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Abstract. The molecular distance geometry problem (MDGP) is a
fundamental problem in determining molecular structures from the
NMR data. We present a heuristic algorithm, the BetaMDGP, which
outperforms existing algorithms for solving the MDGP. The BetaMDGP
algorithm is based on the beta-complex, which is a geometric construct
extracted from the quasi-triangulation derived from the Voronoi diagram
of atoms. Starting with an initial tetrahedron defined by the centers
of four closely located atoms, the BetaMDGP determines a molecular
structure by adding one shell of atoms around the currently determined
substructure using the beta-complex. The proposed algorithm has been
entirely implemented and tested with atomic arrangements stored in an
NMR format created from PDB files. Experimental results are also pro-
vided to show the powerful capability of the proposed algorithm.

Keywords: Protein structure determination, Molecular Distance Ge-
ometry Problem, Voronoi Diagram, Quasi-triangulation, Beta-complex.

1 Introduction

One of the key challenges for understanding a protein function is understanding
its structure as it is the determinant of molecular function [1]. There are two
main experimental methods to determine protein structures: NMR spectroscopy
[2] and X-ray crystallography [3]. Given an NMR spectroscopy file that defines
the interatomic distances for some pairs of atoms, usually between the hydrogen
atoms in a molecule, determination of the optimal assignment of coordinates that
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satisfies the inter-distance constraints is required. The determinant of molecular
structure from NMR spectroscopy is studied by solving the distance geometry
problem (DGP), which is a well-known mathematical problem. The DGP is to
find an embedding of a weighted undirected graph G = (V,E, d) in an arbitrary
dimensional space [4–6]. Each vertex v ∈ V corresponds to a point xv in space,
and there is an edge between the two vertices if and only if their relative distance
is known. The length d of an edge is its weight. Formally, the DGP is the problem
of finding the location of x such that u, v ∈ V , ∀(u, v) ∈ E, and ||xu − xv || =
du,v, where du,v is the distance between u and v. Hence, the DGP is called a
constraint satisfaction problem from a mathematical point of view because a set
of coordinates must be found to satisfy the constraints. The DGP can be solved
in polynomial time if the complete set of the exact distances is available [7] but
is NP-hard for a general sparse set of distances even in three-dimensional space
[8]. In other words, it is very difficult to correctly solve for the general setting of
NMR spectroscopy in practice because it contains only a subset of the complete
graph between hydrogen atoms.

We are interested in a particular class of the DGP called the molecular dis-
tance geometry problem (MDGP) arising in biology where the vertices of G
represent the atom centers of a molecule. The aim of the MDGP is to identify
the three-dimensional molecular conformation in three dimensional space using
the Euclidean distance. The MDGP is of crucial importance for biomedical prob-
lems because a molecular function is primarily determined by its structure. While
X-ray crystallography produces the absolute coordinates of the atom locations,
the NMR produces the relative distance information among the atoms, usually
within 5 Å [2]. Hence, the MDGP is the core problem for NMR technology.

Let xi be the coordinate of the atom i and D the given set of the distance di,j
between the atom i and the atom j, i �= j. The problem is to find xi, i = 1, ..., n
such that

||xi − xj || = di,j , ∀di,j ∈ D. (1)

The most common approach to the MDGP is to formulate the problem as a
continuous optimization problem [9–13].

Min.
∑

(i,j)∈D

(||xi − xj ||2 − d2i,j)
2 (2)

In real NMR files, the distances are given with the lower and the upper bounds
[14]. The MDGP with the lower and the upper bounds is to find a set of positions
x1, ..., xn in the three-dimensional space such that

li,j ≤ ||xi − xj || ≤ ui,j , ∀di,j ∈ D (3)

where lij and uij are the lower and the upper bounds on the distances, re-
spectively.

The standard formulation by Crippen and Havel [5] is to solve the following
minimization problem:

Min.
∑

(i,j)∈D

pi,j(x) (4)
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pi,j(x) = Min2
{ ||xi − xj ||2 − l2i,j

l2i,j
, 0
}
+Max2

{ ||xi − xj ||2 − u2
i,j

u2
i,j

, 0
}

(5)

Crippen and Havel applied the MDGP to protein modeling [5, 15, 7]. The
MDGP has been studied by many groups: the embedding algorithm approach
by Crippen and Havel [5, 15], the graph reduction approach by Hendrickson
[16, 17], the approaches based on the global optimization method by Moré and
Wu [9, 10] and An and Tao [11, 12], and the geometric build-up algorithm by
Dong, Wu, Sit, and Yuan [18–21]. In particular, the embedding algorithm by
Crippen and Havel has been adopted in NMR modeling through programs such
as CNS, XPLOR, and XPLOR-NIH [22, 23]. Under certain assumptions, the
problem can be formulated as a combinatorial optimization problem, called the
discretizable MDGP (DMDGP) [24]. While the NP-hardness of the problem is
unavoidable [24], the Branch and Prune (BP) algorithm solves the DMDGP ef-
fectively and efficiently for proteins [25]. Previous approaches usually become
numerically unstable as solution process progresses because the number of con-
straints to determine the coordinate of a new atom gets larger.

In this regard, we propose a heuristic algorithm, called the BetaMDGP,
to maintain a constant number of constraints to determine the coordinate
of a new atom. The BetaMDGP algorithm to the MDGP uses the beta-
complex, which is a derivative geometric construct from the Voronoi diagram of
atoms and effectively provides the proximity information among atoms [26–28].
Using the beta-complex, the BetaMDGP reduces the number of distance con-
straints required for determining new atom coordinate and thus finds the so-
lution very efficiently. While the previous approaches are numerically unstable,
the BetaMDGP provides the more stable solution compared to the previous al-
gorithms because the BetaMDGP keeps the number of constraints constantly
during the solution process. The BetaMDGP consists of two parts. First, we
determine the coordinates for the centers of four nearby atoms to define the
tetrahedral seed structure to start the process. Second, the BetaMDGP adds
other atoms around the boundary of this determined substructure (at the begin-
ning, it is the seed structure) using the beta-complex. The molecular structure
is determined by sufficiently repeating this second procedure. It turns out that
the proposed algorithm, in its current form, determines the protein structures
very effectively and efficiently compared to existing algorithms. All figures of
the molecular structures are created by the BetaMol program developed by the
VDRC (http://voronoi.hanyang.ac.kr) that is free to download [29].

2 Methods

The proposed algorithm is based on three geometric constructs: the Voronoi di-
agram of atoms, the quasi-triangulation, and the beta-complex. Consider the set
P = {p1, p2, . . . , pn} where pi ∈ P is a point in three-dimensional space. The
ordinary Voronoi diagram VD of P is the tessellation of the space with a set
of n Voronoi cells (V-cells) where the V-cell VC(pi) is the set of the locations
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that are closer to pi than to the others. Consider the set A = {a1, a2, . . . , an}
where ai = (pi, ri) ∈ A is a spherical atom with the center pi and radius ri in
three-dimensional space. The Voronoi diagram VD of A is the tessellation of the
space with a set of n V-cells where the VC(ai) is the set of the locations that are
closer to the boundary of ai than to the boundary of any other atom. VD is more
formally called the additively weighted Voronoi diagram in computational geom-
etry and is different from the ordinary Voronoi diagram of points VD. VD can
be represented as VD = (V V , EV , FV , CV) where the Voronoi vertex (V-vertex)
vV ∈ V V corresponds to the center of the empty sphere tangent to the bound-
aries of four nearby atoms; the Voronoi edge (V-edge) eV ∈ EV corresponds to
the locus of the center of the empty sphere tangent to the boundaries of three
nearby atoms; the Voronoi face (V-face) fV ∈ FV corresponds to the locus of
the center of the empty sphere tangent to the boundaries of two nearby atoms;
the V-cell cV ∈ CV corresponds to an atom. The topology among the V-vertices,
V-edges, V-faces, and V-cells in VD are usually maintained in a radial-edge data
structure [30]. VD can be computed in O(n3) time for general spherical balls in
the worst case but takes O(n) time for molecular atoms on average. See [31] for
VD and see [32] for the Voronoi diagram in general.

Applications of the Voronoi diagram use the traversal on its topology struc-
ture, and the dual of the Voronoi diagram is frequently used for this purpose
because it simplifies the traversal algorithms [33, 34]. The dual structure of the
ordinary Voronoi diagram VD is well-known as the Delaunay triangulation which
has many powerful properties primarily for it being a simplicial complex [32].
However, the dual of the Voronoi diagram of atoms VD, now known as the quasi-
triangulation QT , was recently defined and characterized by Kim and colleagues
as follows. QT = (V Q, EQ, FQ, CQ) where vQ ∈ V Q is mapped from cV ∈ CV ;
eQ ∈ EQ is mapped from fV ∈ FV ; fQ ∈ FQ is mapped from eV ∈ EV ; cQ ∈ CQ

is mapped from vV ∈ V V . Note that all the simplexes inQT are mapped from the
simplexes in VD and all the mappings are one-to-one. The conversion between
VD and QT can be done in O(m) time in the worst case where m represents
the number of simplexes in QT . QT is known to have a phenomenon called an
anomaly. For the details of QT , see [35, 36, 27, 37].

The beta-complex corresponding to the real-value β is a subset of QT such
that every simplex σ in QT is removed if a spherical probe of radius β can
pass through σ without intersecting the atoms corresponding to it. Hence, each
simplex in the beta-complex represents the proximity among some atoms within
the molecular boundary. The beta-shape is defined by the region of the space
bounded by the boundary of the beta-complex. Hence, the boundary of the beta-
shape determines the proximity among the atoms on the molecular boundary
with respect to the probe. We emphasize here that the beta-complex can be
computed very efficiently from the quasi-triangulation, and its correctness is
mathematically guaranteed. For the details, see [28, 26, 27].

Fig. 1 illustrates the idea of these geometric constructs in the plane. Fig. 1(a)
shows a two-dimensional molecule A consisting of nine atoms. Fig. 1(b) is the
Connolly surface of A corresponding to the black circular probe. Note that there
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Molecule, the Connolly surface, the beta-shape, and the beta-complexes in 2D.
(a) A molecule (9 atoms), (b) the Connolly surface corresponding to a small probe, (c)
the corresponding beta-shape, (d) the corresponding beta-complex, (e) a beta-shape
corresponding to a larger probe, and (f) the corresponding beta-complex.
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is an interior void. Fig. 1(c) shows the beta-shape corresponding to the Connolly
surface of Fig. 1(b). The beta-shape has an interior void corresponding to the
void of the Connolly surface and a dangling edge corresponding to a pair of
atoms that are exposed to or touched by the probe. The boundary of the beta-
shape has 8 vertices and 10 edges (7 on the exterior boundary and 3 on the
interior void). Fig. 1(d) shows the corresponding beta-complex. Note that each
vertex of the beta-shape and beta-complex corresponds to an atom. Fig. 1(e) and
(f) show the beta-shape and the beta-complex corresponding to a larger probe,
respectively. Note that both the dangling edge and the internal void have now
disappeared. The dotted line segments in Fig. 1(f) together with the simplexes
of the beta-complex form the quasi-triangulation of the molecule.

Based on these three constructs, the proposed BetaMDGP algorithm grows a
molecular structure by adding one atom at a time that is selected by using the
beta-complex for an appropriate value of the probe radius β. In the proposed
algorithm, we start from tetrahedron τ consisting of four atoms which are guar-
anteed to be in a close neighborhood in a certain sense that will be described
below. Then, we grow the structure by adding one shell of nearby atoms. Thus,
we call the idea of this algorithm “shell-growing.”

We first consider a two-dimensional example shown in Fig. 2. Suppose that
Fig. 2(a) shows a true two-dimensional molecular structure that is stored in an
NMR file. We first choose three nearby atoms which must form a (red-colored)
seed triangle t0 = (a1, a4, a10) consisting of the centers of the three atoms a1, a4,
and a10 in Fig. 2(b). The triangle t0 can be determined by arbitrarily choosing
one atom, say a1, and two nearby atoms by looking at the distances to a1.
Let T0 = {t0} and compute BC(T0) whose boundary ∂BC(T0) has three edges
(the red chain in Fig. 2(b)). In this particular case, ∂BC(T0) coincides with the
boundary of the seed triangle t0. We call ∂BC(T0) the shell Sh0 of T0. Then, for
each edge of Sh0, we define another triangle by choosing another atom closest
to two atoms consisting of the edge. After we determine the additional three
triangles in such a fashion, say t1, t2, and t3, we get Fig. 2(b). We call this
operation shell-growing. Let T1 = {t0, t1, t2, t3}. Then, we compute the beta-
complex BC(T1) for some value of β as shown in Fig. 2(c). Consider the red-
colored ∂BC(T1) the shell Sh1 of T1. Applying the shell-growing process once
more by adding a new triangle for each edge e ∈ Sh1, we get another set T2 as
shown in Fig. 2(d). Then, Fig. 2(e) shows the beta-complex BC(T2) as well as
T2. Fig. 2(f) shows the last step of this model construction process to add the
last atom a7 which is under-determined. Note that a7 can be placed at either
a′7 or a′′7 without violating the distance constraint. Hence, there can be multiple
solutions in the MDGP depending on the condition of the distance constraints
in the input data. In such a case, however, adding another constraint on such
an atom can uniquely determine the molecular structure. It is notable that such
under-determined situations frequently arise in real NMR files.

Suppose that ∂T denotes the boundary of the union of the underlying space
taken by each triangle t ∈ T . Then, ∂BC(T ) may or may not be identical to
∂T . For example, Fig. 2(c) shows that ∂T1 has six vertices but ∂BC(T1) has five
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. The idea of the BetaMDGP algorithm in two-dimensional space. (a) The true
structure to determine; (b) T0 = {t0} (t0 is the (red-colored) seed triangle) and T1 =
{t0, t1, t2, t3}; (c) BC(T1) and (red-colored) ∂BC(T1); (d) T2; (e) BC(T2); and (f) a
multiple solution case in the MDGP.
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vertices only: a10 does not appear on ∂BC(T1). Therefore, when we compute T2,
we can safely ignore a10 from further consideration. In Fig. 2(e), if we compute
∂BC(T2), we can now ignore three atoms from further consideration (i.e., a1,
a4, and a10). This reduction can contribute to the solution quality because it
simplifies the solution process by removing the conflicting constraints as much
as possible. It also contributes to algorithmic efficiency. The accumulation of
the round-off error does not occur in the BetaMDGP, and thus the numerical
stability is also improved. The three-dimensional MDGP can be similarly solved
using the three-dimensional beta-complex. According to our experiment, the
number of omitted atoms for the three-dimensional MDGP is significant.

Now, we consider a three-dimensional example of the BetaMDGP. See Fig. 3.
Suppose that Fig. 3(a) shows the true three-dimensional molecular structure
stored in an NMR file. We start the process with a seed tetrahedron τ0 =
(a1, a4, a5, a11) consisting of the centers of four closely located atoms a1, a4, a5,
and a11. The BetaMDGP algorithms grows τ0 (the gray tetrahedron in Fig. 3(b))
by adding one shell of atoms around the current T = {τ0} as follows: i) Compute
the beta-complex of the current T for the appropriate β-value, ii) find the set
ΔT of the new tetrahedron added to T for the faces on the boundary of the
beta-complex ∂BC(T ), and iii) T = T ∪ΔT . Repeating this procedure a suffi-
cient number of times correctly determines the structure of a molecule from the
NMR data. In this paper, we use β = 1.4Å, which corresponds to the radius
of the probe for a water molecule. The gray tetrahedron in Fig. 3(b) shows the
seed tetrahedron τ0. Let T0 = {τ0}. The beta complex BC(T0) is identical to τ0.
Then, for each face of τ0, we define another tetrahedron by choosing the other
atom closest to the vertices of the face. After we determine the additional four
tetrahedron, say τ1, τ2, τ3, and τ4, we get Fig. 3(c) as the shell-growing. Let
T1 = {τ0, τ1, τ2, τ3, τ4}. Then, we compute the beta-complex BC(T1) of T1 for
some value of β, as shown in Fig. 3(d). Consider ∂BC(T1), i.e. the shell Sh1 of
T1. Applying the shell-growing process once more using the faces on ∂BC(T1), we
get another set T2 as the new tetrahedron added to T1 for each face f ∈ ∂BC(T1)
as shown in Fig. 3(e). ∂BC(T2) becomes Sh2 as shown in Fig 3(f).

Suppose that ∂T denotes the boundary of the union of the underlying space
taken by each tetrahedron τi ∈ T . Then, like its two-dimensional counterpart,
∂BC(T ) may or may not be identical to ∂T . For example, Fig. 3(d) shows that
∂T1 has eight vertices but ∂BC(T1) has seven vertices only: a1 does not appear
on ∂BC(T1). Therefore, when we compute T2, we can ignore a1 from further
consideration.

The following algorithm briefly describes the three-dimensional BetaMDGP
algorithm. The input of the BetaMDGP algorithm is an atom set A where ai =
(pi, ri) ∈ A is an atom with the unknown center pi (but its radius ri is known)
and the distance set D where its element di,j < ρcutoff is the inter-atomic
distance between ai and aj . We used the usual cutoff distance 5 Å in order to
simulate the NMR data. The output of the BetaMDGP algorithm is the atom set
Ã where ãi = (p̃i, ri) ∈ Ã is an atom with the known coordinate of the center p̃i.
Step 1 determines the seed tetrahedron with the coordinates of the constituting
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. The idea of the BetaMDGP algorithm in the three-dimensional space. (a) The
true structure to determine; (b) T0 = {τ0} (τ0 is the (gray-colored) seed tetrahedron)
and τ1 added to T0; (c) T1 = {τ0, τ1, τ2, τ3, τ4}; (d) BC(T1); (e) T2; and (f) BC(T2)
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atoms. Step 2 performs the sell-growing procedure to determine as many atoms
as possible. A newly determined atom ap has three distances from the three

atoms of fp on ∂BC(Ã). The average distance among ap to the three atoms
of fp is dist(ap, fp). However, the shell-growing procedure may not be able to
exhaust all the atoms because there can be some atoms (which are called under-
determined) where each does not have four distances from the atoms on ∂BC(Ã).
If such an under-determined atom exists, we choose an arbitrary location as long
as it does not violate both its distance constraints and the well-packed molecular
structure property.

Algorithm. Three-dimensional BetaMDGP

Input:
A = {a1, a2, . . . , an} where ai = (pi, ri) ∈ A is an atom with the

unknown center pi and the known radius ri of a particular type
in the NMR file

D = {di,j |di,j the distance between ai and aj , di,j < ρcutoff}
Output:

Ã = {ã1, ã2, . . . , ãn} where ãi = (p̃i, ri) with the known coordinate p̃i
Step 1. Initialization:

Step 1.1. Make a seed tetrahedron τ0 with four nearby atoms in A.
Step 1.2. Insert the four atoms of τ0 to Ã.
Step 1.3. Determine the coordinates of the four atoms in Ã.
Step 1.4. A ← A− Ã

Step 2. Shell-growing: While A �= ∅,
Step 2.1. Compute the beta-complex BC of Ã.
Step 2.2. Find the set Fβ of the faces on ∂BC(Ã).
Step 2.3. While Fβ �= ∅,

- Get a face fp ∈ Fβ , Fβ ← Fβ − {fp}.
- Get an atom ap ∈ A which has three distances from the three

atoms of fp, dist(ap, fp) is the shortest from fp.

- Ã ← Ã+ {ap} and determine the coordinate of ap.
- A ← A− {ap}
- If A = ∅, terminate the shell-growing process.

End-while.
Step 2.4. If such ap does not exist,

- Go to Step 3.
End-if.

End-while.
Step 3. Marginal process: While A �= ∅,

- Get an atom ai ∈ A.
- Ã ← Ã+ {ai} and determine the coordinate of ai by using the distance

related ai.
- A ← A− {ai}

End-while.
Step 4. Terminate.
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3 Results

The proposed BetaMDGP algorithm has been validated through implementation
and testing with data obtained from the PDB files. The input files contain the
atomic pairs whose inter-atomic distances fall within the usual cutoff distance
of 5Å. The experiment of the BetaMDGP algorithm shows extremely good solu-
tion quality in that the recovered structures are very close to the original PDB
structures from geometric measures points of view such as the RMSD between
the equivalent atoms in both the original PDB models and the reconstructed
models, the existence and distribution of the interior voids, and the distribution
of the covalent bond lengths. All the experimental results were visualized using
the BetaMol program [29]. Note that all the reconstructed structures are dis-
played after it was superposed with the original PDB model using the structure
superposition program, the BetaSuperpose [38]. We tested the BetaMDGP algo-
rithm with three types of NMR data created from the PDB files: i) data without
an interval (all atom types), ii) data with an interval (all atom types), and iii)
data with hydrogen atoms with an interval. The computational environment is
as follows: Intel Core2 Duo E6550 CPU and 4 GB memory on a Windows 7
Ultimate platform.

As the first test, we created NMR files according to the inter-atomic distances
within a 5Å cutoff radius. In other words, we computed all the pairwise inter-
atomic distances for all the atoms in each PDB file and output the atom pairs
with an inter-atomic distance shorter than 5Å into an NMR file. See Fig. 4.
The red structures in Fig. 4(a) and (d) show the true structures of 2lt8 (558
atoms) and 1xba (2068 atoms) in the PDB after we removed all the hetero
atoms and water molecules. Note that 2lt8 in Fig. 4(a) was determined by NMR
spectroscopy and therefore it is one (to be specific, the first one) of the ensem-
bles. 1xba in Fig. 4(d) is from the X-ray crystallography. The blue structure in
Fig. 4(b) shows the reconstructed structure by the BetaMDGP algorithm using
the input file from the 2lt8. From the visual inspection, we can see that both
Fig. 4(a) and (b) are very similar. Fig. 4(c) shows the ribbon models of both
the structures after they were superposed. This figure shows that the backbones
are almost identical. Fig. 4(e) and (f) are the reconstructed structure and the
ribbon models for the 1xba model, respectively. The reconstruction for 1xba also
has a similar shape as its original PDB model.

We also checked the interior structures by computing the voids. A void is a
cavity in a molecular interior that is accessible to some molecule and is important
for understanding the molecular characteristics. Fig. 5(a) shows the distribution
of the interior voids of the PDB structure 1xba. The dark red color denotes
the voids where a spherical probe with the radius 1.4Å (corresponding to a
water molecule) can be placed. Fig. 5(b) shows the same information for the
reconstructed structure. Note the similarity of the void distribution for the water
molecules. Fig. 5(c) and (d) show the distribution of the voids corresponding to
a probe with the radius 1.0Å. Both the original structures and the reconstructed
structures are remarkably similar!
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Structure comparison. (a) and (d) the PDB structures 2lt8 (558 atoms) and
1xba (2068 atoms), respectively; (b) and (e) the reconstructed structures by the Be-
taMDGP; and (c) and (f) the ribbon models for the backbones of the true (red) and
reconstructed (blue) structures after they were superposed.

For validation of the solution quality of the proposed algorithm, visual in-
spection is of course insufficient. We statistically checked the solution quality
as well. First, we checked the root mean squared deviation (RMSD) between

the PDB models and the reconstructed models as follows. Let distpdb2betai be the
distance between an atom ai in PDB and its reconstructed atom by using the
BetaMDGP algorithm. The RMSD for n atoms is given as

RMSD =

√√√√ 1

n

n∑

1

(distpdb2betai )2. (6)

Table 1 shows the statistics of the RMSDs and the computation time. Col-
umn A is the PDB ID of the original PDB models used in the first test and the
number of atoms is in column B. Columns C and D are the number of residues
and ensembles, respectively. Note that the 1xba model determined from X-ray
crystallography has no ensemble. Column E shows the statistics of the RMSDs
between the original PDB models and its reconstructions. Note that the 2lt8 and
2jwu models were determined by NMR spectroscopy. Hence, we reported the av-
erage value of the RMSDs (E3) for each ensemble after the reconstructions of all
the ensemble instances were separately computed by the BetaMDGP program.
Similarly, we reported the minimum (E1), the maximum (E2), and the standard
deviation (E4) value of the RMSDs. The average RMSDs (E3) for 2lt8, 2jwu,
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(a) (b)

(c) (d)

Fig. 5. Void distributions of 1xba. (a) and (c) the interior voids for the PDB structures
and (b) and (d) the interior voids for the reconstructed structures ((a) and (b): β =
1.4, (c) and (d): β = 1.0).

Table 1. Statistics of the RMSDs and the computation times from the BetaMDGP

PDB ID #atoms #res. #ensem.

RMSD (Å)

time(sec)
(E)

min. max. avg. stdev.
(A) (B) (C) (D) (E1) (E2) (E3) (E4) (F)

2lt8 558 43 20 0.008 0.104 0.030 0.025 9.51
2jwu 922 56 20 0.001 0.208 0.017 0.046 7.62
1xba 2068 334 · · · 0.041 · 104.68

and 1xba were 0.030, 0.017, and 0.041Å, respectively. They are all tiny. The
computation took 9.51, 7.62, and 104.68 sec, respectively (F). It currently seems
relatively high because our current implementation of the Voronoi diagram and
beta-complex algorithms are not optimally tuned for the MDGP problem. We
expect this problem will be remedied in our future version with an expected
computation reduction of tenfold or more.

We also checked the distributions of the covalent bond lengths in both the
PDB and the reconstructed structures. Let dpdbij and dbetaij be the length between
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the covalent bonded ai and aj in the PDB and the reconstructed model, respec-

tively. Let εabs = dpdbij −dbetaij be the absolute error. Fig. 6 shows the distribution
of the absolute error εabs for the three examples. Note that all three graphs show
that the distributions are extremely focused with a mean value of zero. We note
that the volumes of the voids can also be computed and compared from a statis-
tical point of view. From this test, we conclude that the proposed BetaMDGP
algorithm reconstructs the original PDB structure effectively and efficiently.

For the second test, we experimented with data consisting of the interval
distances. We computed the inter-atomic distances from all the ensembles of
the PDB model whose structures were determined from NMR spectroscopy. We
created the lower and the upper bounds of the interval of each edge by the
minimum value and the maximum value of the inter-atomic distances of the
edges, respectively. Then, the medium value of interval shorter than 5Å was
used as the input data for the test.

The red structures in Fig. 7(a) and (d) show the true structures of 2jmy (281
atoms, 19 models in the ensembles) and 2jwu (922 atoms, 20 models in the en-
sembles) in the PDB whose structures were determined from NMR spectroscopy.
The red structures in Fig. 7 are one (to be specific, the model with the mini-
mum RMSD after the superposition with the reconstruction) of the ensembles.
We compared the reconstructed structure by the BetaMDGP with all the origi-
nal ensemble structures. The blue structure in Fig. 7(b) shows the reconstructed
structure by the BetaMDGP algorithm using the input files of the 2jmy. Fig. 7(c)
shows the ribbon models for the superposed backbones of the original structure
in Fig. 7(a) and the reconstructed structure in Fig. 7(b). Note that they are
very close. Fig. 7(d), (e), and (f) are for the 2jwu model. Table 2 shows a sum-
mary of these experimental results. Column D denotes the number of models
in the ensembles in the original PDB models. Column E shows the minimum of
RMSD (E1), the maximum of RMSD (E2), the average of RMSD (E3), and the
standard deviation of RMSD (E4) between each of the ensembles of the original
model and the reconstructed model using the interval distance. The minimum
RMSD (E1) between the reconstructed structure and 19 ensembles of 2jmy is
2.21, and the average RMSD (E3) is 2.34 Å. These RMSDs are obviously larger
than the RMSD for the experiment with the data without an interval. This may
be because we used the medium value of the interval distance as the input to
the BetaMDGP program. From the second test, we also conclude that the Be-
taMDGP algorithm reconstructs the PDB structures at a fairly sufficient level
of accuracy and efficiency.

For the third test, we experimented the BetaMDGP algorithm for the input
data consisting of only the hydrogen atoms with intervals for each distance-
defined pair. We computed the inter-atomic distances between only the hydrogen
atoms from all the ensembles of the PDB file. Then, we created the lower and
the upper bounds of the interval by the minimum value and the maximum value
of the inter-atomic distances, respectively. The medium value of interval shorter
than 5Å is used as the input file.
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(a)

(b)

(c)

Fig. 6. Difference in the covalent bond lengths between the original and the recon-
structed structure. PDB ID: (a) 2lt8 (558 atoms), (b) 2jwu (922 atoms), and (c) 1xba
(2068 atoms).
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Structure comparison. (a) and (d) the original protein structures 2jmy and
2jwu, respectively; (b) and (e) the reconstructed structures by the BetaMDGP; and
(c) and (f) the ribbon models of the original (red) and reconstructed (blue) structures
after they were superposed.

Table 2. Summary of the RMSDs and the computation times from BetaMDGP with
intervals

PDB ID #atoms #res. #ensem.

RMSD (Å)
time(sec)(E)

min. max. avg. stdev.
(A) (B) (C) (D) (E1) (E2) (E3) (E4) (F)

2jmy 281 15 19 2.21 2.59 2.34 0.10 1.972
2jwu 922 56 20 4.36 4.55 4.48 0.04 11.812

Table 3 shows a summary of this experimental result. In this experiment, we
used the input distance of the two types: i) the medium value of the interval
distance (Row I) and ii) the random value of each interval distance (Row II).
The data in Row II are the results of 500 experiments. Column B is the number
of hydrogen atoms and column E shows the statistics of the RMSDs between all
the ensembles of the original model and the reconstructed model. The minimum
RMSD (E1) of Row II (by the random choice) is significantly smaller than the
minimum RMSD of Row I (by the medium choice). This implies that we may get
better reconstruction if the distribution of the distances for each atom pair can
be used. In this experiment, we used the RMSD as the measure of quality for the
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reconstructed models. However, we believe that this may not be an appropriate
measure for the reconstructed model from the test data with intervals produced
from the PDB ensemble. The development of an appropriate measure is an issue
for further study.

Table 3. Statistics of the RMSDs and computation times from BetaMDGP with in-
tervals (only hydrogen atoms)

PDB ID #atoms #res. #ensem.

RMSD (Å)

time(sec)
(E)

min. max. avg. stdev.
(A) (B) (C) (D) (E1) (E2) (E3) (E4) (F)

I 2jmy 153 15 19 7.06 7.50 7.28 0.12 1.45
2jwu 467 56 20 8.43 8.58 8.50 0.04 3.46

II 2jmy 153 15 19 3.69 13.41 6.85 1.08 1.33
2jwu 467 56 20 5.64 16.37 9.42 1.48 3.21

(a) (b)

(c) (d)

Fig. 8. Structure comparison. (a) and (c) the hydrogen atoms of the original protein
structures of 2jmy and 2jwu; respectively and (b) and (d) the reconstructed structures
by the BetaMDGP.
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Fig. 8 shows the result of the experiments in Row II. The red model in Fig. 8(a)
shows the true structures of 2jmy (153 hydrogen atoms) in the PDB. The blue
model in Fig. 8(b) is the reconstructed model for the hydrogen atoms of 2jmy.
The atoms in Fig. 8(b) are more closely positioned than the true structure in
Fig. 8(a). Fig. 8(c) and (d) are for the 2jwu model (467 hydrogen atoms).

4 Discussions

The BetaMDGP algorithm was compared with other popular methods such as
DGSOL and BP (Branch-and-prune) that we were able to benchmark. Other pro-
grams, for example, the geometric build-up algorithm were not available. First,
the DGSOL is a program for solving MDGP based on the global continuation
method with Gaussian smoothing of a merit function that only depends on the
sparse distance data [9, 10] and can be freely downloaded from the DGSOL web
site (http://www.mcs.anl.gov/more/dgsol/). In the current release, the DGSOL
uses a variable-metric limited-memory code to trace the minimizers and can de-
termine protein structures up to 200 atoms [10]. In this experiment, we also used
the test data set obtained from the DGSOL site. Among the three available frag-
ments consisting of 50, 100, and 200 atoms with a 1gpv structure (1840 atoms
in total) from the PDB (The DGSOL provides only this one structure on the
web site), we chose to test the biggest fragment with 200 atoms. The DGSOL
determines the lower and the upper bounds of the distance intervals as follows. If
di,j = ||xi−xj || is the distance within the 5Å cutoff distance between atoms i and
j, then the lower bound li,j = di,j(1− ε) and the upper bound ui,j = di,j(1 + ε)
for some epsilon with 0 < ε < 1. We ran both the BetaMDGP and the DGSOL
using the various input data with intervals generated with different ε values.

Table 4 shows the test results of the BetaMDGP and the DGSOL. Columns
A and B show the number of atoms and edges (i.e. the number of atom pairs
with known distances in the input data), respectively. Column C shows the
different ε values used for interval generation. Recall Eq. (5). Column D2 is what
the DGSOL produced by Eq. (5) which describes how much the reconstructed
structure satisfies the distance constraints with intervals. Column D1 shows the
statistics using Eq. (5) from the reconstructed structure by the BetaMDGP.
While the value of both the algorithms are tiny, the BetaMDGP values are
smaller. Columns E1 and E2 show the RMSDs, defined by Eq. (6), from both
BetaMDGP and DGSOL, respectively. Note that the RMSD of the BetaMDGP
is significantly smaller than that of the DGSOL. The computation times in
columns F1 and F2 show that the computation times from the BetaMDGP are
significantly faster than the DGSOL.

Fig. 9 visually illustrates the experimental result of the case ε = 0.16 in Ta-
ble 4. The red model in Fig. 9(a) is the segment of the original PDB model 1gpv
that we extracted. It corresponds to the segment consisting of 200 atoms in the
input file defined by the DGSOL website. Hence, this is the target structure that
we want to reconstruct. The blue one in Fig. 9(b) and the green one in Fig. 9(c)
are the reconstructions by the BetaMDGP and the DGSOL, respectively. Ob-
serve that the reconstruction by the BetaMDGP is very close to the original
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Table 4. Comparison of the BetaMDGP and the DGSOL. The fragment used for the
test has 200 atoms from the PDB structure 1gpv (1840 atoms in total). The parameter
ε is used for the interval generation.

PDB ID: 1gpv pi,j(x) RMSD (Å) time (sec)
(D) (E) (F)

#atoms #edges ε BetaMDGP DGSOL BetaMDGP DGSOL BetaMDGP DGSOL
(A) (B) (C) (D1) (D2) (E1) (E2) (F1) (F2)

200 3300 0.04 0.001 0.007 0.004 5.395 1.273 22.256
200 3300 0.08 0.000 0.097 0.039 2.528 1.304 23.510
200 3300 0.12 0.000 0.000 0.085 5.055 1.394 22.097
200 3300 0.16 0.000 0.000 0.013 2.470 1.381 25.079

(a) (b) (c)

(d) (e) (f)

Fig. 9. Comparison of the structures reconstructed from the BetaMDGP and DGSOL
against the original structure from PDB (1gpv). (a) the original protein structures
(PDB code:fragment of 1gpv); (b) and (c) the reconstructed structures by the Be-
taMDGP and DGSOL, respectively; and (d), (e), and (f) the corresponding beta-shapes
(β=1.4Å).
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PDB model, whereas the one by the DGSOL is significantly different from the
original model (The atom in the vertical column of the original PDB model
does not exist). Fig. 9(d), (e), and (f) are the beta-shapes of the structures in
Fig. 9(a), (b), and (c) where β = 1.4 Å respectively. The beta-shapes clearly
show the reconstruction quality.

Second, the BetaMDGP was also compared with the MD-jeep pro-
gram which implemented the Branch and Prune (BP) algorithm [25]. The
MD-jeep (version 0.1) and test problems can be freely downloaded from
http://www.antoniomucherino.it/en/mdjeep.php. The MD-jeep reconstructs the
backbone structures through the formulation of a combinatorial optimization
problem and uses a branch and prune strategy. To be compatible with the in-
put data to the MD-jeep, we also generated an input file to the BetaMDGP
from the same PDB files according to the rules used for the MD-jeep as follows.
Given a PDB file, we first extracted N, Cα, and C atoms with their coordinates
on a backbone. Then, the pairwise distances falling within 5 Å were computed
in order to simulate NMR data as an input file to the BetaMDGP algorithm.
We verified the identity of the MD-jeep input files downloaded from its web
site and the generated BetaMDGP input files using the number of atoms and
the interatomic distances. Running both the BetaMDGP and the MD-jeep algo-
rithms produces their reconstructions which obviously contain only N, Cα, and
C atoms, missing O and Cβ (i.e., the first atom on each side-chain). Among the
possible solutions found by MD-jeep, we used a solution that MD-jeep provided.
We remark that the solution quality is likely to be improved if all MD-jeep so-
lutions are used. Fig. 10(a), (b), and (c) visually show the ribbon models of the
backbone of the original PDB structure (red), that of the BetaMDGP recon-
struction (blue), and that of the MD-jeep reconstruction (green), respectively.
Each reconstructed structure is displayed after it is superposed with the original
one from the PDB file. Note that the BetaMDGP reconstructions are closer to
the original models.

Given a backbone structure with known amino acid sequence information, it
is possible to recover the entire protein structure by solving the side-chain pre-
diction problem, abbreviated as the SCP-problem, which predicts the optimal
conformation of the side-chains of all the amino acids in a protein. The general
approach to the SCP-problem is to use a rotamer library which is derived by
statistically clustering the observed side-chain conformations of known protein
structures in the PDB [39–42]. The optimality is defined by the minimum po-
tential energy of the protein structure determined by the conformation of all the
side-chains where the energy is given by a forcefield. The SCP-problem is known
as NP-hard [43–45] and is useful for flexible protein-ligand docking [46, 47] and
homology modeling [48–50].

We generated the two types of missing atoms, O and Cβ , with their coordi-
nates. Then, we ran the BetaSCP program, also developed by the authors group
[51], to get the entire protein structure of the backbones produced by both the
BetaMDGP and the MD-jeep. Fig. 11(a) shows the structure of the original
PDB files (red). Fig. 11(b) and (c) show the structures recovered by running the
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2erl

1a70

1pht

1poa

1rgs
(a) (b) (c)

Fig. 10. Structure comparison with the ribbon models. (a) backbone of the original
protein structures and (b) and (c) the reconstructed backbone structures by the Be-
taMDGP and the MD-jeep, respectively.
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2erl

1a70

1pht

1poa

1rgs
(a) (b) (c)

Fig. 11. Structure comparison. (a) the original protein structures and (b) and (c)
the reconstructed structures by the BetaSCP program on the backbones from the
BetaMDGP and the MD-jeep, respectively.
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BetaSCP program on the backbones from the BetaMDGP (blue) and the MD-
jeep (green), respectively. Observe that the result of the BetaMDGP is signifi-
cantly better than that of the MD-jeep.

The visual result in Fig. 11 is statistically analyzed in Table 5. Row I cor-
responds to the BetaMDGP and Row II corresponds to the MD-jeep. Column
B1 is the number of atoms of the original models and column B2 is the number
of atoms in the backbones, both from the original PDB structures. Column D1
is the RMSD between the original backbone structure and the structure recon-
structed by the BetaMDGP algorithm. Column D3 is the MD-jeep counterpart
for column D1. Note that the backbone structures produced by the BetaMDGP
are mostly better than those by the MD-jeep (with the exception 1pht). Column
D2 is the RMSD between the entire original PDB structure and the reconstructed
structure with the recovered side-chains. Column D4 is the MD-jeep counterpart
for column D2. Note that the BetaMDGP solutions are mostly better than those
of the MD-jeep. Columns E1 and E4 are the computation times for the recon-
struction by the BetaMDGP and the MD-jeep, respectively. Columns E2 and
E5 are the computation times for running the BetaSCP program. Columns E3
and E6 are the total computation times for solving the SCP problem after the
BetaMDGP and the MD-jeep, respectively.

Table 5. Experimental statistics of the protein structures whose side-chains are recov-
ered by the BetaSCP program on the backbones reconstructed by the BetaMDGP and
MD-jeep (Row I: the BetaMDGP result; Row II: the MD-jeep result)

PDB #atoms #resi- RMSD (Å) time (sec)
ID (B) dues (D) (E)
(A) PDB Back- (C) BetaMDGP Recon BetaMDGP BetaSCP E1+E2

bone Entire Struct
(B1) (B2) (D1) (D2) (E1) (E2) (E3)

2erl 566 120 40 0.75 0.88 4.81 1.22 6.03
1a70 732 291 97 0.54 1.48 7.81 4.41 12.22

I 1pht 810 249 83 2.16 2.95 6.14 5.16 11.30
1poa 913 354 118 0.27 1.12 24.02 5.94 29.96
1rgs 2015 792 264 0.67 1.98 35.46 21.34 56.80

MD-jeep Recon MD-jeep BetaSCP E1+E2
Entire Struct

(D3) (D4) (E4) (E5) (E6)

2erl 566 120 40 1.78 2.62 0.00 1.15 1.15
1a70 732 291 97 2.10 3.01 0.01 4.29 4.30

II 1pht 810 249 83 2.11 2.51 0.01 4.85 4.86
1poa 913 354 118 2.22 2.83 0.01 5.64 5.65
1rgs 2015 792 264 3.47 7.28 0.08 19.40 19.48

5 Conclusions

We proposed a new approach, the BetaMDGP, to the MDGP problem based on
the beta-complex, which is a geometric construct derived from the Voronoi di-
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agram of atoms. From experiments using simulated NMR files, the BetaMDGP
reconstructs the original structures with surprising similarity except for the input
data with interval distances. However, there are three main issues to be resolved
in the future. First, the BetaMDGP algorithm needs to consider the interval dis-
tances as the current algorithm considers only the medium value of an interval.
Second, we need to improve the BetaMDGP algorithm by considering the under-
determined condition. The real NMR data may be more sparse than our test data.
These NMR data cause a situation where the molecular structure cannot be de-
termined by using only the input data. Therefore, we have to consider additional
information to solve the under-determined condition. For example, we can con-
sider additional information such as the chemistry information and produce the
input distance from the under-determined atom using triangular inequality. Fi-
nally, we remark that the BetaMDGP algorithm needs improved computational
efficiency and the convergence of the BetaMDGP algorithm with an optimization
method such as the BP algorithm is likely to improve solution quality.
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14. Wüthrich, K.: NMR in Structural Biology. World Scientific, New York (1995)
15. Havel, T.: An evaluation of computational strategies for use in the determina-

tion of protein structure from distance constraints obtained by nuclear magnetic
resonance. Progress in Biophysics and Molecular Biology 56(1), 43–78 (1991)

16. Hendrickson, B.: The Molecular Problem: Determining Conformation from
Pairwise Distances. PhD thesis, Cornell University (1991)

17. Hendrickson, B.: The molecule problem: Exploiting structure in global optimiza-
tion. SIAM Journal of Optimization 5, 835–857 (1995)

18. Dong, Q., Wu, Z.: A geometric build-up algorithm for solving the molecular dis-
tance geometry problem with sparse distance data. Journal of Global Optimiza-
tion 26(3), 321–333 (2003)

19. Wu, D., Wu, Z.: An updated geometric build-up algorithm for solving the molecular
distance geometry problems with sparse distance data. Journal of Global Optimiza-
tion 37(4), 661–673 (2007)

20. Sit, A., Wu, Z., Yuan, Y.: A geometric buildup algorithm for the solution of the
distance geometry problem using least-squares approximation. Bulletin of Mathe-
matical Biology 71(8), 1914–1933 (2009)

21. Sit, A., Wu, Z.: Solving a generalized distance geometry problem for protein struc-
ture determination. Bulletin of Mathematical Biology, 1–28 (2011)
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