
123

Joaquim Filipe
Leszek A. Maciaszek (Eds.)

8th International Conference, ENASE 2013
Angers, France, July 2013
Revised Selected Papers

Evaluation
of Novel Approaches
to Software Engineering

Communications in Computer and Information Science 417

Communications
in Computer and Information Science 417

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Alfredo Cuzzocrea
ICAR-CNR and University of Calabria, Italy

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, India

Dominik Ślęzak
University of Warsaw and Infobright, Poland

Takashi Washio
Osaka University, Japan

Xiaokang Yang
Shanghai Jiao Tong University, China

Joaquim Filipe Leszek A. Maciaszek (Eds.)

Evaluation
of Novel Approaches
to Software Engineering

8th International Conference, ENASE 2013
Angers, France, July 4-6, 2013
Revised Selected Papers

13

Volume Editors

Joaquim Filipe
INSTICC and IPS, Estefanilha, Setúbal, Portugal
E-mail: joaquim.filipe@estsetubal.ips.pt

Leszek A. Maciaszek
Wrocław University of Economics, Poland
and
Macquarie University, Sydney, NSW, Australia
E-mail: leszek.maciaszek@mq.edu.au

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-54091-2 e-ISBN 978-3-642-54092-9
DOI 10.1007/978-3-642-54092-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013957792

CR Subject Classification (1998): D.2, F.3, D.3, H.4, K.6

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This Springer volume contains the papers of the 8th International Conference
on Evaluation of Novel Approaches to Software Engineering (ENASE) held in
Angers, France, sponsored by the Institute for Systems and Technologies of In-
formation, Control and Communication (INSTICC) and supported by Oracle,
Conseil général de Maine–et–Loire, Conseil Régional des Pays de la Loire, Ville
Angers and Angers Loire Tourisme.

The conference and the papers in this Communications in Computer and
Information Science (CCIS) series volume reflect a growing effort to increase
the dissemination of new results among researchers and professionals related to
the evaluation of novel approaches to software engineering. The ENASE 2013
conference built on successes of previous conferences that took place as follows:

• 2006 – Erfurt, Germany
• 2007 – Barcelona, Spain
• 2008 – Madeira, Portugal
• 2009 – Milan, Italy
• 2010 – Athens, Greece
• 2011 – Beijing, China
• 2012 – Wroc�law, Poland
• 2013 – Angers, France

By comparing novel approaches with established traditional practices and by
evaluating them against software quality criteria, the ENASE conferences ad-
vance knowledge and research in software engineering, identify the most hopeful
trends, and propose new directions for consideration by researchers and practi-
tioners involved in large-scale software development and integration.

ENASE 2013 received 46 submissions, of which 24% were presented as full
papers. Additionally, 28% were short oral presentations and 15% were presented
as posters. To evaluate each submission, a double-blind paper evaluation method
was used: Each paper was reviewed by at least two experts from the International
ProgramCommittee in a double-blind review process, and most papers had three
reviews or more.

The best full papers of the conference were invited, after corrections and
extensions, to appear in this CCIS book. The book is a continuation of the
previous ENASE volumes that have appeared in the CCIS series. All ENASE
conferences, except the first one in 2006, had such Springer publications.

ENASE 2013 was held in conjunction with the 15th International Conference
on Enterprise Information Systems (ICEIS 2013). The two conferences shared
the same list of keynote speakers in joint plenary sessions. The prominent list of
2013 keynotes consisted of the following experts:

VI Preface

• Stephen Mellor, Freeter, UK
• Fabien Gandon, Inria, France
• Ulrich Frank, University of Duisburg-Essen, Germany
• Henderik A. Proper, Public Research Centre - Henri Tudor, Luxembourg

December 2013 Joaquim Filipe
Leszek Maciaszek

Organization

Conference Chair

Joaquim Filipe Polytechnic Institute of Setúbal/INSTICC,
Portugal

Program Chair

Leszek Maciaszek Wroclaw University of Economics, Poland/
Macquarie University, Sydney, Australia

Organizing Committee

Marina Carvalho INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
Ana Guerreiro INSTICC, Portugal
André Lista INSTICC, Portugal
Andreia Moita INSTICC, Portugal
Carla Mota INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Ana Ramalho INSTICC, Portugal
Susana Ribeiro INSTICC, Portugal
Sara Santiago INSTICC, Portugal
Mara Silva INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

Program Committee

Guglielmo de Angelis, Italy
Maria Bielikova, Slovak Republic
Piotr Bubacz, Poland
Dumitru Burdescu, Romania
Wojciech Cellary, Poland
Rebeca Cortazar, Spain
Massimo Cossentino, Italy
Bernard Coulette, France

Marcelo d’Amorim, Brazil
Philippe Dugerdil, Switzerland
Angelina Espinoza, Spain
Joerg Evermann, Canada
Maria João Ferreira, Portugal
Agata Filipowska, Poland
Maria Ganzha, Poland
Juan Garbajosa, Spain

VIII Organization

Cesar Gonzalez-Perez, Spain
Rene Hexel, Australia
Benjamin Hirsch, UAE
Charlotte Hug, France
Bernhard G. Humm, Germany
Zbigniew Huzar, Poland
Akira Imada, Belarus
Stefan Jablonski, Germany
Slinger Jansen, The Netherlands
Monika Kaczmarek, Poland
Robert S. Laramee, UK
George Lepouras, Greece
Pericles Loucopoulos, UK
Graham Low, Australia
Jian Lu, China
André Ludwig, Germany
Ivan Lukovic, Serbia
Leszek Maciaszek, Poland and

Australia
Lech Madeyski, Poland
Leonardo Mariani, Italy
Sascha Mueller-Feuerstein, Germany
Johannes Müller, Germany

Andrzej Niesler, Poland
Janis Osis, Latvia
Mourad Oussalah, France
Marcin Paprzycki, Poland
Dana Petcu, Romania
Naveen Prakash, India
Elke Pulvermueller, Germany
Rick Rabiser, Austria
Lukasz Radlinski, Poland
Artur Rot, Poland
Radoslaw Rudek, Poland
Francisco Ruiz, Spain
Krzysztof Sacha, Poland
Motoshi Saeki, Japan
Jakub Swacha, Poland
Stephanie Teufel, Switzerland
Rainer Unland, Germany
Olegas Vasilecas, Lithuania
Krzysztof Wecel, Poland
Michael Whalen, USA
Igor Wojnicki, Poland
Kang Zhang, USA

Auxiliary Reviewers

Jaap Kabbedijk, The Netherlands
Salvatore Lopes, Italy
Tomás Mart́ınez-Ruiz, Spain

Marian Cristian Mihaescu, Romania
Djordje Obradovic, Serbia
Patrizia Ribino, Italy

Invited Speakers

Stephen Mellor Freeter, UK
Fabien Gandon Inria, France
Ulrich Frank University of Duisburg-Essen, Germany
Henderik A. Proper Public Research Centre - Henri Tudor,

Luxembourg

Table of Contents

Designing a Virtual Reality Software: What Is the Real Contribution
of End-Users to the Requirements Prioritization? . 1

Emilie Loup-Escande and Olivier Christmann

ACME+: An ADL for Quantitative Analysis of Quality Attributes 16
Imen Derbel, Lamia Labed Jilani, and Ali Mili

An Experiment on Self-configuring Database Queries 33
Pietu Pohjalainen

Automated COSMIC-Based Analysis and Consistency Verification
of UML Activity and Component Diagrams . 48

Asma Sellami, Mariem Haoues, and Hanêne Ben-Abdallah

An MDE Approach to Develop Mobile-Agents Applications 64
Tahar Gherbi, Isabelle Borne, and Djamel Meslati

A Fault Injection Based Approach to Assessment of Quality of Test
Sets for BPEL Processes . 81

Damian Grela, Krzysztof Sapiecha, and Joanna Strug

Comparing Two Class Composition Approaches . 94
Fernando Barbosa and Ademar Aguiar

Testing Distributed Communication Protocols by Formal Performance
Monitoring . 110

Xiaoping Che and Stephane Maag

Research in Global Software Engineering: A Systematic Snapshot 126
Bilal Raza, Stephen G. MacDonell, and Tony Clear

Test City Metaphor for Low Level Tests Restructuration in Test
Database . 141

Artur Sosnówka

Service Retrieval for Service-Oriented Business Process Modeling 151
Youcef Baghdadi and Ricardo Pérez-Castillo

Automated Generation of Performance Test Cases from Functional
Tests for Web Applications . 164

Federo Toledo Rodŕıguez, Mat́ıas Reina, Fabián Baptista,
Macario Polo Usaola, and Beatriz Pérez Lamancha

X Table of Contents

Investigating the Applicability of the Laws of Software Evolution:
A Metrics Based Study . 174

Nicholas Drouin and Mourad Badri

Automatic Extraction of Behavioral Models from Distributed
Systems and Services . 190

Ioana Şora and Doru-Thom Popovici

Impact-Driven Regression Test Selection for Mainframe Business
Systems . 203

Abhishek Dharmapurikar, Benjamin J.R. Wierwille,
Jayashree Ramanthan, and Rajiv Ramnath

Improving Business Process Model after Reverse Engineering 218
Maŕıa Fernández-Ropero, Ricardo Pérez-Castillo, and Mario Piattini

Measuring the Effect of Enabling Traces Generation in ATL Model
Transformations . 229

Iván Santiago, Juan M. Vara, Valeria de Castro, and
Esperanza Marcos

Reverse Engineering Applied to CMS-Based Web Applications Coded
in PHP: A Proposal of Migration . 241

Feliu Trias, Valeria de Castro, Marcos López-Sanz, and
Esperanza Marcos

Author Index . 257

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 1–15, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Designing a Virtual Reality Software: What
Is the Real Contribution of End-Users

to the Requirements Prioritization?

Emilie Loup-Escande1 and Olivier Christmann2

1 Centre de Recherches en Psychologie, Cognition et Communication, Université Rennes 2,
Place du recteur Henri Le Moal, 35043 Rennes Cedex, France

emilie.loup-escande@uhb.fr
2 Arts et Métiers ParisTech, LAMPA, 2 Boulevard du Ronceray, 49000 Angers, France

olivier.christmann@ensam.eu

Abstract. This paper deals with the requirements prioritization which is a step,
or an activity, of design process influencing the decisions for the development
of software products. This step is often implemented by designers and uncom-
monly by users. The objective of this paper is consequently to characterize the
implementation of requirements prioritization by end-users. For that, we ex-
amined literatures of requirements engineering and ergonomics and we conducted
an empirical study with twenty end-users of a virtual reality software. In this
study, we analyze the lists of prioritized functionalities and the functionalities
evoked spontaneously by users. Results show that (1) the priority functionalities
for users were not systematically implemented by designers, (2) the different
priority levels depended on users’ profiles, (3) the users who assigned ‘impor-
tant’ and ‘unimportant’ priority levels evoked additional functionalities, and (4)
the spontaneously evoked functionalities were mainly precisions of anticipated
functionalities.

Keywords: Prioritization, Requirement, Virtual Reality, Software Design
Process.

1 Introduction

Requirements prioritization is a crucial activity in software design. Numerous re-
search works deal with the study and the improvement of this part of the software
process, for example in the field of requirements engineering and design ergonomics.
These works are mainly focused on the description of several categories of prioritiza-
tion methods: nominal scales, ordinal scales and ratio scales [1]. Comparison of these
methods deals with the evaluation on usability and effectiveness by designers (e.g.,
[2]) or on their costs-benefits (e.g., [3]); the time needed to prioritize or the user satis-
faction are some others criteria (e.g., [1]). These works have in common to only
address the requirements priorization by designers, not by users.

These studies neither aimed to analyze the consequences of the use of prioritization
methods on design decisions, nor to analyze how the results of prioritization by future

2 E. Loup-Escande and O. Christmann

users could impact the design of the product or the software. Yet, it is now clear that
user involvement in design is beneficial to provide a better balance between the de-
signed artefact and the users’ needs [4]. This is true in standard product design as
much as in software design. This remains the same in a user-centered perspective,
where the user is involved in the establishment of the needs and / or evaluation of the
artefact (e.g., [5]), as in an approach called “participatory design” which considers the
user as a co-designer involved in design decisions (e.g., [6]). This question underlines
the issue of the involvement of several user profiles in the design process. While sev-
eral studies have shown the interest to involve novice users and expert users in design
(e.g., [7]), few empirical studies have sought to demonstrate the interest of involving
end-users with different constraints, works and backgrounds, in the design process
and even less in the requirements prioritization activity.

The main objective of this paper is to describe an empirical study on the
involvement of different user profiles to the requirements prioritization. For that, we
will firstly examine the real contribution of different profiles of end-users of a virtual
reality (VR) software to the prioritization of functionalities. Because users can have
different priorities according to their job and background, three profiles of users have
been studied comparatively (stylists, engineers and marketers) relatively to the use of
a nominal method of prioritization.

In the next section, we present a further review of the literature on requirements
prioritization by different stakeholders, included end-users of a system, in the
literatures of requirements engineering and ergonomics. Then we describe the
methodology of our empirical study, and we expose our results which characterize
the activity of prioritization of three users’ profiles of a VR system and its
consequences on the design choices.

2 Requirements Prioritization in Design by End-Users

2.1 The “Requirement Prioritization” Concept According to Stakeholders

Requirement prioritization consists in assigning different priorities to the require-
ments in order to obtain a relative order between them [8] and finally to determine
which requirements should be implemented first [9]. In that context, the requirements
prioritization is a design activity [10]. This prioritization activity takes place in the
selection stage which precedes the technical realization [11]. From this viewpoint,
requirements prioritization is a crucial step during the software process.

In requirements engineering, the selection is made by the requirement engineer or
the project manager or even the developer himself, based on four recommended
criteria:

• the technical feasibility of each alternative [11];
• the degree of uncertainty and risk associated with each alternative [12];
• the evaluation of the costs and benefits of each alternative [13];
• the degree of convergence of different stakeholders in a design project for each

alternative [11].

In this literature, the end user does not participate directly in the selection of alterna-
tives, contrary to others disciplines where prioritization can be performed by

 Designing a Virtual Reality Software: What Is the Real Contribution of End-Users 3

end-users. In ergonomics, the selection of alternatives is done – at least partly – after
the production phase of requirements and candidate specifications. Selected alterna-
tives are used to produce a model which could evolve, that is, not directly the final
software as in requirement engineering. In ergonomics as in requirement engineering,
the stages of selection of the alternatives are prerequisites for achieving technical
realization [14].

Both in the case of an iterative user-centred design [5] than in the case of participa-
tory design [4] results obtained from the evaluation of the model are elements that
will help to (re-)orient the design choices for a prototype. Indeed, users are most con-
cerned to provide designers the necessary criteria to justify the new design choices in
terms of destination of the artefact, but also in terms of profits and benefits for them.
Moreover, the involvement of users is higher in a context of participatory design in
which users, as co-designers, have the opportunity to make design decisions as well as
designers. This suggests that decisions will take into account, at least in part, benefits
for users, and not only designers’ constraints as in requirement engineering. Loup-
Escande demonstrated that the backers’ requirements and users’ needs, moderated by
the designers’ constraints, should be the specifications for the system design [15].

2.2 Prioritization Methods and Tools

There are many approaches, tools and methods recommended or used for prioritizing
such as nominal scales, ordinal scales and ratio scales [2] which allow people to as-
sign qualitative or quantitative values to requirements.

The ‘Attributed Goal-Oriented Requirements Analysis’ method (AGORA) [16] is
an example of prioritization method, based on a graph used to decompose misunders-
tood goals until their understanding by each project’ participants. In nominal scale
methods, requirements are assigned to different priority groups. An example is the
MoScoW method, which consists in grouping all requirements into four priority
groups, that are requirements that the project (must / should / could / won’t) have. All
requirements listed in a category are of equal priority, which does not allow a finer
prioritization. Ordinal scales methods produce an ordered list of requirements. For
example, the simple ranking where the most important requirement is ranked ‘one’
and the least important is ranked ‘n’. Simple sorting algorithms of sorting are also
well suited to the requirements prioritization: for example, the “bubble sort” algorithm
permits, by comparing the relative importance of requirements in pairs, to obtain a list
of ordered requirements [17]. Another known method called Analytic Hierarchy Process
asks users to compare all pairs of requirements [18]. Ratio scale methods provide rela-
tive difference between requirements (e.g. the hundred dollars method ask users to
allocate a sum of money at each requirement). In addition to an ordered list of require-
ments, this method also helps to know the relative importance of each requirement in
relation to other ones.

Users of these methods are generally specialists. Also, methods such as the ‘bubble
sort’ remain difficult to master by people from the general public [1]. Different stu-
dies compared these methods (e.g., [1]): the metric used is the performance of the user
(e.g., the number of decisions to make, time spent for the prioritization) or his satis-
faction. Nevertheless, these studies are focused on the designers and elude the users of
software which will contain implemented requirements.

4 E. Loup-Escande and O. Christmann

2.3 Empirical Studies Focused on Prioritization Methods by End-Users

Prioritization and selection of functionalities can in some cases be made in two stages.
This approach is sometimes used in ergonomics and adopted in some design projects
to develop innovative software. Requirements are firstly identified by the engineers
with technical or cost constraints. Then, a panel of people representing the users is
asked to prioritize the requirements according to their own criteria. This preliminary
selection of the functionalities by the designers, prior to their prioritization by users,
can result in the removal of functionalities with a potential high added value for users,
because perceived as complex or costly for designers.

In other projects, requirements prioritization and selection can be performed by a
group composed of designers and users. The integration of users in the selection of
design choices helps to develop software in which functionalities and properties of the
artefact will bring a real added value to users. We present two studies that include end
users in requirements prioritization [19, 20]. These two studies did not explicitly iden-
tify the role of end users in the prioritization task: they were included in the group as
well as designers and backers. But priority requirements (i.e. judged important) are
different, according to the role or the status of the project stakeholders [8].

In the first study [20], participants (two users, three therapists, two technicians and
a stylist) had to prioritize functionalities and select relevant functionalities to develop
technical assistance for person with motor disability. They prioritized functional spe-
cifications by level of importance and of flexibility. This prioritization aimed at se-
lecting the “relevant” features by performing a retrospective subjective assessment of
them.

The second study aimed to clarify the problems and the needs of different stake-
holders affected by repetitive strain injury in office activities [19]. To do this, focus
groups involving ten participants were organized, composed of various profiles (e.g.,
users and managers of private/public companies, ergonomics experts …). The facilita-
tor asked participants to list problems and needs related to the theme of ‘repetitive
strain injury and physical organization of the post’, and other topics that they consi-
dered important to broach. Then, each focus group had to review the main require-
ments and prioritize them. Thus, participants were able to define by themselves
the most important elements in terms of requirements, which avoided a personal
interpretation by the facilitator of the previous discussions.

In both studies described above, the objective was not to analyze the activity of re-
quirements prioritization by users specifically, but rather realized by a design group
including users. The question of the impact of prioritization on design decisions is
also not addressed. The limits of these previous empirical studies constitute the
interest and motivation of the study described in this paper.

3 Methodology

To examine the requirements prioritization by different profiles of end-users and to
evaluate the implications for the design, we analyzed the lists of functionalities priori-
tized on the basis of a questionnaire and the functionalities evoked spontaneously by
users, in the context of a real software design project.

 Designing a Virtual Reality Software: What Is the Real Contribution of End-Users 5

3.1 Context: The Project 3D Child

This exploratory study was conducted on an industrial project named ‘3D Child’. This
project, led by a group of companies specialized in accessories for children, was divided
into two parts. This paper covers the second sub-project in which we were involved. It
was entitled ‘3D environments and places’: the aim was to design a virtual reality tool
for three SMEs (A, B and C) to help them to evaluate their future products and to reduce
time and cost of designing industrial products especially in the preliminary phases of
design (i.e. prototypes). The company A, with three sites, is a furniture manufacturer
with 1,050 employees. The company B, with a presence in fifteen countries, designs
baby products and employs 4,700 employees. The company C is a cabinet maker, spe-
cializing in toys and employing nine cabinetmakers. This sub-project resulted in the
development of a software dedicated to the presentation of interactive 3D scenes (child-
ren bedroom and car) composed of future products in which human characters - mod-
elled in 3D could move (see Figure 1). This virtual reality tool is named ‘Appli-Viz’3D’
and is a software made for decision support in industrial design.

Fig. 1. Avatar in the “ bedroom” 3D scene (from Appli-viz’3D)

3.2 Participants

This study involved twenty participants, who are end-users of Appli-Viz’3D: eight
engineers (three from company A and five form company B), eight stylists (four from
company A, three from company B and one from company C) and four marketers
(two from company A and two from company B). Most users of Appli-Viz'3D were
also designers in their firms (engineers and stylists). Therefore, they were able to
know or understand the constraints and technical potentialities of the software, com-
pared with users who are not designers. This has certainly facilitated the elicitation of
needs (Reich et al., 1996). Participants were 41.3 years old on average (S.D. = 7.8;
min = 28; max = 60) and 20.1 years of work experience (S.D. = 8.6; min = 5;
max = 37).

3.3 Data Collection: Questionnaire and Nominal Scale Method

The material used to collect data regarding the process of the functionalities selection
and prioritization was a questionnaire. The questionnaire contained a list of
functionalities of Appli-Viz'3D that users had to prioritize (Table 1 – white part).

6 E. Loup-Escande and O. Christmann

These functions were taken up from a previous demonstrator named ‘Virtual Kid’ - an
online store that helped to launch the project ‘3D Child’. This questionnaire was
elaborated by non-engineer designers, because we thought a priori that the
designer-engineer would restrict at once the range of possibilities.

Participants had to prioritize these functionalities using marks from one to
five (one = very important, two = important, three = moderately important,
four = unimportant, five = useless). We chose the nominal method of prioritization for
its ease of use that required no learning from users. We also asked participants to add
their proposals of new features for the future tool.

The filling of the questionnaire was made following a presentation of the 3D Child
project and a film showing the Virtual Kid application and the presentation of its
functionalities. Virtual Kid movie should allow users to visualize the early functional-
ities on the list given in the questionnaire. In each company, we grouped the partici-
pants in the same room during the filing of the questionnaire.

3.4 Collected Data

Collected data are prioritized lists of functionalities, and eventually spontaneously
evoked ones. These last functionalities can be prioritized or not. In the example
shown in Table 1, spontaneously evoked functionalities (in gray) were not prioritized.

Table 1. List of functionalities completed by a stylist (priority levels in green, additional
functionalities in grey)

1 Positioning 3D avatars with ergonomic postures

2 Moving in the scene

3 Changing the arrangement of the objects

2
Seeing the scene with the perspective of a child (small
size)

2 Defining the dimensions of the environment

5 Changing the color of the objects

5 Changing the texture of the objects

3 Changing the scenery

2 Seeing avatars moving in the scene

3 Changing the color of the walls

Allowing the avatar to interact with objects (climbing
up a ladder, opening a drawer)

Integrating ambient object directly linked to the
function of the project

3.5 Analysis Method

To answer to our problematic, we analyze our data regarding:

• the relations between priority levels and functionalities;
• the relations between priority levels and proposals of additional functionalities;
• the characterization of the additional functionalities;
• the consideration of prioritization results by designers.

 Designing a Virtual Reality Software: What Is the Real Contribution of End-Users 7

Statistical Analysis of the Priority Levels According to Functionalities. The quan-
titative analysis is based on numbers counting. We counted the occurrences of the
priority level given by participants for each functionality (e.g. 2 = important, see sec-
tion 3.3.). We added these numbers for each of the three users’ profiles, then for all
profiles taken into account (engineer, stylist and marketer). The resulting data tables
are contingency tables are crossing the variable ‘functionality’ with the variable
‘priority level’ for each profile. We defined the overall strength of the link between
two variables (e.g., priority level) by calculating the Cramer’s V2. The link is consi-
dered strong for V2 between 0.16 and 1.0, weak for V2 lower than 0.04 and interme-
diate between the two. Then we characterized the local strength of the link between
two modalities of these two variables (e.g., very important …) by computing relative
deviations (RD) between modalities. There is attraction (i.e., similarities between
variables) when the RD is positive and repulsion (i.e., disparities between variables)
when it is negative. The attraction is said to be remarkable for a RD greater than 0.25.
For full theoretical demonstration, see [21]. RD are often used in exploratory studies
since they allow a measurement of local associations within a set of data (e.g., [22]).

Relations between Priority Levels and the Presence versus the Absence of
Additional Functionalities. To analyze the relation between the priority levels asso-
ciated with early functionalities and the proposal or the absence of additional functio-
nalities, we identified the most frequently used priority level in each list (that is, the
frequency of occurrence of this level was one point higher than the frequencies of
other levels). When no level was distinguishable in terms of frequency, we removed
the lists in question (three lists have been removed). A total of seventeen lists were
analyzed. Then we counted the lists based on most frequently assigned levels and the
presence vs. the absence of additional functionalities.

Analysis of the Proposals of Additional Functionalities. We studied the content of
spontaneously evoked functionalities to determine if they were really new or only
precisions of the functionalities already listed. We define new functionalities as they
don’t are a part of a functionality previously anticipated. A precision corresponds to a
part or a detail of functionality already proposed in the list (e.g., “integrating avatar
of children and adults” is a precision of “positioning 3D avatars with ergonomic
postures” because it indicates that among the 3D models, adults and children should
be integrated).

Then we counted the number of new functionalities and precisions to analyze the
distribution in features spontaneously evoked. To avoid counting twice a same func-
tionality, we analyzed qualitatively the functionalities added by users to identify those
that were the same among all the lists. To do this, we established equivalences be-
tween expressions of functionalities that contained the same terms or synonyms (e.g.,
“being able to manipulate and the functions of the products” (evoked by an engineer)
and “permitting to use and to grasp objects” (expressed by a marketer)).

8 E. Loup-Escande and O. Christmann

Consideration of the Prioritizations by Designers. To analyze the consideration of
the users’ prioritization by designers, we tried to identify, among the prioritized func-
tionalities, those which were validated and implemented by the designers. For this, we
mapped the priority levels associated with early functionalities and requirements that
have actually been really implemented in the project.

4 Results

All the results of our study, corresponding to the analysis methods presented pre-
viously, are synthesized in the following part then discussed in the fifth section.

4.1 Priority Functionalities for Users Not Systematically Implemented by
Designers

The analysis of the relations between the two variables ‘functionality’ and ‘priority
level’ shows an overall intermediate link (V2 = 0.07).

Table 2. Remarkable attractions between functionalities and priority levels (X), and state of the
functionality at the end of the project (grey = not implemented)

Functionalities

U
se

le
ss

U
ni

m
po

rt
an

t

M
d.

 im
po

rt
an

t

Im
po

rt
an

t

V
er

y
im

po
rt

an
t

Positioning 3D avatars with
ergonomic postures X

Moving the scene X

Changing the arrangement of the
objects

 X

Changing the scenery X X

Defining the dimension of the
environment

X

Changing the color of the walls X X X

Seeing the scene with the
perspective of a child (small size)

Changing the color of the objects X X

Changing the texture of the objects X X

Seeing avatars moving in the scene X

 Designing a Virtual Reality Software: What Is the Real Contribution of End-Users 9

Table 2 summarizes the functionalities (left column), remarkable attractions (based
on relative deviations) between priority levels and functionalities, and the state of the
functionality at the end of the project, implemented or not implemented (grey). For
one functionality (i.e., “seeing the scene with the perspective of child (small size)”),
no remarkable attraction was observed (blank line in the table 2).

This table underlines the absence of direct link between priorities associated by us-
ers and the state of the functionalities at the end of the project (implemented or not).
For instance, the functionality “positioning 3D avatars with ergonomic postures”,
frequently associated with the ‘very important’ priority level (RD = 1.71) was not
fully implemented. The reason given by the designer-engineer was related to technical
constraints, particularly in terms of collisions between the avatar and the 3D model of
the product. On the user side, some frustration has been felt to the delivery of the
artefact. Conversely, the functionality “changing the color of the walls”, which is
characterized by strong attractions with priority levels ‘moderately important’ (RD =
0.84), ‘unimportant’ (RD = 0.50) and ‘useless’ (RD = 0.82) has been implemented.
Finally, some features judged essentially ‘moderately important’ and ‘useless’ have
not been implemented (e.g., “changing the color of the objects”).

4.2 Different Priority Levels According to Users’ Profiles

The analysis of the relations between the two variables ‘functionality’ and ‘priority
level’ shows a strong overall association (V2 = 0.20) for the engineer profile, an in-
termediate link (V2 = 0.11) for the stylist profile and a strong overall link (V2 = 0.24)
for the marketer profile.

We detail the priority levels associated with functionalities for each user profile in
Table 3, based on analysis of relative deviations (i.e., remarkable attractions are
represented by colors).

A first observation is that several priority levels may be associated with
functionality within a same profile, as shown in Table 3: for example, the functionali-
ty “moving the scene” was associated with ‘unimportant’ and ‘very important’ levels
by stylists.

A second observation is that the results suggest that the priority levels associated
with a same feature may be common or specific depending on the profile of users (see
Table 3). For example, priorities given for the functionality “changing the texture of
the objects” are quite similar among profiles of users, contrary to priorities assigned
to the functionality “changing the color of the objects”.

Putting in perspective priority levels mostly assigned by each profile and functio-
nalities really implemented suggests that there is no qualitative relation between the
implementation of a functionality and the profile that judges it very important or
important.

10 E. Loup-Escande and O. Christmann

Table 3. Remarkable attractions between priority levels associated to each functionality,
according to the profile (E = Engineers, S = Stylists, M = Marketers)

Functionalities

P
ro

fi
le

U
se

le
ss

U
ni

m
po

rt
an

t

M
od

. i
m

po
rt

an
t

Im
po

rt
an

t

V
er

y
im

po
rt

an
t

Positioning 3D avatars with
ergonomic postures

E

S

M

Moving the scene

E

S

M

Changing the arrangement of the
objects

E

S

M

Changing the scenery

E

S

M

Defining the dimension of the
environment

E

S

M

Changing the color of the walls

E

S

M

Seeing the scene with the
perspective of a child (small size)

E

S

M

Changing the color of the objects

E

S

M

Changing the texture of the objects

E

S

M

Seeing avatars moving in the scene

E

S

M

4.3 The Users Who Assigned ‘Important’ and ‘Unimportant’ Priority Levels
Evoked Additional Functionalities

The majority of the lists contain proposals of additional functionalities (12/17, 71% -
3 lists have been removed, see part 3.5.2).

 Designing a Virtual Reality Software: What Is the Real Contribution of End-Users 11

The analysis of the relations between the two variables ‘presence or absence of
proposal of additional functionalities’ and ‘priority level’ shows an overall interme-
diate link (V2 = 0.13). The analysis of the relative deviations reveals that the lists of
functionalities with the most of ‘very important’ priority levels don’t contain any
proposal for additional functionalities (RD = 0.36). For example, a stylist who as-
signed seven times the level ‘very important’ did not add any extra functionality.
Similarly, the lists in which the priority level the most frequently assigned is
‘moderately important’ does not contain any functionality additions (RD = 0.36).

However, when the level ‘important’ is the most used in a list, this one also con-
tains proposals for additional functionalities (RD = 0.42). Similarly, the level
‘moderately important’ is characterized by a strong attraction with the ‘proposal of
additional functionalities’ (RD = 0.42).

When the level ‘useless’ is the most used in the lists, they may as well include pro-
posals for additional functionalities, such as no proposals. For example, a stylist who
assigned five times the mark ‘five’ (useless) did not propose additional functionali-
ties. Conversely, an engineer proposed three additional functionalities whereas he
mainly attributed the mark ‘five’ (i.e., useless) to the early functionalities.

4.4 The Spontaneously Evoked Functionalities are Mainly Precisions of
Anticipated Functionalities

Our data show that thirteen out of twenty participants evoked additional functionali-
ties: seven are engineers, three are stylists and three are marketers.

The thirty-four additional functionalities evoked by users are distributed as fol-
lows: thirteen new functionalities (62%) and twenty-one precisions (38%). These
thirty-four functionalities are the result of the sum of functionalities added in each list.

After grouping similar functionalities between two or more lists, we obtained final-
ly fifteen additional functionalities: six new ones and nine precisions. The distribution
of the six new functionalities and nine precisions in terms of common vs. specific to
different user profiles is presented on the Figure 2.

Fig. 2. Distribution of new functionalities (N) and precisions (P) common or specific to each
profile (E = Engineer, S = Stylist, M = Marketer)

12 E. Loup-Escande and O. Christmann

As shown in Figure 2 concerning the six new functionalities (N), we observe that:

• One functionality is common to engineers, stylists and marketers (e.g. ‘allowing
the avatar to interact with objects (climbing up a ladder, opening a drawer)’,
expressed by a designer);

• One functionality is common to stylists and marketers (e.g. ‘making a short movie
[…]’, evoked by a designer);

• Two functionalities are specific to marketers (e.g. ‘zooming on specific functions
of the furniture during their use’);

• Two functionalities are specific to engineers (e.g. ‘measuring spaces on the
product’).

Concerning the nine precisions (P), we observe that:

• One functionality is common to stylists and engineers (e.g. ‘positioning avatars of
children and adults in a same scene […]’, evoked by a stylist; ‘positioning the
child/parent pair’, expressed by an engineer);

• Four functionalities are specific to engineers (e.g. ‘defining standard environ-
ments: car trunk (Mini format), train door, bus, sidewalk, supermarket check-
out’);

• Four functionalities are specific to stylists (e.g. ‘integrating typical objects: baby's
bottles, changing tables … in the scene to assess the function of the furniture’).

5 Discussion

The results show that the priority levels associated with the same functionalities can
be common to several user profiles or different according to user profiles. We note
that several priority levels can be assigned to one functionality by a same user profile.
This confirms the need to develop consultations between several profiles of end users,
followed by consultations between designers and end-users [23].

We observe that no marketer evaluated a functionality as useless, contrary to engi-
neers and stylists who attributed the level ‘useless’ to some functionalities. One poss-
ible explanation is that engineers and stylists, who are more familiar with making
design choices, are more at ease to say that a feature is useless for a given artefact.
Marketers seem to prefer to assume that all the functionalities anticipated by the de-
signers are useful at first sight, because none of them assigned the priority level ‘use-
less’ to the functionalities.

Our data highlight that a functionality considered as ‘very important’ for users
might not be implemented as is. However, knowing that this functionality was ‘very
important’ for users has driven designers to find a compromise leading to the imple-
mentation of a part of the functionality. Conversely, functionalities generally consi-
dered as ‘unimportant’ or ‘useless’, but considered as ‘very important’ by a profile of
users in particular, may have been implemented. These findings suggest that the func-
tionalities prioritized by the users are a source of information for designers. Theses
ones try to take them into consideration: they care about the usefulness of the soft-
ware. But user priorities are a set of information among others. That leads designers
to implement functionalities they consider less costly (in financial and temporal

 Designing a Virtual Reality Software: What Is the Real Contribution of End-Users 13

terms), without leaving aside the prioritizations of the users which represent more a
base of exchange than a list of functionalities to implement as they are. This confirms
the interest to compose multidisciplinary team, including several profiles of end-
users, in the early stages of the design process [24] and not only in the evaluation
phases.

A last result of our study is that the majority of users evoked additional functionali-
ties following the prioritization task, especially when users have attributed most fre-
quently the levels ‘important’ or ‘unimportant’. This evocation of post-prioritization
requirements confirms what was supposed by [19] concerning the interest of involving
users in the prioritization to clarify or propose new features, beyond their priorities. We
suppose that a possible explanation is that providing users with some examples of func-
tionalities enable users to have an initial understanding of the technological potential of
the artefact. Prioritizing these examples allows them to imagine what could be the fu-
ture artefact, and to evoke additional functionalities. These additional functionalities
were mostly precisions of functionalities already anticipated and, to a lesser extent,
entirely new functionalities. These last ones were common to several user profiles
(i.e. either common to engineers, stylists and marketers or to stylists and marketers) or
specific to a profile (in this case, marketers and engineers). The precisions were
essentially specific to engineers and stylists.

6 Conclusions and Perspectives

The phase of requirements prioritization step is a key element of the software process
as it will lead to the selection of functionalities to implement. The results presented
above, and the ensuing discussion, allow us to make several recommendations to
promote the design of artifacts with a real added value to the user. A first prerequisite
is the integration of end users in the prioritization phase. In the field of collaborative
engineering, previous studies have demonstrated that multidisciplinary design teams
are beneficial to the design of products. The results of the study related in this paper
allow us to go further by claiming that multidisciplinary teams of users are beneficial
to the design of products which are in fact useful for them. Indeed, users have addi-
tional needs related on their job profile, which results in different priorities. This is
particularly interesting in a context of “participatory” design, developed in Living
Labs. Participatory design is based on a strong involvement of users in the expression
of needs or the imagination of solutions, and on the fact that users must make deci-
sions as well as designers. The prioritization phase is essential, because it allows fu-
ture users to imagine new functionalities that were not proposed by the designers.
However, giving users a first list of functionalities is crucial for them to imagine the
future artifact to have food for thought. These prioritized lists are necessary for to
allow designers to consider both their own constraints and user needs. This leads them
to make compromises that benefit the real utility of the artifact to be designed.

A limitation of our study concerns the small project and the small sample size.
That justifies the exploratory status of this study which allow us to obtain trends and
not general conclusions about the differences between stakeholders. A second
limit concerns the absence, in our data collection protocol, of elicitation interviews

14 E. Loup-Escande and O. Christmann

following the filling of the questionnaire. The realization of such interviews has not
been possible because of constraints concerning the availability of the participants.

From this limit, a research perspective is to analyze the requirements prioritization
by users adding to our original protocol elicitation interviews to know the reasons for
assigning a priority level and how users perform this task. This would allow to identi-
fy finely subjective criteria justifying the levels assigned to each functionality. For
example, we would then be able to explain why a user who gave the level ‘unimpor-
tant’ to functionality: is it because he imagined a very infrequent use or because he
guessed he wouldn’t need this functionality (but he did not dare to give the level ‘use-
less’)? We would also understand how each assignment was performed. Thus, we
could know if people gave ‘very important’ level first or if they began with ‘useless’
functionalities. This would show that users know immediately what would useless or
instead that users a priori know what they would need.

References

1. Ma, Q.: The Effectiveness of Requirements Prioritization Techniques for a Medium to
Large Number of Requirements: A Systematic Literature Review. In: Auckland University
of Technology as a Part of the Requirements for the Degree of Master of Computer and In-
formation Sciences. School of Computing and Mathematical Sciences (2009)

2. Karlsson, J., Wohlin, C., Regnell, B.: An evaluation of methods for prioritizing software
requirements. Inform. Software Tech. 39, 939–947 (1998)

3. Christian, T., Mead, N.R.: An Evaluation of Cost-Benefit Using Security Requirements
Prioritization Methods. U.S. Department of Homeland Security (2010)

4. Caelen, J.: Conception participative par « moments »: une gestion collaborative. Le Travail
Humain 72, 79–103 (2009)

5. Bastien, J.M.C., Scapin, D.: La conception de logiciels interactifs centrée sur l’utilisateur:
étapes et méthodes. In: Falzon, P. (ed.) Ergonomie. PUF, Paris (2004)

6. Von Hippel, E.: Democratizing Innovation. MIT Press (2005)
7. Popovic, V.: Expert and Novice Users Model and their Application to the Design Process.

In: Journal of the Asian Design International Conference (2003)
8. Berander, P., Andrews, A.: Requirements Prioritization. In: Aurum, A.W.C. (eds.) Engi-

neering and Managing Software Requirements. Springer (2005)
9. Iqbal, A., Kahn, F.M., Khan, S.A.: A critical analysis of techniques for requirement priori-

tization and open research issues. International Journal of Reviews in Computing 1, 8–18
(2009)

10. Darses, F., Falzon, P., Béguin, P.: Collective design processes. In: International Confe-
rence on the Design of Cooperative Systems, pp. 141–149. INRIA (1996)

11. Alenljung, B., Persson, A.: Portraying the practice of decision-making in requirements En-
gineering - A case of large scale bespoke development. Requir. Eng. (2008)

12. Aurum, A., Wohlin, C.: The fundamental nature of requirements engineering activities as a
decision-making process. Inform. Software Tech. 45, 945–954 (2003)

13. Macaulay, L., Fowler, C., Kirby, M., Hutt, A.: USTM: a new approach to requirements
specification. Interacting with Computers 2, 92–118 (1990)

14. Maguire, M., Bevan, N.: User Requirements Analysis: A Review of Supporting Methods.
In: Proceedings of the IFIP 17th World Computer Congress - TC13 Stream on Usability:
Gaining a Competitive Edge. Kluwer, B.V. (2002)

 Designing a Virtual Reality Software: What Is the Real Contribution of End-Users 15

15. Loup-Escande, E.: Vers une conception centrée sur l’utilité: une analyse de la co-
construction participative et continue des besoins dans le contexte des technologies émer-
gentes. Thèse de Doctorat, Université d’Angers (2010)

16. Kaiya, H., Horai, H., Saeki, M.: AGORA: attributed goal-oriented requirements analysis.
method. In: IEEE Joint International Conference on Requirements Engineering, pp. 13–22.
IEEE Press (2002)

17. Aho, A.V., Ullman, J.D., Hopcroft, J.E.: Data Structures and Algorithms. Addison Wesley
(1983)

18. Saaty, T.L.: Analytic Hierarchy Process. Encyclopedia of Biostatistics. John Wiley &
Sons, Ltd. (2005)

19. Collinge, C., Landry, R.: Prévention des troubles musculosquelettiques associés à la bu-
reautique: analyse des besoins et portrait de la formation et de l’information (1997)

20. Plos, O., Buisine, S., Aoussat, A., Dumas, C.: Analysis and translation of user needs for
assistive technology design. In: International Conference on Engineering Design, ICED
2007, p. 12 (2007)

21. Bernard, J.-M.: Analysis of local or asymmetric dependencies in contingency tables using
the imprecise Dirichlet model, Lugano, Switzerland. Paper presented at the 3d Internation-
al symposium on imprecise probabilities and their applications, ISIPTA 2003 (2003)

22. Anastassova, M., Burkhardt, J.-M., Mégard, C., Ehanno, P.: Results from a user-centred
critical incidents study for guiding future implementation of augmented reality in automo-
tive maintenance. Int. J. Ind. Ergonom. 35, 67–77 (2005)

23. Reich, Y., Konda, S.L., Monarch, I.A., Levy, S.N., Subrahmanian, E.: Varieties and issues
of participation and design. Des. Stud. 17, 165–180 (1996)

24. Tichkiewitch, S., Tiger, H., Jeantet, A.: Ingénierie simultanée dans la conception de pro-
duits. In: Universités d’été du pôle productique Rhône-Alpes (1993)

ACME+: An ADL for Quantitative Analysis
of Quality Attributes

Imen Derbel1, Lamia Labed Jilani1, and Ali Mili2

1 Institut Superieur de Gestion, Bardo, Tunisia
2 New Jersey Institute of Technology, Newark, NJ, 07102-1982, U.S.A.

Abstract. One of the main issue of software systems engineering is determining
the overall system quality attributes at an early stage. This has several advantages
such as early detection of problems, cost benefits and assuring that the chosen
architecture will meet both functional and non-functional quality attributes. One
emerging approach for dealing with such early analysis is to evaluate the system
quality attributes at the architectural level. However, there is a notable lack of
support for representing and reasoning about non functional attributes in existing
Architectural Description Languages(ADLs). In this paper, we propose Acme+ as
an extension of Acme ADL and discuss its abilities to represent and evaluate non
functional attributes such as response time, throughput, failure probability, etc.
We also describe a tool that reads a text file containing an architecture described
in ACME+ and outputs the quality attributes of all the system and detects the
component or the connector bottleneck.

Keywords: Software Architecture Analysis, Quality Attributes, Architecture
Description Language, Performance, Reliability, Acme, Bottleneck.

1 Introduction

The concept of software architecture has emerged in the eighties as an abstraction of
the design decisions that precede functional design, and pertain to such aspects as broad
system structure, system topology in terms of components and connectors, coordination
between system components, system deployment, and system operation [17,8]. This
concept has gained further traction through the nineties and the first decade of the mil-
lennium, by virtue of its role in many modern software engineering paradigms, such
as domain engineering, product line engineering. Whereas functional design and pro-
gramming determine the functional attributes of a software product, the architecture of
a software product determines its non-functional attributes, i.e. properties such as: re-
sponse time, throughput, failure probability, etc; we refer to these as quality attributes
of the software product. A number of architecture description languages (ADL’s) have
emerged in the past two decades, including ACME (CMU) [16], Wright (CMU)[3],
Rapide (Stanford University) [25], PADL (Urbino) [1,2]. Even though many of these
languages embody state of the art ideas about software architectures, and despite the im-
portance of non functional attributes in the characterization of software architectures,
to the best of our knowledge none of these ADL languages offers automated support
for analyzing quality attributes of software architectures. In this paper we propose to fill

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 16–32, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

ACME+: An ADL for Quantitative Analysis of Quality Attributes 17

this gap by proposing an ADL which is a modified version of ACME (we refer to this
language as ACME+), and building a compiler for this language, with the following
characteristics:

– ACME+ is based on ACME’s architecture ontology, in that it represents architec-
tures in terms of components, connectors, ports and roles.

– It uses ACME’s property construct to represent the quality attributes of compo-
nents and connectors; but while ACME considers the data entered under
property as a mere comment, which it does not analyze, we give it a precise
syntax and use it in our analysis.

– Whereas ACME lists the ports of a component and the roles of a connector, and
does not specify any relation between the ports of a component or the roles of a
connector, we introduce special purpose constructs that specify these relations, and
use them in our analysis.

Among the questions that we envision to address/answer, we cite the following:

– Given a set of values for the quality attributes of components and connectors, what
are the values of the quality attributes of the overall system?

– How do the system-wide attribute values depend on component-level and connector-
level values and how sensitive are system-wide attribute values to variations in
component-level and connector-level values?

– Which component-level or connector-level attribute values are causing a bottleneck
in system wide attribute values?

In section 2, we briefly present and motivate the main syntactic features that we have
added to ACME; in section 3, we discuss the semantics of these constructs, in terms of
Mathematica equations that we associate to them; in section 4, we discuss bottleneck
analysis; in section 5, we show how we generate the proposed compiler; in section 6, we
discuss related work. The paper concludes in section 7 by a discussion of our prospects
for future research.

2 ACME+: Syntax

In order to enable us to represent and reason about non functional properties of software
architectures, we need an architectural description language that offers the following
features:

1. Support the ability to represent components, connectors, ports and roles.
2. Support the ability to represent quantitative non functional attributes of components

and connectors.
3. Provide constructs that enable us to represent operational information that impacts

the non functional attributes. At a minimum, we must be able to identify, among
ports of a component (and roles of a connector) which ports are used for input and
which ports are used for output. Furthermore, if we have more than one input port or
more than one output port, we need to represent the relation between the ports: are
they mutually synchronous or asynchronous? Do they carry duplicate information?
or disjoint/ complementary information? or overlapping information?

18 I. Derbel, L.L. Jilani, and A. Mili

4. Provide means for a component (or a connector) to represent more than one relation
from input ports (roles) to output ports (roles). The reason we need this provision
is that often the same component (or connector) may be involved in more than one
operation, where each operation involves a different configuration of ports (roles),
and have different values for its non functional attributes.

Among all the architecture description languages that we have considered, we have
found none that meets these four requirements. Most languages devote much attention
to representing the topology of the system; some languages, such as Wright [5] and
PADL [1,2] complement the topological information with operational information, but
the latter is expressed in CSP [19] which is too detailed for our purposes, and at the same
time fails to always provide the information we need. To cater to the four requirements
we have presented above, we adopt ACME’s basic syntax and ontology, and add to it
the concept of functional dependency.

2.1 ACME+: ACME Extension with Functional Dependency

We adopt ACME’s ontology of components, connectors, ports and roles, and its main
approach for representing software architectures. This approach represents components
by describing a number of their properties, including a list of their relevant ports; and
it represents connectors by describing their properties, including a list of their relevant
roles [18]. Furthermore, ACME enables the architect to build arbitrary topologies by
means of attachment statements, which connect ports to role and roles to ports. The
ACME code below shows a simple ACME description of a client-server architecture:

System simpleCS = {
Component client = {Port call_rpc; };
Component server = { Port rpc_request; };
Connector rpc = { Role client_side;

Role server_side; };
Attachments = {
client.call_rpc to rpc.client_side;
server.rpc_request to rpc.server_side; }}

In order to enable us to represent and reason about non functional properties of software
architectures, we enrich ACME ADL with a new construct which must support the
following capabilities:

– Specify the operational information of a software architecture that impacts the non
functional attributes.

– Identify the input ports and output ports of a component, as well as the origin roles
and destination roles of a connector.

– Represent relations between ports of the same type (input, output) and between
roles of the same type (origin, destination).

– Represent non functional properties of components and connectors from a
predefined catalog, using predefined units of measurement (e.g. milliseconds for
response time, transactions per second for throughput, probability for failure prob-
ability, hours for MTTF (Mean Time To Fail), percentage for availability).

ACME+: An ADL for Quantitative Analysis of Quality Attributes 19

The BNF syntax of the proposed construct is defined as follows:

FuncDependency ::= FunDep ":" "{" Rdeclaration
"}" ";" ;

Rdeclaration ::= Rdecl Rdeclaration | ;
Rdecl ::= Identifier "(" Inputs ";"

Outputs ";" Properties ")";
Inputs ::= Input "(" InputSpecification ")" | ;
Outputs ::= Output "(" OutputSpecification ")" | ;
InputSpecification ::= InSelection "("

InSynchronisation "(" ListId ")" Spec ")"
| InSynchronisation "(" Identifier ")" ;

InSelection ::= AnyOf | AllOf | MostOf ;
InSynchronisation ::= Synchronous|Asynchronous ;
OutSelection ::= Duplicate|Exclusive|Overlapping ;
OutSynchronisation ::= Simultaneous|Asavailable ;
ListId ::= Identifier "," ListId | Identifier ;
Spec ::= "," InputSpecification Spec | ;
OutputSpecification ::= OutSelection "("

OutSynchronisation
"(" ListId ")" ")" | ;

Properties ::=Properties "(" PropSpecification ")"
| ;

PropSpecification ::= PropSpecification PropSpec| ;
PropSpec ::= procTime "=" PTvalue ";"

| thruPut "=" TPvalue ";"
| failProb"=" FPvalue ";"

PTvalue ::= Literal sec | Literal msec;
TPvalue ::= Literal trans/sec

| Literal trans/min;
FPvalue ::= Literal ;

In the construct FuncDependency, FunDep is a reserved word which serves as a
header indicating that the following descriptions pertain to functional dependency rela-
tions of the component in question. This construct consists of one or more functional
relations (Rdeclaration). Each relation (Rdecl) is identified by a Relation Name
and corresponds to a possible role played by the component. It connects Input Ports
(Inputs) and Output Ports (Outputs) and is characterized by non functional proper-
ties (Properties) such as processing time, throughput, and failure probability. The
term Input is a reserved word which indicates the list of input ports and their op-
erational information through InSelection and InSynchronisation constructs.
The term InSelection indicates whether all of the input ports are needed (AllOf),
or any one of them is sufficient (AnyOf), or most of them are needed (MostOf), as
would be the case in a modular redundancy voting scheme for example. The term
InSynchronisation indicates whether the ports have to make data available Syn-
chronously or Asynchronously. Similarly the term Output is a reserved word which
indicates the list of output ports and their operational information through
OutSelection and OutSynchronisation constructs. The term OutSelection in-
dicates whether the outputs posted on the different output ports are duplicate, exclusive

20 I. Derbel, L.L. Jilani, and A. Mili

or overlapping. The term OutSynchronisation indicates whether the data posted on
output ports is posted simultaneously on all output ports (Simultaneous), or is posted
as available (Asavailable). The term Properties is a reserved word which indicates
the non functional properties of the component. So far, we have restricted the property
names to procTime, thruPut and failProb. For each property, we specify its value re-
spectively through the terms PTvalue, TPvalue and FPvalue. The above rules form
the basis of the proposed extensions. The rules can, however, be extended to include
multiple requirements and information where necessary. In order to illustrate the pro-
posed extensions in practice, we present an example in the next section.

2.2 A Sample Example of an Architecture Description with ACME+

To illustrate how the proposed construct works, we consider the architecture of the
Aegis Weapons System [5].

Figure 1 depicts the basic architecture of Aegis represented in ACME Studio. The
system consists of seven components: Geo Server, Doctrine Reasoning,
Doctrine Authoring, Track Server, Doctrine Validation, Display Server and
Experiment Control. To this configuration, we add, for the sake of illustration, two
dummy components Sink and Source and their associated connectors. Using our pro-
posed constructs of functional dependency, we give below examples of ACME+ de-
scription. For the sake of brevity, we content ourselves with giving ACME+
descriptions of only one component of Aegis system. The overall architecture descrip-
tion of the Aegis Weapon System in ACME+ is available online at:
http://web.njit.edu/ mili/AegisArch.txt.
The description relative to Display Server component is defined by:

Component Display_Server {
Port inPort0; Port inPort1;
Port inPort2;Port inPort3;
FunDep = {R(
Input(AllOf(Synchronous(inPort0; inPort1;

inPort2; inPort3)));
Output(outPort);
Properties(procTime=1;thruPut=0.4;failProb=0.3)
)}};

Display Server operates in only one task (R) that requires all of data provided by the
input ports synchronously in order to display results on its output port. This task is
characterized by quality attributes defined in terms of processing time, throughput and
failure probability. To test the adequacy of this languages, we have used it to represent
a number of sample architectures, including the Video Animation Repainting System
[10],and the Rule Based System [17]. In all cases we find that the information required
by the Acme+ description is readily available as part of the architectural description.

ACME+: An ADL for Quantitative Analysis of Quality Attributes 21

3 ACME+: Semantics

3.1 A Logical Framework

In order to use the information recorded in the proposed constructs for the purpose of
analyzing software architectures, we take the following modeling decisions:

– Each port in a component is labeled for inPort or for outPort.
– Each role in a connector is labeled as a fromRole or a toRole.
– Each architecture has a single component without input port, called the Source,

and a single component without output ports, called the Sink.

Fig. 1. Aegis system architecture represented in ACME Studio

22 I. Derbel, L.L. Jilani, and A. Mili

In this discussion, we are interested in three sample non-functional attributes, namely:
(1) Response time, measured in milliseconds. We assume that each component has a
property of type real called procTime that represents the component’s processing time
and each connector has a property of type real called transTime that represents the
connector’s transmission time. (2) Throughput, measured in transactions per second.
We assume that each component and each connector has a property of type integer
called thruPut. (3) Failure probability, measured as a probability. We assume that each
component and each connector has a property of type real called failProb. We define
the system wide attributes as:

– For each port and each role, we assign a set of attributes that are related to the
quality attributes we are interested in. Hence each port has a response time attribute
called RT , a throughput attribute called TP , a failure probability attribute called
FP (for failure probability). We distinguish between component and connector
properties, which are specified in the ACME+ source code, and the (similar sound-
ing but distinct) port and role attributes, which are assigned to ports and roles by
our attribute grammar, and are computed by our compiler.

– For the output port of the source component, we assign trivial values for these at-
tributes, such as zero for the response time, zero for failure probability, and infinity
for throughput. We write:

Source.outPort.RT = 0. (1)

Source.outPort.TP = ∞. (2)

Source.outPort.FP = 0. (3)

– For each functional dependency relation we associate an equation between the at-
tributes of the ports and roles that are involved in the relation. The equation depends
of course on the nature of the functional dependency; for example, if two ports are
linked by an AllOf construct, the response time associated with the output ports of
the relation is the maximum of the response times associated to the output ports to
which we add the processing time of the components, and the throughput associ-
ated to the output ports is the minimum of the throughput associated with the input
ports, and the throughput capacity of the component. This process is discussed in
greater detail in the following section.

– The values of the non functional properties for the overall architecture are then the
values of the relevant attributes for the input port of the sink component; hence the
response time of the whole system architecture is Sink.inPort.RT ; the through-
put of the whole system architecture is Sink.inPort.TP ; and the failure proba-
bility of the whole system architecture is Sink.inPort.FP . The values of these
attributes are computed inductively from the properties attached to the components
and connectors (procTime, transTime, thruPut, failProb). We write:

ACME+: An ADL for Quantitative Analysis of Quality Attributes 23

System.ResponseT ime= Sink.inPort.RT. (4)

System.Throughput = Sink.inPort.TP. (5)

System.FailureProbability = Sink.inPort.FP. (6)

3.2 Inductive Rules

Rules between Components and Connectors. Whenever a port of a component is
attached to the role of a connector, their attributes are equated. For example, if the
output port of component C is attached to the origin role of connector N , we write:

C.outPort.RT = N.fromRole.RT. (7)

C.outPort.TP = N.fromRole.TP. (8)

C.outPort.FP = N.fromRole.FP. (9)

Single Input/ Single Output. The inductive rules are straightforward for components
that have a single input port and a single output port, and for connectors that have a
single origin role and a single destination role; we illustrate these rules on a connector.
Given a connector N , we write an equation that links the attributes of the origin role
(fromRole), the attributes of the destination role (toRole), and the properties of the
connector. We write:

N.toRole.RT = N.fromRole.RT +N.transT ime. (10)

N.toRole.TP = Min(N.fromRole.TP ;N.thruPut). (11)

N.toRole.FP = 1− (1−N.fromRole.FP)

(1−N.failProb).
(12)

Multiple Inputs and Outputs. When a component has more than one input port or
more than one output port, then the inductive rules within the component depend on the
exact relation between the multiple ports of the same type (input, output). We review the
main configurations for a component, and argue that similar rules apply for connectors.
For each component, these equations link the values of the attributes at the input ports
and output ports with the values of internal properties (procTime, thruPut and fail-
Prob). These equations depend on the nature of the functional dependency relations.
We let C designate a component, whose input ports are called inPort1; ...; inPortn
and output ports are called outPort1; ...; outPortk. We suppose that these input and
output ports are related with a functional dependency relation R expressed as follows:

24 I. Derbel, L.L. Jilani, and A. Mili

R(
Input(InSelection(InSynchronisation

(inPort1; ..; inPortn)));
Output(OutSelection(OutSynchronisation

(outPort1; ..; outPortk)));
Properties(procTime=0.7;thruPut=0.2;failProb=0.2)
)

We review in turn the three attributes of interest.

Response Time. For each output port outputPi expressed in the relation R, we write:

C.outPorti.RT = function(C.inPort1.RT ;

...;C.inPortn.RT) + C.R.procT ime.
(13)

where function depends on the construct InSelection, expressing the nature of the
relation between input ports. If InSelection is AllOf, then function is the maximum,
we write:

C.outPorti.RT = Max(C.inPort1.RT ; ...;C.inPortn.RT)

+C.R.procT ime.
(14)

If InSelection is AnyOf, then function is the minimum, we write:

C.outPorti.RT = Min(C.inPort1.RT ; ...;C.inPortn.RT)

+C.R.procT ime.
(15)

If InSelection is MostOf, then function is the median, we write:

C.outPorti.RT = Med(C.inPort1.RT ; ...;C.inPortn.RT)

+C.R.procT ime.
(16)

Throughput. For each output port outPorti of the component C expressed in the
relation R, we write an equation relating the component’s throughput and inPorti.TP .
This rule depends on whether all of inputs are needed, or any one of them. Consequently
if InSelection is AllOf, and since the slowest channel will impose its throughput,
keeping all others waiting, we write:

C.outPorti.TP = Min(C.R.thruPut;

(C.inPort1.TP + ...+ C.inPortn.TP)).
(17)

Alternatively, if InSelection is AnyOf, since the fastest channel will impose its
throughput, we write:

C.outPorti.TP = Max(Min[C.R.thruPut;C.inPort1.TP];

...;Min[C.R.thruPut;C.inPortn.TP]).
(18)

ACME+: An ADL for Quantitative Analysis of Quality Attributes 25

Failure Probability. For each output port outPorti of the component C expressed in
the relation R, we write an equation relating component’s failure probability and in-
put ports failure probability. This rule depends on whether all of inputs are needed, or
any one of them. We first consider that inPorti provide complementary information
(InSelection is AllOf). A computation initiated at C.outPorti will succeed if the
component C succeeds, and all the computations initiated at the input ports of C suc-
ceed. Assuming statistical independence, the probability of these simultaneous events
is the product of probabilities. Whence we write:

C.outPorti.FP = 1−
(1− C.inPort1.FP × ...× C.inPortn.FP)

(1 − C.R.FailProb).

(19)

Second we consider that inPorti provide interchangeable information (InSelection
is AnyOf). A computation initiated at C.outputPi will succeed if component C suc-
ceeds, and one of the computations initiated at input portsC.inPorti succeeds. Whence
we write:

C.outPorti.FP = 1− (1 − C.inPort1.FP)× ...

×(1− C.inPortn.FP)(1 − C.R.FailProb).
(20)

3.3 Illustration with an Example

We show below equations we write for Display Server component of AEGIS architec-
ture, along with the Mathematica equations that our compiler generates from the code
proposed earlier. For the sake of brevity, we present equations written for only one
component, and leave it to the reader to see how the rules for other components can be
derived by analogy.

Within Component Display Server. The compiler generates the following Mathemat-
ica equations for Display Server:

DisplayServer.outPort.RT = Max(

DisplayServer.inPort0.RT ;

DisplayServer.inPort1.RT ;

DisplayServer.inPort2.RT ;

DisplayServer.inPort.RT)+

DisplayServer.R1.procT ime

(21)

DisplayServer.outPort.TP = Min(

DisplayServer.R.thruPut;

3∑
i=0

(C.inPorti.TP))

(22)

26 I. Derbel, L.L. Jilani, and A. Mili

DisplayServer.outPort.FP = 1−
(1−DisplayServer.R.failProb)×

(1−
3∏

i=0

DisplayServer.inPorti.FP)

(23)

Between Display Server and Connectors. The compiler generates the following
Mathematica equations between Display Server input ports and connectors roles:

DisplayServer.inPort0.RT = Pipe13.toRole.RT (24)

DisplayServer.inPort1.RT = Pipe10.toRole.RT (25)

DisplayServer.inPort2.RT = Pipe12.toRole.RT (26)

DisplayServer.inPort3.RT = Pipe11.toRole.RT (27)

DisplayServer.outPort.RT = Pipe14.fromRole.RT (28)

4 Bottleneck Analysis

Bottleneck analysis forms the core of system performance analysis. In our tool we have
decided to apply bottleneck analysis laws of queueing networks. In the following we
present these laws. A more detailed explanation can be found in [7]: The utilization of
the ith device(component or connector) is defined by:

Ui = X ×Di (29)

where X is the system throughput and Di is the total service demand on the ith device
for all visits Vi of a task with processing time Si. Di is defined by the following law:

Di = Vi × Si (30)

where Vi = Xi/X , Xi is the ith device throughput. Since utilization Ui cannot exceed
1, then X ×Di ≤ 1. Consequently, for each device i, the system throughput X checks
the following law:

X ≤ 1

Di
(31)

Therefore, the component or connector with largest Di limits the system throughput and
is the bottleneck. In other words, we must compute Di for each device in the system.
Let us assume that Dj = Max{D1, D2, ..., Dj , ..., Dn}; device j is the bottleneck.

ACME+: An ADL for Quantitative Analysis of Quality Attributes 27

In order to make these results into practice, our tool, automatically computes the de-
mand property of each component and connector defined by the constituents properties:

D =
(C.thruPut× C.procT ime)

System.Throughput
(32)

Then it picks up the device having the maximum value of D. There are several ways
to deal with a bottleneck component: speed it up or reduce its demand in the system.
After applying one of these options, we can re-compute the new quality attributes of
the software and compare the improvements that will result. The main advantage of
quality attributes analysis at architectural level is to detect such problems at an early
stage. Since considering such changes at a late stage can be expense, difficult or even
unfeasible.

5 An Automated Tool for Architecture Analysis

We have developed an automated tool that analyzes architectures according to the pat-
tern discussed in this paper. This tool uses a compiler to map the architecture written
in ACME+ onto Mathematica equations, then it invokes Mathematica to analyze and
solve the resulting system of equations.

– We have defined an attribute grammar on top of ACME’s syntax, which assigns
attributes such as response time, throughput, failure probability to all the ports and
all the roles of the architecture.

– We define semantic rules in the form of equations that involve these attributes and
component/connector properties, and attach them to various BNF reductions of the
syntax of ACME+.

– We have used compiler generation technology to generate a compiler for ACME+
language.

The tool takes as an input a file containing a given system architecture description writ-
ten in our enriched ACME+ syntax. The compiler then translates this file into mathe-
matical equations that characterize the system’s non-functional attributes. Then, the tool
invokes Mathematica to compute actual values of the system’s attributes or to highlight
functional dependencies between the attributes of the system and the attributes of the
system’s components and connectors. The equations are solved symbolically or numer-
ically, depending on the goal of our analysis:

– Symbolically, by keeping component properties and connector properties unspeci-
fied, and having Mathematica produce an expression of the overall system attributes
as a function of the component and connector properties.

– Numerically, by assigning actual values to component properties and connector
properties and having Mathematica produce numerical values for the overall
system.

In its current version, the compiler generates equations pertaining to response time,
throughput and failure probability; each of these attributes corresponds to a tab in the
GUI. Once we select a tab, we can perform the following operations:

28 I. Derbel, L.L. Jilani, and A. Mili

– Compute the system level attribute as a function of component level properties.
The GUI does so by merely solving the system of equations for the unknown
Sink.inPort.AT , for attribute AT (where AT is the attribute identified by the
selected tab). When a tab is selected, the GUI posts this value automatically.

– The GUI allows the user to update the value of a property of a component or con-
nector, and will re-compute and post the updated value of the selected system level
attribute.

– Once a tab is selected, the GUI also generates, and posts in a special purpose win-
dow, the symbolic expression of the corresponding attribute as a function of rele-
vant properties of components and connectors.

– To enable a user to assess the sensitivity of the system level attribute with respect
to component or connector level properties, the GUI shows a curve that plots the
system level attribute on the Y axis and the component level property on the X
axis.

– Finally, for some attributes [10], the GUI can also identify the component or con-
nector that is the bottleneck of system performance for the selected attribute. Once
the bottleneck of the architecture is identified, the user can change the value of its
relevant property and check for the new (possibly distinct) bottleneck.

After analyzing the ACME+ description of Aegis system, the tool displays component
and connector properties. It then invokes Mathematica in order to obtain symbolic and
numeric values of system’s properties and makes the results visible to the user. Based
on the numeric results, the user may make modifications on component’s or connector’s
properties and rerun the tool in order to obtain new system properties after changes.
He repeats the process until an acceptable result is found. The performance analysis
tool can be rerun as component’s or connector’s properties are modified, providing the
user with incrementally improving feedback. The tool allows also the determination
of component or connector bottleneck. In our example of Aegis system, Trackserver
component has the largest value demand and consequently, it is defined as the through-
put bottleneck component. If the user wants to increase the throughput of the overall
system, he can increase the throughput of Trackserver component in order to max-
imize the overall impact. After introducing changes in the architecture, the user can
re-compute the new quality attributes of the software and compare the improvements
that will result. A demonstration of our tool can be downloaded from the following
address: http://web.njit.edu/ mili/granada.exe.

6 Related Work

Over the past decade there has been considerable research devoted to modeling and
analysis of software architectures. These approaches fall on two groups: qualitative and
quantitative analysis.

6.1 Qualitative Analysis

Qualitative analysis approaches aims at making sure that the system has the expected
properties, such as the lack of system crash, termination, reaching a specific state, etc.

ACME+: An ADL for Quantitative Analysis of Quality Attributes 29

In this context, several ADLs, like Darwin and PADL, relied on specific formal nota-
tion of process algebra to represent the architecture of a system and verify behavioral
properties of its constituents. For example, Tracta [15] approach has been developed for
the architecture described in the ADL Darwin. It describes the components in an alge-
braic notation FSP (Finite State Processes) process and allows the analysis of properties
such as safety. Also, PADL [1,2] allows the analysis of deadlock, based on the classical
process algebra.

6.2 Quantitative Analysis

Quantitative analysis aims to calculate the values of measurable properties of a sys-
tem. All approaches have focused on the analysis of performance property and few
others have chosen to analyze the reliability of systems. Several approaches have been
proposed in this framework. Some have chosen to formally analyze systems at the ar-
chitectural level, others process informally.

Formal Analysis. These approaches use mathematical proofs and methods for eval-
uating mainly operational quality attributes such as performance and reliability. They
proceed in two steps: a modeling step aiming to the abstraction of a system to a model
and an analysis step in which the genarated model is used to evaluate the desired qual-
ity attributes. Different formalisms were used for the modeling and evaluation of non-
functional properties of a system: the Control Flow Graph (CFG), the Markov Process
(MP), queuing networks (QN) and Stochastic Process algebra (SPA). These models can
be used independently or they can be combined. Let’s take the example of the tool pro-
posed by Garlan et al. [27] which is based on Acme ADL and QN model. This tool
transforms an architecture description written with Acme language to QN model. Then
QN [6,14] equations are applied to estimate the system quality attributes.

Informal Analysis. Within the framework of informal analysis, several methods have
been proposed for evaluating software architectures quality attributes. These methods
can be categorized as either being experience-based, simulation-based, or scenario-
based [23].

Experience-Based Evaluations. These approaches rely on the previous experience and
domain knowledge of developers. Based on their previous experience, people who have
encountered the requirements of the software system before can say if software architec-
ture will be good enough. All experience-based approaches suffer from the deficiency
that they rely on the presence of stakeholders and on a subjective analysis of quality
attributes. Examples of methods in this group are ABAS [22], EBAE [24].

Scenario-Based Evaluations. These approaches try to evaluate a particular quality at-
tribute by creating a scenario profile that forces a very concrete description of the qual-
ity requirement. A Scenario is brief description of a single interaction of a stakeholder
with a system that expresses a particular quality attribute. Scenario-based evaluation
methods require presence of relevant stakeholders to elicit scenarios according to their
requirements. Important scenarios may be missed and therefore the evaluation fails to
uncover risks and critical issues in software architectures. Examples of methods in this
group are ATAM [24], SAAM [20], etc.

30 I. Derbel, L.L. Jilani, and A. Mili

Simulation-Based Evaluations. These approaches rely on a high level implementation
of some or all of the components in the software architecture. The simulation can then
be used to evaluate quality requirements such as performance and correctness of the
architecture. Examples of methods in this group are SAM [28], RARE/ARCADE [4].
Our work can be characterized by the following attributes, which set it apart from other
work on architectural analysis.

– It is based on a relatively simple and generic architectural ontology,
– It is not restricted to only one quality attribute, but it proposes the analysis of many

qualities: performance, reliability, availability and maintainability,
– It identifies bottleneck components or connectors and therefore helps in studying

performance improvements,
– It is supported by an automated tool.

7 Conclusions and Future Work

In this paper, we discuss the need to develop an automated tool to analyze software
architectures written in a formal ADL. Also, we propose ACME+ as an extension of
ACME ADL, and discuss the development and operation of a compiler that compiles
architectures written in this language to generate equations that characterize non func-
tional attributes of software architectures. A demo of the tool that we developed, which
includes the compiler and the user interface, is available online at: http://web.njit.edu/
∼mili/granada.exe. The work discussed in this paper is no more than a proof of concept
to the effect that it is possible to reason automatically about non functional attributes of
software architectures, given sufficient architectural information and component/ con-
nector attributes. Our work focuses in pipes and filters architectural style and can be
extended to other ones such as Client/Server which we are currently studying. In pipes
and filters style, each component is characterized by only one functional dependency
relation. We expect that analyzing systems in other architectural styles needs to define
components with multiple functional dependency relation. Lets take the example of
client/server style, if we consider the mini-architecture which contains three interact-
ing components: a web server, a web client, and a database. We assume that the client
makes requests to the server and receives responses from it. The server makes requests
to the database in the process of filling the client’s request. In ACME+ architectural
description of the server component, we need to express two functional dependency
relations. The first relation concerns the generation of a request to the database, the
second one concerns the generation of a response to the client. Each relation describes
an interaction between an input port, an output port and is characterized by a distinct
quality attribute value. For example, the processing time of the first relation differs from
the processing time of the second relation.

We believe that analyzing many other styles would be amenable to make the in-
ductive rules more flexible and more generally applicable, by replacing the current in-
ductive equations with inequalities, and replacing the current equation resolution by
function optimization.

Dobrica and Niemela [8] suggest that the evaluation must be made against several
quality attributes, which allows a better understanding of the weaknesses and strengths

ACME+: An ADL for Quantitative Analysis of Quality Attributes 31

of complex systems developed. We have also noted that most evaluation methods only
address one quality attribute, and very few can evaluate several quality attributes si-
multaneously in the same method [23]. Concurrently, we have added to response
time, throughput, failure probability, the following quality attributes: maintainability
and availability and we envision to extend our work to analyse other non functional
attributes.

References

1. Aldini, A., Bernardo, M.: On the usability of process algebra: An architectural view. Theo-
retical Computer Science 335(2-3), 281–329 (2005)

2. Aldini, A., Bernardo, M., Corradini, F.: A process Algebraic Approach to Software Archi-
tecture Design. Springer (2010)

3. Allen, R.J.: A formal approach to software architecture. Ph.D. Thesis, CMU (1997)
4. Barber, K.S., Graser, T., Holt, J.: Enabling iterative software architecture derivation using

early non-functional property evaluation. In: Proc. 17th IEEE International Conference on
Automated Software Engineering, pp. 23–27 (2002)

5. Bonta, E.: Automatic code generation: From process algebraic architectural descriptions
to multithreaded java programs. Ph.D. in Computer Science University of Bologna, Padua
(2008)

6. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture: On Pat-
terns and Pattern Languages. John Wiley Sons (2007)

7. Denning, P., Buzen, J.: Operational Analysis of queueing network models. ACM Computer
Surveys 10, 225–261 (1978)

8. Dobrica, L., Niemela, E.: A survey on software architecture analysis methods. IEEE Trans-
actions on Software Engineering 28(7) (2002)

9. Frakes, W., Kang, K.: Software reuse research: Status and future. IEEE Transactions on Soft-
ware Engineering 31(7) (2007)

10. Franks, G., Hubbard, A., Majumdar, S., Petriu, D., Rolia, J., Woodside, C.: A toolset for
performance engineering and software design of clientserver systems. IEEE Transactions on
Software Engineering 24(1-2), 117–136 (1995)

11. Garlan, D., Allen, R., Ockerbloom, J.: Exploiting style in architectural design environments.
In: Proceedings of SIGSOFT 1994: Foundations of Software Engineering (1994)

12. Garlan, D., Monroe, R.T., Wile, D.: Acme: An architecture description interchange language.
In: CASCON 1997, Toronto, Ontario, pp. 169–183 (1997)

13. Garlan, D., Schmerl, B.: Architecture-driven modelling and analysis. In: SCS 2006 Proceed-
ings of the Eleventh Australian Workshop on Safety Critical Systems and Software, p. 69
(2006)

14. Garlan, D., Shaw, M.: An introduction to software architecture: Perspectives on an emerging
discipline. Prentice Hall (1996)

15. Giannakopoulou, D., Kramer, J., Cheung, S.C.: Behaviour analysis of distributed systems
using the tracta approach. In: Proc. 17th IEEE International Conference on Automated Soft-
ware Engineering, p. 735 (1999)

16. Kazman, R., Bass, L., Abowd, G., Webb, M.: Saam: A method for analyzing the properties
of software architectures. In: Proc. 16th International Conference of Software Engineering
(1994)

17. Klein, M.H., Kazman, R., Bass, L., Carriere, J., Barbacci, M., Lipson, H.: Attribute-based
architecture styles. In: Proc. TC2 First Working IFIP Conference on Software Architecture
(WICSA1), pp. 225–244 (1999)

32 I. Derbel, L.L. Jilani, and A. Mili

18. Bass, L., Clements, P., Software Architecture, R.K.: Software Architecture in Practice.
Addison-Wesley (2003)

19. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.: Specification
and analysis of system architecture using rapide. IEEE Trans. Software Eng. (2000)

20. Maurya, L.S., Hora, H.: Comparison of software architecture evaluation methods for soft-
ware quality attributes. Journal of Global Research in Computer Science 1(4) (2010)

21. Medvidovic, N., Oreizy, P., Robbins, J.E., Taylor, R.N.: Using object-orlenfcd typing to sup-
port architectural design in the c2 style. In: Proceedings of ACM SlGSOFT 1996. Fourth
Symposium on the Foundations of Software Engineering (FSE4), pp. 24–32 (October 1996)

22. Moriconi, M., Qian, X.: Riemenschneider, R. A.: Correct architecture refinement. IEEE
Transactions on Sofrware Engineering, 356–372 (April 1995)

23. Maurya, L.S., Hora, H.: Comparison of software architecture evaluation methods for soft-
ware quality attributes. Journal of Global Research in Computer Science 4(1) (November
2010)

24. Balsamo, S., Bernardo, M., Simeoni, M.: Performance evaluation at the software architec-
ture level. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 207–258.
Springer, Heidelberg (2003)

25. Schmerl, B., Garlan, D.: Acmestudio: Supporting style centered architecture development.
In: Proceedings of the 26th International Conference on Software Engineering (2004)

26. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zclesnik, G.: Abstractions for
software architecture and tools to support them. IEEE Transactions on Software Engineering,
314–335 (April 1995)

27. Spitznagel, B., Garlan, D.: Architecture-based performance analysis. In: Proceedings of the
Conference on Software Engineering and Knowledge Engineering, CA (1998)

28. Wang, J., He, X., Deng, Y.: Introducing software architecture specification and analysis in
sam through an example. Information and Software Technology, 451–467 (May 1999)

An Experiment on Self-configuring Database Queries

Pietu Pohjalainen

Department of Computer Science,University of Helsinki, Finland
pietu.pohjalainen@cs.helsinki.fi

http://www.cs.helsinki.fi/

Abstract. Database access is in the core of many software systems. When build-
ing an object-oriented system with a relational backend, a common approach is
to use an object-to-relational mapping component to make the relational database
oblivious to the application programmer.

Self-configuring database queries is a way to reduce the effect of internal de-
pendencies within a software. To assess its usability, we organized a randomized,
controlled study for software engineering students, who were given a number of
maintenance tasks on a sample software with two versions: the first one using
transparent persistency as a control group and the second using self-configuring
queries.

Although the attendees in both groups used equal time in completing the
tasks, it turned out that the group using self-configuring queries outperformed
the control group in code quality by a factor of three. This gives us evidence to
believe that self-configuration in a software’s architecture can be beneficial for
maintainability.

Keywords: Relational Databases, Self-configuring Software Architecture, Ran-
domized Experiment, Controlled Experiment.

1 Introduction

Relational databases are used for storing data in virtually all kinds of information sys-
tems. Telephone switching systems, e-commerce transaction systems, human resources
information systems and e-mail indexing systems, for example, have implemented data
persistency by relying on relational database engines. Although these engines often
include some support for building application logic into them, it is popular to build
applications using a general purpose language, such as Java or C#.

In these cases the way in which the relational database is used is a major architectural
decision. Using plain database interfaces, such as Java’s database connectivity interface
[1] easily leads to tedious work of manually implementing routines for storing and re-
trieving data to and from the database. Some researchers estimate that the low-level
code for accessing a database can be up to 30% of the total line count of a normal
business application written in direct access style [2,3]. Manual labour is known to be
error-prone and have low productivity figures. For this reason, many architects choose
to use object-to-relational mapping components, such as those defined by the Java per-
sistency interface [4] to handle the mismatch between object-oriented program logic
and relational database models.

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 33–47, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

34 P. Pohjalainen

Object-to-relational mapping (ORM) components aim to reduce the manual labour
needed in building object-oriented database applications. Instead of manually defining
database queries for retrieving application data, an external component handles the gen-
eration of the needed queries. This is done by defining mappings between application
objects and database tables. These mappings define how object-oriented structures, such
as inheritance, object collections, and other object links should be made persistent in
the database. The goal of this component is to liberate the object-oriented programmer
from thinking at a relational database abstraction level. For this, the we use the term
transparent persistency.

Transparent persistency refers to the idea of data persistency should not affect the
way programmers build the application logic. Instead, persistency should be a modular
aspect, as envisioned in aspect-oriented programming [5]. At first glance, this seems to
be a clever idea: in many cases, the routines needed for storing and retrieving data from
the database makes algorithms look unnecessarily complex and cluttered.

However, the drawback of the approach is that the exact workings of the software
system are blurred, since the database accessing code is faded away from the working
view of the programmer. Since transparent persistency removes the link between algo-
rithms using the data from the database and the accessing code, programmers who are
not intimately familiar with the system may conceive an incorrect understanding of the
system.

Self-configuring components are a recently introduced novel approach to building
links between different software layers. The idea is to recognize automatically resolv-
able dependencies within the codebase, and to implement corresponding resolver
components. This helps in maintenance, since instead of the programmer manually fol-
lowing all the dependencies in the event of a functionality change, the automated com-
ponent does the task. Examples have been implemented in areas of building
consistent user interfaces [6] and database queries [7].

Currently, it is not very well known how these architectural decision affect program-
mer performance. To gain understanding on what works in practice, empirical validation
is needed. To better understand the effect of transparent persistency’s consequence for
maintenance, we have formulated the following research questions regarding develop-
ment speed and quality:

An initial hypothesis for introducing configuring component that is based on meta-
programming on byte-code level would suggest that at least initially it would be harder
and slower to produce correctly working code. Probably after a run-in period, the pro-
grammers involved would learn to understand the workings and responsibilities of the
meta-programming component. This leads us to formulate a null hypothesis:

RQ1: Do self-configuring components make it faster to perform maintenance tasks?
RQ2: Do self-configuring components produce better quality in maintenance tasks?
RQ3: Do self-configuring components make programmers more productive?
To gain initial insight in these questions, we conducted a randomized, controlled ex-

periment on using Java persistency interface for database queries. In this experiment, the
attending students were randomly divided into two groups: the transparent persistency
group as the control group and the self-configuring database queries as the experimental
treatment group. Attendees were given slightly modified versions of the same software

An Experiment on Self-configuring Database Queries 35

and were asked to perform given maintenance tasks upon the software. We tracked the
time for performing the asked modifications. Each submission was afterwards graded
for correctness. Productivity is defined as a ratio of the number of correct submissions
per hour used on the tasks.

The rest of the paper is organized as follows. Section 2 gives a short introduction to
self-configuring software components, object-to-relational mappings and implementa-
tion techniques used in the presented experiment. Section 3 defines the used research
methodology. Section 4 shows results obtained in the experiment. Section 5 discusses
these findings. Section 6 concludes the paper and outlines future work.

2 Preliminaries

In this section we first review the object-to-relational approach to using databases in
object-oriented programs. We then introduce self-configuring queries in the context of
the example used in the experiment. Object-to-relational mapping components are com-
monly used to allow developers concentrate to code within one paradigm. The idea is
that special mappings are used to translate an object’s persistent fields into correspond-
ing relational database concepts.

These mappings provide a placeholder for defining handling rules for issues rising
from the mismatch between object and relational paradigms. Examples of these prob-
lems are e.g. the problem of handling inheritance, navigability of one-way object links
versus bi-directionality of relational links, and representation of object collections, to
name a few. The mapping also provides a place for defining the fetching rules for cer-
tain object classes. This is often a major source of performance problems in applications
using the object-to-relational approach for persistency.

Title: String
Author: String
ISBN: String

Book Title

BookIdentifier: Int
Book

*1
 < is instance

Fig. 1. One-to-many mapping in the experiment application

The fundamental problem in using default rules in database fetches is that most often
the set of data objects being fetched from the database is context sensitive. For example,
let us consider a fragment of our experiment’s class diagram that is presented in Figure
1. The model shows a one-to-many connection between a book title and a number of
books. The idea is to show that for each book title, its author name and ISBN number
are stored only once; and for each book copy, there’s a distinct object in the system.

With this simple example, we can see two use cases with different database queries.
These cases are implemented as shown in Table 1: the first one lists all book titles and
fetches only objects of the BookTitle class. The second also lists all book copies and
thus touches objects of both classes in the system.

Given these two use cases, using some fixed fetching rule for the BookTitle class is
always somehow wrong: if the default rule is to eagerly fetch Books with its BookTitle,

36 P. Pohjalainen

Table 1. Algorithms for listing all book titles and book copies

procedure PRINTTITLES(List allTitles)
for all title in allT itles do

print title.Author
print ": "
println title.Title

end for
end procedure

procedure PRINTBOOKS(List allTitles)
for all title in allT itles do

print title.Author
print ": "
println title.Title
cnt ← 0
for all book in title.Books do

println book.BookIdentifier
cnt ← cnt+ 1

end for
println cnt + ” copies.”

end for
end procedure

then the execution of PrintTitles method is unnecessarily slow, since the algorithm does
not need all that information. However, if the default rule is not to fetch associated
books with their titles, then method PrintBooks cannot be executed unless the default
rule is overridden or some other internal magic is performed.

A common approach in this case is to use the Proxy design pattern [8] to guard
against cases where the algorithm is requiring some object data that is not fetched from
the database. The proxy represents the object’s external interface, and upon usage of
the object data, it generates the necessary database queries needed to lazily retrieve that
data from the database [9].

This is a way to implement transparent persistency: all algorithms can be written
in an object-oriented language, and it is the responsibility of the object-to-relational
mapping component to provide the implementation for relational database queries.

The downside of this approach is that it is easy to implement inefficient algorithms, as
the proxying approach queries the database only at when a certain object is first accessed.
This creates the n+1 queries problem, which happens when traversing collections of
objects. The first query to the database fetches the root object. For each object link in
the root object that is being accessed by the traversal algorithm, a new query is generated.
Due to n+1 round-trip queries to the database, performance usually severely degrades.

For this reason, the object-to-relational mapping frameworks provide means to ex-
plicitly specify a query for fetching an initial data set. However, this approach is ar-
guably an inelegant solution, since it breaks the promise of transparent persistency
and generates dependencies between the explicitly specified query sites and actual data
usage sites.

One solution to provide more precise control over the fetched data set is to use
self-configuring database queries [7]. In this approach, the software contains a query-
resolved component, which analyzes the code that accesses the database and estimates
the right database query to use. It is claimed that the component improves software
maintainability, since the database usage is made more explicit, yet the dependen-
cies between the data accessing algorithms and data fetching code are automatically
resolved.

To the application programmer, the use of self-configuring database queries is shown
by the need to parametrize database access with the algorithm that the queried data is

An Experiment on Self-configuring Database Queries 37

being subjected upon. In traditional transparent persistency, the programmer fetches an
initial object, e.g. a certain Title from the database and then executes the handling code,
e.g one of the methods in Table 1. With self-configuring queries, instead of providing
an initial guess for the needed data, the programmer gives the name of the algorithm
(PrintBooks in this case) to the self-configuring component. The self-configuring com-
ponent analyzes the behavior of the algorithm and provides an approximation of the
required data for running the algorithm with an optimal number of database queries.

In our implementation, the self-configuring query component analyzes the byte code
of the method in the containing Java class. The configurator builds a control-flow graph
of method execution, and includes database joins to the generated query whenever a
class with object-to-relational mapping is encountered in the control flow. When the
self-configurator component is given the code shown in Table 1, it deduces that a query
set of {book titles, booktitle.books} is needed for executing the method PrintBooks
while a query set of {book titles} suffices for execution of the method PrintTitles.

This approach is believed to give benefits in two ways: improved maintainability
and improved modularity. Maintainability is improved, because the database query site
does not explicitly define what data to fetch from the database, but instead the self-
configuring query determines that. For this reason, the database accessing algorithms
can be changed more easily, since dependence on the database query site is automati-
cally updated to reflect the updated algorithm.

Modularity is improved because the one self-configuring component can handle a
number of different usage sites. This is an improvement of the traditional n-tiered soft-
ware architecture, where the database access layer needs to contain functionality spe-
cific to business logic. In the context of this experiment, the traditional way would be to
implement one database query that fetches all book titles for executing method PrintTi-
tles and another query that joins all the book titles with the books for running method
PrintBooks.

3 Methodology

To gain understanding on how this approach works in practice, we recruited a sample of
16 students to attend a randomized, controlled experiment. About half of the students
were freshmen (n=10), and the rest were in their final bachelor year or master’s students
(n=6). Before attending the test, a two-hour lecture on concepts of relational databases,
object-oriented programming and object-to-relational mapping tools was given to each
participant.

We built two versions of a simple library book-keeping application. The application
consists of five classes that are programmed to manage book titles, books, lenders and
book loans in a database. Each attendee is randomly assigned to one of the versions,
in which he stays during the whole experiment. The baseline application contains a
functionally working version of the software with the same set of functionality imple-
mented in both of them. For example, both methods listed in Table 1 are contained in
the package given to each test subject.

The first version (group ’transparent persistency, TP’) of the sample application was
written in the style of transparent persistency: the complexity of handling database

38 P. Pohjalainen

queries is hidden behind the persistency framework’s internals, which in this case was to
use bytecode-instrumented proxying implementation of database queries. In the second
version (group ’self-configured, SC’), the application contained method calls to self-
configuring instructions to automatically prefetch the correct objects from the database,
and to rewrite the corresponding fetching query.

In the variant given to the self-configured group, the database access is not fully ob-
scured away. The database access component is parametrized with the actual algorithm
that is going to be executed. The component analyzes the algorithm and produces the
database query to be used at the subsequent database access time. This construct helps
to remove dependencies between database access code and the actual algorithms that
are being executed. A change in the algorithm is automatically reflected by the self-
configuring component, thus removing the need to manually update the database query.

The initial application consists of a functionally consistent set of program code. The
test subjects are asked to perform modifications to the sample application; depending
on the skill and speed of the attendee, up to 7 functional tasks can be performed during
the trial. Each task was time-boxed, meaning that the attendee is asked to return his
version even if it is incomplete when the time is up. If an attendee thinks that he/she
cannot be performing any more tasks, he is free to leave at any given point. Attendees
were awarded with credit units or extra points to a course test regardless of how many
tasks they opted to complete during the test. All test subjects were physically present
in the classroom during the experiment. The submission mechanism was to send the
source code for each application version via e-mail after each completed task.

To moderate the application complexity, the sample application was written as a
command-loop tool. In the following code listings we will illustrate the differences
between the two groups’ variants using the following notation: line prefix ”TP” notifies
that this line is present only in the transparent persistency variant. ”SC” lines are present
in the self-configured variant. ”C” lines are common to both of the variants.

Using this notation, the command line loop for the use case of listing all book copies
in the database is implemented as listed in Program 1.

Program 1. Two variants of the list books use case
C: switch(cmd) {
C: [..]
C: case "list books":
SC: String alg="BookTitles.PrintBooks";
SC: Resolver r = new Resolver(alg);
SC: bookTitles.fetchFromDatabase(r);
TP: bookTitles.fetchFromDatabase();
C: bookTitles.printBooks();
C: break;
C: }

As can be seen in the listing, the only difference between the two variants is that
the self-configured version contains a stronger hint of the fact that this command is
accessing the database. The Resolver component is parametrized with the name of the

An Experiment on Self-configuring Database Queries 39

algorithm that is going to be executed subsequently. It is important to note that in the
transparent variant, although the name of the method suggests that the method is going
to access the database, there is no explicit link between the data-fetching code and
the algorithm used to print out the books. Consequences of this omission are further
explored later in the results section.

In the resolver version, the component analyzes the internal workings of the method
that is given as an argument and produces an estimate of what data objects should be
fetched. This gives the maintainer a stronger binding between the data-fetching code
and the algorithm used to process the fetched data.

The fetchFromDatabase routine as listed in Program 2 also differs a bit in the two
variants. The variant for the transparent persistency group creates a database query by
using the object querying language defined in the Java persistency interface. This query
fetches an initial set of book titles from the database. In this variant when the execution
arrives to a book copy that has not yet been fetched from the database, the automatically
generated proxy instance generates a new query to get the missing information.

Program 2. Two variants of database fetching code
SC: void fetchFromDatabase(Resolver r) {
TP: void fetchFromDatabase() {
TP: Query q;
TP: q = createQuery("from BookTitle");
SC: Criteria q = r.resolve();
C:
C: bookTitles.clear();
C: List<BookTitle> list = q.list();
C: for(BookTitle bt : list)
C: bookTitles.add(bt);
C: }

In the self-configuring variant, the method name implementing the command is given
as an argument to the resolver component. The resolver analyzes the code of the algo-
rithm and initiates a database query to fetch the required data. If the resolver happens to
underestimate the required set of objects, the normal proxy-based fallback is used as a
safeguard. At this point, it is important to note that the self-configured version does not
contain the matching between database and business logic, but instead it operates in the
business logic domain.

The essential difference between the two variants is the degree of how explicit the
database query is. In the transparent persistency variant, the database access code is
minimized, with the design goal of reducing the mental load of the programmer, as he
should not be worrying about how to access a database. This can also be misleading,
since there is no hint of the mechanism of how the persistency framework should be
used. In the control group variant, the database accessing is more explicit, since the al-
gorithm calling site generates the database query component before actually executing
the query.

Armed with the initial example cases shown in Table 1 given to the test subjects,
they are asked to implement a number of maintenance tasks to the software. All of the

40 P. Pohjalainen

tasks follow the same pattern: fetch some data from the database and then print out
information. Task 0, which was to change the source code character set to UTF-8, was
not graded. It was used to give the attendees an opportunity to gain understanding of the
sample application and to practice the submission procedure. The tasks are summarized
below:

Identifier Task description
Task 0 Fix source code charset (not graded, used to practice the submission proce-

dure)
Task 1 List all book loaners in the system
Task 2 List all book loans in the system
Task 3 Fetch specific book title by its ISBN
Task 4 Modify task 3 result to print out all books associated with the given title
Task 5 Fetch specific lender by his social security number
Task 6 Modify task 5 result to print out all books borrowed by this lender
Task 7 Modify the list of book titles to print out all lent books associated with that

title

The tasks list contains maintenance tasks that can be classified as adaptive mainte-
nance in IEEE Std 14764-2006 terms [10]. Each of the tasks delivers an added func-
tionality that is requested to make the sample software able to be a better fit for its task
of handling a database of library books. Each of the tasks are implementable without
inducing new requirements or other needs for architectural changes.

4 Results

We graded each submission based on correctness on a dichotomous scale: a correct
submission to a given task is programmed to connect to the database, fetch certain data,
and print out corresponding results. Minor stylistic problems, such as output formatting
did not affect the grading.

In the freshmen group, the assignments were generally considered to be hard. This is
understandable, since outside the persistency code, the implementation followed object-
oriented principles in both versions. However, even in this group, some test subjects
succeeded in getting some of the tasks submitted correctly.

The second problem to occur frequently among all test subjects was the failure to
fetch the database correctly. Often the modified application seemed to work perfectly,
but an underlying problem (”a bug”) was introduced by accidentally re-using the appli-
cations internal data instead of targeting the query to the database. This problem was
most often seen in the transparent persistency group. We believe this to be the con-
sequence of the interface between business logic and database access code. Since the
business logic explicitly defines only the initial object of the processed object graph,
thus making all other database access translucent, the students often failed to correctly
handle the cached versions of the objects. Other programming errors included various
incorrect structures, such as null pointer exceptions, cache-handling errors etc. Each of
these were unique to the given submission.

An Experiment on Self-configuring Database Queries 41

For each test subject, we noted the state of his studies (freshman/advanced), random-
ization group (transparent persistency / self-configured), time spent on each submission
(rounded to next 5 minutes) and the correctness of the submission.

To study the productivity between the two approaches, we measured the time for
producing a submission to all given tasks. However, we are analysing this information
in the advanced group only. The test subjects in the freshmen group are omitted due to
their submissions having such low success rate; there is only one pair of submissions
where two test subjects belonging to different randomization groups have been able
to produce a correct submission to the corresponding task (test subjects #7 and #8 for
task 3).

In the advanced students’ group, there was one case, where the test subject had to
leave early due to a medical condition before he was able to send a single submission.
He was randomized to the self-configuring. Due to the nature of that situation, his results
are not included in the analysis. Outside this case, no test subject left the experiment
prematurely.

Subject # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Study state FM FM FM FM FM FM FM FM FM FM MS MS MS MS MS MS
Randomization SC TP TP SC SC TP SC TP SC TP SC SC TP SC TP TP
Success rate 0/2 0/2 0/1 1/2 1/3 0/3 2/3 1/3 0/3 0/3 7/7 5/7 4/6 7/7 0/5 0/3

Fig. 2. Summary of the results

Figure 2 summarizes the experiment results. Study state refers either to a freshman
(FM) or master’s student (MS). Randomization group is either transparent persistency
(TP) or self-configuring queries (SC). In success rate (x/y) x marks the number of
correct submissions and y measures the number of attempted tasks.

4.1 RQ1

Given this information, we can return to our research questions. RQ1 proposes that
self-configuring queries make it faster to perform maintenance tasks. According to Fig-
ure 2, the test subjects in the transparent persistency group returned a total number of
27 submissions, be they correct or incorrect. The test subjects in the self-configured
group returned 33 submissions. There are an equal number of subjects in each of the
randomization groups, and the maximum allowed time was the same for everybody.

The self-configuring turned in more submissions, but the difference between the two
groups is small. From this viewpoint, we cannot support the idea of transparent persis-
tency making the completion of these maintenance tasks faster, but the self-configured
group does not get a decisive victory, either.

4.2 RQ2

Figure 3 summarizes the frequency of correct submissions. For example, two atten-
dees in the self-configured group got zero submissions correct and six attendees in the
transparent persistency group got zero submission correct.

42 P. Pohjalainen

Fig. 3. Count of correct submissions for both groups

The grading distribution in Figure 3 leads us to formulate the null hypothesis for
RQ2:

H0: Transparent persistency makes it easier to produce correct database han-
dling code than self-configuring queries.

When the test data is normally distributed, a parametrized test should be used to
determine differences between populations. Otherwise, a non-parametric test should be
used [11, p. 450-452]. Our data is based on human behavior, and could be believed to
be normally distributed. However, the results look like a non-normal distribution. For
this reason, we calculated both parametric and non-parametric statistical tests.

Both the one-tailed independent samples t-test and Mann-Whitney U test result a
p-value of α < 0.05, giving a suggestion that the null hypothesis needs to be re-
jected. Informally, the self-configured group was performing much better than the trans-
parent persistency group: two attendees who got assigned the self-configuring, query
rewriting-based base software got all seven graded tasks implemented correctly. On the
other hand, six attendees using the traditional transparent persistency failed to produce
a single correct submission.

4.3 RQ3

Finally, as a measure of productivity, we consider the time consumed in programming
tasks in the non-freshmen group. The times for producing a correct submission (n=23)
varied between 5 and 55 minutes. There was no statistically significant difference in
time consumed between the two groups.

An Experiment on Self-configuring Database Queries 43

As the number of correctly returned submission series is low, statistical analysis of
these series would not serve a purpose. As a reference information, when ordering the
correct by-task submissions as a speed contest, all test subjects in the self-configured
group were producing submissions faster, on average.

Productivity was defined as the number of correct submissions per time consumed.

Thus, for each individual we calculate his productivity index as

7∑
i=1

timei

7∑
i=1

corri

where the

variable timei refers to the time for producing the answer for task i and corri is 1 for
a correct answer and 0 for an incorrect answer in task i. This formula slightly favors
the productivity of incorrect answers, since the time needed to rework an incorrectly
piece of software, as would happen in a real-world software development situation, is
not included in this productivity index.

Applying this formula to the test subjects in the advanced group yields a productivity
index of 105 minutes per correct task submission in the transparent persistency group.
For the self-configured group, the index stands at 24 minutes.

For producing correctly working code, the self-configured group outperformed the
transparent persistency group by a factor of four.

4.4 Threats to Validity

We have found a statistically significant effect between two alternative ways of querying
a database in an object-oriented program. However, a number of threats to the validity
of this finding do exist.

In general, a controlled experiment like this differentiates from industrial use in the
scope of time that can be spent in understanding the associated technologies. In an in-
dustrial setting, programmers usually work with the same technology stack for months
or years. In this study, some of the test subjects were exposed to the technologies for
the first time. However, some of this concern can be argued to be mitigated by the ran-
domization process; these technologies can be assumed to be equally unknown to both
groups. A related problem is the small size of the software used in the experiment. It
might be the case that the complexity of transparent persistency pays off only after a
certain software size has been achieved.

Another concern is that using students in controlled experiments limits the generaliz-
ability of results to a industrial setting. However, previous studies, e.g. [12] have found a
high correspondence between (1) undergraduate and junior programmers; and (2) grad-
uate and senior programmers in terms of understanding object-oriented programming,
which can be interpreted to mean that at least half of the experiment population were
up to industrial standards. This distribution of attendees is probably not fully unrealis-
tic, since companies often use junior programmers to perform maintenance tasks [13].
Another interpretation of our work is that the finding in [12] is probably valid: the ad-
vanced group in our study was able to grasp the functionality of the object-oriented
system, while the freshmen group clearly had problems understanding it.

44 P. Pohjalainen

Our third concern is the the sample size, which is small. We conducted this study on
17 students, of whom 10 were in their first year, and 7 students were more advanced.
Since one student in the advanced group was excluded from the experiment due to a
medical condition, the total number of test subjects is 16. Due to the small sample size,
individual performance shows a large role in our statistical analysis.

Our fourth concern regards the use of number of submissions as productivity mea-
sure. Most of the tasks are equidistant in substance in the sense that for most tasks, the
task n is not dependent on whether he succeeds in n+1. For tasks T 4 and T 6 there is a
dependency to the previous task. This dependency plays some role for subjects #12 and
#13. Subject #12 failed in task T3, but was able to fix the problem in T4 submission.
He also got task T5 correct but failed his task T6. The latter dependency is present for
subject #13 as well.

5 Discussion and Related Work

The use of transparent persistency for storing objects is not a new idea. A number of
systems for various languages and programming environments have been described in
the literature; [2,14,3], to name a few.

Similarly to the self-configured queries, researchers have used the program source as
a source model for model transformations in various contexts. For example when build-
ing portable interpreters, the opcode definitions can be implemented in the interpreter
implementation language. When the definition is compiled, the end result, in byte code
or other low-level representation can be used as a building block when interpreting the
opcode in question [15,16].

Using program analysis for extracting database queries has been proposed by various
researchers. We used the component documented in previous work [7], using the same
object-to-relational mapping framework, Hibernate [3]. In addition to this style, Ibrahim
and Cook have proposed a dynamically optimizing query extractor [17]. Wiedermann
et. al have implemented a version which combines static and dynamic techniques [18].
In the simple examples used in this experiment, a simple analyzer was able to deduce the
required queries. However, when the business logic involves more complex decisions,
the automated self-configuring component needs to be updated to be able to handle the
more complex case. In a way, the situation resembles the full-employment theorem of
compiler writers [19]: since the business logic can be arbitrarily complex, the evolution
for implementations of automated resolvers are restricted by laws of economics rather
than some self-configurator being optimal to every case.

Although various systems for implementing transparent persistency have been avail-
able for decades, it seems that its actual usage patterns have not been studied very
well. This implementation was initially employed in an industrial project for building a
product-line for provisioning governmental mobile subscriptions [20], where the need
for modular constructs was critical to development success and transparent persistency
turned out to lack the support for efficient modularity. Piccioni et al. have studied the
usability of their database access library by use of structured interviews and controlled
experiments [21]. However, according to our best knowledge, comparisons of the effect
of transparent persistency versus any alternative have not been empirically studied so

An Experiment on Self-configuring Database Queries 45

far. Considering the fact that transparent persistency is a frequently employed technique
in industrial software engineering, the lack of empirical studies is a surprise.

The use of orthogonal, transparent persistency can be seen as a specialized case of
modularizing orthogonal features. To relate our findings, we can refer to literature on
empirical studies of aspect-oriented programming [5]. We can consider transparent per-
sistency to be one of the cross-cutting aspects of the software.

The empirical response to productivity in aspect-oriented programming seems to be
mixed. For example, in [22], the researchers were unable to find any positive impact of
using aspect orientation for building maintainable and easier-to-comprehend software.

Kulesza et al. studied the use of aspect-oriented programming for a maintenance task
[23]. They implemented two similar systems, the first one in an object-oriented fashion
and the second one in an aspect-oriented fashion and compared both systems’ internal
metrics, such as size, coupling and cohesion, before and after a specified maintenance
task. Their conclusion is that the aspect-oriented style was superior in terms of ob-
served software characteristics. They did not measure the time spent on producing the
different versions of the software, nor the time spent on implementing the maintenance
tasks. Thus, productivity of the maintenance task cannot be assessed. Contrary to our
study, the person doing the maintenance task was presumably an expert programmer
and familiar with the system being maintained. In our setting we had a sample of ju-
nior programmers performing a series of maintenance tasks on a previously unknown
system.

Endrikat and Hanenberg measured the time for building a system and then perform-
ing a number of adaptive maintenance tasks on a number of test subject [24]. For many
of the tasks, the object-oriented way in the control group was faster, but for combined
build+maintenance time they suggest that aspect orientation can be beneficial.

Another, indirect finding on this study was the poor programming performance in
the freshmen group: most of test subjects in this group were having serious problems
with the experiment. Although they had completed the first programming courses of-
fered by the university and were given a fully functioning system, they failed to perform
even simplest modifications to it. For this reason the university has already adjusted our
first programming courses to use a new studying method based on extreme apprentice-
ship [25]. In future work, it would be interesting to compare how these adjustments
to teaching methodologies have affected freshmen programming skills in maintenance
tasks.

6 Conclusions

We performed a randomized, controlled experiment to assess the usefulness of transpar-
ent persistency. In the experiment we built two versions of a small sample application
and asked a number of test subjects to perform a number of maintenance tasks upon
their software variant.

We measured the time used to do these maintenance tasks and related them to suc-
cessful submission rates. As a result, we concluded that the self-configured group was
performing much better in terms of producing correctly behaving code.

46 P. Pohjalainen

In terms of correctly returned submissions, the self-configured group outperformed
the transparent persistency group by a factor of three. This result is a statistically sig-
nificant difference (p value α < 0.05) between the two populations.

In productivity, the self-configured group outperformed the transparent persistency
group by a factor of four: on average, the self-configured group was able to produce a
correct submission in under half an hour. In the transparent persistency, on average it
took almost two hours to do the same. However, due to the low sample size, we did not
perform any statistical analysis on productivity.

This result casts a shadow of disbelief on the concept of transparent persistency: if
the application is going to access a database, it probably is not a good idea to try to
disguise its functionality to be something else. This disguise seemed to be the main
source of program miscomprehension within the test subjects in the transparent per-
sistency group. However, the small sample application limits the generalizability of
the result. Experiments with larger software and larger populations are needed to un-
derstand the usefulness of transparent persistency for software development. On the
other hand, the result gives an initial empirical validation of the usefulness of using
self-configuring software components to reduce the maintenance effort and to improve
architectural modularity.

References

1. Fisher, M., Ellis, J., Bruce, J.C.: JDBC API Tutorial and Reference, 3rd edn. Pearson Educa-
tion (2003)

2. Atkinson, M.P., Bailey, P.J., Chisholm, K., Cockshott, W.P., Morrison, R.: An approach to
persistent programming. Comput. J. 26, 360–365 (1983)

3. Bauer, C., King, G.: Hibernate in Action (In Action series). Manning Publications Co.,
Greenwich (2004)

4. DeMichiel, L., Keith, M.: JSR 220: Enterprise JavaBeans 3.0. Technical report, Sun Mi-
crosystems (2007)

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Irwin,
J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

6. Pohjalainen, P.: Self-configuring user interface components. In: Proceedings of the 1st Inter-
national Workshop on Semantic Models for Adaptive Interactive Systems, SEMAIS 2010,
pp. 33–37. ACM, New York (2010)

7. Pohjalainen, P., Taina, J.: Self-configuring object-to-relational mapping queries. In: Proceed-
ings of the 6th International Symposium on Principles and Practice of Programming in Java,
PPPJ 2008, pp. 53–59. ACM, New York (2008)

8. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (2002)

10. International Standard - ISO/IEC 14764 IEEE Std 14764-2006 software engineering #2013;
software life cycle processes #2013; maintenance. ISO/IEC 14764:2006 (E) IEEE Std 14764-
2006 Revision of IEEE Std 1219-1998, pp. 1–46 (2006)

11. Robson, C.: Real World Research: A Resource for Users of Social Research Methods in
Applied Settings. John Wiley & Sons (2011)

An Experiment on Self-configuring Database Queries 47

12. Arisholm, E., Sjoberg, D.I.K.: Evaluating the effect of a delegated versus centralized con-
trol style on the maintainability of object-oriented software. IEEE Trans. Softw. Eng. 30,
521–534 (2004)

13. Gorla, N.: Techniques for application software maintenance. Inf. Softw. Technol. 33, 65–73
(1991)

14. Atkinson, M., Morrison, R.: Orthogonally persistent object systems. The VLDB Journal 4,
319–402 (1995)

15. Elliott, C., Finne, S., de Moor, O.: Compiling embedded languages. Journal of Functional
Programming 13 (2003)

16. Yermolovich, A., Gal, A., Franz, M.: Portable execution of legacy binaries on the Java virtual
machine. In: Proceedings of the 6th International Symposium on Principles and Practice of
Programming in Java, PPPJ 2008, pp. 63–72. ACM, New York (2008)

17. Ibrahim, A., Cook, W.R.: Automatic prefetching by traversal profiling in object persistence
architectures. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 50–73. Springer,
Heidelberg (2006)

18. Wiedermann, B., Ibrahim, A., Cook, W.R.: Interprocedural query extraction for transparent
persistence. In: Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented
Programming Systems Languages and Applications, OOPSLA 2008, pp. 19–36. ACM, New
York (2008)

19. Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Trans. Amer.
Math. Soc. 74, 358–366 (1953)

20. Pohjalainen, P.: Bottom-up modeling for a software product line: An experience report on
agile modeling of governmental mobile networks. In: Proceedings of 15th International Soft-
ware Product Line Conference, SPLC 2011, pp. 323–332 (2011)

21. Piccioni, M., Furia, C.A., Meyer, B.: An empirical study of api usability. In: Proceedings of
7th International Symposium on Empirical Software Engineering and Measurement, ESEM
2013 (2013)

22. Bartsch, M., Harrison, R.: An exploratory study of the effect of aspect-oriented programming
on maintainability. Software Quality Control 16, 23–44 (2008)

23. Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., von Staa, A., Lucena, C.: Quantifying
the effects of aspect-oriented programming: A maintenance study. In: Proceedings of 22nd
IEEE International Conference on Software Maintenance, ICSM 2006, pp. 223–233 (2006)

24. Endrikat, S., Hanenberg, S.: Is aspect-oriented programming a rewarding investment into
future code changes? A socio-technical study on development and maintenance time. In:
Proceedings of IEEE 19th International Conference on Program Comprehension, ICPC 2011,
pp. 51–60 (2011)

25. Vihavainen, A., Luukkainen, M.: Results from a three-year transition to the extreme ap-
prenticeship method. In: 2013 IEEE 13th International Conference on Advanced Learning
Technologies (ICALT), pp. 336–340 (2013)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 48–63, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Automated COSMIC-Based Analysis and Consistency
Verification of UML Activity and Component Diagrams

Asma Sellami1, Mariem Haoues1, and Hanêne Ben-Abdallah2

1 University of Sfax, Mir@cl Laboratory, Tunisia
2 FCIT, King Abdulaziz University, K.S.A.

asma.sellami@isimsf.rnu.tn, mariem_haoues@yahoo.fr,
hbenabdallah@kau.edu.sa

Abstract. UML has been established as a de facto standard for modeling soft-
ware. It offers a set of complementary diagram types used to document func-
tional, dynamic and static views of a system. UML diagrams diversification and
their multi-view representation can cause inconsistencies among the diagram
types used to model the system during the different development phases. This
paper presents an automated COSMIC-based approach for checking the consis-
tency between the activity and component diagrams. First, it defines measure-
ment procedures to determine the functional size of both diagrams. Secondly, it
proposes a set of heuristics to ensure the consistency in terms of COSMIC-
FSM. Third, it presents a tool for measuring the functional size of these dia-
grams, and then checking their consistency.

Keywords: Functional Size Measurement, COSMIC-ISO/IEC 19761, UML
Activity Diagram, UML Component Diagram, Consistency Rules.

1 Introduction

Thanks to its various diagram types, UML provides for a multi-view representation of
user functional requirements, system structure, and dynamic behavior. Nonetheless,
the diversity of UML diagram types can introduce inconsistencies among the various
diagrams representing the same system during the various development phases. Evi-
dently, these inconsistencies may lead to errors, high development costs, and poten-
tially software failures. It is therefore vital to have an approach for ensuring the
consistency among the various UML diagrams modeling the same system.

To detect inconsistencies among UML diagrams, several approaches have been
proposed either based on meta-modeling [8], or based on the adoption of formal me-
thods [16]. The first category of approaches examines only the syntactic constraints
among the UML concepts; the second category relies on the semantic constraints
among the UML concepts and requires a certain level of expertise in the formal me-
thod used. In addition, none of them provides for a means both to detect potential
inconsistencies and to estimate functional size attributes of one diagram from another
already elaborated. Such a means can be offered through a measurement method.
In this paper, we illustrate the feasibility of such an approach by using the functional
size of software.

 Automated COSMIC-Based Analysis and Consistency Verification 49

In the software measurement literature, five measurement methods have been rec-
ognized as standards to measure the functional size of software applications: IFPUG
(ISO 20926), MKII (ISO 20968), NESMA (ISO 24750), FiSMA (ISO 29881), and
COSMIC (ISO 19761). The main advantage of the functional size measurement
(FSM) of COSMIC is its ability to quantify software from a user's point of view inde-
pendently of any quality and technical criteria. In addition, compared to other interna-
tional measurement methods, COSMIC is designed to be applicable to any type of
software. These advantages motivated several researchers to investigate the use of
COSMIC to determine the functional size of UML diagrams.

Current proposals to use FSM for UML focused on particular diagrams, e.g., the
use case diagram [15], [11], [4], [3], [5]; the sequence diagram [15], [11], [3], [5]; the
activity diagram [4]; the class diagram [15], [11] and [5]; or the component diagram
[12] and [11]. Except for [15] and recently [12], these proposals treated UML dia-
grams in an isolated way. In addition, the UML Activity Diagram (UML-AD) has not
been explored in detail, despite its importance in representing behavioral aspects of
software. Similarly, the UML Component Diagram (UML-CD) has not been treated
in spite of its advantage in component reuse especially for the development of
complex applications.

This paper has a two-fold contribution. First, it completes our previous work [15]
which focused on the functional size of the UML use case diagram as a reference
measurement for the FSM of the sequence and class diagrams. In this paper, we use
the COSMIC method to measure the functional size of the UML-AD and UML-CD
diagrams. Secondly, it proposes a set of heuristics that provides for both verifying the
consistency of these diagrams in terms of functional size, and estimating a bound on
the functional size of one diagram from a developed diagram. Such an estimate can be
used for instance in a time/effort evaluation process. Furthermore, to avoid any error
prone manual functional size measurement, we propose herein an automated func-
tional size measurement as a tool for analyzing and consistency checking of both
activity and component diagrams.

The remainder of this paper is organized as follows: Section 2 presents an over-
view of the COSMIC method, UML diagrams and existing proposals for COSMIC
FSM of UML diagrams. Section 3 and 4 present, respectively, the proposed mea-
surement procedure required for measuring the functional size of UML-AD and
UML-CD with the proposed heuristics. Section 5 presents a tool that automates our
approach and illustrates it through the "Rice Cooker" case study [6]. Finally, Section
6 summarizes the presented work and outlines some further works.

2 Related Works

2.1 Overview of COSMIC FSM

COSMIC has been accepted as an international standard ISO/IEC 19761 since 2003.
It has been widely used in order to measure the software functional size, which is
derived by quantifying the Functional User Requirements (FUR) [7]. FUR is a sub-set
of the user requirements that explains what the software must do to satisfy user needs.
COSMIC is developed as a generalization of Function Point Analysis [1]. Based on

50 A. Sellami, M. Haoues, and H. Ben-Abdallah

data movements, COSMIC is designed to measure the functional size of real-time
software, business application software, etc.

As illustrated in Fig. 1, COSMIC covers four types of data movements (Entry,
Exit, Read, and Write). The exchange of data across the boundary between users and
software components causes either an Entry data movement type (E: from a
functional user to the functional process), or an Exit data movement type (X: from a
functional process to the functional user). On the other hand, the exchange of data
between storage hardware and software component causes either a Read data
movement type (R: from a persistent storage to the functional process), or a Write
data movement type (W: from a functional process to the persistent storage).

Write

Read Exit

Entry

Fig. 1. COSMIC model of generic software [7]

The COSMIC measurement procedure includes three phases: measurement strate-
gy, mapping, and the measurement. The measurement strategy phase defines the pur-
pose and scope of measurement. In the mapping phase, the documentation of the
software to be measured is analyzed and modeled to the COSMIC generic model.
Finally, the measurement phase includes the application of the numerical assignment
rules, where every data movement is assigned to 1 CFP (Cosmic Function Point). The
software functional size is computed by adding all data movements identified for
every functional process [7].

2.2 Overview of Concepts of UML Diagrams

Activity Diagrams in UML 2. Activity diagrams (UML-AD) are used to represent
the dynamic and the functional aspects of a system under development. UML-AD is
suitable to represent graphically the different scenarios in a use case. Its meta-model
defines the different modeling elements as well as the links between them [14]. In-
formally, an UML-AD can be described as a directed graph of nodes and edges. There
are three types of ActivityNodes: ExecutableNodes, ObjectsNodes, and Control-
Nodes. ActivityNodes are linked by ActivityEdges which can be control flow (linked
to a control node) or object flow (linked to a node object).

To facilitate the mapping between UML-AD and COSMIC concepts, we will adopt
a textual representation in the remainder of this paper. Based on the meta-model of
UML 2 [14], an UML-AD S is defined by the following structure (1st level):

S = <A, P, O, Nc, Fc, Fobj>

 Automated COSMIC-Based Analysis and Consistency Verification 51

where:

• A: a set of system activities (ExecutableNodes)
• P: a set of its partitions (Actors)
• O: all system objects (ObjectNodes)
• Nc: all its control nodes (ControlNodes)
• Fc: all its control flows,
• Fobj: all its object flows.
At the 2nd level, an activity is represented by an UML-AD. Each activity includes a
set of actors (represented by partition) that are responsible to realize a set of actions.
An activity can include one or more pre or post condition, and one or more input or
output parameters. Fig. 2 depicts a textual representation of UML-AD.

Number of activity: <Num of activity>
Activity: < activity name>
Partition: <Partition 1>..<Partition n>
Pre condition:([<Pre_condition 1>]..[<Pre_condition n>])
Post condition:([<Post_condition 1>]..[<Post_condition n>])
Input Parameters:([<Parameter_int 1>..<Parameter_int n>])
Output Parameters:([<Parameter_out 1>..<Parameter_out n>])
Begin: <Num> < action destination >
Body: List of actions
<Num action 1> <Name action> < Partition && [Object]>
([<Parameter_int 1>..<parameter_int n>])
([<Parameter_out 1>..<parameter_out n>])
[<Pre_condition>][<Post_condition>]
...
<Num action n> <Name of action> < Partition && [Object]>
([<Parameter_int 1>..<parameter_int n>])
([<Parameter_out 1>..<parameter_out n>])
[<Pre_condition>][<Post_condition>]
End: <Num> <Name> <source action>

Fig. 2. An UML-AD textual representation (2nd level)

Number of component: <Num of component>
Component: < component name >
--provided Interfaces--
<Interface 1> <name Interface 1>
<Operation 1> <name Operation 1>

([<Pre_condition 1>]..[<Pre_condition n>])
([<Post_condition 1>]..[<Post_condition n>])
([<Parameter_int 1>..<Parameter_int n>])
([<Parameter_out 1>..<Parameter_outn>])

…
<Operation n> <name Operation n>
…
<Interface n> <name Interface n>
--required Interfaces--
<Interface 1> <name Interface 1>
<Operation 1> <name Operation 1>

([<Pre_condition 1>]..[<Pre_condition n>])
([<Post_condition 1>]..[<Post_condition n>])
([<Parameter_int 1>..<Parameter_int n>])
([<Parameter_out 1>..<Parameter_outn>])

…
<Operation n> <name Operation n>
…
<Interface n> <name Interface n>

Fig. 3. An UML-CD textual representation

52 A. Sellami, M. Haoues, and H. Ben-Abdallah

Component Diagrams in UML 2. Component diagrams (UML-CD) are often used
for modeling complex software applications at a higher level of abstraction. An UML-
CD represents the physical components of a system and all their interfaces. According
to the UML-CD meta-model [14], an UML-CD is composed of a set of components
that provide services through their interfaces (provided and required). Each interface
can include a set of operations. Each operation can have one or more pre or post con-
dition, and input or output parameters. Fig. 2 presents a textual representation of
UML-CD.

2.3 COSMIC for UML

Among the researchers that studied the use of COSMIC to measure the functional size
of UML diagrams, Bévo et al. investigated the mapping between concepts of
COSMIC 2.0 and those of UML 1.0 [5]. Their investigation was presented through
the FSM of a building access system modeled with the use case, sequence and class
diagrams. Being presented through an example, it lacked the coverage of some con-
cepts in these diagrams like the triggering event which induces one CFP. This study
reports the issue of how to identify the appropriate UML concepts to represent the
COSMIC functional process, and then the appropriate grain-level of measurement.

Also focussing on the UML use case, sequence and class diagrams, Azzouz et al.
proposed an automated functional size measurement procedure of these diagrams
when developed according to the Rational Unified Process [3]. Their tool, COSMIC-
RUP, is integrated in Rational Rose. It was used to measure the functional size of two
case studies, "Rice Cooker" and "Valve Control". However, the results obtained by
COSMIC-RUP differ by 1 CFP from those obtained by a manual measurement for
each case study. Furthermore, the proposed measurement procedure does not account
for the COSMIC “system layers” concept which is important to identify the functional
processes of a system under measurement.

On the other hand, Berg et al. showed that UML can be used to present FUR at
four levels of refinement: Goal-level requirements, Domain-level requirements,
Product-level requirements, Design-level requirements [4]. In every level, they
assume that particular UML diagrams are used to model the software. In addition,
they showed that the functional size can be determined using measurement methods
such as Function Point Analysis (FPA) and COSMIC-Full Function Points
(COSMIC-FFP) in the third level [4]. In this level, they used the use case diagram,
activity diagram and class diagram. The proposed measurement approach is illustrated
through a case study "The Hotel Case". Despite being the only study treating UML-
AD to model the behavioral view of software, the provided measurement approach
did not investiage several details of UML-AD.

Lavazza et al. studied the functional size measurement of the UML use case,
sequence, and component diagrams by using COSMIC [11]. Similar to the previous
works, their measurement process relies on a mapping of the COSMIC concepts onto
the UML diagram concepts. It was illustrated through the FSM of the "Rice Cooker"
real time software. However, the UML-AD of the "Rice Cooker" was not measured
despite its usefulness in representing system details and interactions between the
system and its actors.

 Automated COSMIC-Based Analysis and Consistency Verification 53

Unlike the above works, Sellami et al. considered that the semantic links among
the various UML diagrams of a system model must be respected in any measurement
process [15]. First, they presented an approach to measure the functional size of the
UML use case diagrams. Then, they propose to use the functional size of the use case
diagram as a reference measurement for the sequence and class diagrams. To
overcome the high level of abstraction of the use case diagrams, the authors used an
intuitive documentation of the use cases proposed by Ali et al. [2]. The produced
measurement can thus be used to verify the consistency of the the use case diagram
with the functional size of the sequence diagrams. The proposed approach was
verified using a business application “ALLOC” [9].

Also exploring the semantic links among UML diagrams, Lind et al. developed a
tool “CompSize” to provide the functional size of the component diagram (UML-CD)
[12]. For this, they extended UML-CD to represent necessary information. However,
their measurement process defines data movements independently of the software
boundary, which may lead to incorrect results.

Table 1. Summary of the proposals mapping COSMIC on UML

COSMIC
concepts

Lind et al.
[12]

Sellami et
al. [15]

Lavazza et
al. [11]

Berg et al.
[4]

Azzouz et
al. [3]

Bevo et al.
[5]

Application
boundary

Compo-
nent

Use Case
Sequence

Use Case
Compo-
nent

Use Case Use Cases Use Case

System
 layers

Compo-
nent - - - - -

Functional
User

Compo-
nent

Use Case
Sequence

Use Case
Compo-
nent

Use Case Use Cases Use Case

Triggering
event

- Use Case
Compo-
nent

Activity Sequence Sequence

Data group - -
Compo-
nent
Class

Class Class Class

Data attribute - - - - Class Class
Functional
Process

Compo-
nent

Use Case
Sequence

Sequence
Use Case

Activity Use Cases Use Case

Data
Movement

Compo-
nent

Use Case
Sequence
Class

Sequence Activity Sequence -

In summary, as shown in Table 1, current researches proposed mappings between

most of the COSMIC concepts and some UML diagrams. None of these studies
considered all COSMIC concepts. In addition, some works automated their approach
Lind et al. [12], Azzouz et al. [3], Bévo et al. [5]. Nonetheless, the proposed tools still
require manual intervention of the user (cf. [3], [5]) and have a large margin of error
that can reach 33% [5]. Furthermore, when examining current measuring approaches,
one notice that further work is needed to explore the semantic links among the UML
diagram types to provide for a confrontation/estimation/consistency verification
among the different diagrams modeling a given system. In the following sections, we
contribute to this research end through the UML-AD and UML-Component diagrams.

54 A. Sellami, M. Haoues, and H. Ben-Abdallah

3 Measuring UML-AD

3.1 Modeling Rules

To model an UML-AD that can be measured using COSMIC, we propose 12 model-
ing rules. These rules are inspired from “good design practices” and are intended to
eliminate certain inconstancies. In addition, our 12 modeling rules are defined to
make the application of COSMIC concepts easier.

The first three rules (R1, R2 and R3) are required at the functional level whereas
the remaining rules (R4 to R12) are used at the dynamic level.

─ R1: Represent all system processes and the relationship between them at the
functional-level.

─ R2: Any component or user that interacts in the realization of a process is
considered as an actor in the UML-AD.

─ R3: If the activity requires incoming information or a condition that must be
satisfied, it is considered as a pre-condition.

─ R4: Each functional process will be represented by an activity diagram.
─ R5: Each external actor (system user) is represented by a partition.
─ R6: Any internal actor is represented by a partition.
─ R7: All actions performed by the same actor are grouped in the same partition.
─ R8: Any action requires retrieved or written data from/to a persistent storage;

it must be associated to an object node that contains the data to be used.
─ R9: Avoid the transitions between the actors and the system when they are

intended to indicate a possible end of the functional process (failure or success).
─ R10: Every guard condition is considered as a trigger event of its corresponding

action.
─ R11: Action data recovery and action of writing data are differentiated by the

direction of the transition.
─ R12: If the action requires incoming information that must be satisfied, it is

considered as a pre-condition.

Note that it is required to distinguish between external actor's partition and system’s
partition (internal actor). This distinction can be indicated through a description of the
actor's attribute.

3.2 Mapping COSMIC on UML-AD

Similar to existing approaches, to measure the functional size of an UML-AD, one
needs to define the mapping between the COSMIC concepts and those of UML-AD.
As listed in Table 2, the mapping deals with the identification of functional users,
boundary, functional processes, etc.

 Automated COSMIC-Based Analysis and Consistency Verification 55

Table 2. Mapping COSMIC on UML-AD

COSMIC V.3.0.1 UML-AD concepts
Functional User <Patition> actor who interacts with the system
Boundary Conceptual line between two partitions (system and actor)
Functional Process <Activity> an executable activity node presented in the first level
Triggering Event <Pre condition> of an activity

<guard condition> in a decision or a fusion node
<Pre condition> of an action

Persistent Storage <Object> object node: Storage
Transient data group <Object> object node: Pins
Entry An incoming data between two partitions (from actor to system)
Exit An outgoing data between two partitions (from system to actor)
Read <Parameter_int> Read access from an object node
Write <Parameter_out> Write access to an object node

3.3 FSM Measurement Formulas

At the functional level, an UML-AD (A) consists of a set of activities. Each activity is
a functional process. Thus, the functional size of an UML-AD (A) can be measured as
follows:

)
1

()(
=

=
n

i iaFSMAFSM (1)

where:

• FSM (A): the functional size of the (A). n: the number of activities in A (1st level).

• FSM (ai): functional size of the activity ai (2
nd level). (see Fig. 2)

At the dynamic level, an activity ai consists of a set of actions act ij. According to
Knieke et al. in this level, an activity is made by at least one action, an end node, and
an initial node [10]. Thus, the functional size of an activity ai is given by:

=

+=
m

j
ij

actFSM
i

aFSMcond
i

aFSM
1

)()Precond()((2)

where:

• FSM(ai): functional size of the activity ai.
• m: the number of actions actij of the activity ai (2

nd level).

• FSM (actij): the functional size of actij of ai (2
nd level) calculated according to (3).

• FSMcond (Precond ai): FSM of the pre-condition of ai calculated according to (4).

The functional size of an action actij is given by:

)
ij

actaramFSMparam(P)
ij

actecondFSMcond()
ij

FSM(act += Pr (3)

56 A. Sellami, M. Haoues, and H. Ben-Abdallah

where:

=
otherwise 0

condition-erp1
)Precond(

ahas
ij

actifCFP

ij
tcaFSMcond (4)

=
otherwise

parametersoutputinputhasijactifCFP

ijactParamFSMparam
0

/1
)((5)

If an action is preceded by a decision or a fusion node, then the guard condition is
considered as a trigger event. It is necessary to add 1 CFP to action's size.

=
otherwise

conditionguardahasijactifCFP
CondgardeFSMcond

0

1
)((6)

When the end of an action in an Actor partition causes the execution of an action in a
System partition, then the control flow corresponds to an Entry data movement. Oth-
erwise, it is an Exit data movement. Hence,

=
otherwise

actionsofcaseparticularaisactTyptheifCFP
actTypFSMactTyp

0

1
)((7)

4 Measuring UML-CD

4.1 Mapping COSMIC on UML-CD

Establishing a mapping between the COSMIC concepts and those of UML-CD is also
needed to facilitate the measurement of the UML-CD functional size. Our mapping is
inspired from the proposition of Lavazza et al. [11]. Table 3 shows our proposed
mapping.

Table 3. Mapping COSMIC on UML-CD

COSMIC UML-CD concepts
Functional User <Component> External entity directly connected with the system components
Boundary Frontier between two components (external and system components)
Functional Process Set of <Operation> in one or more interfaces carrying out a process
Triggering Event <Operation>in a system interface invoked directly by an external entity
Persistent Storage <Component> Classes: physical components
Transient data group <Parameter_int> <Parameter_out> Data across the system boundary, inter-

face's operations or parameter's operations
Entry <Operation> in a <required interface> directly connected to the system
Exit <Operation> in a <provided interface> directly connected to the system
Read <Operation> Get type operation in a system component
Write <Operation> Set type operation in a system component

4.2 FSM Measurement Formulas

The functional size of the UML-CD (C) is given by:

 Automated COSMIC-Based Analysis and Consistency Verification 57

)
1

()
1

()(
=

+
=

=
m

j jIFSM
n

i iSFSMCFSM (8)

where:

• FSM (C): functional size of the UML-CD (C).

• FSM(Si): functional size of operations in a system component Si; it is calculated
according to (9). n: number of the system components.

• FSM (Ij): functional size of required and provided interfaces Ij; it is calculated
according to (10). m: number of the interfaces required and provided in (C).

The functional size of operations in a system component is given by:

)
1

()(
=

=
y

j ijOpopFSMiSFSM (9)

where:

• FSM (Si): functional size of operations in a system component.

• y: number of operations in a component system. (i=1,...n)

• FSMop (Opij): functional size of the operation Opij. (1CFP)

The functional size of required and provided interfaces is given by:

=

=
z

k jkOpFSMopjIFSM
1

)()((10)

where:

• FSM (Ij): functional size of required and provided interfaces.

• z: number of operations in the interface Ij. (j=1,...m)

• FSMop (Opjk): functional size of the operation Opjk.

4.3 Correspondence between UML-AD and UML-CD

Equation (11) can be used to verify the consistency between an UML-AD (A) and an
UML-CD (C) in terms of COSMIC FSM:

)()(2 AFSMCFSM ≤≤ (11)

Recall that an UML-AD is composed of at least one actor and a system, an initial
node, an end node, and a set of actions (R4, R5, R6, and R7). In the second level of
abstraction, a UML-AD represents a functional process. On the other hand, based on
COSMIC concepts, a functional process (FP) is composed of two data movement
(Entry and Exit or Write). Thus, the FSM of a UML-AD is at least equal to 2 CFP;
that is, we should have (FSM (A) ≥ 2 CFP).

58 A. Sellami, M. Haoues, and H. Ben-Abdallah

On the other hand, the FSM of an UML-CD is always less than the FSM of an
UML-AD. Hence, the FSM of an UML-CD is at least equal to 2 CFP. The maximum
size of an UML-CD depends on the size of the UML-AD.

Equation (11) gives a confrontation means for both diagrams in terms of COSMIC
FSM. Besides this high-level FSM boundary confrontation, we propose the following
five heuristics to ensure the COSMIC FSM consistency between A and C:

1. ConsR1: Any component in the C is a partition representing an actor in A.

2. ConsR2: Any method in an interface is represented by an action in a partition.

3. ConsR3: Input/output parameter's operations in C correspond to the input/output
pins in A.

4. ConsR4: Object nodes in A are represented by class’s components in C.

5. ConsR5: Pre and post-conditions of an operation in C correspond to pre and post-
conditions of an action in A.

5 Example: The Rice Cooker

5.1 Using Manual Measurement

To illustrate the application of the proposed FSM formula, we use the real time soft-
ware application “Rice Cooker” case study. The FURs of this case study are described
in [6]. The question is how to determine the functional size of the three functional
processes (FP1: Set Target Temperature, FP2: Adjust Temperature and FP3: Lamp
Control) as described in [6]. These processes are triggered by three events which are
respectively: Signal 30s, Signal 5s, and Tick (elapsed). Fig. 4 shows the UML-AD of
"Rice Cooker" application at a high level of abstraction.

Fig. 4. UML-AD of the "Rice Cooker" application (high level of abstraction)

Fig. 5 shows a textual description of the FP1 "Set Target Temperature". This tex-
tual description can provide the FSM of FP1 by using only the mapping with
COSMIC (Table 2).

 Automated COSMIC-Based Analysis and Consistency Verification 59

Number of activity: <4>
Activity: <set target temperature>
Partition: <Timer> <Software Controller>
Pre condition : <Signal 30s>
Input Parameters:
Output Parameters:
Begin: <1> <Receive signal 30s>
Body: List of actions
<1> <Receive signal 30s> <Software Controller>
<2> <Get cooking mode> <Software Controller && CookingMode> <Cooking
mode>
<3> <Get elapsed time> <Software Controller>
<4> <Provide elapsed time> <Timer>
<5> <Get Cooking Temp> <Software Control-
ler&&Temperature><Temperature>
<6> <Set target temperature> <Software Controller &&Temperature>
<Target-Temperature>

Fig. 5. Textual description of the UML-AD "Set Target Temperature"

Table 4 presents in detail the measurement results of the UML-AD for the func-
tional process (FP1). Due to space limitation, we will present only the measurement
results for the two other processes (FP2, FP3). In addition, based on the component
diagram of the "Rice Cooker" in [11], which includes three components and five
interfaces; we will present the FSM results of the related UML-CD in Table 5.

Table 4. Measurement results (Activity diagram of the "Rice Cooker")

FP Application of measurement formulas for UML-AD CFP

FP1

 FSM(FP1) = FSMcond(Signal 30s) + FSM act (2) 6

FSMcond(Signal 30s) (4) 1 FSM act1j = FSMcond Precond act + FSMparam Param act (3) 0+3 FSMcond Precond act = 1 CFP if act has a precondition0 otherwise (4) 0
FSMparam Param act1j = 1 CFP if act has input/output parameters0 otherwise (5) 3 FSMactTyp (actTyp) = 1 CFP if actTyp is a particular case0 otherwise (7) 2 ∑ FSM act = FSM(Receive signal 30s) + FSM(Get cooking mode) + FSM(Get elapsed time) + FSM (Provide elapsed time) + FSM(Get cooking temp) + FSM (Set target temperature) 0+1+0+0+1+1

FP2
FSM (FP2) = FSMcond(Signal 5s) +∑ FSM act (2) 6

FP3
FSM (FP3) = FSMcond(Signal 1s) +∑ FSM act (2) 2

Total
 FSM(A) = ∑ FSM(a) (1) 14

According to equation (11), it can be ensured that the UML-AD design is con-
formed to the UML-CD design. In addition, assuming that the consistency heuristics
are satisfied, the FSM difference between the UML-CD (12 CFP) and the UML-AD

60 A. Sellami, M. Haoues, and H. Ben-Abdallah

(14 CFP) can be justified by the difference in the levels of abstraction. Since UML-
AD represents software at a more detailed level and UML-CD represents software at a
high-level of abstraction, UML-CD does not represent all software details as well as
UML-AD. Looking closely, in the UML-AD FP2, the extra CFP is due to the guard
conditions which are not represented in the UML-CD.

Compared to existing works, our measurement results are consistent with those of
Lavazza et al. [11] and they ensure the correctness of our measurement procedures.
Albeit, there are some distinctions in the FSM results; for instance, we measured 14
CFP for UML-AD and 12 CFP for UML-CD of the “Rice Cooker” case study, while
the FSM of the same case study calculated by [11] is equal to 11 CFP. However, their
value is provided according to the identification of data movement involved in the
functional processes. In other words, it is independent of the UML diagrams.

In addition, it can be observed that, for the UML-AD, there are extra 3 CFP for
three “Exits”. Because FP1 contains the transition “Get elapsed time”, it should be
considered as a data movement type “Exit”. However, [11] ignored this data move-
ment. In FP2, the extra 2 CFP are due to reasons: (i) the guard conditions which were
not treated by [11] for both actions “Start heater” and “Stop heater”. They considered
the command “HeaterOn and HeaterOff” as 1 data movement “Exit”; and (ii) the
action “Get Actual Temperature” was not identified by [11] since they considered the
“Actual Temperature” to be returned by “Temperature Sensor” following the demand
of “Software Controller”.

Table 5. Measurements results for the UML-CD of the "Rice Cooker"

Application of measurement formulas for UML-CD CFP FSM(C) = ∑ FSM (S) + ∑ FSM (I) (8) 12 FSM(S : CookingModeC) = ∑ FSM (Op) = FSM(GetMode():Cooking_mode) +FSM(SetMode(mode:Cooking_mode)) (9) 1+1 FSM(S : CookingSpecsC) = ∑ FS (Op) = FSM(GetCookingTemp (time: Integer, mode: Cooking_mode): Integer) (9) 1 FSM (S : CookingStateC) = ∑ FSM (Op) = FSM(SetTargetTemp(temp)) + FSM(GetTargetTemp():Integer) (9) 1+1 FSM(I : TimedEvents) = ∑ FSM (Op) = FSM(Signal 30s()) + FSM(Signal 5s())+ FSM(Tick(elapsed)) (10) 1+1+1 FSM(I : TempSensorCommands) = ∑ FSM (Op)=FSM(ReadTemp (): Integer) (10) 1 FSM(I : HeaterOnInterface) = ∑ FSM (Op) = FSM(HeaterOn()) (10) 1 FSM(I : LampCommands) = ∑ FSM (Op) = FSM(On()) (10) 1

Furthermore, for the UML-CD, the extra 1 CFP is due to the operation “Set-
Mode(mod:Cooking_mode)”. Indeed, this operation corresponds to another functional
process (stop cooking). If we take into account the “scope” according to COSMIC me-
thod, this operation will not be considered. In addition, our measuring scope is limited
by the three FP (Set Target Temperature, Adjust Temperature and Lamp Control).

 Automated COSMIC-Based Analysis and Consistency Verification 61

5.2 Using Consistency Checking Tool

The automation of the measurement procedures overcomes various measurement prob-
lems induced by manual, error prone procedures. We proposed a tool that automates
consistency checking between UML-AD and UML-CD based on equation (11). The
current version of our tool is implemented in java JDK 1.6 using Eclipse SDK 3.7.1.

This tool can help us to calculate the functional size of both UML-AD and UML-
CD and to check the consistency between them in terms of their functional size. If the
obtained result does not respect the margin size presented in the equation (11), then
each of the UML-AD or UML-CD is more fault-prone, and can lead to failure. In this
case, the tool alerts the software developers/designers with the presence of any model-
ing error in the design phase. Thus, the margin size expressed in CFP units can be
used to predict if the transformation from one diagram to another is properly done.

Fig. 6 presents the main GUI of our consistency checking tool. It accepts UML di-
agrams produced through the papyrus plugin1. After measuring a diagram, the tool
can produce the results in a tabular format (see Fig. 6) for the “Rice Cooker” example.
The tool also provides the results of the consistency checking analysis of the
UML-AD and UML-CD.

Fig. 6. Consistency checking tool

6 Conclusions

Applying COSMIC FSM method in the design phase for automated consistency
checking between activity diagram (UML-AD) and components diagram (UML-CD)
is the main purpose of this paper. Here, consistency was examined in terms of the
functional size of these diagrams. Measuring the functional size of UML-AD and

1 http://www.eclipse.org/papyrus/

62 A. Sellami, M. Haoues, and H. Ben-Abdallah

UML-CD is useful not only in identifying modeling errors but also in automating
design quality analysis.

Our functional size measurement procedures for UML-AD and UML-CD were de-
fined based on the mapping between COSMIC concepts and those of UML diagram
concepts. In addition, we proposed a measurement interval that can be used as a
guideline by designers to verify the consistency between these two diagrams and to
identify modeling errors. We have also proposed a set of modeling rules to ensure the
consistency between these diagrams. Finally, we have illustrated the proposed mea-
surement procedures by using the "Rice Cooker" case study, and confronted our mea-
surement results with those of [11]. This case study was conducted through a tool that
implements our measuring and consistency checking approach.

Further works including the use of measurement results of UML-AD and UML-
CD should be investigated. Indeed, it would be interesting to examine how these
measures can help software managers and leaders to complete their project within the
scheduled dates. The proposed formulas need to be applied on larger case studies to
ensure the quality of our measurement procedures. Furthermore, the proposed auto-
mated tool can be extended to include other UML diagrams such as use case, se-
quence, etc. and used to get more realistic estimation for managing software project.

References

1. Albrecht, A.J.: Measuring application development productivity. In: Proceedings of the
IBM Application Development Symposium, Monterey, California, pp. 83–92 (October
1979)

2. Ali, M., Ben Abdallah, H., Gargouri, F.: Validation des besoins dans les modèles UML
2.0. In: XIVème congrés INFORSID, Hammamet, Tunisia (2006)

3. Azzouz, S., Abran, A.: A proposed measurement role in the RUP and its implementation
with ISO 19761: COSMIC-FFP. In: SMEF 2004, Rome, Italy (2004)

4. van den Berg, K., Dekkers, T., Oudshoorn, R.: Functional size measurement applied to
UML-based user requirements. In: SMEF 2005, Rome, Italy (2005)

5. Bévo, V., Levesque, G., Abran, A.: Application de la méthode FFP à partir d’une spécifi-
cation selon la notation UML. In: IWSM 1999, Lac Supérieur, Canada (1999)

6. COSMIC Group. Case Study: Rice Cooker (May 22, 2008)
7. COSMIC Functional Size Measurement Method Version 3.0.1, Measurement Manual,

Published by the COSMIC Group (2011),
http://www.cosmicon.com/portal/dl.asp

8. Engels, G., Heckel, R., Küster, J.M.: Rule-Based Specification of Behavioral Consistency
Based on the UML Meta-model. In: 4th International Conference on UML, Modeling
Languages, Concepts, and Tools, London, UK, pp. 272–286 (2001)

9. Gabay, J., Gabay, D.: UML 2 Analyse et conception: mise en œuvre guidée avec des
études de cas. Dunod, Paris (2008)

10. Knieke, C., Huhn, M., Lochau, M.: Modeling and Validation of Executable Requirements
Using Live Activity Diagrams. In: SERA 2008, Prague (2008)

11. Lavazza, L., Del Bianco, V.: A Case Study in COSMIC Functional Size Measurement:
The Rice Cooker Revisited. In: Abran, A., Braungarten, R., Dumke, R.R., Cuadrado-
Gallego, J.J., Brunekreef, J. (eds.) IWSM 2009. LNCS, vol. 5891, pp. 101–121. Springer,
Heidelberg (2009)

 Automated COSMIC-Based Analysis and Consistency Verification 63

12. Lind, K., Heldal, R., Harutyunyan, T., Heimdahl, T.: CompSize: Automated Size Estima-
tion of Embedded Software Components. In: IWSM 2011, Nara, Japan (2011)

13. Luckson, V., Lévesque, G.: Une méthode efficace pour l’extraction des instances de con-
cepts dans une spécification UML aux fins de mesure de la taille fonctionnelle de logiciels.
In: ICSSEA 2004, Paris (2004)

14. OMG Unified Modeling Language (OMG UML). Version 2.4.1. Object Management
Group (2011)

15. Sellami, A., Ben-Abdallah, H.: Functional Size of Use Case Diagrams: A Fine-Grain Mea-
surement. In: ICSEA 2009, Porto, Portugal (2009)

16. Sengupta, S., Bhattacharya, S.: Formalisation of UML Diagrams and Their Consistency
Verification – A Z Notation Based Approach. In: Isec 2008, Hyderabad, India (2008)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 64–80, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An MDE Approach to Develop Mobile-Agents
Applications

Tahar Gherbi1, Isabelle Borne1, and Djamel Meslati2

1 IRISA Laboratory, South Brittany University, Vannes, France
{tahar.gherbi,isabelle.borne}@univ-ubs.fr

2 Department of Computing, University of Annaba, Annaba, Algeria
meslati_djamel@yahoo.com

Abstract. The complexity and scope of software systems continue to grow. One
approach to deal with this growing complexity is to use intelligent multi-agents
system. Agents may be stationary or mobiles. Our work contributes to bridge
the gap between agent oriented software engineering methodologies and mo-
bile-agent systems. Indeed, we aim to propose an approach to develop multi-
agents systems including mobile agents. This paper focuses principally on our
design meta-model. Therefore, it gives an overview of our approach, discusses
the issue of mobile-agents platforms compliance with MASIF and FIPA speci-
fications; then examines our design meta-model versus particularly three works
supporting mobility by extending a multi-agents system methodology (MaSE,
Gaia, and AALAADIN).

Keywords: Mobile Agent, MAS, MaSE, m-Gaia, AALAADIN, PIM, MDE.

1 Introduction

Mobile agents are a promising paradigm to design and implement distributed applica-
tions. They have known considerable enthusiasm in the research community, although
they have not been translated into a significant number of real-world applications.

Research on mobile agents has been underway for over a decade, particularly in the
areas of network management and electronic commerce. Then with, among others, the
rapid development of wireless networks, the spread of mobile devices using networks,
the development of new networks (such as Wireless Sensor Networks) and the inno-
vation in the field of Cloud Computing, there was an increase in the use of mobile
agents. Applications based on mobile agents are being developed in industry, gov-
ernment and academia; and experts predict that mobile agents will be used in many
Internet applications in the coming years [31].

A mobile agent is a software agent that can, during its execution, move from one
site to another, to access data and/or resources. It moves with its own code and data,
but possibly with its execution state also. The agent decides independently about its
movements. Therefore, mobility is controlled by the application itself and not by the
runtime system as is the case of processes migration in operating systems.

 An MDE Approach to Develop Mobile-Agents Applications 65

There are no specific applications for mobile-agents [29]. In fact, mobile agents are
likely to complete or replace the traditional paradigms of client-server architecture,
such as message passing, remote procedure call, remote object invocation and remote
evaluation. Thus, any application made with mobile agents can be made with any
traditional paradigm. The use of mobile agents is, however, advantageous in hetero-
geneous and dynamic environments that are the trend of modern Internet applications
[10]. Indeed, mobility is of great interest for applications whose performance varies
depending on the availability and quality of services and resources, as well as the
volume of data moved over network links subject to long delays or disconnections;
and applications running on ad hoc networks, or including mobile devices. However,
mobility is not an interaction as an agent does not need to be mobile to communicate.
This motivated the inclusion of the mobility model in the design phase [34]. Indeed,
the development of mobile-agents applications was generally done without consider-
ing the mobility aspect in the analysis and design phases. It was often treated in the
implementation phase [6]. Including this aspect in the analysis and design phases
allow for a better design of this kind of applications: this gives to the designer the
ability to use mobility to fulfill the goals of his mobile-agents application [32].

For this reason, we have presented in [20], our meta-model to design MAS (Multi-
Agents Systems) including mobile agents and we have discussed it versus some for-
malisms extending UML (Unified Modeling Language) for mobile agents modeling.
In this paper we summarize, in section 2, the different approaches for mobile-agents
modeling. Section 3, presents an overview of our approach to develop MAS including
mobile-agents and discusses the issue of mobile-agents platforms compliance with
MASIF (Mobile Agent System Interoperability Facility) and FIPA (Foundation for
Intelligent Physical Agents) specifications. Section 4, explains the choices that have
guided the construction of our design meta-model. Section 5 presents a case study and
situates our design meta-model versus particularly three works extending MAS
methodologies to support mobility: [32] extending MaSE (Multiagent Systems Engi-
neering), [34] extending Gaia and [27] extending the AGR (Agent, Group and Role)
meta-model of AALAADIN, which is a part of our design meta-model. Section 6
concludes the paper and presents some perspectives.

2 Related Works

According to [25], mobile-agents applications modeling can be done by three ap-
proaches: design patterns approaches, as in [3] and [26], formal approaches, as in
[30], and semi-formal approaches, in which we distinguish two classes [4]: formal-
isms extending UML notations, as in1 [6], [13], [24] and [25], and approaches extend-
ing a MAS methodology, as in [32], [34] and [27].

Weary of inventing and re-inventing solutions to recurrent problems, agent design
patterns can help by capturing solutions to common problems in agent design [3].
However, design patterns have fields of action which are more or less restricted and
need to be known. In addition, most of mobile-agent design patterns presented in

1 Other formalisms were discussed in [20].

66 T. Gherbi, I. Borne, and D. Meslati

literature are difficult to apply in practice due to the lack of a suitable approach to
identify, document and apply them [26]. Formal approaches are good in formalizing
simple systems, but for large systems a visual notation is needed to easily grasp the
specifications and to specify the system from different points of view [5]. Therefore,
we are interested in semi-formal approaches.

Most of works on semi-formal approaches propose formalisms extending UML.
Some address only one aspect of mobility, such as the mobility path, as in [24]; some
fix the set of sites where the agent can move, as in [6]; some include details from
MASIF, as in [6], or from FIPA standard for interaction, as in [13]. These formalisms
are useful, good contributions and sources of inspiration. Belloni et al. suggest in [6]
to work more on methodological aspects, by exploring how an existing software de-
velopment process can be extended to incorporate notations. They recommend the
exploration of the Unified Process which seems to be the most appropriate. However,
to contribute in bridging the gap between AOSE (Agent Oriented Software Engineer-
ing) methodologies and mobile-agent systems, as suggested in [29] and realized in
[32], [34] and [27], we are interested to extend a MAS methodology. Indeed, a sepa-
ration between the community of MAS and intelligent agents on one side and the
community of mobile agents on the other side was raised and discussed in [29]. This
separation resulted from the fact that researchers in the MAS community come main-
ly from the artificial intelligence field, while those in the mobile-agents community
come primarily from the distributed systems (even operating systems) field. They use
different languages, have different goals and different ways to view problems: the
MAS community tries to solve conceptual problems (subject to analysis and simula-
tions based on distributed computing), where the mobile-agents community attempts
to implement adequate, efficient and secure platforms. The opinions of researchers
interviewed in [29] have mostly converged to a synergy between these two fields.
Merging these two fields provides more capacity to solve complex problems in distri-
buted computing becoming increasingly mobile [32].

Only few works on semi-formal approaches extend a MAS methodology to support
mobility. We have encountered three in literature: [32], [34] and [27].

Self et al. [32] have extended the MaSE methodology. Fig. 1 presents a graphical
overview of MaSE which consists of two phases and several steps. The progression
over steps occurs with outputs from one step becoming inputs for the next. The result
of the MaSE analysis phase is a set of roles that agents may play, a set of tasks that
define the behaviors of specific roles, and a set of coordination protocols between
those roles. The design phase models consist of agent classes, communications de-
fined between them and components they contain. Typically, tasks from the analysis
phase are transformed into components in the design phase. These, possibly multiple,
components define the internal agent architecture. To support mobility, they have
added in the analysis phase a move command (to be used it in Concurrent Task Dia-
grams describing the behaviors of Concurrent Tasks), and in the design phase, mobile
components that allow the specification of activities resulting from the move com-
mand. Consequently, an agent is composed of components which are stationary or
mobile (a mobile component contains at least one move activity). To control and
coordinate these components, each agent contains an Agent Component, which fulfils
also much of the agent mobility functions.

 An MDE Approach to Develop Mobile-Agents Applications 67

Sutandiyo et al. [34] have criticized the extended MaSE as it does not distinguish
conceptually between mobile and stationary agents (even if it does it at the compo-
nents’ level), and because it extends the object-oriented approach rather than starting
with a “pure” multi-agents background. They have proposed (Fig. 2) m-Gaia (mobile
Gaia), which distinguishes between mobile and stationary agents in the Agent model
and defines three role types (system, interface and user) in the Role Model. In addi-
tion, a mobility model was added; it manages concepts of place types (locations),
atomic movement (the smallest granularity movement required to accomplish the
assigned task) and travel path (a combination of atomic movements). The agent’s
moves occur at the end of atomic movements.

Mansour et al. [27] note that the existing meta-models and methodologies do not
provide any organizational solution for designing and administrating mobile agents in
an agent society, and propose MAGR (Mobile AGR) to support the agent’s mobility
at the organizational level. MAGR enriches the AGR (Agent, Group, Role) meta-
model with the concepts of place, mobile agent and persistent role (Fig. 3). A place
represents a group joined by only mobile agents; it proposes to them necessary servic-
es to move and perform actions. Agents join groups to play roles. When a mobile
agent plays a role, it specifies if it is persistent or not. When it moves, all skills asso-
ciated to a persistent role stay available; however, it will be automatically deleted
from any list of agents playing a non-persistent role in the place.

Fig. 1. MaSE methodology [32]

Fig. 2. Structure of m-Gaia’s models [34]

Fig. 3. MAGR meta-model [27]

In presence of mobility, MAGR’s meta-model deals with the social aspect of
agent’s life cycle. With m-Gaia and the extended MaSE, when an agent moves, noth-
ing is done at organizational level. Indeed, the role concept is not used after the analy-
sis phase in both methodologies. In addition, social aspects (group, organization) are
not clearly defined in MaSE, unlike organizational rules or conversations; and the

68 T. Gherbi, I. Borne, and D. Meslati

developed architectures are static2. Similarly in Gaia, the organization and services
offered by agents are clearly static in time, as there is no hierarchical presentation. [7]

Finally and according to [2] and [22], MDE (Model Driven Engineering) helps in
bringing the gap between MAS’s methodologies (as the majority does not include the
implementation phase3) and platforms4. However, we have not encountered any ap-
proach based on MDE and extending a MAS methodology to support mobility. In-
deed, MaSE uses RUP (Rational Unified Process), m-Gaia uses the cascade model
and MAGR does not propose an elaborated process5. Thus, our goal is to propose an
MDE methodology to develop mobile-agents applications. The choice of MDE is
justified also by its benefits: know-how durability, productivity gain and heterogene-
ous platforms consideration [9]. This explains its adoption in many works on various
fields, including MAS, as in MDAD [23], ASPECS [12] and ASEME [33]. In addi-
tion, using MDE may facilitate the mobile agent moves across heterogeneous
platforms: rather than sending the agent’s code, we send its model which can be trans-
formed into code on target sites.

3 Overview of Our Approach

Our design meta-model (Fig. 5) serves as a PIM (Platform Independent Model) meta-
model in our MDE methodology to develop MAS including mobile-agents, which
steps are shown in Fig. 4. The process starts by modeling the application as a PIM,
conform to our PIMM (PIM Meta-model). Then this PIM is transformed (using trans-
formation rules) into a PSM (Platform Specific Model), conform to the PSMM (PSM
Meta-model) of the used agents’ development platform. Finally, the application’s
code is generated from the PSM (using code generation rules).

Fig. 4. MDE development process6 for MAS

2 O-MaSE (Organization-based MaSE) [14], an extended version of MaSE, defines a meta-

model for agents to adapt their organization during execution.
3 Meta-models in Gaia and AGR are generic: i.e., they make abstraction on the internal archi-

tecture and behavior of agents. The passage to the implementation phase remains informal
and manual. [22].

4 MAS methodologies and MAS platforms represent generally multi-agents concepts
differently. [22].

5 AGR can be seen as complementary to other agents centered methodologies, because it is
insufficient alone to represent all aspects of multi-agents [22]. Indeed, MAGR (as AGR) does
not provide meta-models for agents, roles and environment (i.e., domain).

6 A CIM (Computation Independent Model) meta-model is not proposed and is left as
perspective.

 An MDE Approach to Develop Mobile-Agents Applications 69

When elaborating a PSMM for an agents’ development platform, one can ask if a
common PSMM exists for agents’ platforms. In fact, with the increased number of
agents’ development platforms, the need for standards was quickly felt. Two main
agents’ development standards have emerged: FIPA and MASIF. These standards
provide a set of specifications and guidelines for developers (manufacturers) of
agents’ platforms. However none of them covers the full set of features of software
agents and can rather be seen as complementary: MASIF support mobility without
providing a communication language between agents and FIPA provides a communi-
cation language between agents without supporting mobility [21].Amor et al. [2] pro-
pose to use the agent model of Malacca [1] (which is based on a modular approach) as
a PSMM for an MDE approach to develop MAS. One of the features of this PSMM is
the ability to run a Malaca agent on any FIPA compatible agents’ platform. Gervais et
al. [18] propose an UML profile for mobile-agent platforms compatible with MASIF;
which can be also used as PSMM. We think it will be interesting (as perspective) to
propose a PSMM for agents platforms by examining the works7 on the integration
strategies combining both FIPA and MASIF standards.

This paper discusses the choices that have guided our PIMM construction.
The transformation and code generation phases are the subject of future papers.

4 Choices That Have Guided Our Meta-model Construction

Choosing a MAS methodology is difficult [2] [22]. In the absence of a consensus on a
meta-model to design MAS (despite the unification efforts of well-known MAS meta-
models, as in [11] and [8]), we have looked for a meta-model which is simple to use,
modular and evolutive, in order to extend it and support the mobility of agents. Our
choice fell on the PIMM of MDAD (Model Driven Agent Development) [23] for
several reasons. Firstly, it is based on the AEIO decomposition (from the
VOYELLES approach [16]) which considers a MAS as composed of four bricks (or
vowels A,E,I,O): Agent, Environment (i.e., domain), Interaction and Organization.
This provides modularity at the models’ level, rather than at the level of agents and
agent’s skills. The ability to interchange and reuse models of each brick has a strong
potential for reuse and versatility, as there is no presupposition to use a particular
model a priori [23]. Secondly, its organizational meta-model, based on AGR, does not
imposes constraints on the agent internal architecture, its behavior, or its capabilities.
Thirdly, MDAD is already a model driven methodology illustration for the stationary-
agents applications development.

Inspired from the related works, we have enriched its PIMM with the stereotypes
(Fig. 5): «MobileAgent», «Site», «Migration» (to prepare the agent before calling the
Jump Action), «Jump» (to move effectively the agent to another site), «Clone» and
«AfterMigration» (to integrate correctly the agent in the MAS, after its move to a new
site). The concepts in gray boxes, the two associations between «SendMessage» and
«ReceiveMessage» (added to ease code generation [20]), the transferable tagged-
value in the «DomainConcept» stereotype, and the stop tagged-value in the «Role»
stereotype are those we have added. According to Fig. 5, a group contains several
roles. To play a role, the agent (stationary or mobile) must join the group containing

7 A list of works is referenced in [21].

70 T. Gherbi, I. Borne, and D. Meslati

this role, and ask for authorization. We assume that the agent determines when it is
necessary to move. However, other agents, or the agents’ platform, may advise the
agent to move (for example, for shutdown, load balancing, etc.); in this case, the
agent’s autonomous nature allows it to determine if it will actually move (section 4
gives guidelines to help treating this case). We also assume that the agents’ platform
handles the effective move of agents: when it receives an agent’s move request (gen-
erated from the «Jump» action), it terminates the agent and sends it to the destination
platform where it is restored.

Fig. 5. PIMM for MAS including mobile agents

Fig. 6. Goals modeling in
MDAD

Unlike MDAD, agents’ and roles’ goals are not expressed explicitly, but implicitly
via theirs behaviors (they can even be noted as comments). However, if an explicit
expression is needed, one can use for example OCL (Object Constraint Language)

 An MDE Approach to Develop Mobile-Agents Applications 71

constraints as in MDAD (Fig. 6). Also, we describe behaviors with state-charts dia-
grams, as in [32] and [25], to save transformation effort (as we use state-charts dia-
grams to model behaviors at PSM level also)8.

Compared to the published version in [20], we have replaced the AcceptEventAc-
tion meta-class by the SignalEvent meta-class. In addition, we have added the «Mobi-
leAgent» stereotype to distinguish between stationary and mobile agents and have a
direct mapping from PIMs to PSMs (indeed, if some mobile-agents platforms, like
JavAct, do not make this distinction, others like Grasshopper, do). We have also add-
ed an association between «Clone» and «Site» stereotypes to allow flexible cloning
independently of migration. The clone concept, which importance was mentioned in
[32], was not considered in the extended MaSE, m-Gaia and MAGR. Finally, we have
added a stop tagged-value (with false as default value) in the «Role» stereotype to be
used by the agent, before it moves, to end roles held in parallel (see section 5).

In some related works, the mobile-agent itinerary is modeled to capture its move-
ments’ path, as in [6], or to describe its mission by defining tasks to do on each site in
the itinerary, as in [34], [13] and [25]. We do not model this, because mobile-agents
platforms normally maintain information on agents-movements’ path (which can be
requested) and the agent’s mission is described via its behavior. We also do not fix
the set of sites where a mobile agent can move, as in [6]: we assume that agents are
intelligent enough to sense their environment and discover sites where they may (if
necessary) move. Otherwise, the model may become unreadable in presence of lot of
sites; in addition, sites are not usually all known for all applications at the design
phase (e.g. in ad-hoc networks). Finally, we encourage local communications between
agents; hence, we support only non-persistent roles. Consequently before leaving a
site, a mobile agent must release all held roles, as in [13]. The persistent roles of
MAGR generate distant communications: indeed, queries for a service provided by a
persistent role will be relayed to a mirror agent representing the mobile agent playing
this role. Knowing that one of the mobility’s goals is to reduce the network traffic, is
it really efficient for a requesting agent to see its requests relayed to a mirror agent
residing on a remote site (the mobile-agent native site) rather than interacting with the
concerned mobile agent by sending messages directly to it or by moving up to it?

5 Case Study

Consider (Fig. 7) a simple library database distributed on site1, site2 and site3. On
each site, a stationary agent (Librarian) deliver the list of all books stored locally.
Using a laptop, we create on site1 a mobile agent (MobileBookSeeker) to search for
the locations of a given book over a given itinerary (e.g. site1, site2 and site3); then
the laptop can disconnect. The mobile agent visits all sites, asks on each one for
the local books list and filters it to check if it contains the searched book. When it
finishes, it moves to its final destination (the laptop when connected) to deliver its
results. A PIM for this example is given in figures 8 to 13. According to Fig.8, the
LibraryManagement group contains three roles. The Librarian agent can play the
BooksListDeliver role; and the MobileBookSeeker agent can play, on each visited site,
the BookChecker role which interacts with the BooksListDeliver role to get the local

8 To model behaviors, MDAD uses, at PIM level, activity diagrams and, at PSM level, ATN

(Augmented Transition Network); thus, it defines transformation rules for behaviors.

72 T. Gherbi, I. Borne, and D. Meslati

books list. When MobileBookSeeker finishes its mission, it plays the ResultsDeliver
role to deliver the repositories list of the searched book. Each agent (or role) has an
attribute itsBehavior (not represented in Fig. 8 for a better readability) pointing to a
state-chart diagram describing the agent (or role) behavior (in a separate figure).

Fig. 7. A book searcher application
example

Fig. 8. Librarian behaviour

Fig. 9. The classes diagram for the example

Fig. 10. BooksListDeliver behaviour9

9 For details on SendSignalAction, SignalEvent and Trigger, see the OMG's specification (v2.3)

of UML Superstructure at pages 229, 443, 442 (respectively).

 An MDE Approach to Develop Mobile-Agents Applications 73

The behaviors of the Librarian agent and the BooksListDeliver role are given in Fig. 9
and Fig. 10 respectively. The Librarian agent joins (Fig. 9) the LibraryManagement
group, asks to play the BooksListDeliver role and leaves the group when the role ends.
When playing the BooksListDeliver role (Fig. 10), it waits unlimitedly (while
stop=false) for requests of its local books list. When (stop=true), the role informs its
playing agent about its end. The behaviors of the MobileBookSeeker agent, the Book-
Checker role, and the ResultsDeliver role are given in Fig. 11, Fig. 12 and Fig. 13
respectively. The MobileBookSeeker agent joins (Fig. 11) the LibraryManagement
group, then checks if its mission is terminated. If yes, it plays the ResultsDeliver role
and leaves the group when the role ends; else, it plays the BookChecker role, then
moves to the next site in the itinerary.

Fig. 11. MobileBookSeeker behavior

Migration and AfterMigration actions have their own behaviors (state-chart dia-
grams), where the designer can include the actions that he judges necessary. For our
example, the Migration action leaves the group, determines the next site, and jumps to
it; where the AfterMigration action does nothing. Migration and AfterMigration

74 T. Gherbi, I. Borne, and D. Meslati

actions may become complex, for example in the case where a mobile agent plays
several roles in parallel. The agent may inside the Migration action ask the currently
held roles to stop, wait for them to end, note from the stopped services (furnished by
these roles) those it judges necessary for its activity after the move, and leaves the
groups of held roles. Inside the AfterMigration action, the agent may search, as de-
scribed in [28], for roles furnishing the noted services, joins their groups and plays
them. To stop a role, its stop tagged-value must be made to true; and inside its behavior,
this tagged-value must be checked to know if the role can continue or if it must end.

Moves requested by an external entity (another agent or the agents platform), can
be supported, for example, by adding an externalMoveRequest tagged-value in the
«Agent» stereotype (with false as default value). An external entity can request an
agent to move by setting this tagged-value to true. When entering in any state (in its
state-chart diagram representing its behavior), the agent checks this tagged-value: if it
is true, its saves the name of the current state10 and launches the Migration action.
The AfterMigration action terminates by restoring the agent into the saved state.

When playing the BookChecker role (Fig. 12), the agent sends a sendGetBooksList
message, waits to receive the books list, then checks if it contains the searched book.
When playing the ResultsDeliver role (Fig. 13), the agent delivers its results. When a
role ends it informs its playing agent.

Fig. 12. BookChecker behaviour

Fig. 13. ResultsDeliver behaviour

Section 3 has discussed the similarities and differences between our PIMM and
other works. To see this in practice, let us model the same example using the studied
methodologies. We recall that we interest only to the mobility modeling.

Using the extended MaSE, the modeling of our example, produces the agent
classes in Fig. 14 (showing the roles played by agents), and the roles diagram in

10 Or the name of the next state if the current state serves to wait for the end of a role (i.e., if its

name has the form WaitForrolenameRoleEnding).

 An MDE Approach to Develop Mobile-Agents Applications 75

Fig. 15 (showing the association between roles and the concurrent tasks searchBook,
deliverResults, and deliverBooksList). We present only the concurrent task diagram
for the searchBook task (Fig. 16), and its corresponding mobile-component (Fig. 17).
The task begins (Fig. 16) by testing if the mission is completed. If yes, it sends a mis-
sionCompleted message to the ResultsDeliver role. Else, it sends a getBooksList()
message to the BooksListDeliver role, waits for the local books list, checks if it con-
tains the searched book (actualizes eventually the repositories list), then tries to move
to next site. In the identifyNextSiteAndMove state (Fig. 17): when a mobile component
wants to move, it saves its state, informs its Agent component and waits for its deci-
sion. If the Agent component refuses, it replies by a moveDenied response; else it termi-
nates the mobile component and orders all other components to save their states and
send them to it. Every time it receives a state, it terminates the sender component. The
Agent Component terminates, when all components terminate. Then the agent moves
with all components and theirs saved states. At the target site, the Agent Component
restarts all components and communicates their saved states to them. The restoreState
state identifies the state in which the component restarts after migration; in the case of
the searchBook task, the component restarts always in the isMissionCompleted state.

Fig. 14. Agent classes

Fig. 15. Roles diagram

Fig. 16. searchBook task

Fig. 17. searchBook mobile-component

76 T. Gherbi, I. Borne, and D. Meslati

Using m-Gaia, we identify in the agent model two types of agents: MobileBook-
Seekerm and Librarian, where the index (m) indicates that the agent is mobile. We
also identify the following roles in the role model: BooksListDeliver (system role),
BookChecker (interface role) and ResultsDeliver (user role). Fig. 18 shows the rela-
tionship between the roles and the agent types. In the mobility model, we distinguish
two types of places: mobilePlace (with instance=1, to represent the laptop) and statio-
naryPlace (with instance=3, to represent site1, site2 and site3). MobileBookSeekerm
can run on the two place types; where Librarian can run only on the stationaryPlace
type. The mobility model allows to elaborate a travel schema for the mobile agent,
which defines its origin place type (stationaryPlace: site1 for our example), its desti-
nation place type (mobilePlace: the laptop for our example) and a set of travel path
(each one is a list of atomic movements). For our example, one travel path suffices.
However, details about the syntax of atomic movements were not given in [34]: the
authors have modeled their application example, realized it separately on Grasshop-
per, and then made manual correspondence between the modeled example and its
realization.

Fig. 18. Agent model for our example in m-Gaia

Fig. 19. Modeling our example using MAGR

Fig. 20. MobileBookSeeker’s mission

The MAGR’s concepts (except place and persistent role) are the base of organiza-
tion in our PIMM (see Fig. 5). Thus (organizational) models realized with MAGR are
closer to ours. However, MAGR does not propose meta-models for agent, role, and
Environment (i.e., domain). After elaborating the organizational model, it passes to
the development step where it proposes MASL (Mobile Agent Script Language) to
program MAS on Madkit (a mobile agent platform, supporting AGR and MAGR and
compliant to MASIF and). With MASL, a mobile agent seems as executing a mission
(representing its global goal). A mission is a set of operations (representing sub

 An MDE Approach to Develop Mobile-Agents Applications 77

goals). An operation is a set of actions (each one is a treatment executed on a different
site). An action contains a move instruction and a set of commands (the finest ele-
ments of MASL). A possible modeling of our example using MAGR is presented in
Fig. 19. On each site-i (i.e., site1, site2, site3 and the laptop), LibraryManagement is
defined per a couple (Group-i, Place-i). Group-i contains non-persistent roles (Book-
sListDeliver and ResulsDeliver) and Place-i contains persistent roles (BookCkecker).
Librarian is a stationary agent and thus can join only Group-i; however, MobileBook-
Seeker can join Place-i (and Group-i, as Place-i inherits from it). The script describing
the itinerary and activity of MobileBookSeeker may be as in Fig. 20.

As shown, only MAGR and our PIMM consider organizational aspects (group,
role) in the presence of mobility. On another side, m-Gaia and MAGR support the
agent mobility by structuring its behavior as an itinerary which describes the task to
do on each site; consequently, no effort is needed before or after moving. In contrast,
the extended MaSE (respectively, our PIMM) allows for more flexibility in modeling
the agent’s behavior, and employs a move action (respectively, Migration action);
however, an effort is needed before moving to save the states of the agent’s compo-
nents (respectively, to release roles and leave groups), and after moving to restore
components (respectively, to eventually join groups and obtain roles). Table 1 summa-
rizes the discussion on the studied methodologies extending MAS to support mobility. It
interests only to the question of modeling mobility; for a comparison between MAS
methodologies on others criteria see, for example, section 2.5 in [7], section 6 in [12]
and section 6 in [15]).

Table 1. Mobility modeling in MAS methodologies

 before/
after

migration’s
Treatment

Itinerary
modeling

Mobile/
stationary

agent
distinction

Considering
organizational
aspects with

mobility

Development
process

Extended
MaSE

yes by
Agent

Component

no at level of
components

No RUP

m-Gaia not needed yes yes No Cascade

MAGR not needed no (and yes at
level of imple-

mentation)

yes Yes do not
propose an
elaborated
process (*)

Our
PIMM

yes no yes Yes MDE11

(*) The development cycle is quite limited. Gutknecht and Ferber have never wanted to
propose a real process, in order to keep AGR generic and not reduce its potential of integra-
tion into ascendants or descendants processes. [17]

11 For details on MDA/MDE, see [19].

78 T. Gherbi, I. Borne, and D. Meslati

6 Conclusion

Our work contributes to bridge the gap between AOSE methodologies and mobile-
agent systems. Indeed, we aim to propose an approach to develop multi-agents sys-
tems including mobile agents. In [20], we have presented our meta-model to design
multi-agents systems including mobile agents and we have discussed it versus some
formalisms extending UML for mobile-agents modeling. In this paper, we have dis-
cussed it versus particularly three works extending MAS methodologies (MaSE, Gaia,
and AALAADIN) to support mobility. The PIMM was slightly updated (compared to
its published version in [20]) to distinguish between mobile and stationary agents, to
support flexible cloning and to treat the case where a mobile agent wants to move
while holding (and eventually playing) several roles in parallel. We have discussed
also the issue of agents’ platforms compliance with MASIF and FIPA specifications.

As perspectives, we will first illustrate our MDE approach by transforming the
PIM example built here into a PSM for JavAct (a mobile-agents platform we are us-
ing to experiment our approach), then into JavAct’s code. After, it will be interesting
to propose a PSMM for agents’ platforms by examining works on the integration
strategies combining both FIPA and MASIF standards. Then we need to complete our
approach with a CIM meta-model and the transformation rules from CIM to PIM.
Finally, it will be necessary to conduct experiments with real applications using dif-
ferent mobile-gents platforms (other than JavAct) to validate and enrich our approach.

References

1. Amor, M., Fuentes, L., Troya, J.M.: A component-based approach for interoperability
across FIPA-compliant platforms. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen,
H. (eds.) CIA 2003. LNCS (LNAI), vol. 2782, pp. 266–280. Springer, Heidelberg (2003)

2. Amor, M., Fuentes, L., Vallecillo, A.: Bridging the Gap Between Agent-Oriented Design
and Implementation Using MDA. In: AOSE, New York, pp. 93–108 (2004)

3. Aridor, Y., Lange, D.B.: Agent design patterns: elements of agent application design. In:
AGENTS 1998, USA, pp. 108–115 (1998)

4. Bahri, M.R.: Une approche intégrée Mobile-UML/Réseaux de Pétri pour l’analyse des
systèmes distribués à base d’agents mobiles. Doctoral thesis, University of Constantine,
Algeria (2010)

5. Baumeister, H., Koch, N., Kosiuczenko, P., Wirsing, M.: Extending Activity Diagrams to
Model Mobile Systems. Objects, Components, Architectures, Services, and Applications
for a Networked World. In: International Conference NetObjectDays, NODe (2003)

6. Belloni, E., Marcos, C.: MAM-UML: an UML profile for the modeling of mobile-agent
applications. In: The 24th SCCC, Arica, pp. 3–13 (2004)

7. Bernon, C., Gleizes, M.-P., Gauthier, P.: Méthodes orientées agent et multi-agent. In:
Briot, J.-P. (ed.) Technologies des Systèmes Multi-Agents et Applications Industrielles,
ch. 2, A. El Fallah-Seghrouchni,

8. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J.J., Pavon, J.,
Gonzalez-Perez, C.: FAML: A Generic Metamodel for MAS Development. Journal of
IEEE Transactions on Software Engineering 35(6), 841–863 (2009)

 An MDE Approach to Develop Mobile-Agents Applications 79

9. Blanc, X.: MDA en action: Ingénierie logicielle guidée par les modèles Ed. Eyrolles
(2005)

10. Cao, J., Das, S.K.: Mobile Agents in Networking and Distributed Computing. Wiley Series
in Agent Technology. John Wiley & Sons, Inc., USA (2012)

11. Cossentino, M., Bernon, C., Pavon, J.: Modeling and meta-modeling issues in agent
oriented software engineering. The AgentLink AOSE TFG (2005)

12. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: ASPECS: an Agent-
oriented Software Process for Engineering Complex Systems, How to design agent socie-
ties under a holonic perspective. AAMAS 20(2), 260–304 (2009)

13. Da Silva, V.T., Noya, R.C., De Lucena, C.J.P.: Using the UML 2.0 Activity Diagram to
Model Agent Plans and Actions. In: AAMAS 2005, pp. 594–600 (2005)

14. DeLoach, S.A.: Engineering Organization-Based Multiagent Systems. In: Garcia, A., Cho-
ren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005.
LNCS, vol. 3914, pp. 109–125. Springer, Heidelberg (2006)

15. DeLoach, S.A., Garcia-Ojeda, J.C.: O-MaSE: a customisable approach to designing and
building complex, adaptive multi-agent systems. Int. Journal of AOSE 4(3), 244–280
(2010)

16. Demazeau, Y.: VOYELLES, HDR (Habilitation to Direct Research) thesis, INP Grenoble,
France (2001)

17. Gauthier, P.: Méthodologie de développement de systèmes multi-agents adaptatifs et con-
ception de logiciels à fonctionnalité émergente. Doctoral thesis, University of Paul Sabati-
er, France (2004)

18. Gervais, M.-P., Muscutariu, F.: A UML Profile for MASIF Compliant Mobile Agent Plat-
form. In: OMG’s 2nd Workshop on UML for Enterprise Applications: Model Driven Solu-
tions for the Enterprise, San Francisco, USA (2001)

19. Gherbi, T., Meslati, D., Borne, I.: MDE between Promises and Challenges. In: The 11th
Int. Conf., Comp. Modeling & Simulation, UKSim 2009, Cambridge, pp. 152–155 (2009)

20. Gherbi, T., Borne, I., Meslati, D.: Un méta-modèle pour les applications basées sur les
agents mobiles. In: CIEL 2012, Rennes, France, pp. 1–6 (2012)

21. Islam, N., Mallah, G.A., Shaikh, Z.A.: FIPA and MASIF standards: a comparative study
and strategies for integration. In: National Software Engineering Conference, Rawalpindi,
Pakistan (2010)

22. Jarraya, T.: Réutilisation des protocoles d’interaction et démarche orientée modèles pour le
développement multi-agents. Doctoral thesis, University of Reims, France (2006)

23. Jarraya, T., Guessoum, Z.: Towards a model driven process for multi-agent system. In:
Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007.
LNCS (LNAI), vol. 4696, pp. 256–265. Springer, Heidelberg (2007)

24. Kusek, M., Jezic, G.: Modeling Agent Mobility with UML Sequence Diagram. In: AOSE,
Ljubljana, Slovenia, pp. 51–63 (2005)

25. Loukil, A., Hachicha, H., Ghedira, K.: A proposed Approach to Model and to Implement
Mobile Agents. IJCSNS 6(3B), 125–129 (2006)

26. Lima, E.F.A., Machado, P.D., Sampaio, F.R., Figueiredo, J.A.: An approach to modeling
and applying mobile agent design patterns. In: ACM SIGSOFT, pp. 1–8 (2004)

27. Mansour, S., Ferber, J.: MAGR: Integrating mobility of agents with organizations. In:
IADIS, Portugal (2007)

28. Mansour, S., Ferber, J.: Un modèle organisationnel pour les systèmes ouverts déployés à
grande échelle. In: JFSMA 2007, Carcassonne, pp. 107–116 (2007)

80 T. Gherbi, I. Borne, and D. Meslati

29. Milojicic, D.: Mobile agent applications (trend wars). IEEE Concurrency 7(3), 80–90
(1999)

30. Picco, G.P., Murphy, A.L., Roman, G.C.: Lime: Linda Meets Mobility. In: ICSE 1999,
pp. 368–377 (1999)

31. Rajguru, P.V.: Deshmukh. S. B.: Current trends and analysis of mobile agent application.
In: Proceedings of NCETCT 2012, WJST, India, vol. 2(3), pp. 1–6 (2012)

32. Self, A., DeLoach, S.A.: Designing and Specifying Mobility within the Multiagent Sys-
tems Engineering Methodology. In: 18th ACM SAC, USA, pp. 50–55 (2003)

33. Spanoudakis, N., Moraitis, P.: Using ASEME methodology for model-driven agent sys-
tems development. In: AOSE Conf, Toronto., pp. 106–127 (2010)

34. Sutandiyo, W., Chetri, M.B., Loke, S.W., Krishnaswamy, S.: Extending the Gaia Metho-
dology to Model Mobile Agent Systems. In: ICEIS, Porto, pp. 515–518 (2004)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 81–93, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Fault Injection Based Approach to Assessment
of Quality of Test Sets for BPEL Processes

Damian Grela, Krzysztof Sapiecha, and Joanna Strug

Department of Electrical and Computer Engineering,
Cracow University of Technology, Cracow, Poland

dgrela@pk.edu.pl, {pesapiec,pestrug}@cyf-kr.edu.pl

Abstract. Mutation testing is an effective technique for assessing a quality of
test sets for software systems, but it suffers from high computational costs of
generating and executing a large number of mutants. In the domain of BPEL
processes each mutant needs to be deployed before it can be executed, thus the
cost of processing mutants increases further. In contrast to mutation testing,
fault injection is able to inject faults directly into the original process what re-
duces the redeployment requirement. The paper presents an experiment of the
application of software fault injection to assess quality of test sets for BPEL
processes. Faults are introduced by a Software Fault Injector for BPEL
Processes (SFIBP). SFIBP simulates effects of the faults by modifying invoca-
tions of web-services and their internal variables. The experiment proved high
superiority of the application of the SFIBP over the mutation testing, especially
in the case of time requirements.

Keywords: Test Sets Quality Assessment, Mutation Testing, Fault Injection,
Web-Services, Orchestration, Business Processes, BPEL.

1 Introduction

Recently, an application of WS-BPEL (Business Process Execution Language for
Web-services) has become one of the most promising technologies for developing IT
systems. WS-BPEL is a high level language that makes it possible to implement busi-
ness processes as an orchestration of preexisting web-services [1]. A developer of an
IT system should only select the most appropriate web-services and coordinate them,
using WS-BPEL language, into business processes that cover specification require-
ments for the system. It leads to a very simple and structured architecture where only
a special element of the process called its coordinator and communication links be-
tween the coordinator and the services need to be tested. Nevertheless, the testing
should be performed with the help of a high quality test set to provide a confidence to
system dependability. Thus, the development of tests should be supported by effective
techniques for evaluating quality of test sets.

Mutation testing [2], [3], [4] is currently the most effective technique for quality
evaluation of tests. In mutation testing faulty versions of an implementation of the
system (so called mutants) are generated, by introducing small syntactic changes into
the code, and executed against a test set. Although the technique is very efficient, it
suffers from high computational cost of generating and executing mutants.

82 D. Grela, K. Sapiecha, and J. Strug

In [5] a computational experiment aiming at evaluation of a novel approach that
uses fault injection technique [6] to evaluate quality of tests for BPEL processes or-
chestrating web-services was presented. In contrast to mutation testing, fault injection
can be performed at a run-time of the processes. Thus, it was shown that an applica-
tion of this technique can significantly reduce the total cost of testing, as there is no
need to create and compile a large number of the mutants. The work in [5] described
an experiment that compared results of applying tests for mutants of a BPEL process
with results of applying the same tests for the process but modified at a run-time by
injecting faults. This paper extends the research presented in [5] by adding new ex-
amples and by providing general analysis of the deployment costs of BPEL processes.
It also provides a short introduction of a possible improvement of the approach
presented in [5].

The paper is organized as follows. Section 2 contains a brief description of the
background and related work. The experiment and its results are described in Section
3. Section 4 outlines the way in which the approach presented in [5] can be improved.
The paper ends with conclusions in section 5.

2 Background and Related Work

A number of papers related to different aspects of testing BPEL processes have al-
ready been published [7], [8], [9]. However, the papers do not consider the testing of
BPEL processes in which the coordinator orchestrates web-services. A method of
generation of test scenarios for validation of the coordinator of a BPEL process was
given in [10]. Tests obtained by means of the method cover all functional require-
ments for the process and provide high validation accuracy [11]. Hence, such tests
could also be used as a starting set of tests for the process.

Quality of generated test sets is an important issue, as only tests of high quality
(high ability to detect faults) can help to provide dependable products [12], [13]. Sev-
eral studies have proved validity of the mutation testing as a powerful technique for
testing programs and for evaluation of the quality of test sets [13], [14]. For object
systems tests are usually evaluated via mutation testing, but in case of BPEL
processes this technique is very expensive due to the number of mutants that need to
be generated, compiled, deployed and executed against the test set.

In mutation testing a quality of the test set is determined by a mutation score calcu-
lated as a ratio of mutants detected by the test set over all non-equivalent mutants.
The higher is the mutation score the higher is the quality of tests. In [5] results of
mutation testing were used as the reference when the results of fault injection were
evaluated. The mutation testing is a white box testing technique that creates a large
number of faulty programs (mutants) by introducing simple flaws (faults) in the origi-
nal program. If a test case is able to detect the difference between the original pro-
gram and the mutant, it is said that such test case kills the mutant. On the contrary, if
none of the test cases is able to detect a difference, it is said that the mutant keeps
alive for all used test cases. The mutants are created by applying so called mutation
operators. Each of the mutation operators corresponds to a certain category of errors
that the developer might commit. Such operators for various programming languages,
including BPEL have already been designed [2], [3], [14].

 A Fault Injection Based Approach to Assessment of Quality of Test Sets 83

Fault injection [6] is a popular technique that is mainly used for evaluation of fault-
tolerance of computer systems. It consists in injection of deliberate faults into a run-
ning system and observation of its behavior. So called fault coverage [6] for a set of
tests is measured. The fault coverage is expressed as a percentage of detected faults to
all faults injected into the system. Fault coverage is used as a metric of quality of a set
of tests and plays similar role as the mutation score for mutation testing.

Originally fault injection was applied to hardware systems, but currently it is also
applied in software and mixed ones. Software fault injection (SFI) is implementation-
oriented technique thus it targets computer applications and operating systems. SFI
can be performed in near real-time, allowing for a large number of experiments. The
technique was already applied for systems based on web services orchestration to
emulate SOA faults at different levels [15], [16]. The approaches were built upon
existing fault injection mechanisms. However, these solutions are still under devel-
opment. It is not clear which types of SOA faults are supported, and how the faults
are modeled and injected. Moreover, these works do not concern quality of test sets.

3 The Experiment

The main aim of the experiment presented in [5] was to provide evidences that for
BPEL processes application of a software fault injection can evaluate quality of tests
with similar accuracy as mutation testing does, but with lower time requirements than
in case of mutation testing.

During the experiment, mutation testing and fault injection was applied to evaluate
quality of the same sets of tests derived for 14 example BPEL processes orchestrating
web-services (10 presented in [5] and 4 new). BPEL processes under consideration are
described in Section 3.1, later on. Test sets, three for each of the processes, were
provided.

The experiment consists of two main stages, each including several steps (Fig. 1):

1. application of traditional mutation testing, and
2. application of software fault injection.

In the first stage mutants of each of the original BPEL process were first generated,
based on a set of mutation operators for BPEL (Section 3.2). Then each mutant was
executed against a test set provided for the process and a mutation score for the set
was calculated. The mutation score (MS) is expressed as follows:

() %100
MM

M
TMS

ET

K ⋅
−

= , where (1)

T - denotes a test set
MK – is the number of mutants killed by the test set
MT – is total number of generated mutants
ME – is the number of equivalent mutants

In the second stage each original BPEL process was invoked and, while it was ex-
ecuted against its test set, different faults were randomly injected at run-time directly
into the process and fault coverage for the set was calculated. The fault coverage (FC)
is expressed as follows:

84 D. Grela, K. Sapiecha, and J. Strug

() %100
F
F

TFC
I

D ⋅= ,where (2)

T - denotes a test set
FD – is the number of faults detected by the test set,
FI – is total number of injected faults.

The injected faults were generated from a set of fault injection operators (Section 3.2).
The same test sets, as in the first stage, were used to stimulate the process.

Finally, results from applying mutation testing and fault injection were compared.
Two criteria were considered during the comparison:

• the dependability of the fault injection approach in contrast to mutation testing
(Section 3.3),

• the execution time of the fault injection approach in contrast to mutation testing
(Section 3.4).

At each stage of the experiment the execution time required for evaluation of each test
set for all processes were measured and compared.

Fig. 1. Flow diagram of the experiment

The experiment was supported by applying two academic tools. In the first stage
mutants were generated and executed with the help of MuBPEL [17]. In the second
stage faults were introduced by Software Fault Injector for BPEL Processes (SFIBP)
implemented by one of the authors.

3.1 Processes and Their Test Sets

The experiment was executed on 14 example BPEL processes (four our own and ten
taken from a public repository shared by the University of Cadiz [19]). For each of
the processes, three test sets were provided (first two randomly generated, last one
obtained by checking paths method [11]. Table 1 contains the details: identifiers (ID),
names and descriptions of the processes (Name and description), the number of

BPEL
process

Test sets

input output

MuBPEL

SFIBP

mutants
generation

FC

MS mutants
invocation

original process invocation

 A Fault Injection Based Approach to Assessment of Quality of Test Sets 85

Table 1. BPEL processes used in the experiment

ID Name and description WS TS
PDO Planning Distribution of Orders

helps its users to distribute orders among stores.
5 5/4/3

FRS Football Reservation System
allows its users to book tickets for football games, hotels to stay
during the games and plane or train tickets to arrive at the games.

5 7/5/3

OB Order Booking
receives orders placed by users, it verifies the user and routes each
order to two suppliers to get quotes and chooses the supplier that
provided the lower quote.

8 12/10/4

PES Project Evaluation System
receives projects from the students, which are then evaluated by the
teachers. On the basis of individual assessments of projects, system
classifies student's final assessment.

6 9/14/8

LA1
LA2

Loan Approval
concludes whether a certain request for a loan will be approved or
not (it was published within the specification of the WS-BPEL 2.0
Standard. LoanApproval has two wariants.

2
2

6/9/5
6/9/5

SS Squares Sum
computes the value of sum (i=1 to n) for a certain value of n.

0 3/3/2

TS Tac Service
inverts the order of the lines in a file.

0 4/6/4

MP1
MP2

Market Place
receives a price and offer from two partners: buyer and seller, and
compares if the price offered by the buyer is equal or higher that set
for the seller to sell. Market Place has two variants.

2
2

9/12/8
9/12/8

TI1
TI2

Trade Income
models the behavior of managing a supermarket, controls the total
profits that were generated until a certain date by the different
establishments that the supermarket has, checks which section of
the establishments has been more profitable, checks stock, controls
whether some type of marketing is needed or whether the annual
report must be done. TradeIncome has two variants.

7
7

12/6/6
12/6/6

MS1
MS2

Meta Search
is a revised version of Philip Mayer's MetaSearch BPEL process,
available at the BPELUnit site. MetaSearch implements a meta-
search engine, which queries mockups of the Google and MSN
search engines, interleaves their results and removes duplicates.
MetaSearch has two variants that integrate results of the searches in
different ways.

2
2

7/9/7
7/9/7

web-services used by the processes (WS) and the number of test cases provided in
each of the test sets (TS). No fault tolerance mechanisms were used.

3.2 Mutation Operators and Fault Injection Operators

Mutation testing was performed with a help of MuBPEL [17]. The MuBPEL is a mu-
tation testing tool for BPEL that automatically generates mutants of a BPEL process,
executes the mutants against provided test set and finds the difference in output of
both (mutated and original) BPEL processes. The MuBPEL generates mutants with-
out the exclusion of the equivalent ones. This must be done by a user. A user also

86 D. Grela, K. Sapiecha, and J. Strug

needs to prepare a BPEL process and a set of its tests. The tests need to be created as
test scripts using BPELUnit [18], which is an open-source WS-BPEL unit testing
framework for BPEL processes.

In [14] a set of 26 mutation operators for BPEL processes was presented. In this
experiment only 12 of them were used. The remaining 14 were skipped, as they refer
to features of BPEL processes that are not supported by current version of SFIBP. All
12 operators listed in Table 2 have been implemented in the MuBPEL.

Table 2. Mutation operators used in the experiment

Operator Description
Identifier replacement operators

ISV Replaces a variable identifier by another of the same type
Expression operators

EAA Replaces an arithmetic operator (+,-,*, div,mod) by another of the same type
EEU Removes the unary minus operator from an expression
ERR Replaces a relational operator (<,>,>=,<=,=,!=) by another of the same type
ELL Replaces a logical operator (and,or) by another of the same type
ECC Replaces a path operator (/,//) by another of the same type
ECN Modifies a numerical constant incrementing or decrementing its value in one unit,

adding or removing one digit
Activity operators (concurrent)

ASF Replaces a sequence activity by a flow activities
Activity operators (non-concurrent)

AEL Deletes an activity
AIE Deletes an elseif element of the else element from an if activity
AWR Replaces a while activity by repeat-until and vice versa
ASI Exchanges the order of throw sequence child activities

Fault injection was executed with a help of a Software Fault Injector for BPEL

Processes (SFIBP). The SFIBP is an execution-based injector [20], that is able to
inject faults into the BPEL processes at a run-time, thus it simulates effects of the
faults. Such approach helps to reduce costs of the experiment, as the faults are in-
jected without changing the implementation of a process.

The SFIBP is implemented in Java as a special local web-service which acts as an
intermediary between the BPEL process and the original web-service invoked by the
process. Communication with the actual (used by the BPEL process) web-service is
done with the help of build-in web-service client. The build-in client is able to re-
motely invoke any web-service, simultaneously modifying any parameter of the invo-
cation. In this experiment each change introduced by SFIBP is based on one of a set
of fault injection operators [21]. Table 3 presents the operators implemented in
SFIBP.

Table 3. Fault injection operators used in the experiment

Identifier Description
WS Replaces requested web-service with another one
IP Replaces values of a web-service input parameters
OP Replaces values of a web-service output parameters
RV Replaces a value of a variable

 A Fault Injection Based Approach to Assessment of Quality of Test Sets 87

Configuration of the SFIBP includes setting of fault types, probability of their oc-
currence and of predefined web-services and values which are used when faults are
injected. Information about the injected faults is stored in a log file. The total number
of faults injected for a process always equals the number of mutants generated in the
previous stage of the experiment.

3.3 Mutation Score and Fault Coverage - Results and Discussion

Table 4 gives the number of mutants generated for each BPEL process, mutants killed
by each of the test sets and the mutation scores (MS) for each of the test sets.

Table 4. Results of mutation testing

BPEL process mutants generated mutants killed MS [%]

 TS1 TS2 TS3 TS1 TS2 TS3 average
PDO 229 184 186 190 80,34 81,22 82,97 81,51
FRS 219 193 182 191 88,13 83,11 87,21 86,15
OB 639 586 547 597 91,70 85,60 93,43 90,24
PES 687 492 552 596 71,61 80,34 86,75 79,57
LA1 28 20 23 23 71,43 82,14 82,14 78,57
LA2 36 30 32 33 83,33 88,89 91,67 87,96
SS 45 42 41 43 93,33 91,11 95,56 93,33
TS 53 43 47 48 81,13 88,67 90,56 86,79
MP1 29 25 27 27 86,21 93,10 93,10 90,80
MP2 45 39 42 44 86,66 93,33 97,78 92,59
TI1 557 551 528 556 98,92 94,79 99,82 97,85
TI2 615 403 419 436 65,52 68,13 70,89 68,13
MS1 525 411 471 479 78,28 87,81 91,24 85,77
MS2 554 383 395 409 69,13 71,30 73,83 71,88

Table 5 reports, for each of the BPEL processes, total numbers of faults injected,

faults detected by each of the test sets and fault coverage (FC) for each of the test
sets.

Table 5. Results of fault injection

BPEL process Faults injected Faults detected FC [%]

 TS1 TS2 TS3 TS1 TS2 TS3 average
PDO 229 179 181 188 78,16 79,04 82,09 79,77
FRS 219 187 177 190 85,39 80,82 86,76 84,32
OB 639 582 541 595 91,08 84,66 93,11 89,62
PES 687 486 547 591 70,74 79,62 86,03 78,80
LA1 28 20 22 23 71,43 78,57 82,14 77,38
LA2 36 28 31 33 77,78 86,11 91,66 85,19
SS 45 39 40 42 86,67 88,89 93,33 89,63
TS 53 42 45 48 79,24 84,90 90,57 84,90
MP1 29 18 21 23 64,28 75,00 82,14 73,81
MP2 45 39 41 43 86,66 91,11 95,56 91,11
TI1 557 546 521 553 98,02 93,53 99,28 96,94
TI2 615 408 422 443 66,34 68,62 72,03 68,99
MS1 525 405 456 474 77,14 86,86 90,29 84,76
MS2 554 378 386 412 68,23 69,68 74,37 70,76

88 D. Grela, K. Sapiecha, and J. Strug

Results of the fault injection are close to the results of the mutation testing for all
evaluated test sets. As it can be observe in Table 4 and 5 an average fault coverage
differs from an average mutation score from 0,62% (for OB) to 4,76% (for LA1).
Higher consistency of results was observed in the case of larger systems. For such
systems (OB, TI1, TI2, MS1 or MS2), the difference did not exceed 2%. The results
obtained for the 4 newly added examples further confirm the results presented in the
previous work [5].

Each technique uses its own fault model, thus changes made by mutation operators
and faults injected by SFIBP are completely different kind of faults. Despite the lack
of dependency between mutants and the injected faults, the results of both approaches
are similar (the behavior of a process differs from the expected).

3.4 Execution Time - Results and Discussion

The most significant difference between the development of BPEL processes and the
development of other types of software is the deployment. As far as mutation testing
is concerned, a time of the deployment cannot be neglected, as each mutant needs to
be deployed. Thus, the cost of deploying all mutants may significantly increase the
total cost of applying mutation testing to BPEL processes.

A development of a BPEL process requires several steps to be performed. First, a
coordinator of the process has to be implemented and compiled. The compilation of
the processes includes mainly syntax checkout, and correctness of web-services invo-
cation definition checkout. When the process passes the compilation, it is deployed.
The deployment makes the process available to its users, as it places the process and
its related files (the WSDL files for the process and web-services) onto a server where
the process should reside.

An experiment was performed to see to what extend the deployment of mutants
may affect the total time required for processing (i.e. deploying and executing) the
mutants. The experiment was divided into two parts. The first part reflected the most
pessimistic case of applying mutation testing where each mutant is deployed and ex-
ecuted against one test (although such case is not typical, it helped to determine the
upper time limit). In this part several tests were performed, each consisted in deploy-
ing and executing a fix number of identical versions of an experimental BPEL process
against one test. The tests invoked from 1 to 500 versions of the BPEL process, re-
spectively and the total processing time was measured. The second part reflected ap-
plication of fault injection where only the original process was deployed and then it
was executed against tests several times. Thus, in this part each test consisted in dep-
loying one BPEL process and executing it against a fix number of identical tests. Si-
milarly to the first part the tests processed from 1 to 500 test sets, respectively and the
total processing time was measured.

Fig. 2 shows results of the experiment. The dashed line shows the results obtained
in the first part (mutation testing) and the continuous line represents results obtained
in the second part (fault injection). As it can be seen on the diagram the time required
for performing mutation testing is always higher than the time required for perform-
ing fault injection. Moreover, it grown also faster than in case of applying fault
injection.

 A Fault Injection Based Approach to Assessment of Quality of Test Sets 89

0

200

400

600

800

1000

1200

0 100 200 300 400 500
BPEL processes invocations (1 test)

tim
e

[s
]

mutation testing
fault injection

Fig. 2. BPEL processes deployment and execution time

Although the experiment reflected only the most pessimistic case of applying mu-
tation testing, it was enough to observe the general trends and to see that the deploy-
ment time is a significant part of the total processing time. Thus, application of fault
injection, instead of mutation testing, may speed up testing procedure.

The execution time recorded for the experimental BPEL processes confirm the above
estimations. Table 6 presents, for each of the test sets, the exact execution time of muta-
tion testing (MTt), fault injection (FIt) and it also shows the ratio of both execution
times (MTt/FIt). All BPEL processes were executed on the same hardware and software
configuration (Intel® Core™2 Duo 1.2GHz processor, 2GB RAM, Windows™ XP).

Table 6. Execution time of mutation testing and fault injection

BPEL
proc.

Mutation Testing time
(MTt) [s]

Fault Injection time (FIt)
[s]

MTt/FIt

 TS1 TS2 TS3 TS1 TS2 TS3 TS1 TS2 TS3 aver.
PDO 2311 1963 1444 1652 1304 941 1,40 1,50 1,53 1,479

FRS 1434 1176 918 937 679 493 1,53 1,73 1,86 1,708
OB 7517 6796 4049 4679 3959 2147 1,61 1,72 1,88 1,736
PES 17193 25490 16554 9874 14939 9547 1,74 1,71 1,73 1,725
LA1 239 309 214 194 245 175 1,23 1,26 1,22 1,239
LA2 1140 1482 1028 840 1071 766 1,36 1,38 1,34 1,361
SS 241 245 169 174 178 119 1,38 1,37 1,42 1,394
TS 474 667 481 359 548 364 1,32 1,22 1,32 1,286
MP1 1463 1995 1394 1238 1775 1174 1,18 1,12 1,19 1,164

MP2 1480 2004 1412 1218 1789 1159 1,22 1,12 1,22 1,184

TI1 59089 29128 29396 36932 16815 16932 1,59 1,73 1,74 1,689

TI2 37140 18326 18488 26181 11960 12042 1,41 1,53 1,54 1,495

MS1 11276 14418 11387 7583 9953 7606 1,49 1,45 1,50 1,478

MS2 6335 8089 6407 4406 5713 4410 1,43 1,41 1,45 1,436

Results presenting the execution time of fault injection in contrast to mutation test-
ing for each of the test sets are additionally shown on Fig. 3. For each process the
diagram shows that the time consumes by executing fault injection required from 53%
to 89% of the time required for executing mutation testing.

90 D. Grela, K. Sapiecha, and J. Strug

50

60

70

80

90

100

PDO FRS OB PES LA1 LA2 SS TS MP1 MP2 TI1 TI2 MS1 MS2

BPEL process

%

MT FI_TS1 FI_TS2 FI_TS3

Fig. 3. Percentage comparison of execution times

So, the results proved that the fault injection is much faster than the mutation test-
ing for all the test sets. It required on average about 65% of the time required by mu-
tation based approach (the fault injection approach is about 1,5 times faster). Fault
injection-based approach is particularly cost effective for large systems (e.g. OB, TI1,
TI2) due to the lack of deployment of huge number of mutants. For smaller systems
(e.g. MP1, MP2, LA1, LA2), the results are less effective thus for such systems the
selection of test method is arbitrary.

4 Systematic Fault Injection Approach

The approach presented in this paper, though it assesses the test sets dependably, has
some drawback. It required the user to set the number of fault injections before the
evaluation started. Moreover, the best, most dependable results were obtained when
their number was close to the number of generated mutants. It is of course problemat-
ic, especially if we would like to replace mutation based evaluation of tests quality by
a fault injection based one.

However, detailed inspections of the results pointed out a possible solution to the
problem. It has been observed that during random fault injection some faults were
injected multiple times while others were not used at all. It suggests that a more
systematic and controlled way of injecting faults may overcome some of the
disadvantages.

In a systematic fault injection approach each possible fault is generated only once.
A small experiment was carried out to check whether the systematic approach will
may be beneficial with respect to the currently used random approach.

The PDO and OB processes were chosen for the experiment. Tables 7 and 8 show
the execution time (Table 7) and fault coverage (Table 8) calculated for both
processes by applying each of the approaches. To simplify the comparison between
results obtained for these two examples by applying the random fault injection ap-
proach and the systematic one, the tables included also results presented earlier
(in Tables 5 and 6).

 A Fault Injection Based Approach to Assessment of Quality of Test Sets 91

Table 7. Execution time

BPEL
proc.

Random Fault Injection
time [RFIt] [s]

Systematic Fault Injection
time (SFIt) [s]

RFIt/SFIt

 TS1 TS2 TS3 TS1 TS2 TS3 TS1 TS2 TS3 aver.
PDO 1652 1304 941 541 448 304 3,05 2,91 3,09 3,019

OB 4679 3959 2147 1588 1282 693 2,95 3,09 3,10 3,044

Table 8. Fault coverage for random and systematic fault injection

Random Fault Injection

BPEL process Faults injected Faults detected FC [%]

 TS1 TS2 TS3 TS1 TS2 TS3 Average

PDO 229 179 181 188 78,16 79,04 82,09 79,77
OB 639 582 541 595 91,08 84,66 93,11 89,62
Systematic Fault Injection

BPEL process Faults injected Faults detected FC [%]

 TS1 TS2 TS3 TS1 TS2 TS3 Average

PDO 67 51 53 57 76,12 79,10 85,07 80,09
OB 169 152 146 157 89,94 86,39 92,90 89,74

Although two examples are not enough to reason about efficiency of the systematic

approach, the results suggest that the systematic approach also provides accurate test
evaluation results, but is about 3 times faster than the random approach.

5 Conclusions

Cost effective testing of extensive software systems requires specific approaches and
different technologies adjusted to specific architectures. The experiment proved that
testing based on SFI might be attractive for service oriented architectures (SOA) im-
plemented with the help of BPEL. This is almost as effective as mutation testing but
does not need elaboration of mutants. As the experiment on deployment time estima-
tion shows, in case of mutation testing the deployment time affects the total execution
time much heavier than in case of fault injection. So, for BPEL processes the fault
injection approach is much faster because can be performed at a run-time of the
process. Hence, this might be much more cost effective.

The experiment results show that even random testing detects a wide range of
faults in the processes. Usually these faults are easy detectable ones. Using validation
test sets seems to be more effective than random testing. The more complex is the
process the higher are benefits from the fault injection and using validation test set,
especially for time requirements. This last one is derived at the very beginning of the
development of the system running the process, and thus does not need any extra
effort while testing. The experiment proved that the random approach is an attractive
alternative for mutation testing. However, the newly proposed systematic approach is
also very promising. This approach will be further investigated in the future.

92 D. Grela, K. Sapiecha, and J. Strug

It is also interesting to see whether the fault injection based approach can be an al-
ternative for mutation testing when other object oriented architectures are taken into
account. In our future research more experiments on various types of SOA will be
performed to strengthen the conclusions.

References

1. OASIS, Web Services Business Process Execution Language 2.0, Organization for the
Advancement of Structured Information Standards (2007), http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

2. Offutt, A.J., Untch, R.H.: Mutation testing for the new century. In: Mutation, Uniting the
Orthogonal, pp. 34–44. Kluwer Academic Publishers, Norwell (2001)

3. Woodward, M.R.: Mutation testing — its origin and evolution. Information and Software
Technology 35(3), 163–169 (1993)

4. Strug, J., Strug, B.: Machine Learning Approach in Mutation Testing. In: Nielsen, B.,
Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 200–214. Springer, Heidelberg (2012)

5. Grela, D., Sapiecha, K., Strug, J.: An application of software fault injection for assessment
of quality of test sets for business processes orchestrating web-services. In: Proceedings of
the 8th International Conference On Evaluation of Novel Approaches to Software Engi-
neering (ENASE 2013), Angers, France, pp. 56–62 (2013)

6. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault Injection Techniques and Tools. IEEE Comput-
er 30(4), 75–82 (1997)

7. Dong, W.-L., Yu, H., Zhang, Y.-B.: Testing BPEL-based web service composition using
high-level Petri nets. In: EDOC 2006: Tenth IEEE International Enterprise Distributed Ob-
ject Computing Conference, Hong Kong, China (2006)

8. Yan, J., Li, Z., Yuan, Y., Sun, W., Zhang, J.: BPEL4WS unit testing: Test case generation
using a concurrent path analysis approach. In: ISSRE 2006: 17th International Symposium
on Software Reliability Engineering, Raleigh, North Carolina, USA, pp. 75–84 (2006)

9. Yuan, Y., Li, Z., Sun, W.: A graph-search based approach to BPEL4WS test generation.
In: ICSEA 2006: International Conference on Software Engineering Advances, Papeete,
Tahiti, French Polynesia, p. 14 (2006)

10. Sapiecha, K., Grela, D.: Test scenarios generation for certain class of processes defined in
BPEL language. In: Annales UMCS - Informatica, vol. 8(2), pp. 75–87 (2008)

11. Sapiecha, K., Grela, D.: Automating test case generation for requirements specification for
processes orchestrating web services. In: Information Systems Analysis and Specification,
Barcelona, Spain. 10th International Conference on Enterprise Information Systems
(ICEIS), vol. 1, pp. 381–384 (2008)

12. Wagner, S., Gericke, J., Wiemann, M.: Multi-Dimensional Measures for Test Case Quali-
ty. In: IEEE International Conference on Software Testing Verification and Validation
Workshop, ICSTW 2008 (2008)

13. Farooq, U., Lam, C.P.: Evolving the Quality of a Model Based Test Suite. In: International
Conference on Software Testing, Verification and Validation Workshops, ICSTW 2009
(2009)

14. Estero-Botaro, A., Palomo-Lozano, F., Medina-Bulo, I.: Mutation operators for WS-BPEL
2.0. In: ICSSEA 2008: 21th International Conference on Software & Systems Engineering
and their Applications, Paris, France (2008)

 A Fault Injection Based Approach to Assessment of Quality of Test Sets 93

15. Reinecke, P., Wolter, K.: Towards a multi-level fault injection test-bed for service-oriented
architectures - requirements for parameterisations. In: 27th International Symposium on
Reliable Distributed Systems, Napoli, Italy (2008)

16. Juszczyk, L., Dustdar, S.: Programmable fault injection test-beds for complex SOA. In:
Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470,
pp. 411–425. Springer, Heidelberg (2010)

17. MuBPEL - WS-BPEL Testing Tools,
http://neptuno.uca.es/redmine/projects/
sources-fm/wiki/MuBPEL

18. Mayer, P., Lubke, D.: Towards a BPEL unit testing framework. In: Proceedings of the
workshop on Testing, analysis and verification of web services and applications, TAV-
WEB 2006, pp. 33–42. ACM, New York (2006)

19. University of Cadiz WS-BPEL Composition Repository,
http://neptuno.uca.es/redmine/projects/wsbpel-comp-repo

20. Benso, A., Prinetto, P.: Fault injection techniques and tools for embedded systems relia-
bility evaluation. Kluwer Academic Publishers, Holland (2003)

21. Durães, J., Madeira, H.: Software Faults - A field data Study and a practical approach.
Trans. of Software Engineering (2006)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 94–109, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Comparing Two Class Composition Approaches

Fernando Barbosa1 and Ademar Aguiar2

1 Escola Superior de Tecnologia, Instituto Politécnico de Castelo Branco,
Av. do Empresário, Castelo Branco, Portugal

fsergio@ipcb.pt
2 INESC TEC and Faculdade de Engenharia da Universidade do Porto,

Rua Dr. Roberto Frias, Porto, Portugal
ademar.aguiar@fe.up.pt

Abstract. The presence of code replication can be a consequence of a lack in
the composition mechanisms where classes are insufficient to reuse the code
that is replicated. To extend the reuse of pieces of code some proposals have
been made that try to compose classes using those pieces of code. In this paper
we compare two of those approaches: Traits and Roles. We compare their com-
positions mechanisms and how we can use them to reduce code replication. To
study the extent to which they reduce code replication we conducted a case
study using the JHotDraw framework where we detect and remove code repli-
cation using each technique. Results from the case study show that roles have
an advantage over traits, as they are capable of removing more code replication.

Keywords: Roles, Traits, Code Reuse, Modularity, Composition, Inheritance.

1 Introduction

Code clones, identical blocks of code, are a hint that the system needs to be refactored
[1]. However code clones appear in most systems, specially in large ones [2,3]. Code
clones impair maintenance and evolution of a system [3]. One problem is the incon-
sistence in updating, where a bug in a code block is propagated to all its clones, and is
fixed in most but not all occurrences. Code clones also have negative effects in
program evolution, comprehensibility and cost [4].

One origin of clones is the lack of composition mechanisms [2,3,4]. This makes it
harder to deal with crosscutting concerns - concerns that a class must deal with but are
not its main concern. When dealing with the same concern classes tend to use similar
code. This is more frequent in languages without multiple inheritance, but multiple
inheritance has so many practical problems that it has been left out of recent languag-
es, like Java and C#.

Some clones could be avoided if a language had other composition mechanisms.
Several proposals are available, like multiple inheritance, mixins [5], traits [6,7],
features [8] and aspects [9].

Traits can be seen as a set of methods that provide common behavior. When a class
uses a trait its methods are added to the class. The class also provides glue code to
compose the several traits. Traits cannot store state. State is maintained by the class
that uses the trait.

 Comparing Two Class Composition Approaches 95

When a class plays a role the role methods are added to the class interface. Thus an
object’s behavior is defined by the composition of all roles its class declares to play.
A class can configure the role to its needs by configuring types and methods names.
Roles support state and visibility control.

Composing classes using traits or roles can minimize the code replication due to
limitations of the composition mechanism. To assess this we conducted an experiment
to account how both approaches could be used to remove the replicated code found in
the JHotDraw Framework. We briefly present the two approaches then compare them
showing how they deal with conflict resolution, composition order, etc.

We identified code clones using a clone detecting tool, and grouped them accord-
ing to their concerns. We then tried to develop a role and a trait for each concern, thus
removing the clones. We developed roles for nearly all detected concerns, but
couldn’t do the same for traits.

We can summarize our paper contributions as: a comparison of roles and traits
features, ways of reducing replicated code using traits and roles; a comparison of how
roles and traits tackle the problem of reducing duplicated code and identifying which
clones they can eliminate; a case study showing how each approach reduces repli-
cated code in an open source system.

This paper is organized as follows. Section 2 presents Traits and Section 3 presents
roles. In Section 4 we compare the two approaches. Section 5 shows how to remove
clones using roles and using traits and section 6 presents the JHotDraw framework
case study. Related work is presented in section 7 and section 8 concludes the paper.

2 Traits in a Nutshell

Traits are units of code reuse and a class can be constructed using several traits [6,7].
Traits have a flattening property: a class can be seen indifferently as a collection of
methods or as composed by traits. The fact that the class can be seen as a whole
promotes understanding and the fact that it can be composed promotes reuse.

In Traits a class can be constructed by using inheritance and by adding traits. The
class must supply all state variables and glue code. The glue code is the set of me-
thods that the trait requires the class to provide (for example, accessor methods for the
state variables). Thus a class can be decomposed into a set of coherent features and
the glue code connects the various features together.

According to [6], Traits have the following properties:

─ A trait provides methods that implement behavior
─ A trait requires a set of methods that serve as parameters for the provided

behavior.
─ Traits do not specify state variables, and methods provided by traits never access

state variables.
─ Classes and traits can be composed from traits.
─ The composition order of traits is irrelevant.
─ Conflicting methods must be explicitly resolved.
─ Trait composition does not affect the semantics of a class: the meaning of the class

is the same as it would be if all of the methods obtained from the trait(s) were de-
fined directly in the class.

─ Similarly, trait composition does not affect the semantics of a trait.

96 F. Barbosa and A. Aguiar

A class can redefine its superclass’s and its trait’s methods. Conflicts arise when
unrelated traits have methods with the same signature. The conflict must be solved
explicitly by redefining the conflicting method in the class. The conflict is thus re-
solved locally. To access the conflicting methods Traits support aliases. It works by
giving an alias to a method so it can be used in the class without trouble. To prevent
conflicts from occurring in the first place traits also support the exclusion of methods.

Some attempts to bring traits into Java-like languages have been made [10,11]. To
compare the Trait approach to the Role approach we used Chai [11]. Chai is an exten-
sion to the Java language and so is our JavaStage language, so we can argue that the
differences between the final code is due integrally to each approach and not to the
underlying language. The traits examples in this paper are presented using the Chai
syntax and derive from the example shown in [11].

Figure 1 shows trait declaration in Chai and its use by classes. We can see re-
quirement of methods in the TEmptyCircle: it offers a draw method and requires the
class to provide the drawPoint and getRadius, with the specified signature. The same
methods are also required by TFilledCircle. The code also shows a Circle class,
representing a circle, and two subclasses composed by traits and that inherit from
Circle. The ScreenEmptyCircle class is an empty circle that can be drawn in the
Screen, so it uses TEmptyCircle and TScreenShape. The methods required by TEmp-
tyCircle are supplied by Circle and TScreenShape, so ScreenEmptyCircle does not
need to provide them itself. PrintedFilledCircle is a filled circle than can be printed in
a printer, so it inherits from Circle and uses TFilledCircle and TPrintedShape. TFil-
ledCircle required methods are supplied by Circle and TPrintedShape. In the TPrin-
tedShaped case the class needed to alias the trait method for the required name.

For more information on Traits we refer to [6,7] and for Chai we refer to [11].

class Circle {
 int radius;
 int getRadius() { ... }
}
trait TEmptyCircle {

requires {
 void drawPoint(int x, int y);

 int getRadius();
 }
 void draw() { ... }
}
trait TFilledCircle {

requires {
 void drawPoint(int x, int y);

 int getRadius();
 }
 void draw() { ... }
}

trait TScreenShape {
 void drawPoint(int x, int y) {...}
}
trait TPrintedShape {
 void printPoint(int x, int y){...}
}
class ScreenEmptyCircle
 extends Circle

uses TEmptyCircle,TScreenShape { }
class PrintedFilledCircle
 extends Circle
 uses TFilledCircle,TPrintedShape {
 alias {
 void printPoint(int x, int y)
 from TPrintedShape as
 void drawPoint(int x, int y)
 }
}

Fig. 1. Trait example (adapted from (Smith, 2005)

3 Roles in a Nutshell

We use roles as a basic construct from which we can compose classes. Roles provide
the basic behaviour for concerns that the classes must deal with but are not their main

 Comparing Two Class Composition Approaches 97

concern. Thus we can better modularize the construction of classes. We must men-
tion that we use roles statically as defined by Riehle in [12] where he uses them as
static entities for modelling purposes. We do not use roles as dynamic entities that can
be attached or detached from an object at runtime. Since there is much work on the
use of dynamic roles [13,14,15] this must be mentioned to avoid confusion.

To program with roles we use JavaStage, an extension to Java [16]. Examples in
this paper use the JavaStage syntax. Figure 2 shows the role version of the trait exam-
ple of Figure 1.

A role may define methods and fields including access levels. A class can play any
number of roles, and can even play the same role more than once. A class playing a
role is a player of that role. When a class plays a role all the non private methods of
the role are added to the class. To play a role the class uses a plays directive and gives
the role an identity. To refer to the role the class uses its identity. Roles can inherit
from roles and can also play other roles.

A role may require the player to have specific methods. Those methods are stated
in a requirement list, which indicates who must supply the method and the method
signature. The Performer keyword indicates that the supplier is the player. Performer
is used within a role as a place-holder for the player’s type. This enables roles to
declare fields and parameters of the type of the player.

JavaStage has a method renaming mechanism that allows the renaming of methods
with a simple configuration. Each name may have three parts: a configurable one and
two fixed. Both fixed parts are optional. The configurable part is bounded by #, like in
the example: fixed#configurable#fixed.

The name configuration is done by the class playing the role in the plays clause.
To play the role the class must define all configurable methods.

class Circle {
 int radius;
 int getRadius() { ... }
}
role EmptyCircle {

requires Performer implements
 void #draw#(int x, int y);
requires Performer implements
 int getRadius();

 void draw() { ... }
}
role FilledCircle {

requires Performer implements
 void #draw#(int x, int y);
requires Performer implements
 int getRadius();

 void draw() { ... }
}

role ScreenShape {
 void drawPoint(int x,int y){ ... }
}
role PrintedShape {
 void printPoint(int x,int y){ ... }
}
class ScreenEmptyCircle
 extends Circle {
 plays EmptyCircle(draw= drawPoint
) emptyCircle;
 plays ScreenShape screenShp:
}
class PrintedFilledCircle
 extends Circle {
 plays FilledCircle(
 draw = printPoint) fillCircle;
 plays PrintedShape;
}

Fig. 2. Role example, equivalent to the traits’ example in Figure 1

It’s possible to declare several versions of a method using multiple definitions of
the configurable name. This way, methods with the same structure are defined once.

Role members have all the visibility control available to classes and a protected
role member is accessible to its players and subroles. A protected class member is

98 F. Barbosa and A. Aguiar

also accessible to roles. A class can reduce the visibility of the role members. If a
class uses protected in the plays clause then all the public role methods are imported
to the class as protected.

Class defined methods always take precedence over role methods and role methods
take precedence over inherited methods. Conflicts may arise when a class plays roles
that have methods with the same signature. When conflicts arise the compiler issues a
warning. Developers can handle the conflict by redefining that method and calling the
intended method. This is not mandatory because the compiler uses, by default, the
method of the first role in the plays clause order.

JavaStage supports role constructors but does not allow direct role instantiation.
For more information on roles and JavaStage we refer to [16].

4 A Comparison between Roles and Traits

For comparing roles and traits we follow a few key points that both approaches must
deal with and describe how each handled the situation.

Unit of Composition. In roles the unit of composition is the role while in traits it is
the trait.

Inheritance. Roles and traits are targeted for single inheritance languages so there is
no multiple inheritance support. Roles can play other roles and traits can use other
traits. Both approaches also support a class using the same unit several times. In a
class, to access the features of the superclass both approaches use the super keyword.
In a role, however, the super keyword refers to the super role, as roles can inherit
from other roles. In a trait it refers to the superclass of the composing class.

State Support. Roles can have state and it does not cause any conflict because to
access role state the class must use the role identity thus no conflicts arise. Traits do
not support state. Proposals to solve this introduced a significant complexity to the
trait model and encapsulation problems [17]. When modelling a concept we, often,
need to express state. For example, to model a container we need a structure for stor-
age. Forcing the composing class to supply that structure is rather breaking the
container’s encapsulation.

Conflict Resolution. Both approaches follow the same rules for method overriding.
The class overrides methods from roles/traits and roles/traits override the class inher-
ited methods. Conflicts may arise when methods with the same signature are provided
by more than one unit. In traits the conflict must be resolved explicitly while in roles
the method of the first played role is used (there is a compiler warning). In both cases
it is the class composer that decides which method to use. In traits he can choose to
exclude some methods so there is no conflict or he can redefine the method and use
aliases to refer to each of the conflicting methods. In roles there is no exclusion and
the class composer must redefine the conflicting method if he wishes to override the
rule of using the method of the first role.

 Comparing Two Class Composition Approaches 99

Composition Order. The order in which traits are composed is symmetric so order of
composition is irrelevant. The same applies for the roles when there are no conflicting
methods. When there are conflicting methods the order of the plays will dictate which
method is used. This, however, is not mandatory as discussed previously.

Method Renaming vs. Aliases. There is a fundamental difference between aliases in
traits and method renaming in the roles. The traits aliases are used only by the class
for distinguishing conflicting methods, the class interface is not affected. In roles the
renaming affects the class interface. This means that a class may be able to tailor its
interface to suit its needs and not be limited by the role interface. The renaming
mechanism of the roles also allows renaming several methods in one go, while aliases
in traits are made one by one. Roles renaming scheme can provide multiple versions
of a method. Traits aliases can be applied to any method, while on roles only the
configurable methods can be configured.

Flat and Composite View. Both approaches support a flat view of the class as well
as a composite view. Thus a class can be seen as a set of methods, the flat view, or as
being composed by several units of composition, the composite view. The class inter-
face in both views is exactly the same. The main difference between the two is that a
trait method is seen just like a class method, and a role method is always a role
method and each reference to other methods will always refer to role methods. For
example, suppose a trait that defines the methods foo and bar, where bar calls foo. If
the class overrides the foo method then the trait bar method will call the foo method
on the class not on the trait. The same situation is handled differently by roles. If the
method bar of the role is called then it will call the foo method on the role and not on
the class. For a role method to call a class method it must do it explicitly using the
perfomer keyword.

Visibility Control. Traits have no visibility control. Freezable traits [18] compensate
this by allowing classes to freeze/unfreeze methods, i.e., declare a method as private
(freeze) or making it public (defrost). But there is no way to express access con-
straints between class and trait. For example, fields should be accessed directly only
by the owner’s code. Traits do no support this. Roles on the other hand support all
Java access levels, so a specific interface between role and class is possible.

Stating Requirements. The use of generic types is a useful feature in most lan-
guages, especially for dealing with object collections. Traits can require methods from
the class that uses them, but cannot impose restriction on generic types it interacts
with. The requires statement of roles indicates the method signature and which type it
is required from. This allows roles not only to require methods from the class but also
from other collaborators types.

5 Removing Clones

We want to assess if the extra units of composition roles and traits provide are capable
of reducing code clones. To remove code clones refactorings [1] are normally used.

100 F. Barbosa and A. Aguiar

The ones most used for removing code clones are: Extract Method; Pull Up Method, Pull
Up Field, Extract Superclass, Extract Class and Form Template Method [19, 20, 21].

We identified three clone types where roles or traits can be applied to remove code
clones that fall outside the scope of these refactorings or produce better results. The
clone types all have method granularity, so if actual clones do not have method granu-
larity other refactorings must be used. Clone types are: Clones with identical code;
Clones with similar code but using different types; Clones with similar code but using
different method names with or without different types.

Clones with Identical Code. These clones have identical methods and/or fields. This
could be handled by the Extract Class refactory, but we argue that this is one situation
where roles/traits produce better results. Extract Class forces the original class to pro-
vide delegate methods to the newly created class. With roles and traits those methods
are not required. We put the code in the role/trait and then compose the class using it.

The application of roles and traits is shown in Figure 3. The figure represents two
classes with replicated code. Both classes have different, unrelated, superclasses so
Pull Up Method and Extract Superclass cannot be used. The replicated code was
placed in a trait and a role.

Both solutions are similar, the difference is that roles support state so they do not
require the getX and setX methods and can even provide them. Traits require the class
to supply those methods.

Clones with Similar Code but Using Different Types. These could be handled by
Extract Class, using type parameters. For example we can build a Company class that
manages workers and we can build a PolyLine that stores points. Both classes will
have code for adding and removing workers/points, so there will be replicated code
between them, only the stored type is different. We can create a unit responsible for
this management. We show this example in Figure 4. For simplicity and space we
used arrays and do not show the management code.

trait TContainer<T>{

requires { T[] getAll(); }
void add(T t){...}
void remove(T t){ ... }

}
class Company uses TContainer<Worker>{
 Worker arr[];

Worker[] getAll(){ return arr; }
}
class PolyLine uses TContainer<Point>{
 Point arr[];

Point[] getAll() { return arr; }
}

role Container<T> {
 private T arr[];

void add(T t){...}
void remove(T t){...}
T[] getAll() { return arr; }

}
class Company {
 plays Container<Worker>cWorker;
}
class PolyLine {
 plays Container<Point> cPoint;
}

Fig. 3. Removing identical clones with different types using roles and traits

 Comparing Two Class Composition Approaches 101

class A extends SuperA {
 private int x;
 int getX() { return x; }
 void setX(int x){ this.x = x; }
 void foo() { // more code
 x += 14;
 }
 void bar() { ... }
}

class B extends SuperB {
 private int x;
 int getX() { return x; }
 void setX(int x){ this.x = x;}
 void foo() { // more code
 x += 14;
 }
 void bar() { ... }
}

trait TOne {
 requires{ int getX();
 void setX(int x);}
 void foo() { // more code
 setX(getX() + 14);
 }
 void bar() { ... }
}
class A extends SuperA uses Tone {
 private int x;
 int getX() { return x; }
 void setX(int x){ this.x = x; }
}
class B extends SuperB uses Tone {
 private int x;
 int getX() { return x; }
 void setX(int x){ this.x = x; }
}

role ROne {
 private int x;
 int getX() { return x; }
 void setX(int x){ this.x = x; }
 void foo(){ // more code
 x += 14;
 }
 void bar() { ... }
}
class A extends SuperA {
 plays ROne r1;
}
class B extends SuperB {
 plays ROne r1;
}

Fig. 4. Removing identical clones using roles and traits

There is a limitation in traits that may render a solution impossible: traits cannot
require methods from other sources other than the class that uses them. A possible
example is the Observer pattern [22], where subjects maintain a list of observers and
notify them when changes occur using an update method. The observer management
is similar to the container problem just described, so the same solution can be applied.
The problem lies in calling the update method. For calling this method the Trait must
specify the type of the observer otherwise it cannot call a method on it. Roles can
solve this by requiring the Observer type to implement an update method, as shown in
Figure 5, where a Figure class notifies FigureObservers whenever it is changed. The
solution reuses the container role and just adds the notify method.

role Subject<T> extends Container<T>{
 requires T implements void update();
 void notify() {
 for(T t : getAll()) t.update();

}
}
class Figure {
 plays Subject<FigureObserver> figSubject;
}

Fig. 5. Defining requirements on collaborators types

Clones with Similar Code but Using Different Method Names with or without
Different Types. These clones have identical code but the names of the methods are

102 F. Barbosa and A. Aguiar

not identical. The used types may also be different. For example we could change the
Company and Polyline example and change them so that each had different names.
The company would have addWorker and removeWorker methods while PolyLine
would have addPoint and removePoint.

Traits aliases do not cope with these changes as they only affect the methods inter-
nally. With traits we would have to uniform the methods names and then apply the
previous topic solution. We show how this situation is handled by roles in Figure 6.
The Company class also shows how we can use the multiple method versions to
produce an addWorker and an addEmployee method.

role Container<T> {
 private T arr[];
 void add#Thing#(T t) { ... }
 void remove#Thing#(T t) {...}
}
class Company {

plays Container<Worker>(Thing = Worker, Thing = Employee) cWorker;
}
class PolyLine {

plays Container<Point>(Thing = Point) cPoint;
}

Fig. 6. Removing identical clones with different methods and types using roles

6 Case Study

To compare how roles and traits are capable of reducing code replication we applied
both to the JHotDraw framework. The framework defines the basic structure for a
GUI based editor with tools, different views, user-defined graphical figures, etc.

6.1 Case Study Setup

We searched for replicated code with CCFinderX [23], a clone detection tool used in
aspect mining works [24]. We filtered clones inside the same file (same class), thus
eliminating clones that could use Extract Method or similar. We want to assess traits
and roles capability to reduce the code clones derived from compositional limitations,
so we only want clones that are not removable with traditional refactorings.

The first result included 271 clones, reduced to 146 after filtering. These were
manually inspected. 41 false clones were removed leaving a final 105 sets. Some
clones only had similar structures, but as they focused on the same concern we did
consider them. This will explain some unresolved concerns.

We grouped clones according to their concerns. This helped us decide which
role/trait to develop. We identified 42 concerns, but 5 were removed (2 could be eas-
ily refactored, 1 was deprecated code and 2 were classes pending substitution).

We’ve decided not to change any class interface or any concern implementation, so
the framework is unchanged. This can restrict roles/traits development but we want to
assess how we can reduce code replication, not redesign the framework. Roles were
developed and compiled with JavaStage [16] and traits developed with Chai [11].

 Comparing Two Class Composition Approaches 103

Results are shown on table 1. For each concern it shows how many clones were as-
sociated and how many classes were affected. It also shows the number of lines of
code (LOC) that the clone had, the lines of code that were used by Roles and Traits,
and the ratio between the various solutions.

LOC are a good measure on the effort that each approach requires, because both
use Java as the underlying language, the syntax of both solutions is analogous and we
made an effort to uniform the LOC count. We counted as LOC the requirements
statements that traits and roles use. We also counted as LOC the roles’ plays directive
and the traits’ uses directive. This overhead can lead a small clone to have more LOC
in the solution than in the original form but the fact that there is no clone gives the
system a great modularity advantage.

In the cases where roles removed clones and traits did not, the table shows the roles
features that allowed them to remove the clone. For the concerns that neither
technique worked it states the reason why they failed.

6.2 Results Analysis

Table 1 shows that from the 38 concerns only 8 (21%) concerns were not resolved
with roles. Traits failed to resolve 15 (39%) concerns. It also shows that traits were
not able to resolve the clones that roles could not. The final outcome is better than
these numbers indicate as we will discuss.

We can see from table 1 that roles never had worst results than traits, succeeding in
7 concerns where traits failed and fared better in 13 more concerns. This indicates that
roles are, at least, as good as traits in reducing replicated code.

Concerns Resolved with Roles and Traits. Comparing the LOC ratio of both ap-
proaches, in those concerns both resolved, one finds that in average roles only have
83% of the traits code and 68% of the original code, so the effort of developing the
role system seems smaller.

In 6 concerns we were able to reuse roles from the role library developed in [25].
From those, 3 are solvable with traits but we had to develop a special trait for each
concern and could not reuse them from a library. This explains the great difference in
LOC in these concerns.

Supporting state is the role feature responsible for the fewer code used in roles.
The class instead of having to declare each field and provide getters and setters would
have the field and methods defined in the role. This is no small advantage not only in
LOC but also in terms of abstraction and encapsulation.

The multiple method version also enabled roles to have less code, because a single
method definition can provide several methods.

Concerns Resolved by Roles only. Roles were able to resolve 7 concerns that traits
did not. From these, 3 used roles from the library. Requiring and renaming methods
from other participants is the feature that enables roles to solve more clones.

From all the concerns roles resolved, two exhibit a higher LOC than the original
implementation: “Handle creation” and the “Polygon locator”.

104 F. Barbosa and A. Aguiar

Table 1. Identified concerns with the number of associated clones and affected classes. It also
shows the LOC for each approach and respective ratios.

clone class Original Roles Roles/ Traits Roles/ Traits/
LOC LOC Original LOC Traits Original

Drawing Handles 8 15 64 40 63% 40 100% 63%

Setting up the undo activity before
executing a Command

2 8 56 44 79% 44 100% 79%

BringToFront/SendToBack Commands 1 2 20 12 60% 12 100% 60%

Handle creation 11 20 70 87 124% 87 100% 124%

Drawing polygons 1 2 12 11 92% 11 100% 92%

Palette Listener 1 2 20 17 85% 17 100% 85%

DisplayBox persistence 2 5 35 12 34% 12 100% 34%

DisplayBox handling 6 8 58 29 50% 60 48% 103%

DesktopListener Subject 2 3 63 45 71% 55 82% 87%

Changing connections 3 3 98 53 54% 65 82% 66%

Finding connectable figure 1 3 98 53 54% 65 82% 66%

Testing command executability 5 7 14 14 100% 15 93% 107%

Floating text holder 2 2 47 36 77% 47 77% 100%

DrawingViewListener Subject 2 4 63 26* 41% 47 55% 75%

Setting text in a text Figure 2 2 36 22 61% 32 69% 89%

Enumerator 1 3 33 11* 33% 37 30% 112%

Figure Listener that resends notifications 2 3 35 23* 66% 37 62% 106%

Menu enabling 1 2 20 14 70% 14 100% 70%

Version control 1 2 12 9 75% 9 100% 75%

Selected button manager 1 2 18 12 67% 16 75% 89%

Text attributes management 2 2 206 120 58% 149 81% 72%

Updating DrawingView Strategy 1 2 29 26 90% 32 81% 110%

Connection insets computing 1 3 10 7 70% 7 100% 70%

Undo/Redo Commands 1 2 32 31 97%

Changing connection handles 1 2 20 19 95%

Polygon and PolyLine Handles 3 2 32 28 88%

Tools and Commands Dispatchers 6 4 89 32* 36%

Figure/Handle and Enumerator 1 2 33 2* 6%

Polygon locator 1 2 13 20 154%

Drawing editor 1 3 54 28* 52%

Reason

Desktop initial configurations 1 2 required too much configuration

Persistence (read/write) 3 6 similar but not quite identical code

UndoActivity 13 24 Undoactivity inner classes constructors

Creating UndoActivity 14 18 after other roles was just a line of code

Handle manipulation starting action 3 5 required too much configuration

Point is inside Figure 3 6 code too small

DrawingView Listener 1 2 perfomance issues

Mouse motion handling 1 2 code too small

br rp g

R
es

ol
ve

d
by

 R
ol

es
 a

nd
 T

ra
its

Concern

U
nr

es
ol

ve
d

br rp g

rp

br rp

br rp

rp

mv br rp

R
es

ol
ve

d
on

ly
 b

y
R

ol
es

Roles features

*= reused role from library, br= block renaming, g= generics, mv= multiple versions,
rp= requires from participant, s= state.

 Comparing Two Class Composition Approaches 105

The “Handle creation” concern deals with the creation of handles for each figure.
We placed the creation of the handles in a handle creator class that has a method for
the handle creation for each class. That and the role overhead lead to more lines of
code than the original implementation. But the role has an advantage over the original
code: it can dynamically change the handle creator.

The “Polygon Locator” uses an anonymous class. In JavaStage roles cannot be ap-
plied to anonymous classes so we had to develop an inner class to play that role and
then use it.

Unresolved Concerns. A surprising result is that for the 2 concerns with the most
clone sets and class involved neither technique works. This is because they are clones
in the structure and not on the code itself. The ”Creating undo activity” creates an
UndoActivity object for each tool and command. Each has an UndoActivity inner
class. Because inner class constructors have different parameters in number and types,
roles and traits could not resolve this concern. Another example is the “Handle ma-
nipulation starting action”: code is similar but not identical: methods have different
parameters. Another example is “Persistence”: because figures must be streamed they
have a write and read methods with similar, but not identical, structures.

Another unresolved concern is “DrawingView listener”. The replicated code is re-
defining the original method for performance issues.

The unresolved “Desktop Initial configuration” deals with a Desktop’s panel initia-
lization. Each initialization is similar so we could configure a role/trait for each. But it
would be easier to know how to configure the scroll pane.

Other unresolved concern was a single line like getSomeObject().doSomething().
The first method returns different objects that call different methods, so role configu-
ration would take more LOC.

We would count only 4 unresolved concerns if we had not considered some con-
cerns as clones.

6.3 Threats to Validity

We only considered a single system. However, the discussion in section 5 hints that
results from other systems would also have roles performing better than traits. We
need to do the same test with more systems to fully assess this.

The clone detection settings can affect the clones detected which would lead to dif-
ferent concerns. But we needed to reduce the amount of clone sets to a manageable
number or there would be a greater number of false clones. We even used less than
the limit of 30 tokens recommended in [23] to limit false clones. So we believe that
our settings provided a good number of clones/concerns that make this case study
results valid.

There could be biased results from having the same developers doing the role and
traits approach. After all the authors are more experienced in roles than in traits. This
could bias the results towards roles. To prevent this, we opted to base the study on
clone detection and not on developing an alternate system from scratch.

The effort used to develop each approach was not taken into account. For that we
would need to assess how teams of developers, each using a different approach,
tackled the same problem. While the LOC number gives a hint on the effort required,

106 F. Barbosa and A. Aguiar

and roles have an advantage, it does not tell the all story as already mentioned. How-
ever it does give some insights. One insight is that the use of state reduces the effort
to develop roles by reducing the amount of glue code one must write to use traits.
This also gives roles a better modelling capability because a role can model a concept
that has state and behaviour as opposed to the traits’ behaviour only modelling. We
also reused roles from our role library, but traits equivalent could not be placed in a
traits library, which means that the effort of developing roles was less than that of
traits.

7 Related Work

There are a number of dynamic role approaches like Object Teams [14], EpsilonJ [15]
and PowerJava [26]. These are known for their capability to attach and detach roles
from objects at runtime, something that [17] also supports for traits. ObjectTeams
introduces the notion of team. A team represents a context in which several classes
collaborate to achieve a common goal. Even though roles are first class entities they
are implemented as inner classes of a team and are not reusable outside that team.
Roles are also limited to be played by a specific type. PowerJava has a similar con-
cept – the institution. When an object wants to interact with an institution it must
assume one of the roles the institution offers. In EpsilonJ roles are also defined as
inner classes of a context. Roles are assigned to an object via a bind directive. It uses
a requires directive similar to roles and traits. It also offers a replacing directive to
rename methods names.

Feature Oriented Programming (FOP) [8] decomposes the system into features.
FOP relies on a step-wise refinement of applications by adding new features or refin-
ing existing ones. To compose a system we just state which features it has. The com-
position is made automatically with tool support, like AHEAD [27]. This is a more
powerful technique than roles or traits. AHEAD uses several tools for composing the
code and extra files for configuring the composition step. Roles/Traits are program-
ming languages that statically compose classes using only source code. AHEAD can
be used to compose classes. For example, we can develop a class that defines the
basic behaviour of a class, undistinguishable from a normal Java class, except that it
has a feature keyword indicating to which feature it is associated to. We can then
construct several refinements to that class. Each refinement indicates the added fea-
ture and the class it refines.

Package Templates (PT) [28] use traditional java packages with a twist. Classes
defined in these packages are only directly available when the package is instantiated.
When instantiated the classes can be tailored to the context of use by: getting addi-
tions; elements can be renamed; type parameters are given actual types. This tailoring
is similar to roles as roles also support renaming and type parameters. PT may also
impose restrictions on the various types via a constraints declaration that resembles
roles requirement list. Classes in a PT can be merged with classes from other PT and
can be used more than once in the same merging (like roles/traits can be used multiple
times). The main difference between PT and roles is that PT, like traits, rely on inhe-
ritance to do the merging and roles rely on inner classes. Name clashes are resolved

 Comparing Two Class Composition Approaches 107

via renaming, which can be applied to fields and methods. The renaming cannot be
used on the constraints. JavaStage allows the renaming of required methods

Aspect-Oriented Programming is an approach that tries to modularize crosscutting
concerns [9]. AOP defines pointcuts to identify points in the executing program that
may trigger a different execution path and advices that indicate the new execution
path. While the modularization of crosscutting concerns is the flagship of AOP sever-
al authors disagree [29,30]. The effects of pointcuts and advices, especially when
several aspects have similar pointcuts, may be unpredictable. Thus simple changes in
the class code can have unsought effects [31].

The obliviousness feature of AOP means that a class is aspect unaware so aspects
can be plugged or unplugged as needed. But it introduces problems in comprehensi-
bility [32]. To understand the system we must know the classes and which aspects
affect each class. This is a major drawback when maintaining a system, since the
dependencies aren’t always explicit and there isn’t an explicit interface between them.

With roles/traits all dependencies are explicit and the system comprehensibility is
increased [12]. Roles do not have the obliviousness of AOP because the class is aware
of the roles it plays.

Caesar [33] uses aspect technology to modularize crosscutting concerns and en-
hance reuse of aspects leading to a greater reduction of repeated code. Caesar uses an
Aspect Collaboration Interface that decouples aspects binding and implementations
by defining them in a separated module. Caesar does not allow method renaming.

Jiazzi [34] is based on Units [35] and aims at building systems out of reusable
components integrated with the language. Jiazzi has two types of units: Atoms (com-
posed by java classes) and Compounds (composed by atoms or other compounds).
Jiazzi supports the addition of features to classes without editing their source code.
Roles/Traits could be used within Jiazzi to specify these new features. A trait/role
could be used to add the same behavior for different classes in the same unit, or for
the same class but in different units.

8 Conclusions

We compared how the role and traits approaches deal with the composition problems
that they aim to diminish by doing a study on how each can reduce replicated code,
especially the replicated code that derives from lack of compositional mechanisms in
single inheritance languages.

The outcome of the study showed that roles are more reusable than traits, because
roles support state, have a renaming mechanism that tunes them to the class purpose
and can even provide several versions of a method in a simple way. We validated our
approach developing roles for the JHotDraw framework and eliminated nearly all
duplicated code. Doing the same test for traits showed that they cannot eliminate all
the clones roles were capable of. We even reused some roles from our role library
showing that they are really reusable.

108 F. Barbosa and A. Aguiar

References

1. Fowler, M.: Refactoring: Improving the design of existing code. Addison-Wesley, Boston
(1999)

2. Mayrand, J., Leblanc, C., Merlo, E.: Experiment on the Automatic Detection of Function
Clones in a Software System Using Metrics. In: Proc. of the International Conference on
Software Maintenance (1996)

3. Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone Detection Using Abstract
Syntax Trees. In: Proc. of Int. Conf. on Software Maintenance (1998)

4. Roy, C., Cordy, J.: A Survey on Software Clone Detection Research. Tech. Report 2007-
451, School of Computing, Queen’s University at Kingston (2007)

5. Bracha, G., Cook, W.: Mixin-Based Inheritance. In: Proceedings of the OOPSLA/ECOOP,
pp. 303–311. ACM Press, Ottawa (1990)

6. Ducasse, S., Schaerli, N., Nierstrasz, O., Wuyts, R., Black, A.: Traits: A mechanism for
fine-grained reuse. Trans. on Programming Languages and Systems (2004)

7. Scharli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of behavior.
In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274. Springer, Heidelberg
(2003)

8. Apel, S., Kästner, C.: An Overview of Feature-Oriented Software Development. Journal of
Object Technology 8(5) (July-August 2009)

9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 327–354. Springer, Heidelberg (2001)

10. Quitslund, P., Black, A.: Java with traits - improving opportunities for reuse. In: Proceed-
ings of the 3rd International Workshop on Mechanisms for Specialization, Generalization
and Inheritance (2004)

11. Smith, C., Drossopoulou, S.: chai: Traits for java-like languages. In: Gao, X.-X. (ed.)
ECOOP 2005. LNCS, vol. 3586, pp. 453–478. Springer, Heidelberg (2005)

12. Riehle, D.: Framework Design: A Role Modeling Approach, Ph. D. Thesis, Swiss Federal
Institute of technology, Zurich (2000)

13. Steimann, F.: On the representation of roles in object-oriented and conceptual modeling.
Data & Knowledge Engineering 35(1), 83–106 (2000)

14. Herrmann, S.: Programming with Roles in ObjectTeams/Java. In: AAAI Fall Symposium:
“Roles, An Interdisciplinary Perspective” (2005)

15. Tamai, T., Ubayashi, N., Ichiyama, R.: Objects as Actors Assuming Roles in the Environ-
ment. In: Choren, R., Garcia, A., Giese, H., Leung, H.-f., Lucena, C., Romanovsky, A.
(eds.) SELMAS. LNCS, vol. 4408, pp. 185–203. Springer, Heidelberg (2007)

16. Barbosa, F., Aguiar, A.: Using Roles to Model Crosscutting Concerns. In: Aspect Oriented
Software Devlopment (AOSD3), Fukuoka, Japan, March 24-29 (2013)

17. Van Cutsem, T., Bergel, A., Ducasse, S., De Meuter, W.: Adding State and Visibility Con-
trol to Traits Using Lexical Nesting. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 220–243. Springer, Heidelberg (2009)

18. Ducasse, S., Wuyts, R., Bergel, A., Nierstrasz, O.: User-changeable visibility: Resolving
unanticipated name clashes in traits. In: Proceedings OOPSLA, New York, NY (2007)

19. Fanta, R., Rajlich, V.: Removing Clones from the Code. Journal of Software Maintenance:
Research and Practice 11(4), 223–243 (1999)

20. Komondoor, R., Horwitz, S.S.: Semantics-Preserving Procedure Extraction. In: Proceed-
ings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2000), Boston, MA, USA, pp. 155–169 (2000)

 Comparing Two Class Composition Approaches 109

21. Higo, Y., Kamiya, T., Kusumoto, S., Inoue, K.: Refactoring Support Based on Code Clone
Analysis. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 220–233.
Springer, Heidelberg (2004)

22. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

23. Kamiya, T., Kusumoto, S., Inoue, K.: Ccfinder: a multilinguistic tokenbased code clone
detection system for large scale source code. IEEE Trans. Soft. Eng. 28(7) (2002)

24. Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., Tourwe, T.: A qualitative
comparison of three aspect mining techniques. In: Proc. of the Inter. Workshop on Pro-
gram Comprehension, Washington (2005)

25. Barbosa, F., Aguiar, A.: Roles as Modular Units of Composition. In: 7th International
Conference on Evaluation of Novel Approaches to Software Engineering, Wroclaw, Pol-
and, pp. 29–30 (June 2012)

26. Baldoni, M., Boella, G., van der Torre, L.: Interaction between Objects in powerJava.
Journal of Object Technologies 6, 7–12 (2007)

27. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
TSE 30(6) (2004)

28. Krogdahl, S., Møller-Pedersen, B., Sørensen, F.: Exploring the use of Package Templates
for flexible reuse of Collections of related Classes. Journal of Object Technology 8(7)
(2005)

29. Steimann, F.: The paradoxical success of aspect-oriented programming. In: Proceedings of
the 21st Annual Conference OOPSLA 2006 (2006)

30. Przybyłek, A.: Systems Evolution and Software Reuse in Object-Oriented Programming
and Aspect-Oriented Programming. In: Bishop, J., Vallecillo, A. (eds.) TOOLS 2011.
LNCS, vol. 6705, pp. 163–178. Springer, Heidelberg (2011)

31. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features using AspectJ. In:
11th Inter. Conference of Software Product Line, Kyoto, Japan (2007)

32. Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari, N., Cai, Y., Rajan, H.: Mod-
ular Software Design with Crosscutting Interfaces. IEEE Software 23(1), 51–60 (2006)

33. Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. In: Proc. of AOSD 2003,
pp. 90–99 (2003)

34. McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: new-Age Components for Old-Fashioned Ja-
va. In: OOPSLA 2001 (2001)

35. Flatt, M., Felleisen, M.: Units: Cool modules for HOT languages. In: Proc. of PLDI (May
1998)

Testing Distributed Communication Protocols
by Formal Performance Monitoring

Xiaoping Che and Stephane Maag

Institut Mines-Telecom/Telecom SudParis, CNRS UMR 5157,
9 rue Charles Fourier, 91011 Evry Cedex, France

{xiaoping.che,stephane.maag}@telecom-sudparis.eu

Abstract. Performance testing of communicating protocols is a qualitative and
quantitative test of a system, aiming at verifying whether the performance re-
quirements of the protocol have been satisfied under certain conditions. On the
other hand, conformance testing of communicating protocols is a functional test
which verifies whether the behaviours of the protocol satisfy defined require-
ments. It raises the interesting issue of how to accurately formalize the perfor-
mance requirements and how to converge these two kinds of tests by using the
same formal approach. In this paper, we present a novel logic-based approach to
distributively test the conformance and performance of a protocol, through real
execution traces and formally specified properties. In order to evaluate and assess
our methodology, we have designed a distributed testing framework and devel-
oped a prototype for testing network protocols. Finally, the relevant verdicts of
experiments with a set of IMS/SIP properties and discussions are provided.

Keywords: Performance Testing, Distributed Framework, Formal Methods.

1 Introduction

In the recent years, many studies on checking the behavior of an Implementation Under
Test (IUT) have been performed. Important works are about the record of the observa-
tion during run-time and its comparison with the expected behavior defined by either a
formal model [1] or a set of formally specified properties [2] obtained from the require-
ments of the protocol. The observation is performed through Points of Observation
(PO) set on monitored entities composing the System Under Test (SUT). These ap-
proaches are commonly identified as Passive Testing approaches (or monitoring). With
these techniques, the protocol messages observed in execution traces are generally mod-
eled and analyzed through their control parts [3]. In [4] and [5], a data-centric approach
is proposed to test the conformance of a protocol by taking account the control parts of
the messages as well as the data values carried by the message parameters contained in
an extracted execution trace.

However, within the protocol testing process, conformance and performance testing
are often associated. They are mainly applied to validate or verify the scalability and
reliability of the system. Many benefits can be brought to the testing process if both
inherit from the same approach. Our main objective is then to propose a novel pas-
sive distributed performance testing approach based on our formal conformance testing

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 110–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Testing Distributed Communication Protocols by Formal Performance Monitoring 111

technique [5]. Although some crucial works have been done in conformance testing
area [6], they study run-time verification of properties expressed either in linear-time
temporal logic (LTL) or timed linear-time temporal logic (TLTL). Different from their
work focusing on testing functional properties based on formal models, our work con-
centrates on formally testing non-functional properties without formal models. Also
note that, our work is absorbed in the performance testing, not in performance evalua-
tion. While performance evaluation of network protocols focuses on the evaluation of its
performance, performance testing approaches aim at testing performance requirements
that are expected in the protocol standard.

Generally, the performance testing characteristics are: volume, throughput and la-
tency [7], where volume represents ”total number of transactions being tested,”
throughput represents ”transactions per second the application can handle” and latency
represents ”remote response time.” In this work, we firstly extend a proposed methodol-
ogy to present a passive testing approach for checking the performance requirements of
communicating protocols. Furthermore, we define a formalism to specify performance
and time related requirements represented as formulas tested on real protocol traces.
Finally, since several protocol performance requirements need to be tested on different
entities during a common time period, we design a distributed framework for testing our
approach on run-time execution traces.

Our paper’s primary contributions are:

– A formal approach is proposed for formally testing performance requirements of
Session Initiation Protocol (SIP).

– A distributed testing framework is designed based on an IP Multimedia Subsystem
(IMS) environment.

– Our approach is successfully evaluated by experiments on the Session Initiation
Protocol.

The reminder of the paper is organized as follows. In Section 2, a short review of the
related works are provided. In Section 3, a brief description of the syntax and semantics
used to describe the tested properties is presented. In Section 4, our framework has been
implemented and relevant experiments are depicted in Section 5. It has been performed
through a real IMS framework to test SIP properties. The distributed architecture of
the IMS allows to assess our approach efficiently. Finally, we conclude and provide
interesting perspectives in Section 6.

2 Related Works

While a huge number of papers are dedicated to performance evaluation, there are very
few works tackling performance testing. We however may cite the following ones.

Many studies have investigated the performance of distributed systems. A method for
analyzing the functional behavior and the performance of programs in distributed sys-
tems is presented in [8]. In the paper, the authors discuss event-driven monitoring and
event-based modeling. However, no evaluation of the methodology has been performed.

112 X. Che and S. Maag

In [9], the authors present a distributed performance-testing framework, which aimed
at simplifying and automating service performance testing. They applied Diperf to two
GT3.2 job submission services, and several metrics are tested, such as Service response
time, Service throughput, Offered load, Service utilization and Service fairness.

Besides, in [10], the authors propose an approach based on selecting performance
relevant use-cases from the architecture designs, and execute them as test cases on the
early available software. Finally, they conclude that the software performance testing
of distributed applications has not been thoroughly investigated. An approach to per-
formance debugging for distributed systems is presented in [11]. This approach infers
the dominant causal paths through a distributed system from traces. In addition, in [12],
a new distributed continuous quality assurance process is presented. It uses in-house
and in-the field resources to efficiently and reliably detect performance degradation in
performance-intensive systems.

In [13], the authors present a monitoring algorithm SMon, which continuously re-
duces network diameter in real time in a distributed manner. Through simulations and
experimental measurements, SMon achieves low monitoring delay, network tree, and
protocol overhead for distributed applications. Similarly, in [14], they present a perfor-
mance monitoring tool for clusters of PCs which is based on the simple concept of ac-
counting for resource usage and on the simple idea of mapping all performance related
state. They identify several interesting implementation issued related to the collection of
performance data on a Clusters of PCs and show how a performance monitoring tool can
efficiently deal with all incurring problems. Nevertheless, these two last approaches do
not provide a formalism to test a specific requirement. Our approach allows to formally
specified protocol performance requirements to be tested on real distributed traces in
order to check whether the tested performance is as expected by the protocol standard.

3 Formal Approach

3.1 Basics

A communication protocol message is a collection of data fields of multiple domains.
Data domains are defined either as atomic or compound [5]. An atomic domain is de-
fined as a set of numeric or string values. A compound domain is defined as follows.

Definition 1. A compound value v of length n > 0, is defined by the set of pairs
{(li, vi) | li ∈ L ∧ vi ∈ Di ∪ {ε}, i = 1...n}, where L = {l1, ..., ln} is a predefined
set of labels and Di are data domains. A compound domain is then the set of all values
with the same set of labels and domains defined as 〈L,D1, ..., Dk〉.

Once given a network protocol P , a compound domain Mp can generally be defined
by the set of labels and data domains derived from the message format defined in the
protocol specification/requirements. A message of a protocol P is any element m ∈
Mp. For each m ∈ Mp, we add a real number tm ∈ R

+ which represents the time
when the message m is received or sent by the monitored entity.

Testing Distributed Communication Protocols by Formal Performance Monitoring 113

Example 1. A possible message for the SIP protocol, specified using the previous defi-
nition could be

m = {(method, ‘INVITE’), (time, ‘644.294133000’),
(status, ε), (from, ‘alice@a.org’), (to, ‘bob@b.org’),
(cseq, {(num, 7), (method, ‘INVITE’)})}

representing an INVITE request from alice@a.org to bob@b.org. The value of time
‘644.294133000’ (t0+644.294133000) is a relative value since the PO started its timer
(initial value t0) when capturing traces.

A trace is a sequence of messages of the same domain containing the interactions of
a monitored entity in a network, through an interface (the PO), with one or more peers
during an arbitrary period of time. The PO also provides the relative time set T ⊂ R

+

for all messages m in each trace.

3.2 Syntax and Semantics of Our Formalism

In our previous work, a syntax based on Horn clauses is defined to express properties
that are checked on extracted traces. We briefly describe it in the following. Formulas
in this logic can be defined with the introduction of terms and atoms, as it follows.

Definition 2. A term is defined in BNF as term ::= c | x | x.l.l...l where c is a con-
stant in some domain, x is a variable, l represents a label, and x.l.l...l is called a selector
variable.

Definition 3. A substitution is a finite set of bindings θ = {x1/term1, ..., xk/termk}
where each termi is a term and xi is a variable such that xi �= termi and xi �= xj if
i �= j.

Definition 4. An atom is defined as

A ::= p

k︷ ︸︸ ︷
(term, ..., term)
| term = term
| term �= term
| term < term
| term+ term = term

where p(term, ..., term) is a predicate of label p and arity k. The timed atom is a par-

ticular atom defined as p

k︷ ︸︸ ︷
(termt, ..., termt), where termt ∈ T .

Example 2. Let us consider the message m in Example 1. A time constraint on m can
be defined as ‘m.time < 550’. These atoms help at defining timing aspects as mentioned
in Section 3.1.

The relations between terms and atoms are stated by the definition of clauses. A
clause is an expression of the form A0 ← A1 ∧ ... ∧ An where A0 is the head of the
clause and A1 ∧ ... ∧ An its body, Ai being atoms.

114 X. Che and S. Maag

A formula is defined by the following BNF:

φ ::= A1 ∧ ... ∧ An | φ → φ | ∀xφ | ∀y>xφ
| ∀y<xφ | ∃xφ | ∃y>xφ | ∃y<xφ

where A1, ..., An are atoms, n ≥ 1 and x, y are variables.
In our approach, while the variables x and y are used to formally specify the message

of a trace, the quantifiers commonly define “it exists” (∃) and “for all” (∀). Therefore,
the formula ∀xφ means “for all messages x in the trace, φ holds”.

The semantics used in our work is related to the traditional Apt–Van Emdem–
Kowalsky semantics for logic programs [15], from which an extended version has been
provided in order to deal with messages and trace temporal quantifiers. Based on the
above described operators and quantifiers, we provide an interpretation of the formulas
to evaluate them to � (‘Pass’), ⊥ (‘Fail’) or ‘?’ (‘Inconclusive’).

We formalize the timing requirements of the IUT by using the syntax above de-
scribed, and the truth values {�,⊥,?} are provided to the interpretation of the obtained
formulas on real protocol execution traces. We can note that most of the performance
requirements are based on relative conformance requirements. For testing some of the
performance requirements, both conformance and performance formulas as well as a
‘�’ operator are used to resolve eventual confusing verdicts.

Example 3. The performance requirement “the message response time should be less
than 5ms” (can be formalized to formula ψ) is based on the conformance requirement
“The SUT receives a response message” (can be formalized to formula ϕ).

Once a ‘�’ truth value is given to a performance requirement, without doubt, a ‘Pass’
testing verdict should be returned for both the performance requirement and its relative
conformance requirement. However, if a ‘⊥’ or ‘?’ truth value is returned for a perfor-
mance requirement, we can not distinguish whether it does not satisfy the performance
requirement or it does not satisfy the relative conformance requirement. For instance,
in Example 3, if a ‘⊥’ is given to this formalized performance requirement ψ, we can
not distinguish whether it is owing to “The message response time is greater than 5ms”
or “The SUT did not receive a response message”. Moreover, once we have a ‘?’ result,
it is tough to resolve it by seeking the real cause. For solving these problems, we define
the function eval� providing a truth value based on the evaluation of ϕ and ψ.

Definition 5. Let ϕ and ψ be two formulas, eval� is defined as follows:

eval�(ϕ, ψ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

� if eval(ϕ, θ, ρ) = �
and eval(ψ, θ, ρ) = �

? if eval(ϕ, θ, ρ) = ?

and eval(ψ, θ, ρ) = ?

⊥ otherwise

where eval(ϕ, θ, ρ) expresses the evaluation of a formula ϕ, θ represents a substitution
and ρ a finite trace. Due to a lack of space, we do not herein present our already pub-
lished algorithm evaluating a formula ϕ on trace ρ. However, the interested reader may

Testing Distributed Communication Protocols by Formal Performance Monitoring 115

refer to our previous publication [5]. As above mentioned, some of the performance
requirements need to be tested in a distributed way. We focus on this aspect in the next
section.

4 Distributed Framework of Performance Testing

4.1 Framework

For the aim of distributively testing conformance and performance requirements, we
use a passive distributed testing architecture. It is defined based on the standardized
active testing architectures [16] (master-slave framework) in which only the PO are
implemented.

As Figure 1 depicts, it consists to one global monitor and several sub testers. In order
to capture the transporting messages, the sub testers are linked to the nodes to be tested.
Once the traces are captured, they will be tested through the predefined requirement
formulas, and the test results will be sent back to the global monitor. On the other side,
the global monitor is attached to the server to be tested, aiming at collecting the traces
from the server and receiving statistic results from sub testers. The collected aggregate
results will be analyzed. This should intuitively reflects the real-time conformance and
performance condition of the protocol during testing procedures.

Fig. 1. Distributed testing architecture Fig. 2. Sequence Diagram between Testers

Initially, as the Figure 2 shows, the global monitor sends initial bindings (formalized
requirement formulas, testing parameters) to the sub testers. When the testers receive
these information, they initialize capturing packets and save the traces to readable files
during each time slot. Once the readable files are generated, the testers will test the
traces through the predefined requirements formulas and send the results back to the
global monitor. The analyzer mentioned here is a part of the Global Monitor, for pre-
cisely describing the testing procedure, we illustrate it separately. This testing procedure
will keep running until the global monitor returns the Stop command.

116 X. Che and S. Maag

4.2 Synchronization

Several synchronization methods are provided in distributed environment [17]. Besides,
Network Time Protocol (NTP) [18] is the current standard for synchronizing clocks on
the Internet. Applying NTP, time is stamped on packet k by the sender i upon transmis-
sion to node j (T k

ij). The receiver j stamps its local time both upon receiving a packet
(Rk

ij), and upon re-transmitting the packet back to source (T k
ji). The source i stamps

its local time upon receiving the packet back (Rk
ji). Each packet k will eventually have

four time stamps on it T k
ij , Rk

ij , T k
ji and Rk

ji. The computed round-trip delay for packet
k is RTT k

ij = (Rk
ij − T k

ij) + (Rk
ji − T k

ji). Node i estimates its own clock offset relative
to node j’s clock as (1/2)[(Rk

ij − T k
ij) + (Rk

ji − T k
ji)].

NTP is designed for synchronizing a set of entities in the networks. In our frame-
work, relative timers are used for all the testers. However, the mismatches between these
timers are ineluctable, especially the mismatches between the global monitor timer and
sub tester timers would affect the results, when real-time performance is being ana-
lyzed under the influence of network events. Accordingly, the global monitor and sub
testers need to be synchronized, and synchronizations between neighbor testers are not
required. For satisfying the needs, slight modifications have been made to the transmis-
sion process. Rather than exchanging the four time stamps in NTP, two time duration
are computed and exchanged. We choose an existing successful transaction from the
captured traces, since the messages are already tagged with time stamps when captured
by the monitors, the redundant tag actions can be omitted.

We use Ts to represent the service time of the server (time for reacting when re-
ceiving a message), and T1 represents the time used for receiving a response in the
client side. Benefiting from capturing traces from both Server and Client sides, the sum
(Rk

ij −T k
ij)+ (Rk

ji −T k
ji) can be transformed to (Rk

ij −T k
ji)− (T k

ij −Rk
ji) = T1 −Ts.

Although relative timers are still used for each device, they are merely used for com-
puting the time duration. After capturing the traces, two sets of messages generated:
Setserver=[Reqi, Resi, ... ,Reqi+n, Resi+n] and Setclient=[Reqj , Resj , ... ,Reqj+m,
Resj+m | j ≤ i, j + m ≤ i + n]. As we mentioned before, a successful transaction
(Reqk, Resk| k ≤ j + m) will be chosen from the Setclient for the synchronization.
The time duration T1 of the transaction can be easily computed and sent to the global
monitor with the testing results. Once the chosen transaction sequence has been found in
the Setserver , the time duration Ts can be obtained, and the time offset (1/2)(T1−Ts)
between the global monitor and a sub tester can be handled. In the experiments, the av-
erage time used for the synchronization is about 5ms, which provides satisfying results
for our method.

4.3 Testing Algorithm

The testing algorithms are described in Figure 4.3. The algorithm on the left describes
the behaviors of sub testers when receiving different commands. When the tester re-
ceives a ”Start” command, firstly it initializes the testing parameters (line 3). Then it
starts capturing the traces and tests them (as mentioned in Section 3) when traces are
translated to readable xml files (lines 20-32). Finally the results are sent back to the
global monitor with the chosen transaction for synchronization.

Testing Distributed Communication Protocols by Formal Performance Monitoring 117

Require: (Tester) Received Command
Ensure: Statistic Logs
1: while Listening Port n do
2: if Receive = Start & Initial bindings then
3: Set Initial bindings to formulas, TimeSlot

4: Capture(), Test()
5: Send log(i) to Global Monitor {Send log file to

the Global Monitor}
6: Pending
7: end if
8: if Receive = Continue then
9: Capture(), Test()
10: Send log(i) to Global Monitor
11: Pending
12: end if
13: if Receive = Stop then
14: return
15: else
16: Send UnknownError to Global Monitor
17: Pending;
18: end if
19: end while
20: Procedure Capture(timeslot)
21: for (timer=0;timer≤time maximum;timer++) do
22: Listening Port (5060) & Port (5061) {Capture

packets}
23: if timer%timeslot==0 then
24: Buffer to Tester(i).xml {Store the packets in

testable formats}
25: end if
26: end for
27: Procedure Test(formulas)
28: for (j=0;j≤max;j++) do
29: Test formula(j) through Tester(i).xml {Test the

predefined requirement formulas}
30: Record results to log(i) {Save the results to log

file}
31: Record first transaction to log(i) {Use the first

transaction for synchronization}
32: end for

Require: (Global Monitor) Log Files
Ensure: Performance Graphs
1: Capture(), Test()
2: Display graphs
3: for (i=0;i<tester-number;i++) do
4: Send Initial bindings to Tester[i] {Send initial bind-

ings to all sub testers}
5: end for
6: while Listening do
7: if command==Continue then
8: Send Continue to Tester[i]
9: else
10: Send Stop to Tester[i]
11: end if
12: Synchronize(Log[i].transaction)
13: Analyze(Log[i].results)
14: Display graphs
15: end while
16: Procedure Synchronize(Log[i].transaction)
17: for (a=0; a≤Message-Number, quit!=1; a++) do
18: find Client.Request(k) in Server.Request(a)
19: if (exists==True) then
20: for (b=a; b≤Message-Number, quit!=1; b++)

do
21: find Client. Response(k) in Server. Re-

sponse(b)
22: if (exists==True) then
23: Calculate Ts

24: Handle timer deviation T1−Ts
2

25: quit=1
26: else
27: Return transaction error
28: quit=1
29: end if
30: end for
31: end if
32: end for

Fig. 3. Algorithm of Tester and Global Monitor

The other algorithm sketches the global monitor behaviors and the synchroniza-
tion function. Initially, the monitor starts to capture and test as the other testers do.
Meanwhile, it sends initial bindings to all the sub testers and waits for their responses
(lines 3-6). Once the server receives the response, it reacts according to the content
of the response, and the synchronization is made during this time (lines 7-15). In the
synchronize() procedure, the monitor finds the chosen transaction in its captured
traces, and rectifies the time offset (1/2)(T1 − Ts).

5 Experiments

5.1 Environment

The IMS (IP Multimedia Subsystem) is a standardized framework for delivering IP
multimedia services to users in mobility. It aims at facilitating the access to voice or

118 X. Che and S. Maag

Fig. 4. Core functions of IMS framework

multimedia services in an access independent way, in order to develop the fixed-mobile
convergence. The core of the IMS network consists on the Call Session Control Func-
tions (CSCF) that redirect requests depending on the type of service, the Home Sub-
scriber Server (HSS), a database for the provisioning of users, and the Application
Server (AS) where the different services run and interoperate. Most communication
with the core network and between the services is done using the Session Initiation
Protocol [19]. Figure 4 shows the core functions of the IMS framework and the proto-
cols used for communication between the different entities.

The Session Initiation Protocol (SIP) is an application-layer protocol that relies on
request and response messages for communication, and it is an essential part for com-
munication within the IMS framework. Messages contain a header which provides ses-
sion, service and routing information, as well as an body part to complement or extend
the header information. Several RFCs have been defined to extend the protocol to allow
messaging, event publishing and notification. These extensions are used by services of
the IMS such as the Presence service [20] and the Push to-talk Over Cellular (PoC)
service [21].

For our experiments, traces were obtained from SIPp [22]. SIPp is an Open Source
test tool and traffic generator for the SIP protocol, provided by the Hewlett-Packard
company. It includes a few basic user agent scenarios and establishes and releases
multiple calls with the INVITE and BYE methods. It features the dynamic display of
statistics on running tests, TCP and UDP over multiple sockets or multiplexed with
retransmission management and dynamically adjustable call rates. The traces obtained
from SIPp contain all communications between the client and the SIP core. Tests were
performed using a prototype implementation of the formal approach above mentioned,
using algorithms introduced in the previous Section.

Testing Distributed Communication Protocols by Formal Performance Monitoring 119

5.2 Architecture

As Figure 5 shows, a distributed architecture is performed for the experiments. It con-
sists on one central server and several nodes. Global Monitor and sub testers are imple-
mented to the server and nodes respectively, each node carries the traffic of numerous
clients. Due to the limitation of pages, we here only illustrate the detailed results of the
server and two sub testers (1&2).

Fig. 5. Environment

5.3 Tests Results

In our approach, the conformance and performance requirement properties are formal-
ized to formulas. These formulas will be tested through the testers. After evaluating
each formula φ on a trace ρ, Np, Nf and Nin will be given to global monitor as the
results, which represent the number of ‘Pass’, ‘Fail’ and ‘Inconclusive’ verdicts respec-
tively. Besides, tslot represents the time used for capturing a trace ρ, which is the time
duration between the last and the first captured messages, where ρ = {m0, ...,mn}. We
may write:

Np(φ) =
∑

[eval(φ, θ, ρ) = ‘�’]

Nf (φ) =
∑

[eval(φ, θ, ρ) = ‘⊥’]

Nin(φ) =
∑

[eval(φ, θ, ρ) = ‘?’]

tslot = mn.time−m0.time

We classify the conformance and performance requirements into three sets: Session
Establishment indicators, Global indicators and Session Registration indicators.

120 X. Che and S. Maag

Session Establishment Indicators. In this set, properties relevant to session establish-
ment are tested. Conformance requirementsϕa1 , ϕa2 (“Every INVITE request must be
responded”, “Every successful INVITE request must be responded with a success re-
sponse”) and performance requirementψa1 (“The Session Establishment Duration should
not exceed Ts = 1s”) are tested. They can be formalized as the following formulas:

ϕa1 =

{
∀x(request(x) ∧ x.method = ‘INVITE’
→ ∃y>x(nonProvisional(y) ∧ responds(y, x)))

ϕa2 =

{
∀x(request(x) ∧ x.method = ‘INVITE’

→ ∃y>x(success(y) ∧ responds(y, x)))

Table 1. Every INVITE request must be responded, Every successful INVITE request should be
responded with a success response and The Session Establishment Duration should not exceed Ts

ϕa1 ϕa2 ψa1

Tr No.Msg Pass Fail Incon Pass Fail Incon Pass Fail Incon
1 1164 101 0 0 85 16 0 85 16 0
2 3984 339 0 0 270 69 0 270 69 0
3 6426 520 0 0 425 95 0 425 95 0
4 7894 615 0 0 473 142 0 473 142 0
5 7651 600 0 0 477 123 0 477 123 0
6 7697 604 0 0 492 112 0 490 114 0
7 7760 607 0 0 491 166 0 490 167 0
8 7683 601 0 0 492 159 0 491 160 0
9 7544 587 2 0 464 123 0 461 126 0
10 7915 620 0 0 487 133 0 487 133 0

ψa1 =

⎧⎪⎨
⎪⎩
∀x(request(x) ∧ x.method = ‘INVITE’

→ ∃y>x(success(y) ∧ responds(y, x)

∧withintime(y, x, Ts)))

By using these formulas, the performance indicators of session establishment are
defined as:

– Session Attempt Number: Np(ϕa1)
– Session Attempt Rate: Np(ϕa1) / tslot
– Session Attempt Successful Rate: Np(ϕa1) / Np(ϕa2)
– Session establishment Number: Np(ϕa2)
– Session establishment Rate: Np(ϕa2) / tslot
– Session establishment Duration: Np(ψa1).

The results of sub tester1 are illustrated in Table 1. A number of ‘Fail’ verdicts can be
observed when testing ϕa2 and ψa1 . This could indicate that during the testing time, the
server refused some ‘INVITE’ requests and some session establishments exceeded the
required time. Nonetheless, all of them can be perfectly detected by using our approach.
Figure 6 illustrates the successful session establishment rates of the server and two sub

Testing Distributed Communication Protocols by Formal Performance Monitoring 121

testers during the testing times. Benefited from the synchronization process, from the
figure, we can observe that the curve of sub tester1 begins 1.5s later than the others.
In other words, the sub tester1 started the testing process 1.5s later than the others, it
might be caused by the delay of transportation or the slow response of the processor.
However, it successfully shows the usage of our synchronization to precisely reflect the
results of testing in distributed environment.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Testing Time (s)

S
es

si
on

 E
st

ab
lis

he
m

en
t R

at
es

 /s
ec

on
d

SubTester1
SubTester2
GlobalMonitor

Fig. 6. Session Establishment Rates

Global Parameters. In this set, relevant properties to general network performance
are tested. Conformance requirement ϕb1 (“Every request must be responded”) and
performance requirement ψb1 (“Every request must be responded within T1 = 0.5s”)

are used for the test, and they can be formalized as it follows.

ϕb1 =

{
∀x(request(x) ∧ x.method! = ‘ACK’

→ ∃y>x(nonProvisional(y) ∧ responds(y, x)))

ψb1 =

⎧⎪⎨
⎪⎩
∀x(request(x) ∧ x.method! = ‘ACK’

→ ∃y>x(nonProvisional(y) ∧ responds(y, x)

∧withintime(x, y, T1)))

By using these formulas, several performance indicators related to general packet anal-
ysis can be formally described.

– Packet Throughput: Np(ϕb1) / tslot
– Packet loss Number: Nf (ϕb1)
– Packet loss Rate: Nf (ϕb1) / Np(ϕb1) + Nf (ϕb1) + Nin(ϕb1)
– Packet Latency: Np(ψb1)

The testing results of sub tester1 are shown in Table 2 and Figure 7. From Figure 7,
during the time 130s to 200s, an upsurge of request rates can be observed. This one is
mainly due to the burst increase of requests in sub tester2 especially since the request
throughput of sub tester1 remains steady. However, compared to Figure 6, no evident in-
crement of session establishment can be observed during the same time (130s to 200s).
Indeed, during a session establishment, ‘INVITE’ requests represent the major part of
the total number of requests. It raises a doubt about the source of the increase on these
requests. With this doubt we step over to test the session registration properties.

122 X. Che and S. Maag

Table 2. Every request must be responded & Every request must be responded within T1 = 0.5s

ϕb1 ψb1

Trace No.of msg Pass Fail Incon Pass Fail Incon
1 1164 258 0 0 258 0 0
2 3984 899 0 0 899 0 0
3 6426 1481 0 0 1481 0 0
4 7894 1858 0 0 1858 0 0
5 7651 1793 0 0 1791 2 0
6 7697 1802 0 0 1795 7 0
7 7760 1829 0 0 1820 9 0
8 7683 1799 0 0 1792 7 0
9 7544 1782 4 0 1766 20 0

10 7915 1855 2 0 1855 2 0

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Testing Time (s)

R
eq

ue
st

s
T

hr
ou

gh
pu

t /
se

co
nd

SubTester1
SubTester2
GlobalMonitor

Fig. 7. Request Throughput

Session Registration. In this set, properties on session registration are tested. Confor-
mance requirement ϕc1 (“Every successful REGISTER request should be with a suc-
cess response”) and performance requirement ψc1 (“The Registration Duration should
not exceed Tr = 1s”) are used for the tests.

ϕc1 =

{
∀x(request(x) ∧ x.method = ‘REGISTER’

→ ∃y>x(success(y) ∧ responds(y, x))))

ψc1 =

⎧⎪⎨
⎪⎩
∀x(request(x) ∧ x.method = ‘REGISTER’

→ ∃y>x(success(y) ∧ responds(y, x)

∧withintime(x, y, Tr)))

By using these formulas, some performance indicators related to session registration
can be formally described.

– Registration Number: Np(ϕc1)

– Registration Rate: Np(ϕc1)/tslot
– Registration Duration: Np(ψc1)

Testing Distributed Communication Protocols by Formal Performance Monitoring 123

The results of sub tester1 are shown in Table 3 and Figure 8. As Figure 8 depicts, there
do exists an increment of registration requests during 130s to 200s. But these increased
requests are not sufficient enough for eliminating the previous doubt, since deviation
still exists on the number of requests. Take the peak rate at 160s for example, the server
throughput nearly reaches to 600 requests/s in Figure 7, while in Figure 8 and 6, the
sum of two throughput is only over 200 requests/s, even counting the ‘BYE’ requests,
the source of the 300 other requests/s can not be defined by this analysis.

Table 3. Every successful REGISTER request should be with a success response & Registration
Duration

ϕc1 ψc1

Trace No.of Msg Pass Fail Incon Pass Fail Incon
1 1164 105 0 0 105 0 0
2 3984 340 0 0 340 0 0
3 6426 520 0 0 520 0 0
4 7894 614 0 0 614 0 0
5 7651 602 0 0 602 0 0
6 7697 603 0 0 599 4 0
7 7760 609 0 0 597 12 0
8 7683 602 0 0 596 6 0
9 7544 593 2 0 579 16 0

10 7915 619 2 0 619 2 0

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Testing Time (s)

R
eg

is
tr

at
io

n
R

at
es

 /s
ec

on
d

SubTester1
SubTester2
GlobalMonitor

Fig. 8. Registration Rates

Nevertheless, when thinking about packet losses, our test-bed may be led to a high
rate of requests with low effectiveness. In order to confirm this intuition, we check
the test results of ‘Request packet loss rate’ property. The results are illustrated in the
Figure 9. As expected, there is a high rate packet loss both in the Global monitor and
sub tester2 during the time internal [130s,200s]. By taking, for instance, the same 160s
sample, almost 50% of the requests are lost. It means that the actual effective throughput
should be the half number of the previous test results. This finally allows to define
the source of the 300 other requests/s. This also successfully shows the usage of our
indicators for analyzing abnormal conditions such as burst throughput, high rate packet
loss, etc.

124 X. Che and S. Maag

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Testing Time (10s)

P
er

ce
nt

ag
e

of
 P

ac
ke

t L
os

s

GlobalMonitor
SubTester1
SubTester2

Fig. 9. Packet loss Rate

6 Perspectives and Conclusions

This paper introduces a novel approach to passive distributed conformance and per-
formance testing of network protocol implementation. This approach allows to define
relations between messages and message data, and then use such relations in order to
define the conformance and performance properties that are evaluated on real proto-
col traces. The evaluation of the property returns a Pass, Fail or Inconclusive result,
derived from the given trace. To verify and test the approach, we design several SIP
properties to be evaluated by our approach. Our methodology has been implemented
into a distributed framework which provides the possibility to test individual nodes of a
complex network environment, and the results from testing several properties on large
traces collected from an IMS system have been obtained with success.

Furthermore, instead of simply measuring the global throughput and latency, we
extended several performance measuring indicators for SIP. These indicators are used
for testing the conformance and performance of SIP in a distributed network. The real
time updated results displayed in the screen can precisely reflect the performance of
the protocol in different network conditions. Consequently, extending more indicators
and building a standardized performance testing benchmark system for protocols would
be the work we will focus on in the future. In that case, the efficiency and processing
capacity of the system when massive sub testers are performed would be the crucial
point to handle, leading to an adaptation of our algorithms to more complex situations.

References

1. Lee, D., Miller, R.: Network protocol system monitoring-a formal approach with passive
testing. IEEE/ACM Transactions on Networking 14(2), 424–437 (2006)

2. Lalanne, F., Maag, S.: A formal data-centric approach for passive testing of communication
protocols. IEEE / ACM Transactions on Networking (2012)

3. Hierons, R.M., Krause, P., Luttgen, G., Simons, A.J.H.: Using formal specifications to sup-
port testing. ACM Computing Surveys 41(2), 176 (2009)

4. Lalanne, F., Che, X., Maag, S.: Data-centric property formulation for passive testing of com-
munication protocols. In: Proceedings of the 13th IASME/WSEAS, ACC 2011/MMACTEE
2011, pp. 176–181 (2011)

Testing Distributed Communication Protocols by Formal Performance Monitoring 125

5. Che, X., Lalanne, F., Maag, S.: A logic-based passive testing approach for the validation of
communicating protocols. In: Proceedings of the 7th International Conference on Evaluation
of Novel Approaches to Software Engineering, ENASE 2012, Wroclaw, Poland, pp. 53–64
(2012)

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for ltl and tltl. ACM Transactions
on Software Engineering and Methodology 20, 14 (2011)

7. Weyuker, E.J., Vokolos, F.I.: Experience with performance testing of software systems: Is-
sues, an approach, and case study. IEEE Trans. Software Eng. 26, 1147–1156 (2000)

8. Hofmann, R., Klar, R., Mohr, B., Quick, A., Siegle, M.: Distributed performance monitoring:
Methods, tools and applications. IEEE Transactions on Parallel and Distributed Systems 5,
585–597 (1994)

9. Dumitrescu, C., Raicu, I., Ripeanu, M., Foster, I.: Diperf: An automated distributed perfor-
mance testing framework. In: 5th International Workshop in Grid Computing, pp. 289–296.
IEEE Computer Society (2004)

10. Denaro, G., Bicocca, U.D.M., Polini, A., Emmerich, W.: Early performance testing of dis-
tributed software applications. In: SIGSOFT Software Engineering Notes, pp. 94–103 (2004)

11. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Performance
debugging for distributed systems of black boxes. SIGOPS Oper. Syst. Rev. 37, 74–89 (2003)

12. Yilmaz, C., Krishna, A.S., Memon, A., Porter, A., Schmidt, D.C., Gokhale, A., Natarajan,
R.: Main effects screening: a distributed continuous quality assurance process for monitoring
performance degradation in evolving software systems. In: ICSE 2005: Proceedings of the
27th International Conference on Software Engineering, pp. 293–302. ACM Press (2005)

13. Yuen, C.H., Chan, S.H.: Scalable real-time monitoring for distributed applications. IEEE
Transactions on Parallel and Distributed Systems 23, 2330–2337 (2012)

14. Taufer, M., Stricker, T.: A performance monitor based on virtual global time for clusters
of pcs. In: Proceedings of IEEE International Conference on Cluster Computing, pp. 64–72
(2003)

15. Emden, M.V., Kowalski, R.: The semantics of predicate logic as a programming language.
Journal of the ACM 23(4), 733–742 (1976)

16. 9646-1, I.: ISO/IEC information technology - open systems interconnection - conformance
testing methodology and framework - part 1: General concepts. Technical report, ISO (1994)

17. Shin, M., Park, M., Oh, D., Kim, B., Lee, J.: Clock synchronization for one-way delay mea-
surement: A survey. In: Kim, T.H., Adeli, H., Robles, R., Balitanas, M. (eds.) ACN 2011.
CCIS, vol. 199, pp. 1–10. Springer, Heidelberg (2011)

18. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Transactions on
Communications 39, 1482–1493 (1991)

19. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J.: Sip: Session initia-
tion protocol (2002)

20. Alliance, O.M.: Internet messaging and presence service features and functions (2005)
21. Alliance, O.M.: Push to talk over cellular requirements (2006)
22. Hewlett-Packard: SIPp (2004), http://sipp.sourceforge.net/

http://sipp.sourceforge.net/

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 126–140, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Research in Global Software Engineering:
A Systematic Snapshot

Bilal Raza, Stephen G. MacDonell, and Tony Clear

SERL, School of Computing & Mathematical Sciences, Auckland University of Technology,
Private Bag 92006, Auckland 1142, New Zealand

{bilal.raza,stephen.macdonell,tony.clear}@aut.ac.nz

Abstract. This paper reports our extended analysis of the recent literature ad-
dressing global software engineering (GSE), using a new Systematic Snapshot
Mapping (SSM) technique. The primary purpose of this work is to understand
what issues are being addressed and how research is being carried out in GSE –
and comparatively, what work is not being conducted. We carried out the anal-
ysis in two stages. In the first stage we analyzed 275 papers published between
January 2011 and June 2012, and in the second stage we augmented our analy-
sis by considering a further 26 papers (from the 2013 International Conference
on Global Software Engineering (ICGSE’13). Our results reveal that, currently,
GSE studies are focused on management- and infrastructure-related factors, us-
ing principally evaluative research approaches. Most of the studies are con-
ducted at the organizational level, mainly using methods such as interviews,
surveys, field studies and case studies. The USA, India and China are major
players in GSE, with USA-India collaborations being the most frequently stu-
died, followed by USA-China. While a considerable number of GSE-related
studies have been published since January 2011 they are currently quite narrow-
ly focused, on exploratory research and explanatory theories, and the critical
research paradigm has been untouched. An absence of formulative research,
experimentation and simulation, and a related focus on evaluative approaches,
all suggest that existing tools, methods and approaches from related fields are
being tested in the GSE context, even though these may not be inherently appli-
cable to the additional scale and complexity of GSE.

Keywords: Global Software Engineering (GSE), Distributed Software
Development, Classification, Systematic Mapping.

1 Introduction

Interest in software development carried out by globally distributed, culturally and/or
temporally diverse teams arose with the advent of outsourcing in the last two decades,
and it continues to increase [1]. Its importance has led to the emergence of the specif-
ic area of research and practice referred to as global software engineering (GSE) [1].
GSE is itself a growing field as is clearly evident in the diversity of locations involved
and the rapidly increasing number of published studies into GSE-related issues. As
the number of such studies increases it becomes important to periodically summarize

 Research in Global Software Engineering: A Systematic Snapshot 127

the work and provide overviews of the results [2] as a means of reflection on what
work is being done and what gaps might exist.

In this paper we investigate the breadth of topics that have been covered by GSE
studies over a short timeframe, using a variant of the systematic mapping (SM) me-
thod that we refer to as a systematic snapshot. This approach establishes a specific
baseline state that could be further extended in a backward or forward direction to
analyse changes over time. The systematic mapping (SM) method has been widely
used in medical research [2] and was first adopted in software engineering research by
Bailey et al. [3]. A SM aims to provide a high-level view of the relevant research
literature by classifying the work according to a series of defined categories and visu-
alizing the status of a particular field of research [2] [4]. This technique has been used
recently in the GSE field [4] [5] [6] [7] [8]. In these studies specific aspects of GSE
research were categorized (using guidelines presented in [2] and [9]). These investiga-
tions considered between 24 and 91 primary studies, published up to the year 2010.
The aspects of GSE analyzed in these studies were software configuration manage-
ment, awareness support, agile practices, project management, and tools in GSE. All
five studies therefore classified the GSE literature from a relatively narrow perspec-
tive but covering a wide temporal range. They were published in well-known journals
and conferences and provide valuable contributions to the body of GSE literature. In
our study, we instead use a new variant of the systematic mapping process called
Systematic Snapshot Mapping (SSM), briefly described in the next section, to classify
the very recent global software engineering literature.

The rest of this paper is organized as follows: in Section 2 we describe our research
approach in greater detail, and in Section 3 we present the findings of our analysis. In
the subsequent Section 4 we briefly discuss validity threats. In Section 5 we conclude
this paper and Section 6 conveys future work.

2 Method and Conduct

The results presented in this paper derive from our classification of the current litera-
ture on GSE, using the Systematic Snapshot Mapping (SSM) method. In order to
classify this literature we chose the time period between January 2011 and June 2012
and later extended it to include papers published in the Proceedings of ICGSE’13. This
study followed guidelines presented by Petersen et al. [2] for carrying out systematic
mapping studies. However, instead of narrowing down the topic and considering a
large temporal period, we limited the time span and considered the full breadth of top-
ics covered. This study was inspired by several prior classifications of SE and GSE
literature including that of Glass et al. [10], but instead of following a random sam-
pling technique to select papers (as in [10]) we used a systematic process. We em-
ployed a defined protocol for choosing search strings and executing them against
relevant databases to cover the breadth of GSE-related studies. We defined our cate-
gories at the outset of our work and chose various dimensions to present the results,
mainly leveraging the prior classifications of Richardson et al. [11] and Glass et al.
[10]. We present our results in the form of tables, bar graphs and network analysis
graphs to provide visual representations of the data. We believe such a snapshot ap-
proach is especially useful in cases where a field is changing rapidly and where there

128 B. Raza, S.G. MacDonell, and T. Clear

is consequently rapid growth in the research literature. This new approach for carry-
ing out systematic mapping also provides an opportunity to effectively build upon
different researchers’ work by using different temporal ranges.

2.1 Research Questions

The following research questions were established for this study:

• RQ1. What are the factors, levels and locations investigated in the recent GSE
literature?

• RQ2. How is research being carried out in GSE in regard to methods and
approaches?

2.2 Search Strategy

Our search strategy was designed to keep the topic general while addressing a short
time period to provide an up-to-date overview of the research literature. Initial search
keywords were selected from known GSE systematic literature reviews and mapping
studies. These keywords were updated based upon various dry runs carried out on the
Scopus database to ensure their effectiveness. In the initial run, a target was set to
ensure at least those studies from which the keywords were taken were retrieved. In
the second run, a random set of ten studies was selected from the Proceedings of the
2009-2011 ICGSE conferences, and the search strings were further refined to ensure
that these sample studies were also retrieved.

Table 1 shows the final list of keywords used to cover as many variations of the
same term as possible. We intentionally adopted many keywords having low preci-
sion but high recall [12] and subsequently complemented our analysis by including all
the papers published in ICGSE’13.

Table 1. List of keywords used as search strings

2.3 Data Sources and Retrieval

We searched across multiple data sources to retrieve as many potentially relevant
studies as possible. SCOPUS, IEEE Xplore, the ACM Digital Library, SpringerLink
and ScienceDirect were searched to complement results. Each database has limita-
tions in terms of the number of keywords accepted at a specific instance; therefore,
we had to break the search phrases to suit the particular database. The initial search
and retrieval process was conducted in July 2012 and the date range was limited to

 Research in Global Software Engineering: A Systematic Snapshot 129

January 2011 to June 2012. The search was carried out on metadata (title, abstract,
keywords) and only peer-reviewed literature published in English was considered.
In the first step, citations of retrieved studies were downloaded and duplicates were
removed. Afterwards, the studies were then considered for the inclusion process.

2.4 Inclusion Process

The steps taken in the inclusion process to select primary studies are shown in
Figure 1. After searching all of the databases 2020 studies were retrieved. The deci-
sion for further inclusion was based upon the first author’s reading of the papers’
titles or abstracts (resulting in 1125 studies). Duplicates were then removed, and a full
text version of each remaining study was sought. For 12% of the papers (53 of the 437
remaining) the full text was not available to us, primarily because the papers were not
published in well-known journals or conference proceedings. These studies were
therefore not considered for further analysis. The full text of the remaining 384 papers
was then reviewed by the first author and a set of 275 studies was selected for inclu-
sion in the SM analysis. Studies in the form of short papers, extended abstracts and
position papers (only describing future work) were excluded. A number of studies,
not related to the software engineering domain, had slipped through to this stage and
upon cursory review of the full text were also excluded. At this stage, we also consi-
dered the papers of ICGSE'13 and included them in our final list for analysis.

Fig. 1. Study inclusion process

2.5 Data Extraction and Synthesis

We followed generally accepted guidelines [2] to build our SM classification scheme.
The included studies were therefore categorized according to various dimensions:
research approach, research method, factors, level of analysis, sourcing phases and
locations. In order to reduce threats to validity, regular meetings of the three authors
were held to discuss issues and address misconceptions. In order to reduce bias effects

1125

2020

384

437

Final Search

Read abstracts/titles

Remove duplicates

Seek full text

Review text
ICGSE’13

26 275

130 B. Raza, S.G. MacDonell, and T. Clear

the three researchers also conducted a sample classification together. At a later point a
further sample of studies which were initially classified by the first author were veri-
fied by the senior researchers, discussions were held again and issues were addressed.
It was established that the authors were in general agreement regarding the classifica-
tion, based upon the sample results.

The classification scheme utilized by Glass et al. [10] was used to characterize the
research approach for our set of studies. We also considered the same source for
the methodologies used in software engineering research. However, to better reflect
the GSE perspective we also considered other methodologies [1][13]. Hence, we add-
ed Computer Mediated Communication (CMC) analysis to cover studies that investi-
gate artifacts such as chat-histories and emails. Although grouped together in prior
studies, Observations and Interviews were considered separately, as many studies use
them to complement other methods. Interviews are widely used as a sub-method in
Case Studies and Observations are used in Ethnographies. However, we observed that
these methods are being used in their own right and we therefore classified them sepa-
rately. We included the method Data Analysis to signify studies that utilize data from
Repositories, Incident Management Systems and Archives of previous projects. We
used Proof of Concept for non-empirical studies in which entities were formulated but
were only described by examples rather than any formal validation.

3 Findings

This section presents the results obtained based on the classifications of the data
extracted from our final combined set of studies.

3.1 Findings for Factors

Richardson et al. [11] identified 25 GSE factors in an empirical study and grouped
them in the four broad categories of Distance, Infrastructure, Management and Hu-
man Factors. We used these categories to also characterize our identified studies. We
added Learning/Training/Teaching, Competition and Performance to the Management
category and Relationship to the Human Factors category. We also updated the latter
category with Coordination/collaboration. Table 2 presents the results of this classifi-
cation. The results clearly show that recent GSE studies are heavily focused on Man-
agement- and Infrastructure-related factors compared to Human- and Distance-related
factors. Šmite et al. [1] presented a systematic review of empirical GSE research and
also found that most of the studies were focused on management-related issues. Com-
paring these results with the SWEBOK [14] knowledge areas (KAs), it was found that
the standard lacks specific considerations for GSE. As a corollary, it was also found
that KAs related to design, construction, testing and maintenance are not widely
addressed in the recent GSE literature.

 Research in Global Software Engineering: A Systematic Snapshot 131

Table 2. Findings for GSE factors and their percentage

Distance 16.4% Team Selection 0.8%
Communication 8.4% Effective Partitioning 4.6%
Language 1.1% Skills Management 0.4%
Culture 5.3% Knowledge transfer/knowledge management 6.1%
Temporal issues 1.6% Visibility 3.3%
Human Factors 16.03% Reporting Requirement 0.0%
Fear 0.4% Information Management 1.1%
Motivation 2.1% Teamness 5.5%
Trust 2.7% Learning/Training/teaching 4.2%
Cooperation 1.6% Competition 0.6%
Coordination/collaboration 7.8% Performance 1.8%
Relationship 1.2% Infrastructure 24.2%
Management 43.2% Process Management 8.2%
True Cost 1.7% Tools 9.1%
Project Management 8.8% Technical Support 0.4%
Risk Management 2.3% Communication tools 6.5%
Roles and responsibilities 1.6%

3.2 Findings for Research Approach

GSE presents a complex context that demands a more extensive repertoire of research
methods and approaches than those currently prevailing [15]. Table 3 presents the
findings of our classification of the research approaches used in current GSE-related
studies. In terms of the three main categories, the dominant research approach is Eva-
luative, followed by Descriptive and then Formulative. This is in sharp contrast to the
results reported in 2002 by Glass et al. [10] in which the order was Formulative, De-
scriptive and Evaluative. One of the main reasons for the present dominance of Eva-
luative research is the inclusion of new empirical methods such as CMC analysis,
Interviews, Data Analysis and Observations. These results appear to be in contrast
with the results of Šmite et al.’s systematic review [1] of GSE-related studies pub-
lished between 2000 and 2008. They concluded that GSE-related studies are relatively
small in number and immature and most of them focused on problem-oriented reports.
Our current results show, however, that GSE publications have grown in quantity and
quality and more studies have used evaluative approaches. Of note is that these evalu-
ative approaches are mostly confined to previously formulated work. We interpret this
to mean that existing methods, tools and so on from related fields, such as collocated
software engineering (CSE), are being evaluated in the context of GSE. Given that
GSE is fundamentally different from CSE[11], it seems likely that solutions formu-
lated for CSE will need to be updated or enhanced for GSE. Entirely new solutions
may also need to be identified and assessed in the GSE context.

Similarly, there is clear potential for critical research in this context particularly in
light of the power structures that can exist between GSE ‘partners’, and the associated
issues of trust, fear, cooperation and the like (as shown in Table 2). Criteria or prin-
ciples for carrying out critical research are lacking generally in information systems
(IS) [16]. Considering its importance, Myers and Klein [16] proposed a set of prin-
ciples for conducting critical research – these principles could be considered in future
investigations of human factors in GSE.

132 B. Raza, S.G. MacDonell, and T. Clear

Table 3. Findings for research approach

Research Approach Percentage Research Approach Percentage
Descriptive 25.4% Evaluative-other 12.1%
Descriptive-system 7.4% Formulative 18.5%
Review of literature 9.8% Formulative-framework 5.2%

Descriptive-other 8.1% Formulative-guidelines/standards/approach (FG) 1.6%

Evaluative 56.1% Formulative-model 5.9%

Evaluative-deductive 17.6% Formulative-process, method, algorithm 2.3%

Evaluative-interpretive 26.1% Formulative-classification/taxonomy 0.5%

Evaluative-critical 0.2% Formulative-concept 2.7%

3.3 Findings for Research Methods

Figure 2 depicts the research methods used. The most dominant methods are Interview,
Survey, Field Study and Case Study, indicating that most of the studies employed qua-
litative methods. These results are also in stark contrast to more general SE classifica-
tions [10] in which researchers used very few case or field studies. For studies in which
multiple methods were used we assigned more than one research approach and method.
Research methods in GSE are currently skewed towards exploratory research focusing
on theories relating to ‘Explanation’ as described by Gregor [17]. These theories aim to
provide explanation about what, how and why things happen and to promote greater
understanding of phenomena. Thus, although GSE research has grown in terms of the
number of studies being conducted, these studies are exploratory and/or explanatory in
nature. It will be interesting to compare these results with future studies to determine
whether work moves towards more predictive studies as the field matures.

Fig. 2. Findings for research methods Fig. 3. Findings for level of analysis

 Research in Global Software Engineering: A Systematic Snapshot 133

Table 4. Distribution of studies across Journals, Conferences and Workshops

Journals IEEE TEM 2 ISEC 3
LNBIP 2 ICSSP 3

IST Journal 8 J Grp Dec Negot 2 MySEC 2

JSEP 7 Conferences EUROMICRO 2

J Softw. Maint. Evo. 7 ICIS 2

IET Software 6 ICGSE 52 CollaborateCom 2

J of E Markets 4 HICSS 15 CTS 2

IEEE Software 4 ICSE 8 PACIS 2

J Comm and Com Sc. 3 CSCW 8 Workshops

ISJ 3 PROFES 6 CTGDSD 13

IJoPM 2 CHI 5 ICGSE 13

JSW 2 XP 4 CHASE 7

POM Journal 2 ICIC 3 OTM 3

IS 2 PICMET 3 Global Sourcing 3

3.4 Findings for Level of Analysis and Distribution of Studies

Figure 3 shows the level of analysis considered currently by GSE researchers. The
dominant level of analysis was found to be Organizational followed by Inter-
Organizational - combined together they are used in more than half the studies re-
viewed. Fewer studies addressed group, individual and societal levels, a finding that
coincides with the results of Glass et al. [10] in respect of SE studies. Table 4 presents
the distribution of studies across various conferences, journals and workshops with
frequency greater than one. (This limit was imposed due to space considerations and
for ease of interpretation.) The majority of the selected studies was published in
conference proceedings and drew on an industrial context.

3.5 Bubble Plot Analysis

The use of visual techniques in SM, such as bubble plots, has been recommended by
Petersen et al. [2] and such techniques have been used to convey the results of mapping
and classification studies[13][6]. Figure 4 presents the results of this study in the form
of a bubble plot. We chose to represent three classification dimensions within it: Re-
search approach is on the right X-axis, GSE-factors, grouped in their four major cate-
gories, are on the Y-axis, and level of analysis is on the left X-axis. The results clearly
show that most of the recent studies are focused on using evaluative approaches around
management and infrastructure factors and analyzed at the organizational levels. Stu-
dies based upon specific groups, societies and individuals are limited. Organizational
concerns have been at the forefront in terms of the level of analysis, leaving much
scope for consideration of groups and individuals in future studies.

3.6 Location of GSE Projects and Inter-country Relationships

Figure 6 and Table 5 provide graphical and tabular representations of the locations
involved in GSE projects. A few studies also mentioned regions rather than countries;

134 B. Raza, S.G. MacDonell, and T. Clear

we also considered them in our analysis. Figure 5 shows the results of our examina-
tion of inter-country networks. We used NodeXL, an extendable tool kit used for data
analysis and visualizations [18]. Table 6 lists the pairwise relationships with frequen-
cy greater than one. (This constraint was imposed due to space limitations; however,
all the relationships are shown in Figure 5.) It can be seen in Figure 5 and Table 6 that
the most connected nodes are the USA and India. Some studies explicitly mentioned
the collaborating locations whereas others only specified the locations involved with-
out clearly stating which actively collaborated. For the latter studies, we assumed
pairwise relationships between each location. For future studies we recommend that
authors clearly state the nature of each party’s involvement.

In Figure 6, countries and regions marked by darker shades are those most fre-
quently involved in GSE. For ease of analysis we grouped these countries into six
categories based upon the number of studies that cite their involvement. Not unexpec-
tedly, the two countries reported as most frequently involved in global software
projects are the USA and India. Countries including Germany, Finland, China, the
UK, Australia and Brazil are ranked in the second group, closely followed by a group
comprising Sweden, the Netherlands, Japan, Argentina, Spain, Canada and Switzer-
land. In the next two categories lie the potentially upcoming and emerging countries
of Russia, Eastern European countries such as Lithuania, Far Eastern countries includ-
ing Malaysia and Indonesia, and the South/Central American countries of Chile and
Mexico. These representations give some insight into the diversity of countries’ in-
volvement in GSE projects. Some of these regions are underrepresented but this does
not necessarily mean that these locations are not involved in GSE; it could be that
these regions have simply not been considered in recent studies.

Researchers rely on personal contacts in their national industries to validate their
results. Our study also shows that the top seven locations of GSE authors are the
USA, Finland, Germany, Spain, Brazil, India and Sweden. Apart from Spain, which is
thirteenth, all six other countries are in the list of top ten locations involved in GSE
projects. We also analyzed the inter-country collaboration of GSE researchers from
different countries and found that researchers from European countries have mostly
collaborated with other European-based researchers whereas researchers from the US
have collaborated with European and Asian researchers.

Table 5. Locations involved in GSE projects

Country # Country # Country # Country # Country #
US 246 Esp 18 Mys 9 Pan 5 Grc 3
Ind 167 Can 16 Mex 9 Aut 4 Twn 3
Deu 61 Che 16 Sen 9 Est 4 Rom 2
Fin 56 Ukr 15 SGP 9 Phl 4 Svk 2
Chn 44 Rus 13 Nzl 9 Tha 4 Tur 2
UK 41 Dnk 13 Hun 8 Vnm 4 Pak 2
Aus 34 Irl 12 Khm 7 Kor 4 Bgd 1
Bra 32 Ita 11 Fra 7 Pol 4 Zaf 1
Swe 27 Nor 11 Bel 7 Cri 3 Tun 1
Nld 23 Cze 10 Chl 6 Col 3
Jpn 21 Ltu 10 Hrv 6 Ecu 3
Arg 19 Isr 9 UAE 5 Egy 3

 Research in Global Software Engineering: A Systematic Snapshot 135

Fig. 4. Bubble plot analysis

Fig. 5. Inter-country relationship analysis

136 B. Raza, S.G. MacDonell, and T. Clear

Table 6. Inter-country relationships

Loc_A Loc_B # Loc_A Loc_B # Loc_A Loc_B # Loc_A Loc_B #

Ind US 69 W.Eu Ind 6 Ita Che 3 Eu Jpn 2

Chn US 23 Brazil Ind 4 Jpn Ind 3 Fin Jpn 2

Deu Ind 15 Fin Deu 4 Nor Fin 3 Fin Bra 2

Bra US 11 Ind Swe 4 Esp Deu 3 Fra Deu 2

Aus US 10 Ind Arg 4 US Che 3 Deu Cze 2

Eu US 10 Nld US 4 US Swe 3 Ind Che 2

Uk US 10 Nld Ind 4 US Esp 3 Ind M.East 2

Deu US 9 SGP US 4 US Sen 3 Irl Chn 2

Uk Ind 8 US Ukr 4 Chn Jpn 3 Ltu US 2

 US SGP 4 US Mex 3 Mys Ind 2

Fin Ind 8 US Rus 4 US Mys 3 Nld Ukr 2

Aus Ind 7 US Isr 4 US Egy 3 Asia US 2

Ind Eu 7 US Nor 4 US Dnk 3 Nzl US 2

Fin US 7 Ind Jpn 4 Nld UK 3 Nor Swe 2

US Arg 7 E.Eu Fin 3 Aus Esp 2 Nor Cze 2

US Ukr 6 Fin Swe 3 Aus Deu 2 Esp Ltu 2

US Can 6 Fin Ltu 3 Bel US 2 Che Vnm 2

Hrv Swe 5 Fin Baltic. 3 Bra UK 2 Che Ukr 2

Cze Fin 5 Deu Rus 3 Khm Senl 2 US Twn 2

Jpn US 5 Deu Bra 3 Khm Ind 2 US M.East 2

Swe Hrv 5 Ind Sen 3 W Eu US 2 US Khm 2

US Jpn 5 Dnk Ind 3 Can Ind 2

US Irl 5 Ind Chn 3 Can Eu 2

3.7 Phases in Sourcing Relationships

Dibbern et al. [19] divided the sourcing process into two main stages: the decision
stage, which is concerned with the ‘What’, ‘Why’ and ‘Which’ questions, and the
implementation stage addressing ‘How’ and ‘Outcome’. This covers the processes of
deciding on and managing the sourcing resulting agreement, but leaves out the
transition process. Butler et al. [20] divided this same process into three main phases,
of Decision, Transition and Operation, based upon the timeline of a project. Butler et
al. then [20] categorised 116 articles based upon the focus of attention of GSE
projects and found that only 2 articles from the 116 were related to the transitional
phase. This coincides with the results of this systematic snapshot mapping study in
which we categorised 301 articles across various dimensions and found that only 19
were related to transition, further highliting that limited research has been directed
towards this phase.

 Research in Global Software Engineering: A Systematic Snapshot 137

Fig. 6. Locations involved in GSE projects

4 Threats to Validity

One of the main threats to the validity of our study is the incomplete selection of pri-
mary studies or missing relevant studies, even though we followed a systematic
process. In order to mitigate this risk we formulated a wide variety of search-terms.
These terms were taken from related systematic mapping and systematic literature
review (SLR) studies and were updated based upon the retrieved results. Initially, we
ensured that at least those SM/SLR studies were indeed retrieved using the search
terms drawn from each study. In the next stage, we constructed a sample list of stu-
dies from various ICGSE proceedings and ensured that the search terms retrieved
these studies as well. During this process the search terms were continuously updated
until all sample studies were retrieved, similar to the approach taken by [6]. A second
validity threat arises due to researcher bias during the classification process. In order
to reduce this threat, we carried out some sample classifications collectively. Fur-
thermore, the lists of studies as classified by the first author were validated by the
senior researchers involved. A high level of agreement was achieved, giving us confi-
dence that the classification process was executed appropriately and consistently.

5 Conclusions

Through this study we have provided a current snapshot of the recent GSE-related
research literature. We first classified 275 empirical and non-empirical studies,
published between January 2011 and June 2012, into predefined categories (see

138 B. Raza, S.G. MacDonell, and T. Clear

http://tinyurl.com/GSE-Papers), and we then augmented our analysis with the consider-
ation of the papers published in ICGSE’13. We examined the following characteris-
tics: GSE factors, research approaches, research methods, level of analysis, and GSE
project locations. The GSE factors most frequently researched were related to man-
agement and infrastructure using evaluative approaches and taking an organizational
perspective as the level of analysis. Regarding research methods, interviews, surveys,
case studies and field studies are the most commonly used. In relation to project loca-
tions, the USA and India are the predominant nations involved in global software
projects. Inter-country network analysis also shows that USA-India collaboration is at
the top followed by that between the USA and China. It will be interesting to carry
out further similar snapshot studies on an on-going basis to see if or how these trends
evolve. Similarly, studies could be carried out retrospectively on previous years’ re-
search literature to enable comparisons with this study. This study aims to provide a
stepping stone for such related studies.

It appears that, in general, existing solutions are being applied in a GSE context,
even though these solutions may lack specific considerations needed for GSE. For
instance, aspects of non-functional requirements and stage/phase-related issues are
not addressed separately in the current GSE literature. Although the field of GSE
research has grown rapidly in terms of the number of studies conducted, these studies
are quite narrowly focused towards exploratory research and the provision of explana-
tory theories. Furthermore, in spite of GSE providing a natural and potentially fruitful
setting for critical research, such work is yet to be conducted. The current research
focus is mainly directed to organizational concerns, leaving much scope for consider-
ation of the needs of stakeholder groups and individuals. The research is also skewed
towards projects having two locations, showing a dearth of studies relating to multiple
locations and their underlying complex relationships. Finally, there are regions of the
world that are not being currently studied by researchers and it may be useful to con-
sider them in the future studies, particularly if the dimensions of culture and their
impact on GSE are of interest.

6 Future Work

A notable omission in the current focus of work relating to GSE is any sustained cov-
erage of issues to do with power and exploitation. While the human factors tabulated
in Table 2 above include some focus on the factors of fear, trust, cooperation and
relationship, these are given relatively limited attention. Again in Figure 4 there is a
noted absence of studies at an individual unit of analysis. There are no studies giving
personal narratives or biographies – are the workers in GSE deliberately kept invisi-
ble? Is this absence a function of the research methods used, for instance, no exam-
ples of critical evaluative work have been identified in this review? Or is it an abroga-
tion of our duties as academics to act in the role of ‘critic and conscience of society’?
Will the future see more equal partnerships in sustainable global ventures, or will
there be a backlash against crude models of global labor arbitrage? What risks might
that pose to a multi-billion dollar industry? These issues warrant more attention by
researchers, although difficult to confront. In addition such research will be challeng-
ing to design and conduct, yet the absence of critical evaluative studies presents a
glaring gap in current GSE research.

 Research in Global Software Engineering: A Systematic Snapshot 139

References

1. Šmite, D., Wohlin, C., Gorschek, T., Feldt, R.: Empirical evidence in global software en-
gineering: a systematic review. Empirical Software Engineering 15, 91–118 (2009)

2. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic Mapping Studies in Soft-
ware Engineering. In: Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering, pp. 68–77 (2008)

3. Bailey, J., Budgen, D., Turner, M., Kitchenham, B., Brereton, P., Linkman, S.: Evidence
relating to Object-Oriented software design: A survey. In: First International Symposium
on Empirical Software Engineering and Measurement, pp. 482–484 (2007)

4. Fauzi, S.S.M., Bannerman, P.L., Staples, M.: Software Configuration Management in
Global Software Development: A Systematic Map. In: Proceedings of the 17th Asia Pacif-
ic Software Engineering Conference, pp. 404–413 (2010)

5. Steinmacher, I., Chaves, A.P., Gerosa, M.A.: Awareness Support in Distributed Software
Development: A Systematic Review and Mapping of the Literature. Computer Supported
Cooperative Work 22, 113–158 (2013)

6. Jalali, S., Wohlin, C.: Agile Practices in Global Software Engineering - A Systematic Map.
In: Proceedings of the 5th International Conference on Global Software Engineering,
pp. 45–54 (2010)

7. Silva, F.Q.B., Prikladnicki, R., França, A.C.C., Monteiro, C.V.F., Costa, C., Rocha, R.: An
evidence-based model of distributed software development project management: results
from a systematic mapping study. Journal of Software: Evolution and Process 24, 625–642
(2012)

8. Portillo-Rodríguez, J., Vizcaíno, A., Piattini, M., Beecham, S.: Tools used in Global Soft-
ware Engineering: A systematic mapping review. Information and Software Technolo-
gy 54, 663–685 (2012)

9. Kitchenham, B., Charters, S.: Guidelines for performing Systematic Literature Reviews in
Software Engineering. EBSE Technical Report EBSE-2007-01 (2007)

10. Glass, R.L., Vessey, I., Ramesh, V.: Research in software engineering: an analysis of the
literature. Information and Software Technology 44, 491–506 (2002)

11. Richardson, I., Casey, V., McCaffery, F., Burton, J., Beecham, S.: A Process Framework
for Global Software Engineering Teams. Information and Software Technology 54,
1175–1191 (2012)

12. Dieste, O., Padua, A.G.: Developing Search Strategies for Detecting Relevant Experiments
for Systematic Reviews. In: First International Symposium on Empirical Software Engi-
neering and Measurement, pp. 215–224 (2007)

13. Smite, D., Wohlin, C., Feldt, R., Gorschek, T.: Reporting Empirical Research in Global
Software Engineering: A Classification Scheme. In: Proceedings of the Third International
Conference on Global Software Engineering, pp. 173–181 (2008)

14. Guide to the Software Engineering Body of Knowledge. IEEE Computer Society (2004)
15. Clear, T., MacDonell, S.G.: Understanding technology use in global virtual teams: Re-

search methodologies and methods. Information and Software Technology 53, 994–1011
(2011)

16. Myers, M.D., Klein, H.K.: A Set of Principles For Conducting Critical Research In Infor-
mation Systems. MIS Quarterly 35, 17–36 (2011)

140 B. Raza, S.G. MacDonell, and T. Clear

17. Gregor, S.: The nature of theory in information systems. MIS Quarterly 30, 611–642
(2006)

18. Smith, M.A., Shneiderman, B., Milic-Frayling, N., Mendes Rodrigues, E., Barash, V.,
Dunne, C., Capone, T., Perer, A., Gleave, E.: Analyzing (social media) networks with No-
deXL. In: Proceedings of the Fourth International Conference on Communities and Tech-
nologies, pp. 255–263 (2009)

19. Dibbern, J., Goles, T., Hirschheim, R., Jayatilaka, B.: Information Systems Outsourcing: A
Survey and Analysis of the Literature. ACM SIGMIS Database 35, 6–102 (2004)

20. Butler, N., Slack, F., Walton, J.: IS/IT Backsourcing - A Case of Outsourcing in Reverse?
In: Proceedings of the 44th Hawaii International Conference on System Sciences, pp. 1–10
(2011)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 141–150, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Test City Metaphor for Low Level Tests Restructuration
in Test Database

Artur Sosnówka

Faculty of Computer Science, West Pomeranian University of Technology,
ul.Żołnierska 49, Szczecin, Poland
arsosnowka@wi.zut.edu.pl

Abstract. The process of validating modified software to detect whether new
deviations have been introduced to previously tested code is known as regres-
sion testing. Since the expense for this process conducted at the system integra-
tion level are very high very few researches has proposed formal test selection
criteria at this level. Formal test selection criteria for system or integration test
based on visualization analysis for low level test cases has been included in this
paper. Presented analysis criteria shows a subset of test metrics which has been
used in pilot projects in the industry as a base for testware reorganization.

Keywords: Visualization Metaphor, Testware, Test City, Test Metrics, Test
Management, Data Mining, Test Case Visualization, Low Level Test Case, Test
Selection.

1 Introduction

Software development is dealing with growing complexity, shorter delivery times and
current progress made in the hardware technology. Within the software lifecycle the
biggest, however not directly seen, part is the maintenance. Increasing number of
systems used in the corporation and tolerated number of deviations is decreasing
when time progressing and users get trusted to the used software. As soon as software
is put in the production environment, every big change or even small adaption of the
source code can cause potential danger in best case, monetary, in worst image or even
human being loses. Nevertheless the maintenance is very often provided during the
whole period through different groups of technicians or business partners. This makes
the task of programming, understanding and maintaining of the source code for the
system and its testware more complex and difficult.

To be successfully introduced each software system requires properly defined re-
quirements. Those can and are very often changing during the whole project or
software lifecycle. The changes are based on legal, business, functional or software
architectural needs (e.g. new programming techniques). Required new functionality is
gaining focus and the old one is put aside and threatened to not be as important as
before. Testware management, especially for the high (HLTC) and low level test
cases (LLTC) [8], which are focusing on old but still valid functionality keeps going
to be not affordable, or getting be forgotten by purpose. The situation is causing

142 A. Sosnówka

raised maintenance costs to the limit, when new development can produce less cost
and even be easier to implement than creation of the new functionality within the old
system.

Required quality of the software is very often to be reached through quality assur-
ance activities on several levels, starting from unit test, through system, integration
and ending on acceptance tests. Artefacts produced during the test process required to
plan, design, and execute tests, such as documentation, scripts, inputs, expected out-
comes, set-up and clear-up procedures, files, databases, environment, and any addi-
tional software or utilities used in testing are named, according to ISTQB, testware
(ISTQB, ISTQB® Glossary of Testing Terms, 2012). Detection of the problems
within a testware can save much effort and reduce necessary maintenance costs.
Number of executed tests in the first or second year of software maintenance is not
being a disruptive factor for the test projects. As soon as software is coming into the
last phase, associated teams are very often moved to the other development projects
or taken out of the company (e.g. consultants are being moved from customer to cus-
tomer). To prove necessary quality after performed adaptations, growing complexity
of the system is demanding high professional skills and understanding from people
and organizations taken over the responsibility for the system.

Software quality is according to IEEE definition:

1. The degree to which a system, component or process meets specified
requirements.

2. The degree to which a system, component or process meets customer or user
needs or expectations [2].

Above given definition is obligating quality assurance teams to perform planned and
systematic pattern of actions to provide adequate confidence to the product or item
that it conforms to established technical requirements [2]. Execution of needed ac-
tions to provide at least same quality during the whole maintenance phase is a big cost
factor. According to survey-analysis presented during the iqnite 2011 conference in
Düsseldorf, almost 60% of the software projects are spending between 20 and 30% of
its budget on Quality Management (QM) and testing activities. Right handling
of created artefacts is not a question of an effort but a need for efficiency and
effectiveness.

Especially big and complex systems are providing large number of functions and
demanding even larger number of objects within the testware. To provide 100% ful-
filment the test team has to ensure that each function is not affected through the code
adaptation and its site effects. Adaptation of the system demands adaptation of test-
ware to fulfil quality requirement for the current system.

Even best managed testware, after few years of usage, is not free of objects which
are old, obsolete, duplicated or there are no HLTCs or LLTCs covering demanded
functionality. Those objects are causing additional management effort and its exis-
tence does not increase expected quality needs.

Often developers and managers believe that a required change is minor and attempt
to accomplish it as a quick fix. Insufficient planning, design, impact analysis and
testing may lead to increased costs in the future. Over time successive quick fixes
may degrade or obscure the original design, making modifications more difficult [7]
and finishing in not acceptable, low quality of the system.

 Test City Metaphor for Low Level Tests Restructuration in Test Database 143

As long as we are accepting loose of the software and testware quality, its trans-
parency, increasing maintenance costs, decreasing test efficiency, and continuous
testware erosion is not a subject. However, in time of financial crisis and decreasing
IT budgets, there is none of the project which can come over this dilemma. In the next
chapters we would like to show results from pilot project which has been executed in
the industry in order to prove usefulness for the approach of the visualization
metaphor for testware reorganization.

2 Related Work

Since the early days of software visualization, software has been visualized at various
levels of detail, from the module granularity seen in Rigi [14] to the individual lines
of code depicted in SeeSoft [3].

The increase in computing power over the last 2 decades enabled the use of 3D
metric-based visualizations, which provides the means to explore more realistic meta-
phors for software representation. One such approach is poly cylinders [12], which
makes use of the third dimension to map more metrics. As opposed to this approach
in which the representations of the software artefacts can be manipulated (i.e., moved
around), our test cities imply a clear sense of locality which helps in viewer orienta-
tion. Moreover, our approach provides an overview of the hierarchical (i.e., package,
test object) structure of the systems.

The value of a city metaphor for information visualization is proven by papers
which proposed the idea, even without having an implementation. [16] Proposed this
idea for visualizing information for network monitoring and later [15] proposed a
similar idea for software production. Among the researchers who actually imple-
mented the city metaphor, [9], [1], [19] represented classes are districts and the meth-
ods are buildings. Apart from the loss of package information (i.e., the big picture),
this approach does not scale to the magnitude of today’s software systems, because of
its granularity.

The 3D visual approach closest in focus to ours is [10], which uses boxes to depict
classes and maps software metrics on their height, colour and twist. The classes’ box
representations are laid out using either a modified tree map layout or a sunburst lay-
out, which split the space according to the package structure of the system. The au-
thors address the detection of design principles violations or anti-patterns by visually
correlating outlying properties of the representations, e.g., a twisted and tall box
represents a class for which the two mapped metrics have an extremely high value.
Besides false positives and negatives, the drawbacks of this approach is that one
needs different sets of metrics for each design anomaly and the number of metrics
needed for the detection oftentimes exceeds the mapping limit of the representation
(i.e., 3). The detection strategies [13] were introduced as a mechanism to formulate
complex rules using the composition of metrics-based filters, and extended later [11]
by formalizing the detection strategies and providing aid in recovering from detected
problems.

144 A. Sosnówka

3 Visualization Metaphor

A visualization metaphor is defined as a map establishing the correspondence be
tween concepts and objects of the application under test and a system of some simi-
larities and analogies. This map generates a set of views and a set of methods for
communication with visual objects in our case - test cases [6].

Lev Manovich has said: “an important innovation of computers is that they can
transform any media into another”. This gives us possibility to create a new world of
data art that the viewer will find as interesting. It does not matter if the detail is im-
portant to the author; the translation of raw data into visual form gives a viewer possi-
bility to get information which is the most important just for him. Hence, any type of
visualization has specific connotations, which may become metaphoric when seen in
context of a specific data source. Metaphor in visualization works at the level of struc-
ture, it compares the composition of a dataset to a particular conceptual construct, and
the choice of any visualization is always a matter of interpretation.

Numerous currently existing visualization systems are divided into three main
classes:

• Scientific visualization systems [4];
• Information visualization systems [5]
• Software visualization systems [17].

Although all visualization systems differ in purposes and implementation details, they
do have something common; they manipulate some visual model of the abstract data
and are translating this into a concrete graphical representation.

In this paper we are not aiming to present all possible visualization metaphors, as
this is not the focus for our research. We would like to show basic and easy to under-
stand “City metaphor” which is helpful for representation specific test data and allow
easier test reorganization. After some of the previous research work which is however
not in focus of this paper we settled our first attempt to the metaphor which is very
widely presented in [20] and is a part of his Phd [18]. In its research and implementa-
tion for software source code classes are represented as buildings located in city dis-
tricts which in turn represent packages, because of the following reasons:

• A city, with its downtown area and its suburbs is a familiar notion with a clear
concept of orientation.

• A city, especially a large one, is still an intrinsically, complex construct and can
only be incrementally explored, in the same way that the understanding of a com-
plex system increases step by step. Using an all too simple visual metaphor (such
as a large cube or sphere) does not do justice to the complexity of a software sys-
tem, and leads to incorrect oversimplifications: Software is complex; there is no
way around this.

• Classes are the cornerstone of the object-oriented paradigm, and together with the
packages they reside in, the primary orientation point for developers.

 Test City Metaphor for Low Level Tests Restructuration in Test Database 145

Fig. 1. Example of “Software City” representation for Android system

In our attempt we perform mapping between available LLTC and its basic metrics
to provide easy to understand and manage overview about the current state of
testware.

3.1 Test Metrics

To be able to perform data visualization, defined set of the static and dynamic data
has to be prepared. Based on the available information’s for LLTC we can extract
following basic metrics, which would be used later for mapping:

• Amount of LLTC
• Execution status for available LLTC
• Last modification date/age
• Number of executions
• Number of steps
• Description length
• Execution cost
• Complexity
• Risk
• Priority

Dependent on the metrics type, those are to be taken as a data export through the
available API from the test management tool or statistical data taken from the support
or test organization.

146 A. Sosnówka

Fetched metric can be mapped into the chosen visualization metaphor as:

• Data physical properties (colour, geometry, height mapping, abstract shapes)
• Data granularity (unit cubes, building border or urban block related)
• Effect of Z axis mappings on the image of the city
• Abstraction of data and LOD are key issues
• Resulting "data compatible" urban models are much larger than the original VR

urban models.

4 Test Reorganization and Test Mining

In this paper we would like to show how useful can be usage of visualization based on
the “Test City” metaphor. We would like to show how to perform test reorganization
based on the very basic set of metrics available in the test project.

For our experimental work we have established a new system interacting with several
Test Management applications placed on the market. The base idea of the system is an
automation extraction and pre-evaluation of several different test metrics. Those metric
are imported via available API connections from the Test Management tool and evalu-
ated to get required set of metrics. The test metrics are provided as a text file, e.g. CSV
(Comma Separated Values), and imported into visualization framework. Visualization
framework allows us performing necessary analysis. The analysis result is taken as an
input to the Test Management tool for Test-Set creation and evaluation.

Within our research for three test projects that contains over 4000 LLTC each, we
have performed analysis for basic and extended test metrics. Those projects have been
running independently with large number of common requirements. This allows us to
gain information’s which are valuable to prove our concept and create inputs for
further work on possible visualization usage in test management domain.

Visualization results for one of those test projects with testware structure shown in
the tables 1 and 2 are shown in the Figure 2 and 4. Parameters have been based on
following test metrics:

1. Test execution age mapped to the colour.
2. Number of executions mapped to the height.
3. Number of steps mapped to size.

Fig. 2. Test City based on LLTC for Test Project

 Test City Metaphor for Low Level Tests Restructuration in Test Database 147

To provide real reference to the analysed testware, the districts (as a square group) of
the Test City are mapped to the structure created by test teams and managed with help
of the Test Management system (e.g. Test folder or Test object).

Looking at the possible analysis for testware visualization according to the
Figure 3 we can provide following input for the improvements:

1. There is a large number of old LLTC which has been executed later than threshold
set to 3000 days (red buildings – left circle in the Figure 2). Most of them had a
small height which gives as an information about low number of executions.
Those LLTC shall be either archived, or completely removed from the testware.
LLTC not executed for longer than 9 years and rarely executed is with very high
probability obsolete.

2. In the middle top, there is a circle pointing to some amount of LLTCs which has
to be taken under closer investigation (yellow buildings). Execution or those ob-
jects has been done in the range of 400 to 3000 days in the past. Based on the
height we can assume, most of them are obsolete; however moving to the archive
is better option than leaving them within the testware.

3. Circle on the right side of the Figure 2 shows us area which has been most likely
commonly used in the last 400 days. Large number of high and green buildings al-
lows us to assume area of regression tests. Those LLTC has been used in the last
period to assure certain quality of the product and shall not be moved to the
archive or adapted within the first phase for testware reorganization.

Below, the tables show the visualized artefacts in numbers.

Table 1. Testware quantity for given Test project

Object type Quantity
LLTC 18473
Executions 38128

Table 2. Testware – quantity structure

Number of executions LLTC (%)
0 11519 62,36
1 ... 10 5995 32,45
10 … 30 584 3,16
31 … 1000 439 2,38

Fig. 3. Testware characteristics, looking at LLTC execution age

148 A. Sosnówka

Figure 3 shows testware characteristics for LLTC last executions as follows:

• green 1..380 days (~30%)
• yellow 400… 3300 days (~15%)
• red 3300 days (~55%)

Using a visualization to show up hotspot without possibility to localize exact coordi-
nates cannot be used in further reorganization process. In order to localize objects
within the testware we are focusing the interesting area with help of built in zoom
function. Please see Figure 4 for an example.

Fig. 4. Zoom for LLTCs executed between 400 and 3000 days in the past

Without having a deep knowledge about the current testware and objects details we
can provide the test managers with exact information regarding that LLTCs. Currently
used metrics are very basic but are giving very good start for testware reorganization
and have been taken as a feedback for involved test managers.

5 Feedback from Test Managers

Created results have been presented to the involved Test managers and their feedback
has been checked. Following results has been achieved:

• There is no false positives, all ugly layouts represents real problems
• No false negatives, no beauty layout should be ugly
• Unique global overview on the testware landscape
• Identify of hotspots (“there was always a question”)
• Identify cluster of issues (e.g. regression test)
• Identify cluster of stagnation

The feedback has proven our first impression we got by looking at the testware visual
representation. Even if the system looks well-organized, in spite of the numerous
disharmonious artefacts: we see a districts, where the test which were executed more
than 365 days ago are localized and districts of increased number of high building,
even skyscrapers, in which several very important and common tests are defined.

 Test City Metaphor for Low Level Tests Restructuration in Test Database 149

The skyscrapers are giving us the impression how many of existing LLTC have
been executed very often. Their colour shows execution age as an important factor for
testware reorganization.

Within very short time we were able to locate and show large number of obsolete
and suspicious LLTCs. Identified hotspots and pain points based on very basic test
metrics has been confirmed by the personal working for longer time with the testware,
even without our deeper knowledge for the system itself. Necessary data for LLTC
adaptation and/or reorganization has been exported based on zooming information at
interesting areas/districts given to the test managers and used for next iteration.

6 Conclusions

Test case management, test analysis and test creation are the most important tasks
within the whole test management process. It is very hard to concentrate the analysis
on small set of the LLTC as it is not getting potential win against the requirement
spectrum. Possible loss of testware quality can be threated only as additional cost
factor and each activity steering against is helping to keep those on needed level. Per-
formed visualization has shown us, how easy in use and efficient can be presented
method for testware analysis. Finding an obsolete LLTC based on available metrics is
very comfortable and does not require deep system knowledge, even if analysed sys-
tem seems to be very complex. Getting the fast overview about large number of
LLTCs without deep knowledge of testware saves needed time, resources and allows
problem presentation not only on technical but as well on management level. Pre-
sented results have been used for further deeper analysis and reorganization activities.

Additionally we have observed person performing analysis is tending to point its
view on maximum two metrics in time and not searching for further information on
the third one. This behaviour was partly driven via visualization framework and its
available mapping attributes and partly human laziness.

Our future directions will focus on the points listed below:

1. Extension for more APIs to Test Management tools available on the market.
2. Comparison for analysis outcome when using same metrics but different Visuali-

zation Metaphors.
3. Visualization for metrics within the timeline.
4. Extend number of evaluated metrics, especially to find out duplicate tests.

References

1. Charters, S.M., Knight, C., Thomas, N., Munro, S.: Visualisation for informed decision
making; from code to components. In: Proceedings of SEKE 2002, pp. 765–772. ACM
Press (2002)

2. Dickinson, W.: The Application of Cluster Filtering to operational testing of Software.
Doctoral dissertation. Case Western Reserve University (2001)

3. Eick, S., Graves, T., Karr, A., Marron, J., Mockus, S.: Does code decay? Assessing the
evidence from change management data. IEEE Transactions on Software Engineer-
ing 27(1), 1–12 (1998)

150 A. Sosnówka

4. Friendly, M.: Milestones in the history of thematic cartography, statistical graphics, and
data visualization (2008),
http://www.math.yorku.ca/SCS/Gallery/milestone/milestone.pdf

5. González, V., Kobsa, A.: Benefits of Information Visualization Systems for Administra-
tive Data Analysts. In: Proceedings. Seventh International Conference on Information Vi-
sualization, IV 2003, pp. 331-336, (2003).

6. Huffaker, B., Hyun, Z., Luckie, M.: IPv4 and IPv6 AS Core: Visualizing IPv4 and IPv6 In-
ternet Topology at a Macroscopic Scale in (2010),
http://www.caida.org/research/topology/as_core_network/

7. IEEE, 1059-1993 - IEEE Guide for Software Verification and Validation Plans,
http://standards.ieee.org/findstds/standard/1059-1993.htm

8. ISTQB, ISTQB® Glossary of Testing Terms (2012),
http://www.istqb.org/downloads/finish/20/101.html

9. Knight, C., Munro, M.C.S.: Virtual but visible software. In: 2000 IEEE Conference on In-
formation Visualization, pp. 198–205. IEEE CS Press (2000)

10. Langelier, G., Sahraoui, H.A., Poulin, P.S.: Visualization-based analysis of quality for
large-scale software systems. In: Proceedings of ASE 2005, pp. 214–223. ACM Press
(2005)

11. Lanza, M., Marinescu, R.S.: Object-Oriented Metrics in Practice. Springer (2006)
12. Marcus, A., Feng, L., Maletic, J.I.: 3d representations for software visualization. In: Pro-

ceedings of SoftVis 2003, pp. 27–36. ACM Press (2003)
13. Marinescu, R.S.: Detection strategies: Metrics-based rules for detecting design flaws. In:

Proceedings of ICSM 2004, pp. 350–359. IEEE CS Press (2004)
14. Muller, H., Klashinsky, S.: Rigi: A system for programming-in-the-large. In: Proceedings

of ICSE 1988, pp. 80–86. ACM Press (1988)
15. Panas, T., Berrigan, R., Grundy, J.S.: A 3d metaphor for software production visualization.

In: International Conference on Computer Visualization and Graphics Applications, IV
2003, vol. 314. IEEE CS Press (2003)

16. Santos, C.R.D., Gros, P., Abel, P., Loisel, D., Trichaud, N., Paris, J.P.S.: Mapping infor-
mation onto 3d virtual worlds. In: Proceedings of the IV International Conference on In-
formation Visualization 2000, pp. 379–386 (2000)

17. Stasko, J.T., Patterson, C.: Understanding and characterizing software visualization sys-
tems. In: Proceedings 1992 IEEE Workshop, pp. 3–10 (1992)

18. Wettel, R.: Software Systems as Cities. In: Doctoral Dissertation, Faculty of Informatics of
the Università della Svizzera Italiana (2010)

19. Wettel, R., Lanza, M.: Visually Localizing Design Problems with Disharmony Maps. In:
Proceedings of the 4th ACM Symposium on Software visualization, SoftVis 2008. ACM
Press (2008)

20. Wettel, R., Lanza, M.: Visualizing Software Systems as Cities. In: Proceedings of
VISSOFT 2007 (4th IEEE International Workshop on Visualizing Software For Under-
standing and Analysis), pp. 92–99. IEEE Computer Society Press (2007)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 151–163, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Service Retrieval for Service-Oriented Business
Process Modeling

Youcef Baghdadi1 and Ricardo Pérez-Castillo2

1 Department of Computer Science, Sultan Qaboos University,
PO Box 36 – PC 123, Al-Khod, Oman

ybaghdadi@squ.edu.om
2 Alarcos Research Group, University of Castilla-La Mancha,

Paseo de la Universidad, 4 13071, Ciudad Real, Spain
Ricardo.PdelCastillo@uclm.es

Abstract. Many enterprises are not able to adapt to changing business require-
ments. One of the solutions to this agility problem is the usage of service-oriented
BP modeling. Meanwhile, their existing BP modeling does not consider the
potential services in Legacy IS (LIS) or from partners, in order to have a service-
oriented BP modeling that promotes agility. This requires a complete reengineer-
ing of the LIS and the BPs into services realized by business objects. In this
modeling paradigm, BPs are represented by specialized services, having sepa-
rated concerns such as controller service, state service, and worker services.
This paper provides guidance, by using techniques to retrieve business know-
ledge embedded in LIS and transform it into services towards moving from as-
is to to-be BPs. These techniques are: (i) reverse engineering LIS, by extracting
services from traces of BPs, and (ii) reverse engineering from the enterprise
service portfolio or reusing partner and provider services.

Keywords: Service-orientation, BP Modeling, Legacy Information Systems,
Reverse Engineering; Service Retrieval.

1 Introduction

Many enterprises are not able to adapt quickly to uncertain, changing business re-
quirements which is harmful in the enterprises’ competitiveness. These non-agile
enterprises slowly adapt to changing business requirements, which could be harmful
and affects their competitiveness. Their Business Processes (BPs) are not flexible and
could not adapt to the changes. Indeed, the agility is not possible if all the instances of
a same BP run the same way or the BPs are not flexible enough.

To become agile, enterprises have to adapt their BPs in response to different Busi-
ness Events (BEs) such as different customer demand, new acquisition, or merging. The
achievement of this agility is difficult owing to: (i) BP modeling considers that all the
instances of the same BP run the same way, (ii) the siloed architecture of the existing IS
supporting the BPs, and (iii) the non-interoperability of the elements of the IS.

One of the solutions is to reengineer the BPs moving them towards a service-
oriented BPs by using a service-oriented business modeling combining the roles of
Service Orientation (SO), SOA and Web services in promoting flexibility and agility.

152 Y. Baghdadi and R. Pérez-Castillo

First, we define a BP as a basic or composite service provided as a value to any of
the stakeholders. A composite service uses a state that reflects its execution. This
service is itself realized by enterprise IS that will play the role of service provider.
Then, we represent the BP by using specialized services. These are: (i) Controller
Service (CS), (ii) State Service (SS), and (iii) Worker Services (WKs), where the CS
uses the SS to get the state that determines which WK to invoke [1]. In this modeling,
the services are themselves provided by shared, discoverable, reusable enterprise
assets known as Business Objects (BOs) that would play the role of service units [2].
We extend the OMG definition, where a BO is “a representation of a thing active in
the business domain, including at least its business name and definition, attributes,
behavior, relationships, and constraints” by adding a new type of BO, we refer to as
Business Artifact (BA) that has a name and a state. Thus, BOs provide BPs with ac-
tivities, data, and state as services. Finally we envision to represent the IS by a set of
two types of BOs.

This service-oriented BP perspective requires an integrated view of all the reengi-
neering phases [3] i.e., reverse engineering, restructuring, and forward engineering. The
reverse engineering first transforms the existing IS into services, or extracts services
from running BPs (if any traces). Next, during the restructuring stage, the services are
categorized into one of the three types: CS, SS, or WK; and assigned to their respective
BO. Then new business requirements are met to achieve agility. Finally, the forward
engineering phase is based on MDA to take profit of the rapid transformation of the BP
model into executable standards such as web services, BPEL, and WS-CDL.

This work limits to a reverse engineering that (i) transforms the LIS into BOs, in-
cluding the existing enterprise service portfolio into some of the specialized services,
(ii) extract services from existing BPs (if any), and (iii) reusing partner and provider
services, or (iv) all of them.

─ The reverse engineering would modernize the IS so that it provides the required
worker services.

─ The mapping would map the existing service portfolio into specialized services,
including the controller and worker services.

─ The extraction would abstract the existing BPs.

This approach would have practical implications in terms of (i) reuse of the existing
assets of an organization to rapidly modeling, designing, enacting, and executing BPs
that realize values, and (i) compliance with SOA high maturity level for full integra-
tion, composition, and flexibility of BPs that respond to changing event, which pro-
motes agility.

The remainder of this paper is organized as follows: Section 2 provides some re-
lated works. Section 3 details the concepts of the BP modeling. Section 4 develops the
reverse engineering approach. Finally, Section 5 discusses further development.

2 Related Work

Managing BPs as services has recently started making its way in IS by promoting BPs
as compositions of loosely coupled services having separated concerns. This work
concerns with two perspectives: (1) modeling BPs as services, (2) modernizing

 Service Retrieval for Service-Oriented Business Process Modeling 153

supporting ISs with respect to SOA. From service-oriented BP modeling, the academ-
ics have raised the importance of service-oriented as one of the top three issues to deal
within BPs [4]. In [5], the author proposed a business model for B2B integration
through Web services. The authors in [6] proposed an approach for designing BPs in
service-oriented way, where a service composition process organizes the discovery,
selection and assembly of business services to build BPs tailored to business design-
er's requirements. In [7], the author investigated how to extend Event-Process Chain
(EPC) to come up with a new modeling language for service-oriented BP
management.

From a general perspective of modernizing ISs and BPs, different approaches have
been proposed [8]. In [9], the authors developed Marble to reengineer BPs within a
BP archeology. This approach makes it possible to obtain BP models from source
code and other software artifacts by reverse engineering. Efforts that concern with
modernization for SOA have been reported in [10]. In [11], the author proposed to
reverse engineer relational databases into services. In [12-13] the authors have de-
fined a technique to wrap legacy applications for reuse in a SOA.

From the perspective of mapping enterprise services into a given service-oriented
business modeling, there is a lack of approaches, though many authors such [14-20]
have attempted to classify services into taxonomy.

The drawback of these approaches is that they do not explicitly consider the reuse
existing service portfolio of services in their service-oriented BP modeling neither
have they reverse engineered the IS into BOs that provide reusable services.

3 Service-Oriented Business Process Modeling

A BP modeling captures the relevant properties with respect to the above-mentioned
definition of BPs, BOs and the relationships between them. In our service-oriented
modeling approach, two types of BOs provide BPs with specialized services.

3.1 Modeling Concepts

Our modeling uses the concepts of Value, BEs, BOs, BPs, and specialized services,
and a set of rules to construct these concepts from the universe of discourse.

Business Objects. To represent BOs in a consistent way regardless of the needs of BP
modeling, we insist on the monolithic representation of the activities and data of these
BOs so that BOs provide all the required services. Indeed, this representation is not
happening nowadays as different representations (or images) of the same BO are de-
veloped depending on the needs of each organizational body (e.g., department, busi-
ness unit). This leads to not only a limited view and inconsistency of BO across the
whole organization, but also siloed BOs that not accessible by the organization when
data integration is required.

154 Y. Baghdadi and R. Pérez-Castillo

We extend the OMG definition, where a BO is “a representation of a thing active
in the business domain, including at least its business name and definition, attributes,
behavior, relationships, and constraints”, by adding a new type of BO, we refer to as
Business Artifact that has a name and a state. In this way, BOs provide BPs with
activities, data, and state as services.

Real BO represents thing active in the business domain such as customers, ac-
counts, products, bill, or order. It has a name, attributes, behavior, and relationships to
other BOs. Figure 1 shows examples of BOs and the relationship of the BOs to the
BPs.

Artifact BO is a business artifact, a business uses to coordinate and control a set of
activities related to the same BE or value. It has a set of states (including initial and
final states) that reflects its execution. Each state has precedence. The modeler sets
and changes the states over time when business requirements change.

Fig. 1. Examples of BOs

Business Processes. A BP is a description of a service provided as a value to stake-
holders upon explicit or implicit demands (of different natures). These demands are
expressed by BEs that trigger (initiate) the BPs. A set of coordinated, controlled, syn-
ergetic activities realize the service. The BOs provide BPs with these services. A BP
has a set of state values (including initial and final state values) that the BP modeler
sets and changes over time when business requirements change. A state value reflects
the execution BP.

Service. A service [21] may be defined from business and technology perspectives. In
our modeling, we use web services and data services.

Our service-oriented approach for BP modeling emphasizes the separation of con-
cerns that differentiate the activities of control and execution. Similarly, the data
packaged into real BOs are separated from the state that is packaged in artifact BO.

 Service Retrieval for Service-Oriented Business Process Modeling 155

Accordingly, we specialize services into basic and composite services. The latter is
an aggregation of basic services, and has controller service.

─ The Controller Service (CS) oversees a BP execution through the state of the arti-
fact. The CS deals only with the control and coordination of the BP. It invokes a
State Service (SS), provided by the artifact BO, to retrieve the state; and accor-
dingly invokes the respective Worker Service (WW) and updates the state when
any of the WS terminates its job. The CS is invoked by an Initiator Web Service
(IWS).

─ The Initiator Web Service deals only with the initialization and starting of an
instance of the BP.

─ The State Service is a data service that represents the structure of the state of the
artifact BO. It is used by the CS to retrieve the state of the BP.

─ The Worker Services add value to a BP towards the achievement of its goal. WKs
are provided by real BOs. The CS invokes them according to the state. Inversely,
WKs report the outcome of their realization to the CS. WWs can also to retrieve
simple or integrate data from BOs.

─ WWs may use Data Services (DS) if necessary to retrieve simple or integrate data
from BOs. DSs retrieve or integrate the requested data from the BOs.

─ The following are the related concepts used to model a BP with services and the
relationships between them. These are ‘use’, ‘has’, or ‘is’ relationships.

3.2 Relationships between the Specialized Services

There are four types of relationships: association, specialization, realization, and use.

─ Association relationships indicate how the elements of a BP environment are as-
sociated with each other. For instance, a BP is associated with an event, a set of
BOs, a set of states, including an initial state, and a final state.

─ Specialization relationships indicate the specific roles of some elements of the
model. For instance, a service may be a CS, a SS, or a WW.

─ Use relationships show that some services use the capabilities of others. For in-
stance, the CS uses both WWs and SS. The latter provides it with the state of the
BP, whereas the former perform the required activity. The IWS uses the CS.

─ Realization relationships show that WWs are realized in the IS by the BOs, whe-
reas the SS is realized by a specific data structure representing the state values.

4 Towards Service-Oriented Business Process Models from
Legacy Information Systems

The drawback of the existing BP modeling approaches is that they do not explicitly
consider the legacy IS (LIS) as a provider of services, neither have they included the
service portfolio of a company or its partners, in order to have a service-oriented BP
modeling in favor of agility. This requires a complete reengineering of both the LIS
and the existing BPs (if any) into services mostly realized by the BOs.

156 Y. Baghdadi and R. Pérez-Castillo

We consider the most important scenario, where previous services being supported
according to the existing BP descriptions, but are not explicitly described in the ser-
vices portfolio. This is important for companies that have made a previous BP model-
ing (a non-service-oriented modeling strategy) and now, they want to move to a
service-oriented one, in order to achieve highest enterprise agility. For companies that
deal with BP modeling at the first time, this point does not have a lot of sense.

Fig. 2. Techniques to transform as-is BP into service-oriented BP

Moreover, we distinguish between services at technical abstraction level (e.g., web
services, data services, or restful services) that conform to the services portfolio, and
services at higher abstraction level that could be implicitly supported by BPs in
companies. Unfortunately, these abstract descriptions are missing in most companies.

This is challenging, but Model Driven Development can address it by: (i) consider-
ing and treating all software artifacts as models that conform to specific meta-models,
and (ii) establishing automatic transformations between models at different abstrac-
tion levels.

Our approach proposes a road map to transform an as-is BPs into to-be, i.e., the ex-
isting software artifacts into basic service and composite service with respect to SOA.
We propose to use different techniques as shown in Figure 2, namely (i) reverse engi-
neering IS, including legacy applications and database, and a way to map previous,
existing Enterprise Portfolio Services (ESP), (ii) extract services from exiting BPs, or
(iii) reuse Partner and Provider Services (P&Ps). In this reverse engineering phase,
everything becomes services. Later on, a restructuring phase will categorize these
services into CS, SS, or WKs and assign them to their respective real or artifact BOs
as shown in Figure 2.

 Service Retrieval for Service-Oriented Business Process Modeling 157

Therefore, our service-oriented BP modeling requires an integrated view of all the
reengineering phases [3] i.e., reverse engineering, restructuring and forward engineer-
ing. Our aim is to:

1. Make the LIS as service providers, which requires their transformation into real
BOs that provide WSs

2. Transform the existing BPs (if any) into artifact BOs that provide SS used by CS

5 Service-Oriented Business Processes by Reverse Engineering

As stated, the reverse engineering phase aims at providing LIS, ESP, existing BP
traces, or P&P as services. Whereas, the restructuring phase will categorize these
services into CS, SS, or WK and assign them to their respective real or artifact BOs.

5.1 Reverse Engineering LIS to Extract Services

When organizations do not have a portfolio of services, the reverse engineering of
legacy IS (LIS) is required to first mine BPs, then extract services from these BPs to
further reuse them in service-oriented BP modeling.

Fig. 3. Scenarios to discover and reconstitute BP embedded in systems

Most BPs in organizations are supported by their IS. The optimal BPM is therefore
achieved when organizations additionally combine the management of their LIS [22].
The configuration management of LIS is particularly important since these systems
undergo a considerable amount of changes during their lifecycles. Because of the
evolutionary maintenance over time, new business knowledge and rules are embedded

158 Y. Baghdadi and R. Pérez-Castillo

in LIS. This embedded business knowledge may not exist anywhere else [23]. The
evolution of IS in isolation consequently affects the evolution of BPs (see scenario 2
in Fig. 3). In this case, it is necessary to discover and reconstitute the underlying BPs
that are currently supported by LIS [24].

However, there are many organizations that currently carry out a vast amount of
daily transactions through their IS without having ever done their own BP modeling.
When these organizations deal with BP modeling for the first time, a recurrent me-
thod by which to attempt this modeling is the extraction of BP from LIS [25] (see
scenario 2 in 3). This is owing to the fact that LIS is one of the few knowledge assets
in organizations that can be used to attain an accurate understanding of the actual BP.

In both scenarios (Fig. 3), retrieving an up-to-date version of BPs from LIS allows
organizations to take advantage of at least two main benefits:

─ Benefits for BP modeling: BPs can always be up-to-date. Organizations may
therefore conduct BPM by following the continuous improvement process [26].
This kind of BPM facilitates an agile adaptation of BP to meet the changes that
occur in the uncertain environment. The rapid evolution of BPs allows organiza-
tions to maintain, or even improve, their degree of competitiveness [27].

─ Benefits for LIS: LIS continue to be modernized on more occasions. A recent
study by the SEI (Software Engineering Institute) states that it is first necessary to
retrieve embedded business knowledge in order to modernize systems in line with
the organization BPs [28]. Organizations can thus modernize their LIS whilst they
align the new systems with their actual BPs. LIS is therefore evolved rather than
being immediately retired and the ROI (return of investment) on such systems is
improved.

Moving to service-oriented BP with respect to SOA is possible by taking into account
the valuable knowledge embedded in LIS, (including data and applications) for four
key reasons: (i) SOA is mainly about reuse of assets, in this regard, LIS are running
smoothly and supporting critical tasks, (ii) most of the business functions are locked
within LIS [29], (iii) LIS were built at high cost; and we need to preserve these in-
vestments [30], and (iv) migration to SOA can give new life to LIS [31].

Yet, the LIS was built without taking into account the advent of service orientation
and service-oriented BP, and are incompatible with these environments [32]. There-
fore, modernization techniques of these LIS are necessary [12], [33]. However, there
exist several modernization techniques, including replacement, redevelopment, migra-
tion, reengineering, extension and surrounding, or wrapping [34-36], which requires
an understanding of both the LIS and the changes, in business and technology, since
these applications were developed.

One of the solutions is to extend the critical business logic of the LIS while pre-
serving the investments, through their wrapping to services, making them loosely
coupled, interoperable, discoverable, and (re)usable within and across the boundaries
of the enterprise.

A critical aspect of this solution concerns with guidance process that assists IT de-
partment teams to select an appropriate solution among several potential, yet confus-
ing, modernization techniques and tools. Indeed, constructing services from LIS to
obtain the benefits of service orientation is not an easy task. It requires a complex
task, particularly when the services are expected to execute within a tightly
con-strained environment [13].

 Service Retrieval for Service-Oriented Business Process Modeling 159

Once we extract a BP from LIS, it is then possible to present it as a set of coordi-
nated activities and data. The BP, its activities and data could easily be mapped into
services. Indeed:

─ A BP is mapped into CS
─ Each activity output of an activity is mapped into state value
─ Each activity is mapped into WW
─ Each piece of data is mapped into data service

5.2 Reverse Engineering from Enterprise Service Portfolio

The other way around to discover services that comply with our modeling is to use the
enterprise service portfolio.

Service Taxonomy. The objective of service mapping is to identify services that are
valuable, from business and IT perspectives. However, what constitutes a service has
different meanings due to the lack of a standard classification. Several researchers
attempted to provide taxonomy [14-20]. Taxonomy supports service-mapping process
by clarifying the roles of the different types of services, which helps in understanding
the role of each service. It also assists with the discoverability of services, which can
further promote reuse. In addition, taxonomy helps to make organizational decisions
like how to obtain a capability (build vs. buy vs. lease). To summarize the classifica-
tion efforts of these researchers, services can be divided into three broad categories:

1. Conceptual services (also called business services) service represents the core of
software product requirements. They express organizational ideas, thoughts, opi-
nions, views, or themes that propose software solutions to organization [17].

2. Capability services provide an explicit business value, ranging from generic ser-
vices, reused in multiple service-oriented applications to specialized services, part
of a single service-oriented application. Capability services include:
(a) Process services are services whose operations are directed by the BP defini-

tion [18][20]. BPEL are example of such kinds of services.
(b) Task services (aka application/activity/capability) encapsulate business logic

specific to activities or BP. A task service represents an atomic unit of process
logic.

(c) Entity services (also called data services) represent one or more related busi-
ness entities such as invoice. Entity service is considered a highly reusable ser-
vice because it is agnostic to most BPs and workflow [20]. As a result, a single
entity service can be reused part of multiple business processes. The type of
operations exposed by entity service is typically CRUD (create, read, update,
and delete) operations. In addition, entity service may provide the ability to un-
ify and hide differences in the way key data sources represented as databases
within the organization.

(d) Utility services contain logic derived from a solution or technology platform.
Utility services expose capabilities of multiple applications within the

160 Y. Baghdadi and R. Pérez-Castillo

organization, including migrated, reengineered legacy systems, and some
Commercial Of-The-Shelf software (COTS). In addition, utility services
represent logic that may not always need to be part of a BP for instance event
logging, exception handling [20].

(e) Hybrid services contain logic derived from both BPs and applications. Hybrid
services expose capabilities wrapped legacy systems and some COTS that may
exists within the organization.

(f) Partner services are offered to/by external partners based on agreed terms, this
type of services is known as Cloud services such as Application as a Service
(AaaS) or Software as a Service (SaaS). Partner services are considered as sep-
arate type due to security and management concerns. A partner service could
present capability offered by any of the application services depending on the
organizational requirements.

3. Infrastructure services are part of the organization supporting distributed compu-
ting infrastructure. These are:
a. Communication services transport messages into, out of, and within the sys-

tem. Examples include publish-subscribe services, queues, and ESB.
b. Auxiliary services provide facilities for monitoring, diagnostics, and manage-

ment activities of other services. These may include statistical information.

Mapping Services to Business Process. Table 1 shows that any kind of existing
services within the organization portfolio (first column) could be mapped into one of
the services we use in our modeling: a CS, a WW, or a DS. It is worth noting that
none of the ESP is mapped into a SS since SS is specific to our modeling. Infrastruc-
ture services map to SOA auxiliary services.

This mapping might be automated if the organization could have a portfolio or ser-
vices that have common meaning, which is the role of the BOs in our modeling.

Table 1. Services-to-service-oriented BP mapping

Existing (ESPs) Refined Services Service-Oriented BP
Conceptual services CS

Capability services

Process service CS
Task service WW
Entity service WW or DS
Utility service WW
Hybrid service WW
Partner services WW

Infrastructure services
Communication services (e.g., ESB)

SOA auxiliary services
Auxiliary services (e.g., Registry)

Marching Services with Business Objet Mapping. This transformation between As-
Is and To-Be artifact distributes the services we got in the first reverse engineering
phase over the real and artifact BOs as shown in Table 2.

 Service Retrieval for Service-Oriented Business Process Modeling 161

Table 2. Services-to-BO mapping

Existing (ESPs) Refined Services
BOs

Real Artifact
Conceptual services Conceptual service √

Capability services

Process service √
Task service √
Entity service √
Utility service √
Hybrid service √
Partner services √ √

Infrastructure services
Communication
Auxiliary services (e.g., Registry)

6 Conclusions

We have provided guidance towards retrieving services towards service-oriented
business process modeling, from legacy information systems.

First, we have provided a new modeling for business processes, where the elements
of business process environment are modeled as services, including controller service,
state service and worker services. The worker services and state service are provided
by real and artifact business objects respectively.

Then, we have shown that this guidance uses different techniques to move from as-
is business processes to to-be business processes. We have categorized these tech-
niques into: (i) reverse engineering the legacy information, by extracting services
from traces of running business processes, and (ii) reverse engineering from the
enterprise service portfolio and reusing partner and provider services system.

Finally, we have sketched out the challenges and the process of each technique.
This is a step towards moving SOA maturity towards the next levels, where services

are part of the requirements and the solutions as business-related services and IT-related
services respectively. This would promote integration, composition, flexibility, and
agility in response to changing business events.

Although, we have presented approaches and processes for transformation tech-
niques having a real impact on the way business processes should responsive to the
changes in the business requirements by using web service-based SOA, this work has
limitation. Therefore, we would consider that this work has presented the service-
oriented business process as rather a roadmap towards research issues and questions
related to transformation techniques than a definitive solution.

We need to develop tools and dig deeper in the different transformation techniques.
Further work would complete the cycle with the forward engineering phase by

using MDD, as services define both the requirements and the solutions.

References

1. Baghdadi, Y.: Modelling business process with services: Towards agile enterprise. Int.
Journal of Business Information Systems (in press, 2013)

2. Cummins, F.A.: Building the Agile Enterprise: With SOA, BPM and MBM. Morgan
Kaufmann, San Francisco (2010)

162 Y. Baghdadi and R. Pérez-Castillo

3. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: a taxonomy. IEEE
Software 7(1), 13–17 (1990)

4. Indulska, M., Recker, J., Rosemann, M., Green, P.: Business Process Modeling: Current
Issues and Future Challenges. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE
2009. LNCS, vol. 5565, pp. 501–514. Springer, Heidelberg (2009)

5. Baghdadi, Y.: A business model for B2B integration through Web services. In: IEEE Int.
Conference on e-Commerce Technology, pp. 187–194. IEEE (2004)

6. Cauvet, C., Guezilian, J.: Business Process Modeling: a Service-Oriented Approach. In:
Hawaii 41st Annual Int. Conference on System Sciences, pp. 1–8. IEEE (2008)

7. Stein, S.: Modelling Method Extension for Service-Oriented Business Process Manage-
ment. PhD diss., Kiel, Christian-Albrechts-Universität, Diss. (2010)

8. Rahgozar, M., Oroumchian, F.: An effective strategy for legacy systems evolution. J. of
Software Maintenance and Evolution: Research and Practice 15(5), 325–344 (2003)

9. Pérez-Castillo, R., de Guzmán, I.G.-R., Piattini, M.: Business process archeology using
MARBLE. Information and Software Technology 53(10), 1023–1044 (2011)

10. Khadka, R., Saeidi, A., Idu, A. Hage, J., Jansen, S.: Legacy to SOA Evolution: Evolution:
A Systematic Literature Review. Technical Report UU-CS-2012-006 (2012)

11. Baghdadi, Y.: Reverse engineering relational databases to identify and specify basic Web
services with respect to service oriented computing. Information Systems Frontiers 8(5),
395–410 (2006)

12. Sneed, H.M., Schedl, S., Sneed, S.H.: Linking legacy services to the business process
model. In: 6th IEEE International Workshop on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems (MESOCA), pp. 17–26. IEEE (2012)

13. Baghdadi, Y., Al-Bulushi, W.: A Guidance process to modernize legacy applications for
SOA. Service Oriented Computing and Applications, Online First Articles (2013)

14. Al-Rawahi, N., Baghdadi, Y.: Approaches to identify and develop Web services as in-
stance of SOA architectures. In: Int. Conference on Services Systems and Services Man-
agement (ICSSSM 2005), pp. 579–584. IEEE (2005)

15. Gu, Q., Lago, P.: Service Identification Methods: A Systematic Literature Review. In: Di
Nitto, E., Yahyapour, R. (eds.) ServiceWave 2010. LNCS, vol. 6481, pp. 37–50. Springer,
Heidelberg (2010)

16. Lago, P., Razavian, M.: A Pragmatic Approach for Analysis and Design of Service Inven-
tories. In: Pallis, G., et al. (eds.) ICSOC 2011 Workshops. LNCS, vol. 7221, pp. 44–53.
Springer, Heidelberg (2012)

17. Marks, E.A., Bell, M.: Executive’s Guide to Service-Oriented Architecture. John Wiley &
Sons (2006)

18. Cohen, S.: Ontology and taxonomy of services in a service-oriented architecture. The Ar-
chitecture Journal 11, 30–35 (2007)

19. Cho, M.J., Choi, H.R., Kim, H.S., Hong, S.G., Keceli, Y., Park, J.: Service Identification
and Modeling for Service Oriented Architecture Applications. In: 7th WSEAS Internation-
al Conference on Software Engineering, Parallel and Distributed Systems, pp. 193–199.
WSEAS (2008)

20. Erl, T., Taub, M.L., Hart, K., Mcfarland, J., Young, T.: SOA Design Patterns. Prentice
Hall (2009)

21. Chesbrough, H., Spohrer, J.: A research manifesto for services science. Communications
of the ACM 49(7), 35–35 (2006)

22. Jeston, J., Nelis, J.: Business process management. Elsevier Publisher (2012)
23. Paradauskas, B., Laurikaitis, B., Business, A.: knowledge extraction from legacy informa-

tion systems. Information Technolgy and Control 35(3), 214–221 (2006)

 Service Retrieval for Service-Oriented Business Process Modeling 163

24. Van den Heuvel, W.J.: Aligning Modern Business Processes and Legacy Systems: A
Component-based Perspective. The MIT Press (2009)

25. Van der Aalst, W., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de Medei-
ros, A.K., Song, M., VErbeek, H.M.W.: Business process mining: An industrial applica-
tion. Information Systems 32(5), 713–732 (2007)

26. Davenport, T.H.: Need radical innovation and continuous improvement? Integrate process
reengineering and TQM. Strategy & Leadership 21(3), 6–12 (1993)

27. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer
(2012)

28. Lewis, G.A., Smith, D.B.: A Research Agenda for Service-Oriented Architecture): Main-
tenance and Evolution of Service-Oriented Systems, Technical Note, CMU/SEI-2010-TN-
003 (2010)

29. Galinium, M., Shabaz, N.: Success factors model: Case studies in themigration of legacy
systems to service-oriented architecture. In: Int. Joint Conference on Computer Science
and Software Engineering (JCSSE), pp. 236–241 (2012)

30. Linthicum, D.S.: Leveraging SOA and legacy systems. Business Integration Journal, Leg-
acy Integration Supplement (2004)

31. Bhallamudi, P., Telly, S.: SOA migration case studies. In: IEEE Int. Conference on Sys-
tems (SysCon), pp. 123–128. IEEE (2011)

32. Chenghao, G., Min, W., Xiaoming, Z.: A wrapping approach and tool for migrating legacy
components to Web services. In: 1st Int. Conference on Networking and Distributed Com-
puting (ICDNC), pp. 94–98. ICDNC (2010)

33. Lewis, G.A., Morris, E.J., Smith, D.B., Simanta, S.: Smart: Analyzing the reuse potential
of legacy components in a service-oriented architecture environment. Technical Note,
CMU/SEI-2010-TN-003 (2008)

34. Comella-Dorda, S., Wallnau, K., Seacord, R.C., Robert, J.: A Survey of Legacy System
Modernization Approaches’, Carnegie Mellon University, Tech. Note, CMU/SEI-2000-
TN-003 (2000)

35. Canfora, G., Fasolina, A.R., Frattolillo, G., Tramontana, P.: A wrapping approach for mi-
grating legacy system interactive functionalities to service oriented architectures. J. of Sys-
tems and Software 81, 463–480 (2008)

36. Umar, A., Zordan, A.: Reengineering for service oriented architectures: A strategic deci-
sion model for integration versus migration. J. of Systems and Software 82(3), 448–462
(2009)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 164–173, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Automated Generation of Performance Test Cases
from Functional Tests for Web Applications

Federo Toledo Rodríguez1, Matías Reina1, Fabián Baptista1,
Macario Polo Usaola2, and Beatriz Pérez Lamancha2

1 Abstracta, Montevideo, Uruguay
{ftoledo,mreina,fbaptista}@abstracta.com.uy

2 Universidad de Castilla-La Mancha, Ciudad Real, Spain
{macario.polo,beatriz.plamancha}@uclm.es

Abstract. When modernizing systems there are big risks concerning functional
and non-functional properties. It is expected that the functionality, the perfor-
mance and the dependability are the same (or better) in the new version. There-
fore, the preventive workload simulation (to verify non-functional properties) is
crucial to guarantee the success of the modernization project. Since tools for
load simulation work at protocol level, the automation of tasks for workload
simulation demand much more effort than functional testing, whose test cases
are designed using record and playback techniques on the GUI: these tools are
more intuitive and they have to handle less variables and technical issues. In
this article we present a tool to automatically generate workload simulation
scripts from automated functional tests. The tool has been used in several
projects in the industry, achieving important cost savings and improving flex-
ibility when verifying non-functional properties of a migrated system.

Keywords: Software Testing, Information System Testing, Testing Automa-
tion, Non-functional Testing.

1 Introduction

In order to reduce risks, both the functional and non-functional properties of systems
must be verified before its deployment into the production environment: in fact, func-
tional and non-functional properties are essential for the success of the deployment
and the user acceptance. Typically, tests are performed at different levels to verify and
improve system functionalities: unit, component, integration or system testing. Project
development is generally iterative with several product releases during its lifecycle,
sometimes because they were previously planned, and others ought to bug fixes or
other kind of required maintenance interventions. With each new release, test cases
corresponding to previous versions are newly executed against the system. The goal
of this “regression test” is to find the possible faults that have been introduced be-
tween two system versions. Different tools are available to automate the execution of
these tests [1]. Functional test cases simulate interactions of the user against the sys-
tem and are usually implemented as test scripts that are executed by “capture and
replay tools”. Non-functional tests also consist of test scripts that are launched against

 Automated Generation of Performance Test Cases 165

the system under test (the SUT), but they are described at a much more low level,
what includes of the communication protocol. In non-functional tests, the range of
measurable properties is very wide. In this paper we pay special attention to the con-
ditions that must be verified when the system is under the concurrence of multiple
users, as for example performance and dependability. Therefore, load simulation tools
are used to concurrently generate hundreds of users connected to the SUT [2]. When
the load is simulated, the infrastructure experts analyze the health status of the system,
looking for bottlenecks and improvement opportunities.

As we will show later, traditional workload simulation approaches have important
drawbacks that make its automation very costly and demanding. Also, the resulting
testing artifacts are very fragile, in the sense that they are very susceptible to changes
in the SUT: modifications in the SUT (even bug fixes) often require the adaptation
and maintenance of test cases for the next stage of regression testing.

Since functional test automation is much easier than the automation for workload
simulation (what includes its easiness to be maintained and understood), our proposal
is to take advantage of the functional test scripts to automatically generate workload
simulation scripts. Focused on web systems, the idea consists automatically in execut-
ing the functional test scripts while the HTTP traffic is captured. Later, the HTTP
trace is analyzed to generate a workload simulation script model which is finally used
to generate the script code to be executed by a load generator.

The rest of the article is organized as follows: section 2 goes deeper on automation
of functional tests (regression tests) and workload simulation, especially to measure
performance for web systems; section 3 presents the proposal that is then validated in
section 4, showing the first results for the usage of the tool in the industry; and after
mentioning the related work in section 5, the conclusions and future work is presented
in section 6.

2 Background

An extended and current practice in the development of web systems is the automa-
tion of functional tests, using tools to simulate the user’s actions, like Selenium (se-
leniumhq.org) or WatiN (watin.org), just to mention some of the most popular open
source projects. This kind of tools offers the possibility to follow a record-and-
playback approach. Basically, it is necessary to manually execute the test case while
the tool captures every action performed by the user on the browser. Then, the tool
stores the actions in a file with a specific format or language (the test script) that the
same tool can reproduce later. The same test case can be executed as many times as
needed, performing the defined validations. Every command of the test script
simulates a user action.

Fig. 1. Selenium script for functional testing

166 F.T. Rodríguez et al.

These commands take as parameters the HTML elements on which the captured
action has been executed (for example, the input entered in a form), and the values
entered. Fig. 1 shows an excerpt of a Selenium test script that accesses to an applica-
tion (1st line), clicks the “Search” link (2nd line), enters the “computer” value in the
HTML field “vSEARCHQUERY” (3rd line), and finishes by clicking the button with
name “BUTTON1” (4th line).

This schema, in most of the tools, can be complemented with a data-driven testing
approach, by which the test case takes test data from a separated source (a text file or
a database, called “data pool”). Therefore, the same script can be reproduced with
different data sets, testing in that way different cases with just little extra effort: add-
ing lines to the test data source.

A workload simulation (also known as load test or performance test) could be
defined as a technical research to determine or validate the velocity, scalability and
stability characteristics of a SUT, in order to analyze its performance under load con-
ditions [2]. This kind of tests are useful to reduce risks towards the going live day,
analyzing and improving the non-functional aspects of the application and the per-
formance of the different servers when they are exposed to the concurrent users [3, 4].
There are specific tools to do that, called load generators or load testing tools, simu-
lating concurrent users accessing to the system. Two of the most popular open source
load generators are OpenSTA (opensta.org) and JMeter (jmeter.apache.org).

Unlike the functional test automation, in the workload scripts, even though the
record and playback approach is also common, the tools do not record at a graphic
user interface level. Instead, they do it at the communication protocol level. This hap-
pens because a functional test script reproduces the user actions on a real browser,
whilst load generators try to “save” resources doing the simulation at a protocol level:
for the HTTP protocol, for example, the tool will launch multiple processes that just
send and receive the corresponding byte arrays through a network connection. Since
the goal of these tests is to check the behavior of the server, neither the user interface
nor other kind of graphic elements are required.

The workload script contains a sequence of commands that manage HTTP requests
and responses according to the protocol. This script is much more complex than the
equivalent functional test script. For example, for the same actions presented in Fig. 1,
where the script has only four lines of Selenium code, the equivalent performance test
script has 848 lines using OpenSTA. That corresponds to each HTTP request sent to
the server: take into account that each request triggers a sequence of secondary re-
quests, which correspond to images included in the webpage, CSS files, Javascripts,
etc. Each request (primary or secondary) is composed by a header and a body, as
shown in the example of Fig. 2. Embedded, there are parameters, cookies, session
variables, and any kind of elements used in the communication with the server. The
example in this figure corresponds to the primary HTTP request of the last step of the
test case; so, it includes the value “computer” in the parameter “vSEARCHQUERY”
(the box).

Once the script is recorded, a number of adjustments must be performed in order to
make it completely reproducible and representative of real users: for example, it has
no sense to execute all the test cases with the same user name and password, the same
search key (because of caches), etc. These scripts will be executed by concurrent
processes (known as virtual users). The cost of the needed adjustments depends on

the automation tool and on
management of cookies and
other restrictions). Adjustm
be required.

Fig.

We have analyzed more
in real performance testing
30% and 50% of the total in
scripts (when the SUT cha
script from scratch instead
pragmatically inflexible. Th
which imply modification o
change the system. How can

3 Automatic Gene

The methodology proposed
Vázquez et al., [3]. Instead
the user has to provide a set
which is a module of our t
will build a model of the H
scripts. The model is the
preferred load testing tool.

Fig. 3. Scripts G

Automated Generation of Performance Test Cases

the SUT. In most of the cases, it is necessary to adjust
d session variables (many of them must be unique or fu

ment of parameters in the header and in the body will a

2. OpenSTA script for performance test

than 20 projects where we prepared a workload simulat
g projects, reporting that the scripting phase takes betw
nvested effort. On the other hand, the maintenance of th

anges) tends to be so complex that it is better to rebuil
of trying to adjust it. Because of that, the process becom
he test generally will identify improvement opportunit
on the system; however, our scripts will stop working if
n we verify that the changes take a positive effect?

eration of Workload Simulation Scripts

d extends the automation phase of the process presented
d of building the workload simulation scripts from scrat
t of automated functional test. As shown in Fig. 3, our to
testing framework called GXtest (gxtest.abstracta.com.u
HTTP traffic captured from the execution of each of th

entry of the tool that generates the script code for

Generation proposal for Workload Simulation Tests

167

the
lfill
also

tion
ween
hese
ld a
mes
ties,
f we

d in
tch,
ool,
uy),
hese

the

168 F.T. Rodríguez et al.

GXtest executes Seleniu
more automated testing too
captures the HTTP traffic b
tool capable of capturing th
information it builds a mod
ter. Also, it is easily extensi

Fig. 4 shows the main el
erate the workload simulat
tained by the sniffer (all the
scripts, correlating the user
fore composed of an ordere
cation through HTTP (requ
expected. Each HTTP requ
parts of the message are com
header also has a set of fie
Each value can be hardcode
the references between each
ing functional test script com

This model is used to gen
generation tool. The genera
with the user’s preferences
tion the tool has an approa
ments for the model-to-text
with code templates for eac
of those templates for Open
used for each test case of
request, according to the sp

As mentioned, the resul
them are very repetitive tas
the templates mechanism. S

• Adding timers to each
executing the test scenar
tional test script and the

.

um and WatiN scripts, but it can be easily extended
ols. During the execution of the functional test scripts
between the browser and the SUT with an HTTP sniffe
he network traffic) called Fiddler (fiddler2.com). With

del that is used to generate the scripts for OpenSTA or JM
ible to generate scripts for other load simulation tools.
lements of the HTTP traffic model, which is useful to g
tion scripts. This model is built using the information
e HTTP requests and responses) and by the functional
r actions with the corresponding HTTP traffic. It is the
ed sequence of actions, including invocations to the ap
uests), or validations on the response to verify that it is
uest is composed of a header and a message body. B
mposed of parameters with their corresponding values. T
elds that include, among others, cookies and session d
ed or can be taken from a data pool. It is important to k
h HTTP request and its response, and with the correspo
mmand that generated it.

Fig. 4. HTTP Session Metamodel

nerate code according to the language provided by the l
ated code is specifically for OpenSTA or JMeter, accord
for the workload simulation. To perform this code gene

ach similar to the one proposed in model-driven envir
t transformations [5], where the code generation is defi
ch element of the model. Table 1 includes some examp
nSTA; the first one is for the general structure of the scr
the model, and the second one corresponds to an HT
ecification of the HTTP protocol.

lting script must be adjusted after the recording. Many
ks. Our tool makes this kind of things automatically, us

Some of them are:

user action in order to measure the response time w
rios, considering the kind of actions performed in the fu

e corresponding HTTP requests for each one.

for
s, it

er (a
this
Me-

gen-
ob-
test
ere-

ppli-
s as

Both
The

data.
keep
ond-

load
ding
era-
ron-
ined
ples
ript,
TTP

y of
sing

hen
unc-

 Automated Generation of Performance Test Cases 169

• Taking advantage of different design aspects of the functional test script, in the
performance test scripts: (1) the data are taken from the same data pools; (2)
the same validations are performed; (3) same structure and modularization in
different files promoting the readability of the test script.

In this way we get scripts even better than when recording them with the OpenSTA or
JMeter recorders. The more we use the tool, the more improvements and automatic
adjustments we add to the scripts, avoiding that the tester commits mistakes during
the preparation of the performance test.

Once the scripts are finished, the effort can be invested in the most important part
(and the most interesting and beneficial) of a performance testing project: the execu-
tion of the load scenario and the system’s behavior analysis.

The approach is implemented as a module of the commercial tool GXtest, and it is
available in www.abstracta.com.uy.

Table 1. Templates for scripts generation

[template public generateScript(s: Session)]
[file (s.testcase_name().concat('.scl'), false, 'UTF-8')]
Definitions
 Timer T_TestCase_[s.testcase_name/]
 [s.variableDeclarations()/]
 CONSTANT DEFAULT_HEADERS = "Host: [s.getBaseURL()/]
 User-Agent: Mozilla/4.0"
Code
 Entry USER_AGENT,USE_PAGE_TIMERS
 Start Timer T_TestCase_[s.testcase_name/]
 [s.processActions()/]
 End Timer T_TestCase_[s.testcase_name/]
Exit
[/file]
[/template]
[template public processRequest(r: Request)]
Start Timer [r.name/]
[if ([r.isPrimary/])]PRIMARY [/if] [r.header.method/] URI [r.header.url/]
HTTP/1.1" ON [r.header.connection_id/] &
 HEADER DEFAULT_HEADERS, WITH [r.header.processFields()/]}
 [r.processBody()/]
[r.response.processLoadCookies()/]
End Timer [r.name/]
[/template]

4 First Experiences in the Industrial Usage of the Tool

In the moment of writing these lines, the presented tool has been used in five different
projects of five different customers of Abstracta. Abstracta is a Uruguayan company
specialized in providing testing services. The tool we are presenting here has been
developed in its R+D department, in collaboration with the University of Castilla-La
Mancha, in Spain.

There were two testers working in all the projects, both with high knowledge about
Selenium and OpenSTA. The SUTs were web systems from different domains and

170 F.T. Rodríguez et al.

developed with different technologies, and very good results were obtained in all of
them. Table 2 shows the number of generated scripts for each project, and the amount
of simulated virtual users concurrently accessing to the SUT, and the amount of PCs
required for the execution of the workload simulation.

Table 2. Use of the tool in performance testing projects

Project SUT # Scripts # VU # PCs
Human Resources
System

AS400 database, Java Web system on
Websphere 14 317 1

Production Manage-
ment System

AS400 database, C# Web system on
Internet Information Services 5 55 1

Courts Management
System

Java Web system on Tomcat with Oracle
database 5 144 1

Auction System Java Web system on Tomcat with MySQL
database 1 2000 4

Logisitcs System
Java Web system on Weblogic with
Oracle database 9 117 1

It is important to highlight that there are cases with few scripts, like in the 4th row,
where only one script was required. That was defined based on the statistical analysis
about the normal use of the system, which revealed that the 80% of the load is gener-
ated only with few use cases. However, the combination of this test script with the test
values from data pool leads to different execution flows in the SUT.

In some projects the SUT was developed with Model-driven Development tools
(particularly with GeneXus: www.genexus.com) capable of generating code from
models with a higher level of abstraction. This raises a special complication, because
just small modifications to the models could mean many modifications on the gener-
ated code and therefore on the HTTP traffic. The process was the same as in the rest
of the systems that were tested: first it is necessary to adjust the functional test scripts
to regenerate the workload simulation scripts with our tool. It is in this kind of sys-
tems, where the SUT suffers many modifications during the testing project, where our
approach reports the best benefits, because it was necessary to regenerate the scripts
several times, and this would have required a major effort if manually executed.

In one of the projects there were no previous functional test scripts, so it was ne-
cessary to automate functional test scripts to use the tool. These functional test scripts
were developed by a user (without knowledge about regression testing) which is al-
most impossible with any load generator. Once the project ended, the testing team
started to manage a regression testing environment, using the scripts that were devel-
oped in the performance test project. In a certain way, the performance quality control
favored the functionality quality control.

We also show in the table the amount of PCs required for the execution of the
workload simulation in order to highlight that, with our approach, we can execute the
simulation with a reduced test infrastructure.

The main limitation of the tool is that it only supports HTTP protocol. We believe
that the approach is valid to any client-server architecture, and we are working in that
direction, but we started with web systems because the migration to this platform
has been very common and risky at the same time. Also, even restricting to web
systems, there are different technologies to develop web systems, each one with its

 Automated Generation of Performance Test Cases 171

particularities. The different systems we have tested have shown us that each new
technology we test implies some adaptations to our templates to generate the work-
load simulation scripts (for example, it is not the same a simple PHP system than
one that makes use of Ajax). However, once the template is adjusted for certain
technology, it can be used for any system implemented with it.

Even considering the limitations, the time invested in the preparation of the scripts
was reduced from an average between 6 to 10 hours in the traditional approach (in our
previous projects) to 1 to 5 hours with our tool in these five case studies. That implies
an important cost saving for the automation phase. In addition, as it is easier to rege-
nerate the scripts, it also gave us more flexibility for the maintenance of the scripts.

To summarize, the case studies have shown promising results in the performance
testing, demonstrating that it can be made in a more flexible way and with less effort,
according with what the testers involved in the projects reported. These results are
also aligned with the ones reported in the case study of [6].

5 Related Work

There are tools that, in order to ease the construction and maintenance of the work-
load simulation scripts, work at a graphic user interface, using Selenium scripts to
execute load tests. The limitation of this approach comes from the fact that using PCs
is probably not enough to simulate the typical number of users of a load test. These
tools typically execute the tests scenarios from the Cloud, or with huge infrastruc-
tures. Some examples are Scaleborn (www.scaleborn.com) and Test Maker
(www.pushtotest.com). With our approach instead, the number of required machines
is kept low, being in that way a cheaper alternative, and obtaining the same results.
Also, we have the requirement from some companies that they want to use only their
infrastructure to execute their tests because of confidentiality issues, then, the solu-
tions in the Cloud cannot be applied. As we showed before, our proposal requires
only few machines to execute the workload simulation, and it can be done in situ.

As far as we know, there are few proposals to generate performance tests. Some
propose to design models as the basis of the performance test scripts generation, as in
the one published by García-Domínguez et al. [7], which points to performance test-
ing of workflows systems invoking Web Services. Instead, our proposal is for web
systems.

There are also some proposals to use stereotyped UML models, such as [8–10], or
even others that extend a UML design tool to generate a complete set of performance
test artifacts from the modeled diagrams [11]. The main disadvantage of these pro-
posals is that a big effort is required to design the input artifacts for the generator. In
our case the user has to specify the test cases in the same simple way it is done in
functional testing.

Last but not least, we would like to highlight the article of de Sousa et al. [6] where
a similar approach is proposed, taking advantage of the functional test scripts to gen-
erate workload simulation scripts. They propose a syntactical transformation, translat-
ing Selenium commands to JMeter commands. We observe two important limitations
with this approach: on the one hand, as they do not consider the HTTP traffic (they
only use the functional test script as input), it is impossible to generate the secondary

172 F.T. Rodríguez et al.

requests and the primary requests coming from redirects that the SUT is doing, and on
the other hand, it is not considering any javascript modification on the requests; there-
fore, the resulting simulation is not faithful to the real users load. This is why in our
approach we decided to execute the functional script in order to have confidence to be
executing the correct traffic that a real user would execute.

6 Conclusions and Future Work

In order to reduce risk releasing a system to the final users, workload simulation test-
ing is needed to validate non-functional properties such as performance and dependa-
bility. As this task is expensive and resource demanding, it is typically made in a poor
or incomplete way, or the results come too late. The most demanding task is the au-
tomation of the functionalities to be tested, taking part of the time that could be used
to execute tests and analyze how to improve the system.

Taking this into account, this article presented a new module of the GXtest frame-
work, where the novel contributions are:

• Easier construction of workload simulation scripts: they are generated from auto-
mated functional test cases.

• Major flexibility when adjusting test scripts according to the changes and im-
provements performed on the application. It is only necessary to adjust the
functional test cases and regenerate the workload simulation scripts.

• Automatic generation of better scripts, with better quality, in less time and with
less effort. The changes to be done to each script are systematized by the tool.

GXtest has being used in different projects to test the performance of a variety of
systems, demonstrating the benefits of the proposal.

One of the future work lines is related to the protocols used to execute the work-
load. JMeter supports different communication protocols, allowing the execution of
tests against systems that are accessed by different interfaces (HTTP, SOAP, FTP),
and managing the test centralized in one single tool. Therefore, GXtest can be
extended to other protocols even generating for the same load simulation tool.

On the other hand, we are also researching in a complete model-driven approach,
starting from the requirements to generate functional test cases, and then use this test
model to generate automated test cases that are useful to generate workload simula-
tion scripts. Also, from the non-functional requirements it is possible to automatically
generate the load scenarios to be executed by the load simulation tool (in this paper
we presented how to create executable test cases, but not how to combine them in
order to generate the workload), and the non-functional validations to verify that the
requirements are being reached.

Acknowledgements. This work has been partially funded by Agencia Nacional
de Investigación e Innovación (ANII, Uruguay) and by the GEODAS-BC
project (TIN2012-37493-C03-01). We would also like to express our special
acknowledgement to Abstracta team.

 Automated Generation of Performance Test Cases 173

References

1. Graham, D., Fewster, M.: Experiences of Test Automation: Case Studies of Software Test
Automation. Addison-Wesley Professional (2012)

2. Meier, J., Farre, C., Bansode, P., Barber, S., Rea, D.: Performance testing guidance for
web applications: patterns & practices. Microsoft Press (2007)

3. Vázquez, G., Reina, M., Toledo, F., de Uvarow, S., Greisin, E., López, H.: Metodología de
Pruebas de Performance. Presented at the JCC (2008)

4. Barber, S.: User Experience, not Metrics (2001)
5. OMG, MOF Model to Text Transformation Language (MOFM2T), 1.0 (2008)
6. de Sousa Santos, I., Santos, A.R., de Alcantara dos, P., Neto, S.: Reusing Functional Test-

ing in order to Decrease Performance and Stress Testing Costs. In: SEKE, pp. 470–474
(2011)

7. García-Domínguez, A., Medina-Bulo, I., Marcos-Bárcena, M.: Performance Test Case
Generation for Java and WSDL-based Web Services from MARTE. Adv. Internet Tech-
nol. 5(3&4), 173–185 (2012)

8. Garousi, V., Briand, L.C., Labiche, Y.: Traffic-aware stress testing of distributed sys-tems
based on UML models. In: ICSE, New York, NY, USA, pp. 391–400 (2006)

9. Shams, M., Krishnamurthy, D., Far, B.: A model-based approach for testing the perfor-
mance of web applications. Presented at the SOQUA, 54–61 (2006)

10. da Silveira, M., Rodrigues, E., Zorzo, A., Costa, L., Vieira, H., Oliveira, F.: Generation of
Scripts for Performance Testing Based on UML Models. In: SEKE, pp. 258–263 (2011)

11. Cai, Y., Grundy, J., Hosking, J.: Experiences Integrating and Scaling a Performance Test
Bed Generator with an Open Source CASE Tool. In: Presented at the ASE, pp. 36–45
(2004)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 174–189, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Investigating the Applicability of the Laws of Software
Evolution: A Metrics Based Study

Nicholas Drouin and Mourad Badri

Software Engineering Research Laboratory, Department of Mathematics and Computer
Science, University of Quebec, Trois-Rivières, Québec, G9A 5H7, Canada

{Nicholas.Drouin,Mourad.Badri}@uqtr.ca

Abstract. The study aims at investigating empirically the applicability of Leh-
man’s laws of software evolution. We used a synthetic metric (Quality Assur-
ance Indicator), which captures in an integrated way various object-oriented
software attributes. The goal was to explore if the metric can be used to support
the applicability of Lehman’s laws of software evolution. We focused on five
laws: continuing change, increasing complexity, self-regulation, continuing
growth and declining quality. We performed an empirical analysis using histor-
ical data collected on two open source (Java) software systems. Empirical re-
sults provide evidence that the considered Lehman’s laws are supported by the
collected data and the metric.

Keywords: Software Evolution, Laws of Software Evolution, Software Quality,
Software Attributes, Metrics, Quality Assurance.

1 Introduction

Software systems need to continually evolve during their life cycle for various reasons:
adding new features to satisfy user requirements, changing business needs, introducing
novel technologies, correcting faults, improving quality, etc. [1, 2]. The accumulation of
changes, along the evolution of a software system, can lead to a degradation of its quali-
ty [3-7]. It is, therefore, important to monitor how software quality evolves so that quali-
ty assurance (QA) activities can be properly planned [7]. Software evolution is, in fact,
the dynamic behavior of programming systems as they are maintained and enhanced
over their lifetimes [8]. Lehman’s laws of software evolution [4, 5] state that for keeping
software systems long-lived continuous change is required. The laws also suggest that
due to changes and growth over time, software systems become more complex and it
becomes more and more difficult to extend them by adding new functionalities. Soft-
ware metrics can be used to analyze the evolution of software systems [9]. Metrics have,
in fact, a number of interesting characteristics for providing evolution support [10]. A
large number of metrics have been proposed for measuring various properties of ob-
ject-oriented (OO) software systems [11]. Empirical evidence exists showing that
there exists a relationship between (many of) these metrics and software quality
attributes [9, 12-21]. However, with the growing complexity and size of OO software
systems, the ability to reason about such a major issue using synthetic metrics would
be more appropriate in practice.

 Investigating the Applicability of the Laws of Software Evolution 175

We proposed in [22] a new metric, called Quality Assurance Indicator (Qi), which
captures in an integrated way the interactions between classes and the distribution of
the control flow in a software system. The Quality Assurance Indicator of a class is
based on intrinsic characteristics of the class, as well as on the Quality Assurance
Indicator of its collaborating classes. It is important to notice, however, that the me-
tric has no ambition to capture the overall quality of OO software systems. Further-
more, the objective is not to evaluate a design by giving absolute values, but more
relative values that may be used for identifying critical classes on which more QA
effort is needed to ensure software quality. In [22], we performed an empirical analy-
sis using data collected from several open source (Java) software systems. In all, more
than 4,000 classes were analyzed (400 000 lines of code). We compared the Qi me-
tric, using the Principal Components Analysis (PCA) method, to various well known
OO metrics. The selected metrics were grouped in five categories: coupling, cohesion,
inheritance, complexity and size. Empirical results provide evidence that the Qi me-
tric captures, in a large part, the information provided by the studied OO metrics.
Moreover, we explored in [12] the relationship between the Qi metric and testability
of classes and investigated in [23] the capacity of the Qi metric in predicting the unit
testing effort of classes using regression analysis. Results provide evidence that the Qi
metric is able to accurately predict the unit testing effort of classes. More recently, we
explored in [24] if the Qi metric can be used to observe how quality, measured in
terms of defects, evolves in the presence of changes and in [25] if the Qi metric cap-
tures the evolution of two important OO metrics (related to coupling and complexity).

In this paper, we wanted to investigate thoroughly if the Qi metric, as a synthetic
metric, can be used to support the applicability of Lehman’s laws of software evolu-
tion [4, 5]. We focused on five laws: continuing change, increasing complexity, self-
regulation, continuing growth and declining quality. We addressed software evolution
from both software internal and external perspectives. We performed an empirical
analysis using historical data collected on two open source (Java) software systems.
The collected data cover a period of more than four years (fifty-two versions) for the
first system and more than seven years (thirty-one versions) for the second one. Em-
pirical results provide evidence that the considered Lehman’s laws are supported by
the collected data and the Qi metric.

The rest of this paper is organized as follows: Section 2 gives a survey on related
work. The Qi metric is introduced in Section 3. Section 4 presents the empirical study
we performed. Finally, Section 5 concludes the paper.

2 Related Work

Mens et al. [10] provide an overview of the ways software metrics have been (and can
be) used to analyze software evolution. A distinction is made between using software
metrics before the evolution has occurred (predictive) and after the evolution has
occurred (retrospective). To support retrospective analysis, metrics can be used to
understand the quality evolution of a software system by considering its successive
releases. In particular, metrics can be used to measure whether the quality of a soft-
ware has improved or degraded between two releases. Dagpinar et al. [15] investigate
the significance of different OO metrics for the purpose of predicting maintainability

176 N. Drouin and M. Badri

of software. Nagappan et al. [26] focus on mining metrics to predict component fail-
ures. The authors noted that there is not a single set of complexity metrics that could
be used as a universally best defect predictor. Ambu et al. [27] address the evolution
of quality metrics in an agile/distributed project and investigate how the distribution
of the development team has impacted the quality of the code.

Lee et al. [9] provide an overview of open source software evolution with software
metrics. The authors explored the evolution of an open source software system in
terms of size, coupling and cohesion, and discussed its quality change based on the
Lehman’s laws of evolution [4, 5, 28]. Jermakovics et al. [29] propose an approach to
visually identify software evolution patterns related to requirements. Mens et al. [30]
present a metrics-based study of the evolution of Eclipse. The authors consider seven
major releases and investigate whether three of the laws of software evolution (con-
tinuing change, increasing complexity and continuing growth) were supported by the
data collected. Xie et al. [1] conduct an empirical analysis on the evolution of seven
open source programs and investigate also on Lehman’s laws of software evolution.
Murgia et al. [18] address software quality evolution in open source projects using
agile practices. The authors used a set of OO metrics to study software evolution and
its relationship with bug distribution. According to the achieved results, Murgia et al.
concluded also that there is not a single metric that is able to explain the bug distribu-
tion during the evolution of the analyzed systems. Zhang et al. [7] use c-charts and
patterns to monitor quality evolution over a long period of time. The number of de-
fects was used as a quality indicator. Eski et al. [16] present an empirical study on the
relationship between OO metrics and changes in software. The authors analyze mod-
ifications in software across the historical sequence of open source projects and pro-
pose a metrics-based approach to predict change-prone classes. Yu et al. [31] study
the possibility of using the number of bug reports as a software quality measure. Us-
ing statistical methods, the authors analyze the correlation between the number of bug
reports and software changes.

3 Quality Assurance Indicator

We give, in this section, a summary of the definition of the Quality Assurance Indica-
tor (Qi) metric. For more details see [22, 23]. The Qi metric is based on the concept
of Control Call Graphs (CCG), which are a reduced form of traditional Control Flow
Graphs (CFG). A CCG is a CFG from which the nodes representing instructions (or
basic blocks of sequential instructions) not containing a call to a method are removed.
The Qi metric is normalized and gives values in the interval [0, 1]. A low value of the
Qi of a class means that the class is a high-risk class and a high value of the Qi of a
class indicates that the class is a low-risk class.

3.1 Quality Assurance Indicator

The Qi of a method Mi is defined as a kind of estimation of the probability that the
control flow will go through the method without any failure. The Qi of a method Mi is
based on its intrinsic characteristics (cyclomatic complexity, unit testing coverage), as

 Investigating the Applicability of the Laws of Software Evolution 177

well as on the Qi of the methods invoked by the method Mi. We assume that the
quality of a method, particularly in terms of reliability, depends also on the quality of
the methods it collaborates with to perform its task. In OO software systems, objects
collaborate to achieve their respective responsibilities. A method of poor quality can
have (directly or indirectly) a negative impact on the methods that use it. There is here
a kind of propagation, depending on the distribution of the control flow in a system,
which needs to be captured. It is not obvious, particularly in the case of large and
complex OO software systems, to identify intuitively this type of interferences be-
tween classes (which is not captured by traditional OO metrics). The Qi of a method
Mi is given by: QiM = QiM∗ · P C · QiMM (1)

with: QiM : QA indicator of method Mi, QiM∗ : intrinsic QA indicator of method Mi, C : jth path of method Mi, P C : probability of execution of path Cj
i of method Mi, QiM: QA indicator of method M included in the path Cj

i, n : number of linear paths of the CCG of method Mi,
and σ : set of the methods invoked in the path Cj

i.

By applying the previous formula (1) to each method we obtain a system of N (num-
ber of methods in the program) equations. The obtained system is not linear and is
composed of several multivariate polynomials. We use an iterative method (method
of successive approximations) to solve it. The system is, in fact, reduced to a fixed
point problem. Furthermore, we define the Qi of a class C (noted QiC) as the product
of the Qi of its methods: = (2)

where δ is the set of methods of the class C. The calculation of the Qi metric is entire-
ly automated by a tool (prototype) that we developed for Java programs.

3.2 Assigning Probabilities

The CCG of a method can be seen as a set of paths that the control flow can pass
through (depending on the states of the conditions in the control structures). To cap-
ture this probabilistic characteristic of the control flow, we assign a probability to
each path C of a control call graph as follows: () = () (3)

where θ is the set of directed arcs composing the path C and P(A) the probability of
an arc to be crossed when exiting a control structure.

178 N. Drouin and M. Badri

Table 1. Assignment rules of the probabilities

Nodes Probability Assignment Rule

(if, else)
0.5 for the exiting arc « condition = true »
0.5 for the exiting arc « condition=false »

while
0.75 for the exiting arc « condition = true »
0.25 for the exiting arc « condition = false »

(do, while)
1 for the arc: (the internal instructions are executed
at least once)

(switch,case) 1/n for each arc of the n cases.

(?, :)
0.5 for the exiting arc « condition = true »
0.5 for the exiting arc « condition = false »

for
0.75 for entering the loop
0.25 for skipping the loop

(try, catch)
0.75 for the arc of the « try » bloc
0.25 for the arc of the « catch » bloc

Polymorphism 1/n for each of the eventual n calls.

To facilitate our experiments, we assigned probabilities to the different control

structures of a (Java) program according to the rules given in Table 1. These values
are assigned automatically during the static analysis of the source code of a program
when generating the Qi models. These values can be adapted according to the nature
of the applications (for example). As an alternative way, the probability values may
also be assigned (adapted) by programmers during the development (in an iterative
way, knowing the code) or obtained by dynamic analysis. Dynamic analysis is out of
the scope of this paper.

3.3 Intrinsic Quality Assurance Indicator

The Intrinsic Quality Assurance Indicator of a method Mi, noted Qi*
Mi, is given by: ∗ = (1) (4)

with: = ()

where:
CCi : cyclomatic complexity of method Mi, = max (),
tci: unit testing coverage of the method Mi, 0,1 .

Many studies provided empirical evidence that there is a significant relationship be-
tween cyclomatic complexity and fault proneness (e.g., [13, 21, 32]). Testing (as one
of the most important QA) activities will reduce the risk of a complex program and
achieve its quality. Moreover, testing coverage provide objective measures on the
effectiveness of a testing process. The testing coverage measures are (currently in our
approach) affected by programmers based on the test suites they developed to test
the classes of the program. The testing coverage measures can also be obtained auto-
matically (using tools such as Together (www.borland.com) or CodePro
(developers.google.com)) by analyzing the code of the test suites (JUnit
suites for example) to determine which parts of the classes that are covered by the test
suites and those that are not. This issue is out of the scope of this paper.

 Investigating the Applicability of the Laws of Software Evolution 179

4 Empirical Study

We present, in this section, the empirical study we conducted in order to investigate if
the Qi metric can be used to support the Lehman’s laws. We focus on the following
laws: continuous change, increasing complexity, self-regulation, continuing growth
and declining quality. We used historical data collected from successive released
versions of two open source Java software (Table 2).

Table 2. Some statistics on the used systems

Systems
Time frame

(years)
Releases

/Captures
First release computed Last release computed

Version Date Size (SLOC) Version Date Size (SLOC)
Eclipse
PDE.UI

4.25 52 (monthly) - 2002-08-29 9 519 - 2006-11-28 79 548

Apache
Tomcat

7.2 31 (official) 5.5.0 - 126 927 5.5.35 - 170 998

4.1 The Case Studies

The first system we selected is an Eclipse component (PDE.UI). We used captures
taken at regular intervals (monthly, more than four years). The second system we
selected is a relatively large system (Tomcat). This system is an open source web
server developed by the Apache Software Foundation. We analyzed its 5.5 branch,
launched in August 2004. The version 5.5.35, the latest to date, was launched on No-
vember 2011. For this system, we used the official releases as time captures. The first
version of PDE.UI includes 121 classes (more than 9 500 lines of code) and the last
one includes 670 classes (more than 79 000 lines of code). The first version of Tom-
cat includes 837 classes (more than 120 000 lines of code) and the last one includes 1
108 classes (more than 170 000 lines of code).

Data Gathering. We collected two types of data from the subject systems for all the
steps of our study: source code historical data and Qi data. In addition to these data,
we also collected other (specific) data related to each law. These data will be
presented in the corresponding sections.

System History Data. We used CVS (Concurrent Versions System) to collect histor-
ical data about PDE.UI. CVS is a client-server software that allows keeping track of a
software system evolution. We connected to the CVS repertory of Eclipse. We based
our analysis on the latest available version on the first day of each month. A period of
more than four years (fifty two versions) is covered. For Apache Tomcat, we retrieved
the official releases on the 5.5.x branch from the official website (archive.apache.org).
A period of more than seven years (thirty one versions) is covered for this system.

Qi Data. We used the tool we developed to collect the Qi data. We computed the Qi
value for each class of each released version of a subject system. We computed the Qi
values at the micro level (classes) as well as at the macro level (system). Moreover,
for our experiments, since we did not have any data on the test suites used for testing
the subject systems and knowing that the main purpose of this study is to investigate
if the Qi metric can be used to support Lehman’s laws of software evolution, the test
ing coverage (tci, Section 3.3) is set to 0.75 for all methods.

180 N. Drouin and M. Badri

4.2 Lehman’s Laws of Software Evolution

We consider in our study five of the eight Lehman’s laws of software evolution:
continuing change, increasing complexity, self-regulation, continuing growth and
declining quality. We have not investigated the remaining two laws (conservation of
organizational stability and conservation of familiarity) because we had no data to
analyze them. For each of the considered laws, we investigate its applicability on our
test applications. In addition, we describe the procedure we used, the specific data we
collected (using different metrics to capture some attributes of the systems analyzed)
in addition to the data described previously and the observations on whether the law is
confirmed or infirmed. Our objective is to investigate if the Qi metric, as a
synthetic metric, can be used to support the applicability of Lehman’s laws of
software evolution.

Continuing Change. An evolving system undergoes many changes over time. The
Lehman's first law (continuing change) states that a software system must continually
adapt to its environment, otherwise it becomes progressively less useful. Many studies
on software evolution have addressed and validated this law for the open-source soft-
ware systems studied [1, 9, 10, 33]. In our study, we consider change from the pers-
pective of the cumulative number of added/removed classes. Figure 1 shows the
curves of the cumulative number of changes for the two systems. The figure clearly
shows that the two systems continue to change over time. Using linear regression, we
calculated the slopes associated with these data sets. A similar approach has been
used by Xie et al. [1]. From Figure 1, it can be seen that the slopes of the curves are
positive for both systems (obviously since it is a sum of positive elements). Our focus
is therefore on the strength of the slope of these curves. Results show that the changes
take place periodically over time. However, changes in smaller amounts are held on a
continuous basis and this throughout the period of evolution of the two systems. With
these observations we can conclude that continuing change is confirmed for our two
software systems.

We extended our analysis by focusing on variations in the values of some size me-
trics. We used several size indicators. We used the number of lines of code in a
system (SLOC), the total number of classes in a system (SNOC) and the average
number of lines of code in a class (LOC). We used the Borland Together tool
(www.borland.com) to collect data on these metrics on the two subject systems. Fig-
ures 2 and 3 show, respectively for PDE.UI and Tomcat, variations in the used size
related metrics. We can observe that the variations are quite dispersed for both sys-
tems over time. Therefore, changes in the case of the two systems are continuous.
This confirms once again that continuous change is observable for the systems ana-
lyzed. Moreover, Figure 4 shows the variations in the Qi metric along the evolution of
the two systems. The analysis of these curves clearly reveals continuing presence of
changes in the case of both systems. Variations in the values of Qi are, in fact, conti-
nuous. With these observations, we can conclude that the Qi metric confirms also the
first law for the systems analyzed.

 Investigating the Applicability of the Laws of Software Evolution 181

Fig. 1. Evolution of cumulative changes for PDE.UI and Tomcat

Fig. 2. Evolution of size metrics variations for PDE.UI

Fig. 3. Evolution of size metrics variations for Tomcat

Fig. 4. Evolution of Qi variations for PDE.UI and Tomcat

R² = 0,896

R² = 0,8376

0

500

1000

1500

2000

1 8 15 22 29 36 43 50
N
um

be
ro

fc
la
ss
es

Versions

Changes PDE.UI

Cumul. Additions

Cumul. Deletions

R² = 0,9227

R² = 0,9503

0

100

200

300

400

500

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

N
um

be
ro

fc
la
ss
es

Versions

Changes Tomcat

Cumul. Additions
Cumul. Deletions

20000

10000

0
10000

20000

30000
40000

1 8 15 22 29 36 43 50D
el
ta

SL
O
C

Versions

PDE.UI

150

50

50

150

1 8 15 22 29 36 43 50D
el
ta

SN
O
C

Versions

PDE.UI

10

0

10

20

30

40

50

1 8 15 22 29 36 43 50

D
el
ta

LO
C

Versions

PDE.UI

20000

10000

0

10000

20000

1 7 13 19 25 31

D
el
ta

SL
O
C

Versions

Tomcat

50

0

50

100

150

1 7 13 19 25 31

D
el
ta

SN
O
C

Versions

Tomcat

20

10

0

10

20

1 7 13 19 25 31

D
el
ta

LO
C

Versions

Tomcat

0,1

0,05

0

0,05

1 8 15 22 29 36 43 50

De
lta

Q
i

Versions

PDE.UI

0,01

0,005

0

0,005

0,01

1 7 13 19 25 31De
lta

Q
i

Versions

Tomcat

182 N. Drouin and M. Badri

Increasing Complexity. The second law states that as a software system evolves its
complexity increases unless work is done to reduce or stabilize it. Studies that ad-
dressed Lehman's second law in the case of open-source development have confirmed
this law for the systems analyzed [1, 9]. In our study, we used three well-known soft-
ware metrics (RFC, WMC and CBO) [34] to capture complexity and coupling along
the evolution of the systems studied. The CBO (Coupling Between Objects) metric
counts for a class the number of other classes to which it is coupled (and vice versa).
The RFC (Response For Class) metric for a class is defined as the set of methods that
can be executed in response to a message received by an object of the class. The
WMC (Weighted Methods per Class) metric gives the sum of complexities of the
methods of a given class, where each method is weighted by its cyclomatic complexi-
ty. Here also, we used the Borland Together tool to collect data on these metrics on
the two subject systems. We calculated the values of these metrics for all versions of
the considered systems. Figures 5 and 6 show, respectively for PDE.UI and Tomcat,
the curves of the metrics and the slope of the linear regression followed by each of
these curves.

Overall, from the two figures, we can clearly observe that all the curves show an
increasing trend. The three metrics have increased over time. With these observations,
we can conclude that the second law is confirmed for the two systems. Moreover,
Figure 7 shows the evolution of the Qi metric for both systems. From this figure, we
can observe a decreasing trend of the Qi metric, which is opposite to the trend of the
curves corresponding to the coupling and complexity metrics. The decreasing in the
values of the Qi metric confirms also the second law for the two systems. We also
calculated the correlation coefficients between the Qi metric and the coupling and
complexity metrics. We used the Spearman’s correlation coefficient in our study. This
technique is widely used for measuring the degree of relationship between two va-
riables. Correlation coefficients will take a value between -1 and +1. We applied the
typical significance threshold (α = 0.05) to decide whether the correlations were sig-
nificant. We analyzed the correlations between the Qi metric and the coupling and
complexity metrics at both micro and macro levels.

Fig. 5. Evolution of coupling and complexity metrics for PDE.UI

For the macro level, we used the average values of the metrics for each version of
the subject systems. We give in what follows (Table 3), for space constraints, only the
correlation values at the macro level. From Table 3, it can be seen that all correlations
are significant (in boldface). The correlation values are moderate for PDE.UI but
relatively high (especially between the Qi metric and RFC and CBO metrics)
for Tomcat, the larger of the two systems. Moreover, the correlations are negative.

slope = 1.944
0

50

100

150

1 8 15 22 29 36 43 50

RF
C

Versions

PDE.UI

slope = 0.3252

0
5
10
15
20
25
30

1 8 15 22 29 36 43 50

W
M
C

Versions

PDE.UI

slope = 0.4885

0
5
10
15
20
25
30

1 8 15 22 29 36 43 50

CB
O

Versions

PDE.UI

 Investigating the Applicability of the Laws of Software Evolution 183

This confirms the trends observed from the different previous curves. Therefore, we
can conclude that the increasing complexity of the two systems is once again con-
firmed and supported by the Qi metric.

Fig. 6. Evolution of coupling and complexity metrics for Tomcat

Fig. 7. Evolution of the Qi metric for PDE.UI and Tomcat

Table 3. Correlations between Qi and complexity metrics for PDE.UI and Tomcat

 RFC vs. Qi WMC vs. Qi CBO vs. Qi
PDE.UI -0.516 -0.539 -0.475

Apache Tomcat -0.830 -0.566 -0.854

Self-regulation of Large Systems. The third law states that large systems have their
own internal dynamic that makes that their size adjust itself through time. G. Xie et al.
[1] presented a simple way to observe self-regulation of the size of systems by analyz-
ing variations in classes searching for fluctuations (alternating from positive to nega-
tive). We used a similar approach for observing adjustments in the values of the size
attributes. We used variations (deltas) of size metrics (SLOC, SNOC and LOC) pre-
sented in section – Continuing Change. We focused on the sign of these variations.
Figures 2 and 3 effectively allow us to see the positive and negative deltas. The posi-
tive deltas happen far more often than negative ones. However, the negative deltas are
observable at some dispersed moments throughout the evolution of the two systems
analyzed. By using Qi, similar trends can be observed. We can see in figure 4 that
both variations are observable, except that this time the negative deltas are more fre-
quent than the positive deltas. Here also, both variations are distributed regularly
throughout the evolution of the two systems. This means that there is a self-regulation
in the Qi values for the two systems. With these results (size metrics and Qi), we can
confirm the law of self-regulation for the two selected systems.

slope = 0.2609

50

55

60

65

70

1 7 13 19 25 31

RF
C

Versions

Tomcat

slope = 0.0366

22

24

26

28

30

32

1 7 13 19 25 31
W
M
C

Versions

Tomcat

slope = 0.021

7,5

8

8,5

9

9,5

10

1 7 13 19 25 31

CB
O

Versions

Tomcat

slope = 0.0014

0,65
0,7

0,75
0,8

0,85

1 8 15 22 29 36 43 50

Q
i

Versions

PDE.UI

slope= 0.0006

0,72
0,73

0,74
0,75
0,76

1 7 13 19 25 31

Q
i

Versions

Tomcat

184 N. Drouin and M. Badri

Continuing Growth. This law states that the size of a software system increases con-
tinuously along its evolution to accommodate changes and satisfy an increasing set of
requirements. Many studies that addressed this law were able to confirm it for the
open-source software systems studied [1, 9, 30, 33]. These studies used different me-
trics for measuring system size and growth. We used the number of classes as an indi-
cator of size. This attribute has been used by Lee et al. [9] to confirm continuing
growth. Figure 8 shows the evolution of the number of classes for both systems. Each
point in the graph corresponds to a release. We can clearly see that the size of both
systems, measured by the number of classes, increased over time, which confirms the
law for both systems. We extended our analysis by using other size indicators. In
addition to the size indicators SLOC, SNOC and LOC used in section – Continuing
Change, we used the number of operations per class (NOO). The curves of these
indicators, which we do not give in this paper for space constraints, follow exactly the
same trend as the curve of Figure 8. All these indicators increased over time for both
systems. Moreover, we can also consider the additions/deletions of classes presented
previously in section – Continuing Change (Figure 1), in which the curve of additions
is above the deletions. The cumulative number of additions is thus clearly higher
(growths faster) than the cumulative number of deletions. With these observations we
can confirm the law of continuing growth for both systems.

Fig. 8. Evolution of the number of classes of PDE.UI and Tomcat

Let us now analyze the evolution of the Qi metric. From Figure 7, we can observe
that the Qi metric follows an opposite trend compared to the size indicators, which is
not a surprising finding. In fact, a significant increase in the size of a software system
is generally followed by an increase in its complexity, which leads to a decrease in the
Qi values over time, as explained in section – Increasing Complexity. In order to vali-
date these observations, we analyzed the correlation values between the Qi metric and
the size indicators. We used here also the Spearman’s correlation coefficient under the
same conditions as in section – Increasing Complexity. Table 4 gives the obtained
results. As it can be seen, the correlations are all significant (in boldface) and nega-
tives. This confirms that the Qi metric supports also the law of continuing growth for
both systems.

Table 4. Correlations between Qi and size metrics for PDE.UI and Tomcat

 SNOC vs. Qi SLOC vs. Qi LOC vs. Qi NOO vs. Qi

PDE.UI -0.433 -0.442 -0.891 -0.561

Tomcat -0.736 -0.790 -0.397 -0.697

0

500

1000

1 7 13 19 25 31 37 43 49N
um

be
ro

fc
la
ss
es

Versions

PDE.UI

600

800

1000

1200

1 7 13 19 25 31N
um

be
ro

fc
la
ss
es

Versions

Tomcat

 Investigating the Applicability of the Laws of Software Evolution 185

Declining Quality. This law states that the quality of a software system decreases
over time, unless work is done to improve it. Among the studies that have investi-
gated this law [1, 9], none was able to confirm it for the test systems they used. The
study conducted by Lee et al. [9], in particular, has observed an overall improvement
of software quality. In our study, we address this law from different perspectives. In a
first step, we considered software quality from an external perspective. In order to
analyze how software quality changes as software evolves, we used the number of
reported defects as a quality indicator. We also investigated for patterns of evolution
(according to Zhang et al. [7]). A higher occurrence of faults is considered as a sign of
poor quality. We used, in the case of the two systems, Bugzilla (defect tracking sys-
tem) reports on resolved/closed faults to withdraw information about faults. Figure 9
shows the evolution of the number of faults identified at each iteration of the two
systems. Zhang et al. [7] studied the evolution of faults of PDE.UI based on recurring
patterns. The authors found that PDE.UI follows a roller coaster pattern, which means
that its quality is not under control. Amplitudes are, in fact, at their strongest in the
center of the evolution period studied (iterations 21 and 33). With the exception of
these two periods, the quality seems to be much more under control. The results we
obtained for PDE.UI confirm the conclusions of Zhang et al. [7]. Tomcat has not been
studied by Zhang et al. [7] However, based on the patterns they identified, we can say
that this system also follows a roller coaster pattern due to the many peaks visible in
the curve. The quality of Tomcat, however, seems to be much more under control
towards the end of the analyzed period with a stabilization of the number of faults.
Such observations therefore lead us to conclude in a deterioration of the quality for
the two systems under study. In addition, we considered in a second step software
quality from an internal point of view. From the curves given in Figure 5 and Figure 6
(increasing complexity), we can clearly observe that the complexity of the two sys-
tems increases, according to the three metrics (RFC, WMC and CBO). These observa-
tions confirm therefore that the quality of the analyzed systems from an internal point
of view decreases. In fact, an increasing complexity of a software system often sym-
bolizes a decrease in its quality. So, when considering both internal and external qual-
ity metrics, we can conclude that the law of declining quality is confirmed for the two
systems.

Fig. 9. Evolution of the number of faults superimposed with Qi for the two systems

Let us now analyze the evolution of the Qi metric. Figure 9 shows the curve of the
Qi metric, superimposed with the number of faults reported along the evolution of the
two systems. The linear regression of the Qi curve is also given in the figure.
The values on the y-axis are normalized between 0 and 1 (min-max). From Figure 9

slope = 0.0109

0

0,5

1

1 8 15 22 29 36 43 50N
or
m
al
iz
ed

m
ea
su
re
s

Versions

PDE.UI
Fautes (N)
Qi (N)

slope = 0.0322

0

0,5

1

1 6 11 16 21 26 31N
or
m
al
iz
ed

m
ea
su
re
s

Versions

Tomcat
Fautes (N)
Qi (N)

186 N. Drouin and M. Badri

and previous results, we can make several observations. PDE.UI shows a negative
trend for the Qi metric, mainly because of the steep decrease between iterations 15
and 17. To this period corresponds, in fact, a significant increase in complexity (see
Figure 5) and a significant growth of the system (see Figure 8). Immediately after, we
can observe a long plateau where the Qi values are at their lowest, ranging between
iterations 17 and 38. Throughout this period, the number of faults is relatively high
and the complexity metrics remain relatively stable. Two large peaks appear in the
curve of faults around iterations 20 and 32. After this long period, the Qi values re-
bounded. Overall, for PDE.UI, we can conclude that the Qi metric thus indicates the
variations (especially for the steep drop) of quality over time. Tomcat presents for the
Qi metric a regular decreasing trend, during which faults appear as peaks in regular
intervals. In addition, we already know from previous results that there is an increas-
ing complexity for this system, according to the evolution of the complexity metrics
(CBO, RFC and WMC). From these observations, we can conclude that the Qi metric
captures the declining quality of the two systems. We can therefore say that the Qi
metric supports the declining quality law for the studied systems.

Threats to Validity. The study presented in this paper should be replicated using
many other software systems in order to draw more general conclusions about the
ability of the Qi metric to support the Lehman’s laws of software evolution. In fact,
there are a number of limitations that may affect the results of the study or limit their
interpretation and generalization. The achieved results are based on the data set we
collected from only two open source software systems written in Java. Even if the
collected data cover a period of several years: 4 years for the first system (fifty-two
versions) and 7 years for the second one (thirty-one versions), we do not claim that
our results can be generalized to all systems, or software systems written in other
languages. The findings in this paper should be viewed as exploratory and indicative
rather than conclusive. Moreover, the study has been performed on open source soft-
ware systems. It would be interesting to replicate the study on industrial systems. It is
also possible that facts such as the development style used by the developers for de-
veloping (and maintaining) the code of the subject systems (or other related factors)
may affect the results or produce different results for specific applications. In addi-
tion, the study is based implicitly on the assumption that the used software metrics
(LOC, RFC, WMC, CBO, etc.) actually capture the intended characteristics. We deli-
berately used multiple metrics for each law to reduce this threat. Also, the study is
based on the data we collected on the evolution of the studied systems, in particular
the defect information, that we suppose reliable.

5 Conclusions and Future Work

In this paper, we analyzed the evolution of two open-source Java software systems.
We wanted to investigate if the Qi (Quality Assurance Indicator) metric, a metric that
we proposed in a previous work, can be used to support the applicability of Lehman’s
laws of software evolution. We focused in this study on five of the Lehman’s laws of
software evolution: continuing change, increasing complexity, self-regulation, contin-
uing growth and declining quality. We addressed software evolution from both inter-
nal and external perspectives. We performed an empirical analysis using historical

 Investigating the Applicability of the Laws of Software Evolution 187

data collected from the successive released versions of the two systems. The collected
data cover a period of more than four years for the first system (fifty-two versions in
total) and a period of more than seven years for the second one (thirty-one versions in
total). Empirical results provide evidence that the considered Lehman’s laws are sup-
ported by the collected data and the Qi metric.

The advantage that brings, in our opinion, the use of the Qi metric (as a synthetic
metric) in the case of evolving systems, is that it can be used to guide quality assur-
ance activities through evolution. Indeed, the Qi metric can be used for identifying, in
a relative way as software evolves, critical parts that require more quality assurance
(as testing) effort to ensure software quality. The achieved results are, however, based
on the data set we collected from only two open source software systems. The find-
ings in this paper should be viewed as exploratory and indicative rather than conclu-
sive. They show, at least, that the Qi metric, as a synthetic metric, offers a promising
potential for capturing (reflecting) various aspects related to software evolution. Fur-
ther investigations are, however, needed to draw more general conclusions. In addi-
tion, we plan to explore the potential of the Qi metric to support predictive analysis.

Acknowledgements. This project was financially supported by NSERC (National
Sciences and Engineering Research Council of Canada) and FRQNT (Fonds de
Recherche du Québec – Nature et Technologies) grants.

References

1. Xie, G., Chen, J., Neamtiu, I.: Towards a better understanding of software evolution: An
empirical study on open source software. In: ICSM 2009, pp. 51–60 (2009)

2. Sommerville, I.: Software engineering, 9th edn. Addison Wesley (2010)
3. Parnas, P.L.: Software aging. In: Proceedings of the 16th ICSE, pp. 279–287 (1994)
4. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics and laws

of software evolution – The nineties view. In: Proceedings of the Fourth International
Software Metrics Symposium, pp. 20–32 (1997)

5. Lehman, M.M.: Laws of software evolution revisited. In: Montangero, C. (ed.) EWSPT
1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

6. van Gurp, J., Bosch, J.: Design erosion: Problems & causes. Journal of Systems and Soft-
ware 61(2), 105–119 (2002)

7. Zhang, H., Kim, S.: Monitoring software quality evolution for defects. IEEE Soft-
ware 27(4), 58–64 (2010)

8. Lehman, M.M., Belady, L.A.: Program evolution: Processes of software change. Academ-
ic Press (1985)

9. Lee, Y., Yang, J., Chang, K.H.: Metrics and evolution in open source software. In: Pro-
ceedings of the 7th QSIC (2007)

10. Mens, T., Demeyer, S.: Future trends in software evolution metrics. In: Proceedings of the
4th IWPSE, pp. 83–86 (2001)

11. Henderson-Sellers, B.: Object-oriented metrics – Measures of complexity. Prentice Hall,
New Jersey (1996)

12. Badri, M., Touré, F.: Empirical analysis for investigating the effect of control flow depen-
dencies on testability of classes. In: 23rd International Conference on Software Engineer-
ing and Knowledge Engineering (2011)

188 N. Drouin and M. Badri

13. Basili, V., Briand, L., Melo, W.L.: A validation of object oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering 22(10) (1996)

14. Briand, L.C., Wüst, J., Daly, J.W., Porter, D.V.: Exploring the relationships between de-
sign measures and software quality in object-oriented systems. Journal of Systems and
Software, 245–273 (2000)

15. Dagpinar, M., Jahnke, J.H.: Predicting maintainability with object-oriented metrics – An
empirical comparison. In: Proceedings of the 10th Working Conference on Reverse Engi-
neering, pp. 155–164 (2003)

16. Eski, S., Buzluca, F.: An empirical study on object-oriented metrics and software evolution
in order to reduce testing costs by predicting change-prone classes. In: 2011 IEEE 4th Int.
Conference on Software Testing, V&V Workshops, pp. 566–571 (2011)

17. Fenton, N.E., Pfleeger, S.L.: Software metrics: A rigorous & practical approach, 2nd edn.
PWS Publishing Company (1997)

18. Murgia, A., Concas, G., Pinna, S., Tonelli, R., Turnu, I.: Empirical study of software quali-
ty evolution in open source projects using agile practices. In: CoRR, Vol. abs/0905.3287
(2009)

19. Singh, Y., Kaur, A., Malhotra, R.: Empirical validation of object-oriented metrics for pre-
dicting fault proneness models. Software Quality Journal 18(1), 3–35 (2010)

20. Subramanyan, R., Krishnan, M.S.: Empirical analysis of CK metrics for object-oriented
design complexity: Implications for software defects. IEEE Transactions on Software En-
gineering 29(4), 297–310 (2003)

21. Zhou, Y., Leung, H.: Empirical analysis of object-oriented design metrics for predicting
high and low severity faults. IEEE Transactions on Software Engineering 32(10), 771–789
(2006)

22. Badri, M., Badri, L., Touré, F.: Empirical analysis of object-oriented design metrics: To-
wards a new metric using control flow paths and probabilities. Journal of Object Technol-
ogy 8(6), 123–142 (2009)

23. Badri, M., Touré, F.: Evaluating the effect of control flow on the unit testing effort of
classes: An empirical analysis. Advances in Software Engineering Journal (2012)

24. Badri, M., Drouin, N., Touré, F.: On Understanding Software Quality Evolution from a
Defect Perspective: A Case Study on an Open Source Software System. In: Proceedings of
the IEEE International Conference on Computer Systems and Industrial Informatics, Shar-
jah, UAE, December 18-20 (2012)

25. Drouin, N., Badri, M., Touré, F.: Metrics and Software Quality Evolution: A Case Study
on Open Source Software. In: Proceedings of the 5th International Conference on Comput-
er Science and Information Technology, Hong Kong, December 29-30 (2012)

26. Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: Pro-
ceedings of the 28th International Conference on Software Engineering (ICSE 2006),
pp. 452–461. ACM (2006)

27. Ambu, W., Concas, G., Marchesi, M., Pinna, S.: Studying the evolution of quality metrics
in an agile/Distributed project. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP
2006. LNCS, vol. 4044, pp. 85–93. Springer, Heidelberg (2006)

28. Lehman, M.M.: On understanding laws, evolution, and conservation in the large-program
life cycle. Journal of Systems and Software 1(3), 213–221 (1980)

29. Jermakovics, A., Scotto, M., Succi, G.: Visual identification of software evolution pat-
terns. In: 9th International Workshop on Principles of Software Evolution (IWPSE 2007):
in Conjunction with the 6th ESEC/FSE Joint Meeting, pp. 27–30 (2007)

30. Mens, T., Fernandez-Ramil, J., Degrandsart, S.: The Evolution of Eclipse. In: IEEE ICSM,
pp. 386–395 (2008)

 Investigating the Applicability of the Laws of Software Evolution 189

31. Yu, L., Ramaswamy, S., Nail, A.: Using bug reports as a software quality measure. In:
Proceedings of the 16th ICIQ (2011)

32. Aggarwal, K.K., Singh, Y., Kaur, A., Lalhotra, R.: Empirical analysis for investigating the
effect of object-oriented metrics on fault proneness: A replicated case study. Software
Process: Improvement and Practice 16(1) (2009)

33. Fernandez-Ramil, J., Lozano, A., Wermelinger, M., Capiluppi, A.: Empirical studies
of Open-Source Evolution. In: Mens, T., Demeyer, S. (eds.) Software Evolution,
pp. 263–288. Springer, Berlin (2008)

34. Chidamber, S.R., Kemerer, C.F.: A metric suite for object-oriented design. IEEE Transac-
tions on Software Engineering 20(6), 476–493 (1994)

Automatic Extraction of Behavioral Models
from Distributed Systems and Services

Ioana Şora and Doru-Thom Popovici

Department of Computer and Software Engineering,
Politehnica University of Timisoara, Romania

Abstract. Many techniques used for discovering faults and vulnerabilities in dis-
tributed systems and services require as inputs formal behavioral models of the
systems under validation. Such models are traditionally written by hand, accord-
ing to the specifications which are known, leading to a gap between the real sys-
tems which have to be validated and their abstract models.

A method to bridge this gap is to develop tools that automatically extract the
models directly from the implementations of distributed systems and services. We
propose here a general model extraction solution, applicable to several service
technologies. At the core of our solution we develop a method for transforming
the control flow graph of an abstract communicating system into its correspond-
ing behavioral model represented as an Extended Finite State Machine. We then
illustrate our method for extracting models from services implemented using dif-
ferent concrete technologies such as Java RMI, Web services and HTTP Web
applications and servlets.

Keywords: Reverse Engineering, Behavioral Model, EFSM, Distributed Com-
puting, Service Computing.

1 Introduction

Important research efforts aim at improving security in the Internet of Services by de-
veloping a new generation of security analyzers for service deployment, provision and
consumption [16]. The techniques used for discovering faults and vulnerabilities com-
prise model checking [3] or model based testing [5]. All these techniques take as input
a model of the system under validation and the expected security goals, expressed in
a specific description formalism. Usually the models are hand written by the security
analyst, based on the service specifications. This approach has been successfully used
in the discovery of protocol errors, of logical errors which are present in the known
models of systems, or the discovery of errors due to the interaction of known systems.

One of the factors which can promote the use of these validation techniques is given
by how easy it is to produce the models which are required as inputs by the various
validation tools. Also, these models should reflect with accuracy the real system. It
results that relying on hand-written models is not always a suitable approach: it is the
case of service implementers, who must make sure that the model reflects the actual
implementation, and it is the case of service consumers who use black-box services
from third party providers and need a reliable model of it.

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 190–202, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automatic Extraction of Behavioral Models 191

In this work, we focus on getting service models at service implementation and de-
ployment time. Service developers could benefit more from the large variety of tools
for security analysis and validation, such as the SPaCIoS tool [16], if they had model-
extractor tools able to extract behavioral models from service implementations. Cur-
rently they have to manually write such models using the Aslan++ specification
language [12]. Our current work [14] addresses this issue of extracting behavioral mod-
els from service implementations, by applying specific white box techniques based on
the analysis of their control flow graph.

The difficulty in analyzing the code of real service implementations comes from the
complexity of the code, which is usually written using different technologies frame-
works and APIs. It is not possible to obtain models of a reasonable high abstraction
level without taking into account the speciffics of each API which is used by providing
special abstractions for them. Doing so, the disadvantage is that it leads to dedicated
model extraction tools, each designed to handle systems or services implemented in a
given technology.

Our approach handles the different technologies by identifying how they map onto
a set of general abstract communication operations. Then, the problem of extracting
models of systems implemented using different technologies and frameworks is split
into two distinct subproblems: first, the problem of extracting the model of a system
which uses only a set of abstract communication operations, and second, the problem
of mapping these abstract communication operations onto the operations of different
frameworks and APIs for distributed systems and services development. According to
this, the model extractor tool comprises a stable, general model extractor core and a set
of technology-dependent preprocessing frontends, like depicted in Figure 1.

Preprocessr 1

Preprocessr 2 Model
Extractor

Core
Preprocessr 3

Preprocessr n

Intermediate

Representation
(Abstract

CFG)

Model
(EFSM)

Web
service

RMI

Servlet

Different types
of source code

Technology-dependent
preprocessing
frontends

Fig. 1. The two steps of the model extraction approach

The remainder of this article is organized as follows. Section 2 presents background
information about representing behavioral models as extended finite state machines.
Section 3 presents the specific ways of mapping complex constructions of different
frameworks and APIs for the construction of distributed systems and services into

192 I. Şora and D.-T. Popovici

abstract message communication operations. We then define our method of model
extraction in abstract, technology-independent terms in Section 4. We discuss aspects
related to our approach in Section 5.

2 Extended Finite State Machines Used for Behavioral Modeling

In this work we use a form of Extended Finite State Machines (EFSM) for representing
behavioral models. Our EFSMs are Mealy machine models which are specifically tai-
lored for white-box modeling of I/O based systems. Further, such models can be trans-
lated into Aslan++ [12] or into another language for modeling of distributed systems
and services.

We consider as I/O the messages exchanged by the system with its environment.
Each message is characterized by a message type and a set of message parameters
which may have different values. The input alphabet of the EFSM is the set RM of
all message types rm, which may be received by the system. The output alphabet of
the EFSM is the set SM of all message types sm, which may be sent by the system.
For each message type m, m ∈ RM or m ∈ SM , the set of parameter types P (m) is
known.

Since the model is extracted through white-box techniques, it may also contain and
use without restrictions state variables v ∈ V which are not directly observable from
the exterior but they can be extracted from the code.

An EFSM model consists of S, the set of all states s, with only one state being the
initial state s0, a set T of all transitions t between states, and V the set of all state
variables v.

A transition t is defined by six components: its origin state si ∈ S, its destination
state sj ∈ S, the received message rm ∈ RM , the guard predicate g, the action list al,
the sent message sm ∈ SM .

A transition t between two states si and sj occurs when a message rm is received
and a guard condition predicate g is true. In this case, the list of actions associated with
the transition al is executed and a message sm is sent.

If (ReceiveMsg (rm) and isTrue(g)) then
doActions(al);
SendMsg (sm);

It is possible that some of the following components of a transition are missing: rm, g,
al, sm.

State variables and parameters may be scalar variables or sets.
A guard condition predicate g is a boolean expression. The operands of the guard

predicate g on a transition fired by a received message rm with a set of parameters
P (rm) can be both state variables v ∈ V and parameters of the received message
p ∈ P (rm). The operators can be boolean operators (and, or, not), relational operators,
or set operators (contains).

A list of actions al is an ordered sequence of actions ai. An action ai on a transition
fired by a received message rm with a set of parametersP (rm), which sends a message
sm with a set of parameters P (sm) is an assignment. The left value of the assignment

Automatic Extraction of Behavioral Models 193

is a state variable v ∈ V or a parameter of the sent message p ∈ P (sm). The right value
of the assignment is an expression which can have as operands state variables v ∈ V , or
parameters of the received message p ∈ P (rm). Operators are boolean, relational and
set operators (add to, remove from).

3 Modeling Services of Different Technologies

Our work aims at modeling distributed systems and services in form of EFSMs as pre-
sented in section 2. An application or service can be implemented in different ways
using different technologies, but still be described by the same behavioral model. In
the next subsection we introduce a system which will be used as a running example,
together with the EFSM representing its behavioral model, while next subsections use
different technologies to implement the same system. This helps identifying how the
specific constructs of different APIs can be mapped into a set of abstract message
sending operations and leads to defining the tasks that have to be performed by the
technology-dependent frontends of the model extractor tool in order to produce an in-
termediate system representation as an abstract control flow graph.

3.1 A Running Example

We introduce the following Online Shop as a running example. The Online Shop acts
as a server which may receive commands for ordering goods, paying for them, and
requesting that the payed products are delivered.

We assume that the server receives and sends messages, by explicit messaging op-
erations such SendMessage and ReceiveMessage. The input alphabet (the set of
received message types RM) comprises: orderType, payType, deliveryType,
while the output alphabet (the set of sent mesage types SM) comprises
deliveryResp. The received messages of all types take one parameter name which
serves as the identifyer of orders, payments and deliveries. The functioning of the
shop assumes that for a name, an order has to be placed first, then it can be payed
and only after that it can be delivered. In order to keep track of the state of orders
which have been submitted and payments which have been done, the model employs
two state variables, orders and payments, which are sets of names. The Online
Shop is modeled as an EFSM with two states, the initial state and the state correspond-
ing to the server loop state. Initially, the sets orders and payments are initialized
as empty sets. In the server loop state, the system may receive messages of the types
orderType, payType, deliveryType. These determine transitions which go into
the same server loop state, but the actions and mesages sent are different, according to
the message received and a set of guard conditions.

Figure 2 presents the EFSM of the simple Shop server. In this figure we shortened
for presentation purposes the names: the message types are denoted by o, p, d, and
dR (for orderType, payType, deliveryType, and deliveryResp), the pa-
rameter name is denoted n, the state variables orders and payments are named
os and ps.

194 I. Şora and D.-T. Popovici

init

loop

os:={}, ps:={}

 Recv o(n), true | os:=os+{n}

 Recv p(n), n in os | ps:=ps+{n}

 Recv p(n), not (n in os) |

 Recv d(n), n in ps |
 ps:=ps-{n}, os:=os-{n},

 Send dR(good)

Recv d(n), not (n in ps) |
 Send dR(error)

Fig. 2. Example: EFSM model of simple Shop server

3.2 Technologies Used for Implementation of Distributed Systems and Services

In practice, such an Online Shop server corresponding to the above model can be im-
plemented using a large variety of different technologies, frameworks and APIs for
distributed systems and services. These help the application developer to cope with the
complexity of such systems, but performing code analysis becomes more difficult for
the following two reasons:

– Instead of explicit SendMessage and ReceiveMessage instructions, frameworks
offer complex APIs to describe the interactions of a server.

The first step towards applying our model extraction method is to identify for
each API the constructions which are equivalent with sending and receiving mes-
sages and define abstractions for them.

– Frameworks also provide infrastructure support for the execution of developed ap-
plications. Most often, by analyzing only the application code written by the appli-
cation developer one cannot obtain the whole control flow graph (CFG) of the real
system. For example, in all frameworks the application developer does not explic-
itly provide the server loop, which is something that is added by default through
the framework.

The particularities of each framework have to be known and the partial CFG or
CFGs extracted from the application code must be completed or combined in order
to obtain the complete CFG.

These issues (identifying and abstracting send/receive message operations, complet-
ing the partial CFG from application code) have to be solved by technology specific
preprocessing frontends before the generic model construction method presented in 4.2
may proceed.

Our current work considers modeling servers which are implemented in Java and
according to a set of specific technologies. The limitation to analyzing only Java code is
a temporary one, due to the fact that we need specific support for static code analysis for
each new programming language. The basics of our method are set by building blocks
for static code analysis such as: call graph construction, inter-procedural control flow

Automatic Extraction of Behavioral Models 195

graph construction, and data flow analysis. For implementation we focused on systems
implemented in the Java programming language because we can rely on these building
blocks offered by the Watson Libraries for Analysis (WALA) [8].

We categorize these technologies as being with or without explicit interfaces. Tech-
nologies such as WSDL Web Services, Java RMI, and CORBA, make the interfaces of
the services explicit, either as language interfaces or as interfaces described in a special
interface description language. Other technologies such as Servlets or JSP do not make
the interfaces explicit. The following subsections detail how the explicit constructions
of these technologies are mapped into abstract SendMessage and ReceiveMessage
operations and how the corresponding preprocessing frontends produce the abstract
control flow graph.

3.3 Preprocessing Frontend for Interface-Explicit Technologies

In the case of Java RMI, but also in case of other interface-explicit technologies such
as WSDL Java Web services, a server is a special kind of object, implementing the
methods described in an explicit interface. The interface description contains the list
of possible operations, with their full signature (method name, number and types of
parameters, return type). Clients can interact with a server invoking these methods.
These are the entrypoints of the server application.

The Online Shop can be implemented as a RMI server, by first defining its interface
as a Java interface which extends the rmi.Remoteinterface and then defining a Java
class which implements this interface:

public class ShopImpl
extends UnicastRemoteObject
implements ShopInterface {

private Set<String> orders = new HashSet<String>();
private Set<String> payments = new HashSet<String>();

public synchronized void order(String name)
throws RemoteException {

orders.add(name);
}

public synchronized void pay(String name)
throws RemoteException {

if (orders.contains(name)) {
orders.remove(name);
payments.add(name);
}

}
public synchronized String get(String name)

throws RemoteException {
if (payments.contains(name)) {

payments.remove(name);
return new String("YourProduct");

196 I. Şora and D.-T. Popovici

}
else return new String("NotPayed");

}
}

The entry points for a RMI application are those methods declared in an interface that
extends the rmi.Remote interface. When analyzing an application that uses RMI, the
preprocessing frontend looks for this kind of methods as entrypoints.

We can define the needed SendMessage and ReceiveMessage abstractions in
RMI code in the following way: A RMI object receives a message when one of its
remote methods is invoked. Thus the entrypoint of every remote method is modeled as
an abstract ReceiveMessage operation. A RMI object sends a message when returning
from a remote method invocation or when raising an exception.

Names for message types are derived automatically from method names. The type
of the sent message differs from the type of the received message corresponding to
the method invocation (it is a return-methodname type of message). The parameters of
the received message correspond to the arguments of the method. The parameters of the
sent message correspond to the returned values or exceptions raised.

For example, a method with following signature:

String deliver(String name) {
... // some statements

}

will be abstracted to:

ReceiveMessage deliverType, name
... // some statements
SendMessage deliverResp, aString

By analyzing the RMI application code, the CFGs of each entrypoint method can be
built. In order to get the whole CFG of the RMI server, all these partial CFGs have to
be framed by a server loop and preceded by the initialization code. After these prepro-
cessing are done, the core model construction algorithm can be applied on the adjusted
CFG.

3.4 Preprocessing Frontend for Servlets and JSP

Web applications are dynamic extensions of web or application servers, which may
generate interactive web pages with dynamic content in response to requests. In the Java
EE platform, the web components which provide these dynamic extension capabilities
are either Java servlets or Java Server Pages (JSP).

A servlet is a Java class that conforms to the Java Servlet API, which establishes the
protocol by which it responds to HTTP requests, and generates dynamic web content as
response. The popular JSP technology, which embeds Java code into HTML, relies on
Servlets, as these are automatically generated by the application server from JSP pages.
When analyzing JSP pages, we first explicitly call the JSP compiler in order to obtain
the source code of their corresponding servlet classes.

Automatic Extraction of Behavioral Models 197

In the code analysis, we identify Java Servlets as the classes that extend the
javax.servlet.HttpServlet class. Their entrypoints are the methods: doGet,
doDelete, doHead, doOptions, doPost, doPut, doTrace, service. The
servlets generated from JSP are classes which extend org.apache.jasper.
runtime. HttpJspBase and their entrypoints are methods jspInit() and
jspService().

When analyzing an application that uses servlets, the preprocessing frontend looks
for this kind of methods as entrypoints. Similarly to the RMI preprocessor, the CFGs of
each entrypoint can be built and in order to get the whole CFG all these partial CFGs
have to be framed by a server loop and preceded by the initialization code.

All entrypoint methods have as parameters HttpServletRequest and
HttpServletResponse, which correspond to the types of the messages which are
sent and received.

The HttpServletRequest allows access to all incoming data. The class has
methods for retrieving form (query) data, HTTP request headers, and client information.
The HttpServletResponse specifies all outgoing information, such as HTTP sta-
tus codes, response headers, cookies, and also has a method of retrieving a
PrintWriter used to create the HTML document which is sent to the client.

What is different and more difficult in this case is abstracting the parameters of the
SendMessage and ReceiveMessage statements. Message parameters cannot be identi-
fied directly in this case, since incoming and outgoing data are handled through a large
number of specific methods on the request and response objects.

As an example, we consider below an excerpt of the Online Shop example, this time
in an implementation with servlets:

public class Shop extends HttpServlet {
// ... omitted parts
protected void doGet(HttpServletRequest req,

HttpServletResponse resp)
// ... parts are omitted or simplified
String op = req.getParameter("operation");
if (op.equals("deliver")) {

String name=req.getParameter("name");
if (payments.contains(name))

delivResp=doService();
else delivResp=error();
Writer w=response.getWriter();
w.write(delivResp);
}

else if (op.equals("pay"))
// ...

Abstracting send and receive operations with parameters from the code of each entry
point method is a complex task which must take into account every method that can be
called on a HttpServletRequest or HttpServletResponse object.

The entrypoiny of the method corresponds to a ReceiveMessage statement, receiv-
ing a message of type HttpRequest. The parameters of this received message may
contain: a set of name - value pairs, corresponding to the ParameterMap, and a

198 I. Şora and D.-T. Popovici

set corresponding to the Session attributes. The parameters will be added to the Re-
ceiveMessage statement only if they are used in the method body: the first parameter
will be added only if the method body contains statements for retrieving the Parame-
terMap or specific parameters from the request object. The second parameter will be
added only if there are statements retrieving a Session from the request object and get-
ting values from there.

In our example, we have only calls of method getParameter on the request
object, no Session object has been retrieved and used, thus the received abstract
message is:

ReceiveMessage HttpRequest (
("operation", op), ("name", name))

Each path leading to an exit point of the method will end in a SendMessage state-
ment, sending a message of type HttpResponse. The parameters of this sent message
are: all the variables which are written by the output Writer along this path, and session
attributes if they have been retrieved and handled in the method body.

In our example, following SendMessage statements are abstracted on the different
paths:

SendMessage HttpResponse (delivResp)
SendMessage HttpResponse ("Order finished")
SendMessage HttpResponse ("Pay finished")

4 From (abstract) Control Flow Graph to Extended Finite State
Machine

4.1 Preliminary Assumptions

We present the principles of our model inference algorithm starting from the following
assumptions:

– The system is described by a complete, inter-procedural Control Flow Graph (CFG).
– There are explicit statements, corresponding to a node in the CFG, for receiving

and sending messages of a specified message type and having message parameters.

These assumptions are fulfilled if the code has been preprocessed by a frontend like
the ones discussed in subsections 3.3 and 3.4.

In our approach, we choose to determine the set of states in the EFSM model cor-
responding to a set of essential program counter values (a set of essential nodes in the
CFG). A transition between two EFSM states corresponds to a path between CFG nodes
which contains at least one relevant node. (We will detail the concepts of relevant and
essential CFG nodes in Section 4.2).

This is different from the classical approach of defining the states as corresponding
to predicates over the state variables, as done in the related approaches in the context
of specification mining by static analysis for classes [13], [2]. We have chosen this ap-
proach because in real applications all the state variables can be complex data structures
and it may be a complex task to determine predicate abstractions in this case.

Automatic Extraction of Behavioral Models 199

4.2 Building the EFSM

Relevant Nodes. An important preliminary step consists in identifying the relevant
nodes of the CFG.

In principle, an aspect is considered to be relevant for our model if it influences the
external observable behavior which consists of the messages received or sent by the
system.

A variable is marked as relevant if one of the following occurs:

– it is on a downstream dataflow from a parameter of a received message
– it is on an upstream dataflow ending in a parameter of a sent message

A CFG node is marked as relevant if one of the following occurs:

– it corresponds to a message receive or message send instruction
– it handles a relevant variable

A CFG path is relevant if it contains at least one relevant node. Determining the
relevant paths is actually a form of program slicing.

Essential Nodes, EFSM States and Transitions. It is not necessary that all relevant
CFG nodes (which may be far too many) become states in the EFSM model. We call
essential nodes only the CFG nodes which correspond to nodes of the EFSM.

We propose the following algorithm to identify the essential nodes and the transitions
between them:

– The start node is an essential node, and it corresponds to the initial state of the
EFSM.

– Any CFG node containing a ReceiveMesage statement is an essential node. It intro-
duces a new EFSM state. The relevant outgoing paths will correspond to outgoing
transitions enabled by the received message. Each of these transitions will end in
the next state which will be identified as essential on the respective outgoing path.
The relevant path conditions are collected as guard predicates for the correspond-
ing transition, while assignments involving relevant variables are collected as list
of actions for the corresponding transition.

– A conditional branching node in the CFG is an essential node only if it uses a
relevant variable which has been defined in a node preceding it on an incoming
path (this includes also the case of loops). It introduces a new EFSM state which
has an incoming transition corresponding to the incoming path with the definition
node and outgoing transitions corresponding to the outgoing conditional paths.

After determining the essential nodes and identifying the paths between them which
correspond to transitions, for each transition we determine its received messages, guard
predicates, actions, sent messages. The guard predicate of a transition is composed of
all relevant conditions that are on the corresponding path between the two nodes. The
action list of a transition contains all assignment or set operations executed on relevant
variables on the corresponding path between the two nodes.

200 I. Şora and D.-T. Popovici

An EFSM is deterministic if from any state s, when any message rm is received,
there is at most one transition possible. The EFSM built according to the method pre-
sented above is deterministic, since transitions outgoing from a state, in the case that
they are labeled with the same received message, they have mutually exclusive guard
predicates, since they resulted from different paths of the CFG .

4.3 Example

We consider the Online Shop example. By applying technology speciffic preprocess-
ings, its abstract control flow graph has been obtained. For presentation purpose, we
use here pseudocode to describe the abstract control flow.

1: orders:={}
2: payments:={}
3: while(true)
4: switch ReceiveMesssage():
5: case:(orderType, name)
6: add name to orders
7: case:(payType, name)
8: if (name in orders)
9: add name to payments
10: case:(deliveryType, name)
11: if (name in payments)
12 remove name from payments
13: remove name from orders
14: SendMessage

deliveryResp, goods
15: else SendMessage

deliveryResp, error
16: endwhile

We determine the nodes (pseudocode statements) 1 and 4 as being the essential
nodes, according to the method outlined before. The five possible execution paths be-
low this node correspond to five self-loop transitions. The resulting EFSM is the one
which has been depicted in Figure 2.

5 Related Work

As mentioned in the introductive section, the need to infer models occurs at two differ-
ent scenarios: at service consumption time, and at service deployment time.

At service consumption time, services are black-boxes that come without (trusted)
models and their code is not available. A model can be inferred from I/O sequences.
There is a large field of research of learning behavioral models by combining black-box
testing and automata learning [9], and it begins to be used for inferring models of web
applications [4], [7], [11].

At service deployment time, the implementation code is available and model extrac-
tion tools should take advantage of having full access to the code of the implementation.
Thus, in this case another category of white-box model inference is needed.

Automatic Extraction of Behavioral Models 201

The core of our model extraction approach relates with the work on static analysis in
the context of specification mining for classes, such as [13], [2], [6]. Automata-based
abstractions are used for behavioral modeling, but, as we mentioned in subsection 4.1,
they use predicate abstraction in order to determine the states.

Extracting models of web applications through code analysis has been done only
on particular technologies or cases such as in [1], [15], [10], focusing on the detection
of concrete problems, not on the extraction of a transferable model to be passed for
analysis to existing tools.

Extracting models is the main goal of black-box approaches such as [9], [7]. The
focus of these works is mainly on developing learning algorithms, in the context of
abstract input and output traces. Most relevant from our perspective are the works of
[4], [11] which identified the need of automatizing the learning-setup in order to enable
learners to interact directly with real applications. These works propose solutions and
tools for abstractizing the input and output alphabet from WSDL web services, based
on principles which are similar with the ones presented in Section 3.3.

6 Conclusions

The goal of our work is to build a tool for the automatic extraction of behavioral models
from service implementations. In order to cope with the diversity of technologies and
APIs which can be used by service implementations, we propose an approach for model
extraction in two steps: a technology-dependent preprocessing step, followed by the
stable core step that implements a general method of transforming the abstracted control
flow graph into an EFSM.

The kind of EFSM inferred by our approach is suitable to be automatically translated
into an entity description in a formal security specification language for distributed
systems such as Aslan++, the language used by the SPaCIoS tool. The security analyst
will have to add manually only the security-related properties of the communication
channels, which cannot be known from the implementation code, and to specify the
desired properties to be checked.

Having tools which extract behavioral models from actual service implementations is
an important step towards enabling formal security validation techniques to be applied
on real systems at their implementation and deployment time.

Acknowledgements. This work has been supported by the FP7-ICT-2009-5 project no.
257876 SPaCIoS ("Secure Provision and Consumption in the Internet of Services".)

References

1. Albert, E., Østvold, B.M., Rojas, J.M.: Automated extraction of abstract behavioural models
from jms applications. In: Stoelinga, M., Pinger, R. (eds.) FMICS 2012. LNCS, vol. 7437,
pp. 16–31. Springer, Heidelberg (2012)

2. Alur, R., Černý, P., Madhusudan, P., Nam, W.: Synthesis of interface specifications for Java
classes. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2005), pp. 98–109. ACM, New York (2005)

202 I. Şora and D.-T. Popovici

3. Armando, A., Carbone, R., Compagna, L., Li, K., Pellegrino, G.: Model-checking driven
security testing of web-based applications. In: 2010 Third International Conference on Soft-
ware Testing, Verification, and Validation Workshops (ICSTW), pp. 361–370 (2010)

4. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of behavior proto-
cols for composable web-services. In: Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE 2009), pp. 141–150. ACM, New York (2009)

5. Buchler, M., Oudinet, J., Pretschner, A.: Semi-automatic security testing of web applications
from a secure model. In: 2012 IEEE Sixth International Conference on Software Security
and Reliability (SERE), pp. 253–262 (2012)

6. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu, C.S., Robby, Zheng, H.:
Bandera: extracting finite-state models from java source code. In: Proceedings of the 2000
International Conference on Software Engineering, pp. 439–448 (2000)

7. Hossen, K., Groz, R., Richier, J.L.: Security vulnerabilities detection using model inference
for applications and security protocols. In: IEEE 4th International Conference on Software
Testing, Verification and Validation Workshops, pp. 534–536 (2011)

8. IBM. Watson, T.J.: Libraries for Analysis (WALA). Technical report, IBM T.J.Watson Re-
search Centre (2010)

9. Lorenzoli, D., Mariani, L., Pezze, M.: Automatic generation of software behavioral mod-
els. In: ACM/IEEE 30th International Conference on Software Engineering (ICSE 2008),
pp. 501–510 (2008)

10. Mariani, L., Pezzè, M., Riganelli, O., Santoro, M.: SEIM: static extraction of interaction
models. In: Proceedings of the 2nd International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS 2010), pp. 22–28. ACM, New York (2010)

11. Merten, M., Howar, F., Steffen, B., Pellicione, P., Tivoli, M.: Automated inference of models
for black box systems based on interface descriptions. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part I. LNCS, vol. 7609, pp. 79–96. Springer, Heidelberg (2012)

12. von Oheimb, D., Mödersheim, S.: ASLan++ — a formal security specification language
for distributed systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) Formal
Methods for Components and Objects. LNCS, vol. 6957, pp. 1–22. Springer, Heidelberg
(2011)

13. Shoham, S., Yahav, E., Fink, S.J., Pistoia, M.: Static specification mining using automata-
based abstractions. IEEE Transactions on Software Engineering 34(5), 651–666 (2008)

14. Sora, I., Popovici, D.-T.: Extracting behavioral models from service implementations. In:
Proceedings of 8th International Conference on Evaluation of Novel Software Approaches
to Software Engineering (ENASE 2013), pp. 226–231. SciTePress (2013)

15. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: TAJ: effective taint analysis of
web applications. In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2009), pp. 87–97. ACM, New York (2009)

16. Viganò, L.: Towards the secure provision and consumption in the internet of services. In:
Fischer-Hübner, S., Katsikas, S., Quirchmayr, G. (eds.) TrustBus 2012. LNCS, vol. 7449,
pp. 214–215. Springer, Heidelberg (2012)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 203–217, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Impact-Driven Regression Test Selection for Mainframe
Business Systems

Abhishek Dharmapurikar, Benjamin J.R. Wierwille,
Jayashree Ramanthan, and Rajiv Ramnath

Ohio State University, Computer Science and Engineering, Columbus, Ohio, U.S.A.
{dharmapurikar.1,wierwille.3,ramanathan.2,ramnath.6}@osu.edu

Abstract. Software testing is particularly expensive in the case of legacy sys-
tems involving mainframes. At the same time these systems are critical to many
large enterprises and they are perpetually in costly maintenance. For example,
even small changes to the system usually lead to an end-to-end regression test.
Also, due to the age of legacy systems there is a lack of essential knowledge
(e.g. component inter-dependence) and this results in comprehensive system
tests that have to be conducted in production environments. This is called the
“retest-all” approach and is done to ensure confidence in the functioning of the
system. But this approach is also impractical primarily due to: a) resource
needs, and b) user stories generated within the agile processes that require
changes to the system at an ever-faster pace. The research reported here is
aimed at reducing the required regression testing and the costs associated with
the system and its assets. The improvements are achieved by identifying only
those tests needed by assets changes and others that are ‘impacted’. The impact
analysis leverages modern static code analysis tools such as Rational Asset
Analyzer and dedicated test environments for mainframes. We show that by
using impact analysis on a real-world mainframe application the test savings
can be about 34%.

Keywords: Regression Test Selection, Legacy Testing, Software Testing,
Mainframes Testing, Software Modernization.

1 Introduction

The legacy systems and mainframes are still being used by many enterprises, but are
also constantly changing to meet the evolving needs of modern enterprisees. Typical-
ly legacy software goes through evolution activities, which can be divided, into three
categories maintenance, modernization, and replacement [3]. Almost immediately
after being built the system goes through maintenance activities to keep up with the
changing business needs. A modernization effort is then required that represents a
greater effort, both in time and functionality, than the maintenance activity. Finally,
when the old system can no longer be evolved, it must be replaced. Thus all the main-
frame systems that have been modernizing to keep up with needs would immediately
benefit from reduced testing costs.

Software testing is the most critical and expensive phase of any software develop-
ment life cycle. According to Rothermel et al., [5], a product of about 20,000 lines of

204 A. Dharmapurikar et al.

code requires seven weeks to run all its test cases and costs several hundred thousands
of dollars to execute them. Software maintenance activities, on an average, account
for as much as two-thirds of the overall software life cycle costs [1]. Among activities
performed as part of maintenance, regression testing takes large amounts of time as
well as effort, and often accounts for almost half of the software maintenance costs
[2]. Regression testing by definition (also referred to as program re-validation) is
carried out to ensure that no new errors (called regression errors) have been intro-
duced into previously validated code (i.e., the unmodified parts of the program) [2].
With mainframe systems containing several thousands of programs, usually an end-
to-end regression test is carried out using test cases from system tests. This black box
testing technique is the only practical way of assuring compliance and owing to the
lack of knowledge of dependence among components; it is not possible for the system
testers to test only the affected components of the system resulting from a change.

There have been many studies to reduce the cost associated with regression testing.
Three techniques, test case reduction, test case prioritization and regression test selec-
tion are most prevalent. Test case reduction techniques are aimed to compute a small
representative set of test cases by removing the redundant and obsolete test cases from
test suites [6], [7], [8], [9], [10], [11]. These techniques are useful when there are
constraints on the resources available for running an end-to-end regression. Test case
prioritization techniques aim at ranking the test cases execution order so as to defect
faults early in the system [5]. It provides a way to find more bugs under a given time
constraint, and because faults are detected earlier, developers have more time to fix
these bugs and adjust the project schedule. Khan et al., in [12] have given comparison
of both the techniques and the effect on software testing. Test case prioritization tech-
niques only prioritize the test cases but do not give a subset of cases which would
reveal all the faults in the changed system. Test case reduction techniques do give a
reduced number of test cases but the coverage of the reduced test cases spans across
the entire system including the parts which were not changed. Also these techniques
have been proven to reduce the fault detection capacity of the suites [2]. Regression
test selection (RTS) techniques select a subset of valid test cases from an initial test
suite (T) to test that the affected but unmodified parts of a program continue to work
correctly. Use of an effective RTS technique can help reduce the testing costs in
environments in which a program undergoes frequent modifications.

Our technique, Impact-Driven Regression Test Selection (ID-RTS) builds on this
idea and aims at reducing test costs for mainframe systems and is proposed as a re-
placement for the retest-all regression tests. The core contribution is a method to en-
sure that the tests are i.e. the tests selected should reveal all the modifications done to
the system, save costs and increase system availability.

The rest of the paper discusses RTS techniques and ID-RTS. Section 2 discusses
the different regression test selection techniques. Section 3 of this paper analyzes the
structures of the assets and the dependencies among them to determine safe testing
needs. Section 4 describes test case selection through impact analysis. Section 5 ana-
lyzes the efficiency of the RTS technique using standardized metrics. Section 6 de-
scribes an experiment carried out to gauge the savings from using this technique.
Section 7 analyzes the results from the experiment and extrapolates savings for a year
for an actual enterprise using real data for changes in that period.

 Impact-Driven Regression Test Selection for Mainframe Business Systems 205

2 Regression Test Selection Techniques

Rothermel and Harrold [13] have formally defined the regression test selection prob-
lem as follows: Let P be an application program and P´ be a modified version of P.
Let T be the test suite developed initially for testing P. An RTS technique aims to se-
lect a subset of test cases T´ ⊆ T to be executed on P´, such that every error detected
when P´ is executed with T is also detected when P´ is executed with T´.

There have been many techniques presented for regression test selection. Code
based techniques (also called program based techniques) look at the code of programs
and select relevant regression test cases using control flow, data or control depen-
dence analysis, or by textual analysis of the original and the modified programs.

Dataflow analysis-based RTS techniques explicitly detect definition-use pairs for
variables that are affected by program modifications, and select test cases that exer-
cise the paths from the definition of modified variables to their uses [17], [18]. How-
ever, these techniques are not safe due to their inability to detect the effect of program
modifications that do not cause changes to the dataflow information. Also, they do not
consider control dependencies among program elements for selecting regression test
cases. As a result, these techniques are unsafe [16], [4].

Control flow techniques [21], [22] model control flow of input programs into con-
trol flow graphs and analyze a change on them for selecting regression test cases.
These techniques have been proven safe and the graph walk approach suggested in
[22] is the most precise work for procedural languages [16] and most widely used
control flow technique [27]. However they do not include non-code based compo-
nents of the system such as DB and files.

Dependence based RTS techniques look at the data and control dependencies
among or within the programs to filter out the modified test cases. Program depen-
dence graph based technique suggested in [19] could work on a single program,
which was later improved to system wide scope in [20] by using System dependence
graph, but both the techniques were proved to be unsafe as they omit tests that reveal
deletions of components or code [4].

Differencing technique [19] is an RTS technique based on textual differencing of
the canonical form of the original and the modified programs. Though this technique
is safe, it requires conversion of programs into a canonical form and is highly lan-
guage dependent. Also the complexity of this approach is too high to be feasible for a
mainframe system with several thousand programs [16].

Slicing based techniques [23] select those test cases which can produce different
outputs when executed with the modified program version P. Agarwal et al.[23] have
defined 4 different slicing techniques. The basic slicing technique forms an execution
slice which is the set of program statements in program P that are executed for a test
case t. Other three techniques build on the basic technique picking statements that
influence an output, or predicate statements that affect the output. The overall tech-
nique would select a test case t only if the slice of t computed using any one of the
four approaches contains a statement modified in P. These techniques are precise,
however they have been shown to omit modification-revealing tests, hence are not
safe [16].

The most relevant research to ID-RTS is the firewall based approach in [24]. A
firewall is defined as a set of all modified modules in a program along with those

206 A. Dharmapurikar et al.

modules which interact with the modified modules. This technique uses a call graph
to establish control flow dependencies among the modules. Within the firewall, unit
tests are selected for the modified modules and integration tests for the interacting
modules. This technique is safe as long as the test suite is reliable [4].

Research has also been done on specification based regression test selection tech-
niques which look at the specification of a program by modeling the behavior [14]
and/or requirements of a system [15]. These techniques do not employ the dependen-
cy extracted from static code analysis of programs and hence are not precise or
safe [16].

3 Mainframe Asset Structures and Dependencies

Impact-Driven Regression Test Selection (ID-RTS) defined here is a control flow and
data dependence based, intra-procedural regression test selection technique designed
for mainframes. It filters out test cases based on the following steps

1. Represent in a comprehensive way all the inter-asset dependencies in a depen-
dence graph by static code analysis.

2. Analyze the types of changes to the system. This involves accounting for inser-
tion, modification or deletion of an asset.

3. Filter out the affected interfaces and associated test cases for a system through
impact analysis for a particular change.

In order to make the dependence based RTS safe, all dependencies within the main-
frame system must be represented.

The main language that runs on mainframes is COBOL (COmmon Business-
Oriented Language), originally consisted of source programs, copybooks, JCLs,
PROC files and record oriented files. Mainframe systems have evolved overtime to
support many modern features such as relational databases, multiple file systems and
layouts, transaction and information management systems etc. The source for all
components would form assets of the system, which consist of files, source programs,
database tables and batch jobs. This section would highlight the dependencies that
would exist among the various assets.

N. Wilde in [26], has listed out all the possible dependencies that can exist among
and within programs. The concepts mentioned can be extended to represent the
dependencies amongst the assets in mainframes.

The topics covered next describe the possible data and control dependencies that
could exist among the assets to form the dependence graph and that have to be consi-
dered to make the testing safe. In general, assets are represented by the nodes in the
graph and the dependencies by the edges between them. This graph is used to analyze
the impact of a change on any assets for safe testing.

3.1 Source - Copybook Dependencies

As mentioned before, copybooks contain data structure variables that would be used
in the source programs. COPY statements are used inside the programs to include and

 Impact-Driven Regression Test Selection for Mainframe Business Systems 207

use these data structures inside COBOL programs. The compiler expands the copy-
books inline inside the programs, so that the references are resolved.

To establish dependencies among the copybooks and programs the definition-
usage model proposed by the dataflow methods is used. If a variable is defined inside
the copybook and is used inside a program a dependency exists and an edge between
the program and the copybook exists in the dependence graph.

As a good programming practice, due to the inline expansion of the copybooks in-
side the code, it is advisable to design copybooks such that they contain minimum
number of structures that several programs would use. For e.g. Copybook A contains
definition of variables, and varb and program prga includes this copybook but uses
only vara and similarly program prgb uses only varb. The copybook would expand
inline and the programs will end up having unused variables inside. Ideally there
should be two copybooks defined each for vara and varb and only the required copy-
book should be included by the programs. With such a practice, only those programs
impacted by a change in the copybook file can be extracted. However these practices
cannot be imposed upon programs that have already been written and are running in
production.

The dependencies are hence established at the data structure level, i.e. instead of
the entire copybook, the data structures inside it would now form nodes in the graph.
An edge is drawn from the source program to a node if that data structure is used by
the program (E.g. PGM1 – VAR2 dependency in Figure 1).

Fig. 1. The dependencies amongst various assets in a mainframe system. The batch jobs and
online screens form the interfaces to the system. The system tests test these assets.

208 A. Dharmapurikar et al.

3.2 Source – Source Dependencies

COBOL programs can call other programs through the CALL statement. The pro-
grams can be called by directly using the program name as a literal or using an iden-
tifier contained in a constant or variable. If a program A calls another program B it
creates a dependency on B which is represented by an edge in the graph (E.g. PGM3
– PGM4 dependency in Figure 1).

If a program is called using its name stored in a variable whose value is dynamical-
ly populated during the execution of the calling program, the dependencies amongst
the programs cannot be determined through static analysis. For the scope of this re-
search, coding best practices should be established to avoid dynamic calls. We have
verified that the system under test does not have any such dynamic calls.

3.3 Source – File (Dataset) Dependencies

COBOL programs use a file as intermediate output between two programs or as ter-
minal output. Files are opened in INPUT, OUTPUT or EXTEND mode which cor-
responds to file read, write or append respectively. If the program opens the file in
read mode then the program is dependent on the file (E.g. PGM2 – FILE1 dependen-
cy in Figure 1) and if it opens in write mode, the file depends on the program file
(E.g. FILE1-PGM1 dependency in Figure 1). This helps to establish a transitive de-
pendency between programs that write to a file and those that read it (PGM2 is transi-
tively dependent on PGM1). Both control files and data files can be represented using
the same model.

JCL 'DD' statements are used to identify files that the program will reference. The
function of a DD Statement is to form a logical connection between an actual file and
an identifier a COBOL program will use to refer to that file. The file based dependen-
cy can also be associated with the JCLs instead of the source without any change in
the impact analysis. However for the scope of this paper the former approach is taken.

3.4 Source – Database Dependencies

As with source programs and files, dependencies also exist between the programs and
databases. COBOL uses EXEC SQL statement to embed SQL queries into the source
programs. Similar to files, tables can be read from or written to. From the way tables
are accessed in a program a dependency can be established. Update, insert or delete
queries are written to the database making the table dependent on the program. Select
queries make the program dependent on the database.

However, a program might not use all the attributes from the table. The dependen-
cy has to be classified into two types. One dependency when the program accesses all
attributes from the table using a ‘*’ in the SQL statement, in which case the program
is dependent on the entire table (E.g. TABLE2-PGM4 dependency in Figure 1). Any
change in the structure of the table would affect these programs. Other dependency
arises when the program accesses limited attributes from the table. Such dependency
relations have to be maintained at the attribute level (E.g. the dependency between

 Impact-Driven Regression Test Selection for Mainframe Business Systems 209

ATTR1 and PGM2 in Figure 1). DDL queries do not create any dependencies as
they are not executed along with the transactions in the system. Hence, execution of
DDLs is treated as changes to the database and impact analysis is carried out on the
affected tables and attributes as discussed later in Section 4.

Stored procedures can be treated as programs that have SQL statements to manipu-
late the DB, and hence this creates a source to DB dependency. Source to Source
dependencies would exist between the calling program and the stored procedures.
DDL queries do not create any dependencies as they are not executed along with the
transactions in the system. Hence, execution of DDLs is treated as changes to the
database and impact analysis is carried out on the affected tables and attributes as
discussed later in Section 3.

3.5 Jcl – Source Dependencies

JCLs are used to run COBOL programs in batch mode. They contain steps that ex-
ecute PROCs or programs and report the return code of the execution indicating if the
job has failed or passed. JCLs are dependent on a program if in any step they are ex-
ecuting that program (E.g. BATCH1 – PGM2 dependency in Figure 1). If a PROC is
executed in any step the JCL is then dependent on the PROC, and in turn the PROCs
are dependent on the programs they execute.

3.6 Screen – Source Dependencies

Screens are like programs, but can be executed online in a transaction. They can
be treated as a program and have same dependencies as a program would have
(E.g. SCREEN1 - PGM1 dependency in Figure 1).

3.7 Copybook - Copybook Dependencies

COPY statements can exist within copybooks too. If a copybook A is copied by
another copybook B, all variables in B using variables in A are dependent on the used
variables. To preserve the variable level granularity in copybooks, the dependency is
mapped between the variable’s definition and declaration.

There are several other types of assets that can exist in the mainframe system, for
e.g. report writer programs, assembler programs etc. These assets can be categorized
into types that were discussed and dependency rules of that type can be applied to
them. In general, i) if an asset A uses code from or transfers control to an asset B, then
A is said to be dependent on B, ii) If an asset A writes data into an asset B, then B is
dependent on A. On the other hand, if an asset A reads data from an asset B, then A is
said to be dependent on B.

To any mainframe system, batch jobs and online transactions act as interfaces.
These batch jobs and transactions give a certain output based on the input provided.
The output can be written to the screen of the transaction or to a file or database
changing the state of the system. System test cases are run against all these interfaces
to poll for the outputs corresponding to the inputs to be tested (see Figure 1).

210 A. Dharmapurikar et al.

4 Filtering Interfaces and Tests

By doing a static analysis of all the assets in the system, a system dependence graph G
is created. Changes to the system are then analyzed to filter any impacts on the interfac-
es. This is done by graph traversal starting from the seed/s of change/s to the interfaces
on the inverse (G-1) of the graph G. The interfaces touched by the graph traversal will
form the set of affected interfaces. The system tests associated with the interfaces are
filtered as part of test selection (see Figure 2). These tests are run on the updated system
to check for compliance in a test environment. Prior to the filtering, the test cases
must be updated to reflect the change. Once all the tests pass, the graph G is updated
according to the changes made to the assets.

Fig. 2. A depiction of impact of change. The VAR3 data structure variables changed, whose
impact is carried over the interfaces through graph traversal on the inverse graph G in Figure 1.

Addition of code to existing programs can be dealt as modification of that asset,
and the graph traversals can be started from the changed asset as a seed. However,
new assets created (or new attributes for tables or new variables for copybooks), does
not affect the system unless they are used. E.g. If a new program A is added, it will
not affect the system unless it is called by some other programs, JCLs or PROCs. The
assets where the new additions are used form the seeds of change for graph traversal
and the affected interfaces are then filtered.

Like the firewall technique in [24], ID-RTS filters out test cases based on the mod-
ules that interact with the change. However, instead of filtering out integration tests on
the first level modules that interact with the change, ID-RTS filters the system test cases
at the entry points to the system that directly or transitively interact with the change.
With mainframes, at least with the system in test, the unit or integration test cases are
not properly defined as these test techniques were not widespread at the beginning of

 Impact-Driven Regression Test Selection for Mainframe Business Systems 211

mainframe development. Moreover, programs cannot be tested standalone without a
batch job submitting them. Today, mainframes are being tested against the designed
system tests which mandate the behavior of the system. If tests and techniques enable
fine grained tests (like unit or integration), ID-RTS can be extended to analyze impact
on the assets that have tests available for and select test cases accordingly.

5 Analysis

Harrold et al., in [5] have given analysis metrics to gauge the effectiveness of any
RTS techniques. They have defined a test t to be modification-revealing if the output
of the case differs in the original (P) and the modified system (P´). The metrics
identified were Inclusiveness, Precision, Efficiency and Generality.

Inclusiveness measures the extent to which an RTS technique selects modification-
revealing tests from the initial regression test suite T. Let us consider an initial test
suite T containing n modification-revealing test cases. If an RTS technique M selects
m of these test cases, the inclusiveness of the RTS technique M with respect to P, P´
and T is expressed as (m/n) ∗ 100. A safe RTS technique selects all those test cases
from the initial test suite that are modification-revealing. Therefore, an RTS technique
is said to be safe, iff it is 100% inclusive.

Harrold et al., in [5] have also defined a test to be modification-traversing. A test t
is modification-traversing if it executes all the modified and deleted code, irrespective
of the output given. A set of modification-traversing tests is the superset of modifica-
tion-revealing tests. The ID-RTS approach filters out test cases that traverse more
than the modified assets, giving 100% inclusiveness and safety.

The primary aim of ID-RTS is to be safe, as the approach plans to replace the ex-
isting retest-all techniques. The rationale behind any retest-all technique is to gain
confidence on the compliance of the system behavior. ID-RTS works on this require-
ment and identifies the assets that are impacted by the change and includes all the
tests associated with the impacted assets. Like the firewall technique [24], ID-RTS
needs the system tests to be reliable. However, for mainframes, they are reliable be-
cause the same tests are used to guarantee compliance with the existing retest-all
approach.

Precision measures the extent to which an RTS algorithm ignores test cases that
are non-modification-revealing. Suppose T contains n tests that are non-modification-
revealing for P and P´ and suppose M omits m of these tests. The precision of M
relative to P, P´ and T is given by the expression (m/n) ∗ 100 or 100% if n = 0.

As explained earlier, in any system test the test suite contains only the tests that run
at the entry points (interfaces) of the system. In evaluating the precision of ID-RTS,
there would be no unit tests in T. Even with that said, due to the coarse inter-
procedural level filtering that ID-RTS employs, it is not precise. Also, Rothermel in
[25], has shown that the savings acquired from fine grained intra-procedural tech-
niques may not justify the costs associated. With the system under test, which is a
typical mainframe system, the large number of programs would have even higher
costs for using intra-procedural techniques.

212 A. Dharmapurikar et al.

Also, precision varies with the modularity of the system. If the system is designed
such that there exists more number of small programs, copybooks and transactions,
inter-procedural test selection can also be fine grained. As the impact is flooded from
the seed, only programs that would indeed by affected by the change are filtered,
eventually selecting only the modification-revealing interfaces. Coding best practices
can be established to have modularity in the system, but the costs of changing the
existing code base vs. the cost of testing extra test cases is highly debatable.

Efficiency measures the time and space requirements of the RTS algorithm. Let P
denote programs and PROCs, V denote sum of all data variables in all copybooks
(a record structure counts as a single variable), A denote all database table attributes,
F denote files, J denote JCLs and screens, the complexity can be given as O(P2 +
VP + AP + JP + FP). The space complexity is also of the same order.

Generality is the ability of the technique to work in various situations. ID-RTS was
designed to work only in the mainframe environment and cannot be generically ap-
plied to other systems as is. However, it provides a basis for designing a framework
for other business oriented languages.

6 Experiment Setup

To calculate the savings from using ID-RTS, we conducted a small experiment to
analyze a real world mainframe application for dependencies and impacts of changes.
IBM’s Rational Asset Analyzer (RAA), a static analysis tool available for mainframes
was used. RAA statically analyzes all the assets imported into the RAA server and
establishes dependencies among them as described earlier. From the dependencies
established, it also analyzes impact of a change in source programs, data elements in
copybooks, other files and DB2 DB. As a contribution, this is one of the few studies
to have been actually designed and tested in an enterprise environment [27].

As only the interfaces are tested in systems tests for an application, for the experi-
ment, the impacted interfaces were filtered for each change, instead of filtering the
actual test cases. This also assumes that tests are evenly distributed across the inter-
faces. Also, as CICS screens and transactions were not imported into RAA for the
application under test, only batch jobs were considered. But this does not affect
the generality of the research, for RAA analyzes impact of a change on all assets of
the system including screens and transactions.

The nature of the applications under test is similar to the depiction in Figure 1. App
A has around 6,707 assets in all containing 2,287 source programs, 1,554 JCL batch
jobs and 1,823 copybooks. The rest form the control and data files. This excludes the
CICS transactions and screens that the application might use. As this application does
not use any database, we tested another application, App B, for impact of database
changes. App B has 48,210 assets in all with 109 DB2 database tables and 5,393 JCL
batch jobs.

To calculate the savings from implementing ID-RTS we have taken a two-step
approach,

 Impact-Driven Regression Test Selection for Mainframe Business Systems 213

1. We identify the impact of last 2 changes in each asset type in set A (namely JCLs,
programs, copybooks, files and DB tables) on the interfaces of the system. From
the data collected, the mean impact by asset type (MIT) is calculated as % of the
1,554 (5,393 for App B) interfaces affected. As the impact of an asset change de-
pends on the number of other assets dependent (directly or transitively) on it, we
expect the number of impacted interfaces per asset type to be in the decreasing
order for copybooks, programs, files, DB and JCLs for this particular system.

2. To calculate the actual savings, we first calculate the frequency of occurrence of
changes by asset type (FT) as % in an agile iteration and then extrapolate impacts
using the weighted mean of MIT with respect to FT for each asset type in A.
Weighted mean impacted interfaces (WMI) is calculated as

∈

×=
A

FTMITWMI

This would give us the % interfaces we need to test for each change in an iteration.
Savings in % would be 100 – WMI.

7 Results

We ran the impact analysis of last 2 production changes of each asset type, in order to
gauge the efficiency of ID-RTS in real world scenarios. We then filtered out the af-
fected batch jobs from the impact analysis report and calculated the Mean Impact by
type as shown in Table 1. As we found that the other RTS techniques as described in
section 2 were infeasible or not safe for mainframes, we compare ID-RTS with the
existing retest-all technique.

The order of the impacts amongst the asset types was found to be as expected, with
the exception of copybooks and source programs. Contrary to our expectations, the
impact of the copybook changes was found to be less than that of source programs,
however with a close difference. This could be attributed to the nature of assets that
were changed; the source programs changed were called by more assets than the pro-
grams that used the changed copybooks. This outcome is highly peculiar and moreover,
we expected the difference in impacts of changes in copybooks and source programs to
be minimal, which was exemplified.

Between files and databases, the outcome of the order was in compliance with the
expectations. The order could vary from application to application. For applications

Table 1. Mean Impact by Type for last 2 changes

Asset Type Mean Impact by Type (%)
JCL 0.06
Database 0.93
Files 43.59
Copybooks 65.54
Source Programs 65.95

214 A. Dharmapurikar et al.

under test, the DB2 database tables were introduced in App B much later than the
usage of files in App A, accounting to files being used significantly more than the
databases. The impact of change is proportional.

The time required for impact analysis varied by asset type, with copybooks and
source programs taking the longest, approximately 2 hours on an average, files took 1
hour and 10 minutes and database tables took 10 minutes. JCL impact analysis is not
supported in RAA as there are no dependencies on them. For the purpose of the expe-
riment we assumed the impact of a JCL batch job change on interfaces as 1 to account
for the same JCL changed. RAA’s impact analysis gives a thorough report of all im-
pacted assets, not just the interfaces. This adds to the total time required for
impact analysis. Tools that would solely report the impacted interfaces would have
significant time savings.

Table 2. The changes done to the App A by type for the period of March 12 - February 2013.
Column ID-RTS gives the extrapolated impacted interfaces using data from Table 1 and
Restest-all gives the total interfaces in App A to be tested with that technique.

Period Source Pro-
grams Files Copy-books JCLs/Screens DB Total ID-RTS Retest-all

Mar-12 877 5 32 0 0 914 1022.7 1554

Apr-12 297 0 20 0 0 317 1024.5 1554

May-
12

178 0 0 0 0 178 1024.9 1554

Jun-12 324 1 12 0 0 337 1023.6 1554

Jul-12 390 2 6 0 0 398 1023 1554

Aug-
12

152 0 0 0 0 152 1024.9 1554

Sep-12 117 0 0 0 0 117 1024.9 1554

Oct-12 656 4 23 0 0 683 1022.6 1554

Nov-
12

445 0 21 0 0 466 1024.6 1554

Dec-12 127 0 3 0 0 130 1024.7 1554

Feb-13 141 3 13 0 0 157 1017.7 1554

Total 3704 15 130 0 0 3849 1023.3 1554

To calculate actual savings from ID-RTS, we first recorded changes for the period

of March 2012 to February 2013 by asset type. The findings are tabulated in table 2.
We then extrapolated impacts on App A by taking weighted mean of MIT with re-
spect to the frequency of change. The results are shown in ID-RTS column of table 2.
As, in all iterations programs were changed the most, the impacted interfaces were
around 65% of the total 1,554 interfaces. As per ID-RTS, these are the interfaces to be
tested for each change while the retest-all technique tests all of them. For the entire
period the average impacted interfaces per change were 1,023.3 (65.85% of the 1,554
interfaces). Thus the ID-RTS technique can save approximately 34% of testing
efforts.

 Impact-Driven Regression Test Selection for Mainframe Business Systems 215

This result can vary by the nature of dependencies within the application and the
types of changes that are done. If for App A, there are more changes to DB, files and
JCLs than copybooks and programs the savings would be proportionally more. Also,
the impact might change in assets of the same type, depending on the nature of de-
pendencies. E.g. Program A has more dependencies than program B, the impact of
change of A would be proportionally more. This experiment was conducted to find
out if the impact of actual production changes span to a subset of the system and es-
timate savings for ID-RTS. Hence we also limited the test to last 2 changes to each
asset type. Also, a learning phase can be planned, where the impacts of production
changes are monitored to gauge the inter-dependency among the assets of the system.
If all the changes impact significant percentage of interfaces, the retest-all technique
can be employed for that system, saving the time required for impact analysis.

8 Conclusions and Future Work

The retest-all system test technique which tests all components of the system for re-
gression test can be replaced by our proposed Impact-Driven RTS. Modern analysis
tools such as IBM’s RAA can be used to draw dependencies among assets of the sys-
tem and analyze impact of a change. The impact of a change spans to a subset of the
system, providing significant savings in the test cycle times which reduces associated
costs and increases system availability.

As future work, the various studies on the object oriented RTS techniques can be
integrated to design the framework for object oriented COBOL. Also, the current
framework can be extended to include other business oriented systems such as SAP-
ABAP. Similar to mainframes these systems use batch jobs, online transactions, DBs
and files within a single system boundary.

References

1. Pressman, R.: Software Engineering: A Practitioner’s Approach. McGraw-Hill, New York
(2002)

2. Leung, H., White, L.: Insights into regression testing. In: Proceedings of the Conference on
Software Maintenance, pp. 60–69 (1989)

3. Weiderman, N.H., Bergey, J.K., Smith, D.B., Tilley, S.R.: Approaches to Legacy System
Evolution. In (CMU/SEI-97-TR-014) Pittsburgh, Pa. Software Engineering Institute, Car-
negie Mellon University (1997)

4. Rothermel, G., Harrold, M.: Analyzing regression test selection techniques. IEEE Transac-
tions on Software Engineering, 529–551 (August 1996)

5. Rothermel, G., Untch, R.H., Harrold, M.J.: Prioritizing test cases for regression testing.
IEEE Trans. on Software Eng. 27(10), 929–948 (2001)

6. Harrold, M.J., Gupta, R., Soffa, M.L.: A methodology for controlling the size of test suite.
ACM Trans. on Software Eng. and Methodology (TOSEM), 270–285 (1993)

7. Hennessy, M., Power, J.F.: An analysis of rule coverage as a criterion in generating mi-
nimal test suites for grammar based software. In: Proceedings of the 20th IEEE/ACM In-

216 A. Dharmapurikar et al.

ternational Conference on Automated Software Engineering (ASE 2005), Long Beach,
CA, USA, pp. 104–113 (November 2005)

8. Kandel, P.S., Last, M.: Test cases generation and reduction by automated input-output
analysis. In: Proceedings of 2003 IEEE International Conference on Systems, Man and
Cybernetics (ICSMC 2023), Washington, D.C., vol. 1, pp. 768–773 (October 2003)

9. Vaysburg, L.H.T., Korel, B.: Dependence analysis in reduction of requirement based test
suites. In: Proceedings of the 2002 ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA 2002), Roma, Italy, pp. 107–111 (2002)

10. Jones, J.A., Harrold, M.J.: Test-suite reduction and prioritization for modified condi-
tion/decision coverage. IEEE Trans. on Software Engineering (TSE 2003) 29(3), 195–209
(2003)

11. Jeffrey, D., Gupta, N.: Test suite reduction with selective redundancy. In: Proceedings of
the 21st IEEE International Conference on Software Maintenance (ICSM 2005), Budapest,
Hungary, pp. 549–558 (September 2005)

12. Khan, S.R., Rahman, I., Malik, S.R.: The Impact of Test Case Reduction and Prioritization
on Software Testing Effectiveness. In: International Conference on Emerging Technolo-
gies, pp. 416–421 (October 2009)

13. Rothermel, G., Harrold, M.: Selecting tests and identifying test coverage requirements for
modified software. In: Proceedings of the International Symposium on Software Testing
and Analysis, pp. 169–184 (August 1994)

14. Chen, Y., Probert, R., Sims, D.: Specification based regression test selection with risk
analysis. In: CASCON 2002 Proceedings of the 2002 Conference of the Centre for Ad-
vanced Studies on Collaborative Research, p. 1 (2002)

15. Chittimalli, P., Harrold, M.: Regression test selection on system requirements. In: ISEC
2008 Proceedings of the 1st Conference on India Software Engineering Conference, pp.
87–96 (February 2008)

16. Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: Regression Test Selection Techniques:
A Survey. Informatica 35(3), 289–321 (2011)

17. Harrold, M., Soffa, M.: An incremental approach o unit testing during maintenance. In:
Proceedings of the International Conference on Software Maintenance, pp. 362–367 (Oc-
tober 1988)

18. Taha, S.T., Liu, S.: An approach tosoftware fault localization and revalidation based on in-
cremental data flow analysis. In: Proceedings of the 13th Annual International Computer
Software and Applications Conference, pp. 527–534 (September 1989)

19. Vokolos, F., Frankl, P.: Pythia: A regression test selection tool based on textual differenc-
ing. In: Proceedings of the 3rd International Conference on Reliability, Quality & Safety of
Software-Intensive Systems (ENCRESS 1997), pp. 3–21 (May 1997)

20. Ferrante, J., Ottenstein, K., Warren, J.: The program dependence graph and its use in opti-
mization. ACM Transactions on Programming Languages and Systems 9(3), 319–349
(1987)

21. Laski, J., Szermer, W.: Identification of program modifications and its applications in
software maintenance. In: Proceedings of the Conference on Software Maintenance,
pp. 282–290 (November 1992)

22. Rothermel, G., Harrold, M.: A safe, efficient regression test selection technique. ACM
Transactions on Software Engineering and Methodology 6(2), 173–210 (1997)

23. Agrawal, H., Horgan, J., Krauser, E., London, S.: Incremental regression testing. In: IEEE
International Conference on Software Maintenance, pp. 348–357 (1993)

 Impact-Driven Regression Test Selection for Mainframe Business Systems 217

24. Leung, H., White, L.: A study of integration testing and software regression at the integra-
tion level. In: Proceedings of the Conference on Software Maintenance, pp. 290–300 (No-
vember 1990)

25. Rothermel, G.: Efficient, Effective Regression Testing Using Safe Test Selection Tech-
niques. PhD dissertation, Clemson Univ. (May 1996)

26. Wilde, N.: Understanding Program Dependencies. In: SEI-CM (August 1990)
27. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a sur-

vey. Journal of Software Testing, Verification and Reliability 22(2), 67–120 (2012)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 218–228, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Improving Business Process Model
after Reverse Engineering

María Fernández-Ropero, Ricardo Pérez-Castillo, and Mario Piattini

Instituto de Tecnologías y Sistemas de la Información, University of Castilla-La Mancha,
Paseo de la Universidad 4, 13071, Ciudad Real, Spain

{marias.fernandez,ricardo.pdelcastillo,mario.piattini}@uclm.es

Abstract. An appropriate business process management helps companies to
quickly adapt to changes while their competitiveness is maintained or even im-
proved. For this reason, business process models are recognized as being
important assets for companies and companies are currently demanding me-
chanisms to ensure business processes with an appropriate quality degree.
These business process models can be mined by reverse engineering from exist-
ing information systems. Regrettably, these reversed models usually have a
lower quality degree and may not exactly reflect the actual business processes.
This paper describes detected common problems in business processes retrieved
by reverse engineering (e.g., missing, fine-grained or non-relevant elements,
ambiguities, etc.). Refactoring is widely-used to fix quality problems in busi-
ness process models. Despite this, this work suggests addressing the above
problems by defining three stages: repairing, refactoring and expert-based im-
provement. Additionally, some preliminary results from refactoring stage are
provided using real-life retrieved business process models.

Keywords: Business Process Model, Business Process Improvement, Business
Process Challenges, Refactoring, Understandability, Modifiability, Reverse
Engineering.

1 Introduction

Business process management allows organizations to be more efficient, more effec-
tive and more readily adaptable to changes than traditional management approaches.
Business processes depict sequences of coordinated business activities as well as the
involved roles and resources that organizations carry out to achieve their common
business goal [1]. They are recognized as one of the most important assets in an or-
ganization due to the competitive advantages that they provide for organizations [2].
In order to supply the management of business processes they can be represented by
models following standard notations such as BPMN (Business Process Modeling and
Notation) [3].

However, organizations may not have their business process models explicitly or
aligned with current behavior. In these cases, reverse engineering can be used to mine
business process model from existing information system [4]. Nevertheless, the re-
trieved business process models by reverse engineering entail some problems that can

 Improving Business Process Model after Reverse Engineering 219

affect to their quality degree since every reverse engineering technique implies a se-
mantic loss [5]. Despite the fact that much academic literature is devoted to identify
challenges presented in business process model discovered by mining process (e.g.,
using event logs [6]) or by hand [7], there are no identified challenges to address in
those business process model retrieved from existing information system, for exam-
ple, from source code. This kind of business process models can be incomplete or can
contain non-relevant information, or even may contain ambiguities or uncertainties
that decrease their understandability and, therefore, their quality degree. In these cas-
es, it is necessary to improve business process model with the aim to address these
quality challenges while making it as similar as possible to the reality that they
represent [8].

For this reason, this paper presents a set of challenges detected in business process
models obtained from reverse engineering. These challenges are been collected after a
literature review and practical experiences with business process models mined from
several real-life information systems. With the purpose to have several retrieved busi-
ness process models to analyze, MARBLE [4], a reverse engineering approach and
tool, has been selected to mine them. Moreover, the paper introduces an approach to
address the above challenges. The proposal combines reverse engineering with other
analysis approaches in order to mitigate the semantic loss that reverse engineering
techniques entails. This issue is due to some reverse engineering techniques are fo-
cused on source code and there are more knowledge sources from which to extract
knowledge. Hence, the approach is divided in three stages: repairing, refactoring and
expert-based improvement. Each stage uses additional knowledge (such as recorded
event logs, guidelines, heuristics, and expert decision, among other) to improve the
business process model. Despite refactoring techniques are the most widely-used
solution to improve the quality degree of business process models [9, 10], this work
also proposes other two additional stages in order to assist refactoring and enhance
business process models. The work also presents some preliminary results achieved
by using the proposed approach.

The remainder of the paper is organized as follows: Section 2 introduces the re-
lated works. Section 3 summarizes the challenges that retrieved business process
models involve. After that, Section 4 introduces the proposed approach in an attempt
to address these challenges along three stages. Afterwards, some results obtained by
using the proposed approach will be shown in Section 5. Particularly, results obtained
after refactoring stage are provided. Finally, conclusions and future works are
discussed in Section 6.

2 Related Works

Improvement of business process models have been discussed by several authors in
the last years with the aim to fix quality faults. In fact, several techniques such as
merging, mining, refactoring or re-use are been provided by Dijkman et al., [10] in
order to increase the quality degree of business process models. Particularly, refactor-
ing is the most wide-used by authors in literature. For example, Weber et al.,
[11] proposes a catalogue of bad smells for the identification of refactoring opportuni-
ties. Similarly, Dijkman et al., [12] show a metrics-based technique for detecting

220 M. Fernández-Ropero, R. Pérez-Castillo, and M. Piattini

refactoring opportunities. La Rosa et al., [13], in turn, are devoted to identify patterns
for reducing model complexity through, among other ways, compacting, compositing,
and merging. Dumas et al., [14] and Ekanayake et al., [15], for their part, focus on
detection of duplicate fragments. Pittke et al., [16] focus on labels and define an me-
chanism to identify synonym and homonym labels in models repositories. Other
works like [17-20] focus on identifying coarse-grained activities by means of business
process abstraction to exclude non-relevant information.

All the above approaches identify challenges of business process model but they
are focus on business process model obtained by mining process (e.g., using event
logs [6]) or by hand [7]. Therefore, none of them attempts to identify and address
quality challenges in retrieved business process models by means reverse engineering.

To address this very issue, this paper identifies challenges in retrieved business
process models and proposes an approach for addressing these challenges.

3 Challenges in Retrieved Business Process Models

This section presents the challenges to address the most common problems identified
in the business process models obtained through reverse engineering. These chal-
lenges are been collected after a literature review and practical experiences with busi-
ness process models mined from several real-life information systems. The selected
tool to mine business process model was MARBLE. This tool is an adaptive frame-
work to recover the underlying business process models from legacy information
system using source code [4]. MARBLE has been applied to several industrial case
studies to recover business processes from a wide variety of legacy information sys-
tems. The conduction of these industrial case studies has enabled the tool to be im-
proved and the MARBLE technique to be refined. So far, MARBLE has been used
with six legacy systems in all: (i) a system managing a Spanish author organization;
(ii) an open source CRM (Customer Relationship Management) system; (iii) an enter-
prise information system from the water and waste industry; (iv) an e-government
system used in a Spanish local e-administration; (v) a high school LMS (Learning
Management System); and finally (vi) an oncological evaluation system used in Aus-
trian hospitals [21]. All business process models obtained in each case study (from
each of the six systems) were analyzed by experts in order to figure out common er-
rors that frequently occur. Challenges that retrieved business process models entail
are collected in the following subsections.

3.1 Completeness

Business process models mined by reverse engineering models may not be fully com-
plete due to the data can be distributed in several sources, not just at the source code
itself and therefore they cannot be obtained solely through a static analysis. Business
process models may have missed nodes such as business tasks, gateways, events and
data objects, as well as missed connections such as sequence flows (between tasks)
and association flows (between tasks and data objects). This loss affects the semantic
completeness of the model [22]. All these missing elements may not have been in-
stantiated at design time and, for that reason, may not be appear in the business

 Improving Business Process Model after Reverse Engineering 221

process model. As a consequence, one of the biggest challenges is to rediscover ele-
ments that were not recovered in the reverse engineering phase, as well as the order
among different business activities. The order between activities is a very issue since
complete sequence flows between activities may not be provided through reverse
engineering due to the fact that not all information can be automatically derived from
source code. The start points and end may not have been defined in the model because
there is not enough information to determine which activities are the beginning or
ending of a model or what task is executed before another [23]. An example of this
scenario is shown in Fig. 1, where the fragment (a) is related to the real retrieved
business process model while the fragment (b) is related to the expected business
process model, i.e., with all elements connected.

3.2 Granularity

According to the approach proposed by Zou et al., [24], each callable unit in an in-
formation system is considered a candidate business task to be discovered by reverse
engineering. However, existing information systems typically contain thousands of
callable units of different sizes that are usually considered business tasks that can
have different levels of granularity [6, 23] such as (1) large callable units that support
the main business functionalities of the system (e.g., methods and functions of the
domain and controller layer), (2) small callable units as getter and setter methods in
object-oriented programming that only read and write program variables but perform
no real business task, (3) a set of small callable units that have similar behavior and
perform a business task jointly, or (4) a set of small callable units that can together
support another. In that case, the main task may be considered as father task while
small tasks may be considered as children tasks. This last scenario is shown graphi-
cally in Fig. 2, where Task t1, Task tn, among others tasks, support the Task T.

(a)

(b)

Fig. 1. Incomplete retrieved business process model (a) and its expected version (b)

...

Fig. 2. Retrieved business process model with small tasks that support another task

With the purpose to address this challenge, a solution could be taking into account
only coarse-grained callable units as candidate to be business tasks while fine-grained
ones are discarded since fine-grained granularity makes models closer to source code
perspective. Nevertheless, the dividing line between coarse- and fine-grained callable

222 M. Fernández-Ropero, R. Pérez-Castillo, and M. Piattini

units is unknown. Authors like Polyvyanyy et al. [19] propose to abstract these busi-
ness process models to reduce unwanted details and to represent only the relevant
information. These authors address the issue of different types of granularity by pro-
posing two techniques: (1) eliminating those small tasks that are considered as irrele-
vant and (2) grouping certain tasks into one while the information is preserved.

3.3 Relevance

In contrast with completeness which is related to missing elements, relevance is re-
lated to business elements that have been retrieved erroneously. The information is
considerate as non-relevant when it can be removed without losing information, pre-
serving the behavior. This information (such as activities, events, etc.) may have been
created in compilation time but is not used in execution time, i.e., these elements do
not carry out any business logic in the organization. Fig. 3 shows a sample fragment
of a retrieved business process model with an unnecessary gateway. In that case, the
gateway connects one input and one output so that the connection between Task1 and
Task2 can be directly in that case due to gateways are designed for use in branches
with two or more elements.

The relevance of a business process model is an important aspect since it ensures
the model contains enough elements to convey their information [22]. The challenge
must be addressed by identifying and removing all non-relevant elements in the
business process model while preserving semantics of the relevant parts.

3.4 Uncertainty

The enhancement of the understandability of a business process model is a challenge
given that poor understandability of the model can lead to a wrong conclusion. Un-
derstandability is usually worse in those models that have been obtained by reverse
engineering from existing information systems since identifiers and names of ele-
ments may not be enough descriptive. This is because many identifiers are inherited
from the elements in source code. For example, task labels usually consist of the con-
catenation of various capitalized words according to naming conventions present in
most programming approaches (see Fig. 4). This kind of names is uncertain but can
provide a clue to find more representative task names.

Fig. 3. Retrieved business process model with unnecessary gateway

Fig. 4. Retrieved business task labeled using the CamelCase [25] naming convention

 Improving Business Process Model after Reverse Engineering 223

Fig. 5. Ambiguous retrieved business process model

This issue is focused on the interpretability from a language-usage perspective, i.e.
how intuitive is the language used to define the elements of the model. For this rea-
son, the labeling of elements can negatively affect the model interpretation when it
does not follow an appropriate convention [22]. This challenge should be addressed
by renaming elements of business process models in order to they faithfully represent
the semantics performed actually.

3.5 Ambiguity

Another challenge to be taken into account is ambiguities that may be present in some
business process elements. For example, redundancy faults sometimes occur during
reverse engineering owing to different source code pieces (e.g., two callable units)
lead to build two redundant business tasks that actually are part of a more complex
task (e.g., a business task supported by both callable units). Fig. 5 gives an example
where there are two different paths are obtained between Task 1 and Task 2 (direct
path and conditional path) from different source code pieces. One of the paths contra-
dicts the logic of the other path since the second is more restrictive.

Ambiguity is important to determinate the quality of business process models since
it affects the understandability and modifiability of the model, i.e., how far elements
in the model are intuitively formulated [22]. The ambiguity, therefore, negatively
affects the ability to communicate efficiently the behavior of the business process. A
model is considerate unambiguous when it is free of redundancies and it contains no
elements that contradict the logic of other element. The ambiguity must be addressed
by detecting and removing redundancies and inconsistencies in a business process
model.

4 Business Process Model Improvement Approach

In order to address the challenges outlined above, this paper presents an approach for
improving business process models obtained from information systems with the aim
that they reflect as faithfully as possible the business reality with optimal levels of quali-
ty. This approach proposes three stages: repairing, refactoring and expert-based im-
provement. Each stage addresses some challenges above mentioned and uses some
knowledge sources to carry out its purpose. Fig. 6 symbolizes the horseshoe model that
characterizes the reengineering, where the upper stages (refactoring and expert-based
improvement) represent a higher abstraction level than the bottom stage (repairing).

Repairing stage is considerate in reverse engineering level since it uses knowledge
sources such as recorded event logs to address the completeness challenge. The aim
of this stage is to ensure that business process models reflect the real execution of
the information system. Preliminary results concerning this stage are given in [26].

224 M. Fernández-Ropero, R. Pérez-Castillo, and M. Piattini

That work shows a set of steps that are carried out taking as input a business process
model and event logs and returning as output an enhanced business process model
with additional sequence flows retrieved from event logs. The technique detects unre-
covered sequence flows as regards the event log and tidily adds these sequence flows
to the target business process model. After the conduction of a case study to demon-
strate the feasibility of the technique, the results show that the fitness of the process
model increases, i.e., repairing business process model leads to a more faithful repre-
sentation of the observed behavior.

Refactoring stage is concerning to modify the internal structure of business process
models without changing or altering the external behavior. This stage maintains the
abstraction level while maintaining the semantic. Refactoring techniques therefore
improve the quality of business processes, so that they become more understandable,
maintainable and reusable [12]. This stage addresses some challenges as relevancy,
granularity, uncertainty and completeness. Guidelines, literature, heuristics and expe-
rience are additional resources used in this stage. Some refactoring operators are intro-
duced in [27], especially designed for use with reversed business process models. For
example, some refactoring operators address the relevancy by means of the elimination
of isolated nodes, unnecessary nesting, among other. Other refactoring operators address
the granularity by grouping elements. Other refactoring operators address the complete-
ness following good practices in business process modeling and incorporating additional
needed elements. Some results obtained after applying these refactoring operators are
shown in next section. Section 5 gives some results of this stage. There, each refactoring
operator is applied in isolation in order to visualize the change that each operator
provides to the business process model.

Finally, expert-based improvement stage addresses ambiguity and relevancy by
means of expert decision. This stage is because not all challenges can be addressed
automatically by the previous two stages, it is necessary also the opinion and
feedback of an expert in certain situations to improve the business process model.

BP model
retrieved by

reverse
engineering

Enhanced
BP model

BP model Improvement Approach

Repairing

Expert-based
ImprovementRefactoring

Fig. 6. Proposed improvement approach by means of three stages: repairing, refactoring and
expert-based improvement

5 Refactoring Results

This section shows some results obtained in the second stage considered in the
approach. In order to illustrate the effect of refactoring operators on business process
models some aspects are defined:

 Improving Business Process Model after Reverse Engineering 225

Business process models taken as independent variables have been mined from the
source code using MARBLE, the business process archeology tool used to figure out
the above challenges (cf. Section 2). The selected information system was Tabula, a
web application of 33.3 thousands of lines of code devoted to create, manage and
simulate decision tables for associating conditions with domain-specific actions. From
this information system was retrieved 15 business process models.

Measures used to assess the understandability and modifiability of a business
process model [28] are considered as dependent variables: the size (number of ele-
ments such as tasks, events, gateways and data objects), density (ratio between the
total number of flows in a business process model and the theoretical maximum num-
ber of possible flows regarding the number of elements), and separability (the ratio
between the number of nodes that serve as bridges between otherwise strongly-
connected components and the total number of nodes) of the model.

With the aim to illustrate briefly the result obtained by refactoring stage some re-
factoring operators are used from [27]: R1 removes nodes (i.e., tasks, gateways or
events) in the business process model that are not connected with any other node in
order to contribute to the removing of non-relevant elements; Similarly, R2 removes
elements in the business process model that are considered sheet nodes; R6 creates
compounds tasks grouping several small tasks that support another main task. The
goal is to remove the fine-grained granularity; R7 combines data objects that are used
for the same task in order to remove the fine-grained granularity; R8 joins the start
and end event to the starting and ending tasks, respectively, to complete the model;
R9 adds join and split gateways that are not present in branches in an effort to
complete the model.

After the application of each refactoring operator on each business process model
in isolation, values for each dependent variable are collected in Table 1, as well as the
gain obtained with respect to the original value. The gain is defined as the ratio be-
tween the difference of measure values and the original measure value. Hence, a posi-
tive gain means that the refactoring affects the measure positively while a negative
gain means that the refactoring affects the measure negatively. A zero gain means that
the value for a certain measure did not change after refactoring.

Table 1. Effect of each refactoring operator on the size, density and separability

Size Density Separability

Mean Gain Mean Gain Mean Gain
Original 35.200 0.000 0.110 0.000 15.533 0.000

R1 30.667 0.395 0.196 -0.607 11.000 0.460
R2 34.400 0.011 0.113 -0.023 14.733 0.019
R6 33.267 0.059 0.106 0.031 15.667 -0.006
R7 33.667 0.026 0.106 0.009 14.600 -0.003
R8 37.600 -0.410 0.207 -0.338 17.933 -0.447
R9 59.400 -0.142 0.105 0.076 15.600 -0.002

Table 1 reveals that removing isolated nodes decreases the size and separability

while the density is increased. Despite the density is higher after R1, the relevance of
the model has been increased since non-relevant elements have been removed. Simi-
larly, R2 causes an increase of density when the size is decreased. Separability is
decreased slightly. R6 creates compound tasks in several business process models.

226 M. Fernández-Ropero, R. Pérez-Castillo, and M. Piattini

This fact entails a decrease in the size and density while separability increases
slightly. The same happens with R7, the number of nodes and the density is lower but
separability is higher. Nevertheless, all measures after R8 are higher due to business
process models were incomplete. R9, in turn, cause a significant increase in the size
because there were several incoming and outgoing branches without gateways in the
original business process models. The same occur with the separability after R9 while
density decreases slightly.

6 Conclusions

Reverse engineering has become in a suitable solution to mine business process mo-
del from existing information system. Unfortunately, these retrieved business process
models entail some challenges that are necessary to address in order to increase their
quality degree.

Completeness is an important challenge to deal with in retrieved business process
model since data are distributed in several sources. Different types of granularity are
also a challenge to address because fine-granularity causes the degree of quality is
lower. Moreover, non-relevant information causes a low degree quality since the
model should not contain additional elements that do not carry out any business logic
in the organization. The uncertain labeling of elements may negatively affect the un-
derstandability and therefore an appropriate convention should be followed. In addi-
tion, ambiguity is another challenge because a model should be free of redundancies
and inconsistencies.

It is with all the above in mind that this paper presents an approach for improving
business process models obtained from information systems in an effort to deal with
above challenges. The approach defines three stages: repairing, refactoring and ex-
pert-based improvement. These stages address challenges above mentioned by using
additional knowledge sources to perform its goal. Moreover, in order to illustrate one
of the stages, this work presents some results of refactoring stage. The result shows
that the measures selected for assessing the quality of business process models -in
terms of their understandability and modifiability, are improved in the most of cases
by removing non-relevant and fine-grained elements as well as by completing models.
Despite the fact that this work applies refactoring operator in isolation, studies reveal
that refactoring operators do not satisfy commutative property among them, making
necessary to figure out the best execution order [27].

After the completion of this work a set of future works has been identified: (1) Re-
fining the repairing stage in order to obtain more valuable information from event
logs in order to repair retrieved business process models; (2) Refining the refactoring
stage by defining new refactoring operators to address more challenges. In addition,
the use of more measures for assessing the understandability and modifiability is
required; (3) Definition of expert-based improvement stage by means of the use of
expert decision to remove ambiguities in the business process model.

 Improving Business Process Model after Reverse Engineering 227

Acknowledgements. This work was supported by the FPU Spanish Program and the
R&D projects MAGO /PEGASO (Ministerio de Ciencia e Innovación [TIN2009-
13718-C02-01]) and GEODAS-BC (Ministerio de Economía y Competitividad &
Fondos FEDER [TIN2012-37493-C03-01]).

References

1. Weske, M.: Business Process Management: Concepts, Languages, Architectures, Leipzig,
Germany, p. 368. Springer, Heidelberg (2007)

2. Jeston, J., Nelis, J., Davenport, T.: Business Process Management: Practical Guidelines to
Successful Implementations, 2nd edn. Butterworth-Heinemann (Elsevier Ltd.), NV (2008)

3. OMG. Business Process Modeling Notation Specification 2.0 (2011),
http://www.omg.org/spec/BPMN/2.0/PDF/

4. Pérez-Castillo, R., et al.: MARBLE. A Business Process Archeology Tool. In: 27th IEEE
International Conference on Software Maintenance (ICSM 2011), Williamsburg, VI,
pp. 578–581 (2011)

5. Fernández-Ropero, M., Pérez-Castillo, R., Piattini, M.: Refactoring Business Process
Models: A Systematic Review. In: Filipe, J., Maciaszek, L. (eds.) 7th International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE),
pp. 140–145. SciTePress, Wrocław (2012)

6. van der Aalst, W.: Process Mining: Overview and Opportunities. ACM Transactions on
Management Information Systems (TMIS) 3(2), 7 (2012)

7. Indulska, M., Recker, J., Rosemann, M., Green, P.: Business process modeling: Current is-
sues and future challenges. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 501–514. Springer, Heidelberg (2009)

8. Fahland, D., van der Aalst, W.M.P.: Repairing Process Models to Reflect Reality (2012)
9. Weber, B., Reichert, M.: Refactoring Process Models in Large Process Repositories. In:

Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 124–139. Springer,
Heidelberg (2008)

10. Dijkman, R., Rosa, M.L., Reijers, H.A.: Managing large collections of business process
models—Current techniques and challenges. Computers in Industry 63(2), 91 (2012)

11. Weber, B., et al.: Survey paper: Refactoring large process model repositories. Comput.
Ind. 62(5), 467–486 (2011)

12. Dijkman, R., et al.: Identifying refactoring opportunities in process model repositories. In-
formation and Software Technology (2011)

13. La Rosa, M., et al.: Managing process model complexity via abstract syntax modifications.
IEEE Transactions on Industrial Informatics 7(4), 614–629 (2011)

14. Uba, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: Clone detection in repositories of
business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011.
LNCS, vol. 6896, pp. 248–264. Springer, Heidelberg (2011)

15. Ekanayake, C.C., Dumas, M., García-Bañuelos, L., La Rosa, M., ter Hofstede, A.H.M.:
Approximate clone detection in repositories of business process models. In: Barros, A.,
Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 302–318. Springer, Heidel-
berg (2012)

16. Pittke, F., Leopold, H., Mendling, J.: Spotting Terminology Deficiencies in Process Model
Repositories. In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T.,
Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 292–307. Sprin-
ger, Heidelberg (2013)

228 M. Fernández-Ropero, R. Pérez-Castillo, and M. Piattini

17. Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on
synthesis from well-structured behavioral profiles. International Journal of Cooperative In-
formation Systems 21(1), 55–83 (2012)

18. Smirnov, S., Reijers, H.A., Weske, M.: A semantic approach for business process
model abstraction. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741,
pp. 497–511. Springer, Heidelberg (2011)

19. Polyvyanyy, A., Smirnov, S., Weske, M.: Business process model abstraction. In: Hand-
book on Business Process Management, vol. 1, pp. 149–166 (2010)

20. Smirnov, S.: Business process model abstraction, Universitätsbibliothek (2012)
21. Pérez-Castillo, R., et al.: A family of case studies on business process mining using

MARBLE. Journal of Systems and Software 85(6), 1370–1385 (2012)
22. Overhage, S., Birkmeier, D.Q., Schlauderer, S.: Quality Marks, Metrics, and Measurement

Procedures for Business Process Models. Business & Information Systems Engineering,
1–18 (2012)

23. Pérez-Castillo, R., et al.: Generating Event Logs from Non-Process-Aware Systems Enabl-
ing Business Process Mining. Enterprise Information System Journal 5(3), 301–335 (2011)

24. Zou, Y., Hung, M.: An Approach for Extracting Workflows from E-Commerce Applica-
tions. In: Proceedings of the Fourteenth International Conference on Program Comprehen-
sion 2006, pp. 127–136. IEEE Computer Society (2006)

25. Binkley, D., et al.: To camelcase or under_score. IEEE (2009)
26. Fernández-Ropero, M., Reijers, H.A., Pérez-Castillo, R., Piattini, M.: Repairing Business

Process Models as Retrieved from Source Code. In: Nurcan, S., Proper, H.A., Soffer, P.,
Krogstie, J., Schmidt, R., Halpin, T., Bider, I. (eds.) BPMDS 2013 and EMMSAD 2013.
LNBIP, vol. 147, pp. 94–108. Springer, Heidelberg (2013)

27. Fernández-Ropero, M., et al.: Assessing the Best-Order for Business Process Model
Refactoring. In: 28th Symposium On Applied Computing (SAC), Coimbra, Portugal,
pp. 1400–1406 (2013)

28. Fernández-Ropero, M., et al.: Quality-Driven Business Process Refactoring. In: Interna-
tional Conference on Business Information Systems (ICBIS), Paris, France, pp. 960–966
(2012)

Measuring the Effect of Enabling Traces Generation
in ATL Model Transformations

Iván Santiago, Juan M. Vara, Valeria de Castro, and Esperanza Marcos

Kybele Research Group, Rey Juan Carlos University,
Avda. Tulipán S/N, 28933 Móstoles, Madrid, Spain

{ivan.santiago,juanmanuel.vara,valeria.decastro,
esperanza.marcos}@urjc.es

http://www.kybele.es

Abstract. The benefits that proper management of traceability information can
bring to any given (software development) project are beyond any doubt. These
benefits become even more appealing when dealing with traceability does not im-
ply additional efforts. This is the case of Model-Driven Engineering (MDE). As
a matter of fact, since model transformations are the wheel that drives MDE pro-
posals forward, traceability data can be automatically available in MDE projects.
To that end, the implicit traceability relationships contained in any model trans-
formation have to be made explicit by enriching the model transformation with
traces generation capabilities. However, this refinement process implies a cost in
terms of quality: enriched transformations are intuitively more complex. To back
such intuition, this work presents an empirical study to assess the impact over the
quality of the automatic enrichment of model transformations.

Keywords: Model-driven Engineering, Model Transformations, Traceability,
Quality Metrics.

1 Introduction

The management of traceability in software development projects implies keeping track
of the relationships between the different software artifacts produced along the process.
This way, appropriate management of traceability helps to monitor the evolution of
system components and carry out different software activities such as change impact
assessment, requirements validation, maintenance tasks, etc. [1].

Unfortunately, generating and maintaining links among different software artifacts is
a tedious, time-consuming and error prone task if no tooling support is provided to that
end [2]. In this sense, the advent of the Model-Driven Engineering (MDE) paradigm,
which principles are to enhance the role of models and to increase the level of automa-
tion all along the development process [3], provides a new landscape that can positively
influence the management of traceability [4]. Indeed, MDE brings new scenarios where
appropriate management of traceability is almost mandatory, such as model synchro-
nization or incremental model changes [5], all of them particular scenarios of software
evolution.

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 229–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

230 I. Santiago et al.

The key to foster automation in MDE projects are the model transformations that
connect the different models involved in the proposal [6]. Simply put, a model trans-
formation defines a set of relationships between the elements of source and target
metamodels that must hold between the elements of the models conforming to such
metamodels [7]. Therefore, a model transformation contains implicit information from
which trace-links (traces) can be derived. Actually, such links can be seen as instances
of the relationships defined at metamodel-level. Therefore, if we made explicit this
information in the model transformation itself, it could generate, apart from the corre-
sponding target models, an extra model which contains the traces between the elements
of the models involved in the transformation.

Nevertheless, the enrichment of model transformations to support the production of
traces model might have an impact over the quality of the transformation. This paper
focuses on the assessment of such impact. To that end, it leans on some previous works
by van Amstel and van den Brand [8,9] who defined a set of quality metrics for model
transformations and tried to relate them with some quality attributes; such as under-
standability, modifiability, reusability, completeness, consistency and conciseness.

In particular, this work provides an empirical study of the impact of enriching ATL
(Atlas Transformation Language) [10] model transformations. To that end, an heuristic
to obtain quantitative indicator to assess the quality of model transformations is in-
troduced. Such indicator is then used to compare standard and enriched versions of 7
model transformations with different levels of complexity.

The rest of this work is structured as follows: Section 2 describes the enrichment pro-
cess for ATL model transformations supported by iTrace [11]; Section 3 introduces
the proposal from van Amstel and van den Brand for the quality assessment of model
transformations; Section 4 presents the empirical study performed in this work and the
analysis of results; and finally Section 5 concludes by highlighting the main findings
and providing directions for further work.

2 Enriching ATL Model Transformations with iTrace

The first step towards the appropriate management of traceability is the existence of
traces. However, since many projects do not provide such traces, mechanisms are needed
to support the production of traces. In order to avoid accidental complexity, such mech-
anisms should be completely automatic and transparent for the user.

To fulfill these requirements in the context of MDE, iTrace [11] supports the pro-
duction of trace models in two different scenarios. On the one hand, it supports the
enrichment of model transformations that were developed with model transformation
languages which do not support the generation of traces. On the other hand, it bundles a
set of transformations to normalize existing traces models to a common metamodel: the
iTrace metamodel. In this paper, only the first scenario is considered, i.e., the pro-
duction of trace models by enriching existing model transformations. More specifically,
we focus on the generation of trace models from enriched ATL transformations.

ATL provides limited access to the target elements generated by running a trans-
formation, e.g. in the current version of the ATL virtual machine (ATL-VM), target
elements cannot be selected according to their type. Besides, the ATL-VM discards

Measuring the Effect of Enabling Traces Generation in ATL Model Transformations 231

Fig. 1. Adding traceability capabilities in ATL transformations - adapted from [14]

the tracing information after the transformation is run. This implies that ATL model
transformations should be refactored to support the production of trace models [12].
However, such refactoring can be automated by using High-Order Transformations
(HOT)[13], i.e. ”a model transformation such that its input and/or output models are
themselves transformation model”

This way, HOTs are used to enrich existing m2m transformations so that they are
able to produce not only the corresponding target models, but also trace models. This
idea was first proposed by Jouault in [14] that introduced an initial prototype to support
the enrichment of ATL transformations. The enrichment process bundled in iTrace
is a little bit more complex than the one from [14], due to the increased complexity of
iTrace metamodels.

Figure 1 depicts graphically the enrichment process for m2m transformations sup-
ported by iTrace: first, the TCS [15] injector/extractor for ATL files bundled in the
AMMA (Atlas Model Management Architecture) platform1 produces a transformation
model from a given ATL transformation (a); next, such transformation model is en-
riched by a HOT (b) and finally the resulting transformation models is again serialized
into an ATL model transformation (c). As mentioned before, the execution of such en-
riched transformation will produce not only the corresponding target models, but also a
traces model.

The result of this enrichment process is partially illustrated in Figure 2 which shows
two excerpts from the original transformation and its enriched version. More concretely,
Figure 2(a) shows the original MemberEnd2NotNullOnTTmapping rule while Fig-
ure 2(b) shows the version of such rule produced by the enrichment process. (1) and (2)
denote the statements that are preserved in the enriched version whereas (3) identifies
the statements added to support traces generation.

Finally, with regard to the selection of ATL, there were two decisive factors. Firstly,
ATL is considered the de facto standard for the development of model transformations
[16] and it has additionally been developed according to MDE principles. As a result,
it provides a complete metamodel that allows ATL model transformations to be mod-
eled without the need to define a new metamodel. Note that the the metrics defined by
van Amstel and van den Brand are computed by executing a set of model transforma-
tions over the transformation models obtained from the source-code that implements
the transformations under study.

However, the evaluation of other transformation languages is technically
feasible, since any metamodel-based transformation language facilitates obtaining a

1 The AMMA Platform. Available in:
http://www.sciences.univ-nantes.fr/lina/atl/AMMAROOT/

232 I. Santiago et al.

(a) Original transformation (b) Enriched transformation

Fig. 2. Enrichment of the MemberEnd2NotNullOnTTmapping rule

transformation model from a given transformation. Computing the metrics for such
language only requires the adaptation of the set of transformations aforementioned to
the metamodel of the targeted language.

3 Quality Metrics for Model Transformations

Despite the crucial role of model transformations in MDE, few works focused on their
quality can be found in the literature. Probably the most mature are those from van
Amstel and van den Brand.

In [8] the authors propose a set of metrics for ATL model transformations. Such
metrics are classified into 4 groups: rule metrics, helper2 metrics, dependency metrics
and miscellaneous. Besides, they introduce the ATL2Metrics tool that automates the
measurement process for any given (ATL) transformation.

The idea, illustrated in Figure 3, leans also on the use of HOTs: a transformation
model is obtained from a given ATL transformation. Next, such model is consumed by
the (Metrics extractor) transformation to produce a metrics model. Finally, the
metrics models is serialized to the csv format by a Pretty printer.

Next, in [9] van Amstel and van den Brand lean on the previously defined metrics to
develop a proposal to assess the quality of model transformations. The idea was to iden-
tify the relationships between the metrics and a set of quality attributes. In the following,
adapted definitions3 from those published in [18] are provided for such attributes:

2 ATL helpers can be viewed as the ATL equivalent to methods. They make it possible to define
factorized ATL code that can be called from different points of an ATL transformation.

3 Other definitions can be found in [17], pp 10.

Measuring the Effect of Enabling Traces Generation in ATL Model Transformations 233

Fig. 3. ATL2metrics architecture (from [8])

Conciseness — A transformation possesses the characteristic conciseness to the extent
that excessive information is not present. This implies that the transformation is
not excessively fragmented into modules, overlays, functions and subroutines, nor
that the same transformation is repeated in numerous places, rather than defining a
subroutine or macro; etc.

Consistency — A transformation possesses the characteristic internal consistency4

to the extent that it uses a uniform notation, terminology and symbology within
itself, and external consistency to the extent that the content is traceable to the
requirements.

Completeness — A transformation possesses the characteristic completeness to the
extent that all its parts or components are present and each part is fully developed.
For instance, a mapping rule possesses the characteristic completeness to the extent
that it does not need from external invocations to produce target elements.

Modifiability — A transformation possesses the characteristic modifiability to the ex-
tent that it facilitates the incorporation of changes, once the nature of the desired
change has been determined. Note the high level of abstraction of this characteristic
in contrast with that of augmentability5.

Reusability — A transformation possesses the characteristic reusability to the extent
that it can be operated easily and well on metamodels other than its current ones.

Understandability — A transformation possesses the characteristic understandability
to the extent that its purpose is clear to the inspector. This implies that variable
names or symbols are used consistently, modules of code are self-descriptive, and
the control structure is simple or in accordance with a prescribed standard, etc.

To that end, a poll on the quality of a given set of transformations was conducted
between ATL experts. To establish the relations between their observations and the data
gathered running the metrics, the Kendall correlation test was used. This test returns
two values, viz. a correlation coefficient (cc) and a significance value (sig). The cor-
relation coefficient indicates the strength and direction of the correlation. A positive
correlation coefficient means that there is a positive relation between the metric and the

4 Internal consistency implies that coding standards are homogeneously adhered to; e.g., com-
ments should not be unnecessarily extensive or wordy at one place, and insufficiently infor-
mative at another, that number of arguments in subroutine calls match with subroutine header,
etc.

5 Augmentability: A transformation possesses the characteristic augmentability to the ex-
tent that it can easily accommodate expansion in component computational functions. This is
a necessary characteristic for modifiability.

234 I. Santiago et al.

Table 1. Kendall’s correlations (from [9])

Metric Comple. Modifi. Consis. Reusab. Concis. Unders.
cc sig cc sig cc sig cc sig cc sig cc sig

Elements per output pattern -.228 .180 -.215 .202 .124 .472 -.146 .389 -.122 .474 -.375 .026
Calls to resolveTemp() -.159 .380 -.358 .045 -.088 .632 -.236 .189 -.179 .323 -.352 .049
Calls to resolveTemp per rule -.106 .558 -.306 .087 -.061 .741 -.236 .189 -.153 .399 -.326 .068
Parameters per called rule -.391 .038 -.407 .029 -.122 .524 -.345 .066 -.218 .249 -.407 .029
Unused parameters per called rule -.391 .038 -.407 .029 -.122 .524 -.345 .066 -.218 .249 -.407 .029
Called rule fan-in -.391 .038 -.407 .029 -.122 .524 -.345 .066 -.218 .249 -.407 .029
Unit fan-in -.391 .038 -.407 .029 -.122 .524 -.345 .066 -.218 .249 -.407 .029
Unit fan-out -.391 .038 -.407 .029 -.122 .524 -.345 .066 -.218 .249 -.407 .029
Input models -.391 .038 -.407 .029 -.122 .524 -.345 .066 -.218 .249 -.407 .029
Ouput models -.391 .038 -.407 .029 -.122 .524 -.345 .066 -.218 .249 -.407 .029
Units -.391 .038 -.407 .029 -.122 .524 -.345 .066 -.218 .249 -.407 .029
Unused helpers -.391 .038 -.407 .029 -.122 .524 -.345 .066 -.218 .249 -.407 .029
Times a unit is imported -.379 .045 -.138 .459 .086 .654 -.084 .656 -.247 .192 -.318 .088
Lazy rule fan-in -.397 .021 -.143 .404 .005 .976 -.021 .905 -.062 .719 -.356 .037
Helper cyclomatic complexity -.357 .037 -.154 .364 -.026 .882 -.175 .304 .126 .461 -.248 .142
Direct copies .322 .070 .040 .822 -.059 .745 -.125 .478 -.196 .271 .227 .197
Imported units -.323 .078 -.080 .661 .110 .554 -.027 .883 -.223 .225 -.252 .164
Rule fan-out -.333 .046 -.124 .453 -.157 .351 -.235 .157 .024 .885 -.223 .175
Helper fan-out -.105 .537 .183 .278 .302 .081 .264 .120 .136 .426 .020 .907
Transformation rules -.082 .623 -.086 .604 -.364 .031 -.273 .099 -.092 .582 .024 .885
Called rules -.158 .389 -.263 .149 -.308 .098 -.365 .046 -.347 .060 -.128 .482
Unused called rules -.158 .389 -.263 .149 -.308 .098 -.365 .046 -.347 .060 -.128 .482
Rules with filter -.005 .977 -.038 .818 -.049 .771 -.129 .435 -.402 .016 -.005 .977
Rules with local variables .032 .861 -.051 .780 -.137 .460 -.178 .328 .302 .100 -.013 .944
Rules per input pattern -.130 .434 -.114 .489 .029 .861 -.014 .931 .315 .059 -.109 .507
Unused input pattern elements -.033 .854 .059 .737 -.056 .758 .033 .854 .297 .097 -.032 .854
Variables per helper .013 .944 .063 .727 -.111 .550 .178 .328 .328 .074 .006 .972
Non-lazy matched rules .034 .839 .000 1.000 -.029 .861 -.129 .435 -.383 .022 .014 .931
Helpers per helper name (overloadings) -.054 .769 -.066 .714 .220 .237 .060 .741 .007 .971 -.033 .855
Variables per rule .070 .700 -.076 .676 -.111 .550 -.242 .184 .225 .220 -.038 .834
Helper fan-in -.024 .885 .000 1.000 -.236 .162 -.196 .236 -.005 .977 .138 .402
Helpers -.201 .243 -.229 .180 -.047 .786 -.246 .152 .187 .281 -.178 .296
Unused lazy matched rules -.152 .419 .138 .460 .026 .892 .076 .687 .217 .251 -.025 .893
Rules with do-section -.057 .747 -.153 .385 .018 .922 -.108 .540 -.173 .332 .000 1.000
Lazy matched rules -.201 .243 .041 .812 -.058 .741 .051 .765 .239 .168 -.081 .633
Helpers per unit -.201 .243 -.229 .180 -.047 .786 -.246 .152 .187 .281 -.178 .296

quality attribute and a negative correlation coefficient implies a negative relation. The
significance indicates the probability that there is no correlation between the metric and
the quality attribute even though one is reported, i.e., the probability for a coincidence.
Note that correlation does not indicate a causal relation between the metric and the
quality attribute.

Figure 1 shows the correlations that were identified in the study of van Amstel and
van den Brand.

4 Evaluation

In order to improve the rigor of this study, we have followed the guidelines for con-
ducting case studies proposed by Runeson and Höst in [19]. In particular, we have
adapted the protocol used in [20] which is based on the proposal of Runeson and Höst.
In essence, the adapted protocol distinguishes a set of stages, namely: case selection,
design and execution, data collection and finally analysis and interpretation. The high-
lights of each stage are presented as follows.

Measuring the Effect of Enabling Traces Generation in ATL Model Transformations 235

Table 2. ATL transformations selected

ID Transformation Purpose LOC MR IN/OUT
T1 ASD2WSDL Maps Abstract Service Descriptions (ASD) into WSDL

models.
236 13 1/1

T2 Class2Relational Maps UML class diagrams into relational models. 112 6 1/1
T3 Families2Persons Maps Families models into People models. 46 2 1/1
T4 SQL20032ORDB4ORA Maps ORDB models that conform to the SQL:2003

standard into ORDB models for Oracle.
1247 51 1/1

T5 UML2SQL2003 Maps UML class diagrams annotated by means of a
AMW (Atlas Model Weaver) models into ORDB mod-
els that conform to the SQL:2003 standard.

2181 66 2/1

T6 UML2XMLSchema Maps UML class diagrams annotated by means of a
AMW models into XSD models.

459 13 2/1

T7 WSDL2ASD Maps WSDL models into ASD models. 190 9 1/1
TOTAL 4471 160 9/7

4.1 Case Studies Selection

In order to consider different sizes and levels of complexity, 7 case studies were
selected. Their main features are summarized in Table 2. From left to right, the
following information is provided for each transformation: identifier (ID); name
(Transformation); functionality delivered (Purpose); # of lines of code (LOC);
of mapping rules (MR); # of source and target models (IN/OUT).

4.2 Design and Execution

The empirical study has been executed as follows:

(1) Original transformation is checked and run to collect the # of LOC and execution
time.

(2) ATL2Metrics is run over the transformation to gather values for each metric.
(3) Transformation is automatically enriched using the iTrace framework to support

the production of trace models. The enrichment process is process was described in
Section 2.

(4) Enriched transformation is checked and run to collect the # of LOC and execution
time.

(5) ATL2Metrics is run over enriched transformation to gather values for each
metric.

(6) Steps 1 to 5 are repeated for each transformation under study.
(7) Data collected is analyzed.

The values gathered are then computed to obtain an overall indicator of the quality of
each model transformation. This computation is supported by the following heuristic6

that exploits somehow the data provided by van Amstel and van den Brand.

6 Authors would like to thank Dr. Diego Vidaurre, from the Oxford center for Human Brain
Activity, for his valuable advice on the statistical analysis of the results.

236 I. Santiago et al.

Let n be the number of metrics, p the number of attributes and k the number of trans-
formations whose attributes we aim to estimate. Let X ∈ [−1,−1]

n×p be the matrix
containing the Kendall correlation coefficients for each pair of metric and attribute. Let
Y ∈ Rn×k be the matrix containing the metrics for each transformation. The objective
is to estimate a matrix Z̃ ∈ [0,−1]

p×k with the attributes for each transformation.
Then, as Equation 1 shows we can computeZ just as the weighted average of the cor-

responding metrics, where the weights are given by the correlation coefficients. Finally,
Equation 2 scales Z̃ so that each element ranges from 0 to 1.

Zjl =

∑n
i=1 Yil ·Xij∑n
i=1 |Xij | (1)

Z̃jl =
Zjl −min (Y·l)

max (Y·l)−min (Y·l)
(2)

4.3 Data Collection

Table 3 summarizes the results obtained from the execution of the previous process.
First column identifies the transformation under consideration, where Tx stands for the
original version of the transformation and Tx’ for the enriched one.

Then the value for each quality attribute, as well as the overall value (arithmetic aver-
age) for each transformation are shown. Note that an additional value is shown in those
rows corresponding to enriched transformations. It states the difference between the val-
ues obtained by the original and enriched versions of the transformations. For instance,
the understability value for T1 is 0.93 whereas the one for T1’ is 0.75. Understability
of T1 has consequently decreased 18.43% because of the enrichment process.

Last row sums up the data by showing the average values and differences of each
attribute and the overall indicator.

4.4 Analysis and Interpretation

To ease the analysis and interpretation of the data collected, we first introduce the main
findings to later dig into the data collected regarding each quality attribute.

General Overview. According to Table 3, the enrichment of model transformations
to support the production of trace models has a negative impact over the quality of
the transformations. On average such impact is about 20%. This negative influence
becomes more pronounced as the quality of the original transformation gets worse. See
for instance the impact of enrichment over the quality of T5.

As a matter of fact, these evidences are aligned with the initial intuition since the
enrichment of the transformations implies adding extra LOC to implement the machin-
ery that will generate the traces. Besides, bigger transformations are more affected: the
more mapping rules the original transformation contains, the more machinery have to
be added in the enriched version of the transformation.

Measuring the Effect of Enabling Traces Generation in ATL Model Transformations 237

Table 3. Data collection overview

Transf. Comple. Modifi. Consis. Reusab. Concis. Unders. Quality
T1 0.96 1.00 0.88 0.88 0.96 0.93 0.93
T1’ 0.60 -36.64% 0.90 -9.89% 0.71 -17.04% 0.70 -18.10% 0.71 -24.47% 0.75 -18.43% 0.73 -20.76%

T2 1.00 1.00 0.96 0.96 0.97 0.97 0.98
T2’ 0.69 -30.95% 0.90 -9.89% 0.78 -17.04% 0.78 -18.10% 0.73 -24.47% 0.80 -16.79% 0.78 -19.54%

T3 0.84 1.00 1.00 1.00 0.99 1.00 0.97
T3’ 0.65 -19.05% 0.90 -9.89% 0.83 -17.04% 0.82 -18.10% 0.75 -24.47% 0.88 -12.36% 0.80 -16.82%

T4 0.55 1.00 0.38 0.40 0.66 0.93 0.65
T4’ 0.34 -21.13% 0.91 -8.90% 0.21 -17.04% 0.22 -17.95% 0.40 -25.85% 0.71 -21.26% 0.47 -18.69%

T5 0.71 0.09 0.22 0.22 0.31 0.22 0.29
T5’ 0.33 -37.18% 0.00 -9.44% 0.00 -21.58% 0.00 -22.47% 0.00 -30.59% 0.00 -22.10% 0.06 -23.89%

T6 0.32 0.37 0.89 0.85 0.90 0.47 0.63
T6’ 0.00 -32.02% 0.27 -9.82% 0.67 -21.73% 0.62 -22.60% 0.59 -30.60% 0.26 -20.29% 0.40 -22.84%

T7 1.00 1.00 0.92 0.92 1.00 0.97 0.97
T7’ 0.64 -35.95% 0.90 -9.89% 0.75 -17.04% 0.74 -18.10% 0.76 -24.47% 0.80 -16.67% 0.76 -20.35%

Average 0.62 -30.42% 0.73 -9.68% 0.66 -18.36% 0.65 -19.34% 0.69 -26.42% 0.69 -18.27% 0.67 -20.41%

Completeness. The quality attribute most negatively affected by the enrichment pro-
cess is completeness (30.42% on average). According to the Kendall’s coefficient table
(see Table 1), it shares some metrics with the rest of quality attributes. However, the
completeness values obtained for the different transformations do not follow the same
trend than those of the rest of attributes. Therefore, we may conclude that complete-
ness values are mainly derived from the Helper cyclomatic complexity, #
Direct copies, # Imported units and Rule fan-out metrics since they
are related just to the completeness attribute. Indeed, the negative impact could be
granted almost exclusively to the Rule fan-out metric7.

In the enriched transformations produced by iTrace , an auxiliary mapping rule
is called for each element in the source and target pattern of every mapping rule. As
a result, complete mapping rules (those able to produce target elements without call-
ing other rules or helpers) are turned into non-complete mapping rules in the enriched
version of the transformation, with the consequent impact over completeness of the
transformation.

Modifiability. In contrast with the impact on completeness, modifiability is the quality
attribute least affected by the enrichment process (9.68% on average). The value of this
attribute is mainly conditioned by the number of units and source and target models
involved in the transformation. As well, the use of constructions that raise the level of
coupling, like the resolveTemp8 operation has a negative impact on modifiability.

As a matter of fact, the enriched transformations produced by iTrace do not imply
the addition of building-blocks that raise the level of coupling or new units. Besides, the
data show that the impact on modifiability does not depend on the size of the original
transformation.

7 The Rule fan-out metric computes the average number of external invocations, e.g. a
mapping rule invokes a helper or another mapping rule.

8 Allows pointing, from an ATL rule, to any of the target model elements that will be generated.
Its use goes against the declarative nature of ATL transformations.

238 I. Santiago et al.

Consistency, Reusability and Conciseness. Unfortunately, the conclusions regarding
consistency, reusability and conciseness are not conclusive. This is mainly due to the
metrics proposed by van Amstel and van den Brand. Back to the table, transformations
can be grouped into two categories attending to the values for these attributes. First
group comprises T1, T2, T3, T4 and T7. Second group comprises T5 and T6 trans-
formations. If we check which are the features shared by each group, we find out that
transformations in the first group involve two source models, while those in the second
group involve just one source model.

Nevertheless, Table 1 shows that, in theory, there is no relation between the met-
ric computing the number of source models # Input models and the values for
three attributes. In order to explain this paradox, we focus on the metrics shared by
the attributes under study in this section, namely # Called rules and # Unused
called rules.

The enrichment process supported by iTrace results in the addition of a called rule
for each source model. Such rule is in charge of linking each source element with its
corresponding model in the traces model produced. The more source models involved
in the original transformation, the more called rules added in the enriched version. The
of source models has consequently a direct influence over the value delivered by
the # Called rules metric. All this given we can conclude that, according to the
metrics proposed by van Amstel and van den Brand, the # of source models has a
direct influence on the consistency, reusability and conciseness of an ATL (enriched)
transformation

Understandability. Understability is the attribute for which more scattered values are
obtained for enriched transformations, even though it shares a good number of metrics
with consistency, reusability and conciseness, for which a common trend was found.
Therefore, we focus on the # Elements per output pattern9 metric, since
it is the only metric solely related with understability.

Given a mapping rule containing n elements in the source an target patterns, the
enriched version of such rule contains n + 1 additional elements in the target pattern.
These additional elements serve to generate n references to the source and target ele-
ments related by the rule, plus a trace link element that connect them. The addition of
these elements contributes obviously to increment the # Elements per output
pattern with the consequent impact on understability.

Under the light of these observations, it becomes clear that the disparity in the values
for understability comes from the disparity on the values returned by the # Elements
per output pattern for the original transformations.

5 Conclusions

In order to reason about the cost of having traceability data in MDE projects, this work
has presented an empirical study to assess the impact of enriching model transforma-
tions over their quality. In particular, the quality of 7 ATL [10] model transformations
owning different levels of complexity was assessed before and after the enrichment
process.

9 Average # of elements per output pattern.

Measuring the Effect of Enabling Traces Generation in ATL Model Transformations 239

To do so, an heuristic has been defined that combines the data provided by battery of
metrics related with a set of quality attributes [9]. The heuristic provides a measure for
each quality attribute as well as an overall quality measure. Finally, the values gathered
have been compared and analyzed.

Probably, the main contribution of this paper is to provide empirical evidence to
confirm the intuitive knowledge about the impact of adding trace generation support to
model transformations. The data collected show that the quality of enriched versions
is worse than that of original transformations (the loss rate is about 20%). This impact
has a direct consequence over the effort needed for the maintenance of enriched model
transformations.

In order to alleviate this impact we advocate in favor of using model-based tech-
niques. To do so, we must adopt the approach introduced by Bèzivin et al. to deal with
model transformations as transformations models [21]. From there on, model transfor-
mations can be used to handle and produce transformation models. As a matter of fact,
this work has partially shown that this approach can be effectively adopted. The com-
pletely automated enrichment process supported by iTrace is largely based on the use
of transformation models.

To conclude, we would like to introduce two considerations about the validity of the
study. On the one hand, the results might be partially biased by the nature of the particu-
lar enrichment process adopted. The trace models generated by the enriched transforma-
tions produced by iTrace conform to a particular traces metamodel that was defined
as part of the proposal. If a different (traces) metamodel is used, the refinements over
the original transformation might be different, as well as the results delivered by the
metrics when computed over the enriched version of the transformation.

This drives us to the main threat to validity: the metrics proposed by van Amstel
and van den Brand [8,9] and their relation with the quality attributes. To address this
issue we are reviewing the metrics in order to add new metrics, as well as refine and
eliminate some others. Besides, we plan to carry out a new survey in order to have data
to apply a mathematically solid regression methodology to correlate metrics and quality
attributes.

Acknowledgements. This research is partially funded by the MASAI project, financed
by the Spanish Ministry of Science and Technology (Ref. TIN2011-22617).

References

1. Aizenbud-Reshef, N., Nolan, B., Rubin, J., Shaham-Gafni, Y.: Model traceability. IBM Sys-
tems Journal 45, 515–526 (2006)

2. Mäder, P., Gotel, O., Philippow, I.: Enabling automated traceability maintenance through the
upkeep of traceability relations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA
2009. LNCS, vol. 5562, pp. 174–189. Springer, Heidelberg (2009)

3. Schmidt, D.: Model-Driven Engineering. IEEE Computer 39, 25–31 (2006)
4. Santiago, I., Jiménez, A., Vara, J.M., De Castro, V., Bollati, V., Marcos, E.: Model-Driven

Engineering As a New Landscape For Traceability Management: A Systematic Review. In-
formation and Software Technology 54, 1340–1356 (2012)

5. Selic, B.: What will it take? A view on adoption of model-based methods in practice. Soft-
ware and Systems Modeling 11, 513–526 (2012)

240 I. Santiago et al.

6. Bèzivin, J.: In search of a basic principle for model driven engineering. UPGRADE, Euro-
pean Journal for the Informatics Professional 5, 21–24 (2004)

7. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-driven
software development. IEEE Software 20, 42–45 (2003)

8. van Amstel, M.F., van den Brand, M.G.: Quality assessment of ATL model transformations
using metrics. In: 3rd International Workshop on Model Transformation with ATL (MtATL
2010), vol. 711, pp. 19–33 (2010)

9. van Amstel, M.F., van den Brand, M.G.: Using metrics for assessing the quality of ATL
model transformations. In: 4st International Workshop on Model Transformation with ATL
(MtATL 2011), vol. 742, pp. 20–34 (2011)

10. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation Tool. Science
of Computer Programming 72, 31–39 (2008)

11. Santiago, I., Vara, J.M., de Castro, M.V., Marcos, E.: Towards the effective use of traceability
in Model-Driven Engineering projects. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013.
LNCS, vol. 8217, pp. 429–437. Springer, Heidelberg (2013)

12. Yie, A., Wagelaar, D.: Advanced Traceability for ATL. In: 1st International Workshop on
Model Transformation with ATL (MtATL 2009), Nantes, France, pp. 78–87 (2009)

13. Tisi, M., Cabot, J., Jouault, F.: Improving higher-order transformations support in ATL. In:
Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 215–229. Springer, Heidel-
berg (2010)

14. Jouault, F.: Loosely coupled traceability for ATL. In: 1st European Conference on Model-
Driven Architecture: Traceability Workshop (ECMDA 2005), Nuremberg, Germany, vol. 91,
pp. 29–37 (2005)

15. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete syn-
taxes in model engineering. In: 5th International Conference on Generative Programming
and Component Engineering, GPCE 2006, pp. 249–254. ACM, New York (2006)

16. Vara, J.M., Marcos, E.: A framework for model-driven development of information systems:
Technical decisions and lessons learned. Journal of Systems and Software 85, 2368–2384
(2012)

17. van Amstel, M.F., Lange, D.F.J., van den Brand, M.G.: Evaluating the quality of ASF+SDF
model transformations. Technical report, Eindhoven University of Technology, Eindhoven,
The Netherlands (2009)

18. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of software quality. In:
Proceedings of the 2nd International Conference on Software Engineering, ICSE 1976,
pp. 592–605. IEEE Computer Society Press, Los Alamitos (1976)

19. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in soft-
ware engineering. Empirical Software Engineering 14, 131–164 (2009)

20. Pérez-Castillo, R., de Guzmán, I.G.R., Piattini, M.: Knowledge Discovery Metamodel-
ISO/IEC 19506: A standard to modernize legacy systems. Computer Standards & Inter-
faces 33, 519–532 (2011)

21. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model Transforma-
tions? Transformation Models! In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoD-
ELS 2006. LNCS, vol. 4199, pp. 440–453. Springer, Heidelberg (2006)

J. Filipe and L.A. Maciaszek (Eds.): ENASE 2013, CCIS 417, pp. 241–256, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Reverse Engineering Applied to CMS-Based Web
Applications Coded in PHP: A Proposal of Migration

Feliu Trias, Valeria de Castro, Marcos López-Sanz, and Esperanza Marcos

Kybele Research Group, Rey Juan Carlos University,
C/Tulipan, s/n. 28933 Móstoles, Madrid, Spain

{feliu.trias,valeria.decastro,marcos.lopez,
esperanza.marcos}@urjc.es

Abstract. Increasingly, organizations experience the necessity of migrating
their legacy Web applications to new platforms which meet better their needs.
For these reasons, these organizations demand reengineering processes that
enable this migration in an automatic and standardized way minimizing costs.
In the last years, Architecture-Driven Modernization (ADM) has acquired great
relevance since it solves most of the problems of traditional reengineering. This
is specially crucial in the reengineering of CMS-based Web applications. At
time of writing there are no methods that could be used in that context. Hence,
we defined an ADM-based method for migrating this kind of Web applications
composed of three phases: reverse engineering, restructuring and forward
engineering. This method is the framework of the work presented in this paper
which is focused on its reverse engineering phase defined by three tasks: 1)
knowledge extraction, 2) generation of KDM models and 3) generation of the
CMS model. In this paper we explain the implementation of these tasks
defining text-to-model (T2M) transformations implemented by a model
extractor and model-to-model (M2M) transformations defined in ATL. We use
a real example of a CMS-based Web application coded in PHP to show the
feasibility of the approach.

Keywords: Content Management System, Web Application, Architecture-
driven Modernization, Reverse Engineering and Model-driven Engineering.

1 Introduction

In the last years, the volume of digital content managed by organizations has
increased dramatically. To solve it, organizations have based their Web applications
on Content Management Systems (CMS) since they are platforms which allow users
to collect, manage and publish content in a robust and reliable manner [1].

The CMS market is constantly evolving and organizations experiment the necessity
of migrating their CMS-based Web applications to another CMS or to a new version
of the same CMS because their current one has become obsolete and it does not meet
their needs. Therefore, they find necessary to start a standardized an automatic
process of reengineering entailing low risks and costs [2].

242 F. Trias et al.

Currently, the most successful initiative to standardize and automate the
reengineering process is the Architecture-Driven Modernization (ADM) proposed by
OMG. ADM advocates for the application of model-driven principles to formalize the
reengineering process. It provides several benefits such as reducing development and
maintenance costs and extending the life cycle of the legacy systems. ADM develops
seven standard metamodels to represent the information involved in a software
reengineering process, but currently only three of them are available: Abstract Syntax
Tree Metamodel (ASTM) [3], Knowledge Discovery Metamodel (KDM) [4] and
Structured Metrics Metamodel (SMM) [5]. These metamodels allow developers to
manage software reengineering processes in an integrated and standardized manner as
well as saving them time and effort creating their own metamodels [7]. ASTM allows
to represent in models (ASTM models) the information about existing software assets
of a legacy system in the form of Abstract Syntax Trees (AST) [6]. Otherwise, KDM
allows to define models (KDM models) at a higher abstraction level representing
semantic information about a software system.

In this context of ADM, we conducted a systematic literature review [7] to assess
the state of the art of existing reengineering methods related to CMS-based Web
applications. One of the main conclusions derived from such review was that it is
necessary to have methods for migrating CMS-based Web applications, but currently
there are no one based in ADM making it possible.

Accordingly, we defined an ADM-based method for migrating this kind of Web
applications [8]. This ADM-based method comprises the three phases belonging to
the reengineering processes [2]: 1) reverse engineering, 2) restructuring and 3)
forward engineering. Up to now, our method is focused on open-source CMS such as
Drupal [9], Joomla! [10] or Wordpress [11] which are implemented in PHP. We focus
on the open-source CMS because of their features, their spread use and relevant
acceptance in the market [12].

The work presented in this paper is framed in the ADM-based method we defined.
Concretely, we focus on the implementation of its reverse engineering phase which is
composed of three tasks: 1) Knowledge extraction, in this task ASTM models are
extracted from the PHP code by text-to-model (T2M) transformations implemented
by a model extractor. For implementation of this model extractor we use Xtext [13];
2) Generation of KDM models, KDM models are generated from the previous ASTM
models by means of M2M transformations and 3) Generation of the CMS model, from
the KDM models and by M2M transformations we generate the CMS Model which
conforms to the CMS Common Metamodel [14], the cornerstone of our ADM-based
method. For the implementation of these M2M transformations we use ATL [15].

To show the feasibility of this approach we use a real example based on a CMS-
based Web application based on Drupal and implemented in PHP.

The rest of this paper is organized as follows: Section 2 explains the research
context which frames the work presented in this paper. Section 3 presents the
implementation of the reverse engineering phase of our ADM-based method. Section
4 presents the related works and makes a comparison of our ADM-based method with
them and, finally, Section 5 presents the conclusions and future works.

 Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP 243

2 Research Context

2.1 Architecture Driven Modernization

In recent years, Model-Driven Development (MDD) has proven its usefulness as top-
down software development paradigm, and now it is expanded to software
reengineering and migration processes [16].

In 2003, OMG proposed the Architecture-Driven Modernization (ADM) initiative
which follows the MDD principles. ADM adopts the existing Model-Driven
Architecture (MDA) [17] standard which proposes the use of models at different
abstraction levels: Computation Independent Model (CIM), Platform Independent
Model (PIM) and Platform Specific Model (PSM); and the use of a set of automatic
transformations to reach a target system starting from a legacy system following a
“horseshoe” process. ADM defines seven standard-based metamodels, but currently
only three of them are available: Abstract Syntax Tree Metamodel (ASTM),
Knowledge Discovery Metamodel (KDM) and Software Metrics Metamodel (SMM).
Our method considers models conforming to ASTM and KDM.

ASTM [3] is the metamodel which represents a low-level view of the system. It
allows the representation of the source code’s syntax of the legacy system in the form
of Abstract Syntax Trees (AST). On the other hand, KDM [4] lets you represent
semantic information about a software system, ranging from source code to higher-
level abstraction such as GUI events, platforms or business rules. It provides a
common interchange format intended to represent existing software assets, allowing
tool interoperability at PIM level. KDM comprises several packages (e.g. core, kdm,
source, code or action) which are grouped in four layers to improve modularity and
separation of concerns (infrastructure, program elements, runtime resource and
abstractions).

2.2 CMS Common Metamodel

The context of our work is focused on CMS-based Web applications. This kind of
Web applications are considered to present a set of specific features that differ from
traditional Web application such as [18]: 1) the dynamic creation of content, content
is created and added dynamically by non-technical users of the Web, without
requiring the intervention of the webmaster, 2) separation between content and
design, the page graphical design is stored in a template and the content is stored in a
database or a separate document. To update the content of the Web application is not
necessary to master HTML and 3) functionality extension, integration and extension
in a CMS-based Web application is among their most valuable features, achieved
through module addition. This ensures quick content deployment and provides means
for flexible extension, besides promoting efficiency and reducing development costs.

For this reason, in [14] we present the CMS Common Metamodel which defines
the key concepts for modeling CMS-based Web applications. This CMS Common
Metamodel captures elements such as, theme, vocabulary or module, and other
specific elements of the CMS domain. These elements are classified in five different

244 F. Trias et al.

concerns: 1) navigation, which considers the elements that define the navigational
structure of the Web application, 2) presentation, which defines the structure and
look-and-feel of the Web pages, 3) content, that captures the data and data type of the
information managed by the CMS-based web application, 4) user, defines the
elements related to roles of the users and their permissions. 5) CMS Behavior, this
concern contains the elements that allow the definition of the different functions
performed by the CMS-based Web application.

2.3 ADM-Based Method for Migrating CMS-Based Web Applications

In this section we outline the ADM-based method which we proposed for migrating
CMS-based Web applications. As we can see in Fig 1, this method is composed of
three phases defining a horseshoe process: a) reverse engineering phase, b)
restructuring phase and c) forward engineering phase. In the following, we explain
those phases and the tasks involved in them.

Fig. 1. ADM-based method

A. Reverse Engineering Phase, this is the phase on which we focus in this work. It is
composed of three tasks: 1) Knowledge extraction, the extraction of ASTM models
at PSM level from PHP code by means of a parser (so-called model extractor) whose
implementation is presented in this paper. ASTM models reduce the complexity to
generate the KDM models which are at higher abstraction level; 2) Generation of
KDM models, from those ASTM models we generate automatically KDM models at
PIM level by means of M2M transformations. The two KDM models we generate are:
Code Model and Inventory Model [19]. It is worth noting that we obtain the Inventory

 Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP 245

Model from the legacy code by using MoDisco tool [20], 3) Generation of the CMS
Model, from the KDM models we generate automatically the CMS Model at PIM
level also by means of M2M transformations. It conforms to the CMS Common
Metamodel and allows the representation of the extracted information within the CMS
domain. This metamodel is considered the cornerstone of our ADM-based method.

B. Restructuring Phase, this phase is composed of the 4) Manual restructuring, this
task is in charge of restructuring manually the CMS model extracted from the KDM
models into another adapted CMS model at the same abstraction level. In this phase
the developer can define new objects or can restructure the inherited ones taking into
account the features of the target CMS-based Web application

C. Forward Engineering Phase, this phase defines the top-down development
process composed of three tasks: 5) Generation of target KDM models, from the
restructured CMS Model we generate the target Code Model and the target Inventory
Model (which conform to KDM) that represent the implementation of the target
CMS-based Web application at PIM level; 6) Generation of target ASTM models, we
generate the target ASTM model at PSM level from the target Code Model and the
target Inventory Model and 7) Code generation, we generate the software artifacts
that compose the architecture of the target CMS-based Web application (folders and
file skeletons) and the code implementing them.

3 Reverse Engineering Phase

In this section we present the implementation of the reverse engineering phase of our
ADM-based method which is the focus of the work presented in this paper. As we
outlined in Section 2, this reverse engineering phase is composed of three tasks: 1)
Knowledge extraction, 2) Generation of KDM models and 3) Generation of the CMS
model.

Fig. 2. Reverse engineering phase of our ADM-based method

246 F. Trias et al.

As we can see in Fig 2, it is possible to classify the reverse engineering phase in
four different dimensions: Dimension 0: (D0) represents the software artifacts that
compose the legacy CMS-based Web application (e.g. source code, database, etc.), in
this case it represents PHP code; Dimension 1: (D1) represents the ASTM models
extracted from the PHP code; Dimension 2: (D2) represents the KDM models and
Dimension 3: (D3) represents the model conforming to the CMS Common
Metamodel.

Moreover, the implementation of the reverse engineering phase can be divided in
two groups: 1) The implementation of the T2M transformations, which are the
transformations established between D0 and D1 (T2M D0-D1) and implements the
Knowledge extraction task and 2) The implementation of the M2M transformations,
which includes the transformations between D1 and D2 (M2M D1-D2) that
implements the Generation of KDM models task and the transformations between D2
and D3 (M2M D2-D3) which implements the Generation of CMS model task. In the
following subsections we explain the implementation of these two types of
transformations.

In this subsection we present the implementation of the T2M transformations
allowing the Knowledge extraction task and the implementation of the M2M
transformations allowing the Generation of KDM models task and the Generation of
the CMS model task.

3.1 Implementation of the T2M Transformations

In this subsection, we explain the activities for the implementation of the T2M
transformations to extract ASTM models from PHP code. In Fig 2 they appear as
T2M D0-D1. We use a real example of PHP code from a CMS-based Web application
implemented in Drupal to illustrate the different activities performed in this
implementation and to show the feasibility of our approach.

Definition of the PHP Grammar. The first activity is to define the PHP grammar
using EBNF language [21]. It was one of the most tedious and time-consuming
activities because we had to resolve the left-recursivity conflicts among the elements
defined in the grammar. These elements are classified into two groups: 1) expressions
(such as logicalOr or function call) and 2) statements (such as assignment or
conditional).

Expressions are the cornerstone of the PHP language since they represent those
elements which evaluate to a certain value, e.g. arithmetic expressions such as
$var+5+3 which evaluates to a number or logical expressions such as $var or $tar
which evaluates to a logical value. Fig 3 shows the correspondence of a function
definition implemented in PHP with its specification in the defined EBNF-based PHP
grammar.

From the PHP grammar and using the Xtext framework we obtain automatically
three artifacts: 1) a metamodel, 2) a textual editor and 3) a parser implemented in Java
that allow us to recognize the elements of the PHP grammar from code written in
PHP. We decided to use Xtext framework because this parser facilitates us the

 Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP 247

implementation of the model extractor (third activity) since we use the methods
implemented in this parser to recognize the PHP elements that will be mapped to the
ASTM model.

Fig. 3. Correspondence of PHP code with EBNF-based PHP grammar

Mapping PHP Grammar Elements to Elements of ASTM. In the second activity we
define the mappings between the elements of the PHP grammar and the elements of
ASTM. The definition of these mappings are necessary to implement the model
extractor in the third activity. Some of these mappings are presented in Table 1, e.g. a
VariableDefStatement of the PHP grammar ($var=3;) is mapped to a
VariableDefinition of the ASTM or a Addition expression in the PHP grammar (9+3)
is mapped to a BinaryExpression.

At the time of defining these mappings we realized that some elements from the PHP
grammar cannot be mapped to elements of ASTM. For that reason, we extended the
ASTM with the specific elements of the PHP code. Some of these elements are: xor
operator (xor), not identical operator (!==), supressWarning operator (@) or instance
of operator (instanceof).

Table 1. Mapping PHP grammar elements to ASTM elements

Group PHP Grammar element ASTM element

Statements
VariableDefStatement VariableDefinition
FuncDefStatement FunctionDefinition

Expressions
Addition BinaryExpression
FunctionCall FunctionCallExpression

Otherwise, we needed to redefine existing elements of ASTM to make the mapping

possible. For example, we had to redefine the attribute condition of the ForStatement
element. This attribute is defined as a required and specifies the condition of a for
statement. We had to redefine it as optional to allow map the for statements without
condition permitted in PHP to the ForStatement element in ASTM.

Other redefined elements are: swithStatement, compilationUnit and arrayAccess.
Due to space limitations we do not explain each of them.

Implementation of a Model Extractor. Finally, in the third activity we implement a
parser, that we call model extractor, to obtain ASTM models from PHP code. This
model extractor is implemented in Java. For its implementation we use: 1) on the one
hand, the parser obtained by Xtext in the first activity to recognize the syntax

248 F. Trias et al.

elements from code written in PHP, 2) on the other hand, the API in Java obtained
automatically from ASTM by using the Eclipse Modeling Framework (EMF) [22], to
generate the elements of the ASTM models.

Fig 4 shows how our model extractor identifies a function definition written in
PHP and extracts a FunctionDefinition element in the ASTM model. As we can see in
Fig 4 the fragment of PHP code conforms to the PHP grammar defined in EBNF and
the model generated conform to ASTM.

Fig. 4. Extracting a function definition in PHP to ASTM model

3.2 Implementation of the M2M Transformations

In this subsection we explain the implementation of the M2M transformations. In Fig
2, they appear as M2M D1-D2 and M2M D2-D3. Firstly, we explain the
transformation M2M D1-D2 which corresponds to the implementation of the
Generation of KDM models task and then we present the transformation M2M D2-D3
which is the implementation of the Generation of the CMS model task.

Implementation of M2M D1-D2. Generation of KDM models task. In this
subsection we present the definition of the M2M transformations used for the
implementation of the Generation of KDM models task. The main goal of this task is
to transfer automatically the information gathered in the ASTM models at PSM level
into KDM models at PIM level. KDM models allow to model all the artifacts of the
legacy system in an integrated and technological-independent manner [23].

Specifically, we use two packages of KDM, Code and Action packages, to define the
KDM models which are called Code Models. Only we use these packages because the
legacy source code is the unique artifact considered within our reverse engineering
phase.

The Code package represents the named items from the source code and several
structural relationships between them and the Action package focuses on the behavior
descriptions and control- and data-flow relationships determined by them [19].
According to the Code package, the items from the source code are represented by the
AbstractCodeElement metaclass which is specified in different types of elements such
as MethodUnits or ActionElements [19]. The ActionElement class describes a basic
unit of behavior. It has a string attribute called kind which specifies different kinds of
actions such as, assign, call method, add and so on.

 Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP 249

Table 2. Mapping ASTM elements to KDM elements

PHP element ASTM element KDM element

VariableDefStatement VariableDefinition
ActionElement (kind = ArraySelect)
ActionElement (kind = NewArray)
ActionElement (kind = MemberSelect)

FuncDefStatement FunctionDefinition MethodUnit
Addition BinaryExpression ActionElement (kind = Add)
FunctionCall FunctionCallExpression ActionElement (kind = MethodCall)

Most of the mappings defined in these transformations, relate ASTM elements to

ActionElements in the KDM model. The attribute kind of each ActionElement
specifies the kind of action as we can see in Table 2.

As we can see in Table 2, the ASTM element VariableDefinition is mapped to
three different ActionElements. Depending on the initial value of the
VariableDefinition the kind attribute takes different values. For instance, $var=array()
is a VariableDefinition whose initial value defines a new array so that the kind
attribute takes the value of NewArray (second example of KDM elements in Table 2).

After defining the mappings of these M2M transformations we implement the
transformation rules in ATL. Fig 5 shows how these transformations rules generate a
MethodUnit in KDM model from the FunctionDefinition in the ASTM model.

Fig. 5. Transforming a FunctionDefinition (ASTM) into a MethodUnit (KDM)

Implementation of M2M D2-D3. Generation of CMS models task. In the following,
we present the implementation of the last M2M transformations (M2T D2-D3) which
corresponds to the Generation of CMS model task. The aim of this task is to represent
the information captured within the KDM models into the CMS domain using the
CMS model which conforms to the CMS Common Metamodel.

These M2M transformations allow to define which pieces of the source code
represented in KDM are transformed into specific elements of the CMS Model such
as modules, blocks or pages.

250 F. Trias et al.

Fig. 6. Coding pattern to define menu items in Drupal

Regarding the source code and the CMS platform (e.g. Drupal, Joomla!) it is
possible to establish coding patterns which allow to contextualize a piece of code
within the CMS domain. For instance, in Drupal the definition of menu items (the
links composing a menu) are defined by means of a function definition whose name
ends with _menu. Within this function definition each menu item is defined as a new
position in an array called $items. Moreover, the settings of a menu item are specified
by the definition of a second array. Fig 6 shows the coding pattern that Drupal uses to
define menu items.

Fig 7 shows how these transformations rules generate a MenuItem in the CMS
model from the MethodUnit in the KDM model.

Fig. 7. Transforming a MethodUnit (KDM) into a MenuItem (CMS)

4 Related Works

In this section we present some of the ADM-based approaches found in the literature
and we compare them with our ADM-based method. To analyze thoroughly these
approaches we have defined seven criteria:

• Criterion 1 is related to the three reengineering phases covered by each approach:
1) reverse engineering, 2) restructuring and 3) forward engineering.

• Criterion 2 is related to the scope of the approach: 1) databases, 2) Web
applications, 3) Web services or 4) legacy systems (general purpose).

• Criterion 3 indicates the MDA abstraction levels considered by the approach.

 Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP 251

• Criterion 4 is related to the metamodels considered within the approach and the
models conform to.

• Criterion 5 is related to the technique used for the implementation of T2M
transformations. Three values to establish: 1) a parser, 2) a existing tool in the
market, 3) the implementation using languages, such as Gra2MoL [24].

• Criterion 6 is related to the source code implementing the legacy system from
which de approach extracts the models.

• Criterion 7 serves to analyze the types of M2M transformations considered by the
approach: vertical or horizontal [25].

Van Hoorn et al., present in [26] DynaMod, a method which addresses model-driven
modernization of software systems which considers the three reengineering phases:
reverse engineering, restructuring and forward engineering phases. The scope of this
approach is not focused on a concrete context, i.e. it is a general scope. For the
reverse engineering phase, it proposes to extract from Java code architectural models
which conform to the KDM metamodel at PIM level. To extract these models they
propose the implementation of a parser. As for the restructuring phase, it proposes to
refine manually the extracted architectural models with extra information provided by
system experts. Finally, as for the forward engineering phase, it defines M2M
transformations to generate target architecture models for the target system. These
target models also conform to the KDM metamodel (PIM level) so that we consider
these M2M transformations as horizontal since the source model and the target model
are defined at the same MDA level.

Sadovykh et al., present in [27] a method for migrating legacy systems
implemented in C++ to target systems implemented in Java. It addresses the three
reengineering phases. It is not focused in a concrete scope. As for the reverse
engineering phase, it proposes to extract architectural models from the C++ code at
PSM level conforming to UML. It does not specify the way to implement these T2M
transformations. From this PSM model, it generates automatically a PIM model by
means of M2M transformations. This PIM model also conforms to UML metamodel.
Regarding the restructuring phase, it refactors the generated PIM model eliminating
platform dependencies and extracting business logic. For the forward engineering
phase, it generates a Java PSM model (conforming to the UML metamodel) from the
PIM model by means of M2M transformations. The M2M transformations defined are
considered as vertical transformations since the source models and the target models
belong to a different MDA level.

Pérez-Castillo et al., present in [28] a reengineering process called Preciso to
recover and implement Web Services in automatic manner from relational databases.
This approach also addresses the three reengineering phases. Its scope is focused on
the database context. Considering the reverse engineering phase, it proposes to extract
models from the relational database of a legacy system. These models, at PSM level,
conform to a SQL-92 metamodel. To extract these models they implement a parser.
Then, the PSM model is transformed into a PIM model by means of M2M
transformations. This PIM model conforms to the UML2 metamodel and it is
considered the basis to define Web Services. As for the restructuring phase, the

252 F. Trias et al.

developer can adapt the generated PIM model by refining the features of Web
services. For the forward engineering phase, a PSM model conforming to the WSDL
metamodel is generated from the PIM model by means of M2M transformations. The
M2M transformations defined are considered as vertical transformations since the
source model and the target model belong to a different MDA level.

Bruneliere et al., present in [20] MoDisco, an extensible approach for model-
driven reverse engineering which allows extracting platform models from Java, XML
and JSP code. This approach is not constraint in a specific scope, thus it can be
applied to any legacy system. This approach just considers the reverse engineering
phase and concretely the task of knowledge extraction. Therefore, Modisco can
extract from legacy systems models at PIM level conforming to KDM as well as at
PSM level conforming to a set of platform metamodels such as Java, XML and JSP
metamodels. For the extraction of these models, Modisco implements a set of parsers
so-called discoverers. This approach does not consider M2M transformations.

Pérez-Castillo et al., proposes another approach in [29] called Marble for
recovering business processes from legacy systems. This approach addresses two of
the reengineering phases: reverse engineering and restructuring phases. Its scope is
not specific for a concrete context. During the reverse engineering phase, it extracts
from Java code a model conforming to Java metamodel at PSM level by means of a
parser. Then from this Java model, a KDM model at PIM level is generated by
automatic M2M transformations. Finally, a business process model conforming to the
BPMN metamodel at CIM level is obtained from the KDM model also by means of
M2M transformations. In the restructuring phase, the experts can refine manually the
business process model. All the M2M transformations are considered as vertical,
since they allow obtaining models from different MDA levels.

Finally, Vasilecas et al., presents in [30] a process which derives business rules
from a legacy system. This approach addresses two of the reengineering phases: the
reverse engineering and restructuring phases. The scope of this approach is general.
During the reverse engineering phase, it extracts ASTM models at PSM level from
the source code of the legacy system by means of parser. Then a KDM model at PIM
level is generated from the ASTM model by means of M2M transformations
implemented in ATL. As for the restructuring phase, business rules are identified
from the KDM model. The M2M transformations are considered as vertical, since
they allow obtaining models from different MDA levels.

Table 3 presents the comparison of our approach with the other approaches
considering the seven criteria. Based on the results shown in table and considering the
criterion 1 (phases) we can say that the half of the approaches does not consider the
forward engineering phase, but all of them take into account the reverse engineering
phase. Hence, we can state that the main phase for a ADM-based approach is the
reverse engineering phase. Our approach considers the three reengineering phases.

Regarding the criterion 2 (scope) we conclude that most of the approaches do not
have a specific scope, just Preciso is focused on the database context. Otherwise, we
did not find any approach centered in the CMS-based Web application context like
our approach.

 Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP 253

Table 3. Comparison established with the related works

Approach Phases Scope
MDA
levels

Metamodels T2M Source code M2M

Van Hoorn et al.,
[26] (DynaMod)

Reverse
engineering

Restructuring
Forward

engineering

Legacy
systems

PIM KDM Parser Java Horizontal

Sadovykh et al.,
[27]

Reverse
engineering

Restructuring
Forward

engineering

Legacy
systems

PSM
PIM UML

Not
specified C++ Vertical

Pérez-Castillo et
al., [28] (Preciso)

Reverse
engineering

Restructuring
Forward

engineering

Data base PSM
PIM

SQL-92
UML2
WSDL

Parser SQL-92 Vertical

Bruneliere et al.,
[20] (Modisco)

Reverse
engineering

Legacy
systems

PSM
PIM

Java, XML, JSP
and KDM

Parser
Java, XML

and JSP
Not

specified

Pérez-Castillo et
al., [29] (Marble)

Reverse
engineering

Restructuring

Legacy
systems

PSM
PIM
CIM

Java, KDM and
BPMN

Parser Java Vertical

Vasilecas et al.,
[30]

Reverse
engineering

Restructuring

Legacy
systems

PSM
PIM

ASTM and
KDM

Parser
Not

specified
Vertical

Our ADM-based
method

Reverse
engineering

Restructuring
Forward

engineering

CMS-based
Web

applications

PSM
PIM

ASTM and
KDM

Parser PHP
Horizontal

and
vertical

According to the criterion 3 (MDA levels) we can state that most of the

approaches define models at PSM and PIM levels. Just Dynamod specifies models
only at PIM level. Models at CIM level just are defined by Marble. Our approach
defines models at PSM and PIM levels, but not at CIM level.

As for the criterion 4 (metamodels), we can say that four out of the six approaches
consider the standard ADM metamodels, mainly the KDM metamodel. The ASTM
metamodel is just considered by Vasilecas et al., [30] at the time of extracting models
from the code, the rest of approaches bet for the definition of a specific metamodel
such as SQL-92 metamodel by Preciso or a Java metamodel by Modisco and Marble.
Our approach considers both, ASTM and KDM metamodels.

Considering the criterion 5 (T2M), we conclude that the most popular technique to
implement the T2M transformations is a parser. In our approach we also define a
parser which we call model extractor to obtain ASTM models from the PHP code of a
legacy CMS-based Web application.

Regarding the criterion 6 (source code), we can state that there are approaches
extracting models from Java, C++ even SQL-92, but none from PHP. Our approach is
the only one that extracts models from PHP code.

254 F. Trias et al.

Finally, as for the criterion 7 (M2M), we can say that most of the approaches
define vertical M2M transformations at the time of generating PIM models from PSM
models, just Dynamod only defines horizontal transformations among PIM models. In
our approach we define vertical M2M transformation allowing us to transform PSM
models to PIM models and conversely, as well as we implement horizontal
transformations when we generate the CMS model from the KDM model, both at
PIM level as it is shown in Fig 1.

5 Conclusions and Future Works

Currently, many organizations experiment the necessity of migrating their CMS-
based Web applications to another CMS or to a new version of the same CMS which
meet better their needs. In the literature, we have not found any method to standardize
and automate this reengineering process. For this reason, we proposed an ADM-based
method to allow the migration of CMS-based Web applications.

This method is composed of three phases: 1) reverse engineering, 2) restructuring
and 3) forward engineering. In this paper we have focused in presenting the
implementation of the first phase of reverse engineering.

This reverse engineering phase comprises three tasks: 1) Knowledge extraction, in
this task ASTM models are extracted from the PHP code by text-to-model (T2M)
transformations implemented by a model extractor, 2) Generation of KDM models,
KDM models are generated from the previous ASTM models by means of M2M
transformations and 3) Generation of CMS model, from the KDM models and by
M2M transformations we generate the CMS Model which conforms to the CMS
Common Metamodel.

As for the implementation of the knowledge extraction task, we can say that the
definition of the PHP grammar has been considered the most tedious and time-
consuming activity because of the necessity of resolving the left-recursivity conflicts
among the elements of the PHP grammar. For the implementation of the model
extractor we used the parser of the PHP grammar obtained by Xtext and the API in
Java of ASTM generated by its implementation in EMF.

As for the implementation of the Generation of KDM models task and the
Generation of CMS model task we can say that we have implemented transformation
rules using ATL.

According to the related works we can conclude that there is no any ADM
approach to extract models from PHP code as well as there are a few approaches for
the generation of ASTM models. We think that the low use of ASTM is because the
last and unique version (1.0) was submitted rather recently, in January 2011.

Acknowledgements. This research has been partially funded by the Project MASAI
(TIN-2011-22617) from the Spanish Ministry of Science and Innovation.

 Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP 255

References

1. Boiko, B.: Understanding Content Management. Bulletin of the American Society for
Information Science and Technology 28, 8–13 (2001)

2. Chikofsky, E.J., Cross, J.H.: Reverse Engineering and Design Recovery: A Taxonomy.
IEEE Software 7, 13–17

3. Abstract Syntax Tree Metamodel specification of the OMG,
http://www.omg.org/spec/ASTM/1.0

4. Pérez-Castillo, R., De Guzmán, I.G.-R., Piattini, M.: Knowledge Discovery Metamodel-
ISO/IEC 19506: A standard to modernize legacy systems. Computer Standards &
Interfaces 33, 519–532 (2011)

5. Structured Metrics Metamodel, http://www.omg.org/spec/SMM/
6. Fischer, G., Lusiardi, J., Wolff von Gudenberg, J.: Abstract Syntax Trees - and their Role

in Model Driven Software Development. In: International Conference on Software
Engineering Advances (ICSEA 2007), p. 38. IEEE Computer Society, Cap Esterel (2007)

7. Trias, F., De Castro, V., López-sanz, M., Marcos, E.: A Systematic Literature Review on
CMS-based Web Applications. In: ICSOFT (2013)

8. Trias, F., De Castro, V., López-Sanz, M., Marcos, E.: An ADM-based Method for
migrating CMS-based Web applications. In: 25th International Conference on Software
Engineering and Knowledge Engineering (SEKE), Boston, EUA (2013)

9. Drupal CMS, http://drupal.org/
10. Joomla! CMS, http://www.joomla.org/
11. Wordpress CMS, http://wordpress.org/
12. Ric Shreves: Open Source CMS Market Share (2008)
13. Xtext project, http://www.eclipse.org/Xtext
14. Trias, F.: Building CMS-based Web Applications Using a Model-driven Approach. In:

Sixth International Conference on Research Challenges in Information Science (RCIS),
pp. 1–6 (2012)

15. Atlas Transformation Language, http://www.eclipse.org/atl/
16. Fleurey, F., Breton, E., Baudry, B., Nicolas, A.: Model-Driven Engineering for Software

Migration in a Large Industrial Context. Engineering, 482–497 (2007)
17. Mellor, S.J., Scott, K., Uhl, A., Weise, D.: Model-Driven Architecture. In: Bruel, J.-M.,

Bellahséne, Z. (eds.) Advances in Object-Oriented Information Systems, pp. 233–239.
Springer, Heidelberg (2002)

18. Vidgen, R., Goodwin, S., Barnes, S.: Web Content Management. In: 14th Bled Electronic
Commerce Conference, Slovenia (2001)

19. Pérez-Castillo, R., De Guzmán, I.G.-R., Piattini, M.: Knowledge Discovery Metamodel-
ISO/IEC 19506: A standard to modernize legacy systems. Computer Standards &
Interfaces 33, 519–532 (2011)

20. Barbier, G., Bruneliere, H., Jouault, F., Lennon, Y., Madiot, F.: MoDisco, a model-driven
platform to support real legacy modernization use cases. Information Systems
Transformation: Architecture-Driven Modernization Case Studies, 365 (2010)

21. ISO/IEC 14977:1996 - EBNF,
http://www.iso.org/iso/catalogue_detail.htm?csnumber=26153

22. Bezivin, J., Jouault, F., Brunette, C., Chevrel, R., Kurtev, I.: Bridging the Generic
Modeling Environment (GME) and the Eclipse Modeling Framework (EMF). In:
International Workshop on Best Practices for Model Driven Software Development, San
Diego, California, USA (2005)

256 F. Trias et al.

23. Pérez-Castillo, R., De Guzmán, I.G.-R., Piattini, M., Places, Á.S.: A case Study on
Business process recovery using an e-government sytem. Software - Practice and
Experience 42, 159–189 (2011)

24. Cánovas Izquierdo, J.L., Sánchez Cuadrado, J., García Molina, J.: Gra2MoL: A domain
specific transformation language for bridging grammarware to modelware in software
modernization. In: MODSE, pp. 1–8 (2008)

25. Mens, T., Gorp, P., Van: A taxonomy of model transformation. Electronic Notes Theor.
Comput. Sci. 152, 125–142 (2006)

26. Van Hoorn, A., Sören, F., Goerigk, W., Hasselbring, W., Knoche, H., Köster, S., Krause,
H., Porembski, M., Stahl, T., Steinkamp, M., Wittmüss, N.: DynaMod Project: Dynamic
Analysis for Model-Driven Software Modernization. Engineering, pp. 1–2

27. Sadovykh, A., Vigier, L., Hoffmann, A., Grossmann, J., Ritter, T., Gomez, E., Estekhin,
O.: Architecture Driven Modernization in Practice: Study Results. In: 2009 14th IEEE
International Conference on Engineering of Complex Computer Systems, pp. 50–57
(2009)

28. Castillo, R.P., García-rodríguez, I.: PRECISO: A Reengineering Process and a Tool for
Database Modernisation through Web Services. In: Proceedings of the 2009 ACM
Symposium on Applied Computing, pp. 2126–2133. ACM, New York (2009)

29. Pérez-castillo, R., Fernández-ropero, M., Guzmán, I.G., De, P.M.: MARBLE: A Business
Process Archeology Tool. In: 27th IEEE International Conference on Software
Maintenance, pp. 578–581 (2011)

30. Vasilecas, O., Normantas, K.: Deriving Business Rules from the Models of Existing
Information Systems, pp. 95–100 (2011)

Author Index

Aguiar, Ademar 94

Badri, Mourad 174
Baghdadi, Youcef 151
Baptista, Fabián 164
Barbosa, Fernando 94
Ben-Abdallah, Hanêne 48
Borne, Isabelle 64

Che, Xiaoping 110
Christmann, Olivier 1
Clear, Tony 126

de Castro, Valeria 229, 241
Derbel, Imen 16
Dharmapurikar, Abhishek 203
Drouin, Nicholas 174

Fernández-Ropero, Maŕıa 218

Gherbi, Tahar 64
Grela, Damian 81

Haoues, Mariem 48

Jilani, Lamia Labed 16

López-Sanz, Marcos 241
Loup-Escande, Emilie 1

Maag, Stephane 110
MacDonell, Stephen G. 126
Marcos, Esperanza 229, 241
Meslati, Djamel 64
Mili, Ali 16

Pérez-Castillo, Ricardo 151, 218
Pérez Lamancha, Beatriz 164
Piattini, Mario 218
Pohjalainen, Pietu 33
Polo Usaola, Macario 164
Popovici, Doru-Thom 190

Ramanthan, Jayashree 203
Ramnath, Rajiv 203
Raza, Bilal 126
Reina, Mat́ıas 164

Santiago, Iván 229
Sapiecha, Krzysztof 81
Sellami, Asma 48
Şora, Ioana 190
Sosnówka, Artur 141
Strug, Joanna 81

Toledo Rodŕıguez, Federo 164
Trias, Feliu 241

Vara, Juan M. 229

Wierwille, Benjamin J.R. 203

	Preface
	Organization
	Table of Contents
	Designing a Virtual Reality Software: WhatIs the Real Contribution of End-Usersto the Requirements Prioritization?
	1 Introduction
	2 Requirements Prioritization in Design by End-Users
	2.1 The “Requirement Prioritization” Concept According to Stakeholders
	2.2 Prioritization Methods and Tools
	2.3 Empirical Studies Focused on Prioritization Methods by End-Users

	3 Methodology
	3.1 Context: The Project 3D Child
	3.2 Participants
	3.3 Data Collection: Questionnaire and Nominal Scale Method
	3.4 Collected Data
	3.5 Analysis Method

	4 Results
	4.1 Priority Functionalities for Users Not Systematically Implemented by Designers
	4.2 Different Priority Levels According to Users’ Profiles
	4.3 The Users Who Assigned ‘Important’ and ‘Unimportant’ Priority Levels Evoked Additional Functionalities
	4.4 The Spontaneously Evoked Functionalities are Mainly Precisions of Anticipated Functionalities

	5 Discussion
	6 Conclusions and Perspectives
	References

	ACME+: An ADL for Quantitative Analysis of Quality Attributes
	1 Introduction
	2 ACME+:Syntax
	2.1 ACME+: ACME Extension with Functional Dependency
	2.2 A Sample Example of an Architecture Description with ACME+

	3 ACME+: Semantics
	3.1 A Logical Framework
	3.2 Inductive Rules
	3.3 Illustration with an Example

	4 Bottleneck Analysis
	5 An Automated Tool for Architecture Analysis
	6 Related Work
	6.1 Qualitative Analysis
	6.2 Quantitative Analysis

	7 Conclusions and Future Work
	References

	An Experiment on Self-configuring Database Queries
	1 Introduction
	2 Preliminaries
	3 Methodology
	4 Results
	4.1 RQ1
	4.2 RQ2
	4.3 RQ3
	4.4 Threats to Validity

	5 Discussion and Related Work
	6 Conclusions
	References

	Automated COSMIC-Based Analysis and Consistency Verification of UML Activity and Component Diagrams
	1 Introduction
	2 Related Works
	2.1 Overview of COSMIC FSM
	2.2 Overview of Concepts of UML Diagrams
	2.3 COSMIC for UML

	3 Measuring UML-AD
	3.1 Modeling Rules
	3.2 Mapping COSMIC on UML-AD
	3.3 FSM Measurement Formulas

	4 Measuring UML-CD
	4.1 Mapping COSMIC on UML-CD
	4.2 FSM Measurement Formulas
	4.3 Correspondence between UML-AD and UML-CD

	5 Example: The Rice Cooker
	5.1 Using Manual Measurement
	5.2 Using Consistency Checking Tool

	6 Conclusions
	References

	An MDE Approach to Develop Mobile-Agents Applications
	1 Introduction
	2 Related Works
	3 Overview of Our Approach
	4 Choices That Have Guided Our Meta-model Construction
	5 Case Study
	6 Conclusion
	References

	A Fault Injection Based Approach to Assessment of Quality of Test Sets for BPEL Processes
	1 Introduction
	2 Background and Related Work
	3 The Experiment
	3.1 Processes and Their Test Sets
	3.2 Mutation Operators and Fault Injection Operators
	3.3 Mutation Score and Fault Coverage - Results and Discussion
	3.4 Execution Time - Results and Discussion

	4 Systematic Fault Injection Approach
	5 Conclusions
	References

	Comparing Two Class Composition Approaches
	1 Introduction
	2 Traits in a Nutshell
	3 Roles in a Nutshell
	4 A Comparison between Roles and Traits
	5 Removing Clones
	6 Case Study
	6.1 Case Study Setup
	6.2 Results Analysis
	6.3 Threats to Validity

	7 Related Work
	8 Conclusions
	References

	Testing Distributed Communication Protocols by Formal Performance Monitoring
	1 Introduction
	2 Related Works
	3 Formal Approach
	3.1 Basics
	3.2 Syntax and Semantics of Our Formalism

	4 Distributed Framework of Performance Testing
	4.1 Framework
	4.2 Synchronization
	4.3 Testing Algorithm

	5 Experiments
	5.1 Environment
	5.2 Architecture
	5.3 Tests Results

	6 Perspectives and Conclusions
	References

	Research in Global Software Engineering: A Systematic Snapshot
	1 Introduction
	2 Method and Conduct
	2.1 Research Questions
	2.2 Search Strategy
	2.3 Data Sources and Retrieval
	2.4 Inclusion Process
	2.5 Data Extraction and Synthesis

	3 Findings
	3.1 Findings for Factors
	3.2 Findings for Research Approach
	3.3 Findings for Research Methods
	3.4 Findings for Level of Analysis and Distribution of Studies
	3.5 Bubble Plot Analysis
	3.6 Location of GSE Projects and Inter-country Relationships
	3.7 Phases in Sourcing Relationships

	4 Threats to Validity
	5 Conclusions
	6 Future Work
	References

	Test City Metaphor for Low Level Tests Restructuration in Test Database
	1 Introduction
	2 Related Work
	3 Visualization Metaphor
	3.1 Test Metrics

	4 Test Reorganization and Test Mining
	5 Feedback from Test Managers
	6 Conclusions
	References

	Service Retrieval for Service-Oriented Business Process Modeling
	1 Introduction
	2 Related Work
	3 Service-Oriented Business Process Modeling
	3.1 Modeling Concepts
	3.2 Relationships between the Specialized Services

	4 Towards Service-Oriented Business Process Models from Legacy Information Systems
	5 Service-Oriented Business Processes by Reverse Engineering
	5.1 Reverse Engineering LIS to Extract Services
	5.2 Reverse Engineering from Enterprise Service Portfolio

	6 Conclusions
	References

	Automated Generation of Performance Test Cases from Functional Tests for Web Applications
	1 Introduction
	2 Background
	3 Automatic Gene eration of Workload Simulation Scripts
	4 First Experiences in the Industrial Usage of the Tool
	5 Related Work
	6 Conclusions and Future Work
	References

	Investigating the Applicability of the Laws of Software Evolution: A Metrics Based Study
	1 Introduction
	2 Related Work
	3 Quality Assurance Indicator
	3.1 Quality Assurance Indicator
	3.2 Assigning Probabilities
	3.3 Intrinsic Quality Assurance Indicator

	4 Empirical Study
	4.1 The Case Studies
	4.2 Lehman’s Laws of Software Evolution

	5 Conclusions and Future Work
	References

	Automatic Extraction of Behavioral Models from Distributed Systems and Services
	1 Introduction
	2 Extended Finite State Machines Used for Behavioral Modeling
	3 Modeling Services of Different Technologies
	3.1 A Running Example
	3.2 Technologies Used for Implementation of Distributed Systems and Services
	3.3 Preprocessing Frontend for Interface-Explicit Technologies
	3.4 Preprocessing Frontend for Servlets and JSP

	4 From (abstract) Control Flow Graph to Extended Finite State Machine
	4.1 Preliminary Assumptions
	4.2 Building the EFSM
	4.3 Example

	5 Related Work
	6 Conclusions
	References

	Impact-Driven Regression Test Selection for Mainframe Business Systems
	1 Introduction
	2 Regression Test Selection Techniques
	3 Mainframe Asset Structures and Dependencies
	3.1 Source - Copybook Dependencies
	3.2 Source – Source Dependencies
	3.3 Source – File (Dataset) Dependencies
	3.4 Source – Database Dependencies
	3.5 Jcl – Source Dependencies
	3.6 Screen – Source Dependencies
	3.7 Copybook - Copybook Dependencies

	4 Filtering Interfaces and Tests
	5 Analysis
	6 Experiment Setup
	7 Results
	8 Conclusions and Future Work
	References

	Improving Business Process Model after Reverse Engineering
	1 Introduction
	2 Related Works
	3 Challenges in Retrieved Business Process Models
	3.1 Completeness
	3.2 Granularity
	3.3 Relevance
	3.4 Uncertainty
	3.5 Ambiguity

	4 Business Process Model Improvement Approach
	5 Refactoring Results
	6 Conclusions
	References

	Measuring the Effect of Enabling Traces Generation in ATL Model Transformations
	1 Introduction
	2 Enriching ATL Model Transformations with iTrace
	3 Quality Metrics for Model Transformations
	4 Evaluation
	4.1 Case Studies Selection
	4.2 Design and Execution
	4.3 Data Collection
	4.4 Analysis and Interpretation

	5 Conclusions
	References

	Reverse Engineering Applied to CMS-Based Web Applications Coded in PHP: A Proposal of Migration
	1 Introduction
	2 Research Context
	2.1 Architecture Driven Modernization
	2.2 CMS Common Metamodel
	2.3 ADM-Based Method for Migrating CMS-Based Web Applications

	3 Reverse Engineering Phase
	3.1 Implementation of the T2M Transformations
	3.2 Implementation of the M2M Transformations

	4 Related Works
	5 Conclusions and Future Works
	References

	Author Index

