
Chapter 13
Semantics of Co-simulation

Joey W. Coleman, Kenneth Lausdahl, and Peter Gorm Larsen

13.1 Introduction

This chapter provides an overview of the semantics for the whole co-simulation
framework, covering the co-simulation engine and the scripting language. It is
presented in a combination of styles, including graphical representations and
Structural Operational semantics (SOS), see [77, 78]. This chapter assumes a
background in formal semantics and is intended primarily for readers seeking a full
understanding of the semantics underlying the Crescendo technology.

The mathematical foundations for bond graphs and the VDM-RT notation
are substantially different. In this chapter, we present the formal foundations
that enable coupling of these diverse formalisms to permit co-simulation. The
Crescendo tool implements the semantics presented here following a traditional
master/slave architecture. The master is the co-simulation engine that manages all
communication between the DE and CT simulators which act as slaves and progress
the simulation according to the directives coming from the master co-simulation
engine.

The overall structure of the co-simulation engine, a basic explanation of the
synchronisation of the two “slave” simulators, and the semantic constraints for
the simulators are presented in Sect. 13.2. Section 13.3 provides the actual co-
simulation semantics. Then, Sects. 13.4 and 13.5 explain how the co-simulation can
be extended using the semantics for a small language Crescendo Scripting Language
(CSL) that enables scenarios to be exercised by a co-simulation. Section 13.6 ends
the chapter with a short summary.

J.W. Coleman (�) • K. Lausdahl • P.G. Larsen
Aarhus University, Aarhus, Denmark
e-mail: jwc@eng.au.dk; lausdahl@eng.au.dk; pgl@eng.au.dk

J. Fitzgerald et al. (eds.), Collaborative Design for Embedded Systems,
DOI 10.1007/978-3-642-54118-6__13,
© Springer-Verlag Berlin Heidelberg 2014

273

mailto:jwc@eng.au.dk
mailto:lausdahl@eng.au.dk
mailto:pgl@eng.au.dk


274 J.W. Coleman et al.

Fig. 13.1 Example of the synchronisation scheme for DE-CT co-simulation

13.2 Structure of Co-simulation

Figure 13.1 illustrates the synchronisation scheme underlying co-simulation
between a DE simulation of a controller (top) and a CT simulation of the
plant (bottom). It is an expanded diagram of Fig 2.3. The DE and CT simulators are
coupled through a co-simulation engine that explicitly synchronises the shared
variables, events and the simulation time in both linked simulators (the co-
simulation engine is not shown explicitly in Fig. 13.1).

Each simulation maintains its own local state and time at which the state is valid.
Thus, let �de be the internal state of the DE simulation at simulation time tde, and let
�ct be the internal state of the CT simulation at simulation time tct. The controlled
variables defined in the co-simulation contract (whose values are defined in �c) are
set by the DE controller and read by the plant; the monitored variables (�m) are set
by the plant model and read by the controller.

Consider a synchronisation cycle which starts with the two simulators having a
common simulation time (tct D tde). On each cycle, the DE controller simulation
sets the controlled variables and proposes a duration ıt by which the CT simulation
should, if possible, advance. As the CT simulation of the environment advances,
it may encounter a state in which one of the event predicates defined in the
contract becomes true. The state of the monitored variables �1

m and the actual time
that it reached ıta are communicated back to the DE side. If no events occur in
the CT simulation during this interval, ıta D ıt . While the CT simulation has
been progressing, the DE simulation remains unchanged, so its local simulation
time remains at tde and state �de. The DE simulation then advances by ıta so
that both DE and CT are again synchronised at the same simulation time, and
the controlled variables are updated (�1

c ) and the next time step is proposed to
CT. The performance of the DE state change takes place in two stages, with the
calculations being performed first, separately from advancing the DE simulation
time. The granularity of the synchronisation time step is always determined by



13 Semantics of Co-simulation 275

the DE simulator. The scheme does not require resource-intensive roll-back of the
simulation state in either of the simulators, though roll-back may occur inside the CT
simulator in order to catch the precise time requested. The CT simulator typically
performs a binary search technique to determine zero crossings for event signalling.
This process is called microstepping, which is even performed when fixed time step
solvers are used.

The overall structure of the co-simulation semantics presented in the remainder
of this chapter consists of a central semantic model of the co-simulation engine. It
consists of the necessary semantic models for the individual pieces of a co-model.
This means that we have three semantic models instantiated for a typical co-model:
the co-simulation engine; the Discrete-Event (DE) semantic model of the formalism
(VDM) used to describe an embedded digital controller; and the Continuous-Time
(CT) semantic model of the formalism (bond graphs) that is used to describe the
environment that the embedded controller interacts with. The semantic model of
the co-simulation engine is necessarily generic: it needs to be able to support
the opaque embedding of other heterogeneous semantic models. In addition, the
semantic models of the two simulators are only characterised in this chapter, and we
rely on opaque embeddings of them in the semantics of the co-simulation engine.

The semantics of the co-simulation engine can only embed semantic models
that conform to certain constraints. Some of these constraints are common to both
DE and CT models and these are described in Sect. 13.2.1. The constraints of the
CT and DE simulator semantic models are explained in Sects. 13.2.2 and 13.2.3,
respectively.

This structure consisting of a central engine coordinating the simulated time and
shared state of the overall co-model provides a clear modular division between the
generic co-simulation properties and the formalism-specific subject model needs.
As a part of this, the actual subject model simulations are delegated to separate
semantic models, allowing them to be fit for the needs of those subject models.
This, in turn, enables an implementation of the co-simulation engine that allows the
use of a variety of different specific simulation engines, as has been done in the
Crescendo tool.

13.2.1 Common Semantic Constraints

There are a few common constraints on the semantics of the simulators involved
in co-simulation that must be respected. The constraints common to both simulator
semantics are as follows:

C1: It must be possible to have the semantics “step” from a given state at a given
time to a successor state at some future time, and it must be able to do so in
relatively small time increments.



276 J.W. Coleman et al.

C2: It must calculate the next state of the subject model in a given simulator
semantics, taking into account the values from the shared state that have been
changed by other simulator semantics.

The first constraint, C1, is required to ensure that it is possible to interleave the
simulation of the subject models. The ambiguity that it is able to do so in relatively
small increments relates to the subject models (in the Crescendo tool the scale is
nanoseconds).

For CT simulator semantics, this effectively means that it must be possible to
determine the observable state of a model for any arbitrary (future) point in time,
given the granularity defined by the “small time increments” noted above.

Constraint C2 is required to support a shared state between the various subject
models in the co-simulation engine. Without this, one may as well just run the
individual subject models independently.

13.2.2 Continuous-Time Simulation Semantics

The first type of semantic description that may be used as a simulator semantics in
the co-simulation framework is labelled “continuous-time”. Semantic descriptions
of this type are characterised by a model that is based on a single model state with
no hidden or transactional variables. As such, simulators with this sort of semantic
model are typically used to model physical systems.

Given the basic assumption that any semantics model in the overall co-simulation
framework must make finite steps, there are four primary requirements on a CT
semantic model:

CT1: It must be possible to observe the complete state of the semantics for a
given point in time.

CT2: It must be possible to set bounds on the maximum duration of each
simulation step of a subject model in the semantics.

CT3: It must always produce the actual duration of the simulation step that was
taken.

CT4: It must be able to produce “events” as part of a simulation step of a subject
model.

The first constraint, CT1, means that there must be no hidden state: the successor
state of a CT semantics must be dependent only on the observable state and the time.
This lack of pre-determination, in turn, in principle allows changes to shared state
variables to have immediate effect on the simulated model.

The second constraint, CT2, is necessary to support the interleaving of CT and
DE semantic models. Because it is possible for a DE model to determine that its
observable state will change at some given point in the future, we then know that
we will need to synchronise the simulator semantic models at that point. Thus, it
must be possible to ensure that a step of the semantic model will be no later than
that known synchronisation point.



13 Semantics of Co-simulation 277

The third constraint, CT3, is required as it may be possible for the step to
have taken less time than the maximum allowed by the bound. It may happen
that the subject model’s successor state in a step is earlier than that bound; this
can represent something occurring in that subject model, altering shared state, that
requires synchronisation with the other simulation semantics.

Constraint CT4 allows for a mechanism to indicate that something of interest has
happened in the simulation of the subject model—an event—without the need to
record the event directly in the shared state. This is a sort of side-band signalling
mechanism enabling both time-triggered as well as event-triggered behaviour.

13.2.3 Discrete-Event Simulation Semantics

The second type of semantic model for simulation is called the “discrete-event”
model. Semantic descriptions of this type are characterised by a model that allows
portions of the overall subject model state to be hidden. These hidden portions
of the overall model state may be the result of determining the future value of
state elements, but not allowing them to be observed until the appropriate point in
time. Not surprisingly, this sort of model is typically used to model computational
systems, such as embedded controllers.

The requirements on a DE semantic model are concerned with managing the
subject model’s state and the bounds on the duration of steps of other simulators.

DE1: Every step must indicate the time at which hidden state will next be
revealed.

DE2: It must be possible to have the semantics perform a synchronisation step
that only exposes hidden state that is ready to be revealed up to a given
point in time and updates the internal subject model state with the shared
state from the co-simulation engine.

DE3: It must be able to update to a point in time prior to the next point at which
hidden state will be revealed.

DE4: It should accept the notification of events that occurred in other simulators.

The first constraint, DE1, on DE semantic models is necessary to indicate to the
co-simulation engine the point at which there will next be a change to the shared
state due to this subject model. It allows the co-simulation engine to set a bound on
the maximum duration of the next step of CT simulation semantics and is necessary
to keep the various simulator semantics in the co-simulation engine in step with
respect to time.

The second constraint, DE2, anticipates the addition of a fault injection frame-
work and is not strictly necessary for the co-simulation engine itself. In a CT
semantic model, as it has no hidden elements, the control and value state of the
subject model are always synchronised with the time reported to the co-simulation
engine. The DE model, in contrast, may allow hidden elements in its internal state
to contain values which are not valid until future points in time. This means that for



278 J.W. Coleman et al.

the subject model to be affected by changes to the shared state from other subject
models, it must have a mechanism to update the present internal state before the
next internal state is calculated. The initial semantic rules presented in Sect. 13.3.3
do not entirely conform to constraint DE2; however, Sect. 13.4 depends upon the
constraint and alters the semantic rules in the required manner.

The third constraint, DE3, allows for this simulation semantics to gracefully
handle the other simulation semantics taking steps shorter than expected. The
expectation is that a DE model would not normally change any state on such a step.
Connected to this is constraint DE4, which requires that the simulation semantics
accept the notification of events from the CT model; these events give the subject
model an opportunity to react to their presence.

13.3 Co-simulation Semantics

We use the SOS format [77, 78] to present the semantic definitions in this chapter.
An SOS description consists of two major elements: a set of type definitions that
describe the static structure of the system; and the definitions of the transition
relations that describe the behaviour of the system.

The semantics is described using a collection of transition rules. Each of these
has a number of hypotheses (typically one per line) over a horizontal line. Below
the line the conclusion can be reached if all the hypotheses above the line can be
reached. It is also possible that such transition rules have side conditions that also
need to be satisfied to ensure the validity of applying a specific transition rule. Many
of the hypotheses and the conclusion are typically described as transitions which are
indicated as something that matches a configuration followed by a line (from left to
right with a name above it) and followed again by the new configuration that a
system is transformed into.

13.3.1 Structural Operational Semantics

The logical notation used for the assertions in the semantic descriptions is the basic
VDM-SL type system and expressions [20, 27].1 This notation is used to define the
static structure of the co-simulation engine and give its behaviour.

In an SOS definition, the static state of a system is modelled as a configuration
that contains all of the information needed to capture the complete state of a system
at any given point. This includes, for the co-simulation semantics we present,
information about which simulator semantics was used for the previous step, the

1The mathematical syntax will be used for these definitions in order to clearly distinguish it from
the use of VDM-RT in the models used in this book.



13 Semantics of Co-simulation 279

shared variable state, the current simulated time and the complete internal states of
both simulators’ semantics (treated opaquely). Configurations are typically given as
tuples.

The behaviour of a system is defined through the use of transition relations, at
least one of which must involve the complete static state configuration. In a fine-
grained SOS definition, the overall system behaviour is typically defined using a
transition relation from configuration to configuration, though this is not strictly
necessary.

The transition relations are defined through the use of inference rule schemata,
where each rule’s conclusion defines a subset of the entire transition relation. The
least relation that satisfies all of the inference rules is taken to be the relation defined.

Consider the following rule:

Example

P.a; b; a0; b0/
Q.a; b/

R.b0/
.a; b/

s�! .a0; b0/

The Example rule here would be a (partial) definition of the
s�! transition

relation. The conclusion below the line has four free variables—a, b, a0 and b0—into
which values may be substituted. For this rule to be true of a given pair of pairs—
.a; b/ and .a0; b0/ in this case—then the three hypotheses above the line must be
satisfied.

In general, the rule applies for any set of values that may be substituted into
the free variables so long as all of the hypotheses of the rule are satisfied. This
substitution is similar to the pattern matching as done in VDM models and, where a
free variable is equated to some other structure, the resolution of the possible values
for the free variable is done in a way that allows the constraints in the other structure
(concrete values, restrictions to certain types and so on) to hold of the value in the
substitution. In practice, however, the rules are often used to determine a successor
configuration, that is, the configuration on the right of the transition relation, based
on some given predecessor configuration.

For the Example rule, that means that we would start with known values of a and
b and then proceed to determine values for a0 and b0 that satisfy P.a; b; a0; b0/ and
R.b0/. However, we would first check that this rule applies to the given a and b by
checking any hypotheses that apply only to a and b; here we check Q.a; b/.

The task of finding values for the successor configuration, a0 and b0 in this
case, may be one of simply calculation, or a more complex constraint satisfaction
problem. It may also involve choosing between equally valid alternatives for some
values—these cases can introduce non-determinism into the semantic model,2

2Or under-definedness, rather than non-determinism, depending on the perspective and interpreta-
tion of the semantic model.



280 J.W. Coleman et al.

which can be useful but must be resolved during implementation. Finally, it may
not be possible to find values for a successor configuration: this may indicate that
the predecessor configuration is not a part of the system modelled; that the wrong
rule is being applied; that there’s an error or missing rule in the semantic model; or
that the semantic model has deliberately chosen that the predecessor configuration
has no successor.

13.3.2 Co-simulation Static State

Given a co-simulation system that has a CT-type simulator and a DE-type simulator,
the overall co-simulation system configuration is given as

Config D DE � CT � ˙ � Time � Time � Event-set � Tag (13.1)

where

• DE is the type of representations of the DE-type simulator, covering all of the
possible states that it may reach;

• CT is the type of representations of the CT-type simulator, also covering all of
the states that it may reach;

• ˙ is the representation of the variables shared between the two simulator
semantic models and is defined below;

• the first Time component of the tuple represents the current simulated time of the
overall co-simulation system;

• the second Time component represents a time bound that must be respected by
CT simulator semantics;

• Event -set is the set of Events generated by CT semantic models for the DE
models to react to; and

• Tag is a token that records which of the two semantic models took the last step.

The definitions of the DE and CT representations are left undefined here; it suf-
fices that they conform to the constraints given in Sect. 13.2. These representations
are the overall configurations from their respective semantic models.

The type of the shared variables is a map from an identifier (represented by the
inexhaustible set Idv) to a pair of a value and a tag indicating which simulator
semantics controls the value of that variable.

˙ D Idv
m�! .Value � Tag/ (13.2)

Note that a shared variable ownership is immutable over the course of a co-
simulation run. Changing the ownership of a shared variable would imply some
significant change to the structure of the subject models in the co-simulation.

The tag is simply a structure-less token, either hDEi or hCTi.



13 Semantics of Co-simulation 281

Fig. 13.2 Inference rules for the behaviour of the co-simulation engine

Tag D hDEi j hCTi (13.3)

13.3.3 Co-simulation Behaviour

With the static state defined, we can now define the transition relation for the co-
simulation semantics,

cs�!.

cs�! W Config � Config (13.4)

Note that the colon, above, is a type assertion;
cs�! is a relation over the type of

configurations, Config.
We give two inference rules to define the high-level behaviour of the co-

simulation semantics in Fig. 13.2. The first rule, DE Step, describes the behaviour
that is dependent on the semantics of the discrete-event simulator; the second rule,
CT Step, handles the corresponding case when the behaviour is dependent on the
semantics of the continuous-time simulator.

Starting with the DE Step rule, consider first the Config tuple on the left of the
cs�! relation. This tuple is given in terms of its components to allow us to name the

components for use in the rule.
Moving our focus to the first hypothesis of the rule, we see some of the

components of the Config tuple being used in a new transition relation,
de�!. This

transition relation is defined as

de�! W .DE � ˙ � Time � Event -set/ � .DE � ˙ � Time/ (13.5)

and it represents a single step in the discrete-event semantics. Informally, the left

side of the
de�! transition is a tuple of a DE simulator state, shared variable state,

a new simulated time for the DE to update to and a set of events that happened
between the last point at which the DE semantics took a step and the new simulated
time; the right side is a tuple of the new DE simulator state, the new values of shared
variables and a new time bound.



282 J.W. Coleman et al.

Fig. 13.3 Function to merge two shared states, taking only the values paired with a specific tag
value

The second hypothesis merges the new values in the shared variable mapping
what were produced by the DE semantics into the overall co-simulation shared
state. The details of the merge are encapsulated into the mergeStates function,
defined in Fig. 13.3. This hypothesis is separate from the DE semantics to emphasise
that this synchronisation is, properly, the responsibility of the overall co-simulation
semantics and not the individual simulator semantics. One important property that
is maintained by this separation is that each simulation semantics may only affect
the values that it “owns”, as marked by the control tag in the state.

So, the DE Step rule defines the behaviour of the co-simulation semantics when
executing a DE step directly in terms of the behaviour of the DE semantics, with a
bit of extra mechanism to ensure that the overall shared state is updated.

The second rule in Fig. 13.2, CT Step, is structured in a similar manner to the

first, but uses the
ct�! transition relation to model the behaviour of the CT semantics

as it performs a single step. This transition relation is defined as

ct�!W .C T � ˙ � Time/ � .C T � ˙ � Time � Event -set/ (13.6)

where, informally, the left side of the transition relation is the CT simulator state,
the shared variable state and a time bound; and the right side of the transition relation
is the new CT simulator state, the modified shared variables, the time up to which
the CT semantics actually reached and a (possibly empty) set of events generated
during that step.

The primary advantage of this semantic description of co-simulation is that it
isolates the semantics of the two simulators as much as possible, allowing the
semantics for each simulator to be defined independently.

13.3.4 Simulator Properties and Their Transition Relations

For the common constraints, C1 and C2, it is clear that both the
de�! and

ct�!
transition relations are satisfactory. The ability of the semantic models to step from
state to state is inherent in SOS descriptions, thus satisfying C1. Satisfaction of C2

is actually handled internally within the individual definitions of
de�! and

ct�! that
we must be satisfied with the simple structural compliance present. Specifically, the
shared co-simulation state is in the signature of the transition relation, allowing a
definition of the transition to use and update it.



13 Semantics of Co-simulation 283

Focusing on
ct�! transition, it must satisfy the four CT constraints, CT1–CT4.

Two, CT1 and CT3, are dependent on the internal definition of the
ct�! transition,

and the external structure cannot speak to this. However, CT2 requires that the

internal definition of
ct�! be aware of a maximum duration and this appears

structurally in the left-hand configuration. Finally, CT4 requires that the semantic
description be allowed to produce events, and this appears directly in the structure
of the right-hand configuration.

For the
de�! transition, the four DE constraints, DE1–DE4, must be satisfied.

Constraints DE1, DE3 and DE4 are satisfied as far as possible by the structure of

the signature of
de�!; what remains is the responsibility of the internal definition of

de�! to handle. For constraint DE2, the signature of
de�! can support this, as it is

possible to indicate that a synchronisation-only step is required by defining an event
with such a special meaning. Beyond the structure, again, the rest is handled by the

internal definition of
de�!.

Possible internal definitions for the
de�! transition may be found in [61], and

a description for the
ct�! may be found in [24]. In this book, the

de�! transition

corresponds to the semantics of the executable subset of VDM-RT while the
ct�!

transition corresponds to the simulation of the bond graphs.

13.4 Adding Fault Injection Semantics to the Co-simulation

The co-simulation engine used in the Crescendo tool presents an opportunity to
create a fault injection framework that is independent of any of the constituent
simulators. This framework only has access to variables that have been explicitly
shared between the simulation engines, but this is sufficient for the creation of fault
injection and external event scripting.

The CSL is introduced in the Crescendo user documentation and is a minimal
language intended to allow for changes to the shared state of the simulators when
certain conditions are met. The basic structure of a script—a series of commands in
CSL—is just a sequence of triggers, each with a firing condition, body and optional
reversions.

The CSL is essentially a reactive language, and a script is a sequence of triggers.
A trigger consists of a test expression and a set of assignments to the shared state
and may also optionally have a list of variables to revert to their values prior to
the trigger. A trigger may be set to react every time its test expression is true, or it
may react only once during the entire co-simulation run.

In the basic co-simulation cycle, the DE simulator runs first, followed by the CT
simulator, and execution continues, alternating between the two simulators. To add
CSL into this cycle, we need to split the DE step and add a new CSL step. We must
also extend the configuration, Config, with a representation of the CSL script, and
the Tag type of tokens with hCSLi and hSYNCi to include tags for the CSL.



284 J.W. Coleman et al.

Fig. 13.4 New semantic rules for the behaviour of the simulators in the co-simulation semantics

When splitting the DE Step rule from Fig. 13.2, we replace it with the version in
Fig. 13.4. The difference between the two rules is that the extended version requires
that the Tag in the left-hand configuration be hCSLi instead of hCTi and that the
new time bound, � 00

b , must be the least between that generated by the DE semantics,
in � 0

b , and last execution of the CSL script, in �b .

We also add a new rule, DE Sync, that does a
de�! transition with a SYNC

event marked; the intent is to signal to the internal definition of the
de�! transition

that it should perform synchronisation of hidden state, and not perform any new
computation, as per Constraint DE2. This rule also takes the least available time
bound for � 00

b .
For completeness, Fig. 13.4 also shows the updated CT Step rule and definition

of the updated Config.

The transition,
csl�!, for the CSL can be defined as

csl�! W .CSL � ˙ � Time/ � .CSL � ˙ � Time/ (13.7)

where CSL is the type representing CSL scripts. The two Time values correspond,
respectively, to the simulated time in the subject model at which the CSL script is
evaluated and a time bound indicating the next simulated time at which the CSL
may be triggered.



13 Semantics of Co-simulation 285

The necessary semantic rule to use the
csl�! transition for the CSL is the last rule

given in Fig. 13.4. This rule follows the pattern of the rest of the rules in Fig. 13.4,
except that it does not need to merge states as it operates on the shared state directly.
Further, given that the CSL is intended to allow changes to the shared state of both
simulators, there is no need to handle ownership of variables.

Taking the rules in Fig. 13.4 as a whole, we can see that the round-robin cycle is
preserved; in order, the rules proceed from the DE Step rule to CT Step to DE Sync
to CSL Step and then back around.

13.5 Semantics of the CSL

The intended execution of a CSL script is straightforward: for a setpoint in time,
each trigger is sequentially processed, modifying the shared state as necessary.
The semantic model given below reflects this as the transition relation recursively
processes the sequence of triggers, producing a new shared state when given an
empty sequence.

13.5.1 Top-Level CSL Structures

The active structure of the CSL in the co-simulation semantics is the CSL construct.

CSL :: ts : Script
ms : Marker�

The CSL construct contains the script of CSL triggers and a sequence of the same
length to hold a minimal amount of state for each trigger.

Script D Trigger�

Each trigger state—a Marker—is either nil, a constant DONE or a pair of a time
value and a state.

Marker D ŒDONE j Time � ˙�

The initialisation of the CSL construct is handled by the
cslinit�! transition,

cslinit�! W Script � CSL (13.8)

with its definition given in Fig. 13.5. The initialisation rule simply transforms a fault
injection script into the CSL object used by the main CSL rules. The top-level rule
is given in Fig. 13.6

The Trigger construct is defined as



286 J.W. Coleman et al.

Fig. 13.5 CSL initialisation
rule

Fig. 13.6 The top-level
semantic rule for CSL
execution

Trigger :: once : B

test : Expr
dur :

�
Time

�

body : Stmt�
rev : Idv-set

A Trigger has a flag, once, indicating whether or not it may occur only once or
many times; a condition, test, which is evaluated to determine if the trigger should
fire; an optional duration field, dur, which if present requires that the condition
hold over the given duration; a body field, body, that holds assignment and print
statements to be executed when the trigger fires; and a field, rev, that stores a set of
variable names to be reverted to their values prior to the trigger firing.

The basic execution of a CSL script is modelled by the
csl�! relation,

csl�!W .CSL � ˙o � Time/ � .CSL � ˙o � Time/

and that rule delegates most of the actual work of executing the triggers to the
t rig�!

transition relation. Of the rest of the rule, the first and third hypotheses deal with
the flattening and rebuilding of the shared state, and the final hypothesis calculates
a time bound for the co-simulation based on the triggers that are actively testing a
condition over a duration.

The
t rig�! transition relation,

t rig�!W .T rigger� � Marker� � T ime � ˙/ � .Marker� � ˙/

only alters the sequence of Markers and the shared state; the actual triggers are
never altered. The three basic rules for a trigger with a simple test (no duration) are
shown in Figs. 13.7, 13.8 and 13.9.

Reading the Exec rule in Fig. 13.7, we see that the configuration is structured to
pattern match the heads of the sequences of triggers and markers, ensuring that we
only execute a trigger that is not already active. Then, the first hypothesis pattern
matches the first trigger on the sequence to ensure that it is one without a duration.
The second hypothesis ensures that the trigger’s condition has been met; evaluation
of the expression test is done using the semantic evaluation function ŒŒ���, and the
result is, in turn, given a � and a � to evaluate the expression in the time and
state context down to its value. The third hypothesis delegates the execution of the



13 Semantics of Co-simulation 287

Fig. 13.7 The Exec
semantic rule for executing
triggers

Fig. 13.8 The Skip semantic
rule for executing triggers

Fig. 13.9 The After semantic
rule for executing triggers

body of the trigger to the
tstmt�! transition relation, producing a potentially altered

shared state. The last hypothesis executes the rest of the sequence of triggers.3 The
conclusion of this rule places a pair containing the present time—that is, when the
trigger fired—and the initial state at the head of the sequence of markers in the
resulting configuration. This indicates to future evaluations of this trigger that the
trigger has fired and is waiting for the condition to become false.

The Skip rule in Fig. 13.8 just skips over triggers that have a pair as their marker
and a true condition; for triggers with durations, the rule only applies when the
duration has been exceeded (third hypothesis). When the marker is a pair, this
indicates that the trigger has been active; furthermore, that the condition is still true
means that it is not yet time to revert any variables.

The After rule in Fig. 13.9 handles the case where the trigger’s condition has
become false and there are shared variables to revert. This rule applies to all
repeating triggers, regardless of whether or not they have a duration. The first
two hypotheses pattern match the trigger at the head of the sequence and that the
condition is false. The third hypothesis is a guard for triggers with a duration, to
ensure that we do not revert shared variables when we should instead be cancelling
a trigger with a duration that was still waiting for the necessary time to pass.
The fourth hypothesis does the necessary reversion of the state, pulling the values
of the variables to be reverted from the state at the start of the trigger, �0; note that
if the trigger did not have any reverts specified, then the set rev will be empty and

3The base case—an empty sequence of triggers—is handled by the rule Base in Fig. 13.10.



288 J.W. Coleman et al.

Fig. 13.10 The remaining semantic rules for executing triggers

� 0 D � . The fifth hypothesis is the usual recursive step of executing the rest of the
triggers.

Those are the three basic rules for executing triggers in the CSL semantics. There
are ten semantic rules in total and they have been constructed so that there is no
situation where multiple rules apply.

Of the remaining semantic rules, some of the base cases are given in Fig. 13.10.
The first, Base, is only necessary to handle the base case of processing a sequence:
that is, when the sequence is empty. Two rules, Done and Once after, deal with the
non-repeating triggers: the former skips non-repeating triggers that have already
triggered; and the latter places a DONE constant in the marker after the trigger
completes.

The last four remaining rules in Fig. 13.11, Duration init, Duration pending, Duration
cancel and Duration exec, handle the specific cases where a trigger with a duration
on its conditional must, respectively, start monitoring the duration in which the
conditional has been true; do nothing between the condition becoming true but
before the duration has passed; stop monitoring the duration if the condition goes
false before the duration passes; and to execute the trigger body when the duration
is met.

13.5.2 CSL Statement and Expression Semantics

The rules for statements and expressions are included only to give a complete
semantic model of the CSL. There are only three statements—assignment, output
and quit—and the expression evaluation is essentially a subset VDM’s expressions
(with the singular addition of a special identifier to obtain the current time value).



13 Semantics of Co-simulation 289

Fig. 13.11 Duration rules for the CSL

13.5.2.1 Structure

Statements in CSL are represented by the Stmt type and consist of assignment
statements, output statements to print message to the log and the quit statement.

Stmt D Assign j Output j QUIT

Assignment statements have the state variable that will be modified and an
expression that is evaluated to a value assigned.

Assign :: id : Idv

e : Expr

Output statements may print a message to one of three logs: the regular message
log, PRINT, the warnings log, WARN, or the error log, ERROR.

Output :: target : PRINT j WARN j ERROR

message : String



290 J.W. Coleman et al.

Expressions in CSL are represented by the Expr type and consist of the special
variable TIME, time values, Time, Boolean values, real number values, identifiers,
unary expressions and binary expressions.

Expr D TIME j Time j B j R j Idv j UnaryExpr j BinaryExpr

Unary expressions in CSL include the arithmetic operators for negation and
absolute value, the rounding functions floor and ceiling and the boolean negation
operator.

UnaryExpr :: op : - j ABS j FLOOR j CEIL j NOT

e : Expr

Binary expressions in CSL include the usual logical operators for conjunction,
disjunction, implication and bi-implication; the basic arithmetic comparison opera-
tors; the usual arithmetic addition, subtraction, multiplication and division; and the
integer modulo and division operators.

BinaryExpr :: op : ^ j_j)j,j<j�j�j>jDj¤j C j - j � j � j MOD j DIV

a : Expr
b : Expr

Finally, the transition relation for statement execution in CSL is defined as
tstmt�! ,

which relates a tuple containing a sequence of statements, a current time value and
an initial state, ˙ , to a final state.

tstmt�!W .Stmt� � T ime � ˙/ � ˙

13.5.2.2 Statement Rules

There are four rules to define
tstmt�! , giving the behaviour of statements in CSL.

Stmt base
.Œ �; �; �/

tstmt�! �

The first rule defines the base case behaviour for sequences of statements, just
giving the state on the left of the transition relation as the final state.

Stmt Assign

� 0 D � � fid 7! ŒŒe����g
.rest; � 0/ tstmt�! � 00

.Œmk-Assign.id; e/� � rest; �; �/
tstmt�! � 00

The rule for assignment statements evaluates the expression given the current
time and state, and then executes the remaining statements in an appropriately
modified state.



13 Semantics of Co-simulation 291

Stmt Print

output .target; message/

.rest; �/
tstmt�! �

.Œmk-Print.target; message/� � rest; �; �/
tstmt�! �

The function output./ in the Stmt Print rule is left undefined; the intent is that it
maps to some implementation-dependent logging facility.

The third type of statement, QUIT, does not have a semantic rule defined here.
The quit statement is implementation-dependent as it is intended to stop simulation
of the entire co-model.

13.5.2.3 Expression Evaluation

Expression evaluation in the CSL is defined in the usual way, though we include
access to the current time value using the special identifier TIME. Note, also, that
the set of time values, Time, is a subset of the real numbers.

The semantics of expression evaluation is given as a function, ŒŒ���, over three
parameters that results in either a Boolean value or a real number. The first parameter
is the expression to be evaluated, the second is the time at which the expression is
evaluated and the third is the state in which it is evaluated.

ŒŒ��� W Expr � Time � † ! .B j R/

The specific cases in the definition of ŒŒ��� are given below.

ŒŒtrue���� D true
ŒŒfalse���� D false

ŒŒTIME���� D �

ŒŒr���� D r , r 2 R

ŒŒid ���� D �.id/ , id 2 dom �

ŒŒmk-UnaryExpr.op; e/���� D op.ŒŒe����/

ŒŒmk-BinaryExpr.op; e1; e2/���� D .ŒŒe1����/ op .ŒŒe2����/

The first four cases deal with constant values: the Boolean and real values
evaluate to themselves (the first, second and fourth lines), and the special constant
TIME evaluates the given time value, � . The fifth case deals with variable identifiers
by returning their corresponding value from the state. The last two cases deal with
operators by applying the operation to the result(s) of evaluating their operand(s).

13.6 Conclusion

In order to be able to trust the outcomes of model-based analyses, we need languages
and tools that have a formal semantics, and the semantics must form the basis of
the tooling. For co-simulation, the semantic basis is perhaps more intricate than



292 J.W. Coleman et al.

that of monodisciplinary modelling because of the need to be precise about the
management of communication and the time in the collaborating simulations. The
overall manner in which the Crescendo co-simulation works was presented at the
start of this chapter, and that was used as a starting point to give the general
semantic constraints under which a co-simulation framework must operate. With
those constraints in mind, we described a modular operational semantic model that
gives the behaviour of co-simulation while leaving the behaviour of the individual
simulators abstract. We then presented an extension to the co-simulation semantic
model that includes support for fault injection. This was presented as an extension
to the whole co-simulation semantics to allow the fault injection to be abstract
with respect to the simulators. We then gave the operational semantics of CSL, as
that was the fault injection language implemented for the Crescendo tool. Readers
interested in a detailed presentation of the VDM-RT simulator are invited to review
the execution semantics [24].


	Chapter
13 Semantics of Co-simulation
	13.1 Introduction
	13.2 Structure of Co-simulation
	13.2.1 Common Semantic Constraints
	13.2.2 Continuous-Time Simulation Semantics
	13.2.3 Discrete-Event Simulation Semantics

	13.3 Co-simulation Semantics
	13.3.1 Structural Operational Semantics
	13.3.2 Co-simulation Static State
	13.3.3 Co-simulation Behaviour
	13.3.4 Simulator Properties and Their Transition Relations

	13.4 Adding Fault Injection Semantics to the Co-simulation
	13.5 Semantics of the CSL
	13.5.1 Top-Level CSL Structures
	13.5.2 CSL Statement and Expression Semantics
	13.5.2.1 Structure
	13.5.2.2 Statement Rules
	13.5.2.3 Expression Evaluation


	13.6 Conclusion


