluating pairing
product equations. Note that Provenizk and Verifynizk algorithms take NIZK parameters
and a proof statement as an input as well. Since in our case the statement is always a
correctness of Comp algorithm, for consistency of notation with Definition 2 we omit
the statement input.

In order to distinguish functions and variables with the same name among different
primitives, we may give subscripts that represents the primitive in obvious manner. For
instance Compprf denote Comp of the PRF in mind.

Definition 9 (Structure-Preserving Pseudorandom Function with a Proof of Com-
putation Correctness). Let G be a bilinear group generator that takes as an input a
security parameter 1λ and outputs a description of a bilinear group Λ = (p,G1,G2,
GT , e, G1, G2). A structure-preserving pseudorandom function with a proof of compu-
tation correctness with respect to Λ is a set of the following algorithms:

– CP
$← Setup(Λ): Run CP prf

$← Setupprf(Λ) and CP nizk
$← Setupnizk(Λ), and

return CP = (CP prf, CP nizk).

– (PK, SK)
$← KeyGen(CP ): Run SK

$← KeyGenprf(CP prf). Set an empty string
to PK . Return (PK, SK).

– Y ← Comp(X,SK): Run Y ← Compprf(X,SK). Return Y .

– Π
$← Prove(X,SK) : Run Y ← Compprf(X,SK) and Π

$← Provenizk(CP nizk,
SK, (X,Y )). (We consider Provenizk for the relation R = {(SK, (X,Y )) : Y =
FSK(X)}, where (X,Y ) is the proof statement and SK is the witness.) Return Π .

– 0/1← Verify(X,Y,Π) : Run b← Verifynizk(CP nizk, Π, (X,Y )) and return b.
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We now show that the above primitive provides provability, uniqueness and pseudo-
randomness based on the security of underlying PRF and NIZK.

Lemma 6. The above pseudorandom function with a proof of computation correctness
is a provable structure-preserving deterministic primitive defined in Definition 2 and
provides unpredictability according to Definition 3 if the underlying PRF is pseudoran-
dom and NIZK is correct and sound.

Proof. Syntactical consistency can be verified by inspection. We focus on the security
properties. First of all, provability holds from correctness of NIZK as Verify is iden-
tical to Verifynizk. Uniqueness holds due to the soundness of NIZK and the fact that a
PRF is deterministic. Namely, if (SK,X, Y ) satisfies the relation defined by the PRF,
(SK,X, Y ′) for Y �= Y ′ does not satisfy the relation since a PRF is deterministic.
Thus, by the soundness of NIZK, there is no Π ′ that is accepted by the verification al-
gorithm for (SK,X, Y ′). The pseudorandomness holds due to the definition of a PRF
(see Definition 11). The unpredictability follows from it due to the same reason as stated
in Lemma 5. ��

We observe, that similarly to a pair VRF-VUF, where the pseudorandomness implies
unpredictability, one can follow Lemma 6 and show that any unpredictable function can
be coupled with NIZK to get SPDP with required properties.

Corollary 5. Assuming the hardness of the discrete logarithm problem in the base
groups of Λ, there is no triple of pseudorandom function (or even functions that are
only unpredictable), and prove and verification algorithms that is algebraic and satis-
fies Definition 9.

The Corollary follows by a trivial adaptation of the proof in the context of Defi-
nition 9. As discussed in Section 4.2, if the adversary can break the unpredictability
property and compute the output value himself, then he can obviously break the pseu-
dorandomness property.

5 Impossibility Results for Structure-Preserving Deterministic
Encryption

Since deterministic encryption (DE) does not fit into Definition 2 both from the syntax
and security perspective, we discuss it separately here. DE consists of the following al-
gorithms: Setup,KeyGen,Enc,Dec (see Definition 12 from Appendix A). A structure-
preserving encryption scheme has public keys, messages, and ciphertexts that consist
entirely of source group elements. Moreover, the encryption and decryption algorithms
perform only group and bilinear map operations.

Following Definition 2, one can view Comp as the encryption algorithm Enc from
Definition 12. If we add Prove and Verify algorithms, then Prove will output a proof
of the correct computation of the encryption algorithm. Below we provide a formal
definition for the DE with this in mind, similarly as we did for the PRF in Section
4.3. We note that even though we assume the instantiation of Prove and Verify with
GS-proofs our result holds in general for proofs that require only PPE for verification.
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Definition 10 (Structure-Preserving Deterministic Encryption with a Proof of En-
cryption Correctness). Let G be a bilinear group generator that takes as an input a
security parameter 1λ and outputs a description of a bilinear group Λ = (p,G1,G2,
GT , e, G1, G2). Structure-Preserving Deterministic Encryption with a NIZK proof of
encryption correctness with respect to Λ is a tuple of the following PT algorithms:

– CP
$← Setup(Λ): Run CP de

$← Setupde(Λ) and CP nizk
$← Setupnizk(Λ), and

return CP = (CP de, CP nizk).
– (PK, SK)

$← KeyGen(CP ): Run (SK,PK)
$← KeyGende(CP de).

Return (PK, SK).
– Y ← Comp(X,SK): Compute PK from SK. Run Yde ← Enc(X,PK). Return

Y = (Yde, PK).
– Π

$← Prove(X,SK) : Compute PK from SK, run Yde ← Enc(X,PK) and

Π
$← Provenizk(CP nizk, X, (Y, PK)).

(We considerProvenizk for the relation R={(X, (Yde, PK)) :Yde = Enc(X,PK)},
where (Yde, PK) is the proof statement and X is the witness.) Return Π .

– 0/1← Verify(X,Y,Π) : Run b← Verifynizk(CP nizk, Π, (Y, PK)) and return b.

Note that X is not really referred in Verify but it is anyway consistent to the syntax
of an SPDP.

We would like to point out that since Comp, as an encryption algorithm, takes a
public key as an input, no unpredictability-style property can hold in this case. Thus,
we cannot require both uniqueness and unpredictability properties (see Definitions 2
and 3) to hold for the primitive from the Definition 10 to be secure. Nevertheless, we
show that the latter primitive, which is provable and unique, cannot exist.

First, we show that two security properties, provability and uniqueness, of an SPDP
hold for the above DE coupled with (GS) NIZK-proofs. Formally:

Lemma 7. The above deterministic encryption scheme with a proof of encryption cor-
rectness has the provability and uniqueness properties defined in Definition 2, if NIZK
is correct and sound.

The proof of the above lemma is the same as that for Lemma 6 with obvious modifi-
cation and thus omitted.

Theorem 4. Assuming the hardness of the discrete logarithm problem in the base
groups of Λ, there is no algebraic structure-preserving deterministic encryption scheme,
which is secure and where encryption can be verified by an algorithm, which takes
X,Y,Π, PK as input and only performs group operations and PPE evaluations.

Proof. As we mentioned before, by the definition of DE and the correctness of de-
cryption, the uniqueness property holds if we consider Enc to be the Comp algorithm.
According to Lemma 1 the ciphertext that encrypts a group element X looks as fol-
lows: Comp(X,PK) = Y = (Ga1Xb1 , . . . , Ga�Xb�), where a1, . . . , a�, b1, . . . , b�
are constants in Zp, and G is a group generator. To encrypt X , it is obvious that Gai

and bi, i = 1, . . . , � should be efficiently derivable from the public key. This means that
the ciphertext can be decrypted using the public key. ��
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6 Conclusion

In this paper we proved that it is impossible to construct algebraic structure-preserving
VRF, VUF and USig. It is also shown that PRF and DE coupled with non-interactive
proof system cannot be structure-preserving, either. We further extend our results to
“non-strictly” structure preserving primitives, which are allowed to have target group
elements in their public keys and ranges. Regarding the latter, we show that such prim-
itives cannot be constructed for asymmetric bilinear maps and that the possible con-
structions for symmetric maps are severely restricted on the operation they can use.

Although our results are restricted to the class of algebraic algorithms, all known
constructions of structure-preserving primitives consist of algebraic algorithms. Find-
ing constructions of secure structure-preserving algorithms that allow non-algebraic
operations but whose correctness of computation still can be verified using a system of
PPE is an interesting problem. We also would like to point out that it might be possible
to extend our impossibility result to the quasi-deterministic case where the uniqueness
condition can be relaxed to have at most poly(λ) output values corresponding to each
input value.

Finally, we note that the deterministic primitives might exist in a restricted form,
where only one query to the oracle is allowed. Namely, one-time deterministic primi-
tives might still be possible in the world of structure-preserving cryptography.
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A Definitions of PRF and DE

In this section we recall the definitions of the cryptographic primitives that we are con-
cerned with, i.e., pseudorandom functions and deterministic encryption. To make the
notation consistent throughout the paper we slightly adjust the original definitions of
the primitives described in this section. Also, for all primitives we assume that a group
description is a public parameter and is given as input to a setup algorithm.

For all definitions we consider the following. Let G be a bilinear group generator
that takes as input a security parameter 1λ and outputs a description of bilinear groups
Λ = (p,G1,G2,GT , e, G1, G2). Let SK,X ,Y,P be the secret key space, public key
space, domain, range and a proof space, respectively.

A.1 Pseudorandom Functions

Pseudorandom functions (PRF) were introduced in [34]. Below we give an adaptation
of the original definition to the notation used in this paper.

Definition 11 (Pseudorandom Function). A function family F : SK×X→Y is called
a pseudorandom function (PRF) if there are probabilistic PT algorithms Setup and
KeyGen and a deterministic PT algorithm Comp such that:

– CP
$← Setup(Λ) is an algorithm that takes as input a group description Λ and

outputs the common parameters CP .
– SK

$← KeyGen(CP ) is an algorithm that takes as input the common parameters
CP and outputs a (secret) key SK ∈ SK .

– Y ← Comp(X,SK) is a deterministic algorithm that takes as input X ∈ X and
SK ∈ SK and outputs the function value Y = FSK(X) ∈ Y .

The following property is required from a PRF:
Pseudorandomness: For all probabilistic PT distinguishers D = (D1,D2) we have

Pr

⎡⎢⎢⎢⎣
CP

$← Setup(Λ) ; SK
$← KeyGen(CP ) ;

(X, st)← D1
Comp(·,SK)(CP ) ;

Y(0) ← FSK(X) ; Y(1)
$← Y ; b

$← {0, 1} ;
b′

$← D2
Comp(·,SK)(Y(b), st)

∣∣∣∣∣∣∣∣∣ b = b′ ∧ X /∈ S

⎤⎥⎥⎥⎦ ≤ 1

2
+ negl(λ),

where S is the set of queries to the oracle Comp.
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A.2 Deterministic Encryption

Deterministic encryption was introduced by was introduced by Bellare, Boldyreva, and
ONeill in [8]. Here we provide a slightly adapted definition of DE.

Definition 12 (Deterministic Encryption). A function family F : PK × X→Y is
called a structure-preserving deterministic encryption (SPDE) if there are probabilistic
PT algorithms Setup and KeyGen, and a deterministic PT algorithms Enc amd Dec
such that:

– CP
$← Setup(Λ) is a probabilistic algorithm that takes as input the security pa-

rameter and outputs the common parameters CP that consists of the group de-
scription Λ = (p,G1,G2,GT , e, G1, G2) generated by G(1λ) and possibly also
constants in Zp.

– (PK, SK)
$← KeyGen(CP ) is a probabilistic key generation algorithm that takes

as input the common parameters and outputs a public key PK and a secret key
SK. It is assumed without loss of generality that SK includes PK.

– Y ← Enc(X,PK) is a deterministic algorithm that takes as input X ∈ X and a
public key PK and outputs a ciphertext Y ∈ Y .

– X ← Dec(Y, SK) is a deterministic algorithm that takes as input a ciphertext
Y ∈ Y and a secret key SK and outputs a plaintext X ∈ X .

Intuitively, the security notion for deterministic encryption, called a PRIV game,
that was introduced in [8], states that it should be hard to guess any public key inde-
pendent information of a list of messages given their encryptions, as long as the list has
component-wise high min-entropy. Or, in other words, the adversary should not be able
to distinguish ciphertexts that correspond to messages that come from two message dis-
tributions with high min-entropy. We refer the reader to [8] for the formal definition of
the game.
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