
Graph Compression Strategies

for Instance-Focused Semantic Mining

Xiaowei Jiang1, Xiang Zhang2, Feifei Gao1, Chunan Pu1, and Peng Wang2

1 College of Software Engineering, Southeast University, Nanjing, China
{xiaowei,ffgao,chunan}@seu.edu.cn

2 School of Computer Science and Engineering, Southeast University,
Nanjing, China

{x.zhang,pwang}@seu.edu.cn

Abstract. Semantic mining is a research area that sprung up in the last
decade. With the explosively growth of Linked Data, instance-focused Se-
mantic Mining technologies now face the challenge of mining efficiency.
In our observation, graph compression strategies can effectively reduce
the redundant or dependent structures in Linked Data, thus can help to
improve mining efficiency. In this paper, we first describe Typed Object
Graph as a generic data model for instance-focused Semantic Mining;
and then we propose two graph compression strategies for Linked Data:
Equivalent Compression and Dependent Compression, each of which is
demonstrated in specific mining scenarios. Experiments on real Linked
Data show that graph compression strategies in Semantic Mining is fea-
sible and effective for reducing the volume of Linked Data to improve
mining efficiency.

Keywords: Semantic Mining, graph compression, linked data.

1 Introduction

Semantic Mining is a research area that sprung up in the last decade. It combines
the Semantic Web with data mining, adapting various mining techniques to
discover useful information in semantic data. In these years, Semantic Mining has
undergone a transition from ontology-driven mining to instance-focused mining,
from text mining to graph mining. In [1], for instance, Semantic Mining can be
used to classify web documents based on text analysis. While introduced in [2],
Semantic Mining techniques are used to discover frequent patterns and semantic
associations, basing on an analysis on graph structure.

Lots of graph-based Semantic Mining algorithms have been proposed in
various mining scenarios. Some typical scenarios include: analyzing semantic
relationships between concepts or instances defined in ontologies, discovering
patterns in RDF graphs, importance or popularity assessment of instances in
RDF graphs, etc. Most of these algorithms have reasonable computational effi-
ciency only on small datasets. However, as the explosive growth of Linked Data,
these algorithms become more and more difficult to be adapted to large-scale
Linked Data, which may consist of billion triples.

G. Qi et al. (Eds.): CSWS 2013, CCIS 406, pp. 50–61, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Graph Compression Strategies for Instance-Focused Semantic Mining 51

A possible solution is to divide large-scale Linked Data into suitable size of
partitions prior to the process of mining, such as proposed in [3]. This approach
is effective for large-scale mining, but is meanwhile complicated. The cost of
integrating mining results in partitions may be high, and the approach is also
theoretically prone to a loss of mining results. A more simple and intuitive ap-
proach is needed. In our observation, there are usually lots of repeated or inter-
dependent structures in Linked Data. Given this characteristic, a structure-based
compression can be performed on Linked Data prior to mining process.

In this paper, we propose a framework of two strategies for graph compression
to reduce the volume of Linked Data. The first strategy is named Equivalent
Compression, which reduces Linked Data by combining repeated structures; the
second strategy is named Dependent Compression, which reduces Linked Data by
contracting dependent structures. After compression, some graph structures in
Linked Data will be combined or contracted into the inner structure of a special
instance, which is called a ”hypernode” in this paper, and the original graph will
be consequently transformed into a relatively smaller ”hypergraph”. Our work
is applicable to instance-focused Semantic Mining tasks, which usually discover
instance-related information in Linked Data. Furthermore, different strategies of
compression are applicable to different mining scenarios.

This paper is presented as following: a generic graph model for instance-
focused Semantic Mining is firstly introduced in section 2. In section 3, a frame-
work of two compression strategies will be described in detail. Two typical
mining scenarios using graph compression are well-discussed in section 4 to con-
vince the practicability of the strategies. Finally, experiments are conducted to
make a quantitative analysis on how these compression strategies can reduce the
volume of Linked Data to improve the efficiency of Semantic Mining.

2 Graph Model for Instance-Focused Semantic Mining

In the context of this paper, we refer to Semantic Mining as a mining on graph
structures in Linked Data. Furthermore, an instance-focused Semantic Mining is
a set of special mining tasks, which focus on discovering instance-related infor-
mation or knowledge in Linked Data, not schema-related. For example, in [4], a
Semantic Mining approach was put forward to find associations among semantic
objects on the basis of a pattern-growth-based mining algorithm. As the growth
of online Linked Data, instance-focused Semantic Mining has attracted lots of
research interest.

Type information of instances is usually important for various mining tasks in
instance-focused Semantic Mining. Proposed in [2], Typed Object Graph (TOG
in short) is an appropriate graph model for generic-purposed Semantic Min-
ing. TOG is derived from RDF graph by attaching type information to each
instance. In the model, each instance has a unique identification and a unique
type-attribute. For those instances that are defined to have multiple types, a
set of rules are defined to determine their unique type-attribute according to
the popularity, importance or universality of their types. A definition of TOG



52 X. Jiang et al.

is defined in Definition 1. A real example of TOG is shown in Figure 1. In the
example, Tim Berners-Lee is connected to other persons or places.

Definition 1. (Typed Object Graph): Defining quintuple Q as 〈s, type(s),
p, o, type(o)〉 where s, p, o represents the subject, predicate and object of an RDF
triples. In Q, s and o should denote instances, which means their rdf:type should
not be classes or properties. type(s) and type(o) are the unique types of s and o
respectively. Typed Object Graph G is a directed and labeled graph formed by a
set of quintuple G = Q1, Q2, . . . , Qn.

Fig. 1. An Example of TOG

3 Compression Strategies

The basic idea behind of our compression strategies is to use a single instance
to represent a compressible graph structure, which connects a group of highly
related instances in TOG. The single representative instance is named as ”hy-
pernode” in TOG, which can be an actual instance in TOG, or be a virtual
instance standing for the compressed graph structure. The compressed instances
are usually topologically close in TOG, and the compressed graph structures
are usually repeated or inter-dependent structures. Our compression strategies
make use of these structures, and reduce a TOG into a smaller graph.

In this section, a framework of two compression strategies will be discussed.
The notion of ”Family” of an instance is defined to describe the topological
context of an instance in TOG. An Equivalent Compression strategy and a
Dependent Compression strategy are separately proposed to reduce repeated
structures and inter-dependent structures in TOG respectively.



Graph Compression Strategies for Instance-Focused Semantic Mining 53

3.1 The Family of an Instance

In Typed Object Graph, the topological context of an instance can be seen as its
neighbors and its relations to its neighbors. The neighboring information about
an instance is a the local structure around the instance, and usually charac-
terizes its semantics. We use the notion ”Family” to stand for the neighboring
information.

Definition 2. (Family of an Instance): The ”family” of an instance family(i)
is a set F=〈j, r〉| j is one of the direct neighbor of i, r is the relation from i to j
or j to i.

3.2 Equivalent Compression

In traditional theory of graph compression, one of the feasible approach is based
on the similarity between two nodes in a graph. A set of highly similar nodes often
leads to repeated and compressible graph structures. The similarity between
nodes can be measured from different aspects, such as the node’s label, type,
degree, or shortest distance to their neighbors, and so on. Motivated by this idea,
we use the notion of Family to evaluate the similarity between two instances.
The fact that two instances have a very same Family will definitely indicates
that they possess a very similar topological position in TOG, which means there
are repeated structures in the graph. A virtual hypernode will be created to
represent this repeated structure.

Equivalent Compression, namely, is to combine instances whose types are the
same and who have an Equivalent Relationship in their Families.

Definition 3. (Equivalent Relationship): Give a TOG G = 〈V,E〉 derived
from an RDF graph, in which V is the set of nodes and E is the set of edges, there
is an Equivalent Relationship between instance i1 and instance i2: Equivalent(i1,
i2) iff 1) i1,i2 ∈ V ; 2) type(i1)=type(i2) ; 3) family(i1)=family(i2).

Definition 4. (Equivalent Compression): Give a TOG G=〈V,E〉, Equiva-
lent Compression is a process of transforming G into another graph: ECG(G)=〈
V ′, E′〉 where V’=Vhyper∪Vsimple. Vhyper is a set of virtual hypernodes, in which
each node represents a set of Equivalent instances; Vsimple is a set of actual nodes
in TOG, in which each node has no Equivalent Relationship to any other nodes
in Vsimple.

As shown in Figure 2, Figure2(a) is a fragment of TOG and Figure2(b) is a cor-
responding compressed graph. In Figure2(a), both Tom and Mary are Persons,
and they both know Jack and Kate. Therefore, Tom and Mary are considered
to have Equivalent Relationship and can be combined into a virtual hypernode
Tom&Mary. Hypernode is presented in thick line. A created hypernode repre-
sents multiple equivalent instances in the original TOG, thus can reduce repeated
structure and improve the efficiency of Semantic Mining.



54 X. Jiang et al.

Fig. 2. (a)A subgraph of TOG (b)Corresponding ECG

3.3 Dependent Compression

Even in a dense TOG, there are still a lot of instances whose family has only
one member, which means this kind of instances are not popularly referred by
other instances, and their semantics are highly dependent on their only neighbor.
They are terminal nodes hanging at the edge of a network formed by interlinked
instances. In some Semantic Mining tasks, this kind of dependent structures can
be compressed to improve the mining efficiency. The local structure of dependent
instances can be contracted into the inner structure of its only neighbor. Different
with Equivalent Compression, hypernodes are actual instances in Dependent
Compression.

Definition 5. (Dependent Relationship): Give the TOG G=〈V, E 〉, there
is a Dependent Relationship between instance i1 and i2: Dependent(i1,i2) iff 1)
i1,i2 ∈ V; 2) i2 is the only instance in family(i1) and there is only one edge
connecting i1 and i2.

Definition 6. (Dependent Compression): Give a TOG G=〈V, E 〉. Depen-
dent Compression is the process of transforming G into another graph: DCG(G)=
〈V’, E’ 〉, where V’=Vhyper ∪ Vsimple .Vhyper is a set of hypernodes. Each hyper-
node contains an actual instance with all instances that have Dependent Rela-
tionship to it. Vsimple is a set of actual instances in TOG, in which there doesn’t
exist two instance i and j in Vsimple that satisfy Dependent(i,j) or Dependent(j,i).

In this strategy, if Dependent(i,j), instance i will be compressed into j, making
j a hypernode. The original TOG is compressed in an iterative manner until no
dependent instances can be compressed into other instances, and the compression
ratio becomes steady.

As shown in Figure 3, the cardinality of family of each instance is first com-
puted. And then, one-neighbor instances (”Tom” and ”Mary”) are compressed
into their only neighbor, which forms the structure on the top of the figure.



Graph Compression Strategies for Instance-Focused Semantic Mining 55

The hypernode is presented in thick lines. For lack of space, the inner struc-
tures of hypernodes are not presented. The compressed graph can be iteratively
compressed, until no Dependent Relationship exists, as the structure on bottom
right of the figure, then the compression process comes to the end.

It can be proved that, after the iterative process, the inner structure of hyper-
nodes is usually a tree structure without regards to the direction of quintuples
in the tree. Each hypernode in DCG is an actual instance in TOG and is the
root of the compressed tree.

Fig. 3. An Example of Iterative Compression of TOG to Corresponding DCG

4 Application Scenarios

Our strategies can be applied to instance-focused Semantic Mining to achieve a
better mining efficiency. In this section, two typical Semantic Mining tasks will
be fully discussed as the application scenarios of our strategies. These scenarios
are about the mining of semantic associations. Semantic associations are usually
defined as a graph structure representing a group relationship among several in-
stances as defined in [4], or a path structure representing a serial relationship be-
tween two instances as defined in [5,6]. Since the complexity of mining semantic
associations are usually exponential, theywill be inefficient especially in large-scale
Linked Data. The mining process often consumes a large amount of time.



56 X. Jiang et al.

The applicability of each compression strategy depends on whether the mining
task will make use of the inner structure of hypernodes. For example, since tree
structures will be compressed in Dependent Compression, it will not be appli-
cable to the mining tasks that rely on counting the subgraph frequency, such as
discovering graph-structured semantic associations in the first application sce-
nario. But Dependent Compression is applicable to discovering path-structured
semantic associations, because in mining tasks on paths, the tree structure of
hypernodes can be utilized to find shortest path between instances. In following
scenarios, each scenario is discussed with an applicable compression strategy.

4.1 Mining Semantic Associations as Subgraphs

As defined in [4], frequently occurred subgraphs in Linked Data will be discovered
to discover semantic associations as graphs connecting a set of instances. Gener-
ally, frequent pattern mining algorithms, such as gSpan [7] or Closegraph [8] will
be used in this scenario. Subgraphs in Linked Data will be enumerated and for
each subgraph, a ”support” value, which defines the frequency that a subgraph
appears in the Linked Data, will be computed to estimate whether the subgraph
is frequent enough to represent a typical semantic association.

In the process of mining semantic associations, a minimum DFS code for each
subgraph in Linked Data is defined to canonically identify a link pattern by a
DFS traverse path. A rightmost extension is also defined to produce candidates
based on mined link patterns. A minimal link patterns are first discovered (with
0-edges), and the mining process is called recursively to make a rightmost exten-
sion on mined link patterns so that their frequent descendants with more edges
are found until their support is lower than a given min-sup or its DFS code is
not minimum any more. All mined patterns comprise a lexicographic search tree.
More details of gSpan and its expansion can be found in [7].

The counting of support value of subgraphs is significant in mining semantic
associations, which affects the correctness and efficiency of mining. Equivalent
Compression is applicable for this scenario because the support value of a sub-
graph is easy to compute after compression. In Equivalent Compression, the
inner structure of a hypernode is a set of equivalent instances, rather than a tree
structure. Therefore, it is not necessary to decompress hypernodes to count the
support of subgraph. The only information needed to count the support value
in ECG is the cardinality of compressed instances in hypernodes.

When semantic associations are discovered using gSpan or CloseGraph, there
is no difference when counting the support value of subgraphs containing only
simple nodes after compression. But a modification on gSpan or CloseGraph
is needed in the case of counting the support value of subgraphs containing
hypernodes: the contribution of the occurrence of a hypernode to the support
value is not 1, but the cardinality of the set of compressed instances (saying k),
because the hypernode represents k equivalent instances, in which each instance
contributes one occurrence to the support value.



Graph Compression Strategies for Instance-Focused Semantic Mining 57

4.2 Mining Semantic Associations as Paths

In some specific Semantic Web applications, such as semantic social network,
researchers often focus on discovering relations between two persons, which are
usually described as paths between two instances in RDF graph. The closeness
of two instances is usually measured by the length of the path. A mining task
to discover semantic associations between instances can be transformed into an
problem of shortest path discovering.

Dependent Compression can help to improve the mining efficiency of this
type of mining tasks. The improvement is based on the idea that shortest path
between two nodes in a tree is easier to compute than in a graph. In a graph
compressed by Dependent Compression, instances can be classified into three
sets - simple instances, hypernodes as the roots of their inner tree structures
and other compressed instances in the inner tree structure of hypernodes. S, R
and I are used to denote each corresponding set of instances.

Naming the shortest path between instance i and j as SP (i, j). SP (i, j) can
be computed in separate cases: 1) SP (i, j) can be computed using the general
all-pair-shortest-path algorithm when i, j ∈ S ∪ R; 2) In the case that i ∈ I,
j ∈ S∪R, finds the root hypernode of i and names it as k, k ∈ R, then SP (i, j) =
SP (i, k)+SP (k, j); 3) In the case that i, j ∈ I, finds the root hypernodes of i and
j and names it as k, l respectively, then SP (i, j) = SP (i, k)+SP (k, l)+SP (l, j).

5 Experiment

To validate the effectiveness of two compression strategies, a set of experiments
are conducted on five online Linked Data. In this section, we first describe the
dataset, and then discuss the experiments and results.

5.1 DataSet

To validate the effectiveness of the compression strategies, five online Linked
Data on different topics are selected as our dataset for evaluation. A summary
of each dataset is given as following:

(i) DBpedia, which is a widely-used Linked Data on structured information
extracted from Wikipedia.

(ii) LinkedMDB, which is a famous Linked Data on movies.
(iii) SwetoDblp, which is an ontology focused on bibliography data of pub-

lications from DBLP with additions that include affiliations, universities,
and publishers.

(iv) Jamendo, which is a large Linked Data of Creative Commons licensed
music, based in France. These datasets are diverse in topics, and are rather
large in volume, which makes them difficult for Semantic Mining tasks.

(v) John Peel sessions, which is published by DBTune.org. It is a music-
related repository on the Semantic Web, containing Linked Data of BBC
John Peel sessions.



58 X. Jiang et al.

All the datasets have RDF dumps in their corresponding websites, and can
be accessed through a portal of W3C DataSetRDFDumps1 The statistical infor-
mation of these datasets are given in Table 1.:

Table 1. The Statistical Information of Datasets

Dataset #instancs #quintuple Ave.Degree

DBpedia 1664061 6014163 7.228
LinkedMDB 602796 1210921 4.0177
SwetoDblp 544678 627753 2.305
Jamendo 281468 373494 2.654
JohnPeel 71284 100403 1.408

5.2 Evaluation on Compression

The compression ratio CR is a conventional parameter to measure the perfor-
mance of compression. It describes the relative volume of data after compression
comparing to the volume of data before compression. In graph compression, CR
can be defined either by compression ratio on number of edges or by compression
ratio on number of nodes. In this paper, we define CRq and CRi in Equation
2-3 to represent the compression ratio on quintuples or instances in Linked Data
respectively. A low compression ratio indicates that a large proportion of quintu-
ples or instances in TOG can be compressed according to compression strategy.

CRq =
#quintupleaftercompression

#quintuplebeforecompression
(1)

CRi =
#instanceaftercompression

#instancebeforecompression
(2)

Both Equivalent and Dependent Compression Strategy are performed on each
dataset, and the compression ratios are shown in Table 2 and Table 3 respectively.
In the tables, #q and #i indicate the number of quintuples and instances in
TOG. −q and −i indicate the number of compressed number of quintuples and
instances in ECG and DCG.

From the results in Table 2, it is observable that −q is normally higher than
−i, because a compression of a set of equivalent instances usually leads to a com-
pression of a larger set of equivalent quintuples in the families of these instances.
In our observation, the graph structures in DBpedia, LinkedMDB and JohnPeel
are non-redundant, which means few repeated structures can be discovered by
Equivalent Compression. On these datasets, our strategies have limited perfor-
mance, with both CRq and CRi are over or almost over 90%. Especially for John-
Peel, only one pair of equivalent instances can be found. However, Equivalent
Compression have sound performance on the other two datasets. For SwetoDblp,

1 W3C DataSet RDF Dumps: http://www.w3.org/wiki/DataSetRDFDumps .

http://www.w3.org/wiki/DataSetRDFDumps


Graph Compression Strategies for Instance-Focused Semantic Mining 59

Table 2. Compression Ratio of Equivalent Compression

Dataset
Before Compression After Compression −q −i CRq CRi

#q #i #q #i

DBpedia 6,014,163 1,664,061 5,877,935 1,555,424 136,228 108,637 0.977 0.935
LinkedMDB 1,210,921 602,796 1,097,710 537,653 113,211 65,143 0.907 0.892
SwetoDblp 627,753 544,678 146,730 64,038 481,023 480,640 0.234 0.118
Jamendo 373,494 281,468 306,328 214,568 67,166 66,900 0.820 0.762
JohnPeel 100,403 71,284 100,401 71,283 2 1 1.000 1.000

Table 3. Compression Ratio of Dependent Compression

Dataset
Before Compression After Compression −q −i CRq CRi

#q #i #q #i

DBpedia 6,014,163 1,664,061 5,724,074 1,373,972 290,089 290,089 0.952 0.826
LinkedMDB 1,210,921 602,796 1,068,716 460,591 142,205 142,205 0.883 0.764
SwetoDblp 627,753 544,678 115,372 32,297 512,381 512,381 0.184 0.059
Jamendo 373,494 281,468 150,289 58,263 223,205 223,205 0.402 0.207
JohnPeel 100,403 71,284 59,787 30,668 40,616 40,616 0.595 0.430

surprisingly almost 90% of instances with 80% of quintuples are equivalent and
can be compressed.

Shown in Table 3, Dependent Compression have a better compression ratio
comparing to Equivalent Compression. All the ratios, except CRq on DBpedia,
are less than 90%. Dependent Compression also has the best performance on
SwetoDblp, in which CRi can even reach to 6%. That indicates SwetoDblp
consists of too many repeated and meanwhile dependent structures. Another
observable fact is that the −q is just the same with −i for each dataset after
Dependent Compression. This is because a compression of a dependent instance
always leads to a simultaneous compression of the quintuple connecting it to
its only neighbor. In other words, the number of instances and the number of
quintuples in the inner structures of hypernodes in DCG are always the same.

6 Related Work

The goal of graph compression for graph mining is to reduce the volume of graph
and to achieve a reasonable mining efficiency when the graph is large. Some ap-
proaches have been proposed for graph compression. In [12], Chen proposed a
graph mining algorithm via randomized graph summaries. For each graph in the
graph set, a summary is built and the shrunk graph is used for mining, which de-
creases the embedding enumeration cost. However, after a graph summarization,
the algorithm may suffers from a loss of patterns. Thus randomized summaries



60 X. Jiang et al.

are generated and the mining process is repeated for multiple rounds for a min-
imum loss of patterns. The works presented in [13] and [14] are closely related
to ours. These paper independently proposed to construct graph summaries of
unweighted graphs by grouping similar nodes and edges to supernodes and su-
peredges. The difference between their works and ours lies in two aspects: first,
their works are not working on Linked Data, type information is undefined for
the nodes in their graph models; second, their works considered the compression
of repeated structures, but not considered compression of dependent structures.

Besides these works, some other solutions on graph compression have been
proposed. Toivonen proposed in [15] a solution to compress graph by node and
edge mergers. Toivonen also introduce another solution in [16], which is also
known as graph simplification. Nodes and edges in weighted graphs are grouped
to supernodes and superedges. The supernodes and superedges are selected to
minimize approximation errors and meanwhile maximize the amount of com-
pression. Both of the works provides approach to approximate compression, and
thus are both lossy. They are quite different with our work, which works on non-
weighted graph and is lossless in the process of compression and decompression.

7 Conclusion and Future Work

The research on Semantic Mining is now facing the challenge of contradiction
between the growing volume of Linked Data and the complexity of mining algo-
rithms. The approach of graph compression can effectively improve the efficiency
of instance-focused Semantic Mining by simplifying the graph structure of large-
scale Linked Data. In this paper, a set of two strategies are proposed for graph
compression on a generic graph model for instance-focused Semantic Mining.
Repeated and Dependent structures in TOG are compressed by Equivalent and
Dependent Compression respectively. Two typical scenarios are discussed to il-
lustrate the applicability of each strategy. Experiments on real datasets show
that our approach is feasible to reducing repeated and dependent structures in
TOG, and practically improves mining efficiency in typical application scenarios.

The combination of graph compression and graph partitioning will be consid-
ered in our future work. Indicated by experimental results, graph compression
strategies have limited performance on very densely-connected TOG. For mining
on this kind of TOG, graph partitioning will help to divide TOG into minable
blocks. The combination of graph compression and partitioning is expected to
provide a complete solution to large-scale Semantic Mining.

Acknowledgements. The work is supported by the NSFC under Grant
61003055, 61003156, and by NSF of Jiangsu Province under Grant BK2011335.
We would like to thank Lei Wu and Yu Guo for their valuable suggestions and
work on related experiments.



Graph Compression Strategies for Instance-Focused Semantic Mining 61

References

1. Svatopluk, F., Ivan, J.: Semantic Mining of Web Documents. In: Proceedings of
International Conference on Computer Systems and Technologies, pp. 21–26 (2005)

2. Zhang, X., Zhao, C., Wang, P., Zhou, F.: Mining Link Patterns in Linked Data. In:
Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM 2012. LNCS, vol. 7418,
pp. 83–94. Springer, Heidelberg (2012)

3. Zhao, C.F., Zhang, X., Wang, P.: A Label-based Partitioning Strategy for Min-
ing Link Patterns. In: Proceedings of 7th International Conference on Knowledge,
Information and Creativity Support Systems, pp. 203–206 (2012)

4. Jiang, X.W., Zhang, X., Gui, W., Gao, F.F., Wang, P., Zhou, F.B.: Summarizing
Semantic Associations Based on Focused Association Graph. In: Proceedings of
the 8th International Comference, pp. 564–576 (2012)

5. Anyanwu, K., Sheth, A.: p-Queries: Enabling Querying for Semantic Associations
on the Semantic Web. In: Proceedings of the 12th International World Wide Web
Conference, pp. 690–699 (2003)

6. Sheth, A., Aleman-Meza, B., Arpina, I.B., et al.: Semantic Association Identifi-
cation and Knowledge Discovery for National Security Applications. Journal of
Database Management 16(1), 33–53 (2005)

7. Yan, X., Han, J.W.: gSpan: Graph-based Substructure Pattern Mining. In: Pro-
ceedings of the IEEE International Conference on Data Mining, pp. 721–724 (2002)

8. Yan, X., Han, J.W.: CloseGraph: Mining Closed Frequent Graph Patterns. In:
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 286–295 (2003)

9. Hage, P., Harary, F.: Eccentricity and Centrality in Networks. Social Networks 17,
57–63 (1995)

10. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report, Stanford University (1998)

11. Kleinberg, J.: Authoritative Sources in a Hyperlinked Environment. In: Proceed-
ings of the 9th ACM SIAM Symposium on Discrete Algorithms, pp. 668–677 (1998)

12. Chen, C., Lin, C.X., Fredrikson, M., Christodorescu, M., Yan, X.F., Han, J.W.:
Mining Graph Patterns Efficiently via Randomized Summaries. In: Proceedings of
the 35th International Conference on Very Large Data Bases, pp. 742–753 (2009)

13. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph Summarization with Bounded
Error. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, pp. 419–432 (2008)

14. Tian, Y., Hankins, R., Patel, J.: Efficient Aggregation for Graph Summarization.
In: Proceedings of the 2008 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 567–580 (2008)

15. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Network Compression by
Node and Edge Mergers. In: Berthold, M.R. (ed.) Bisociative Knowledge Discovery.
LNCS, vol. 7250, pp. 199–217. Springer, Heidelberg (2012)

16. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of Weighted
Graphs. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 965–973 (2011)


	Graph Compression Strategies for Instance-Focused Semantic Mining
	1 Introduction
	2 Graph Model for Instance-Focused Semantic Mining
	3 Compression Strategies
	3.1 The Family of an Instance
	3.2 Equivalent Compression
	3.3 Dependent Compression

	4 Application Scenarios
	4.1 Mining Semantic Associations as Subgraphs
	4.2 Mining Semantic Associations as Paths

	5 Experiment
	5.1 DataSet
	5.2 Evaluation on Compression

	6 Related Work
	7 Conclusion and Future Work
	References




