
Automatic Extraction of Behavioral Models
from Distributed Systems and Services

Ioana Şora and Doru-Thom Popovici

Department of Computer and Software Engineering,
Politehnica University of Timisoara, Romania

Abstract. Many techniques used for discovering faults and vulnerabilities in dis-
tributed systems and services require as inputs formal behavioral models of the
systems under validation. Such models are traditionally written by hand, accord-
ing to the specifications which are known, leading to a gap between the real sys-
tems which have to be validated and their abstract models.

A method to bridge this gap is to develop tools that automatically extract the
models directly from the implementations of distributed systems and services. We
propose here a general model extraction solution, applicable to several service
technologies. At the core of our solution we develop a method for transforming
the control flow graph of an abstract communicating system into its correspond-
ing behavioral model represented as an Extended Finite State Machine. We then
illustrate our method for extracting models from services implemented using dif-
ferent concrete technologies such as Java RMI, Web services and HTTP Web
applications and servlets.

Keywords: Reverse Engineering, Behavioral Model, EFSM, Distributed Com-
puting, Service Computing.

1 Introduction

Important research efforts aim at improving security in the Internet of Services by de-
veloping a new generation of security analyzers for service deployment, provision and
consumption [16]. The techniques used for discovering faults and vulnerabilities com-
prise model checking [3] or model based testing [5]. All these techniques take as input
a model of the system under validation and the expected security goals, expressed in
a specific description formalism. Usually the models are hand written by the security
analyst, based on the service specifications. This approach has been successfully used
in the discovery of protocol errors, of logical errors which are present in the known
models of systems, or the discovery of errors due to the interaction of known systems.

One of the factors which can promote the use of these validation techniques is given
by how easy it is to produce the models which are required as inputs by the various
validation tools. Also, these models should reflect with accuracy the real system. It
results that relying on hand-written models is not always a suitable approach: it is the
case of service implementers, who must make sure that the model reflects the actual
implementation, and it is the case of service consumers who use black-box services
from third party providers and need a reliable model of it.

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 190–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Extraction of Behavioral Models 191

In this work, we focus on getting service models at service implementation and de-
ployment time. Service developers could benefit more from the large variety of tools
for security analysis and validation, such as the SPaCIoS tool [16], if they had model-
extractor tools able to extract behavioral models from service implementations. Cur-
rently they have to manually write such models using the Aslan++ specification
language [12]. Our current work [14] addresses this issue of extracting behavioral mod-
els from service implementations, by applying specific white box techniques based on
the analysis of their control flow graph.

The difficulty in analyzing the code of real service implementations comes from the
complexity of the code, which is usually written using different technologies frame-
works and APIs. It is not possible to obtain models of a reasonable high abstraction
level without taking into account the speciffics of each API which is used by providing
special abstractions for them. Doing so, the disadvantage is that it leads to dedicated
model extraction tools, each designed to handle systems or services implemented in a
given technology.

Our approach handles the different technologies by identifying how they map onto
a set of general abstract communication operations. Then, the problem of extracting
models of systems implemented using different technologies and frameworks is split
into two distinct subproblems: first, the problem of extracting the model of a system
which uses only a set of abstract communication operations, and second, the problem
of mapping these abstract communication operations onto the operations of different
frameworks and APIs for distributed systems and services development. According to
this, the model extractor tool comprises a stable, general model extractor core and a set
of technology-dependent preprocessing frontends, like depicted in Figure 1.

Preprocessr 1

Preprocessr 2 Model
Extractor

Core
Preprocessr 3

Preprocessr n

Intermediate

Representation
(Abstract

CFG)

Model
(EFSM)

Web
service

RMI

Servlet

Different types
of source code

Technology-dependent
preprocessing
frontends

Fig. 1. The two steps of the model extraction approach

The remainder of this article is organized as follows. Section 2 presents background
information about representing behavioral models as extended finite state machines.
Section 3 presents the specific ways of mapping complex constructions of different
frameworks and APIs for the construction of distributed systems and services into

192 I. Şora and D.-T. Popovici

abstract message communication operations. We then define our method of model
extraction in abstract, technology-independent terms in Section 4. We discuss aspects
related to our approach in Section 5.

2 Extended Finite State Machines Used for Behavioral Modeling

In this work we use a form of Extended Finite State Machines (EFSM) for representing
behavioral models. Our EFSMs are Mealy machine models which are specifically tai-
lored for white-box modeling of I/O based systems. Further, such models can be trans-
lated into Aslan++ [12] or into another language for modeling of distributed systems
and services.

We consider as I/O the messages exchanged by the system with its environment.
Each message is characterized by a message type and a set of message parameters
which may have different values. The input alphabet of the EFSM is the set RM of
all message types rm, which may be received by the system. The output alphabet of
the EFSM is the set SM of all message types sm, which may be sent by the system.
For each message type m, m ∈ RM or m ∈ SM , the set of parameter types P (m) is
known.

Since the model is extracted through white-box techniques, it may also contain and
use without restrictions state variables v ∈ V which are not directly observable from
the exterior but they can be extracted from the code.

An EFSM model consists of S, the set of all states s, with only one state being the
initial state s0, a set T of all transitions t between states, and V the set of all state
variables v.

A transition t is defined by six components: its origin state si ∈ S, its destination
state sj ∈ S, the received message rm ∈ RM , the guard predicate g, the action list al,
the sent message sm ∈ SM .

A transition t between two states si and sj occurs when a message rm is received
and a guard condition predicate g is true. In this case, the list of actions associated with
the transition al is executed and a message sm is sent.

If (ReceiveMsg (rm) and isTrue(g)) then
doActions(al);
SendMsg (sm);

It is possible that some of the following components of a transition are missing: rm, g,
al, sm.

State variables and parameters may be scalar variables or sets.
A guard condition predicate g is a boolean expression. The operands of the guard

predicate g on a transition fired by a received message rm with a set of parameters
P (rm) can be both state variables v ∈ V and parameters of the received message
p ∈ P (rm). The operators can be boolean operators (and, or, not), relational operators,
or set operators (contains).

A list of actions al is an ordered sequence of actions ai. An action ai on a transition
fired by a received message rm with a set of parametersP (rm), which sends a message
sm with a set of parameters P (sm) is an assignment. The left value of the assignment

Automatic Extraction of Behavioral Models 193

is a state variable v ∈ V or a parameter of the sent message p ∈ P (sm). The right value
of the assignment is an expression which can have as operands state variables v ∈ V , or
parameters of the received message p ∈ P (rm). Operators are boolean, relational and
set operators (add to, remove from).

3 Modeling Services of Different Technologies

Our work aims at modeling distributed systems and services in form of EFSMs as pre-
sented in section 2. An application or service can be implemented in different ways
using different technologies, but still be described by the same behavioral model. In
the next subsection we introduce a system which will be used as a running example,
together with the EFSM representing its behavioral model, while next subsections use
different technologies to implement the same system. This helps identifying how the
specific constructs of different APIs can be mapped into a set of abstract message
sending operations and leads to defining the tasks that have to be performed by the
technology-dependent frontends of the model extractor tool in order to produce an in-
termediate system representation as an abstract control flow graph.

3.1 A Running Example

We introduce the following Online Shop as a running example. The Online Shop acts
as a server which may receive commands for ordering goods, paying for them, and
requesting that the payed products are delivered.

We assume that the server receives and sends messages, by explicit messaging op-
erations such SendMessage and ReceiveMessage. The input alphabet (the set of
received message types RM) comprises: orderType, payType, deliveryType,
while the output alphabet (the set of sent mesage types SM) comprises
deliveryResp. The received messages of all types take one parameter name which
serves as the identifyer of orders, payments and deliveries. The functioning of the
shop assumes that for a name, an order has to be placed first, then it can be payed
and only after that it can be delivered. In order to keep track of the state of orders
which have been submitted and payments which have been done, the model employs
two state variables, orders and payments, which are sets of names. The Online
Shop is modeled as an EFSM with two states, the initial state and the state correspond-
ing to the server loop state. Initially, the sets orders and payments are initialized
as empty sets. In the server loop state, the system may receive messages of the types
orderType, payType, deliveryType. These determine transitions which go into
the same server loop state, but the actions and mesages sent are different, according to
the message received and a set of guard conditions.

Figure 2 presents the EFSM of the simple Shop server. In this figure we shortened
for presentation purposes the names: the message types are denoted by o, p, d, and
dR (for orderType, payType, deliveryType, and deliveryResp), the pa-
rameter name is denoted n, the state variables orders and payments are named
os and ps.

194 I. Şora and D.-T. Popovici

init

loop

os:={}, ps:={}

 Recv o(n), true | os:=os+{n}

 Recv p(n), n in os | ps:=ps+{n}

 Recv p(n), not (n in os) |

 Recv d(n), n in ps |
 ps:=ps-{n}, os:=os-{n},

 Send dR(good)

Recv d(n), not (n in ps) |
 Send dR(error)

Fig. 2. Example: EFSM model of simple Shop server

3.2 Technologies Used for Implementation of Distributed Systems and Services

In practice, such an Online Shop server corresponding to the above model can be im-
plemented using a large variety of different technologies, frameworks and APIs for
distributed systems and services. These help the application developer to cope with the
complexity of such systems, but performing code analysis becomes more difficult for
the following two reasons:

– Instead of explicit SendMessage and ReceiveMessage instructions, frameworks
offer complex APIs to describe the interactions of a server.

The first step towards applying our model extraction method is to identify for
each API the constructions which are equivalent with sending and receiving mes-
sages and define abstractions for them.

– Frameworks also provide infrastructure support for the execution of developed ap-
plications. Most often, by analyzing only the application code written by the appli-
cation developer one cannot obtain the whole control flow graph (CFG) of the real
system. For example, in all frameworks the application developer does not explic-
itly provide the server loop, which is something that is added by default through
the framework.

The particularities of each framework have to be known and the partial CFG or
CFGs extracted from the application code must be completed or combined in order
to obtain the complete CFG.

These issues (identifying and abstracting send/receive message operations, complet-
ing the partial CFG from application code) have to be solved by technology specific
preprocessing frontends before the generic model construction method presented in 4.2
may proceed.

Our current work considers modeling servers which are implemented in Java and
according to a set of specific technologies. The limitation to analyzing only Java code is
a temporary one, due to the fact that we need specific support for static code analysis for
each new programming language. The basics of our method are set by building blocks
for static code analysis such as: call graph construction, inter-procedural control flow

Automatic Extraction of Behavioral Models 195

graph construction, and data flow analysis. For implementation we focused on systems
implemented in the Java programming language because we can rely on these building
blocks offered by the Watson Libraries for Analysis (WALA) [8].

We categorize these technologies as being with or without explicit interfaces. Tech-
nologies such as WSDL Web Services, Java RMI, and CORBA, make the interfaces of
the services explicit, either as language interfaces or as interfaces described in a special
interface description language. Other technologies such as Servlets or JSP do not make
the interfaces explicit. The following subsections detail how the explicit constructions
of these technologies are mapped into abstract SendMessage and ReceiveMessage
operations and how the corresponding preprocessing frontends produce the abstract
control flow graph.

3.3 Preprocessing Frontend for Interface-Explicit Technologies

In the case of Java RMI, but also in case of other interface-explicit technologies such
as WSDL Java Web services, a server is a special kind of object, implementing the
methods described in an explicit interface. The interface description contains the list
of possible operations, with their full signature (method name, number and types of
parameters, return type). Clients can interact with a server invoking these methods.
These are the entrypoints of the server application.

The Online Shop can be implemented as a RMI server, by first defining its interface
as a Java interface which extends the rmi.Remoteinterface and then defining a Java
class which implements this interface:

public class ShopImpl
extends UnicastRemoteObject
implements ShopInterface {

private Set<String> orders = new HashSet<String>();
private Set<String> payments = new HashSet<String>();

public synchronized void order(String name)
throws RemoteException {

orders.add(name);
}

public synchronized void pay(String name)
throws RemoteException {

if (orders.contains(name)) {
orders.remove(name);
payments.add(name);
}

}
public synchronized String get(String name)

throws RemoteException {
if (payments.contains(name)) {

payments.remove(name);
return new String("YourProduct");

196 I. Şora and D.-T. Popovici

}
else return new String("NotPayed");

}
}

The entry points for a RMI application are those methods declared in an interface that
extends the rmi.Remote interface. When analyzing an application that uses RMI, the
preprocessing frontend looks for this kind of methods as entrypoints.

We can define the needed SendMessage and ReceiveMessage abstractions in
RMI code in the following way: A RMI object receives a message when one of its
remote methods is invoked. Thus the entrypoint of every remote method is modeled as
an abstract ReceiveMessage operation. A RMI object sends a message when returning
from a remote method invocation or when raising an exception.

Names for message types are derived automatically from method names. The type
of the sent message differs from the type of the received message corresponding to
the method invocation (it is a return-methodname type of message). The parameters of
the received message correspond to the arguments of the method. The parameters of the
sent message correspond to the returned values or exceptions raised.

For example, a method with following signature:

String deliver(String name) {
... // some statements

}

will be abstracted to:

ReceiveMessage deliverType, name
... // some statements
SendMessage deliverResp, aString

By analyzing the RMI application code, the CFGs of each entrypoint method can be
built. In order to get the whole CFG of the RMI server, all these partial CFGs have to
be framed by a server loop and preceded by the initialization code. After these prepro-
cessing are done, the core model construction algorithm can be applied on the adjusted
CFG.

3.4 Preprocessing Frontend for Servlets and JSP

Web applications are dynamic extensions of web or application servers, which may
generate interactive web pages with dynamic content in response to requests. In the Java
EE platform, the web components which provide these dynamic extension capabilities
are either Java servlets or Java Server Pages (JSP).

A servlet is a Java class that conforms to the Java Servlet API, which establishes the
protocol by which it responds to HTTP requests, and generates dynamic web content as
response. The popular JSP technology, which embeds Java code into HTML, relies on
Servlets, as these are automatically generated by the application server from JSP pages.
When analyzing JSP pages, we first explicitly call the JSP compiler in order to obtain
the source code of their corresponding servlet classes.

Automatic Extraction of Behavioral Models 197

In the code analysis, we identify Java Servlets as the classes that extend the
javax.servlet.HttpServlet class. Their entrypoints are the methods: doGet,
doDelete, doHead, doOptions, doPost, doPut, doTrace, service. The
servlets generated from JSP are classes which extend org.apache.jasper.
runtime. HttpJspBase and their entrypoints are methods jspInit() and
jspService().

When analyzing an application that uses servlets, the preprocessing frontend looks
for this kind of methods as entrypoints. Similarly to the RMI preprocessor, the CFGs of
each entrypoint can be built and in order to get the whole CFG all these partial CFGs
have to be framed by a server loop and preceded by the initialization code.

All entrypoint methods have as parameters HttpServletRequest and
HttpServletResponse, which correspond to the types of the messages which are
sent and received.

The HttpServletRequest allows access to all incoming data. The class has
methods for retrieving form (query) data, HTTP request headers, and client information.
The HttpServletResponse specifies all outgoing information, such as HTTP sta-
tus codes, response headers, cookies, and also has a method of retrieving a
PrintWriter used to create the HTML document which is sent to the client.

What is different and more difficult in this case is abstracting the parameters of the
SendMessage and ReceiveMessage statements. Message parameters cannot be identi-
fied directly in this case, since incoming and outgoing data are handled through a large
number of specific methods on the request and response objects.

As an example, we consider below an excerpt of the Online Shop example, this time
in an implementation with servlets:

public class Shop extends HttpServlet {
// ... omitted parts
protected void doGet(HttpServletRequest req,

HttpServletResponse resp)
// ... parts are omitted or simplified
String op = req.getParameter("operation");
if (op.equals("deliver")) {

String name=req.getParameter("name");
if (payments.contains(name))

delivResp=doService();
else delivResp=error();
Writer w=response.getWriter();
w.write(delivResp);
}

else if (op.equals("pay"))
// ...

Abstracting send and receive operations with parameters from the code of each entry
point method is a complex task which must take into account every method that can be
called on a HttpServletRequest or HttpServletResponse object.

The entrypoiny of the method corresponds to a ReceiveMessage statement, receiv-
ing a message of type HttpRequest. The parameters of this received message may
contain: a set of name - value pairs, corresponding to the ParameterMap, and a

198 I. Şora and D.-T. Popovici

set corresponding to the Session attributes. The parameters will be added to the Re-
ceiveMessage statement only if they are used in the method body: the first parameter
will be added only if the method body contains statements for retrieving the Parame-
terMap or specific parameters from the request object. The second parameter will be
added only if there are statements retrieving a Session from the request object and get-
ting values from there.

In our example, we have only calls of method getParameter on the request
object, no Session object has been retrieved and used, thus the received abstract
message is:

ReceiveMessage HttpRequest (
("operation", op), ("name", name))

Each path leading to an exit point of the method will end in a SendMessage state-
ment, sending a message of type HttpResponse. The parameters of this sent message
are: all the variables which are written by the output Writer along this path, and session
attributes if they have been retrieved and handled in the method body.

In our example, following SendMessage statements are abstracted on the different
paths:

SendMessage HttpResponse (delivResp)
SendMessage HttpResponse ("Order finished")
SendMessage HttpResponse ("Pay finished")

4 From (abstract) Control Flow Graph to Extended Finite State
Machine

4.1 Preliminary Assumptions

We present the principles of our model inference algorithm starting from the following
assumptions:

– The system is described by a complete, inter-procedural Control Flow Graph (CFG).
– There are explicit statements, corresponding to a node in the CFG, for receiving

and sending messages of a specified message type and having message parameters.

These assumptions are fulfilled if the code has been preprocessed by a frontend like
the ones discussed in subsections 3.3 and 3.4.

In our approach, we choose to determine the set of states in the EFSM model cor-
responding to a set of essential program counter values (a set of essential nodes in the
CFG). A transition between two EFSM states corresponds to a path between CFG nodes
which contains at least one relevant node. (We will detail the concepts of relevant and
essential CFG nodes in Section 4.2).

This is different from the classical approach of defining the states as corresponding
to predicates over the state variables, as done in the related approaches in the context
of specification mining by static analysis for classes [13], [2]. We have chosen this ap-
proach because in real applications all the state variables can be complex data structures
and it may be a complex task to determine predicate abstractions in this case.

Automatic Extraction of Behavioral Models 199

4.2 Building the EFSM

Relevant Nodes. An important preliminary step consists in identifying the relevant
nodes of the CFG.

In principle, an aspect is considered to be relevant for our model if it influences the
external observable behavior which consists of the messages received or sent by the
system.

A variable is marked as relevant if one of the following occurs:

– it is on a downstream dataflow from a parameter of a received message
– it is on an upstream dataflow ending in a parameter of a sent message

A CFG node is marked as relevant if one of the following occurs:

– it corresponds to a message receive or message send instruction
– it handles a relevant variable

A CFG path is relevant if it contains at least one relevant node. Determining the
relevant paths is actually a form of program slicing.

Essential Nodes, EFSM States and Transitions. It is not necessary that all relevant
CFG nodes (which may be far too many) become states in the EFSM model. We call
essential nodes only the CFG nodes which correspond to nodes of the EFSM.

We propose the following algorithm to identify the essential nodes and the transitions
between them:

– The start node is an essential node, and it corresponds to the initial state of the
EFSM.

– Any CFG node containing a ReceiveMesage statement is an essential node. It intro-
duces a new EFSM state. The relevant outgoing paths will correspond to outgoing
transitions enabled by the received message. Each of these transitions will end in
the next state which will be identified as essential on the respective outgoing path.
The relevant path conditions are collected as guard predicates for the correspond-
ing transition, while assignments involving relevant variables are collected as list
of actions for the corresponding transition.

– A conditional branching node in the CFG is an essential node only if it uses a
relevant variable which has been defined in a node preceding it on an incoming
path (this includes also the case of loops). It introduces a new EFSM state which
has an incoming transition corresponding to the incoming path with the definition
node and outgoing transitions corresponding to the outgoing conditional paths.

After determining the essential nodes and identifying the paths between them which
correspond to transitions, for each transition we determine its received messages, guard
predicates, actions, sent messages. The guard predicate of a transition is composed of
all relevant conditions that are on the corresponding path between the two nodes. The
action list of a transition contains all assignment or set operations executed on relevant
variables on the corresponding path between the two nodes.

200 I. Şora and D.-T. Popovici

An EFSM is deterministic if from any state s, when any message rm is received,
there is at most one transition possible. The EFSM built according to the method pre-
sented above is deterministic, since transitions outgoing from a state, in the case that
they are labeled with the same received message, they have mutually exclusive guard
predicates, since they resulted from different paths of the CFG .

4.3 Example

We consider the Online Shop example. By applying technology speciffic preprocess-
ings, its abstract control flow graph has been obtained. For presentation purpose, we
use here pseudocode to describe the abstract control flow.

1: orders:={}
2: payments:={}
3: while(true)
4: switch ReceiveMesssage():
5: case:(orderType, name)
6: add name to orders
7: case:(payType, name)
8: if (name in orders)
9: add name to payments
10: case:(deliveryType, name)
11: if (name in payments)
12 remove name from payments
13: remove name from orders
14: SendMessage

deliveryResp, goods
15: else SendMessage

deliveryResp, error
16: endwhile

We determine the nodes (pseudocode statements) 1 and 4 as being the essential
nodes, according to the method outlined before. The five possible execution paths be-
low this node correspond to five self-loop transitions. The resulting EFSM is the one
which has been depicted in Figure 2.

5 Related Work

As mentioned in the introductive section, the need to infer models occurs at two differ-
ent scenarios: at service consumption time, and at service deployment time.

At service consumption time, services are black-boxes that come without (trusted)
models and their code is not available. A model can be inferred from I/O sequences.
There is a large field of research of learning behavioral models by combining black-box
testing and automata learning [9], and it begins to be used for inferring models of web
applications [4], [7], [11].

At service deployment time, the implementation code is available and model extrac-
tion tools should take advantage of having full access to the code of the implementation.
Thus, in this case another category of white-box model inference is needed.

Automatic Extraction of Behavioral Models 201

The core of our model extraction approach relates with the work on static analysis in
the context of specification mining for classes, such as [13], [2], [6]. Automata-based
abstractions are used for behavioral modeling, but, as we mentioned in subsection 4.1,
they use predicate abstraction in order to determine the states.

Extracting models of web applications through code analysis has been done only
on particular technologies or cases such as in [1], [15], [10], focusing on the detection
of concrete problems, not on the extraction of a transferable model to be passed for
analysis to existing tools.

Extracting models is the main goal of black-box approaches such as [9], [7]. The
focus of these works is mainly on developing learning algorithms, in the context of
abstract input and output traces. Most relevant from our perspective are the works of
[4], [11] which identified the need of automatizing the learning-setup in order to enable
learners to interact directly with real applications. These works propose solutions and
tools for abstractizing the input and output alphabet from WSDL web services, based
on principles which are similar with the ones presented in Section 3.3.

6 Conclusions

The goal of our work is to build a tool for the automatic extraction of behavioral models
from service implementations. In order to cope with the diversity of technologies and
APIs which can be used by service implementations, we propose an approach for model
extraction in two steps: a technology-dependent preprocessing step, followed by the
stable core step that implements a general method of transforming the abstracted control
flow graph into an EFSM.

The kind of EFSM inferred by our approach is suitable to be automatically translated
into an entity description in a formal security specification language for distributed
systems such as Aslan++, the language used by the SPaCIoS tool. The security analyst
will have to add manually only the security-related properties of the communication
channels, which cannot be known from the implementation code, and to specify the
desired properties to be checked.

Having tools which extract behavioral models from actual service implementations is
an important step towards enabling formal security validation techniques to be applied
on real systems at their implementation and deployment time.

Acknowledgements. This work has been supported by the FP7-ICT-2009-5 project no.
257876 SPaCIoS ("Secure Provision and Consumption in the Internet of Services".)

References

1. Albert, E., Østvold, B.M., Rojas, J.M.: Automated extraction of abstract behavioural models
from jms applications. In: Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437,
pp. 16–31. Springer, Heidelberg (2012)

2. Alur, R., Černý, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java
classes. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2005), pp. 98–109. ACM, New York (2005)

202 I. Şora and D.-T. Popovici

3. Armando, A., Carbone, R., Compagna, L., Li, K., Pellegrino, G.: Model-checking driven
security testing of web-based applications. In: 2010 Third International Conference on Soft-
ware Testing, Verification, and Validation Workshops (ICSTW), pp. 361–370 (2010)

4. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of behavior proto-
cols for composable web-services. In: Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2009), pp. 141–150. ACM, New York (2009)

5. Buchler, M., Oudinet, J., Pretschner, A.: Semi-automatic security testing of web applications
from a secure model. In: 2012 IEEE Sixth International Conference on Software Security
and Reliability (SERE), pp. 253–262 (2012)

6. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby, Zheng, H.:
Bandera: extracting finite-state models from java source code. In: Proceedings of the 2000
International Conference on Software Engineering, pp. 439–448 (2000)

7. Hossen, K., Groz, R., Richier, J.L.: Security vulnerabilities detection using model inference
for applications and security protocols. In: IEEE 4th International Conference on Software
Testing, Verification and Validation Workshops, pp. 534–536 (2011)

8. IBM. Watson, T.J.: Libraries for Analysis (WALA). Technical report, IBM T.J.Watson Re-
search Centre (2010)

9. Lorenzoli, D., Mariani, L., Pezze, M.: Automatic generation of software behavioral mod-
els. In: ACM/IEEE 30th International Conference on Software Engineering (ICSE 2008),
pp. 501–510 (2008)

10. Mariani, L., Pezzè, M., Riganelli, O., Santoro, M.: SEIM: static extraction of interaction
models. In: Proceedings of the 2nd International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS 2010), pp. 22–28. ACM, New York (2010)

11. Merten, M., Howar, F., Steffen, B., Pellicione, P., Tivoli, M.: Automated inference of models
for black box systems based on interface descriptions. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part I. LNCS, vol. 7609, pp. 79–96. Springer, Heidelberg (2012)

12. von Oheimb, D., Mödersheim, S.: ASLan++ — a formal security specification language
for distributed systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) Formal
Methods for Components and Objects. LNCS, vol. 6957, pp. 1–22. Springer, Heidelberg
(2011)

13. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using automata-
based abstractions. IEEE Transactions on Software Engineering 34(5), 651–666 (2008)

14. Sora, I., Popovici, D.-T.: Extracting behavioral models from service implementations. In:
Proceedings of 8th International Conference on Evaluation of Novel Software Approaches
to Software Engineering (ENASE 2013), pp. 226–231. SciTePress (2013)

15. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: TAJ: effective taint analysis of
web applications. In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2009), pp. 87–97. ACM, New York (2009)

16. Viganò, L.: Towards the secure provision and consumption in the internet of services. In:
Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012. LNCS, vol. 7449,
pp. 214–215. Springer, Heidelberg (2012)

	Automatic Extraction of Behavioral Models
from Distributed Systems and Services

	1 Introduction
	2 Extended Finite State Machines Used for Behavioral Modeling
	3 Modeling Services of Different Technologies
	3.1 A Running Example
	3.2 Technologies Used for Implementation of Distributed Systems and Services
	3.3 Preprocessing Frontend for Interface-Explicit Technologies
	3.4 Preprocessing Frontend for Servlets and JSP

	4 From (abstract) Control Flow Graph to Extended Finite State Machine
	4.1 Preliminary Assumptions
	4.2 Building the EFSM
	4.3 Example

	5 Related Work
	6 Conclusions
	References

