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       Introduction 

 Fracture healing and bone regeneration represent 
a complex and well-orchestrated physiological 
process that involves timed cellular recruitment, 
gene expression and secretion of multiple signal-
ling molecules [ 1 ]. In response to injury and frac-
ture, bone has a unique intrinsic capacity for 
repair and regeneration [ 2 ,  3 ]. In contrast to the 
majority of tissues in the human body that heal 
by the formation of a scar of inferior quality, 
bone generated by the process of fracture healing 
encompasses its former biochemical and biome-
chanical properties [ 4 ]. This phenomenon can be 
described as a regenerative process that recapitu-
lates aspects of embryonic skeletal development, 
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    Abstract 

 The incidence of fracture non-union has been estimated to be as high as 
10 %. The treatment of fracture non-union remains challenging even for 
the most experienced  surgeons. The presence of a poor soft tissue enve-
lope, deformity, avascular bone edges, reduced bone stock, low-grade 
infection and patient related co-morbidities are some of the important con-
tributing factors that need to be addressed. Evaluation of the complexity of 
the non-union and formulating the appropriate pre-operative plan and treat-
ment modality requires good understanding of the pathogenicity of this 
condition and having extensive surgical experience. 

 The state of both the mechanical and biological environment, is thought 
to play a crucial role in the decision making process regarding revision 
surgery. Application of the so-called ‘diamond concept’ provides the opti-
mum mechano-biological conditions for bone repair and should be consid-
ered in cases where diffi culties to achieve union are anticipated.  
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combined with normal responses to acute tissue 
injury [ 1 ,  5 ]. 

    Types of Bone Healing 

 With regards to the histology of bone healing two 
basic types have been described, depending on 
the stability of fi xation of the fracture’s bone 
fragments [ 2 ,  3 ,  6 ].
    1.    The primary (direct) healing pattern occurs 

when there is absolute contact of the bone 
fragments (anatomical reduction) along with 
almost complete stability (commonly obtained 
with open reduction and internal fi xation) and 
therefore minimisation of the inter- fragmentary 
strains [ 7 ,  8 ]. In this type of healing that rarely 
happens in nature, the disrupted continuity of 
the bone is re-established with regeneration of 
lamellar bone and the Harvesian system, and 
has no need of any remodelling [ 8 ,  9 ].   

   2.    The secondary (indirect) healing pattern occurs 
in the vast majority of clinical cases and 
depends on the formation of fi brocartilaginous 
callus that matures to mineralised cartilage and 
fi nally bone [ 2 ,  7 ]. Callus is formed as a physi-
ological reaction to the inter- fragmentary 
movement and involves both intramembranous 
and endochondral ossifi cation [ 2 ,  7 – 9 ]. It orig-
inates from committed osteoprogenitor cells of 
the periosteum and undifferentiated multipo-
tent mesenchymal stem cells (MSCs) [ 7 ].    

      Fracture Healing and Bone Repair 

 Several types of tissues are involved in the pro-
cess of fracture healing including cortical bone, 
periosteum, undifferentiated fascial tissue that 
surrounds the fracture, and bone marrow [ 9 ,  10 ]. 
Bone repair follows a well defi ned chain of events 
starting with haematoma formation, followed by 
infl ammation, angiogenesis and granulation tis-
sue formation, fi brous tissue formation, fi brocar-
tilage, hyaline cartilage (soft callus), cartilage 
mineralisation, woven bone (hard callus), and 
fi nally remodelling [ 2 ,  6 ,  11 ]. The process of 
remodelling can last for several months. 

 In more detail, following an injury the bone 
architecture and the surrounding soft tissue con-
tinuity are both disrupted. The concomitant tear-
ing of the blood vessels at the site of injury leads 
to bleeding, activation of the coagulation cascade 
and therefore the formation of a haematoma that 
encloses the fracture area [ 12 ]. The haematoma 
contains cells that originate from the peripheral 
and intramedullary blood, as well as bone mar-
row cells [ 8 ]. Different cellular populations have 
been described including infl ammatory immune 
cells, neutrophils, monocytes and macrophages 
(activated by the coagulation process), fi bro-
blasts and MSC’s [ 2 ,  12 ]. Through the different 
type of mediators secreted, the formed haema-
toma exhibits a complex micro-environment that 
can exert different effects on diverse cell popula-
tions [ 2 ]. 

 All stages of fracture healing are well co- 
ordinated but any insuffi ciency to one or more of 
these pathways can alter the physiological 
sequence of fracture healing. This interruption 
can lead to complications such as an impaired 
fracture healing response expressed as delayed 
union or non-union. In order to reverse any defi -
ciency to one or more of these pathways, planned 
targeted interventions should be well-timed and 
well-aimed [ 7 ].   

    Biological Pre-requisites 
for Successful Union 

 Certain biological pre-requisites have been iden-
tifi ed during the complex process of fracture 
healing. Different types of cells are recognised to 
interact with local and systemic regulatory mol-
ecules, cytokines, hormones and extracellular 
osteoconductive matrix [ 7 ,  11 ]. 

    Osteogenic Cells 

 The fi rst element for an unimpeded fracture 
repair is a vibrant cell population [ 7 ]. These cells 
include specifi c mesenchymal stem cells (MSC’s) 
that under the appropriate molecular signalling 
are recruited, proliferate and differentiate to 
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osteogenic cells [ 8 ]. These MSC’s originate from 
the surrounding soft tissues, cortex, periosteum, 
bone marrow and systemic circulation (mobilised 
from remote haemopoietic sites) [ 8 ], with their 
transformation to cells with an osteoblastic phe-
notype occurring in areas of high cellular density 
[ 13 ,  14 ]. 

 Since the identifi cation and quantifi cation of 
the role of MSC’s in osteogenesis, several in vitro 
and in vivo studies concentrated on the use of 
genetically engineered MSCs [ 15 – 19 ] and differ-
entiated osteoblasts to enhance fracture healing 
[ 20 ,  21 ].  

    Growth Factors 

 Several signalling molecules exerting a direct 
infl uence on the faith of MSC’s have been iso-
lated within the fracture haematoma. These are 
categorised into three groups: the pro- 
infl ammatory cytokines; the transforming growth 
factor-beta (TGF-β) superfamily and other 
growth factors; and the angiogenic factors [ 3 ]. 

 The major signalling molecules include: trans-
forming growth factor-β (TGF-β) that upregu-
lates the undifferentiated MSC’s [ 10 ,  12 ]; bone 
morphogenic proteins (BMP’s) that promote 
the differentiation of MSC’s into chondrocytes 
and osteoblasts, and osteoprogenitor cells into 
osteoblasts [ 9 ,  10 ,  12 ]; fi broblast growth factor 
(FGF) that enhances mitogenesis of MSCs [ 10 , 
 12 ]; insulin-like growth factor (IGF) that pro-
motes proliferation and differentiation of osteo-
progenitor cells [ 10 ,  12 ]; platelet-derived growth 
factor (PDGF) that facilitates mitogenesis of 
MSCs and is responsible for macrophage che-
motaxis [ 10 ,  12 ]. Vascular endothelial growth 
factor (VEGF) is responsible for the blood ves-
sel invasion of hyaline cartilage, growth-plate 
morphogenesis, and cartilage remodelling, by 
regulating  recruitment, survival and activity of 
endothelial cells, osteoblasts and osteoclasts 
[ 12 ]. An increased secretion of factors promoting 
the recruitment of infl ammation cells and angio-
genesis is also evident (tumour necrosis factor-α 
(TNF-α), interleukin- 1 (IL-1), IL-6, IL-11 and 
IL-18) [ 8 ,  10 ]. 

 Many of these molecules have been exten-
sively studied to evaluate their clinical effective-
ness in enhancing fracture healing. BMP’s 
represent the sole clinically approved agents for 
applications related to fracture repair [ 1 ]. BMP-7 
is FDA(Federal Drug Administration) approved 
for treatment of long bone non-unions, whereas 
BMP-2 has recently gained FDA approval for the 
treatment of open tibial fractures and spinal 
fusion surgery [ 1 ]. The clinical data on their 
safety and effi cacy appears to be positive [ 22 –
 25 ], whereas their application for off-label indi-
cations is also promising [ 22 – 31 ]. 

 PDGF has also demonstrated promising 
results in the enhancement of fracture healing 
when used in animal studies [ 32 ,  33 ]. Other 
growth factors that are currently under investiga-
tion include growth and differentiation factor-5 
(GDF-5) [ 34 ], insulin-like growth factor-1 (IGF- 
1) [ 35 ,  36 ], growth hormone (GH) [ 37 ] and 
platelet- rich plasma (PRP) [ 38 – 40 ].  

    Osteoconductive Scaffolds 

 During the natural process of indirect fracture 
healing, a fi brin-rich granulation tissue derives 
from the fracture haematoma [ 8 ]. This extra- 
cellular matrix provides a natural scaffold (osteo-
conductive properties) where all the cellular 
events and interactions take place, including cell 
adhesion, migration, proliferation and differenti-
ation [ 1 ,  7 ,  41 ]. 

 In the clinical setting, the ideal material to be 
used should mimic the native characteristics of 
the tissue, provide a source of cells capable of 
promoting proliferation and differentiation, as 
well as acting as a scaffold for angiogenesis, cell 
migration and attachment [ 13 ]. 

 Various materials simulating some of the 
properties of this extra-cellular matrix have been 
clinically used. Autologous bone graft harvested 
from the iliac crest remains the “gold standard” 
for bone augmentation in non-unions [ 6 ,  42 ]. The 
Reamer-Irrigator-Aspirator (RIA) technique has 
also been used for obtaining from long bones and 
particularly the intramedullary (IM) canal of the 
femur autologous bone graft avoiding some of 
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the complications related to the iliac crest har-
vesting [ 43 ]. Other porous biomaterials used as 
bone void fi llers include allograft or xenograft 
trabecular bone, demineralised bone matrix 
(DBM), collagen, hydroxyapatite, polylactic or 
polyglycolic acid, bio-active glasses and calcium- 
based ceramics [ 7 ,  44 ]. Modern scaffolds recently 
introduced involve osteoconductive synthetic 
metallic materials (Porous Tantalum, Trabecular 
Titanium etc.), offering a three-dimensional 
reticular frame where osteoblasts and osteoclasts 
proliferate producing bone [ 44 – 46 ].  

    Mechanical Environment 

 The process of infl ammation and angiogenesis 
depend largely upon the mechanical conditions 
[ 2 ] and should therefore be taken under consider-
ation in optimising fracture healing. Mechanical 
stability is essential for the formation of callus 
and its progressive maturation from woven to 
lamellar bone [ 7 ], whereas in case of rigid fi xa-
tion no callus is evident (primary bone healing). 

 Mechanical stability at the fracture site is rel-
evant to the selected type of fi xation and can be 
achieved using ORIF (open reduction internal 
fi xation), locking plating systems, intramedullary 
nailing and external fi xation systems [ 41 ]. Plaster-
of-Paris also represents a form of stabilisation 
using non-invasive external immobilisation sup-
port. In general terms it can be said that any surgi-
cal intervention (external or internal fi xation 
systems) that improves fracture stability enhances 
the physiological process of bone repair.  

    Vascularity 

 Blood supply and revascularisation are essential 
for a successful fracture healing, including the 
fi nal stage of remodelling [ 8 ]. The process of 
revascularisation involves not only neo- 
angiogenesis, but also the apoptosis of chondro-
cyte cells, the cartilaginous degradation and the 

removal of cells and extracellular matrices for 
blood vessel in-growth [ 8 ]. During uncompli-
cated bone repair, the medullary, periosteal and 
osseous blood supply can be enhanced according 
to the physiological needs [ 12 ]. 

 Two molecular pathways mainly regulate 
the vascularisation process: the angiopoietin- 
dependent pathway and the vascular endothelial 
growth factor (VEGF)-dependent pathway, with 
the second being considered as the key regula-
tor of vascular regeneration [ 8 ,  47 ]. VEGF is an 
osteogenic, pro-resorptive, oxygen-sensitive, sig-
nalling molecule that can regulate the function 
of osteoblasts, osteoclasts and osteocytes [ 48 ]. 
Evidence of the importance of this molecule has 
been reported with the inhibition of VEGF activ-
ity, by neutralizing VEGF receptor [ 49 ]. On the 
contrary, exogenous administration of VEGF 
enhanced blood vessel formation, ossifi cation, 
and new bone (callus) maturation [ 49 ]. Evidence 
is now emerging that VEGF can be used to pro-
mote angiogenesis and osteogenesis, therefore 
improving bone repair [ 50 – 52 ].  

    Host 

 The optimal treatment of these challenging clini-
cal problems should be tailored and individual-
ised to the mechanical and molecular biology of 
the host. Identifi ed risk factors for impaired bone 
healing amongst others include: poor blood sup-
ply, poor apposition of fractured bone ends, inter-
position of soft tissues or necrotic bone between 
bone fragments, inadequate immobilisation, 
infection, drug use (e.g. corticosteroid therapy or 
nicotine), advanced age, and systemic disorders 
such as diabetes or poor nutrition [ 12 ]. 

 Apart from the previously described biologi-
cal variation of the host, genetic predisposition is 
believed to be yet another important element of 
fracture healing [ 53 – 55 ]. Gene therapy is an 
emerging but rapidly developing approach to the 
treatment of non-unions, with encouraging 
results [ 56 ,  57 ].   
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    “Diamond Concept” 

 The so-called “Diamond Concept” has been pro-
posed for the successful regeneration of bone and 
the treatment of fracture non-unions and bone 
defects [ 6 ,  7 ,  58 ,  59 ]. It represents a conceptual 
framework, which takes into consideration all the 
essential biological pre-requisites for a  successful 
fracture healing response. It supports the implan-
tation of MSCs, an osteoconductive scaffold and 
application of a growth factor to reconstitute the 
molecular milieu known to be necessary for the 
initiation and successful completion of bone 
repair. However, prior to any intervention and 
implantation of any or all of these constituents, 
the non-union bed of the host should be opti-
mised, in terms of vascularity, containment and 
possessing adequate mechanical support where 
molecular and physiological processes will 
evolve promoting an early and successful osteo-
genesis [ 59 ] (Fig.  1 ).

   Following a successful implementation of the 
“Diamond Concept”, the non-union bed should 
have been transformed to a ‘biological chamber’, 
the so called ‘local bioreactor’, capable of sup-
porting effi ciently all the vital interactions 
between cells, growth factors and the underlying 

osteoconductive matrix facilitating a successful 
outcome [ 59 ]. In a sense the ‘biological chamber’ 
constitutes the centre of the highest biological 
activity, where all the cascade of events of bone 
repair and regeneration progress in a time- 
dependent fashion so that bone continuity can be 
restored [ 59 ]. The induced membrane formed 
following the application of the ‘Masquelet tech-
nique’ appears to be the ideal material to sur-
round this ‘biological chamber’, as it can be 
produced naturally and possesses unique osteo-
genic promoting properties [ 60 ,  61 ].  

    “Diamond Concept” in the Clinical 
Setting 

 The “Diamond Concept” has been applied in the 
clinical setting in recalcitrant non-unions with 
multiple failed previous interventions, and the 
results obtained are very promising [ 6 ,  29 – 31 ]. 
However, one may argue whether it is always 
necessary to apply the conceptual framework of 
the diamond confi guration (signals, cells, scaffold 
and/or revision of the fi xation) for a successful 
outcome. The issue of whether there is still ade-
quate mechanical stability present, and as such 
there is no need for revision of the fi xation, can 
be addressed by careful evaluation of the radio-
graphic fi ndings of the affected extremity. Is there 
evidence of loosening or osteolysis of the inter-
face between the bone and the existing implant? 
Is there failure of the metalwork? Does the patient 
report the presence of substantial painful stimuli 
whilst mobilising? How long the implant has been 
in situ prior to our planned intervention? Will the 
existing implant following our intervention con-
tinue to provide adequate mechanical support for 
the subsequent 6–9 months or else until the antici-
pated amount of time for union to occur has been 
reached? These are some of the important param-
eters that need to be answered in order to decide 
whether revision of the fi xation is mandatory. The 
decision whether to apply only one of the biologi-
cal constituents (monotherapy) of the ‘diamond 
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  Fig. 1    Schematic representation of the diamond concept 
conceptual framework to promote bone regeneration       
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concept’ or all of them simultaneously ((cells, 
signals and a scaffold) – (polytherapy)) remains 
more challenging. Will it be suffi cient to implant 
only osteoprogenitor cells? Only a growth factor 
or perhaps only a scaffold? How can I reach a sen-
sible decision to ensure that my biological based 
therapy would be enough to promote successfully 
bone regeneration? Obviously the natural history 
of the non-union or else the bone defect area is 
crucial to be accurately documented. How many 

previous interventions have taken place without 
success? Are we dealing with a recalcitrant non-
union? What is the state of the surrounding soft 
tissue envelope? Is there muscle wasting, local 
atrophy? Does the colour of the extremity/skin 
look compromised? Is there a history of under-
lying host pathology (i.e. diabetes, peripheral 
 vascular  disease)? Is the patient a smoker? These 
are some of the important factors to be evaluated 
to allow us to take the right decision. 

   Table 1    Non-union scoring system   

 Score a   Max.  score 

  The bone  
 Quality of the bone  Good  0 

 Moderate (e.g. mildly osteoporotic)  1 
 Poor (e.g. severe porosis or bone loss)  2 
 Very poor (Necrotic, appears avascular or septic)  3  3 

 Primary injury – open 
or closed fracture 

 Closed  0 
 Open 1° grade  1 
 Open 2–3° A grade  3 
 Open 3° B–C grade  5  5 

 Number of previous 
interventions on this 
bone to procure 
healing 

 None  1 
 <2  2 
 <4  3 
 >4  4  4 

 Invasiveness of 
previous interventions 

 Minimally-invasive: Closed surgery (screws, k wires, … )  0 
 Internal intra-medullary (nailing)  1 
 Internal extra-medullary  2 
 Any osteosynthesis which includes bone grafting  3  3 

 Adequacy of primary 
surgery 

 Inadequate stability  0 
 Adequate stability  1  1 

 Weber & Cech group  Hypertrophic  1 
 Oligotrophic  3 
 Atrophic  5  5 

 Bone alignment  Non-anatomic alignment  0 
 Anatomic alignment  1  1 

 Bone defect – Gap  0.5–1 cm  2 
 1–3 cm  3 
 >3 cm  5  5 
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 In order to address the above issues a non- 
union scoring system was developed so that the 
clinician can be assisted to reach the right deci-
sion [ 62 ]. It takes into account the bone/anatomi-
cal criteria and soft tissues condition, as well as 
the patient’s characteristics, co-morbidities and 
drug use (Table  1 ), [ 62 ]. According to this non- 
union scoring system, scores from 0 to 25 would 
be considered straightforward non-unions and 
should respond well to standard treatments. 

Scores from 26 to 50 would require more special-
ised care. For patients with scores from 51 to 75, 
specialised care and specialised treatments 
should be sought. Finally, patients with scores 
above 75 may be candidates for consideration for 
primary amputation [ 62 ]. Application of a bio-
logically- based therapy should be considered in 
patients with a score of more than 26 points and 
when the score is above 51 points the diamond 
concept must be applied (Fig.  2 ). 

  Soft tissues  
 Status  Intact  0 

 Previous uneventful surgery, minor scarring  2 
 Previous treatment of soft tissue defect (e.g. skin loss, 
local fl ap cover, multiple Incisions, compartment syndrome, 
old sinuses) 

 3 

 Previous complex treatment of soft tissue defect 
(e.g. free fl ap) 

 4 

 Poor vascularity: absence of distal pulses, poor capillary 
refi ll, venous insuffi ciency 

 5 

 Presence of actual skin lesion/defect (e.g. ulcer, sinus, 
exposed bone or plate) 

 6  6 

  The patient  
 ASA Grade  1 or 2  0 

 3 or 4  1  1 
 Diabetes  No  0 

 Yes – well controlled (HbAlc < 10)  1 
 Yes – poorly controlled (HbA1c > 10)  2  2 

 Blood tests: FBC, 
ESR, CRP 

 FBC: WCC >12  1 
 ESR > 20  1 
 CRP >20  1  3 

 Clinical infection 
status 

 Clean  0 
 Previously infected or suspicion of infection  1 
 Septic  4  4 

 Drugs 
  Steroids  1 
  NSAIDs  1  2 
 Smoking status  No  0 

 Yes  5  5 

    a Higher score implies more diffi cult to procure union  

Table 1 (continued)
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  Fig. 2    ( a ) Radiographs    AP, Lateral of a subtrochanteric 
non-union of a male patient 40 years of age. The patient 
had sustained a previous fracture that was stabilised with a 
cephalomedullary nail which was associated with implant 
failure and infection. The radiographs seen are 12 months 
after the removal of the failed implant. The initial non-
union had been managed with temporarily stabilisation 
with an external fi xator and several operative procedures 
for the control and eradication of the infection. In total the 
patient had undergone fi ve previous procedures. He was a 
smoker. There was muscular wasting in the right lower 
extremity and a leg length discrepancy of 3 cm. 
Radiographs revealed signs of bone disuse and porosis. He 
was on a long-term prescription of non-steroidal anti-
infl ammatory medication. His non- union score was (bone 

component = 16, soft tissue component = 2, patient compo-
nent = 8). Total points 26 × 2 = 52. ( b ) Intra-operative pho-
tograph illustrating that the right femoral non-union has 
been stabilised with a blade-plate following debridement 
of the non-union site. A collagen membrane (white mate-
rial shown between the plate and the bone was inserted for 
the containment of the graft material. ( c ) Introperative 
photograph illustrating the diamond concept application: 
implantation of a growth factor (BMP-7), concentrated 
bone marrow aspirate (osteoprogenitor cells) and bone 
graft (scaffold). ( d ) Containment of the implanted graft 
using the collagen membrane. ( e ) Post-operative AP and 
Lateral radiographs. ( f ) Four months follow-up radio-
graphs revealing osseous union of the previous right femo-
ral subtrochanteric non-union             

a

b
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c

d

Fig. 2 (continued)
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e

Fig. 2 (continued)
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f

Fig. 2 (continued)
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       Conclusion 

 Several cells and molecules are actively 
involved in fracture healing, each having a 
distinct temporal expression pattern and role. 
A better understanding and deeper knowledge 
of the pathways involved would give us the 
opportunity to target each of these cascades 
independently. “Tissue engineering” is 
expected to revolutionise the treatment of 
patients with impaired bone healing, provid-
ing novel treatment strategies in the years to 
come [ 41 ]. However, there are several chal-
lenging technical issues that still need to be 
overcome. The “diamond concept” attributes 
equal importance to both the biological and 
mechanical environment and provides the cli-
nician with a stepwise approach in dealing 
complex clinical cases of non-unions [ 41 ]. 
Moreover, the concept of the ‘biological 
chamber’ sitting at the heart of the diamond 
concept allows the clinician to consider in a 
more structured way the underlying molecular 
environment. With combination of therapies, 
the results of these diffi cult clinical conditions 
may be optimised providing a better, cost-
effective treatment modality.     
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