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1 VERIMAG/CNRS, Grenoble, France
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Abstract. This paper proves the NP-completeness of the reachability problem
for the class of flat counter machines with difference bounds and, more generally,
octagonal relations, labeling the transitions on the loops. The proof is based on
the fact that the sequence of powers {Ri}∞

i=1 of such relations can be encoded as
a periodic sequence of matrices, and that both the prefix and the period of this
sequence are 2O(||R||2) in the size of the binary encoding ||R||2 of a relation R. This
result allows to characterize the complexity of the reachability problem for one
of the most studied class of counter machines [6,10], and has a potential impact
on other problems in program verification.

1 Introduction

Counter machines are powerful abstractions of programs, commonly used in software
verification. Due to their expressive power, counter machines can simulate Turing
machines [18], hence, in theory, any program can be viewed as a counter machine.
In practice, effective reductions to counter systems have been designed for programs
with dynamic heap data structures [3], arrays [5], dynamic thread creation and shared
memory [1], etc. Since counter machines with only two variables are Turing-complete
[18], all their decision problems (reachability, termination) are undecidable. This early
negative result motivated researchers to find classes of systems with decidable prob-
lems, such as: (branching) vector addition systems [13,17], reversal-bounded counter
machines [16], Datalog programs with gap-order constraints [20], and flat counter ma-
chines [2,10,6]. Despite the fact that reachability of a set of configurations is decidable
for these classes, few of them are actually supported by tools, and used for real-life
verification purposes. The main reason is that the complexities of the reachability prob-
lems for these systems are, in general, prohibitive. Thus, most software verifiers rely on
incomplete algorithms, which, due to the loss of precision, may raise large numbers of
false alarms. Improving the precision of these tools requires mixed techniques such as
combinations of static analysis and acceleration and relies on identifying subproblems
for which the set of reachable states, or the transitive closure of the transition relation,
can be computed precisely [14].

We study the complexity of the reachability problems for a class of flat counter
machines (i.e., the control structure forbids nested loops), in which the transitions oc-
curring inside loops are all labeled with difference bounds constraints, i.e. conjunctions
of linear inequalities of the form x− y ≤ c where x,y ∈ x∪ x′ and c ∈ Z is a constant.
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Furthermore, we extend the result to the case of octagonal relations, which are conjunc-
tions of the form ±x± y ≤ c.

The decidability of the reachability problem for these classes relies on the fact that
the transitive closures R+ of relations R, defined by difference bounds and octagonal
constraints, are expressible in Presburger arithmetic [10]. In [6], we presented a concise
proof of this fact, based on the observation that any sequence of powers {Ri}i=1, can
be encoded as a periodic sequence of matrices, which can be defined by a quantifier-
free Presburger formula whose size depends on the prefix and the period of the matrix
sequence. In this paper we show primarily that both the prefix and period and this
sequence are of the order of 2O(||R||2), where ||R||2 is the size of the binary encoding of
the relation. More precisely, the quantifier-free Presburger formula defining a transitive
closure (and, implicitly, the reachability problem for the counter machine) has 2O(||R||2)
many disjuncts of polynomial size. A non-deterministic Turing machine that solves the
reachability problem can guess, for each loop relation R, the needed disjunct of R+, and
validate its guess in NPTIME(||R||2).

Related Work. The complexity of safety, and, more generally, temporal logic proper-
ties of integer counter machines has received relatively little attention. For instance,
the exact complexity of reachability for vector addition systems (VAS) is an open
problem (the only known upper bound is non-primitive recursive), while the coverage
and boundedness problems are EXPSPACE-complete for VAS [19], and 2EXPTIME-
complete for branching VAS [13].

In [15] the authors study the functional equivalence of programs with increment,
decrement and zero test, in the reversal-bounded case, where the counters are allowed to
switch between non-decreasing and non-increasing modes a number of times which is
bounded by a constant. It is found that the equivalence problem is in PSPACE, while the
in-equivalence problem is NP-complete. Our model of computation is incomparable,
since flat programs with non-deterministic updates are not reversal-bounded.

On what concerns counter machines with gap-order constraints (a restriction of dif-
ference bounds constraints x−y≤ c to the case c≤ 0), reachability is PSPACE-complete
[9], even in the absence of the flatness restriction on the control structure. Our result is
incomparable to [9], as we show NP-completeness for flat counter machines with more
general1, difference bounds relations on loops.

The results which are probably closest to ours are the ones in [12,11], where flat
counter machines with deterministic transitions of the form

∧m
j=1 ∑n

i=1 a ji · xi + b ji ≤
0∧∧n

i=1 x′i = xi + ci are considered. In [12] it is shown that model-checking LTL is
NP-complete for these systems, matching thus our complexity for reachability with dif-
ference bounds constraints, while model-checking first-order logic and linear µ-calculus
is PSPACE-complete [11], matching the complexity of CTL* model checking for gap-
order constraints [9]. These results are again incomparable with ours, since (i) the linear
guards are more general, while (ii) the vector addition updates are more restrictive (e.g.
the direct transfer of values x′i = x j for i �= j is not allowed).

1 The generalization of gap-order to difference bound constraints suffices to show undecidability
of non-flat counter machines, hence the restriction to flat control structures is crucial.
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2 Preliminary Definitions

We denote by Z and N the sets of integers and positive integers, and let Z∞ = Z∪
{∞}. We write [n] for the interval {0, . . . ,n− 1}, abs(n) for the absolute value of the
integer n ∈ Z, and lcm(n1, . . . ,nk) for the least common multiple of n1, . . . ,nk ∈ N.
Let x denote a nonempty set of variables, and x′ = {x′ | x ∈ x}. A valuation of x is
a function ν : x −→ Z. The set of all such valuations is denoted by Z

x, and we denote
by Z

N the N-times cartesian product Z× . . .×Z, for some N > 0. We assume that
the reader is familiar with Presburger arithmetic, and we denote by QFPA (quantifier-
free Presburger arithmetic) the set of boolean combinations of linear inequalities and
linear modulo constraints. For a QFPA formula φ, let Atom(φ) denote the set of atomic
propositions in φ, and ϕ[t/x] denote the formula obtained by substituting the variable x
with the term t in ϕ.

A formula φ(x,x′) is evaluated with respect to two valuations ν1,ν2 ∈ Z
x, by replac-

ing each occurrence of x ∈ x with ν1(x) and each occurrence of x′ ∈ x′ with ν2(x) in φ.
The satisfaction relation is denoted by (ν1,ν2) |= φ(x,x′). A formula φR(x,x′) is said
to define a relation R ⊆ Z

x ×Z
x whenever for all ν1,ν2 ∈ Z

x, (ν1,ν2) ∈ R if and only
if (ν1,ν2) |= φR. The composition of two relations R1,R2 ⊆ Z

x ×Z
x defined by formu-

lae ϕ1(x,x′) and ϕ2(x,x′), respectively, is the relation R1 ◦R2, defined by the formula
∃y . ϕ1(x,y)∧ϕ2(y,x′). The identity relation Idx is defined by the formula

∧
x∈x x′ = x.

Definition 1. A class of relations is a set R of QFPA formulae φR(x,x′) defining rela-
tions R ⊆Z

x ×Z
x, such that Idx is R -definable, and, for any two R -definable relations

R1,R2 ⊆ Z
x ×Z

x, their composition R1 ◦R2 is R -definable.

Notice that any set R of formulae ϕ(x,x′) that has quantifier elimination is a class
of relations. If the class of a relation is not specified a priori, we consider it to be
the set of all QFPA formulae. Given a relation R, we denote by Ri, for i > 0, the i-
times composition of R with itself, and by R0 the identity relation Idx. We denote by
R+ =

⋃∞
i=1 Ri the transitive closure of R. Notice that, if R is an R -definable relation,

then the sequence {Ri}i≥0 is R -definable as well. In the following, we sometimes use
the same symbol to denote a relation R ⊆ Z

x ×Z
x and the formula φR(x,x′) defining it.

For a constant c∈Z, we denote by ||c||2 = �log2(abs(c))�, if abs(c)> 2 and ||c||2 = 2,
otherwise, the size of its binary encoding2. The binary size of a formula is the sum of
the binary sizes of its coefficients. It is known that the satisfiability problem for QFPA is
NP-complete in the binary size of the formula [22]. The binary size of an R -definable3

relation R is ||R||R2 = min{||φR||2 | φR ∈ R , φR defines R}. When the class of a relation
is obvious from the context, it will be omitted. For space reasons, all proofs and missing
material are given in [7].

2 Abstracting from particular machine representations, we assume that at least 2 bits are needed
to encode each integer.

3 The class R is relevant here, because the same relation can be defined by a smaller formula
not in R
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3 The Reachability Problem for Flat Counter Machines

Formally, a counter machine is a tuple M = 〈x,L, �init , � f in,⇒,Λ〉, where x is a set of
first-order variables ranging over Z, L is a set of control locations, �init , � f in ∈ L are

initial and final control locations, ⇒ is a set of transition rules of the form �
R⇒ �′,

where �,�′ ∈ L are control locations, and R ⊆ Z
x ×Z

x is a relation, and Λ(� R⇒ �′)
gives the class of R. A loop is a path in the control graph 〈L,⇒〉 of M, where the
source and the destination locations are the same, and every transition rule appears
only once. A counter machine is said to be flat if and only if every control location is
the source/destination of at most one loop. The binary size of a counter machine M is

||M||2 = ∑
�

R⇒�′
||R||Λ(�

R⇒�′)
2 .

A configuration of M is a pair (�,ν), where � ∈ L is a control location, and ν ∈
Z

x is a valuation of the counters. A run of M to � is a sequence of configurations
(�0,ν0), . . . ,(�k,νk), of length k ≥ 0, where �0 = �init , �k = �, and for each i= 0, . . . ,k−1,

there exists a transition rule �i
Ri⇒ �i+1 such that (νi,νi+1) ∈ Ri. If � is not specified, we

assume �= � f in, and say that the sequence is a run of M.
The reachability problem asks, given a counter machine M, whether there exists a

run in M? This problem is, in general, undecidable [18], and it is decidable for flat
counter machines whose loops are labeled only with certain, restricted, classes of QFPA
relations, such as difference bounds (Def. 7) or octagons (Def. 9). The crux of the
decidability proofs in these cases is that the transitive closure of any relation of the
above type can be defined in QFPA, and is, moreover, effectively computable (see [6] for
an algorithm). The goal of this paper is to provide tight bounds on the complexity of the
reachability problem in these decidable cases. The parameter of the decision problem
is the binary size of the input counter machine M, i.e. ||M||2. The following theorem
proves decidability of the reachability problem for flat counter machines, under the
assumption that the composition L of the relations on every loop in a counter machine
has a QFPA-definable transitive closure.

Theorem 1 ([8,6,2]). The reachability problem is decidable for any class of counter

machines M = {M flat counter machine | for all q
R1⇒ . . .

Rn⇒ q in M, (R1 ◦ . . .◦Rn)
+ is

QFPA-definable}.

4 Periodic Relations

We introduce a notion of periodicity on classes of relations that can be naturally repre-
sented as matrices. In general, an infinite sequence of integers is said to be periodic if
the elements of the sequence beyond a certain threshold (prefix), and which are situated
at equal distance (period) one from another, differ by the same quantity (rate). This no-
tion of periodicity is lifted to matrices of integers, entry-wise. If R is a periodic relation,
the sequence of powers {Rk}k≥0 has an infinite subsequence, that can be captured by a
QFPA formula, defining infinitely many powers of the relation.

Example 1. For instance, consider the relation R ⇔ x′ = y+ 1∧ y′ = x. This relation is
periodic, and we have R2k+1 ⇔ x′ = y+ k+1∧y′ = x+ k and R2k+2 ⇔ x′ = x+ k+1∧
y′ = y+ k+ 1, for all k ≥ 0.



246 M. Bozga, R. Iosif, and F. Konečný

Definition 2. An infinite sequence of matrices {Ak ∈ Z
m×m
∞ }∞

k=0 is said to be periodic
if and only if there exist integers b,c > 0 and matrices Λ0, . . . ,Λc−1 ∈ Z

m×m
∞ such that

Ab+(k+1)c+i = Λi +Ab+kc+i, for all k ≥ 0 and i ∈ [c].

The smallest integers b,c are called the prefix and the period of the sequence. The
matrices Λi, corresponding to the prefix-period pair (b,c), are called the rates of the
sequence. A relation R is said to be ∗-consistent if and only if Rn �= /0, for all n > 0.

Definition 3. A class of relations R is said to be periodic iff there exist two functions
σ : R →⋃

m>0Z
m×m
∞ and ρ :

⋃
m>0Z

m×m
∞ →R , such that ρ(σ(φ))⇔ φ, for each formula

φ ∈ R , and for any ∗-consistent relation R defined by a formula from R , the sequence
of matrices {σ(Ri)}i≥0 is periodic.

If R is a ∗-consistent relation, the prefix, period b,c > 0 and rates Λ0, . . . ,Λc−1 ∈ Z
m×m

of the {σ(Ri)}i≥0 sequence are called the prefix, period and rates of R, respectively.
Otherwise, if R is not ∗-consistent, we convene that its prefix is the smallest b > 0 such
that Rb = /0, and its period is one. Examples of mappings σ and ρ are given in Section
7.3 for difference bounds relations, and in Section 8.1 for octagonal relations.

Definition 4. Let R ⊆ Z
x × Z

x be a relation. The closed form of R is the formula
̂R(k,x,x′), where k �∈ x, such that the formula ̂R[n/k] defines Rn, for all n ≥ 0.

If R is a class of relations, let R [k] denote the set of closed forms of relations defined by
formulae in R 4. Let Z[k]m×m

∞ be the set of matrices M[k] of univariate linear terms, i.e.
Mi j ≡ ai j ·k+bi j, where ai j,bi j ∈ Z, for all 1 ≤ i, j ≤ m or Mi j = ∞. In addition to the σ
and ρ functions from Def. 3, we consider a function π :

⋃
m>0Z[k]

m×m
∞ →R [k], mapping

matrices M[k] into formulae φ(k,x,x′) such that π(M)[n/k]⇔ ρ(M[n/k]), for all n ≥ 0.
The following lemma characterizes the closed form of a periodic relation, by defining
an infinite periodic subsequence of powers of the form {Rkc+b+i}k≥0, for some b,c > 0
and i ∈ [c].

Lemma 1. Let R be a periodic class of relations, and R ⊆ Z
x ×Z

x be a R -definable
relation. Let b,c > 0 be integers, and Λi be matrices, for all i ∈ [c]. Consider the fol-
lowing statements, for all k ≥ 0 and i ∈ [c]:

1. R is ∗-consistent
2. ̂R(k · c+ b+ i) ⇔ π(k ·Λi+σ(Rb+i))

3. π(k ·Λi +σ(Rb+i)) �⇔ false
4. ∃y . π(k ·Λi +σ(Rb+i))(x,y) ∧ Rc(y,x′) ⇔ π((k+ 1) ·Λi+σ(Rb+i))(x,x′)

Then (1) and (2) hold if and only if (3) and (4) hold.

4 The closed form of a QFPA-definable relation can always be defined in first-order arithmetic,
using Gödel’s encoding of integer sequences, and is not, in general, equivalent to a QFPA
formula.
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5 Flat Counter Machines with Periodic Loops

For simplicity’s sake, consider first the counter machines with the structure below:

�init
I(x′)−−→

R(x,x′)
�

�
F(x)−−→ � f in (1)

where R ⊆ Z
x ×Z

x is a periodic relation (Def. 3), and I,F ⊆ Z
x are QFPA-definable

sets of valuations. In the following, we give sufficient conditions (Def. 6) under which
the reachability problem for the counter machines (1) is NP-complete.

Definition 5. A class of relations R is said to be poly-logarithmic if and only if there
exist integer constants p,q,r,s > 0, depending on R , such that, for all P,Q,R ∈ R :

1. ||Rn||2 = O(||R||p2 · (log2 n)q), for all n > 0
2. the composition P◦Q can be computed in time O((||P||2 + ||Q||2)r)
3. the consistency R �⇔ false can be checked in time O(||R||s2)

If R is a poly-logarithmic class of relations, it is not difficult to see that there exists
a constant d > 0, depending of R , such that, for any R -definable relation R, the n-
th power Rn can be computed by a fast exponentiation algorithm in time O((||R||2 ·
log2 n)d).

Definition 6. A class of periodic relations R is said to be exponential if and only if (A)
R is poly-logarithmic, (B) the mappings σ, ρ and π (Def. 3) are computable in PTIME,
and (C) for each R -definable relation R ⊆ Z

x ×Z
x:

1. there exist integer constants p,q > 0, depending on R , such that the prefix and
period of R are bounded by 2||R||

p
2 and 2||R||

q
2 , respectively

2. given i ∈ [c] and Λi = σ(Rb+c+i)−σ(Rb+i), points (3) and (4) of Lemma 1 can be
checked in NPTIME(||R||2)

The idea of the reduction is to show the existence of a non-deterministic Turing ma-
chine (Alg. 1) that produces, in time at most polynomial in the binary size of the input, a
QFPA formula, which encodes the reachability question for the given counter machine.
If the formula produced by a non-deterministic branch is satisfiable, the reachability
question has a positive answer. Otherwise, if no branch of Alg. 1 returns “yes”, the
reachability question has a negative answer.

Since the formulae produced by Alg. 1 (lines 6 and 13) are of size at most polynomial
in the size of the input (1), and that deciding whether a QFPA formula is satisfiable is
an NP problem, it turns out that the reachability problem for the counter machines (1)
is in NP. The general result is given in Thm. 2, which applies the idea used for single
loop counter machines (1) to flat counter machines, in general.

To understand Alg. 1, observe first that the reachability problem for (1) can be stated
as the satisfiability of the following formula: I(x)∧k ≥ 0∧ ̂R(k,x,x′)∧F(x′). Since, in
general, the closed form ̂R(k,x,x′) is not QFPA-definable, we focus on the case where
R is a periodic relation (Def. 3). We distinguish two cases. First, if R is not ∗-consistent,
i.e. Ri = /0 if and only if i is greater or equal than the prefix b of R, the reachability
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Algorithm 1. Non-deterministic Algorithm for the Reachability Problem (1)
1: function ISREACHABLE(I,R,F)
2: goto 8 or 3 [guess whether R is ∗-consistent]
3: choose 0 < b < 2||R||

p
2

4: assume Rb−1 �= /0 and Rb = /0 [check that R is not ∗-consistent]
5: choose i ∈ [b]
6: assume ∃x∃x′ . I(x)∧Ri(x,x′)∧F(x′)
7: return YES

8: choose 0 < b < 2||R||
p
2 , 0 < c < 2||R||

q
2 and j ∈ [c]

9: Λ ← σ(Rb+c+ j)−σ(Rb+ j)
10: assume ∀k ≥ 0 ∃x∃x′ . π(k ·Λ+σ(Rb+ j))(x,x′) [check that R is ∗-consistent]

11: assume
(∀x∀x′∀k ≥ 0 [∃y . π(k ·Λi +σ(Rb+i))(x,y) ∧ Rc(y,x′)]

⇔ π((k+ 1) ·Λi+σ(Rb+i))(x,x′)

)

12: choose i ∈ [b]
13: assume ∃x∃x′ . I(x)∧ [Ri(x,x′)∨ (k ≥ 0∧π(k ·Λ+σ(Rb+ j)))]∧F(x′)
14: return YES

problem for (1) is equivalent to the satisfiability of the formula I(x)∧[∨b−1
i=0 Ri(x,x′)

]∧
F(x′). Second, if R is ∗-consistent, the reachability problem for (1) is equivalent to the
satisfiability of the following formula:

I(x)∧ [

b−1∨

i=0

Ri(x,x′)

︸ ︷︷ ︸

prefix

∨
c−1∨

j=0

k ≥ 0∧π(k ·Λ j +σ(Rb+ j))

︸ ︷︷ ︸

period

]∧F(x′) (2)

where b,c > 0 are integers, and Λ0, . . . ,Λc−1 are matrices meeting the conditions of
the second point of Lemma 1. The first disjunct above takes care of the case when the
number of iterations of the loop is smaller than the prefix b, and the second one deals
with the other case, when kc+ b+ j iterations of the loop are needed, for some k ≥ 0
and j ∈ [c].

The first guess of Alg. 1 is whether R is ∗-consistent or not (line 2). If the guess was
that R is not ∗-consistent, Alg. 1 guesses further a positive constant b, bounded by 2||R||

p
2 ,

where p > 0 depends on the class R (line 3). Then it checks that b is the prefix of R,
by computing Rb−1 and Rb, and checking that Rb−1 �= /0 and Rb = /0 (line 4). By Def. 5,
this check can be done in PTIME(||R||2). If the prefix check (line 4) is successful, the
reachability problem can be encoded in QFPA by further guessing i∈ [B], and producing
the QFPA formula I(x)∧Ri(x,x′)∧F(x′) (line 6). Since R is a poly-logarithmic class,
||Ri||2 = O(||R||r2 · (log2 i)s) = O(||R||r+s

2 ), for some r,s > 0, depending on R . Thus, the
binary size of this formula is polynomial in ||I||2 + ||R||2 + ||F ||2, and the reachability
problem, can be answered in NPTIME(||R||2 + ||I||2 + ||F||2), by checking satisfiability
of this formula (line 6).

If, on the other hand, the first guess was that R is ∗-consistent, then Alg. 1 will
further guess constants 0 < b < 2||R||

p
2 and 0 < c < 2||R||

q
2 , for some constants p,q > 0

depending on R , and j ∈ [c] (line 8). Next, it computes the powers Rb+ j and Rb+c+ j in
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PTIME(||R||2), using fast exponentiation, and lets Λ = σ(Rb+c+ j)−σ(Rb+ j). Clearly,
the binary size of Λ is bounded by a polynomial in ||R||2. Further, the algorithm needs
to check whether the choices of b,c, j and Λ where adequate for defining the closed
form of the infinite sequence of powers {Rc·k+b+ j}k≥0, using Lemma 1. Moreover, it
also needs to check the initial guess that R is ∗-consistent, using this closed form. To
this end, it must check the points (3) and (4) of Lemma 1, which by Def. 6 (point C.2)
can be done in NPTIME(||R||2) (lines 10 and 11 of Alg. 1, respectively). Next, Alg.
1 outputs a QFPA formula encoding the reachability problem, using the closed form
for the sequence {Rc·k+b+ j}k≥0 (line 13). The size of this formula is polynomial in
||I||2 + ||R||2 + ||F||2, and its satisfiability status, and thus the reachability problem for
the counter machine (1), can be decided in NPTIME(||I||2 + ||R||2 + ||F||2).

It is not difficult to see that the reachability problem for (1) is NP-hard, by reduction
from the satisfiability problem for QFPA [22]: let I(x) be any QFPA formula over x,
R = false and F = true. Then q f is reachable from qi if and only if I(x) is satisfiable.
The following theorem generalizes the proof from (1) to general flat counter machines.

Theorem 2. If R is a periodic exponential class of relations, the reachability problem

for the class MR = {M flat counter machine | for all rules q
R⇒ q′ on a loop of M, R is

R -definable} is NP-complete.

6 The Periodicity of Tropical Matrix Powers

Weighted graphs are central to the upcoming developments. The main intuition is that
the sequence of matrices representing the powers of a difference bounds relation cap-
tures minimal weight paths of lengths 1,2,3 . . . in a weighted graph. Formally, a weight-
ed digraph is a tuple G = 〈V,E,w〉, where V is a set of vertices, E ⊆ V ×V is a set of
edges, and w : E → Z is a weight function. A path π in G is said to be elementary if all
vertices on π are distinct, except for the first and last vertex, which may be the same. For
a path π, we denote its length by |π|, and its weight (the sum of the weights of all edges

on π) by w(π). The average weight of π is defined as w(π) = w(π)
|π| . We assume that the

reader is familiar with the notion of strongly connected component (SCC). A cycle is
said to be critical if it has minimal average weight among all cycles in its SCC. The
cyclicity of a SCC is the greatest common divisor of the lengths of all its elementary
critical cycles, or 1, if the SCC contains no cycles.

Let A ∈ Z
m×m
∞ be a square matrix, and G be any weighted graph, such that A is the

incidence matrix of G. Let (A�B)i j =minm
k=1(aik+bk j) denote the tropical product of A

and B, A�1
= A and A�k+1

= A�k �A, for all k > 0. The sequence {A�k}∞
k=1 of tropical

powers of A gives the minimal weights of the paths of lengths k = 1,2, . . . between any
two vertices in G. The following theorem shows that any sequence of tropical matrix
powers is periodic, and provides an accurate characterization of its period.

Theorem 3 ([21]). Let A∈Z
m×m
∞ be a matrix, G= 〈V,E,w〉 be a weighted graph whose

incidence matrix is A, and W1, . . . ,Wn be the partition of G in strongly connected com-
ponents. The sequence {A�k}∞

k=1 is periodic, and its period is lcm(c1, . . . ,cn), where
c1, . . . ,cn are the cyclicities of W1, . . . ,Wn, respectively.



250 M. Bozga, R. Iosif, and F. Konečný

The above theorem does not give an estimate on the prefix of the sequence, which is
carried out by the following theorem:

Theorem 4. Given a matrix A ∈ Z
m×m
∞ , the sequence {A�k}∞

k=1 is periodic with prefix
at most max(m4,4 ·M ·m6), where M = max{abs(Ai j) | 1 ≤ i, j ≤ m,Ai j < ∞}.

Notice that if A has only 0 and ∞ entries, then M = 0 and the prefix depends only on m.

7 Difference Bounds Relations

In the rest of this section, let x = {x1,x2, ...,xN} be a set of variables ranging over Z.

Definition 7. A formula φ(x) is a difference bounds constraint if it is a finite conjunc-
tion of atomic propositions of the form xi − x j ≤ αi j, 1 ≤ i, j ≤ N, where αi j ∈ Z.
A relation R ⊆Z

x×Z
x is a difference bounds relation if it can be defined by a difference

bounds constraint φR(x,x′). The class of difference bounds relations is denoted by R DB.

Difference bounds constraints are represented either as matrices or as graphs. If φ(x) is
a difference bounds constraint, then a difference bounds matrix (DBM) representing φ is
an N ×N matrix Mφ such that (Mφ)i j = αi j if xi − x j ≤ αi j ∈ Atom(φ), and (Mφ)i j = ∞,
otherwise. The constraint graph Gφ = 〈x,→〉 is a weighted graph, where each vertex

corresponds to a variable, and there is an edge xi
αi j−→ x j in Gφ if and only if there exists

a constraint xi − x j ≤ αi j in φ (Fig. 1(a)). Clearly, Mφ is the incidence matrix of Gφ. If
R is a difference bounds relation defined by the difference bounds constraint φR(x,x′),
the folded graph of R is the graph G f

R = 〈x, f−→〉, which has an edge xi
f−→ x j whenever

xi
α−→ x j, xi

α−→ x′j, x′i
α−→ x j, or x′i

α−→ x′j in GR. For any two variables xi,x j ∈ x, we write

xi ∼R x j whenever xi and x j belong to the same SCC of G f
R (Fig. 1(c)). If M ∈ Z

N×N
∞ is

x2 x′2

x1 x′1
1

−1

2

−2

⎛

⎜

⎜

⎜

⎜

⎝

x1 x2 x′1 x′2
x1 0 ∞ 1 −1
x2 ∞ 0 −2 2

x′1 ∞ ∞ 0 ∞
x′2 ∞ ∞ ∞ 0

⎞

⎟

⎟

⎟

⎟

⎠

x2

x1

x2
x1

x(0) x(1) x(2) x(3) x(4) x(5) x(6)

π1 π2

x2
x1

π3 π4

(a) GR (b) M∗
R (c) G f

R (d) z-paths in Gω
R

Fig. 1. Let R(x1,x2,x′1,x
′
2)⇔ x1 −x′1 ≤ 1∧x1−x′2 ≤−1∧x2−x′1 ≤−2∧x2 −x′2 ≤ 2 be a differ-

ence bounds relation. (a) shows the graph representation GR, (b) the closed DBM representation
of R, and (c) the folded graph of GR, where x1 ∼R x2. (d) shows several odd forward z-paths:
π1 (essential and repeating), π2 (repeating), π3 (essential) and π4 = π3.π1 (neither essential nor
repeating).
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a DBM, we define5:

Φuu
M ≡ ∧

Mi j<∞ xi − x j ≤ Mi j Φpu
M ≡ ∧

Mi j<∞ x′i − x j ≤ Mi j

Φup
M ≡ ∧

Mi j<∞ xi − x′j ≤ Mi j Φpp
M ≡ ∧

Mi j<∞ x′i − x′j ≤ Mi j

A DBM M is said to be consistent if and only if Φuu
M is consistent. A consistent

difference bounds matrix M ∈ Z
N×N
∞ is said to be closed if Mii = 0, for all 1 ≤ i ≤

N, and all triangle inequalities Mik ≤ Mi j +Mjk hold, for all 1 ≤ i, j,k ≤ N. Given
a consistent DBM M, the (unique) closed DBM which is logically equivalent to M is
denoted by M∗ (Fig. 1(b)). It is well known that difference bounds constraints have
quantifier elimination6, and are thus closed under relational composition.

Lemma 2. The class R DB is poly-logarithmic.

7.1 Zigzag Automata

Zigzag automata have been used in the proof of Presburger definability of transitive
closures [8], and of periodicity [6], for difference bounds and octagonal relations. They
are needed here for showing that difference bounds relations are exponential (Def. 6).
Let x = {x1, . . . ,xN} be a set of variables, and R ⊆ Z

x ×Z
x be a difference bounds

relation, with constraint graph GR. Let ΣR = 2GR denote the set of subgraphs of GR.
A finite word of length n ≥ 0 over ΣR is a mapping w : [n]→ ΣR. The notion of finite
words over ΣR extends naturally to infinite words w : N→ ΣR, and to bi-infinite words
w : Z→ ΣR. The concatenation of two finite words w : [n]→ ΣR and w′ : [m]→ ΣR is a
word w ·w′ : [n+m]→ ΣR, defined as (w ·w′)(i) =w(i), for all 0≤ i< n and (w ·w′)(i) =
w′(i− n), for all n ≤ i < n+m. The set of finite words is denoted Σ∗

R. For a finite word
w : [n] → ΣR, we denote by ωwω its bi-infinite iteration, i.e. ωwω(i) = w(i mod n) for
all i ∈ Z. For example, Fig. 2(a) shows the constraint graph GR of a difference bounds
relation R, and Fig. 2(b) shows several symbols γ1, . . . ,γ9 ∈ ΣR. We associate with every
finite word w : [n]→ Σ a graph Hw = (

⋃n
i=0 x(i),−→), where x(i) = {x(i) | x ∈ x}, and:

– x(i)k
α−→ x(i+1)

� in Hw if and only if xk
α−→ x′� in w(i)

– x(i+1)
k

α−→ x(i)� in Hw if and only if x′k
α−→ x� in w(i)

for all 1 ≤ k, � ≤ N and for all 0 ≤ i < n. For example, Fig. 2(c) shows the graph Hv

corresponding to the word v = γ0.γ2
1.γ2.γ3.γ4.γ3

5.γ6.γ7.γ3
8.γ9.γ1.γ2.γ3.γ4. This notation is

extended to bi-infinite words, in the obvious way. In the following, we abuse notation
and denote the graph HωGR

ω , corresponding to the bi-infinite iteration of GR, by ωGR
ω.

A word w : [n]→ ΣR is said to be valid if and only if each vertex of Hw has in-degree
and out-degree at most one, and the in-degree and out-degree of each vertex from the set

{x(i)k | i = 1, . . . ,n−1} are equal. It is easy to see that the word v from Fig. 2(c) is valid,
by inspection of the graph Hv. The notion of validity extends from finite to bi-infinite
words, in the obvious way.

5 The superscripts u and p stand for unprimed and primed, respectively.
6 The quantifier elimination procedure relies on the classical Floyd-Warshall closure algorithm.
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γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9

(a) GR (b) Symbols of the zigzag alphabet ΣR.

x7

x6

x5

x4

x3

x2

x1

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9) x(10) x(11) x(12) x(13) x(14) x(15) x(16) x(17) x(18) x(19)

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

1 1 1
0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

0

(c) A fitting odd forward z-path from x(0)1 to x(19)
7 in Hγ0.γ2

1.γ2.γ3.γ4.γ3
5.γ6.γ7.γ3

8.γ9.γ1.γ2.γ3.γ4
.

Fig. 2. Zigzag alphabet and a path in the unfolded constraint graph of a difference bounds relation
R ≡ x1 −x′2 ≤ 0∧ x2 −x′3 ≤ 0∧ x′3 −x4 ≤ 0∧ x′4 −x5 ≤ 0∧ x′5 −x6 ≤ 0∧ x′6 −x6 ≤ 1∧ x′6 −x7 ≤
0∧ x7 −x′7 ≤−1∧ x′7 −x5 ≤ 0∧ x5 −x′1 ≤−1

Given a difference bounds relation R ⊆ Z
x ×Z

x, the set of valid finite words in
Σ+

R is recognizable by a finite weighted automaton, called a zigzag automaton in the
following. Let TR = 〈Q,Δ,ω〉 be a weighted graph7, called the transition table of the
zigzag automata over ΣR, where Q = {�,r, �r,r�,⊥}N is a set of states, Δ : Q×ΣR → Q
is a transition mapping, and ω : ΣR → Z∞ is a weight function. Intuitively, a state q =
〈q〈1〉, . . . ,q〈N〉〉 ∈ Q describes a vertical cut in a word, as follows: for each i = 1, . . . ,N,
q〈i〉 = � (q〈i〉 = r) if there is a path in the word which traverses the cut at position i
form left to right (right to left), q〈i〉 = �r (q〈i〉 = r�) if there is a path from the right
(left), which bounces to the right (left) at position i, and q〈i〉 =⊥ if no path in the word
traverses the cut at position i (see Fig. 2(c) for an intuitive example). The transition
function Δ ensures that the (local) validity condition is met. More precisely, each path

ρ : q0
γ1−→ q1

γ2−→ . . .
γk−→ qk in TR, between two arbitrary states q0,qk ∈ Q, recognizes a

valid word denoted as Gρ = γ1 · . . . · γk. The weight ω(γ) of a graph γ ∈ ΣR is the sum of
the weights of its edges, and the weight of a path is ω(ρ) = ∑k

i=1 ω(γi). Finally, a zigzag
automaton is a tuple A = 〈TR, I,F〉, where I,F ⊆ Q are sets of initial and final states,

respectively. We denote the language of A as L(A) = {Gρ | qi
ρ⇒ q f ,qi ∈ I,q f ∈ F}. For

example, the zigzag automaton depicted in Fig. 3(a), with initial state q0 and final state
q6 has a run over the word γ0 · γ2

1 · γ2 · γ3 · γ4 · γ3
5 · γ6 · γ7 · γ2

8 · γ9 · γ2 · γ3 · γ4 (see Fig. 2(c)),

7 For reasons of presentation, we differ slightly from the definition of a weighted graph given in
the previous section – here the weight of an edge is associated with the symbol labeling that
edge.
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q0 q1 q2 q3 q4 q5 q6

q7q8q9q10q11

γ0 γ1 γ2 γ3 γ4 γ5
γ5

γ6γ7γ8γ8

γ9γ1
γ5γ8

(a) The zigzag automaton Ao f
1,7 recognizing odd forward z-paths from x1 to x7.
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(b) A run of Ao f
17 over γ0.γ2

1.γ2.γ3.γ4.γ3
5.γ6.γ7.γ3

8.γ9.γ1.γ2.γ3.γ4 (Fig. 2(c))

Fig. 3. Zigzag automaton for the difference bounds relation R ≡ x1 − x′2 ≤ 0 ∧ x2 − x′3 ≤ 0 ∧
x′3 − x4 ≤ 0∧ x′4 − x5 ≤ 0∧ x′5 − x6 ≤ 0∧ x′6 − x6 ≤ 1∧ x′6 − x7 ≤ 0∧ x7 − x′7 ≤ −1∧ x′7 − x5 ≤
0∧ x5 −x′1 ≤−1 and an example of its run (Fig. 2 contd.)

depicted in Fig. 3(b). A detailed definition of zigzag automata can be found in [8]. For
the purposes of the upcoming developments, we rely on the example in Fig. 3 to give
the necessary intuition.

Remark 1. The transition table TR = 〈Q,Δ,ω〉 of a difference bounds relation R ⊆
Z

x ×Z
x has at most 5card(x) vertices, since Q = {�,r, �r,r�,⊥}card(x) is a possible

representation of the set of states [8].

7.2 Paths Recognizable by Zigzag Automata

This section studies the paths that occur within the words recognizable by zigzag au-
tomata. Consider the bi-infinite unfolding of GR, denoted as ωGω

R . A finite path ρ :

x( j1)
i1

α1−→ x( j2)
i2

α2−→ . . .x
( jk−1)
ik−1

αk−1−−−→ x( jk)
ik

in ωGω
R , for j1, . . . , jk ∈ Z is said to be a z-

path whenever, for all 1 ≤ p < q ≤ k, ip = iq and jp = jq only if p = 1 and q = k.
See Fig. 1(d) or Fig. 2(c) for examples of z-paths. We say that a variable xis oc-
curs on ρ at position js, for all 1 ≤ s ≤ k. A z-path is called a z-cycle if i1 = ik and
j1 = jk. A z-path is said to be odd if j1 �= jk and even otherwise. For instance, in
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Fig. 2(c), the z-path x(1)1
0−→ x(2)2

0−→ x(3)3
0−→ x(2)4

0−→ x(1)5
−1−→ x(2)1 is an odd z-path, while

x(1)1
0−→ x(2)2

0−→ x(3)3
0−→ x(2)4

0−→ x(1)5 is an even z-path. We denote by ||ρ||= abs( jk − j1) its

relative length, by w(ρ) = ∑k−1
i=1 αi its weight, and by w(ρ) = w(ρ)

||ρ|| its relative weight.

We write vars(ρ) for the set {xi1 , . . . ,xik} of variables occurring within ρ, called the
support set of ρ.

An even z-path is said to be forward if j1 = jk = min( j1, . . . , jk) and backward if
j1 = jk = max( j1, . . . , jk). An even z-path is said to be fitting if it is either forward
or backward. An odd z-path is said to be forward if j1 < jk and backward if j1 > jk.
An odd forward (backward) z-path is said to be fitting if j1 = min( j1, . . . , jk) and jk =
max( j1, . . . , jk) ( j1 = max( j1, . . . , jk) and jk = min( j1, . . . , jk)). We say that a fitting
z-path ρ is encoded by a word w, if and only if w consists of nothing but ρ and several
z-cycles not intersecting with ρ. Let Enc(w) be the set of z-paths encoded by a word
(this set is either a singleton or the empty set), and Enc(L) =

⋃
w∈L Enc(w) for any set

of words L ⊆ Σ∗
R. For instance, the word γ0.γ2

1.γ2.γ3.γ4.γ3
5.γ6.γ7.γ3

8.γ9.γ1.γ2.γ3.γ4 encodes

the z-path x(0)1 −→ . . .−→ x(19)
7 from in Fig. 2(c).

Theorem 5 ([8]). Let R ⊆ Z
x ×Z

x be a ∗-consistent difference bounds relation, where
x = {x1, . . . ,xN}, and GR be its corresponding constraint graph. Then, for every xi,x j ∈
x, there exist zigzag automata8 A•

i j = 〈TR, I•i j,F
•
i j〉, • ∈ {e f ,eb,o f ,ob}, where TR =

〈Q,Δ,ω〉, such that Enc(L(A•
i j)) are the sets of fitting even/odd, forward/backward z-

paths, starting with x(k)i and ending with x(�)j , respectively, for some k, � ∈ Z. Moreover,
for each fitting z-path ρ, ω(ρ) = min{ω(γ) |
γ ∈ L(Ae f

i j )∪L(Aeb
i j )∪L(Ao f

i j )∪L(Aob
i j ),ρ ∈ Enc(γ)}.

In the following, we denote the concatenation of two z-paths π and ρ by π.ρ. Notice
that π.ρ is defined only if the last variable from the first z-path equals the first variable
from the second z-path, and the two z-paths do not intersect in some vertex which occurs
in the middle of one of them. A z-path π is said to be repeating if and only if the i-times
concatenation of π with itself, denoted πi, is defined, for any i > 0. If π is repeating, then
it clearly starts and ends with the same variable, and is necessarily odd. A repeating z-
path is said to be essential if all variables occurring on the path are distinct, with the
exception of the first and last, which must be equal. The concatenation of an essential
repeating z-path with itself several times is called an essential power. For instance, in
Fig. 1(d) the z-path π1 is essential and repeating, while π2 is repeating but not essential.
For a repeating z-path π, we denote by ωπω the bi-infinite concatenation of π with itself.

7.3 The Complexity of Acceleration for Difference Bounds Relations

In this section, we prove that difference bounds constraints induce a periodic expo-
nential class of relations (Def. 6). First, we recall that difference bounds relations are
periodic (Def. 3) [6]. If R⊆Z

N ×Z
N is a difference bounds relation, let σ(R)≡MR and,

8 Superscripts e f ,eb,o f and ob stand for even forward, even backward, odd forward and odd
backward, respectively.
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for each M ∈ Z
2N×2N
∞ , let �M, �M, M�, M� ∈ Z

N×N denote its top-left, bottom-left,
top-right and bottom-right corners, respectively. Intuitively, �M, �M, M�, M� capture
constraints of the forms xi− x j ≤ c, x′i − x j ≤ c, xi − x′j ≤ c and x′i− x′j ≤ c, respectively
(see Fig. 1(b)). We define ρ(M) ≡ Φuu

�M
∧ Φup

M� ∧ Φpu
�M ∧ Φpp

M� . If M ∈ Z[k]2N×2N
∞

is a matrix of univariate linear terms in k, π(M)(k,x,x′) is defined analogously to ρ.
With these definitions, it was shown in [6], that the class of difference bounds rela-

tions is periodic (Def. 3). The reason is that the sequence of difference bounds matrices
{MRi}∞

i=1 corresponding to the powers of a relation R is a pointwise projection of the

sequence of tropical powers {M �i

R }∞
i=1 of the incidence matrix MR of the transition

table TR. By Thm. 3, any sequence of tropical powers of a matrix is periodic, which
entails the periodicity of the difference bounds relation R. Recall that the number of
vertices in TR is 5N = 2O(N). Consequently, the prefix of a difference bounds relation
can be bounded using Thm. 4:

Lemma 3. The prefix of a difference bounds relation R ⊆ Z
N ×Z

N is 2O(||R||2).
A preliminary estimation of the upper bound of the period of a difference bounds

relation R ⊆ Z
N ×Z

N can be already done using Thm. 3. Since the size of the transition
table TR of the zigzag automata for R is bounded by 5N , by definition, the cyclicity of
any SCC of TR is at most 5N , hence, by Thm. 3, the period is bounded by lcm(1, . . . ,5N).

Applying the following lemma, one shows immediately that the period is 22O(N)
.

Lemma 4. For each n ≥ 1, lcm(1, . . . ,n) = 2O(n).

We next improve the bound on periods to simply exponential (Thm. 6).

Theorem 6. The period of a difference bounds relation R ⊆ Z
N ×Z

N is 2O(N).

This leads to one of the main results of the paper:

Theorem 7. The class R DB is exponential, and the reachability problem for the class

M DB = {M flat counter machine | for all q
R⇒ q′ on a loop of M, R is R DB-definable}

is NP-complete.

Before proceeding with the technical developments, we summarize the proof idea
of Thm 6. Let TR be the transition table of the zigzag automata for the difference
bounds relation R ⊆ Z

N ×Z
N , and let MR be its incidence matrix. The main idea is

that each non-trivial SCC of TR, which intersects a path between an initial and a final
state of a zigzag automaton, contains a critical elementary cycle λ, whose length divides
lcm(1, . . . ,N). Then the cyclicity of the SCC containing λ is, by definition, the greatest
common divisor of the lengths of all critical elementary cycles of the SCC, and conse-
quently, a divisor of lcm(1, . . . ,N) as well. Since this holds for any non-trivial SCC in

TR, by Thm. 3, the period of the sequence {M �k

R }∞
k=1 of tropical powers of MR is also

a divisor of lcm(1, . . . ,N), which is of the order of 2O(N) (Lemma 4).
It remains to prove the existence, in each non-trivial SCC of TR, of an elementary

critical cycle of length which divides lcm(1, . . . ,N). The proof consists of several steps:

1. Let q
γ−→ q be a critical cycle of TR. Intuitively, a sufficiently long iteration of γ will

exhibit a word z, consisting of repeating z-paths (and possibly several cycles), such
that w(z) = w(γ).
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2. We define an equivalence relation on repeating z-paths (Def. 8), and define a word
µ, which is obtained from z by keeping only one representative per equivalence
class. Moreover, we have w(µ)≤ w(z) (Lemma 5), and we show that it is possible
to connect µ to z both left and right, via some connecting words η and ξ, thus
obtaining a valid word zm.η.µn.ξ.zp, for every m,n, p > 0 (Lemma 6).

3. The word µ is further used to define a word λ, consisting only of essential powers
πn1

1 , . . . ,πnk
k , where |πi| ≤ N, for all i = 1, . . . ,k such that w(λ)≤w(µ), and there ex-

ist words σ and τ, such that µq.σ.λr.τ.µs is a valid word, for all q,r,s > 0. Moreover,
|λ| divides lcm(|π1|, . . . , |πk|), and, since λ consists of essential powers |πi| ≤N, for
all i = 1, . . . ,k. Hence |λ| divides lcm(1, . . . ,N).

4. Finally, for sufficiently large m,n, p,q,r > 0, the word zm.η.µn.σ.λp.τ.µq.ξ.zr is

mapped back into a path of the form: q −→ �
λ−→ �−→ q, which traverses a cycle from

the same SCC as the initial cycle q
γ−→ q (Lemma 7).

Multipaths and Reducts. A multipath is a (possibly empty) finite set of z-paths from
ωGR

ω, which all start and end on the same positions (see Fig. 4). Formally, a multipath
µ = {π1, . . . ,πn} is a set of z-paths such that there exist integers k < � such that, for all
i = 1, . . . ,n, either (i) πi is a forward (backward) odd z-path from k to � (from � to k),
(ii) πi is an even z-path from k to k (� to �), or (iii) πi is a z-cycle whose set of positions
of variable occurrences is included in the interval [k, �], and (iv) no two z-paths in µ
intersect each other. The relative length of a multipath µ, is defined as ||µ|| = �− k if
µ �= /0, or ||µ||= 0 if µ = /0.

For a multipath µ, we denote by µac the set of acyclic z-paths in µ. The weight of µ is
defined as w(µ)=∑n

π∈µ w(π), and its average weight is w(µ)= w(µ)
||µ|| if ||µ|| �= 0, or w(µ)=

0 if ||µ||= 0. The support set of a multipath is denoted as vars(µ) =
⋃

π∈µ vars(π). The
concatenation µ1.µ2 of two multipaths µ1 and µ2 is defined as the union of the two
graphs, only if the result is a valid multipath. A multipath µ is iterable if it can be
concatenated with itself any number of times, i.e. µi is a valid multipath, for all i > 0
(Fig. 4 (b,d,e)). A repeating multipath is an iterable multipath in which all acyclic z-
paths are repeating (Fig. 4 (d,e)) – an empty multipath is repeating, by convention. A
repeating multipath is said to be essential if every acyclic z-path is an essential power.
A multipath µ is said to be fitting if every acyclic z-path in µ is fitting (Fig. 4 (b-e)).

Definition 8. Let R ⊆Z
x ×Z

x be a difference bounds relation, and GR be its constraint
graph. Let π1 and π2 be repeating z-paths in ωGω

R . We say that π1 may join π2, denoted

π1 ��R π2, if and only if (i) there exists an SCC S of the folded graph G f
R , such that

vars(π1)∪vars(π2)⊆ S and (ii) there exists a path in ωGω
R from some vertex in ωπ1

ω to
some vertex in ωπ2

ω.

It is not hard to show that ��R is an equivalence relation. For a repeating multipath µ, we
denote by µac

/��R
the partition of the set of acyclic paths µac in equivalence classes of the

��R relation. An sc-multipath (for strongly connected multipath) is a repeating multipath
whose repeating z-paths belong to the same equivalence class of the ��R relation (see
Fig. 4). A repeating multipath ν is said to be a reduct of a repeating multipath µ if and
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(a) GR (b) µ1 (c) µ2 (d) µ3 (e) µ4

Fig. 4. Examples of multipaths. R is x1 = x′2 ∧ x2 = x′1 and GR is shown in (a). µ1 is iterable but
not repeating, µ2 is not iterable. Both µ3 and µ4 are fitting, iterable, repeating, and they consist
of two balanced sc-multipaths each. If R is x1 = x′2 ∧ x2 = x′1 ∧ x1 ≤ x′1 instead (the dotted edge

x1
0−→ x′1), then µ3 is a balanced sc-multipath and µ4 is an unbalanced sc-multipath, since τ1 ��R τ2

for the two forward repeating z-paths τ1,τ2 ∈ µ4.

only if ν ⊆ µ and, for each equivalence class C ∈ µac
/��R

: if the difference between the
number of repeating forward (backward) z-paths and the number of repeating backward
(forward) z-paths in C equals k ≥ 0, then ν∩C contains exactly k repeating forward
(backward) z-paths and no repeating backward (forward) z-path.

Example 2. Consider for instance, in Fig. 2(c), the highlighted sc-multipath µ = {π1 :

x(2)1
0−→ x(3)2

0−→ x(4)3
0−→ x(3)4

0−→ x(2)5
−1−→ x(3)1 ,π2 : x(3)6

1−→ x(2)6 ,π3 : x(2)7
−1−→ x(3)7 }. Notice that

π1 ��R π2 ��R π3, since all variables x1, . . . ,x7 are in the same SCC of the folded graph

G f
R of the difference bounds relation, and, e.g. x(5)5

0−→ x(4)6 connects ωπ1
ω to ωπ2

ω, while

x(2)6
0−→ x(1)7 connects ωπ2

ω to ωπ3
ω in ωGR

ω. Moreover, since π1,π3 are forward z-paths,

and π2 is a backward z-path, ν1 = {π1} and ν2 = {π3} are the only reducts of µ.

Lemma 5. Let R ⊆ Z
x ×Z

x be a ∗-consistent difference bounds relation, and GR be
its constraint graph. Let µ be an sc-multipath in ωGω

R and ν be a reduct of µ. Then
w(ν)≤ w(µ).

Example 3. (contd. from Ex. 2) For instance, for the multipaths µ, ν1 and ν2 from Ex.
2, we have w(ν1) = w(ν2) = w(µ) =−1. See the highlighted edges in Fig. 2(c).

Balanced SC-Multipaths and Strongly Connected Zigzag Cycles. An sc-multipath
µ is said to be balanced if and only if the difference between the number of forward
repeating and backward repeating z-paths in µ is either 1, 0, or −1. Let us observe
that each reduct of a balanced sc-multipath contains at most one repeating z-path. For
instance, the multipath µ from Ex. 2 is balanced, and its reducts ν1 and ν2 contain one
z-path each.

Lemma 6. Let R ⊆ Z
x ×Z

x be a ∗-consistent difference bounds relation, GR be its
constraint graph and µ be a balanced sc-multipath in ωGω

R . Then there exists an essen-
tial sc-multipath, τ = {τ0}, such that τ0 is an essential repeating z-path, w(τ) ≤ w(µ),
and two sc-multipaths ξ and ζ such that µm.ξ.τn.ζ.µp is a valid sc-multipath for all
m,n, p ≥ 0.

Example 4. (contd. from Ex. 2) For instance, the multipath µ from Ex. 2 can be con-
nected with its reducts ν1 and ν2, and back (see Fig. 2(c)).
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The motivation for defining and studying balanced sc-multipaths can be found when

examining the words generated by the iterations of a cycle q
γ−→ q in a zigzag automaton.

Without losing generality, we assume that the state q is both reachable (from an initial
state) and co-reachable (a final state is reachable from q). With this assumption, it is
possible to prove that sufficiently many iterations of the γ cycle will exhibit a subgraph
composed only of balanced sc-multipaths. Details can be found in [7].

Example 5. (contd. from Ex. 2) For instance, for the γ1 cycle in the zigzag automaton in
Fig. 3(a), the balanced sc-multipath is µ, defined in Ex. 2, and highlighted in Fig. 2(c),

and the connecting multipaths are η= {x(3)2
0−→ x(4)3

0−→ x(3)4 } and ξ= {x(3)1
0−→ x(4)2 , x(4)4

0−→
x(3)5

−1−→ x(4)1 , x(4)6
1−→ x(3)6 , x(3)7

−1−→ x(4)7 }. We have γn
1 = η.µn−2.ξ, for all n ≥ 2.

The next lemma maps this graph, composed only of balanced sc-multipaths, back

into another critical elementary loop q′ λ−→ q′ of the zigzag automaton, belonging to the

same SCC as γ, such that λ is composed of essential powers, and w(λ) = w(γ). Since λ
is composed of essential powers, and the length of an essential power is bounded by the
number of variables N in the arithmetic representation of R, we have that |λ| is a divisor
of lcm(1, . . . ,N). This is the final step needed to conclude the proof of Thm. 6.

Lemma 7. Let R ⊆ Z
x ×Z

x be a difference bounds relation, where x = {x1, . . . ,xN},
TR = 〈Q,Δ,ω〉 be its transition table, and A = 〈TR, I,F〉 be one of the zigzag automata

from Thm. 5. If q ∈ Q is a reachable and co-reachable state of A, and q
γ−→ q is a cycle,

then there exists a state q′ ∈ Q, a cycle q′ λ−→ q′, and paths q −→ q′ and q′ −→ q in TR, such

that (i) w(λ)≤ w(γ), and (ii) |λ| | lcm(1, . . . ,N).

Example 6. (contd. from Ex. 2 and 5) Consider the zigzag automaton depicted in Fig.

3(a). The (reachable and co-reachable) cycle q2
γ1−→ q2 is a critical cycle of average

weight −1. The balanced sc-multipath µ, defined in Ex. 2 is obtained by the unfolding

of the q2
γ1−→ q2 cycle, and has relative average weight of −1 as well. The reduct ν1 of µ

(Ex. 2) consists of one essential repeating path π1 : x(2)1
0−→ x(3)2

0−→ x(4)3
0−→ x(3)4

0−→ x(2)5
−1−→

x(3)1 , which appears in the unfolding of another critical cycle q10
γ8−→ q10 of the zigzag

automaton. Moreover, the latter cycle is from the same SCC as q2
γ1−→ q2. The fact that

both cycles belong to the same SCC is witnessed by the fact that the multipath µ can be
connected to its reduct ν1, and back, via two connecting multipaths.

8 Octagonal Relations

The class of integer octagonal constraints is defined as follows:

Definition 9. A formula φ(x) is an octagonal constraint if it is a finite conjunction of
terms of the form xi − x j ≤ ai j, xi + x j ≤ bi j or −xi − x j ≤ ci j where ai j,bi j,ci j ∈ Z, for
all 1 ≤ i, j ≤ N. A relation R ⊆ Z

x×Z
x is an octagonal relation if it can be defined by

an octagonal constraint φR(x,x′).
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We represent octagons as difference bounds constraints over the dual set of variables
y = {y1,y2, . . . ,y2N}, with the convention that y2i−1 stands for xi and y2i for −xi, re-
spectively. For example, the octagonal constraint x1+x2 = 3 is represented as y1−y4 ≤
3∧y2−y3 ≤−3. In order to handle the y variables in the following, we define ı̄ = i−1,
if i is even, and ı̄ = i+ 1 if i is odd. Obviously, we have ¯̄ı = i, for all i ∈ N. We denote
by φ(y) the difference bounds constraint over y that represents φ(x):

Definition 10. Given an octagonal constraint φ(x), x = {x1, . . . ,xN}, its difference
bounds representation φ(y), over y = {y1, . . . ,y2N}, is a conjunction of the following
difference bounds constraints, where 1 ≤ i, j ≤ N, c ∈ Z.

(xi − x j ≤ c) ∈ Atom(φ) ⇔ (y2i−1 − y2 j−1 ≤ c),(y2 j − y2i ≤ c) ∈ Atom(φ)
(−xi + x j ≤ c) ∈ Atom(φ) ⇔ (y2 j−1 − y2i−1 ≤ c),(y2i − y2 j ≤ c) ∈ Atom(φ)
(−xi − x j ≤ c) ∈ Atom(φ) ⇔ (y2i − y2 j−1 ≤ c),(y2 j − y2i−1 ≤ c) ∈ Atom(φ)
(xi + x j ≤ c) ∈ Atom(φ) ⇔ (y2i−1 − y2 j ≤ c),(y2 j−1 − y2i ≤ c) ∈ Atom(φ)

An octagonal constraint φ is equivalently represented by the DBM Mφ ∈ Z
2N×2N
∞ , cor-

responding to φ. We say that a DBM M ∈ Z
2N×2N
∞ is coherent9 iff Mi j = Mj̄ı̄ for all

1 ≤ i, j ≤ 2N. Dually, for a coherent DBM M ∈ Z
2N×2N
∞ , we define:

Ψuu
M ≡ ∧

1≤i, j≤N xi − x j ≤ M2i−1,2 j−1 ∧ xi + x j ≤ M2i−1,2 j ∧−xi − x j ≤ M2i,2 j−1

Ψup
M ≡ ∧

1≤i, j≤N xi − x′j ≤ M2i−1,2 j−1 ∧ xi + x′j ≤ M2i−1,2 j ∧−xi − x′j ≤ M2i,2 j−1

Ψpu
M ≡ ∧

1≤i, j≤N x′i − x j ≤ M2i−1,2 j−1 ∧ x′i + x j ≤ M2i−1,2 j ∧−x′i − x j ≤ M2i,2 j−1

Ψpp
M ≡ ∧

1≤i, j≤N x′i − x′j ≤ M2i−1,2 j−1 ∧ x′i + x′j ≤ M2i−1,2 j ∧−x′i − x′j ≤ M2i,2 j−1

A coherent DBM M is said to be octagonal-consistent if and only if Ψuu
M is consistent.

Definition 11. An octagonal-consistent coherent DBM M ∈Z
2N×2N
∞ is said to be tightly

closed iff it is closed and, for all 1 ≤ i, j ≤ 2N, Miı̄ is even, and Mi j ≤ �Miı̄
2 �+ �Mj̄ j

2 �.

Intuitively the conditions of Def. 11 ensure that all knowledge induced by the triangle
inequality and the y2i−1 = −y2i constraints has been propagated in the DBM. Given an
octagonal-consistent coherent DBM M ∈ Z

2N×Z
2N , we denote the (unique) logically

equivalent tightly closed DBM by Mt . Octagonal constraints are closed under existential
quantification, thus octagonal relations are closed under composition [4]. Tight closure
of octagonal-consistent DBMs is needed for quantifier elimination. The set of octagonal
constraints forms therefore a class, denoted further R OCT .

Lemma 8. The class R OCT is poly-logarithmic.

8.1 The Complexity of Acceleration for Octagonal Relations

The proof idea for the periodicity of R OCT is the following. Since any power Ri of an
octagonal relation R is obtained by quantifier elimination, and since quantifier elimina-
tion for octagons uses the tight closure of the DBM representation, then the sequence

9 DBM coherence is needed because xi − x j ≤ c can be represented as both y2i−1 − y2 j−1 ≤ c
and y2 j −y2i ≤ c.
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{Ri}i>0 is defined by the sequence {Mt
Ri
}i>0 of tightly closed DBMs. In [6] we prove

that this sequence of matrices is periodic, using the result from Thm. 8, below. If R ⊆
Z

N ×Z
N is an octagonal relation, let σ(R)≡ MR be the characteristic DBM of its differ-

ence bounds representation, and for a coherent DBM M ∈ Z
4N×4N
∞ , we define ρ(M) ≡

Ψuu
�M

∧ Ψup
M� ∧ Ψpu

�M ∧ Ψpp
M� . Analogously, π(M) is defined in the same way as ρ, for

each matrix M ∈Z[k]4N×4N
∞ of univariate linear terms. With these definitions, periodicity

of R OCT has been shown in [6], using the periodicity of R DB and the following theorem
[4], establishing the following relation between Mt

Rm (the tightly closed octagonal DBM
corresponding to the m-th iteration of R) and M∗

Rm (the closed DBM corresponding to

the m-th iteration of the difference bounds relation R), for all m > 0:

Theorem 8. [4] Let R ⊆ Z
N ×Z

N, be a ∗-consistent octagonal relation. Then, for all

m > 0 and 1 ≤ i, j ≤ 4N: (Mt
Rm)i j = min

{

(M∗
Rm)i j,

⌊

(M∗
Rm )iı̄

2

⌋

+

⌊

(M∗
Rm ) j̄ j
2

⌋}

.

In the rest of this section, we show that the periodic class R OCT is also exponential,
which proves NP-completness of the reachability problem for flat counter machines
with octagonal constraints labeling their loops.

Lemma 9. Let {sm}∞
m=1 and {tm}∞

m=1 be two periodic sequences. Then the sequences
{min(sm, tm)}∞

m=1, {sm + tm}∞
m=1 and

{⌊ sm
2

⌋}∞
m=1 are periodic as well. Moreover, the

prefixes and periods of these sequences are linear in the prefixes and periods of {sm}∞
m=1

and {tm}∞
m=1.

A consequence of Thm. 8 and Lemma 9 is that the asymptotic bounds on the prefix and
period and an octagonal relation match the ones of its difference bounds representation,
which uses twice as many variables (Def. 10).

Lemma 10. Let R ⊆ Z
x ×Z

x, where x = {x1, . . . ,xN}, be an octagonal relation. The
prefix and period of R are 2O(||R||2) and 2O(N), respectively.

The previous lemma provides the bounds on the prefix and periods of octagonal rela-
tions, needed for the next theorem, which gives the second main result of the paper:

Theorem 9. The class R DB is exponential, and the reachability problem for the class

MOCT = {M flat counter machine | for all q
R⇒ q′ on a loop of M, R is ROCT -definable}

is NP-complete.

9 Conclusions and Future Work

We prove that the verification of reachability properties for flat counter machines with
difference bounds and octagonal relations on loops is NP-complete. Future work in-
cludes the extension of this result to finite monoid affine relations [6], and the inves-
tigation of temporal logic properties of flat counter machines with transitions defined
using these classes of relations.
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