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Preface

This volume contains the papers presented at the 5th International Conference
on Verified Software: Theories, Tool and Experiments (VSTTE), which was held
in Menlo Park, USA, during May 17–19, 2013. Historically, the conference orig-
inated from the Verified Software Initiative (VSI), a cooperative, international
initiative directed at the scientific challenges of large-scale software verification.
The inaugral VSTTE conference was held at ETH Zurich in October 2005. Start-
ing in 2008, the conference became a biennial event, VSTTE 2008 was held in
Toronto, VSTTE 2010 was held in Edinburgh, and VSTTE 2012 was held in
Philadelphia, which changed this year.

The goal of the VSTTE conference is to advance the state of the art through
the interaction of theory development, tool evolution, and experimental
validation.

VSTTE 2013 is especially interested in submissions describing large-scale
verification efforts that involve collaboration, theory unification, tool integra-
tion, and formalized domain knowledge. We welcome papers describing novel
experiments and case studies evaluating verification techniques and technologies.
Topics of interest include education, requirements modeling, specification lan-
guages, specification/verification case-studies, formal calculi, software design
methods, automatic code generation, refinement methodologies, compositional
analysis, verification tools (e.g., static analysis, dynamic analysis, model check-
ing, theorem proving, satisfiability), tool integration, benchmarks, challenge prob-
lems, and integrated verification environments.

There were 35 submissions. Each submission was reviewed by at least two,
and on average 2.7, Program Committee members. The committee decided
to accept 17 papers. The program also includes three invited talks, by Alex
Aiken (Stanford University), Nikhil Swamy (Microsoft Research), and Andre
Platzer (CMU), as well as an invited tutorial by Sandrine Blazy (University of
Rennes 1).

We would like to thank the invited speakers, all submitting authors, the
Steering Committee, the conference chair, the publicity chair, the external re-
viewers, and especially the Program Committee, who put a lot of hard work into
reviewing and selecting the papers that appear in this volume.

We thank Andrei Voronkov for the access to EasyChair and Springer.
VSTTE 2013 was supported in part by NSF funding CISE award 1033105.

November 2013 Ernie Cohen
Andrey Rybalchenko
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Invited Talks



Using Learning Techniques in Invariant Inference

Alex Aiken

Stanford University

Abstract. Arguably the hardest problem in automatic program verifi-
cation is designing appropriate techniques for discovering loop invariants
(or, more generally, recursive procedures). Certainly, if invariants are
known, the rest of the verification problem becomes easier. This talk
presents a family of invariant inference techniques based on using test
cases to generate an underapproximation of program behavior and then
using learning algorithms to generalize the underapproximation to an
invariant. These techniques are simpler, much more efficient, and ap-
pear to be more robust than previous approaches to the problem. If time
permits, some open problems will also be discussed.



F*: Certified Correctness for Higher-Order

Stateful Programs

Nikhil Swamy

Microsoft Research

Abstract. Abstract: F* is an ML-like programming language being de-
veloped at Microsoft Research. It has a type system based on dependent
types and a typechecker that makes use of an SMT solver to discharge
proof obligations. The type system is expressive enough to express func-
tional correctness properties of typical, higher-order stateful programs.
We have used F* in a variety of settings, including in the verifica-
tion of security protocol implementations; as a source language for se-
cure web-browser extensions; as an intermediate verification language
for JavaScript code; to verify the correctness of compilers; as a relational
logic for probabilistic programs; and as a proof assistant in which to
carry out programming language metatheory. We have also used F* to
program the core typechecker of F* itself and have verified that it is
correct. By bootstrapping this process using the Coq proof assistant, we
obtain a theorem that guarantees the existence of a proof certificate for
typechecked programs.
I will present a brief overview of the F* project, drawing on the exam-
ples just mentioned to illustrate the features of the F* language and
certification system.
For more about F*, visit http://research.microsoft.com/fstar.



How to Explain Cyber-Physical Systems

to Your Verifier

André Platzer

CMU

Abstract. Despite the theoretical undecidability of program verifica-
tion, practical verification tools have made impressive advances. How
can we take verification to the next level and use it to verify programs in
cyber-physical systems (CPSs), which combine computer programs with
the dynamics of physical processes. Cars, aircraft, and robots are prime
examples where this matters, because they move physically in space in
a way that is determined by discrete computerized control algorithms.
Because of their direct impact on humans, verification for CPSs is even
more important than it already is for programs.
This talk describes how formal verification can be lifted to one of the
most prominent models of CPS called hybrid systems, i.e. systems with
interacting discrete and continuous dynamics. It presents the theoretical
and practical foundations of hybrid systems verification. The talk shows
a systematic approach that is based on differential dynamic logic comes
with a compositional proof technique for hybrid systems and differential
equations. This approach is implemented in the verification tool KeY-
maera and has been used successfully for verifying properties of aircraft,
railway, car control, autonomous robotics, and surgical robotics applica-
tions.



A Tutorial on the CompCert Verified Compiler

Sandrine Blazy

University of Rennes 1

Abstract. Compilers are complicated pieces of software that sometimes
contain bugs causing wrong executable code to be silently generated from
correct source programs. In turn, this possibility of compiler-introduced
bugs diminishes the assurance that can be obtained by applying formal
methods to source code. This talk gives an overview of the CompCert
project: an ongoing experiment in developing and formally proving cor-
rect a realistic, moderately-optimizing compiler from a large subset of
C to popular assembly languages. The correctness proof, mechanized
using the Coq proof assistant, establishes that the generated assembly
code behaves exactly as prescribed by the semantic of the C source,
eliminating all possibilities of compiler-introduced bugs and generating
unprecedented confidence in this compiler. For more about CompCert,
please visit http://compcert.inria.fr.
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Classifying and Solving Horn Clauses for Verification

Philipp Rümmer1, Hossein Hojjat2, and Viktor Kuncak2

1 Uppsala University, Sweden
2 Swiss Federal Institute of Technology Lausanne (EPFL)

Abstract. As a promising direction to overcome difficulties of verification, re-
searchers have recently proposed the use of Horn constraints as intermediate rep-
resentation. Horn constraints are related to Craig interpolation, which is one of the
main techniques used to construct and refine abstractions in verification, and to
synthesise inductive loop invariants. We give a classification of the different forms
of Craig interpolation problems found in literature, and show that all of them cor-
respond to natural fragments of (recursion-free) Horn constraints. For a logic that
has the binary interpolation property, all of these problems are solvable, but have
different complexity. In addition to presenting the theoretical classification and
solvability results, we present a publicly available collection of benchmarks to
evaluate solvers for Horn constraints, categorized according to our classification.
The benchmarks are derived from real-world verification problems. The behavior
with our tools as well as with Z3 prover indicates the importance of Horn clause
solving as distinct from the general problem of solving quantified constraints by
quantifier instantiation.

1 Introduction

Predicate abstraction [14] has emerged as a prominent and effective way for model
checking software systems. A key ingredient in predicate abstraction is analyzing the
spurious counter-examples to refine abstractions [4]. The refinement problem saw a
significant progress when Craig interpolants extracted from unsatisfiability proofs were
used as relevant predicates [20]. While interpolation has enjoyed a significant progress
for various logical constraints [7–9,24], there have been substantial proposals for more
general forms of interpolation [1, 19, 24].

As a promising direction to extend the reach of automated verification methods to
programs with procedures, and concurrent programs, among others, recently the use
of Horn constraints as intermediate representation has been proposed [15, 16, 28]. This
paper examines the relationship between various forms of Craig interpolation and syn-
tactically defined fragments of recursion-free Horn clauses. We systematically exam-
ine binary interpolation, inductive interpolant sequences, tree interpolants, restricted
DAG interpolants, and disjunctive interpolants, and show the recursion-free Horn clause
problems to which they correspond. We present algorithms for solving each of these
classes of problems by reduction to elementary interpolation problems. We also give
a taxonomy of the various interpolation problems, and the corresponding systems of
Horn clauses, in terms of their computational complexity.

E. Cohen and A. Rybalchenko (Eds.): VSTTE 2013, LNCS 8164, pp. 1–21, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 P. Rümmer, H. Hojjat, and V. Kuncak

The contributions of the paper are:

– a systematic study of relevant recursion-free Horn fragments, their relationship to
forms of Craig interpolation, and their computational complexity;

– a library of recursion-free Horn problems, designed for benchmarking Horn solvers
and interpolation engines;

– the generalisation of our results from recursion-free Horn clauses to general well-
founded constraints, i.e., to constraints without infinite resolution proofs.

Organisation. Related work is surveyed in Sect. 2, following in Sect. 3 by an example
of (recursive) Horn clauses. Sect. 4 formally introduces the concept of Horn clauses.
Sect. 5 investigates the relationship between Horn fragments and Craig interpolation,
and Sect. 6 their respective computational complexity. Sect. 7 presents our library of
Horn benchmarks. Sect. 8 generalises from Horn clauses to well-founded clauses.

2 Related Work

Horn clauses have been used to represent analysis tasks in the context of constraint pro-
gramming for a long time, for instance [29]. The authors of [16] propose Horn clauses
for verification of multi-threaded programs. The underlying procedure for solving sets
of recursion-free Horn clauses, over the combined theory of linear integer arithmetic
and uninterpreted functions, was presented in [17], and a solver in [18]. A range of fur-
ther applications of Horn clauses, including inter-procedural model checking, was given
in [15]. Horn clauses are also proposed as intermediate/exchange format for verification
problems in [6], and are natively supported by the SMT solver Z3 [11].

There is a long line of research on Craig interpolation methods, and generalised
forms of interpolation, tailored to verification. For an overview of interpolation in the
presence of theories, we refer the reader to [8, 9]. Binary Craig interpolation for impli-
cations A → C goes back to [10], was carried over to conjunctions A ∧ B in [25], and
generalised to inductive sequences of interpolants in [20, 27]. The concept of tree in-
terpolation, strictly generalising inductive sequences of interpolants, is presented in the
documentation of the interpolation engine iZ3 [24]; the computation of tree interpolants
by computing a sequence of binary interpolants is also described in [19]. Restricted
DAG interpolants [1] and disjunctive interpolants [30] are further generalisations of
inductive sequences of interpolants, designed to enable the simultaneous analysis of
multiple counterexamples or program paths.

The use of Craig interpolation for solving Horn clauses is discussed in [28], con-
centrating on the case of tree interpolation. Our paper extends this work by giving a
systematic study of the relationship between different forms of Craig interpolation and
Horn clauses, as well as general results about solvability and computational complexity,
independent of any particular calculus used to perform interpolation.

Inter-procedural software model checking with interpolants has been an active
area of research for the last decade. In the context of predicate abstraction, it has been
discussed how well-scoped invariants can be inferred [20] in the presence of function
calls. Based on the concept of Horn clauses, a predicate abstraction-based algorithm for
bottom-up construction of function summaries was presented in [15]. Generalisations
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def f (n : Int )
returns rec : Int =

if (n > 0) {
tmp = f(n−1)
rec = tmp + 1
} else {

rec = 1
}

def main() {
var res : Int
havoc(x: Int ≥ 0)
res = f (x)
assert(res == x + 1)
}

�� ��
�������	q1

havoc (x) ∧ x′ ≥ 0
��

�������	q5n>0

��

¬(n>0)

��
�������	q2

res′= f (x)
��

�������	q6

tmp′= f (n − 1)
��

�������	q8

rec′=1

��

�������	q3

res�x + 1
���

���
��

res=x + 1

����
��
��
�

�������	q7

rec′=tmp + 1 ���������	q4 �������	e �������	q9

Fig. 1. A recursive program and its control flow graph (see Sect. 3)

(1) r1(X, Res) ← true
(2) r2(X’, Res) ← r1(X, Res) ∧ X’ ≥ 0
(3) r3(X, Res’) ← r2(X, Res) ∧ rf(X, Res’)
(4) r4(X, Res) ← r3(X, Res) ∧ Res = X + 1
(5) false ← r3(X, Res) ∧ Res � X + 1

(6) r5(N, Rec, Tmp) ← true
(7) r6(N, Rec, Tmp) ← r5(N, Rec, Tmp) ∧ N > 0
(8) r7(N, Rec, Tmp’) ← r6(N, Rec, Tmp) ∧ rf(N − 1, Tmp’)
(9) r8(N, Rec, Tmp) ← r5(N, Rec, Tmp) ∧ N ≤ 0
(10) r9(N, Rec’, Tmp) ← r7(N, Rec, Tmp) ∧ Rec’ = Tmp + 1
(11) r9(N, Rec’, Tmp) ← r8(N, Rec, Tmp) ∧ Rec’ = 1
(12) rf (N, Rec) ← r9(N, Rec, Tmp)

Fig. 2. The encoding of the program in Fig. 1 into a set of recursive Horn clauses

of the Impact algorithm [27] to programs with procedures are given in [19] (formulated
using nested word automata) and [2]. Finally, function summaries generated using in-
terpolants have also been used to speed up bounded model checking [31].

Several other tools handle procedures by increasingly inlining and performing under-
and/or over-approximation [22, 32, 33], but without the use of interpolation techniques.

3 Example

We start with an example illustrating the use of Horn clauses to verify a recursive pro-
gram. Fig. 1 shows an example of a recursive program, which is encoded as a set of
(recursive) Horn constraints in Fig. 2. The encoding is done in such a way that the set
of Horn constraints is satisfiable if and only if the program is safe, i.e., the assertion
in function main cannot fail. We will use different subsets of the complete set of Horn
constraints as examples throughout the paper.
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r1(x, res) ≡ true r2(x, res) ≡ x ≥ 0

r3(x, res) ≡ res = x + 1 r4(x, res) ≡ true

r5(n, rec, tmp) ≡ true r6(n, rec, tmp) ≡ n ≥ 1

r7(n, rec, tmp) ≡ n = tmp r9(n, rec, tmp) ≡ rec = n + 1 ∨ (n ≤ 0 ∧ rec = 1)

r8(n, rec, tmp) ≡ n ≤ 0 r f (n, rec) ≡ rec = n + 1 ∨ (n ≤ 0 ∧ rec = 1)

Fig. 3. Syntactic solution of the Horn clauses in Fig. 2

For translation to Horn clauses we assign an uninterpreted relation symbol ri to
each state qi of the control flow graph. The arguments of the relation symbol ri act as
placeholders of the visible variables in the state qi. The relation symbol rf corresponds
to the summary of the function f. In the relation symbol rf we do not include the local
variable tmp in the arguments since it is invisible from outside the function f. The first
argument of rf is the input and the second one is the output. We do not dedicate any
relation symbol to the error state e.

The initial states of the functions are not constrained at the beginning; they are just
implied by true. The clause that has false as its head corresponds to the assertion in the
program. In order to satisfy the assertion with the head false, the body of the clause
should also be evaluated to false. We put the condition leading to error in the body of
this clause to ensure the error condition is not happening. The rest of the clauses are
one to one translation of the edges in the control flow graph.

For the edges with no function calls we merely relate the variables in the previous
state to the variables in the next state using the transfer functions on the edges. For
example, the clause (2) expresses that res is kept unchanged in the transition from q1 to
q2 and the value of x is greater than or equal to 0 in q2. For the edges with function call
we should also take care of the passing arguments and the return values. For example,
the clause (3) corresponds to the edge containing a function call from q2 to q3. This
clause sets the value of res in the state q3 to the return value of the function f. Note
that the only clauses in this example that have more than one relation symbols in the
body are the ones related to edges with function calls.

The solution of the obtained system of Horn clauses demonstrates the correctness
of the program. In a solution each relation symbol is mapped to an expression over
its arguments. If we replace the relation symbols in the clauses by the expressions in
the solution we should obtain only valid clauses. In a system with a genuine path to
error we cannot find any solution to the system since we have no way to satisfy the
assertion clause. Fig. 3 gives one possible solution of the Horn clauses in terms of
concrete formulae, found by our verification tool Eldarica.1

This paper discusses techniques to automatically construct solutions of Horn clauses.
Although the Horn clauses encoding programs are typically recursive, it has been ob-
served that the case of recursion-free Horn clauses is instrumental for constructing
verification procedures operating on Horn clauses [15, 16, 28]. Sets of recursion-free

1 http://lara.epfl.ch/w/eldarica

http://lara.epfl.ch/w/eldarica
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Horn clauses are usually extracted from recursive clauses by means of finite unwinding;
examples are given in Sect. 5.3 and 5.5.

4 Formulae and Horn Clauses

Constraint languages. Throughout this paper, we assume that a first-order vocabulary
of interpreted symbols has been fixed, consisting of a set F of fixed-arity function
symbols, and a set P of fixed-arity predicate symbols. Interpretation of F and P is
determined by a class S of structures (U, I) consisting of non-empty universe U, and
a mapping I that assigns to each function in F a set-theoretic function over U, and
to each predicate in P a set-theoretic relation over U. As a convention, we assume
the presence of an equation symbol “=” in P, with the usual interpretation. Given a
countably infinite set X of variables, a constraint language is a set Constr of first-
order formulae over F ,P,X For example, the language of quantifier-free Presburger
arithmetic has F = {+,−, 0, 1, 2, . . .} and P = {=,≤, |}).

A constraint is called satisfiable if it holds for some structure in S and some as-
signment of the variables X, otherwise unsatisfiable. We say that a set Γ ⊆ Constr of
constraints entails a constraint φ ∈ Constr if every structure and variable assignment
that satisfies all constraints in Γ also satisfies φ; this is denoted by Γ |= φ.

fv(φ) denotes the set of free variables in constraint φ. We write φ[x1, . . . , xn] to state
that a constraint contains (only) the free variables x1, . . . , xn, and φ[t1, . . . , tn] for the
result of substituting the terms t1, . . . , tn for x1, . . . , xn. Given a constraint φ containing
the free variables x1, . . . , xn, we write Cl∀(φ) for the universal closure ∀x1, . . . , xn.φ.

Craig interpolation is the main technique used to construct and refine abstractions in
software model checking. A binary interpolation problem is a conjunction A ∧ B of
constraints. A Craig interpolant is a constraint I such that A |= I and B |= ¬I, and
such that fv(I) ⊆ fv(A) ∩ fv(B). The existence of an interpolant implies that A ∧ B is
unsatisfiable. We say that a constraint language has the interpolation property if also
the opposite holds: whenever A ∧ B is unsatisfiable, there is an interpolant I.

4.1 Horn Clauses

To define the concept of Horn clauses, we fix a setR of uninterpreted fixed-arity relation
symbols, disjoint from P and F . A Horn clause is a formula C ∧ B1 ∧ · · · ∧ Bn → H
where

– C is a constraint over F ,P,X;
– each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈ R to first-order terms

over F ,X;
– H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms, or is

the constraint false.

H is called the head of the clause, C∧B1∧· · ·∧Bn the body. In case C = true, we usually
leave out C and just write B1 ∧ · · · ∧ Bn → H. First-order variables (from X) in a clause
are considered implicitly universally quantified; relation symbols represent set-theoretic
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relations over the universe U of a structure (U, I) ∈ S. Notions like (un)satisfiability and
entailment generalise straightforwardly to formulae with relation symbols.

A relation symbol assignment is a mapping sol : R → Constr that maps each n-ary
relation symbol p ∈ R to a constraint sol(p) = Cp[x1, . . . , xn] with n free variables. The
instantiation sol(h) of a Horn clause h is defined by:

sol
(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ p(t̄)

)
= C ∧ sol(p1)[t̄1] ∧ · · · ∧ sol(pn)[t̄n]→ sol(p)[t̄]

sol
(
C ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n)→ false

)
= C ∧ sol(p1)[t̄1] ∧ · · · ∧ sol(pn)[t̄n]→ false

Definition 1 (Solvability). LetHC be a set of Horn clauses over relation symbols R.

1. HC is called semantically solvable if for every structure (U, I) ∈ S there is an
interpretation of the relation symbols R as set-theoretic relations over U such the
universally quantified closure Cl∀(h) of every clause h ∈ HC holds in (U, I).

2. A HC is called syntactically solvable if there is a relation symbol assignment sol
such that for every structure (U, I) ∈ S and every clause h ∈ HC it is the case that
Cl∀(sol(h)) is satisfied.

Note that, in the special case when S contains only one structure, S = {(U, I)},
semantic solvability reduces to the existence of relations interpreting R that extend the
structure (U, I) in such a way to make all clauses true. In other words, Horn clauses
are solvable in a structure if and only if the extension of the theory of (U, I) by relation
symbols R in the vocabulary and by given Horn clauses as axioms is consistent.

A set HC of Horn clauses induces a dependence relation →HC on R, defining
p →HC q if there is a Horn clause in HC that contains p in its head, and q in the
body. The set HC is called recursion-free if →HC is acyclic, and recursive otherwise.
In the next sections we study the solvability problem for recursion-free Horn clauses
and then show how to use such results in general Horn clause verification systems.

Definition 2 (Normal Form). A setHC of Horn clauses is in normal form [15] iff

1. every relation symbol has a unique, pairwise distinct vector of arguments,
2. every non-argument variable occurs in at most one clause.

5 The Relationship between Craig Interpolation and Horn Clauses

It has become common to work with generalised forms of Craig interpolation, such as
inductive sequences of interpolants, tree interpolants, and restricted DAG interpolants.
We show that a variety of such interpolation approaches can be reduced to recursion-
free Horn clauses. Recursion-free Horn clauses thus provide a general framework uni-
fying and subsuming a number of earlier notions. As a side effect, we can formulate
a general theorem about existence of the individual kinds of interpolants in Sect. 6,
applicable to any constraint language with the (binary) interpolation property.

An overview of the relationship between specific forms of interpolation and specific
fragments of recursions-free Horn clauses is given in Table 1, and will be explained
in more detail in the rest of this section. Table 1 refers to the following fragments of
recursion-free Horn clauses:
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Table 1. Equivalence of interpolation problems and systems of Horn clauses

Form of interpolation Fragment of Horn clauses

Binary interpolation [10, 25]
A ∧ B

Pair of Horn clauses
A→ p(x̄), B ∧ p(x̄)→ false with {x̄} = fv(A) ∩ fv(B)

Inductive interpolant seq. [20, 27]
T1 ∧ T2 ∧ · · · ∧ Tn

Linear tree-like Horn clauses
T1 → p1(x̄1), p1(x̄1) ∧ T2 → p2(x̄2), . . .
with {x̄i} = fv(T1, . . . ,Ti) ∩ fv(Ti+1, . . . ,Tn)

Tree interpolants [19, 24] Tree-like Horn clauses

Restricted DAG interpolants [1] Linear Horn clauses

Disjunctive interpolants [30] Body disjoint Horn clauses

Definition 3 (Horn clause fragments). We say that a finite, recursion-free set HC of
Horn clauses

1. is linear if the body of each Horn clause contains at most one relation symbol,
2. is body-disjoint if for each relation symbol p there is at most one clause containing

p in its body; furthermore, every clause contains p at most once;
3. is head-disjoint if for each relation symbol p there is at most one clause containing

p in its head;
4. is tree-like [17] if it is body-disjoint and head-disjoint.

Theorem 1 (Interpolation and Horn clauses). For each line of Table 1 it holds that:

1. an interpolation problem of the stated form can be polynomially reduced to (syn-
tactically) solving a set of Horn clauses, in the stated fragment;

2. solving a set of Horn clauses (syntactically) in the stated fragment can be polyno-
mially reduced to solving a sequence of interpolation problems of the stated form.

5.1 Binary Craig Interpolants [10, 25]

The simplest form of Craig interpolation is the derivation of a constraint I such that A |=
I and I |= ¬B, and such that fv(I) ⊆ fv(A)∩fv(B). Such derivation is typically constructed
by efficiently processing the proof of unsatisfiability of A ∧ B. To encode a binary
interpolation problem into Horn clauses, we first determine the set x̄ = fv(A) ∩ fv(B) of
variables that can possibly occur in the interpolant. We then pick a relation symbol p of
arity |x̄|, and define two Horn clauses expressing that p(x̄) is an interpolant:

A→ p(x̄), B ∧ p(x̄)→ false

It is clear that every syntactic solution for the two Horn clauses corresponds to an
interpolant of A ∧ B.
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5.2 Inductive Sequences of Interpolants [20, 27]

Given an unsatisfiable conjunction T1 ∧ . . . ∧ Tn (in practice, often corresponding
to an infeasible path in a program), an inductive sequence of interpolants is a se-
quence I0, I1, . . . , In of formulae such that

1. I0 = true, In = false,
2. for all i ∈ {1, . . . , n}, the entailment Ii−1 ∧ Ti |= Ii holds, and
3. for all i ∈ {0, . . . , n}, it is the case that fv(Ii) ⊆ fv(T1, . . . , Ti) ∩ fv(Ti+1, . . . , Tn).

While inductive sequences can be computed by repeated computation of binary inter-
polants [20], more efficient solvers have been developed that derive a whole sequence
of interpolants simultaneously [8, 9, 24].

Inductive Sequences as Linear Tree-Like Horn Clauses. An inductive sequence of inter-
polants can straightforwardly be encoded as a set of linear Horn clauses, by introducing
a fresh relation symbol pi for each interpolant Ii to be computed. The arguments of the
relation symbols have to be chosen reflecting condition 3 of the definition of interpolant
sequences: for each i ∈ {0, . . . , n}, we assume that x̄i = fv(T1, . . . , Ti) ∩ fv(Ti+1, . . . , Tn)
is the vector of variables that can occur in Ii. Conditions 1 and 2 are then represented
by the following Horn clauses:

p0(x̄0), p0(x̄0) ∧ T1 → p1(x̄1), p1(x̄1) ∧ T2 → p2(x̄2), . . . , pn(x̄n)→ false

Linear Tree-Like Horn Clauses as Inductive Sequences. Suppose HC is a finite,
recursion-free, linear, and tree-like set of Horn clauses. We can solve the system of
Horn clauses by computing one inductive sequence of interpolants for every connected
component of the →HC-graph. Since HC is recursion-free and body-disjoint, it can
be normalised according to Def. 2 by renaming variables. A connected component
represents the following Horn clauses.

C1 → p1(x̄1), C2∧p1(x̄1)→ p2(x̄2), C3∧p2(x̄2)→ p3(x̄3), . . . , Cn∧pn(x̄n)→ false .

(If the first or the last of the clauses is missing, we assume that its constraint is false.)
Any inductive sequence of interpolants for C1 ∧ C2 ∧ C3 ∧ · · · ∧ Cn solves the clauses.

5.3 Tree Interpolants [19, 24]

Tree interpolants strictly generalise inductive sequences of interpolants, and are de-
signed with the application of inter-procedural verification in mind: in this context, the
tree structure of the interpolation problem corresponds to (a part of) the call graph of
a program. Tree interpolation problems correspond to recursion-free tree-like sets of
Horn clauses.

Suppose (V, E) is a finite directed tree, writing E(v,w) to express that the node w is a
direct child of v. Further, suppose φ : V → Constr is a function that labels each node v
of the tree with a formula φ(v). A labelling function I : V → Constr is called a tree
interpolant (for (V, E) and φ) if the following properties hold:
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1. for the root node v0 ∈ V , it is the case that I(v0) = false,
2. for any node v ∈ V , the following entailment holds:

φ(v) ∧
∧

(v,w)∈E
I(w) |= I(v) ,

3. for any node v ∈ V , every non-logical symbol (in our case: variable) in I(v) occurs
both in some formula φ(w) for w such that E∗(v,w), and in some formula φ(w′) for
some w′ such that ¬E∗(v,w′). (E∗ is the reflexive transitive closure of E).

Since the case of tree interpolants is instructive for solving recursion-free sets of
Horn clauses in general, we give a result about the existence of tree interpolants. The
proof of the lemma computes tree interpolants by repeated derivation of binary inter-
polants; however, as for inductive sequences of interpolants, there are solvers that can
compute all formulae of a tree interpolant simultaneously [16, 17, 24].

Lemma 1. Suppose the constraint language Constr that has the interpolation property.
Then a tree (V, E) with labelling function φ : V → Constr has a tree interpolant I if and
only if

∧
v∈V φ(v) is unsatisfiable.

Proof. “⇒” follows from the observation that every interpolant I(v) is a consequence
of the conjunction

∧
(v,w)∈E+ φ(w).

“⇐”: let v1, v2, . . . , vn be an inverse topological ordering of the nodes in (V, E), i.e.,
an ordering such that ∀i, j. (E(vi, v j) ⇒ i > j). We inductively construct a sequence of
formulae I1, I2, . . . , In, such that for every i ∈ {1, . . . , n} the following properties hold:

1. the following conjunction is unsatisfiable:
∧
{Ik | k ≤ i, ∀ j. (E(v j, vk)⇒ j > i)} ∧

(
φ(vi+1) ∧ φ(vi+2) ∧ · · · ∧ φ(vn)

)
(1)

2. the following entailment holds:

φ(vi) ∧
∧

(vi ,v j)∈E
I j |= Ii

3. every non-logical symbol in Ii occurs both in a formula φ(w) with E∗(vi,w), and in
a formula φ(w′) with ¬E∗(vi,w′).

Assume that the formulae I1, I2, . . . , Ii have been constructed, for i ∈ {0, . . . , n − 1}.
We then derive the next interpolant Ii+1 by solving the binary interpolation problem

(
φ(vi+1) ∧

∧

E(vi+1 ,v j)

I j

)
∧

(∧
{Ik | k ≤ i, ∀ j. (E(v j, vk)⇒ j > i + 1)} ∧ φ(vi+2) ∧ · · · ∧ φ(vn)

)
(2)

That is, we construct Ii+1 so that the following entailments hold:

φ(vi+1) ∧
∧

E(vi+1 ,v j)

I j |= Ii+1,

∧
{Ik | k ≤ i, ∀ j. (E(v j, vk)⇒ j > i + 1)} ∧ φ(vi+2) ∧ · · · ∧ φ(vn) |= ¬Ii+1
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Furthermore, Ii+1 only contains non-logical symbols that are common to the left and the
right side of the conjunction.

Note that (2) is equivalent to (1), therefore unsatisfiable, and a well-formed interpo-
lation problem. It is also easy to see that the properties 1–3 hold for Ii+1. Also, we can
easily verify that the labelling function I : vi �→ Ii is a solution for the tree interpolation
problem defined by (V, E) and φ. ��
Tree Interpolation as Tree-Like Horn Clauses. The encoding of a tree interpolation
problem as a tree-like set of Horn clauses is very similar to the encoding for inductive
sequences of interpolants. We introduce a fresh relation symbol pv for each node v ∈ V
of a tree interpolation problem (V, E), φ, assuming that for each v ∈ V the vector x̄v =⋃

E∗(v,w) fv(φ(w))∩⋃¬E∗ (v,w) fv(φ(w)) represents the set of variables that can occur in the
interpolant I(v). The interpolation problem is then represented by the following clauses:

p0(x̄0)→ false,
{
φ(v) ∧

∧

(v,w)∈E
pw(x̄w)→ pv(x̄v)

}

v∈V

Tree-Like Horn Clauses as Tree Interpolation. SupposeHC is a finite, recursion-free,
and tree-like set of Horn clauses. We can solve the system of Horn clauses by computing
a tree interpolant for every connected component of the→HC-graph. As before, we first
normalise the Horn clauses according to Def. 2. The interpolation graph (V, E) is then
defined by choosing the set V = R ∪ {false} of relation symbols as nodes, and the child
relation E(p, q) to hold whenever p occurs as head, and q within the body of a clause.
The labelling function φ is defined by φ(p) = C whenever there is a clause with head
symbol p and constraint C, and φ(p) = false if p does not occur as head of any clause.

Example 1. We consider a subset of the Horn clauses given in Fig. 2:

(1) r1(X, Res) ← true
(2) r2(X’, Res) ← r1(X, Res) ∧ X’ ≥ 0
(3) r3(X, Res’) ← r2(X, Res) ∧ rf(X, Res’)
(5) false ← r3(X, Res) ∧ Res � X + 1
(6) r5(N, Rec, Tmp) ← true
(9) r8(N, Rec, Tmp) ← r5(N, Rec, Tmp) ∧ N ≤ 0
(11) r9(N, Rec’, Tmp) ← r8(N, Rec, Tmp) ∧ Rec’ = 1
(12) rf (N, Rec) ← r9(N, Rec, Tmp)

Note that this recursion-free subset of the clauses is body-disjoint and head-disjoint,
and thus tree-like. Since the complete set of clauses in Fig. 2 is solvable, also any subset
is; in order to compute a (syntactic) solution of the clauses, we set up the corresponding
tree interpolation problem. Fig. 4 shows the tree with the labelling φ to be interpolated
(in grey), as well as the head literals of the clauses generating the nodes of the tree.
A tree interpolant solving the interpolation problem is given in Fig. 5. The tree inter-
polant can be mapped to a solution of the original tree-like Horn, for instance we set
r8(n8, rec8, tmp8) = (n8 ≤ 0) and r9(n9, rec9, tmp9) = (n9 ≤ −1 ∨ (rec9 = 1 ∧ n9 = 0)).

Symmetric Interpolants. A special case of tree interpolants, symmetric interpolants,
was introduced in [26]. Symmetric interpolants are equivalent to tree interpolants with
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false:
res3 � x3 + 1

r3(x3, res3):
x3 = x2 ∧ x3 = nf ∧ res3 = rec f

r f (nf , rec f ):
nf = n9 ∧ rec f = rec9

r9(n9, rec9, tmp9):
n9 = n8 ∧ rec9 = 1 ∧ tmp9 = tmp8

r8(n8, rec8, tmp8):
n8 = n5 ∧ n8 ≤ 0 ∧ rec8 = rec5 ∧ tmp8 = tmp5

r5(n5, rec5, tmp5):
true

r2(x2, res2):
x2 ≥ 0 ∧ res2 = res1

r1(x1, res1):
true

Fig. 4. Tree interpolation problem for the clauses in Example 1

a flat tree structure (V, E), i.e., V = {root, v1, . . . , vn}, where the nodes v1, . . . , vn are the
direct children of root.

5.4 Restricted (and Unrestricted) DAG Interpolants [1]

Restricted DAG interpolants are a further generalisation of inductive sequence of inter-
polants, introduced for the purpose of reasoning about multiple paths in a program si-
multaneously [1]. Suppose (V, E, en, ex) is a finite connected DAG with entry node en ∈
V and exit node ex ∈ V , further LE : E → Constr a labelling of edges with constraints,
andLV : V → Constr a labelling of vertices. A restricted DAG interpolant is a mapping
I : V → Constr with

1. I(en) = true, I(ex) = false,
2. for all (v,w) ∈ E the entailment I(v)∧LV(v)∧LE(v,w) |= I(w)∧LV (w) holds, and
3. for all v ∈ V it is the case that2

fv(I(v)) ⊆
( ⋃

(a,v)∈E
fv(LE(a, v))

)
∩
( ⋃

(v,a)∈E
fv(LE(v, a))

)
.

2 The definition of DAG interpolants in [1, Def. 4] implies that fv(I(v)) = ∅ for every inter-
polant I(v), v ∈ V , i.e., only trivial interpolants are allowed. We assume that this is a mistake
in [1, Def. 4], and corrected the definition as shown here.
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false

res3 = x3 + 1

nf ≤ −1 ∨ (rec f = 1 ∧ nf = 0)

n9 ≤ −1 ∨ (rec9 = 1 ∧ n9 = 0)

n8 ≤ 0

true

x2 ≥ 0

Fig. 5. Tree interpolant solving the interpolation problem in Fig. 4

The UFO verification system [3] is able to compute DAG interpolants, based on
the interpolation functionality of MathSAT [9]. We can observe that DAG interpolants
(despite their name) are incomparable in expressiveness to tree interpolation. This is
because DAG interpolants correspond to linear Horn clauses, and might have shared
relation symbol in bodies, while tree interpolants correspond to possibly nonlinear tree-
like Horn clauses, but do not allow shared relation symbols in bodies.

Encoding of Restricted DAG Interpolants as Linear Horn Clauses. For every v ∈ V , let

{x̄v} =
( ⋃

(a,v)∈E
fv(LE(a, v))

)
∩
( ⋃

(v,a)∈E
fv(LE(v, a))

)

be the variables allowed in the interpolant to be computed for v, and pv be a fresh
relation symbol of arity |x̄v|. The interpolation problem is then defined by the following
set of linear Horn clauses:

For each (v,w) ∈ E: LV (v) ∧ LE(v,w) ∧ pv(x̄v)→ pw(x̄w),

LV (v) ∧ ¬LV (w) ∧ LE(v,w) ∧ pv(x̄v)→ false,

For en, ex ∈ V: true→ pen(x̄en), pex(x̄ex)→ false

Encoding of Linear Horn Clauses as DAG Interpolants. Suppose HC is a finite,
recursion-free, and linear set of Horn clauses. We can solve the system of Horn clauses
by computing a DAG interpolant for every connected component of the →HC-graph.
As in Sect. 5.2, we normalise Horn clauses according to Def. 2. We also assume that
multiple clauses C ∧ p(x̄p) → q(x̄q) and D ∧ p(x̄p) → q(x̄q) with the same relation
symbols are merged to (C ∨ D) ∧ p(x̄p)→ q(x̄q).

Let {p1, . . . , pn} be all relation symbols of one connected component. We then define
the DAG interpolation problem (V, E, en, ex),LE ,LV by
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– the vertices V = {p1, . . . , pn} ∪ {en, ex}, including two fresh nodes en, ex,
– the edge relation

E = {(p, q) | there is a clause C ∧ p(x̄p)→ q(x̄q) ∈ HC}
∪ {(en, p) | there is a clause D → p(x̄p) ∈ HC}
∪ {(p, ex) | there is a clause E ∧ p(x̄p)→ false ∈ HC} ,

– for each (v,w) ∈ E, the edge labelling

LE(v,w) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C ∧ x̄v = x̄v ∧ x̄w = x̄w if C ∧ v(x̄v)→ w(x̄w) ∈ HC
D ∧ x̄w = x̄w if v = en and D→ w(x̄w) ∈ HC
E ∧ x̄v = x̄v if w = ex and E ∧ v(x̄v)→ false ∈ HC

Note that the labels include equations like x̄v = x̄v to ensure that the right variables
are allowed to occur in interpolants.

– for each v ∈ V , the node labelling LV (v) = true.

By checking the definition of DAG interpolants, it can be verified that every interpolant
solving the problem (V, E, en, ex),LE ,LV is also a solution of the linear Horn clauses.

5.5 Disjunctive Interpolants [30]

Disjunctive interpolants were introduced in [30] as a generalisation of tree interpolants.
Disjunctive interpolants resemble tree interpolants in the sense that the relationship of
the components of an interpolant is defined by a tree; in contrast to tree interpolants,
however, this tree is an and/or-tree: branching in the tree can represent either conjunc-
tions or disjunctions. Disjunctive interpolants correspond to sets of body-disjoint Horn
clauses; in this representation, and-branching is encoded by clauses with multiple body
literals (like with tree interpolants), while or-branching is interpreted as multiple clauses
sharing the same head symbol. For a detailed account on disjunctive interpolants, we
refer the reader to [30].

The solution of body-disjoint Horn clauses can be computed by solving a sequence
of tree-like sets of Horn clauses:

Lemma 2. Let HC be a finite set of recursion-free body-disjoint Horn clauses. HC
has a syntactic/semantic solution if and only if every maximum tree-like subset of HC
has a syntactic/semantic solution.

Proof. We outline direction “⇐” for syntactic solutions. Solving the tree-like subsets of
HC yields, for each relation symbol p ∈ R, a set SCp of solution constraints. A global
solution of HC can be constructed by forming a positive Boolean combination of the
constraints in SCp for each p ∈ R. ��
Example 2. We consider a recursion-free unwinding of the Horn clauses in Fig. 2. To
make the set of clauses body-disjoint, the clauses (6), (9), (11), (12) were duplicated,
introducing primed copies of all relation symbols involved. The clauses are not head-
disjoint, since (10) and (11) share the same head symbol:
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(1) r1(X, Res) ← true
(2) r2(X’, Res) ← r1(X, Res) ∧ X’ ≥ 0
(3) r3(X, Res’) ← r2(X, Res) ∧ rf(X, Res’)
(5) false ← r3(X, Res) ∧ Res � X + 1

(6) r5(N, Rec, Tmp) ← true
(7) r6(N, Rec, Tmp) ← r5’(N, Rec, Tmp) ∧ N > 0
(8) r7(N, Rec, Tmp’) ← r6(N, Rec, Tmp) ∧ rf’(N − 1, Tmp’)
(9) r8(N, Rec, Tmp) ← r5(N, Rec, Tmp) ∧ N ≤ 0
(10) r9(N, Rec’, Tmp) ← r7(N, Rec, Tmp) ∧ Rec’ = Tmp + 1
(11) r9(N, Rec’, Tmp) ← r8(N, Rec, Tmp) ∧ Rec’ = 1
(12) rf (N, Rec) ← r9(N, Rec, Tmp)

(6’) r5 ’( N, Rec, Tmp) ← true
(6’’) r5’’(N, Rec, Tmp) ← true
(9’) r8 ’( N, Rec, Tmp) ← r5’’(N, Rec, Tmp) ∧ N ≤ 0
(11’) r9 ’( N, Rec’, Tmp) ← r8’(N, Rec, Tmp) ∧ Rec’ = 1
(12’) rf ’( N, Rec) ← r9’(N, Rec, Tmp)

There are two maximum tree-like subsets: T1 = {(1), (2), (3), (5), (6), (9), (11), (12)},
and T2 = {(1), (2), (3), (5), (7), (8), (10), (12), (6′), (6′′), (9′), (11′), (12′)}. The subset T1

has been discussed in Example 1. In the same way, it is possible to construct a solution
for T2 by solving a tree interpolation problem. The two solutions can be combined to
construct a solution of T1 ∪ T2:

T1 T2 T1 ∪ T2

r1(x, r) true true true

r2(x, r) x ≥ 0 true x ≥ 0

r3(x, r) r = x + 1 r = x + 1 r = x + 1

r5(n, c, t) true true true

r6(n, c, t) − n ≥ 1 n ≥ 1

r7(n, c, t) − t = n t = n

r8(n, c, t) n ≤ 0 − n ≤ 0

r9(n, c, t) n ≤ −1 ∨ (c = 1 ∧ n = 0) c = n + 1 n ≤ −1 ∨ c = n + 1

r f (n, c) n ≤ −1 ∨ (c = 1 ∧ n = 0) c = n + 1 n ≤ −1 ∨ c = n + 1

r′5(n, c, t) − true true

r′′5 (n, c, t) − true true

r′8(n, c, t) − n ≤ 0 n ≤ 0

r′9(n, c, t) − n ≤ −1 ∨ (c = 1 ∧ n = 0) n ≤ −1 ∨ (c = 1 ∧ n = 0)

r′f (n, c, t) − n ≤ −1 ∨ (c = 1 ∧ n = 0) n ≤ −1 ∨ (c = 1 ∧ n = 0)

In particular, the disjunction of the two interpretations of r9(n, c, t) has to be used, in
order to satisfy both (10) and (11) (similarly for r f (n, c)). In contrast, the conjunction
of the interpretations of r2(x, r) is needed to satisfy (3).
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6 The Complexity of Recursion-Free Horn Clauses
over Quantifier-Free Presburger Arithmetic

We give an overview of the considered fragments of recursion-free Horn clauses, and
the corresponding interpolation problem, in Fig. 6. The diagram also shows the com-
plexity of deciding (semantic or syntactic) solvability of a set of Horn clauses, for Horn
clauses over the constraint language of quantifier-free Presburger arithmetic. Most of
the complexity results occur in [30], but in addition we use the following two
observations:

Lemma 3. Semantic solvability of recursion-free linear Horn clauses over the
constraint language of quantifier-free Presburger arithmetic is in co-NP.

co
-N

P
co

-N
E

X
PT

IM
E

Recursion-free Horn clausesCraig interpolation

Linear tree-like

Body-disjoint

General recursion-free

Tree-like

Head-disjoint

Linear

Inductive interpolant sequences

Binary interpolation

Tree interpolation

Disjunctive interpolation

(Restricted) DAG interpolation

Fig. 6. Relationship between different forms of Craig interpolation, and different fragments of
recursion-free Horn clauses. An arrow from A to B expresses that problem A is (strictly) sub-
sumed by B. The complexity classes “co-NP” and “co-NEXPTIME” refer to the problem of
checking solvability of Horn clauses over quantifier-free Presburger arithmetic.

Proof. A set HC of recursion-free linear Horn clauses is solvable if and only if the
expansion exp(HC) is unsatisfiable [30]. For linear clauses, exp(HC) is a disjunction of
(possibly) exponentially many formulae, each of which is linear in the size of exp(HC).
Consequently, satisfiability of exp(HC) is in NP, and unsatisfiability in co-NP. ��
Lemma 4. Semantic solvability of recursion-free head-disjoint Horn clauses over the
constraint language of quantifier-free Presburger arithmetic is co-NEXPTIME-hard.
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Proof. The proof given in [30] for co-NEXPTIME-hardness of recursion-free Horn
clauses over quantifier-free Presburger arithmetic can be adapted to only require head-
disjoint clauses. This is because a single execution step of a non-deterministic Turing
machine can be expressed as quantifier-free Presburger formula. ��

7 Towards a Library of Interpolation Benchmarks

In order to support the development of interpolation engines, Horn solvers, and verifi-
cation systems, we have started to collect relevant benchmarks of recursion-free Horn
clauses, categorised according to the classes determined in the previous sections.3 The
benchmarks have been extracted from runs of the model checker Eldarica [30], which
processes systems of (usually recursive) Horn clauses by iteratively solving recursion-
free unwindings, as outlined in Sect. 3. For each recursive verification problem, in this
way a set of recursion-free systems of Horn clauses (of varying size) can be synthesised.
The benchmarks can be used to evaluate both Horn solvers and interpolation engines,
according to the correspondence in Fig. 6.

At the moment, our benchmarks are extracted from the verification problems in [30],
and formulated over the constraint language of linear integer arithmetic; in the future, it
is planned to also include other constraint languages, including rational arithmetic and
the theory of arrays. The benchmarks are stored in SMT-LIB 2 format [5]. All of the
benchmarks can be solved by Eldarica, and by the Horn solving engine in Z3 [21].

8 From Recursion-Free Horn Clauses to Well-Founded Clauses

It is natural to ask whether the considerations of the last sections also apply to clauses
that are not Horn clauses (i.e., clauses that can contain multiple positive literals), pro-
vided the clauses are “recursion-free.” Is it possible, like for Horn clauses, to derive
solutions of recursion-free clauses by computing Craig interpolants?

To investigate the situation for clauses that are not Horn, we first have to generalise
the concept of clauses being recursion-free: the definition provided in Sect. 4, formu-
lated with the help of the dependence relation→HC, only applies to Horn clauses. For
non-Horn clauses, we instead choose to reason about the absence of infinite proposi-
tional resolution derivations. Because the proposed algorithms [30] for solving recursion-
free sets of Horn clauses all make use of exhaustive expansion or inlining, i.e., the
construction of all derivations for a given set of clauses, the requirement that no infinite
derivations exist is fundamental.4

3 http://lara.epfl.ch/w/horn-nonrec-benchmarks

https://svn.sosy-lab.org/software/sv-benchmarks/

trunk/clauses/LIA/Eldarica/
4 We do not take subsumption between clauses, or loops in derivations into account. This means

that a set of clauses might give rise to infinite derivations even if the set of derived clauses is
finite. It is conceivable that notions of subsumption, or more generally the application of ter-
minating saturation strategies [13], can be used to identify more general fragments of clauses
for which syntactic solutions can effectively be computed. This line of research is future work.

http://lara.epfl.ch/w/horn-nonrec-benchmarks
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica/
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Somewhat surprisingly, we observe that all sets of clauses without infinite derivations
have the shape of Horn clauses, up to renaming of relation symbols. This means that
procedures handling Horn clauses cover all situations in which we can hope to compute
solutions with the help of Craig interpolation.

Since constraints and relation symbol arguments are irrelevant for this observation,
the following results are entirely formulated on the level of propositional logic:

– a propositional literal is either a Boolean variable p, q, r (positive literals), or the
negation ¬p,¬q,¬r of a Boolean variable (negative literals).

– a propositional clause is a disjunction p ∨ ¬q ∨ p of literals. The multiplicity of a
literal is important, i.e., clauses could alternatively be represented as multi-sets of
literals.

– a Horn clause is a clause that contains at most one positive literal.
– given a setHC of Horn clauses, we define the dependence relation→HC on Boolean

variables by setting p→HC q if and only if there is a clause in HC in which p
occurs positively, and q negatively (like in Sect. 4). The setHC is called recursion-
free if→HC is acyclic.

We can now generalise the notion of a set of clauses being “recursion-free” to
non-Horn clauses:

Definition 4. A set C of propositional clauses is well-founded if there is no infinite
sequence c0, c1, c2, c3, . . . of clauses with the property that

– c0 ∈ C is an input clause, and
– for each i ≥ 1, the clause ci is derived by means of binary resolution from ci−1 and

an input clause, using the rule

C ∨ p D ∨ ¬p
C ∨ D

.

Lemma 5. A finite set HC of Horn clauses is well-founded if and only if it is
recursion-free.

Proof. “⇐” The acyclic dependence relation →HC induces a strict well-founded or-
der < on Boolean variables: q →HC p implies p < q. The order < induces a well-
founded order� on Horn clauses:

(p ∨C) � (q ∨ D) ⇔ p > q or (p = q and C <ms D)

C � (q ∨ D) ⇔ true

C � D ⇔ C <ms D

where C,D only contain negative literals, and <ms is the (well-founded) multi-set
extension of < [12].
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It is easy to see that a clause C ∨D derived from two Horn clauses C ∨ p and D∨¬p
using the resolution rule is again Horn, and (C∨D) � (C∨ p) and (C∨D) � (D∨¬p).
The well-foundedness of� implies that any sequence of clauses as in Def. 4 is finite.

“⇒” If the dependence relation →HC has a cycle, we can directly construct a non-
terminating sequence c0, c1, c2, . . . of clauses. ��
Definition 5 (Renamable-Horn [23]). If A is a set of Boolean variables, and C is a
set of clauses, then rA(C) is the result of replacing in C every literal whose Boolean
variable is in A with its complement. C is called renamable-Horn if there is some set A
of Boolean variables such that rA(C) is Horn.

Theorem 2. If a finite set C of clauses is well-founded, then it is renamable-Horn.

Proof. Suppose C is formulated over the (finite) set p1, p2, . . . , pn of Boolean variables.
We construct a graph (V, E), with V = {p1, p2, . . . , pn,¬p1,¬p2, . . . ,¬pn} being the set
of all possible literals, and (l, l′) ∈ E if and only if there is a clause ¬l∨ l′ ∨C ∈ C (that
means, a clause containing the literal l′, and the literal l with reversed sign).5

The graph (V, E) is acyclic. To see this, suppose there is a cycle l1, l2, . . . , lm, lm+1 = l1
in (V, E). Then there are clauses c1, c2, . . . , cm ∈ C such that each ci contains the liter-
als ¬li and li+1. We can then construct an infinite sequence c1 = d0, d1, d2, . . . of clauses,
where each di (for i > 1) is obtained by resolving di−1 with c(i mod m)+1, contradicting the
assumption that C is well-founded.

Since (V, E) is acyclic, there is a strict total order < on V that is consistent with E,
i.e., (l, l′) ∈ E implies l < l′.

Claim: if p < ¬p for every Boolean variable p ∈ {p1, p2, . . . , pn}, then C is Horn.
Proof of the claim: suppose a non-Horn clause pi ∨ p j ∨ C ∈ C exists (with i � j).

Then (¬pi, p j) ∈ E and (¬p j, pi) ∈ E, and therefore ¬pi < p j and ¬p j < pi. Then also
¬pi < pi or ¬p j < p j, contradicting the assumption that p < ¬p for every Boolean
variable p.

In general, choose A = {pi | i ∈ {1, . . . , n},¬pi < pi}, and consider the set rA(C) of
clauses. The set rA(C) is Horn, since changing the sign of a Boolean variable p ∈ A
has the effect of swapping the nodes p,¬p in the graph (V, E). Therefore, the new
graph (V, E′) has to be compatible with a strict total order < such that p < ¬p for
every Boolean variable p, satisfying the assumption of the claim above. ��
Example 3. We consider the following set of clauses:

C = {¬a ∨ s, a ∨ ¬p, p ∨ ¬b, b ∨ p ∨ r, ¬p ∨ q}
By constructing all possible derivations, it can be shown that the set is well-founded.
The graph (V, E), as constructed in the proof, is:

5 This graph could equivalently be defined as the implication graph of the 2-sat problem intro-
duced in [23], as a way of characterising whether a set of clauses is Horn.
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¬p

¬a

¬s

¬q

b ¬b

p

aq

s

r

¬r

A strict total order that is compatible with the graph is:

¬s < ¬q < ¬r < ¬a < ¬p < b < ¬b < r < p < q < a < s

From the order we can read off that we need to rename the variables A = {s, q, r, a, p}
in order to obtain a set of Horn clauses:

rA(C) = {a ∨ ¬s, ¬a ∨ p, ¬p ∨ ¬b, b ∨ ¬p ∨ ¬r, p ∨ ¬q}

9 Conclusion

In recent years there has been a growing interest in more general forms of interpola-
tion, organising formulae in non-linear structures such as trees, hyper-trees or directed
acyclic graphs. In this paper we showed that many forms of interpolation can be de-
fined as subclasses of recursion-free Horn clauses, provided a taxonomy of the various
fragments, and investigated computational complexity. We believe that the results are
valuable for application domains of Horn constraints, in particular in program verifica-
tion and model checking.
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Abstract. Having a precise yet sound abstraction of the inputs of nu-
merical programs is important to analyze their behavior. For many pro-
grams, these inputs are probabilistic, but the actual distribution used
is only partially known. We present a static analysis framework for rea-
soning about programs with inputs given as imprecise probabilities: we
define a collecting semantics based on the notion of previsions and an ab-
stract semantics based on an extension of Dempster-Shafer structures.
We prove the correctness of our approach and show on some realistic
examples the kind of invariants we are able to infer.

1 Introduction

Static analysis of embedded softwares faces the difficulty of correctly and pre-
cisely handling the program inputs. These inputs are usually given by sensors
that measure a physical value continuously evolving with time. The classical ab-
straction of such inputs is to assign them with the range of values that the sensor
may measure: in this way, we obtain a non-deterministic over-approximation of
the values of the inputs which is then propagated through the program.

However, in addition to this non-deterministic abstraction of the values, we
often have a probabilistic information on where the inputs lie in the range of
possible values. This probabilistic information may be given by some knowledge
on the physical environment with which the program interacts, or may be intro-
duced as noise by the sensor. This noise can be very often modeled as a random
variable with a Gaussian law; the value of the inputs is then given by V + ε
where V is a non-deterministically chosen value and ε is the probabilistic noise.

In this article, we present a framework to analyse deterministic programs
with both probabilistic and non-deterministic inputs. In Section 2, we motivate
our use of previsions and Probability-boxes. In Section 3, we define our concrete
semantics based on previsions and in Section 4, we present our abstract semantics
based on probabilistic affine forms. We prove its correctness in Section 5 and show
in Section 6 the kind of invariants we are able to compute on realistic examples.
Let us remark that to ease the understanding of this article, we have omitted
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various technical details such as the use of floating-point numbers or the impact
of run-time errors on the semantics. We discuss these points in the course of the
exposition.

Running Example. In this article, we use a linear, order 2 filter to illustrate both
our concrete and abstract semantics. This filter is given by the loop:

while(1) {

y = 0.7*x - 1.3*x0 + 1.1*x1 + 1.4*y0 - 0.7*y1;

x1 = x0; x0 = x; y1 = y0; y0 = y;

x = input();

}

Numerical filters are very important for the analysis of embedded softwares as
they are present in (almost) every software that must handle data coming from
sensors. Computing the range of values reachable by the output variable y is a
challenge adressed by many techniques [15]. However, all these methods assume
that the inputs x (given by the function input() in the program) are bounded
within a certain range and do not assume any distribution of the values within
this range. Here, we assume that the input variables follow some probability
distribution but we do not know which: we assume that x follows a uniform
law on the range [−A,A] for some A ∈ [0, 0.2]. Moreover, we assume that the
distribution of the inputs may change during the execution of the filter, i.e. the
distribution of input x read at iterate n (represented in the program by x) is
not the same as the one of x read at iterate n-1 (represented in the program
by x1). We however know that both are uniform distribution on some range
[−A,A]. We ran 10 simulations of this filter and show below the 10 distributions
in cumulative form (CDF) for the output variable y. Our goal is to compute
guaranteed yet precise bounds on this set of distributions.
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Contribution. In this paper, we present three main results. First, we define a
semantics for imperative programs with inputs defined as imprecise probabili-
ties. We define an operational and denotational semantics based on previsions
and show their equivalence. Next, we define a new abstract domain based on
probabilistic affine forms and especially new join and meet operators. Finally,
we prove the correctness of the abstract semantics w.r.t the concrete ones and
give some hints on how to adapt it to the analysis of hybrid systems by showing
on one example how we can solve ODEs with our domain.
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2 Related Work

One of our goals is to give a concrete semantics to an imperative language
with access to imprecise inputs. Typically, these inputs will be numerical values
given by physical sensors. Imagine a signal processing software that filters out
thermal noise [29] from images given by a digital camera, for example with non-
linear filtering techniques such as median filters [1]. Thermal noise is such that
each pixel has an independent Gaussian noise, with zero mean and a standard
deviation varying according to Nyquist law [29]. In particular, the standard
deviation depends on the temperature, but not on pixels’ values. In order to
characterize the bounds on the noise after filtering, in all standard operational
conditions (say, between -20 and 40 degrees Celsius), one has to consider all
potential inputs, sum of a non-deterministic and bounded value (the range of
the pixels, which is known) with a Gaussian noise of variance in a given interval,
as computed by Nyquist law.

As exemplified above, one of our concerns will be to reason with so-called im-
precise probabilities. There is a vast literature on the subject, and there are sev-
eral mathematical notions that model imprecise probabilities, among which those
based on capacities [8], and those based on previsions [41]. Capacities are simply
monotone functions that map each measurable subset to its measure, such that
the measure of the empty set is 0; but the measure of the disjoint union of two
sets A and B does not necessarily coincide with the sum of their measures.

Previsions [41], on the other hand, are more abstract objects, but are better
suited to giving semantics to programs [24], in a style akin to continuation-
passing. Capacity-based semantics fail because we cannot even define sequential
composition there [24]; sequential composition is defined by complex formulas
in other models, such as convex powercones [40], where this involves unique
extensions of maps to sets of non-empty closed convex subsets.

There are variations in what a prevision on a space X of values is. To us, a
prevision onX will be anymap F : 〈X → [0, 1]〉 → [0, 1] such that F (ah) = aF (h)
for all a ∈ [0, 1], where 〈X → [0, 1]〉 is the set of all measurable maps from X to
[0, 1]. We say that F is ω-continuous if and only if F (supn∈N hn) = supn∈N F (hn)
for every countable chain (hn)n∈N

, and F is ω-cocontinuous iff F (infn∈N hn) =
infn∈N F (hn), where the sups and infs are taken pointwise. Compared to [24], h is
allowed to range over measurable maps, not just the bounded continuous maps,
we drop the requirement of Scott-continuity, and the target space is [0, 1], not R+.

In this form, previsions are generalized integrals : we write F (h) for the inte-
gral of h. Ordinary integrals F (h) =

∫
x∈X h(x)dμ along an (additive) measure

μ define particular cases of previsions F ; distinctively, such previsions are lin-
ear, in the sense that F (h + h′) = F (h) + F (h′), and are ω-continuous and ω-
cocontinuous. Previsions do not demand linearity. Dropping linearity allows us to
encode imprecise probabilities. For one, every capacity ν gives rise to a prevision,
by the formula F (h) =

∫
x∈X h(x)dν, where the integral with respect to the non-

additive measure ν is the so-called Choquet integral [8]. E.g., if ν = 1
3eA1 +

2
3eA2

(the example capacity eA gives measure 1 to any set that meets A, and 0 to the
others), then F (h) =

∫
x∈X h(x)dν = 1

3 supx∈A1
h(x) + 2

3 supx∈A2
h(x). Not all
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previsions are obtained as integrals from capacities, and this is the key ingre-
dient used in [24] to provide a monad-based semantics to languages with non-
deterministic and probabilistic choice. The basic intuition is that while capacities
encode measures over sets, previsions encode sets of measures. Precisely, an up-
per prevision F (i.e. ∀h, h′, F (h)+F (h′) ≥ F (h+h′), and F is ω-cocontinuous),
encodes the set of all linear previsions G that are pointwise below F . The sin-
gle functional F therefore encodes the set of all those measures μ such that∫
x∈X h(x)dμ ≤ F (h) for every h. There is also a dual notion of lower prevision
F (namely, F (h) + F (h′) ≤ F (h + h′), and F is ω-continuous), which encodes
the set of all the measures μ such that

∫
x∈X

h(x)dμ ≥ F (h) for every h.

Implementations of Imprecise Probabilities. P-boxes [17] and Dempster-
Shafer structures [36], which are both related to capacities, are used to propagate
both probabilistic and non-deterministic information in numerical simulation for
instance. Arithmetic rules on P-boxes were defined in e.g. [42], and implemen-
tations are available, for instance the DSI Toolbox [2] based on Matlab and
INTLAB [34], Statool [4] implementing the arithmetic of [3] and RiskCalc [16].
They were not designed to be used for static analysis of programs (there is no
consideration on semantics of programs nor join operators defined, typically) as
we do in this paper but are rather designed for making numerical simulations
or optimizations [19] for instance for risk assessment [18]. Several recent papers
proposed extensions of these arithmetics that either increase the precision or the
efficiency of this arithmetic, as in e.g. [7], [37], [38] and [5]. Let us mention as well
Neumaier’s clouds [33] as another way to formalize imprecise probabilities (used
in [19]). A unification of the different uncertainty representations was proposed
in [11,12] with comparisons between P-boxes and clouds.

The domain theoretic foundations of imprecise probabilities were studied by
several authors, among which one of the authors of this paper [24,23,26,25]. In
particular, the convex powerdomains of spaces of measures on X was studied by
Mislove [31], by Tix et al. [39,40], and by Morgan and McIver [30].

Static Analysis of Probabilistic Systems. There is a large literature in
static analysis of probabilistic systems, some in abstract interpretation but most
notably in model-checking. Our work is orthogonal to the one in probabilistic
model-checking (as implemented in e.g. PRISM [27]) where probability distribu-
tions (but not imprecise probabilities) are considered on transitions of a transi-
tion model (and not on data, as we do here). The models used are mostly based
on discrete time Markov chains [14].

In static analysis of programs by abstract interpretation, which is the subject
of this paper, several abstract semantics have been considered. Monniaux [32] au-
tomatically constructs a probabilistic abstract domain as a collection of abstract
elements with an associated weight. This is very similar to Dempster-Shafer
structures where focal elements are elements of the underlying abstract domain.
Our main advantage with respect to Monniaux’ framework is that our arith-
metic is efficient, precise and keeps some dependencies between variables, while
the construction in [32] is not optimized for a specific abstract domain.
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Another choice that has been sometimes made in abstract interpretation is to
model imprecise probabilistic choice by random variables instead of probability
distributions. The distinction is tenuous but real. Instead of giving a probability
distribution over the intended value, one defines a probability distribution π
on another, fixed space Ω (of so-called events), and describe the probability
over the intended value v as the image measure of π by some measurable map
f from Ω to the space of values. This is the approach taken by Cousot and
Monereau [10], where Ω is the space of infinite sequences of coin flips, each coin
flip being independent and unbiased. A probability distribution on a space X
is then encoded by a measurable map f : Ω → X , and the (image) measure of
A ⊆ X is π(f−1(A)). One can then encode imprecise probabilities as well, as
sets of measurable maps f .

The difficulty with this approach is that every probability law has to be de-
scribed through some measurable map f : Ω → X , and must be implemented
by a program [f ] for the analysis to proceed. E.g., to describe the Gaussian
distribution on X = R with mean μ and standard deviation σ, one would im-
plement a function [f ] that takes a sequence of independent, unbiased random
booleans, and returns a (μ, σ)-normal random real. This is certainly possible,
but the static analyzer will have to be sufficiently precise to derive meaningful,
precise semantic invariants from the code of [f ]. Our approach, based on P-box
approximants to actual sets of distribution laws, is more direct.

Another approach, which is very promising, is taken in [35] that presents an ap-
proach for finding interval bounds on the probability of assertions over program
variables by examining finitely many paths and performing a standard symbolic
execution along each path. The goal of this approach is to use polyhedral volume
bounding techniques for summing up the probability of assertion being satisfied
along each path. The probability of unexplored paths is computed and added to
the overall interval bound. Unlike our work, Sankaranarayanan et al. deal with
precisely specified probability distributions whereas our work can handle impre-
cise probabilities. Furthermore, our approach here can represent the joint distri-
butions of program variables at intermittent programpoints to potentially answer
a larger set of questions about the program behavior. Whereas, their work focuses
on queries posed at the end of the program execution. Since their work is unpub-
lished at the time of writing, we provide an indirect comparison by demonstrating
our technique on some of the benchmarks used in their paper.

3 Concrete Semantics

We consider the toy imperative language shown in Figure 1 as the core of lan-
guages such as C, to which we add a specific assignment instruction x1, . . . , xk :=
input, which we explain below, and program points � : , where � is taken from a
countably infinite set L of so-called labels. The latter are used to name program
points, not as targets of goto statements.

All instructions except one are standard. The input construction is meant to
read the value of some sensors. Semantically, theses values will be probability
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e ::= v | c | e1 + e2 | e1 − e2 | e1 × e2 | e1 ÷ e2
b ::= true | false | x ≤ c | x < c | x ≥ c | x > c | ¬b
s ::= x := e assignment
| � : program point
| x1, . . . , xk := input sensor input
| s1; s2 sequence
| if (b) { s1 } else { s2 } conditional
| while(b) { s1 } loop

Fig. 1. Syntax

distributions, so it may be helpful to visualize them as returning some actual
value plus some random noise. We assume k noisy sensors, which may be corre-
lated. If they were uncorrelated, i.e., independently distributed, then a language
with k sensor-reading expressions inputi, each one returning the distribution of
sensor number i, would have been sufficient. Instead, we use one input construc-
tion that returns a joint distribution νinp over all the values of the k sensors. To
make the semantics simpler, we reserve k variables x1, . . . , xk as destinations of
the input instruction, and call them the sensor variables. If one wishes to read,
say, the first and the fourth sensor variables only, and in variables x and z in-
stead of the fixed variables x1 and x4, one should write x := x1; z := x4 after the
instruction x1, . . . , xk := input. Our concrete semantics is parameterized by the
joint sensor distribution νinp, which we do not necessarily know. Our abstract
semantics will abstract the latter by so-called Dempster-Shafer structures.

The variable x in assignments x := e denotes any non-sensor variable; these
form a finite set Var. We shall write Var+ for Var ∪ {x1, . . . , xk}. The set Σ

of environments is RVar+ , the set of all maps, denoted ρ, from Var+ to R.
Expressions e and boolean tests b have deterministic semantics �e�ρ ∈ R and
�b�ρ ∈ B. We shall not describe it in detail, as it is mostly obvious, e.g., �e1 +
e2�ρ = �e1�ρ + �e2�ρ. The maps λρ · �b�ρ and λρ · �e�ρ are measurable maps of

ρ ∈ Σ, where Σ is equated with R|Var+|, equipped with its standard σ-algebra.
We do not consider runtime errors here, and therefore assume division by 0 to
return some arbitrary real number. We discuss this choice (and the choice of real
numbers) at the end of this section.

We write a sequence of statements, i.e. a program, as Λ. We define an opera-
tional semantics of this language that infers judgments of the form � �

(
Λ, ρ

)
↓±κ

a, for ± ∈ {+,−}, where � ∈ L, a ∈ [0, 1] and κ : Σ → [0, 1] is a bounded mea-
surable map. When κ is the indicator map χE of a measurable subset E of Σ,
the intended meaning will be: starting from Λ in environment ρ, the probability
of reaching label � with some environment in E is at least (resp. at most) a if
± is − (resp. +). In general, it is practical to use general measurable maps κ
instead of indicator maps χE , and the meaning of � �

(
Λ, ρ

)
↓−κ a will be: the

average value of κ(ρ′) over all environments ρ′ reached when at label � is at
least a (at most a for � �

(
Λ, ρ

)
↓+κ a). For lack of space, we won’t describe it

here, but see Appendix A. We directly proceed to a prevision-based, denotational
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�x := e�±�,κhρ = h(ρ[x �→ �e�ρ]) �s1; s2�
±
�,κhρ = �s1�

±
�,κ

(
�s2�

±
�,κh

)
ρ

�� : �±�,κhρ = κ(ρ) ∨± h(ρ) ��′ : �±�,κhρ = h(ρ) if �′ �= �

��x1, . . . , xk := input�±�,κhρ = F±
inp(λv1, . . . , vk · h(ρ[x1 �→ v1, . . . , xk �→ vk]))

�if (b) { s1 } else { s2 }�±�,κhρ =

{
�s1�

±
�,κhρ if �b�ρ = 1

�s2�
±
�,κhρ if �b�ρ = 0

�while(b) { s1 }�±�,κ =
∨±

i∈N
Hi

b,s1
(⊥±)

where Hb,s1 = λϕ : 〈Σ → [0, 1]〉 → 〈Σ → [0, 1]〉·

λh ∈ 〈Σ → [0, 1]〉, ρ ∈ Σ ·
{

�s1�
±
�,κ(ϕ(h))ρ if �b�ρ = 1

h(ρ) if�b�ρ = 0

Fig. 2. Concrete semantics

semantics that will play a role similar to collecting semantics in non-probabilistic
settings, and will get us closer to an abstract semantics. For a proof that the
prevision-based semantics matches the operational semantics, see Appendix B.

Our prevision-based denotational semantics is in the spirit of [24], except for
the use of measure theory in place of domain theory. This is given in Figure 2:
�s�±�,κhρ is meant to give the sup (if ± is +), resp. the inf (if ± is −) over all
possible non-deterministic choices (when to stop and observe κ, which probability
distribution νinp satisfying (6) to choose) of the average values that κ takes when
we reach �, running statement s starting from environment ρ. It is helpful to think
of h as a continuation, as in [24], and of κ as another continuation, triggered
at certain times where we reach label � : . Write a ∨± b for min(a, b) if ± is −,
max(a, b) if ± is +. We define ��′ : �±�,κhρ, when �′ = �, as the result of a non-

deterministic choice (∨±, i.e., max or min) of what happens if we choose to end
computation right here (giving an expected value of κ(ρ)), and of what happens
(h(ρ)) if we decide to proceed. The semantics is defined for continuations h that
are measurable maps from Σ to [0, 1], just like for κ, and produces functionals
�s�±�,κ mapping continuations h and environments ρ ∈ Σ to elements of [0, 1].

The bottom functional ⊥− maps all h, ρ to 0, and the top functional ⊥+ maps
all h, ρ to 1. This is used in the rule for while loops, where we also agree to write∨+

for sup and
∨−

for inf.
The semantics of Figure 2 is only defined provided the integral used in the

case of noisy (random) inputs is defined. This is ensured by checking that the
semantics of any program is measurable. In the case of while loops, this follows
from the fact that the pointwise sup of a countable chain of measurable maps
is measurable. To prove this in the case of sequential composition, we need to
prove the following more general result.

Theorem 1. For every measurable maps κ, h : Σ → [0, 1], �s�±�,κhρ is a well-

defined number in [0, 1]. For fixed κ, h, �s�±�,κh : Σ → [0, 1] is a measurable map.

For fixed κ, the map λh · �s�±�,κhρ is a prevision, which is upper if ± is +, lower
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if ± is −. For fixed h, the map λκ · �s�+�,κhρ is ω-continuous, and λκ · �s�−�,κhρ
is ω-cocontinuous.

Proof. (Sketch.) By structural induction on s. For assignments x := e, the mea-
surability of �x := e�±�,κh = λρ ·h(ρ[x �→ �e�ρ]) follows from the fact that λρ ·�e�ρ
is measurable, and that h is measurable. For sequences s1; s2, we use the fact that
composition preserves measurability, monotonicity, being upper, being lower, ω-
continuity, and ω-cocontinuity. In the case of while loops, we use the fact that
the sup of a countable chain of measurable, resp., ω-continuous maps, is again
measurable, resp., ω-continuous. Dually, the inf of a countable chain of measur-
able, resp., ω-cocontinuous maps, is again measurable, resp., ω-cocontinuous. ��

We extend the denotational semantics to lists Λ by �ε�±�,κ = id (i.e., �ε�±�,κhρ =

h(ρ)), and �s • Λ�±�,κ = �s�±�,κ ◦ �Λ�±�,κ; so the semantics of Λ = s1 • s2 • . . . • sn
coincides with that of the sequence s1; s2; . . . ; sn. Now, given a program Λ, an
intial state ρ, a label � and a measurable map κ, the denotational semantics
computes two values �Λ�−�,κh1ρ and �Λ�+�,κh0ρ that enclose the possible value of
κ on the program variables when we reach �. Here, h0 (resp. h1) is the constant
map associating to each environment ρ h0 (resp. h1).

We finish this section with a remark on real vs. floating-point numbers. This
semantics is what we shall call the ideal semantics of expressions and tests.
Actual programs will handle floating-point numbers, not real numbers. At the
level of the concrete semantics, that would be easily repaired, as follows. First,
there is a finite subset F ⊆ R of so-called floating-point numbers, and a rounding
function πF : R → F. Mathematically, πF is a projection, namely πF(v) = v for
every v ∈ F. The floating-point semantics �e�′ρ is obtained by rounding back
results, as in, e.g., �e1 + e2�

′ρ = πF(�e1�
′ρ + �e2�

′ρ). Considering a floating-
point semantics instead of the ideal semantics would make the statement of our
semantics complicated. We would have to take rounding modes into account,
and the fact that they can change over the course of a program running; we
would need to extend R and F to include non-numerical values such as infinites
and NaNs; and we would have to make several cases to define the results of tests
such as e1 < e2 whenever �e1�

′ρ or �e2�
′ρ is non-numerical. Errors would also

handle the case of division by zero, which we mentioned earlier.
We consider these issues orthogonal to the present paper, whose main purpose

is to give a semantics to numerical programs with uncertain probabilities. Errors
incurred by the fact that actual programs use floating-point values instead of
real numbers can be handled at the level of the abstract semantics. One can
extend probabilistic affine forms to handle rounding errors, as quickly described
in [5], in the same way as for affine forms [22], and we intend to invest in that
direction in the future.

4 Abstract Semantics

We now formally define our abstract semantics. It is based on an abstract domain
that extends the probability affine forms of [5] as it introduces a join operator
and an order relation. We first recall the notion of Dempster-Shafer structures.



30 A. Adje et al.

4.1 Dempster-Shafer Structures

An interval based Dempster-Shafer structure [36] (DSI in short) is a finite set
of closed intervals (named focal elements), each associated with a weight (in a
more general setting [36], focal elements are not necessarily closed intervals).
DSI structures thus represent real variables whose value can be obtained by first
probabilistically picking up an interval, and then non-deterministically picking
up a value within this interval. In this article, we write a DSI structure d as
d =

{
〈x1, w1〉 , 〈x2, w2〉 , . . . , 〈xn, wn〉

}
, where xi ∈ I is a closed interval and

wi ∈ (0, 1] is the associated probability. For example, the DSI

d1 =
{
〈[−1, 0.25], 0.3〉 ; 〈[−0.5, 0.5], 0.2〉 ; 〈[0.25, 1], 0.5〉

}
represents a real-valued random variable X whose value is in [−1, 0.25] with
probability 0.3, in [−0.5, 0.5] with probability 0.2, and in [0.25, 1] with probability
0.5. We require that all intervals are non-empty, and that

∑n
k=1 wk ≤ 1: when

the inequality is strict, this means that the variable X is with probability 1 −∑n
k=1 wk > 0 in R\

⋃n
k=1 xk. We write DS for the set of all DSI structures over

closed intervals.
Remark that there exists another popular model for imprecise probabilities,

namely Probability-boxes [17] (P-box in short). We already showed in [5] that
finite DSI structures and discrete P-box are equivalent. Intuitively, a P-box is
a couple of two increasing functions

[
P , P

]
that pointwise enclose a set of cu-

mulative distribution functions. From a DSI d, we define the P-box
[
Pd, Pd

]
by

Pd(u) =
∑

xi<uwi and Pd(u) =
∑

xi≤uwi. We then graphically represent d by

the graphs of the two functions
[
Pd, Pd

]
.

Example 1. Let d1 =
{
〈[−1, 0.25], 0.1〉 ; 〈[−0.5, 0.5], 0.2〉 ; 〈[0.25, 1], 0.3〉 ; 〈[0.5, 1], 0.1〉 ;

〈[0.5, 2], 0.1〉 ; 〈[1, 2], 0.2〉
}
. Then

[
P2, P2

]
= ζ(d1) is plotted on the graph below.

−1 −0.5 0.25 0.5 1 2

1

Join and Meet on DS Structures. The join of two DSI dX and dY is defined
as the union of all focal elements from dX and dY , with the same probabilities,
followed potentially by a normalization if the sum of all probabilities is greater
than 1. For example, the join of the DSI dx = {〈[−1, 0], 0.5〉 ; 〈[0, 1], 0.4〉} and
dy = {〈[0.5, 1.5], 0.2〉} is {〈[−1, 0], 0.46〉 ; 〈[0, 1], 0.36〉 ; 〈[0.5, 1.5], 0.18〉}.

We do not define a meet operator on DSI but rather we define the operator
ltd(dx, dy) that reduces a DSI on a variable X to enforce the constraint X ≤
Y . Intuitively, the resulting DSI contains all the focal elements of the form
ltI(xi,yj), when 〈xi, ai〉 is a focal element of dx and 〈yj , bj〉 is a focal element
of dy , with:
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Fig. 3. Intersection between two DSI structures d1 (in gray) and d2 (dotted). The
result is the filled DSI.

ltI([a, b], [c, d]) =

{
∅ if a > d

[a,min(b, d)] otherwise

and the associated probability is then wi ×wj . For example, if dx is a DSI over-
approximating a uniform distribution on [−1, 1] and dy is the DSI with one focal
element [−0.05, 0.05] (i.e. mimicking a Dirac at 0), then ltd(dx, dy) is depicted
on Figure 3. Remark that even if dx and dy are normalized (with the sum of
probabilities equal to 1), ltd(dx, dy) may be denormalized. We use this operator
to give the semantics of conditional statements of the form if (X<=Y) s1 else

s2, and define equivalently a gtd(dx, dy) operator that enforces that X ≥ Y .

4.2 Abstract Domain: Probabilistic Affine Forms

Clearly, P-boxes or DSI could be chosen as an abstraction of a set of probability
distributions, arithmetic rules and an order relation can also be easily defined.
However, P-boxes alone cannot be used efficiently for the analysis of programs
as the arithmetic between them must differentiate the case when variables are
independent or not [3]. And in the case when two variables x and y are not
independent, the interpretation of arithmetic operations creates a large over-
approximation as any dependency relation between x and y must be assumed.
To increase the precision, we present the abstract domain of probabilistic affine
forms, for which arithmetic operations were defined in [5].

Intuitively, a probabilistic affine form encodes both the linear dependency
between every program variable and the input (as with classical affine forms,
see [21]), and an abstraction of the inputs as a DSI. We can thus compute the
DSI associated with each variable (it is a linear transformation of the inputs),
and we use the linear correlations between variables to compute the arithmetic
operations. The potential non-linear relations (due to non-linear operations in
the program) are over-approximated by an additional linear term.

More formally, perturbed affine forms [20,21] are an extension of affine forms [9]
in which each variable x is over-approximated by an expression of the form
x̂ = αx

0 +
∑n

i=1 α
x
i εi +

∑m
j=1 β

x
j ηj where the noise symbols εi or ηj are formal

variables ranging over [−1, 1] just as in affine forms, but where we differenciate
the symbols εi that are directly related to an (uncertain) input value or pa-
rameter, and the symbols ηj that express an uncertainty in the analysis (loss



32 A. Adje et al.

of relation due to non linear computations for instance). For probabilistic affine
forms, we will also use two kind of symbols, which will be random variables:
the εi that are considered independent from one another, the ηj have unknown
dependencies to the others.

Affine forms are closed under affine transformations: for λ ∈ R,

x̂+ λŷ = αx
0 + λαy

0 +
n∑

i=1

(αx
i + λαy

i )εi +
m∑

j=1

(βx
j + βy

j )ηj .

Multiplication creates a new symbol ηm+1 associated with the non-linear part:

x̂× ŷ = αx
0α

y
0 +

R

2
+

n∑
i=1

(αx
0α

y
i + αx

i α
y
0)εi +

m∑
j=1

(αx
0β

y
j + βx

j α
y
0)ηj + Tηm+1

with R =
∑n

i=1 |αx
i α

y
i |+

∑m
j=1 |βx

j β
y
j | and

T =

n∑
i=1

m∑
j=1

|αx
i β

y
j + βx

j α
y
i |+

n∑
i=1

n∑
j>i

|αx
i α

y
j + αx

jα
y
i |+

m∑
i=1

m∑
j>1

|βx
i β

y
j + βx

j β
y
i |+

1

2
R .

We next define probabilistic affine forms, an extension of affine forms, and
formally define our abstract semantics.

Definition 1 (Probabilistic affine form). We define a probabilistic affine
form for variable x, on n independent noise symbols (ε1, . . . , εn) and m noise
symbols (η1, . . . , ηm) with unknown dependency to the others, by a form

x̂ = αx
0 +

n∑
i=1

αx
i εi +

m∑
j=1

βx
j ηj

together with n DSI (dε1 , . . . , dεn) and m DSI (dη1 , . . . , dηm) describing the pos-
sible random variables (of support [−1, 1]) for the noise symbols.

The interest of affine forms is to be able to represent affine relations that
hold between uncertain quantities. We still have this representation, except only
imprecise affine relations hold, as can be shown in the example below.

Example 2. Let x̂1 = 1+ε1−η1, x̂2 = − 1
2ε1+

1
4η1, dε1 = {〈[−1, 0], 12 〉, 〈[0, 1],

1
2 〉},

dη1 = {〈[− 1
10 , 0],

1
2 〉, 〈[0,

1
10 ],

1
2 〉}, Then x̂1 + 2x̂2 = 1 − 1

2η1, with d = dx1+2x2 =
{〈[ 1920 , 1],

1
2 〉, 〈[1,

21
20 ],

1
2 〉}. Thus the lower probability that x1+2x2 ≤ 21

20 is 1; and
the upper probability that x1+2x2 <

19
20 is 0. But for instance, x2+2x2 ≤ 1 has

upper probability 1
2 and lower probability 0 and is thus an imprecise relation.

Given a probabilistic affine form x̂, we define its enclosing DS structure, de-
noted γd(x̂), by: γd(x̂) = αx

0 +Σn
i=1α

x
i dεi ⊕

⊕m
j=1 β

x
j dηj ,, where + and Σ repre-

sents the sum of DSI using the independent arithmetic, and ⊕ is the sum of DSI
using the unknown dependency arithmetic [5]. In other worlds, γd(x̂) computes
a DSI by summing the DSI associated with each noise symbol of x̂.
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Definition 2 (Abstract environment). Given variables Var+, an abstract
environment ρ� is a function mapping each variable x ∈ Var+ to a probabilistic
affine form over the same set of noise symbols. Let Σ� be the set of all abstract
environments. For x ∈ Var+, we shall write:

ρ�(x) = αx
0 +

n∑
i=1

αx
i εi +

m∑
j=1

βx
j ηj .

Our abstract semantics is a classical collecting operational semantics on ab-
stract environments. Given a program, equivalently a statement list Λ, and an
initial environment ρ0, the abstract semantics associates an abstract environment
with each label � such that � : is in Λ. We thus define a function �Λ��� : Σ → Σ�.
Its value on a variable x is an affine P-box which encodes an upper set of prob-
ability distributions on the value that x can take at control point �. They are
potentially denormalized since this is not describing the conditional probability
distributions of x knowing that we are in � but rather the probability distribu-
tions of reaching � with certain values. We will prove in Section 5 that �Λ���(ρ0) is
a correct abstraction of �Λ�±�,κρ0. The abstract semantics depends on various ele-
mentary operations on abstract environnments: input, join, meet and expression
evaluation. We present them in the rest of this section.

Inputs. The concrete semantics is parametrized by probability distribution νinp
for the possible values of the input variables. Equivalently, our abstract semantics
is parametrized by a set of DSI d1, . . . , dk such that all marginal distributions
of νinp for xi are contained in di, for i ∈ [1, k]. Then, the abstract semantics
�x1, . . . , xk := input�� assigns each input variable xi to a new noise symbol
(either εk or ηk depending on the assumed dependency between inputs and other
variables) and we associate the DSI di with this noise symbol. For example,
if we assume we have one input variable x1 independent from other variables
and uniformely distributed on [a, b], the probabilistic affine form x̂1 after the
instruction x1 := input will be x̂1 = a+b

2 + b−a
2 εk where εk is a fresh noise

symbol associated with a DSI enclosing the uniform distribution on [−1, 1].

Join. Let ρ�1 and ρ�2 be two abstract environments. We define the join ρ�1 � ρ�2
pointwise, i.e. ∀x ∈ Var, ρ�1 � ρ

�
2(x) = ρ�1(x) ·�ρ

�
2(x) where ·� is the join operator

between two affine forms defined below.
Let now x ∈ Var and let us write ρ�1(x) = α1

0 +
∑n

i=1 α
1
i εi +

∑m
j=1 β

1
j ηj and

ρ�2(x) = α2
0 +

∑n
i=1 α

2
i εi +

∑m
j=1 β

2
j ηj . As in [21], the join x̂ = ρ�1(x) ·�ρ

�
2(x)

is computed as an affine transformation of the existing noise symbols plus a
new noise symbol ηm+1 that is used to over-approximate the error made by the
linearization, i.e. x̂ = x̂l + ηm+1 with x̂l = α0 +

∑n
i=1 α

iεi +
∑m

j=1 β
jηj where

the values of the coefficients are given by Equations (1) to (3).

α0 = m
(
γd(α

0
1)� γd(α

0
1)
)

(1)

∀i ∈ [1, n], αi = argmin(αi
1, α

i
2) (2)

∀j ∈ [1,m], βj = argmin(βj
1 , β

j
2) (3)
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Intuitively, the central term of x̂ is the middle of the support of the DSI
concretization of both affine forms (we note this m(d) for a DSI d). The argmin
function, defined by argmin(x, y) = z with z ∈ [min(x, y),max(x, y)] and |z| is
minimal, keeps the best possible relation between on each noise symbol between
the affine forms ρ�1(x) and ρ

�
2(x).

The new noise symbol ηm+1 is defined to compensate this linearization. So,
we define the DSI associated with ηm+1 by dηm+1 = γd(x̂l − x) � γd(x̂l − y).
Recall that � is the join operator on DSI.

Meet. As for DSI, we do not define formally the meet over probabilistic affine
forms but rather give an operator ltd(x̂, ŷ) that reduces the DSI of each symbol
in x̂ to enforce that the variables x and y verify x ≤ y. It will be used in
our abstract semantics to handle boolean expressions of the form X ≤ Y . We
here use an approach equivalent to the one over deterministic affine forms as
introduced in [20], in which the meet was interpreted in an abstract domain over
noise symbols. To simplify the presentation, let us consider two probabilistic
affine forms x̂ and ŷ over two noise symbols ε1 and ε2. The generalization to
arbitrary many noise symbols is straightforward. Intuitively, we want to enforce
that αx

0 + αx
1dε1 + αx

2dε2 ≤ αy
0 + αy

1dεy1 + αy
2dεy2 , which leads to the following

reduction:

dε1 = ltd

(
dε1 ,

αx
0 − αy

0 + (αx
2 − αy

2)dε2
αx
1 − αy

1

)

dε2 = ltd

(
dε2 ,

αx
0 − αy

0 + (αx
1 − αy

1)dε1
αx
2 − αy

2

)

These equations can be iterated to reduce the DSI associated with ε1 and ε2, and
we define lt(x̂, ŷ) as the greatest fixpoint of the iteration of these two equations.

Arithmetic Operations. We defined the arithmetic operations on probabilistic
affine forms in [5]. For affine arithmetic operations, there is nothing new com-
pared to the deterministic case and the DSI structures attached to symbols are
not modified. For non-linear operations, we can rely on the affine form calcu-
lus, but instead of only bounding the non-linear part of the multiplication of
the affine forms, we use the available calculus on DSI to form a correct DSI
representing this non-linear part. This makes the calculus correct even for de-
normalized DSI. We carefully alternate between the independent and unknown
dependency arithmetic on DSI to have a sound over-approximation.

5 Correctness Proofs

In this section, we relate our notion of probabilistic affine forms with the seman-
tics defined in Section 3. Intuitively, for each label � that appears in the program,
both semantics compute a set of probability distributions on the program vari-
ables when the program reaches �. The concrete semantics computes bounds
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on the probability distributions at each label �, they are denoted �Λ�−�,κρ and

�Λ�+�,κρ. Our abstract semantics associates a probabilistic affine form with each
label of the program, from which we can define a set P of compatible probability
distributions, see Section 5.1. We will prove that the bounds one can infer on
the probabilities over program variables using P over-approximate the bounds
computed by the concrete semantics. We first define the concretization function
and then state and prove our soundness theorem.

5.1 Concretization

We assume that we have k variables x1, . . . , xk, to each of them being attached
an affine form x̂i on n central and m perturbed noise symbols:

x̂i = αxi
0 +

n∑
i=1

αxi

i εi +

m∑
j=1

βxi

j ηj .

Each noise symbol is associated with a DS structure denoted dεi or dηj . We
may represent this abstract element as a matrix M ∈ Md×n+m defined by
Mi,j = αxi

j if j ≤ n and Mi,j = βxi

j for n < j ≤ n+m and a Rd-vector A where
Ai = αxi

0 . In the purely non-deterministic case, i.e. when the DS structures are
the interval [−1, 1], the concretization of such an affine form is the set of points
obtained by the linear transformation M of some point in [−1, 1]m+n. In the
case of probabilistic affine forms, we proceed in a similar way: the concretization
of the abstract element is the set of all probabilities on Rd that are obtained as
the image under the linear transformation M of some probability on [−1, 1]n+m

which is compatible with the DS structures on the noise symbols. In the rest of
the section, we formally define these notions of compatibility for probabilities.

We say that a probability P on [−1, 1] is compatible with a DS structure d,
denoted P � d, if and only if, for all u ∈ [−1, 1], Pd(u) ≤

∫
[−1,u]

dP ≤ Pd(u).

This means that the cumulative distribution function (CDF, [14]) associated
with the probability P belongs to the P-box constructed from the DSI d.

The collecting semantics that we use relies on sets of probability distributions
P on Rd. Up to a linear transformation, we must ensure that all probabilities
marginals Pi are compatible with the DSI dεi (or dηi). We recall that the marginal
probability P1,...,k on [−1, 1]k of a probability distribution P on [−1, 1]n+m is
defined as follows, for all Borel sets B on [−1, 1]k:

P1,...,k(B) =

∫
{x=(y,z)∈[−1,1]k×[−1,1]n+m−k|y∈B}

dP (x)

When k = 1, we get the probability marginal on a fixed coordinate. We can
thus define the CDF marginal by the simple formula, for all u ∈ [−1, 1]:

Fi(u) =

∫
{x∈[−1,1]n+m|xi∈[−1,u]}

dPi(x)
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Given a probability P on [−1, 1]n+m and n + m DSI on [−1, 1] denoted
ds1, . . . , dsn+m, we denote by P � (ds1, . . . , dsn+m) if and only if ∀i ∈ [1, n +
m], Pi � dsi.

Finally, we need to recall how we construct a probability distribution [−1, 1]k

from a probability on [−1, 1]i and a probability on [−1, 1]j where i+ j = k. This
will be needed as we will construct i marginal probabilities compatible with the
DSI of the ε symbols and j compatible with the DSI of the η symbols, and then
construct the probability on [−1, 1]k.

Let Pi and Pj two probability measures on respectively [−1, 1]i and [−1, 1]j.
We define the probability measure Pi⊗Pj as the unique probability measure on
[−1, 1]k such that, for all A ∈ [−1, 1]i and B ∈ [−1, 1]j,

Pi ⊗ Pj(A×B) = Pi(A)× Pj(B)

Now, given n central noise symbols εi and m perturbation symbols ηj , we
define the probabilities on [−1, 1]n+m compatible with them as the set of prob-
abilities compatible with the DS structures attached to noise symbols and that
are coherent with the independency of the noise symbol εi. Thus the ε-marginal
probability is the product of the i-th marginal probabilities for 1 ≤ i ≤ n. This
is formally stated in Definition 3.

Definition 3 (Compatible probabilities). Let ε1, . . . , εn and η1, . . . , ηm be
noise symbols with attached DS structures dεi and dηj . We define the set of
compatible probabilities, denoted Pε,η, as:

Pε,η =

⎧⎨
⎩

P probabilities on Rn+m such that:
(1) P � (dε1 , . . . , dεn , dη1 , . . . , dηm)
(2) Pε = Pε1,...,εn = ⊗n

i=1Pεi

⎫⎬
⎭ .

As stated before, the concretization of a probabilistic affine form is the set of
all previsions that are expressed as the image via the affine transformation of a
prevision compatible with the DS structures of the noise symbols. We thus need
to define the notion of image prevision (see Definition 4), then we can formally
define the concretization function (see Definition 5).

Definition 4 (Probability image). Let P be a probability on [−1, 1]n+m and
M : [−1, 1]n+m → Rd be a measurable map. We define the probability image
of P by M , denoted M(P ), as the probability on Rd given by M(P )(B) =
λB.P (M−1(B)).

Definition 5 (Concretization function). Let ρ� be a probabilistic affine form
over d variables x1, . . . , xd and with n independent noise symbols εi and m per-
turbation noise symbols ηj. For each k ∈ [1, d], let

ρ�(xk) = αk
0 +

n∑
i=1

αk
i εi +

m∑
j=1

βk
j ηj
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and let Mρ� ∈ Mk×m+n be the matrix as defined above. We define the
concretization of ρ�, denoted γ(ρ�) as:

γ(ρ�) =
{
P | ∃P ′ ∈ Pε,η, P =M(P ′)

}
.

In other words, γ(ρ�) is the image by the affine transformationMρ� of the set of
compatible probabilities Pε,η.

5.2 Correctness Results

Theorem 2 (Correctness of the abstraction). Let Λ be a program and � a
label appearing in Λ. Let ρ be an initial environment for program variables and
let ρ� = �Λ���(ρ), then we have:

∀κ : Σ → [0, 1],

⎧⎨
⎩

�Λ�−�,κ1ρ ≥ inf
{∫

y∈Rn κ(y)dP |P ∈ γ(ρ�)
}

�Λ�+�,κ0ρ ≤ sup
{∫

y∈Rn κ(y)dP |P ∈ γ(ρ�)
} . (4)

As usual, we prove this theorem by proving the correctness of each syntactic
construction of the language. Due to the lack of space, we do not give all the
proofs but give the main lemmas that are useful to prove this result. In particular,
we show how the composition of programs impact the probabilistic semantics.

Lemma 1. We have: �s1; �
′ :; s2; � :�±�,κhρ = �s1�

±
�′,�s2�±�,κh

hρ.

Proof (Proof sketch). We prove it for ± = + and h = 0, the same proof runs
easily for ± = − and h = 1. By the rules for ; and l′ : of Figure 2 we deduce:

�s1; �
′ :; s2; � :�+�,κhρ = �s1; �

′ :�+�,κ
(
λρ′.�s2; � :�+�,κhρ

′
)
ρ

= �s1; �
′ :�+�,κ

(
λρ′.�s2�+�,κ

(
λρ′′.�� :�+�,κhρ

′′)ρ′)ρ
= �s1; �

′ :�+�,κ
(
λρ′�s2�+�,κ

(
λρ′′.κ(ρ′′)

)
ρ′
)
ρ

= �s1; �
′ :�+�,κ

(
λρ′�s2�+�,κκρ

′
)
ρ

= �s1�
+
�,κ

(
λρ′′.��′ :�+�,κ

(
λρ′.�s2�+�,κκρ

′)ρ′′)ρ
= �s1�

+
�,κ

(
λρ′′.�s1�+�,κκρ

′′
)
ρ

And we also have, for all κ : Σ → [0, 1]: �s1; �
′ :�+�′,κ0ρ = �s1�

+
�′,κ

(
κ
)
ρ, which ends

the proof using the correct κ. ��

We use Lemma 1 to prove that the abstract semantics is correct for Λ of
the form s1; �

′ :;x := e; � :. Let thus ρ ∈ Σ be the initial environment and let
κ : Σ → [0, 1] be a measurable map. Let ρ�1 = �s1�

�
�′(ρ) and ρ� = �Λ���(ρ).

We have: ρ� = �x := e��(ρ�1), i.e. ρ� is obtained by evaluating the assign-
ment x := e using probabilistic affine forms. We assume that Equation (4)
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is true for ρ�1 and show that it remains true for ρ�. We thus have (for +
and 0) �s1�

+
�′,κ0ρ ≤ supP∈γ(ρ�

1)

∫
y∈Rn κ(y)dP . Now, using Lemma 1, we have

�Λ�+�,κ0h ≤ supP∈γ(ρ�
1)

∫
y∈Rn�x := e; l :�+�,κ0ydP and

∫
y∈Rn�x := e; l :�+�,κ0ydP =∫

y∈Rn κ(y[x �→ �e�y])dP . Using the image-measure property, we get
∫
y∈Rn�x :=

e; l :�+�,κ0ydP =
∫
y∈Rn κ(y)df(P ) where f : Rn → Rn is the function f(y) is y

except for the dimension of x which is changed to �e�y. According to the rules

of our abstract semantics, we know that {f(P ) |P ∈ γ(ρ�1)} ⊆ γ(ρ�), so we get:

�Λ�+�,κ0h ≤ sup
P∈γ(ρ�)

∫
y∈Rn

κ(y)dP

which ends the proof. The proofs for other statements are similar.

6 Experimentations

6.1 Running Example

In this section, we describe on our running example the results of our analyzer
which implements the abstract semantics we defined in Section 4. To assert the
precision of our analysis, we compare these results with simulations of the same
example with as inputs probability distributions within the set of possible inputs.
Recall that our running example computes the iterations of the filter:

yn = S = 0.7 ∗ xn − 1.3 ∗ xn−1 + 1.1 ∗ xn−2 + 1.4 ∗ yn−1 − 0.7 ∗ yn−2

where the inputs (xn) are random variables following a uniform distribution
between −x and x, for any x ∈ [0, 0.2]. In other words, the inputs of the filter
are the sets of all uniform distribution with support [−x, x]. For our analysis,
we use as inputs a DSI that contains all these distributions; its is shown on
Figure 4(a).

We first show the precision of our abstract domain by computing the 100th

iterate of the filter, without computing the union, i.e. we completely unfold the
loop. The result is shown on Figure 4(b) on which we depict both the simulations
and the P-box obtained by our abstract semantics. We can see that we obtain a
correct over-approximation of all the distributions computed by the simulations.
This over-approximation however is large because the input P-box we chose
contains many more distributions than just the uniform ones on [−x, x]. We
made some other simulations with such distributions (for example, distributions
that follow closely the upper and lower functions of the P-box) and obtained the
dotted curves of Figure 4(b) which are much closer to the P-box we computed.
We get a distance between the lower and upper probabilities, in the abstract
which is about twice as much as in our simulations, which is still quite precise.
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(a) Over-approximation of the input.
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(b) P-box of the output (red-green) and
simulations (black).

Fig. 4. Analysis on the running example

6.2 Ferson Polynomial

We now use an example from [13] to test the precision and performance of our
abstract domain on arithmetic operations. The problem is to compute bounds
on the solution of the differential equations

ẋ1 = θ1x1(1− x2) ẋ2 = θ2x2(x1 − 1) (5)

under the assumption that the initial values are x1(0) = 1.2 and x2(0) = 1.1 but
the parameters θ1 and θ2 are uncertain: they are given by a normal distribution
with mean 3 and 1, resp., but with an unknown standard deviation in the range
[−0.01, 0.01]. As in [13], we used VSPODE [28] to obtain a Taylor model poly-
nomial that expresses the solution at tf = 20 as an order 5 polynomial of θ1
and θ2. We then used the probabilistic affine forms to evaluate the Horner form
of this polynomial. Figure 5 shows both the input DSI for θ1 and the output
DSI for x1 at the final time. Our abstract domain is precise enough to correctly
bound the output variables and the figure shows that we can also, with high
probability, discard some values in the resulting interval. For example, we could
show that P (x1 ≤ 1.13) ≤ 0.0552, which is an even more precise enclosure than
the one obtained by RiskCALC [13]. Our analysis took 104s on a 1.6Ghz laptop.

2.99 3 3 3.01
0

0.5

1

1.12 1.14 1.16
0

0.5

1

θ1 x1

Fig. 5. DSI of the uncertain parameter and the output of problem (5)

6.3 Tank Filling

Our final example is a simple modification of the tank filling program of [35] that
can be found at https://sites.google.com/site/probabilisticanalysis/.
It consists of a tank of volume V that is filled with water: at each time instant,

https://sites.google.com/site/probabilisticanalysis/
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water is added into the tank but an error is attached to the added volume
of water and the measured volume is also equiped with a probabilistic error.
The filling stops when the measured volume vm is greater than V , and we are
interested in knowing how long the filling process takes. The error on the inputs
is as follows: the input volume at each time instant is given by a uniform law
with support [0.07, 0.13] and the error on the sensor that measures the volume
is also a normal law but with support [−0.03, 0.03], i.e. the sensor is very noisy.

We compute the affine form attached to the measured volume vm(i) at each
time instant i and can thus bound the probability of the program ending in i time
instants: we compute the upper and lower bound of the probability P (vm(i) < V )
at each time instant. Then, we can prove that the program stops in less than 26
steps (with V = 2) as P (vm(26) ≤ V ) = 0. We can also prove that the program
ends in more than 20 steps with probability less than 0.63, which seems to be
a rather precise estimate. Note that we can still slightly improve the precision
of our analysis and decrease the bound 0.63 by increasing the maximal number
of focal elements in DSI. This impact the performances (the computations are
quadratic in the number of focal elements) but greatly increases precision. With
300 focal elements per DSI, we could prove that the program ends in more than
20 steps with probability less than 0.595.

We also made some experimentations on the EGFR example from [35] which
computes the Estimated Globular Filtration Rate and studies the impact of noise
on the computed value. Our model of probabilistic affine forms can efficiently
handle such a problem as it tracks down the dependency between a variable (the
EGFR) and its noisy version.

7 Conclusion

We have presented a framework for the verification of embedded programs with
both probabilistic and non-deterministic inputs. In particular, we have defined a
concrete collecting semantics using (higher and lower) previsions to enclose a set
of probability distributions and an abstract semantics using probabilistic affine
forms to efficiently compute an over-approximation of this set.

Note that our analysis is an extension of the purely non-deterministic case:
if we have no information about the probability distribution associated to each
noise symbol, we shall use DS structures with only one focal element and a
weight of 1 and then get the same results as standard affine forms analysis.

In this work, we focused on numerical programs that usually appear in em-
bedded systems and only treated them as open-loop programs, i.e. we ignored
the feedback from the program to its plant. In the future, we shall extend this
work to treat hybrid systems as in [6]. This will require to be able to handle
ODEs with initial values given as probabilistic affine forms. As shown by our
second benchmark, we think that we can extend guaranteed ODE solvers to
make them compute with imprecise probabilities.
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A Operational Semantics

We start with a small-step operational semantics, given in Figure 6. Its states are
pairs

(
Λ, ρ

)
, where Λ is a finite list of statements, to be executed sequentially.

The grammar for such lists is: Λ ::= ε | s•Λ. The states
(
ε, ρ

)
are final. The −→

relation defined in Figure 6 form the deterministic part of the semantics, and
should be clear. We write ρ[x �→ v] for the environment that maps x to v, and
every y �= x to ρ(y).

To define the rest of the semantics, and in particular the semantics of the
inputs x1, . . . , xk := input, we use judgments of the form � �

(
Λ, ρ

)
↓±κ a, for

± ∈ {+,−}, where � ∈ L, a ∈ [0, 1] and κ : Σ → [0, 1] is a bounded measurable
map1. When κ is the indicator map χE of a measurable subset E of Σ, the
intended meaning will be: starting from Λ in environment ρ, the probability of
reaching label � with some environment in E is at least (resp. at most) a if ± is −
(resp. +). In general, it is practical to use general measurable maps κ instead
of indicator maps χE , and the meaning of � �

(
Λ, ρ

)
↓−κ a will be: the average

value of κ(ρ′) over all environments ρ′ reached when at label � is at least a (at
most a for � �

(
Λ, ρ

)
↓+κ a).

We should mention that our intuition here fails to capture an essential point.
Consider a simple loop, say while(b) { � : s1 }, where s1 may do some readings
of the random inputs. There is no such thing as the probability of reaching
program point �. Instead, there is a probability of reaching � in one turn of the
loop, another probability of reaching � in two turns of the loop, and so on. In
general, for each n ∈ N, there is a probability of reaching � in exactly n turns.
What we shall be interested in is the sup, resp. the inf, over all n, of these
probabilities—and, more generally, the sup/inf over all n of the average value of
κ over all runs that reach � for the nth time. The judgment � �

(
Λ, ρ

)
↓+κ a will

state that whatever n is, the average value of κ over all runs reaching � for the
nth time is at most a, while � �

(
Λ, ρ

)
↓+κ a will state that whatever n is, the

average value of h over all reaching � for the nth time is at least a.
A note to the expert: in effect, we are implementing a semantics with mixed

non-deterministic and probabilistic choice. While inputs account for probabilistic
choice, the statement � : (for the given label at the left of �) chooses non-
deterministically whether it should stop right here and evaluate κ, or proceed. So
our semantics is already not purely probabilistic, as in Kozen2 and Panangaden3.
One may also observe that the latter semantics are unsuited to our purposes,
as they only observe the probability of reaching final states. As such, they are
probabilistic analogues of big-step semantics. In abstract interpretation, we need
to evaluate probabilities (largest, smallest) of reaching states that may not be
final, such as those at label � in our example above.

1 We equate Σ with R|Var+| with its standard σ-algebra.
2 Kozen, D.: Semantics of probabilistic programs. Journal of Computer and Systems
Sciences 30(2), 162–178 (1985)

3 Panangaden, P.: Probabilistic relations. In: Baier, C., Huth, M., Kwiatkowska, M.,
Ryan, M. (eds.) Proceedings of PROBMIV’98. pp. 59–74 (1998)
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Since this is equally easy, and is needed later, we allow the distribution νinp to
vary in some set of probability measures over Rk. For our purposes, it is practical
to merely give a pair of a lower prevision F−

inp and of an upper prevision F+
inp on

Rk, and to consider those distributions νinp that lie between them:

F−
inp(f) ≤

∫
(v1,...,vk)∈Rk

f(v1, . . . , vk)dνinp ≤ F+
inp(f) (6)

for every bounded measurable map f : Rk → [0, 1]. (F−
inp and F+

inp will be de-
scribed through Dempster-Shafer structures.)

(
x := e • Λ, ρ

)
−→

(
Λ, ρ[x �→ �e�ρ]

) (
(s1; s2) • Λ, ρ

)
−→

(
s1 • s2 • Λ, ρ

)
(
(if (b) { s1 } else { s2 }) • Λ, ρ

)
−→

{(
s1 • Λ, ρ

)
if �b�ρ = 1(

s2 • Λ, ρ
)
if �b�ρ = 0(

(while(b) { s1 }) • Λ, ρ
)
−→

{(
s1 • (while(b) { s1 }) • Λ, ρ

)
if �b�ρ = 1(

Λ, ρ
)

if �b�ρ = 0

� 
(
Λ′, ρ′

)
↓±κ a

(
Λ, ρ

)
−→

(
Λ′, ρ′

)
(Det±)

� 
(
Λ, ρ

)
↓±κ a

� 
(
Λ, ρ

)
↓±κ a �′ �= �

(L±
�=)

� 
(
�′ : • Λ, ρ

)
↓±κ a

� 
(
Λ, ρ

)
↓± a κ(ρ) ��±κ a

(L±
=)

� 
(
� : • Λ, ρ

)
↓±κ a

(Fin±)
� 

(
ε, ρ

)
↓±κ a

(⊥+)
� 

(
Λ, ρ

)
↓+κ 1

(⊥−)
� 

(
Λ, ρ

)
↓−κ 0

(v1,...,vk)∈R
k︷ ︸︸ ︷

� 
(
Λ, ρ[x1 �→ v1, . . . , xk �→ vk]

)
↓±κ f(v1, . . . , vk)) F±

inp(f) ��
± a

(Inp±)
� 

(
x1, . . . , xk := input • Λ, ρ

)
↓±κ a

Fig. 6. Operational semantics

The result is given by the derivation rules at the bottom of Figure 6, which
are in a style inspired by4. We write ��± for ≥ if ± is −, or for ≤ if ± is +.
The (Det±) rule is simple: if

(
Λ, ρ

)
−→

(
Λ′, ρ′

)
, then this is a deterministic

computation step, and there is no label to observe κ on when in state
(
Λ, ρ

)
, so

the average of κmust be taken on the rest of the execution, starting from
(
Λ′, ρ′

)
.

If this is above a (or below a; see premise), then the average of κ starting from(
Λ, ρ

)
(conclusion) must also be above/below a. (L±

�=) is explained similarly: we

4 Goubault-Larrecq, J.: Full abstraction for non-deterministic and probabilistic ex-
tensions of PCF I: the angelic cases. Journal of Logic and Algebraic Programming
(2012), submitted. Presented at the Domains X Workshop, Swansea, UK, 2011.
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do not observe κ at �′, since �′ �= �, and additionally the effect of �′ : is a no-op.
(L±

=) is more interesting, and is the only place where κ is really used. Let us
investigate (L−

=), the other case being similar. The possible averages of κ at each
time we reach label � are exactly the current value κ(ρ) of κ (since we are at
label �), and those obtained when we reach � later. The first premise states that
the latter averages are above a, while the second premise states that κ(ρ) ≥ a. In
any case, the possible averages of κ must be above a, and this is the conclusion
of the rule.

The (Fin±) rules state what happens on termination. Since � is never reached
in a terminated run (of length zero), the possible averages of κ on this run form
an empty set: all such averages are below every a ∈ [0, 1] (rule (Fin+)) and
above every a ∈ [0, 1] (rule (Fin−)). The (⊥±) rules express the trivial facts
that the average of a map κ with values in [0, 1] must be between 0 and 1.

The (Inp±) rule is a bit intimidating, since it has infinitely many premises—at
least as many as there are tuples (v1, . . . , vk) in Rk—and is parameterized by a
bounded measurable map f : Rk → [0, 1]. This is mandated by the fact that νinp
may be an arbitrary, not discrete, measure. We should be reassured by looking
at (Inp−) in a simple case, say when k = 1, and νinp implements a discrete
random choice between v1 = 1.2 with probability 1/6 (= f(1.2)), v1 = 1.3 with
probability 1/2, and v1 = 1.4 with probability 1/3. (Let us also take the ≤ signs
in (6) to be equalities.) Then (Inp−) specializes to the following rule (up to
irrelevant premises):

� 
(
Λ, ρ[x1 �→ 1.2]

)
↓−κ a1 � 

(
Λ, ρ[x1 �→ 1.3]

)
↓−κ a2 � 

(
Λ, ρ[x1 �→ 1.4]

)
↓−κ a3

1/6 a1 + 1/2 a2 + 1/3 a3 ≥ a

� 
(
x1, . . . , xk := input • Λ, ρ

)
↓−κ a.

In particular, if you think of a1 as the (minimal) average value of κ when x1
is set to 1.2, and similarly for a2 and a3, this states that the values a below the
(minimal) average value that κ takes when running x1, . . . , xk := input • Λ are
exactly those below the average 1/6 a1+1/2 a2+1/3 a3 that one should expect.

B Adequacy Theorem

We here prove that the operational and denotational semantics are equivalent.
On the operational side, note that whenever � �

(
Λ, ρ

)
↓−κ a is derivable and

a ≥ b, then � �
(
Λ, ρ

)
↓−κ b is also derivable. So the set of values a such that

� �
(
Λ, ρ

)
↓−κ a is derivable is a downward-closed interval [0, c] or [0, c): let us

write [Λ]−�,κρ for c, the sup of these values a. Similarly, we write [Λ]+�,κρ for the

inf of the values a such that � �
(
Λ, ρ

)
↓+κ a is derivable. Write 0 for the constant

0 map, and similarly for 1.

Theorem 3 (Adequacy). �Λ�−�,κ1ρ = [Λ]−�,κρ, and �Λ�+�,κ0ρ = [Λ]+�,κρ.

Proof. We deal with the − case, as the + case is similar.
(≥) We first show that �Λ�−�,κ1ρ ≥ [Λ]−�,κρ. Equivalently, we show that for

every a ∈ [0, 1] such that � �
(
Λ, ρ

)
↓−κ a is derivable, then �Λ�−�,κ1ρ ≥ a. This is

by structural induction on the given derivation. We look at each rule in turn.
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(Fin−). We must show that �ε�−�,κ1ρ ≥ a, which is obvious since �ε�−�,κ1ρ = 1.

(⊥−). �Λ�−�,κ1ρ ≥ 0, by Theorem 1, first part.

(Det−). For each rule
(
Λ, ρ

)
−→

(
Λ′, ρ′

)
, one checks easily that �Λ�−�,κ1ρ =

�Λ′�−�,κ1ρ. By the induction hypothesis, the right-hand side is ≥ a, so this is also
the case of the left-hand side.

(L−
�=). We must show that ��′ : •Λ�−�,κ1ρ ≥ a, where the induction hypothesis

gives us �Λ�−�,κ1ρ ≥ a. This is again clear, since ��′ : • Λ�−�,κ1ρ = �Λ�−�,κ1ρ.
(L−

=). The induction hypothesis now gives us that not only �Λ�−�,κ1ρ ≥ a, but

also κ(ρ) ≥ a. So �� : • Λ�−�,κ1ρ = �� : �−�κ(�Λ�−�,κ1)ρ = min(κ(ρ), �Λ�−�,κ1ρ) ≥ a.

(Inp−). The induction hypothesis gives us a measurable map f : Rk → [0, 1],
with the property that, for every (v1, . . . , vk) ∈ Rk, �Λ�−�,κ1(ρ[x1 �→ v1, . . . , xk �→
vk]) ≥ f(v1, . . . , vk), and F

−
inp(f) ≥ a. Since F−

inp is monotonic, F−
inp(λv1, . . . , vk ·

�Λ�−�,κ1(ρ[x1 �→ v1, . . . , xk �→ vk])) ≥ F−
inp(f) ≥ a. But the left hand side is

exactly �x1, . . . , xk := input�−�,κ(�Λ�−�,κ1)ρ = �x1, . . . , xk := input • Λ�−�,κ1ρ.
(≤) The converse inequality is harder. We shall show that for every a �

�Λ�−�,κ1ρ (implicitly, with a ≥ 0), there is a derivation of � �
(
Λ, ρ

)
↓−κ a. (The

� relation is the so-called way-below relation on [0, 1], and is defined by a � b
iff a < b or a = 0. Note that every b ∈ [0, 1] is the sup of the values a such that
a � b. Moreover, if a � b, then for every sequence b0 ≤ b1 ≤ . . . ≤ bn ≤ . . .
whose sup is at least b, then a ≤ bn for n large enough, a property that we
shall the Fundamental Property of �.) This is proved by double induction on
the number of statements in Λ first, and when non-empty, by induction on the
structure of the first statement in Λ.

Base case, Λ = ε. We simply apply rule (Fin−), since a ∈ [0, 1], which follows
from the first part of Theorem 1.

In the inductive case, we consider a non-empty list, say of the form s • Λ,
and some a � �s • Λ�−�,κ1ρ = �s�−�,κ(�Λ�−�,κ1)ρ. We must exhibit a derivation

of � �
(
s • Λ, ρ

)
↓−κ a, under the following two induction hypotheses, which we

name for future reference:

(H1) for every ρ′ ∈ Σ, for every a′ � �Λ�−�,κ1ρ
′, there is a derivation of � �(

Λ, ρ′
)
↓−κ a′;

(H2) for every proper substatement s′ of s, for every list Λ′, for every ρ′ ∈ Σ, for
every a′ � �s′�−�,κ(�Λ

′�−�,κ1)ρ
′, there is a derivation of � �

(
s′ • Λ′, ρ′

)
↓−κ a′.

Assignment. s = (x := e). By assumption, a � �x := e • Λ�−�,κ1ρ = �x :=

e�−�,κ(�Λ�−�,κ1)ρ = �Λ�−�,κ1(ρ[x �→ �e�ρ]). Now use (H1) with ρ
′ = ρ[x �→ �e�ρ] and

a′ = a. We obtain a derivation of � �
(
Λ, (ρ[x �→ �e�ρ])

)
↓−κ a. Now use (Det−)

on the latter, and we obtain a derivation of � �
(
x := e • Λ, ρ

)
↓−κ a.

The case of labels �′ : (with �′ = �, or with �′ �= �) is similar.
Sequences. s = (s1; s2). By assumption, a � �s1; s2 • Λ�−�,κ1ρ, namely, a �

�s1�
−
�,κ(�s2�

−
�,κ(�Λ�−�,κ1))ρ. Use (H2) with s

′ = s1, Λ
′ = s2 •Λ, ρ′ = ρ, a′ = a and

obtain a derivation of � �
(
s1 • s2 • Λ, ρ

)
↓−κ a. Add an instance of (Det−) to

obtain a derivation of � �
(
(s1; s2) • Λ, ρ

)
↓−κ a, and we are done.
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Tests if (b) { s1 } else { s2 } are dealt with similar, using (H2) with s′ = s1
if �b�ρ = 1, with s′ = s2 if �b�ρ = 0.

Inputs. s = x1, . . . , xk := input. Define f(v1, . . . , vk) = �Λ�−�,κ1(ρ[x1 �→
v1, . . . , xk �→ vk]). This is a measurable map from Rk to [0, 1]. For every ε >
0, let fε(v1, . . . , vk) = max(f(v1, . . . , vk) − ε, 0). Note that this is way below
f(v1, . . . , vk). By (H1) with ρ′ = ρ[x1 �→ v1, . . . , xk �→ vk], a

′ = fε(v1, . . . , vk),
there is a derivation of � �

(
Λ, (

)
ρ[x1 �→ v1, . . . , xk �→ vk]) ↓−κ fε(v1, . . . , vk),

one for each tuple (v1, . . . , vk) ∈ Rk. Since F−
inp is monotonic and ω-continuous,

(F−
inp(f1/n))n∈N

is a monotone sequence whose sup is F−
inp(f). But F

−
inp(f) =

�x1, . . . , xk := input•Λ�−�,κ1ρ, by definition of the right-hand side, and a is way

below the latter. So a � supn∈N F
−
inp(f1/n), which implies that a ≤ F−

inp(f1/n)
for n large enough, by the Fundamental Property of �. We can now apply
rule (Inp−) (with f replaced by f1/n) and the result is a derivation of � �(
x1, . . . , xk := input • Λ, ρ

)
↓−κ a.

While loops. s = (while(b) { s1 }). Since a � �s�−�,κ(�Λ�−�,κ1)ρ, it is plain

to see that there is a b ∈ [0, 1] such that a � b � �s�−�,κ(�Λ�−�,κ1)ρ. Since

�s�−�,κ = �while(b) { s1 }�−�,κ is defined as the sup of a monotone chain, the Funda-

mental Property of � applies to conclude that a � b ≤ Hi
b,s1

(⊥−)(�Λ�−�,κ1)ρ =

Hi
b,s1

(0)(�Λ�−�,κ1)ρ, for some i ∈ N, using the notations of Figure 2. It now suf-

fices to show that there is a derivation of � �
(
(while(b) { s1 }) • Λ, ρ

)
↓−κ a, and

we do this by an auxiliary induction on i.
If i = 0, then a � Hi

b,s1
(0)(�Λ�−�,κ1)ρ = 0 implies a = 0, and we ap-

ply rule (⊥−). (This is the only purpose of this rule: to be able to derive
� �

(
(while(b) { s1 }) • Λ, ρ

)
↓−κ 0 when the while loop does not terminate;

without it, we would simply have no derivation at all.) If i ≥ 1, then we have
two cases.

If �b�ρ = 0, then Hi
b,s1

(0)(�Λ�−�,κ1)ρ = Hb,s1(H
i−1
b,s1

(0))(�Λ�−�,κ1)ρ = �Λ�−�,κ1ρ.
By (H1) with a′ = a and ρ′ = ρ, there is a derivation of � �

(
Λ, ρ

)
↓−κ a. Now

we apply (Det−) with the rule
(
(while(b) { s1 }) • Λ, ρ

)
−→

(
Λ, ρ

)
to obtain a

derivation of � �
(
(while(b) { s1 }) • Λ, ρ

)
↓−κ a.

If �b�ρ = 1, then Hi
b,s1

(0)(�Λ�−�,κ1)ρ = Hb,s1(H
i−1
b,s1

(0))(�Λ�−�,κ1)ρ, which is

equal to �s1�
−
�,κ(H

i−1
b,s1

(0)(�Λ�−�,κ1))ρ. By the definition of the semantics of while

as a sup, Hi−1
b,s1

(0)(�Λ�−�,κ1) ≤ �while(b) { s1 }�−�,κ(�Λ�−�,κ1) = �while(b) { s1 } •
Λ�−�,κ1. Since λh · �s1�

−
�κhρ is monotonic (as a prevision, see Theorem 1), we

obtain a � �s1�
−
�,κ(�while(b) { s1 } • Λ�−�,κ1)ρ. By (H2), we obtain a derivation

of � � s1, �while(b) { s1 } • Λ�ρ ↓−κ a. Apply (Det−) with the rule(
(while(b) { s1 }) • Λ, ρ

)
−→

(
s1, (while(b) { s1 }) • Λ, ρ

)
this yields the desired derivation of � �

(
while(b) { s1 } • Λ, ρ

)
↓−κ a. ��
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Abstract. We introduce a precise interprocedural effect analysis for
programs with mutable state, dynamic object allocation, and dynamic
dispatch. Our analysis is precise even in the presence of dynamic dis-
patch where the context-insensitive estimate on the number of targets
is very large. This feature makes our analysis appropriate for programs
that manipulate first-class functions (callbacks). We present a framework
in which programs are enriched with special effect statements, and de-
fine the semantics of both program and effect statements as relations
on states. Our framework defines a program composition operator that
is sound with respect to relation composition. Computing the summary
of a procedure then consists of composing all its program statements to
produce a single effect statement. We propose a strategy for applying the
composition operator in a way that balances precision and efficiency.

We instantiate this framework with a domain for tracking read and
write effects, where relations on program states are abstracted as graphs.
We implemented the analysis as a plugin for the Scala compiler. We an-
alyzed the Scala standard library containing 58000 methods and classi-
fied them into several categories according to their effects. Our analysis
proves that over one half of all methods are pure, identifies a number of
conditionally pure methods, and computes summary graphs and regular
expressions describing the side effects of non-pure methods.

1 Introduction

An appealing programming style uses predominantly functional computation
steps, including higher-order functions, with a disciplined use of side effects. An
opportunity for parallel execution further increases the potential of this style.
Whereas higher-order functions have always been recognized as a pillar of func-
tional programming, they have also become a standard feature of object-oriented
languages such as C# (in the form of delegates), the 2011 standard of C++, and
Java 8.1 Moreover, design patterns popular in the object-oriented programming
community also rely on callbacks, for instance the strategy pattern and the visitor
pattern [13].

� This research was supported in part by the European Research Council Project
“Implicit Programming”.

1 See JSR 335 “Project Lambda” http://www.jcp.org/en/jsr/detail?id=335

E. Cohen and A. Rybalchenko (Eds.): VSTTE 2013, LNCS 8164, pp. 48–67, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Precise analysis of side effects is essential for automated as well as manual
reasoning about such programs. The combination of callbacks and mutation
makes it difficult to design an analysis that is both scalable enough to handle
realistic code bases, and precise enough to handle common patterns such as
local side effects and initialization, which arise both from manual programming
practice and compilation of higher-level concepts. Among key challenges are
flow-sensitivity and precise handling of aliases, as well as precise and scalable
handling of method calls.

Our aim is to support not only automated program analyses and transforma-
tions that rely on effect information, but also program understanding tasks. We
therefore seek to generate readable effect summaries that developers can com-
pare to their intuition of what methods should and should not affect in program
heap. Such summaries must go beyond a pure/impure dichotomy, and should
ideally capture the exact frame condition of the analyzed code fragment — or at
least an acceptable over-approximation. We expect our results in this direction
will help in bootstrapping annotations for Scala effect type systems [26], as well
as lead to the design of more precise versions of such systems.

This paper presents the design, implementation, and evaluation of a new static
analysis for method side effects, which is precise and scalable even in the presence
of callbacks, including higher-order functions. Key design aspects of our analysis
include:

– a relational analysis domain that computes summaries of code blocks and
methods by flow-sensitively tracking side effects and performing strong
updates;

– a framework for relational analyses to compute higher-order relational sum-
maries of method calls, which are parameterized by the effects of the methods
being called;

– an automated effect classification and presentation of effect abstractions in
terms of regular expressions, facilitating their understanding by developers.

Our static analyzer, called Insane (INterprocedural Static ANalysis of Effects) is
publicly available from

https://github.com/epfl-lara/insane

We have evaluated Insane on the full Scala standard library, which is widely used
by all Scala programs, and is also publicly available. Our analysis works on a
relatively low-level intermediate representation that is close to Java bytecodes.
Despite this low-level representation, we were able to classify most method calls
as not having any observational side effects. Moreover, our analysis also detects
conditionally pure methods, for which purity is guaranteed provided that a spec-
ified set of subcalls are pure. We also demonstrate the precision of our analysis
on a number of examples that use higher-order functions as control structures.
We are not aware of any other fully automated static analyzer that achieves this
precision while maintaining reasonable performance.

https://github.com/epfl-lara/insane
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2 Overview of Challenges and Solutions

In this section, we present some of the challenges that arise when analyzing
programs written in a higher-order style, and how Insane can tackle them.

Effect Attribution. Specific to higher-order programs is the problem of correctly
attributing heap effects. Consider a simple class and a (first-order) function:

class Cell(var visited : Boolean)

def toggle(c : Cell) = {
c.visited = !c.visited

}

Any reasonable analysis for effects would detect that toggle potentially alters the
heap, as it contains a statement that writes to a field of an allocated object. That
effect could informally be summarized as “toggle may modify the .value field of
its first argument”. That information could in turn be retrieved whenever toggle

is used. Consider now the function

def apply(c : Cell, f : Cell⇒Unit) = {
f(c)

}

where Cell⇒Unit denotes the type of a function that takes a Cell as argument and
returns no value. What is the effect of apply on the heap? Surely, apply potentially
has all the effects that toggle has, since the call apply(c, toggle) is equivalent to
toggle(c). It can also potentially have no effect on the heap at all, e.g. if invoked
as apply(c, (cell ⇒ ())). The situation can also be much worse, for instance in the
presence of global objects that may be modified by f. In fact, in the absence
of a dedicated technique, the only sound approximation of the effect of apply

is to state that it can have any effect. This approximation is of course useless,
both from the perspective of a programmer, who doesn’t gain any insight on the
behaviour of apply, and in the context of a broader program analysis, where the
effect cannot be reused modularly.

The solution we propose in this paper is, intuitively, to define the effect of
apply to be “exactly the effect of calling its second argument with its first as a
parameter”. To support this, we extend the notion of effect to be expressive
enough to represent control-flow graphs where edges can themselves be effects.
In the context of Insane we have applied this idea to a domain designed for
tracking heap effects (described in Section 3), although the technique applies to
any relational analysis, as we show in Section 4.

Equipped with this extended notion of effects, we can classify methods as pure,
impure, and conditionally pure. The apply function falls in this last category:
it is pure as long as the methods called from within it are pure as well (in
this case, the invocation of f). Notable examples of conditionally pure functions
include many of the standard higher-order operations on structures which are
used extensively in functional programs (map, fold, foreach, etc.). As an example,
a typical implementation of foreach on linked lists is the following:
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class LinkedList[T](var hd : T, var tl : LinkedList[T]) {
def foreach(f : T ⇒ Unit) : Unit = {
var p = this
do {
f(p.hd)
p = p.tl

} while(p != null)
}

}

Correctly characterizing the effects of such functions is essential to analyzing
programs written in a language such as Scala.

Making Sense of Effects. Another challenge we address in this paper is one of
presentation: when a function is provably pure, this can be reported straight-
forwardly to the programmer. When however it can have effects on the heap,
the pure/impure dichotomy falls short. Consider a function that updates all
(mutable) elements stored in a linked list:

def update(es : LinkedList[Cell]) = {
es.foreach(c ⇒ c.visited = true)

}

Because the closure passed to foreach has an effect, so does the overall function. A
summary stating only that it is impure would be highly unsatisfactory, though:
crucially, it would not give any indication to the programmer that the structure
of the list itself cannot be affected by the writes. As we will see, the precise
internal representation of effects, while suited to a compositional analysis, is
impractical for humans, not the least because it is non-textual. We propose to
bridge this representation gap by using an additional abstraction of effects in
the form of regular expressions that describe sets of fields potentially affected
by effects (see Section 5). This abstraction captures less information than the
internal representation but can readily represent complex effect scenarios. For
the example given above, the following regular expression is reported to the
programmer:

es(.tl)∗.hd.visited

It shows that the fields affected are those reachable through the list (by follow-
ing chains of .tl), but belonging to elements only, thus conveying the desired
information. In Section 6.2, we further demonstrate this generation of human-
readable effect summaries on a set of examples that use the standard Scala
collections library.

3 Effect Analysis for Mutable Shared Structures

The starting point for our analysis is the effect analysis [28,32]. We here present
an adaptation to our setting, with the support for strong updates, which take
into account statement ordering for mutable heap operations. In the next section
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we lift this analysis to the case of programs with callbacks (higher-order pro-
grams), for which most existing analyses are imprecise. We thus obtain a unique
combination of precision, both for field updates and for higher-order procedure
invocations.

We start by describing a target language that is expressive enough to encode
most of the intermediate representation of Scala programs that we analyze.

3.1 Intermediate Language Used for the Analysis

The language we target is a typical object oriented language with dynamic dis-
patch. A program is made of a set of classes C which implement methods. We
identify methods uniquely by using the method name prefixed with its declaring
class as in C.m and denote the set of methods in a program M. Our interme-
diate language has no ad-hoc method overloading because the affected methods
can always be renamed after type checking. We assume that, for each method,
a standard control-flow graph is available, where edges are labeled with simple
program statements. Each of these graphs contains a source node entry, and a
sink node exit. Figure 1 lists the statements in our intermediate language, along
with their meaning.

Statement Meaning

v = w assign w to v
v = o.f read field o.f into v
o.f = v update field o.f with v
v = new C allocate an object of class C and store the reference to it in v
v = o.m(a1, ..., an) call method m of object o and store the result in v

Fig. 1. Program statements P considered in the target language

Because of dynamic dispatch, a call statement can target multiple methods,
depending on the runtime type of the receiver object. For each method call
o.m(), we can compute a superset of targets targets(o.m) ⊆ M∪ {?} using the
static type of the receiver. If the hierarchy is not bounded through final classes
or methods, we also include the special ”?” target to represent the arbitrary
methods that could be defined in unknown extensions of the program. Thus, we
do not always assume access to the entire program: this assumption is defined
as a parameter of the analysis, and we will see later how it affects it.

3.2 Effects as Graph Transformers

We next outline our graph-based representation of compositional effects. Our
approach is related to the representation originally used for escape analysis
[27,28]. The meaning of such an effect is a relation on program heaps which
over-approximates the behavior of a fragments of code (e.g. methods). Section 4



Effect Analysis for Programs with Callbacks 53

I1

L1

.nxt .elem

L2

Lv2

.nxt

.elemlst
Lv1

v

.nxt .elem

class List(var elem: Int,
var nxt: List = null)

def prepend(lst: List, v: Int) {
lst.nxt = new List(lst.elem, lst.nxt)
lst.elem = v

}

Fig. 2. Example of a graph representing the effects of prepend. Read edges lead to load
nodes that represent unknown values, and solid edges represent field assignments.

lifts this representation to a more general, higher-order settings, which gives our
final analysis.

Figure 2 shows an example of a simple function and its resulting graph-based
effect. In this graph, Lv1 and Lv2 represent unknown local variables, here the
parameters of the function. I1 is an inside node corresponding to an object allo-
cation. L1 and L2 are two load nodes that reference values for fields of Lv1 which
are unknown at this time. While read (dashed) edges do not strictly represent
effects, they are necessary to resolve the meaning of nodes when composing this
effect at call-sites.

In general, our effect graphs are composed of nodes representing memory
locations. We distinguish three kinds of nodes: inside nodes are allocated objects.
Because we use the allocation-site abstraction for these, we associate with them a
flag indicating whether the node is a singleton or a summary node. Load nodes
represent unknown fields. Load nodes represent accesses to unknown parts of
the heap; supporting them is a crucial requirement for modular effect analyses.
Finally, graphs may contain special nodes for unresolved local variables, such as
parameters.

We also define two types of edges labeled with fields. Write edges, represented
by a plain (solid) edge in the graphical representation, and read edges, repre-
sented by dashed edges in the graph. Read edges provide an access paths to
past or intermediate values of fields, and are used to resolve load nodes. Write
edges represent must-write modifications. Along with the graph, we also keep a
mapping from local variables to sets of nodes.

Our analysis directly defines rules to compute the composition of any effect
graph with a statement that makes an individual heap modification. It is also
possible to represent the meaning of each individual statement as an effect graph
itself; the result of executing statement on a current effect graph then corre-
sponds to composing two effect graphs. However, the main need for composition
arises in modular analysis of function calls.
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3.3 Composing Effects

Composition is a key component of most modular analyses. It is typically re-
quired for interprocedural reasoning. In our setting, it also plays an important
role as a building block in our analysis framework for programs with callbacks,
which we describe in Section 4. We now describe how composition applies to
effect graphs. This operation is done in a specific direction: we say that an in-
ner effect graph is applied to an outer effect graph. Merging graphs works by
first constructing a map from inner nodes to equivalent outer nodes. This map,
initially incomplete, expands during the merging process.

Importing Inside Nodes. The first step of the merging process is to import in-
side nodes from the inner graph to the outer graph. We specialize the labels
representing their allocation sites to include the label corresponding to the point
at which we compose the graphs. This property is crucial for our analysis as
case-classes, an ubiquitous feature of Scala, rewrite to factory methods. Once
the refined label is determined, we check whether we import a singleton node in
an environment in which it already exists. In such case, the node is imported as
a summary node.

Resolving Load Nodes. The next important operation when merging two graphs
is the resolution of load nodes from the inner graph to nodes in the outer graph.
The procedure works as follows: for each inner load node we look at all its source
nodes, by following read edges in the opposite direction. Note that the source
node of a load node might be a load node itself, in which case we recursively
invoke the resolution operation. We then compute using the map all the nodes
in the outer graph corresponding to the source nodes.

The resolution follows by performing a read operation from the corresponding
source nodes in the outer graph. Once a load node is resolved to a set of nodes
in the outer graph, the equivalence map is updated to reflect this.

Applying Write Effects. Given the map obtained by resolving load nodes, we
apply write edges found in the inner graph to corresponding edges in the outer
graph. We need to make sure that a strong update in the inner graph can remain
strong, given the outer graph and the map.

The composition not only executes the last two steps, but repeats them until
convergence of the outer graph. Once a fix-point is reached, we have successfully
applied full meaning of the inner graph to the outer graph. Such application
until fix-point is crucial for correctness in the presence of unknown aliasing and
strong updates. We illustrate this merging operation in Figure 3.

4 Compositional Analysis of Higher-Order Code

The composition operator on effect graphs presented in the previous section
allows us to analyze programs without dynamic dispatch. Standard approaches
to extend it to dynamic dispatch are either imprecise or lose modularity.
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Fig. 3. Merging a graph with load nodes and strong updates in a context that does
not permit a strong update. Inside nodes are imported after refining their label.

In this section, we therefore extend the basic analysis to support dynamic dis-
patch (including higher-order functions and callbacks) in both precise and a
rather modular way. The methodology by which we extend the core analysis to
the higher-order case is independent of the particular domain of effect graphs,
so we present it in terms of a framework for precise interprocedural analysis of
functions with callbacks.

Our framework works on top of any abstract interpretation-based analysis
whose abstract domain R represents relations between program states. The ab-
stract domain described in the previous section matches these requirements.
Along with a set of control-flow graphs over statements P previously discussed,
we assume the existence of other usual components of such analyses: a con-
cretization function γ : R→ (2S)S and a transfer function Tf : (P ×R) → R.

We now define a composition operator � : R × R → R for elements of the
abstract domain, with the following property:

∀e, f ∈ R . (γ(e) ◦ γ(f)) ⊆ γ(e � f)

that is

∀s0, s1, s2 . s1 ∈ γ(e)(s0) ∧ s2 ∈ γ(f)(s1) =⇒ s2 ∈ γ(e � f)(s0)

In other words, � must compose abstract relations in such a way that the result is
a valid approximation of the corresponding composition in the concrete domain.

4.1 Control-Flow Graph Summarization

Summarization consists of replacing a part of the control-flow graph by a state-
ment that over-approximates its effects. Concretely, we first augment the lan-
guage with a special summary statement, characterized by a single abstract
value:

Pext = P ∪ {Smr(a ∈ R)}
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Consequently, we define Tfext over Pext:

Tfext(s)(r) =

{
Tf(s)(r) if s ∈ P
r � a if s = Smr(a)

Let c be the control-flow graph of some procedure over Pext, and a and b two
nodes of c such that a strictly dominates b and b post-dominates a. In such a
situation, all paths from entry to b go through a and all paths from a to exit go
through b. Let us consider the sub-graph between a and b, which we denote by
a ¨ b. This graph can be viewed as a control-flow graph with a as its source
and b as its sink. The summarization consists of replacing a ¨ b by a single
edge labelled with a summary statement obtained by analyzing the control-flow
graph a ¨ b in isolation.

We observe that while composition over the concrete domain is associative, it
is generally not the case for �. Moreover, different orders of applications yield in-
comparable results. In fact, the order in which the summarizations are performed
plays an important role in the overall result. When possible, left-associativity is
preferred as it better encapsulates a forward, top-down analysis and can leverage
past information.

4.2 Partial Unfolding

Control-flow graph summarization presented above is one of the building blocks
of our compositional framework. The other one is a mechanism for replacing
method calls by summaries, or unfolding, which we present here.

When faced with a call statement o.m(args), the analysis will extract informa-
tion about o from the data-flow facts and compute the set of its potential static
targets To.m ⊆ M. The control-flow graphs corresponding to the targets are
then included after a non-deterministic split. It is worth noting that the set of
targets To.m is generally not complete. Indeed, this process is performed during
the fix-point computation, facts about o might still grow in the lattice during
future iterations. The original call is therefore kept and annotated to exclude
targets already unfolded as pictured in Figure 4. In certain situations, we can
conclude that all targets have been covered, rendering the alternative call edge
infeasible and thus removable.

4.3 Combining Unfolding and Summarization

We distinguish two main kinds of summaries. A summary that contains unana-
lyzed method calls is said to be conditional. In contrast, a definite summary is
fully reduced down to a single edge with a summary statement.

We now illustrate the flexibility provided by our framework through a simple
example displayed in Figure 5. There are in general multiple ways to generate
a definite summary from a control-flow graph, depending on the interleaving of
summarization and unfolding operations.
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a b
o : C2 CFG C2.m

o : C1

CFG C1.m

r = o.m(args) \ {C1.m,C2.m}

Fig. 4. Example of unfolding with Tcall = {C1.m,C2.m}

sealed class A {
def m1() {
val o = new A;
this.m2(o)

}

def m2(o: A) {
this.m3()
o.f()

}

// .. continuing class A

def m3() { }

def f() { }
}

class B extends A {
override def f() { .. }

}

Fig. 5. Example of a chain of method calls

For instance, one way to generate a summary for A.m1 would consist of the
following steps: first, we fully summarizeA.m3, A.f and B.f . We unfold their call
in A.m2, summarize the result, unfold it in A.m1 and finally summarize it. This
would represent a completely modular approach, where summaries are reused
as much as possible. While being perhaps the most efficient way to compute a
summary (since intermediate summaries for A.m2, A.m3, A.f and B.f are small,
definite effects) it is also the least precise. Indeed, in this order, we have no precise
information on o at the time of analyzing o.f() and thus we have to consider every
static targets— here A.f and B.f , leading to an imprecise summary. We note
that this approach, while generally used by traditional compositional analyses,
falls short in the presence of callbacks where the number of static targets is
typically large (>1’000 for the Scala library). In contrast, we could have waited
to analyze o.f() by generating a conditional summary for A.m2 where this.m3() is
unfolded but o.f() remains unanalyzed. We refer to the decision of not analyzing
a method call as delaying.

4.4 Controlled Delaying

We have seen through the examples above that choosing when to unfold a method
call can have a important impact in terms of performance and precision. In our
framework, we delegate this decision to a function D(call, ctx). The precision and
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performance of the analysis are thus parametrized in D. Fixing D(. . .) = false
ensures that every method is analyzed modularly, in a top-down fashion, lead-
ing to an imprecise analysis. On the other hand, having D(. . .) = true forces
the analysis to delay every method call, leading to the analysis of the complete
control-flow graph at the entry point. While it ensures a precise result, it will
produce the largest intermediate graphs, which will slow the analysis consider-
ably. Another problem we can identify is with respect to recursion, which we
discuss specifically in the following section.

We also note that the analysis must be able to conservatively reason about
delayed method calls in order to proceed past them. A conservative approach is
to assume that facts flowing through such method calls get reset to the identity
relation.

4.5 Handling Recursion

Assuming the underlying abstract interpretation-based analysis does terminate
(which we do ensure for effect graphs), we still need to ensure that the control-
flow graph does not keep changing due to unfoldings. For this reason, we need
to take special measures for cycles in the call-graph.

Detecting recursion statically is non-trivial, especially in the presence of call-
backs. An attempt using a refined version of a standard class analysis proved
to be overly imprecise: it would flag every higher-order functions as recursive.
Therefore, Insane discovers recursive methods lazily during the analysis when
closing a loop in the progressively constructed call-graph. It then rewinds the
analysis until the beginning of the loop in the lasso-shaped call-graph in order
to handle the cycle safely. We handle recursion by ensuring that only definite
summaries are generated for methods within the cycle. We in fact enforce termi-
nation by requiring that D(c, ctx) returns false for any call c within the call-graph
cycle.

It is worth noting that D(. . .) is only constrained for calls within the call-
graph cycle: we are free to decide to delay when located at the boundaries of
a cycle. It is in general critical for precision purposes to delay the analysis of
the entire cycle as much as possible. When analyzing a set of mutually recursive
functions, we start by assuming that all have a definite summary of identity,
indicating no effect. The process then uses a standard fix-point iterative process
and builds up summaries until convergence.

4.6 Instantiation for Effect Graphs

We now discuss the instantiation of this framework in the context of effect graphs
presented in Section 3. We can quickly identify that our abstract domain is
relational and thus candidate for use in this framework. The original statements
are thus extended with a summary statement characterized by an effect graph:

Pext := P ∪ {Smr(G)}
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We can also notice that the graph merging operation acts as composition
operator �:

G1 �G2 := merge G2 in G1

For the delaying decision function D, we base our decision on a combination
of multiple factors. One important factor is of course the number of targets
a method currently has. We also check whether the receiver escapes the cur-
rent function, indicating that delaying might improve its precision. As expected,
experiments indicate that this decision function dictates the trade-off between
performance and precision of the overall analysis.

In case the call at hand is recursive, we conservatively prevent its delaying.
However, we also check whether the number of targets is not too big. In practice,
we consider this upper limit to be 50. We argue that effects would become overly
imprecise anyway once we exceeds this many targets for a single call, without
the ability to delay. In such cases, the analysis gives up and assigns � as definite
summary to all concerned functions.

Compositional summaries already give us a powerful form of context sensitiv-
ity but it is not always sufficient in practice, namely in the presence of recursive
methods relying on callbacks. We thus had to introduce another form of context-
sensitivity, which specializes the analysis of the same method for multiple call
signatures. We compute these signatures combining the type-estimates for each
argument.

5 Producing Readable Effect Summaries

We have demonstrated that summaries based on control-flow graphs are a flexible
and expressive representation of heap modifications. However, such graph-based
summaries are often not directly usable as feedback to programmers, for several
reasons. First, they capture both read and write effects, whereas users are likely
interested primarily in write effects. Next, they can refer to internal memory
cells that are allocated within a method and do not participate directly in an
effect. Last, but not the least they are not in textual form and can be difficult
to interpret by developers used to textual representations.

To improve the usefulness of the analysis for program understanding purposes,
we aim to describe effect summaries of methods in a more concise and textual
form. For this purpose we adopt regular expressions because they are a common
representation for infinite sets of strings, and can therefore characterize access
paths [10]. They also have a notable tradition of use for representing heap effects
[17]. We adopt the general idea of representing graphs using sets of paths to
generate an approximate textual representation of graph-based summaries for
our analysis.

We first show how we construct a regular expression for a definite summary.
For definite summaries, a graph-based effect is available that summarizes the
method. The graph not only describes which fields can been modified, but also
to which value they can be assigned. On the other hand, the corresponding
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regular expression only describes which fields could be written to. The task
therefore reduces to generating a conservative set of paths to fields that may be
modified. We construct the following non-deterministic finite state automaton
(Q,Σ, δ, q0, {qf}) based on a graph effect G:

Q := G.V ∪ {qf , q0}

Σ := {f | v1
f→ v2 ∈ G.E}

δ := G.E ∪ {q0 n→ n | n ∈ G.V ∧ connecting(n)}

∪ {v1
f→ qf | v1

f→ v2 ∈ G.IE ∧ v1 is not an inside node}

The automaton accepts strings of words where “letters” are names of the
method arguments and field accesses. Given an access path, o.f1.f2. · · · .fn−1.fn,
the automaton accepts it if fn might be modified on the set of objects reached
via o.f1.f2. · · · .fn−1. We exclude writes on inside nodes, as they represent writes
that are not be observable from outside, since the node represents objects allo-
cated within the function. From the non-deterministic automaton, we produce
a regular expression by first determinizing it, then minimizing the obtained de-
terministic automaton, and finally applying a standard transformation into a
regular expression by successive state elimination. Figure 6 shows the effect
graph and the corresponding automata (non-minimized and minimized) for the
example from the end of Section 2. In general, we found the passage through
determinization and minimization to have a significant positive impact on the
conciseness of the final expression.
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Fig. 6. Transformation steps from an effect graph to a minimized DFA. The graph
on the left is the definite effect of an impure list traversal. The center graph is the
corresponding NFA whose accepting language represents paths to modified fields. The
last graph is the minimized DFA to be translated to a regular expression.

For a conditional summary, we extract the set of unanalyzed method calls,
then compute a (definite) effect assuming that they are all pure, and present
the corresponding regular expression along with the set of calls. The natural
interpretation is that the regular expression captures all possible writes under
the assumption that no function in the set has a side effect.
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Section 6.2 and in particular Figure 8 below show some of the regular ex-
pressions that were built from our analysis of collections in the standard Scala
library.

6 Evaluation on Scala Library

We implemented the analysis described in the previous sections as part of a tool
called Insane. Insane is a plugin for the official Scala compiler.

6.1 Overall Results

To evaluate the precision of our analysis, we ran it on the entire Scala library,
composed of approximately 58000 methods at our stage of compilation. We be-
lieve this is a relevant benchmark: due to the functional paradigm encouraged in
Scala, several methods are of higher-order nature. For instance, collection classes
typically define traversal methods that take functions as arguments, such as filter,
fold, exists, or foreach . It is worth noting that we assumed a closed-world in order
to analyze the library. Indeed, since most classes of the library are fully exten-
sible, analyzing it without this assumption would not yield interesting results.
Given that even getters and setters can in general be extended, most of effects
would depend on future extensions, resulting in almost no definite summary.

We proceeded as follows: for each method, we analyzed it using its declara-
tion context and classified the resulting summary as a member of one of four
categories: if the summary is definite, we look for observable effects. Depending
on the presence of observable effects, the method is flagged either as pure or
impure. If the summary is conditional, we check if the effect would be pure un-
der the assumption that every remaining (delayed) method call is pure. In such
cases, the effect is said to be conditionally pure. Otherwise, the effect is said to
be impure. Lastly, an effect can be top if either the analysis timed out, or if
more than 50 targets were to be unrolled in a situation where delaying was not
available (e.g. recursive methods). We used a timeout of 2 minutes per function.
We note that while these parameters are to some extent arbitrary, we estimate
that they correspond to reasonable expectations for the analysis to be useful.
The different categories of effects form a lattice:

pure � conditionally pure � impure � �

Figure 7 displays the number of summaries per category and per package.
Observe that most methods are either pure or conditionally pure, which is what
one would expect in a library that encourages functional programming.

Overall, the entire library takes short of twenty hours to be fully processed.
This is mostly due to the fact that in this scenario, we compute a summary for
each method. Thanks to its modularity though, this analysis could be used in an
incremental fashion, reanalyzing only modified code and new dependencies while
reusing past, unchanged results. Depending on the level of context-sensitivity,
past results can be efficiently reused in an incremental fashion and allow the
analysis to scale well to large applications.
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Package Methods Pure Cond. Pure Impure �
scala 5721 79% 11% 10% 1%
scala.annotation 41 93% 2% 2% 2%
scala.beans 25 64% 8% 28% 0%
scala.collection 34810 46% 17% 29% 8%
scala.compat 9 22% 33% 44% 0%
scala.io 546 47% 11% 40% 2%
scala.math 1847 67% 28% 5% 0%
scala.parallel 39 77% 23% 0% 0%
scala.ref 113 58% 3% 39% 0%
scala.reflect 5862 50% 9% 40% 1%
scala.runtime 1620 61% 25% 14% 1%
scala.sys 767 44% 22% 30% 4%
scala.testing 44 52% 2% 43% 2%
scala.text 115 87% 0% 11% 2%
scala.util 1786 51% 11% 32% 6%
scala.util.parsing 2206 56% 12% 27% 5%
scala.xml 2860 56% 11% 30% 3%

Total: 58410 52% 15% 27% 6%

Fig. 7. Decomposition of resulting summaries per package

immutable.TreeSet:

Generic trav. Any
Pure trav. Pure
Impure trav. es.tree(.right | .left)∗.key.visited
Grow Pure

immutable.List:

Generic trav. Pure (conditionally on the closure)
Pure trav. Pure
Impure trav. es.tl∗.hd.visited
Grow Pure

mutable.HashSet:

Generic trav. Pure (conditionally on the closure)
Pure trav. Pure
Impure trav. es.table.store.visited

Grow
es.tableSize | es.table.store |
es.sizemap.store | es.sizemap | es.table

mutable.LinkedList:

Generic trav. Pure (conditionally on the closure)
Pure trav. Pure
Impure trav. es.next∗.elem.visited
Grow es.next.next∗

mutable.ArrayBuffer:

Generic trav. Any
Pure trav. Pure
Impure trav. es.array.store.visited
Grow es.size0 | es.array.store | es.array

Fig. 8. Readable effect descriptions obtained from graph summaries from four opera-
tions performed on five kinds of collections
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6.2 Selected Examples

To demonstrate the precision of the analysis, we take a closer look at several
methods relying on the library, for which the pre-computed summaries can be
reused in order to efficiently produce precise results. We targeted five collec-
tions, two immutable ones: TreeSet and List, and three mutable ones: HashSet,
LinkedList and ArrayBuffer. For each of these collections, we analyze code perform-
ing four operations, shown in Figure 9. Figure 10 shows functions corresponding
to these four operations when applied to the TreeSet collection, and summarizes
the general classes of operations.

1. Generic Traversal: call foreach with an arbitrary closure,
2. Pure Traversal: call foreach with a pure closure,
3. Impure Traversal: call foreach with a closure modifying the collection elements,
4. Growing: build a larger collection, by copying and extending it for immutable

ones, or modifying it in place for mutable ones. The method used for growing
depends on what is available in the public interface of the collection, e.g. add,
append or prepend.

Fig. 9. Operations on containers used to evaluate analysis results

class Elem(val i: Int) { var visited = false }
def genTrav(es: TreeSet[Elem], f: Elem ⇒ Unit) = es.foreach(f)
def pureTrav(es: TreeSet[Elem]) = es.foreach { e ⇒ () }
def impureTrav(es: TreeSet[Elem]) = es.foreach { .visited = true }
def grow(es: TreeSet[Elem], e: Elem) = es + e

Fig. 10. The particular four operations applied on the TreeSet collection

The resulting effects are converted into a readable format, as described in
Section 5 and displayed in Figure 8. We note that producing these regular ex-
pressions takes in each case under 5 seconds. First of all, we can see that all
pure traversals are indeed proved pure and have no effect on the internal rep-
resentation of the collections. Also, we are often able to report that a generic
traversal has no effect on the collection assuming the closure passed is pure.
The exceptions are the generic traversals of TreeSet and ArrayBuffer. In these two
cases, the computed effect is �, due to the fact that their respective traversal
routines are implemented using a recursive function with highly dynamic dis-
patch within its body. We can see however that thanks to context sensitivity,
we are able to obtain precise results when the closure is determined. For impure
traversal of TreeSet, the analysis had to generate and combine no less than 27
method summaries. The fact that the resulting effect remains precise despite the
fundamental complexity of the library shows that the analysis achieves its goal
of combining precision and modularity through summaries, even in the case of
higher-order programs.

In the cases of impure traversals, the effects correctly report that all elements
of the collections may be modified. Additionally, they uncover the underlying
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implementation structures. For example, we can see that the HashSet class is
implemented using a flat hash table (using open addressing) instead of the usual
array of chained buckets. It is worth noting that TreeSet is implemented using red-
black trees. For mutable collections, growing the collection indeed has an effect
on the underlying implementation. Growing immutable collections remains pure
since the modifications are applied to the returned copy only.

Overall, we believe such summaries are extremely useful, as they qualify the
impurity. In almost all cases, the programmer can rely on the result produced
by Insane to conclude that the functions have the intended effects.

7 Related Work

Our goals stand at the intersection of two long-standing fundamental problems:

1. effect and alias analysis for mutable linked structures; [8,6,16,21,31,25];
2. control-flow analysis [29] for higher-order functional programs.

Because we have considered the heap analysis to be the first-order challenge,
we have focused on adapting the ideas from the first category to higher-order
settings. In the future we will also consider the dual methodology, incorporating
recent insights from the second line of approaches [20].

The analysis domain presented in this paper builds on the work [27,28], who
used graphs to encode method effect summaries independently from aliasing
relations. The elements of this abstract domain are best understood as state
transformers, rather than sets of heaps. This observation, which is key to the
applicability of the generic relational framework described in Section 4, was also
made by Madhavan, Ramalingam, and Vaswani [18], who have formalized their
analysis and applied it to C# code. The same authors very recently extended
their analysis to provide special support for higher-order procedures [19]. An
important difference with our work is that [19] summarizes higher-order func-
tions using only CFGs or a particular, fixed, normal form: a loop around the
un-analyzed invocations. Because our analysis supports arbitrary conditional
summaries, it is a strict generalization in terms of precision of summaries. An-
other distinctive feature of our analysis is its support for strong updates, which
is crucial to obtain a good approximation of many patterns commonly found in
Scala code. In fact, the reduction of CFGs to normal form in [19] relies on graph
transformers being monotonic, a property that is incompatible with strong up-
dates. Finally, our tool also produces regular expression summaries, delivering
results that can be immediately useful to programmers.

The idea of delaying parts of the analysis has been explored before in interpro-
cedural analyses to improve context-sensitivity [9,33] or to speed up bottom-up
whole-program analyses [14]. Our work shows that this approach also brings
benefits to the analysis of programs with callbacks, and is in fact critical to its
applicability.

Our analysis masks only effects that can be proved to be performed on fresh
objects in given procedure call contexts. A more ambitious agenda is to mask ef-
fects across method calls of an abstract data types, which resulted in a spectrum
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of techniques with different flexibility and annotation burden [15,24,5,7,4,12,2,1].
What differentiates our analysis is that it is fully automated, but we do hope
to benefit in the future from user hints expressing encapsulation, information
hiding, or representation independence.

Separation logic [11,3] and implicit dynamic frames [30,23] are two popular
paradigms for controlling modifications to heap regions. Nordio et al. describe
an adaptation of dynamic frames [22] for the automated verification of programs
with higher-order functions. We note that effect analysis is a separate analysis,
whereas separation logic analyses need to perform shape and effect analyses at
the same time. This coupling of shape and effect, through the notion of footprint,
makes it harder to deploy separation logic-based analyses as lightweight compo-
nents that are separate from subsequent analysis phases. Moreover, the state of
the art in separation logic analyses is such that primarily linked list structures
can be analyzed in a scalable way, whereas our analysis handles general graphs
and is less sensitive to aliasing relationships.

The importance of conditional effects expressed as a function of arguments
has been identified in an effect system [26] for Scala, which requires some type
annotations and is higher-level, but provides more control over encapsulation
and elegantly balances the expressive power with the simplicity of annotations.
The resulting system is fully modular and supports, e.g. separate compilation.
In the future, we will consider using a system such as Insane as an automated
annotation engine for the effect system, alleviating the bootstrapping problems
that come with the annotation requirements.

8 Conclusion

Knowing the effects of program procedures is a fundamental activity for any
reasoning task involving imperative code. We have presented an algorithm, a
tool, and experiments showing that this task is feasible for programs written in
Scala, a modern functional and object-oriented language. Our solution involves
a general framework for relational effect analyses designed to support different
automated reasoning strategies and allowing analysis designers to experiment
with trade-offs between precision and time. Building on this framework we have
introduced an abstract domain designed to track read and write effects on the
heap. Combining the framework with the abstract domain, we have obtained an
effect analysis for Scala. We have implemented and evaluated the analysis on the
entire Scala standard library, producing a detailed breakdown of its 58000 func-
tions by purity status. Finally, we have developed and implemented a technique
to produce human-readable summaries of the effects to make them immediately
useful to programmers. We have shown that these summaries can concisely and
naturally describe heap regions, thus producing feedback that conveys much
more information than a simple pure/impure dichotomy. Insane works on unan-
notated code and can thus readily be applied to existing code bases, facilitating
program understanding, as well as subsequent deeper analyses and verification
tasks.
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Abstract. Mobility is a network capability with many forms and many
uses. Because it is difficult to implement at Internet scale, there is a
large and confusing landscape of mobility proposals which cannot easily
be compared or composed. This paper presents formal models of two dis-
tinct patterns for implementing mobility, explaining their generality and
applicability. We also employ formal verification to show that different
instances of the patterns, used for different purposes in a network archi-
tecture, compose without alteration or interference. This result applies
to all real implementations that are refinements of the patterns.

1 Introduction

By “mobility,” people usually mean a network capability that enables all of a
machine’s communication services to continue working as the machine moves
geographically. In fact, network mobility is much more general. Because it is the
machine’s attachment to the network that is moving, the machine might also
be changing from one transmission medium to another (e.g., cellular to WiFi)
or from one service provider to another. Also, communication services can be
provided by layers of middleware, supporting higher-level, application-oriented
abstractions. With these abstractions a communicating entity could represent,
e.g., a person’s bank account. The account could be attached to the network
through a numbered account at a particular bank, and mobility would allow the
person to change banks without disrupting automated banking transactions.

Mobility is tremendously important. Today, mobile services are the major area
of growth for many network service providers. In the near future, “ubiquitous
computing” will cause an explosion in the number and variety of networked
mobile devices. Robust middleware for application-level mobility would be a
valuable enhancement to service-oriented architectures.

Mobility is also complex, subtle, and notoriously difficult to implement at
Internet scale. The classic Internet architecture [3] has a hierarchical address
space in which the hierarchy reflects a combination of geographic, topological,
and administrative relationships. Machines are assigned Internet Protocol (IP)
addresses according to their locations in the hierarchy. Subtrees of the hierarchy
are treated as address blocks, and routing works at Internet scale only because of
block aggregation. A mobile machine breaks the rules of this scheme by carrying
an individual IP address to a location where it does not belong.

E. Cohen and A. Rybalchenko (Eds.): VSTTE 2013, LNCS 8164, pp. 68–87, 2014.
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Because of these difficulties, the landscape of mobility implementations is a
confusing picture. A recent survey [17] cites 22 mobility proposals, and we know
of at least 10 others. With the exception of GTP (used by cellular networks) and
Ethernet protocols for mobility within local area networks (LANs), none have
been widely deployed. These proposals are extremely difficult to compare, so
that network service providers struggle to make wise choices for future growth.
Even though mobility obviously occurs at different levels of the protocol stack,
for many different reasons, and with many different performance profiles, most
of these proposals would be impossible to compose with each other, or to re-use
in different contexts, with any confidence.

In short, mobility is too complex to understand and reason about without the
aid of formal methods. The purpose of this paper is to give the study of mobility a
firm foundation by modeling and analyzing abstract implementations of mobility.
The abstractions are general enough to describe all proposed implementations,
with some slight modifications to improve separation of concerns. Our major
result, that implementations of mobility can be safely composed, applies to all
implementations that are refinements of the abstract implementations.

We begin with a basic model of network architecture called the “geomorphic
view” of networking (Section 2). This model provides consistent terminology and
a global framework in which specific implementation mechanisms can be placed.
It is precise enough so that proposed network architectures have unique descrip-
tions within the framework, which is essential for purposes of comparison. This
section introduces two new formal models of different aspects of the geomorphic
view.

Because the geomorphic view is an abstraction of real implementations that
hides detail and separates concerns, it makes it possible to see that there are
two very distinct patterns for implementing mobility (Section 3). Although ev-
ery well-known mobility proposal fits into these two patterns [16], these two
patterns have never been observed before. Section 3 describes the patterns both
informally and formally. It also contains brief discussions of the applicability
constraints, design choices, and cost/performance trade-offs of each pattern. Al-
though mobility is an enhancement to the implementation of a point-to-point
communication channel, preserving the channel even while its endpoints move,
we do not consider black-box specifications of channel or mobility behavior (e.g.,
[1,2,5]).

Section 4 introduces the goal of a design space of mobility in which engineers
could handle each instance of mobility with exactly the right implementation
mechanism at exactly the right place in a layered network architecture. This
goal requires, of course, that different instances of the mobility implementations
compose—without alteration or interference. This section also includes an ex-
ample of the benefits of a compositional design space.

Section 5 presents arguments, based on our formal models, that the two im-
plementation patterns as described in the geomorphic view are indeed compo-
sitional. These arguments include analysis with the Alloy Analyzer [8] and the
Spin model checker [6]. This automated verification is no mere exercise, as the



70 P. Zave and J. Rexford

A B

C D E

Fig. 1. Members and links of a layer

inherent subtlety of composed mobility mechanisms is too great for reliable in-
formal reasoning. The implication of our result is that any real implementations
that are refinements of our abstract implementations are also compositional.

2 The Geomorphic View of Networking

In the geomorphic view of networking, the architectural module is a layer. Each
layer is a microcosm of networking—it has all of the basic ingredients of net-
working in some form. In a network architecture there are many layer instances;
they appear at different levels, with different scopes, with different versions of
the basic ingredients, and for different purposes.

2.1 Components of a Layer

A layer has members, each of which has a unique, persistent name. For example,
Figure 1 is a snapshot of a layer with five members, each having a capital letter
as a name. In general a member is a concurrent process, i.e., a locus of state
and control with the potential for autonomous action.

The members of a layer communicate with each other through links, shown
by lines in Figure 1. A link is a communication channel. In general, a layer does
not have a link between each pair of members.

One of the two primary functions of a layer is to enable members to send mes-
sages to each other. To do this, a layer needs routes indicating how one member
can reach another through links and intermediate members. For example, (A,
B, D, E ) is a route from A to E. It also needs a forwarding protocol that runs
in all members. The forwarding protocol enables members to send and receive
messages. In addition, when a member receives a message on an incoming link
that is not destined for itself, its forwarding protocol uses the route information
to decide on which outgoing link or links it will forward the message.

A channel is an instance of a communication service. As mentioned above, a
link is a channel. Sometimes a layer implements its own links internally. Most
commonly, however, the links of a layer are implemented by other layers that
this layer uses, placing the other layers lower in the “uses” hierarchy.

If an underlay (lower layer) is implementing a link for an overlay (higher
layer), then the basic attributes of the channel must be stored in the states of
both layers. In the overlay, the channel object is one of its links. In the underlay,



Compositional Network Mobility 71

registration

processes on
one machine

A E

a edb

Fig. 2. Implementation of a link in an overlay by a session in an underlay

the channel object is one of its sessions. There must be two names for the sets
of channels of interest to a layer, because a typical layer both uses links and
implements sessions.

The second primary function of a layer is to implement enriched communi-
cation services on top of its bare message transmission. Typical enrichments for
point-to-point services include reliability, FIFO delivery, and quality-of-service
guarantees. This function is carried out by a session protocol. A layer can imple-
ment sessions on behalf of its own members, as well as or instead of as a service
to overlays.

For a link in an overlay to be implemented by a session in an underlay, both
endpoint machines must have members in both layers, as shown in Figure 2. A
machine is delimited by an operating system that provides fast, reliable commu-
nication between members of different layers on the machine. This fast, reliable
operating-system communication is the foundation on which networked commu-
nication is built.1

A registration is a record that relates an overlay member to an underlay
member on the same machine. Registrations must be stored as data in both
layers. In the overlay they are called attachments, because they indicate how a
member is attached to the network through a lower layer. In the underlay they
are called locations, because they indicate that a member is the location of a
process in a higher layer.

The session protocol creates and maintains sessions data in its layer, and uses
locations data. For example, in Figure 2, A sent a request to a for a session
with E. To create this session, a learned from its layer’s locations that E is
currently located at e. Messages sent from A to E through the link in the overlay

1 Although layer members have been described as concurrent processes, they are not
usually “processes” as defined by the operating system; processes in an operating
system have many more properties and associations. A virtual machine can be re-
garded as a machine, in which case communication through the hypervisor and soft
switch of the physical machine is regarded as networked communication.
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primary function state component maintenance algorithm

member algorithm
location algorithm

attachment algorithm
link algorithm
routing algorithm

members
locations
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attachments
links
routes

session protocol

forwarding protocol

Fig. 3. Major components of a layer. Arrows show which protocol or algorithm writes
a state component.

travel through a, b, d, and e; the first and last steps uses operating-system
communication, while the middle three steps use networked communication.

The six major components of the state of a layer are listed in Figure 3. All
can be dynamic. We have seen that the session protocol creates and maintains
sessions; the other five are created and maintained by their own maintenance
algorithms.

2.2 Layers Within a Network Architecture

The geomorphic view may seem familiar and obvious because both the classic
Internet architecture [3] and the OSI reference model [7] also describe network
architecture as a hierarchy of layers, but in fact there are several radical differ-
ences, which the name “geomorphic” has been chosen to emphasize.

In the Internet and OSI architectures, each layer has a specialized function
that is viewed as different from the function of the other layers. In both archi-
tectures, there is a fixed number of global layers. In the geomorphic view, each
layer is viewed as the same in containing all the basic functions of networking,
and there can be as many layers as needed. Consequently, the network (IP)
and transport (TCP/UDP) layers of the classic Internet architecture fit into one
“Internet core” layer of the geomorphic view (see Figure 4). In this layer, IP is
the forwarding protocol and TCP and UDP are variants of the session protocol
offering variants of Internet communication service.

Because layers instantiated at different levels have different purposes, their
functions take different forms. For one example, the best-known routing algo-
rithms are in the Internet core, where their purpose is reachability. A higher-level
middleware layer might offer security as part of its communication services. Im-
plementing security might entail routing all messages to a particular destination
through a particular filtering server, so that, in this layer, part of the purpose
of routing is security. An application layer might have a link or potential link
between any two members, implemented by communication services below, so
that in this layer the routing algorithm is vestigial.

The scope of a layer is its set of potential members. In the Internet and OSI
architectures scope is not precisely defined, so diagrams usually show exactly one
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LAN 1 LAN 2 LAN 3

1 2 2 3

gateway gateway

Application 1

Application 2

Internet core

Fig. 4. Geomorphic view of the classic Internet architecture. Internet links are labeled
with the LAN that implements them.

layer at each level of the hierarchy, each with global scope. In the geomorphic
view, as shown in Figure 4, a layer can have a small scope, and there can be
many layers at the same level of the hierarchy.

Figure 4 also shows that each application is a layer with its own members,
name space, and communication services. These layers overlap geographically,
while sharing the resources of the Internet core. The overlapping and abutting
shapes in Figure 4 are common to both geological diagrams and networking.

Today’s Internet is host to many customized architectures running simulta-
neously [14,15]. Middleware is an important part of the ecosystem, while cloud
services and virtual private networks add extra layers to the classic Internet
architecture. It is self-evident that fixed layer structures cannot describe these
architectures adequately. The geomorphic view is intended not only to describe
them, but also to generate a design space including many others not yet explored.

We will use two formal models of the geomorphic view for reasoning about mo-
bility. One is a model of shared state written in Alloy [8]. Shared state is state of
a layer that may be read or written by more than one layer member. The other is
a Promela [6] model of an end-to-end channel protocol. The states model private
control information of each endpoint, so they are complementary to the Alloy
model. Both models are available at http://www2.research.att.com/~pamela/
mobility.html.2

2 As a bonus, the Promela model is organized and documented as a tutorial on modular
verification. Different properties require different forms of verification, so approxi-
mately 16 different verification techniques and Spin features are explained.

http://www2.research.att.com/~pamela/mobility.html
http://www2.research.att.com/~pamela/mobility.html
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Fig. 5. Two stages in an instance of dynamic-routing mobility

3 Implementations of Mobility

In this section we show that there are two completely different patterns for
implementing mobility. They differ in where the mobility appears with respect
to the implementing layer, in which algorithms and protocols of the implementing
layer are involved in implementing mobility, and in which parts of the shared
state are altered. They also differ in their detailed design decisions, and in their
cost, performance, and scalability issues. Although there are many examples of
both kinds of mobility in the literature, it has never before been observed that
there are two major and radically different approaches. This finding is a result
of taking the geomorphic view of networking.

3.1 Dynamic-Routing Mobility

Figure 5 has two stages depicting the effect of mobility on an inter-layer channel.
Recall that the channel is a link in the state of the layer that uses it, and a session
in the state of the layer that implements it; its higher endpoints are in the user
layer, while its lower endpoints are in the implementing layer.

The precise site of mobility here is the lower endpoint A. In Stage 1 A is
attached to a1 in LAN 1. Recall that a1 is the location of A, and the association
between them is a registration. a1 and A are connected to the rest of their layers
through Links 1 and 2, respectively. Link 2 is implemented by LAN 1, which
might be an Ethernet or wireless subnetwork.

Between Stage 1 and Stage 2 Link 1 stops working, possibly because the
machine on which A and a1 reside has been unplugged from an Ethernet, or
has moved out of range of a wireless subnetwork. In a cascading sequence of
events, Link 1 is destroyed, Link 2 is destroyed, and the registration of A at a1
is destroyed. A is now disconnected from the rest of its layer.
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Eventually the mobile machine may become plugged into another Ethernet
or enter the range of another wireless subnetwork, as shown in Stage 2. In a
cascading sequence of events, member a2 (which is the mobile machine’s member
in the new LAN 2) connects to the rest of its layer through Link 3, A becomes
attached to new location a2, and new Link 4 is created in the mobility layer
and implemented by LAN 2. Note that A is now linked to C rather than B; this
change is necessary because C is attached to LAN 2 and B is not.

Between Stages 1 and 2 there may be an interval during which A has no
connection with the rest of its layer. The hard problem to be solved in Figure 5
is that even after A is again reachable by other members of its layer such as D
and E, they do not know how to find it because the routes to it are obsolete.
Dynamic-routing mobility relies on the routing algorithm of the layer, which must
learn about new links, recompute routes, and disseminate new routes. After this
is accomplished, D will know that it can reach A by forwarding to C.

There are three ways in which actual dynamic-routing mobility can differ from
the example in Figure 5. Fortunately, none of them affect what the implemen-
tation has to do, so none of them need be discussed separately. First, the new
attachment a2 could be in the same layer as a1, rather than in a different layer.
Because a1 and a2 are different locations, after the move A is probably linked
to a different member of its own layer, even though the new link is implemented
by the same lower layer as before.

Second, in Figure 5 the mobile member A has only one attachment and one
necessary link. As shown in Figure 4, members such as gateways have multiple
simultaneous attachments to different underlays. Because each such attachment
is necessary for the gateway’s purpose and supports its own link or links, the
mobility of each attachment is a separate problem to be solved.

Third, occasionally a layer implements sessions for the benefit of its own
members, rather than as a service to a higher user layer. In this case there is no
A or E, and the beneficiaries of the mobility implementation are A and E.

Often the tasks of forwarding and executing the routing algorithm are dele-
gated to specialized layer members called routers. The principal costs of dynamic-
routing mobility are update cost (to compute new routes and disseminate them
to all routers) and storage cost (to store routes to individual mobile nodes in
all routers that need them). As mentioned in Section 1, these costs can be
prohibitive in a large layer that requires aggregated routing to work at scale.
Dynamic-routing mobility is most used in LANs, which have smaller scopes and
can function without hierarchical name spaces and aggregated routing.

Another common design approach is to reduce update and storage costs by
drastically reducing the number of routers that know the routes to mobile mem-
bers. Because this approach introduces a separate set of routes and a separate
routing algorithm, in the geomorphic view it must be described in two separate
layers—even though it is usually described in one layer with ad hoc “tunneling.”
This is an example of a modified description of an implementation to improve
separation of concerns, as was mentioned in Section 1.
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The performance of this approach is sensitive to the number of mobile routers.
If many routers know the route to a mobile member, then update and storage
costs are higher. If few routers know the route to a mobile member, then update
and storage costs are low, but there is path stretch because every message to a
mobile member must pass through one of these routers, regardless of where the
source, router, and mobile member are located. More details can be found in
[16], where we compare 5 well-known proposals for dynamic-routing mobility.

3.2 Mobility in the Model of Shared State

Figure 6 shows the signatures of the Alloy model of shared state used to study
mobility. With one exception (see below), all the state components in Figure 3
correspond to relations in the signature of a layer. In Alloy time and events are
explicit, so that a layer has a member with name m at time t if and only if the
pair (m, t) is in the members relation of the layer. Members of the basic type
name play many roles in these relations, which the comments attempt to clarify.

In this model each channel is point-to-point, having initiator and acceptor
endpoints that must be hosted on different machines. Each channel has a user
layer and an implementing layer, which may be the same or different. If they are
different, the channel is one of the links in the user layer, and one of the sessions
in the implementing layer. If they are the same, the channel is either a link or a
session of that layer (but not both).

The overlays and underlays of a layer determine the “uses” hierarchy. The
attachments and locations are the registrations as presented in Section 2.1.

The directoryServer, directory, initFarLoc, and accptFarLoc relations will be
explained in Section 3.3. Except for these relations, the model says nothing about
how the shared state of a layer is distributed and replicated across the layer.

In the model, links are partitioned into inter-layer (implemented) links and
intra-layer (primitive) links. Primitive links are further partitioned into active
and inactive links; this partitioning is dynamic, as a primitive link’s current
partition represents its current state. There are DeactivateLink and ActivateLink
events that make primitive links inactive and active, respectively. There are
DestroyLink events that destroy links of any type. There are CreateLink events
that create implemented or active primitive links.

For implemented links, there is a predicate ImplementationActive that deter-
mines whether the link is active or inactive, based on the state of its implemen-
tation. Among the necessary conditions in this predicate, both higher endpoints
must be registered at lower endpoints in the implementing layer, and the lower
endpoints must be mutually reachable in that layer.

The challenge of implementing mobility is to bring an inactive implemented
link back to an active state, after occurrences such as those discussed in Sec-
tion 3.1 cause it to be suspended. The two patterns for implementing mobility
operate on attachments, locations, links, and sessions. Coordination among these
changes has little to do with dynamic routing itself, which is a self-contained algo-
rithm assuming no more than reachability. Taking advantage of this separation,
the model does not contain routes, and simply assumes that a routing algorithm
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sig Time { }

sig Event { pre: Time, post: Time }

sig Name { }

sig Channel {

userLayer: Layer,

implLayer: Layer,

initiator: Name, -- name: member of userLayer

acceptor: Name } -- name: member of userLayer

sig Machine { hosted: Layer -> Name -> Time } -- name: member of layer

sig Layer {

overlays: set Layer,

underlays: set Layer,

members: Name -> Time, -- name: member of layer

directoryServer: Name, -- name: member of layer

attachments: underlays -> Name -> Time, -- name: attached

locations: overlays -> Name -> Name -> Time, -- names: attached->location

directory: overlays -> Name -> Name -> Time, -- names: attached->location

sessions: Channel -> Time,

initFarLoc: Channel -> Name -> Time, -- name: endpoint’s location

accptFarLoc: Channel -> Name -> Time -- of far endpoint

links: Channel -> Time,

activeLinks: Channel -> Time, -- self-implemented

inactiveLinks: Channel -> Time, -- self-implemented

implementedLinks: Channel -> Time,

reachable: Name -> Name -> Time, -- names: from -> to

}

Fig. 6. Signatures of the Alloy model of shared state

is present in each layer and working correctly. Instead, each layer has a dynamic,
binary, symmetric relation reachable on members. By definition, a pair (m1, m2)
is in this relation if and only if there is a path between m1 and m2 consisting of
active links, whether implemented or primitive. The model assumes that if such
a path exists, the routing algorithm will find it and the forwarding protocol will
be able to use it.

The basic model includes a large number of consistency constraints on the
instantiation of these signatures. One example is that the overlays and underlays
fields in layers are consistent and form a directed acyclic graph that is the “uses”
hierarchy of layers. Another example is that if there is a link in layer L1 naming
L2 as the implementing layer, then there is a corresponding session in L2 naming
L1 as the user layer.

The model also includes CreateRegistration and DestroyRegistration events.
A layer member can have at most one location in an underlay. Thus the model
excludes mobility implementations that allow a higher endpoint to have multiple
simultaneous locations (lower endpoints) during handoff.
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How does Figure 5 correspond to the Alloy model? Assume that all links at
the LAN level are primitive and active. In Stage 1 the link in the user layer is
active. After Stage 1, Link 1, Link 2, and the registration between A and a1 are
destroyed by modeled events. Between Stage 1 and Stage 2 the benefiting link in
the user layer is inactive because its lower endpoints A and E are not mutually
reachable. Before Stage 2, Link 3, Link 4, and the registration between A and
a2 are created by modeled events. In Stage 2 the benefiting link is active again.

3.3 Session-Location Mobility

Figure 7 is similar to Figure 5. One difference is that A’s location in the imple-
menting layer changes from A1 to A2, rather than staying the same. Another
difference is that the LAN level is not shown. This is because the relevant change
of attachment is now between the user layer and the implementing layer, not be-
tween the implementing layer and the LAN level, so what happens at the LAN
level is irrelevant.3

This is a crucial difference from the perspective of the implementing layer, and
requires a completely different mechanism for implementing mobility. The bulk
of the work of implementing session-location mobility lies in ensuring that A’s
correspondents know that it is now located at A2 rather than A1. The distributed
version of the locations mapping that is used for lookup must be updated. Each
lower endpoint that was participating in a session with A1 on behalf of A must
be informed that it should now be corresponding with A2 instead.

user layer

implementing layer implementing layer

link

session

user layer

link

session

A E A E

A1 B D E A2 C D E

Fig. 7. Two stages in an instance of session-location mobility

The change of registration from A1 to A2 should be familiar from observing
what happens when a laptop containing an application layer member A moves
to a new subnetwork of the Internet, and gets a new IP address from DHCP.
From the perspective of the Internet, the laptop has died as member A1 and

3 Most often layer members A1 and a1 at the LAN level would be destroyed, and
members A2 and a2 created. In this case there would be no mobility between their
levels because each of the Aj is attached to the same aj throughout its lifetime.
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become reborn as member A2. Fortunately it is easy to transfer session state
from lower endpoint A1 to lower endpoint A2, because A1 and A2 are on the
same machine, and are actually the same process with different names.

It should be apparent that session-location mobility is a natural choice for
implementing mobility in a hierarchical layer, because the lower endpoint of a
session can change names when it moves with respect to the hierarchy. Strictly
speaking some dynamic routing could be involved, because A2 is a new member
of the layer and there must be routes to it. In practice this is rarely an issue,
because the name A2 is part of some larger address block to which routes already
exist.

The principal costs of implementing session-location mobility are the cost of
a scalable distributed implementation of locations, the cost of updating it when
there is a move, and the cost of updating the session states of correspondents.
Some implementations have a new lower endpoint send updates to all its cor-
respondent lower endpoints, while other endpoints have a lower endpoint poll
for refreshed locations of its correspondent upper endpoints. More details can
be found in [16], where we compare 5 well-known proposals for session-location
mobility.

To capture the challenges of implementing this pattern, the Alloy model has
a relation directory with the same type as locations. Locations is understood
to represent the ground truth about which overlay members are attached to
which locations in this layer. This ground truth is stored locally in the machines
where the registrations are created, and cannot be accessed globally. Directory
represents a public copy stored in a distinguished directoryServer, and part of
the implementation work is to keep directory as faithful to locations as possible.

In addition, the shared state of each session is augmented with a dynamic
initFarLoc name and acceptFarLoc name, storing the current location of the
initiator’s and acceptor’s far ends. For example, suppose that the channel in
Figure 7 is initiated by A. When the channel is set up, the initFarLoc of the
session is E and the acceptFarLoc of the session is A1. After the move from Stage
1 to Stage 2, the acceptFarLoc of the session is A2. The predicate Implemen-
tationActive, determining whether a link is active or inactive, also includes the
necessary condition that both far locations are correct.

When there is a CreateRegistration event after a move, it should be followed
by an UpdateDirectory event in which the directory relation is updated with the
new location. The preconditions of this event include that the new location and
the directory server are mutually reachable in the implementing layer.

Generally the fastest handoffs are achieved when a new lower endpoint sends
updates directly to all its correspondent lower endpoints. This is modeled by the
UpdateFarLocFromEndpoint event, which updates the initFarLoc or acceptFar-
Loc of a single channel from a single mobile endpoint. Its preconditions include
that both higher endpoints of the channel are registered in the implementing
layer, the two current lower endpoints are mutually reachable, and the endpoint
sending the update has the correct FarLoc for the other endpoint, so that it can
send a message to it.
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Interesting behavior arises if both endpoints of a channel move concurrently.
In this case the last precondition of UpdateFarLocFromEndpoint will be false at
both ends of the channel, and neither endpoint will be able to update the other.

In this case a mobile endpoint, finding that it cannot reach a far endpoint to
update it, knows that the far endpoint has moved also. The endpoint can update
its own FarLoc from the directory by using UpdateFarLocFromDirectory. The
preconditions of this event are that the far endpoint’s directory entry is correct
and the lower endpoint requesting the update can reach the directory server.
After a double handoff these preconditions will eventually be true on both ends,
and both ends can be updated successfully. The UpdateFarLocFromDirectory
event also models the behavior of implementations that poll for fresh locations
rather than sending updates to correspondents.

4 Composition of Mobility Implementations

4.1 The Design Space of Mobility

One of our goals is to give network architects the freedom to handle any instance
of mobility with any mobility implementation. The first step was to identify
the two possible implementation patterns and to provide sufficiently abstract
versions of them. The next step, taken in this section, is to show that any instance
of mobility can be implemented with either pattern at almost any level of the
layer hierarchy. The final step, taken in Section 5, will be to show that multiple
implementations can be freely composed.

In the left column of Figure 8, top half, we see a fundamental instance of
mobility in which the old and new locations are in the same layer at Level 0.
As notated, the channel at Level 1 can be preserved by session-location mobility
(SLM) at Level 0. In the left column, bottom half, we see a fundamental instance
of mobility in which the old and new locations are in different layers at Level 0.
As notated, a channel at Level 2 can be preserved by dynamic routing mobility
(DRM) at Level 1.

The middle column of the figure shows the effects of a “lifting” transformation
in which each mobility implementation is moved up a level in the hierarchy. The
purpose is to show that mobility can be implemented in many different places,
if the current architecture allows it or the designer has control of the content
and design of relevant layers. In each case member m at Level 1 is replaced by
two members m1 and m2. Neither m1 nor m2 is mobile, as each has a stationary
registration in Level 0 throughout its lifetime. Now member m’ at Level 2 is
mobile. As shown in the figure (top), a channel in Level 2 with m’ as its higher
endpoint can be preserved by SLM at Level 1. Or, as shown at the bottom, a
channel in Level 3 with m” as its higher endpoint and m’ as its lower endpoint
can be preserved by DRM at Level 2.

The right column of the figure shows where one implementation pattern can
be replaced by the other. To replace SLM by DRM (top right), it is necessary
to lift the channel up one level. To replace DRM by SLM (bottom right), the
channel can stay at the same level, but the mobility must be lifted up a level.
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Fig. 8. Generating the design space

4.2 An Example of Composition

In this section we consider a user’s laptop as a mobile endpoint. Sometimes the
user gets on a bus. During the ride, the laptop is attached to a LAN (wired
or wireless) on the bus, and the bus maintains its connection to the Internet
by means of a series of roadside wireless networks. This mobility problem is
interesting because there are two mobile machines, one of which is sometimes a
router on the path to the other.

Figure 9 illustrates a possible solution. The top layer contains a member M
representing the laptop, and a member S with an ongoing link to M. The middle
layer, which has hierarchical naming and routing, implements session-location
mobility for M. When M is on the bus, it is attached to a member bm in the
name block of the bus LAN. When M is off the bus, it has some other attachment
nm. Session-location mobility must be active when M moves with respect to the
bus, but not when the bus moves.

The middle layer contains a member b representing the router on the bus.
There is a link between b and bm implemented by the bus LAN. Attachments
to the bus LAN have no mobility.

In the middle layer, b also needs a channel to bc, the bus company router, that
is preserved as the bus moves and b changes its attachment from one roadside
LAN to another. In this example the channel is an intra-layer session, and it
is preserved by dynamic routing mobility in the middle layer. As explained in
Section 3.1, this is the same as mobility preserving an inter-layer channel, except
without the inter-layer interface. Dynamic routing mobility must be active when
the bus moves, but not when M moves with respect to the bus. Note that when
M is off the bus and attached to nm, it is reached by another route (not shown
in the figure) that does not go through bc or b.
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X and Y
X Y

link preserved by
session-location mobility
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dynamic routing mobility
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Fig. 9. One implementation of mobile laptops on a bus. Mobile attachments are drawn
with dotted lines, while stationary attachments are drawn with dashed lines.

To our knowledge, this is the first solution to this problem in which bus
mobility and laptop mobility are completely independent.

5 Verification of Compositional Properties

The purpose of this section is to show that instances of the abstract implemen-
tations of mobility presented in Section 3 can be used anywhere within a layer
hierarchy, concurrently, without alteration or interference.

5.1 Composition of Control States

As we have seen, an inter-layer channel has both higher endpoints and lower
endpoints. The channel is created and destroyed on the volition of the higher
endpoints, and each of the four processes involved has its own private control
state. Channel creation is independent of mobility, and is not considered here.

A higher endpoint of a channel can detect that the channel is not meeting
its performance requirements, primarily by monitoring round-trip times. On de-
tecting such a failure, the endpoint may respond by destroying the channel and
initiating failure-recovery procedures such as retry or an attempt to create an
alternative channel.

When a channel is not responsive at a higher endpoint because the lower
endpoint is disconnected from its layer, the higher endpoint should know it.
This information might prevent the higher endpoint from destroying a channel
that will be restored to full utility by a mobility implementation. It should cer-
tainly prevent the higher endpoint’s initiating replacement attempts, as these
are doomed to failure. For these reasons the inter-layer interface should be aug-
mented with suspend and resume events. A lower endpoint signals suspend to its
higher endpoint when it becomes disconnected from its layer, and resume when
it becomes connected again.
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To verify this augmentation we wrote a Promela [6] model of a channel with
suspension/resumption at either or both endpoints. The model includes higher
and lower processes at each end, with buffered communication between them to
be implemented by an operating system. The lower endpoints communicate with
each other through network links, which can lose or re-order messages in transit.
To make up for the unreliable network, the lower endpoints implement a simple
protocol for reliable, FIFO, duplicate-free transmission. Model-checking with the
Spin model-checker proves that the model has all the necessary properties. These
include: (1) there are no safety violations such as deadlocks; (2) if the channel
is not destroyed and both endpoints are eventually active, then all data sent
is eventually received; (3) the control states of higher and lower endpoints are
eventually consistent; (4) channels terminate cleanly in all cases.

For composition of the implementation patterns we need a different view,
shown as a finite-state machine in Figure 10. The primary state labels (in bold-
face type) indicate the states of a layer member implementing dynamic-routing
mobility. (For simplicity, the model assumes that the member has at most one
link at a time to the rest of its layer.) The transitions caused by the member are
labeled in boldface type. The member should attempt to stay linked, so that it
can do its job in its layer.

The states in the figure are oval when the member is attached to a member
in an underlay, and half-oval when it is not. The oval states are compositions
of the states of two processes, overlay member and underlay member (both on
the same machine). States and transitions of the underlay member are shown in
Italic type.

The overlay member is attempting to stay linked, but can only do so if
it is attached and the underlay member is active. At any time the process can
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Fig. 10. A finite-state machine representing private control states of a layer member
and the underlay member to which it is currently attached, if any. The dashed contour
is a superstate.
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abandon its attachment and eventually make another, but its links are
attachment-dependent and cannot be preserved across this change.

Next we consider the states and transitions of the underlay member. It can
suspend and resume according to its diagnosis of its own condition. This view
is slightly more general than the description in the first part of this section,
because it can suspend and resume with respect to the attachment, regardless of
whether the attachment is currently being used to implement a link or not.

The underlay member can also implement session-location mobility. When it
is already suspending because of poor performance, the underlay member can
first destroy its registration with the overlay member. Now the overlay mem-
ber has no official attachment/location, but the underlay member still exists
as a software process and is maintaining session state. Eventually, while in this
state, the underlay member changes identity within its layer as described in Sec-
tion 3.3, effectively becoming a different member of its layer. It then creates a
new registration with the overlay member, and eventually resumes activity.

Most interestingly, the same process can play both roles in Figure 10, be-
ing an underlay member and an overlay member at the same time. Consider
what happens when such a member is not linked as an overlay member, and
is therefore suspending as an underlay member. It can choose dynamic routing
mobility, in which case it causes destroyRegistration as an overlay member,
and seeks to find a better attachment below under its own current identity. Or it
can choose session-location mobility, in which case its current identity and state
as an overlay member are irrelevant, because they will disappear. It will take on
a new identity as an overlay member, and get an initial attachment below under
its new identity.

To behave correctly, a process playing both roles should seek to be linked as
an overlay member whenever possible, so that it can be active as an underlay
member. Whenever it is not linked as an overlay member, it should suspend
as an underlay member. Whenever it becomes linked again, it should resume
as an underlay member. The important observation is that the suspend/resume
events are in a different instance of Figure 10 than the linked state, so the two
are independent, and the process is always free to perform them.

5.2 Composition in the Model of Shared State

The Alloy model of shared state includes all the events required for implemen-
tations of mobility. Each event of the Alloy model has a set of preconditions
with the following purposes: (1) They ensure that the arguments make sense.
For example, if the argument list includes a name, it names a current member
of the appropriate layer. (2) They ensure that two layer members associated
by a registration are hosted on the same machine, and that two layer members
associated by a channel are hosted on different machines. (3) They ensure that
the event will change the state of the model. (There are no idempotent events.)
Each event of the Alloy model also has a safety assertion stating that it preserves
the overall consistency of the model state and makes the intended change.
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Verifying these safety assertions shows that mobility implementations are
compositional in the sense that each event is safe regardless of context. This
means that events from many simultaneous instances of mobility can be safely
interleaved. The limitation of this verification is that although the effect of each
event is localized within a layer, its enabling preconditions are global.

All of the Alloy correctness assertions have been checked with the Alloy An-
alyzer, which means that they have been verified for models of bounded size
(scope) by means of exhaustive enumeration of model instances. In debugging
the Alloy model, all counterexamples to conjectures were found with a scope of
2 layers, 5 names, 5 machines, and 5 channels. Nevertheless, we have verified
the properties in this paper for scopes of 5 layers, 6 names, 6 machines, and 12
channels.

The next step is to establish that progress is always possible, i.e., that if
any link is inactive, it can eventually become active. The proof is inductive,
starting from the bottom of a layer hierarchy, at a layer in which all links are
primitive rather than implemented. We verified with the Alloy Analyzer that in
any state of such a layer, either each pair of members is mutually reachable, or
the preconditions are satisfied to either (1) activate an inactive primitive link or
(2) create a new active primitive link between previously disconnected members.
After a finite number of such steps, all members must be mutually reachable.

Assuming that all members of an implementing layer can become mutually
reachable, an inactive implemented link can always become active in three stages:
(1) both its higher endpoints must become registered in the implementing layer;
(2) in addition, both its higher endpoints must have correct directory entries in
the implementing layer; (3) in addition, both its far locations in the session state
in the implementing layer must be correct. For the first stage, we verified that
in any state, either each higher endpoint is registered or the precondition for
its CreateRegistration event is satisfied. Recall that all events change the model
state, so that it is not possible for an event to occur without making progress.
For the second stage, we verified that in any state, if both higher endpoints
are registered, either each directory entry is correct or the precondition for its
UpdateDirectory event is satisfied. For the third stage, we verified that in any
state, if both higher endpoints have correct directory entries, either each far
location is correct or the precondition for its UpdateFarLocFromDirectory event
is satisfied.

If a bottom layer of a hierarchy is at Level 0, this shows that any imple-
mented link at Level 1 can eventually become active. By informal reasoning,
the “reachability progress” result now applies to a layer at Level 1, so that it
can be substituted as the implementation layer in the reasoning above. By in-
formal induction, an inactive implemented link at any level of the hierarchy can
eventually become active.
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6 Related and Future Work

For historical reasons, the discipline of networking suffers from a scarcity of
abstractions [13]. This deficiency is becoming more obvious as the complexity of
networking grows and the needs for common vocabulary, modularity, separation
of concerns, compositional reasoning, and design principles become more acute.

Loo et al. show that it is feasible to generate network software from declarative
programs [10]. In further work, Mao et al. generate new layers by composing
multiple existing layers, described declaratively [11]. Both have the limitation
of focusing exclusively on routing. Their abstractions are not generalizations
over all implementations, but rather lead to implementations in which there is a
logic-programming engine on each participating machine, serving as the runtime
environment for declarative programs.

The geomorphic view of networking was inspired by the work of Day [4], al-
though we have made many changes and additions in both content and presenta-
tion. Day points out that mobility is a change of registration, but assumes that
all mobility is dynamic-routing mobility, and discusses it only briefly. Mysore
and Bharghavan claim to explore the design space of mobility, but cover only
dynamic-routing mobility [12]. Karsten et al. aim to “express precisely and ab-
stractly the concepts of naming and addressing” as well as routing and forwarding
[9]. Although they include many mobility examples, there is no recognition of
session-location mobility.

There is a great deal of future work to do on mobility. The models should be
enhanced to include distribution of shared state and localized evaluation of event
preconditions. They should also be generalized to include process migration (in
which a layer member’s new attachment is on a different machine) and cases
in which a layer member’s old attachment overlaps in time with its new one.
Furthermore, our understanding of mobility should be extended to include re-
source and performance measures, and our understanding of composition should
be extended to include the quantitative effects of composition on these measures.
Perhaps most importantly, we need to find ways to bridge any gaps that exist
between real implementations and the slightly more modular, but composable,
abstractions of them.

We have looked at many other aspects of networking through the lens of the
geomorphic view, including multihoming, anycast, broadcast, failure recovery,
middleboxes, and autonomous-domain boundaries. Although none of these as-
pects have been studied in the same detail as mobility yet, they appear to fit well
into the geomorphic view. When we add them to the formal models, interesting
challenges may arise if new structures introduce new dependencies that falsify
previous verifications.

Despite these reservations, our work on network mobility reduces an extremely
complex subject to concise and comprehensible formal models. It yields new in-
sights into the design space of mobility, and enables us to reason rigorously about
the composition of mobility mechanisms. This constitutes significant progress to-
ward bringing the benefits of abstraction to the exceedingly important discipline
of networking.
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1 Introduction

Software specification is a crucial activity for software development. It consists
of describing software and its intended properties without the operational details
of implementations. By specifying software, and especially if one does so prior to
implementation, one is able to better understand the software to be developed,
and even validate requirements, which would save time and development costs
compared to finding flaws in them in later stages of development. The vehicle
to specify software is the specification language. Some important characteristics
of specification languages are declarativeness, expressiveness and analyzability.
Declarativeness and expressiveness allow one to capture requirements more natu-
rally and precisely, while analyzability allows one to better exploit specifications
by more effectively finding flaws, inconsistencies, etc.

Due to their intrinsic well-defined formal semantics, formal approaches to
specification are usually better suited for analysis. Representatives of formal
specification languages are, for instance, B [1], Z [9], the Object Constraint Lan-
guage (OCL), the Java Modeling Language (JML) [3], and Alloy [14]. Some of
these languages, B and Alloy in particular, have been designed with analysis as a
main concern. A main difference between these two languages is that the analysis
underlying B’s design is heavyweight (semi automated theorem proving, essen-
tially), while Alloy favors fully automated analysis. The main analysis technique
behind Alloy is lightweight, based on boolean satisfiability (SAT). This analysis
turned out to be extremely useful in making subtle modeling errors visible, as is
evidenced by approaches to the analysis of all the aforementioned specification
languages (or, more precisely, fragments thereof) that translate to Alloy in order
to profit from the latter’s analysis mechanism.

The analysis mechanism implemented by the Alloy Analyzer, the tool asso-
ciated with Alloy, is bounded verification. Bounded verification is a lightweight
formal analysis technique that consists of looking for assertion violations of a
model, under the assumption that the data domains in the model are bounded
by a user provided bound (called the scope of the analysis). Thus, the absence
of errors in the analyzed models is relative to the provided scope, and errors
might be exposed in larger scopes. Consequently, confidence in the correctness
of models depends on the scope: the larger the scope, the more confident we
will be that the specification is correct. That is, achieving verifiability in larger
scopes is necessary in order to provide higher confidence on model correctness.
Unfortunately, analysis time usually grows exponentially as the scope increases,
so approaches to increase the scalability of bounded verification are essential. A
technique that helps to increase the scalability of bounded verification is par-
allelization. Essentially, this consists of partitioning the original SAT problem
into a number of different independent smaller problems, which can be solved in
parallel.
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Typically, the speed up obtained by parallelization strongly depends on how
the original problem is partitioned. Unfortunately, finding an adequate partition
for a problem is difficult; for problems whose sequential analysis takes hundreds
of hours, most partitions of the original problem often lead to parallel analyses
that still exhaust the available resources (time or memory). In this article, we
study the problem of choosing an appropriate partition of a SAT problem, in
order to analyze it in parallel. We present a novel technique called tranScoping,
which consists of examining alternative partitions for small scopes, and extrap-
olating this information to select an adequate partition for larger scopes. As the
experiments presented in Section 5 show, tranScoping indeed allows us to find
suitable partitions that make the parallel analysis feasible. Moreover, the exper-
iments in Section 5 deal with problems whose sequential analyses take hundreds
of hours, and whose parallel analyses most often timeout as well, but by extrap-
olating analysis information via tranScoping we can efficiently analyze them. In
particular, tranScoping allows us to analyze models on scopes that have been
elusive for years. In Section 6 we discuss related work, and finally, in Section 7
we conclude and present some ideas for further work.

2 Bounded Verification: Alloy and the Alloy Analyzer

Alloy is a formal language based on a simple notation, with a simple relational se-
mantics, which resembles the modelling constructs of less formal object oriented
notations, and therefore is easier to learn and use for developers without a strong
mathematical background. In addition to being a relevant specification language,
Alloy has also received attention as an intermediate language: there exist many
translations from other languages into Alloy. For instance, a translation from JML
(a formal language for behavioral specification of Java programs) to Alloy is im-
plemented as part of the TACO tool [11]. A number of tools have also been devel-
oped for translating OCL-annotated UML models into Alloy (e.g., [2,15]). Alloy
has also been the target of translations from Event-B [17] and Z [16].

There is a good reason for the existence of the above mentioned translations
from other languages into Alloy: Alloy offers a completely automated SAT based
analysis mechanism, implemented in the Alloy Analyzer [13]. Basically, given a
system specification and a statement about it, the Alloy Analyzer exhaustively
searches for a counterexample of this statement (under the assumptions of the
system description), by reducing the problem to the satisfiability of a propo-
sitional formula. Since the Alloy language features quantifiers, the exhaustive
search for counterexamples has to be performed up to certain bound in the
number of elements in the universe of the interpretations, called the scope of
the analysis. Thus, this analysis procedure cannot be used in general to guaran-
tee the absence of counterexamples for a model. Nevertheless, it is very useful
in practice, since it allows one to discover subtle counterexamples of intended
properties, and when none is found, gain confidence in the validity of our specifi-
cations. The existence of the many translations from other languages into Alloy
provides evidence of the usefulness of the Alloy Analyzer’s analysis in practice.
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module addressBook

abstract sig Target {}
sig Addr extends Target {}
sig Name extends Target {}
sig Book { addr: Name -> Target }

fact Acyclic { all b: Book | no n: Name | n in n.^(b.addr) }

pred add [b, b’: Book, n: Name, t: Target] { b’.addr = b.addr + n -> t }

fun lookup [b: Book, n: Name]: set Addr { n.^(b.addr) & Addr }

assert addLocal { all b,b’: Book, n,n’: Name, t: Target |
add [b,b’,n,t] and n != n’ => lookup [b,n’] = lookup [b’,n’] }

// This command should produce a counterexample
check addLocal for 3

Fig. 1. An Alloy example: the addressBook sample model from [14, Fig. 5.1]

Let us introduce the Alloy language by means of an example, which will also
serve the purpose of explaining how theAlloyAnalyzer performs its analyses.Con-
sider the address book example from [14, Fig. 5.1], presented in Fig. 1. In this ex-
ample, an Alloy model of an address book, consisting of a set of known people and
their corresponding addresses, is proposed. Let us go through the elements of an
Alloy model. Alloy is a rich declarative language. It allows one to define data do-
mains by means of signatures, using the keyword “sig”. An abstract signature

is one whose underlying data set contains those objects belonging to extending
signatures. In the example, the data domain associated with signature Target

is composed of the union of the (disjoint) domains Addr and Name. Signatures
are, in some sense, similar to classes, and may have fields. For instance, signa-
ture Book has a field named addr, which represents the mapping from names to
targets (other names or addresses) that constitutes an address book. According to
Alloy semantics, fields are relations. In this case, since “->” stands for Cartesian
product, addr ⊆ Book × Name × Target. Axioms are provided in Alloy as facts,
while predicates (defined using the keyword “pred”) and functions (defined using
the keyword “fun”), offer mechanisms for defining parameterized formulas and
expressions, respectively. Formulas are defined using a Java-like notation for con-
nectives. Alloy features quantifiers: “all” denotes universal quantification, while
“some” is existential quantification. Terms are built from set-theoretic/relational
operators. They include constants (like “univ”, denoting the set of all objects in
the model, or “none”, which denotes the empty set). Unary relational operators
include transposition (which flips tuples from relations) and is denoted by “~”.
Alloy also includes transitive closure (noted by “^”) and reflexive-transitive clo-
sure (noted by “*”), which apply to binary relations. Relational union is noted by
“+”, intersection by “&”, and composition by “.”.

Fact Acyclic in the model specifies that there are no cyclic references in
address books (formula “no n: Name | ...” is equivalent to “all n: Name |

not ...”). Predicate add, on the other hand, is used to capture an operation of
the model – the one corresponding to adding a new entry into an address book.
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The formula corresponding to this predicate indicates which is the relationship
between the pre- and post-states of the address book (referred to as b and b’ in
the predicate).

In addition to the described elements, an Alloy model may also have asser-
tions. An assertion represents an intended property of a model, i.e., a model that
is expected to hold as a consequence of the specification. Assertions can be ana-
lyzed, by checking their validity in all possible scenarios within a provided scope.
The “check” command is used to instruct the Alloy Analyzer on how to ana-
lyze an assertion, in particular by specifying the corresponding scope. The Alloy
Analyzer translates the model and the assertion of interest to a propositional
formula. Notice that the model may include explicit facts (the model axioms),
implicit facts (properties that follow from the typing of fields and “subtyping”
between signatures), and the assertion to be analyzed. The Analyzer then pro-
duces a propositional formula representing the conjunction:

Explicit Facts && Implicit Facts && !Assert .

The translation is made possible due to the finitization information provided
by the scopes in the check statement. Notice that if the resulting propositional
formula is satisfiable, then the Alloy Analyzer can retrieve a valuation that
satisfies the facts, yet violates the assertion (a counterexample showing that the
property of interest does not hold in the model). Since the analysis is performed
relative to the prescribed scope, a verdict of unsatisfiability only implies that
counterexamples do not exist within the scope. The assertion under analysis
may be false but larger domains may be necessary to exhibit counterexamples.

3 Parallel SAT-Solving

Parallel SAT solving corresponds to the problem of deciding the satisfiability of
a propositional formula, by dividing the original problem into smaller instances,
and then solving these independently. Parallelization approaches to SAT solv-
ing use a divide-and-conquer pattern: problems that are too hard to be tack-
led directly are split into several (hopefully easier) subproblems, by choosing n
propositional variables, and splitting the problem into the 2n disjoint smaller
subproblems, where the chosen propositional variables are instantiated with all
possible combinations of boolean values. As we will see, how many non trivial
subproblems are obtained, whether they are in fact easier, or how much easier
than the parent problem these turn out to be, all strongly depend on the branch-
ing variables chosen to partition the search space into disjoint subproblems.

In our case, the splitting process is achieved by means of a mechanism sim-
ilar to guiding paths [25], with some differences that are worth noting. While
one could simply choose n branching variables to split a problem into 2n dis-
joint smaller ones, our experience working with CNF formulas arising from the
translation of Alloy specifications suggests that the actual number of nontrivial
subproblems is usually small compared to the number of subproblems, and often
significantly smaller. It is worth it to try and filter out subproblems that can
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easily be shown to be trivially unsatisfiable during the splitting process, without
ever producing or enqueueing them. For instance, if the n branching variables
happen to be part of the same “row” within the representation of a functional
Alloy relation, a quick round of boolean constraint propagation will easily dis-
card most combinations, and only the n+ 1 subproblems where at most one of
the variables is true will “pass the filter” and become new subproblems. This is
the approach we follow.

Two separate parameters control how problems are split. One of them is a
source of branching variables, i.e., a criterion determining which sequence of
decision variables should be considered (but not how many). The second one is
a limit on the number of subproblems to be spawned, i.e., how many new tasks
the system is willing to accept. The actual number of nontrivial subproblems
may greatly vary depending on which variables are chosen. So, an a priori limit
on the number of variables to branch is hard to determine. We therefore generate
subproblems and solve the trivial ones as part of the same process. The following
pseudocode illustrates our resulting approach to splitting a satisfiability problem
into subproblems:

children = [[]]

while varSource.hasMore() and len(children) < children_limit:

var = varSource.next()

newchildren = []

for litlist in children:

for newlit in (-var, +var):

newlitlist = litlist + [newlit]

if not trivially UNSAT(newlitlist):

newchildren.append(newlitlist)

children = newchildren

The above described approach to parallel SAT solving is implemented in our
prototype distributed solving tool ParAlloy. The parallel analysis experiments
featured in this article were run using the latest prototype of ParAlloy, which
runs on any cluster of independent commodity PCs. Its main system require-
ments are a working MPI [6] implementation, a C++ compiler and a Python
interpreter. The latest version of the Minisat [5] solver is used at the core of each
worker process. Python and mpi4py [7] are used to glue the dynamic aspects of
the system together.

The implementation constantly monitors the subproblem solving rate, i.e.,
the average number of tasks that are proved UNSAT (thus closing a branch of
the search space) per unit of time. At regular intervals, said rate is inspected
and compared with a threshold, in order to take action if not enough progress
is taking place. If the rate is below the threshold, the oldest worker process
(whichever has been solving its subproblem for the longest amount of time) is
instructed to split that subproblem. In order to keep efficiency rates high, this
is also done if the UNSAT rate is above the threshold but there are idle workers
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(which implies that all pending task queues are empty). In the current version
of the ParAlloy tool, inspection of the UNSAT rate (and possibly corrective
action) takes place every 5 seconds, and the UNSAT rate threshold is set at
0.15 per second per worker. For the 68-worker setup used in the parallel analysis
experiments shown in Section 5, this means that a progress threshold of 10.2
UNSATs per second is enforced.

4 TranScoping

In this section we present tranScoping, the main contribution of the article.
TranScoping is a new technique for improving the scalability of bounded ex-
haustive analysis by using information mined at smaller scopes to guide decision
making at larger ones. This exploits the regularity often observed across scopes
during analysis of an Alloy model.

In this paper we focus on one particular application – that of parallelizing the
analysis. For the problem of parallel bounded exhaustive analysis, transCoping
compares the performance of different alternative ways of splitting a SAT prob-
lem for small scopes, and extrapolates this information to select an adequate
splitting approach to be used with larger scopes.

Let us start by introducing the notion of splitter, corresponding to a criterion
for selecting propositional variables to split a propositional satisfiability problem.

Definition 1. Given an Alloy model A whose translation to conjunctive normal
form (CNF) is a propositional formula P , and a bound b on the number of new
subproblems, a splitter is an algorithm for selecting propositional variables from
P in such a way that the number n of produced subproblems satisfies n ≤ b.

Not every variable-selecting algorithm is an appropriate splitter. We require a
splitter S to satisfy the following properties:

– tranScopability: it must be possible for S to extrapolate how to partition a
problem at a larger scope, based on how the problem was partitioned by S
at a smaller scope.

– predictability in a class C of splitters : if S is the best splitter in C for scope
k (the one yielding the partition that can be solved the fastest in parallel),
then there exists a scope i (i < k), such that S is the best splitter in C for
all scopes j such that i ≤ j < k.

While tranScopability is in general easy to guarantee (we will discuss this prop-
erty later on, when the splitters are presented), predictability may, on the other
hand, be more intricate. In order to understand why, consider, as an example,
the model of the mark and sweep garbage collection algorithm provided as part
of the Alloy Analyzer’s distribution, and the assertion Soundness2 in it. The se-
quential analysis times (in seconds) for this assertion are 1, 23, 217 and 2855, for
scopes 7, 8, 9 and 10, respectively. Notice that for scope 7 the sequential analysis
takes only 1 second. Therefore, all the splitters will generate partitions whose
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problems in general will have a very low analysis time, which prevents us from
perceiving a clear order if one exists. So, we must consider larger scopes in which
the differences between analysis times are easier to perceive. Unfortunately, the
analysis time grows quite fast. Already for scope 10, applying all the available
splitters (that will be presented in Section 4.1) and analyzing the generated sub-
problems in order to define an adequate ordering, is too costly. Therefore, we
will be limited to the conclusions that we can reach by mining the data obtained
for the smallest scopes that are large enough to allow us to differenciate splitters
(e.g., for Soundness2, scopes 8 and 9). As we will show in Section 5, in the case
of Soundness2, this is enough to arrive at valuable conclusions.

4.1 A Portfolio of Splitters

Let us now describe an initial collection of splitters, that we assume that satisfy
tranScopability and predictability. We will present evidence to this effect when
the tranScoping technique is evaluated, in Section 5.

The VSIDS Splitter. VSIDS is a particular decision heuristic that many
modern SAT-solvers (including MiniSat) use in order to select the next variable
to decide, i.e., to be used for splitting (by instantiating it with true and false).
The heuristic keeps track of the number of occurrences of a given literal in the
formula under analysis, a value that is incremented by a fixed amount whenever
new clauses containing the literal are learnt. When a new variable is selected
to be decided, the one with the largest VSIDS ranking is chosen. Given k, the
maximum number of subproblems to be generated, the VSIDS splitter is defined
as follows:

Once the underlying SAT-solver is interrupted, select branching variables
by considering the ranking of the variable activity score in the solving
process, until the number of nontrivial subproblems reaches k.

For the evaluation in Section 5, in order to compute the VSIDS rank we will
analyze the problem sequentially and use the ranking resulting at the end of the
sequential analysis. This forces us to use small scopes during the mining phase
(otherwise the complete sequential analysis becomes infeasible). Alternatively,
we could use an intermediate ranking (for example, the ranking obtained after
10 seconds of analysis), but that would add another dimension to the evaluation,
making it too complex for our purposes. For those scopes in which the complete
sequential analysis is infeasible, we will use the ranking produced after 5 seconds
of SAT-solving (this is the case when analyzing a problem for large scopes after
the mining phase). As we will see in Section 5, this limitation does not affect
the quality of the analysis of the presented examples (or any other example we
used for assessment).

TranScopability is clearly satisfied by VSIDS, since lifting variables from the
VSIDS ranking is algorithmic. Notice that there is no direct relationship between
the variables selected using VSIDS in a small scope, and the variables selected
in larger scopes. As the experiments in Section 5 show, predictability is achieved
just by using the same technique.
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The “Field” Family of Splitters. Alloy models include signature fields. Dur-
ing the process of translating a model to a propositional formula, fields are mod-
eled as matrices of propositional variables. Matrix dimensions are determined
by the field typing and the analysis scopes. As an example, consider an Alloy
specification containing the following signature declaration:

sig Source {

field : Target

}

Suppose we want to analyze the command check assertion for k but 4

Source, 5 Target. If the assertion has counterexamples, each counterexample
must provide domains S = {S0, S1, S2, S3} and T = {T0, T1, T2, T3, T4} for signa-
tures Source and Target, respectively, as well as a binary relation field ⊆ S×T ,
that make the formula corresponding to the assertion satisfiable. The relation
field is characterized by the following matrix:

Mfield :=

pS0,T0 pS0,T1 pS0,T2 pS0,T3 pS0,T4

pS1,T0 pS1,T1 pS1,T2 pS1,T3 pS1,T4

pS2,T0 pS2,T1 pS2,T2 pS2,T3 pS2,T4

pS3,T0 pS3,T1 pS3,T2 pS3,T3 pS3,T4

whose entries are propositional variables, and where pSi,Tj = true ⇐⇒ 〈Si, Tj〉
∈ field . Different fields have different degrees of relevance on a satisfiability
problem, depending on how the fields are involved in the model. So one may
consider different fields, to choose variables from these fields’ representations in
order to partition the SAT problem. Each model field f gives rise to a different
splitter. The “Field” family of splitters is defined as follows:

select variables from those in matrix Mf , from the bottom-right entry,
and towards the top-left, while the number of subproblems does not sur-
pass the given bound k.

For the above matrix, the order in which variables would be selected is:

pS3,T4 , pS3,T3 , pS3,T2 , . . . , pS0,T1 , pS0,T0 .

Other Candidate Splitters. Various other splitters have been devised. How-
ever, for the case studies assessed so far, the Field family and VSIDS are the
most promising ones. The parallel SAT-solver PMSat [12] uses as its variable-
selecting heuristic those variables that occur in more clauses. This could give
origin to a new splitter by selecting those variables that are more frequently
found in the formula. Similarly, one can determine, for a given variable, which
are the variables whose decision propagate the value of more literals. A splitter
is then defined by selecting those variables that propagate the most.
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4.2 Selecting the Right Splitter

Given an Alloy model containing an assertion A to be checked, a splitter S and a
bound b on the number of subproblems to generate, S provides an algorithm to
select variables to be used in an initial splitting of the (CNF translation of the)
model. The splitting produces CNF subproblems sp1, . . . , spk, with k ≤ b, which
can be SAT-solved sequentially (sp1; · · · ; spk), or in parallel (sp1|| · · · ||spk).

Once all the splitters are run on scopes i, i + 1, . . . , j, we must decide which
splitter is going to be used in scopes larger than j. In order to make an informed
decision we will store, for each splitter S and scope l (i ≤ l ≤ j), the following
information. Given a problem on scope l,

NUMS,l is the number of subproblems generated by splitter S.
MAXS,l is the maximum analysis time incurred by any of the subproblems

generated by splitter S.
AVGS,l is the average time required by subproblems generated by S.
SUMS,l is the sum over the analysis times of the subproblems generated by S.
DEVS,l is the standard deviation of the analysis times of the subproblems gen-

erated by splitter S.
MEDS,l is the median of the analysis times of subproblems generated by S.

Our goal is to convey our insight on how the information about how splitters
behave for small scopes has to be interpreted in order to decide which splitter
to use for larger scopes (as opposed to defining a unique mechanism for ranking
splitters based on this information). As we will see in Section 5, based on this
information it is often possible to choose a good splitter.

Of the above listed parameters, MAX is the most important. A high value
of MAX (close to the time required to analyze the source problem before being
splitted), shows that a child subproblem (the one that has MAX as its analysis
time) is likely to be nearly as hard to be analyzed as its parent, deeming the
splitting performed not useful. On occasion, MAX alone is not enough in order
to appropriately comparing splitters. This can be observed in Table 1 (see Sec-
tion 5), where splitters VSIDS and Domain2.dstBinding alternate their order
with respect to MAX, as the scope is increased. By looking at the value of the
SUM parameter in scope 8, one can see that VSIDS has a much lower value than
Domain2.dstBinding (218.29” versus 1678.88”), allowing us to decide between
these splitters. A high sum (compared to the other splitters) usually indicates
a bad splitting, where subproblems share complex portions of the SAT-solving
search space. Therefore, splitters with a high sum are usually demoted to lower
positions in the ordering. The most appropriate ordering in this case would then
be VSIDS < Domain2.dstBinding.

It is important to remark that the heuristics just presented allow us to predict
the best splitter (within the available set) for each of the case studies to be
discussed in Section 5. Moreover, computing the parameters MAX, SUM, etc.
for each splitter in a small scope is inexpensive. We have both a sequential
prototype and parallel prototype that can be used interchangeably depending
on the availability of the cluster infrastructure, in order to compute these values.
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An alternative to the use of the above heuristics for ordering the splitters
is to carry out the actual parallel analysis in smaller scopes. This would allow
us to rank the splitters according to the parallel analysis times they induce,
yielding an ordering that is usually more precise. We will nevertheless stick to
the heuristics presented, resorting to parallel analysis in small scopes only if
required. Although the latter will not be necessary in this article for detecting
the best splitter, we will show in Section 5.5 that performing the parallel analyses
yields a better ordering on the whole set of splitters.

5 Experimental Results

In this section we evaluate the heuristics for choosing an appropriate splitter for
larger scopes, by analyzing the performance of splitters for smaller scopes. Our
evaluation is performed for a number of case studies. For each case study we
discuss how the VSIDS and the Field splitters can be ordered, and show that by
using the best splitter according to the defined ordering we achieve analyzability
in larger scopes. In Section 5.1 we describe the computing infrastructure used in
the evaluation; in Sections 5.2–5.5 we present our case studies, and in Section 5.6
we discuss some possible threats to the validity of our experimental results. Since
the parallel analysis times depend on the actual scheduling of the queued jobs,
we run each experiments 3 times and report the average analysis time. All the
times are given in seconds. In all the experiments we set the maximum number
of generated subproblems to 256. For each experiment we will report the time
required for computing the tranScoping data. This time is almost negligible
when compared to the analysis time in the largest scopes. In all the reported
experiments we were able to analyze assertions in scopes that were infeasible
(analysis would invariably diverge) without tranScoping.

5.1 The Computing Infrastructure

All experiments were run on the CeCAR [26] cluster, which consists of 17 identi-
cal quad-core PCs, each featuring two Intel Dual Core Xeon 2.67 GHz processors
with 2 MB of L2 cache per core and 2 GB main memory per host. Parallel anal-
yses were run as 17x4 jobs, i.e., 17 nodes running one process per core (1 master
+ 68 workers). Sequential analyses were run on a single dedicated CeCAR node.

5.2 A Model of Routing in Heterogeneous Networks

In [24], a model of routing in heterogeneous networks is presented. A compan-
ion Alloy model can be downloaded from the author’s web page. This model is
equipped with an assertion, shown in Fig. 2, that could not be checked for some
relatively small scopes. As explained before, it is important to analyze model
properties on larger scopes, since the larger the analyzed scope, the greater our
confidence will be in the validity of the model. This model is very difficult to an-
alyze; its sequential analysis time grows very steeply, from 308 seconds in scope 8
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assert StructureSufficientForPairReturnability {
all g: Agent, a1, a2: Address, d1, d2: Domain3 |

StructuredDomain[d1] &&
MobileAgentMove[g,a1,a2,d1,d2]
=> ReturnableDomainPair[d1,d2]

}
check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 4 Agent, 7 Identifier -- checked
check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 8 Identifier -- checked
check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 9 Identifier -- this one is too big also
check StructureSufficientForPairReturnability for 2 but

2 Domain, 2 Path, 3 Agent, 11 Identifier
-- attempted but not completed at MIT; formula is not that large; results
-- suggest that the problem is very hard, and that the formula is almost
-- certain unsatisfiable [which means that the assertion holds]

Fig. 2. Assertion StructureSufficientForPairReturnability and its companion
checks

to over 15 days in scope 10 (cf. Table 4). Problems like this one require strategies
for scaling up bounded analysis, and parallelization could be a valuable tool for
it. Still, the parallel analysis technique presented in Section 3 only allowed us to
complete the analysis for scopes 1 to 10. In fact, before tranScoping, our repeated
attempts to analyze this assertion for scope 11 were unsuccessful. As shown in
Table 4, tranScoping allowed us to select splitter Domain3.srcBinding, and to
analyze successfully the assertion using this splitter.

In order to evaluate which splitter to choose, we started by mining information
about the performance of all splitters, for scopes 6 to 8, shown in Table 1. Using
this information, we discarded for scope 9 those splitters that stand no chance
of becoming best candidates. The possibility of separating viable from inviable
splitters is a good quality of tranScoping, since it allows us to reduce the time
invested in the data computing phase. It took 868.27 seconds to compute this
table. We start by sorting splitters according to MAX, as shown in Table 1. This
is insufficient to decide an adequate splitter. In particular, observe the ordering
between splitters Domain2.dstBinding and VSIDS (the same applies to the or-
dering between splitters Domain2.dstBinding and Domain.routing). For scope
8, Domain2.dstBinding< VSIDS with respect to MAX, but by looking at value
SUM, we see that Domain2.dstBinding has a SUM that is 7.7 times larger
than VSIDS’ SUM. The difference is large enough to justify promoting VSIDS

above Domain2.dstBinding. This decision is backed up by Table 2, which shows
the performance of each of the splitters in the parallel analysis of the assertion.
A timeout (TO) was set at 600 seconds. Notice that the best two splitters (ac-
cording to tranScoping) performed better than the others. At first sight the two
best splitters seem to have performed similarly. In fact, Domain3.srcBinding
performed better than Domain3.BdstBinding, as we expected. Not because the
former took 1 second less to finish the analysis (that difference might even be
reverted if more analyses were made before averaging the results), but because
the number of subproblems that it had to generate (see the UNSATs column
in Table 2) is definitely smaller than the number of subproblems generated by
the latter. This has a direct correlation with the MAX value: a larger MAX
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Table 1. Routing: mined tranScoping information, scopes 6 to 9, sorted by MAX

Scope Splitter NUM MAX AVG SUM DEV MED
6 Domain3.srcBinding 77 0.08 0.02 1.45 0.02 0.01

Domain3.BdstBinding 77 0.09 0.02 1.50 0.02 0.01
Domain2.dstBinding 192 0.18 0.04 7.67 0.03 0.03
Domain.routing 102 0.21 0.02 1.98 0.03 0.01
VSIDS 228 0.49 0.01 3.55 0.05 0.00
Domain3.AdstBinding 192 1.22 0.05 9.78 0.10 0.02
Identifier remainder 64 2.31 0.73 46.94 0.52 0.59

7 Domain3.BdstBinding 136 0.84 0.12 17.00 0.18 0.08
Domain3.srcBinding 141 0.90 0.10 14.60 0.19 0.06
VSIDS 140 3.39 0.13 19.18 0.38 0.01
Domain2.dstBinding 192 3.71 0.49 94.74 0.42 0.32
Domain.routing 192 4.46 0.14 27.51 0.40 0.04
Domain3.AdstBinding 192 13.05 0.53 101.28 1.04 0.23
Identifier remainder 128 25.97 7.45 953.82 6.41 4.93

8 Domain3.srcBinding 136 8.09 1.13 154.17 1.37 0.51
Domain3.BdstBinding 136 18.06 1.28 173.48 1.95 0.72
Domain2.dstBinding 192 36.25 8.74 1678.88 7.45 5.78
VSIDS 174 63.62 1.25 218.29 6.27 0.05
Domain.routing 192 89.41 2.18 418.04 7.66 0.39
Domain3.AdstBinding 192 288.79 10.18 1954.07 22.36 2.46
Identifier remainder 256 376.70 86.03 22024.53 81.98 56.98

9 Domain3.srcBinding 365 7.57 163.47 2764.89 15.53 3.68
Domain3.BdstBinding 272 13.25 360.04 3603.38 27.38 5.89

Table 2. Routing: parallel analysis time, scope 9, all splitters. Timeout (TO) set to
600 seconds.

Splitter Time Pending UNSATs
Domain3.srcBinding 171.30 0 1562
Domain3.BdstBinding 172.23 0 2117
VSIDS 350.39 0 5974
Domain.routing 562.74 0 4534
Domain2.dstBinding TO 11709 735
Domain3.AdstBinding TO 17268 475
Identifier remainder TO 7682 32

value implies that there are some subproblems that are more complex and have
to be split more times (thus causing a larger number of UNSATs) in order to be
tamed. In this case this is not reflected in the analysis times because the hard-
ware available was able to cope with the number of subproblems generated by
both splitters. Table 3 reports the parallel analysis times for these two splitters
in scope 10, where the better performance of Domain3.srcBinding can be clearly
appreciated.

By using tranScoping we are able to analyze the assertion for scopes 1 through
11, as Table 4 shows. We set a timeout (indicated as TO when reached) of 15
days. The sequential analysis for scope 10 did not finish in 15 days. Looking at
the progression of sequential values, it is clear that the sequential analysis for
scope 11 may take most probably over a year. Therefore, we use the notation
� to indicate that the actual speed-up is most probably much larger than the
indicated speed up. We do not report parallel analysis times for scopes 6 and 7
because the sequential time is too small and the problem is solved before even
being split.
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Table 3. Routing: comparing splitters Domain3.srcBinding and Domain3.BdstBinding
during parallel analysis, scope 10

Splitter Time Pending UNSATs
Domain3.srcBinding 1053.48 0 10231
Domain3.BdstBinding 1129.49 0 10884

Table 4. Sequential versus parallel analysis time, and speed-up obtained by using the
best tranScoped splitter: Domain3.srcBinding. Timeout (TO) = 15 days.

Scope 6 7 8 9 10 11
Sequential time 1.60 18.34 308.26 76168.16 TO TO
Parallel time - - 26.55 171.30 1053.48 10949.72
Speed-up 11X 444X >1230X � 118X

5.3 A Model of the Mark and Sweep Garbage Collection Algorithm

Mark and Sweep is a garbage collection algorithm that, as its name conveys, tra-
verses the memory marking those objects reachable from the memory heap, and
then sweeping those objects that are no longer reachable. An Alloy model of the
mark and sweep algorithm comes as a sample model with the Alloy Analyzer’s
distribution. Among the assertions to be checked we have Soundness2. Unlike
assertion Soudness1 in the same model (whose analysis time grows slowly as
the scope increases), assertion Soundness2 is hard to analyze (Table 7 shows a
growth in the analysis time of at least 10 times from a scope to the next).

We also start with this case study by mining information about the perfor-
mance of all splitters, for scopes 7 to 9, ordered by MAX, and reported in
Table 5. It took 1007.41 seconds to compute this table. While splitter VSIDS ap-
pears to be the best option in scope 7, splitter HeapState.marked takes a clear
lead in scopes 8 and 9. Moreover, as shown in Table 6, the information mined
extrapolates to the parallel analysis: HeapState.marked is the best splitter and
VSIDS comes in second place. Table 7 shows that, resorting to the tranScoped
splitter HeapState.marked, we are able to analyze assertion Soundness2 for
scopes 1 to 10, obtaining significant speed-ups.

5.4 A Model of the Mondex Electronic Purse

Mondex is a smart card electronic cash system owned by Master Card. A Mondex
smart card allows its owner to perform secure commercial transactions and offers
features similar to those provided by ATM machines (albeit with greater mobil-
ity). An Alloy model of the Mondex electronic purse is provided and analyzed
in [19]. Among the many assertions to be verified, there is assertion Rab archive.
Table 8 displays the tranScoping information for this assertion. It took 1145.74
seconds to compute this table. The sequential time required to analyze the asser-
tion in scope 4 is 3.62 seconds. Such short time compresses all the information
for the different splitters, preventing us from ordering the splitters precisely.
Still, we can at least separate those splitters whose application is bound to be
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Table 5. Mark&Sweep: mined tranScoping information, scopes 7 to 9, sorted by MAX

Scope Splitter NUM MAX AVG SUM DEV MED
7 VSIDS 154 0.12 0.03 4.14 0.02 0.02

HeapState.marked 252 1.75 0.03 8.50 0.11 0.03
HeapState.left 192 3.36 0.43 82.97 0.41 0.31
HeapState.freeList 164 4.39 1.49 245.29 0.57 1.38
HeapState.right 192 4.44 0.46 87.94 0.49 0.32

8 HeapState.marked 254 0.30 0.07 17.67 0.06 0.05
VSIDS 200 2.32 0.19 38.90 0.25 0.12
HeapState.right 162 34.54 5.65 914.84 7.13 2.78
HeapState.left 162 45.38 5.42 877.34 7.17 2.73
HeapState.freeList 146 50.06 24.45 3570.58 8.32 22.68

9 HeapState.marked 254 1.73 0.21 54.65 0.28 0.12
VSIDS 181 7.78 0.85 154.07 1.06 0.41
HeapState.freeList 182 260.93 131.26 23890.37 42.94 131.95
HeapState.right 200 272.34 32.42 6483.97 42.99 14.96
HeapState.left 200 301.02 31.43 6285.75 42.22 15.32

Table 6. Mark&Sweep: parallel analysis time, scope 9, all splitters. Timeout (TO) set
to 600 seconds.

Splitter Time Pending UNSATs
HeapState.marked 9.95 0 128
VSIDS 184.88 0 2472
HeapState.left TO 16491 726
HeapState.right TO 17064 699
HeapState.freeList TO 7201 1575

expensive. For instance, out of the 16 splitters in Table 8, only 5 seem to have a
chance of producing good parallel analyses. The tranScoping data collected for
these 5 splitters in scopes 5 and 6, allows us to conclude that the best candidate
to use in larger scopes is VSIDS. In effect, in scope 6 VSIDS has a substantially
lower SUM than the other 4 splitters, while having a comparable (even smaller)
MAX as well. The results in Table 9 confirm our prediction, by showing that for
scope 6 VSIDS produces a better parallel analysis. Table 10 shows that, resorting
to the tranScoped splitter VSIDS, we are able to analyze assertion Rab archive

for scopes 1 to 8. Notice that while the speed-up obtained is modest, it is the
best speed-up that can be obtained with these splitters. Better analyses are per-
haps possible, but they require to devise new splitters that perform better than
VSIDS.

5.5 An Alloy Specification of the XPath Data Model

XPath [23] is a language for querying XML documents. In [22], an Alloy model
for the XPath 1.0 data model is presented. Subelements inside an XML element
cannot be duplicated. As part of the model, assertion nodup injective, states
the equivalence between two distinct ways of expressing this fact.

Table 11 reports the values computed for the different parameters in scopes
6 and 7, for the XPath case study. It took 609.02 seconds to compute this data.
Based on the retrieved information, some of the splitters can be immediately
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Table 7. Mark&Sweep: parallel analysis time and speed-up obtained by using the best
tranScoped splitter, HeapState.marked

Scope 6 7 8 9 10
Sequential time 0.25 1.37 22.98 217.31 2855.30
Parallel time - - 10.13 9.95 28.35
Speed-up 2X 21X 100X

Table 8. Mondex: mined tranScoping information, scopes 4 to 6, sorted by MAX

Scope Splitter NUM MAX AVG SUM DEV MED
4 common/TransferDetails.from 149 1.20 0.38 56.58 0.26 0.31

common/TransferDetails.to 149 1.82 0.84 124.58 0.41 0.85
a/AbPurse.abLost 256 2.80 0.35 88.82 0.27 0.29
common/TransferDetails.value 256 2.84 1.86 475.69 0.41 1.92
c/ConPurse.status 256 3.04 0.69 176.87 0.93 0.17
cw/ConWorld.archive 256 3.19 0.12 30.81 0.31 0.02
c/ConPurse.nextSeqNo 256 4.00 0.69 177.98 1.00 0.16
cw/ConWorld.ether 128 4.21 0.91 117.11 1.00 0.52
c/PayDetails.toSeqNo 149 4.39 1.44 215.03 1.08 1.33
c/PayDetails.fromSeqNo 149 4.46 1.72 255.81 1.14 1.62
c/ConPurse.pdAuth 256 4.55 2.15 549.94 0.38 2.08
a/AbPurse.abBalance 256 4.61 0.56 144.19 0.61 0.42
VSIDS 184 4.84 0.14 25.50 0.43 0.01
cw/ConWorld.conAuthPurse 224 5.57 0.28 63.38 0.60 0.05
c/ConPurse.exLog 256 6.16 0.80 204.89 1.02 0.35
c/ConPurse.balance 256 9.92 1.34 342.87 1.06 1.18

5 common/TransferDetails.from 131 16.05 7.52 984.80 3.46 7.04
VSIDS 138 28.08 1.77 244.26 4.44 0.09
cw/ConWorld.conAuthPurse 200 36.92 1.94 388.25 5.46 0.12
a/AbPurse.abLost 256 39.81 2.90 742.30 5.66 1.50
cw/ConWorld.archive 256 49.69 2.72 696.12 5.39 0.79

6 VSIDS 176 202.18 2.83 498.34 21.12 0.048
common/TransferDetails.from 151 206.73 89.23 13473.59 38.86 90.19
a/AbPurse.abLost 256 423.67 20.37 5215.74 62.26 5.02
cw/ConWorld.conAuthPurse 164 506.25 12.34 2024.09 51.73 0.35
cw/ConWorld.archive 256 559.32 40.79 10442.80 66.75 16.36

ruled out as best candidates in larger scopes. This is the case for instance for split-
ters Name.NSName, Node.stringvalue,Name.Localname,PI.expanded name and
PI.target, whose SUM value is much larger than those for the other splitters.
The remaining splitters (those that were not discarded) are listed in Table 12,
and their parallel analysis times are reported along other useful information.
In this table, splitters are listed in the order inferred from Table 11, follow-
ing the heuristics discussed in Section 4.2. Notice that the ordering thus de-
termined is flawed; splitter VSIDS appears in a better place than it should.
At the end of Section 4.2 we proposed to perform the parallel analysis in a
small scope in order to tranScope the ordering more accurately. We performed
the corresponding analyses for scope 7, and VSIDS now falls behind splitter
NodeWithChildren.chseq, which is consistent with the ordering expected from
observing the results reported in Table 12. The results obtained with the selected
splitter, and the corresponding speed-up with respect to sequential analysis, are
reported in Table 13.
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Table 9. Mondex: parallel analysis time, scope 6. Timeout (TO) = 600 seconds.

Splitter Time Pending UNSATs
VSIDS 170.18 0 2185
cw/ConWorld.conAuthPurse TO 5551 4385
common/TransferDetails.from TO 5499 4619
cw/ConWorld.archive TO 13160 2233
a/AbPurse.abLost TO 9627 2576

Table 10. Mondex: parallel analysis time and speed-up obtained by using the best
tranScoped splitter: VSIDS)

Scope 6 7 8
Sequential time 456.33 8111.65 149678.26
Parallel time 170.18 1643.91 78685.75
Speed-up 2X 5X 2X

5.6 Threats to Validity

TranScoping is a heuristic for deciding which splitter to use along the analysis of
an assertion in a large scope. While we perceive the technique as a breakthrough
that allowed us to analyze assertions in scopes in which the analysis (even the
parallel one) was previously infeasible, tranScoping is so far only supported ex-
perimentally. As such, it requires more experiments. We tried tranScoping in
the assertions packed within the sample problems distributed with the Alloy
Analyzer as well as in selected interesting models downloaded from the Internet.
For assertions whose analyses in large scopes are beyond the capabilities of the
Alloy Analyzer, tranScoping gave us useful insights into how to choose a splitter,
usually leading to parallel analyzability in larger scopes.

The information compiled in Tables 1, 5, 8 and 11 is based on splitting the
root problem just once (with each splitter). Our hypothesis is that a good initial
splitting propagates its advantages to the rest of the parallel analysis (or, con-
versely put, that a bad initial splitting will ruin the parallel analysis altogether).
This is confirmed in our case studies, since we were always able to predict the
best splitter amongst the ones available in each experiment. But, as discussed in
Section 5.5, a more accurate ordering (one not just focusing on the best splitter)
is obtained if the complete parallel analysis is performed on the smaller scopes.

The variables selected by the VSIDS splitter strongly depend on how long is the
analysis allowed to run before observing the ranking. Therefore, different query
times may produce quite distinct sequences of variables. This did not prevent
tranScoping from predicting the best splitter in the case studies in this article
and other examples we ran. Yet we noticed that the different runs of the VSIDS

splitter (whose times are averaged when reported in the tables), yielded analysis
times with significant variation.

Finally, we are presenting a very limited, albeit useful, set of general purpose
splitters. Further research has to be conducted in order to identify other general
purpose splitters, or new domain-specific ones.
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Table 11. XPath: mined tranScoping information, scopes 6 and 7, sorted by MAX

Scope Splitter NUM MAX AVG SUM DEV MED
6 Node.parent 150 0.56 0.18 26.42 0.09 0.17

VSIDS 166 1.42 0.04 8.02 0.19 0.01
NodeWithChildren.ch 144 2.99 0.13 18.94 0.28 0.06
NodeWithChildren.chseq 129 4.12 0.05 6.75 0.36 0.01
Attribute.name 98 4.51 0.12 11.51 0.48 0.01
Element.nss 134 4.68 0.10 14.01 0.42 0.02
PI.expanded name 135 4.83 0.64 87.65 0.55 0.45
Element.gi 133 5.24 4.12 548.67 0.83 4.28
PI.target 135 5.44 0.69 93.61 0.56 0.51
Name.Localname 150 5.84 2.77 416.77 2.20 4.19
Node.stringvalue 150 5.88 4.72 708.71 1.03 4.95
Name.NSName 147 6.22 5.01 735.98 0.38 4.94

7 Node.parent 155 8.51 1.43 222.15 1.38 1.11
VSIDS 168 53.34 0.84 141.39 4.23 0.02
NodeWithChildren.ch 192 67.32 0.95 182.98 5.00 0.15
Attribute.name 99 92.43 1.38 136.37 9.33 0.05
PI.target 178 109.93 7.40 1317.73 8.70 5.25
NodeWithChildren.chseq 171 129.51 0.80 137.17 9.90 0.03
PI.expanded name 178 134.24 8.24 1466.69 10.21 6.36
Element.nss 140 201.73 1.73 241.64 17.05 0.02
Name.Localname 153 235.16 83.57 12786.90 65.44 110.10

Table 12. XPath: parallel analysis time, scope 8, only splitters that are viable candi-
dates according to tranScoping. Timeout (TO) set to 600 seconds.

Splitter Time Pending UNSATs
Node.parent 98.61 0 1231
VSIDS TO 13160 5698
NodeWithChildren.ch 227.09 0 4456
Attribute.name 286.32 0 1384
NodeWithChildren.chseq 548.66 0 7947
Element.nss 419.45 0 1926

6 Related Work

Parallel bounded verification has been used mainly in the context of program
static analysis. For example, [21] proposes to split the program control flow
graph and use JForge [10] (a tool for program bounded verification) to analyze
each slice. An approach to parallelizing scope-bounded program analysis based
on data-flow analysis was presented in [20].

An alternative to tranScoping is the use of a large-scale parallel SAT-solver.
Unfortunately, while multi-core tools are starting to take off, distributed parallel
SAT-solvers are still scarce. CryptoMiniSat2 [8] is an award-winning open source
solver with sequential and parallel operation modes. The author also mentions
distributed solving among its long-term goals. No public release or other news
about this have been announced. GrADSAT [4] reported experiments showing an
average 3.27X and a maximum 19.9X speed-up using various numbers of workers
ranging between 1 and 34. C-sat [18] is a SAT-solver for clusters. It reports linear
speed-ups, but the tool is not available for experimentation. PMSat [12], an MPI-
based, cluster-oriented SAT-solver is indeed available for experimentation, but
reports generally small speed-ups.
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Table 13. XPath: parallel analysis time and speed-up obtained by using the best
tranScoped splitter: Node.parent

Scope 6 7 8 9
Sequential time 5.15 140.90 2560.17 19559.49
Parallel time – 23.95 98.61 1473.32
Speed-up 6X 26X 13X

7 Conclusions and Further Work

We presentedTranScoping, a technique for principled selection of splitting heuris-
tics in parallel bounded verification. This approach exploits information from
simple analyses in small scopes of a model under analysis, in order to give the
user of the technique the insight necessary to infer an adequate splitter for larger
scopes. We evaluated this approach on a number of case studies, showing that
by tranScoping we are able to analyze assertions in scopes where we failed be-
fore many times. As these experiments show, for many problems the enormous
growth of the analysis times causes them to have a bad initial splitting, resulting
in diverging analysis. We believe tranScoping is a useful tool, that helps us make
an informed decision about the most critical point in the parallel SAT solving
analysis process.

TranScoping opens a new research line, namely, the search for new splitters
that may produce better speed-ups than the general purpose splitters we pre-
sented in this article. Also, it may be possible to find splitters tailored to specific
domains (SAT based program analysis, parallel test generation using SAT, etc.).
We plan to work on defining and evaluatiing such new splitters.
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Abstract. The theory of arrays is widely used in program analysis, (de-
ductive) software verification, bounded model checking, and symbolic ex-
ecution to model arrays in programs or the computer’s main memory.
Nonetheless, the theory as introduced by McCarthy is not expressive
enough in many cases since it only supports array updates at single lo-
cations. In programs, memory is often modified at multiple locations
at once using functions such as memset or memcpy. Furthermore, initial-
ization loops that store loop-counter-dependent values in an array are
commonly used. This paper presents an extension of the theory of arrays
with λ-terms which makes it possible to reason about such cases. We also
discuss how loops can be automatically summarized using such λ-terms.

1 Introduction

The theory of arrays is widely used in formal methods such as program analysis,
(deductive) software verification, bounded model checking, or symbolic execu-
tion. In the most simple case, the computer’s main memory is modelled using
a one-dimensional array, but the use of the theory of arrays goes beyond such
flat memory models. Reasoning about arrays is thus an essential part of systems
that are based on the aforementioned methods.

Since the theory of arrays is quite basic, it is insufficient (or at least inconve-
nient to use) in many application cases. While it supports storing and loading
of data at specific locations, it does not support the functionality provided by
C library functions such as memset or memcpy which operate on regions of loca-
tions. While these region-based operations can be broken down into operations
on single locations in some cases (e.g., a memcpy operation of size 10 can be
simulated using 10 read and 10 write operations), this approach does not scale if
the involved regions are large. Even worse, the sizes of the affected regions might
not be statically known, making it more complicated to break down region-based
operation into operations on single locations.

Apart from library functions, a further construct that often occurs in real-life
programs are initialization loops such as

1 for (i = 0; i < n; ++i) {
2 a[i] = 2 ∗ i + 1;
3 }
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which sets the array entry a[i] to the value 2 ∗ i+1 for all indices between 0 and
n − 1. Representing the array a after these initializations is not easily possible
in the theory of arrays if n is a large constant or not statically known.

In software bounded model checking tools such as CBMC [9] or ESBMC [11], calls
to memset and memcpy are handled by including an implementation of these
methods and unrolling the loop contained in the implementations. Due to this
unrolling, CBMC and ESBMC are incomplete in their treatment of memset and
memcpy if the number of loop iterations cannot be bounded by a constant.1 Our
own software bounded model checking tool LLBMC [24] was equally incomplete
since it relied on user-provided implementations of memset and memcpy until we
implemented the approach discussed in the preliminary version of this work [14].

In this paper, we present an extension of the theory of arrays with λ-terms
which makes it possible to reason about memset, memcpy, initialization loops
as discussed above, etc. We show that satisfiability of quantifier-free formulas
in this theory is decidable by presenting three reductions to decidable theories
supported by SMT solvers. An evaluation shows that using this new theory in
LLBMC outperforms the unrolling based approach as used in CBMC and ESBMC.

Example 1. Consider the following program fragment:

1 int i, j, n = ...;
2 int ∗a = malloc(2 ∗ n ∗ sizeof(int));
3 for (i = 0; i < n; ++i) {
4 a[i] = i + 1;
5 }
6 for (j = n; j < 2 ∗ n; ++j) {
7 a[j] = 2 ∗ j;
8 }

Using the theory of arrays with λ-terms, the array a after executing line 2 can be
described using a fresh constant a2 since nothing is known about the content of
the array. The array a after executing the loop in lines 3–5 can be described using
the λ-term a5 = λi. ITE(0 ≤ i < n, i+1, read(a2, i)) which represents the array
containing as entry a[i] the value i+1 whenever 0 ≤ i < n, and the original value
of a at index i (i.e., read(a2, i)) otherwise. Here, ITE is the if-then-else operator.
Similarly, the array a after executing the loop in lines 6–8 can be described using
the λ-term a8 = λj. ITE(n ≤ j < 2∗n, 2∗j, read(a5, j)), which could be simplified
to get a′8 = λj. ITE(n ≤ j < 2 ∗ n, 2 ∗ j, ITE(0 ≤ j < n, j +1, read(a2, j))). ♦

A preliminary version of this work has appeared as an extended abstract in
[14]. This paper extends that preliminary version in two important directions:

– The previous version was restricted to memset and memcpy and did not sup-
port any other extension of the theory of arrays. As shown in this paper, the
use of λ-terms makes it possible to simulate memset and memcpy, as well as
many kinds of initialization loops. Furthermore, we discuss how such loop
can be summarized automatically using λ-terms.

1 The situation is similar in symbolic execution tools such as EXE [8] or KLEE [7].
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– While [14] discusses decidability of the extended theory of arrays, sound-
ness and correctness proofs were missing. In contrast, the aforementioned
reductions are formally shown to be sound and complete in this paper.

The present paper is structured as follows: Sect. 2 presents preliminaries and
fixes notation. Sect. 3 first recalls the theory TA of arrays and then introduces
our generalization TλA. Several uses of TλA, including loop summarization, are
discussed in Sect. 4. Reductions that establish the decidability of satisfiability
for quantifier-free TλA formulas are presented in Sect. 5. Sect. 6 describes the
implementation within LLBMC and contains the results of an evaluation of the
different reductions. Related work is surveyed in Sect. 7, while Sect. 8 concludes.

2 Preliminaries

In many-sorted logic, a signature Σ is a triple (ΣS ,ΣF ,ΣP ) where ΣS is a set
of sorts, ΣF is a set of function symbols, and ΣP is a set of predicate symbols.
Σ-terms, Σ-formulas, and Σ-sentences are defined in the usual way.

We use the standard definition of a Σ-structure M. It contains non-empty,
pairwise disjoint sets Mσ for every sort σ ∈ ΣS and an interpretation of the
function symbols in ΣF and the predicate symbols in ΣP that respects sorts
and arities. We use M(f) to denote the interpretation of f ∈ ΣF in M and
M(P ) to denote the interpretation of P ∈ ΣP in M. The interpretation of an
arbitrary term t in M is denoted �t�M and defined in the standard way. Similarly,
�ϕ�M ∈ {�,⊥} denotes the truth value of a formula ϕ in M. Finally, a structure
M is a model of a formula ϕ if �ϕ�M = �.

A (first-order) Σ-theory T is a set of Σ-sentences, its axioms. An empty theory
is a theory not containing any axioms. A Σ-theory is single-sorted if |ΣS | = 1.
For a single-sorted theory Ti, its only sort is usually denoted by σi.

Two signatures Σ1 and Σ2 are disjoint if F1 ∩ F2 = ∅ and P1 ∩ P2 = ∅.
A Σ1-theory T1 and a Σ2-theory T2 are disjoint if Σ1 and Σ2 are disjoint. The
combined theory T1⊕T2 of two disjoint theories T1 and T2 is the (Σ1∪Σ2)-theory
containing the union of T1’s and T2’s axioms. Theory combination of a theory
with itself is defined to be the same theory again: T1 ⊕ T1 = T1.

The symbol =σ is implicitly defined for most sorts σ. It is not part of any
signature Σ and is always interpreted as the identity relation over σ. For brevity,
its subscript is usually omitted.

If x, t1, t2 are terms, then t1[x/t2] stands for the term obtained from t1 by
substituting all occurrences of x by t2. A substitution is applied to a formula by
applying it to all terms in the formula.

For two terms t1, t2, writing t1 ↪→ t2 indicates that the term t1 can be sim-
ulated by the term t2. This means that for any formula ϕ containing t1, the
formula ϕ[t1/t2] is equivalent to ϕ. Thus, t1 can be rewritten to t2.

For any formula ψ and terms t1, t2 with the same sort σ, the meta-symbol
ITE(ψ, t1, t2) stands for an if-then-else expression. Conceptually, for any for-
mula ϕ containing the term t ≡ ITE(ψ, t1, t2), an equisatisfiable formula ϕ′ not
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containing t can be constructed as follows. If the identity relation =σ is available,
then ϕ′ can be defined as

ϕ[t/t3] ∧ (ψ =⇒ t3 = t1) ∧ (¬ψ =⇒ t3 = t2)

where t3 is a fresh constant. If =σ is not available, then ϕ′ can be defined as

(ψ ∧ ϕ[t/t1]) ∨ (¬ψ ∧ ϕ[t/t2])

Note that most SMT solvers natively support the ITE construct, i.e., ϕ′ does
not need to be constructed up front.

3 The Theory TλA

The theory TλA is an extension of the non-extensional theory of arrays TA that
was introduced by McCarthy in his seminal paper [23] in 1962. The theory
TA is parameterized by the index theory TI and the element theory TE . Here,
both TI and TE are single-sorted theories of sort σI and σE , respectively. Note
that TI and TE may coincide. In the most simple case, both σI and σE are
uninterpreted sorts and TE and TI are both empty. In practice, TI and TE are
often the theory of linear integer arithmetic (TLIA) or the theory of bit-vectors
(TBV). TA now adds the sort σA and function symbols read : σA × σI → σE and
write : σA×σI×σE → σA to the combination TI⊕TE . Due to non-extensionality,
=σA is not available. Terms in TA are built according to the following grammar,
where the detailed definitions of tI and tE depend on the theories TI and TE :

index terms tI ::= . . .
element terms tE ::= . . . | read(tA, tI)
array terms tA ::= a | write(tA, tI , tE)

Here, a stands for a constant of sort σA.
Objects of sort σA denote arrays, i.e., maps from indices to elements. The

write function is used to store an element in an array, and the read function
is used to retrieve an element from an array. Formally, the semantics of these
functions is given by the following read-over-write axioms:2

p = r =⇒ read(write(a, p, v), r) = v (1)

¬(p = r) =⇒ read(write(a, p, v), r) = read(a, r) (2)

These axioms state that storing the value v into an array a at index p and
subsequently reading a’s value at index r results in the value v if the indices p
and r are identical. Otherwise, the write operation does not influence the result
of the read operation.

2 Here and in the following, all variables in axioms are implicitly universally quantified.
Also, variables a, b range over arrays, variables p, q, r, s range over indices, and the
variable v ranges over elements.
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In a simple implementation of a decision procedure for TA based on the re-
duction approach [20], the read-over-write axioms are applied from left to right
using the if-then-else operator ITE, i.e., a term read(write(a, p, v), q) is replaced
by ITE(p = q, v, read(a, q)). After this transformation has been applied exhaus-
tively, only read operations where the first argument is a constant remain. The
read symbol can then be treated as an uninterpreted function, and a decision
procedure for the combination TI ⊕TE ⊕TEUF can be used, where TEUF denotes
the theory of equality with uninterpreted functions.

Instead of this eager approach, modern SMT solvers use abstraction refine-
ment. For this, they apply techniques such as lazy axiom instantiation or lemmas-
on-demand (see, e.g., [5,15]) to efficiently support the theory of arrays.

The theory TλA extends the theory of arrays by anonymous arrays that are
built using λ-expressions, i.e., the term formation rules are extended as follows:

index terms tI ::= . . .
element terms tE ::= . . . | read(tA, tI)
array terms tA ::= a | write(tA, tI , tE) | λi. tE

Here, the “i” occurring in the λ-expression λi. tE is a bound variable of sort σI .
In TλA, the bound variable i may not occur below any further λ-binder (i.e.,
each occurrence of i has De Bruijn index 1).3

Intuitively, λi. s denotes the anonymous array that maps each index i to
the element denoted by the term s. Formally, this is captured by the following
read-over-λ axiom scheme:

read(λi. s, r) = s[i/r] (3)

Here, variables bound by λ-terms within s are first suitably renamed in order to
be different from i. This axiom scheme is essentially the well-known β-reduction
from λ-calculus.

Note that array terms of the form write(a, p, v) can be simulated using λ-terms
as follows:

write(a, p, v) ↪→ λi. ITE(i = p, v, read(a, i))

It is, however, advantageous to keep the write operation since this makes it
possible to reduce TλA to TA instead of the combination TI ⊕ TE ⊕ TEUF . Thus,
the efficient techniques employed by modern SMT solvers for TA can be applied
(see Sect. 5 for details).

In [14], we have presented the theory TASC , which generalizes TA by introduc-
ing set, set∞, copy, and copy∞ operations. In TASC , the term formation rules of
TA are extended as follows:

index terms tI ::= . . .
element terms tE ::= . . . | read(tA, tI)
array terms tA ::= a | write(tA, tI , tE)

| set(tA, tI , tE , tI) | set∞(tA, tI , tE)
| copy(tA, tI , tA, tI , tI) | copy∞(tA, tI , tA, tI)

3 This is not a restriction when modeling programs where an array at a given point
in the program does not depend on arrays at a later point in the program.
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For TASC , the index theory TI needs to be a linear arithmetical theory contain-
ing +, −, ≤, and < (e.g., linear integer arithmetic or bit-vectors). Intuitively,
set(a, p, v, s) denotes the array obtained from a by setting the entries in the range
[p, p+ s) to v and set∞(a, p, v) denotes the array obtained from a by setting all
entries starting from p to v. Furthermore, copy(a, p, b, q, s) denotes the array ob-
tained from a by setting the entries in the range [p, p+s) to the values contained
in b in the range [q, q + s) and copy∞(a, p, b, q) denotes the array obtained from
a by setting the entries starting from p to the values contained in b starting from
q. Formally, the semantics of the operations is given by the following axioms:4

p ≤ r < p+ s =⇒ read(set(a, p, v, s), r) = v

¬(p ≤ r < p+ s) =⇒ read(set(a, p, v, s), r) = read(a, r)

r ≥ p =⇒ read(set∞(a, p, v), r) = v

¬(r ≥ p) =⇒ read(set∞(a, p, v), r) = read(a, r)

p ≤ r < p+ s =⇒ read(copy(a, p, b, q, s), r) = read(b, q + (r − p))

¬(p ≤ r < p+ s) =⇒ read(copy(a, p, b, q, s), r) = read(a, r)

r ≥ p =⇒ read(copy∞(a, p, b, q), r) = read(b, q + (r − p))

¬(r ≥ p) =⇒ read(copy∞(a, p, b, q), r) = read(a, r)

Now it is easy to see that TASC can be simulated within TλA:

set(a, p, v, s) ↪→ λi. ITE(p ≤ i < p+ s, v, read(a, i))

set∞(a, p, v) ↪→ λi. ITE(i ≥ p, v, read(a, i))

copy(a, p, b, q, s) ↪→ λi. ITE(p ≤ i < p+ s, read(b, q + (i − p)), read(a, i))

copy∞(a, p, b, q) ↪→ λi. ITE(i ≥ p, read(b, q + (i − p)), read(a, i))

4 Applications of TλA

As already noted in [14], the operations set and copy, and therefore also TλA’s
λ-terms, can be used to model the C standard library functions memset and
memcpy. Intuitively, this is done by summarizing the loops that implement these
functions, thereby modelling a simultaneous execution of all loop iterations.5

But the theory TλA goes beyond what is possible with TASC in that it can
be used to summarize a wider range of loops than the particular loops in those
specific library functions.

4.1 Loop Summarization Using TλA

Broadly speaking, TλA can be used to summarize loops with data independent
loop iterations where consecutive loop iterations only write to consecutive array
positions. More precisely, loops need to satisfy the following requirements:

4 Similar formulas could be used as postconditions for memset and memcpy in deductive
verification tools such as VCC [10] and Frama-C [12].

5 Because of this, copy’s semantics is actually closer to memmove than to memcpy.
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– The loop does not contain nested loops.
– The induction variable is incremented by one in each iteration.
– For an array a declared outside the loop, each iteration of the loop uncondi-

tionally modifies only the ith element of a, where i is the induction variable.
– All other variables declared outside the loop are not modified by the loop.
– Any iteration of the loop may not use elements of a that have been modified

in earlier iterations of the loop.

In many cases, these requirements can be fulfilled by applying code transfor-
mations that are similar to standard compiler optimizations.

Example 2. Consider the following program fragment implementing part of the
Sieve of Eratosthenes:

1 void filter multiples(int p, int n)
2 {
3 for (int j = p∗p; j <= n; j += p) {
4 a[j] = 0;
5 }
6 }

The loop can easily be transformed into functionally equivalent code that
increments the induction variable by one, thereby making it λ-summarizable:

1 void filter multiples(int p, int n)
2 {
3 for (int j = p∗p; j <= n; ++j) {
4 a[j] = ((j − p∗p) % p == 0 ? 0 : a[j]);
5 }
6 }

Note that such transformations can be performed automatically. ♦

4.2 Further Uses

While this is already useful by itself, applicability of TλA goes beyond summa-
rization of loops and calls to memset and memcpy. Some applications that we
would like to explore in future work include the following:

– Zero-initialization of global variables (as required by the C standard) can be
achieved using a λ-term corresponding to a set operation.

– Zero-initialization of new memory pages before the operating system hands
them to a process can similarly be modelled using a λ-term.

– If certain memory locations should be set to unconstrained values (havocked),
then this can be done using a λ-term λi. ITE(ψ, read(h, i), read(a, i)), where
ψ describes the memory locations that are to be havocked and h is a fresh
array constant. Similarly, memory-mapped I/O can be modelled.
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– Tracking metadata for memory addresses. For instance, allocation informa-
tion can be modeled using an array containing information on the allocation
state of the locations. Memory allocation and memory de-allocation can then
be modelled using λ-terms corresponding to a set operation. This makes it
possible to develop an alternative to the SMT theory of memory allocation
presented in [13] and to the memory model presented in [28].

5 Deciding TλA

In this section, we discuss several possibilities for deciding whether a quantifier-
free TλA formula is satisfiable. All approaches work by a reduction to a theory
that is already supported by current SMT solvers.

In order to ease presentation, it is advantageous to represent formulas in
flattened form (similar to [27]). For this, a formula ϕ is represented using a pair
(Δϕ, cϕ), where Δϕ is a list of definitions of the form

v ≡ f(v1, . . . , vn)

v ≡ λi. s

v ≡ ITE(c, v1, v2)

c ≡ P (v1, . . . , vn)

c ≡ c1 � c2 for � ∈ {∧,∨}
c ≡ ¬c1

and cϕ is one of the c’s denoting the root proposition of the formula. Here, f is
a function symbol, P is a predicate symbol, v, v1, . . . , vn, s are constants, c, c1, c2
are propositions, and each v and c is defined before it is used (we assume in
the following that adding definitions to a formula ensures that this property is
preserved). Constants occurring in the left-hand side of a definition need to be
fresh, uninterpreted constants. Thus, the v’s and c’s should be seen as names
for terms and formulas, respectively. We use v �w to denote that the definition
of w uses v (def-use-relation) and v �A w to denote that v � w and v is of sort
σA. The transitive closures of � and �A are denoted �+ and �+

A , respectively,
and �∗ denotes the reflexive-transitive closure of �. Note that a definition for
v such that v ��∗ cϕ can be deleted from Δϕ (clean-up) without affecting the
satisfiability status of the formula.

Example 3. Consider the following TASC formula (with TI = TE = TLIA):

read(write(copy∞(copy∞(a, 0, a, 1), 1, copy∞(a, 0, a, 1), 0), 0, read(a, 0)), k)

�=
read(a, k)

This formula states that the array obtained from a by first moving all array
elements at indices ≥ 1 down by one positions, then all elements at indices
≥ 0 up by one positions, and afterwards replacing the element at index 0 by
the original element read(a, 0) differs at index k from the initial array a. This
formula is clearly unsatisfiable.
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The formula can be converted into the following TλA formula ϕ:

read(write(λj. ITE(j ≥ 1, read(λi. ITE(i ≥ 0, read(a, i + 1), read(a, i)), j − 1),

read(λi. ITE(i ≥ 0, read(a, i + 1), read(a, i)), j)),

0, read(a, 0)),

k) �=
read(a, k)

The flattened form is then given as (Δϕ, cϕ) where Δϕ contains

v1 ≡ read(a, 0)

c1 ≡ i ≥ 0

v2 ≡ i+ 1

v3 ≡ read(a, v2)

v4 ≡ read(a, i)

s1 ≡ ITE(c1, v3, v4)

a1 ≡ λi. s1

c2 ≡ j ≥ 1

v5 ≡ j − 1

v6 ≡ read(a1, v5)

v7 ≡ read(a1, j)

s2 ≡ ITE(c2, v6, v7)

a2 ≡ λj. s2

a3 ≡ write(a2, 0, v1)

v8 ≡ read(a, k)

v9 ≡ read(a3, k)

c3 ≡ v8 �= v9

and cϕ = c3. Note that the subterm λi. ITE(i ≥ 0, read(a, i + 1), read(a, i)) is
shared in the flattened form. ♦

5.1 Eager Reduction

The first reduction reduces satisfiability of a quantifier-free TλA formula to sat-
isfiability of a quantifier-free TI ⊕ TE ⊕ TEUF formula. This reduction is based
on exhaustively applying the read-over-write and read-over-λ axioms in order to
eliminate all array terms except for constants. Note that this reduction estab-
lishes decidability of satisfiability for quantifier-free TλA formulas in the case
where satisfiability of quantifier-free TI ⊕ TE ⊕ TEUF formulas is decidable.

Theorem 1. Each quantifier-free TλA formula ϕ can effectively be converted
into an equisatisfiable quantifier-free TI ⊕ TE ⊕ TEUF formula ϕ′.

Proof. The reduction is similar to the reduction from TA to TI ⊕ TE ⊕ TEUF
described in Sect. 3, i.e., the read-over-write axioms (1) and (2) and the read-
over-λ axiom scheme (3) are applied exhaustively as rewrite rules using the inner-
most strategy.6 Thus, if Δϕ contains definitions ak ≡ write(al, pl, vl) and vm ≡
read(ak, pn), then vm is replaced by v′m with the definition v′m ≡ ITE(c, vl, v),
where the new definitions c ≡ pl = pn and v ≡ read(al, pn) are added as well.
Similarly, if Δϕ contains definitions ak ≡ λi. s and vm ≡ read(ak, pn), then vm is
replaced by v′m, where v′m names the flattened form of s[i/pn] and all definitions
needed for this flattened form are added as well.

6 The innermost reduction strategy is obeyed if the list of definitions is processed from
front to back and new definitions are added after the definition they replace.
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In order to show that this rewrite process is terminating, recursively define
the function ρ by letting

ρ(write(a, p, v)) = 1 + ρ(a) + ρ(p) + ρ(v)

ρ(f(v1, . . . , vn)) = ρ(v1) + . . .+ ρ(vn) if f �= write

ρ(λi. s) = 1 + ρ(s)

ρ(ITE(c, v1, v2)) = ρ(c) + ρ(v1) + ρ(v2)

ρ(P (v1, . . . , vn) = ρ(v1) + . . .+ ρ(vn)

ρ(c1 � c2) = ρ(c1) + ρ(c2) for � ∈ {∧,∨}
ρ(¬c1) = ρ(c1)

Thus, ρ counts occurrences of write and λ, where multiple uses of the same
definitions are counted multiple times. Since the rewriting process is triggered
by read-definitions, it now suffices to show that each transformation step replaces
a definition of the form vm ≡ read(ak, pk) by finitely many new definitions of the
form v′ ≡ read(a′, p′) with ρ(vm) > ρ(v′) and does not increase the ρ-number
of any remaining read-definition. For both of these properties, it is sufficient to
show that ρ(vm) > ρ(v′m) when vm is replaced by v′m.

In the first case, ak ≡ write(al, pl, vl) ∈ Δϕ and the new definition v ≡
read(al, pn) is introduced. First, note that ρ(pl) = ρ(vl) = ρ(pn) = ρ(c) = 0
due to the innermost reduction strategy since the rewrite rules suffice to elim-
inate all occurrences of write and λ in terms of sort σI or σE (and thus also
in propositions since TλA is non-extensional). Then the desired ρ(vm) > ρ(v′m)
easily follows since ρ(vm) = ρ(ak) = 1 + ρ(al) > ρ(al) = ρ(v′m).

In the second case, ak ≡ λi. s ∈ Δϕ and new read-definitions are only in-
troduced in the construction of s[i/pn]. As in the first case, ρ(pn) = 0 due to
the innermost reduction strategy. Thus, ρ(v′m) = ρ(s) and therefore ρ(vm) =
ρ(ak) = 1 + ρ(s) > ρ(s) = ρ(v′m).

After exhaustive application of the rewrite rules, a clean-up produces a
quantifier-free TI ⊕ TE ⊕ TEUF formula ϕ′. Equisatisfiability of ϕ and ϕ′ fol-
lows since the conversion only applies axioms of TλA. ��
Example 4. Continuing Ex. 3, the definition of v9 is first replaced, by an appli-
cation of the read-over-write axioms (1) and (2), by the definitions

c7 ≡ k = 0 v18 ≡ read(a2, k) v′9 ≡ ITE(c7, v1, v18)

Then, the definition of v18 is replaced, by an application of the read-over-λ
axiom scheme (3), by the definitions

c6 ≡ k ≥ 1

v10 ≡ k − 1

v14 ≡ read(a1, v10)

v17 ≡ read(a1, k)

v′18 ≡ ITE(c6, v14, v17)

obtained from c2, v5, v6, v7, and s2 when constructing s2[j/k].
Next, the definitions of v14 and v17 are replaced, again by applications of the

read-over-λ axiom scheme (3), by the definitions
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c4 ≡ v10 ≥ 0

v11 ≡ v10 + 1

v12 ≡ read(a, v11)

v13 ≡ read(a, v10)

v′14 ≡ ITE(c4, v12, v13)

c5 ≡ k ≥ 0

v15 ≡ k + 1

v16 ≡ read(a, v15)

v′17 ≡ ITE(c5, v16, v8)

obtained when constructing s1[i/v10] and s1[i/k].
Similar replacements take place for v7 and v6. After a clean-up, the following

definitions remain:

v1 ≡ read(a, 0)

v8 ≡ read(a, k)

v10 ≡ k − 1

c4 ≡ v10 ≥ 0

v11 ≡ v10 + 1

v12 ≡ read(a, v11)

v13 ≡ read(a, v10)

v′14 ≡ ITE(c4, v12, v13)

c5 ≡ k ≥ 0

v15 ≡ k + 1

v16 ≡ read(a, v15)

v′17 ≡ ITE(c5, v16, v8)

c6 ≡ k ≥ 1

v′18 ≡ ITE(c6, v
′
14, v

′
17)

c7 ≡ k = 0

v′9 ≡ ITE(c7, v1, v
′
18)

c3 ≡ v8 �= v′9

Unsatisfiability of this formula can easily be established using an SMT solver
for TI ⊕ TE ⊕ TEUF . ♦

5.2 Using Quantifiers

The next approach reduces satisfiability of a quantifier-free TλA formula to sat-
isfiability of a TA formula containing quantifiers that range over the sort σI .
The idea for the reduction is to replace a λ-term λi. s by a constant ak while
adding the constraint ∀i. read(ak, i) = s that restricts the interpretation of this
constant to agree with the λ-term for all indices. Note that due to the intro-
duced quantifiers, this reduction does not establish decidability of satisfiability
for quantifier-free TλA formulas even if satisfiability of quantifier-free TA formu-
las is decidable. It is, however, illustrative for the approach in Sect. 5.3, which
can be seen as a complete instantiation strategy for the introduced quantifiers.

First, the representation of formulas is extended to quantifiers by admitting
definitions of the form c ≡ ∀i. c1 for universal quantification (existential quan-
tification could also be admitted, but this is not needed for our reduction).

Theorem 2. Each quantifier-free TλA formula ϕ can effectively be converted
into an equisatisfiable TA formula ϕ′ containing universal quantifiers that range
over the sort σI .

Proof. The reduction proceeds by repeating the following step: Let (Δn, cn) be
the formula in the nth iteration (i.e., (Δ1, c1) = (Δϕ, cϕ)). If Δn contains a
definition of the form ak ≡ λi. s, then this definition is deleted from Δn (turning
ak into an uninterpreted constant) and the definitions vak

≡ read(ak, i), cak
≡

vak
= s, and c∀ak

≡ ∀i. cak
are added instead. Furthermore, add cn+1 ≡ cn∧c∀ak

,
resulting in the formula (Δn+1, cn+1) for the next iteration. Since ϕ contains
only finitely many λ-terms and no new λ-terms are introduced in the reduction,
this process eventually terminates. Furthermore, equisatisfiability of (Δn, cn) and
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(Δn+1, cn+1) is easily seen for all n ≥ 1 due to the restriction on the De Bruijn
indices of the occurrences of i in s. ��

Example 5. Continuing Ex. 3, the reduction to a quantified TA formula produces
the following definitions:

v1 ≡ read(a, 0)

c1 ≡ i ≥ 0

v2 ≡ i+ 1

v3 ≡ read(a, v2)

v4 ≡ read(a, i)

s1 ≡ ITE(c1, v3, v4)

va1 ≡ read(a1, i)

ca1 ≡ va1 = s1

c∀a1
≡ ∀i. ca1

c2 ≡ j ≥ 1

v5 ≡ j − 1

v6 ≡ read(a1, v5)

v7 ≡ read(a1, j)

s2 ≡ ITE(c2, v6, v7)

va2 ≡ read(a2, j)

ca2 ≡ va2 = s2

c∀a2
≡ ∀j. ca2

a3 ≡ write(a2, 0, v1)

v8 ≡ read(a, k)

v9 ≡ read(a3, k)

c3 ≡ v8 �= v9

c4 ≡ c3 ∧ c∀a1

c5 ≡ c4 ∧ c∀a2

The resulting formula (with cϕ = c5) is unsatisfiable, as can be shown, e.g.,
using the SMT solvers Z3 [26] or CVC4 [2]. ♦

5.3 Instantiating Quantifiers

Since reasoning involving quantifiers is hard for current SMT solvers, the goal
of this section is to develop a method that can be seen as a sound and complete
instantiation strategy for the quantifiers introduced in Sect. 5.2. For this, the
quantifier introduced for the constant ak is instantiated for all indices that occur
in read operations vl ≡ read(aj , pj) such that ak �+

A vl. Intuitively, these instanti-
ations are sufficient since the elements at indices that are never read from ak are
not relevant for the satisfiability status of the formula. Note that this reduction
establishes decidability of satisfiability for such quantifier-free TλA formulas in
the case where satisfiability of quantifier-free TA formulas is decidable.

While the approach introduced in this section can be seen as an instantiation
strategy for the quantifiers, it is conceptually simpler to state it independent of
these quantifiers and give a direct reduction.

Theorem 3. Each quantifier-free TλA formula ϕ can effectively be converted
into an equisatisfiable quantifier-free TA formula ϕ′.

Proof. The reduction proceeds by repeating the following step: Let (Δn, cn) be
the formula in the nth iteration (i.e., (Δ1, c1) = (Δϕ, cϕ)). If Δn contains a def-
inition of the form ak ≡ λi. s such that ak ��+

A al for all al ≡ λi′. s′ (the last
definition of a λ-term in the list of definitions satisfies this requirement), then
let P = {p1, . . . , pn} denote the set of all read indices occurring in a definition
vl ≡ read(aj , pj) with ak �+

A vl (see Ex. 7 below for an explanation why it does
not suffice to only consider definitions of the form vl ≡ read(ak, pj)). For the
transformation, the definition of ak is deleted from Δn (turning ak into an un-
interpreted constant) and the definitions vpj ≡ read(ak, pj) and cpj ≡ vpj = spj
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are added for all pj ∈ P . Here, spj names the flattened form of s[i/pj] and all
definitions needed for this flattened form are added as well. Furthermore, add the
definition cn+1 ≡ cn∧c, where c names the flattened form of cp1∧. . .∧cpn and all
definitions needed for this flattened form are added as well. Finally, a clean-up
is performed. The resulting formula for the next iteration is then (Δn+1, cn+1).

This transformation process eventually terminates since ϕ contains only
finitely many λ-terms and flattening s[i/pj] does not introduce any new λ-terms
due to the restriction on the De Bruijn indices of the occurrences of i (this as-
sumes that the construction of the flattened form of s[i/pj] maximally shares
common definitions with s).

Equisatisfiability of (Δn, cn) and (Δn+1, cn+1) for all all n ≥ 1 is shown as
follows. First, assume that (Δn, cn) is satisfiable and let M be a model of this
formula. Let M′ be obtained from M by adding the interpretation M′(ak) =
�ak�

M. Then M′ is a model of (Δn+1, cn+1) since the read-over-λ axiom (3)
implies that �read(ak, pj)�

M′
= �s[i/pj]�

M′
for all pj ∈ P .

For the reverse direction, assume that (Δn+1, cn+1) is satisfiable and consider
the assignment M(ak) in a model M of this formula (note that ak is an unin-
terpreted constant in (Δn+1, cn+1)). Let M′ be the structure obtained from M
by “forgetting” the assignment M(ak). Then M′ is a model of (Δn, cn) since an
easy induction on the position in the list Δn shows that

1. �v�M
′
= �v�M for all definitions v ≡ . . . ∈ Δn of sort σI or σE ,

2. �a�M
′
= �a�M for all definitions a ≡ . . . ∈ Δn of sort σA with ak ��∗

A a,
3. �read(a, p)�M

′
= �read(a, p)�M for all definitions a ≡ . . . ∈ Δn of sort σA

with ak �∗
A a and all p ∈ P , and

4. �c�M
′
= �c�M for all definitions of propositions c ≡ . . . ∈ Δn.

The only non-trivial case in the induction is showing the third statement, but this
is ensured by the instantiations that are added as definitions in the construction
of Δn+1. ��

Example 6. Continuing Ex. 3, the reduction to a quantifier-free TA proceeds as
follows. First, the definition of a2 is “forgotten”. The set of read indices used
for instantiation is Pa2 = {k} (from the definition v9 ≡ read(a3, k)). Thus, the
following definitions are added to the formula:

vka2
≡ read(a2, k)

ck2 ≡ k ≥ 1

vk5 ≡ k − 1

vk6 ≡ read(a1, v
k
5 )

vk7 ≡ read(a1, k)

sk2 ≡ ITE(ck2 , v
k
6 , v

k
7 )

cka2
≡ vka2

= sk2

c4 ≡ c3 ∧ cka2

Here, definitions with superscript “k” are obtained from the definitions with
the same name when constructing s2[j/k]. The subsequent clean-up removes the
definitions of s2, v7, v6, v5, and c2. Finally, cϕ is updated to be c4.

Next, the definition of a1 is “forgotten”. The set of read indices for a1 is
Pa1 = {vk5 , k} (from the definitions vk6 ≡ read(a1, v

k
5 ) and vk7 ≡ read(a1, k)).

Thus, the following definitions are added to the formula:
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vka1
≡ read(a1, k)

ck1 ≡ k ≥ 0

vk2 ≡ k + 1

vk3 ≡ read(a, vk2 )

vk4 ≡ read(a, k)

sk1 ≡ ITE(ck1 , v
k
3 , v

k
4 )

cka1
≡ vka1

= sk1

c5 ≡ c4 ∧ cka1

v
vk
5

a1 ≡ read(a1, v
k
5 )

c
vk
5

1 ≡ vk5 ≥ 0

v
vk
5

2 ≡ vk5 + 1

v
vk
5

3 ≡ read(a, v
vk
5

2 )

v
vk
5

4 ≡ read(a, k)

s
vk
5

1 ≡ ITE(c
vk
5

1 , v
vk
5

3 , v
vk
5

4 )

c
vk
5

a1 ≡ v
vk
5

a1 = s
vk
5

1

c6 ≡ c5 ∧ cv
k
5

a1

After performing a clean-up, the formula contains the definitions

v1 ≡ read(a, 0)

a3 ≡ write(a2, 0, v1)

v8 ≡ read(a, k)

v9 ≡ read(a3, k)

c3 ≡ v8 �= v9

vka2
≡ read(a2, k)

ck2 ≡ k ≥ 1

vk5 ≡ k − 1

vk6 ≡ read(a1, v
k
5 )

vk7 ≡ read(a1, k)

sk2 ≡ ITE(ck2 , v
k
6 , v

k
7 )

cka2
≡ vka2

= sk2

c4 ≡ c3 ∧ cka2

vka1
≡ read(a1, k)

ck1 ≡ k ≥ 0

vk2 ≡ k + 1

vk3 ≡ read(a, vk2 )

vk4 ≡ read(a, k)

sk1 ≡ ITE(ck1 , v
k
3 , v

k
4 )

cka1
≡ vka1

= sk1

c5 ≡ c4 ∧ cka1

v
vk
5

a1 ≡ read(a1, v
k
5 )

c
vk
5

1 ≡ vk5 ≥ 0

v
vk
5

2 ≡ vk5 + 1

v
vk
5

3 ≡ read(a, v
vk
5

2 )

v
vk
5

4 ≡ read(a, k)

s
vk
5

1 ≡ ITE(c
vk
5

1 , v
vk
5

3 , v
vk
5

4 )

c
vk
5

a1 ≡ v
vk
5

a1 = s
vk
5

1

c6 ≡ c5 ∧ cv
k
5

a1

and cϕ = c6. Unsatisfiability of the formula can easily be shown using SMT
solvers for TA. ♦

The following example shows why it is necessary to add instantiations for all
vl ≡ read(aj , pj) with ak �+

A vl instead of restricting attention to those vl ≡
read(aj , pj) with aj = ak.

Example 7. Consider the TλA formula (Δϕ, cϕ) with TI = TE = TLIA where Δϕ

contains the definitions

a1 ≡ λi. 0

a2 ≡ write(a1, 0, 1)

v1 ≡ read(a2, k)

c1 ≡ v1 �= 0

c2 ≡ k �= 0

c3 ≡ c1 ∧ c2

and cϕ = c3. Then this formula is clearly unsatisfiable.
If only definitions vl ≡ read(aj , pj) with aj = ak are considered when elimi-

nating the definition of a1, then no instantiations are added at all and

a2 ≡ write(a1, 0, 1)

v1 ≡ read(a2, k)

c1 ≡ v1 �= 0

c2 ≡ k �= 0

c3 ≡ c1 ∧ c2

remain. This formula is satisfiable (e.g., if a1 contains 1 for all indices).
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Using all vl ≡ read(aj , pj) with ak �+
A aj as done in the proof of Thm. 3 adds

an instantiation for k and the definitions

vka1
≡ read(a1, k)

cka1
≡ vka1

= 0

a2 ≡ write(a1, 0, 1)

v1 ≡ read(a2, k)

c1 ≡ v1 �= 0

c2 ≡ k �= 0

c3 ≡ c1 ∧ c2
c4 ≡ c4 ∧ cka1

are obtained. Furthermore, cϕ is updated to c4. As desired, the resulting formula
is unsatisfiable. ♦

6 Implementation and Evaluation

We have conducted experiments with all reductions described in Sect. 5 for
determining the satisfiability of quantifier-free TλA. Since our motivation was the
application in the bounded model checking tool LLBMC [24], we have restricted
attention to the case where TE = TI = TBV is the theory of bit-vectors.

6.1 Loop Summarization in LLBMC

The tool LLBMC is a bounded model checker for C and (to some extent) C++
programs. In order to support the complex and intricate syntax and semantics of
these programming languages, LLBMC uses the LLVM compiler framework [21] in
order to translate C and C++ programs into LLVM’s intermediate representation
(IR). This IR is then converted into a quantifier-free TλA formula and simplified
using an extensive set of rewrite rules. The simplified formula is finally passed
to an SMT solver. Distinguishing features of LLBMC in comparison with related
tools such as CBMC [9] and ESBMC [11] are its use of a flat, bit-precise memory
model, its exhaustive set of built-in checks, and its performance (see [24]).

The use of the LLVM compiler framework proved itself very useful in imple-
menting loop summarization in LLBMC, as LLVM provides passes for canonical-
izing loops. Furthermore, information about a the start value, end value, and
trip count of a loop’s induction variable is available using LLVM’ comprehensive
scalar evolution analysis framework.

In our implementation, summarizable loops are transformed into λ-terms of
the form λi. ITE(g, s, r), where g is a guard indicating if a read at position i
from the λ-term is in the summarized memory region or not, s is an encoding of
the value stored in the summarized loop, and r is a read from position i of the
memory state from before execution of the loop.

The implementation currently focuses on the most frequently found summa-
rizable loops and is therefore restricted to loops with a single basic block7, a
single store instruction, and at most load instructions which are executed before
the store instruction and access exactly the same memory location modified by
the store instruction.

7 This restriction can be easily relaxed in the future.
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6.2 Evaluation

Within LLBMC, we have evaluated the following approaches for determining sat-
isfiability of quantifier-free TλA formulas:

1. The eager reduction to TI ⊕TE ⊕TEUF from Sect. 5.1 and the instantiation-
based reduction to TA from Sect. 5.3 have been evaluated in combination
with the SMT solvers STP [15] (SVN revision 1673), Boolector [4] (version
1.5.118), Z3 [26] (version 4.3.1), and CVC4 [2] (version 1.1). Here, the SMT
solvers were executed using their C resp. C++ (CVC4) API.

2. The quantifier-based reduction to TA from Sect. 5.2 has been evaluated
in combination with the SMT solvers Z3 and CVC4. Note that STP and
Boolector do not support quantifiers. Since, according to its authors, the
array solver in Z3 is optimized for quantifier-free problems [25], we have
also evaluated an approach where arrays are encoded using uninterpreted
functions and quantifiers (as suggested in [25]).

3. Loops that can be summarized using λ-terms can alternatively be treated
like any other loop. Consequently, the boundedness restriction inherent to
bounded model checking then applies. This approach was again evaluated in
combination with STP, Boolector, Z3, and CVC4.

These approaches have been evaluated on a collection of 81 C and C++ pro-
grams. A total of 67 of these programs contain λ-terms corresponding to set or
copy operations, where 55 programs were already used in the preliminary version
of this work [14]. The set and copy operations in these programs may occur due
to several reasons:

– The source code contains an explicit call to memset or memcpy.
– Library-specific implementation details included through header files may

result in calls to memset or memcpy. This is in particular true for C++ pro-
grams that use the container classes of the STL.

– Default implementations of C++ constructors, especially the copy construc-
tor, may make use of memcpy operations to initialize objects.

The remaining 14 programs contain loops that can be summarized using λ-terms
as described in Sect. 4.1. Out of the 81 programs, 20 programs contain a bug
and produce a satisfiable TλA formula. The remaining 61 programs produce
unsatisfiable TλA formulas. The formulas that are produced for the different
approaches are available in SMT-LIB v2 format at http://llbmc.org/.

The results of LLBMC on the collection of examples are summarized in Table 1.
The reported times are in seconds and contain the time needed for the logical
encoding into a TλA formula, simplification of the formula, the time needed for
the reductions, and the time needed by the SMT solver. A timeout of 60 seconds
was imposed for each program and the experiments were performed on an Intel R©

CoreTM 2 Duo 2.4GHz with 4GB of RAM.
The results indicate that the instantiation-based reduction achieves the best

performance, regardless of the SMT solver that is used (but in particular in
combination with STP). This can also be observed in the cactus plots displayed

http://llbmc.org/
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Table 1. Times and success rates for the different approaches on 81 benchmark prob-
lems using a timeout of 60 seconds. “S” denotes the number of solved benchmark
problems, “T” denotes the number of timeouts, “M” denotes the number of times the
SMT solver ran out of memory, and “A” denotes the number of times the SMT solver
aborted (i.e., gave up before reaching the timeout). Total times are in seconds and in-
clude timeouts, memory exhaustions, and solver aborts with their respective runtimes.

Satisfiable Unsatisfiable All

SMT solver Approach Total Time S T M A Total Time S T M A Total Time S T M A

STP Instantiation 9.908 20 – – – 196.126 60 1 – – 206.034 80 1 – –
STP Eager 182.084 17 3 – – 597.460 53 8 – – 779.544 70 11 – –
STP Loops 114.663 17 1 2 – 555.863 53 5 3 – 670.526 70 6 5 –

Boolector Instantiation 112.886 19 1 – – 705.896 52 9 – – 818.782 71 10 – –
Boolector Eager 189.760 17 3 – – 796.991 53 8 – – 986.751 70 11 – –
Boolector Loops 203.644 16 2 2 – 935.839 45 13 3 – 1139.483 61 15 5 –

Z3 Instantiation 126.948 18 2 – – 821.417 49 11 1 – 948.365 67 13 1 –
Z3 Eager 185.436 17 3 – – 858.196 49 12 – – 1043.632 66 15 – –
Z3 Quantifiers 288.719 16 4 – – 833.770 49 12 – – 1122.489 65 16 – –
Z3 Quantifiers+UF 147.033 18 2 – – 1127.661 45 16 – – 1274.694 63 18 – –
Z3 Loops 364.796 13 5 2 – 1254.787 40 18 3 – 1619.583 53 23 5 –

CVC4 Instantiation 196.661 17 3 – – 731.418 50 11 – – 928.079 67 14 – –
CVC4 Eager 244.884 17 3 – – 874.864 48 13 – – 1119.748 65 16 – –
CVC4 Quantifiers 432.676 7 7 – 6 974.442 47 14 – – 1407.118 54 21 – 6
CVC4 Quantifiers+UF 452.506 7 7 – 6 1136.908 45 16 – – 1589.414 52 23 – 6
CVC4 Loops 430.052 12 6 2 – 1122.646 44 13 4 – 1552.698 56 19 6 –

in Fig. 1. Also note that all approaches using TλA perform better than the
näıve implementation using loops, where the latter is furthermore incomplete in
general due to the bounded number of loop iterations that can be considered.8

7 Related Work

Decidable extensions of the theory of arrays have been considered before. Suzuki
and Jefferson [30] have studied the extension of TA with a restricted use of
a permutation predicate. Mateti [22] has described a theory of arrays where
entries of an array can be exchanged. Jaffar [19] has investigated reading of array
segments but does not discuss writing array segments. Ghilardi et al. [16] have
considered the addition of axioms specifying the dimension of arrays, injectivity
of arrays, arrays with domains, array prefixes, array iterators, and sorted arrays.
All of these extensions are orthogonal to the theory TλA considered in this paper.
A theory of arrays with constant-valued arrays has been proposed by Stump et
al. [29]. These constant-valued arrays can easily be modelled in TλA using a
simple λ-term of the form λi. k where k is the constant value. This theory
has also been considered in [1]. De Moura and Bjørner [27] have introduced

8 This incompleteness does not manifest itself in the evaluation since the number of
loop iterations was chosen sufficiently large for each program. This causes LLBMC to
run out of memory on some examples, though.
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Fig. 1. Cactus plots for the 81 benchmark problems. The x-axis shows the number of
solved problems and the y-axis shows the time limit for each problem in seconds. Thus,
a curve that is closer to the bottom-right indicates a better performing approach.

combinatory array logic, which extends TA by constant-valued arrays as in [29]
and a map combinator.

The satisfiability problem for restricted classes of quantified formulas in the
theory of arrays has been investigated as well. The work by Bradley et al. [3] iden-
tifies the array property fragment, where value constraints are restricted by index
guards in universally quantified subformulas. Note that already the special case
of the copy operation cannot be expressed in the array property fragment due to
the “pointer arithmetic” q+(r− p). The conceptually simpler set operation can
be defined in the array property fragment, though. The array property fragment
was later extended by Habermehl et al. [17,18], but the “pointer arithmetic”
needed for copy is still not permitted. Finally, Zhou et al. [31] have investigated
a theory of arrays where the elements are from a finite set.

A logic containing λ-terms has been considered by Bryant et al. [6], who
also show that TA can be simulated using λ-terms. The key distinction of the
present work in comparison to [6] is that we extend TA with λ-terms that denote
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anonymous arrays. This makes it possible to utilize powerful and efficient SMT
solvers for TA in order to decide satisfiability of quantifier-free TλA formulas using
the reduction based on instantiating quantifiers (Sect. 5.3). In contrast, [6] has to
apply β-reduction eagerly, which corresponds to our eager reduction (Sect. 5.1).
As clearly shown in Sect. 6, the instantiation-based reduction from TλA to TA
performs much better than the eager reduction from TλA to TI ⊕ TE ⊕ TEUF .

8 Conclusions and Further Work

We have presented TλA, an extension of the theory of arrays with λ-terms. These
λ-terms can be used in order to model library functions such as C’s memset and
memcpy in formal methods such as program analysis, (deductive) software veri-
fication, bounded model checking, or symbolic execution. Furthermore, we have
shown how a class of loops can automatically be summarized using such λ-terms.
We have presented three reductions from TλA to theories that are supported by
current SMT solvers and have reported on an evaluation in LLBMC [24].

For future work, we are particularly interested in adding “native” support for
TλA in SMT solvers such as STP [15], Boolector [4], Z3 [26], or CVC4 [2]. For
this, it will be necessary to investigate lazy axiom instantiation or lemma-on-
demand techniques for TλA since these techniques have been fundamental for the
performance gain that SMT solvers for TA have experienced in recent years. A
first, simple idea is to add not all instantiations from Sect. 5.3 beforehand, but
instead do this incrementally in a CEGAR-like loop guided by spurious models
generated by the SMT solver for TA. A further direction for future work is to
widen the class of loops that can be summarized using λ-terms in the theory
TλA. Finally, we are interested in adding an operation similar to fold as known
from functional programming languages to the theory TλA.
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An Improved Unrolling-Based Decision

Procedure for Algebraic Data Types

Tuan-Hung Pham and Michael W. Whalen
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Abstract. Reasoning about algebraic data types and functions that op-
erate over these data types is an important problem for a large variety of
applications. In this paper, we present a decision procedure for reasoning
about data types using abstractions that are provided by catamorphisms:
fold functions that map instances of algebraic data types into values in
a decidable domain. We show that the procedure is sound and complete
for a class of monotonic catamorphisms.

Our work extends a previous decision procedure that solves formulas
involving algebraic data types via successive unrollings of catamorphism
functions. First, we propose the categories of monotonic catamorphisms
and associative-commutative catamorphisms, which we argue provide
a better formal foundation than previous categorizations of catamor-
phisms. We use monotonic catamorphisms to fix an incompleteness in
the previous unrolling algorithm (and associated proof). We then use
these notions to address two open problems from previous work: (1) we
provide a bound on the number of unrollings necessary for completeness,
showing that it is exponentially small with respect to formula size for
associative-commutative catamorphisms, and (2) we demonstrate that
associative-commutative catamorphisms can be combined within a for-
mula whilst preserving completeness.

1 Introduction

Decision procedures have been a fertile area of research in recent years, with
several advances in the breadth of theories that can be decided and the speed
with which substantial problems can be solved. When coupled with SMT solvers,
these procedures can be combined and used to solve complex formulas relevant
to software and hardware verification. An important stream of research has fo-
cused on decision procedures for algebraic data types. Algebraic data types are
important for a wide variety of problems: they provide a natural representation
for tree-like structures such as abstract syntax trees and XML documents; in ad-
dition, they are the fundamental representation of recursive data for functional
programming languages.

Algebraic data types provide a significant challenge for decision procedures
since they are recursive and usually unbounded in size. Early approaches focused
on equalities and disequalities over the structure of elements of data types [2,16].
While important, these structural properties are often not expressive enough
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to describe interesting properties involving the data stored in the data type.
Instead, we often are interested in making statements both about the structure
and contents of data within a data type. For example, one might want to express
that all integers stored within a tree are positive or that the set of elements in
a list does not contain a particular value.

In [23], Suter et al. described a parametric decision procedure for reasoning
about algebraic data types using catamorphism (fold) functions. In the proce-
dure, catamorphisms describe abstract views of the data type that can then be
reasoned about in formulas. For example, suppose that we have a binary tree
data type with functions to add and remove elements from the tree, as well as
check whether an element was stored in the tree. Given a catamorphism setOf
that computes the set of elements stored in the tree, we could describe a speci-
fication for an ‘add’ function as:

setOf
(
add(e, t)

)
= {e} ∪ setOf(t)

where setOf can be defined in an ML-like language as:

fun setOf t = case t of Leaf ⇒ ∅ |
Node(l, e, r)⇒ setOf(l) ∪ {e} ∪ setOf(r)

Formulas of this sort can be decided by the algorithm in [23]. In fact, the decision
procedure in [23] allows a wide range of problems to be addressed, because it
is parametric in several dimensions: (1) the structure of the data type, (2) the
elements stored in the data type, (3) the collection type that is the codomain of
the catamorphism, and (4) the behavior of the catamorphism itself. Thus, it is
possible to solve a variety of interesting problems, including:

– reasoning about the contents of XML messages,
– determining correctness of functional implementations of data types, includ-

ing queues, maps, binary trees, and red-black trees.
– reasoning about structure-manipulating functions for data types, such as

sort and reverse.
– computing bound variables in abstract syntax trees to support reasoning

over operational semantics and type systems, and
– reasoning about simplifications and transformations of propositional logic.

The first class of problems is especially important for guards, devices that
mediate information sharing between security domains according to a specified
policy. Typical guard operations include reading field values in a packet, chang-
ing fields in a packet, transforming a packet by adding new fields, dropping
fields from a packet, constructing audit messages, and removing a packet from
a stream. We have built automated reasoning tools (described in [9]) based on
the decision procedure to support reasoning over guard applications.

The procedure was proved sound for all catamorphisms and complete for a
class of catamorphisms called sufficiently surjective catamorphisms, which we
will describe in more detail in the remainder of the paper. Unfortunately, the
algorithm in [23] was quite expensive to compute and required a specialized
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predicate called Mp to be defined separately for each catamorphism and proved
correct w.r.t. the catamorphism using either a hand-proof or a theorem prover.

In [24], a generalized algorithm for the decision procedure was proposed, based
on unrolling the catamorphism. This algorithm had three significant advantages
over the algorithm in [23]: it was much less expensive to compute, it did not
require the definition ofMp, and it was claimed to be complete for all sufficiently
surjective catamorphisms. Unfortunately, the algorithm in [24] is in fact not
complete for all sufficiently surjective catamorphisms.

In this paper, we slightly modify the procedure of [24] to remove this incom-
pleteness. We then address two open problems with the previous work [24]: (1)
how many catamorphism unrollings are required in order to prove properties us-
ing the decision procedure? and (2) when is it possible to combine catamorphisms
within a formula in a complete way? To address these issues, we introduce two
further notions: monotonic catamorphisms, which describe an alternative for-
mulation to the notion of sufficiently surjective catamorphisms for describing
completeness, and associative-commutative (AC) catamorphisms, which can be
combined within a formula while preserving completeness results. In addition,
these catamorphisms have the property that they require a very small number
of unrollings. This behavior explains some of the empirical success in applying
catamorphism-based approaches on interesting examples from previous papers
[24,9]. In short, the paper consists of the following contributions:

– We propose the notion of monotonic catamorphisms and show that all suf-
ficiently surjective catamorphisms discussed in [23] are monotonic.

– We revise the unrolling-based decision procedure for algebraic data type [24]
using monotonic catamorphisms and formally prove its completeness.

– We propose the notion of AC catamorphisms, a sub-class of monotonic cata-
morphisms, and show that decision procedure for algebraic data types with
AC catamorphisms are combinable while the procedures for algebraic data
types proposed by Suter et al. [23,24] only work with single catamorphisms.

– We solve the open problem of determining the maximum number of un-
rollings with both monotonic and AC catamorphisms.

– We show that AC catamorphisms can be automatically detected.
– We describe an implementation of the approach, called RADA [18], which ac-

cepts formulas in an extended version of the SMT-LIB2 syntax, and demon-
strate it on a range of examples.

The rest of the paper is organized as follows. Section 2 presents some prelimi-
naries about catamorphisms and the parametric logic in [23]. Section 3 discusses
some properties of trees and shapes in the parametric logic. In Section 4, we
propose an unrolling-based decision procedure for algebraic data types. The de-
cision procedure works with monotonic catamorphisms, which are discussed in
Section 5, and the correctness of the algorithm for these catamorphisms is shown
in Section 6. Section 7 presents AC catamorphisms, and the relationship between
different types of catamorphisms is discussed in Section 8. Experimental results
for our approach are shown in Section 9. Section 10 presents related work. Fi-
nally, we conclude the paper with directions for future work in Section 11.
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2 Preliminaries

We describe the parametric logic used in the decision procedures for algebraic
data types proposed by Suter et al. [23,24], the definition of catamorphisms, and
the idea of sufficient surjectivity, which describes situations in which the decision
procedures [23,24] were claimed to be complete.

2.1 Parametric Logic

The input to the decision procedures is a formula φ of literals over elements of
tree terms and abstractions produced by a catamorphism. The logic is parametric
in the sense that we assume a data type τ to be reasoned about, an element
theory E containing element types and operations, a catamorphism α that is
used to abstract the data type, and a decidable theory LC of values in a collection
domain C containing terms C generated by the catamorphism function. Fig. 1
shows the syntax of the parametric logic instantiated for binary trees.

T ::= t | Leaf | Node(T,E, T ) | left(T ) | right(T ) Tree terms
C ::= c | α(T ) | TC C-terms
E ::= variables of type E | elem(T ) | TE Expression
FT ::= T = T | T �= T Tree (in)equations
FC ::= C = C | FC Formula of LC
FE ::= E = E | FE Formula of LE
φ ::=

∧
FT ∧

∧
FC ∧

∧
FE Conjunctions

ψ ::= φ | ¬φ | φ ∨ φ | φ ∧ φ | φ⇒ φ | φ⇔ φ Formulas

Fig. 1. Syntax of the parametric logic. Its semantics can be found in [23].

The syntax of the logic ranges over data type terms T and C-terms of a decid-
able collection theory LC . TC and FC are arbitrary terms and formulas in LC , as
are TE and FE in LE . Tree formulas FT describe equalities and disequalities over
tree terms. Collection formulas FC and element formulas EC describe equalities
over collection terms C and element terms E, as well as other operations (FC ,
FE) allowed by the logic of collections LC and elements LE . E defines terms in
the element types E contained within the branches of the data types. φ defines
conjunctions of (restricted) formulas in the tree and collection theories. The φ
terms are the ones solved by the decision procedures in [23]; these can be general-
ized to arbitrary propositional formulas (ψ) through the use of a DPLL solver [8]
that manages the other operators within the formula. Although the logic and
unrolling procedure is parametric with respect to data types, in the sequel we
focus on binary trees to illustrate the concepts and proofs.

2.2 Catamorphisms

Given a tree in the parametric logic, we can map the tree into a value in C using
a catamorphism, which is a fold function of the following format:



An Improved Unrolling-Based Decision Procedure for Algebraic Data Types 133

α(t) =

{
empty if t = Leaf

combine
(
α(tL), e, α(tR)

)
if t = Node(tL, e, tR)

where empty is an element in C and combine : (C, E , C) → C is a function that
combines a triple of two values in C and an element in E into a value in C.

Table 1. Sufficiently surjective catamorphisms in [23]

Name α(Leaf) α(Node(tL, e, tR)) Example
Set ∅ α(tL) ∪ {e} ∪ α(tR) {1, 2}
Multiset ∅ α(tL)  {e}  α(tR) {1, 2}
SizeI 0 α(tL) + 1 + α(tR) 2
Height 0 1 + max{α(tL), α(tR)} 2

List List()
α(tL) @ List(e) @ α(tR) (in-order) (1 2)
List(e) @ α(tL) @ α(tR) (pre-order) (2 1)
α(tL) @ α(tR) @ List(e) (post-order) (1 2)

Some None Some(e) Some(2)
Min None min′{α(tL), e, α(tR)} 1

Sortedness (None, None, true)
(None, None, false) (if tree unsorted)

(1, 2, true)
(min element, max element, true) (if tree sorted)

Catamorphisms from [23] are shown in Table 1. The first column contains
catamorphism names1. The next two columns define α(t) when t is a Leaf and
when it is a Node, respectively. The last column shows examples of the appli-
cation of each catamorphism to Node

(
Node(Leaf, 1, Leaf), 2, Leaf

)
. In the Min

catamorphism, min′ is the same as the usual min function except that min′

ignores None in the list of its arguments, which must contain at least one non-
None value. The Sortedness catamorphism returns a triple containing the min
and max element of the subtree, and true/false depending on whether it is sorted
or not.

Tree shapes: The shape of a tree in the parametric logic is obtained by removing
all element values in the tree.

Definition 1 (Tree shapes). The shape of a tree is defined by constant SLeaf
and constructor SNode( , ) as follows:

shape(t) =

{
SLeaf if t = Leaf

SNode
(
shape(tL), shape(tR)

)
if t = Node(tL, , tR)

Sufficiently surjective catamorphisms: The decision procedures proposed by Suter
et al. [23,24] were claimed to be complete if the catamorphism used in the proce-
dures is sufficiently surjective [23]. Intuitively, a catamorphism is sufficiently sur-
jective if the inverse relation of the catamorphism has sufficiently large cardinality
when tree shapes are larger than some finite bound.

1 SizeI, which maps a tree into its number of internal nodes, was originally named
Size in [23]. We rename the catamorphism to easily distinguish between itself and
function size, which returns the total number of all vertices in a tree, in this paper.
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Definition 2 (Sufficient surjectivity). α is sufficiently surjective iff for each
p ∈ N+, there exists, computable as a function of p, (1) a finite set of shapes
Sp and (2) a closed formula Mp in the collection theory such that Mp(c) implies
|α−1(c)| > p , such that Mp

(
α(t)

)
or shape(t) ∈ Sp for every tree term t.

Despite its name, sufficient surjectivity has no surjectivity requirement for the
codomain of α. It only requires a “sufficiently large” number of trees for values
satisfying the condition Mp. Table 1 describes all sufficiently surjective cata-
morphisms in [23]. The only catamorphism in [23] not in Table 1 is the Mirror
catamorphism; since the cardinality of the inversion function of the catamor-
phism is always 1, the sufficiently surjective condition does not hold for this
catamorphism.

3 Properties of Trees and Shapes in the Parametric Logic

We present some important properties of trees and shapes in the parametric
logic which will play important roles in the subsequent sections of the paper.

3.1 Properties of Trees

Property 1 follows from the syntax of the parametric logic. Properties 2 and 3
are well-known properties of full binary trees [6,19] (i.e., binary trees in which
every internal node has exactly two children).

Property 1 (Type of tree). Any tree in the parametric logic is a full binary tree.

Property 2 (Size). The number of vertices in any tree in the parametric logic is
odd. Also, in a tree t of size 2k + 1 (k ∈ N), we have:

ni(t) = k nl(t) = k + 1

where ni(t) and nl(t) are the number of internal nodes and the number of leaves
in t, respectively.

Property 3 (Size vs. Height). In the parametric logic, the size of a tree of height
h ∈ N must be at least 2h+ 1.

3.2 Properties of Tree Shapes

In this section, we show a special relationship between tree shapes and the well-
known Catalan numbers [22], which will be used to establish some properties of
monotonic and AC catamorphisms in Sections 5 and 7.

Define the size of the shape of a tree to be the size of the tree. Let N̄ be the
set of odd natural numbers. Because of Property 2, the size of a shape is in N̄.
Let ns(s) be the number of tree shapes of size s ∈ N̄ and let Cn, where n ∈ N,
be the n-th Catalan number [22].
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Lemma 1. The number of shapes of size s ∈ N̄ is the s−1
2 -th Catalan number:

ns(s) = C s−1
2

Proof. Property 1 implies that tree shapes are also full binary trees. The lemma
follows since the number of full binary trees of size s ∈ N̄ is C s−1

2
[22,13]. ��

Using the expression Cn = 1
n+1

(
2n
n

)
[22], we could easily compute the val-

ues that function ns : N̄ → N+ returns. This function satisfies the monotonic
condition in Lemma 2.

Lemma 2. 1 = ns(1) = ns(3) < ns(5) < ns(7) < ns(9) < . . .

Proof. Provided in [17]. ��

4 Unrolling-Based Decision Procedure Revisited

In this section, we restate the unrolling procedure proposed by Suter et al. [24]
and propose a revised unrolling procedure, shown in Algorithms 1 and 2. The
input of both algorithms is a formula φ written in the parametric logic and a
program Π , which contains φ and the definitions of data type τ and catamor-
phism α. The decision procedure works on top of an SMT solver S that supports
theories for τ, E , C, and uninterpreted functions. Note that the only part of the
parametric logic that is not inherently supported by S is the applications of the
catamorphism. The main idea of the decision procedure is to approximate the
behavior of the catamorphism by repeatedly unrolling it and treating the calls
to the not-yet-unrolled catamorphism instances at the leaves as calls to an un-
interpreted function. However, the uninterpreted function can return any values
in its codomain; thus, the presence of these uninterpreted functions can make
SAT results untrustworthy. To address this issue, each time the catamorphism is
unrolled, a set of boolean control conditions B is created to determine whether
the uninterpreted functions at the bottom level are necessary to the determina-
tion of satisfiability. That is, if all control conditions are true, no uninterpreted
functions play a role in the satisfiability result.

Algorithm 1. Unrolling decision
procedure in [24] with sufficiently
surjective catamorphisms
1 (φ,B) ← unrollStep(φ,Π, ∅)
2 while true do
3 switch decide(φ ∧ ∧

b∈B b) do
4 case SAT
5 return “SAT”

6 case UNSAT
7 switch decide(φ) do
8 case UNSAT
9 return “UNSAT”

10 case SAT
11 (φ,B) ← unrollStep(φ,Π,B)

Algorithm 2. Revised un-
rolling procedure with monotonic
catamorphisms
1 (φ,B) ← unrollStep(φ,Π, ∅)
2 while true do
3 switch decide(φ ∧ ∧

b∈B b) do
4 case SAT
5 return “SAT”

6 case UNSAT
7 switch decide(φ ∧ Rα) do
8 case UNSAT
9 return “UNSAT”

10 case SAT
11 (φ,B) ← unrollStep(φ,Π, B)
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The unrollings without control conditions represent an over-approximation of
the formula with the semantics of the program with respect to the parametric
logic, in that it accepts all models accepted by the parametric logic plus some
others (due to the uninterpreted functions). The unrollings with control condi-
tions represent an under-approximation: all models accepted by this model will
be accepted by the parametric logic with the catamorphism.

The algorithm determines the satisfiability of φ through repeated unrolling α
using the unrollStep function. Given a formula φi generated from the original φ
after unrolling the catamorphism i times and the set of control conditions Bi of
φi, function unrollStep(φi, Π,Bi) unrolls the catamorphim one more time and
returns a pair (φi+1, Bi+1) containing the unrolled version φi+1 of φi and a set of
control conditions Bi+1 for φi+1. Function decide(ϕ) simply calls S to check the
satisfiability of ϕ and returns SAT/UNSAT accordingly. The algorithm either
terminates when φ is proved to be satisfiable without the use of uninterpreted
functions (line 5) or φ is proved to be unsatisfiable when assigning any values to
uninterpreted functions still cannot make the problem satisfiable (line 9).

The central problem of Algorithm 1 is that its termination is not guaranteed.
For example, non-termination can occur if the uninterpreted function Uα rep-
resenting α can return values outside the range of α. Consider an unsatisfiable
input problem: SizeI (t) < 0, for an uninterpreted tree t when SizeI is defined
over the integers in an SMT solver. Although SizeI is sufficiently surjective, Al-
gorithm 1 will not terminate since each uninterpreted function at the leaves of
the unrolling can always choose an arbitrarily large negative number to assign
as the value of the catamorphism, thereby creating a satisfying assignment when
evaluating the input formula without control conditions. These negative values
are outside the range of SizeI, and this termination problem can occur for any
catamorphism that is not surjective. Unless an underlying solver supports pred-
icate subtyping, such catamorphisms are easily constructed, and in fact SizeI or
Height catamorphisms are not surjective when defined against SMT-LIB 2.0 [3].

To address the non-termination issue, we need to constrain the assignments
to uninterpreted functions Uα(t) representing α(t) to return only values inside
the range of α. Let Rα be a condition that, together with Uα(t), represents the
range of α. The collection of values that Uα(t) can return can be constrained
by Rα. In Algorithm 2, the user-provided range Rα is included in the decide
function to make sure that any values that Uα(t) returns could be mapped to
some “real” tree t′ ∈ τ such that α(t′) = Uα(t):

∀c ∈ C :
(
c = Uα(t) ∧Rα(c)

)
⇒

(
∃t′ ∈ τ : α(t′) = c

)
(1)

Formula (1) defines a correctness condition for Rα. Unfortunately, it is difficult
to prove this without the aid of a theorem prover. On the other hand, it is
straightforward to determine whether Rα is a sound approximation of the range
of R (that is, all values in the range of R are accepted by Rα) using induction and
an SMT solver. To do so, we simply unroll α a single time over an uninterpreted
tree t. We assume Rα is true for the uninterpreted functions in the unrolling but
that Rα is false over the unrolling. If an SMT solver can prove that the formula
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is UNSAT, then Rα soundly approximates the range; this unrolling encodes both
the base and inductive case.

5 Monotonic Catamorphisms

In the rest of the paper, we propose monotonic catamorphisms and prove that
Algorithm 2 is complete for this class, provided that Rα accurately characterizes
the range of α. We show that this class is a subset of sufficiently surjective cata-
morphisms, but general enough to include all catamorphisms described in [23,24]
and all those that we have run into in industrial experience. Monotonic catamor-
phisms admit a termination argument in terms of the number of unrollings, which
is an open problem in [24]. Moreover, a subclass of monotonic catamorphisms,
associative-commutative (AC) catamorphisms can be combined while preserving
completeness of the formula, addressing another open problem in [24].

5.1 Definition

Given a catamorphism α and a tree t, β(t) is the size of the set of trees that
map to α(t):

β(t) = |α−1
(
α(t)

)
|

Definition 3 (Monotonic catamorphism). A catamorphism α : τ → C is
monotonic iff there exists hα ∈ N+ such that:

∀t ∈ τ : height(t) ≥ hα ⇒
(
β(t) = ∞ ∨
∃t0 ∈ τ : height(t0) = height(t)− 1 ∧ β(t0) < β(t)

)
Note that if α is monotonic with hα, it is also monotonic with any h′α ∈ N+

bigger than hα.

5.2 Examples of Monotonic Catamorphisms

This section proves that all sufficiently surjective catamorphims introduced by
Suter et al. [23] are monotonic. These catamorphisms are listed in Table 1. Note
that the Sortedness catamorphism can be defined to allow or not allow duplicate
elements [23]; we define Sortednessdup and Sortednessnodup for the Sortedness
catamorphism where duplications are allowed and disallowed, respectively.

The monotonicity of Set, SizeI, Height, Some, Min, and Sortednessdup cata-
morphisms is easily proved by showing the relationship between infinitely sur-
jective abstractions [23] and monotonic catamorphisms.

Lemma 3. Infinitely surjective abstractions are monotonic.

Proof. According to Suter et al. [23], α is infinitely surjective S-abstraction,
where S is a set of trees, if and only if β(t) is finite for t ∈ S and infinite for
t /∈ S. Therefore, α is monotonic with hα = max{height(t) | t ∈ S}+ 1. ��



138 T.-H. Pham and M.W. Whalen

Theorem 1. Set, SizeI, Height, Some, Min, and Sortednessdup are monotonic.

Proof. [23] showed that Set, SizeI, Height, and Sortednessdup are infinitely surjec-
tive abstractions. Also, Some and Min have the properties of infinitely surjective
{Leaf}-abstractions. Therefore, the theorem follows from Lemma 3. ��

It is more challenging to prove that Multiset, List, and Sortednessnodup cata-
morphisms are monotonic since they are not infinitely surjective abstractions.
First, we define the notion of strict subtrees and supertrees.

Definition 4 (Strict subtree). Given two trees t1 and t2 in the tree domain
τ , tree t1 is a subtree of tree t2, denoted by t1 $ t2, iff:

t1 = Leaf ∨
t1 = Node(t1L, e, t1R) ∧ t2 = Node(t2L, e, t2R) ∧ t1L $ t2L ∧ t1R $ t2R

Tree t1 is a strict subtree of tree t2, denoted by t1 � t2, iff

t1 $ t2 ∧ size(t1) < size(t2)

Similarly, we define the notion � of strict supertrees as the inverse of �.
Next, we state Lemma 4 before proving that Multiset, List, and Sortednessnodup
catamorphisms are monotonic. The proof of Lemma 4 is omitted since it is
obvious.

Lemma 4. For all h ∈ N+, any tree of height h must be a strict supertree of at
least one tree of height h− 1.

Theorem 2. List catamorphisms are monotonic.

Proof. Let hα = 2. For any tree t such that height(t) ≥ hα, there are exactly
ns

(
size(t)

)
distinct trees that can map to α(t). Thus, β(t) = ns

(
size(t)

)
. Due to

Lemma 4, there exists t0 such that t0 � t∧height(t0) = height(t)−1, which leads
to size(t0) < size(t). From Property 3, height(t) ≥ hα = 2 implies size(t) ≥ 5.
From Lemma 2, ns

(
size(t0)

)
< ns

(
size(t)

)
, which means β(t0) < β(t). ��

Theorem 3. Multiset catamorphisms are monotonic.

Proof. Provided in [17]. ��

Theorem 4. Sortednessnodup catamorphisms over integer trees are monotonic.

Proof. Provided in [17]. ��

6 Unrolling Decision Procedure - Proof of Correctness

We now prove the correctness of the unrolling decision procedure in Algorithm
2. We start with some properties of monotonic catamorphisms in Section 6.1
and then discuss the main proofs in Section 6.2. In this section, p stands for the
number of disequalities between tree terms in the input formula.
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6.1 Some Properties of Monotonic Catamorphisms

In the following α is assumed to be a monotonic catamorphism with hα and β
as defined earlier.

Definition 5 (Mβ). Mβ(h) is the minimum value of β(t) of all trees t of height
h:

∀h ∈ N : Mβ(h) = min{β(t) | t ∈ τ, height(t) = h}
Corollary 1. Mβ(h) is always greater or equal to 1.

Proof. ∀h ∈ N : Mβ(h) ≥ 1 since ∀t ∈ τ : β(t) = |α−1
(
α(t)

)
| ≥ 1. ��

Lemma 5 (Monotonic Property of Mβ). Function Mβ : N → N satisfies
the following monotonic property:

∀h ∈ N, h ≥ hα : Mβ(h) = ∞ ⇒ Mβ(h+ 1) = ∞ ∨
Mβ(h) <∞ ⇒ Mβ(h) < Mβ(h+ 1)

Proof. Provided in [17]. ��
Corollary 2. For any natural number p > 0, Mβ(hα + p) > p.

Proof. By induction on h based on Lemma 5 and Corollary 1. ��
Theorem 5. For every number p ∈ N+, there exists some height hp ≥ hα,
computable as a function of p, such that for every height h ≥ hp and for every
tree th of height h, we have β(th) > p.

Proof. Let hp = hα + p. From Corollary 2, Mβ(hp) > p. Based on Lemma 5, we
could show by induction on h that ∀h ≥ hp : Mβ(h) > p. Hence, this theorem
follows from Definition 5. ��
Lemma 6. For all number p ∈ N+ and for all tree t ∈ τ , we have:

β(t) > p ⇒ β
(
Node( , , t)

)
> p ∧ β

(
Node(t, , )

)
> p

Proof. Consider tree t′ = Node(tL, e, t). The value of α(t′) is computed in terms
of α(tL), e, and α(t). There are β(t) trees that can map to α(t) and we can
substitute any of these trees for t in t′ without changing the value of α(t′). Hence,
β(t) > p implies β(t′) > p. In other words, β(t) > p ⇒ β

(
Node( , , t)

)
> p.

Similarly, we can show that β(t) > p ⇒ β
(
Node(t, , )

)
> p. ��

6.2 Proof of Correctness of the Unrolling-Based Decision Procedure

We claim that our unrolling-based decision procedure with monotonic catamor-
phisms is (1) sound for proofs, (2) sound for models, (3) terminating for sat-
isfiable formulas, and (4) terminating for unsatisfiable formulas. Due to space
limitations, we do not present the proofs for the first three properties, which can
be adapted with minor changes from similar proofs in [24]. Rather, we focus on
proving that Algorithm 2 is terminating for unsatisfiable formulas. As defined in
Section 2.1, the logic is described over only conjunctions, but this can easily be
generalized to arbitrary formulas using DPLL(T ) [8]. The structure of the proof
in this case is the same. The outline of the proof is as follows:
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1. Given an input formula φin, without loss of generality, we perform purifica-
tion and unification on φin to yield a formula φP . We then define a maximum
unrolling depth D and formula φD, in which all catamorphism instances in
φD are unrolled to depth D as described in Algorithm 2. Note that the
formulas differ only in the treatment of catamorphism terms.

2. Given an unrolling φD, if all control conditions are true, then the catamor-
phism functions are completely determined. Therefore, any model for φD
can be easily converted into a model for φin.

3. If at least one control condition for the unrolling is false, we may have a tree
t where αD(t) does not match α(t) since the computation of αD(t) depends
on an uninterpreted function. In this case, we show that it is always possible
to replace t with a concrete tree t′ that satisfies the other constraints of the
formula and that yields the same catamorphism value.

4. To construct t′, we first note that past a certain depth of unrolling depthmax
φin

+
1, the value chosen for any catamorphism applications will satisfy all con-
straints other than disequalities between tree terms. We then note that all
tree disequality constraints can be satisfied if we continue to unroll the cata-
morphism hp times.

Now, let φin be an input formula of Algorithm 2. Without loss of generality, we
purify the formula φin (as in [23]) and then perform tree unification (as in [2])
on the resulting formula. If there is a clash during the unification process, φin
must be unsatisfiable; otherwise, we obtain a substitution function σ = {t1var �→
T1, . . . , t

m
var �→ Tm} where each tree variable tivar, where 1 ≤ i ≤ m, does not

appear anywhere in tree terms T1, . . . , Tm. Following [23], the remaining variables
(which unify only with themselves and occur only at the leaves of tree terms)
we label parametric variables.

We substitute for tree variables and obtain a formula φP = φt ∧ φc ∧ φe ∧ φb
that is equisatisfiable with φin, where φt contains disequalities over tree terms
(tree equalities have been removed through unification), φc contains formulas
in the collections theory, φe contains formulas in the element theory, and φb is
a set of formulas of the form c = α(t), where c is a variable in the collections
theory and t is a tree term. We observe that given σ and any model for φP , it is
straightforward to create a model for φin.

Given φP , Algorithm 2 produces formulas φD which are the same as φP
except that each term c = α(t) in φb is replaced by c = αD(t), where αD is the
catamorphism unrolled D times.

To prove the completeness result, we compute depthmax
φin

, which is, in-
tuitively, the maximum depth of any tree term in φP . Let depthmax

φin
=

max{depthφP (t) | tree term t ∈ φP } where depthφP (t) is defined as follows:

depthφP (t) =

{
1 + max{depthφP (tL), depthφP (tR)} if t = Node(tL, , tR)

0 if t = Leaf | tree variable

We next define a lemma that states that assignments to catamorphisms are
compatible with all formula constraints other than structural disequalities
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between trees. We define φ∗P to be the formula obtained by removing all the
tree disequality constraints φt in φP .

Lemma 7. Given a formula φ∗P with monotonic catamorphism α and correct
range predicate Rα, after D ≥ depthmax

φin
+ 1 unrollings, if φD has a model, then

φ∗P also has a model.

Proof. Provided in [17]. ��
Theorem 6. Given a formula φin with monotonic catamorphism α and correct
range predicate Rα, after D = depthmax

φin
+ 1+ hp unrollings, if φD has a model,

then φin also has a model.

Proof. Provided in [17]. ��
Corollary 3. Given a formula φin with monotonic catamorphism α and correct
range predicate Rα, Algorithm 2 is terminating for unsatisfiable formulas.

Proof. This is the immediate contrapositive of Theorem 6. Suppose φin does not
have a model. In this case, φD also does not have a model and the SMT solver
S will return UNSAT. ��

This proof implies that Algorithm 2 terminates after no more than depthmax
φin

+
1+hp number of unrollings for unsatisfiable formulas. If the number of unrollings
exceeds depthmax

φin
+ 1 + hp, we conclude that φin is satisfiable; note that if we

are interested in complete tree models, we still need to keep unrolling until we
reach line 5 in Algorithm 2.

Corollary 4. Monotonic catamorphisms are sufficiently surjective.

Proof. Provided in [17]. ��

7 Associative-Commutative (AC) Catamorphisms

This section presents associative-commutative (AC) catamorphisms, a sub-class
of monotonic catamorphisms that have some important properties. They are
detectable, combinable, and impose an exponentially small upper bound of the
number of unrollings. The question whether these results extend to the full class
of sufficiently surjective catamorphisms is still open.

7.1 Definition

Definition 6 (AC catamorphism). Catamorphism α : τ → C is AC if

α(t) =

{
id⊕ if t = Leaf

α(tL) ⊕ δ(e) ⊕ α(tR) if t = Node(tL, e, tR)

where ⊕ : (C, C) → C is an associative and commutative binary operator with an
identity element id⊕ ∈ C (i.e., ∀x ∈ C : x ⊕ id⊕ = id⊕ ⊕ x = x) and δ : E → C
is a function that maps2 an element value in E into a corresponding value in C.
2 For instance, if E is Int and C is IntSet, we can have δ(e) = {e}.
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Like catamorphisms defined in [23,24], AC catamorphisms are fold functions
mapping the content of a tree in the parametric logic into a value in a collection
domain where a decision procedure is assumed to be available. There are two
main differences in the presentation between AC catamorphisms and those in
[23,24]. First, the combine function is replaced by an associative, commutative
operator ⊕ and function δ. Second, Leaf is mapped to the identity value of
operator ⊕ instead of the empty value of C (though the two quantities are usually
the same in practice).

Detection: Unlike sufficiently surjective catamorphisms, AC catamorphisms are
detectable. A catamorphism, written in the format in Definition 6, is AC if the
following conditions hold:

– ⊕ is an associative and commutative operator over C.
– id⊕ is an identity element of ⊕.

These conditions can be easily proved by SMT solvers [1,5] or theorem provers
such as ACL2 [11].

Signature: An AC catamorphism α is completely defined if we know its collection
domain C, element domain E , AC operator ⊕, and function δ : E → C. In other
words, the 4-tuple 〈C, E ,⊕, δ〉 is the signature of α. It is unnecessary to include
tree domain τ and identity element id⊕ in the signature since the former depends
only on E and the latter must be specified in the definition of ⊕.

Definition 7 (Signature of AC catamorphisms). The signature of an AC
catamorphism α is defined as follows:

sig(α) = 〈C, E ,⊕, δ〉

Values: Because of the associative and commutative operator ⊕, the value of an
AC catamorphism for a tree has an important property: it is independent of the
structure of the tree.

Corollary 5 (Values of AC catamorphisms). The value of α(t), where α is
an AC catamorphism, only depends on the values of elements in t. Furthermore,
the value of α(t) does not depend on the relative positions of the element values.

α(t) =

{
id⊕ if t = Leaf

δ(e1) ⊕ δ(e2) ⊕ . . . ⊕ δ(eni(t)) otherwise

where e1, e2, . . . , eni(t) are all element values stored in ni(t) internal nodes of t.

Examples: In Table 1, Height, List, Some, and Sortedness are not AC because
their values depend on the positions of tree elements. This is also demonstrated
by some concrete examples in [17].

Other catamorphisms in Table 1, including Set, Multiset, SizeI, and Min are
AC. Furthermore, we could define other AC catamorphisms based on well-known
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associative and commutative operators such as +,∩,max,∨,∧, etc. We could also
use user-defined functions as the operators in AC catamorphisms; in this case,
we will need the help of an additional analysis tool to verify that all conditions
for AC catamorphims are met.

7.2 AC Catamorphisms are Monotonic

AC catamorphisms are not only automatically detectable but also monotonic.
Thus, they can be used in Algorithm 2.

Lemma 8. If α is an AC catamorphism then

∀t ∈ τ : β(t) ≥ ns
(
size(t)

)
Proof. Provided in [17]. ��

Theorem 7. AC catamorphisms are monotonic.

Proof. Provided in [17]. ��

7.3 Exponentially Small Upper Bound of the Number of Unrollings

In the proof of Theorem 5, we use hp = hα + p to guarantee that the algorithm
terminates after unrolling no more than depthmax

φin
+1+hp times. The upper bound

implies that the number of unrollings may be large when p is large, leading to a
high complexity for the algorithm with monotonic catamorphisms.

In this section, we demonstrate that in the case of AC catamorphims, we
could choose a different value for hp such that not only the termination of the
algorithm is guaranteed with hp, but also the growth of hp is exponentially small
compared with that of p. Recall from the proof of Theorem 5 that as long as
we can choose hp ≥ hα such that Mβ(hp) > p, Theorem 5 will follow. We will
define such hp after proving the following important lemma.

Lemma 9. If α is AC then ∀h ∈ N : Mβ(h) ≥ Ch.

Proof. Let th ∈ τ be any tree of height h. We have β(th) ≥ ns
(
size(th)

)
from

Lemma 8. Thus, β(th) ≥ ns(2h+1) due to Property 3 and Lemma 2. Therefore,
β(th) ≥ Ch by Lemma 1. As a result, Mβ(h) ≥ Ch from Definition 5. ��

Let hp = max
{
hα,min{h | Ch > p}

}
. By construction, hp ≥ hα and Chp > p.

From Lemma 9, Mβ(hp) ≥ Chp > p. Thus, Theorem 5 follows.
The growth of Cn is exponential [7]. Thus, hp is exponentially smaller than

p since Chp > p. For example, when p = 104, we can choose hp = 10 since
C10 > 104. Similarly, when p = 5× 104, we can choose hp = 11. In the example,
we assume that hα ≤ 10, which is true for all catamorphisms in this paper.
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7.4 Combining AC Catamorphisms

Let α1, . . . , αm bem AC catamorphisms where the signature of the i-th catamor-
phim (1 ≤ i ≤ m) is sig(αi) = 〈Ci, E ,⊕i, δi〉. Catamorphism α with signature
sig(α) = 〈C, E ,⊕, δ〉 is a combination of α1, . . . , αm if

– C is the domain of m-tuples, where the ith element of each tuple is in Ci.
– ⊕ : (C, C) → C is defined as follows, given 〈x1, . . . , xm〉, 〈y1, . . . , ym〉 ∈ C:

id⊕ = 〈id⊕1 , id⊕2 , . . . , id⊕m〉
〈x1, x2, . . . , xm〉 ⊕ 〈y1, y2, . . . , ym〉 = 〈x1 ⊕1 y1, x2 ⊕2 y2, . . . , xm ⊕m ym〉

– δ : E → C is defined as follows: δ(e) =
〈
δ1(e), δ2(e), . . . , δm(e)

〉
– α is defined as in Definition 6.

Theorem 8. Every catamorphism obtained from the combination of AC cata-
morphims is also AC.

Proof. Provided in [17]. ��

Note that while it is easy to combine AC catamorphims, it might be challeng-
ing to compute Rα, where α is a combination of AC catamorphisms.

8 The Relationship between Abstractions

This section discusses the relationship between different types of catamorphisms,
including sufficiently surjective, infinitely surjective, monotonic, and AC cata-
morphisms. Their relationship is shown in Fig. 2.

Fig. 2. Relationship between different types of catamorphisms

Monotonic and sufficiently surjective catamorphisms: Corollary 4 shows that
all monotonic catamorphisms are sufficiently surjective. Theoretically, the set of
sufficiently surjective catamorphisms is a super-set of that of monotonic cata-
morphisms. In practice, however, we are not aware of any sufficiently surjective
catamorphisms that are not monotonic.

Infinitely surjective and monotonic catamorphisms: All infinitely surjective cata-
morphisms are monotonic, as proved in Lemma 3.
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AC and monotonic catamorphisms: All AC catamorphisms are monotonic, as
proved in Theorem 7.

Infinitely surjective and AC catamorphisms: The sets of the two types of cata-
morphisms are intersecting, as shown in Fig. 2.

9 Experimental Results

We have implemented our algorithm in RADA [18], a verification tool used in the
Guardol system [9], and evaluated the tool with a collection of 38 benchmark
guard examples listed in Table 2. The results are very promising: all of them
were automatically verified in a very short amount of time.

Table 2. Experimental results

Benchmark Result # unrollings Time (s)

sumtree(01|02|03|05|06|07|10|11|13) sat 1 − 4 0.52 − 1.02
sumtree(04|08|09|12|14) unsat 0 − 2 0.52 − 0.98
negative positive(01|02) unsat 1 − 6 0.33 − 0.82

min max(01|02) unsat 1 − 6 0.74 − 1.44
mut rec1 sat 2 0.78

mut rec(3|4) unsat 1 − 2 0.72 − 1.03
Email Guard Correct (01| . . . |17) unsat 1 − 2 0.72 − 0.99

The collection of benchmarks is divided into four sets. The benchmarks in
the first three sets were manually designed and those in the last set were auto-
matically generated from Guardol [9]. The first set consists of examples related
to Sum, an AC catamorphism that computes the sum of all element values in a
tree. The second set contains combinations of AC catamorphisms that are used
to verify some interesting properties such as (1) there does not exist a tree with
at least one element value that is both positive and negative and (2) the mini-
mum value in a tree can not be bigger than the maximum value in the tree. The
definitions of the AC catamorphisms used in the first two sets of benchmarks
can be found in [17].

To further evaluate the performance of our algorithm, we have conducted some
experiments with non-monotonic catamorphisms in the last two sets of bench-
marks. In particular, the third set contains simple mutually recursive catamor-
phisms. Each of the Guardol benchmarks in the last set has 8 mutually recursive
data types, 6 catamorphisms, and complex verification conditions.

All benchmarks were run on a machine using an Intel Core I3 running at 2.13
GHz with 2GB RAM with Z3 [5] as the underlying solver (S) in the experiments.

10 Related Work

We discuss some work that is closest to ours. Our approach extends the work
by Suter et al. [23,24]. In [23], the authors propose a family of procedures for
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algebraic data types where catamorphisms are used to abstract tree terms. Their
procedures are complete with sufficiently surjective catamorphisms, which are
closely related to the notion of monotonic catamorphisms in this paper. We
have shown that all monotonic catamorphisms are sufficiently surjective and
all sufficiently surjective catamorphisms described in [23] are monotonic. More-
over, there are a number of advantages of using monotonic catamorphisms, as
discussed in Sections 5 and 7. In the early phase of the Guardol project [9], we
implemented the decision procedures [23] on top of OpenSMT [4] and found some
flaws in the treatment of disequalities in the unification step of the procedures;
fortunately, the flaws can be fixed using the techniques in [2].

Our unrolling-based decision procedure is based on the work by Suter et al.
[24]. As pointed out in Section 4, their work has a non-terminating issue involving
the use of uninterpreted functions. Also, their method works with sufficiently
surjective catamorphisms while ours is designed for monotonic catamorphisms.

One work that is close to ours is that of Madhusudan et al. [15], where a sound,
incomplete, and automated method is proposed to achieve recursive proofs for
inductive tree data-structures while still maintaining a balance between expres-
siveness and decidability. The method is based on Dryad, a recursive extension
of the first-order logic.Dryad has some limitations: the element values inDryad
must be of type int and only four classes of abstractions are allowed in Dryad.
In addition to the sound procedure, [15] shows a decidable fragment of verifica-
tion conditions that can be expressed in Stranddec [14]. However, this decidable
fragment does not allow us to reason about some important properties such as
the height or size of a tree. However, the class of data structures that [15] can
work with is richer than that of our approach.

Using abstractions to summarize recursively defined data structures is one
of the popular ways to reason about algebraic data types. This idea is used
in the Jahob system [25,26] and in some procedures for algebraic data types
[21,24,10,15]. However, it is often challenging to directly reason about the ab-
stractions. One approach to overcome the difficulty, which is used in [24,15], is
to approximate the behaviors of the abstractions using uninterpreted functions
and then send the functions to SMT solvers [5,1] that have built-in support for
uninterpreted functions and recursive data types (although recursive data types
are not officially defined in the SMT-LIB 2.0 format [3]).

Recently, Sato et al. [20] proposes a verification technique that has support for
recursive data structures. The technique is based on higher-order model check-
ing, predicate abstraction, and counterexample-guided abstraction refinements.
Given a program with recursive data structures, we encode the structures as
functions on lists, which are then encoded as functions on integers before send-
ing the resulting program to the verification tool described in [12]. Their method
can work with higher-order functions while ours cannot. On the other hand, their
method cannot verify some properties of recursive data structures while ours can
thanks to the use of catamorphisms. An example of such a property is as follows:
after inserting an element to a binary tree, the set of all element values in the
new tree must be a super set of that of the original tree.
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11 Conclusion

We have proposed a revised unrolling decision procedure for algebraic data types
with monotonic catamorphisms. Like sufficiently surjective catamorphisms,
monotonic catamorphisms are fold functions that map abstract data types into
values in a decidable domain. We have showed that all sufficiently surjective
catamorphisms known in the literature to date [23] are actually monotonic. We
have also established an upper bound of the number of unrollings with mono-
tonic catamorphisms. Furthermore, we have pointed out a sub-class of monotonic
catamorphisms, namely associative-commutative (AC) catamorphisms, which
are proved to be detectable, combinable, and guarantee an exponentially small
maximum number of unrollings thanks to their close relationship with Catalan
numbers. Our combination results extend the set of problems that can easily be
reasoned about using the catamorphism-based approach.

In the future, we would like to generalize the notion of catamorphisms to
allow additional inputs related to either control conditions (e.g. member) or leaf
values (e.g. fold functions), while preserving completeness guarantees. Also, we
would like to generalize the completeness argument for mutually recursive data
types involving multiple catamorphisms.

In addition, our decision procedure assumes a correct Rα value, and may
diverge if this value is not correct. We believe that it is possible to check the Rα

value during unrolling and to return error if the value is incorrect by examining
the soundness of Rα after removing a value chosen for Uα within the problem
(call this Rα−U ). If this is sound, then R is incorrect, and we should return error.
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Abstract. The simple and often imprecise specifications that program-
mers may write are a significant limit to a wider application of rigorous
program verification techniques. Part of the reason why non-specialists
find writing good specification hard is that, when verification fails, they
receive little guidance as to what the causes might be, such as implemen-
tation errors or inaccurate specifications. To address these limitations,
this paper presents two-step verification, a technique that combines im-
plicit specifications, inlining, and loop unrolling to provide improved user
feedback when verification fails. Two-step verification performs two inde-
pendent verification attempts for each program element: one using stan-
dard modular reasoning, and another one after inlining and unrolling;
comparing the outcomes of the two steps suggests which elements should
be improved. Two-step verification is implemented in AutoProof, our
static verifier for Eiffel programs integrated in EVE (the Eiffel Verifica-
tion Environment) and available online.

1 The Trouble with Specs

There was a time when formal verification required heroic efforts and was the
exclusive domain of a small group of visionaries. That time is now over; but
formal techniques still seem a long way from becoming commonplace. If formal
verification techniques are to become a standard part of the software develop-
ment process—and they are—we have to understand and remove the obstacles
that still prevent non-specialists from using them.

A crucial issue is specification. Program correctness is a relative notion, in
that a program is correct not in absolute terms but only relative to a given
specification of its expected behavior; in other words, verified programs are only
as good as their specification. Unfortunately, many programmers are averse to
writing specifications, especially formal ones, for a variety of reasons that mostly
boil down a benefit-to-effort ratio perceived as too low. Writing formal specifica-
tions may require specialized skills and experience; and the concrete benefits are
dubious in environments that value productivity, assessed through simple quanti-
tative measures, more than quality. Why should programmers subject themselves
to the taxing exercise of writing specifications in addition to implementations,
if there is not much in it for them other than duplicated work?

There are, however, ways to overcome these obstacles. First, not all program
verification requires providing a specification because specifications can some-
times be inferred from the program text [8,24,18] or from observing common
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usage patterns [14,37,36]. In particular, some useful specifications are implicit in
the programming language semantics: types must be compatible; array accesses
must be within bound; dereferenced pointers must be non-null; arithmetic oper-
ations must not overflow; and so on. Second, programmers are not incorrigibly
disinclined to write specifications [7,15,31], provided it does not require sub-
verting their standard programming practices, produces valuable feedback, and
brings tangible benefits. Interesting challenges lie in reducing the remaining gap
between the user experience most programmer are expecting and the state-of-
the-art of formal verification techniques and tools.

In this paper, we combine a series of techniques to improve the applicability
and usability of static program checkers such as Spec# [2], Dafny [27], or one
of the incarnations of ESC/Java [17,11,20], which verify functional properties of
sequential programs specified using contracts (preconditions, postconditions, and
class invariants). To enable verification of code with little or no specification, we
deploy implicit contracts, routine inlining, and loop unrolling. Implicit contracts
(described in Section 3) are simple contracts that follow from the application
of certain programming constructs; for example, every array access implicitly
requires that the index be within bounds. Routine inlining (Section 4) replaces
calls to routines with the routines’ bodies, to obviate the need for a sufficiently
expressive callee’s specification when reasoning in the caller’s context. Similarly,
loop unrolling makes it possible to reason about loops with incomplete or missing
invariants by directly considering the concrete loop bodies.

Implicit contracts, inlining, and unrolling—besides being directly useful to im-
prove reasoning with scarce specification—are the ingredients of two-step verifi-
cation (Section 5), a technique to improve the usability and effectiveness of static
checking. Two-step verification performs two verification attempts for every rou-
tine: the first one is a standard static checking, using modular reasoning based
on programmer-written contracts (whatever they are) plus possibly implicit con-
tracts; the second one uses inlining and unrolling. Comparing the outcomes of
the two verification steps provides valuable information about the state of the
program and its specification, which is then used to improve the feedback given
to users. Bugs violating implicit contracts make for early error detection, and
may convince users to add some explicit contracts that avoid them. Discrepancies
between the verification of calls with and without inlining may help understand
whether failed verification attempts are due to errors in the implementation or in
the specification, or simply a more accurate specification is required. For example,
a call to some routine r that may violate r ’s user-written precondition but veri-
fies correctly after inlining r ’s body signals that r ’s precondition may be unneces-
sarily strong. Two-step verification is applied completely automatically: users get
the most complete feedback based on the integration of the results of the various
verification steps—with and without inlining and similar techniques.

We implemented our techniques in AutoProof [34,35], a static verifier for Eiffel
programs using Boogie [26] as back-end, and we used it to verify all the examples
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discussed in the paper. AutoProof is integrated in EVE [33], the research branch
of the EiffelStudio development environment, and is freely available online:

http://se.inf.ethz.ch/research/eve/

The rest of the paper presents the verification techniques in detail, and illus-
trates them on non-trivial example programs taken from the VSTTE 2012 verifi-
cation competition [16] and other software verification benchmarks [1]. Section 6
discusses other programs verified using our approach. We show how the basic
techniques and their integration into two-step verification make for better feed-
back, early error detection, and successful verification even when very limited
amounts of specification are available.

2 Overview and Illustrative Examples

Binary search is a widely-known algorithm and is considered a standard bench-
mark for software verification [1]. Most programmers have implemented it at
least once in their life. According to Knuth [23, Vol. 3, Sec. 6.2.1], their imple-
mentations were often “wrong the first few times they tried”.

1 binary search (a: ARRAY [INTEGER]; x: INTEGER): INTEGER
2 require a �=Void
3 local middle: INTEGER
4 do
5 if a.count = 0 then
6 Result := −1
7 else
8 middle := (1 + a.count) / 2
9 if a[middle] = x then

10 Result := middle
11 elseif a[middle] >x then
12 Result := binary search (a[1:middle − 1], x)
13 else
14 assert a[middle] <x end
15 Result := binary search (a[middle + 1:a.count]), x)
16 if Result �=−1 then Result := Result + middle end
17 end
18 end
19 ensure Result = −1 or (1≤Result and Result≤a.count)

Fig. 1. An implementation of binary search

To demonstrate, consider the binary search implementation in Figure 1,1

which takes an integer array a and an integer value x and returns an integer

1 All code examples are in Eiffel, with few occasional notational simplifications; even
readers not familiar with the language should find the code easy to understand.

http://se.inf.ethz.ch/research/eve/
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index (the value assigned to Result) pointing to an occurrence of x in a. Since
we assume arrays numbered from one, if x is not found in a the routine by con-
vention returns −1. The implementation in Figure 1 is indicative of what pro-
grammers typically write[30,15] when using a language supporting specifications
in the form of contracts (pre- and postconditions, and intermediate assertions
such as loop invariants and assert instructions): the implementation is “almost”
correct (if you do not immediately see the error, read on), and the specification
is obviously incomplete.

Part of the missing specification is implicit in the semantics of the program-
ming language, which is probably why the programmer did not bother writing it
down explicitly. In particular, arithmetic operations should not overflow for the
program to have a well-defined semantics. The midpoint calculation on line 8
overflows when the array size a.count has value equal to the largest representable
machine integer, even if the value of middle is within the bounds; this is indeed
a common error in real implementations of binary search [4].

If we try to verify the program in Figure 1 using static verifiers such as Dafny,
we do not find any error because integer variables are modeled using mathemat-
ical integers which do not overflow. In Section 3 we discuss our approach which
automatically instantiates implicit specification elements that represent tacit as-
sumptions about the programming language semantics. Such implicit contracts
help early error detection of subtle errors not explicitly specified, such as the po-
tential overflow just discussed. In addition, they are made available within a more
general static verification mechanism, where they can complement programmer-
written contracts to improve the efficiency of the overall verification process
without sacrificing precision.

Not only do incomplete specifications limit the kinds of error that can be
detected automatically during verification; they may also prevent verifying per-
fectly correct programs as we now illustrate with the example of Figure 2, taken
from the VSTTE 2012 verification competition. Routine two way sort sorts an
array a of Boolean values in linear time with a technique similar to the parti-
tioning algorithm used in Quick Sort. Two pointers i and j scan the array from
its opposite ends; whenever they point to an inversion (that is, a False in the
right-hand side and a True in the left-hand side) they remove it by swapping
the elements pointed. When the whole array is scanned, it is sorted.

The sorting algorithm calls an auxiliary routine swap that exchanges elements;
swap does not have any specification—again, a situation representative of how
programmers typically specify their programs. This is a problem because static
verification uses specifications to reasonmodularly about routine calls: the effects
of the call to swap on line 14 are limited to swap’s postcondition. Since it does not
have any, the proof of two way sort does not go through; in particular, it cannot
establish that the loop invariant at line 7 is inductive, which would then be the
basis to establish the variant as well as any programmer-written postcondition.

In our approach, when modular verification fails the verifier makes another
attempt after inlining routine bodies at their call sites. As we describe in Sec-
tion 4, the application uses simple heuristics to avoid combinatorial explosion
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1 two way sort (a: ARRAY [BOOLEAN])
2 require a.count >0
3 local i , j : INTEGER
4 do
5 i := 1 ; j := a.count
6 until i ≥ j
7 invariant 1≤ i and i≤ j + 1 and j≤a.count
8 loop
9 if not a[i ] then

10 i := i + 1
11 elseif a[ j ] then
12 j := j − 1
13 else
14 swap (a, i , j)
15 i := i + 1
16 j := j − 1
17 end
18 variant j − i + 1 end
19 end
20
21 swap (b: ARRAY [BOOLEAN]; x, y: INTEGER)
22 local t : BOOLEAN
23 do t := b[x] ; b[x] := b[y] ; b[y] := t end

Fig. 2. An implementation of two-way sort of Boolean arrays

(for example, in the case of recursive calls). With inlining, we can prove that the
invariant at line 7 is inductive without need for more specification.

Using inlining, we can also check interesting properties about clients of
two way sort. For example, when calling the routine on an empty array, we
compare a failed modular verification attempt (which reports a violation of
two way sort’s precondition) to a successful verification with inlining (which
only evaluates the routine’s body); the discrepancy suggests that two way sort’s
precondition is unnecessarily strong and can be relaxed to a �=Void without
affecting the rest of the verification process. This kind of improved feedback,
concocted from two different verification attempts, is the two-step verification
we present in detail in Section 5.

3 Implicit Contracts

The first ingredients of our two-step verification approach are implicit contracts :
simple specification elements that are implicit in the semantics of the program-
ming language—Eiffel in our examples. Since they are implicit, programmers
tend to reason informally about the program without writing them down as as-
sertions. This limits the kinds of properties that can be proved automatically
with a static verifier. With implicit contracts, the verifier transparently annotates
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the program under verification so that the feedback to users is more accurate and
goes deeper than what would have been possible based on the explicitly written
contract only. We currently support the following classes of implicit contracts.

3.1 Targets Non-Void

A qualified call t .r1(a1). . . . .rn(an ), with n ≥ 0, is non-Void if t �=Void and,
for 1 ≤ k < n, t .r1(a1). . . . .rk (ak ) returns a non-Void reference. For every
such qualified call appearing as instructions or in expressions, we introduce the
corresponding implicit contract that asserts that the call is non-Void.

For example, two way sort’s precondition (Figure 2) is augmented with the
implicit contract that a �=Void following from the qualified call a.count.

3.2 Routine Calls in Contracts

In programming languages supporting contracts there need not be a sharp dis-
tinction between functions used in the implementation and functions used in the
specification. Routine two way sort, for example, uses the function call a.count—
returning the length of array a—in its precondition and loop invariant, but also
in the assignment instruction on line 5. Functions used in contracts may have
preconditions too; programmers should make them explicit by replicating them
whenever the function is mentioned, but they often neglect doing so because it is
something that is implicit when those functions are used in normal instructions,
whereas it is not checked when the same functions are used in contracts.

Consider, for instance, a function is sorted with the obvious semantics, and
suppose that its precondition requires that it is applied to non-empty lists. If
is sorted is called anywhere in the implementation, then it is the caller’s re-
sponsibility to establish its precondition; the caller is aware of the obligation
explicit in is sorted ’s contract. But if is sorted is called, say, as precondition
of binary search, establishing is sorted ’s precondition is now the responsibil-
ity of callers to binary search, who are, however, unaware of the non-emptiness
requirement implicit in binary search’s precondition. In fact, the requirement
should explicitly feature as one of binary search’s preconditions.

To handle such scenarios automatically, for every call to any function f appear-
ing in contracts, we introduce the corresponding implicit contract that asserts
that f’s precondition holds right before f is evaluated in the contract. If f’s pre-
condition includes calls to other functions, we follow the transitive closure of the
preconditions, also checking well-formedness (that is, no circularity occurs).

3.3 Array Accesses

For every array access of the form a[exp] appearing in instructions or in expres-
sions, we introduce the implicit contract a.lower≤ exp and exp≤a.upper which
asserts that the expression used as index is within the array’s bounds.

In binary search, for example, the accesses a[middle] determine the implicit
contract that middle is between 1 and a.count.
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3.4 Arithmetic Expressions

The subexpressions sub(e) of an integer expression e are defined in the obvious
way: if e is an integer constant or an integer variable then sub(e) = {e}; if
e is the application of a unary operator ∼, that is e = ∼ d , then sub(e) =
{e} ∪ sub(d); if e is the application of a binary operator ⊕, that is e = c ⊕ d ,
then sub(e) = {e}∪ sub(c)∪ sub(d). For every integer expression e appearing in
instructions or expressions, we introduce the implicit contract that asserts that
no subexpression of e’s may overflow:∧

x∈sub(e)

{INTEGER}.min value≤ x and x≤{INTEGER}.max value

For every subexpression of the form c & d , where & is some form of integer
division, we also introduce the implicit contract d �=0, which forbids division by
zero.

The integer expression at line 8 in Figure 1, for example, determines the
implicit contract 1 + a.count≤ {INTEGER}.max value, which may not hold.

4 Inlining and Unrolling

Inlining and unrolling are routinely used by compilers to optimize the generated
code for speed; they are also occasionally used for program checking, as we
discuss in Section 7. The novelty of our approach is the automatic combination,
in two-step verification, of inlining and unrolling with modular “specification-
based” verification. Inlining and unrolling may succeed in situations where little
programmer-written specification is available; in such cases, users get a summary
feedback that combines the output of each individual technique and is aware of
the potential unsoundness of inlining and unrolling. The combined feedback gives
specific suggestions as to what should be improved. This section presents the
definitions of inlining and unrolling; Section 5 discusses how they are combined
in two-step verification.

4.1 Inlining

The standard approach to reasoning about routine calls is modular based on
specifications: the effects of a call to some routine r within the callee are pos-
tulated to coincide with whatever r’s specification is. More precisely, the callee
should establish that r’s precondition holds in the calling context; and can con-
sequently assume that r’s postcondition holds and that the call does not modify
anything outside of r’s declared frame.

The modular approach is necessary to scale verification to large pieces of
code. At the same time, it places a considerable burden on programmers, since
every shortcoming in the specifications they provide may seriously hinder what
can be proved about their programs. This is a practical issue especially for
helper functions that are not part of the public API: programmers may not feel
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compelled to provide accurate specifications—postconditions, in particular—for
them because they need not be documented to clients; but they would still
like to benefit from automated program checking. This is the case of routine
swap in Figure 2, which is not specified but whose semantics is obvious to every
competent programmer.

Inlining can help in these situations by replacing abstract reasoning based on
specifications with concrete reasoning based on implementations whenever the
former are insufficient or unsatisfactory. In particular, inlining is likely to be
useful whenever the inlined routine has no postcondition, and hence its effects
within the callee are undefined under modular reasoning. Of course, inlining has
scalability limits; that is why we apply it in limited contexts and combine it with
standard modular verification as we discuss in Section 5.

Definition of Inlining. Consider a routine r of class C with arguments a, which
we represent as:

r (t : C ; a) require Pr modify Fr do Br ensure Qr end

For n ≥ 0, the n-inlining inline(A, n) of calls to r in a piece of code A is defined as
A with every call u.r(b) on target u (possibly Current) with actual arguments
b modified as follows:

inline(u.r(b), n)=

{
assert Pr [u, b] ; havoc Fr [u, b] ; assumeQr [u, b] if n = 0

inline(Br [u, b], n − 1) if n > 0

Inlining works recursively on calls to routines other than r and recursive calls to
r in Br ; non-call instructions are instead unchanged. 0-inlining coincides with
the usual modular semantics of calls based on specifications. Otherwise, inlining
replaces calls to r with Br [u, b] (r ’s body applied to the actual target u and
arguments b of the calls), recursively for as many times as the recursion depth n.

Since inlining discards the inlined routine’s precondition, it may produce
under- or over-approximations of the calls under modular semantics, respec-
tively if the declared precondition is weaker or stronger than the body’s weakest
precondition.

For any n > 0, the n-inlining of swap in two way sort’s body (Figure 2)
consists of replacing the call to swap at line 14 with swap’s body instantiated in
the correct context, that is t := a[ i ] ; a[ i ] := a[ j ] ; a[ j ] := t with t a fresh
local variable declared inside two way sort.

Inlining and Dynamic Dispatching. In programming languages with dy-
namic dispatching, the binding of routine bodies to routine calls occurs at run-
time, based on the dynamic type of the call targets. This is not a problem for
modular reasoning because it can rely on behavioral subtyping and the rule that
routine redefinitions in descendants (overriding) may only weaken preconditions
and strengthen postconditions. Inlining, instead, has to deal with dynamic dis-
patching explicitly: in general, verification using inlining of a routine r of class
C is repeated for every overriding of r in C’s descendants. This also requires to
re-verify the system whenever new descendants of C are added, unless overriding
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r is eventually forbidden (frozen in Eiffel, final or private in Java, or sealed
in C#). These limitations are, however, not a problem in practice when we ap-
ply inlining not indiscriminately but only in limited contexts for small helper
routines, and we combine its results with classic modular reasoning as we do in
two-step verification.

4.2 Unrolling

The standard approach to modular reasoning also applies to loops based on their
loop invariants: the effects of executing a loop on the state of the program after
it are postulated to coincide with the loop invariant. The inductiveness of the
invariant is established separately for a generic iteration of the loop, and so is
the requirement that the invariant hold upon loop entry.

This reliance on expressive loop invariants is at odds with the aversion pro-
grammer typically have at writing them. This is not only a matter of habits,
but also derives from the fact that loop invariants are often complex specifica-
tion elements compared to pre- and postconditions [18]; and, unlike pre- and
postconditions which constitute useful documentation for clients of the routine,
loop invariants are considered merely a means to the end of proving a program
correct. The loop of two way sort in Figure 2, for example, has a simple loop in-
variant that only bounds the values of the indexes i and j; this prevents proving
any complex postcondition.

Unrolling can help in these situations by evaluating the effects of a loop in
terms of its concrete body rather than its invariant. This may help prove the
postcondition when the invariant is too weak, showing that a certain number
of repetitions of the body are sufficient to establish the postcondition. Further-
more, in the cases where we have a way to establish a bound on the number
of loop iterations, unrolling precisely renders the implementation semantics. We
will generalize these observations when discussing how unrolling is applied au-
tomatically in the context of two-step verification (Section 5).

Definition of Unrolling. Consider a generic annotated loop L:

until exit invariant I loop B variant V end

which repeats the body B until the exit condition exit holds, and is annotated
with invariant I and variant V. For n ≥ 0, the n-unrolling unroll(L, n) of L is
defined as:

unroll(L, n) = ( if not exit then B end)n

where the nth exponent denotes n repetitions. Since unrolling ignores the loop
invariant, it may produce under- or over-approximations of the loop’s modular
semantics, respectively if the declared loop invariant is weaker or stronger than
the body’s weakest precondition.

5 Two-Step Verification

We have introduced all the elements used in two-step verification; we can finally
show how they are combined to produce improved user feedback.
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Implicit contracts are simply added whenever appropriate and used to have
early detection of errors violating them. In AutoProof, which translates Eiffel to
Boogie to perform static proofs, implicit contracts are not added to the Eiffel
code but are silently injected into the Boogie translation, so that the input code
does not become polluted by many small assertions; users familiar with Eiffel’s
semantics are aware of them without explicitly writing them down. Errors con-
sisting of violations to implicit contracts reference back the original statements in
Eiffel code from which they originated, so that the error report is understandable
without looking at the Boogie translation.

Whenever the verifier checks a routine that contains routine calls, two-step
verification applies inlining as described in Section 5.1. Whenever it checks a
routine that contains loops, two-step verification applies unrolling as described
in Section 5.2. The application of the two steps is completely automatic, and
is combined for routines that includes both calls and loops; users only get a
final improved error report in the form of suggestions that narrow down the
possible causes of failed verification more precisely than in standard approaches.
Section 5.4 briefly illustrates two-step verification on the running example of
Section 2.

5.1 With Inlining

Consider a generic routine r with precondition Pr and postcondition Qr , whose
body Br contains a call t .s(a) to another routine s with precondition Ps , post-
condition Qs and body Bs (as shown in Figure 3). Two-step verification runs
two verification attempts on r :

1. Modular verification: The first step of two-step verification for r follows
the standard modular verification approach: it tries to verify that r is cor-
rect with respect to its specification, using s ’s specification only to reason
about the call to s ; and then it separately tries to verify s against its own
specification.

r
require Pr

do

Br

⎧⎪⎪⎨
⎪⎪⎩

...
t .s(a)

...

ensure Qr

s
require Ps

do
Bs

ensure Qs

q
require Pq

do

...

L

⎧⎪⎪⎨
⎪⎪⎩

until e
invariant I
loop B
variant V end

...
ensure Qq

Fig. 3. A routine r calling another routine s; and a routine q with a loop
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2. Inlined verification: The second step of two-step verification for r replaces
the call to s in r with inline(t .s(a), n), for some n > 0 picked as explained
in Section 5.3, and then verifies r with this inlining.

Table 1. Two-step verification with inlining: summary of suggestions

step 1: modular step 2: inlined
verify r verify s verify r suggestion

Ps fails success success weaken Ps or use inlined s
Qr fails success success strengthen Qs or use inlined s
success Qs fails success strengthen Ps or weaken Qs

Each of the two steps may fail or succeed. According to the combined outcome,
we report a different suggestion to users, as summarized in Table 1.

Precondition Fails. If modular verification (first step) fails to establish that
s ’s precondition Ps holds right before the call, but both modular verification
of s and inlined verification (second step) of r succeed, it means that s ’s pre-
condition may be inadequate2 while its implementation is correct with respect
to its specification and to the usage made within r . In this case, there are two
options: if s is a helper function used only in r or anyway in limited contexts,
we may as well drop s ’s specification and just use it inlined wherever needed
during verification. In more general cases, we should try to weaken Ps in a way
that better characterizes the actual requirements of how s is used.

Postcondition Fails. If modular verification fails to establish that r ’s post-
condition Qr holds when Br terminates, but both modular verification of s and
inlined verification of r succeed, it means that s ’s postcondition fails to char-
acterize r ’s requirements while s ’s implementation is correct with respect to its
specification. As in the previous case, there are two options: we may drop s ’s
specification and just use it inlined; or we should try to strengthen Qs in a way
that better characterizes the actual expectations of r on s . A similar scheme
applies not just to failed postconditions Qr but whenever modular verification
fails to verify intermediate assertions occurring on paths after the call to s in r .

Local Proof Fails. If modular verification fails to establish that s ’s postcon-
dition Qs holds when Bs terminates, but both modular verification of r and
inlined verification of r succeed, it means that s ’s specification cannot be proved
consistent with its implementation, while the latter is correct with respect to
the usage made within r . The suggestion is to change s specification in a way
that still accommodates its usage within r and can be verified: strengthen the
precondition Ps , weaken the postcondition Ps , or both. With this information,
there is no way to decide if the problem is with the pre- or postcondition, but

2 As with all failed static verification attempts, we cannot exclude that failure is simply
due to limitations of the theorem prover.
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we can always try to modify either one and run verification again to see if the
suggestion changes.

In the remaining cases, two-step verification is inconclusive in the sense that
it gives the same feedback as modular verification alone. In particular, when the
second step fails it is of no help to determine whether the problem is in the
specification or the implementation. If, for example, both modular and inlined
verification of r fail to establish the postcondition Qr , but modular verification
of s succeeds, we cannot conclude that s ’s implementation is wrong because it
does not achieve Qr : it may as well be that r ’s implementation is wrong, or
r ’s postcondition is unreasonable; which is exactly the information carried by a
failed modular verification attempt.

Also notice that inlined verification cannot fail when modular verification fully
succeeds: if s ’s implementation satisfies its specification, and that specification
is sufficient to prove r correct, then the semantics of s within r is sufficient to
prove the latter correct. Therefore, we need not run the second step when the
first one is successful.3

5.2 With Unrolling

Consider a generic routine q with precondition Pq and postcondition Qq , whose
body Bq contains a loop L with exit condition e, invariant I , variant V , and body
B (as shown in Figure 3). Two-step verification runs two verification attempts
on r :

1. Modular verification: The first step of two-step verification for r follows
the standard modular verification approach: it tries to verify that r is correct
with respect to its specification, using the loop invariant I only to reason
about the effect of L within r ; and then it separately tries to verify that I is a
correct inductive loop invariant (that is, it holds on entry and is maintained
by iterations of the loop).

2. Unrolled verification: The second step of two-step verification for r re-
places the loop L in r with unroll(L, n), for some n > 0 picked as explained
in Section 5.3, and then verifies r with this unrolling and the additional as-
sertion assert V≤n, evaluated upon loop entry, that the loop executes at
most n times.4

Each of the two steps may fail or succeed. According to the combined outcome,
we report a different suggestion to users, as summarized in Table 2.

Postcondition Fails. Suppose that modular verification (first step) fails to
establish that r ’s postcondition Qq holds when Bq terminates, but unrolled

3 Again, exceptions might occur due to shortcomings of the theorem prover used by
the modular verifier, which might be able to prove a set of verification conditions
but fail on a syntactically different but semantically equivalent set due to heuristics
or limitations of the implementation. These are, however, orthogonal concerns.

4 If a variant is not available or cannot be verified to be a valid variant, we proceed
as if the assertion did not hold.
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Table 2. Two-step verification with unrolling: summary of suggestions

step 1: modular step 2: unrolled
verify r assert V≤ n verify r suggestion

Qq fails success success use inlined L
Qq fails fail success strengthen I to generalize

I fails inductiveness success success use inlined L
I fails inductiveness fail success change I to generalize

verification (second step) of r succeeds. The suggestion in this case depends on
whether the prover can also establish the intermediate assertion assert V≤n.
If it does, n is a finite upper bound on the number of loop iterations in every
execution. Thus, the loop implementation is correct but the loop invariant I is
inadequate to prove the postcondition; we may as well drop the invariant I and
just use the exhaustively unrolled loop during verification. In the more general
case where the assertion V≤n fails, the successful unrolled proof shows that the
loop body works with a finite number of iterations, and hence it is likely correct;
we may then try to strengthen (or otherwise change) the invariant I in a way
that captures a generic number of loop iterations and is sufficiently strong to
establish Qq . A similar scheme applies not just to failed postconditions Qq but
whenever modular verification fails to verify intermediate assertions occurring
on paths after the loop L in q.

Invariant Fails. Suppose that modular verification fails to establish that I is
inductive, but unrolled verification of r succeeds. The suggestion depends on
whether the prover can also establish the intermediate assertion assert V≤n. If
it does, the loop implementation is correct but the loop invariant I is inadequate;
we may as well drop the invariant I and just use the exhaustively unrolled loop
during verification. In the more general case where the assertion V≤n fails, the
successful unrolled proof shows that the loop body works with a finite number of
iterations, and hence it is likely correct; we may then try to change the invariant
I in a way that captures a generic number of loop iterations and is sufficiently
strong to establish Qq . With this information, there is no way to decide if the
invariant should be strengthened or weakened, but we can always try either one
and run verification again.

In the remaining cases, two-step verification gives the same feedback as mod-
ular verification alone. And, as for inlining, we need not run the second step
(unrolled verification) when modular verification is completely successful.

5.3 Bounds for Nesting and Loops

The application of inlining and unrolling requires a parameter n: the maximum
depth of nested calls in the former case; and the number of explicit iterations
of the loop in the latter. The choice of n is more subtle for unrolling—where
it should represent a number of iterations sufficient to make the second step of
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verification succeed—than for inlining—where it becomes relevant only in the
presence of nested calls or recursion.

In our implementation, we use simple heuristics to pick values for n that are
“feasible”, that is do not incur combinatorial explosion. In the case of inlining,
we get a crude estimate of the size of the inlined program as follows. For a routine
p, let πp denote the total number of simple paths in p from entry to exit. If p has
size |p| (measured in number of instructions) and includes m calls to routines
r1, . . . , rm , we recursively define ‖p‖n as: |p| if n = 0, |p| + πp(‖r1‖n−1 + · · ·+
‖rm‖n−1) if n > 0. Inlining in p uses an n such that ‖p‖n ≤ 104.

In the case of unrolling a loop within routine q, our implementation does some
simple static analysis to determine if the calling context of q or q’s precondition
suggest a finite bound of the loop (in practice, this is restricted to loops over
arrays that are declared statically or with a constant upper bound in the pre-
condition). In such cases, n is simply the inferred bound. Otherwise, we roughly
estimate the size of an unrolled loop L as n|L|, where |L| is the size of L in
number of instructions; unrolling L uses an n such that n|L| ≤ 103.

In many practical cases (in the absence of recursion or deeply nested calls),
very small n’s (such as 1 ≤ n ≤ 5) are sufficient to produce a meaningful results
in two-step verification.

5.4 Examples

Let us demonstrate how two-step verification works on the running examples
introduced in Section 2. Figure 4 shows two clients of routine two way sort (Fig-
ure 2). Routine client 1 calls two way sort on an empty array, which is forbidden
by its precondition. Normally, this would be blamed on client 1 ; with two-step
verification, however, the second verification attempt inlines two way sort within
client 1 and successfully verifies it. This suggests that client 1 is not to blame,
because two way sort’s precondition is unnecessarily strong (first case in Ta-
ble 1), which is exactly what AutoProof will suggest in this case as shown in
Figure 5. In fact, the sorting implementation also works on empty arrays, where
it simply does not do anything.

1 client 1
2 local a: ARRAY

[BOOLEAN]
3 do
4 a := [ ] −− empty array
5 two way sort (a)
6 end

7 client 2
8 local a: ARRAY [BOOLEAN]
9 do

10 a := [True, False, False,
True]

11 two way sort (a)
12 assert a[1] = False
13 end

Fig. 4. Clients of two way sort
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Fig. 5. AutoProof showing feedback of two-step verification

Routine client 2 calls two way sort on a four-element array and checks that
its first element is False after the call. Modular verification cannot prove this as-
sertion: two way sort has no postcondition, and hence its effects within client 2
are undefined. The second verification attempt inlines two way sort and unrolls
the loop four times (since it notices that the call is on a four-element array); this
proves that the first array element is False after the call (first line in Table 2). In
all, two way sort is not to blame because its implementation works correctly for
client 2 . As summarized in the second line of Table 1, the user can either just
be happy with the result or endeavor to write down a suitable postcondition
for two way sort so that the correctness proof can be generalized to arrays of
arbitrary length.

Suppose we provide a postcondition that specifies sortedness: using Eiffel’s
syntax, across 1..(a.count−1) as k all (a[k] = a[k+1]) or (a[k ] �=a[k+1] and
a[k] = False). Modular verification of two way sort fails to prove this postcon-
dition because the loop invariant at line 7 does not say anything about the array
content. Two-step verification makes a second attempt where it unrolls the loop
a finite number of times, say 5, and inlines swap. The situation is in the second
entry of Table 2: we cannot verify that the arbitrary bound of five iterations
generally holds (that is j − i + 1 ≤ 5 holds before the loop), but the success of
unrolling in this limited case suggests that two way sort’s implementation is cor-
rect. If we want to get to a general proof, we should improve the loop invariant,
and this is precisely the suggestion that two-step verification brings forward.

6 Evaluation

The examples of the previous sections have demonstrated the kind of feedback
two-step verification provides. This section contains a preliminary evaluation of
the scalability of two-step verification.

Table 3 lists the example programs. The first labeled column after the pro-
gram name contains the size of the implementation (not counting specification
elements) in lines of code. The rest of the table is split in two parts: the first one
contains data about two-step verification; the second one the same data about
modular verification. The data reported includes: the amount of specification
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Table 3. Comparison of two-step and modular verification on selected examples

two-step modular
P Q I A P Q I A

code spec Boogie time spec Boogie time

1 3 0 0 1 3 4 0
1. Maximum 32 4 1541 2.06 8 712 1.05

3 1 0 0 3 1 5 0
2. Sum and Max 32 4 1619 2.18 9 720 1.04

2 1 0 0 2 1 5 0
3. Two-way Sort 44 3 1803 2.35 8 742 1.06

2 1 0 0 2 1 10 0
4. Dutch Flag 45 3 1955 2.94 13 786 1.14

3 4 0 0 3 4 7 0
5. Longest common prefix 30 7 1585 2.10 14 730 1.05

0 0 0 7 5 13 5 7
6. Priority queue 119 7 2896 3.35 30 1088 1.56

0 0 0 11 7 18 4 11
7. Deque 127 11 1856 2.51 40 1230 1.59

0 0 0 1 2 3 0 1
8. Binary Search 48 1 2479 3.21 6 672 0.99

11 10 0 19 25 44 40 19
Total 477 40 15734 20 .70 128 6680 9 .48

necessary to successfully verify the example (number of annotations, split into
preconditions P , postconditions Q , invariants I (loop invariants in examples
1–5; class invariants in examples 6–8), and intermediate assertions A); the size
(in lines) of the Boogie code generated by AutoProof; and the time in seconds.
Two-step verification includes modular verification as first step, but normally
requires less specification to be successful; correspondingly, the Boogie code and
the time in the first part of the table sum up both steps.

The examples include: (1) finding the maximum in an array, from the COST
2011 verification competition [6]; (2) computing maximum and sum of the ele-
ments in an array, from the VSTTE 2010 verification competition [22]; (3) the
two-way sort algorithm of Section 2, from the VSTTE 2012 verification compe-
tition [16]; (4) Dikstra’s Dutch national flag algorithm [13]; (5) computing the
longest common prefix of two sequences, from the FM 2012 verification com-
petition [19]; (6) a priority queue implementation, from Tinelli’s verification
course [32]; (7) a double-ended queue [23, Vol. 1, Sec. 2.2.1]; and (8) the binary
search algorithm of Section 2, from the software verification benchmarks [1].

In the experiments with the algorithms 1–5, two-step verification succeeds
with loop unrolling of depth n = 6, which corresponds to input arrays of the
same length. The outcome suggests either to use the unrolled loop, for inputs of
bounded length; or to write a suitable loop invariant. A correct loop invariant
is necessary for modular verification alone to succeed, in which case the proof
generalizes to arrays of arbitrary length. We prove the following postconditions:
(1) the output is the array maximum; (2) the output sum is less than or equal
to the output maximum times the array length; (3) sortedness of the output, as
formalized in Section 5.4; (4) the output is partitioned in the three flag colors;
(5) the output is the longest common prefix of the input array.
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In the experiments 6–8 we verify clients of the queue, double-ended queue, and
binary search, which call some routines and then formalize their expectations on
the result with asserts after the call. The called routines have no specification
(in particular, no postcondition); two-step verification verifies the clients using
inlining of the callee, and suggests to add postconditions to generalize the proofs.
The postconditions are necessary for modular verification alone to succeed.

The evaluation suggests that two-step verification can check the implemen-
tation even when little or no specification is given; its feedback may then help
write the necessary specifications to generalize proofs for modular verification.

The runtime overhead of performing two verification steps instead of one is
roughly linear in all examples; in fact, unrolling and inlining blow up mainly
in the presence of recursion. To better assess how they scale, we have repeated
two-step verification of examples 3 (using unrolling) and 6 (using inlining in the
presence of recursion) for increasing value of the bound n. Table 4 shows the
results in terms of size of the generated Boogie code (in lines) and time necessary
to verify it (in seconds). Unrolling scales gracefully until about n = 10; afterward,
the time taken by Boogie to verify increases very quickly, even if the size of the
Boogie code does not blow up. Inlining is more sensitive to the bound, since the
size of the inlined code grows exponentially due to the conditional branch in
binary search’s body; the time is acceptable until about n = 7. Notice that the
heuristics for the choice of n discussed in Section 5.3 would generate running
times in the order of tens of seconds, thus enforcing a reasonable responsiveness.

Table 4. Scalability of unrolling and inlining on examples 3 and 6 from Table 3

unrolling inlining
inlining/unrolling depth n Boogie time Boogie time

3 864 1.07 1201 1.44
4 937 1.13 1822 2.26
5 1010 1.21 3054 4.23
6 1083 1.32 5518 10.93
7 1156 1.52 10446 30.64
8 1229 2.03 20302 112.32

10 1375 4.26 – –
13 1594 37.52 – –
15 1667 253.30 – –

7 Related Work

The steadily growing interest for techniques and tools that make verification
more approachable indicates how some of the most glaring hurdles to the progress
of formal methods lie in their applicability. Tools such as Dafny [27], Spec# [2],
VCC [10], ESC/Java2 [11,20], and Why3 [5] define the state of the art in static
program verification. Their approaches rely on accurate specifications, which are
not easy to write and get right.
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One way to ameliorate this situation is inferring specifications automatically
using static [8,24,18] or dynamic [14,37,36] techniques. Specifications dynami-
cally inferred are based on a finite number of executions, and hence may be
unsound; this makes them unsuitable for use in the context of static verification.
Static techniques can infer sound specifications from the program text; these are
useful to document existing implementations, to discover auxiliary assertions
(such as loop invariants), or for comparison with specifications independently
written, but proving an implementation correct against a specification inferred
from it is mostly a vacuous exercise.

The simple implicit contracts that we use in our approach express well-
formedness properties of the input program, which are tacitly assumed by pro-
grammers reasoning informally about it; therefore, there is no risk of circularity.
Some static verifiers use mathematical integers or assume purity of specifica-
tion functions to have well-formedness by construction; a risk is that, when
they are applied to real programming languages, the corresponding semantic
gap may leave some errors go unnoticed. ESC/Java2, for example, does not
check for overflows [21], nor if specification expressions are executable (for ex-
ample, null-dereferencing could happen when evaluating a precondition). The
Dafny verifier [27] checks well-formedness of pre- and postconditions, and may
consequently require users to add explicit contracts to satisfy well-formedness.
Our implicit contracts are instead added and checked automatically, without
requiring users to explicitly write them. In this sense, they are similar to ap-
proaches such as VCC [10], which models the semantics of the C programming
language as precisely as possible.

Besides inferring specifications, another approach to facilitate formal veri-
fication is combining complementary verification techniques. CEGAR model-
checking [3], for example, uses model-checking exhaustive verification techniques
on approximate program models, combined with a form of symbolic execution
to determine whether the failed verification attempts are indicative of real im-
plementation errors or only a figment of an imprecise abstraction. Tools such as
DSD-Crasher [12] and our EVE [33] integrate testing and static checking to find
when the errors reported by the latter are spurious. Collaborative verification [9]
is also based on the combination of testing and static verification, and on the
explicit formalization of the restrictions of each tool used in the combination.
Two-step verification also integrates the results of different techniques, with the
main purpose of improving error reporting and reducing the number of annota-
tions needed, rather than complementing the limitations of specific techniques.

The Spec# system includes a verification debugger [25] to inspect error models
when verification fails; more recently, an interpreter for Boogie programs [29] can
help find the sources of failed verification attempts. Debuggers for verification
can be quite useful in practice, but achieve a lesser degree of automation than
two-step verification, since users need to manually inspect and understand the
error models using the debugger.

Inlining and unrolling are standard techniques in compiler construction. The
Boogie verifier [26] also supports inlining of procedures: through annotations,
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one can require to inline a procedure to a given depth using different sound or
unsound definitions. Boogie also supports (unsound) loop unrolling on request.
AutoProof’s current implementation of inlining and unrolling works at source
code level, rather than using Boogie’s similar features, to have greater flexibility
in how inlining and unrolling are defined and used. Methods specified using the
Java Modeling Language (JML) with the “helper” modifier [11] are meant to
be used privately; ESC/Java inlines calls to such methods [17]. ESC/Java also
unrolls loops a fixed amount of times; users can choose between performing sound
or unsound variants of the unrolling. In previous work [28], we used unrolling
and inlining to check the type correctness of JavaScript programs. In two-step
verification, we use inlining and unrolling completely automatically: users need
not be aware of them to benefit from an improved feedback that narrows down
the sources of failed verification attempts.
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5. Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your herd

of provers. In: Boogie, pp. 53–64 (2011)
6. Bormer, T., et al.: The COST IC0701 verification competition. In: Beckert,

B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS, vol. 7421, pp. 3–21.
Springer, Heidelberg (2012)

7. Chalin, P.: Are practitioners writing contracts? In: Butler, M., Jones, C.B., Ro-
manovsky, A., Troubitsyna, E. (eds.) Fault-Tolerant Systems. LNCS, vol. 4157,
pp. 100–113. Springer, Heidelberg (2006)

8. Chang, B.-Y.E., Leino, K.R.M.: Inferring object invariants. ENTCS 131, 63–74
(2005)
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Abstract. Calculational proofs—proofs by stepwise formula manipulation—are
praised for their rigor, readability, and elegance. It seems desirable to reuse this
style, often employed on paper, in the context of mechanized reasoning, and in
particular, program verification.

This work leverages the power of SMT solvers to machine-check calculational
proofs at the level of detail they are usually written by hand. It builds the support
for calculations into the programming language and auto-active program verifier
Dafny. The paper demonstrates that calculations integrate smoothly with other
language constructs, producing concise and readable proofs in a wide range of
problem domains: from mathematical theorems to correctness of imperative pro-
grams. The examples show that calculational proofs in Dafny compare favorably,
in terms of readability and conciseness, with arguments written in other styles
and proof languages.

1 Introduction

There is no automatic way to decide, for any given statement, if it holds or not. Both
in mathematics and in program verification, people construct proofs to convince them-
selves and others of the validity of statements, as well as to gain a better understanding
of those statements and why they hold. Naturally, people strive to come up with a good
notation for writing proofs: one that is easy to read and understand, and, if possible,
guards against mistakes.

One such notation is the calculational method [4], whereby a theorem is established
by a chain of formulas, each transformed in some way into the next. The relationship
between successive formulas (for example, equality or implication) is notated, and so
is a hint that justifies the transformation (see Fig. 4 in Sec. 2.2 for an example). The
calculational method encourages making the transformation steps small in order to help
the author avoid mistakes and to convince readers by fully explaining what is going on.

Even though calculational proofs are written in a strict format, they still tend to be
informal. Manolios and Moore [25] discovered several errors in calculations written by
Dijkstra (one of the biggest proponents of the style) and posed a challenge to mecha-
nize calculational proofs, asking if “any attempt to render calculational proofs suitable
for mechanical checking will result in ugly, hard to comprehend proofs” and if “the
mechanized proof checker [will] necessarily be hard to learn and difficult to use”.
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Indeed, constructing proofs within interactive proof assistants (like Coq [8], Is-
abelle/HOL [26], or PVS [27]) has a reputation of being a demanding task1. The pur-
pose of these tools is to give the user maximum control over the proof process, which is
why they favor predictability over automation. Interaction with such an assistant con-
sists of issuing low-level commands, called tactics, that guide the prover through the
maze of proof states. This mode of interaction is biased towards expert users with a
good knowledge of the tool’s inner workings.

In contrast, auto-active program verifiers [24], like Dafny [22], VCC [13], or Veri-
Fast [18], take a different approach to mechanised reasoning: they provide automation
by default, supported by an underlying SMT solver. All the interaction with such a ver-
ifier happens at the level of the programming language, which has the advantage of
being familiar to the programmer. So far, these tools have been used mostly for verify-
ing functional correctness of programs, but their domain is gradually expanding towards
general mathematical proofs.

It would be wonderful if we could just take a pen-and-paper calculational proof and get
it machine-checked completely automatically. In this paper, we add support for proof cal-
culations to the programming language and auto-active program verifier Dafny [22,21].
The extension, which we call program-oriented calculations (poC), is able to verify cal-
culational proofs written with the same level of detail and the same degree of elegance
as they would be on paper, thereby addressing the challenge of Manolios and Moore.

The main contributions of the present work are as follows. We integrate proof cal-
culations as a statement in a programming language. The supporting syntax uses, for
structuring proofs, constructs already familiar to programmers (such as conditionals
and method calls). We develop tool support for machine-checking the proofs. Thanks
to the underlying SMT solver, the resulting tool provides a high degree of automation.
We provide a sound encoding of the new statement that tries to reduce the overhead of
specifying that formulas are well defined (in the presence of partial expressions). We
give a number of examples that use the proof format and provide a comparison with
proof structuring in existing tools. And by adding this streamlined proof support to an
auto-active program verifier, we are bringing SMT-based tools closer to what previously
has been territory exclusive to interactive proof assistants.

2 Background and Motivation

This section reviews existing features for writing proofs in auto-active program verifiers
and then argues in favor of adding support for calculations. While we use Dafny in our
examples, other auto-active verifiers have a similar range of features.

2.1 Proofs in an Auto-Active Program Verifier

Automatic verification attempts may fail for several reasons. One reason is that the
program correctness may depend on mathematical properties that the program verifier
is unable to figure out by itself. In such cases, the user of an auto-active verifier may

1 A popular quote from an old version of the PVS website states that it takes six months to
become a moderately skilled user [33].
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datatype List〈T〉 = Nil | Cons(T, List〈T〉)

function length(xs: List): nat {
match xs
case Nil ⇒ 0
case Cons(x, xrest) ⇒ 1 + length(xrest)

}

Fig. 1. Definition of a generic datatype List〈T〉 and a function that returns the length of a list. We
omit the type parameter of List where Dafny can infer it automatically, as for function length
here.

ghost method LemmaLength(n: int)
requires n ≥ 0;
ensures ∃ xs • length(xs) = n;

{
if n = 0 {

// trivial

} else {
LemmaLength(n - 1); // invoke induction hypothesis
var xs :| length(xs) = n - 1;

assert length(Cons(496, xs)) = n;
} }

Fig. 2. The ghost method states a theorem and its body gives the proof. More precisely, the body
of the method provides some code that convinces the program verifier that all control-flow paths
terminate in a state where the postcondition holds.

augment the program text with lemmas, which will give the verifier clues about how to
proceed.

The simplest form of a lemma is an assert statement. It directs the verifier’s focus
by adding a proof obligation that subsequently can be used as an assumption. As an
example, consider an algebraic List datatype with a length function in Fig. 1. Suppose
we want to prove that there exists a list of length one:

∃ xs • length(xs) = 1

The proof of such an existential property requires supplying the witness manually, and
we can do so by inserting the following assert statement:

assert length(Cons(496, Nil)) = 1;

In more complex cases, an assert statement is not enough, perhaps because we want
to reuse a multiple-step proof, or, in case of an inductive argument, because we want
to apply the same proof recursively. For example, suppose we want to generalize our
previous statement and assert that there exists a list of any non-negative length:

∀ n • 0 ≤ n =⇒ ∃ xs • length(xs) = n
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Since this property may be useful in several places, we would like to state and prove it
once as a theorem and later be able to refer to it by name.

To state a theorem in the programming language, we declare a method (see Fig. 2)
whose postcondition is the conclusion of the theorem, whose precondition is the as-
sumption made by the theorem, and whose in-parameters show how the theorem can be
parameterized. Since we intend this method only for the program verifier, we declare it
to be ghost, which means that the compiler will not generate any code for it.

To use a lemma stated in this way, the program then simply calls the method, upon
return of which the caller gets to assume the postcondition (as usual in program verifi-
cation). Given a method declaration, the program verifier will, as usual, set out to prove
that the method body is terminating and that it terminates with the given postcondition.
Thus, the method body essentially gives the proof of the theorem.

In Fig. 2, the method body introduces two cases, n = 0 and n �= 0. In the first case,
the verifier can automatically come up with the witness using the definition of length,
and therefore no further code needs to be given in the then branch. The else branch per-
forms a method call, so the verifier checks that the callee’s precondition holds. Further-
more, since the call is recursive, the verifier needs to check termination, which it does
(in the standard program-verification way) by checking that some variant function de-
creases in some well-founded ordering. In this example, the default variant function—
the argument n—is good enough, but in general the variant function may need to be
supplied by the user. Upon return from the call, the verifier assumes the postcondition
of the call: ∃ xs • length(xs) = n - 1. With this fact at hand, we use the Dafny :|
(“assign such that”) operator to save an arbitrary list of length n - 1 in a local variable
xs. From that list, we construct one of length n, whereby convincing the verifier that the
enclosing postcondition holds. The body of method LemmaLength is essentially a proof
by induction, where the recursive call denotes the appeal to the induction hypothesis.

The example above illustrates how auto-active program verifiers exploit the analogy
between programs and proofs to reuse programming constructs for proof structuring: if
(and match/case) statements for case splits, procedures for stating and reusing lemmas,
recursion for inductive arguments. This spares programmers the effort of learning a new
language and, more importantly, a new paradigm.

To convince the verifier of some non-trivial fact, one may need to appeal to multiple
lemmas (either assert statements or method calls), and the discovery of which lemmas
are useful is non-trivial. One way to discover what is needed is to start writing a detailed
proof, proceeding in small steps and trying to figure out in which step the verifier gets
stuck. It is for writing such detailed proofs that poC provides helpful features. Once
a detailed proof has been constructed, one often finds that the tool would have been
satisfied with some smaller set of lemmas; the user then has the choice of either deleting
the steps that are not needed or keeping the proof steps, which may facilitate better
readability and maintainability.

2.2 Calculational Proofs

Having reviewed how manual proofs are supplied in an auto-active program verifier,
let us now turn our attention to some properties that require a somewhat larger manual
effort.
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function reverse(xs: List): List {
match xs

case Nil ⇒ Nil
case Cons(x, xrest) ⇒ append(reverse(xrest), Cons(x, Nil))

}
function append(xs: List, ys: List): List {

match xs
case Nil ⇒ ys
case Cons(x, xrest) ⇒ Cons(x, append(xrest, ys))

}

Fig. 3. Definition of a function reverse that reverses the order of elements in a list and its helper
function append that concatenates two lists

reverse(reverse(x :: xs))
= { def. reverse }

reverse(reverse(xs) ++[x ])
= { lemma ∀xs, ys • reverse(xs ++ ys) = reverse(ys) ++ reverse(xs) }

reverse([x ]) ++ reverse(reverse(xs))
= { induction hypothesis }

reverse([x ]) ++ xs
= { def. reverse , append }

[x ] ++ xs
= { def. append twice }

x :: xs

Fig. 4. Hand proof of reverse(reverse(x :: xs)) = x :: xs written in calculational style.
The proof uses Coq-style notation with x :: xs for Cons(x, xs), [x ] for Cons(x, Nil), and
xs ++ ys for append(xs, xy).

As a motivating example, we consider proving that reversing a list is an involution:

∀ xs • reverse(reverse(xs)) = xs

There are systems for automatic induction that can prove this property automatically
(e.g. [20,12,30]), but it requires some manual effort in Dafny. The relevant definitions
are found in Fig. 32, along with the definition of List from Fig. 1.

Here is how one would prove this fact by hand. Because the definition of reverse
is inductive, it is natural that the proof should proceed by induction on xs. The base
case reverse(reverse(Nil)) = Nil holds trivially by definition of reverse. For the
step case, we can write a little calculation shown in Fig. 4. This calculation consists
of five steps, each stating an equality between two consecutive lines and accompanied
by a hint, which explains why the equality holds. Typically, hints reference definitions
or well-known properties of used operations, invoke auxiliary lemmas, or appeal to the

2 We use a naive definition of reverse for this example; our case study (Sec. 5.1) also contains
an efficient tail-recursive definition, and a proof that the two are equivalent.
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induction hypothesis. The conclusion of this calculation is reverse(reverse(x : xs)) =
x : xs (the first line is equal to the last line), which holds due to transitivity of equality.

In Fig. 5, we show the same proof written in Dafny, in a “classical” style with each
step represented by an assert statement. This proof is harder to read than the one in
Fig. 4: it is less structured and more verbose (each inner line appears twice). In the next
section, we show how poC improves the situation.

3 Calculations in Dafny

Using poC, we can write the proof of LemmaReverseTwice as shown in Fig. 6. The
calculation is introduced using the calc statement, which adheres to the following
grammar:

CalcStatement ::= “calc” Op? “{” CalcBody? “}”
CalcBody ::= Line (Op? Hint Line)∗

Line ::= Expression “;”
Hint ::= (BlockStatement | CalcStatement)∗

Op ::= “=” | “≤” | “<” | “≥” | “>” | “=⇒” | “⇐=” | “⇐⇒” | “�=”

Non-syntactic rules further restrict hints to only ghost and side-effect free statements, as
well as impose a constraint that only chain-compatible operators can be used together
in a calculation.

The notion of chain-compatibility is quite intuitive for the operators supported by
poC; for example, it is clear that<and>cannot be used within the same calculation, as
there would be no relation to conclude between the first and the last line. We treat this
issue more formally in Sec. 4. Note that we allow a single occurrence of the intransitive
operator �=to appear in a chain of equalities (that is, �= is chain-compatible with equality
but not with any other operator, including itself).

Calculations with fewer than two lines are allowed, but have no effect. If a step
operator is omitted, it defaults to the calculation-wide operator, defined after the calc
keyword. If that operator if omitted, it defaults to equality. Hints are optional in our
syntax; we find it useful, however, to still supply a comment for human readers when
Dafny requires no hint (for examples, in the first step of Fig. 6).

In the following, we review more features and usage patterns of poC. Most of them
we get for free, simply reusing language constructs already present in Dafny. This indi-
cates that calculations integrate well with the rest of the language.

3.1 Contextual Information

It is often desirable to embed a calculation in some context (for example, when proving
an implication, the context of the antecedent). Dijkstra gives an example [15] of how
choosing an appropriate context can significantly simplify a calculational proof.

Inside a Dafny method, a proof is always embedded in the context of the method’s
precondition; however, whenever additional context is required, this is easily achieved
with a conventional if statement.
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ghost method LemmaReverseTwice(xs: List)
ensures reverse(reverse(xs)) = xs;

{

match xs {
case Nil ⇒
case Cons(x, xrest) ⇒

// by def. reverse, we have:
assert reverse(reverse(xs))
= reverse(append(reverse(xrest), Cons(x, Nil)));

LemmaReverseAppendDistrib(reverse(xrest), Cons(x, Nil));
assert reverse(append(reverse(xrest), Cons(x, Nil)))
= append(reverse(Cons(x, Nil)), reverse(reverse(xrest)));

LemmaReverseTwice(xrest); // induction hypothesis
assert append(reverse(Cons(x, Nil)), reverse(reverse(xrest)))
= append(reverse(Cons(x, Nil)), xrest);

// by def. reverse and append:
assert append(reverse(Cons(x, Nil)), xrest)
= append(Cons(x, Nil), xrest);

// by def. append applied twice:
assert append(Cons(x, Nil), xrest)
= xs;

} }

ghost method LemmaReverseAppendDistrib(xs: List)
ensures reverse(append(xs, ys)) = append(reverse(ys), reverse(xs));

Fig. 5. Theorem that reverse is involutive stated and proven in Dafny without poC. The proof
shown here makes use of an auxiliary lemma LemmaReverseAppendDistrib , which shows how
reverse distributes over append (and whose proof we have omitted for brevity). The proof can
be improved with poC.

Fig. 7 gives an example of the same result being proven in two different ways:
with and without additional context. Theorem Monotonicity states that for a func-
tion f of a natural argument, the “single step” characterization of monotonicity, i.e.
∀ n • f(n) ≤ f(n + 1) is as good as the more common characterization with two
quantified variables:∀ a, b • a ≤ b =⇒ f(a) ≤ f(b). Because it has been embed-
ded in a richer context, the calculation in the second proof in Fig. 7 has fewer steps and
manipulates simpler terms than the one in the first proof.

3.2 Structuring Calculations

Since hints are statements, they can themselves contain calculations. This gives rise
to nested calculations, akin to structured calculational proofs [2] and window infer-
ence [34]. In fact, since this is a common case, a hint that consists solely of a calculation
need not be enclosed in curly braces. The example in Fig. 8 uses a nested calculation
to manipulate a sub-formula of the original line, in order to avoid dragging along the
unchanged part of the formula and focus the reader’s attention on the essentials.
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ghost method LemmaReverseTwice(xs: List)
ensures reverse(reverse(xs)) = xs;

{

match xs {
case Nil ⇒
case Cons(x, xrest) ⇒

calc {
reverse(reverse(xs));

= // def. reverse

reverse(append(reverse(xrest), Cons(x, Nil)));
= { LemmaReverseAppendDistrib(reverse(xrest), Cons(x, Nil)); }

append(reverse(Cons(x, Nil)), reverse(reverse(xrest)));

= { LemmaReverseTwice(xrest); } // induction hypothesis
append(reverse(Cons(x, Nil)), xrest);

= // def. reverse, append
append(Cons(x, Nil), xrest);

= // def. append (x2)
xs;

} } }

Fig. 6. Proof that reverse is involutive using Dafny’s calc statement

As demonstrated by Back et al. [2], nesting is a powerful mechanism for structuring
calculational proofs, especially if a subderivation can be carried out in its own context.
For example, the following structured calculation (where s0 and s1 are sets and � ∩ says
that two sets are disjoint) succinctly proves an implication by manipulating subterms of
the consequent under the assumption of the antecedent:

calc {
s0 � ∩ s1 =⇒ f((s0 ∪ s1) ∩ s0) = f(s0);
{ if s0 � ∩ s1 {

calc {
(s0 ∪ s1) ∩ s0;
(s0 ∩ s0) ∪ (s1 ∩ s0);
// s0 � ∩ s1
s0;

} } }
s0 � ∩ s1 =⇒ f(s0) = f(s0);
true;

}

Another way of adding context is parametrization: Dafny’s forall statement (which
in programming is used to perform aggregate operations) makes it possible in proofs to
introduce arbitrary values to be manipulated within a subderivation, whose conclusion
is then universally generalized. Fig. 9 gives an example. It shows one missing step of
the extensionality proof of Fig. 8, namely the one that establishes the precondition for
the invocation of the induction hypothesis:
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function f(n: nat): nat

ghost method Monotonicity(a: nat, b : nat)
requires ∀ n: nat • f(n) ≤ f(n + 1);
ensures a ≤ b =⇒ f(a) ≤ f(b);
decreases b - a; // variant function

{

// The first proof:
calc =⇒ {

a < b;

a + 1 ≤ b;
{ Monotonicity(a + 1, b); }
f(a + 1) ≤ f(b);

// precondition
f(a) ≤ f(a + 1) ≤ f(b);
f(a) ≤ f(b);

}

// The second proof:
if a < b {

calc ≤ {

f(a);
// precondition
f(a + 1);

{ Monotonicity(a + 1, b); }
f(b);

}

}

}

Fig. 7. Theorem that connects different ways of expressing monotonicity and two proofs thereof.
Both proofs establish a < b =⇒ f(a) ≤ f(b), which is sufficient since the a = b case is triv-
ial. The difference is that the second proof uses a < b as a context for the calculation, which
simplifies it significantly.

∀ i • 0 ≤ i < length(xrest) =⇒ ith(xrest, i) = ith(yrest, i)

The forall statement in the figure introduces a local immutable variable i, whose
values range over [0, length(xrest)) . This block will automatically export (i.e. make
available to the following statements) the conclusion of the nested calculation, quanti-
fied over the range of i, which amounts precisely to the missing precondition in Fig. 8.

4 Encoding

Since calculation statements are an incremental addition to Dafny, largely reusing ex-
isting constructs such as expressions and statements, the poC implementation required
relatively little effort. This means that a similar feature can easily be added to other
auto-active verifiers, especially ones based on verification engines like Boogie [6] or
Why3 [9].

We explain the encoding of calculation statements in terms of their desugaring into
assert and assume statements. The simplest approach would be to treat a calc state-
ment merely as syntactic sugar for asserting all of its steps, which is how one would
write such a proof in the absence of support for calculations (see Fig. 5). This approach
is trivially sound (since it does not introduce any assumes), but it has some practical
disadvantages. First, with this encoding, the SMT solver will accumulate all the facts
it learns from each calculation step and try to apply them while proving the next step;
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ghost method Extensionality(xs: List, ys: List)
requires length(xs) = length(ys); // (0)

requires ∀ i • 0 ≤ i < length(xs) =⇒ ith(xs, i) = ith(ys, i); // (1)
ensures xs = ys;

{
match xs {

case Nil ⇒
case Cons(x, xrest) ⇒

match ys { case Cons(y, yrest) ⇒
calc {

xs;
Cons(x, xrest);

calc { // nested calculation
x;
ith(xs, 0);

// (1) with i := 0
ith(ys, 0);
y;

}
Cons(y, xrest);
{ /* Show (1) for xrest, yrest -- omitted in this figure */

Extensionality(xrest, yrest); }
Cons(y, yrest);
ys;

} } } }

Fig. 8. Extract from a proof of extensionality of lists. A nested calculation is used to transform a
subterm of a line. The omitted step is fleshed out in Fig. 9.

thus in a large proof, the solver is more likely to get “confused” or “bogged down”. Sec-
ond, the conclusion of the calculation is not stated explicitly, so it might not be readily
available after the proof.

Instead, we would like to make use of the fact that steps in a calculational proof
are conceptually independent. Our goal is to ask the SMT solver to verify each step
in isolation, and then simply postulate the conclusion of the calculation, without wast-
ing the solver’s time on putting the steps together and reasoning about transitivity. To
this end, we introduce the encoding in Fig. 10. The construct if (*) denotes non-
deterministic choice, and the conclusion relation C〈N〉 is computed from the sequence
S〈0〉, . . . , S〈N-1〉 of the step operators. Ending each branch of the conditional with
assume false prevents the control flow from exiting it, effectively telling the SMT
solver to forget everything it has learned from the branch.

To determine the conclusion relation C〈N〉, following the Isabelle/Isar approach [7],
we define a set of transitivity rules of the form R◦S ⊆ T (in the terminology of Sec. 3,
this makes R and S chain-compatible). One example of such a rule is a = b ∧ b <
c ⇒ a < c . Fig. 11 summarizes the transitivity rules used in poC.

We define Ci to be the conclusion relation after the first i steps: C0 is equality,
and transitivity rules are used to compute Ci+1 from the previous conclusion relation
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calc {
xs;

Cons(x, xrest);
// . . .
Cons(y, xrest);
{ forall (i: nat | i < length(xrest)) {

calc {
ith(xrest, i);
ith(xs, i + 1);

// enclosing precondition
ith(ys, i + 1);
ith(yrest, i);

} }
Extensionality(xrest, yrest);

}

Cons(y, yrest);
ys;

}

Fig. 9. Expanding the omitted step in the outer calculation of Fig. 8. We use Dafny’s forall
statement to introduce a variable i in the nested calculation and then generalize its conclusion.

Ci and the step operator Si . It is easy to see that if the rules are sound (which is
trivial to show for all chain-compatible operators in poC), and the individual steps of
a calculation are valid, then each intermediate conclusion line0 Ci linei , and thus the
final conclusion, is also valid.

The above argument comes with two caveats for users of traditional proof assistants.
First, Dafny is an imperative language and its expressions can depend on mutable state.
Obviously, verifying calculation steps in one state and postulating its conclusion in an-
other state can cause trouble. We require that all hints be side-effect free, enforced by
a simple syntactic check that disallows assignments and calls to impure methods (that
is, methods with a nonempty modifies clause). Thus the state is preserved throughout
the calculation statement, which implies that the encoding in Fig. 10 is sound. Second,
unlike most proof languages, functions in Dafny (including some useful built-in func-
tions like sequence indexing) can be partial (i.e. they can have preconditions). Thus, we
have to make sure not only that the conclusion of the calculation holds, but also that it
is well-defined. This is discussed in the next section.

4.1 Partial Lines

Each Dafny expression e has an associated well-formedness condition wf[e], and each
Dafny statement is responsible for checking well-formedness of all its sub-expressions
(in case of the calc statement, all the lines). We modify the encoding in Fig. 10 to assert
wf[line〈0〉] before the first branch, and for every step i assert wf[line〈i+1〉] after
Hint〈i〉, since the hint might be useful in verifying well-formedness.
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calc {
line〈0〉;

S〈0〉 { Hint〈0〉 }
line〈1〉;

. . .

line〈N-1〉;
S〈N-1〉 { Hint〈N-1〉 }

line〈N〉;

}

if (*) {
Hint〈0〉
assert line〈0〉 S〈0〉 line〈1〉;
assume false;

} else if (*) {
. . .

} else if (*) {
Hint〈N-1〉
assert line〈N-1〉 S〈N-1〉 line〈N〉;
assume false;

}
assume line〈0〉 C〈N〉 line〈N〉;

Fig. 10. A calc statement (on the left) and its assert/assume desugaring (on the right), where
C〈N〉 denotes the conclusion relation for the full N steps

�=

< >

⇒ ⇐≤ ≥

= /⇔

Fig. 11. Graphical representation of the transitivity rules for poC operators: For any two operators
R and S such that S is reachable from R , add two rules: R ◦ S ⊆ S and S ◦R ⊆ S

It gets more interesting with lines of type bool, because in Dafny some boolean
operators, in particular implication, have short-circuiting (aka conditional) semantics,
which is reflected in their well-formedness conditions:

wf [P ⇒ Q ] ≡ wf [P ] ∧ (P ⇒ wf [Q ])

This allows one to write expressions like P(x) =⇒ Q(f(x)), where P is the precondi-
tion of function f.

It seems natural that implications should have the same effect in calculations. For
example, the following calculation should be considered well-formed:

calc {
P(x);

=⇒ { /* Hint with a precondition P(x) */ }
Q(f(x));

⇐⇒
R(f(x));

}
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// Step "line〈i〉 =⇒ line〈i+1〉"
assume wf[line〈i〉];
assume line〈i〉;
Hint〈i〉
assert wf[line〈i+1〉];
assert line〈i+1〉;
assume false;

// Step "line〈i〉 S〈i〉 line〈i+1〉"
assume wf[line〈i〉];
Hint〈i〉
assert wf[line〈i+1〉];
assert line〈i〉 S〈i〉 line〈i+1〉;
assume false;

Fig. 12. Encoding of an implication-step (left) and any other step (right) that supports short-
circuiting semantics. In addition, the assert wf[line0]; is performed to check the well-
formedness of line0.

The translation as defined so far will not accept this example. Moreover, the condition
that each line be well-formed in the enclosing context is too strong in this case. In-
stead, we propose the following definition: a calculation is well-formed if each of its
intermediate conclusions is well-formed.

The final version of our encoding, which allows the example to go through, is given
in Fig. 12. It differentiates between=⇒3 and other step operators, which are not short-
circuiting in Dafny. We can show that this encoding implements our definition of well-
formed calculations. For example, in a calculation with only implication steps, the
intermediate conclusion is wf [line0] ∧ (wf [line0] ∧ line0 ⇒ wf [linei ] ∧ linei) ,
which is well-formed according to Dafny rules.

5 Experiments and Discussion

5.1 Case Studies

To confirm the usefulness of poC, we tried it on five examples from various domains4:

– Identity, SingleFixpoint and KnasterTarski are mathematical theorems. The
former two state properties of functions over natural numbers and the combination
of function iteration and fixpoints, respectively; the latter is one part of the Knaster-
Tarski fixpoint theorem.

– List is a set of properties of inductively defined lists, such as ReverseTwice and
Extensionality discussed above. This case study is representative of reasoning
about functional programs.

– MajorityVote is an algorithm, due to Boyer and Moore, that finds the majority
choice among a sequence of votes. This example is representative of verifying im-
perative programs.

In total, our case studies comprise about 650 lines of Dafny.
To evaluate the benefits of calculations, we developed a second version of each ex-

ample, where all proofs are at the same level of detail, but using the traditional approach

3⇐= Is handled by reversing the calculation and replacing it with=⇒.
4 The examples are available online as http://se.inf.ethz.ch/people/polikarpova/poc/

http://se.inf.ethz.ch/people/polikarpova/poc/
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Traditional Calculational
Methods Tokens Time(s) Calculations Tokens Time(s)

Identity 5 527 2.0 4 460 2.0
SingleFixpoint 3 444 2.0 4 396 2.0
KnasterTarski 1 472 13.1 2 486 4.9
List 14 2445 27.4 15 1967 3.0
MajorityVote 4 1003 2.1 5 931 2.1
Total 27 4891 46.6 30 4240 14.0

Fig. 13. Case studies and results

Lemma rev_involutive : forall l:list A, rev (rev l) = l.

Proof.
induction l as [| a l IHl].
simpl; auto.

simpl.
rewrite (rev_unit (rev l) a).

rewrite IHl; auto.
Qed.

Fig. 14. Proof that list reversal is an involution written as a Coq tactic script. The example is taken
from the standard library.

with assert statements instead of calculations, along the lines of Fig. 5. Fig. 13 gives
the comparison between the two versions of each example in terms of verbosity (ex-
pressed as the number of code tokens) and verification times (measured on a 2.7GHz i7
CPU, using a single core). We observe that calculations provide more concise proofs,
reducing the number of tokens by around 10% on average. The effect of the more effi-
cient encoding on verification times does not show consistently, but it is significant in a
few larger proofs.

5.2 Comparison with Other Proof Notations

In this section, we provide a detailed comparison of poC with the proof formats used
in two prominent interactive proof assistants: Coq and Isabelle/HOL. Other tools that
support calculational proofs are briefly reviewed in related work (Sec. 6).

Proof languages are commonly divided into procedural (or imperative) and declar-
ative (see e.g. [14]). In procedural languages, the proof—also called a tactic script—
consists of commands, which make the assistant modify the proof state. Declarative
languages, which aim at human-readable proofs, are instead oriented toward writing
down the intermediate proof states, and letting the tool figure out the commands auto-
matically whenever possible. In the following, we show the same lemma proven first in
a procedural, and then in a declarative (more precisely, calculational) style.

Consider our motivational example from Sec. 2.2—list reversal is an involution—
written as a Coq tactic script in Fig. 14. The commands induction, simpl, auto, and
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lemma rev_rev_ident: "rev (rev xs) = xs"
proof (induct xs)

show "rev (rev []) = []" by simp
next

fix x xs
assume IH: "rev (rev xs) = xs"

show "rev (rev (x # xs)) = x # xs"
proof -

have "rev (rev (x # xs)) = rev (rev xs @ [x])" by simp

also have "... = rev [x] @ rev (rev xs)" by (rule rev_append)
also have "... = rev [x] @ xs" by (simp, rule IH)
also have "... = [x] @ xs" by simp

also have "... = x # xs" by simp
finally show ?thesis .

qed
qed

Fig. 15. Proof that list reversal is an involution written in Isar in a calculational style. In Isabelle,
Cons is written as # and append as @.

rewrite tell the proof assistant which tactics to apply, while rev_unit refers to a lemma
(a special case of our ReverseAppendDistrib where one of the arguments is a singleton
list). This script does not tell much to a non-expert user, except that it is a proof by
induction and that it makes use of the lemma rev_unit.

In the Isabelle standard library, the same lemma looks as follows:

lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
by (induct xs) auto

The perceived full automation is somewhat misleading: the secret is that all required
auxiliary lemmas (in particular the counterpart of ReverseAppendDistrib) have been
stated in the same theory and equipped with the [simp] attribute, which instructs the
simplifier to automatically apply them as rules. In general, users have to be careful with
this attribute, because some combinations of rewrite rules might cause the simplifier
to go into an infinite loop. Moreover, this approach, though very concise, damages
readability even more: the above script does not even contain the information about
the required lemmas.

Now let us turn to declarative proofs. Both Isabelle and Coq have a built-in declar-
ative language. The former one is called Isar (“Intelligible semi-automated reason-
ing”) [35] and is well-established in the Isabelle community. The latter, named simply
the Mathematical Proof Language [14], is more recent and not widely used. Both of
them support some form of calculations.

Fig. 15 shows a proof of the same lemma in Isar, written in a calculational style. Isar
supports calculations through a set of shortcuts [7]: ... refers to the right-hand side of
the most recently stated fact; also applies transitivity rules to the current intermediate
conclusion and the new step to obtain the new conclusion; finally is like also, expect
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that it instructs the prover to use the new conclusion in proving what follows (in this
case ?thesis, which refers to the goal of the enclosing proof block).

The by clauses play the role of hints: they tell the prover which tactics and facts to use
in establishing the step. For this example, we removed the magic [simp] attributes from
the supporting lemmas, so we have to specify the lemma rev_append explicitly at the
second step. We can use the lemma-rule to justify this calculation step because the step
matches its statement exactly; otherwise, we would need additional, more sophisticated
tactics to massage the formula into the right shape first (like in the third step, which
appeals to the induction hypothesis).

The tactics used in this example are quite simple. Isabelle users also have more pow-
erful tactics, such as auto or metaprover Sledgehammer [10], at their disposal, so in
practice Isar proofs can be written without excessive detail. However, using this pow-
erful automation still requires deep understanding of how the tool works. In particular,
the by clauses include elements of the procedural proof language, such as the names of
tactics5, while poC hints are stated entirely in the language of the problem domain.

The support for calculations in Isar is very flexible: the step relations are not hard-
coded, and are easily customizable through the addition of new transitivity rules. This
comes at a price that sometimes Isabelle does not know which transitivity rule to apply,
and you have to specify this explicitly.

Finally, we believe that the possibility to introduce custom syntax, such as infix op-
erators for list functions above, increases proof readability and it would be nice to have
it in Dafny as well.

In conclusion, Isar and Dafny in general (and their respective support for calculations
in particular) have different target audiences: Isar is focused on flexibility and maximum
control, oriented towards experts with a strong background in formal methods, while
Dafny takes the “automation by default” approach, which provides for a lower entrance
barrier.

Calculational proofs in Coq’s declarative language are not as flexible, in particular
equality is the only supported step relation. Fig. 16 shows our running example. This
notation is entirely declarative (and thus closer to poC): note that there is no mention
of tactics inside the calculation and the trivial steps do not require justification. The
downside is that the default justification tactic, though sufficient for this example, does
not provide the same level of automation as SMT solvers.

5.3 Irrelevant Hints and Bogus Steps

One benefit of rule-based proof assistants, like Isabelle, is their ability to determine if
the justification of a proof step does not make sense: they will either fail to apply a rule
or the rule application will fail to reach the desired proof state.

This is not always the case in poC: one can provide hints that do not justify the step,
as well as construct bogus steps, which just happen to be true by chance. Although these
issues do not pose any threat to soundness, they are detrimental to readability, and thus
important nevertheless. We have not implemented any solution to this problem, but we
discuss some possibilities in this section.

5 Even what looks like punctuation (dash and dot) actually denotes tactics!
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Lemma rev_involutive {A: Type} (l:list A) : rev (rev l) = l.
proof.

per induction on l.
suppose it is nil.

thus thesis.
suppose it is (x :: xs) and IH:thesis for xs.

have (rev (rev (x :: xs)) = rev (rev xs ++ [x])).
∼= (rev [x] ++ rev (rev xs))

by (rev_unit (rev xs) x).

∼= (rev [x] ++ xs)
by (IH).

∼= ([x] ++ xs).

thus ∼= (x :: xs).
end induction.

end proof.
Qed.

Fig. 16. Proof that list reversal is an involution written in Coq’s Mathematical Proof Language in
a calculational style. In Coq, Cons is written as :: and append as ++.

To check if a hint is required to justify a calculation step, the tool might try to remove
it and check if the program still verifies (within the given timeout). Unfortunately, this
does not cover the cases when Dafny can do without the hint, but it would still be useful
for a human reader: for example, since Dafny has an automatic induction heuristic, in-
voking the induction hypothesis will be considered irrelevant most of the time. Perhaps
such a mode would be still useful; this remains a part of future work.

One might hope that most irrelevant hints are filtered out just because they are either
not applicable in the current context (i.e. their precondition does not hold) or they fail
to make the step go through. This highlights another benefit of stating the assumptions
a lemma makes in its precondition, as opposed to adding them as antecedents to the
postcondition: in the latter case, a useless lemma would simply be ignored.

Bogus steps are most likely to occur in calculations with boolean lines, where the
truth value of some or all the lines is fixed6. Here is an example inspired by an actual
error in an old version of one of our case studies. Recall the Monotonicity lemma from
Fig. 7, whose postcondition is an implication a ≤ b =⇒ f(a) ≤ f(b). When trying to
prove this postcondition with a calculation, for the case of a < b, one might write:

if a < b {
calc {

a ≤ b;
f(a) ≤ f(a + 1);
. . .
=⇒ f(a) ≤ f(b);

}
}

6 In other cases, the probability that the values of the lines are related by pure chance is low.



Verified Calculations 187

The first step of this calculation looks suspicious to say the least, but it holds because
a ≤ b follows from the case split, and f(a) ≤ f(a + 1) is implied by the method’s
precondition, thus the step reduces to true ⇐⇒ true. This calculation is logically
valid, but it does not serve to explain the proof to a human reader, if anything, it only
confuses them.

In this example, one can avoid the risk of bogus lines by choosing a weaker context
(see the proof in Fig. 7). In general, it is a useful methodological rule to always perform
a calculation in the weakest context required for it to go through.

Unfortunately, it is not always possible to avoid lines with fixed truth values: it is a
common pattern to establish validity of a boolean formula by transforming it into the
literal true by a chain of ⇐⇒ or⇐=. Such calculations are dangerous: as soon as the
formula is simple enough for Dafny to prove it, all subsequent steps (which might still
be useful for a human reader) are potentially bogus. One approach could be to verify
such steps out of (some parts of) their context, so that the validity of the lines cannot be
established anymore, while the relation between the lines is still verifiable.

6 Related Work

It is hard to say who invented calculational proofs, but Dijkstra (who credits W. H. J.
Feijen) definitely played an important role in popularizing them [16].

There are numerous dialects and extensions of this proof format. Back, Grundy and
von Wright propose nested calculations [2], combining “the readability of calculational
proof with the structuring facilities of natural deduction”. They show how common
proof paradigms (such as proof by contradiction, case split, induction) can be expressed
using nested calculations, with the ultimate goal to make it possible to write a large
proof as a single calculation, without the need to “escape” into natural language. A
follow-up to this work is structured derivations [3]. Window inference [28,34] is a re-
lated paradigm focusing on managing context during the transformation of subterms.
As we showed in Sec. 3.2, poC naturally supports such structuring paradigms.

Attempts to mechanize calculational proofs go back to the Mizar system developed in
the early 1990s [29], which supports iterated equality reasoning. There exists a number
of implementations of window inference within various proof systems (e.g. [17]). The
capabilities of those tools are constrained (for example, Mizar only supports equalities),
and the level of automation is quite low.

The structured proof language Isar for the Isabelle proof assistant provides a very
general support for calculations [7]. However, it is not purely declarative, and one still
has to explicitly issue commands that modify the proof state.

At the other end of the spectrum is Math
∫
pad [5], where one can write proofs in

common mathematical notation, not restricted to a particular formal language. It is a
document preparation system oriented towards calculational construction of programs.
Verhoeven and Backhouse [33] present an attempt to combine it with PVS in order to
machine-check the proofs, however, a fully automatic translation of the informal com-
ponents of the notation is, of course, not possible. Other early systems for writing and
manipulating calculations in a similar way are Chisholm’s editor [11] and Proxac [31].

“Programs as proofs” is a paradigm commonly used in auto-active program verifiers
(see e.g. [19]), which allows the reuse of common programming language constructs
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familiar to programmers for structuring proofs. Pushing auto-active verification into
areas previously exclusive to interactive proof assistants is currently an active research
topic, with recent advances in automatic induction [23] and even co-induction.

Programs can be derived using an extension of the calculational format [32]. The
extension essentially consists in allowing hints to include state transformations, i.e.,
side effects. This would be interesting to explore in Dafny, since Dafny already deals
with imperative programs.

7 Conclusions and Future Work

We have presented a tool for verifying calculational proofs, which stands out due to the
combination of a high degree of automation and a programmer-friendly proof language
oriented towards to the problem domain rather than the mechanics of the prover.

We believe that poC is not just a useful feature in a program verifier, but also an
important step towards a full-fledged auto-active proof assistant. We envision such a
tool to be very close to Dafny; in particular, reusing the programs-as-proofs paradigm,
but perhaps putting more emphasis on proof concepts rather than on, say, method dec-
larations. Towards this goal, we would need to extend Dafny with support for more
general mathematical constructs, such as infinite sets. In order to provide soundness
guarantees for an SMT-based proof assistant, a promising approach is generating proof
certificates [1] that can be checked by a system with a small trusted core, such as Coq.
This seems to be a fertile opportunity for combining the automation found in poC with
the rigor inherent in Coq.

Acknowledgments. We thank Carlo A. Furia, Ioannis T. Kassios, and Scott West for
comments on a draft of this paper, as well as Valentin Wüstholz for suggesting one of
our case studies.
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Abstract. In the context of deductive program verification, both the
specification and the code evolve as the verification process carries on.
For instance, a loop invariant gets strengthened when additional prop-
erties are added to the specification. This causes all the related proof
obligations to change; thus previous user verifications become invalid.
Yet it is often the case that most of previous proof attempts (goal trans-
formations, calls to interactive or automated provers) are still directly
applicable or are easy to adjust. In this paper, we describe a technique to
maintain a proof session against modification of verification conditions.
This technique is implemented in the Why3 platform. It was successfully
used in developing more than a hundred verified programs and in keeping
them up to date along the evolution of Why3 and its standard library.
It also helps out with changes in the environment, e.g. prover upgrades.

1 Introduction

The work presented in this paper arose as a part of ongoing development and
use of the Why3 system. Though we believe that our methods are applicable
and useful in diverse settings of automated deduction, it would be most natural
to introduce them in the context of our own project.

Why3 is a platform for deductive program verification. It provides a rich lan-
guage, called WhyML, to write programs [9] and their logical specifications [4,8],
and it relies on external theorem provers, automated and interactive, to discharge
verification conditions. Why3 is based on first-order logic with rank-1 polymor-
phic types, algebraic data types, inductive predicates, and several other exten-
sions. When a proof obligation is dispatched to a prover that does not support
some language features, Why3 applies a series of encoding transformations in or-
der to eliminate, for example, pattern matching or polymorphic types [5]. Other
transformations, such as goal splitting or insertion of an induction hypothesis,
can be manually invoked by a user upon individual subgoals.
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To keep track of verification progress and to ensure that a once attained
proof can be rechecked later, Why3 records applied transformations and proof
attempts (calls to interactive and automated theorem provers). Maintaining this
record against changes in proof obligations (that may ensue from changes in
specification, program, or VC generation algorithm) is a difficult task, which,
fortunately, can be automated to a certain degree. This paper deals with mech-
anisms of such automation.

Let us consider a typical user workflow in Why3. The user, an enlightened
programmer named Alice, desires to formally verify an intricate algorithm. She
starts by writing down the program code, fixes one or two simple mistakes (read-
ily spotted by static typing), and, before annotating the program with any pre- or
postconditions, runs the interactive verifier to perform the safety checks against
out-of-bounds array accesses, arithmetic overflows, division by zero, etc. Why3
presents the whole verification condition for a given function as a single goal,
and thus the first step is to split it down to a number of simple proof obligations
and then to launch the provers, say, Alt-Ergo [3], CVC4 [1], or Z3 [7] on each
of them. Let each safety condition be satisfied, except for one, which requires
an integer parameter to be positive. Alice writes a suitable precondition, effec-
tively putting the whole VC under an implication. It is now the verifier’s job to
detect that the once proved goals changed their shape and have to be reproved.
Besides, since Alice’s algorithm is recursive, a new proof obligation appears at
each recursive call.

Alice continues to work on the specification; she adds the desired functional
properties and regularly runs the verifier. The program’s VC grows and, in ad-
dition to the first split, other interactive interventions are required: more splits,
an occasional definition expansion, a call to an SMT solver with ten times the
default time limit, a call to an interactive proof assistant to prove an auxiliary
lemma by triple induction. The verified program now carries a complex proof
script, which we call a session: a tree of goal transformations and a history of
individual proof attempts at the leaves of that tree.

Almost every modification in the code or in the specification changes (even if
slightly) almost every verification condition, requiring the proofs to be redone.
Keeping the automated provers running on almost the same goals is only part
of the bother. What could quickly make the verification process unmanageable
is reconstructing, manually and every time, the proof session: finding those par-
ticular subgoals that required an increased time limit, a definition expansion, a
Coq proof. Subgoals do not have persistent names, they may appear and vanish,
and their respective order may change. Thus the only way to rebuild a proof is
to look for similarities between the new goals and the old ones in order to find
out where to re-apply the transformations and to re-launch the provers. This is
a task where computer assistance would be highly appreciated.

Meanwhile, Alice finishes her program and puts it—code, specification, and
proof—on her web page, so that it can be read and rechecked by other enlightened
programmers. Three weeks later, a new version of an SMT solver used in the
session is released, and the session file must be updated. Five weeks later, a
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new release of Why3 comes out: it features an improved VC generator as well as
numerous additions and corrections in the standard library. The latter affects the
premises of proof obligations, the former, conclusions, so that the proof session
has to be updated again.

Just like Alice, we prefer to be busy developing and proving new programs.
Therefore, we have devised and implemented in Why3 a set of algorithms that
maintain proof sessions, keep them up to date across prover upgrades and,
most importantly, across changes in verification conditions. In the best course of
events, Why3 is able to rebuild the proof session fully automatically, leaving to
the user just the new subgoals (for which no previous proof attempts were made)
or the ones that cannot be reproved without user intervention (typically when
a Coq proof script requires modifications). These algorithms are the subject of
the current paper.

In Section 2, we give a formal description of a Why3 proof session. Section 3
contains the algorithm of goal pairing that is used to rebuild proof sessions. In
Section 4, we discuss additional measures to maintain proof scripts for interactive
proof assistants like Coq or PVS. In Section 5, we explain how to configure and
use Why3 in an environment of multiple automated and interactive provers.

2 Proof Sessions: Static Model

Transformations and proof attempts applied to proof obligations are stored in a
tree-like structure, called proof session. We describe it in this section.

Proof Attempts. A prover is characterized by a name, a version number, and a
string field that is used to discriminate different ways to call the same prover.

prover ::= 〈name, version , options〉

A proof attempt describes a call to an external prover.

proof attempt ::= 〈prover , timelimit ,memlimit , result〉
result ::= 〈time, status〉
status ::= valid | invalid | unknown |

timeout | outofmemory | failure

Information is the prover, the maximal amount of CPU time and memory given
to the prover, and the result of that call. A result is a pair: the time of the
execution of the external process, and the prover outcome (status). Such a status
is obtained by matching the prover output using regular expressions or by looking
at its exit code. A status has six possible values: one for a successful proof
attempt (valid), and five unsuccessful ones. Status invalid means that the
prover declared the goal to be invalid; unknown means an inconclusive outcome
(neither valid nor invalid) before the time limit is reached; timeout (resp.
outofmemory) means the prover had been stopped because it exhausted the given
resources; and failure means any other reason for an unsuccessful execution.
This is similar to the SZS no-success ontology [14].
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Proofs and Transformations. The entities for proof tasks (proof task) and trans-
formations (transf ) have the following structure:

proof task ::= 〈name, expl , goal , proof attempt∗, transf ∗, verified〉
transf ::= 〈name, proof task∗, verified〉

verified ::= true | false

A proof task is characterized by a name, an explanation (a text describing its
origin e.g. “loop invariant preservation”), and a goal. A proof task contains a
collection of proof attempts, as well as a collection of transformations. There
is no contradiction in having a proof task with both proof attempts and trans-
formations. A transformation has a name (as registered in Why3 kernel) and a
collection of sub-tasks. A proof task has status verified if and only if there is
at least one proof attempt with status valid or one transformation with status
verified. A transformation has status verified if and only if all its sub-tasks have
status verified.

Theories, Files, and Sessions. A theory has a name and a collection of proof
tasks. A file has a pathname (relative to the session file) and a collection of
theories. A proof session is a set of files:

theory ::= 〈name, proof task∗, verified〉
file ::= 〈pathname , theory∗, verified〉

proof session ::= file∗

A theory has status verified if and only if all its tasks are verified. A file has
status verified if and only if all its theories are verified.

Example. In Fig. 1, we show an example of a simple session. It consists of one file,
f puzzle.why, which contains one theory, Puzzle. This theory, whose WhyML
source is shown in the bottom right corner, introduces an uninterpreted function
symbol f and two axioms:

function f int: int
axiom H1: forall n: int. 0 <= n → 0 <= f n
axiom H2: forall n: int. 0 <= n → f (f n) < f (n+1)

Our final goal consists in revealing that f is the identity on natural numbers:

goal G: forall n: int. 0 <= n → f n = n

To that purpose, we use four simple lemmas and two instances of the induction
scheme on natural numbers, provided by the Why3 standard library. We also
apply a transformation called split_goal_wp to split a conjunction into two
separate subgoals (see lemma L3 on Fig. 1). Each subgoal is successfully verified
due to the combined effort of three automated provers.
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Fig. 1. An example of Why3 session

3 Session Updates

The problem we address in this section is to update a proof session when the
set of goals changes. There are many possible reasons for such a change: a user
modification of a goal statement, a modification of a goal context (e.g. the in-
troduction of additional hypotheses), a modification of a program and/or its
specifications resulting in a different VC, etc. Wherever the change comes from,
the problem boils down to matching an old proof session (typically stored on
disk during a previous verification process) with a new collection of files, theo-
ries, and goals. Such a matching is performed on a file and theory-basis, where
files and theories are simply identified by names.1

This matching process is performed recursively over the tree structure of a
session. Given the collection of (old) proof tasks and a collection of new goals, we
match each new goal g either to an old task t or to a freshly created task with no
proof attempt and no transformation. In the former case, each transformation
Tr of the old task t is applied to the new goal g, resulting into a collection of new
goals. Then we proceed recursively, matching these new goals with the sub-tasks
of Tr.

1 We could provide refactoring tools to rename files and/or theories, but this is not
what is discussed in this paper.
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n = ′
c
′ + n

x = ′
V
′ + unique(x) if x is a local variable

= ′
V
′ + x otherwise

true = ′
t
′

false = ′
f
′

f(t1, . . . , tn) =
′
a
′ + f + t1 + . . .+ tn

∀x : τ. t = t+ ′
F
′

t1 ⇒ t2 = t2 +
′
I
′ + t1

¬ t = ′
N
′ + t

let x = t1 in t2 = t2 +
′
L
′ + t1

if t1 then t2 else t3 = ′
i
′ + t3 + t2 + t1

Fig. 2. Shapes of terms and formulas

We are now left with the sub-problem of pairing a collection of old goals (and
their associated tasks) and a collection of new goals. We first pair goals that are
exactly the same.2 In a second step, we pair remaining goals using a heuristic
measure of similarity based on a notion of goal shape.

3.1 Goal Shape

The shape of a goal is a character string. The similarity between two goals is
defined as the length of the common prefix of their shapes. To match our intuition
of logical similarity, we adopt the following principles for computing shapes:

– shapes should take explanations into account, so that only goals with same
explanations are paired;

– shapes are invariant by renaming of bound variables;
– conclusion is more important than hypotheses, e.g. the shape of an implica-

tion A⇒ B is built from the shape of B first, and then the shape of A.

Declarations, definitions, and axioms are disregarded when computing shapes.
There are two reasons: first, it keeps shapes reasonably small; second, it is un-
likely that two goals differ only in their contexts. The shape of a term or formula
t, written t, is recursively defined over the structure of t, as given in Fig. 2. The
shape computation is not injective: two formulas may have the same shape. It
is not an issue for us, as we only use shapes as an heuristic for pairing.

Let us consider the goal

forall x: int. f x = x

Its shape is the string a=afV0V0F. If we modify it into the following goal
2 Technically, since the old goal is not stored on disk, we detect identical goals using

MD5 checksums.
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forall n: int. 0 <= n → f n = n

then its shape becomes the string a=afV0V0Ia<=c0V0F. These two shapes share
a common prefix of length 8, that is a=afV0V0. As illustrated on this example,
bound variables are mapped to unique integers, numbered from zero for a given
goal.

3.2 Matching Algorithm

We are given a collection of N “old” shapes and a collection of M “new” shapes.
This section describes an algorithm that tries to map each new shape to an old
one. We note lcp(u, v) the length of the longest common prefix of strings u and
v, i.e. the largest k such that ui = vi for all 0 ≤ i < k. We choose the following
greedy algorithm, which repeatedly picks up the pair that maximizes the length
of the common prefix.

new ← new shapes
old ← old shapes
while new �= ∅ and old �= ∅

find o in old and n in new such that lcp(o, n) is maximal
pair o and n
old ← old − {o}
new ← new − {n}

Notice that goal o is removed from set old as soon as it is paired with a new goal.
We could have chosen to keep it, in order to pair it later with another new goal.
However, the purpose of our algorithm is to reassign former successful proofs to
new goals, and not to discover new proofs.

Given as such, this algorithm is inefficient. Let shapes have maximal length
L. Assuming N = M , the algorithm has complexity O(LN3), since finding the
pair that maximizes lcp is O(LN2). One can turn this into a more efficient al-
gorithm, by making a list of all shapes (be they old or new) and then sorting
it in lexicographic order. In that case, the pair (o, n) that maximizes lcp(o, n)
is necessarily composed of two shapes n and o that are consecutive in the list.
So finding the pair becomes linear and the overall complexity is now O(LN2).
It is even possible to reduce this complexity using a priority queue containing
all pairs (o, n) of consecutive shapes (either old/new or new/old), ordered ac-
cording to lcp(o, n). As long as the priority queue is not empty, we extract its
maximal element (o, n), we pair the corresponding shapes whenever both o and
n are not yet already paired to another shape, and we (possibly) insert a new
pair in the priority queue. The cost of sorting is O(LN logN) and, assuming
a priority queue with logarithmic insertion and extraction, the cost of repeated
extractions and insertions is also O(N(L+logN)) (there is at most one insertion
for each extraction, and thus the priority queue never contains more than 2N−1
elements). Whenever N �= M , the cost of sorting is dominating and thus we have
a total cost O(L(N +M) log(N +M)).
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A property of the algorithm above is that, whenever there is at least as many
new shapes as old ones, each old shape gets paired with a new one. Said oth-
erwise, no former proof task is lost. When there are less new shapes, however,
some shapes cannot be paired and, subsequently, former proof tasks are lost.3

4 Script Updates for Interactive Provers

Updating sessions is sufficient for handling transformations and calls to auto-
mated provers, since their inputs are just Why3 goals which are parts of ses-
sions. For interactive proof assistants, the situation is slightly different. Indeed,
an interactive proof script is the mix of a skeleton generated from a goal and an
actual proof written by the user. Currently, Why3 supports two proof assistants:
Coq and PVS. Yet the ideas presented in this section apply to any interactive
proof assistant that supports a textual input.

In a nutshell, Why3 outputs a theorem statement, together with definitions
and axioms corresponding to the Why3 context for that goal. Then the user
writes commands for guiding the proof assistant towards a proof of that state-
ment. The user may introduce auxiliary lemmas and definitions for proving the
main theorem.

In Coq, proof commands are part of the same file as the definitions and
theorem statements, while in PVS, they are usually stored in a separate file. Still,
in both cases, user statements and Why3-generated statements are intermingled
in the proof script. When a session is updated, the context and the statement
of the main theorem might change, so the proof script needs to be regenerated.
There are two main issues though, which are not present for automated provers.
First, it is important not to lose any part of the script the user might have
painstakingly written. Second, while preserving user parts, it is important to
discard parts previously generated by Why3, since they are now obsolete.

As far as Why3 is concerned, a proof script is simply a sequence of defini-
tions and facts, each of them possibly followed by its proof (that is, a sequence
of commands). Why3 makes the following assumptions: axioms were generated
by Why3 itself, while proof commands, if any, were written by the user. For
definitions and theorem statements, there is an ambiguity, so Why3 annotates
them with a comment when they are generated. These comments have a low
impact on readability, since most entries do not need any disambiguation. The
following Coq script is the one generated for the running example; all the Axiom
and Parameter statements are generated by Why3; this is also the case for the
theorem statement, and it is prefixed by an annotation so that it is not mistaken
for some user content; finally, proof commands such as intros are written by
the user.

Parameter f: Z -> Z.
Axiom H1 : forall (n:Z), 0 <= n -> 0 <= f n.

3 We could devise some kind of lost+found pool of abandoned proofs, to be used in
subsequent rounds of the matching algorithm or to be manually selected by the user.
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Axiom H2 : forall (n:Z), 0 <= n -> f (f n) < f (n + 1).
... (* other Why3 statements *)

(* Why3 goal *)
Theorem G : forall (n:Z), 0 <= n -> f n = n.
intros n h1.
... (* other user commands *)
Qed.

Regarding script regeneration, Why3 takes the following approach. Whenever
it needs to output a statement, if a statement with the same name is already
present in the old script, it first outputs any user content that was preceding
it. If the user had attached commands to that statement, they are output. This
seemingly simple process is actually quite effective in practice.

Note that, while this mechanism is currently applied only to interactive proof
assistants, it might also make sense for automated provers. Indeed, some of
them accept user hints for guiding proof search. For instance, an SMT solver
may require some facts to be removed from the context, or some triggers to be
modified. Alt-Ergo supports such user hints. Another example is Gappa, which
only performs branch-and-bound when instructed, so the user should have a
chance of modifying the Gappa script beforehand to add this kind of hint.

5 Environment Changes

The environment is composed by the installed version of Why3 and the installed
provers. This environment changes when users upgrade Why3 or one of the
provers.

For the first case, Why3’s developers try to keep backward compatibility in
every aspect of Why3. Unsurprisingly, that encompasses backward compatibility
of the application programming interface, but also backward compatibility of the
session on-disk format. More indirectly, modifications of the weakest precondition
calculus, of the simplifications, and of the transformations, are done so as to keep
provability whenever possible. This is checked during the nightly regression test
which verifies that all the program examples from the Why3 gallery are still
proved. Moreover, this test suite also exercises the mechanism of session update,
since pairing breakage would cause some goals to become unproved.

For the second case, Why3 offers a tool for auto-detection of provers, called
why3config. According to the name and version of the prover, it selects the con-
figuration file, called driver, that specifies the built-in functions and the trans-
formations to apply before sending a goal to the prover. When a new version of
the prover is released, a new version of the driver is created. Old drivers are kept,
so that older versions can still be used. If the user upgrades a prover and runs
why3config --detect, then Why3 asks, when old sessions are open, whether
to copy or move proof attempts to the newer version of the prover.

In order to compare the results of different provers or in order to update proofs
incrementally, a user can install different versions of the same prover at the same
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time. The why3session command-line tool allows to copy/move proof attempts
done with one prover to another prover or to compare results of different provers.

6 Conclusions, Related Work, and Perspectives

We described in this paper the way we designed a proof session system in
Why3. The technical choices were guided by the general need of maintain-
ing proofs across specification changes. The same technique is also useful in
case of changes in the system itself: upgrade of Why3’s kernel, upgrade of
the standard library, upgrade of external provers. Our session system allowed
us to maintain, for more than 2 years now, a gallery of verified programs
(http://toccata.lri.fr/gallery/index.en.html) containing more than 100
examples. Several versions of Why3 and of external provers were released during
this period. Moreover, session files are available on that website, so that anyone
should be able to replay the proofs.

The contributions of this paper are mainly technical, not much scientific in the
noble sense. Nevertheless we believe that our design of proof sessions are worth
publicizing, hoping that some ideas can be useful to others. Indeed, writing this
paper allowed us to discover a few subtle bugs in our implementation.

We found few related works in the literature. An early work by Reif and
Stenzel in 1993 [12] aimed at managing changes in the context of the KIV verifi-
cation system. Some ideas were reused by V. Klebanov in 2009 [10] for managing
changes in proof scripts made inside the KeY system [2]. They both introduce a
notion of similarity of goals, although different from ours. Indeed, their aim was
to manage changes in interactive proof scripts, which is only a part of our own
aim. It is not really meaningful to compare these works with our own approach,
since in their case, they have a whole proof object at hand, performed by a single
prover, in which they can search for example if a lemma is used or not. We are
instead dealing with small pieces of proof made by different provers.

Note that some deductive verification systems rely on a single automated
prover and express proof skeletons at the source level only (e.g. lemmas, ghost
code, but no Why3-like transformations). Thus they do not have a need for proof
management, as all the proof obligations will be handled the same way. This is
the case for VCC, Dafny, Verifast, and so on.

We also found some attempts at designing large shared databases for book-
keeping proofs. The Evidential Tool Bus is a first step towards this idea by
J. Rushby in 2005 [13]. Recently, Cruanes, Hamon, Owre, and Shankar [6] pre-
sented a formal setting on how several independent tools can cooperate and
exchange proofs on such a tool bus. A similar effort is the goal of D. Miller’s
ProofCert project4, where a general framework for a common proof format is
proposed [11]. As far as we understand, the issue of maintaining proofs across
specification changes is not yet addressed in these settings. We hope that our
techniques could be useful in these contexts.

4 http://www.lix.polytechnique.fr/Labo/Dale.Miller/ProofCert.html

http://toccata.lri.fr/gallery/index.en.html
http://www.lix.polytechnique.fr/Labo/Dale.Miller/ProofCert.html
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Abstract. VeriFast is a symbolic-execution-based verifier, based on sep-
aration logic specifications. Chalice is a verifier based on verification
condition generation, which employs specifications in implicit dynamic
frames. Recently, theoretical work has shown how the cores of these
two verification logics can be formally related. However, the mechanisms
for abstraction in the two tools are not obviously comparable; VeriFast
employs parameterised recursive predicates in specifications, while Chal-
ice employs recursive predicates without parameters, along with heap-
dependent abstraction functions.

In this paper, we show how to relate a subset of VeriFast, includ-
ing many common uses of separation logic recursive predicates, to the
implicit dynamic frames approach. In particular, we present a proto-
type tool which can translate a class of VeriFast examples into Chalice
examples. Our tool performs several semantic analyses of predicate def-
initions, and determines which of a selection of novel techniques can be
applied to infer appropriate predicate and function definitions, as well
as corresponding code instrumentation in a generated program. The tool
is automatic, and produces programs which can themselves be directly
handled by the automatic Boogie/Z3-based Chalice verifier.

1 Introduction

Separation logic [3,8] is a well-established approach for the verification of heap-
based imperative programs; many verifiers have been built using separation logic
as their specification language. VeriFast [5,4] is a mature verification tool for C
and Java programs, which handles separation logic specifications by internally
maintaining a representation of the current program state (symbolic execution),
while passing queries off to an SMT solver about arithmetical problems and
other theories. The key primitive features of separation logic are the points-to
assertions x.f �→v, which provide the only means of dereferencing heap locations
in assertions, and the separating conjunction ∗, whose semantics can be used
to divide ownership of heap locations between assertions. The ability to specify
unbounded heap structures is provided by recursive abstract predicates [9].

Implicit dynamic frames [12] is a more-recently-introduced specification logic,
which is designed to facilitate implementations based not only on symbolic ex-
ecution but also on verification condition generation (i.e., encoding the entire
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verification problem, including heap information, to an SMT solver). It sepa-
rates the notion of having permission to access a heap location from the means
of actually referring to the location’s value. The key primitives here are accessi-
bility predicates acc(x.f), which represent permission to access a heap location,
and a conjunction (also written ∗ in this paper) which acts multiplicatively on ac-
cessibility predicates (i.e., sums the permissions from the two conjuncts), while
not enforcing a strict separation between the heap locations actually derefer-
enced in expressions. Instead, a concept of self-framing assertions is imposed on
those assertions used in pre/post-conditions etc., which essentially requires that
the assertion only reads from heap locations for which it also requires permission
via accessibility predicates. For example, x.f = 5 is an implicit dynamic frames
assertion, but is not self-framing, while acc(x.f) ∗ x.f = 5 is.

Chalice [6,7] is a verifier which handles a small object-oriented language (with
many concurrency-related primitives) annotated with implicit dynamic frames
specifications. It works by verification condition generation; as such, certain de-
sign decisions in the language have been made in order to facilitate the encoding
to SMT. In particular, although recursively-defined predicates are available in
the specification logic, in contrast to VeriFast (and most similar tools), such
predicates cannot take parameters (other than the implicit this receiver). Com-
pared with VeriFast predicates, Chalice predicates by themselves are therefore
significantly less expressive. However, Chalice specifications can include (pa-
rameterised) recursive functions, whose evaluations can depend on the heap, in
contrast to separation logic based tools. Thus, the mechanisms in the two tools
for handling recursion in specifications are not directly comparable.

It has been recently shown that separation logic and implicit dynamic frames
can be formally related, and that it is possible to encode from separation logic
specifications into equivalent specifications in implicit dynamic frames [10,11].
Using the relationship defined, the IDF assertion acc(x.f) ∗ x.f = 5 is shown
to be equivalent to the separation logic assertion x.f �→5; indeed, is it shown
that a large fragment of separation logic can be encoded into IDF. This hints at
the possibility of encoding programs annotated for, say, VeriFast, into programs
annotated instead for Chalice. However, the cited work only applied to the “core”
fragments of the two logics; in particular, recursive predicates/functions were not
treated in those papers. Since almost all interesting separation logic examples
employ predicates in some form or other, this limitation is a serious obstacle to
relating the two approaches in practice.

In this paper, we tackle the problem of making this relationship practical.
In particular, we present a novel technique for translating VeriFast programs
which include parameterised predicate definitions, into Chalice programs (which
cannot). Our work helps with understanding the two approaches and their rela-
tionships/differences, and potentially provides a platform for future comparative
studies on issues such as performance and annotation overhead.

Our approach involves the introduction of heap-dependent functions and
ghost state/annotations, and relies crucially on a custom-made assertion
analyser, which is used to extract simple semantic information about predicate
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definitions, without the need to invoke a background prover. While our tech-
niques cannot handle all possible predicate definitions, they are fully automatic,
and produce code which can be handled by the Chalice tool without modifica-
tions. Our preliminary experiments indicate that non-trivial examples can be
handled by our techniques, and we have many ideas for extending their ap-
plicability. To our knowledge, this also presents the first method for verifying
separation-logic-annotated code solely via verification condition generation to a
first-order SMT solver (Z3 [2]). Our approach is implemented, and available to
download [1].

2 Background

In this section, we give a swift introduction to the important aspects of VeriFast
and Chalice. For more details, we refer the reader to the papers [5,4,6,7]

2.1 VeriFast Predicates, in and Out Parameters

VeriFast source files can declare predicate definitions ; a predicate has a name,
a sequence of formal parameters, and a body, which is a VeriFast assertion.
Predicate definitions may occur outside of class definitions (static predicates),
or inside a class definition (instance predicates), in which case they also have an
implicit this parameter. For example, an instance predicate describing
(non-empty) linked lists, can be defined as follows:

1 predicate linkedlist(list<int> elems) =

2 this.value |-> ?v &*& this.next |-> ?n &*&

3 (n == null ? elems = cons(v,nil) :

4 n.linkedlist(?rest) &*& elems = cons(v,rest))

The &*& syntax denotes the separating conjunction (∗) of separation logic. The
?v syntax indicates a binding of a (logical) variable to a value (which must be
uniquely determined by the context); occurrences of the same variable name
afterwards refer to this value. The same syntax can be used with predicate
instances in, e.g., method specifications:

1 void add(int x)

2 //@ requires this.linkedList(?xs);

3 //@ ensures this.linkedList(cons(x,xs));

4 { ... }

When handling a call to such a method, the verifier matches the variable xs with
the actual parameter to the currently-held predicate instance. Such a matching
is only guaranteed to be deterministic because the elems parameter is uniquely
determined by the predicate body, in any given state. Such a parameter is called
an out parameter of the predicate, in VeriFast. Conversely, some predicate pa-
rameters are used to determine the meaning of the predicate body; for example,
the parameter end in the famous list segment predicate (a static predicate, here):
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5 predicate lseg(LinkedList start, LinkedList end ;) =

6 ((start == null || start == end) ? true :

7 (start.value |-> _ &*& start.next |-> ?n &*& lseg(n,end)))

;

8 }

The syntax here, represents a wildcard value - essentially, the particular value
is anonymously existentially quantified. In this predicate, both start and end
parameters must be known before the meaning of the predicate body can be
determined. VeriFast calls these in parameters. For in parameters, it is not pos-
sible to use the ? binding (as in the add declaration above); the values of the
parameters are not determined by holding a predicate instance.

In both Verifast and Chalice, ghost unfold and fold statements are used to
direct the verifier to replace a predicate instance with its defined body, and
vice versa. For example, an instance of the above predicate could be obtained
via a VeriFast source statement fold lseg(null,null). When a predicate instance
is held, the permissions (points-to assertions) and other constraints given by its
definition are not directly available to the verifier; an unfold statement makes
them available. This guidance tames the problem of reasoning statically about
unbounded recursive definitions; and isorecursive semantics is used [13].

2.2 Chalice Predicates and Functions

Chalice allows a restricted form of predicate definitions, compared with VeriFast.
Predicates can only be instance predicates, and cannot take parameters (other
than the implicit this receiver). Predicate definitions can still be recursive: for
example, the following predicate definition includes the same permissions as the
analogous VeriFast example in the previous subsection (the analogous connective
to separating conjunction is written &&, in the Chalice tool):

1 predicate linkedlist {

2 acc(this.value) && acc(this.next) &&

3 (this.next != null ==> this.next.linkedlist)

4 }

The reason for the above restrictions is to simplify the bookkeeping of per-
missions held by the current thread, for the verification condition generation.
Nonetheless, Chalice includes an additional mechanism for abstraction/recur-
sion: the ability to define heap-dependent functions. These play a role analogous
with pure methods, as often used in contract languages; they can be used to ab-
stract over values represented by the underlying heap data structure. A Chalice
function definition includes a pre-condition, which must require permissions to
(at least) the heap locations on which the function’s evaluation depends. Func-
tion invocations in assertions do not themselves represent these permissions, but
must occur within an assertion in which the permissions are required. For ex-
ample, the following declaration defines a function which extracts the elements
from a linked list structure:
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1 function elems() : list<int>

2 requires this.linkedlist

3 {

4 unfolding this.linkedlist in

5 (next == null ? [value] : [value] ++ next.elems())

6 }

The unfolding expression in Chalice permits the definition of expressions which
access heap locations whose permissions are currently folded inside a predicate
instance; they do not affect the expression’s value, but help the verifier to check
that appropriate permissions are held. The notion of self-framing assertions is
extended to check function pre-conditions. For example, this.elems() == [4] is
not a self-framing assertion (it does not contain sufficient permissions to satisfy
the function’s pre-condition), but this.linkedlist && this.elems() == [4] is.

2.3 Running Example

In this paper, we will use as a running example an adapted list segment predi-
cate, in which the list elements are also exposed as a predicate parameter. Our
predicate is not quite analogous to the typical lseg; we only model non-empty
list segments, with this definition. Our tool can actually handle a more general
definition (in which non-empty list segments can also be represented), but we
explain the relevant limitations (and how we plan to lift them) in Section 6. The
VeriFast definition for our running example is:

1 predicate listSeg(List start, List end, list<int> elems) =

2 start != null &*& start.value |-> ?x &*& start.next |-> ?n

&*&

3 (n != end ? listSeg(n, end, ?nextElems) &*&

4 elems == cons(x, nextElems)

5 : elems == cons(x, nil));

3 Approach

We base our approach around two main ideas: replacing out parameters with
abstraction functions, and replacing in parameters with ghost fields; these are
detailed in the next two subsections. Note that we do not stick to the VeriFast
notions of in/out parameters, but instead try to infer that as many parameters as
possible can be treated as out parameters. In the following, we will first outline
those two main ideas in detail. Second, we will show how those abstract ideas
are used when translating VeriFast predicates (and programs) to Chalice; for
concreteness, we show how they apply to our running example (from Section
2.3). Finally, we will motivate the analysis presented in Section 4.

3.1 From out Parameters to Abstraction Functions

The observation that out parameters can be determined by the underlying heap
(along with the in parameters of a predicate definition) led us to an encoding
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in which such out parameters can be replaced by abstraction functions. The
constraints determining the value of the predicate parameter can be re-encoded
as a function which computes the value itself. Uses of the predicate parameter
can, in general, then be replaced by invocations of the function. For example,
the elems parameter of our linkedlist predicate can be replaced by an elems()
function, providing the same abstraction of the underlying data structure.

Abstraction functions introduced in this way take the (translated version of
the) original predicate as a pre-condition; this provides the appropriate per-
missions to the heap locations on which the function’s evaluation depends. An
instance of the original predicate can then be replaced by an occurrence of the
new predicate, conjoined with a fact relating the abstraction function’s value
to the original parameter value. For example an instance this.linkedlist(l) of the
parameterised list predicate, is replaced by this.linkedlist * this.elems()=l.

Where the original predicate is recursive, the body of the predicate will usu-
ally relate the parameters of the original and recursive predicate instance via
some constraint; this results in a recursive definition of the extracted abstrac-
tion function. For example, in the body of the parameterised predicate linkedlist,
we find that, if this.next = null holds, then elems=nil is required, while if this.next
!= null then we have that elems = v:rest is required, where rest is the correspond-
ing parameter of the recursive linkedlist predicate instance. This gives rise to a
natural function definition, as shown at the end of Section 3.4, in which rest
corresponds to a recursive call to the function.

3.2 From in Parameters to Ghost State

While out parameters can be naturally handled as abstraction functions, it is
clear that the same trick cannot be applied to all predicate parameters. In par-
ticular, if the value of a parameter cannot be uniquely determined from the
predicate body, but is instead used to decide the meaning of the predicate body
(for example, the end parameter of the lseg predicate), then it must necessarily
be provided for each predicate instance. We handle this situation by introducing
additional ghost fields to represent the values of the in parameters of a currently-
held predicate instance. In particular, a fold of the original parameterised pred-
icate definition is handled by instead first writing to the ghost field(s) (with the
values that were originally provided for the in parameters), and then folding
the translated predicate definition. When the resulting predicate instance is un-
folded, the ghost fields can be used in place of any occurrences of the original
parameters. For instance, when folding a linked list segment predicate taking
the start as receiver and the end as parameter, fold(start.lseg(end)) gets replaced
by start.end = end; fold(start.lseg).

This handling of in parameters using ghost state comes with a clear limitation:
since a (ghost) field can only have a single value at any one time, it is only
possible for us to encode uses of predicates for which it is never required to hold
multiple instances of the same predicate, for the same receiver but for different
values of the other parameters. This problematic situation could arise in two
(related) ways. Firstly, it could really be that the in parameter is used to select
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between two different views of the same data structure. For example, while it is
not possible to hold lseg(this,x) * lseg(this,y) in a scenario where this, x and y are
all distinct references (since this would require too much permission to e.g., the
field this.next), it is possible to hold these two predicate instances if, e.g., x=this
holds. In this case, the first instance of the predicate holds no permissions at all,
but is still a valid instance. In this particular case, it is possible for our tool to
often provide a further workaround, as described in Section 6. In the presence
of list segments involving fractional permissions (denoted for the fraction p in
VeriFast by [p]e.x�→y or [p]pred for predicates, and in Chalice by acc(e.x, p)),
this problematic case can even arise in the former scenario. If it is possible to
express list segments which require partial permissions, such as [1/2]lseg(this,x)
* [1/2]lseg(this,y) for different x and y; essentially, this allows for two overlapping
(and read-only) “views” on different portions of the same list. Our ghost-state-
based approach is not able to handle this case, which nonetheless has not yet
arisen in the examples we have looked at so far.

Since our ghost field approach involves writing to the ghost fields before a
fold statement, we need write permission to the ghost-fields at these points.
In addition, we need to put at least some permission to this field inside the
predicate body, so that we can refer to its value. However, how to distribute
the permission throughout arbitrary code, is less obvious. Our solution is to
attempt to determine a field to which a predicate definition always requires full
permission; we then mirror the permissions to that field throughout the entire
program; whereever some permission to the mirrored field occurs, we conjoin the
same amount of permission to the ghost field. In particular, this guarantees that
whenever the predicate is foldable we also have full permission to the ghost-field
(and so, may write to it).

3.3 Initial Translation

In the following subsections we will describe the steps performed by our tool
to translate VeriFast programs to Chalice. Note that this translation consists of
multiple steps, each of which can potentially fail, aborting the translation; our
tool cannot handle every VeriFast program.

We begin with the body (assertion) of a predicate definition, and firstly ap-
ply the following translation recursively throughout: every points-to assertion
[p]x.f �→v (in which v is neither bound using ?y, nor the wildcard expression),
is replaced by the assertion x �= null ∗ acc(x.f , p) ∗ x.f == v. The first conjunct
reflects the implicit non-nullity guarantee that VeriFast bakes into points-to as-
sertions, while the latter two reflect the basic encoding from separation logic into
implicit dynamic frames [11]. In the case of a bound variable or a wildcard, we
translate [p]x.f �→ as x �= null ∗ acc(x.f , p); for a bound variable ?v, subsequent
occurrences of v get replaced by x.f . The non-nullity conjunct x �= null is also
omitted for the special this reference (since this �= null is implicit in Chalice
predicate definitions, as in VeriFast).

Turning our attention to our running example from Section 2.3, we note that
this VeriFast predicate is static; Chalice, in contrast, only supports instance
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predicates. In order to turn this static predicate into an instance predicate we
need to pick one of the reference parameters and make it the new receiver1. This
only works if the parameter is guaranteed to be non-null: in our running example
the predicate body includes the assertion start �= null, indicating that start would
be a valid choice. Our tool must be able to make this selection automatically; this
is the first of several use-cases for an analysis of predicate definitions, capable of
extracting (dis)equalities of interest. The technical details of this analysis will
be provided in Section 4. In fact, our tool makes further use of our analysis to
deal with a wider range of static predicates, for which the new receiver cannot
necessarily proven to be non-null; we will outline this idea in Section 6.

By the end of a successful translation of a VeriFast program, each recursive
predicate instance will correspond to an instance of the corresponding Chalice
predicate in our translated program. Furthermore, as we will detail in the next
two subsections, both of our techniques for replacing predicate parameters (de-
scribed informally in the previous two subsections) result in the introduction
of a Chalice function, which retrieves the corresponding value. Therefore, for
a predicate p with formal parameters y1, y2, . . ., we replace each predicate in-
stance x.p(t1, t2, . . .) with an assertion p ∗ x.y1() == t1 ∗ x.y2() == t2 . . . in
which y1(), y2() etc. are now function applications2. The following two subsec-
tions describe how we find the definitions for the functions.Having applied the
steps detailed in this subsection, the predicate definition of our running example
looks as follows:

1 predicate listseg(LinkedList end, list<int> elems) =

2 this != null

3 &*& acc(this.value)

4 &*& acc(this.next)

5 &*& (this.next != end

6 ? this.next.listseg &*& this.next.end() == end &*&

elems == cons(this.value, this.next.elems())

7 : elems == cons(this.value, nil));

3.4 Inferring Abstraction Functions

After the initial translation steps described in the previous subsection, we at-
tempt to identify predicate arguments to be replaced by abstraction functions
(cf. Section 3.1). In order to come up with abstraction functions, we extract
equality facts about the predicate body; this is another motivation for the un-
derlying analysis we designed, presented in the next section). Applied to our
running example, our analysis is able to extract just a single equality fact:

1 We considered an encoding with a “dummy” receiver object. However, representing
that this receiver is the same for all occurring instances of the predicate is difficult.

2 In fact, we only conjoin equalities for those predicate parameters which we concretely
specified in the original predicate instance; those which were bound with ?y or
syntax are omitted in the resulting assertion.
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elems = (next �=end?cons(value, next.elems()):cons(value, nil)). This fact is deduced
by combining information from the branches of the conditional expression. Note
that no such fact is generated concerning end; this is because information about
the value of end is not present in both branches.

Having extracted those equality facts, the approach is quite simple: for each
predicate parameter v, we search for an equality fact v = e for some arbitrary
expression e (or the symmetric case). In order to make this strategy more ro-
bust, we have also implemented a very simple equation solver which is able to
solve (some) equalities for v rather than relying on v being already one side of
the equation. Furthermore, solving an equation for v can also introduce a side-
condition, such as preventing zero division. In case a suitable expression e was
found, we can now generate a new function definition for the parameter in ques-
tion; in case we have extracted more than one equality for v, we pick an arbitrary
one. The function takes the original predicate, as well as the side-condition a,
as pre-condition, and the body of the function is unfolding this.p in e where p
is the predicate under analysis.

In our running example, we cannot extract any equality for the parameter
end, but we have one for elems. Thus, we generate the following new function
definition:

1 function elems(): list<int>

2 requires acc(this.listseg) {

3 unfolding acc(this.listseg) in

4 this.next != end ? cons(this.value, this.next.elems())

5 : cons(this.value, nil)

6 }

We then substitute the function’s body for occurrences of the original param-
eter in the predicate body3. This can typically introduce trivial equalities, and
so we simplify the resulting assertion yielding an updated predicate definition:

1 predicate listseg(LinkedList end) =

2 acc(this.value);

3 &*& acc(this.next);

4 &*& (this.next != end

5 ? this.next.listseg

6 &*& this.next.end() == end()

7 : true;

8 };

Note that, in general, we have to take some extra steps to avoid introducing
cyclic function definitions, here. For example, given the (non-sensical) example

of a predicate defined by: p(x, y)
def
= (x == y), a näıve approach might be to

define a function for each parameter, each calling the other function directly in

3 Note that we cannot substitute a call to the function itself, since the function requires
the predicate under analysis as a pre-condition, and these occurrences are inside the
predicate body.
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its body. Our tool detects and breaks such cycles; this means that at most one
parameter will be replaced with a function, in this example.

3.5 Introducing Ghost Fields

Any remaining predicate parameters are handled by introducing extra ghost
fields (one per parameter). As described in Section 3.2, this requires us to iden-
tify a suitable field in the original program to which full permission is guaranteed
to be held whenever the predicate itself is held. Therefore, we require another
analysis of the predicate body, able to extract information about the permissions
held by the predicate. Applied to our running example this results in the knowl-
edge that the predicate body holds full permission on this.value and this.next. In
our running example, the predicate parameter end remains to be dealt with and
from our learnt knowledge about the permissions it is clear that either field value
or field next will suffice. Therefore, picking the first, we will have the permissions
to the newly-introduced ghost field end mirror those to value in our output code.
In particular, these permissions are included in the assertion under analysis.

We also provide a Chalice function to access the ghost field’s value when the
predicate is folded. This means that all predicate parameters, whether backed
by abstraction functions (as described in the previous subsection) or by ghost
fields, can be accessed uniformly (cf. Section 3.3). For our running example, this
results in a final set of definitions as follows:

1 ghost LinkedList end;

2

3 predicate listseg =

4 acc(this.value) &*& acc(this.end) &*& acc(this.next)

5 &*& (this.next != this.end ? this.next.listseg

6 &*& this.next.end() == this.end

7 : true; };

8

9 function end(): LinkedList

10 requires acc(listseg) {

11 unfolding acc(listseg) in this.end;

12 }

13

14 function elems(): list<int>

15 requires acc(this.listseg) {

16 unfolding acc(this.listseg) in

17 this.next != end ? cons(this.value, this.next.elems())

18 : cons(this.value, nil)

19 }

3.6 Translating Programs

While the above sections explain the details of our analysis of predicates,
we explain here how we adapt our approach to translating entire programs.
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The initial translation described in Section 3.3 above is applied also to the rest
of the program specifications; this results in the elimination of points-to as-
sertions, and every predicate instance being replaced by the unparameterised
predicate, plus appropriate equalities with function invocations.

The translation from Section 3.4 and 3.5 is then applied to each predicate
definition in the program; if both of them fail for any definition, then the over-
all translation fails. For each additional ghost field introduced, the field which
was found for “mirroring” is also recorded. The mirroring of permissions is
then applied throughout the program text; in our running example, any ac-
cessibility predicate of the form acc(e.value, p) is replaced by a conjunction
acc(e.value, p) && acc(e.end, p).

Furthermore, when encoding method signatures, if a predicate parameter
value is bound inside the pre-condition of a method (e.g. ?xs as shown in Section
2.1), then, in the original code, that variable may be referred in both the method
body and the post-condition. Occurrences in the post-condition are replaced by
the appropriate function call wrapped inside an old expression (referring to the
state of the pre-condition). If the variable is used in the method body, an addi-
tional ghost-variable capturing the value is introduced in the beginning of the
method body, and used in place of the original occurrences.

Every fold statement of the original program which concerns a predicate for
which ghost fields have been introduced, is translated into a sequence of field
updates to the ghost fields, followed by a fold of the new predicate. For example,
fold this.listseg(x, xs) could be translated to this.end := x; fold this.listseg. How-
ever, we should also reflect explicitly-provided values for parameters which have
been replaced by abstraction functions in our translation. Where values are not
concretely provided (i.e. with ?xs or syntax) in the input program, we do noth-
ing extra. However, if a concrete expression is provided in the original program,
we can reflect the correct semantics by adding an assert statement to check that
the supplied parameter matches the value of the corresponding abstraction func-
tion. Thus, our translation of fold this.listseg(x, xs) actually produces this.end :=
x; fold this.listseg; assert this.elems() == xs.

Many small syntactic differences between VeriFast and Chalice syntax are
trivially handled by the Chalice pretty-printer of our internal AST; we do not
detail these syntactic differences here.

3.7 Usage of Predicate Analysis

We have now presented the main ideas behind our translation from VeriFast
predicates to Chalice predicates and functions. As remarked throughout, in order
to automate the translation, we require an analysis of predicate bodies, able
to infer equalities and disequalities (as in Section 3.4 and for handling static
predicates) and permissions guaranteed by the predicate body (cf. Section 3.5).
Finally, the ability to simplify assertions/expressions during translation helps
to keep our output code readable (and also permits our analysis to work more
simply). In the next section, we present the semantic analysis of predicate bodies
that we developed to tackle all of these problems.
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4 Core Analysis

4.1 Our Core Analysis

The semantic analysis of predicates is the main component of our tool and is used
in various places as outlined in Section 3. It is designed to follow the reasoning
we performed by hand when extracting information from an assertion. In this
section we will present the technical details of the so-far informal concepts of
extracting (dis)equality facts, subsequently called value facts, and extracting
permission facts, which approximate the permissions making up the footprint of
an assertion; both of the two kinds collectively referred to as analysis facts.

Our analysis aims to attack questions of the form: what do we know about an
assertion/expression under a certain set of assumed facts? Our approach reasons
in terms of limited semantic information about assertions, but does not involve
external interactions with any kind of theorem prover/SMT solver; we employ
a somewhat limited but simple and efficient set of procedures in our tool for
accumulating and making use of information extracted from the input program.
The use of simplifications/rewriting throughout our analysis is partly to aid code
readability, but also limits the impact of our simple representation of facts. We
present our algorithms for a representative subsyntax of the assertions which our
implementation handles, as follows:

Definition 1 (Assertions and Boolean Expressions for Analysis). We
assume a set of (unspecified, here) unanalysed expressions, ranged over by e. We
assume the syntax of e to (at least) include Chalice function applications. Our
analysis handles the following syntax of boolean expressions, ranged over by b,
and assertions, ranged over by a (in which p represents a permission amount):

b ::= true | false | e1 = e2 | e1 �= e2 | ¬b | b1∧b2 | b1 ∨ b2 | (b?b1:b2)
a ::= b | acc(e.f, p) | a1 ∗ a2 | (b?a1:a2) | e1.P

Note that this syntax does not include VeriFast-specific assertions; in particular,
no points-to assertions or parameterised predicate instances. These will be han-
dled in our tool before invoking our main analysis, as explained in Section 3.3.

4.2 Value Facts

To represent heap information described by assertions, our analysis works with
equalities and disequalities of expressions, which we call value facts. We extract
sets of value facts by syntactically traversing an input assertion/expression. The
extracted set is constructed to satisfy the property that if the input assertion/-
boolean expression is true in a state, then the conjunction of the set of value
facts is also guaranteed to be true. In some cases, it can be useful to know if the
reverse implication also holds; this depends on whether the set of value facts is
sufficiently rich to precisely characterise when the input assertion holds. When
the reverse implication is also guaranteed, we call the set of value facts invertible,
and track this status with a boolean flag on each set.
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Definition 2 (Value Facts and Contexts). Value facts, ranged over by v,
are the subset of boolean expressions generated by the following grammar: v ::=
(e1=e2) | (e1 �=e2). Value facts are always treated modulo symmetry; i.e., we
implicitly identify (e1=e2) with (e2=e1) when considering them as value facts.
Value fact sets, ranged over by V , are sets of value facts, i.e., V ::= {vi} for
some value facts vi. We write ∅ for the empty value fact set.

Value fact contexts, ranged over by Γ , consist of a value fact set along with
a boolean constant, i.e., Γ ::= V B for B ::= true | false. When B = true, Γ is
called invertible.

The use of implicit symmetries for value facts simplifies several of the following
definitions. For example, when we write (e1=e2) ∈ V , this criterion is insensitive
to the order of the two expressions. Similarly, {(e1=e2)}∩{(e2=e1)} �= ∅, with
this interpretation; this can avoid discarding such equalities unnecessarily.

Note that value fact contexts are always interpreted via conjunction; we have
no way to directly represent disjunctions of sets of value facts. This makes our
analysis much simpler, and partly reflects its use cases; as we have seen in Sec-
tion 3.4, we are typically interested in extracting a single equality fact from our
value sets, which can be used as the basis for a new definition. Generalisations
are certainly possible, but so far we have not found this to be a serious limita-
tion in our examples. Note that, while we do not directly represent disjunctions,
we can still employ conditional expressions as operands to value facts; this can
in some cases replace a disjunction between facts, and is useful when analysing
conditionals from within a predicate body.

We next define a number of operations on our value fact contexts, that are
used in our analysis. The conditional merge is used in the analysis of conditionals,
to combine facts about the branches; the other operations are more familiar.

Definition 3 (Value Fact Context Operators). The union of two value
fact contexts is defined (where & denotes the boolean conjunction function on
two boolean constants) by: V B1

1 ∪ V B2
2 = (V1∪V2)B1&B2 The intersection of

two value fact contexts is defined as follows:

Γ ∩ Γ = Γ

V B1
1 ∩ V B2

2 = (V1∩V2)false (otherwise)

The negation of a value fact context is defined as follows:

(neg {(e1=e2)}true ) = {e1 �=e2}true
(neg {(e1 �=e2)}true ) = {e1=e2}true

(neg Γ ) = ∅false (otherwise)

The conditional merge of two value fact contexts (over a boolean expression b)
is defined by:

V B1
1

b

� V B2
2 = {(e0=(b?e1:e2)) | (e0=e1) ∈ V1 and (e0=e2) ∈ V2}false

These operations treat “invertibility” status of contexts very conservatively.
Intersection of value fact contexts never results in an invertible value fact context,
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unless the original contexts are identical, while merging two contexts never re-
turns an invertible context. Furthermore, even when we have an invertible value
fact context, we only actually define the negation of the context in a meaningful
way for singleton sets of value facts; this results from our choice not to represent
disjunctions explicitly in our value facts. It is clear that these operations could
be made much more general with a richer treatment of value facts; nonetheless,
the above definitions have been sufficiently expressive for our experiments so far.

4.3 Analysis of Boolean Expressions

Having presented our notions of value facts, we can define the analysis we perform
on boolean expressions. We define a function analyseE which takes as parameters
a boolean expression, and a value fact context (representing information that is
currently assumed in our analysis), and returns a similar pair; the resulting
expression is equivalent to the input expression, and the resulting value context
contains information about the facts learned in the analysis.

Definition 4 (Analysis of Boolean Expressions)

analyseE v Γ = ((tryEval v Γ ), {v}true)
analyseE ¬b Γ = (¬b′, (neg Γ ′ ))
where (b′, Γ ′) = analyseE b Γ

analyseE b1∧b2 Γ = (b′1∧b′2, Γ1∪Γ2)
where (b′1, Γ1) = analyseE b1 Γ

(b′2, Γ2) = analyseE b2 Γ∪Γ1

analyseE b1 ∨ b2 Γ = (b′1 ∨ b′2, Γ1∩Γ2)
where (b′1, Γ ′

1) = analyseE b1 Γ
(b′2, Γ

′
2) = analyseE b2 Γ

analyseE (b0?b1:b2) Γ =
if b′0 = true : (b′1, Γ0∪Γ1)

else if b′0 = false : (b′2, (neg Γ0 )∪Γ2)
else if b′1 = false : ((b′0?b

′
1:b

′
2), ({b0 == false}true∪(neg Γ0 )∪Γ2))

else if b′2 = false : ((b′0?b
′
1:b

′
2), ({b0 == true}true∪(neg Γ0 )∪Γ1))

else : ((b′0?b′1:b′2), (Γ1

b′0
�Γ2))

where (b′0, Γ0) = analyseE b0 Γ
(b′1, Γ1) = analyseE b1 Γ∪Γ0

(b′2, Γ2) = analyseE b2 Γ∪(neg Γ0 )

The definition above is designed such that if analyseE b Γ = (b′, Γ ′), then, in
any state in which the conjunction of the value facts in Γ holds, the following
properties are also guaranteed. Firstly, b′ ⇔ b. Secondly, in any state in which b
is true, the conjunction of the value facts in Γ ′ is true. Thirdly, if Γ ′ is invertible,
then in any state in which b is false, the conjunction of the value facts in Γ ′ is
also false. The function tryEval v Γ implements a simple (conservative) attempt
to determine whether the inequality v is guaranteed to be either true or false,
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assuming the value facts in Γ . If either can be shown, then true or false are
returned, otherwise v is returned unchanged.

The ability to simplify conditional expressions in four cases above gives more
precise information about the assertion; only in the case that neither can the con-
dition b0 be simplified, nor can either of the two assertions a1 and a2 be rewritten
to false, does the � operator have to be applied (typically losing information).
Note that the if-conditionals in the analysis of conditional expressions compare
for syntactic equality of boolean expressions. These conditionals also propagate
simplifications throughout the structure of expressions, where possible.

4.4 Permission Facts

In the case of analysing assertions (rather than just boolean expressions), we also
require information about the permissions required by a particular assertion. We
do not require very precise permission accounting (which would be difficult in
the presence of aliasing questions), since ultimately we are only concerned with
two particular outcomes - whether or not an assertion is known to guarantee no
permissions (e.g., a simple boolean expression), and whether or not it guarantees
full permission to some field location. As we have seen, knowing that a predicate
body holds full permission to at least one field is crucial when trying to replace
in-parameters; knowing that a predicate body holds no permissions at all is
beneficial when applying some tricks to deal with static predicates. Guided by
these goals, we choose a simple representation of permission facts for our analysis.

Definition 5 (Permission Facts and Operations). Permission facts, ranged
over by Π, are defined by Π ::= ψ | π, where the symbol ψ is called the unknown
permission fact (written ψ), and where π is a known permission fact set: a
(possibly empty) set of tuples of the form (e, f, p), satisfying the constraint that
no pair of e, f occurs in more than one tuple.
Addition of permission facts is defined as follows:

ψ + ψ = ψ ψ + ∅ = ∅+ ψ = ψ
π1 + π2 = π1 π2 ψ + π = π + ψ = π otherwise

where  takes the union of the two sets, except that when the same e, f occur in a
tuple of each set, the resulting set has a tuple with the sum of the two permission
amounts: e.g., {(x, f, p1), (y, f, p2)}{x, f, p3} = {(x, f, p1 + p3), (y, f, p2)}
Intersection of permission facts is defined by:

ψ∩Π = Π ∩ψ = ψ π1 ∩π2 = {(e, f,min(p1, p2)) | (e, f, p1) ∈ π1 and (e, f, p2) ∈ π2}

The unknown permission fact is employed in our analysis whenever we are forced
to be approximate conservatively, either because an exact fractional permission is
not know, or because an assertion contained a further predicate instance (we do not
unfold predicate definitions recursively, and this would in general not terminate).

We are now ready to define our analysis of assertions: we define a function
analyse , which takes an assertion and value fact context (assumed knowledge) as
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input, and produces a triple of (possibly simplified) assertion, value fact context,
and permission fact, as output.

Definition 6 (Analysis of Assertions)

analyse e Γ = (e′, Γ ′, ∅)
where (e′, Γ ′) = analyseE e Γ

analyse a1 ∗ a2 Γ = (a′1 ∗ a′2, Γ1∪Γ2, Π1 +Π2)
where (a′1, Γ1, Π1) = analyse a1 Γ

(a′2, Γ2, Π2) = analyse b2 Γ∪Γ1

analyse acc(e.f , p) Γ = (acc(e.f , p), ∅false, {(e, f, p)})
analyse (b0?a1:a2) Γ =

if b′0 = true : (b′1, Γ0∪Γ1, Π1)
else if b′0 = false : (b′2, ((neg Γ0 )∪Γ2), Π2)
else if b′1 = false : ((b′0?b

′
1:b

′
2), ({b0 == false}true∪(neg Γ0 )∪Γ2), Π2)

else if b′2 = false : ((b′0?b′1:b′2), ({b0 == true}true∪(neg Γ0 )∪Γ1), Π1)

else : ((b′0?b
′
1:b

′
2), (Γ1

b′0
�Γ2), Π1 ∩Π2)

where (b′0, Γ0) = analyseE b0 Γ
(a′1, Γ1, Π1) = analyse a1 Γ∪Γ0

(a′2, Γ2, Π2) = analyse a2 Γ∪(neg Γ0 )

Note that, as in Definition 4, the cases for conditional expressions allow us
to retain more-precise information and simpler assertions, where possible. In
particular, the ∩ and � operators are not applied if an earlier case applies.

The analysis rules above are defined to guarantee similar properties to those
for Definition 4. Specifically, if analyse a Γ = (a′, Γ ′, Π), then, in any state in
which the conjunction of Γ holds:

1. a and a′ are equivalent assertions (typically, a′ is syntactically simpler).
2. Whenever a is true, the conjunction of the value facts in Γ ′ is true.
3. If Γ ′ is invertible and a is false, the conjunction of Γ ′ is false.
4. If Π = π for some known permission fact set π, then a logically entails the

iterated conjunction of all recorded permissions:∗{acc(e.f , p) | (e, f, p) ∈ π}

We make use of the above analysis at every stage of our translation: in particu-
lar, to discover equalities suitable for generating function definitions (as detailed
further in the next subsection), and identify suitable fields and parameters for
the handling of ghost field permissions and static predicates, as discussed in
Section 3. We also constantly simplify the assertions we are working with, as a
side-effect of our algorithm above.

4.5 Equation Solver

In addition to the main analysis described above, we have defined a simple equa-
tion solver, with the aim of rewriting equalities into the form x = e for some
chosen variable x. This is needed, for example, when we wish to extract new
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function definitions (to replace predicate parameters), or when dealing elimi-
nating bound variables from VeriFast expressions. Our solver takes the left-hand
and the right-hand sides of an equation, and a variable to solve for. It either fails
(indicated by a special ⊥ return value), or returns a result expression and an ad-
ditional side-condition (assertion), expressing for instance that no zero-division
occurs when solving an equation containing multiplications.

Definition 7 (Equation Solver). We write occs(x, e) for the number of oc-
currences of the variable x in expression e. We define an operation solve e e′ x ,
which is only defined when occs(x, e) = 1 ∧ occs(x, e′) = 0 , by the rules below.
Rules using the meta-variable e1 have a side-condition: that occs(x, e1) = 1 (i.e.,
the rule only applies if x occurs in this sub-expression).

solve x e3 x = (e3, true) solve e2∗e1 e3 x = (e′, e2 �=0 ∧ c′)
solve e1+e2 e3 x = solve e1 e3−e2 x where (e′, c′) = solve e1 e3/e2 x
solve e2+e1 e3 x = solve e1 e3−e2 x solve e1/e2 e3 x = solve e1 e3∗e2 x
solve e1−e2 e3 x = solve e1 e3+e2 x solve e2/e1 e3 x = (e′, e3 �=0 ∧ c′)
solve e2−e1 e3 x = solve e1 e2−e3 x where (e′, c′) = solve e1 e2/e3 x
solve e1∗e2 e3 x = (e′, e2 �= 0 ∧ c′) solve e1 e3 x = (⊥, false)
where (e′, c′) = solve e1 e3/e2 x otherwise

Note that the last case can match arbitrary expression syntax; for example, if
x occurs as the parameter to a function application. The aim of our solver is
not to apply deep reasoning to resolve such scenarios, but just to apply simple
rewrites where possible.

Based on the solve function, we can then define findExpressionFor , which
takes a value fact context and a variable name, and returns a set of expressions
e′ known to be equivalent to x, paired with corresponding side-conditions c.
Furthermore, the function takes a set of “forbidden” variables vs that are not
allowed to occur in the identified expressions. This expression e′ along with the
potential side-condition c can then directly be used to build the new abstraction
function as outlined in Section 3.4.

findExpressionFor V x vs = {(e′, c) | (e′, c) ∈ s ∧ e′ �=⊥ ∧vars(e′) ∩ vs = ∅}
where

s = {(solve e1 e2 x ) | (e1 == e2) ∈ V and occs(x, e1) = 1 and occs(x, e2) = 0}

5 Results and Evaluation

We have performed some preliminary experiments to gain some insight about
the feasibility of our approach. Rather than as a full evaluation, it should be
understood more as a starting point for further investigation and work. Fur-
thermore, we were also interested in how well Chalice does on the translated
examples and whether some general observations can be made when comparing
Chalice to VeriFast.

Our experiments indicate so far that practical predicates can be handled by
our analysis. From the (Java) examples provided with VeriFast, not a single one
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failed due to an untranslatable predicate; however only a handful of the test cases
can actually be translated by our tool and the others failed due to a number
of features not supported by Chalice at the time the tool was written, such
as subtyping, general abstract data types, and unsupported language features.
Nonetheless, the following examples from VeriFast could be translated: Spouse,
Spouse2, SpouseFinal, AmortizedQueue, and Stack ; they can be found together
with the translated Chalice code in our examples [1]. We also included two of
our own hand-written examples: LinkedList, LinkedListSeg simple, and the full
running-example (LinkedListSeg). While those are only few examples, several
contain non-trivial recursive predicates, with both in and out parameters.

All the examples above translated without any modification, except for Stack
which needed a single modification (as commented) in the original file4. Fur-
thermore, they all verify in Chalice except for AmortizedQueue which needed an
additional tweak (due a somewhat prototypical current support for static func-
tions in Chalice) unrelated to the handling of the predicates. Notice that some of
the examples will produce warnings from Chalice regarding termination checks
for recursive functions which operate purely on abstract data types; this is due
to a lack of support for general termination measures.

The only predicate that our approach could not handle is in LinkedListSeg,
due to the predicate not being unique for a given receiver as the empty segment
can be fold arbitrary often on any receiver. However, we will outline in section
6 some ideas of how we could extend our analysis to handle such cases.

In addition, our experiments indicate that Chalice can sometimes manage
with fewer ghost annotations than VeriFast needs. In particular, several VeriFast
examples contained consecutive unfold / fold pairs on exactly the same predicate
instance; often they serve only for the purpose of binding the arguments to a
variable, and in this case we can just call the corresponding getter function
without having to unfold the predicate in Chalice. Interestingly, removing those
superfluous unfold / fold pairs seems to speed up the verification in Chalice
significantly for harder examples; we intend further investigation to disclose the
underlying reason for this. Furthermore, many of the built in lemma methods
of VeriFast (especially for lists) are not required in Chalice; while adding an
equivalent assertion helps in terms of verification speed (probably by pointing
the verifier into the right direction), the verification still succeeds without them.

6 Conclusions and Future Work

In this paper, we have presented the first implemented encoding from a sub-
set of separation logic to a verifier based on first-order-verification-condition-
generation (Chalice). To achieve this for interesting examples, we have presented
a number of novel ideas for eliminating predicate parameters, and employing
alternative verification features available. In particular, we have presented a

4 VeriFast permits the wildcard to be used even for in parameters; in this case, the
symbolic heap is searched for any appropriate predicate instance. We provided the
(obviously unique, in this example) value explicitly.
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simple but flexible automatic analysis of predicate definitions, which enables us
to rewrite such definitions without user intervention.

Our analysis is currently limited in several ways, largely as an engineering
trade-off between simplicity and expressiveness. However, our approach is easily
extensible in many ways which do not affect the overall approach. Firstly, our
value facts could be easily extended to capture more precise information about
the entailment between the assertion and our knowledge; the same holds also for
our permission facts. One can construct predicates in which reasoning in terms
of inequalities is desirable. In addition, disjunctions could be added to value-
fact contexts, making the negation of a context more often expressible. Both
extensions would enable more examples in general, but also make the analysis
itself, and particularly the entailment checking (built into tryEval of Section
4.3) much more complex; indeed, it is likely that a prover would be required
for serious reasoning about inequalities. The tryEval function, as well as our
equality solver (Section 4.5) could be made arbitrarily more sophisticated; at
present, not even transitivity of equalities is taken into account, but in principle
complex theories could be incorporated, with the aid of suitable prover support.

The main limitation of our current approach is that whenever a predicate
has an in parameter, predicate instances must be unique per receiver; many
separation logic predicates (such as the classical lseg definition) do not satisfy
that restriction. On the other hand, the cases for which a predicate describing
a recursive data structure can be held for the same receiver in many different
ways, often coincide with the predicate instance not holding any permissions. In
such cases, the predicate “degenerates” to a boolean expression referring only
to the parameter values; for example, the base case of the lseg predicate in
Section 2. Our tool currently has the ability to deal with a specific kind of these
predicates: if the designated receiver r of a static predicate is potentially null, we
check whether the predicate does not hold any permissions when r = null. If, in
addition, all other predicate parameters can be uniquely determined in this case,
we can drop the problematic predicate instances (in these cases) in our output
code, by replacing all the occurrences of the predicate with e.g., r �= null ⇒ r.p)
and replacing all calls to getter functions (which would not make sense on a null
receiver) with constant expressions: e.g., r �= null ? r.f() : const val. This limited
trick is already implemented, but in future work, we would like to generalise the
technique to deal with cases where the condition for not needing to hold the
predicate might be arbitrary (but still determinable from the in parameters).
The classical list segment predicate would need start �= end as the condition; we
wish to deduce this automatically and then apply a similar approach.

In trying our tool out on several VeriFast examples, we have established the
feasibility of an encoding, in which separation logic examples are handled entirely
by an SMT solver. This has also provided us with several new and interesting
test cases for the Chalice verifier, and the ability to experiment with comparisons
between the two approaches.While Chalice is generally able to handle the output
code efficiently, one example (the translation of the AmortizedQueue.javaVeriFast
example) takes many minutes to verify (while VeriFast handles all examples in
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a few seconds). Interestingly, we found that we can delete many of the resulting
fold/unfold statements in this example by hand: the verification still succeeds,
and faster (presumably because the SMT encoding involves representing fewer
states). We also found that we can delete several assertions which correspond to
calls to lemma methods in the original code: these are also not required for the
Chalice verifier to succeed, although do seem to speed up the verification. We
would like to investigate these issues further, and believe that our tool opens up
new and interesting possibilities for comparing the two approaches.
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Abstract. Analysis of binary programs is important to ensure correct execution
of corresponding higher-level programs, especially because it accounts for bugs
introduced by compilers. Moreover, source code may not always be available for
correctness analysis. Proving correctness of binaries often involves significant
user expertise and time-consuming manual effort. We describe an approach to
automatically verify some X86 binary programs using symbolic execution on an
executable formal model of the X86 instruction set architecture. Our approach
can reduce the time and effort involved in the proof development process for
complex programs.

1 Introduction

In support of our program verification efforts, we have developed an executable for-
mal model of a significant subset of the X86 instruction set architecture (ISA) in the
ACL2 [1] programming language. Our ISA model can run X86 binary programs, and
we can reason about them using the ACL2 theorem proving system. In this paper, we
describe an approach to verify some binary programs fully automatically using a sym-
bolic execution technique. Formal verification of binary programs is important because
it is often the only means available to ensure correctness of higher-level programs. Ver-
ification based purely on analysis of high-level code does not detect bugs introduced
by compilers, thereby decreasing confidence that the program will behave as expected
during run-time. Moreover, source code is not available for analysis when software is
distributed as binaries.

Our model of the X86 ISA has been developed using an interpreter approach to
operational semantics [2]; the model takes a step by taking a processor state as input
and producing the next state as output. Our evolving ISA model currently supports
the 64-bit mode of Intel’s X86 IA32e architecture, including IA32e paging. We have
specified all the addressing modes of the architecture and formalized all the integer
instructions (both one and two byte opcodes) of the X86 instruction set. To increase
confidence in the accuracy of our model, we have and will continue to run extensive
co-simulations against physical X86 processors. X86 binaries, for example, obtained as
an output of compiling higher level programs using the GCC/LLVM compiler, can be
executed on our formal model.

We use the ACL2 system to analyze X86 binaries. There are well-established meth-
ods in ACL2 for reasoning about programs for an operational model, including clock
functions and inductive invariants [3]. Sometimes, these approaches can involve signif-
icant user effort. We describe a method of reasoning about some user-level X86 binary

E. Cohen and A. Rybalchenko (Eds.): VSTTE 2013, LNCS 8164, pp. 222–241, 2014.
© Springer-Verlag Berlin Heidelberg 2014
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programs that is fully automatic, in the sense that the user is not required to provide
any lemmas to prove the program’s correctness. We use the ACL2 GL package [4] to
achieve this automation; GL is a framework for proving ACL2 theorems about finite
ACL2 objects by symbolic execution. In order to run the GL package efficiently, we
use an extension of ACL2, called ACL2(h) [5], that supports function memoization and
applicative hash tables. In the remainder of the paper, we refer to ACL2(h) as ACL2 for
the sake of simplicity.

The rest of the paper is organized as follows. We present our motivation in Sec-
tion 2 and then provide a brief introduction to ACL2 in Section 3. In Section 4, we
describe our formal X86 ISA model written in ACL2 in some detail. We then describe
the automated verification of an example X86 binary, a population bit-count program,
in Section 5. This program counts the number of non-zero bits in the binary representa-
tion of an integer input in an optimized and non-obvious manner. We conclude with a
discussion of how automated correctness proofs of programs in an interactive theorem
proving environment can benefit verification efforts, and we present our plans for future
work. We also provide a brief description of the ACL2 syntax and some ACL2 function
definitions in our formal model in the Appendix.

2 Motivation

Many verification projects in the theorem proving community use a formal model of a
processor ISA — such a model is useful for the formalization and verification of pro-
grams, operating systems, and translators (compilers, assemblers). Such models are also
used as target specifications for the verification of microprocessor designs [6–9]. Build-
ing accurate models of processor ISAs, let alone reasoning about programs running on
them, is a challenging task. Recently, there have been investigations into developing
domain-specific languages [10, 11] to facilitate clear and precise specification of ISAs.

Machine-code verification on formal models of processors has a long history. Be-
vier’s work on operating system kernel verification [12] using the NQTHM [13] theo-
rem prover entailed proving machine code correct for a von Neumannn machine. Boyer
and Yu [14] also used NQTHM to formalize most of the user-mode instruction set of
a commercial Motorola MC68020 microprocessor and then verify the binary code pro-
duced by compiling the Berkeley String library using GCC. However, these code proofs
required significant user guidance.

Matthews et al. [15] mechanized assertional reasoning for machine code by im-
plementing a Verification Condition Generator (VCG) in ACL2 [1]. This technique
requires the user to annotate the binary program to be verified and deploy ACL2 to
discharge verification conditions obtained from the annotations.

Sewell et al. have developed formal models in HOL [16] for subsets of the ISAs of
X86 [17], Power and ARM [18]. The focus of their work is the study of relaxed-memory
concurrency; for example, these formalizations of processor ISAs were used to prove
that the behaviors of some data-race free programs are sequentially consistent.

Feng et al. [19] use the Coq proof assistant [20] to prove the functional correct-
ness of machine code on a simplified formal model of the X86. Hoare-style logics
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(domain-specific logics, separation logic, etc) are used to prove program modules cor-
rect; these proofs are then composed to get the correctness proof of the entire software.

Myreen’s “decompilation into logic” technique [21], developed in HOL, takes ma-
chine code as input and outputs logic functions capturing the functional behavior of
the machine code and a theorem that relates the binary code to these functions. The
problem of machine code verification is then reduced to the problem of reasoning about
these simpler logic functions, but some user guidance is still required for this purpose.

Our contribution concerns both the accuracy of our X86 ISA model and our auto-
mated mechanism of verifying some X86 binary programs. All techniques mentioned
just above required manual effort to some degree. Work similar to ours has been done
by using bit-blasting [22] as a proof procedure in order to lend automation to an inter-
active verification system, for example, in the Jitawa project [23]. However, such tools
have been used only to prove small but complicated lemmas purely about bit-vectors.

We present an approach using symbolic execution to verify non-trivial user-level
X86 binary programs fully automatically in an interactive theorem proving environment
using our formalization of a significant subset of the X86 ISA. Unlike the typical use of
interactive theorem provers, users are not required to prove tedious lemmas about their
formalizations. Moreover, unlike assertional reasoning methods, there is no need to
annotate programs to discharge verification conditions. Neither an external (un)trusted
tool nor significant user expertise is needed to carry out proofs using this technique.
Our technique can be combined with the traditional methods of interactive theorem
proving (rewriting, induction, etc) to reduce the time and effort involved to verify binary
programs.

3 ACL2: A Brief Introduction

Our work involves extensive use of the ACL2 system for specification, programming,
and reasoning. ACL2 stands for A Computational Logic for Applicative Common Lisp.
It is both a mathematical logic based on an applicative subset of Common Lisp and
a mechanical theorem prover used to prove theorems in that logic. Because ACL2 is
based on Common Lisp, it offers the execution efficiency provided by the underlying
Common Lisp compilers. This gives us the ability to build efficient executable formal
models in ACL2.

The ACL2 logic is a first-order logic of recursive functions. The logic provides syn-
tax to represent terms using constants, variables, and function symbols, and some ax-
ioms to describe the properties of Common Lisp primitives. More information about the
ACL2 syntax can be found in Appendix A.1. Terms in ACL2 can be thought of as for-
mulas; if a term P is proved to be non-nil, then P is a theorem. The ACL2 logic includes
some rules of inference like instantiation, a well-founded induction principle, and ex-
tension principles. The extension principles extend the current ACL2 first-order theory
by allowing addition of new definitions if they satisfy the admissibility requirements.

The ACL2 theorem prover has proof strategies built into it; the application of a
proof strategy breaks down the goal formula into zero or more subgoals. The formula is
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a theorem if all the subgoals, if any, have been proved. Users can extend the prover by
adding their own proof strategies known as clause processors. In this paper, we use a
symbolic execution framework called GL [4], a verified ACL2 clause processor, as a
proof procedure.

ACL2 is a freely available system and includes 2100+ pages of documentation [24].
ACL2 libraries are also freely available and are called community books [25]. These
books have been developed by ACL2 users over many years; they can be certified by
ACL2 before use to ensure their soundness. Books can be included in an ACL2 project
to take advantage of existing definitions and theorems.

4 Executable Formal Model of the X86 ISA

The X86 ISA is a large and complicated architecture, and deciding what subset of it
to specify formally is a challenge. Our focus is on the 64-bit mode of Intel’s IA32e
architecture [26]. Our current formal specification includes all addressing modes, the
user-level integer instructions (one and two-byte opcodes), and some system features
like paging.

Our model of the X86 ISA has been written in the ACL2 language; this model can
be used for execution as well as formal analysis. Our modeling strategy for the X86
ISA is to optimize the definitions for execution but at the same time, to keep them as
simple as possible for reasoning. We want our definitions to correspond exactly to the
X86 architectural definition, and we are using two methods to help assure its accuracy:
code reviews and co-simulation with a physical X86 processor.

Our current X86 model simulates the user-level ISA at about ~3.3 million instruc-
tions per second with paging disabled; otherwise, it runs at ~330,000 instructions per
second. Our model is around 40,000 lines of code, which includes functions that spec-
ify the X86 and theorems about their properties. Given the size of our model, our co-
simulation speed allows us to run programs to gain confidence in its accuracy. For the
sake of simplicity in the remainder of this paper, we talk only about the programmer’s
view of the model, i.e., the model where paging is disabled.

We now describe our formalization of the X86 ISA, which uses an interpreter-style,
operational semantics. Several relevant ACL2 function definitions can be found in Ap-
pendix A.2.

The state of our X86 ISA model contains fields that describe the components of the
processor. It is defined using ACL2 structured objects called (concrete) STOBJs [27]
and abstract STOBJs [28]. Concrete STOBJs are mutable objects with applicative se-
mantics in ACL2; hence, they provide us with high performance by allowing destructive
assignments while providing copy-on-write semantics for reasoning. Abstract
STOBJs may provide a simple interface to a concrete STOBJ to enable effective reason-
ing. More details about modeling processor state using abstract STOBJs can be found
elsewhere [29].

All components in the state of our model are listed in Table 1. We specify the com-
plete 252-byte physical memory (the maximum supported by contemporary commercial
processors) by implementing a space-efficient memory model [30], where memory is
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allocated on demand instead of all at once. The X86 memory is implemented as an array
of 16MB blocks. The field mem-table stores the pointers to the blocks,
mem-array-next-addr stores the pointer to the block to be allocated next, and
mem-array stores the actual bytes. Thus, our memory model breaks a byte address
into two parts — a pointer to the 16MB block and an offset within that block.

Our definition of the state contains a field called the ms (model state), which is an
artifact of our model. The ms field is used to indicate situations unsupported by our
model as well as to indicate problems in a processor execution step. The processor state
is expected to be correct if the model state is NIL (empty); otherwise, this field indicates
the possible problem and processor execution is halted.

Table 1. Components of the X86 State

Component Description
rgf 16 general-purpose registers
rip instruction pointer
flg 64-bit status/rflags register
seg 6 segment registers
str system-table registers (GDTR and IDTR)
ssr segment-table registers
ctr control registers
dbg debug registers
msr model-specific registers
mem-array the X86 memory
mem-table memory-access table (not a part of the real X86 state, but

used by our model to efficiently implement the 252-byte
memory)

mem-array-next-
addr

next block address used by mem-table

ms state of our X86 model (not a part of the real X86 state,
but used to specify erroneous model conditions)

The X86 run function specifies our X86 model. It takes the initial state and the num-
ber of instructions to be executed as input. This run function operates by calling the step
function repeatedly. The step function fetches a single instruction from the memory, de-
codes it, and executes it by dispatching control to the appropriate instruction semantic
function. Every instruction in the model has its own semantic function, which describes
the effects of executing that instruction. A semantic function takes the X86 state as in-
put (among other inputs that are obtained from the instruction decoding process), and
outputs the next state, which is modified as per the effects of the instruction.

Initializing our model for execution of an X86 binary is straightforward. Then, the
bytes in the X86 binary are written to the memory of the formal model at the appropriate
addresses. Other updates, like setting the instruction pointer to the start address and
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initializing the registers and memory, are also made to the state of the model. The run
function is then called with the initial state and the appropriate number of instructions
to be executed. Execution stops when either the program runs to completion (i.e., a halt
instruction is encountered), or an error occurs. The resulting state can then be examined
for further analysis.

The development of our X86 formal specification has proceeded through several
iterations, each one involving months of effort. Given time, we believe that it is cer-
tainly possible to formalize the user-level X86 ISA completely. However, the supervisor
model (with features like virtualization) continues to evolve and it may be difficult to
catch up with the industry. In addition, as the model grows, the engineering required
to manage such a large model is similar to that required to manage a large software
system.

5 Reasoning about X86 Binaries

There are many techniques for reasoning about programs on an operational formal
model. We describe our use of one such technique — symbolic execution — to perform
automated verification of programs in ACL2’s interactive theorem proving environ-
ment. The GL package [4,31] (freely available as an ACL2 community book) provides
us with a framework for proving ACL2 theorems involving finite objects using either
an ACL2-verified BDD utility or an external SAT solver; we adopt the BDD approach
for the proof described here. GL is a verified clause processor in ACL2, and therefore,
enjoys the same trust as the ACL2 system itself. Providing the specification is the pri-
mary user requirement in order to prove theorems using GL. If a conjecture fails, GL
can compute counterexamples.

GL encodes finite objects into boolean expressions representing symbolic objects [31].
The conversion from finite to symbolic objects has been proven correct and is handled
automatically by GL. Computations involving symbolic objects can be done using ver-
ified BDD operations; for example, the bitwise XOR of two symbolic objects repre-
senting 32-bit integers produces another symbolic object representing a 32-bit integer
that encapsulates all the possible resultant values. Thus, GL provides the capability for
performing symbolic execution. Such a symbolic execution technique can be used to
prove theorems if two requirements are met: all the free variables in the theorem (which
must be finite-sized objects such as 32-bit numbers) have been assigned a symbolic ob-
ject, and the symbolic objects account for all the cases necessary for the proof of the
theorem.
Def-gl-thm is the main command provided by the GL package; it allows the user

to state a conjecture’s hypotheses (keyword :hyp), conclusion (keyword :concl),
and bindings of finite free variables to symbolic objects (keyword :g-bindings).
The bindings also encode the BDD variable ordering for representing the symbolic ob-
jects, and as such, affect the symbolic execution performance. When a def-gl-thm
is processed by ACL2, GL symbolically executes the goal formula. If the symbolic
execution results in an expression that represents the value nil, GL can produce coun-
terexamples, which can either be symbolic or concrete. Otherwise, the conjecture is
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proven. To ensure that this symbolic execution accounts for the entire domain of free
variables in the theorem, GL also proves coverage with respect to these symbolic ob-
jects. In short, a def-gl-thm theorem is proved if and only if the symbolic simulation
results in an expression that represents a non-NIL value and coverage is proven.

To demonstrate our approach of using GL to do code proofs, we will reason
about a population bit-count program. The specification of the following C function
popcount_32 [32], despite appearances, is simple: given a 32 bit unsigned integer
as input, popcount_32 computes the number of non-zero bits in its binary
representation.

int popcount_32 (unsigned int v) {
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
v = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
return(v);

}

We can use the function popcount_32 to compute the population count of larger
inputs, for example, we can call popcount_32 once on the upper 32 bits and once on
the lower 32 bits of a 64-bit unsigned number and add the results to get the population
count of the 64-bit number. This may seem to suggest that proving the correctness of
popcount_32 is key to reasoning about such programs.

We obtain the X86 binary corresponding to popcount_32 using GCC/LLVM
and using some simple scripts, convert it into a Lisp/ACL2-readable format. The re-
sult is then written into the memory of our X86 model. The following GL theorem
x86-popcount-32-correct establishes the correctness of popcount_32.

(def-gl-thm x86-popcount-32-correct
;; Hypothesis: n is a 32-bit unsigned integer
:hyp (and (natp n) (< n (expt 2 32)))
;; Conclusion:
:concl (let* ((start-address #x4005c0)

(halt-address #x4005f6)
(x86 (setup-for-popcount-run

nil start-address halt-address
;; The register RDI holds input n to
;; function popcount_32
(acons *rdi* n nil)
;; Loading binary into model's memory
0 *popcount-binary*))

;; Setting the stack pointer to 2$^45$
(x86 (!rgfi *rsp* *2^45* x86))
;; numIns: num. of instructions to execute
(numIns 300)
;; Running the binary on the X86 model
(x86 (x86-run numIns x86)))

(and (equal (rgfi *rax* x86)
(logcount n)) ;; built-in ACL2 function

(equal (rip x86) (+ 1 halt-address))))
:g-bindings `((n (:g-number ,(gl-int 0 1 33)))))
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We did not need to build any reasoning infrastructure (i.e. supporting lemmas) to
prove the above theorem — it is proved fully automatically in ~60s on a machine with
Intel Xeon E31280 CPU @ 3.50GHz.

The theorem states that at the end of execution of popcount_32 binary program,
spanning from memory address #x4005c0 to #x4005f6, the register RAX will contain
the population count of the input n and the instruction pointer will point to the address
following the last instruction. The g-bindings field specifies n as a numeric sym-
bolic object with 33 boolean variables, 32 for the number of bits in n and one-bit for
the (positive) sign. Note that the value 300 for numIns is just a number that is large
enough to allow the program to run to completion. If a halt instruction is encountered
before numIns becomes zero, the symbolic execution of x86-run stops and returns
an appropriate X86 state.

We use the ACL2 built-in function logcount to specify popcount_32. The
function logcount counts the number of non-zero bits in a positive integer input
using a straightforward recursion. (See Appendix A.3 for the ACL2 definition.) The
algorithm used to specify logcount is completely different from the algorithm for
popcount_32. This proof demonstrates that, unlike classical theorem proving ap-
proaches like induction and rewriting, we can prove formulas stating the equivalence
of specification functions and implementation functions fully automatically (i.e., with-
out using intermediate lemmas) using GL’s symbolic execution even if the specification
functions and implementation functions are defined using different algorithms.

We now reason about two functions, popcount_64 and popcount_128, that
call popcount_32. To make matters more interesting, we introduce a bug in the
program. When the popcount_64 function is run in a “bug-free” mode, it com-
putes the popcount of its 64-bit unsigned integer input v by calling popcount_32
twice, on the upper and lower 32-bits of v. However, popcount_64 does not com-
pute the popcount of v if its input intro_bug is non-zero and if v is equal to 100;
in this case, popcount_64 returns 8. The function popcount_128 is simple — if
popcount_64 has no bug, it returns the sum of the popcounts of its 64-bit unsigned
integer inputs v1 and v2.

int popcount_64 (long unsigned int v, int intro_bug) {
if ((intro_bug != 0) && (v == 100))
// Introduce a bug!
return (8);

else {
// Bug-free program
long unsigned int v1, v2;
v1 = (v & 0xFFFFFFFF); // v1: lower 32 bits of v
v2 = (v >> 32); // v2: upper 32 bits of v
return (popcount_32(v1) + popcount_32(v2));

}}

int popcount_128 (long unsigned int v1, long unsigned int v2,
int intro_bug) {

return (popcount_64(v1, intro_bug) +
popcount_64(v2, intro_bug));

}
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Inspection of the binary of the above functions shows that popcount_32, essen-
tially the most complex function in our program, is never called in the other functions;
GCC’s optimizations result in inlining two copies of the code for popcount_32 in
the binary for the function popcount_64. Such commonplace compiler optimiza-
tions make code proofs harder — the theorem popcount-32-correct can not be
used directly to prove the correctness of popcount_128 compositionally because of
differences in memory addresses, registers, etc.

Like popcount_32, we can reason about popcount_128 as well using our sym-
bolic execution framework. Again, there is no need of any supporting lemmas to prove
x86-popcount-128-correct; it is proved fully automatically in ~80s on a ma-
chine with Intel Xeon E31280 CPU @ 3.50GHz.

The theorem x86-popcount-128-correct states that at the end of execution
of our binary, where address #x400768 represents a call from the main program, if
intro_bug is 0, the register RAX will contain the sum of the popcounts of the inputs
v1 and v2, and the instruction pointer will point to the address following the initial call
instruction. v1 and v2 are specified as numeric symbolic objects representing 64-bit
integers. The variable intro_bug has been specified as a 32-bit integer because it has
been declared as an int in the C program. Note that the symbolic objects corresponding
to v1, v2, and intro_bug have interleaved bits — this provides an efficient BDD
ordering, resulting in a compact BDD representation for the symbolic objects. We omit
comments in x86-popcount-128-correct because it is syntactically similar to
x86-popcount-32-correct.

(def-gl-thm x86-popcount-128-correct
:hyp (and (natp v1)

(< v1 (expt 2 64))
(natp v2)
(< v2 (expt 2 64))
(equal intro_bug 0))

:concl (let* ((start-address #x400768)
(halt-address #x40076d)
(x86 (setup-for-popcount-run

nil start-address halt-address
0 *popcount-binary*))

(x86 (!rgfi *rdi* v1 x86))
(x86 (!rgfi *rsi* v2 x86))
(x86 (!rgfi *rdx* intro_bug x86))
(x86 (!rgfi *rsp* *2^45* x86))
(numIns 300)
(x86 (x86-run numIns x86)))

(and (equal (rgfi *rax* x86)
(+ (logcount v1) (logcount v2)))

(equal (rip x86) (+ 1 halt-address))))
:g-bindings
`((v1 (:g-number ,(gl-int 0 3 65)))
(v2 (:g-number ,(gl-int 1 3 65)))
(intro_bug (:g-number ,(gl-int 2 3 33)))))
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If, instead of the hypothesis (equal intro_bug 0) in x86-popcount-
128-correct, we had the hypothesis that intro_bug is a 32-bit unsigned inte-
ger, GL would fail to prove the theorem, producing helpful counterexamples (three, by
default) in the process. These counterexamples can help the user debug failed proofs
and formulate the correct theorem. The following counterexamples produced by GL
clearly indicate that v2 being unequal to 100 should be a pre-condition for the goal
formula to be a theorem.

Example 1, generated by assigning 0/NIL to all possible bits:
Assignment:
((V1 0) (V2 100) (INTRO_BUG 2147483648))

Example 2, generated by assigning 1/T to all possible bits:
Assignment:
((V1 18446744073709551615) (V2 100) (INTRO_BUG 4294967295))

Example 3, generated randomly:
Assignment:
((V1 10212762264297238869) (V2 100) (INTRO_BUG 2055358792))
...

GL::GLCP: Counterexamples found in main theorem; aborting
...

With the modified def-gl-thm (i.e., after adding (not (equal v2 100))
to the hypotheses), we again get three counterexamples, this time indicating that v1
should not be 100. This allows us to formulate and successfully prove the theorem with
the same goal formula as x86-popcount-128-correct, but with the following
hypotheses.

– v1 and v2 are 64-bit unsigned integers
– intro_bug is a 32-bit unsigned integer
– v1 and v2 should not be equal to 100.

We show this theorem, called x86-popcount-128-correct-debugging-
attempt, in Appendix A.3. This approach of debugging failed proofs using coun-
terexamples not only helps the user find obscure bugs in programs, but also allows the
discovery of different conditions under which the stated formula is a theorem.

Such automated proofs of non-trivial programs in an interactive theorem proving
environment are possible because of two important reasons:

– Capacity of GL’s Symbolic Engine: GL is an automatic procedure and there is a
limit to the capacity of its symbolic engine. However, this limit is generally much
higher as compared to the capacity of exhaustive testing. Though theorems like
x86-popcount-128-correctmay look straightforward, many large and com-
plicated logical definitions (see Appendix A.2) had to be executed with symbolic
data during their proofs. GL is able to perform such proofs because of its fast BDD
operations and efficient symbolic execution strategy. For example, GL can perform
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“actual” execution instead of symbolic execution if concrete data is available in the
statement of possible theorems.

– Efficient Data Structures: The choice of data structures needed to represent state
in a formal model influences the symbolic execution performance. For example,
all the elements of state in our previous X86 formal model [33] were logically
represented as linear lists. Given our very large memory model, the X86 state was a
structure that included an enormous list to represent the memory, and every read or
write operation involving the state required linear traversals of these lists. Hence,
it was impractical to use the GL framework to do code proofs on that model. Our
re-formalization of the state using abstract STOBJs [28] and efficient logical data
structures called records [34] enabled use of symbolic execution as an automated
proof procedure.

6 Conclusion and Future Work

We described our executable formal model of a significant subset of the X86 ISA and
demonstrated a method of automatically verifying some X86 binary programs. Our
work involves the verification of “real” X86 binaries; for example, the binaries produced
by compiling higher-level programs using the GCC/LLVM compiler. A notable point
of our work is that our formal model accurately represents a significant subset of the
X86 ISA, i.e., we do not simplify the semantics of the X86 instructions.

We use GL, an ACL2-based symbolic execution framework, to prove some binary
programs correct automatically. No lemma construction is needed in order to guide the
GL framework to perform these proofs. Also, apart from not requiring any significant
user expertise in constructing mathematical proofs, the benefit of being able to use GL
for proofs of interesting programs, like our example popcount program, is that we can
verify non-trivial pieces of X86 binary code oautomatically. Though we have used GL
to verify recursive programs like factorial and fibonacci, verification of straight line
code (with conditionals and procedure calls) is GL’s forte. Reasoning about general
programs with loops will require some intervention — a specification of the loop needs
to be provided. However, we can easily imagine using GL to verify subroutines of a
program that implements, for example, an encryption algorithm. Proof of correctness
of that entire encryption program can then be obtained compositionally by using tradi-
tional theorem proving techniques.

We use our symbolic execution framework to reason directly about the semantics of
binary programs; i.e., we use GL to reason about binary code that is embedded within
our ACL2-based X86 ISA model. The scope of our symbolic execution framework is
large; no manual intervention was needed to reason about our example popcount pro-
gram. The binary of the popcount program has 99 assembly instructions (around 400
bytes of binary code). Also, long and complicated logical definitions, like the step func-
tion of our formal model, were symbolically executed in order to reason about this pro-
gram. This is in contrast to other bit-blasting techniques that have a lower capacity; they
are usually employed to prove the correctness of small subgoals generated by verifica-
tion tools. In addition to the reduction of effort involved in code proofs, having such an
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automated verification procedure included within an interactive theorem prover speeds
up the proof development process. Moreover, our method of using symbolic execution
as a proof procedure for code proofs is independent of the ISA being modeled.

We will continue to develop a more complete X86 ISA model (more instructions
and modes of operation). We aim to verify “real” programs used in the industry (like
security protocols), and to use satisfiability techniques along with BDDs for symbolic
execution. We will explore mechanisms for speeding up and increasing the scope of
our framework for doing automated code proofs as well as to investigate ways of easily
deriving proofs of larger programs compositionally.
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A Appendix

A.1 ACL2 Syntax

In this section, we provide a very brief introduction to the ACL2 syntax to enable the
reader to go over the definitions listed in Appendix A.2 and A.3.

The ACL2 syntax is the same as Lisp syntax. Terms are written in the prefix notation.
For example, (- 4 3) represents the term 4 - 3. The keyword defun is used to
introduce a new function. The following is the ACL2 definition of the factorial function.
The fact function has one formal argument n and its body contains an if expression.
The “true” branch of the if expression produces 1 as the result and the “false” branch
is the product of n and a recursive call to fact with n-1 as its argument.

(defun fact (n)
(if (zp n)

1
(* n (fact (- n 1)))))

The macro let* is used for binding lexically scoped (local) variables. In the fol-
lowing example, the variable x is bound to 4 and y is bound to the product of x and 2,
resulting in 12 as output.

(let* ((x (+ 2 2))
(y (* x 2)))

(+ x y))

The macro b*, used later in the functions listed in this appendix, is a
generalization of let*. This macro b* is defined in the community book
books/tools/bstar.lisp.

There is extensive documentation [24] for the ACL2 system, and there are 1000s of
examples of ACL2 definitions and theorems in the ACL2 community books.

A.2 ACL2 Definitions of X86 ISA Model

X86 State. We use the ACL2 STOBJ mechanism to create a data structure to represent
the state of our X86 model. As can be seen by reading the definition (see below), we
have modeled the X86 state with a number of components. For example, the first com-
ponent listed, rgf, is an array of 16, 64-bit signed integers. The second component is
the instruction pointer, rip, is limited to 48 bits for current X86 implementations. The
flg component is a 64-bit value that models the various state flags (rflags) as defined
by the X86 architecture. The seg, str, ssr, ctr, dbg, cpl, and the msr represent various
parts of the X86 architecture that have to do with memory management, debugging,
privilege level, and the model-state registers. The ms field allows our X86 model to
represent erroneous events, such as illegal instructions. The final three fields are used to
implement a complete 52-bit, byte-addressable memory; this model allocates 16 MByte
pages on an as needed basis, and will keep allocating pages as long as the host system
can provide memory.
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(defstobj x86
(rgf :type (array (signed-byte 64)

(*64-bit-general-purpose-registers-len*))
:initially 0 :resizable nil)

(rip :type (signed-byte 48)
:initially 0)

(flg :type (unsigned-byte 64)
:initially 2)

(seg :type (array (unsigned-byte 16)
(*segment-register-names-len*))

:initially 0 :resizable nil)
(str :type (array (unsigned-byte 80)

(*gdtr-idtr-names-len*))
:initially 0 :resizable nil)

(ssr :type (array (unsigned-byte 16)
(*ldtr-tr-names-len*))

:initially 0 :resizable nil)
(ctr :type (array (unsigned-byte 64)

(*control-register-names-len*))
:initially 0 :resizable nil)

(dbg :type (array (unsigned-byte 64)
(*debug-register-names-len*))

:initially 0 :resizable nil)
(cpl :type (integer 0 3) :initially 0)
(msr :type (array (unsigned-byte 64)

(*model-specific-register-names-len*))
:initially 0 :resizable nil)

(ms :type t :initially nil)
(fault :type t :initially nil)
(mem-table :type (array (unsigned-byte 26)

(*mem-table-size*))
:initially 1 :resizable nil)

(mem-array :type (array (unsigned-byte 8)
(*initial-mem-array-length*))

:initially 0 :resizable t)
(mem-array-next-addr :type (integer 0 33554432)

:initially 0))

X86 Run Function. Our X86 top-level specification is a simple recursive function that
recurs when simulation time (n > 0) remains and there is no modeling error (the ms
field is empty).

(defun x86-run (n x86)
(if (or (zp n) (ms x86))

x86
(let ((x86 (x86-fetch-decode-execute x86)))

(x86-run (1- n) x86))))
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X86 Step Function. To decode and simulate any X86 instruction is a multi-step pro-
cess. Below, our x86-fetch-decode-execute function shows the steps our X86
specification uses to fetch an instruction. A X86 instruction can include up to four pre-
fix bytes; these bytes can modify the intent of a X86 instruction. Once the prefix bytes
are read (if any), then the X86 opcode is read. Depending on the opcode, additional
modifier (ModRM and SIB) bytes are collected. Finally, immediate data, if present, is
collected. Once all of this information is gathered, the function opcode-execute
is called to dispatch to the appropriate sub-routine to execute the instruction that was
fetched.

(defun x86-fetch-decode-execute (x86)
(b*
((ctx 'x86-fetch-decode-execute)

;; We start each function (just above) by saving its name;
;; this is used for returning errors. Next, we fetch the
;; (first part) of the instruction, processing any prefixes.

(start-rip (the (signed-byte 48) (rip x86)))
((when (<= *2^47* (+ 5 start-rip)))
(!!ms-fresh :start-rip-too-large start-rip))

((mv flg0 (the (unsigned-byte 59) prefixes) x86)
(get-prefixes start-rip 0 5 x86))

((when flg0)
(!!ms-fresh :memory-error-in-reading-prefixes flg0))

((the (unsigned-byte 8) opcode/rex/escape-byte)
(prefixes-slice :next-byte prefixes))

;; We determine the number (and length) of the prefixes.

(prefix-length (prefixes-slice :num-bytes prefixes))
((the (signed-byte 49) temp-rip)
(if (= 0 prefix-length)

(+ 1 start-rip)
(+ prefix-length start-rip 1)))

;; If rex-byte is present, collect it and get next byte.

((the (unsigned-byte 8) rex-byte)
(if (= (ash opcode/rex/escape-byte -4) 4)
opcode/rex/escape-byte
0))

;; Collect the first byte of instruction; at this point
;; all prefix bytes have been processed.

((mv flg1 (the (unsigned-byte 8) opcode/escape-byte) x86)
(if (int= 0 rex-byte)

(mv nil opcode/rex/escape-byte x86)



238 S. Goel and W.A. Hunt, Jr.

(rm08 temp-rip :x x86)))
((when flg1)
(!!ms-fresh :opcode/escape-byte-read-error flg1))

((the (signed-byte 49) temp-rip)
(if (int= rex-byte 0) temp-rip (1+ temp-rip)))

;; If present, process the ModRM byte.

(modr/m? (x86-one-byte-opcode-ModR/M-p opcode/escape-byte))
((mv flg2 modr/m x86)
(if modr/m? (rm08 temp-rip :x x86) (mv nil 0 x86)))

((when flg2)
(!!ms-fresh :modr/m-byte-read-error flg2))

((the (signed-byte 49) temp-rip)
(if modr/m? (1+ temp-rip) temp-rip))

((when (not (i48p temp-rip)))
(!!ms-fresh :temp-rip-too-large temp-rip))

;; If present, process the SIB byte.

(sib? (and modr/m? (x86-decode-SIB-p modr/m)))
((mv flg3 sib x86)
(if sib? (rm08 temp-rip :x x86) (mv nil 0 x86)))

((when flg3)
(!!ms-fresh :sib-byte-read-error flg3))

((the (signed-byte 49) temp-rip)
(if sib? (1+ temp-rip) temp-rip))

((when (not (valid-vm-rip-p temp-rip)))
(!!ms-fresh :virtual-address-error temp-rip)))

;; opcode-execute dispatches to an appropriate
;; instruction semantic function.

(opcode-execute start-rip temp-rip prefixes rex-byte
opcode/escape-byte modr/m sib x86)))

An X86 Semantic Function: CMPXCHG. We present the semantic function of the
X86 CMPXCHG instruction (covering two-byte opcodes 0F B0 and 0F B1); this
is one of the simplest X86-instruction semantic functions in our model. CMPXCHG
compares the value in the accumulator registers (AL, AX, EAX, or RAX) with the
destination operand. If the two values are equal, the source operand is loaded into the
destination operand. Otherwise, the destination operand is loaded into the accumulator
registers.
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Note that there are hundreds of X86 instructions, and therefore, there are a quite a
number of other functions like this that are used to specify other X86 instructions.

(defun x86-cmpxchg
(start-rip temp-rip prefixes rex-byte opcode modr/m sib x86)

;; Opcode: 0F B0: CMPXCHG r/m8, r8
;; Opcode: 0F B1: CMPXCHG r/m16/32/64, r16/32/64

(b*
((ctx 'x86-cmpxchg)
(lock (= *lock* (prefixes-slice :group-1-prefix prefixes)))
(r/m (mrm-r/m modr/m))
(mod (mrm-mod modr/m))
(reg (mrm-reg modr/m))

;; If the lock prefix is present and the destination is
;; not a memory operand, then cause the #UD exception.

((when (and lock (= mod #b11)))
(!!ms-fresh
:lock-prefix-but-destination-not-a-memory-operand
prefixes))

(p4 (= *addr-size-override*
(prefixes-slice :group-4-prefix prefixes)))

(select-byte-operand (= opcode #xB0))
(reg/mem-size (select-operand-size select-byte-operand

rex-byte nil prefixes))
(rAX (rgfi-size reg/mem-size *rax* rex-byte x86))

;; Fetch the first (destination) operand:

((mv flg0 reg/mem increment-RIP-by v-addr x86)
(x86-operand-from-modr/m-and-sib-bytes
reg/mem-size p4 temp-rip rex-byte r/m mod sib x86))

((when flg0)
(!!ms-fresh :x86-operand-from-modr/m-and-sib-bytes flg0))

(temp-rip (+ temp-rip increment-RIP-by))
((when (not (valid-vm-rip-p temp-rip)))
(!!ms-fresh :virtual-memory-error temp-rip))

;; Computing the flags and the result. The higher
;; 32-bits of the eflags register are RAZ (Read As Zero).

(eflags (flg x86))
((the (unsigned-byte 32) eflags)
(if (<= *2^32* eflags) (logand #xffffffff eflags) eflags))
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(raw-result (- reg/mem rAX))
(result (n-size reg/mem-size (- reg/mem rAX)))
(eflags
(the (unsigned-byte 32)

(eflags-for-x86-add/or/adc/sbb/and/sub/xor/cmp/test
reg/mem-size *OP-CMPXCHG* raw-result result
reg/mem rAX eflags)))

;; Update the x86 state:

((mv flg1 x86)
(if (= result 0) ;; rAX == reg/mem

;; Fetch the second operand and put it in the
;; destination operand.
(let ((register (rgfi-size reg/mem-size

(reg-index reg rex-byte *r*)
rex-byte x86)))

(x86-operand-to-reg/mem reg/mem-size register v-addr
rex-byte r/m mod x86))

;; rAX != reg/mem
;; Put the destination operand into the accumulator.
(let ((x86 (!rgfi-size reg/mem-size *rax*

reg/mem rex-byte x86)))
(mv nil x86))))

;; If flg1 is non-nil, we exit with no X86 state changes.

((when flg1)
(!!ms-fresh :x86-operand-to-reg/mem-error flg1))

(x86 (!flg eflags x86))
(x86 (!rip temp-rip x86)))

x86))

A.3 ACL2 Theorems of the Example Popcount Program

ACL2 Definition: Logcount
Below is the ACL2 definition for the logcount function. This function counts the
number of 1 bits in an integer. It first decides if the integer in question is positive or
negative; in the case of an negative integer, its input is first negated. This function op-
erates recursively, incrementing a count each time the current value isn’t even. Finally,
when the input is zero, it stops.

(defun logcount (x)
(cond ((zip x) 0)
((< x 0) (logcount (lognot x)))
((evenp x)
(logcount (nonnegative-integer-quotient x 2)))

(t (1+ (logcount (nonnegative-integer-quotient x 2))))))
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Popcount Theorem: Obtained from Debugging Failed Proofs
The following theorem was obtained by debugging failed proofs using counterexamples
produced by GL.

(def-gl-thm x86-popcount-128-correct-debugging-attempt
:hyp (and (natp v1)

(< v1 (expt 2 64))
(natp v2)
(< v2 (expt 2 64))
(natp intro_bug)
(< intro_bug (expt 2 32))
(not (equal v1 100))
(not (equal v2 100)))

:concl (let* ((start-address #x400768)
(halt-address #x40076d)
(x86 (setup-for-popcount-run

nil start-address halt-address
0 *popcount-binary*))

(x86 (!rgfi *rdi* v1 x86))
(x86 (!rgfi *rsi* v2 x86))
(x86 (!rgfi *rdx* intro_bug x86))
(x86 (!rgfi *rsp* *2^45* x86))
(numIns 300)
(x86 (x86-run numIns x86)))

(and (equal (rgfi *rax* x86)
(+ (logcount v1) (logcount v2)))

(equal (rip x86) (+ 1 halt-address))))
:g-bindings
`((v1 (:g-number ,(gl-int 0 3 65)))
(v2 (:g-number ,(gl-int 1 3 65)))
(intro_bug (:g-number ,(gl-int 2 3 33)))))
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Abstract. This work presents part of our verification effort to construct
a correct file system for Flash memory. As a blueprint we use UBIFS,
which is part of Linux. As all file systems in Linux, UBIFS implements
the Virtual Filesystem Switch (VFS) interface. VFS in turn implements
top-level POSIX operations. This paper bridges the gap between an ab-
stract specification of POSIX and a realistic model of VFS by ASM
refinement. The models and proofs are mechanized in the interactive the-
orem prover KIV. Algebraic directory trees are mapped to the pointer
structures of VFS using Separation Logic. We consider hard-links, file
handles and the partitioning of file content into pages.
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1 Introduction

The popularity of Flash memory as a storage technology has been increasing
constantly over the last years. It offers a couple of advantages compared to
magnetic storage: It is less susceptible to mechanical shock, consumes less energy
and read access is much faster. However, it does not support overwriting data
in-place. This limitation leads to significant complexity in the software accessing
Flash memory. One solution is a Flash translation layer (FTL) built into the
hardware, which emulates the behavior of magnetic storage. Embedded systems,
however, often contain “raw Flash”, which requires specific Flash file systems
(FFS for short) that deal with the memory’s write characteristics. A state-of-
the-art example is UBIFS [15], which is part of the Linux kernel.

The use of Flash memory in safety-critical applications leads to high costs of
failures and correspondingly to a demand for high reliability of the FFS imple-
mentation. As an example, an error in the software access to the Flash store of
the Mars Exploration Rover “Spirit” nearly ruined the mission [22]. In response,
Joshi and Holzmann [16] from the NASA JPL proposed in 2007 the verification
of an FFS as a pilot project of Hoare’s Verification Grand Challenge [14].

We are developing such a verified FFS as an implementation of the POSIX
file system interface [29], using UBIFS as a blueprint. The project is structured
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into layers, as (partially) visualized in Fig. 1. These correspond to the various
logical parts of the file system, and to different levels of abstraction.

POSIX specification 

VFS AFS 

UBIFS 

Fig. 1. Upper layers

The top level is an abstract formal model of the file
system interface as defined by the POSIX standard.
It serves as the specification of the functional require-
ments, i.e., what it means to create/remove a file/di-
rectory and how the contents of files are accessed. The
POSIX interface addresses files and directories by paths
and views files as a linear sequence of bytes. File system
objects are structured hierarchically as a tree. Directo-
ries correspond to the inner nodes of the tree, whereas
files are found at the leaf nodes.

The first contribution of this work is a formal POSIX model that supports all
essential file system operations.

Such high-level concepts are mapped to an efficient pointer-based data repre-
sentation in the file system. In Linux as well as in our approach this mapping
is realized by a Virtual Filesystem Switch (VFS). The analogous component in
Windows is named Installable File System (IFS). This layer implements generic
operations that are common to all file systems, e.g., mapping of file content to a
sparse array of pages, permission checks and management of open file handles.
VFS delegates lower-level operations to concrete file systems, such as UBIFS.

We have recently published a formal VFS model [6]. It contains an abstract
sub-specification AFS of the expected behavior of concrete file systems. The idea
is that AFS can be replaced by a concrete implementation as long as the latter
behaves as specified by AFS. The VFS model calls AFS through an internal
interface, visualized by the symbol in Fig. 1. A benefit of this approach is
that AFS is independent of the characteristics of Flash memory and may serve
as specification for traditional file systems as well, e.g., Ext2-4, ReiserFS or FAT.

Functional correctness is established by nested refinements (visualized as
dashed lines in Fig. 1). For instance, a proof of the topmost refinement im-
plies that the VFS model realizes the POSIX specification, and in particular
that input-/output behavior is preserved.

We describe such a proof in this paper, which is the second contribution.
This refinement is conceptually challenging because of subtle requirements of

the POSIX standard, and technically challenging because of the pointer struc-
tures and partitioning of file content into pages found in VFS. Models and proofs
are mechanized in the interactive theorem prover KIV [23] and can be found on
our website [7]. We also provide executable simulations (written manually in
Scala) that integrate into Linux via FUSE [28]. As a consequence of the verifi-
cation we can focus on the Flash File system’s internals in the future, namely
to refine AFS without further considering VFS. Formally, we refine AFS to
UBIFS (in several steps), which then automatically guarantees correctness of
VFS+UBIFS with respect to POSIX.

The text continues with a description of the approach in Sec. 2. Sections 3 and
4 describe the POSIX and VFS+AFS models; Sec. 5 formalizes the abstraction
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from VFS data structures to POSIX, Sec. 6 describes the proofs. We compare
to related work in each of these three sections individually. Finally, Sec. 7 draws
conclusions and points out ongoing and future work.

2 Scope and Approach

The purpose of this section is to give a high-level description of the approach.
We consider the following structural POSIX system-level operations: create,
mkdir, rmdir, link, unlink, and rename. File content can be accessed by the
operations open, close, read, write, and truncate. Finally, directory listings
and (abstract) metadata can be accessed by readdir, readmeta (= stat), and
writemeta (subsuming chmod/chown etc).

These operations and the data types occurring in parameters constitute the
signature of the system interface. Functionality is realized abstractly in the
POSIX model and “concretely” by the VFS, which delegates low-level modifica-
tions to some concrete file system abstracted by AFS. POSIX and VFS share a
common signature but have their own representation of the file system’s state.
By convention, we prefix operations with posix resp. vfs /afs to distinguish
between the different layers.

2.1 Formalism

Our specification language is based on Abstract State Machines [3] (ASMs). We
use algebraic specifications to axiomatize data types, and a weakest-precondition
calculus to verify properties.

We frequently use freely generated data types. For example, paths are defined
by two constructors: the constant ε denoting the empty path, and an infix oper-
ator / that adds a leading component.1 The corresponding selectors first and
rest retrieve the constructor’s arguments.

data Path = ε | / (first : String , rest : Path)

We overload the symbol / to add a trailing path component p/s resp. to con-
catenate two paths p/p′.

Besides free types, we use partial functions types τ1 �→ τ2 in this work. All
partial functions in this paper have a finite domain by construction as a non-free
data type from the function with empty domain ∅ and function update [ �→ ].
Partial function application f [a] uses square brackets. Removing a from the
domain of f is denoted by f − a. We use the abbreviation a ∈ f for a ∈ dom(f).

ASMs maintain a state as a vector of logical variables that store algebraically
defined data structures. The language features programming constructs such as

1 Paths are actually defined as an instance of algebraic lists Path := List〈String〉 plus
some renaming. This paper deviates from the KIV specifications in minor details to
aid readability. Such differences are noted on the web presentation.
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parallel (function) assignments (where f [a]� b abbreviates f � f [a �→ b]), con-
ditionals, loops, recursive procedures, and also nondeterministic choice. ASMs
are executable, provided that the nondeterminism is resolved somehow and the
algebraic operations on data types are executable.

An ASM M = ((OPi)i∈I , State, INIT) consists of operations OPi(in ; st , out)
that take an input in and the current state st : State, and produce an output
out and a modified state st ′. The semicolon in the parameter list separates
input parameters from reference parameters: assignments to the latter inside
an operation are visible to the caller. Predicate INIT ⊆ State specifies a set of
initial states. A run of an ASM starts in an initial state and repeatedly executes
operations.

A “concrete” machine C = ((COPi)i∈I ,CState, CINIT) refines an “abstract”
machine A = ((AOPi)i∈I ,AState, AINIT) if for each run of C there is a matching
run of A with the same inputs and outputs. Refinement can be proven by forward
simulation with a simulation relation R ⊆ AState × CState.

The calculus is based on sequents Γ � Δ ≡ ∀x.
∧
Γ →

∨
Δ for a list of

assumptions Γ , potential conclusions Δ and free variables of the sequent x. We
prove properties about ASM operations using the weakest precondition calculus
implemented by KIV. It offers three modalities: the weakest precondition 〈|p|〉ϕ
of p with respect to ϕ (total correctness, all runs of p starting in the current state
terminate in a state satisfying ϕ); the weakest liberal precondition [p]ϕ (partial
correctness); and 〈p〉ϕ ≡ ¬[p]¬ϕ that asserts the existence of some terminating
run of p with a final state satisfying ϕ. For deterministic programs, 〈| |〉 and
〈 〉 are equivalent. The calculus symbolically executes programs in modalities,
reducing goals to predicate logic formulas.

The logic can express relationships between multiple programs, such as pro-
gram inclusion or equivalence. In particular, proof obligations for data refinement
[13] (as an instance of ASM refinement) can be formalized. Concretely, in this
work we prove

initialization: (1)

CINIT(cs) � ∃as . AINIT(as) ∧ R(as , cs)

correctness: (2)

R(as , cs) � 〈|COPi(in; cs , out1)|〉〈AOPi(in ; as , out2)〉 (R(as , cs) ∧ out1 = out2)

for A = POSIX and C = VFS+AFS. These assertions establish a forward sim-
ulation from commuting 1:1 diagrams. Intuitively, “correctness” asserts that for
each run of the concrete operation there is a matching abstract run with the same
output, i.e., that the behavior of the concrete machine is covered by the speci-
fication/abstract machine. The predicate R relates a concrete state cs : CState
to an abstract state as : AState. It is composed of the invariants of the two
machines and an abstraction relation

R(as , cs) ↔ CINV(cs) ∧ AINV(as) ∧ ABS(as , cs)

Background about ASM refinement and its relation to other refinement
approaches can be found in [2,25].
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2.2 Separation Logic

Separation Logic [24] is a logic designed to reason about pointer structures and
destructive updates. It is particularly well-suited for structures with limited alias-
ing, such as the representation of the directory tree in VFS/AFS (Sec. 4).

Formulas in the logic are assertions ϕ : Heap → B about the shape of heaps,
which are mappings from locations to values, Heap := (Loc �→ Val). Heap asser-
tions are built from the constant emp = (λh.h = ∅), the maplet l �→ v describing
singleton heaps, and the separating conjunction ϕ1 ∗ ϕ2 that asserts that the
heap can be split into two disjoint parts satisfying ϕ1 resp. ϕ2.

Ordinary formulas, connectives and quantifiers are lifted over heaps, so that
they can be used in separation logic assertions.

We have formalized separation logic as a straight-forward shallow embedding
into higher-order logic, similar to [21,30]. For this work, we instantiate the sorts
Loc and Val to the pointer structures used in VFS.

In our approach, the heap h is explicitly given as an ordinary program vari-
able. This has the consequence that the frame rule for heap-modular reasoning is
not generally valid. A counterexample is the non-local assignment h := ∅. Inter-
estingly, this does not pose a problem in practice, as one can generalize contracts
by a fresh placeholder variable f for the context, i.e., proving the frame rule for a
particular contract for program p as (ϕ∗ f)(h) � 〈p〉(ψ ∗ f)(h). By the semantics
of sequents, f is universally quantified and can be instantiated arbitrarily.

3 POSIX Specification

This section defines the state, operations and invariants of the POSIX ASM.

3.1 Data Structures

The file system state consists of a directory tree t, a file store fs , and a registry
of open file handles oh. Files are referenced by file identifiers of the abstract sort
Fid . Open files are referenced by natural numbers (“file descriptors” in Unix).

state vars t : Tree, fs : Fid �→ FData, oh : N �→ Handle

The directory tree is specified as an algebraic data type Tree with two construc-
tors: File nodes (fnode) form the leaves and store the identifier of the corre-
sponding file. Directory nodes (dnode) make up the internal nodes and store the
directory entries as a mapping from names to the respective subtrees.

data Tree = fnode(fid : Fid)

| dnode(meta : Meta, entries : String �→ Tree)

The test t.isdir yields whether tree t is a dnode. The abstract sort Meta is
a placeholder for any further associated information. We postulate some selec-
tors for md : Meta, to retrieve for example read, write and execute permissions
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pr(u,md), pw(u,md), px(u,md) for some unspecified user u : User . This formal-
ization of permissions has been taken from [12].

Files are given by the data type FData that stores the content as a list of
bytes, and—analogously to directories—some associated metadata.

data FData = fdata(meta : Meta, content : List〈Byte〉)

File handles store a file identifier fid, and keep track of the current read/write
offset pos in bytes, and a mode, which can be read-only, write-only or read-write.

data Handle = handle(fid : Fid , pos : N, mode : Mode)

data Mode = r | w | rw

The initial state is given by an empty root directory and no files:

initial state t = dnode(md , ∅) ∧ fs = ∅ ∧ oh = ∅ (3)

A path p is valid in a directory tree t, denoted by p ∈ t, if starting from the
root t the path can be followed recursively such that each component is mapped
by the respective subdirectory. Validity is defined by structural recursion over
the path, where ε denotes the empty path, s/p denotes a path starting with
component s : String and remainder p, and ε ∈ t always holds.

s/p ∈ fnode(fid) ↔ false

s/p ∈ dnode(md , st) ↔ (s ∈ st ∧ p ∈ st [s])

Lookup of a valid path p retrieves the respective subtree of t, denoted by t[p]. It
is defined similarly to validity of paths:

t[ε] = t and dnode(md , st)[s/p] = st [s][p] if s ∈ st

It follows that validity of paths is prefix-closed, i.e., if p/p′ ∈ t then p ∈ t,
furthermore t[p] is a directory node if p′ �= ε.

The expression t[p/s �� t′] denotes the tree t with an additional subtree t′ at
path p/s. It is only specified for p ∈ t, i.e., it only adds the last component of the
path to the tree. A converse function t− p denotes the tree t without the whole
subtree at path p. It is only specified for p ∈ t. Note that both modifications are
non-destructive and construct new trees. Let the assignment t[p] � t′ abbreviate
t � t[p �� t′], analogously to function update.

Validity, lookup, insertion and deletion of paths compose with / , e.g.:

p/p′ ∈ t ↔ (t ∈ p ∧ p′ ∈ t[p]) and t[p/p′] = t[p][p′] if p ∈ t

3.2 Operations and Error Handling

Operations realize the POSIX specification by using the algebraic functions on
trees. Additionally, they perform extensive error checks to guard the file system
against unintended or malicious calls to operations. Specifically, all operations
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are total (defined for all possible values of input parameters). Nevertheless, we
use the term “precondition” to characterize valid inputs such that an operation
succeeds. Violation of preconditions leads to an error without modifying the
internal state. The POSIX model is presented in Fig. 4—omitting some generic
error handling code at the beginning of each operation, which we explain by
means of the create operation fully shown in Fig. 2.

Error handling is nondeterministic. It is possible that two errors conditions
occur simultaneously, e.g., the whole path does not exist, or permissions to tra-
verse an existing prefix are violated. The POSIX model does not restrict the
order in which different conjuncts of preconditions are checked. Preconditions
are defined as predicates pre-op(in, err) that specify possible error codes for an
input in given to the operation op. An implementation just has to satisfy the
constraints imposed by these predicates.

Technically, an appropriate error code err ′ is nondeterministically chosen and
assigned to the output variable err . If the operation is determined to succeed
(implying a valid input) the body of posix create picks a fresh file identifier
fid for the new file, updates the directory tree with the corresponding file node
and extends the file store by an empty file with the given initial metadata md .
The operation is visualized in Fig. 3. The grey subtree corresponds to the par-
ent directory t[parent(p)]; the newly created file node and associated data are
denoted by the dashed triangle and box respectively.

Precondition-predicates contribute a significant part of the specification. They
are defined by case distinction on possible error codes, as shown below. Certain
errors, such as hardware failure or memory allocation (denoted by EIO, . . .) are
not restricted, i.e. they may occur anytime. Note that an implementation must
thus recover from such situations to the previous abstract state.

pre-create(p,md , t, fs , e)

↔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p �∈ t ∧ parent(p) ∈ t ∧ t[parent(p)].isdir, if e = ESUCCESS

p ∈ t, if e = EEXIST

true, if e ∈ {EIO, . . .}
. . .

The ASM code relies on several helpers that operate on lists: resize(len; l)
adjusts the size of list l to len, possibly padding l with zeroes at the end; copy
and splice copy len elements of the source list src starting from offset spos into
list dst at offset dpos . The latter operation corresponds exactly to the semantics
of the POSIX write operation, i.e., it may extend dst at the end as shown below.
The length of a list l is denoted by # l.

splice(src, spos , dpos , len; dst)
if len �= 0 then

if dpos + len < # dst then resize(dpos + len; dst)
copy(src, spos , dpos , len; dst)
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As a further twist the operations posix read and posix write may actually
process less than len bytes and still succeed, either because the concrete imple-
mentation runs out of disk-space during the write, or due to an intermediate
low-level error. This is modeled by choose n with n < len in len � n.

Handles may refer to files that are not referenced by the tree any more, subse-
quently called orphans. This facility is actually exploited by applications to hide
temporary files (e.g, MySQL caches, Apache locks) and during system/package
updates.

3.3 Invariants

The POSIX state t, fs , oh has two explicit invariants. The easy one is simply that
the root must be a directory (t.isdir). The second invariant states that the set
of file identifiers referenced by t or oh is equal to dom(fs). It guarantees that for
any fid in use, the associated file data in fs is available, and that fs contains no
garbage. Given an overloaded function

fids : Tree → Multiset〈Fid〉 fids : (N �→ Handle) → Set〈Fid〉

the invariant can be defined formally:

invariant dom(fs) = {fid | fid ∈ fids(t)} ∪ fids(oh)︸ ︷︷ ︸
fids(t,oh)

(4)

with fids(oh) = {oh[n].fid | n ∈ oh} and

fids(fnode(fid)) = {fid} fids(dnode(md , st)) =
⊎
s∈st

fids(st [s])

where + denotes multiset sum. Multisets are preferred over ordinary sets for the
file identifiers in the tree for two reasons. On one hand, the number of occurrences
of fid in the set fids(t) correlates to the number of hard links to a file. On the
other hand, the effect of insertion or removal of a subtree on fids directly maps
to + respectively \. The proofs for invariant (4) are straightforward. The critical
operations are unlink, rename, and close, that need to check whether the last
link was removed and delete the file content if so.

3.4 Related Work

There exist several file system models with different scope and data structures,
with a degree of abstraction similar to our POSIX model. These approaches
typically make strong simplifications.

The approach to formalize a POSIX file system with an algebraic tree has
been used previously only by Heisel [11] to evaluate specification languages and
specification reuse.

Two other approaches occur in related models. In [19,12,8] the file system is
specified as a mapping from paths to directories and files. This comes at the
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posix create(p,md ; err)
choose err ′

with pre-create(p,md , t, fs, err ′)
in err � err ′

if err = ESUCCESS then

choose fid with fid �∈ fs
in t[p] � fnode(fid)

fs[fid ] � fdata(md , 〈〉)

Fig. 2. POSIX create operation

path lookup 

t 

fs 

Fig. 3. FS tree

posix mkdir(p,md ; err)
t[p] � dnode(md , ∅)

posix rmdir(p; err)
t � t− p

posix link(p1, p2; err)
let fid = t[p1].fid
in t[p2] � fnode(fid)

posix unlink(p; err)
let fid = t[p].fid
in t � t− p

if fid �∈ fids(t,oh)
then fs � fs − fid

posix rename(p1, p2; err)
let t1 = t[p1], t2 = t[p2]

ex = p2 ∈ t
in t � t− p2

t[p2] � t1
if ex ∧ ¬ t2.isdir
∧ t2.fid �∈ fids(t, oh)

then fs � fs − t2.fid

posix truncate(p, len; err)
let fid = t[p].fid
in resize(len ; fs[fid ].content)

posix readdir(p; names, err)
names � dom(t[p].entries)

posix open(p,mode; fd , err)
let fid = t[p].fid
in choose n with n �∈ oh
in fd � n

oh [fd ] � handle(fid , 0,mode)

posix close(fd ; err)
let fid = oh[fd ].fid
in oh � oh − fd

if fid �∈ fids(t, oh)
then fs � fs − fid

posix read(fd ; buf , len, err)
let fid = oh[fd ].fid

pos = oh[fd ].pos
in choose n with n ≤ len

in len � n
copy(fs [fid ].content, pos , 0, len; buf )
oh [fd ].pos � pos + len

posix write(fd , buf ; len, err)
let fid = oh[fd ].fid

pos = oh[fd ].pos
in choose n with n ≤ len

in len � n
splice(buf , 0, pos , len; fs[fid ].content)
oh [fd ].pos � pos + len

Fig. 4. POSIX operations
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cost of an extra invariant that path validity is prefix-closed, which holds by
construction in our model. However, only Hesselink and Lali [12] actually verify
that it is preserved by operations.

Of these three models, only the one of Morgan and Sufrin [19] supports hard-
links, using file identifiers as we do. In [12], equivalence classes of paths are
suggested as an alternative solution. We are not aware of an attempt to realize
this idea, though it would be interesting.

Damchoom et al. [5], in contrast, formalize the hierarchical structure by parent
pointers with an acyclicity invariant. Hard links are inherently not supported
by this design. We think that this approach is too different from the intuitive
understanding of a file system to serve as top-level specification.

Morgan and Sufrin’s work [19] contains a minor error (also found in [17,9]):
they do not specify an equivalent of the test len �= 0 in splice (Sec. 3.2), which
may result in overly large files. The corresponding requirement in the POSIX
standard [29] states that [..] if nbytes [=len] is zero [..] the write() function shall
return zero and have no other results.

Open file handles have not been mechanized before, although these are spec-
ified on paper in [19], including the possibility of orphaned files.

Preconditions are treated similarly to [12], i.e., operations must not modify the
state on errors. Ferreira et al [8] also have a comprehensive error specification
in their POSIX-style specification, however, they fix the order of checks and
allow arbitrary behavior on errors in their refinement proof obligations. To our
knowledge, underspecified hardware failures are not admitted in related work.

4 VFS and AFS Models

We give a short overview over the interplay between VFS and AFS and how
generic file system aspects are separated from FS specific concerns. For details
not covered here the reader is referred to [6] and the web presentation [7].

4.1 Interplay

The task of the VFS layer is to break down high-level POSIX operations to
several calls of AFS operations. Fig. 5 visualizes a typical sequence for structural
operations like vfs create. In this case, it relies on three operations provided
by the file system implementation, namely

1) lookup of the target of a single edge in the graph (afs lookup),
2) retrieve the access permissions at each encountered node (afs iget),
3) and finally the creation of the file.

Since many operations rely on path lookup, it is implemented as a subroutine
vfs walk that repeatedly performs steps 1) and 2). Figure 6 visualizes the rep-
resentation of the file system state and effect of the operation. Analogously to
Fig. 3, the parent directory is shaded in grey and the new parts are indicated
by dashed lines. The cloud-shaped symbol summarizes the remaining directories
and files.



252 G. Ernst et al.

The interface between VFS and AFS (resp. the concrete file system) is defined
in terms of three communication data structures. Inodes (“Index Nodes”) cor-
respond to files and directories. They are identified by inode numbers ino : Ino
and store some metadata such as permissions but also size information and the
number of hard-links. Dentries (“Directory Entries”) correspond to the link be-
tween a parent directory and the inode of an entry. They contain the target
inode number and a file/directory name. The content of files is partitioned into
uniformly sized pages, which are sequences of bytes. A concrete implementation,
as well as AFS, maps these to some internal state and on-disk structures. This
approach decouples VFS from the file system, which is essential for modularity.

VFS AFS 

vfs_op 

afs_lookup 

afs_iget 

afs_op 

... 

vfs_walk 

Fig. 5. VFS/AFS interplay

“tmp” 

“test” 

path lookup 

dirs 

files 

Fig. 6. FS as pointer structure

4.2 State

Although the VFS code is independent of the AFS state, its behavior is not. To
define the abstraction relation (Sec. 5) and to prove the refinement (Sec. 6), we
need to look into the AFS state, which is a pointer based acyclic graph with
forward links. AFS keeps directories and files in two stores (partial functions)
with disjoint domains, mapping inode numbers to the respective objects:

state vars dirs : Ino �→ Dir , files : Ino �→ File where Ino , N

The separation is motivated by the distinction into structural and content mod-
ifications: the former will affect mainly dirs while the latter will affect only files .

Directory entries are contained in the parent directory, likewise, pages are
contained in the file object they belong to:

data Dir = dir(meta : Meta, entries : String �→ Ino)

data File = file(meta : Meta , size : N, pages : N �→ Page) where

type Page = ListPAGE SIZE〈Byte〉

Inode numbers ino ∈ dirs or ino ∈ files are called allocated, they refer to valid
directories resp. files. The pages of a file need not to be contiguous, there may be
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holes in a file that implicitly contain zeroes. A function links(ino, dirs) returns
a set of pairs (p ino, name) such that dirs [p ino].entries[name] = ino

The VFS state consists of open file handles that are equivalent to the ones in
POSIX:

state var oh : N �→ Handle, where

data Handle = handle(ino : Ino, pos : N, mode : Mode)

The initial state is given by an empty root directory with a fixed inode number
ROOT INO and no files:

initial state dirs = [ROOT INO �→ dir(md , ∅)] ∧ fs = ∅ ∧ oh = ∅ (5)

4.3 Operations

For each POSIX operation there is a corresponding VFS operation with the same
signature, implementing the desired functionality, e.g. vfs create(p,md; err).
Subroutine vfs walk is shown in Fig. 7, as well as afs create. Calls to afs iget

occur during the permission-check in vfs maylookup. On success, vfs walk es-
tablishes validity of a path q (= parent(p) for vfs create), expressed as

vfs walk post: err = ESUCCESS→ path(q, p ino, ino, dirs , files)

The predicate path defined recursively on the path by the axioms

path(ε, p ino, ino, dirs , files) ↔ p ino = ino ∧ ino ∈ (dirs ∪ files)

path(s/p, p ino, ino, dirs , files) ↔ p ino ∈ dirs ∧ s ∈ si

∧ path(p, si [s], ino, dirs , files)

where si abbreviates dirs [p ino].entries.
An overloaded version path(p, p ino, dirs , files) hides ino by existential quantifi-
cation.

vfs walk(q; ino, err)
err � ESUCCESS

while q �= ε ∧ err = ESUCCESS do

vfs maylookup(ino; err )
if err = ESUCCESS then

let dent = negdentry(q.first)
in afs lookup(ino; dent , err)

if err = ESUCCESS then

ino � dent .name
q � q.rest

afs create(p ino,md ; dent , err)
if p ino ∈ dirs
∧ dent .isnegdentry
∧ dent .name �∈ dirs [p ino].entries

then choose ino
with ino �∈ dirs ∧ ino �∈ files ∧ ino �= 0
in dirs [p ino].entries[dent .name] � ino

files [ino] � file(md , 0, ∅)
dent � dentry(dent .name, ino)
err � ESUCCESS

Fig. 7. VFS create operation and path walk
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The VFS read and write operations break file access down to a number of
individual page reads resp. writes in a loop (Fig. 8). It writes at most end−start
bytes of buf to the file specified by inode.ino, beginning at file offset start (in
bytes); total counts the number of bytes already written.

The body of the write loop, vfs write block (Fig. 9), unifies partial writes to
the first and last page alongside writes of entire pages, in order to avoid code for
these special cases and intermediate assertions in the verification. The operation
afs readpage returns page number pageno of the file inode numbered inode.ino
if that page is stored. Otherwise, an empty page is returned. The relevant part
of buf is copied into the page and the page is written back.

Note that less than end − start bytes may be written overall, since the loop
is aborted as soon as an error is returned by AFS. Such an error is recovered by
the test for total �= 0 in Fig. 8, and—if necessary—the file size is adjusted to the
number of bytes actually written.

...

let start = oh[fid ].pos, end = start + len, total = 0, done = false in

while ¬ done ∧ err = ESUCCESS do

vfs write block(start , end , inode; done , buf , total , err)
if total �= 0 then err � ESUCCESS

if err = ESUCCESS ∧ inode.size < start + total then

afs truncate(inode .ino, start + total ; err)

Fig. 8. VFS write operation (omitting error handling)

vfs write block(start , end , inode, buf , dirs; total , done ,files, err )
let pageno = (start + total ) / PAGE SIZE // integer division

offset = (start + total ) % PAGE SIZE // and modulo
page = emptypage

in // bytes to write in this iteration
let n = min(end − (start + total ), // write size boundary

PAGE SIZE − offset) in // current page boundary
if n �= 0 then

afs readpage(inode .ino, pageno, dirs, files; page , err)
if err = ESUCCESS then

copy(buf , total , offset , n; page)
afs writepage(inode .ino, pageno, page , dirs;files , err)
total � total + n

else done � true

Fig. 9. VFS code to write a partial page

4.4 Related Work

Galloway et al. [10] abstract the existing Linux VFS code to a SPIN model to
check correct usage of locks and reference counters. Work with similar focus that
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directly checks the C source code is [20,31]. However, these approaches limit
themselves to specific properties that are weaker than functional correctness
(e.g., memory safety) or cover concepts orthogonal to this work (e.g., correct
usage of locks).

Reading and writing files at byte-level has been addressed in [1,17]. We com-
pare to this work in more detail in Sec. 6.3.

To our knowledge, our model [6] is the first one separating common function-
ality (VFS) and file system specific parts (AFS) with the goal of full functional
verification.

5 Abstraction Relation

The abstraction relation ABS is defined as

ABS(t, fs , oh1, dirs , files , oh2)

↔ fs = fs(files) ∧ tree(t, ROOT INO)(dirs) ∧ oh1 = oh2

where fs : (Ino �→ File) → (Fid �→ File) specifies the abstract file store fs
and tree : Tree × Ino → ((Ino �→ Dir) → B) abstracts the pointer structure
with root ROOT INO to the directory tree t using Separation Logic. By defining
Fid := Ino, open file handles can be mapped by identity. This section formally
defines tree and fs and states several key lemmas connecting the abstract and
concrete states.

5.1 Directory Abstraction

The directory tree is mapped to the store of directories dirs , instantiating the
separation logic theory from Sec. 2.2 with Loc := Ino and Val := Dir . We define
the predicate tree(t, ino) by structural recursion on the tree. The idea is that
whenever tree(t, ino)(dirs) holds, ino is the number of the root inode of a file
system tree in dirs that corresponds to t.

tree(fnode(fid), ino) = (emp ∧ ino = fid) (6)

tree(dnode(md , st), ino) = (7)

∃ si . dom(si) = dom(st) ∧ ino �→ dir(md , si) ∗ �
s∈st

tree(st [s], si [s])

Assertion (6) for file nodes requires that the inode number corresponds to the
fid of the node and that the remaining part of the heap is empty.

Assertion (7) for directory nodes requires a corresponding directory in dirs
that has the same metadata and corresponding directory entries si. The iter-
ated separating conjunction � recursively asserts the abstraction relation for
all subtrees st [s] to children si [s] in pairwise disjoints parts of dirs .

One can show by induction on p that tree(t, ino)(dirs) implies

path(p, ino, dirs , files) ↔ p ∈ t
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We furthermore define the assertion tree|p(t, ino1, ino2)(dirs) that cuts out the
subtree with root ino2 at path p. Equality (8) encodes one main reasoning step
for the proofs. It allows us to unfold the directory that is modified by an opera-
tion, given postcondition path(p, ino1, ino2, dirs , files) of vfs walk

tree(t, ino1)(dirs) ↔ (tree|p(t, ino1, ino2) ∗ tree(t[p], ino2))(dirs) (8)

Another critical lemma discards algebraic tree modifications if p is a (not nec-
essarily strict) prefix of q:

q = p/p′ → tree|p(t[q �� t′], ino1, ino2) = tree|p(t, ino1, ino2) (9)

Finally, the abstraction implies the following equivalence, which ensures correct
deletion of file content in close, unlink and rename:

fid �∈ fids(t) ↔ links(ino, dirs) = ∅ for ino = fid

5.2 File Abstraction

The abstract file store is defined for each fid ∈ files, fid = ino with files [ino] =
file(md , size, pages) by the extensional equation

fs(files)[fid ] = fdata(md , content(pages) to size)

where content : (N �→ Page) → Stream〈Byte〉 assembles a stream of bytes from
the pages of a file. The abstract file must store the finite prefix of length size
of that stream. Streams σ : Stream〈α〉 can either be finite (a list) or infinite (a
total function from natural numbers to values)

type Stream〈α〉 = List〈α〉 + (N → α)

with a function #σ : N + {∞} to retrieve the length of a stream σ, prefix and
postfix selectors σ to n resp. σ from n (defined for n ≤ # σ), and concatena-
tion σ1 ++ σ2.

The abstraction to streams eliminates a lot of reasoning about list bounds
and many case distinctions that would otherwise be necessary in definitions
and proofs. In particular it simplifies the invariants of the loops in operations
vfs read and vfs write, see Sec. 6.2.

We define the content of a file as an infinite stream with trailing zeroes beyond
the end of the file:

content(pages) = λn. getpage(pages, n/PAGE SIZE)[n%PAGE SIZE]

getpage(pages ,m) = if m ∈ pages then pages [m] else 〈0, . . .〉

6 Proofs

Proof obligation “initialization” (1) is trivial: (5) implies (3) for the same meta-
data md of the root directory and all invariants hold.
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Proof obligation “correctness” (2) is established by symbolic execution of the
VFS operation, which yields a state dirs ′, files ′, oh ′

1, out1, followed by symbolic
execution of the POSIX operation to construct a matching witness run with a
final state t′, fs ′, oh ′

2, out2.
During symbolic execution, whenever the VFS chooses some value by the left

rule for 〈| |〉 in (10), the POSIX is free to choose the same value by the existential
quantifier in the right rule for 〈 〉 in (10).

� ∀x.ϕ(x) → 〈|p|〉ψ � ∃x.ϕ(x)
� 〈|choose x with ϕ(x) in p|〉ψ

� ∃x.ϕ(x) ∧ 〈p〉ψ
� 〈choose x with ϕ(x) in p〉ψ

(10)

The error code err′ selected by POSIX is determined this way, as well as e.g. the
fid in in the operation create in Fig. 2 corresponding to the new inode number
ino picked in Fig. 7.

The predicate logic goals resulting from symbolic execution have the form

Γ � R(t′, fs ′, oh ′
1, dirs

′, files ′, oh ′
2) ∧ out1 = out2

where Γ = R(t, fs , oh1, dirs , files , oh2), . . . contains the initial instance of the
simulation relation, as well as preconditions and other information that has been
gathered during symbolic execution (e.g., results of the tests in conditionals and
subroutine postconditions). The goals reduce to two core proof obligations:

directories: tree(t, ROOT INO)(dirs), Γ � tree(t′, ROOT INO)(dirs ′)
files: fs = fs(files), Γ � fs ′ = fs(files ′)

6.1 Proof Strategy for Directories

Two types of modifications to the directory tree occur: insertions t′ = t[p �� . . .]
and deletions t′ = t − p at a path p. These correspond to a local modifica-
tion of some directory dirs ′ = dirs [ino �→ dir(md ′, si ′)] (for some new meta-
data md ′ and directory entries si ′) resp. dirs ′ = dirs − ino, where ino is found
at parent(p).

The proof strategy is determined by the symbolic execution rules for assign-
ment and deallocation. The notation ψh′

h denotes renaming of the heap h to
a fresh variable h′ representing the updated heap in the remaining program
modality resp. postcondition ψ.

(l �→ v ∗ ϕ)(h′) � ψh′
h

assign-h
(l �→ ∗ ϕ)(h) � 〈h[l] := v〉ψ

(ϕ)(h′) � ψh′
h

dealloc
(l �→ ∗ ϕ)(h) � 〈h := h− l〉ψ

The first step is to unfold the tree by (8) and (7) so that the maplet for ino
is explicit and the assignment can be applied, propagating the assertion to the
new directory store dirs ′. The dnode predicate for ino is restored wrt. the new
subdirectories si ′, e.g., by introducing an additional fnode assertion in the proof
for create. The context tree|p is rewritten to t′ as well by (9) (applied from
right to left), so that the whole abstraction can be folded by reverse-applying
(8). Most of these steps are automated by rewrite rules.
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6.2 Proof Strategy for Files

For ino = fid and given σ = content(pages) the following two top-level equali-
ties promote the concrete modification through the abstraction fs:

fs(files [ino �→ file(size,md , pages)]) = fs(files)[fid �→ fdata(md , σ to size)]

fs(files − ino) = fs(files)− fid

It remains to establish that σ to size matches the abstract operation, which is
trivial for create (σ to 0 = 〈〉) and difficult for write because of the loop in
VFS, see Fig. 9.

The loop invariant for writing states that the file content can be decomposed
into parts of the initial file content(pages0) at the beginning and at the end,
with data from the buffer in between:

write inv: content(pages) = content(pages0) to start (11)

++ buf to total

++ content(pages0) from (start + total)

The key idea behind the proofs to propagate the invariant through the loop is
to normalize all terms of type stream to a representation with ++. For example,
the effect of afs writepage is captured by the equality

content(pages [pageno �→ page])

= content(pages) to (pageno ∗ PAGE SIZE)

++ page

++ content(pages) from (pageno ∗ (PAGE SIZE+ 1))

A similar theorem exists for copy(buf , total , offset , n; page). Equation (11) is
then restored by distribution lemmas such as (σ1 ++ σ2) from n = σ2 from

(n− #σ1) if n ≥ # σ1, and by cancellation of leading stream components of both
sides of the equation (σ ++ σ1 = σ ++ σ2) ↔ σ1 = σ2 for finite σ. Finally, the
loop invariant is mapped to the respective abstract POSIX operation.

Compared to the canonical alternative—a formulation of the loop invariants
with splice (resp. copy for reading)—our approach is considerably more el-
egant: Invariant (11) does not need to mention the “current” size of the file,
which would lead to case distinctions whether the file needs to grow. Such case
distinctions (also found in max) produce a quadratic number of cases in the proof
as one needs to consider the previous and the new version of the invariant.

6.3 Related Work

Hesselink and Lali [12] refine the mapping from paths to files to a pointer-based
tree that is structurally similar to our AFS model. Their abstraction function
is a point-wise comparison on path lookup. Our verification bridges a wider
conceptual gap, since we start with a more abstract data structure (algebraic
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tree) and our VFS model is closer to a real implementation (e.g., uses a while-
loop for path lookup, separates AFS). We have specified and verified additional
operations, namely, access to files via file handles and the operations read, write
and truncate.

Damchoom et al. [5] introduce several concepts such as the distinction between
files and directories and permissions by small refinement steps. These aspects
are covered by our POSIX model, except that their model is more detailed
wrt. metadata (file owners, timestamps). Furthermore, in [4] the same authors
decompose file write into parallel atomic updates of single pages, though not
down to bytes.

Arkoudas et al. [1] address reading and writing of files in isolation (without file
handles). Their model of file content is similar to ours (i.e., non-atomic pages).
They prove correctness of read and write with respect to an abstract POSIX-
style specification. However, their file system interface allows only to access single
bytes at a time, which is a considerable simplification.

The work of Kang and Jackson [17] is closest to our work with respect to
read and write—it provides the same interface (buffer, offset, length). However,
their model only deals with file content but not with directory trees or file
handles. They check correctness with respect to an abstract specification for
small bounded models. In comparison, their read and write algorithm is less
practical than ours, because it relies on an explicit representation of a list of
blocks that needs to be modified during an operation.

The VeriFast tool2, which is based on Separation Logic, ships with some
examples for binary trees, in particular, a solution to the VerifyThis competition3

that specifies an equivalent to tree|p for binary trees. Finally, [18] is a nice
application of Separation Logic to the verification of B+ trees in the Coq prover.

7 Discussion and Conclusions

We have presented a formal specification of the POSIX file system interface,
and a verified refinement to a formal model of a Virtual Filesystem Switch as a
major step in the construction of a verified file system for Flash memory. As a
consequence we can focus on the flash specific aspects in the future.

The different models have been developed more or less simultaneously in order
to clarify the requirements for VFS, and to ensure that refinements will work
out (the one presented in this paper as well as future ones).

We estimate that the net-effort put into this work was about six person-
months: Understanding the POSIX requirements as well as the design of the
Linux VFS and its source code took roughly one month. The remaining time
was spent for design and specification of the models (about three months) and
verification of invariants and refinement (two months). As a reference, we think
that the verification was about three times as complex as the original Mondex
challenge [27]. The size of the models is roughly as follows. The state machines

2 www.cs.kuleuven.be/~bartj/verifast/
3 http://fm2012.verifythis.org

www.cs.kuleuven.be/~bartj/verifast/
http://fm2012.verifythis.org
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consist of 50 lines in the POSIX model, 500 for VFS and 100 for AFS. Addition-
ally, there are around 450 of lines algebraic specification for POSIX and 200 for
VFS+AFS on top of the KIV libraries.

For this particular verification, state invariants were fairly easy to prove, while
the simulation proofs were challenging. Paying attention to details (short read-
/write, orphans, errors) introduced additional complexity. We experienced that
choosing the right data structures simplified both specification and verification
(fids as multisets, file abstraction to streams).

Several orthogonal aspects remain for future work. Concurrency in VFS has
been intentionally left out so far. Caching of inodes, dentries and pages in VFS
could be realized without changing the AFS code. Fault tolerance against power
loss is of great interest and we are currently proving that the models can deal
with unexpected power loss anytime during the run of an operation, using the
temporal program logic of KIV [26]. Translation of the models to C code is still
an open issue.
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Abstract. In this paper, we investigate how to formalize and verify
the System Requirements Specification (SRS) of Chinese Train Control
System Level 3 (CTCS-3), which includes a set of basic operational sce-
narios that cooperate with each other to achieve the desired behavior
of trains. It is absolutely necessary to prove that the cooperation of ba-
sic scenarios indeed completes the required behavior. As a case study, a
combined scenario with several basic scenarios integrated is studied in
this paper. We model each scenario as a Hybrid CSP (HCSP) process,
and specify its properties using Hybrid Hoare Logic (HHL). Given such
an annotated HCSP model, the deductive verification of conformance
of the model to the properties is then carried out. For the purpose, we
implement a theorem prover of HHL in Isabelle/HOL, with which the
process including modelling and verification of annotated HCSP models
can be mechanized. In particular, we provide a machine-checked proof
for the combined scenario, with the result indicating a design error in
SRS of CTCS-3.

Keywords: Chinese Train Control System, Hybrid System, Specifica-
tion and Verification, Theorem Proving.

1 Introduction

The System Requirements Specification (SRS) of Chinese Train Control System
Level 3 (CTCS-3) [16] is a standard specification for supervising train move-
ments to ensure the high reliability, safety and efficiency of high-speed trains in
China. CTCS-3 includes 14 basic operational scenarios, each of which with dif-
ferent system components involved, and the cooperations among these scenarios
to achieve the desired behavior of trains. One important problem in this area
is to formalise and verify the specifications for the scenarios of CTCS-3, both
separately and integrally, to guarantee the correctness.

Due to continuous character of train movement and discrete interactions be-
tween different system components, we model each scenario of CTCS-3 as a
hybrid system. Hybrid system seamlessly combines the models for discrete con-
trollers and for dynamic systems represented by differential or algebraic equa-
tions. In this paper, we adopt Hybrid CSP (HCSP) [2,20] as the formal modelling
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language for hybrid systems. As an extension of CSP, HCSP introduces real-time
constructs and differential equations for continuous evolution; and being a pro-
cess algebra, it provides standard means for constructing complex systems out
of simpler ones, which facilitates compositionality.

By using HCSP, each basic scenario of CTCS-3 is formalized as an HCSP
process, which is usually a parallel composition of sub-processes corresponding
to different components involved in this scenario. A combined scenario integrates
several basic scenarios that occur in a same situation, and the HCSP process
for it can be constructed from the processes corresponding to each separate
scenario. However, the combination of scenarios may not preserve correctness
because of complex interactions between these scenarios, thus as a remedy, to
verify correctness of combined scenarios is very necessary.

In this paper, we consider one combined scenario that integrates several basic
scenarios including movement authority, level transition andmode transition. We
model the combined scenario using HCSP, and then formulate the property to
be proved using Hybrid Hoare logic (HHL) proposed in [6]. HHL is defined espe-
cially for reasoning about HCSP processes, including first-order logic to specify
pre/post-conditions which describe the properties related to discrete jumps, and
duration calculus (DC) [18,17] to record execution history that specifies contin-
uous properties of systems, and a set of axioms and inference rules to axiomatize
each construct of HCSP. Finally, we prove the negation of the property that a
train eventually passes through the location at which a level transition and a
mode transition take place simultaneously. This result reflects some design error
in SRS of CTCS-3.

In order to provide a machine-checked proof for the negation of the property,
we implement a theorem prover for HHL in proof assistant Isabelle/HOL. The
implementation includes the encodings of HCSP language and HHL proof sys-
tem, including both syntax and semantics (or inference rules for HHL instead). It
is built from scratch, i.e., defining the datatype for expressions from the bottom
most, in the style of deep embedding. Therefore, we can make full use of induc-
tive structure of assertions and thus reduce the size of verification conditions
generated.

1.1 Related Work

There have been a number of abstract models and specification languages pro-
posed for formalizing and verifying hybrid systems. The most popular is hybrid
automata [1,8,4], with real-time temporal logics [8,9] interpreted on their behav-
iors as specification languages. However, analogous to state machines, hybrid
automata provides little support for structured description and composition.
The approach most closely related to ours is the work by Platzer [11], where
hybrid programs and the related differential dynamic logic for the deductive
verification of hybrid systems are proposed. As a case study of the approach, the
safety and liveness of movement authority scenario of European Train Control
System was proved [12]. However, hybrid programs do not support parallelism
and communication.
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For mechanization of HCSP verification, the encodings of the assertion lan-
guages of HHL especially DC are most essential. The first attempt at encoding
DC in a theorem prover was done in PVS [14], where shallow embedding is
adopted thus reasoning is done directly in high-order meta-logic of PVS. Later,
the work in both [3] and [13] considers the encoding of DC in Isabelle/HOL in
deep embedding style, and our encoding combines their approaches.

For formal modelling and verification of scenarios of train control systems,
most of existing work only consider single scenario so far, e.g. in [12,5], some
separate scenarios of European Train Control System are considered.

1.2 Structure of the Paper

We give a brief introduction of HCSP and HHL in Sec. 2, and then introduce
a combined scenario of CTCS-3 and its formal model in HCSP in Sec. 3. We
present the mechanization of HCSP specifications in Isabelle/HOL in Sec. 4,
based on which verify the combined scenario via interactive theorem proving in
Sec. 5. Finally, the paper concludes and discusses the future work.

2 Preliminaries

This section introduces briefly the modelling language and specification language
for hybrid systems that we adopt in the paper.

2.1 Hybrid CSP Language

HCSP [2,20] is a formal language for describing hybrid systems, which is an
extension of CSP by introducing timing constructs, interrupts, and differential
equations for representing continuous evolution. Exchanging data among pro-
cesses are described solely by communications, and no shared variable is allowed
between processes in parallel, so each program variable is local to the respective
sequential component. The syntax of HCSP is given as follows:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P �Q | P ∗

| 〈F(ṡ, s) = 0&B〉 | 〈F(ṡ, s) = 0&B〉� �i∈I(ioi → Qi)
S ::= P | S‖S

Here P,Q,Qi, S are HCSP processes, x and s stand for process variables, ch
for channel name, ioi for a communication event (either ch?x or ch!e), B and e
for boolean and arithmetic expressions, and d for a non-negative real constant,
respectively.

The intended meaning of the individual constructs is explained as follows:

– skip terminates immediately having no effect on variables; and x := e assigns
the value of expression e to x and then terminates.

– ch?x receives a value along channel ch and assigns it to x, and ch!e sends
the value of e along ch. A communication takes place as soon as both the
sending and the receiving parties are ready, and may cause one side to wait.
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– The sequential composition P ;Q behaves as P first, and if it terminates, as
Q afterwards.

– The conditional B → P behaves as P if B is true, otherwise it terminates
immediately.

– The internal choice P �Q behaves as either P or Q, and the choice is made
randomly by the system.

– The repetition P ∗ executes P for some finite number of times.

– 〈F(ṡ, s) = 0&B〉 is the continuous evolution statement (hereafter shortly
continuous). It forces the vector s of real variables to evolve continuously
according to the differential equations F as long as the boolean expression
B, which defines the domain of s, holds, and terminates when B turns false.

– 〈F(ṡ, s) = 0&B〉 � �i∈I(ioi → Qi) behaves like the continuous 〈F(ṡ, s) =
0&B〉, except that it is preempted as soon as one of the communications
ioi takes place. That is followed by the respective Qi. Notice that, if the
continuous terminates before a communication from among {ioi}i∈I occurs,
then the process terminates immediately without waiting for communication.

– S1‖S2 behaves as if S1 and S2 run independently except that all commu-
nications along the common channels connecting S1 and S2 are to be syn-
chronized. S1 and S2 in parallel can neither share variables, nor input nor
output channels.

The basic constructs of HCSP are expressive enough to define a number of
constructs known in process calculi. For instances, the stop and external choice
in timed CSP can be respectively defined as

stop =̂ 〈ṫ = 1&True〉, and
�i∈I(ioi → Qi) =̂ stop� �i∈I(ioi → Qi);

and especially, the timeout 〈F(ṡ, s) = 0&B〉�d Q can be defined by

t := 0; 〈F (ṡ, s) = 0 ∧ ṫ = 1&t < d ∧B〉; t ≥ d→ Q,

which behaves like the continuous 〈F(ṡ, s) = 0&B〉, if the continuous terminates
before d time units, otherwise, after d time units of evolution according to F , it
moves on to execute Q. Based on timeout, the wait statement can be defined as
waitd =̂ 〈ṫ = 1〉�d skip.

Super-Dense Computation. For HCSP, we adopt the notion of super-dense com-
putation [8] to assume that digital control does not consume time compared
to continuous evolution of environment. Discrete processes such as skip, assign-
ment, as well as the evaluation of boolean expressions in B → P , take no time
to complete. Thus at a time point, multiple discrete processes may occur. Be-
cause of synchronization, the input or output process may cause to wait for the
compatible party being available, but as soon as both parties become ready, a
communication will occur and complete immediately.
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2.2 Hybrid Hoare Logic

HHL [6] is an extension of Hoare logic for specifying and reasoning about HCSP
processes. In HHL, each specification for a sequential process P takes the form
{Pre}P{Post;HF}, where Pre, Post represent pre-/post-conditions, expressed
by first-order logic, to specify discrete properties of variables held at starting
and termination of the execution of P ; and HF history formula, expressed by
DC [18,17], to record the execution history of P , including real-time and con-
tinuous properties. The effect of discrete processes will be specified by the pre-
/post-conditions, but not be recorded in the history. The specification for a
parallel process is then defined by assigning to each sequential component of it
the respective pre-/post-conditions and history formula, that is

{Pre1, P re2}P1‖P2{Post1, Post2;HF1,HF2}

In HHL, each of HCSP constructs is axiomatized by a set of axioms and infer-
ences rules, which constitute a basis for implementing the verification condition
generator for reasoning about HCSP specifications in Sec. 4. The full explanation
of HHL can be found in [6].

DC is a real extension of Interval Temporal Logic (ITL) [10] for specifying
and reasoning about real-time systems. Like ITL, the only modality in DC is
the chop � to divide a considered interval into two consecutive sub-intervals
such that its first operand is satisfied on the first sub-interval, while the second
operand is satisfied on the second sub-interval. Besides, DC extends ITL by
introducing durations of state expressions

∫
S, and the temporal variable � to

denote the length of the considered interval, i.e.
∫
1. Here, we will adopt the

notion of point formula introduced in [19], denoted by -S.0, to mean that S
holds at the considered point interval. Then the formula -S. is defined as ¬(� >
0�-¬S.0�� > 0), meaning that the state expression S holds at each point of
the considered reference interval.

3 A Combined Scenario of CTCS-3 and Its HCSP Model

A train at CTCS-3 applies for movement authorities (MAs) from Radio Block
Center via GSM-Railway and is guaranteed to move safely in high speed within
its MA. CTCS-2 is a backup system of CTCS-3, under which a train applies
for MAs from Train Control Center via train circuit and balise instead. There
are 9 main operating modes in CTCS-3, among which the Full Supervision and
Calling On modes will be involved in the combined scenario studied in this paper.
During Full Supervision mode, a train needs to know the complete information
including its MA, line data, train data and so on; while during Calling On mode,
the on-board equipment of the train cannot confirm cleared routes, thus a train
is required to move under constant speed 40km/h.

The operating behavior of CTCS-3 is specified by 14 basic scenarios, all of
which cooperate with each other to constitute normal functionality of train con-
trol system. The combined scenario considered here integrates the Movement
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Authority and Level Transition scenarios of CTCS-3, plus a special Mode Tran-
sition scenario.

For modeling a scenario, we model each component involved in it as an HCSP
process and then combine different parts by parallel composition to form the
model of the scenario. In particular, the train participates in each scenario, and
the HCSP model corresponding to the train under different scenarios has a very
unified structure. Let s be trajectory, v velocity, a acceleration, t clock time of
a train respectively, then we have the following general model for the train:

Train =̂

(
〈ṡ = v, v̇ = a, ṫ = 1& B〉� �i∈I(ioi → Pcompi);
Qcomp

)∗

where Pcompi and Qcomp are discrete computation that takes no time to com-
plete. The train process proceeds as follows: at first the train moves continuously
at velocity v and acceleration a, as soon as domain B is violated, or a commu-
nication among {ioi}i∈I between the train and another component of CTCS-3
takes place, then the train movement is interrupted and shifted to Qcomp, or
Pcompi respectively; after the discrete computation is done, the train repeats the
above process, indicated by ∗ in the model. For each specific scenario, the domain
B, communications ioi, and computation Pcompi and Qcomp can be instantiated
correspondingly. We assume the acceleration a is always in the range [−b, A].

In the rest of this section, we will first model three basic scenarios separately,
and then construct a combined scenario from them.

3.1 Movement Authority Scenario

Among all the scenarios, MA is the most basic one and crucial to prohibit trains
from colliding with each other. Before moving, the train applies for MA from
Radio Block Center (RBC, in CTCS-3) or Train Control Center (in CTCS-2),
and if it succeeds, it gets the permission to move but only within the MA it owns.
An MA is composed of a sequence of segments. Each segment is represented as a
tuple (v1, v2, e,mode), where v1 and v2 represent the speed limits of emergency
brake pattern and normal brake pattern by which the train must implement
emergency brake and normal brake (thus v1 is always greater than v2), e the
end point of the segment, and mode the operating mode of the train in the
segment. We introduce some operations on MAs and segments. Given a non-
empty MA α, we define hd(α) to return the first segment of α, and tl(α) the rest
sequence after removing the first segment; and given a segment seg, we define
seg.v1 to access the element v1 of seg, and similarly to other elements.

Given an MA, we can calculate its static speed profile and dynamic speed
profile respectively. As an illustration, Fig. 1 presents an MA with three seg-
ments, separated by points s1, s2, and s3. In the particular case, we assume s3
the end of the MA, thus the train is required to fully stop at s3 if the MA is not
extended. The static speed profile corresponds to two step functions formed by
the two speed limits (i.e. v1 and v2) of each segment; and for any segment seg,
the dynamic speed profile is calculated down to the higher speed limit of next
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Fig. 2. Level and mode transition

segment taking into account the train’s maximum deceleration (i.e. constant b),
and corresponds to the inequation v2 + 2b s < next(seg).v21 + 2b seg.e, where
next(seg) represents the next segment following seg in the considered MA. The
train will never be allowed to run beyond the static and dynamic speed profiles.

By instantiation to the general model, we get the model for a train under MA
scenario. Let B0 represent the general restriction that the train always moves
forward, i.e. v ≥ 0, or otherwise, the train has already stopped deceleration
(denoted by a ≥ 0). If B0 fails to hold, the acceleration a needs to be set by a
non-negative value in [0, A]. Notice that we add Tdelay to clock t to guarantee
that the interrupt B0 can at most occur once every Tdelay time units, to avoid
Zeno behavior. This is in accordance with the real system to check the condition
periodically. We adopt this approach several times.

Let B1 denote the case when the speed is less than the lower limit v2, or
otherwise the train has already started to decelerate; and B2 the case when the
speed is less than the higher limit v1 and not exceeding the dynamic speed profile,
or otherwise the train has already started an emergency brake, respectively.
When B1 or B2 is violated, the acceleration a will be assigned to be negative or
maximum deceleration b respectively, as shown in Q1comp below. For future use,
we denote the formula for specifying dynamic speed profile, i.e. ∀seg : MA . v2 +
2b s < next(seg).v21 + 2b seg.e, by DSP Form.

Let B7 represent that the train moves within the first segment of current MA.
Whenever it is violated, i.e. s > hd(MA).e, the train will apply for extension of
MA from TCC and RBC respectively. Define rMA2 and rMA3 to represent the
MAs allocated by TCC and RBC respectively, then normally the MA of train
will be defined as the minimum of the two. As defined in Q1comp, the application
procedure behaves as follows: the train first sends the value of ¬B7 to both TCC
and RBC; if ¬B7 is true, it sends the end of authorities (defined by getEoA)
of rMA2 and rMA3 to TCC and RBC, and then receives the new extended
authorities (defined by setMA2, setMA3) for rMA2 and rMA3 from TCC and
RBC respectively; and finally the MA will be updated correspondingly (defined
by comb).
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B0 =̂ (v ≥ 0 ∨ a ≥ 0 ∨ t < Temp+ Tdelay)
B1 =̂ (∀seg : MA . v < seg.v2) ∨ a < 0 ∨ t < Temp′ + Tdelay

B2 =̂ (∀seg : MA . v < seg.v1 ∧ v2 + 2b s < next(seg).v21 + 2b seg.e) ∨ a = −b
B7 =̂ (s <= hd(MA).e)
Q1comp =̂ ¬B0 → (Temp := t;�{0<=c<=A}a := c);

¬B1 → (Temp′ := t;�{−b<=c<0}a := c);
¬B2 → a := −b;
CHb2!¬B7;CHb3!¬B7;
¬B7 → (CHeoa2!getEoA(rMA2); chma2?rMA2;

CHeoa3!getEoA(rMA3); chma3?rMA3;
MA := comb(rMA2, rMA3))

TCC =̂ CHb2?b2; b2→ (CHeoa2?eoa2; chma2!setMA2(eoa2))
RBCma =̂ CHb3?b3; b3→ (CHeoa3?eoa3; chma3!setMA3(eoa3))

3.2 Level Transition

When a train moves under CTCS-2, then whenever passing a balise, which is
assumed to be equally distributed every δ meters along the track, the train can
apply for upgrade to CTCS-3 when necessary. Let B3 represent the negative of
the case when the train is at level 2 and passing a balise. When B3 is violated,
then as specified in Q2comp, the following computation will take place: first,
the train sends a level upgrade application signal to RBC; as soon as RBC
receives the application, it sends back the package (b, x1, x2) to the train, where
b represents whether RBC approves the application, x1 the location for starting
level upgrade, and x2 the location for completing level upgrade; if RBC approves
the level upgrade (i.e. b is true), the train enters level 2.5 and meanwhile passes
the balise. Notice that level 2.5 does not actually exist, but is used only for
modelling the middle stage between level 2 and level 3, during which the train
will be supervised by both CTCS-2 and CTCS-3. Finally, as soon as the train
at level 2.5 reaches location x2 (the negative denoted by B4), the level will be
set to 3, specified in Q3comp. RBClu defines the process for RBC under the
level transition scenario. Notice that the locations x1 and x2 are constants, and
should be determined before the transition is performed.

B3 =̂ level �= 2 ∨ s �= n ∗ δ
B4 =̂ level �= 2.5 ∨ s ≤ LU.x2
Q2comp =̂ ¬B3 → (CHLUA!;CHLU?LU ;LU.b→ level = 2.5;n = n+ 1);
Q3comp =̂ ¬B4 → level := 3
RBClu =̂ CHLUA?;�bLU∈{true,false}CHLU !(b, x1, x2)
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3.3 Mode Transition

When a train moves under CTCS-2, it will always check whether its operating
mode is equal to the mode of current segment, i.e. hd(MA).mode. We denote
this condition by B5, and as soon as it is violated, the train will update its mode
to be consistent with mode of the segment, specified in Q4comp.

B5 =̂ mode = hd(MA).mode
Q4comp =̂ ¬B5 → mode := hd(MA).mode

We consider the mode transition from Full Supervision (FS) to Calling On
(CO) under CTCS-3, which is a little complicated. In the MA application stage,
RBC can only grant the train the MAs before the CO segment. The train needs
to ask the permission of the driver before moving into a CO segment at level 3.
To reflect this situation in modelling, we initialize both the speed limits for CO
segments to be 0, and as a result, if the train fails to get the permission from
the driver, it must stop before the CO segment; but if the train gets the driver’s
permission, the speed limits of the CO segments will be reset to be positive.

Let B6 denote the negation of the case when the train is at level 3, and it
moves to 300 meters far from the end of current segment, and the mode of
next segment is CO. As soon as B6 is violated, then as specified in Q5comp, the
following computation will take place: first, the train will report the status to
the driver and ask for permission to enter next CO segment via communications;
if the driver sends true, the speed limits of next CO segment will be reset to
be 40km/h and 50km/h respectively (abstracted away by function coma(MA)).
As a consequence, the train is able to enter next CO segment at a positive
speed successfully. Drivermc defines the process for the driver under the mode
transition scenario.

B6 =̂ level �= 3 ∨ CO �= hd(tl(MA)).mode ∨ hd(MA).e− s > 300
∨t < Temp+ Tdelay

Q5comp =̂ CHwin!¬B6;¬B6 → Temp := t;CHDC?brConf; brConf → coma(MA)
Drivermc =̂ CHwin?bwin; bwin → �bsConf∈{true,false}CHDC !bsConf

3.4 Combined Scenario and Model

We combine the scenarios introduced above, but with the following assumptions
for the occurring context:

– The train moves inside an MA it owns;
– There are two adjacent segments in the MA, divided by point x2. The train

is supervised by CTCS-2 to the left of x2 and by CTCS-3 to the right, and
meanwhile, it is operated by mode FS to the left of x2 and by mode CO
to the right. Thus the locations for mode transition and for level transition
are coincident. As the starting point of a CO segment, both speed limits for
location x2 are initialized to 0 by RBC;
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– The train has already got the permission for level transition from RBC which
sends (true, x1, x2).

Please see Fig. 2 for an illustration.
The model of the combined scenario can then be constructed from the models

of all the basic scenarios contained in it. The construction takes the following
steps: firstly, decompose the process for each basic scenario to a set of sub-
processes corresponding to different system components that are involved in the
scenario (usually by removing parallel composition on top); secondly, as a com-
ponent may participate in different basic scenarios, re-construct the process for
it based on the sub-processes corresponding to it under these scenarios (usually
by conjunction of continuous domain constraints and sequential composition of
discrete computation actions); lastly, combine the new obtained processes for all
the components via parallel composition. According to this construction process,
we get the following HCSP model for the combined scenario:

System =̂ Train∗ ‖ Driver∗mc ‖ RBC∗
lu ‖ RBC∗

ma ‖ TCC∗

Train =̂ 〈ṡ = v, v̇ = a, ṫ = 1& B0 ∧ B1 ∧ B2 ∧ B3 ∧ B4 ∧ B5 ∧ B6 ∧ B7〉;Ptrain

Ptrain =̂ Q1comp;Q2comp;Q3comp;Q4comp;Q5comp

According to SRS of CTCS-3, we hope to prove that the combined scenario
satisfies a liveness property, i.e., the train can eventually pass through the loca-
tion for level transition and mode transition. Our work applies deductive verifi-
cation method for verifying HCSP models. First, the requirements to be proved
are specified using HHL assertions as annotations in HCSP model, and then
based on the proof system of HHL, the annotated HCSP model is reduced to a
set of logical formulas whose validity implies the conformance of the model with
respect to the requirements. This process can be mechanized in proof assistant,
which will be the main content of the rest.

4 Isabelle Implementation

In this section, we aim to check if an HCSP process is correct with respect to
a specification written in HHL, by providing a machine-checkable proof in Is-
abelle/HOL. For this purpose, we need to encode HCSP including both its syntax
and semantics, and moreover, the axioms and inference rules of HHL. We adopt
the deep embedding approach [15] here, which represents the abstract syntax
for both HCSP and assertions by new datatypes, and then defines the semantic
functions that assign meanings to each construct of the datatypes. It allows us
to quantify over the syntactic structures of processes and assertions, and further-
more, make full use of deductive systems for reasoning about assertions written
in FOL and DC.

The full repository including all the mechanization code related to Sec. 4
and Sec. 5 can be found at https://github.com/liangdezou/HHL_prover, and we
present part of them here. We start from encoding the bottom construct, i.e.
expressions, that are represented as a datatype exp:
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datatype exp = RVar string | SVar string | BVar string | Real real
| String string | Bool bool | exp + exp | exp − exp | exp ∗ exp

An expression can be a variable, that can be of three types, RVar x for real vari-
able, SVar x and BVar x for string and boolean variables; a constant, that can
be also of the three types, e.g. Real 1.0, String ‘‘CO’’ and Bool True; an arith-
metic expression constructed from operators +,−, ∗. Based on expressions, we
can define the assertion languages and the process language HCSP respectively.

4.1 Assertion Language

There are two assertion logics in HHL: FOL and DC, where the former is used
for specifying the pre-/post-conditions and the latter for the execution history
of a process respectively. The encodings for both logics consist of two parts:
syntax and deductive systems. We will encode the deductive systems in Gentzen’s
sequent calculus style, which applies backward search to conduct proofs and thus
is more widely used in interactive and automated reasoning. A sequent is written
as Γ � Δ, where both Γ and Δ are sequences of logical formulas, meaning that
when all the formulas in Γ are true, then at least one formula in Δ will be
true. We will implement a sequent as a truth proposition. The sequent calculus
deductive system of a logic is composed of a set of sequent rules, each of which is
a relation between a (possibly empty) sequence of sequents and a single sequent.
In what follows, we consider to encode FOL and DC respectively.

First-Order Logic. The FOL formulas are constructed from expressions by using
relational operators from the very beginning, and can be represented by the
following datatype fform:

datatype fform = [True] | [False] | exp [=] exp | exp [<] exp
| [¬] fform | fform [∨] fform | [∀] string fform

The other logical connectives including [∧], [→], and [∃] can be derived as normal.
For quantified formula [∀]string fform, the name represented by a string corre-
sponds to a real variable occurring in fform. We only consider the quantification
over real variables here, but it can be extended to variables of other types (e.g.
string and bool) without any essential difficulty. Notice that we add brackets to
wrap up the logical constructors in order to avoid the name conflicts between
fform and the FOL system of Isabelle library. But in sequel, we will remove
brackets for readability when there is no confusion in context; and moreover,
in order to distinguish between FOL formulas and Isabelle meta-logic formulas,
we will use ⇒, & and | to represent implication, conjunction and disjunction in
Isabelle meta-logic.

Now we need to define the sequent calculus style deductive system for fform.
The Isabelle library includes an implementation of the sequent calculus of clas-
sical FOL with equation, based upon system LK that was originally introduced
by Gentzen. Our encoding of the sequent calculus for fform is built from it
directly, but with an extension for dealing with the atomic arithmetic formulas
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that are defined in fform. We define an equivalent relation between the validity
of formulas of fform and of bool , the built-in type of Isabelle logical formulas,
represented as follows:

formT (f :: fform) ⇔  f

where the function formT transforms a formula of type fform to a corresponding
formula of bool . This approach enables us to prove atomic formulas f of fform
by applying the built-in arithmetic solvers of Isabelle and proving formT (f)

instead.

Duration Calculus. Encoding DC into different proof assistants has been studied,
such as [14] in PVS, and [3,13] in Isabelle/HOL. DC can be considered as an
extension of Interval Temporal Logic (ITL) by introducing state durations (here
point formulas instead), while ITL an extension of FOL with the introducing of
temporal variables and chop modality by regarding intervals instead of points as
worlds. Therefore, both [3] and [13] apply an incremental approach to encode
ITL on top of an FOL sequent calculus system, and then DC on top of ITL. We
will follow a different approach here, to represent DC formulas as a datatype, as
a result, the proving of DC formulas can be done by inductive reasoning on the
structures of the formulas.

The datatype dform encodes the history formulas HF:

datatype dform = [[True]] | [[False]] | dexp[[=]]dexp | dexp[[<]]dexp
| [[¬]]dform | dform[[∨]]dform |[[∀]] string dform | pf fform | dform	dform

We will get rid of double brackets for readability if without confusion in context.
The datatype dexp defines expressions that are dependent on intervals. As seen
from HF, it includes the only temporal variable � for representing the length
of the interval, and real constants. Given a state formula S of type fform, pf S

encodes the point formula -S.0, and furthermore, the following high S encodes
formula -S.:

high :: fform ⇒ dform

high S ≡ ¬ (True �pf (¬S)� � > Real 0)

The chop modality � can be encoded as well.
To establish the sequent calculus style deductive system for dform, we first

define the deductive system for the first-order logic constructors of dform, which
can be taken directly from the one built for fform above, and then define the
deductive system related to the new added modalities for DC, i.e. �, 	 and pf.

For � and 	, we encode the deductive system of ITL from [17], which is
presented in Hilbert style. Thus, we need to transform the deductive system
to sequent calculus style, and it is not so natural to do. We borrow the idea
from [13] that for each modality, define both the left and right introducing rules,
e.g., the following implementation

LI : $H, P  $E ⇒ $H, P�(� = Real 0)  $E

RI : $H  P, $E ⇒ $H  P�(� = Real 0), $E



274 L. Zou et al.

where $H, $E represent arbitrary sequences of logical formulas of type dform,
encodes the axiom of ITL: P ↔ P�(� = 0). In the same way, for point formula
pf, we encode the deductive system of DC defined in [17] in sequent calculus
style, e.g., the following implementation

PFRI : $H  (pf S1
�pf S2), $E ⇒ $H  pf (S1 ∧ S2), $E

encodes the axiom of DC: -S1.0�-S2.0 → -S1 ∧ S2.0.

4.2 HCSP Syntax

We represent HCSP processes as a datatype proc, and each construct of HCSP
can be encoded as a construct in datatype proc correspondingly. Most of the
encoding is directly a syntactic translation, but with the following exceptions:

– In the deductive verification of HCSP process, the role of differential equation
is reflected by an differential invariant with respect to the property to be
verified. Inv is a differential invariant of 〈F(ṡ, s) = 0&B〉 with respect to
initial state s0, if Inv holds for s0, and furthermore, holds for all the reachable
states according to the equation within domain B. In [7], a complete method
for generating differential invariants for polynomial differential equations
with respect to given domain and initial values of continuous variables is
proposed.

In proc, instead of differential equation, we use differential invariant to
describe the underlying continuous, and for aiding verification, we also add
execution time range of the continuous. Thus, we encode continuous of form
〈F(ṡ, s) = 0&B〉 as <Inv&B> : Rg, where Inv represents the differential in-
variant of the continuous, B the domain constraint, and Rg the range of
execution time, of the continuous respectively; and Inv, B are implemented
as formulas of type fform, while Rg of type dform.

– For sequential composition, we encode P ;Q as P; mid; Q, where P and Q

represent the encodings of P andQ respectively, and mid is added to represent
the intermediate assertions between P and Q. This is requisite for reducing
proof of sequential composition to the ones of its components, and commonly
used in theorem proving.

– For parallel composition, we remove the syntax restriction that it can only
occur in the outmost scope, thus it is encoded with the same datatype proc

as other constructs.

4.3 Verification Condition

Based on the inference rules of HHL, we implement the verification condition
generator for reasoning about HCSP specifications. The inference rules encoded
here are slightly different from those presented in [6], in the sense that we remove
the point formulas for specifying discrete changes in history formulas and use
� = 0 instead. This will not affect the expressiveness and soundness of HHL.
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In deep embedding, the effects of assignments are expressed at the level of for-
mulas by substitution. We implement a map as a list of pairs (exp * exp) list,
and then given a map σ and a formula p of type fform, we define function
substF(σ, p) to substitute expressions occurring in p according to the map σ.
Based on this definition, we have the following axiom for assignment e:=f:

axioms Assignment :
 (p → substF ([( e, f )] , q)) ∧ (� = Real 0 →G) ⇒ {p} (e :=f) {q; G}

According to the rule of assignment, the weakest precondition of e := f with
respect to postcondition q is substF ([(e, f)], q), and on the other hand, the
strongest history formula for assignment is �= Real 0, indicating that as a dis-
crete action, assignment takes no time. Therefore, {p} (e :=f) {q;G} holds, if
p implies the weakest precondition, and moreover, G is implied by the strongest
history formula.

For continuous <Inv & B> : Rg, we assume that the precondition can be sep-
arated into two conjunctive parts: Init referring to initial state of continuous
variables, and p referring to other distinct variables that keep unchanged dur-
ing continuous evolution. With respect to precondition Init∧p, according to the
rule of continuous, when it terminates (i.e. B is violated), the precondition p

not relative to initial state, the closures of Inv and of ¬B hold in postcondition;
moreover, there are two cases for the history formula: the continuous terminates
immediately, represented by �= Real 0, or otherwise, throughout the continuous
evolution, p, Inv and B hold everywhere except for the endpoint, represented by
high (Inv∧p∧B), where both cases satisfy Rg.

axioms Continuous : ( Init → Inv) ∧ ((p ∧ close(Inv) ∧ close(¬B)) →q)
∧ ((((� = Real 0) ∨ (high (Inv ∧ p ∧ B))) ∧ Rg) → G)
⇒ {Init ∧ p} <Inv & B> : Rg {q; G}

where function close returns closure of corresponding formulas. The above ax-
iom says that {Init∧p} <Inv & B> : Rg {q;G} holds, if the initial state satisfies
invariant Inv, and furthermore, both q and G are implied by the postcondition
and the history formula of the continuous with respect to Init∧p respectively.

For sequential composition, the intermediate assertions need to be annotated
(i.e., (m, H) below) to refer to the postcondition and the history formula of the
first component. Therefore, the specification {p} P;(m, H);Q {q; H	G} holds, if
both {p} P {m;H} and {m} Q {q;G} hold, as indicated by the following axiom.

axioms Sequence : {p} P {m; H}; {m} Q {q; G} ⇒{p} P; (m, H); Q {q; H	G}

The following axiom deals with communication P1; ch!e || P2;ch?x, where
P1 and P2 stand for sequential processes. Let p1 and p2 be the preconditions for
the sequential components respectively, and (q1, H1), (q2, H2) the intermediate
assertions specifying the postconditions and history formulas for P1 and P2 re-
spectively. r1 and G1 represent the postcondition and history formula for the left
sequential component ended with ch!e, while r2 and G2 for the right component
ended with ch?x. Rg stands for the execution time range of the whole parallel
composition.
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axioms Communication :
{p1, p2} P1 || P2 {q1, q2; H1, H2};
 (q1 → r1) ∧ (q2 →substF ([(x, e)] , r2));
 (H1 	 high (q1)) →G1) ∧ (H2 	 high (q2)) →G2);
 (((H1 	 high (q1)) ∧ H2) ∨ ((H2 	 high (q2)) ∧ H1)) →Rg;
⇒ {p1, p2} ((P1; (q1, H1); ch ! e) || (P2; (q2, H2); ch ? x))

{r1, r2; G1 ∧ Rg, G2 ∧ Rg}

As shown above, to prove the final specification, the following steps need to
be checked: first, the corresponding specification with intermediate assertions
as postconditions and history formulas holds for P1 || P2; second, after the
communication is done, for the sending party, q1 is preserved, while for the
receiving party, x is assigned to be e. Thus, r1 must be implied by q1, and q2

implies the weakest precondition of the communicating assignment with respect
to r2, i.e. substF ([(x, e)], r2); third, for the communication to take place,
one party may need to wait for the other party to be ready, in case that P1 and
P2 do not terminate simultaneously. The left sequential component will result in
history formula H1	high (q1), in which high (q1) indicates that during waiting
time, the postcondition of P1 is preserved, and similarly for the right component.
Thus, G1 and G2 must be implied by them respectively; and finally, for both cases
when one party is waiting for the other, the conjunction of their history formulas
must satisfy the execution time Rg.

For repetition, we have the following implementation:

axioms Repetition :
{p1, p2} P || Q {p1, p2; H1, H2};  (H1 	 H1 →H1) ∧ (H2 	 H2 →H2)
⇒ {p1, p2} P∗ || Q∗ {p1, p2; H1 ∨ (� = Real 0), H2 ∨ (� = Real 0)}

The above axiom says that the final specification for P∗|| Q∗ holds, if the same
specification holds for one round of execution, i.e. P || Q, and moreover, H is
idempotent with respect to chop modality. The formula �= Real 0 indicates that
the repetition iterates zero time.

4.4 Soundness

First, we define the operational semantics of HCSP by function evalP (only the
case for sequential processes is presented here):

consts evalP :: proc ⇒ cstate ⇒ real ⇒ proc ∗ cstate ∗ real

where cstate is of the form real ⇒ state list. Each state of type state assigns
respective values to process variables; and each element of type cstate, called by
a behavior, associates a sequence of states to each time point. A behavior defines
the execution history of a process, and is able to reflect super-dense computation
by recording all the discrete changes in the sequence of states respectively at
a time point. Given a process P, an initial behavior f, an initial time a, the
transition evalP (P,f, a) = (P’,f’, b) represents that executing from behavior
f at time a, P evolves to P’ and ends at behavior f’ and time b.
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Second, the history formulas of DC are interpreted over behaviors and timed
intervals. Given a behaviour f of type cstate and a timed interval [c, d],
ievalE(f,�, c, d) returns the value of �, that is d-c, under the behavior f and
the timed interval [c, d]. Given a behavior f of type cstate, a DC formula ip,
and a timed interval [c, d], ievalF(f, ip, c, d) evaluates the truth value of
ip under the behavior f and the timed interval [c, d]. In particular, the point
formula and chop can be defined as follows:

pf eval : ievalF ( f, pf (P), c, d) = (c=d & evalF (f, P, c))
chop eval: ievalF ( f, P	Q, c, d) = ∃ k. c<=k & k<=d & ievalF (f, P, c, k)

& ievalF ( f, Q, k, d)

Thus, pf(P) holds, iff the interval is a point interval, and P holds at the last state
of the state list f(c).

We then define the validity of a specification {p} P {q;H} with respect to the
operational semantics, as follows:

definition Valid :: fform ⇒ proc ⇒ fform ⇒ fform ⇒ bool
where Valid (p, P, q, H) = ∀ f d f ’ d ’. evalP (P, f, d) = (Skip, f ’ , d’) ⇒

evalF ( f, p, d) ⇒ (evalF (f ’ , q, d’) & ievalF (f ’ , H, d, d’))

which says that, given a process P, for any initial behavior f and initial time
d, if P terminates at behavior f’ and time d’, and if the precondition p holds
under the initial state, i.e. the last element in state list f(d) (represented by
evalF (f, p, d)), then the postcondition q will hold under the final state,
i.e. the last element in state list f’(d’) (represented by evalF (f’, q, d’)),
and the history formula will hold under f’ between d and d’ (represented by
ievalF (f’, H, d, d’)).

Based on the above definitions, we have proved the soundness of the proof
system in Isabelle/HOL, i.e. all the inference rules of the proof system are valid.

5 Proof of the Combined Scenario

Under the given assumptions in Section 3.4, we need to check whether the com-
bined scenario (i.e. model System) satisfies a liveness property, i.e., the train will
eventually move beyond location x2 for both level transition and mode transi-
tion. In this section, instead of proving the liveness property directly, we provide
a machine-checked proof for negation of the livness, which says, after moving for
any arbitrary time, the train will always stay before location x2. We start from
encoding the model System and the negation property first.

According to HCSP syntax implemented by proc, most encoding of model
System is a direct translation, except for continuous and sequential composi-
tion. Firstly, the continuous of System needs to be represented in the form of
differential invariants. According to the differential invariant generation method
proposed in [7], the differential invariant (a = −b) → DSP Form is calculated
for the continuous, indicating that when the train brakes with maximum decel-
eration b, it will never exceed the dynamic speed profile. Obviously it is a com-
plement to the domain constraint B2, saying that the train will never exceed the
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dynamic speed profile except for the case of emergency brake. We adopt the con-
junction of these two formulas, that results in DSP Form, as the final invariant
for the continuous. Thus we represent the continuous as <Inv&B> : Rg, where Inv

and B correspond to encodings of DSP Form and the domain constraints respec-
tively, and Rg is True, specifying the executing time of the continuous; Secondly,
the intermediate formulas for all sequential composition are added. We finally
get the encoding of System, represented by System below.

Now it is turn to encode the negation property, specified by pre/post-conditions,
and history formula. The precondition is separated into two parts depending on
whether it is relative to initial values, shown by Init and Pre below:

definition Init :: form where Init ≡ (x2 − s > Real 300)
definition Pre :: form where
Pre ≡ ( level = Real 2.5) ∧ (fst (snd (snd (hd (MA)))) = x2)

∧ (snd (snd (snd (hd (MA)))) = String ‘‘FS’’)
∧ (snd (snd (snd (hd (tl (MA))))) = String ‘‘CO’’)
∧ (fst (hd (MA)) = Real 0) ∧ (fst (snd (hd (MA))) = Real 0)

The Init represents that the initial position of the train (i.e. s) is more than 300
meters away from x2. The Pre indicates the following aspects: the train moves
at level 2.5, i.e. in process of level transition from CTCS-2 to CTCS-3; the end
of current segment is x2; the mode of the train in current segment is ‘‘FS’’; the
mode of the train in next segment is ‘‘CO’’; and at the end of current segment,
both speed limits are initialized to be 0. Notice that for any segment seg, seg.v1
is implemented as fst (seg), and seg.v2 as fst (snd (seg)), and so on.

We then get a specification corresponding to the negation property, with the
postcondition and history formula for the train to indicate that the train will
never pass through location x2:

theorem System proof : {Init ∧ Pre, True, True, True, True} System
{Pre ∧ s <= x2, True, True, True, True;
(� = Real 0) ∨ (high (Pre ∧ s <= x2)), True, True, True, True}

In Isabelle/HOL, we have proved this specification as a theorem. From this
fact, we know that the model System for level transition and mode transition
fails to conform to the liveness property. This reflects some design flaw for the
specifications of related scenarios in CTCS-3.

6 Conclusion and Future Work

In this paper, we have studied the formalization and verification of the scenarios
defined in SRS of CTCS-3, by using HCSP and HHL as the modelling and
specification languages respectively. We consider a combination of several basic
scenarios, which is expected to conform to a liveness property according to SRS
of CTCS. Especially, we have shown in the case study how to construct the
model for the combined scenario from the separate ones corresponding to basic
scenarios involved in it. The modelling technique can be applied to train control
systems in general, especially for other combined scenarios of CTCS-3. For tool
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support, we have implemented a theorem prover in Isabelle/HOL for verifying
HCSP models annotated with HHL assertions, within which we have proved the
violation of the combined scenario with respect to the liveness property.

Future Work. First of all, the case study in this paper is only a first step towards
the formal checking of the correctness of SRS of CTCS-3, and we will study the
whole SRS of CTCS-3 in forthcoming research. Second, the automation of the
theorem proving implementation of HCSP in Isabelle/HOL is not considered
currently, which needs the incorporation of existing tools (e.g. automatic SMT
solvers) for arithmetic and the decision procedure implementation for subset
of DC (i.e. one assertion language included in HHL). Finally, because of non-
compositionality of HHL proposed in [6], the proof system is incomplete to prove
all HCSP processes. These three aspects constitute our main future research.
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Abstract. Worst-case execution time (WCET) estimation tools are com-
plex pieces of software performing tasks such as computation on control
flow graphs (CFGs) and bound calculation. In this paper, we present
a formal verification (in Coq) of a loop bound estimation. It relies on
program slicing and bound calculation.

The work has been integrated into the CompCert verified C compiler.
Our verified analyses directly operate on non-structured CFGs. We ex-
tend the CompCert RTL intermediate language with a notion of loop
nesting (a.k.a. weak topological ordering on CFGs) that is useful for
reasoning on CFGs. The automatic extraction of our loop bound esti-
mation into OCaml yields a program with competitive results, obtained
from experiments on a reference benchmark for WCET bound estimation
tools.

1 Introduction

Avionics embedded software is developed according to international regulations.
Among them is the DO-178C, that has been published in 2012, thirty years
after its previous version DO-178B [19]. The DO-178C promotes the use of for-
mal methods for developing real-time safety-critical software rigorously. Airplane
manufacturers also follow their own development standards, and formal methods
were already used by the Airbus airplane manufacturer for developing safety-
critical software during DO-178B.

In this context, Airbus conducted experiments (see [5]) in order to compile
in a realistic environment an up-to-date flight control software with CompCert,
a formally verified compiler [16]. The CompCert compiler is a formally verified
optimizing compiler for the C language that has been specified, implemented
and proved using the Coq proof assistant. The compiler is exempt from miscom-
pilation issues: it is equipped with a proof of semantic preservation. This proof
is done once for all in Coq; it states that every compiled program behaves as
prescribed by the semantics of its source program.

Even if formal methods are promoted by avionics standards, adopting a for-
mally verified compiler is not self-evident in an industrial context. The quality of
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the code generated by the compiler is as important as the formal guarantees. For
real-time safety-critical software, a common practice is to measure this quality by
counting the size of the compiled code and by estimating its worst-case execution
time (WCET) [5]. Estimating WCET is a crucial step when developing real-time
software. It ensures that no run of a program will exceed its allowed execution
time. Computing the exact WCET of any program is not always possible and
simulations or static analyses are required to estimate it.

WCET estimation tools are complex pieces of software performing three main
tasks related to 1) control flow facts, 2) hardware features (e.g. cache misses)
and 3) estimate calculation; see [23] for a survey of techniques and tools. Sound
estimate calculation computes an upper bound of all execution times of a whole
program (i.e. a global bound) from the flow and timing information obtained
by the first two tasks (i.e. from local bounds). This paper focuses on the first
and third tasks: control flow facts that are useful for estimating loop bounds.
A loop bound is a static over-approximation of the number of times a loop is
executed during any execution of a given program. Estimating the execution
time of instructions on a given hardware is still an active field of research in the
WCET community and is out of the scope of this paper.

There are many studies on loop bound estimation in the literature. The tech-
niques range from pattern-matching (for identifying simple loop patterns), mod-
eling computations using affine equalities and inequalities (that are solved by a
decision procedure for Presburger arithmetic), data flow analysis, symbolic ex-
ecution to abstract interpretation. Basic techniques handle only simple loops;
advanced techniques handle various forms of nested loops. Some of these static
analysis techniques are well understood for several years now but their implemen-
tations in a real toolchain are still error prone, because these implementations
operate directly on unstructured CFGs originating from C programs. We focus
here on the SWEET loop bound analysis technique [9] that demonstrated a good
precision in the context of WCET analysis.

Compiling Airbus flight control software with CompCert has shown that the
quality of the compiled code is better than the quality of the compiler currently
used at Airbus [5]. The next step towards an industrial use of CompCert is to
qualify it according to DO-178C, and to strengthen the confidence in the results
of tools such as WCET estimation tools. In that perspective, combining the
CompCert verified compiler with a formal verification of a loop bound analysis
estimation for WCET analysis is valuable.

Our work is significant for many reasons.

– It constitutes the first machine-checked proof of a nontrivial loop bound
estimation algorithm operating over an intermediate language having the
same expressiveness as C. This proof combines two proof techniques, whole
formal verification using the Coq proof assistant and formal verification of
untrusted checkers.

– It provides a reference implementation of a tool combining independent tech-
niques: loop reconstruction in an unstructured CFG, program slicing and
loop bound calculation. Program slicing is required to improve the precision
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of the analysis, by removing irrelevant variables that do not impact on the
number of iterations of a loop.

– A tool has been generated automatically from our formalization. Its perfor-
mances are close to those of reference tools for estimating loop bounds. In
this paper, we compare our tool with a reference tool called SWEET that
also relies on program slicing [13]. Our tool has been integrated into the
CompCert compiler, thus enabling the transmission of loop bound annota-
tions to other WCET tools.

All results presented in this paper have been mechanically verified using the
Coq proof assistant. The complete Coq development is available online at the fol-
lowing URL: http://www.irisa.fr/celtique/ext/loopbound. Consequently,
the paper only sketches the proofs of some of its results; the reader is referred
to the Coq development for the full proofs.

The remainder of this paper is organized as follows. First, Section 2 introduces
our loop bound estimation. Then, Section 3 defines an abstract notion of loop
nesting. Section 4 explains the formal verification of program slicing. Section 5
is devoted to the formal verification of the loop bound calculation. Section 6
describes the experimental evaluation of our implementation. Related work is
discussed in Section 7, followed by concluding remarks.

2 A Loop Bound Estimation for WCET Analysis

First, this section gives an overview of our loop bound estimation and explains
informally its key features. The loop bound estimation operates over a language
that is introduced in the second part of this section. Then, the main theorems
stating the soundness of our loop bound estimation are explained.

2.1 Overview

Fig. 1 shows the user’s view of our analysis. The CompCert compiler consists
in many intermediate languages and passes. It provides a general mechanism to
attach annotations to program points. Annotations are transported throughout
compilation, all the way to the generated assembly code [16]. Our loop bound
analysis computes bounds on the RTL intermediate representation and attaches
them to these annotations. Moreover, thanks to the semantic preservation of
the CompCert compiler, we obtain semantic guarantees about these bounds in
terms of the semantics of the assembly code generated by the compiler: each
annotation in the assembly code is attached with a provably correct bound.

Classically, bounding a loop consists in estimating by static analysis how
many times at most the loop will be executed. In our setting, the estimation
of the loop bound is calculated by approximating the variation of the sizes of
the domains of some selected variables (we call them interesting variables), that
influence the loop bound estimation. If the loop is not nested into another loop,
the estimation of the loop bound is the product of all the sizes of the domains

http://www.irisa.fr/celtique/ext/loopbound
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Fig. 1. Main architecture of our loop bound analysis

related to interesting variables. If all variables are considered as interesting, then
we may obtain a bad over-approximation of the loop bound. If some interesting
variables are forgotten, then we obtain an incorrect approximation. When the
loop is nested, the local bounds of all the loop bounds involved in the nesting
are estimated separately as if there was no nesting, and the global estimation of
the innermost loop combines in a product the estimations of local bounds.

There are several challenges for estimating a loop bound.

1. The loop structure of the program must be reconstructed from the unstruc-
tured graph representation of the program. Efficient loop extraction algo-
rithms have been developed for graphs but directly reasoning on them in a
semantic proof is challenging.

2. An analysis is required to select the interesting variables. It is performed in
two steps: program slicing and computation of locally modified variables in
loop bodies. First, the program is sliced w.r.t. each loop condition, as de-
scribed in [9]. There are as many slices as loops and each slice is an executable
program. Secondly, interesting variables are selected among the variables be-
longing to the slice. Due to nested loops, a computation is performed to select
the interesting variables of the current nested loop. Given such a loop L, the
interesting variables of L are live variables at the entry of L that may be
both modified and used in the body of L. This computation is simpler than
program slicing, but complementary to program slicing. It can be seen as a
slicing of the program restricted to one of its nested loops.

3. A final calculation is required to take into account nested loops and collect
all the local estimations of bounds involved in nestings.

A last challenge is related to the value analysis that is required to estimate
at any program point the valuation of all program variables. A value analysis is
usually based on abstract interpretation and uses widening and narrowing oper-
ators to speed up fixpoint resolution. The formal verification of a value analysis
based on abstract interpretation and operating over a real-world language raises
many challenging verification problems that are detailed in [7].
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For the purpose of illustrating our approach, a succinct example program P

is presented in Fig. 2, extracted from a LU decomposition algorithm. In P, there
are 2 annotations, written as 2 calls to a specific built-in function and used here
to mark loop entries.1 They are attached to program points 4 and 6 and will
be transported throughout compilation. The CompCert compiler will place the
comment “loop1” (resp. “loop2”) at the exact program point corresponding to
the program point 4 (resp. 6) in the assembly code. The right part of the figure
shows the CFG of the program and its loop nestings that will be presented in
Section 3. First, the program P at the left of the figure is sliced twice as there
are two loops in P. The third (resp. fourth) column shows the slice w.r.t. the
first (resp. second) loop of P.

The first slice consists of the statements that contribute to the number of ex-
ecutions reaching program point 4. It includes the variables used in the loop exit
condition (i.e. at program point 15). Intuitively, we slice w.r.t. a loop condition,
but we could also slice w.r.t. any other program point of the slice. To facilitate
our proofs (i.e. the reasoning on graphs), we choose to slice w.r.t. loop headers
(i.e. loop entries, see Section 3) and show that this amounts to slicing w.r.t. loop
conditions. It is then easy to bound the loop of the first slice. At program point
4, the value analysis states that the values of n and i belong to respectively [5; 5]
(size 1) and [0; 5] (size 6). Thus, the condition of this loop is evaluated 1 ∗ 6 = 6
times and the bound of this loop is estimated to 6. This result is written as a
comment in the corresponding loop, for illustration purposes.

The second slice of Fig. 2 is related to the loop entry at program point 6
(i.e. the second loop of P) and includes variables j and n used in the loop exit
condition at program point 12. Because j is defined at program point 5, in the
slice, the second loop is still nested in the first one. Among the variables in
the second slice, only j is an interesting variable (only j is modified in the loop
body). The local bound of the second loop is 6, that is estimated from the second
slice as the size of the domain of j (that is the size of [0; 5], the interval estimated
by the value analysis). Note that if the value of i was modified in the second
loop, then the local bound would have been estimated as the product between
6 and the size of the domain of i.

The last step is the calculation of the global bound of the innermost loop,
from the local bounds. The most widely used technique consists in translating
the CFG (and some extra information about the control flow) into an ILP (i.e.
integer linear program) [23]. The goal function of the ILP solver expresses the
total execution time to be maximized. Here, we do not rely on an ILP solver
but we simply compute the product of both previous local bounds which may
over-approximate the exact bound in some cases. In Fig. 2, the global bound is
estimated to the exact bound 6 ∗ 6 = 36.

This example shows that program slicing is complementary to the computa-
tion of modified variables. For instance, only the program slicing can eliminate
all statements related to w, since w would have been considered as an interest-
ing variable if it had not been sliced. Moreover, the computation of modified

1 Annotations can be written manually by the user or generated by an untrusted tool.
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Program P Slice of P 
w.r.t. 1st loop (at 4) 

Slice of P  
w.r.t. 2nd loop (at 6) 

1 n = 5;  n = 5; n = 5; 
2 i = 0; i = 0; i = 0; 
3 w = 0.0; 
4 do { _annot("loop1"); do { _annot("loop1"); do { _annot("loop1"); 
5   j = 0;     /* bound=6 */   j = 0; 
6   do { _annot("loop2");   do { _annot("loop2"); 
7     a[i][j] = i+1+j+1;     /* bound=6 */ 
8     if (i == j) 
9       a[i][j] *= 5.0; 

10     w += a[i][j]; 
11     j++;     j++; 
12   } while (j <= n);   } while (j <= n); 
13   b[i] = w; 
14   i++;   i++;   i++; 
15 } while (i <= n); } while (i <= n); } while (i <= n); 

 
 
0 

4 

6 

 
 

Fig. 2. An example program, its computed slices and its loop nestings

variables eliminates non-interesting variables belonging to a slice (e.g. the vari-
able i) that would make the bound estimation less precise.

2.2 RTL Semantics with Counters

Instead of reasoning at the assembly level, our loop bound estimation operates
on the RTL intermediate language, mainly because RTL programs are repre-
sented by their control flow graph (CFG), with explicit program points. RTL
stands for “Register Transfer Language”. Among the intermediate languages of
CompCert, RTL is the most adapted for representing gotos and CFGs. More-
over, the compiler optimizations are also performed at the RTL level and we
can benefit from them (e.g. common subexpression elimination). Thus, our loop
bound estimation operates at the RTL level and extends the RTL representa-
tion of programs with a notion of loop nesting [10]. RTL is just an intermediate
representation in our tool: our final theorem is related to assembly code thanks
to the correctness of the CompCert compiler, that states that any RTL program
behaves as its corresponding assembly program.

Real-time systems only use a restricted form of programming, where each
program consists in a main reacting loop triggering tasks that always terminate
and where recursion is not allowed [23]. Hence, in our theorems, we consider only
finite executions of programs, even if the CompCert semantics model diverging
executions. In the same way, functions are inlined before bounding loops. This
is how WCET estimation tools proceed to perform interprocedural analyses.
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The semantic preservation theorem of the CompCert compiler requires the
definition of formal semantics for all the languages of the compiler. Each of
these operational semantics is defined in small-step style as a transition relation
between execution states. We use σ to denote execution states in the RTL se-
mantics. Among the components of a tuple σ are the current program point l
(i.e. a CFG vertex) and an environment E mapping program variables to values.
We have instrumented the RTL semantics by counting the number of times each
program point is reached. We have thus added counters (i.e. mapping program
points to natural numbers) in execution states. We need two kinds of counters:
a global counter cglob such that cglob(l) is incremented each time the program
point l is reached during program execution, and a local counter cloc modeling
the execution of nested loops. We slice n nested loops into n separate loops, and
we need local counters to count for each sliced loop how many times each vertex
of the loop is reached. Thus, local counters are incremented as global counters,
except at loop exits where they are reset to zero. Loop exits depend on loop
nestings and are defined in Section 3.

We use σ.l, σ.E, σ.cglob and σ.cloc to denote label, environment and counters
of a program state σ, respectively. We use dom(σ.E) to denote the domain of
the environment σ.E (i.e. the set of its variables). We write P ⇓ cglob to express
that the execution of program P terminates with the final counters cglob. In this
paper, we omit the value returned by the main function of the program, even
if it is part of the program behavior in our development. We use reach(P ) to
denote the set of states belonging to the execution trace of P .

2.3 Soundness of Loop Bound Estimation

We prove two soundness theorems for our analysis. The first main theorem states
the soundness of the loop bound estimation at the RTL level. For any RTL
program P and any program point l of P , the bound estimation at l is a correct
estimation of the counter computed by the instrumented semantics at l.

Theorem 1 (Main theorem). Let P be a RTL program such that P ⇓ cglob
and l a program point of P . Then, we have cglob(l) ≤ bound(P )(l).

[Coq Proof] 2

Note that this theorem (and the following one) only gives estimations on
finite executions. This limitation is inherited from the SWEET methodology we
formalize here. A termination analysis (e.g. see [8]) may be required here but
formally verifying it is out of the scope of this paper.

The second main theorem states the start-to-end (i.e. from C to assembly)
property of our enhanced compiler, that generates an executable code as well as
a table of bounds for every program point where an annotation is attached. The
CompCert semantics emit a special event each time such a point is reached dur-
ing program execution. Then, we characterize bounds as an over-approximation
of the number of occurrences of such an event in the execution trace of assembly

2 This is a direct link to the web page showing the corresponding Coq theorem.

http://www.irisa.fr/celtique/ext/loopbound/html/GlobalBounds_proof.html#bound_correct
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programs. In other words, this theorem states that the number of executions we
estimate for a given program point at the RTL level is still true at the assembly
level.

Theorem 2 (Start-to-end correctness). Let PC be a source C program, free
of runtime errors. Let PAsm and bound table be the result of the compilation
of PC. Then, for any finite execution PAsm that produces a trace of events tr

and any annotation label al, we have #tr↓al ≤ bound table[al], where #tr↓al
represents the number of occurrences of the event attached to al in tr.

[Coq Proof]

This theorem is a consequence of the main theorem and the CompCert theorems
about preservation of annotation events trough compilation. As our loop bound
estimation relies on three main tasks (loop reconstruction, program slicing and
local bound calculation), the proof of the first main theorem follows from the
proof of each of these tasks, that are detailed in the three following sections.

Example 1. In program P of Fig. 2, our enhanced compiler will generate a table
that associates the string “loop1” (resp. “loop2”) to the bound 6 (resp. 36).

Our proofs follow the methodology chosen to formally verify the CompCert
compiler [16]. Most of the compiler passes are written and proved in Coq. Other
passes of the compiler (e.g. the register allocation and some optimizations such
as software pipelining) are not written in Coq but validated a posteriori. We
have implemented efficiently in OCaml some algorithms and we have formally
verified (in Coq) a checker that validates a posteriori the untrusted results of the
OCaml program. More precisely, we have validated a posteriori two algorithms,
an efficient algorithm for computing loop nestings from a CFG, and the control
and data dependence analysis of the slicer.

3 Loop Nestings

Reasoning about loops on a CFG may require complex proofs in graph theory.
The 3 tasks of our tool manipulate CFGs that are equipped with loop nestings.
Loop nestings represent a hierarchical view of the CFG loops. First, this section
specifies loop nestings. Then, it explains how they are built. In Section 2.1, we
mentioned that the user provides marks (e.g. see the program P in Fig. 2) to
indicate the program points that are annotated in the final assembly program.
The information we compute in Section 3 does not use these marks at all.

3.1 Axiomatization of Loop Nestings

Our axiomatization of loop nestings (that we call nestings in the sequel of this
paper) is given in Fig. 3, where the abstract type for nestings is called t. The
right part of the previous example given in Fig. 2 shows the three nested nestings
associated with program P. Given a nesting s , vertices(s) denotes the list of

http://www.irisa.fr/celtique/ext/loopbound/html/Main.html#transf_c_program_with_bound_correct
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its vertices. A vertex v belongs to a nesting s (notation v ∈ s) if it belongs to the
list of its vertices. In the same way, we define an inclusion relation ⊆ between
nestings as a set inclusion between the sets of vertices of the nestings.

Each RTL function f must be equipped with a family of nestings. The type
called family(f) describes in a Coq record the elements of such a family. It con-
tains four functions nesting, header, parent and elements and eleven proper-
ties about these functions. The record type is itself parameterized by the function
f because some properties directly mention it.

Each vertex v of the CFG belongs to its nesting nesting(v) (P1) that is the
least nesting containing v (P2). Each nesting s is given a header vertex header(s)
in f (P3) such that its nesting is s itself (P4). It implies that header(s) ∈
s . The header of a nesting represents the loop entry. For instance, in Fig. 2,
header(11) = 6. The hierarchy of nestings is described by a map called parent

returning the parent nesting of a nesting. The parent nesting parent(s) of a
nesting s contains s itself (P5) and is included in any (strict) sub-nesting of s
(P6).

3 At last, the family contains a list called elements of all its nestings (P7).
Only three properties relate nestings and CFG edges. (P8) ensures that header

(s) is the unique entry of s and that the only incoming edges start from parent(s).
(P9) ensures that each CFG cycle is cut by a header, except for loops starting at
headers which are either totally included in their nesting or that are cut by the
header of the parent nesting (P10).

The last property (P11) describes the specific role of the CFG entry point.
In our semantics, local counters are reset at loop exits. We use nestings to

define precisely loop exits in the semantics. Exiting the loop of a vertex n0 means
traversing an edge n �→ n′ such that n ∈ nesting(n0) but n

′ �∈ nesting(n0).

3.2 Computation of Loop Nestings

Various algorithms exist in the literature to compute nestings. We follow the
Bourdoncle algorithm [10], a variation of the famous Tarjan algorithm for com-
puting strongly connected components. We chose this algorithm because it is
also useful for our value analysis. The worst-case complexity of this algorithm
is D × E where D is the maximum depth of the graph vertices and E is the
number of edges. The algorithm gives a weak topological ordering of the CFG.

We have implemented in OCaml our algorithm, and we have formally verified
a checker that validates a posteriori the untrusted results of the algorithm. We
use the nesting ordering to efficiently check the properties (P9) and (P10) about
cycles. Our verified checker takes as input a nesting of the following type.

Inductive nesting := I(v : vertex) | L(h : vertex)(l : list nesting)

An element of type nesting is either a single vertex (I v) that directly belongs
to the current nesting or a new nesting (L h l) with h a header vertex and l a
list of sub-elements. The verified checker outputs a record of type (family f) or
aborts if the verification fails. Let us note that our checker could also validate
any other algorithm (e.g. [17]) for computing loop nestings.

3 The functions header, nesting and parent will be used in the lemmas of Section 5.
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Parameter t : Type
Parameter vertices : t → list node

Notation v ∈ s := v ∈list vertices(s)
Notation s1 ⊆ s2 := vertices(s1) ⊆set vertices(s2)

Record family(f : function) := {
(f1) nesting : vertex → t
(f2) header : t → vertex

(f3) parent : t → t
(f4) elements : list t
(P1) in nesting : ∀v, f In(v, f) ⇒ v ∈ nesting(v)
(P2) nesting least : ∀s ∈list elements,∀v ∈ s, nesting(v) ⊆ s
(P3) header f In : ∀s ∈list elements, f In(header(s), f)
(P4) nesting header : ∀s ∈list elements, nesting(header(s)) = s
(P5) incl in parent : ∀s ∈list elements, s ⊆ parent(s)
(P6) parent least : ∀s s′ ∈list elements, s ⊆ s′ ⇒ s = s′ ∨ parent(s) ⊆ s′
(P7) nesting in elements : ∀v, nesting(v) ∈list elements

(P8) enter in nesting at header only : ∀v v′, is succ vertex(f, v, v′) ⇒
v /∈ nesting(v′) ⇒ v′ = header(nesting(v′)) ∧ parent(nesting(v′)) = nesting(v)

(P9) cycle at not header : ∀l 
= nil,∀ v, v 
= header(nesting(v)) ⇒
path(f, v, l, v) ⇒ header(nesting(v)) ∈list l

(P10) cycle at header : ∀l 
= nil,∀ v, v = header(nesting(v)) ⇒ path(f, v, l, v) ⇒
header(parent(nesting(v))) ∈list l ∨ (∀v′ ∈list l, v′ ∈ nesting(v))

(P11) in nesting root : ∀s ∈list elements, fn entrypoint(f) ∈ s ⇒
fn entrypoint(f) = header(s)}.

Fig. 3. Axiomatization of loop nestings

4 Program Slicing

As shown previously in Fig.2, each local bound is estimated from a slice of
the program. Precise slicing is an important step in this methodology because
it reduces the number of variables we have to consider when estimating the
sizes of the domains of the variables that are used in a loop. First, this section
presents the two soundness theorems we proved on our program slicer. Secondly,
it describes the a posteriori validation of our program slicing. Then, it explains
the matching we define between execution states in order to prove the soundness.

4.1 Soundness Theorems

Given a program point ls of a program P , slicing P w.r.t. the slicing criterion ls
means slicing P w.r.t. all the variables that are used at ls. Two theorems state
the soundness of program slicing. The first one is the soundness of program
slicing w.r.t. the local counters4. It states that for any terminating program P
and slicing criterion ls, a bound of the local counter at ls of a sliced program P ′

4 As explained in Section 2, only local counters are considered in theorems related to
sliced programs.
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is also a bound of the local counter at ls of the original program P . As we will
show in Section 5, this is the key property we use to estimate local bounds on
P ′ instead of P .

Theorem 3. Let P be a program and ls a program point of P . Let P ′ be the
sliced program w.r.t. the slicing criterion ls. If M is a bound of every reachable
local counter at ls in P

′: ∀ σ ∈ reach(P ′), σ.cloc(ls) ≤ M thenM is also a bound
of every reachable local counter at ls in P : ∀σ ∈ reach(P ), σ.cloc(ls) ≤ M .

[Coq Proof]

The second theorem states that if a program P terminates, then its sliced
program P ′ also terminates. This theorem is needed to prove our main theorem
related to bound calculation (see Section 5.3). Let us note that this property is
not obvious. There are slicing algorithms [20] that transform terminating pro-
grams into diverging programs, thus program slicing does not always preserve
the termination of programs.

Theorem 4. Let P be a program and ls a program point of P . Let P ′ be the
sliced program w.r.t. the slicing criterion ls. If P terminates, then P ′ terminates.

[Coq Proof]

The standard approach to prove both theorems is to formalize each compo-
nent of the slicer: data dependencies, control dependencies and post-dominators.
Moreover, we need an executable program slicer relying on efficient data struc-
tures such as postdominator trees and program dependence graphs. In order to
facilitate the proof and avoid intensive reasoning on these data structures, we
formally verify a checker that validates a posteriori the untrusted results of a
slicer written in OCaml. Another advantage of this approach is that our checker
can be reused to verify other program slicers.

4.2 A Posteriori Validation of Program Slicing

We implement an untrusted program slicer that, given a program P and a slicing
criterion ls yields a slice SL(ls) giving the set of vertices preserved by the slicing
of P w.r.t. ls. For any vertex outside this set we transform5 the corresponding
statement (resp. condition) into a skip statement (resp. a constant condition).

Alone, this set SL(ls) is not enough for an efficient a posteriori validation.
Because we need to find information that can guide the validator, we reuse the
notion of relevant variables and next observable vertices that are used in paper-
and-pencil proofs of program slicing [18]. A set RV(l) of relevant variables at
program point l contains the variables whose values are preserved by the slicing
and influence the computation in SL(ls). Given a vertex l in SL(ls), NObs(l)
is defined as the closest vertex (i.e. when following a path of CFG edges) to
l belonging to SL(ls); DObs(l) is the distance (i.e. the number of edges of the

5 Slicing is often described as a program transformation that removes statements, but
for the purpose of our soundness proof we need to preserve the CFG structure.

http://www.irisa.fr/celtique/ext/loopbound/html/WCETSlice.html#program_slicing_is_sound
http://www.irisa.fr/celtique/ext/loopbound/html/WCETSlice.html#slicing_preserves_termination
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SL Program P 
(sliced at 6) 

Relevant 
Variables (RV) 

Next Observable 
(NObs) 

Distance to Next 
Observable (DObs) 

1 n = 5;  ∅ 1 0 
2 i = 0; {n} 2 0 
3 skip; {n, i} 4 1 
4 do { __annot("loop1"); {n, i} 4 0 
5   j = 0; {n, i} 5 0 
6   do { __annot("loop2"); {n, i, j} 6 0 
7     skip; {n, i, j} 11 3 
8     if (false) {n, i, j} 11 2 
9       skip; {n, i, j} 11 2 

10     skip; {n, i, j} 11 1 
11     j++; {n, i, j} 11 0 
12   } while (j <= n); {n, i, j} 12 0 
13   skip; {n, i} 14 1 
14   i++; {n, i} 14 0 
15 } while (i <= n); {n, i} 15 0 

Fig. 4. Relevant variables and next observable vertices for the program P in Fig. 2,
sliced at vertex 6, shown with skip statements and constant conditions at sliced vertices

shortest path) from l to NObs(l). This distance is used in the proof we detail in
Appendix A. It is used to follow the shortest path in the sliced program, and
thus select the next statement to execute while avoiding possibly infinite loops.

Fig. 4 shows these sets for each program point of the second slice of the
example program of Fig. 2. This slice is written in grey; it is defined as the set
SL(6) = {1; 2; 4; 5; 6; 11; 12; 14; 15} consisting of the program points without skip
statement or constant condition. As the variable j is initialized at program point
5, and its last use is at program point 12, j is relevant in program points 6 to
12. Vertices 7 and 8 do not belong to the slice; NObs(7) (resp. NObs(8)) gives the
closest vertex of 7 (resp. 8) that belongs to SL(6). Thus, NObs(7) = NObs(8) = 11.
DObs(7) is 3, the length of the shortest path from 7 to 11; DObs(8) is 2.

We implement a checker taking as input the results of an untrusted slicer
and performing some coherence checks to ensure mainly the properties that are
described in Fig. 5. They axiomatize the notions of slice, relevant variables and
observable vertices. They are checked all at once. The figure shows only the main
properties; similar properties taking into account memory accesses are ensured
in our Coq development. In Fig. 5, ls denotes a vertex that is a slicing criterion.
We use n �→ s to denote a vertex n and its successor s. We use def(n) (resp.
use(n)) to denote the set of defined (resp. used) variables for a program point
n. Property (C1) states that a slice criterion belongs to its slice.

Fig. 5 shows that RV(l) and SL(ls) are mutually dependent sets: RV(l) contains
the variables that are defined in SL(ls) and whose value may affect the execu-
tion of the statements in SL(ls), while SL(ls) contains every statement assigning
variables in RV(l). This is expressed by properties (C2) to (C4) that characterize
a backward data-flow algorithm. Property (C2) states that any variable that is
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(C1) ls ∈ SL(ls)
(C2) If n ∈ SL(ls), then use(n) ⊆ RV(n)
(C3) If n �→ s, then RV(s)\def(n) ⊆ RV(n)
(C4) If def(n) ∩ RV(n) �= ∅, then n ∈ SL(ls)
(C5) n ∈ SL(ls) ⇐⇒ NObs(n) = n
(C6) If n /∈ SL(ls) ∧ NObs(n) = o, then ∀s, n �→ s⇒ NObs(s) = o
(C7) If n /∈ dom(NObs) ∧ n �→ s, then s /∈ dom(NObs)
(C8) If n /∈ SL(ls) ∧ DObs(n) = d, then ∀s, n �→ s⇒ DObs(s) ≥ d− 1
(C9) If n /∈ SL(ls) ∧ DObs(n) = d, then ∃s, n �→ s ∧ DObs(s) = d− 1

Fig. 5. Main formally verified properties related to slices, relevant variables, next
observable vertices and distances

used in a slice must be a relevant variable. Property (C3) expresses the back-
ward propagation from s to n of relevant variables that are not defined at n. The
backward propagation ends at vertices where variables are defined. (C4) states
that any vertex n defining a relevant variable belongs to the slice.

The following properties axiomatize next observable vertices and their dis-
tance. Property (C5) states that any vertex of a slice is its own observable ver-
tex. Property (C6) states that the observable vertex o of a vertex n that is not
in the slice is the same for all successors of n. The companion property (C7) is
related to vertices having no next observable vertex: none of their successors has
a next observable vertex. Properties (C8) and (C9) are related to the distance
of next observable vertices. Given a vertex n that is not in the slice such that
DObs(n) = d, they state that at least one of the successors of n has a distance
equal to d− 1; some successors may have a greater distance.

Our checker is efficient and verifies the whole properties in a single CFG
traversal. Indeed, while [18] introduce relevant variables and sets of observable
vertices for the purpose of their paper-and-pencil proof, they are not concerned
with computation on this information and state them in terms of paths in the
CFG. We have adapted these properties by rewriting them into local properties
enabling an efficient checker. Our local properties can be checked just by looking
at each vertex and its immediate successors. Moreover, our checker is complete:
Ranganath et al. [18] show that standard slicing algorithms based on control
and data dependencies always satisfy constraints (C1) to (C9).

4.3 Proof by Simulation

To prove the soundness of program slicing, the major difficulty is to relate states
occurring during the execution of an initial program P and that of each of its
slices P ′. To account for these differences between the initial program and each of
its slices, we define a matching relation between execution states, written σ ∼ σ′

and defined in Fig. 6. To simplify the figure, execution states are considered as
triples (program point l, environment E, counters c)6; other state components
are omitted. Given a program point l, we use ,RV (l) to denote the equivalence

6 c denotes either a local or a global counter.
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l ∈ SL(ls) E  RV (l) E
′ c(ls) = c′(ls)

(l, E, c) ∼ (l, E′, c′)
(R1)

l /∈ SL(ls) l′ /∈ SL(ls) NObs(l) = NObs(l′) E  RV (l) E
′ c(ls) = c′(ls)

(l, E, c) ∼ (l′, E′, c′)
(R2)

l /∈ dom(NObs) c(ls) = c′(ls)
(l, E, c) ∼ (lexit, E′, c′)

(R3)

Fig. 6. Matching between execution states of a program and one of its slices SL(ls)

relation between two environments restricted to relevant variables at l. We use
lexit to denote the (unique) exit vertex of the program.

All the rules express that the counters at the slicing criterion must be the
same. More constraints on the states are expressed in the rules. The first rule
matches intuitively an execution state of the initial program with an execution
state of the sliced program when the program point l is the same in both states
and it belongs to the slice SL(ls): both states match when the relevant variables
have the same values in both environments E and E′.

The second rule matches two states such that neither of their program points
l and l′ belong to the slice SL(ls), but some of their successors belong to SL(ls).
These successors are precisely identified using next observable vertices. Both
states match when the next observable vertex at l and l′ is the same and, as in
the first rule, the relevant variables have the same values in both environments
E and E′. The third rule is required to ensure the termination of the sliced
program. It matches any state of the initial program such that its program point
l exited from the slice (i.e. there is no next observable at l) with the state of the
sliced program at program point lexit.

These rules allow us to prove Lemma 1, which states that assuming the con-
straints of Fig. 5, the sliced program executes in ways that simulate the execution
of the corresponding initial program. The proof by simulation of this lemma is
detailed in Appendix A. We use → to denote a single execution step, and →∗ to
denote the reflexive transitive closure of →.

Lemma 1. Let P be a program, ls a program point of P , and let the result of
slicing P w.r.t. ls be (P ′, SL(ls), RV, NObs, DObs). Assume (SL(ls), RV, NObs, DObs)
satisfy the constraints (C1) to (C9). ∀σ1, σ2 ∈ reach(P ), σ′

1 ∈ reach(P ′), if
σ1 → σ2 and σ1 ∼ σ′

1, there exists σ′
2 such that σ′

1 →∗ σ′
2 and σ2 ∼ σ′

2.
[Coq Proof]

5 Bound Calculation

This section explains how we combine program slicing, value analysis and loop
nestings to build a safe over-approximation of program counters. This calcula-
tion called bound is based on the 3 steps we described previously. Each step
is proved by a lemma that is explained in this section. Each proof of a lemma

http://www.irisa.fr/celtique/ext/loopbound/html/WCETSlice.html#transf_step_correct
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requires to strengthen the lemma into a non-trivial inductive property. We give
in Appendix B an account of the formal arguments we have machine-checked.

5.1 The Header Counter Dominates the Other Counters in the
Nesting

The nesting header plays an important role for bound calculation since its
counter dominates the counters of the other program points in the nesting (i.e.
every path from the start to these program points must go through the nesting
header). This property is expressed by the following lemma.

Lemma 2. For any reachable state σ ∈ reach(P ) and any vertex l of P , we
have: σ.cglob(l) ≤ σ.cglob(header(nesting(l))). [Coq Proof]

We have proved a similar property for the local counter cloc. Thanks to this
lemma, the bounds of a vertex l can be computed by simply computing a bound
for its header: bound(P )(l) = bound(P )(header(nesting(l))).

5.2 Relating Global and Local Counters

To compute a bound for the global counter of a nesting header lh, we need two
bounds: a global bound of the global counter of the parent nesting and a local
bound of the local counter of the current header. The following lemma states how
the local and global counters at lh are related. We assume the current header
differs from the entry point of the program. The latter is executed only once
(after a normalization of RTL control flow graphs).

Lemma 3. Let lh be a nesting header and lp the header of its parent nest-
ing, i.e. lp = header(parent(nesting(lh))). Let M be a bound for the lo-
cal counter of lh: ∀σ ∈ reach(P ), σ.cloc(lh) ≤ M . Then, we have: ∀σ ∈
reach(P ), σ.cglob(lh) ≤ M × σ.cglob(lp)

[Coq Proof]

This lemma allows us to program the bound computation of lh by a recursive
call to the bound of its parent followed by a multiplication by the estimation of
the local counter in lh. This local counter is called loc bound(P, lh) and defined
in the next subsection.

bound(P )(lh) = bound(P )(header(parent(nesting(lh)))) × loc bound(P, lh)

5.3 Bounding Local Counters

Our value analysis (called value) computes, at each program point of a pro-
gram, an over-approximation of the domain size of each variable, i.e. the esti-
mated values (represented by an interval) of the program variables. Thus, given
a program P and a vertex l, value(P )(l) yields a map such that for any variable
x, value(P )(l)(x) is an interval [a, b] representing a conservative range of the

http://www.irisa.fr/celtique/ext/loopbound/html/HeaderBounds.html#trace_respects_header_cs
http://www.irisa.fr/celtique/ext/loopbound/html/GlobalBounds_proof.html#global_bound
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possible values of x at l. We use |[a, b]| = b − a + 1 to denote the size of the
interval [a, b]. Our formally verified value analysis is detailed in [7].

The value analysis could be used directly to estimate local bounds. We could
compute the size of each interval and estimate a local bound as the product
of all the sizes that were computed at the loop header. Since we assume that
programs terminate, a value in this domain is never reached twice. Thus, we
have: loc bound(P, lh) ≤

∏
x∈vars(P ) |value(P )(lh)(x)|, where vars(P ) is the

set of all program variables. While intuitive, this inequality requires a good
amount of formal details to be proved in a proof assistant (see Appendix B).

Example 2. In the following program, our value analysis will infer the loop in-
variant i ∈ [0, 9] ∧ j ∈ [0, 1]. As a consequence, we bound the local counter of
the loop header by 2× 10 = 20.

j = 0; i = 0; while (i < 9) { j = 1 − j; if (j) i++; }

In order to increase the precision of the local bound estimation, it is important
to restrict the set of variables involved in this product. This set is modified as fol-
lows. First, we slice P w.r.t. program point lh and only compute the local bound
of lh on P : loc bound(P, lh) = loc bound after slice(slicing(P, lh), lh).
Second, in the sliced program P ′ = slicing(P, lh), we only consider the inter-
esting variables that are live at lh and used in a statement belonging to the
nesting S of lh (thus S = nesting(lh)) and also defined in any (possibly differ-
ent) statement of S.

loc bound after slice(P ′, lh) =
∏

x∈live(lh)∩use(S)∩def(S)

|value(P ′)(lh)(x)|

This last part of the bound computation is proved correct using the following
lemma stating that the previous computation over-estimates the local counters.

Lemma 4. For any reachable state σ ∈ reach(P ′), we have

σ.cloc(lh) ≤
∏

x∈live(lh)∩use(nesting(lh))∩def(nesting(lh))

|value(P ′)(lh)(x)|

[Coq Proof]

By combining lemmas 4, 3 and 2 we obtain the proof of our main Theorem 1.

6 Experimental Evaluation

We have integrated our loop bound estimation in the CompCert 1.11 compiler.
Our formal development comprises about 15,000 lines of Coq code (consisting of
8,000 lines of Coq functions and definitions and 7,000 lines of Coq statements and
proof scripts) and 1,000 lines of OCaml. Our formalization has been translated
into an executable OCaml code using Coq’s extraction facility.

Our implementation has been compared to the SWEET reference tool [13]
against the MälardalenWCET benchmark [12], a reference benchmark for WCET

http://www.irisa.fr/celtique/ext/loopbound/html/LocalBounds.html#local_bound_correct
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#LE %LE #LE %LE #GB %GB #GB %GB

1 adpcm 27 13 48% 22 81% 16 59% 18 67%
2 cnt 4 4 100% 4 100% 4 100% 4 100%
3 cover 3 3 100% 3 100% 3 100% 3 100%
4 crc 6 4 67% 6 100% 6 100% 6 100%
5 edn 12 9 75% 11 92% 12 100% 12 100%
6 expint 2 2 100% 2 100% 2 100% 2 100%
7 fdct 2 2 100% 2 100% 2 100% 2 100%
8 fft1 29 3 10% 6 21% 7 24% 7 24%
9 fibcall 1 1 100% 1 100% 1 100% 1 100%

10 fir 2 1 50% 1 50% 1 50% 2 100%
11 insertsort 2 1 50% 1 50% 1 50% 1 50%
12 jfdctint 3 3 100% 3 100% 3 100% 3 100%
13 lcdnum 1 1 100% 1 100% 1 100% 1 100%
14 ludcmp 11 6 55% 6 55% 6 55% 6 55%
15 matmult 7 7 100% 7 100% 7 100% 7 100%
16 ndes 12 12 100% 12 100% 12 100% 12 100%
17 ns 4 4 100% 4 100% 4 100% 4 100%
18 qurt 3 2 67% 3 100% 3 100% 3 100%
19 ud 11 11 100% 11 100% 11 100% 11 100%

73% 82% 81% 85%

SWEET

Geometric mean

Our tool SWEET Our tool#LProgram

Fig. 7. Exact local bounds and meaningful global bounds of the benchmark. The num-
bers of loop bounds are given relative to the total number of loops.

estimation tools. This benchmark provides a set of programs with representative
loops, mainly used by WCET tools but also by static analyzers [14]. Its focus
on flow analysis makes it a reference on WCET-related loop bound estimations.
It is especially suited for interval-based analyses, currently the state-of-the-art
on industrial WCET tools. Results for both methods are given in Fig. 7. The
programs considered are those analyzed in [9] for which SWEET could estimate
at least one bound, excluding 2 of them that CompCert cannot compile (i.e.
one program with a longjmp statement and another one with an unstructured
switch statement such as in Duff’s device).

The number #L of loops of each program is given in the second column of
Fig. 7. The third column of Fig. 7 shows the accuracy of our estimation of local
bounds: it gives the number #LE of estimations of local loop bounds (and their
percentage) that are exact bounds. Unfortunately, this column is not given in [9],
but we have estimated it from the results of our tool and our manual analysis
to infer which loops are estimated by SWEET.

Our results are close to those obtained by SWEET. On average, 73% of the
loops are exactly estimated by our method, while 82% of the loops are exactly
bounded by SWEET. The histogram in Fig. 7 shows for each program, the num-
ber of exact local bounds for our tool (in dark grey) and for SWEET (in black)
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relatively to the total number of loops (baseline in light grey). Differences in pre-
cision come from our value analysis, that is slightly less precise than SWEET’s.
As our value analysis does neither handle floating-point values nor global vari-
ables, nor performs a pointer analysis, 17 loops are bounded by SWEET and
not by our method.

The last two columns of Fig. 7 give the number #GB of meaningful estimations
(i.e. realistic estimations, that differ from MAX INT for instance) of global loop
bounds (and their percentages). On average, our tool estimates almost as many
global bounds as SWEET. Indeed, 81% of global bounds are estimated by our
tool, and 85% of global loops are estimated by SWEET.

Concerning the analysis time, hardware differences make it difficult to com-
pare them with SWEET’s. Nevertheless, we could verify that the use of checkers
does not incur a significant overhead in our analysis. Benchmarking the programs
in Fig. 7 using a current personal computer takes less than a minute.

7 Related Work

Ranganath, Amtoft et al. [18,20] developed paper-and-pencil proofs of program
slicing, introducing the notion of observable vertices. Their main concern is to
deal with generalized programs, having several or no end nodes. Ranganath et
al. prove slicing soundness by weak bisimulation, dealing with infinite behaviors.
Amtoft extends the proof, obtaining a smaller slice by using a weak simulation at
the cost of not preserving termination. Based on their work, a formal verification
of program slicing in Isabelle is given in [22], where program slicing is used for
detecting non-interference of information flow. This formalization of program
slicing is relational and generic; it has been instantiated on Java programs in
the Jinja framework but it is not executable, contrary to our work.

To the best of our knowledge, the only work related to formal verification
of loop bound calculation is [3], where the formal verification consists in using
Hoare logic to verify that a program satisfies its specification including a cost
annotation (expressed by an equality of the form global cost = constant value).
A Frama-C plugin has been developed in order to experiment the approach on
simple programs without nested loops. Contrary to this work where loops are
handled syntactically, our work relies on an abstract interpreter with widening
capabilities that has been formally verified in Coq. As far as we know, their
Hoare logic is neither formalized nor proved sound.

Many papers have been published on resource analysis [1,2] and loop bound
is just one example of resource. The associated algorithms generally target more
difficult loop bounds that WCET tools like SWEET or our own tool. It is unclear
if they provide significant precision gains on representative WCET benchmarks.
Resource analysis tools are not formally verified using a proof assistant. One
exception is [2] where a shallow embedding of a separation logic in Coq is men-
tioned. The only mechanized proof is the soundness of the core logic presented in
the research paper. This should not be confused with the kind of formalization
effort we provide in order to formally verify a tool for C programs. Advanced
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ressource analyses such as [11,24] are able to infer symbolic loop bounds that
are out of reach for WCET tools like SWEET. This kind of static analysis re-
lies on SMT solvers, hence their formal verification would require the a priori
verification of a SMT solver.

Checkers are powerful tools for verifying the soundness of program transfor-
mations. Several formally verified checkers have been developed for compiler
passes of CompCert (e.g. [21,4]). Even if all these checkers are specific tools
devoted to a specific compiler pass, previous work and ours has shown that this
alternative formal verification technique is worthwhile when the formalization
requires to reason on sophisticated imperative data structures and algorithms.

Our long-term goal is to complement the CompCert compiler with WCET
guarantees about the code it generates. The formally verified operating system
kernel seL4 [15] is faced to similar challenges. Blackham et al. [6] apply tradi-
tional WCET estimation techniques on the seL4 kernel and provide conservative
upper bounds about its worst-case interrupt response time. Their WCET tool
is neither verified nor formalized.

8 Conclusion

We have presented, formalized and implemented a loop bound estimation for
WCET analysis. Its design follows closely the techniques used by the reference
tool SWEET and our experiments show that it is competitive with it in terms of
precision of the estimated bounds. The work strengthens the CompCert frame-
work. It provides bound estimations on the assembly programs generated by the
compiler and it increases the CompCert toolchain with non trivial components
that could be reused in different contexts, e.g. for developing new optimizations
of the compiler: a loop reconstruction for RTL and a program slicer. Moreover,
the bound calculation theorem makes an important formal link between the
estimated loop bounds and the size of variable ranges.

Our loop bound estimation can be improved in several directions. One is to
improve the bound calculation by formalizing ILP solvers to relate precisely local
and global bounds. These solvers contain probably too much highly engineered
heuristics to be directly formalized and we would like to develop efficient valida-
tion checkers for them. Another direction is to increase CompCert with a precise
hardware cost model and link abstract counters and realistic costs.
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A Detailed Simulation Proof for the Program Slicing

The simulation between states used in the soundness proof of program slicing is
a weak simulation, i.e. it does not preserve infinite executions. In particular, a
program P may not terminate while a sliced program P ′ may terminate (some
infinite loops may be sliced away).

We consider two matching states, σ1 ∈ reach(P ) and σ′
1 ∈ reach(P ′): σ1 ∼ σ′

1.
An execution step σ1 → σ2 is observable if σ1.l ∈ SL(ls), and silent otherwise. A
silent step corresponds to an execution step from a skip statement in the sliced
program.

Assume the program P satisfies the constraints (C1) to (C9). Its entry point
is always in the slice, so at the beginning of the execution, the rule (R1) holds.
If σ1 → σ2, then P

′ follows in lock-step (σ′
1 → σ′

2) to the same vertex l2, which
corresponds to the intuitive idea that a statement in the slice is executed in both
programs. If l2 ∈ SL(ls), then rule (R1) still holds. Otherwise, either l2 has a
next observable vertex (and rule (R2) holds), or it doesn’t (l2 /∈ dom(NObs)) and
rule (R3) holds.

The crux of the simulation happens when the original and sliced programs are
desynchronized: rule (R2) holds and the states have different program points.
In this case, whenever σ1 → σ2, there is no corresponding step in the sliced
program, until σ2 is reaching a vertex belonging to the slice. Properties (C2)
to (C4) ensure that no relevant variable will be modified in P , so the matching
relation still holds.

When the execution returns in the slice (σ2 ∈ SL(ls)), we need to resynchronize
the programs. In this case, the sliced program performs one or several (silent)
steps (σ′

1 →+ σ′
2) until it reaches σ2

′.l = σ2.l, where σ2.l (resp. σ2′.l) is the next
observable vertex of σ1.l (resp. σ

′
1.l). This is where the next observable distance

comes into play: it exhibits a finite number of steps that are required for the
resynchronization to happen. After resynchronization, both states match again
and rule (R1) holds.

This alternation between vertices inside and outside the slice can happen
several times, until either P reaches the exit node (if it is in the slice) and
the simulation ends, or until P reaches a vertex that is after the slice (σ2.l /∈
dom(NObs)). In this case, property (C7) ensures that we cannot return to the
slice anymore. P ′ then performs an arbitrary number of steps until it reaches the
(unique) end vertex lexit. By using an exit distance similar to the next observable
distance, we know that lexit can always be reached in a finite number of steps.
This ensures termination of P ′.

Afterwards, states match by rule (R3), for any further steps performed by P .
We do not need to match match relevant variables anymore.
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B Detailed Proofs for the Bound Calculation

Proof (of Lemma 2). We establish this property by proving, by induction on
finite execution traces, that for any vertex l, distinct from its header lh =
header(nesting(l)), and any partial finite execution trace ξ = σ, σ1, ...σn, one
of three following conditions holds:

– either the expected inequality holds strictly: σ.cglob(l) < σ.cglob(lh),
– or l has not been reached yet: σ.cglob(l) = 0,
– or σ.cglob(l) = σ.cglob(lh) but there exists k ∈ [0, n− 1] such that σk is at the

program point l and all states σk+1, . . . , σn−1 did not reach the header lh.

The last condition implies that we cannot reach vertex l in σn: it would build a
cycle from l to l that does not contain lh and this is forbidden by the property
cycle at not header (Section 3).

Proof (of Lemma 3).We first consider execution traces of the form ξ = ξ0·σp·ξ1·σ
such that σp is a state at point lp and all states in trace ξ1 did not reach lp again.
On such traces we show that σ.cglob(lh)−σp.cglob(lh) ≤ M holds. Unfortunately,
this property is not inductive. We strengthen it into a disjunction where:

– either σ.cglob(lh) = σp.cglob(lh) and no state in ξ1 did reach lh yet,
– or σ.cglob(lh) = σp.cglob(lh) + σ.cloc(lh) and the state σ is currently in the

nesting of lh,
– or σ is currently out of the nesting of lh, σ.cglob(lh) − σp.cglob(lh) ≤ M and
lh has been reached during ξ1.

We prove this disjunction by induction on the execution trace ξ1.
To conclude this proof, we consider an arbitrary trace ξ = σ0 · · ·σ and we

divide it into K + 1 = 1 + σ.cglob(lp) subtraces ξ = ξ0 · ξ1 · · · ξK such that
∀i ∈ [1,K], ξi starts with a state σi at point lp and then never reaches it again.
We note σK+1 = σ. We then express σ.cglob(lh) as

σ.cglob(lh) = σ0.cglob(lh) +
K−1∑
k=0

(σk+1.cglob(lh)− σk.cglob(lh))

In the initial state σ0, every counter is null and each element in the sum is
bounded by M . Thus, we conclude that σ.cloc(lh) ≤ K ×M and finish the proof
since K = σ.cglob(lp).

Proof (of Lemma 4). Given a vertex l, we use I(l) to denote the set live(l) ∩
use(nesting(lh))∩def(nesting(lh)) of interesting variables at l. We first prove
that, if there exists an execution trace ξ = ξ1 · σ1 · ξ2 · σ2 such that σ1.l = σ2.l
and both states σ1 and σ2 match pointwise on each variable of I(l), then we can

build a valid execution trace of arbitrary large size ξ1 · σ1 · (ξ2 · σ2)N . Since we
assume that P terminates, we obtain a contradiction.

Now, any execution trace ξ reaching lh at least once can be divided into
ξ = ξ1 · σ1. ξ2. σ2 where σ1 is the last state in the execution that enters in the
nesting of lh. The counter σ2.cloc(lh) is equal to the length of the sub-trace ξh
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that we obtain by projecting σ1. ξ2. σ2 on the states that are at vertex lh. Each
state in ξh can be turned into a n-tuple, where n = |I(lh)| contains the value
of each variable of I(lh) in this state. Mapping this transformation on ξh, we
obtain a list of size σ2.cloc(lh). This list contains distinct n-tuples thanks to the
Reductio ad absurdum we made early in this proof. By soundness of the value
analysis, each n-tuple belongs to the direct product of the interval value(P ′)(lh).
We prove that there exists a list of size

∏
x∈I |value(P ′)(lh)(x)| containing all

the possible n-uples of this direct product and conclude our proof by a pigeon
hole argument.
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Abstract. The automation of the deductive approach to program veri-
fication crucially depends on the ability to efficiently infer and discharge
program invariants. In an ideal world, user-provided invariants would be
strengthened by incorporating the result of static analysers as untrusted
annotations and discharged by automated theorem provers. However,
the results of object-oriented analyses are heavily quantified and cannot
be discharged, within reasonable time limits, by state-of-the-art auto-
mated theorem provers. In the present work, we investigate an original
approach for verifying automatically and efficiently the result of certain
classes of object-oriented static analyses using off-the-shelf automated
theorem provers. We propose to generate verification conditions that are
generic enough to capture, not a single, but a family of analyses which
encompasses Java bytecode verification and Fähndrich and Leino type-
system for checking null pointers. For those analyses, we show how to
generate tractable verification conditions that are still quantified but fall
in a decidable logic fragment that is reducible to the Effectively Propo-
sitional logic. Our experiments confirm that such verification conditions
are efficiently discharged by off-the-shelf automated theorem provers.

1 Introduction

In recent years, the automation of deductive program verification frameworks
(e.g., [5,15,26,10]) has made impressive progress. Proving the functional correct-
ness of real programs can now be done with reasonable effort. A major automa-
tion breakthrough is due to the improvements of automated theorem provers
(ATPs) (notably Satisfiability Modulo Theory (SMT) solvers [18,12,6]) that al-
low to routinely and efficiently discharge first-order verification conditions. At
the same time, static analysers have also made significant progress. They can
infer automatically sophisticated invariants that would strengthen user-provided
invariants and therefore automate further the verification process. Yet, this po-
tential for further automation has not fully materialised yet. Indeed, there are
still obstacles hindering the systematic integration of static analysis results into
deductive program verification frameworks.
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There are two main approaches for integrating automatically generated in-
variants into deductive program verification frameworks depending on whether
static analyses results are trusted or untrusted. Static analyses that are trusted
are usually built into the verification methodology. For instance, spec# [5] is
using @NonNull type information [20] to generate Boogie [4] intermediate code
and the Why3 platform [10] is using an effect system to tame aliasing. In this
scenario, those static analyses are part of the Trusted Computing Base (TCB).
Hence, the addition of a novel analysis is potentially jeopardising the soundness
of whole verification methodology. In another approach, static analyses results
are untrusted and are treated as candidate invariants which, following the veri-
fication process, are transformed into verification conditions that are eventually
discharged by automated theorem provers. For instance, candidate invariants
generated by Houdini [21] are validated by ESC/Java [22]. This integration
scheme has the advantage that static analyses are not part of the TCB and
therefore an error in the static analysis, or a misinterpretation of the static anal-
ysis result, cannot compromise the soundness of the verification methodology.

This latter approach comes with both theoretical and practical challenges. If
the static analysis and the verification methodology are grounded on semantics
that are too far apart, filling the semantic gap may prove unfeasible or be re-
sponsible for an unbearable encoding overhead. Semantic discrepancies can show
up in multiple places. A typical example is the modelling of machine integers
in case of overflows: is it an error or a normal behaviour? More serious is the
question of the memory models that can be incompatible, especially if the ver-
ification methodology enforces a hardwired alias control mechanism or object
ownership. In the propitious case that the analysis result can be encoded in log-
ical form with reasonable overhead, there is absolutely no guarantee that the
verification conditions will be automatically discharged by automated theorem
provers. Because static analyses operate over a program logic that is essentially
computable, the loss of decidability comes from the logic encoding of the static
analysis result. This absence of (relative) completeness of ATPs w.r.t. a particu-
lar static analysis makes this approach for validating static analyses fragile and
unpredictable.

This paper aims at ensuring that proof obligations originating from static
analysis results can be discharged with certainty by automated theorem provers.
The result certification of static analyses has been studied for its own sake. How-
ever, existing works propose ad hoc solutions that are specific to a single analysis
e.g., for polyhedral program analyses [9] and register allocation in the CompCert
C compiler [29]. A universal solution, working for arbitrary analyses, is very likely
impossible. We propose an intermediate solution which leverages the deductive
power of automated provers and covers a relevant family of static analyses for
object-oriented languages. For this family, we show how to generate tractable
verification conditions that are reducible to the Effectively Propositional (EPR)
fragment of first-order logic. This fragment is decidable and in practise state-of-
the-art automated provers are able of discharge the proof obligations.
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We shall consider static analyses that have been defined using the theory of
abstract interpretation. The first step in the result verification consists of trans-
lating the elements of the analyser’s abstract domain into a logical formalism in
which the semantic correctness of the analysis can be expressed. Our transla-
tion is defined using the concretisation function γ of the abstract interpretation
which maps abstract domain elements to properties of the concrete semantic
domain. More precisely, it translates abstract domain elements associated to
program points into pre- and post-conditions, expressed in Many Sorted First
Order Logic (MSFOL). Running a Verification Condition Generator (VCGen)
on such an annotated program results in a set of proof obligations expressed
in first-order logic. These Verification Conditions (VCs) are then given to be
proved by ATPs. As already mentioned, this is no formal guarantee that ATPs
will be able to discharge those proof obligations. For object-oriented analyses,
the formulae make extensive use of quantifiers and are therefore challenging
for ATPs. This very work is motivated by the experimental observation that
state-of-the-art ATPs are in practise incapable of discharging those formulae.
An important part of this paper is therefore concerned with identifying a logical
fragment for expressing pre-, post-conditions and VCs, and to present a method
for transforming these VCs into VCs that can be discharged efficiently.

1.1 Overview

Our approach to get tractable verification conditions is to restrict our attention
to a family of object-oriented static analyses. Each static analysis in the family
is equipped with a specific base abstract domain and is thus equipped with a
specific concretisation function. Yet, the lifting of this analysis specific concreti-
sation function to the program heap is generic and shared by all the analyses
in the family. We exploit these similarities to generate specialised verification
conditions that are reducible to EPR. To demonstrate the approach, we have
developed result certifiers for two different object-oriented static analyses be-
longing to the family: a bytecode verifier (BCV) [28] for Java and Fähndrich
and Leino type-system [20] for checking null pointers.

We restrict ourselves to static analyses based on the theory of abstract in-
terpretation [17]. In this framework static analyses are defined w.r.t. a col-
lecting semantics which extracts the properties of interest from the program
concrete semantics. For formalisation purposes, we give a core object-oriented
bytecode language (see Section 2) a mostly small-step operational semantics
· → · ⊆ State × State , i.e., a small-step semantics with big-step reduction for
method calls. A program state (e, h, p) ∈ Env ×Heap × PP is a triple where e is a
local environment mapping variables to locations; h is a mapping from locations
to objects representing the heap and p is the current program point. The se-
mantics is fairly standard except for a generic instrumentation of instance fields.
This instrumentation is expressed using a dedicated IF domain with a specific
element inull and an operation ifield that models field update.

inull : IF ifield : IF → IF
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Fields of a newly created object are tagged by inull and the ifield function is
called whenever a field is updated. Using the terminology of deductive verifi-
cation, for each field, we add a ghost field that is updated together with the
concrete field. By construction, the instrumentation is transparent i.e., erasing
the instrumentation has no impact on the semantics.

Each static analysis is defined by a particular instrumentation (IF , inull , ifield)
and by an abstract domain Abs equipped with a concretisation function:

γ : Abs → P(State)

As collecting semantics we consider the set of reachable instrumented states
Reach of the program semantics. A correct (over-)approximation of Reach is an
abstract element b� ∈ Abs whose concretisation is such that Reach ⊆ γ(b�). As a
result, verifying the static analysis result amounts to proving the following proof
obligation:

s ∈ γ(b�) ∧ s → s′ ⇒ s′ ∈ γ(b�)

Providing the concretisation function and the program semantics can be axioma-
tised in first-order logic, the proof obligation can be sent to ATPs such as SMT
solvers or first-order provers. In our case, the logic embedding does not incur
a particular encoding overhead as it is demonstrated by our modelling of the
semantics [7] using the Why platform.

This approach has demonstrated its effectiveness to certify the result of numer-
ical analyses [16]. However, for object-oriented analyses, ATPs fail to discharge
the proof obligation because the formulae quantify over infinite domains such as
the set of memory locations. An obvious optimisation that simplifies the task of
the prover consists in splitting the proof obligation into program point specific
verification conditions. In our experiments, off-the-shelf ATPs still fail to reliably
and consistently discharge all the proof obligations. This absence of (relative)
completeness of ATPs w.r.t. a particular static analysis makes this approach for
validating static analyses fragile and unpredictable.

To alleviate the problem, provers could be tuned on a per analysis basis.
However, this solution is fragile and comes without any formal guarantee: what
about its robustness w.r.t. slight modifications of the static analysis? Here, we
explore another solution that is robust and does not require any modification of
the provers. We propose to tame static analyses so that, by construction, proof
obligations fall in fragments that are well-understood by the prover and are
therefore discharged reliably. The family of static analyses we have identified can
be characterised almost syntactically by the definition of concretisation function.
As a result, the static analysis designer can have the guarantee that the proof
obligations will be discharged without any knowledge of the internals of the
provers. The proof obligations we generate are easily reducible to Effectively
Propositional logic. This logic is still quantified but decidable and, as the ATP
System Competition shows, existing provers are already tuned for this logic.

Our family of analyses is parametrised by a base abstract domain Val � for
abstracting values (see Section 3). This abstract domain is automatically lifted
to the program abstraction Abs.
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Heap� = F → Val � × Val � Env � = Var → Val � Abs = Heap� × (PP → Env �)

This abstraction corresponds to static analyses that are flow-sensitive (the ab-
straction of local variables is program specific) and heap-insensitive (the abstrac-
tion of the heap is shared by every program-point). The abstraction of fields is
relational: a field f is abstracted by a pair (v1, v2) ∈ Val � × Val � such that v2 is
the abstraction of x.f providing v1 is the abstraction of x. This family of analyses
encompasses well-known static analyses such as Java bytecode verification [28]
and Fähndrich and Leino type-system for checking null pointers [20].

For this family of analyses, we show how to generate verification conditions
of the following shape (see Section 4.1):

∀c̄ ∈ Class, f̄ ∈ F , ī ∈ IF , v̄ ∈ Var .φ

where c̄, f̄ , ī, v̄ are vectors of universally quantified variables and φ is a quantifier-
free propositional formula built over the following atomic propositions

p ::= v� ∈ γnull | (c, f, i) ∈ γL(v
�) | c $ c | f ∈ c.

In this definition, γnull and γL are used to specify the concretisation of the base
domain Val �, $ is a subclass test and f ∈ c checks whether a field belongs to
a class. As soon as the domain IF is finite, quantifications are only over finite
domains. Thus, the formulae are Effectively propositional providing that γL can
be expressed in this fragment.

Using our approach, the designer of the analysis can verify at the analysis
level the logic fragment the verification conditions will fall into. This is a formal
guarantee that makes this technique for verifying the analyses results very ro-
bust. In practise, even if the formulae are decidable, the provers might not be
complete. Our experiments show that for EPR the provers are really efficient at
discharging our verification conditions.

1.2 Organisation

In Section 2 we present a small object-oriented language with its operational
semantics. Section defines the family of analyses we consider and presents the
encoding of Java bytecode verification and Fähndrich and Leino type-system for
checking null pointers [20]. For this specific class of analyses, Section 4 shows
how to generate verification conditions in the EPR fragment. A prototype im-
plementation in Why3 is described in Section 5. Section 6 reviews related work
and Section 7 concludes.

2 Language, Syntax and Semantics

In the formalisation, we consider a core object-oriented language. Let PP , Var ,
Class, Method and F be finite sets of program points, variable names, classes,
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method names and field names. The set Var contains distinguished elements for
the this pointer, the parameters p0 and p1 and the method result res.

Var 0 x ::= this | p0 | p1 | res | . . .
Stmt 0 s ::= x := null | x := y | x := y.f | x := new C | x := y.c.m(x, y)

| x.f := y | Ifnull(x, pc) | skip
Programs: In our model, a method (c, m) ∈ Class × Method is identified by its
defining class c and its name m. Its entry point (written (c.m)0) and its exit point
(written (c.m)∞) are given by the mapping sig ∈ Class × Method → (PP × PP)⊥.
The code is described via two functions: get_stmt ∈ PP → Stmt returns the
statement at program point; the normal successor of a program point p is written
p+. For a conditional statement Ifnull(e, p′), if e is null, the successor is p′,
otherwise it is p+. The class hierarchy is represented by a relation extends

relating a class and its direct super-class. The subclass relation $ is defined as the
reflexive, transitive closure of extends. Each class defines a set of fields. We write
f ∈ c for a field that is either defined or inherited by c, i.e., recursively defined
by a super-class of c. The lookup function models virtual method dispatch and
is defined if a matching method is found by walking-up the class hierarchy. We
identify a method signature by a defining class and a method name.

lookup : Class → (Class × Method ) → Class⊥

Semantics: The semantic domains are built upon an infinite set of locations L,
and parametrised by an unspecified domain IF of field annotations. At object
creation, field annotations are tagged by inull ∈ IF and updated at field updates
by the ifield : IF → IF function. Values are either a location or the constant
null ; an environment is a mapping from variables to values; an object is a pair
made of a class and a mapping from fields to values and annotations of fields;
the heap is a partial mapping from locations to objects. A state is a tuple of
Env × Heap × PP . Given a state s, we have s = (s.env, s.hp, s.cpp). We add a set
of error states Err for null pointer dereferencing and calls to undefined methods
or lookup failure.

Val = L ∪ {null} Env = Var → Val Obj = Class × (F → Val × IF )
Heap = L → Obj⊥ State = Env × Heap × PP Err = {NullPointer ,LookupFail}

The semantics rules are given in Fig. 2 of Appendix A. We use a mostly
small-step presentation of the semantics, defining inductively a relation → be-
tween successive states in the same method and modelling method calls by the
transitive closure →∗ . The rules for modelling method calls are given below

SCall

s.env[y] = l s.hp[l] = (c, o) s.env[a0] = v0 s.env[a1] = v1
lookup(c)(c0,m) = c′ sig(c′,m) = (pbeg, pend)

env′ = (λx.null )[this ← l][p0 ← v0][p1 ← v1]

s�c0,m ((env′ , s.hp , pbeg), pend)

Call

get_stmt(s.cpp) = x := y.c0.m(a0, a1) x is assignable
s�c0,m (init , pend) init −→∗ end end .cpp = pend

s −→ (s.env[x← end .env[res]], end.hp, s.cpp+)
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The side-condition x is assignable means that x /∈ {this, p0, p1} and ensures
that those variables are not mutable. The rule [SCall] is responsible for initialising
the environment of a called method and retrieving the method exit point. The
rule [Call] models method invocation.

Figure 3 of Appendix A. describes the semantics of programs “which go
wrong”. The semantics is blocking with respect to ill-formed programs (assign-
ment to the variables this, p0 and p1), but programs leading to null pointer
dereferencing or method not found lead to special error states (NullPointer and
LookupFail ).

The set of reachable states are obtained by the reflexive, transitive closure
of the relation � which enriches the semantic relation → with states reachable
from sub-calls.

s → s′

s � s′

get_stmt(s.cpp) = x := y.c0.m(a0, a1) x is assignable
s�c0,m (s′, pend)

s � s′

The set of reachable states for an initial set S0 of initial states is then defined as

Reach = {s | s0 ∈ S0 ∧ s0�∗s}.

The role of static analyses presented in the next section is to compute an
abstract over-approximation Abs of the set of reachable states (Reach ⊆ γ(Abs))
that can rule out the run-time errors NullPointer and LookupFail .

3 Defining a Family of Analyses

To obtain a more parsimonious embedding of abstract domains into pre- and
post-conditions, we restrict ourselves to a particular class of analyses. This class
is defined by a parametrisation of the operational semantics and of the concreti-
sation of the analyses it contains.

3.1 Parametrised Analyses

We restrict our attention to analyses parametrised by a particular instrumenta-
tion of the semantics (IF , ifield , inull) and an abstract domain Val �. A variable
x is abstracted in a flow-sensitive manner by an element v ∈ Val �; a field f is
abstracted in a flow-insensitive manner by a pair (v1, v2) ∈ Val �×Val � such that
v2 is the abstraction of x.f providing v1 is the abstraction of x. The form of the
abstract domain is defined by

Heap� = F → Val � × Val � Env � = Var → Val � Abs = Heap� × (PP → Env �)

The concretisation function γ : Abs → P(State) is parametrised by γnull and
γL that are used to build the concretisation γVal of values. In the semantics,
a value is either the constant null or a location l. The constant null can be



Result Certification of Static Analysers with ATPs 311

abstracted by any abstract value v part of γnull ⊆ Val �. As locations are abstrac-
tion of memory addresses in the semantics, a concretisation function γL : Val � →
P(L) would make little sense. The purpose of γL : Val � → P(Class × F × IF )
is to relate in the heap the class of the location and the instrumentation of the
fields. As a result γVal is parametrised by a heap h and is defined as follows:

v� ∈ γnull

null ∈ γhVal (v
�)

h(l) = (c, o) ∀f ∈ c.(c, f, o(f)2) ∈ γL(v
�)

l ∈ γhVal (v
�)

The abstraction of environments is defined component-wise, i.e., the abstraction
of each variable is non-relational.

∀x, e(x) ∈ γhVal (e
�(x))

e ∈ γhEnv(e
�)

The abstraction of the heap is also non-relational and each field is abstracted by
a pair of abstract values.

∀l, c, o.h(l) = (c, o)⇒ (∀f ∈ c.(c, f, o(f)2) ∈ γL(h
�(f)1)⇒ o(f)1 ∈ γh

Val (h
�(f)2))

h ∈ γHeap(h�)

Finally, the abstract domain Abs is a set of pairs of an abstract heap h� and a
flow-sensitive abstract environment e�fs : PP → Env �.

e ∈ γhEnv

(
e�fs(p)

)
h ∈ γHeap

(
h�

)
(e, h, p) ∈ γ

(
h�, e�fs

)
In the rest of this section, we model well-known analyses: Java byte-code verifi-
cation [30] and a null-pointer analysis à la Fähndrich and Leino [20].

3.2 Bytecode Verification

For our core language, the purpose of byte-code verification consists in ensuring
the absence of LookupFail errors. This error cannot be triggered if for every call
instruction x := y.c0.m(a1, a2) the class of y is a subclass of c0. To rule out this
error, byte-code verification would compute as abstraction for y a class c that
is a subclass of c0. Byte-code verification does not require any instrumentation
of the semantics. An abstract value v ∈ Val � = Class⊥ is either a class c which
represents either null or any object of class c′ $ c, or ⊥ which represents null.

IF = {⊥} inull = ⊥ ifield(i) = ⊥ γnull = Val � γL(c) = {(c′, f, i) | c′ $ c}

3.3 Null Pointer Analysis

Our parametrised concretisation can also model more sophisticated analyses sim-
ilar to the null-pointer analysis of Fähndrich and Leino [20]. A key insight of
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the analysis is the notion of raw type: an object of type raw(c) is such that
all the fields of c (or inherited from super-classes) are initialised. The crux
is that the flow-insensitive abstraction of the heap is only valid for initialised
fields. Hubert et al., have formalised Fähndrich and Leino’s type system in
the context of abstract interpretation [25]. In order to track down the initial-
isation state of fields, they are using an instrumented semantics which anno-
tates field with the status def (defined) as soon as their are initialised. With
our semantics, this behaviour is modelled by the following instrumentation:
IF = {def , undef } inull = undef ifield(i) = def .

For precision, the analysis requires this to be given a more precise ab-
straction than other variables. Instead of a raw type, this is abstracted by
an explicit mapping f ∈ F → {Def ,UnDef } where Def means definitively de-
fined and UnDef means may be defined. In our framework, all the variables are
treated in an homogeneous way and doing a special case for this is not possi-
ble. As a result, in our abstraction, all the variables are treated like this. This
is a generalisation as a raw type raw(c) is just a compact representation for
λf . if f ∈ c then Def else UnDef .

Another deviation from Fähndrich and Leino or Hubert et al., is that our
new statement is just allocating memory but does not calls a constructor. To
precisely track down the state of a newly created object of class c, we introduce
the type ĉ which represents a totally uninitialised object of class exactly c.

IF � = {Def ,UnDef } Val � = {MaybeNull ,NotNull} ∪ Ĉlass ∪ (F → IF �)

The type MaybeNull represents an arbitrary value and NotNull represents a non-
null object with all its fields initialised. The type ĉ represents an uninitialised
object of class (exactly) c and a mapping F ∈ F → IF � represents an object
such that the initialisation state of a field f is given by F (f).

γIF (Def ) = {def } γIF (UnDef ) = IF γnull = {MaybeNull}

γL(MaybeNull) = Class × F × IF γL(NotNull) = {(c, f , v) | f ∈ c ⇒ v = def }

γL(ĉ) = {c} × F × IF γL(F ) = {(c, f, v) | f ∈ c⇒ v ∈ γIF (F (f))}

A feature of this analysis is that the abstraction of the heap is only valid for
initialised field. This property is obtained as soon as an abstract heap h� ∈ Heap�

is such that h�(f)1(f) = def .

4 Generating Tractable Verification Conditions

The verification conditions generated for our restricted class of analyses are not
automatically discharged by off-the-shelf provers. A significant difficulty is that
the formulae quantify over the (infinite) set of memory locations and do not fall
into known decidable fragments. To tackle this problem, our approach consists
in generating abstract verification conditions that are geared towards the family
of parametrised analyses presented in Section 3.1.
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4.1 Almost Effectively Propositional Logic

The EPR logic, also known as the Bernays-Schönfinkel-Ramsey (BSR) class, is
a decidable fragment of first-order logic where formulae are of the form

∃∗∀∗.φ

where φ is a quantifier-free formula without function symbols. Piskac et al. [35]
have shown how to decide EPR formulae extended with equality using the SMT
solver Z3. Fontaine [23] has shown that the BSR class can be combined with
decidable theories under mild assumptions (more relaxed than the standard
Nelson-Oppen combination scheme). This makes this logic a good target for
our verification conditions.

After transformation, our optimised verification conditions are of the form

∀c̄ ∈ Class, f̄ ∈ F , ī ∈ IF , v̄ ∈ Var .φ

where c̄, f̄ , ī, v̄ are vectors of universally quantified variables and φ is a quantifier-
free propositional formula built over the following atomic propositions

p ::= v� ∈ γnull | (c, f, i) ∈ γL(v
�) | c $ c | f ∈ c.

Here, v� is a constant of the abstract domain Val �; c is either a constant class
name or a class variable bound in c̄; f is either a constant field or a field variable
bound in f̄ ; i is an annotation of the form ifieldn(i) where i is either a constant
annotation or an annotation variable bound in ī; x is a variable.

In those formulae, constants play the role of existential variables. Observe
that ground formulae c $ c′ and f ∈ c are syntactic properties of programs that
can be evaluated. The subclass predicate $ is defined as the reflexive transitive
closure of the extends relation. Fixpoints, even in the restricted form of transi-
tive closure, are not expressible in first-order logic and are therefore outside the
EPR fragment. We sidestep the difficulty by tabulating the relation subclass.
We also tabulate the fact that a field f belongs to a class c. The translation
is quadratic in the worst case. However, in practise, class hierarchies are never
very deep [37]. The remaining atoms are static analysis dependent. Therefore,
the reducibility to EPR is a property of the static analysis that can be decided
by just looking at the definitions of γnull and γL .

The byte-code verification logic is trivially reducible to EPR: The atomic
formula v� ∈ γnull always holds because null belongs to any abstract element v�.
Moreover, (c, f, i) ∈ γL(v

�) reduces to c $ v�.
The null-pointer logic is also reducible to EPR. The atomic formula v� ∈ γnull

can always be evaluated; it holds if and only if v� = MaybeNull . Atomic formulae
of the form (c, f, i) ∈ γL(v

�) can be encoded in EPR extended with the theory
of equality and a F interpreted function.

(c, f , i) ∈ γL(MaybeNull) iff True
(c, f , i) ∈ γL(NotNull) iff f ∈ c ⇒ v = def
(c, f , i) ∈ γL(ĉ

′) iff c′ = c
(c, f , i) ∈ γL(F ) iff f ∈ c ⇒ F (f ) = Def ⇒ i = def
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The theory of equality can be reduced to EPR [35] and is not a problem. In
this specific case, the interpreted function F is known and defined over a finite
domain. For a given F , the formula F (f) = Def can therefore be expanded into
a (finite) disjunction

∧
F (f ′)=Def f

′ = f . The obtained formula lies within the
required fragment.

For these restrictions to be of interest we must show that our verification
conditions can be expressed in this fragment. This is far from evident and is
proved in Section 4.2

4.2 Abstract Verification Conditions

We show how to obtain sound abstract verification conditions The essential
property of the VCs is that they fall in the logic fragment identified in Section 4.1.
The reduction has been formally proved in Coq and is available [7].

Our verification conditions require the instrumentation to be monotonic w.r.t.
to the abstraction of location.

∀v�, c, f, i.(c, f, i) ∈ γL(v
�) ⇒ (c, f, ifield(i)) ∈ γL(v

�)

This property has already been identified as being instrumental for coping with
multi-threading [20]. In a sequential setting, it could be relaxed at the cost of
introducing an additional quantification modelling the fact that, for instance,
during a method call the instrumentation can be updated an arbitrary number
of times.

The VCs given in Fig. 1 use the following short-hands.

v�1
•
� v�2

�
=

∧ v�1 ∈ γnull ⇒ v�2 ∈ γnull
∀c, i, f ∈ c.(c, f, i) ∈ γL(v

�
1) ⇒ (c, f, i) ∈ γL(v

�
2)

v�1
•
� v�2

•
� v�3

�
=

∧ v�1 ∈ γnull ∧ v�2 ∈ γnull ⇒ v�3 ∈ γnull
∀c, i, f ∈ c.

(c, f, i) ∈ γL(v
�
1) ∧ (c, f, i) ∈ γL(v

�
2) ⇒ (c, f, i) ∈ γL(v

�
3)

Given an abstraction (H,E) ∈ Heap� × (PP → Env �) of the program, we
generate for each program point p a verification condition VC �(H,E)

p for the
statement s ∈ Stmt such that get_stmt(p) = s. For each method signature
m′ ∈ Class ×Method which overrides a method m ∈ Class ×Method in a sub-class,
we also generate abstract verification conditions VC �(H,E)

(m′,m) modelling the
usual variance/co-variance rules for method redefinitions. The comprehensive
VCs are given in Fig. 1. In all rules, the terms of the statement on which the
VC is produced are capital letters in a True-Type font (e.g., x) and the two
parts of the abstraction are written in italic capital letters. We do not indicate
the sorts of the quantified variables to keep the formulae readable, but all v are
variables in Var , c are classes in Class, f are fields in F , i are instrumentations of
fields in IF , except in the VC for call instructions, where it is specified ∀i ∈ {0, 1}
to avoid repeating the condition.
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12

VC �(skip)
(H,E)
cpp = ∀v.E(cpp)(v)

•
! E(cpp+)(v)

VC �(x := null)
(H,E)
cpp =

{
∀v �= x.E(cpp)(v)

•
! E(cpp+)(v)

∧E(cpp+)(x) ∈ γnull

VC �(x := x′)(H,E)
cpp =

{
∀v �= x.E(cpp)(v)

•
! E(cpp+)(v)

∧E(cpp)(x′)
•
! E(cpp+)(x)

VC �(x := y.f)
(H,E)
cpp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀v �= x.E(cpp)(v)
•
! E(cpp+)(v)

∧∀c, i.
f ∈ c⇒
(c, f, i) ∈ γL(E(cpp)(y))⇒
((c, f, i) ∈ γL(H(f)1)⇒ H(f)2 ∈ γnull)⇒
E(cpp+)(x) ∈ γnull

∧∀c, c′, f ′, i, i′.
f ∈ c⇒
(c, f, i) ∈ γL(E(cpp)(y))⇒
((c, f, i) ∈ γL(H(f)1)⇒ (c′, f ′, i′) ∈ γL(H(f)2))⇒
(c′, f ′, i′) ∈ γL(E(cpp+)(x))

VC �(x := new c)
(H,E)
cpp =

⎧⎪⎨
⎪⎩
∀v �= x.E(cpp)(v)

•
! E(cpp+)(v)

∧∀f ∈ c.(c, f, inull) ∈ γL(E(cpp+)(x))
∧∀c′, f ∈ c′.(c′, f, inull) ∈ γL(H(f)1)⇒ H(f)2 ∈ γnull

VC �(x.f := y)
(H,E)
cpp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀c, i.
f ∈ c⇒
(c, f, i) ∈ E(cpp)(x)⇒
(c, f, ifield(i)) ∈ E(cpp+)(x)

∧∀v �= x.E(cpp)(v)
•
! E(cpp+)(v)

∧∀i, c, f ′ �= f.
f ∈ c⇒
(c, f ′, i) ∈ γL(E(cpp)(x))
(c, f ′, i) ∈ γL(E(cpp+)(x))

∧E(cpp)(y)
•
! H(f)2

∧∀c, f ′, i.
(c, f, i) ∈ γL(E(cpp)(x))⇒ (c, f, ifield(i)) ∈ γL(H(f ′)2)

VC �(x := y.c.m(v0, v1))
(H,E)
cpp =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀i, f, c′ 
 c.(c′, f, i) ∈ γL(E(cpp)(y))⇒ (c′, f, v) ∈ γL(E((c, m)0)(this))

∧∀i ∈ {0, 1}.E(cpp)(vi)
•
! E((c, m)0)(pi)

∧E((c, m)∞)(res)
•
! E(cpp+)(x)

∧∀v /∈ {x, y, v0, v1}.E(cpp)(v)
•
! E(cpp+)(v)

∧E((c, m)∞)(this)
•
" E(cpp)(y)

•
! E(cpp+)(y)

∀i ∈ {0, 1}.E((c, m)∞)(pi)
•
" E(cpp)(vi)

•
! E(cpp+)(vi)

VC �(Jnull(x, p′)(H,E)
cpp =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(cpp)(x) ∈ γnull ⇒ E(cpp+(x)) ∈ γnull

∧∀v �= x.E(cpp)(x) ∈ γnull ⇒ E(cpp)(v)
•
! E(cpp+)(v)

∧∀c, i, f ∈ c.(c, f, i) ∈ γL(E(cpp)(x))⇒ (c, f, i) ∈ γL(E(cpp+)(x))

∧∀c, i, f, v �= x.(f ∈ c⇒ (c, f, i) ∈ γL(E(cpp)(x)))⇒ E(cpp)(v)
•
! E(p′)(v)

VC �(H,E)
(m′,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E(m′
∞)(res)

•
! E(m∞)(res)

∧∀c 
 class(m′), f, i.(c, f, i) ∈ γL(E(m0)(this))⇒ (c, f, i) ∈ γL(E(m′
0)(this))

∧∀i ∈ {0, 1}.E(m0)(pi)
•
! E(m′

0)(pi)
∧∀v /∈ {this, p0, p1}.E(m0)(v) ∈ γnull

Fig. 1. Optimised verification conditions
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Assignments. We produce different VCs for assignments x := e depending on the
expression e. If e is simply null, then the VC simply propagates the information
on all variables different from x and checks that the abstract value for x at the
next program point can represent a null value.

VC �(x := null)(H,E)
p =

{
∀v �= x. E(p)(v)

•
� E(p+)(v)

∧E(p+)(x) ∈ γnull

The other VC for assignment deals with instructions of the form x := x′, and
checks that the information on x′ are propagated to the information on x at
the next program point, replacing the condition E(p+)(x) ∈ γnull by E(p)(x′)

•
�

E(p+)(x).

Method Calls. Along the same lines, most of the conditions of the VC for call
statements x := y.C.M(V0, V1) simply check that the correct information is prop-
agated. First, the information on all local variables that are not concerned by
the call—variables that are neither x, y, V0 nor V1—must be propagated to the
next program point.

∀v /∈ {x, y, V0, V1}. E(p)(v)
•
� E(p+)(v)

Then, the VC must check that the pre-condition of the method called is en-
forced, i.e., it must check that the information on the argument of the call y,V0
and V1 implies the information on the parameter this,p0 and p1 at the en-
try point of the method. We take the entry point of the implementation of the
method in the highest possible class (C, M)0. A different VC checks that all imple-
mentations respect the usual variance/co-variance rule for method redefinitions.

∀i, f, c′ 
 C. (c′, f, i) ∈ γL(E(p)(y)) ⇒ (c′, f, v) ∈ γL(E((C, M)0)(this))

∀i ∈ {0, 1}. E(p)(Vi)
•
� E((C, M)0)(pi)

The constraint concerning the parameter this is a bit relaxed: we know that
the object y is not null and at most of class C. A different VC is in charge of
checking that the lookup never fails. The VC checks that the information on y

at the call point up to C is propagated to the information on this at the entry
point.

Finally, the VC checks that the information at the exit point (C, M)∞—i.e.,
the post-condition of the method—is propagated.

E((C, M)∞)(res)
•
� E(p+)(x)

E((C, M)∞)(this)
•
� E(p)(y)

•
� E(p+)(y)

∀i ∈ {0, 1}. E((C, M)∞)(pi)
•
� E(p)(Vi)

•
� E(p+)(Vi)

Note that even if the semantics specify that the value—i.e., the location—of
the variables y, V0 and V1 is not touched by the call, the object they point to
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may have been modified by the call, e.g., more fields could be initiated. There-
fore, the information at the next program point on these variables is actually
the intersection of the information at the call point—i.e., E(p)(•)—and of the
information on the parameters—this for y, p0 for V0 and p1 for V1—at the exit

point of the method E((C, M)∞)(•), hence the use of the shorthand v�1
•
� v�2

•
� v�3.

Conditional Tests. A program point p annotated with a branching statement
Jnull(x, p′) generates one VC, with conditions related to the two branches. If
the information on x at program point p indicates that the variable can be null,
i.e., E(p)(x) ∈ γnull , then the jump may occur, therefore the information on x

at p′ must signal that x may be null, and the information on all other variables
must be propagated from p to p′.

E(p)(x) ∈ γnull ⇒ E(p′)(x) ∈ γnull

∀v �= x. E(p)(x) ∈ γnull ⇒ E(p)(v)
•
� E(p′)(v)

As soon as the information on x at p indicates that the variable can be not-null,
i.e., if (c, f, i) ∈ γL(E(p)(x)) is true, then some executions may continue to p+

and the information must be propagated accordingly.

∀c, i, f ∈ c. (c, f, i) ∈ γL(E(p)(x)) ⇒ (c, f, i) ∈ γL(E(p+)(x))

∀v �= x, ∀c, i, f ∈ c. (c, f, i) ∈ γL(E(p)(x)) ⇒ E(p)(v)
•
� E(p+)(v)

Note that the information that x may be null at p is not propagated to p+, we
use a constraint a bit more relaxed than a simple E(p)(x)

•
� E(p+)(x), and can

therefore certify guard-sensitive analyses i.e., exploit guards to refine analysis
results.

Object Allocation. The VC for the x := new C statement is straightforward. It
only has to check—besides the fact that variables other than x are unchanged—
that the information on x at the next program point can account for the fact
that all the fields of the object stored in x have a inull annotation and have a
null value.

∀f ∈ C. (C, f, inull) ∈ γL(E(p+)(x))
∀f ∈ C. (C, f, inull) ∈ γL(H(f)1) ⇒ H(f)2 ∈ γnull

Accesses in the Heap. The VC for a program point p annotated with an access
in the heap x := y.f states that the information on f in the flow-insensitive
abstraction of the heap, i.e., H(f)2, should be propagated to the information on
x at the next program point. Nonetheless, recall that the abstraction of the heap
may distinguish between the possible annotations of f. Therefore, the informa-
tion fromH must be propagated to E(p+)(x) depending on what the information
on y at p can say about the flag on y.f.
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∀c, i.
f ∈ c⇒
(c, f, i) ∈ γL(E(p)(y)) ⇒(
(c, f, i) ∈ γL(H(f)1) ⇒ H(f)2 ∈ γnull

)
⇒

E(p+)(x) ∈ γnull

∀c, c′, f ′, i, i′.
f ∈ c⇒
(c, f, i) ∈ γL(E(p)(y)) ⇒(
(c, f, i) ∈ γL(H(f)1) ⇒ (c′, f ′, i′) ∈ γL(H(f)2)

)
⇒

(c′, f ′, i′) ∈ γL(E(p+)(x))

There are two kinds of information to propagate: f may be null, i.e., H(f)2 ∈
γnull , and the set of objects the abstraction of f may correspond to, hence the
two conditions. Remark that the parentheses does not allows the use of the
shorthand H(f)2

•
� E(p+)(x).

Updates in the Heap. The VC for a program point p annotated with an update
in the heap x.f := y checks that the information on y is propagated in the heap

E(p)(y)
•
� H(f)2

but must also checks that the abstraction accounts for the update on the flag
attached to the field. It must be accounted for in the abstraction of the environ-
ment, for all objects in which f is defined, but only for the field f

∀c, i.
f ∈ c⇒
(c, f, i) ∈ E(p)(x) ⇒
(c, f, if ield(i)) ∈ E(p+)(x)

∀i, c, f ′ �= f.
f ∈ c⇒
(c, f ′, i) ∈ γL(E(p)(x)) ⇒
(c, f ′, i) ∈ γL(E(p+)(x))

and it must be accounted for in the heap.

∀c, f ′, i. (c, f, i) ∈ γL(E(p)(x)) ⇒ (c, f, ifield(i)) ∈ γL(H(f ′)2)

Theorem 1. Let P be a program and (H,E) be the untrusted result of an
analysis such that the instrumentation is monotonic. If the abstract VCs hold
for all the statements (∀p ∈ PP , s ∈ Stmt .get_stmt(p) = s ⇒ VC �(H,E)

p (s))
and the abstract VCs hold for method redefinitions (∀m,m′.override(m′,m) ⇒
VC �(H,E)

(m′,m)) then the concrete VCs hold and as a consequence the analysis
result is sound (Reach ⊆ γ(H,E)).
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This theorem is proved correct in our Coq development [7].
For each statement s ∈ Stmt at program point p which can potentially be

responsible for an error e ∈ Err we generate an abstract verification condition
Chk �(s)

(H,E)
p ruling out this error.

Chk �(x := y.f)
(H,E)
p = ¬(E(p)(y) ∈ γnull )

Chk �(x.f := y)
(H,E)
p = ¬(E(p)(x) ∈ γnull )

Chk �(x := y.c.m(v0, v1))
(H,E)
p =

{
¬(E(p)(y) ∈ γnull )
∧∀c′, f, i.(c′, f, i) ∈ E(p)(y) ⇒ c′ $ c

Theorem 2. Let P be a program and (H,E) be a sound analysis (Reach ⊆
γ(H,E)). If the abstract VCs hold for all the statements

∀p ∈ PP , s ∈ Stmt .get_stmt(p) = s ⇒ Chk �(H,E)

p (s)

then the absence of errors is guaranteed by the static analysis result (∀s, e.s ∈
Reach ⇒ s �� e).

5 Experiments

For our experiments, we consider the null pointer analysis presented in Sec-
tion 3.3. To get type annotations, we have ported the NIT implementation [25]
to the Sawja platform [24] thus benefiting from a Bytecode Intermediate Lan-
guage [19] that is closed to the idealised language of Section 2. For the time being,
we do not generate VCs for BIR instructions that do not have a direct counter-
part in our idealised language. In particular, we ignore instructions manipulating
primitive types, static fields and static methods (with the notable exception of
constructors). Following Fähndrich and Leino [20], a constructor implicitly de-
fines all the fields of the current class. We emulate this behaviour by adapting
our VC for method returns. For a constructor, we add in the hypotheses that
the fields of the current class are necessarily defined.

For other instructions, we generate VCs according to Figure 1. At generation
time, verification conditions are partially evaluated with respect to the analysis
result. In particular, this is the case for terms of the form γL(E(p)(v), (c, f, i))
where E, p and v are constant or of the form γL(E(p)(v), (c, f, i)) where only E
and p are constant. The generated VCs are then processed by Why3 and sent to
different ATPs.

Results: All experiments [7] were done on a laptop running Linux with 4GB
memory and Intel Core 2 Duo cpu at 2.93GHz. We used Why3 0.80 version
and tested the ability of different provers to discharge the VCs. We limited our
choice to provers to which Why3 could interface to off-the-shelf, and not, for
instance, the latest winners of the EPR category of the CASC competition [36].
We generated VCs for a limited set of small Java programs, testing the different
cases of the analysis. All VCs were discharged in less than 0.2 seconds, most
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in less than 0.05 seconds, times hardly significant. Some provers were not able
to discharge all VCs, TPTP provers in particular did not managed to discharge
most VCs. Among SMT provers, only CVC3 was able to discharge all VCs, alt-
ergo failing very quickly in some cases, and Z3 reaching timeout (5 seconds).
This differences could be due to the encoding we used, and more experiment
would be needed to understand why some provers performed better.

Nevertheless, our experiments showed that the VC calculus presented in Sec-
tion 4.2 produced VCs consistently discharged by multiple provers, therefore
demonstrating the relevance of the EPR fragment presented in Section 4.1 as a
framework for efficient result certification of object-oriented properties. The only
limiting factor to scalability appears to be the encoding of the class hierarchy
c′ 
 c and the relation f ∈ c. Analysing programs that use the standard Java
library may involve hundreds of classes and thousands of fields, and describing
an efficient encoding for relation on such large domains is a problem in its own
right.

6 Related Work

Static program analysis is a core technology for verifying software. Most static
analysers are complex pieces of software that are not without errors. Hence, we
have witnessed a growing interest in certified static analysis.

Certified static analysis has been pioneered by Necula in his seminal work on
Proof-Carrying Code (PCC) [32]. Necula insists on the fact that proof genera-
tion should be automatic and therefore invariant generation should be based on
static analysis. The back-end of a PCC architecture is a proof generating theo-
rem prover able to discharge the verification conditions. In a PCC setting, the
Touchstone theorem prover [33] generates LF proof terms for a quantifier-free
fragment of first-order logic enhanced with a specific theory for modeling types
and typing rules. For the family of static analyses we consider, a traditional VC-
Gen would not generate verification conditions in the scope of Touchstone. The
Open Verifier [14] aims at providing a generic Proof-Carrying architecture for
proving memory safety. For each analysis, a new type checker is an untrusted
module which, using a scripting language, instructs the kernel of a proof strategy
for discharging the verification conditions. In our work, the verification condi-
tions are compiled for our family of analyses and the verification conditions are
discharged using trusted solvers.

Foundational Proof-Carrying Code [2] proposes to reduce the TCB to a proof-
checker and the definition of the program semantics. A foundational proof of
safety for a static analyser can be obtained by certifying the analyser inside
a proof-checker. Klein and Nipkow have formalised the Java bytecode verifier
in Isabelle [27]. Pichardie et al. [13,34] formalised the abstract interpretation
framework [17] in Coq and used it to prove the soundness of several program
analysers. This approach requires to develop and prove in Coq the whole anal-
yser which is a formidable effort of certification and raises efficiency concerns,
Coq being a pure lambda-calculus language. Another way to obtain a founda-
tional proof of safety is to certify, inside the proof-checker, a verifier of analysis
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result rather than the analyser. Besson et al. [9] applied this result certification
methodology [38] to a polyhedral analysis, developing an analyser together with
a dedicated checker whose soundness is proved inside Coq. These works target
a single analysis but aim at a minimal TCB. Our approach is more automatic
and capture a family of analyses at the cost of integrating provers in the TCB.
However, generating foundational proofs for provers is also an active research
area [11,8,3]. These works pave the way for foundational proofs of family of
static analysis results.

Albert et al. [1] who have shown how results of the state-of-the-art static
analysis system COSTA can be checked using the verification tool Key. COSTA
produces guarantees on how resources are used in programs. Resource guarantees
are expressed as upper bounds on number of iterations and worst-case estimation
of resource usage, and injected into Key as JML annotations. The derived proof
obligations are proved automatically using the prover of Key.

7 Conclusion and Further Work

Result verification of abstract interpretation-based static analysers can be im-
plemented using ATP, by injecting the static analysis results into a program
verification tool, and generating the corresponding verification conditions. A
straightforward generation from the operational semantics will generate VCs
that are likely to be too complex for current provers. For this approach to work,
the verification conditions must be generated with care. We show how to gener-
ate VCs optimised for a class of analyses (here including byte code verification
and null pointer analysis) and which fall in a logical fragment that is amenable
to automatic proving. We have conducted a machine-checked proof (in Coq) that
these VCs are sound with respect to the standard VCs for the semantics. This
approach has been validated through an implementation with the Why3 tool
which is capable of verifying analysis results in a few seconds using off-the-shelf
solvers.

Further work includes larger experiments for assessing the scalability of our
approach. We are confident that our EPR VCs are easy instances (quantifica-
tions can be bounded by exploiting the class hierarchy) that will be discharged
without problem by off-the-shelf provers. However, this needs to be validated
experimentally. We also intend to widen the family of analyses in the scope of
our approach and study how to extend the class studied in the present paper
with relational numeric analyses. We expect the VCs to fall in a combination
of EPR with arithmetic. A longer-term research goal consists in automating the
generation of provably sound tractable VCs. Recently, Marché and Tafat have
shown how to prove a classic WP calculus in Why3 [31]. We will investigate how
to adapt this approach for custom Verification Condition Generators specialised
for classes of static analyses.

Acknowledgments. Thanks are due to P. Vittet for porting the Null Inference
Tool (Nit) to Sawja and helping with the experiments.
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A Operational Semantics

The semantic rules can be found in Fig. 2 and Fig. 3.

Skip
get_stmt(s.cpp) = skip

s −→ (s.env, s.hp, s.cpp+)

Assign
get_stmt(s.cpp) = x := e x is assignable (s.env, e)⇒ v

s −→ (s.env[x← v] , s.hp , s.cpp+)

JumpNull
get_stmt(s.cpp) = Ifnull(t, p′) (s.env, t)⇒ null

s −→ (s.env , s.hp , s.cpp+)

JumpLoc
get_stmt(s.cpp) = Ifnull(t, p′) (s.env, t)⇒ l

s −→ (s.env , s.hp , p′)

New

get_stmt(s.cpp) = x := new c x is assignable
s.hp[l] = ⊥ o = λf.(null, inull)

s −→ (s.env[x← l] , s.hp[l← (c, o)] , s.cpp+)

Getfield

get_stmt(s.cpp) = x := y.f x is assignable
s.env[y] = l s.hp[l] = (c, o) o[f ] = (v, i)

s −→ (s.env[x← v] , s.hp , s.cpp+)

Putfield

get_stmt(s.cpp) = x.f := y s.env[x] = l s.hp[l] = (c, o)
v′ = s.env[y] (v, i) = o[f ] i′ = ifield(i) o′ = o[f ← (v′, i′)]

s −→ (s.env , s.hp[l ← (c, o′)] , s.cpp+)

Call

get_stmt(s.cpp) = x := y.c0.m(a0, a1) x is assignable
s�c0,m (init , pend) init −→∗ end end .cpp = pend

s −→ (s.env[x← end .env[res]] , end.hp , s.cpp+)

SCall

s.env[y] = l s.hp[l] = (c, o) (s.env, a0)⇒ v0 (s.env, a1)⇒ v1
lookup(c)(c0,m) = c′ sig(c′,m) = (pbeg, pend)

env′ = (λx.null)[this← l][p0 ← v0][p1 ← v1]

s�c0,m ((env′ , s.hp , pbeg), pend)

Fig. 2. Semantics
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GetfieldNullP

get_stmt(s.cpp) = x := y.f x is assignable
s.env[y] = null

s � NullPointer

PutfieldNullP

get_stmt(s.cpp) = x.f := y x is assignable
s.env[x] = null

s � NullPointer

CallNullP

get_stmt(s.cpp) = x := y.c0.m(a0, a1) x is assignable
s.env[y] = null

s � NullPointer

LookupFail

get_stmt(s.cpp) = x := y.c0.m(a0, a1) x is assignable
s.env[y] = l s.hp[l] = (c, o) lookup(c)(c0,m) = ⊥

s � LookupFail

Fig. 3. Error conditions
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Abstract. This paper presents a formalization in higher-order logic of a
generic algorithm that is used in automated strategies for solving global
optimization problems. It is a generalization of numerical branch and
bound algorithms that compute the minimum of a function on a given
domain by recursively dividing the domain and computing estimates for
the range of the function on each sub-domain. The correctness statement
of the algorithm has been proved in the Prototype Verification System
(PVS) theorem prover. This algorithm can be instantiated with specific
functions for performing particular global optimization methods. The
correctness of the instantiated algorithms is guaranteed by simple prop-
erties that need to be verified on the specific input functions. The use of
the generic algorithm is illustrated with an instantiation that yields an
automated strategy in PVS for estimating the maximum and minimum
values of real-valued functions.

1 Introduction

Formal verification of safety-critical cyber-physical systems often requires prov-
ing formulas involving multivariate polynomials and other real-valued functions.
For example, the following function appears in the formal proof of correctness
of an alerting algorithm for parallel landing [9] in the Prototype Verification
System (PVS) [12].

ψ(v, φ) ≡ 180 g

πv 0.514
tan(

πφ

180
), (1)

where g = 9.8 (gravitational acceleration in meters per second squared). This
formula computes the turn rate (in degrees per second) of an aircraft flying at a
ground speed v (in knots) with a bank angle φ (in degrees). In [9], propositions
involving ψ, e.g., 3 ≤ ψ(250, 35) ≤ 3.1, were first checked using computer alge-
bra tools. The mechanical, but non-automated, proof in PVS of the statement
3 ≤ ψ(250, 35) ≤ 3.1 is about one page long and requires the use of several
trigonometric properties.

Problems involving nonlinear real-valued functions also appear in the safety
analysis of control systems. For instance, the safe domain S for a certain control
system described in [2] is defined as follows.
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S ≡ {(x, y) ∈ R2 | g1(x, y) < 0 and g2(x, y) < 0},where (2)

g1(x, y) ≡ x2y4 + x4y2 − 3x2y2 − xy +
x6 + y6

200
− 7

100
, (3)

g2(x, y) ≡ −x2y4 − x4y2 + 3x3y3 +
x5y3

10
− 9

10
. (4)

If S is the safe domain of a safety-critical system, the formal verification of such
a system may require deciding whether or not a set of points of interest I is
included in S. Analytical formulas that decide these kinds of inclusions do not
exist in general.

Formal modeling of biological systems can also yield non-trivial problems
involving real-valued functions. Consider the polynomial

H ≡ −x1x36 + 3x1x6x
2
7 − x3x

3
7 + 3x3x7x

2
6 − x2x

3
5 + 3x2x5x

2
8 − x4x

3
8+

3x4x8x
2
5 − 0.9563453,

(5)

where x1 ∈ [−0.1, 0.4], x2 ∈ [0.4, 1], x3 ∈ [−0.7,−0.4], x4 ∈ [−0.7, 0.4], x5 ∈
[0.1, 0.2], x6 ∈ [−0.1, 0.2], x7 ∈ [−0.3, 1.1], and x8 ∈ [−1.1,−0.3]. This mul-
tivariate polynomial appears in the electrolytic determination of the resultant
dipole moment in the heart. Finding an enclosure to the minimum value of the
polynomial in the variables’ range is a challenge problem for global optimization
methods [13].

The problems above, which are challenging for formal verification tools, can
be solved using numerical global optimization methods [11]. One of these meth-
ods is called branch and bound. Branch and bound is a method to compute an
enclosure to the range of a real-valued function on a given domain by recursively
computing enclosures to the range of the function on subdomains. The method
requires a bounding function that returns a crude, but correct, enclosure of the
range of the real-valued function on any domain. The bounding function has
the property of providing more accurate enclosures on smaller domains. Hence,
the range of a function can be approximated to any given accuracy by splitting
the original domain into two subdomains and recursively computing enclosures
of the range of the function on each subdomain. This recursion continues until
an appropriate enclosure is determined or until a maximum recursion depth is
reached. In general, when a given domain is subdivided into two subdomains,
it is possible that one of those subdomains will need further subdivision, while
the other subdomain will not. That is, the recursion tree in a branch and bound
algorithm is not, in general, symmetric.

Usually, in branch and bound problems, the domain of a real-valued function
on n-variables is an n-dimensional hyper-rectangle, called a box. A box is repre-
sented as a list of closed intervals, where each interval is the range of an input
variable of the function. Figure 1, which shows one possible recursion tree for
a problem solved with a branch and bound algorithm. In this case, the recur-
sion first splits the large box into left/right halves, then splits the left subbox
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Fig. 1. Branch and Bound Recursion on a Box

into top/bottom halves, and finally splits the bottom half of this subbox into
left/right halves again.

The fact that a branch and bound algorithm requires a bounding function
to compute a crude estimate of a function’s range on a box does not hinder
the usefulness of the approach, since there are multiple ways to define such a
function. One way to compute such an estimate, which works for a large class of
functions, is known as interval arithmetic [3,7,8], which in many cases provides
a worst case, naive estimate of the range of the given function. For instance, for
x ∈ [0, 1], it is easy to see that the function f(x) = x−x2 always takes values in
[−1, 1], since each of the two monomials in this polynomial takes values in [0, 1].
This estimate can be mechanically computed using interval arithmetic. This is
clearly a very crude estimate of the range, since the actual range of f in [−1, 1]
is [0, 14 ]. Interval arithmetic extends to multiple variables and from polynomials
to trigonometric functions, logarithms, etc. using, for example, Taylor series
approximations. PVS strategies for solving simply quantified inequalities, such
as those involving function ψ given by Formula (1), are presented in [3]. Those
strategies are based on a branch and bound algorithm using interval arithmetic.

For polynomial functions a more accurate estimation method is available
through Bernstein polynomials [5]. Any polynomial p(x) of degree at most n can
be written in the form of a Bernstein polynomial: p(x) =

∑n
i=0 bi

(
n
i

)
xi(1−x)n−i.

The coefficients bi are called Bernstein coefficients and are computed directly
from the coefficients of p in the power basis. Once a polynomial is written in a
Bernstein polynomial form, the Bernstein coefficients yield an estimate for the
range of the polynomial p for x ∈ [0, 1]: mini≤n bi ≤ p(x) ≤ maxi≤n bi. Further-
more, p(0) = b0 and p(1) = bn. This result is generally applicable to variables in
an arbitrary range [A,B] since any polynomial p can be translated into another
polynomial q such that q(y), with y ∈ [0, 1], attains the same values as p(x),
with x ∈ [A,B]. The case where the range of x is unbounded has been discussed
in [10].

There are many types of problems that can be approached using branch and
bound algorithms. Lower and upper bounds of a function on a box that are
accurate to a given precision can often be computed in this way. This can be
accomplished through interval arithmetic or, if the function is a polynomial,
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by using Bernstein polynomials. Another problem that can be solved using a
branch and bound algorithm is determining whether a given polynomial is always
positive, negative, nonnegative, or nonpositive on a box. In a previous work [10],
the authors presented an automated solution to this problem. That tool can
be used to automatically and formally prove polynomial inequalities such as
H ≥ −1.7435, where H is the multivariate polynomial given by Formula (5).
The tool itself is a collection of strategies that are implemented in PVS and are
based on a branch and bound algorithm for Bernstein Polynomials [5].

Another problem that can be solved with a branch and bound algorithm is
the problem of solving Boolean expressions involving more than one polynomial.
This problem seems to be more common in engineering than problems with only
a single polynomial. For instance, to ensure that the simply connected disk of
radius 0.4 around the origin is contained in the set S given by Formula (2), it
suffices to prove that for all x, y ∈ [−1, 1],

x2 + y2 < 0.42 implies (g1(x, y) < 0 and g2(x, y) < 0).

This problem can be solved using a branch and bound method. A branch and
bound approach can also be used to prove that the disk of radius 0.41 around
the origin is not contained in S and to find counterexamples such as

(x, y) ≡ (− 89186267828861

281474976710656
,
146479537812029

562949953421312
).

Another global optimization problem that can be solved with a branch and
bound algorithm is the problem of computing an approximation, by a list of
boxes, to a set defined by a Boolean expression of polynomial inequalities. Given
such a Boolean expression, three sets of subboxes of the domain can be computed:
those where the property holds, those where it does not hold, and “unknown”
boxes where the algorithm terminated before deciding on the truth of the ex-
pression. This problem is known as paving. Figure 2 shows a paving computed
for the region S, where |x| ≤ 2 and |y| ≤ 2, using a branch and bound algo-
rithm [2]. The union of the green rectangles is an under-approximation of S, the
red rectangles are not in S, and the union of the green and white rectangles is
an over-approximation of S.

This paper presents a formalization of a generic branch and bound algo-
rithm in the higher order logic of PVS. In contrast to the branch and bound
algorithms in [2, 3, 10], which use specific bounding methods and solve spe-
cific type of problems, the algorithm presented in this paper is generic with
respect to the bounding function, the type of input problems, and the type of
output computed by the algorithm. Since the correctness of the algorithm is
formally verified in PVS, it can be used to produce strategies for automati-
cally and formally solving a variety of global optimization problems. The use
of the generic algorithm is illustrated with an instantiation that yields an auto-
mated strategy for computing estimates of the minimum and maximum value of
real-valued function via interval arithmetic. The formal development presented
in this paper is electronically available as part of the NASA PVS Library at
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library.

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library
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Fig. 2. Paving of a Polynomial Region

2 Generic Branch and Bound Algorithm

The motivating principle of a branch and bound algorithm is that some prop-
erties of a given function are easier to decide on small sets than on large sets.
Thus, by breaking up a large domain into smaller subdomains, one can often
determine whether a property holds, whereas it can not be decided easily by
simply considering the large domain alone.

The rest of this section is organized as follows. The generic types used by the
algorithm are described in Section 2.1. The inputs of the algorithm are given in
Section 2.2. A complete description of the algorithm is presented in Section 2.3.

2.1 Generic Types

The generic branch and bound algorithm presented here depends on four generic
types:

– ObjType: A type consisting of objects to analyze, such as Bernstein polyno-
mials, functions admitting interval arithmetic operations, Boolean expres-
sions of polynomial inequalities, etc.

– AnsType: The intended output type of the branch and bound algorithm, such
as intervals containing the minimum and maximum values of a function,
a Boolean value representing whether an inequality holds, a list of boxes
describing an approximation to a polynomial-defined set, etc.

– DomainType: A type specifying exactly how (or where) elements of ObjType
should be analyzed, such as the domain where a polynomial inequality is to
be determined, or where a function is to be minimized. This may contain
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not just the bounds of the interval where the polynomial is defined, but also
whether it is open or closed at the boundary.

– VarType: A type representing variables of the objects to be analyzed. For
instance, in the case of polynomials, VarType is a type representing the
polynomial variables such as N, where 0, 1, 2 might correspond to x0, x1,
x2, etc.

Specific types to substitute for these generic types are provided by the user, who
chooses them with a specific application in mind. While AnsType is the intended
output type of the branch and bound algorithm, this type is wrapped up in a
larger record type that is called Output, which has one field consisting of an
element from AnsType, and three other fields that give information about the
execution of the function.

Output ≡ ans : AnsType× exit : boolean× depth :N× splits :N.

Upon exit, the exit field will be set to true if the algorithm is forced to globally
exit from the recursion, e.g., when the recursion reaches a maximum depth or
a maximum number of subdivisions. As explained later, the precise conditions
under which the recursion globally exits are specified by the user. The depth

field counts the maximum recursion depth that the algorithm reaches along any
branch during its execution. The splits field counts the total number of times
that the algorithm subdivides a larger problem into two smaller problems, such as
splitting a large box into two subboxes. The function mk out takes as parameters
an element of type AnsType, a Boolean value, and two naturals numbers, and
builds a record of type Output.

The generic algorithm itself has functions for inputs, some of which depend on
elements of the tuple type DirVar ≡ boolean×VarType. During the recursion of
a branch and bound algorithm, the domain often must be split in two. When this
happens, a variable and a direction, i.e., VarType and a direction represented
by a Boolean value, respectively, are selected for splitting the domain. The two
halves of the original domain can be referred to by the two pairs (true, j) and
(false, j), where j is the element of VarType referring to the variable chosen for
subdivision. In the type DirVar, true refers to the left subdivision and false

refers to the right subdivision.
Another type that is important for the execution of the generic algorithm is the

type DirVarStack≡ stack[DirVar], which represents a stack of elements of type
DirVar. The branch and bound algorithm presented in this paper implements
a depth-first recursion approach. An object called dirvars of type DirVar is
maintained by the algoritm, and it reflects the sequence of subdivisions, i.e.,
variables and directions, at any moment during the recursion.

2.2 Inputs to the Algorithm

The inputs to the generic branch and bound algorithm are listed in the table
below, each with its type next to it. The element obj of type ObjType is the
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Table 1. Inputs to branch and bound

Input Type

simplify [ObjType→ ObjType]

evaluate [DomainType, ObjType→ AnsType]

branch [VarType, ObjType→ [ObjType, ObjType]]

subdivide [VarType, DomainType → [DomainType, DomainType]]

denorm [[boolean, VarType], AnsType→ AnsType]

combine [VarType, AnsType, AnsType→ AnsType]

prune [DirVarStack, AnsType, AnsType→ boolean]

lex [AnsType→ boolean]

gex [DirVarStack, AnsType, AnsType→ boolean]

select [DirVarStack, AnsType, DomainType, ObjType→ [boolean, VarType]]

accumulate [AnsType, AnsType→ AnsType]

maxd N
obj ObjType

dom DomainType

acc Maybe[AnsType]

dirvars DirVarStack

concrete expression, e.g., a polynomial or interval expression, that the algorithm
is analyzing. The element dom is the specific element of DomainType with regard
to which information about obj is to be calculated. For example, if ObjType
consists of polynomials, DomainType may consist of boxes that constraint the
range of the polynomial variables.

The function simplify rewrites obj to make it easier to manipulate before
carrying out the next recursive calculations. In many cases this function is just
the identity function. However, in some cases, a canonical form of obj may yield
more efficient computations.

The function evaluate gives a crude estimate of an element of AnsType that
would describe obj for a particular element of DomainType. For instance, if obj
is a function and the algorithm is being used to give a precise estimate for the
range of the function over a box, evaluate may use interval arithmetic to give
a crude estimate of the range on a specific domain without splitting this domain
in two.

The function branch, for a specific element of VarType, takes an element of
ObjType and gives two more elements of ObjType that correspond to splitting
the problem in two. For instance, if VarType corresponds to the possible variables
of a function, and if ObjType consists of polynomials written in Bernstein form,
then given a specific variable xj , the function branch will take a polynomial and
turn it into two polynomials. Each of these polynomials represents the original
polynomial on half of the original unit box, which has been split along the
variable xj . The two polynomials themselves are translated from each of these
half boxes back to the unit box by changing the variable xj linearly. These
polynomials each represent the original polynomial on half of the original box
after a linear translation in xj .
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As explained before, the input dirvars reflects the subdivision that have
occurred up to the current recursive call. The value of this parameter at every
recursive step is maintained by the algorithm. The initial value, provided by the
user, is expected to be an empty stack. The value of dirvars can be used by
several other input functions to choose the variable for subdivision at the current
step, determine whether to prune the recursion tree, or decide to exit globally
from the recursion.

The function subdivide takes an element of DomainType and divides it into
two new elements of DomainType, where the exact division is specified by an
element of VarType. For instance, DomainTypemay consist of boxes and VarType

to variables, in which case subdividemay split a box in the middle along a given
variable.

The function denorm translates an element of AnsType, which gives informa-
tion about the object on one half of an element of DomainType, after that element
has been split using subdivide, back to level of the original, non-subdivided
object in the recursion. For instance, if the algorithm is designed to find a coun-
terexample to a polynomial inequality and a box is split into two subboxes, then
a counterexample found by the algorithm on one of these subboxes is also a
counterexample on the larger box. In this example, the function denorm would
translate the point where the counterexample was found to a point in the origi-
nal box. The first parameter of this function, which has the type VarType, would
represent the variable along which the original box was split, and the Boolean
value would represent whether this particular subbox was the right half or the
left half of the original.

The function combine takes two elements of type AnsType, each giving infor-
mation about the object in question on half of the original box, and combines
them into one element of AnsType that gives information about the object on
the larger box. It depends on an element of type VarType, which may, for ex-
ample, represent the variable along which the original box was split to give the
two subboxes in question.

The function prune decides whether to locally exit the recursion at the cur-
rent step and continue the recursion at the next step without subdividing the
problem further on the current branch. It takes an accumulated value of type
AnsType from previous steps in the recursion, namely the element acc, which
gives information about the object in question at locations other than the cur-
rent location in the domain, and uses this to decide whether it is beneficial to
continue down the current branch in the recursion. For example, consider an
algorithm finding an interval that is guaranteed to contain the minimum value
attained by the a function. Suppose that in a branch of the recursion, this inter-
val was reduced to [0.9, 1.0], which will be stored in the acc element of AnsType.
If on the current branch, the evaluate function gives [1.2, 1.3] as as a crude esti-
mate of the minimum on a small subset of the larger domain, then the recursion
can often be stopped from further continuing down the current branch, since the
minimum will not be found on the current branch.
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The accumulated value acc that is passed as a parameter to prune is computed
by the function accumulate. This function combines all of the information from
previous recursive steps, along with the information gained at the current step,
in the element acc for use further down the current branch and in other branches
still unexplored. Depending on the problem that the branch and bound algorithm
is trying to solve, there are cases where previous information cannot be reused in
a different branch. This possibility is handled by the return type Maybe[AnsType]
of the function accumulate. This type represents an undefined value, represented
by None, or an actual value v of type AnsType, represented by Some(v). The
functions none? and some? check if an element of type Maybe is either None or
Some(v) for some v, respectively. In the latter case, the value v can be accessed
with the function val.

The lex function, which stands for local exit, determines when the function
has locally succeeded and therefore does not need to subdivide on the current
branch anymore. It considers an element of type AnsType given by the output
of evaluate, and uses this information to determine success. For example, if the
algorithm is proving that a function is always nonnegative, and if the function
evaluate indicates that it is true on the small subbox represented at this point
in the recursion tree, then the algorithm has proved the result on this local
subbox and does not need to divide the subbox further. It then moves on with
the recursion elsewhere.

The function gex, which stands for global exit, determines whether, at the
current recursion step, the algorithm should exit completely from the recur-
sion without computing anything else. This is desirable when the recursion has
reached a depth that is larger than the user wants, and it is also desirable when
the algorithm has found a satisfactory answer at the current recursive step and
no longer needs to continue the recursion. One example of a condition that war-
rants a global exit is when the algorithm is searching for a counterexample to
the positivity of a function and it finds such a counterexample at the current
step.

The function select determines where the next subdivision will occur. For
example, if DomainType consists of boxes in n variables, then any subdivision of
a box will occur along a particular variable. In this context, the select function
will determine the variable along which to subdivide and a Boolean value rep-
resenting whether the recursion should first compute either the left subdivision
or the right one. An additional parameter to this function is dirvars, which
gives information about the other variables that have been chosen for subdivi-
sion at previous steps in the current branch. This allows select to be defined in
a way that is fair, meaning that in every possible infinite branch of the infinite
recursion tree, every variable occurs an infinite number of times.

The input maxd represents a maximum recursion depth and removes the pos-
sibility of a non-terminating algorithm. When the current depth reaches maxd,
the algorithm forces a local exit as opposed to a global one. Depending on the
problem that the branch and bound algorithm is solving, an output can still
be sound even if some branches have reached the maximum depth. Hence, even
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though the algorithm always terminates, it may take a very long time to do
so. If the user wants to specify a global exit when the maximum depth maxd is
reached, this has to be done through the input function gex.

2.3 The Branching Algorithm

The algorithm branch and bound is defined in Figure 3. Lines 1-12 define the
bounding and pruning aspects of the branch and bound algorithm. These lines
concern the computation of a crude estimate for the object obj in the domain dom

(Line 5). It is noted that the estimate, namely thisans, is actually computed for
the object thisobj, which is intended to be a simplified version of obj (Line 4).
The accumulated value thisacc is computed from the previous value acc and the
computed answer thisans (Line 6). The function gex uses the information on
thisacc, thisans, and the stack dirvars to determine if the algorithm should
stop (Line 8). This information is propagated to the remaining recursive calls
through the field exit in thisans. If the answer value thisans is good enough,
which is determined by the functions lex and prune, or if the maximum depth
maxd is reached, the current recursive call ends (Lines 11-12). In this case, the
output consists of the answer thisans, the Boolean value computed by the
function gex, a value of depth that is equivalent to the length of the stack
dirvars, and 0, which represents the number of splits. The function mk out

builds such a record of type Output (Line 9).
The branching aspect of the algorithm is defined in Lines 14-39. First, a

direction dir and a variable v are selected for subdivision (Line 14). Subdivided
objects objl, objr and subdivided domains doml, domr are computed accordingly
(Line 15-18). Then, the first recursive call, in the direction determined by dir, is
made (Lines 19-21). When the recursion returns, it may be the case that a global
exit was signaled during the previous recursive call (Line 24). In this case, an
answer is computed from the value returned by the recursive call and the current
answer thisans (Lines 24-25). In order to combine these values, the answer from
the subdivided domain dom1 has to be translated to the whole domain dom. This
is performed by the function denorm (Line 24). The values of the fields depth

and splits in the output record are computed appropriately (Line 25).
The second recursive call is specified in Lines 27-35. In this case, the answers

returned by the two calls, for each one of the subdivisions, are combined into
an answer for the whole domain (Line 32). The output record consists of this
combined answer and appropriate values for the fields exit, depth, and splits

(Lines 34-35).

3 Correctness of the Algorithm

The output of the function branch and bound in Figure 3 has type Output. In
order for the algorithm to be useful for solving problems in global optimization,
the element of Output returned by the algorithm must satisfy a correctness
property. Not only does the algorithm branch and bound take a generic set of
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01 : branch and bound(simplify, evaluate, branch, subdivide, denorm, combine, prune,

02 : lex, gex, select, accumulate, maxd, obj, dom, acc, dirvars) : Output ≡
03 : let

04 : thisobj = simplify(obj),

05 : thisans = evaluate(dom, thisobj),

06 : thisacc = if none?(acc) then thisans

07 : else accumulate(val(acc), thisans) endif,

08 : thisexit = gex(dirvars, thisacc, thisans),

09 : thisout = mk out(thisans, thisexit, length(dirvars), 0)

10 : in

11 : if length(dirvars) = maxd or lex(thisans) or thisexit or

12 : prune(dirvars, thisacc, thisans) then thisout

13 : else let

14 : (dir, v) = select(dirvars, thisacc, dom, thisobj),

15 : (objl, objr) = branch(v, thisobj),

16 : (obj1, obj2) = if dir then (objl, objr) else (objr , objl) endif,

17 : (doml, domr) = subdivide(v, dom),

18 : (dom1, dom2) = if dir then (doml, domr) else (domr , doml) endif,

19 : out1 = branch and bound(simplify, evaluate, branch, subdivide, denorm,

20 : combine, prune, lex, gex, select, accumulate, maxd,

21 : obj1, dom1, thisacc, push((dir, v), dirvars))

22 : in

23 : if out1.exit then

24 : mk out(combine(v, denorm((dir, v), out1.ans), thisans), true,

25 : out1.depth, out1.splits + 1)

26 : else let

27 : newacc = accumulate(thisacc, out1.ans),

28 : out2 = branch and bound(simplify, evaluate, branch, subdivide, denorm,

29 : combine, lex, gex, select, accumulate, maxd,

30 : obj2, dom2, newacc, push((¬dir, v), dirvars))
31 : (outl, outr) = if dir then (out1, out2) else (out2, out1) endif,

32 : ans = combine(v, denorm((true, v), outl.ans), denorm((false, v), outr .ans))

33 : in

34 : mk out(ans, out2.exit,max(out1.depth, out2.depth),

35 : out1.splits + out2.splits + 1)

36 : endif

37 : endif

Fig. 3. The function branch and bound
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inputs with numerous possible instantiations, but its correctness property is
generic as well. This correctness property is represented by the abstract predicate
sound?, which has the type indicated below.

sound? : [DomainType, ObjType, AnsType→ boolean]

The strength of a generic branching algorithm such as branch and bound

relies on the fact that it reduces the correctness proof of a particular instantia-
tion to proving simpler statements about the compatible behavior of the input
functions evaluate, simplify, subdivide, branch, denorm, and combine. The
correctness property depends only on these input function parameters. In par-
ticular, the generic algorithm has been proved to be sound for any particular
instantiation of the functions lex, gex, prune, and select. Those functions are
usually the most technically involved since they deal with heuristics that im-
prove the efficiency of the algorithm. All of these concerns are abstracted away
in the correctness stament of the algorithm.

The main correctness result is stated as follows.

Theorem 1. For all inputs that satisfy

– accommodates?(sound?, evaluate),
– simplify invariant?(sound?, simplify),
– evaluate simplify?(evaluate, simplify),
– branch simplify?(branch, simplify),
– subdiv presound?(sound?, subdivide, branch, denorm, combine), and
– subdiv sound?(sound?, subdivide, branch, denorm, combine),

sound?(dom, obj, bnb.ans) is true, where bnb is equal to

branch and bound(simplify, evaluate, branch, subdivide, denorm, combine,

prune, lex, gex, select, accumulate, maxd, obj, dom, None, empty stack).

The proof of this theorem, which has been mechanically verified in PVS, pro-
ceeds by induction on maxd−length(dirvars). The predicates accommodates?,
simplify invariant?, evaluate simplify?, branch simplify?, subdiv presound? and
subdiv sound? are defined as follows.

The predicate accommodates? states that the function evaluate computes a
valid estimate for the object obj on the domain dom.

accommodates?(sound?, evaluate) ≡
∀ (dom, obj) : sound?(dom, obj, evaluate(dom, obj)).

The predicate simplify invariant? states the function simplify preserves sound-
ness.

simplify invariant?(sound?, simplify) ≡ ∀ (dom, obj, ans) :
sound?(dom, obj, ans) ⇐⇒ sound?(dom, simplify(obj), ans).
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The predicate evaluate simplify? states that simplified objects evaluate to the
same value.

evaluate simplify?(evaluate, simplify) ≡ ∀ (dom, obj) :
evaluate(dom, obj) = evaluate(dom, simplify(obj)).

The predicate branch simplify? states that the function simplify and branch

commute.

branch simplify?(branch, simplify) ≡ ∀(v, obj) :
let (objl, objr) = branch(v, obj) in

branch(v, simplify(obj)) = (simplify(objl), simplify(objr)).

The last two predicates specify the core behavior of the functions subdivide,
branch, denorm, and combine. They express that the soundness of the output
on the whole domain can be deduced from the soundness of the outputs on
the subdivided domains. The former predicate refers to the case where only one
branch is recursively explored. The latter predicate refers to the case where both
left and right branches are recursively explored.

subdiv presound?(sound?, subdivide, branch, denorm, combine) ≡
∀ (v, dom, obj, dir, ans1, ans2) :

let (doml, domr) = subdivide(v, dom),

(objl, objr) = branch(v, obj)

in sound?(dom, obj, ans1) and

(dir =⇒ sound?(doml, objl, ans2)) and

(¬dir =⇒ sound?(domr, objr, ans2))

=⇒ sound?(dom, obj, combine(v, denorm((dir, v), ans2, ans1)).

subdiv sound?(sound?, subdivide, branch, denorm, combine) ≡
∀ (v, dom, obj, dir, ans1, ans2) :

let (doml, domr) = subdivide(v, dom),

(objl, objr) = branch(v, obj)

in sound?(doml, objl, ans1) and sound?(domr, objr, ans2)

=⇒ sound?(dom, obj, combine(v, denorm((true, v), ans1),

denorm((false, v), ans2))).

Theorem 1 is significantly simpler when the function simplify is the identity.
The next corollary considers this case.

Corollary 1. Let I be the identity function on the type ObjType. For all inputs
that satisfy



A Formally Verified Generic Branching Algorithm for Global Optimization 339

– accommodates?(sound?, evaluate),
– subdiv presound?(sound?, subdivide, branch, denorm, combine), and
– subdiv sound?(sound?, subdivide, branch, denorm, combine),

sound?(dom, obj, bnb.ans) is true, where bnb is equal to

branch and bound(I, evaluate, branch, subdivide, denorm, combine, prune,

lex, gex, select, accumulate, maxd, obj, dom, None, empty stack).

4 Branch and Bound Algorithm for Interval Expressions

This section presents an instantiation of the function branch and bound in Fig-
ure 3 that yields a strategy in PVS for computing estimates of the minimum
and maximum values of a multivariate real-valued functions. These estimates
are found using interval arithmetic.

In order to define this instantiation, it is necessary to provide a deep em-
bedding of arithmetic expressions. Such an embedding has been developed and
is available as part of the interval arithmetic development in the NASA PVS
Library.1 The abstract data type IntervalExpr, which is part of the library,
represents arithmetic expressions constructed from basic operations, power, ab-
solute value, square root, trigonometric functions, the irrational constants π and
e, the exponential and logarithm functions, numerical constants, and variables
that range over closed intervals. Henceforth, elements of type IntervalExpr are
called expressions. The following types and functions are also available.

– Interval: A tuple of two elements that represents the upper and lower
bounds of a closed, non-empty, interval. Elements of this type are called
intervals.

– Box: A list of elements of type Interval. Elements of this type are called
boxes.

– Env: A list of real numbers representing an evaluation environment for the
variables in a given expression. Elements of this type are called environments.

– well typed?: A predicate that has as parameters a box B and an expression
E. The predicate holds when E is well-defined in B. This predicate is used
to avoid the case of division by zero.

– eval: A function that has as parameters an expressionE and an environment
Γ . The function returns a real value that corresponds to the evaluation of
E in Γ .

– Eval: A function that has as parameters an expression E and a box B. The
function returns an interval value that correspond to the interval arithmetic
evaluation of E in B.

The following two key theorems of interval arithmetic are mechanically proved
in PVS.

1 http://shemesh.larc.nasa.gov/people/cam/Interval

http://shemesh.larc.nasa.gov/people/cam/Interval
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Theorem 2 (Inclusion Theorem). For all B, E, and Γ ,

well typed?(B,E) and Γ ∈ B implies eval(E, Γ ) ∈ Eval(E,B).

Theorem 3 (Fundamental Theorem). For all B1 ⊆ B2 and E,

well typed?(B2, E) implies Eval(E,B1) ⊆ Eval(E,B2).

A simple of instantiation of the generic branch and bound algorithm is ob-
tained as follows. The parameter types ObjType, AnsType, and DomainType are
instantiated with the concrete types IntervalExpr, Interval, and Box. The pa-
rameter type VarType, representing variables in IntervalExpr, is instantiated
with the concrete type nat. Furthermore,

– the function evaluate is defined as evaluate(B,E) ≡ Eval(E,B),
– the function branch is defined as branch(n,E) ≡ (E,E),
– the function subdivide is defined as subdivide(n,B) ≡ split(n,B) that

returns two boxes that are equal to B except in their n-th interval, where
the original interval is divided into mid-left and mid-right intervals,

– the functions combine and accumulate are both defined as the union of two
intervals,

– the functions simplify and denorm are defined as identity functions on the
types IntervalExpr and Interval, respectively.

Since the soundness theorem of the generic branch and bound algorithm does
not depend on the predicates gex, lex, or prune, they can be arbitrarily in-
stantiated. In particular, they are instantiated such that they always return
false. This means that the instantiated branch and bound algorithm, called
simple interval, completely explores the recursion tree up to the maximum
depth. The direction and variable selection function select is simply defined
using a round-robin approach.

simple interval(maxd, E,B) : Output ≡
branch and bound(simplify, evaluate, branch, subdivide, denorm,

combine, prune, lex, gex, select, accumulate, maxd, E,B).

The intended soundness property of the function simple interval is ex-
pressed by the following predicate.

sound?(B,E, ans) ≡ well typed?(B,E) =⇒ ∀(Γ ∈ B) : eval(E, Γ ) ∈ ans.

The following theorem has been proved in PVS. It follows from Corollary 1.
The fact that the predicate accommodates? holds follows directly from the In-
clusion Theorem (Theorem 2). The properties concerning subdiv presound? and
subdiv sound? are consequences of the Fundamental Theorem (Theorem 3).

Theorem 4. For any maximum depth maxd, expression E, and box B,
sound?(B,E, simple interval(maxd, E,B).ans) holds.
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The function simple interval and its correctness property (Theorem 4) are
the basis of a computational reflection strategy in PVS for computing estimates
of the minimum and maximum values of real expressions. The strategy, called
simple-numerical, takes a PVS real expression, possibly involving variables,
and reflects it in the type IntervalExpr. The key step in the strategy is the
ground evaluation of the function simple interval, which implements the in-
stantiated branch and bound algorithm. Theorem 4 guarantees the soundness
of the computation in the PVS logic. For instance, using simple interval, it
can be automatically proved the statement |ψ(v, φ)| ≤ 3.825, where ψ is defined
as in Formula (1), v ∈ [200, 250], and |φ| ≤ 35. This result, which is used in
the correctness proof of an alerting algorithm for aircraft performing a parallel
landing [9], states that for an aircraft flying at a ground speed between 200 and
250 knots, the maximum angular speed is less than 4 degrees (more precisely,
less than 3.825 degrees), assuming a maximum bank angle of 35 degrees.

The development interval arith in the NASA PVS Library includes more
sophisticated instantiations of branch and bound and strategies based on these
instantiations for computing estimates of the minimum and maximum values of
real-valued functions up to a precision provided by the user and for proving real-
valued inequalities. These instantiations make use of the input functions select,
e.g., for implementing better heuristics to chose the direction of the branching
and the variable to subdivide, of lex, e.g., for stopping the current branch when
a given precision is reached, of gex, e.g., for stopping the recursion when a given
inequality cannot be proved, and of prune, e.g., for pruning a branch when the
recursion will not improve the accumulated value.

5 Conclusion

The generic branch and bound algorithm presented in this paper has been used
in several contexts, e.g., computing the range of a function on a box using inter-
val arithmetic, computing the range of a polynomial on a box using Bernstein
polynomials, deciding whether a simply quantified polynomial inequality holds
on a box, deciding whether a Boolean expression involving polynomial inequali-
ties holds on a box, and paving a region defined by polynomial inequalities. For
each of these instantiations, the correctness statement follows almost immedi-
ately from the correctness statement for the generic algorithm. In each case, this
requires only proving certain properties about the input functions to the generic
algorithm.

Strategies similar to the one described in Section 4, based on interval arith-
metic and subdivision, are available in PVS [3], Coq [6], HOL Light [14], etc.
The novelty of the work presented in this paper is not the development of inter-
val arithmetic strategies, but the fact these strategies are implemented on top
of a formally verified generic branching algorithm that can be instantiated with
different domains. In addition to instances related to interval arithmetic and
Bernstein polynomials, many other instances of the generic branch and bound
algorithm are being considered including Taylor models and affine arithmetic.
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The approach presented in this paper is similar, in spirit, to that of Carlier
et al. [1] on the verification of a constraint solver, where the application domain
is abstracted away. However, the emphasis here is to support the development
of efficient automated strategies that execute the generic algorithm via com-
putational reflection [4]. Indeed, even the simple interval arithmetic presented
here, which fully explores the recursion tree, is significantly more efficient that
the strategies presented in [3]. Furthermore, since the correctness statement of
the algorithm does not depend on parameter functions for variable selection
method and pruning, they can be freely instantiated for implementing advanced
heuristics. In the case of Bernstein polynomials, this feature has allowed the au-
thors to experiment with different pruning heuristics for the algorithm proposed
in [10].
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