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LNCS Transactions on Computational Science

Computational science, an emerging and increasingly vital field, is now widely
recognized as an integral part of scientific and technical investigations, affecting
researchers and practitioners in areas ranging from aerospace and automotive re-
search to biochemistry, electronics, geosciences, mathematics, and physics. Com-
puter systems research and the exploitation of applied research naturally comple-
ment each other. The increased complexity of many challenges in computational
science demands the use of supercomputing, parallel processing, sophisticated
algorithms, and advanced system software and architecture. It is therefore in-
valuable to have input by systems research experts in applied computational
science research.

Transactions on Computational Science focuses on original high-quality re-
search in the realm of computational science in parallel and distributed en-
vironments, also encompassing the underlying theoretical foundations and the
applications of large-scale computation.

The journal offers practitioners and researchers the opportunity to share com-
putational techniques and solutions in this area, to identify new issues, and to
shape future directions for research, and it enables industrial users to apply
leading-edge, large-scale, high-performance computational methods.

In addition to addressing various research and application issues, the journal
aims to present material that is validated – crucial to the application and ad-
vancement of the research conducted in academic and industrial settings. In this
spirit, the journal focuses on publications that present results and computational
techniques that are verifiable.

Scope

The scope of the journal includes, but is not limited to, the following computa-
tional methods and applications:

– Aeronautics and Aerospace
– Astrophysics
– Big Data Analytics
– Bioinformatics
– Biometric Technologies
– Climate and Weather Modeling
– Communication and Data Networks
– Compilers and Operating Systems
– Computer Graphics
– Computational Biology
– Computational Chemistry
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– Computational Finance and Econometrics
– Computational Fluid Dynamics
– Computational Geometry
– Computational Number Theory
– Data Representation and Storage
– Data Mining and Data Warehousing
– Information and Online Security
– Grid Computing
– Hardware/Software Co-design
– High-Performance Computing
– Image and Video Processing
– Information Systems
– Information Retrieval
– Modeling and Simulations
– Mobile Computing
– Numerical and Scientific Computing
– Parallel and Distributed Computing
– Robotics and Navigation
– Supercomputing
– System-on-Chip Design and Engineering
– Virtual Reality and Cyberworlds
– Visualization



Editorial

The Transactions on Computational Science journal is part of the Springer series
Lecture Notes in Computer Science, and is devoted to the gamut of computa-
tional science issues, from theoretical aspects to application-dependent studies
and the validation of emerging technologies.

The journal focuses on original high-quality research in the realm of com-
putational science in parallel and distributed environments, encompassing the
facilitating theoretical foundations and the applications of large-scale computa-
tions and massive data processing. Practitioners and researchers share computa-
tional techniques and solutions in the area, identify new issues, and shape future
directions for research, also enabling industrial users to apply the techniques
presented.

The current issue consists of two parts: Part I is devoted to neural and social
networks, and Part II to geometric modeling and simulation. Part I is comprised
of four papers, spanning areas of information–driven on-line social networks, neu-
ral networks, collaborative memories, and stability controls in multi-agent net-
worked environments. Part II is comprised of four papers united by the theme of
geometric modeling. These papers cover the topics of shape reconstruction from
planar contours, sharp feature preservation through wavelets, protein structure
determination based on the beta-complex, and fast empty volume computation
in molecular systems. The first article of the current issue was invited to the
journal as one of the top papers from the ACM CyberWorlds 2012 conference,
while all other articles were submitted as regular papers.

We would like to extend our sincere appreciation to the TCS Editorial Board
and external reviewers for their dedication and insights in preparing this issue.
We would also like to thank all of the authors for submitting their papers to the
journal. We would like to express our gratitude to the LNCS editorial staff of
Springer, who supported us at every stage of the project.

We our hope that this issue will be a valuable resource for Transactions
on Computational Science readers and will stimulate further research into the
vibrant area of computational science applications.

December 2013 Marina L. Gavrilova
C.J. Kenneth Tan
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Part I 

Neural and Social Networks 
  



 

M.L. Gavrilova, C.J.K. Tan (Eds.): Trans. on Comput. Sci. XXII, LNCS 8360, pp. 3–16, 2014. 
© Springer-Verlag Berlin Heidelberg 2014 

Weibo: An Information-Driven Online Social Network* 

Zhengbiao Guo, Zhitang Li, Hao Tu, and Da Xie 

Computer Science Department, Huazhong University of Science & Technology, WH, China 
{zhengbiaoguo,xiedaa}@gmail.com, {leeying,tuhao}@hust.edu.cn 

Abstract. Online social network (OSN) is becoming more and more prevalent 
currently. Some literature about it has been published, but few papers talked 
about Sina Weibo, which is the largest microblog in China. Weibo increases ra-
pidly and draws 100 million users within a year and a half, and users of Weibo 
are Chinese, who enjoy a different culture. 

We crawled Weibo for one month and collected 1.12 million user profiles. 
Using this dataset, we study the dynamics and the characteristic path length of 
the network, some core users and the reciprocal rate. Based on our results, we 
show the topological characteristics of Sina Weibo and deduce what people use 
Sina Weibo for. We believe our findings can be used to understand current 
large-scale OSN for future research on tweet propagation and hot topic predic-
tion, and to provide useful and practical hints for future design of large-scale 
OSN system. 

Keywords: measurement, structure, Weibo, Sina microblog, online social  
network. 

1 Introduction 

OSN is more and more popular throughout the world, and it is expected to be the 
next-generation communication system, for these systems make users communicate 
with each other conveniently. Many important things are propagated through the 
OSNs, for example, Egyptian revolution [1], Iran's Protests [2] and people look for 
their lost child using Sina Weibo in China [3]. In fact, you can know the events hap-
pened in China everyday using Weibo. 

Some papers talked about Twitter [4] but few papers did research on Weibo [5], 
which is the top microblogging service in China. Sina Weibo launched on Aug 28, 
2009 and attracted 100 million users within a year and a half. In Weibo, users can 
send and read text-based posts composed of up to 140 characters, called tweets, which 
are displayed on the user's profile page. Users can subscribe to other users' tweets – 
this is known as followings and subscribers are known as followers. Unlike Facebook, 
a user can follow any other user, and the user being followed need not follow back, 
which makes microblog a different type of OSN. 

                                                           
* Supported by the FRFCU grant 2011QN045, NSF of Hubei Province grant 2010CDB02306 

and CNGI grant CNGI-122. 
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There are three reasons made us do research on Sina Weibo: (1) Weibo grows two 
times faster than Twitter; (2) users of Weibo enjoy a different culture; (3) users of 
Twitter only can use less than 140 characters to express themselves but Weibo can 
use 140 Chinese characters, which contain more information. In addition, there are 
many differences between Twitter and Weibo in detail, for example, tweets in Weibo 
could contain images and videos besides text message and links, and dealing with 
every tweet’s reply and comments is different between Weibo and Twitter. 

In our opinion, there are three basic questions in microblog system: (i) How does 
people connected with each other and form the network, (ii) What are the users talk-
ing about in Weibo, and (ii) How does the information transmit through the network. 
The goal of this work is only to study the topological characteristics of Weibo and 
infer what people use Weibo for.  

Our work is a practical measurement using data collected from Weibo. We began 
to crawl Weibo in Oct, 2010 after Weibo opened its API. We take one month’s data-
set to analyze the overlay of Weibo, and the dataset includes 1.12 million users, 2% of 
the whole users of Weibo at that time. We studied the distributions of followings and 
followers, the relation between followers, followings and tweets, and the dynamics of 
users’ followers. Then, we analyzed the characteristic path length of Weibo, and the 
reciprocal rate of users. Finally, we analyzed the topological characteristics of the 
network formed by verified users (users who are verified by Weibo). Based on our 
results, we classify OSNs into two types – information-driven and relationship-driven.  

Structure determines function. Discovering the characteristics of Weibo’s structure 
can make us know such systems clearly, and it is also the basic research before we do 
other research on OSN, for example, tweets propagation and hot topic prediction. Our 
work is the first quantitative study on the topological characteristics of Weibo, and 
makes insight into its structure. According to the results, we also deduce what people 
use Weibo for, which is useful for future design of large-scale OSN system. In addi-
tion, OSN is the map of the real society. Knowing the structure of Weibo is helpful 
for us to understand the Chinese society. 

The rest of this paper is organized as follows: We cover the related work in  
Section 2, and show the overview of Weibo in Section 3. We analyze the topological 
characteristics of Weibo in Section 4 and discuss our results in Section 5. We  
conclude in Section 6. 

2 Related Work 

There are three basic research areas in microblog system, and we talk about the re-
lated work in such areas in this section. 

2.1 The Structure of OSN 

Mislove et al. [11] measured and analyzed the structural properties of Orkut, Youtube, 
Flickr and LiveJournal. They observed the indegree of user nodes tended to match the 
outdegree which was different from our results. In addition, they talked about groups 
and cores of these OSNs. Kwak et al. [7] basically analyzed the structure of Twitter, 
which was a little different from Weibo and used different methods to identify users’ 
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influence on Twitter. Wu et al. [10] used Twitter lists to classify the users in Twitter 
into different categories and found 50% of URLs were generated by 20K elite users. 
This paper also showed users in the same categories show some level of homophily. 
Java et al. [12] studied the topological and geographical properties of Twitter’s social 
network. They found users talk about their daily activities and to seek or share infor-
mation using Twitter, which is similar as the results in our paper; they also classified 
users using CPM. Huberman et al. [9] reported that the number of friends was actual-
ly smaller than the number of followers or followings, which is the same as our result.  

2.2 The Content of Tweets 

J. Weng et al. [14] used an extension of PageRank algorithm to measure the influence 
of users in Twitter, and used LDA to identify latent topic information. M. Cataldi et 
al. [15] gave a topic detection technique that permits to retrieve in real-time the most 
emergent topics expressed by the community, using a novel aging theory and Page-
Rank. P.Owen et al. [16] used lucene to analyze the content of Twitter, and TF-IDF to 
recommend real-time topical news. L. Yu et al. [17] analyzed Weibo, and showed the 
trends in Weibo are created almost entirely due to retweets of media content such as 
jokes, images and videos. 

2.3 The Diffusion of Tweets 

Kwak et al. [7] analyzed the tweets of trending topics, talked about the tweets’ diffu-
sion and observed retweets reach a large audience and spread quickly. Wu et al. [10] 
talked about the two-steps diffusion in Twitter, investigated the flow of information 
among different categories, finding that many of the tweets generated by core users 
reaches the masses indirectly via a large population of intermediaries, and different 
content types exhibited dramatically different characteristic lifespans. David et al. 
[13] talked about a single piece of information spreads on a global scale using Internet 
chain-letter data and find that the progress of these chain letters precedes in a narrow 
but very deep tree-like pattern, continuing for several hundred steps.  

Our work focuses on the characteristics of Weibo’s structure which is not studied 
before, and infers what people use Sina Weibo for. We analyze four characteristics of 
Weibo, and using these factors, we classify OSN into two different types. 

3 Overview of Weibo 

Weibo is a self-organization communication application. With more and more people 
using microblogging service, the scale of Weibo becomes larger and larger. There are 
three major parts of Weibo: users, overlay and tweets. Users connect with each other 
by self-organization and form the overlay, and then they share information through 
the overlay. 
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When a new user joins Weibo, he should register Weibo and get a unique ID, and 
then he takes some existing users as his followings and waits for others to follow him. 
When the new user joins the network, he begins to use the overlay to receive or post 
tweets. 

From the join process of Weibo, we know the way users choose their followings 
decides the topology of the system, and we talk about it as follows. There are about 
three ways one user chooses his followings: (1) he follows the users he knows; (2) he 
follows the users who are followed by the users he follows now; (3) he searches the 
users who have the same tags or interests with him. At the same time, he can cancel 
his followings that he doesn’t like. We can infer the overlay of Weibo will change 
frequently because new users join in and old users change their followings. Thus, we 
can build a model to show how Weibo’s overlay evolves with the time. 

• Startup: there are M users and e links in the initial network; 
• Growth: every new user joins in the network with m followings(m<2000); 
• Link: the new user chooses m old users from Weibo and follows them; 
• Evolution: old users change their followings with time; 

In this paper, we analyze the characteristics of Weibo, and we also want to find the 
way how to fix the parameters in our evolution model.  

4 Analysis of Network Structure 

In this section, we characterize the structural properties of Weibo, such as degree 
distribution, the characteristic path length, and reciprocal rate. 

4.1 Dataset 

Weibo offers API [6] in July, 2010, and we use it to collect data. Our first version  
of crawler began to work in Oct, 2010. In this paper, the dataset was collected from 
Nov 1, 2010 to Dec 1, 2010. The overlay of Weibo may change, so we only take one 
month’s data to analyze the topology of Weibo. We collected profiles of users and 
their tweets, and the profiles include full name, location, gender, number of following, 
number of follower, number of tweets, list of following and whether it is verified. 

Weibo rate-limits 1,000 requests per hour per every user, and rate-limits 10,000 re-
quests per hour per white-listed IP, which make it hard to crawl the overlay rapidly. 
The dataset includes 1.12 million users’ information, which counts for 2% of the total 
users of Weibo, and Weibo had about 55 million users at the moment. Additionally, 
users of Weibo can be classified into two kinds: verified user (Vuser) and common 
user (Cuser). Cusers are users who aren’t verified by Weibo. 

4.2 Followings, Followers vs. Tweets 

Number of followings, followers and tweets are three basic factors can be used  
to analyze the structure of Weibo. As we introduced in section 4.1, there are two  
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types of user in Weibo: Vuser and Cuser, which play different roles in Weibo, and  
we analyze them separately. Our dataset has 1,125,044 users, which includes 
1,089,676 Cusers and 35,368 Vusers. Fig.1 displays the distribution of Cuser’s  
number of followings and followers. Fig.1(a) shows the complementary cumulative 
distribution function (CCDF) of Cuser’s number of followings; Fig.1(b) shows  
the log-log graph of Cuser’s number of followings; Fig.1(c) shows the CCDF of  
Cuser’s number of followers and Fig.1(d) shows the log-log graph of Cuser’s number 
of followers. 
 

 

Fig. 1. # of followings & followers of Cusers Fig. 2. # of followings & followers of Vusers 

Cusers have 148 followers, 167 followings and 292 tweets on average. The ratio of 
the followings’ number less than 30 is 20%, less than 500 is 92.5% and more than 500 
is 7.5%. We first explain the glitches in Fig.1(b). The first occurs at x=1.4 which indi-
cates the followings’ number is 30. Weibo gives new users an initial set of 30 people 
to follow and most of the new users follow them. The second occurs at x=3.3 which 
means the followings’ number is 2000. Users can only follow less than 2000 people in 
Weibo but sometimes the system may make mistakes, so this glitch happens. The line 
in Fig.1(b) from 30 to 2000 fits to a power-law distribution with the exponent of 1.63. 

The ratio of the followers’ number less than 54 is 54%, less than 232 is 90% and 
less than 1,515 is 99%. The line in Fig.1(d) from 54 to 9,000 fits to a power-law dis-
tribution with the exponent of 2.1. The ratio of Cusers who have more than 10,000 
followers is less than 0.11% which makes the end of the line in Fig.1(d) flat. 

The dataset has 35,368 Vusers, and Vusers have 17,716 followers, 307 followings 
and 649 tweets on average. The ratio of the followings’ number less than 30 is 15%, 
less than 1000 is 91.2%. The line in Fig.2(b) from 30 to 2000 fits to a power-law dis-
tribution with the exponent of 1.29. 

The ratio of the followers’ number less than 100 is 5.16%; less than 10,000 is 
79.9%. The line in Fig.2(d) from 100 to 10,000 fits to a power-law distribution with 
the exponent of 2.63. 
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Fig. 3. # of followers & tweets per users Fig. 4. # of followings & tweets per users 

We also analyze the correlation between the number of followers and that of 
tweets. In Twitter, users have more followers send more tweets [7]. In Fig.3, It’s clear 
the number of tweets is not increasing with the increasing number of followers. Users 
with more than 10,000 followers didn’t send many tweets, and the number of tweets 
is less than 2,000 on average. We also show the distribution from 0 to 10,000 in de-
tail, and we can see that some users with few followers send more tweets. Most of the 
users who have more followers are Vusers and they are recommended by the system, 
but they send a few tweets. The users who have few followers are Cusers and they 
send many tweets. Fig.4 shows the correlation between the number of followings and 
that of tweets. We can infer that the number of tweets is also not increasing with the 
increasing number of followings. 

From Fig.3 and Fig.4, we can say the number of tweets is not related to the number 
of user’s follower and following. We also know though one user send many tweets, 
he may not attract many followers. 

4.3 Change of User’s Follower 

We notice the overlay of Weibo is dynamic and we collect eleven days’ data (from 
2011-01-05 to 2011-01-16) which includes 100 Cusers’ follower numbers every day. 

The number of users’ follower changes frequently and a user gain 23,495 new fol-
lowers in one day. The average increment of the users’ followers in our dataset is 
2,932. In Facebook, one has about 130 friends [8], but in Weibo the number is 872 
and the links between users change frequently as shown in Fig.5. We can infer most 
of the user’s followers are not his friends, and they didn’t know each other in the real 
society – a conclusion that is reported by paper [9]. 

We also compare the number of users’ follower and the number of users’ increased 
follower. They are correlative and the correlation coefficient is 0.55. That’s to say 
when you have more followers now, and you will get more followers in the future, 
which shows the Matthew effect is significant in Weibo. We didn’t collect Vusers’ 
change of follower for we didn’t get such API, and it is our future work. 
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Fig. 5. The change of user’s follower 

So we can say that the user coming to Weibo is not for friendship and this makes it 
different from Facebook. 

4.4 Characteristic Path Length of Weibo 

The Characteristic path length (CPL) is another basic property, which should be dis-
cussed to understand the overlay of Weibo. This characteristic makes us know how 
quickly the tweets delivered from the origin user to others in Weibo, and helps us to 
study the information diffusion on OSN. 

The link between two users in Weibo is directed. We can’t crawl all the relation-
ships in Weibo in a short time, so we didn’t measure the CPL of Weibo directly. Al-
though we can get all the relationships, we can’t tell the true CPL of Weibo for the 
dynamic of the overlay as shown in section 4.3. We built an analytical model to eva-
luate it as follow. 

 

Fig. 6. Tweet’s transmission 

To evaluate the CPL of Weibo, we show the paths one tweet sent from S to R as 
shown in Fig.6, and the shortest length from S to R is the distance between them. We 
want to find out how many steps should take from S to R at least, and then we change 
the shape of Fig.6 into Fig.7. 

 

S
R

A
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Fig. 7. The deformation of Fig 6 Fig. 8. Tweet’s diffusion 

Fig.7 is generated from Fig.6 using Breath-First Search (BFS), dark notes mean 
they appeared for the first time using BFS and white nodes mean they appeared  
before. We define a function δ (n) as δ n 1,  0,                          (1) 

δ (n) is 1 when the user n first appeared during the BFS, and  includes all the non-
repeating users when we searched the No.n users. As we assume the links between 
users are random. For an overlay of size N, we have P δ n 1                        (2) 

Where  stands for the number of  . So δ n , taking 
expectation on both sides of Eq. (2), we have δ n               (3) 

Which follows that 

 1                 (4) 

Since 1 , iteratively solving Eq.(4) leads to 

 1 1                (5) 

Let  denotes the last user whose distance from S is k, and the average distance 
from S to all other users is as follow 
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Since lim 1 , thus we have 
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We assume every user in Weibo has the same number of followers and followings 
and they have 148 followers and 167 followings on average as shown in section 4.2. 
Let L denote the users’ degree which is bigger than 100, and except S the other users 
have L-1 children. It follows that 
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If L 3, we have 1 1  and hence e e L , which 
follows that, 
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  (10) 

From Eq. (10) we know that the average length from S to all other users in Weibo 
is bounded by O logL N) . 
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Now we talk about how many hops should be needed if S wants to send a tweet to 
R. There are 55 million users when we crawl Weibo, and every user has 148 followers 
and 167 followings on average. When S wants to send a tweet to R, he will ask his 
followers and followings to help him, and others will also ask their followers and 
followings to help them. So L will be 315, and the hops will be 6.09 on average. 

In fact, no user demands his followers and followings to help him to send his 
tweets, so the tweets will be diffused randomly as shown in Fig.8. In this condition, 
the L will be the number of users’ follower and the hops will be 6.56. Here we only 
use the number of Cuser, and the Vusers’ follower and following number are bigger 
which make the hops less than 6. 

In Weibo, tracing the path of one tweet is hard and no API can be used. From our 
results, we know the tweet will flow the whole overlay using a few hops. This indi-
cates when one tweet is published, it will be known by all the others in a short time, 
as shown in Eq. (10). Facebook also has a short CPL for user with 130 friends on 
average [8]. However, when one message born in Facebook, it may diffuse slowly 
because users only want to share their information with their friends and this stops the 
message from widely transmitting, which makes Facebook unsuitable for the timely 
dissemination of information. 

4.5 Vuser’s Overlay 

In our opinion, Vuser may play an important role in Weibo, and we analyze their 
overlay particularly. Our dataset has 35,368 Vusers, and Vusers have 17,716 follow-
ers, 307 followings and 649 tweets on average, which is more than Cusers’. Next we 
will discuss the links’ characteristic of Vuser. 

We count all the numbers of Vusers’ followers and it is up to 695,968,649. Users in 
Weibo follow 98 users [5], and there are about 55 million users at that time. The sum 
of following links is about 5.39 billion, and the total number of Vusers’ follower ac-
counts for 12.91% of all the following links. The total number of Vusers’ following is 
10,857,976 and 2,054,311 of them link to Vusers, which take about 18.92% of all the 
following links. Weibo classifies Vusers into many groups according to users’ career. 

Table 1. Basic statistics for a number of groups  

Group N M D <k> C 

Movie Star 1200 21457 9 35 0.16 

TV Anchor 1200 18172 9 30 0.25 

Radio DJ 1200 16994 8 28 0.31 

Singer 801 12028 8 30 0.20 

Journalist 849 11335 7 26 0.21 

Police 292 11303 5 77 0.42 

IT 711 9048 7 25 0.19 

IT Executive 223 4133 7 37 0.29 
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In fact, we didn’t collect all the Vusers and some of the Vuser don’t draw many 
followers. From our results, there is a core in Weibo and users from the core attract 
most of the users in Weibo and they connected with each other strongly. Finding the 
true core of Weibo is our future work. 

The properties measured are: group, directed or undirected; total number of vertic-
es N; total number of edges M; diameter of the group D; mean degree <k>; and clus-
tering coefficient C. 

From Table 1, we can see the diameters of the groups are short though the graphs 
are directed and they are less than 8 generally. The clustering coefficients of the 
groups are bigger than O (1/N) and less than 1, which means the groups have Cluster 
Effect and users in some groups connected with each other strongly. 

In summary, there is a densely-connected core in Weibo and some Vusers have the 
characters as core users. They connect with each other strongly and attracted many 
other users in Weibo. There are also many groups among core users and the diameters 
of these groups are short, which make the tweets transmit quickly. In this section, we 
just analyze the Vusers as core users and the groups classified according to Vusers’ 
career. 

The existing of core users makes Weibo different from other OSNs, because few 
people can be familiars with most of the users in an OSN. The result also indicates 
users in Weibo aren’t for friendships but for information. 

4.6 Reciprocal Rate 

We notice most of the users don’t follow each other, that’s to say most of the links 
between users are one-way, which is a significant characteristic of Weibo. We take 
the number of user’s followers as F , the number of user’s followings as F , the 
number of users existing in one’s followers and followings as X and the reciprocal 
rate as R . Thus, the reciprocal rate of one user is defined as Eq.(11). 

          (11) 

As shown in section 4.2, the figure of Vusers’ followers is big and it’s hard to get 
the X of Vuser. We take Eq.(12) to estimate Vuser’s reciprocal rate. 

 F F X FF F F FF                (12) 

And 

 
1 ∑   1                       (13) 

The reciprocal rate of Vuser is less than 0.7% and of Cusers is about 16.9%. In 
Twitter, this result is about 22.1% [7]. In Facebook, users follow each other and the 
reciprocal rate will be 1. Thus, OSN can be classified into two types: one type is users 
keep in touch with each other and they may look for friends, and the other is most 
users didn’t follow each other and they may look for information. 
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5 Discussion 

Our measurement presents many interesting phenomena, and we want to discuss im-
plications of them in this section.  

Our measurements indicate different users have different numbers of followers, 
followings, tweets; the reciprocal rate is low; and the overlay is dynamic; the charac-
teristic path length of Weibo is short. From these results, we want to classify online 
social networks into two types as shown in Fig.9. 

OSNs only contain two basic factors: users and tweets, and users of such systems 
could find friends or seek tweets. Different OSNs provide different functions, thus, 
we distinguish them apart by using four rules: (1) the dynamics of user’s following 
and follower; (2) the reciprocal rate of users; (3) the users’ follower number; (4) the 
information’s transmission speed. If one is a relationship-driven OSN, its overlay 
changes slowly, and users follow each other because they are familiars and they want 
to keep in touch with each other which make users’ followings number small. No 
people can make friends with most of the other users, so the core of such networks is 
insignificant. Users in a relationship-driven OSN will show some private things 
among them and don’t want to share these things to all the people in the network 
which will prevent the dissemination of the information. Information-driven OSN is 
opposite to relationship-driven OSN and user coming here seeks for information and 
doesn’t care whether he is familiar with his followings or followers. 

We think the future OSN systems will look like Google+, users in which can make 
different users into different circles and share different information with them. Such 
systems are hybrid platforms and one system provides both need of users, including 
friendship and information. However, the basic types of OSN system are information-
driven OSN and friendship-driven OSN. 

 

Fig. 9. Two basic types of online social network 
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In addition, the real social network is formed by people’s relationship. Online so-
cial network gives a chance to make people find more friends. When the online links   
become the true relationships in the real social network, the real social world will 
change, so OSNs will impact the physical world in the future. 

6 Conclusion 

Three months after Weibo opened its API, we started to crawl and collected one 
month’s data including 1.12 million user profiles to analyze its overlay. We analyzed 
the relationship between users’ following, follower and tweets, and found the number 
of tweets would not increase with the number of following or follower. The following 
and follower distribution are fit for power-law in some interval. We also paid atten-
tion to the dynamics of Weibo and found that links between users change frequently, 
which makes Weibo different from other OSNs and social networks. We proved that 
the characteristic path length of Weibo is short and tweets can flow from one user to 
another in less than 6 hops, which is similar to Twitter’s [7]. We also discovered that 
there is a core in Weibo which attract about 12.91% of all the users’ following links 
and users in the core connect with each other strongly. Then, we defined how to count 
the reciprocal rate in Weibo and show the reciprocal rate of Weibo is less than 16.9%, 
which is lower than Twitter’s. From these results we deduct that Weibo is different 
from human social network and other OSN. Thus, we classify OSN into two kinds: 
information-driven OSN and relationship-driven OSN.  

Much work is still to be done. We should find the true core of Weibo and the true 
groups of the core network because Weibo classified the Vusers into different groups 
according to their career and many users who weren’t verified also attracted too many 
users. Understanding the overlay of Weibo can help us to determine this type of OSN 
clearly, which may change human social network in the future. 
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Abstract. Highly-integrated distributed systems such as Intel Micro
Server and SeaMicro Server are increasingly becoming a popular server
architecture. Designers of such systems face interesting memory hierarchy
design challenges while attempting to reduce/eliminate the notorious disk
storage swapping. Disk swapping activities slow down applications’ exe-
cution drastically. Swapping to the free remote memory - near by nodes,
through Memory Collaboration has demonstrated its cost-effectiveness
compared to overprovisioning memory for peak load requirements. Re-
cent studies propose several ways to access the under-utilized remote
memory in static system configurations, without detailed exploration of
dynamic memory collaboration. Dynamic collaboration is an important
aspect given the run-timememory usage fluctuations in clustered systems.
Furthermore, with the growing interest in memory collaboration, it is cru-
cial to understand the existing performance bottlenecks, overheads, and
potential optimizations.

In this paper we address these two issues. First, we propose an Au-
tonomous Collaborative Memory System (ACMS) that manages memory
resources dynamically at run time, to optimize performance, and provide
QoS measures for nodes engaging in the system. We implement a proto-
type realizing the proposed ACMS, experiment with a wide range of real-
world applications, and show up to 3x performance speedup compared
to a non-collaborative memory system, without perceivable performance
impact on nodes that provide memory. Second, we analyze, in depth, the
end-to-end memory collaboration overhead and bottlenecks. Based on
this analysis, we provide insights on several corresponding optimizations
to further improve the performance.

1 Introduction

With every new software generation, applications’ memory footprints are grow-
ing exponentially in two dimensions–horizontally due to an increase in their data

M.L. Gavrilova, C.J.K. Tan (Eds.): Trans. on Comput. Sci. XXII, LNCS 8360, pp. 17–41, 2014.
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set, and vertically due to additional software layers. This fast memory require-
ment growth outpaces the growth in the capacity of current memory modules
(RAMs) [18]. This leads the OS’s virtual memory manager to resort to swap-
ping to storage devices, e.g., Hard Disk Drives (HDDs) and Solid State Drives
(SSDs). Swapping devices such as HDDs, or even SSDs operate at several orders
of magnitude slower compared to main memory modules [29]. Excessive paging
activity to and from the swapping device renders a system crawling as the CPU
is mostly waiting for I/O activity. The performance degradation, in turn, poses
serious power implications since the slow execution keeps the CPU and system
in high power state longer than necessary.

Recently, we have seen the trend of the fast development of high density,
low power, and highly integrated distributed systems such as clustered systems
(e.g., Seamicro’s SM1000-64HD[32] and Intel’s microServer [8]). In these systems,
hundreds or even thousands of independent computing nodes are encapsulated
within a single platform. This, therefore, poses interesting challenges as to how
designers could restructure the memory hierarchy to achieve optimal perfor-
mance given a certain peak load requirement, with consideration of cost and
energy budgets.

There is a spectrum of solutions that attempt to bridge the vast performance
gap between the local memory and the disk storage in clustered systems by
avoiding swapping activity as much as possible. One end of the spectrum sug-
gests over provisioning the system with more precious resources. Over provision-
ing may range from installing more physical memory, adding dedicated mem-
cached servers [1], leveraging a hybrid memory system of PCM, PRAM, and
DRAM [29,31,9], or even adding a dedicated storage server that stores all data
on their main memory (RAMs); namely the RAMCloud [25]. While over pro-
visioning the system to accommodate all memory needs solves the problem, it
comes with prohibitive costs and excessive power budget.

The other end of the spectrum suggests a more cost-effective design by im-
proving the aggregate cluster memory utilization. At a high level, improving
cluster utilization involves making use of idle memory located at remote nodes,
namely Memory Collaboration. Memory Collaboration can be categorized into
two approaches:remote memory swapping [17,24,19,20,43], and remote memory
mapping [22,43].

Remote memory mapping techniques consider the remote memory as an ex-
tension to the local memory space. Such techniques usually require inflexible
malloc-like APIs to manage local and remote memory resources, or recompila-
tion of applications to distribute the statically defined memory structures (i.e.,
arrays) onto local and remote memories. Further, some remote memory map-
ping techniques such as [22] requires user intervention to explicitly define the
availability of memory space at remote nodes.

In this paper, we focus on the other approach, remote memory swapping,
which considers remote memory as a swap device. Approaches that fall into this
category have demonstrated the ability to be deployed transparently with lit-
tle/no modification to the OS or the running applications, while at the same time
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partially filling the performance gap between local memory and hard disk with
a cost-effective design. However, these proposals often focus on static system
configurations and lack the detailed investigation, implementation and evalua-
tion on the aspect of dynamically detecting, provisioning, and utilizing remote
memory to optimize performance for the whole cluster. Furthermore, as remote
memory swapping becomes an appealing approach, it is critically important to
understand the performance bottlenecks that exist in current systems and how
such bottlenecks could be potentially removed or mitigated.

In this paper, we address these two concerns and make the following major
contributions:

1. We propose a system architecture and a memory acquisition protocol to per-
form robust, efficient, and autonomous memory collaboration across multiple
nodes within a cluster. The proposed protocol allows for multiple nodes to
dynamically discover, allocate, and deallocate remote memory based on lo-
cal memory requirements. We demonstrate the feasibility and benefit of the
proposed ACMS by developing a prototype and evaluating real-world appli-
cations. Our prototype results show that an ACMS-based system can adapt
to workload dynamics and memory variations, and achieves up to 3x speedup
compared to a non-collaborative memory system.

2. We pinpoint and analyze the major performance bottlenecks and overheads
during the lifetime of the remote memory swapping approach. Our investi-
gation shows that the network stack and Linux kernel swapping process are
the major bottlenecks.

3. We further study several optimizations to improve remote memory swapping
performance. Based on our investigation, we give insights into how to take
advantage of software/hardware optimizations to significantly speed up the
remote memory access.

The rest of the paper is organized as following. Section 2 motivates our
dynamic approach for collaborative memories in clustered architectures.
Section 3 reviews the related work. Section 4 describes the design of the pro-
posed Autonomous Collaborative Memory System (ACMS). Section 5 describes
the implementation details and prototyping of ACMS. Section 6 describes the
evaluation methodology and provides the results from our evaluations and ana-
lyzes the findings. Section 7 provides insightful analysis into the remote swapping
overhead. Section 8 concludes the work and discusses the future works.

2 Motivation for Dynamic Memory Collaboration

In Section 1, we have discussed that limited memory resources force the system
to resort to slow storage devices which has major implications on performance
and power dissipation. For single-node systems, if over provisioning is not an
option, the OS has to start paging to and from the disk and therefore suffer the
high latencies.

With multi-node clusters [32,8], the overall picture is different. Some nodes
in the cluster may over utilize their memory system, while other nodes may
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under-utilize them, and the dynamics often change over time. This imbalance
in memory usage across different nodes in a cluster has motivated our work to
investigate techniques to make use of the under-utilized, and fast remote memory,
over using the slow storage device.

Fig. 1. Example of a Data Center Memory Usage Imbalance

Figure 1 shows the memory usage during a typical workday in a typical data
center cluster. The data is collected using Ganglia tool [21], which is a scalable
monitoring system tool for high-performance computing systems such as clusters
and grids. As can be seen in the figure, the aggregatememory in the cluster reaches
437TB. However, only 69% of this aggregate memory is being utilized (i.e., used
+ cached + buffered / Total). Despite the fact that the aggregate utilization is
far from being 100%, there is about 68TB of data residing in swap devices. This
demonstrates that some nodes are over utilizing their memories, while others have
freememory available potentially for donation. Since memory nodes are physically
private to each node, this freememorywill not be utilized by default by other nodes
in the cluster. This motivates the need to have a collaborative memory framework
to manage aggregate memory resources within the cluster in order to reduce storage
device swapping activity and improve performance.

Furthermore, studies have shown that local memory requirements can vary
drastically [18] over time based on multiple factors such as workload variations,
orthogonal execution phases, etc. Moreover, thread migration from one node to
another (e.g., VMware’s vMotion technology [42]), shifts the memory demand
from the source node to the destination. Managing the drastic spatial/temporal
variation of memory requirement in multi-node clusters is no easy task. It calls
for a stable, run-time mechanism to classify and continually reclassify nodes
based on their memory requirements, and to dynamically assign remote memory
to achieve optimized performance and energy-efficient memory collaboration.
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To address these concerns, we propose a fully autonomous memory acquisition
protocol that can be implemented on various interconnects. The protocol facil-
itates memory detection, memory exchange, and memory reclaim across nodes
within the cluster dynamically at run time. The dynamic control protocol for
memory collaboration is, to the best of our knowledge, novel.

3 Related Work

There is a rich body of work that has studied the problem of managing capacity
at different levels of the memory hierarchy [33,34,5,7,27,44,4,30,39]. However, in
this work we focus on improving cluster throughput by managing the capacity
at the main memory level. Prior art in this area can be divided into three main
categories:

Modifying the Memory Hierarchy to Hide/Avoid Disk Activity.
Several high-cost proposals argue for the need to redesign the memory
hierarchy [29,31,9], or add additional resources to the cluster in order to avoid
prohibitive disk activity. In particular, a recent proposal; the RAMCloud [25],
motivates the need to replace disk storage with permanent RAM storage in order
to reduce latency and improve throughput. The RAMCloud requires thousands
of dedicated, interconnected commodity servers attached to the cluster to deliver
its promise, which as the authors mention in their paper, comes at a high cost
per bit, and high energy usage per bit.

In [18], Lim et. al., avoid to over-provisioning individual servers by encap-
sulating large portion of memory in remote dedicated memory blades which
dynamically assign memory to individual servers when needed. Although this
scheme provides better utilization of aggregate memory resources, it is targeted
for commodity blade servers and may require hardware changes to access the
remote memory.

Management of Memory Resources under Single OS Image. In dis-
tributed systems with a single OS image (DOSes) [40], the entire address space
is made visible to each process running on any node. This assumes a coherent
underlining shared memory architecture. Several previous studies have shown
that DOSes suffer performance and scalability [3] issues due to their shared
memory architecture. Further, as reported in [3], DOSes are relatively expensive
to maintain and to deploy.

Management of Memory Resources under Multiple OS Images. Works
that belong to this category are closest to our work in terms of the scope of the
problem. In distributed systems with multiple OS images, each node in the sys-
tem can leverage remote memory at another node by either paging to/from the
remote memory [17,24,19,20,43,6], or by extending its address space to encap-
sulate the remote memory. However, these schemes lack the ability to deal with
the temporal/spatial node memory requirements fluctuation within the cluster
to achieve optimized performance and energy-efficient memory collaboration.
Further, prior proposals do not provide Quality-of-Service measures to protect
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nodes donating part of their memories from having their performance negatively
impacted. To address these concerns, we design a run-time mechanism to man-
age the memory resources across collaborating nodes within the cluster, and we
provide QoS measures for individual nodes.

4 Autonomous Collaborative Memory System:
Architecture, Protocol and Algorithm

In this section, we describe the proposed Autonomous Collaborative Memory
System (ACMS), including ACMS architecture, protocol and algorithm. We ad-
here to the following design philosophies while designing our system: low opera-
tion overhead, high system stability and QoS guarantees for nodes that donate
their memories.

4.1 ACMS Architecture

Figure 2 shows a high level ACMS architecture, which consists of the following
components.

1. Interconnect. The interconnect medium used to link cluster nodes with each
other. We do not specify strict requirements on the type of the intercon-
nect. Although we conduct our prototype and analysis over Ethernet, the
ACMS interconnect could be as well PCIe, Lightpeak (Thunderbolt) [13],
Infiniband [17], etc.

2. Collaborating Nodes. These represent individual computing nodes compris-
ing the cluster. The nodes may use remote memory (i.e., memory clients),
provide memory for other nodes(i.e., memory servers), or neither (i.e., mem-
ory neutrals). (Detailed dissuasion in 4.2)

3. Collaborative Memory Service Manager. The manager, with the proposed
protocol and algorithm, is responsible for memory discovery, memory al-
location and release. The service manager could be a centralized manager
responsible for managing all nodes in the cluster, or distributed across all
nodes or a collection of nodes. In this paper, we propose a fully distributed
memory acquisition protocol that does not require centralized control. Each
node makes its decision of when, and with whom it shall collaborate.

It’s worth noting that although we focus on remote memory swapping in this
paper, the ACMS protocol and algorithm can also be applied to other remote
memory leverage approaches such as remote memory mapping.

4.2 Node Classification Algorithm

As mentioned in Section 2, static memory collaboration lacks the desired perfor-
mance due to typical cluster variations. It is important to dynamically discover,
allocate and reclaim remote memory adapting to the nodes condition, to opti-
mize the whole cluster performance and energy efficiency.

To this end, first we classify nodes into three main categories according to
their run-time memory usage:
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Fig. 2. ACMS High-level Architecture

1. A memory client node: a node that is running a high demand application
and needs extra memory space.

2. A memory server node: a node that possesses significant amount of free
memory and can potentially donate part of its memory space to remote
memory clients.

3. A memory neutral node: a self-satisfied node that has mid-level memory
usage that neither offers memory nor needs extra memory.

In general, when the memory usage is smaller than MEM MIN (indicating very
low local memory demand), the node is classified as a memory server; if memory
usage is larger than MEM MAX (indicating very high local memory demand),
the node becomes a memory client; on the other hand, if memory usage stays be-
tweenMEM MIN andMEM MAX, the node is a neutral node that is self-satisfied.
In our classification algorithm, guard bands are applied to both MEM MIN and
MEM MAX to prevent system oscillation. This attribute is crucial for the stability
of the system as it limits nodes oscillation from amemory client to amemory server
and vice versa. Specifically, four thresholds,MEM MIN LOW,MEM MIN HIGH,
MEM MAX LOW, MEM MAX HIGH are used to decide when to change the
node classification. When the memory usage is within the “no change” guard
bands, no node class change is asserted, as illustrated in Figure 3. The memory
thresholds are programmable parameters that give designers the flexibility of fine
tuning based on workloads’ characteristics.

4.3 Dynamic Memory Acquisition Protocol

During run-time, nodes are classified into their corresponding category, and en-
gage in the ACMS using the memory acquisition protocol described in this sec-
tion. The proposed protocol allows nodes to exchange information about their
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Fig. 3. An illustration of the node classification algorithm showing how memory servers
and memory clients are classified. Further, it shows the guard bands used to limit node
oscillation.

memory availability, and facilitate dynamic memory collaboration decision in a
distributed fashion.

There are five primitives defined for the protocol, as described below.

1. OFFERING MEM: This message is periodically broadcast by a memory
server to all other nodes in the system to indicate its memory availability. The
message includes the ID of the memory server, and the amount of available
memory. In ACMS, we also monitor the variation of the available memory. If
available memory stays relatively stable with little variation, the broadcast
frequency is reduced accordingly to reduce the operation overhead without
impacting the freshness of the information.

2. REQUESTING MEM: This message, generated by a memory client is ei-
ther broadcast to all the other nodes, or sent out to one or more memory
servers, responding to a previous OFFERING MEM message. In this mes-
sage, the client indicates that it requests free remote memory. In the case
that a memory client has multiple potential memory servers to choose from,
the client selects a subset of servers based on certain criteria and arbitra-
tion mechanism, for example, First Come First Serve (FCFS) for simplicity,
Round Robin (RR) for fairness, Nearest Client First (NCF) for more energy
efficient collaboration, etc.1. One interesting future direction is how to se-
lect appropriate memory servers to optimize whole cluster performance and
energy efficiency considering node idle/active state.

3. GRANTING MEM: This message is sent out by a memory server to a given
memory client responding to a REQUESTING MEM message. Note that,
this does not bind a memory server with a memory client since the client
may get multiple grant messages from multiple servers.

4. ACK MEM: This message is sent by a memory client to one and only one
memory server responding to a GRANTING MEM message. This message

1 In our implementation we consider FCFS arbitration scheme. However, optimizations
based on other arbitration schemes, topology, real-time network traffic are left as
future work.
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binds a memory client with a memory server. The client may have to do some
arbitration to select one of the servers that granted memory. ACK MEM
message indicates the end of a handshaking transaction to bind a certain
memory server with a memory client.

5. RECLAIM MEM: In order to provide guarantees that a memory server does
not get hurt by much when it engages in memory collaboration, we give the
memory server the opportunity to stop donating its memory when deemed
necessary. To achieve that, when the memory server’s memory needs change
and gets classified as a memory neutral, it sends a reclaim message to the
remote client using its memory to reclaim its granted memory. Once the
remote client receives this message, it starts migrating its data back from
the remote server.

In order to reduce message broadcasting overhead in the system, we monitor
the ratio of memory clients to memory servers during run-time, and the respon-
sibility of broadcasting could be offloaded to the group with the smaller number
of nodes. For example, in a network environment heavy with memory servers,
it is more appealing to let “few” memory clients broadcast their memory needs,
instead of letting “many” memory servers broadcast their memory availability,
which leads to higher operation overhead.

Depending on who initiates the broadcast message, the memory acquisition
process consists of either a 3-way handshake protocol or a 4-way handshake
protocol, as illustrated in Figure 4.

4.4 Discussion

Memory Usage Monitoring. Memory usage can be monitored by either soft-
ware or hardware approaches. In our prototype (described in next Section),
we use OS counters to monitor the memory usage such as MemTotal, Mem-
Free, Buffers, Cached, etc. However, for hardware-based memory collaboration,
memory monitoring could be done via hardware techniques such as installing
a Memory Monitoring Circuit (MMON) [28]. MMON uses the classical stack
distance histogram (SDH) analysis [38] to estimate the memory requirements
(e.g., page miss rate, etc.) at run time. It is worth noting that current disk
swapping is an OS functionality. However, in Section 6, we discuss the option of
having a hardware accelerator to achieve very fast disk swapping. In such cases,
hardware-based memory monitoring becomes crucial for optimal performance.

Memory Collaboration Scalability. We discussed the broadcast-based mem-
ory acquisition protocol, which we implement and evaluate in a small-scale clus-
ter prototype (5 nodes) in the coming sections. However, when the scale of the
system grows to tens, hundreds, or even thousands of nodes [15], the scalability
characteristics must be taken into consideration.

In this subsection, we discuss how the proposed protocol scales with larger
cluster systems. We propose a Zone-Based Broadcast Protocol (ZBBP), which
limits each node to only broadcast the messages to its n-hop neighbors. The
broadcast and memory sharing scope is limited due to two main reasons:
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Fig. 4. Protocol illustration: (Left) 4-way handshake if server initiates broadcast,
(Right) 3-way handshake if client initiates broadcast

1. First, it reduces the broadcast overhead – processing time, interconnect traf-
fic which leads to reduction of interconnect power. A node can only broadcast
to its n-hop neighbors instead of the whole network. Hence, the overhead of
processing the broadcast messages and the burden on the network are greatly
reduced. Due to this, the overall overhead of collaborative memory is reduced
as well.

2. Second, it improves distance locality. Forcing a node to only share memory
within its n-hop neighbors instead of sharing memory with nodes located far
away is important for both performance and energy considerations. Accessing
close-by nodes incurs less latency, both due to smaller number of hops and
also less chance to encounter congestion.

Thy ZBBP works operates as follows. When a node broadcasts its memory
availability to its n-hop neighboring nodes, it incorporates the maximum hop
count; max hop as a parameter within the message. The maximum hop count is
initially set to the radius of the zone. For example, a maximum hop count is set
to 3 if a node is allowed to only share memory with other nodes at most 3 hops
away. The nodes who receive the message will continue to process the message
according to the discussion in Section 4.3, however, with a slight modification.
The node will extract the hop count from the message, if the hop count is
greater than zero, it decreases the hop count by one and forward the message
to all its neighbors except the one from whom it received the message. If the
hop count is zero, the node processes the message without forwarding it any
further. If a node receives the same message for the second time, it will discard
the message without processing/forwarding it to reduce broadcast overhead.
Additional methods, such as, Smart Gossip [16] can be applied to further reduce
broadcast overhead. However, discussing these works is outside the scope of this
paper.
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Memory Collaboration Reliability. When performing remote memory col-
laboration in clustered systems, reliability is an important issue to consider. Any
failure in remote paging handling would degrade system stability and even re-
sult in crashing the system. In our design, TCP/IP or RDMA is used as network
transport protocols. Since they are both reliable protocols, the message correct-
ness is guaranteed. other aspects of reliability, e.g., protection against crashed
remote memory servers, are discussed in [19]. Reliability techniques such as mir-
roring and parity can be applied as well to maintain normal operation in the
case of memory server crash. We do not elaborately discuss these issues in this
paper.

Next we will discuss the prototyping for our Autonomous Collaborative Mem-
ory System. Although in our exemplary implementation we consider FCFS arbi-
tration scheme to select a remote client/server, one might utilize other schemes to
deliver optimal energy efficiency or better fairness. Further optimizations based
on topology, real-time network traffic and workloads for energy-efficiency are left
as future work.

5 System Implementation and Prototyping

In this section, we describe the system implementation of the proposed ACMS
to conduct feasibility and benefit, and to quantify and evaluate the overhead of
remote memory paging. For prototyping purposes, we make the following three
design choices. (1) We leverage remote memory by applying remote memory
swapping (as opposed to remote memory mapping). One main reason, as we
also mentioned in Section 3, is that swapping requires less system modification
and provides a feasible and rapid implementation approach to study and analyze
ACMS performance and bottlenecks 7.

(2) We choose Ethernet as the interconnect among the computing nodes and
use TCP/IP suite as the communication protocol for inter-node communication.
However, our protocols can be also implemented over other types of interconnects
and communication protocols, for example, Remote DMA access (RDMA) over
infiniband [17], lightpeak [13], and PCIe.

Fig. 5. An example of a collaborative memory system consisting of two nodes, a mem-
ory client, and a memory server
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Fig. 6. ACMS dynamic memory collaboration activity represented by network traffic
monitoring. An injected run-time change at about the 30th second, shifts Node A to
become a memory client, and Node B to become a memory Neutral.

(3) We implement the dynamic ACMS memory detecting, allocation and de-
allocation protocol as a process running in user space. As a result, no kernel or
application modification is required.

A memory server node donates a portion of its memory space to a remote
memory client. Once the memory client runs short on its local memory, it disables
local, slow hard disk swapping, or assigns it a low priority. At the same time, it
enables remote swapping as shown in Figure 5.

In order to facilitate swapping over Ethernet, we have leveraged several extant
features in current operating system kernels. Among them is an external kernel
module called Network Block Device (NBD) [23].2 Once setup over network,
NBD allows the local file system at the memory client to access a remote file
system at the memory server transparently, hence, adding the ability to swap re-
motely. Further, the local swap device (i.e., HDD) can be assigned lower priority
via swapon/swapoff system calls.

The node classification algorithm, as well as the dynamic memory acquisition
protocol (discussed in Section 4.2, Section 4.3), are implemented as user-space
threads at each node. This allows each node to dynamically identify run time
memory usage and communicate information with other nodes to accomplish
ACMS objectives.

6 System Performance Evaluation

In this section, we evaluate the performance of the proposed ACMS comparing
to a traditional system with Hard Disk Drive (HDD) swapping, a system with

2 An NBD device consists of two components complementing each other, an NBD-
client and an NBD-server. In order for our remote paging to operate through an
NBD device, each memory server has to create a swap partition in its memory (i.e a
regular swap file, or a RAM disk). Then it attaches the swap partition to its NBD-
server. At the same time, each memory client establishes a connection between the
NBD-client daemon at the memory client side, and the NBD-server at a memory
server side.
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Solid State Drive (SSD) swapping, to a system with static memory collabora-
tion, and to a system with enough local memory. The summary is that ACMS
can significantly improve the memory client performance (up to 3x) without per-
ceivable performance impact on memory servers compared to HDD swapping,
and performs on par with SSD swapping.

Our experimental setup consists of multiple (up to 5) 2.6GHz Intel R© CoreTM

i7-based machines [14], each one having 4GB of RAM, and a 250GB 7200RPM
HDD. Machines are running a Fedora 14 [10] OS with a Linux kernel version
2.6.35, and are connected via 1Gbps Ethernet NICs. Further, we are using a
network block device version 2.9.23. In order to control the amount of available
memory available at the local node to study system behavior under different
memory provision and usage conditions, we have developed a memory balloon
that inflates and locks a user-specified amount of local memory. To test and
analyze the system behavior, we use both micro benchmarks we developed for
controlled environment analysis, as well as real-world applications such as SPEC
CPU2006 [37], TPC-H [41] with PostgreSQL 9.0.4 DataBase, Apache Hadoop [2],
and SPECjbb [36].

Dynamic Behaviour. Figure 6 shows the autonomous operation of our ACMS
dynamics. The figure shows the network traffic at two nodes, a memory server
node A (top), and a memory client node B (bottom). The left half of both
figures shows the traffic while nodes A and B collaborate with each other (i.e.,
A is servicing B). At around the 30th second, an application with large memory
demand starts on node A, meanwhile memory demand on node B decreases
gradually. This run-time change causes A to become a memory client and B
a memory neutral. As a result, and as described in Section 4, A sends out a
reclaim message to node B to reclaim its memory back. Once B receives the
message, and starts migrating its data back which lasts for about 10 seconds.3

Meanwhile, A starts collaborating with a third node C (not shown in the figure)
with A acting as a memory client. The traffic at the right portion of the figure
shows the swapping activity being sent out to node C. At the same time, node
B becomes a neutral that does not collaborate with remote nodes. This visual
illustration shows the dynamics and elasticity of the ACMS protocol given the
changing memory requirements for running workloads.

Performance Comparison against Local Memory and HDD. Figure 7
shows the application performance (as measured by completion time in seconds)
for various TPC-H queries, and for sorting various data structure sizes using
Hadoop workloads. These experiments are conducted using two machines only
with one acting as a memory server, and the other acting as a memory client,
with the configurations mentioned in Section 6. The legends in the figures rep-
resent the completion time while running on a system with enough (4GBs free)
local memory, a system with limited (less than 200MBs free) local memory and

3 The time it takes for a client to migrate its data back depends on the network speed
(e.g., 1Gbps, 10Gbps, etc.) and the amount of data that resides on the remote swap
space.
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Fig. 7. Performance of TPC-H and Hadoop while running with enough local memory,
limited local memory/swapping to remote memory, and limited memory/swapping to
HDD

swapping to remote memory, and a system with limited (less than 200MBs) local
memory and swapping to HDD, respectively. As shown in the figures, swapping
to remote memory can improve the performance by an average speedup of 1.4x
in TPC-H and 3.1x in Hadoop.

The reason why TPC-H provides less performance improvement compared
to Hadoop is that, TPC-H is optimized to operate within the available local
memory. If the system has limited local memory, TPC-H is optimized to reduce
its memory footprint in order to limit disk swapping. On the other hand, Hadoop
does not pay similar attention to the available local memory, thus resorting to
swapping more frequently. This shows that having an efficient swap device could
potentially reduce the programming effort needed to optimize workloads such as
TPC-H.

The figures also show that running with enough local memory renders much
better performance compared to remote swapping, which is expected. Accessing
data in the local main memory is faster than accessing data in a remote memory
space, due to both the network latency and the swapping overhead (discussed
in more detail in section 7).

Thus far, we have shown that remote swapping improves performance for
memory clients. However, this performance improvement should not come at
the expense of performance degradation for memory servers. Figure 8 shows the
completion time for several memory intensive SPECCPU2006 applications run-
ning on memory servers. The results show that the applications’ performance
degraded very little, confirming the resilience of memory servers to memory col-
laboration. This robust behavior is a result of the ACMS adaptive design which
can detect the lack of memory at the memory server side and signal remote clients
to relinquish their allocated portions and migrate their data back. Other work-
loads such as TPC-H, and Hadoop show similar trends to the SPECCPU2006
benchmarks, hence, we omit these figures.

Performance Comparison against SSD. Solid State Drives (SSDs) present
a promising technology to replace HDDs since they offer an order of mag-
nitude lower access time latency and more reliable structure as they don’t
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Fig. 8. Impact on memory servers while running several SPECCPU2006 applications

include spinning disks and movable read/write heads, however at a much higher
price. Figure 9 shows the performance of SPECjbb as measured by the number
of instructions retired per unit time. The figure compares the performance of
SPECjbb while running with enough local memory, swapping to remote mem-
ory, and swapping to SSD. The x-axis in the figure shows the run-time in seconds.
As can be seen, on average, swapping to remote memory performs on par with
swapping to SSD device. The figure also shows that both schemes fall short
behind running with enough local memory.

In summary, memory collaboration achieves an average speedup of 3x com-
pared to a non-collaborative memory system, performs on par with SSDs and
falls short behind running with enough local memory.

7 Remote Swapping Overhead Analysis

As shown earlier, remote memory swapping achieves significant speedups com-
pared to traditional disk swapping, and performs on par with SSD swapping.
However, the performance of remote memory swapping also falls way short com-
pared to running the application entirely on local memory, even with the consid-
eration of interconnect propagation delay, which is a physical limitation. In this

Fig. 9. Performance of SPECjbb as measured by the number of instructions retired for
swap to remote, swapping to SSD, and using local Memory
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section, we investigate the timeline of remote swapping and potential overhead
sources. The high level summary of the analysis is that the network stack and
kernel swapping handling process are two major sources of low performance.
Based on the understanding, we provide insights on how to reduce the overhead
and improve performance.

CPU Load Consideration. In our prototype, all processing, both on the client
and server side, is done by the host processor. There are no special hardware
accelerators (e.g., remote DMA engine) that handle portions of the processing.
However, our system profiling has shown that CPU is idling more than 70%-80%
of the time waiting for I/O requests to complete. This shows that CPUs are not
overloaded.

Network Bandwidth Consideration. We conducted our experiments over
1Gbps Ethernet links between clients and servers. Our network monitoring tools
confirmed that only about 50% of the network bandwidth is being utilized. In
today’s data center and cluster system, usually 10Gbps Ethernet links are not
uncommon. Other Interconnects such as Lightpeak [13] has significantly higher
physical bandwidth. Hence, network bandwidth is not a main bottleneck, at least
before other bottlenecks are removed.

Fig. 10. Completion time and CPU utilization for various swapping schemes

Network Stack and Swapping Overhead. In our prototype, all communica-
tions between nodes go through the TCP/IP stack and an NBD device, making
them potential major bottlenecks. In order to show the impact of network stack
and the NBD device, we conducted the following experiment. We created a
RAMDisk as a local swap device on the local memory itself. When the system
runs short on memory, it starts swapping to/from the local RAMDisk. This op-
eration does not involve any TCP overhead or NBD device overhead since the
swap device is located locally. Figure 10 shows the completion time for a micro
benchmark application while running with enough local memory, limited local
memory/swapping to local RAMDisk, limited local memory/swapping to remote
machine over network, limited local memory/swapping to local disk. The figure
shows two interesting observations.
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First, avoiding the network delay including TCP/IP stack, NBD device op-
eration and propagation delay, can save almost 50% of the overhead (319sec to
160sec). Considering the very small propagation delay (on the order of a few
micro-seconds), the network stack proves to be a major bottleneck.

Second, even though the RAMDisk is located locally (no network involved),
swapping to RAMDisk still performs much worse than running with enough local
memory. The reason for that will become clear if we look at the top curved line
in the same figure which shows the CPU utilization of the running application.4

The CPU utilization is 100% when the application runs entirely on local memory,
20% while swapping to RAMDisk, 8% while swapping to remote memory, and
less than 1% while swapping to local disk. The bottom curved line represents
the CPU utilization while executing user-space code only (i.e., excluding system
CPU utilization), which shows that even those modest CPU utilization numbers
do not correspond to useful work all the time. Thus, kernel swapping proves to
be another major bottleneck.

Next, we are going to discuss the network and kernel swapping overhead in
details.

7.1 Network Overhead Analysis

In this subsection, we investigate the overhead induced by accessing remote
memory through the network over TCP/IP stack. We provide an overview on
the life cycle of bringing a page from remote memory into local memory in order
to understand the cost of network related operations.

Fig. 11. Life cycle of a packet over the network

Figure 11 shows the end-to-end life cycle of a packet from the sender to the
receiver. For the sender side, the processing begins when the NBD is called to
send a packet over the network. The packet is copied into the TCP socket for
TCP layer processing, e.g., checking the socket’s write queue and building TCP
header. TCP transmit skb() then sends the packet to IP layer for IP processing.

4 CPU utilization is measured as (CPU time executing user space code (userTime) +
CPU time executing system code (systemTime))/Wall clock time.
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Fig. 12. Measured Round Trip Time (RTT) using 1Gbps Ethernet over local network

Finally the IP datagram is put into device queue, and the host signals the Net-
work Interface Card (NIC) to transmit. Upon receiving the signal (called door
bell), NIC DMAs the packet from the host, performs necessary MAC processing,
sends the packet over the wire using a pre-configured interface, and updates the
appropriate descriptors.

Similarly, on the receiver side, NIC receives a frame from the wire and extracts
the TCP/IP packets by removing the frame delineation bits. NIC also performs
CRC check sum to confirm the correctness of the packet. The NIC then grabs
the next available descriptor, which indicates the memory location for the NIC
to copy the packet to. the NIC DMAs the packet to the pre-allocated buffer and
interrupts the host for packet processing. The packet travels through IP layer
processing, TCP layer processing and finally reaches the destination through
socket buffer.

Due to various processing delays in the stack and the NIC, the average Round
Trip Time (RTT) for a packet can reach 250us for 1Gbps Ethernet card on client
machines or low end servers, as we measured on our system. (Figure 12 shows
the scatter-plot of packet RTTs for a TCP connection.)

Comparing the latency of retrieving pages from remote memory over unopti-
mized network stack to the 60ns local memory access latency justifies, partially,
the long CPU I/O waiting times and low CPU utilization.

7.2 Kernel Swapping Overhead Analysis

As mentioned earlier, even if the network overhead is eliminated (RAMDisk
case), the swapping approach does not perform well compared to running on the
local memory. There are several reasons why the CPU utilization is low when
applications resort to swapping. We summarize these issues into the following.

1. When a page fault occurs, an exception is raised followed by a CPU pipeline
flush in order to service the page fault routine. Pipelining is a powerful
technique to hide the long memory latency. Flushing the pipeline frequently
reduces the effectiveness of latency hiding, hence rendering a low CPU uti-
lization. Further, executing the page fault routine pollutes the data and in-
struction caches, TLBs, and key processor structures. Prior work [35] shows
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that if for example, SPEC-JBB throws an exception once every 1k instruc-
tion, its performance could be degraded by up to 48% due to the aforemen-
tioned reasons.

2. When a page fault occurs, the OS scheduler assumes that the page fault is
going to take long time to finish, hence, it context-switches the process out
and adds it to the I/O waiting queue. This adds a fixed overhead to every
page fault regardless of how fast it gets serviced.

3. If the memory pressure is very high, the OS blocks the running process until
the kernel swap daemon (AKA kswapd) frees some memory. This scenario is
known as congestion wait. Our kernel probing and profiling of the kswapd
indicates that the function get swap page - which is used to find a potential
contiguous space in the swap out device to allocate swapped-out pages, con-
sumes more than 45% of the system CPU clock cycles, and more than 74%
of the retired instructions.

4. Under high memory pressure, the kernel performs heavy page scanning to
figure out which page is next to be replaced (or swapped).

5. When the system has to free pages, some clean pages get dropped from the
page cache. These clean pages may correspond to the program code that
is already running. In which case, the OS has to bring them back as the
program continues execution.

Therefore, once the system resorts to swapping, regardless of how fast or op-
timized the swap device is (remote memory, SSD, etc.), the system performance
degrades significantly due to the inherent limitation in kernel swapping method
which is designed for very slow devices such as the HDD.

7.3 Remote Swapping Optimizations

We discuss several directions in both software and hardware space to reduce the
remote swapping latency and improve the CPU utilization and overall system
performance.

Network Optimizations

1. By applying several network optimizations such as turning off the Nagle
Algorithm, TCP delayed ACK [26], and enabling Direct Cache Access or
Direct IO [12], the average RTT for a packet could be reduced from 250μs
to around 22μs or even lower. Table 1 shows the measured RTT on a high
end server system with different commercial Ethernet NICs. With smaller
RTT, the application runtime can be reduced as well.

2. Reducing TCP/IP processing overhead and the data copy latencies by using
a special interconnect with low latency, and protocols that bypass the tradi-
tional TCP/IP stack. One leading technology is InfiniBand [17,11] (IB) which
provides very low latency and high throughput (40Gbps). Native IB verbs
form the lowest software layer and allow Remote Direct Memory (RDMA)
between local memory and remote memory while bypassing the operating
system. Using full-duplex quad data rate (QDR) IB of 40Gbps, we measured
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Table 1. Measured RTT on a server platform

Mellanox Intel Broadcom Solarflare

12μs 16.8μs 21.6μs 7.4μs

the average packet RTT to go below 5μs. Even with Ethernet NICs, bypass-
ing default TCP/IP stack can also reduce the latency. The lowest measured
latency on Mellanox IB NIC with RDMA is about 1.3μs, while lowest latency
of the Ethernet counterpart (with RDMA) is measured at about 1.6μs. This
potentially will improve the performance significantly.

Kernel Swapping Optimizations

1. It is crucial to limit the severe performance impact of exceptions raised by
page faults in order to reduce the drop in CPU utilization. To achieve that,
the OS can leverage multi-core processors by servicing the page-fault on one
of the idle core [35]. This potentially prevents CPU pipeline flushing and
TLB, data, and instruction cache pollution, hence, rendering higher CPU
utilization and better performance.

2. The virtual memory management attributes can be manipulated based on
the swap device characteristics. Such attributes includes: (1) the number of
pages to fetch at a time when the swap device is accessed (i.e., prefetch-
ing). (2) the time quantum at which the OS starts freeing dirty pages from
memory. (3) the threshold at which the OS consider its free memory to be
low.

3. The Linux kernel attempts at reducing the latency of the HDD’s head spin-
ning by having the I/O elevator rearrange and aggregate I/O requests that
belong to the same disk sector. However, with fast swap devices such as re-
mote memories and SSDs, there is no head spinning involved, hence, there
is no need to stall I/O requests trying to aggregate them. We set the I/O
elevator to noop which issues I/O requests to the swap device as they are
ready.

4. Having a hardware accelerator to intercept page fault interrupts and service
them in hardware, thus effectively avoiding kernel context switches. The
accelerator manages the page table for swapping and establishes a link with
a remote memory server to facilitate efficient swapping. Using this approach,
the page swapping does not have to be limited to page boundary. Instead,
the size of swapped data can be adaptively adjusted based on application
requirements. Although this optimization could potentially render the best
performance, it also comes with the requirement for hardware modification,
as well as limited OS modifications (for page table synchronization).

We have evaluated the prefetching optimization and applied it to our ACMS
system. By default, the Linux kernel fetches 8 pages from the swap device when
servicing a page fault, in an attempt to reduce swap device accesses. We modified
this default parameter over a logarithmic range from 1 to 1024 pages. For our
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micro benchmark, we found that performance improves up to 512 pages, beyond
which prefetching starts hurting the application. Figure 13 shows the perfor-
mance of the same micro benchmark before and after applying the 512-page
prefetching optimization. This experiment shows that appropriate prefetching
improves this micro benchmark performance by about 25% over unoptimized
remote swapping. Note that, since we know the access pattern of the micro
benchmark, which is sequential in our case, then we could expect to see benefit
by applying the page prefetching technique. However, with more complicated
or hard-to-predict access patterns, prefetching may not be a fruitful optimiza-
tion. This could be done dynamically by monitoring the application’s behavior
(e.g., using SDH), and apply the prefetching optimization if a sequential access
pattern is observed.

Fig. 13. Completion time for various swapping schemes given the page prefetching
optimization

8 Conclusions

Memory collaboration reduces capacity fragmentation in clustered architectures;
it allows nodes that need additional memory space to place their data in re-
mote memories instead of slow storage. Current memory collaboration mech-
anisms lack the ability to provide autonomous memory collaboration and to
adapt dynamically with oscillating memory needs by various applications. Fur-
ther, in order to optimize the performance of memory collaboration, detailed
understanding of the major performance bottlenecks in the end-to-end memory
collaboration is necessary.

To address these issues, in this paper, we have developed an Autonomous
Collaborative Memory System (ACMS) that permits dynamic, run time mem-
ory collaboration and provides QoS guarantees for memory servers, i.e., nodes
that donate their memory for remote use. We have implemented a prototype re-
alizing the ACMS and our results show up to 3x performance speedup compared
to non-collaborative memory system. Further, we conduct a detailed analysis
to identify several memory collaboration bottlenecks, and provide insights as to
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how to overcome such bottlenecks to further improve memory collaboration per-
formance. Our investigation shows that network stack and kernel swapper are
the major performance bottlenecks. In the future, we will investigate a detailed
implementation and evaluation of the hardware-assisted paging in an attempt
to deliver better remote memory access latency that gets close to the latency of
the local memory.

9 Future Work

We are investigating the scalability of our ACMS for large scale clusters, e.g.,
seamicro’s new system with more than 1000 nodes. In such systems, there are
many interesting questions to be answered, such as: how nodes should commu-
nicate efficiently? how to choose memory severs/memory clients for optimized
cluster energy consumption? etc.
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Abstract. We discuss a fault-tolerance of multilayer perceptrons in
which input and output learning examples are patterns consisting of
0s and 1s. A type of faults to be dealt with is a multiple neuron and/or
weight fault where neurons are in the hidden layer and weights are be-
tween the hidden and output layers. We theoretically analyze the con-
dition when a multilayer perceptron is tolerant to multiple neuron and
weight faults. According to the analysis, we propose two value injection
methods denoted as VIM-WN and VIM-N to make multilayer percep-
trons tolerant to all multiple neuron and/or weight faults whose values
are in a multi-dimensional interval. In VIM-WN, the extreme values
specified by the fault ranges are set to the outputs of the selected neu-
rons and the selected weights of the links at the same time in a learning
phase. In VIM-N, the extreme values specified by the fault ranges are
set only to the outputs of the selected neurons likewise. First, we present
an algorithm based on VIM-WN and prove that a multilayer perceptron
which has successfully finished learning by VIM-MN is tolerant to all
multiple neuron-and-weight faults whose values are in the interval, un-
der the condition that the multiplicity of the multiple fault is within a
certain number specified by faulty neurons and weights. Next, we present
them concerning VIM-N likewise. By simulation, we confirm the analyti-
cal results for VIM-WN and VIM-N. We also by simulation examine the
degrees of fault tolerance concerning multiple neuron-and-weight faults
for VIM-N and VIM-W where VIM-W is the method proposed in [1] and
show that VIM-N and WIM-W as well as VIM-WN are almost equally ef-
fective in coping with multiple neuron-and-weight faults. In addition, we
show the data in terms of the learning time, successful rate of learning.

Keywords: fault-tolerance, multilayer perceptron, value injection,
multiple fault, weight and neuron fault, learning method.

1 Introduction

One of the attractive features of artificial neural networks is their capability
to adapt themselves to special environment conditions, by “training” their
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connection strengths (weights). Especially, feed-forwardneural networkswith neu-
rons arranged in layers, called the multilayer perceptrons, are widely used in com-
putational or industrial fields. Furthermore, as VLSI technology has developed,
the interest in implementing them in hardware is growing. In this case, there is the
possibility of low yield and/or reliability of the system, if there is no strategy for
coping with defects or faults.

On the other hand, it may be thought that a multilayer perceptron, which is
proposed as a model for the cerebral neural network, has a potential ability of
fault-tolerance. On this point, Phatak and Koren discussed the fault-tolerance
through replications [2]. By the benchmark test for the Sonar nets [3], they
showed that more than 99% of all possible single weight faults, which are stuck at
+W , 0, or −W , are tolerated without any additional redundancy, but complete
(100%) fault-tolerance is not achieved even at 6 extra replications. Furthermore,
Nijhuis et al. showed that fault-tolerance behavior is not self-evident, but it must
be activated by an appropriate learning scheme [4]. Since then, many ideas to
make the multilayer perceptron fault-tolerant have been studied in the literature,
e.g., (see [5] – [13]). These works evaluated their fault-tolerances to the faults
with the fixed values like stuck-at faults. On the other hand, one of the authors
proposed a value injection method which makes multilayer perceptrons fault-
tolerant to multiple weight faults [1]. In addition, some of the authors proposed
the “deep learning methods” which makes multilayer perceptrons fault-tolerant
to multiple faults of weights and neurons [14]. This is not a value injection
method but the extended back-propagation algorithm which adjusts the learning
parameters according to the degree of fault-tolerance.

Concerning value injection methods, the works of e.g., [15] – [19] deal with
the value injection methods for fault-tolerances of multilayer perceptrons or RBF
networks. These works show the convergences and/or effective objective func-
tions of their method, and/or the relation between their injections and output
errors such as mean-square errors. Some of the works show them theoretically,
but the works does not deal with the methods to obtain 100% fault-tolerance to
some ranges of faults.

In this paper, we discuss a fault-tolerance of multilayer perceptrons in which
input and output learning examples are patterns consisting of 0s and 1s. A type
of faults to be dealt with is a multiple neuron and/or weight fault where neurons
are in the hidden layer and weights are between the hidden and output layers.
We theoretically analyze the condition that a multilayer perceptron is tolerant
to multiple neuron and weight faults. According to the analysis, we propose two
value injection methods denoted as VIM-WN and VIM-N to make multilayer
perceptrons tolerant to all multiple neuron and/or weight faults whose values
are in a multi-dimensional interval. In VIM-WN, the extreme values specified by
the fault ranges are set to the outputs of the selected neurons and the selected
weights of the links at the same time in a learning phase. In VIM-N, the extreme
values specified by the fault ranges are set to the outputs of the selected neurons
likewise. First, we present an algorithm based on VIM-WN and prove that a
multilayer perceptron which has successfully finished learning by VIM-MN is
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tolerant to all multiple neuron-and-weight faults whose values are in the interval,
under the condition that the multiplicity of the fault is within a certain number
specified by faulty neurons and weights. Next, we present an algorithm based
on VIM-N and mention without the detail analysis that a multilayer perceptron
which has successfully finished learning by VIM-N is tolerant to all multiple
neuron faults in a multi-dimensional interval , under the condition that the
multiplicity of the fault is within the number of faulty neurons. By simulation, we
confirm the analytical results for VIM-WN and VIM-N. We also by simulation
examine the degrees of fault tolerance concerning multiple neuron-and-weight
faults (simultaneous neuron and weight faults) for VIM-N and VIM-W where
VIM-W is the method proposed in [1] and show the interesting result that VIM-
N and WIM-W as well as VIM-WN are almost equally effective in coping with
multiple neuron-and-weight faults. In addition, we show the data in terms of the
learning time, successful rate of learning.

This paper is the extension of [20].

2 Multilayer Perceptron

Fig.1 shows a multilayer perceptron (simply denoted as an “MLP” in the follow-
ing). Each neuron in a layer is connected to all neurons in the adjacent layers
through uni-directional links (synaptic weights). The first and the last layers are
called the input and output layers respectively, and one between them is called
a hidden layer. In this paper, we deal with only MLPs which have one hidden
layer. The output of each neuron (oi) is given by

oi = f (Xi) (1)

Xi =

Npre∑
j=0

wij · uj (2)

where wij is the value of the synaptic weight from the j-th neuron in the pre-
ceding layer to the i-th neuron ((i, j) is called to be the index of the weight),
Npre is the number of the neurons in the preceding layer connected to the i-th

Hidden layer

Input layer Output layer

OutputInput

Fig. 1. 3-layer multilayer perceptron



Multilayer Perceptrons Which Are Tolerant to Multiple Faults 45

neuron, uj is the output of the j-th neuron in the preceding layer (j is called to
be the index of the neuron), wi0 is the synaptic weight connected to the input
u0 = 1 corresponding to the threshold, Xi is called the “inner potential” of the
i-th neuron, and f is the activation function (the sigmoid function) of a neuron
defined by

f(x) =
1

1 + exp(−x)
(3)

The learning process called ”back-propagation algorithm” is based on a
steepest-descendant gradient rule. Let O be a set of indices of the neurons in the
output layer, and let P be a set of indices of the learning input examples. The
change of each weight for the p-th learning input example (named wp

ij) is done
as follows:

Δwp
ij = −η · ∂Ep

∂wij
(4)

where Ep =
∑

i∈O(t
p
i − opi )

2/2, tpi (= 0 or 1) is the learning output example of
the i-th neuron in the output layer for the p-th learning input example (i ∈ O
and p ∈ P ), opi is the output of the i-th neuron in the output layer for the p-th
learning input example, and η is a parameter of a positive real number.

Then, the weight modification is repeated until the following condition is
satisfied.

max
p∈P,i∈O

(tpi − opi )
2 < e2o (5)

where eo is called the output error in learning phase. If an MLP obtained by a
learning with P and eo satisfies this condition, the learning is said to have finished
successfully and the MLP obtained is called to be “successful” in learning phase
in terms of P and eo (or “successful” in short if no confusion occurs).

3 Fault Model

The three important assumptions concerning faults are denoted as follows.

Assumption 1 (The range of faults)
Only neurons in the hidden layer and any weights may be faulty, and other parts
(that is, neurons in the input and output layers) are fault-free.

Assumption 2 (The value of a weight)
The value of each weight is assumed to be finite and for convenience of analysis,
in the range from −1 to 1 even when it is faulty.
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Line

Connection
Weight

Neuron

Line

fan out

Fig. 2. Elements constructing a neuron

Assumption 3 (The output value of a neuron)
The output value of each neuron is assumed to be in the range of the output value
of the neuron defined by it’s activation function, that is, in the range from 0 to
1 even when it is faulty.

In the following, we mention that these assumptions are reasonable.

1. Concerning Assumption 1, usually, it is assumed that faults occur at neurons
themselves, weights, and interconnecting links (see Fig.2). It can be consid-
ered as a weight or a neuron fault that a link snaps or is stuck to some value.
It is natural to assume that neurons in the input layer are fault-free because
they are only input terminals, that is, so simple circuits. Next, faults of neu-
rons in the output layer are fatal indeed. However, this paper deals with the
case that they are fault-free, from the reason that making each neuron in the
output layer stronger (that is, more fault-tolerant) than one in the hidden
layer, at the fabrication time, is a practical choice, as the number of neurons
in the output layer is small.

2. Concerning Assumptions 2 and 3, we deal with the case where values of
weights and output values of neurons are finite. It is considered that the
case is reasonable in a real world or hardware realization. Then the values of
weights are in a range specified by two finite values +W and −W (W > 0).
Similarly, output values of neurons are considered to be in a range specified
by 0 and U (U > 0). Let the value of a weight be w (−W ≤ w ≤ +W )
and let it’s normalized value, that is, divided by W be ŵ. Then, w = ŵW
and −1 ≤ ŵ ≤ +1. Similarly, let the output value of a neuron be u and
let it’s normalized value by U be û. Then, u = ûU and 0 ≤ û ≤ 1. Let
the inner potential of a neuron be X =

∑
wiui. Then, X/(WU) =

∑
ŵiûi

and X/(WU) is the normalized inner potential of X . This leads to Eq.(7).
Then, it will easily be seen that the general finite case can be analyzed using
the normalized inner potential as in the analysis in the next section and the
similar results to those in the next section are obtained.
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Definition 1. (Multiple fault) A weight fault is a pair (i, x) of i and x, where
i and x denote the index and the value of a faulty weight, and they are said to
be the index and the value of the weight fault, respectively. A neuron fault is a
pair [j, y] of j and y, where j and y denote the index and the output value of a
faulty neuron, and they are said to be the index and the value of the neuron fault,
respectively. A successful MLP is said to have a weight fault (i, x) if the value of
the weight with index i is stuck to x. Similarly, a successful MLP is said to have
a neuron fault [j, y] if the output of the neuron with index j is stuck to y. A set
of faults F is called a multiple fault if all the faults in F occur simultaneously.
Let N̂F = {j | [j, y] ∈ F} and let ŴF = {i | (i, x) ∈ F}. Then, (N̂F , ŴF ) is
called the index set of F . �

The concepts of fault-tolerance in an MLP are defined as follows.

Definition 2. (Fault tolerance) Let opi (F ) be the output of the i-th neuron in
the output layer for the p-th learning input example when a fault F occurs in a
successful MLP. If the following inequality is satisfied

max
p∈P,i∈O

(tpi − opi (F ))2 < e2o (6)

the MLP is called to be fault-tolerant to F within the output error of eo (or
simply ”fault-tolerant to F” if no confusion occurs). F which does not satisfy
Eq.(6) is called to be dangerous. �

Notation:

– IH denotes a set of indices of neurons in the hidden layer.
– N̂F (⊆ IH) denotes a set of indices of faulty neurons in the hidden layer.
– Ŵ i

F (⊆ O × IH) denotes a set of indices of faulty weights from the neurons
in the hidden layer to the i-the neuron in the output layer.

– h(Ŵ i
F ) = {j ∈ IH |(i, j) ∈ Ŵ i

F }.
– Γ ((N̂F ,∪i∈OŴ

i
F ) : k) denotes a set of all multiple faults with index set

(N̂F ,∪i∈OŴ
i
F ) such that |N̂F ∪ h(Ŵ i

F )| ≤ k for all i ∈ O.

Definition 3. (Degree of fault tolerance)

1. An MLP is called to be k-WNFT if it is fault-tolerant to any multiple fault
F in Γ ((N̂F ,∪i∈OŴ

i
F ) : k). If an MLP is k-WNFT but not (k + 1)-WNFT,

the ”degree of multiple WNFT” of the MLP is called to be k.
2. An MLP is called to be k-NFT if it is fault-tolerant to any multiple fault F

in Γ ((N̂F , φ) : k). If an MLP is k-NFT but not (k + 1)-NFT, the ”degree of
multiple NFT” of the MLP is called to be k.

3. An MLP is called to be k-WFT if it is fault-tolerant to any multiple fault
F in Γ ((φ,∪i∈OŴ

i
F ) : k). If an MLP is k-NFT but not (k + 1)-NFT, the

”degree of multiple WFT” of the MLP is called to be k. �

From the definition, we have the following.
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Property 1. If an MLP is k-WNFT, it is k-NFT and k-WFT. �

Now, we discuss the tolerance of an MLP to multiple faults. For convenience of
explanation, we suppose that an MLP has only one neuron in the output layer
which is denoted as oneuron. Let the p-th learning input example be input to the
MLP, and let Xp be the inner potential of oneuron. Then,

Xp =
∑
i∈IH

wiui (7)

where ui (1 ≥ ui ≥ 0) is the output value of the neuron with index i (i ∈ IH),
and wi (1 ≥ wi ≥ −1, i ∈ IH) is the weight of the link from the neuron with
index i to oneuron.

Let X(p,+,i) be the value of Xp in the MLP when ui and wi simultaneously
set to +1, and let X(p,−,i) be the value of Xp when ui is set to +1 and wi is set
to −1 simultaneously. Let

Δ(p,+,i) = X(p,+,i) −Xp = 1− wiui (8)

and

Δ(p,−,i) = X(p,−,i) −Xp = −1− wiui (9)

Then, (1−wiui) ≥ 0 and (−1−wiui) ≤ 0 because of Assumptions 2 and 3. We
sortΔ(p,+,i)’s (i ∈ IH) and −Δ(p,−,i)’s (i ∈ IH) in descending order, respectively,
as follows.

Δ(p,+,q1) ≥ Δ(p,+,q2) ≥ · · · ≥ 0,

and

−Δ(p,−,r1) ≥ −Δ(p,−,r2) ≥ · · · ≥ 0

We denote the sets of the third elements ∗’s of the superscripts of M largest
Δ(p,+,∗)’s and −Δ(p,−,∗)’s as

Qp
M = {q1, ..., qM}, (10)

and

Rp
M = {r1, ..., rM}, (11)

respectively.
Let X(+,Qp

M) be the inner potential of oneuron when for all i’s ∈ Qp
M ui’s and

wi’s are simultaneously set to 1’s, and let X(−,Rp
M) be the inner potential of

oneuron when for all i’s ∈ Rp
M ui’s are set to 1’s and wi’s to −1’s simultaneously.

Then,

X(+,Qp
M ) =

∑
i∈Qp

M

1 +
∑

i∈IH−Qp
M

wiui (12)

X(−,Rp
M) =

∑
i∈Rp

M

−1 +
∑

i∈IH−Rp
M

wiui (13)
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Let Xp
F be the inner potential of oneuron when the MLP has a multiple fault

F whose index set is (N̂F , ŴF ). Then, X
p
F is expressed as

Xp
F =

∑

i∈(IH−ŴF−N̂F )

wiui +
∑

i∈(ŴF−N̂F )

w′
iui

+
∑

i∈(N̂F−ŴF )

wiu
′
i +

∑

i∈ŴF∩N̂F

w′
iu

′
i (14)

where w′
i is the value of the faulty weight in F with index i between the hidden

and output layers and u′
i is the output value of the faulty neuron in F with index

i in the hidden layer.
We have the following results.

Theorem 1. X(+,Qp
M) ≥ Xp

F ≥ X(−,Rp
M) for any fault F such that |N̂F ∪

ŴF | ≤ M .

The proof is detailed in Appendix A. �

From Theorem 1 and that the activation function is monotonically increasing,
we have the following.

Lemma 1. For any fault F such that |N̂F ∪ ŴF | ≤ M ,

f(X(+,Qp
M)) ≥ f(Xp

F ) ≥ f(X(−,Rp
M)) (15)

(tp − f(X(+,Qp
M)))2 ≥ (tp − f(Xp

F ))
2 if tp = 0. (16)

(tp − f(X(−,Rp
M)))2 ≥ (tp − f(Xp

F ))
2 if tp = 1. (17)

where f is the activation function defined by Eq.(3) and tp (= 0 or 1) is the
learning output example of oneuron for the p-th learning input example. �

In a general case where an MLP has n neurons in the output layer, the inner
potential of the i-th neuron in the output layer Xp

i for the p-th learning example
is denoted as

Xp
i =

∑
j∈IH

wijuj.

We express Xp
i in a convenient form to apply the foregoing analysis to Xp

i as
follows.

Xp
i =

∑
j∈IH

w
(i)
j uj

where w
(i)
j = wij . Considering the i-th neuron in the output layer as only one

neuron in the output layer, we apply the foregoing analysis toXp
i expressed in the

above form. Then, those corresponding to Qp
M and Rp

M in Eq.s (10) and (11) are

derived , which are denoted as Qp
i,M and Rp

i,M , respectively. Further, X
(+,Qp

i,M )

i ,

X
(−,Rp

i,M)

i and Xp
i,F for the inner potential of i-th neuron, are similarly defined

as in Eq.s (12), (13) and (14), respectively. Then, we have the following Lemmas.
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Lemma 2. For any fault F with index set (N̂F , Ŵ
i
F ) such that |N̂F ∪h(Ŵ i

F )| ≤
M ,

f(X
(+,Qp

i,M )

i ) ≥ f(Xp
i,F ) ≥ f(X

(−,Rp
i,M)

i ) (18)

(tpi − f(X
(+,Qp

i.M )
i ))2 ≥ (tpi − f(Xp

i,F ))
2 if tpi = 0. (19)

(tpi − f(X
(−,Rp

i,M)

i ))2 ≥ (tpi − f(Xp
i,F ))

2 if tpi = 1. (20)

�

Lemma 3. Let an MLP have n neurons in the output layer. Let F be any
multiple fault in Γ ((N̂F ,∪i∈OŴ

i
F ) : M) . Then, for i ∈ O(1 ≤ i ≤ n) and p ∈ P

such that tpi = 0,

max
p∈P,1≤k≤n,tpk=0

(tpk − f(X
(+,Qp

k,M)

k ))2 ≥ (tpi − f(Xp
i,F ))

2, (21)

and for i ∈ O(1 ≤ i ≤ n) and p ∈ P such that tpi = 1,

max
p∈P,1≤k≤n,tpk=1

(tpk − f(X
(−,Rp

k,M)

k ))2 ≥ (tpi − f(Xp
i,F ))

2. (22)

�

Theorem 2. An MLP with n neurons in the output layer is fault-tolerant to
any multiple fault F in Γ ((N̂F ,∪i∈OŴ

i
F ) : M) if and only if

max
p∈P,1≤k≤n,tpk=0

(tpk − f(X
(+,Qp

k,M
)

k ))2 < e2o (23)

and

max
p∈P,1≤k≤n,tpk=1

(tpk − f(X
(−,Rp

k,M)

k ))2 < e2o (24)

Proof. The if-part: Suppose that Eq.s (23) and (24) hold and there is a dangerous
multiple fault F in Γ ((N̂F ,∪i∈OŴ

i
F ) : M). Then, (tpi − Xp

i,F )
2 ≥ e2o for some

p ∈ P and i ∈ O where Xp
i,F = opi (F ). From Lemma 3, this contradicts Eq. (23)

if tip = 0 and Eq. (24) if tip = 1.
The only-if part: Suppose that An MLP is fault-tolerant to any multiple fault

F in Γ ((N̂F ,∪i∈OŴ
i
F ) : M) and at least one of Eq.s (23) and (24) does not

hold. Suppose that Eq. (23) does not hold. Then, (tpk − f(X
(+,Qp

k,M)

k ))2 ≥ e2o for
some p ∈ P , some k ∈ O and tpk = 0. Let F = {[j,+1], ((k, j),+1)|j ∈ Qp

k,M}.
Then, since f(X

(+,Qp
k,M)

k ) = opk(F ), F is a dangerous fault. On the other hand,

the index set (N̂F ,∪i∈OŴ
i
F ) of F is as follows: N̂F = {j|j ∈ Qp

k,M} = Qp
k,M ,

W k
F = {(k, j)|j ∈ Qp

k,M} and W i
F = φ for i ∈ O 
= k. Hence, since |N̂F ∪

h(W k
F )| = |Qp

k,M | = M and |N̂F ∪ h(W i
F )| = |N̂F | = M for i ∈ O 
= k, F is

in Γ ((N̂F ,∪i∈OŴ
i
F ) : M). This is a contradiction. For the case where Eq. (24)

does not hold, a contradiction is led similarly. �
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Property 2. An MLP is M -WNFT if and only if maxp∈P,1≤k≤n,tpk=0(t
p
k −

f(X
(+,Qp

k,M)

k ))2 < e2o and maxp∈P,1≤k≤n,tpk=1(t
p
k − f(X

(−,Rp
k,M)

k ))2 < e2o. �

Based on the above analysis, we present methods to make MLPs tolerant to
multiple neuron and/or weight faults.

4 Value Injection Methods

The value injection methods set the extreme values specified by the fault ranges
to the outputs of the selected neurons and/or the selected weights of the links in
an MLP at the same time in a learning phase, and applies a back-propagation
algorithm to the MLP. Concerning how the values are injected into outputs of
neurons and/or weights, the three methods can be considered, that is, injecting
into only weights (of links), only (outputs of) neurons, and both neurons and
weights. The first method denoted here as VIM-W has already been proposed
in [1]. The second method denoted as VIM-N and the third one denoted as
VIM-WN are presented here. A learning algorithm for VIM-WN is given, based
on the analytical processes in the preceding section. Then, from Theorem 2, it
is seen that an MLP which has successfully finished learning by the algorithm
is tolerant to all multiple neuron-and-weight faults whose values are in a multi-
dimensional interval defined by the extreme values that neurons and weights can
take, under the condition that the multiplicity of multiple faults is within the
number M . The similar result for VIM-N is expressed though the theoretical
analysis is omitted because VIM-N is similar to VIM-WN but the injection is
done to only neurons.

4.1 VIM-WN

(1) Overview

– Value injection
The values 1’s are injected into neurons in the hidden layer and 1’s or −1’s
into weights between the hidden and output layers simultaneously in each
learning phase, where the indices of neurons and weights to be injected into
are given as in Eq.s (10) and (11). The numbers of elements in these sets are
the same with each other in a learning phase and denoted as “MI”.

– Weight modification
Just before an injection, the values of weights in the set are temporarily
stored in the variables. After the injection, it is checked whether Eq.(5) is
satisfied. If it is satisfied, the learning process successfully ends. Otherwise,
the weight modification is executed, the values of the weights in the set are
restored using the values of the variables, and the process above is repeated.

(2) Algorithm
The algorithm is constructed according to the flow of the analysis from Eq.s

(7) to (21).
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[VIM-WN algorithm]

1. Set a positive integer to MI .

2. Initialize the value of each weight by a pseudo-random floating point number
from −0.1 to 0.1.

3. For each p ∈ P , evaluate the output value of each neuron in the hidden layer
according to Eq. (1), and for each i ∈ O, evaluate the inner potential Xp

i of
the i-th neuron in the output layer according to Eq. (2).

4. For each (p, i) where p ∈ P and i ∈ O, do the following.

(a) For each j ∈ IH ,
If tpi = 0, evaluate (1 − wij · uj).
if tpi = 1, evaluate − (−1 − wij · uj).
Let the value evaluated be Δp

ij .

(b) Let S
(p,i)
MI

be the set of the indices j’s of MI largest Δp
ijs.

5. For each (p, i) where p ∈ P and i ∈ O, do the following.
if tpi = 0, evaluate − (Xp

i +
∑

j∈S
(p,i)
MI

Δp
ij).

if tpi = 1, evaluate (Xp
i +

∑
j∈S

(p,i)
MI

(−Δp
ij)).

Let the value evaluated be X(p,i) and let (pE , iE) be the superscript of X
(p,i)

which is the smallest among all X(p,i)s for p ∈ P and i ∈ O, .

6. Set the output value of each neuron in the hidden layer whose index is in

S
(pE ,iE)
MI

to 1.

7. Temporarily store the value of each weight wiEj (j ∈ S
(pE ,iE)
MI

) to a variable
varj , and set it to 1 if tpE

iE
= 0 (to −1 if tpE

iE
= 1).

8. Evaluate the output values of all the neurons in the output layer for each p
∈ P . If Eq.(5) is satisfied, the algorithm successfully ends, and otherwise, go
to the next step.

9. Modify the values of all the weights according to Eq.(4).

10. Restore the value in the variable varj in Step 7 to the value of the weight

wiE , j for each j ∈ S
(pE ,iE)
MI

.

11. Change the value of each weight to 1 (−1) if it is greater (less) than 1
(−1). This process is called “W|1|-process”. Note that this process is done
for making each weight within 1 to −1.

12. Go to Step 3. �

Notation:

– An MLP which has successfully finished by VIM-WN algorithm with MI is
denoted as an “MLP-WN(MI)”.

The correspondence between the algorithm and the flow of the analysis from
Eq.s (7) to (20) is as follows.

1. Step 4(a) corresponds to Eq. (8) or (9). Step 4(b) corresponds to Eq.(10) or
(11).
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2. Step 5 corresponds to the negative value of Eq. (12) for i ∈ O −X
(+,Qp

i,M)

i

if tpi = 0 and the value of Eq.(13) for i ∈ O X
(−,Rp

i,M)

i if tpi = 1. pE and iE
correspond to the p and k which realize the maximum of the left side in Eq.
(19) or (20). Note that for an activation function f , f(x) = 1− f(−x).

3. At Steps 6 and 7, the values are injected into the outputs of neurons in the
hidden layer and the weights between the hidden and output layers, accord-

ing to S
(pE ,iE)
MI

. At Step 8, the left side of Eq.(19) or (20) is evaluated. The
values of the weights before the values are injected into them are temporarily
stored in the variables var’s, but not so are the values of the neurons. The
values in the var’s at Step 10 are restored to the former, and the latter are
restored by recalculation at the next modification timing.

4. Step 11 corresponds to Assumptions 2 and 3.

We have the following property from the correspondence between the algo-
rithm and the flow of the analysis mentioned above.

Property 3. An MLP-WN(MI) is MI-WNFT. �

4.2 VIM-N

VIM-N is similar to VIM-WN but the injection is done to only neurons. However,
the method will be presented because as shown in the simulation, it is so useful
to realize fault-tolerance to simultaneous neuron and weight faults as well as
only neuron faults.

[VIM-N algorithm]

1. Set a positive integer to MI .
2. Initialize the value of each weight by a pseudo-random floating point number

from −0.1 to 0.1.
3. Evaluate the output value of each neuron in the hidden and output layers

and the inner potential Xp
i for each (p,i) like in VIM-WN.

4. For each (p, i) where p ∈ P and i ∈ O, do the following.
(a) If tpi = 0, for each j ∈ IH , evaluate (wij · 1 − wijuj) if wij > 0, and

(wij · 0− wijuj) otherwise. Let the value evaluated be Δp
ij .

(b) If tpi = 1, for each j ∈ IH , evaluate −(wij · 0 − wijuj) if wij > 0, and
−(wij · 1− wijuj) otherwise. Let the value evaluated be Δp

ij .

(c) Let S
(p,i)
MI

be the set of the indices j’s of MI largest Δp
ijs.

5. For each (p, i) where p ∈ P and i ∈ O, do the following.
if tpi = 0, evaluate − (Xp

i +
∑

j∈S
(p,i)
MI

Δp
ij).

if tpi = 1, evaluate (Xp
i +

∑
j∈S

(p,i)
MI

(−Δp
ij)).

Let the value evaluated be X(p,i) and let (pE , iE) be the superscript of X
(p,i)

which is the smallest among all X(p,i)s for p ∈ P and i ∈ O,
6. Set the output value of each neuron in the hidden layer whose index is in

S
(pE ,iE)
MI

to 1 if (tpE

iE
= 0 and wiEj > 0) or (tpE

iE
= 1 and wiEj ≤ 0), and 0

otherwise.
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7. Evaluate the output values of all the neurons in the output layer for each p
∈ P . If Eq.(5) is satisfied, the algorithm successfully ends, and otherwise, go
to the next step.

8. Modify the values of all the weights according to Eq.(4).
9. Do the W|1|-process.
10. Go to Step 3. �

Notation:

– An MLP obtained by a successful VIM-N learning with MI is denoted as an
MLP-N(MI).

We has the following property.

Property 4. An MLP-N(MI) is MI -NFT.
The proof is omitted because it could be done like in deriving Theorem 2 and
Property 2. �

We briefly introduce VIM-W which was presented in [1] to see the ability of
tolerance to multiple neuron-and-weight faults. This method injects the extreme
values +1 (−1)s into the weights selected under the certain criterion in a learning
phase (See [1]). An MLP obtained by a successful VIM-W learning with MI is
denoted as an MLP-W(MI) where MI is the number of the selected weights as
above. Then, the following has been proved [1].

Property 5. An MLP-W(MI) is MI -WFT. �

5 Simulation Results

We perform a simulation of a character recognition to see the convergence of
learning and confirm the analytical results on VIM-WN and VIM-N. We show
the learning times, the rates of successful learning, and the degrees of multiple
fault tolerance to neuron and/or weight faults for VIM-WN, -N and -W.

The simulations are done using a PC with an Athlon X2 3800+, 512MB RAM,
and the Fedora Core 6. Simulation programs are described in C language, and
the gcc version 4.1.1 compiler is used.

Concerning the parameters, the maximum weight update is 5×105, eo = eu =
0.1, and η = 0.1.

Fig. 3 shows the set of totally 20 learning input examples. Each example
consists of 100 bit signals (black=1 and white=0). Table 1 shows the learning
output examples. The number of neurons in the input layer is set to 100. The
number of neurons in the output layer is set to the minimum one according to
the number of learning input examples to be used.

The case that a simulation is performed to an MLP with Nh neurons in
the hidden layer and Nle learning input examples is denoted as “Nh Nle”, The
simulation has been performed for several cases. Here, the results for the two
cases of 100 10 and 50 20 are shown.
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19P 20P

1P 2P 3P 4P 5P

6P 7P 8P 9P 10P

11P 12P 13P 14P 15P

16P 17P 18P

Fig. 3. Learning input examples (Set-1)

For each case, to get the maximum MI , first, MI is set to 0. Then, the execu-
tion of the algorithm of VIM-WN, -N or -W begins. The algorithm is executed
100 times until the algorithm successfully ends. If the algorithm successfully
ends, MI is increased by 1 and the algorithm is repeated from the beginning.
Otherwise, the execution of the algorithm is finished. In this way, The maximum
MI is attained for each case in each method., which is denoted as M̂I .

(1) Rate of successful learning and learning time

Figs.4 and 5 show the rates of successful learnings (denoted as “success”)
and the learning times (denoted as “time”) for MI for two cases of 100 10 and
50 20, respectively. They are the average values for 100 learning trials. The
labels “WN”, “N”, and “W” indicate the methods of VIM-WN, -N and -W,
respectively.

From these data, The M̂Is of the three methods for the cases of 100 10 and
50 20 are as shown in Tables 2 . Further, the following are seen.

1. The rates of successful learnings become less and the learning times become
bigger as the values of MI become bigger.

2. M̂Is become less as the ratios Nh/Nle of Nh and Nle become less.
3. The learning times in the three methods when M̂Is have been attained, are

almost the same with each other.
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Table 1. Learning output examples

input output
tp4t

p
3t

p
2t

p
1t

p
0

P1 00000

P2 00001

P3 00010
omitted

P24 10111

P25 11000
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Fig. 4. The relation between rate of successful learnings and MI

Table 2. The maximum MIs of VIM-WN(MI), -N(MI) and -W(MI)

.

VIM-N VIM-WN VIM-W

100 10 18 7 9

50 20 6 3 3
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Fig. 5. The relation between learning time and MI

Table 3. Degree of multiple WNFT

MLP-N MLP-WN MLP-W

100 10 8 7 8

50 20 2 3 2

Table 4. Degree of multiple NFT

MLP-N MLP-WN MLP-W

100 10 18 13 15

50 20 6 5 5

(2) Degree of multiple fault tolerance

We examine the degrees of multiple WNFT and NFT of MLP-WN(M̂I)s,
MLP-N(M̂I)s and MLP-W(M̂I)s, by checking the condition in Property 2 for
a million M -multiple faults per M , which are generated using pseudo-random
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numbers, increasing M one by one. Tables 3 and 4 show their maximum Ms
which satisfy Property 2, that is, the degrees of multiple WNFT and NFT
of MLP-WN(M̂I)s, MLP-N(M̂I)s and MLP-W(M̂I)s for the two Nh Nle cases.
From the data of Tables 2, 3 and 4, the following are seen.

1. The degree of multiple WNFT of the MLP-WN(7) is 7, that is, the MLP-
WN(7) is 7-WNFT, as Property 3 shows.

2. The degree of multiple NFT of the MLP-N(18) is 18, that is, the MLP-N(18)
is 18-NFT, as Property 4 shows.

3. All of the VIM methods are almost equally effective to realize the fault
tolerance to simultaneous neuron and weight faults, because the values in
Tables 3 and 4 of the MLP-WN(M̂I), MLP-N(M̂I) and MLP-W(M̂I) in each
Nh Nle case are almost the same with each other.

6 Conclusions

We have theoretically analyzed the condition that a multilayer perceptron is tol-
erant to multiple neuron and weight faults. The condition can be used to check
whether an MLP is tolerant to multiple neuron and weight faults. Further, ac-
cording to the flow of the analysis, we propose two value injection learning meth-
ods denoted as VIM-WN and VIM-N to make multilayer perceptrons tolerant to
all multiple neuron and/or weight faults whose values are in a multi-dimensional
interval defined by the extreme values that neurons and weights can take. A
simulation is performed to see the convergence of the learning and confirm the
analytical results. The simulation results show that VIM-N and VIM-W as well
as VIM-WN are almost equally effective in coping with multiple neuron-and-
weight faults. This result is so interesting though the condition that VIM-WN
satisfies is not theoretically guaranteed for VIM-N and VIM-W. It is hoped that
it will be theoretically analyzed for VIM-N and VIM-W, if possible. This is a
future work.

Acknowledgment. The author would like to thank Mr. M. Otsu for prototype
works of learning simulations.

Appendix A: Proof of Theorem 1

First, we prove X(p,+,Qp
M) ≥ Xp

F by proving the following lemmas.

Lemma 4. For i ∈ Qp
M , j ∈ (IH −Qp

M ) and any x (+1 ≥ x ≥ −1), (1 − wiui)
(= Δ(p,+,i)) ≥ (x− wj)uj .

Proof: Suppose (1 − wiui) < (x − wj)uj . Then, since 0 ≤ (1 − x · uj) =
(1 − wjuj + wjuj − x · uj), Δ

(p,+,i) = (1 − wiui) < (x− wj)uj ≤ (1 − wjuj) =
Δ(p,+,j). Hence, j ∈ Qp

M which conflicts with j ∈ (IH −Qp
M ). �
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Lemma 5. For i ∈ Qp
M , j ∈ (IH −Qp

M ) and any x (+1 ≥ x ≥ −1), (1 − wiui)
(= Δ(p,+,i)) ≥ wj(x− uj).

Proof: Suppose (1 − wiui) < wj(x − uj). Then, since 0 ≤ (1 − wj · x) =
(1− wjuj + wjuj − wj · x), Δ(p,+,i) = (1 − wiui) < wj(x− uj) ≤ (1 − wjuj) =
Δ(p,+,j). Hence, j ∈ Qp

M which conflicts with j ∈ (IH −Qp
M ). �

Lemma 6. For i ∈ Qp
M , j ∈ (IH − Qp

M ), any x (+1 ≥ x ≥ −1) and any y
(+1 ≥ y ≥ 0), (1− wiui) (= Δ(p,+,i)) ≥ (x · y − wjuj).
Proof: Suppose (1 − wiui) < (x · y − wjuj). Then, since 0 ≤ (1 − x · y) =

(1−wjuj +wjuj − x · y), Δ(p,+,i) = (1−wiui) < (x · y−wjuj) ≤ (1−wjuj) =
Δ(p,+,j). Hence, j ∈ Qp

M which conflicts with j ∈ (IH −Qp
M ). �

Now, we will prove X(p,+,Qp
M ) ≥ Xp

F if |ŴF ∪ N̂F | ≤ M .

X(p,+,Qp
M) −Xp

F =
∑

i∈Qp
M∩N̂F∩ŴF

(1− w′
iu

′
i)

+
∑

i∈Qp
M∩(ŴF−N̂F )

(1− w′
iui)

+
∑

i∈Qp
M∩(N̂F−ŴF )

(1− wiu
′
i)

+
∑

i∈(ŴF−N̂F−Qp
M )

(wi − w′
i)ui

+
∑

i∈(N̂F∩ŴF−Qp
M )

(wiui − w′
iu

′
i)

+
∑

i∈(N̂F−ŴF−Qp
M )

wi(ui − u′
i)

+
∑

i∈(Qp
M−(N̂F∪ŴF ))

(1− wiui) (25)

Let’s denote the first, second, ..., the seventh terms of Eq. (25) as S1, S2, ...,
S7, respectively. It is clear that S1 ≥ 0, S2 ≥ 0, S3 ≥ 0 and S7 ≥ 0. In the
following, we will show (S4 + S5 + S6 + S7) ≥ 0.

We have the following lemma.

Lemma 7

(ŴF − N̂F −Qp
M ) ∪ (N̂F ∩ ŴF −Qp

M )

∪(N̂F − ŴF −Qp
M ) = N̂F ∪ ŴF −Qp

M (26)

|(ŴF − N̂F −Qp
M )|+ |(N̂F ∩ ŴF −Qp

M )|
+|(N̂F − ŴF −Qp

M )| ≤ |Qp
M − (N̂F ∪ ŴF )| (27)

Proof: Eq. (26) can easily be proved. Eq. (27) holds because of Eq. (26) and
|ŴF ∪ N̂F | ≤ M = |Qp

M |. �
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Without lost of generality, we can put

S7 = (1− wi1ui1) + · · ·+ (1 − wivuiv ),
each id ∈ (Qp

M − (N̂F ∩ ŴF ))

and

(1− wi1ui1) ≥ · · · ≥ (1− wivuiv ) ≥ 0.

Suppose (S4 + S5 + S6 + S7) < 0. Note that from Eq.(27) the number of the
terms in the summations of S4, S5 and S6 is not more than the number of the
terms in the summation of S7. Then, at least one of the following should hold
from Eq. 25 and Lemma 7.

(a) (w′
j − wj)uj > (1− wivuiv ) for some j ∈ (ŴF − N̂F −Qp

M ).

(b) (w′
ju

′
j − wjuj) > (1− wivuiv) for some j ∈ (N̂F ∩ ŴF −Qp

M ).

(c) wi(u
′
j − uj) > (1− wivuiv ) for some j ∈ (N̂F − ŴF −Qp

M ).

(a) does not hold from Lemma 4 since iv ∈ Qp
M and j ∈ (ŴF − N̂F − Qp

M ) ⊂
(IH − Qp

M ). (c) does not hold from Lemma 5 since iv ∈ Qp
M and j ∈ (N̂F −

ŴF − Qp
M ) ⊂ (IH − Qp

M ). (b) does not hold from Lemma 6 since iv ∈ Qp
M

and j ∈ (N̂F ∩ ŴF − Qp
M ) ⊂ (IH −Qp

M ). Hence, (S4 + S5 + S6 + S7) ≥ 0 and

X(p,+,Qp
M) −Xp

F ≥ 0.

Next, we prove Xp
F ≥ X(−,Rp

M) by proving the following lemmas.

Lemma 8. For i ∈ Rp
M , j ∈ (IH −Rp

M ) and any x (+1 ≥ x ≥ −1), (−1−wiui)
(= Δ(p,−,i)) ≤ (x− wj)uj .
Proof: Suppose (−1 − wiui) > (x − wj)uj. Then, since 0 ≥ (−1 − x · uj) =

(−1 − wjuj + wjuj − x · uj), Δ
(p,−,i) = (−1 − wiui) > (x − wj)uj ≥ (−1 −

wjuj) = Δ(p,−,j). Hence, −Δ(p,−,i) < −Δ(p,−,j) and j ∈ Rp
M which conflicts

with j ∈ (IH −Rp
M ). �

Lemma 9. For i ∈ Rp
M , j ∈ (IH −Rp

M ) and any x (+1 ≥ x ≥ −1), (−1−wiui)
(= Δ(p,−,i)) ≤ wj(x− uj).
Proof: Suppose (−1 − wiui) > wj(x − uj). Then, since 0 ≥ (−1 − wj · x) =

(−1−wjuj+wjuj−wj ·x), Δ(p,−,i) = (−1−wiui) > wj(x−uj) ≥ (−1−wjuj) =
Δ(p,−,j). Hence, j ∈ Rp

M which conflicts with j ∈ (IH −Rp
M ). �

Lemma 10. For i ∈ Rp
M , j ∈ (IH − Rp

M ), any x (+1 ≥ x ≥ −1) and any y
(+1 ≥ y ≥ 0), (−1− wiui) (= Δ(p,−,i)) ≤ (x · y − wjuj).
Proof: Suppose (−1 − wiui) > (x · y − wjuj). Then, since 0 ≥ (−1 − x · y)

= (−1 − wjuj + wjuj − x · y), Δ(p,−,i) = (−1 − wiui) > (x · y − wjuj) ≥
(−1−wjuj) = Δ(p,−,j). Hence, j ∈ Rp

M which conflicts with j ∈ (IH −Rp
M ). �

Now, we will prove X(p,−,Rp
M) ≤ Xp

F if |ŴF ∪ N̂F | ≤ M .



Multilayer Perceptrons Which Are Tolerant to Multiple Faults 61

X(p,−,Rp
M) −Xp

F =
∑

i∈Rp
M∩N̂F∩ŴF

(−1− w′
iu

′
i)

+
∑

i∈Rp
M∩(ŴF−N̂F )

(−1− w′
iui)

+
∑

i∈Rp
M∩(N̂F−ŴF )

(−1− wiu
′
i)

+
∑

i∈(ŴF−N̂F−Rp
M )

(wi − w′
i)ui

+
∑

i∈(N̂F∩ŴF−Rp
M )

(wiui − w′
iu

′
i)

+
∑

i∈(N̂F−ŴF−Rp
M )

wi(ui − u′
i)

+
∑

i∈(Rp
M−(N̂F∪ŴF ))

(−1− wiui) (28)

Let’s denote the first, second, ..., the seventh terms of Eq. (28) as T1, T2, ...,
T7, respectively. It is clear that T1 ≤ 0, T2 ≤ 0, T3 ≤ 0 and T7 ≤ 0. In the
following, we will show (T4 + T5 + T6 + T7) ≤ 0.

We have the following lemma.

Lemma 11

(ŴF − N̂F −Rp
M ) ∪ (N̂F ∩ ŴF −Rp

M )

∪(N̂F − ŴF −Rp
M ) = N̂F ∪ ŴF −Rp

M (29)

|(ŴF − N̂F −Rp
M )|+ |(N̂F ∩ ŴF −Rp

M )|
+|(N̂F − ŴF −Rp

M )| ≤ |Rp
M − (N̂F ∪ ŴF )| (30)

Proof: Similar to the proof of Lemma 7. �

Without lost of generality, we can put

T7 = (−1− wi1ui1) + · · ·+ (−1− wivuiv ),
each id ∈ (Rp

M − (N̂F ∩ ŴF ))

and

−(−1− wi1ui1) ≥ · · · ≥ −(−1− wivuiv ) ≥ 0.

Suppose (T4 + T5 + T6 + T7) > 0. Note that from Eq. (30) the number of the
terms in the summations of T4, T5 and T6 is not more than the number of the
terms in the summation of T7. Then, at least one of the following should hold
from Eq. (28) and Lemma 11.
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(a) (w′
j − wj)ui < (−1− wivuiv ) for some j ∈ (ŴF − N̂F −Rp

M ).

(b) (w′
ju

′
j − wjuj) < (−1− wivuiv ) for some j ∈ (N̂F ∩ ŴF −Rp

M ).

(c) wj(u
′
j − uj) < (−1− wivuiv ) for some j ∈ (N̂F − ŴF −Rp

M ).

(a) does not hold from Lemma 8 since iv ∈ Rp
M and j ∈ (ŴF − N̂F − Rp

M ) ⊂
(IH − Rp

M ). (c) does not hold from Lemma 9 since iv ∈ Rp
M and j ∈ (N̂F −

ŴF − Rp
M ) ⊂ (IH − Rp

M ). (b) does not hold from Lemma 10 since iv ∈ Rp
M

and j ∈ (N̂F ∩ ŴF − Rp
M ) ⊂ (IH − Rp

M ). Hence, (T4 + T5 + T6 + T7) ≤ 0 and

X(p,−,Rp
M) −Xp

F ≤ 0.
From the above, Theorem 1 is proved. �
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6. Clay, R.D., Séquin, C.H.: Fault tolerance training improves generalization and
robustness. In: Proc. Int’l. J. Conf. on Neural Networks, pp. I-769–I-774 (1992)

7. Ito, T., Takanami, I.: On fault injection approaches for fault tolerance of feedfor-
ward neural networks. In: Proc. Int’l Symp. on ATS, pp. 88–93 (1997)

8. Hammadi, N.C., Ito, H.: A learning algorithm for fault tolerant feedforward neural
networks. IEICE Trans. Inf & Syst. E80-D(1), 21–26 (1997)

9. Hammadi, N.C., Ohmameuda, T., Kaneko, K., Ito, H.: Dynamic constructive fault
tolerant algorithm for feedforward neural networks. IEICE Trans. Inf & Syst. E81-
D(1), 115–123 (1998)

10. Cavalieri, S., Mirabella, O.: A novel learning algorithm which impoves the partial
fault tolerance of multilayer neural networks. Neural Networks (Pergamon) 12(1),
91–106 (1999)

11. Kamiura, N., Hata, Y., Matsui, N.: Fault tolerant feedforward neural networks with
learning algorithm based on synaptic weight limit. In: Proc. IEEE Int’l Workshop
on On-Line Testing, pp. 222–226 (1999)

12. Kamiura, N., Taniguchi, Y., Hata, Y., Matsui, N.: A learning algorithm with acti-
vation function manipulation for fault tolerant neural networks. IEICE Trans. Inf.
& Syst. E84-D(7), 899–905 (2001)

13. Takase, H., Kita, H., Hayashi, T.: Weight minimization approach for fault toler-
ant multi-layer neural networks. In: Proc. of Int’l J. Conf. on Neural Networks,
pp. 2656–2660 (2001)



Multilayer Perceptrons Which Are Tolerant to Multiple Faults 63

14. Horita, T., Takanami, I., Mori, M.: Learning algorithms which make multilayer
neural networks multiple-weight-and-neuron-fault tolerant. IEICE Trans. Inf. &
Syst. E91-D(4), 1168–1175 (2008)

15. Sum, J.P., Leung, C.S., Ho, K.I.J.: On-line node fault injection training algorithm
for MLP networks: Objective function and convergence analysis. IEEE Trans. Neu-
ral Networks and Learning Systems 23(2), 211–222 (2012)

16. Ho, K., Leung, C.S., Sum, J.: Objective functions of online weight noise injection
training algorithms for MLPs. IEEE Trans. Neural Networks 22(2), 317–323 (2011)

17. Ho, K.I.J., Leung, C.S., Sum, J.: Convergence and objective functions of some
fault/noise-injection-based online learning algorithms for RBF networks. IEEE
Trans. Neural Networks 21(6), 938–947 (2010)

18. Sum, J.P.F., Leung, C.S., Ho, K.I.J.: On objective function, regularizer, and pre-
diction error of a learning algorithm for dealing with multiplicative weight noise.
IEEE Trans. Neural Networks 20(1), 124–138 (2009)

19. Murray, A.F., Edwards, P.J.: Enhanced MLP performance and fault tolerance
resulting from synaptic weight noise during training. IEEE Trans. Neural Net-
works 5(5), 792–802 (1994)

20. Nishimura, K., Horita, T., Ootsu, M., Takanami, I.: Novel value injection learning
methods which make multilayer neural networks multiple-weight-and-neuron-fault
tolerant. In: Proc. CSREA Int’l Conf. on PDPTA, pp. 546–552 (July 2009)



 

M.L. Gavrilova, C.J.K. Tan (Eds.): Trans. on Comput. Sci. XXII, LNCS 8360, pp. 64–92, 2014. 
© Springer-Verlag Berlin Heidelberg 2014 

Framework for Ensuring Runtime Stability of Control 
Loops in Multi-agent Networked Environments 

Nikolay Tcholtchev and Ina Schieferdecker 

Fraunhofer FOKUS Institute for Open Communication Systems, Berlin, Germany 
{nikolay.tcholtchev,ina.schieferdecker}@fokus.fraunhofer.de 

Abstract. The idea of autonomic computing, and accordingly autonomic 
networking, has drawn the attention of industry and academia during the past 
years. An autonomic behavior is widely understood as a control loop which is 
realized by an autonomic entity/agent that manages some resources, in order to 
improve the performance and regulate diverse operational aspects of the 
managed network or IT infrastructure. Self-management, realized through 
autonomic behaviors, is an appealing and dangerous vision at the same time. On 
one hand, it promises to reduce the need for human involvement in the network 
and system management processes. On the other hand, it bears a number of 
potential pitfalls that could be even dangerous to the network, the IT 
infrastructure, and the corresponding services. One of these pitfalls is 
constituted by the stability of the control loops, and correspondingly by the 
interference among multiple autonomic agents operating in parallel. In this 
paper, a novel approach to ensuring runtime synchronization and stability of 
multiple parallel autonomic control loops is presented.  We formally model the 
problem of runtime action synchronization, propose different possible solutions, 
and provide a case study, as well as different performance measurements based 
on a prototype that implements our approach. 

Keywords: Multi-Agent Systems, Autonomic Networks, Stability, Control 
Loops. 

1 Introduction 

The continuously increasing complexity of network and systems management has 
provoked a discussion on the possibility to extend management processes into the 
device architectures. That way, a certain degree of autonomic decision making within 
the network or IT infrastructure in question is enabled. This can be best realized by 
introducing autonomic software agents inside the managed equipment. These agents 
monitor the surrounding networked environment, exchange information, and 
undertake corrective or regulative actions. A number of models aiming to realize 
autonomic control loops have been proposed in the past decade. Initially, IBM 
introduced an entity called Autonomic Manager [1]. An Autonomic Manager is 
responsible for managing particular resources via a control loop consisting of the 
following phases – Monitor, Analyze, Plan, and Execute (MAPE). Furthermore, the 
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FOCALE [14] [15] architecture introduced a two-layer hierarchy of control loops. 
The lower of these hierarchies is technology specific - analogue to the Element 
Management System in traditional Network Management. The higher hierarchy is 
concerned with the management of the overall system - similar to the traditional 
Network Management System. Additional initiatives trying to go for an Autonomic 
Management of future networks, IT infrastructures, and services include CASCADAS 
[13] with the concept of ACEs (Autonomic Communication Elements) [16], and 
ANEMA (Autonomic Network Management Architecture) [9][49]. ACEs were used 
in the CASCADAS project for the management of services (e.g. video streaming 
services) and implement a control loop, which is inspired by the one described in the 
initial IBM white paper for autonomic computing [1]. The intelligence of these 
control loops is given as executable plans. The ANEMA architecture provides a 
framework that uses utility functions in order to derive behavioral policies which can 
be executed during the operation of the network. All these approaches address 
differently the problem of synchronization and ensuring the stability of multiple 
parallel autonomic control loops. These synchronization and stability aspects 
constitute a vital issue, since in a complex environment or architecture involving 
several control-loops executing in parallel, there is an inherent challenge to ensure 
that the autonomic elements’ behaviors are synchronized towards a common goal. 
This is required in order to avoid a situation whereby each autonomic agent is 
working towards its own goal, but the overall set of actions/policies degrades 
drastically the performance and dependability of the system. Such a situation could 
even result in unwanted oscillations and instabilities of the control loops, leading to a 
decrease in the provided quality of service.  

Coming back to the existing options for achieving action synchronization within 
the above listed initiatives, a number of approaches can be easily identified. For 
example, since CASCADAS ACEs operate based on executable plans, it is straight 
possible for the autonomic system’s developer to embed stability constraints in the 
resulting (collaborative) behavior(s). The utility function based approach for deriving 
policies of ANEMA suggests that the resulting behaviors will be intrinsically stable 
and conflict free during the operation of the network. In addition, [27] has 
investigated possibilities to design collaborative control loops such that they operate 
in a stable manner. This includes the application of game theory concepts during the 
design phase, and the use of model driven engineering techniques. The latter can be 
achieved through different tools or combinations of tools (tool chains), which are 
applied during the development phase of the overall set of autonomic entities, such 
that their control loops are intrinsically stable and synchronized by design. The set of 
applicable tools includes modeling environments such as GME [4], and EMF [35], 
simulation and verification tools such as UPPALL [36], and finally code generation 
tools. Examples for tool chains or standalone tools enabling the model driven 
specification and design of autonomic agents are given in [17] as well as in [18]. 
Thereby, the approach in [17] is based on the interplay between existing tools 
facilitated through a model sharing system called ModelBus, whilst [18] [19] [20] and 
[21] aim at defining specific modeling languages that enable the (stable) design and 
specification of self-managing entities. In addition, the synchronization between 
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control loops from traditional control theory was widely investigated. Examples of 
such research, based on game theory and conducted in the scope of cloud computing, 
is given by [44] [45] and [46]. Moreover, [5] introduces a hybrid approach to the 
synchronization of multiple self-organizing agents/entities. This hybrid approach is 
based on the use of so called archetypes which are architectural templates embedded 
inside the software agents in question. The archetypes constraint and control the 
runtime self-organizing behavior of the entities in a way that the agents work 
collaboratively and do not contradict. The hybrid nature is given by the fact that 
different archetypes are specified during the design phase and are dynamically 
instantiated according to the emerging situation. The authors of [48] have focused on 
integration patterns for components of autonomic management systems. These 
patterns semi-formalize the way existing autonomic agents can be brought to work 
together. Thereby, the integration patterns set the path towards conflict-free 
interaction of the control loops belonging to the autonomic components being 
integrated1. [31] and [33] propose a methodology to synchronize different 
independent autonomic control loops by introducing an additional “on top” layer. This 
additional layer contains a coordination manager utilizing finite-state-machines 
which are specifically developed in a way as to synchronize the actions resulting from 
the underlying control loops. [42] introduces a synchronization approach for multiple 
autonomic control loops based on the use of a common knowledge base. That way, 
independent control loops can share information about their operation and avoid 
conflicting situations. Finally, the current paper capitalizes on and extends another 
concept that has been initially presented as part of [27] and [26]. This is the concept 
of runtime action synchronization for multiple independent parallel running control 
loops - including policy actions and control theory type of loops. The novelty of this 
idea and progress beyond state of the art is that it allows, in a generic way, for 
autonomic agents, which were not intrinsically designed as to collaborate, to 
synchronize their tentative actions and work together towards improving the 
performance of the network or IT infrastructure in question. Based on a model 
regarding the impact of potential actions on selected key performance indicators 
(KPIs), as well as the importance of these KPIs, we propose and evaluate methods 
and techniques for the selection of an optimal subset of tentative actions, which are 
intended for execution by independent autonomic agents.  

The proposed framework is complementary to self-organization approaches (e.g. 
self-organizing maps) where the autonomic agents collaboratively try to achieve an 
optimal set of reactions without referring to an arbiter for the sake of conflict 
resolution. We argue that in a real world environment, it is best to combine the 
framework presented here with traditional self-organization techniques embedded 
inside the autonomic agents in question.  

In order to show the feasibility of the proposed concepts, our approach is validated 
based on a prototype that allows conducting a representative performance and 
scalability analysis. 

                                                           
1 In that context, the approach towards action synchronization presented in this paper can be 

largely map to the Hierarch pattern of [48]. 
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The rest of this paper is organized as follows: Section 2 introduces the 
architectural aspects of our proposed framework, and presents a case study with 
respect to how a specific architecture for autonomic networking can be extended by 
components implementing our approach. Section 3 formally defines the problem of 
runtime action synchronization and arrives at a mathematical model that allows for 
applying different types of algorithms for the purpose of ensuring the runtime stability 
of parallel autonomic control loops. Section 4 reformulates the problem in a way that 
it is more efficiently solvable, and presents a machine learning approach to obtaining 
some of the vital parameters for the resulting new model. Section 5 relates our 
proposed mechanisms to traditional concepts from the area of Control Theory. The 
following section describes some technical details and design decisions regarding our 
prototype implementation. Thereafter, based on the described prototype, section 7 
describes the experimental setup and results related to the performance of the 
proposed techniques, in terms of synchronization quality and scalability. The next 
section presents a case study that demonstrates how the proposed techniques can be 
applied in the domain of autonomic networking.  Finally, section 9 concludes the 
paper and outlines potential future research directions. 

2 Architectural Aspects 

This section elaborates on the architectural aspects with respect to the problem of 
runtime action synchronization.  

2.1 Architectural Setup for Runtime Action Synchronization 

We propose to introduce an entity that can be requested by other agents to allow or 
disallow tentative actions based on the goal of optimizing a set of key performance 
indicators. This results in an architectural setup as the one illustrated in figure 1. The 
entity denoted as Action Synchronization Engine (ASE) is requested by a number of 
independent agents - designed and implemented without intrinsic synchronization - to 
check their tentative actions for potential conflicts, and to inform them back on 
whether particular actions are allowed or disallowed for execution. Specifically, we 
consider plain actions (e.g. reset a network interface card) and policy enforcements - 
an if(condition)-then(action) - as (management) actions, since each of those items can 
be seen as an action (make/enforce) in the corresponding context. Indeed, the ASE is 
expected to act as an arbiter for negotiation that removes some overlapping and 
possible contradictions in the actions. Hence, an ASE component would allow only 
those management actions to proceed that are beneficiary for the overall fitness of the 
managed infrastructure. 

Based on the architectural principle in figure 1, we propose two possible 
realizations of an ASE component. An ASE can be either put in place as a separate 
agent, i.e. as a standalone process solely responsible for the synchronization of 
autonomic control loops executed in parallel, or as a sub-component inside an agent 
that is primarily designed to manage some operational resources. In the latter case, the 



68 N. Tcholtchev and I. Schieferdecker 

 

ASE sub-component is started, orchestrated, and configured by the responsible 
autonomic entity. Clearly, an autonomic agent hosting an ASE sub-component may 
also refer to it for the sake of synchronization and conflict resolution regarding 
parallel control loops. This is exemplified in the next section, where we show how 
one of the emerging architectures for autonomic networking can be extended in a way 
as to realize action synchronization functionality for its control loops. 

 

 

Fig. 1. Basic architectural Setup for Runtime Action Synchronization 

2.2 Case Study: Ensuring Runtime Stability of Autonomic Control Loops in 
the Generic Autonomic Network Architecture (GANA) 

In this section, a case study is presented that illustrates how ASE components can be 
deployed along a specific architecture for autonomic networking. First, we give an 
overview of the key features of the architecture selected for our case study, and then 
propose the necessary extensions. 

For illustrative purposes, the Generic Autonomic Network Architecture (GANA) 
[3] has been selected, since it tries to create a complete view - of the node and the 
network as a whole - with respect to autonomic self-management of future networks. 
In addition GANA is currently being worked on at ETSI as to mature towards a 
reference model for Autonomic Networking [47]. In addition, an initial 
implementation of the GANA architecture was provided within the EFIPSANS 
project [6]. 

GANA defines generic autonomic elements for each required networking function, 
e.g. routing, forwarding, mobility etc. The core concept in GANA is that of a generic 
autonomic entity denoted as Decision Element (DE). A Decision Element (DE) 
executes the logic of a control loop using the management interfaces of its assigned 
Managed Entities (MEs). That is, a DE is responsible for autonomically regulating the 
parameters of concretely assigned MEs, and realizes a control loop based on the 
information it acquires directly from the MEs or from other sources such as embedded 
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network monitoring processes. The information is analyzed, subsequently a decision 
is made, and an action is executed on the MEs in order to dynamically (re)-configure 
and regulate their behavior, while striving to achieve a predefined goal. Taking into 
account that control loops on different levels of functionality are possible, GANA 
defines the Hierarchical Control Loops (HCLs) framework. In the context of the 
HCLs framework,  four levels exist at which generic Decision Elements and 
associated control-loops can be designed: (1) protocol-level – autonomic mechanisms 
within the network protocols, e.g. control loops in OSPF or TCP, (2) functions-level – 
autonomic control loops responsible for a specific network function, e.g. routing, 
forwarding, mobility management, (3) node-level - a device as a whole is also 
considered as a level at which autonomic functions considering the overall node can 
be implemented, (4) network level – autonomic functions which are executed network 
wide. Thereby, Decision Elements and corresponding control loops on a higher level 
manage DEs on a lower level down to the lowest-level MEs i.e. protocols and 
fundamental mechanisms. Therefore, DEs are designed following the principles of 
hierarchical, peering, and sibling relationships among each other. These relationships 
are realized within a node or among the nodes enabling DEs to realize both 
distributed and centralized control loops. For detailed information regarding the 
presented concepts, the reader is referred to [3]. 

 

Fig. 2. The extended GANA Architecture 
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In order to elegantly extend GANA and its generic DEs following the rules defined 
by HCLs, we propose that ASE components should be embedded inside the 
corresponding DEs. That is, ASE sub-components should be initialized and started by 
some of the DEs in order to achieve a runtime configuration as the one depicted in 
figure 2. An ASE is considered as part of a dedicated generic GANA DE that has been 
elected or is by design the most appropriate one for acting as an arbiter enabling the 
negotiation over tentative actions. In that context, the DEs in question can refer to the 
belonging ASE by using the hierarchical, peering or sibling relations defined within 
HCLs. Therefore, we require that every DE should keep a list (catalogue) of the 
actions it is allowed to issue without having to consult an upper level or a sibling DE. 
As illustrated in figure 2, if a DE (e.g. DE1.1, DE1.2 or DE1.3) faces a problem that 
is beyond its local scope, i.e. the action to be issued as a response to some challenging 
conditions is not inside the aforementioned catalogue, it should consult its upper level 
DE (DE2.1 or DE2.2). The upper level DE should in turn consult the corresponding 
ASE (hosted by DE2.2) that is expected to resolve potential conflicts and to respond 
back with a set of actions that are allowed to be executed. After the optimal actions 
have been selected, the upper level DE informs the lower level DEs in question, 
whether they are allowed to “fire” some of the actions on their corresponding 
Managed Entities (ME1, ME2, and ME3). On the other hand, if the upper level DE 
recognizes that the actions it has been requested to synchronize are beyond its 
competence, it should further consult its corresponding upper DE (e.g. DE3 or even 
DE4 in figure 2) on the higher level. 

3 The Action Synchronization Problem 

This section formally defines the runtime Action Synchronization Problem (ASP). We 
start with a short introduction and overview of similar efforts in the past years and 
continue with deriving a model that allows to mathematically reason about the 
optimal subset of tentative actions requested for synchronization. This model consists 
of a set of mathematical objects, such as a utility function to optimize, and a set of 
constraints represented by corresponding matrices and vectors. 

3.1 Introduction 

In a complex multi-agent environment or architecture involving more than one 
autonomic control loop that need to execute in parallel, the challenge is to ensure that the 
autonomic entities’ behaviors are synchronized towards a common goal. That is required 
in order to avoid a situation whereby each autonomic entity is working towards its own 
goal but the overall set of actions/policies degrades the performance and dependability of 
the system in question. In order to achieve the aforementioned common goal, we present 
an approach based on the concept of a utility function that incorporates the state of the 
network/system, and must be optimized by selecting the optimal subset of tentative 
actions, resulting from decisions made by the autonomic entities. 

Research related to the application of utility functions in the area of Autonomic 
Computing/Networking has been ongoing since the release of the IBM autonomic 
computing white paper [1]. The idea of Autonomic Management based on goals, for 
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which utility functions are a way to express, was initially investigated in [12]. [10] is 
one of the pioneer publications discussing the role of utility functions in self-
management. It elaborates on the different classes of policies that can be applied in 
order to optimize the corresponding utility function and presents a case study carried 
out in the context of a commercial service management framework. [11] describes a 
two-level utility function based architecture for monitoring and actively optimizing 
the performance of an application server. However, the application of the utility 
functions is mainly embedded inside the autonomic elements and there is no 
additional arbiter component that handles synchronization requests from autonomic 
elements, and chooses to allow or disallow specific tentative actions. 

3.2 Deriving the ASP Problem 

Based on ideas from the theory of Optimal Control [38], we define an optimization 
problem that should be solved by an ASE agent whenever a set of actions needs to be 
synchronized. Let Q be a set of performance metrics/KPIs, and |Q|=n∈N+. Let W be a 
set of weights, each of which is assigned to one of the metrics contained in Q and 
|W|= n∈N+.  These weights represent the importance of a single KPI for the overall 
health of the system, and thus they all should be positive, i.e. wi≥0 for wi∈W, wi∈R 
and i∈{1, …, n}. 

Considering a particular point in time t0, the values of the KPIs in Q are 
represented by a vector Q(t0)=(q1(t0), …, qn(t0))

T∈Rn. Suppose that, the higher the 
values of q1(t0), …, qn(t0) the better the performance of the system (for KPIs which 
require to be minimized one can take the reciprocal value), then the following 
expression gives the system fitness at t0. 
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Hence, the goal of the autonomic mechanisms in the node/device and the network 
is to maximize SF(t) throughout the operation of the system. 

Additionally, let A be the set of possible actions that can be potentially issued by 
the involved autonomic agents, and |A|=M∈N+. By aj∈A with j∈{1, …, M} we denote 
a single action. Further, the domain relation of an action d:A→{0,1}n is introduced. 
The relation takes as an input an action and returns a (0-1) vector, which contains 
mappings to the metrics the input action influences if executed. Indeed, if the ith 
component of the vector is 1, then the ith metric is influenced by the input action, and 
respectively if the latter is 0, then the metric is correspondingly not influenced. 
Putting together the domain relation outputs for all actions as columns in matrix form 
results in what we denote as the domain matrix of A. 
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The last and most important ingredient for formulating the optimization problem is 
the impact relation of A – I:QxA→ R. The output value of I(i,j) stands for the impact 
the jth action has on the ith KPI. Thus, if only action aj is executed at point in time t0, 
then the new value of qi will be qi(t0)+I(i,j). 



72 N. Tcholtchev and I. Schieferdecker 

 

Based on the above definitions, and assuming that in a particular time slice a total 
number of m∈N+ (m≤M) actions have been requested for synchronization, the 
following optimization problem is defined. 
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In (3), p stands for a (0-1) vector, which gives whether a particular action was 
allowed to execute or not. Indeed, if the jth position of p is 1, then the corresponding 
action has been selected for execution; otherwise it has to be dropped. Hence, an 
optimization with respect to p is equivalent to selecting the optimal set of actions 
requested in a particular time frame. Moreover, the matrix Dm is a sub-matrix of the 
domain matrix D of A consisting only of the columns representing the domains of the 
requested actions. The vector c∈Nn determines the extent, to which actions with 
overlapping domains are allowed. For example, if n=4 and c=(1,1,1,1)T , i.e. only 
four KPIs  are considered, then the additional constraint says that only one action 
influencing a single metric is allowed. In the case of c=(2,1,1,1)T  two actions are 
allowed that influence the first metric. Hence, the additional constraint can be used to 
enforce the resolution of conflicts between actions with overlapping domain regions. 
Rewriting (3) in vector-matrix form results in 
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where Im  stands for an n x m real-valued matrix that contains the impact of the 
requested actions on the considered KPIs. Thus, Im(i,j) represents the impact of the 
requested jth action on the ith metric. 

Since the term wTQ(t0) in (4) is just a constant that reflects the current state of the 
network, it can be dropped, which is very good news because it means that the values 
of the KPIs are not needed for the optimization. That fact reduces the overhead 
produced by the ASE, since no interaction with monitoring functions measuring the 
KPIs is needed. Hence, the final optimization problem takes the following form: 

{ }
pIw m

T

p n0,1
max
∈

, s.t.  Dmp≤c                                         (5) 

The above optimization problem can be interpreted as “selecting the most 
appropriate subset of tentative actions such that the change in the state of the system 
is positively maximized”. 

3.3 On the Complexity of ASP 

This subsection investigates around the complexity and the challenges that are 
expected while solving instances of ASP. First of all, ASP is a special case of 
integer/binary programming which potentially classifies it as an NP-complete 
problem, i.e. a hard to tackle problem which can be only solved by a non-
deterministic polynomial-time Turing machine. More specifically, ASP corresponds to  
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a special instance of the thoroughly studied 0-1 multi-constraint knapsack problem 
(MKP) [30]. MKP is defined as follows: 
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with gains (profits) gi ≥ 0, volumes (or weights) vij ≥ 0  and capacities Ci ≥ 0 with 
respect to the overall volume (or weight) for each knapsack. Thereby, gi ∈ R, vij∈ R, 
and Ci∈R. The difference between ASP and MKP is constituted by the ranges for vij 

and Ci, and correspondingly dij - the elements of Dm , as well as ci - the elements of the 
constraint vector c. dij can take only binary values, and ci can take only positive 
integer values according to the definition of ASP. Hence, each ASP instance is an 
instance of MKP. MKP has drawn the attention of the research community for years 
due to its wide field of application (e.g. resource and budget planning). It is known to 
be an NP-hard problem [30] with exact algorithms existing for some special cases, as 
for example described in [32] and [34]. However, to our best knowledge, no exact 
algorithm exists for high dimensional special instances as constituted by ASP. 

These considerations show that finding a solution for the runtime action 
synchronization problem is not an easy task. Therefore, different heuristics and 
approximation algorithms can be considered. For example, modern solvers such as 
GLPK [2] and Coin-OR [8] are quite advanced and would provide a solution that is 
the best possible based on the underlying optimization algorithm, e.g. branch-and-
bound, simulated annealing, tabu search, etc. Moreover, in the next section we 
propose an approach that allows to partially overcome the obstacles arising due to 
ASP's computational complexity. 

4 Machine Learning Approach to Action Synchronization 

In this section, an approach to runtime action synchronization is proposed that allows 
overcoming the obstacles of inconvenient problem complexity identified in the 
previous sections. We reformulate the ASP problem and provide a machine learning 
methodology to handling the uncertain parameters resulting from the reformulation. 

4.1 RASP: Relaxation of the ASP Binary Optimization 

We start with the previously derived optimization problem, and relax the binary 
constraints such that the resulting problem belongs to the complexity class P, i.e. to 
the problems solvable in polynomial time. That is, we turn the condition pi∈{0,1} into 
an inequality: 0≤ pi≤ 1, for i∈{1, …, m}. Hence, the new optimization problem is 
given by: 

pIw m
T

p
max ,  s.t.  0 ≤  pi ≤  1  and    Dmp≤c                       (7) 

This optimization problem is a linear program which constitutes a convex 
optimization problem. Hence, there is only one optimum and every local optimal 
solution is also a global one, which means that the diverse optimization techniques 
will always improve iteratively the quality of the obtained solution. The above 



74 N. Tcholtchev and I. Schieferdecker 

 

formulation constitutes a problem belonging to the complexity class P, i.e. efficient 
polynomial algorithms exist for solving this problem. The result of this optimization 
is a vector containing values from the interval [0,1]. If ith component of this vector is 
0 then the corresponding action is disallowed. Correspondingly, if it is 1 then the 
action should be issued. If an agent, requesting for synchronization, receives as 
response a value from the interval (0,1), then it can either execute or drop the action, 
based on an internal threshold θi. These thresholds can be supplied by the human 
experts tweaking the autonomic network.  For instance, the history of requests for 
synchronization can be analyzed offline (e.g. by employing statistical and/or machine 
learning methods) and appropriate thresholds can be extracted using some 
optimization tools. In the following sub-section such a methodology is proposed and 
elaborated in detail. 

4.2 Methodology for Obtaining Threshold Parameters for RASP 

Assuming that during the operation of a particular system, a history of  action 
synchronization requests was collected r:={r1, …,rtr}, tr∈ N+, a methodology is 
proposed how to obtain thresholds {θ1 , …,θM} such that the involved agents are able 
to decide whether to execute an action or not based on the solutions of RASP obtained 
by the corresponding ASE component. One can assume that as long as training data is 
being collected, the system operates based on ASP. The elements of r are (0-1) 
vectors, where a 1 is set in case the action at the corresponding position in the vector 
was requested for synchronization within the particular request, and a 0 in case the 
action was not requested. The results of the RASP optimization based on the requests 
in r are then given by X={X1, …,Xtr}, tr∈N+ whereby Xi∈[0,1]M. By defining and 
solving an optimization problem based on the training data in X, we would like to 
obtain the thresholds {θ1 , …,θM} which are in turn given to the requesting agents and 
used in the course of  runtime action synchronization. This leads to the following 
maximization objective: 
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(8) can be explained as follows: the distances between the threshold values and the 
RASP results should be optimized in a way that the impact (reflected by these 
distances) of the corresponding actions is positively maximized. (8) can be further 
reformulated as follows: 
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(9) 

The final result in (9) is based on the fact that the first sum in the rearranged 
maximization is a constant, because it is computed only based on the available 
training data.  
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In order to preserve the constraints given in the ASP definition (5), the following 
constraint is added 
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with Im(qk)  being the set of actions that impact KPI qk, and ck  being the bounding 
value for k as given in the “subject to” part of (5). Combining (9) and (10) results in 
the following non-linear optimization problem: 
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As a further step towards increasing the solvability of (11), one might consider to 
treat the constraint in a way that it becomes differentiable. That way, optimization 
algorithms can be applied that explicitly make use of the gradient. A possible 
direction to go is applying a linear function on both sides of the constraint, since a 
linear operator would preserve the inequality. A good candidate is the expected value 
E[.] operator, which would also mean that the constraint is relaxed by ensuring that 
on average the selected subset of actions does not violate the constraint vector. This 
yields the following: 
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Thereby P(.) on the last line stands for the cumulative distribution of jX * , i.e. the 

distribution of RASP results for the jth
 action. Thus, in (12),  P(.) gives the probability 

for θi to be greater than jX * . Thereby P(.), in terms of a probability model, must be a 

distribution over the set [0,1]. Furthermore, a distribution of jX *  can be computed 

out of the trainings data, e.g. by calculating the maximum likelihood estimators for 
the targeted model distribution. Combining (9) and (12) results in the following 
optimization problem: 
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The beta distribution [41] is a good candidate for P(.), since it generalizes different 
possible distributions over the [0,1] interval. The cumulative distribution function 
(CDF) of the beta distribution, adapted to the current context for a threshold θi , is 
given by: 
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(14) has two parameters pi and qi, which can be estimated from the training data by 
using the method of moments [39]. The gradient of (14) can be also easily calculated 
by taking into account that the derivative of a CDF is given by the corresponding PDF 
(probability distribution function). This gradient can be used to improve the quality of 
the obtained thresholds based on algorithms, which can explicitly make use of it for 
the sake of gradient based optimization. 

In the following sections we compare the quality of action synchronization by 
solving directly the binary optimization problem in (5), and by solving the relaxation 
based on threshold estimations provided by (11), and by (13) thereby applying (14) as 
a relevant probability measure. We denote the combination between (13) and (14) as 
the beta-distribution approach. Next, we shortly relate our approach to traditional 
control theory, and present a prototype implementation, based on which the 
experiments are conducted. 

5 Relating Runtime Action Synchronization to Traditional 
Control Theory 

The ASP problem derived in the previous sections aims at ensuring the stability of an 
autonomic system implementing multiple control loops. Thereby, the control loops 
may be based on generic models defined for autonomic computing and networking in 
the past years (e.g. IBM MAPE [1], FOCALE [14], or GANA [3]) or on control loops 
as specified within the area of traditional control theory [38]. The latter type of 
control loops are based on specific transfer functions, and on the state of the system 
under control in case of feedback loops like the PID (Proportional-Integral-
Derivative) controller. Transfer functions can be seen as mathematical artifacts, which 
describe the required regulative mechanisms based on different parameters such as 
time or system feedback. Fundamental properties, which the control loop designer 
tries to achieve by adjusting the parameters of the belonging transfer functions, are 
the so called SASO properties – Stability, Accuracy, Settling Time and Overshoot 
[38]. Stability in that case is considered mainly with the oscillations that could be 
potentially caused by an improperly selected transfer function parameters. Accuracy 
deals with the degree to which particular desired values of the regulated parameters 
are achieved. The settling time property can be seen as an indicative for “how long it 
takes” until the effects of the regulative behavior are achieved. Finally, Overshoot 
gives the maximum deviation (from the desired value) which results from the 
regulative action until the belonging Accuracy is achieved. Within our framework, we 
would expect that the underlying control loops are designed considering the SASO 
properties. The KPI impact of the actions, which result from these control loops, 
should be modeled as considered after the corresponding settling time. That is, we 
presume that the final effect of the action is taken into account when modeling the 
multi-agent environment with the corresponding actions and impact on KPIs. This 
way the interplay between our approach and traditional control loops is facilitated. 

6 Implementation of an Action Synchronization Engine 

In order to analyze the technical feasibility of our approach with respect to 
functionality, scalability and overhead produced by solving the previously derived 
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optimization problems in real time, we implemented an ASE component, which can 
be started and configured by any “hosting” agent (see section 2), or can operate as an 
autonomous entity in a multi-agent networked environment. Additionally, an API was 
defined and developed that can be used by “client” agents willing to synchronize 
tentative actions resulting from their intrinsic control loops. The implementation was 
conducted on a Linux platform using C/C++ and POSIX threads. The “client” agents 
use a specially implemented library for communicating with the corresponding ASE. 

The first issue that has to be tackled is related to the solver required for solving the 
ASP and RASP optimization problems. Research done in the field of electricity spot 
market optimization problems [7] has compared different open-source solvers for 
linear and mixed integer programs and gives hints that the SYMPHONY solver (for 
solving ASP) and the CLP solver (for solving RASP), which are both part of the Coin-
OR project [8], perform best. Thus, the ASE implementation was built around the 
solvers provided by the Coin-OR project. Moreover, the internal architecture of an 
ASE component consists of two modules – one that takes care of reading and 
interpreting the configuration data passed to the ASE, and a second one that manages 
the threads serving the “clients”. The configuration data required by an ASE 
component includes: 1) a file containing the impact matrix, 2) a file containing the 
weights corresponding to the KPIs’ significance, 3) a file containing the constraints 
vector that restricts the number of actions that influence overlapping sets of KPIs, 4) 
the time interval after which the solving of the optimization problem is automatically 
triggered independently of the number of requests, 5) a maximum number of requests 
that automatically triggers the solving of the optimization problem, and 6) a flag 
indicating whether ASP or RASP should be solved by the ASE entity in order to 
perform runtime action synchronization. All these parameters need to be supplied to 
the ASE agent by the time it gets started, and can be provided by a human expert.  

 

Fig. 3. A Message carrying an Action Synchronization Request 

After the module parsing the parameters has completed the configuration of the 
ASE entity, a main “server” thread is started that listens for, and accepts “client” 
connections. In parallel a periodical thread is started that “wakes up” up every X 
seconds (corresponds to the fourth configuration parameter), copies all requests for 
synchronization, prepares the requests, the impact matrix, the constraints vector etc. in 
the form required by the native interface of the solver in use, and finally invokes it in 
order to obtain a solution. Consequently, the relevant parts of the solution are 
communicated back to the corresponding requesting agents. Apart from the periodical 
task, every time a connection gets accepted by the ASE component, the requests are 
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stored in a common (for all threads inside the ASE process) registry. In cases that the 
request was submitted and marked as highly important or the maximum number of 
requests after which synchronization is automatically triggered has been reached, the 
solving of the optimization is invoked, taking into account all synchronization 
requests stored in the common registry since the last time optimization was triggered. 
In order to synchronize all the concurrent threads around the common registry and the 
solving process, POSIX mutexes are utilized. 

 

Fig. 4. Response as a Result of an ASP based action Synchronization Request 

The communication between the requesting entities and an ASE component 
requires the specification of a message format for the exchange of requests and 
responses in case of an ASP or RASP solving ASE. These messages can be exchanged 
over Unix Domain Sockets inside a device, or over specially designed protocols for 
control information exchange between nodes, e.g. ICMPv6. Figure 3 presents the 
format of an action synchronization request message as implemented in our prototype. 
The first bit is used to indicate the urgency of the request. The following 15 bits are 
used to encode the number of requested actions, followed by a set of 16 bit integers 
representing the requested actions. 

 
Fig. 5. Response as a Result of a RASP based Action Synchronization 

Depending on whether the ASE entity in question is pre-configured to perform an 
ASP or a RASP optimization, different response formats are required. Figure 4 
illustrates the message carrying the response from an ASP based action 
synchronization. The first bit of the message indicates whether the synchronization 
was successful or not. In case of a failed synchronization, different error codes can be 
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reported within the next 15 bits. In case of a success, a corresponding number of bits 
is conveyed which reflect the request for action synchronization thereby indicating 
whether a tentative action is allowed (bit value 1) or disallowed (bit value 0). 
Additionally, figure 5 depicts the response message in case of RASP synchronization. 
It consists of a sequence of thresholds each encoded in 4 bytes. These are meant to be 
floating point numbers in the range between 0 and 1. In case of failed action 
synchronization, an error code is returned that indicates the type of problem occurred 
within the ASE component. 

Based on this prototype, the next sections present different numerical evaluations 
of our approach as well as a case study illustrating its application.  

7 Experimental Results 

In order to evaluate our approach, we designed a set of experiments such that we can 
compare the quality of the action synchronization achieved by the different 
mechanisms and techniques presented so far. Since there are no such systems 
deployed in practice, we simulated requests and models (including weight vectors, 
impact matrices, and constraint vectors) of different sizes for our experiments. This 
allowed us to gain an impression of the performance of the different techniques on a 
number of models and combinations of tentative actions. 

7.1 Qualitative Measurements 

The measurements presented in this section are meant to benchmark the quality of the 
action synchronization procedure, in terms of achieved utility value and constraint 
satisfaction as determined by the corresponding constraint vector. This utility value is 
obtained by solving ASP directly, or by solving the corresponding relaxation – RASP, 
and applying thresholds for accepting for execution or dropping actions. 

 

Fig. 6. The Average Difference between the Utility Values obtained by solving RASP 
combined with applying Thresholds based on optimizing (11), and directly solving the ASP 
Synchronization 
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We used models with equal numbers of KPIs and potential tentative actions. For 
each model size, we took 1000 different model instances. Additionally, 1000 action 
synchronization requests were simulated as training data for each model size, in order 
to evaluate the machine learning approach from section 4.  Moreover, 100 action 
synchronization requests were used as test data for each model size, upon which we 
validated the quality of the different techniques. We developed a Matlab script that 
implements the machine learning procedures as specified by (11), as well as by (13) 
with applying the beta-distribution (14) as a probability measure. In the course of this, 
we made use of the NLOPT [22] library for non-linear optimization. Thereby, we 
employed first an “Improved Stochastic Ranking Evolution Strategy” [23] to perform 
a global search for both problems defined in (11) and (13). Afterwards, we conducted 
a local search based on the “Constrained Optimization by Linear Approximations” 
[24] algorithm for (11), and on the “Augmented Lagrangian algorithm” [25] for (13), 
in order to find a precise solution locally. Thereby, the algorithm applied for (13) can 
explicitly benefit from the derivatives of the utility function and the constraints, which 
can be computed based on the beta-distribution (14) function. These steps resulted in 
thresholds obtained based on (11) and (or) (13) for each model instance. The 
belonging test data was used to evaluate the quality of these thresholds in terms of 
accepting or dropping an action based on a solution for RASP (7). That is, we first 
solved RASP, and using the corresponding set of thresholds, we accepted or dropped 
actions based on the obtained RASP solution vector. The selected actions resulted in a 
particular value of the utility function, and potentially violated the constraints vector, 
since the relaxations influence directly the involved constraints. For that reason, on 
one hand, it is worth to compare the difference between the utility value achieved by 
using thresholds and the one obtained by solving ASP directly. On the other hand, it is 
required to measure the magnitude of constraint violation achieved by solving RASP 
and applying the thresholds. At this point, it is worth mentioning that straight solving 
the binary program (5) does not lead to any constraint violations, since this is the 
original version of the optimization problem. 

 

Fig. 7. The Average Difference between the Utility Values obtained by optimizing RASP 
combined with applying Thresholds based on the Beta-distribution Approach, and solving 
directly the ASP Problem 
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Figure 6 and figure 7 illustrate the empirical distributions of the differences 
between the averaged utility values of the involved approaches for each model size. 
The averaged utility values were obtained based on the belonging test dataset. That is, 
we averaged the utility values obtained for each action request in the corresponding 
test data, and present the empirical distribution of the difference between these 
averaged utility values for each of the 1000 model instances of the size in question. 
By difference we mean “averaged utility value of RASP and (11)” - “averaged utility 
of ASP” for figure 6, and “averaged utility value of RASP and (13)” - “averaged 
utility of ASP” for figure 7. Indeed, a positive value within the empirical distribution 
means that the corresponding RASP based technique performed better than straight 
binary optimization. The box plots visualize the median, the 25% quantile, the 75% 
quantile, the minimum and maximum value of the experienced sample. Figure 6 
shows that solving RASP, and applying thresholds obtained by (11), performed 
slightly worse than binary optimization of ASP for smaller model instances. However, 
with growing model sizes, the RASP based method started performing better even 
though there were still some outliers (in terms of models) for which binary 
optimization is better. On the other hand, figure 7 shows that solving RASP, and 
applying thresholds obtained through the beta-distribution approach, resulted in better 
utility values for all evaluated model sizes. Again, there were some outliers (in terms 
of models) by which the binary optimization seems to be the better approach to 
obtaining optimal system fitness. 

 

Fig. 8. The Average Violation in case of optimizing RASP and applying Thresholds obtained 
through (11)  

The average numbers of constraint violations while performing RASP based 
optimization are shown in figure 8 and figure 9.  The average value was built based 
on the test data set for each model instance. Figure 8 and figure 9 clearly indicate that 
even tough the violations in the case of the beta-distribution approach were minor, the 
non-linear threshold optimization (11) clearly outperformed the beta approach when it 
comes to constraint violations. This is not surprising, since (11) reflects to a large 
extent the initial ASP problem regarding the constraints, while the probability based 
approach (13) relaxes them by assuring compliance only on average. 
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Fig. 9. The Average Violation in case of optimizing RASP and applying Thresholds obtained 
through the Beta-distribution based Approach 

In general, we see that the two discussed RASP based techniques performed 
reasonably as compared to straight ASP binary optimization when it comes to 
achieved system fitness, and to satisfying the original constraints, which influence the 
simultaneous execution of actions. 

 

Fig. 10. Maximum Response Time of an ASE Component when solving ASP and when solving 
RASP 
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7.2 Scalability and Overhead Measurements 

Since ASE entities are meant to facilitate self-management for a large diversity of 
systems, including network switches and routers, embedded systems, multimedia 
gateways, and server systems, the issue of scalability and overhead produced by such 
an agent is of paramount importance. Therefore, we use the previously described 
prototype to conduct a number of performance and overhead measurements of our 
proposed approach. In the course of that, we would also like to evaluate the 
performance characteristics related to the proposed optimization problems, i.e. ASP 
and the corresponding relaxation RASP. 

 

Fig. 11. Memory Consumption of an ASE Component when solving ASP and when solving 
RASP 

The simulations were conducted on a Linux machine with the following hardware 
parameters: Intel Pentium 4, 3.00 GHz, RAM 2 GB. We simulated two requesting 
agents which were simultaneously issuing a total number of 100 action 
synchronization requests to an ASE entity. The size of the requests was set to 20 
actions requiring synchronization. The last of the requests was sent as highly 
important (see figure 3), such that synchronization is issued immediately for the 
overall set of actions submitted by both agents. This setup allows also to judge on the  
scalability of the approach in case a large number of control loops need to be 
synchronized, since it pushes to the extreme the size of the models and the number of 
actions to synchronize. The only aspect that is not covered is given by the capability 
of the underlying hardware and operating system to serve a large number of 
connections and threads. Potential issues there can be remediated by additional 
hardware or by increasing the use of self-organization techniques (e.g. self-organizing 
maps) among the autonomic agents in question. 
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The maximum of the response times for the two requesting entities and the model 
size in question is plotted in figure 10. The trend clearly shows that a RASP solving 
ASE is the better choice in situations where fast responses are vital. Additionally, 
figure 11 compares the heap memory consumption of an ASP and a RASP solving 
ASE that can be seen as indicative for the amount of memory consumed while solving 
the underlying optimization problems. The trend in figure 11 indicates that in case 
memory is scarce resource, a RASP based approach to action synchronization would 
be the most suitable one.  

8 Case Study: Autonomic Fault-Management and Resilience in 
Self-managing Networks 

Our illustrative case study comes from the domain of autonomic networking and deals 
with the functions of Autonomic Fault-Management (AFM) and Resilience in self-
managing IP networks. Autonomic Fault-Management is understood [28] as an 
automation of the tasks comprising traditional Fault-Management as indicated by the 
ITU-T TMN [29] (Telecommunication Management Network) standard. These tasks 
are: Fault-Detection – “detect the presence of fault”, Fault-Isolation - “find the root 
cause for the observed faulty condition”, and finally Fault-Removal - “remove the 
identified root cause”.  On the other hand, the resilience of the network depends also 
on an immediate reaction to an observed faulty condition. This means that an action is 
required in order to mask the erroneous state until the Autonomic Fault-Management 
mechanisms have managed to remove the underlying root cause(s). Such an 
immediate action could be for example the result of a regulative mechanism based on 
a transfer function as implemented in traditional control theory [38]. Architecturally, 
these aspects have been addressed in publications such as [43]. The idea is to have 
two different autonomic entities: one implementing the immediate reaction based on a 
policy model – resilience agent, and a second one realizing the Autonomic Fault-
Management tasks – AFM agent. These entities are introduced in each node of the 
network. Indeed, when it comes to executing the resulting actions, the two entities 
need to negotiate in order to resolve potential conflicts due to multiple AFM or fault-
masking processes (threads) running in parallel. This negotiation is facilitated by an 
Action Synchronization Engine within each device. Hence, the case study shows how 
an ASE can be used to synchronize the tentative actions of autonomic entities within 
an architecture for Autonomic Fault-Management and Resilience as the one presented 
in [43]. 

Figure 12 presents the reference network for our case study. Each of the routers 
(R1 to R5) is equipped with a resilience agent, an AFM agent, and an ASE agent.  
Furthermore, each of the routers is running an OSPF routing daemon, e.g. as the one 
provided by the Quagga routing platform. We focus on potential faulty conditions 
around R2, and on potential reactions to these faulty conditions issued by the 
autonomic entities on R2. However, presenting the models and mechanisms that drive 
the reactions of the autonomic entities is beyond the scope of this paper. For more 
information, we refer the reader to [37]. In figure 12, R2 is a critical point in the  
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network, since it is a router having different (Gigabit and Fast Ethernet) types of links 
with different characteristics, as for example MTU (Maximum Transmission Unit) 
size – 1500 bytes for Fast Ethernet and maximum 9000 bytes for Gigabit Ethernet 
links. This creates the potential for black hole problems as described in [RFC2923]. 
These problems are made possible by the suppression of ICMP messages on the 
router in question having links with different MTUs attached. This is especially 
critical in IPv6 networks where there is no packet fragmentation on intermediate 
routers. On the other hand, the (dynamic) suppression of ICMP messages is required 
in case the network is under attack, since ICMP responses were often used to realize 
flooding and Deny of Service (DOS) attacks in the past. Hence, it is a good idea to 
also dynamically regulate the level of ICMP suppression as a reaction to an 
anticipated attack on the network infrastructure. Thus, the following potential actions, 
to be issued on R2 by the AFM agent, are introduced: set-icmp-suppression-
(low/medium/high). These actions are expected to differ with regard to the subsets of 
ICMP message types being suppressed on R2. Furthermore, the problem of link 
flapping can potentially occur on any of the routers including R2. It is constituted by a 
link that is continuously going up and down thereby affecting the OSPF routing in the 
network [40], such that the routers have difficulties to converge with respect to 
available routes. An immediate reaction of the resilience agent to this phenomenon 
could be given by adjusting the rate of the OSPF Hello timer on the affected routers 
[40]. Thus, the following potential actions, to be issued on R2 by the resilience agent, 
are considered: set-hello-rate-(low/medium/high). As a result of the belonging 
Autonomic Fault-Management processes, the AFM agent can decide to either restart a 
Network Interface Cards (NIC) on R2, or to restart R2 as whole. This results in the 
following potential actions restart-node and restart-NIC. Regarding the KPIs to 
optimize for the case study, we consider the following QoS metrics from the 
telecommunications domain: delay, jitter, packet loss, out of order packets, and 
throughput, as well as the KPIs of overall security level, CPU utilization and memory 
consumption on R2. 

 

Fig. 12. The Reference Network for our Case Study 
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Table 1 presents the parameters of the model created based on the case study 
described hitherto. The first eight columns show the impact matrix of the model. The 
last two columns show correspondingly the constraints and the weights of the model 
determining the importance of the KPIs to optimize. For the impact of a certain action 
on the KPIs we take integer values from the interval [-5,5] meaning that a  negative 
degrades  the KPI, and  correspondingly a positive  value  improves the KPI. For   the   
weights, values from the interval [0,20] were considered. A number of interesting 
aspects are given by the lines, not assigned to a KPI. They demonstrate how model 
parameters can be extended beyond the modeling notions described in section 3, such 
that particular actions do never get executed simultaneously, and certain actions are 
prioritized. In the current case study, it is logically required that only one action at a 
time is executed from the sets set-hello-rate-(low/medium/high), restart-(node/nic), 
and set-icmp-suppression-(low/medium/high) in case multiple actions from these sets 
are requested for synchronization. This is modeled by the second part of table 1, and 
is achieved through creating a relationship between these actions, and restricting this  
 

Table 2. Illustrative Action Synchronization Requests 

REQUESTED  RESTART-NODE RESTART-NIC 
SET-ICMP-

SUPPRESSION-LOW

 

SELECTED   

YES 

 

NO 

 

NO 

 

REQUESTED   

RESTART-NIC 

 

SET-ICMP-SUPPRESSION-

LOW 

 

SET-ICMP-

SUPPRESSION-

MEDIUM 
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YES 

 

 

NO 

 

 

REQUESTED   

RESTART-NODE 

 

SET-ICMP-

SUPPRESSION-HIGH 

 

SET-ICMP-

SUPPRESSION-LOW

 

SET-ICMP-SUPPRESSION-

MEDIUM 

SELECTED   
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NO 

 

NO 

 

NO 

REQUESTED   

RESTART-NODE 

 

SET-HELLO- RATE-LOW 

 

 

SET-HELLO- RATE-

MEDIUM 

 

 

SET-ICMP-SUPPRESSION-HIGH 
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MEDIUM 

 

 

SET-HELLO- 

RATE-HIGH 

 

SET-ICMP-SUPPRESSION-

MEDIUM 

SELECTED   

YES 

 

NO 

 

 

YES 

 

 

NO 
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relationship by extending the impact matrix and the constraints vector. Through this, 
only one action of each set is selected for execution after a synchronization process. 
The last segment of table 1 illustrates how an action can be set to have a higher 
priority than another one. In that case we prioritize the action restart-node over each 
of the other potential actions. This is achieved by an additional row in the impact 
matrix for each intended prioritization.  Indeed, restart-node is favored based on the 
new “impact values”, and  only one of the two actions in question,  i.e. restart-node  
and the  action  with  respect  to  which  it  is being   prioritized,  can be selected 
according to the new constraints (refer to the belonging entries in the constraints 
vector). 

To illustrate the operation of an ASE component based on the case study and 
belonging model, we used our prototype, in order to issue different requests for action 
synchronization, and observe the resulting selected subsets of actions. Thereby, the 
ASE agent was operating on the binary program constituting the ASP version of the 
above described model. Table 2 summarizes some of the results from our 
experiments. It can be observed that indeed only one action from the sets set-hello-
rate-(low/medium/high), restart-(node/nic),and set-icmp-suppression-(low/medium/ 
high) has been selected for execution, in case multiple actions from theses sets were 
requested for synchronization. Moreover, we can also see how the action restart-node, 
when requested, is always prioritized over the others. For the rest, the selection is 
performed based on the impact of the tentative actions on the fitness of the network as 
defined in (1) and (5). The results in table 2 show how such an ASE component can 
resolve emergent conflicts between parallel autonomic control loops, thereby always 
trying to achieve an optimal improvement in the operation of the network. 

9 Conclusions and Future Research Directions 

This article introduced a framework for ensuring the conflict-free and synchronized 
operation of multiple parallel autonomic control loops. Such a framework is useful in 
cases when the agents implementing the parallel control loops are not designed with 
the explicit awareness of each other, but instead operate in a way as to achieve their 
own goal and optimize the performance of the resources they were assigned to 
manage. By introducing components called Action Synchronization Engines (ASE), 
we propose to have an arbiter that enables the negotiation over tentative actions which 
are about to be executed in the scope of the parallel running control loops. An ASE 
component needs a model that allows it to reason about the impact of different actions 
such that a synchronization procedure can be performed. Therefore, we developed a 
mathematical model called ASP (Action Synchronization Problem), instances of 
which can be given to an ASE agent in order to facilitate its operation in a particular 
context. This model is based on the optimization of some key performance indicators 
(KPIs). It allows for: 1) specifying the importance of single KPIs, 2) specifying the 
impact of the potential actions on the KPIs in question, and 3) influencing the 
execution of actions with overlapping impact domains (in terms of KPIs). Moreover, 
in the course of the presented case study, we saw how the model can be used to: 4) 
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explicitly disallow the simultaneous execution of some actions, and 5) prioritize some 
actions over others. Unfortunately, this model results in a problem which is of very 
hard computational complexity. For that reason, an additional effort was presented 
that aims at relaxing the original problem in a way that it can be efficiently solved. 
The resulting formulation delegates some degree of decision to the requesting agents. 
These decisions are based on parameters (thresholds) for which we proposed a 
machine learning approach for their configuration. A comparison between the diverse 
techniques – direct binary optimization and machine learning based decisions – was 
also conducted. This comparison shows that the proposed reformulation does not 
degrade the quality of the action synchronization procedure, while at the same time 
reducing the memory consumption and improving the response time of an ASE 
component.  

The approach proposed in this article opens a number of exciting research and 
development challenges. For example, the investigation of further ways for modeling 
runtime action synchronization and belonging efficient algorithms might be an 
interesting research topic. Besides, there is a need for sophisticated tooling that allows 
to easily create ASP models as proposed within this article. This could potentially be 
done in a way that the system's operator does not get involved into the mathematical 
details presented in this paper, but rather relies on easy to understand atomic artifacts, 
which can be efficiently combined to enable the self-managing system coping with 
various emergent situations. Finally, one might also consider the mapping of multiple 
parameters of the ASP model to business goals, and use this to achieve revenue by for 
example adapting the behavior of an autonomic network to specific type of expected 
traffic. 
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Abstract. 3D reconstruction from planar contours using the heuristic approach 
implements rules for three different phases of the process: correspondence, 
tiling and branching. We have analyzed existing algorithms and have been able 
to isolate their constituent pieces which allowed us to foresee many other 
possible (atomic) contributions. These pieces of algorithms were implemented 
independently and different mixes were compared using performance, 
geometrical and user-centered metrics. It was found that user-centered analysis 
are not reliable; that local criterion do not reflect on the whole model´s quality 
and; that there is a tradeoff between performance and geometrical metrics. We 
could also find a particular mix of algorithm pieces that lead to a novel 3D 
reconstruction algorithm. Moreover, we have built an open source freeware 
framework where more mixes can be composed and where further testing and 
improvements could be carried out. 

Keywords: Solid Modeling, 3D Reconstruction, Tiling Algorithm, Planar 
Contour, Heuristic Approach. 

1 Introduction 

Advances in technology allowed a variety of non invasive exams to produce visual 
information about an object-of-study (human body, ground, solid objects, etc.). These 
exams can be applied to areas such as medicine, petroleum industry, geology, 
manufacturing metrology, quality assurance, animation/gaming industry and, so on. 
All of them benefit from a given set of planar parallel images that represents cross-
sections taken from the object (hereafter called slices). These slices are processed to 
show contours of interest that highlight the object constructs (such as flesh and bones 
on a medical application). However, the biggest advantage is the underlying 3D 
information that can be processed to compose a proper 3D model for visualization and 
analysis purposes. This process, called “3D Reconstruction”, becomes more important 
as the use and popularity of non invasive exams increase. 

3D Reconstruction algorithms can be achieved through a three phased approach 
known as the Heuristic Approach [10] which relies on meaningful rules to perform its 
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task. These phases are: “Correspondence”, which aims to identify which contour in 
successive planar slices, should be connected to each other; “Branching”, which focus 
on defining how multiple contours can be connected altogether, and; “Tiling”, that 
cares to compose the actual tiles that builds the surface of interconnected contours in-
between slices. By identifying separate phases, one can study optimizations for each 
one of them. This “divide to conquer” strategy facilitates improvements for the whole 
3D Reconstruction algorithm. 

We took the “divide to conquer” strategy further down to the tiling phase. In doing 
so, five steps could be identified and many alternative solutions could be elected for 
each step and their mix were explored in search for an improvement of the resulting 
reconstructed model. To evaluate the resulting models, measurements were taken 
regarding performance, geometrical features (of visual origin but geometrical nature) 
and user´s perception of a good model. Therefore, this paper aims to analyze the tiling 
phase (how it work and how it could be improved), the reconstructed geometrical 
model (how to objectively evaluate it) and, users perception of the reconstructed 
model (how user´s perceive the results). 

The paper is divided as follows: Section 2 discusses how to evaluate reconstructed 
models; Section 3 reviews existing tiling approaches; Section 4 presents tiling phase 
as a collection of steps, places existing solutions on a general framework and presents 
new contributions for each step; Section 5 proposes an improved tiling approach and 
compare its features with existing approaches regarding performance, geometrical and 
user-centered metrics; Section 6 concludes this text. 

2 Evaluating Reconstructed Models 

The quality of the 3D reconstructed model can be related to its visual features 
compared to the expected appearance of the corresponding real object. However, the 
real model could not be available to perform the comparison once it could be a 
person´s internal organ (rather, the objective of the whole process is to estimate the 
shape and look of the unavailable object). But, this is an intuitive and subjective [3] 
analysis that cannot be computed automatically. Rather, the quality of the 
reconstructed model can be taken from its geometrical features. 

Existing approaches [10, 12] optimize the tiling phase in belief that the efficiency 
of the process according to a given local criteria yield a good "model". Local criteria 
are used to assess individual geometrical elements (faces, edges, points). Local and 
global optimization criteria based on volume, area, edge length (line segments of the 
contour on the slice as well as segments in-between slices) and, others have been 
surveyed but found pour performance and unsuitability even for trivial variations (a 
weird two opposite pyramids shape happens too often)[10]. Therefore, it seems useful 
to find a positive correlation between (a) subjective user´s resemblance perception 
and (b) objective geometrical measures from the resulting model.  

It should be clarified that the literature differentiates the edges of a reconstructed 
model that lie on the planar slice from an edge that goes in-between slices: the former 
are called "segments" and the latter, "spans". Span size and amount are a direct 
consequence of the tiling approach applied. Therefore, we argue that the quality of the 
reconstructed model could be related somehow to the spans of the model.  



 3D Reconstruction from Planar Contours: Analysis of Heuristic Tiling Approaches 97 

 

Geometrical measures include: number of vertices in the model; edge-related 
metrics: minimum and maximum edge size, average and standard deviation of edge 
size, minimum and maximum span size (which takes into account only those edges 
that connect vertices from the contours of different planar slices - [6, apud 11]), 
average and standard deviation of span size, and; minimum area, maximum volume. 

• Minimum area have been considered the best, more usual and, the metric that 
usually produce a good result [11]; achieving the minimum area for the whole 
resulting model [6] is easy to compute and can be done during ongoing tiling 
processing; 

• Maximum volume can also be calculated during tiling processing [7]. 
• Shortest average size of the edges can be identified during tiling processing and 

aims to construct small triangles in the model [4, 5, 8].  

Volume-based criteria have no sound motivation and give the impression that it 
could somehow inflate or deflate the resulting model. Area-based criteria do not seem 
appropriate because a same value for area can be reached for a completely different 
underlying mesh of faces. Edges are one of the most basic geometrical features of a 
model; it bares close relationship to the mesh of faces and can be easily computed.  
Models that comply with the common sense notion of “neat” would present a mesh of 
faces that shows a regular distribution and little or no visual twist effect. These 
features can be visualized when the 3D reconstructed model is rendered in flat 
shading.  

Shortest average size of edges alone do not relate directly to model's quality 
because it can be misleading once maximum and minimum values could be very 
different for the same average value. Models that have spans bigger than necessary 
tend to appear as being twisted to some of the corresponding slices. Therefore, once 
span size is a measure that is related either to the tiling process as well as to the final 
model's visual features, a thorough analysis on this metric can lead to a unifying way 
to assess 3D reconstruction.  

Minimum or maximum span sizes alone do not guarantee a regular neither 
twisting-free mesh. Minimum average span sizes do not guarantee regularity because 
a given average value can be drawn for different min/max values. Median span size, 
although better represents the expected size of the spans on the model, do not 
represent how far apart the minimum and maximum values of the span are. Minimum 
median span size accounts for the best predictable size of spans which reflects faces 
with smaller edges and, thus minimized twisting. Standard deviation of span sizes 
represents how it deviates from that given expected value. Therefore it better reflects 
the regularity of the faces on the mesh. 

All above mentioned metrics are geometrical-related and will be used in order to 
objectively assess the model´s features. However, performance measures should be 
taken because more heuristics tend to consume more processing time. Furthermore, as 
we are dealing with visual aspects, users can be asked to assess the model´s quality 
directly but this is of subjective nature and should be taken with caution. 
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3 Existing Heuristic Tiling Approaches 

The problem statement for tiling is as such: given a set of points that describe two 
contours in successive planar slices, how to build a mesh of faces using these points 
as vertices in order to reconstruct the original model? The following sub-sessions 
address tiling approaches for performing mesh generation: 

3.1 Local Proportional Dispersal 

Li, Ma and Tan [9] proposed that the number of points of each contour (say contours 
N and M) should be equal, so that there is a one-to-one match while constructing the 
edges of the mesh. For that end, points are added in the contour that has a smaller 
number of points to the amount of the difference in points between the contours.   

The tiling occurs as follows: The two closest points between the adjacent contours 
are defined as the initial references. Then, linear versions of both contours are created 
(l1 and l2) which must have the same direction. The linearization keeps the 
proportional distance between points by calculating the Euclidean distance between 
them and projecting it in a linear segment. 

Afterward, the linear version of all M points at one contour is parameterized to 
obtain a sequence of T values ranging from 0 to 1 and the same is done to obtain a 
sequence of the N points at the other contour to generate S, where T = (t1, · · ·, tM) and, 
S = (s1, · · ·, sN), M > N. Then, for each segment in S the closest sequence in T is 
sought, as shown in Figure 1.  

 

Fig. 1. Linearized contours and initial points linked [9] 

Note that the correspondence between the points in l1 and l2 is given by the 
parameter-based proximity and not by accuracy. For instance, M3 could have t = 0.33 
and N2 would be considered close enough to s = 0.36, allowing a small error to 
accumulate in the calculation of the proportionality. 

Points that are inside the identified segment are proportionally transferred to S 
based on the local distances of M1-M3 and N1-N2, hence this approach was named 
Proportional Local Dispersal. In the case, one mismatched point (M2) in the l1 
segment was found and a proportional counterpart needed to be created in l2 (with its 
corresponding new s value). At the end, (M - N) points are added to l2 so that the two 
contours can be matched one-to-one. The actual mesh is generated by replicating a 
pattern of triangles connecting Mi and Nj points. To implement this algorithm, [9] 
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assumed that the contours have some degree of concentricity and the points that 
define the contours are oriented in the same direction; otherwise it will generate an 
object that looks like two opposite pyramids. Note that this approach first calculates 
3D distances between pairs of points but the remaining comparisons are done in the 
1D domain which saves computational time. 

The main contribution of this approach is the points balancing step which creates a 
proportional counterpart of M into the N contour. This distribution guarantees that 
regions of a contour with point’s concentration will be matched to similar 
concentration of points in adjacent contour. But for contours with huge difference in 
the number of points, it adds an equivalent computational cost. 

3.2 Shortest Span 

Chen et al. [4] created a triangular-shaped connection between the closest points of 
contours regardless the amount of points in each contour. As in the previous 
approach, it starts off by identifying the points that have the shortest 3D Euclidean 
distance. The subsequent triangles are formed by choosing the shortest span built 
either incrementing the index of the target point in the contour M or N. The procedure 
continues until all points at both contours were connected to form triangles. 

This approach does not generate any extra point, but calculating a 3D distance 
between points generates a considerable computational cost. Also, if the amount of 
points of the two contours is different, a point on the contour of a smaller number will 
probably connect to various points at the other contour. 

3.3 Balanced Distance 

Anzolin, Hounsell and Silva [1] also performed point balancing between contours but 
they added the number of points of one contour into the other so that, at the end, both 
contours end up with (M+N) points. They considered that despite increasing the 
number of points two fold, the more points are distributed on the contours, the better 
the final mesh will be. It surely takes more time as well so; they used a much simpler 
heuristic to distribute the points: for every two consecutive points of a contour, the 
planar 2D distance between them is calculated and every new point is added in the 
middle of the biggest segment (the pair that has the longest distance). This 
distribution strategy minimizes point concentration in a specific part of the contour so 
balancing the number of points and balancing the distance between them as well, 
which contributes to produce a more regular mesh. 

To define the starting points for the actual mesh generation, a bounding box of 
each contour is calculated and the points of each contour that is closest to a chosen 
corner will be elected the starting points. The triangles are then generated similarly to 
[1]. This approach doubles the points of the resulting model which also add a 
considerable computational cost but tends to generate regular meshes. 
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4 Methodology: Dissecting Tiling 

To achieve the objectives of the tiling phase, authors have attempted ad hoc 
adjustments (called normalization [10] or, contour matching [15]) that accounts for 
position, size and orientation changes in the input data (the contours). We consider 
that these adjustments (and others) are part of the process. This was made clear when 
we took a “divide to conquer” strategy, pretty much like dissecting the problem, 
where we isolated constituent contributions (algorithms). This analysis led to an in 
depth view of the heuristic approach of the tiling phase.  

As a result, we propose that the tiling phase is subdivided into five steps: contour 
offsetting, contour orientation, contour twisting, points balancing and, points linking. 
Each one of these steps has received some attention and indeed there are some 
existing solutions for each one but when analyzed in isolation from each other, it can 
be seen that other alternative solutions are also possible. 

Fig. 2 summarizes all five steps of the tiling approach and their alternative 
solutions. Some existing solutions can be seen (see references that appear in Fig. 2) 
but we proposed many others to be taken into account for future tiling approaches. 
Therefore, a tiling approach can now be thought of as a mix of 5 constituent solutions, 
which will be discussed following: 

• Contour Offsetting. This step adjusts the contours on their own slices (the XY 
plane) so that they become aligned (say, concentric) to each other when seeing 
from the third dimension (Z). Size adjustments can also be performed at this stage. 
If applied, the working contours must be changed back to original position and size 
for the remaining tiling steps. For the contours to become concentric, some sort of 
contours’ center calculation must be done to drive the translation. This step is 
optional but when present, it minimizes contour offset influence while calculating 
distance between points of adjacent contours; 

• Contour Orientation. This step evaluates if all points that represent the contour 
are laid at the same clock or counterclockwise orientation according to a chosen 
convention. This is required if there is no guarantee that all contours are organized 
in a standardize way; 

• Contour Twisting. This step deals with reordering the points of the contours so 
that their initial referential points are the first point for mesh generation and for 
further processing. This reorganization can be done in two steps: first, finding 
which point will be the reference point, and; second, reordering the points in the 
internal data structure; 

• Points Balancing. This step is optional but, if included, tends to result in an object 
with faces of more uniform size. It is concerned with the way that the number of 
points of the contours is balanced, i.e. it will change position or add new points. If 
adding points, it governs how they are distributed on the contour; 

• Points Linking. This step effectively determines which pair of points from the 
contours should be linked in order to become an edge of the polygonal mesh. 
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Fig. 2. An Overview of Tiling Steps 

The following sections will present novel solutions to every step mentioned above. 

4.1 Solutions for Contour Offsetting 

The repositioning of contours is dependent on the calculation of the shape's center. To 
calculate the center of a contour, the center of gravity, arithmetic average of points, its 
bounding box center or, its bounding circle center, amongst others, can be used: 

• To calculate the center of gravity of a polygon, one must divide it into triangles 
and take an average of their center of gravity weighted by their area. The division 
of the polygon into triangles is required once a triangle´s center of gravity is trivial 
to calculate. Because of these three calculations (polygon division, triangle center 
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and weighted average) it is of great computational cost. However, the center of 
gravity is more meaningful and is of interest to many other physical applications; 

• Calculating the average of all vertices of the contour is of low computational cost, 
but may be affected by contour´s features and points distribution. For example, the 
concentration of points in a corner of the contour causes an undesirable shift of the 
center towards that end; 

• The center of an envelope is a fast approach which is not influenced by the 
distribution of points in the contour. The center of the contours´ bounding box [1] 
is an alternative as well as its bounding circle (which coincides with its center). 
The choice between them would depend on which one promotes the best fit to the 
actual contours´ shape. 

4.2 Solutions for Contour Twisting 

The most common way to find the initial points of two contours is calculating the 
closest points in 3D [4][9] but this would require comparing each point to all others. 
Another less expensive way is electing an auxiliary and external reference point and 
then finding the closest point to it but in the same slice, i.e. in the 2D plane [1]. After 
identifying the reference point, it is useful to reorder the points in the data structure so 
that they become the first. To reorder the points the following were identified: 

• Brute force: Reorders the data structure (a vector of points that represent the 
contour) by effectively moving the points. This option requires preprocessing all 
contours at the beginning but gives a performance gain during run-time; 

• Indirect way: The initial point divides the data structure into two halves; it is 
simply a matter of producing another vector inverting the order of the two halves 
[1]. This technique also requires preprocessing but gives a performance gain during 
run-time; 

• Function: Instead of changing the actual position of points in the data structure, a 
reordering function that recalculates the required position on the original vector 
can be used. In this technique, there is no preprocessing, and thus has no 
computational costs at the beginning but requires extra computation at run-time for 
every access of a point in the vector. 

4.3 Solutions for Points Balancing 

This step is performed when it is required that the two contours should have the same 
number of points because either twisting or linking steps (explained later) would 
produce a clearer relationship between the points. This relationship allows issuing a 
predictable tessellation pattern of faces (triangles or rectangles). 

The points balancing step is divided into two types: in the index domain or, in  
the space domain. The former uses indexes of the vector that stores the points of the 
contour to reason about the insertion of new points or modifying an existing one. The 
later takes into account the actual point, either in the R2 (2D) or R3 (3D) space, in 
order to calculate the positioning of new points. 
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• Proportional Exact Distribution: A variation of [9] was devised so that rather 
than just creating points in-between segments of bigger edges of one contour into 
the other, it replicates all mismatched parametric values of one curve into the 
other (unless they are considered too close for a given allowance). Thus the error 
that would accumulate in the selection of the bigger edge of a contour no longer 
occurs and exact points´ proportionality is guaranteed. For this end, after 
obtaining the two linearized index sequences T and S, the union of their values 
creates just one sequence R which will hold for both of them. The 
correspondence one-to-one will be obtained as new points in the M as well as in 
the N contours are generated and all of them will have a counterpart. The final 
object will have a doubled number of points which demands a longer processing 
time but the resulting object has smoother surface (due to consequent higher 
number of faces). This approach improves the proportional distribution of points 
in both contours, without the need to calculate distances in R3 Euclidean space. 

• Proximal Distribution: Another way to propagate the pattern of distribution of a 
contour into another is to, instead of generating new points (the amount of DIF 
(M, N) as in [9]) by the parametric equation of segments in search for 
proportionality, project a mismatched point in the M contour onto a line segment 
in the N contour in R3. This projection ensures that the resulting point is the 
closest equivalent (or proximal) missing point in the other contour and therefore 
will be linked to this one later on. This alternative was devised to deal with the 
fact that even when ensuring proportionality in the index domain, the original 
algorithm can generate points far apart in the Euclidean space. The shortest 
distance is sought within the respective segment but if the projected point is not 
in the desired segment, the original Proportional Distribution [9] can be used. In 
Fig. 3, M has seven points and N has 4 points at the beginning (see dots). Three 
new points need to be created. The squares represent two new points created 
through the projection of points of M on the proper line segment in N. 

 

Fig. 3. Projecting Points of one Contour into Another 

The triangle represents a point created by the proportional distribution on the 
index domain because there is a mismatched point that does not have a projection 
in the corresponding segment of N, as the dotted lines suggest. The number of 
points generated by this technique is equivalent to that proposed by [1], but is a 
different way of balancing points. 
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• Lean Distribution: Analyzing the correspondence of points proposed by [1] 
where extra points are added on the longest segment, it was noted that the 
balancing can be faster by reducing the number of points generated in each 
contour. Applying [1] solution results in a total of 2(M + N) points. If only the 
difference of points between M and N is added to N there will be only 2M points 
in the final model (supposing M is bigger than N). 

• Blind Distribution: Considering M > N, the blind distribution inserts n points in 
N, where n is given by Eq. 1. This strategy aims to distribute an equal set of 
points among segments without considering any other factor (distance, for 
example, hence the name "blind"). 

 n = (Div(M,N) – 1) + Mod(M,N)  (1) 

Blind distribution is performed in two steps: the first step spreads an equal 
amount of  extra points in the middle of all segments of N (thus the first term in 
Eq. 1 accounts for the integer difference between M and N) and; the second step 
ensures the same amount of points between the two contours by spreading the 
fractional remains of the division over the existing segments (as in the second 
term of Eq. 1).  This solution is fast because avoids calculating distances in 2D 
or 3D Euclidean spaces. Figure 4 shows two contours where M has eight points 
and N has three points. Therefore one point (Div(8,3) -1 = 1) is to be created in 
all three segments of N (seethe dots). The remainder is 2 and these points are 
represented by squares, spread over the first two segments. 

 

Fig. 4. Blind Distribution of Points 

4.4 Solutions for Points Linking 

There are two solutions for points linking: the first is to create spans (edges between 
contours) with the smallest possible size in order to create triangular shaped faces. 
The required size calculation can be performed using 2D or 3D distance. This strategy 
works whether the outline is balanced or not. Calculating distances in R3 is more 
computationally expensive than doing it in R2, although of the same computational 
complexity. A second solution can be applied if the points are balanced, where 
patterns of faces can be defined.  

 



 3D Reconstruction from Planar Contours: Analysis of Heuristic Tiling Approaches 105 

 

Figure 5 (a) shows that either triangular faces (such as the M2N1M1 face) where 
one point can end up connecting to multiple points or, quadrangular faces (such as the 
M5N3N2M4 face) can be generated; Figure 5 (b) shows a triangular pattern when the 
set of points are balanced. Figure 5 (c) shows a rectangular pattern of faces created for 
balanced set of points (like M1N1N\M2). 

 

(a) 
(b) 

 
 
 
 
 
 
 

(c) 

Fig. 5. Patterns of faces according to balanced contours 

4.5 Mixing Solutions to Obtain a (new) Tiling Approach 

A tiling approach can be devised by mixing solutions from every one of the five steps. 
There are 3240 possible combinations (mixing every atomic solution to any other 
from Fig. 2 there will be 5x2x3x2x9x6 of them) and some of the solutions are 
dependent from others (for instance, some Points Linking solutions would require any 
Points Balancing solution beforehand).  

After gathering some experience on the performance of each solution, we found 
that contour offsetting, points balancing and points linking were the steps of major 
consequences for performance and quality of the 3D reconstructed model. Then, new 
tiling approaches were defined by mixes of these three steps. Four promising 
approaches were selected from preliminary tests and are further detailed. These were 
named Delta1+, Delta2+, Delta3+ and Delta4+.  

Table 1 presents the mix of solutions for all tiling approaches found in the 
literature as well as for all Delta alternatives. For simplicity existing approaches will 
be referred to by acronyms: AHS for [1], CCCH for [4] and LMT for [9]. It can be 
seen that existing approaches can be described as a specific mix of solutions for the 
five steps presented above as all their solutions were the founding idea for that step 
and have been implemented therein. 
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Table 1. Composing Tiling Approaches from Step Solutions 

5 Tests and Results 

Four data sets (veins, femur, heart and lungs) were used to be reconstructed using the 
three reference algorithms as well as four Delta mixes. These four models were 
selected because they were used by other works and their raw data were made freely 
available at [2]. Figures 6 and 7 show the resulting 3D models of veins and femur 
reconstructed using 4 approaches. All models were rendered using flat shading to 
highlight the face mesh. Table 1 shows the metric data for reconstructing the veins 
and Table 2 shows the data for reconstructing a femur. Fig. 8 shows two approaches 
to reconstruct a heart and a lung.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 6. Veins reconstructed using AHS (a), CCCH (b), LMT (c) and Delta4+ (d) approaches 

All four models have 1285 points distributed over 65 contours but on a different 
number of slices. For instance, data used for veins (see Fig. 6) were distributed over 
19 slices and for the femur (see Fig. 7), over 30 slices.  

 
 
 
 
 

Parameter/Algorithm AHS CCCH LMT Delta1+ Delta2+ Delta3+ Delta4+

Curve Twisting
First Point Closed to Aux. Point 3D-Distance 3D-Distance 3D-Distance 3D-Distance 2D-Distance 3D-Distance
Reordering Index Index Index Index Index Index Index

Curve Orientation No No No No No No No
Curve Offsetting No No No Average Extreme x and y No No Average Extreme x and y

Point Linking Triangular 3D-Distance Quadrangular Quadrangular 3D-Distance Quadrangular 3D-Distance
Point Balancing Distance Distr. No Balancing Local Proportional Distr. Exatly Distr. Exatly Distr. Exatly Distr. Exatly Distr.
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(a) (b) (c) (d) 

Fig. 7. A femur reconstructed using AHS (a), CCCH (b), LMT (c) and Delta4+ (d) approaches 

The metrics gathered from applying the algorithms for the veins models in Fig. 6 
are presented in Table 2 and include: total time spent; the amount of points and spans 
for the resulting model, and; the statistics (average, median, maximum, minimum and 
standard deviation) for generated spans. Table 2 also indicates the best values (where 
a "↑" symbol can be seen), the second best values (where a “<>” symbol can be seen) 
and, the worst values (where a "↓" symbol can be seen). Note that best values not 
always means smaller values and the similar can be said about the worst values. 

Table 2. Measurements taken from spans and segments of the veins model 

 
It can be observed that despite generating almost the same number of points, AHS 

did so in a shorter time, but Delta4+ achieved the smaller mean and smaller standard 
deviation span sizes, i.e., their spans are smaller and vary less according to the 
median. Delta4+ showed a flaw in the upper left corner of the channel due to the other 
phase of the reconstruction algorithm, the correspondence (not discussed here). 

 

Final Points Spans

Amount Amount
Average Median Minimum Maximum

Standard 
Deviation

AHS 870 6691↓ 32436↓ 22,641663 21.256960◊ 20.010153↓ 93.4764635◊ 5.996489◊
LMT 598◊ 1545◊ 11332↑ 23,013941 22,828427 10,163136 101,998324 9.642954↓

CCCH 455↑ 1285↑ 16218◊ 24.294483↓ 22.66929↓ 11,000000 106.927088↓ 8,653944

Delta1+ 1379 5731 19704 21.103474◊ 21,669078 10,000043 101,686636 8,074481

Delta2+ 1415 5731 29556 23,175017 21,333267 20,000000 101,652875 6,919721

Delta3+ 1249 5731 19704 21,298615 21,693989 10.000043◊ 101,686636 8,268876

Delta4+ 1508↓ 5731 29556 20.272964↑ 20.755141↑ 10.000030↑ 44.867962↑ 3.366304↑

Vein

Approach Time (ms)
Span
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All data were gathered from an AMD Turion X2 2.0 MHz computer with 4GB of 
RAM, 3D Nvidia Gforce 7150M graphics card and Linux Ubuntu 9.04 32bits 
operating system. Java programming language and a Java 1.5 compiler were used for 
the implementation. Additional data were gathered considering sizes of all edges (not 
only spans). The same pattern distribution for minimum and maximum values were 
obtained while using spans only. Therefore, it was confirmed that there is no need to 
include the size of segments because they always sum up exactly the same (the 
perimeter of the contour) regardless the tiling strategy. Thereafter, only span size 
metrics were considered here forth. 

Table 3 shows the measurements taken while reconstructing a femur, shown in 
Figure 7. For this model CCCH approach was the fastest and produced fewer number 
of points but, Delta4+ resulted on smaller values for average, median and standard 
deviation of span sizes. 

Table 3. Measurement taken from spans of the model of a femur 

 
Fig. 8 shows the reconstruction of a lung from a set of 19 slices and of a heart from 

30 slices for the AHS and Delta4+ approaches.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(d) 

Fig. 8. 3D Reconstructed models of a lung and a heart 

Final Points Spans

Amount Amount
Average Median Minimum Maximum

Standard 
Deviation

AHS 496 4666↓ 13524↓ 0,160681 0,109915 0.100000↓ 1,335871 0,155199

LMT 239◊ 1492◊ 3588↑ 0,178202 0,109736 0,100000 1,547527 0.205473↓
CCCH 238↑ 1285↑ 6226 0.189202↓ 0.124599↓ 0,100000 1,197815 0,158996

Delta1+ 975↓ 4594 6690 0,167041 0,108792 0,100000 1.619757↓ 0,185243

Delta2+ 831 4480 12431 0.148482◊ 0,110335 0,100000 1.017957◊ 0.120808↑

Delta3+ 802 4480 5799◊ 0,148967 0.107879◊ 0,100000 1.017723↑ 0.123733◊

Delta4+ 864 4594 13380 0.134890↑ 0.104511↑ 0.099999↑ 1,409906 0,132289

Femur

Approach
Time 
(ms)

Span
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Measurement for models in Fig. 8 can be seen in Tables 4 and 5, respectively. 
Images (a) and (c) are the result of the AHS algorithm and, (b) and (d) are the result 
for the Delta4+ mix. The approaches showed the same pattern of results as before, 
i.e.: CCCH is the faster and produces the minimum amount of extra points; Delta4+ 
produces the minimum span, the minimum average span, the minimum median and 
the minimum standard deviation of span sizes; LMT produces the minimum amount 
of spans, and; AHS produced the shortest maximum span. 

Table 4. Measurements taken from spans of the model of a lung 

Table 5. Measurements taken from spans of the model of a heart 

6 User Assessment 

The 3D models of the veins, femur and lungs were reconstructed using all tiling 
approaches previously presented as well as Delta4+. Reconstructed models were 
placed side-by-side on a web page and displayed in a way to be seen all together. 
They were shuffled, labeled "A" to "C" and presented to 79 subjects which were 
asked to: "Please rank all 4 models of the given object indicating the letter that 

Final Points Spans

Amount Amount
Average Median Minimum Maximum

Standard 
Deviation

AHS 242 3936↓ 10604↓ 120.459357◊ 110,780752 100,000000 318.632233↑ 27.705468◊

LMT 162◊ 1474◊ 2840↑ 129,822049 111,266060 100,000000 432,152751 45,302336

CCCH 87↑ 1285↑ 5302 182.402978↓ 142.305877↓ 100,000000 810.977188↓ 108.034075↓
Delta1+ 473 3704 5070 132,415928 110.704216◊ 100,000000 468,027526 53,149214

Delta2+ 432 3704 9391 134,968528 114,312337 100,000000 468,027526 52,809167

Delta3+ 426 3704 4476◊ 134,269309 112,042078 100,000000 468,027526 54,507152

Delta4+ 473↓ 3704 10140 110.852217↑ 105.135464↑ 100,000000 394.405882◊ 18.895067↑

Lung

Algorithm
Time 
(ms)

Span

Final Points Spans

Amount Amount
Average Median Minimum Maximum

Standard 
Deviation

AHS 241 3962↓ 10708↓ 0,192038 0,144682 0,100000 0.698352↑ 0.108137◊

LMT 78◊ 1534◊ 2926↑ 0,214455 0,150147 0,100000 1.304033↓ 0.171052↓
CCCH 77↑ 1285↑ 5354 0.223873↓ 0.167227↓ 0,100000 1,135772 0,145252

Delta1+ 333 3820 5112 0,191630 0,136035 0,100000 0,913895 0,132578

Delta2+ 315 3782 9575 0,191436 0,138006 0,100000 0,913895 0,131086

Delta3+ 349 3782 4577◊ 0.189780◊ 0.136721◊ 0.100012↓ 0,913895 0,132512

Delta4+ 368↓ 3820 10424 0.150981↑ 0.115733↑ 0.099999↑ 0.701373◊ 0.089206↑

Heart

Algorithm
Time 
(ms)

Span
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correspond to the "1-best model", "2-good model", "3-acceptable model" and "4-
worst model". Subjects were mostly IT undergrad students at various stages of their 
courses as well as some lecturers, 63 male and 16 female of 22,7 years of age on 
average. 

 

 

 

 
 
 
 

 

Fig. 9. Users´ Assessment for the 3D Reconstructed Veins (left) and Femur (right) 

 

 
 
 
 
 
 
 
 
 

Fig. 10. Users´ Assessment for a 3D Reconstructed Lung 

Figures 9 and 10 show how the subjects ranked the reconstructed models, after 
shuffling them back, and mean average scores where 1 means the best and 4 the worst 
reconstructed model. It can be noted that AHS was the user's preferred tiling approach 
for all models and CCCH was considered the worst model in most cases. 

6.1 Using the Software 

A software has been developed, called Delta Connection Plus, where users can select 
which solution is to be applied for every step of the tiling phase. The solutions that 
were implemented are those summarized in Fig. 2 but the software is modular to 
encourage programmers to include their own atomic contributions. The software 
produces X3D [13] 3D models that can be visualized in an internet browser using BS 
Contact [14] free plug-in. To generate a reconstructed 3D model, a heuristic approach 
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2 (Good)

3 (Acceptable)

4 (Worst)
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for the Correspondence phase is mandatory. A variation of [1] was implemented but 
its discussion was left out of this text due to space restrictions. Fig. 11 presents two 
frames of the software where there are the options for selecting tiling and 
correspondence approaches. 
 

 

 
 
 

 

 

Fig. 11. Choosing Solutions for the Points Linking Step and Correspondence Phase 

6.2 Analysis 

Tables 6, 7 and 8 summarize the results. They highlight the time, geometrical and 
user-centered metrics. The columns with the "↑" symbol shows the number of times 
the tiling approach produced the “best” result for the given criteria where best result 
could be related to a smaller value (like in the time criteria) or a bigger value (like in 
the count of user´s preference) when comparing approaches; the column with "↓" 
shows the number of times that the approach produced the “worst” result, and; the 
column with a "◊" symbol indicates the “second best” approach.  

Table 6. Statistics for Best and Worst results on Geometrical Criteria 

Geometrical ↑ ↓ ◊ 
AHS 2 10 4 

LMT 4 3 4 

CCCH 4 11 1 

Delta1+  1 1 

Delta2+ 1  2 

Delta3+ 1   8 

Delta4+ 14  1 
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Table 7. Statistics for Best and Worst results on Performance Criteria 

Performance ↑ ↓ ◊ 
AHS  1  

LMT   4 

CCCH 4   

Delta1+  1  

Delta2+    

Delta3+    

Delta4+  3  

Table 8. Statistics for Best and Worst results from User´s Point of View 

User's ↑ ↓ ◊ 
AHS 3    

LMT  1  

CCCH  2  

Delta4+    3 

 
 
For instance, Delta4+ scored 14 at "↑" column in Table 6 because while analyzing 

the Tables 2, 3, 4 and 5, this approach happens to have produced 14 times the best 
values for the geometrical metrics (such as the average, media, maximum and 
standard deviation values for the veins model). On the other hand, CCCH approach 
accounted for 11 indications of worst results on those geometrical metrics. For the 
geometrical metrics, minimum span size was disregarded because they ended up with 
the same value for most of the situations. 

Although a much bigger variety of models should be analyzed, the data gathered 
from Tables 2 to 5 were consistent enough to suggest that Delta4+ presented the best 
result for the majority of geometrical metrics while CCCH is the fastest approach 
ever. And, contrary happens too often, i.e., CCCH showed the worst geometrical 
results and Delta4+ showed the slower solution. It suggests that the simpler and 
straightforward solution (which is finding the smaller span while linking contours), 
although the fastest, do not end up with the desired effect (i.e., the smallest span on 
the whole model) but poor performance on the span-related metrics. Therefore, it can 
be concluded that the more heuristics taken for the steps of the tiling phase of a 3D 
reconstruction approach, the better the geometrical features of the model. 

The performance analysis took the models with the same number of points but with 
different quantities of slices and contour outlines. Thus, all tests roughly start from the 
same magnitude of data. However, performance cannot be considered in isolation 
since the approach which used the shortest span as a local criterion produced the 
worst visual results. 
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All output data, the application and source code are available as GPL free software 
license on www2.joinville.udesc.br/~larva/deltaplusconnection 
(in Portuguese) as well as on the following public repository: deltaconnection. 
googlecode.com/svn/branches/branch-des-deltaconnection 2.0. 
0-23032009/DeltaConnection. 

7 Conclusions 

This paper compared heuristic approaches for the “tiling” phase of 3D reconstruction 
algorithms considering: the criteria to assess the resulting model; the constructs of the 
approaches and; user´s perception of the 3D reconstructed model. 

Regarding the model´s assessment, we conclude that simple and straightforward 
heuristics (use of the shortest span) do not render a model that complies with that very 
same criterion for the whole model (as a global criterion). Instead, extra heuristics 
(such as the Points Balancing step) are needed to achieve the criterion. But, there is a 
clear tradeoff between performance and geometrical criteria which highlight the fact 
that applying extra heuristics surely impact the model´s quality (because they help 
avoid weird, twisted and irregular meshes) but demands extra time to be performed. 
Therefore, there is no best approach to be sought for all cases; rather, a mix of 
solutions can be tailored to meet specific time and quality criteria. 

Regarding the constructs of the approaches, the “Divide to Conquer” strategy was 
the method used to break down tiling algorithms into five steps that comply to 
existing approaches. Thereafter, a software was implemented that allows a variety of 
algorithmic pieces to be proposed and mixed together instead of proposing a brand 
new (single) tiling approach. Regardless its origins (either from existing tiling 
approaches or new ones), we showed that there is room for improvements on every 
single step of the tiling phase and particular solutions can be fine tuned for particular 
needs. This strategy produced a solution for the tiling phase which proved to be better 
than existing ones on geometrical aspects but not on performance. For instance, a mix 
called Delta4+, bettered four out of six geometrical criteria used for comparison. 

Regarding user-centered assessment we conclude that this criterion alone seems 
not to be a good way to evaluate a 3D reconstructed model because (a) the difficulty 
of observing snapshots of a 3D model which should in fact be analyzed interactively 
(studying the model in a 3D environment) from all viewpoints as well as inside out 
(which poses another challenge of how to observe inner intricacies of the model); (b) 
user analysis correlated only with one of geometrical criterion of quality but not with 
the remaining criteria; (c) each model contains a huge amount of details that could be 
so alike that are difficult to differentiate visually, and; (d) users tend to evaluate the 
overall appearance of the model compared to their own personal imagination of how 
that object should be instead of actually assessing the quality of the face mesh. 

To summarize, we argue that span-related geometrical criteria (such as median or 
average) should be used as a quality criterion to compose torsion-free 3D 
reconstructed models and; we found that user´s visual assessment is not reliable. 
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As future work, it could be interesting to investigate if the overall shape of the 
intended object-of-study has any influence on selecting the atomic solutions on each 
step or, if new contributions to that specific type of object can be devised. 
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Abstract. Multiresolution representation and analysis of 3D models
play an important role in applications such as progressive transmis-
sion, rendering and real-time interaction of complex 3D models. Since√
3 subdivision is the slowest topological refinement scheme among the

triangular subdivisions, and wavelets provide a natural framework for
multiresolution analysis of functions, we construct a new type of√
3-subdivision wavelets using local operators. In order to maintain sharp

features of 3D models, we introduce a method for sharp features identi-
fication and preservation. Subsequently, we extend the local operators
to construct

√
3-subdivision wavelets for sharp features preservation.

The experiments show that the proposed
√
3-subdivision wavelets can

generate more levels of detail and maintain sharp features well when
decomposing 3D models, compared with the other subdivision wavelets.
Moreover, the computation involved in obtaining the multiresolution rep-
resentation of 3D models is efficient, and linear in complexity.

Keywords:
√
3 subdivision, wavelet transform, 3D models, sharp

features, multiresolution.

1 Introduction

Subdivision surfaces are widely employed in computer graphics and geometric
modeling due to their advantages such as simplicity, strong adaptability, high effi-
ciency and stability. The basic principle of subdivision surfaces is that, subdivid-
ing a given initial mesh recursively by certain subdivision scheme, consequently
generating a series of refined meshes, and converging to the limit surface ulti-
mately. So subdivision surfaces have superiority in multiresolution representation
of 3D models. Meanwhile, wavelets provide a natural framework for multireso-
lution representation and analysis. It is quite natural and necessary to combine
them in order to represent highly detailed 3D models. Subdivision wavelets pro-
vide an effective multiresolution representation and analysis framework for 3D
models, which plays an important role in applications such as progressive trans-
mission, rendering and real-time interaction of complex 3D models. Besides,
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sharp features are the key to maintain the appearance of 3D models [19], [20],
especially in engineering domain. We aim to investigate a subdivision wavelets
scheme with sharp features preservation in order to build a theoretical basis
for delivering 3D models to the production field of complex product on mobile
devices [21], [22].

A lot of subdivision schemes are proposed for triangular and quadrilateral
meshes of arbitrary topology such as Loop subdivision [1], Butterfly subdivision
[2], 4-8 subdivision [3],

√
3 subdivision [13] for triangular meshes and Doo-Sabin

subdivision [4], Catmull-Clark subdivision [5],
√
2 subdivision [6] for quadrilat-

eral meshes. Since
√
3 subdivision is the slowest refinement scheme among the

current subdivision schemes for triangular meshes, we present a new subdivision
wavelets construction based on

√
3 subdivision. However, it should be pointed

out that
√
2 subdivision, which is a subdivision scheme for quadrilateral meshes

and only doubles the number of faces in a subdivision step, refines a mesh slower
than

√
3 subdivision does. But triangle is in a sense the easiest and best-behaved

geometric primitive among point, line, triangle, quadrilateral, and polygon [16].
That is also the reason why most hardware-accelerated 3D engines choose trian-
gle as the only truly native rendering primitive, and the mobile 3D Graphics API
standard OpenGL ES only supports triangles. Based on the same consideration,
we narrow the scope of this article to

√
3-subdivision wavelets construction.

A number of subdivision wavelets have been proposed in literature since the
middle of 1990s. Lounsbery et al. [7] made the first contribution to connect
wavelets and subdivision scheme to define different levels of resolution. However,
Lounsbery’s scheme only suits meshes having regular subdivision connectivity.
Khodakovsky and his coworkers [8] improved Lounsbery’s scheme so that wavelet
analysis can be constructed on semi-regular meshes, i.e., meshes built by succes-
sive subdividing starting from a coarse irregular mesh. Almost all vertices in a
semi-regular mesh have valence 6 (for meshes obtained based on triangular sub-
division algorithm), where the valence of a vertex denotes the number of edges
sharing the vertex. Unfortunately, both the schemes in [7] and [8] need solve global
sparse linear systemswhen computing the forwardwavelet transform.And the sta-
bility of their wavelet decomposition is poor, since it is observed that the numer-
ical condition number of seven levels of wavelet-decomposition is usually below
30 [9]. Bertram [10] proposed a biorthogonal Loop-subdivision wavelets scheme.
His wavelets located at the new inserted vertices are orthogonalized with respect
to local scaling functions located at vertices of the corresponding triangles. The
contribution of Bertram’s approach is local computation of both wavelet analysis
and synthesis in linear time, avoiding the solution of global sparse linear systems.
Similarly, Li et al. [17] constructed unlifted Loop-subdivision wavelets based on
local operators by optimizing free parameters in subdivision steps. And the Loop-
subdivision wavelets were extended to support sharp features preservation. Cha-
rina and his coworker [11] presented multiresolution representation and analysis
method based on subdivision wavelet tight frames.Wavelet tight frames benefited
the method a lot. Firstly, a tight frame is its own dual and, therefore, the masks for
decomposition and reconstruction are the same. So there is no need to solve any
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linear system of equations. Secondly, the decomposition over an arbitrary number
of resolution levels has condition number 1, i.e., the method based on subdivision
wavelet tight frames is very stable. Liang et al. [12] showed some applications of
Loop-subdivisionwavelet tight frames to process 3Dgraphics, and the experiments
demonstrated that Loop-subdivision wavelet tight frames performed better than
biorthogonal Loop-subdivisionwavelets in 3Dmodels compression and progressive
transmission.

All the multiresolution representation and analysis schemes presented above
are based on Loop subdivision. As mentioned before,

√
3 subdivision is the slow-

est refinement scheme among the current subdivision schemes for triangular
meshes. Moreover,

√
3 subdivision was proved to be an efficient view-dependent

refinement [14]. Wang et al. [15] made a meaningful attempt to construct
√
3-

subdivision-based biorthogonal wavelets.
Benefited from the previous works, we construct

√
3-subdivision wavelets by

using local operators. In addition, in order to keep the sharp features of 3D
models, we extend the local operators to improve

√
3-subdivision wavelets for

sharp features preservation.

2 The Proposed
√
3-Subdivision Wavelets

2.1 A Brief Introduction to
√
3 Subdivision

√
3 subdivision, introduced by Kobbelt [13], is a approximating subdivision

scheme for triangular meshes of arbitrary topology. Unlike Loop subdivision,
which uses the normal 1-to-4 splitting operator where the mesh is refined by
inserting one new vertex per edge,

√
3 subdivision inserts one new vertex in per

triangle at its center and thus executes a 1-to-3 splitting operator in every re-
finement step. In short, Loop-subdivision splits edges while

√
3 subdivision splits

triangles. One 1-to-3 splitting operator introduces three new edges connecting
the new vertex to the surrounding old ones. In order to re-balance the valence of
the mesh vertices, every original edge that connects two old vertices is flipped.
This type of splitting has the positive effect that all newly inserted vertices have
valence 6 and the valences of the old vertices does not change, as shown in Fig.
1. The subdivision masks are depicted in Fig. 2, expressed as:

q = 1
3 (pi + pj + pk) ,

p = (1− αn) p+ αn
1
n

n−1∑
i=0

pi,

αn =
4−2 cos( 2π

n )
9 .

(1)

√
3 subdivision surface can be described by the control mesh M and corre-

sponding control point coordinates V . A sequence of finer and finer semi-regular
meshes M1,M2, ...,M∞ whose limit is a

√
3 subdivision surface will be ob-

tained by applying the
√
3 subdivision operator recursively on an irregular base

mesh M0. vi denotes the vertices in M i, and εi = vi+1 − vi is a set of vertices
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Fig. 1. Two split operations of
√
3 subdivision

Fig. 2. Masks for
√
3 subdivision

corresponding to faces at level i. V i and F i denote the point coordinates sets
associated with vi and εi respectively. The substance of multiresolution analysis
for 3D model is decomposing the high-resolution model

{
M i+1, V i+1

}
into low-

resolution representation
{
M i, V i

}
and corresponding wavelet coefficients F i [7],

[17], i.e., V i = A · V i+1, F i = B · V i+1, where A and B denote the low-pass
and high-pass filters respectively, collectively called analysis filters. The wavelet
reconstruction process is the inverse of the decomposition process. The refining
filter P and perturbing filter Q, called synthesis filters, are constructed in order
to recover the original model from the low-resolution version and the wavelet
coefficients, i.e., V i+1 = P · V i +Q · F i.

In this paper, we decompose the
√
3 subdivision rules into a series of reversible

local operators to construct the proposed
√
3 subdivision wavelets. These local

operators consist of the
√
3 subdivision wavelets reconstruction rules. Then the√

3 subdivision wavelets decomposition rules can be established by inverting the√
3 subdivision wavelets reconstruction rules and arranging them in the reverse

order [15], [17].

2.2 Local Operators of
√
3 Subdivision

After analyzing the
√
3 subdivision rules (see Fig. 2 and Equation 1), we decom-

pose them into the following two local operations, as shown in Fig. 3.
So the

√
3 subdivision rules can be expressed as:

q ← 1
3 (p → q) ,

p ← c1p+ c2 (q → p)
(2)

where c1 = cos
(
2π
n

)
− 1 and c2 = 1−c1

3n .
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Fig. 3. Masks for local operators of
√
3 subdivision

2.3
√
3-Subdivision Wavelets Reconstruction Rules

With the purpose of making Equation 2 reversible, an additional lifting operator
is added prior to the

√
3 subdivision rules. So that the

√
3-subdivision wavelets

reconstruction rules are:
p ← p+ d1 (q → p)
q ← d2q +

1
3 (p → q)

p ← c1p+ c2 (q → p)
(3)

where d1 and d2(d2 
= 0) are the newly introduced parameters.

2.4
√
3-Subdivision Wavelets Decomposition Rules

It is convenient to construct the
√
3-subdivision wavelets decomposition rules as

the inverse of Equation 3, that is

p ← [p−c2(q→p)]
c1

q ← q− 1
3 (p→q)

d2

p ← p− d1 (q → p)

(4)

2.5 Parameters Optimizing for Orthogonalization

As we can see, Equations 3 and 4 constitute the multiresolution synthesis and
analysis framework of

√
3-subdivision wavelets. In order to eliminate the data

correlation, the wavelets functions located at the new inserted vertices are or-
thogonalized with scaling functions located at vertices of the corresponding tri-
angles as much as possible [7], [17], so that we can get the optimal values of
parameters d1 and d2, i.e.,

∀f ∈ εi, min
d1,d2

∑
v∈vi

〈
ψi
f , ϕ

i
v

〉2

〈
ψi
f , ψ

i
f

〉
〈ϕi

v, ϕ
i
v〉

(5)

Solving the extreme-value problem of Equation 5 needs calculating three inner
products first, i.e., inner product of wavelets functions and scaling functions
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〈
ψi
f , ϕ

i
v

〉
, inner product of wavelets functions

〈
ψi
f , ψ

i
f

〉
, as well as inner product

of scaling functions
〈
ϕi
v, ϕ

i
v

〉
.

According to the multi-scale relationship of wavelet transform, low-resolution
scaling function ϕi and wavelets function ψi can be expressed as a linear com-
bination of high-resolution scaling function ϕi+1:

ϕi
v∈vi =

∑
v′∈vi+1

hv,v′ϕi+1
v′ (6)

ψi
f∈εi =

∑
v′∈vi+1

gf,v′ϕi+1
v′ (7)

where hv,v′ is determined by
√
3 subdivision rules, and gf,v′ depends on the

specific wavelets format.
The preparation for calculating the three inner products in Equation 5 is the

calculation of inner product of high-resolution scaling functions
〈
ϕi+1
v′ , ϕi+1

v′′
〉
.

Combining with Equation 7, the inner product of wavelets functions and high-
resolution scaling functions is shown as followed:

〈
ϕi+1
v′ , ψi

f

〉
=

∑
v′′∈vi+1

gf,v′′
〈
ϕi+1
v′ , ϕi+1

v′′
〉

(8)

We can acquire the inner product of low-resolution scaling functions and
wavelets functions according to Equations 6 and 8, that is

〈
ϕi
v, ψ

i
f

〉
=

∑
v′∈vi+1

hv,v′
〈
ϕi+1
v′ , ψi

f

〉
(9)

In a similar way, the inner product of wavelets functions is

〈
ψi
f , ψ

i
f

〉
=

∑
v′∈vi+1

gf,v′
〈
ϕi+1
v′ , ψi

f

〉
(10)

By substituting the inner product of scaling functions
〈
ϕi
v, ϕ

i
v

〉
, Equations

9 and 10 into Equation 5, it will be expressed as a function of parameters d1
and d2. So, Equation 5 is transformed into an extreme-value problem about
parameters d1 and d2. The details of the optimization procedure are cumbersome
and tedious. For the sake of brevity and compactness of this paper, we do not
present detailed description of the optimization procedure and one can refer to
Reference [17] for the specific calculation process.

3 Extension of
√
3-Subdivision Wavelets for Sharp

Features Preservation

3.1 Extension of
√
3 Subdivision Rules

Some features in 3D models play a more important role than the other ones
for the shape and topology of the models, such as the sharp features. As stated
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earlier,
√
3 subdivision scheme has a lot of advantages. However, it emphasizes

on the smoothness too much whereas the sharp features would be missed [18].
Therefore, it is important to identify and keep these sharp features, and extend
the

√
3 subdivision rules to support them. Yu et al. [18] compared the normal

angle of two triangles sharing one edge with a given threshold θ. If the normal
angle was larger than θ, the edge would be tagged as Sharp, else be tagged as
Smooth. And a vertex would be tagged according to its sharp degree s, namely
the number of incident sharp edges. A smooth vertex is the one with sharp degree
s = 0; a dart vertex has s = 1; crease vertex has s = 2; and corner vertex is the
one has sharp degree s > 2. In this paper, we will adopt Yu’s method which has
been proven to be effective, and mark all boundary edges of the mesh as sharp.

After the sharp features identification, we need to improve the
√
3 subdivision

rules to support sharp features preservation. We will insert two edge vertices on
the sharp edges (double lines in Fig. 4) at the even refinement step, update and
connect them with the other vertices in the mesh. In this way, we will acquire
the same 1-to-9 result as two original

√
3 subdivision operators will do and keep

the sharp edges in the meantime, as shown in Fig. 1 and Fig. 4. The masks for√
3 subdivision preserving sharp features is demonstrated in Fig. 5.

Fig. 4. Two split operations of
√
3 subdivision for sharp features preservation

According to the
√
3 subdivision rules for sharp features preservation, we

extend the local operators in Section 2.2, as shown in Fig. 6.
So the extended

√
3 subdivision rules can be expressed as follow:

1) q ← 1
3

(
p → q0/3

)
, non or all sharp edges

q ← 1
5 (p → q1) , one sharp edge

q ← 1
4 (p → q2) , two sharp edges

2) p ← c1p+ c2 (q → p) , smooth or dart vertex
p ← 7

9p+
1
9

(
p → poddcrease

)
, vertex of a crease at the odd refinement step

p ← λp+ 1
3

(
p → poddedge

)
, edge point of a crease at the odd refinement step

p ← 1
3p+

1
3 (p → pevencrease) , vertex of a crease at the even refinement step

p ← 1
3p+

1
3

(
p → pevenedge

)
, edge point of a crease at the even refinement step

p ← p, corner vertex
(11)

where λ is a small nonzero, whose function is to make the steps in Equation 11
reversible.
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Fig. 5. Masks for
√
3 subdivision preserving sharp features

0/ 3
p q→ 1

p q→
2

p q→

0 / 3
q p→

odd

crease
p p→

dge

odd

e
p p→ rease

even

c
p p→ even

edgep p→

1
q p→

2
q p→

Fig. 6. Masks for the extended local operators of
√
3 subdivision
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3.2
√
3-Subdivision Wavelets Reconstruction Rules for Sharp

Features Preservation

Based onEquation 11, wewill easily acquire the extended
√
3-subdivisionwavelets

reconstruction rules for sharp features preservation by adding an additional lifting
operator prior to this equation, i.e.

1) p ← p+ d1
(
q → p0/3

)
, non or all sharp edges

p ← p+ d1 (q → p1) , one sharp edge
p ← p+ d1 (q → p2) , two sharp edges
2) q ← d2q +

1
3

(
p → q0/3

)
, non or all sharp edges

q ← d2q +
1
5 (p → q1) , one sharp edge

q ← d2q +
1
4 (p → q2) , two sharp edges

3) p ← c1p+ c2
(
q → p0/3

)
, smooth or dart vertex

p ← 7
9p+

1
9

(
p → poddcrease

)
, vertex of a crease at the odd refinement step

p ← λp+ 1
3

(
p → poddedge

)
, edge point of a crease at the odd refinement step

p ← 1
3p+

1
3 (p → pevencrease) , vertex of a crease at the even refinement step

p ← 1
3p+

1
3

(
p → pevenedge

)
, edge point of a crease at the even refinement step

p ← p, corner vertex
(12)

3.3
√
3-Subdivision Wavelets Decomposition Rules for Sharp

Features Preservation

The subdivision wavelets decompostion rules can be constructed by inverting
each step of the corresponding subdivision wavelets reconstruction rules and
arranging them in the reverse order. So, by inverting Equation 12 and arranging
them in the reverse order, the extended

√
3-subdivision wavelets decomposition

rules for sharp features preservation are:

1) p ← [p−c2(q→p0/3)]
c1

, smooth or dart vertex

p ← 9p−(p→podd
crease)

7 , vertex of a crease at the odd refinement step

p ← p− 1
3 (p→podd

edge)
λ , edge point of a crease at the odd refinement step

p ← 3p− (p → pevencrease) , vertex of a crease at the even refinement step

p ← 3p−
(
p → pevenedge

)
, edge point of a crease at the even refinement step

p ← p, corner vertex

2) q ← q− 1
3 (p→q0/3)

d2
, non or all sharp edges

q ← q− 1
5 (p→q1)

d2
, one sharp edge

q ← q− 1
4 (p→q2)

d2
, two sharp edges

3) p ← p− d1
(
q → p0/3

)
, non or all sharp edges

p ← p− d1 (q → p1) , one sharp edge
p ← p− d1 (q → p2) , two sharp edges

(13)
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4 Results

To demonstrate the performance of the proposed
√
3-subdivision wavelets, we

have coded our algorithm in C++ based on the open source library Visualiza-
tion Toolkit (VTK). The test is carried out on a PC equipped with a 3.3 GHz
Intel i3 CPU and 4G RAM. In Fig. 7, a Venus base mesh is subdivided six times
by the

√
3 subdivision rules down to the sixth level and it is regarded as the

input model. Fig. 7a demonstrates the proposed wavelet analysis of Venus from
level 6 to level 0 (θ = 130◦), while Fig. 7b is the decomposition result of Venus
from level 6 to level 0 using the Loop-subdivision wavelets and Fig. 7c shows
the decomposition result based on the general

√
3-subdivision wavelets [15]. Ap-

parently, compared with Fig. 7b, Fig. 7a keeps more details of the mesh model,
i.e., the multiresolution representation of 3D models will generate more levels of
detail based on

√
3-subdivision wavelets than Loop-subdivision wavelets. Mean-

while, Fig. 7a indicates that the proposed
√
3-subdivision wavelets can preserve

the sharp features other than just overemphasize the smoothness of the decom-
position result [10], [15].

Fig. 7. Venus base mesh and the decomposition result from level 6 to level 0 using (a)
the proposed sharp features preservation

√
3-subdivision wavelets, (b) Loop-subdivision

wavelets and (c) the general
√
3-subdivision wavelets respectively

The low levels of model in Fig. 7a are a little rough, though. It would be nec-
essary to analyze impacts of threshold θ on the sharp features preservation and
smoothness of the decomposition result. In Fig. 8, the Horse model is decom-
posed from level 6 to level 0 with different threshold value. As we can see, the
smaller the value of threshold θ is, the more sharp features of the model can be
preserved. And the decomposition result of the model would become smoother
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when the value of threshold θ increases. More examples are demonstrated in
Figs. 9 and 10. In Fig. 9, the decomposition result of the Skull model (its sharp
features are marked green) at levels 5, 3 and 1 using the proposed

√
3-subdivision

wavelets is shown in Fig. 9a. Correspondingly, the decomposition result of the
Skull model at the same levels using the general

√
3-subdivision wavelets is pre-

sented in Fig. 9b. As we can see, the details of the model decrease as the level
goes down, but the sharp features are maintained better in Fig. 9a. Similarly,
in Fig. 10, the details attached on the Fandisk model fade gradually, while the
sharp feature are preserved well.

Fig. 8. The decomposition result of Horse model: (a) θ = 130◦; (b) θ = 145◦; (c)
θ = 160◦

a

b

Fig. 9. The decomposition result of the Skull model at levels 5, 3 and 1 using (a) the
proposed

√
3-subdivision wavelets, (b) the general

√
3-subdivision wavelets



126 H. Xiao et al.

Fig. 10. The decomposition result of Fandisk model

When the scale of 3D models increases, the computational complexity of
wavelet transform becomes critical [10], [15], and it is usually the criteria that
whether a wavelet transform method is practical or not. Table 1 lists the com-
putation times required for each level of wavelet decomposition of Venus and the
corresponding number of triangles, as shown in Fig. 11 left. Our wavelet trans-
form is a little more time consuming than the general

√
3-subdivision wavelets,

but it is acceptable. Fig. 11 right shows the ratio of the computation time for
reconstructing Venus at each level T i

r to the corresponding number of triangles

N i
f , i.e.

T i
r

/
N i

f
. It is obviously that T i

r

/
N i

f
is approaching a constant as the

level goes up. So our
√
3-subdivision wavelets scheme has a linear computational

complexity.

Table 1. The computation times required for each level of wavelet decomposition
of Venus and the corresponding number of triangles, where T1 and T2 denotes the
time in decomposition using the general

√
3-subdivision wavelets and the proposed√

3-subdivision wavelets respectively

level triangle # T1/sec. T2/sec.
T2−T1

T1
× 100%

6 268272 0.194409 0.222015 14.2%
5 89424 0.075206 0.082200 9.3%
4 29808 0.034503 0.036435 5.6%
3 9936 0.012768 0.013202 3.4%
2 3312 0.006850 0.007035 2.7%
1 1104 0.003262 0.003298 1.1%
0 368 - - -

The computation times required for each level of wavelet decomposition of
Horse with different value of threshold θ are listed in Table 2, as shown in Fig.
12. Since fewer edges of the model would be marked as sharp edge when the value
of threshold θ goes up, correspondingly, much fewer sharp features preservation
operation are needed and decomposing the model is less time consuming.

Progressive transmission of 3D model is an important application of the
wavelet analysis and synthesis. Fig. 13 shows the progressive transmission of
Dinosaur and Shell models from level 0 to level 6 (θ = 145◦). The computation
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Fig. 11. Left: The computation times required for each level of wavelet decomposition
of Venus; Right: the average computation times for reconstructing Venus at each level

Table 2. The computation times required for each level of wavelet decomposition of
Horse with different value of threshold θ and the corresponding number of triangles

level triangle # Tθ=130◦/s Tθ=145◦/s Tθ=160◦/s

6 242028 0.167461 0.154627 0.140954
5 80676 0.080654 0.074749 0.069599
4 26892 0.036377 0.034125 0.032133
3 8964 0.014225 0.013509 0.012829
2 2988 0.005510 0.005263 0.005105
1 996 0.004347 0.004208 0.004093
0 332 - - -

Fig. 12. The computation times required for each level of wavelet decomposition of
Horse
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time increases from 0.000970 to 0.097426 second when reconstructing the Di-
nosaur model from level 0 (including 154 triangles) to level 6 (including 112266
triangles). It costs 0.003383 second to reconstructing the Shell model at level 0
(including 537 triangles) and 0.225293 second at level 6 (including 391473 trian-
gles). These experiments show the efficiency of the proposed wavelet transforms.

Fig. 13. Progressive transmission of Dinosaur and Shell models from level 0 to level 6

5 Summary

We present a new
√
3-subdivision wavelets construction using local operators.

Sharp features identification and preservation method is proposed in order to ex-
tend the local operators to construct

√
3-subdivision wavelets for sharp features

preservation. The experiments demonstrate that the multiresolution representa-
tion of 3D models will generate more levels of detail based on

√
3-subdivision

wavelets than Loop-subdivision wavelets. Although the multiresolution decom-
position results of 3D models are a little rougher than the previous wavelets,
much more sharp features are preserved. Meanwhile our wavelets scheme has
a linear computational complexity so that it is practical in applications such
as multiresolution representation, progressive transmission, and multiresolution
editing and rendering of 3D models.

Since sharp features identification are needed before multiresolution analysis
of 3D models, it will take a little more time to process the models based on
our wavelets scheme than the others. How to identify the sharp features of 3D
models efficiently is important and it is also one of our future research directions.
The threshold θ determines the two characteristics of the decomposition result
of 3D model, which are the smoothness and sharp features preservation level.
Choosing an appropriate threshold θ for the corresponding model to balance
these two characteristics needs further research.
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Abstract. The molecular distance geometry problem (MDGP) is a
fundamental problem in determining molecular structures from the
NMR data. We present a heuristic algorithm, the BetaMDGP, which
outperforms existing algorithms for solving the MDGP. The BetaMDGP
algorithm is based on the beta-complex, which is a geometric construct
extracted from the quasi-triangulation derived from the Voronoi diagram
of atoms. Starting with an initial tetrahedron defined by the centers
of four closely located atoms, the BetaMDGP determines a molecular
structure by adding one shell of atoms around the currently determined
substructure using the beta-complex. The proposed algorithm has been
entirely implemented and tested with atomic arrangements stored in an
NMR format created from PDB files. Experimental results are also pro-
vided to show the powerful capability of the proposed algorithm.

Keywords: Protein structure determination, Molecular Distance Ge-
ometry Problem, Voronoi Diagram, Quasi-triangulation, Beta-complex.

1 Introduction

One of the key challenges for understanding a protein function is understanding
its structure as it is the determinant of molecular function [1]. There are two
main experimental methods to determine protein structures: NMR spectroscopy
[2] and X-ray crystallography [3]. Given an NMR spectroscopy file that defines
the interatomic distances for some pairs of atoms, usually between the hydrogen
atoms in a molecule, determination of the optimal assignment of coordinates that
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satisfies the inter-distance constraints is required. The determinant of molecular
structure from NMR spectroscopy is studied by solving the distance geometry
problem (DGP), which is a well-known mathematical problem. The DGP is to
find an embedding of a weighted undirected graph G = (V,E, d) in an arbitrary
dimensional space [4–6]. Each vertex v ∈ V corresponds to a point xv in space,
and there is an edge between the two vertices if and only if their relative distance
is known. The length d of an edge is its weight. Formally, the DGP is the problem
of finding the location of x such that u, v ∈ V , ∀(u, v) ∈ E, and ||xu − xv || =
du,v, where du,v is the distance between u and v. Hence, the DGP is called a
constraint satisfaction problem from a mathematical point of view because a set
of coordinates must be found to satisfy the constraints. The DGP can be solved
in polynomial time if the complete set of the exact distances is available [7] but
is NP-hard for a general sparse set of distances even in three-dimensional space
[8]. In other words, it is very difficult to correctly solve for the general setting of
NMR spectroscopy in practice because it contains only a subset of the complete
graph between hydrogen atoms.

We are interested in a particular class of the DGP called the molecular dis-
tance geometry problem (MDGP) arising in biology where the vertices of G
represent the atom centers of a molecule. The aim of the MDGP is to identify
the three-dimensional molecular conformation in three dimensional space using
the Euclidean distance. The MDGP is of crucial importance for biomedical prob-
lems because a molecular function is primarily determined by its structure. While
X-ray crystallography produces the absolute coordinates of the atom locations,
the NMR produces the relative distance information among the atoms, usually
within 5 Å [2]. Hence, the MDGP is the core problem for NMR technology.

Let xi be the coordinate of the atom i and D the given set of the distance di,j
between the atom i and the atom j, i 
= j. The problem is to find xi, i = 1, ..., n
such that

||xi − xj || = di,j , ∀di,j ∈ D. (1)

The most common approach to the MDGP is to formulate the problem as a
continuous optimization problem [9–13].

Min.
∑

(i,j)∈D

(||xi − xj ||2 − d2i,j)
2 (2)

In real NMR files, the distances are given with the lower and the upper bounds
[14]. The MDGP with the lower and the upper bounds is to find a set of positions
x1, ..., xn in the three-dimensional space such that

li,j ≤ ||xi − xj || ≤ ui,j , ∀di,j ∈ D (3)

where lij and uij are the lower and the upper bounds on the distances, re-
spectively.

The standard formulation by Crippen and Havel [5] is to solve the following
minimization problem:

Min.
∑

(i,j)∈D

pi,j(x) (4)
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pi,j(x) = Min2
{ ||xi − xj ||2 − l2i,j

l2i,j
, 0
}
+Max2

{ ||xi − xj ||2 − u2
i,j

u2
i,j

, 0
}

(5)

Crippen and Havel applied the MDGP to protein modeling [5, 15, 7]. The
MDGP has been studied by many groups: the embedding algorithm approach
by Crippen and Havel [5, 15], the graph reduction approach by Hendrickson
[16, 17], the approaches based on the global optimization method by Moré and
Wu [9, 10] and An and Tao [11, 12], and the geometric build-up algorithm by
Dong, Wu, Sit, and Yuan [18–21]. In particular, the embedding algorithm by
Crippen and Havel has been adopted in NMR modeling through programs such
as CNS, XPLOR, and XPLOR-NIH [22, 23]. Under certain assumptions, the
problem can be formulated as a combinatorial optimization problem, called the
discretizable MDGP (DMDGP) [24]. While the NP-hardness of the problem is
unavoidable [24], the Branch and Prune (BP) algorithm solves the DMDGP ef-
fectively and efficiently for proteins [25]. Previous approaches usually become
numerically unstable as solution process progresses because the number of con-
straints to determine the coordinate of a new atom gets larger.

In this regard, we propose a heuristic algorithm, called the BetaMDGP,
to maintain a constant number of constraints to determine the coordinate
of a new atom. The BetaMDGP algorithm to the MDGP uses the beta-
complex, which is a derivative geometric construct from the Voronoi diagram of
atoms and effectively provides the proximity information among atoms [26–28].
Using the beta-complex, the BetaMDGP reduces the number of distance con-
straints required for determining new atom coordinate and thus finds the so-
lution very efficiently. While the previous approaches are numerically unstable,
the BetaMDGP provides the more stable solution compared to the previous al-
gorithms because the BetaMDGP keeps the number of constraints constantly
during the solution process. The BetaMDGP consists of two parts. First, we
determine the coordinates for the centers of four nearby atoms to define the
tetrahedral seed structure to start the process. Second, the BetaMDGP adds
other atoms around the boundary of this determined substructure (at the begin-
ning, it is the seed structure) using the beta-complex. The molecular structure
is determined by sufficiently repeating this second procedure. It turns out that
the proposed algorithm, in its current form, determines the protein structures
very effectively and efficiently compared to existing algorithms. All figures of
the molecular structures are created by the BetaMol program developed by the
VDRC (http://voronoi.hanyang.ac.kr) that is free to download [29].

2 Methods

The proposed algorithm is based on three geometric constructs: the Voronoi di-
agram of atoms, the quasi-triangulation, and the beta-complex. Consider the set
P = {p1, p2, . . . , pn} where pi ∈ P is a point in three-dimensional space. The
ordinary Voronoi diagram VD of P is the tessellation of the space with a set
of n Voronoi cells (V-cells) where the V-cell VC(pi) is the set of the locations
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that are closer to pi than to the others. Consider the set A = {a1, a2, . . . , an}
where ai = (pi, ri) ∈ A is a spherical atom with the center pi and radius ri in
three-dimensional space. The Voronoi diagram VD of A is the tessellation of the
space with a set of n V-cells where the VC(ai) is the set of the locations that are
closer to the boundary of ai than to the boundary of any other atom. VD is more
formally called the additively weighted Voronoi diagram in computational geom-
etry and is different from the ordinary Voronoi diagram of points VD. VD can
be represented as VD = (V V , EV , FV , CV) where the Voronoi vertex (V-vertex)
vV ∈ V V corresponds to the center of the empty sphere tangent to the bound-
aries of four nearby atoms; the Voronoi edge (V-edge) eV ∈ EV corresponds to
the locus of the center of the empty sphere tangent to the boundaries of three
nearby atoms; the Voronoi face (V-face) fV ∈ FV corresponds to the locus of
the center of the empty sphere tangent to the boundaries of two nearby atoms;
the V-cell cV ∈ CV corresponds to an atom. The topology among the V-vertices,
V-edges, V-faces, and V-cells in VD are usually maintained in a radial-edge data
structure [30]. VD can be computed in O(n3) time for general spherical balls in
the worst case but takes O(n) time for molecular atoms on average. See [31] for
VD and see [32] for the Voronoi diagram in general.

Applications of the Voronoi diagram use the traversal on its topology struc-
ture, and the dual of the Voronoi diagram is frequently used for this purpose
because it simplifies the traversal algorithms [33, 34]. The dual structure of the
ordinary Voronoi diagram VD is well-known as the Delaunay triangulation which
has many powerful properties primarily for it being a simplicial complex [32].
However, the dual of the Voronoi diagram of atoms VD, now known as the quasi-
triangulation QT , was recently defined and characterized by Kim and colleagues
as follows. QT = (V Q, EQ, FQ, CQ) where vQ ∈ V Q is mapped from cV ∈ CV ;
eQ ∈ EQ is mapped from fV ∈ FV ; fQ ∈ FQ is mapped from eV ∈ EV ; cQ ∈ CQ

is mapped from vV ∈ V V . Note that all the simplexes inQT are mapped from the
simplexes in VD and all the mappings are one-to-one. The conversion between
VD and QT can be done in O(m) time in the worst case where m represents
the number of simplexes in QT . QT is known to have a phenomenon called an
anomaly. For the details of QT , see [35, 36, 27, 37].

The beta-complex corresponding to the real-value β is a subset of QT such
that every simplex σ in QT is removed if a spherical probe of radius β can
pass through σ without intersecting the atoms corresponding to it. Hence, each
simplex in the beta-complex represents the proximity among some atoms within
the molecular boundary. The beta-shape is defined by the region of the space
bounded by the boundary of the beta-complex. Hence, the boundary of the beta-
shape determines the proximity among the atoms on the molecular boundary
with respect to the probe. We emphasize here that the beta-complex can be
computed very efficiently from the quasi-triangulation, and its correctness is
mathematically guaranteed. For the details, see [28, 26, 27].

Fig. 1 illustrates the idea of these geometric constructs in the plane. Fig. 1(a)
shows a two-dimensional molecule A consisting of nine atoms. Fig. 1(b) is the
Connolly surface of A corresponding to the black circular probe. Note that there
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Molecule, the Connolly surface, the beta-shape, and the beta-complexes in 2D.
(a) A molecule (9 atoms), (b) the Connolly surface corresponding to a small probe, (c)
the corresponding beta-shape, (d) the corresponding beta-complex, (e) a beta-shape
corresponding to a larger probe, and (f) the corresponding beta-complex.
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is an interior void. Fig. 1(c) shows the beta-shape corresponding to the Connolly
surface of Fig. 1(b). The beta-shape has an interior void corresponding to the
void of the Connolly surface and a dangling edge corresponding to a pair of
atoms that are exposed to or touched by the probe. The boundary of the beta-
shape has 8 vertices and 10 edges (7 on the exterior boundary and 3 on the
interior void). Fig. 1(d) shows the corresponding beta-complex. Note that each
vertex of the beta-shape and beta-complex corresponds to an atom. Fig. 1(e) and
(f) show the beta-shape and the beta-complex corresponding to a larger probe,
respectively. Note that both the dangling edge and the internal void have now
disappeared. The dotted line segments in Fig. 1(f) together with the simplexes
of the beta-complex form the quasi-triangulation of the molecule.

Based on these three constructs, the proposed BetaMDGP algorithm grows a
molecular structure by adding one atom at a time that is selected by using the
beta-complex for an appropriate value of the probe radius β. In the proposed
algorithm, we start from tetrahedron τ consisting of four atoms which are guar-
anteed to be in a close neighborhood in a certain sense that will be described
below. Then, we grow the structure by adding one shell of nearby atoms. Thus,
we call the idea of this algorithm “shell-growing.”

We first consider a two-dimensional example shown in Fig. 2. Suppose that
Fig. 2(a) shows a true two-dimensional molecular structure that is stored in an
NMR file. We first choose three nearby atoms which must form a (red-colored)
seed triangle t0 = (a1, a4, a10) consisting of the centers of the three atoms a1, a4,
and a10 in Fig. 2(b). The triangle t0 can be determined by arbitrarily choosing
one atom, say a1, and two nearby atoms by looking at the distances to a1.
Let T0 = {t0} and compute BC(T0) whose boundary ∂BC(T0) has three edges
(the red chain in Fig. 2(b)). In this particular case, ∂BC(T0) coincides with the
boundary of the seed triangle t0. We call ∂BC(T0) the shell Sh0 of T0. Then, for
each edge of Sh0, we define another triangle by choosing another atom closest
to two atoms consisting of the edge. After we determine the additional three
triangles in such a fashion, say t1, t2, and t3, we get Fig. 2(b). We call this
operation shell-growing. Let T1 = {t0, t1, t2, t3}. Then, we compute the beta-
complex BC(T1) for some value of β as shown in Fig. 2(c). Consider the red-
colored ∂BC(T1) the shell Sh1 of T1. Applying the shell-growing process once
more by adding a new triangle for each edge e ∈ Sh1, we get another set T2 as
shown in Fig. 2(d). Then, Fig. 2(e) shows the beta-complex BC(T2) as well as
T2. Fig. 2(f) shows the last step of this model construction process to add the
last atom a7 which is under-determined. Note that a7 can be placed at either
a′7 or a′′7 without violating the distance constraint. Hence, there can be multiple
solutions in the MDGP depending on the condition of the distance constraints
in the input data. In such a case, however, adding another constraint on such
an atom can uniquely determine the molecular structure. It is notable that such
under-determined situations frequently arise in real NMR files.

Suppose that ∂T denotes the boundary of the union of the underlying space
taken by each triangle t ∈ T . Then, ∂BC(T ) may or may not be identical to
∂T . For example, Fig. 2(c) shows that ∂T1 has six vertices but ∂BC(T1) has five
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. The idea of the BetaMDGP algorithm in two-dimensional space. (a) The true
structure to determine; (b) T0 = {t0} (t0 is the (red-colored) seed triangle) and T1 =
{t0, t1, t2, t3}; (c) BC(T1) and (red-colored) ∂BC(T1); (d) T2; (e) BC(T2); and (f) a
multiple solution case in the MDGP.
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vertices only: a10 does not appear on ∂BC(T1). Therefore, when we compute T2,
we can safely ignore a10 from further consideration. In Fig. 2(e), if we compute
∂BC(T2), we can now ignore three atoms from further consideration (i.e., a1,
a4, and a10). This reduction can contribute to the solution quality because it
simplifies the solution process by removing the conflicting constraints as much
as possible. It also contributes to algorithmic efficiency. The accumulation of
the round-off error does not occur in the BetaMDGP, and thus the numerical
stability is also improved. The three-dimensional MDGP can be similarly solved
using the three-dimensional beta-complex. According to our experiment, the
number of omitted atoms for the three-dimensional MDGP is significant.

Now, we consider a three-dimensional example of the BetaMDGP. See Fig. 3.
Suppose that Fig. 3(a) shows the true three-dimensional molecular structure
stored in an NMR file. We start the process with a seed tetrahedron τ0 =
(a1, a4, a5, a11) consisting of the centers of four closely located atoms a1, a4, a5,
and a11. The BetaMDGP algorithms grows τ0 (the gray tetrahedron in Fig. 3(b))
by adding one shell of atoms around the current T = {τ0} as follows: i) Compute
the beta-complex of the current T for the appropriate β-value, ii) find the set
ΔT of the new tetrahedron added to T for the faces on the boundary of the
beta-complex ∂BC(T ), and iii) T = T ∪ΔT . Repeating this procedure a suffi-
cient number of times correctly determines the structure of a molecule from the
NMR data. In this paper, we use β = 1.4Å, which corresponds to the radius
of the probe for a water molecule. The gray tetrahedron in Fig. 3(b) shows the
seed tetrahedron τ0. Let T0 = {τ0}. The beta complex BC(T0) is identical to τ0.
Then, for each face of τ0, we define another tetrahedron by choosing the other
atom closest to the vertices of the face. After we determine the additional four
tetrahedron, say τ1, τ2, τ3, and τ4, we get Fig. 3(c) as the shell-growing. Let
T1 = {τ0, τ1, τ2, τ3, τ4}. Then, we compute the beta-complex BC(T1) of T1 for
some value of β, as shown in Fig. 3(d). Consider ∂BC(T1), i.e. the shell Sh1 of
T1. Applying the shell-growing process once more using the faces on ∂BC(T1), we
get another set T2 as the new tetrahedron added to T1 for each face f ∈ ∂BC(T1)
as shown in Fig. 3(e). ∂BC(T2) becomes Sh2 as shown in Fig 3(f).

Suppose that ∂T denotes the boundary of the union of the underlying space
taken by each tetrahedron τi ∈ T . Then, like its two-dimensional counterpart,
∂BC(T ) may or may not be identical to ∂T . For example, Fig. 3(d) shows that
∂T1 has eight vertices but ∂BC(T1) has seven vertices only: a1 does not appear
on ∂BC(T1). Therefore, when we compute T2, we can ignore a1 from further
consideration.

The following algorithm briefly describes the three-dimensional BetaMDGP
algorithm. The input of the BetaMDGP algorithm is an atom set A where ai =
(pi, ri) ∈ A is an atom with the unknown center pi (but its radius ri is known)
and the distance set D where its element di,j < ρcutoff is the inter-atomic
distance between ai and aj . We used the usual cutoff distance 5 Å in order to
simulate the NMR data. The output of the BetaMDGP algorithm is the atom set
Ã where ãi = (p̃i, ri) ∈ Ã is an atom with the known coordinate of the center p̃i.
Step 1 determines the seed tetrahedron with the coordinates of the constituting
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. The idea of the BetaMDGP algorithm in the three-dimensional space. (a) The
true structure to determine; (b) T0 = {τ0} (τ0 is the (gray-colored) seed tetrahedron)
and τ1 added to T0; (c) T1 = {τ0, τ1, τ2, τ3, τ4}; (d) BC(T1); (e) T2; and (f) BC(T2)
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atoms. Step 2 performs the sell-growing procedure to determine as many atoms
as possible. A newly determined atom ap has three distances from the three

atoms of fp on ∂BC(Ã). The average distance among ap to the three atoms
of fp is dist(ap, fp). However, the shell-growing procedure may not be able to
exhaust all the atoms because there can be some atoms (which are called under-
determined) where each does not have four distances from the atoms on ∂BC(Ã).
If such an under-determined atom exists, we choose an arbitrary location as long
as it does not violate both its distance constraints and the well-packed molecular
structure property.

Algorithm. Three-dimensional BetaMDGP

Input:
A = {a1, a2, . . . , an} where ai = (pi, ri) ∈ A is an atom with the

unknown center pi and the known radius ri of a particular type
in the NMR file

D = {di,j |di,j the distance between ai and aj , di,j < ρcutoff}
Output:

Ã = {ã1, ã2, . . . , ãn} where ãi = (p̃i, ri) with the known coordinate p̃i
Step 1. Initialization:

Step 1.1. Make a seed tetrahedron τ0 with four nearby atoms in A.
Step 1.2. Insert the four atoms of τ0 to Ã.
Step 1.3. Determine the coordinates of the four atoms in Ã.
Step 1.4. A ← A− Ã

Step 2. Shell-growing: While A 
= ∅,
Step 2.1. Compute the beta-complex BC of Ã.
Step 2.2. Find the set Fβ of the faces on ∂BC(Ã).
Step 2.3. While Fβ 
= ∅,

- Get a face fp ∈ Fβ , Fβ ← Fβ − {fp}.
- Get an atom ap ∈ A which has three distances from the three

atoms of fp, dist(ap, fp) is the shortest from fp.

- Ã ← Ã+ {ap} and determine the coordinate of ap.
- A ← A− {ap}
- If A = ∅, terminate the shell-growing process.

End-while.
Step 2.4. If such ap does not exist,

- Go to Step 3.
End-if.

End-while.
Step 3. Marginal process: While A 
= ∅,

- Get an atom ai ∈ A.
- Ã ← Ã+ {ai} and determine the coordinate of ai by using the distance

related ai.
- A ← A− {ai}

End-while.
Step 4. Terminate.
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3 Results

The proposed BetaMDGP algorithm has been validated through implementation
and testing with data obtained from the PDB files. The input files contain the
atomic pairs whose inter-atomic distances fall within the usual cutoff distance
of 5Å. The experiment of the BetaMDGP algorithm shows extremely good solu-
tion quality in that the recovered structures are very close to the original PDB
structures from geometric measures points of view such as the RMSD between
the equivalent atoms in both the original PDB models and the reconstructed
models, the existence and distribution of the interior voids, and the distribution
of the covalent bond lengths. All the experimental results were visualized using
the BetaMol program [29]. Note that all the reconstructed structures are dis-
played after it was superposed with the original PDB model using the structure
superposition program, the BetaSuperpose [38]. We tested the BetaMDGP algo-
rithm with three types of NMR data created from the PDB files: i) data without
an interval (all atom types), ii) data with an interval (all atom types), and iii)
data with hydrogen atoms with an interval. The computational environment is
as follows: Intel Core2 Duo E6550 CPU and 4 GB memory on a Windows 7
Ultimate platform.

As the first test, we created NMR files according to the inter-atomic distances
within a 5Å cutoff radius. In other words, we computed all the pairwise inter-
atomic distances for all the atoms in each PDB file and output the atom pairs
with an inter-atomic distance shorter than 5Å into an NMR file. See Fig. 4.
The red structures in Fig. 4(a) and (d) show the true structures of 2lt8 (558
atoms) and 1xba (2068 atoms) in the PDB after we removed all the hetero
atoms and water molecules. Note that 2lt8 in Fig. 4(a) was determined by NMR
spectroscopy and therefore it is one (to be specific, the first one) of the ensem-
bles. 1xba in Fig. 4(d) is from the X-ray crystallography. The blue structure in
Fig. 4(b) shows the reconstructed structure by the BetaMDGP algorithm using
the input file from the 2lt8. From the visual inspection, we can see that both
Fig. 4(a) and (b) are very similar. Fig. 4(c) shows the ribbon models of both
the structures after they were superposed. This figure shows that the backbones
are almost identical. Fig. 4(e) and (f) are the reconstructed structure and the
ribbon models for the 1xba model, respectively. The reconstruction for 1xba also
has a similar shape as its original PDB model.

We also checked the interior structures by computing the voids. A void is a
cavity in a molecular interior that is accessible to some molecule and is important
for understanding the molecular characteristics. Fig. 5(a) shows the distribution
of the interior voids of the PDB structure 1xba. The dark red color denotes
the voids where a spherical probe with the radius 1.4Å (corresponding to a
water molecule) can be placed. Fig. 5(b) shows the same information for the
reconstructed structure. Note the similarity of the void distribution for the water
molecules. Fig. 5(c) and (d) show the distribution of the voids corresponding to
a probe with the radius 1.0Å. Both the original structures and the reconstructed
structures are remarkably similar!
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Structure comparison. (a) and (d) the PDB structures 2lt8 (558 atoms) and
1xba (2068 atoms), respectively; (b) and (e) the reconstructed structures by the Be-
taMDGP; and (c) and (f) the ribbon models for the backbones of the true (red) and
reconstructed (blue) structures after they were superposed.

For validation of the solution quality of the proposed algorithm, visual in-
spection is of course insufficient. We statistically checked the solution quality
as well. First, we checked the root mean squared deviation (RMSD) between

the PDB models and the reconstructed models as follows. Let distpdb2betai be the
distance between an atom ai in PDB and its reconstructed atom by using the
BetaMDGP algorithm. The RMSD for n atoms is given as

RMSD =

√√√√ 1

n

n∑
1

(distpdb2betai )2. (6)

Table 1 shows the statistics of the RMSDs and the computation time. Col-
umn A is the PDB ID of the original PDB models used in the first test and the
number of atoms is in column B. Columns C and D are the number of residues
and ensembles, respectively. Note that the 1xba model determined from X-ray
crystallography has no ensemble. Column E shows the statistics of the RMSDs
between the original PDB models and its reconstructions. Note that the 2lt8 and
2jwu models were determined by NMR spectroscopy. Hence, we reported the av-
erage value of the RMSDs (E3) for each ensemble after the reconstructions of all
the ensemble instances were separately computed by the BetaMDGP program.
Similarly, we reported the minimum (E1), the maximum (E2), and the standard
deviation (E4) value of the RMSDs. The average RMSDs (E3) for 2lt8, 2jwu,
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(a) (b)

(c) (d)

Fig. 5. Void distributions of 1xba. (a) and (c) the interior voids for the PDB structures
and (b) and (d) the interior voids for the reconstructed structures ((a) and (b): β =
1.4, (c) and (d): β = 1.0).

Table 1. Statistics of the RMSDs and the computation times from the BetaMDGP

PDB ID #atoms #res. #ensem.

RMSD (Å)

time(sec)
(E)

min. max. avg. stdev.
(A) (B) (C) (D) (E1) (E2) (E3) (E4) (F)

2lt8 558 43 20 0.008 0.104 0.030 0.025 9.51
2jwu 922 56 20 0.001 0.208 0.017 0.046 7.62
1xba 2068 334 · · · 0.041 · 104.68

and 1xba were 0.030, 0.017, and 0.041Å, respectively. They are all tiny. The
computation took 9.51, 7.62, and 104.68 sec, respectively (F). It currently seems
relatively high because our current implementation of the Voronoi diagram and
beta-complex algorithms are not optimally tuned for the MDGP problem. We
expect this problem will be remedied in our future version with an expected
computation reduction of tenfold or more.

We also checked the distributions of the covalent bond lengths in both the
PDB and the reconstructed structures. Let dpdbij and dbetaij be the length between
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the covalent bonded ai and aj in the PDB and the reconstructed model, respec-

tively. Let εabs = dpdbij −dbetaij be the absolute error. Fig. 6 shows the distribution
of the absolute error εabs for the three examples. Note that all three graphs show
that the distributions are extremely focused with a mean value of zero. We note
that the volumes of the voids can also be computed and compared from a statis-
tical point of view. From this test, we conclude that the proposed BetaMDGP
algorithm reconstructs the original PDB structure effectively and efficiently.

For the second test, we experimented with data consisting of the interval
distances. We computed the inter-atomic distances from all the ensembles of
the PDB model whose structures were determined from NMR spectroscopy. We
created the lower and the upper bounds of the interval of each edge by the
minimum value and the maximum value of the inter-atomic distances of the
edges, respectively. Then, the medium value of interval shorter than 5Å was
used as the input data for the test.

The red structures in Fig. 7(a) and (d) show the true structures of 2jmy (281
atoms, 19 models in the ensembles) and 2jwu (922 atoms, 20 models in the en-
sembles) in the PDB whose structures were determined from NMR spectroscopy.
The red structures in Fig. 7 are one (to be specific, the model with the mini-
mum RMSD after the superposition with the reconstruction) of the ensembles.
We compared the reconstructed structure by the BetaMDGP with all the origi-
nal ensemble structures. The blue structure in Fig. 7(b) shows the reconstructed
structure by the BetaMDGP algorithm using the input files of the 2jmy. Fig. 7(c)
shows the ribbon models for the superposed backbones of the original structure
in Fig. 7(a) and the reconstructed structure in Fig. 7(b). Note that they are
very close. Fig. 7(d), (e), and (f) are for the 2jwu model. Table 2 shows a sum-
mary of these experimental results. Column D denotes the number of models
in the ensembles in the original PDB models. Column E shows the minimum of
RMSD (E1), the maximum of RMSD (E2), the average of RMSD (E3), and the
standard deviation of RMSD (E4) between each of the ensembles of the original
model and the reconstructed model using the interval distance. The minimum
RMSD (E1) between the reconstructed structure and 19 ensembles of 2jmy is
2.21, and the average RMSD (E3) is 2.34 Å. These RMSDs are obviously larger
than the RMSD for the experiment with the data without an interval. This may
be because we used the medium value of the interval distance as the input to
the BetaMDGP program. From the second test, we also conclude that the Be-
taMDGP algorithm reconstructs the PDB structures at a fairly sufficient level
of accuracy and efficiency.

For the third test, we experimented the BetaMDGP algorithm for the input
data consisting of only the hydrogen atoms with intervals for each distance-
defined pair. We computed the inter-atomic distances between only the hydrogen
atoms from all the ensembles of the PDB file. Then, we created the lower and
the upper bounds of the interval by the minimum value and the maximum value
of the inter-atomic distances, respectively. The medium value of interval shorter
than 5Å is used as the input file.
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(a)

(b)

(c)

Fig. 6. Difference in the covalent bond lengths between the original and the recon-
structed structure. PDB ID: (a) 2lt8 (558 atoms), (b) 2jwu (922 atoms), and (c) 1xba
(2068 atoms).
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Structure comparison. (a) and (d) the original protein structures 2jmy and
2jwu, respectively; (b) and (e) the reconstructed structures by the BetaMDGP; and
(c) and (f) the ribbon models of the original (red) and reconstructed (blue) structures
after they were superposed.

Table 2. Summary of the RMSDs and the computation times from BetaMDGP with
intervals

PDB ID #atoms #res. #ensem.

RMSD (Å)
time(sec)(E)

min. max. avg. stdev.
(A) (B) (C) (D) (E1) (E2) (E3) (E4) (F)

2jmy 281 15 19 2.21 2.59 2.34 0.10 1.972
2jwu 922 56 20 4.36 4.55 4.48 0.04 11.812

Table 3 shows a summary of this experimental result. In this experiment, we
used the input distance of the two types: i) the medium value of the interval
distance (Row I) and ii) the random value of each interval distance (Row II).
The data in Row II are the results of 500 experiments. Column B is the number
of hydrogen atoms and column E shows the statistics of the RMSDs between all
the ensembles of the original model and the reconstructed model. The minimum
RMSD (E1) of Row II (by the random choice) is significantly smaller than the
minimum RMSD of Row I (by the medium choice). This implies that we may get
better reconstruction if the distribution of the distances for each atom pair can
be used. In this experiment, we used the RMSD as the measure of quality for the
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reconstructed models. However, we believe that this may not be an appropriate
measure for the reconstructed model from the test data with intervals produced
from the PDB ensemble. The development of an appropriate measure is an issue
for further study.

Table 3. Statistics of the RMSDs and computation times from BetaMDGP with in-
tervals (only hydrogen atoms)

PDB ID #atoms #res. #ensem.

RMSD (Å)

time(sec)
(E)

min. max. avg. stdev.
(A) (B) (C) (D) (E1) (E2) (E3) (E4) (F)

I 2jmy 153 15 19 7.06 7.50 7.28 0.12 1.45
2jwu 467 56 20 8.43 8.58 8.50 0.04 3.46

II 2jmy 153 15 19 3.69 13.41 6.85 1.08 1.33
2jwu 467 56 20 5.64 16.37 9.42 1.48 3.21

(a) (b)

(c) (d)

Fig. 8. Structure comparison. (a) and (c) the hydrogen atoms of the original protein
structures of 2jmy and 2jwu; respectively and (b) and (d) the reconstructed structures
by the BetaMDGP.
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Fig. 8 shows the result of the experiments in Row II. The red model in Fig. 8(a)
shows the true structures of 2jmy (153 hydrogen atoms) in the PDB. The blue
model in Fig. 8(b) is the reconstructed model for the hydrogen atoms of 2jmy.
The atoms in Fig. 8(b) are more closely positioned than the true structure in
Fig. 8(a). Fig. 8(c) and (d) are for the 2jwu model (467 hydrogen atoms).

4 Discussions

The BetaMDGP algorithm was compared with other popular methods such as
DGSOL and BP (Branch-and-prune) that we were able to benchmark. Other pro-
grams, for example, the geometric build-up algorithm were not available. First,
the DGSOL is a program for solving MDGP based on the global continuation
method with Gaussian smoothing of a merit function that only depends on the
sparse distance data [9, 10] and can be freely downloaded from the DGSOL web
site (http://www.mcs.anl.gov/more/dgsol/). In the current release, the DGSOL
uses a variable-metric limited-memory code to trace the minimizers and can de-
termine protein structures up to 200 atoms [10]. In this experiment, we also used
the test data set obtained from the DGSOL site. Among the three available frag-
ments consisting of 50, 100, and 200 atoms with a 1gpv structure (1840 atoms
in total) from the PDB (The DGSOL provides only this one structure on the
web site), we chose to test the biggest fragment with 200 atoms. The DGSOL
determines the lower and the upper bounds of the distance intervals as follows. If
di,j = ||xi−xj || is the distance within the 5Å cutoff distance between atoms i and
j, then the lower bound li,j = di,j(1− ε) and the upper bound ui,j = di,j(1 + ε)
for some epsilon with 0 < ε < 1. We ran both the BetaMDGP and the DGSOL
using the various input data with intervals generated with different ε values.

Table 4 shows the test results of the BetaMDGP and the DGSOL. Columns
A and B show the number of atoms and edges (i.e. the number of atom pairs
with known distances in the input data), respectively. Column C shows the
different ε values used for interval generation. Recall Eq. (5). Column D2 is what
the DGSOL produced by Eq. (5) which describes how much the reconstructed
structure satisfies the distance constraints with intervals. Column D1 shows the
statistics using Eq. (5) from the reconstructed structure by the BetaMDGP.
While the value of both the algorithms are tiny, the BetaMDGP values are
smaller. Columns E1 and E2 show the RMSDs, defined by Eq. (6), from both
BetaMDGP and DGSOL, respectively. Note that the RMSD of the BetaMDGP
is significantly smaller than that of the DGSOL. The computation times in
columns F1 and F2 show that the computation times from the BetaMDGP are
significantly faster than the DGSOL.

Fig. 9 visually illustrates the experimental result of the case ε = 0.16 in Ta-
ble 4. The red model in Fig. 9(a) is the segment of the original PDB model 1gpv
that we extracted. It corresponds to the segment consisting of 200 atoms in the
input file defined by the DGSOL website. Hence, this is the target structure that
we want to reconstruct. The blue one in Fig. 9(b) and the green one in Fig. 9(c)
are the reconstructions by the BetaMDGP and the DGSOL, respectively. Ob-
serve that the reconstruction by the BetaMDGP is very close to the original
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Table 4. Comparison of the BetaMDGP and the DGSOL. The fragment used for the
test has 200 atoms from the PDB structure 1gpv (1840 atoms in total). The parameter
ε is used for the interval generation.

PDB ID: 1gpv pi,j(x) RMSD (Å) time (sec)
(D) (E) (F)

#atoms #edges ε BetaMDGP DGSOL BetaMDGP DGSOL BetaMDGP DGSOL
(A) (B) (C) (D1) (D2) (E1) (E2) (F1) (F2)

200 3300 0.04 0.001 0.007 0.004 5.395 1.273 22.256
200 3300 0.08 0.000 0.097 0.039 2.528 1.304 23.510
200 3300 0.12 0.000 0.000 0.085 5.055 1.394 22.097
200 3300 0.16 0.000 0.000 0.013 2.470 1.381 25.079

(a) (b) (c)

(d) (e) (f)

Fig. 9. Comparison of the structures reconstructed from the BetaMDGP and DGSOL
against the original structure from PDB (1gpv). (a) the original protein structures
(PDB code:fragment of 1gpv); (b) and (c) the reconstructed structures by the Be-
taMDGP and DGSOL, respectively; and (d), (e), and (f) the corresponding beta-shapes
(β=1.4Å).
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PDB model, whereas the one by the DGSOL is significantly different from the
original model (The atom in the vertical column of the original PDB model
does not exist). Fig. 9(d), (e), and (f) are the beta-shapes of the structures in
Fig. 9(a), (b), and (c) where β = 1.4 Å respectively. The beta-shapes clearly
show the reconstruction quality.

Second, the BetaMDGP was also compared with the MD-jeep pro-
gram which implemented the Branch and Prune (BP) algorithm [25]. The
MD-jeep (version 0.1) and test problems can be freely downloaded from
http://www.antoniomucherino.it/en/mdjeep.php. The MD-jeep reconstructs the
backbone structures through the formulation of a combinatorial optimization
problem and uses a branch and prune strategy. To be compatible with the in-
put data to the MD-jeep, we also generated an input file to the BetaMDGP
from the same PDB files according to the rules used for the MD-jeep as follows.
Given a PDB file, we first extracted N, Cα, and C atoms with their coordinates
on a backbone. Then, the pairwise distances falling within 5 Å were computed
in order to simulate NMR data as an input file to the BetaMDGP algorithm.
We verified the identity of the MD-jeep input files downloaded from its web
site and the generated BetaMDGP input files using the number of atoms and
the interatomic distances. Running both the BetaMDGP and the MD-jeep algo-
rithms produces their reconstructions which obviously contain only N, Cα, and
C atoms, missing O and Cβ (i.e., the first atom on each side-chain). Among the
possible solutions found by MD-jeep, we used a solution that MD-jeep provided.
We remark that the solution quality is likely to be improved if all MD-jeep so-
lutions are used. Fig. 10(a), (b), and (c) visually show the ribbon models of the
backbone of the original PDB structure (red), that of the BetaMDGP recon-
struction (blue), and that of the MD-jeep reconstruction (green), respectively.
Each reconstructed structure is displayed after it is superposed with the original
one from the PDB file. Note that the BetaMDGP reconstructions are closer to
the original models.

Given a backbone structure with known amino acid sequence information, it
is possible to recover the entire protein structure by solving the side-chain pre-
diction problem, abbreviated as the SCP-problem, which predicts the optimal
conformation of the side-chains of all the amino acids in a protein. The general
approach to the SCP-problem is to use a rotamer library which is derived by
statistically clustering the observed side-chain conformations of known protein
structures in the PDB [39–42]. The optimality is defined by the minimum po-
tential energy of the protein structure determined by the conformation of all the
side-chains where the energy is given by a forcefield. The SCP-problem is known
as NP-hard [43–45] and is useful for flexible protein-ligand docking [46, 47] and
homology modeling [48–50].

We generated the two types of missing atoms, O and Cβ , with their coordi-
nates. Then, we ran the BetaSCP program, also developed by the authors group
[51], to get the entire protein structure of the backbones produced by both the
BetaMDGP and the MD-jeep. Fig. 11(a) shows the structure of the original
PDB files (red). Fig. 11(b) and (c) show the structures recovered by running the
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2erl

1a70

1pht

1poa

1rgs
(a) (b) (c)

Fig. 10. Structure comparison with the ribbon models. (a) backbone of the original
protein structures and (b) and (c) the reconstructed backbone structures by the Be-
taMDGP and the MD-jeep, respectively.
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2erl

1a70

1pht

1poa

1rgs
(a) (b) (c)

Fig. 11. Structure comparison. (a) the original protein structures and (b) and (c)
the reconstructed structures by the BetaSCP program on the backbones from the
BetaMDGP and the MD-jeep, respectively.
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BetaSCP program on the backbones from the BetaMDGP (blue) and the MD-
jeep (green), respectively. Observe that the result of the BetaMDGP is signifi-
cantly better than that of the MD-jeep.

The visual result in Fig. 11 is statistically analyzed in Table 5. Row I cor-
responds to the BetaMDGP and Row II corresponds to the MD-jeep. Column
B1 is the number of atoms of the original models and column B2 is the number
of atoms in the backbones, both from the original PDB structures. Column D1
is the RMSD between the original backbone structure and the structure recon-
structed by the BetaMDGP algorithm. Column D3 is the MD-jeep counterpart
for column D1. Note that the backbone structures produced by the BetaMDGP
are mostly better than those by the MD-jeep (with the exception 1pht). Column
D2 is the RMSD between the entire original PDB structure and the reconstructed
structure with the recovered side-chains. Column D4 is the MD-jeep counterpart
for column D2. Note that the BetaMDGP solutions are mostly better than those
of the MD-jeep. Columns E1 and E4 are the computation times for the recon-
struction by the BetaMDGP and the MD-jeep, respectively. Columns E2 and
E5 are the computation times for running the BetaSCP program. Columns E3
and E6 are the total computation times for solving the SCP problem after the
BetaMDGP and the MD-jeep, respectively.

Table 5. Experimental statistics of the protein structures whose side-chains are recov-
ered by the BetaSCP program on the backbones reconstructed by the BetaMDGP and
MD-jeep (Row I: the BetaMDGP result; Row II: the MD-jeep result)

PDB #atoms #resi- RMSD (Å) time (sec)
ID (B) dues (D) (E)
(A) PDB Back- (C) BetaMDGP Recon BetaMDGP BetaSCP E1+E2

bone Entire Struct
(B1) (B2) (D1) (D2) (E1) (E2) (E3)

2erl 566 120 40 0.75 0.88 4.81 1.22 6.03
1a70 732 291 97 0.54 1.48 7.81 4.41 12.22

I 1pht 810 249 83 2.16 2.95 6.14 5.16 11.30
1poa 913 354 118 0.27 1.12 24.02 5.94 29.96
1rgs 2015 792 264 0.67 1.98 35.46 21.34 56.80

MD-jeep Recon MD-jeep BetaSCP E1+E2
Entire Struct

(D3) (D4) (E4) (E5) (E6)

2erl 566 120 40 1.78 2.62 0.00 1.15 1.15
1a70 732 291 97 2.10 3.01 0.01 4.29 4.30

II 1pht 810 249 83 2.11 2.51 0.01 4.85 4.86
1poa 913 354 118 2.22 2.83 0.01 5.64 5.65
1rgs 2015 792 264 3.47 7.28 0.08 19.40 19.48

5 Conclusions

We proposed a new approach, the BetaMDGP, to the MDGP problem based on
the beta-complex, which is a geometric construct derived from the Voronoi di-
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agram of atoms. From experiments using simulated NMR files, the BetaMDGP
reconstructs the original structures with surprising similarity except for the input
data with interval distances. However, there are three main issues to be resolved
in the future. First, the BetaMDGP algorithm needs to consider the interval dis-
tances as the current algorithm considers only the medium value of an interval.
Second, we need to improve the BetaMDGP algorithm by considering the under-
determined condition. The real NMR data may be more sparse than our test data.
These NMR data cause a situation where the molecular structure cannot be de-
termined by using only the input data. Therefore, we have to consider additional
information to solve the under-determined condition. For example, we can con-
sider additional information such as the chemistry information and produce the
input distance from the under-determined atom using triangular inequality. Fi-
nally, we remark that the BetaMDGP algorithm needs improved computational
efficiency and the convergence of the BetaMDGP algorithm with an optimization
method such as the BP algorithm is likely to improve solution quality.
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Abstract. The calculation of the occupied and empty volume in an ensemble of 
overlapping spheres is not a simple task in general. There are different analyti-
cal and numerical methods, which have been developed for the treatment of 
specific problems, for example the calculation of local intermolecular voids or ‒ vice versa ‒ of the volume of overlapping atoms. A very efficient approach to 
solve these problems is based on the Voronoi-Delaunay subsimplexes, which 
are special triangular pyramids defined at the intersection of a Voronoi polyhe-
dron and Delaunay simplex. The subsimplexes were proposed in a paper [1] 
(Sastry S.et al., Phys. Rev. E, vol.56, 5524–5532, 1997) for the calculation of 
the cavity volume in simple liquids. Later, the subsimplexes were applied for 
the treatment of the union of strongly overlapping spheres [2] (Voloshin V.P. et 
al., Proc. of the 8th ISVD, 170–176, 2011). In this article we discuss wider ap-
plications of subsimplexes for the calculation of the occupied and empty vo-
lumes of different structural units, selected in molecular systems. In particular, 
we apply them to Voronoi and Delaunay shells, defined around a solute, as well 
as their intersection. It opens a way to calculate the components of the partial 
molar volume of a macromolecule in solution, what is important for the inter-
pretation of experimental volumetric data for protein solutions. The method is 
illustrated by the application to molecular dynamics models of a hIAPP poly-
peptide molecule in water at different temperatures. 

Keywords: Molecular dynamics simulation, solutions, bio-molecules,  
partial molar volume, Voronoi diagram, Delaunay simplex, molecular volume,  
occupied volume, empty volume. 

1 Introduction 

Ensembles of overlapping spheres are used as models for many real systems. In che-
mistry and biology the atoms are represented as van der Waals spheres, which are 
overlapping because of relatively short chemical bonds between them. In materials 
sciences packings of conglomerate particles are occurring in sandstones and colloids. 
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The problem of calculating the volume of a molecule was stated many years ago 
[3,4]. The local packing fraction is studied in the investigation of metal glasses [5]. A 
complementary task is to find the volume of intermolecular voids, which is important 
both for understanding protein structures and membrane permeability [6-8]. The vo-
lume of interatomic cavities is of interest in the theory of liquids [1] and for porous 
materials [9,10]. In recent years, there is a growing interest in the calculation of the 
volumetric characteristics of solutions. The density of water in the hydration shell, the 
density of the solute molecule, and the occurrence of additional voids in the boundary 
layer affect the partial molar volume (apparent volume) of a solute molecule in solu-
tion. The calculation of these components helps to interpret the data of volumetric 
measurements [11-15].  

Many different methods are known to calculate the occupied and empty volumes in 
a system of spherical particles. Some of them use analytically derived formulas for 
the calculation of multiply intersecting spheres explicitly, or use numerical algorithms 
like Monte Carlo methods, see the papers cited in Refs. [2] and [16].  

A novel approach was proposed in Ref. [1] and was applied to the calculation of 
the volume of interatomic cavities in a monatomic liquid. It substantially uses the 
Voronoi-Delaunay tessellation of the system. In this case a void between the atoms is 
composed of the empty volume of Delaunay simplexes. It was proposed to divide a 
simplex into smaller elements ‒ orthogonal triangular pyramids (subsimplexes).  The 
subsimplex has very important property: its occupied volume is defined by the only 
atom at the apex of the subsimplex.  Thus, for any system of overlapping atoms, ex-
plicit formulas for the occupied volume of the subsimplex can be written. Then it was 
remained to sum (using a “rule of signs") the empty volumes of the subsimplexes 
which constitute the Delaunay simplexes of the cavity. (Note that the empty volume is 
obviously the difference between the total and the occupied volume). The authors of 
Ref. [1] used classical Voronoi-Delaunay tessellation, because atoms in their system 
have the same radius. However, they also emphasized that this approach can be im-
plemented for spheres of various radii. In particular, the power (radical) decomposi-
tion can be used; but instead of the classical Delaunay simplexes, in this case the dual 
simplexes of the power Voronoi tessellation should be used. 

In Ref. [2] the method of subsimplexes was implemented for the calculation of the 
volume of a union of overlapping spheres. This problem can be reduced to the deter-
mination of the occupied volume of the power Voronoi polyhedra in a system of over-
lapping spheres of different radii. Summing up the occupied volume of all subsim-
plexes, associated with a given atom, we find the desired occupied volume of the 
Voronoi polyhedron of this atom. (Here and below we use the terms Voronoi polyhe-
dron (VP) and Delaunay simplex (DS) for both classical and power tessellations).  In 
Ref. [2] we compared the method of subsimplexes with the other analytical method, 
which are known for the calculation of volume of a union of overlapping spheres. It 
was shown it is robust  and even a bit faster then “a certified algorithm” [16]. 

In this paper, we propose to use subsimplexes for the calculation of occupied and 
empty volumes of various constructions of VP and DS. These may be the Voronoi 
region of a solute molecule in solution [17], or the Voronoi or Delaunay shells, given 
by the decomposition of a solution with respect to the solute molecule [15, 18]. 
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Moreover, subsimplexes can help to estimate the intersection of Voronoi and Delau-
nay shells [19]. It helps to calculate the components of the partial molar volume of a 
macromolecule in solution, what is important for the interpretation of experimental 
volumetric data for protein solutions. We do not know other analytical approaches for 
such kind of constructions. Numerical methods (like Monte Carlo) are very slow for 
the studied problems. Our method is illustrated by the application to molecular dy-
namics models of a hIAPP polypeptide molecule in water at different temperatures. 

2 Voronoi-Delaunay Subsimplex 

2.1 Two Dimensions 

Consider an atom A with its Voronoi polygon (VP) and the Delaunay simplex (DS) 
which corresponds to a vertex V of this polygon, Fig. 1. Join the points A and V by a 
line segment and draw perpendiculars from the point A to those polygon edges, which 
meet at the vertex V. For 2D there are only two such polygon edges. Let us denote the 
base points of the perpendiculars at these edges as E1 and E2. (Note, these perpendi-
culars coincide with DS edges.) The triangles AVE1 and AVE2 are the Voronoi-
Delaunay subsimplexes (or simple subsimplexes) which correspond to the pair A - V. 
We will call them the duo of subsimplexes related to the pair A - V. 

Fig. 1. 2D Voronoi-Delaunay sub-
simplexes for the Voronoi polyhe-
dron of an atom A and the Delaunay 
simplex of its vertex V. Points E1 and 
E2 are the bases of the perpendiculars 
from the point A to the edges which 
meet at vertex V. 

The example shown in Fig. 1 is typical for a more or less homogeneous system.  
In this case, the duo of subsimplexs represents the intersection of a VP and a DS. But 
such an ordinary configuration does not exhaust all situations in physical models.  
Fig. 2 shows an example, where one of the points E lies outside the VP. In this case 
the subsimplex AVE2 of the pair A-V lies outside the Delaunay simplex of the vertex 
V (Fig. 2a). A piece of this subsimplex is also outside of the Voronoi polyhedron of 
the atom A.  

Such a duo does not represent the intersection of the VP and the DS. However, if 
we consider two adjacent Delaunay simplexes together (of vertices V and V', Fig. 2b) 
we can find the correct volume of intersection of both simplexes and the polygon.  
In this case (Fig. 2c), by changing the sign of the exterior (inverted) subsimplex 
AVE2, it can be compensated by the subsimplex AV'E1' (note, the points E2 and E1' 
are identical).  
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In Ref. [1] it was proposed to mark the volume of subsimplexes with different 
signs. In this example a sign factor SE is defined, which is determined by the position 
of point E and the corresponding polygon edge relative to the vertex V. Point E2 in 
Fig.2a is on the negative side of an axis (arrow 2), emanating from point V along the 
edge VV'. In other words, it lies on the other side of the point V than the edge of the 
polygon). In this case, for the subsimplex AVE2 the factor is negative, SE = –1. Else, if 
the point E lies on the edge (as in Fig. 1) or on its continuation, but on the positive 
side of the axis, emanating from the vertex, as in the case of point E'1 and vertex V' in 
Fig. 2b) the factor is positive, SE = +1. 

 

Fig. 2. Voronoi-Delaunay subsimplexes in the case 
of a non-ordinary configuration. (a) Vertex V, 
arrows 1 and 2 indicate the polygon edges, which 
are emanating from V. The point E2 lies on the 
negative side of arrow 2 (opposite to the polygon 
edge emanating from vertex V). In this case the 
exterior subsimplex AVE2 is considered negative, 
while the interior subsimplex AVE1 is positiv. (b) 
Vertex V', arrows 1' and 2'. The point E1' is outside 
the Voronoi edges, but in positive direction of the 
arrow (on the same side as edge 1' with respect to 
vertex V'). In this case, the subsimplex AV'E1' is 
considered positive. (c) The sum of the (signed) 
subsimplexes at the vertices V and V' gives the 
intersection of these Delaunay simplexes and the 
Voronoi polygon. 

The symbols "plus" and "minus" in Fig. 2a, b show the signs related with the con-
sidered subsimplexes. After summing, we will have an area corresponding to the in-
tersection of the simplexes V and V' with the polygon A (Fig. 2c). 

Recall that when dealing with power Voronoi decomposition, there may be cases 
when the center of atom A is outside its VP. This occurs when the position of atom A 
lies deep within the sphere characterizing another atom [20,21], see Fig. 2 in Ref. [2]. 
In this case point A lies on the other side of a VP face with respect to the VP itself. 
For all subsimplexes, which are based on this face, an additional factor SA = –1  
is defined. In all other cases, SA = +1, see Fig. 6 in Ref. [2]. The final sign of the  
subsimplex in 2D is determined by the product of factors SE and SA . 

c) 

b)a) 
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2.2 Three Dimensions 

Consider the VP of an atom A and the DS of its vertex V, Fig. 3. Three edges of the 
VP are incident to the vertex (let us denote them as 1, 2, 3), and there are three faces 
of the VP, which intersect at these edges (let us call them as (1,2), (1,3) and (2,3)). 
Connect the points A and V by a line segment, and draw perpendiculars from point A 
to these VP planes (as in 2D, the perpendiculars coincide with DS-edges). The points 
of intersection of the perpendiculars with the planes are denoted B12, B13, B23. 

Fig. 3. Three-dimensional Voronoi-
Delaunay subsimplexes. Point V is a 
vertex of the VP of atom A. Points 
B12, B13 and B23 are the bases of the 
perpendiculars from A to the Voronoi 
faces, which meet in V. Points E1, E2 
and E3 are the bases of the perpendi-
culars from the points B12, B13, B23 to 
the VP edges 1, 2 and 3. The triangles 
(BVE) are the bases of subsimplexes 
with the vertex A. Six subsimplexes 
(sextet) are associated with each pair 
A - V. 

In each of these planes we have a situation which is similar to the one discussed for 
2D, where the point B (which is B12, B13 or B23) now plays the role of point A in Figs. 
1, 2. Draw perpendiculars from the points B to the edges of their planes, Fig.3. Thes 
edges are the VP edges 1, 2, 3. The points of intersection of the perpendiculars with 
the polyherdon edges (or their continuations) are denoted also as E1, E2, E3. Thus, on 
each face of the VP we got two right triangles. For example on the plane (1,2) these 
are B12VE1 and B12VE2. We will consider these triangles as the bases of pyramids 
with the vertex A as top. These pyramids form the Voronoi- Delaunay subsimplexes 
in 3D. 

 

Fig. 4. 3D Voronoi-Delaunay sub-
simplex of the Voronoi polyhedron 
of an atom A and the Delaunay 
simplex of a vertex V of this poly-
hedron. Point B is the base of the 
perpendicular from vertex A to the 
face of the polyhedron. Point E is 
the base of the perpendicular from 
the point B to the VP edge, starting 
from vertex V. The region covered 
by atom A defines the occupied 
volume of the subsimplex. 
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The subsimplexes have a simple shape (Fig. 4), which made it possible to write an 
explicit expression for the calculation of the occupied volume inside subsimplexes. 
As discussed in Refs. [1, 2], this volume is completely determined by the atom cen-
tered on the vertex A. Some other atom can also overlap with the subsimplex (partial-
ly or fully), but this overlapping volume is always covered by atom A. This follows 
from the fact that the subsimplex is part of the Voronoi polyhedron of atom A. This 
means that any volume of the subsimplex, which is uncovered by atom A, can not be 
covered by any other atom of the system. 

The formulas for the calculation of the occupied volume and the area of the spheri-
cal surface section were first given in Ref. [1]. They are mathematically identical to 
formulas proposed in Ref. [2], which are represented there in a shorter way. Note, as 
it was found in our calculations, formula (A8) for the area of the spherical surface 
section in the pyramid, presented in Ref.[1], is not robust. It is unstable if the sub-
simplex edge VE tends to zero and at the singular point, where the value of the sphere 
radius rC tends to the length of the edge AE. A robust version of this formula is given 
in Ref. [2]. 

Here we present the formulas for the occupied volume of the subsimplex, keeping 
all notations used in Refs.[1,2]. Remember, the subsimplex has one right dihedral 
angle (between faces ABE and BEV), and therefore right angles between segments 
AB and BE, and AB and BV, additionally there are right angles between BE and EV, 
and between AE and EV.  

The lengths of the orthogonal edges of the pyramid are x0, y0, z0 , Fig. 4. Thus the 

length AE is equal to 2

0

2

0 yxrE +=  and the length AV is 2

0

2

0

2

0 zyxrV ++= . The 

occupied volume depends on which edges of the pyramid are intersected by the sur-
face of the sphere with radius rC. Thus the following cases are possible:  
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Two subsimplexes are based on each VP face at vertex V. Each vertex V is com-

mon to three faces, so it unites six subsimplexes. Typically, point B lies on a face of 
the VP, and point E is located on a VP edge. For such ordinary configurations the 
subsimplexes represent the intersection of the VP of A and the DS of its vertex V, 
Fig.3. In this case these six subsimplexes are combined into a hexahedron with eight 
corners, which is isomorphic to a cube, and the line segment AV is its spatial diagon-
al. However, in general they do not form a convex polyhedron, because the inverted 
subsimplexes, discussed in the 2D section, exist also in 3D. Nevertheless, it is conve-
nient to combine the subsimplexes into a group (sextet) which is affiliated with the 
pair A - V.  

The rule of sign for the summation of three-dimensional subsimplexes was dis-
cussed in Refs. [1, 2]. The sign of a subsimplex is determined by the product of three 
factors: SA·SE·SB. Here a factor SB is appended to the mentioned factors SA and SE for 
2D. It reflects the relative positions of point B and the face of the VP, Fig.5. 

If point B and the VP face lie on the same side of the edge with the base point E, then 
the factor SB for the subsimplex with the base BVE is positive. (For example, in Fig. 5a 
and Fig. 5c the factor SB for the subsimplex with the base BVE1 is positive.). Otherwise, 
SB is negative, Fig.5b and Fig. 5d. Similarly, for the subsimplex with the base BVE2, the 
sing is positive in Fig. 5a and Fig.5 b and negative in Fig. 5c and Fig. 5d.  

Thus the determination of the subsimplex sign is straightforward: we need to estab-
lish the relative position of points on a line (to find the factor SE), points in a plane 
relatively to a line (for SB), and points in space relatively to a plane (for SA), which can 
be easily done by elementary analytic geometry. 

Note that inverted subsimplexes occur, when the Voronoi vertex V (i.e. the “cen-
ter" of the DS) is outside its Delaunay simplex. Such a DS is called open Delaunay 
simplex and the corresponding face open face. A Delaunay simplex can contain one or 
two open faces. They usually occur at relatively wide cavities inside atomic systems. 
If the center is inside, then the Delaunay simplex is called closed, and a simplex face 
which does not separate the body of the simplex and its center is also closed. An open 
face is always adjacent to a closed face of the adjacent simplex [22]. Thus the neigh-
boring simplexes compensate the inverted subsimplexes, see Fig. 2. We will call them 
the compensating Delaunay simplexes. 

It is interesting to note that all vertices of the sextet lie on the same circumsphere 
regardless of whether it forms a convex polyhedron or not. This is evident from the 
fact that the angles at all vertices B and E are right angles and based on the common 
diagonal AV (Thales’ theorem). 

 
 



 Fast Calculation of the Empty Volume in Molecular Systems 163 

 

 

 

 

Fig. 5. Choosing the sing of the factor SB for the calculation of the 3D Voronoi-Delaunay sub-
simplexes. Possible positions of point B relatively a polyhedron face are shown. Symbols (+) 
and (-) show the sign of SB for the subsimplexes with the bases BVE1 and BVE2. 

 
Recall that the perpendiculars from point A to the faces of the VP (segments ABik) 

coincide with the edges of the DS. Thus our subsimplexes correspond completely to 
the subsimplexes defined in Ref. [1]. These authors started from a Delaunay simplex 
and calculated the subsimplexes related to each corner of the Delaunay simplex. This 
was reasonable for the analysis of interatomic voids, which are represented as clusters 
of Delaunay simplexes. In this paper we discuss pairs A-V without an a priori  
reference to Delaunay simplexes, and use the subsimplexes as a general construction 
element for various structures. 

 

d) 
c) 

b) 
a) 
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3 Data Structure for the Recording of Subsimplex Volumes 

A Voronoi-Delaunay tessellation defines an enumeration of the Voronoi polyhedra 
(atoms) and Delaunay simplexes. To record their connectivity, a table incidence for 
the DS and VP is used, where the four numbers of the atoms, which form the i-th DS, 
are recorded in the i-th row of the table (array): 

… … … … … 
i A1

i A2
i A3

i A4
i 

i+1 A1
i+1 A2

i+1 A3
i+1 A4

i+1

… … … … …  

(1)

Actually each elements of the array (1) represents a pair A-V, mentioned above: a 
Voronoi polyhedron of atom Ak

i (k =1,2,3,4) and its vertex V, which is the “center” of 
the Delaunay simplex with the number i. Thus, such data structure can be used also to 
represent sextets of subsimplexes. 

Having the Voronoi-Delaunay tessellation of a system, all subsimplexes are deter-
mined and their volumes (total, occupied and empty) are calculated according to the 
formulas (A3) ‒ (A9). The signs of the subsimplexes are established, and the volumes 
of the sextets are calculated according to the rule of sign for each pair of VP and DS. 
These data are written in a table similar to (1): 

… … … … … 
i V1

i V2
i V3

i V4
i 

i+1 V1
i+1 V2

i+1 V3
i+1 V4

i+1 
… … … … … 

 

(2)

where the elements Vk
i can be the values of the total, the occupied, or the empty vo-

lume of the k-th sextet of the i-th DS,  (k =1,2,3,4). 

4 Applications 

The data structure (2) allows the calculation of the volumes of different structural 
elements, selected in atomic systems by the Voronoi-Delaunay tessellation. Here we 
discuss some of them.  

4.1 Delaunay Simplex 

The total, occupied, or empty volume of the i-th simplex is determined by a simple 
summation of the corresponding elements of the i-th row of the array (2). For the total 
volume, such a summation will always give the correct result, even when the simplex 
is open. Fig. 6 shows a configuration taken from Fig. 2. Here we sum subsimplexes at 
the atoms A, A' and A''. The signs in the figure had been obtained in accordance with 
the rules of signs for subsimplexes and mark different parts to the total volume of the 
simplex of vertex V. We see that a non-zero contribution is obtained only for those 
parts that compose the considered simplex. In this case, the inverted subsimplexes at 
the atoms A and A'' are compensated by the subsimplexes at the atom A'. 
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Fig. 6. The summation of the sub-
simplex volumes over all atoms of 
any simplex always gives the cor-
rect total volume of the simplex, 
e.g. simplex A, A', A'' of vertex V) 

However, a situation as described in Ref. [1] may appear in the calculation of the 
occupied volume. It is known that a Delaunay simplex may include sections of an 
extraneous atom (not from an own vertex of the simplex), Fig. 7a. The volume of the 
extraneous atom (A) is not considered in the subsimplexes of the neighbor simplex 
(A', A'', A'''), and therefore can not contribute to the occupied volume of this DS. On 
the other hand, this volume is taken into account in the subsimplexes of the simplex 
(A, A'' and A'''), which contains atom A as one of its vertexes, although a part of vo-
lume A is outside the simplex. Thus, the method of subsimplexes does not always 
give the correct occupied volume inside a given simplex. However, for a cluster of 
these simplexes, such as the entire cavity between the atoms A, A', A'' and A''' we get 
the correct value of the occupied volume. 

 

 

Fig. 7. (a) The penetration of an extraneous atom (A) into the simplex A'A''A''. (b) By a slight 
shift of the atom A', the Voronoi-Delaunay tessellation will be modified and this peculiarity 
disappears. 

Note that for molecular systems, studied in physics and biology, the appearance of 
extraneous atoms in the Delaunay simplexes is a rare event. Fig. 7b shows that the 
non-ordinary atomic configuration of Fig. 7a becomes ordinary after a small shift of 
atom A' in a direction which reduces the cavity between the atoms (such a shift may 
happen with high probability in the subsequent step of a molecular dynamics simula-
tion run of a dense molecular system). A modification of the Voronoi-Delaunay tes-
sellation occurs, and the atom A is no longer an extraneous one for the new DS. 

b) a) 
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4.2 A Local Cavity 

A local cavity is a cluster of Delaunay simplexes, covering a local void in an atomic 
system. The outer faces of these Delaunay simplexes are closed and coincide with the 
closed faces of the neighboring simplexes. In other words, non-ordinary configura-
tions are possible only within the cavity, and each simplex of the cluster has its  
compensating neighbor. As it was emphasized in Ref. [1], the summation of these 
subsimplexes gives the correct result as for the total, as well as the occupied and the 
empty volume of the cavity. 

Thus, when calculating the volume of a local cavity, it is enough to sum all rows of 
arrays (2), which belong to the Delaunay simplexes of a given cavity. 

4.3 Voronoi Polyhedron 

Unlike for Delaunay simplexes, an extraneous atom cannot affect the occupied (or the 
empty) volume within a Voronoi polyhedron. Therefore, the subsimplexes related to a 
VP, always give a correct value for the total, as well as the occupied and the empty 
volume of the VP, see Ref. [2]. 

The required sextets can be found with the help of array (1). The number of a given 
atom A, whose VP is considered, is recorded in those rows of array (1), which charac-
terize those simplexes, which have atom A as one of its vertexes. Then the volumes of 
the required sextets are located in the same places in arrays (2), where the atom A is 
located in array (1). 

4.4 Voronoi Region of a Molecule 

The concept of the Voronoi region of a molecule in a solution has long been used in 
molecular biology [3,17]. It is represented by the sum of the Voronoi regions of all 
atoms of the molecule in solution. Therefore, the calculation of the volume (total, 
occupied or empty) by the subsimplexes is straightforward, see 4.3. 

Note some subtle differences between the concepts of the occupied (or empty) vo-
lume of the Voronoi region of a molecule and the molecular volume, which are used 
in molecular biology, and can be calculated using the subsimplexes. One usually sup-
poses that the occupied volume of the Voronoi region of a molecule is the van der 
Waals volume of the molecule. This is true only for the case, when atoms of the mo-
lecule do not cross the outer faces of the Voronoi region of molecule. An overlap 
between an atom of the molecule and an atom of the solvent is shown in Fig. 8. As a 
result, a part of the atom of the molecule is outside its Voronoi region. Usually only a 
small fraction of the volume is lost, and the numeric difference between the occupied 
and the van der Waals volumes is negligible for molecular systems (such overlaps are 
rare events in molecular systems, due to the strong repulsion between close atoms). 
We should keep in mind, the van der Waals volume of the molecule is defined as the 
union of its atoms independently on the solvent. 
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Fig. 8. Occupied volume of the Voronoi re-
gion of a solute molecule. A part of an atom 
A of the molecule lies outside the Voronoi 
surface of the molecule due to the overlap of 
this atom with an atom A' of the solvent. This 
part does not contribute to the occupied  
Voronoi volume of the solute molecule. 

The molecular volume is the van der Waals volume of the molecule together with 
the volume of the inner voids. This is a rather qualitative concept, but a way for a 
quantitative recording of this value can be adopted. Usually it is calculated with the 
help of a Connolly surface [4]. The Voronoi-Delaunay technique provides an alterna-
tive approach. The molecular volume can be calculated by subtracting the volume of 
the boundary voids from the total volume of the Voronoi region of the molecule. In 
section 4.7, we discuss how to estimate the volume of these voids. The molecular 
volume can be also calculated directly by summing the occupied volume of the Voro-
noi region and the empty volume of the Delaunay simplexes, which represent the 
inner voids of the dissolved molecule (i.e. the DS having vertices that lie only on the 
atoms of the solute molecule). 

4.5 Voronoi Shell 

The Voronoi shell is defined as an envelope of solvent (water) molecules around the 
solute molecule. This construction was first proposed in Ref. [23] to allocate the hy-
dration shell. It can also be used to define successive shells of the solvent, surround-
ing the dissolved macromolecule [18]. 

Each Voronoi shell is represented by a list of Voronoi polyhedra, forming  
this shell. Since for each VP its total and occupied volumes are calculated accurately 
(see 4.3), it only remains to sum all VP, forming the shell, in order to get the desired 
volume of the Voronoi shell. 

4.6 Delaunay Shell 

Delaunay shells were proposed for the detection of interatomic voids around the so-
lute molecule [15, 18]. The first Delaunay layer is formed by those Delaunay sim-
plexes, which have vertices of both classes of atoms: from the solute molecule and the 
solvent. It is a solid shell of Delaunay simplexes around the molecule [18]. 

The method of subsimplexes gives the correct result for the total volume of the De-
launay layer, since it is the sum of the total volumes of the individual Delaunay sim-
plexes, which are calculated correctly (see section 4.1). 

The occupied and the empty volume may have some inaccuracy. This is due to the 
fact that some DS of the Delaunay shell can have open faces on the outer or inner 
surface of the Delaunay shell. This means that an extraneous atom can penetrate into 
the layer, and its volume will be taken into account incorrectly (see section 4.1). 
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However, from our experience, this discrepancy is small enough for molecular sys-
tems. We performed calculations with the molecular models discussed in section 5, to 
compare the results, obtained by the method of subsimplexes and by a different one, 
which we had used in our previous works (see e.g. Ref. [7]). This method combines 
analytical and numerical calculations to find the empty volume of a DS. First, the 
surroundings of a given DS is examined. If there are no extraneous atoms and at most 
a triple overlap of spheres, then analytical calculations of the empty volume are per-
formed. Else, the empty volume of such a simplex is calculated numerically. We used 
this method as reference. It turned out that the maximum difference between the me-
thods does not exceed 1% after the treatment of 1000 independent configurations of 
the bio-molecule hIAPP in water. A temperature increase can increase the difference, 
because the overlapping of atoms is magnified. However it is only marginal, about 
0.1% in the whole studied temperature interval. This discrepancy can be ignored in 
our studies of bio-molecules. Note that the calculations by the method of subsimplex-
es turned out to be two times faster than by our smart combined method. 

To compute the occupied or the empty volume of a Delaunay shell, it is sufficient to 
sum those rows of array (2), which contain the simplexes of a given Delaunay shell.  

4.7 Intersection of Voronoi and Delaunay Shells 

Of special interest is the empty volume of the intersection of Voronoi and Delaunay 
shells [19]. The method of subsimplexes allows its calculation, but with some inaccu-
racy, because the intersection may consist of incomplete parts of Voronoi polyhedra 
and Delaunay simplexes. In this case, some of the inverted subsimplexes can be un-
compensated. Fig. 9 illustrates such a configurations, where two parts of the Voronoi 
shell fall outside the Delaunay shell. The volumes, which are sticking out will be 
incorrectly included in the total volume of the intersection. 
 
 

Fig. 9. Illustration of a Voronoi shell, 
which extends beyond the Delaunay shell. 
The two areas, , which are sticking out, 
are dashed. Bold (red) lines border the 
Delaunay shell. Semi-bold (black) lines 
show the Voronoi shell. The intersection 
between the Voronoi and Delaunay shells 
is shaded (pink). Dark disks are atoms of 
the solute molecule, light disks are atoms 
of the solvent. 

In addition, there is the problem of extraneous atoms (see 4.1). However, we also 
think that the resulting inaccuracy is insignificant for our purposes. Unfortunately we 
can not make a quantitative estimation of the inaccuracy. We do not know any other 
method to calculate the empty volume of the intersection, which could be applicable 
for large solute molecules.  
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Thus, to calculate the empty volume of the intersection, we need to choose those 
rows in array (2), which correspond to the Delaunay simplexes of the given Delaunay 
shell, but to sum only those sextets which are related to the atoms (VPs) of the given 
Voronoi shell. 

5 Application to the Calculation of the Volumetric 
Characteristics of Solutions  

The apparent volume of a solute molecule Vapp (which is the partial molar volume at 
infinite dilution) consists of the molecular volume (VM) of the solute molecule, the 
additional void volume at the boundary between solute molecule and solvent, and the 
contribution of the solvent due to a local change of the solvent density under the in-
fluence of the solute (∆V). The value Vapp is measured in physical experiments or 
calculated independently in computer simulations. The Voronoi-Delaunay method 
helps to find the components [19].  

Fig. 10 illustrates a fragment of a solute molecule in solution. The inner and outer 
boundaries of the first Delaunay shell (dashed lines) and the outer surface of the Vo-
ronoi region of the molecule (solid line) are shown. The Voronoi region of the mole-
cule consists of the molecular volume VM and a part of the empty volume around the 
molecule (in Ref. [19] it is marked VB

M: the part of the boundary volume, which is 
assigned to the molecule). Thus VVor = VM + VB

M . These volumes can be calculated as 
it is described above in sections 4.4 and 4.7. 

 

Fig. 10. A fragment of the boundary area between a solute molecule (dark disks) and the sol-
vent (light disks), taken from [19]. The black thick solid line shows the border of the Voronoi 
region of the molecule (VVor), the so called Voronoi surface. Dotted lines show the inner and 
outer surfaces of the first Delaunay shell. The dark-green area is the boundary empty volume 
assigned to the solute molecule (VB

M). The red thick line over the atomic surfaces and the faces 
of the Delaunay simplexes represents the surface of the molecular volume (VM ) of the solute 
molecule. 
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We used the molecular-dynamic models of a single amyloidogenic polypeptide mo-
lecule (hIAPP) in aqueous solution, generated in Ref. [14] for different temperatures. 
1000 independent configurations, equally spaced over the equilibrated production runs, 
were used for averaging. Fig. 11 shows the apparent volume and its components for the 
hIAPP molecule as functions of temperature. Vapp has been determined in Ref. [15] and 
the contribution of solvent was calculated as ∆V = Vapp - VVor.  

It is known, that Vapp always grows with temperature. However, its components 
behave in different ways. The molecular volume VM is practically constant with tem-
perature, but the empty volume VB

M increases. Thus one can see, the apparent volume 
grows because of the increase of this boundary empty volume and the decrease of the 
negative contribution of the solvent ∆V . 

These calculations explain the nature of the thermal expansion coefficient of 
hIAPP molecule in water. It is related to the surrounding water, but not to conforma-
tional or density changes of the molecule itself. 
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Fig. 11. Apparent volume Vapp of the hIAPP 
molecule in water and its components VM, 
VB

M and ∆V as functions of temperature 

6 Conclusion 

This paper describes the application of Voronoi-Delaunay subsimplexes, discussed in 
Ref. [1, 2], for the calculation of the occupied and empty volumes in molecular sys-
tems. A subsimplex is a triangular pyramid constructed at the intersection of a Voro-
noi polyhedron and a Delaunay simplex. There are analytical formulas, to calculate 
the occupied volume inside the subsimplex. These formulas and the use of a conve-
nient data structure to record the subsimplexes, enables a fast calculation of the re-
quired volumes. Summing up the subsimplexes (using a rule of signs), the occupied 
(or the empty) volume can be calculated for various structures, composed of  
Voronoi polyhedra, Delaunay simplexes and their intersections. In some cases the 
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calculated volume might be flawed by slight inaccuracies because of the peculiarities 
of the Voronoi-Delaunay tessellation in some rarely occurring local packing struc-
tures, but its magnitude is not significant for the application to molecular and atomic 
systems.  

To interpret the experimental volumetric data for protein solutions, one needs to 
know the components of the partial molar volume of the solute molecule and their 
change with temperature or pressure. Traditionally, the considered components are 
the volume of the solute molecule itself (molecular volume), the density change in the 
hydraton water under the influence of the solute (∆V), and the contribution of addi-
tional voids at the border between the solute molecule and the solvent (which relates 
with the so called thermal volume). The decomposition of the solution into Voronoi 
and Delaunay shells helps to select corresponding areas in computer models of solu-
tions, and the proposed approach of the subsimplexes enables the calculation of the 
desired volumes. Using as an example a molecular dynamics model of the protein 
hIAPP in water, the components of the apparent volume of the molecule were calcu-
lated as a function of temperature [19]. This explains the nature of the thermal expan-
sion coefficient of the hIAPP molecule. It originates from the surrounding voids, but 
not from the molecule itself. 
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