
A Formally Verified Generic Branching

Algorithm for Global Optimization

Anthony Narkawicz and César Muñoz

NASA Langley Research Center, Hampton VA 23681, USA
{anthony.narkawicz,cesar.a.munoz}@nasa.gov

Abstract. This paper presents a formalization in higher-order logic of a
generic algorithm that is used in automated strategies for solving global
optimization problems. It is a generalization of numerical branch and
bound algorithms that compute the minimum of a function on a given
domain by recursively dividing the domain and computing estimates for
the range of the function on each sub-domain. The correctness statement
of the algorithm has been proved in the Prototype Verification System
(PVS) theorem prover. This algorithm can be instantiated with specific
functions for performing particular global optimization methods. The
correctness of the instantiated algorithms is guaranteed by simple prop-
erties that need to be verified on the specific input functions. The use of
the generic algorithm is illustrated with an instantiation that yields an
automated strategy in PVS for estimating the maximum and minimum
values of real-valued functions.

1 Introduction

Formal verification of safety-critical cyber-physical systems often requires prov-
ing formulas involving multivariate polynomials and other real-valued functions.
For example, the following function appears in the formal proof of correctness
of an alerting algorithm for parallel landing [9] in the Prototype Verification
System (PVS) [12].

ψ(v, φ) ≡ 180 g

πv 0.514
tan(

πφ

180
), (1)

where g = 9.8 (gravitational acceleration in meters per second squared). This
formula computes the turn rate (in degrees per second) of an aircraft flying at a
ground speed v (in knots) with a bank angle φ (in degrees). In [9], propositions
involving ψ, e.g., 3 ≤ ψ(250, 35) ≤ 3.1, were first checked using computer alge-
bra tools. The mechanical, but non-automated, proof in PVS of the statement
3 ≤ ψ(250, 35) ≤ 3.1 is about one page long and requires the use of several
trigonometric properties.

Problems involving nonlinear real-valued functions also appear in the safety
analysis of control systems. For instance, the safe domain S for a certain control
system described in [2] is defined as follows.

E. Cohen and A. Rybalchenko (Eds.): VSTTE 2013, LNCS 8164, pp. 326–343, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

A Formally Verified Generic Branching Algorithm for Global Optimization 327

S ≡ {(x, y) ∈ R
2 | g1(x, y) < 0 and g2(x, y) < 0},where (2)

g1(x, y) ≡ x2y4 + x4y2 − 3x2y2 − xy +
x6 + y6

200
− 7

100
, (3)

g2(x, y) ≡ −x2y4 − x4y2 + 3x3y3 +
x5y3

10
− 9

10
. (4)

If S is the safe domain of a safety-critical system, the formal verification of such
a system may require deciding whether or not a set of points of interest I is
included in S. Analytical formulas that decide these kinds of inclusions do not
exist in general.

Formal modeling of biological systems can also yield non-trivial problems
involving real-valued functions. Consider the polynomial

H ≡ −x1x
3
6 + 3x1x6x

2
7 − x3x

3
7 + 3x3x7x

2
6 − x2x

3
5 + 3x2x5x

2
8 − x4x

3
8+

3x4x8x
2
5 − 0.9563453,

(5)

where x1 ∈ [−0.1, 0.4], x2 ∈ [0.4, 1], x3 ∈ [−0.7,−0.4], x4 ∈ [−0.7, 0.4], x5 ∈
[0.1, 0.2], x6 ∈ [−0.1, 0.2], x7 ∈ [−0.3, 1.1], and x8 ∈ [−1.1,−0.3]. This mul-
tivariate polynomial appears in the electrolytic determination of the resultant
dipole moment in the heart. Finding an enclosure to the minimum value of the
polynomial in the variables’ range is a challenge problem for global optimization
methods [13].

The problems above, which are challenging for formal verification tools, can
be solved using numerical global optimization methods [11]. One of these meth-
ods is called branch and bound. Branch and bound is a method to compute an
enclosure to the range of a real-valued function on a given domain by recursively
computing enclosures to the range of the function on subdomains. The method
requires a bounding function that returns a crude, but correct, enclosure of the
range of the real-valued function on any domain. The bounding function has
the property of providing more accurate enclosures on smaller domains. Hence,
the range of a function can be approximated to any given accuracy by splitting
the original domain into two subdomains and recursively computing enclosures
of the range of the function on each subdomain. This recursion continues until
an appropriate enclosure is determined or until a maximum recursion depth is
reached. In general, when a given domain is subdivided into two subdomains,
it is possible that one of those subdomains will need further subdivision, while
the other subdomain will not. That is, the recursion tree in a branch and bound
algorithm is not, in general, symmetric.

Usually, in branch and bound problems, the domain of a real-valued function
on n-variables is an n-dimensional hyper-rectangle, called a box. A box is repre-
sented as a list of closed intervals, where each interval is the range of an input
variable of the function. Figure 1, which shows one possible recursion tree for
a problem solved with a branch and bound algorithm. In this case, the recur-
sion first splits the large box into left/right halves, then splits the left subbox

328 A. Narkawicz and C. Muñoz

Fig. 1. Branch and Bound Recursion on a Box

into top/bottom halves, and finally splits the bottom half of this subbox into
left/right halves again.

The fact that a branch and bound algorithm requires a bounding function
to compute a crude estimate of a function’s range on a box does not hinder
the usefulness of the approach, since there are multiple ways to define such a
function. One way to compute such an estimate, which works for a large class of
functions, is known as interval arithmetic [3,7,8], which in many cases provides
a worst case, naive estimate of the range of the given function. For instance, for
x ∈ [0, 1], it is easy to see that the function f(x) = x−x2 always takes values in
[−1, 1], since each of the two monomials in this polynomial takes values in [0, 1].
This estimate can be mechanically computed using interval arithmetic. This is
clearly a very crude estimate of the range, since the actual range of f in [−1, 1]
is [0, 14]. Interval arithmetic extends to multiple variables and from polynomials
to trigonometric functions, logarithms, etc. using, for example, Taylor series
approximations. PVS strategies for solving simply quantified inequalities, such
as those involving function ψ given by Formula (1), are presented in [3]. Those
strategies are based on a branch and bound algorithm using interval arithmetic.

For polynomial functions a more accurate estimation method is available
through Bernstein polynomials [5]. Any polynomial p(x) of degree at most n can
be written in the form of a Bernstein polynomial: p(x) =

∑n
i=0 bi

(
n
i

)
xi(1−x)n−i.

The coefficients bi are called Bernstein coefficients and are computed directly
from the coefficients of p in the power basis. Once a polynomial is written in a
Bernstein polynomial form, the Bernstein coefficients yield an estimate for the
range of the polynomial p for x ∈ [0, 1]: mini≤n bi ≤ p(x) ≤ maxi≤n bi. Further-
more, p(0) = b0 and p(1) = bn. This result is generally applicable to variables in
an arbitrary range [A,B] since any polynomial p can be translated into another
polynomial q such that q(y), with y ∈ [0, 1], attains the same values as p(x),
with x ∈ [A,B]. The case where the range of x is unbounded has been discussed
in [10].

There are many types of problems that can be approached using branch and
bound algorithms. Lower and upper bounds of a function on a box that are
accurate to a given precision can often be computed in this way. This can be
accomplished through interval arithmetic or, if the function is a polynomial,

A Formally Verified Generic Branching Algorithm for Global Optimization 329

by using Bernstein polynomials. Another problem that can be solved using a
branch and bound algorithm is determining whether a given polynomial is always
positive, negative, nonnegative, or nonpositive on a box. In a previous work [10],
the authors presented an automated solution to this problem. That tool can
be used to automatically and formally prove polynomial inequalities such as
H ≥ −1.7435, where H is the multivariate polynomial given by Formula (5).
The tool itself is a collection of strategies that are implemented in PVS and are
based on a branch and bound algorithm for Bernstein Polynomials [5].

Another problem that can be solved with a branch and bound algorithm is
the problem of solving Boolean expressions involving more than one polynomial.
This problem seems to be more common in engineering than problems with only
a single polynomial. For instance, to ensure that the simply connected disk of
radius 0.4 around the origin is contained in the set S given by Formula (2), it
suffices to prove that for all x, y ∈ [−1, 1],

x2 + y2 < 0.42 implies (g1(x, y) < 0 and g2(x, y) < 0).

This problem can be solved using a branch and bound method. A branch and
bound approach can also be used to prove that the disk of radius 0.41 around
the origin is not contained in S and to find counterexamples such as

(x, y) ≡ (− 89186267828861

281474976710656
,
146479537812029

562949953421312
).

Another global optimization problem that can be solved with a branch and
bound algorithm is the problem of computing an approximation, by a list of
boxes, to a set defined by a Boolean expression of polynomial inequalities. Given
such a Boolean expression, three sets of subboxes of the domain can be computed:
those where the property holds, those where it does not hold, and “unknown”
boxes where the algorithm terminated before deciding on the truth of the ex-
pression. This problem is known as paving. Figure 2 shows a paving computed
for the region S, where |x| ≤ 2 and |y| ≤ 2, using a branch and bound algo-
rithm [2]. The union of the green rectangles is an under-approximation of S, the
red rectangles are not in S, and the union of the green and white rectangles is
an over-approximation of S.

This paper presents a formalization of a generic branch and bound algo-
rithm in the higher order logic of PVS. In contrast to the branch and bound
algorithms in [2, 3, 10], which use specific bounding methods and solve spe-
cific type of problems, the algorithm presented in this paper is generic with
respect to the bounding function, the type of input problems, and the type of
output computed by the algorithm. Since the correctness of the algorithm is
formally verified in PVS, it can be used to produce strategies for automati-
cally and formally solving a variety of global optimization problems. The use
of the generic algorithm is illustrated with an instantiation that yields an auto-
mated strategy for computing estimates of the minimum and maximum value of
real-valued function via interval arithmetic. The formal development presented
in this paper is electronically available as part of the NASA PVS Library at
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library

330 A. Narkawicz and C. Muñoz

Fig. 2. Paving of a Polynomial Region

2 Generic Branch and Bound Algorithm

The motivating principle of a branch and bound algorithm is that some prop-
erties of a given function are easier to decide on small sets than on large sets.
Thus, by breaking up a large domain into smaller subdomains, one can often
determine whether a property holds, whereas it can not be decided easily by
simply considering the large domain alone.

The rest of this section is organized as follows. The generic types used by the
algorithm are described in Section 2.1. The inputs of the algorithm are given in
Section 2.2. A complete description of the algorithm is presented in Section 2.3.

2.1 Generic Types

The generic branch and bound algorithm presented here depends on four generic
types:

– ObjType: A type consisting of objects to analyze, such as Bernstein polyno-
mials, functions admitting interval arithmetic operations, Boolean expres-
sions of polynomial inequalities, etc.

– AnsType: The intended output type of the branch and bound algorithm, such
as intervals containing the minimum and maximum values of a function,
a Boolean value representing whether an inequality holds, a list of boxes
describing an approximation to a polynomial-defined set, etc.

– DomainType: A type specifying exactly how (or where) elements of ObjType
should be analyzed, such as the domain where a polynomial inequality is to
be determined, or where a function is to be minimized. This may contain

A Formally Verified Generic Branching Algorithm for Global Optimization 331

not just the bounds of the interval where the polynomial is defined, but also
whether it is open or closed at the boundary.

– VarType: A type representing variables of the objects to be analyzed. For
instance, in the case of polynomials, VarType is a type representing the
polynomial variables such as N, where 0, 1, 2 might correspond to x0, x1,
x2, etc.

Specific types to substitute for these generic types are provided by the user, who
chooses them with a specific application in mind. While AnsType is the intended
output type of the branch and bound algorithm, this type is wrapped up in a
larger record type that is called Output, which has one field consisting of an
element from AnsType, and three other fields that give information about the
execution of the function.

Output ≡ ans : AnsType× exit : boolean× depth :N× splits :N.

Upon exit, the exit field will be set to true if the algorithm is forced to globally
exit from the recursion, e.g., when the recursion reaches a maximum depth or
a maximum number of subdivisions. As explained later, the precise conditions
under which the recursion globally exits are specified by the user. The depth

field counts the maximum recursion depth that the algorithm reaches along any
branch during its execution. The splits field counts the total number of times
that the algorithm subdivides a larger problem into two smaller problems, such as
splitting a large box into two subboxes. The function mk out takes as parameters
an element of type AnsType, a Boolean value, and two naturals numbers, and
builds a record of type Output.

The generic algorithm itself has functions for inputs, some of which depend on
elements of the tuple type DirVar ≡ boolean×VarType. During the recursion of
a branch and bound algorithm, the domain often must be split in two. When this
happens, a variable and a direction, i.e., VarType and a direction represented
by a Boolean value, respectively, are selected for splitting the domain. The two
halves of the original domain can be referred to by the two pairs (true, j) and
(false, j), where j is the element of VarType referring to the variable chosen for
subdivision. In the type DirVar, true refers to the left subdivision and false

refers to the right subdivision.
Another type that is important for the execution of the generic algorithm is the

type DirVarStack≡ stack[DirVar], which represents a stack of elements of type
DirVar. The branch and bound algorithm presented in this paper implements
a depth-first recursion approach. An object called dirvars of type DirVar is
maintained by the algoritm, and it reflects the sequence of subdivisions, i.e.,
variables and directions, at any moment during the recursion.

2.2 Inputs to the Algorithm

The inputs to the generic branch and bound algorithm are listed in the table
below, each with its type next to it. The element obj of type ObjType is the

332 A. Narkawicz and C. Muñoz

Table 1. Inputs to branch and bound

Input Type

simplify [ObjType → ObjType]

evaluate [DomainType, ObjType → AnsType]

branch [VarType, ObjType → [ObjType, ObjType]]

subdivide [VarType, DomainType → [DomainType, DomainType]]

denorm [[boolean, VarType], AnsType → AnsType]

combine [VarType, AnsType, AnsType → AnsType]

prune [DirVarStack, AnsType, AnsType → boolean]

lex [AnsType → boolean]

gex [DirVarStack, AnsType, AnsType → boolean]

select [DirVarStack, AnsType, DomainType, ObjType → [boolean, VarType]]

accumulate [AnsType, AnsType → AnsType]

maxd N

obj ObjType

dom DomainType

acc Maybe[AnsType]

dirvars DirVarStack

concrete expression, e.g., a polynomial or interval expression, that the algorithm
is analyzing. The element dom is the specific element of DomainType with regard
to which information about obj is to be calculated. For example, if ObjType
consists of polynomials, DomainType may consist of boxes that constraint the
range of the polynomial variables.

The function simplify rewrites obj to make it easier to manipulate before
carrying out the next recursive calculations. In many cases this function is just
the identity function. However, in some cases, a canonical form of obj may yield
more efficient computations.

The function evaluate gives a crude estimate of an element of AnsType that
would describe obj for a particular element of DomainType. For instance, if obj
is a function and the algorithm is being used to give a precise estimate for the
range of the function over a box, evaluate may use interval arithmetic to give
a crude estimate of the range on a specific domain without splitting this domain
in two.

The function branch, for a specific element of VarType, takes an element of
ObjType and gives two more elements of ObjType that correspond to splitting
the problem in two. For instance, if VarType corresponds to the possible variables
of a function, and if ObjType consists of polynomials written in Bernstein form,
then given a specific variable xj , the function branch will take a polynomial and
turn it into two polynomials. Each of these polynomials represents the original
polynomial on half of the original unit box, which has been split along the
variable xj . The two polynomials themselves are translated from each of these
half boxes back to the unit box by changing the variable xj linearly. These
polynomials each represent the original polynomial on half of the original box
after a linear translation in xj .

A Formally Verified Generic Branching Algorithm for Global Optimization 333

As explained before, the input dirvars reflects the subdivision that have
occurred up to the current recursive call. The value of this parameter at every
recursive step is maintained by the algorithm. The initial value, provided by the
user, is expected to be an empty stack. The value of dirvars can be used by
several other input functions to choose the variable for subdivision at the current
step, determine whether to prune the recursion tree, or decide to exit globally
from the recursion.

The function subdivide takes an element of DomainType and divides it into
two new elements of DomainType, where the exact division is specified by an
element of VarType. For instance, DomainTypemay consist of boxes and VarType

to variables, in which case subdividemay split a box in the middle along a given
variable.

The function denorm translates an element of AnsType, which gives informa-
tion about the object on one half of an element of DomainType, after that element
has been split using subdivide, back to level of the original, non-subdivided
object in the recursion. For instance, if the algorithm is designed to find a coun-
terexample to a polynomial inequality and a box is split into two subboxes, then
a counterexample found by the algorithm on one of these subboxes is also a
counterexample on the larger box. In this example, the function denorm would
translate the point where the counterexample was found to a point in the origi-
nal box. The first parameter of this function, which has the type VarType, would
represent the variable along which the original box was split, and the Boolean
value would represent whether this particular subbox was the right half or the
left half of the original.

The function combine takes two elements of type AnsType, each giving infor-
mation about the object in question on half of the original box, and combines
them into one element of AnsType that gives information about the object on
the larger box. It depends on an element of type VarType, which may, for ex-
ample, represent the variable along which the original box was split to give the
two subboxes in question.

The function prune decides whether to locally exit the recursion at the cur-
rent step and continue the recursion at the next step without subdividing the
problem further on the current branch. It takes an accumulated value of type
AnsType from previous steps in the recursion, namely the element acc, which
gives information about the object in question at locations other than the cur-
rent location in the domain, and uses this to decide whether it is beneficial to
continue down the current branch in the recursion. For example, consider an
algorithm finding an interval that is guaranteed to contain the minimum value
attained by the a function. Suppose that in a branch of the recursion, this inter-
val was reduced to [0.9, 1.0], which will be stored in the acc element of AnsType.
If on the current branch, the evaluate function gives [1.2, 1.3] as as a crude esti-
mate of the minimum on a small subset of the larger domain, then the recursion
can often be stopped from further continuing down the current branch, since the
minimum will not be found on the current branch.

334 A. Narkawicz and C. Muñoz

The accumulated value acc that is passed as a parameter to prune is computed
by the function accumulate. This function combines all of the information from
previous recursive steps, along with the information gained at the current step,
in the element acc for use further down the current branch and in other branches
still unexplored. Depending on the problem that the branch and bound algorithm
is trying to solve, there are cases where previous information cannot be reused in
a different branch. This possibility is handled by the return type Maybe[AnsType]
of the function accumulate. This type represents an undefined value, represented
by None, or an actual value v of type AnsType, represented by Some(v). The
functions none? and some? check if an element of type Maybe is either None or
Some(v) for some v, respectively. In the latter case, the value v can be accessed
with the function val.

The lex function, which stands for local exit, determines when the function
has locally succeeded and therefore does not need to subdivide on the current
branch anymore. It considers an element of type AnsType given by the output
of evaluate, and uses this information to determine success. For example, if the
algorithm is proving that a function is always nonnegative, and if the function
evaluate indicates that it is true on the small subbox represented at this point
in the recursion tree, then the algorithm has proved the result on this local
subbox and does not need to divide the subbox further. It then moves on with
the recursion elsewhere.

The function gex, which stands for global exit, determines whether, at the
current recursion step, the algorithm should exit completely from the recur-
sion without computing anything else. This is desirable when the recursion has
reached a depth that is larger than the user wants, and it is also desirable when
the algorithm has found a satisfactory answer at the current recursive step and
no longer needs to continue the recursion. One example of a condition that war-
rants a global exit is when the algorithm is searching for a counterexample to
the positivity of a function and it finds such a counterexample at the current
step.

The function select determines where the next subdivision will occur. For
example, if DomainType consists of boxes in n variables, then any subdivision of
a box will occur along a particular variable. In this context, the select function
will determine the variable along which to subdivide and a Boolean value rep-
resenting whether the recursion should first compute either the left subdivision
or the right one. An additional parameter to this function is dirvars, which
gives information about the other variables that have been chosen for subdivi-
sion at previous steps in the current branch. This allows select to be defined in
a way that is fair, meaning that in every possible infinite branch of the infinite
recursion tree, every variable occurs an infinite number of times.

The input maxd represents a maximum recursion depth and removes the pos-
sibility of a non-terminating algorithm. When the current depth reaches maxd,
the algorithm forces a local exit as opposed to a global one. Depending on the
problem that the branch and bound algorithm is solving, an output can still
be sound even if some branches have reached the maximum depth. Hence, even

A Formally Verified Generic Branching Algorithm for Global Optimization 335

though the algorithm always terminates, it may take a very long time to do
so. If the user wants to specify a global exit when the maximum depth maxd is
reached, this has to be done through the input function gex.

2.3 The Branching Algorithm

The algorithm branch and bound is defined in Figure 3. Lines 1-12 define the
bounding and pruning aspects of the branch and bound algorithm. These lines
concern the computation of a crude estimate for the object obj in the domain dom

(Line 5). It is noted that the estimate, namely thisans, is actually computed for
the object thisobj, which is intended to be a simplified version of obj (Line 4).
The accumulated value thisacc is computed from the previous value acc and the
computed answer thisans (Line 6). The function gex uses the information on
thisacc, thisans, and the stack dirvars to determine if the algorithm should
stop (Line 8). This information is propagated to the remaining recursive calls
through the field exit in thisans. If the answer value thisans is good enough,
which is determined by the functions lex and prune, or if the maximum depth
maxd is reached, the current recursive call ends (Lines 11-12). In this case, the
output consists of the answer thisans, the Boolean value computed by the
function gex, a value of depth that is equivalent to the length of the stack
dirvars, and 0, which represents the number of splits. The function mk out

builds such a record of type Output (Line 9).
The branching aspect of the algorithm is defined in Lines 14-39. First, a

direction dir and a variable v are selected for subdivision (Line 14). Subdivided
objects objl, objr and subdivided domains doml, domr are computed accordingly
(Line 15-18). Then, the first recursive call, in the direction determined by dir, is
made (Lines 19-21). When the recursion returns, it may be the case that a global
exit was signaled during the previous recursive call (Line 24). In this case, an
answer is computed from the value returned by the recursive call and the current
answer thisans (Lines 24-25). In order to combine these values, the answer from
the subdivided domain dom1 has to be translated to the whole domain dom. This
is performed by the function denorm (Line 24). The values of the fields depth

and splits in the output record are computed appropriately (Line 25).
The second recursive call is specified in Lines 27-35. In this case, the answers

returned by the two calls, for each one of the subdivisions, are combined into
an answer for the whole domain (Line 32). The output record consists of this
combined answer and appropriate values for the fields exit, depth, and splits

(Lines 34-35).

3 Correctness of the Algorithm

The output of the function branch and bound in Figure 3 has type Output. In
order for the algorithm to be useful for solving problems in global optimization,
the element of Output returned by the algorithm must satisfy a correctness
property. Not only does the algorithm branch and bound take a generic set of

336 A. Narkawicz and C. Muñoz

01 : branch and bound(simplify, evaluate, branch, subdivide, denorm, combine, prune,

02 : lex, gex, select, accumulate, maxd, obj, dom, acc, dirvars) : Output ≡
03 : let

04 : thisobj = simplify(obj),

05 : thisans = evaluate(dom, thisobj),

06 : thisacc = if none?(acc) then thisans

07 : else accumulate(val(acc), thisans) endif,

08 : thisexit = gex(dirvars, thisacc, thisans),

09 : thisout = mk out(thisans, thisexit, length(dirvars), 0)

10 : in

11 : if length(dirvars) = maxd or lex(thisans) or thisexit or

12 : prune(dirvars, thisacc, thisans) then thisout

13 : else let

14 : (dir, v) = select(dirvars, thisacc, dom, thisobj),

15 : (objl, objr) = branch(v, thisobj),

16 : (obj1, obj2) = if dir then (objl, objr) else (objr , objl) endif,

17 : (doml, domr) = subdivide(v, dom),

18 : (dom1, dom2) = if dir then (doml, domr) else (domr , doml) endif,

19 : out1 = branch and bound(simplify, evaluate, branch, subdivide, denorm,

20 : combine, prune, lex, gex, select, accumulate, maxd,

21 : obj1, dom1, thisacc, push((dir, v), dirvars))

22 : in

23 : if out1.exit then

24 : mk out(combine(v, denorm((dir, v), out1.ans), thisans), true,

25 : out1.depth, out1.splits + 1)

26 : else let

27 : newacc = accumulate(thisacc, out1.ans),

28 : out2 = branch and bound(simplify, evaluate, branch, subdivide, denorm,

29 : combine, lex, gex, select, accumulate, maxd,

30 : obj2, dom2, newacc, push((¬dir, v), dirvars))
31 : (outl, outr) = if dir then (out1, out2) else (out2, out1) endif,

32 : ans = combine(v, denorm((true, v), outl.ans), denorm((false, v), outr .ans))

33 : in

34 : mk out(ans, out2.exit,max(out1.depth, out2.depth),

35 : out1.splits + out2.splits + 1)

36 : endif

37 : endif

Fig. 3. The function branch and bound

A Formally Verified Generic Branching Algorithm for Global Optimization 337

inputs with numerous possible instantiations, but its correctness property is
generic as well. This correctness property is represented by the abstract predicate
sound?, which has the type indicated below.

sound? : [DomainType, ObjType, AnsType→ boolean]

The strength of a generic branching algorithm such as branch and bound

relies on the fact that it reduces the correctness proof of a particular instantia-
tion to proving simpler statements about the compatible behavior of the input
functions evaluate, simplify, subdivide, branch, denorm, and combine. The
correctness property depends only on these input function parameters. In par-
ticular, the generic algorithm has been proved to be sound for any particular
instantiation of the functions lex, gex, prune, and select. Those functions are
usually the most technically involved since they deal with heuristics that im-
prove the efficiency of the algorithm. All of these concerns are abstracted away
in the correctness stament of the algorithm.

The main correctness result is stated as follows.

Theorem 1. For all inputs that satisfy

– accommodates?(sound?, evaluate),
– simplify invariant?(sound?, simplify),
– evaluate simplify?(evaluate, simplify),
– branch simplify?(branch, simplify),
– subdiv presound?(sound?, subdivide, branch, denorm, combine), and
– subdiv sound?(sound?, subdivide, branch, denorm, combine),

sound?(dom, obj, bnb.ans) is true, where bnb is equal to

branch and bound(simplify, evaluate, branch, subdivide, denorm, combine,

prune, lex, gex, select, accumulate, maxd, obj, dom, None, empty stack).

The proof of this theorem, which has been mechanically verified in PVS, pro-
ceeds by induction on maxd−length(dirvars). The predicates accommodates?,
simplify invariant?, evaluate simplify?, branch simplify?, subdiv presound? and
subdiv sound? are defined as follows.

The predicate accommodates? states that the function evaluate computes a
valid estimate for the object obj on the domain dom.

accommodates?(sound?, evaluate) ≡
∀ (dom, obj) : sound?(dom, obj, evaluate(dom, obj)).

The predicate simplify invariant? states the function simplify preserves sound-
ness.

simplify invariant?(sound?, simplify) ≡ ∀ (dom, obj, ans) :
sound?(dom, obj, ans) ⇐⇒ sound?(dom, simplify(obj), ans).

338 A. Narkawicz and C. Muñoz

The predicate evaluate simplify? states that simplified objects evaluate to the
same value.

evaluate simplify?(evaluate, simplify) ≡ ∀ (dom, obj) :
evaluate(dom, obj) = evaluate(dom, simplify(obj)).

The predicate branch simplify? states that the function simplify and branch

commute.

branch simplify?(branch, simplify) ≡ ∀(v, obj) :
let (objl, objr) = branch(v, obj) in

branch(v, simplify(obj)) = (simplify(objl), simplify(objr)).

The last two predicates specify the core behavior of the functions subdivide,
branch, denorm, and combine. They express that the soundness of the output
on the whole domain can be deduced from the soundness of the outputs on
the subdivided domains. The former predicate refers to the case where only one
branch is recursively explored. The latter predicate refers to the case where both
left and right branches are recursively explored.

subdiv presound?(sound?, subdivide, branch, denorm, combine) ≡
∀ (v, dom, obj, dir, ans1, ans2) :

let (doml, domr) = subdivide(v, dom),

(objl, objr) = branch(v, obj)

in sound?(dom, obj, ans1) and

(dir =⇒ sound?(doml, objl, ans2)) and

(¬dir =⇒ sound?(domr, objr, ans2))

=⇒ sound?(dom, obj, combine(v, denorm((dir, v), ans2, ans1)).

subdiv sound?(sound?, subdivide, branch, denorm, combine) ≡
∀ (v, dom, obj, dir, ans1, ans2) :

let (doml, domr) = subdivide(v, dom),

(objl, objr) = branch(v, obj)

in sound?(doml, objl, ans1) and sound?(domr, objr, ans2)

=⇒ sound?(dom, obj, combine(v, denorm((true, v), ans1),

denorm((false, v), ans2))).

Theorem 1 is significantly simpler when the function simplify is the identity.
The next corollary considers this case.

Corollary 1. Let I be the identity function on the type ObjType. For all inputs
that satisfy

A Formally Verified Generic Branching Algorithm for Global Optimization 339

– accommodates?(sound?, evaluate),
– subdiv presound?(sound?, subdivide, branch, denorm, combine), and
– subdiv sound?(sound?, subdivide, branch, denorm, combine),

sound?(dom, obj, bnb.ans) is true, where bnb is equal to

branch and bound(I, evaluate, branch, subdivide, denorm, combine, prune,

lex, gex, select, accumulate, maxd, obj, dom, None, empty stack).

4 Branch and Bound Algorithm for Interval Expressions

This section presents an instantiation of the function branch and bound in Fig-
ure 3 that yields a strategy in PVS for computing estimates of the minimum
and maximum values of a multivariate real-valued functions. These estimates
are found using interval arithmetic.

In order to define this instantiation, it is necessary to provide a deep em-
bedding of arithmetic expressions. Such an embedding has been developed and
is available as part of the interval arithmetic development in the NASA PVS
Library.1 The abstract data type IntervalExpr, which is part of the library,
represents arithmetic expressions constructed from basic operations, power, ab-
solute value, square root, trigonometric functions, the irrational constants π and
e, the exponential and logarithm functions, numerical constants, and variables
that range over closed intervals. Henceforth, elements of type IntervalExpr are
called expressions. The following types and functions are also available.

– Interval: A tuple of two elements that represents the upper and lower
bounds of a closed, non-empty, interval. Elements of this type are called
intervals.

– Box: A list of elements of type Interval. Elements of this type are called
boxes.

– Env: A list of real numbers representing an evaluation environment for the
variables in a given expression. Elements of this type are called environments.

– well typed?: A predicate that has as parameters a box B and an expression
E. The predicate holds when E is well-defined in B. This predicate is used
to avoid the case of division by zero.

– eval: A function that has as parameters an expressionE and an environment
Γ . The function returns a real value that corresponds to the evaluation of
E in Γ .

– Eval: A function that has as parameters an expression E and a box B. The
function returns an interval value that correspond to the interval arithmetic
evaluation of E in B.

The following two key theorems of interval arithmetic are mechanically proved
in PVS.

1 http://shemesh.larc.nasa.gov/people/cam/Interval

http://shemesh.larc.nasa.gov/people/cam/Interval

340 A. Narkawicz and C. Muñoz

Theorem 2 (Inclusion Theorem). For all B, E, and Γ ,

well typed?(B,E) and Γ ∈ B implies eval(E, Γ) ∈ Eval(E,B).

Theorem 3 (Fundamental Theorem). For all B1 ⊆ B2 and E,

well typed?(B2, E) implies Eval(E,B1) ⊆ Eval(E,B2).

A simple of instantiation of the generic branch and bound algorithm is ob-
tained as follows. The parameter types ObjType, AnsType, and DomainType are
instantiated with the concrete types IntervalExpr, Interval, and Box. The pa-
rameter type VarType, representing variables in IntervalExpr, is instantiated
with the concrete type nat. Furthermore,

– the function evaluate is defined as evaluate(B,E) ≡ Eval(E,B),
– the function branch is defined as branch(n,E) ≡ (E,E),
– the function subdivide is defined as subdivide(n,B) ≡ split(n,B) that

returns two boxes that are equal to B except in their n-th interval, where
the original interval is divided into mid-left and mid-right intervals,

– the functions combine and accumulate are both defined as the union of two
intervals,

– the functions simplify and denorm are defined as identity functions on the
types IntervalExpr and Interval, respectively.

Since the soundness theorem of the generic branch and bound algorithm does
not depend on the predicates gex, lex, or prune, they can be arbitrarily in-
stantiated. In particular, they are instantiated such that they always return
false. This means that the instantiated branch and bound algorithm, called
simple interval, completely explores the recursion tree up to the maximum
depth. The direction and variable selection function select is simply defined
using a round-robin approach.

simple interval(maxd, E,B) : Output ≡
branch and bound(simplify, evaluate, branch, subdivide, denorm,

combine, prune, lex, gex, select, accumulate, maxd, E,B).

The intended soundness property of the function simple interval is ex-
pressed by the following predicate.

sound?(B,E, ans) ≡ well typed?(B,E) =⇒ ∀(Γ ∈ B) : eval(E, Γ) ∈ ans.

The following theorem has been proved in PVS. It follows from Corollary 1.
The fact that the predicate accommodates? holds follows directly from the In-
clusion Theorem (Theorem 2). The properties concerning subdiv presound? and
subdiv sound? are consequences of the Fundamental Theorem (Theorem 3).

Theorem 4. For any maximum depth maxd, expression E, and box B,
sound?(B,E, simple interval(maxd, E,B).ans) holds.

A Formally Verified Generic Branching Algorithm for Global Optimization 341

The function simple interval and its correctness property (Theorem 4) are
the basis of a computational reflection strategy in PVS for computing estimates
of the minimum and maximum values of real expressions. The strategy, called
simple-numerical, takes a PVS real expression, possibly involving variables,
and reflects it in the type IntervalExpr. The key step in the strategy is the
ground evaluation of the function simple interval, which implements the in-
stantiated branch and bound algorithm. Theorem 4 guarantees the soundness
of the computation in the PVS logic. For instance, using simple interval, it
can be automatically proved the statement |ψ(v, φ)| ≤ 3.825, where ψ is defined
as in Formula (1), v ∈ [200, 250], and |φ| ≤ 35. This result, which is used in
the correctness proof of an alerting algorithm for aircraft performing a parallel
landing [9], states that for an aircraft flying at a ground speed between 200 and
250 knots, the maximum angular speed is less than 4 degrees (more precisely,
less than 3.825 degrees), assuming a maximum bank angle of 35 degrees.

The development interval arith in the NASA PVS Library includes more
sophisticated instantiations of branch and bound and strategies based on these
instantiations for computing estimates of the minimum and maximum values of
real-valued functions up to a precision provided by the user and for proving real-
valued inequalities. These instantiations make use of the input functions select,
e.g., for implementing better heuristics to chose the direction of the branching
and the variable to subdivide, of lex, e.g., for stopping the current branch when
a given precision is reached, of gex, e.g., for stopping the recursion when a given
inequality cannot be proved, and of prune, e.g., for pruning a branch when the
recursion will not improve the accumulated value.

5 Conclusion

The generic branch and bound algorithm presented in this paper has been used
in several contexts, e.g., computing the range of a function on a box using inter-
val arithmetic, computing the range of a polynomial on a box using Bernstein
polynomials, deciding whether a simply quantified polynomial inequality holds
on a box, deciding whether a Boolean expression involving polynomial inequali-
ties holds on a box, and paving a region defined by polynomial inequalities. For
each of these instantiations, the correctness statement follows almost immedi-
ately from the correctness statement for the generic algorithm. In each case, this
requires only proving certain properties about the input functions to the generic
algorithm.

Strategies similar to the one described in Section 4, based on interval arith-
metic and subdivision, are available in PVS [3], Coq [6], HOL Light [14], etc.
The novelty of the work presented in this paper is not the development of inter-
val arithmetic strategies, but the fact these strategies are implemented on top
of a formally verified generic branching algorithm that can be instantiated with
different domains. In addition to instances related to interval arithmetic and
Bernstein polynomials, many other instances of the generic branch and bound
algorithm are being considered including Taylor models and affine arithmetic.

342 A. Narkawicz and C. Muñoz

The approach presented in this paper is similar, in spirit, to that of Carlier
et al. [1] on the verification of a constraint solver, where the application domain
is abstracted away. However, the emphasis here is to support the development
of efficient automated strategies that execute the generic algorithm via com-
putational reflection [4]. Indeed, even the simple interval arithmetic presented
here, which fully explores the recursion tree, is significantly more efficient that
the strategies presented in [3]. Furthermore, since the correctness statement of
the algorithm does not depend on parameter functions for variable selection
method and pruning, they can be freely instantiated for implementing advanced
heuristics. In the case of Bernstein polynomials, this feature has allowed the au-
thors to experiment with different pruning heuristics for the algorithm proposed
in [10].

References

1. Carlier, M., Dubois, C., Gotlieb, A.: A certified constraint solver over finite
domains. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436,
pp. 116–131. Springer, Heidelberg (2012)

2. Crespo, L.G., Muñoz, C.A., Narkawicz, A.J., Kenny, S.P., Giesy, D.P.: Uncertainty
analysis via failure domain characterization: Polynomial requirement functions.
In: Proceedings of European Safety and Reliability Conference, Troyes, France
(September 2011)

3. Daumas, M., Lester, D., Muñoz, C.: Verified real number calculations: A library
for interval arithmetic. IEEE Transactions on Computers 58(2), 1–12 (2009)

4. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique.
Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995),
http://www.cl.cam.ac.uk/jrh13/papers/reflect.dvi.gz+

5. Lorentz, G.G.: Bernstein Polynomials, 2nd edn. Chelsea Publishing Company, New
York (1986)

6. Melquiond, G.: Proving bounds on real-valued functions with computations. In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 2–17. Springer, Heidelberg (2008)

7. Moa, B.: Interval Methods for Global Optimization. PhD thesis, University of
Victoria (2007)

8. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Cam-
bridge University Press (2009)

9. Muñoz, C., Carreño, V., Dowek, G., Butler, R.: Formal verification of conflict de-
tection algorithms. International Journal on Software Tools for Technology Trans-
fer 4(3), 371–380 (2003)

10. Muñoz, C., Narkawicz, A.: Formalization of a Representation of Bernstein Poly-
nomials and Applications to Global Optimization. Journal of Automated Rea-
soning 51(2), 151–196 (2013), http://dx.doi.org/10.1007/s10817-012-9256-3,
doi:10.1007/s10817-012-9256-3

11. Neumaier, A.: Complete search in continuous global optimization and constraint
satisfaction. Acta Numerica 13, 271–369

http://www.cl.cam.ac.uk/jrh13/papers/reflect.dvi.gz+
http://dx.doi.org/10.1007/s10817-012-9256-3

A Formally Verified Generic Branching Algorithm for Global Optimization 343

12. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur,
D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992)

13. Ray, S., Nataraj, P.S.: An efficient algorithm for range computation of polynomials
using the Bernstein form. Journal of Global Optimization 45, 403–426 (2009)

14. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with Taylor
interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013.
LNCS, vol. 7871, pp. 383–397. Springer, Heidelberg (2013)

	A Formally Verified Generic Branching Algorithm for Global Optimization
	1 Introduction
	2 Generic Branch and Bound Algorithm
	2.1 Generic Types
	2.2 Inputs to the Algorithm
	2.3 The Branching Algorithm

	3 Correctness of the Algorithm
	4 Branch and Bound Algorithm for Interval Expressions
	5 Conclusion
	References

