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Abstract. Two-player games on graphs provide the theoretical framework for
many important problems such as reactive synthesis. While the traditional study
of two-player zero-sum games has been extended to multi-player games with sev-
eral notions of equilibria, they are decidable only for perfect-information games,
whereas several applications require imperfect-information games.

In this paper we propose a new notion of equilibria, called doomsday equilib-
ria, which is a strategy profile such that all players satisfy their own objective, and
if any coalition of players deviates and violates even one of the players objective,
then the objective of every player is violated.

We present algorithms and complexity results for deciding the existence
of doomsday equilibria for various classes of ω-regular objectives, both for
imperfect-information games, and for perfect-information games. We provide op-
timal complexity bounds for imperfect-information games, and in most cases for
perfect-information games.

1 Introduction

Two-player games on finite-state graphs with ω-regular objectives provide the frame-
work to study many important problems in computer science [31,29,14]. One key
application area is synthesis of reactive systems [5,30,28]. Traditionally, the reactive
synthesis problem is reduced to two-player zero-sum games, where vertices of the graph
represent states of the system, edges represent transitions, one player represents a com-
ponent of the system to synthesize, and the other player represents the purely adversar-
ial coalition of all the other components. Since the coalition is adversarial, the game is
zero-sum, i.e., the objectives of the two players are complementary. Two-player zero-
sum games have been studied in great depth in literature [22,14,17].

Instead of considering all the other components as purely adversarial, a more real-
istic model is to consider them as individual players each with their own objective, as
in protocol synthesis where the rational behavior of the agents is to first satisfy their
own objective in the protocol before trying to be adversarial to the other agents. Hence,
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inspired by recent applications in protocol synthesis, the model of multi-player games
on graphs has become an active area of research in graph games and reactive synthe-
sis [1,16,32]. In a multi-player setting, the games are not necessarily zero-sum (i.e.,
objectives are not necessarily conflicting) and the classical notion of rational behavior
is formalized as Nash equilibria [25]. Nash equilibria perfectly capture the notion of
rational behavior in the absence of external criteria, i.e., the players are concerned only
about their own payoff (internal criteria), and they are indifferent to the payoff of the
other players. In the setting of synthesis, the more appropriate notion is the adversarial
external criteria, where the players are as harmful as possible to the other players with-
out sabotaging with their own objectives. This has inspired the study of refinements of
Nash equilibria, such as secure equilibria [10] (that captures the adversarial external
criteria), rational synthesis [16], and led to several new logics where the non-zero-sum
equilibria can be expressed [11,13,24,33,23]. The complexity of Nash equilibria [32],
secure equilibria [10], rational synthesis [16], and of the new logics has been studied
recently [11,13,24,33].

Along with the theoretical study of refinements of equilibria, applications have also
been developed in the synthesis of protocols. In particular, the notion of secure equi-
libria has been useful in the synthesis of mutual-exclusion protocol [10], and of fair-
exchange protocols [20,7] (a key protocol in the area of security for exchange of digital
signatures). One major drawback that all the notions of equilibria suffer is that the
basic decision questions related to them are decidable only in the setting of perfect-
information games (in a perfect-information games the players perfectly know the
state and history of the game, whereas in imperfect-information games each player
has only a partial view of the state space of the game), and in the setting of multi-
player imperfect-information games they are undecidable [28]. However, the model
of imperfect-information games is very natural because every component of a system
has private variables not accessible to other components, and recent works have demon-
strated that imperfect-information games are required in synthesis of fair-exchange pro-
tocols [19]. In this paper, we provide the first decidable framework that can model them.

We propose a new notion of equilibria which we call doomsday-threatening equilib-
ria (for short, doomsday equilibria). A doomsday equilibria is a strategy profile such that
all players satisfy their own objective, and if any coalition of players deviates and vio-
lates even one of the players objective, then doomsday follows (every player objective is
violated). Note that in contrast to other notions of equilibria, doomsday equilibria con-
sider deviation by an arbitrary set of players, rather than individual players. Moreover,
in case of two-player non-zero-sum games they coincide with the secure equilibria [10]
where objectives of both players are satisfied.

Example 1. Let us consider the two trees of Fig. 1. They model the possible behaviors
of two entities Alice and Bob that have the objective of exchanging messages: mAB

from Alice to Bob, and mBA from Bob to Alice. Assume for the sake of illustration that
mAB models the transfer of property of an house from Alice to Bob, while mBA models
the payment of the price of the house from Bob to Alice.

Having that interpretation in mind, let us consider the left tree. On the one hand,
Alice has as primary objective (internal criterion) to reach either state 2 or state 4,
states in which she has obtained the money, and she has a slight preference for 2 as
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Fig. 1. A simple example in the domain of Fair Exchange Protocols

in that case she received the money while not transferring the property of her house
to Bob, this corresponds to her adversarial external criterion. On the other hand, Bob
would like to reach either state 3 or 4 (with again a slight preference for 3). Also, it
should be clear that Alice would hate to reach 3 because she would have transferred
the property of her house to Bob but without being paid. Similarly, Bob would hate to
reach 2. To summarize, Alice has the following preference order on the final states of
the protocol: 2 > 4 > 1 > 3, while for Bob the order is 3 > 4 > 1 > 2. Is there
a doomsday threatening equilibrium in this game ? For such an equilibrium to exist,
we must find a pair of strategies that please the two players for their primary objective
(internal criterion): reach {2, 4} for Alice and reach {3, 4} for Bob. Clearly, this is only
possible if at the root Alice plays ”send mAB”, as otherwise we would not reach {1, 2}
violating the primary objective of Bob. But playing that action is not safe for Alice
as Bob would then choose ”not send mBA” because he slightly prefers 3 to 4. It can
be shown that the only rational way of playing (taking into account both internal and
external criteria) is for Alice to play ”not send mAB” and for Bob would to play ”not
send mBA”. This way of playing is in fact the only secure equilibrium of the game but
this is not what we hope from such a protocol.

The difficulty in this exchange of messages comes from the fact that Alice is starting
the protocol by sending her part and this exposes her. To obtain a better behaving pro-
tocol, one solution is to add an additional stage after the exchanges of the two messages
as depicted in the right tree of Fig. 1. In this new protocol, Alice has the possibility
to cancel the exchange of messages (in practice this would be implemented by the in-
tervention of a TTP1). For that new game, the preference orderings of the players are
as follows: for Alice it is 3 > 7 > 1 = 2 = 4 = 6 = 8 > 5, and for Bod it is
5 > 7 > 1 = 2 = 4 = 6 = 8 > 3. Let us now show that there is a doomsday equilib-
rium in this new game. In the first round, Alice should play ”send mAB” as otherwise
the internal objective of Bob would be violated, then Bob should play ”send mBA”,
and finally Alice should play “OK” to validate the exchange of messages. Clearly, this
profile of strategies satisfies the first property of a doomsday equilibrium: both players
have reached their primary objective. Second, let us show that no player has an incen-
tive to deviate from that profile of strategies. First, if Alice deviates then Bob would
play ”not send mBA”, and we obtain a doomsday situation as both players have their
primary objectives violated. Second, if Bob deviates by playing ”not send mBA”, then

1 TTP stands for Trusted Third Party.
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Table 1. Summary of the results

objectives safety reachability Büchi co-Büchi parity
PSPACE

perfect information PSPACE-C PTIME-C PTIME-C PTIME-C NP-HARD

CONP-HARD

imperfect information EXPTIME-C EXPTIME-C EXPTIME-C EXPTIME-C EXPTIME-C

Alice would cancel the protocol exchange which again produces a doomsday situation.
So, no player has an incentive to deviate from the equilibrium and the outcome of the
protocol is the desired one: the two messages have been fairly exchanged. So, we see
that the threat of a doomsday that brings the action ”Cancel” has a beneficial influence
on the behavior of the two players. �

It should now be clear that multi-player games with doomsday equilibria provide a
suitable framework to model various problems in protocol synthesis. In addition to the
definition of doomsday equilibria, our main contributions are to present algorithms and
complexity bounds for deciding the existence of such equilibria for various classes of
ω-regular objectives both in the perfect-information and in the imperfect-information
cases. In all cases but one, we establish the exact complexity. Our technical contribu-
tions are summarized in Table 1. More specifically:

1. (Perfect-information games). We show that deciding the existence of doomsday
equilibria in multi-player perfect-information games is (i) PTIME-complete for
reachability, Büchi, and coBüchi objectives; (ii) PSPACE-complete for safety ob-
jectives; and (iii) in PSPACE and both NP-hard and coNP-hard for parity objectives.

2. (Imperfect-information games). We show that deciding the existence of doomsday
equilibria in multi-player imperfect-information games is EXPTIME-complete for
reachability, safety, Büchi, coBüchi, and parity objectives.

The area of multi-player games and various notion of equilibria is an active area of
research, but notions that lead to decidability in the imperfect-information setting and
has applications in synthesis has largely been an unexplored area. Our work is a step
towards it.

2 Doomsday Equilibria for Perfect Information Games

In this section, we define game arena with perfect information, ω-regular objectives,
and doomsday equilibria.

Game Arena. An n-player game arena G with perfect information is defined as a tuple
(S,P , sinit, Σ,Δ) such that S is a nonempty finite set of states, P = {S1, S2, . . . , Sn}
is a partition of S into n classes of states, one for each player respectively, sinit ∈ S
is the initial state, Σ is a finite set of actions, and Δ : S × Σ → S is the transition
function.

Plays in n-player game arena G are constructed as follows. They start in the initial
state sinit, and then an ω number of rounds are played as follows: the player that owns
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the current state s chooses a letter σ ∈ Σ and the game evolves to the position s′ =
Δ(s, σ), then a new round starts from s′. So formally, a play in G is an infinite sequence
s0s1 . . . sn . . . such that (i) s0 = sinit and (i) for all i ≥ 0, there exists σ ∈ Σ such that
si+1 = Δ(si, σ). The set of plays in G is denoted by Plays(G), and the set of finite
prefixes of plays by PrefPlays(G). We denote by ρ, ρ1, ρi, . . . plays in G, by ρ(0..j)
the prefix of the play ρ up to position j and by ρ(j) the position j in the play ρ. We also
use π, π1, π2, ... to denote prefixes of plays. Let i ∈ {1, 2, . . . , n}, a prefix π belongs to
Player i if last(π), the last state of π, belongs to Player i, i.e. last(π) ∈ Si. We denote
by PrefPlaysi(G) the set of prefixes of plays in G that belongs to Player i.

Strategies and Strategy Profiles. A strategy for Player i, for i ∈ {1, 2, . . . , n}, is a
mapping λi : PrefPlaysi(G) → Σ from prefixes of plays to actions. A strategy profile
Λ = (λ1, λ2, . . . , λn) is a tuple of strategies such that λi is a strategy of Player i.
The strategy of Player i in Λ is denoted by Λi, and the the tuple of the remaining
strategies (λ1, . . . , λi−1, λi+1, . . . , λn) by Λ−i. For a strategy λi of Player i, we define
its outcome as the set of plays that are consistent with λi: formally, outcomei(λi) is
the set of ρ ∈ Plays(G) such that for all j ≥ 0, if ρ(0..j) ∈ PrefPlaysi(G), then
ρ(j + 1) = Δ(ρ(j), λi(ρ(0..j))). Similarly, we define the outcome of a strategy profile
Λ = (λ1, λ2, . . . , λn), as the unique play ρ ∈ Plays(G) such that for all positions j, for
all i ∈ {1, 2, . . . , n}, if ρ(j) ∈ PrefPlaysi(G) then ρ(j + 1) = Δ(ρ(j), λi(ρ(0..j))).
Finally, given a state s ∈ S of the game, we denote by Gs the game G whose initial
state is replaced by s.

Winning Objectives. A winning objective (or an objective for short) ϕi for Player
i∈{1, 2, . . . , n} is a set of infinite sequences of states, i.e. ϕi⊆Sω. A strategy λi is
winning for Player i (against all other players) w.r.t. an objective ϕi if outcomei(λi) ⊆
ϕi.

Given an infinite sequence of states ρ ∈ Sω, we denote by visit(ρ) the set of states
that appear at least once along ρ, i.e. visit(ρ) = {s ∈ S|∃i ≥ 0 · ρ(i) = s}, and inf(ρ)
the set of states that appear infinitely often along ρ, i.e. inf(ρ) = {s ∈ S|∀i ≥ 0 · ∃j ≥
i · ρ(i) = s}. We consider the following types of winning objectives:

– a safety objective is defined by a subset of states T ⊆ S that has to be never left:
safe(T ) = {ρ ∈ Sω | visit(ρ) ⊆ T };

– a reachability objective is defined by a subset of states T ⊆ S that has to be reached:
reach(T ) = {ρ ∈ Sω | visit(ρ) ∩ T 	= ∅};

– a Büchi objective is defined by a subset of states T ⊆ S that has to be visited
infinitely often: Büchi(T ) = {ρ ∈ Sω | inf(ρ) ∩ T 	= ∅};

– a co-Büchi objective is defined by a subset of states T ⊆ S that has to be reached
eventually and never be left: coBüchi(T ) = {ρ ∈ Sω | inf(ρ) ⊆ T };

– let d ∈ N, a parity objective with d priorities is defined by a priority function
p : S → {0, 1, . . . , d} as the set of plays such that the smallest priority visited
infinitely often is even: parity(p) = {ρ ∈ Sω|min{p(s) | s ∈ inf(ρ)} is even}.

Büchi, co-Büchi and parity objectives ϕ are called tail objectives because they enjoy
the following closure property: for all ρ ∈ ϕ and all π ∈ S∗, ρ ∈ ϕ iff π · ρ ∈ ϕ.
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Fig. 2. Examples of doomsday equilibria for Safety and Büchi objectives

Finally, given an objective ϕ ⊆ Sω and a subset P ⊆ {1, . . . , n}, we write 〈〈P 〉〉ϕ
to denote the set of states s from which the players from P can cooperate to enforce
ϕ when they start playing in s. Formally, 〈〈P 〉〉ϕ is the set of states s such that there
exists a set of strategies {λi | i ∈ P} in Gs, one for each player in P , such that⋂

i∈P outcomei(λi) ⊆ ϕ.

Doomsday Equilibria. A strategy profile Λ = (λ1, λ2, . . . , λn) is a doomsday-
threatening equilibrium (doomsday equilibrium or DE for short) if:

1. it is winning for all the players, i.e. outcome(Λ) ∈ ⋂
i ϕi;

2. each player is able to retaliate in case of deviation: for all 1 ≤ i ≤ n, for all
ρ ∈ outcomei(λi), if ρ 	∈ ϕi, then ρ ∈ ⋂j=n

j=1 ϕj (doomsday), where ϕj denotes
the complement of ϕj in Sω.

In other words, when all players stick to their strategies then they all win, and if any
arbitrary coalition of players deviates and makes even just one other player lose then
this player retaliates and ensures a doomsday, i.e. all players lose.

Relation with Secure Equilibria In two-player games, the doomsday equilibria coincide
with the notion of secure equilibrium [10] where both players satisfy their objectives. In
secure equilibria, for all i ∈ {1, 2}, any deviation of Player i that does not decrease her
payoff does not decrease the payoff of Player 3−i either. In other words, if a deviation
of Player i decreases (strictly) the payoff of Player 3−i, i.e. ϕ3−i is not satisfied, then it
also decreases her own payoff, i.e. ϕi is not satisfied. A two-player secure equilibrium
where both players satisfy their objectives is therefore a doomsday equilibrium.

Example 2. Fig. 2 gives two examples of games with safety and Büchi objectives re-
spectively. Actions are in bijection with edges so they are not represented.

(Safety) Consider the 3-player game arena with perfect information of Fig. 2(a) and
safety objectives. Unsafe states for each player are given by the respective nodes of
the upper part. Assume that the initial state is one of the safe states. This example
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models a situation where three countries are in peace until one of the countries, say
country i, decides to attack country j. This attack will then necessarily be followed
by a doomsday situation: country j has a strategy to punish all other countries. The
doomsday equilibrium in this example is to play safe for all players.

(Büchi) Consider the 3-player game arena with perfect information of Fig. 2(b)
with Büchi objectives for each player: Player i wants to visit infinitely often one of
its “happy” states. The position of the initial state does not matter. To make things more
concrete, let us use this game to model a protocol where 3 players want to share in each
round a piece of information made of three parts: for all i ∈ {1, 2, 3}, Player i knows
information i mod 3+1 and i mod 3+2. Player i can send or not these informations to
the other players. This is modeled by the fact that Player i can decide to visit the happy
states of the other players, or move directly to s(i mod 3)+1. The objective of each player
is to have an infinite number of successful rounds where they get all information.

There are several doomsday equilibria. As a first one, let us consider the situation
where for all i ∈ {1, 2, 3}, if Player i is in state si, first it visits the happy states,
and when the play comes back in si, it moves to s(i mod 3)+1. This defines an infinite
play that visits all the states infinitely often. Whenever some player deviates from this
play, the other players retaliate by always choosing in the future to go to the next s
state instead of taking their respective loops. Clearly, if all players follow their respec-
tive strategies all happy states are visited infinitely often. Now consider the strategy of
Player i against two strategies of the other players that makes him lose. Clearly, the only
way Player i loses is when the two other players eventually never take their states, but
then all the players lose.

As a second one, consider the strategies where Player 2 and Player 3 always take
their loops but Player 1 never takes his loop, and such that whenever the play deviates,
Player 2 and 3 retialate by never taking their loops. For the same reasons as before this
strategy profile is a doomsday equilibrium.

Note that the first equilibrium requires one bit of memory for each player, to remem-
ber if they visit their s state for the first or second times. In the second equilibrium, only
Player 2 and 3 needs a bit of memory. An exhaustive analysis shows that there is no
memoryless doosmday equilibrium in this example. �

3 Complexity of DE for Perfect Information Games

In this section, we prove the following results:

Theorem 1. The problem of deciding the existence of a doomsday equilibrium in an
n-player perfect information game arena and n objectives (ϕi)1≤i≤n is:

– PTIME-C if the objectives (ϕi)1≤i≤n are either all Büchi, all co-Büchi or all reach-
ability objectives, hardness already holds for 2-player game arenas,

– NP-HARD, CONP-HARD and in PSPACE if (ϕi)1≤i≤n are parity objectives, hard-
ness already holds for 2-player game arenas,

– PSPACE-C if (ϕi)1≤i≤n are safety objectives, and PTIME-C for game arenas with
a fixed number of players.

In the sequel, game arena with perfect information are just called game arena.
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Tail Objectives. We first present a generic algorithm that works for any tail objective
and then analyze its complexity for the different cases. Then we establish the lower
bounds. Let us consider the following algorithm:

– compute the retaliation region of each player: Ri = 〈〈i〉〉(ϕi ∪
⋂j=n

j=1 ϕj);

– check for the existence of a play within
⋂i=n

i=1 Ri that satisfies all the objectives ϕi.

The correctness of this generic procedure is formalized in the following lemma:

Lemma 1. Let G = (S,P , sinit, Σ,Δ) be an n-player game arena with n tail objec-
tives (ϕi)1≤i≤n. Let Ri = 〈〈i〉〉(ϕi ∪

⋂j=n
j=1 ϕj) be the retaliation region for Player i.

There is a doomsday equilibrium in G iff there exists an infinite play that (1) belongs to
⋂i=n

i=1 ϕi and (2) stays within the set of states
⋂i=n

i=1 Ri.

Proof. First, assume that there exists an infinite play ρ such that ρ ∈ ⋂
i(ϕi ∩ Rω

i ).
From ρ, and the retaliating strategies that exist in all states of Ri for each player, we
show the existence of DE Λ = (λ1, λ2, . . . , λn). Player i plays strategy λi as follows:
he plays according to the choices made in ρ as long as all the other players do so, and
as soon as the play deviates from ρ, Player i plays his retaliating strategy (when it is his
turn to play).

First, let us show that if Player j, for some j 	= i, deviates and the turn comes back
to Player i in a state s then s ∈ Ri. Assume that Player j deviates when he is in some
s′ ∈ Sj . As before there was no deviation, by definition of ρ, s′ belongs to Ri. But no
matter what the adversary are doing in a state that belongs to Ri, the next state must be
a state that belongs to Ri (there is only the possibility to leave Ri when Player i plays).
So, by induction on the length of the segment of play that separates s′ and s, we can
conclude that s belongs to Ri. From s, Player i plays a retaliating strategy and so all the
outcomes from s are in ϕi ∪

⋂j=n
j=1 ϕj , and since the objective are tails, the prefix up to

s is not important and we get (from sinit) outcomei(λi) ⊆ ϕi ∪
⋂j=n

j=1 ϕj . Therefore
the second property of the definition of doomsday equilibria is satisfied. Hence Λ is a
DE.

Let us now consider the other direction. Assume that Λ is a DE. Then let us show
that ρ = outcome(Λ) satisfies properties (1) and (2). By definition of DE, we know
that ρ is winning for all the players, so (1) is satisfied. Again by definition of DE,
outcome(Λi) ⊆ ϕi ∪

⋂j=n
j=1 ϕj . Let s be a state of ρ and π the prefix of ρ up to s. For

all outcomes ρ′ of Λi in Gs, we have πρ′ ∈ ϕi ∪
⋂j=n

j=1 ϕj , and since the objectives are

tail, we get ρ′ ∈ ϕi ∪
⋂j=n

j=1 ϕj . Hence s ∈ Ri. Since this property holds for all i, we
get s ∈ ⋂

iRi, and (2) is satisfied. ��
Accordingly, we obtain the following upper-bounds:

Lemma 2. The problem of deciding the existence of a doomsday equilibrium in an n-
player game arena can be decided in PTIME for Büchi and co-Büchi objectives, and in
PSPACE for parity objectives.

Proof. By Lemma 1 one first needs to compute the retaliation regions Ri for all
i ∈ {1, . . . , n}. Once the sets Ri have been computed, it is clear that the existence
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of a play winning for all players is decidable in PTIME for all the three types of objec-
tives. For the Büchi and the co-Büchi cases, let us show how to compute the retaliation
regions Ri. We start with Büchi and we assume that each player wants to visit a set
of states Ti infinitely often. Computing the sets Ri boils down to computing the set
of states s from which Player i has a strategy to enforce the objective (in LTL syntax)
�♦Ti ∨

∧j=n
j=1 ♦�Tj , which is equivalent to the formula �♦Ti ∨ ♦�

⋂j=n
j=1 Tj . This is

equivalent to a disjunction of a Büchi and a co-Büchi objective, which is thus equivalent
to a Streett objective with one Streett pair and can be solved in PTime with a classical
algorithm, e.g. [27]. Similarly, for co-Büchi objectives, one can reduce the computa-
tion of the regions Ri in polynomial time to the disjunction of a Büchi objective and a
co-Büchi objective.

For the parity case, the winning objectives for the retaliation sets can be encoded
compactly as Muller objectives defined by a propositional formula using one proposi-
tion per state. Then they can be solved in PSPACE using the algorithm of Emerson and
Lei presented in [15]. ��

Let us now establish the lower bounds.

Lemma 3. The problem of deciding the existence of a DE in an n-player game arena
is PTIME-HARD for Büchi and co-Büchi objectives, NP-HARD and CONP-HARD for
parity objectives. All the hardness results hold even for 2-player game arenas.

Proof. The hardness for Büchi and co-Büchi objectives holds already for 2 players. We
describe the reduction for Büchi and it is similar for co-Büchi. We reduce the problem
of deciding the winner in a two-player zero-sum game arena G with a Büchi objective
(known as a PTIME-HARD problem [18]) to the existence of a DE for Büchi objectives
with two players. Consider a copy G′ of the game arena G and the following two ob-
jectives: Player 1 has the same Büchi objective as Player 1 in G, and Player 2 has a
trivial Büchi objective (i.e. all states are Büchi states). Then clearly there exists a DE in
G′ iff Player 1 has a winning strategy in G. Details are given in the long version of this
paper [8].

For parity games, we can reduce zero-sum two-player games with a conjunction of
parity objectives (known to be CONP-HARD [12]) to the existence of a DE in a three
player game with parity objectives. Similarly, we can reduce the problem of deciding the
winner in a two-player zero-sum game with a disjunction of parity objectives (known to
be NP-HARD [12]) to the existence of a DE in a two-player game with parity objectives.
The main idea in the two cases is to construct a game arena where one of the players can
retaliate iff Player 1 in the original two-player zero-sum game has a winning strategy.
Details are given in the long version of this paper [8]. ��

As a corollary of this result, deciding the existence of a secure equilibrium in a 2-
player game such that both players satisfy their parity objectives is NP-HARD.

Reachability Objectives. We now establish the complexity of deciding the existence
of a doomsday equilibria in an n-player game with reachability objectives. We first
establish an important property for reachability objectives:
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Proposition 1. Let G = (S,P , sinit, Σ,Δ) be a game arena, and (Ti)1≤i≤n be n
subsets of S. Let Λ be a doomsday equilibrium in G for the reachability objectives
(Reach(Ti))1≤i≤n. Let s the first state in outcome(Λ) such that s ∈ ⋃

i Ti. Then every
player has a strategy from s, against all the other players, to reach his target set.

Proof. W.l.o.g. we can assume that s ∈ T1. If some player, say Player 2, as no strategy
from s to reach his target set T2, then necessarily s 	∈ T2 and by determinancy the other
players have a strategy from s to make Player 2 lose. This contradicts the fact that Λ is
a doomsday equilibrium as it means that Λ2 is not a retaliating strategy. ��

Lemma 4. The problem of deciding the existence of a doomsday equilibrium in an n-
player game with reachability objectives is in PTIME.

Proof. The algorithm consists in:
(1) computing the sets Ri from which player i can retaliate, i.e. the set of states s

from which Player i has a strategy to force, against all other players, an outcome such
that ♦Ti ∨ (

∧j=n
j=1 �Tj). This set can be obtained by first computing the set of states

〈〈i〉〉♦Ti from which Player i can force to reach Ti. It is done in PTIME by solving
a classical two-player reachability game. Then the set of states where Player i has a
strategy λi such that outcomei(λi) |= �((

⋂j=n
j=1 Tj) ∨ 〈〈i〉〉♦Ti)}, that is to confine

the plays in states that do not satisfy the reachability objectives of the adversaries or
from where Player i can force its own reachability objective. Again this can be done in
PTIME by solving a classical two-player safety game.

(2) then, checking the existence of some i ∈ {1, . . . , n} and some finite path π

starting from sinit and that stays within
⋂j=n

j=1 Rj before reaching a state s such that

s ∈ Ti and s ∈ ⋂j=n
j=1 〈〈j〉〉♦Tj .

Let us now prove the correctness of our algorithm. From its output, we can construct
the strategy profile Λ where each Λj (j = 1, . . . , n) is as follows: follow π up to the
point where either another player deviates and then play the retaliating strategy available
in Ri, or to the point where s is visited for the first time and then play according to a
strategy (from s) that force a visit to Ti no matter how the other players are playing.
Clearly, Λ witnesses a DE. Indeed, if s is reached, then all players have a strategy to
reach their target set (including Player i since s ∈ Ti) . By playing so they will all
eventually reach it. Before reaching s, if some of them deviate, the other have a strategy
to retaliate as π stays in

⋂j=n
j=1 Rj . The other direction follows from Proposition 1. ��

Lemma 5. The problem of deciding the existence of a DE in a 2-player game with
reachability objectives is PTIME-HARD.

Proof. It is proved by an easy reduction from the And-Or graph reachability prob-
lem [18]: if reachability is trivial for one of the two players, the existence of a doomsday
equilibrium is equivalent to the existence of a winning strategy for the other player in a
two-player zero sum reachability game. ��

Safety Objectives. We establish the complexity of deciding the existence of a dooms-
day equilibrium in an n-player game with perfect information and safety objectives.
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Lemma 6 (EASYNESS). The existence of a doomsday equilibrium in an n-player game
with safety objectives can be decided in PSPACE, and in PTIME for game arenas with
a fixed number of players.

Proof. We start with the general case where the number of players is not fixed and is
part of the input. Let us consider an n-player game arena G = (S,P , sinit, Σ,Δ) and
n safety objectives safe(T1), . . . , safe(Tn) for T1 ⊆ S, . . . , Tn ⊆ S. The algorithm is
composed of the following two steps:

(1) For each Player i, compute the set of states s ∈ S in the game such that Player i
can retaliate whenever necessary, i.e. the set of states s from where there exists a strat-
egy λi for Player i such that outcomei(λi) satisfies ¬(�Ti) →

∧j=n
j=1 ¬�Tj , or equiv-

alently ¬(♦Ti) ∨
∧j=n

j=1 ♦Tj . This can be done in PSPACE using a result by Alur et al.
(Theorem 5.4 of [2]) on solving two-player games whose Player 1’s objective is de-
fined by Boolean combinations of LTL formulas that use only ♦ and ∧. We denote by
Ri the set of states in G where Player i has a strategy to retaliate.

(2) then, verify whether there exists an infinite path in
⋂i=n

i=1 (safe(Ti) ∩Ri).
Now, let us establish the correctness of this algorithm. Assume that an infinite path
exists in

⋂i=n
i=1 (safe(Ti)∩Ri). The strategies λi for each Player i are defined as follows:

play the moves that are prescribed as long as every other players do so, and as soon as
the play deviates from the infinite path, play the retaliating strategy.

It is easy to see that the profile of strategies Λ = (λ1, λ2, . . . , λn) is a DE. Indeed,
the states are all safe for all players as long as they play their strategies. Moreover, as
before deviation the play is within

⋂i=n
i=1 Ri, if Player j deviates, we know that the state

that is reached after deviation is still in
⋂j=n

j=1 Rj and therefore the other players can
retaliate.

Second, assume that Λ = (λ1, λ2, . . . , λn) is a DE in the n-player game G for the
safety objectives (safe(Ti))1≤i≤n. Let ρ = outcome(λ1, λ2, . . . , λn). By definition
of doomsday equilibrium, we know that all states appearing in ρ satisfy all the safety
objectives, i.e. ρ |= ∧i=n

i=1 �Ti. Let us show that the play also remains within
⋂i=n

i=1 Ri.
Let s be a state of ρ, i ∈ {1, . . . , n}, and π the finite prefix of ρ up to s. By definition
of DE we have outcome(λi) |= �Ti ∨

∧j=n
j=1 ♦Tj . Therefore for all outcomes ρ′ of λi

in Gs, πρ′ |= �Ti ∨
∧j=n

j=1 ♦Tj . Moreover, π |= ∧j=n
j=1 �Tj since it is a prefix of ρ.

Therefore ρ′ |= �Ti ∨
∧j=n

j=1 ♦Tj and s ∈ Ri. Since it holds for all i ∈ {1, . . . , n}, we

get s ∈ ⋂i=n
i=1 Ri.

Let us now turn to the case where the number of players is fixed. Then clearly, in
the construction above, all the LTL formulas are of fixed size and so all the associated
games can then be solved in polynomial time. ��
Lemma 7 (HARDNESS). The problem of deciding the existence of a doomsday equilib-
rium in an n-player game with safety objectives is PSPACE-HARD, and PTIME-HARD

when the number of players is fixed.

Proof. For the general case, we present a reduction from the problem of deciding the
winner in a zero-sum two-player game with a conjunction of k reachability objectives
(aka generalized reachability games), which is a PSPACE-C problem [3]. The idea of the
reduction is to construct a non-zero sum (k + 1)-player game where one of the players
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Fig. 3. Game arena with imperfect information and Büchi objectives. Only undistinguishable
states of Player 1 (circle) are depicted. Observations are symmetric for the other players.

has a retaliating strategy iff there is a winning strategy in the generalized reachability
game.

When the number of players is fixed, PTIME-HARDNESS is proved by an easy re-
duction from the And-Or graph reachability problem [18]. ��

4 Complexity of DE for Imperfect Information Games

In this section, we define n-player game arenas with imperfect information. We adapt to
this context the notions of observation, observation of a play, observation-based strate-
gies, and we study the notion of doomsday equilibria when players are restricted to play
observation-based strategies.

Game Arena with Imperfect Information. An n-player game arena with imperfect
information is a tuple G = (S,P , sinit, Σ,Δ, (Oi)1≤i≤n) such that (S,P , sinit, Σ,Δ)
is a game arena (of perfect information) and for all i, 1 ≤ i ≤ n, Oi ⊆ 2S is a
partition of S. Each block in Oi is called an observation of Player i. We assume that
the players play in a predefined order2: for all i ∈ {1, . . . , n}, all q ∈ Si and all σ ∈ Σ,
Δ(q, σ) ∈ S(i mod n)+1.

Observations. For all i ∈ {1, . . . , n}, we denote by Oi(s) ⊆ S the block in Oi that
contains s, that is the observation that Player i has when he is in state s. We say that
two states s, s′ are undistinguishable for Player i if Oi(s) = Oi(s

′). This defines an

2 This restriction is not necessary to obtain the results presented in this section (e.g. Theorem 2)
but it makes some of our notations lighter.
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equivalence relation on states that we denote by ∼i. The notions of plays and prefixes of
plays are slight variations from the perfect information setting: a play in G is a sequence
ρ = s0, σ0, s1, σ1, · · · ∈ (S ·Σ)ω such that s0 = sinit, and for all j ≥ 0, we have sj+1 =
Δ(sj , σj). A prefix of play is a sequence π = s0, σ0, s1, σ1, . . . , sk ∈ (S ·Σ)∗ · S that
can be extended into a play. As in the perfect information setting, we use the notations
Plays(G) and PrefPlays(G) to denote the set of plays in G and its set of prefixes, and
PrefPlaysi(G) for the set of prefixes that end in a state that belongs to Player i. While
actions are introduced explicitly in our notion of play and prefix of play, their visibility
is limited by the notion of observation. The observation of a play ρ = s0, σ0, s1, σ1, . . .
by Player i is the infinite sequence written Obsi(ρ) ∈ (Oi × (Σ ∪ {τ})ω such that for
all j ≥ 0, Obsi(ρ)(j) = (Oi(sj), τ) if sj 	∈ Si, and Obsi(ρ)(j) = (Oi(sj), σj) if
sj ∈ Si. Thus, only actions played by Player i are visible along the play, and the actions
played by the other players are replaced by τ . The observation Obsi(π) of a prefix π is
defined similarly. Given an infinite sequence of observations η ∈ (Oi × (Σ ∪ {τ}))ω
for Player i, we denote by γi(η) the set of plays in G that are compatible with η, i.e.
γi(η) = {ρ ∈ Plays(G) | Obsi(ρ) = η}. The functions γi are extended to prefixes of
sequences of observations naturally.

Observation-Based Strategies and Doomsday Equilibria. A strategy λi of Player
i is observation-based if for all prefixes of plays π1, π2 ∈ PrefPlaysi(G) such
that Obsi(π1) = Obsi(π2), it holds that λi(π1) = λi(π2), i.e. while playing with
an observation-based strategy, Player i plays the same action after undistinguish-
able prefixes. A strategy profile Λ is observation-based if each Λi is observation-
based. Winning objectives, strategy outcomes and winning strategies are defined as
in the perfect information setting. We also define the notion of outcome relative to
a prefix of a play. Given an observation-based strategy λi for Player i, and a pre-
fix π = s0, σ0, . . . , sk ∈ PrefPlaysi(G), the strategy λπ

i is defined for all prefixes
π′ ∈ PrefPlaysi(Gsk) where Gsk is the game arena G with initial state sk, by
λπ
i (π

′) = λi(π · π′). The set of outcomes of the strategy λi relative to π is defined
by outcomei(π, λi) = π · outcomei(λ

π
i ).

The notion of doomsday equilibrium is defined as for games with perfect information
but with the additional requirements that only observation-based strategies can be used
by the players. Given an n-player game arena with imperfect information G and n
winning objectives (ϕi)1≤i≤n (defined as in the perfect information setting), we want
to solve the problem of deciding the existence of an observation-based strategy profile
Λ which is a doomsday equilibrium in G for (ϕi)1≤i≤n.

Example 3. Fig. 3 depicts a variant of the example in the perfect information setting,
with imperfect information. In this example let us describe the situation for Player 1. It
is symmetric for the other players. Assume that when Player 2 or Player 3 send their
information to Player 1 (modeled by a visit to his happy states), Player 1 cannot dis-
tinguish which of Player 2 or 3 has sent the information, e.g. because of the usage of
a cryptographic primitive. Nevertheless, let us show that there exists doomsday equi-
librium. Assume that the three players agree on the following protocol: Player 1 and 2
send their information but not Player 3.

Let us show that this sequence witnesses a doomsday equilibrium and argue that
this is the case for Player 1. From the point of view of Player 1, if all players follow
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this profile of strategies then the outcome is winning for Player 1. Now, let us consider
two types of deviation. First, assume that Player 2 does not send his information (i.e.
does not visit the happy states). In that case Player 1 will observe the deviation and
can retaliate by not sending his own information. Therefore all the players are losing.
Second, assume that Player 2 does not send his information but Player 3 does. In this
case it is easy to verify that Player 1 cannot observe the deviation and so according
to his strategy will continue to send his information. This is not problematic because
all the plays that are compatible with Player 1’s observations are such that: (i) they
are winning for Player 1 (note that it would be also acceptable that all the sequence
are either winning for Player 1 or losing for all the other players), and (ii) Player 1 is
always in position to retaliate along this sequence of observations. In our solution below
these two properties are central and will be called doomsday compatible and good for
retaliation. �

Generic Algorithm. We present a generic algorithm to test the existence of an
observation-based doomsday equilibrium in a game of imperfect information. To
present this solution, we need two additional notions: sequences of observations which
are doomsday compatible and prefixes which are good for retaliation. These two no-
tions are defined as follows. In a game arena G = (S,P , sinit, Σ,Δ, (Oi)1≤i≤n) with
imperfect information and winning objectives (ϕi)1≤i≤n,

– a sequence of observations η ∈ (Oi × (Σ ∪ {τ}))ω is doomsday compatible (for
Player i) if γi(η) ⊆ ϕi ∪

⋂j=n
j=1 ϕj , i.e. all plays that are compatible with η are

either winning for Player i, or not winning for any other player,
– a prefix κ ∈ (Oi × (Σ ∪ {τ}))∗ · Oi of a sequence of observations is good for

retaliation (for Player i) if there exists an observation-based strategy λR
i such that

for all prefixes π ∈ γi(κ) compatible with κ, outcome(π, λR
i ) ⊆ ϕi ∪

⋂j=n
j=1 ϕj .

The next lemma shows that the notions of sequences of observations that are dooms-
day compatible and good for retaliation prefixes are important for studying the existence
of doomsday equilibria for imperfect information games.

Lemma 8. Let G be an n-player game arena with imperfect information and winning
objectives ϕi, 1 ≤ i ≤ n. There exists a doomsday equilibrium in G if and only if there
exists a play ρ in G such that:

(F1) ρ ∈ ⋂i=n
i=1 ϕi, i.e. ρ is winning for all the players,

(F2) for all Player i, 1 ≤ i ≤ n, for all prefixes κ of Obsi(ρ), κ is good for retaliation
for Player i,

(F3) for all Player i, 1 ≤ i ≤ n, Obsi(ρ) is doomsday compatible for Player i.

Proof. First, assume that conditions (F1), (F2) and (F3) hold and show that there exists
a DE in G. We construct a DE (λ1, . . . , λn) as follows. For each player i, the strategy
λi plays according to the (observation of the) path ρ in G, as long as the previous
observations follow ρ. If an observation is unexpected for Player i (i.e., differs from the
sequence in ρ), then λi switches to an observation-based retaliating strategy λR

i (we will
show that such a strategy exists as a consequence of (F2)). This is a well-defined profile
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and a DE because: (1) all strategies are observation-based, and the outcome of the
profile is the path ρ that satisfies all objectives; (2) if no deviation from the observation
of ρ is detected by Player i, then by condition (F3) we know that if the outcome does
not satisfy ϕi, then it does not satisfies ϕj , for all 1 ≤ j ≤ n, (3) if a deviation from
the observation of ρ is detected by Player i, then the sequence of observations of Player
i so far can be decomposed as κ = κ1(o1, σ1) . . . (om, σnm where (o1, σ1) is the first
deviation of the observation of ρ, and (om, σm) is the first time it is Player i’s turn to
play after this deviation (so possibly m = 1). By condition (F2), we know that κ1 is
good for retaliation. Clearly, κ1(o1, σ1) . . . (o�, σ�) is retaliation compatible as well for
all � ∈ {1, . . . ,m} since retaliation goodness is preserved by player j’s actions for all
j. Therefore κ is good for retaliation and by definition of retaliation goodness there
exists an observation-based retaliation strategy λR

i for Player i which ensures that that
regardless of the strategies of the opponents in coalition, if the outcome does not satisfy
ϕi, then for all j ∈ {1, . . . , n}, it does not satisfy ϕj either.

Second, assume that there exists a DE (λ1, . . . , λn) in G, and show that (F1), (F2)
and (F3) hold. Let ρ be the outcome of the profile (λ1, . . . , λn). Then ρ satisfies (F1) by
definition of DE. Let us show that it also satisfies (F3). By contradiction, if obsi(ρ) is
not doomsday compatible for Player i, then by definition, there is a path ρ′ in Plays(G)
that is compatible with the observations and actions of player i in ρ (i.e., obsi(ρ) =
obsi(ρ

′)), but ρ′ does not satisfy ϕi, while it satisfies ϕj for some j 	= i. Then, given the
strategy λi from the profile, the other players in coalition can choose actions to construct
the path ρ′ (since ρ and ρ′ are observationally equivalent for player i, the observation-
based strategy λi is going to play the same actions as in ρ). This would show that the
profile is not a DE, establishing a contradiction. Hence obsi(ρ) is doomsday compatible
for Player i for all i = 1, . . . , n and (F3) holds. Let us show that ρ also satisfies (F2).
Assume that this not true. Assume that κ is a prefix of obsi(ρ) such that κ is not good
for retaliation for Player i for some i. By definition it means that the other players can
make a coalition and enforce an outcome ρ′, from any prefix of play compatible with
κ, that is winning for one of players of the coalition, say Player j, j 	= i, and losing for
Player i. This contradicts the fact that λi belongs to a DE. ��
Theorem 2. The problem of deciding the existence of a doomsday equilibrium in an
n-player game arena with imperfect information and n objectives is EXPTIME-C for
objectives that are either all reachability, all safety, all Büchi, all co-Büchi or all parity
objectives. Hardness already holds for 2-player game arenas.

Proof. By Lemma 8, we know that we can decide the existence of a doomsday equilib-
rium by checking the existence of a play ρ in G that respects the conditions (F1), (F2),
and (F3). It can be shown (see Appendix), for all i ∈ {1, . . . , n}, that the set of good
for retaliation prefixes for Player i is definable by a finite-state automaton Ci, and the
set of observation sequences that are doomsday compatible for Player i is definable by
a Streett automaton Di.

From the automata (Di)1≤i≤n and (Ci)1≤i≤n, we construct using a synchronized
product a finite transition system T and check for the existence of a path in T that
satisfy the winning objectives for each player in G, the Streett acceptance conditions
of the (Di)1≤i≤n, and whose all prefixes are accepted by the automata (Ci)1≤i≤n. The
size of T is exponential in G and the acceptance condition is a conjunction of Streett
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and safety objectives. The existence of such a path can be established in polynomial
time in the size of T , so in exponential time in the size of G. The EXPTIME-hardness is
a consequence of the EXPTIME-hardness of two-player games of imperfect information
for all the considered objectives [4,9]. ��

5 Conclusion

We defined the notion of doomsday threatening equilibria both for perfect and imperfect
informationn player games with omega-regular objectives. This notion generalizes to n
player games the winning secure equilibria [10]. Applications in the analysis of security
protocols are envisioned and will be pursued as future works.

We have settled the exact complexity in games of perfect information for almost
all omega-regular objectives with complexities ranging from PTIME to PSPACE, the
only small gap that remains is for parity objectives where we have a PSPACE algorithm
and both NP and CONP-hardness. Surprisingly, the existence of doomsday threatening
equilibria in n player games with imperfect information is decidable and more precisely
EXPTIME-C for all the objectives that we have considered.

In a long version of this paper [8], we provide a solution in 2EXPTIME for deciding
the existence of a doomsday threatening equilibrium in a game whose objectives are
given as LTL formula (this solution is optimal as it is easy to show that the classical LTL
realizability problem can be reduced to the DE existence problem). We also provide a
Safraless solution [21] suitable to efficient implementation.
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A Additional Details – Doomsday Equilibria for Imperfect
Information Games

We present automata constructions to recognise sequences of observations that are
doomsday compatible and prefixes that are good for retaliation.
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Lemma 9. Given an n-player game G with imperfect information and a set of reach-
ability, safety or parity objectives (ϕi)1≤i≤n, we can construct for each Player i, in
exponential time, a deterministic Streett automaton Di whose language is exactly the
set of sequences of observations η ∈ (Oi× (Σ ∪{τ}))ω that are doomsday compatible
for Player i, i.e.

L(Di) = {η ∈ (Oi × (Σ ∪ {τ}))ω | ∀ρ ∈ γi(η) · ρ ∈ ϕi ∪
⋂

j �=i

ϕj}.

For each Di, the size of its set of states is bounded by O(2nk log k) and the number of
Streett pairs is bounded by O(nk2) where k is the number of states in G.

Proof. Let G = (S, (Si)1≤i≤n, sinit, Σ,Δ, (Oi)1≤i≤n), and let us show the construc-
tions for Player i, 1 ≤ i ≤ n. We treat the three types of winning conditions as follows.

We start with safety objectives. Assume that the safety objectives are defined implic-
itly by the following tuple of sets of safe states: (T1, T2, . . . , Tn), i.e. ϕi = safe(Ti).
First, we construct the automaton

A = (QA, qAinit, (Oi × (Σ ∪ {τ}), δA)
over the alphabet Oi × (Σ ∪ {τ}) as follows:

– QA = S, i.e. the states of A are the states of the game structure G,
– qAinit = sinit,
– (q, (o, σ), q′) ∈ δA if q ∈ o and there exists σ′ ∈ Σ such that Δ(q, σ′) = q′ and

such that σ = τ if q 	∈ Si, and σ = σ′ if q ∈ Si.

The acceptance condition of A is universal and expressed with LTL syntax:

A word w is accepted by A iff all runs ρ of A on w satisfy ρ |= �Ti ∨
∧

j �=i ♦Tj .

Clearly, the language defined by A is exactly the set of sequences of observations η ∈
(Oi × (Σ ∪ {τ}))ω that are doomsday compatible for Player i, this is because the
automatonA checks (using universal nondeterminism) that all plays that are compatible
with a sequence of observations are doomsday compatible.

Let us show that we can construct a deterministic Streett automaton Di that ac-
cepts the language of A and whose size is such that: (i) its number of states is at most
O(2(nk log k)) and (ii) its number of Streett pairs is at most O(nk). We obtain D with
the following series of constructions:

– First, note that we can equivalently see A as the intersection of the languages of
n − 1 universal automata Aj with the acceptance condition �Ti ∨ ♦Tj , j 	= i,
1 ≤ j ≤ n.

– Each Aj can be modified so that a violation of Ti is made permanent and a visit
to Tj is recorded. For this, we use a state space which is equal to QA × {0, 1} ×
{0, 1}, the first bit records a visit to Ti and the second a visit to Tj . We denote this
automaton by A′

j , and its acceptance condition is now �♦(QA × {0, 1}× {0}) →
�♦(QA×{0}×{0, 1}). Clearly, this is a universal Streett automaton with a single
Streett pair.
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– A′
j , which is a universal Streett automaton, can be complemented (by duality) by

interpreting it as a nondeterministic Rabin automaton (with one Rabin pair). This
nondeterministic Rabin automaton can be made deterministic using a Safra like
procedure, and according to [6] we obtain a deterministic Rabin automaton with
O(2k log k) states and O(k) Rabin pairs. Let us call this automaton A′′

j .
– Now, A′′

j can be complemented by considering its Rabin pairs as Streett pairs (by
dualization of the acceptance condition): we obtain a deterministic Streett automa-
ton with O(k) Streett pairs for each Aj .

– Now, we need to take the intersection of the n − 1 deterministic automata A′′
j

(interpreted as Streett automata). Using a classical synchronized product we obtain
a single deterministic Streett automaton Di of size with O(2nk log k) states and
O(nk) Streett pairs. This finishes our proof for safety objectives.

Let us now consider reachability objectives. Therefore we now assume the states
in T1, . . . , Tn to be target states for each player respectively, i.e. ϕi = reach(Ti). The
construction is in the same spirit as the construction for safety. Let A = (QA, qAinit, Oi×
(Σ∪{τ}), δA) be the automaton over (Oi×(Σ∪{τ}) constructed fromG as for safety,
with the following (universal) acceptance condition;

A word w is accepted by A iff all runs ρ of A on w satisfy ρ |= (
∨

j �=i ♦Tj)→♦Ti.

Clearly, the language defined by A is exactly the set of sequences of observations η ∈
((Σ ∪ {τ}) × Oi)

ω that are doomsday compatible for Player i (w.r.t. the reachability
objectives). Let us show that we can construct a deterministic Streett automaton Di that
accepts the language of A and whose size is such that: (i) its number of states is at most
O(2(nk log k)) and (ii) its number of Streett pairs is at most O(nk). We obtain Di with
the following series of constructions:

– First, the acceptance condition can be rewritten as
∧

j �=i(♦Tj → ♦Ti). Then
clearly if Aj is a copy of A with acceptance condition ♦Tj → ♦Ti then L(A) =⋂

j �=i L(Aj).
– For each Aj , we construct a universal Streett automaton with one Streett pair

by memorizing the visits to Ti and Tj and considering the acceptance condition
�♦Tj → �♦Ti. So, we get a universal automaton with a single Streett pair.

– Then we follow exactly the last three steps (3 to 5) of the construction for safety.

Finally, let us consider parity objectives. The construction is similar to the other
cases. Specifically, we can take as acceptance condition for A the universal condition∧

j �=i(parityi∨parityj), and treat each condition parityi∨parityj separately. We dualize

the acceptance condition ofA, into the nondeterministic condition parityi∧parityj . This
acceptance condition can be equivalently expressed as a Streett condition with at most
O(k) Streett pairs. This automaton accepts exactly the set of observation sequences
that are not doomsday compatible for Player i against Player j. Now, using optimal
procedure for determinization, we can obtain a deterministic Rabin automaton, with
O(k2) pairs that accepts the same language [26]. Now, by interpreting the pairs of the
acceptance condition as Streett pairs instead of Rabin pairs, we obtain a deterministic
Streett automaton Aj that accepts the set of observations sequences that are doomsday
compatible for Player i against Player j. Now, it suffices to take the product of the n−1
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deterministic Streett automata Aj to obtain the desired automaton A, its size is at most
O(2nk log k) with at most O(nk2) Streett pairs. ��
Lemma 10. Given an n-player game arena G with imperfect information and a set of
reachability, safety or parity objectives (ϕi)1≤i≤n, for each Player i, we can construct
a finite-state automaton Ci that accepts exactly the prefixes of observation sequences
that are good for retaliation for Player i.

Proof. Let us show how to construct this finite-state automaton for any Player i, 1 ≤
i ≤ n. Our construction follows these steps:

– First, we construct from G, according to Lemma 9, a deterministic Streett automa-
ton Di = (QDi , qDi

init, (Oi × (Σ ∪ {τ}), δDi , StDi) that accepts exactly the set of
sequences of observations η ∈ (Oi × (Σ ∪ {τ}))ω that are doomsday compatible
for Player i. The number of states in Di is O(2|S|2 log |S|) and the number of Streett
pairs is bounded by O(|S|2 · n), where |S| is the number of states in G.

– Second, we consider a turn-based game played on Di by two players, A and B, that
move a token from states to states along edges of Di as follows:
1. initially, the token is in some state q
2. then in each round: B chooses an observation o ∈ Oi s.t. ∃(q, (o, σ), q′) ∈

δDi . Then A chooses a transition (q, (o, σ), q′) ∈ δDi (which is completely
determined by σ as Di is deterministic), and the token is moved to q′ where a
new round starts.

The objective of A is to enforce from state q an infinite sequence of states, so a
run of Di that starts in q, and which satisfies StDi the Streett condition of Di. For
each q, this can be decided in time polynomial in the number of states in Di and
exponential in the number of Streett pairs in StDi , see [27] for an algorithm with
the best known complexity. Thus, the overall complexity is exponential in the size
of the game structure G. We denote by Win ⊆ QDi the set of states q from which
A can win the game above.

– Note that if (o1, σ1) . . . (om, σm) is the trace of a path from qinit in Di to a state
q ∈ Win, then clearly (o1, σ1) . . . (on−1, σn−1)on is good for retaliation. Indeed,
the winning strategy of A in q is an observation based retaliating strategy λR

i for
Player i in G. On the other hand, if a prefix of observations reaches q 	∈ Win
then by determinacy of Streett games, we know that B has a winning strategy in
q and this winning strategy is a strategy for the coalition (against Player i) in G
to enforce a play in which Player i does not win and at least one of the other
players wins. So, from Di and Win, we can construct a finite state automaton Ci

which is obtained as a copy of Di with the following acceptance condition: a prefix
κ = (o0, σ0), (o1, σ1), . . . , (ok−1, σk−1), ok is accepted by Ci if there exists a path
q0q1 . . . qk in Ci such that q0 is the initial state of Ci and either there exists a
transition labeled (ok, σ) from qk to a state of Win. ��
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